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General Abstract 
 

 

The composition and occurrence of vegetation communities changes across multiple spatial 

scales in response to both environment and human management. Key drivers at small spatial 

scales (<1m or quadrat-scale) include patch structure between individual species, at 

intermediate scales (1ha or field-scale) local environmental conditions, whereas at large scales 

(km or national-scale) broad climate and soil characteristics. This research takes advantage of 

vegetation data collected via contrasting methods across these multiple spatial scales to 

quantify the role of these drivers. 

 

Data from 167 1m2 quadrats in an upland 96ha sheep-grazed heft at Ashtrees Dipper, 

Northumberland, was used to understand the relationship between vegetation patch patterns 

and environmental drivers at sub-quadrat (10cm) and quadrat (1m) scales. The numbers, areas 

and shapes of vegetation patches were primarily determined by soil characteristics, especially 

pH and water content, and proximity of sheep tracks (distance and length of sheep tracks). 

The resulting species patch patterns were then interpolated to field scale across the whole 

96ha grazing area. 

 

Many countries have developed formal systems to classify vegetation communities, but no 

single generalisable method exists to allocate vegetation quadrats to community classes. 

Using the National Vegetation Classification (NVC) as an example, a novel generalisable 

method was developed to allocate vegetation quadrats to any classification via the 

computational generation of sets of “pseudoquadrats” for each NVC community at Ashtrees 

Dipper. These pseudoquadrats were summarised via detrended correspondence analysis 

(DCA) and new field quadrats placed within the ordination as passive samples. This then 

allowed a probability score to be calculated for each of the 167 field quadrats for its NVC 

community membership, which could then be interpolated across the whole 96ha grazing 

area.  

 

The NVC provides detailed information on the national distribution and characteristics of 

vegetation in Great Britain. Species distribution models (SDMs) were derived from data in the 

NVC handbooks, and geographic information system (GIS) predictor layers were used as 

SDM inputs. Predictions of NVC communities occurring in the protected Biodiversity Action 

Plan (BAP) habitats in England and Wales were made at 1km spatial resolution. Five SDM 
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models were tested: generalised linear models (GLM), support vector machines (SVM), 

random forests (RF), maximum entropy (MaxEnt) and maximum likelihood (MaxLike). The 

distribution of individual species at 1km scale was then derived from the NVC community 

predictions. These species predictions were compared to records of species recorded in the 

National Biodiversity Network Atlas (NBN Atlas), using the catchment of the River Rede, 

Northumberland (~40km2) as a case study. GLMs, RF and MaxEnt produced robust 

predictions of the species distributions, with RF the most accurate. 

 

Overall, this research has demonstrated that the role of environment and management on 

individual plant species and their communities is best understood at multiple spatial scales, 

from the influence of sheep grazing in small-scale vegetation patches through to large-scale 

spatial distributions of species in BAP habitats.  
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Chapter 1. General Introduction 
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1.1  Upland habitats  
 

Upland environments in the UK are formally defined as any environment over 250m altitude 

and classified by JNCC as ‘Natural Areas’ that fall within areas where agricultural production 

conditions are difficult mostly because of poor soil, climate and topography (Backshall et al., 

2001; JNCC, 2016).  Note that there is a transition between lowland and upland vegetation 

communities, such that some lowland vegetation may occur in areas formally defined as 

upland environments (Backshall et al., 2001). In the UK, upland environments are amongst 

the major contributors to ecosystem services, e.g. drinking water supplies and carbon stores in 

peat or blanket bogs (Bonn et al., 2009; RSPB, 2015). Sustainable management of these 

ecosystems and their services is important for both people and wildlife (Kremen, 2005) and as 

a result, many of these areas are of environmental priority and conservation value. 

Amongst the different upland habitats, the research described in this thesis focuses on semi-

natural upland habitats dominated by heather moorland and grassland, which are generally 

managed for grazing or red grouse (Sanderson et al., 1995a; Sanderson et al., 1995b; Cherrill 

and McClean, 1999; Milne et al., 2002; Stewart and Pullin, 2008). Upland plant communities 

are affected by biological, physiological and chemical components such as, soil type, 

topography, meteorology, herbivore grazing, and anthropogenic disturbance (Pott, 2011). 

Sheep and cattle grazing is an important management tool in upland habitats, and when 

correctly implemented helps to maintain a diverse mosaic of different vegetation communities 

(Berg et al., 1997; Adamson et al., 2001; Stewart and Pullin, 2008). However, poor upland 

management may cause declines in vegetation biodiversity, with subsequent negative effects 

on some bird populations (e.g. black and red grouse, ring ouzel and curlew; RSPB, 2015). 

1.1  Vegetation surveying methods and vegetation classifications 
 

Vegetation is formed of mixtures of different plant species at different abundances, and these 

are typically described as ‘assemblages’ or ‘communities’. To ensure consistent descriptions 

of communities amongst scientists many countries have developed standardised national 

classification systems (Chytrý and Otýpková, 2003; Malik and Husain, 2006). These 

classifications usually provide a list of plant species found in each class, with their frequency 

and an indication of cover, and often the associated environmental conditions. The UK has 

developed a National Vegetation Classification (NVC) as a phytosociological classification 

system of semi-natural environments in Britain and the NVC provides an extensive floristic 

dataset of species and communities. Smith et al. (1992), Rodwell (1998a), Rodwell (1998b), 
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Rodwell (2006) and Morecroft et al. (2009) describe vegetation communities in the NVC as a 

holistic classification that adopted a phytosociological approach in developing floristic data 

sets. In addition to comprehensive information on the species composition of each vegetation 

community, the NVC handbooks also contain summary information on resource 

requirements, traits, functional types, species richness and maximum abundance of species. 

Some countries also have specialised software to classify vegetation sampling data (relevé 

data) into communities, such as the Modular Analysis of Vegetation Information System 

(MAVIS) in the UK. Vegetation data has traditionally been collected through random quadrat 

sampling. Different sized quadrats were used depending on the habitat and vegetation type, 

for example, 4m2 quadrats (2m x 2m) randomly placed in a visually homogenous block of 

vegetation for habitats with short herbaceous plants or shrubs, 16m2 for taller vegetation, sub-

shrub heaths and low woodland vegetation, 100m2 for tall vegetation, woodland fields and 

dense scrub or 2500m2 for sparse vegetation and woodlands (Rodwell, 1998a). This survey 

method requires expert knowledge on plant identification, is a very time-consuming task, and 

thus expensive. In the UK, the NVC is available in extensive handbooks, first published in 

1991 (Rodwell, 1998a). These handbooks also provide 10 km x 10 km dot-distribution maps 

for different vegetation communities but these maps as only cover approximately 80% of the 

British mainland (Rodwell, 2006). Recently, the NVC classification has been made publicly 

available in digital format (JNCC, 2016), i.e. the frequency (constancy) and abundance of the 

species within each community, plus the 10km2 resolution maps of national distribution, 

making the data more convenient for quantitative analysis and prediction.  

 

1.2  Phytosociology 
 

Phytosociology is the scientific study of the composition, phylogeny and relationships 

between the constituent species that form a plant community (Pott, 2011). In the early 

Twentieth Century there were two broad philosophical ‘schools’ to describe vegetation 

communities. The European school, particularly the ideas of Clements (1907) considered the 

vegetation as forming discrete spatial entities (communities or releves) often changing over 

time through a successional process (e.g. from pioneer through to climax community). In 

contrast, Gleasonian theory (Gleason, 1917) suggested that the species composition of a stand 

of vegetationreflected the collective individual responses of each species to the local 

environment. . Subsequent research by for example Whittaker (1965) also emphasised this 

‘continuum’ interpretation of vegetation, as individual species change. More recently it has 

been recognised that a synthesis of the two approaches is most valuable to practicing 
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ecologists, particularly once spatial and temporal scales are considered (Foster et al., 1990). 

Plant communities tend not to have discrete physical boundaries, unless there is an abrupt 

change in the underlying environment, but it is nevertheless essential to be able to describe 

and quantify communities. 

 

Environmental change, e.g. due to climate change, land management etc., can alter 

relationships between neighbouring species, and hence affect vegetation community class 

(Van der Maarel, 1979). The distribution of plant species and the communities they create 

depend on favourable environmental conditions that align with the requirements for those 

species (Pott, 2011). Plants compete with each other and form different patches depending on 

the environmental resources available (Crain and Bertness, 2006). Indeed landscapes are 

generally described in terms of patches, vegetation corridors or species matrices (mosaics; 

Cushman et al., 2010). Vegetation patterns are characterised by size, shape and spatial 

distribution, whilst different types of patterns arise from factors such as soil pH, soil type, 

drainage, slope and grazing (Austin, 2002; Stewart and Pullin, 2006). The spatial scale of 

observation may affect what patterns are visible, for example within a quadrat, at quadrat or 

field scale, and through to landscape or national scale. The latter in particular may relate to 

broad environmental conditions (Chytrý and Otýpková, 2003). This can provide a basis for 

upscaling vegetation-environment relationships from small to large spatial scales, especially 

with the availability remote-sensed data (Zak and Cabido, 2002; Chytrý and Otýpková, 2003). 

Landscape modelling of plant communities could theoretically provide insights into 

community distributions at different spatial scales if the most important environmental drivers 

are considered (Franklin, 2010). Unfortunately, it can be harder to quantify the relationships 

between environment and rare vegetation communities with restricted national distributions. 

This can make it more difficult to design conservation strategies to protect them from 

anthropogenic threats (White, 1979). Policy-based strategies to protect ‘rare’ vegetation 

communities would require a solid base on the communities’ known occurrences, probability 

predicted presences as well as deeper validation of the outputted models.  

 

1.3 Ordination techniques  
 

This research, especially Chapters 2 and 3, uses different ordination techniques to analyse and 

visualise species data. Ordination analysis are multivariate techniques that evaluate and search 

for patterns across species composition within sample data (Zelený, 2017). These multivariate 

techniques summarise complex responses by identifying gradients between species 
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composition and uses these gradients to explain the relationship with environmental variables. 

In addition, ordination techniques reduce such complex responses into two (or three) axes that 

best fits the data (Zelený, 2017). The main ordination methods used in this thesis were 

Detrended Correspondence Analysis (DCA), Non-metric multi-dimensional scaling (NMDS) 

and Redundancy analysis (RDA). In general, the selection of the most appropriate ordination 

technique depends on the whether environmental data is included in the analysis and the 

characteristics of the vegetation data (Lepš and Šmilauer, 2003). Where an ordination is 

undertaken without environmental data (or the environmental is merely used to aid 

interpretation afterwards) it is referred to as an ‘unconstrained’ method. In contrast, where the 

environmental data are used simultaneously within the ordination, so as to change the 

resulting ordination scores, it is referred to as a ‘constrained’ method (Jongman, 1995). 

 

Where vegetation is characterised by a large number of ubiquitous species, and a smaller 

number of infrequent species, so-called ‘linear’ ordination methods are often appropriate. In 

these methods, such as principal components analysis (PCA - unconstrained) and redundancy 

analysis (RDA – constrained), species abundances are assumed to increase or decrease 

monotonically along each ordination axis, in an approximately linear fashion. As the number 

of ubiquitous species declines, and the number of infrequent species species increases, the 

data becomes more ‘sparse’, such that the species by samples matrix becomes dominated by 

zero values. In this situation so-called ‘unimodal’ methods are sometimes better to 

characterise the vegetation, for example correspondence analysis (CA – unconstrained) and 

canonical correspondence analysis (CCA – constrained). On each ordination axis the 

abundance of a species can rise and fall, as appropriate, such that more flexible, Gaussian 

(bell-shaped) curves are fitted rather than straight lines (Legendre and Legendre, 2012). 

 

One problem that can arise in unconstrained ordinations, especially CA, is an ‘arch-effect’ or 

‘horseshoe effect’ in the resultant output, where the ends of the sample points on the first 

ordination axis start to occur close together in ordination space, even though their species 

composition is relatively dissimilar. This artefact arises when the species turnover in the 

dataset is relatively high (Legendre and Legendre, 1998). Detrended Correspondence 

Analysis (DCA) is a unimodal unconstrained ordination method that tries to correct this 

artefact by subdividing the first ordination axis into segments, and rescaling the scores (Hill, 

1979a). Hill and Gauch (1980) note that the length of the first DCA ordination axis is 

expressed in multiples of the standard deviation. This means that a Guassian response curve 

rises and falls after about 4 s.d. units, i.e. samples that differ by more than 4 units on the first 
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axis probably have very few species in common. Thus, DCA provides an indication of 

whether the data set is truly unimodal or, otherwise, linear based on the length of the gradient 

of the first axis (Zelený, 2017). An alternative unconstrained method is non-metric multi-

dimensional scaling (NMDS) which is based on a non-metric measure of dissimilarity 

between sample points and is generally restricted to low dimensions (2 or 3 axes). The NMDS 

algorithm uses iterative shuffling of samples to find the best distribution amongst points. 

 

The results of constrained ordination methods such as RDA and CCA can be displayed in the 

form of  a ‘biplot’ (species and environmental variables) or a ‘triplot’ (survey sites, species 

and environmental variables) to diagrammatically represent the relationship between all three 

factors (Lepš and Šmilauer, 2003; Zelený, 2017). These types of plots include arrows the 

length of which can infer the importance and effect size of each variable and their directions 

the correlation between variables. Constrained methods also allow significance testing, via 

permutation tests in which the samples and environmental data are shuffled, and the 

randomised data compared with the actual data. These allow (pseudo) F-ratios and p-values to 

be calculated for the effects of each environmental variable on the community composition 

(Jongman et al., 1987). 

 

1.4  Modelling, Evidence and Policy 
 

It is important to understand the nature of a complex ecological system by using evidence-

based scenarios, embedding knowledge and data into realistic model outputs. The overall 

modelling and evidence frameworks then feeds into policy, allowing for better decision 

making and setting of targets. Policies that address habitat conservation include the Strategic 

goals and Aichi targets in the Convention of Biological Diversity (CBD; United Nations, 

1992), the European Habitats Directive (92/43/EEC; European Commission, 1992) and the 

European Strategic Environment Assessment Directive (2001/42/EC; (European Commission, 

2010). The UK Biodiversity Action Plan, updated to the UK Post-2010 Biodiversity 

Framework (JNCC and DEFRA, 2012) aims to implement policies that address challenges to 

reduce biodiversity loss, conserve nature, stop environmental degradation and support 

ecological networks for sustainable growth (JNCC and DEFRA, 2012). 

 

Robust and reliable qualitative and quantitative models can be an important tool to develop 

policy frameworks. These models aid creation of realistic, achievable set targets to be reached 

within a specified time period (Bartlett and Kurian, 1999; Boulanger and Bréchet, 2005). 
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Different models can be applied depending on the policy-framework, conservation efforts, 

monitoring schemes and can thus be question-specific. In some cases models can be used to 

predict possible locations of species, both for conservation and if necessary pest control 

(Lambin et al., 2014). However, it is important to note that ideally such models should be 

validated, and also provide information on their accuracy and precision.  Best practice is to 

develop environmental policies in tandem with models to address environmental issues and 

improve the quality of decision-making (Bartlett and Kurian, 1999). A reliable evidence-base, 

such as expert knowledge, field data and previously published scientific literature, is required 

to both set these targets for the environment and monitor progress in reaching them. Such 

evidence-bases can be derived from the scientific literature and expert knowledge to develop 

study designs and appropriate models (Stewart and Schmid, 2015). One drawback that may be 

encountered in reaching the set targets is the high financial and human effort required to 

monitor the environment (Ball, 1999). The availability of high-resolution remote-sensed and 

environmental data has the potential to reduce the financial costs of measuring ecological 

health by developing predictive and explanatory models to help identify areas of vegetation or 

broader landscapes in need of conservation action. Such models allow for identification of 

areas that are of poor environmental status more effectively and if necessary more rapid 

implementation of appropriate remedial management. It is also important that scientists are 

able to communicate research findings to non-experts. For example, within the UK, the 

Parliamentary Office of Science and Technology (POST) publish a series of 4-page summary 

documents (“POSTNotes”) available from the Government website 

(www.parliament.uk/postnotes). Whilst there are indications of some potential biases in these 

summary documents (Seton-Clements et al., in prep), they nevertheless provide a valuable 

resource for policy-makers.  

 

1.5  Study site  

 

This research makes extensive use of the Ashtrees Dipper grazing ‘heft’ within the catchment 

of the River Rede in Northumberland National park, UK (Fig. 1.1). The Ashtrees Dipper is a 

96ha field site primarily dominated by rough grassland and moorland habitats (Rushton et al., 

1992; Smith et al., 1992; Sanderson et al., 1995a). It is primarily sheep-grazed and contains a 

number of drainage ditches at the southern side. It is a north-facing site, with altitudes ranging 

between 250m and 350m and is characterised by acidic soils and overall high water content.  
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The species data used in this research (in Chapters 2 and 3) was obtained from a field survey 

performed in 1991 at the Ashtrees Dipper (Roy Sanderson and Stephen Rushton, pers. 

comm.). In addition to these vegetation surveys, environmental data including soil pH, soil 

water content and slope were taken in situ.  167 1m2 gridded wire quadrats placed along 

transects 150m apart, with each quadrat 75m apart along each transect (fig. 1.1). Two types of 

vegetation surveys were performed, i) conventional visual vegetation percentage abundance 

of all the species of plants (including Bryophytes) within a whole 1m2 quadrat and ii) 

dominant and subdominant vegetation identification within each 10cm quadrat grid cell. The 

latter was done by visually identifying the most abundant species (dominant) and the second 

most abundant species (subdominant) within each 10cm grid.  

 

 

 

Fig. 1. 1 Location of the study in the NE UK (left; blue polygon = Catchment of River Rede, red point = Ashtrees Dipper), 

ii) close up of the Catchment of the River Rede at Northumberland National Park (top right; black polygon = Catchment of 

River Rede) and iii) location of the 167 surveyed quadrats (points) at Ashtrees Dipper, Northumberland National Park, 

Northumberland, UK (black points = position of quadrats; blue line = water course and River Rede). 
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1.6  Thesis Rationale and outline 

 

Scientists encounter several challenges in understanding the key factors that affect vegetation 

at multiple spatial scales. These includes patch structure of individual species, the interaction 

between species as well as and the relationships with both the biotic and abiotic environment 

(Parkes et al., 2003; Fischer and Lindenmayer, 2007). This research uses a range of vegetation 

and environmental data collected at different spatial resolutions to understand and predict how 

vegetation species and communities interact with each other and the surrounding environment. 

 

Vegetation was assessed at the individual species level from field data collected at sub-

quadrat and quadrat scale. This allowed analysis of vegetation patch metrics in relation to the 

environment, and also facilitated comparison between the sub-quadrat and conventional 

whole-quadrat survey methods (Chapter 2). Availability of environmental data across the 

whole of Ashtrees Dipper allowed predictions of both patch metrics and species at the field 

scale (Chapter 2). To model vegetation community distributions regionally or nationally it is 

important to have a method to allocate quadrats to vegetation communities (here the NVC 

classes). While algorithms and software exist to classify groups of quadrats collected using 

standard NVC protocols, there is no generalisable method to classify single quadrats. This 

research develops and tests an approach to classify quadrats that have been collected via any 

typical protocol different to the NVC. This approach can be sufficiently generalisable and 

used internationally, especially in cases where a vegetation classification system is not 

currently in place (Chapter 3). Finally, methods were developed to predict upland UKBAP 

NVC communities across the whole of England and Wales at 1km resolution, and these were 

compared with observed NBN Atlas records for the associated species in the Rede Catchment 

(Chapter 4). This thesis explores vegetation-environment relationships across multiple scales, 

from 10cm to national by understanding the different relationships between species and the 

different environmental factors involved within each spatial level.  

 

 

1.5.1 Chapter 2: Understanding vegetation species patches at small spatial scales 

 

The first data chapter uses vegetation data collected at 10cm sub-quadrat scale within each of 

the 100 cells of a 1m2 quadrat identifying the dominant and subdominant species in each cell. 

Conventional visual percentage cover assessments of all species in the 1m2 quadrat were also 

available. By aggregating the 100 records for the dominant or subdominant species it is 
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possible to compare the two data collection methods, by NMDS ordination of each dataset, 

and comparison with Procrustes rotation. Patch metrics for dominant and subdominant 

vegetation were calculated and these used to create maps across the whole field. Therefore, 

understanding vegetation formation at sub-quadrat scale provides additional insights into the 

responses of vegetation to the environment (Greig-Smith, 1979). 

 

Identifying dominant and subdominant vegetation at the species level can also help scientists 

understand and evaluate vegetation patch fragmentation that is less obvious when surveyed at 

larger scales (Greig-Smith, 1979). Understanding the process and drivers of patch 

fragmentation at very small scales (e.g. 1m) provides additional scientific insights into how, 

for example, vegetation species influence each other and grow together. Furthermore, such 

patchiness can be driven by above- or below-ground processes that have a large underlying 

effect. This research, however, does not delve into below-ground processes in terms of 

patchiness of vegetation species but rather looks at species in, effectively, 2-D space and tries 

to identify possible interactions based on their patch-forming capabilities.   

 

 

1.5.2 Chapter 3: Developing generalisable methods for vegetation classification using 

computational ‘pseudo-quadrats’ 

 

The second data chapter in this research aims to develop a novel method to classify individual 

vegetation quadrats to communities in the NVC. Whilst software such as the Modular 

Vegetation Analysis Information System (MAVIS; Smart et al., 2016) is already available, it 

assumes that quadrats have been surveyed using standard protocols. In the case of the NVC this 

is 5 randomly placed quadrats (4m2) within a visually homogenous block of vegetation. 

However, there are large amounts of extant vegetation records collected using other methods, 

typically 1m2 quadrats along transects or similar. Two complementary approaches are described 

in this chapter to create artificial ‘pseudoquadrats’ of NVC communities that can be analysed 

through conventional multivariate ordination methods. Field quadrats, collected by any suitable 

method, can then be placed within this ordination space, and their NVC class determined. 

Probabilities of communities for each quadrat in a transect can be interpolated, to create 

predicted maps for each community at the field scale. The use of ordination techniques allows 

for better interpretability, flexibility and efficiency when compared to conventional models 

(Van der Maarel, 1969; Hui et al., 2015). The developed methods of using ordination methods 
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with computer-generated pseudoquadrats helps fill in data gaps as well as provide a reliable 

assessment of possible vegetation communities, even at very low spatial scale.  

 

1.5.3 Chapter 4: Predicting and assessing vegetation community distribution models 

across England and Wales 

 

The third and final research data chapter aimed to predict vegetation communities at a very 

large (national) scale. This chapter used environmental and remote-sensed data at high 

resolution to predict vegetation community distributions using species distribution models 

(SDMs, Franklin, 1995; Franklin, 2010) at national scale for the upland UKBAP communities 

in England and Wales. Vegetation communities are difficult to assess and identify at very 

large spatial scales, mostly because of the costs and human effort. Using SDMs prediction of 

vegetation communities can be a major benefit for scientists and policy makers to assess 

vegetation community health in areas high environmental concern and protection (UKBAP; 

JNCC, 2016). Vegetation abundance is independently being collected as part of a national 

plant recording scheme across the UK (Pescott et al., 2015; Pescott et al., 2019). However, 

identification of suitable sites on which to focus monitoring of vegetation species is difficult. 

Field monitoring can provide important baseline data on which to base policy decisions, for 

example collected every 10-12 years via detailed surveys of 1 km samples in the UK 

Countryside Survey. However, detailed field monitoring is often expensive, and if an aim of 

the monitoring is conservation of specific communities or taxa is then expert knowledge on 

locations where these are likely to occur or are threatened is needed. Prediction of probable 

locations of vegetation communities can help address this issue by using modelling 

frameworks, such as presented in this thesis, e.g. via species distribution models (SDMs). It 

should be noted that such models, while evaluated for accuracy, still have some difficulties in 

validation (see Chapter 4). 

 

Information on vegetation community distribution in this research can provide a link to help 

address issues in locating vegetation communities, and can be extended to identify species 

occurrence probabilities, potentially aiding identification of monitoring sites. This approach is 

tested in Chapter 4 using NVC predictions across England and Wales, with special focus at 

the regional scale (the catchment of the River Rede in Northumberland, UK) using data from 

the NBN Atlas for semi-qualitative evaluation.  
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1.7  Overall thesis aims and objectives 

The overarching aim of the project is to assess vegetation patch patterns at very small spatial 

scales (sub-quadrat and quadrat scale), develop generalisable methods to classify vegetation 

into communities in cases where abundance data does not conform to the conventional survey 

method and predict spatial distribution of upland vegetation communities at regional and 

national scale. Fig. 1.2 provides a schematic summary of each data chapter and overviews the 

methods used for modelling vegetation at different spatial scales. 

  

Specific objectives include: 

 

Chapter 2 

• compare traditional survey methods with surveys of dominant/subdominant vegetation  

• quantify vegetation patterns formation at sub-quadrat (10cm), quadrat (1m) and grazing 

heft (1ha)  

Chapter 3 

• develop robust methods of allocating field quadrats within the standard framework of 

the National Vegetation Classification  

Chapter 4 

• Predict UK BAP upland vegetation community distributions using species distribution 

models (SDMs)  

• Use citizen science data from the NBN Atlas to assess reliability of the predicted 

models 
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Fig. 1. 2 Graphical overview of the thesis structure and data chapters. 
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1.8 The link between chapters: a multiscale approach (Fig. 1.3) 
 

Within a community species independently and collectively require different environmental 

resources. Measurement of vegetation patch structure at small spatial scales provides data that 

can be used to determine how species respond at the level of clumps (1m) and potentially 

individual plants (10 cm) to the environment, model growth patterns and interactions between 

species, as well as link to functional traits. While this part of the research is site-specific 

(Ashtrees study site, Northumberland), it can still provide insights into the broader patch-

patterning of different species in relation to environmental resources. The inclusion of spatial 

distribution of ‘sheep tracks’ as a surrogate for grazing pressure on vegetation patches, and 

positions of drainage ditches, provides additional insights into both grazing and management 

practices. This is a relatively novel approach at the small spatial scales used to quantify 

vegetation at quadrat or subquadrat scale when analysing grazing across a whole field. 

Moving from a small spatial scale (10cm or 1m) would then require identifying clusters of 

different vegetation species as an assemblage to fit within the NVC-level scale of vegetation 

classification.  

 

The UK and many other nations have developed systems, often using custom-written 

computer software, to allocate vegetation samples into their national description of vegetation 

assemblages. This thesis describes a much more generalisable method to classify vegetation 

samples, typically from quadrats, which is flexible enough to be used in any current national 

classification system. This generalisable system uses ordination techniques which offers a two 

main benefits: firstly ordination provides a good visualisation of the overall patterns amongst 

the different vegetation communities and secondly the distance between each community in 

ordination space provides an indication of how similar communities are in their species 

composition. New data, from for example field quadrats or similar sampling technique, can be 

placed within this ordination framework of plant communities, and the probability of these 

quadrats belonging to each plant community can thus be calculated.  Furthermore, the spatial 

locations of the original field survey data used to create the National Vegetation Classification 

is reported in the NVC Handbooks, and is now also available electronically. This permits the 

distribution of the communities to be predicted using ‘species’ distribution models (SDM): 

this thesis demonstrates that SDM can be successfully modified to predict the districtuion of 

communities rather than species. SDMs require reliable environmental data, such as elevation, 

soil type etc., to make the predictions, and the original data must be divided into test and 

training datasets, to avoid spurious inferences of the true model accuracy.  
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1.9 Broader scope of the research 
 

The research presented in each chapter in this thesis holds potential to support and add to 

conservation efforts in both research and evidence-based policy-making. The research 

provides a coherent narrative through the chapters to inform scientists of key processes 

affecting plants from the scale of 10 cm through to landscapes. At the same time, each chapter 

can be utilised independently of the others by different end-users, depending on their 

requirements. For example, the first data chapter looking into vegetation at sub-

quadrat/quadrat scale allows scientists to use the ‘dominant/subdominant’ survey technique 

rather than the traditional visual abundance estimation technique to quantify the overall 

species composition within an area. The patch structure analyses that are made possible from 

‘dominant/subdominant’ surveys, are easy to generalise to any comparable semi-natural 

vegetation at other sites. If adopted more broadly as a technique, it has the potential to provide 

Fig. 1. 3 The clog system of this research a) Clockwise rotation = bottom-up approach (From Species level to 

Field scale to National Scale) and b) Anticlockwise rotation = top-down approach (from National scale to Field 

Scale to Species level) 
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a robust method of detecting differences in patch structure even between sites that are 

relatively similar in species composition. 

 

The second data chapter describes a generalisable method for vegetation classification that 

can be used by nations that have no extant classification system in place. The research is also 

of value in situations where publically available software to classify field quadrats to 

communities has yet to be developed. The use of ordination techniques, pseudoquadrats and 

survey data as passive samples also allows the end-user to allocate newly surveyed quadrats 

to their vegetation classification. Where the pool of potential communities in which field 

survey vegetation is likely to be limited, the pseudoquadrat method, combined with 

ordination, provides both a ready means of restricting potential predictions to those 

communities that are most plausible, and aids interpretation by visualisation in a conventional 

ordination framework.  

 

The final data chapter provides insights into the use of these methods for policy-makers and 

conservation research. While the data used in this chapter is at a relatively coarse spatial 

resolution compared to the preceeding chapters, the results nevertheless provide a solid basis 

on probable occurrences of protected vegetation communities. There is also scope for 

different methods to predict vegetation communities using community constituent data 

(species data) rather than purely community occurrence data. In either case, the community 

predictions can still be used as a baseline for policy-makers as indication of the possible 

locations of UK BAP vegetation communities. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2. Understanding vegetation species patches at small spatial 
scales 
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Graphical Abstract 
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Abstract 
 

 

Vegetation patterns are characterised by size, shape and spatial distribution of the patches 

created by the growth of individual plants within a community. In this research, vegetation 

patches are defined as a matrix or mosaic of species of plants that can form clumps or 

individual strands. In upland semi-natural vegetation at the field scale, different types of 

vegetation patterns have been attributed to soil hydrological and grazing patterns by livestock. 

Vegetation is typically measured at larger scales than individual plants or clumps of plants, 

for example, a standard 1m2 quadrat is likely to include numerous patches and individuals. 

Surveys at this spatial scale do not permit a deeper understanding of the ecological processes 

that might affect individual plants or clumps, nor how metrics derived within a quadrat scale-

up to a whole quadrat. The aim of this chapter is to understand the spatial distribution of 

patches formed by dominant and subdominant vegetation species at very small scale (10cm), 

the environmental factors that affect the vegetation patches (summarised via patch metrics), 

and the patch-environment relationships when scaled-up to the whole 1m2 quadrat. 

 

Patch metrics analysed were i) total patch number per species per quadrat, ii) patch area per 

species per quadrat and iii) shape index per patch per species per quadrat. Dominant and 

subdominant species data, surveyed at a 10cm subquadrat-scale within 167 1m2 quadrats, was 

used to analyse patch dynamics across Ashtrees Dipper, Northumberland. Results indicated 

that vegetation patterns are affected by the environment, especially soil pH, altitude, slope and 

soil water content. The number of patches formed by dominant and subdominant species are, 

overall, affected by distance to sheep tracks within a 10m buffer. The area of dominant 

vegetation patches is affected by distance to sheep tracks within a 35m buffer. The shape of 

patches formed by dominant species is significantly affected by nearby drainage ditches. The 

area and shape of patches formed by subdominant vegetation, are not significantly affected by 

proximity of sheep tracks and distance from drainage ditches. Number of patches for some 

individual dominant vegetation species, e.g. Nardus stricta and Eriophorum vaginatum are 

positively related to slope and soil water content respectively. Patch shape of E. vaginatum 

and J. effusus show a significant negative influence by slope and altitude respectively. 

Number of patches formed by subdominant Molnia caerulea and E. vaginatum are affected by 

soil characteristics (pH and water content, respectively) while only patch area formed by D. 

flexuosa is significantly affected by soil water content. Shape of subdominant N. stricta shows 

a significant negative correlation while E. vaginatum shows positive correlation. None of the 
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‘block-forming’ or ‘opportunistic’ vegetation species had significant relationships with 

distance to and length of sheep track or distance to nearby drainage ditches. Results also 

indicated a close accord between vegetation measured at the detailed sub-quadrat scale with 

measures of community composition derived from visual estimates of percentage cover of the 

whole quadrat. This suggests that the environmental processes that affect the vegetation 

patterns at very small spatial scales are reflected in coarser statistics collected at larger spatial 

scales. 
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2.1  Introduction 
 

 

Environmental drivers have the potential to affect vegetation at many spatial scales, from that 

of an individual plant, a clump of plants of the same species, mixed patches and plant 

communities, through to habitat and landscape-level. Most ecological surveys have used one 

spatial scale, for example the traditional quadrat for community surveys, or field surveys and 

remote-sensed data for habitats. However, plants grow and compete with each other at much 

smaller spatial scales, for example, sub-metre patches comprised of a small number of 

species. It is important to determine the processes that occur at these small spatial scales 

especially for deeper phytosociological understanding of the relationship between species and 

the environment. 

 

Vegetation patterns are characterised by size, shape and spatial distribution of plants forming 

distinct patches of relatively high or dense cover. These patches can be viewed as occurring in 

a matrix of other species of plants, which occur at lower densities and do not necessarily form 

distinct patches. There are few studies at small, within-quadrat scales, with most focussing at 

larger field or landscape scales; e.g. Aguiar and Sala, (1999) reported shapes of dense patches 

is variable, and may form distinct bands or sometimes irregular or generally circular clumps 

in shape at scales over 100m. The different types of patchiness have been attributed to 

variation in hydrological networks (e.g. drainage) and, in semi-natural landscapes, grazing 

effort by herbivores (Aguiar and Sala, 1999). The upscaling techniques described in this 

chapter can provide additional insights into patch patterns of vegetation species commonly 

found within heather moorland and upland grasslands across NE England. The vegetation in 

these areas has been substantially modified through livestock grazing and changes to 

hydrology due to digging of drainage ditches (‘grips’) after the Second World War.  

 

Different landscape metrics have been used across spatial scales, i.e. individual patch-level 

metrics can potentially be used in lower spatial-scales or compared to higher scales of 

ecological information (McGarigal, 2017). For example (Aguiar and Sala, 1999) describe and 

measure patches in term of bands, irregular or circular in overall shape stating that banded 

vegetation patches tend to maintain their shape, growing laterally, while circular/irregular 

patches show no unidirectional overall pattern. Other patch classification or assessments have 

used ‘fractal geometry’ emphasising fractal fragmentation of vegetation patches, clusters, and 

fractal spatial patterning (Sugihara and May, 1990; Li, 2000; Liu and CHEN, 2000). Fractal 
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geometry, however, is a complicated measure of patch structure whereby there are an infinite 

number of dimensions and the object to be measures is continuously jagged within every 

dimension (Marion, 2015). Since this research looks at patch structure in the simplest sense, 

fractal dimensions where thought to be too complex and thus a simpler form of measure of 

patch metrics was used, namely the inclusion of shape index as a substitute for vegetation 

patch shape measure (Section 2.1.3; McGarigal, 2017).  

 

 

Measurement of vegetation metrics can assess changes in patch development at different 

spatial scale (centimetres, metres, hectares, kilometres) and can be driven by resource 

availability, herbivore grazing and species competition (Ritchie, 2009). Semi-natural 

vegetation often creates a patchy discontinuous structure, for example as a result of water 

availability (Aguiar and Sala, 1999) and topology (Klausmeier, 1999; von Hardenberg et al., 

2001). Vegetation patterns and patches of individual species are variable, sometimes classified 

as ‘stripes’ or ‘bands’, ‘spots’ and ‘clumping’ (Aguiar and Sala, 1999; Klausmeier, 1999; von 

Hardenberg et al., 2001). While these descriptions are given to vegetation patterns at larger 

spatial scales (landscape), patch metrics using dominant and subdominant vegetation species 

at the quadrat or sub-quadrat scales can allow understanding of how each species interact with 

each other and environmental drivers (van der Maarel, 1988; von Hardenberg et al., 2001; 

Ritchie, 2009). It should be noted that for the purpose of this research, dominant vegetation 

refers to vegetation species that is most visually abundant within any given cell while 

subdominant vegetation refers to the second most visually abundant species. As such, 

dominant and sub-dominant simply refer to cover-abundance, not a specific plant trait.  
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2.1.1 Vegetation at quadrat and sub-quadrat scale 

 

Investigating vegetation patterns across a field using 1m2 scale quadrats and 10cm cells within 

each quadrat will provide a better understanding of some selection pressures acting on species 

as they compete for resources (Ritchie, 2009). Some species may have similar patch metrics 

in different areas of the field, whereas others may respond to changes in their environments 

such that their patch metrics differ across a field. If the external environmental drivers that 

affect the patch metrics of each species and group of species are quantified, then it should be 

possible to predict the patch metrics anywhere on a field (van der Maarel, 1988; Ritchie, 

2009). This chapter uses 1m2 quadrats divided into 10cm x 10cm cells, henceforth referred to 

as a ‘sub-quadrat’. In different scenarios, one species, e.g. Species A can be dominant in 3 out 

of 100 cells while Species C is subdominant in the same 3 cells. Species B, however, is 

dominant in 2 cells and subdominant in 2 different cells (Fig. 2.1). 
 

