
 

An Energy Efficient non-volatile FPGA Digital 

Processor for Brain Neuromodulation  

by 

Lijuan Xia 

 

 
 
 

A thesis presented for the degree of 

Doctor of Philosophy 

 

 

 

 

School of Engineering 
Newcastle University, UK 

 
 
 
 

January 2020 

 

 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

Abstract 

Brain stimulation technologies have the potential to provide considerable clinical benefits for 

people with a range of neurological disorders. Recent neuroscience studies have shown that 

considerable information of brain states is contained in the low frequency local field potential 

(If-LFP; below 5Hz) recordings with application in real-time closed-loop neurostimulation for 

treating neurological disorders. Given these signals can be sampled at low sampling rate and 

hence provide sparse data streams, there is an opportunity to design implantable 

neuroprosthesis with long battery lifecycles which enables enough processing power to 

implement long-term, real-time closed loop control algorithms. In this thesis, a closed-loop 

embedded digital processor has been created for use in rodent neuroscience experiments. The 

first contribution of this work is to develop a mathematical analytical design approach of 

feedback controller for suppressing high-amplitude epileptic activity in the neuron mass model 

to form a better understanding of how to perform a better closed-loop stimulation to control 

seizures. The second contribution and the third contribution are combined to present an 

exploratory energy-efficient digital processor architecture built with commercial off-the-shelf 

non-volatile FPGAs and microcontroller for sparse data processing of brain neuromodulation. A 

digital hardware design of an exemplar PID control algorithm has been implemented on this 

proposed digital architecture. A new power computing diagram of this time-driven approach 

significantly reduced the power consumption which suggests that a digital combined control 

system of non-volatile FPGAs and microcontroller outweighs a digital control system of 

microcontroller with microcontroller regarding computing time cost and energy consumption 

supposing one microcontroller is always required.  Taken together, this digital energy-efficient 

processor architecture gives important insights and viewpoints for the further advancements of 

neuroprosthesis for brain neurostimulation to achieve lower power consumption for sparse 

sampling data rate.  
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Chapter 1. Introduction 

1.1 Motivation 

In recent decades, millions of people have been affected by epileptic seizures, and this 

number continues to rise [1] [2]. With accelerating progress in responsive 

neurostimulation research, there has been a growing interest in developing closed-loop 

implantable neurostimulators aiming to treat drug-resistant epilepsy. Most existing 

implantable devices apply sensor probes to record brain activities (EEG, LFP, MCG etc.) 

[3] [4]. Moreover, these neurostimulators’ control units have been designed to interface 

with recording sensor probes to deliver stimulation inside the brain to help control 

epileptic neurons [5] [6]. One of the most successful commercial devices to date, the 

Neuropace responsive stimulator, attempts to analyse brain recordings in order to 

detect seizure patterns prior to seizure intervention by delivering electrical charges. This 

technology is defined as supervised open loop stimulation [7]. The weakness of the 

supervised open loop stimulation strategy is that seizure detection accuracy has a direct 

effect on the stimulation performance. In other words, any false alarms generated by 

the seizure detection algorithms will lead to false stimulations which can cause potential 

security issues [8]. Hence, the open research question arises: how to determine real-

time closed-loop control algorithms to help suppress seizures, and how to implement 

the proposed control algorithms into battery-powered hardware devices with flexible 

reprogrammability for epilepsy treatment research.  

However, most published closed-loop controller design work are mathematical 

modeling-based  [9], [10], [11]. And hence it is difficult to map those algorithms in 

wearable or implantable hardware devices with a reasonable power consumption. Even 

though engineers are capable of attemping to map complicated and sophisticated 

supervised open loop algorithms and closed-loop control algorithms in 

implantable/wearable devices, it will lead to a certain level of power-hungry design with 

limited reprogrammability [12], [13]. This can cause a series of issues for implantable 

devices, as most implantable neurostimulators are typically required to operate on the 

limited power budget of a wearable battery and desire reprogrammability during the 

neuroscience experiment tests.  These results demonstrate that a simple closed-loop 
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reprogrammable control algorithm is needed for hardware designs in the closed-loop 

neuroprosthesis to help treat epilepsy to further benefit biological experiments.  

In this thesis, in order to help answer the open question, we shall study the feasibility of 

this next generation low-power neurostimulators’ implementation to deliver closed-

loop stimulation for controlling seizures.  We will focus on the theoretical exploration of 

a feasible closed-loop control algorithm to suppress seizures, and propose the feasibility 

of mapping the proposed algorithm into a digital controller with limited power 

consumption.  

1.2 Current commercial neurostimulator review 

The first FDA clinically-proven implantable device for epilepsy treatment is the Vagus 

nerve stimulation device (VNS) [14].  A VNS device is a small electrical device similar to 

a pacemaker which is placed under the skin of the chest for delivering bursts of 

electricity. The electrical charge is sent to a probe in the Vagus nerve which can help 

change the electrical signals in the brain. A VNS device operates on a wearable battery 

and develops open-loop stimulus by delivering a fixed frequency electrical pulse.  

However, the VNS device cannot cure epilepsy fundamentally, and can only help make 

epilepsy symptoms less severe and less frequent. Hence, the most recent widely 

reported therapy is responsive neurostimulation (RNS)[15]. The RNS system is a device 

or stimulator which is surgically placed on the bone covering the brain. The stimulator 

delivers small pulses of stimulation to the implanted brain area whenever abnormal 

brain activity is detected by seizure detection algorithms. The RNS system has been 

clinically proven to reduce seizures and improve patients’ life quality in some cases. RNS 

was approved by the U.S. Food and Drug Administration (FDA) in 2013. 

In recent years, there have been efforts to advance the current existing open loop brain 

stimulation towards a closed-loop brain control system which can deliver therapeutic 

modulation as well as providing fixed frequency stimulations [16]. The main efforts of 

the closed-loop control systems can fall into two categories: low power hardware 

architecture and closed-loop control algorithms to suppress seizures. 

From a hardware perspective, neuroengineers have made extraordinary strides in 

integrating sophisticated specific integrated circuits consisting of basic electronic 

elements such as transistors, resistors and capacitors onto tiny silicon chips for implant 
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surgery in a low power,  low thermal, and small sized manner[17] [18] [19]. Recent 

progress in neuroprosthesis research has led neuroengineers and neuroscientists to 

record brain activity of electroencephalograms (EEG) [20] and local field potential (LFP) 

[18], analyse the recordings and deliver subsequent treatments in real-time by means 

of closed-loop control systems [21]. Implantable silicon chips have been reported to 

perform electrical recordings, multichannel recordings with activity extraction, electrical 

stimulation and optical stimulation [22].  

From an algorithm modelling perspective, closed-loop controllers for suppressing 

epileptic seizures have been proven to be a promising strategy for suppressing seizures. 

Proportional algorithms have been used to control seizure amplitude in rats. Integral 

control is employed to provide feedback for the charge-balanced suppression of seizures 

[23]. Differential control models are used to eliminate activity in a theoretical math 

model of human cortical and electrical activity [24]. However, there are two weakness 

to the above algorithm work. One is that for closed-loop PID based algorithm work, the 

control parameters are suggested or picked up based on the designers’ experience with 

a ‘trial and error’ approach. Secondly, most of the algorithms are theoretical modelling-

based and do not have a feasible hardware implementation for applying them in 

controlled rodent neuroscience experiments.   

To conclude, the most common way to understand how neuron network works is to do 

electrical physiological recordings and picking up the electrical signals generated by the 

neurons. Recent neuroscience efforts report that considerable information about the 

brain’s state is contained in low-frequency local field potential recordings in real-time 

closed loop neurostimulation for neurological disorders [25]. Given that these recording 

signals can be sampled at low rates thus providing a sparse data stream, there is an 

opportunity for bioengineers to design implantable neuroprosthetics with long battery 

lifecycles and sufficient processing power to implement a long-term, real-time and 

closed loop control algorithm. The key objective of this research project is to explore the 

next generation of embedded optogenetic-optoelectronic brain implants for application 

in controlled rodent neuroscience experiments. Hence once a device is created, it can 

be used to explore and generate stimulus for the modulation of in-vitro epileptic activity 

using closed-loop stimulation in rodent brain slices. 
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1.3 Contribution and organisations  

This thesis concerns how to build the next-generation of energy-efficient digital 

processors for low-sampling-rate data processing to deliver neurostimulation to 

targeted neuron networks. The major contributions of this thesis are listed as follows:  

1. The closed-loop PD control framework in brains:  The first advancement that we 

have proposed is an analytical approach to closed-loop Proportional-Derivative 

(PD) control that can be applied to determine the stimulation parameters for 

suppressing high-amplitude epileptic activity in a neural mass model. This allows 

us to explore the relationship between the model parameters of inducing 

seizures and the PD feedback controller parameters of stabilising seizures which 

helps develop a better understanding of how best to suppress epileptic seizure 

activity by applying closed-loop stimulation. This computational modelling work 

parallels the in vitro closed-loop optogenetic stimulation experiments.  

 

2. The comparison efforts between different digital platforms (MCUs and FPGAs).   

A comparison study of non-volatile FPGAs was conducted and shows some 

extinct properties compared to other digital platforms (MCU, GPU, DSP etc.). 

Hence, another contribution is the feasibility study of flash-based FPGAs for this 

application by comparing FIR filter implementations on a microcontroller and an 

FPGA. 

 

3. The energy efficient digital processor design: A rodent wearable digital 

processor has been built using a commercial off-the-shelf non-volatile FPGA and 

microcontroller platform for low-sampling-rate data processing. Taking 

advantage of the distinct flash freeze mode of non-volatile FPGAs, a co-processor 

MCU can be programmed to send a pulse to a non-volatile FPGA to enable 

entering and exiting an ultra-low power flash freeze (sleep) model to save on 

energy consumption (8.032uA). A new power computing diagram based on non-

volatile FPGAs and microcontroller architecture have been integrated onto a 

2.5cm x 2.5cm PCB board.  

 



 19 

1.4 Thesis outline 

Following the thesis motivation is constructed as follows:  

Chapter 2: Medical background and literature review. This chapter reviews the relevant 

background and state-of-the-art optogenetic implants for brain neurostimulation.  

Firstly, the medical background of epilepsy seizures is introduced, followed by a review 

of epilepsy treatments. The focus then moves onto reviewing and comparing the current 

progress of neuroprosthesis for seizure control. Finally, the hardware implementation 

publications of neuroprosthesis are justified. 

Chapter 3: Closed-loop control of the brain.  This chapter presents an analytical 

approach to closed-loop PID controls to determine stimulation parameters inside the 

stabilisation area for suppressing high amplitude epileptic seizure activity generated by 

a neural mass model. The model suggests that the PID control algorithm with 

appropriate PID parameter settings within the stabilisation area can help control high 

amplitude epileptic activity generated from a neural mass model. This chapter then 

details the possible feasible design of optimised hardware implementation of the 

proposed PID control algorithm. 

Chapter 4: System implementation. This chapter depicts the system implementation of 

the proposed algorithm developed in chapter 3. Different digital hardware platforms 

have been compared from different prospects, then an optimized PID control algorithm 

has been presented in chapter 4.  

Chapter 5: Energy efficient digital processor case study. This chapter details a low 

power digital processor built by non-volatile FPGAs and MCU chips for this low-

sampling-rate data processing. Then an energy-efficient reconfigurable closed-loop 

processor has been employed to interface with an implantable device to carry electrical 

recordings and optogenetic stimulation for brain neurostimulation.    

Chapter 6: Conclusion. Chapter 6 summarizes the main work of the thesis and concludes 

the contribution of the thesis. Future work is also presented in this chapter.  
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Chapter 2. Medical background and literature review 

2.1 Chapter overview  

In recent decades, responsive neurostimulation has been recognized as potential great 

potential alternative to help treat drug-resistant epilepsy (DRE).  The key challenge of 

how to build a highly portable and reliable integrated neural interface with more 

responsive control algorithms for seizure suppression is still an open question.  In other 

words, how can we best design intelligent algorithms for seizure suppression and map 

those proposed control algorithms into battery-powered hardware platforms before 

scientists can apply this promising technology for further commercialization. 

Mathematicians and neuroscientists are working on designing more intelligent 

responsive neurostimulation algorithms to deliver stimulation strategies to achieve 

better experimental results. Electrical engineers are currently working towards 

designing lower power consumption electrical systems to deliver stimulations within a 

battery powered device.   In recent years, there have been joint efforts between 

mathematicians and neuroscientists to investigate different control algorithms to 

deliver neurostimulation to treat epilepsy. This includes supervised open loop 

stimulation algorithms and closed-loop stimulation algorithms. Supervised open loop 

stimulation can detect seizures before they happen or even predict seizure patterns 

based on real-time recordings [26]. Once seizure patterns are detected or predicted, this 

responsive neurostimulation system can deliver an electrical stimulation or other 

stimulation method to stop the seizures. Closed-loop control algorithms refer to 

continuous closed-loop control in order to stabilise network dynamics and prevent the 

development of seizures [27].  From a hardware perspective, engineers are working on 

system-level designs of miniaturised, low-power neural interface implementation of 

supervised open loop algorithms and closed-loop control algorithms to generate real 

time stimulation for seizure suppression [28].  However, implementing a highly portable 

and reliable integrated neural interface is still an open question. This chapter is designed 

to provide a systematic review of neurostimulation methods for seizure suppression 

from an algorithm perspective and hardware perspective. Hence, we shall explain where 

the research opportunities lie in the field of closed-loop digital controllers to implement 
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closed-loop algorithms.    

Section 2.2 will review the neurostimulation in detail, and section 2.3 will provide a 

systematic review of hardware. Section 2.4 will conclude this chapter and offer an 

outlook for the following chapters.  

2.2 Overview of current neurostimulation methodology  

Epileptic seizures can be defined as a neurodisorder disease inside the brain 

characterised by an enduring predisposition to having seizures [29]. There are about 30 

different epileptic seizure syndromes which can be subdivided into three main 

categories: spreading seizures, widespread seizures and focal seizures. Focal onset 

seizures refer to partial seizures, meaning a seizure only happens in one area of the brain. 

In this project, we are mainly interested in studying neurostimulation strategies to help 

treat focal onset seizures. In the rest of this thesis, we will refer to focal onset seizures 

by using the term “seizures”.  Figure 2.1 shows a 10-second pre-recording dataset plot 

of seizures onsets in the brain cortex of a rodent.  

 

Figure 2.1: Seizure onset local field potential recordings from a rat’s cortex lasting 10 

seconds. The dataset was provided by Professor Andrew Trevelyan from the Institute of 

Neuroscience at Newcastle University, recorded in Trevelyan’s lab in 2015. 

  

For most epilepsy patients, seizure treatment starts with medication. For drug-resistant 
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epilepsy patients, a combined analysis (EEG, computerized tomography, magnetic 

resonance imaging etc.) is used to diagnose the specific seizure type for patients and 

where is the potential seizure onset area [30].  An accurate diagnosis of a patient’s 

seizure conditions gives patients the best opportunity for effective treatment.  

Early stage seizure control can be achieved by applying appropriate stimulation 

technologies to seizure onset networks using implantable microelectronics. Researchers 

have made promising progress with three commercially-produced biomedical 

neurostimulation devices for epilepsy treatments: Deep Brain Stimulation (DBS) [31], 

Vagus Nerve Stimulation (VNS) [32], and Responsive Neurostimulation System (RNS)[33].   

I. Vagus Nerve Stimulation (VNS) 

VNS can be defined as a medical treatment process that involves the implantation of a 

battery-powered device underneath the skin of a patients’ chest, which delivers 

electrical stimulation to the Vagus nerve. A second small incision is made in the neck to 

attach two tiny wires to the Vagus nerve. The wires are threaded invisibly up the neck 

from the device to the Vagus nerve. Bursts of electricity are sent via the wire to the 

Vagus nerve. For epilepsy treatment, these electrical pulses are delivered to the Vagus 

nerve affecting where seizures are assumed to start in the brain and may help to prevent 

abnormal electrical activity.   

II. Deep Brain Stimulation (DBS)  

DBS is a neurosurgical procedure which involves the surgical implantation of an invasive 

device into the brain for delivering electrical stimulation into a targeted area of the brain. 

Bursts of electricity are sent along wires which can help to prevent seizures by changing 

electrical signals in the brain.  

III. Responsive Neurostimulator System (RNS) 

RNS is also the world’s first implanted neurostimulator for epilepsy approved by the US 

Food and Drug Administration (FDA) for clinical use. The main RNS system is a small 

implantable device that is adjustable and reversible. It is tailored to different patient 

cases regarding where it is placed and how it is used.  RNS mainly involves a device 

(stimulator) placed inside the skull. Tiny wires and leads are placed on the seizure focal 

onset area for delivering stimulus. The main RNS devices analyse brain activity patterns 
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to detect seizure patterns before they happen and deliver an electrical charge or drug 

to stop seizures.  

Table 1 : A general overview of VNS, DBS, and RNS [34] 

Categories   Figure Demonstration  Hardware Structure  

VNS  

typical 50% improvement on 75% 

of patients  

First approved: 1994 

Stimulus target:  vagus nerve  

Stimulus strength: 0.25-2mA 

Stimulus frequency: 30Hz 

Duty cycle: 30second on, 5 mins off  

 

DBS 

 

85% (of total cohort of 40 children) 

saw reductions, some up to 100% 

with an overall 78% reduction  

Stimulus target: thalamus 

Stimulus strength: 2mA 

Stimulus frequency: 130Hz 

Duty cycle: 90-450 us on,  

RNS 

data not shown yet  

First approved: 2013 (pre market) 

Recording target: cortical surface 

above seizure focus  

Stimulus target: seizure focus  

Stimulus strength: 3mA (0.5-12mA) 

Stimulus frequency: 100/200Hz 

Duty cycle: 169 us on, 100 ms off 

 

Tables 1 compares the three main epilepsy treatment methods. Besides AED treatment 

and dietary treatment, the main treatments for epilepsy can be generally divided into 

the following categories, specifically the commercial biomedical neurostimulation 

devices DBS, VNS and RNS can be described as follows:  
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I. Deep Brain Stimulation (DBS)  

DBS is a neurosurgical procedure which involves the implantation of an invasive device 

by surgery into the brain for delivering electrical stimulation into the targeted area of 

the brain. DBS can be also seen as an alternative supplementary treatment where a part 

of the brain can be stimulated to stop symptoms of the condition. Bursts of electricity 

are sent along wires which can help to prevent seizures by changing electrical signals in 

the brain. The DBS approach can also be employed to control a variety of debilitating 

neurological diseases (essential tremor, Parkinson’s disease, obsessive compulsive 

disorder, epilepsy etc.).  

 

Figure 2.2: It shows a simplified schematic of a DBS system implanted in the body of a 

human being from Massachusetts General Hospital’s website. It contains an electrode, 

a lead and a generator. The electrode is implanted inside the brain and the generator is 

implanted in the chest. Brain surgery is required for DBS systems. All parts of the device 

are subdermal.  

For DBS treatment, brain surgery is necessary for fitting the device into patient’s brain. 

Figures 2 -2 demonstrate the procedures involved in deep brain stimulation surgery: 

1) Part 1: the electrode:  

A thin, insulated electrode is put through small openings (incisions) on top of the 

skull for reaching the epileptic seizure onset area to deliver electrical stimulus to 

the target site [35]. 
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2) Part 2: the wire:  

An insulated wire is passed under the skin of the head, neck and shoulder to 

connect the electrode to the neurostimulator [36]. 

