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Abstract 

Colorectal cancer (CRC) is the 3rd most common cancer worldwide. CRC is initiated in 

colonocytes and, with advancing age, colonocytes accumulate mitochondrial mutations 

which contribute to age-related dysfunction and to increased cancer risk. Obesity, and its 

lifestyle determinants, physical inactivity and poor diet, also increase CRC risk.  However, the 

effects of weight loss by bariatric surgery on mitochondrial defects in human colonoctyes and 

on CRC risk are unclear. Epigenetic mechanisms involving microRNAs that lead to 

dysregulated gene expression may mediate the effects of obesity and weight loss on CRC risk. 

 

I hypothesised that mitochondrial defects and microRNAs are i) elevated and aberrantly 

expressed in obese individuals compared with healthy non-obese individuals and ii) reduced 

and modulated by significant weight loss following bariatric surgery, respectively. 

 

Colorectal mucosal biopsies of obese patients listed for bariatric surgery were collected at 

baseline and six months post-surgery and at baseline only from non-obese Controls. 

Mitochondrial oxidative phosphorylation proteins complex I and IV and mitochondrial mass 

were quantified by immunofluorescence. Using Next Generation Sequencing and 

bioinformatics i) mitochondrial DNA was sequenced and ii) a panel of 8 microRNAs was 

selected and validated by quantitative PCR in colorectal mucosal biopsies.  

 

Greater adiposity and advancing age resulted in significantly more complex I and IV deficient 

crypts in the human colorectal mucosa but, at least after 6 months, weight loss following 

bariatric surgery had no significant effect on these mitochondrial defects. Neither excess 

adiposity nor significant weight loss resulted in differences in mtDNA mutations between the 

study groups. Expression of miR-31, miR-215, miR-3196 and miR-4516 was significantly higher 

in obese than in non-obese individuals. Weight loss reduced expression of miR-31, miR-215 

and miR-3196 significantly to expression levels that were comparable with those in Controls. 

These differentially expressed microRNAs are implicated in pathways linked with 

inflammation, obesity and cancer.  

 



 
 

This research enables the broadening of our knowledge on the mechanistic pathways of 

obesity related CRC risk and provides novel evidence on the effects of intentional weight loss 

by bariatric surgery on these biomarkers in the colon. 
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1 Introduction 

1.1 Colorectal cancer 

1.1.1 Epidemiology 

Colorectal cancer (CRC) is the 3rd most common cancer worldwide; in 2012 approximately 

1.4 million cases were diagnosed (Ferlay et al., 2015) and it is estimated that CRC incidence 

will increase by 60% with over 2.2 million new cases predicted in 2030 (Arnold et al., 2016). 

There are wide geographical variations in CRC incidence, with more economically developed 

regions having a higher prevalence compared with less developed regions (Ferlay et al., 2015). 

Countries that go through sudden economic and societal changes demonstrate a fast rise in 

CRC, which is even more predominant in high income countries (Arnold et al., 2016).  Studies 

of migrants from lower to higher risk countries reveal that migrants experience higher CRC 

risk within one generation, suggesting that this may be due to environmental and lifestyle 

factors (Kolonel et al., 1985, Flood et al., 2000, Maskarinec and Noh, 2004).  Globally, CRC 

incidence is higher in men than in women and increases with age so that most CRC cases are 

aged ≥65 years (Douaiher et al., 2017). 

1.1.2 Colorectal cancer development 

Figure 1-1 shows the normal colonic epithelium including the colonic crypts (blue arrow), 

surface epithelium (yellow arrow), and goblet cells (red arrow). Most CRC develop 

sporadically and only 15-30% are due to hereditary factors (Mundade et al., 2014). CRC results 

from unrepaired genomic damage to stem cells and their progeny located in the crypts of the 

colorectal mucosa (see Figure 1-2) (Walther et al., 2009). Through a Darwinian process, 

damage that provides the nascent tumour cell with a competitive advantage results in the 

development of cell clones with excessive proliferation and, therefore, neoplastic potential 

and leads to monocryptal adenomas or aberrant crypt foci. Crypt fission may expand such 

lesions resulting in the appearance of non-malignant lesions known as adenomatous polyps 

(Humphries and Wright, 2008). With further genetic and epigenetic changes driving 

hyperplasia, some adenoma develop into malignant adenocarcinoma and, eventually, some 

metastasise (Mundade et al., 2014).  
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Figure 1-1: Transverse section of human colorectal mucosal biopsy showing normal colonic epithelium including the colonic 
crypts (blue arrow), surface epithelium (yellow arrow), and goblet cells (red arrow) (Adapted from Greaves et al., 2010) 
(Copyright: figure is open-access)  

Both epigenetic modifications and gene mutations contribute to CRC development by 

activating oncogenes and oncogenic pathways and by inactivating tumour suppressor genes 

(TSG) (Fearon, 2011). This genomic damage includes chromosomal defects, mutations in the 

nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) and epigenetic abnormalities that lead 

to aberrant gene expression and uncontrolled growth of colonocytes.  

On the one hand, inactivating mutations in the tumour suppressor gene APC occur early in 

almost all CRC. Loss of APC function results in aberrant activation of the WNT signalling 

pathway which contributes to increased cell proliferation and polyp development (Lao and 

Grady, 2011). On the other hand, mutations in the proto-oncogenes KRAS or BRAF occur in 

55-60% of CRC and KRAS signals through BRAF to activate the mitogen-activated protein 

kinase (MAPK) pathway, which regulates cell proliferation and apoptosis and can cause and 

progress CRC development (Lao and Grady, 2011); (Slattery et al., 2018). Further mutations 

in genes, such as in KRAS or TP53, regulating key pathways including the transforming growth 

factor-β (TGF-β1) signalling pathway, mediate the transformation from polyps to cancer 

(Vogelstein et al., 1988, Vazquez et al., 2008, William and Sanford, 2008). It has been found 

that approximately 30% of CRC comprise mutations in the gene encoding the type 2 receptor 

for TGF-β (TGFBR2) (Grady et al., 1998). More research has identified additional mutated TGF-

β signalling pathway members including TSP1, RUNX3, SMAD2 and SMAD4 (Sjoblom et al., 

2006, William and Sanford, 2008, Eppert et al., 1996, Takaku et al., 1998, Wood et al., 2007). 
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Figure 1-2: Colorectal cancer development (Walther et al., 2009) (Copyright: figure is open-access). 

Three main molecular pathways for CRC development have been identified, namely the i) 

chromosomal instability (CIN), ii) microsatellite instability (MSI) and iii) serrated pathway (SP) 

(see Figure 1-3). 

During the CIN pathway, proto-oncogenes such as KRAS, c-SRC and c-MYC are activated and 

TSG including APC, TP53, SMAD4 and 18q LOH are inactivated (Mundade et al., 2014). 

Inactivation of the APC gene or its promoter, i.e. by hypermethylation, activates the Wnt/ β-

catenin signalling which results in adenoma development (Powell et al., 1992, Esteller et al., 

2000). Mutations in the APC gene result in a failure to produce a functional APC protein. As a 

consequence, the absence of APC from the multi-protein complex (which includes axin and 

GSK3B) means that beta-catenin will not be phosphorylated and, therefore, not targeted for 

degradation. This leads to an accumulation of β-catenin in the cytoplasm that subsequently 

translocates into the nucleus, acting as a co-activator of TCF/ LEF transcription factors; this 

activates genes involved in cell growth and proliferation (Mann et al., 1999). Furthermore, 

activation of the KRAS gene plays a key role in apoptosis, cell division and differentiation 

through the MEK and ERK pathway (Pruitt and Der, 2001). KRAS mutations impair GTPase 

activity which leads to the accumulation of active KRAS in the GTP-bound conformation 

activating downstream pro-proliferative signalling and disrupting the RAS signalling pathway 

(Schubbert et al., 2007). Furthermore, a loss of SMAD4 leads to tumourigenesis through the 

TGFβ pathway (Mundade et al., 2014). TP53 (the guardian of the genome) senses DNA 

damage and initiates appropriate responses including cell cycle arrest (to allow DNA repair) 
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and apoptosis when damage is extensive. P53 mutation results in uninhibited cell growth 

(Vogelstein et al., 1988, Li et al., 2015). 

MSI is a result of genetic hyper-mutation due to impaired DNA mismatch repair (MMR). This 

leads to the accumulation of insertions or deletions in microsatellites and, indeed, throughout 

the genome. When this unrepaired damage occurs in i) DNA coding regions for TSG and 

oncogenes, or ii) proteins including APC, TGFβRII and/ or BAX, it leads to CRC (Geiersbach and 

Samowitz, 2011). MMR genes are inactivated by i) epigenetic silencing due to 

hypermethylation of the promoter CpG of the MLH1 gene and by ii) point mutations in MMR 

genes (Armaghany et al., 2012).  

Mutations in proto-oncogene BRAF and epigenetic silencing of genes playing a role in cell 

cycle control, DNA repair and cell differentiation are observed in SP (Jass et al., 2002, Leggett 

and Whitehall, 2010). BRAF is involved in cell differentiation, division and secretion via the 

MAPK/ ERK signalling pathway (Rustgi, 2013). BRAF point mutations result in enhanced 

MAPK/ ERK signalling via impaired negative feedback mechanism (Rustgi, 2013). 

Subsequently this activates downstream effects such as uncontrolled cell proliferation, 

angiogenesis through HIF-1α, impaired immune response, vascular endothelial growth factor, 

tissue invasion, migration, metastasis and apoptosis resistance (Ascierto et al., 2012). 

Additionally, silencing of TSG, such as p16 and TP53, via promoter hypermethylation has also 

been shown (Mundade et al., 2014).  



5 
 

 

Figure 1-3: Main genetic pathways in CRC development (Mundade et al., 2014) (Copyright: figure is open-access). 

 

1.1.3 Colorectal cancer risk factors 

CRC risk increases with age and is further exacerbated by adverse lifestyle factors such as 

smoking, physical inactivity, poor diet and obesity (World Cancer Research Fund, 2018). These 

increase CRC risk by increasing the acquisition and decreasing the repair of genomic damage 

(World Cancer Research Fund, 2018). A population-based study showed that 3.6% of all new 

cancer cases globally are due to excessive adiposity and that breast and colon cancer account 

for about two thirds of cancers due to excessive body weight (Arnold et al., 2015).  

1.1.3.1 Obesity and CRC risk 

Strong evidence demonstrates that obesity increases the risk for CRC. Ning (2010) conducted 

a systematic review and meta-analysis of data from 56 observational studies on over 7 million 

people including 93,812 CRC cases which showed that higher BMI was associated with 

increased CRC risk both in retrospective and prospective studies. The same study also showed 
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that each 5 kg/m2 unit increment in BMI increased CRC risk by 18%; this association with BMI 

was stronger for colonic than for rectal cancer and for males than for females (Ning et al., 

2010). Obesity is also a major risk factor for colorectal adenomas (Omata et al., 2013) which 

indicates that increased adiposity may be a key player at an early stage in colorectal 

tumourigenesis (Mathers, 2018). A systematic review and meta-analysis including 19 

prospective cohort studies and a total of 1,343,560 people of whom 12,837 developed CRC, 

reported that abdominal obesity, measured by waist circumference and waist-to-hip ratio, 

was associated with increased colorectal, colon and rectal cancer risk (Dong et al., 2017). A 

dose-dependent linear relationship has been confirmed between colorectal adenomas and 

visceral/ abdominal adiposity indicating that accumulation of body fatness within and around 

visceral organs may explain this positive association seen between risk of colorectal 

adenomas and CRC and greater BMI, waist and hip circumference (Ma et al., 2013, Keum et 

al., 2015b). Kantor (2016) reported that a higher BMI of nearly 240,000 16-20 years old 

Swedish men undergoing military enlistment was associated with significantly greater CRC 

risk 35 years after. Moreover, a meta-analysis of data from 7 prospective cohort studies on 

24,751 females and 18,668 males, aged 63 and 62 years, respectively, showed a positive 

association between CRC risk and increased BMI, waist and hip circumference and waist to 

hip ratio, 12 years later (Freisling et al., 2017). These findings suggest that increased adiposity 

at any time point during the adult life course is a major risk factor for CRC (Mathers, 2018). 

There is some evidence for a sex-specific effect of weight gain on CRC risk. For example, a 

meta-analysis of prospective studies demonstrated that weight gain during adulthood is 

associated with significantly higher CRC risk in males but not in females (Keum et al., 2015a). 

However, a relatively small number of studies focussing on females was included in the review. 

Obesity results in chronic systemic low-level inflammation through secretion of pro-

inflammatory cytokines and signal molecules and to increased reactive oxygen species (ROS) 

which accelerate damage to the genome (Kiraly et al., 2015, Tuo et al., 2016). With higher 

adiposity, leptin concentrations in plasma rise, leading to increased production of TNF-α, IL-6 

and -12 and pro-inflammatory macrophage accumulation (see Figure 1-4) (Tuo et al., 2016). 

Elevated plasma CRP, TNF-α and IL-6 concentrations in obese individuals are linked to 

impaired glucose tolerance, insulin resistance, abnormally high concentrations of insulin and 

insulin-like growth factor 1 (IGF-1), and low levels of IGF binding proteins, all of which may 
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increase CRC risk (see Figure 1-4) (Wei et al., 2005). Plasma concentration of C-reactive 

protein (CRP)- a widely-used marker of systemic inflammation- correlates positively with CRC 

risk (Gunter et al., 2006, Otani et al., 2006, Erlinger et al., 2004). In addition, Poullis (2004) 

showed that faecal calprotectin concentration (a marker of gut mucosal inflammation) is 

positively correlated with age, physical inactivity and obesity and inversely correlated with 

fruit, vegetable and fibre intake. An obesity-induced pro-inflammatory environment triggers 

a mucosal signalling cascade, involving activation of the transcription factor NF-κB and higher 

inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression (John et al., 

2006), that may supress apoptosis (Karin et al., 2002) which is one of the hallmarks of cancer 

(Hanahan and Weinberg, 2011).  

 

 

Figure 1-4: Metabolic and inflammatory links between obesity and cancer (Tuo et al., 2016) Reproduced with copyright 
permission (2019).  

1.1.4 Effect of weight loss on biomarkers of colorectal cancer risk 

1.1.4.1 Weight loss via lifestyle based interventions 

In comparison with the wealth of strong and convincing evidence confirming associations 

between obesity and CRC risk, there are few studies about the effects of weight loss in the 

obese on CRC risk and, the few studies available to date are equivocal. A meta-analysis of 15 

randomised controlled trials including data from 17,186 obese people (approximately equal 

numbers of males and females; mean age 52 years) showed that intentional weight loss 

(mean 5.5kg) resulted in a 15% fall in all-cause mortality, however cancer outcomes were not 
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evaluated in this study (Kritchevsky et al., 2015). A systematic review and meta-analysis of 54 

randomised controlled trials investigating the effect of weight loss by lifestyle-based 

interventions demonstrated significantly reduced all-cause mortality over a two year period 

but did not detect effects on specific mortality causes such as cancer (Ma et al., 2017). 

Another systematic review and meta-analysis  of data from 13 studies on the effect of weight 

change on CRC risk reported that weight gain was linked with increased CRC risk but that 

weight loss showed no effect (Karahalios et al., 2015).   

Whilst the effects of lifestyle-based weight loss on CRC risk are unknown, there is evidence of 

effects of such weight loss on biomarkers of CRC risk e.g. cell proliferation and markers of 

systemic and tissue specific inflammation (see Table 1-1). In the INTERCEPT Study, 20 obese 

adults underwent an eight week low-energy liquid diet which resulted in 14% weight loss, 

reduced expression of Ki-67, which is a cell proliferation marker, in the colorectal mucosa and 

improved insulin sensitivity (Beeken et al., 2017). As noted above (section 1.1.3.1), increased 

insulin resistance may play a mechanistic role in obesity-related CRC (Beeken et al., 2017). 

Weight loss induced by a low-energy diet in obese older individuals (aged over 60 years) 

reduced pro-inflammatory markers in plasma including CRP, TNF-α and IL-6 and there were 

no additional benefits of including exercise in the weight loss intervention (Nicklas et al., 

2004). Likewise, in middle aged obese women (aged 40 years), a low-energy diet and a low-

energy diet plus exercise resulted in decreased IL-6 and TNF-α expression in plasma and 

subcutaneous adipose tissue. However, women in an exercise-only group who did not lose 

any fat mass did not show improvements in systemic insulin sensitivity, or in markers of 

inflammation in adipose tissue or plasma (Lakhdar et al., 2013). Tchernof (2002) 

demonstrated a positive correlation between plasma CRP concentrations and BMI in obese 

postmenopausal women (mean age 56 years), and found that a low-energy diet for 13.9 

months resulted in mean 14.5kg weight loss and 32.3% lower plasma CRP concentrations.  

Although changes in markers of inflammation in plasma and adipose tissue may mirror the 

change in other tissues, measurements taken from colorectal tissue per se are more directly 

relevant to the present project.  Pendyala (Pendyala et al., 2011) found that imposition of a 

low-energy diet leading to mean 10.1% weight loss reduced the expression of IL-1β, IL-8, TNF-

α, monocyte chemotactic protein 1 (markers of inflammation) and of the proto-oncogenes 

FOS and JUN in the colorectal mucosa of obese pre-monopausal women. Weight loss (6.4%) 
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following participation in Slimming World (a community based weight loss programme) 

resulted in lower faecal calprotectin concentrations only in those overweight and obese 

individuals who had high concentrations (>50µg/g) at baseline (Kant et al., 2013). Although 

the weight loss achieved in these studies (see Table 1-1) was relatively modest, ranging from 

6.4- 14%, this was sufficient to reduce tissue specific and systemic inflammatory markers.  

 

Study Tissue Weight loss 

intervention 

Key Findings 

(Tchernof et 

al., 2002) 

Plasma Low-energy diet Decreased CRP concentration 

(Nicklas et al., 

2004) 

Plasma Low-energy diet 

with/ without 

exercise 

Reduction in pro-inflammatory 

markers (CRP, TNF-α and IL-6) 

No additional benefits after exercise 

(Pendyala et 

al., 2011) 

Colorectal 

mucosa 

Low-energy diet Decreased expression of 

inflammatory markers (IL-1β, IL-8, 

TNF-α, monocyte chemotactic 

protein 1) and proto-oncogenes 

(FOS and JUN) 

(Kant et al., 

2013) 

Stool 

 

Community 

based weight 

loss porgramme 

by Slimming 

World 

Decreased faecal calprotectin 

concentration 

(Lakhdar et 

al., 2013) 

Plasma and 

subcutaneous 

adipose tissue 

Low-energy diet 

with/ without 

exercise and 

exercise only 

Decreased expression of IL-6 and 

TNF-α in low-energy diet with/ 

without exercise groups 

No change in exercise group 
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(Beeken et 

al., 2017) 

Colorectal 

mucosa 

8 week low-

energy liquid 

diet 

Participants achieved 14% weight 

loss  

Ki-67 expression was reduced, 

Insulin sensitivity was improved 

Table 1-1: The effects of lifestyle-based weight loss interventions on tissue specific and systemic inflammatory markers in 
humans 

1.1.4.2 Weight loss via bariatric surgery 

In comparison with lifestyle-based interventions, bariatric surgery results in much greater and 

more sustained body weight loss, which leads to reduced cancer risk after 10 years (Schauer 

et al., 2017a, Schauer et al., 2017b). A systematic review and meta-analysis of 13 studies 

including data of 54,257 people investigating the effect of weight loss by bariatric surgery 

demonstrated a reduction in cancer incidence (Casagrande et al., 2014); and whilst the 

beneficial effects on total cancer burden are well established, the effects of weight loss 

following bariatric surgery on cancers at individual sites, including CRC, are less clear and due 

to the physiological changes in the gut as a result from such surgery, an assumption that any 

benefits for cancer overall will also apply to CRC should not be made (Mathers, 2018). A 

systematic review and meta-analysis of studies reporting on 24,321 bariatric surgery patients 

and 80,866 obese controls showed that bariatric surgery-induced weight loss was linked with 

27% reduction in CRC risk (Afshar et al., 2014). An English cohort study comprising more than 

1 million obese subjects found no evidence that bariatric surgery modulates CRC risk (Aravani 

et al., 2018). However, in this study, the number of participants undergoing bariatric surgery 

and the number of CRC cases were both small; 3.9% of subjects underwent bariatric surgery 

and only 0.1% of the bariatric surgery group developed CRC (Aravani et al., 2018) so that the 

power of this study to detect an effect, if it exists, was limited. A recent retrospective cohort 

study of 22,198 patients undergoing bariatric surgery found a 33% reduced cancer risk, 

including CRC risk which decreased by 41%, compared with 66,427 nonsurgical subjects at 3.5 

years follow-up (Schauer et al., 2019). It is worthwile considering that bariatric surgery is more 

regularly performed in young patients (Casagrande et al., 2014) though CRC is more 

frequently observed in older people (Jemal et al., 2010) and hence the long lead time period 

for CRC appearance might be confounding the links between cancer and bariatric surgery.  

Similarly, research on the effect of weight loss by bariatric surgery on biomarkers of CRC risk 

has yielded apparently conflicting outcomes. Results from the BOCABS Study (carried out in 
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the Mathers Laboratory and described in detail in Chapter 2) showed that six months post-

bariatric surgery, when participants had achieved mean 29kg weight loss, markers of systemic 

and colorectal mucosal inflammation were reduced, glucose homeostasis was improved and 

crypt cell proliferation in the colorectal mucosa was reduced (Afshar et al., 2018). In contrast, 

Sainsbury (2008) found greater expression of the pro-inflammatory genes COX-1 and COX-2, 

increased mitosis and decreased apoptosis in the mucosal crypts, when BMI had been 

reduced by 12.6 kg/m2 units following bariatric surgery. This increased crypt cell proliferation 

and greater pro-tumourigenic cytokine expression persisted for another 3 years in the 

patients who had undergone Roux-en-Y gastric bypass (RYGB; one of the most common types 

of bariatric surgery) (Kant et al., 2011).  

The observed differences in the effects of weight loss following bariatric surgery on 

biomarkers of CRC risk may be due to subtle, but important, differences in the surgical 

procedures that patients underwent (Afshar et al., 2018, Mathers, 2018). Afshar and 

colleagues hypothesised that the apparently adverse effects observed by Sainsbury (2008) 

and Kant (2011), may be a result of resection of a larger amount of the small bowel resection 

leading to increased malabsorption and, hence, exposure of the large bowel mucosa to 

luminal agents, for example secondary bile acids, which can harm the colorectal mucosa and 

are associated with increased CRC risk (Afshar et al., 2018).  

The biological mechanisms through which weight loss modulates CRC development are not 

well understood. It is probable that pathways that are involved in the hallmarks of cancer are 

associated with the weight loss cancer relationship (Ulrich et al., 2018). These include reduced 

local and systemic inflammation, reduced angiogenesis, modulated adipokine concentrations 

and improved immune function, enhanced DNA repair capacity, reduced insulin resistance, 

and reduced oxidative stress all of which potentially have direct effects on cancer stem cells 

(Ulrich et al., 2018). 

1.2 Mitochondria 

1.2.1 Evolutionary origins of mitochondrial 

After observing similarities between chloroplasts and free living cyanobacteria, in 1905 

Konstantin Sergejewiz Mereschkowsky proposed the endosymbiotic theory, in which he 

suggested that chromatophores did not arise de novo, but were the result of endosymbiosis 
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(Martin and Kowallik, 1999). This endosymbiotic theory was not accepted until 70 years later. 

Yang (1985) suggested that the 16S ribosomal RNA sequences from two prokaryotes, namely 

Pseudomonas testosteroni and Agrobacterium tumefaciens, defined the origin of the 

endosymbiont origin which evolved to become the mitochondrion. Mammalian mitochondria 

include features such as extranuclear DNA, the mtDNA and a double membrane, which are 

also found in chloroplasts in plants (Embley and Martin, 2006). These features and the similar 

size of mitochondria and chloroplasts to bacteria suggested that both chloroplasts and 

mitochondria developed from endosymbiotic events between an archaebacterial host and an 

α-proteobacterial symbiont (leading to mitochondria) or cyanobacterial symbiont (leading to 

the chloroplast) approximately one to two billion years ago (Embley and Martin, 2006).  

1.2.2 Mitochondrial structure and function 

Mitochondria are eukaryotic organelles found in the cytosol and play an important role in 

many metabolic pathways such as iron-sulfur cluster biogenesis, maintenance of membrane 

potential, apoptosis, intracellular calcium signalling and adenosine triphosphate (ATP) 

production via oxidative phosphorylation; the latter being their primary function (Fernandez-

Silva et al., 2003, Stewart and Chinnery, 2015). 

Each mitochondrion holds multiple copies of a double-stranded, closed, circular 

mitochondrial DNA genome (mtDNA) which are found in the mitochondrial matrix and are 

maternally inherited (Case and Wallace, 1981). The human mitochondrial genome is 

comprised of 16,569 base pairs forming an inner light ‘L’ (cytosine rich) and an outer heavy 

‘H’ (guanine rich) strand encoding 37 genes in total (Case and Wallace, 1981). These genes 

code for 22 tRNAs, 13 proteins of the respiratory chain and 2 rRNAs and are specific to the 

mitochondria as they are necessary for translation of mtDNA genes (Carling et al., 2011). 

Furthermore the mitochondrial genome contains the non-coding D-loop, which contains the 

promoters for ‘L’ and ‘H’ strand transcription (Shadel and Clayton, 1993). The mtDNA and 

proteins are wrapped together into mitochondrial nucleoids and each nucleoid comprises 1- 

2 mtDNA molecules (Case and Wallace, 1981). This mtDNA-protein assembly (nucleoids) 

ensures that the genetic material of the mitochondria is distributed throughout the 

mitochondrion and ensures coordination of mtDNA involvement in cell metabolism 

(Gilkerson et al., 2013).  
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The mitochondrial respiratory chain is comprised of five complexes (Sousa et al., 2018) and, 

in humans, mtDNA encodes the following subunits of the mitochondrial respiratory chain 

complexes: NADH dehydrogenase 1 (MTND1) - MTND6 and MTND4L (complex I), cytochrome 

b (MTCYB) (complex III), cytochrome c oxidase I (MTCO1) - MTCO3 (complex IV), ATP synthase 

6 (MTATP6) and MTATP8 (complex V) (Anderson et al., 1981). The remaining subunits of 

complex I and III-V are nuclear DNA (nDNA) encoded and complex II is completely nDNA 

encoded (Anderson et al., 1981). Figure 1-5 shows the five complexes of the mitochondrial 

respiratory chain which are located in the inner membrane. Electrons are transported from 

complex I to complex IV creating a proton gradient across the inner membrane, which is used 

by complex V for ATP production (Ross, 2011). In Figure 1-5, the red hexagons illustrate 

mtDNA encoded subunits, whereas the white hexagons demonstrate nDNA encoded subunits 

(Ross, 2011).  

The majority of mitochondrial proteins needed for mitochondrial structure and function are 

transcribed from nuclear genes and translated within the cytosol before being transported 

across the mitochondrial membrane (Larsson and Clayton, 1995). A mutation in the nDNA 

encoding a subunit of the respiratory chain complex affects all mitochondria within that cell, 

whereas a mutation in the mtDNA encoding a subunit of the respiratory chain complex affects 

that specific mitochondrion (Ross, 2011). Optimal function of mitochondria depends on both 

genetic systems (nuclear and mitochondrial) (Larsson and Clayton, 1995). 
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Figure 1-5: Complexes I- V of the mitochondrial respiratory chain are embedded in the inner membrane. Red hexagons and 
white hexagons show mtDNA and nDNA encoded subunits of the complexes respectively (Ross, 2011) Reproduced with 
copyright permission (2019). 

1.2.3 Mitochondrial DNA damage and energy metabolism in mitochondria 

As every cell comprises multiple mtDNA copies, mutations can affect all mtDNA molecules 

(homoplasmy) or only a proportion (heteroplasmy) of the mtDNA in a cell (Larsson and 

Clayton, 1995, Stewart and Chinnery, 2015). Heteroplasmy can vary from 1% to 99% between 

cells in the same organ or tissue, across various organs and tissues in the same individual and 

between people in the same family (Johns, 1995, Stewart and Chinnery, 2015). Mutations of 

the mtDNA can present in various ways, i.e. there can be point mutations (usually maternally 

inherited), single large-scale deletions (rarely inherited and never homoplasmic), or acquired 

somatic mutations (because of ageing and errors in replication) (Gorman et al., 2016). Other 

studies have also shown that mutations can arise from environmental exposures such as 

tobacco use (Prior et al., 2006, Tan et al., 2008), viruses and bacteria (Machado et al., 2010) 

and ultraviolet light (Birch-Machin and Swalwell, 2010, Stewart and Chinnery, 2015). A 
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pathogenic homoplasmic mtDNA point mutation usually leads to a relatively mild biochemical 

defect affecting only one organ or tissue, but exceptions have been described (Gorman et al., 

2016). Contrarily, a heteroplasmic mutation can affect several organs and the degree of 

heteroplasmy is correlated with the extent of organ involvement and hence with the level of 

severity of the clinical phenotype (the biochemical defect usually presenting severely in 

affected tissues) (DiMauro et al., 2013, Gorman et al., 2016). The level of heteroplasmic 

mtDNA mutations needs to surpass a critical threshold (approximately 60-80%) before the 

biochemical defect can be detected as altered function (King and Attardi, 1989, Boulet et al., 

1992).  

Glycolysis and β-oxidation of fatty acids both occur within the cytoplasm. However, the 

majority of ATP is generated from catabolism of dietary fats and carbohydrates and occurs 

after the common intermediate acetyl CoA comes into the mitochondrion and undergoes 

oxidative phosphorylation and the citric acid cycle (Chen et al., 2003, Gao et al., 2010). 

Reactions involving the electron transport chain yield as a by-product ROS, with complex I and 

complex III being the main ROS production sites (Chen et al., 2003, Gao et al., 2010). ROS can 

react with all of the cell’s macromolecules i.e. proteins, lipids and nucleic acids, which can 

lead to reversible or irreversible oxidative alterations of these macromolecules and, 

thereafter, to dysfunction of the cell and organ (Gao et al., 2010). ROS production due to 

other environmental and dietary exposures, for example tobacco use or alcohol intake, can 

also trigger mtDNA adduct development (as well as nDNA adduct development) via covalent 

binding of polycyclic aromatic molecules to the DNA (Gao et al., 2010). MtDNA repair 

mechanisms are much less prominent and effective compared with those acting on nDNA 

(Zinovkina, 2018). To date, there is only evidence on mammalian mtDNA repair systems like 

base excision repair and micro-homology mediated end joining, as opposed to the nDNA 

repair system which consists of base and nucleotide excision repair, mismatch repair, 

homologous recombination and non-homologous end joining (Zinovkina, 2018). A few 

essential factors involved in nDNA mismatch repair have been identified in mitochondria but 

their functional role is yet to be defined (Zinovkina, 2018). Hence, ROS affect mtDNA more 

adversely and can initiate development of diseases (Allen and Coombs, 1980, King and Attardi, 

1989, Cakir et al., 2007). 
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1.2.4 Mitochondrial defects in colorectal cancer 

The ‘Warburg Effect’ describes as a shift from oxidative metabolism to glycolysis and occurs 

in cancer cells (Warburg, 1956). However, the functions of the Warburg Effect in enabling 

tumour cell proliferation and malignancy remain unknown (Liberti and Locasale, 2016). A 

recent review by Fang (2016) reported overexpression of glycolytic enzymes (i.e. pyruvate 

kinase, hexokinase and lactate dehydrogynase) and glucose transporters (GLUT) in human 

CRC indicating increased glycolysis. Additionally, a study using a CRC cell line with KRAS and 

BRAF mutations showed that GLUT1 was consistently upregulated, also showing increased 

potential to transport glucose (Yun et al., 2009).  

The role of mitochondrial dysfunction in the aetiology of cancer, including CRC, remains to be 

discovered. MtDNA mutations have been found in tumour and metastatic tissue of mice. A 

cytoplasm from both the parental species with or without a pathogenic homoplasmic point 

mutation at 8993 or 9176 nucleotide position in the MTATP6 gene were transplanted into 

nude mice (Shidara et al., 2005). When the cybrids contained mutations in the MTATP6 gene, 

they grew faster in culture than the wild type cybrids and, in mice, they conferred a 

competitive advantage in the early stages of tumour growth, possibly related to reduced 

mitochondrial respiration (Shidara et al., 2005). Later, another study in mice also using cybrids 

demonstrated an acquired metastatic potential after transferring mtDNA mutations into the 

gene coding for NADH, which resulted in deficient complex I activity and overproduction of 

ROS (Ishikawa et al., 2008). Human CRC tissue showed a lower frequency of random/ non-

clonal single base substitutions in mtDNA relative to the adjacent non-tumour tissue (Ericson 

et al., 2012). In the same study, this lower mtDNA mutation frequency, which was due to a 

reduction in C:G to T:A transitions which is commonly coupled with oxidative damage, was 

associated with the Warburg Effect (Ericson et al., 2012). Ericson (2012) concluded that 

mtDNA integrity is increased in CRC due to reduced ROS mediated mtDNA damage. Somatic 

mtDNA mutations are found commonly in human CRC and it has been claimed that they 

contribute to cancer development and to metastatic spread (Polyak et al., 1998, He et al., 

2010).  

Older individuals have higher rates of somatic mtDNA mutations (see Figure 1-6), but it is 

unclear if this increased mtDNA mutation load contributes to age-related CRC risk or is a non-

causal age-associated phenomenon (Greaves et al., 2014). When mtDNA mutations are 
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present at high frequencies they compromise mtDNA-encoded respiratory chain subunits, as 

well as cytochrome c oxidase activity, resulting in dysfunction of mitochondria (see Figure 1-6) 

and may be a marker of epithelial damage (Greaves et al., 2010). For example, colorectal 

mucosal crypts with mtDNA mutations show small but significant changes in cell proliferation 

and apoptosis (Nooteboom et al., 2010). It has been shown that ageing and carcinogenesis 

generate mutations randomly across the mitochondrial genome (Polyak et al., 1998, Taylor et 

al., 2003) followed by subsequent mutations throughout the genome as cancer progresses 

(Taylor et al., 2003, Yoneyama et al., 2005, Lee et al., 2005). Furthermore, there is convincing 

evidence from cell and animal models, as well as more limited evidence from human studies, 

that over-feeding and obesity result in mitochondrial dysfunction (this is described in detail 

in section 1.4.2) (Breininger et al., 2019) which may increase the risk of CRC development. 

 

 

Figure 1-6: a) Rate of percentage respiratory chain deficiency in the aging human colon b) Frequency of specific respiratory 
chain defects in individual human crypts c) Correlation between total respiratory chain and COX deficiency (Greaves et al., 
2010) (Copyright: figure is open-access). 

 

1.3 Epigenetic marks and molecules 

1.3.1 The concept of epigenetics 

Epigenetics comprises heritable changes to marks on the genome and the associated cellular 

machinery without involving changes to the primary DNA sequence (Dupont et al., 2009). The 

totality of such marks on the genome is described as the epigenome, and encompasses three 

closely interacting epigenetic mechanisms including histone modifications, DNA methylation 

and non-coding micro riboxynucleic acids (microRNAs) which are key regulators of gene 

expression (Goldberg et al., 2007, Link et al., 2010, Hardy and Tollefsbol, 2011, Park et al., 
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2012). Post-translational modification of histone proteins including phosphorylation, 

methylation, acetylation, ubiquitylation and sumoylation at specific amino acid residues in 

the histone tails alters the structure of chromatin (Dupont et al., 2009). DNA methylation is 

catalysed by a family of enzymes called DNA methyl transferases which add a methyl group 

to the 5’ position on the cytosine residues where the cytosine is followed by a guanine 

residue, namely a CpG dinucleotide (Dupont et al., 2009). In CRC, tumours with distinctly 

different patterns of DNA methylation have been identified. Those with simultaneous 

hypermethylation of numerous CpG islands in the promoter regions of multiple genes 

(including TSG) have been described as the CpG Island Methylator Phenotype (CIMP), and 

those tumours have distinct genetic and clinical features (Hinoue et al., 2012). For example, 

CIMP-high tumours were characterised by MLH1 DNA hypermethylation and mutation of 

BRAFV600E (Hinoue et al., 2012). In contrast, CIMP-low tumours had mutations in the KRAS 

gene and DNA hypermethylation outside CpG islands (Hinoue et al., 2012). The combination 

of these epigenetic mechanisms and, miRNAs specifically, are responsible for the regulation 

of gene expression both early in life during cellular and tissue differentiation and throughout 

the life course (Reik, 2007, McKay and Mathers, 2011). Although each nucleated cell within a 

given organism contains the same nuclear genome, only a fraction of all the encoded genes 

is expressed in a given cell type. In addition to house-keeping genes that are expressed in all 

cells, each cell type expresses a characteristic constellation of genes that enable that cell type 

to carry out its particular functions (Jaenisch and Bird, 2003). In addition, cells need to sense 

their environments and to up- or down-regulate specific genes to enable them to respond 

appropriately to the changing environment (Malcomson and Mathers, 2017). Further, cells 

need to repress harmful sequences, derived largely from viruses, which became integrated in 

the genome during evolution and this is achieved by DNA methylation of the relevant 

sequences (Jaenisch and Bird, 2003). Epigenetic related non-coding RNA (ncRNA) is a large 

family comprising long non-coding RNA (lncRNA), piwi RNA (piRNA), short interfering RNA 

(siRNA) and microRNAs (miRNAs). 

1.3.2 MicroRNA structure, biogenesis and function  

MiRNAs are small single stranded non-coding RNA molecules, which are approximately 18-25 

(typically 22) nucleotides long and are expressed in all nucleated cells. An overview of the 

complex process of miRNA biogenesis, of the standard and alternative pathway, which 
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includes several stages can be seen in Figure 1-7 (Ameres and Zamore, 2013). Primary miRNA 

transcripts are processed by Drosha in the nucleus and by Dicer in the cytoplasm and then 

transcribed by RNA polymerase II in the standard pathway (Ameres and Zamore, 2013). More 

specifically, Exportin-5 exports the pre-miRNAs into the cytoplasm where Dicer and 

transactivate response RNA binding protein (TRBP) lead pre-miRNAs into mature miRNAs 

(comprised of 20-24 nucleotides) creating the RNA-induced silencing complex (RISC) (Ding et 

al., 2018). However, in the alternative pathway, the primary miRNA is generated from a 

branched mirtron structure which undergoes a process called lariat debranching (Ameres and 

Zamore, 2013).  

Most miRNAs derive from independent genomic transcription units (Mendell and Olson, 

2012).  A third of known miRNAs can be found in introns of genes coding for proteins and are 

co-transcribed along with the host gene, resulting in regulated synchronised expression of 

proteins and miRNAs (Mendell and Olson, 2012). MiRNAs regulate gene expression at the 

transcriptional or post-transcriptional levels (Heneghan et al., 2010). MiRNAs do this primarily 

by binding in a sequence-specific manner to the complementary region in the 3’ –

untranslated mRNA regions which subsequently regulates the translation of mRNAs to 

proteins (Lai, 2002) including transcription factors to RNA binding proteins and signalling 

proteins (Ding et al., 2018). MiRNAs couple with proteins forming a RISC that enables 

regulation of gene expression which is sequence-specific to their complementary mRNAs 

(Jonas and Izaurralde, 2015). This is achieved by suppressing the translation of target mRNAs 

or cleavage of target mRNAs to initiate their 5’ to 3’ mRNA decapping, degradation and de-

adenylation, via defective coupling with the target mRNAs (Jonas and Izaurralde, 2015). The 

mature miRNA region of nucleotide 2-7 has been reported as the locus for target mRNA 

recognition via base pair complementary (Ding et al., 2018). The effects of miRNAs can be 

either temporary, for example when they temporarily bind a mRNA suppressing translation, 

or permanent when they degrade a mRNA strand respectively (Saxena et al., 2003). 

Completely processed miRNAs work together with the Argonaute (Ago) family of proteins 

inside the RISC and direct the Ago proteins to target mRNAs through interactions with 

imperfect complementary sites (Mendell and Olson, 2012). Every miRNA is able to target 

multiple mRNAs and every mRNA can be targeted by multiple miRNAs (Huntzinger and 

Izaurralde, 2011).  
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Figure 1-7: The biogenesis of miRNA by the standard and alternative pathways (Ameres and Zamore, 2013) Reproduced 
with copyright permission (2019).  

1.3.3 Aberrant expression of microRNAs in colorectal cancer 

MiRNAs play an important role in multiple biological pathways and their expression is 

dysregulated in many pathological mechanisms (Heneghan et al., 2010). In 2003, for the first 

time, Cordes (2009) identified the link between miRNAs and CRC and since then numerous 

studies have revealed a role for miRNAs in CRC. Aberrant patterns of miRNA expression are 

involved in the initiation and progression of oncogenesis, including CRC, due to their role as 

tumour suppressors and oncogenes (Ding et al., 2018). For example, oncomiRs (oncogenic 

miRNAs) target and prevent the expression of endogenous TSG and, in addition, can activate 

pathways associated with CRC, such as the Wnt signalling pathway (Ding et al., 2018).  
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A recent review by Ding (2018) identified numerous oncogenes which are significantly 

upregulated during CRC, including miR-21, miR-31, miR-92a, miR-96, miR-135a/b, miR-155, 

miR-182/503, miR-200c, miR-210, miR-214, miR-224 and miR-301a. These aberrantly 

expressed miRNAs regulate multiple functional roles in tumourigenesis and its management 

including inflammation, genome instability, cell growth, proliferation, angiogenesis, 

metastasis, invasion, migration, apoptosis, chemoradiosensitivity and drug resistance. For 

example, miR-21 represses multiple TSG such as T-cell lymphoma invasion and metastasis 1 

(TIAM1), PDCD4, PTEN, hMSH2, sprouty homolog 2 (SPRY2), cell division cycle 25A (CDC25A) 

and transforming growth factor beta receptor II (TGFBR2), all of which play a key role during 

apoptosis, migration, invasion, proliferation, cancer stem cell maintenance, metastasis and 

chemotherapy resistance (Asangani et al., 2008, Valeri et al., 2010, Xiong et al., 2013, Thomas 

et al., 2015). Moreover, lncRNA can also be targeted by miRNAs. For example miR-143-3p 

targets the lncRNA AK094401 (overexpressed in CRC, OECC) which led to downregulation of 

NF-κB and p38 mitogen-activated protein kinase and promoted CRC cell growth in BALB/C 

nude mice (Huang et al., 2018). Further, miR-577 targeted and led to overexpression of 

lncRNA differentiation antagonizing nonprotein coding RNA (DANCR) and heat shock protein 

27 (HSP27) which accelerated proliferation and metastasis of CRC (Wang et al., 2018). 

 

The same recent review by Ding (2018) also identified several tumour suppressive miRNAs 

that are downregulated during CRC including let-7, miR-7, miR-18a-3p, miR-26b, miR-27b, 

miR-34a, miR-101, miR-126, miR-143/145, miR-144, miR-149, miR-194, miR-320a, miR-330 

and miR-455 with their functional role being proliferation, apoptosis, invasion, migration, 

angiogenesis, colony formation, anchorage independent-growth, metastasis, 

chemoresistance and hematopoiesis (Ding et al., 2018). For example, let-7, a highly conserved 

miRNA family consisting of let-7a-1/2/3, -7b, -7c, -7d, -7e, -7f-1/2, -7g, -7i, and miR-98 

participate during epithelial-to-mesenchymal transition (EMT) and is significantly 

downregulated in CRC when compared with adjacent normal tissue (Takahashi et al., 2012). 

During EMT, let-7 represses numerous oncogenes including c-Myc, RAS, CDK6, CDC34, 

CDC25A, LIN28, LIN28B and HMGA2 (Takahashi et al., 2012). In addition, let-7 expression in 

intra-tumour tissue was associated with improved survival in CRC patients (Saridaki et al., 

2014). Cappuzzo (2014) and Eslamizadeh (2018) reported that let-7 (plus the cluster miR-

99a/let-7c/miR-125b) was associated with clinical outcomes of CRC and regulated response 
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to anti-EGFR targeting therapy. Furthermore, downregulated miR-194 in CRC was associated 

with tumour size, tumour node metastasis, overall patients’ survival and was correlated with 

advanced colorectal adenoma after polypectomy; miR-194 was proposed as an independent 

predictor for recurrence of adenomas (Zhao et al., 2014, Wang et al., 2015). In contrast, miR-

194 overexpression targeted the oncogenic transcriptional regulator HMGA2 which is 

involved in reducing and attenuating cell proliferation and migration, suppressing EMT, 

reducing xenograft growth and increasing sensitivity to anticancer drugs used in CRC (Chang 

et al., 2017). In summary, multiple miRNAs play a major role in CRC development which are 

context dependent role (some can act either as oncogenes or as tumour-suppressors).  

 

1.4 Obesity 

1.4.1 Epidemiology  

In 2014, the World Health Organisation estimated that more than 1.9 billion and 600 million 

adults, equivalent to 39% and 13%, are overweight and obese, respectively  (Organisation, 

2015). The prevalence of obesity has risen unrelentingly in the past 4 decades in all age groups 

and, if current trends continue, there will be more than one billion obese adults globally by 

2025 (World Obesity Day, 2015). 

Obesity is a major public health problem caused by a sustained positive imbalance between 

dietary energy intake and energy expenditure (in basal metabolic rate and physical activity) 

(World Health Organization, 2015). Numerous other factors including a genetic predisposition, 

epigenetic factors (Memedi et al., 2013), maternal overweight/ obesity, gestational weight 

gain (Kaar et al., 2014), short length of breastfeeding (Jing et al., 2014) and lack of sleep which 

may influence appetite regulatory hormones such as leptin (Boeke et al., 2014) also 

contribute to the development of obesity. Furthermore, environmental factors such as 

cultural background, socioeconomic status, and access to healthy foods influence obesity risk 

(Matthiessen et al., 2014).  

1.4.2 Effects of obesity on mitochondrial structure and function 

Evidence from cell and animal models, as well as human studies, shows that over-feeding and 

obesity result in mitochondrial dysfunction (Breininger et al., 2019). 
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Table 1-2 summarises findings from human studies that have shown that a high fat diet or 

obesity leads to mitochondrial defects and are discussed in more detail below. 

Feeding a high fat diet for 3 days led to lower expression of PGC-1α and PCG-1β mRNA, 

reduced concentrations of cytochrome C and PGC-1α and downregulation of genes coding for 

oxidative phosphorylation proteins including complex I-IV in vastus lateralis and 

gastrocnemius muscle of healthy men (Sparks et al., 2005). As the duration of the intervention 

was short, it is impossible to conclude if the observed effects on biomarkers of mitochondrial 

function are because of modifications in adiposity, as distinct from changes in macronutrient 

intake. Further studies demonstrated that excess intake of energy-yielding nutrients may 

result in reduced size and number of mitochondria and lower oxidative phosphorylation in 

extopic brown adipose tissue (Bournat and Brown, 2010). Lower expression of genes coding 

for oxidative phosphorylation proteins and reduced oxygen consumption was seen in obese 

individuals, suggestive of a decline in mitochondrial function (Bournat and Brown, 2010). 

Obese individuals showed reduced mitochondrial oxidative activity in adipocytes, potentially 

being due to overall adiposity as opposed to hypertrophy of adipocytes or cell size differences 

between obese and non-obese (Yin et al., 2014). Heinonen (2015) reported reduced mtDNA 

content and, that 96 out of 130 CpG sites of mitochondria-associated transcripts and 

upstream regulators were hypermethylated in subcutaneous adipose tissue of obese 

monozygotic twins. The same study also reported lower mtDNA-encoded transcripts 

(including 12S rRNA, 16S rRNA, COX1, ND5, CYTB) and OXPHOS subunit proteins complex III-

V levels. A more recent study revealed that differential expression of 41 and 73 proteins in 

inter-myofibrillar and subsarcolemmal mitochondria, respectively, in skeletal muscle (Kras et 

al., 2018). In the same study, proteins forming complex II and the TCA cycle were increased 

whereas proteins forming complexes I and III and ATP synthase were reduced in inter-

myofibrillar mitochondria of obese individuals (Kras et al., 2018). The mitochondrial 

phenotype of adipose-derived stromal stem cells was disturbed in obese (altered network, 

higher number and smaller shape) when compared with lean individuals (Ejarque et al., 2018). 

Additionally, TBX15, a negative regulator of mitochondrial mass, was hypomethylated and its 

protein concentration was increased in adipocytes of obese people (Ejarque et al., 2018). 

 

Study Tissue Investigation Key Findings 
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(Semple et 

al., 2004) 

Adipocytes Obesity  Reduced PGC-1α concentration 

(Sparks et al., 

2005) 

Male vastus 

lateralis and 

gastrocnemius 

muscle 

High fat diet  No changes in mtDNA content, 

TFAM, or NRF1  

Reduced concentrations of PGC-1α 

mRNA, lower activity of cytochrome 

C oxidase and Citrate synthase 

(Yin et al., 

2014) 

Adipocytes Obesity Reduced mtDNA content, oxygen 

consumption and citrate synthase 

activity 

(Heinonen et 

al., 2015) 

Subcutaneous  

adipocytes 

Obesity Reduced mtDNA content,  

96 out of 130 CpG sites of 

mitochondria related transcripts 

and upstream regulators were 

hypermethylated, reduced mtDNA-

encoded transcripts (12S rRNA, 16S 

rRNA, COX1, ND5, CYTB) and 

OXPHOS subunit proteins (complex 

III-IV) 

(Ejarque et 

al., 2018) 

Adipose derived 

stromal stem 

cells 

Obesity Altered DNA methylation: TBX15 

was one of the most differentially 

hypomethylated genes  

(Kras et al., 

2018) 

Skeletal muscle Obesity Increased expression of proteins of 

the TCA cycle and complex II and, 

decreased expression of proteins 

forming ATP synthase and 

complexes I and III  

Table 1-2: The effects of over-feeding and obesity on mitochondrial structure and function in humans (Breininger et al., 
2019) 

There is consistent and strong evidence, in cell and animal models, as well as human studies 

that both over-feeding and obesity lead to dysfunction of mitochondria (Breininger et al., 

2019). PGC-1α downregulation has been seen consistently in studies using cells, animals and 
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humans. Reductions in complex IV and cytochrome c expression, as well as lower 

mitochondrial content are reported in animal and human research, but the effects on other 

measures including β-oxidation and mitochondrial enzyme and protein concentrations are 

less consistent (Breininger et al., 2019). 

1.4.3 Possible underlying mechanisms of the effects of obesity on mitochondrial 

dysfunction 

In vitro and animal studies have provided insight on possible mechanisms underlying the 

effects of obesity on mitochondrial dysfunction, whereas data from human studies are much 

more limited. Moreover, these mechanistic studies have been carried out predominantly in 

various cell types and tissues, with relatively limited studies in colonocytes. Obesity and 

subsequent obesity-induced inflammation result in reduced β-oxidation and excess ROS 

causing mitochondrial dysfunction in liver, muscle and adipose tissue (Rogge, 2009, de Mello 

et al., 2018). During these processes, dysfunctional mitochondria can trigger a vicious cycle of 

lower mitochondrial β-oxidation and biogenesis and reduced mtDNA content (Rogge, 2009). 

In addition, impaired β-oxidation leads to increased synthesis of TAG and ectopic lipid 

deposits. Through increased ROS production, this may result in oxidative stress and cellular 

dysfunction, higher formation of ceramide, increased concentrations of nitric oxide synthase, 

increased lipid peroxidation by-products and increased production of inflammatory cytokines 

(Rogge, 2009). Excessive ROS, such as hydroxyl radicals, perioxynitrite, hydrogen peroxide and 

superoxide anions, damage proteins (particularly OXPHOS enzymes), lipid membranes and 

both mitochondrial and nuclear nucleic acids (Rogge, 2009). Accumulation of fatty acids in the 

cytosol activates β-oxidation in peroxisomes and ω-oxidation in microsomes (Rogge, 2009). 

Such ω-oxidation can damage mitochondria via uncoupling oxidative phosphorylation and 

disturbance of the mitochondrial membrane proton gradient (Rogge, 2009). Additionally, in 

obesity, mitochondria are overloaded with excess fatty acids and glucose, which leads to a 

greater production of acetyl-CoA and subsequently to increased NADH concentrations 

formed by the Krebs cycle (de Mello et al., 2018). This increases the availability of electrons 

to the mitochondrial respiratory chain complexes and production of ROS, which results in the 

activation of transcription factors, i.e. NFκB, which regulate the inflammatory response (de 

Mello et al., 2018).  
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1.4.4 Effects of weight loss on mitochondrial structure and function  

Evidence from animal models and human studies demonstrates that nutrient and energy 

restriction and/ or weight loss improve capacity, integrity, biogenesis and function of 

mitochondria (Breininger et al., 2019).  

Findings from human studies which report effects of energy depletion and weight loss on 

structure and function of mitochondria are summarised in Table 1-3 and discussed in more 

detail below.  

A negative energy balance of 25% (induced either by dietary energy restriction or dietary 

restriction plus increased energy expenditure via exercise) leads to increased gene expression 

(TFAM, PPARGC1A, PARL, eNOS and SIRT1- all of which are involved in mitochondrial function), 

higher mtDNA content, but did not affect the enzyme activity of mitochondria (β-hydroxyacyl-

CoA dehydrogenase for β-oxidation, citrate synthase for TCA cycle and cytochrome c oxidase 

II for the electron transport chain) in muscle of 36 young overweight people (Civitarese et al., 

2007). A mean 8.5kg weight loss following a diet plus exercise intervention improved 

mitochondrial content, aerobic capacity and reduced the size of mitochondria in skeletal 

muscle, however the diet only intervention, which achieved a 10.6kg weight loss, showed no 

effects (Toledo et al., 2008). The observed effects on mitochondria following the diet plus 

exercise intervention might not be a result of weight loss per se but due to the independent 

and synergistic effects of exercise on mitochondria as opposed to reduction in dietary energy 

only (Toledo et al., 2008). 

The following human studies describe the effects of weight loss following bariatric surgery. 

Expression of a vital mitochondrial fusion protein which enables the integrity of the 

mitochondrial network, namely Mfn2, was reduced in skeletal muscle of obese subjects (Bach 

et al., 2005). A significant increase in Mfn2 expression was observed after a 25 kg/m2 unit fall 

in BMI (leading to a mean BMI of 31 kg/m2) following bilio-pancreatic diversion surgery two 

years post-operatively, which is indicative of Mfn2 expression being inversely proportional to 

body weight (Bach et al., 2005). 101 RYGB patients were assigned either to a health education 

control or exercise intervention; a mean 23.6kg weight loss was achieved by RYGB plus the 

exercise intervention at 6 months follow-up, which resulted in improved respiration of 

mitochondria in vastus lateralis muscle (Coen et al., 2015). Even though the other intervention 

arm (RYGB plus health education) resulted in a comparable weight loss of mean 22.1kg (to 
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the RYGB plus exercise intervention), it did not affect respiration of mitochondria (Coen et al., 

2015). Interestingly, neither intervention arm demonstrated a modification in OXPHOS 

content and all participants continued to be obese with a mean BMI of 30.4 kg/m2 at follow-

up (Coen et al., 2015); it remains to be discovered if the effects were due to weight loss per 

se. Another study reported that a mean 25.5kg weight loss following RYGB increased coupled 

respiration in vastus lateralis muscle in 11 obese females 6 months post-operatively 

(Fernstrom et al., 2016). Nevertheless, no effects on uncoupled respiration (oxygen 

consumption without ADP phosphorylation) and respiratory control index (a quality measure 

of isolated mitochondria) were seen and, even though participants accomplished a significant 

weight loss, they stayed overweight after surgery (mean BMI 29.6 kg/m2) (Fernstrom et al., 

2016). This research reveals that significant and sustained weight loss by bariatric surgery 

leads to higher levels of the mitochondrial fusion protein Mfn2 and improved coupled 

respiration of mitochondria in muscle (Bach et al., 2005, Civitarese et al., 2007, Toledo et al., 

2008, Coen et al., 2015, Jahansouz et al., 2015, Moreno-Castellanos et al., 2016, Fernstrom et 

al., 2016). 

A 7.5-day short term effect of RYGB in 8 patients and adjustable gastric banding in 8 patients 

was studied (Jahansouz et al., 2015). Even though the weight loss achieved, a mean 0.9 kg/m2 

decline in BMI, was non-significant and small, an increase in TFAM, CYT C, eNOS, NRF1 and 

PGC-1α expression was detected (Jahansouz et al., 2015). These genes are involved in 

biogenesis of mitochondria and protein carbonylation, an indicator of oxidative stress, and 

were found to be reduced in adipose tissue (Jahansouz et al., 2015). These changes were 

revealed after RYGB but not seen after adjustable gastric banding (Jahansouz et al., 2015). 

Bariatric surgery results in prompt and enhanced glycemic control, even before weight loss 

occurs, being indicative that the reported changes in the expression of genes may be a result 

of metabolic changes associated with bariatric surgery as opposed to weight loss alone 

(Breininger et al., 2019). 18 obese women were assigned to either an insulin resistant or a 

normoglycemic group prior to bariatric surgery. Later, at 13 months follow-up, a reduction in 

PGC-1α and mitofilin concentrations was found in the adipose tissue of the normoglycemic 

group, which had achieved a 14.2 kg/m2 unit reduction in BMI, while a modification in the 

opposite trend for PGC-1α and mitofilin concentrations was revealed in the insulin resistant 

group, which attained a 17.5 kg/m2 unit reduction in BMI (Moreno-Castellanos et al., 2016). 
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It is therefore possible to conclude that the effects of weight loss following surgery on 

function of mitochondria may be dependent on the original metabolic status (Moreno-

Castellanos et al., 2016). Another study reported increased numbers of mitochondria and 

smaller adipocytes in 19 obese individuals who attained a mean 33% weight loss following 

RYGB one year post-operatively (Camastra et al., 2017). Many studies demonstrate that 

sustained and significant weight loss achieved by bariatric surgery leads to upregulated 

expression of genes coding for function, biogenesis and dynamic of mitochondria, a higher 

number of mitochondria and a decline in oxidative stress (Jahansouz et al., 2015, Moreno-

Castellanos et al., 2016, Fernstrom et al., 2016, Camastra et al., 2017, Martinez de la Escalera 

et al., 2017). 