2.1.2 Patch metrics  

 

The traditional method for vegetation surveys is visual estimation of percentage cover of each 

species that occurs within a quadrat of any size (e.g. 1m2 as in this research or 4m2 for NVC 

classifications; Rodwell, 1998a). However, for this part of the research the measure of what 

the dominant and subdominant species are within each cell within a quadrat was used, and the 

Fig. 2. 1 A visual representation of a 1m2 quadrats divided into 10cm cells (sub-quadrats). Each cell hosts a 

dominant and subdominant species. For ease, dominant vegetation is placed at the top of each 10cm cell and 

subdominant vegetation is at the bottom of each 10cm cell. E.g. Species A is dominant in 3 cells and Species C is 

subdominant in those same cells. Species B is dominant in 2 cells and subdominant in another 2 different cells. 
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study compares the reliability of using dominant and subdominant vegetation with traditional 

percentage cover surveys. Using dominant and subdominant vegetation within each cell also 

provides better insights into responses of vegetation to environmental influences at a very 

small scale. Previous literature (Watt, 1947; Greig-Smith, 1979; van der Maarel, 1996; 

Debinski, 2006) has broadly discussed the importance of assessing vegetation at small-scale 

without implicit implication of assessing vegetation on a cell-by-cell basis. One limitation of 

this method is that it does not detect rare species that are neither dominant nor subdominant in 

any given sub-quadrat but are detected by a percent abundance survey. However, the use of a 

dominant and subdominant technique might be a quicker way of identifying vegetation 

communities at any given scale.  

 

Identifying dominant and subdominant vegetation at small scales can aid interpretation of 

vegetation patch fragmentation that may not be obvious from large-scale surveys (Greig-

Smith, 1979). Patch metrics of vegetation at the species-level might translate to patterns in the 

vegetation community at higher scale. While environmental factors might not affect all 

vegetation species at quadrat or sub-quadrat scale, major environmental change is likely to 

alter the dominant and subdominant species. The dominants and sub-dominants are primary 

species that define a typical vegetation community, which then affects higher spatial levels 

such as overall landscape habitat (Milchunas and Lauenroth, 1993; Rodwell, 1998a; Rodwell 

1998b; Rodwell, 1998c; Rodwell, 2006). 

  

The main environmental drivers at Ashtrees Dipper identified from previous studies are soil 

pH, soil water content, altitude, slope and sheep grazing (Rushton et al., 1992; Sanderson et 

al., 1995a; Adamson et al., 2001). It is assumed that dominant and subdominant species form 

mosaics at any given spatial scale that interact with neighbouring patches to form co-existing 

species that use similar resources. Three patch metrics of particular value in this context are i) 

total patch number per species per quadrat, ii) patch area per species per quadrat and iii) shape 

index per patch per species per quadrat (Addicott et al., 1987; Ritchie, 2009; McGarigal, 

2017) 

 

2.1.3 The importance of Shape Index (SI) 

 

The shape index is a form of diversity index to quantify habitat patterns and provides an 

alternative to fractal dimensions in landscape ecology (Ritchie, 2009; McGarigal, 2017). It 

measures the complexity of a two-dimensional object compared to a standard shape, generally 
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a square or circle, of the same size, and therefore alleviates the size dependency problem of 

the perimeter-area ratio. In its basic form, the shape index of any land parcel or object is a 

numerical quantity representing the degree to which a shape is compact and it has therefore 

also been described as a compactness index (Dijkstra et al., 1994; Li et al., 2013). The shape 

index, SI, is: 

 

!" = 	 %&'()ℎ	+,	-&./0&)&.	+,	-1)2ℎ
%&'()ℎ	+,	-&./0&)&.	+,	1	3451.&	+,	310&	1.&1 

 

Thus, the index equals 1 for square patches of any size and increases without limit as the 

patch becomes increasingly non-square (i.e., more geometrically complex, Fig. 2.2; 

McGarigal, 2017). Shapes can also be compared to a circle, in which case the formula is 

derived from the ratio between area of the shape, A, and the area of the smallest relatable 

circle, Asc. However, this method is less widely used due to the problem that shapes with holes 

or breaks cannot be related to a ‘true’ circle and becomes scale-irrelevant (Li et al., 2013). 

Another problem using circles rather than squares as the reference shape is that if the shape of 

the object is either very compact or distortedly elongated values <1 can be obtained, making 

interpretation more difficult. The reference shape used in this thesis is a square, hence the 

minimum possible value of any patch is 1.  

 

 

 

 

 

 

 
 

 

 

2.1.4 Environmental impacts on vegetation patch pattern and process 

 

The effect of abiotic and biotic factors on vegetation composition are well documented at 

large (landscape) scales, but the environmental factors that affect vegetation species at 

intermediate- and small-scales are less understood (Bennie et al., 2008). In addition to key 

environmental factors (e.g. soil pH, altitude, slope, soil water content and grazing) topography 

Fig. 2. 2 Example and explanation of shape index where 1 = square of any size. Adopted from McGarigal, 

2017. 
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also has a major role (Greig-Smith, 1979; Craine, 2005). It may affect plant patch formation 

whilst associated variables such as slope and aspect may also alter plant growth (Bennie et al., 

2008; Måren et al., 2015). With the exception of grazing, such factors change relatively 

slowly over time, allowing plant species adapted to specific microclimates to establish 

(Bennie et al., 2008). Soil pH and soil water content can alter plant photosynthesis or 

competitive ability and hence ecological dominance (Bennie et al., 2008). The environment 

acts on individual plants at small spatial scales, altering the shapes and numbers of patches 

etc., and then cascade upwards to visible impacts on the emergent larger-spatial scales at field 

or landscape (Billings, 1952; Franklin, 1995; Bennie et al., 2008).  

 

Drainage ditches can have substantial effects on plant abundance, growth and distribution 

(Coulson et al., 1990). The usage of drainage ditches in upland UK was introduced to blanket 

bogs and moorlands primarily to improve land for game birds and sheep grazing with higher 

productivity grassland and increased cover of Calluna vulgaris (heather) (Coulson et al., 

1990). Open, semi-natural, drainage systems may change the competitive ability of dominant 

and sub-dominant species, and the patches that develop. This research also tries to understand 

how open drainage ditches, now common in upland UK, affect dominant and subdominant 

patch structure. With both drainage systems and slope across a range of altitudes, water 

drainage can substantially vary at field-scale. Coulson et al. (1990) found that drainage 

ditches changed the vegetation nearby, typically within 10m of the ditches, but effects were 

lower over longer distances. This chapter addresses changes at fairly small scale, at less than 

1m, and for both dominant subdominant species in terms of their small-scale patch structure 

(Wigmosta et al., 2002).  

 

Vegetation growth and patch patterns can also be affected by secondary influences that arise 

from additional physical stresses. Semi-natural upland agricultural systems form a piosphere, 

which is an area where herbivores graze and the resulting effects on soil and vegetation 

(Fenton, 1937; Lange, 1969). These become susceptible to herbivore trampling and intense 

grazing especially in regions of permanent pastures (Fenton, 1937; Lange, 1969). Trampling 

of vegetation by sheep and/or cattle is generally short-term but can severely reduce the 

number of vegetation species, abundance and vegetation height (Liddle and Greig-Smith, 

1975). The trampling damage caused by herbivores results in pressure on vegetation to 

recuperate, grow and stabilise (Liddle and Greig-Smith, 1975; Plumptre, 1994). Plants in this 

region have now probably adapted to trampling effects, however, it might also mean that 

vegetation areas normally trampled have, over time, transformed into sheep tracks or paths. 
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This reduces the effect on trampling on vegetation but translates into long-term stresses on 

vegetation where sheep paths develop (Fenton, 1937; Plumptre, 1994).  

 

At Ashtrees, for example, the structure and organisation of plant communities is variable and 

the extent of environmental pressure is not fully comprehended (Sanderson and Rushton, 

1995). Whilst increased grazing pressure in the uplands can sometimes result in high 

vegetation diversity (Bullock and Pakeman, 1997) this does not necessarily imply greater 

conservation value, and indeed sometimes the reverse is true (Smith, 1996; Smith et al., 2003; 

Smith and Wyatt, 2007).  Grazing may have a disproportionate effect on dominant and 

subdominant species due to higher inter-specific competition and potentially a change in 

community classification (Adamson et al., 2001b). Herbivore grazing has also been suggested 

to change vegetation spatial patterns and characteristics (Watt, 1947). Sheep, for example, are 

generalist grazers and while they prefer plants that are more palatable (e.g. heather), they 

wander widely and graze within different parts of a field, even in the absence of such 

palatable plants. 

 

Sheep paths develop from the navigational skills of sheep and their forage preferences 

(Lange, 1969). Whilst in lowland or arid areas tracks can span outwards from a watering hole, 

in UK uplands water is more readily available, and thus sheep paths tend to lead to palatable 

areas of feeding (Lange, 1969) or supplementary fodder provided by farmers (Sales et al., 

2016). The development of sheep paths may also cause surrounding vegetation to change 

(Bates, 1935) depending on distance from sheep paths, affecting vegetation patch structure 

and species composition (Thomas, 1959; Lange, 1969). While the density of sheep paths does 

not directly reflect stocking rates, their easy identification from aerial photographs can 

provide useful information on relative grazing pressure (Lange, 1969). Many studies have 

investigated the effects of herbivore grazing and trampling on vegetation but relatively few 

have related paths directly to vegetation patch structure at specific spatial scales (Vesk and 

Westoby, 2001). The study therefore asks the question of whether sheep paths affect 

vegetation patch dynamics at a very small scale (1m2) in terms of length of sheep path around 

each quadrat and distance of sheep path from the set quadrat.    
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2.1.5  Aims and objectives 

 

The overall aim of this chapter is to understand the biotic and abiotic factors that affect the 

spatial distribution of patches of both the dominant and subdominant species of vegetation at 

the 1m scale, and how these patterns can be scaled-up to the entire heft. The specific 

objectives were to: 

1) compare traditional 1m quadrat-scale measures of vegetation, assessed as overall 

percentage cover, with those derived from 10cm-scale measures of dominant and sub-

dominant species 

2) relate the dominant and subdominant vegetation species to environment, particularly soil 

pH, hydrological influence, slope, altitude, sheep grazing and drainage 

3) calculate patch metrics for vegetation at 10cm scale and determine the major environmental 

factors affecting these metrics 

4) scale-up measures of vegetation patchiness from the 10cm and quadrat-scale to the whole 

Ashtrees heft. 
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2.2  Methodology 
 

 

2.2.1  Comparison between vegetation assessed via within-quadrat and whole quadrat 

survey methods (Objective 1) 

2.2.1.1 Collection and management of vegetation data at 10cm scale 

Data for dominant and subdominant vegetation data within each 1m2 quadrat for 167 quadrats 

across the Ashtrees heft surveyed in 1991 were used as precursors for patch analysis. Each 

1m2 quadrat was divided into 100 x 10cm grid squares with wires, and the dominant and 

subdominant species of vegetation estimated by eye. The original survey was undertaken by 

Dr. Roy A. Sanderson and Prof. Stephen P. Rushton, with records recorded on individual 167 

gridded paper sheets. This data was recorded in Excel and saved as comma separated value 

(CSV) files such that all subsequent data management, manipulation and analysis could be 

undertaken in R (R Core Team, 2013). Each quadrat was initially recorded as a table of the 

dominant (or subdominant) species in each cell (see Table 2.1 for an example).  Separate 

tables could then be produced for each dominant (or subdominant) species, scoring them as 0 

if absent, and 1 if present in an individual 10cm cell. 

 

Table 2. 1 Dominant species names in a 1m2 quadrat. This is an example of the matrix used before any 

manipulation and analysis was performed. Key: Nardstri = Nardus stricta,, Holclana = Holcus lanatus, Agrocapi 

= Agrostis capillaris, Anthodor = Anthoxanthum odoratum, Festrubr = Festuca rubra, Desccesp = Deschampsia 

cespitosa, Cardpalu = Cardamine palustre, Junceffu = Juncus effusus, Carenigr = Carex nigra, Festovin  = 

Festuca ovina, Carepani = Carex paniea.  

 10 20 30 40 50 60 70 80 90 100 

10 Nardstri Cardpalu Festrubr Nardstri Festrubr Festrubr Festrubr Nardstri Nardstri Nardstri 

20 Nardstri Nardstri Carenigr Holclana Nardstri Nardstri Agrocapi Nardstri Nardstri Nardstri 

30 Nardstri Holclana Carenigr Nardstri Nardstri Nardstri Festovin Nardstri Nardstri Nardstri 

40 Holclana Holclana Nardstri Festovin Nardstri Carenigr Carenigr Carenigr Nardstri Carenigr 

50 Holclana Holclana Agrocapi Festovin Nardstri Nardstri Agrocapi Carenigr Carepani Nardstri 

60 Agrocapi Holclana Holclana Nardstri Nardstri Nardstri Festovin Festrubr Nardstri Nardstri 

70 Anthodor Anthodor Holclana Nardstri Junceffu Nardstri Nardstri Nardstri Nardstri Nardstri 

80 Festrubr Festrubr Festrubr Holclana Agrocapi Festrubr Nardstri Nardstri Nardstri Nardstri 

90 Desccesp Nardstri Desccesp Anthodor Holclana Holclana Holclana Holclana Agrocapi Agrocapi 

100 Desccesp Desccesp Desccesp Festrubr Holclana Nardstri Nardstri Holclana Desccesp Festrubr 
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2.2.1.2 Multivariate comparison of sub-quadrat data with conventional survey methods 

Unconstrained ordination via non-metric multidimensional scaling (NMDS) was used to 

summarise vegetation covers estimated for the dominant or subdominant 10cm survey. This 

required combining the number of records for each 10cm square for the whole 1m quadrat, 

producing a value of 0 to 100 for each quadrat for each dominant or subdominant species. 

This simply required the calculation of the sum of all 0/1 records for the incidence of each 

species in every 10cm cell, generating a 1m whole-quadrat scale data set. These two NMDS 

ordinations of the dominant and subdominant species were compared with the equivalent 

ordination of raw percentage cover obtained from the conventional whole-quadrat survey. 

‘Procrustes rotation’ from the R ‘vegan’ package (Oksanen et al., 2015) was used to compare 

the three ordination plots. Procrustes rotation rescales and rotates the ordinations so that they 

match as closely as possible (Gower, 1975; Oksanen et al., 2015). ‘Protest’, also from the 

‘vegan’ package (Oksanen et al., 2015), was used to test the similarity m2 (Procrustes residual 

derived from the sum of the squared deviation) and R2 (correlation coefficient) of each pair of 

ordinations. Three comparisons were made: 

i) species cover derived from percentage visual estimates versus dominant vegetation (0-100) 

ii) species cover derived from percentage visual estimates versus subdominant vegetation (0-

100) 

iii) dominant (0-100) versus subdominant (0-100) 

 

2.2.2 Relationship of dominant, subdominant and percent cover estimates at each 

quadrat with the environment (Objective 2) 

2.2.2.1 Digitising sheep tracks and drainage ditches 

Whilst general environmental data were available for each quadrat (soil water, pH, altitude, 

slope; appendix 1.1) no data were available on possible sheep grazing patterns, or locations of 

drainage grips, both of which might affect the vegetation. Positions of sheep paths and 

drainage grips were digitised in ArcGIS from a stereo-pair of aerial photographs taken in 1991 

(Fig. 2.3) in which the whole farm could be clearly viewed with no obscuring by cloud cover.  
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Fig. 2. 4  Aerial images used for superimposition of the Ashtrees Dipper photographed in 1991. Points 1 and 2 were 

main locations used for superimposition of the stereo-images. 

Fig. 2. 3 Hard copy aerial image digitised as a raster and sheep tracks (blue) and ditches (yellow) georectified onto OS 

National Grid with EDINA 2017 Digimap backdrop aerial photograph. 

1. 2. 1. 2. 
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A stereoscope was used to view the images in 3D and high resolution. Transparency film was 

placed on one of the images, marking two main points of origin. The outline of the Ashtrees 

Dipper was marked with a 0.05 width ink pen, and both sheep tracks and drainage ditches 

marked onto the film. The film was scanned at high resolution, and georectified with 2017 

Edina air photographic imagery to match the Ordnance Survey National Grid. Six 

georectification points were selected from clearly defined unchanged features (e.g. buildings, 

forest edges, road junctions etc.) that were unchanged between 1992 and 2017 (Fig. 2.4). Two 

separate maps, for sheep tracks and ditches in 1992 were the final outputs (Fig. 2.5). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At each quadrat 10m, 25m and 35m buffers was generated and the total length of sheep track 

within each buffer calculated. The 10m buffer was selected to measure any effects of sheep 

tracks in close proximity to a quadrat, whilst the 35m buffer was maximum distance where no 

two buffers overlapped (Fig. 2.6). The total length of sheep tracks within each buffer, and 

distance from quadrat to nearest sheep track were calculated (Fig. 2.7). Total number of 

patches per quadrat, mean area of patches per quadrat and mean shape index of patches per 

quadrat were related to total length and distance to sheep patches via linear models. In 

addition, distance to nearest ditch from each quadrat was also measured. 

Fig. 2. 5 Sheep tracks (left) and ditches (right) at Ashtrees, digitised from 1992 stereo-images using ArcMap (ESRI Inc., 

2016); (single backdrop from EDINA Digimap 2018). 
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Fig. 2. 7 Intersected sheep tracks that fall within a maximum of 35m buffer zone around each quadrat. 

Fig. 2. 6 Buffer zones of 10m, 25m and 35m around each of 167 quadrats. 
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2.2.2.2 Constrained ordination analysis of dominant, subdominant and percentage 

cover 

Redundancy analysis (RDA), a linear constrained ordination analysis, was used to relate the 

three sets of vegetation community data (dominant, subdominant and percentage cover) to the 

environment. Canonical Correspondence Analysis (CCA), a unimodal constrained ordination 

method did not provide a visually representative plot of the constrained data, i.e. all the data 

points were clustered together in the centre of the plot (see Chapter 1 for comparison of linear 

and unimodal methods). Soil pH, soil water content, altitude, slope, distance to and length of 

sheep tracks at each of 10m, 25m and 35m buffer zones as well as distance to drainage ditches 

(Rodwell, 2006; Rushton, 1992; Sanderson et al., 1995a) were used as constraining variables. 

Soil pH, soil water content and slope were recorded in the field whilst altitude was from 

EDINA Digimap (EDINA, 2018).  

 

2.2.3 Environmental and management factors affecting the patch metrics of the 

quadrats (Objective 3) 

2.2.3.1 Calculation of patch metrics 

To extract patch metrics for a given species, a 10 x 10 matrix was created containing 1 or 0 

values, where 0 represents background of other species and 1 represents presence of that 

particular species (example in Table 2.2). The final step was to identify different patches, 

encoding each patch separately (Table 2.3). Diagonally adjoining cells were assumed to 

belong to the same patch (Table 2.3), which can then be easily visualised by colour (Fig. 2.8).  

 

Patch statistics were then performed on the matrices obtained for each species within each 

quadrat. This was done using the ‘SDMTools’ package available in R (VanDerWal et al., 

2018). The ‘PatchStat’ function can calculate numerous metrics, but the three of primary 

concern in this chapter were: 

• number of patches 

• area per patch 

• shape index (see Introduction). 

An example of the patch statistics output for a single quadrat containing 5 patches is provided 

in Table 2.4. A semi-automated R script was developed to input and manipulate data, extract 

patches and calculate patch metrics for both dominant and subdominant species at all 167 

quadrats on Ashtrees Dipper.  
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Table 2. 2 Example of a 0-1 matrix for a given species in a given quadrat. 0 is background (i.e. species not 

present) and 1 represents 10 x 10 patch of the species of concern. 

 10 20 30 40 50 60 70 80 90 100 

10 1 1 0 0 1 0 0 0 1 1 

20 1 1 1 0 0 1 1 0 1 1 

30 1 1 0 0 1 1 1 0 1 1 

40 0 0 0 1 0 1 0 0 0 1 

50 0 1 0 0 0 1 1 0 0 0 

60 0 1 0 0 1 1 1 0 0 1 

70 0 1 0 0 1 0 1 1 1 1 

80 0 1 0 0 0 0 0 1 1 1 

90 0 0 1 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 1 1 0 0 

 
 

Table 2. 3 Matrix of patch numbers for one species in a given quadrat. Each number (1 - 5) is a different patch 

formed by the species and 0 is background (i.e. species not present). 

 10 20 30 40 50 60 70 80 90 100 

10 1 1 0 0 2 0 0 0 3 3 

20 0 0 0 0 0 0 3 3 0 0 

30 4 4 4 0 0 3 3 0 3 3 

40 4 4 0 0 3 3 3 0 3 3 

50 0 0 0 3 0 3 0 0 0 3 

60 0 5 0 0 0 3 3 0 0 0 

70 0 5 0 0 3 3 3 0 0 3 

8 0 5 0 0 3 0 3 3 3 3 

90 0 5 0 0 0 0 0 3 3 3 

100 0 0 5 0 0 0 0 0 0 0 
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Table 2. 4 Example of patch statistics obtained for a given species within a given quadrat. 0 is background (i.e. 

patches where species is not present).   

 

 

 

 

 

 

 

 

Shape index is an alternative to ‘fractal dimension’ calculated as a normalised ratio of patch 

perimeter to area ratio (see Introduction); it is simpler to interpret than fractal dimension 

which uses a log transformation (McGarigal, 2017). The patch statistics per quadrat, for 167 

quadrats, were also summarised as i) total number of patches per species per quadrat, ii) mean 

patch area per species per quadrat and ii) mean patch shape index per species per quadrat.  

 

 

Patch 
ID 

n 
cell 

n edges 
perimeter 

N edges 
internal 

Area Perim Perim:area 
Shape 
index 

Frac dim 
index 

0 77 116 192 77 116 1.506 3.222 1.550 

1 2 6 2 2 6 3 1 1.170 

2 1 4 0 1 4 4 1 NA 

3 30 58 62 30 58 1.933 2.636 1.573 

4 5 10 10 5 10 2 1 1.139 

5 5 14 6 5 14 2.8 1.4 1.557 

Fig. 2. 8 visual representation of the matrix in table 2.3 for a given 

species in a given 1m2 quadrat. Each colour represents an independent 

patch of that species. 
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2.2.3.2 Analysis of environment on overall quadrat patch metrics 

Information from the scientific literature was used to categorise the most common species (in 

terms of incidence) into two vegetation growth strategies: ‘block-former’ species, which form 

distinct clumps, or ‘opportunistic’ species that occur in the background matrix but not in 

clumps (Robinson and Rorison, 1983; Rushton et al., 1992; Smith, 1996; S. Rushton pers 

comm.). Block- formers (abbreviated names in brackets) were Calluna vulgaris (Callvulg), 

Eriophorum vaginatum (Eriovagi), Juncus effusus (Junceffu), Juncus squarrosus (Juncsqua), 

Molinia caerulea (Molicaer) and Nardus stricta (Nardstri). Opportunistic species were Carex 

nigra (Carenigr), Deschampsia flexuosa (Descflex), Galium saxatile (Galisaxa), Potentilla 

erecta (Poteerec) and Vaccinium myrtillus (Vaccmyrt). It should be noted that this 

classification is not a traditional or published classification but rather a descriptive 

classification that might also be site-specific since not all named block-formers or 

opportunistic species will display such characteristics at other locations. For example, in some 

situations D. flexuosa, G. saxatile, P. erecta and V. myrtillus can form extensive patches 

(block-formers) or grow in small tufts (opportunits) and thus might largely depend on the 

surrounding environment. Number of patches, patch area, and patch complexity were 

calculated for the two groups of species, for both dominant and subdominant records. Linear 

models were used to investigate the response of mean number of patches, mean patch area, 

and mean shape index to vegetation growth strategy and cover type (dominant or 

subdominant). An interaction term between vegetation growth and cover type was also 

included in the linear model equation. An interaction term was assessed to identify any 

potential dependence of vegetation growth and cover type. 

 

2.2.3.3 Multivariate GLM analysis of patch metrics for all species in relation to 

environment 

Three tables were created for both dominant and subdominant species (i.e. depending on their 

abundance on a cell-by-cell basis; note that some species can be dominant in once cell but 

subdominant in another cell), with each row a separate quadrat, each column a species, and 

the table entries being i) total number of patches ii) patch area or iii) patch shape. The 

‘mvabund’ package in R (Wang et al., 2019) was used for multivariate analysis, as this allows 

the appropriate error distribution to be selected for use in the ‘manyglm’ function, typically 

Poisson distribution for count response data, or Gaussian or negative binomial for continuous 

response data. Explanatory variables were soil pH, water content, slope, altitude, total length 

of sheep track, distance to sheep track and distance to ditch. These analyses were undertaken 
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for all three buffer distances. Note that ‘manyglm’ ANOVA analyses all species 

simultaneously, but for clarity the results only include detailed graphs for ‘block-forming’ and 

‘opportunistic’ species (see below).  

 

2.2.4 Interpolating patch metrics to the whole of Ashtrees Dipper (Objective 4) 

Interpolation was used to create continuous predicted maps across the whole of Ashtrees 

Dipper of the patch metrics, rather than just at the individual observation quadrat points. 

Inverse distance weighted (IDW) interpolation was used as it avoided interpolation to 

negative values across the heft, producing a minimum value of zero for number of patches 

and area per patch for each species. Other interpolation methods such as kriging and kernel 

smoothing gave errors such as negative numbers of patches on some parts of the interpolated 

map. Similar interpolation methods were used for selected species to produce maps of i) 

number of patches, ii) mean area of patches and iii) mean shape index across the heft. All 

these maps were used to visually aid interpretation of the quantitative analyses already 

described above. 
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2.3  Results 
 

 

2.3.1 Comparison between vegetation assessed via within-quadrat and whole quadrat 

survey methods (Objective 1) 

The species NMDS plots for conventional percentage cover estimates, dominant and 

subdominant are shown in Figs. 2.9 to Fig. 2.11 respectively, and there were similarities 

between the methods, with species Sphagnum species (e.g. S. capillifolium in Figs. 2.9 and 

2.11) present in being at the extremes of NMDS Axis 1, Rumex species (mostly R. acetosa in 

Figs. 2.10 and 2.11), and Holcus mollis (Figs. 2.10 and 2.11) at the lower extremes of Axis 2. 

Formal comparison between the methods was via Procrustes rotation of the samples (167 

quadrats), and summarised in Table 2.5. 

Fig. 2. 9 NMDS ordination species plot from percentage cover abundance data at Ashtrees. Thuitama = Thuidium 

tamariscinum, Durodili = Dryopteris dilitata, Juneffu = Juncus effusus, Luzusylv = Luzula sylvatica, Molicaer = 

Molinia caerulea, Plagiotundu = Plagiothecuim undulatum, Sphacapi = Sphagnum capillofolium, Callvulg = Calluna 

vulgaris, Hypnjutu = Hypnum jutlandicum, Cetafont = Cerastium fontanum, Rumeacetosella = Rumexacetosella, 

Cardprat = Cardemine pratensis, Trifrepe = Trifolium repens, Ranurepe = Ranunculus repens 
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Fig. 2. 10 NMDS ordination species plot for subdominant vegetation found at Ashtrees. Holcmolli = Holcus lanatus, 

Spharubr = Sphagnum rubra, Aulopalu = Aulocomnium palustre, Sphacapi = Sphagnum capillofolium, Vaccoxyc = 

Vaccinium oxycoccos, Carepilu = Carex pilulifera, Cynocris = Cynosurus cristatus, Rumeacet = Rumex acetosa, 

Ceraarve = Cirsium arvense, Juncarti = Juncus articulatus, Agrostolo = Agrostis stolonifera, Lolipere = Lolium 

perenne  

Fig. 2. 11 NMDS ordination species plot for dominant vegetation species found at Ashtrees. Holcmolli = Holcus 

lanatus, planlanc = Plantego lanceolata, sphapalu = Sphagnum palustre, spharubr = Sphagnum rubra, eriovagi = 

Eriophorum vaginatum, vaccmyrt = Vaccinium myrtillus, triccesp = trichophorum cespitosum, hypncupr = Hypnum 

cupressiforme, carepilu = Carex pilulifera, cirspalu = Cirsium palustre, Carearve = Cirsium arvense, rumeacet = 

Rumex acetosa 
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 Table 2. 5 Summary of Procrustes rotation comparison between i) percentage cover data, denoted as ‘survey’, 

and dominant patch area data, ii) survey versus subdominant vegetation patch area data and iii) dominant vs 

subdominant vegetation patch area data. ‘m2’ is Procrustes residual, R = correlation coefficient 

Procrustes rotation comparison m2  R p-value 
Survey vs Dominant 0.5565 0.6659 0.001 

Survey vs Subdominant 0.5111 0.6992 0.001 
Dominant vs Subdominant 0.5255 0.6888 0.001 

 

The Procrustes residual (m2) ranges between 0.51 to 0.56 and R at about 67%-70% for all 

three ordination comparisons (table 2.5). The highest similarity is observed between 

percentage abundance and subdominant vegetation ordinations and an R of 0.6992. Lowest 

correlation was between percentage abundance and dominant vegetation patch area. Most of 

the similarity appeared to be on NMDS 1, which might be expected as this will capture a 

greater amount of variability than NMDS 2. The NMDS scores on the first axis were 

compared via linear models and were also fit to compare the extent of correlation between the 

three ordination sets (Table 2.6 and Fig. 2.12). Overall there was a high correlation between 

the axes for all three methods, particularly the dominant versus subdominant.  
 

Table 2. 6 R2 coefficient of determination and p-values for results from linear correlation between non-metric 

multidimensional scaling axes 1 (NMDS1) between, i) dominant and surveyed data, ii) subdominant and 

surveyed data and iii) dominant and subdominant data 

NMDS axes comparison type R2 p-value 
NMDS 1 surveyed vs NMDS 1 
dominant 0.6542 <0.0001 
NMDS 1 surveyed vs NMDS 1 
subdominant 0.6147 <0.0001 
NMDS 1 dominant vs NMDS 1 
subdominant 0.7351 <0.0001 
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2.3.2  Relationship of dominant, subdominant and percent cover estimates at each 

quadrat with the environment (Objective 2) 

 

RDA results for percentage cover, dominant and subdominant data is presented in table 2.7 

with soil pH and soil % water showing significance across the three vegetation survey types; 

slope shows significance for dominant and subdominant while altitude shows significance for 

traditional % abundance survey. Sheep tracks within a 10m buffer only shows significance 

with subdominant vegetation data survey. Percentage cover data shows some relationships 

with altitude and soil water content (Fig. 2.13). Soil pH, slope, proximity of sheep tracks and 

ditches result in no significance. Dominant and subdominant patch area data was used in RDA 

b) a) 

c) 

Fig. 2. 12 Comparison of non-metric multidimensional scaling results for axis 1 (NMDS1) between, a) dominant and 

surveyed data, b) subdominant and surveyed data and c) dominant and subdominant data. 
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because it is the closest numerical comparative to percentage cover data. Fig. 2.14 shows that 

altitude has the largest effect on dominant vegetation patch area followed by soil water 

content and pH. The length and direction of the arrows in the RDA ‘biplots’ indicate that soil 

pH appeared to be a major factor affecting subdominant vegetation patch structure, with 

altitude potentially having a less of an effect (Fig. 2.15). It is important to note that this is a 

visual estimation of the results of the RDA and not estimating the size of the effect of the 

variables based on the resulting p-values. ANOVA of RDA outputs was performed resulting in 

an overall p-value of 0.001. Soil pH, altitude and soil water content also result in  p = 0.001 

and slope had a significance of p = 0.028. Proximity (length and distance) to sheep track 

within 10m, 25m and 35m buffer zones show no significance. Overall ANOVA for 

subdominant vegetation patch area shows significance for soil pH, slope and water content. 

Altitude, proximity to sheep tracks and proximity to ditch show no significance with 

subdominant vegetation patch area. Relationships between some environmental variables 

were as might have been expected, for example slope and percentage water tended to be 

negatively correlated (arrows on RDA plots point in opposite directions). 

 

Table 2. 7 RDA results (p- and F-) for % abundance, dominant and subdominant vegetation data and the 

constraining environmental variables 

 % Abundance Dominant Subdominant 

Environmental driver F p F p F  p 
Soil pH 6.111 0.001 3.952 0.004 5.282 0.001 
Slope 0.860 0.473 2.446 0.015 2.769 0.007 
% water 5.643 0.001 3.478 0.004 1.176 0.001 
Altitude 5.736 0.002 1.521 0.151 3.334 0.294 

ST length (10m buffer) 2.312 0.062 0.737 0.605 1.977 0.038 

ST distance (10m buffer) 1.651 0.142 0.687 0.686 0.673 0.760 

ST length (25m buffer) 0.378 0.862 0.473 0.892 0.770 0.641 

ST distance (25m buffer) 0.230 0.058 0.584 0.784 0.923 0.482 

ST length (35m buffer) 0.931 0.453 0.822 0.550 0.354 0.979 

ST distance (35m buffer) 1.694 0.161 1.129 0.334 0.612 0.786 

Ditch distance 1.694 0.120 1.577 0.130 0.647 0.772 
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Fig. 2. 13  RDA of dominant vegetation, with soil pH, altitude, slope, soil water content, sheep track proximity 

within 3 different buffer zones and distance from drainage ditch as the main constraints. Molicaer = Molinia 

caerulea, Callvulg = Calluna vulgaris, Eriovagi = Eriophorum vaginatum, Holclana = Holcus lanatus, Agrocapi 

= Agrostis capillaris, anthodor = Anthoxanthum odoratum, Nardstri = Nardus stricta, Festovin = Festuca ovina, 

Galisaxa = Galium saxatile 

Fig. 2. 14 RDA of vegetation % abundance, with soil pH, altitude, slope, soil water content, sheep track 

proximity within 3 different buffer zones and distance from drainage ditch as the main constraints. Festovin = 

Festuca ovina, Descflex = Deschampsia flexuosa, Pleuschr = Pleurozium schreberi, Juncsqua = Juncus 

squarrosus, Triccesp = Trichophorum cespitosum, Sphafall = Sphagnum fallax, Polycomm = Polytrichum 

commune, Galisaxa = Galium saxatile, Erioangu = Eriophorum angustifolium, Sphapalu = Spahgnum palustre 
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2.3.3  Environmental and management factors affecting the patch metrics of the 

quadrats (Objective 3) 

 

2.3.3.1  Overall patch metrics 

Overall number of patches, patch area and shape complexity in block-forming and 

opportunistic vegetation types for the dominant and subdominant covers are shown in Figs 

2.16 to Fig. 2.18. Number of patches was similar between block-forming and opportunistic 

vegetation types (Fig. 2.16: F1,18 = 0.805,  p = 0.987). The mean number of patches was 

significantly higher for subdominant than dominant vegetation (F1,18 =13.108, p = 0.002), but 

there was no significant interaction between vegetation growth strategy and cover (F1,18 = 

0.084, p = 0.776). There were major differences in the mean area of patches for both the main 

effects and interaction terms (Fig 2.17). The area of patches was greater for the block-formers 

than opportunists (F1,18 = 9.737, p < 0.001), and larger for the dominants than the 

subdominants (F1,18 = 7.858, p = 0.006). The interaction term indicated that mean patch area 

Fig. 2. 15 RDA of subdominant vegetation, with soil pH, altitude, slope, soil water content, sheep track proximity 

within 3 different buffer zones and distance from drainage ditch as the main constraints. Galisaxa = Galium 

saxatile, Descflex = Deschampsia flexuosa, Molicaer = Molinia caerulea, Callvulg = Calluna vulgaris, Eriovagi 

= Eriophorum vaginatum, Sphafall = Sphagnum fallax, Carepani = Carex panacea, Holclana = Holcus lanatus, 

Desccesp = Deschampsia cespitosa, Festrubr = Festuca rubra, Agrocapi = Agrostis capillaris, Anthodor = 

Anthoxanthum odoratum, Nardstri = Nardus stricta, Festovin = Festuca ovina. 
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was greater in dominant block-former species, and in sub-dominant opportunistic species 

(F1,18 = 10.983, p=0.004). All three predictors also significantly affected shape complexity. 

Block formers had more complex shapes than opportunists (F1,18 = 13.654, p < 0.001) and 

there was a significant interaction term. In block-formers, the dominant species had the most 

complex patch shapes, whereas amongst opportunist species the subdominants had the most 

complex shape (Fig. 2.18, F1,18 = 12.386, p = 0.002). 

 

 

 

Fig. 2. 16 Violin and box-whiskers plot comparing number of patches between block-forming and opportunistic 

dominant and subdominant vegetation. Vegetation Cover type refers to ‘Dominant’ and ‘Subdominant’ and ‘Strategy 

refers to ‘block-formers’ and ‘opportunists’. 
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Fig. 2. 18 Violin and box-whiskers plot comparing shape of patches between block-forming and opportunistic dominant 

and subdominant vegetation. Vegetation type refers to ‘Dominant’ and ‘Subdominant’ and ‘Condition’ refers to ‘block-

formers’ and ‘opportunists’ 

Fig. 2. 17 Violin and box-whiskers plot comparing area of patches between block-forming and opportunistic dominant 

and subdominant vegetation. Vegetation Cover type refers to ‘Dominant’ and ‘Subdominant’ and ‘Strategy refers to 

‘block-formers’ and ‘opportunists’. 
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2.3.3.2  Multivariate GLM analysis of patch metrics for all species in relation to the 

environment 

Results of the multivariate GLM analyses with the environmental variables are summarised in 

Tables 2.8-2.10 (dominant) and 2.11-2.13 (subdominant). Note that a large number of p-

statistics are presented in these tables, but each table presents the results of a single 

multivariate GLM analysis (via the manyglm function), thus reducing multiple testing errors, 

most notable Type I errors (Wang et al., 2019). The ‘manyglm’ approach is reported to 

improve the power across the range of species with different variances (Wang et al., 2019). 