3) Part 3: the implanted pulse generator:  

A battery-powered neurostimulator (pulse generator) is placed under the skin 

near the collarbone to send off electrical pulses to the brain that interfere with 

the neural activity at the target site [37].  

Possible side effects of DBS approach include the following: 

1. Wound infection after the operation 

2. Complications if the device malfunctions 

3. Complications after the surgery, such as bleeding in the brain 

4. An increase in symptoms of depression and anxiety 

Efficacy of DBS: 

Recent trials show a modest improvement in seizure reduction, about a 15% reduction 

of seizure onset frequency [38].  

II. Vagus Nerve Stimulation (VNS) 

VNS can be defined as a medical treatment process that involves the implantation of a 

device which delivers electrical stimulation to the Vagus nerve. It can be viewed as a 

supplementary treatment alternative for treating intractable epilepsy. In addition, VNS 

can also be used to treat drug-resistant depression which does not respond to typical 

depression therapies. Nowadays, scientists and researchers are investigating applying 

VNS as a potential supplement treatment for a variety of conditions (multiple sclerosis, 

headaches, pain and Alzheimer’s disease).  

The Vagus is the tenth cranial nerve and arises from the medulla that carries both 

afferent and efferent fibres. The afferent Vagus fibres connect to the nucleus of the 

solitary tract which connects to the central nervous system. In conventional Vagus nerve 

stimulation approaches, the general procedure is to put a small generator similar to a 

matchbox-size pacemaker under the skin below the left collarbone. A second small 

incision is made in the neck to attach two tiny wires to the Vagus nerve. The wires are 

threaded internally up the neck from the device to the Vagus nerve. Bursts of electricity 



 26 

are sent via the wire to the Vagus nerve. For epilepsy treatment, these electrical pulses 

are delivered to the Vagus nerve affecting where seizures are assumed to start in the 

brain, and can help to prevent abnormal electrical activity.  This device then sends 

impulses to the brain to prevent the electrical activity which causes seizures.  

 

 

Figure 2.3: It shows a simplified schematic description of VNS systems implanted in a 

human body, as shown on a VNS Therapy Website. It contains an electrode, a lead and 

a generator. The electrode is implanted in the Vagus nerve and the generator is 

implanted in the chest. AspireSR is the first and only VNS therapy that provides 

responsive stimulation. Brain surgery is not required for VNS treatment.  

For VNS treatment, brain surgery is not necessary.  There are two major electrical 

devices in the VNS therapy shown in Figure 2.3: 

1) Part 1: the lead wire  

The lead wires from the generator are tunnelled up through a patients’ neck and 

wrapped around the left Vagus nerve for delivering electrical stimulus to the 

Vagus nerve [39].   

2) Part 2: the generator  

An implantable electrical device (similar to pacemaker) is implanted under the 

skin below the left collarbone [40]. 

Possible problems caused by the VNS system are as follows:  
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1. Coughing  

2. Headaches  

3. Neck pain  

4. Sore throat  

5. Difficulty breathing  

Efficiency of VNS: 

Recent publications show that VNS offers a mean seizure reduction of 28% for patients, 

with 23% of patients having reduction in seizure frequency over 50%. 

III. Responsive Neurostimulator System (RNS) 

Responsive Neurostimulator System, also known as RNS therapy, is the world’s first 

implanted neurostimulator for epilepsy treatment to be approved by the US Food and 

Drug Administration (FDA) for clinical use. The main RNS system is comprised of a small 

implantable device that is adjustable and reversible. It is tailored to different patient 

cases regarding where it is placed and how it is used.  The RNS device is similar to a heart 

pacemaker, but instead it can monitor brain waves and respond to seizure-like brain 

activity. RNS mainly involves a device (stimulator) placed under the skull. Tiny wires and 

leads are placed on a seizure focal onset area for delivering stimulus. Based on the RNS 

control algorithms, the main RNS devices generate small pulses or bursts of stimulation 

to the brain when abnormal brain activity is detected. The systems can help to stop 

seizures before the actual seizures spread [41]. The RNS procedure is reversible and can 

be turned off or taken out if it does not work.  
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Figure 2.4: A simplified schematic description of RNS systems implanted in a human body, 

as demonstrated on the NeuroPace RNS website. It displays an electrode, a lead and a 

generator. An electrode and a generator are implanted inside the skull [42]. Brain 

surgery is required for RNS systems.  

 

The main RNS system is composed of three parts:  

1) Part 1: the electrode  

The electrode lead is placed under the skull.    

2) Part 2: the wire  

The tiny wire is fed under the skin. 

3) Part 3: the stimulator  

        The stimulator is placed in one or two places on top of the skull where the         

epilepsy activity might occur according to different patients. 

The RNS system continuously monitors brain activity and aims to generate electrical 

stimulus when seizure patterns are detected. The main procedures shown in Figure 2.4 

are listed as follows: 

1. Step 1: Monitor   

The RNS system records brain activity in real-time. 

2. Step 2: Detect 
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 The RNS system is programmed to recognise unusual or abnormal electrical 

activity which might lead to seizures.  

3. Step 3: Response 

Once abnormal brain activity is recognised, the system will respond to the 

neuron network by delivering pulses of electrical stimulation. The objective 

is to help bring the brain’s electrical activity back to its normal state.  

The challenges of RNS are:  

1. Identifying patients who would benefit from the RNS system. 

2. Identifying how best to treat these patients with the optimal stimulation 

strategy. 

Efficacy of RNS:  

Recent clinical report results show that the median frequency reduction was 56%, and 

the mean reduction was 43% - 100%. Observation of this study suggests that automated 

seizure detection positively affects electrographic seizure activity. However, this study 

is still  the preliminary phase of trials [43] .  

The specification of three responsive neurostimulation systems for controlling epileptic 

seizures are listed in the following table 2.2.  A comparison between DBS, VNS and RNS 

has also been presented from both clinical and engineering perspectives. Furthermore, 

a more general comparison of two different categories of epilepsy treatment (brain 

resection surgery and neurostimulation devices) is presented in table 2.3.  

Table 2.2 illustrates that brain responsive stimulation can provide great hope for 

patients with medically resistant epilepsy for reducing their seizures. The main challenge 

for biomedical engineers is how to use integrated circuit technology to create safe, 

robust and smaller responsive closed-loop electrical devices (such as neural interfaces, 

brain implants, brain machine interfaces etc.).   

• Robust: Robust refers to low noise, low power consumption, reliable, high 

performance and high-security in general [44].  

• Smart: Smart refers to how a device can listen to neurons, understand  neurons 

and extract information accordingly, then transmit the data out and 

simultaneously stimulate the neurons by feedback control algorithms [45]. 
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A comparison between our neurostimulation systems and other existing 

neurostimulation systems has been listed in table 2.4 from recording, stimulation 

perspectives. 

Table 2.2: Comparison of Closed-loop Control Systems in our work.  

Treatment Neural 

Recording 

Optogenetic 

Stimulation 

Details 

 

VNS 

 

Yes 

 

Yes 

 

 

No 

Open Loop Stimulation of Vagus 

Nerves 

 

DBS 

 

Yes 

 

No 

Open Loop Stimulation of Focal 

Onset Neurons 

 

 

RNS 

 

 

Yes 

 

 

 

No 

Electrical recording for seizure onset 

area, open loop electrical 

stimulation near seizure onset area. 

 

 

Our Work 

 

 

Yes 

 

 

Yes 

Continuous closed-loop ontogenetic 

intervention for ongoing discharges 

of characteristic of seizures 

 

2.3 Proposed next generation neuroprosthesis 
 

Epilepsy has been widely recognized as an induction in normal brain activity under 

various trigger conditions in neural networks, in rats and humans [46] [47] . References 

[48] describe several neural mass network models for studying dynamic mechanisms of 

neocortical focal seizures from different perspectives of computational modelling and 

system theory . Publication [49]  demonstrates that abnormal values of the external 

input can generate high amplitude epileptic activity in the Jansen's neural mass model 

(the Jansen's NMM).  Closed-loop controllers have been reported to connect stimulation 

input with correspondingly-generated local field potential  to achieve local suppression 

of epileptic activity in neural networks [11] [50] . Over the last decade, researchers have 

made extraordinary progress in the development of PID type controllers to stabilize 

various epileptic seizure activities in neural mass models and brain tissue in the field of 
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control engineering. Wang et al [51] proposes a proportional-integral controller to 

generate a real-time feedback to help stabilize the high-amplitude epileptic signal 

generated by the Jansen’s neural mass model.  

Chapter 3 applies a proportional-derivative controller to provide feedback for 

suppressing high amplitude epileptic activity in the Jansen's NMM.  The objective of 

chapter 4 is to implement a physical PD controller incorporating with the ASIC neural 

interface to suppress epileptic seizures in real neuroscience experiences by tuning 

proper gain parameters. In chapter 5, we also compared the PD algorithm optimized for 

microcontroller and FPGA architecture implementation and the total power 

consumption compared over respective wake-up and sleep processing cycles. The 

described result is not immediately obvious. We used one of the most highly efficient 

microcontroller currently available for this task which uses the 28nm technology node. 

In contrast, the nvFPGA available to us uses the 90nm technology node. Also, recursive 

functions and ring buffers are more easily implemented on a general-purpose processor 

than a FPGA. Nevertheless, we demonstrated the proof-of-concept that the nvFPGA is 

more energy-efficient for low-level closed-loop processing than microcontrollers. 
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Chapter 3. Closed-loop control in the brain models  

3.1 Chapter overview 

The final section of the previous chapter reviewed recently published efforts in neuron 

mass computational models. In this chapter, a closed-loop computational modelling 

study will be presented to describe the model-dependent feedback modulation of 

epileptic activity with stimulation intervention. This mathematical work mainly focuses 

on computational modelling that parallels in vitro closed-loop optogenetic stimulation 

experiments, shown in figure 3.1.  

 

Figure 3.1: High-level schematic diagram of closed-loop control of brain activities from 

the perspective of computational modelling and in-vitro experiments. In computational 

modelling blocks, the plant is the neural mass model for describing the experimentally 

observed ongoing seizure-like brain activities. The controller is used to suggest potential 

control algorithms interacting with neuron mass models to describe the output of closed-

loop control in the brain.  

The overall goal of both this modelling work and in-vitro experiments is to demonstrate 

that closed-loop stimulation with biologically plausible parameterisation settings can 

alter ongoing epileptic activity in vitro. The purpose of the modelling work in this chapter 

is to explain the experimental observations of how the pathological electrical recording 
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activities are controlled through stimulation by setting up proper control parameters 

[52].  

In the following sections of this chapter, an abstract neural mass model will be 

introduced in section 3.2, followed by the methodology of closed-loop feedback control 

to intervene in neural mass model activity in section 3.3. Section 3.4 describes the 

simulation results and analysis of how pathological activity is altered through 

stimulation by altering the control algorithm parameters.  

3.2 Modelling epileptiform activity 

3.2.1 Jansen’s neural mass model  

 

 

Figure 3.2: A simplistic schematic and block diagram of the neural mass model. (a) An 

approximation of all mini-columns to be 50µm* 50 µm in size where ‘E’ and ‘I’ mean 

excitatory and inhibitory subpopulations which can be modelled by a Wilson-Cowan E-I 

unit [48]. (b) A closed-loop block diagram of an exemplar feedback controller feeding to 

the Jansen's NMM. 

Epilepsy has been widely recognised as the induction in normal brain activity under 

various trigger conditions in neuron networks, from rats to humans. Several neuron 

mass network models have been studied using dynamic neurological mechanisms to 

generate neocortical focal seizures similar to the experimentally observed ongoing 
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seizure signals [53].  Jansen’s neuron mass model is featured at the interaction of the 

interlinked excitatory and inhibitory feedback loops and synaptic connection intensities 

[54]. Previously published work has described that abnormal values of external input 

and the connection intensities between excitatory and inhibitory populations can 

generate high-amplitude oscillations in Jansen's neural mass model (Jansen's NMM) 

which represent seizure-like epileptic signals [55], [56]. The most recent reported 

bifurcation studies found that the imbalance of the excitatory population and inhibitory 

population connectivity in Jansen’s NMM will generate high amplitude epileptic seizure 

signals [46]. Hence, we have applied Jansen’s NMM as a test bench to different closed-

loop controllers to tune appropriate biologically plausible parameterisations for 

delivering feedback as stimulation to intervene epileptic signals in the Jansen’s NMM 

(For simplicity, Jansen’s NMM will be adopted in the reminder of this chapter). 

In this chapter, Jansen’s NMM is proposed to describe the experimentally observed 

ongoing electrical recording of targeted neuron network. To be specific, we used a 

simplified Jansen neural mass model to describe the experimentally observed ongoing 

activity including epileptiform spikes and discharges. Neural population models show 

the activity of neuronal tissue in terms of average activity (either firing activity or field 

potential) of populations of neurons. Generally, principal excitatory neurons are 

grouped into one population, and inhibitory neurons are grouped into another 

population [57], [58]. Overall, this results in a system of two ordinary differential 

equations describing neuron network activity. Such an abstract approach means that we 

disregard spatial variations in activity. This is justified, as we observed less spatial 

variation in the dynamics across different channels. Such an approach has been shown 

to be sufficient to capture the most epileptiform dynamics observations in vitro and in 

vivo. Thus, a simple neural population model is the most cost-effective choice for a 

computational model which does not require an explicit assumption and is 

mathematically easy to work with.  
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Figure 3.3: Block diagram of Jansen's NMM in which blue and yellow blocks 

mathematically detail excitatory and inhibitory subpopulations of the neural mass model. 

This also presents an approximation of all mini-columns to be 50µm* 50 µm in size where 

‘E’ and ‘I’ signify excitatory and inhibitory subpopulations in cortical tissue.  

In figure 3.3, a simplified Jansen's NMM has been detailed as a neurophysiologically-

inspired mathematical model by a population of 'feed-forward' pyramidal neurons, 

receiving inhibitory and excitatory feedback from local interneurons. 

Figure 3.3 describes each of the neuron populations as two blocks of 'E' and 'I' which 

represent excitatory and inhibitory subpopulations. Figure 3.3 divides Jansen's NMM 

into three interacting subpopulations: 

1) Subpopulation 1 represents excitatory feedback subpopulations,   

2) Subpopulation 2 represents inhibitory feedback subpopulations,   

3) Subpopulation 3 is the main subpopulation. 

In subpopulation 1, C1 and C2 represent the average numbers of synaptic contacts in 

the excitatory feedback loop, while in subpopulation 2, C3 and C4 are the average 

numbers of synaptic contacts in the inhibitory feedback loop. Excitatory synaptic 

dynamic function ℎ𝑒(𝑡) and inhibitory synaptic dynamic function ℎ𝑖(𝑡) linear systems 

transform the average postsynaptic membrane potential.  ℎ𝑒(𝑡) and ℎ𝑖(𝑡) are defined 

as follows in equation (3.1) and equation (3.2). 



 36 

 ℎ𝑒(𝑡) = {𝐴𝑎𝑡𝑒−𝑎𝑡            𝑡 > 0
0                          𝑡 < 0

 

 

(3.1)  

 
ℎ𝑖(𝑡) = { 𝐵𝑏𝑡𝑒−𝑏𝑡            𝑡 > 0

0                          𝑡 < 0
 

(3.2)  

 

In equation (3.1) and equation (3.2),  𝐴  and 𝐵  describe the maximum amplitude of 

excitatory and inhibitory population, while 𝑎 and 𝑏 are the lumped representation of 

the sum of the reciprocal of the time constant of passive membrane and all other 

spatially distributed delays in the dendritic network. As linear systems of ℎ𝑒(𝑡) and 

ℎ𝑖(𝑡) convert axonal pulses to postsynaptic potential, the impulse response of  ℎ𝑒(𝑡) 

and ℎ𝑖(𝑡) are shaped to resemble an excitatory postsynaptic potential (EPSP) and an 

inhibitory postsynaptic potential (IPSP) respectively. The input to these linear systems is 

pulse density, which enables us to mimic the integrating action of the soma. In addition, 

𝑝(𝑡) is modelled by Gaussian noise as the input for triggering Jansen's NMM while 𝑦(𝑡)  

is the output of Jansen's NMM which can be interpreted as local field potential of the 

NMM.  𝑆𝑖𝑔𝑚 function in equation (3.3) describes the average membrane potential of a 

population of neurons into an average pulse density of action potentials fired by the 

neurons. 

 
𝑠𝑖𝑔𝑚(𝑣) =

2𝑒0

1 + 𝑒𝑟(𝑣0−1)
 

 

(3.3)  

Each postsynaptic potential (PSP) of subpopulation 1 and subpopulation 2 labelled in 

Figure 3.3 can be modelled by two differential equations as follows: 

 𝑑2𝑦

𝑑𝑡2
= 𝐴𝑎𝑥(𝑡) − 2𝑎

𝑑𝑦

𝑑𝑡
− 𝑎2𝑦(𝑡) 

 

(3.4)  

 

Equation (3.4) can be rewritten as:  

 𝑑𝑦

𝑑𝑡
= 𝑧(𝑡) 

 

(3.5)  

 𝑑𝑧

𝑑𝑡
= 𝐴𝑎𝑥(𝑡) − 2𝑎

𝑑𝑧

𝑑𝑡
− 𝑎2𝑦(𝑡) 

 

(3.6)  
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Where can be rewritten as 𝑥(𝑡) and 𝑦(𝑡) are the input and output signal respectively.  

Hence, six different equations are derived from equation (3.5) and equation (3.6) as 

following:  

 𝑑𝑦0

𝑑𝑡
= 𝑦3(𝑡) 

 

(3.7)  

 𝑑𝑦3

𝑑𝑡
= 𝐴𝑎𝑆𝑖𝑔𝑚(𝑦1(𝑡) − 𝑦1(𝑡)) − 2𝑎𝑦3(𝑡) − 𝑎2𝑦0(𝑡) 

 

(3.8)  

 𝑑𝑦1

𝑑𝑡
= 𝑦4(𝑡) 

 

(3.9)  

 𝑑𝑦4

𝑑𝑡
= 𝐴𝑎{𝑝(𝑡) + 𝐶2𝑆𝑖𝑔𝑚(𝐶1𝑦0(𝑡))} − 2𝑎𝑦4(𝑡) − 𝑎2𝑦1(𝑡) 

 

(3.10)  

 𝑑𝑦2

𝑑𝑡
= 𝑦5(𝑡) 

 

(3.11)  

 𝑑𝑦5

𝑑𝑡
= 𝐵𝑏{𝐶4𝑆𝑖𝑔𝑚[𝐶3𝑦0(𝑡)] } − 2𝑎𝑦5(𝑡) − 𝑏2𝑦2(𝑡) 

 

(3.12)  

 

Where 𝑦0 , 𝑦1 , 𝑦2 are the output of three postsynaptic potential blocks (subpopulation 

1, subpopulation 2 and subpopulation 3). The three pairs of differential equations 

(equation (3.7) and equation (3.8), equation (3.9) and equation (3.10), equation (3.11) 

and equation (3.12)) are solved by applying an integration method of the Fehlberg 

fourth-fifth order Runge-Kutta method [59]. Table 2.1 shows the neural mass model 

parameters. 