 

Study Tissue Weight-loss 

Intervention 

Key Findings 

(Bach et al., 

2005) 

Skeletal muscle  Bilio-

pancreatic 

diversion 

Increased Mfn2 expression 

(Civitarese 

et al., 2007) 

Muscle  Dietary 

energy 

restriction 

with/ 

without 

increased 

physical 

activity 

Increased expression of PARGC1A, TFAM, 

eNOS, SIRT1 and PARL and increased 

mtDNA content 

(Toledo and 

Goodpaster, 

2013) 

Skeletal muscle  Dietary 

energy 

restriction 

with/ 

without 

increased 

No change in diet-only group 

Increased mtDNA and NADH-oxidase 

activity, improvement in aerobic capacity 

and mitochondrial content in the diet plus 

exercise group 
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physical 

activity  

(Coen et al., 

2015) 

Vastus lateralis 

muscle  

RYGB with 

exercise 

intervention 

or health 

education 

Increased OXPHOS proteins, NADH 

oxidase, citrate synthase, creatine kinase 

and cardiolipin in the RYGB with exercise 

intervention  

(Jahansouz 

et al., 2015) 

Subcutaneous 

adipose tissue  

RYGB Improved mitochondrial biogenesis via 

increased concentrations of PGC-1α, 

NRF1, CYT C, TFAM and eNOS; reduced 

protein carbonylation 

(Moreno-

Castellanos 

et al., 2016) 

Subcutaneous 

adipose tissue  

Bariatric 

surgery 

No effect in normoglycemic women, 

increased PGC-1α and reduced mitofilin in 

initially insulin resistant women 

(Fernstrom 

et al., 2016) 

Vastus lateralis 

muscle  

RYGB Increased coupled and uncoupled 

respiration, oxidative phosphorylation 

ratio and citrate synthase activity 

(Camastra 

et al., 2017) 

Muscle and 

adipose tissue  

RYGB Adipocytes became smaller and richer in 

mitochondria  

Table 1-3: The effects of weight loss on mitochondrial structure and function in obese individuals (Breininger et al., 2019) 

Studies researching the effect of weight loss following bariatric surgery to date, have merely 

concentrated on effects in adipose and muscle tissue, and more investigations in other tissues 

are required (Breininger et al., 2019). The above investigations differed in the type of bariatric 

surgery procedure, length of follow-up (7.5 days to 13 months) and weight loss or decline in 

BMI attained (11.6kg to 25.5kg and, 0.9-25 kg/m2 unit fall in BMI, respectively) and these 

variations in study design could clarify the lack of results’ consistency on function and 

structure of mitochondria seen (Breininger et al., 2019). All participants of the earlier 

discussed studies continued to be overweight and/ or obese post-operatively and evidence 

of the effect of weight loss resulting in patient’s normal weight on measured mitochondrial 

outcomes is missing, which is an important limitation (Breininger et al., 2019). In addition, 

exercise might provide further mitochondrial benefits, besides those seen by weight loss per 
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se, however this is beyond the scope of this thesis and will not be elaborated here. Evidence 

of weight loss either by dietary intervention or bariatric surgery, resulting in increased PGC-

1α and fusion protein concentrations and reduced oxidative stress, is consistent and 

convincing (Breininger et al., 2019). An increase in eNOS and TFAM expression following an 

exercise and dietary intervention, as well as RYGB in human individuals, was detected, 

suggesting enhanced capacity of mitochondria (Breininger et al., 2019). An increase in gene 

expression of proteins coding for the respiratory transport chain following weight loss was 

reported, but there is a lack of evidence on the effects of enzyme activity (Breininger et al., 

2019). The effects of bariatric surgery have been predominantly studied in females and 

established differential mitochondrial gene expression and increased mitochondrial 

respiration resulting in enhanced function of mitochondria (Breininger et al., 2019). I am 

unaware of investigations on the effects of weight loss on already existing mtDNA damage. 

The evidence on higher mtDNA content following weight loss is limited in both animal and 

human studies (Breininger et al., 2019). Overall, some evidence of weight loss leading to 

enhanced mitochondrial function and structure exists, however more investigations are 

warranted to reach strong and consistent conclusions on to date’s limited findings. 

1.4.5 Possible mechanisms underlying the effects of weight loss on mitochondrial function 

There is evidence that dietary energy and nutrient restriction (either through fasting, dietary 

energy restriction or greater exercise levels) result in an increase of cAMP concentrations and 

AMP:ATP ration which then initiates the AMPK, PKA/CREB and SIRT1 signalling pathways, and 

hence lead to PGC-1α activation (Handschin and Spiegelman, 2006, Cheng and Almeida, 

2014a). The key mitochondrial biogenesis regulator, namely PGC-1α, initiates downstream 

targets like NRF1, NRF2 and TFAM leading subsequently to the upregulation of mitochondrial 

biogenesis and activity (Cheng and Almeida, 2014a). 

1.4.6 Effects of microRNAs on adipogenesis 

Many studies recognise the potential functional role of miRNAs in obesity, metabolism and 

energy homeostasis. Adipogenesis is a complex process tightly regulated by multiple 

extracellular hormones and transcription factors, however the precise mechanism remains 

unknown (Heneghan et al., 2010). MiRNAs have been proposed to play a vital role during the 

process of adipogenesis, predominantly due to their ability to simultaneously regulate 

numerous target genes via one single miRNA (Heneghan et al., 2010). Data derived mainly 
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from mouse models showed that miRNAs affect adipocyte differentiation and hence the 

pathological development of obesity (Esau et al., 2004, Lin et al., 2009, Xie et al., 2009). For 

example, miR-103 expression was induced about 9-fold during adipogenesis in an adipose-

like cell line (3T3-L1), which was accompanied by an increased expression of transcription 

factors and regulatory molecules, including PPARγ2, G0s2, GLUT4, FABP4 and adiponectin (Xie 

et al., 2009). Furthermore, computational target prediction has shown that miR-103 targets 

many mRNAs in pathways involved in cellular lipid metabolism and acetyl-CoA (Heneghan et 

al., 2010). Kloting (2009) studied whether the expression of miRNAs in human adipocytes is 

fat-depot specific, subcutaneous or intra-abdominal omental, and whether it is linked with 

metabolic parameters of obesity, by profiling global miRNA gene expression in 15 individuals 

with normal glucose tolerance (n=9) or type 2 diabetes (n=6). Out of a panel of 155 miRNAs, 

106 (68%) miRNAs were identified in both the subcutaneous and omental adipose tissue, and 

no miRNA was solely expressed in either fat depot, suggesting mutual developmental origin 

and miR-17-5p, miR-99a, miR-132, miR-134, miR-145, miR-181a and miR-197 expression were 

significantly correlated with morphology of the adipose tissue and metabolic parameters of 

obesity (such as fasting plasma glucose, HbA(1c) and circulating adiponectin, leptin and IL-6) 

(Kloting et al., 2009). MiR-143 has also been identified to play a key role in adipocyte 

differentiation (Heneghan et al., 2010). An inverse pattern of miRNA expression in 

differentiating adipocytes and obese tissue has been observed, showing that obesity can 

result in a loss of miRNAs that describe fully metabolically active and differentiated adipocytes 

(Heneghan et al., 2010). It is believed that these modifications occur due to chronic 

inflammation present in obese adipose tissue (Heneghan et al., 2010). MiR-145 targets the 

3’-UTR of IRS1 gene in human colon cancer cells, causing the downregulation of the IRS-1 

protein, leading to the inhibition of cancer cell growth (Shi et al., 2007). The observed inverse 

miRNA expression patterns during the differentiation of adipocytes and in the adipose tissue 

suggest that adiposity results in a loss of miRNAs, which characterise completely 

differentiated and metabolically active adipocytes, which may be due to the chronic 

inflammatory environment induced by obesity (Heneghan et al., 2010). 

 

A review by Heneghan (2010) identified various miRNAs whose expression was altered during 

obesity including miR-9, miR-17-5p, miR-29a/ b, miR-99a, miR-103, miR-122, miR-124a, miR-

132, miR-133, miR-143, miR-145, miR-192 and miR-375 with their functional role being 
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adipocyte differentiation, proliferation, growth, clonal expansion, glucose transport, insulin 

resistance, fatty acid and amino acid metabolism, cholesterol biogenesis, cellular stress, 

pancreatic islet development and their main target tissue being adipose, liver and pancreas. 

A more recent review, identified a vast list of adipogenesis promoting miRNAs including miR-

17, miR-21, miR-26b, miR-30, miR-103, miR-143, miR-146b, miR-148a, miR-181, miR-199a, 

miR-204, miR-210, miR-320, miR-371, miR-375, miR-378 and miR-637 and miRNAs that 

interfere with adipocyte differentiation including let-7, miR-15a, miR-22, miR-27a/b, miR-31, 

miR-33b, miR-93, miR-125a, miR-130, miR-138, miR-145, miR-155, miR-193a/b, miR-194, 

miR-221, miR-222, miR-224, miR-344, miR-363, miR-365, miR-369, miR-448 and miR-709 

(Iacomino and Siani, 2017). In association with adipogenesis, miR-130 and miR-143 are widely 

studied; miR-143 is a positive regulator during differentiation of adipocytes and acts through 

the ERK5 signalling pathway and its increased expression prevented insulin-stimulated AKT 

activation and homeostasis of glucose (Iacomino and Siani, 2017). MiR-130a, together with 

miR-27a, have demonstrated to impair adipocyte differentiation via downregulation of PPARγ 

(Iacomino and Siani, 2017). The polycistronic miR-17-92 cluster, encoding for miR-17, miR-

18a, miR-19a, miR-20a, miR-19b-1 and miR-92a, has been reported to be overexpressed 

during the clonal expansion of adipocytes and represses the RB family Rb2/p130, hence 

regulating the RB-E2F pathway (Iacomino and Siani, 2017). MiR-363 has also been reported 

to regulate the same pathway and impair differentiation of adipocytes through E2F and 

downregulation of PPARγ and C/EBPα (Chen et al., 2014a). Additionally, adipogenesis is 

negatively regulated by let-7, which controls high-mobility group AT-hook2 expression 

(Iacomino and Siani, 2017). In the 3T3-L1 cell line model of adipogenesis, let 7 has been found 

to be upregulated and, reduced the clonal expansion and terminal differentiation, indicating 

its anti-adipogenic properties (Sun et al., 2009). Additionally, a mouse model demonstrated 

that let-7 is involved in insulin resistance and glucose metabolism targeting molecules 

affecting the insulin/IGF-1R pathway (Zhu et al., 2011). Also, miR-375 promotes 3T3-L1 

adipocyte differentiation by increasing C/EBPα and PPARγ mRNA concentrations and by 

promoting accumulation of triglycerides and adipocyte fatty acid-binding protein and 

contrarily has been found to suppress ERK1/2 phosphorylation in 3T3-L1 cells (Ling et al., 

2011). Recently, Thomou (2017) indicated the adipose being the major source of circulating 

miRNAs and its potential mechanistic implications of cell-cross talk, for example by regulating 

gene expression in remote organs. However, as miRNAs may modulate numerous pathways 
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and genes simultaneously, more research is warranted to define the precise mechanism by 

which miRNAs modulate obesity and its potential role in therapeutic strategies of the latter. 

 

1.4.7 Effects of weight loss on microRNA expression 

Multiple studies have investigated the effect of weight loss, either by lifestyle interventions 

or bariatric surgery, on miRNA expression and found a modulated profile of miRNA expression. 

There is some evidence that significant and sustained weight loss by bariatric surgery 

improved and recovered miRNA expression. 

The following human studies describe the effects of weight loss following a diet and/ or 

exercise intervention on miRNA expression. To date, the majority of studies looked at the 

effect of weight loss on miRNAs in blood. An 8-week dietary energy restriction (provision of 

800-880 kcal/d) found differential baseline miRNA in non-responders (<5% of initial body 

weight loss achieved, n=5) and responders (>5% of initial body weight loss achieved, n=5) 

namely, miR-935 and miR-4772 were upregulated and miR-223, miR-224 and miR-376b were 

downregulated in peripheral blood mononuclear cells in 10 obese females; baseline miR-935 

and miR-4772 was associated with the magnitude of weight loss achieved (Milagro et al., 

2013). Another study investigated the reproducibility of miRNAs on the effect of diet-induced 

weight loss on a panel of miRNAs initially identified in a cohort following weight loss by 

bariatric surgery, and found that mean 17% of initial body weight loss (5.7 kg/m2 unit fall in 

BMI) showed no significant associations with circulating miR-15a, miR-126, miR-520c-3p, miR-

590-5p, miR-625 and miR-636 in 9 obese individuals, who had a mean baseline BMI of 34.4 

kg/m2 (Ortega et al., 2013). Marques-Rocha (2016) studied the effect of weight loss following 

an 8-week dietary intervention on a selected panel of 9 inflammatory miRNAs in white blood 

cells (WBC) of 40 obese subjects (mean BMI 35.4 kg/m2). Although participants remained 

obese, a mean 7.1kg weight loss following a 30% energy restriction based on the 

Mediterranean dietary pattern significantly decreased WBC levels of miR-155-3p and 

increased let-7b (Marques-Rocha et al., 2016). A 12-week dietary intervention, comparing a 

high protein diet and normal protein diet, 30% and 20% protein of energy, respectively, 

investigated the effect of weight loss on HDL-associated miRNAs in serum, namely miR-16, 

miR-17, miR-126, miR-222 and miR-223 in 47 obese subjects (mean BMI 32.7 kg/m2) (Tabet 

et al., 2016); the high protein diet resulted in a mean 9kg weight loss and significant 
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downregulation of miR-223, which was also positively correlated with modulation in body 

weight (Tabet et al., 2016). Another study by Parr (2016) investigated the effect of a 16-week 

weight loss intervention (reduction of 250kcal/ day by dietary energy restriction + 250kcal 

reduction by exercise) on circulating miRNAs in low (n=18, mean baseline BMI 33.6 kg/m2, 

mean 3kg weight loss) and high (n=22, mean baseline BMI 31.9 kg/m2, mean 11kg weight loss) 

responders; miR-935 expression was higher in low responders compared with high 

responders at baseline and follow-up, by 47% and 100%, respectively. Furthermore, miR-140 

was upregulated by 23% following weight loss in low responders only, miR-221-3p and miR-

223-3p were upregulated post-intervention in both groups (Parr et al., 2016). Following a 1 

week weight maintenance eucaloric diet, Margolis (2017) studied the effect of a 28 day 30% 

dietary energy restriction which attained a mean 1.4 kg/m2 unit fall in BMI on a selected panel 

of miRNAs (miR-1, miR-133a-3p, miR-133b and miR-206) and found that circulating miR-133a 

and miR133b were upregulated in 16 older overweight men. Another intervention study 

investigating the effect of weight loss on plasma miR-146a-5p and miR-126 in 31 obese 

patients, mean BMI 35.6 kg/m2, whose miR-146a-5p expression levels were significantly 

upregulated compared with lean controls (n=37), showed that a 3-month physical activity 

program (90min aerobic and endurance training administered twice a week) resulting in a 

4.2kg weight loss and 1.6 kg/m2 unit fall in BMI, subsequently significantly downregulated 

miR-146a-5p in 2/3 of the participants; miR-146a-5p post-intervention expression levels were 

comparable to those of the lean controls (Russo et al., 2018). Recently, Giardina (2019) 

studied the effect of 3 dietary energy restrictions including i) moderate-carbohydrate and low 

glycemic index (LGI), ii) moderate-carbohydrate and high glycemic index (HGI) and iii) low-fat 

and high glycemic index (LF) on circulating miRNAs in 103 participants before and after the 

dietary intervention. Data demonstrated that circulating miR-361 expression was lower in the 

LGI (mean 7.2kg weight loss achieved) compared with the HGI group (mean 7.1kg weight loss 

achieved), and that miR-139 and miR-340 were downregulated following the HGI, but miR-

139, miR-423 and miR-432 were downregulated following the LF (mean 4.3kg weight loss 

achieved) (Giardina et al., 2019). 

To date, only one study looked at the effect of weight loss by a lifestyle intervention on miRNA 

expression in the adipose tissue. A 15-week weight loss intervention consisting of a 

hypocaloric diet and moderate daily exercise, resulted in a mean 17kg weight loss and 5.6 

kg/m2 unit fall in BMI, which upregulated miR-29a-3p and -5p and, downregulated miR-20b-



35 
 

5p in subcutaneous adipose tissue of 19 obese individuals whose mean baseline BMI was 47.1 

kg/m2 (Kristensen et al., 2017).  

The following human studies describe the effects of weight loss following bariatric surgery. A 

retrospective study demonstrated that, in 21 morbidly obese who underwent bariatric 

surgery, miR-181a, miR-181b and miR-181d quantified in monocytes were significantly 

downregulated compared with lean controls and normalised following weight loss 3 months 

post-operatively (mean 8 kg/m2 unit fall in BMI) (Hulsmans et al., 2012). Ortega (2013) 

revealed that a mean 30% weight loss (of initial body weight, 37.4kg reduction and 14 kg/m2 

unit fall in BMI) by bariatric surgery significantly downregulated circulating miR-16-1, miR-

19b-1, miR-122, miR-125b, miR-140-5p, miR-142-3p, miR-199a-3p and miR-483-5p and, 

upregulated miR-21, miR-146a, miR-221, miR-130b and miR-423-5p one year post-operatively 

in 22 morbidly obese patients. Lirun (2015) investigated the effect of RYGB on serum miRNAs 

in 15 type 2 diabetic patients with low BMI (≤30 kg/m2 n=7) and high BMI (≥30 kg/m2 n=8) 

using an Affymetrix GeneChip miRNA Array. A vast list of serum miRNAs were significantly 

modulated following weight loss by RYGB after 2 months, out of which 39 miRNAs showed a 

fold change of ≥1.5 or ≤2/3.  More specifically, in both the low and high BMI group, where a 

4.4 kg/m2 and 6.5 kg/m2 unit fall in BMI was achieved, respectively, let-7, miR-23a/b, miR-24, 

miR-26a, miR-93, miR-103a, miR-146a, miR-151-3p, miR151-5p and miR-425 were 

downregulated and miR-1281, miR-1825 and miR-4787-5p upregulated (Lirun et al., 2015). 

Global miRNA profile analysis was performed in 6 obese African-American females (mean BMI 

51.2 kg/m2) who underwent gastric bypass and achieved a mean 49.5kg weight loss and 18.6 

kg/m2 unit fall in BMI one year post-operatively. This study revealed 168 differentially 

expressed miRNAs in circulating adipocyte derived exosomes, whose top predicted targeted 

pathways were the Wnt-β catenin pathway and the insulin receptor signalling pathway (Hubal 

et al., 2017). Another study researched the effect of an exercise intervention following RYGB 

on plasma miRNAs in 22 severely obese subjects, who were recruited 1-3 months post-surgery 

an allocated to either an intervention arm with an exercise program (n=11, mean baseline 

BMI 39.5 kg/m2) or without one (n=11, mean baseline BMI 40.8 kg/m2) and followed-up 6-

months later (Nunez Lopez et al., 2017). This study showed that 27.7kg weight loss and 10.2 

kg/m2 unit fall in BMI by RYGB only, significantly upregulated miR-7, miR-15a and miR-106 and 

downregulated miR-34a, miR-122 and miR-221.  In contrast, a 25kg weight loss and 9.3 kg/m2 
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unit fall in BMI by RYGB plus the exercise intervention significantly upregulated miR-15a and 

miR-149 and downregulated miR-34a, miR-122, miR-135b, miR-144 and miR-206 (Nunez 

Lopez et al., 2017).  Alkandari (2018) studied the effect of weight loss following RYGB on 

circulating plasma miRNA expression at 1 month, 3 months, 6 months, 9 months and 1 year 

in 9 obese (mean baseline BMI 49 kg/m2 and mean BMI at 1y follow-up 30.7 kg/m2) and found 

that expression of 48 miRNAs, involved in pathways of regulation and rescue from metabolic 

dysfunction which were correlated with BMI, was modulated in a time dependent manner. 

Out of a panel of 7 miRNAs only miR-10a-5p was significantly upregulated in circulating 

mononuclear cells following a 46kg weight loss and 16 kg/m2 unit fall in BMI by RYGB at 2 year 

follow-up in 58 morbidly obese patients (Hohensinner et al., 2018).RYGB induced weight loss 

resulting in a 13.9 /m2 unit fall in BMI 2 years post-operatively revealed differential expression 

of 15 miRNAs in adipose tissue of 16 morbidly obese (mean baseline BMI 43.1 kg/m2) when 

compared with 26 age-matched lean females (BMI 24.2 kg/m2), more specifically miR-130b, 

miR-155, miR-221 and miR-339 were significantly downregulated post-surgery and 

significantly different when compared to lean controls whose expression levels of those 

miRNAs was even lower (Ortega et al., 2015a). Another study found that miR-155, miR-221 

and miR-222 were significantly downregulated 2 years post-bariatric surgery in subcutaneous 

adipocytes of 9 obese females (Ortega et al., 2015b). In three obese females, weight loss by 

laparoscopic adjustable gastric banding (mean baseline BMI 42.9 kg/m2 , 10.9 kg/m2 unit fall 

in BMI) upregulated miR-370 and miR-487a and downregulated miR-212, miR-229-5p, miR-

519d and miR-671-3p in subcutaneous adipose tissue 3 years post-operatively compared with 

two lean controls (mean BMI 21.5 kg/m2) (Nardelli et al., 2017). Another study investigated 

the baseline miRNA signature in visceral fat (VF) and subcutaneous fat (SF) of the adipose 

tissue in 20 bariatric-surgery patients (mean BMI 42.4 kg/m2) and 8 non-obese (mean BMI 

24.6 kg/m2) and showed differential miRNA profiles in obese SF and VF; more specifically miR-

122 showed significantly higher expression in VF of obese, which was correlated with % excess 

body weight loss at 6-month and 1-year post bariatric surgery (Liao et al., 2018).  

Studies researching the effect of weight loss on miRNA expression following lifestyle 

interventions to date, have merely concentrated on effects in the blood, only one study has 

researched the adipose tissue and, I am unaware of any human studies in the colon, and more 

investigations in other tissues are required. Weight loss in all discussed studies modulated the 

expression of a wide range of miRNAs, and two studies found that miR-223 was 
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downregulated (Milagro et al., 2013, Tabet et al., 2016) and one found that it was upregulated 

(Parr et al., 2016). The above studies differed in lifestyle intervention type, length of follow-

up (28 days- 16 weeks) and weight loss and decline in BMI achieved (which ranged between 

3-11kg and a 1.4-5.7 kg/m2 unit fall in BMI, respectively). These variations in study design 

could clarify the lack of results’ consistency on miRNA expression.  

Whereas studies investigating the effect of weight loss on miRNA expression following 

bariatric surgery to date, have merely concentrated on effects in the blood and adipose tissue 

and, I am unaware of any human studies in the colon, and once more investigations in other 

tissues are warranted. Weight loss in all discussed studies modulated the expression of a wide 

range of miRNAs, and found some consistent and some conflicting results for specific miRNAs. 

More specifically, two studies found that weight loss downregulated miR-122 (Ortega et al., 

2013, Nunez Lopez et al., 2017) and contrarily one study found that it was correlated with 

excess body weight (Liao et al., 2018). Similarly, one study revealed that weight loss 

upregulated miR-146a (Ortega et al., 2013), whereas another found it to be downregulated 

(Lirun et al., 2015). Finally, one study demonstrated that weight loss resulted in the 

upregulation of miR-221 (Ortega et al., 2013), but in contrast 3 other studies revealed the 

opposite direction of miR-221 expression (Nunez Lopez et al., 2017, Ortega et al., 2015a, 

Ortega et al., 2015b). Once again, the above studies differed in bariatric surgery type, length 

of follow-up (6 months- 3 years) and decline in BMI attained (10.9- 13.9 kg/m2 unit fall). These 

variations in study design could explain the lack of consistency in the data on miRNA 

expression, although, compared with the studies investigating lifestyle intervention, a trend 

for more consistent miRNA expression could be seen (miR-122, miR-146a and miR-221) which 

might be due to the fact that bariatric surgery is the most successful intervention in achieving 

sustained weight loss. 

Furthermore, all participants of the earlier discussed studies continued to be overweight and/ 

or obese following both lifestyle interventions and bariatric surgery studies and evidence of 

the effect of weight loss resulting in participants returning to their normal weight on miRNA 

expression is missing, which is an important limitation. 

The level of miRNA expression differs considerably between studies. Reason for this variation 

may include the different miRNA quantification methods used and the different tissue of 

interest in which the miRNA expression was measured. Across these studies, 6 different 
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miRNA quantification methods were used including a microarray (Hulsmans et al., 2012), 

TaqMan low-density array and qRT-PCR (Ortega et al., 2013, Ortega et al., 2015b, Nardelli et 

al., 2017), Real time PCR (Nunez Lopez et al., 2017), Affymetrix GeneChip miRNA Array (Lirun 

et al., 2015, Hubal et al., 2017, Ortega et al., 2015a), Exiqon miRCURY locked nucleic acid and 

PCR (Alkandari et al., 2018) and RT-qPCR (Hohensinner et al., 2018). The issues of interest in 

which miRNA expression was measured included monocytes (Hulsmans et al., 2012), 

surrogate such as plasma and serum (Ortega et al., 2013, Nunez Lopez et al., 2017, Lirun et 

al., 2015, Alkandari et al., 2018, Hubal et al., 2017, Hohensinner et al., 2018) and adipose 

tissue (Ortega et al., 2015a, Ortega et al., 2015b, Nardelli et al., 2017). These between study 

differences (i.e. in assay used and tissue specificity) are a potential limitation when comparing 

studies. 

1.5 Links between adiposity, mitochondria, microRNAs and colorectal cancer risk 

Obesity affects mitochondrial biogenesis, function and dynamics via epigenetic mechanisms 

(see Figure 1-8) (Cheng and Almeida, 2014b) and, in particular, miRNAs regulate the function 

and dynamics of mitochondria in the obese (Sun et al., 2011, Bolmeson et al., 2011, Zhang et 

al., 2013). For example, Sun (2011) demonstrated that miR-15a promoted the synthesis and 

secretion of insulin by targeting and silencing the mitochondrial uncoupling protein UCP2, 

which in turn increased oxygen consumption and reduced ATP production. MiR-106b is 

greatly over-expressed in the skeletal muscle of obese diabetic patients (Gallagher et al., 

2010). The 3’-UTR of Mfn2, a mitochondrial dynamic and network regulator, has binding sites 

for miR-106b (Zhang et al., 2013) and binding of the miRNA suppresses Mfn2 expression 

which impairs mitochondrial function. In contrast, downregulation of miR-106b enhances 

mitochondrial function and sensitivity to insulin (Zhang et al., 2013). Further, miR-184, which 

regulates insulin secretion, may do that by repressing Slc25a22, which is a mitochondrial 

glutamate carrier controlling cytosolic glutamate and insulin granule activity as well as the 

activity of secretory vesicles during exocytosis of insulin (Bolmeson et al., 2011).  
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Figure 1-8: Epigenetic mechanisms affecting mitochondrial function in people with obesity (Cheng and Almeida, 2014b) 
(Copyright: figure is open-access). 

As summarised earlier in this chapter (section 1.1.3), obesity is a major risk factor for CRC. 

There is evidence that obesity modulates CRC risk via epigenetic effects, and that these 

epigenetic changes are improved or even reversed following weight loss. Furthermore, there 

is evidence that obesity results in dysfunctional mitochondria. However it remains to be 

discovered if obesity modulates CRC risk via effects on the mitochondria; or whether 

dysfunctional mitochondria are a result of CRC itself. More research is warranted to clarify 

whether i) epigenetic regulation via miRNAs, can affect the expression of mitochondrial genes 

and generation of mitochondrial proteins (i.e. OXPHOS proteins) and ii) if such an epigenetic 

regulation will affect the morphology, respiration and function of mitochondria. Furthermore, 

more research is required to establish whether an interaction between miRNAs and 

mitochondria during obesity plays a role in the development of CRC (Figure 1-9). Additionally, 

more studies are needed to uncover epigenetic mechanisms responsible for regulating 

networking, biogenesis and function of mitochondria. And finally, if the latter is the case, 

there is a need to discover whether lifestyle modification and behavioural interventions 

leading to sustained weight loss reverse or prevent epigenetic dysregulation of mitochondrial 

metabolism and function and, in so doing, reduce CRC risk. 



40 
 

 

Figure 1-9: Conceptual hypothesis for effects of obesity on CRC risk illustrating the potential epigenetic link and interactions 
between miRNA regulation and mitochondrial function  

1.6 Hypotheses, Aims and Objectives 

I hypothesise that i) biomarkers of CRC risk are elevated in obese compared with normal 

weight participants; and ii) weight loss in the obese has beneficial effects on these biomarkers 

of CRC risk. I also hypothesise that these obesity-related biomarkers of CRC risk are 

exacerbated by ageing. 

My project aims to test these hypotheses by addressing the following objectives: 

 

1st Objective: To investigate the links between obesity, mitochondrial oxidative 

phosphorylation proteins and mitochondrial DNA mutations in the colorectal mucosa and to 

investigate the effects of surgically-induced weight loss in the obese on these associations 

using samples and data from the Biomarkers Of Colorectal cancer After Bariatric Surgery 

(BOCABS) Study. 

2nd Objective: To investigate the links between obesity and epigenetic markers, namely 

miRNA expression, in the colorectal mucosa and to investigate the effects of surgically-

induced weight loss in the obese on these associations using samples and data from BOCABS 

Study. 
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3rd Objective: To investigate the links between adiposity, ageing and epigenetic markers, 

namely microRNA expression, in the colorectal mucosa of aged participants, by performing a 

12+ year follow-up in the participants from the Biomarkers Of RIsk of Colorectal Cancer 

(BORICC) Study, namely BORICC Follow-Up (BFU) Study.  

4th Objective: To investigate the links between obesity, weight loss, epigenetic regulation, 

namely miRNA expression, and mitochondrial function or dysfunction in the colorectal 

mucosa using the samples and data from BOCABS Study. 
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2 Methods 

All procedures were carried out by myself, unless stated otherwise. 

2.1 Human Studies 

2.1.1 Overview of Biomarkers of Colorectal Cancer after Bariatric Surgery (BOCABS) Study 

2.1.1.1 Participant recruitment and sample collection 

The Biomarkers Of Colorectal cancer After Bariatric Surgery (BOCABS) Study was an 

observational study investigating biomarkers of CRC risk after bariatric surgery in a 

prospective cohort of obese adults listed for a bariatric surgery at the North Tyneside General 

Hospital (NTGH). In addition, healthy non-obese participants were recruited as a control 

group from patients listed for a rigid sigmoidoscopy or colonoscopy at NTGH. The BOCABS 

Study was conducted by Dr Sorena Afshar under the supervision of Prof John Mathers. 

Participants were checked for suitability (exclusion criteria are shown in Appendix A) and 

written informed consent was obtained. Obese participants underwent bariatric surgery and 

colorectal mucosal biopsies, anthropometric and body composition measurements were 

collected at baseline and, again, at six months post-surgery. Additional biological samples 

including duodenal biopsies, urine, stool and blood and other data including Food Frequency 

Questionnaire, Lifestyle Questionnaire, Bowel Habit Diary, physical activity by both 

questionnaire and accelerometry were also collected, but these samples and data were not 

utilised in the present project. 

Ethical approval was obtained from the NRES Committee, North East - Newcastle and North 

Tyneside 2 (13/NE/0204) and the project was recorded on the ISRCTN register under the 

following code: ISRCTN95459522. As the BOCABS participants had consented for usage of 

their samples for future research studies, no further ethical approval was required.  

Additionally, questionnaire and anthropometric data and rectal biopsies from a further eight 

non-obese healthy participants who had been recruited to The Dietary Intervention, Stem 

cells and Colorectal cancer (DISC) Study (registered under NCT01075893) were used to 

increase the sample size of the control group for the BOCABS Study. Inclusion and exclusion 

criteria were very similar and collection of biopsies were in exactly the same manner in the 

DISC Study and the BOCABS Study. DISC Study participants had consented for usage of their 



43 
 

data and samples for future research studies and no further ethical approval was required. 

Figure 2-1 shows the overall BOCABS Study design and the subsets of participants used for 

subsequent analysis of mitochondrial markers and microRNA expression. Justification for the 

subsets of participants used can be found in the relevant chapters, i.e. Chapter 3 for 

mitochondrial investigations and Chapter 4 for microRNA investigations. The key inclusion 

criterion for the non-obese (Control) group was that their BMI was less than 30 kg/m2. All 

participants in the Control group fulfilled this criterion. The non-obese Controls used in 

Chapter 3 had a mean BMI of 25.5 kg/m2. 

 

Figure 2-1: Overall BOACBS Study design and subsets of participants used for mitochondrial and microRNA work conducted 
for this thesis 

2.1.1.2 Non-laboratory methods 

All measurements were made and samples were collected by Dr Sorena Afshar in the 

presence of a chaperone using standardised protocols, in order to minimise researcher 

related variability. Further details of relevant methods are presented in (Afshar, 2016b, Afshar 

et al., 2016, Afshar et al., 2017, Afshar et al., 2018). 
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2.1.1.2.1 Anthropometric measurements 

Anthropometric measurements were taken in the morning after a six hour fast. Participants 

were requested to wear light indoor clothing, remove shoes and belts and empty their 

pockets.  

Using a stadiometer, height was measured with the head in the Frankfurt horizontal plane. 

The circumference of the waist was measured at the midpoint between the top of the iliac 

crest and the lower margin of the palpable rib in the mid axillary line. In obese participants, 

this anatomical position can be difficult to identify, so participants were asked to find the 

bottom of their ribs and top of their hips and the midpoint was used for the waist 

measurement. The hip circumference was measured at the largest gluteal (buttock) muscles 

when individuals were standing with their feet were slightly parted. 

Measurements were recorded in duplicate to the closest millimetre and, if they were not 

within one centimetre of each other, measurements were repeated. The mean value of 

duplicates was used. 

2.1.1.2.2 Body composition measurements 

Body weight and fat percentage were measured using a bioimpedance instrument (Tanita 

TBF-300MA Body composition analyser) and body weight was recorded to the nearest 0.1kg. 

Body mass index (BMI) was calculated by dividing weight by height squared (kg/m2).  

 

2.1.1.2.3 Collection of colorectal mucosal biopsies 

No bowel preparation was performed before collection of samples, but using a rigid 

sigmoidoscopy (Sigmolux, Evexar Medical Ltd., UK) the rectum was examined. Ten 2.2mm 

colorectal mucosal pinch biopsies were collected using Sarratt Disposable Biopsy Forceps 

(Stericom) in a circumferential manner at 10cm from the anal margin. Seven biopsies were 

wrapped immediately in aluminium foil straight, snap frozen in liquid nitrogen and 

subsequently stored at -80°C. The remaining three biopsies processed as follows:  

 One biopsy was placed in 10% formalin and subsequently paraffin embedded;  

 One biopsy was placed in RNA later and subsequently stored at -80°C;  
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 One biopsy was placed Carnoy’s solution (70% ethanol and 30% acetic acid) for 2-12 

hours and then transferred to 70% ethanol and stored at 4°C. 

 

2.1.2 Overview of Biomarkers of Risk of Colon Cancer (BORICC) Study 

2.1.2.1 Participant recruitment and sample collection 

The BORICC Study was conducted by Professor John Mathers and colleagues in 2005- 2009. It 

was a project designed to develop and validate biomarkers of CRC risk and to investigate their 

relationships with dietary exposure and nutritional status. Specifically, BORICC1 recruited 268 

healthy participants, who were neoplasia-free, had no signs of colonic inflammation or 

diverticulae and no familial susceptibility to CRC at endoscopy. In addition, a further 100 

participants at higher CRC risk, because they had adenomatous polyps, were recruited to the 

BORICC2 Study. All participants were recruited from the gastroenterology outpatients clinics 

at Wansbeck General Hospital in Ashington, Northumberland. The participants were 

phenotyped extensively by recording anthropometric measurements, physical activity, 

medical history, smoking behaviour and habitual diet and by collecting colorectal mucosal 

biopsies, buccal swabs, blood and urine samples.  

Table 2-1 summarises the participant characteristics of the BORICC1 and BORICC2 groups. 

Further details of the BORICC Study procedures and findings are reported by (Mathers, 2009,  

Greaves et al., 2010, Nooteboom et al., 2010, Greaves et al., 2014). 

 

 

Characteristics BORICC1 (n=268) BORICC2 (n=100) 

Age (years) 50 (13.5) 58.5 (11.5) 

Males (%) 44.8 65 

Females (%) 55.2 35 

BMI (kg/m2) 28.3 (5.7) 28.9 (6.6) 

Waist (cm) 93.4 (14.9) 95.7 (15.7) 

Hip (cm) 104.8 (11.8) 102.5 (14) 

W:H ratio 0.9 (0.09) 0.93 (0.08) 

Table 2-1: Characteristics of BORICC1 and BORICC2 participants, Mean (SD) (Mathers, 2009) 
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2.1.3 The BORICC Follow-Up (BFU) Study 

2.1.3.1 Participant recruitment and sample and data collection 

The BORICC Follow-Up (BFU) study is a 12+ year follow-up of participants recruited to the 

BORICC Study. The primary aim of the BFU Study is to investigate links between dietary and 

other lifestyle factors and markers of colorectal health and ageing. In addition, the BFU Study 

is investigating the effects of change in lifestyle factors, 12+ years later, on markers of healthy 

ageing, large bowel health and CRC risk. This is an observational and longitudinal study. The 

BORICC Study had two sub-studies and follow-up participants to the BORICC1 and BORICC2 

were called BFU1 and BFU2, respectively.  

I was part of the BFU Study Team and was actively involved during recruitment, ethical 

amendments, showcase events and study visits. My specific role is specified in more detail 

below. 

Figure 2-2 shows the overall BORICC and BFU Study designs and the subsets of participants 

used for subsequent analysis of microRNA expression. Justification for the subset of 

participants used can be found in the relevant chapter, i.e. Chapter 5. 

 

Figure 2-2: Overall BORICC and BFU Study designs and subsets of participants used for microRNA work conducted for this 
thesis 
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2.1.3.1.1 Ethics approval 

Ethical approval was obtained from the NRES Committee, West Midlands - Coventry and 

Warwickshire Research Ethics Committee (16/WM/0424) on 29th of November 2016 and the 

IRAS project ID was listed under the following code: 207081 (see Appendix B). An application 

for a substantial amendment was submitted the ethics committee on 19th April 2017 and 

approval was obtained on 23 May 2017 for changes to the recruitment protocol including use 

of a response card, invitation of potential participants to a showcase event and the addition 

of participant bone densitometry measurement (see Appendix C). Another application for 

amendment to the study protocol to call participants to check if they had received their study 

invitation letter and to invite them to return their response cards was submitted to the ethics 

committee on 17th of November 2017 and approval was obtained in 15 December 2017 (see 

Appendix D). 

 

2.1.3.1.2 Recruitment strategy 

Identification of potentially eligible participants: The medical records of BORICC Study 

participants were checked by the BFU Study Team using Northumbria Healthcare NHS 

Foundation Trust’s ‘Single View’ to identify those who were deceased and those who met the 

exclusion criteria. Exclusion criteria included potential dementia (limiting capacity to provide 

informed consent), unable to travel to attend the hospital study visit and use of anti-blood 

clotting medication. The latter individuals were invited to participate in all elements of the 

study except for the collection of colorectal mucosal biopsies, as a rigid sigmoidoscopy may 

increase the risk of bleeding. A total of 291 potential recruits who met the inclusion criteria 

for the BFU Study were identified, 227 and 64 for BFU1 and BFU2 respectively.  

 

Recruitment protocol: BFU Study invitation letters (see Appendix E), participant information 

sheets (see Appendix F), a flyer for the BFU Study showcase event (see Appendix G) and a 

response card (see Appendix H) with a pre-stamped and addressed envelope were sent to 

potential recruits in batches of 60.  If potential recruits did not contact the study team within 

3 weeks, a second invitation was sent. If no contact was made, an attempt was made to 

contact the individual by telephone. When contact was made by telephone, email or post, 
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the study was discussed and participants were invited to take part in a showcase event or 

directly in the study without participation in a showcase event after signing a consent form 

(see Figure 2-3).  

 

Data and sample collection by participants at home: After consent was obtained an 

appointment for the hospital visit at North Tyneside General Hospital, UK was arranged and 

a study pack was sent out 10 days prior to the hospital visit. The study pack included: 

 Study pack instructions 

 Consent forms 

 Hospital study visit instructions and directions 

 A lifestyle questionnaire 

 A food frequency questionnaire 

 A sunlight exposure questionnaire 

 Accelerometer instructions 

 Record sheet and sleep log 

 Stool collection instructions 

 Urine collection instructions 

 At-home sample and questionnaire collection record sheet 

 Accelerometer (GENEActivTM) to record physical activity for 7 days 

 Stool collection pot (Fecotainer®) 

 Cool bag and cool block for transportation of samples 

 Urine collection pots (x2) and 

 Urine vacutainers (x8) separated into two zip lock bags.   
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Figure 2-3: Protocol for participant recruitment  

2.1.3.1.3 Showcase events 

Showcase events took place on both week and weekend days at North Tyneside General 

Hospital Education Centre, UK. During the showcase events potential participants watched a 

presentation delivered by a BFU Study team member about the BORICC Study outcomes and 

the hypothesis, aims and objectives for the BFU Study. In addition, the procedures for the BFU 

Study hospital visit, sample and data collection were explained. Attendees had a chance to 

experience the protocol for assessment of handgrip strength and weight (on Tanita scales) 

and it was my responsibility to conduct these assessments during the showcase event. 

Participants had ample opportunity to ask questions and to discuss aspects of BFU Study 

throughout the showcase event. At the end of the session, attendees were invited to contact 

the research team by telephone, post or email if they had any further questions or wanted to 

sign up for the study. A total of 7 showcase events were held. 
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2.1.3.1.4 Study visit at North Tyneside General Hospital 

During the study visit, which lasted about 45min, I was responsible for checking each 

participant’s questionnaires for missing data and for counter-signing consent forms. A 

medical and health history record was obtained by a clinically-qualified member of the BFU 

Study team. The urine and stool samples that had been collected at home were received, 

processed and archived. I was also responsible for undertaking anthropometric 

measurements including weight (Tanita scales), height measurements in the Frankfurt 

horizontal plane (Leicester height measure) and waist and hip circumference (measuring 

tape). Another BFU team member measured heel bone density (Achilles EXPII bone 

ultrasonometer) and muscle function measurements including time up and go, and hand grip 

strength. Biological samples including blood samples (I was responsible for blood 

centrifugation and for separating plasma, serum and white blood cells), buccal cells and rectal 

biopsies were collected, processed and subsequently stored at -80°C (except for buccal cells 

which were stored at room temperature).  

 

2.1.3.1.5 Non-biological sample collection 

Anthropometric and body composition measurements were collected in the exact same 

manner as described in 2.1.1.2.1 and 2.1.1.2.2 respectively with the exception that 

participants did not attend the study visit after a standardised fast. 

2.1.3.1.6 Biological sample collection 

Colorectal mucosal pinch biopsies were collected as described in 2.1.1.2.3 

2.2 Laboratory Methods 

2.2.1 Assessment of mitochondrial dysfunction in colorectal mucosal biopsies 

2.2.1.1 Sectioning of formalin fixed and paraffin embedded colorectal mucosal biopsies 

Miss Anna Smith (laboratory technician) sectioned the formalin fixed and paraffin embedded 

(FFPE) blocks containing colorectal mucosal biopsies. The blocks were placed on ice for 30min 

before cutting 4µm thick sections on a HM325 microtome. The cut sections were placed 

carefully on a 37°C deionised water flotation bath for a few minutes to stretch and flatten the 

tissue sections. Subsequently, the sections were placed on glass slides (Superfrost Ultra Plus), 

labelled with participant ID and incubated at 37°C for 24 hours to fix the sections on the glass 

slides. The prepared slides were stored at 4°C. 
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2.2.1.2 Immunofluorescence staining for mitochondrial respiratory chain proteins  

Immunofluorescence staining for mitochondrial respiratory chain proteins in the cut sections 

of FFPE colorectal mucosal biopsies was carried out using a protocol optimised by the 

Mitochondrial Research Group, Newcastle University. This protocol was carried out over two 

days. 

2.2.1.2.1 Procedures undertaken on Day 1 

One biopsy section from each participant was labelled as ‘primary’ (primary antibodies were 

applied to that slide) whilst another slide from the same participant was labelled ‘no primary’ 

(primary antibodies were omitted on that slide) and the slides were incubated in a 60°C oven 

for one hour. The sections were deparaffinised in Histoclear and rehydrated through a graded 

series of ethanol (in the order: ‘100% ethanol 1 dewaxing’, ‘100% ethanol 2 dewaxing’, ‘95% 

ethanol dewaxing’ and ‘70% ethanol dewaxing’). Then the sections were placed in an EDTA-

containing buffer at pH 8 and antigens were retrieved by heating in a pressure cooker for 

40min. The sections were washed in running tap water and blocked with 10% normal goat 

serum (Sigma- Aldrich, Poole, UK) for one hour and endogenous avidin and biotin were 

blocked by incubating the slides in avidin and biotin blockers (Vector Laboratories, UK) for 

15min each. Sections labelled ‘primary’ were incubated at 4 °C with primary antibodies (see 

Table 2-2) in the dark. 

2.2.1.2.2 Procedures undertaken on Day 2 

Sections were washed three times for 5min in TBST (TBS + 1:100 Tween® 20, pH 7.4) and 

incubated for two hours with an IgG specific secondary antibody (see Table 2-2) at room 

temperature in the dark. Then sections were washed three times for 5min in TBST and 

incubated for two hours with the appropriate tertiary antibody (see Table 2-2) at room 

temperature in the dark. Subsequently, sections were washed three times for 5min in TBST 

and incubated for 15min in Hoescht, a nuclear counterstain, at room temperature in the dark. 

Finally, sections were washed three times for 5min in TBST and mounted in ProLongTM Gold 

antifade reagent (Thermo Fischer Scientific) using a coverslip. Sections were stored in the -

20 °C freezer until ready to be viewed under the confocal microscope. 
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Primary Antibody Ms mAb* to 

NDUFB8 (Abcam) 

Ms mAb* to MTCO1 

(Abcam) 

Rb mAb** to 

TOMM20 (Abcam) 

Function under 

investigation 

Complex 1 Complex 4 Mitochondrial mass 

marker 

Antibody subtype IgG1 IgG2a IgG1 

Concentration 1:50 1:100 1:100 

Secondary antibody Biotinylated anti 

mouse IgG1 

N/A N/A 

Tertiary antibody Streptavidin 

conjugated 647 

Goat anti rabbit 488 Goat anti mouse 

IgG2a 546 

Table 2-2: Antibodies used to quantify complex 1 (NDUFB8), complex 4 (MTCO1) and mitochondrial mass (TOMM20) by 
immunofluorescence 
*Mouse monoclonal Antibody 
**Rabbit monoclonal Antibody 

2.2.1.3 Image capture using Confocal Microscopy 

Stained colorectal mucosal sections were viewed and imaged under the Nikon A1 confocal 

(upright) microscope in the Bio-Imaging Unit, Newcastle University within 10 days of 

immunofluorescence staining. Channels Alexa 647, Alexa 488 and Alexa 546 were used for 

the antibodies NDUFB8, MTCO1 and TOMM20 respectively. Initially, the ‘primary’ sections 

were viewed and laser power, detector sensitivity and offset/ signal cutoff were set to 

optimise visibility of the antibodies within the crypts of the biopsies; this required a pixel value 

of around 3000 and up to 3500. The ‘no primary’ slides were viewed using exactly the same 

settings. The crypts within the ‘no primary’ biopsy were expected to be barely visible, with a 

pixel value close to zero. However, if the crypts were visible and the pixel value above 50 the 

settings were adjusted so that the crypts would be barely visible and the pixel value close to 

zero, and these adjusted settings were used for imaging of both the ‘primary’ and ‘no primary’ 

sections. A snap shot (single image) and a tile (a collection of snap shots stitched together 

which results in an image of the whole biopsy) from both the ‘no primary’ and ‘primary’ 

sections were taken. For imaging, a laser application time per pixel of 1.1 was used at 

resolution size 1024. 
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2.2.1.4 Data processing of images from colorectal mucosal biopsies immunofluorescence stained for 

mitochondrial respiratory chain proteins  

All images obtained from the confocal microscopy were processed using ImageJ. Using the 

‘polygon selection’, individual crypts were selected and a boundary drawn around them. This 

process was carried out for 20 crypts from the ‘no primary’ sections and for all crypts present 

in a biopsy from the ‘primary’ sections. The expression levels for each individual antibody 

were measured using ‘Region of Interest Manager’ in the selected crypts and recorded. 

Subsequently, the recorded data were uploaded online to the ‘Oxphos quadruple 

immunofluorescence analyser’, which was developed in-house by the Mitochondrial 

Research Group at Newcastle University (https://research.ncl.ac.uk/mitoresearch/). This 

software normalises the data for each antibody measured as follows: first the average ‘no 

primary’ antibody expression level of the crypt was subtracted from the ‘primary’ one. Then 

the natural logarithm was taken for each antibody. After transforming the values of the 

antibodies to their natural logarithm, values for MTCO1 and NDUFB8 were divided by the 

value for TOMM20 and a mean value and standard deviation for all crypts in the biopsy was 

calculated. Z-scores were calculated by subtracting the obtained mean expression value per 

antibody measured from the individual expression value of the crypt for that specific antibody 

and dividing it by the standard deviation obtained previously. Based on the value of the z-

score, each respiratory chain protein measured within a crypt was designated as 

overexpressed (z >2), normal (z <2), slightly deficient (z < -2), very deficient (z < -3) or depleted 

(z < -4) (Rocha et al., 2015). The percentage of crypts showing overexpressed, normal, slightly 

deficient, very deficient and depleted for each respiratory chain protein measured within 

each biopsy were calculated and recorded. 

 

2.2.2 Sequencing the mitochondrial genome in human colonic crypts of colorectal mucosal 

biopsies 

2.2.2.1 Cryostat sectioning of frozen colorectal biopsies 

Colorectal mucosal biopsies stored at -80°C were transported in liquid nitrogen to the cryostat 

and 20µm thick sections were cut at -20°C. Care was taken to ensure that the tissue 

temperature did not deviate from that target because if it is too cold the section may curl and 

if it is too warm it may stick to the cutting knife (Ross, 2011). Subsequently, the sections were 

https://research.ncl.ac.uk/mitoresearch/
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placed on 1mm PEN-membrane slides, labelled with participant ID, left to fix by air drying at 

room temperature for 1.5 hours, and then stored in a plastic container at -80°C. 

2.2.2.2 Succinate Dehydrogenase (SDH) staining of section from frozen colorectal biopsies 

Succinate Dehydrogenase (SDH) staining of sections from frozen colorectal mucosal biopsies 

was carried out using a protocol optimised by the Mitochondrial Research Group, Newcastle 

University. Fresh tissue, frozen  initially in liquid nitrogen, was used for SDH staining because, 

unlike FFPE, this avoids freezing artifacts, optimises morphology and ensures that the enzyme 

activity is retained (Ross, 2011).  

Sections were thawed at room temperature for 30min in the storage plastic container 

followed by 30min air drying. Sections were incubated in the SDH incubation medium (1.5mM 

Nitroblue tetrazolium, 130mM sodium succinate, 0.2mM phenazine methosulphate and 1mM 

sodium azide) for 50min at 37°C in the dark. Sections were washed gently twice for 30sec in 

phosphate buffered saline (OxoidTM ThermoFisher Scientific). The sections were dehydrated 

through a graded series of ethanol (in the order: ‘70% for 2min’, ‘95% for 2min’ and ‘100% for 

12min’) and then stored in a plastic container at -80°C. 

2.2.2.3 Laser microdissection and lysing of SDH stained crypts from frozen colorectal mucosal 

biopsies  

SDH staining made the crypts in the colorectal mucosal biopsies visible under the PALM 

MicroBeam Laser Capture Microdissection microscope (ZEISS). Between 300 and 500 crypts 

per sample were cut from the stained PEN membrane slides into sterile 0.5mL PCR tubes into 

15µL of cell lysis buffer (50mM Tris-HCl pH8.5, 1% Tween-20, 20mg/mL proteinase K and 

distilled water, which was prepared on ice under the UV hood to minimise contamination) 

using the PALM MicroBeam Laser Capture Microdissection microscope (ZEISS). The collected 

isolated crypts were centrifuged at 14,000rpm for 15min and lysed at 55°C for two hours 

followed by 95°C for 10min (to denature proteinase K). The crypt lysates were stored in the 

freezer at -20°C. 

2.2.2.4 Mitochondrial DNA amplification by long range PCR  

The obtained crypt lysates were utilised as DNA templates to enrich/amplify two overlapping 

fragments of the mtDNA genome to ensure complete coverage of the whole mitochondrial 

genome (see Table 2-3). A long range PCR, using Takara PrimeSTAR GXL DNA polymerase 
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(Takara Bio Europe, France) and primers pair detailed in Table 2-3, was prepared in a DNA-

free, UV-sterilised PCR cabinet to minimise contamination.  

MtDNA 

fragment 

Fragment 

length 

(bp) 

Primer sequence forward 

5’-3’ 

Primer sequence reverse 5’-

3’ 

A: m.6222-

m.16153 

9932 CCCTCTCTCCTACTCCTG CAGGTGGTCAAGTATTTATGG 

B: m.15295-

m7791 

9066 CATCTTGCCCTTCATTATTGC GGCAGGATAGTTCAGACGG 

Table 2-3: Forward and reverse primer sequences used for mtDNA fragment amplification 

The master-mix used for the long range PCR contained: 

 5ul 5xPrimeSTAR GXL Buffer (Mg2+ plus) 

 2ul dNTP Mix (2.5mM) 

 0.5ul For Primer (10uM) 

 0.5ul Rev Primer (10uM) 

 0.5ul PrimeSTAR GXL DNA Pol (1.25U/ul) 

 2ul DNA lysate. 

Controls were set up with each new mastermix including lysis buffer only (without cells), 

human genomic control DNA (positive control) and water only (negative control). Reactions 

were amplified on an Applied Biosystems Veriti 96-wel thermal cycler (ThermoFisher 

Scientific) with the cycling conditions shown in Table 2-4. 

 

Step Time Temperature Number of cycles 

Initial activation 

step 

5min 94°C 1 

Denaturing 10sec 98°C 30 

Annealing 15min 68°C 
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Extension 10min 72°C 1 

Hold ∞ 4°C  

Table 2-4: Long range PCR cycling conditions 

2.2.2.5 Agarose gel electrophoresis of products from long range PCR 

Following amplification by the long range PCR, 5µL of the PCR product, 7.5µL orange G loading 

dye (50% glycerol and 50% dH2O plus a little orange G powder) and 5µL 1kb Gene Ruler Plus 

DNA ladder (ThermoFisher Scientific) were loaded onto a 0.8% agarose gel (0.8% agarose 

(Bioline) in 100mL 1x Tris Acetate EDTA (TAE) buffer (Formedium) and 4µL SYBRSafe gel stain 

(Invitrogen). In brief, a flask containing TAE buffer and agarose was heated for 2min in a 

microwave (stirred a few times during heating) and the flask was cooled with running tap 

water. After adding the SYBRSafe gel stain, the gel was poured, any bubbles present were 

removed and the gel was left to set for 15min. All samples were prepared on parafilm and 

loaded into individual wells of the gel. Samples included the long range PCR product, the lysis 

buffer only (without cells), human genomic control DNA (gDNA) (Promega) and a negative 

control containing water only. SYBRSafe gel stain was added to enable visualisation of the PCR 

products. The gel was electrophoresed at 60 volts for 45min in 1x TAE buffer to separate 

products and a digital image was obtained using the BioRad Imager and ImageLab software® 

(see Figure 2-4). 
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Figure 2-4: Agarose gel electrophoresis image of ladder, amplified mtDNA product (fragment A and B for each sample) and 
human genomic control DNA by long range PCR 

2.2.2.6 Purification and quantification mtDNA concentration 

Following gel electrophoresis, the mtDNA from the long range PCR product was purified using 

AgenCourt AMPure XP bead technology (Beckman Coulter). AMPure XP beads were 

resuspended by vortexing until the suspension appeared to have a homogeneous colour.  

Then 36µL Agencourt AMPure XP and 20µL PCR product were added to a reaction plate (a 

1.8µL bead:1 µL product ratio according to the manufacturer’s instructions), mixed by 

pipetting 10 times and incubated for 5min at room temperature. During this step, the mtDNA 

fragments bound to the magnetic beads. Then the reaction plate was placed on the Agencourt 

SPRIPlate 96 Super Magnet Plate for 2min to separate the beads from the solution. With the 

reaction plate still on the Agencourt SPRIPlate 96 Super Magnet Plate, the clear solution/ 

supernatant was removed from the reaction plate (leaving 5µL of solution behind to prevent 
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beads being removed) and discarded. Next, a wash was performed by adding 200µL of 70% 

ethanol to each sample and incubated for 30sec at room temperature, and then the ethanol 

was removed from the reaction plate and discarded. As the beads were not drawn out easily 

when in ethanol, it was not necessary to leave supernatant behind in this step. The wash was 

performed twice and samples were air dried for 4-5min to remove all ethanol. Afterwards, 

the reaction plate was removed from the magnetic plate, samples were eluted in 20µL 

nuclease-free water and mixed by pipetting 10 times followed by a 2min incubation at room 

temperature. Finally, the reaction plate was placed once more onto the Agencourt SPRIPlate 

96 Super Magnet Plate for 1min to allow separation of the beads from the solution and the 

eluate was transferred onto a new 96-well PCR plate. 