This method also includes an assumption that there is a mean-variance relationship, fitting a 

generalised linear model (GLM) to each response variable and resamples the data to test for 

significance in the species response to the environmental data (Blakey and Letten, 2016).  

 

Overall analysis of dominant vegetation, including less frequent species than the top eleven 

block-formers and opportunists, indicated strong associations with the four main 

environmental variables of soil pH, slope, percentage water and altitude (Tables 2.8 to 2.10). 

However, relatively few of the selected block formers and opportunists showed strong 

associations with these predictors. Amongst the block formers Eriophorum vaginatum was 

affected most, responding (both positively and negatively) to slope, and soil water content for 

number of patches, patch area and shape index. Juncus effusus, also a block-former, showed 

reduced shape index complexity at higher altitude. Amongst dominant opportunist species, 

patch area of Deschampsia flexuosa was positively associated with soil water content. Again, 

for the subdominant vegetation, overall analysis indicated that all three patch metrics were 

affected (positively and negatively) by the four environmental variables (Tables 2.11 to 2.13). 

However, no consistent patterns were apparent amongst the most common eleven species, 

although relationships were detected for Nardus stricta, Molinia caerulea (block formers) and 

Deschampsia flexuosa (opportunist).  

 

The equivalent responses of the vegetation in relation to sheep tracks and drainage ditches are 

summarised in Tables 2.14-2.16 (dominant) and Tables 2.17-2.19 (subdominant). Here, even 

for the overall analyses that included rarer species, there were no obvious patterns, although 

there was evidence that proximity of sheep tracks, especially within 10m of a quadrat, 

affected the patch structure, and (weaker) evidence that distance to the nearest drainage ditch 

also had an effect. None of the most common block-forming or opportunist species showed 

any significant response individually to these predictors. 
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Table 2. 8 ManyGLM analysis of number of patches created by dominant vegetation and significance of interaction with primary environmental factors. Green = positive correlation, 

red = negative correlation. (p-values) 

 Block Formers Opportunists 
Env. variable Overall Callvulg Nardstri Molicaer Eriovagi Juncsqua Junceffu Carenigr Galisaxa Poteerec Descflex Vaccmyrt 
Soil pH 0.001 0.424 0.999 0.421 0.591 0.941 0.999 0.993 0.967 0.999 0.135 0.889 
Slope 0.001 1.000 0.044 1.000 0.003 0.991 1.000 1.000 0.112 0.999 1.000 1.000 
% water 0.001 0.999 0.998 1.000 0.001 0.999 0.998 1.000 1.000 0.999 1.000 0.999 
Altitude 0.001 0.966 1.000 1.000 1.000 1.000 0.075 1.000 0.985 0.899 1.000 1.000 

 

Table 2. 9 ManyGLM analysis of area occupied by dominant vegetation and significance of interaction with primary environmental factors. Green = positive correlation, red = 

negative correlation. (p-values) 

 Block Formers Opportunists 
Env. variable Overall Callvulg Nardstri Molicaer Eriovagi Juncsqua Junceffu Carenigr Galisaxa Poteerec Descflex Vaccmyrt 
Soil pH 0.001 0.880 0.969 0.281 0.880 0.969 0.997 0.997 0.988 1.000 0.443 0.816 
Slope 0.069 0.987 0.981 1.000 0.998 0.997 1.00 1.000 0.999 0.998 0.998 1.000 
% water 0.029 0.934 0.960 1.000 0.039 0.932 1.00 1.000 1.000 0.977 0.039 1.000 
Altitude 0.053 0.703 0.998 1.000 0.998 1.000 0.122 1.000 1.000 0.998 0.988 1.000 

 

Table 2. 10 ManyGLM analysis of shape index for dominant vegetation and significance of interaction with primary environmental factors. Green = positive correlation, red = 

negative correlation. (p-values) 

 Block Formers Opportunists 
Env. variable Overall Callvulg Nardstri Molicaer Eriovagi Juncsqua Junceffu Carenigr Galisaxa Poteerec Descflex Vaccmyrt 
Soil pH 0.001 1.000 1.000 1.000 0.842 1.000 0.974 0.992 0.720 1.000 0.072 0.914 
Slope 0.001 1.000 0.417 1.000 0.022 0.995 1.000 1.000 0.736 1.000 1.000 1.000 
% water 0.001 1.000 1.000 1.000 0.001 0.933 1.000 0.563 0.939 1.000 0.997 0.935 
Altitude 0.048 1.000 1.000 1.000 1.000 1.000 0.016 1.000 1.000 0.929 1.000 1.000 
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 Table 2. 11 ManyGLM analysis of number of patches created by subdominant vegetation and significance of interaction with primary environmental factors. Green = positive 

correlation, red = negative correlation. (p-values) 

 Block Formers Opportunists 
Env. variable Overall Callvulg Nardstri Molicaer Eriovagi Juncsqua Junceffu Carenigr Galisaxa Poteerec Descflex Vaccmyrt 
Soil pH 0.001 0.258 1.000 0.043 0.854 1.000 1.000 1.000 0.996 1.000 0.003 0.720 
Slope 0.019 1.000 0.842 1.000 0.891 0.976 1.000 1.000 0.805 1.000 0.998 1.000 
% water 0.002 0.526 0.672 1.000 0.005 0.999 0.969 1.000 0.808 1.000 1.000 0.977 
Altitude 0.011 0.423 1.000 1.000 1.000 1.000 0.116 1.000 1.000 0.997 0.999 1.000 

 

Table 2. 12 ManyGLM analysis of area occupied by subdominant vegetation and significance of interaction with primary environmental factors. Green = positive correlation, red = 

negative correlation. (p-values) 

 Block Formers Opportunists 
Env. variable Overall Callvulg Nardstri Molicaer Eriovagi Juncsqua Junceffu Carenigr Galisaxa Poteerec Descflex Vaccmyrt 
Soil pH 0.001 0.178 0.999 0.574 0.919 0.984 1.000 0.993 0.991 1.000 0.014 0.990 
Slope 0.036 1.000 0.957 1.000 0.975 0.996 1.000 0.858 1.000 1.000 1.000 1.000 
% water 0.033 0.996 0.986 0.972 0.064 0.997 1.000 1.000 1.000 1.000 1.000 0.993 
Altitude 0.066 0.361 0.996 0.999 1.000 0.999 1.000 0.668 1.000 0.955 1.000 1.000 

 

Table 2. 13 ManyGLM analysis of shape index for subdominant vegetation and significance of interaction with primary environmental factors. Green = positive correlation, red = 

negative correlation. (p-values) 

 Block Formers Opportunists 
Env. variable Overall Callvulg Nardstri Molicaer Eriovagi Juncsqua Junceffu Carenigr Galisaxa Poteerec Descflex Vaccmyrt 
Soil pH 0.001 0.414 0.991 1.000 0.878 1.000 1.000 1.000 0.873 1.000 1.000 1.000 
Slope 0.001 1.000 0.102 1.000 0.102 0.950 1.000 1.000 0.164 1.000 1.000 0.983 
% water 0.001 0.256 0.033 1.000 0.001 0.978 0.506 1.000 0.881 1.000 1.000 0.986 
Altitude 0.001 0.973 0.983 1.000 1.000 1.000 0.256 1.000 1.000 0.997 1.000 1.000 
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Table 2. 14 ManyGLM analysis of number of patches for dominant vegetation and correlation with length of sheep track and distance to sheep track within a 10m, 25m and 35m 

buffer and distance to nearest ditch. ST = Sheep Track. Green = positive correlation, red = negative correlation. (p-values) 

  Block-formers Opportunists 
No. of Patches overall Callvulg Eriovagi Junceffu Juncsqua Molicaer Nardstri Carenigr Descflex Galisaxa Poteerec Vaccmyrt 

ST length (10m buffer) 0.720 0.998 1.000 0.998 1.000 1.000 1.000 0.998 1.000 0.987 1.000 0.997 
ST distance (10m buffer) 0.024 1.000 1.000 0.959 0.998 1.000 1.000 0.998 1.000 1.000 0.910 1.000 
ST length (25m buffer) 0.06 1.000 1.000 0.910 1.000 0.982 1.000 1.000 1.000 0.998 0.781 1.000 

ST distance (25m buffer) 0.110 1.000 1.000 1.000 1.000 0.740 0.985 0.999 1.000 0.953 1.000 0.997 
ST length (35m buffer) 0.200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

ST distance (35m buffer) 0.071 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.957 1.000 
Ditch distance 0.066 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.849 0.999 

 

Table 2. 15 ManyGLM analysis of area of patches for dominant vegetation and correlation with length of sheep track and distance to sheep track within a 10m, 25m and 35m buffer 

and distance to nearest ditch. ST = Sheep Track. Green = positive correlation, red = negative correlation. (p-values) 

  Block formers Opportunists  
Area overall Callvulg Eriovagi Junceffu Juncsqua Molicaer Nardstri Carenigr Descflex Galisaxa Poteerec Vaccmyrt 

ST length (10m buffer) 0.430 1.000 0.979 0.996 1.000 0.892 1.000 1.000 1.000 0.966 1.000 0.998 
ST distance (10m buffer) 0.085 1.000 1.000 0.944 0.998 1.000 1.000 0.962 1.000 1.000 0.998 1.000 
ST length (25m buffer) 0.544 1.000 1.000 1.000 1.000 0.651 1.000 1.000 1.000 1.000 1.000 1.000 

ST distance (25m buffer) 0.875 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
ST length (35m buffer) 0.169 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

ST distance (35m buffer) 0.023 1.000 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000 0.866 0.996 
Ditch distance 0.167 1.000 0.941 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.963 1.000 
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 Table 2. 16 ManyGLM analysis of shape index of patches for dominant vegetation and correlation with length of sheep track and distance to sheep track within a 10m, 25m and 

35m buffer and distance to nearest ditch. ST = Sheep Track. Green = positive correlation, red = negative correlation. (p-values) 

  Block formers Opportunists  
Shape overall Callvulg Eriovagi Junceffu Juncsqua Molicaer Nardstri Carenigr Descflex Galisaxa Poteerec Vaccmyrt 

ST length (10m buffer) 0.533 1.000 0.976 1.000 1.000 0.976 0.624 0.998 1.000 1.000 1.000 1.000 
ST distance (10m buffer) 0.478 0.999 1.000 1.000 1.000 0.579 0.997 0.999 1.000 0.992 1.000 0.999 
ST length (25m buffer) 0.055 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000 0.784 1.000 

ST distance distance (25m buffer) 0.289 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
ST length (35m buffer) 0.097 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

ST distance (35m buffer) 0.059 0.979 1.000 1.000 1.000 1.000 0.972 1.000 1.000 1.000 0.996 1.000 
Ditch distance 0.023 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992 

 

Table 2. 17 ManyGLM analysis of number of patches for subdominant vegetation and correlation with length of sheep track and distance to sheep track within a 10m, 25m and 35m 

buffer and distance to nearest ditch. ST = Sheep Track. Green = positive correlation, red = negative correlation. (p-values) 

  Block formers Opportunists  

No. of Patches overal
l 

Callvul
g 

Eriovag
i 

Junceff
u 

Juncsqu
a 

Molicae
r 

Nardstr
i 

Carenig
r 

Descfle
x 

Galisax
a 

Poteere
c 

Vaccmyr
t 

ST length (10m buffer) 0.436 0.955 0.390 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 
ST distance (10m buffer) 0.048 0.630 1.000 1.000 1.000 1.000 1.000 0.930 1.000 1.000 1.000 1.000 
ST length (25m buffer) 0.281 1.000 0.997 0.979 1.000 1.000 1.000 0.795 1.000 1.000 0.990 1.000 

ST distance distance (25m buffer) 0.466 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
ST length (35m buffer) 0.206 1.000 1.000 1.000 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

ST distance (35m buffer) 0.205 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Ditch distance 0.063 1.000 1.000 0.910 1.000 1.000 1.000 1.000 1.000 0.997 0.882 1.000 
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 Table 2. 18 ManyGLM analysis of area of patches for subdominant vegetation and correlation with length of sheep track and distance to sheep track within a 10m, 25m and 35m 

buffer and distance to nearest ditch. ST = Sheep Track. Green = positive correlation, red = negative correlation. (p-values) 

  Block formers Opportunists  
Area overall Callvulg Eriovagi Junceffu Juncsqua Molicaer Nardstri Carenigr Descflex Galisaxa Poteerec Vaccmyrt 

ST length (10m buffer) 0.362 0.953 0.394 1.000 1.000 1.000 1.000 1.000 1.000 0.678 1.000 1.000 
ST distance (10m buffer) 0.052 0.627 1.000 1.000 1.000 1.000 1.000 0.952 1.000 1.000 1.000 0.998 
ST length (25m buffer) 0.346 1.000 1.000 0.984 1.000 1.000 1.000 0.762 1.000 1.000 0.966 1.000 

ST distance distance (25m buffer) 0.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
ST length (35m buffer) 0.137 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 0.997 

ST distance (35m buffer) 0.196 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Ditch distance 0.108 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.937 1.000 

 

Table 2. 19 ManyGLM analysis of shape index of patches for subdominant vegetation and correlation with length of sheep track and distance to sheep track within a 10m, 25m and 

35m buffer and distance to nearest ditch. ST = Sheep Track. Green = positive correlation, red = negative correlation. (p-values). 

  Block formers Opportunists 
Shape overall Callvulg Eriovagi Junceffu Juncsqua Molicaer Nardstri Carenigr Descflex Galisaxa Poteerec Vaccmyrt 

ST length (10m buffer) 0.362 0.953 0.394 1.000 1.000 1.000 0.981 1.000 1.000 0.995 1.000 1.000 
ST distance (10m buffer) 0.052 0.627 1.000 1.000 1.000 1.000 1.000 0.952 1.000 1.000 1.000 0.998 
ST length (25m buffer) 0.346 1.000 1.000 0.984 1.000 1.000 1.000 0.762 1.000 1.000 1.000 1.000 

ST distance distance (25m buffer) 0.420 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 1.000 
ST length (35m buffer) 0.085 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 

ST distance (35m buffer) 0.202 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000 1.000 
Ditch distance 0.086 1.000 1.000 0.989 1.000 1.000 1.000 1.000 1.000 1.000 0.881 1.000 
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2.3.4 Interpolating patch metrics to the whole of Ashtrees Dipper (Objective 4) 

 

A series of interpolation maps (Figs. 2.19 to Fig. 2.21) were generated for i) total number of 

patches, ii) mean area and iii) mean shape index of dominant and subdominant vegetation 

species. The total number of patches for dominant vegetation species ranges from about 16 to 

36 while the total number of subdominant vegetation patches ranges from about 31 to 47. In 

general, interpolation maps show that a larger number of patches results in overall lower mean 

area. Note that in Figs. 2.19 to 2.21 the lower altitude area is at the top (North) of the maps 

(see also Fig 1.1 and Appendix 1.1 for soil pH, soil water, elevation and slope). 

 

Dominant vegetation forms more patches at both intermediate and low altitudes (Fig. 2.19i) 

whereas patterns were less consistent for subdominant species (Fig. 2.19ii). For both 

dominant and subdominant species patch area was higher at high altitude (Fig. 2.20). Patch 

complexity had a similar range of values for both dominant and subdominant species (upper 

values of 1.52 and 1.41 respectively, Fig. 2.21) but there was considerably more variation 

across the heft in patch complexity, with some areas at the northern edge (lowest altitude) 

having a simple complexity (values near 1.0) with the rest of the heft showing a mixture of 

patches with both simple and complex shapes. Since dominant and subdominant species are 

often found within the same grid cell (10cm cells in 1m quadrat) there might be some overlap 

in the interpolation results, mostly notably number of patches (Fig. 2.19). 

 

i) Dominant  ii) Subdominant 

 
Fig. 2. 19 Interpolation of total number of patches for i) dominant (left) and ii) subdominant (right) vegetation 

across the Ashtrees heft for dominant and subdominant vegetation. 

2.05 – 16.28 

16.29 – 21.51 

21.52 – 26.20 

26.21 – 32.14 

32.15 – 47.99 

1.27 – 25.22 

25.23 – 32.69 

32.70 – 37.67 

37.68 – 43.11 

43.12 – 58.96 
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i) Dominant  ii) Subdominant 

 

 

i) Dominant ii) Subdominant 

 

 

 

 

 

Fig. 2. 20 Interpolation of mean area of vegetation patches for i) dominant (left) and subdominant (right) vegetation 

across the Ashtrees heft for dominant and subdominant vegetation. 

Fig. 2. 21 Interpolation of shape index data of patches for i) dominant (left) and ii) subdominant (right) vegetation 

across the Ashtrees heft for dominant and subdominant vegetation. 
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A series of interpolated maps for the block-former and opportunist species is provided in 

(Appendix 1.2 to 1.4). As an example, species such as Juncus effusus (Junceffu), Juncus 

squarrosus (Juncsqua) and Nardus stricta (Nardstri) form larger number of patches at lower 

altitudes. Calluna vulgaris (Callvulg) and Carex nigra (Carenigr) show more spread at higher 

altitudes. Molinia caerulea (Molicaer), Deschampsia flexuosa (Descflex), Galium saxatile 

(Galisaxa) Vaccinium myrtillus and Eriophorum vaginatum are more restricted in both 

distribution and patch metrics. Subdominant species within quadrats show similar distribution 

across the heft but show more patches but smaller in size.  

 

Dominant species form simpler shapes than subdominant vegetation with the exception of a 

few species, e.g. Molinia caerulea. Subdominant opportunists, such as Deschampsia flexuosa 

and Galium saxatile, form very complex shapes and patterns across the heft. In general, the 

more complex the shape, the larger the area and but the lower number of patches formed.  
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2.4  Discussion 
 

 

Landscape metrics have been used with the main aim of analysing species patches and their 

distribution at different scales in ecology (McGarigal, 2017). These metrics can be used to 

quantify composition, relationships and ecological processes both by comparing metrics and 

comparison with independent environmental data (McGarigal, 2017). This approach can be 

used to predict patterns across different spatial scales using interpolation techniques to gain an 

overall indication on how patches of species can vary across a field site in number, area and 

shape of vegetation patterns (Ritchie, 2009). It should be noted that the results obtained in this 

chapter, especially patch metrics at the species level, can be deemed as site-specific and might 

not reflect patch structure in other habitats. The methods and analysis in this chapter aim to 

understand and quantify vegetation patch structure at a 1m2 scale. The concept of 

‘micropatterning’ of vegetation was introduced in the mid-1980s (Ohsawa, 1984) but the 

method did not compare vegetation patterns within different environments and differences 

between vegetation species (Ohsawa, 1984). Some studies, e.g. Berg et al. (1997) discussed 

how vegetation patchiness and fragmentation can be affected by external influences such as 

herbivore grazing. This, however, has not been quantified at very small spatial scales (Berg et 

al., 1997).  

 

Understanding how vegetation patches form requires integration of both ecological concepts 

such as management and environment with numerical analysis of the patch metrics (Kent et 

al., 1997). Vegetation research has often focused on vegetation community composition 

which can respond rapidly to anthropogenic disturbance (Watt, 1947; van der Maarel, 1996). 

However, there have been fewer studies on the interactions between the individual species 

that collectively form the community and their environment (Bar Massada et al., 2012).  
 

2.4.1  Comparison between vegetation assessed via within-quadrat and survey methods 

(Objective 1) 

 

Traditional vegetation surveys use percentage cover of all vegetation species to classify such 

vegetation into a community. This chapter shows that the use of dominant and subdominant 

data can provide a reliable understanding and indicative list of vegetation present and their 

respective community. NMDS results of the three data sets (percentage abundance, dominant 

and subdominant) show similarities in species distribution in ordination space along both axes 
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1 and axes 2. This similarity in R2 results from Procrustes rotation and linear models show 

that surveys of dominant and subdominant vegetation species correlate well with abundance 

data and can still give reliable indication of vegetation community composition. This method 

was reported to also allow objective measure of the number of dominant and subdominant 

vegetation species since such species tend to be responsible for the majority of community 

make-up (Kikvidze and Ohsawa, 2002). The strong agreement between the 

dominant/subdominant approach to vegetation survey at 10cm scale with the traditional whole 

quadrat 1m scale increases the confidence in the methods used for the patch metrics, which 

rely on vegetation surveyed via the dominant/subdominant approach. 

 

2.4.2  Relationship of dominant, subdominant and percent cover estimates at each 

quadrat with the environment (Objective 2) 

 

Previous research (Sanderson et al., 1995a) indicated that the differences in the actual 

numbers of livestock across the Ashtrees Dipper heft as a whole (in the early 1990’s) did not 

have observable effects on the vegetation and thus sheep numbers were not used as a 

predictor. Furthermore, no data were available on the numbers of sheep active on for example 

the higher elevation areas of the heft compared to lower altitudes. Instead, sheep tracks were 

used as a surrogate for sheep grazing activity or the presence of sheep in an area. Soil water 

content and altitude significantly affected vegetation communities irrespective of whether 

cover estimates were derived from percentage abundance surveys, or dominant/subdominant 

data. The RDA plot for percentage cover shows correlation between altitude and soil water, 

but this is much weaker for the dominant/subdominant survey. This difference could be 

attributed to the fact that percentage cover data includes all species records (about 51 species) 

as opposed to filtering of the species in dominant (41 species) and subdominant (51) 

vegetation survey types. Both the percentage cover and dominant/subdominant surveys 

showed strong, but negatively correlated, effects from slope and soil water. This probably 

reflects flat areas tending to be more waterlogged, compared to faster water run-off on steep 

slopes (Klausmeier, 1999). This accords with other more general studies in which slope has 

been reported to have a strong effect on both the community composition and spatial pattern 

of vegetation patches formed (Watt, 1947; Coulson et al., 1990; Klausmeier, 1999). The 

multivariate analyses suggest that soil pH also had strong effects on the community 

composition for both sampling techniques, which accords with a large body of previous 

literature (Miles, 1981; Goldberg, 1985; Sims, 1986; van Strien et al., 1991; Dodd et al., 

1994; Pärtel et al., 2004; Smith and Wyatt, 2007; Eskildsen et al., 2013). However, soil pH 
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was not (inversely) related to soil water content as might have been expected. While soils at 

Ashtrees are relatively acidic, the situation has been made more complex by the inclusion of 

drainage ditches in some areas and attempts to improve the vegetation at lower elevations.  

 

2.4.3  Environmental and management factors affecting the patch metrics of the 

quadrats (Objective 3) 

 

2.4.3.1  Overall patch metrics 

The number of patches formed significantly varied between dominant and subdominant 

vegetation types rather than between block-forming and opportunistic types. The lack of 

significance in the latter comparison could be because of the qualitative definition of these 

two broad vegetation types, and that a more precise definition of growth forms is required, 

possibly based on published vegetation traits. It was expected that block-forming species 

when a dominant cover type would produce fewer patches than opportunistic species when 

dominant. However, results show that both growth strategies produced similar mean numbers 

of patches in dominant species. The same is observed between block-formers and opportunists 

when species were subdominant. The major difference is between dominant and subdominant 

vegetation, where dominant species produce smaller number of patches than subdominant 

species, irrespective of growth strategy. However, whilst block-forming and opportunistic 

species can be considered as ‘traits’ applicable to individual species, the same is not true of 

the cover type, dominant versus subdominant. Some species were mainly recorded as 

dominants in a quadrat (e.g. Hypnum cupressiforme), others invariably recorded as sub-

dominants (e.g. Lolium perenne, Poa trivialis) whilst some could be either dominant or 

subdominant, depending on their location within an individual quadrat (e.g. Molinia caerulea, 

Carex nigra). Nevertheless, those species that are primarily found dominant in a quadrat are 

more likely to be block-formers, whilst those primarily sub-dominant are more likely to be 

opportunists.  

 

Dominant opportunistic species grow in significantly smaller patch areas than subdominant 

opportunistic species. This is because the opportunistic trait if observed in subdominant 

species forces them to grow within dominant vegetation as well as in any ‘available’ space 

within and around dominant vegetation (Addicott et al., 1987; Grime, 1988). If an area of 

space is dominated by a block former of complex shape then one would expect any other 

(subdominant) block-formers in that area to produce relatively small sized patches. 
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Opportunists are adapted to colonising small areas, e.g. within the ‘matrix’ of the main block-

former, or around the edges of block-formers (Klausmeier, 1999; van der Maarel, 1996; Bar 

Massada et al., 2012). Therefore, in some situations, the areas of opportunists might actually 

be greater than that of subdominant block-formers. This type of process might underlie the 

results shown in Figs 2.17 and Fig. 2.18 in the results where patch area and shape were both 

significantly affected by cover type, growth strategy and the interaction between the two. For 

example, dominant block-formers might produce complex shapes (SI >>> 1; Fig. 2.22a) while 

subdominant block-formers produce comparatively simpler shapes (SI > 1; Fig. 2.22b) 

possibly because of lack of space and resources. Conversely, subdominant opportunists might 

grow in more complex shapes (SI  >1; Fig. 2.22d) than dominant opportunists (SI ~ 1; Fig. 

2.22c).  

 

While this research set out to understand vegetation patch structure and any possible 

relationships with the primary environmental factors at Ashtrees, additional underlying 

features of the patch structure might arise from species  phenology, functional traits, 

competitive abilities, regenerative strategies and seed dispersal. These species attributes have 

not been considered as they are out of scope of this research’s aims.  However, different plant 

species operate at different levels especially when taking into account the life history and the 

below-ground processes (Grime et al., 1988). For example, since upland environments can be 

exposed to harsh environmental conditions, regeneration capabilities (e.g. seedling, offspring 

persistence and growth), vegetation expansion and propensity to fragmentation of plants can 

be important factors that determine different levels of patchiness expressed by different 

species (Grime et al., 1988). These differences in expansion and fragmentation depend on 

both the characteristics of the individual plant species, and the environment in which it grows. 

For example, when conditions are favourable species form differing levels of root and 

rhizome networks that can very well be the main driver of patch composition and structure 

(Grime et al., 1988).  
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 Dominant Subdominant 

Block-formers 

a) Large area, very complex 

shapes (SI>>>1) 

 

b) Medium area, complex 

shapes (SI>1) 

 

Opportunists 

c) Small area, simple shapes (SI 

~ 1) 

 

d) Medium area, complex 

shapes (SI>1) 

 

1m x 1m   

Quadrat; 

white areas 

occupied by 

other species 

 

Fig. 2. 22 Pictorial comparison of the difference of area and shape between different cover types and growth strategies of 

vegetation species (compare with Fig 2.17 and 2.18 in the Results). 
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2.4.3.2  Multivariate GLM analysis of patch metrics for all species in relation to the 

environment 

Overall multivariate GLM analysis for dominant species showed that there were significant 

influences between individual species’ number of patches and the environmental drivers. 

Patch area was correlated with soil pH and soil water content but not with slope. Subdominant 

vegetation species and their patch metrics showed higher correlation with environmental 

variables than dominant vegetation. It is interesting that while the number of patches formed 

by subdominant species is not statistically significant in their correlation to the altitude, the 

area and the shape of the patches are. This is probably because of limitations in resources and 

competition between the dominant species occupying the same area (Addicott et al., 1987; 

Grime, 1988; Suding et al., 2008).  

 

The change in vegetation composition, structure, dynamics and pattern is evident in 

differences between lowlands and uplands, and these changes can be gradual or discontinuous 

over space (Ohsawa, 1984; Bruun et al., 2006). While plant growth and development depends 

on numerous different environmental factors, altitude has major effects on number, area and 

shape of vegetation patches (Bruun et al., 2006). For example, lowland grasslands, heathlands 

and moorlands can show substantial differences in structure and pattern when compared to 

those distributed in upland environments (Bruun et al., 2006). In general, upland species grow 

in a seemingly narrower range of environmental conditions (such as soil pH, soil water etc.) 

than lowland species. However, vegetation in upland areas can adapt by shifting their 

distribution when environmental conditions change (Pateman and Hodgson, 2012). Research 

in the UK suggested that changes in climate and environmental resources, if exceeded a 

tolerance threshold, especially for grassland and heath vegetation, can substantially change in 

composition when temperature, rainfall and soil pH change (Ross et al., 2012). Many upland 

species are classified as ‘stress-tolerators’ (S) or intermediate between ‘stress-tolerators’ and 

‘competitors’ (SC) under Grime, (1988) Competitor, Stress-Tolerator, Ruderal (CSR) system, 

indicating that competition does indeed occur between upland species. This competition may 

result in larger patches of more complex shapes in those species that dominate or outcompete 

others for space (Critchley et al., 2002; Bruun et al., 2006).  

 

At Ashtrees Dipper soil pH becomes less acidic with increased altitude, which may explain 

why the soil pH and altitude show opposing trends for dominant/subdominant patch metrics. 

While soil pH might not be the sole driver of patch characteristics, the trends observed 
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indicate that there is an underlying influence by soil pH. This is especially true on areas of 

dominant species. Increased soil pH can decrease the patch area that species form but 

increases the number of fragmented patches across the Ashtrees field. This trend might be 

site-specific but has been reported to show similar trends in changes in patches at landscape-

scale (Addicott et al., 1987). The mean shape index of species when dominant does not seem 

to be affected by soil pH, even when the area for these species decreases (pers. obs.). Soil pH, 

unless exposed to major climatic, management or physical disturbance, does not alter over 

short time periods.  

 

Altitude increases the importance of slope and aspect in determining vegetation growth and 

dynamic due to the different levels of solar radiation received by the plants (Bennie et al., 

2008). Slope, together with microclimatic pressures, influences plant dominance and 

distribution (Badano et al., 2005). Topographic features can provide refugia and spatial 

variability that favour expansion of habitat range for certain species of plants (Badano et al., 

2005; Bennie et al., 2006; Bennie et al., 2008). The relationship between slope and vegetation 

dynamics is site-specific and therefore it can be difficult to predict the effects on patch metrics 

in different habitats (Bennie et al., 2008). At Ashtrees the results indicated that subdominant 

patches are more affected by slope than dominant species (Table 2.8 to 2.13, Figs. 2.14 to 

2.15). Furthermore, both patch shape became less complex, and overall patch area decreased 

with increased slope, which suggests that both dominant and subdominant species become 

more fragmented with increase in slope (Table 2.8 and Table 2.11). The underlying process 

behind this effect is unclear. 

 

Surface water runoff and groundwater are affected by meteorology, topology and soil type 

(Wigmosta et al., 2002). Different species will be better adapted to wet or dry soils, which 

may, in turn, affect which ones become dominant or subdominant in a given location because 

of interspecific competition. In areas with both high soil water content and high altitude 

vegetation patches become larger and more complex (Klausmeier, 1999). The results show 

that at the Ashtrees Dipper, soil water content has a positive correlation with all overall patch 

metrics and shows some correlation with specific vegetation species, namely Eriophorum 

vaginatum (from the selected species in this research). This effect might be driven by other 

species present at the study site that were not selected as part of this study.  
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2.4.3.3  Sheep tracks and ditches 

The number of patches formed by dominant/subdominant vegetation species increased when 

sheep tracks occurred within 10m of the quadrat. In addition, species when dominant had 

increased shape complexity when in close proximity to sheep tracks. These two findings 

suggest that high grazing pressure on both dominant and subdominant species increases 

vegetation fragmentation (Thomas, 1959; Plumptre, 1994; Maron and Crone, 2006; Stewart 

and Pullin, 2006). Species near sheep tracks might be less palatable to sheep and more 

resistant to trampling, which might also increase shape complexity of the nearby vegetation 

(Maron and Crone, 2006).  Furthermore, increases in pattern complexity has been reported as 

an ‘evasion’ strategy to optimise chances of survival for some species in areas of high grazing 

effort (Fisher et al., 1996). This ‘evasion’ has been observed in some of the more palatable 

species (e.g. Caluna vulgaris, Nardus stricta) allowing other species such as Agrostis 

capillaris, Deschampsia flexuosa. Festuca rubra etc. to grow in proximity to sheep tracks 

while the palatable species grow further away from the tracks (Fenton, 1937; Krahulec et al., 

2001) 

 

Drainage ditches are no longer actively dug across large areas of the UK uplands but extant 

drainage networks still affect vegetation growth (Holden et al., 2004; Ramchunder et al., 

2009). However, there were no consistent associations between proximity to drainage ditches 

and patch metrics at Ashtrees. The presence of ditches reduces the abundance of mosses and 

unpalatable grasses such as Nardus stricta (Coulson et al., 1990; Ramchunder et al., 2009). 

The overall number of patches formed by dominating species decreased when in close 

proximity to a ditch (Table 2.14 and Table 2.17); the mechanisms behind this are unclear, but 

might arise from lower soil water favouring other species.  

 

2.4.4 Interpolating patch metrics to the whole of Ashtrees Dipper (Objective 4) 

 

Subdominant vegetation produce more patches than dominant vegetation species (Fig. 2.19 

and Appendix 1.2). This could be as result of increased fragmentation of subdominant 

vegetation in areas of the heft where dominant vegetation produces large patches. 

Subdominant vegetation will grow in small spaces within or around dominant vegetation 

patches to maximise space and resource utilisation (Suding et al., 2008). Species at Ashtrees 

such as Juncus species, Potentilla erecta and Vaccinium myrtillus that were less frequently 

classified as dominants or subdominants tended to form very small number of patches. For 
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example, J. effusus and J. squarrosus, species of different ecological requirements, occurred 

together in the northern part of the field (Appendix 1.2) and this occurrence could possibly be 

associated with small streams (pers. obs.). When species are subdominant they were more 

widely distributed across Ashtrees Dipper, and formed slightly higher number of patches. 

Conversely, when species are dominant they form larger and more complex areas (Section 

2.4.3.2).  
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2.5  Conclusion 
 

 

This research indicates that dominant and subdominant vegetation sub-quadrat data is 

comparable with that obtained via traditional survey methods of percentage abundance when 

scaled to the whole-quadrat. Whilst the dominant/subdominant method does not record rarer 

species within a quadrat, it nevertheless provides a robust survey technique that also provides 

insights into vegetation patch structure.   

 

RDA and multivariate GLM results show environmental conditions (soil pH, soil water 

content, slope and altitude) have a significant effect on vegetation, irrespective of their cover 

type (dominant/subdominant) or growth strategy (block-formers/opportunists). Comparison 

between vegetation cover type and growth strategy resulted in a significance in both patches 

area and shape formed by block-forming and opportunistic dominant and subdominant 

vegetation species. Sheep paths show a more limited influence on vegetation patch structure, 

affecting number, area and shape of patches of dominating species more than subdominant 

vegetation. The presence of drainage ditches showed no substantial influence on vegetation of 

either cover type, only affecting number of patches by dominant vegetation, and certain 

individual species. Patch metrics of dominant and subdominant vegetation, and associated 

environmental data, can be interpolated from the 10cm or quadrat scale to the whole field to 

aid interpretation.  
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3. Generalisable methods to classify vegetation using 
‘pseudoquadrats’1 

 

 
1 Accepted and presented as a peer-reviewed conference paper at the 9th International Congress on 
Environmental Modelling and Software at Colorado, USA, June 2018.  
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Graphical Abstract 
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Abstract 
 

 

Many countries have developed phytosociological classifications of their vegetation. Can 

methods be developed for any classification system to allocate newly surveyed quadrats into 

the most likely vegetation community? Algorithms or software already exist to allocate quadrats 

for some national classifications, but these are not generalisable to any system. This chapter 

tests the robustness of generalisable approaches to allocate quadrats to an existing 

phytosociological classification, using the British National Vegetation Classification (NVC) as 

a case study. 

 

Vegetation from 167 quadrats from a survey at Ashtrees Dipper farm in Northumberland, UK, 

was used for this case study. The vegetation quadrats were classified using two-way indicator 

species analysis (TWINSPAN) and the resultant groups allocated to communities within the 

NVC using the NVC-specific 'MAVIS' software. These were considered the most accurate 

description of the observed communities. Sets of 25 artificial 'pseudoquadrats' for each of these 

communities were computer-generated based on either the published lists of species in the 

relevant NVC community descriptions or from the list of species actually surveyed at the 

Ashtrees Dipper site. Distance in ordination space of observed quadrats from pseudoquadrats 

was used to predict community type. 

 

Eleven sub-communities were observed at the site identified via TWINSPAN+MAVIS.  

Confusion matrices to compare predicted vs observed gave 20% accuracy for pseudoquadrats 

created from the literature, and 30% for pseudoquadrats generated from the subset of species 

known to occur at the site. While the results of accuracy are still fairly low, overall results 

demonstrate that the use of pseudoquadrats provides a flexible, generalisable means to 

objectively allocate vegetation quadrats into any extant classification system.  
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3.1  Introduction 
 

 

3.1.1 Phytosociology and community classification 

Phytosociological vegetation classification systems have been developed in numerous countries 

to describe semi-natural and natural vegetation communities or relevés. These include the 

regional European Vegetation Archive (EVA) currently being developed for Europe and 

neighbouring countries (EVS-European Vegetation Survey, 2018), the Irish Vegetation 

Classification (IVC: Biodiversity Ireland, 2018), the United States National Vegetation 

Classification (USNVC, 2016), the Canadian National Vegetation Classification (CNVC; 

Canadian National Vegetation Classification, 2013), the New Zealand National Vegetation 

Survey Databank (NVS; Landcare Research, 2016), and the Great Britain National Vegetation 

Classification (NVC – Rodwell, 1998a;  Rodwell, 1998b; Rodwell, 1998c; Rodwell, 2006).  

There are broad similarities in the structure of some of these systems, for example hierarchical 

classes of different vegetation reléves into 'communities' and 'sub-communities' (British NVC) 

or broader 8-level 'formations' through to 'associations' (USNVC; CNVC).  Some countries 

have collaborated to produce standard methods for vegetation database management, e.g. 