3.2.2 Model parameter choice 

The choice of different parameters will determine different output of the Jansen Neural 

Mass Model . The connectivity constants; 𝐶1,  𝐶2, 𝐶3 and 𝐶4  are proportional to the 

average number of synapses between the pyramidal cells and the excitatory feedback 

elements.  The connectivity constants 𝐶1,  𝐶2, 𝐶3 and 𝐶4 are proportional to the average 

number of synapses between the pyramidal cells and the inhibitory feedback elements.  

𝐶1,  𝐶2, 𝐶3 and 𝐶4, and can be detailed as follows: 
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1. 𝐶1 is the synapses number which is generated by the feed-forward neurons to 

the excitatory neurons feedback loop. 

2.  𝐶2  is proportional to the synapses number which is made by the excitatory 

feedback loop to the feedforward neurons’ dendrites.   

3. 𝐶3  stands for the synapses number which is generated by the feed-forward 

neurons to the inhibitory feedback loop dendrites.  

4. 𝐶4  represents the synapses number which is generated by the inhibitory 

feedback loop to the feedforward neuron dendrites.  

[] did a study of the visual cortex pyramidal cell which suggests that  

                                      𝐶1 +  𝐶3 = 𝐶2 + 𝐶2
′  + 𝐶4                                                            (3.13) 

 

  [60] reported that in a mouse’s somato-motor cortex, a pyramidal cell axon would 

make 87% of its synapses and 13% on shafts. Therefore White [61] observed that a 

synapses made a spine onto an excitatory cell, but a synapse on a shaft is equally likely 

to be on an excitatory or an inhibitory cell. Hence, about 6.5% of the synapses made by 

a pyramidal cell are inhibitory, therefore: 

                                        
𝐶3

𝐶1+ 𝐶3
= 6.5/100                                                                         (3.14) 

 In another publication, Liu [62] claimed that 80% of the synapses were of the excitatory 

type, which is made on a pyramidal cell dendrite in a cat’s motor cortex, hence:  

                                     
(𝐶2+𝐶2

′)

(𝐶2+𝐶2
′)+𝐶4

= 0.8                                                                              (3.15) 

  

The main excitatory feedback loop is composed of pyramidal cells, as most excitatory 

cells in the visual cortex are pyramidal cells. Considering the excitatory cells population 

is homogeneous in synapse patterns, the synapses number made by the feedforward 

neuron of a cortical column on the excitatory feedback loop should be the same as the 

synapses number made by the excitatory feedback loop on the feedforward neurons.  

This leads to: 

 

                                             𝐶1 = 𝐶2 + 𝐶2
′                                                                            (3.16) 

 

According to [61], 20% of asymmetrical synapses of the excitatory type in layer IV of the 

cortex are formed by thalamo-cortical terminals: 
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                           𝐶1 = 𝐶2 + 𝐶2
′ = 0.2 =>  𝐶2

′ = 𝐶2/4                                                 (3.17) 

 

Substituting () in (), which can be shown as: 

 

                            
𝐶2

𝐶1
= 0.8                                                                                             (3.18) 

 

From () and (), we get: 

 

                                    𝐶3 = 𝐶4                                                                                           (3.19) 

 

The synapses on the excitatory and inhibitory feedback loop are very ambiguous.  

Substituting (3.16) and (3.19) in (3.15) yields 𝐶1 = 4𝐶3. To be specific, the relationship 

between C1 and C3 may vary due to the different biological materials in the synapses 

counts.  Let’s assume that 𝐶1 = 4𝐶3 which will generate:  

                                     𝐶1 =
𝐶2

0.8
= 4𝐶3 = 4𝐶4                                                                 (3.20) 

(3.20) allows us to represent 𝐶1, 𝐶2, 𝐶3 and 𝐶4 with one constant 𝐶 

                                    𝐶1 = 𝐶                                                                                            (3.21) 

                                    𝐶2 = 0.8𝐶                                                                                     (3.22) 

                                     𝐶3 = 0.25𝐶                                                                                   (3.23) 

                                     𝐶4 = 0.25𝐶                                                                                     (3.24) 

 

The variable C will vary under different physiological constraints, as it presents different 

synaptic phenomena in different biological applications. One of the applications is a 

neurotransmitter depletion which is very common and will generate drastic 

consequences.  

The A and B parameters of the PSP functions are proportional to the output magnitude 

of the PSD block.  [54] proposed that  𝐴 = 3.25 𝑚𝑉 and 𝐵 = 22 𝑚𝑉 .  There is another 

publication which modified the amplitude of the PSPs based on certain neural properties. 

Therefore, A and B could be modified with a degree of freedom.  Moreover, the A and B 

parameters of the PSP blocks are inversely proportional to the PSP duration, which are 

less likely to vary over relative short periods.   [49] suggests that  𝑎 = 100𝑠−1 and 𝑏 =
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50𝑠−1.  Table 3.1 details the parameter choosing for modelling simulation in  

the Jansen’s NMM.
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Table 3.1: Physiological biological plausible parameters interpretation, and standard values of the parameter in Jansen’s neural mass model.  

Parameters Description Standard value 

He Average gain of excitatory synaptic 3.25 𝑚𝑉 

Hi Average gain of inhibitory synaptic 22 𝑚𝑉 

τe Synaptic time constant for excitatory subpopulation 0.0108 𝑠  

τi Synaptic time constant for inhibitory subpopulation 0.02 𝑠  

C1, C2 Synaptic contacts in excitatory feedback loop  C1=135, C2=0.8*135 

C3, C4 Synaptic contacts in inhibitory feedback loop  C3=0.25*135, C4=0*135 

ν0, e0, r Non-linear sigmoid function ν0=6 𝑚𝑉,  e0=2.5, 

 r =0.56𝑚𝑉−1 
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3.3 Closed-loop feedback control  

3.3.1 Proportional-derivative control of neuron mass model (PD-NMM) 

 

Figure 3.4: The closed-loop scheme of a PD-NMM control scheme. (a) Block diagram of 

the PD-based controller feeding into the Jansen’s Neuron Mass Model. (b) The high-level 

simplified equivalent form of PD-NMM control scheme. 𝑮𝒑𝒅(𝒔) is the Laplace transform 

of a PD controller to describe the transfer function of PD control, and 𝑮𝑵𝑴𝑴(𝒔) is the 

Laplace transform of Jansen’s Neuron Mass Model to show the transfer function of 

Jansen’s Neuron Mass Model. 𝒓(𝒕) is the desired output of Jansen’s Neuron Mass Model. 

𝒆(𝒕) is the error signal of the closed-loop control scheme. 𝒖(𝒕)is the output of the PD 

controller. PD-NMM is used to describe the closed-loop proportional-derivative control 

of the neural mass model.  

 

In this section, we aim to investigate the feedback control theory to develop different 
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types of controllers to generate closed-loop stimulation feeding into neuron mass 

models for altering ongoing epileptiform activity. Primarily, the proportional-derivative 

controller is designed to provide stimulation for suppressing high amplitude epileptic 

activity generated by Jansen's NMM shown in figure 3.4. Graphical stability 

methodology has been adopted to produce an analytical design approach for choosing 

proportional and derivative gain parameters to stabilise high amplitude activity of 

Jansen’s NMM. Therefore, the analytical design approach of this closed-loop system 

makes the closed-loop PD feedback control independent of a specific neuron model, 

which can also be applied to control methodology studies of other promising neuron 

models in the future. Furthermore, we intervene the feedback to the neuron mass 

network model to study the potential experimental observations on how the 

pathological activity is altered through stimulation by altering different control 

algorithms. Finally, we suggest an optimised hardware architecture for closed-loop 

algorithm implementation in custom-designed hardware in chapter 4. 

Epileptic activity in a neural mass model can be categorised as high amplitude limit cycle 

oscillation born in Hopf bifurcation [57], which indicates that the fixed point of Jansen’s 

NMM will lose its stability. In figure 3.4, the designed closed-loop controller has been 

proposed to provide feedback stimulations to stabilise the unstable fixed point of a 

neural mass model for preventing the generation of Hopf bifurcation to suppress high 

amplitude epileptic activity. Figure 3.4 shows the interaction between the PD controller 

and Jansen’s NMM, where 𝑢(𝑡) is the output of the PD controller (stimulation signals), 

while 𝑦(𝑡) is the output of Jansen’s NMM model (local field potential). In order to define 

the stabilisation area of proportional-derivative gain parameters, a graphical stability 

analysis method can be applied by using the following four steps:  
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Derivation of the characteristic equation of closed-loop PD-NMM Model 

 

            Step 1:  Derive Laplace Transform of Jansen's NMM 

 
𝐺𝑁𝑀𝑀(𝑠) =

𝐻𝑒(𝑠)

1 + 𝐻𝑒(𝑠)𝐾𝑠2[𝐻𝑖(𝑠)𝐶3𝐶4 − 𝐻𝑒(𝑠)𝐶1𝐶2]
 

 

(3.13)  

 

            Step 2:  Derive Laplace Transform of PD Controller 

 𝐺𝑝𝑑(𝑠) = 𝐾𝑝 + 𝐾𝑑𝑠 

 

(3.14)  

 

            Step 3:  Derive the characteristic equation of PD-Jansen's NMM closed-loop  

            control system shown in figure 3.4 (b)  

 ∆(𝑠) = 1 + 𝐺𝑝𝑑(𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0 

 

(3.15)  

             (The derivation details of characteristic equation  

         1.         𝑟(𝑡) = 0, =>  

 

                2.         𝐺𝑝𝑑(𝑠)𝐺𝑁𝑀𝑀(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
∗

𝑌(𝑠)

𝑈(𝑠)
=

𝑌(𝑠)

𝐸(𝑠)
,     => 

 

         3.         𝑅(𝑠) − 𝑌(𝑠) = 𝐸(𝑠),       => 

 

                4.        1 + 𝐺𝑝𝑑(𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0   ) 

 

                Step 4:  Make the variable substitution: 𝒔 = 𝒋𝝎 

 ∆(𝑗𝜔) = 1 + 𝐺𝑝𝑑(𝑗𝜔)𝐺𝑁𝑀𝑀(𝑗𝜔) = 0 

 

(3.16)  

 

 

The characteristic equation of PD-Jansen's NMM closed-loop control system shown in 

equation (3.16) defines the stability space boundary of the PD-Jansen's NMM feedback 
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control system.  

 

Given that  𝐺𝑁𝑀𝑀(𝑗𝜔) is a complex function, we can rewrite 

𝐺𝑁𝑀𝑀(𝑗𝜔)  as|𝐺𝑁𝑀𝑀(𝑗𝜔)| = √𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔), the characteristic equation of 

PD-Jansen's NMM control system, as: 

 
𝐾𝑝 =

−𝛿𝑅𝑁𝑀𝑀
(𝜔)

𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)
 

(3.17)  

 
𝐾𝑑 =

𝛿𝑅𝑁𝑀𝑀
(𝜔)

𝜔[𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)]
 

(3.18)  

 

Where |𝐺𝑁𝑀𝑀(𝑗𝜔)| = √𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔). 
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3.3.2 Proportional-integral control of neural mass model (PI-NMM) 

 

Figure 3.5: The closed-loop scheme of the PI-NMM control scheme. (a) Block diagram of 

the PI-based controller feeding into Jansen’s Neuron Mass Model. (b) The high-level 

simplified equivalent form of the PI-NMM control scheme. 𝑮𝒑𝒊(𝒔)  is the Laplace 

transform of the PI controller to describe the transfer function of the PI controller, and 

𝑮𝑵𝑴𝑴(𝒔) is the Laplace transform of Jansen’s Neuron Mass Model to show its transfer 

function. 𝒓(𝒕) is the desired output of Jansen’s Neuron Mass Model. 𝒆(𝒕) is the error 

signal of the closed-loop control scheme. 𝒖(𝒕)is the output of the PI controller. PI-NMM 

is used to describe the closed-loop proportional-integral control of Jansen’s Neuron Mass 

Model.  

For comparison, a PI controller is studied to provide the stimulus feed into a neural mass 

model for simulation in this section. Figure 3.5 shows a closed-loop scheme of 

proportional-integral control of Jansen’s neural mass model. The derivation of the 

characteristic equation of a closed-loop PI-NMM model is shown as follows:  
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Derivation of characteristic equation of closed-loop PI-NMM model 

 

            Step 1:  Derive Laplace Transform of Jansen's NMM 

 
𝐺𝑁𝑀𝑀(𝑠) =

𝐻𝑒(𝑠)

1 + 𝐻𝑒(𝑠)𝐾𝑠2[𝐻𝑖(𝑠)𝐶3𝐶4 − 𝐻𝑒(𝑠)𝐶1𝐶2]
 

 

(3.19)  

 

            Step 2:  Derive Laplace Transform of PI Controller 

 
𝐺𝑝𝑖(𝑠) = 𝐾𝑝 +

𝐾𝑖 

𝑠
 

 

(3.20)  

            Step 3:  Derive the characteristic equation of PI-Jansen's NMM closed-loop  

            control system shown in figure 3.5(b)  

 ∆(𝑠) = 1 + 𝐺𝑝𝑖 (𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0 (3.21)  

The derivation details of characteristic equation:  

          1.         𝑟(𝑡) = 0, =>  

 

                2.         𝐺𝑝𝑖(𝑠)𝐺𝑁𝑀𝑀(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
∗

𝑌(𝑠)

𝑈(𝑠)
=

𝑌(𝑠)

𝐸(𝑠)
,     => 

 

         3.         𝑅(𝑠) − 𝑌(𝑠) = 𝐸(𝑠),       => 

 

                4.        1 + 𝐺𝑝𝑖(𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0   ) 

 

                Step 4:  Make the variable substitution: 𝑠 = 𝑗𝜔 

 ∆(𝑗𝜔) = 1 + 𝐺𝑝𝑖(𝑗𝜔)𝐺𝑁𝑀𝑀(𝑗𝜔) = 0 

 

(3.22)  

 

 

The characteristic equation of PI-Jansen's NMM closed-loop control system shown in 

equation (3-22) defines the stability space boundary of the PI- NMM feedback control 

system. Supposing  𝐺𝑁𝑀𝑀(𝑗𝜔) is a complex function, 𝐺𝑁𝑀𝑀(𝑗𝜔)  as |𝐺𝑁𝑀𝑀(𝑗𝜔)| =
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√𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔), the characteristic equation of PI- NMM control system can be 

rewritten as: 

 
𝐾𝑝 =

−𝛿𝐼𝑁𝑀𝑀
(𝜔)𝜔 

𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)
 

(3.23)  

 
       𝐾𝑖 =

−𝛿𝑅𝑁𝑀𝑀
(𝜔)

𝜔[𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)]
 

(3.24)  

 

Where |𝐺𝑁𝑀𝑀(𝑗𝜔)| = √𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔). 

3.4 Results and analysis 

3.4.1 Closed-loop PD-NMM simulation 

• PD-NMM stabilisation area  

Epileptic activity is caused by the imbalance of the excitation and inhabitation of 

neuronal population in neural mass models. In computation modelling work, it can be 

recognised as being caused by extremely large excitatory parameters 𝐻𝑒  or small 

inhibitory parameters 𝐻𝑖  respectively. Hence, the goal of this section is to discuss the 

effect of the two parameters 𝐻𝑒  and 𝐻𝑖  on the stabilising region of the proposed PD 

controller and PI controller.   

Simulations have been demonstrated for plotting the stabilization relationship of PD 

gain parameters 𝑘𝑝 and  𝑘𝑑  with respect to two cases:  

• Hyper-excitation scenario :  𝐻𝑒 = 5,7,9   

• Low inhibition scenario:  𝐻𝑖 = 15,17,19   

Figures 3.6 (a) and 3-6 (b) show the effect of excitatory parameter 𝐻𝑒  and inhibitory 

parameter 𝐻𝑖  on the stabilisation area plot of the proposed PD control of the Jansen’s 

neural mass model according to equations (3.17) and (3.18). Stabilising regions of the 

PD-NMM controller for abnormal values of 𝐻𝑒  and 𝐻𝑖  are also highlighted in blue and 

orange in figures 3.6 (a) and3-6 (b) respectively. The relationship of 𝑘𝑝  and 𝑘𝑑  is 

dependent on the specific neural model. Hence the whole analytical design can also be 

applied to other neural models as well. 
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Figure 3.6: The effect of excitatory parameters 𝐻𝑒  and inhibitory parameters 𝐻𝑖  on 

changing the stabilising area of 𝐾𝑝 and 𝐾𝑑  within the PD controller. (a) The stabilisation 

area of the PD controller differs from 𝐻𝑒  =5, 7, 9 respectively.  (b) The stabilisation area 

of the PD controller differs from 𝐻𝑖  =15, 17, 19 respectively.   

 

• Real-time simulation results  

According to the stabilisation area in figure 3.6, we simulated the following two cases:   
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• Hyper-excitation scenario:  𝐻𝑒 = 7 ,  𝐻𝑖 = 22   

• Low inhibition scenario: 𝐻𝑒 = 3.25   and  𝐻𝑖 = 17   

Specific PD control gain parameters are picked up from the corresponding stabilisation 

areas highlighted in figure 3.6(a) and figure 3.6(b) for further simulation which will be 

detailed in this section. 

• Hyper-excitation scenario 

When 𝐻𝑒   is set as 7 and 𝐻𝑖  is set 22, Jansen’s NMM shows a hyper excitation scenario 

which can generate high amplitude output. The high amplitude signals resemble high 

amplitude epileptic seizure-like oscillations which are also plotted in the first eight 

seconds of figure 3.7. After eight seconds, the feedback generated by the proposed PD 

controller with the chosen PD gain is intervened into the real-time Jansen’s neuron mass 

model for further simulation. 

In figure 3.7(a), Kp = 100, Ki = 0, Kd =  −2  have been picked up specifically from the 

stabilisation area highlighted in figure 3.6(a) to provide feedback stimulation from 

hyper-excitation simulations in Jansen's NMM (𝐻𝑒 = 7  and 𝐻𝑖 = 22 ). 

In comparison, Kp = 100, Ki = 0, Kd =  −8 are outside the stabilisation area which can 

be found in figure 3.6(b). Kp = 100, Ki = 0, Kd =  −8 are used for simulation, shown in 

figure 3.7(b).  Since the parameters Kp = 100, Ki = 0, Kd =  −8  are picked outside the 

stabilised area, it does not help to suppress the high amplitude signal generated in 

Jansen’s NMM model, and even worse, it oscillates the NMM model to make more 

hyper-exaction.  
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Figure 3.7: In the hyper-excitation scenario (𝑯𝒆 = 𝟕  ,  𝑯𝒊 = 𝟐𝟐 ), the comparison of 

output of Jansen's NMM for the first eight second simulation without the PD controller, 

and the second eight second simulation with stimulation feedback from the PD controller. 