The concentrations of DNA in the samples and controls (standard 1 and standard 2- provided 

by the kit) were estimated by Qubit quantification, (Qubit® dsDNA BR Assay kit (Life 

Technologies)). The Qubit® working solution was prepared by diluting the Qubit® dsDNA BR 

reagent (fluorescent dye) 1:200 in Qubit® dsDNA BR buffer. In a Qubit® assay tube, 190μL of 

Qubit® working solution was mixed with 10μL of standard and 198μL of Qubit® working 

solution was mixed with 2μL of sample (the final volume in each tube was 200μL), vortexed 

for 2-3 seconds and then incubated for 2min at room temperature. In order to calibrate the 

Qubit® dsDNA BR assay, first standard 1 and then standard 2 were measured on the 

instrument. Following the calibration, the mtDNA concentration of the samples was 

calculated and quantified. A minimum mtDNA concentration of 1ng/µL was required for the 

next step of the protocol. If samples had a concentration below 1ng/µL, the previously 

obtained lysate (see 2.2.2.3) was re-amplified (see 2.2.2.4), re-purified and re-measured. If 

the mtDNA concentration of the repeated samples was ≥ 1ng/µL they were included and if 

≤1ng/µL excluded from the following steps in the procedure. Fragments A and B for each 

sample were pooled together to produce a 10ng pool. This was prepared in a 96-well 

Eppendorf TwinTec PCR plate. Pooled samples were stored at -20°C. 

2.2.2.7 Nextera XT DNA Library Preparation and MiSeq 

Pooled samples from Section 2.2.2.6 were further diluted to 0.2ng/ul. Libraries were prepared 

using the Nextera XT DNA Library Prep Kit (Illumina®) according to the manufacturer’s 

instructions (see Appendix I for protocol) by Dr Angela Pyle, at the Institute of Genetic 

Medicine, Newcastle University. The procedure was performed through the following 5 steps: 
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1. Tagmentation of genomic DNA 

2. Amplification of Libraries 

3. Clean up of Libraries 

4. Quantification and manual normalisation of libraries 

5. Pooling of Libraries. 

Briefly, pooled DNA samples were tagmented and then amplified using the Nextera XT Index 

Kit v2 Set A (Illumina). Each library was cleaned using AMPure XP beads (see Section 2.2.2.6). 

Library size was verified using the Agilent High Sensitivity  D5000 Screen Tape assay and 

Agilent 2200 TapeStation. Analysis was performed in Agilent TapeStation software. Each 

library should have a broad size distribution between 200bp and 1.5 kb.The concentration of 

each library was also measured using the Qubit® dsDNA BR assay (see Section 2.2.2.6). Using 

these measurements, libraries were manually normalised to 4nM, pooled and sequenced 

using the MiSeq Reagent Kit V3 600 cycles and the Illumina MiSeq v3.0 sequencing platform 

in paired-end, 250bp reads (Mr Rafiqul Hussain, Genomics Core Facility, Institute of Genetic 

Medicine, Newcastle University). 

2.2.2.8 Bioinformatic analysis 

An established bioinformatic pipeline was applied to the post-run FASTQ files (carried out by 

Dr Gavin Hudson, Institute of Genetic Medicine, Newcastle University). In summary, reads 

were aligned to Hg19 using BWA v0.7.10 invoking –mem (Li and Durbin, 2009). Aligned reads 

were sorted and indexed using Samtools v0.1.18 (Li et al., 2009), duplicate reads were 

removed using Picard v1.85 (http://broadinstitute.github.io/picard/). Variant calling was 

performed using VarScan v2.3.8 (minimum depth =1000bp, support reads = 10, base-quality 

= >30, mapping quality = >30 and variant threshold = 0.01) (Koboldt et al., 2009). Variants 

were annotated with ANNOVAR v529 (Wang et al., 2010). Heteroplasmic variants are defined 

as >1% minor allele frequency. 

 

Bioinformatic analysis Post-run FASTQ files were analysed using an established in-house 

bioinformatics pipeline. Briefly, reads were aligned to the Hg19 using BWA v0.7.10 invoking 

(Li and Durbin, 2009). Aligned reads were sorted and indexed using Samtools v0.1.18 (Li and 

Durbin, 2009) and duplicate reads were removed using Picard v1.85 

(http://broadinstitute.github.io/picard/). Variant calling was performed using VarScan v2.3.8 

http://broadinstitute.github.io/picard/
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(minimum depth =100bp, support reads = 10, base-quality = >30, mapping quality = >10 and 

variant threshold = 0.05) (Koboldt et al., 2009). Variants were annotated with ANNOVAR v529 

(Wang et al., 2010). Heteroplasmic variants are defined as >1% minor allele frequency. 

 

2.2.3 Quantification of microRNA expression in colorectal mucosal biopsies 

2.2.3.1 RNA extraction of frozen colorectal mucosal biopsies and measurements of RNA purity and 

concentration using spectrophotometry 

RNA was extracted from frozen colorectal mucosal biopsies using the Qiagen miRNeasy Mini 

Kit according to the manufacturer’s instructions. All steps were carried out at room 

temperature. In brief, a whole biopsy was put in a 2mL tube where it was homogenised with 

350µL Buffer RLT TissueLyser (which lyses the tissue, inhibits RNases and removes genomic 

DNA and proteins from the lysate) using sterile homogenisation pestles (BIOQUOTE, UK) until 

the biopsy was completely disrupted and invisible to the naked eye. Then one volume of 70% 

ethanol was mixed to the lysate, and transferred to an RNeasy Mini spin column which was 

placed into a 2mL collection tube and centrifuged for 15sec at 13,000 rpm. Ethanol enabled 

binding of the RNA molecules, from 18 nucleotides upwards, to the membrane of the spin 

column, ensuring that total RNA was bound to the membrane and other contaminants were 

washed away during the following series of washes with buffers. The flow-through was 

discarded and 700µL Buffer RW1 was added to the spin column and centrifuged for 15sec at 

13,000 rpm. The flow-through was discarded again and 500µL Buffer RPE was added to the 

spin column and centrifuged for 15sec at 13,000 rpm. The flow-through was discarded and 

the last buffer step was repeated and centrifuged for 2min at 13,000 rpm. Then the RNeasy 

spin column was put in a new collection tube and centrifuged at full speed for 1min to dry the 

membrane and reduce the risk of buffer carry-over. Once more, the RNeasy spin column was 

put in a new collection tube and 30µL RNase free water was added directly to the spin column 

membrane and centrifuged for 1min at 13,000 rpm to elute the RNA. Straight after the RNA 

extraction procedure, RNA was put on ice and its concentration (ng/µL) and its purity were 

measured on the NanoDrop 1000 spectrophotometer (Thermo Scientific) and then stored at 

-20°C. The NanoDrop was used to measure RNA at specific wavelengths (260nm and 280nm) 

and the ratio of absorbance (260/ 280 ratio) was used to evaluate RNA purity. RNA 

concentrations (ng/µL) were recorded in order to calculate the required concentration 
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(~200ng) for the procedure of the generation of small RNA libraries. A value between 1.8 to 

2.1 for the 260/280 ratio was considered as adequate for further analysis, as ratios outside of 

that range were indicative of protein, phenol or other contaminants present. Table 2-5 shows 

the mean RNA concentrations and the A 260/280 ratios of pre- and post-surgery and control 

participants used for further procedures and analysis. 

 

 Pre-surgery (N=22) Post-surgery (N=22) Controls (N=20) 

RNA concentration 

ng/µL 

92.2 (31.5)  65.8 (31.6) 57.0 (20.0) 

A260/ 280 2.06 (0.04) 2.05 (0.04) 2.06 (0.04) 

Table 2-5: RNA concentrations and A260/280 ratios of pre- and post-surgery and control participants, Mean (SD) 

2.2.3.2 Quality control check for extracted RNA  

Miss Amber Knox (laboratory technician) carried out a quality control check for extracted RNA 

from colorectal mucosal biopsies, according to the manufacturer’s instructions (see Appendix 

J for protocol), using the Aglient RNA 6000 Pico Kit which allowed to test for reproducible 

characterisation of total RNA and its quality. 

2.2.3.3 Generation of the Library from extracted RNA of colorectal mucosal biopsies (Procedures 

undertaken on Day 1) 

Small RNA transcripts were converted into barcoded cDNA libraries for next-generation 

sequencing using the Illumina platform. Libraries were generated from extracted RNA of 

frozen colorectal mucosal biopsies using the NEBNext® Multiplex Small RNA Library Prep Set 

for Illumina® (Set 1 and Set 2, New England BioLabs). The volume of components and reagents 

was used as demonstrated in Table 2-6 for a single reaction. This platform enabled elimination 

of the adapter-dimer formation during the construction of small RNA libraries by transforming 

single-stranded adapters into double-stranded forms (NewEngland Biolabs, 2019). 

Ligation of the 3’ SR Adaptor: Input RNA (1-6µL) was calculated to reach a RNA amount of 

~200ng/µL for each sample (if needed, the remaining volume was made up with nuclease-

free water) and for each reaction 1µL 3’ SR Adaptor for Illumina was added to a sterile 

nuclease-free PCR tube and mixed. The tube was incubated in a preheated thermal cycler for 

2min at 70°C and transferred to ice. Then 10µL 3’ Ligation Reaction Buffer (2X) and 3µL 3’ 
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Ligation Enzyme Mix were added to each reaction, mixed and incubated in a preheated 

thermal cycler for 1h at 25°C. 

Hybridizing the Reverse transcription Primer: 4.5µL of nuclease-free water and 1µL of SR RT 

Primer for Illumina were added to the Ligation mix, mixed and heated for 5min at 75°C, 

followed by 15min at 37°C and transferred for 15min at 25°C in the thermal cycler. 

Ligation of the 5’ SR Adaptor: With 5min remaining before the end of the hybridization step 

from the thermal cycler, the 5’ SR Adaptor for Illumina was denatured for 2min at 70°C and 

the tube was immediately placed on ice. The denatured adaptor needed to be used within 

30min of denaturation. Then 1µL of the denatured 5’ SR Adaptor for Illumina, 1µL 5’ Ligation 

Reaction Buffer and 2.5µL Ligation Enzyme Mix were added and mixed to the Hybridization 

mix. This was incubated in the thermal cycler for 1h at 25°C. 

Reverse transcription: To the mixture obtained from the ligation of the 5’ SR Adaptor step, 

8µL First Strand Synthesis Reaction Buffer, 1µL Murine RNase Inhibitor and 1µL ProtoScript II 

Reverse Transcriptase were added, mixed and incubated for 1h at 50°C in the thermal cycler. 

PCR Amplification: For the performance of PCR amplification, 50µL LongAmp Taq 2X Master 

Mix, 2.5µL SR Primer for Illumina, 2.5µL Index (X) Primer and 5µL nuclease free water were 

added to the obtained reaction mix from the reverse transcription. For each reaction/ sample 

only one of the available 24 Index (X) Primers was used in the PCR amplification. Table 2-7 

shows the PCR amplification cycling conditions applied. Table 2-9 shows the index primer 

sequences for Illumina used, which produced barcoded libraries. 

Component Volume per reaction (µL) 

RNA 1-6 

3’ SR Adaptor for Illumina 1 

3’ Ligation Reaction Buffer (2X) 10 

3’ Ligation Enzyme Mix 3 

Nuclease-free water 4.5 

SR RT Primer for Illumina 1 

5’ SR Adaptor for Illumina (denatured) 1 

5’ Ligation Reaction Buffer (10X) 1 
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5’ Ligation Enzyme Mix 2.5 

First Strand Synthesis Reaction Buffer 8 

Murine RNase Inhibitor 1 

ProtoScript II Reverse Transcriptase 1 

LongAmp Taq 2X Master Mix 50 

SR Primer for Illumina 2.5 

Index (X) Primer 2.5 

Nuclease free water 5 

Table 2-6: NEBNext® Multiplex Small RNA Library Prep Set for Illumina® volume of components for a single reaction 

 

Step Time Temperature Number of cycles 

Initial denaturation 30sec 94°C 1 

Denaturing 15sec 94°C 15 

Annealing 30sec 62°C 

Extension 15sec 70°C 

Final extension 5min 70°C 1 

Hold ∞ 4°C  

Table 2-7: PCR amplification cycling conditions 

 

Finally, in order to remove impurities, enzymes, primers and nucleotides from the sample, 

the obtained amplified PCR product was purified using the QIAquick® PCR Purification Kit 

(Qiagen) according to the manufacturer’s instructions. In brief, 5 volumes of PB buffer and 

one volume of the obtained PCR reaction mix were placed in a QIAquick column and 

centrifuged for 45sec at 13,000 rpm (centrifuge model: Thermo SCIENTIFIC Heraeus PICO17). 

The flow-through was discarded and centrifuged once more for 1min at 13,000 rpm to allow 

removal of residual wash buffer. The QIAquick column was placed in a clean 1.5mL clear-view 

Snap-Cap microtube (Sigma-Aldrich) and 26.5µL RNase free water was added directly to the 

spin column membrane, it was left to set for 3min, and then centrifuged for 1min at 13,000 

rpm to elute the RNA, which was stored at -20°C. 
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2.2.3.4 Generation of the Library from extracted RNA of colorectal mucosal biopsies (Procedures 

undertaken on Day 2) 

RNA samples obtained from procedures undertaken on day 1 were removed from the -20°C 

freezer and put on ice until ready to be added to the acrylamide gel for size selection of the 

small RNA. For one gel 12mL molecular water, 781.2µL Tris/Borate/EDTA, 2.8mL acrylamide 

(40%), 95µL ammonium persulfate and 15µL tetramethylethylenediamine were mixed in a 

falcon tube. The mixture was filled to the top between the space of the gel plates and the 

green combs were placed carefully between the plates avoiding the formation of bubbles, 

any bubbles were popped with the tip of a 10µL pipette tip. Whilst the gel was allowed to 

polymerise for 15-20min, the samples were prepared by adding 10µL loading dye (NEBNext® 

Multiplex Small RNA Library Prep Set for Illumina®) to 25µL RNA. Once the gel solidified, the 

combs were removed carefully, the plates placed on the electrode holder and the space filled 

with 10x TBE buffer. The ladder and samples (in duplicates) were loaded into the wells of the 

gel (see Figure 2-5) and electrophoresed at 120 volts for 1 hour. 

 

Figure 2-5: Example of allocation of the BOCABS samples and ladder into the wells for the acrylamide gel 
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Next, the fluorescent mixture for the gel was prepared by adding 5µL SYBR Green for nucleic 

acid gel stain (Invitrogen, ThermoFisher Scientific) to 50mL TBE buffer (per gel). Using a 

spatula, the gel was carefully placed into an ethanol cleaned box containing the prepared 

fluorescent mixture and was incubated for 10min at room temperature in the dark on the 

rotator/ shaker platform. The SYBR Green became incorporated into the RNA, giving it the 

fluorescence which enabled visualisation of the band products and band size selection later 

in the gel. In the meantime, the dark reader, its equipment and bench were prepared and 

cleaned with 70% ethanol. The dark reader was covered with cling film, avoiding bubbles, and 

the gel was placed carefully on it in a dark room. The UV light of the dark reader stimulated 

the SYBR Green and made the bands of the RNA libraries on the gel visible (see Figure 2-6). 

The 140-150bp bands corresponded to the microRNAs (21nt) (NewEngland Biolabs, 2019) and 

were cut using a scalpel and put in a labelled Eppendorf tube. More specifically, a primary and 

a secondary cut were made to the band of interest, where the primary cut contained exactly 

the band and the secondary cut its surroundings (Figure 2-7). The secondary cut was stored 

at -20°C and the procedure was continued using the primary cut. The rest of the gel was 

discarded. 

 

Figure 2-6: Band required to cut i) image from protocol (NewEngland Biolabs, 2019) reproduced with copyright permission 
(2019) and ii) image taken of BOCABS samples 
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Figure 2-7: Primary and secondary cut made to the band of interest in BOCABS samples 

250µL DNA Gel Elution buffer (1X) (NEBNext® Multiplex Small RNA Library Prep Set for 

Illumina®) was added to the tube containing the primary gel slice and was homogenised using 

sterile homogenisation pestles. The tube was placed on an end-to-end rotator for 3 hours at 

room temperature. Then, the gel debris and eluate were transferred to a gel filtration column 

(Invitrogen, ThermoFischer Scientific) which was placed into a 1.5mL clear-view Snap-Cap 

microtube, and were centrifuged at 13, 200rpm for 2min in order to remove the remaining 

gel (centrifuge model: Thermo SCIENTIFIC Heraeus PICO17). The eluate was recovered and 

1µL Linear Acrylamide, 25µL 3M sodium acetate (pH 5.5) and 750µL of 100% ethanol were 

added, vortexed well and incubated at -80°C overnight. 

2.2.3.5 Generation of the Library from extracted RNA of colorectal mucosal biopsies (Procedures 

undertaken on Day 3) 

The eluate obtained from the procedures undertaken on day 2 were transferred from the -

80°C freezer to a microcentrifuge where they were span at 4°C at 14,000rpm for 30min 

(centrifuge model: Thermo SCIENTIFIC SORVALL legend micro 17R). Then the supernatant was 

removed very carefully without disturbing the pellet. Afterwards, the pellet was washed with 

80% ethanol by vigorous vortexing and centrifuged once more in the microcentrifuge at 4°C 

at 14,000rpm for 30min. The pellet was air dried for 10min at room temperature to eliminate 

residual ethanol and re-suspended in 12µL RNase free water. 
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Next, a quality control step was carried out using the Agilent 2100 Bioanalyser High Sensitivity 

DNA Kit which allowed to test for sizing, quantification and analysis of fragments, for example 

libraries between 35- 5,000bp. Each DNA chip comprised a set of interconnected micro-

channels which separated nucleic acid fragments based on their size while they were driven 

through electrophoretically. In brief, 9µL gel-dye mix, 5µL green marker, 1µL high sensitivity 

DNA ladder and up to 11 samples (1µL per sample), otherwise one additional 1µL of the green 

marker for the unused wells, were loaded onto the High Sensitivity DNA chip according to the 

manufacturer’s instructions. The chip was vortexed horizontally at 2,400rpm for 1min and run 

in the Agilent 2100 Bioanalyzer instrument within 5min of preparation of the chip. When the 

run finished, the size, purity and concentration of the sample were checked and the length of 

the library recorded (see Table 2-8). An example of the sample’s electropherogram is shown 

in Figure 2-8. 

 

Figure 2-8: Electropherogram of the gel (band cut) size, from total RNA of the selected purified library from colorectal BOCABS 
sample; sample is 155bp length of library and has a concentration of 272.7 pg/µL 
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 Pre-surgery (N=22) Post-surgery (N=22) Controls (N=20) 

Library length bp 152.6 (10.5) 155.5 (11.1) 155.6 (1.8) 

Library 

concentration ng/µL 

0.7121 (0.5) 0.9128 (0.6) 0.6607 (0.4) 

Table 2-8: Bp length and concentration of library for gel band cut of pre- and post-surgery and control participants, Mean 
(SD) 

2.2.3.6 Next generation sequencing of microRNAs of colorectal mucosal biopsies 

The purity and concentrations of the samples and controls (standard 1 and standard 2- 

provided by the kit) were estimated by Qubit quantification, (Qubit® dsDNA HS Assay kit 

(Invitrogen, Thermo Fisher Scientific). The Qubit® working solution was prepared by diluting 

the Qubit®dsDNA HS reagent (fluorescent dye) 1:200 in Qubit® dsDNA HS buffer. In a Qubit® 

assay tube, 190μL of Qubit® working solution was mixed with 10μL of standard and 198μL of 

Qubit® working solution was mixed with 2μL of sample (the final volume in each tube was 

200μL), vortexed for 2-3 seconds and then incubated for 2min at room temperature. In order 

to calibrate the Qubit® dsDNA HS assay, first standard 1 and then standard 2 were measured 

on the instrument. Following the calibration, the concentration of the samples was calculated 

and quantified. Then the total nM of library was calculated for each sample as follows:  

(Sample’s library concentration (ng/µL) * 1,000,000) / (650 MM bp * length of sample’s library 

fragment). 

Then the sample’s volume needed to reach 4nM and was calculated in preparation for the 

sequencing. If the samples’ volume was below 4nM, the number of reads by the sequencer 

were lower, hence these samples were repeated until the number of reads were similar to 

that of the samples with 4nM. 

The MiSeq Reagent Kit v3 was used for sequencing on the Illumina MiSeq sequencer 

instrument generating roughly 22 million reads per run. A standard normalisation method for 

4nM library was carried out according to the manufacturer’s instructions. In brief, a 1mL of 

0.2 N NaOH was prepared and the HT1 was removed from the -20°C freezer and thawed at 

room temperature. Then a 4nM library was denatured by adding  5µL 4nM library and 5µL 0.2 

N NaOH into a microcentrifuge tube, which was vortexed briefly and centrifuged at 280rpm 

for 1min and left to incubate for 5min at room temperature. Then 990µL pre-chilled HT1 were 
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added to the denatured library resulting in 1mL of 20pM denatured library and no further 

dilution was required. The 600µL of the denatured 20pM library (600µL 20pM library and 0µL 

pre-chilled HT1) was loaded onto the reagent cartridge and the sequencing run was set up 

according to the index sequences used with the samples (see Table 2-9). The run was finished 

about 1.5 days later. Miss Laura Sabater assisted in setting up and conducting the MiSeq runs. 

 

Index Primer 

for Illumina 

Index Primer Sequence  Expected Index 

Primer Sequence 

Read 

NEBNext 

Index 1  

5´-CAAGCAGAAGACGGCATACGAGATCGTGATG-

TGACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

ATCACG 

NEBNext 

Index 2 

5´-CAAGCAGAAGACGGCATACGAGATACATCGGT-

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CGATGT 

NEBNext 

Index 3 

5´-CAAGCAGAAGACGGCATACGAGATGCCTAAG-

TGACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

TTAGGC 

NEBNext 

Index 4 

5´-CAAGCAGAAGACGGCATACGAGATTGGTCAGT-

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

TGACCA 

NEBNext 

Index 5 

5´-CAAGCAGAAGACGGCATACGAGATCACTGTGTG-

ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

ACAGTG 

NEBNext 

Index 6 

5´-CAAGCAGAAGACGGCATACGAGATATTGGCGTG-

ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GCCAAT 

NEBNext 

Index 7 

5´-CAAGCAGAAGACGGCATACGAGATGATCTGGTG-

ACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CAGATC 

NEBNext 

Index 8 

5´-CAAGCAGAAGACGGCATACGAGATTCAAGTGT-

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

ACTTGA 

NEBNext 

Index 9 

5´-CAAGCAGAAGACGGCATACGAGATCTGATCGT-

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GATCAG 

NEBNext 

Index 10 

5´-CAAGCAGAAGACGGCATACGAGATAAGCTAG-

TGACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

TAGCTT 
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NEBNext 

Index 11 

5´-CAAGCAGAAGACGGCATACGAGATGTAGCCG-

TGACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GGCTAC 

NEBNext 

Index 12  

5´-CAAGCAGAAGACGGCATACGAGATTACAAGGT-

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CTTGTA 

NEBNext 

Index 13 

5´-CAAGCAGAAGACGGCATACGAGATTTGACTGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

AGTCAA 

NEBNext 

Index 14 

5´-CAAGCAGAAGACGGCATACGAGATGGAACTGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

AGTTCC 

NEBNext 

Index 15 

5´-CAAGCAGAAGACGGCATACGAGATTGACATGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

ATGTCA 

NEBNext 

Index 16 

5´-CAAGCAGAAGACGGCATACGAGATGGACGGGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CCGTCC 

NEBNext 

Index 17 

5´-CAAGCAGAAGACGGCATACGAGATCTCTACGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTAGAG 

NEBNext 

Index 18 

5´-CAAGCAGAAGACGGCATACGAGATGCGGACGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTCCGC 

NEBNext 

Index 19 

5´-CAAGCAGAAGACGGCATACGAGATTTTCACGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTGAAA 

NEBNext 

Index 20 

5´-CAAGCAGAAGACGGCATACGAGATGGCCACGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTGGCC 

NEBNext 

Index 21 

5´-CAAGCAGAAGACGGCATACGAGATCGAAACGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTTTCG 

NEBNext 

Index 22 

5´-CAAGCAGAAGACGGCATACGAGATCGTACGGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CGTACG 

NEBNext 

Index 23 

5´-CAAGCAGAAGACGGCATACGAGATCCACTCGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GAGTGG 

NEBNext 

Index 24 

5´-CAAGCAGAAGACGGCATACGAGATGCTACCGT 

GACTGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GGTAGC 

Table 2-9: 24 Index Primers for Illumina used producing barcoded libraries (NewEngland Biolabs, 2019) 
Where -s- indicates phosphorothioate bond. 
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2.2.3.7 Bioinformatics analysis of raw sequencing data 

Quality control checks were performed to ensure that the raw sequencing data did not 

contain any problems or biases. The sequencing quality was assessed by the online FastQC 

software available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ . FastQ 

files, containing the raw sequencing data (containing the adapter and/ or barcode stripped 

small RNA sequencing data) obtained from the MiSeq sequencer were uploaded to the online 

tool on the EMBL- EBI European Bioinformatics Institute website on Chimira ‘Analysis of small 

RNA Sequencing data and microRNA modifications’ (http://wwwdev.ebi.ac.uk/enright-

dev/chimira/). Furthermore, homo sapiens (hsa) was selected for the species option and the 

standard adaptor sequence, which was attached to the samples during the procedures 

undertaken, was specified as ‘AGATCGGAAGAGC’ when uploading the raw sequencing data. 

The sequences were trimmed using the specified standard adaptor sequence 

(‘AGATCGGAAGAGC’), afterwards mapped against the human microRNA hairpin sequences 

from miRBase and finally a count-based microRNA expression data was extracted from 

Chimira. More specifically, the online tool removed the adaptor sequence from the reads of 

the samples and checked that the remaining sequence was big enough, i.e. minimum 17-20bp 

fragment. If the sequence was too short, it would lead to a bias in the data set, hence a too 

short sequence was discarded. Additionally, Chimira compared the sequences of the samples 

to a standardised human reference genome, allowing up to two mismatches (Enright and 

Vitsios, 2015). Input sequences were mapped against all known hairpin precursors of the 

selected genome allowing for identification of non-template sequences (Enright and Vitsios, 

2015). Modifications such as 3p- and 5p- modifications and internal modifications (ADAR edits 

and SNPs) were identified (Enright and Vitsios, 2015). After these processes, a ‘plain counts 

for file’ containing all the counts for all microRNAs identified in the samples, was downloaded 

from the online tool which was normalised in R Studio software using the DESeq2 package. In 

brief, the variance mean dependence in count data from high throughput sequencing assays 

was estimated and differential expression based on a model using the negative binominal 

distribution was tested for (Love et al., 2014). This adjusted the read counts by scaling a 

normalised factor in all libraries and assessed the differential expression of the different time 

course points (Love et al., 2014). The Benjamini and Hochberg method was used to correct 

the p-values (Benjamini and Hochberg, 1995) and the level of expression was considered 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://wwwdev.ebi.ac.uk/enright-dev/chimira/
http://wwwdev.ebi.ac.uk/enright-dev/chimira/
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significant at a p-value adjusted < 0.05 and log2 fold change of >1 minimising false positive 

errors. The plots were created using ‘gplots’ in R package (Warnes, 2019).  

2.2.3.8 Reverse transcription for cDNA of colorectal mucosal biopsies 

Using the RT II Reverse Transcription Kit (Qiagen, UK), cDNA was synthesised according to the 

manufacturers’ instructions. In brief, after thawing the extracted RNA from the colorectal 

mucosal biopsies the reverse-transcription master mix (see Table 2-10) was added, gently 

mixed and briefly centrifuged and incubated for 1 hour at 37°C followed by 5min at 95°C in 

the thermal cycler (centrifuge model: Grant-bio LMC-3000). The generated cDNA was stored 

at -20°C. 

 

Component Volume per reaction (µL) 

5x miScript HiSpec Buffer 4 

10x miScript Nucleics Mix 2 

RNase-free water* Variable 

miScript Reverse Transcriptase Mix 2 

Template RNA* Variable 

Table 2-10: Reverse-transcription master mix components and volume for a single reaction 
*Volume was calculated to reach 500ng of RNA 

 

2.2.3.9 Selection of microRNA panel and quantification by qPCR in colorectal mucosal biopsies 

Bioinformatics analysis revealed extensive lists of significantly differentially expressed 

miRNAs and their fold change between the pre- and post-surgery group and the control group. 

The top 4 up- and top 4 down-regulated miRNAs with the greatest and significant fold change 

between pre- and post-surgery for which validated miScript primer assays were available at 

Qiagen, were selected for validation by qPCR (see Table 2-11) and which had not been picked 

up by a miRNome array conducted previously by Dr Sorena Afshar in these samples (Afshar, 

2016a). 

 

MiRNA Fold 

Change 

p-value miScript Primer Assay Mature miRNA sequence 
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mir-4516 -2.73827 0.002303 Hs_miR-4516_1 5'GGGAGAAGGGUCGGGG

C 

mir-1247-3p -2.70697 0.008032 Hs_miR-1247-3p_1 5'CCCCGGGAACGUCGAGA

CUGGAGC 

mir-3196 -2.41925 0.037441 Hs_miR-3196_2 5'CGGGGCGGCAGGGGCC

UC 

mir-671-5p -1.06421 0.014619 Hs_miR-671-5p_3 5'AGGAAGCCCUGGAGGG

GCUGGAG 

mir-204-3p 2.901349 0.02518 Hs_miR-204-3p_1 5'GCUGGGAAGGCAAAGG

GACGU 

mir-892c-3p 3.011725 0.006114 Hs_miR-892c-3p_1 5'CACUGUUUCCUUUCUG

AGUGGA 

mir-215-3p 3.149555 2.39E-08 Hs_miR-215-3p_1 5'UCUGUCAUUUCUUUAG

GCCAAUA 

mir-31-3p 4.796959 6.20E-05 Hs_miR-31*_1 5'UGCUAUGCCAACAUAU

UGCCAU 

SNORD68 

(control)* 

  Hs_SNORD68_11  

RNU6-2 

(control)* 

  Hs_RNU6-2_11  

Table 2-11: Top 4 up- and down-regulated microRNAs identified from bioinformatics analysis and housekeeping genes: their 
fold change, p-value miScript Primer Assay, mature miRNA sequence 
*Qiagen UK does not provide mature miRNA sequences for reference genes 

 

MiScript Primer Assays were received lypophilised at room temperature and reconstituted in 

550µl TE Buffer (Sigma-Aldrich) and pH 8.0 according to the manufacturers’ instructions, 

aliquoted and stored at -20˚C.  

The plates for the qPCR were designed in the StepOne 7500 Software version 2.0.6. Two 

reference/ housekeeping genes, namely the small nucleolar RNA (snoRNA) SNORD68 and the 

small nuclear RNA (snRNA) RNU6, were quantified alongside each target miRNA on all plates 

for each sample. The cDNA samples were run in duplicates for each miRNA and housekeeping 
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gene on the 96 well plate. In order to eliminate any batch effect the following rules were 

applied during plate design: 

 Samples derived from the same participant coming from different time points, i.e. pre- 

and post- surgery, were run on the same plate 

 Samples from obese and non-obese participants were allocated evenly across the 

plates 

 A ‘no template control’ was included for each miRNA (instead of cDNA, RNase-free 

water was added)  

For the qPCR, the cDNA, miScript primer assays and the SYBR Green Kit (Qiagen, UK) were 

thawed and a master mix prepared as shown in Table 2-12 for each of the eight miScript 

primers and two housekeeping genes. The reactions required were prepared plus two extra 

reactions in excess.  

 

Component Volume per reaction (µL) 

2x QuantiTect SYBR Green PCR Master Mix 12.5 

10x miScript Universal Primer 2.5 

10x miScript Primer Assay 2.5 

RNase-free water 5 

Table 2-12: SYBR Green PCR master mix components and volume for a single reaction for detection of mature miRNA 

22.5µL of master mix was dispensed into each well of the 96 well plate and 2.5µL of cDNA 

was added to yield a total reaction volume of 25µL. The plate was carefully and tightly sealed 

using an optical adhesive film (Xtra-Clear Advanced Polyolefin StarSeal qPCR, StarLab) and 

centrifuged for 1min at 1000 x g at room temperature. The plate was put into the Applied 

Biosystems® StepOnePlus real time PCR machine and the cycling conditions were 

programmed as demonstrated in Table 2-13 to quantify microRNA expression.  

 

Step Time Temperature Number of cycles 

Initial activation 15min 95°C 1 

Denaturing 15sec 94°C 40 
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Annealing 30sec 55°C 

Extension 30sec 70°C 

Table 2-13: qPCR cycling conditions 

2.2.3.10 Processing of data from qPCR to quantify microRNA expression in colorectal mucosal 

biopsies 

Prior to qPCR data analysis, the melt curves were examined to confirm that a single PCR 

product had been produced during the qPCR (see Figure 2-9). If more than one peak was 

present it was an indication of primer dimer formation or lack of specificity of the assay (Dorak, 

2006). If a poor melt curve was identified it was used as a criterion for repeating the procedure.  

 

Figure 2-9: qPCR melt curve analysis of miR-3196 

Next the baseline was set for all plates. The baseline was considered the ‘noise’ during the 

early qPCR cycles where any fluorescence was improbable because of PCR product generation 

(Qiagen, 2016). The baseline was defined to start at cycle 2 and finish at cycle 13. The upper 
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limit was defined after examination of all plates for the earliest PCR cycle where amplification 

was seen and subtracting 2 from it.  

Afterwards, a cycle threshold was defined for each miRNA and housekeeping gene across all 

plates. The threshold value was defined at the highest precision of the duplicates of the 

procedure, which was usually towards the middle of the geometric phase and/ or lower as 

proposed by the Qiagen guidelines (Qiagen, 2016). Then an average threshold value for each 

miRNA and housekeeping gene was calculated for all the samples (see Table 2-14) which was 

then applied in the analysis settings of all plates. Any subsequent repeat analyses were 

processed and analysed using this calculated threshold value. The Ct values of duplicates from 

all samples were recorded and further analysed in Microsoft Excel.  

 

miScript primer Threshold values 

Hs_miR-4516_1 18031.8 

Hs_miR-1247-3p_1 14427.9 

Hs_miR-3196_2 16334.9 

Hs_miR-671-5p_3 19839.6 

Hs_miR-204-3p_1 15471.8 

Hs_miR-892c-3p_1 16503.0 

Hs_miR-215-3p_1 18483.0 

Hs_miR-31*_1 16227.6 

Hs_SNORD68_11 14933.3 

Hs_RNU6-2_11 14634.3 

Table 2-14: Calculated average cycle threshold value for each miScript primer 

Samples were included if both of the following conditions were met: 

 Duplicates within one Ct value 

 Melt curves comprising a single peak 

If either one of the housekeeping genes did not fulfil the above conditions, the whole sample 

was repeated (including all miScript primers and housekeeping genes). 
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Next the delta Ct (ΔCt) method was applied. ΔCt is the ratio of expression of the miRNA of 

interest to that of the housekeeping gene. Housekeeping genes are consistently expressed in 

all samples. The geometric mean of the housekeeping genes for each sample was applied to 

normalise miRNA expression. For each miRNA for each sample the ΔCt value was calculated. 

The mean Ct value of the geometric mean of the housekeeping genes was subtracted from 

the mean Ct value of the duplicates for the miRNAs investigated.  

For example: ΔCt= Ct (of miRNA) – Ct (of geometric mean of housekeeping genes, SNORD68 

and RNU6). 

Then the relative copies for each miRNA was calculated.  

For example: relative copies = 2- ΔCt 

Relative copies were then multiplied by a 1000 (a constant factor) to obtain the adjusted 

copies.  

For example: adjusted copies = relative copies x 1000. 

Furthermore, the ΔΔCt was calculated for each miRNA across the pre- and post-surgery group, 

so the fold change was calculated as the 2- ΔΔCt. To calculate the fold regulation 1 was divided 

by the ΔΔCt and, values >1 were considered as a fold up-regulation and for values <1, the 

negative inverse of the result was considered as a fold down-regulation. 

For example: ΔΔCt= ΔCt post-surgery – ΔCt pre-surgery 

Fold regulation= 1/ ΔΔCt 

2.3 Statistical analysis 

All statistical analyses were performed in IBM® SPSS® Statistics Version 21. A p<0.05 was 

considered statistically significant. Data were reported as Mean ± Standard Deviation (SD). 

Normality of the distribution of the variables was tested by the Shapiro-Wilk test.  

Normally distributed data were analysed using paired sample or independent sample t-tests 

as appropriate. A Wilcoxon-signed-rank and a Mann-Whitney-U test was used for analysis of 

not normally distributed variables as appropriate. A cross-tabulation was undertaken using a 
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Chi square test. Linear regression analyses were used to investigate correlation between 

variables and outcomes of interest. An analysis of variance (ANOVA) was used to investigate 

the effects of covariates on outcomes of interest between groups and a Kruskal-Wallis H test 

was used instead where data were not normally distributed.  
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3 Effects of adiposity, weight loss and ageing on mitochondria in the 

colorectal mucosa (The BOCABS Study) 

3.1 General introduction 

A detailed description of the structure and functions of mitochondria can be found in the 

introductory chapter (see section 1.2). 

In brief, mitochondria are eukaryotic organelles found in the cytosol which play a vital role in 

many metabolic pathways including iron-sulfur cluster biogenesis, maintenance of membrane 

potential, apoptosis, intracellular calcium signalling and adenosine triphosphate (ATP) 

production via oxidative phosphorylation; the latter being their primary function (Fernandez-

Silva et al., 2003, Stewart and Chinnery, 2015). 

The specific role of mitochondrial dysfunction in the aetiology of cancer, including CRC, 

remains to be discovered. Greaves (2014) detected that older individuals have a higher 

prevalence of somatic mtDNA mutations, but it is unclear if this increased mtDNA mutation 

load contributes to age-related CRC risk or is a non-causal age-associated phenomenon. There 

is evidence that during ageing and carcinogenesis mutations are generated randomly across 

the mitochondrial genome (Polyak et al., 1998, Taylor et al., 2003), followed by mutations 

throughout both the nuclear and mitochondrial genome (although the prevalence of nDNA 

mutations is lower than of mtDNA mutations due to the protection provided by histones, 

more effective DNA repair mechanisms and lower exposure to ROS) as cancer progresses 

(Taylor et al., 2003, Yoneyama et al., 2005, Lee et al., 2005). 

Obesity is a major risk factor for CRC and mitochondrial dysfunction has been observed during 

over-feeding and in those with obesity (Breininger et al., 2019) (see section 1.4.2). Deliberate 

weight loss in the obese appears to lower CRC risk (Afshar et al., 2018, Schauer et al., 2019) 

and leads to improved capacity, integrity, biogenesis and function of mitochondria in muscle 

and adipose tissue (Breininger et al., 2019) (see section 1.4.4). If dysfunction of mitochondria 

in obesity is causal for CRC risk, then one would anticipate that weight loss would “improve” 

mitochondrial markers and/or reduce the prevalence of mtDNA mutations in this tissue. 

However, there have been no previous studies on the effects of weight loss following bariatric 

surgery on mitochondria in the colorectal mucosa of humans. 
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3.1.1 Hypotheses 

The hypotheses for this study were: 

 Mitochondrial oxidative phosphorylation (OXPHOS) proteins in the colorectal mucosa 

are less abundant in obese compared with non-obese adults. 

 Weight loss following bariatric surgery in initially obese adults alters OXPHOS protein 

abundance in the colorectal mucosa. 

 OXPHOS proteins in the colorectal mucosa present at lower levels and/ or are deficient 

in older compared with younger adults. 

 Mitochondrial DNA mutations in the colorectal mucosa are elevated in obese 

compared with non-obese adults. 

 Weight loss following bariatric surgery in initially obese adults reduces/ slows down 

the clonal expansion of mutated mtDNA in the colorectal mucosa. 

 

3.1.2 Aims 

The aims of this study were: 

 To test the above hypotheses. To do so, patterns of OXPHOS proteins abundance and 

mtDNA mutations were measured in the colorectal mucosa of i) matched groups of 

obese and non-obese adults, ii) obese adults before and after bariatric surgery, iii) 

non-obese adults and adults post-bariatric surgery and iv) younger and older adults. 

3.1.3 Objectives 

The objectives of this study were: 

 To use biological samples (mucosal biopsies) and data from the BOCABS Study (Afshar 

et al., 2018) to investigate the effects of obesity and of deliberate weight loss on the 

patterns of OXPHOS protein abundance (complex I and IV and mitochondrial mass) 

and mtDNA mutation load in the human colorectal mucosa. 

 To use immunofluorescent labelling to provide robust quantification of complex I and 

IV, and mitochondrial mass in colorectal mucosal biopsies. 
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 To use Next Generation Sequencing (NGS) to provide global, unbiased, quantification 

of patterns and total load of mtDNA mutations in crypts obtained from colorectal 

mucosal biopsies. 

3.1.4 Overview of methods 

A detailed description of the experimental procedures and methods for quantifying OXPHOS 

protein expression and for sequencing mtDNA can be found in the Methods chapter sections 

2.2.1 and 2.2.2, respectively. 

In the BOCABS Study, initially obese participants (n=29) underwent RYGB, sleeve gastrectomy 

or gastric balloon surgery. In this study, I used samples and data from participants for whom 

matched (before and after surgery) formalin fixed and paraffin embedded mucosal biopsies 

were available for OXPHOS protein abundance assay by immunofluorescence (n=26). In 

addition, matched before and after frozen mucosal biopsies from the same participants (n=26) 

and from matched non-obese individuals were utilised for NGS. 

In brief, colorectal mucosal biopsies that were formalin fixed and paraffin embedded were 

sectioned (see section 2.2.1.1) and labelled for mitochondrial respiratory chain complex I and 

IV protein subunits and a marker of mitochondrial mass using immunofluorescence (see 

section 2.2.1.2). The labelled colorectal mucosal biopsies were imaged using confocal 

microscopy (see section 2.2.1.3) and data were processed using ImageJ (see section 2.2.1.4). 

Statistical analyses were performed using IBM® SPSS® Statistic Version 21. The Shapiro-Wilk 

test showed that the data were not normally distributed, and consequently the Mann-

Whitney-U test was used to compare OXPHOS protein abundance between the obese and 

non-obese groups and the Wilcoxon-signed-rank test was used to examine OXPHOS protein 

abundance in initially obese individuals pre- and post-surgery. Furthermore, data of initially 

obese (pre-surgery group) and non-obese individuals were dichotomised at the median age 

(48 years) and, as data were not normally distributed, the Mann-Whitney-U test was used to 

examine OXPHOS protein abundance between younger and older individuals. 

To sequence mtDNA, frozen colorectal mucosal biopsies were sectioned on the cryostat (see 

section 2.2.2.1) and then SDH stained (see section 2.2.2.2). Crypts were collected from stained 

sections using laser microdissection, and then lysed (see section 2.2.2.3). The mtDNA of the 

lysed crypts was amplified using long range PCR (see section 2.2.2.4), products were 
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separated and visualised by agarose gel electrophoresis (see section 2.2.2.5). Afterwards 

mtDNA was purified and quantified (see section 2.2.2.6) and libraries were constructed and 

mtDNA was sequenced (see section 2.2.2.7). Finally, data were analysed using standard 

bioinformatics approaches (see section 2.2.2.8). Statistical analyses were performed using 

IBM® SPSS® Statistic Version 21. The Shapiro-Wilk test showed that the data were not 

normally distributed. Consequently, the Mann-Whitney U test was used to compare mtDNA 

mutations between the obese and non-obese groups and the Wilcoxon signed rank test was 

used to examine mtDNA mutations in initially obese individuals pre- and post-bariatric 

surgery. Where appropriate, data were transformed to the Log(10) scale (Bland and Altman, 

1996) to ensure homogeneity of variance in all treatment groups and, the test for normality 

was repeated to determine the application of the appropriate statistical test. Since Log(10) 

values for individuals with no mutations cannot be computed, for display purposes a zero 

value is included in relevant figures. A cross-tabulation using the Chi square test was used to 

examine differences in the location of mtDNA mutations by gene type. A one-way ANOVA and 

the Kruskal-Wallis H test were used to determine differences in mtDNA mutations between 

the participants pre- and post-bariatric surgery and for comparisons with the non-obese 

Controls. Finally, linear regression analyses were used to examine the effects of BMI and age 

on patterns of mtDNA mutations. 

3.1.5 Participant characteristics 

A total of 38 patients were recruited to the BOCABS Study, of whom 4 did not undergo 

bariatric surgery, resulting in 34 participants eligible for follow-up at six months post-surgery. 

Of these 34 patients, 3 did not participate in the follow-up, leaving 31 participants who 

completed the study (91% completion rate). Table 3-1 summaries characteristics at baseline 

and follow-up for initially obese participants and at baseline only for the non-obese Control 

group (see Appendix J for un-pooled data of the non-obese Controls, recruited to the BOCABS 

and DISC Studies). Two participants experienced severe post-surgery complications which 

meant that they were unlikely to be in equilibrium at follow up and these participants were 

excluded. There were no statistically significant differences in baseline characteristics 

between the ‘recruited’ (n=38) and ‘included’ (n=29) groups of participants (p-value > 0.05). 

Participants were predominantly Caucasian (White British) with a mean age of 46 years (range 

30.9 to 65.2 years) and more females (n=30; 79%) than males (n=8; 21%) who took part in the 



83 
 

BOCABS Study. At baseline, the obese participants had a mean BMI of 41.9 kg/m2, body fat of 

49% and waist: hip ratio of 0.9, which dropped to 32.5 kg/m2, 37.9% and 0.9, respectively, at 

six months follow-up.  

The Control group consisted of 20 non-obese and otherwise healthy adults, all of whom were 

Caucasian (British White) with a mean age of 46 (range 21- 61) years. The group had more 

females (60%; n=12) than males (4%; n=8) with mean BMI of 25.4 kg/m2 (range 20- 30 kg/m2), 

mean body fat 30.3% (range 21.2- 36.2%) and mean waist: hip ratio of 0.87 (range 0.74- 0.99). 
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 Obese participants at baseline Non-obese 

Controls 

Obese 

participants at 

follow-up 

Obese participants 

P-value 

 Recruited n=38 Included n=29 n=20 n=29 Baseline recruited 

vs included* 

Baseline vs 

Follow-up† 

Age (years) 46.0 (1.0) 46.4 (1.5) 46.0 (2.6) - 0.87 0.74 

Male  8  6 8 - 1‡ N/A 

Female 30 23 12 - N/A 

British White 37 28 19 - 1‡ N/A 

Black African 1 1 1 - N/A 

BMI (kg/m2) 42.7 (1.2) 41.9 (1.1) 25.4 (0.5) 32.5 (1.0) 0.62  <0.001 

Body fat (%) 48.9 (0.9) 49.0 (1.0) 30.3 (1.3) 37.9 (1.4) 0.91  <0.001 

Waist (W; cm) 124 (2.2) 123 (2.4) 88.5 (2.3) 99 (3.0) 0.78 <0.001 

Hip (H; cm) 133 (1.8) 133 (1.7) 102.3 (1.6) 113 (3.2) 0.99 <0.001 

W:H ratio 0.94 (0.02) 0.93 (0.02) 0.87 (0.02) 0.88 (0.02) N/A N/A 

Table 3-1: Characteristics of initially obese participants pre- and post-bariatric surgery and of non-obese Controls 
Data presented as mean (SEM) unless otherwise stated. 
*Two sample t-test 
†Paired t-test 
‡Chi-Square test, exact significance reported
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For the study of quantification of OXPHOS protein abundance in the colorectal mucosa, a 

subset of participants only from the BOCABS Study was used due to sample availability. Table 

3-2 summarises participants’ characteristics and anthropometric measurements included for 

quantification of OXPHOS proteins and sequencing of mtDNA in colorectal mucosal biopsies 

of pre- and post-bariatric surgery, and of non-obese Control participants (see Appendix L for 

un-pooled data of the non-obese Controls, recruited to the BOCABS and DISC Studies and 

Appendix M for the full characteristics of each participant of the 3 groups, pre- and post-

surgery and non-obese Controls, included in the subset). For this analysis, 26 paired pre- and 

post-bariatric surgery samples were used. The characteristics of the pre-surgery group 

included in this analysis (n=26) did not differ significantly from those recruited (n=38) to the 

BOCABS Study. The participants included had a mean age of 47.5 years (range 31.7 to 65.2 

years) and this study group was comprised of more females (n=19; 73%) than males (n=7; 

27%). They had a mean BMI of 41.3 kg/m2 and body fat of 47.9%, which dropped significantly 

to 31.7 kg/m2 and 36.5% respectively at six months follow-up. Their waist:hip ratio was 0.94 

which declined to 0.9 at six months follow-up.  

The non-obese Control group consisted of 16 participants who had a mean age of 44 (range 

21- 59) years. The group had more females (56%; n=9) than males (44%; n=7) with mean BMI 

of 25.5 kg/m2 (range 20-30 kg/m2), mean body fat 30.4% (range 21.2- 36.2%) and mean waist: 

hip ratio of 0.86 (range 0.74- 0.99).  

Figure 3-1 and Figure 3-2 illustrate measures of adiposity, including BMI, body fat percentage 

and circumference of the waist and the hip, in obese participants before and 6 months after 

bariatric surgery and in Controls. Although bariatric surgery induced a significant weight loss 

of mean 27kg, participants remained obese at 6 months follow-up. 
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 Obese participants at baseline Non-obese 

Controls 

Obese 

participants at 

follow-up 

Obese participants 

P-value 

 Recruited n=38 Included n=26 n=16 n=26 Baseline recruited 

vs included* 

Baseline vs 

Follow-up† 

Age (years) 46.0 (1.0) 47.5 (1.5) 45.6 (2.7) - 0.52 0.48 

Male  8  7 7 - 1‡ N/A 

Female 30 19 9 - N/A 

British White 37 26 15 - 1‡ N/A 

Black African 1 0 1 - N/A 

BMI (kg/m2) 42.7 (1.2) 41.3 (1.0) 25.5 (2.3) 31.7 (0.9) 0.49 <0.001 

Body fat (%) 48.9 (0.9) 47.9 (1.2) 30.4 (1.5) 36.5 (1.6) 0.97 <0.001 

Waist (W; cm) 124 (2.2) 122.6 (2.3) 88.5 (2.3) 98.5 (3.3) 0.31 <0.001 

Hip (H; cm) 133 (1.8) 127.6 (2.9) 102.3 (1.6) 109.5 (2.8) 0.58 <0.001 

W:H ratio 0.94 (0.02) 0.94 (0.02) 0.86 (0.03) 0.90 (0.02) N/A N/A 

Table 3-2: Characteristics of initially obese participants pre- and post-bariatric surgery and of non-obese Controls for whom analysis of OXPHOS protein quantification and sequencing of the 
mtDNA in the colorectal mucosa was conducted 
Data presented as mean (SEM) unless otherwise stated. 
*Two sample t-test 
†Paired t-test 
‡Chi-Square test, exact significance reported 
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Figure 3-1: BMI and body fat percentage in obese participants before and 6 months after bariatric surgery and in non-obese 

Controls  

 

Figure 3-2: Waist and hip circumference in obese participants before and 6 months after bariatric surgery and in non-obese 

Controls 
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3.2 Effects of adiposity on expression of OXPHOS proteins in colonocytes 

To quantify mitochondrial OXPHOS protein levels, an established quadruple 

immunofluorescence protocol was performed on 26 matched pre- and post-surgery 

participants and 16 non-obese Controls. Figure 3-3 shows crypts stained for complexes I and 

IV, mitochondrial mass, Dapi (a nuclear stain) and the merged image from a transverse section 

of the colorectal mucosa of an obese individual recruited to the BOCABS Study. Complex I 

deficient crypts are clearly visible (reduced brightness of crypts shown in red colour) and 

partially complex IV deficient crypts can also be seen (reduced brightness of partial crypts 

shown in purple colour). As expected, crypts have a normal mitochondrial mass and Dapi 

staining. 

 

Figure 3-3: Expression of complexes I and IV, mitochondrial mass, nuclear marker (Dapi) and merged image in a transverse 
section of the colorectal mucosa from an obese individual recruited to the BOCABS Study 

Protein abundance was estimated as described in the Methods Chapter (section 2.2.1.4) and 

categorised using z-scores. Based on the value of the z-score, each respiratory chain protein 

measured within a crypt was designated as overexpressed (z >2), normal (z <2), slightly 

deficient (z < -2), very deficient (z < -3) or depleted (z < -4) (Rocha et al., 2015) (see Appendix 

N). Figure 3-4 shows the mean percentage of complex I normal and deficient crypts in obese 

and non-obese participants. No statistically significant difference was detected. However, 

when analysing the level of deficiency, i.e. whether crypts are slightly or very deficient or 

depleted for complex I, obese individuals had a significantly higher prevalence of complex I 

depleted crypts (9.2%) when compared to Controls (0%) (p=0.046) (see Figure 3-5).  



89 
 

 

Figure 3-4: Percentage of normal and deficient complex I crypts in the colorectal mucosa of obese and non-obese (Control) 
individuals  

 

 

Figure 3-5: Percentage of level of deficiency (slightly, very or depleted) for complex I crypts in the colorectal mucosa of 
obese and non-obese (Control) individuals 

Figure 3-6 shows the mean percentage of complex IV normal and deficient crypts in obese 

and non-obese (Control) participants. Obese individuals had significantly fewer crypts with 

normal complex IV (96.9%) compared with Controls (100%) and significantly more crypts with 

complex IV deficiency (3.1%) compared with Controls (0%) (p=0.03). Furthermore, when 
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analysing the level of deficiency, i.e. whether crypts are slightly or very deficient or depleted 

for complex IV, obese individuals had a significantly higher prevalence of complex IV slightly 

deficient crypts (2%) when compared with Controls (0%) (p=0.03) (see Figure 3-7). 

 

Figure 3-6: Percentage of normal and deficient complex IV crypts in the colorectal mucosa of obese and non-obese (Control) 
individuals 

 

 

Figure 3-7: Percentage of deficiency (slightly, very or depleted) for complex IV in crypts from the colorectal mucosa of obese 
and non-obese (Control) individuals 
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Mitochondrial mass was quantified using the antibody TOMM20, which has been previously 

used and validated for the normalisation and quantification of MTCO1 and NDUFB8 in 

patients with mitochondrial disease (Latil et al., 2012, Tang et al., 2013). Figure 3-8 shows the 

mean percentage of crypts which had normal mitochondrial mass levels, or evidence of 

mitochondrial mass depletion in crypt cells from obese and non-obese (Control) participants. 

Obese individuals had significantly fewer crypts with normal mitochondrial mass (93.8%) 

compared with Controls (99.96%) and significantly more crypts with mitochondrial mass 

deficiency (6.2%) compared with Controls (0.04%) (p=0.03). Furthermore, when analysing the 

level of deficiency, i.e. whether crypts are slightly or very deficient or depleted for 

mitochondrial mass, obese individuals had a significantly higher prevalence of mitochondrial 

mass slightly deficient crypts (4.7%) when compared with Controls (0.04%) (p=0.03) (see 

Figure 3-9).  

 

Figure 3-8: Percentage of crypts with normal and deficient mitochondrial mass crypts in the colorectal mucosa in obese and 
non-obese (Control) individuals 
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Figure 3-9: Percentage of crypts showing deficiency (slightly, very or depleted) for mitochondrial mass in the colorectal 
mucosa from obese and non-obese (Control) individuals 

Figure 3-10, Figure 3-11 and Figure 3-12 show the mean percentage of complex I and IV and 

mitochondrial mass crypts in pre- and post-bariatric surgery patients, respectively. However, 

weight loss (mean 27kg) did not significantly change the levels of OXPHOS proteins in crypts 

at 6 months follow-up. 

 

Figure 3-10: Percentage of crypts that were normal and deficient for complex I in the colorectal mucosa of obese 
participants pre- and post-bariatric surgery  
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Figure 3-11: Percentage of normal and deficient complex IV crypts in pre- and post-bariatric surgery patients 

 

 

 

Figure 3-12: Percentage of normal and deficient mitochondrial mass crypts in pre- and post-bariatric surgery patients 
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3.3 Effects of ageing on expression of OXPHOS proteins in colonocytes 

Data from obese and non-obese individuals were dichotomised at the median age (48 years) 

and divided into a younger (n=24, range 21 to 48 years) and older group (n=24, range 48 to 

65 years) to investigate the effects of age on complex I and IV and mitochondrial mass levels. 

There was no significant association between age and complex I abundance. Figure 3-13 

shows the percentage of normal and deficient complex I and IV and mitochondrial mass crypts 

in younger and older individuals. The prevalence of complex IV (1.3%) and mitochondrial mass 

(1.7%) deficiency was significantly greater in older (>48 years) compared with younger (≤48 

years) individuals (p=0.03 and p=0.01, respectively). 

 

Figure 3-13: Percentage of crypts with normal and deficient complexes I and IV and mitochondrial mass in the colorectal 
mucosa from younger and older individuals 

 

3.4 Effects of adiposity and weight loss on the mitochondrial genome 

3.4.1 Mutations in the mitochondrial spectra 

Next Generation Sequencing (NGS) of the mitochondrial genome was performed using 

colorectal mucosal biopsies from obese participants pre- and post-surgery and from non-
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obese Controls. MtDNA was amplified in two overlapping 9 KB fragments, named Fragment 

A and Fragment B. Unfortunately, for the majority of the participants, amplification and 

quantification of fragment B was not successful (Appendix O).  Due to time constraints it was 

not possible to repeat the amplification of fragment B, therefore the following results include 

data from NGS of Fragment A only i.e. approximately 60% of the mitochondrial genome.    