TurboVeg recommended by the EVS and International Association for Vegetation Science 

(Hennekens and Schaminée, 2001). 

 

Due to the different range of habitats and ecosystems encompassed by these vegetation 

classifications, they differ in both their recommended field survey methods, and in the 

techniques used to allocate quadrats to vegetation classes.  For example, the British NVC 

recommends a minimum of five quadrats per relevé, precluding the use of many historical 

datasets where vegetation was surveyed on a per-quadrat level, whereas the Irish IVC can use 

single quadrats.  Some classifications do not provide formal methods to allocate new quadrats 

to classes, whilst software has been developed for some national systems, e.g. ERICA for the 

IVC.  The British NVC is derived from a two-way indicator species analysis (TWINSPAN, 

(Hill, 1979), and the resultant published NVC handbooks provide paper-based keys, analogous 

to binomial taxonomic keys, to allocate quadrats to communities. To ease classification 

computer-based methods to allocate field quadrats have been developed including MATCH 

(Malloch, 1998), TABLEFIT (Hill, 1989; Dodd et al., 1994; CEH, 2014) and most recently the 

Modular Analysis of Vegetation Information System (MAVIS; Smart et al., 2016). 
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Whilst such computer-based systems have been shown to be invaluable aids for vegetation 

scientists, several problems remain.  First, their design may preclude the allocation of some 

historical vegetation records within a national classification due to differences in survey 

methods, for example the need for a recommended minimum of five random quadrats per relevé 

for the British NVC.  Quadrats may have been placed at regular intervals along transects, across 

survey grids, or at random, none of which accords with standard NVC survey methods. 

Subsequently ecologists, especially when utilising published data from historical surveys, may 

wish to incorporate such quadrats into a national system and therefore need to be able to resolve 

differences in survey methods. Second, such computer-based systems are not available for 

many national systems, and even where software is available, outputs are usually restricted to 

tables that indicate the highest predicted vegetation classes.  In the real world, semi-natural and 

natural vegetation generally exists in a continuum, therefore it would be useful to be able 

visualise this continuum in an ordination diagram that can be readily interpreted by practicing 

vegetation scientists, whilst still obtaining the advantages of a national classification system.  

Such a system has to be relatively simple, so that it could be generalised to any country's 

vegetation classification. 

 

3.1.2  The UK National Vegetation Classification (NVC) 

Vegetation classifications should provide a means to identify similarities (or differences) 

between vegetation species that are spatially separated on both small- and large-scales (Dodd 

et al., 1994). The UK NVC is the mostly widely used phytosociological classification system 

in the UK (Hearn et al., 2011). The NVC’s comprehensive analysis of vegetation 

communities and their species composition aids interpretation of relationships between 

climatic, physical and biotic factors in different vegetation-dominated environments 

(Rodwell, 2006). The NVC communities and their distribution were published in a series of 

‘British Plant Communities’ books (Rodwell, 1998a; Rodwell, 1998b, Rodwell, 1998c). 

Scientists have used this extensive floristic database in different analytical and/or 

computational techniques for environmental conservation and management (Morecroft et al., 

2009; Bradter et al., 2011). This chapter uses vegetation subcommunity data from mires and 

heaths (volume 2; Rodwell, 1998b) and grasslands and montane communities (volume 3; 

Rodwell, 1998c).  
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3.1.3  Modular Analysis of Vegetation Information Systems (MAVIS) 

The most modern computerised vegetation classification for the UK NVC is ‘Modular 

Analysis of Vegetation Information System (MAVIS), developed by DART Computing and 

designed by Simon Smart at the Centre for Ecology & Hydrology (CEH; Smart et al., 2016). 

MAVIS is a successor to MATCH (Malloch, 1998) and TABLEFIT (Hill, 1993). The 

software provides an objective classification of vegetation data through the matching of 

vegetation communities classified by the NVC, according to either abundance or constancy 

values (Dodd et al., 1994; Smart et al., 2016). A weakness of precursors to MAVIS is that 

they were dependent on the availability of constancy values (I-V) of each species in the data 

sample (Dodd et al., 1994).  

 

MAVIS is based on the Countryside Vegetation System (CVS; Bunce et al., 1999) and the 

National Vegetation Classification (NVC; Smart et al., 2016). The Countryside Vegetation 

System is based on a series of surveys to provide a broad classification of vegetation 

environments, that divides the British landscape into a number of land classes that also 

include hedgerows, stream-sides and road verges (Blain, 2009; Smart et al., 2016). Unlike 

MATCH, MAVIS allows input of data of species lists with either constancy or abundance 

values as opposed to solely constancy values (Smart et al., 2016). Even though constancy 

values were previously used in MATCH as the main input to differentiate plant communities, 

the use of % abundance of each species allows a more accurate and realistic description of 

vegetation community composition (Dodd et al.,1994). The resultant outputs (from MAVIS) 

provide matching coefficients between the input data and the communities defined in the 

National Vegetation Community (Dodd et al., 1994, Smart et al., 2016). In addition, MAVIS 

also outputs results of (i) Ellenberg and (ii) Competitor, Stress-tolerators and Ruderal scores 

associated with input species (Smart et al., 2016) as well as Ellenberg scores based on the 

proportion of each species found within a community (Morecroft et al., 2009, Smart et al., 

2016). 

 

Abiotic factors such as soil pH, soil fertility, wetness and light requirements and altitude 

(Malik and Husain, 2006), as well as interactions with neighbouring plant species (Rodwell, 

1998a; Rodwell, 1998b, Rodwell, 1998c; Smart et al., 2016) all affect the observed 

community composition.  
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3.1.4  Phytosociological Ordination techniques  

Ordination techniques have been widely used to simplify complex multivariate data, such as 

samples by species tables, into a low number of ordination axes that summarise the main 

patterns in the data. There has recently been development of new multi-species analyses, such 

as model-based methods (Warton et al., 2015) to include different error distributions (e.g. 

binomial for presence/absence, Poisson for count data, and Gaussian for continuous data), or 

Bayesian methods to account for imperfect detection in surveys (Warton et al., 2015; 

Beissinger et al., 2016; Warton et al., 2016). However, some of these newer methods are more 

expensive to implement, for example imperfect detection techniques require multiple site 

visits and are probably less essential for sessile organisms such as vegetation (Warton et al., 

2016). Most vegetation ecologists therefore still mainly use standard ‘algorithmic’ ordination 

techniques, such as principal components analysis (PCA), correspondence analysis (CA), 

detrended correspondence analysis (DCA) and non-metric multidimensional scaling (NMDS). 

None of these methods can be used for all multivariate datasets, as their underlying methods 

and assumptions differ. For example, PCA assumes a linear relationship between the derived 

axes and the abundance of the species, whereas CA and DCA assume unimodal relationships 

(Ter Braak, 1987), which are sometime more suited for ‘sparse’ species datasets where a few 

common species predominate, and there are many rare species. In general, the choice between 

using linear (e.g. PCA) or unimodal (CA/DCA) ordination techniques can be based on the 

length of the gradient seen in the data (i.e. length of the first ordination axis; see Lepš and 

Šmilauer, 2003; Jongman et al., 1987 and Section 1.3). This choice of ordination can also 

depend on the type of data and the variation within the data. In extreme cases, where the raw 

data is dominanted by a few outlier species, some ordination methods do not provide 

meaningful visualisation, or transformations of the raw data are required before analysis (see 

Legendre and Legendre, 2014).  

One problem that can arise with both PCA and CA is the so-called ‘horseshoe effect’ where 

samples relatively dissimilar in their species composition can be placed relatively close 

together in ordination space, due to an artefact causing samples to be displayed in an arch. 

DCA tries to correct this artefact by splitting the first ordination axis into segments, and 

detrending the samples within each segment to remove the arch. NMDS is computed from a 

similarity matrix of the original species data, typically the Bray-Curtis similarity index, and 

re-projects samples and species onto a pre-defined number of axes (usually two). Irrespective 

of the ordination method used, new samples, sometimes referred to as ‘passive samples’, that 

were not included in the original ordination, can be placed into the extant ordination space 
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without altering the original configuration of samples (Sanderson and Rushton, 1995). 

Ordination is often used in conjunction with classification techniques to group together 

related samples (and species) to aid interpretation. DCA and NMDS provided the most 

visually promising ordination plots for the vegetation data described in this chapter, and two-

way indicator species analysis (TWINSPAN – Hill 1979) was used as the classification 

technique, as this was used in the original development of the NVC.  

 

3.1.5  Aims and objectives 

The overall aim of this chapter was to test the robustness of several generalisable approaches 

to allocate quadrats to an existing phytosociological classification, using the British National 

Vegetation Classification (NVC) as a case study. 

 

The specific objectives were to: 

1) produce an initial baseline NVC classification of individual quadrats at Ashtrees Dipper. 

This uses multivariate TWINSPAN classification followed by MAVIS to provide the most 

reliable “observed” allocation of these quadrats to an NVC community (Objective 1)  

2) develop a method to generate artificial vegetation quadrats (‘pseudoquadrats’) for 

subsequent analysis. These pseudoquadrats are based on the species lists for each community 

identified in Objective 1, for either the species in the NVC handbooks (‘literature data’) or a 

more restricted species list based on those observed at Ashtrees. Both sets of pseudoquadrats 

can then be analysed via conventional ordination methods to provide a visual display of the 

NVCs that occur at the site. (Objective 2) 

3) allocate field quadrat data as passive samples into these ordinations and calculate predicted 

NVC membership and compare these with “observed” NVC memberships identified in 

Objective 1.  

4) use interpolation to predict communities at across the whole of Ashtrees Dipper heft 

(Objective 4) 
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3.2  Methodology 
 

 

3.2.1  Produce an initial “baseline” for NVC classification (Objective 1) 

Initial classification of the vegetation was done using MAVIS using abundance data gathered 

from Ashtrees in 1991 (167 1m2 quadrats). This was done to try and produce the most 

accurate ‘baseline’ classification of the NVC communities for all the quadrats at the site 

against which to compare the new pseudoquadrat techniques, since MAVIS is the current 

classification software used in the UK (Smart et al., 2016). However, MAVIS requires a 

minimum of 5 quadrats to produce the most accurate classifications (ideally 4m2 quadrats) 

rather than single 1m2 quadrats. Therefore, an initial classification of all 167 quadrats was 

performed using Two-way Indicator Species Analysis (TWINSPAN) hierarchical 

classification technique (Hill, 1979; Roleček et al., 2009). TWINSPAN was chosen as this is 

the classification method used during the original development of the British NVC. 

TWINSPAN allocated the 167 quadrats to 8 clusters using Whittaker dissimilarity index. 

Whittaker dissimilarity index provided the best clustering, with no one quadrat having less 

that 5 quadrats in each cluster. The quadrats in these 8 clusters were then inputted into 

MAVIS and the predicted communities and sub-communities derived. In cases when MAVIS 

classified quadrats into different communities but with identical matching coefficients both 

communities were allocated. This resulted in eleven sub-communities identified to occur at 

Ashtrees Dipper. These eleven sub-communities were then used as the subset to create and 

test the generalisable pseudoquadrat methods.  
 

3.2.2 Generate ‘pseudoquadrats’ from literature and survey data (Objective 2) 

The method for developing pseudoquadrat techniques was originally described in Sanderson 

et al. (1995a). The new methods developed in this research provide a more readily 

generalisable to classify vegetation quadrats within any country’s classification system. Two 

complementary approaches were used to generate the pseudoquadrats for a sub-community. 

The first method was based on the entire set of species published in the UK NVC handbooks 

for a sub-community (henceforth denoted LIT), whilst the second was restricted to utilise only 

the set of species recorded in the Ashtrees field survey (ASH).  

 

Twenty-five pseudoquadrats were generated for each sub-community (for both LIT and 

ASH), with the number of species within a pseudoquadrat being determined by two different 
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randomisation methods. In the LIT method the number of species within each pseudoquadrat 

was derived by randomly selecting a number between the published minimum and maximum 

expected number of species per quadrat. For the ASH approach this was based on the 

minimum and maximum number of species per quadrat recorded across all the field quadrats 

at Ashtrees Dipper.  

 

In the LIT method the species were randomly selected from all the species recorded within 

that sub-community. . The species percentage cover abundance reported in the NVC 

handbooks for that sub-community was then allocated to the species. In the ASH method, the 

species were randomly selected from the list of species surveyed at Ashtrees. The randomly 

selected species was allocated the same percentage cover abundance value that it had in the 

survey. The random selection (without replacement) of species was repeated until the total 

number of species in a pseudoquadrat reached that initially drawn. This randomisation process 

was performed for both the LIT and ASH methods. The 275 pseudoquadrats (11 sub-

communities, 25 pseudoquadrats each) were ordinated by detrended correspondence analysis 

(DCA – Hill, 1979) since DCA provided a clearer distribution of pseudoquadrats in ordination 

space. The mean centroids and standard errors of each sub-community for both the LIT and 

ASH quadrats were visualised in ordination space.  

 

Fig. 3. 1 Graphical summary of the randomisation procedure to generate LIT and ASH pseudoquadrats. 
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3.2.3  Allocate and predict field quadrat data to ordinations (Objective 3) 

Field quadrats were placed within the both the pseudoquadrat DCA LIT and DCA ASH 

ordination spaces as 'passive samples'. The positions of the passive samples were based on the 

pseudoquadrat ordination scores, and passive samples (field quadrats) had no effect on the 

original ordination (Hill, 1979; Sanderson et al., 1995b). The positions of passive samples are 

calculated from the species scores of the ‘real’ quadrat data; this ensures that the scores from 

the ‘real’ quadrat ordination can be re-projected into the original ordination space that also 

included the ‘pseudoquadrat’ centroids (see Jongmann et al. 1991). The distance of the field 

quadrats from each sub-community mean centroid was calculated. It was assumed that the 

shorter the Euclidean distance between a field quadrat and a mean centroid, the higher the 

probability that the field quadrat belonged to that sub-community. The following equation, 

modified from that in Sanderson et al., (1995a), was used to determine the probability that a 

field quadrat belonged to a sub-community: 

!! = 1 − %&
∑ %("
#$%

	100 

where,  

pi = probability that field quadrat belongs to community i  

d = distance of field quadrat to mean centroid of community  

k = total number of vegetation communities  

 

All analyses were undertaken in R (Version 3.4.2, Vienna, Austria) plus the vegan (Oksanen, 

2015) and TwinspanR packages (Roleček et al., 2009). To assess the reliability of the methods 

developed as well as the overall reliability of MAVIS, two confusion matrices were produced:  

i) MAVIS vs LIT  

ii) MAVIS vs. ASH  

Confusion matrices are tables that are used to calculate measurements of performance of new 

or developed techniques by comparing observed and predicted values (Narkhede, 2018). 

These tables operate by comparing ‘agreement’ between rows and columns. In this case each 

column is a community classification produced by MAVIS while each row is a community 

classification obtained from each of LIT or ASH ordination methods. Cohen’s Kappa values 

were used as a measure of accuracy of the LIT/ASH method with the ‘baseline’ classification. 
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3.2.3 Map community distributions across Ashtrees Dipper (Objective 4) 

The classification of each quadrat using the ASH method was then used to interpolate the 

vegetation communities across the Ashtrees field. Inverse distance weighting (IDW) 

interpolation method was used and performed using ArcGIS (ESRI, 2015). A series of 11 

interpolation maps was obtained, one for each identified vegetation community.  
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3.3  Results 
 

 

3.3.1  Produce an initial “baseline” for NVC classification (Objective 1) 

TWINSPAN hierarchical classification resulted in 8 clusters (Fig. 3.2). Classification of these 

8 clusters by MAVIS resulted in 11 possible sub-communities. This is because the 

classification of three TWINSPAN clusters resulted in an additional 3 sub-communities in 

which scores were identical. The eleven sub-communities derived from TWINSPAN + 

MAVIS are summarised in Table 3.1.   

 

 

 

Fig. 3. 2 Hierarchical cluster plot for NMDS analysis. Clusters were produced using TWINSPAN hierarchical 

analysis in R (R Core Team, 2013) 

 . 
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Table 3. 1 TWINSPAN cluster number, community and sub-community codes and name of each community and 

sub-community and the number of quadrats per sub-community found at Ashtrees. 

Cluster Community 
code Community type 

Sub-
community 

code 
Sub-community type 

Matching 
Coefficient by 

MAVIS 

1 U2 Deschampsia 
flexuosa grassland U2b Vaccinium myrtillus 

sub-community 60.03% 

1 U6 
Juncus squarrosus-

Festuca ovina 
grassland 

U6b 

Carex nigra – 
Calypogeia 

trichomanis sub-
community 

60.03% 

2 M15 
Scripus cespitosus-
Erica tetralix wet 

heath 
M15d Vaccinium myrtillus 

sub-community 51.25% 

3 H12 
Calluna vulgaris-

Vaccinium myrtillus 
heath 

H12a Calluna vulgaris sub-
community 51.84% 

4 M19 

Calluna vulgaris-
Eriophorum 

vaginatum blanket 
mire 

M19a Erica tetralix sub-
community 54.87% 

5 U5 
Nardus stricta-
Galium saxatile 

grassland 
U5a Species-poor sub-

community 59.36% 

6 

U4 

Festuca ovina-
Agrostis capillaris-

Galium saxatile 
grassland 

U4b 
Holcus lanatus – 

trifolium repens sub-
community 

47.96% 

6 U4d 
Luzula multiflora – 

Rhytidiadelphus loreus 
sub-community 

47.96% 

7 MG10 
Holcus lanatus-

Juncus effusus rush 
pasture 

MG10a Typical sub-
community 47.34% 

7 MG6 
Lolium perenne-

Cynosurus cristatus 
grassland 

MG6b 
Anthoxanthum 
odoratum sub-

community 
47.34% 

8 H9 
Calluna vulgaris-

Deschampsia 
flexuosa heath 

H9e Molinia caerulea sub-
community 40.00% 

H: Heaths 
M: Mires 
MG: Mesotrophic grasslands 
U: Calcifugous grasslands/montane communities 
Rodwell, J. S. (1998a). British Plant Communities Volume 2 Mires and heaths. Cambridge, UK, Cambridge 
University Press. 
Rodwell, J. S. (1998b). British Plant Communities Volume 3 Grassland and montane communities. 
Cambridge, UK, Cambridge University Press. 

 

The highest matching cluster by MAVIS was cluster 1 matching at 60%, classifying this set of 

quadrats as U2b and U6b sub-community. Cluster 5 was also a fairly well-defined sub-

community (U5a), scoring 59.36% matching with NVC data. This was followed by cluster 4, 

classifying the quadrat set within M19a sub-community. The remaining clusters resulted in 
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low matching scores with NVC data within the MAVIS database. Clusters 6 and 7 resulted in 

two possible sub-communities. Cluster 6 was classified as either U4b or U4d sub-

communities while cluster 7 either a MG10a or MG6b sub-communities. The H9e sub-

community (cluster 8) was the least well-defined (matching coefficient = 40.00%). 

 

3.3.2 Generate pseudoquadrats from literature and surveyed data (Objective 2) 

Centroids of sub-communities for pseudoquadrats derived from the LIT and ASH methods are 

summarised in Figs. 3.3 and 3.4 respectively. In both ordinations DCA axis 1 represents a 

trend from the higher altitude, acid sub-communities (H and U) to mesotrophic grasslands 

(MG6b and MG10a). DCA axis 2 separated H12a Calluna vulgaris-Vaccinium myrtilis heath 

from the remaining acid grassland and heaths in the LIT method.  H12a is totally dominated 

by Calluna vulgaris which can represent over 90% of the vegetation cover (Rodwell, 1998a). 

H12a and M15d Scirpus cespitosus-Erica tetralix wet heath produced the most variable 

pseudoquadrats, as represented by their error bars especially on axis 2 for the LIT method 

(Fig. 3.3). There was little variability amongst the pseudoquadrats generated by the LIT 

method for U6b Juncus squarrosus-Festuca ovina grassland. In the ASH method (Fig. 3.4) 

axis 2 separates H9e from the rest of the sub-communities. H9e is the Molinia caerulea sub-

community within H9 Calluna- vulgaris-Deschampsia flexuosa heath, and is relatively 

species-poor. 
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Fig. 3. 3 DCA sub-community mean centroids ± standard error for pseudoquadrats generated from 

Ashtrees survey data (ASH) for each sub-community type. 

Fig. 3. 4 DCA sub-community mean centroids ± standard error for pseudoquadrats generated from 

literature (LIT) data for each sub-community type. 
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3.3.3 Allocate and predict field quadrat data to ordinations (Objective 3) 

It is clear from both the LIT and ASH methods (Figs. 3.5 and 3.6 respectively) that many field 

quadrats were intermediate in species composition, positioned between typical NVC sub-

community centroids as defined by the pseudoquadrats. The highest probabilities for each 

field quadrat were compared to the 'observed' classification (initial TWINSPAN + MAVIS 

classification). The confusion matrices created to show the numbers of correctly predicted 

quadrats (Tables 3.2 and 3.3) produced an overall accuracy of 20.36% for the LIT method, 

and 29.34% for the ASH method, and Kappa values of 0.109 and 0.178 respectively. 
 

 

Fig. 3. 5 Sub-community mean centroids ± standard error of pseudoquadrats derived from the NVC handbooks (LIT) in 

a detrended correspondence analysis.  Field quadrats from Ashtrees Dipper (points) displayed as passive samples. 
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Table 3. 2 Confusion matrix of number of quadrats of highest probability corresponding to same vegetation sub-

community classification.  Columns: observed communities (MAVIS); rows: predicted via LIT pseudoquadrats. 

  H12a H9e M15d M19a MG10a MG6b U2b U4b U4d U5a U6b % Total 

H12a 0 0 0 0 0 0 0 0 0 0 0 0.00 

H9e 0 0 0 0 0 0 0 0 0 0 0 0.00 

M15d 0 0 2 0 0 0 1 0 0 5 2 20.00 

M19a 8 18 3 11 2 0 4 0 1 5 1 20.75 

MG10a 0 0 0 0 0 0 0 0 0 0 0 0.00 

MG6b 0 0 0 0 0 0 0 0 0 0 0 0.00 

U2b 0 5 1 1 0 0 3 0 0 7 6 13.04 

U4b 0 0 0 0 1 3 4 0 0 2 0 0.00 

U4d 0 0 1 0 1 2 0 2 3 3 1 23.08 

U5a 0 1 1 0 2 0 5 1 0 8 1 42.11 

U6b 2 6 4 1 0 0 9 0 0 10 7 17.95 

% Total 0.00 0.00 16.67 84.62 0.00 0.00 11.54 0.00 75.00 20.00 38.89  
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Table 3. 3 Confusion matrix of number of quadrats of highest probability corresponding to same vegetation sub-

community classification.  Columns: observed communities (MAVIS); rows: predicted via ASH pseudoquadrats. 

  H12a H9e M15d M19a MG10a MG6b U2b U4b U4d U5a U6b % Total 

H12a 0 0 0 3 0  0 3 0 0 1 0 0.00 

H9e 9 21 2 5 1 0 5 0 0 5 1 42.86 

M15d 0 1 2 0 1 0 3 0 0 6 3 12.50 

M19a 0 0 0 1 0 0 0 0 0 0 0 100.00 

MG10a 0 0 0 0 0 0 0 0 0 0 0 0.00 

MG6b 0 0 0 0 1 4 3 0 0 3 0 36.36 

U2b 0 0 3 1 0 0 4 1 1 6 4 20.00 

U4b 0 0 1 0 2 1 1 2 3 3 3 12.50 

U4d 0 1 2 0 0 0 1 0 0 3 0 0.00 

U5a 1 7 1 3 1 0 6 0 0 13 5 35.14 

U6b 0 0 1 0 0 0 0 0 0 0 2 66.67 

% Total 0.00 70.00 16.67 7.69 0.00 80.00 15.38 66.67 0.00 32.50 11.11  

 

3.3.4 Map community distributions across Ashtrees Dipper (Objective 4) 

 

The resulting interpolation maps show the predicted distribution (via the ASH method) of 

these communities across the Ashtrees field.  The two mires/wet heath subcommuities 

differed in their distributions: M15d (Scripus cespitosus – Erica tetralix wet heath) was 

relatively common and predicted across much of the site (Fig. 3.7) whereas M19a (Erica 

tetralix subcommunity) was restricted to higher elevations at the southern edge of the site. 

Two mesotrophic grassland (MG) sub-communities occur at Ashtrees: MG6b (Anthoxanthum 

odoratum sub-community) and MG10a (Holco-Juncetum effusi typicum; Typical sub-

community). At Ashtrees, neither was abundant, although MG10a had overall lower 

predictions.   

 

Sub-communities U2b (Deschampsia flexuosa - Vaccinium myrtillus grassland) and U4b 

(Holcus lanatus – Trifolium repens grassland) ranged across the site, with altitude less 

important, although mainly in areas of low soil pH (see Appendix 1.2). The U4d sub-

community (Luzula multiflora – Rhytidiadelphus loreus grassland) had lower predicted 

abundance, mainly on the eastern side of the site. Similarly, the U6b sub-community (Carex 

nigra – Calypogeia trichomanis sub-community) was sparsely distributed and predicted to be 

localised to the higher altitudes at the southern edge of the site.  
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Fig. 3. 6 Interpolated maps of probability of occurrence for the 11 sub-communities occurring at Ashtrees. 
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3.3  Discussion 
 

 

This research has demonstrated that both published records and field datasets can be used to 

generate realised pseudoquadrats that can subsequently be used to allocate quadrats to 

existing vegetation classification frameworks. Both methods (LIT and ASH) have their 

strengths and weaknesses, and therefore choice of approach may depend on individual 

requirements or site characteristics.  

 

3.4.1 Produce an initial “baseline” for NVC classification (Objective 1) 

One possible weakness of the TWINSPAN classification used to develop the baseline (Fig. 

3.2) is that the number of quadrats per cluster was very variable. Clusters 1, 2, 3 and 5 all 

contain more than 15 quadrats (clusters 1 and 5 more than 30 quadrats) whereas cluster 7 only 

contained 3 quadrats. Subsequently after further analysis with MAVIS clusters 1, 6 and 7 

were further subdivided. Ideally all the clusters would have contained similar numbers of 

quadrats to streamline classification between the different community types, but despite fine-

tuning several of the TWINSPAN options similar uneven distributions of quadrats between 

end clusters occurred in all cases. However, it must be remembered that the underlying field 

survey was based on transects, and not blocks of ‘visually homogenous’ vegetation, and 

therefore this type of result is not unsurprising.  

 

3.4.2 Generate “pseudoquadrats” from literature and surveyed data (objective 2) 

Fortunately, both the LIT and ASH detrended correspondence analysis ordinations appeared 

to provide a robust visual summary of the pseudoquadrat x species ordination space in two 

dimensions (Figs 3.3 and 3.4). There was no evidence of an ‘arch effect’ because DCA is 

designed to remove this artefact (Hill, 1979). In contrast, in both datasets correspondence 

analysis (CA) had problems in that they contained a ‘wedge’ artefact (not shown), suggesting 

that DCA was the more appropriate analytical method. There appeared to be greater 

variability in the (sub)community composition when using the LIT method compared (Fig. 

3.5) to ASH method (Fig. 3.6) as some of the standard error bars were larger, especially for 

H12a, M15a and U5a. This might be a result of the LIT method using a larger pool of 

potential species (i.e. all the species published in the NVC handbook for that sub-community) 

compared to the more restricted set for the ASH method. In addition, both ‘H’ and ‘U’ 

sub/communities are comprised of very similar species with Calluna vulgaris, Deschampsia 
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flexuosa, Dicranum scoparium and Potentilla erecta amongst the most abundant community 

constants (Rodwell, 1998a, b, c; JNCC, 2004).  

 

3.4.3 Allocate and predict field quadrat data to ordinations (Objective 3) 

The ability to visualise the mean pseudoquadrat communities’ positions in ordination space in 

combination with field samples (as ‘passive samples’) provides a valuable advantage to the 

pseudoquadrat approach. It allows users to gain greater insights into how their field quadrats 

fit into the framework of the classification system they are working with (in this case the 

NVC), and provides a greater depth of understanding than a mere percentage probability score 

for an individual field quadrat or group of quadrats.  

 

The greater accuracy of the ASH approach compared to the LIT method was unexpected. 

While the latter was based on the full set of species described in the standard NVC sub-

community descriptions this method would have included numerous species that might not 

have been at the study site. The greater accuracy of the ASH method, restricting species to 

those observed at the study site, may simply have arisen because the resultant pseudoquadrats 

were more representative of species likely to be found in Northumberland, rather than the UK 

as a whole. This meant that the resultant sub-communities were also more representative local 

'variants' of the sub-communities described in the NVC handbooks. It should also be noted 

that the low accuracy of this method, compared to MAVIS, might have stemmed from the fact 

that numerous communities could, in reality, overlap in their classification. It should be noted 

that the probability scores obtained for each community (from both LIT and ASH methods) 

always resulted in one highest score (i.e. a passive sample always had one highest community 

score) while the MAVIS method, in some cases, had multiple identical matching coefficients.  

 

At Ashtrees it appeared that the vegetation communities were more species-poor when 

compared to the species listed for these communities in the British NVC handbooks. Whilst 

this might partly have been attributable to the use of smaller quadrats at Ashtrees (1m rather 

than the NVC standard 2m, for such habitats), it is unlikely to be a major factor, especially 

given the large number of quadrats used in the survey. The 10km dot-distribution maps of 

several sub-communities in the NVC indicate that parts of North East England were not 

available for those sub-communities in the original survey (pre-1991) when the NVC was 

constructed, compared to the updated dot-distribution maps from 2015. As such, the 
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published sub-community descriptions may not necessarily accurately describe the species 

likely to be encountered in those same sub-communities in certain parts of the UK. 

 

One possible improvement to predicting community probabilities based on the position of 

passive samples in the pseudoquadrat ordination space would be to up-weight communities 

with large standard error bars. For example, H12a, H15a and U5a had relatively large SE’s for 

the LIT method, therefore the predicted probabilities for a field passive sample falling near 

these sub-communities could be up-weighted. Conversely MG10a and U6b had relatively 

small SE bars (probably reflecting more narrowly-defined communities in terms of their 

species) and therefore could be down-weighted. Both the ASH and LIT methods of generating 

pseudoquadrats have advantages and disadvantages. The ASH method is effectively ‘site-

specific’ in that the list of species used reflects that observed at any individual study site. 

However, this may mean that it is more difficult to interpret the results in the context of an 

existing national classification system. The LIT method uses a national system (here the 

NVC) and so is more generalisable, but is therefore at greater risk of including species which 

might not occur locally at a study site or might not be detected if at very low constancy. 

Choice of approach depends on the requirements of the user. The key advantage of both 

methods is that they can be used on individual quadrats, including those obtained by other 

sampling methods such as transects (as here), and not restricted to ‘homogenous vegetation’ 

or a minimum number of quadrats. 

 

3.4.4 Map community distributions across Ashtrees Dipper (Objective 4) 

Some vegetation communities, e.g. H9e, M15d, U2b, U4b and U5a had relatively high 

predicted distribution patterns across much of the Asthrees heft. This could mean that at 

smaller spatial scales, the range of vegetation communities might be neighbouring or 

overlapping. This largely depends on the variation in vegetation composition of each 

communities, given that some of the communities identified at Ashtrees (e.g. U2b, U6b, U4a 

etc.) have similar species composition, or are relatively species poor. The habitat requirement 

for U2b (Vaccinium myrtillus sub-community), U4a (Typical) and U6b (Carex nigra-

Calypogeia trichomanis sub-community) are similar in that they typically grow in moist peaty 

soils as well as preferring cooler humid climates, as is found in the NE England. Grazing is 

important in maintaining these communities especially in locations of rough-grazing schemes 

that allow the community to grow on slopes and mid- to high-altitudes. 
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Calluna vulgaris is abundant in H9e and therefore the community’s wide predicted 

distribution was to be expected since Ashtrees is abundant in heather especially at higher 

altitudes where drainage ditches were introduced. It was predicted to be less frequent in 

eastern parts of the heft, where soil water content is lower, soil pH is more acidic (Appendix 

1.1) and sheep grazing is higher. These eastern areas were predicted to be better for 

mesotrophic grassland MG10a, and acid grassland U4d, possibly reflecting soil and grazing 

characteristic.  Some communities were predicted to occur only relatively rarely across the 

heft, especially M19a and U6b (Fig. 3.7) and it is more difficult to identify possible 

environmental or management factors that might drive their distribution. These two 

communities can have substantially different vegetation species within their assemblages and 

therefore their ‘isolated’ distribution can be inferred from the similar habitat requirements. 

M19a, a blanket bog and U6b, a shade-sensitive hydrophilic sub-community require both 

require high altitudes where and wet environments. Gentle slopes at higher altitudes at 

Ashtrees can explain the distribution of these communities in these areas.  

 

This interpolation approach is valuable as it demonstrates that it is possible to generate high 

spatial resolution map (here 1m resolution raster) from much coarser survey data (75m x 

150m quadrats along transects). While validation, at such small spatial scales, requires 

additional field surveys, the high number of quadrats in close proximity to each other suggest 

reliable community distribution results. Such maps have considerable potential value for site 

managers, especially to identify possibly unsurveyed areas in which to target conservation 

management. 
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3.5  Conclusion 
 

 

Pseudoquadrats can provide a reliable method to existing techniques to allocate quadrats into 

extant vegetation classifications. The techniques described in this chapter are simple, and 

could be easily modified to account for the characteristics of any national or regional 

classification. The use of TWINSPAN as an initial classification technique is an important 

tool for vegetation classification. In cases where data was not gathered through the 

conventional methods, hierarchical classification clusters quadrats of similar species 

composition together. This can then be used as a baseline technique to generate vegetation 

communities, especially in scenarios where classification software is unavailable. The 

pseudoquadrat techniques can create vegetation communities in ordination space, in which 

vegetation sample data can then be inputted into the ordination as ‘passive’ samples. The 

measure of distance between the ‘passive’ samples and the pre-generated community 

centroids provides an indication of the community (or sub-community) to which the sample 

data belongs. The probability data obtained for each community within a sample can then be 

interpolated across any given field, identifying areas where these vegetation communities are 

most likely to occur.  

 

A potential improvement in this classification method would be to classify vegetation using 

the same technique but on additional, similar upland sites. This would possibly require adding 

more pseudoquadrat centroids of different vegetation communities in the ordination methods. 

An ordination for each broad class type (e.g. ‘H’, ‘M’, ‘MG’, ‘U’ etc.) can be developed. This 

will allow a readily-available system to input percentage cover data from any vegetation 

sampling as passive quadrats for a quick classification. One weakness that this system has is 

that very different vegetation communities, for example, woodland, grassland and sand dune 

habitats, would not provide a good ordination plot because of the high variance between the 

different sample types (and centroids).  

 

Some national vegetation classifications provide abiotic data associated for each vegetation 

class. This could be used in combination with, for example GIS maps etc., or published maps 

of species-distributions, to fine-tune the construction of pseudoquadrats depending on the 

end-user's requirements. The flexibility in customising the construction of pseudoquadrats, 

visualising them in ordination space, and using them to make predictions for new field 

quadrats provides the developed methods with their attraction.  



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4. Prediction of vegetation community distribution across 
England and Wales 
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Abstract 
 

 

The current increase in availability of open source remote-sensed data makes prediction of 

species distributions and community composition across a wide range of spatial scales more 

practical, especially for vegetation. Drone technologies can survey small areas of vegetation 

down to centimetre-level spatial scale, whilst satellite data can measure vegetation across 

larger areas, albeit at coarser spatial resolution. Furthermore, multispectral imagery improves 

the characterisation of the vegetation, for example via NDVI and EVI. Multi-spectral remote-

sensed data is becoming an important addition for both ecological assessment of extant 

vegetation, and prediction of species, due to increases in both its spatial and temporal 

resolution, especially when used in conjunction with other sources of environmental and 

meteorological data. Species distribution models (SDMs) are empirical models that have been 

developed to predict species occurrence from presence-data and environmental variables and 

can utilise a range of different underlying model techniques. SDMs are not restricted to 

predicting species but can also predict communities if the presence-data on the spatial 

distribution of the latter is known. Plant communities have different requirements in terms of 

the abiotic and biotic environment in which they occur, and these must be incorporated into 

SDMs in order to make realistic predictions. 