(a) PD control gain set up is chosen inside the stabilisation area ( 𝑲𝒑 = 𝟏𝟎𝟎, 𝑲𝒊 =

𝟎, 𝑲𝒅 =  −𝟐).  (b) A PD control gain set up is chosen outside stabilisation area (  𝑲𝒑 =

𝟏𝟎𝟎, 𝑲𝒊 = 𝟎, 𝑲𝒅 =  −𝟖).  
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• Low inhibition scenario 

In figure 3.8, Kp = 30,  Ki = 0, Kd =  −1.3  have been chosen from figure 3.6(b) as the 

PD gain parameters for providing feedback stimulation for a low inhabitation neural 

mass model simulation of (𝐻𝑒 = 3.25   and  𝐻𝑖 = 17  ). The above two experiment sets 

prove that the PD controller provides stimulation feedback to intervene with Jansen's 

NMM to suppress high amplitude epileptic seizures. It can be seen that the output of 

Jansen's NMM was high amplitude activity, which has been clearly demonstrated in the 

first 8 seconds, then under the intervention of PD controller feedback, the seizure 

network has been stabilised into low amplitude activity as a comparison.  The graphical 

design of the stability analysis method has been applied to choose PD controller gain 

parameters for suppressing seizures in Jansen's NMM.  Therefore, in this specific neural 

mass model simulation, high amplitude epileptic activity has been successfully 

suppressed by applying a closed-loop PD controller to deliver feedback stimulation with 

a proper PD gain parameters setup. 
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Figure 3.8: Under the low inhabitation scenario (He = 3.25, Hi = 17 ), the comparison 

of output of Jansen's NMM for the first eight-second simulation without the PD 

controller, and the second eight-second simulation with stimulation feedback from the 

PD controller. (a) The PD control gain set up is chosen inside the stabilisation area ( 𝐾𝑝 =

30, 𝐾𝑖 = 0, 𝐾𝑑 =  −1.3).  (b) A PD control gain set up is chosen outside the stabilisation 

area ( 𝐾𝑝 = 200, 𝐾𝑖 = 0, 𝐾𝑑 =  −1.3). 
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3.4.2 Closed-loop PI-NMM simulation 

• PI-NMM stabilisation area  

 

Figure 3.9: the efficiency of excitatory parameters 𝐻𝑒  and the inhibitory parameters 

𝐻𝑖  on changing the stabilising area within the PI controller.  (a) The stabilisation area of 

the PI Controller differs with 𝐻𝑒  =5, 7, 9 respectively.  (b) The stabilisation area of the PI 

controller differs with 𝐻𝑖  =15, 17, 19 respectively. 

Figure 3.9(a) and figure 3.9(b) show the effect of excitatory parameters  𝐻𝑒  and 𝐻𝑖  of 

the proposed PI control of Jansen’s neural mass model according to equation (3.23) and 
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equation (3.24). Stabilising regions between 𝐾𝑝  and 𝐾𝑖 of the PI-NMM controller for 

abnormal values of 𝐻𝑒  and 𝐻𝑖  scenarios are also plotted in figure 3.9 (a) and figure 3.9 

(b) respectively.  

 

• Real-time simulation results  

For performing real time closed-loop simulations, in the first eight seconds the neural 

mass model generates high amplitude epileptic like signals shown in figure 3.10(a) and 

figure 3.10(b). After eight seconds, we chose a set of the PI controller gain parameters 

set up for hyper-excitation simulations and low-inhabitation simulations.  

For the hyper-excitation scenario, in figure 3.10(a), 𝐾𝑝 = 400, 𝐾𝑖 = 5800  and 𝐾𝑑 =

0 are picked up inside the stabilisation area as the PI controller gain set up. Figure 3.10(a) 

shows how the neural mass model changes after the PI controller intervenes. Moreover, 

𝐾𝑝 = 400, 𝐾𝑖 = 10000   and 𝐾𝑑 = 0 , which are outside the stabilisation area, are 

applied to provide stimulation to Jansen’s NMM in figure 3.10(b). It can be observed 

that epileptic seizures can be suppressed by proper PI gain choice, i.e. those which are 

located inside stabilisation area in hyper-excitation scenario.  

For the low-inhabitation scenario, in figure 3.9(b), 𝐾𝑝 = 150, 𝐾𝑖 = 20000  and 𝐾𝑑 =

0 are chosen inside the stabilisation area for the PI controller gain set up. Figure 3.11(a) 

demonstrates how Jansen’s NMM behaves after the PI controller gain set up. For 

comparison,  𝐾𝑝 = −50, 𝐾𝑖 = 20000  and 𝐾𝑑 = 0 are picked up as gain parameters 

outside the stabilisation area for simulations in figure 3.11(b). It can be seen that 

epileptic seizures are controlled by proper PI gain choice, i.e. those which are located 

inside stabilisation area in the low-inhabitation scenario.  
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• Hyper-excitation scenario 

 

Figure 3.10: In the hyper-excitation scenario (𝑯𝒆 = 𝟕  ,  𝑯𝒊 = 𝟐𝟐 ), the comparison of 

output of Jansen's NMM for the first eight-second simulation without the PI controller, 

and the second eight-second simulation with stimulation feedback from the PI controller. 

(a) A PI control gain set up is chosen inside stabilisation area (  𝑲𝒑 = 𝟒𝟎𝟎, 𝑲𝒊 =

𝟓𝟖𝟎𝟎, 𝑲𝒅 =  𝟎).  (b) A PI control gain set up is chosen outside stabilisation area (  𝑲𝒑 =

𝟒𝟎𝟎, 𝑲𝒊 = 𝟏𝟎𝟎𝟎𝟎, 𝑲𝒅 =  𝟎).  
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• Low inhibition scenario 

 

Figure 3.11: In the low inhabitation scenario (𝑯𝒆 = 𝟑. 𝟐𝟓  ,  𝑯𝒊 = 𝟏𝟕 ), the comparison 

of output of Jansen's NMM for the first eight-second simulation without the PI controller, 

and the second eight-second simulation with stimulation feedback from the PD controller. 

(a) A PI control gain set up is chosen inside stabilisation area ( 𝑲𝒑 = 𝟏𝟓𝟎, 𝑲𝒊 =

𝟐𝟎𝟎𝟎𝟎, 𝑲𝒅 =  𝟎).  (b) A PI control gain set up is chosen outside stabilisation area (  𝑲𝒑 =

−𝟓𝟎, 𝑲𝒊 = 𝟐𝟎𝟎𝟎𝟎, 𝑲𝒅 =  𝟎).  
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Simulation results show that the output signal (local field potential) of Jansen's NMM 

without the PD control and PI control feedback was high amplitude epileptic seizure 

activity, which then became low amplitude activity with feedback stimulation from the 

PD controller and PI controller. A graphical stability analysis method was employed to 

determine the stability region of the PD controller and PI controller for plotting the 

stabilised parameter space. As a result, stabilised regions of the PD controller and PI 

controller parameters have been simulated, which can provide proportion and 

derivative gain choice to be used for stabilising epileptic seizure activity in Jansen's NMM.  

3.5 Controller design for proposed algorithms 

This chapter has verified that PI controller design and PD controller design can help 

suppress high amplitude activity generated by neural mass models which represents 

high amplitude seizure activity. This also provides us with a solid computation proof that 

closed-loop control is a promising strategy to help control neurodisorder diseases. The 

next stage of this work is to implement plausible control algorithms in implantable 

hardware devices with minimal power consumption. The goal is to establish a 

quantitative relationship between the chosen controller parameters and the neural 

mass model’s excitatory and inhibitory parameters. This provides a guideline for the 

choice of controller parameters to help suppress high amplitude seizure signals in the 

math model.  

This modelling work suggests that the PI control algorithm and PD control algorithm 

could be potential candidates for pacemakers. The tradeoff of mapping the PI control 

algorithm and PD control algorithm in hardware can be listed as follows: 

• A PI controller is more stable than a PD controller 

• PI controller hardware implementation memory costs more than a PD controller, 

as PI controllers require continuous history and memory updates 

• A PI controller costs more time to finish per computation than a PD controller  

 

 

 Stability  Hardware 
Resources cost  

Hardware 
computing time 
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cost 

PI control Yes  Expensive  Long  

PD control No  Cheap Short  

  

In closed-loop biomedical control systems, we aim to create a closed-loop control 

system which aims for low computation time cost, meaning minimal computation cost. 

PI hardware design will take longer to compute and occupy larger memory to implement 

compared to PD hardware design. Even PIs can provide larger stability regions of gain 

parameters than PDs. By selecting proper gain parameters inside the PD stabilising area, 

we can still stabilise the neural mass model by selecting the proper parameters.  

3.6 Conclusion  

In this chapter, we introduced a mathematical computational study of the closed-loop 

control of the brain. Jansen’s Neural Mass Model has been chosen as a test bench to 

mimic a human brain in section 3.2. Section 3.3 demonstrated how to apply PID control 

algorithms for generating feedback as the stimulus feeding into Jansen’s neural mass 

model. Based on the stabilisation area analysis, we have found that with proper PI and 

PD gain parameters set up, we can stabilise the amplitude activity generated by Jansen’s 

Neuron Mass Model in section 3.4.  

This chapter also provides an analytical approach for closed-loop control of brain 

modelling by providing the flexibility to substitute math models or control algorithms 

for more exploratory efforts. Furthermore, we also presented an analytical approach to 

closed-loop PD controllers and PI controllers to determine the stimulation parameters 

for suppressing high-amplitude epileptic activity in the neural mass model.  

The proposed graphical stability analysis approach method certifies that the design of 

this feedback controller was analytical, revealing a cause and effect relationship in a 

theoretical manner. This allows us to explore the relationship between the model 

parameters of inducing epileptic activity and feedback controller parameters, to form a 

better understanding of the mechanism of suppressing epileptic seizure activity by 

applying closed-loop feedback stimulation methodology (pharmacology stimulation, 

electrical stimulation and optogenetic stimulation etc.).  Different parameter sets of PD 

and PI gains have been listed in the following table to provide a better understanding of 
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the clinical seizure onset parameter choice. 

PI and PD controller suggestions for NMM model  

Closed-loop PD-NMM system 

Epilepsy scenario  PD parameter suggestion  

Hyper-excitation scenario 

𝐻𝑒 = 7 ,  𝐻𝑖 = 22   

                             Kp = 100, Ki = 0, Kd =  −2   

Low inhabitation scenario 

𝐻𝑒 = 3.25 ,  𝐻𝑖 = 17   

                             Kp = 30, Ki = 0, Kd =  −1.3   

Closed-loop PI-NMM system 

Epilepsy scenario  PI parameter suggestion  

Hyper-excitation scenario 

𝐻𝑒 = 7 ,  𝐻𝑖 = 22   

                             Kp = 400, Ki = 5800, Kd =  0   

Low inhabitation scenario 

𝐻𝑒 = 3.25 ,  𝐻𝑖 = 17   

                             Kp = 150, Ki = 20000, Kd =  0   
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Relative contribution  

Correspondent Contribution 

 

 

 

Miss Lijuan Xia 

Dr. Patrick Degenaar 

1. A closed-loop PD-NMM model and a closed-

loop PI-NMM model are investigated in this 

chapter, different sets of Kp, Kd gain and of Kp, 

Kd gain parameters inside stabilisation areas 

are chosen for simulations, and will be 

employed in next chapter for hardware 

implementation. 

2. This modelling study suggests that PD 

controllers and PI controllers can help to 

suppress high amplitude seizure signals in a 

computational neuron mass model 

successfully. 

Correspondent Future work 

Miss Lijuan Xia 

Dr.Yujiang Wang 

Dr. Patrick Degenaar 

1. A spatial-temporal mathematical brain model 

needs to be investigated to mimic brain 

activities for leading a better understanding of 

brain function in diseased states. 

2. Various seizure patterns apart from high 

amplitude epilepsy seizure-like signals need to 

be studied to imitate seizure signals. 

3. Different control algorithms (PI, PID, machine 

learning algorithms) need to be applied to 

intervene with the neural mass models as a 

closed-loop control system. 

4. The optogenetic stimulation math model needs 

to be conducted to interface with PID 

algorithms for supplying into the neuron mass 

model.  

 

 



 62 

Chapter 4. Algorithm Hardware Implementation 

4.1 Chapter Overview 

The previous chapter has conducted a closed-loop brain control modelling study to 

suggest a plausible PD control algorithm for intervening with the neuron mass model to 

suppress epileptic seizures. The main objective of this chapter is to investigate the 

feasibility of a low power digital implementation of PD algorithm which will be optimized 

for minimal energy consumption in sparse sampling rate processing application. Figure 

4-1 details a general overview of the framework of this chapter. Section 4.1 gives a 

general overview of this chapter. Section 4.2 compares different digital hardware 

platforms between the commercial off-the-shelf microcontrollers and FPGAs. Then the 

comparison results and analysis will be discussed in this section and the selection of the 

specific digital platform for our biomedical application will be shown as a conclusion. 

Section 4.3 depicts the design and development of PD firmware implementation for the 

entire system. Conclusions will be given in the final section 4.4. 

 

Figure 4-1: Chapter four overview. This chapter starts by describing different hardware 

platforms, then compares them from different perspectives, then selects a hardware 

platform for our application. Finally, we describe the firmware implementation of the 

chosen algorithm in our control unit.    
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4.2            Hardware Comparison  

With the final aim of implanting neural interface for patients with neurological disorders, 

emerging evidence indicates there is an increasing need for developing wearable, low-

power consumption, miniaturized embedded devices. For testing the performance and 

capabilities of these closed-loop neural interfaces, non-human primates and rodents are 

preferred by neuroscientists to use for neuroscience experimental models.  Thus, there 

is of overwhelming interest in developing tools for closed-loop control experiments, for 

freely moving rodents. One of the design debates is a trade-off of the use of different 

hardware platforms between application specific integrated circuits (ASICs) and digital 

platforms. Three potential digital implementation platforms are discussed and 

compared in the following Table 4-1 for a further selection of one of the platforms: 

Table 4-1: Comparison between different hardware platforms for embedded system 

applications. We mainly compare ASICs, FPGAs and MCUs as the implementation 

platforms regarding re-programmability, power consumption and speed. We also list the 

requirement for our biomedical application.  

 Reprogrammability Power Consumption 
Computing 

Time Cost 

ASIC No Low Fast 

FPGA Yes moderate Fast 

MCU Yes High Moderate 

Requirement  Yes Low Fast 

 

In order to develop an optimal processing unit with a power management system which 

can be tested in freely moving rodents, we desire to design a platform capable of 

implementing the closed-loop optogenetic stimulation with tight real-time constraints, 

and low power consumption to enable a battery life of over 24 hours. Therefore, for this 

biomedical application, our key requirements are listed as follows:  

1) Reprogrammability: A platform can communicate with the neural interface ASIC 

probe which constructs an ASIC finite state machine (FSM) of implementing a command 

interpreter that can send out LFP recordings and receive instructions to control LED 

emission. The commands are communicated by a digital interface using a serial 
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peripheral interface (SPI) protocol [63].  

2) Low latency: A platform can require low processing power to perform low latency 

closed-loop control algorithms with tight time constraints for achieving minimal 

processing delay.  

3) Small size:  A platform can be sufficiently compact to be installed on the freely 

moving rat system for neuroscience experiments. 

4) Lightweight: A platform need to be lightweight (<20g for a large rodent) to be 

mounted on the back and head of a freely moving rodent for long time neuroscience 

experiments.  

Hence, we decide to compare two digital platforms between FPGAs and MCUs as digital 

processors can provide flexible programmability.  A general overview of FPGAs and 

MCUs is given in the following sections.  

4.2.1 FPGA Overview 

 

Figure 4-2: The conceptual scheme of FPGA architectures.  A basic FPGA platform is 

composed of an array of logic block, a hierarchy of reconfigurable interconnects which 

allow the block to be wired together. For most FPGA platforms, logic blocks include 

memory elements that may be simple flip-flops ore more complete blocks of memory.     

An FPGA is defined as a prefabricated silicon device that can be electrically programmed 
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to become any arbitrary design of digital circuits and systems. The conceptual scheme 

of an FPGA is shown in Figure 4-2, it contains: 

• Logic blocks 

• Routing channels  

• I/O interfaces 

A FPGA includes an array of programmable logic blocks and a hierarchy of reconfigurable 

interconnects which makes the blocks to be wired together. Many logic gates can also 

be inter-wired in different configurations. The logic blocks can be programmed to 

perform complex combinational functions or only simple logic gates like AND and XOR. 

Logic blocks also contain memory elements that are simple flip-flops or more complete 

blocks of memory. The FPGA configuration is generally specified by the hardware 

description language (HDL). 

There are two main commercial off-the-shelf FPGAs available on the market today based 

on the basic process technology: SRAM based FPGAs with static RAM memory cells 

holding their configuration patterns and flash-based logic arrays with nonvolatile 

memory cells. On one hand, SRAM memory is a volatile memory meaning that the 

configuration is lost when power is removed. On the other hand, the main other form 

of memory is flash memory. Flash memory evolves from EEPROM (Electrically erasable 

programmable read only memory). There are two main types of flash memory: NOR or 

NAND. Flash memory cell is effectively a transistor in nature. Flash is a similar in 

composition to a MOSFET with an added floating gate which acts as an electron trap.  

The expectation for this project is that the SRAM based FPGAs will present higher static 

power than the flash-based FPGAs yet yield a lower dynamic power.  IGLOO nano is a 

product nano of non-volatile FPGA released by Microsemi Company. IGLOO nano flash 

FPGA provides ultra-low static and low dynamic power consumption. The logic size is 

ranging from 10000 gates to 250000 gates.  The unique capabilities of Flash*Freeze 

mode in the non-volatile FPGA fabrics can help reduce power dramatically.  
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Figure 4-3: Example system of enter and exit from Flash*Freeze mode to regular normal 

operation within 100 usec. Flash*Freeze mode allows the non-volatile FPGAs to enter a 

low power (~24µW) mode and retain all internal memory and flip-flop states. 

 

Flash*Freeze technology can enable the rapid stopping and starting of the FPGA fabrics 

and related I/O while preserving the state of FPGA fabrics shown in Figure 4-3. This mode 

will also allow the device to go into a low power mode that also holds all internal 

memory and flip-flop states as well as output values. There is a great potential medical 

application as a prime area for using flash freeze mode taking advantage of the relatively 

low sampling rate. This would allow for prolonged periods of down time yet remove the 

requirement for re-configuration and would also respond rapidly to wake-up 

requirements. 

To conclude, the major advances in adopting non-volatile FPGAs than SRAM-based 

FPGAs for biomedical applications can be concluded into three reasons:  

1. Lower System Cost:   

High-performance non-volatile FPGAs can deliver an analogous features and functions 

identical with SRAM-based FPGAs on the grounds that marvelous progresses have been 

made in shrinking flash memory cells and the capability to integrate the flash into 

unconventional logic processes.  
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2. Reduced System Footprint and Power Consumption 

An external configuration memory is not required for flash-based logic arrays. As a result, 

non-volatile FPGAs generally has reduced system footprint and lower power 

consumption. 

3. Less Startup Time:  

For non-volatile FPGAs, the configuration memory is with the logic arrays on the same 

chip while SRAM-based FPGAs still require more startup time to load the configuration 

time.  

4.2.2 MCU Overview 

 

Figure 4-4: A simplified microcontroller scheme. A single chip microcontroller contains 

the processor includes the CPU (Processor), non-volatile memory for the program (ROM 

or Flash), volatile memory for input and output (RAM), clock module and I.O control unit.  

A microcontroller (MCU) is a small computer on a single integrated circuit. Computer 

architecture can be thought as a set of rules and methods that describe the functionality, 

organization and implementation of a given computer system. In Figure 4-4, it can be 

seen that computer architecture involves the instruction set architecture design, 

microarchitecture design, logic design and implementation. 
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One of the key differences between powerful CPU and MCU is the way how the 

instruction sets are implemented to control the functionality of the processor. There are 

two main computer instruction sets shown in Figure 4-4.  