A total of 9931bp of the mitochondrial genome were sequenced in the colorectal mucosa 

(Fragment A m.6222-m.16153) and a total of 987 mutations were detected. Out of all mtDNA 

mutations detected (n=987), 47.9% were somatic heteroplasmic mtDNA mutations. The 

remaining 52.1% were homoplasmic/ germline ‘mutations’ which define the individual 

participant-specific mitochondrial haplogroup. Table 3-3 shows the count and percentage of 

the distribution of heteroplasmic mutations in the colorectal mucosa in the obese individuals 

pre- and post-bariatric surgery and the non-obese Controls. Different haplogroups have 

different numbers of defining germline mutations and the proportions will change depending 

on which haplogroups are present in each individual.  

 

 Mean number of somatic 

heteroplasmic mtDNA 

mutations 

Total somatic heteroplasmic 

mtDNA mutations (%) 

All BOCABS Study 

participants (n=49) 

473 47.9 (range 1- 98.51) 

Obese participants pre-

surgery (n=20) 

228 48.2 (range 1- 94.19) 

Obese participants 

post-surgery (n=18) 

122 25.8 (range 1- 98.51) 

Non-obese Controls 

(n=11) 

123 26.0 (range 1.01- 98.26) 

Table 3-3: Heteroplasmic mtDNA mutations in the colorectal mucosa of obese individuals pre- and post-bariatric surgery 
and of non-obese Controls 

Figure 3-14 shows the number of somatic mtDNA mutations identified for each participant 

(represented by a dot) in the obese pre- and post-surgery and the non-obese Controls. Obese 

individuals of the pre-surgery group tended to have greater frequency of somatic mtDNA 
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mutations compared with the post-bariatric surgery and the non-obese Controls, but the 

differences were not significant (p=0.500).  One obese participant of the pre-surgery group 

carried nearly 100 somatic mtDNA mutations, a 10-fold, 16-fold and 12-fold higher frequency 

than the mean mutation frequency in the pre- and post-surgery group and non-obese 

Controls, respectively. No follow-up data are available, due to unsuccessful sequencing for 

this interesting participant who carried nearly 100 somatic mtDNA mutations at baseline so I 

do not know whether weight loss affected the frequency of mtDNA mutations. The 

differences in mean number of somatic mtDNA mutations between the groups is rather large, 

and surprisingly not significant, but this is likely due to the large inter-individual variation (see 

Figure 3-15). 

 

 

Figure 3-14: Number of somatic heteroplasmic mtDNA mutations detected for each participant (dot) in obese pre- and post-
bariatric surgery and in non-obese Controls (p=0.500 Kruskal-Wallis H test). As a further sensitivity analysis differences 
between i) obese pre-surgery and non-obese Controls (p=0.610) and ii) unmatched pre- and post-surgery adults (p=528) were 
tested with a Mann Whitney U test 
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Figure 3-15: Number of somatic heteroplasmic mtDNA mutations detected in the colorectal mucosa for each initially obese 
individual before and after bariatric surgery. 

The effects of higher levels of adiposity on the mitochondrial genome were investigated. 

MtDNA mutation frequency was calculated by dividing the percentage of somatic 

heteroplasmic mutations detected for each participant, by the total bases sequenced for that 

individual. Figure 3-16 shows the mtDNA mutation frequency quantified by NGS in the 

colorectal mucosa of obese pre-surgery participants and non-obese Controls on a Log(10) 

scale (see Appendix P for untransformed data). Obese pre-surgery participants appeared to 

have a higher mtDNA mutation frequency compared with non-obese Controls, but this 

difference was not statistically significant (P=0.544).  
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Figure 3-16: Frequency of mtDNA mutations detected by NGS in the colorectal mucosa of obese pre-surgery participants and 
non-obese Controls. Data in this Figure are presented on a Log(10) scale. Since zero values cannot be displayed in this way, 
data for n=3 and n=1 for the obese pre-surgery group and non-obese Controls, respectively are included in this figure with a 
zero value (p=0.544 Mann Whitney U test). 

Figure 3-17 shows the mtDNA mutation frequency detected by NGS in the colorectal mucosa 

in the initially obese group before and after bariatric surgery on a Log(10) scale (see Appendix 

Q for untransformed data). MtDNA mutation frequency fell slightly, but not significantly 

(P=0.790), following weight loss by bariatric surgery. 
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Figure 3-17: Frequency of mtDNA mutations detected by NGS in the colorectal mucosa of obese pre- and post-surgery 
participants. Data in this figure are presented on a Log(10) scale. Since zero values cannot be displayed in this way, data for 
n=3 and n=2 for both the obese pre- and post-surgery group are included in this figure with a zero value (p=0.790 Wilcoxon 
signed rank test) 

Figure 3-18 illustrates the relationship between BMI and the frequency of mtDNA mutations 

detected by NGS in the colorectal mucosa for individuals in the study (obese pre- and post-

surgery and non-obese Controls). Data are scattered and there was no significant correlation 

between adiposity and mtDNA mutation frequency. See Appendix R for untransformed data. 

Although the mean ages of the study groups were matched, mitochondrial function has 

previously been shown to differ even over a 10 year period i.e. between 20- and 30-years old 

adults (Greaves et al., 2014).  Figure 3-19 illustrates mtDNA mutation frequency quantified by 

NGS in the colorectal mucosa across the age span for each participant of the obese pre- and 

post-surgery group and non-obese Controls. With the exception of one pre-surgery 

participant, who at the age of 48 exhibits the lowest mtDNA mutation frequency of all 

individuals examined, a trend for a higher mtDNA mutation frequency can be seen in older 

individuals. However, there was no significant correlation between age and mtDNA mutation 

frequency. 
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Figure 3-18: MtDNA mutations frequency detected by NGS in the colorectal mucosa across the BMI range for each initially 
obese pre- and post-surgery and non-obese Control individual. Since zero values cannot be displayed in this way, data for n=3, 
n=2 and n=1 for the pre- and post-surgery participants and non-obese Controls, respectively, are included in this figure with 
a zero value.  

 

 

Figure 3-19: MtDNA mutations frequency detected by NGS in the colorectal mucosa across age for each initially obese pre- 
and post-surgery and non-obese Control individual. Since zero values cannot be displayed in this way, data for n=3, n=2 and 
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n=1 for the pre- and post-surgery participants and non-obese Controls, respectively, are included in this figure with a zero 
value. 

 

Previous studies have shown that, in the colonic mucosa, mtDNA mutations are randomly 

distributed throughout the genome with little evidence for mutation hotspots (Taylor et al., 

2003, Greaves et al., 2010, Greaves et al., 2014). Therefore, I compared the mutational 

distribution for all BOCABS Study participants combined and for each of the 3 experimental 

groups separately, with what would be expected if mutations were distributed at random 

across the mitochondrial genome.  Figure 3-20 shows the comparison between the expected 

and the observed rates of mtDNA mutations for each gene type (non-coding, Complex I, III, 

IV, V, tRNA and rRNA) for fragment A for all BOCABS Study participants combined and, 

separately, for each of the 3 study groups (i.e. initially obese pre- and post-surgery and non-

obese Controls). Expected values were calculated based on the proportion of fragment A 

(9931bp) of the mitochondrial genome contributed by each gene category. No significant 

differences in the percentage of mtDNA mutations could be identified between the expected 

and observed values for each gene category. For all BOCABS Study participants combined  and 

for the obese participants pre-surgery and non-obese Controls separately, the frequency of 

observed mutations was higher in complex III and IV and tRNA than the expected frequency 

if mitochondrial mutations occurred randomly across the mitochondrial genome, suggesting 

that these gene types might be mutation hotspots, although these differences did not reach 

significance, p=0.157 (see Figure 3-20 A, B and D). Similarly, in the obese participants post-

surgery, there were apparently higher rates of mutation in complex III and V and tRNAs than 

would have been expected by chance, but these differences were not significant, p=0.157 

(Figure 3-20 C). 
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Figure 3-20: Observed and expected percentages of mtDNA mutations by gene type (non-coding, Complex I, III, IV and V, 
tRNA and rRNA) for Fragment A of the mitochondrial genome. A) For all BOCABS Study participants combined (i.e. obese pre- 
and post-surgery and non-obese Controls); B) For the obese participants pre-surgery; C) For the obese participants post-
surgery and D) For the non-obese Controls. Cross-tabulation was carried out using the Chi square test (p=0.157). 

It has been previously suggested that increased levels of ROS, as a result of inflammation, 

commonly lead to transversions and that replication errors result in transitions (Zheng et al., 

2006, Kennedy et al., 2013). Since obesity is associated with low-level systemic inflammation, 

I investigated whether obesity could be a driver of inflammation-related mutations by 

examining the proportions of transitions and transversions in the spectrum of mutations in 

the BOCABS Study. Figure 3-21 illustrates the class of mtDNA mutations detected, transitions 

and mutations, in the colorectal mucosa of obese pre- and post-surgery participants and non-

obese Controls. In all three groups, the prevalence of transitions was approximately 3-fold 

higher (77.5%, 78.7% and 73.4%, for the obese participants pre- and post-surgery and non-

obese Controls, respectively) than that for transversions (22.5%, 21.3% and 26.6%, for the 

obese participants pre- and post-surgery and non-obese Controls, respectively). However, 
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these between-group differences were not significant (p=0.315). Next, I examined the 

prevalence (number and percentage) of each type of transition (i.e. A>G, C>T, G>A and T>C) 

and transversion (A>T, C>A, G>C and G>T) (see Figure 3-22). A>G and G>A transitions and C>A 

transversions were the most common in obese participants pre-surgery, 22.9%, 20.3% and 

23.4%, respectively (see Figure 3-22 A). Whereas in the non-obese Controls A>G and G>A 

transitions were most frequently observed, with means of 29.6% and 24.8%, respectively (see 

Figure 3-22 A). None of the differences in number or % of types of transitions and 

transversions were statistically significant between obese (pre-surgery) and non-obese 

control groups. Significant weight loss at 6 months after bariatric surgery was associated with 

increased A>G and G>A transitions, (28.5% and 25.3%, respectively) and an apparent fall in 

C>A transversions (12%) (see Figure 3-22), but these changes were not statistically significant. 

 

Figure 3-21: MtDNA mutations detected in the colorectal mucosa of obese pre- and post-surgery participant and non-obese 
Controls. A) Number of transitions and transversions for each participant (Differences in transitions (p=0.325) and 
transversions (p=0.058) between the 3 study groups were tested with a Kruskal-Wallis H test; As a further sensitivity analysis 
differences in transitions (p=0.391) and transversions (p=0.530) between obese pre-surgery and non-obese Controls were 
tested with a Mann Whitney U test; differences in transitions  (p=0.304) and transversion (p=0.070) between the pre- and 
post-surgery adults were tested with a Wilcoxon signed rank test; B) Percentage of transitions and transversions for each 
participant (Differences in transitions (p=0.315) and transversions (p=0.315) between the 3 study groups were tested with a 
Kruskal-Wallis H test; As a further sensitivity analysis differences in transitions (p=0.339) and transversions (p=0.339) 
between obese pre-surgery and non-obese Controls were tested with a Mann Whitney U test; differences in transitions 
(p=0.463) and transversion (p=0.463) between the pre- and post-surgery adults were tested with a Wilcoxon signed rank test. 
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Figure 3-22: Types of transitions and transversions detected in the codon region. A) In obese pre-surgery compared to non-
obese Controls and B) in pre- compared to post-surgery participants. 

 

3.4.2 Mutations with functional consequences 

To investigate possible differences in the pathogenicity of mtDNA mutations in the protein 

encoding regions in those with greater levels of adiposity, the frequency of silent and non-

silent mutations in codon regions and their locations was investigated. Figure 3-23 illustrates 

the frequency of mtDNA mutations in protein encoding genes detected in the colorectal 

mucosa of obese participants pre-surgery and in non-obese Controls. The prevalence of silent 

(41.7% and 40.5%, respectively) and non-silent changes (58.3% and 59.5%) in the codon were 

similar for both obese (pre-surgery) and non-obese Controls. MtDNA mutations were 

observed more frequently in positions 1 and 2 of each codon in both study groups; mutations 

in these codon positions are more likely to be pathogenic (Stewart et al., 2008). Obese 

participants pre-surgery had 59.3% and 39% of mutations in positions 1 and 2 of the codons, 

respectively. For non-obese Controls, the corresponding values were 52% and 47% 

respectively. No significant differences between obese and non-obese participants were 

detected. 
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Figure 3-23: MtDNA mutations in protein encoding genes detected in the colorectal mucosa of obese participants pre-surgery 
and non-obese Controls: A) Frequency of silent and non-silent codon changes. B) Proportions (%) of mtDNA mutations at each 
of the three codon positions. 

Figure 3-24 shows the prevalence of mtDNA mutations in protein encoding genes detected in 

the colorectal mucosa of pre- and post-surgery participants. Following significant weight loss, 

at 6 months follow-up, a rise in silent codon changes was seen from 40.5% to 46.6% and a fall 

in non-silent codon changes from 59.5% to 53.4%. However, these changes were not 

significant. At both time points (pre- and post-surgery), mtDNA mutations were more 

frequently observed in positions 1 and 2 of each codon and were similar (56.5% and 58.9% in 

position 1 of the pre- and post-surgery group, respectively and, 41.4% and 40.5% in position 

1 of the pre- and post-surgery group). Only one stop-codon/ nonsense mutation was detected 

in the post-surgery group. 

 

Figure 3-24: MtDNA mutations in protein encoding genes detected in the colorectal mucosa of pre- and post-surgery 
participants: A) Frequency of silent and non-silent codon changes. B) Proportions (%) of mtDNA mutations at each of the three 
codon positions.  
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I investigated whether obesity had an effect on the mechanism of the mtDNA mutation 

occurrence, i.e. if it changes the mutational spectra due to increased levels of ROS as a result 

of inflammation, as suggested previously (Zheng et al., 2006, Kennedy et al., 2013), which 

would result in different mutation types. Figure 3-25 shows the percentage of mtDNA 

mutations and their predicted functional consequences (synonymous, missense and pre-

mature stop codon) of the detected protein encoding mtDNA mutations in obese pre-surgery 

participants and non-obese Controls. Synonymous is a silent AA change and missense is a 

single base change which produces a codon that codes for a different AA. The percentage of 

synonymous and missense was roughly equally distributed in obese pre-surgery participants 

(48.8% and 51.2%, respectively) and in non-obese Controls (46.6% and 53.4%, respectively). 

No significant differences between the two groups were detected. The NGS is unable to 

detect single or small insertions or deletions which would result in non-sense deletions, which 

change the rest of the AA sequence from the mutation point onwards. 

 

Figure 3-25: Percentage of the mtDNA mutations in the colorectal mucosa and their predicted functional consequences of the 
detected protein encoding mtDNA mutations in obese pre-surgery participants and non-obese Controls. Synonymous is a 
silent change and missense is an AA change. 
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Figure 3-26 shows the percentage of mtDNA mutations and their predicted functional 

consequences (synonymous, missense and pre-mature stop codon) of the detected protein 

encoding mtDNA mutations in pre- and post-surgery participants. The percentage of 

synonymous and missense was roughly equally distributed in pre- (50.4% and 49.6%, 

respectively) and post-surgery participants (53.4% and 46.6%, respectively). No significant 

differences following significant weight loss at 6 months follow-up were detected. 

 

Figure 3-26: Percentage of the mtDNA mutations in the colorectal mucosa and their predicted functional consequences of the 
detected protein encoding mtDNA mutations in pre- and post-surgery participants. Synonymous is a silent change and 
missense is an AA change. 

 

I investigated whether obesity had an effect on the mechanism of the mtDNA mutation 

occurrence, i.e. if it changes the mutational spectra due to increased levels of ROS as a result 

of inflammation, as suggested previously (Zheng et al., 2006, Kennedy et al., 2013), which 

would result in different amino acid (AA) changes. Figure 3-27 illustrates the types of AA 

changes detected in the mitochondrial genome by NGS in the colorectal mucosa of obese pre-

surgery participants and non-obese Controls. A total of 57 types of AA substitutions were 

identified and the most common change was threonine to alanine (T>A), 19% and 24% in 

obese pre-surgery participants and in non-obese Controls, respectively. For the obese pre-
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surgery participants, the next 4 most common AA changes identified were (in this order) 

alanine to threonine (A>T, 9.5%), glycine to valine (G>V, 7.6%), proline to histidine (P>H, 6.6%) 

and leucine to isoleucine (L>I, 5.2%). Whereas, for the non-obese Controls the next 4 most 

common AA changes detected were (in this order) glycine to valine (G>V, 9.6%), alanine to 

threonine (A>T, 6.4%), threonine to isoleucine (T>I, 5.6%) and leucine to isoleucine (L>I, 4.8%). 

The AA changes that occurred in the two study groups did not differ significantly.  
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Figure 3-27: Predicted amino acid changes based on mutations in the mitochondrial genome detected by NGS in the colorectal mucosa of obese participants pre-surgery and in non-obese Controls 
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Figure 3-28 illustrates the predicted amino acid (AA) changes resulting from mutations in the 

mitochondrial genome detected by NGS in the colorectal mucosa of obese participants pre- 

and post-surgery. A total of 53 types of AA substitutions were predicted, of which the most 

common change was threonine to alanine (T>A), accounting for 15.8% and 26.6% in the obese 

participants pre- and post-surgery, respectively. For the pre-surgery participants, the next 4 

most common AA changes identified were (in this order) proline to histidine (P>H, 9%), 

alanine to threonine (A>T, 7.5%), glycine to valine (G>V, 6.8%) and leucine to isoleucine 

(L>I,6%). Whereas, for the post-surgery participants the next 4 most common AA changes 

identified were (in this order) alanine to threonine (A>T, 8.2%), threonine to isoleucine (T>I, 

7%), glycine to valine (G>V, 6.3%) and proline to histidine (P>H, 5.7%). Out of all the AA 

changes detected, about half increased (49%) and the remaining half decreased (51%) 

following weight loss by bariatric surgery. Weight loss resulted in an increase of threonine to 

alanine (T>A), alanine to threonine (A>T), phenylalanine to leucine (F>L), threonine to 

isoleucine (T>I), glycine to glutamic acid (G>E), isoleucine to threonine (I>T), aspartic acid to 

asparagine (D>N), alanine to valine (A>V), cysteine to arginine (C>R), aspartic acid to glycine 

(D>G), glutamic acid to lysine (E>K), phenylalanine to serine (F>S), glycine to alanine (G>A), 

glycine to serine (G>S), histidine to arginine (H>R), leucine to proline (L>P), asparagine to 

serine (N>S), asparagine to tyrosine (N>Y), proline to leucine (P>L), arginine to glutamine 

(R>Q), threonine to methionine (T>M), valine to alanine (V>A), valine to isoleucine (V>I), 

valine to leucine (V>L), valine to methionine (V>M) and tryptophan to arginine (W>R). Weight 

loss resulted in a decrease of proline to histidine (P>H), glycine to valine (G>V), leucine to 

isoleucine (L>I), aspartic acid to tyrosine (D>Y), histidine to asparagine (H>N), tryptophan to 

leucine (W>L), glycine to aspartic acid (G>D), proline to threonine (P>T), methionine to 

threonine (M>T), proline to glutamine (P>Q), alanine to proline (A>P), isoleucine to valine 

(I>V), leucine to methionine (L>M), methionine to isoleucine (M>I), glutamine to lysine (Q>K), 

arginine to histidine (R>H), serine to tyrosine (S>Y), tyrosine to cysteine (Y>C), glycine to 

tryptophan (G>W), isoleucine to methionine (I>M), asparagine to lysine (N>K), proline to 

serine (P>S), arginine to leucine (R>L), serine to cysteine (S>C), serine to phenylalanine (S>F), 

serine to isoleucine (S>I) and serine to asparagine (S>N). Although weight loss following 

bariatric surgery was substantial (mean 27kg), there were no significant differences in the 

predicted AA changes detected in the mitochondrial genome at 6 months follow-up.  
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Figure 3-28: Predicted amino acid changes based on mutations in the mitochondrial genome detected by NGS in the colorectal mucosa of pre- and post-surgery participants 
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3.5 Discussion 

To my knowledge, no previous publications have investigated the effects of weight loss 

(following bariatric surgery) on mitochondria in the human colorectal mucosa. I have 

investigated two aspects of mitochondrial structure/ function: i) mitochondrial protein 

expression using immunofluorescence and ii) the spectrum of mtDNA mutations assessed 

using NGS of approximately 60% of the mitochondrial genome. 

3.5.1 Main findings 

I found that there was a significantly higher proportion of crypts with complex I and IV 

deficiencies in the colorectal mucosa of obese participants pre-surgery when compared with 

non-obese Controls. Furthermore, older people had significantly more complex I and IV 

deficiencies in the colorectal mucosa for both obese and non-obese groups. Bariatric surgery 

resulted in significant weight loss, mean 27kg, but, at least when investigated at 6 months 

following surgery, there was no significant effect on the expression of OXPHOS proteins. 

Obese participants pre-surgery and, again, at 6 months following bariatric surgery tended to 

have higher mtDNA mutation frequency compared with non-obese, but these differences 

were not statistically significant. The types of mtDNA mutations were examined, i.e. global 

mutations identified in the mitochondrial spectra and mutations with functional 

consequences. I also observed for the majority of the different types of mutations (i.e. 

transversions) a trend for higher prevalence in individuals with greater adiposity compared 

with non-obese Controls, but the differences were not significant. Weight loss following 

bariatric surgery in initially obese individuals tended to reduce the different types of 

mutations, for example transversions and non-silent codon changes, and increased silent 

codon changes, but these changes were not statistically significant.  

3.5.1.1 Interpretation of main findings 

In the introductory chapter (see section 1.4.2), I have reviewed evidence that over-feeding 

and obesity in humans result in mitochondrial dysfunction (Breininger et al., 2019). In addition, 

there is evidence from human studies that weight loss, as a result of bariatric surgery, may 

improve the structure and function of mitochondria (Breininger et al., 2019). However, most 

of this evidence has been obtained from measurements made in skeletal muscle (Bach et al., 

2005,  Civitarese et al., 2007, Toledo et al., 2008,  Coen et al., 2015,  Fernstrom et al., 2016,  

Camastra et al., 2017), two studies have reported the effects in adipose tissue (Jahansouz et 
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al., 2015, Moreno-Castellanos et al., 2016) and there have been no comparable data from 

measurements made in the colorectal epithelium.  

Here, I used an immunofluorescent labelling method, a robust method for assessment of 

patterns of OXPHOS protein abundance (complex I and IV and mitochondrial mass), to reveal 

higher prevalence of crypts of the colorectal mucosa that were deficient in complex I and IV 

in obese individuals compared with non-obese Controls, as hypothesised (see Table 3-4) 

(Rocha et al., 2015). Surprisingly, major weight loss (mean 27 kg) following bariatric surgery 

in these initially obese adults did not improve the expression of OXPHOS proteins (see Table 

3-4). The prevalence of complex IV and mitochondrial mass deficiency was higher with 

advancing age, as hypothesised. Then, I extended the investigation to characterise and to 

quantify mtDNA mutations in crypt cells in the same colorectal mucosal biopsies. To ensure 

that the resulting data could be attributed unambiguously to crypt cells and to avoid potential 

confounding by other cell types within the biopsies, crypts were laser-microdissected from 

frozen sections of biopsy. I then used a NGS method, which provides a broad, unbiased, 

assessment of the mutations present in the mitochondrial genome. Surprisingly, I did not find 

any significant differences in the prevalence, or types, of mutations between initially obese 

individuals at baseline or following weight loss at 6 months post-surgery and non-obese 

Controls (see Table 3-4). There was a trend for a higher mutation frequency in the obese 

compared with non-obese Controls and, for this to fall following weight loss by bariatric 

surgery, but these differences were not statistically significant. 

Mitochondrial marker Association with obesity Effects of weight loss 

following bariatric surgery 

Complex I ↓ No significant change 

Complex IV ↓ No significant change 

Mitochondrial mass ↓ No significant change 

Mutation frequency No significant change No significant change 

Location of mtDNA mutation 

by gene type 
No significant change No significant change 

AA changes (protein 

encoding genes only) 
No significant change No significant change 
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Transitions in codon region No significant change No significant change 

Transversion in codon 

region 
No significant change No significant change 

Position changes in codon 

region 
No significant change No significant change 

Table 3-4: Summary of effects of obesity and of weight loss (following bariatric surgery) on mitochondrial markers in the 
human colorectal mucosa 

 

3.5.2 The effect of obesity on expression of OXPHOS proteins 

Given the link between adiposity and mitochondrial dysfunction, my finding of higher 

abundance of crypts showing deficient complex I and IV and mitochondrial mass expression 

in the obese when compared with the non-obese Controls is consistent with the hypothesis 

that role of obesity, perhaps via obesity-induced inflammation, results in mitochondrial 

damage. Heinonen (Heinonen et al., 2015) found reduced expression of subunits of complex 

IV in subcutaneous adipose tissue of obese monozygotic twins. Sparks (Sparks et al., 2005) 

also reported reduced complex IV expression in male vastus lateralis and gastrocnemius 

muscle following consumption of a high fat diet for 3 days, but in this short-term study it 

seems more likely that the observed effects on biomarkers of mitochondrial function result 

from the altered macronutrient intake rather than from any change in adiposity which would 

be very small after 3 days.  

A few studies using animal models have investigated the effects of overfeeding and/ or 

obesity on mitochondrial OXPHOS protein abundance. After feeding a high-fat diet for 21 days, 

there was a decline in cytochrome c protein concentration and reduced expression of genes 

encoding OXPHOS proteins I-IV in skeletal muscle from mice (Sparks et al., 2005). In rats, diet-

induced obesity led to a fall in mitochondrial mass in liver cells (Putti et al., 2015). COX IV and 

cytochrome I were reduced in white adipose tissue of mice fed a high-fat diet, obese mice 

and in obese Zucker rats (Valerio et al., 2006). Similarly, there were reduced levels of complex 

IV and cytochrome c in adipose tissue of male rats fed a high fat diet (Sutherland et al., 2008). 

A study comparing liver, muscle and adipocytes in different types of mice including normal, 

diabetic mice and, both obese and diabetic mice reported complex II and III deficiency in 

adipocytes (Choo et al., 2006). Mitochondrial capacity, assessed as mitochondrial fusion-

fission rates, respiratory function and ATP content, was reduced in skeletal muscle from obese 
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mice (Liu et al., 2014). These data show that a high-fat diet fed to rodents, and increased 

levels of adiposity, lead to reduced abundance of OXPHOS proteins and defective 

mitochondria in multiple organs and tissues.  

To date, changes in OXPHOS protein abundance in colon tissue of mouse models has been 

observed in pathogenicity, including CRC (Baines et al., 2014, Pate et al., 2014), but there have 

been no published studies investigating effects of obesity in this tissue. 

3.5.3 The effect of weight loss on expression of OXPHOS proteins 

Given the adverse effects of excess energy intake and body weight gain on the structure and 

function of mitochondria, I hypothesised that bariatric surgery (BS) -induced weight loss 

would reverse these effects, so my finding of no effect on OXPHOS protein expression 

following significant and sustained weight loss in initially obese individuals was unexpected. 

Potential explanations for this observation may be: 

 On average, participants remained obese (mean BMI of 31.7 kg/m2) at 6 months after 

BS and a return to normal body weight may be necessary to abrogate the adverse 

effects of obesity on mitochondria. Furthermore, it is possible that 6 months is too 

short a time to reverse the effects of obesity. Coen (2015) showed that respiration of 

mitochondria in vastus lateralis muscle was improved in 101 patients at 6 months after 

RYGB plus an exercise intervention when they had achieved mean 23.6kg weight loss. 

However, given the design of the study, it is impossible to separate any effects of 

increased physical activity from the putative effects of BS-induced weight loss in this 

study. In addition, coupled respiration in vastus lateralis muscle (assessed using a 

Clark-type electrode and measured oxidative phosphorylation of ADP to ATP) was 

increased in 11 obese females at 6 months after RYGB when they had lost mean 25.5kg 

body weight (Fernstrom et al., 2016). In contrast, there were no effects on uncoupled 

respiration (oxygen consumption without ADP phosphorylation) or on respiratory 

control index (a quality measure of isolated mitochondria) even though participants 

accomplished a significant weight loss they stayed overweight after surgery (mean 

BMI 29.6 kg/m2) (Fernstrom et al., 2016). 

 Alternatively, it is possible that the adverse effects of obesity on mitochondrial 

OXPHOS protein abundance may be permanent and are not reversible by weight loss 



116 
 

alone, despite the associated reduction in inflammatory markers and potential 

mitochondrial damage.  

3.5.4 The effect of ageing on expression of OXPHOS proteins 

Mitochondrial dysfunction is one of the 9 hallmarks of ageing (López-Otín et al., 2013), so my 

finding of higher prevalence of complex I and IV deficient crypts in the colorectal mucosa from 

older people was as expected. Previous studies from Newcastle, and elsewhere, have shown 

that individual crypts in the human colorectal mucosa accumulate somatic mtDNA mutations 

with age, and that these expand clonally resulting, eventually, in OXPHOS dysfunction that 

can be observed as loss of cytochrome c oxidase activity or reduction in OXPHOS protein 

subunit expression (Greaves et al., 2010, Greaves et al., 2012, Greaves et al., 2014).  

3.5.5 The effect of obesity on the mitochondrial genome 

Given the link between adiposity and mtDNA mutations, my finding of no significant 

difference in mtDNA mutations between obese pre-surgery participants and non-obese 

Controls was unexpected. A wide range of different types of mitochondrial mutations were 

examined, i.e. mutations in the mitochondrial spectra (predicted AA changes as a 

consequence of mutations detected in the mitochondrial genome, transitions and 

transversions in codon regions) and mutations with functional consequences (synonymous/ 

silent or missense protein encoding mtDNA mutations, silent or non-silent protein encoding 

mtDNA mutations in codon regions and, location of the position of mutation in codon region). 

For the majority of those mtDNA mutations, obese individuals pre-surgery tended to have 

greater frequency compared with the non-obese Controls, but the differences were not 

significant. Potential explanations for this observation may be: 

 The sample size for the study on the effects of adiposity on mtDNA mutations was 

slightly smaller, n=20 for obese pre-surgery and n=11 for non-obese controls, 

compared with the sample size for the study on the effects of adiposity on OXPHOS 

protein abundance (n=26 and n=16, respectively, see section 3.1.4 of this Chapter). 

Although the sample size was smaller for the study on mtDNA mutations, there were 

no significant differences in anthropometric measurements and participant 

characteristics (p>0.05) between those participants whose tissues were used for NGS 

and those used for assessing OXPHOS protein abundance. Nevertheless, the age range 
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was rather large between the groups, even though the mean ages of the study groups 

were matched. Age is an important factor, as mitochondrial function has previously 

been shown to differ between 20- and 30-years old adults (Greaves et al., 2014). Here, 

age was not included as a covariate on the study of adiposity on the measured 

mitochondrial outcomes and it is difficult to determine if age confounded the results. 

Therefore, it is possible that no significant differences on mtDNA mutations could be 

detected between obese pre-surgery participants and non-obese Controls due to the 

smaller sample size. However, other studies that investigated the effects of obesity on 

mitochondrial markers, which are consistent with my data on OXPHOS protein levels, 

had smaller samples sizes, including n=6 (Ejarque et al., 2018), n=10 (Sparks et al., 

2005), n=17 (Kras et al., 2018) or the same sample size n=20 (Yin et al., 2014) and were 

still able to detect significant differences in OXPHOS protein levels when compared 

with non-obese. However, these studies investigated markers related to 

mitochondrial function (see section 1.4.2) and not mtDNA mutations, which has not 

been examined before, and it is possible that for the investigation of the mutation 

spectrum a larger sample size is needed.  

 The mitochondrial genome is comprised of 16569bp (Case and Wallace, 1981). In the 

current study it was possible to sequence 60% of the mitochondrial genome in the 

colorectal mucosa (Fragment A m.6222-m.16153 comprising a total of 9931bp). It is 

possible that differences in mtDNA mutations between obese and non-obese 

individuals were present in the remaining 40% of the genome which was not 

sequenced.     

 Defects in OXPHOS protein function are attributed to different mechanisms, i.e. 

approximately 70% is estimated to be due to underlying mutations and the remaining 

30% to other mechanism including damage to the proteins themselves as a result of 

elevated levels of ROS and inflammation (Taylor et al., 2003). Therefore, it is possible 

that the significantly higher abundance of OXPHOS protein defects detected in the 

obese participants could have been caused by mechanisms other than mtDNA 

mutations.  It is possible that the observed deficiency in OXPHOS function was due to 

inflammatory damage at the protein level rather than the DNA level.  
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3.5.6 The effect of weight loss on the mitochondrial genome 

Given the link between the effects of significant and sustained weight loss following bariatric 

surgery on function and structure of mitochondria, it was surprising that the frequency of 

mtDNA mutations did not change significantly in the post-bariatric surgery group at 6 months 

follow-up in this study. A wide range of different types of mitochondrial mutations were 

examined, i.e. mutations in the mitochondrial spectra (AA changes detected in the 

mitochondrial genome, transitions and transversions in codon regions) and mutations with 

functional consequences (synonymous/ silent or missense protein encoding mtDNA 

mutations, silent or non-silent protein encoding mtDNA mutations in codon regions and, 

location of the position of mutation in codon region). For some of those mtDNA mutations, a 

trend for a reduction (mtDNA mutation frequency, AA changes in the mitochondrial genome, 

transversions and non-silent codon changes in protein encoding genes), an increase 

(transitions, synonymous mtDNA mutations in protein encoding genes, silent codon changes 

in protein encoding genes, changes in codon position 1) or no change (changes in codon 

position 2) was observed following significant weight loss at 6 months follow-up, although the 

differences did not reach significance. Potential explanations for this observation may be: 

 The matched sample size of pre- and post-surgery participants for the study on the 

effects of adiposity on mtDNA mutations was 54% lower (n=12), compared with the 

sample size for the study on the effects of adiposity on OXPHOS protein abundance 

(see section 3.1.4). Even though the sample size was smaller for the study on mtDNA 

mutations, there were no significant differences in anthropometric measurements 

and participant characteristics (p>0.05) from the sample size on the study on OXPHOS 

protein abundance. It is possible that significant differences could have been detected 

if the sample size was larger. One previous study by Fernstrom (2016) comprised a 

similar sample size to the current study, i.e. n=11, and was able to detect 

improvements in mitochondrial function following weight loss by bariatric surgery, 

however this was in the muscle tissue. In contrast, other studies that found 

improvements in mitochondrial markers by investigating the effects of bariatric 

surgery comprised larger sample sizes including n= 15 (Bach et al., 2005), n=16 

(Jahansouz et al., 2015), n=18 (Moreno-Castellanos et al., 2016), n=28 (Camastra et al., 

2017) and n=101 (Coen et al., 2015). However, these studies investigated other 
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mitochondrial markers of function (see section 1.4.4) and not mtDNA mutations and 

it is possible that for the study of mutations a larger sample size is required.  

Furthermore, as mentioned earlier (see section 3.5.5), age modulates mitochondrial 

function significantly and, as previously reported, mitochondrial function can differ 

even between 20- and 30-years old adults (Greaves et al., 2014). Here, age was not 

included as a covariate on the study of weight loss on the measured mitochondrial 

outcomes and it is difficult to determine if age confounded the results.  

 The mitochondrial genome is comprised of 16569bp (Case and Wallace, 1981). In the 

current study it was possible to sequence 60% of the mitochondrial genome in the 

colorectal mucosa (Fragment A m.6222-m.16153 comprising a total of 9931bp). It is 

possible that a reduction in mtDNA mutations occurred in the remaining 40% of the 

genome which was not sequenced.   

 Obesity and its increased inflammatory state coupled with oxidative stress lead to 

permanent mtDNA mutations which become fixed and cannot be altered even by 

significant and sustained weight loss.  

 The level of mtDNA mutation frequency detected here was relatively low (~1.5 x 

1,000,000 on a Log(10) scale). It is likely that the sequencing here only picked up high 

levels of clonal expansion at the homogenate level. Even if mtDNA mutation rate (new 

mutations occurring) decreased following weight loss by bariatric surgery, it is possible 

that the level of sensitivity of the NGS would be unable to detect such a change in low 

levels of mtDNA mutations and, that only high levels of clonal expansion would be 

detected. Therefore, single crypt or cell (i.e. epithelial cells) sequencing pose an 

interesting area for future research to increase the level of sensitivity by NGS. 

3.6 Conclusion 

Here, for the first time, an immunofluorescent labelling and a NGS approach were used to 

investigate OXPHOS protein abundance and to screen for genome-wide changes in mtDNA 

mutations, respectively, in the colorectal mucosa of i) obese individuals compared with non-

obese Controls and ii) following the effects of massive weight loss in initially obese individuals 

after bariatric surgery. This revealed that individuals with greater adiposity and older age 

comprise significantly more complex I and IV deficient crypts in the human colorectal mucosa. 

Contrarily, neither great levels of adiposity nor significant and sustained weight loss resulted 
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in significant differences in mtDNA mutations between the study groups. In summary, my 

findings provide evidence that adults with greater adiposity and older age have reduced 

OXPHOS protein abundance in the human colorectal mucosa. Deliberate weight loss following 

bariatric surgery does not affect the expression of OXPHOS protein abundance at least at 6 

months follow-up. It remains to be discovered whether increased OXPHOS protein 

deficiencies in the human colorectal mucosa contribute to age related CRC risk or whether it 

is a non-causal age-associated phenomenon. 
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4 Effects of adiposity and weight loss on microRNA expression in the 

colorectal mucosa (The BOCABS Study) 

4.1 General introduction 

A detailed description about miRNAs can be found in the Introduction Chapter (see section 

1.3). 

In brief, every nucleated cell contains miRNAs which are small (approximately 22 nucleotides 

long), single stranded, non-coding RNA molecules, that regulate gene expression at the post-

transcriptional levels (Heneghan et al., 2010). MiRNAs bind to the complementary region in 

the 3’ –untranslated mRNA regions which in turn regulates translation of mRNA to protein 

(Lai, 2002) including a wide range of key cellular molecules such as transcription factors, 

signalling proteins and RNA binding proteins (Ding et al., 2018). 

MiRNAs play crucial roles in many biological processes including cell proliferation, 

differentiation and apoptosis. Dysregulated patterns of miRNA expression contribute to 

pathological mechanisms and are implicated in tumorigenesis, including the development of 

CRC (Heneghan et al., 2010, Van Roosbroeck and Calin, 2017). Several studies, summarised in 

a recent review, have revealed the roles of miRNAs as tumour suppressor genes (TSG) and 

oncogenes (Ding et al., 2018). Aberrant patterns of miRNA expression can activate pathways 

associated with CRC, for example the WNT signalling pathway (Ding et al., 2018). Obesity is a 

major risk factor for CRC and aberrant patterns of miRNA have been observed in those with 

obesity (Esau et al., 2004, Lin et al., 2009, Xie et al., 2009) (see section 1.4.6). An inverse 

pattern of miRNA expression in differentiating adipocytes and obese tissue has been observed, 

for example miRNAs induced during adipogenesis with their primary role being increased and 

accelerated development of fat cells, were reported to be downregulated in obesity (Xie et 

al., 2009). This shows that obesity can result in a loss of miRNAs that describe fully 

metabolically active and differentiated adipocytes (Heneghan et al., 2010). It is believed that 

these modifications occur due to chronic inflammation present in obese adipose tissue 

(Heneghan et al., 2010). Moreover, weight loss, including weight loss following bariatric 

surgery, is associated with changes in miRNA expression (see section 1.4.7) and it appears 

that significant and sustained weight loss may reverse aberrant patterns of miRNA expression 

that accompany excess adiposity. 
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Obesity is a major risk factor for CRC risk and deliberate weight loss in initially obese 

individuals appears to lower CRC risk (Afshar et al., 2018, Schauer et al., 2019). If dysregulation 

of miRNA expression in obesity is causal for CRC risk, then one would anticipate that weight 

loss would “normalise” miRNA expression in this tissue. However, with the exception of the 

study reported by Afshar (2016a), there is no evidence of the effects of weight loss following 

bariatric surgery on the expression of miRNAs in the colorectal mucosa of humans. 

 

4.2 Hypotheses 

The hypotheses for this study were: 

 MiRNA expression in the colorectal mucosa is dysregulated in obese compared with 

non-obese adults. 

 Weight loss following Roux-en-Y gastric bypass (RYGB) in initially obese adults 

“normalises” miRNA expression in the colorectal mucosa. 

 

4.3 Aims 

The aims of this study were: 

 To test the above hypotheses by quantifying patterns of miRNA expression in the 

colorectal mucosa of i) matched groups of obese and non-obese adults, ii) obese 

adults before and after bariatric surgery and iii) non-obese adults and adults post-

bariatric surgery.  

 

4.4 Objectives 

The objectives of this study were: 

 To use biological samples (mucosal biopsies) and data from the BOCABS Study (Afshar 

et al., 2018) to investigate effects of obesity, and of deliberate weight loss, on patterns 

of miRNA expression in the human colorectal mucosa. 

 To use Next Generation Sequencing (NGS) to provide global, unbiased, quantification 

of patterns of miRNA expression in colorectal mucosal biopsies. 
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 To quantify miRNA expression in the colorectal mucosa of obese individuals before, 

and at 6 months after, RYGB and in a matched group of non-obese individuals.  

 To select a panel of miRNAs showing the most significant changes in miRNA expression 

from pre- to post-RYGB (excluding miRNAs examined by Dr Sorena Afshar in analysis 

of the same samples (Afshar, 2016a)). 

 To validate the findings from NGS by using quantitative Polymerase Chain Reaction 

(qPCR) to quantify expression of the selected panel of miRNAs in pre- and post-RYGB 

patients and in non-obese adults. 

4.5 Overview of methods 

A detailed description of the experimental procedures and methods for quantifying miRNA 

expression can be found in the Methods Chapter (see section 2.2.3).  

In the BOCABS Study, initially obese participants (n=29) underwent RYBG, sleeve gastrectomy 

or gastric balloon surgery. For the purposes of this study, I selected those participants who 

underwent RYGB (currently the most widely used form of bariatric surgery) and for whom 

there were matched before and after samples of mucosal tissue (n=22). This reduced the 

overall cost of the study and minimised potential confounding due to different surgery types. 

In addition, the BOCABS Study recruited matched non-obese (Control) individuals. 

In brief, RNA was extracted from colorectal mucosal biopsies (see section 2.2.3.1) and a library 

of small RNA was constructed (see section 2.2.3.3 to 2.2.3.5). Next generation sequencing 

(NGS) of miRNAs was carried out (see section 2.2.3.6) and data were analysed using standard 

bioinformatics approaches (see section 2.2.3.7) to identify the most abundantly expressed 

miRNAs (n=1654) in the three groups of participants (i.e. initially obese patients pre- and post 

RYGB and Control (non-obese) participants.  

The following criteria were used to select a panel of differentially expressed miRNAs for 

validation and quantification by qPCR: 

 The top 4 up- and top 4 down-regulated miRNAs with the greatest, and significant, 

fold change in expression between pre- and post-RYBG for which validated miScript 

primer assays were available from Qiagen. 

 MiRNAs that had not been identified by the miRNome array conducted previously by 

Dr Sorena Afshar using these samples (Afshar, 2016a). 
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Then RNA was reverse transcribed into cDNA (see section 2.2.3.8) and miRNA expression was 

quantified by qPCR (see section 2.2.3.9). 

Statistical analyses were performed using IBM® SPSS® Statistics Version 21. The Shapiro-Wilk 

test showed that data were not normally distributed. Consequently, the Mann-Whitney U test 

was used to compare miRNA expression between the obese and non-obese groups and the 

Wilcoxon signed rank test was used to examine miRNA expression in initially obese individuals 

pre- and post-RYBG. Finally, linear regression analyses were used to examine the associations 

of weight loss on changes in patterns of miRNA expression. 

 

4.6 Effects of adiposity and weight loss on miRNA expression in the colorectal 

mucosa identified by Next Generation Sequencing  

4.6.1 Participant characteristics and anthropometry 

Table 4-1 summarises characteristics and anthropometric measurements for those 

participants included in the analysis of miRNA expression in colorectal mucosal biopsies pre- 

and post-RYGB, and of non-obese Control participants from the BOCABS Study. For this 

analysis, data and samples were used from 22 participants for whom paired pre- and post- 

samples were available. Those participants had a mean age of 47 years (range 30.9 to 65.2 

years) and this study group was comprised of more females (n=18; 82%) than males (n=4; 

18%). They had a mean BMI of 42.4 kg/m2 and body fat of 47.6% which dropped to 31.3 kg/m2 

and 36.1%, respectively, at six months follow-up. Their waist: hip ratio was 1.07 and 0.89 for 

males and females which declined to 0.99 and 0.84, respectively, at six months follow-up. 

Non-smoking was a stringent selection and inclusion criterion by the NHS clinical team for 

bariatric surgery candidates, hence no one from the pre-surgery group was known to be a 

current smoker. However, at six months follow-up one participant (5%) had started smoking 

daily and 11 (52%) occasionally.  

The non-obese Control group consisted of 20 participants who had a mean age of 46 (range 

21- 61) years. The group had more females (60%; n=12) than males (40%; n=8) with mean 

BMI of 25.4 kg/m2 (range 20- 30 kg/m2), mean body fat 30.3% (range 21.2- 36.2%) and mean 

waist: hip ratio of 0.93 and 0.82 (range 0.74- 0.95) for males and females, respectively. The 
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majority of participants (60%; n=12) had never smoked, a third (n=6) reported being current 

smokers (smoked daily/ occasionally) and only 10% (n=2) were ex-smokers. 
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 Non-obese Controls 

(n=20) 

Obese pre-surgery 

(n=22) 

Obese post-surgery 

(n=22) 

Control vs pre-

surgery p-value* 

Pre- vs post-surgery 

p-value** 

Age (years) 46.0 (2.6) 47.0 (1.2) - 0.72 - 

Gender N (%)      

     Male  8 (40) 4 (18) - 0.175† - 

     Female 12 (60) 18 (82) - - 

Smoking N (%)      

     Daily 5 (25) 0 1 (5) 0.002† < 0.001‡ 

     Occasional 1 (5) 0 11 (52)   

     Ex-smoker 2 (10) 11 (50) 9 (43)   

     Never smoked 12 (60) 10 (45) 0   

     Missing data 0 1 (4) 0   

Weight (kg) 71.8 (2.8) 114.8 (3.7) 86.3 (3.5) < 0.001 < 0.001 

BMI (kg/m2) 25.4 (0.5) 42.4 (1.4) 31.3 (1.2) < 0.001 < 0.001 

Body fat (%) 30.3 (1.3) 47.6 (1.0) 36.1 (1.5) < 0.001 < 0.001 

Waist (W; cm)      

     Male 95.9 (2.9) 137.3 (2.0) 112.5 (4.5) < 0.001 0.007 

     Female 83.4 (2.2) 117.5 (2.2) 91.9 (3.5) < 0.001 < 0.001 
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W:H ratio      

     Male 0.93 (0.01) 1.07 (0.03) 0.99 (0.03) 0.001 0.067 

     Female 0.82 (0.02) 0.89 (0.01) 0.84 (0.02) 0.01 0.007 

Table 4-1: Characteristics of initially obese participants pre- and post-Roux-en-Y bypass (RYGB) and of non-obese Controls for whom analysis of miRNA expression in the colorectal mucosa was 
conducted 
Data presented as mean (SEM) unless otherwise stated. 
*Unpaired t-test 
**Paired t-test 
† Fisher’s exact test 
‡ Wilcoxon sign test 



128 
 

4.6.2 Total RNA quality and quantity 

RNA was isolated from frozen colorectal mucosal biopsies using the Qiagen miRNeasy Mini Kit 

and its purity and concentration were measured using spectrophotometry as described in the 

Methods (see section 2.2.3.1). The mean extracted RNA concentration was 92.2ng/µL, 

65.8ng/µL and 57ng/µL for the pre- and post-surgery and non-obese Controls, respectively 

(see Figure 4-1 A). However, due to considerable variability in the sizes of biopsies available, 

this concentration ranged from 13.5ng/µL to 167.5ng/µL. The RNA purity was evaluated by 

quantifying absorbance at 260/280 ratio. This showed the same mean value of 2.06 for the 

pre-surgery group and non-obese Controls and a value of 2.05 for the post-surgery group, 

indicating good purity of the RNA (see Figure 4-1 B).  

 

Figure 4-1: (A) RNA concentrations and (B) absorbance at 260/280 ratios for the pre- and post- surgery group and non-obese 
Controls 

 

4.6.3 Genome-wide miRNA expression using Next Generation Sequencing  

Bioinformatics analyses were performed as described in the Methods section 2.2.3.7. A file 

containing all the counts for all miRNAs identified in the samples was obtained and those 

participants with extremely low counts of miRNAs, as indicated in Figure 4-2, were removed. 

Figure 4-3 (A) shows the pre-normalised miRNA counts following the removal of the extremely 

low miRNA counts and Figure 4-3 (B) shows the normalised counts following the application 

of the DESeq2 package in R Studio software. Additionally, the normalised miRNA counts were 

plotted to verify the dispersion (i.e. biological variation from the mean) for each miRNA under 

consideration and a figure can be seen in Appendix S.  
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Figure 4-2: Pre-normalised miRNA counts for all participants. Participants with extremely low miRNA counts are indicated 
with red arrows and these participants were removed from subsequent analyses (green bars: pre-surgery; blue bars: post-
surgery and red bars: non-obese Controls). 

 

 

Figure 4-3: (A) Pre-normalised miRNA counts after removing the low miRNA counts; (B) Normalised miRNA counts (green 
bars: pre-surgery; blue bars: post-surgery and red bars: non-obese Controls). 

A total of 1654 individual miRNAs were identified (see Appendix T). Then the following 

computation and transformation were applied to the miRNA counts and heatmaps were 

produced which are shown in the Appendix: 

 A heatmap of sample to sample correlation of clustered (aggregation of individual 

participants according to participant group, i.e. pre- and post-surgery and non-obese 

Controls) and non-clustered raw miRNA counts is shown in Appendix U.  

 A heatmap of sample to sample correlation of clustered and non-clustered miRNA 

counts after applying a variance of stabilising transformation (VST) to the count of the 

miRNAs is show in Appendix V. This transformation yields a distribution with 
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homoscedastic values, which means that values have a constant variance along the 

range of mean values, and was used to check for outliers, clustering and linear analysis. 

 A heatmap of sample to sample correlation of clustered and non-clustered miRNA 

counts after computing the binary logarithms to the miRNA counts is shown in 

Appendix W. 

 A heatmap of sample to sample correlation of clustered and non-clustered miRNA 

counts after computing the binary logarithms to the miRNA counts is shown in 

Appendix X. 

Then a sample to sample principle component analysis (PCA) was performed on the VST-

adjusted miRNA counts (see Figure 4-4). The PCA demonstrates clear patterns and clustering 

of miRNA counts of the individuals within each of the three groups. Patterns of miRNA 

expression differed between participant groups with most of the pre-RYGB group being 

clustered separately from the same individuals post-RYGB. In addition, there was significant 

overlap between the non-obese Controls and the initially obese individuals post-RYGB.  There 

are three apparent outliers (green dots) from the pre-RYGB group who were clustered with 

the post-RYGB group and with the non-obese Controls. None of the participants 

characteristics examined including measures of adiposity (initial weight, BMI, body fat 

percentage, waist: hip ratio), diet, physical activity or medication use, explained this 

differential pattern of miRNA expression. 
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Figure 4-4: Outcomes of PCA on VST adjusted miRNA counts for all 3 groups of participants (green dots: obese participants 
pre-surgery; blue dots: initially obese participants post-surgery and red dots: non-obese Controls). 

Following PCA analysis, further computation and transformation was applied to the miRNA 

counts, i.e. to determine how frequently each copy of miRNA was present across all samples, 

and heatmaps of the top 80 miRNA counts are shown in the Appendices Y and Z: 

 A heatmap of the top 80 clustered and non-clustered miRNA counts is shown in 

Appendix Y. Clustering refers to the aggregation of individual participants according to 

participant group, i.e. pre- and post-surgery and non-obese Controls. 

 A heatmap of the top 80 scaled (based on a scaled row z-score ranging from -3 to 3) 

for clustered and non-clustered miRNA counts is shown in Appendix Z.  

Appendix AA shows a bar plot of the top 80 miRNA counts for all 3 participant groups from 

which the top five miRNAs were let-7g-5p, let-71-5p, miR-192-5p, miR-200b-3p and miR-26a-

5p.  

Finally, using data for all 1654 miRNAs identified by the NGS, the fold changes in miRNA 

expression between participant groups were investigated.  

Comparison of genome-wide miRNA expression in obese individuals before RYGB with that in 

the non-obese Controls: A total of 112 significant miRNAs were detected (see Appendix BB) 

which are depicted in a volcano plot in Figure 4-5 (and in Appendix CC with their name 

annotations). The top five miRNAs with the most significant fold change, i.e. with the lowest 

p-value (p< 0.0001), included miR-200b-5p which was downregulated (fold change = 1.5) and 
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miR-30a-5p, miR-31-5p, miR-215-5p and miR-215-3p which were upregulated (fold changes 

2.7, 6.0, 3.2, and 3.6, respectively). Figure 4-6 provides a heatmap of the miRNAs, for which 

expression differed significantly between the obese individuals pre-RYGB and the non-obese 

Controls, across all participants (see Appendix DD for the clustered heatmap). Within this 

heatmap, each row represents a significant miRNA and each column a sample from a 

participant (green bars: obese participants pre-surgery; blue bars: initially obese participants 

post-surgery and red bars: non-obese Controls). The colour, and intensity of that colour, of 

each of the boxes represent the extent of change in expression for each individual miRNA 

between the obese participants pre- and post-RYGB and the non-obese Controls. In this 

heatmap, blue boxes represent up-regulated miRNAs and green down-regulated miRNAs. The 

top 9 miRNAs which were significantly upregulated in the obese compared with Controls were 

(in this order): miR-31-5p, miR-31-3p, miR-215-3p, miR-338-3p, miR-215-5p, miR-450a-5p, 

miR-30a-5p, miR-126-5p and miR887-3p (fold-changes 6.0, 4, 3.6, 3.5, 3.2, 3.0, 2.7, 2.6 and 2.4, 

respectively). These miRNAs were consistently upregulated in most of the obese individuals 

in this study. Contrarily, the top 9 miRNAs which were significantly downregulated in the 

obese compared with the Controls were (in this order): miR-1247-3p, miR-486-3p, miR-3150b-

3p, miR-642b-5p, miR-3196, miR-552-5p, miR-552-3p, miR-196a-5p and miR-1247-5p (fold-

changes 3.8, 3.5, 2.8, 2.8, 2.7, 2.7, 2.5, 2.5 and 2.5, respectively). These miRNAs were 

consistently downregulated in most obese individuals in this study. 
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Figure 4-5: Volcano plot illustrating significant fold change for the miRNAs (each coloured dot represents an individual 
miRNA) which differed in abundance between obese individuals pre-RYGB and the non-obese Controls. 

 

 

Figure 4-6: Heatmap of the miRNAs, for which expression differed significantly between the obese participants pre-RYGB and 
the non-obese Controls, for all participants (green bars: pre-RYGB; blue bars: post-RYGB and red bars: Control group). 
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Comparison of genome-wide miRNA expression in obese individuals before and after RYGB: A 

total of 60 significant miRNAs were detected (see Appendix EE) which are depicted in a 

volcano plot in Figure 4-7 (and in Appendix FF with their name annotations). The top five 

miRNAs with the most significant fold change, i.e. with the lowest p-value (p< 0.0001), 

included miR-31-5p, miR-204-5p, miR-215-5p, miR-215-3p and miR-30a-5p which were 

downregulated (fold changes 6.3, 2.2, 3.0, 3.1 and 2.1, respectively). Figure 4-8 provides a 

heatmap of the 45 miRNAs for which expression differed significantly between the obese 

individuals pre- and post-RYGB, across all participants (see Appendix GG for the clustered 

heatmap- clustering is referred to the aggregation of individual participants according to 

participant group, i.e. obese pre- and post-RYGB and non-obese Controls). Similarly, to the 

previously explained heatmap, each row represents a significant miRNA and each column a 

sample from a participant (green bars: obese participants pre-RYGB; blue bars: initially obese 

participants post-surgery and red bars: non-obese Controls). The colour, and intensity of that 

colour, of each of the boxes represent the extent of change in expression for each individual 

miRNA between the obese participants pre- and post-RYGB and the non-obese Controls. In 

this heatmap, blue boxes represent up-regulated miRNAs and green down-regulated miRNAs. 

The top 5 miRNAs which were significantly upregulated in the obese individuals post-RYGB 

compared with pre-RYGB were (in this order), miR-211-5p, miR-4516, miR-1247-3p, miR-552-

5p and miR-552-3p (fold changes 2.8, 2.7, 2.7, 2.6 and 2.5, respectively). These miRNAs were 

consistently upregulated in most of the initially-obese individuals post-RYGB in this study. 

Contrarily, the top 5 miRNAs which were significantly downregulated in the obese individuals 

post-RYGB compared with the pre-RYGB were (in this order): miR-31-5p, miR-31-3p, miR-424-

5p, miR-215-3p and miR-892c-3p (fold changes 6.3, 4.8, 3.4, 3.1 and 3.0, respectively). These 

miRNAs were consistently downregulated in most initially-obese individuals post-RYGB in this 

study. 
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Figure 4-7: Volcano plot illustrating significant fold change for the miRNAs (each coloured dot represents an individual 
miRNA) which differed in abundance between the obese individuals pre- and post-RYGB. 

 

Figure 4-8: Heatmap of the miRNAs, for which expression differed significantly between the obese participants pre- and 
post-RYGB, for all participants (green bars: pre-RYGB; blue bars: post-RYGB and red bars: Control group). 

Comparison of genome-wide miRNA expression in obese individuals after RYGB with that in 

the non-obese Controls: No significant miRNAs were detected (see Figure 4-9). 
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Figure 4-9: Volcano plot illustrating no significant fold change for the miRNAs identified which did not differ in abundance 
between the obese individual post-RYGB and non-obese Controls. 