 

High-resolution digital maps of environmental variables including topography, meteorology, 

soil type, land cover and enhanced vegetation index (EVI) were used to predict NVC 

communities that occur within the upland priority habitats in the UK Biodiversity Action Plan 

(UK BAP). Published NVC 10km resolution distribution maps, derived from those in the 

NVC handbooks, were used as the ‘observed’ presence-data of community distributions to 

create SDMs to predict community distribution maps for the whole of England and Wales at 

1km resolution. SDMs based on five different modelling approaches were investigated: 

generalised linear models (GLMs), support vector machines (SVM), random forests (RF), 

maximum entropy (MaxEnt) and maximum likelihood (MaxLike). Model accuracy was 

assessed using measures for area under the curve (AUC) and true skill statistic (TSS), and the 

RF approach was consistently the most reliable. After prediction of NVC communities, 

constancy level III, IV and V species from the NVC accounts were identified and their 

distribution extracted from the NBN Atlas. These observed species distributions were 

compared to the NVC predictions, using the catchment of the River Rede in Northumberland, 

UK, as a case study area. 
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This chapter shows that vegetation communities can be reliably predicted at very large spatial 

scales using species distribution models. The resulting community distribution maps of 

threatened and/or prioritised vegetation communities provide a sound basis to predict both the 

location of communities and their constituent species for sampling and analysis by both 

professionals and citizen scientists. The results can help scientists and volunteers in 

identifying possible locations of communities and species of interest which can help add data 

to both the NBN Atlas and the National Plant Monitoring Scheme (NPMS). 
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4.1  Introduction 
 

 

Vegetation community assessment has traditionally depended on initial collection of data 

through field surveys of vegetation, and classification of communities can then be performed 

through a number of techniques as described in Chapter 3. Vegetation mapping and prediction 

is a very important tool to provide information and identify sites that are of high conservation 

value (Hearn et al., 2011). Vegetation community surveys were carried out across Great 

Britain in the development of the NVC, and results are detailed in the ‘British Plant 

Communities’ handbook series (Rodwell, 1998a; Rodwell, 1998b; Rodwell, 1998c). The 

handbooks include maps of the 10 km squares in which samples for each community were 

recorded as part of the development of the NVC, and these can be considered as ‘presence-

only’ maps (Franklin, 2010), i.e. the absence of a record for a community in part of the map 

does not necessarily indicate that the community might not occur at that location. There may 

also have been climatic, management or other environmental changes since the NVC maps 

were published, that might affect the distribution of the NVC communities nationally. The 

NVC 10km distribution maps are now available in digital format for most NVC community 

types via Joint Nature Conservation Committee (JNCC, 2016).  

 

4.1.1  Species Distribution Models 

Species distribution models (SDMs) are empirical models to predict species occurrence, using 

environmental variables. After creation of an SDM, the resulting data can then be used to 

predict distributions (Liu et al., 2009; Liu et al., 2011). SDMs have been used to understand 

the spatio-temporal ecological processes that affect populations or communities with 

changing climate and/or species invasion (Franklin, 2010; Fournier et al., 2017). The recent 

improvement in SDMs opens opportunities for more flexible and reliable modelling in 

ecology (Rushton et al., 2004). Environmental heterogeneity and change occurs across 

multiple scales and therefore prediction of species distributions can be challenging (Rushton 

et al., 2004; Franklin, 2010). Species presence data was a primary requirement for 

understanding and predicting species distributions and predictions across multiple scales 

(Guisan et al., 2006; Warton et al., 2016). Modelling techniques, e.g. generalised linear 

models (GLMs), generalised linear mixed models (GLMM) or general additive models 

(GAMs) have been used to predict the distribution of species (Warton et al., 2015). Machine 

learning techniques such as random forest models (RF), generalised dissimilarity models 



 

97 

(GDMs) and support vector machine (SVM) have recently gained popularity to fit an array of 

distribution models with reported increased reliability on their predictions (Franklin, 2010; 

Naimi and Araújo, 2016). It is, therefore, important to select realistic predictor variables, to 

account for the likely physiological requirements of the target species (Rushton et al., 2004; 

Austin, 2007; Austin and Van Niel, 2011). The same predictor importance applies for the use 

of ‘ensemble’ forecasting models whereby the models can be ‘weighted’ depending on the 

preferred technique (e.g. GLM, SVM, RF etc.). Ensemble forecasting uses numerous 

modelling techniques to produce one model output based on the accuracy of each individual 

model produced. This is done using ‘weighted’ averages between models, giving a higher 

weighting to more accurate models and a lower weighting to less accurate models ( Franklin, 

2010; Naimi and Araújo, 2016; Fournier et al., 2017). This research had originally considered 

using ‘ensemble’ models, but as a key aim was to compare different modelling techniques, it 

was decided to use individual model techniques for individual comparison of prediction and 

accuracy. 

 

SDMs depend on multiple environmental (abiotic and biotic) variables to predict species 

distributions (Franklin, 2010; Fournier et al., 2017) and restricting the number of predictors to 

the most effective ones maximises the performance of SDMs and the accuracy of the models 

(Fournier et al., 2017). The predictor variables act as filters to determine the species 

distribution (Blach‐Overgaard et al., 2010; Araújo and Peterson, 2012; Fournier et al., 2017). 

With increased availability of remote-sensed data plus integration with geographic 

information systems (GIS) management of spatial data is much simpler (Rushton et al., 2004), 

and makes SDMs easier to implement. High quality digital maps of environmental variables 

permit interpolation and extrapolation across larger areas (Franklin, 2010), making it feasible 

to predict species distributions in areas where, for example, it is difficult to collect field data 

(Rushton et al., 2004; Smith and Wyatt, 2007). Note that it is important to first validate the 

models by additional techniques, for example field surveys, model simulations or machine 

learning techniques, before fully relying on the model predictions.  
 

4.1.2  Evaluation and assessment 

While prediction of species distributions is important for both pure and applied ecologists, it 

is imperative that the resulting models are evaluated for accuracy (Guisan and Thuiller, 2005; 

Guisan et al., 2006; Liu et al., 2009; Liu et al., 2011; Naimi and Araújo, 2016). The type of 
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evaluation best suited for the models depends on the training data used, e.g. presence-absence, 

presence-only and presence-background.  The latter is gaining popularity since species data is, 

in most cases, presence-only data, and can streamline and increase reliability of the model 

outcomes (Jiménez‐Valverde, 2012). Background data are randomly selected from the area of 

study, finding functions within the datasets to discriminate between locations of species 

presence and highly-probable absences (Jiménez‐Valverde, 2012). Evaluation of accuracy can 

be of two types: threshold-dependent or threshold-independent (Manel et al., 2001; Guisan 

and Thuiller, 2005; Elith et al., 2006; Allouche et al., 2006; Liu et al., 2009). Two main types 

of model accuracy evaluators are used to assess accuracy of SDMs: AUC: the area under the 

receiver operating characteristic (ROC; Allouche et al., 2006; Liu et al., 2009; Franklin, 2010; 

Naimi and Araújo, 2016), and the true skill statistic (TSS; Allouche et al., 2006; Liu et al., 

2011; Eskildsen et al., 2013). AUC is threshold-independent and takes into account the 

proportion of locations that are occupied by the species (Hanberry and He, 2013; Lawson et 

al., 2013).  Cohen’s Kappa and TSS are threshold-dependent, in that they depend on a 

threshold probability above which predicted species are present. In generalised SDMs, 

sensitivity and specificity (Franklin, 2010; Jiménez‐Valverde, 2012) have also been 

traditionally used but are not used as individual evaluators in this research. Both AUC and 

TSS are based on the ratio (either positive likelihood ratio or negative likelihood ratio) 

between sensitivity and specificity (Allouche et al., 2006). Sensitivity is the probability that 

the SDM test result is positive when the species or community (in this case) is present 

(Allouche et al., 2006). Specificity is the probability that the SDM test result is negative when 

the species or community is absent (Allouche et al., 2006). Unlike Cohen’s Kappa, AUC and 

TSS operate independently of bias (also referred to as ‘prevalence’) between observations and 

the distribution of data across the SDM predictors (De Marco and Nóbrega, 2018).   

 

ROC plots have been adopted as standard methods for assessing accuracy of SDMs.  

An AUC higher than 0.5 implies higher accuracy of the model. However, this is a general 

measure in models that have been trained with presence-absence data. Using presence-

background data can shift the 0.5 threshold, making the AUC measure less reliable for this 

type of training data (Allouche et al., 2006; Freeman and Moisen, 2008; Jiménez‐Valverde, 

2012). To counteract this uncertainty, Cohen’s Kappa and TSS, both ranging from -1 to +1, 

are good supplementary assessors of models. TSS takes into consideration the dependence of 

Kappa on prevalence while still pertaining the benefits of the measure of performance and 

avoids the need of a single threshold (Guisan and Zimmermann, 2000; Manel et al., 2001; 

Allouche et al., 2006; Freeman and Moisen, 2008; Liu et al., 2009; Franklin, 2010). TSS also 
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accounts for both sensitivity and specificity (1-max{sensitivity + specificity}) of the model 

and is thus a better suited standard for evaluation of SDM models (Allouche et al., 2006; 

Franklin, 2010).  
  

4.1.3 Environmental drivers and predictors  

Species-environment relationships are scale-dependent, for example, soil pH or water content 

might be important at a 1m spatial scale, whereas altitude or soil type would be more 

important at a 1km scale. Understanding these relationships requires continual development in 

biological modelling as tools to aid conservation and decision-makers. This research looks 

into the possibility of using SDMs to predict vegetation communities rather than species, to 

provide an objective method on where vegetation communities are more likely to occur. 

Franklin (2010) outlines the concept of landscape modelling of plant community dynamics for 

predictive modelling on potential habitats of occurrence. While Franklin (2010) discusses this 

in terms of climate and anthropogenic influence, SDMs can be modified to encompass multi-

scale environmental simulations.  

 

This chapter makes use of high-resolution, large-scale spatial and spatio-temporal 

environmental data obtained from a range of different sources. As Franklin (2010) and 

Bradter et al., (2011) note, climatic data is an essential resource for appropriate use of 

vegetation distribution modelling. Different plant communities have different requirements of 

and tolerances to different abiotic and biotic systems. To encompass the major ecological 

requirements, this research uses high resolution digital maps of elevation (digital elevation 

models; DEMs), slope, aspect, soil type, seasonal maximum and minimum temperature, 

annual rainfall (precipitation), landcover and satellite data to predict selected vegetation 

communities across England and Wales. This research limits vegetation community 

distribution prediction to those currently deemed to require conservation efforts under the UK 

Biodiversity Action Plan (UK BAP).  
 

4.1.4 UK BAP and other policies 

The UK Biodiversity Action Plan (UK BAP; JNCC, 2016) describes the biological resources 

of the United Kingdom and provides action plans for the most threatened species and habitats 

that required higher levels of management and recovery. The UK BAP has been updated in 
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2012 to the UK Post-2010 Biodiversity Framework (JNCC, 2019), indicating changes and 

targets in conservation networks to be in place by 2020. This action plan is part of the 

requirement under a range of European Directives and legislations to conserve biodiversity 

through the Ecosystem Approach outlined by the Conservation of Biological Diversity (CBD; 

United Nations, 1992). Within these frameworks ecosystem structure and functioning are 

given due importance both across time (long-term planning) and space (e.g. protected areas) 

at all ecological levels. While the UK BAP details conservation of species and habitats founds 

within broad land types, vegetation communities are amongst the most important because 

their role in defining the habitat (DEFRA, 2007). Since gaps are present in published 

vegetation community distribution maps due to the high sampling effort required, especially 

on a national scale, reliable prediction of vegetation communities, and their constituent 

species, will reduce the need for additional new sampling, while providing data for policy 

makers to indicate potential sites for additional conservation and management.  

 

The European Habitats Directive (Council Directive 92/43/EEC) and the Birds Directive 

(Directive 2009/147/EC) serve as guided legislation on habitat conservation, prioritising 

habitats as part of the NATURA 2000 scheme that are of importance for multiple animal and 

vegetation species across threatened landscapes (European Commission, 1992; European 

Commission, 2009; McLeod et al., 2009). The Habitats Directive operates to sustain and 

protect environmental landscapes at any given spatial scale and their inhabitants. The rarity of 

certain vegetation communities and their constituents is amongst such prioritisation and 

additionally these habitats link different policies. The Birds Directive is one such link, 

especially in deteriorating upland environments, ensuring that protection of vegetation 

communities will allow birds and other such animals to thrive in land cover types that are 

influenced by vegetation communities and resulting landscape as the primary building blocks.  
 

4.1.5 The National Biodiversity Network Atlas (NBN Atlas)   

The National Biodiversity Network Atlas is an open source online user interface tool and 

database that provide a platform for innovation of citizen science. The main aim of this is to 

improve biodiversity knowledge about the natural world and help the scientific community in 

managing gaps in species presence data (Ryan, 2018; National Biodiversity Network, 2019). 

The NBN Atlas was developed to provide an effective national data management system for 

reporting of species occurrences (Lawrence, 2010). This can reduce survey efforts and 
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produce a suitable database that provides information on location, presence, distribution and 

spatio-temporal data of different species (NBN Atlas). Planning regulations for conservation 

and management can then be adopted by scientists and policy makers to ensure proper policy 

evaluations (Pollet et al., 2001; Lawrence, 2006; Lawrence, 2010). The NBN Atlas also 

provides scope for biodiversity monitoring through citizen science. This concept can be 

applied to different countries, where details of species distribution can be shared though an 

online database and can be of use in proper management (Pollet et al., 2001). While gaps in 

species presence and distribution are difficult to overcome, the use of this tool in wildlife 

management and prediction can be extended to population and community ecology at large-

scale studies (Callcutt et al., 2018). The continuous recording of species occurrence data 

provides an invaluable tool for spatio-temporal species and community prediction of 

distribution and status change (Callcut et al., 2018; Ryan, 2018). The NBN Atlas, in this 

research, is used to ‘verify’ vegetation community distribution predictions.  

 

4.1.6 Aims and Objectives  

The overall aim of this chapter is to develop a robust system to predict the probability of 

occurrence of NVC communities across England and Wales, and compare with the observed 

incidence of their most common constituent species, occurring at NVC constancies III, IV and 

V. 

The specific objectives are to: 

1. Collate all relevant environmental data that may affect plant community distributions, 

including soil type, altitude, slope, aspect, meteorology, land cover and raw satellite 

data; 

2. Randomly select a set of 10 target NVC communities from the UK BAP that occur in 

the uplands of England and Wales, to be used with the 10 communities already 

identified as occurring at Ashtrees Dipper in the Rede Catchment (Chapter 3); 

3. Develop SDMs for the 10 communities randomly selected from UK BAP, plus SDMs 

for the 10 Ashtrees communities, for the whole of England and Wales, and evaluate 

them using AUC and TSS 

4. Identify the most frequent species (based on their published constancy scores) in these 

two sets of 10 communities. Compare the observed distributions of these species in the 

NBN Atlas with predicted NVC community scores, using the catchment of the River 

Rede in Northumberland as a case study region. 
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4.2  Methodology 
 

4.2.1 Collation of predictor data for use in SDMs (Objective 1) 

England and Wales was used to predict NVC communities at a large scale (Fig. 4.1). The 

borders of England and Wales were obtained as shapefiles (.shp) under OS open data terms 

and conditions provided by Ordanance Survey (2019) and provided a ‘clipping’ boundary for 

other data used. All subsequent feature and raster data were all converted from the original 

coordinate reference system (CRS) to the British National Grid coordinate reference system 

(EPSG:27700) and feature data manipulated with the ‘sf’ package (Pebesma et al., 2019) and 

raster data the ‘raster’ package (Hijmans et al., 2019) in R (R Core Team, 2013). All maps 

were converted to 1km resolution raster maps by nearest neighbour resampling prior to use in 

the SDMs.  
 

 

 

 

 

 

Fig. 4. 1 Border of England and Wales. Data obtained 

from Ordanance Survey, (2019) 

https://www.ordnancesurvey.co.uk/opendatadownload/

products.html. 
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2015 Land cover (LCM2015)  

The Centre for Ecology and Hydrology (CEH) Land Cover map 2015 (LCM2015; Rowland et 

al., 2017)  at 25m resolution was obtained as a TIFF raster from EDINA Digimap 

Environment Data Download (https://digimap.edina.ac.uk/roam/download/environment). The 

LCM2015 is a parcel-based land cover map for the United Kingdom that classifies land cover 

in 10 aggregate classes, 10 broad habitat types and 21 target classes. For the purpose of this 

research, the LCM2015 was clipped to England and Wales and only the target classes are 

used in analysis. 

Topography 

Digital Elevation Model (DEM) GEOTIFF raster digital maps were obtained from U.S. 

Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center as 

ASTER Global DEM (USGS, 2010). The Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) is a NASA radiometer that collects global stereo near-

infrared digital elevation data from a NASA spacecraft (ASTER GDEM Validation Team, 

2011). This makes data highly accurate with DEM data collected at 1 arc-second resolution 

(approx. 30m resolution) and are freely available in tile format and WGS84 ellipsoid from 

Earth Explorer online user interface (USGS, 2010; https://earthexplorer.usgs.gov/). Slope and 

Aspect across England and Wales were computed at 30 m resolution from digital elevation 

data via the ‘terrain’ function (below) from the ‘raster’ package (Hijmans et al., 2019). Both 

were computed in degrees: slope (0o to < 90o) and aspect (0o to 360o).  

Meteorology 

Monthly minimum and maximum temperature data for years ranging 1988 to 1992 was 

obtained from the CEDA Archive available from the MET Office (STFC, 2018, 

https://catalogue.ceda.ac.uk/uuid/4dc8450d889a491ebb20e724debe2dfb). The dataset is 

available as a 1km resolution, HadUK-Grid grdded and regional average climate observation 

for the UK. This range of temperatures coincides with the temporal period when the National 

Vegetation Survey was conducted as detailed in the NVC handbooks (Rodwell, 1998a). Mean 

minimum and mean maximum annual winter (January, February and December) and summer 

(June, July and August) temperature data between 1988 and 1992 was calculated, to produce 

four raster maps, each covering a 5-year range. Annual rainfall data for years between 1988 

and 1992 was obtained from MET Office (2018) at 1km resolution. Mean annual rainfall 

between 1988 and 1992 was calculated and projected for England and Wales. 



 

104 

Soil data (NATMAP)   

National soils data for England and Wales was obtained under license from the National Soil 

Resources Institute (NSRI) at Cranfield University, United Kingdom (Cranfield University, 

2017). The NATMAPsoilscapes (1km resolution) digital map represents the major soil types 

across England and Wales and shows geographic soils associations identified by frequently 

occurring soils with predominant major soil types grouped together (Cranfield University, 

2017). The soil types are differentiated by observable or measurable characteristics of the 

sampled soil profile.  

LANDSAT satellite data  

Remote-sensed LANDSAT 8 OLI (Operational Land Imager)/TIRS(Thermal Infrared Sensor) 

satellite data was obtained from USGS using the Earth Explorer online user interface for 

England and Wales (USGS, 2019; https://earthexplorer.usgs.gov/). LANDSAT 8 OLI/TIRS 

provides surface reflectance data at 30m resolution that includes, in downloadable format, 7 

bands of surface reflectance data as well as level 2 Pixel Quality Band (pixel_qa), Aerosol 

QA (sr_aerosol) and Radiometric Saturation QA (radsat_qa) that provide global landmass 

coverage in visible, Near Infrared (NIR) and SWIR (Short Wave Infrared) Imagery (U.S. 

Geological Survey, Earth Resources Observation And Science Center, 2012; Masek, 2019). 

The Operational Land Manager (OLI) collects data for coastal and cirrus band as well as 

LANDSAT multispectral bands, with bandwidths being refined for 6 ‘heritage’ bands (the 

original 6 bands) The Thermal Infrared Sensor (TIRS) collects data for narrow spectral bands 

that fall in the thermal regions previously collected by LANDSATs 4-7 (NASA, 2019).  

Enhanced Vegetation Index (EVI) 

The different multispectral bands allows derivation of additional spectral index products, e.g. 

Normalised Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI; U.S. 

Geological Survey, Earth Resources Observation And Science Center, 2012). LANDSAT 8 

mosaic tiles were obtained, in compressed format, for England and Wales, ensuring that each 

tile has minimal cloud coverage. The LANDSAT 8 mosaic tiles were reprojected to the 

British National Grid coordinate system (EPSG: 27700) and merged together, ensuring that 

extent of each mosaic tile was set appropriately, and if mosaic tiles overlapped the best 

mosaic used (i.e. with little or no cloud coverage). This was repeated for each useable colour 

band (red, blue, near infra-red). The resulting England-Wales merged bands were stacked 

using the ‘stack’ and ‘brick’ functions from the ‘raster’ package (Hijmans et al., 2019). The 
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Enhanced Vegetation Index was derived using the ‘LSRS’ package (Sarparast, 2018) within 

the R statistical software (R Core Team, 2014). The resulting EVI images where then clipped 

to the boundaries of England and Wales and merged together as a mosaic raster. 

4.2.2  Select target NVC communities and collate distribution map data (Objective 2) 

The NVC vegetation communities highlighted in UK BAP as conservation importance in  the 

following broad headings were selected, but restricted to uplands (over 250 m): calcicolous 

grasslands (CG), heaths (H), mires (M), calcifugous and montane grasslands (U), woodland 

and scrub (W) and mesotrophic grasslands (MG). Fourty-four communities were identified as 

meeting these criteria, and 10 were selected at random for detailed further study. A second set 

of 10 communities, derived from the analyses in Chapter 3, were use in similar studies 

(Objectives 3 and 4). The dot-distribution maps for the selected 20 NVC communities 

involved in this chapter are provided in Appendix 2. Vegetation community data used in this 

research chapter are available as dot-distribution maps originally published in the ‘British 

Plant Communities’ handbook (Rodwell, 1998a, b, c) series, an example shown in Fig. 4.2 for 

the H12 community. They are now freely available as an interactive Microsoft Excel maps, 

via the Upland NVC types mapping tool (version 2) on the JNCC website (JNCC, 2009; 

http://jncc.defra.gov.uk/page-4267) for Great Britain. The vegetation communities assessed in 

this chapter are those requiring conservation under the UK Biodiversity Action Plan (UK 

BAP) and EU Habitats Directive, summarised by Jackson and Gaston (2008) in JNCC, 

(2016), Report 307 from the JNCC report series (http://jncc.defra.gov.uk/page-2433#1401) 

and Biron (2010). A number of vegetation communities that are part of the UK BAP were 

selected (Table 4.1). Data were exported from the downloaded Microsoft Excel files and 

imported into R using the ‘sf’ package (Pebesma et al., 2019) in R statistical software (R Core 

Team, 2014).  
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4.2.3 Development and testing of NVC species distribution models (Objective 3) 

Species distribution models were generated for each selected NVC vegetation community. 

Species distribution modelling is a multi-step process with each step using either the ‘raster’ 

(Hijmans et al., 2019) ‘sf’ (Pebesma et al,, 2019) and ‘SDM’ (Naimi and Araújo, 2019) 

packages in R statistical software (R Core Team, 2014) depending on the requirement. 

Vegetation community distribution presence data that were previously obtained from the 

JNCC website (JNCC, 2009) and converted to shapefiles were converted to a spatial 

dataframe object, using the ‘sf’ package (Pebesma et al., 2019). An R dataframe for all the 

observed NVC communities was created with four columns: presence of community (all 

values set to 1), easting, northing, community code name. The environmental predictors 

rasters were stored as a ‘raster stack’ which is a set of raster layers with the same spatial 

extent and resolution were combined as one raster object (Hijmans et al., 2019). The 

vegetation community data is presence-only data therefore 100 random pseudoabsence 

datapoints (or background data) were generated for each community. Some communities had 

relatively few records (see Table 4.1) therefore it would have been unrealistic to have set a 

Fig. 4. 2 Dot-distribution map of H12 surveyed in 

England and Wales. Adapted from the Upland NVC 

types mapping tool (version 2), originally published 

in  Averis, A., Averis, B., Birks, J., Horsfield, D., 

Thompson, D. & Yeo, M. 2004. An Illustrated 

Guide to British Vegetation. Peterborough, Joint 

Nature Conservation Committee.   
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high number of pseudoabsence records. After generation of the pseudoabsence records, these 

were combined with the observed records and the raster stack of environmental (predictor) 

data to create an ‘sdmData’ object, for use in the SDM itself. In addition, the first step in 

creating the SDM also included a training (80%) and testing (20%) split of the data to 

increase reliability of the output. The ‘trained’ model was then used in the second part of 

SDM creation. A flowchart summarising the procedure is given in Fig. 4.3. 

 

 

Fig. 4. 3 Step 1: The first steps of generating a sdmData object that contains vegetation community data and 

predictor information. 

 

A formula interface is used to define an SDM model using the ‘sdm’ function (Naimi and 

Araújo, 2016) as ‘community ~ explanatory variables’. SDMs were fit using five methods, i) 

generalised linear models (GLM), ii) random forest models (RF), iii) support-vector machine 

models (SVM), iv) maximum entropy (MaxEnt), v) maximum likelihood (MaxLike). 

Bootstrapping replication method was used for each model type, with each bootstrapping 

replication repeated 10 times. ‘Bootstrapping’ is a re-sampling method used quantify the 

uncertainty associated with a statistical or machine learning method and helps avoid 

overfitting ( Pan, 1999; Abney, 2002; Borra and Di Ciaccio, 2010). The ‘sdm’ command 

returns an ‘sdm results’ object in R (Fig. 4.4), which was used to predict distribution and 

probability of occurrence of vegetation communities across England and Wales (Fig. 4.5).  

 

Fig. 4. 4 Step 2: Using the sdmData object generated in step 1 to run SDM algorithms for 5 model fitting methods to 

generate the SDM. 



 

108 

A raster map for the five prediction methods was generated as a raster stack for each 

vegetation community. The trained model was run using the different models generated by 

bootstrapping re-sampling as additional ‘testing’ data. 

 

 

Every SDM generated was evaluated then evaluated using the ‘getEvaluation’ function in the 

‘sdm’ package (Naimi and Araujo, 2019). Two model evaluators were used, i) area under 

curve (AUC) and ii) true skill statistic (TSS; Franklin, 2010). The threshold for TSS was set 

to 0.5, the default and recommended threshold (Allouche et al., 2006; Franklin, 2010). Ten 

evaluation results were output for each model type, and the mean evaluation calculated for 

AUC and TSS.  

 

4.2.4 Compare NVC community predictions with observed NBN Atlas records in the 

Rede Catchment (Objective 4) 

The Rede Catchment was used as a small-scale test area to compare predictions for the NVC 

communities with the observed distribution of the most frequent species. Vegetation species 

with medium to high frequency of occurrence in each set of 10 NVC communities, i.e. 

constancy frequency of III, IV and V (Rodwell, 1991), were obtained from the NBN Atlas.  

Data found on the NBN is recorded by organisation and citizens, verified by experts, and 

usually accessed via an interactive website on a species-by-species basis. As distribution data 

was needed for a large number of species, rapid downloads were made directly into R, using 

the new ‘NBN4R’ package (Raymond et al., 2019) as this is a development package available 

from https://github.com/fozy81/NBN4R although not the usual CRAN R package repository. 

The distribution data was stored as an R ‘sf’ object and cropped to England and Wales. 

  

Fig. 4. 5 Step 3: Evaluating the SDM models and predicting the vegetation communities 

at National Scale. 
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The final step was to spatially crop species distributions to the catchment of the River Rede, 

and display them as dot-distribution maps. As the typical grid resolution is 1 km for many 

records in NBN Atlas this can result in multiple records or species overlapping each other, 

making visual assessment difficult, therefore where necessary points were slightly repelled 

from each other using the ‘geom_jitter’ function from the ggplot2 R package (Wickham, 

2016) for better visualisation. An assessment was then made of the observed NBN Atlas 

records and the predicted distribution of each of the selected communities in which these 

species occur, using the best SDM modelling method identified in Section 4.2.3 above. While 

this method of ‘verification’ could have been done for the whole of England and Wales, it was 

decided to choose the Rede Catchment to link this part of the research to the Ashtrees study 

site, the data of which was extensively used in Chapters 2 and 3. Furthermore, the high 

number of individual species records across a large area, such as the whole of England and 

Wales, would have made the output maps difficult to interpret. 
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4.3  Results 
 

4.3.1 Collation of predictor data for use in SDMs (Objective 1) 

2015 Land cover (LCM2015)  

Fig. 4.6 provides a summary of the Land Cover Map at 1km. Note: this was originally a 25m 

and aggregated to 1 km grid resolution for use in the SDM predictions. In general, the eastern 

parts of England are arable and horticultural lands, while most of the western parts of England 

and Wales are improved grasslands. Heather is more prominent in the northern parts of 

England, across the North Pennines and towards NE England. Land cover might not be 

detailed enough to improve predictions and might result in low predictor importance (Bradley 

and Fleishman, 2008). While land cover is a categorical data set and can provide issues with 

the large number of co-variates, such categorical have been successfully used in SDM 

modelling (Thuiller et al., 2004; Bradley and Fleishman, 2008) 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 6 Land Cover 2015 (LCM2015) for England and Wales with 21 target classes. LCM2015 data was 

obtained from EDINA Digimap (https://digimap.edina.ac.uk/roam/download/environment) under the OS 

Open Data term and conditions. 
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Topography 

Fig. 4.7a provides a summary of the digital elevation model used for the SDMs. Figs. 4.7b 

and Fig. 4.7c summarise the slope and aspect for the study area. Highest altitudes are 

generally found in Wales and Northern England, with highest altitude across the North 

Pennines towards the Scotland border. Highest slope gradients are in the NW of England, 

while aspect is variable across the country.  

 

a) b) 

c) 

 

Meteorology 

Temperature and rainfall (1988-1992) are summarised in Figs 4.5a-4.5e. In general, 

temperature is always lower in most inland surfaces (and higher altitudes) in Wales and in the 

north England, ranging from the North Pennines to the Scotland border. The eastern parts 

Legend
DEM_merge_2.tif
Value

High : 1066

Low : -119

Legend
Aspect1k_2
<VALUE>

Flat (-1)

North (0-22.5)

Northeast (22.5-67.5)

East (67.5-112.5)

Southeast (112.5-157.5)

South (157.5-202.5)

Southwest (202.5-247.5)

West (247.5-292.5)

Northwest (292.5-337.5)

North (337.5-360)

Fig. 4. 7 a) Digital Elevation Model (DEM, m) for England and Wales. ASTER Global DEM data 

was obtained from USGS Earth Explorer (https://earthexplorer.usgs.gov/), b) slope (o) computed for 

England and Wales, ranging from 0o to 82o, c) aspect (o) computed for England and Wales. 
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England experience much higher temperatures than England and Wales. The western parts of 

England and Wales experience higher rainfall than the rest of the UK, becoming drier towards 

the east.  

 

a) b) 

c) d) 

e)  

 

 

Fig. 4. 8 Mean temperatures (oC) and rainfall between years 1988 and 1992. Data obtained from Met Office, 

2018, a) winter minimum, b) winter maximum, c) summer minimum, d) summer maximum and e) rainfall. 
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Soil data (NATMAP) 

 

 

Legend

Blanket bog peat soils

Fen peat soils

Freely draining acid loamy soils over rock

Freely draining floodplain soils

Freely draining lime-rich loamy soils

Freely draining sandy Breckland soils

Freely draining slightly acid but base-rich soils

Freely draining slightly acid loamy soils

Freely draining slightly acid sandy soils

Freely draining very acid sandy and loamy soils

Lime-rich loamy and clayey soils with impeded drainage

Loamy and clayey floodplain soils with naturally high groundwater

Loamy and clayey soils of coastal flats with naturally high groundwater

Loamy and sandy soils with naturally high groundwater and a peaty surface

Loamy soils with naturally high groundwater

Naturally wet very acid sandy and loamy soils

Raised bog peat soils

Restored soils mostly from quarry and opencast spoil

Saltmarsh soils

Sand dune soils

Shallow lime-rich soils over chalk or limestone

Shallow very acid peaty soils over rock

Slightly acid loamy and clayey soils with impeded drainage

Slowly permeable seasonally wet acid loamy and clayey soils

Slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils

Slowly permeable wet very acid upland soils with a peaty surface

Very acid loamy upland soils with a wet peaty surface

sea

unclassified

water

Fig. 4. 9 Soil map for England and Wales. Soil data was obtained from Cranfield University (2017) The National Soil 

Map and Soil Classification. 
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Soil map for England and Wales is provided in Fig. 4.9. Most of Wales has acid loamy soils 

with some blanked peat bogs, while across the North Pennines to the Scottish border soils 

become acidic and mixed between clayey and loamy. Blanket peat bogs are also observed. 

Towards the south of England, soils become more lime-rich or sandy and loamy. Similar to 

land cover, soil data provides the challenge of being a categorical environmental predictor and 

expected to have lower predictor importance. 

Landsat Enhanced Vegetation Index 

The EVI converted satellite data are shown in Fig. 410. Some caution is needed in the use of 

this map, as there appeared to be an artefact in the satellite data to the north west of the map, 

from NE England to mid-Wales. Areas in grey are related to urban and suburban areas (main 

cities) while red areas seem to be artefacts in the satellite data, showing very low EVI values 

(< -0.07). 

 

4.3.2 Select target NVC communities and collate distribution map data (Objective 2) 

The list of NVC upland communities identified from the UK BAP and supplemented from 

those that were found on Ashtrees Dipper (Chapter 3) is shown in Table 4.1. 10km 

distribution maps were created for all these communities for input into the SDMs, with a 

Fig. 4. 10 LANDSAT 8 EVI satellite data for England and Wales. 

Data obtained from USGS, 2019; https://earthexplorer.usgs.gov/. 
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national total of 138 records in CG, with CG12 and CG14 being very rare communities; 401 

records in H (only 1 record for H16 and H22); 1036 records in M with M26 and M38 both 

rare mires with only 3 and 4 records respectively; 147 records in U where 13 only has 2 

records; 137 records in W classification. The communities occurring at Ashtrees are very 

common across England and Wales with a maximum of 270 records for U4 community. U2 

has the lowest records (63). Ten of the UK BAP communities were selected at random and 

these are indicated in bold in Table 4.1. 

 

Table 4. 1 NVC codes for vegetation communities that are of interest in this chapter and predicted for England 

and Wales. (The number of records for each community is provided in brackets). 

UK BAP Ashtrees 

Calcicolous 

grasslands (CG) 
Heaths(H) 

Mires 

(M) 

Calcifugous and 

montane (U) 

Woodland and 

scrub (W) 

Communities found at 

Ashtrees 

CG9 (37) H8 (93) M1 (18) U7 (14) W9 (124) H12 (184) 

CG10 (90) H10 (82) M2 (71) U10 (16) W19 (13) H9 (106) 

CG11 (8) H13 (4) M3 (52) U13 (2)  M15 (116) 

CG12 (1) H14 (4) M4 (89) U15 (5)  M19 (139) 

CG14 (2) H15 (2) M5 (22) U16 (49)  MG10 (157) 

 H16 (1) M8 (7) U17 (28)  MG6 (166) 

 H18 (148) M9 (23) U21 (33)  U2 (63) 

 H19 (12) M11 (17)   U4 (270) 

 H21 (54) M16 (75)   U5 (212) 

 H22  (1) M17 (39)   U6 (145) 

  M18 (82)    

  M20 (141)    

  M21 (57)    

  M25 (197)    

  M26 (3)    

  M27 (50)    

  M29 (48)    

  M37 (41)    

  M38 (4)    
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4.3.3 Development and testing of NVC species distribution models (Objective 3) 

4.3.3.1 Overall model accuracy and importance of individual predictors 

Fig. 4.11 summarises the results each of the five types of SDMs using area under the curve 

(AUC) and Fig. 4.12 the true skill statistic (TSS). AUC is a threshold-independent evaluator 

while TSS is threshold-dependent. In model evaluation metrics, the same trend in accuracy 

between model types is evident, with the random forest (RF) method showing highest accuracy, 

followed by maximum entropy (MaxEnt). MaxLike, a modified, newer technique for species 

distribution modelling, shows lowest accuracy for SDMs.  

 

 

 

 

 

 

 

 

 

Fig. 4. 11 Mean AUC across all the SDMs generated comparing the different statistical methods 

used, indicating reliability of each statistical method. AUC is threshold independent. 
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The overall importance of each model predictor, including topographic, meteorological, soil, 

satellite and land cover data, are summarised in Fig. 4.13. AUC and COR (co-linearity 

between predictors and SDMs) metrics both showed similar trends in importance of 

contribution of predictors to the models, with temperature and rainfall being the most 

important predictors that SDMs use for NVC vegetation community distribution modelling. 

Minimum temperatures in summer (TminS) and winter (TminW) had highest importance 

(TminSAUC = 0.3, TminSCOR = 0.47, TminWAUC = 0.35, TminWCOR = 0.46) by maximum 

temperature for summer (TmaxSAUC = 0.28, TmaxSCOR = 0.42) and winter (TmaxWAUC = 

0.24, TmaxWCOR = 0.38). Land cover (LCM) appeared to have the lowest level of importance 

when developing SDMs as well as lowest co-linearity. COR results indicate the influence of 

each predictor across a linear spatial gradient (Smith and Santos, 2019). Many of the 

environmental layers might follow a linear gradient across the landscape, resulting in a 

spatially smoothed distribution that is autocorrelated (Smith and Santos, 2019). Fig. 4.13 

shows that the predictors of higher importance are those that are more likely to form such 

linear gradients (e.g. temperature, rainfall and DEM) while low scoring predictors (landcover, 

slope and soil) show very little linearity across the landscape. 

 

 

Fig. 4. 12 Mean TSS across all the SDMs generated comparing the different statistical methods 

used, indicating reliability of each statistical method. TSS is threshold dependent. 
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4.3.3.2  Vegetation community predictions across England and Wales  

As might be expected, the patterns displayed in the predicted maps across England and Wales 

for the 10 Ashtrees and 10 UK BAP communities were extremely variable, and appeared to 

depend on the SDM model used, and whether the NVC community was widespread or locally 

distributed. While models were generated for each of the fourty-four vegetation communities, 

only results for RF model outputs for 20 selected communities are provided in Appendix 2. A 

qualitative visual comparison was made of the various model predictions and observed NVC 

distribution maps. The qualitative assessment was on a scale of 1 to 5, where 1 was judged to 

be a poor agreement between observations and predictions, and 5 an excellent agreement, and 

this is shown in Table 4.2. In general the random forest (RF) model gave the most accurate 

predictions, and MaxLike the poorest, which accords with the quantitative assessment of 

overall model performance shown earlier in Table 4.1. There was a tendency for more 

accurate predictions to be made at the Ashtrees communities, which may reflect the 

underlying rarity of the UK BAP communities.  