• CISC (Complex Instruction Set Computer) 

• RISC (Reduced Instruction Set Computer)  

 

In this efforts, ARM Cortex M4 based architecture is chosen for its wide capability of 

core of DSP (Digital Signal Processor) with an FPU (Floating Point Unit), along with 

further instructions for handling single precision floating. These instructions operate on 

an extended register bank of 3 single precise registers and provide single precision 

floating point arithmetic, comparison, data transfer between the extension registers, 

core register and memory . 

4.2.3 Comparison between MCUs and non-volatile FPGAs 

In this section, we will compare a flash-based FPGA with a MCU in terms of power 

consumption and time cost. The experimental methodology is to apply two platforms to 

organize an optimized Linear Time-Invariant (LTI) filter implementation for providing a 

fair comparison between the MCU (ARM Cortex M4) and the non-volatile FPGA (IGLOO 

nano). Then we will choose a digital platform for our application based on the measured 

performance. The main reason we use FIR filter as an exemplar example to implement 

is that it is the fundamental unit of our closed-loop PID control algorithms which will be 

also demonstrated in the next section 4.3.  

In digital hardware implementation, the PID digital implementation falls within the 

scheme of linear, time invariant (LTI) filters. In this case, the proportion, integration and 

derivative can be treated as an LTI filter which can be represented by convolution with 

a finite impulse response of truncated length impulse h(t). The LTI filter can be written 

as:  

                          𝑦 = 𝑥(𝑛) ∗ ℎ(𝑛) 

 

(4-19)  

The formula is read as y is the convolution of x and h where the 

operation of sum of products is called convolution.  This formula 
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can also be detailed as  

 

                    𝑦 = ∑ 𝑥(𝑡 − 𝑁)ℎ(𝑛)

𝑁−1

𝑛=0

 
 

   (4-2)  

 

Truncating the length of the corresponding FIR filter will impose a low frequency limit of 

the filter. It means the computed integral signal will be correct only above a frequency 

given by the reciprocal of the length of FIR filter. Convolution, a basic element of FIR 

filter, has been described in Figure 4-5. We will detail the FPGA implementation and 

MCU implementation of the convolution in the following sections. 

 

Figure 4-5: A simplified hardware design of implementing the linear time invariant 

digital design of FIR filter. The row array 𝑥0, 𝑥1, 𝑥2, 𝑥3 … … is used for saving incoming 

signal while one column array ℎ0, ℎ1, ℎ2, ℎ3 … … is applied for holding the pre-set FIR 

kernel of impulse response.   

• Optimized FPGA implementation of FIR filter 

In Figure 4-6, it shows how to construct a finite impulse response implementation 

(supposing the filter taps is 16 taps) in VHDL for FPGAs. A basic logic cell architecture of 

FIR filter is shown as follows. 
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i. A 16*1 row buffer bank of 8-bit row register is receiving local field potential from 

optrode for further PID   control 

ii. A 1x1 MUX is used for row buffer bank to select corresponding row register for 

multiplication 

iii. Three 16*1 column buffer banks of 8 bit column register is used to hold 

proportional Dirac Delta kernel, integral unit step kernel , derivative Gaussian 

kernel as convolution kernel to    do further multiplication. 

iv. A 1x1 MUX is used for column buffer bank to select corresponding column buffer 

bank for multiplication 

v. An accumulator adds all results of multiplication which has been send to output 

DACDAT buffer bank for generating further close loop neural stimulation. 

vi. A 16*1 buffer bank of 8-bit register is PID control output for generating further 

pulse width modulation feedback to optrode for close loop optogenetic   

stimulation. 

 

 

 

 

Figure 4-6: Direct FPGA Implementation of FIR Filter Architecture. It describes an 

optimized FIR filter implementation in the non-volatile FPGA. A 16*1 row 8-bit buffer 

bank and a 1*16 column 8-bit buffer bank are employed to store incoming recordings 
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and filter taps respectively. Two multiplexers are used to select incoming data and filter 

coefficients for multiplication to do further accumulation. 

 

 

• Optimized FIR Filter of MCU implementation 

In comparison, we construct an optimized FIR filter implementation in C++ language for 

microcontrollers shown in Figure 4-7  

Figure 4-7: Ring buffer implementation of FIR filter in Microcontroller. (a) The row buffer 

is used to save input into the buffer array. Pointer is used to address the corresponding 
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buffer. (b) A ring representation of data buffer array.  

 

In Listing 4-2, It demonstrates an optimized ring buffer FIR Filter execution in 

microcontroller which is thus the process of an infinite for(;;) loop that triggers a new 

iteration every time that new sample input is available in AD1GetValue();  Two pointers 

are applied to save addresses of incoming data address and filter taps address separately. 

One multiplication is for multiplying incoming data and filter taps for further 

accumulation. Two pointers will shift with each iteration.  

It mainly consists of the following instructions:  

• We first digitize the incoming analogy signal for an ADC module for sampling.  

• We then assign a buffer pointer for saving the address of the incoming buffer. 

• After saving the measurement into the incoming buffer, we do the multiplication 

with kernels for accumulation as the filter output. 

• The filter output can be pushed into a DAC module as a continuous output.  

• Measured FPGA Power Comparison 

After the FIR filter implementation of the MCU and the non-volatile FPGA, current 

consumption of the microcontroller and the FPGA have been tested a multimeter ( Digital 



 73 

multimeter, Truevolt Series 34465A) demonstrate in Figure 4-12(a). The measurement of 

the non-volatile FPGA implementation is comparatively obvious. Once the FPGA board is 

powered up, we can evaluate the power usage by current consumption, using the current 

measurement pins on the boards.  

 

 

 

Figure 4-8: Set the multimeter to measure current and attach the probe of the 

multimeter to pin1 and pin4 when the board is in normal operation. (a) the photograph 

taken from the hardware testbench setup. (b) the simplified schematic demonstration 

of the closed-loop hardware set up.   

 

     Steps to measure the current consumption of the non-volatile FPGA:  

• Take out the power (V1) and ground pin (G1) of the power analyzer (Agilent 

Technologies N6705B) DC Power Analyzer. 

• Take out the power (V2) and ground pin (G2) of the non-volatile FPGA chip 

(IGLOO nano chip). 

• Connect the power (V1) and ground pin (G1) of the power analyzer and the 

power (V2) and ground pin (G2) of the non-volatile FPGA. 
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• Measured MCU vs FPGA Power Consumption 

To provide a fair comparison between the MCU and the non-volatile FPGA, we have 

implemented the optimized FIR filter in the flash FPGA and MCU. We first set the filter 

taps and architecture as 16 taps. 

For further analysis, we decided to draw the energy consumption per convolution to 

provide comparison. We have set the microcontroller and the non-volatile FPGA 

frequency as 1MHz. Thus, comparison of energy per convolution has been compared in 

Figure 4-9. Red line plots how the energy cost per convolution of the non-volatile FPGA 

changes with filter tap increases. Blue line draws how the energy cost per convolution 

of microcontroller changes with filter tap increases. When filter taps are below 250, the 

energy cost per convolution of the non-volatile FPGA implementation is lower than the 

energy cost per convolution of microcontroller.  If the filter taps are below 50, the non-

volatile FPGA has an obvious edge over than microcontroller than microcontroller.   

Then comparison of computing time cost per convolution has been compared in Figure 

4-10.  If we set the non-volatile FPGA and microcontroller as 1MHz, the computing time 

of filter implementation between the non-volatile FPGA and the MCU has been shown 

in Figure 4-10. It can be seen that the FIR filter taps are below 50 taps, the non-volatile 

FPGA has an edge over microcontroller. As FIR filter is implementation in a ring buffer 

way, so the time cost and current consumption of filter implementation of 

microcontroller will not change dramatically with taps. Then MCU shows its strength 

over the non-volatile FPGA. 

To conclude, it can be seen that with the same frequency setting (1MHz), the non-

volatile FPGA takes less time than microcontroller in implementing filter when filter tap 

numbers are less than 128. When filter taps is 16, the IGLOO nano non-volatile FPGA is 

8 times less than microcontroller implementing 16 taps filter. Under this circumstance, 

the IGLOO nano FPGA takes 2.392 𝑛𝐽 energy to implement a 16 taps FIR filter while 

microcontroller Cortex M4 spends 34.479 𝑛𝐽 energy to execute 16 taps FIR filter. 
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Figure 4-9: Comparison of measured time cost per optimized convolution (us) between 

the FRDM K22F MCU ARM CORTEX M4 and the IGLOO Nano FPGA. The blue line shows 

how the measured energy consumption per convolution in ARM Cortex M4 increasing 

with filter taps. The red line shows how the measured energy consumption per 

convolution in IGLOO nano increasing with filter taps.  

Figure 4-10: Comparison of measured energy consumption per optimized convolution 

(nJ) between the FRDM K22F MCU ARM CORTEX M4 and the IGLOO Nano FPGA. The 

blue line shows how the measured computing time cost per convolution in ARM Cortex 

M4 increasing with filter taps. The red line shows how the computing time cost per 

convolution in IGLOO nano increasing with filter taps. 



 76 

Conclusion:  

a. Energy cost per convolution: The non-volatile FPGA has an edge over than 

microcontroller in energy cost per convolution algorithm implementation when 

filter taps is below 250 when the MCU and the non-volatile FPGA are set as the 

same frequency. 

b. Time cost per convolution: The non-volatile FPGA has an edge over than 

microcontroller in time cost per convolution algorithm implementation when 

filter taps is below 150 when the MCU and the non-volatile FPGA are set as the 

same frequency. 

c. Filter tap: With filter taps increase, the MCU will show strength over the non-

volatile FPGA in time cost and current consumption. 

4.3 PD Algorithm Implementation  

This closed loop microsystem is aimed at intervening neural network via generating 

closed-loop optogenetic feedback to control epilepsy. Based on the previous modelling 

effort in Chapter 3.2, the PID algorithm show it can be applied to intervene with the 

activity of neural mass model to suppress epilepsy activity.  

In industry, proportional-integral-differential (PID) systems have become the most 

commonly used closed-loop controllers used within industry. This is due to their 

simplicity and effectiveness in processing an error signal (actual measured signal 

compared to input reference signal) and producing a response to reduce/remove this 

error. In the above system example, the desired signal, which could be a set or varying 

value, is supplied to the PID controller. This input will produce a response by the process 

that is being controlled. This response is fed back to the PID which subtracts it from the 

input reference to produce an error (E(t)). It is this error that is used within the PID 

process itself. Each element carries out its individual mathematical computation and the 

results are summed together. The resulting signal is then used to drive the process. This 

operation will continue in pursuit of an error signal equating to zero. 
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• From Math to Hardware 

Figure 4-11 describes the math definition of derivative and integral.  Mathematically, 

the derivative of a given function is the slope of the curve at any point. The integral of a 

given function is the area subtended under the curve between two points.  

 

Figure 4-11: Mathematical definition of differentiation and integration. Differentiation 

can be defined as differential calculus which concerns with the study of the rates at which 

quantities change. Integration can be defined as integral calculus. A definite integral of 

a function can be represented as the signed area of the region bounded by its graph.  

 

Here we need to present the effect of the differentiation and integration operator 

applied to recorded brain signals. Brain signal is obtained by first converting the brain 

signal in an electrical voltage signal, by means of a sensor. The electrical waveform is 

sampled by Analog-to-Digital converter, at a sample rate of 100 Hz (that is, 100 samples 

per second are collected). Each sample is a floating-point number. After the signal is 

sampled, we need to send it to the hardware for processing. After the hardware 

processing, it will send the digitalized signal to DAC for generating an analogy signal. 

Let's take an example. If we choose a filter length N=16 samples, and the sampling 

frequency is 100 Hz which means per second 100 samples are taken and the sampling 

rate is 0.01 second. It will give us a correct integral filtering above 100 Hz. The optrode 

sampling rate is 100 samples/second which represents every sample data costs 0.01 
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second, and the local field potential frequency band of interest is 1Hz to 100Hz. 

accordingly, we set the filter window taps is 100.  

So, what is the time domain representation of FIR filter to achieve proportion, 

integration and differentiation? 

Table 4-4: FIR Filter Parameters Taps Number Calculation Steps 

Filter Parameter Filter Parameter Description 

Sampling Frequency 𝑓𝑠 = 100𝐻𝑧                                                 (4-3) 

  

 

Sampling Ratio   𝑑𝑡 = 0.01𝑠                                                    (4-4) 

 Cut off frequency 𝑓𝑐𝑢𝑡𝑜𝑓𝑓 = 1𝐻𝑧                                            (4-5) 

 Filter Taps   𝑁𝑡𝑎𝑝 =
1

𝑓𝑐𝑢𝑡𝑜𝑓𝑓∗𝑑𝑡
=

1

1∗0.01
= 100          (4-6) 

 

 

1) Proportion 

If a signal is convolved with Dirac delta function 𝛿(𝑡), the result is identical to the original 

signal, except for a delay due to the position of the non-zero inside the Dirac Delta FIR 

Filter. In time domain, the 𝛿(𝑡) function is a null filter which only contains a zero 

amplitude for all samples except for one sample which contains a value of 1. 

Theoretically, the Dirac delta function 𝛿(𝑡) cannot be realised in hardware. A Gaussian 

curve can be used to realise the Dirac delta function 𝛿(𝑡) in hardware. It will generate 

the same theoretical convolution results but will produce incremental weighting to each 

input value as the filter output.  

Figure 4-12 describes the theoretical delta function. The impulse response of 

proportional filter is shown Figure 4-13 (a) and the fast Fourier transform (FFT) of 

proportion kernel is displayed in Figure 4-13 (b). It can be seen frequency spectrum of 

proportional filter is ranging from 0 to 100Hz which means that the proportion filter is a 

low pass filter in frequency domain. 

𝑦(𝑡) = 𝑥(𝑡) ∗ 𝛿(𝑡) = 𝑥(𝑡) 
 

(4-7)  

The proportional filter kernel can be written as:  

ℎ(𝑡) = 𝛿(𝑡) (4-8)  
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Figure 4-12: Schematic representation of the theoretical Dirac delta function by a line 

with an arrow. The height of the arrow is to specify the value of any multiplicative 

constant.  

 

Figure 4-13: Proportional Kernel of Proportion Controller. (a) Impulse Response of 

Proportional Controller in Time Domain. (b) Frequency Response of Proportional 

Controller Analysed by Fourier Transform in frequency domain. 

 

2) Integration 

The integral operation will correspond to the past errors.  The integration of error will 

accumulate over time which will allow the integral control to overcome the small current 
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error.  If the 𝑥(𝑡) signal is convolved with the integral  𝛿(𝑡), the output signal will be a 

time integral of the original signal. If we apply the integration of the   𝛿(𝑡) , it will 

generate a unit step function also called Heaviside step function. Under this 

circumstance, we should continue the integration for a long time, ensuring to get a FIR 

filter for enough length, for obtaining proper integration over all the frequency 

spectrum. The theoretical Heaviside function is shown in Figure 4-14. 

The integration filter kernel is shown in Figure 4-14.  The impulse response of integration 

filter is shown in Figure 4-15(a), the FFT of integration kernel is displayed in Figure 4-

15(b). From frequency domain, the integration filter is a low pass filter which the cut off 

frequency of integration filter:  

 

𝑦(𝑡) = 𝑥(𝑡) ∗ ∫ 𝛿(𝑡)𝑑𝑡 = ∫ 𝑥(𝑡)𝑑𝑡 ∗ 𝛿(𝑡) = ∫ 𝑥(𝑡)𝑑𝑡 

 

(4-9)  

The integration filter kernel can be written as:  

ℎ(𝑡) = ∫ 𝛿(𝑡)𝑑𝑡 

 

 

(4-10)  

 

Figure 4-14: Schematic representation of the theoretical Heaviside function by a line with 

an arrow. The height of the arrow is to specify the value of any multiplicative constant. 
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Figure 4-15: Integration Kernel of Integration Controller. (a) Impulse Response of 

Integration Controller in Time Domain. (b) Frequency Response of Integration Controller 

Analysed by Fourier Transform in frequency domain. 

 

3) Differentiation 

If the 𝑥(𝑡)  signal is convolved with the differentiation of 𝛿(𝑡) , the output signal will be 

a time derivative of original signal. If we differentiate the 𝛿(𝑡), we will get an impulse 

response of Unit Doublet function in mathematical definition. The differentiation filter 

kernel is shown in Figure 4-16. The impulse response of differentiation filter has 

displayed in Figure 4-17(a) and the FFT of differentiation kernel is displayed in Figure 4-

17(b). From the frequency domain information of differentiation filter, differentiation 

filter is a band pass filter. 

𝑦(𝑡) = 𝑥(𝑡) ∗
𝑑𝛿(𝑡)

𝑑𝑡
=

𝑑𝑥(𝑡)

𝑑𝑡
∗ 𝛿(𝑡) =

𝑑𝑥(𝑡)

𝑑𝑡
 

 

(4-11)  

The differentiation filter kernel can be written as:  

ℎ(𝑡) =
𝑑𝛿(𝑡)

𝑑𝑡
=

𝑑𝛿(𝑡) − 𝑑𝛿(𝑡 − ∆𝑡)

∆𝑡
=

𝑑𝛿(𝑡)

∆𝑡
−

𝑑𝛿(𝑡 − ∆𝑡)

∆𝑡
 

 

(4-12)  
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Figure 4-16:  Schematic representation of the derivation of the theoretical Dirac delta 

function by lines with arrows. The height and symbol of the arrow are to specify the value 

of any multiplicative constant.   

 

Figure 4-17: Differentiation Kernel of Differentiation Controller. (a) Impulse Response of 

Differentiation Controller in Time Domain. (b) Frequency Response of Differentiation 

Controller Analysed by Fourier Transform in frequency domain.  

 

The proportional, integration, and differentiation kernels will be stored as lookup tables 

in the non-volatile FPGA implementation. Physically, these are stored as three column 
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buffer banks consisting of an 8-bit column registers implementing on novel flash-based 

logic arrays. These three kernels will be employed to do multiplication with incoming 

digitalized local field potential recordings for achieving convolution. 

 

4.4 Conclusion  

This chapter reviews different reprogrammable digital hardware candidates from 

computing time and power consumption. Section 4.2 conducted a case study of 

comparing FIR filter implementation on a microcontroller and a non-volatile FPGA. The 

non-volatile FPGA outweigh microcontroller in terms of computing time and power 

consumption for our application. Section 4.3 introduces a hardware implementation of 

PID controller from theoretical analysis and digital hardware implementation. This 

chapter has laid the foundation for next chapter for hardware candidate selection and 

PID algorithm integration with a bi-directional neural interface. 
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Relative Contribution  

Correspondent Contribution 

 

Miss Lijuan Xia 

Dr. Patrick Degenaar 

1. The digital hardware evaluation between 

FPGAs and MCUs has been reviewed in this 

chapter.  

2. The feasibility study of non-volatile FPGAs 

has been presented by comparing the 

convolution implementation on an off-the-

shelf microcontroller and a non-volatile 

FPGA.  

3. This chapter also reports the feasibility 

study of PID algorithm implementation 

onto a wearable digital processor in the 

next chapter. 

Correspondent Future Work 

Miss Lijuan 

Dr. Patrick Degenaar 

1. A more comprehensive comparison between 

non-volatile FPGAs and MCUs need to be 

studied to prove the feasibility of the non-

volatile FPGA. 