A total of 36 identical miRNAs differed significantly in both the comparisons of i) the obese 

participants pre-RYGB with the non-obese Controls and ii) the initially obese individuals pre- 

and post-RYGB (see Appendix HH). These differentially expressed miRNAs are predicted to be 

implicated in pathways linked with inflammation, obesity and cancer (see Appendix HH) 

(Vlachos, 2015). Of these 36 miRNAs, the following 13 including miR-552-5p, miR-3150, miR-

455-3p, miR-3656, miR-3196, miR-671-5p, miR-4516, miR-450a-5p, miR-655-5p, miR-4284, 

miR-1247-3p, miR-203a-3p and miR-215-3p were not detected by the probes on the miRNome 

array which was conducted previously by Dr Sorena Afshar in analysis of the same samples 

(Afshar, 2016a).  

Both the miRNome array and the NGS (by MiSeq) identified a total of 44 identical and 

significant miRNAs when comparing the initially obese individuals pre- and post-RYGB (see 

Figure 4-10). The majority of miRNAs had a differential fold regulation in the opposite 

direction of change, i.e. a downregulation with NGS and up-regulation using the miRNome 

array, with the exception of 15 miRNAs which showed significant up-regulation in the both 

the NGS and miRNome array. These included: mir-552-3p, miR-196a-5p, miR-196b-5p, miR-

1247-5p, miR-3150b-3p, miR-147b, miR-1262, miR-203a, miR-210-3p, miR-185-5p, miR-200b-

5p, miR-125b-5p, miR-200b-3p, miR-191-5p and miR-28-3p (see Figure 4-10). Since it may be 



137 
 

more difficult to detect accurately the fold change in expression between two participant 

groups for miRNAs with very low levels of expression, I checked the Ct-value for these 29 

miRNAs obtained using the miRNome array. The mean Ct value was 26.2 for the obese 

participants pre-surgery and 26.6 for the same individuals post-surgery. 6 miRNAs i.e. miR-31-

5, miR-30c-2-3, miR-129-5, miR-181a-3, miR-450a and miR-582-5 had CT values above 30, 

which is indicative of low expression and might have explained the differential direction of 

fold regulation between the two techniques (see Appendix II) (Afshar, 2016a).  

 

Figure 4-10: Fold change in expression determined by two techniques, miRNome array and NGS, for 44 miRNA that were 
differentially expressed in initially obese individuals before and after RYGB. 

Furthermore, when comparing miRNA expression in the initially obese group pre- and post-

surgery, NGS picked up 16 significant miRNAs that were not detected by the probes on the 

miRNome array which was conducted previously by Dr Sorena Afshar in analysis of the same 

samples (Afshar, 2016a) (see Figure 4-12). These miRNAs are predicted to be involved in KEGG 

(Kyoto Encyclopedia of Genes and Genomes) pathways implicated in obesity inflammation 

and cancer, including CRC. The cancer-related pathways include TGF-β, MAPK, Wnt and 

Hedgehog signalling pathways (see Figure 4-11) (Vlachos, 2015). From these 16 miRNAs, a 
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panel of 8 miRNAs was selected by choosing the top 4 up- (miR-4516, miR-3196, miR-1247-3p 

and miR-671-5p) and the top 4 down-regulated miRNAs (miR-31-3p, miR-204-3p, miR-215-3p 

and miR-892c-3p) for which validated primers were available from Qiagen. This panel was 

used to validate the NGS screening data by quantifying miRNA expression using qPCR (see 

Figure 4-13).  
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Figure 4-11: Predicted KEGG pathways in which the 16 differentially expressed* miRNAs are involved. These pathways were 
identified using DIANA Tools (Vlachos, 2015). *Differentially and significantly expressed in initially obese individuals before 
and after RYGB as measured by NGS.  
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Figure 4-12: Change in expression (fold up- or down-regulation) of 16 significant miRNAs for which expression differed in 
initially obese individuals before and after RYGB. These differentially expressed miRNA were identified by NGS, but not by the 
miRNome array 

 

 

 

Figure 4-13: A) In the comparison of Obese versus non-Obese Controls a total of n=112 miRNAs were identified by NGS (see 
Appendix BB for individual miRNA names) out of which n=8 were selected for validation by qPCR; B) In the comparison of 
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pre- versus post-RYGB a total of n=60 miRNAs were identified by NGS (see Appendix EE for individual miRNA names) out of 
which n=8 were selected for validation by qPCR 

An in-silico target prediction analysis tool by Vlachos (Vlachos, 2015) was utilised to detect 

potential Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for predicted 

mRNA gene targets of these 16 miRNAs (see Figure 4-14). The microT-CDS algorithm was used 

to undertake the enrichment analysis where a p-value for each one of the 4 miRNAs was 

calculated and a merged p-value for each pathway was obtained using a Fisher’s meta-analysis. 

The p-value shown illustrates the 1 minus the probability that the shown pathway (see Figure 

4-14) is enriched with gene targets for at least one of the 4 selected miRNAs (the orange colour 

illustrates a higher probability). Many KEGG pathways implicated in metabolism were 

enriched for predicted mRNA gene targets identified by NGS but not the miRNome array, 

including pathways in morphine addiction, lysine degradation, glycosphingolipid biosynthesis, 

ECM-receptor interaction, drug metabolism and prion disease which play important roles in 

the morphogenesis and maintenance of cell and tissue structure and function. 
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Figure 4-14: Heatmap illustrating KEGG pathway unions for predicted mRNA gene targets of the 16 significant miRNAs for 
which expression differed in initially obese individuals before and after RYGB. These differentially expressed miRNA were 
identified by NGS, but not by the miRNome array (log(p-value), orange colour illustrates higher probability) (Vlachos, 2015). 

 

4.7 Effects of adiposity and weight loss on expression of selected panel of miRNAs in 

the colorectal mucosa measured using qPCR 

Figure 4-15 shows expression of the selected panel of miRNAs quantified in the colorectal 

mucosa of obese individuals (pre-RYGB) and of the non-obese Controls. MiR-4516 and miR-
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892c-3 were the most abundantly expressed miRNAs in the panel in both the obese and non-

obese individuals. Of the 8 miRNAs, four showed significantly higher expression in the obese 

compared with non-obese Controls i.e. miR-31-3, miR-215-3, miR-3196 and miR-4516 which 

were upregulated 143-fold, 15-fold, 2.6-fold and 2.6-fold, respectively. For the other 4 miRNAs 

i.e. miR-204-3, miR-671-5, miR-892c-3 and miR-1247-3, expression tended to be higher in the 

obese but the differences were not significant.  

When quantified by NGS, miR-3196 was downregulated in the obese compared with the non-

obese Controls. However when quantified using qPCR miR-3196 was upregulated in the obese 

compared to the non-obese Controls and hence, did not validate due to the different direction 

of expression. For this reason miR-3196 will be excluded from any subsequent analysis in this 

comparison group. 

 

 

Figure 4-15: MiRNA expression determined by qPCR in the colorectal mucosa of obese individuals pre-RYGB and non-obese 
Controls.  

Figure 4-16 shows expression of the selected panel of miRNAs quantified in the colorectal 

mucosa in the initially obese group before and after RYGB. As for the previous comparison, 
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miR-4516 and miR-892c-3 were the most abundantly expressed miRNAs in these participants. 

At 6 months after surgery, expression of miR-31-3, miR-215-3 and miR-3196 was 15.9, 7.3 and 

1.2% lower than pre-surgery, and levels of expression of these miRNAs following RYGB were 

similar to those of the non-obese Controls. In contrast, there were no significant changes in 

expression of miR-204-3, miR-671-5, miR-892c-3, miR-1247-3 and miR-4516 following RYGB 

surgery.  

 

 

Figure 4-16: MiRNA expression determined by qPCR in the colorectal mucosa of the initially obese individuals pre- and post-
RYGB.  

Figure 4-17 shows miR-31-3, miR-215 and miR-3196 expression for each initially obese 

individual before and after RYGB, which were significant. For the large majority of individuals, 

the fall in miR-31-3, miR-2115 and miR-3196 expression after bariatric surgery was clear and 

substantial but one, two and one, respectively, individual(s) showed a contrary change.  

Although the trend for the majority of the participants, for all 3 miRNAs, shows a 

downregulation in the miRNAs quantified, the inter-individual variation in miRNA change for 

the remaining participants is rather great. 
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Figure 4-17: MiRNA expression in the colorectal mucosa for each initially obese individual before and after RYGB. A) MiR-31-
3p expression B) MiR-215-3p expression C) MiR-3196 expression. 

When quantified by NGS, miR-3196 was upregulated in the post-RYGB group compared with 

the pre-RYGB group. However when quantified using qPCR miR-3196 was downregulated in 

the post-RYGB group compared to the pre-RYGB group and hence, did not validate due to the 

different direction of expression change. For this reason miR-3196 will be excluded from any 

subsequent analysis in this comparison group.  

4.7.1 Associations between weight loss following RYGB and miRNA expression in the 

colorectal mucosa 

The relationship between the degree of weight loss following RYGB (post-surgery weight 

minus baseline weight), and changes in miRNA expression (follow-up miRNA expression minus 

baseline miRNA expression) in the colorectal mucosa was examined using linear regression. 

There were no statistically significant correlations between changes in body weight, i.e. the 

degree of weight loss, and expression of any of the 3 miRNAs examined (p>0.05) (see Table 

4-2). The R values show a low degree of correlation for all 3 miRNAs (R<0.224) and the R2 

indicates that less than 5% of the total variation in miRNA expression can be explained by 

weight loss following RYGB (see Table 4-2). 
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 Mean change in 

miRNA 

expression 

between pre- 

and post-RYGB 

R value R2 value p-value 

miR-31 -1.19 (2.0) 0.212 0.045 0.343 

miR-215 -5.14 (6.9) 0.224 0.050 0.316 

miR-4516 2.55 (601.6) 0.051 0.003 0.823 

Table 4-2: Relationship between weight loss following RYGB and miRNA expression (mean (SD)) in the colorectal mucosa at 
pre- and post-surgery. 

Then a second analysis was performed using the Mann-Whitney-U test, as data were not 

normally distributed, where the median weight loss (28kg) was used as a cut-off to investigate 

if the changes in miRNA expression differed between the participants who lost up to 28kg 

weight (range 10- 27.3kg) or lost more than 28kg weight (range 29- 59kg) at 6 months follow-

up. No significant differences could be detected (p>0.05) (see Table 4-3). Only miR-215 was 

close to significance (p=0.053) and it is likely that if the sample size was bigger, significance 

would have been detected. Even though data were not normally distributed, the analysis was 

repeated using the one-way ANCOVA which is a robust statistical test, to directly compare 

changes in miRNA expression over the period (pre- to post-surgery) in each of the groups (lost 

<28kg versus lost >28kg) where gender, baseline/ pre-surgery BMI and age were included as 

covariates. Once more, no significant differences could be detected (p>0.05) (see Table 4-3). 

 

miRNA Lost weight <28 kg 

(n=11) 

Lost weight >28kg 

(n=11)  

P-value* 

 

P-value† 

 

miR-31 -0.005 (-2.6 – 1.5) -1.477 (-9.2 – 0.0) 0.061 0.213 

miR-215 -0.429 (-13.8 – 3.6) -6.606 (-26.7 – 1.6) 0.053 0.086 

miR-4516 274.1 (-698.5 - 801) -198.8 (-1499 – 1040) 0.200 0.254 

Table 4-3: Mean change in expression of selected miRNA in the colorectal mucosa of those who lost <28kg and >28kg 
following RYGB at 6 months follow-up. Data are presented as Median (range). 
*Mann-Whitney-U test 
†Adjusted ANCOVA test 
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These results show that changes in miRNA expression are not associated and cannot be 

predicted based on the degree of weight loss following RYGB. Furthermore, changes in miRNA 

expression do not differ between participants who lost more or less than 28kg body weight 

over the study period, even when adjusted for potential confounding factors including gender, 

baseline BMI and age. 

4.7.2 Predicted biological roles of the 8 selected miRNAs 

An in-silico target prediction analysis tool by Vlachos (Vlachos, 2015) was utilised to detect 

potential Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for predicted 

mRNA gene targets of the 8 selected miRNAs analysed (see Figure 4-18). The microT-CDS 

algorithm was used to undertake the enrichment analysis where a p-value for each one of the 

8 miRNAs was calculated and a merged p-value for each pathway was obtained using a Fisher’s 

meta-analysis. The p-value shown illustrates the 1 minus the probability that the shown 

pathway (see Figure 4-18) is enriched with gene targets for at least one of the 8 selected 

miRNAs (the orange colour illustrates a higher probability). Many KEGG pathways implicated 

in metabolism were enriched for predicted mRNA gene targets of my selected miRNAs, 

including pathways in biotin metabolism, protein processing in endoplasmic reticulum and 

ECM-receptor interaction all of which play important roles in the morphogenesis and 

maintenance of cell and tissue structure and function. 
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Figure 4-18: Heatmap illustrating KEGG pathway unions for predicted mRNA gene targets of the 8 selected miRNAs (log(p-
value), orange colour illustrates higher probability) (Vlachos, 2015). 

 

4.8 Discussion 

To my knowledge, apart from Afshar (2016a), no previous publications have investigated the 

effects of weight loss (following bariatric surgery) on the expression of miRNAs in the human 

colorectal mucosa. I have extended Afshar’s analysis by using NGS which provides a wider, 

unbiased assessment of genome-wide miRNA expression than is possible by the miRNome 

array approach used by Afshar (2016a). 

4.8.1 The effect of obesity on miR-31, miR-215 and miR-4516 in the colorectal mucosa 

Given the link between adiposity and CRC risk, my finding of increased miR-31 expression in 

human colorectal mucosal biopsies in the obese when compared with the non-obese Controls 

is consistent with the role of miR-31 as an oncogene. Similarly, a study by Kurylowicz (2017) 

using NGS also found that miR-31 was significantly upregulated in obese participants, however 

in a different tissue, when comparing 44 samples of visceral and subcutaneous adipose from 
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normal weight (7 individuals), obese (10 individuals) and obese post-bariatric surgery (10 

individuals). Another study investigated the baseline miRNA signature in visceral fat (VF) and 

subcutaneous fat (SF) of the adipose tissue in 20 bariatric-surgery patients (mean BMI 42.4 

kg/m2) and 8 non-obese (mean BMI 24.6 kg/m2) and showed differential miRNA profiles in 

obese SF and VF; 12 miRNAs were upregulated, miR-31 was amongst them, and 6 were down 

regulated in the VF of obese (Liao et al., 2018). However, it is important to note that both of 

these studies were conducted in adipose tissue. 

Given the link between adiposity and CRC risk and the role of miR-215 as a tumour suppressor 

gene, my finding of increased miR-215 expression in human colorectal mucosal biopsies in the 

obese when compared with the non-obese Controls is unexpected. However this finding is line 

with findings from by Kurylowicz (2017) who also observed increased expression of miR-215 

in the obese group when compared with normal weight adults. Potential explanations for this 

observation may be: 

 With the role of miR-215 being a TSG, a reduction and not an increase of this miRNA 

was expected in the obese, (downregulated miR-215) which would be suggestive of an 

increased CRC risk. However, miR-215 was the only miRNA of the panel examined 

which has been previously described to play a tumour suppressive role in CRC and, 

therefore the assumption of a reduced CRC risk in the obese based on one single 

miRNA (miR-215 upregulation) cannot be made. More miRNAs with the role of a TSG 

should be examined to draw coherent and strong conclusions on CRC risk. The 

observed changes in miR-215 expression with greater adiposity in this study and the 

study by Kurylowicz (2017), although the latter was in the adipose tissue, may be 

unrelated to pathology. It is known that one single miRNA can target multiple 

pathways, hence miR-215 may be involved in more and other pathways than CRC, for 

example obesity and therefore be unrelated to CRC in this context. Additionally, it is 

important to keep in mind that the tissue examined in this study was ‘healthy’ and not 

derived from tumour tissue, hence the observed changes in miR-215 expression might 

be within the ‘normal range’ and so not indicative of altered CRC risk. 

 Recruitment of the non-obese Controls occurred following referral for flexible 

sigmoidoscopy or colonoscopy for GI symptoms. Even though patients were only 

recruited if their endoscopy was normal and no pathology was found, this method for 

recruitment might have selected unhealthy participants with undiagnosed GI 

pathology. A systematic review and other studies have observed neoplasia, adenoma 
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and polyp miss rates ranging between 6-27% following lower GI endoscopy (Hixson et 

al., 1991, Bensen et al., 1999, van Rijn et al., 2006, Kaltenbach et al., 2008) which 

suggests that the diagnosis of pathology in some Control participants could have been 

missed. However, as adenomas do not commonly cause symptoms, it is not expected 

to find a higher adenoma miss rate in the non-obese Controls who were symptomatic 

patients with a normal endoscopy, compared with the obese patients. Finally, the 

normal weight Controls (n=7) from the study by Kurylowicz (2017) which detected 

similar changes in miRNA expression patterns to my study, underwent elective 

cholecystectomy or were operated for inguinal hernia. Since the observed effects in 

miRNA expression were similar in both studies (by Kurylowicz (2017) and mine), it 

suggests that recruitment strategy for the Controls in the BOCABS Study was 

satisfactory to enable detection of changes in miRNA expression when compared with 

adults with severe adiposity, i.e. BMI above >40 kg/m2. 

 The differential miRNA expression pattern depending on the cellular composition of 

tissue has been noted for multiple miRNAs, especially for TSGs including the miR-

143/145 cluster (Kent et al., 2014). The miR-134/145 cluster is more expressed in 

mesenchymal cells (i.e. fibroblasts and smooth muscle cells) than in colonic epithelial 

cells and failure to consider this issue could lead to misinterpretation of differential 

miRNA expression patterns (in CRC) (Kent et al., 2014). Furthermore, a reduction or 

even loss in miRNA expression acting as TSG from normal epithelial cells has been 

reported when they differentiate and acquire malignant features, due to the shift in 

cellular composition in CRC when compared with normal colon (Kent et al., 2014). In 

previous work on the colorectal mucosal biopsy samples examined here, cellular 

biopsy composition was investigated by measuring smooth muscle actin (SMA) and 

Cytokeratin 20 (CK20) as markers of mesenchymal and epithelial cells, respectively 

(Afshar, 2016a). The SMA: CK20 ratio did not differ between the non-obese Controls 

and the individuals pre- and post- RYGB, therefore it is not anticipated that differences 

in the cellular composition of biopsies from the different study groups would be a 

confounding factor for miRNA expression in the present study. In addition, for miR-

215, the cellular make-up of biopsies is unlikely to be a confounder because  Kent (2014) 

reported no miR-215 expression in lymphocytes, endothelial, smooth muscle, 

fibroblasts and red blood cells, whereas miR-215 was highly expressed in epithelial 
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cells. Therefore, a shift in cellular composition in obesity is not expected to affect miR-

215 expression.  

 

To date, there is no literature published about the role of miR-4516 as a TSG or an oncogene 

in the colorectal mucosa, therefore it is difficult to discuss whether the increased expression 

of this miRNA observed in the obese individuals here is considered abnormal.  

4.8.2 Main findings 

I found that obesity resulted in significant overexpression of miR-31, miR-215 and miR-4516 

in the human colorectal mucosa when compared to that in the colorectal mucosa of non-

obese individuals. I also observed that a mean 28.5kg weight loss by RYGB led to a significant 

fall in expression of miR-31 and miR-215 in initially obese individuals at 6 months follow-up, 

and these expression levels at 6 months follow-up were similar to those observed in the non-

obese Controls. 

4.8.2.1 4.8.2 Interpretation of main findings 

In the introductory chapter (see section 1.4.6), I have reviewed evidence that obesity in 

humans is associated with abnormal patterns of miRNA expression. In addition, there is 

evidence that patterns of miRNA expression are “normalised” to some extent following 

significant and sustained weight loss as a result of bariatric surgery. However, most of this 

evidence has been obtained from measurements made in blood, only two studies have 

reported miRNA expression in adipose tissue (Kristensen et al., 2017, Liao et al., 2018) and 

there are no comparable data, apart from those by (2016a), from measurements made in the 

colorectal epithelium. 

Here I used a NGS method, which is a broader, unbiased assessment of genome-wide miRNA 

expression than is possible by the miRNome array approach used by Afshar in the same 

samples (2016a), and this made the detection of more miRNA targets feasible. The miRNome 

array approach screened for the 1008 most abundantly expressed and best characterised 

miRNAs in the human genome, but use of NGS here detected expression of 1654 miRNA, 39% 

more targets, with the potential to provide more novel insights. Then, I extended and 

validated the investigation by using a robust method, qPCR, for quantification of a selected 

miRNA panel on an individual participant level. I found that, 4 (miR-31, miR-215, miR-3196 

and miR-4516) of the 8 miRNAs quantified by qPCR, following assessment by NGS, were 

significantly overexpressed in obese individuals compared with non-obese Controls in the 
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human colorectal mucosa, as hypothesised (see Table 4-4), although miR-3196 showed a 

different direction of expression change by qPCR compared to NGS and was hence excluded 

from further analyses. Furthermore, 28.5kg weight loss following RYGB in initially obese adults, 

significantly reduced and normalised miR-31, miR-215 and miR-3196 expression at 6 months 

follow-up in the human colorectal mucosa to levels which were similar to those of the non-

obese Controls, as hypothesised (see Table 4-4) but once more, miR-3196 showed a different 

direction of expression change by qPCR compared to NGS and was hence excluded from 

further analyses. The expression of the remaining miRNAs (miR-204, miR-671, miR-892, miR-

1247 and miR-4516) examined also fell, although it did not reach significance. 

 

miRNA Chromosomal 

location 

Association with 

obesity 

Effects of weight 

loss following RYGB 

miR-31 9p21.3 ↑ ↓ 

miR-215 1q41 ↑ ↓ 

miR-4516 16p13.3 ↑ No significant 

change 

Table 4-4: Summary of effects of obesity and of weight loss (following RYGB) on miRNA expression in the human colorectal 
mucosa. 

4.8.3 The effect of weight loss on miR-31 and miR-215 in the colorectal mucosa 

Given the link between adiposity and CRC risk, my finding of reduced miR-31 expression in 

human colorectal mucosal biopsies in the post-RYGB group following weight loss is consistent 

with the role of miR-31 as an oncogene and is indicative of a reduction in CRC risk following 

weight loss. My finding of reduced miR-215 expression in human colorectal mucosal biopsies 

in the post-RYGB group following weight loss is entirely consistent given the earlier 

observation of upregulated miR-215 in the initially obese group (found in the study here and 

in the study by Kurylowicz (2017) (see 4.8.1)). Hence, a reduction in miR-215 expression 

following weight loss, follows the expected expression pattern of miR-215. Although 

Kurylowicz (2017) observed increased miR-215 expression in obese adults, no results were 

reported for the effect of weight loss on this miRNA.  
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4.8.4 MiR-4516 is differentially expressed in obese individuals when compared with non-

obese, but is not modulated following RYGB  

 

Expression of miR-4516 in the colorectal mucosa was significantly higher (2.6-fold) in the 

obese than in the non-obese group as hypothesised, but, unexpectedly, miR-4516 expression 

was not altered by weight loss following RYGB. Potential explanation for this observation may 

be: 

 It is possible that miR-4516 is not responsive to weight loss or, that the weight loss 

achieved by participants, although significant, was not sufficient to result in altered 

expression patterns of miR-4516, as they remained in the obese range even post-RYGB. 

Therefore, more research is needed to understand and describe the role of the 

differential expression pattern of the novel miRNA, miR-4516, observed with different 

levels of adiposity.  

MiR-4516 is a novel miRNA which is expressed in several human tissues including the 

colorectal mucosa but whose functions remain to be clarified.  

4.8.5 Tissues specific action as either a TSG or oncogene for miR-31 and miR-215 

Since miRNA expression is tissue specific (Lim et al., 2005), the same miRNA can act as an 

oncogene in one cell type and as a TSG in another cell type because of its different targets and 

mechanism of action (Svoronos et al., 2016). This ambivalent tissue dependent action in 

tumourigenicity has been established for both miR-31 and miR-215 (Yu et al., 2018, 

Vychytilova-Faltejskova and Slaby, 2019) whereas to date less is known about the novel 

miRNAs including miR-3196 and miR-4516. 

4.8.6 MiR-31 as an oncogene in CRC 

Many functional studies have yielded findings, which confirmed the role of miR-31 as an 

oncogene in CRC. A study in intestinal mice stem cells revealed that miR-31 overexpression 

induced proliferation and repressed apoptosis via the TGFβ, BMP and Wnt pathways (Tian et 

al., 2017). MiR-31 targets SMAD3, SMAD4 and BMPR1A which are involved in the TGF-β/BMP 

pathway and, AXIN1, DKK1 and GSK3β which are involved in the WNT signalling pathway, 

leading to proliferation and repression of apoptosis (Clevers et al., 2014, Reynolds et al., 2014). 

Interestingly, it has been reported that KRAS upregulates miR-31 expression in CRC cells via 

the MARK pathway (as opposed to the PI3K/AKT pathway), allowing it to target TSGs, i.e. 
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RASA1, of the RAS/MAPK pathway leading to increased cell proliferation (Kent et al., 2016, Yu 

et al., 2018). Chen (2014b) showed that miR-31 repressed HIF-1α, a tumour suppressor, in CRC 

samples and cell lines. E2F2, a protein that correlates with regulation of metastasis and 

invasion in CRC, was shown to be regulated by miR-31 in human colon cancer cell lines which 

resulted in increased proliferation (Li et al., 2015). Furthermore, EZH2 knockdown led to miR-

31 overexpression and vice versa miR-31 knockdown resulted in increased EZH2 levels in colon 

cancer cell lines, and this inverse relationship was also observed in a database of 301 CRC 

patients (Kurihara et al., 2016). Another study also found miR-31 overexpression in 30 CRC 

patients and further investigated in human HT29 CRC cells its target and function; it revealed 

that miR-31 knockdown supressed proliferation, migration, invasion and, induced cell cycle 

arrest and apoptosis, whereas its overexpression resulted in reduced NUMB, which plays a 

role in inhibiting cell proliferation, migration, invasion and induces apoptosis and cell cycle 

arrest in CRC (Peng et al., 2019). Interestingly, it was reported that miR-31 represses E-selectin 

expression and thereby modulates trans-endothelial migration of colon cancer cells, indicating 

an anti-metastatic role of miR-31 against CRC (Zhong et al., 2017). 

Research from human studies has shown that miR-31 is upregulated in CRC tissue of patients 

when compared with normal mucosa and positively correlated with the TNM (tumour node 

metastasis) stage (Bandrés et al., 2006, Slaby et al., 2007, Motoyama et al., 2009, Wang et al., 

2009, Earle et al., 2010) as well as in serum of CRC patients where a correlation with cancer 

progression was also observed (Wang et al., 2014b). A recent review by Yu (2018) found miR-

31 levels to be elevated (in colonic tumours) and modulated by the RAS/MAPK/ERK1/2 

pathway and reported its role as an oncogene in CRC. MiR-31 was overexpressed in CRC cells 

derived from metastatic foci and in human primary CRC tissues with lymph node metastases 

and further investigation showed that miR-31 lead to increased proliferation, invasion and 

metastasis via repression of the tumour suppressor SATB2 (Yang et al., 2014). Furthermore, 

miR-31 represses RASA1 translation which initiates the RAS signalling pathway and thereby 

promotes tumour cell proliferation in human CRC (Sun et al., 2013). MiR-31 was 

overexpressed in 40 submucosal invasive CRC patient samples when compared with the non-

tumour samples and 29% of the tumour samples comprised a KRAS mutation (Tateishi et al., 

2015). Interestingly, in the same study, miR-31 expression showed no correlation with KRAS 

mutation, tumour cell budding, lymph node metastasis, lymphatic/venous infiltration, tumour 

differentiation, tumour location, depth of invasion or patients’ sex (Tateishi et al., 2015). A 

microarray analysis revealed that miR-31 was the most upregulated miRNA out of 760 miRNAs 
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in 29 human CRC with mutated BRAF compared to wild-type BRAF and further analyses 

showed that its increased expression was associated with mutations in BRAF and KRAS and 

proximal location (Nosho et al., 2014) which was later also observed by Lundberg (2018). They 

also found that miR-31 inhibitor resulted in reduced cell invasion and proliferation (Nosho et 

al., 2014). Similarly, Ito (2014) also observed an association between miR-31 expression and 

BRAF mutations in CRC patients, especially in serrated lesions.  

Ample studies have identified upregulated levels of miR-31 in human CRC cell lines, as well as 

in samples of CRC patients and, its role in CRC initiation, development and progression. 

 

4.8.7 MiR-215 as a tumour suppressor gene in CRC 

MiRNA-215 is highly conserved across 28 different species suggesting that it has vital functions 

which have been preserved during evolution (Khella et al., 2013). A recent review by 

Vychytilova-Faltejskova (2019) reported miR-215 dysregulation in many pathological 

conditions and summarised the extensively studied role of miR-215 in human cancer, including 

CRC.  

Functional studies have yielded data which indicate the role of miR-215 as TSG in CRC. Chen 

(2016) reported that miR-215 directly targets the transcription factor YY1 in CRC, which 

modulates the metabolism of tumour cells via G6PD activation (a rate-limiting enzyme in the 

pentose phosphate pathway), which in turn leads to enhanced DNA synthesis and nucleotide 

production and reduced intracellular ROS. An association between expression levels of miR-

215 and SRPX2 (a down-stream gene of the PI3K/ AKT signalling pathway) was seen in CRC and 

miR-215 upregulation resulted in reduced glucose uptake, lactate production and 

proliferation (Zhao et al., 2018). MiRNA profiling of patient derived cancer stem cells identified 

miR-215 as the primary hypoxia-induced miRNA in different primary colon tumour cultures, 

and showed its action as a tumour suppressor via a negative feedback regulation of hypoxia 

induced cancer stem cell activity (Ullmann et al., 2019). Reduced miR-215 expression has also 

been reported in APC and colitis-associated colonic tumours of chronically inflamed or genetic 

APC(Min/+) mouse models (Necela et al., 2011). In a mouse model that was xenotransplanted 

with human colon cancer cells, miR-215 was downregulated in tumour organoids of the 

intestine, when compared with organoids of normal epithelium and miR-215 induction 

suppressed LGR5 and EREG, both of which are stem cell markers commonly overexpressed in 

cancers leading to the activation of cell proliferation signalling pathways (Kobayashi et al., 
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2012). An upregulation of miR-215 was seen during differentiation in a colon cancer stem cell 

line model using a microarray which was then validated by qPCR (Yu et al., 2011). Similarly, 

Song (2010) also observed miR-215 overexpression in CD133+HI/CD44+HI colon cancer stem 

cell line, which was coupled with a reduced rate of cell proliferation and triggered cell cycle 

arrest at the G2 phase. These studies suggests a potential role of miR-215 in metabolic 

reprogramming of CRC cells (Vychytilova-Faltejskova and Slaby, 2019). Recent studies found 

that lncRNA UICLM (upregulated in CRC liver metastasis) and FTX (five prime to Xist) act as 

competing endogenous RNAs (ceRNAs) for miR-215, which results in i) upregulated ZEB2 levels 

in CRC cells and ii) inhibition of vimentin phosphorylation, and hence leads to the initiation 

and progression of CRC respectively (Chen et al., 2017, Yang et al., 2018). Additionally, 

sequencing of isolated colonic epithelial cells and colonic enteroids demonstrated high 

abundance of miR-215 levels, which could not be identified in endothelial cells and fibroblasts, 

indicating the potential role of miR-215 as an epithelial marker (Rosenberg et al., 2018). 

In 2008 a microarray, for the first time, revealed the association of aberrant miR-215 

expression and CRC and its role in cellular adhesion and induced cell detachment; miR-215 

was less expressed in stage II colon cancers of 49 patients when compared with normal 

mucosa (Braun et al., 2008). Since then, more human studies frequently observed miR-215 

downregulation in colon tumour samples when compared with normal tissue (Earle et al., 

2010). MiR-215 downregulation was seen in 34 samples of CRC tumour tissue when compared 

with 34 samples of the adjacent non-tumour mucosa, and it was hypothesised that this 

downregulation results in increased proliferation (Karaayvaz et al., 2011). Furthermore, miR-

215 downregulation has been observed in early stage tumours of inflammatory as well as 

genetic origin, indicating its participation in the early stages of CRC development (Necela et 

al., 2011). A later study observed a similar miR-215 expression pattern in CRC and found that 

that it correlated with clinical stage, grade and positivity of lymph nodes (Faltejskova et al., 

2012) which was confirmed later in a Czech and Spanish cohort of CRC patients using data 

from 448 tumour tissues when compared with samples from 325 adjacent healthy tissue 

(Vychytilova-Faltejskova et al., 2017).  

Taking the above data together, there seems to be strong evidence that this miR-215 is a 

tumour suppressor in CRC. 
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4.8.8 Studies on the novel miRNA, miR-4516 

Chowdhari (Chowdhari and Saini, 2014) demonstrated in a HaCaT cell line that miR-4516 

targets STAT3 transcripts which subsequently leads to reduced STAT3, pSTAT3 and BclxL 

expression and hence reduced apoptosis. Later, it was discovered that inhibiting miR-4516, 

with LSINCT5 which is a competing endogenous RNA for miR-4516, resulted in upregulated 

BclxL and STAT3 expression which initiated apoptosis in hepatocellular carcinoma (Li et al., 

2018). Recently, miR-4516 expression was correlated with poor prognosis in samples from 268 

glioblastoma patients and lead to proliferation and invasion of glioblastoma cells via the 

PTPN14/ Hippo pathway (Cui et al., 2019). These limited studies suggest a potential role as an 

oncogene for miR-4516. Vlachos (2015) predict that miR-4516 targets 23 genes (PANK4, TCF4, 

CCND2, PPP3R1, UBE2J1, IGLL5, ASH1L, OXA1L, HECTD2, RAB11FIP2, RIF1, PTPN6, MED7, 

PCBP1, HIC1, IDH1, SHOC2, C12orf55, RACGAP1, UBE2G1, CTTNBP2NL, ATF7, NCOA1) and 5 

pathways (Pantothenate and CoA biosynthesis, 2-Oxocarboxylic acid metabolism, Protein 

processing in endoplasmic reticulum, Lysine degradation and TCA cycle). To date, few studies 

have investigated the role of the novel miRNA, miR-4516, and its role in cancer, including CRC, 

and the investigation of miR-4516 (predicted) targets (genes and pathways) associated with 

CRC is an interesting area for future research. 

 

4.9 Conclusion 

Here, for the first time, a NGS approach was used to screen for genome-wide changes in 

miRNA expression in the colorectal mucosa of i) obese individuals compared with non-obese 

Controls and ii) following the effects of massive weight loss in initially obese individuals after 

RYGB. This revealed that a total of a 1654 miRNAs were expressed in the human colorectal 

mucosa.  A total of 112 miRNAs were differentially expressed in obese individuals compared 

with the non-obese Controls. Additionally, a total of 60 miRNAs changed expression in initially 

obese individuals after RYGB. Of the 1654, a panel of 8 miRNAs was selected for further 

validation and to quantify the expression of these miRNAs using qPCR in the colorectal mucosa 

of i) obese individuals compared with non-obese Controls and ii) initially obese individuals 

before and after RYGB. Four of the miRNAs i.e. miR-31, miR-215, miR-3196 and miR-4516, 

were differentially expressed in obese versus non-obese Controls and 3 miRNAs i.e. miR-31, 

miR-215 and miR-3196, changed expression in the initially obese individuals after RYGB. 

However, miR-3196 showed a different direction of expression change by qPCR compared to 



158 
 

NGS for both comparison groups, showing that this miRNA did not validate and was hence 

excluded from further analyses. The obesity-associated changes in expression of miR-31 i.e. 

increased expression with greater adiposity, may contribute to the increased CRC risk in the 

obese and to the reduction in CRC risk following weight loss. In contrast, the observed changes 

in miR-215 expression did not fit with the expected role of this miRNA as a TSG. However, the 

differences in expression within my study were consistent (higher expression in those with 

greater adiposity) and matched the differences observed by Kurylowicz (2017) in obese and 

non-obese individuals. Therefore, my findings on changes in miR-215 expression appear to be 

robust and, functional consequences of these changes remain to be elucidated. For the more 

recently discovered miRNA that was differentially expressed in this study i.e. miR-4516 much 

less is known about its role in obesity and whether changes in its expression in the colorectal 

mucosa has implications for CRC risk. In summary, my findings provide further evidence that 

miRNA expression in the colorectal mucosa is altered in obesity and by deliberate weight loss 

(Mathers et al., 2010, Malcomson and Mathers, 2017). However, to grasp the impact of the 

observed differential changes in expression of these miRNAs, downstream analyses including 

gene expression and proteomic studies need to be conducted.  
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5 Effect of adiposity and of ageing on microRNA expression in the 

colorectal mucosa (The BORICC Study and the BFU Study) 

5.1 General introduction 

A detailed description about miRNAs can be found in the Introduction chapter (see section 

1.3). 

In brief, miRNAs were discovered for the first time in 1993 in C. elegans (Lee et al., 1993). They 

are endogenous, small, non-coding RNA molecules that bind covalently to the complementary 

3’ untranslated region of one or more mRNA species to regulate translation of mRNAs to 

proteins (Lai, 2002). MiRNAs regulate expression of a wide range of key molecules including 

transcription factors, RNA binding proteins and signalling proteins (Ding et al., 2018). 

Bioinformatics analyses predict that miRNAs regulate more that 60% of protein encoding 

genes (Friedman et al., 2009).  

During miRNA biogenesis, when the short double stranded RNA duplex (pre-miRNA) is loaded 

onto the AGO protein, one strand/ arm (either miRNA-3p or -5p) becomes degraded and the 

other becomes the mature miRNA (see Figure 5-1) (Chen et al., 2018). Selection of the -3p or 

-5p arm does not occur randomly, but is based on the duplex end stability governed by Dicer 

cleavage with a specific strand selection capability based on thermodynamics, structure and 

5’ nucleotide identity. The arm whose 5’ end comprises less structure and lower internal 

stability, which has a thermodynamic measure of ∆0.5 kcal/mol (an amount of energy/ 

number of molecules), is selected to become the mature miRNA (Khvorova et al., 2003, Noland 

and Doudna, 2013). Furthermore, AGO proteins have preference for different nucleotides; for 

example, AGO1 selects predominantly the strand with the U at the 5’ end, whereas AGO2 

selects the strand with the pA or pU 5’ end (Chen et al., 2018). Dependent on the 

developmental stage, tissue type and species, different arms are selected to become the 

mature miRNA, which is known as ‘arm switching’ (Chen et al., 2018). For the majority of 

miRNAs, including miR-31 and miR-215, it seems that both the -3p and -5p arms exhibit similar 

functional effects downstream (Chen et al., 2018). Furthermore, it has been shown that 

miRNAs -3p and -5p are commonly co-expressed and regulated. For example, miR-31 is co-

upregulated in 4 colon cancer cell lines (relative to two normal colon tissues) and no significant 

differences have been shown in arm switching patterns in CRC (Choo et al., 2014, Chen et al., 

2018). 



160 
 

 

Figure 5-1: Overview of miRNA biogenesis (Chen et al., 2018) (Copyright: figure is open-access). 

MiRNAs play a vital role in numerous biological pathways and processes and dysregulated 

patterns of miRNA expression have been observed in multiple pathologies, including CRC 

(Heneghan et al., 2010, Van Roosbroeck and Calin, 2017). Several studies, summarised in a 

recent review (Ding et al., 2018), have revealed the roles of miRNAs as tumour suppressor 

genes (TSG) and oncogenes. Aberrant patterns of miRNA expression can activate pathways 

associated with CRC, for example the WNT signalling pathway (Ding et al., 2018). Obesity is a 

major risk factor for CRC and aberrant patterns of miRNA expression have been observed in 

those with obesity which may be due to chronic inflammation present in obese adipose tissue 

(Esau et al., 2004, Lin et al., 2009, Xie et al., 2009, Heneghan et al., 2010) as described in detail 

in the Introduction Chapter (see section 1.4.6) and the Chapter 4 (see section 4.1.). 
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Obesity and ageing are major risk factors for CRC risk. If dysregulation of miRNA expression in 

obesity and ageing are causal for CRC risk, then one would anticipate that younger and normal 

weight individuals would have “normal” miRNA expression in this tissue.  However, to date, 

there have been no published investigations of the effects of adiposity and ageing on the 

expression of miRNAs in the colorectal mucosa of humans. 

 

5.2 Hypotheses 

The hypotheses for this study were: 

 The pattern of miRNA expression in the colorectal mucosa is altered during ageing. 

 MiRNA expression in the colorectal mucosa differs in obese and overweight individuals 

compared with normal weight adults. 

 The pattern of miRNA expression in the colorectal mucosa is i) altered by effects of 

weight change (gain or loss) and ii) not affected in individuals whose weight was ‘stable’ 

over a 12+ year time period. 

 

5.3 Aims 

The aims of this study were: 

 To test the above hypotheses by quantifying i) the effects of ageing on patterns of 

miRNA expression in the colorectal mucosa of adults participating in the BORICC Study 

(baseline) and, again, 12+ years later in the BFU Study, ii) associations between 

adiposity and patterns of miRNA expression cross-sectionally within the BORICC and 

BFU Studies and iii) changes in miRNA expression associated with changes in adiposity 

over 12+ years for individuals in the BORICC Study who also participated in the BFU 

Study.  

 

5.4 Objectives 

The objectives of this study were: 

 To use biological samples (mucosal biopsies) and data from the BORICC (baseline) 

(Mathers, 2009) and BFU (12+ years follow-up) (Malcomson and Mathers, 2017) 
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Studies to investigate effects of adiposity and ageing on patterns of miRNA expression 

in the human colorectal mucosa cross-sectionally in both studies and, also, 

longitudinally.  

 To select the miRNAs that were significantly differently expressed and validated (i.e. 

showing the same direction in expression change by NGS and qPCR) between obese 

and non-obese participants from the BOCABS Study (see section 4.7). 

 Using qPCR, to quantify expression of this panel of miRNAs in the colorectal mucosa of 

adults recruited to the BORICC Study (at baseline) and at 12+ years follow-up (in the 

BFU Study).  

 To investigate differences in the expression of these miRNAs in i) older and younger 

adults by dichotomising the data at the median age and ii) in obese, overweight and 

normal weight adults cross-sectionally in the BORICC and BFU Studies. 

 To investigate the effects of weight change on changes in patterns of miRNA 

expression in the human colorectal mucosa longitudinally using regression analyses. 

 

5.5 Overview of methods 

A detailed description of the experimental procedures and methods for quantifying miRNA 

expression can be found in the Methods Chapter (see section 2.2.3.9).  

In brief, RNA was extracted from colorectal mucosal biopsies frozen in RNAlater (see section 

2.2.3.1). After RNA was extracted, a RNA quality control check was performed on 11 random 

samples from the BORICC Study (n=8) and BFU Study (n=3) to check for the integrity and 

quality of the RNA, as the BORICC samples had been stored at -80 °C for up to 14 years (see 

section 2.2.3.2). RNA was reverse transcribed into cDNA (see section 2.2.3.8), then qPCR was 

carried out on a panel of miRNAs (see section 2.2.3.9) and data were processed to quantify 

the expression of miRNAs relative to SNORD68 and RNU6 reference genes (see section 

2.2.3.10). Participants with paired colorectal mucosal biopsies (n=33) from the BORICC Study 

and the BFU Study were included in the present analysis. 

The miRNA panel used in the present study consisted of the 4 miRNAs that were significantly 

differentially expressed in obese compared with non-obese participants of the BOCABS Study 

(see section 4.7). 
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Statistical analyses were performed using IBM® SPSS® Statistics Version 21. The Shapiro-Wilk 

test showed that data were not normally distributed. Consequently, the Wilcoxon signed rank 

test was used to examine miRNA expression in the BORICC (baseline) and BFU (12+ years 

follow-up) Studies. Then participants’ data from the BORICC and BFU Studies were 

dichotomised at median age (56 years) and a Mann-Whitney-U test was used to examine 

differences in miRNA expression between the younger and older adults cross-sectionally in 

both studies. A one-way ANOVA test was conducted to investigate whether miRNA expression 

differed between i) normal weight, overweight and obese and ii) non-obese and obese, in 

participants at baseline and 12+ years follow-up, i.e. in the BORICC and BFU Studies, 

respectively. Finally, linear regression analyses were used to examine the effects of weight 

change on changes in patterns of miRNA expression. 

 

5.6 Effects of adiposity and ageing on selected panel of miRNAs in colorectal mucosal 

biopsies  

5.6.1 Participant characteristics and anthropometry  

Table 5-1 summarises the characteristics and anthropometric measurements of those 

participants from the BORICC Study and the BFU Study who were included in this analysis of 

miRNA expression in colorectal mucosal biopsies. For this analysis, I used samples and data 

from 33 individuals for whom paired baseline (BORICC Study) and 12+ year follow-up (BFU 

Study) samples were available. All BORICC Study participants were Caucasian, had a mean age 

of 55 years (range 37 to 69 years) and comprised almost equal numbers of females (n=17; 52%) 

and males (n=16; 48%). They had a mean BMI of 28 kg/m2 and waist to hip ratio of 0.9. 

Approximately half of the participants had never smoked and only 4 (12%) were current 

smokers. When the same participants were reassessed 12+ years later, there were no 

significant changes in measures of adiposity and a further 3 participants (9%) had stopped 

smoking.  

 

 

 BORICC Study 

(n=33) 

BFU Study          

(n=33) 

p-value 

Age (years) 55.5 (8.6) 67.5 (8.6) - 
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Gender N (%)    

     Male  16 (48) - - 

     Female 17 (52) - - 

Smoking N (%)    

     Never-smoker 17 (51.5) 16 (48.5) 0.038 ‡ 

     Smoker 4 (12.1) 1 (3.0)  

     Ex-smoker 11 (33.3) 16 (48.5)  

     Missing data 1 (3.0) 0  

Weight (kg) 82.3 (18) 82.6 (18.1) 0.78† 

BMI (kg/m2) 28.0 (4.4) 28.4 (4.7) 0.40† 

Body fat (%) - 35.4 (7.2) - 

Waist (W; cm) 94.6 (14.2)* 97.4 (14.5) 0.08† 

Hip (H; cm) 104.5 (10.3)* 105.6 (9.3) 0.46† 

W:H ratio 0.90 (0.08)* 0.92 (0.08) 0.21† 

Table 5-1: Characteristics of selected participants at baseline (BORICC Study) and 12+ year later at follow-up (BFU Study). 
Data presented as mean (SD) unless otherwise stated 
*for these measurements n=32 
†Paired t-test 
‡ Wilcoxon sign test 
 

 

5.6.2 Total RNA quality and quantity 

RNA was isolated from colorectal mucosal biopsies that had been stored in RNAlater and 

frozen at -80°C, using the Qiagen miRNeasy Mini Kit as described in the Methods Chapter 

section 2.2.3.1. A RNA quality control check using the Agilent RNA 6000 Pico Kit was run on 11 

random samples (see section 2.2.3.1) and the purity and concentration of all RNA samples 

were measured using spectrophotometry (see section 2.2.3.1). The mean extracted RNA 

concentration was 76.5ng/µL and 50.5ng/µL for the BORICC and BFU samples, respectively 

(see Figure 5-2). However, this concentration ranged from 3.4ng/µL to 127.1ng/µL because of 

the large inter-participant variability in biopsy size and quality. The purity of the RNA was 

evaluated by assessing absorbance at the 260/280 ratio with a mean value of 2.08 and 2.1 for 

the BORICC and BFU samples, respectively, indicating good purity of the extracted RNA (see 

Figure 5-2). 
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Figure 5-2: (A) RNA concentrations and (B) absorbance at 260/280 ratios for participants (n=33) at baseline (BORICC Study) 
and at follow-up 12+years later (BFU Study). 

5.6.3 Effects of ageing on selected panel of miRNAs in the colorectal mucosa  

Figure 5-3 shows expression of the selected panel of miRNAs quantified in the colorectal 

mucosa at baseline (BORICC Study) and at follow-up 12+ years later (BFU Study). MiR-215-3 

expression was nearly 4-fold greater (p<0.001) at follow-up than at baseline. However, for the 

other 2 miRNAs i.e. miR-31-3 and miR-4516, there was no statistically significant difference in 

expression between baseline and at 12+ years follow-up. MiR-4516 was the most abundantly 

expressed miRNA at both baseline and 12+ years later at follow-up. 
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Figure 5-3: MiRNA expression determined by qPCR in the colorectal mucosa in BORICC and BFU participants; for miR-31-3 
n=29. 

Figure 5-4 illustrates the inter-individual change in miR-215-3 expression and shows that, for 

the majority of participants, miR-215-3 expression increased (in some cases very substantially) 

at 12+ years follow-up. One participant (depicted with a red line and triangles) shows an 

enormous increase in miR-215 expression at 12+ years follow-up. The relevant data were 

checked and no errors were identified. In addition, I explored characteristics of this individual 

and did not identify and factors such as medical history or adiposity (BMI 22.5 kg/m2 and 23.9 

kg/m2 for BORICC and BFU, respectively), which might have explained this dramatic rise in 

miR-215 expression. Nevertheless, it may be significant that this was one of the older 

participants (73 years old at follow-up in the BFU Study) who had had an adenomatous polyp 

when initially recruited to BORICC Study and hence was at increased CRC risk. 
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Figure 5-4: Inter-individual change in miR-215-3 expression in the colorectal mucosa of participants at baseline (BORICC 
Study) and at follow-up 12+ years later (BFU Study). 

To examine the effect of age cross-sectionally, the participants were dichotomised at the 

median age (56 years in the BORICC Study). Figure 5-5 shows the miRNA expression for the 

younger and older groups at both baseline (BORICC Study) and 12+ years later at follow-up 

(BFU Study). There was an apparent trend for higher expression of all miRNAs in the older 

group at both time-points. The age-related difference was significant for miR-31-3 in the 

BORICC Study and for miR-215-3 in the BFU Study. At baseline (BORICC Study) miR-31-3 was 

15-fold more highly expressed in the older group but these values returned to levels similar 

to those in the younger participants at 12+ years follow-up. In the BFU Study, miR-215-3 was 

two-fold up-regulated in the older group.  



168 
 

 

Figure 5-5: MiRNA expression determined by qPCR in the colorectal mucosa of younger and older (data dichotomised at 
median age 56 years) BORICC and BFU participants; for miR-31-3 n=29. 

 

5.6.4 Effects of adiposity on expression of selected miRNAs in the colorectal mucosa  

Although there was no overall difference in mean body weight between baseline (BORICC 

Study) and follow-up 12+ years later (BFU Study) (p=0.78), Figure 5-6 shows that there were 

considerable inter-individual differences in body weight change with some individuals gaining 

weight (up to 25kg) and others losing weight (up to 20kg) over the period of observation.  
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Figure 5-6: Intra-individual change in body weight (kg) over 12+ years for participants in the BORICC and BFU Studies. 

To examine cross-sectional relationships between adiposity and miRNA expression, the 

available data were examined in two ways: i) comparing miRNA expression for the 3 major 

adiposity categories (normal weight, overweight and obese – using WHO criteria) and ii) 

comparing miRNA expression in those who were obese and those who were not obese (as was 

done in the BOCABS Study – see Chapter 4). Table 5-2 shows the expression of the 3 miRNAs 

for normal weight, overweight and obese participants at baseline and 12+ years follow-up. 

Surprisingly, there was no significant association between markers of adiposity and expression 

of any of these miRNAs. 

 

 Normal BMI 

(n=9) 

Overweight BMI 

(n=14) 

Obese BMI 

(n=10) 

p-value† 

BORICC Study     

     miR-31-3* 0.007 (0.004) 0.005 (0.003) 0.086 (0.250) 0.366 

     miR-215-3 0.098 (0.075) 0.201 (0.223) 0.137 (0.066) 0.295 

     miR-4516 166.5 (108.7) 431.3 (758.5) 119.0 (77.7) 0.274 

BFU Study     

     miR-31-3* 0.008 (0.005) 0.007 (0.005) 0.007 (0.005) 0.896 

     miR-215-3 0.751 (1.021) 0.675 (0.440) 0.569 (0.416) 0.824 

     miR-4516 179.3 (69.8) 259.5 (233.9) 163.3 (45.5) 0.299 
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Table 5-2: MiRNA expression in normal weight, overweight and obese participants in the BORICC Study (at baseline) and in 
the BFU Study (12+ years follow-up). 
Data presented as mean (SD)  
*For these measurements n=29 
†ANOVA test 
 

Table 5-3 shows the expression of the 3 miRNAs in non-obese (BMI <30) and in obese (BMI 

≥30) participants at baseline (BORICC Study) and after 12+ years follow-up (BFU Study). There 

were no significant associations between markers of adiposity and expression of these 

miRNAs at either time-point. 

 

 Non-obese (n=23) Obese (n=10) p-value† 

BORICC Study    

     miR-31-3* 0.006 (0.003) 0.086 (0.250) 0.152 

     miR-215-3 0.161 (0.185) 0.137 (0.066) 0.699 

     miR-4516 327.7 (601.4) 119.0 (77.7) 0.287 

BFU Study    

     miR-31-3* 0.007 (0.005) 0.007 (0.005) 0.798 

     miR-215-3 0.705 (0.703) 0.569 (0.416) 0.574 

     miR-4516 228.1 (188.9) 163.3 (45.5) 0.296 

Table 5-3: MiRNA expression in non-obese and obese participants in the BORICC Study (at baseline) and in the BFU Study 
(12+ years follow-up). 
Data presented as mean (SD) unless otherwise stated 
*for these measurements n=29 
†ANOVA test 

 

5.6.5 Associations between body weight change over 12+ years and miRNA expression in 

the colorectal mucosa 

The relationship between changes in body weight (follow-up weight minus baseline weight), 

i.e. weight gain or loss, and changes in miRNA expression (follow-up miRNA expression minus 

baseline miRNA expression) in the colorectal mucosa from baseline (BORICC Study) to follow-

up 12+ years later (BFU Study) was examined using linear regression. There were no 

statistically significant correlations between changes in body weight and expression of any of 

the 3 miRNAs examined (p>0.05) (see Table 5-4). The R values show a low degree of 

correlation for all 4 miRNAs (R<0.135) and the R2 indicates that less than 1.8% of the total 

variation in miRNA expression can be explained by changes in body weight (see Table 5-4).  
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 Mean change in 

miRNA 

expression 

between 

BORICC and 

BFU 

participants 

R value R2 value p-value 

miR-31* -0.02 (0.1) 0.135 0.018 0.485 

miR-215 0.51 (0.6) 0.016 0.000 0.931 

miR-4516 -55.9 (378.2) 0.034 0.001 0.853 

Table 5-4: Relationship between changes in body weight and miRNA expression (mean (SD)) in the colorectal mucosa at 12+ 
year follow-up for all participants. 
*n=29 participants 

Then a second analysis was performed using the Mann-Whitney-U test, as data were not 

normally distributed, to investigate if the changes in miRNA expression differed between the 

participants who gained (range 0.1- 25kg) or lost (range 0.4- 20kg) body mass after 12+ years. 

No significant differences could be detected (p>0.05) (see Table 5-5). Even though data were 

not normally distributed, the analysis was repeated using the one-way ANCOVA which is a 

robust statistical test, to directly compare changes in miRNA expression over the period of 

study in each of the groups (gained versus lost weight) where gender, baseline BMI and age 

were included as covariates. Once more, no significant differences could be detected (p>0.05) 

(see Table 5-5).  

miRNA Lost weight (n=17) Gained weight (n=16) P-value† P-value‡ 

miR-31* 0.0008 (-0.8 - 0.01) 0.002 (-0.003 - 0.01) 0.535 0.630 

miR-215 0.3 (-0.06 – 1.1) 0.3 (0.05 – 3.4) 0.746 0.318 

miR-4516 47.5 (-1071.2 – 127.7) 42.6 (-1829.6 – 117.8) 0.943 0.569 

Table 5-5: Mean change in expression of selected miRNA in the colorectal mucosa of those who gained, compared with 
those who lost, body weight over 12+ years between participation in the BORICC (baseline) and BFU (follow-up) studies. 
Data are presented as Median (range). 
*for these measurements n=17 for lost and n=12 for gained weight respectively 
†Mann-Whitney-U test 
‡Adjusted ANCOVA test 
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These results show that changes in miRNA expression are not associated and cannot be 

predicted based on changes in body weight over a 12+ year period. Furthermore, changes in 

miRNA expression do not differ in participants who lost or gained weight over the study period, 

even when adjusted for potential confounding factors including gender, baseline BMI and age. 

5.6.6 Predicted biological roles of selected miRNAs 

An in-silico target prediction analysis tool by Vlachos (Vlachos, 2015) was utilised to detect 

potential Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for predicted 

mRNA gene targets of the 4 selected miRNAs analysed and for two of those 4 selected miRNAs 

a pathway union could be identified (see Figure 5-7). The microT-CDS algorithm was used to 

undertake the enrichment analysis where a separate p-value for each of the 2 miRNAs was 

calculated and a merged p-value for 2 of the miRNAs i.e. miR-31 and miR-4516 was estimated 

using a Fisher’s meta-analysis. The brighter yellow colour illustrates a higher probability that 

the shown pathway (see Figure 5-7) is enriched with gene targets for at least one of the 2 

miRNAs. Many KEGG pathways implicated in metabolism were enriched for predicted mRNA 

gene targets for 2 of my selected miRNAs, including pathways in glycosaminoglycan 

biosynthesis, protein processing in endoplasmic reticulum, pantothenate and CoA 

biosynthesis and 2-oxocarboxylic acid metabolism which play important roles in the 

morphogenesis and maintenance of cell and tissue structure and function. 
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Figure 5-7: Heatmap illustrating KEGG pathway unions for predicted mRNA gene targets of miRNAs quantified (log(p-value), 
orange colour illustrates higher probability) (Vlachos, 2015). 