 

Fig. 4. 13 Predictor importance (probability score from 0 to 1) for SDM models using AUC ±S.E (left) for 

evaluation and COR ±S.E (right) for predictor co-linearity. 
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To demonstrate the differences in model predictions and their relationships with the numbers 

of observed records, four communities are described in detail. H12 and U4, both with large 

numbers of observed records, selected from the Ashtrees list, and H10 and U17, both less 

frequent, and from the UK BAP list. In addition, H12 and H10 had relatively high model 

rankings (Table 4.2) whereas U4 and U17 had poor rankings. 

 

Table 4. 2 Qualitative ranking of model predictions for 10 UK BAP and 10 Ashtrees vegetation communities 

across England and Wales on a scale of 1 to 5, with 1 = ‘poorly predicted’ and 5 = ‘well predicted’. Green rows = 

overall well-predicted, red rows = overall poor predictions. 

NVC GLM SVM RF MaxEnt MaxLike 

Ashtrees 

H9 5 5 5 4 1 
H12 5 4 5 5 1 
M15 3 5 5 4 2 
M19 5 4 5 3 2 
MG6 5 3 5 5 1 
MG10 2 3 5 5 4 

U2 4 5 5 5 1 
U4 4 2 4 5 1 
U5 5 4 5 5 1 
U6 4 3 4 4 2 

Randomly selected 

H10 5 4 5 5 3 
H18 3 4 4 4 1 
H19 5 1 5 4 3 
M4 4 2 5 4 3 
M16 3 4 5 2 2 
M18 4 2 4 5 1 
M21 5 3 5 4 3 
M37 4 4 5 5 1 
U17 4 1 5 2 2 
U21 4 3 5 5 1 

 

Both H12 (heath) and U4 (calcifugous grassland/montane) are very common communities 

(184 and 270 records respectively; Table 4.1) widely distributed across the Lake District, 

Pennines, North Yorkshire Moors, South West England and Wales (Fig. 4.14). Although the 

U4 community has a higher number of records than H12, its occurrence prediction was the 

‘poorest’ of the 10 Ashtrees communities (Table 4.2). For both communities, GLM, RF and 

MaxEnt models provided robust outcomes while MaxLike was poor in prediction. SVM 

operated poorly for both the U4 and H12 communities, with predicted probabilities generally 
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over 0.4 or 0.5 across the whole area. Fig. 4.14 below shows the differences between SVM, 

RF and MaxLike model outputs. SVM slightly over-estimated the probability of occurrence 

of the U4 community, especially towards the south of England. This over-estimation was also 

observed for the H12 community, but to a lesser extent. Results for GLM and MaxEnt models 

were similar to RF.  

 

H10 (heath) and U17 (calcifugous grassland/montane) communities randomly selected from 

the UK BAP are less frequent across these same upland areas of England and Wales with 82 

and 28 records respectively, mainly restricted to the Lake District, North Pennines and parts 

of Wales (Fig. 4.15). For these less frequent communities RF produced very robust 

predictions of occurrence for both communities whereas SVM over-estimated probability of 

occurrence across the whole of England and Wales with few areas with a prediction 

SVM RF MaxLike 

H12 (Ashtrees) 

   

U4 (Ashtrees) 

   

Fig. 4. 14 Comparing H12 and U4 vegetation communities from the Ashtrees list and their predicted outputs by 

SVM, RF and MaxLike. Black points are the recorded data of these communities. 
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probability of less than 0.4 (Fig. 4.15). In contrast MaxLike overestimated occurrence in 

many parts of the uplands (probabilities over 0.8), but was more accurate in lowland or south 

eastern areas with probabilities less than 0.1. Comparing predictions for these less frequent 

UK BAP communities with those for the more common communities in the Ashtrees list 

suggests that RF is the most robust system overall, and least sensitive to the numbers of 

observations in the underlying data. While there is a slight tendency of such systems to 

provide an ‘overfitted’ model, the use of testing and training data sets in the original SDM 

development as well as random re-sampling of the data multiple model generations can 

decrease the possibility over such ‘overfitting’.  

 

 

SVM RF MaxLike 

H10 (UK BAP) 

 
  

U17 (UK BAP) 

   

Fig. 4. 15 Comparing H10 and U17 vegetation communities from the randomly selected UK BAP list and their 

predicted outputs by SVM, RF and MaxLike. Black points are the recorded data of these communities. 
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4.3.4 Compare NVC community predictions with observed NBN Atlas records in the 

Rede Catchment (Objective 4) 

The Rede Catchment in Northumberland was used as a case-study area to map species 

distributions (species of constancy III, IV and V) recorded in the NBN Atlas database and 

determine if these fall in areas of high predicted probability of occurrence (by SDMs). Full 

results for both sets of 10 communities are in Appendix 2.3 and 2.4, but for consistency 

results for species within the same four communities described in Section 3.3 are detailed 

here. These are H12 and U4 (Ashtrees, good and poorer random forest SDM model 

predictions) and H10 and U17 (UK BAP, good and poorer SDM model predictions 

respectively). Random forest SDMs were identified as most robust in Section 4.3.3, therefore 

only these are considered here. 

 

Table 4. 3 Random forest (RF) predicted percentage occurrence of example vegetation communities extracted 

from distribution of species in the NBN atlas. 

 Ashtrees UK BAP 
Species H12 U4 H10 U17 

Agrostis capillaris - 89.34 - - 
Alchemilla glabra - - - 25.00 
Angelica sylvestris - - - 22.89 
Anthoxantum odoratum - 89.69 80.49 - 
Calluna vulgaris 69.37 - 79.86 - 
Cladonia impexa 84.28 - - - 
Deschampsia flexuosa 72.50 - 80.57 23.50 
Dicranum scoparium 82.93 - - - 
Erica cinerea - - 82.06 - 
Festuca ovina - 91.24 - 27.97 
Galium saxatile - 89.67 - - 
Geum rivale - - - 22.89 
Hylocomnium splendens 79.50 - - 23.81 
Hypnum jutlandicum 84.76 - - - 
Luzula sylvatica - - - 25.48 
Pleurozium schreberi 82.78 - - - 
Potentilla erecta - 89.80 80.65 - 
Racomitrium lanuginosum - - 80.15 - 
Vaccinium myrtillus 74.43 - - - 
Vaccinium vitis-idaea 91.42 - - - 
Mean % probability 80.22 89.95 80.63 24.50 
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Community constituent species were plotted on the predicted vegetation maps as a method of 

assessing the reliability of predictions (Fig. 4.16), and mean percentage probabilities 

calculated (Table 4.3). Constancy species for both H12 and U4 had high predicted mean 

probabilities, with 80.2% and 90.0% respectively (Table 4.3). Note that U4 actually 

performed worse on the overall SDM assessment for England and Wales than H12, and care 

is needed in assessing these results. The NBN Atlas has over 30 species records for constancy 

species in H12, but only 3 records for U4. This makes comparisons between the models more 

difficult, and reflects the challenges in using citizen science data (see Discussion). Likewise, 

for H10 and U17 the number of NBN Atlas records is quite different (Fig. 4.16), but here the 

SDM model performance in the Rede Catchment accords with SDM model performance 

across England and Wales (Table 4.3, 80.6% and 24.5% respectively).  

 
H12 (Ashtrees) U4 (Ashtrees) 

 

 

H10 (UK BAP) U17 (UK BAP) 
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4.4  Discussion 
 

 

The datasets used to generate the NVC and its published associated floristic tables provide a 

valuable resource, but have limitations. In particular, the NVC maps are only available at 

10km resolution, and whilst the Rodwell (1988) maps have been updated, the resolution is 

still coarse. Bradter et al. (2011) also used random forest approaches to predict NVC 

distributions, at fine spatial resolution (5m), in combination with air photography information, 

but for a relatively small geographic area (Yorkshire Dales National Park). In contrast, in this 

thesis part of the aim was to make predictions at both national (England and Wales) as well as 

local (Rede Catchment) scales, and evaluate several different modelling approaches. 

4.4.1 Collation of predictor data for use in SDMs (Objective 1) 

Vegetation communities depend on both environment and management (Ewald, 2003), 

although the latter is difficult to quantify at individual sites. Remote sensing provides 

numerous way of obtaining freely-available environmental data at very high resolution and 

across multiple spatiotemporal scales (Lausch et al., 2013).  Meteorological data (temperature 

and rainfall) and topographic data (DEM, slope and aspect) were deemed as important 

predictors because of their ability to show differences between the northern, southern, western 

and eastern parts of England and Wales. Climate and topology can influence the distribution 

and growth of different community types. Often a distinction is made between direct and 

indirect environmental variables in SDMs. Variables that have a direct influence on 

vegetation physiology and growth include temperature, rainfall and soil type (Austin, 2002; 

Franklin, 2010). Indirect variables include elevation, slope and aspect; these may affect seed 

dispersal etc. (Austin, 2002; Austin, 2005; Franklin, 2010; Bradter et al., 2011). 

 

In this study the indirect predictor elevation showed moderate to high level of importance in 

predicting vegetation communities across England and Wales. Elevation shows large 

differences across the England and Wales. This elevation cline is important for ecological 

diversity and distribution of species (Austin and Smith, 1990; Lomolino, 2001; Austin, 2002; 

Barve et al., 2011; Hof et al., 2012). Both aspect and slope are measures of exposure of 

vegetation to solar radiation (Phillips et al., 2004; Bennie et al., 2006; Bradter et al., 2011). 

Fig. 4. 16 Comparison of probability of occurrence of H12 and U4 Ashtrees communities and H10 and U17 UK 

BAP communities using species data from the NBN Atlas to assess reliability of community predictions. 
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Slope and angle are important features in determining phytosociological patterning and 

distribution at multiple ecological scales (Bennie et al., 2008). This is because vegetation 

types can change composition across small distances with changes in slope and aspect 

(Billings, 1952; van der Maarel, 1996; Stage and Salas, 2007; Bennie et al., 2008; Hernandez 

et al., 2008; Måren et al., 2015). 

 

Remote sensed data does not fall neatly into either the direct or indirect predictor categories, 

as it depends on the vegetation. The power of remote sensed data is, however, increased when 

used in combination with other environmental data sources such as meteorology, altitude etc. 

(Austin, 2002; Rushton et al.2004; Elith et al., 2006). The management and data processing 

multi-spectral satellite data is particularly complex and CPU-intensive, but has proved 

invaluable in species distribution modeling and prediction (Zhang et al., 2003; Araújo and 

Luoto, 2007; Zhang et al., 2017). Multi-spectral EVI uses spectral reflectance in the near-

infrared, red and blue bands to generate a composite at high resolution with strong correlation 

to the typical green coloration of vegetation at different growth stages (Gao et al., 2009; Ke et 

al., 2015). EVI is also a good indicator of the phenology of land cover types (Zhang et al., 

2003; Gao et al., 2009), making it an important contribution for high-quality SDMs. The use 

of satellite data can thus create models that distinguish between ground objects and vegetation 

phenology (Zhang et al., 2017). The ability of EVI to distinguish between different vegetation 

types means that communities can be evaluated at pixel level if the spatial resolution is 

sufficiently fine (Zhang et al., 2003; Zhang et al., 2017; Wang et al., 2017). This may explain 

why the SDM models in this thesis gave higher importance for EVI than indirect variables 

such as slope and aspect (Zhang et al.¸2003; Gao et al., 2009; Zhang et al., 2017).  

 

4.4.2  Select target NVC communities and collate distribution map data (objective 2) 

Different land cover types are managed differently, depending on their conservation status as 

well as their agricultural importance (Thompson et al., 1995; Tscharntke et al., 2005; Miller 

and Hobbs, 2007). Different management techniques are used in different habitats across 

England and Wales, and while environmental management could not be taken into account as 

a variable, the conservation and management practices are an important component of the UK 

BAP. The selection of target NVCs then becomes an important tool for choosing habitats that 

include vegetation communities that are of conservation value within different policy 

legislation (Tscharntke et al., 2005; Pywell et al., 2011).  
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Target NVCs for distribution modelling were those that are under conservation status in the 

uplands. This is because of the high-intensity management that is applied in some areas but 

not in others but still have the same vegetation communities (Tscharntke et al., 2005; Pywell 

et al., 2011). The NVCs chosen also range in the number of records within a 10km grid, with 

some vegetation communities being very rare in England and Wales (e.g. calcareous 

grasslands: CG11, CG12; heaths: H14, H15, H16; mires: M8, M26, M38 and calcifugous 

grasslands: U13, U15) while some are comparatively common (e.g. calcareous grasslands: 

CG10, heaths: H8, H10 and 18, mires: M2, M4, M25 and calcifugous grasslands: U16) but 

are still of conservation concern because of birds (grouse, curlews etc.) and herbivore grazers 

(Dodd et al., 1994; Thompson et al, 1995; (DEFRA, 2007; JNCC, 2016).  

 

4.4.3 Development and testing of NVC species distribution models (Objective 3) 

Species distribution models are primarily tools to predict distributions mostly attributed to the 

growing need for geographic understanding of biodiversity (Franklin, 2010; De Marco and 

Nóbrega, 2018). The availability of different SDM techniques has become popular in 

ecological modelling and conservation biology because SDMs help scientists understand 

biodiversity changes of high-risk areas (Franklin, 2010). SDMs also provide a holistic 

understanding between species distribution and their relationship with the environment 

(Franklin, 2005; Guisan and Zimmermann, 2000; Guisan et al., 2006; Franklin, 2010; Warton 

et al., 2015). SDMs have rarely been used to predicting vegetation communities (Bradter et 

al., 2011).  This is because community-level data is difficult to assess because of the large 

number of individual species that comprise each community and each of these constituent 

species will have its own environmental tolerances (Franklin, 2010).  

 

This research tested 5 methods for SDM generation: GLMs, SVM, RF, MaxEnt and MaxLike. 

These methods have differences in their performance and application to different response 

variables (Franklin, 2010). Random forests have been accepted by scientists to be very 

reliable in fitting models of varying data set sizes and robust against over-fitting models 

(Kampichler et al., 2010; Evans et al., 2011; Belgiu and Drăguţ, 2016). Overall results 

(Section 4.3.3) demonstrated that RF models had highest accuracy while MaxLike gave the 

lowest accuracy across all models. This might be because MaxLike is less effective on 



 

127 

presence-background (used here) than presence-only data (Franklin, 2010; Fitzpatrick et al., 

2013).   

However, it is better in datasets where there are only a small number of records (Royle et al., 

2012; Fitzpatrick et al., 2013), and was better than MaxEnt for infrequent communities (Table 

4.2). AUC and TSS model evaluation methods all scores highest for random forest 

predictions, followed by MaxEnt, SVM and GLM. Random forests build numerous 

independent hierarchical trees and averages the final output. Each tree is built on a sub-sample 

of training data and uses the predictor variables to increase the resulting tree to maximum size 

(Franklin, 2010; Kampilcher, 2010; Evans et al., 2011; Belgiu and Drăguţ, 2016). RF 

methods are very good at analysing and coping with non-linearity of variables and can 

discriminate between classification trees of most importance and relevance (Evans et al., 

2011; Belgiu and Drăguţ, 2016). Both random forests and SVMs are sometimes considered as 

machine learning methods. Both methods are computationally intensive and use decision trees 

in their processing, but SVMs assume that variable data are linearly correlated and separated 

in space (Mountrakis et al., 2011; Pouteau et al., 2012), whereas RF are not constrained by 

this assumption. It might be that this greater flexibility of RF methods (Belgiu and Drăguţ, 

2016; Franklin, 2010) that explains the better overall model predictions of NVCs in England 

and Wales obtained in this thesis. 

 

4.4.4 Compare NVC community predictions with observed NBN Atlas records in the 

Rede Catchment (Objective 4) 

The vegetation communities identified in the UK BAP were screened for their presence in the 

NE England. These communities together with the communities identified in Chapter 3, 

allowed this research to further assess the reliability and robustness of the SDMs and 

predictions, using the Rede Catchment as a case study. The two sets of data (UK BAP and 

Ashtrees) also allowed comparison of vegetation communities that are both common and rare 

in NE England to identify any differences in SDM and their possible dependence on the rarity 

of the community for robust predictions. The NBN Atlas was used in this research as a form 

of qualitative assessment on the robustness of predicted community vegetation data. 

Literature emphasised the need for pinpointing where vegetation is most likely to occur, to 

reduce monetary and human effort for sampling vegetation of interest and conservation value 

(Watt, 1947; van der Maarel, 1996; Parkes et al., 2003; Fischer and Lindenmayer, 2007; 

Pescott et al., 2015; Pescott et al., 2019). H12, U4 and H10 vegetation communities resulted 
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in overall high predicted probability when using species presence as a qualitative (or semi-

quantitative assessor). However, the U17 community, a less-frequent community across 

England and Wales, resulted in an overall results of 25% probability, where species of high 

constancy in this community were predicted across Rede Catchment. This suggest that the 

model can either be a poor prediction of the community or, more likely, the constituent 

species of this community are present in high constancy in other similar vegetation 

communities (e.g. Festuca ovina has high occurrence in H10 and U21 communities; 

Hylocomium splendens has high constancy in H12, H18 and H19 communities; Appendix 2).  

 

There are challenges when interpreting the NBN Atlas results. First, the comparison is not an 

exact “like-for-like” in that the distributions of individual species were not predicted, but 

rather NVC communities. One theoretical approach to resolve this would be to calculate the 

predicted probability of every NVC in each pixel, and then weight all potential species (across 

all NVCs) by the probability that the NVC is present. Whilst this would produce predicted 

probabilities for individual species, rather than communities, the procedure would be very 

complex given both the number of NVCs and the large number of constitutent species. 

Second, the maximum and minimum predicted probabilities were quite variable in their range, 

for example 0.05-0.65 for U17 compared to only 0.75-1.0 for U4. This might over-inflate the 

apparent accuracy of U4. Finally, this effect is exacerbated if there are relatively few records 

in the NBN Atlas dataset for some communities, making it harder to compare observed 

sightings with the predictions for individual communities. 

 

4.4.5 Citizen science and plant monitoring schemes  

Using citizen science for data gathering has become an important aspect amongst scientists to 

engage the public and raise awareness as well potentially reducing survey costs (Silvertown, 

2009; Callcutt et al., 2018). The NBN Atlas is a major step forward linking citizen science to 

scientific research and, indirectly, monitoring schemes that are required under numerous 

environmental policies, national, European and international, such as the EU Habitat’s 

Directive (Council Directive 92/43/EEC; European Commission, 1992) and EU Birds 

Directive (2009/147/EC; European Commission, 2009). This online database and its primary 

aim of engaging citizens to record species, their location and, preferably, abundance, is a big 

development in identifying locations of primary concern. However, the dependency on 

volunteers does produce gaps in the data gathered mostly because of restricted areas, 
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misidentification and/or low numbers of volunteers (Dickinson et al., 2010; Dickinson et al., 

2012).  

 

A recent vegetation monitoring scheme in the UK has been developed and launched on 

mapping distribution of vegetation and their abundance patterns to allow for recognised 

environmental change called the ‘National Plant Monitoring Scheme’ (NPMS; Pescott et al., 

2019). This monitoring scheme allows for estimation of trends in environmental conditions of 

high priority areas through detection of changes in vegetation patterns and community-species 

indicators. However, like the NBN Atlas this depends on citizen science with volunteers 

playing a major role in correct identification of species and use of sampling strategies 

(Silvertown, 2009; Tulloch et al., 2013; Pescott et al., 2017; Pescott et al., 2019). Unlike the 

NBN Atlas, the NPMS takes into account abundance of vegetation species, which has a two-

fold effect, i.e. ensuring vegetation communities are in healthy form and patch metrics as well 

as providing a solid baseline for community distribution prediction and their frequency status 

(Pescott et al., 2017). As with any other monitoring scheme, the main limitation is identifying 

locations of high occurrence probability of select vegetation and their community (Franklin, 

1995; Franklin, 2010; Chandler et al., 2017).  

 

This research showed that vegetation communities’ occurrence and their spatial distribution 

can be reliably predicted. Results from this research and the comparison with species data 

from the NBN Atlas show that GLM, RF and MaxEnt modelling methods can predict 

vegetation communities of varying number of recordings accurately. Care should be taken 

when using SVMs and MaxLike due to the increased chances of underestimating (SVM) or 

overestimating (MaxLike) vegetation community distribution and probability of occurrence 

when data is variable.  
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4.5  Conclusion 
 

 

This chapter investigated whether vegetation communities, from the NVC, could be reliably 

predicted across England and Wales. Prediction of vegetation communities at such a large 

scale require high-resolution topographical, meteorological and remote sensed data for 

reliable outcomes community distribution. The collection and collation of environmental and 

remote-sensed data is an essential step in developing robust species distribution models. 

While species distribution models are generally used to predict species-level distributions, this 

chapter uses the same methods to predict vegetation community-level distribution across 

England and Wales. The results indicated that even with NVC vegetation data is extremely 

variable in number of surveyed points per community, the vegetation communities could 

nevertheless be reliably predicted. Results demonstrated that random forest models SDM 

techniques had highest success of producing robust predictions, which accords with previous 

studies. There are, however, a number of outstanding problems that still need to be overcome 

in order to predict the distributions of the individual plant species that collectively constitute 

each NVC community. 

 

The resulting community distribution maps of threatened and/or prioritised vegetation 

communities provides useful basis to identify locations where additional surveys might be 

prioritised for both professional researchers and citizen scientists. This would efficiently fill in 

gaps in records of both the NBN Atlas and the NPMS. In addition, the methods applied in this 

chapter can be generalised and used at any spatial scale.  
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Chapter 5. General Discussion 
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5.1 Overview 

  

Phytosociological research plays a very important part in understanding vegetation 

distribution especially in areas where vegetation change is relatively stable and changes only 

occur over decades. Such areas include upland, montane environment and bogs. Some of 

these habitats fall within Areas of Outstanding Natural Beauty, Environmentally Sensitive 

Areas, Specially Protected Areas and Special Areas of Conservation (SACs), and are often 

used in agricultural practices such as sheep-grazing and are thus semi-natural environments. 

Survey data at different spatial scales is a very important resource to enable scientists to 

monitor, protect and conserve such environments. In addition, policy frameworks exist to 

make sure that such areas are protected with the main aim of helping habitats and 

communities to regenerate by ensuring suitable habitat-environmental feedback systems as 

well as reducing anthropogenic influence. However, policy-makers depend on scientific data 

to identify areas that need to be protected. Such data needs to be reliable, robust and at at the 

appropriate spatial scales. Obtaining this data can be difficult due to expenses, human effort 

as well as environmental restrictions for experts to enter certain areas.  

 

 

Vegetation communities have been studied for more than 50 years (e.g. Braun-Blanquet, 

1932; Watt, 1947). More recently a large number of advanced numerical techniques have 

been developed for multivariate analyses of quadrat x species matrices, and their relationships 

with the environment. These include classification methods such as TWINSPAN, 

unconstrained DCA ordination, constrained canonical correspondence analysis (Ter Braak, 

1987), partial CCA (Legendre and Gallagher, 2001; Sanderson et al., 1995) and multivariate 

GLM (Warton et al., 2012). National systems to classify vegetation communities, such as the 

NVC, have been developed with the aid of some of these numerical methods. However, 

despite these advances much of the research has focussed on individual species rather than the 

whole community, and it is important to understand the dynamics and concepts from a top-

down approach, i.e. community-based approach (van der Maarel, 1996). This is because 

within a community species do not occur in isolation, but interact with each other in both time 

and space. In particular, there has until now been little research into small-scale patch 

structure of individual species within the community as a whole in terms of identifying patch 

metrics and the relationship of such vegetation metrics to the environment (le Roux et al., 

2014). The reason for this is probably because of the considerably larger resources and effort 
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required for sampling at sub-quadrat scale. Recent technological advances such as unmanned 

aerial vehicles (UAV) have the potential to improve the quality and quantity of spatial data at 

fine resolution (Xiaoqin et al., 2015; Anderson and Gaston, 2013). This becomes more 

powerful with the development of strategies to integrate across spatial scales, from sub-

quadrat, quadrat, field, landscape, region and nationally, accessing more traditional sources of 

remote sensed data such as air photography and satellite. The power of these approaches can 

be increased through integration with expanding citizen science databases, and the 

effectiveness of the volunteer surveyors improved.  
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5.2  Summary of key findings  
 

 

5.2.1 Chapter 2: Understanding vegetation species patches at small spatial scales  

 

 

The first chapter in this thesis, summarised in Fig. 5.1, compared traditional vegetation survey 

data with dominant/subdominant vegetation data. Results suggested that there is strong 

relationship between summarised vegetation covers derived from 10cm grid data and overall 

visual assessments at 1m2 quadrat. This suggests that that upscaling to 4m2 quadrat data (as 

used in the NVC) can also be reliable. 

 

The different types of patchiness exhibited by dominant and subdominant species correlated 

with soil pH, soil water, slope, aspect and herbivore grazing (using sheep tracks as an 

indicator of the latter). It was evident that patch area and shape were very variable across a 

field, even in quadrats with otherwise relatively similar environmental conditions. These 

differences may be a result of other, un-measured, environmental variables. Only indirect 

measures of herbivore grazing, trampling (Fenton, 1937; Lange, 1969) and soil drainage 

(Coulson et al., 1990) were available and it might be that more accurate direct measures are 

needed. Nevertheless, RDA and ‘manyglm’ analysis of sub-quadrat vegetation patterns 

suggested that all patch metrics are influenced by soil pH, soil water content, slope and 

altitude (Bennie et al., 2006). Dominant and subdominant patch structure (mainly number and 

area) are influenced by proximity to sheep tracks (Watt, 1947) and drainage ditches (Coulson 

et al, 1990; McLaughlin and Mineau, 1995), albeit to a much lesser extent than with soil pH, 

soil water, slope and altitude. In addition, assessment of block-forming and opportunistic 

species, irrespective of cover type, are also influenced by these environmental variables.  

Fig. 5. 1 Graphical summary of Chapter 2 highlighting the main methods and outcomes of this chapter. 
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Dominant block-formers were generally found to form larger areas and very complex shapes 

when compared to sub-dominant block-formers. However, sub-dominant opportunists 

produced larger areas and more complex shapes when compared to dominant opportunistic 

vegetation. These may reflect changes in competitiveness between species, depending on the 

sizes of patches. 

 

5.2.2  Chapter 3:  Generalisable methods to classify vegetation using ‘pseudo-quadrats’  

 

 

The methods developed in the second data chapter, summarised in Fig. 5.2, addressed the 

issues of currently available vegetation classification software using computer-generated 

pseudoquadrats. Pseudoquadrats provide a means to bridge data gaps, handle noisy data and 

aid classification of vegetation communities when sampling data is limited or was not 

collected via conventional methods (Butler and Sanderson, 2018). The use of pseudoquadrats 

provide valuable insights when classifying surveyed species into communities using 

traditional hierarchical and ordination techniques. Inclusion of field survey data as ‘passive’ 

samples in ordination space provides a good visual feedback to users to help them understand 

where their field samples sit within the context of the extant target communities, over and 

above a simple list of probabilities. Furthermore, previous methods to allocate field quadrats 

to communities, such as MATCH, TABLEFIT and MAVIS (Malloch, 1998; Hill, 1989; Hill, 

1993; Smart et al., 2016) have pre-requisites before they can be used, such as the methods 

used to survey data in the field (five 2m x 2m quadrats, randomly placed in a block of visually 

Fig. 5. 2 Graphical summary of Chapter 3 highlighting the main methods and outcomes of this chapter. 
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homogenous vegetation for the NVC), or cannot be used on quadrats collected in isolation or 

from transects. 

 

5.2.3  Chapter 4: Prediction of vegetation community distribution across England and 

Wales 

 

The final chapter in this thesis, summarised in Fig. 5.3, aimed to predict reliably distributions 

of NVC vegetation communities that are of conversation value listed in the UK BAP (JNCC 

and DEFRA, 2012; McLeod et al., 2009). From the five different SDM modelling techniques 

(GLM, SVM, RF, MaxEnt and MaxLike) for England and Wales, the random forests method 

was the most reliable. The Rede Catchment was used as a case study to incorporate species 

data from the NBN Atlas to the NVC predictions at a smaller spatial scale. The NBN Atlas 

data is very variable between communities in terms of records for constituent species and 

therefore this method of assessment for predictions can be difficult. However, the resulting 

NVC predictions of locations for vegetation communities can help fill in the data gaps 

(Hampton et al., 2013) in plant monitoring schemes (e.g. NBN Atlas and NPMS). These NVC 

predictions can reduce the risks of biases from ad hoc surveys, but rather target surveys to 

species likely to occur in specific vegetation communities even at small catchment scales (as 

performed here in the Rede Catchment). Identification of vegetation community hotspots also 

provides information for citizen scientists, allowing the public to survey particular areas and 

making the most of citizen science in ecology (Dickinson et al., 2010; Tulloch et al., 2013). 

Predicting NVCs that are of conservation value is important for both environmental 

management, stakeholders and policy makers (Sinclair et al., 2010).  

 

Fig. 5. 3 Graphical summary of Chapter 4 highlighting the main methods and outcomes of this chapter. 
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This is mainly because the SDM methods are simple to employ, reliable and provide 

invaluable insight into the locations that require protection and management.  

 

5.3  Top-down and bottom-up approaches to vegetation community 
ecology 

 

This research has been developed systematically from understanding species patch structure at 

sub-quadrat and quadrat scale, interpolation of species probabilities to field scale, use of 

computer-generated pseudoquadrats to predict communities at field scale, and finally 

predictions at landscape and national scales. The methodological approach from very small 

spatial scale to very large spatial scale means that there is also potential for a top-down 

approach. This means that prediction of probability of community occurrence can then use the 

pseudoquadrat techniques to identify species composition and their abundance within any 

given community. Having an approximate measure of abundance, frequency or probability of 

vegetation communities provides a means to predict the community constant species, and 

hence potentially the frequencies of these community constants. Currently, using a ‘top-down’ 

approach would still necessitate field surveys to measure patch structure at very small sub-

quadrat scales. Whilst theoretically species patch structure information could be aligned with 

community information, in practice a large amount of additional work would be needed, 

probably making it impractical. Nevertheless, one route by which useful additional data might 

be collected at low cost would be to slightly extend existing citizen science surveys, such as 

NPMS, so that it includes some measures of dominant and subdominant species at small 

spatial scales. This data can then be used to identify trends occurring between species in 

different locations. The mapping of vegetation community distribution at a national scale can 

then allow scientists and policy makers to address issues for further conservation assessment 

or environmental management.  

 

5.4  Strengths and weaknesses of the research 
 

Each chapter in this thesis is individually-based on a particular spatial scale ranging from 

small 10cm and 1m scale (Chapter 2), >1ha field scale (Chapter 3) and >1km national scale 

(Chapter 4). The thesis as a whole tries to bridge the different spatial scales through a multi-

method approach. An important concept of this thesis is that the environmental drivers (or 

predictors) used to understand the different processes can be substantially different at each 
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scale. For example in Chapter 2, site data or point-process data is required for reliable 

understanding of the interaction between vegetation patch patterns (assessed through patch 

metrics). This type of data, such as soil pH, soil water content and, to a certain extent slope, is 

site-specific, making the results less generalisable. However results from comparison between 

survey techniques (% cover abundance, dominant and subdominant) infer a reliable 

application to field surveys within any habitat. It is acknowledged that the relationships 

between the environment and the patch structures can be somewhat site-specific, and an 

improvement of this method would have been to utilise data from different locations of 

similar upland sites. This could provide a more robust analysis, and aid development of a 

more generalisable approach that utilises a deeper understanding of species-level patch 

development. This issue of site-specificity is also observed in Chapter 3 using site-specific 

vegetation survey data to compare methods. It should be noted that the methods used in 

Chapter 3 use ordination techniques, which has the advantage of providing a powerful data 

visualisation technique, familiar to most practising ecologists. However, the low number of 

vegetation communities (when compared to the whole of the NVC) imposes limits on the 

survey data that can be inputted in the methods described in Chapter 3. It is not practical to 

create a single ordination analysis that encompasses the entire NVC (R. A. Sanderson, pers. 

comm.), but the pseudo-quadrat approach is nevertheless sufficiently generalisable to be 

expanded to encompass additional communities. For example, it could be modified to a single 

overall classe-level analysis (i.e. aggregations of ‘U’, ‘H’, ‘M’, ‘MG; etc.), producing one 

ordination plot for all the broad classes, and then lower in the hierarchy individual ordinations 

that contains centroids for all sub-communities within each class.  

 

The methods described in Chapter 4 could be used to aid long-term predictions of plant 

community distributions, especially as a result of land use change, as well as aiding policy-

makers identify potential communities or species that are potentially under threat. The data, 

method and results obtained in Chapter 4 provide an important ‘baseline’ that can be used to 

aid improvement in current assessment or monitoring practices at large (national) scales. 

While the method of using community data originally recorded at 10km has its weaknesses, it 

can serve as a new and important indication of where upland UK BAP, or any other particular 

communities are found. It is important to note that this method uses dot-distribution data from 

the NVC per community and it is just one of multiple data sources that could be used to map 

and predict community distributions.  
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5.5  Future work and recommendations for future researchers 
 

Two alternative methods to predict communities and species distributions might be explored 

based on ideas presented in this thesis. First, community-level predictions could be created 

with the aid of stackable SDMs.  This would involve the creation of a large number of 

standard SDMs for each species and the predictions for those known to occur in a given 

community could then be stacked. The locations where most of these species occur, especially 

community constants, would provide an indication of high probability that that community is 

actually present. Second, it might be possible to develop more sophisticated techniques to 

predict the distributions of individual species from the community-level probabilities 

presented in Chapter 4. Each NVC plant community provides a constancy score (I, II, III, IV 

and V) reflecting the frequency with which species have been recorded in a community. 

These could be converted into probabilities (0.2, 0.4, 0.6, 0.8 and 1.0) and multiplied by the 

probability that the community is present at that location. The most effective approach to 

these calculations might be to create a matrix of species by probabilities for each community 

(from the NVC handbooks) and multiply this with a vector of communities by probabilities, at 

each point in the map. Whilst the method would be numerically intensive, it might provide a 

more accurate method to create 1km maps of the predicted distribution of each species. The 

community- or species-level maps produced from either approach might have multiple uses 

for both researchers and policy-makers, especially with regards to species range shifts and 

nature conservation.  

 

The community distribution models described in Chapter 4 could be enhanced to determine 

potential community distribution shifts with climate change and other such major 

anthropogenic influences. The use of ‘hybrid’ species distribution models (H-SDMs; Gavish, 

2014; Singer et al., 2018) might provide substantial information on and development of 

models in terms of species distribution changes with climate change and major anthropogenic 

influences. Fig. 5.4 is a graphical summary of the development of ‘hybrid’ species 

distribution models.  
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H-SDMs provide a multi-step approach (Fig. 5.4) built on numerous model scenarios and 

simulations, mainly i) predicted scenarios of temporal changes in a given habitat (e.g. 

landscape dynamic models), ii) 1st correlative SDM (C-SDM), iii) development of a 2nd 

correlative habitat suitability model based on the environmental data changes and finally, iv) 

development of a mechanistic occupancy model (or population model) constrained by the 

predicted habitat changes (De Cáceres and Brotons, 2012). The development of such models 

has allowed scientists and researchers to identify possible geographic range shifts based on 

numerous biotic changes, such as, demography, species dispersal, functional traits and species 

interactions (Singer et al., 2018). While this approach is biologically and computationally 

intensive because of data requirements for parameterisation, the framework can use different 

data types at different spatial scales to predict species distribution at different grains and 

extents (Gavish, 2014). H-SDMs are based on the more ‘traditional’ SDM predictions 

(correlative SDMs), similar to those generated in Chapter 4 as part of this research. However, 

H-SDMs require an increased number of biotic variables that are known to influence the 

selected species (or communities). H-SDMs have weaknesses, mostly in terms of the data 

requirements and lack of information on paramaterisation of the models, especially data and 

knowledge gaps related to environmental drivers and ecological responses to such drivers. 

Singer et al. (2018) outlines and discusses the major challenges of developing such H-SDMs 

as well as providing solutions in overcoming such challenges. An additional major challenge 

would be to validate the results for the H-SDMs if predicted across long time-scales.  

Fig. 5. 4 A graphical summary of the development of ‘hybrid species distribution models’ based on the community 

distribution models (1st correlative model) developed in this research. 
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5.6  Recommendations for policy-makers: A POSTnote approach2 
 

5.6.1 Overview 

Individual plant species do not grow in isolation, 

but co-occur with other plants to form vegetation 

communities. Too often conservation efforts have 

focussed on individual species, without 

consideration of the assemblage of other species 

in which they occur. Species interact with each 

other and the surrounding environment (also 

known as phytosociology) but are knowledge on 

some of the key environmental drivers is 

incomplete, especially in upland habitats. 

Furthermore, many of these upland habitats are 

threatened by anthropogenic changes. This POSTnote outlines key drivers of upland 

vegetation at small, medium and large spatial scales, from clumps of plants, fields through to 

landscapes. It also presents a generalizable approach to upland vegetation classification and 

methods predict their distributions in England and Wales. 

 

5.6.2 Background 

Upland habitats are typically defined as being above 250m elevation, and occupy 

approximately 35% of the UK land surface. Upland plant communities are affected by 

numerous components of the environment such as soil type, topography, meteorology, 

herbivore grazing, and anthropogenic disturbance (Pott, 2011). Some upland vegetation 

 
2 The UK’s Parliamentary Office of Science and Technology (POST) regularly publishes “POSTnote” designed 
to inform policy-makers on key aspects of scientific research and policy. Section 5.6 is written in the style of a 
POSTnote, although with fewer references as it is based on the research presented in this thesis. 