2. More digital processors (GPUs, DSPs) can be 

applied to conduct a more fair and 

comprehensive comparison.   
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Chapter 5. Closed-loop Energy-Efficient Digital Processor  

5.1 Chapter Overview 

Recent neuroscience studies have demonstrated that considerable information about 

brain states can be contained in low-frequency Local Field Potentials (lf–LFPs; below 5 

Hz) with applications in real-time closed-loop neurostimulation for neurological 

disorders [64], [65], [66]. Given these signals can be sampled at low sampling rate (below 

100 Hz) and thus provide a sparse data stream, there is an opportunity to design 

implantable neuroprosthesis with long battery lifetime and sufficient processing power 

to implement the long-term and real-time closed-loop control algorithms.  

 

Figure 5-1: High Level Schematic of Closed-loop Brain Neuromodulation Control System. 

Shown are: (a) Scale diagram schematic prototype of brain neuromodulation system: 

Brain unit is for electrical recording and optogenetic stimulation; Controller unit is for 

data transmission. (b) Shows the schematics of closed-loop algorithm processing; (c) 

Compares different communication architectures between ASIC brain implant and 

control unit. 

In this chapter, we explore the two candidate architectures shown in Figure 5-1(c, i) and 

Figure 5-1(c, iii). Our objective of this effort is to explore which of these is optimum 

digital architecture in realistic processing conditions. Hence an energy-efferent digital 
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processor interfacing with an ASIC brain implant can be proposed for closed-loop brain 

neuromodulation. We therefore implement an exemplar PID control algorithm 

proposed in chapter 3 and chapter 4 on this digital processor for intervening with 

epileptic neuron networks to suppress seizures in neuroscience rodent experiments. 

The algorithm was optimized for each architecture and the total power consumption 

compared over respective wake-up and sleep processing cycles.   

We used one of the most highly efficient microcontrollers currently available for this 

task which uses the 28nm technology node. In contrast, the only non-volatile FPGA (nv 

FPGA) uses the 90nm Programmable digital platforms (DSPs, MCUs, CPU, etc.) are highly 

flexible and have been typically used for developing neuroprosthesis systems. Examples 

of microcontroller digital implementations for closed-loop neuroprosthesis processors 

include [67] and [68]. Such systems could be implemented as shown in Figure 5-1(c, ii), 

assuming it to be desirable to have a separate microcontroller to ensure timing accuracy. 

However, general purpose systems lack the architectural efficiency of dedicated 

hardware.  

5.2 System Architecture 

 

Figure 5-2: High block diagram of proposed closed-loop system design of software layer 

with implantable ASIC optrode [69] , bi-directional control system of the exemplar PID 

control algorithm. 

This subchapter mainly describes the system architecture of the bio-directional ASIC 

optrode and the digital processor from the hardware and software level. Figure 5-2 
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shows a high-level block diagram of proposed closed-loop optogenetic stimulation 

system integration of the software layer. In the proposed software layer, it mainly 

contains three parts:  

1. ASIC finite state machine information (ASIC FSM, communications) 

2. Controller systems (control algorithms, optical converter) 

3. Power unit (Power FSM).  

Corresponding to the software layer, Figure 5-3 shows the hardware layer containing 

two parts: Brain implant (ASIC neural interface) and, Control unit (nvFPGA, 

microcontroller, power battery). The ASIC-based brain implant, which provides 

amplification, filtering and digitization of LFP signals as well as current sources for driving 

LEDs for optogenetics, has been described in the previous publication [18], [63] .  

Figure 5-3: High block diagram of the proposed closed-loop system design of hardware 

layer and software layer with an implantable ASIC optrode, a bi-directional control 

system of the exemplar control algorithm. 

 

For this specific application, a non-volatile FPGA (IGLOO nano FPGA: AGLN250V2-

VQG100I) chip stands out with its flash freeze technology for significantly reducing 

standby current consumption. This non-volatile has been designed with a peripheral 

voltage circuit onto a 25mm*25mm flexible printed circuit board (PCB) shown in Figure 

5-4 and Figure 5-5. A co-processor microcontroller is also employed to coordinate with 

this non-volatile FPGA to activate flash freeze mode to save on power consumption.  

Figure 5-4 shows the front end and back end design of the proposed PCB board which 

contains six-layer wire layout. Figure 5-5 is the photograph of the designed 
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25mm*25mm PCB board. 

Figure 5-4: A detailed description of the proposed six-layer non-volatile FPGA PCB board 

in (a) front of the non-volatile FPGA board, (b) back view of the non-volatile FPGA board, 

(c) the FPGA programmer port for reprogramming. This PCB board is designed by Altium 

Designer Software.  

 

Figure 5-5: Photograph of the proposed PCB board in (a) front of the non-volatile FPGA 

board, (b) back view of the non-volatile FPGA board, (c) is the assembled version between 

the non-volatile FPGA and MCU board. 



 89 

5.3 Processing Flow 

This subchapter will introduce the processing flow in the FPGA based digital processor. 

First, we will present the PID algorithm and optical converter algorithm as an exemplar 

algorithm implementation. Following is the digital serial protocol implementation 

between digital processor of closed-loop algorithm and bi-directional neural interface. 

In other words, the FPGA based digital processor will receive some recordings from the 

implantable neural interface ASIC probe and performs the exemplar closed-loop control 

algorithms to convert the signal output into a stimulus pattern for further optogenetic 

means on the ASIC probe. The last section of this subchapter is to brief how to program 

a co-processor MCU to send a pulse width modulation signal to the FPGA directly to 

enable entering and exiting an ultra-low power Flash Freeze mode (8.032uA) to save 

energy consumption.  

One of the most common used control algorithms in the engineering field is the PID 

(Proportional, Integral and Differential) algorithm, or PI, PD variants. It basically 

compares the signal with reference and determine the deviation (error) with respect to 

that reference. It is also applicable to closed-loop control of biological activity such as 

suppression of epilepsy seizures. A target of zero activity within a frequency range can 

be given. Then if the activity deviates too much, feedback can be provided to suppress 

activity. An exemplar of prior literature in this field has been proven in chapter 3 of this 

thesis. Furthermore, to achieve intervention we propose that optogenetics allows for 

closed-loop electrical recording and optical stimulation without interference [69]. As 

such, we also include an optical conversion algorithm based on the properties of 

channelrhodopsin-2 – the primary photosensitization agent used in optogenetics [70], 

[71].   

5.3.1 PID Control Algorithm  

In our application, the closed-loop algorithm is designed to intervene targeted neuron 

network through delivering continuous closed-loop optogenetic stimulation to suppress 

epilepsy seizures. The intervention philosophy of employing the linear PID algorithm to 

stabilize the neuron network has been proven in chapter 3. 

Therefore, in the microsystem, we have defined the PID control algorithm as the 
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summation of proportional operator, integral operator and derivative operator to filter 

the incoming real time LFP signal recorded by an exemplar ASIC optrode. The 

implementation of PID controller has been detailed in chapter 4.  

LFP is sampled by means of an ASIC optrode at a sampling rate of 100Hz (that is, 100 8-

bit samples per second are collected). As PID algorithms can be redesigned into the 

scheme of linear, time-invariant (LTI) filters, we need to design our LTI filter kernel in the 

time domain of impulse response for performing proportion, integration, differentiation 

operation. 

5.3.2 Optical Converter 

An optical optogenetic stimulus converter has been created for converting output of PID 

module to optogenetic Pulse Width Modulation (PWM) stimulus on the probe for 

modulating optogenetic infected neurons. Figure 5-6 describes two stages in the optical 

converter process, stage 1 is to adapt output of PID controller to total optical stimulus 

following on the non-linear inverse sigmoid transfer function shown in Figure 5-6, stage 

2 employs a reciprocal counter for modulating duty ratio of fixed period pulses (10ms) 

for optogenetic neural stimulation [72]. 
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Figure 5-6: Intensity dependent optical stimulus mechanism: (a) schematic for converting 

output of PID controller to width modulated pulse for delivering optogenetic stimulus (Kg 

=0.4, Kr = 128, Kge=0.1, Ke=34). 

 

Figure 5-7 shows the relationship between the input and output of the optical converter 

design of inverse sigmoid function. The input of the optical converter is the output of 

PID control algorithm which can be defined as photon flux in terms of mW/mm2. The 

output of optogenetic stimulation from neural interface ASIC probe is defined as light 

intensity and PWM stimulation time.  Figure 5-7 (a) represents the light intensity from 

the output of the inverse sigmoid function corresponding to light flux in terms of 

mW/mm2 for 10ms which limits the maximum PWM time (in ms) for an optogenetic 

stimulation on intervening epileptic seizure onset neurons. The neural response above 

is calibrated as the average plateau response resulting from continuous illumination. 

However, the main interested frequency range is in pulsed illumination with a defined 

PWM between 0.1 - 10ms (assuming 100Hz sampling - or at least 100Hz intervention).  

If the required light intensity is too high, the PWM time will exceed the maximum time 

allowable within a frame. Thus, this needs to saturate to the maximum time. Figure 5-7 

(b) shows the PWM stimulation time corresponding to normalize neural response with 

a defined PWM time between 0.1 - 10ms. 
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Figure 5-7: Relationship between the input and output of optical converter of inverse 

sigmoid function. (a) is the light flux response with the neural response, (b) is the light 

PWM stimulation time with the neural response. 

5.3.3 Digital Neural Interface 

Reza et al reported an application-specific integrated circuit (ASIC) brain implant of 

intelligent electrode recording and optical neural stimulation including a fully digital 

interface with a serial peripheral interface (SPI) to allow for use with embedded 

controllers [69]. The embedded SPI interface of their brain implant relates to a Finite 

State Machine (FSM) which implements a command interpreter which is capable of 

sending out LFP data whilst receiving instructions to control LED emission. Therefore, 

we incorporate a SPI master and corresponding state machine in our digital processor 

to interface with the operands in the ASIC. The digital ASIC command set with 

corresponding operands have been listed in Table5-1.   Figure 5-8 describes the timing 

diagram of collaborating a microcontroller and a non-volatile FPGA to enter and exit 

flash freeze design of a non-volatile FPGA by driving flash freeze pin. 
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Table 5-1: Comparison results for different communication protocols. 

ASIC Command Set with Corresponding Operands 

Command Purpose 

0001xxxx LED off 

0010xxxx LED On 

0101xxxx SET LED 

1000xxxx READ LFP 

 

 

Figure 5-8: Timing diagram of collaborating the microcontroller and the non-volatile 

FPGA to enter and exit flash freeze design of the non-volatile FPGA by driving flash freeze 

pin. 
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Figure 5-9: the FPGA implementation of closed-loop control scheme: 1. Down-sampling, 2. PID filter, 3. Optical converter, 4.SPI master. 
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5.3.4 nvFPGA Version Implementation 

The implemented processing architecture on the nvFPGA is shown in Figure 5-9, the basic 

state transition diagram for the chip-level FSM is shown in Table 5-1. The recorded data is 

stored in an 8-bit wide on-chip SRAM. The following closed-loop schematic consists of three 

main modules: recoding interface with the head-stage board of the probe, a closed loop 

algorithm, and stimulation interface interfacing with the head-stage board of the probe.  

Recording Interface 

In recording interface, a SPI slave has been designed for interfacing with the data transceiver 

and command interpreter to communicate with the master controller of the ASIC optrode. A 

SPI recording circuitry has been designed for interfacing with the probe to receive the 

command of “READ LFP “. 

• Closed-loop Algorithm Implementation 

In Figure 5-9, the digital FPGA architecture of an exemplar closed loop algorithm has been 

shown to have consisted of the following components:  

1. A counter (T) and an 8-bit adder calculate for down sampling the input LFP recordings from 

Recording Buffer 1. 

2. Two 8-bit 16*1 column buffer banks of 8-bits row registers FIFO Buffer3 and FIFO Buffer4 

are used to save incoming recording of two separate frequencies.  

3. Three 16*1 column registers PID Kernel Buffer5 of 8-bits are applied to hold proportional 

Dirac Delta kernel, integral unit step kernel and derivative Gaussian kernels (displayed in 

Figure 5-6) as FIR filter kernels to do further multiplication.   

4. A 2 to 1 Mux is used for two column buffer banks FIFO Buffer 3, FIFO Buffer 4 to select either 

of the corresponding column register banks for the next 16 to 1 mux.   

5. A16 to 1 Mux is used for one column buffer bank FIFO Buffer 3, FIFO Buffer 4 to select a 

corresponding column register for multiplication.   

6. A 3 to 1 Mux is applied to select the corresponding PID kernel PID Kernel Buffer5 for further 

multiplication. 
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7. A16 to 1 Mux is used for one row buffer bank FIFO Buffer 3, FIFO Buffer 4 to select 

corresponding column register for multiplication. 

8. An accumulator adds all results of multiplication which will be sent to recording buffer FIR 

Kernel Buffer 7 for generating further closed-loop neural stimulation. 

9. Three registers PID gain Buffer 8 hold PID gain for a further 3 to 1 multiplier to do further 

multiplication. 

10. Buffer PID output Buffer9 is employed to save the total PID output. 

11. A 255*1 buffer bank Sigmoid Buffer 12 of an 8-bit register holds a sigmoid function look 

up table for modulating further pulse with feedback to optrode for closed-loop optogenetic 

stimulation. 

12. A 256*1 multiplier selects sigmoid function output based on the incoming PID output 

Buffer10 to the register bank Intensity Command. 

• Stimulation Interface 

In stimulation interface, a SPI master has been designed for interfacing with FSM the master 

controller of the implantable probe for data transceiver and command interpreter. These 

commands will be sent off by the non-volatile FPGA based control unit after closed-loop 

algorithm processing. The digital ASIC command set with corresponding operands have been 

in Table 5-1.  

5.3.5 Microcontroller implementation 

The implementation of microcontroller (Kinetis K22 MCU:  MK22FN512VLH12 MCU) of entire 

closed-loop algorithm has been simplified as follows.  The recorded data is stored in an 8-bit 

wide buffer pointer. Then the input pointer will be passed to a PID filter which is organized 

into the ring buffer filter architecture of proportional filter, integral filter and derivative filter.  

The output of the PID controller is directly sent into optical stimulation commands to update 

LED status. The simplified description of microcontroller implementation is provided here as 

we will supply an energy consumption comparison of a microcontroller and a non-volatile 

FPGA in the results section to compare their power consumption performance.  
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5.3.6 System Integration FF Design 

In Figure 5-10, a schematic circuitry description has shown for detailing the hardware of 

explaining flash freeze architecture inside the non-volatile FPGA. A pseudo code of driving 

flash and freeze mode has been listed. 

 

Figure 5-10: A simplified schematic diagram of flash freeze mechanism of the non-volatile 

FPGA. (a) The peripheral circuit design for getting the non-volatile FPGA to enter and exit the 

flash freeze mode by communicating with the agl_ff  pin27 of the  IGLOO nano FPGA chip. (b) 

The timing diagram of Flash Freeze agl_ff  pin27 with closed-loop control design.   

Figure 5-10 shows the proposed digital architecture for activating Flash Freeze mode by 

driving a flash freeze pin from the microcontroller to the non-volatile FPGA. A detailed 

breakdown of timing diagram of integrating a MCU and a non-volatile FPGA has been 

illustrated in Figure 5-11. To be specific, the entire closed-loop algorithm consumes 0.38ms, 

where data is sampled 100Hz (per sample every 10 ms), the design of the non-volatile FPGA 

(working frequency: 20MHz) is set to freeze mode after the processing is completed after 

0.38ms. When we set the non-volatile FPGA working at 20MHz, the whole algorithm will cost 

0.38ms. Then the neural interface ASIC sampled the incoming LFP at 100 Hz, which means per 

sample takes 10 ms. A pseudo code of emulating the flash*freeze mechanism of IGLOO nano 

chip has been listed.  This digital architecture is designed for reducing static power 

consumption by setting the non-volatile FPGA into flash-freeze mode.  
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Figure 5-11: (a) two sampled Flash freeze mechanism of the non-volatile FPGA. (b) is the zoom 

up of one sampled Flash freeze mechanism of the non-volatile FPGA. 
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5.4 Results and Analysis 

In order to demonstrate the functionality of the proposed closed-loop framework design, a 

dataset of 55 minutes (split in traces of 10 minutes) of prerecorded neocortical epileptic 

seizure local field potential (LFP) recordings were used to verify the performance of the 

exemplar closed-loop processing algorithm. The data was collected by neuroscientists working 

at the Institute of Neuroscience in Newcastle University from an epileptic adult rodent. The 

epileptic seizure recordings were emulated in a waveform signal generator (Keysight 33500B 

Series Waveform Generator) and then connected to the proposed digital processor for 

hardware verification.  

5.4.1 Algorithm Verification 

In order to verify the digital implementation of our FPGA implementation of closed-loop 

algorithms, we have used a microcontroller-based ADC and DAC module. 

• ADC module of microcontroller FRDM K22F Cortex M4 is responsible for digitalizing 

the incoming local field potential (LFP). 

• DAC module of microcontroller FRDM K22F Cortex M4 is to convert the digital output 

of the closed-loop algorithm into an analog output for a verification into oscilloscope.  

For testing the frequency response of PID controller, we have utilized a sweep sin wave as the 

input. 

a. Input: sin wave starting from 1Hz, end to 1KHz. Sweep time is 1 second 

b. Output: the output of separate proportional, integral and derivative filter. 



100 
 

 

 Figure 5-12: (a) Comparison of input and output of down sample module with sweep sin wave 

signal as input signal for verification. (b) Comparison of input and output of proportional filter 

with sweep sin wave signal as input signal for verification. The measured frequency response 

of the proportional filter matches with Figure 4-23(b).  (c) Comparison of input and output of 

integral filter with sweep sin wave signal as input signal for verification. The measured 

frequency response of the integral filter matches with Figure 4-25(b).  (d) Comparison of input 

and output of derivative filter with sweep sin wave signal as input signal for verification. The 

measured frequency response of the derivative filter matches with Figure 4-27(b). 
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Figure 5-12 shows the hardware verification of the corresponding hardware design by 

capturing the output signal of each module verified by sending corresponding input data. 

Figure 5-12(a) describes the comparison of input and output of downsample module where 

blue is sweep sin wave and red is the output of proportion filter as a comparison. Figure 5-

12(b) shows the comparison of input and output of proportional filter where blue is sweep sin 

wave and red is the output of proportion filter as a comparison. In addition, Figure 5-12(c) 

demonstrates the comparison of input and output of integral filter where blue is sweep sin 

wave and red is the output of integral filter as a comparison. Finally, Figure 5-12(d) illustrates 

the comparison of input and output of derivative filter where blue is sweep sin wave and red 

is the output of derivative filter as a comparison. 

Furthermore, the pre-recorded seizure local field potential recordings are utilized to verify our 

digital processor for biomedical application. 

a. Input: epileptic local field potential recordings from rat cortex  

b. Output: the output of separate proportional, integral and derivative filter. 

Figure 5-13 shows the hardware verification of the corresponding hardware design by 

capturing the output signal of each module verified by sending corresponding input data. 

Figure 5-13(a) describes the comparison of input and output of downsample module where 

blue is epileptic LFP recordings and red is the output of proportion filter as a comparison. 