5.7 Discussion 

To my knowledge, this is the first study to investigate differences in miRNA expression in the 

human colorectal mucosa longitudinally over 12+ years follow-up. 

 

5.7.1 Main findings 

MiR-215 was significantly overexpressed in the human colorectal mucosa at 12+ years follow-

up (BFU Study) when compared with expression at baseline (BORICC Study). In cross-sectional 

analyses of associations with age, there was an apparent trend for higher expression of all 

miRNAs in the older group at both time-points, which was significant for miR-31-3 in the 

BORICC Study and for miR-215-3 in the BFU Study. In contrast, cross-sectional analyses in both 
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studies, revealed no significant associations between markers of adiposity (BMI) and 

expression of these miRNAs at either time-point. Investigation of the relationship between 

weight change and miRNA expression over the 12+ year follow-up did also not yield significant 

results, even following adjustment for gender, baseline BMI and age. 

 

5.7.2 Interpretation of main findings 

In the introductory chapter (see section 1.3.1), I have discussed the evidence that epigenetic 

mechanisms, including miRNAs, are plastic throughout the life course and respond 

appropriately to the changing environment. However, most of this evidence has been 

obtained from measurements made in easily accessible tissue such as the blood and there are 

no comparable data on miRNA expression from measurements made in the colorectal 

epithelium. Furthermore, I also reviewed in the Introduction chapter (see section 1.4.6) 

evidence that obesity in humans is associated with abnormal patterns of miRNA expression. 

In addition, there is evidence that patterns of miRNA expression are “normalised” to some 

extent following weight loss by lifestyle interventions including diet and exercise (see 

Introduction Chapter section 1.4.7 and Chapter 4). However, most of this evidence has been 

obtained from measurement made in blood and adipose tissue and there are no comparable 

data, apart from those by Afshar (2016a) (who investigated the effects of bariatric surgery) 

and the extended analyses that I have reported in Chapter 4, from measurements made in the 

colorectal epithelium. 

Here, I examined expression of a panel of 4 miRNAs (miR-31, miR-215, miR-3196 and miR-

4516) which were significantly overexpressed in obese individuals compared with non-obese 

Controls in the human colorectal mucosa of the BOCABS Study (see Chapter 4). In the present 

study, I used qPCR to quantify expression of these 4 miRNAs at an individual participant level 

and to investigate associations with ageing and with adiposity longitudinally (over a 12+ years 

follow-up) in the colorectal epithelium of participants with a wide age range (37 to 69 years 

at baseline, BORICC Study). 

MiR-215 was significantly overexpressed in the human colorectal mucosa at 12+ years follow-

up (BFU Study) when compared with baseline levels (BORICC Study) (see Table 5-6), as 

hypothesised. As also hypothesised, cross-sectional analysis showed significant 

overexpression of miR-31-3 in the BORICC Study and for miR-215-3 in the BFU Study in older 

participants (see Table 5-6). However, since the panel of 4 miRNAs used in this study had been 
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selected based on their associations with adiposity in the BOCABS Study (Chapter 4) it was 

surprising that there were no significant associations between markers of adiposity and 

expression of these 4 miRNAs in the BORICC and BFU Studies. In addition, given that 

expression of 3 out of these 4 miRNAs (miR-31-3, miR-215 and miR-3196) responded to weight 

loss following bariatric surgery in the BOCABS Study (Chapter 4), it was surprising that there 

were no associations with weight gain or with weight loss over the 12+ year follow-up in the 

present study. 

  

miRNA Chromosomal 

location 

Association 

with ageing 

longitudinally 

(BORICC v. BFU 

Study) 

Association 

with ageing 

cross-

sectionally in 

the BORICC 

Study 

Association 

with ageing 

cross-

sectionally in 

the BFU Study 

miR-31 9p21.3 No significant 

change 

↑ No significant 

change 

miR-215 1q41 ↑ No significant 

change 

↑ 

Table 5-6: Summary of associations of age with miRNA expression in the human colorectal mucosa in the BORICC and BFU 
Studies. 

5.7.3 The effect of age and ageing on expression of miR-31 and miR-215 in the colorectal 

mucosa 

Since increased age is a well-established risk factor for CRC (Siegel et al., 2017), my finding of 

increased miR-31 expression cross-sectionally in human colorectal mucosal biopsies in older 

participants of the BORICC Study is consistent with the role of miR-31 as an oncogene. Given 

the link between ageing and CRC risk and the role of miR-31 as an oncogene and miR-215 as 

a TSG, my finding of no significant change in miR-31 expression and increased miR-215 

expression in human colorectal mucosal biopsies longitudinally is unexpected. Furthermore, 

my findings of no significant changes in miR-215 and miR-31 expression in human colorectal 

mucosal biopsies cross-sectionally in the older participants of the BORICC and BFU Studies, 

respectively, and of increased miR-215 expression cross-sectionally in the older participants 

of the BFU Study are also unexpected with the role of miR-31 as an oncogene and miR-215 as 

a TSG. Potential explanations for this observation may be: 
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 With the role of miR-31 being an oncogene, an increased expression and not an 

insignificant change of this miRNA was expected in i) the BFU Study when compared 

with the BORICC Study (longitudinal investigation) and ii) the older group of the BFU 

Study cross-sectionally. However, miR-31 was the only miRNA of the panel examined 

which has been previously described to play an oncogenic role in CRC and, therefore 

the assumption of no CRC risk in ageing based on one single miRNA (no significant 

change in miR-31 expression) cannot be made. More oncogenic miRNAs should be 

examined to draw coherent and strong conclusions on CRC risk. 

 With the role of miR-215 being a TSG, a reduction and not an increase of this miRNA 

was expected in i) the BFU Study when compared to the BORICC Study (longitudinal 

investigation) and ii) the older group of the BFU Study cross-sectionally, 

(downregulated miR-215) which would be suggestive of an increased CRC risk. 

However, miR-215 was the only miRNA of the panel examined which has been 

previously described to play a tumour suppressive role in CRC and, therefore the 

assumption of a reduced CRC risk with ageing based on one single miRNA (miR-215 

upregulation) cannot be made. More miRNAs with the role of a TSG should be 

examined to draw coherent and strong conclusions on CRC risk. 

 As also discussed in Chapter 4 (see section 4.8.2), the differential miRNA expression 

pattern dependent on the cellular composition of tissue especially, for miR-215 is not 

expected to pose an issue, as Kent (2014) found no miR-215 expression in lymphocytes, 

endothelial, smooth muscle, fibroblasts and red blood cells, whereas miR-215 was 

highly expressed in epithelial cells. Therefore, a shift in cellular composition in ageing 

is not expected to affect miR-215 expression. 

 The panel of miRNAs examined here, was chosen based on the miRNA’s significant 

differential expression with i) increased levels of adiposity and ii) response to massive 

weight loss following RYGB (as described in section 4.7). These might not be 

appropriate criteria to select miRNAs when examining the effects of age and ageing. 

Therefore, the lack of effect on these miRNAs observed here may be entirely 

consistent with age and ageing. Previous evidence from cell and animal models, as well 

as human studies, shows a correlation with a wide range of miRNAs and ageing. Most 

of this evidence has been obtained from serum, liver, brain, skeletal muscle, 

cardiovascular tissue and vascular tissue (Smith-Vikos and Slack, 2012, Noren Hooten 

et al., 2013, de Lucia et al., 2017, Huan et al., 2018) and I am unaware of studies in 
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human colon. Menghini (2009) reported a significant upregulation of miR-31 in human 

endothelial cells (in a human umbilical vein endothelial cell model) during ageing, 

which is consistent with the findings of this study. Contrarily, Noren Hooten (2010) 

observed miR-31 downregulation in peripheral blood mononuclear cells when 

comparing old individuals (64 years) with young individuals (30 years). This differential 

expression pattern might be tissue specific. No data could be identified for miR-215 

and miR-4516 in ageing research. However, a recent review by Williams (2017) has 

identified a vast range of miRNAs involved in cellular pathways of ageing and 

senescence, including lin-4, miR-7a, miR-14, miR-24-3p, miR-29a, miR-29c, miR-148b-

3p, miR-185, miR-195, miR-301a/b, miR-405a, miR-497 and miR-539. These might have 

been better targets for use in this study.  

 

5.7.4 Associations of miRNA expression in the colorectal mucosa with adiposity and with 

change in adiposity over time  

Given the link between weight change (especially increased adiposity), ageing and CRC risk, 

my finding of no association between differential patterns of miRNA expression and i) weight 

change in body mass as a continuous variable (see Table 5-4) and ii) those who lost or gained 

weight (see Table 5-5) was unexpected. This was particularly surprising as the miRNA panel 

examined here was selected based on differential expression with i) increased levels of 

adiposity and ii) response to massive weight loss following RYGB (as described in section 4.7). 

Potentially the samples size was ‘too’ small to detect significant changes, just 36% (n=12) of 

participants had a BMI over 30kg/m2 at follow-up (BFU Study). Furthermore, evidence from 

the BOCABS Study (see section 4.7.1) shows that the degree of weight loss following RYGB 

was not associated with the extent of change in expression of any of these 3 miRNAs. These 

results show that miRNA expression may not be associated and cannot be predicted based on 

changes in body weight over a 12+ year period in a small sample size where the effects of 

weight change were relatively small. 

 

5.7.5 Tissues specific action as either a TSG or oncogene for miR-31 and miR-215 

Other studies have investigated miRNA expression and their functional role (TSG versus 

oncogene) and downstream targets cross-sectionally in the colorectal cell lines, mouse models 

or human colon tissue. The expression of miRNAs is tissue specific and hence defines the 
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physiological nature of cells (Lim et al., 2005). The same miRNA can act as an oncogene in one 

cell type and as a TSG in another cell type because of its different targets and mechanism of 

action (Svoronos et al., 2016). This ambivalent tissue dependent action in tumourigenicity has 

been established for both miR-31 and miR-215 (Yu et al., 2018, Vychytilova-Faltejskova and 

Slaby, 2019). 

 

5.7.6 MiR-31 as an oncogene in CRC 

As described in detail in chapter 4 (see section 4.8.6), many functional studies have yielded 

findings, which confirmed the role of miR-31 as an oncogene in CRC. In brief, miR-31 

overexpression targets SMAD3, SMAD4, BMPR1A, AXIN1, DKK1, RASA1 and GSK3β via TGFβ, 

BMP, RAS/MAPK and Wnt pathways, which subsequently increases proliferation and 

represses apoptosis (Clevers et al., 2014, Reynolds et al., 2014, Kent et al., 2016, Tian et al., 

2017, Yu et al., 2018). 

Also human studies indicate that miR-31 acts as an oncogene in CRC. Mir-31 was 

overexpressed in CRC tissue when compared with normal tissue of patients, as well as in 

serum samples, and its expression correlates with CRC progression (Wang et al., 2009, Nosho 

et al., 2014, Wang et al., 2014b, Yang et al., 2014, Tateishi et al., 2015). 

Ample studies have identified upregulated levels of miR-31 in human CRC cell lines, as well as 

in samples of CRC patients and, described its role initiation, development and progression of 

CRC. 

 

5.7.7 MiR-215 as a tumour suppressor gene in CRC 

As described in detail in chapter 4 (see section 4.8.7), data obtained from functional studies 

suggest that miR-215 acts as a TSG in CRC. In brief, miR-215 targets YY1, SRPX2 via PI3K/ AKT 

signalling pathway, which enhances DNA synthesis, nucleotide production and reduced 

intracellular ROS, glucose uptake, lactate production and proliferation (Chen et al., 2016, Zhao 

et al., 2018, Vychytilova-Faltejskova and Slaby, 2019). 

Also, human studies suggest that miR-215 acts as a TSG in CRC. Mir-215 was downregulated 

in CRC tissue when compared with normal colorectal mucosa and that correlated with clinical 

stage, grade and positivity of lymph nodes (Braun et al., 2008, Karaayvaz et al., 2011, Necela 

et al., 2011, Faltejskova et al., 2012, Vychytilova-Faltejskova et al., 2017).  

These data show strong evidence that this miR-215 is a tumour suppressor in CRC.  
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5.8 Conclusion 

I examined expression of a panel of 3 miRNAs (miR-31, miR-215 and miR-4516) in the 

colorectal mucosa of 33 participants in the BORICC Study who also participated in the BFU 

Study 12+ years later. This study design allowed me to investigate, for the first time, 

associations between miRNA expression and i) ageing and adiposity longitudinally (over a 12+ 

year follow-up) and ii) age and adiposity cross-sectionally in both the BORICC and BFU Studies. 

There was evidence that ageing is associated with significantly increased miR-215 expression 

over 12+ years follow-up and, within the BFU Study, that miR-215 expression was higher in 

older participants. Cross-sectional analysis also suggested that expression of the other 3 

miRNAs may be higher in older individuals but this association was significant only for miR-31 

in the BORICC Study.  

Given the rationale for selection of the 3 miRNAs investigated in this chapter, the absence of 

significant associations with adiposity and with change in body weight longitudinally was 

unexpected. It is possible that the lack of evidence for associations is due to the relatively 

small size of the study (33 individuals examined at two time points) and larger studies will be 

needed to test the hypothesis more thoroughly. In addition, it is possible that the inter-

individual range in BMI within the BORICC and BFU Studies was insufficiently great to allow 

detection of an adiposity effect. Obese participants at baseline (pre-surgery) in the BOCABS 

study were considerably heavier (mean BMI = 42.4 kg/m2) than obese participants in either 

the BORICC Study (mean BMI = 33.4 kg/m2) or in the BFU Study (mean BMI = 33.2 kg/m2). 

Finally, it is possible that the degree of weight change within individuals that occurred over 

12+ years of follow up was insufficient to reveal an effect of change in adiposity. Individual 

body weight change during the period of follow-up was substantial and ranged from +25 kg to 

-20 kg but the amount of weight change needed to trigger a change in miRNA expression is 

unknown.  These data are consistent with evidence obtained from the BOCABS Study (see 

section 4.7.1) which demonstrates that the degree of weight loss following RYGB was not 

associated with the extent of change in expression of any of these 3 miRNAs. 
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6 General Discussion 

6.1 Summary of main findings 

The aim of this PhD project was to examine i) the effects of obesity and weight loss following 

bariatric surgery (using data from the BOCABS Study) and ii) the effects of age and ageing 

(using data from the BORICC and BFU Studies) on biomarkers of CRC risk, including 

mitochondrial mutations and changes in expression of miRNAs. The investigations were 

designed to test the hypotheses that i) biomarkers of CRC risk are elevated in obese compared 

with non-obese individuals, ii) weight loss following bariatric surgery ameliorates molecular 

pathways which are mechanistically associated with CRC risk and iii) that these obesity-related 

biomarkers of CRC risk are exacerbated by ageing. The main findings are summarised below. 

 

6.1.1 Effects of adiposity and of ageing on mitochondrial dysfunction and mtDNA mutations 

in the colorectal mucosa 

I tested the hypothesis that obese individuals exhibit greater mitochondrial dysfunction and 

increased mtDNA mutation frequency (i.e. global mutations identified in the mitochondrial 

spectra and mutations with functional consequences) and that weight loss following bariatric 

surgery reduces the rate of clonal expansion of mutated mtDNA, when compared with non-

obese adults. This is the first study to examine mitochondrial OXPHOS protein abundance and 

to sequence the mtDNA in human colorectal mucosal biopsies in obese individuals pre- and 

post-bariatric surgery and in non-obese Controls. Furthermore, I examined the effect of age 

on both OXPHOS protein abundance and mtDNA mutation frequency. 

I detected significantly more crypts with complex I and IV deficiencies in the colorectal mucosa 

of obese pre-surgery participants when compared with non-obese Controls. This finding is 

consistent with previous human studies, although those measurements were made in other 

tissues including skeletal muscle and adipose tissue (Sparks et al., 2005, Rocha et al., 2015,  

Heinonen et al., 2015). I also observed that advancing age is associated with significantly 

greater complex I and IV deficiencies in the colorectal mucosa in both obese and non-obese 

people, which is in line with earlier research findings (Greaves et al., 2010, Greaves et al., 2012, 

Greaves et al., 2014). The latter studies did not investigate effects of adiposity. Whilst bariatric 

surgery resulted in very substantial weight loss, mean 27kg after 6 months, it did not lead to 

altered abundance of OXPHOS protein levels, which was surprising. This finding is inconsistent 
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with other studies which reported improvement in mitochondrial respiration at 6 months 

after bariatric surgery-induced weight loss (Coen et al., 2015, Fernstrom et al., 2016). It is likely, 

that the lack of improvements in OXPHOS protein abundance in my study was due to the fact 

that, despite significant weight loss, the participants remained obese at 6-month follow-up 

(mean BMI 31.7 kg/m2). Alternatively, the adverse effects of excess adiposity may damage 

expression of mitochondrial OXPHOS proteins permanently. The underlying mechanisms for 

the associations between age-related CRC risk, greater adiposity and increased OXPHOS 

protein deficiencies in the human colorectal mucosa warrant further research. 

Using NGS to sequence approximately 60% of the mitochondrial genome, I observed no 

associations between adiposity and/ or age and frequency or pattern of mtDNA mutations 

when comparing i) matched groups of obese pre-surgery participants and non-obese Controls 

and ii) obese adults before and after bariatric surgery. There were no significant differences 

in the types of mtDNA mutations detected, including global mutations identified in the 

mitochondrial spectra and mutations with functional consequences. There was a trend for 

transversions to occur more frequently in adults with higher levels of adiposity when 

compared with non-obese Controls, but this observation was not significant. In addition, there 

was a tendency towards lower frequency of transversions and non-silent codon changes in 

those who had undergone bariatric surgery, but these changes were not statistically 

significant. Inter-individual variation in mitochondrial mutation frequency was large, which 

may have precluded detection of significant effects. 

In summary, my data provide evidence that greater levels of adiposity result in deficient 

complex I and IV and mitochondrial mass expression in human colorectal mucosal biopsies, 

which does not seem to be caused by mutations in the corresponding mitochondrially-

encoded genes. Taylor (2003) demonstrated that defective OXPHOS proteins are caused by 

about 70% underlying mutations and 30% other mechanisms, including damage due to 

elevated levels of ROS and inflammation. It is plausible to propose that the observed OXPHOS 

defects in this study are driven by inflammatory and oxidative stress damage at the protein 

level rather than the DNA level. If the latter is true, then one would expect that weight loss, 

coupled with its associated reductions in inflammatory markers and oxidative stress, would 

decrease damage at the protein level. In addition, although the reduced inflammation and 

oxidative stress may lower the frequency of new mtDNA mutations, once a mutation has 
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occurred, clonally expanded and reached the threshold level, it is irreversible and formerly 

individuals may carry those mutations with them even if they return to normal weight.  

6.1.2 Effects of adiposity, age and ageing on miRNA expression in the colorectal mucosa 

I tested the hypothesis that weight loss following RYGB in initially obese participants 

modulates miRNA expression in the colorectal mucosa. This was the first study which used 

NGS to screen for changes in mature miRNA in the human colorectal mucosa and to 

investigate the effects of obesity and of weight loss following RYGB. I further examined and 

validated differential expression of a panel of miRNAs between i) obese and non-obese 

individuals and ii) in initially obese people pre- and post-RYGB. Furthermore, I investigated the 

effects of adiposity, age and of ageing on expression of the same panel of miRNAs in the 

human colorectal mucosa in a 12+ years follow-up study. 

Expression of miR-31, a recognised oncogene in CRC, was significantly upregulated in obese 

adults when compared with non-obese, and declined significantly following weight loss by 

RYGB. This finding is consistent with the role of this miRNA as an oncogene and its increased 

expression with CRC risk and during CRC pathology (Bandrés et al., 2006, Slaby et al., 2007, 

Motoyama et al., 2009, Wang et al., 2009, Earle et al., 2010, Ito et al., 2014, Nosho et al., 2014, 

Yang et al., 2014, Tateishi et al., 2015, Lundberg et al., 2018). This finding is also consistent 

with the observation of reduced CRC risk following significant and sustained surgery-induced 

weight loss (Afshar et al., 2018). Furthermore, I observed that miR-31 expression was 

increased in older participants (>56 years) recruited to the BORICC Study. Perhaps surprisingly, 

miR-31 expression fell significantly in the same individuals when investigated 12+ years later 

to levels comparable to those of the younger group of BORICC Study participants. It is well-

established that miRNA expression and other epigenetic marks and molecules are plastic and 

that they respond to a wide range of environmental exposures (Mathers et al., 2010, 

Malcomson and Mathers, 2017). It is likely that ageing, unchanged measures in adiposity or 

nutritional factors (the latter needs to be explored within these studies; BORICC and BFU), 

interacted with the epigenome.  And this interaction may have determined the phenotype of 

these adults, and resulted in a reduced CRC risk which was consistent with the lack of CRC 

cases at the time of the recruitment at 12+ years follow-up (the BFU Study). However, the 

underlying mechanisms responsible for this relationship and outcome are currently 

incompletely understood. 
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Expression of miR-215, a TSG involved in the aetiology of CRC, was significantly upregulated 

in obese adults, when compared with non-obese, and declined significantly following weight 

loss by RYGB. This finding is unexpected and inconsistent with the role of this miRNA as a TSG 

and its downregulation with CRC risk or during CRC pathology (Braun et al., 2008, Karaayvaz 

et al., 2011, Necela et al., 2011, Faltejskova et al., 2012, Vychytilova-Faltejskova et al., 2017). 

The reasons for this observation are unclear. Moreover, I observed that miR-215 expression 

increased during 12+ years of ageing (BFU Study), when compared with baseline levels 

(BORICC Study). Since CRC risk increases with age (Siegel et al., 2017), the greater expression 

of miR-215 in older people was unexpected and more research is warranted to reveal the 

underlying mechanisms and to determine whether this has implications for CRC development. 

I also observed increased expression of two novel miRNAs, miR-3196 and miR-4516, in obese 

adults, when compared with non-obese Controls, and expression of miR-3196 only fell 

significantly following weight loss by RYGB. However, miR-3196 showed a different direction 

of expression change by qPCR compared to NGS for both comparison groups, showing that 

this miRNA did not validate and was hence excluded from further analyses. To date, few 

studies have investigated the role of these novel miRNAs, and their potential roles in obesity 

and in cancer, including CRC, remain to be discovered. No significant changes in miR-4516 

expression during ageing was detected.  

In summary, my data demonstrate that expression of three miRNAs (miR-31, miR-215 and 

miR-4516) is significantly higher in the colorectal mucosa of obese individuals and that 

expression of two out of those three miRNAs (miR-31 and miR-215) is reduced significantly 

following weight loss by RYGB when compared with initially obese adults. Two of these 

miRNAs (miR-31 and miR-215, an oncogene and TSG, respectively) are implicated in CRC and 

the observed changes in expression are associated with greater adiposity and with weight loss, 

suggesting that the associated machinery for regulating miRNA gene expression senses, and 

responds to, changes in measures of adiposity. Furthermore, expression of miR-215 increased 

significantly in the same individuals investigated at baseline and after 12+ years follow-up. 

This suggests that expression of this miRNA is associated with ageing (to date no previous 

studies have identified miR-215 in ageing research), but how such age-related expression is 

regulated remains to be discovered. Based on this evidence, I propose that adiposity, age and 

ageing, to some extent, modulate miRNA expression in the colorectal mucosa and so may 

influence CRC risk. 
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6.1.3 Comparison of miRNA expression in the human colorectal mucosa across multiple 

studies 

For consistency, and to facilitate the pooling of data, the same house keeping genes (HKG) and 

methods for analysis were used for quantification of miRNA expression in all three studies i.e. 

the BOCABS, BORICC and BFU Studies included in this thesis. To investigate associations with 

age and adiposity, I pooled data for miRNA expression for all participants across all 3 studies 

(see Figure 6-1 for relationships with adiposity and Figure 6-2 for relationships with age). 

Figure 6-1 shows that, of the 3 miRNAs, miR-215 expression has the most evident association 

with BMI. Expression of miR-215 is relatively low for non-obese participants but increases 

steeply at higher levels of adiposity. The data in Figure 6-2 show an apparent peak in miRNA 

expression in mid-life, i.e. between age 45-55 years, for all 3 miRNAs examined. However, this 

is unlikely to be a simple age-dependent phenomenon since most of these higher values are 

contributed by the obese participants pre-surgery from the BOCABS Study (blue symbols in 

Figure 6-2) so that this apparent age effect is likely confounded by between study group 

differences in adiposity. CRC risk increases rapidly after the age of 50 years, which may explain 

the higher expression of the oncogene miR-31 as seen in Figure 6-2 (A).  
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Figure 6-1: Expression of miRNAs (which were significant between obese and non-obese after qPCR quantification) across the 
BMI range in all study groups, BOCABS: pre- and post-surgery and non-obese controls, BORICC and BFU Studies. A) miR-31 
expression. B) miR-215 expression C) miR-4516 expression. 
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Figure 6-2: Expression of miRNAs (which were significant between obese and non-obese after qPCR quantification) across 
the age span in all study groups, BOCABS: pre- and post-surgery and non-obese controls, BORICC and BFU Studies. A) miR-31 
expression. B) miR-215 expression C) miR-4516 expression. 

In Figure 6-3, I have combined data on miRNA expression published by Afshar (2016a) and the 

new data from this thesis to provide a more comprehensive overview of the effects of obesity 

on miRNA expression. I found significant overexpression for three miRNAs (miR-31, miR-215 

and miR-4516), whereas Afshar (2016a) observed significant overexpression of one miRNA 

(miR-143) and downregulation of three miRNAs (miR-1273a, miR-144 and miR-451a) in obese, 

when compared with non-obese, participants in the BOCABS Study. Table 6-1 shows the 

validated pathways that are known to be regulated by each of these 7 miRNAs. An 

overexpression of one oncogene, miR-31 which targets TGFβ, BMP and WNT pathways, and 

downregulation of 2 TSG (miR-144 and miR-451a) was seen, which activates PI3K /AKT and 

WNT pathways. Taken together, this differential expression of these miRNAs results in the 

induction of proliferation and repression of apoptosis. This is in line with the hypothesis that 

greater levels of adiposity modulate molecular pathways which are mechanistically linked to 

CRC risk. However, two TSG (miR-143 and miR-215) were upregulated in the obese, which is 

unexpected. As discussed earlier (see section 4.8), because each of these pathways is 
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regulated by multiple miRNAs, it is not appropriate to draw a conclusion about altered CRC 

risk in the obese based on two TSG (for one of which affected pathway(s) remain unknown).  

 

Figure 6-3: Combined data on expression of miRNAs which were significantly modulated by increased adiposity in the 
colorectal mucosa of participants to the BOCABS Study, identified by Afshar (2016a) and myself. Samples sizes studied by 
Afshar (2016a) were for miR-1273a n=36 obese and n=18 non-obese; for miR-144-3p n=36 obese and n=19 non-obese; for 
miR-143-3p n=37 obese and n=20 non-obese; for miR-451a n=36 obese and n=20 non-obese. In my study the sample sizes for 
all 3 miRNAs were n=22 obese and n=20 non-obese. 

 

miRNA Role Association with 

obesity 

Validated pathways 

affected 

miR-31 Oncogene ↑ TGFβ, BMP and 

WNT 

miR-215 TSG ↑ Unknown 

miR-143 TSG ↑ RAS-MAPK 

miR-144 TSG ↓ PI3K /AKT 

miR-451a TSG ↓ WNT 

miR-1273a Unknown ↓ Unknown 

miR-4516 Unknown ↑ Unknown 

Table 6-1: Significantly modulated miRNAs in the colorectal mucosa of obese compared with non-obese Controls in the 
BOCABS Study and their targeted pathways. 
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Finally, Figure 6-4 illustrates the effects of deliberate and sustained weight loss following 

bariatric surgery on miRNA expression in the colorectal mucosa within the BOCABS Study 

combining data from Afshar (2016a) and this thesis. I found significant downregulation of 

three miRNAs (miR-31 and miR-215) and Afshar (2016a) observed significant overexpression 

of one miRNA (miR-451a) and downregulation of one miRNA (miR-143) in the post-surgery 

participants at 6 months follow-up. The combined data expands our understanding of the 

pathways affected by significant and sustained weight loss following bariatric surgery. Table 

6-2 shows the validated pathways which are regulated by these miRNAs.  

The observed downregulation of the oncogene miR-31, which targets TGFβ, BMP and WNT 

pathways, and is involved in upregulation of the TSG miR-451a, may result in repressed cell 

proliferation and increased apoptosis. This is consistent with the hypothesis that weight loss 

reduces CRC risk by modulating molecular pathways which are causal in its aetiology. MiR-

143, which affects the RAS-MAPK pathway, and miR-215 were downregulated in the post-

surgery group which is surprising given their role as TSGs but, as discussed above, conclusion 

cannot be made based on two single miRNAs only. 

 

Figure 6-4: Combined data on expression of miRNAs, which were significantly modulated by sustained weight loss following 
bariatric surgery at 6 months follow-up in the colorectal mucosa of participants to the BOCABS Study, identified by Afshar 
(2016a) were for miR-143-3p n=29 for matched pre- and post-surgery and for miR451a n=28 for matched pre- and post-
surgery. In my study sample sizes for all 2 miRNAs n=22 for matched pre- and post-surgery. 
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miRNA Role Effects of weight 

loss following RYGB 

Validated pathways 

affected 

miR-31 Oncogene ↓ TGFβ, BMP and 

WNT 

miR-143 TSG ↓ RAS-MAPK 

miR-451a TSG ↑ WNT 

miR-215 TSG ↓ Unknown 

Table 6-2: Significantly modulated miRNAs in the colorectal mucosa following deliberate and sustained weight loss by 
bariatric surgery in participants of the BOCABS Study and their targeted pathways. 

6.2 Strengths and Limitations of Studies 

The main strengths of both the BOCABS and BFU Studies was the ability to measure the 

biomarkers in the tissue of interest, namely the colon. This is a particularly important strength 

since, to date, this is the first human study to examine the effects of adiposity and of weight 

loss and their association to CRC risk on these biomarkers in the colon tissue. Other studies 

have primarily investigated miRNA expression in surrogate and adipose tissue (see Table 6-3). 

Further strengths of both the BOCABS and BFU Studies are the use of paired colorectal 

mucosal biopsies from unprepared bowel, which limited the potential confounding effect on 

biomarkers of interest, from the same individuals before and after bariatric surgery and at 

baseline and 12+ years follow-up, respectively. In both studies, rigid sigmoidoscopies were 

used which is cheaper compared with standard flexible endoscopes. A further strength of both 

studies was the use of stringent inclusion and exclusion criteria for participants, limiting the 

effect of potential confounding factors. The collection of rectal mucosal biopsies from the 

same anatomical site within the large bowel in all participants and by the same researchers 

allows data to be directly comparable and not subject to confounding by differences due to 

sample site. Both studies collected extensive phenotypic data of participants, including 

anthropometry, diet, lifestyle, physical activity and sedentary behaviour, and biological 

samples (blood, stool and urine), which facilitates the study of factors that play a role in 

modulating molecular and mechanistic pathways. Finally, for the BOCABS Study, a further 

strength was that the bariatric surgery was performed by two surgeons, restricting 

heterogeneity in the aspect of surgery procedure. And, for the BFU Study, a further strength 

was that buccal, bone density, upper and lower body strength measurements were collected. 
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The main limitations of both the BOCABS and BFU Studies are that the utilisation of colorectal 

mucosal biopsies at the mid-rectum, 10cm distanced from the anal verge, to evaluate CRC risk 

and, it is likely not to be representative of the whole colorectum. Nevertheless, initial changes, 

including cell proliferation, which result in the development from normal mucosa to adenoma 

and subsequently CRC occur in the entire colorectum (Terpstra et al., 1987).  

Another limitation is the relatively small samples size of paired samples, n=22-26 and n=33 for 

the BOCABS and BFU Studies, respectively, which did restrict the performance of sub-group 

analyses. For example, effects of type of bariatric surgery or low vs high CRC risk participants 

in the BOCABS and BFU participants, respectively, on measured outcomes in the present study. 

Table 6-3 compares participant characteristics and methods of investigation in the tissue of 

interest from the BOCABS, BORICC and BFU studies (highlighted in green) to other studies in 

this field. Two studies which examined the effect of weight loss by bariatric surgery on CRC 

risk had similar sample sizes, i.e. n=26 (Sainsbury et al., 2008) and n=19 (Kant et al., 2011). 

Additionally, studies investigating the effect of weight loss by bariatric surgery on circulating 

miRNA expression had also comparable samples sizes to the present study, i.e. n=21 

(Hulsmans et al., 2012), n=22 (Ortega et al., 2013), n=22 (Nunez Lopez et al., 2017); or even 

smaller sample sizes, i.e. n=13 (Lirun et al., 2015), n=9 (Alkandari et al., 2018), n=6 (Hubal et 

al., 2017) and, only one study comprised a greater sample size, i.e. n=58 (Hohensinner et al., 

2018). One study examining the effect of weight loss by bariatric surgery on miRNA expression 

in the adipose tissue also comprised a comparable sample size to the present study, i.e. n=16 

(Ortega et al., 2015a), or once again smaller sample sizes, i.e. n=9 (Ortega et al., 2015b) and 

n=3 (Nardelli et al., 2017).  

Additionally, for the recruitment of the BFU Study a power calculation was conducted (based 

on the effect of age on faecal calprotectin in the BORICC Study) which estimated the 

requirement of a recruitment target n=53 but a total of n=47 were actually recruited which 

might be a potential limitation (Malcomson et al. 2019). However, it is important to note that 

this power calculation was based on a longitudinal age difference of 10+ years as opposed to 

12+ years and on cross-sectional data, but here comparisons over time were analysed which 

are likely to exhibit greater statistical power to detect effects of ageing on the measured 

outcomes. 

Table 6-3 shows the participant characteristics, tissue of interest and miRNA quantification 

method of the BOCABS, BORRIC and BFU studies compared with previously published research 
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which also investigated the effect of weight loss on miRNA expression. When comparing the 

extremes of adiposity, which is the case for the majority of the studies ((Hulsmans et al., 2012,  

Ortega et al., 2013, Ortega et al., 2015a, Ortega et al., 2015b,  Nardelli et al., 2017, Hubal et 

al., 2017,  Alkandari et al., 2018, Hohensinner et al., 2018) and the BOCABS Study) it becomes 

clear that, where participants comprise a higher baseline BMI above >40 kg/m2, they remain 

in the obese range after surgery at follow-up. This might be a natural limitation when studying 

adults with extreme levels of adiposity as they may struggle to achieve a weight within the 

normal range. All studies comprise a greater proportion of women and, when investigating 

miRNAs in relation to obesity related CRC risk, this might pose a confounder, as CRC is more 

common in men. The risk for CRC increases significantly with age, especially after mid-life 

(Siegel et al., 2017). CRC results from unrepaired genomic damage to stem cells and their 

progeny located in the crypts of the colorectal mucosa which takes many years to accumulate 

and develop into pathology. In the studies to date, the mean age range is 39-68 years (with 

the exception of one study where the mean age is 28 years (Lirun et al., 2015)) and it would 

be interesting to investigate the changing patterns of miRNAs from early adulthood until mid-

life when CRC develops. A final limitation is the differential methods utilised across studies for 

the quantification of miRNA abundance, including TaqMan low-density array and RT-PCR, 

Affymetrix GeneChip miRNA Array, microarray, Exiqon miRCURY locked nucleic acid and PCR, 

real time PCR, qPCR and NGS. The use of different methods does not allow a uniform 

comparison of miRNA expression across the different studies. 

A possible limitation of the BOCABS Study was the recruitment of the non-obese Controls 

occurred following referral for flexible sigmoidoscopy or colonoscopy for GI symptoms. Even 

though patients were only recruited if their endoscopy was normal and no pathology was 

found, this method for recruitment might have selected unhealthy participants with 

undiagnosed GI pathology. A systematic review and other studies have observed that 

neoplasia, adenoma and polyp miss rates range between 6-27%, which suggests that the 

diagnosis of pathology may be missed (Hixson et al., 1991, Bensen et al., 1999, van Rijn et al., 

2006, Kaltenbach et al., 2008). Furthermore, as adenomas do not commonly cause symptoms, 

it is not expected to find a higher adenoma diagnosis rate in the non-obese Controls who were 

symptomatic patients with a normal endoscopy, compared with the obese patients. Hence, 

the non-obese Controls of this study might carry undiagnosed pathology of the colon. But, at 

least for the study of miRNA expression, this point does not pose an issue as the study by 
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Kurylowicz (2017) identified similar effects and the normal weight Controls were undergoing 

elective cholecystectomy or were operated for inguinal hernia. This shows that the 

recruitment strategy for the Controls in the BOCABS Study was satisfactory to enable 

detection of changes in miRNA expression when compared with adults with severe adiposity, 

i.e. BMI above >40 kg/m2. 

 

6.2.1 Strengths of the mitochondrial and epigenetic biomarkers 

The laboratory methods used, including qPCR and immunofluorescent labelling, provide 

robust quantification for investigating epigenetic and mitochondrial biomarkers. NGS provides 

global and unbiased, quantification of patterns mutational load of mtDNA mutations and 

miRNA abundance in crypts of colorectal mucosal biopsies. 

Another strength is that Afshar (Afshar, 2016a) has previously tested the correlation between 

miRNA expression and the SMA:CK20 ratio in colorectal mucosal biopsies of participants to 

the BOCABS Study. He found that the ratio was uniform across the biopsies from the different 

groups (pre- and post-surgery and controls) and therefore cellular composition is uniform in 

these biopsies and not a confounding factor for the results on miRNA expression. Due to this 

validation, it is not anticipated that the cellular composition of biopsies differs in BORICC and 

BFU Study participants and acts as a confounder for miRNA expression. 

6.2.2 Limitations of the mitochondrial biomarkers 

A significant limitation was the smaller sample size when examining the effects of adiposity 

and weight loss on mtDNA mutations. Additionally, it was possible to sequence 60% of the 

mitochondrial genome in the colorectal mucosa, which limited the opportunity to identify 

possible mtDNA mutations present in the remaining 40% of the genome which was not 

sequenced.      
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Study Sample size 

(n) 

Gender M, F 

(%) 

Age (years) BMI (kg/m2) 

before 

weight loss 

BMI (kg/m2) 

after weight 

loss 

Tissue Investigation miRNA 

quantitation 

method 

BOCABS 

Study 
22 18, 82 47 42.4 31.3 Colon 

Obesity, 

bariatric 

surgery, CRC 

risk 

NGS, qPCR 

BORICC Study 
33 48, 52 56 28 N/A Colon 

Age and 

ageing 
qPCR 

BFU Study 
33 48, 52 68 28.4 N/A Colon 

Age and 

ageing 
qPCR 

(Hulsmans et 

al., 2012) 
21 33, 67 39 44 36 Monocytes 

Bariatric 

surgery 
Microarray 

(Ortega et al., 

2013) 

 
22 23, 77 44 42.9 28.9 Surrogate 

Bariatric 

surgery 

TaqMan 

low-density 

array and 

qRT-PCR 
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(Nunez Lopez 

et al., 2017) 22 18, 82 43 39.5 30.2 Surrogate 

RYGBP plus 

exercise 

program 

Real time 

PCR 

(Lirun et al., 

2015) low 

BMI group 

(≤30 kg/m2) 

7 29, 71 41 26.8 22.4 Surrogate RYGB 

Affymetrix 

GeneChip 

miRNA Array 

(Lirun et al., 

2015) high 

BMI group 

(≥30 kg/m2) 

8 25, 75 28 35.4 28.9 Surrogate RYGB 

Affymetrix 

GeneChip 

miRNA Array 

(Alkandari et 

al., 2018) 

9 44, 56 46 49 30.7 Surrogate 
Bariatric 

surgery 

Exiqon 

miRCURY 

locked 

nucleic acid 

and PCR 

(Hubal et al., 

2017) 6 0, 100 39 51.2 32.6 Surrogate 
Bariatric 

surgery 

Affymetrix 

GeneChip 

miRNA Array 
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(Hohensinner 

et al., 2018) 
58 29, 71 42 44.0 28.0 Surrogate 

Bariatric 

surgery 
RT-qPCR 

(Ortega et al., 

2015a) 
16 0, 100 48 43.1 29.2 

Adipose 

tissue 

Laparoscopic 

sleeve 

gastrectomy 

Affymetrix 

GeneChip 

miRNA Array 

and RT-PCR 

(Ortega et al., 

2015b) 
9 0, 100 48 43.4 

Available in 

supplementary 

file 

Adipose 

tissue 

Bariatric 

surgery 

TaqMan 

low-density 

array and 

RT-PCR 

(Nardelli et 

al., 2017) 
3 0, 100 48 42.9 32 

Adipose 

tissue 

Bariatric 

surgery 

TaqMan 

low-density 

array and 

RT-PCR 

Table 6-3:  Comparison of participant characteristics and miRNA quantification methods in tissue of interest in the BOCABS, BORICC and BFU Studies with previously published studies 
investigating the effects of deliberate and sustained weight loss by bariatric surgery on miRNA abundance. 
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6.3 General proposals for future work 

The differences between the study designs of the BOCABS and BFU Studies has been 

discussed in detail earlier. These differences provide an evidence gap that should be an 

important focus for future research. It would be interesting to expand the investigation on 

the association between the outcomes of interest with additional markers of adiposity (apart 

from BMI) and include, for example, body fat percentage, waist and hip circumference and 

waist: hip ratio. When examining the relationships with waist circumference, care is needed 

to adjust for gender because of the well-established gender dimorphism in body shapes 

between males and females (Singh, 1994). Another interesting area for future work is the 

investigation of the links between socioeconomic status and lifestyle factors involved in the 

aetiology of obesity, i.e. diet, physical activity and smoking, on mitochondrial and epigenetic 

(miRNA expression) biomarkers measured in the colorectal mucosa of participants in the 

BOCABS and BFU Studies. Investigating this link may provide a more holistic picture of how 

lifestyle factors interplay with molecular mechanisms.  

As discussed in the introductory chapter (see section 1.5), there is a big research gap on 

whether obesity modulates CRC risk via effects on the mitochondria. It would be interesting 

to establish whether an interaction between miRNAs and mitochondria during obesity plays 

a role in the development of CRC. More specifically, to examine whether i) epigenetic 

regulation via miRNAs can affect the expression of mitochondrial genes and the generation 

of mitochondrial proteins (i.e. OXPHOS proteins) and ii) if such an epigenetic regulation will 

affect the morphology, respiration and function of mitochondria. 

6.3.1 Proposals for future work on the investigation of miRNAs 

Epigenetic changes modulating gene expression, and by doing so regulating cell proliferation 

and apoptosis, play an important role in the link between obesity, weight loss and CRC risk. I 

investigated changes in miRNA expression following RYGB, age and ageing, which is one of 

the known epigenetic mechanisms. It would be interesting to further investigate in the future 

the effect of obesity, weight loss, age and ageing on other epigenetic mechanisms, including 

DNA methylation, post-translational histone and epi-transcriptome modifications. This will 

enhance our knowledge about the functions and molecular mechanisms of how adiposity 

modulates CRC risk. It is likely to also result in the detection of prognostic biomarkers as well 

as targets for prevention and treatment.  
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MiRNAs have been increasingly proposed for diagnostic biomarkers and therapeutic targets 

in CRC (Ren et al., 2015, Lin et al., 2017, Hibner et al., 2018) . However, research on miRNAs 

provides information on one aspect of epigenetic mechanisms and modifications. Conducting 

further research of downstream analyses will provide a deeper understanding of molecular 

mechanisms involved in the link between obesity, weight loss and CRC risk. It would be 

interesting to carry out gene expression and protein quantification analyses of the 

downstream targets of the miRNAs identified in this study and then validate predicted 

pathways which may be targeted by these miRNAs. 

Given the unexpected and opposite direction of expression of the TSG miR-215 with obesity 

and weight loss, it would be interesting to examine a broader panel of miRNAs which have 

been previously identified as TSG and oncogenes in CRC. Furthermore, to quantify the 

expression of the miRNAs identified in pathology, i.e. in tissue derived from CRC, and compare 

expression levels with the data derived from this study. This will enhance our understanding 

of the link between CRC and obesity and their ‘expected’ expression levels. In such a case, it 

is important to avoid confounding factors and take into account the altered cellular 

composition of pathological tissue by examining single cell miRNA expression patterns of the 

colon.  

Another proposal for future research is the examination of the same miRNA panel in 

surrogate tissue, including blood, and then compare expression levels found in blood to that 

found in the colon. If miRNA expression proves to be similar, blood could serve as a less 

invasive biomarker for CRC risk.  

It has not been previously evaluated how bowel preparation and enema affect and potentially 

modulate miRNA expression in the colon. Investigating this research gap will shed light on a 

potential confounding factor and help provide robust results on miRNA expression levels 

obtained from colorectal mucosal biopsies collected following bowel preparation and enema. 

6.3.2 Proposals for future work on the investigation on mitochondria 

As previous research has revealed that older individuals have higher rates of somatic mtDNA 

mutations, which clonally expand to high levels resulting in OXPHOS dysfunction (Greaves et 

al., 2010, Greaves et al., 2012, Greaves et al., 2014), it is fundamental to add age of 

participants as a covariate when investigating mitochondrial outcomes. 
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Considering the observed lack of effect of adiposity and weight loss on mtDNA mutations in 

the colorectal mucosal biopsies, it would be interesting to investigate the following: 

 Potentially NGS used in the samples here can only pick up high levels of clonal 

expansion at the homogenate level, due to low sensitivity. Therefore, I propose for 

future research to carry out single crypt or cell sequencing (i.e. epithelial cells) to 

increase the sensitivity and facilitate the detection of changes in low levels of mtDNA 

mutations from obese patients and age-matched non-obese Controls. 

 Taylor (2003) showed that defects in OXPHOS protein function are attributed to 

differential mechanisms, i.e. in approximately 70% of OXPHOS deficient crypts there 

is an underlying mtDNA mutation, however in the remaining 30% of crypts no mtDNA 

mutation is detected.  This suggests that there are other potential causes of OXPHOS 

defects in these crypts, including elevated levels of ROS and inflammation. As the 

mitochondrial genome did not seem to be the underlying cause of the enhanced levels 

of OXPHOS deficient crypts in the obese subjects here, it is plausible to assume that 

they are caused by inflammatory damage and ROS at the protein level rather than the 

DNA level. Examination of inflammatory markers including TNF-α, IL-6, -8, -12, C-

reactive protein, NF-κB, cyclooxygenase-1 and-2, proinflammatory macrophages and 

markers of oxidative stress (i.e. superoxide anion and nitric oxide) would clarify this. 

These markers have been shown to positively correlate with obesity and CRC risk 

(Erlinger et al., 2004, Wei et al., 2005, Gunter, et al., 2006, John et al., 2006, Otani, et 

al., 2006, Tuo et al., 2016). 

Previous data showed that colorectal mucosal crypts with mtDNA mutations show small but 

significant changes in cell proliferation and apoptosis (Nooteboom et al., 2010). Hence, 

another area for future research is the investigation of apoptosis in the colorectal mucosal 

biopsies from the BOCABS Study, to improve our knowledge on the effects of adiposity and 

weight loss on the state of this tissue. Validated markers utilising immunohistochemistry 

include cleaved cytokeratin-18 and activated caspase-3 (Duan et al., 2003, Nooteboom et al., 

2010). 

Finally, it would be interesting to conduct sequencing of the mtDNA in the colorectal mucosal 

biopsies of participants to the BFU Study and compare the results to the baseline data of the 
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BORICC Study (Greaves et al., 2010, Nooteboom et al., 2010, Greaves et al., 2012, Greaves et 

al., 2014). This would be the first investigation on the longitudinal effects of ageing on 

mitochondrial biomarkers in the colorectal mucosa in a 12+ year follow-up study. 

6.4 Conclusions 

Results obtained from one outcome measure on miRNA expression and OXPHOS protein 

abundance support my main hypothesis that biomarkers of CRC risk are elevated in obese 

compared with normal weight participants. Given the link between obesity and CRC risk, 

these findings provide further evidence that obesity increases CRC risk on a molecular level 

and adversely affects underlying mechanisms. Genome-wide sequencing did not reveal any 

evidence of an increase in mtDNA mutations in the colorectal mucosa of individuals with 

increased adiposity. The lack of this observation might be due to the fact that the observed 

OXPHOS defects in the obese are caused by inflammatory damage and ROS at the protein 

level rather than the DNA level.  

The data derived from the other outcome measure on miRNA expression support my second 

hypothesis that weight loss in the obese has beneficial effects on these biomarkers of CRC 

risk. To date, it remains to be discovered if intentional weight loss in obese adults modulates 

CRC risk. My data of epigenetic mechanisms suggests that there is some evidence that weight 

loss following bariatric surgery reduces CRC risk, but this cannot be supported with the data 

obtained on mitochondrial markers, as weight loss showed no effects. There is a possibility 

that the lack of effect by weight loss was due to the insensitivity of the technique to detect 

low level changes in mtDNA mutations. This warrants more research. 

Finally, I also hypothesised that these obesity-related biomarkers of CRC risk are exacerbated 

by age and ageing, which can be supported by the data obtained here. 

This research enables the broadening of our knowledge on the mechanistic pathways of 

obesity related CRC risk and provides novel evidence on the effects of intentional weight loss 

by bariatric surgery on these biomarkers in the colon. These findings highlight the further 

need to investigate the effects and implications of weight loss on CRC risk in adults with 

increased adiposity. 
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8 Appendices  

 

A. Biomarkers of Colorectal Cancer after Bariatric Surgery Exclusion Criteria 

 

Pre-procedure Post-procedure Exclusion based on 

rigid sigmoidoscopy 

findings 

Normal BMI control 

Age <16 or >65 Pregnancy CRC or active 

inflammation 

Significant 

pathology on follow-

up colonoscopy 

Previous colorectal 

resection 

Major post-

operative 

complications 

Macroscopically 

abnormal rectal 

mucosa 

 

Steroids, except 

topical, or other 

immunosuppressive 

medication 

 Unexpected 

microscopic 

abnormality on 

histological 

examination of 

rectal biopsies 

 

Active or previous 

history of Crohn’s or 

Ulcerative Colitis 

 Difficulty in 

performing rigid 

sigmoidoscopy  

 

Other inflammatory 

bowel disease (IBD) 

 Other technical 

difficulty 

 

Familial polyposis 

syndrome 

   

Lynch syndrome 

(Amsterdam II 

criteria) 
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Previous weight loss 

surgery 

   

Warfarin or other 

anticoagulation 

   

Pacemaker – NO 

BIOIMOPEDANCE 

   

Table 8-1: Exclusion criteria of participant’s to the BOCABS Study for pre-procedure, post-procedure, based on rigid 
sigmoidoscopy findings and for normal BMI control. 
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B. BFU Study Ethics Approval 29.11.16 

  

West Midlands - Coventry & Warwickshire Research Ethics Committee  

The Old Chapel  

Royal Standard Place  

Nottingham  

NG1 6FS  

  

 Please note:  This is an  acknowledgement letter from  the REC only and does 

not  allow you to start your study  at NHS sites in England until  

 you receive HRA Approval   

   

  

  

  

29 November 2016  

  

Professor John C Mathers  

Biomedical Research Building  

Campus for Ageing and Vitality  

Newcastle upon Tyne  

NE4 5PL  

  

  

Dear Professor Mathers,  

  

Study title:  Mucosal biomarkers of bowel cancer risk: 10 year follow-up of 

BORICC Study  

REC reference:  16/WM/0424  

IRAS project ID:  207081  
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Thank you for your letter of 23rd November 2016. I can confirm the REC has received the 

documents listed below and that these comply with the approval conditions detailed in our 

letter dated 09 November 2016  

  

Documents received  

  

The documents received were as follows:  

  

Document    Version    Date    

Participant information sheet (PIS) [Invitation letter and information 

sheet]   

2.1   22 November 2016  

  

Approved documents  

  

The final list of approved documentation for the study is therefore as follows:  

  

Document    Version    Date    

GP/consultant information sheets or letters [Letter to GP]   1   26 July 2016   

IRAS Application Form [IRAS_Form_14092016]      14 September 2016  

IRAS Checklist XML [Checklist_23112016]      23 November 2016  

Letter from funder [TRF Funding Award Letter ]   1   18 September 2015  

Letter from sponsor   1      

Non-validated questionnaire [Sunlight exposure questionnaire]   1   26 July 2016   

Other [Response to Ethics Committee Review]   1   01 November 2016  

Other [PhD Student Information]         

Participant consent form [Consent form]   1   08 July 2016   

Participant information sheet (PIS) [Invitation letter and information 

sheet]   

2.1   22 November 2016  

Referee's report or other scientific critique report [TRF reviewer's report 

1]   

1   01 August 2016   

Referee's report or other scientific critique report [TRF reviewer's report 

2]   

1   01 August 2016   
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Research protocol or project proposal [Project Proposal]   1   02 August 2016   

Summary CV for Chief Investigator (CI) [Chief Investigator CV]   1   01 August 2016   

Summary CV for student [Abraham CV]   1   16 September 2016  

Summary CV for student [Summary CV for PhD Student]   1   02 November 2016  

Summary CV for supervisor (student research) [Bradburn CV]   1   12 September 2016  

Summary CV for supervisor (student research) [Malcomson CV]   1   12 September 2016  

Summary, synopsis or diagram (flowchart) of protocol in non technical 

language [Proposed schedule of interaction with participants for section 

A13]   

1   02 August 2016   

Validated questionnaire [FFQ]   1   01 August 2016   

Validated questionnaire [Lifestyle questionnaire]   1   01 August 2016   

  

You should ensure that the sponsor has a copy of the final documentation for the study.  It is 

the sponsor's responsibility to ensure that the documentation is made available to R&D 

offices at all participating sites.  

  

16/WM/0424  Please quote this number on all correspondence  

  

Yours sincerely,  

  

Rachel Nelson REC Manager  

  

E-mail: NRESCommittee.WestMidlands-CoventryandWarwick@nhs.net  

  

Copy to:  Ms. Caroline Potts  
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C. BFU Study Ethics Approval for Amendments 23.5.17 

  

West Midlands - Coventry & Warwickshire Research Ethics Committee  

The Old Chapel  

Royal Standard Place  

Nottingham  

NG1 6FS  

  

 Please note: This is the favourable opinion of the REC only and does not allow the 

amendment to be  implemented   at NHS sites in England until the outcome of the 

HRA assessment has been confirmed.   

  

23 May 2017  

  

Ms. Caroline Potts  

Northumbria NHS Foundation Trust  

Research Support Unit  

North Tyneside General Hospital  

Rake Lane, North Shields  

NE29 8NH  

  

  

Dear Ms. Potts  

  

Study title:  Mucosal biomarkers of bowel cancer risk: 10 year follow-up of BORICC 

Study  

REC reference:  16/WM/0424  

Amendment 

number:  

1  

Amendment date:  11 April 2017  

IRAS project ID:  207081  

  

The above amendment was reviewed between 08 May and 23 May 2017 by the Sub-

Committee in correspondence.   
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Ethical opinion  

  

The members of the Committee taking part in the review gave a favourable ethical 

opinion of the amendment on the basis described in the notice of amendment form and 

supporting documentation.  

  

The sub-committee asked the applicant to write the acronym BORICC in full in the 

invitation letter.   

  

The sub-committee asked the applicant to confirm that patients in the original BORICC 

study (12 plus years ago) gave their consent to be approached in a follow up study.  

  

The sub-committee queried with the applicant if checks will be made on participants 

have passed away before sending information out to them.  

  

The above queries were made to the applicant by the REC office by means of email on 

11th May 2017. The applicant responded the same day in reply to the email with an 

updated invitation letter (version 3.1) which writes out the BORICC acronym.   

  

In the same response the applicants provided a cover letter confirming that although 

the original study did not get consent to approach participants for a new study, at an 

event held in April 2016 the idea of a followup study was received very positively by 

90% of the attending participants who were very keen to participant in a follow-up. The 

applicant also assured that potential participants will be approached by their clinician.   

  

In the same response the applicants confirmed in the cover letter that potential 

participants will be screened using the SIRUS and Single View platforms to identify 

participants who have passed away or who do not meet our inclusion criteria.  

  

  

The sub-committee agreed that the amendment with the responses and updated 

invitation letter do not present any ethical issues.  

  

Approved documents  

  



226 
 

The documents reviewed and approved at the meeting were:  

  

Document   Version   Date   

Letters of invitation to participant [BORICC Follow Up Study Invitation Letter v3.0.docx]   3.1  11 May 2017  

Notice of Substantial Amendment (non-CTIMP)   1   11 April 2017  

Other [Response card.docx]   1   05 April 2014  

Summary, synopsis or diagram (flowchart) of protocol in non technical language [A13- 

Figure 1 Proposed schedule of interactions with participants.docx]   

2   11 April 2017  

Response to Ethics Committee May 2017      

  

Membership of the Committee  

  

The members of the Committee who took part in the review are listed on the attached 

sheet.  

  

Working with NHS Care Organisations  

  

Sponsors should ensure that they notify the R&D office for the relevant NHS care 

organisation of this amendment in line with the terms detailed in the categorisation 

email issued by the lead nation for the study.  

  

Statement of compliance  

  

The Committee is constituted in accordance with the Governance Arrangements for 

Research Ethics Committees and complies fully with the Standard Operating 

Procedures for Research Ethics Committees in the UK.  