Fig. 5. 5 Photograph of  'Ashtrees Dipper' upland sheep-

grazed grassland and moorland site (study site). 

• UK upland vegetation sites contain a 
diverse mixture of species and vegetation 
types, but are threatened by climate 
change and agricultural practices. 
• Defining and understanding the 
interactions between vegetation species 
and communities across multiple spatial 
scales is important to develop methods 
and policies for conservation. 
• Understanding vegetation patch 
structure at small spatial scale allows 
scientists to predict patch changes in 
response to anthropogenic disturbance 
and can be used as indicators for future 
vegetation change. 
• Reliable prediction of vegetation 
distribution provides baseline for 
researchers and citizen scientists on 
location of vegetation communities. 
• Improvement of methods and models 
can help policy-makers to develop 
monitoring schemes for protecting areas 
of high conservation value. 
•  With new technologies, survey methods 
can be improved reducing the cost and 
time associated with identifying 
vegetation species and communities 
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communities also rely on sheep and cattle grazing to sustain their development and when 

correctly implemented this helps to maintain a diverse mixture of different vegetation 

communities (Berg et al., 1997; Adamson et al., 2001). Unfortunately, where uplands are 

poorly management, for example through over-grazing, pollution, excess drainage, this may 

lead to declines in vegetation and animal biodiversity. Environmental change can alter 

relationships between neighbouring plant species and change vegetation community classes 

(van der Maarel, 1969). The availability of remote-sensed data (e.g. drones and satellites) can 

provide high resolution data to utilise and improve methods of vegetation surveys from a 

relatively small area to a larger landscape area. Landscape modelling of vegetation 

communities, using numerous variations of models, e.g. species distribution models, can 

quantify the relationship between the communities and the environment at different spatial 

scales. Exploring a bottom-up approach from vegetation patch structure through to 

community assemblage and to community distribution can provide several ‘baselines’ for 

policy-makers to aid development conservation measures.  

 

5.6.3 Key environmental drivers at different spatial scales 

Vegetation may appear to respond to 

different environmental factors 

depending on the scale at which it is 

assessed. At the individual species level, 

vegetation growth occurs through that 

of individual plants, which in upland 

habitats often form clumps or patches 

(Box 1). The shapes of these patches are 

influenced by, for example, soil pH, soil 

moisture soil composition and grazing 

regimes. The interplay between species and such environmental drivers can be related to plant 

functional traits, including root-rhizome growth, seed dispersal and regenerative properties. 

However, the community as a whole responds to different environmental drivers especially if 

assessed at larger landscape scale. Research indicates that vegetation communities, depending 

on their class (i.e. grassland, moorland, heathland, mires) are dependent on a multitude of 

large-scale variables most notably meteorological (especially temperature and rainfall) and 

topography. This suggests that with current climate change projections, vegetation 

communities will have to either adapt or undergo range shifts.   

 

Box 1: Effect of environment on vegetation 

patch structure 

Overall analysis of dominant and 
subdominant vegetation patch structure 
(number of patches, area and shape) indicated 
strong associations with the four main 
environmental variables of soil pH, slope, 
percentage water and altitude. There was 
weak evidence that either proximity of sheep 
tracks, especially within 10m of a quadrat, 
affected the patch structure, or that distance 
to the nearest drainage ditch also had an 
effect.   
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5.6.4 Application and challenges 

Research into vegetation patches at a very small scale provides insights into how vegetation 

species interact and respond to the environment and anthropogenic disturbances. While some 

species can tolerate disturbance with little change in growth form, being competitors-stress 

tolerators (CS; see Grime et al., 1988), others undergo changes in their general patch 

structure, or from dominant to subdominant cover abundance. Surveying species at such a 

small level is an important addition to the ‘toolkit’ used by practising conservation scientits 

and research ecologists. It allows a more fine-grained assessment of the patterns in the 

vegetation, and may well prove to be a sensitive initial indicator of changes in the vegetation, 

that take longer to become apparent at larger scale, coarser-resolution surveys. By coupling 

such research to newly developed methods to predict vegetation community distributions at 

larger scales will empower researchers and policy-makers to make more informed decisions 

when developing and implementing environmental policies. This may include applications of 

different monitoring approaches such as leveraging the power of data collected through 

citizen science surveys more effectively. These have the potential to be both low cost and 

high benefit, and supplement existing databases of vegetation records.  

 

5.6.5 Technological enhancement 

Current upland vegetation research has utilised data sets at a range of spatial scales from 

10cm and 1m plant and patch scale, through to field-level surveys, and finally landscape and 

national scales. The development of technologies for surveying purposes from for example 

drones through to satellite imaging, coupled with the improved processing power of modern 

computers and new data processing algorithms, provides a unique opportunity to increase our 

understanding, management and conservation of upland habitats. Drones (UAV) have the 

potential to take images of vegetation at fine spatial resolution, such as 1cm to 20cm scale, i.e. 

a high enough resolution and spatial distance to identify dominant and subdominant 

vegetation species, if not individual plants or leaves. Drones can only survey relatively small 

areas. In contrast, satellite data is available across much larger areas, often with national 

coverage, but at coarser spatial resolution (typically 2m to 30m) can be utilised to predict and 

analyse vegetation community distribution at large spatial scales (e.g. England and Wales). It 

is important to continue to build on the data-processing pipelines developed by (Butler, 2020) 

to integrate the data recorded at these different spatial scales, so that scientists have an in-

depth understanding of factors affecting low-level plant growth patterns across large spatial 

scales.  
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5.6.6 Meeting the challenges 

 Several challenges remain to predict 

vegetation communities across large 

areas. While one method, based on 

modified species distribution models 

(SDMs), has been tested and resulted in 

high accuracy in model outputs, there is 

still a need for additional validation as 

well as comparison with different levels. 

The method used to predict communities 

at large spatial scale (England and Wales) has proved invaluable to identify locations in 

communities that are currently protected under the UK BAP. However, this method uses 

community-based data rather than species-level data as inputs into the SDMs. This produces 

spatially coarse predictions (10 km) more data intensive methods such as species stackable 

SDMs have the potential to predict communities at much finer spatial scales. Community and 

species distribution models can be time-consuming to develop, therefore an initial, relatively 

spatially coarse model, might be useful for policy-makers to identify areas that had not have 

been previously considered as conservation priorities.  Newer ‘hybrid’ species distribution 

models (H-SDMs) are likely to be needed to predict range shifts in plant species and 

communities as a result of climate change. H-SDMs require more input data and are 

computationally intensive level compared to ‘traditional’ SDMs, but can provide predictions 

on both the temporal, as well as spatial, scale (Box 2). A multi-scale approach, both in time 

and space, to understand and assess upland vegetation species and communities is an 

important component to preserve and conserve natural or semi-natural environments that are 

under substantial anthropogenic threat. The methods and models produced as part of recent 

research can be both replicated, applied and improved to address research and policy gaps.  

 

5.7  Open Data Science 
 

This research utilised numerous different data types ranging from surveyed data at 10cm scale, 

abundance cover survey at 1m scale, vegetation community presence data at 10km grid scale 

and a multitude of collections of environment data at high resolution. Data management, 

manipulation, analysis and prediction was done using R (R Core Team, 2013) and thus available 

as R scripts. Examples taken from the R scripts developed for Chapter 2 (Appendix SUP2), for 

Box 2: Hybrid Species Distribution Models 

(H-SDMs) 

H-SDMs are a multi-step modelling approach 
designed to integrate numerous model 
simulations, mainly i) predicted habitat 
change by climate change, ii) SDMs at 
numerous time steps, iii) habitat suitability 
model based on the environmental data 
changes and the output would be a population 
model at multiple time steps based on the 
predicted habitat changes driven by climate 
change (De Cáceres and Brotons, 2012). 
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Chapter 3 (Appendix SUP3) and for Chapter 4 (Appendix SUP4) are appended as 

supplementary data.  

 

In addition, to support high quality research, teaching and learning the data, results and R 

scripts will be made available as part of the Open Data Science scheme at Newcastle 

University (data.ncl). The primary aim of making the data available is to provide others with a 

flexible and use-friendly method access to the data resources used and algorithms developed 

in this research. This would also add to further work performed in this area of research by up 

and coming researchers, data scientists and policy makers. The availability of open data might 

also help researchers compare different methods of vegetation community analyses and 

prediction at finer scales as well as compare with different methods (especially for SDM 

predictions). The availability of this data would also help in international research 

engagement, networking and collaboration.  

 

5.8 Final conclusions 
 

This research aimed to understand and model upland vegetation communities at multiple spatial 

scales, ranging from species-level scale (10cm and 1m) through to catchment scale (Rede 

Catchment) and up to national scale (England and Wales). The range of data used in this 

research (survey data, in situ environmental data, aerial photographs, high resolution satellite 

data etc.) provided sound development of models, assessment and analysis of upland vegetation 

communities.  

 

Chapter 2 in this research provided substantial information that vegetation patches at very low 

spatial scale (10cm and 1m) are dependent on environmental variables (both direct and 

indirect), and form different number of patches, areas and shapes depending on their cover type 

(dominant or subdominant) and growth strategy (block-formers or opportunists). Interpolation 

techniques can be used to develop predicted maps of patch metrics for named species at field 

scale. Furthermore, this research (Chapter 3) used available software and algorithms of 

vegetation classification, to develop robust and generalisable methods for allocating field 

quadrats using ordination methods. The use of ordination and hierarchical techniques makes 

vegetation classification generalisable to different classification systems, as well as has the 

potential to classify both sets of and individual quadrats where no classification is in place.  

Chapter 4, in this research provided insight into predicted vegetation communities using species 
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distribution models. The prediction of communities at both national and catchment scale 

provided sound information on the locations of vegetation communities that are of conservation 

priority, within the UK BAP. This provides both experts and citizen scientists with the 

knowledge on where to best survey species and communities either as part of vegetation 

monitoring schemes for long-term vegetation abundance data (such as the NBN Atlas or the 

NPMS). The predicted maps and probability of community occurrence can be used to aid 

identification of new potential areas for conservation management. 
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Appendix 1. Patch metrics 
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Appendix 1.1. Maps of Environmental Variables at Ashtrees 
 

 

Soil pH Soil water content  

Altitude Slope  

 

 

Fig. S2. 1 Interpolated maps of soil pH, soil water content, altitude and slope across Ashtrees Dipper. 
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Appendix 1.2. Number of Patches 
 

 

Dominant - Number of Patches - Block-formers 

Calluna vulgaris Eriophorum vaginatum Juncus effusus  

 

Juncus squarrosus 

 

Molinia caerulea Nardus strictra 

 

Fig. S2. 2 Interpolation maps of predicted number of patches of selected dominant block-forming vegetation species 

across the Ashtrees Dipper 
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Dominant - Number of patches - Opportunists 

Carex nigra 

 

 

Deschampsia flexuosa 

 

Galium saxatile 

 

Potentilla erecta 

 

Vaccinium myrtillus 

 

 

Fig. S2. 3 Interpolation maps of predicted number of patches of selected dominant opportunistic vegetation species 

across the Ashtrees Dipper 
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 Appendix 1.3. Area 
 

 

Dominant - Area – Block-formers 
Carex nigra 

 

Eriophorum vaginatum 

 

Juncus effusus  

 

Juncus squarrosus 

 

Molinia caerulea 

 

Nardus stricta 

 

 

 

 

 

 

 

 

Fig. S2. 4 Interpolation maps of predicted area of selected dominant block-forming vegetation species across the 

Ashtrees Dipper 
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Dominant – Area – Opportunists 
Carex nigra 

 

Deschampsia flexuosa 

 

Galium saxatile 

 

Potentialla erecta 

 

Vaccinium myrtillus 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2. 5 Interpolation maps of predicted area of selected dominant opportunistic vegetation species across the Ashtrees 

Dipper 

 



 

176 

Appendix 1.4. Shape Index 
 

 

Dominant – Shape Index - Block-formers 
Calluna vulgaris 

 

Eriophorum vaginatum 

 

Juncus effusus 
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Molinia caerulea 
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Fig. S2. 6 Interpolation maps of predicted shape index of selected dominant block-forming vegetation species across the 

Ashtrees Dipper 
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Dominant – Shape index - Opportunists 
Carex nigra 

 

Deschampsia flexuosa 

 

Galium saxatile 

 

Potentilla erecta 

 

Vaccinium myrtillus 

 

 

 

 

Fig. S2. 7 Interpolation maps of predicted area of selected dominant opportunistic vegetation species across the Ashtrees 

Dipper 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2. UK BAP and Ashtrees NVC Predictions 
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Appendix 2.1. UKBAP RF predictions across England and Wales 
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M4 M16 M18 

M21 M37 U17 

U21 

Fig. S4. 1 Random Forest predictions for 10 randomly selected UK BAP 

vegetation communities 
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Appendix 2.2. Ashtrees RF predictions across England and Wales 
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Fig. S4. 2 Random Forest predictions for 10 Ashtrees vegetation communities 
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Appendix 2.3. UK BAP NBN Atlas Species records in Rede Catchment 
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U17 

 

U21 

 
 
Fig. S4. 3 Comparison of probability of occurrence of the 10 randomly selected UK BAP communities using 

species data from the NBN Atlas to assess reliability of community predictions. 
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Appendix 2.4. Ashtrees NBN Atlas Species records in Rede Catchment 
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U5 

 

U6 

 
 
Fig. S4. 4 Comparison of probability of occurrence of the 10 Ashtrees communities using species data from the 

NBN Atlas to assess reliability of community predictions. 
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Appendix SUP1. Example Rscript Chapter 2 
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rm(list=ls()) 
library(vegan) 
library(dplyr) 
library(tidyverse) 
library(SDMTools) 
library(tidyr) 
library(mvabund) 
 
Ordination plots for all species at Ashtrees 

spp_abund <- read.csv(“Data/Abundance_2-08-18.csv”)  
spp_names <- names(spp_abund)  
quad_no <- (spp_abund[,1])  
spp_abund <- spp_abund[,-1] 
 

Principal Component Analysis (pca) 

abund_ca <- cca(spp_abund)  
spp_abund_rda <- rda(spp_abund) 
plot(spp_abund_rda, display=“sites”) # big wedge  
plot(spp_abund_rda, display = “species”) # big wedge 
 

Detrended Correspondance Analysis 

spp_abund_stand <- decostand(spp_abund, method = ‘hellinger’) 
spp_abund_dca <- decorana(spp_abund_stand)  
plot(spp_abund_dca, display = “sites”, cex = 0.5)  
plot(spp_abund_dca, display = “species”, cex = 0.5) 
 

Non-Metric Multidimensional Scaling 

spp_abund_nmds <- metaMDS(spp_abund)  
par(pch = 20, cex = 1)  
plot(spp_abund_nmds, type = “n”, main = “% cover nMDS”)  
plot(spp_abund_nmds, type = “n”, main = “% cover species”)  
text(spp_abund_nmds, cex = 0.6, display = “species”, offset = 0.5) 
 
Ordination for dominant species (patch area) and sub dominant species  

(This was also performed on subdominant species) 

area_dom <- read.csv(“Results/Patch_Stats/Ordination/Area_patches_spp/Area
_matrix/Area_spp_dominant_4-08-19.csv”)  
area_dom[is.na(area_dom)] <- 0 
 
Using NMDS 

area_dom.nmds <- metaMDS(area_dom)  
plot(area_dom.nmds, type = “n”, main = “NMDS Dominant Species”)  
text(area_dom.nmds, display = “species”, cex = 0.7)  
points(area_dom.nmds, display = “species”, pch = 20, cex = 0.7)  
plot(area_dom.nmds, type = “n”, main = “NMDS Dominant Quadrats”)  
text(area_dom.nmds, display = “sites”, cex = 0.7)  
points(area_dom.nmds, display = “sites”, pch = 20) 
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Procrustes rotation dominant vs % Ashtrees 

area_dom_proc <- procrustes(scores(spp_abund_nmds), scores(area_dom.nmds),  
scale = TRUE, scores = “sites”) 

plot(area_dom_proc, cex = 0.6, pch = 20, main = “Procrustes Rotation”)  
plot(area_dom_proc, dispay = “target”) 
proc_test_dom <- protest(scores(spp_abund_nmds), scores(area_dom.nmds),  

scores = “sites”) 
 proc_test_dom <- protest(scores(spp_abund_nmds), scores(area_dom.nmds),  

scores = “species”)  
capture.output(proc_test_dom, file =  

“Results/Patch_Stats/Ordination/Procrustes_rotation.csv”)  
proc_resid <- residuals(area_dom_proc) # residuals  
plot(proc_resid, pch = 20, cex = 0.6, main = “Residuals”) # plot residuals  
proc_pred_dom <- predict(area_dom_proc, newdata =  

scores(area_dom.nmds$points), truemean = TRUE) # predict newdata on r
eal scores  
plot(proc_pred, type = “n”, main = “Procrustes Prediction”) # plot predict
ed  
values  
points(proc_pred_dom, cex = 0.6, pch = 20, col = “red”) # plotting predict
ed values following procrustes 
 

Procrustes rotation for dominant vs subdominant  

area_dom_subdom_proc <- procrustes(scores(area_dom.nmds), scores(area_subd
om.nmds), scale = TRUE, scores = “sites”)  
summary(area_dom_subdom_proc) 
plot(area_dom_subdom_proc, cex = 0.6, pch = 20, main = “Procrustes Rotatio
n”) plot(area_dom_subdom_proc, dispay = “rotation”) 
capture.output(summary(area_dom_subdom_proc), file =  

“Results/Patch_Stats/Ordination/Procrustes_rotation_dom-subdom_summar
y.csv”) 
 

Patch Statistics on Individual Quadrats 

Dominant <- data.frame(read.csv(“Data/Dominant-sub_New_Versions/Dominant_2
3-7-18_spaced.csv”, header = FALSE)) # main datafram (all inputs)  
colnames(Dominant) <- c(“quad_no”, “Row”, 10, 20, 30, 40, 50, 60, 70, 80, 
90, 100) Dominant[1,] = "" ## add empty line to streamline with other quad
rat rows Dominant[1838,] = "" ## add line after last quadrat to streamline 
with other quadrat rows 
quad1_to_167 <- Dominant  
quad_dom_mat_all <- as.matrix(quad1_to_167[,-1])  
quad_dom_tab_all <- table(quad_dom_mat_all[,-1]) # gives count of each spe
cies in the quadrat quad_dom_tab_all  
df_dom <- data.frame(quad_dom_tab_all)  
quad_lng <- quad1_to_167 %>% gather(10:100, -quad_no, key=“Col”,  

value=“Species”) # drops variables since they are not identical acrio
ss mewasures/This is always used before filtering by species name 

summary(quad_lng)  
quad_lng <- mutate(quad_lng, Row = as.factor(Row), Col = as.factor(Col)) # 
This is always used before filtering by species name  
levels(quad_lng$Col) <- c(“10”, “20”, “30”, “40”, “50”, “60”, “70”, “80”,  

“90”, “100”)  # This is always used before filtering by species name 
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Generating a loop to read through all quadrats 

spp_in_quad <- names(quad_dom_tab)  
spat_all <- NULL  
for (spp_name in seq_along(spp_in_quad)) {  

spp_text <- names(quad_dom_tab)[spp_name]  
quad_spp_lng <- quad_lng %>% filter(Species == spp_text)  
quad_spp_wde <- quad_spp_lng %>% reshape2::dcast(Row ~ Col, drop = FA

LSE, fill = 0) #Recode text to number  
quad_spp_wde[,-1] <- ifelse (quad_spp_wde[,-1]!=“0”,1,0)  
quad_spp_mat <- as.matrix(quad_spp_wde[,-1]) 
quad_ccl = ConnCompLabel(quad_spp_mat)  
print(spp_text)  
print(quad_ccl)  
image(t(quad_ccl[10:1,]),col=c(‘white’,rainbow(length(unique(quad_ccl

)) 
-1)))  
grid(nx, ny, col = “grey”, lty = 1) # added post  
print(PatchStat(quad_ccl))  

 
# Store the spatial stats   
# Need to duplicate spp text names in final output table  
spp_duplicate <- rep(spp_text, max(quad_ccl)+1)  
patch_stats <- PatchStat(quad_ccl)  
patch_stats <- cbind(spp_duplicate, patch_stats)  
spat_all <- rbind(spat_all, patch_stats) #readline() } 
write.csv(spat_all, file = “Results/Patch_Stats/Quad_dom_1-167_spaced.csv”
) 
 

PATCH STATS: Number of for chosen species per quadrats  

 (this was repeated for all dominant and subdominant block-forming and opportunistic 

species) 

Calluna Vulgaris 

callvulg_dom <- subset(patch_stats_dom, spp_duplicate == “Callvulg”)  
callvulg_dom <- subset(callvulg_dom, patchID > 0) 
patchno_callvulg_dom<- aggregate(callvulg_dom$patchID, by = list(quad_no = 
callvulg_dom$quad_no), FUN = max) # number of patches per species write.cs
v(patchno_callvulg_dom, file =  

“Results/Patch_Stats/patchno/callvulg.csv”) 
 

Nardus Stricta 

nardstri_dom <- subset(patch_stats_dom, spp_duplicate == “Nardstri”)  
nardstri_dom <- subset(nardstri_dom, patchID > 0) 
patchno_nardstri_dom<- aggregate(nardstri_dom$patchID, by = list(quad_no = 
nardstri_dom$quad_no), FUN = max) # number of patches per species write.cs
v(patchno_nardstri_dom, file =  

“Results/Patch_Stats/patchno/nardstri.csv”) 
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Number of Patches: ManyGLM Analysis 

(This was repeated for Area and Shape Index of patches of dominant and subdominant 

species) 

Dominant species  

patchno_dom_spp <- read.csv(“Results/Patch_Stats/Ordination/Patchno_spp/Pa
tchno_matrix/ 

Patchno_matrix_dom_12-08-19.csv”)  
 
patchno_dom_spp[is.na(patchno_dom_spp)] <- 0  
env_var <- data.frame(read.csv(“Data/Biotic_data/ashtrees_env_variables_03
- 

08-18.csv”)) 
 
patchno_dom_mvabund <- mvabund(patchno_dom_spp)  

plot.mvformula(log(patchno_dom_mvabund+1) ~ exp(env_var$soil_pH), mai
n=“Dominant Patchno vs Soil pH”, xlab=“% Soil pH - Log Scale”, ylab=“
Abundance [log scale]”, overall.main=“Species Abundance vs soil pH”, 
fg=“grey”, las=1, scale.lab=“ss”,t.lab=“o”, mfrow=c(4,3),log=“x”) 

 
# Produces a range of plots for visualising multivariate abundance data an
d its relationship to environmental variables 
boxplot(patchno_dom_mvabund, horizontal = TRUE, las = 2, main = “Number of 
Patches”) # boxplot  
meanvar.plot(patchno_dom_mvabund) # check mean variance 
patchno_dom_glm_negbinomial <- manyglm(patchno_dom_mvabund ~ soil_pH + slo
pe  

+ pct_water + Altitude + length_10m + distance_10m + length_25m + dis
tance_25m + length_35m + distance_35m, data = env_var, family = “nega
tive.binomial”) # does not give a particular shape; will use this 

 
plot(patchno_dom_glm_negbinomial) 
summary(patchno_sub_glm_negbinomial, resamp=“monte.carlo”, test=“wald”, nB
oot=300) # summary method for class “manyglm” 
 
anova_glm_dom_patchno <- anova.manyglm(patchno_dom_glm_negbinomial, show.t
ime  

= “all”) capture.output(anova_glm_dom_patchno, file = “Results/DOMINA
NT/anova_glm_dom_patchno.doc”) 

 
anova_ind_dom_patchno <- anova(patchno_dom_glm_negbinomial, p.uni=“adjuste
d”,  

show.time = “all”)  
capture.output(anova_ind_dom_patchno, file = “Results/DOMINANT/patchno_ano
va_glm_dom_ind.csv”) 
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rm(list=ls()) 
library(vegan) 
library(dplyr) 
library(tidyverse) 
 

 

Using twinspanR for clustering 

ash.twi.whittaker8 <- twinspan(ashtrees.mod, modif = TRUE, clusters 
=  

8, diss = 'whittaker') 
k.whittaker8 <- cut(ash.twi.whittaker8) 
k.whittaker.df <- data.frame(Quad = rownames(ashtrees.mod), Cluster 
=  

k.whittaker) 
ashtrees.NMDS # use NMDS results instead of decorana 
par(mfrow = c(1,2), pch = 20, cex = 0.9) 
ordiplot(ashtrees.NMDS, type = 'n', display = 'si’) 
points(ashtrees.NMDS, col = k.whittaker8) 
for (i in c(1:9)) ordihull (ashtrees.NMDS, groups = k.whittaker8,  

show.group = i, col = i, draw = 'polygon', label = TRUE) 
text(ashtrees.NMDS, display="sites", cex=0.6, pos = 2) 
 
ordiplot(ashtrees.NMDS, type = 'n', display = 'si', main = 'Modified 
TWINSPAN\n Method=Whittaker9') 
points(ashtrees.NMDS, col = k.whittaker9) 
for (i in c(1:9)) ordihull (ashtrees.NMDS, groups = k.whittaker9, 
show.group = i, col = i, draw = 'polygon', label = TRUE) 
 
Generating Random Quadrats from Literature 

(Using 4b sub-community as an example) 
## U4b 
U4b <- read.csv("Rodwell_Literature/U4b.csv") 
set.seed(121) 
sample.no <- 25 
FINAL.U4b=NULL 
 
for(quad_no in 1:sample.no){ 
  print(quad_no) 
  No.spp <- as.integer(runif(1, min=1, max=19)) 
  U4b.pseudo <- sample_n(U4b, size=No.spp, replace=FALSE) 
  U4b.pseudo <- as.data.frame(U4b.pseudo) 
  TEMP.output <- data.frame(cbind(quad_no, U4b.pseudo)) 
  FINAL.U4b <- rbind(FINAL.U4b, TEMP.output) 
} 
write.csv(FINAL.U4b, file = "Rodwell_Literature/U4b_pseudo.csv") 
 
Plotting the results in ordination with centroids 

# Using DECORANA to be in line with pseudo quadrat literature 
analysis 
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#ashtrees.dca.xy <- data.frame(scores(ashtrees.dca, display = 
"sites")) 
 
## Adding centroids to scatter plot/ordination plot and saving to 
pdf 
#x.ash <- ashtrees.dca.xy$DCA1 
#y.ash <- ashtrees.dca.xy$DCA2 
 
class.ash 
 
# class <- data.frame(class=class[-189:-nrow(class),]) 
df.ash <- data.frame(class.ash, x.ash, y.ash) 
colnames(df.ash) <- c("class", "x", "y") 
 
centroids.ash <- merge(df.ash, aggregate(cbind(mean.x=x, 
mean.y=y)~class, df.ash, mean), by="class") 
ggplot(centroids.ash, aes(x, y, color = factor(class))) + 
geom_point(size=3) + geom_point(aes(x=mean.x, y=mean.y), size = 5) +  
  geom_segment(aes(x=mean.x, y=mean.y, xend=x, yend=y)) 
 
Plot.dca.ash <- ggplot(centroids.ash, aes(x, y, color = 
factor(class))) + geom_point(size=0.8) + geom_point(aes(x=mean.x, 
y=mean.y), size = 3) +  
  geom_segment(aes(x=mean.x, y=mean.y, xend=x, yend=y))  
 
plot.1.edit <- Plot.dca.ash + theme(panel.grid.major = 
element_blank(), panel.grid.minor = element_blank(), # removes 
major/minor gridlines 
                                    panel.background = 
element_blank(), # removes grey background 
                                    axis.line = element_line(colour 
= "black"), # colours axes to black 
# legend.position = "none", # removes legends 
plot.title = element_text(hjust = 0.5), # centres graph title 
legend.background = element_blank(), # removes legend background 
legend.key = element_blank()) # removes boxes behid points in legend 
 
 

Plotting vertical and horizontal error bars for quadrats/communities for 

pseudoquadrats generated from literature 

centroids.2.ash <- aggregate(cbind(x,y)~class, df.ash, mean) # 
aggregating dataframe 
f <- function(z)sd(z)/sqrt(length(z)) # Setting function to 
calculate standard error 
se.ash <- aggregate(cbind(se.x=x, se.y=y)~class, df.ash, f) # 
calculating standard error 
cent.2.ash <- merge(centroids.2.ash, se.ash, by="class") # adding 
standard error column to centroids 
plot.2.ash <- ggplot(cent.2.ash, aes(x,y,color = factor(class))) + # 
sets plot aesthetics of x, y and centroids 



 

195 

  scale_colour_discrete(l=0) + # sets centroids and errorbars to 1 
colour (black by default) 
  geom_point(data=centroids.2.ash, size = 1) + # sets aesthetics of 
point plots 
  geom_errorbar(data=cent.2.ash, aes(ymin=y-se.y, ymax=y+se.y), 
width = 0.01) + # sets vertical error bars 
  geom_errorbarh(data=cent.2.ash, aes(xmin=x-se.x, xmax=x+se.x), 
height = 0.01)  # sets horizontal error bars 
 
# Editing the graph (remove grey background, grid lines and adding 
axis lines) 
Plot.2 <- plot.2.ash + theme(panel.grid.major = element_blank(), 
panel.grid.minor = element_blank(), # removes major/minor gridlines 
panel.background = element_blank(), # removes grey background 
axis.line = element_line(colour = "black"), # colours axes to black 
legend.position = "none", # removes legends 
plot.title = element_text(hjust = 0.5)) # centres graph title 
# legend.background = element_blank(), # removes legend background 
# legend.key = element_blank()) # removes boxes behid points in 
legend 
 
Predicting where ashtrees points fall in literature DCA ordination 

 

plot.2.dca <- ggplot(cent.add.2, aes(x,y,color = factor(class))) + # 
sets plot aesthetics of x, y and centroids 
  scale_colour_discrete(l=0) + # sets centroids and errorbars to 1 
colour (black by default) 
  geom_point(data=cent.add.2, size = 1) + # sets aesthetics of point 
plots 
  geom_errorbar(data=cent.add.2, aes(ymin=y-se.y, ymax=y+se.y), 
width = 0.05) + # sets vertical error bars 
  geom_errorbarh(data=cent.add.2, aes(xmin=x-se.x, xmax=x+se.x), 
height = 0.05)  # sets horizontal error bars 
 
# Editing the graph (remove grey background, grid lines and adding 
axis lines) 
Plot.2.dca.edit <- plot.2.dca + theme(panel.grid.major = 
element_blank(), panel.grid.minor = element_blank(), # removes 
major/minor gridlines 
panel.background = element_blank(), # removes grey background 
axis.line = element_line(colour = "black"), # colours axes to black 
legend.position = "none", # removes legends 
plot.title = element_text(hjust = 0.5)) # centres graph title 
##, legend.background = element_blank(), # removes legend background 
## legend.key = element_blank()) # removes boxes behid points in 
legend 
 
print(Plot.2.dca.edit + ggtitle("Pseudoquadrats for literature 
species found in plant communities at Ashtrees") 
     + labs(x="DCA1", y="DCA2", color = "Community") + 
geom_point(data=cent.add.2[1:2,], aes(x=x, y=y), colour="red") 
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     + geom_errorbar(data=cent.add.2[1:2,], aes(ymin=y-se.y, 
ymax=y+se.y), colour = "red", width = 0.05) 
     + geom_errorbarh(data=cent.add.2[1:2,], aes(xmin=x-se.x, 
xmax=x+se.x), colour = "red", height = 0.05) 
      + geom_text_repel(data=cent.add.2, aes(x, y, label=class),  
                       nudge_x=0.13, nudge_y=0.13, size = 3))  
 
 
predict.communities <- as.data.frame(predict(quads.dca, 
ashtrees.mod, type = "sites")) 
 
Plot3 <- Plot.2.dca.edit + geom_point(data = predict.communities, 
aes(x=DCA1, y=DCA2, colour="black")) 
 
#print(Plot.2.dca.edit + ggtitle("Pseudoquadrats for Ashtrees 
species vs. Ashtrees pseudoquadrats") 
#      + geom_point()  
#      + geom_text(data = predict.communities, aes(x=DCA1, y=DCA2, 
label=rownames(predict.communities)), colour="red", size = 3) 
#      + labs(x="DCA1", y="DCA2", color = "Community") +  
#        geom_text_repel(data=plot.2.centroids, aes(x, y, 
label=class),  
#                        nudge_x=0.14, nudge_y=0.09, size = 3)) 
write.csv(predict.communities, 
file="Ashtrees/Raw/Prediction/Ash_Lit.csv") 
 
 

 

 

Generate confusion matrices 

 

LIT.MAVIS <-read.csv("Ashtrees/Predictions/LIT_vs_MAVIS.csv", 
row.names = 1) 
LIT.MAVIS[is.na(LIT.MAVIS)] = 0 
LIT.MAVIS <- as.matrix(LIT.MAVIS) 
LIT.MAVIS <- as.table(LIT.MAVIS) 
LIT.conf <- confusionMatrix(LIT.MAVIS, positive = NULL, prevalance = 
NULL, mode = "sens_spec") 
 
ASH.MAVIS <- read.csv("Ashtrees/Predictions/ASH_vs_MAVIS.csv", 
row.names = 1) 
ASH.MAVIS[is.na(ASH.MAVIS)] = 0 
ASH.MAVIS <- as.matrix(ASH.MAVIS) 
ASH.MAVIS <- as.table(ASH.MAVIS) 
ASH.conf <- confusionMatrix(ASH.MAVIS, positive = NULL, prevalance = 
NULL, mode = "sens_spec") 
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rm(list = ls()) 
graphics.off()    
 
install.packages("remotes") 
remotes::install_github("johnbaums/rmaxent") 
 
library(rJava) 
library(dismo) 
library(kernlab) 
library(rmaxent) 
library(maxlike) 
library(randomForest) 
library(LSRS) 
library(sf) # installed 
library(tmap) 
library(lwgeom) 
library(gdtools) # installedl requiresd pkg-config and cairo from brew 
library(sp) 
library(rgdal) 
library(lattice) 
library(latticeExtra) 
library(mapview) # Roy install 
library(rgeos) 
library(reshape2) 
library(plyr) 
library(dplyr) 
library(raster) 
library(RColorBrewer) 
library(spacetime) 
library(stringr) 
library(gdalUtils) 
library(gstat) 
library(devtools) 
library(vegan) 
library(stars) 
library(sdm) 
library(SDMTools) 
install.packages(c("rgdal", "lattice", "latticeExtra", "mapview", "reshape
2", "plyr", "dplyr", "raster", "RColorBrewer", "spacetime", "stringr", "gd
alUtils", 
                   "gstat", "devtools", "vegan", "stars", "sdm", "SDMTools
", "dismo")) 
#### START #### 
crs_UK <- CRS("+init=epsg:27700") # set CRS; we will be using British Nati
onal Grid EPSG:27700 
crs_latlong <- CRS("+init=epsg:4326") 
 
#### Using GB outlines from different sources #### 
 
#### UK and Wales outlines #### 
 
England_outline <- read_sf("DATA/GIS_data/gb-outlines/england.shp") 
Wales_outline <- read_sf("DATA/GIS_data/gb-outlines/wales.shp") 
Wales_outline <- Wales_outline[,-1] 
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england_wales <- st_union(England_outline, Wales_outline) # England and wa
les for use with soil maps 
england_wales <- st_transform(england_wales, 27700) 

 
#### LANDCOVER 2015 1KM #### 
LCM2015_1KM_aggr_gb <- raster("DATA/GIS_data/LANDCOVER/lcm-2015-1km_250393
3/aggregate_class/lcm2015_gb_1km_dominant_aggregate_class.tif") # loading 
the 25m raster but seems to have a problem with colouration 
LCM2015_1KM_aggr_gb 
plot(LCM2015_1KM_aggr_gb) 
colors_LCM2015_1KM_aggr_gb <- c("white", "red", "darkgreen", "brown", "gre
en", "darkolivegreen", "plum1", "darkblue", "royalblue3", "lightyellow", "
grey") # set colors according to landcover map 
breaks_LCM2015_1KM_aggr_gb <- c(0:10) #set breaks 
plot_LCM2015_1KM_aggr_gb <- plot(LCM2015_1KM_aggr_gb, col = (colors_LCM201
5_1KM_aggr_gb), breaks = breaks_LCM2015_1KM_aggr_gb, legend = FALSE, axes 
= FALSE, box = FALSE) 
par(xpd = TRUE) 
legend_LCM2015_1KM_aggr_gb <- c("Unclassified", "Broadleaved woodland", "C
oniferous woodland", "Arable", "Improved grasslands", 
                    "Semi-natural grasslands", "Mountain, heath and bog","
Saltwater", "Freshwater", "Coastal", "Built-up areas and gardens")  
LCM2015_classifications <- data.frame(legend_LCM2015_1KM_aggr_gb) # classi
fcation as dataframe 
legend("topright", legend = legend_LCM2015_1KM_aggr_gb, cex = 0.5, fill = 
colors_LCM2015_1KM_aggr_gb, bty = "n") # set legend; bty removes legend bo
rder 
 