Figure 5-13(b) shows the comparison of input and output of proportional filter where blue is 

epileptic LFP recordings and red is the output of proportion filter as a comparison. In addition, 

Figure 5-13(c) demonstrates the comparison of input and output of integral filter where blue 

is epileptic LFP recordings and red is the output of integral filter as a comparison. Finally, 

Figure 5-13(d) illustrates the comparison of input and output of derivative filter where blue is 

epileptic LFP recordings and red is the output of derivative filter as a comparison. 
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Figure 5-13: (a) Comparison of input and output of downsample module with epileptic seizure 

local field potential recordings of 10 seconds as input signal for verification. (b) Comparison of 

input and output of proportional filter with epileptic seizure local field potential recordings of 

10 seconds as input signal for verification. (c) Comparison of input and output of integral filter 

with epileptic seizure local field potential recordings of 10 seconds as input signal for 

verification. (d) Comparison of input and output of derivative filter with epileptic seizure local 

field potential recordings of 10 seconds as input signal for verification. 
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In previous chapter 3, different PID gain parameterizations are suggested by closed-loop 

modelling work. An exemplar implementation is shown in Figure 5-14 with a proper PID 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑  gain setup.  We picked up PID gain parameters [ 𝐾𝑝  𝐾𝑖    𝐾𝑑] as [100, 0,-2] from the 

stabilization area plotted in Figure 3-6(a). This PID set up is found to help control high 

amplitude epilepsy seizures successfully that is also shown in Figure 3-7(a). Under this 

circumstance, [ 𝐾𝑝  𝐾𝑖    𝐾𝑑 ] as [100, 0, -2] have been chosen to tune the PID hardware 

implementation shown in Figure 5-14 as the first parameter setup for neuroscience rodent 

experiments to intervene the neuron network for controlling epilepsy seizures.  

 

 Figure 5-14: Measured non-volatile FPGA hardware results of input and output of PID 

controller ( 𝑲𝒑 = 𝟏𝟎𝟎, 𝑲𝒊 = 𝟎, 𝑲𝒅 = −𝟐 ). (a) Comparison of FPGA results and matlab results 

for 10 second local field potential recordings. (b) Zoomed up verification of comparison of FPGA 

results and matlab results from 7th second to 9th second local field recordings. The FPGA 

signals are converted into analogue signals by using an external DAC module based on FRDM 

K22F microcontroller.  

Figure 5-14 has demonstrated the measured non-volatile FPGA hardware results of input and 

output of PID controller with comparison to the Matlab reference. The microcontroller 

implementation was identical, but we do not show here for brevity. Figure 5-14 (a) describes 

the comparison of input and output of downsample module where blue is epileptic seizure 

local field potential recordings of 10 seconds and red is the output of proportion filter as a 

comparison. Figure 5-14 (b) shows the comparison of input and output of proportional filter 
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where blue is epileptic seizure local field potential recordings of 10 seconds and red is the 

output of proportion filter as a comparison.  

 

Figure 5-15: Oscilloscope verification of LED on and LED off command sent from the FPGA to 

the ASIC for turning on and turning off LED bonded in ASIC optrode. (a) The zoomed 

oscilloscope screenshot showing the data interface neural stimulation LED On command; (b) 

The zoomed oscilloscope screenshot showing the data interface neural stimulation LED Off 

command. 
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After the PID controller, the output of PID controller is sent into the inverse sigmoid optical 

converter for delivering the turn on and turn off the LED bonded on the optrode for delivering 

the optical stimulation. In order to verify the LED on and LED off command between the front-

end FPGA and neural interface ASIC, a probe has been hooked up in the connection between 

the front-end FPGA and neural interface ASIC to display the signal in oscilloscope (Keysight 

MSOX4154A Mixed Signal Oscilloscope). Figure 5-15 demonstrates how the LED on and LED 

off be sent to drive the neural interface ASIC to the target LED. Figure 5-15 shows the zoomed 

up of the LED on and LED off command.  

5.4.2 Flash Freeze Verification 

A digital communication protocol has been designed for activating Flash Freeze mode by 

driving a flash freeze pin from the microcontroller to the non-volatile FPGA which is also 

demonstrated in Figure 5-16. A hardware oscilloscope screenshots verification of the timing-

diagram of integrating the MCU and the non-volatile FPGA has been illustrated in Figure 5-16. 

As the entire closed-loop algorithm consumes 0.38ms, where data is sampled 100Hz (per 

sample every 10 ms), the design of the non-volatile FPGA (working frequency: 20MHz) is set 

to freeze mode after the processing is completed after 0.38ms. The flow mechanism of 

collaborating the front-end non-volatile FPGA with a microcontroller to enter and exit the 

Flash*Freeze is designed into three stages as follows: 

1. Stage1: MCU->FPGA for unfreezing:  

The MCU sends the non-volatile FPGA high voltage to enable exiting from flash*freeze mode 

(unfreeze mode). 

2. Stage2: FPGA->MCU for freezing:  

When the non-volatile FPGA finishes computing, it sends an ACK to the MCU, then the MCU 

send a low voltage to make the non-volatile FPGA enter flash freeze mode (freeze mode). 

3. Stage3: MCU->FPGA for unfreezing:  

Once the FPGA receives the next recordings, it will send an ACK to the microcontroller for 

sending high voltage to the FPGA to enter flash*freeze mode (unfreeze mode). 



106 
 

 

Figure 5-16: Oscilloscope capture of flash freeze active signal sent from microcontroller to the 

non-volatile FPGA flash freeze pin to help enter and exist flash freeze mode. The signal also 

represents the time cost for the flash freeze pin in which FF off lasts for 0.38ms and FF on lasts 

for 9.62ms in time domain. In FF off mode, the FPGA is in unfreeze mode where SPI recording 

and PID algorithm lasts for 96us, optical converter costs 194us and SPI stimulation takes 98us. 

During the unfreeze mode, the computing time consisted of SPI recording, PID algorithm, 

optical converter and SPI stimulation. The breakdown of the computing time has been shown 



107 
 

in Figure 5-16. To be specific, the flash freeze exploration can be split into the following steps: 

• SPI recording with PID algorithm :96us 

• Optical Converter:194us 

• SPI stimulation: 98us 

It means the whole processing unit can take 0.38ms, while the non-volatile FPGA is on flash 

freeze off mode. 

5.4.3 Power Measurement Results 

In this chapter, we mainly analyse how power consumption be distributed by exploring this 

nvFPGA architecture. We have listed the measured power consumption of the non-volatile 

FPGA and the microcontroller during one computing cycle in Table 5-4. It can be observed that 

the algorithm computing time for each sample takes 0.38ms. During this period, with a 20 

MHz working frequency set up, the non-volatile FPGA consumes 4.78mA (flash freeze mode 

off) and while in sleeping mode with the non-volatile FPGA having flash freeze mode on, it 

costs 8.15uA.  

Table 5-4: Measured power consumption of the non-volatile FPGA (IGLOO Nano) and the 

microcontroller (ARM Cortex M4) during one computing cycle 

 Non-volatile FPGA MCU 

Work Mode FF on FF off Interrupt Mode 

Voltage Rail 1.2v 1.2v 3.3v 

Current 4.78mA 8.15uA 0.25mA 

Time 0.38ms 9.62ms 10ms 
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Figure 5-17: (a) The measured current consumption of the front-end non-volatile FPGA 

implementation and MCU implementation. (b) Scalability analysis of flash freeze current 

leakage with respect to look up table numbers of non-volatile FPGA.  

 

In comparison, the microcontroller is programmed into sleep mode with a timer set to 

generate a pulse signal to the non-volatile FPGA for entering and exiting flash freeze mode. It 
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costs 0.25mA for microcontroller to be a co-processor during the one computing cycle. On the 

flash freeze snippet mode (with aforementioned recording settings), the complete system 

measured in at 5.12mW, including all the I/O power (i.e. driving the PCB traces).  

In order to conduct a proper power consumption comparison, we have implemented the same 

closed-loop algorithm in microcontroller with a sleep and wake up mode setup. Figure 5-17 

(a) shows the measured power consumption comparison between the non-volatile FPGA 

(flash freeze mode on and off) and microcontroller (sleep and wake up on and off). It shows 

the strength of dynamic energy consumption of flash compared to commercial digital 

microcontrollers. Figure 5-17 (b) describes the scalability analysis of flash freeze current 

leakage with respect to look up table numbers of non-volatile FPGA.  For non-volatile FPGA 

(AGLN010) which contains the least logic cell numbers of 10,000, the leakage power is 2 𝜇𝑤 

while for non-volatile FPGA (AGLN250) which contains the most logic cell numbers of 250,000, 

the leakage power is 24𝜇𝑤.  

In our scenario, AGLN250 has been picked as it contains the maximum LUTs and 25.6% 

utilization of LUTs is used for our implementation, and 74.4% of the remaining LUTs can be 

applied to explore other algorithms implementation to conduct additional exploratory 

stimulation methodologies for controlling epileptic seizure neuron network for 

neuroscientists to work with. If we choose an exact AGLN010 FPGA based on our LUT 

estimation, it reveals that the power consumption can be further reduced. 
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Figure 5-18: Comparison of energy cost per computing cycle of the non-volatile FPGA and the 

microprocessor. This figure also shows the energy cost per cycle with respect to algorithm 

complexity of the MCU and the non-volatile FPGA. 

 

To provide a fair comparison, Figure 5-18 compares the measured energy cost per computing 

cycle of the non-volatile FPGA. When algorithm complexity increases, Figure 5-18 also 

highlight the non-volatile FPGA has a lower energy consumption strength over the commercial 

digital microcontrollers.  The breakdown of the look up table has been investigated in the 

Table 5-5. Table 5-5 also shows the utilization of resources in the design of the closed-loop 

algorithm. It shows the whole design consumes 25.6% of the available resources on the non-

volatile FPGA, which has been optimized for closed-loop algorithms.  
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Table 5-5: Measured Look up Table (LUT) Distribution of Closed-loop Algorithm Design 

implemented on the non-volatile FPGA IGLOO nano Chip  

 

 LUT LUT 

Utilization 

Utilization 

 

LUT Utilization of Entire Architecture 

SPI Slave for 

Recording 

32 32/6144 0.5% 

Closed-loop 

Algorithm 

827 827/6144 13.5% 

SPI Master for 

stimulation 

712 712/6144 11.6% 

Total 1571 1571/6144 25.6% 

 

Break Down of the Closed-loop Architecture 

Downsample  128 128/6144 2.1% 

PID Algorithm 444 444/6144 7.2% 

Optical Converter 255 255/6144 2.3% 

 

Figure 5-19 also uses the pie chart to demonstrate the breakdown of logic cells utilization of 

closed-loop digital implementation. In this design, it is possible to add more filters working in 

parallel with each other, with not adding massive computing latency by taking advantage of 

the FPGA parallel computing architecture.  
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Figure 5-19: Breakdown of power consumption of look up table distribution of closed-loop 

architecture. Shown are: (a) Look Up Table Utilization of Overall Architecture. (b) Break Down 

of the Exemplar Closed-loop algorithm. 

5.5 Conclusion  

In this chapter, we have presented an exploratory energy-efficient digital processor 

architecture built with the commercial off-the-shelf non-volatile FPGA and microcontroller for 

sparse data processing of brain neuromodulation. Taking a commonly-used algorithm with 

reference target application, the front-end non-volatile FPGA is used to implement the 

exemplar algorithm implementation and a MCU co-processor is applied to coordinate to 

enable entering and exiting an ultra-low power Flash*Freeze mode of the front-end non-

volatile FPGA.  The main features of this effort are as follows.  

i. The first key advancement is that we develop and implement a new power computing 

diagram based on the FPGA+MCU architecture. This time-driven approach significantly 

reduced power consumption which suggests that a digital combined control system of 

the non-volatile FPGA and micro controller outweighs a digital control system of 

microcontroller with microcontroller regarding computing time cost and energy 

consumption.  

ii. The second key improvement of this work is that its potential flexibility to be employed 

in neuroscience research experiments. This work presents a digital implementation of 
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an exemplar Proportional-Integral-Derivative (PID) control algorithm which can be 

applied theoretically to suppress epileptic seizure neuron networks by setting up 

proper gain parameters in neuroscience research experiments.  

iii. Furthermore, a 55-minutes dataset of offline seizure LFP recordings from rat cortex 

has been applied to verify this digital processor with closed-loop algorithm 

implementation. It also shows the efficient-energy consumption of 116 nJ/computing 

cycle which means the wearable digital processor can runs for more than 14 days on a 

wearable 3.7V LiPo 180mAh Battery. 

iv. This non-volatile FPGA digital architecture can be further translated to a System on 

Chip (SoC) design for integrating with an implantable neural interface (ASIC) chip to do 

electrical recording and optogenetic stimulation to form a closed-loop SoC.  

This is the first cohort exploratory study to apply such an energy-efficient digital architecture 

to interface with brain implants for controlling neural networks with optogenetic stimulation 

to treat epilepsy.  The small size and low power consumption can enable new neuroscience 

experiments in the study of neural control behaviour. Although this digital architecture was 

conducted in the field of brain implants, this digital architecture might also have great 

potential to impact clinical applications.  This digital processor can also be further adapted to 

other embedded electronic devices for sparse signal processing to achieve lower energy 

consumption (IoT, cellphones, cardiac pacemaker, etc.). 

 

 

 

 

 

 

 

 

 



114 
 

Relative Contribution  

Correspondent Contribution 

 

Miss Lijuan Xia 

Dr. Patrick Degenaar 

Mr. Dimitrios Firfilionis 

1. A new power computing diagram based on the 

FPGA+MCU architecture has been proposed in 

this chapter.  

2. The proposed Proportional-Integral-Derivative 

(PID) control algorithm which can be applied 

theoretically to suppress epileptic seizure 

neuron networks by setting up proper gain 

parameters in neuroscience research 

experiments. 

3. This non-volatile FPGA digital architecture can 

be further translated to a System on Chip (SoC) 

design for integrating with an implantable 

neural interface (ASIC) chip to do electrical 

recording and optogenetic stimulation to form 

a closed-loop SoC.  

Correspondent Future Work 

Miss Lijuan 

Dr. Patrick Degenaar 

1. More algorithms apart from PID controller can 

be explored for the rest of look up tables on the 

non-volatile FPGA to integrate with the FSM 

implementation for benefitting neuroscience 

research experiments.  

2. For the wireless power transfer, the required 

components are the battery, embedded system 

power management, and the power of the 

transmitter and receiver. 
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Chapter 6. Conclusion  

This thesis concerns a closed-loop control system of brain which demonstrates that closed-

loop stimulation methodology can alter ongoing epileptiform activity in vitro.  A closed-loop 

computational modelling work has been proposed to show that with proper PI controller gain 

set up and PD controller gain set up, closed-loop PI controller and PD controller can help 

suppress high amplitude epilepsy seizure-like activities. Furthermore, different digital 

hardware platforms have been examined for an energy-efficient hardware implementation of 

PI and PD controller implementation for closed-loop optogenetics experiments in rodent brain 

slices. Last but not least, the proposed embedded PI and PD controller have been designed to 

connect with a bidirectional intelligent optoelectronic probe for closed-loop electronic 

recording and optogenetic stimulation.  

This chapter will summary the main contribution of each chapter in this thesis and identify the 

future work. And the final part of this chapter will demonstrate concluding remarks.  

6.1 Original Contributions 

The major contribution of this work can be presented by the two following points: 

Chapter 2 has given a basic overview of the human brain function and some neurological 

diseases. Epilepsy and epilepsy treatments are also examined in this chapter. Anti-epileptic 

drugs (AEDs) are mainstays in stopping epileptic seizures from happening. However, there are 

also other options for those patients whose seizures are not stopped by taking medication. An 

operation on the brain can help control seizures and improve their life quality. Firstly, surgical 

resective surgery can be used to remove the focal onset part of patients’ brain that causes 

seizure. Secondly, the Vagus nerve stimulation can also be employed to disrupt the nerve 

pathways that seizure impulses take through your brain.  Finally, the deep brain stimulation 

and closed-loop responsive neurostimulator systems can be adopted to implant a brain probe 

device for delivering stimulation to the target nervous system. Closed-loop neuroprosthesis 

systems are reviewed from the hardware and control algorithm perspectives.  

Chapter 3 has depicted a closed-loop computational modelling work to deliver closed-loop 

stimulation for intervening the neuron mass model. In this study, we took the Jansen’s neuron 

mass model as a test bed to develop a closed-loop control system for controlling high 
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amplitude epileptic-like signal. PI controller and PD controller are used to deliver optogenetic 

stimulation for intervening the neuron mass network. A graphical stability method was used 

to determine the stability area of PI type controller and PD type controller in the control 

parameter space for the proposed neuron mass model, which shows a theoretical guideline 

for the parameter choosing of PI control and PD controller. The real time simulation results 

show that with appropriate PI and PD gain choosing from the derived stabilization area, the PI 

controller and PD controller can help to suppress high amplitude epileptic like seizure signals 

in the proposed neural mass model. 

Chapter 4 has reviewed different hardware platforms to suggest a proper hardware platform 

satisfying the proposed specifications in terms of reprogrammability, power consumption and 

computation time cost for our biomedical application. After a comparison case study, the non-

volatile FPGA was chosen for our biomedical application as it has reasonable power 

consumption and computing time cost with a great reprogrammability. Additionally, a low-

power optimized digital implementation of PID control algorithm suggested from the 

computational modelling efforts in Chapter3 was described in this chapter.    

Chapter 5 highlights how to integrate the PID controller implementation with an FSM 

command interpreter of an ASIC-based neural interface to drive the bi-directional neural 

interface optrode to receive electrical recording and deliver optogenetic stimulation based on 

the proposed closed-loop controller.  By exploiting the flash freeze function of the non-volatile 

FPGA, a co-processor microcontroller is programmed to send a pulse width modulation (PWM 

signal) to the non-volatile FPGA directly for enable entering and exiting an ultra-low power 

flash freeze mode to save power consumption. A portable 2.5cm*2.5cm PCB board has been 

designed for the proposed non-volatile FPGA chip with peripheral voltage converter. The 

proposed PCB design can offer the feasibility for neuroscientists to work with for rodent 

epilepsy control experiments, with the long-term goal of employing them into real human 

surgery trial in the following years. 

 

6.2 Future Work 

The suggested advancement of each chapter has been listed in the end of each chapter. To 

summarize, it can be highlighted from two viewpoints:  

• Algorithm research  
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1. Neuron mass models:  

Since the Jansen’s neural mass model disregards spatial variations in activity, more detailed 

and comprehensive neural mass models need to be advanced in spatial domain to represent 

more numbers of neuron populations with higher precision and higher accuracy.  

2. Different seizure patterns:  

Seizures can be categorised into different patterns: high amplitude, high frequency and high 

amplitude oscillations etc. In chapter 3, we justify that the appearance of epilepsy seizure 

onset might be caused by the imbalance of excitatory and inhibitory parameters.  However, 

seizures can also be caused by the imbalance of excitatory and inhibitory neuron connectivity, 

or the stimulus strength. More seizure patterns need to be discovered to help build a better 

understanding of seizure onset and then form a better understanding of how to build the next 

generation of closed-loop control systems to treatment epilepsy. 

3. Closed-loop algorithm: 

In this study, we used the Jansen’s neural mass model to develop a systematic design 

approach to determine the control parameters of the proposed closed-loop controllers. It 

should be highlighted that the proposed design methodology is independent of the specific 

neuron mass model. More reasonable algorithms (machine learning, effective seizure 

detection, adaptive learning etc.) need to be explored to integrate with the neural mass model 

for providing the closed-loop stimulation to control epileptic signals.  