  

We are pleased to welcome researchers and R & D staff at our Research Ethics 

Committee members’ training days – see details at http://www.hra.nhs.uk/hra-training/   

  

16/WM/0424:    Please quote this number on all correspondence  

  

Yours sincerely  

http://www.hra.nhs.uk/hra-training/
http://www.hra.nhs.uk/hra-training/
http://www.hra.nhs.uk/hra-training/
http://www.hra.nhs.uk/hra-training/
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Professor Jane Appleton Chair  

  

E-mail: NRESCommittee.WestMidlands-CoventryandWarwick@nhs.net  

  

  

Enclosures:  List of names and professions of members who took part in the review  

  

Copy to:   Ms. Caroline Potts, Northumbria NHS Foundation Trust  

Professor John C Mathers  

  

West Midlands - Coventry & Warwickshire Research Ethics Committee  

  

Attendance at Sub-Committee of the REC meeting on 08 May 2017  

  

   

Committee Members:   

  

Name   Profession   Present   

Professor Jane Appleton 

(Chair)  

Nurse   Yes   

Mrs Louise Harmer   Undergraduate Medical Education Manager, Technology  

Enhanced Learning and Clinical Skills and Resuscitation 

Tutor   

Yes   
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D. BFU Study Ethics Approval for Amendments 15.12.17 

West Midlands - Coventry & Warwickshire Research Ethics Committee  

The Old Chapel  

Royal Standard Place  

Nottingham  

NG1 6FS  

  

 
Please note: This is the favourable opinion implemented   at NHS sites in England 

until the outcome of the HRA assessment has been confirmed. of the REC only and 

does not allow the amendment to be   

  

  

15 December 2017  

  

Abraham Joel  

Teaching and Research Fellow  

Wansbeck General Hospital  

Education Department  

Wansbeck General Hospital  

Ashington  

NE63 9JJ  

  

  

Dear Abraham Joel  

  

Study title:  Mucosal biomarkers of bowel cancer risk: 10 year follow-up 

of BORICC Study  

REC reference:  16/WM/0424  

Amendment number:  2  

Amendment date:  17 November 2017  

IRAS project ID:  207081  
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The above amendment was reviewed by the Sub-Committee in 

correspondence.   

  

Ethical opinion  

  

The members of the Committee taking part in the review gave a favourable 

ethical opinion of the amendment on the basis described in the notice of 

amendment form and supporting documentation.  

  

The sub-committee had some queries for the applicant of the amendment. The 

queries were presented to the applicant by email on 11 December 2017. The 

applicant responded 12th  

December in reply to the email and the responses by the applicant are 

represented here in italics.   

  

i) Has the applicant checked that the non-respondent is still alive? If so, 

how do they do this?  

Yes. Clinical members of our team (Abraham Joel & Khalil El Gendy) have 

checked that participants are still alive using Single View software on NHS 

Northumbria Trust computers. We make no attempt to contact any participants 

who have passed away or their families.  

  

ii) How will the applicant be sure that they really are talking to the person 

they want?  

When calling, the administrative member of staff making the phone calls 

(Yasmin Ibrahim) will ask for the participant stating their full name. Should there 

be any question about the participant in question being on the telephone (for 

example if there is more than one household member with the same name), 

Yasmin will have access to the participant's date of birth.  
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iii) What happens if the person who answers the phone asks for more detail 

before giving any information?  

The administrative member of staff (Yasmin Ibrahim) will have a script including 

a short paragraph about the BORICC Study at baseline (e.g. where and when it 

took place and what it investigated). Should the person on the telephone ask for 

more details or ask any questions about the study, Yasmin will ask that person 

if they are happy to be contacted by a member of the research team.  

  

iv) How will the applicant know if the person they want still has capacity?  

Similar to the situation (i), prior to contacting any potential participants, Single 

View has been used to check whether participants meet any of our exclusion 

criteria (e.g. are unable to provide informed written consent due to having a 

mental illness or dementia).   

Regarding those that only want one visit, how will the applicant activity 

monitor? The subcommittee state there isn't much information about it in the 

PIS.  

The physical activity monitor is sent to participants by post as a component of 

the study pack, together with instructions for its use. Participants return the 

monitor when they come to the hospital for their study visit.   

There is some information on this in the PIS, such as: Wear a physical activity 

monitor (a small wrist-worn device) for one week   

The above questionnaires, physical activity monitor and sample collection pots 

will be posted to you in advance. We will then ask you bring these along with 

you to your hospital appointment. And if you are willing to participate, we will 

arrange your study visit at the hospital and send you a consent form (to be 

signed and brought to the hospital study visit), the questionnaires to be 

completed, together with the sample collection pots and a physical activity 

monitor.  

The sub-committee agreed that although the REC committee would normally 

advise against phone calls, especially when two written invites have already 
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been sent which could add pressure to the participant it was agreed the robust 

answers from the applicant do not present any ethical issue as long as the 

researchers are very careful to stick to the criteria.   

  

Approved documents  

  

The documents reviewed and approved at the meeting were:  

  

Document   Version   Date   

Notice of Substantial Amendment (non-CTIMP)   2   17 November 2017 

Other [Telephone call script.docx]   1   17 November 2017 

Participant information sheet (PIS) [BORICC Follow Up Study 

Participant Information Sheet- no biopsies.docx]   

1   17 November 2017 

Research protocol or project proposal [BORICC Follow Up Study 

Project Protocol_track changes.docx]   

2.0   05 December 2017 

  

Membership of the Committee  

  

The members of the Committee who took part in the review are listed on the 

attached sheet.  

  

Working with NHS Care Organisations  

  

Sponsors should ensure that they notify the R&D office for the relevant NHS 

care organisation of this amendment in line with the terms detailed in the 

categorisation email issued by the lead nation for the study.  

  

Statement of compliance  

  

The Committee is constituted in accordance with the Governance 

Arrangements for Research Ethics Committees and complies fully with the 

Standard Operating Procedures for Research Ethics Committees in the UK.  
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We are pleased to welcome researchers and R & D staff at our Research 

Ethics Committee members’ training days – see details at 

http://www.hra.nhs.uk/hra-training/   

  

16/WM/0424:    Please quote this number on all correspondence  

  

Yours sincerely  

  

Dr Helen Brittain (Chair)  

Chair  

  

E-mail: NRESCommittee.WestMidlands-CoventryandWarwick@nhs.net  

  

  

Enclosures:  

  

List of names and professions of members who took part in the 

review  

Copy to:   Ms. Caroline Potts, Northumbria NHS Foundation Trust Mr. 

Abraham Joel, Wansbeck General Hospital  

  

West Midlands - Coventry & Warwickshire Research Ethics Committee  

  

Attendance at Sub-Committee of the REC meeting  

  

   

Committee Members:   

  

Name   Profession   Present   

Dr Helen Brittain (Chair)   Clinical Psychologist Retired   Yes   

Mrs Louise Harmer   Undergraduate Medical Education  

Manager, Technology Enhanced Learning 

and Clinical Skills and Resuscitation Tutor   

Yes   

http://www.hra.nhs.uk/hra-training/
http://www.hra.nhs.uk/hra-training/
http://www.hra.nhs.uk/hra-training/
http://www.hra.nhs.uk/hra-training/
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Also in attendance:   

  

Name   Position (or reason for attending)   

Mr Adam Garretty   REC Assistant   
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E. BFU Study invitation letter 

  

Dept of Surgery  

Woodhorn Lane  

Wansbeck Hospital  

  

Dear   

  

Thank you very much for your participation in the BORICC Study several years ago. We are writing to 

inform you that we are conducting a follow-up study to investigate the effects of ageing (12+ years) 

and lifestyle factors on changes in biomarkers (a biological marker) of bowel cancer risk.   

  

We have organised three showcase events at North Tyneside General Hospital for participants from 

the original BORICC Study to provide you with information on the findings from the study 12+ years 

ago and on what we plan to do in the follow-up study. It will also be an opportunity for you to see 

the equipment that we will be using, to try out some of our tests, such as hand grip strength, and to 

ask questions about the new project. Light refreshments will be provided.  

  

We would like to invite you to participate in one of these showcase events which have been 

organised at different times of the week to try to accommodate everyone.  The following are the 

event dates:  

• Saturday 21st April at 11am  

• Monday 30th April at 11am  

• Monday 30th April at 4pm  

  

If you would like to attend, please confirm your attendance by returning the enclosed card or by 

contacting the research team (details below). In addition, please let us know if these dates are 

unsuitable for you and you are interested in attending a future event. If you are interested in taking 

part in the study but would prefer not to attend a showcase event, please indicate this on the card.  

  

Dr. Fiona Malcomson   

Human Nutrition Research Centre  
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Room 147, 1st Floor William Leech Building  

Institute of Cellular Medicine  

Medical School  

Newcastle University  

Framlington Place  

Newcastle upon Tyne  

NE2 4HH  

Telephone: 0191 2081141 (please ask for Fiona or another member of the BFU Study team) Mobile: 

07791642754  

Email: fiona.malcomson@newcastle.ac.uk      

  

Thank you for your cooperation which is very much appreciated.  

  

Yours sincerely  

  

Mike Bradburn    

Consultant Surgeon         

Wansbeck Hospital   

On behalf of the Newcastle University research team: Prof. John Mathers, Dr. Laura Greaves,           Dr. 

Fiona Malcomson, Mr. Abraham Joel, Mrs. Stella Breininger, Mrs. Thilanka Ranathunga and Mr. Khalil El Gendy  

Invitation letter date of issue: 11/04/17 

Invitation letter version number: 3  
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F. BFU Study participant information sheet 

  

PARTICIPANT INFORMATION SHEET  

  

1. Invitation   

You are being invited to take part in a research follow-up study conducted by Northumbria NHS 

Foundation Trust and Newcastle University. Before you decide whether you would like to take part, 

please take time to read the following information carefully. You may wish to discuss the study with 

relatives, friends and your GP. Please contact the research team if there is anything that is not clear 

to you, if you have any questions or would like more information.  

  

Your decision will not affect any other aspect of the care that you may be receiving, or may receive 

in the future, at the hospital. If you do decide to participate, we will ask for your permission to 

inform your GP, so that they are aware of your participation in the study. Thank you very much for 

taking the time to read this.  

  

2. Why is this study being performed?  

  

Bowel problems are common and lifestyle factors, such as diet and physical activity, are known to be 

important in the development of certain diseases of the large bowel (colon). Ageing is also a strong 

contributor to changes in the large bowel and disease development. In the original BORICC Study, 

we found that diet affects certain proteins and genes in the cells of the large bowel. In this follow-up 

study, we would like to investigate the effects of ageing (over a period of about 10 years) on cells in 

the large bowel and to what extent these changes are affected by lifestyle factors. We hope that this 

study will give us a better understanding of the relationship between ageing, diet and physical 

activity and the health of the bowel.   

  

3. Why have I been asked to participate in the study?  

You have been invited to participate in this follow-up study because you took part in the original 

BORICC Study about 10 years ago. As we are taking follow-up measurements, we will recruit the 
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original participants from the BORICC Study so that we can compare the data from 10 years ago with 

data collected in this later study.   

4. Do I have to take part?  

It is for you to decide whether you wish to take part. If you decide to participate in this study, you 

will be asked to sign a consent form. Even if you do decide to take part in this study, you can 

withdraw at any time. If you decide to withdraw from the study, you will not have to tell us why and 

it will not affect your treatment in any way.  

5. What will I have to do as a volunteer?  

  

As mentioned above, if you decide that you wish to volunteer, then you will be invited to sign a 

consent form.   

  

We would like to collect the following information and samples during a clinic appointment at North 

Tyneside General Hospital, which will last around 1 hour:  

• Medical history  

• Height, weight, waist and hip measurements  

• Body fat percentage measured using bioimpedance weighing scales with footplates  

• Blood samples (seven 5ml tubes, equating to no more than 35ml)  

• Sigmoidoscopy and collection of 10 rectal biopsies (please see below)  

• One inner cheek swab  

• Musculoskeletal function tests (timed up and go, hand grip strength and heel ultrasound tests)  

  

We would also like you to do the following at home:  

• Complete a food frequency questionnaire (this will take approximately 30 minutes)  

• Complete a lifestyle questionnaire (this will take approximately 5 minutes)  

• Complete a sunlight exposure questionnaire (this will take approximately 10 minutes)  

• Collect two urine samples and one stool sample - we will provide you with instructions and 

pots for sample collection  

• Wear a physical activity monitor (a small wrist-worn device) for one week  The above 

questionnaires, physical activity monitor and sample collection pots will be posted to you in 

advance. We will then ask you bring these along with you to your hospital appointment.   
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6. Does the study involve any invasive tests?  

To obtain small samples of tissue (biopsies) from the bowel wall we will need to perform a short 

camera examination of your bowel called a sigmoidoscopy. We plan to take ten pinch biopsies from 

the bowel wall at a distance of 10cm (4 inches) from the back passage. This will be performed by a 

clinician trained in this endoscopic examination who will examine for any conditions which may 

cause pain, such as fissures or haemorrhoids, before proceeding.  

The procedure is associated with some discomfort but this is usually mild. The procedure should not 

be painful and is normally carried out without the need for anaesthetic or sedation. If you were to 

find the procedure too uncomfortable then you would, of course, be able to ask the clinician to stop. 

In our previous study, we completed 81 similar procedures and did not encounter anybody who 

found the procedure too uncomfortable to ask the doctor to stop. You should not experience any 

pain during the taking of biopsies from the bowel wall.   

  

7. How does the follow-up study differ from the original BORICC Study?  

The sigmoidoscopy used to collect the bowel wall samples is a less invasive procedure than that used 

in the original BORICC study. In the original study, bowel wall biopsies were collected during 

colonoscopy or flexible sigmoidoscopy procedures which require bowel preparations (such as 

enemas, suppositories or strong laxatives). In contrast, a sigmoidoscopy does not require you to take 

any bowel preparation and the camera does not have to go through the bends in the bowel. The 

procedure should take only approximately 15 minutes.  

We will also be taking some additional information from you in this follow-up study which we did not 

collect in the original BORICC Study:  

• Physical activity data collected by a physical activity monitor worn on your wrist for one week  

• Sunlight exposure data (to measure vitamin D) collected from a questionnaire  

• Physical capability data collected from two muscle function tests (the ‘timed stand up and go 

test’ the ‘hand grip strength’ test and the heel ultrasound test). The ‘timed stand up and go’ 

test involves sitting on a chair, standing up, walking to a cone and returning to sit back down 

on the chair. The handgrip strength involves sitting and resting your arm on an armchair, then 

gripping and squeezing a dynamometer (a small device that measures force) as hard as you 

can. The heel ultrasound test involves placing your foot in the heel ultrasound machine’s 
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footwell and sitting still for approximately 10 seconds whilst the device makes the 

measurements.  

• Buccal (inner cheek) samples collected with a swab by rubbing the inner cheek of the mouth.  

  

  

8. What are the risks of sigmoidoscopy examination and biopsies?  

Some people may experience some bloating, cramping, abdominal discomfort and excess wind after 

the procedure. This is usually from the air that we puff in to the bowel in order to expand it during 

the examination, which we try to minimise. If these side effects do occur, they are unlikely to last for 

more than 24 hours and usually resolve without the need for any treatment.  

The sigmoidoscopy examination is generally considered a safe procedure, but it does carry a very 

small risk of complications. It is important that you understand this before deciding whether or not 

to participate. There is a very small chance (1 in 65,000) of a perforation (a puncture) of the bowel. 

Although very rare, a perforation will usually require surgery. Significant bleeding is also a rare (1 in 

10,000) potential complication. The risk of bleeding or perforation is higher with each biopsy that is 

being taken. There are no other known lasting adverse effects of this test. If you were to suffer any 

of the following symptoms within 48 hours after a sigmoidoscopy, you are advised to consult a 

doctor immediately:  

• Severe abdominal pain  

• Significant rectal bleeding  

• Fever   

  

9. What happens if anything goes wrong?  

If, in the very unlikely event, taking part in this study causes any harm to you, there are no special 

compensation arrangements, but you will still be entitled to complain through the usual hospital 

procedures. If you are harmed due to someone’s negligence or wrongdoing then you may have 

grounds for legal action, but you may have to pay for it. You may withdraw from the study at any 

time without explaining why and this will not affect any future care that you may receive.  

  

10. Will my information be confidential?  

Yes, all of the information we will collect from you during the study will be strictly confidential. This 

information will be kept securely while the study is taking place. Only the research team will have 
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access to the study data. Furthermore, your information and data will be anonymised and you will 

be given a specific study ID number. Specific details, which could identify you, will only be available 

to the research team. Your GP will be informed that you are taking part in this study.  

  

11. What will happen to the samples collected in this study?  

The samples that are collected will be examined at laboratories in Newcastle University. All samples 

will be stored securely. We will perform tests to look for various markers of cell and metabolic 

activity. We will try to link these changes with your habitual diet, based on the information you gave 

us in the food frequency questionnaire, and physical activity levels, based on your lifestyle 

questionnaire and physical activity monitor data.   

After the study has finished, the samples will be stored in our laboratory freezers in accordance with 

government regulations. Your name and details will not be recorded on the samples. All of the 

samples will be anonymised, meaning that the data resulting from your samples cannot be traced to 

yourself.  

We will keep the samples so that we can do further testing if new techniques or markers are 

discovered, without having to collect any new samples. We may send samples to collaborating 

research institutes for additional analyses but this will not be for financial gain.  

  

12. How often will I need to visit the hospital if I decide to volunteer for the study?  

You will be asked to attend the hospital for approximately 1 hour on one occasion only. We will 

reimburse any travel expenses incurred.   

  

13. What benefits will I get from the study?  

You will not directly benefit from volunteering to participate in this study. However, we will give you 

feedback on your diet and lifestyle which you may find useful. The research may well help us 

understand how ageing and lifestyle factors, such as diet and physical activity, affect large bowel 

health and consequently the development of diseases of the large bowel, such as bowel cancer. This 

may lead to the development of prevention and/or treatment strategies. Once the study is 

completed, a summary of the findings can be made available to you upon request.   

  

14. Do I need to take a day off work?  
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We understand that people lead busy lives. If appointments during usual working hours do not suit 

your lifestyle, then we may be able to work flexibly in order to accommodate you. You can discuss 

this in more detail with one of the members of the research team.  

  

15. Who has reviewed the study?  

The West Midlands – Coventry & Warwickshire Research Ethics Committee has reviewed the study 

(REC reference 16/WM/0424).  

  

  

  

16. Who is performing the research?  

• Professor John Mathers is Professor of Human Nutrition and Director of the Human Nutrition 

Research Centre (HNRC) at Newcastle University  

• Mr. Mike Bradburn is a consultant surgeon at Wansbeck General Hospital  

• Dr. Laura Greaves is a Research Fellow at Newcastle University  

• Dr. Fiona Malcomson is a Research Associate at Newcastle University   

• Mr. Abraham Joel is a Teaching and Research Fellow at Northumbria NHS  

Foundation Trust and will be conducting this research as part of his PhD project  

• Mrs. Stella Breininger is a PhD student at Newcastle University and will be conducting this 

research as part of her PhD project  

• Mrs. Thilanka Ranathunga is a PhD student at Newcastle University and will be conducting this 

research as part of her PhD project  

• Mr. Khalil El Gendy is a MD student at Newcastle University and will be conducting this 

research as part of his PhD project  

  

17. Who should I contact if I have questions or would like additional information?  

Dr. Fiona Malcomson  

Human Nutrition Research Centre  

Room 147, 1st Floor William Leech Building  

Institute of Cellular Medicine  

Medical School  

Newcastle University  
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Framlington Place  

Newcastle upon Tyne  

NE2 4HH  

  

Telephone: 0191 2081141 (please ask for Fiona or another member of the BFU Study research team) 

Mobile: 07791642754  

Email: fiona.malcomson@newcastle.ac.uk      

      

In addition, you may contact the Patient Advice Liaison Service (PALS) for confidential advice, 

support and information on health-related matters.   

  

Patient advice and liaison services: Wansbeck General Hospital  

Woodhorn Lane  

Ashington  

Northumberland  

NE63 9JJ  

Telephone: 0800 0320202  

Email: northoftynepals@nhct.nhs.uk  

  

  

18.  What should I do next if I would like to volunteer?  

  

If you think that you would like to volunteer in this study, we invite you to contact the research team 

in writing or by telephone, when we will provide more information about the study and answer any 

further questions. If you are willing to participate, we will arrange your study visit at the hospital and 

send you a consent form (to be signed and brought to the hospital study visit), the questionnaires to 

be completed, together with the sample collection pots and a physical activity monitor.  

  

Please contact us if you have any questions or would like any additional information.  

  

Study coordinator,   

Dr. Fiona Malcomson  
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Research Associate  

Human Nutrition Research Centre   

Newcastle University  
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G. BFU Study showcase event flyer 
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H. BFU Study response card 
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I. Nextera XT DNA Library Prep Kit (illumina®) Protocol 

Nextera XT DNA Library Prep Kit 

Reference Guide 

Document # 15031942 v04 ILLUMINA PROPRIETARY 

January 2019 

For Research Use Only. Not for use in diagnostic procedures. 

This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the 

contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This 

document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or 
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reproduced in any way whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its 

patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document. 

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to 

ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and 

understood prior to using such product(s). 

FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN 

DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY, 

AND WILL VOID ANY WARRANTY APPLICABLE TO THE PRODUCT(S). 

ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN 

(INCLUDING PARTS THEREOF OR SOFTWARE). 

© 2019 Illumina, Inc. All rights reserved. 

All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, see 

www.illumina.com/company/legal.html. 

  

http://www.illumina.com/company/legal.html
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J. Aglient RNA 6000 Pico Protocol 
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Revision History 

Document Date Description of Change 

Document # 15031942 v04 January 

2019 

Added information on reviewing sequencing workflows to ensure compatibility 

with library prep methods. 

Document # 15031942 v03 February 

2018 

Updated the normalize libraries procedure to indicate that shaking samples 

after the five-minute elution is necessary only if samples are not resuspended. 

Reorganized kit contents information, including renaming some sections to 

match kit labeling and identify storage temperature. Corrected the diagram 

that shows how the Nextera XT assay works to clarify each transposome dimer 

has two of the same adapter color. 

Document # 15031942 v02 April 

2017 

Added the following information: 

• Supported genome size of < 5 Mb. 

• The ratio of absorbance that indicates contaminants. 

• Recommendations for PCR amplicons. 

• AMPure XP bead recommendations for runs ≥ 2 × 250 cycles. 

• Reagent and library volumes in the PCR plate after the tagmentation and 

amplification steps. 

• Beckman Coulter Genomics item # A63880 for Agencourt AMPure XP, 5 ml. 

• Illumina catalog # PE-121-1003 and # FC-121-1003 for the TruSeq 

Dual Index Sequencing Primer Box. 

Added the following technical notes to the list of additional resources: 

• BestPracticesforStandardandBead-BasedNormalizationin 

NexteraXT DNA LibraryPreparationKits(Pub.No.470-2016-007) 

• NexteraXT LibraryPrep: TipsandTroubleshooting(Pub.No.770- 

2015-015) 

Consolidated steps in the pool libraries procedure. 

Identified the NaOH consumable as molecular biology grade. Specified the use 

of molecular-grade water or 10 mM Tris-HCl, pH 

7.5–8.5 to dilute starting material for DNA quality assessment. Specified 

proceeding immediately when tagmentation is complete so that neutralization 

occurs while the transposome is active. Specified a thaw time of 20 minutes 

for NPM (Nextera PCR Master 

Mix). 

Updated the normalize libraries procedure to apply to various sample numbers, 

not only 96. 

Updated TCY plate to Hard-Shell 96-well PCR plate, skirted. 

Updated magnetic stand supplier to Thermo Fisher Scientific. Corrected the 

catalog numbers for Nextera kits provided in the introduction. 

Corrected the illustration showing how the Nextera assay works. 

 

Document Date Description of Change 
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Document # 15031942 v01 January 

2016 

Updated design of workflow diagram. 

Renamed and combined some procedures as needed to improve continuity. 

Simplified consumables information at the beginning of each section. 

Revised step-by-step instructions to be more succinct. 

Removed reference to obsolete Experienced User Cards and added reference to 

the Custom Protocol Selector. 

Clarified AMPure XP bead recommendation for nonamplicon applications. See 

Clean Up Libraries. 

Added information about normalizing low yield libraries. See Normalize 

Libraries. 

Corrected index adapter labels on the assay diagram. 

15031942 Rev. E January 

2015 

Corrected kit contents for Nextera XT DNA Library Preparation Index Kit v2 Set A 

(FC-131-2001) to include index N715. 

15031942 Rev. D September 

2014 

Added info for new index kits that enable preparation of up to 384 indexed 

paired-end libraries. 

Updated DNA Input Recommendations for diluting starting material and the 

potential results of incomplete tagmentation. 

Added new Nextera XT Quality Metrics with new information on how to 

troubleshoot fluctuations in cluster density. 

Removed Dual Indexing Principle and Low Plexity Pooling Guidelines sections. 

This information can be found in the Nextera Low-Plex Pooling Guidelines Tech 

Note on the Nextera XT DNA Library Prep Kit support page. 

References to read lengths on the MiSeq were updated for v3 chemistry. 

Added instructions for alternate tip if processing fewer than 24 samples while 

transferring LNB1 beads in Library Normalization. 

Added NaOH 1N pH > 12.5 to the Consumables and Equipment list as a user-

supplied consumable. 

Removed Tween 20 from Consumables and Equipment list. 

Consumable not used in protocol. 

15031942 Rev. C October 

2012 

Modifications were added in PCRClean-Upfor 2x300 runs on the 

MiSeq. 

New section for clustering samples on the HiSeq, HiScanSQ, and 

GAIIx. See Clustering Samples for HiSeq, HiScanSQ, and GAIIx. The 

DualIndexingPrinciple section listed incorrect catalog numbers for the 

Nextera XT Index kits. The correct catalog numbers are now listed. 

Emphasized making sure the NT (Neutralize Tagment Buffer) and LNS1 

(Library Normalization Storage Buffer 1) reagents are at room temperature 

before use in the protocol. 

Removed reference to Tris-Cl 10 mM, pH8.5 with 0.1% Tween 20 from the User-

Supplied Consumables table because it is not used in this library preparation. 

 

Document Date Description of Change 
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15031942 Rev. B July 2012 Emphasized making sure the NT (Neutralize Tagment Buffer) and LNS1 

(Library Normalization Storage Buffer 1) reagents are at room temperature 

before use in the protocol. 

Removed reference to Tris-Cl 10 mM, pH8.5 with 0.1% Tween 20 from the User-

Supplied Consumables table because it is not used in this library preparation. 

15031942 Rev. A May 2012 Initial release. 
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The kit has the following features: 

 Uses tagmentation, an enzymatic reaction, to fragment DNA and add partial adapter sequences in only 5 

minutes. 

 Master mixed reagents reduce reagent containers, pipetting, and hands-on time. Only 1 ng input DNA 

is needed. 

 Nextera XT typically supports genomes that are < 5 Mb while Nextera DNA typically supports genomes 

that are > 5 Mb. 

Table 1 Example Applications for Nextera Kits 

Nextera XT (FC-131-1024, FC-131-1096) Nextera DNA (FC-121-1030, FC-121-1031) 

Small genomes, amplicons, plasmids Large or complex genomes 

PCR amplicons (> 300 bp)* Human genomes 

Plasmids Nonhuman mammalian genomes (eg, mouse, rat, bovine) 

Microbial genomes (eg, Prokaryotes, archaea) Plant genomes (eg, Arabidopsis, maize, rice) 

Concatenated amplicons Invertebrate genomes (eg, Drosophila) 

Double-stranded cDNA  

Single-cell RNA-Seq  

* Using a > 300 bp amplicon size ensures even coverage across the length of the DNA fragment. For more information, see PCRAmpliconson page 

2. 

DNA Input Recommendations 

The Nextera XT protocol is optimized for 1 ng of input DNA.Quantify the starting material before preparing 

libraries. Dilute starting material in molecular-grade water or 10 mM Tris HCl, pH 7.5–8.5. 

Input DNA Quantification 

The enzymatic DNA fragmentation used for this protocol is more sensitive to DNA input compared to 

mechanical fragmentation. Success depends on accurate quantification of input DNA. 

Use a fluorometric-based method to quantify input DNA. For example, if you use the Qubit dsDNA BR 

Assay system, use 2 µl of each DNA sample with 198 µl of the Qubit working solution. Avoid methods that 

measure total nucleic acid, such as NanoDrop or other UV absorbance methods. 
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Assess DNA Quality 

UV absorbance is a common method for assessing the quality of a DNA sample. The ratio of absorbance at 

260 nm to absorbance at 280 nm is used as an indication of sample purity. This protocol is optimized for 

DNA with absorbance ratio values of 1.8–2.0, which indicates a pure DNA sample. Target a 260/230 ratio of 

2.0– 2.2. Values outside this range indicate the presence of contaminants. For a complete list of 

contaminants, 

including sources, avoidance, and effects on the library, see NexteraXT LibraryPrep: Tipsand 

Troubleshooting(Pub.No.770-2015-015). 

Dilute the starting material in molecular-grade water or 10 mM Tris-HCl, pH 7.5–8.5. Incomplete 

tagmentation can cause library preparation failure, poor clustering, or an unexpectedly high scaffold 

number. 

PCR Amplicons 

The PCR amplicon must be > 300 bp. Shorter amplicons can be lost during the library cleanup step. 

Tagmentation cannot add an adapter directly to the distal end of a fragment, so a drop in sequencing 

coverage of ~50 bp from each distal end is expected. To ensure sufficient coverage of the amplicon target 

region, design primers to extend beyond the target region by 50 bp per end. 

Additional Resources 

Visit the Nextera XT DNA Library Prep Kit support page on the Illumina website for documentation, software 

downloads, training resources, and information about compatible Illumina products. 

The following documentation is available for download from the Illumina website. 

The following documentation is available for download from the Illumina website. 

Resource Description 

Custom Protocol Selector support.illumina.com/custom-protocol-selector.html 

A wizard for generating customized end-to-end documentation that is tailored to the 

library prep method, run parameters, and analysis method used for the sequencing run. 

NexteraXTDNALibraryPrepKit 

Checklist(document# 

1000000006566) 

Provides a checklist of the protocol steps. The checklist is intended for experienced users. 

https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
https://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html
http://support.illumina.com/custom-protocol-selector.html
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NexteraLow-PlexPooling 

Guidelines(Pub.No.770-2011- 

044) 

Provides pooling guidelines and dual indexing strategies for Nextera XT library prep. 

BestPracticesforStandardand 

Bead-BasedNormalizationin 

NexteraXT DNA Library 

PreparationKits(Pub.No.470- 

2016-007) 

Provides best practices for bead-based normalization of Nextera XT libraries. 

NexteraXT LibraryPrep: Tipsand 

Troubleshooting(Pub.No.770- 

2015-015) 

Provides best practices for addressing undertagmentation, sample contaminants, and other 

problems that can occur when preparing Nextera XT libraries. 

Chapter 2 Protocol

 

Introduction 

This chapter describes the Nextera XT DNA Library Prep Kit protocol. 

 Review Best Practices before proceeding. See AdditionalResourceson page 2 for information on accessing 

Best Practices on the Illumina website. 

 Before proceeding, confirm kit contents and make sure that you have the required equipment and 

consumables. See SupportingInformationon page 14. 

 Review the complete sequencing workflow, from sample through analysis, to ensure compatibility of 

products and experiment parameters. Follow the protocols in the order shown, using the specified 

volumes and incubation parameters. 

Prepare for Pooling 

If you plan to pool libraries, record information about your samples before beginning library prep. For more 

information, see the NexteraXTDNALibraryPrepKitsupportpage. 

Introduction 3 
Tips and Techniques 3 
Library Prep Workflow 5 
Tagment Genomic DNA 6 
Amplify Libraries 7 
Clean Up Libraries 9 
Check Libraries 10 
Normalize Libraries 11 
Pool Libraries 13 

https://support.illumina.com/sequencing/sequencing_kits/nextera-dna-flex-kit.html
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Review NexteraLow-PlexPoolingGuidelines(Pub.No.770-2011-044)when preparing libraries for Illumina 

sequencing systems that require balanced index combinations. 

Tips and Techniques 

Unless a safe stopping point is specified in the protocol, proceed immediately to the next step. 

Avoiding Cross-Contamination When adding or transferring samples, change tips between 

eachsample. When adding adapters or primers, change tips between eachrowand eachcolumn. 

Remove unused index adapter tubes from the working area. 

Sealing the Plate 

 Always seal the 96-well plate before the following steps in the protocol: 

 Shaking steps Vortexing steps Centrifuge steps Thermal cycling steps 

Apply the adhesive seal to cover the plate, and seal with a rubber roller. Microseal 'B' 

adhesive seals are effective at -40°C to 110°C, and suitable for skirted or semiskirted PCR 

plates. Use Microseal 'B' for shaking, centrifuging, and long-term storage. Microseal 'A' 

adhesive film is used for thermal cycling steps to prevent evaporation. 

Plate Transfers 

When transferring volumes between plates, transfer the specified volume from each well of a plate to 

the corresponding well of the other plate. 

Centrifugation 

 Centrifuge at any step in the procedure to consolidate liquid or beads in the bottom of the well, and to 

prevent sample loss. 

Handling Beads Do not freeze beads. Pipette bead 

suspensions slowly. Before use, allow the beads to come to 

room temperature. 

 Immediately before use, vortex the beads until they are well dispersed. The color of the liquid must 

appear homogeneous. Vortex throughout protocol as necessary to keep homogenous. 
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 If beads are aspirated into pipette tips, dispense back to the plate on the magnetic stand, and wait until 

the liquid is clear (~2 minutes). When washing beads: 

 Use the specified magnetic stand for the plate. Dispense liquid so that beads on the side of the wells 

are wetted. Keep the plate on the magnetic stand until the instructions specify to remove it. Do 

not agitate the plate while it is on the magnetic stand. Do not disturb the bead pellet. 
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Library Prep Workflow 

The following diagram illustrates the workflow using a Nextera XT DNA Library Prep Kit for eight samples. 

Safe stopping points are marked between steps. 

 Figure 1 Nextera XT Workflow 

 

Tagment Genomic DNA 

This step uses the Nextera transposome to tagment gDNA, which is a process that fragments DNA and then 

tags the DNA with adapter sequences in a single step. 

Consumables ATM (Amplicon 

Tagment Mix) TD (Tagment DNA 

Buffer) NT (Neutralize Tagment 
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Buffer) gDNA (0.2 ng/µl per sample) 

Hard-Shell 96-well PCR plate, skirted 

Microseal 'B' adhesive seals 

Preparation 

1 Prepare the following consumables: 

Item Storage Instructions 

gDNA -25°C to -15°C Thaw on ice. Invert the thawed tubes 3–5 times, and then centrifuge briefly. 

ATM -25°C to -15°C Thaw on ice. Invert the thawed tubes 3–5 times, and then centrifuge briefly. 

TD -25°C to -15°C Thaw on ice. Invert the thawed tubes 3–5 times, and then centrifuge briefly. 

NT 15°C to 30°C Check for precipitates. If present, vortex until all particulates are resuspended. 

2 Save the following tagmentation program on the thermal cycler: Choose the 

preheat lid option 55°C for 5 minutes Hold at 10°C 

Procedure 

1 Add the following volumes in the order listed to each well of a new Hard-

Shell skirted PCR plate. Pipette to mix. 

TD (10 µl) 

Normalized gDNA (5 

µl) 

2 Add 5 µl ATM to each well. Pipette to mix. 3 Centrifuge at 280 × g at 20°C 

for 1 minute. 

4 Place on the preprogrammed thermal cycler and run the tagmentation program. When the sample 

reaches 10°C, immediatelyproceed to step 5 because the transposome is still active. 

5 Add 5 µl NT to each well. Pipette to mix. 

6 Centrifuge at 280 × g at 20°C for 1 minute. 

7 Incubate at room temperature for 5 minutes. 

The PCR plate contains 25 µl tagmented and neutralized gDNA, all of which is used in the next step. 

Amplify Libraries 
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This step amplifies the tagmented DNA using a limited-cycle PCR program. PCR adds the Index 1 (i7), Index 

2 (i5), and full adapter sequences to the tagmented DNA from the previous step. The index adapters and 

Nextera PCR Master Mix are added directly to the 25 μl of tagmented gDNA from the previous step. 

The adapters and sequences are required for cluster formation. Use the full amount of recommended input 

DNA and the specified number of PCR cycles, which helps ensure high-quality sequencing results. 

When planning the index scheme for libraries, use the same index Index 1 (i7) index in each column of the 

PCR plate. This scheme allows use of a multichannel pipette to transfer indexes from the tubes to the plate. 

See AdditionalResourceson page 2 for information on accessing the tech note on low-plex pooling. 

Consumables NPM (Nextera 

PCR Master Mix) Index 1 

adapters (N7XX) Index 2 

adapters (S5XX) TruSeq™ Index 

Plate Fixture Microseal 'A' film 

Preparation 

1 Prepare the following consumables: 

Item Storage Instructions 

Index adapters 

(i5 and i7) 

-25°C to -15°C Only prepare adapters being used. Thaw at room temperature for 20 minutes. Invert each 

tube to mix. Centrifuge briefly. 

NPM -25°C to -15°C Thaw on ice for 20 minutes. 

2 Save the following program on the thermal cycler: 

 Choose the preheat lid 

option. 

 72°C for 3 minutes 

95°C for 30 seconds 

12 cycles of: 

 95°C for 10 seconds 

55°C for 30 seconds 

72°C for 30 seconds 
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 72°C for 5 minutes 

Hold at 10°C 

Procedure 

1 [24 libraries] Arrange the index adapters in the TruSeq Index Plate Fixture as follows. Arrange Index 1 

(i7) adapters in columns 1–6 of the TruSeq Index Plate Fixture. Arrange Index 2 (i5) adapter in rows A–

D of the TruSeq Index Plate Fixture. 

 Figure 2 TruSeq Index Plate Fixture Setup for 24 Libraries 

 

A Rows A–D: Index 2(i5) adapters (white caps) 

B Columns 1–6: Index 1(i7) adapters (orange caps) 

C TruSeq Index Plate Fixture D Hard-ShellPCR plate 

2 [96 libraries] Arrange the index adapters in the TruSeq Index Plate Fixture as follows. Arrange Index 1 

(i7) adapters in columns 1–12 of the TruSeq Index Plate Fixture. Arrange Index 2 (i5) adapter in rows 

A–H of the TruSeq Index Plate Fixture. 

 Figure 3 TruSeq Index Plate Fixture Setup for 96 Libraries 



Nextera XT DNA Library Prep Reference Guide 

279 
 

 

A Rows A–H: Index 2(i5) adapters (white caps) 

B Columns 1–12: Index 1(i7) adapters (orange caps) 

C TruSeq Index Plate Fixture 

D Hard-ShellPCR plate 

3 Using a multichannel pipette, add 5 µl of each Index 1 (i7) adapter down each column. Replace the cap 

on each i7 adapter tube with a new orange cap. 

4 Using a multichannel pipette, add 5 µl of each Index 2 (i5) adapter across each row. Replace the cap on 

each i5 adapter tube with a new white cap. 

5 Add 15 µl NPM to each well containing index adapters. Pipette to mix. 

6 Centrifuge at 280 × g at 20°C for 1 minute. 

7 Place on the preprogrammed thermal cycler and run the PCR program. The volume is 50 µl. 

SAFE STOPPING POINT 

If you are stopping, seal the plate and store at 2°C to 8°C for up to 2 days. Alternatively, leave on the 

thermal cycler overnight. 

Clean Up Libraries 

This step uses AMPure XP beads to purify the library DNA and remove short library fragments. 
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Consumables RSB 

(Resuspension Buffer) 

AMPure XP beads 

 Freshly prepared 80% ethanol (EtOH) 96-well midi plate 

 Hard-Shell 96-well PCR plate, skirted 

About Reagents The AMPure XP beads are a user-supplied consumable. Vortex 

AMPure XP beads before each use. Vortex AMPure XP beads frequently to make 

sure that beads are evenly distributed. 

 Always prepare fresh 80% ethanol for wash steps. Ethanol can absorb water from the air, impacting your 

results. 

Preparation 

1 Prepare the following consumables: 

Item Storage Instructions 

RSB -25°C to -15°C Thaw at room temperature. 

RSB can be stored at 2°C to 8°C after the initial thaw. 

AMPure XP Beads 2°C to 8°C Let stand on the benchtop for 30 minutes to bring to room temperature. 

2 Prepare fresh 80% ethanol from absolute ethanol. 

Procedure 

1 Centrifuge at 280 × g at 20°C for 1 minute. 

2 Transfer 50 µl PCR product from each well of the PCR plate to corresponding wells of a new midi plate. 

  NOTE 

The ratioofPCR product tovolume ofbeads is3:2. For example, 50 µlPCR product to30 µlAMPure. If you 

pulllessthan 50 µlofPCR product, adjust your ratioofAMPure beads accordingly. 

3 Add 30 µl AMPure XP beads to each well. 

Smaller amplicons in Nextera XT library preps typically yield smaller insert size ranges. To maximize 

recovery of smaller fragments from the bead cleanup step, use the following conditions. 
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Input Size (bp) AMPure XP Recommendation AMPure XP Volume (µl) 

300–500 1.8x AMPure XP 90 

> 500 0.6x AMPure XP 

(0.5x AMPure XP for ≥ 2 x 250 

cycles)* 

30 

(25 µl for ≥ 2 x 250 cycles)* 

gDNA or other genomic input 0.6x AMPure XP 30 

*Applicable only to the MiSeq™ or HiSeq™ 2500 using HiSeq Rapid v2 reagents. 

4 Shake at 1800 rpm for 2 minutes. 

5 Incubate at room temperature for 5 minutes. 

6 Place on a magnetic stand and wait until the liquid is clear (~2 minutes). 

7 Remove and discard all supernatant from each well. 

8 Wash 2 times as follows. 

a Add 200 µl fresh 80% EtOH to each well. b 

Incubate on the magnetic stand for 30 seconds. 

 c Remove and discard all supernatant from each well. 

9 Using a 20 µl pipette, remove residual 80% EtOH from each well. 

10 Air-dry on the magnetic stand for 15 minutes. 

11 Remove from the magnetic stand. 

12 Add 52.5 µl RSB to each well. 

13 Shake at 1800 rpm for 2 minutes. 

14 Incubate at room temperature for 2 minutes. 

15 Place on a magnetic stand and wait until the liquid is clear (~2 minutes). 

16 Transfer 50 µl supernatant from the midi plate to a new Hard-Shell PCR plate. 

SAFE STOPPING POINT 

If you are stopping, seal the plate and store at -25°C to -15°C for up to seven days. 
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Check Libraries 

1 Run 1 µl of undiluted library on an Agilent Technology 2100 Bioanalyzer using a High Sensitivity DNA chip. 

The following figure shows example traces of libraries successfully sequenced on a HiSeq 2500 

system. Typical libraries show a broad size distribution of ~250–1000 bp, as shown in the top panel. 

Various libraries can be sequenced with average fragment sizes as small as 250 bp or as large as 1500 

bp. 

 Figure 4 Library Size Distributions of Control gDNA 

 

Normalize Libraries 

This process normalizes the quantity of each library to ensure more equal library representation in the 

pooled library. 

 NOTE 

Manually normalize libraries when the finallibrary yield islessthan 10–15nM. Bead-based normalization on 

low yield libraries can result in overly diluted samples and low sequencing yields. For more information, see 

BestPracticesforStandardandBead-BasedNormalizationinNexteraXT DNA LibraryPreparationKits (Pub.No.470-

2016-007). 

Before proceeding, see the documentation for your sequencing system to make sure that normalization 

methods are compatible. Do not use a bead-based normalization method on libraries being sequenced on a 

system with onboard denaturation. 

Consumables 
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LNA1 (Library Normalization Additives 1) LNB1 

(Library Normalization Beads 1) LNW1 (Library 

Normalization Wash 1) LNS1 (Library Normalization 

Storage Buffer 1) 0.1 N NaOH (fewer than 7 days old) (3 

ml per 96 samples) 96-well midi plate Hard-Shell 96-

well PCR plate, skirted 15 ml conical tube Microseal 

'B' adhesive seals 

About Reagents 

 Vortex LNA1 vigorously to make sure that all precipitates have dissolved. Inspect in front of a light. 

 Vortex LNB1 vigorously, with intermittent inversion (at least 1 minute). Repeat until all beads are 

resuspended and no beads are present at the bottom of the tube when it is inverted. 

 Always use a wide-bore pipette tip for LNA1. 

 Mix only the required amounts of LNA1 and LNB1 for the current experiment. Store the remaining LNA1 

and LNB1 separately at the recommended temperatures. Aspirate and dispense beads slowly due to 

the viscosity of the solution. 

 WARNING 

Thisset ofreagents contains potentially hazardous chemicals. Personalinjury can occur through inhalation, 

ingestion, skin contact, and eye contact. Wear protective equipment, including eye protection, gloves, and 

laboratory coat appropriate for risk ofexposure. Handle used reagents aschemicalwaste and discard in 

accordance with applicable regional, national, and locallawsand regulations. For additionalenvironmental, 

health, and safety information, see the SDS at support.illumina.com/sds.html. 

Preparation 

1 Prepare the following consumables: 

Item Storage Instructions 

LNA1 -25°C to -15°C Prepare under a fume hood. 

Bring to room temperature. Use a 20°C to 25°C water bath as needed. 

LNB1 2°C to 8°C Bring to room temperature. Use a 20°C to 25°C water bath as needed. 

http://support.illumina.com/sds.html
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LNW1 2°C to 8°C Bring to room temperature. Use a 20°C to 25°C water bath as needed. 

LNS1 Room temperature Bring to room temperature. 

Procedure 

1 Transfer 20 µl supernatant from the Hard-Shell PCR plate to a new midi plate. 

2 Add 44 µl LNA1 per sample to a new 15 ml conical tube. Calculate about 5% extra sample to account for 

sample loss due to pipetting. 

For example: for 96 samples, add 4.4 ml LNA1 to the tube (100 samples × 44 µl = 4.4 ml). 

3 Thoroughly resuspend LNB1. Pipette to mix. 

4 Transfer 8 µl LNB1 per sample (including the 5% extra) to the 15 ml conical tube containing LNA1. Invert 

to mix. 

For example: for 96 samples, transfer 800 µl LNB1 to the tube of LNA1 (100 samples × 8 µl = 800 µl). 

5 Pour the bead mixture into a trough. 

6 Add 45 µl combined LNA1 and LNB1 to each well containing libraries. 

7 Shake at 1800 rpm for 30 minutes. 

8 Place on a magnetic stand and wait until the liquid is clear (~2 minutes). 

9 Remove and discard all supernatant from each well. 

10 Wash two times as follows. 

a Add 45 µl LNW1 to each well. b Shake at 1800 rpm for 5 

minutes. c Place on a magnetic stand and wait until the liquid is 

clear (~2 minutes). d Remove and discard all supernatant from 

each well. 

11 Add 30 µl 0.1 N NaOH to each well. 

12 Shake at 1800 rpm for 5 minutes. 

13 During the 5 minute elution, label a new 96-well PCR plate SGP for storage plate. 

14 Add 30 µl LNS1 to each well of the SGP plate. Set aside. 
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15 After the 5 minute elution, make sure that all samples in the midi plate are resuspended. If they are not, 

resuspend as follows. 

a Pipette to mix or lightly tap the plate on the bench. b Shake 

at 1800 rpm for 5 minutes. 

16 Place on a magnetic stand and wait until the liquid is clear (~2 minutes). 

17 Transfer the supernatant from the midi plate to the SGP plate. 

18 Centrifuge at 1000 × g for 1 minute. 

  NOTE 

After denaturation, the libraries are single-stranded DNA, which resolves poorly on an agarose gelor 

Bioanalyzer chip. For quality control, use the double-stranded DNA saved from step 16ofthe cleanup 

procedure. 

SAFE STOPPING POINT 

If you are stopping, seal the plate and store at -25°C to -15°C for up to seven days. 

Pool Libraries 

Pooling libraries combines equal volumes of normalized libraries in a single tube. After pooling, dilute and 

heat-denature the library pool before loading libraries for the sequencing run. 

Consumables Adhesive PCR foil seal 

Eppendorf LoBind microcentrifuge tubes 

PCR eight-tube strip 

Preparation 

1 To prepare for the sequencing run, begin thawing reagents according to the instructions for your 

instrument. 

If the SGP plate was stored frozen at -25°C to -15°C, thaw at room temperature. Pipette to mix. 

Procedure 
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1 Centrifuge at 1000 × g at 20°C for 1 minute. 

2 Label a new Eppendorf tube PAL. 

3 Transfer 5 µl of each library from the SGP plate to the PAL tube. Invert to mix. 

4 Dilute pooled libraries to the loading concentration for your sequencing system. For instructions, see the 

denature and dilute libraries guide for your system. 

5 Store unused pooled libraries in the PAL tube and SGP plate at -25°C to -15°C for up to 7 days. 
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Appendix A Supporting Information 

Supporting Information 

 

Introduction 

The protocol described in this guide assumes that you have reviewed the contents of this section, confirmed 

workflow contents, and obtained all required consumables and equipment. 

How the Nextera XT Assay Works 

The Nextera XT DNA Library Prep Kit uses an engineered transposome to tagment genomic DNA, which is a 

process that fragments DNA and then tags the DNA with adapter sequences in one step. Limited-cycle PCR 

uses the adapters to amplify the insert DNA. The PCR step also adds index adapter sequences on both ends 

of the DNA, which enables dual-indexed sequencing of pooled libraries on Illumina sequencing platforms. 

Introduction 14 
How the Nextera XT Assay Works 14 
Nextera XT Quality Metrics 15 
Acronyms 16 
Kit Contents 16 
Consumables and Equipment 20 
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A Nextera XTtransposome with adapters combined with template DNA 

B Tagmentation tofragment and add adapters 

C Limited-cycle PCR toadd index adapter sequences 

Nextera XT Quality Metrics 

Two factors can cause cluster density fluctuations in libraries prepared with the Nextera XT DNA Library 

Prep 

Kit: An average sample size that is too large or too small after 

tagmentation. 

A final sample concentration that is too low due to a low yield when starting the bead-based 

normalization step. 

To troubleshoot fluctuations in cluster density, consider checking library size and library concentration. For 

more information, see NexteraXT LibraryPrep: TipsandTroubleshooting(Pub.No.770-2015-015). 

Check Library Size 
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Larger molecules cluster less efficiently than smaller molecules. If the fragment size after tagmentation is 

larger than expected, low cluster numbers are possible. The inverse is also true. The average expected 

library size after tagmentation is between 400 bp and 1.2 kb. 

Check the library size with a high sensitivity Bioanalyzer trace after the PCR cleanup step. Look for a long low 

plateau. Alternatively, PCR-amplify the library with qPCR primers and run the product on an agarose gel. The 

sequence for these primers is available in the SequencingLibraryqPCR QuantificationGuide(document# 

11322363). 

 Short libraries indicate too little input DNA—Requantify the input DNA with a fluorometric method. 

Start with 10%–25% more input DNA. If the library peak is below 400 bp and you want to continue with 

this library, dilute the library further. 

 Long libraries indicate too much input DNA or the presence of inhibitors—Start with less input DNA, 

make sure that the input DNA is free from inhibitors, and repeat the quantification step. 

For more information on library dilution, see the denature and dilute libraries guide for your sequencing 

system. 

Check Library Concentration 

Bead-based normalization is most efficient when the library yield after amplification is 10–15 nM, or 

higher. Measure library concentration using high sensitivity dsDNA Qubit after library cleanup, and 

measure library size with a Bioanalyzer to calculate molarity. 

If you are starting with high-quality DNA and see low yield after library cleanup, there are possible issues 

with AMPure cleanup or the amplification step. If results show either condition, confirm proper storage of 

the PCR master mix at -25°C to -15°C in a no-frost freezer. Confirm minimal freeze-thaw cycles. 

The following resources are available on the Illumina website: 

 Best practices for bead handling—From the Nextera XT DNA Library Prep Kit support page, select the 

Best Practices tab and review Handling Magnetic Beads. 

 Online training module—Review section 2.4 of the TruSeq:SamplePurificationBeadSizeSelectionand 

BestPractices, which is a short training with guidance on bead handling. To access this training, select the 

Training tab on the Nextera XT DNA Library Prep Kit support page. 

Acronyms 
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Acronym Definition 

ATM Amplicon Tagment Mix 

CAA Clean Amplified Plate 

CAN Clean Amplified NTA Plate 

LNA1 Library Normalization Additives 1 

LNB1 Library Normalization Beads 1 

LNS1 Library Normalization Storage Buffer 1 

LNW1 Library Normalization Wash 1 

LNP Library Normalization Plate 

NT Neutralize Tagment Buffer 

NPM Nextera PCR Master Mix 

NTA Nextera XT Tagment Amplicon Plate 

PAL Pooled Amplicon Library 

RSB Resuspension Buffer 

SGP Storage Plate 

TD Tagment DNA Buffer 

Kit Contents 

The Nextera XT DNA Library Prep Kit is available in a 24-sample configuration and a 96-sample configuration. 

Each kit has a corresponding index kit that contains 24 indexes or 96 indexes. Combining Nextera XT Index 

Kit v2 Sets A–D achieves 384 unique index combinations. 

Kit Name Catalog # 

Nextera XT DNA Library Prep Kit (24 Samples) FC-131-1024 

Nextera XT DNA Library Prep Kit (96 Samples) FC-131-1096 

Nextera XT Index Kit v2 Set A (96 Indexes, 384 Samples) FC-131-2001 

Nextera XT Index Kit v2 Set B (96 Indexes, 384 Samples) FC-131-2002 

Nextera XT Index Kit v2 Set C (96 Indexes, 384 Samples) FC-131-2003 

Nextera XT Index Kit v2 Set D (96 Indexes, 384 Samples) FC-131-2004 

Nextera XT Index Kit (24 Indexes, 96 Samples) FC-131-1001 

Nextera XT Index Kit (96 Indexes, 384 Samples) FC-131-1002 

TruSeq Index Plate Fixture Kit FC-130-1005 
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Sequencing primers provided in TruSeq v3 reagent kits are not compatible with Nextera XT libraries. Thus, 

sequencing Nextera XT libraries on a HiSeq 2500 using TruSeq v3 reagents requires the sequencing primers 

provided in the Illumina TruSeq Dual Index Sequencing Primer Box. This box is provided in a paired-end 

(PE121-1003) and single-read (FC-121-1003) version. One box is needed for each run. 

Kits are shipped on dry ice unless otherwise specified. Some kit components are stored at a different 

temperature than the shipping temperature. Make sure that you store kit components at the specified 

storage temperatures. 

DNA Library Prep Kit Contents 

(24 Samples) (FC-131-1024) 

Box 1 

Quantity Acronym Reagent Name Storage Temperature 

1 ATM Amplicon Tagment Mix, 24 rxn -25°C to -15°C 

1 TD Tagment DNA Buffer -25°C to -15°C 

1 NPM Nextera PCR Master Mix -25°C to -15°C 

1 RSB Resuspension Buffer -25°C to -15°C 

1 LNA1 Library Normalization Additives 1 -25°C to -15°C 

1 LNW1 Library Normalization Wash 1 2°C to 8°C 

1 HT1 Hybridization Buffer -25°C to -15°C 

Box 2 
   

Quantity Acronym Reagent Name Storage Temperature 

1 NT Neutralize Tagment Buffer Room temperature 

1 LNB1 Library Normalization Beads 1 2°C to 8°C 

1 LNS1 Library Normalization Storage Buffer 1 Room temperature 

Nextera XT DNA Library Prep Kit Contents (96 

Samples) (FC-131-1096) 

Box 1 

 

Quantity Acronym Reagent Name Storage Temperature 
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1 ATM Amplicon Tagment Mix, 96 rxn -25°C to -15°C 

2 TD Tagment DNA Buffer -25°C to -15°C 

1 NPM Nextera PCR Master Mix -25°C to -15°C 

4 RSB Resuspension Buffer -25°C to -15°C 

1 LNA1 Library Normalization Additives 1 -25°C to -15°C 

2 LNW1 Library Normalization Wash 1 2°C to 8°C 

1 HT1 Hybridization Buffer -25°C to -15°C 

Box 2 
   

Quantity Acronym Reagent Name Storage Temperature 

1 NT Neutralize Tagment Buffer Room temperature 

1 LNB1 Library Normalization Beads 1 2°C to 8°C 

1 LNS1 Library Normalization Storage Buffer 1 Room temperature 

Index Kit v2 Set A Contents 

(96 Indexes, 384 Samples) (FC-131-2001) 

Index Adapters, Store at -25°C to -15°C 

Quantity Reagent Name 

8 tubes Index Primers, S502, S503, S505–S508, S510, and S511 

12 tubes Index Primers, N701–N707, N710–N712, N714, and N715 

Index Adapter Replacement Caps, Store at 15°C to 30°C 

Quantity Description 

1 bag i7 Index Tube Caps, Orange 

1 bag i5 Index Tube Caps, White 

Nextera XT Index Kit v2 Set B Contents (96 Indexes, 384 Samples) (FC-131-2002) 

Quantity Description 
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Index Adapters, Store at -25°C to -15°C 

Quantity Description 

8 tubes Index Adapters: S502, S503, S505–S508, S510, and S511 

12 tubes Index Adapters: N716, N718–N724, and N726–N729 

Index Adapter Replacement Caps, Store at 15°C to 30°C 

Quantity Description 

1 bag i7 Index Tube Caps, Orange 

1 bag i5 Index Tube Caps, White 

Nextera XT Index Kit v2 Set C Contents (96 Indexes, 384 Samples) (FC-131-2003) 

Index Adapters, Store at -25°C to -15°C 

Quantity Description 

8 tubes Index Adapters: S513, S515–S518, and S520–S522 

12 tubes Index Adapters: N701–N707, N710–N712, N714, and N715 

Index Adapter Replacement Caps, Store at 15°C to 30°C Index Kit v2 Set D Contents 

(96 Indexes, 384 Samples) (FC-131-2004) 

Index Adapters, Store at -25°C to -15°C 

Quantity Description 

8 tubes Index Adapters: S513, S515–S518, and S520–S522 

12 tubes Index Adapters: N716, N718–N724, and N726–N729 

Index Adapter Replacement Caps, Store at 15°C to 30°C 

Quantity Description 

1 bag i7 Index Tube Caps, Orange 

1 bag i5 Index Tube Caps, White 

Nextera XT Index Kit Contents (24 Indexes, 96 Samples) (FC-131-1001) 

1 bag i7 Index Tube Caps, Orange 

1 bag i5 Index Tube Caps, White 

Quantity Description 
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Index Adapters, Store at -25°C to -15°C 

Quantity Description 

4 tubes Index Adapters: S502–S504 and S517 

6 tubes Index Adapters: N701–N706 

Index Adapter Replacement Caps, Store at 15°C to 30°C 

Quantity Description 

1 bag i7 Index Tube Caps, Orange 

1 bag i5 Index Tube Caps, White 

Nextera XT Index Kit Contents (96 Indexes, 384 Samples) (FC-131-1002) 

Index Adapters, Store at -25°C to -15°C 

Quantity Reagent Name 

8 tubes Index Adapters: S502–S508 and S517 

12 tubes Index Adapters: N701–N712 

Index Adapter Replacement Caps, Store at 15°C to 30°C 

TruSeq Index Plate Fixture Kit Contents (FC-130-1005) 

Each TruSeq Index Plate Fixture Kit contains two fixtures to help arrange index primers before dispensing to 

a 96-well plate during library amplification. Two fixtures help with arrangement of index primers before 

dispensing to a 96-well plate during library amplification. The fixture pairs with both the 24-sample kit and 

96sample kit. 