## Soil Data ### 
soil_uk_NATMAP1000 <- st_read("DATA/GIS_data/SOIL/SOIL/Spatial Soil Data/N
ATMAP1000.shp") 
soil_uk_NATMAP1000 
soil_uk_NATMAPsoilscapes <- st_read("DATA/GIS_data/SOIL/SOIL/Spatial Soil 
Data/NATMAPsoilscapes.shp") 
soil_uk_NATMAPsoilscapes 
soilscape_types_table <- data.frame(table(soil_uk_NATMAPsoilscapes$SOILSCA
PE)) 
soilscape_types <- as.character(soilscape_types_table$Var1) 
 
soil_england_wales <- st_intersection(soil_uk_NATMAPsoilscapes, england_wa
les) 
st_write(soil_england_wales, dsn = "DATA/GIS_data/SOIL/SOIL/soil_england_w
ales.shp") 
soil_england_wales <- read_sf("DATA/GIS_data/SOIL/SOIL/soil_england_wales.
shp") 
plot(st_geometry(soil_england_wales)) 
soil_raster <- raster(soil_england_wales)  
 
## merge LANDSAT #### 
UK_rasters <- merge(reproject_brick_201023, reproject_brick_201024, reproj
ect_brick_201025, -reproject_brick_20190130-, reproject_brick_20190202, 
                    -reproject_brick_20190130_2-, reproject_brick_20190215
, reproject_brick_202024, reproject_brick_202025, reproject_brick_203024, 
reproject_brick_203025, reproject_brick_20180517, reproject_brick_20190128
, 
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                    reproject_brick_20180517, reproject_brick_20190128_2, 
reproject_brick_20180524, 
                    reproject_brick_20190204, reproject_brick_205022, repr
oject_brick_205023, reproject_brick_205024, 
                    reproject_brick_206021, reproject_brick_206022, reproj
ect_brick_207021, tolerance = 0.5, filename = "DATA/GIS_data/LANDSAT/Merge
d/UK_merged.tif", overlap = TRUE, ext = NULL) 
 
UK_20123_201024_merge <- merge(reproject_brick_201023, reproject_brick_201
024, tolerance = 0.5, filename = "DATA/GIS_data/LANDSAT/Merged/201023_2010
24.tif",  
                                          overlap = TRUE, ext = NULL) 
UK_202024_202025_merge <- merge(reproject_brick_202024, reproject_brick_20
2025, tolerance = 0.5, filename = "DATA/GIS_data/LANDSAT/Merged/202022_202
023.tif", 
                                overlap = TRUE, ext = NULL) 
UK_2019202_2019215 <- merge(mask_20190202, mask_2019215, tolerance = 0.5, 
overlap = TRUE, ext = NULL) 
 
England_Wales_spdf <- as(england_wales, 'Spatial') # convert NE_counties t
o SpatialDataframe 
crop_201023 <- raster::crop(reproject_brick_201023, England_Wales_spdf) 
mask_201023 <- raster::mask(crop_201023, England_Wales_spdf) 
crop_201024 <- raster::crop(reproject_brick_201024, England_Wales_spdf) 
mask_201024 <- raster::mask(crop_201024, England_Wales_spdf) 
crop_201025 <- raster::mask(reproject_brick_201025, England_Wales_spdf) 
mask_201025 <- rater::mask(crop_201025, England_Wales_spdf) 
crop_2019215 <- raster::crop(reproject_brick_20190215, England_Wales_spdf) 
mask_2019215 <- raster::mask(crop_2019215, England_Wales_spdf) 
crop_20190202 <- raster::crop(reproject_brick_20190202, England_Wales_spdf
) 
mask_20190202 <- raster::mask(crop_20190202, England_Wales_spdf) 
crop_202024 <- raster::crop(reproject_brick_202024, England_Wales_spdf) 
mask_202024 <- raster::mask(crop_202024, England_Wales_spdf) 
crop_202025 <- raster::crop(reproject_brick_202025, England_Wales_spdf) 
mask_202025 <- raster::mask(crop_202025, England_Wales_spdf) 
 
plotRGB(mask_201023, r = 6, g = 5, b = 4, maxpixels = 5000000, stretch = N
ULL, scale = max(mask_201023), ext = NULL, colNA = "transparent", add = TR
UE) 
 
UK_rasters_list <- merge(c(extent(reproject_brick_201023), extent(reprojec
t_brick_201024), extent(reproject_brick_201025), extent(reproject_brick_20
190130),  
                          extent(reproject_brick_20190202), 
                    extent(reproject_brick_20190130_2), extent(reproject_b
rick_20190215), extent(reproject_brick_202024), extent(reproject_brick_202
025), 
                    extent(reproject_brick_203024), extent(reproject_brick
_203025), extent(reproject_brick_20180517), extent(reproject_brick_2019012
8), 
                    extent(reproject_brick_20180517), extent(reproject_bri
ck_20190128_2), extent(reproject_brick_20180524), 
                    extent(reproject_brick_20190204), extent(reproject_bri
ck_205022), extent(reproject_brick_205023), extent(reproject_brick_205024)
, 
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                    extent(reproject_brick_206021), extent(reproject_brick
_206022), extent(reproject_brick_207021), overlap = TRUE)) 
 
##### TEMP #### 
temp1 <- merge(reproject_brick_201023, reproject_brick_201024, tolerance = 
0.5, overlap = TRUE, ext = NULL) 
temp2 <- merge(reproject_brick_201025, reproject_brick_20180517, tolerance 
= 0.5, overlap = TRUE, ext = NULL) 
temp3 <- merge(reproject_brick_20180524, reproject_brick_20190128, reproje
ct_brick_20190128_2, tolerance = 0.5, overlap = TRUE, extent = NULL) 
temp_x <- merge(temp1, temp2, tolerance = 0.5, overlap = TRUE, ext = NULL)  
plotRGB(reproject_brick_201023, r = 6, g = 5, b = 4, stretch = "lin", axes 
= FALSE, main = "Vegetation Analysis", box = FALSE, add = TRUE) # Vegetati
on Analysis from bricks (NE UK) 
 
 
# Adding Rede catchment layer #### 
Rede_catchment <- read_sf("DATA/GIS_data/Rede_catchment/23008.shp") 
Rede_catchment 
plot(Rede_catchment$geometry, border = "green", add = TRUE) 

 
#### Setting Communities dataset and convert to spatial #### 
 
NVC_Communities <- read.csv("DATA/GIS_data/Communities/NVC_Communities.csv
") # read U1 community CSV file 
NVC_Communities <- NVC_Communities[,-4] # removes open circle column 
NVC_Communities <- NVC_Communities[,-6] # removes empty column at the end 
colnames(NVC_Communities) <- c("Grid", "NVC", "Comm_Name", "Easting", "Nor
thing") 
 
head(NVC_Communities) 
## Subset data according to the communities of biodiversity importance und
er the UK BAP #### 
 
# CG10 #### 
CG10_community <- subset(NVC_Communities, NVC == "CG10") # CG10 
CG10_spatial <- st_as_sf(CG10_community, coords = c("Easting", "Northing")
) # set coordinates (Eastings and Northings) and convert dataframe to simp
le feature 
CG10_spatial_crs <- st_set_crs(CG10_spatial, 27700) # set projection to GB 
OS 
CG10_spatial_crs 
CG10_england_wales <- st_intersection(CG10_spatial_crs, england_wales) 
plot(st_geometry(CG10_england_wales), pch = 16, col = "blue", add = TRUE) 
 
# CG11 #### 
CG11_community <- subset(NVC_Communities, NVC == "CG11") # CG11 
CG11_spatial <- st_as_sf(CG11_community, coords = c("Easting", "Northing")
) # set coordinates (Eastings and Northings) and convert dataframe to simp
le feature 
CG11_spatial_crs <- st_set_crs(CG11_spatial, 27700) # set projection to GB 
OS 
CG11_spatial_crs 
CG11_england_wales <- st_intersection(CG11_spatial_crs, england_wales) 
plot(st_geometry(CG11_england_wales), pch = 16, col = "red", add = TRUE) 
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# CG12 #### 
CG12_community <- subset(NVC_Communities, NVC == "CG12") # CG12 
CG12_spatial <- st_as_sf(CG12_community, coords = c("Easting", "Northing")
) # set coordinates (Eastings and Northings) and convert dataframe to simp
le feature 
CG12_spatial_crs <- st_set_crs(CG12_spatial, 27700) # set projection to GB 
OS 
CG12_spatial_crs 
CG12_england_wales <- st_intersection(CG12_spatial_crs, england_wales) 
 
# CG13 #### 
CG13_community <- subset(NVC_Communities, NVC == "CG13") # CG13 
CG13_spatial <- st_as_sf(CG13_community, coords = c("Easting", "Northing")
) # set coordinates (Eastings and Northings) and convert dataframe to simp
le feature 
CG13_spatial_crs <- st_set_crs(CG13_spatial, 27700) # set projection to GB 
OS 
CG13_spatial_crs 
CG13_england_wales <- st_intersection(CG13_spatial_crs, england_wales) 
 
# CG14 #### 
CG14_community <- subset(NVC_Communities, NVC == "CG14") # CG14 
CG14_spatial <- st_as_sf(CG14_community, coords = c("Easting", "Northing")
) # set coordinates (Eastings and Northings) and convert dataframe to simp
le feature 
CG14_spatial_crs <- st_set_crs(CG14_spatial, 27700) # set projection to GB 
OS 
CG14_spatial_crs 
CG14_england_wales <- st_intersection(CG14_spatial_crs, england_wales) 
 
#  CG9 #### 
CG9_community <- subset(NVC_Communities, NVC == "CG9") # CG9 
CG9_spatial <- st_as_sf(CG9_community, coords = c("Easting", "Northing")) 
# set coordinates (Eastings and Northings) and convert dataframe to simple 
feature 
CG9_spatial_crs <- st_set_crs(CG9_spatial, 27700) # set projection to GB O
S 
CG9_spatial_crs 
CG9_england_wales <- st_intersection(CG9_spatial_crs, england_wales) 

soil_1k <- raster("DATA/GIS_data/Rasters/soil_1k.tif") 
DEM_1k <- raster("DATA/GIS_data/Rasters/DEM_1k.tif") # used as template fo
r resampling 
aspect_1k <- raster("DATA/GIS_data/Rasters/aspect_1k.tif") 
slope_1k <- raster("DATA/GIS_data/Rasters/slope_1k.tif") 
LCM2015_1k <- raster("DATA/GIS_data/Rasters/LCM2015_1k.tif") 
rainfall_1k <- raster("DATA/GIS_data/Rasters/rainfall.tif") 
tempmin_summer_MET <- raster("DATA/GIS_data/Rasters/tempmin_summer_MET.tif
") 
tempmin_winter_MET <- raster("DATA/GIS_data/Rasters/tempmin_winter_MET.tif
") 
tempmax_summer_MET <- raster("DATA/GIS_data/Rasters/tempmax_summer_MET.tif
") 
tempmax_winter_MET <- raster("DATA/GIS_data/Rasters/tempmax_winter_MET.tif
") 



 

204 

LANDSAT_NIR_1k <- raster("DATA/GIS_data/Rasters/LANDSAT_NIR.tif") 
LANDSAT_Red_1k <- raster("DATA/GIS_data/Rasters/LANDSAT_Red.tif") 
LANDSAT_Blue_1k <- raster("DATA/GIS_data/Rasters/LANDSAT_Blue.tif") 
 
LANDSAT_EVI <- EVI(a=LANDSAT_NIR_1k, b=LANDSAT_Red_1k, c=LANDSAT_Blue_1k, 
Pixel.Depth = 1) 
writeRaster(LANDSAT_EVI, "DATA/GIS_data/Rasters/EVI_1k.tif") 
 
CG10 <- st_read("DATA/GIS_data/Communities/Shapefiles/cropped/CG10/CG10.sh
p") 
CG10 <- st_transform(CG10, 27700) 
CG11 <- st_read("DATA/GIS_data/Communities/Shapefiles/cropped/CG11/CG11.sh
p") 
CG11 <- st_transform(CG11, 27700) 
CG12 <- st_read("DATA/GIS_data/Communities/Shapefiles/cropped/CG12/CG12.sh
p") 
CG12 <- st_transform(CG12, 27700) 
CG13 <- st_read("DATA/GIS_data/Communities/Shapefiles/cropped/CG13/CG13.sh
p")# no 
CG13 <- st_transform(CG13, 27700) 
CG14 <- st_read("DATA/GIS_data/Communities/Shapefiles/cropped/CG14/CG14.sh
p") 
CG14 <- st_transform(CG14, 27700) 
CG9 <- st_read("DATA/GIS_data/Communities/Shapefiles/cropped/CG9/CG9.shp") 
CG9 <- st_transform(CG9, 27700) 

####CG10_predict#### 
CG10_sp <- as(CG10, "Spatial") 
CG10_sp$CG10 <- 1 
#temp <- sdmData(pres ~ LCM2015_new + soil_new, train = CG10, predictors = 
full_stack) 
set.seed(100) 
CG10_sdmData <- sdmData(CG10 ~  aspect_1k + DEM_1k + slope_1k + LCM2015_1k 
+ layer  
                        + soil_1k + rainfall + tempmin_summer_MET + tempmi
n_winter_MET + tempmax_summer_MET + tempmax_winter_MET, 
                        train = CG10_sp, predictors = full_stack_1k, bg = 
list(n=100, method = 'gRandom', remove = TRUE)) 
#temp_sdm <- sdm(pres ~ LCM2015_new + soil_new, data = , methods = c('glm'
, 'rf'), replication = NULL, n = 10) 
#predict_temp <- predict(temp_sdm, full_stack, mean = T) 
 
set.seed(000) 
CG10_sdm <- sdm(CG10 ~ aspect_1k + DEM_1k + slope_1k + LCM2015_1k + layer 
                + soil_1k + rainfall + tempmin_summer_MET + tempmin_winter
_MET + tempmax_summer_MET + tempmax_winter_MET,  
                data = CG10_sdmData, methods = c('glm', 'svm', 'rf', 'entr
opy', 'maxlike'), replication = 'boot', n = 10) 
#setting <- sdmSetting(pres~., methods = c('glm', 'gam', 'brt', 'svm', 'rf
'), replication = NULL, test.percent = 30, n = 10, modelSettings = list(br
t = list(n.trees = 500)))   
predict_CG10_mean <- predict(CG10_sdm, full_stack_1k, overwrite = TRUE, me
an = T, filename = "DATA/GIS_data/Rasters/Predict/CG10_mean_predict.img") 
predict_CG10 <- predict(CG10_sdm, full_stack_1k, filename = "DATA/GIS_data
/Rasters/Predict/CG10_predict.img") 
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#### CG11_predict #### 
 
CG11_sp <- as(CG11, "Spatial") 
CG11_sp$CG11 <- 1 
#temp <- sdmData(pres ~ LCM2015_new + soil_new, train = CG11, predictors = 
full_stack) 
set.seed(101) 
CG11_sdmData <- sdmData(CG11 ~  aspect_1k + DEM_1k + slope_1k + LCM2015_1k 
+ layer  
                        + soil_1k + rainfall + tempmin_summer_MET + tempmi
n_winter_MET + tempmax_summer_MET + tempmax_winter_MET, 
                        train = CG11_sp, predictors = full_stack_1k, bg = 
list(n=100, method = 'gRandom', remove = TRUE)) 
#temp_sdm <- sdm(pres ~ LCM2015_new + soil_new, data = , methods = c('glm'
, 'rf', 'entropy', 'maxlike'), replication = NULL, n = 10) 
#predict_temp <- predict(temp_sdm, full_stack, mean = T) 
 
set.seed(001) 
CG11_sdm <- sdm(CG11 ~ aspect_1k + DEM_1k + slope_1k + LCM2015_1k + layer  
                + soil_1k + rainfall + tempmin_summer_MET + tempmin_winter
_MET + tempmax_summer_MET + tempmax_winter_MET,  
                data = CG11_sdmData, methods = c('glm', 'svm', 'rf', 'entr
opy', 'maxlike'), replication = 'boot', n = 10) 
#setting <- sdmSetting(pres~., methods = c('glm', 'gam', 'brt', 'svm', 'rf
', 'entropy', 'maxlike'), replication = NULL, test.percent = 30, n = 10, m
odelSettings = list(brt = list(n.trees = 500)))   
predict_CG11_mean <- predict(CG11_sdm, full_stack_1k, overwrite = TRUE, me
an = T, filename = "DATA/GIS_data/Rasters/Predict/CG11_mean_predict.img") 
predict_CG11 <- predict(CG11_sdm, full_stack_1k, overwrite = TRUE, filenam
e = "DATA/GIS_data/Rasters/Predict/CG11_predict.img") 
 
#### CG12 #### 
 
#### CG12_predict #### 
set.seed(102) 
CG12_sp <- as(CG12, "Spatial") 
CG12_sp$CG12 <- 1 
#temp <- sdmData(pres ~ LCM2015_new + soil_new, train = CG12, predictors = 
full_stack) 
CG12_sdmData <- sdmData(CG12 ~  aspect_1k + DEM_1k + slope_1k + LCM2015_1k 
+ layer  
                        + soil_1k + rainfall + tempmin_summer_MET + tempmi
n_winter_MET + tempmax_summer_MET + tempmax_winter_MET, 
                        train = CG12_sp, predictors = full_stack_1k, bg = 
list(n=100, method = 'gRandom', remove = TRUE)) 
#temp_sdm <- sdm(pres ~ LCM2015_new + soil_new, data = , methods = c('glm'
, 'rf', 'entropy', 'maxlike'), replication = NULL, n = 10) 
#predict_temp <- predict(temp_sdm, full_stack, mean = T) 
 
set.seed(002) 
CG12_sdm <- sdm(CG12 ~ aspect_1k + DEM_1k + slope_1k + LCM2015_1k + layer  
                + soil_1k + rainfall + tempmin_summer_MET + tempmin_winter
_MET + tempmax_summer_MET + tempmax_winter_MET,  
                data = CG12_sdmData, methods = c('glm', 'svm', 'rf', 'entr
opy', 'maxlike'), replication = 'boot', n = 10) 
#setting <- sdmSetting(pres~., methods = c('glm', 'gam', 'brt', 'svm', 'rf
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', 'entropy', 'maxlike'), replication = NULL, test.percent = 30, n = 10, m
odelSettings = list(brt = list(n.trees = 500)))   
predict_CG12_mean <- predict(CG12_sdm, full_stack_1k, overwrite = TRUE, me
an = T, filename = "DATA/GIS_data/Rasters/Predict/CG12_mean_predict.img") 
predict_CG12 <- predict(CG12_sdm, full_stack_1k, filename = "DATA/GIS_data
/Rasters/Predict/CG12_predict.img") 
 
 
#### CG14_predict #### 
 
CG14_sp <- as(CG14, "Spatial") 
CG14_sp$CG14 <- 1 
#temp <- sdmData(pres ~ LCM2015_new + soil_new, train = CG14, predictors = 
full_stack) 
set.seed(103) 
CG14_sdmData <- sdmData(CG14 ~  aspect_1k + DEM_1k + slope_1k + LCM2015_1k 
+ layer  
                        + soil_1k + rainfall + tempmin_summer_MET + tempmi
n_winter_MET + tempmax_summer_MET + tempmax_winter_MET, 
                        train = CG14_sp, predictors = full_stack_1k, bg = 
list(n=100, method = 'gRandom', remove = TRUE)) 
#temp_sdm <- sdm(pres ~ LCM2015_new + soil_new, data = , methods = c('glm'
, 'rf', 'entropy', 'maxlike'), replication = NULL, n = 10) 
#predict_temp <- predict(temp_sdm, full_stack, mean = T) 
 
set.seed(004) 
CG14_sdm <- sdm(CG14 ~ aspect_1k + DEM_1k + slope_1k + LCM2015_1k + layer  
                + soil_1k + rainfall + tempmin_summer_MET + tempmin_winter
_MET + tempmax_summer_MET + tempmax_winter_MET,  
                data = CG14_sdmData, methods = c('glm', 'svm', 'rf', 'entr
opy', 'maxlike'), replication = 'boot', n = 10) 
#setting <- sdmSetting(pres~., methods = c('glm', 'gam', 'brt', 'svm', 'rf
', 'entropy', 'maxlike'), replication = NULL, test.percent = 30, n = 10, m
odelSettings = list(brt = list(n.trees = 500)))   
predict_CG14_mean <- predict(CG14_sdm, full_stack_1k, overwrite = TRUE, me
an = T, filename = "DATA/GIS_data/Rasters/Predict/CG14_mean_predict.img") 
predict_CG14 <- predict(CG14_sdm, full_stack_1k, filename = "DATA/GIS_data
/Rasters/Predict/CG14_predict.img") 
 
 
#### CG9_predict #### 
 
CG9_sp <- as(CG9, "Spatial") 
CG9_sp$CG9 <- 1 
#temp <- sdmData(pres ~ LCM2015_new + soil_new, train = CG9, predictors = 
full_stack) 
set.seed(104) 
CG9_sdmData <- sdmData(CG9 ~  aspect_1k + DEM_1k + slope_1k + LCM2015_1k + 
layer  
                        + soil_1k + rainfall + tempmin_summer_MET + tempmi
n_winter_MET + tempmax_summer_MET + tempmax_winter_MET, 
                        train = CG9_sp, predictors = full_stack_1k, bg = l
ist(n=100, method = 'gRandom', remove = TRUE)) 
#temp_sdm <- sdm(pres ~ LCM2015_new + soil_new, data = , methods = c('glm'
, 'rf', 'entropy', 'maxlike'), replication = NULL, n = 10) 
#predict_temp <- predict(temp_sdm, full_stack, mean = T) 
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set.seed(005) 
CG9_sdm <- sdm(CG9 ~ aspect_1k + DEM_1k + slope_1k + LCM2015_1k + layer  
                + soil_1k + rainfall + tempmin_summer_MET + tempmin_winter
_MET + tempmax_summer_MET + tempmax_winter_MET,  
                data = CG9_sdmData, methods = c('glm', 'svm', 'rf', 'entro
py', 'maxlike'), replication = 'boot', n = 10) 
#setting <- sdmSetting(pres~., methods = c('glm', 'gam', 'brt', 'svm', 'rf
', 'entropy', 'maxlike'), replication = NULL, test.percent = 30, n = 10, m
odelSettings = list(brt = list(n.trees = 500)))   
predict_CG9_mean <- predict(CG9_sdm, full_stack_1k, overwrite = TRUE, mean 
= T, filename = "DATA/GIS_data/Rasters/Predict/CG9_mean_predict.img") 
predict_CG9 <- predict(CG9_sdm, full_stack_1k, filename = "DATA/GIS_data/R
asters/Predict/CG9_predict.img") 
 
######### 
#### Model Evaluation ####  
# To get AUC, TSS and Kappa 
  
#Using CG10 as test data 
CG10_eval <- getEvaluation(CG10_sdm, stat = c('TSS', 'Kappa', 'AUC'), opt 
= 1) 
#p1_CG10 <- ensemble(CG10_sdm, newdata = full_stack_1k, filename = "ensCG1
0.grd", overwrite = TRUE, setting = list(method = 'weighted', stat = 'Kapp
a')) 
#CG10#_niche <- niche(x = full_stack_1k, h = #p1_CG10, c('soil_1k', 'LCM20
15_1k')) 
CG10_eval_mean <- colMeans(CG10_eval) 
 
CG11_eval <- getEvaluation(CG11_sdm, stat = c('TSS', 'Kappa', 'AUC'), opt 
= 1) 
#p1_CG11 <- ensemble(CG11_sdm, newdata = full_stack_1k, filename = "ensCG1
1.grd", overwrite = TRUE, setting = list(method = 'weighted', stat = 'Kapp
a')) 
#CG11#_niche <- niche(x = full_stack_1k, h = #p1_CG11, c('soil_1k', 'LCM20
15_1k')) 
CG11_eval_mean <- colMeans(CG11_eval) 
 
CG12_eval <- getEvaluation(CG12_sdm, stat = c('TSS', 'Kappa', 'AUC'), opt 
= 1) 
#p1_CG12 <- ensemble(CG12_sdm, newdata = full_stack_1k, filename = "ensCG1
2.grd", overwrite = TRUE, setting = list(method = 'weighted', stat = 'Kapp
a')) 
#CG12#_niche <- niche(x = full_stack_1k, h = #p1_CG12, c('soil_1k', 'LCM20
15_1k')) 
CG12_eval_mean <- colMeans(CG12_eval) 
 
#CG13_eval <- getEvaluation(CG13_sdm, stat = c('TSS', 'Kappa', 'AUC'), opt 
= 1) 
##p1_CG13 <- ensemble(CG13_sdm, newdata = full_stack_1k, filename = "ensCG
13.grd", overwrite = TRUE, setting = list(method = 'weighted', stat = 'Kap
pa')) 
#CG13#_niche <- niche(x = full_stack_1k, h = #p1_CG13, c('soil_1k', 'LCM20
15_1k')) 
 
CG14_eval <- getEvaluation(CG14_sdm, stat = c('TSS', 'Kappa', 'AUC'), opt 
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= 1) 
#p1_CG14 <- ensemble(CG14_sdm, newdata = full_stack_1k, filename = "ensCG1
4.grd", overwrite = TRUE, setting = list(method = 'weighted', stat = 'Kapp
a')) 
#CG14#_niche <- niche(x = full_stack_1k, h = #p1_CG14, c('soil_1k', 'LCM20
15_1k')) 
CG14_eval_mean <- colMeans(CG14_eval) 
 
CG9_eval <- getEvaluation(CG9_sdm, stat = c('TSS', 'Kappa', 'AUC'), opt = 
1) 
#p1_CG9 <- ensemble(CG9_sdm, newdata = full_stack_1k, filename = "ensCG9.g
rd", overwrite = TRUE, setting = list(method = 'weighted', stat = 'Kappa')
) 
#CG9#_niche <- niche(x = full_stack_1k, h = #p1_CG9, c('soil_1k', 'LCM2015
_1k')) 
CG9_eval_mean <- colMeans(CG9_eval) 
 
#### Evaluation of models_mean #### 
# To get barplot of best statistical model used in SDM 
 
grouped <- read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/for_plot/
grouped.csv")  
plot_grouped <- ggplot(grouped_se, aes(fill = Stat_type, y = Per, x = Stat
_type )) + 
  geom_bar(position = "dodge", stat = "identity") + geom_errorbar(aes(ymin 
= Per-SE_100, ymax = Per+SE_100), 
                                                                                                        
width = 0.2, position = position_dodge(0.9)) 
plot_grouped  + scale_fill_grey(start = 0.1, end = 0.8, aesthetics = "fill
") +scale_y_continuous(limits = c(0, 100), expand = c(0, 0)) + 
  facet_wrap(~ Condition) +   
  theme_bw() + theme( 
   plot.background = element_blank()         
  ,panel.grid.major = element_blank()         
  ,panel.grid.minor = element_blank()         
  #,axis.text.x = element_blank()         
  #,axis.ticks.x = element_blank() 
 #,panel.border = element_blank() 
 ,axis.line = element_blank() 
 #,axis.text.x = element_blank() 
 #,axis.text.y = element_blank() 
 #,axis.ticks.x = element_blank() 
 #,axis.ticks.y = element_blank() 
 ,axis.title = element_blank() 
 , legend.position = "none") 
 
## function for std.error 
s.err <- function(x) sqrt(var(x)/length(x)) 
 
GLM_results <- read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/for_p
lot/GLM.csv") 
SVM_results <- read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/for_p
lot/SVM.csv") 
RF_results <- read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/for_pl
ot/RF.csv") 
MAXENT_results <-read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/for
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_plot/MAXENT.csv") 
MAXLIKE_results <- read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/f
or_plot/MAXLIKE.csv") 
GLM_results <- GLM_results[-54,] 
SVM_results <- SVM_results[-54,] 
RF_results <- RF_results[-54,] 
MAXENT_results <- MAXENT_results[-54,] 
MAXLIKE_results <- MAXLIKE_results[-54,] 
 
 
stand.err <- NULL 
stand.error <- data.frame(rbind(s.err(GLM_results[,2]), s.err(SVM_results[
,2]), s.err(RF_results[,2]), s.err(MAXENT_results[,2]), s.err(MAXLIKE_resu
lts[,2]),  
                                s.err(GLM_results[,3]), s.err(SVM_results[
,3]), s.err(RF_results[,3]), s.err(MAXENT_results[,3]), s.err(MAXLIKE_resu
lts[,3]), 
                                s.err(GLM_results[,4]), s.err(SVM_results[
,4]), s.err(RF_results[,4]), s.err(MAXENT_results[,4]), s.err(MAXLIKE_resu
lts[,4]))) 
stand_error_100 <- stand.error*100 
grouped$SE100 <- stand_error_100 
colnames(grouped) <- c("Stat_type", "Condition", "Value", "Per", "Stderr", 
"S.E.100") 
 
grouped_se <- read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/for_pl
ot/group_w_se.csv") 
 
Stats_types <- read.csv("DATA/GIS_data/SDM/var_imp/Model_evaluations/for_p
lot/Stats_types.csv") 
colnames(Stats_types) <- c("Community", "Type", "AUC", "AUC_val", "COR", "
COR_val", "TSS", "TSS_val") 
 
### AUC boxplots 
 
AUC_plots <- ggplot(Stats_types, aes(x = Type, y = AUC_val)) + geom_boxplo
t() 
AUC_plots + theme_bw() + theme( 
    plot.background = element_blank()         
    ,panel.grid.major = element_blank()         
    ,panel.grid.minor = element_blank()         
    #,axis.text.x = element_blank()         
    #,axis.ticks.x = element_blank() 
    ,panel.border = element_blank() 
    ,axis.line = element_blank() 
    #,axis.text.x = element_blank() 
    #,axis.text.y = element_blank() 
    #,axis.ticks.x = element_blank() 
    #,axis.ticks.y = element_blank() 
    ,axis.title = element_blank() 
    ,axis.line.x = element_line("black") 
    ,axis.line.y = element_line("black") 
)                     
### COR boxplots 
COR_plots <- ggplot(Stats_types, aes(x = Type, y = COR_val)) + geom_boxplo
t() 
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COR_plots + theme_bw() + theme( 
  plot.background = element_blank()         
  ,panel.grid.major = element_blank()         
  ,panel.grid.minor = element_blank()         
  #,axis.text.x = element_blank()         
  #,axis.ticks.x = element_blank() 
  ,panel.border = element_blank() 
  ,axis.line = element_blank() 
  #,axis.text.x = element_blank() 
  #,axis.text.y = element_blank() 
  #,axis.ticks.x = element_blank() 
  #,axis.ticks.y = element_blank() 
  ,axis.title = element_blank() 
  ,axis.line.x = element_line("black") 
  ,axis.line.y = element_line("black") 
)                     
 
### TSS boxplots 
TSS_plots <- ggplot(Stats_types, aes(x = Type, y = TSS_val)) + geom_boxplo
t() 
TSS_plots + theme_bw() + theme( 
  plot.background = element_blank()         
  ,panel.grid.major = element_blank()         
  ,panel.grid.minor = element_blank()         
  #,axis.text.x = element_blank()         
  #,axis.ticks.x = element_blank() 
  ,panel.border = element_blank() 
  ,axis.line = element_blank() 
  #,axis.text.x = element_blank() 
  #,axis.text.y = element_blank() 
  #,axis.ticks.x = element_blank() 
  #,axis.ticks.y = element_blank() 
  ,axis.title = element_blank() 
  ,axis.line.x = element_line("black") 
  ,axis.line.y = element_line("black") 
)                     

# Variable importance 
 
CG10_var <- getVarImp(CG10_sdm, id = 1, wtest = 'training') 
CG11_var <- getVarImp(CG11_sdm, id = 1, wtest = 'training') 
CG12_var <- getVarImp(CG12_sdm, id = 1, wtest = 'training') 
#CG13_var <- getVarImp(CG13_sdm, id = 1, wtest = 'training') 
CG14_var <- getVarImp(CG14_sdm, id = 1, wtest = 'training') 
CG9_var <- getVarImp(CG9_sdm, id = 1, wtest = 'training') 
var_imp <- rbind(CG10_var, CG11_var, CG12_var, CG14_var, CG9_var, H10_var 
                H12_var, H13_var, H14_var, H15_var, H16_var, H18_var,  
                H19_var, H21_var, H22_var, H8_var, H9_var, M1_var,  
                M11_var, M15_var, M16_var, M17_var, M18_var, M19_var,  
                M2_var, M20_var, M21_var, M25_var, M26_var, M27_var,  
                M29_var, M3_var, M37_var, M38_var, M4_var, M5_var,  
                M8_var, M9_var, MG10_var, MG5_var, U10_var, U13_var,  
                U15_var, U16_var, U17_var, U2_var, U21_var, U4_var,  
                U5_var, U6_var, U7_var, W19_var, W9_var) 

#### Plot predicted means of sdm #### 
pdf("DATA/GIS_data/PDFs/predictions_EVI.pdf") 
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#plot(predict_CG10, main = "CG10") 
plot(predict_CG10_mean, axes = FALSE, box = FALSE)#, "DATA/GIS_data/PDFs/C
G10/CG10_predict_mean.pdf") 
#plot(predict_CG11, main = "CG11", axes = FALSE, box = FALSE)#, "DATA/GIS_
data/PDFs/CG11/CG11_predict.pdf") 
plot(predict_CG11_mean, axes = FALSE, box = FALSE)#, "DATA/GIS_data/PDFs/C
G11/CG11_predict_mean.pdf") 
#plot(predict_CG12, main = "CG12", axes = FALSE, box = FALSE)#, "DATA/GIS_
data/PDFs/CG12/CG12_predict.pdf") 
plot(predict_CG12_mean, axes = FALSE, box = FALSE)#, "DATA/GIS_data/PDFs/C
G12/CG12_predict_mean.pdf") 
#plot(predict_CG14, main = "CG14", axes = FALSE, box = FALSE)#, "DATA/GIS_
data/PDFs/CG14/CG14_predict.pdf") 
plot(predict_CG14_mean, axes = FALSE, box = FALSE)#, "DATA/GIS_data/PDFs/C
G14/CG14_predict_mean.pdf") 
#plot(predict_CG9, main = "CG9", axes = FALSE, box = FALSE)#, "DATA/GIS_da
ta/PDFs/CG9/CG9_predict.pdf") 
plot(predict_CG9_mean, axes = FALSE, box = FALSE)#, "DATA/GIS_data/PDFs/CG
9/CG9_predict_mean.pdf") 

#### NBN Atlas #### 
# Caching data 
nbn_config(cache_directory = "DATA/GIS_data/NBN_cache") 
setHook(packageEvent("NBN4R", "attach"), function(...) nbn_config(cache_di
rectory = file.path("~","NBN_cache_data", "NBN_cache"))) 
 
#### C. vulgaris #### 
calluna <- search_fulltext("Calluna vulgaris") 
call_occ <- occurrences(taxon = "Calluna vulgaris", download_reason_id = 4
) 
call_df <- data.frame(call_occ$data) 
call_df_main <- data.frame(cbind(call_df$scientificName), call_df$rank, ca
ll_df$occurrenceStatus, call_df$locality, call_df$OSGR, call_df$latitudeWG
S84, 
                           call_df$longitudeWGS84, call_df$OSGR10km, call_
df$OSGR1km, call_df$individualCount, call_df$abundance, call_df$OSGR, call
_df$decimalLatLongCalculatedFromGridReference, call_df$stateProvince) 
call_df_engwal <- subset(call_df_main, call_df.stateProvince!="Scotland") 
call_df_engwal <- subset(call_df_engwal, call_df.stateProvince!="Isle of M
an") 
call_df_engwal <- subset(call_df_engwal, call_df.stateProvince!="Northern 
Ireland") 
call_df_engwal <- call_df_engwal[complete.cases(call_df_engwal[, 6:7]),] #
remove rows from lat/long with NAs 
 
head(call_occ$data) 
 
call_engwal <- st_as_sf(call_df_engwal, coords = c("call_df.longitudeWGS84
", "call_df.latitudeWGS84"), crs = crs_latlong) 
call_engwal <- st_transform(call_engwal, 27700) 
call_engwal_crop <- st_crop(call_engwal, england_wales) 
st_write(call_engwal_crop, "DATA/GIS_data/NBN_atlas/call_vulg.shp") 
 
#### U2 species prediction #### 
U2_rede_mask 
Rede <- as(Rede_roy, 'Spatial') 
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U2_glm <- as.data.frame(U2_rede_mask$sp_1.m_glm.re_boot, xy = TRUE) 
 
 
rede_gg <- ggplot(Rede_roy) + geom_sf() + geom_raster(data = U2_glm, aes(x
=x, y=y, alpha = sp_1.m_glm.re_boot, fill = sp_1.m_glm.re_boot)) 
descflex_gg <- ggplot(descflex, aes(x=X, y=Y)) + geom_point(aes(x=X, y=Y)) 
callvulg_gg <- ggplot(callvulg) + geom_point(aes(x=X, y=Y)) 
   
 rede_gg + geom_jitter(data = descflex, aes(x=X, y=Y), position = position
_jitter(width = 0, height = 0.5)) + theme_bw() +  
   theme( 
    plot.background = element_blank() 
    ,panel.grid.major.x = element_blank() 
    ,panel.grid.minor.x = element_blank() 
    ,panel.grid.major.y = element_blank() 
    ,panel.grid.minor.y = element_blank() 
    ,panel.background = element_blank() 
    ,panel.border = element_blank() 
    ,axis.line = element_blank() 
    ,axis.text.x = element_blank() 
    ,axis.text.y = element_blank() 
    ,axis.ticks.x = element_blank() 
    ,axis.ticks.y = element_blank() 
    ,axis.title = element_blank() 
    ) 
 
 tempgeom_jitter(data = callvulg, aes(x=X, y=Y), size = 1, position=positi
on_jitter(width = 0, height = 0.5)) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Because I was standing in the tunnel. And I was really there.  

And that was enough to make me feel infinite.” 

- Stephen Chbosky, The Perks of Being a Wallflower 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