TruSeq Index Plate Fixture, Store at Room Temperature 

Quantity Description 

2 TruSeq Index Plate Fixture 

Consumables and Equipment 

Confirm that all required user-supplied consumables and equipment are present and available before 

starting the protocol. 

1 bag i7 Index Tube Caps, Orange 

1 bag i5 Index Tube Caps, White 
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The protocol has been optimized and validated using the items listed. Comparable performance is not 

guaranteed when using alternate consumables and equipment. 

Consumables 

Consumable Supplier 

10 µl pipette tips General lab supplier 

10 µl multichannel pipettes General lab supplier 

10 µl single channel pipettes General lab supplier 

1000 µl pipette tips General lab supplier 

1000 µl multichannel pipettes General lab supplier 

1000 µl single channel pipettes General lab supplier 

200 µl pipette tips General lab supplier 

200 µl multichannel pipettes General lab supplier 

200 µl single channel pipettes General lab supplier 

96-well storage plates, round well, 0.8 ml 

(midi plate) 

Fisher Scientific, catalog # AB-0859 

Agencourt AMPure XP, 60 ml kit or 5 ml kit Beckman Coulter Genomics, item # A63881 (60 ml) Beckman 

Coulter Genomics, item # A63880 (5 ml) 

Distilled water General lab supplier 

Ethanol 200 proof (absolute) for molecular biology (500 ml) Sigma-Aldrich, product # E7023 

Microseal 'A' film Bio-Rad, catalog # MSA-5001 

Microseal 'B' adhesive seals Bio-Rad, catalog # MSB-1001 

NaOH 1 N, pH > 12.5, molecular biology grade General lab supplier 

RNase/DNase-free multichannel reagent reservoirs, disposable VWR, catalog # 89094-658 

Ultrapure water General lab supplier 

Hard-Shell 96-well PCR plates Bio-Rad, catalog # HSP-9601 

Equipment 

Equipment Supplier 

High-Speed microplate shaker VWR, catalog # 13500-890 (110 V/120 V) VWR, 

catalog # 14216-214 (230 V) 

Magnetic stand-96 Thermo Fisher Scientific, catalog # AM10027 
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Microplate centrifuge General lab supplier 

Vortexer General lab supplier 

Thermal Cyclers 

Use the following recommended settings for selected thermal cycler models. Before performing library 

prep, validate any thermal cyclers not listed. 

Thermal Cycler Temp Mode Lid Temp Vessel Type 

Bio-Rad DNA Engine Tetrad 2 Calculated Heated, Constant at 

100°C 

Polypropylene plates 

and tubes 

MJ Research DNA Engine Tetrad Calculated Heated Plate 

Eppendorf Mastercycler Pro S Gradient S, 

Simulated Tube 

Heated Plate 
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Technical Assistance 

For technical assistance, contact Illumina Technical Support. 

Website: www.illumina.com 

Email: techsupport@illumina.com 

Illumina Customer Support Telephone Numbers 

Region Toll Free Regional 

North America +1.800.809.4566  

Australia +1.800.775.688  

Austria +43 800006249 +43 19286540 

Belgium +32 80077160 +32 34002973 

China 400.066.5835  

Denmark +45 80820183 +45 89871156 

Finland +358 800918363 +358 974790110 

France +33 805102193 +33 170770446 

Germany +49 8001014940 +49 8938035677 

Hong Kong 800960230  

Ireland +353 1800936608 +353 016950506 

Italy +39 800985513 +39 236003759 

Japan 0800.111.5011  

Netherlands +31 8000222493 +31 207132960 

New Zealand 0800.451.650  

Norway +47 800 16836 +47 21939693 

Singapore +1.800.579.2745  

Spain +34 911899417 +34 800300143 

http://www.illumina.com/
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Sweden +46 850619671 +46 200883979 

Switzerland +41 565800000 +41 800200442 

Taiwan 00806651752  

United Kingdom +44 8000126019 +44 2073057197 

Other countries +44.1799.534000  

Safety data sheets (SDSs)—Available on the Illumina website at support.illumina.com/sds.html. 

Product documentation—Available for download in PDF from the Illumina website. Go to 

support.illumina.com, select a product, then select Documentation & Literature. 

http://support.illumina.com/sds.html
http://support.illumina.com/sds.html
http://www.illumina.com/support.ilmn
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K. Characteristics of non-obese Controls: un-pooled data of BOCABS and DISC 

participants 

  

 Non-obese BOCABS 

participants 

DISC participants 

 n=12 n=8 

Age (years) 47.3 (3.9) 44 (2.9) 

Male  5 3 

Female 7 5 

British White 12 7 

Black African 0 1 

BMI (kg/m2) 25.3 (0.7) 25.6 (0.7) 

Body fat (%) 30.3 (0.01) N/A 

Waist (W; cm) 89 (3.5) 87.9 (1.29 

Hip (H; cm) 104 (2.0) 100.5 (2.4) 

W:H ratio 0.85 (0.02) 0.88 (0.03) 

Table 8-2: Characteristics of non-obese Controls recruited to the BOCABS and DISC Study 

L. Characteristics of non-obese Controls: un-pooled data of BOCABS and DISC 

participants 

 

 Non-obese BOCABS 

participants 

DISC participants 

 n=9 n=7 

Age (years) 45.5 (4.8) 42.9 (3.2) 

Male  4 3 
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Female 5 4 

British White 9 6 

Black African 0 1 

BMI (kg/m2) 25.4 (1.0) 25.7 (0.8) 

Body fat (%) 30.4 (1.5) N/A 

Waist (W; cm) 89.4 (4.4) 88.1 (2.2) 

Hip (H; cm) 105.1 (2.4) 100.1 (2.7) 

W:H ratio 0.85 (0.03) 0.88 (0.03) 

Table 8-3 Characteristics of non-obese Controls recruited to the BOCABS and DISC Study for whom analysis of OXPHOS 
protein quantification and sequencing of the mtDNA in the colorectal mucosa was conducted. 

M. Participant characteristics for each individual of the groups 
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Group ID Age (years) Gender 

(Male, 

Female) 

BMI (kg/m2) Body fat (%) Waist (W; 

cm) 

Hip (H; cm) W:H ratio 

Pre-surgery 003 51.4 F 35.2 48.0 117.8 125.3 0.94 

007 51.8 M 41.5 41.3 132.0 132.8 0.99 

008 59.4 M 48.3 65.6 150.5 127.6 1.18 

010 55.0 F 49.0 47.8 122.2 139.5 0.88 

011 47.5 F 34.6 43.6 111.0 121.1 0.92 

015 31.7 M 42.7 49.4 121.8 130.9 0.93 

016 49.2 F 42.9 49.7 114.5 125.3 0.91 

017 49.0 F 50.7 51.8 115.5 134.3 0.86 

018 52.5 F 39.4 47.1 118.1 132.6 0.89 

020 43.6 M 41.0 36.4 126.5 81.4 1.03 

022 49.0 F 32.8 46.2 116.5 121.0 0.96 

024 44.3 F 30.2 44.8 106.7 114.6 0.93 

025 65.2 F 40.1 50.5 122.2 133.9 0.91 

026 38.8 F 45.3 53.3 122.0 144.1 0.85 

027 34.1 F 46.6 47.0 112.5 145.2 0.78 
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028 50.4 M 46.8 33.8 140.5 126.6 1.11 

029 51.4 F 38.0 50.3 132.8 91.6 1.03 

030 41.3 F 42.5 53.2 132.4 144.3 0.92 

032 46.4 F 37.9 46.8 114.3 124.4 0.92 

033 49.9 M 40.6 47.9 140.3 123.3 1.14 

034 48.0 F 41.0 51.0 122.5 135.3 0.91 

035 37.7 F 48.0 54.6 124.3 148.0 0.84 

037 51.3 F 39.6 52.2 127.0 126.8 1.00 

038 37.3 F 36.6 44.4 96.1 127.6 0.75 

040 43.6 F 35.7 45.3 112.7 131.8 0.86 

043 51.9 M 46.9 44.1 136.5 130.1 1.05 

Post-surgery 003 51.4 F 27.3 36.6 95.4 107.7 0.89 

007 51.8 M 32.0 26.3 106.9 114.5 0.93 

008 59.4 M 39.6 48.0 135.7 113.0 1.20 

010 55.0 F 25.7 27.0 79.9 98.6 0.81 

011 47.5 F 31.0 37.0 101.7 110.9 0.92 

015 31.7 M 33.4 32.7 99.8 117.3 0.85 

016 49.2 F 33.4 40.8 96.9 107.0 0.91 

017 49.0 F 35.4 37.5 92.5 113.1 0.82 

018 52.5 F 27.9 34.9 86.9 108.4 0.80 
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020 43.6 M 28.4 20.3 92.5 100.1 0.92 

022 49.0 F 25.3 36.4 91.6 104.8 0.87 

024 44.3 F 21.3 27.2 80.6 94.6 0.85 

025 65.2 F 32.8 45.2 107.4 111.4 0.96 

026 38.8 F 40.5 51.9 115.8 125.3 0.92 

027 34.1 F 35.0 40.1 92.5 118.1 0.78 

028 50.4 M 41.3 29.2 126.0 116.1 1.08 

029 51.4 F 26.0 37.0 91.8 103.8 0.88 

030 41.3 F 31.9 41.1 107.0 121.3 0.88 

032 46.4 F 29.2 36.8 95.5 108.8 0.88 

033 49.9 M 30.7 25.2 109.3 113.1 0.97 

034 48.0 F 33.2 41.9 107.8 115.2 0.94 

035 37.7 F 35.7 45.7 100.1 121.1 0.83 

037 51.3 F 29.3 44.2 47.1 53.4 0.88 

038 37.3 F 28.6 32.1 80.8 107.6 0.75 

040 43.6 F 35.7 45.3 112.7 131.8 0.86 

043 51.9 M 33.7 27.5 107.6 110.5 0.97 

Non-obese 

Controls 

048 55.3 F 20.1 28.2 75.8 95.2 0.80 

049 41.2 M 25.7 21.2 92.3 106.3 0.87 

051 57.8 F 22.9 29.4 72.1 97.4 0.74 
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056 59.0 M 29.9 31 106.2 111.6 0.95 

057 47.7 M 28.7 27.6 110.3 117.2 0.94 

058 55.8 F 25.5 35.1 77.6 100.6 0.77 

059 49.0 M 24.2 31.5 89.9 99.5 0.90 

062 21.1 F 25.4 33.8 84.6 108.9 0.78 

063 23.1 F 26.0 36.2 95.8 109.0 0.88 

DISC044 39.0 F 29.6 N/A 89.6 115.8 0.77 

DISC089 30.0 F 22.4 N/A 78.1 98.0 0.80 

DISC016 40.0 F 25.2 N/A 85.1 100.5 0.85 

DISC032 54.0 F 26.1 N/A 89.2 93.9 0.95 

DISC073 41.0 M 25.0 N/A 90.3 98.0 0.92 

DISC033 43.0 M 25.0 N/A 87.5 96.8 0.90 

DISC072 53.0 M 27.0 N/A 97.3 98.2 0.99 

Table 8-4: Full characteristic for each participant of the obese pre- and post-surgery group and non-obese Controls for whom analysis of OXPHOS protein quantification and sequencing of the 
mtDNA in the colorectal mucosa was conducted. 
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N. Varying levels of complex I and IV deficiency, calculated using z-scores, within and 

obese pre-surgery participant  
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O. Coverage map of fragment A and B sequenced in the mitochondrial genome 

 

Figure 8-1: Example coverage map of fragment A (shown in orange) and B (shown in blue) sequenced in an obese pre-
surgery participant. The flat blue line illustrates that fragment B was not sequenced. 
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P. Untransformed data of mutation frequency in obese pre-surgery individuals and non-

obese Controls 

 

Figure 8-2: Frequency of mtDNA mutations detected by NGS in the colorectal mucosa of obese pre-surgery participants and 
non-obese Controls (p=0.514 by Mann Whitney U test). 
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Q. Untransformed data of mutation frequency in pre- and post-surgery individuals 

 

Figure 8-3: Frequency of mtDNA mutations detected by NGS in the colorectal mucosa of obese pre- and post-surgery 
participants (p=0.213 by Wilcoxon Signed Rank test). 

R. Untransformed data of mtDNA mutation frequency across the BMI range in all study 

groups, BOCABS: pre- and post-surgery and non-obese controls 

 

Figure 8-4: MtDNA mutations frequency detected by NGS in the colorectal mucosa across the BMI range for each initially 
obese pre- and post-surgery and non-obese Control individual. 
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S. Post-normalisation quality control: The dispersion/ biological variation from the mean 

for each miRNA under consideration 

 

 

Figure 8-5: Plotted normalised miRNA counts for all participants included in this analysis, gene-est/ black dots: miRNA 
estimation of the typical relationship between its variance and mean by considering the information for each miRNA 
separately; fitted/ red dots: fitted dispersion values of miRNA counts dependent on the mean; final/ blue dots: final 
dispersion value chosen for each miRNA between the ‘gene-est’ and ‘fitted’, i.e. miRNAs counts shrunk towards the fitted 
trend line. 

T. List of total miRNAs (n=1654 in numerical ascending order) identified in Next 

Generation Sequencing  

Mir-1-3p, mir-1-5p, mir-7-5p, mir-7-1-3p, mir-9-5p, mir-9-3p, mir-16-5p, mir-16-2-3p, mir-16-

1-3p, mir-17-3p, mir-17-5p, mir-21-5p, mir-21-3p, mir-22-3p, mir-22-5p, mir-24-1-5p, mir-24-

3p, mir-24-2-5p, mir-25-5p, mir-25-3p, mir-28-3p, mir-28-5p, mir-31-5p, mir-31-3p, mir-32-

5p, mir-32-3p, mir-93-5p, mir-93-3p, mir-95-3p, mir-95-5p, mir-96-5p, mir-96-3p, mir-98-5p, 

mir-98-3p, mir-100-5p, mir-101-3p, mir-101-5p, mir-105-5p, mir-105-3p, mir-107, mir-122-

5p, mir-124-3p, mir-124-5p, mir-126-5p, mir-126-3p, mir-127-5p, mir-127-3p, mir-128-3p, 

mir-128-2-5p, mir-128-1-5p, mir-129-5p, mir-129-2-3p, mir-129-1-3p, mir-132-3p, mir-132-

5p, mir-134-5p, mir-134-3p, mir-136-3p, mir-136-5p, mir-137, mir-138-5p, mir-138-1-3p, mir-
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138-2-3p, mir-139-5p, mir-139-3p, mir-140-5p, mir-140-3p, mir-141-5p, mir-141-3p, mir-142-

3p, mir-142-5p, mir-143-3p, mir-143-5p, mir-144-5p, mir-144-3p, mir-145-5p, mir-145-3p, 

mir-149-5p, mir-149-3p, mir-150-3p, mir-150-5p, mir-152-5p, mir-152-3p, mir-153-3p, mir-

153-5p, mir-154-5p, mir-154-3p, mir-155-5p, mir-182-5p, mir-182-3p, mir-183-5p, mir-183-

3p, mir-184, mir-185-5p, mir-185-3p, mir-186-5p, mir-187-5p, mir-187-3p, mir-188-5p, mir-

188-3p, mir-191-5p, mir-191-3p, mir-192-3p, mir-192-5p, mir-194-5p, mir-194-3p, mir-195-

5p, mir-195-3p, mir-197-3p, mir-197-5p, mir-202-3p, mir-204-5p, mir-204-3p, mir-205-5p, 

mir-206, mir-210-3p, mir-210-5p, mir-211-5p, mir-211-3p, mir-212-3p, mir-212-5p, mir-214-

5p, mir-214-3p, mir-215-5p, mir-215-3p, mir-217, mir-218-5p, mir-218-1-3p, mir-221-3p, mir-

221-5p, mir-222-3p, mir-222-5p, mir-223-3p, mir-223-5p, mir-224-5p, mir-224-3p, mir-296-

3p, mir-296-5p, mir-298, mir-299-3p, mir-299-5p, mir-324-5p, mir-324-3p, mir-326, mir-328-

3p, mir-329-3p, mir-329-5p, mir-330-5p, mir-330-3p, mir-331-3p, mir-331-5p, mir-335-3p, 

mir-335-5p, mir-337-3p, mir-337-5p, mir-338-3p, mir-338-5p, mir-339-3p, mir-339-5p, mir-

340-5p, mir-340-3p, mir-342-3p, mir-342-5p, mir-345-5p, mir-345-3p, mir-346, mir-361-3p, 

mir-361-5p, mir-362-5p, mir-363-3p, mir-363-5p, mir-369-5p, mir-369-3p, mir-370-3p, mir-

370-5p, mir-372-3p, mir-375, mir-377-5p, mir-377-3p, mir-379-5p, mir-379-3p, mir-381-3p, 

mir-381-5p, mir-382-5p, mir-382-3p, mir-383-5p, mir-409-5p, mir-409-3p, mir-410-3p, mir-

410-5p, mir-411-5p, mir-411-3p, mir-412-5p, mir-412-3p, mir-421, mir-423-3p, mir-423-5p, 

mir-424-5p, mir-424-3p, mir-425-3p, mir-425-5p, mir-429, mir-431-3p, mir-431-5p, mir-432-

5p, mir-433-3p, mir-448, mir-452-5p, mir-452-3p, mir-454-3p, mir-454-5p, mir-455-3p, mir-

455-5p, mir-466, mir-483-3p, mir-483-5p, mir-484, mir-485-3p, mir-485-5p, mir-486-3p, mir-

486-5p, mir-489-3p, mir-490-3p, mir-490-5p, mir-491-5p, mir-492, mir-493-5p, mir-493-3p, 

mir-494-3p, mir-494-5p, mir-495-3p, mir-495-5p, mir-496, mir-497-5p, mir-497-3p, mir-501-

5p, mir-501-3p, mir-502-3p, mir-502-5p, mir-503-5p, mir-503-3p, mir-504-5p, mir-504-3p, 

mir-505-3p, mir-505-5p, mir-506-3p, mir-508-5p, mir-508-3p, mir-509-3-5p, mir-509-3p, mir-

511-5p, mir-511-3p, mir-521, mir-522-5p, mir-522-3p, mir-532-5p, mir-532-3p, mir-539-5p, 

mir-539-3p, mir-541-3p, mir-541-5p, mir-542-3p, mir-543, mir-545-5p, mir-552-5p, mir-552-

3p, mir-553, mir-555, mir-556-5p, mir-557, mir-558, mir-559, mir-562, mir-564, mir-566, mir-

567, mir-571, mir-572, mir-574-3p, mir-574-5p, mir-575, mir-576-5p, mir-576-3p, mir-577, 

mir-578, mir-579-5p, mir-580-3p, mir-581, mir-582-3p, mir-582-5p, mir-584-5p, mir-584-3p, 

mir-585-3p, mir-587, mir-588, mir-589-5p, mir-589-3p, mir-590-3p, mir-591, mir-592, mir-

595, mir-597-3p, mir-598-3p, mir-598-5p, mir-599, mir-600, mir-601, mir-602, mir-605-3p, 
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mir-605-5p, mir-607, mir-612, mir-614, mir-615-3p, mir-616-3p, mir-616-5p, mir-618, mir-

619-5p, mir-620, mir-621, mir-622, mir-624-3p, mir-624-5p, mir-625-3p, mir-625-5p, mir-627-

5p, mir-627-3p, mir-628-3p, mir-628-5p, mir-629-5p, mir-629-3p, mir-632, mir-635, mir-636, 

mir-638, mir-639, mir-641, mir-643, mir-645, mir-646, mir-647, mir-648, mir-649, mir-650, 

mir-651-5p, mir-651-3p, mir-652-3p, mir-652-5p, mir-653-5p, mir-653-3p, mir-654-3p, mir-

654-5p, mir-655-5p, mir-655-3p, mir-656-5p, mir-656-3p, mir-658, mir-659-5p, mir-660-5p, 

mir-660-3p, mir-662, mir-665, mir-668-5p, mir-668-3p, mir-670-5p, mir-671-3p, mir-671-5p, 

mir-675-3p, mir-675-5p, mir-676-3p, mir-676-5p, mir-708-3p, mir-708-5p, mir-744-5p, mir-

744-3p, mir-758-3p, mir-760, mir-762, mir-765, mir-766-5p, mir-766-3p, mir-767-5p, mir-769-

3p, mir-769-5p, mir-770-5p, mir-802, mir-873-3p, mir-873-5p, mir-874-3p, mir-874-5p, mir-

876-3p, mir-877-3p, mir-877-5p, mir-885-5p, mir-887-3p, mir-887-5p, mir-889-5p, mir-889-

3p, mir-920, mir-922, mir-924, mir-933, mir-935, mir-937-3p, mir-939-5p, mir-939-3p, mir-

940, mir-941, mir-942-5p, mir-942-3p, mir-943, mir-944, mir-1179, mir-1180-3p, mir-1181, 

mir-1185-1-3p, mir-1185-2-3p, mir-1199-5p, mir-1199-3p, mir-1202, mir-1203, mir-1205, mir-

1224-5p, mir-1224-3p, mir-1225-3p, mir-1225-5p, mir-1226-3p, mir-1226-5p, mir-1228-3p, 

mir-1228-5p, mir-1229-3p, mir-1229-5p, mir-1231, mir-1233-5p, mir-1234-3p, mir-1236-5p, 

mir-1237-5p, mir-1237-3p, mir-1243, mir-1244, mir-1246, mir-1247-3p, mir-1247-5p, mir-

1248, mir-1249-3p, mir-1249-5p, mir-1250-5p, mir-1251-5p, mir-1252-5p, mir-1253, mir-

1254, mir-1258, mir-1261, mir-1262, mir-1265, mir-1266-5p, mir-1266-3p, mir-1267, mir-

1270, mir-1271-5p, mir-1272, mir-1275, mir-1276, mir-1277-3p, mir-1278, mir-1284, mir-

1285-5p, mir-1285-3p, mir-1286, mir-1287-5p, mir-1288-3p, mir-1289, mir-1290, mir-1291, 

mir-1292-5p, mir-1293, mir-1294, mir-1296-5p, mir-1296-3p, mir-1297, mir-1298-5p, mir-

1299, mir-1301-3p, mir-1302, mir-1303, mir-1304-5p, mir-1304-3p, mir-1306-3p, mir-1306-

5p, mir-1307-5p, mir-1307-3p, mir-1321, mir-1324, mir-1343-3p, mir-1343-5p, mir-1468-5p, 

mir-1469, mir-1537-3p, mir-1538, mir-1587, mir-1825, mir-1827, mir-1908-5p, mir-1909-3p, 

mir-1909-5p, mir-1910-5p, mir-1911-5p, mir-1913 mir-1914-5p, mir-1915-3p, mir-1972, mir-

1973, mir-1976, mir-2053, mir-2110, mir-2113, mir-2116-3p, mir-2117, mir-2276-3p, mir-

2277-5p, mir-2277-3p, mir-2278, mir-2355-3p, mir-2355-5p, mir-2681-5p, mir-2682-3p, mir-

2682-5p, mir-2861, mir-3064-5p, mir-3065-5p, mir-3065-3p, mir-3074-5p, mir-3074-3p, mir-

3115, mir-3116, mir-3117-3p, mir-3120-5p, mir-3122, mir-3123, mir-3124-5p, mir-3125, mir-

3126-5p, mir-3127-5p, mir-3127-3p, mir-3128, mir-3129-3p, mir-3130-3p, mir-3130-5p, mir-

3131, mir-3133, mir-3134, mir-3136-5p, mir-3137, mir-3138, mir-3139, mir-3140-3p, mir-
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3144-3p, mir-3146, mir-3147, mir-3149, mir-3151-3p, mir-3152-5p, mir-3152-3p, mir-3154, 

mir-3157-5p, mir-3157-3p, mir-3158-3p, mir-3158-5p, mir-3159, mir-3160-3p, mir-3161, mir-

3162-3p, mir-3162-5p, mir-3164, mir-3166, mir-3167, mir-3168, mir-3170, mir-3173-5p, mir-

3173-3p, mir-3174, mir-3176, mir-3177-3p, mir-3177-5p, mir-3178, mir-3179, mir-3180-5p, 

mir-3180-3p, mir-3181, mir-3182, mir-3183, mir-3185, mir-3187-3p, mir-3187-5p, mir-3188, 

mir-3190-3p, mir-3190-5p, mir-3191-3p, mir-3191-5p, mir-3192-5p, mir-3193, mir-3194-5p, 

mir-3194-3p, mir-3195, mir-3196, mir-3198, mir-3199, mir-3200-3p, mir-3200-5p, mir-3202, 

mir-3529-5p, mir-3591-5p, mir-3605-5p, mir-3605-3p, mir-3606-3p, mir-3607-3p, mir-3607-

5p, mir-3609, mir-3610, mir-3611, mir-3613-5p, mir-3613-3p, mir-3614-5p, mir-3614-3p, mir-

3615, mir-3617-5p, mir-3619-5p, mir-3619-3p, mir-3620-5p, mir-3620-3p, mir-3646, mir-

3648, mir-3651, mir-3652, mir-3653-5p, mir-3653-3p, mir-3654, mir-3655, mir-3656, mir-

3658, mir-3659, mir-3660, mir-3661, mir-3663-3p, mir-3663-5p, mir-3664-5p, mir-3664-3p, 

mir-3665, mir-3667-5p, mir-3667-3p, mir-3674, mir-3675-5p, mir-3675-3p, mir-3678-5p, mir-

3679-5p, mir-3679-3p, mir-3681-5p, mir-3684, mir-3687, mir-3688-5p, mir-3688-3p, mir-

3690, mir-3691-5p, mir-3691-3p, mir-3907, mir-3908, mir-3909, mir-3910, mir-3911, mir-

3912-3p, mir-3913-5p, mir-3915, mir-3916, mir-3917, mir-3918, mir-3922-3p, mir-3925-5p, 

mir-3925-3p, mir-3928-3p, mir-3929, mir-3934-5p, mir-3934-3p, mir-3936, mir-3938, mir-

3939, mir-3940-3p, mir-3940-5p, mir-3941, mir-3944-5p, mir-3944-3p, mir-3960, mir-3974, 

mir-3976, mir-3977, mir-3978, mir-4251, mir-4258, mir-4259, mir-4265, mir-4266, mir-4267, 

mir-4269, mir-4273, mir-4274, mir-4277, mir-4279, mir-4283, mir-4284, mir-4286, mir-4289, 

mir-4291, mir-4292, mir-4295, mir-4296, mir-4301, mir-4304, mir-4306, mir-4309, mir-4311, 

mir-4313, mir-4314, mir-4317, mir-4318, mir-4319, mir-4321, mir-4322, mir-4323, mir-4324, 

mir-4325, mir-4326, mir-4328, mir-4330, mir-4417, mir-4418, mir-4421, mir-4422, mir-4423-

5p, mir-4425, mir-4426, mir-4429, mir-4430, mir-4431, mir-4437, mir-4440, mir-4442, mir-

4443, mir-4444, mir-4446-3p, mir-4447, mir-4448, mir-4449, mir-4450, mir-4452, mir-4453, 

mir-4454, mir-4456, mir-4458, mir-4459, mir-4460, mir-4461, mir-4463, mir-4466, mir-4467, 

mir-4469, mir-4472, mir-4473, mir-4474-3p, mir-4478, mir-4479, mir-4482-5p, mir-4482-3p, 

mir-4484, mir-4485-5p, mir-4485-3p, mir-4487, mir-4488, mir-4489, mir-4491, mir-4492, mir-

4496, mir-4497, mir-4498, mir-4500, mir-4502, mir-4504, mir-4505, mir-4506, mir-4507, mir-

4508, mir-4510, mir-4511, mir-4512, mir-4515, mir-4516, mir-4517, mir-4518, mir-4519, mir-

4520-5p, mir-4520-2-3p, mir-4521, mir-4522, mir-4523, mir-4525, mir-4527, mir-4529-3p, 

mir-4529-5p, mir-4531, mir-4532, mir-4533, mir-4536-5p, mir-4537, mir-4538, mir-4539, mir-
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4632-3p, mir-4634, mir-4635, mir-4636, mir-4637, mir-4638-3p, mir-4638-5p, mir-4639-5p, 

mir-4640-5p, mir-4640-3p, mir-4642, mir-4645-3p, mir-4646-5p, mir-4646-3p, mir-4647, mir-

4648, mir-4649-5p, mir-4650-3p, mir-4651, mir-4654, mir-4656, mir-4657, mir-4660, mir-

4661-5p, mir-4664-3p, mir-4664-5p, mir-4665-5p, mir-4667-3p, mir-4667-5p, mir-4668-5p, 

mir-4669, mir-4671-5p, mir-4672, mir-4673, mir-4674, mir-4675, mir-4676-3p, mir-4676-5p, 

mir-4677-3p, mir-4680-3p, mir-4680-5p, mir-4681, mir-4683, mir-4684-3p, mir-4684-5p, mir-

4685-3p, mir-4686, mir-4687-3p, mir-4687-5p, mir-4688, mir-4689, mir-4690-5p, mir-4690-

3p, mir-4697-3p, mir-4698, mir-4700-5p, mir-4701-5p, mir-4701-3p, mir-4703-3p, mir-4706, 

mir-4707-5p, mir-4707-3p, mir-4708-3p, mir-4709-5p, mir-4709-3p, mir-4710, mir-4713-5p, 

mir-4715-3p, mir-4715-5p, mir-4716-3p, mir-4717-3p, mir-4721, mir-4723-5p, mir-4723-3p, 

mir-4724-5p, mir-4724-3p, mir-4725-5p, mir-4726-5p, mir-4728-3p, mir-4728-5p, mir-4730, 

mir-4731-3p, mir-4731-5p, mir-4732-3p, mir-4732-5p, mir-4736, mir-4737, mir-4738-3p, mir-

4739, mir-4740-5p, mir-4741, mir-4742-3p, mir-4745-5p, mir-4746-5p, mir-4747-3p, mir-

4748, mir-4750-5p, mir-4751, mir-4752, mir-4753-3p, mir-4755-5p, mir-4755-3p, mir-4756-

3p, mir-4757-3p, mir-4758-5p, mir-4758-3p, mir-4761-3p, mir-4762-3p, mir-4763-5p, mir-

4764-5p, mir-4767, mir-4768-5p, mir-4772-3p, mir-4772-5p, mir-4773, mir-4774-5p, mir-

4777-3p, mir-4778-5p, mir-4780, mir-4781-3p, mir-4782-5p, mir-4783-5p, mir-4784, mir-

4785, mir-4787-5p, mir-4787-3p, mir-4788, mir-4790-3p, mir-4791, mir-4792, mir-4795-3p, 

mir-4796-5p, mir-4797-3p, mir-4797-5p, mir-4799-5p, mir-4800-3p, mir-4800-5p, mir-4802-

5p, mir-4804-5p, mir-4999-5p, mir-5000-3p, mir-5001-3p, mir-5001-5p, mir-5002-3p, mir-

5003-3p, mir-5004-3p, mir-5006-3p, mir-5007-5p, mir-5008-3p, mir-5009-3p, mir-5009-5p, 

mir-5010-3p, mir-5010-5p, mir-5047, mir-5087, mir-5088-3p, mir-5088-5p, mir-5089-3p, mir-

5089-5p, mir-5090, mir-5091, mir-5092, mir-5095, mir-5096, mir-5100, mir-5187-5p, mir-

5187-3p, mir-5188, mir-5189-5p, mir-5189-3p, mir-5191, mir-5193, mir-5196-3p, mir-5571-

3p, mir-5571-5p, mir-5572, mir-5581-3p, mir-5582-3p, mir-5585-3p, mir-5587-3p, mir-5588-

5p, mir-5588-3p, mir-5680, mir-5682, mir-5684, mir-5685, mir-5687, mir-5689, mir-5690, mir-

5691, mir-5693, mir-5695, mir-5696, mir-5697, mir-5698, mir-5699-3p, mir-5699-5p, mir-

5701, mir-5702, mir-5703, mir-5706, mir-5707, mir-5708, mir-5739, mir-5787, mir-6070, mir-

6071, mir-6073, mir-6078, mir-6080, mir-6081, mir-6083, mir-6085, mir-6087, mir-6089, mir-

6124, mir-6125, mir-6126, mir-6127, mir-6128, mir-6129, mir-6130, mir-6131, mir-6132, mir-

6133, mir-6134, mir-6165, mir-6500-3p, mir-6501-5p, mir-6501-3p, mir-6502-5p, mir-6503-

3p, mir-6503-5p, mir-6504-5p, mir-6505-5p, mir-6506-5p, mir-6507-5p, mir-6509-5p, mir-
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6509-3p, mir-6510-3p, mir-6510-5p, mir-6512-5p, mir-6513-5p, mir-6513-3p, mir-6514-3p, 

mir-6514-5p, mir-6515-5p, mir-6516-5p, mir-6516-3p, mir-6716-3p, mir-6716-5p, mir-6718-

5p, mir-6719-3p, mir-6720-3p, mir-6720-5p, mir-6721-5p, mir-6723-5p, mir-6724-5p, mir-

6726-3p, mir-6727-5p, mir-6728-5p, mir-6729-5p, mir-6730-3p, mir-6730-5p, mir-6731-5p, 

mir-6732-3p, mir-6733-3p, mir-6734-3p, mir-6734-5p, mir-6735-5p, mir-6735, mir-6736-5p, 

mir-6737-3p, mir-6738-5p, mir-6739-5p, mir-6740-5p, mir-6741-5p, mir-6741-3p, mir-6743-

3p, mir-6744-5p, mir-6744-3p, mir-6745, mir-6746-5p, mir-6747-3p, mir-6749-3p, mir-6750-

3p, mir-6750-5p, mir-6751-3p, mir-6751-5p, mir-6752-3p, mir-6753-3p, mir-6754-3p, mir-

6754-5p, mir-6755-5p, mir-6756-5p, mir-6757-5p, mir-6758-5p, mir-6759-5p, mir-6760-5p, 

mir-6761-5p, mir-6762-3p, mir-6762-5p, mir-6763-5p, mir-6763-3p, mir-6764-5p, mir-6765-

5p, mir-6765-3p, mir-6766-3p, mir-6766-5p, mir-6770-3p, mir-6771-5p, mir-6772-3p, mir-

6773-5p, mir-6774-3p, mir-6774-5p, mir-6775-3p, mir-6775-5p, mir-6776-5p, mir-6777-5p, 

mir-6779-5p, mir-6783-5p, mir-6785-5p, mir-6785-3p, mir-6786-3p, mir-6786-5p, mir-6787-

3p, mir-6787-5p, mir-6788-3p, mir-6788-5p, mir-6789-3p, mir-6789-5p, mir-6791-3p, mir-

6791-5p, mir-6792-5p, mir-6793-5p, mir-6793-3p, mir-6796-5p, mir-6797-3p, mir-6799-3p, 

mir-6800-5p, mir-6800-3p, mir-6801-5p, mir-6802-3p, mir-6803-3p, mir-6803-5p, mir-6805-

5p, mir-6806-3p, mir-6807-5p, mir-6808-3p, mir-6808-5p, mir-6809-5p, mir-6809-3p, mir-

6810-5p, mir-6810-3p, mir-6811-5p, mir-6812-5p, mir-6813-3p, mir-6813-5p, mir-6814-3p, 

mir-6815-5p, mir-6816-3p, mir-6817-3p, mir-6818-5p, mir-6820-5p, mir-6820-3p, mir-6821-

5p, mir-6821-3p, mir-6824-5p, mir-6825-3p, mir-6826-5p, mir-6827-3p, mir-6827-5p, mir-

6829-3p, mir-6829-5p, mir-6831-5p, mir-6832-5p, mir-6833-3p, mir-6834-5p, mir-6836-3p, 

mir-6837-3p, mir-6840-5p, mir-6842-3p, mir-6842-5p, mir-6843-3p, mir-6844, mir-6845-3p, 

mir-6846-5p, mir-6847-5p, mir-6848-3p, mir-6848-5p, mir-6850-5p, mir-6851-5p, mir-6852-

3p, mir-6852-5p, mir-6853-3p, mir-6854-5p, mir-6855-5p, mir-6858-5p, mir-6858-3p, mir-

6859-3p, mir-6859-5p, mir-6860, mir-6861-3p, mir-6865-3p, mir-6865-5p, mir-6866-5p, mir-

6867-5p, mir-6868-3p, mir-6869-5p, mir-6871-5p, mir-6873-3p, mir-6874-3p, mir-6875-5p, 

mir-6875-3p, mir-6876-5p, mir-6876-3p, mir-6877-5p, mir-6879-5p, mir-6879-3p, mir-6880-

5p, mir-6881-3p, mir-6881-5p, mir-6882-3p, mir-6883-5p, mir-6884-3p, mir-6884-5p, mir-

6886-5p, mir-6886-3p, mir-6887-5p, mir-6887-3p, mir-6890-3p, mir-6891-5p, mir-6892-3p, 

mir-6892-5p, mir-6893-3p, mir-6894-3p, mir-6895-3p, mir-7106-3p, mir-7107-5p, mir-7108-

3p, mir-7109-3p, mir-7110-3p, mir-7110-5p, mir-7111-5p, mir-7111-3p, mir-7113-5p, mir-

7114-5p, mir-7151-5p, mir-7152-3p, mir-7155-3p, mir-7155-5p, mir-7158-3p, mir-7158-5p, 
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mir-7515, mir-7641, mir-7702, mir-7703, mir-7704, mir-7705, mir-7706, mir-7844-5p, mir-

7845-5p, mir-7846-3p, mir-7847-3p, mir-7848-3p, mir-7849-3p, mir-7850-5p, mir-7851-3p, 

mir-7853-5p, mir-7854-3p, mir-7974, mir-7975, mir-7976, mir-7977, mir-8052, mir-8053, mir-

8057, mir-8059, mir-8065, mir-8071, mir-8072, mir-8077, mir-8079, mir-8083, mir-8086, mir-

8485, mir-103a-2-5p, mir-103a-3p, mir-103b, mir-106a-5p, mir-106b-3p, mir-106b-5p, mir-

10a-3p, mir-10a-5p, mir-10b-5p, mir-10b-3p, mir-1245a, mir-1245b-3p, mir-1245bp, mir-

1255a, mir-1255b-5p, mir-125a-5p, mir-125a-3p, mir-125b-2-3p, mir-125b-5p, mir-125b-1-

3p, mir-1260a, mir-1260b, mir-1268a, mir-1268b, mir-1269a, mir-1269b, mir-1273a, mir-

1273c, mir-1273d, mir-1273e, mir-1273f, mir-1273g-3p, mir-1273g-5p, mir-1273h-5p, mir-

1273h-3p, mir-1295a, mir-130a-3p, mir-130a-5p, mir-130b-3p, mir-130b-5p, mir-133a-3p, 

mir-133a-5p, mir-133b, mir-135a-5p, mir-135a-3p, mir-135b-5p, mir-135b-3p, mir-146a-5p, 

mir-146a-3p, mir-146b-5p, mir-146b-3p, mir-147a, mir-147b, mir-148a-5p, mir-148a-3p, mir-

148b-3p, mir-148b-5p, mir-151a-5p, mir-151a-3p, mir-151b, mir-15a-5p, mir-15b-5p, mir-

15b-3p, mir-181a-3p, mir-181a-5p, mir-181a-2-3p, mir-181b-5p, mir-181b-3p, mir-181c-3p, 

mir-181c-5p, mir-181d-5p, mir-181d-3p, mir-18a-3p, mir-18a-5p, mir-18b-3p, mir-190a-5p, 

mir-190a-3p, mir-190b, mir-193a-5p, mir-193a-3p, mir-193b-3p, mir-193b-5p, mir-196a-5p, 

mir-196a-3p, mir-196b-5p, mir-196b-3p, mir-199a-5p, mir-199a-3p, mir-199b-5p, mir-199b-

3p, mir-19a-3p, mir-19a-5p, mir-19b-3p, mir-19b-1-5p, mir-200a-5p, mir-200a-3p, mir-200b-

5p, mir-200b-3p, mir-200c-3p, mir-200c-5p, mir-203a-3p, mir-203a-5p, mir-203b-3p, mir-20a-

5p, mir-20a-3p, mir-20b-5p, mir-20b-3p, mir-216a-3p, mir-216a-5p, mir-216b-5p, mir-219a-

1-3p, mir-219a-5p, mir-219a-2-3p, mir-219b-5p, mir-23a-5p, mir-23a-3p, mir-23b-5p, mir-

23b-3p, mir-23c, mir-26a-2-3p, mir-26a-5p, mir-26a-1-3p, mir-26b-5p, mir-26b-3p, mir-27a-

5p, mir-27a-3p, mir-27b-3p, mir-27b-5p, mir-29a-3p, mir-29a-5p, mir-29b-3p, mir-29b-2-5p, 

mir-29b-1-5p, mir-29c-5p, mir-29c-3p, mir-301a-5p, mir-301b-5p, mir-30a-5p, mir-30a-3p, 

mir-30b-5p, mir-30b-3p, mir-30c-2-3p, mir-30c-1-3p, mir-30c-5p, mir-30d-5p, mir-30d-3p, 

mir-30e-5p, mir-30e-3p, mir-3135a, mir-3135b, mir-3150a-5p, mir-3150b-3p, mir-3150b-5p, 

mir-3155a, mir-320a, mir-320b, mir-320c, mir-320d, mir-320e, mir-323a-3p, mir-323a-5p, 

mir-323b-3p, mir-33a-3p, mir-33a-5p, mir-33b-5p, mir-33b-3p, mir-34a-5p, mir-34a-3p, mir-

34b-3p, mir-34c-5p, mir-34c-3p, mir-3622a-5p, mir-3622a-3p, mir-3622b-3p, mir-365a-5p, 

mir-365b-3p, mir-365b-5p, mir-3689b-5p, mir-3689d, mir-3689e, mir-3689f, mir-371b-5p, 

mir-374a-5p, mir-374a-3p, mir-374b-5p, mir-374c-3p, mir-374c-5p, mir-376a-3p, mir-376a-2-

5p, mir-376a-5p, mir-376c-3p, mir-378a-3p, mir-378a-5p, mir-378b, mir-378c, mir-378d, mir-
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378e, mir-378f, mir-378g, mir-378h, mir-378i, mir-378j, mir-422a, mir-4419a, mir-4419b, mir-

4433a-5p, mir-4433b-5p, mir-4433b-3p, mir-4436a, mir-4436b-3p, mir-4436b-5p, mir-449a, 

mir-449c-5p, mir-450a-5p, mir-450a-2, mir-450b-5p, mir-451a, mir-451b, mir-4524a-5p, mir-

4524a-3p, mir-4659a-3p, mir-4659b-3p, mir-4662a-5p, mir-4666b, mir-487a-5p, mir-487a-3p, 

mir-487b-3p, mir-487b-5p, mir-499a-5p, mir-499a-3p, mir-500a-3p, mir-500a-5p, mir-500b-

5p, mir-500b-3p, mir-513a-5p, mir-513c-3p, mir-513c-5p, mir-514a-3p, mir-516a-3p, mir-

517a-3p, mir-517c-3p, mir-519a-3p, mir-519a-5p, mir-519d-3p, mir-519e-5p, mir-520a-3p, 

mir-520d-5p, mir-520f-3p, mir-520f-5p, mir-526b-5p, mir-544a, mir-544b, mir-548a-3p, mir-

548a-5p, mir-548ac, mir-548ad-5p, mir-548ae-5p, mir-548ag, mir-548ah-3p, mir-548ai, mir-

548al, mir-548am-3p, mir-548an, mir-548ap-5p, mir-548aq-3p, mir-548ar-3p, mir-548as-5p, 

mir-548at-5p, mir-548au-5p, mir-548av-3p, mir-548av-5p, mir-548aw, mir-548ax, mir-548ay-

5p, mir-548ay-3p, mir-548az-5p, mir-548b-5p, mir-548ba, mir-548bb-3p, mir-548d-3p, mir-

548e-3p, mir-548f-3p, mir-548h-5p, mir-548i, mir-548j-5p, mir-548k, mir-548l, mir-548n, mir-

548o-3p, mir-548o-5p, mir-548q, mir-548s, mir-548t-5p, mir-548u, mir-548v, mir-548w, mir-

548x-5p, mir-548y, mir-548z, mir-549a, mir-550a-3-5p, mir-550a-5p, mir-550a-3p, mir-550b-

2-5p, mir-551a, mir-551b-5p, mir-5681a, mir-5692c, mir-642b-5p, mir-642b-3p, mir-6511a-

3p, mir-6511a-5p, mir-6511b-3p, mir-663a, mir-663b, mir-664a-5p, mir-664a-3p, mir-664b-

3p, mir-664b-5p, mir-6715a-3p, mir-6715b-3p, mir-6769b-3p, mir-6780a-5p, mir-6780b-3p, 

mir-6780b-5p, mir-891a-5p, mir-892a, mir-892b, mir-892c-3p, mir-92a-3p, mir-92a-1-5p, mir-

92b-3p, mir-92b-5p, mir-99a-5p, mir-99a-3p, mir-99b-5p, mir-99b-3p, let-7a-5p, let-7a-3p, 

let-7a-2-3p, let-7b-5p, let-7b-3p, let-7c-5p, let-7c-3p, let-7d-5p, let-7d-3p, let-7e-5p, let-7e-

3p, let-7f-1-3p, let-7f-5p, let-7f-2-3p, let-7g-5p, let-7g-3p, let-7i-3p and let-7i-5p. 
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U. Heatmaps of sample to sample correlation of raw miRNA counts 

 

Figure 8-6: (A) Heatmap of non-clustered sample to sample Pearson correlation of raw miRNA counts; (B) Heatmap of 
clustered sample to sample Pearson correlation of raw miRNA counts (green bars: pre-surgery; blue bars: post-surgery and 
red bars: non-obese Controls). Clustering is referred to the aggregation of individual participants according to participant 
group, i.e. pre- and post-surgery and non-obese Controls. 

V. Heatmaps of sample to sample correlation of miRNA counts following variance of 

stabilising transformation (VST) to the miRNA counts 

 

Figure 8-7: (A) Heatmap of non-clustered sample to sample Pearson correlation of miRNA count following VST; (B) Heatmap 
of clustered sample to sample Pearson correlation of miRNA count following VST (green bars: pre-surgery; blue bars: post-
surgery and red bars: non-obese Controls). Clustering is referred to the aggregation of individual participants according to 
participant group, i.e. pre- and post-surgery and non-obese Controls. 
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W. Heatmaps of sample to sample correlation of miRNA counts after computing the 

binary logarithms (Log2) to the miRNA counts 

 

Figure 8-8: (A) Heatmap of clustered sample to sample Pearson correlation of miRNA count after computing Log2; (B) 
Heatmap of non-clustered sample to sample Pearson correlation of miRNA count after computing Log2 (green bars: pre-
surgery; blue bars: post-surgery and red bars: non-obese Controls). Clustering is referred to the aggregation of individual 
participants according to participant group, i.e. pre- and post-surgery and non-obese Controls. 

X. Heatmap of sample to sample correlation of miRNA counts after computing the 

binary logarithms (Log2) to the miRNA counts 

 

Figure 8-9: Heaptmap of sample to sample Pearson correlation of miRNA count after computing Log2 (green bars: pre-
surgery; blue bars: post-surgery and red bars: non-obese Controls).  
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Y. Heatmaps of top 80 miRNA counts 

 

Figure 8-10: (A) Heatmap of top 80 clustered miRNA counts; (B) Heatmap of top 80 non-clustered miRNA counts (green 
bars: pre-surgery; blue bars: post-surgery and red bars: non-obese Controls) (based on a scoring of values ranging from 4 to 
16). Clustering is referred to the aggregation of individual participants according to participant group, i.e. pre- and post-
surgery and non-obese Controls. 

Z. Heatmaps of top 80 scaled miRNA counts 

 

Figure 8-11: (A) Heatmap of top 80 scaled clustered miRNA counts; (B) Heatmap of top 80 scaled and non-clustered miRNA 
counts (based on a scaled row z-score ranging from -3 to 3). Clustering is referred to the aggregation of individual 
participants according to participant group, i.e. pre- and post-surgery and non-obese Controls. 
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AA. Bar plot of the top 80 miRNA counts 

 

Figure 8-12: Bar plot of the top 80 miRNA counts across pre- and post-RYGB group and non-obese Controls. 

BB. List of the miRNAs (n=112 in numerical ascending order) for which abundance 

differed significantly between the obese pre-RYGB group and the non-obese Controls 

Mir-1-3p, mir-7-5p, mir-9-5p, mir-22-3p, mir-24-1, mir-25-5p, mir-28-3p, mir-31-3p, mir-31-

5p, mir-126-3p, mir-126-5p, mir-132-3p, mir-140-5p, mir-143-3p, mir-143-5p, mir-145-3p, 

mir-145-5p, mir-191-5p, mir-194-5p, mir-204-5p, mir-210-3p, mir-210-5p, mir-215-5p-3p, 

mir-215-3p, mir-223-3p, mir-338-3p, mir-340-5p, mir-342-3p, mir-423-3p, mir-452-5p, mir-

455-3p, mir-455-5p, mir-484, mir-486-3p, mir-486-5p, mir-497-5p, mir-543, mir-552-5p, mir-

552-3p, mir-566, mir-619-5p, mir-625-3p, mir-652-3p, mir-655-5p, mir-671-3p, mir-671-5p, 

mir-744-5p, mir-874-3p, mir-887-3p, mir-1247-3p, mir-1247-5p, mir-1248, mir-1253, mir-

1262, mir-3127-5p, mir-3196, mir-3648, mir-3656, mir-3665, mir-3960, mir-4284, mir-4429, 

mir-4446-3p, mir-4459, mir-4473, mir-4497, mir-4516, mir-4709-5p, mir-5096, mir-7851-3p, 

mir-1268a, mir-1273a, mir-1273c, mir-1273d, mir-1273e, mir-1273f, mir-133a-3p, mir-147b, 

mir-148a-5p, mir-15b-5p, mir-181a-3p, mir-193b-3p, mir-196a-5p, mir-196b-5p, mir-199b-5p, 

mir-200a-5p, mir-200b-5p, mir-200b-3p, mir-200c-3p, mir-203a-3p, mir-27b-3p, mir-29a-3p, 
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mir-29c-5p-5p, mir-29c-3p, mir-30a-5p, mir-30a-3p, mir-30b-5p, mir-30c-2, mir-3135b, mir-

3150b-3p, mir-320a, mir-320b, mir-378a-3p, mir-422a, mir-450a-5p, mir-642b-5p, mir-92a-

3p, mir-92b-3p, mir-99a-5p, mir-99b-5p, let-7a and let-7d. 

CC. Significant miRNA fold change between the pre-RYGB group and the non-obese 

Controls 

 

Figure 8-13: Volcano plot illustrating significant fold change for the miRNAs (each red dot represents an individual miRNA 
with its name annotation) which differed in abundance between obese individuals pre-RYGB and non-obese Controls. 
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DD. Heatmap of clustered significant top 82 miRNAs between the pre-RYGB group and 

non-obese Controls 

 

Figure 8-14: Heatmap of the clustered significant top 82 miRNAs between the pre-RYGB group and non-obese Controls for 
all participants (green bars: pre-surgery; blue bars: post-surgery and red bars: non-obese Controls). Clustering is referred to 
the aggregation of individual participants according to participant group, i.e. obese pre- and post-RYGB and non-obese 
Controls. 

EE. List of the miRNAs (n=60 in numerical ascending order) for which abundance differed 

significantly between the initially obese individuals before and after RYGB 

Mir-7-5p, mir-9-5p, mir-28-3p, mir-31-5p, mir-31-3p, mir-98-5p, mir-126-5p, mir-126-3p, mir-

129-5p, mir-132-3p, mir-185-5p, mir-191-5p, mir-194-5p, mir-204-5p, mir-204-3p, mir-210-

3p, mir-215-5p, mir-215-3p, mir-223-3p, mir-335-3p, mir-338-3p, mir-342-3p, mir-421, mir-

424-5p, mir-455-3p, mir-552-5p, mir-552-3p, mir-582-5p, mir-652-3p, mir-655-5p, mir-671-

3p, mir-671-5p, mir-874-3p, mir-1247-5p, mir-1247-3p, mir-1262, mir-3196, mir-3656, mir-

4284, mir-4461, mir-4485-3p, mir-4516, mir-125b-5p, mir-147b, mir-148b-3p, mir-15b-3p, 

mir-181a-3p, mir-196a-5p, mir-196b-5p, mir-200b-5p, mir-200b-3p, mir-203a-3p, mir-29c-3p, 

mir-30a-5p, mir-3a-3p, mir-30c-2-3p, mir-3150b-3p, mir-450a-5p, let-7a-3p and mir-892c-3p. 
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FF. Significant top 60 miRNA fold change between the pre- and post-RYGB groups 

 

Figure 8-15: Volcano plot illustrating significant fold change for the miRNAs (each red dot represents an individual miRNA 
with its name annotation) which differed in abundance between obese individuals pre- and post-RYGB.  
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GG.Heatmap of clustered significant top 45 miRNAs between the pre- and post-RYGB 

groups  

 

Figure 8-16: Heatmap of the miRNAs, for which expression differed significantly between the obese participants pre- and 
post-RYGB, for all participants (green bars: obese pre-surgery; blue bars: initially obese post-surgery and red bars: non-
obese Controls). Clustering is referred to the aggregation of individual participants according to participant group, i.e. obese 
pre- and post-RYGB and non-obese Controls. 

HH. List of the miRNAs (n=36 in numerical ascending order) for which abundance differed 

significantly in both the comparison of i) the obese participants pre-RYGB with non-

obese Controls and ii) the initially obese individuals pre- and post-RYGB and, their 

predicted KEGG pathway  

Mir-9-5p, mir-31-3p, mir-31-5p, mir-126-5p, mir-126-3p, mir-194-5p, mir-204-5p, mir-210-3p, 

mir-215-5p, mir-215-3p, mir-223-3p, mir-338-3p, mir-455-3p, mir-552-5p, mir-552-3p, mir-

655-5p, mir-671-5p, mir-1247-5p, mir-1247-3p, mir-1262, mir-3196, mir-3656, mir-4284, mir-

4516, mir-147b, mir-181a-3p, mir-196a-5p, mir-196b-5p, mir-203a-3p, mir-29c-3p, mir-30a-

5p, mir-30a-3p, mir-30c-2-3p, mir-3150b-3p and mir-450a-5p. 

 

The below table shows the predicted KEGG pathways of the identified miRNAs using DIANA 

Tools by Vlachos (Vlachos, 2015). More specifically, it shows the number of miRNAs (out of 

the n=36) involved in the specified path way and, the number of genes targeted downstream 

by those miRNAs. The miRNAs (n=8), which were quantified by qPCR in the current Study were 



 

326 
 

predicted to be involved in 19 of the 63 pathways shown below, namely: biotin metabolism, 

bladder cancer, cell cycle, chronic myeloid leukemia, citrate cycle, ECM-receptor interaction, 

FoxO signaling pathway, glycosaminoglycan biosynthesis - keratan sulfate, hippo signaling 

pathway, glioma, lysine degradation, melanoma, oocyte meiosis, other types of O-glycan 

biosynthesis, pantothenate and CoA biosynthesis, p53 signaling pathway, protein processing 

in endoplasmic reticulum, steroid biosynthesis and 2-Oxocarboxylic acid metabolism. 
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II. CT values for 15 miRNAs obtained using the miRNome array, which showed significant 

down-regulation with NGS but significant up-regulation using the miRNome array 

  

MiRNA Ct value pre-surgery Ct value post-surgery 

miR-874-3 27.4 28.4 

miR-652-3 26.0 26.9 

miR-132-3 26.6 27.4 

miR-98-5 26.4 26.9 

miR-148b-3 23.2 23.5 

miR-129-5 32.5 32.4 

miR-342-3 24.1 24.6 

miR-335-3 27.7 28.3 

miR-29c-3 20.0 20.4 

miR-126-3 21.4 21.9 

miR-194-5 18.3 18.5 

miR-421 27.6 27.7 

miR-9-5 28.8 29.4 

miR-181a-3 31.2 31.9 

miR-30c-2-3 33.2 34.0 

let-7a-3 26.5 27.1 

miR-223-3 23.5 23.6 

miR-30a-3 26.7 27.3 

miR-15b-3 27.9 28.2 
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miR-126-5 21.5 21.8 

miR-7-5 23.5 23.7 

miR-30a-5 22.3 22.5 

miR-204-5 28.8 29.4 

miR-338-3 24.4 24.6 

miR-450a 31.5 31.5 

miR-582-5 31.3 32.5 

miR-215-5 21.8 22.1 

miR-424-5 25.1 25.4 

miR-31-5 29.7 30.0 

Table 8-5: CT values for 15 miRNAs obtained using the miRNome array. These 15 miRNAs were identified by two techniques, 
the miRNome screening array and NGS, for which a opposite direction for the fold-regulation was observed, i.e. a significant 
down-regulation with NGS but significant up-regulation using the miRNome array (Afshar, 2016a). 

 