• Hardware research:   

1. Different hardware platforms 

In this thesis, two digital platforms (MCU, FPGAs) have been reviewed in terms of 

reprogrammability, power consumption and computational time cost. More digital hardware 

platforms (CPU, GPU, MCU, DSP, FPGA, CPLD etc.) need to be reviewed and compared to 

provide a fair and comprehensive comparison to benefit brain machine interfaces research 

field.  

2. Optimized digital implementation of algorithm 

When the closed-loop algorithms are suggested by computational modelling work, the 

optimized digital implementation of closed-loop algorithms need to be examined and 
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demonstrated. Smaller size PCB boards of digital implementation are also required to benefit 

the long-term animal experiences. 

6.3 Concluding Remarks 

It is my firm belief that brain machine interface (BMI) will be a great asset for disabled 

individuals with neurological disorder diseases and motor or sensory impairments as an 

assisted living device.  Recent progresses in brain machine interface research has led neuro-

engineers and neuroscientists to record the electroencephalogram (EEG) or local field 

potential (LFP), analyse recordings and deliver subsequent treatments in real time by means 

of a closed-loop control system. Neural Interface, a subspecialty of BMI, aims to use tiny 

implantable/wearable devices to change precise electrical signals in nerves for the treatment 

of a range of debilitating chronic diseases.  

 

This thesis has presented a system-level design of miniaturized, low-power neural interface 

implementation of novel closed-loop control algorithms to generate real time stimulation for 

seizure suppression.  As the project (CANDO) we involved in is in the fourth year of its seven-

year journey, more and more algorithms are expected to be on trial for rodent control 

experiments to test their algorithm performance on seizure suppression. I believe my thesis 

effort will be a solid proof of PID algorithm to be tested in neuroscience experiments and will 

provide a solid foundation and contribution for future neuroscience research field for seizure 

suppression.  
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Appendix A. Schematic Circuits of MCU Circuits 
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Appendix B. Schematic Circuits of FPGA Circuits 
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Appendix C. Power Converter  
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Appendix D. PCB Board 

Front 
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End 
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Appendix E. The first prototype of MCU and FPGA PCB Board 

Front  
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Appendix F. VHDL for FSM Recording Implementation 

--------------------------------------------------------------

-------- 

-- Company: MICROSEMI 

-- File: SPI_MASTER.vhd 

-- <Revision number>: <Date>: <Comments> 

-- Targeted device: <Family::IGLOO> <Die::AGLN250V2> 

<Package::100 VQFP> 

-- Author: LIJUAN XIA 

--------------------------------------------------------------

-------- 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.numeric_std.all; 

USE ieee.std_logic_signed.all; 

 

entity SPI_MASTER_V16 is 

 

GENERIC ( 

    CMD_BITS                       :  POSITIVE: = 7;                           

-- 8-1 BITS OF EACH CMD, 8 BITS ARE INFORMATION 

    MISO_TAPS                      :  POSITIVE: = 15;                          

-- THIS IS FOR COUNTING RECORDING DATA FOR FURTHER FILTERING  

    FPGA_SCLK_PRSCL                :  POSITIVE: = 9;                            

-- SPI CLOCK: 1000KHZ, 1000 NS (50*20) 20/2 = 10 

    TAPS                           :  POSITIVE: = 10  

); 

 

Port ( 

FPGA_CLOCK                      : IN  std_logic;  

-- FPGA CLOCK : 20MHZ , 50 NS ,      PIN15 

FPGA_MISO                       : IN  std_logic;  

-- MCU  MOSI  :                      PTD2 

FPGA_SCLK                       : IN  std_logic;  

-- SPI  CLOCK : 1MHZ , 1000 NS, 1MS, PTD1 

FPGA_CS                         : IN  std_logic;  

-- SPI  CS    :                      PTC4 

    FPGA_OUT_16_BITS                : OUT std_logic_vector (15 

DOWNTO 0) 

); 

End SPI_MASTER_V16; 

 

Architecture architecture_SPI_MASTER_V16 of SPI_MASTER_V16 is 

   -- signal, component etc. declarations 

    SIGNAL  FIR_FILTER_FLAG        : std_logic := '0'; 

    SIGNAL  FPGA_MISO_REG          : std_logic := '0'; 
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    SIGNAL  FPGA_SCLK_REG          : std_logic := '0';  

    SIGNAL  FPGA_CS_REG            : std_logic := '1' ;  

    SIGNAL  FPGA_FLAG              : std_logic := '0';  

 

    SIGNAL  FPGA_MISO_PARALLEL     : std_logic_vector (CMD_BITS 

DOWNTO 0)  := (OTHERS => '0'); 

    SIGNAL  INDEX_MISO             : INTEGER RANGE 0 TO 7 := 0 ; 

    SIGNAL  INDEX_SHIFT_REGISTER   : INTEGER RANGE 0 TO 27:= 0 ; 

 

    TYPE    SHIFT_REGISTER IS ARRAY (MISO_TAPS downto 0) OF 

std_logic_vector (7 DOWNTO 0) ; 

    SIGNAL  SHIFT_BUFFER : SHIFT_REGISTER  := 

(                     b"00000000",b"00000000",b"00000000",b"00

000000",  b"00000000",b"00000000",b"00000000",b"00000000", 

                          

b"00000000",b"00000000",b"00000000",b"00000000",b"00000000",b"

00000000",b"00000000",b"00000000" ); 

 

    TYPE    KERNEL_VALUE IS ARRAY (MISO_TAPS downto 0) OF 

std_logic_vector (7 DOWNTO 0); 

    SIGNAL  KERNEL   : KERNEL_VALUE  := (  

                          

b"00000001",b"00000001",b"00000001",b"00000001",b"00000001",b"

00000001",b"00000001",b"00000001" , 

                          

b"00000001",b"00000001",b"00000001",b"00000001",b"00000001",b"

00000001",b"00000001",b"00000001" ); 

 

--  SIGNAL  KERNEL   : KERNEL_VALUE  := (  

--                          

b"11111111",b"11111111",b"11111111",b"11111111",b"11111111",b"

11111111",b"11111111",b"11111111", 

--                          

b"11111111",b"11111111",b"11111111",b"11111111",b"11111111",b"

11111111",b"11111111",b"11111111"); 

 

    SIGNAL  ACCUMULATOR        : STD_LOGIC_VECTOR (15 DOWNTO 

0)  :="0000000000000000"; 

    SIGNAL  SIG_OUT            : STD_LOGIC_VECTOR (7 DOWNTO 

0)   :="00000000"; 

    SIGNAL  SHIFT_BUFFER_0     : STD_LOGIC_VECTOR (7 DOWNTO 

0)   :="00000000"; 

    SIGNAL   I                 : INTEGER RANGE 0 TO MISO_TAPS := 

0; 

 

begin 

INDEX_SHIFT_REGISTER_PRO : PROCESS (INDEX_MISO) 

BEGIN  

 

  IF (INDEX_MISO = 0) THEN  

-- FPGA_OUT_8_BITS (7 DOWNTO 0) <= FPGA_MISO_PARALLEL;  

--   OUTPUT 8 BIT DATA FOR NEXT MODULE (DAC/OPTICAL CONVERTER) 
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          INDEX_SHIFT_REGISTER  <= INDEX_SHIFT_REGISTER + 1;   

    -- COUNTING 8 BIT PARALLEL DATA INTO SHIFT BUFFER 

           SHIFT_BUFFER (0)     <= FPGA_MISO_PARALLEL; 

           SHIFT_BUFFER (MISO_TAPS DOWNTO 1)    <=  

           SHIFT_BUFFER (MISO_TAPS-1 DOWNTO 0);    

                FIR_FILTER_FLAG <= '1'; 

                 ELSE  

                FIR_FILTER_FLAG <= '0';        

                 END IF; 

 

END PROCESS INDEX_SHIFT_REGISTER_PRO; 

 

 

--ACCUMULATOR_PRO : PROCESS(FPGA_CLOCK,INDEX_MISO) 

ACCUMULATOR_PRO : PROCESS(INDEX_MISO,FPGA_CLOCK) 

BEGIN  

 

IF ( FPGA_CLOCK'EVENT AND FPGA_CLOCK = '1' ) THEN   

 

    IF (INDEX_MISO = 0) THEN  

        SHIFT_BUFFER_0                      <= FPGA_MISO_PARALLEL; 

        ACCUMULATOR(15 DOWNTO 0)            <= 

SHIFT_BUFFER(0)*KERNEL(0) +  SHIFT_BUFFER(1)*KERNEL(1) +  

SHIFT_BUFFER(2)*KERNEL(2) +  SHIFT_BUFFER(3)*KERNEL(3) + 

SHIFT_BUFFER(4)*KERNEL(4) +  SHIFT_BUFFER(5)*KERNEL(5) +  

SHIFT_BUFFER(6)*KERNEL(6) +  SHIFT_BUFFER(7)*KERNEL(7) + 

SHIFT_BUFFER(8)*KERNEL(8) +  SHIFT_BUFFER(9)*KERNEL(9) +  

SHIFT_BUFFER(10)*KERNEL(10) +  SHIFT_BUFFER(11)*KERNEL(11) + 

SHIFT_BUFFER(12)*KERNEL(12) +  SHIFT_BUFFER(13)*KERNEL(13) +  

SHIFT_BUFFER(14)*KERNEL(14) +  SHIFT_BUFFER(15)*KERNEL(15); 

        FPGA_OUT_16_BITS                    <= ACCUMULATOR(15 

DOWNTO 0); 

    END IF; 

END IF;  

END PROCESS ACCUMULATOR_PRO; 

 

MISO_SHIFT_REGISTER_PRO : PROCESS(FPGA_SCLK) 

BEGIN 

   

          FPGA_MISO_REG   <= FPGA_MISO;                                          

-- PUT THE INPUT SERIAL MISO FROM MCU/ASIC TO "FPGA_MISO_REG" 

 

          IF(FPGA_CS = '0')  THEN                                                

-- SPI CS ACTIVE LOW  

                 IF (FPGA_SCLK'EVENT AND FPGA_SCLK = ‘1’) THEN           

-- RISING EDGE OF FPGA_SCLK  

                         IF (INDEX_MISO = 0) THEN   

                             FPGA_MISO_PARALLEL(0) <= 

FPGA_MISO_REG;  

                             INDEX_MISO <= INDEX_MISO + 1;       

                         ELSIF (INDEX_MISO = 1) THEN   

                             FPGA_MISO_PARALLEL(1) <= 
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FPGA_MISO_REG;                             

                             INDEX_MISO <= INDEX_MISO + 1;              

                         ELSIF (INDEX_MISO = 2) THEN   

                             FPGA_MISO_PARALLEL(2) <= 

FPGA_MISO_REG;                             

                             INDEX_MISO <= INDEX_MISO + 1;  

                         ELSIF (INDEX_MISO = 3) THEN   

                             FPGA_MISO_PARALLEL(3) <= 

FPGA_MISO_REG;                             

                             INDEX_MISO <= INDEX_MISO + 1;  

                         ELSIF (INDEX_MISO = 4) THEN   

                             FPGA_MISO_PARALLEL (4) <= 

FPGA_MISO_REG;                             

                             INDEX_MISO <= INDEX_MISO + 1;  

                         ELSIF (INDEX_MISO = 5) THEN   

                             FPGA_MISO_PARALLEL (5) <= 

FPGA_MISO_REG;                             

                             INDEX_MISO <= INDEX_MISO + 1;  

                         ELSIF (INDEX_MISO = 6) THEN   

                             FPGA_MISO_PARALLEL(6) <= 

FPGA_MISO_REG;                             

                             INDEX_MISO <= INDEX_MISO + 1;  

                         ELSIF(INDEX_MISO = 7) THEN   

                             FPGA_MISO_PARALLEL (7) <= 

FPGA_MISO_REG;  

                             INDEX_MISO <= 0;  

                         END IF; --// (INDEX_MISO = 0)  

                  END IF; --// (FPGA_SCLK'EVENT AND FPGA_SCLK = 

‘1’) 

---------------------------------------- THIS IS FOR MISO TO 

RECEIVE 8 BIT DATA INTO PARALLEL ------------------------------

------------------  

 

 

              END IF; --// (FPGA_CS = '0')  

 

  

END PROCESS MISO_SHIFT_REGISTER_PRO; 

 

end architecture_SPI_MASTER_V16; 

 

 

 

Appendix G. VHDL for FDM Stimulation Implementation 

--------------------------------------------------------------

------------------ 

-- Company: NEWCASTLE UNIVERSITY 
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-- 

-- File: SPI_STIMULATION.vhd 

-- File history: 

--      SPI_STIMULATION: 4/1/2017:  

-- Description:  

-- 

-- Targeted device: <Family::IGLOO> <Die::AGLN250V2> 

<Package::100 VQFP> 

-- Author: LIJUAN XIA  

-- 

--------------------------------------------------------------

------------------ 

library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 

USE ieee.std_logic_signed.all; 

 

entity SPI_STIMULATION is 

GENERIC ( 

 --   BAUDRATE: Positive: = 4160 

    TAPS                        :  POSITIVE := 10 ;                           

-- THIS IS FOR CMD NUMBER , THIS IS FOR SENDING 3*3 CMD TO TURN 

LED ON OR LED OFF + 2 FOR TIME DELAY 

    MISO_TAPS                   :  POSITIVE := 15 ;                           

-- THIS IS FOR COUNTING RECORDING DATA FOR FURTHER FILTERING  

    CMD_BITS                    :  POSITIVE := 11 ;                           

-- 8+4-1 BITS OF EACH CMD, 8 BITS ARE INFORMATION, 4 BITS ARE 

TIME DELAY 

    CMD_NUMBERS                 :  POSITIVE := 1;                             

-- 2 CMD SO FAR: LED ON, LED OFF 

 

    FPGA_SCLK_PRSCL             :  POSITIVE := 19 ;                           

-- SPI CLOCK : 500KHZ, 2000 NS (50*40) 40/2 = 20 

    OPTRODE_CLK_PRSCL           :  POSITIVE := 6  ;                           

-- OPTRODE CLOCK : 1.6MHZ , 625 NS (50 * 12.5) 12.5/2 = 6.25  

-- PACKET_WAIT : , 200 MS / 50 NS = 200 000000/50 = 4000000 , 

FOR EACH PACKET, THE INTERVALS ARE 200MS 

   PACKET_WAIT_PRSCL_NUM        :  POSITIVE := 31;                            

-- THIS IS A BUFFER SIZE FOR DETERMINING HOW LONG WILL EACH 

PACKET WILL WAIT  

   BAUDRATE                     :  POSITIVE := 100 

); 

 

port ( 

    FPGA_CLOCK                  :  IN   STD_LOGIC;                            

-- PIN15 : FPGA CLOCK 20MHZ, 50NS  

    FPGA_RESET_BUTTON           :  IN   STD_LOGIC;                            

-- PIN10 : RESET_BUTTON:  RESETTING  

    PACKET_WAIT_PRSCL_IN        :  IN   STD_LOGIC_VECTOR(15 

DOWNTO 0);         -- 

 

    FPGA_SCLK_OUT               :  OUT  STD_LOGIC;                            
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-- SPI CLOCK : 500KHZ, 2000 NS (50*40) 

    FPGA_MOSI_OUT               :  OUT  STD_LOGIC;                            

-- SPI MOSI 

    FPGA_CS_OUT                 :  OUT  STD_LOGIC;                            

-- SPI CHIP SELECT 

    PACKET_FINSHED_TAG_OUT      :  OUT  STD_LOGIC;                            

-- PACKET FINSHED TAG OUT 

 

    OPTRODE_RST                 :  OUT  STD_LOGIC;                            

-- OPTRODE RESET 

    OPTRODE_CLK_1600KHZ         :  OUT  STD_LOGIC                             

-- OPTRODE CLOCK : 1.6MHZ , 625 NS (50 * 12.5) 12.5/2 = 6.25  

); 

End SPI_STIMULATION; 

 

Architecture architecture_SPI_STIMULATION of SPI_STIMULATION is 

   -- signal, component etc. declarations 

 

  -- signal, component etc. declarations 

-- THIS SIGNAL DEFINITION IS FOR DEFINING PACKET SIGNAL  

SIGNAL  PACKET_WAIT_PRSCL            : INTEGER    := 800;  

 

SIGNAL  PACKET_WAIT_PRSCL_REG_ON     : INTEGER    := 0; 

SIGNAL  PACKET_WAIT_PRSCL_REG_OFF    : INTEGER    := 0; 

 

SIGNAL  FPGA_SCLK_COUNTER           : INTEGER RANGE 0 TO 

FPGA_SCLK_PRSCL :=0; 

 

SIGNAL  FPGA_SCLK_REG               : STD_LOGIC := '0'; 

 

SIGNAL  OPTRODE_CLK_COUNTER         : INTEGER RANGE 0 TO 

OPTRODE_CLK_PRSCL :=0; 

SIGNAL  OPTRODE_CLK_REG             : STD_LOGIC := '0'; 

 

SIGNAL  OPTRODE_RESET_COUNTER       : INTEGER RANGE 0 TO 

OPTRODE_CLK_PRSCL :=0; 

SIGNAL  OPTRODE_RESET_REG           : STD_LOGIC := '0'; 

SIGNAL  OPTRODE_RESET_I             : INTEGER RANGE 0 TO 1 :=0;  

 

SIGNAL  PRSCL                       : INTEGER RANGE 0 TO 5208:=0; 

SIGNAL  DATAFLL                     : STD_LOGIC_VECTOR(10 downto 

0) := "00000000000"; 

SIGNAL  INDEX                       : INTEGER RANGE 0 TO 

CMD_BITS:=0; 

SIGNAL  INDEX2                      : INTEGER RANGE 0 TO 

(TAPS+1):= 0; 

SIGNAL  INDEX_MISO                  : INTEGER RANGE 0 TO 

(MISO_TAPS+1) := 0 ; 

 

SIGNAL  SPI_CS_REG                  : STD_LOGIC  :='1'; 

TYPE    SHIFT_REGISTER IS ARRAY (TAPS DOWNTO 0) OF 

STD_LOGIC_VECTOR (CMD_BITS DOWNTO 0); 
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SIGNAL  SHIFT_REGISTER_BUFFER_LED_ON            : 

SHIFT_REGISTER := 

(                                                           -- 

LED ON 

b"111100000000", b"111100010000" , b"111100000110", 

b"111111111111", b"111100000000" , b"111100100000",       

b"111100000101", b"111111111111" , b"111100000000", 

b"111100100000", b"111100000100" 

 ); 

 

 

SIGNAL  SHIFT_REGISTER_BUFFER_LED_OFF           : 

SHIFT_REGISTER := 

(                                                           -- 

LED OFF 

b"111100000000", b"111100010000" , b"111100000110",  

b"111111111111", b"111100000000" , b"111100010000",  

b"111100000101", b"111111111111" , b"111100000000",  

b"111100010000", b"111100000100" 

 ); 

 

SIGNAL  SHIFT_REGISTER_BUFFER            : SHIFT_REGISTER := (  

b"000000000000", b"000000000000", b"000000000000",  

b"000000000000", b"000000000000", b"000000000000",  

b"000000000000", b"000000000000", b"000000000000", 

b"000000000000", b"000000000000" 

 ); 

 

TYPE    SHIFT_REGISTER_MISO IS ARRAY (MISO_TAPS DOWNTO 0) OF 

STD_LOGIC_VECTOR (7 DOWNTO 0); 

SIGNAL SHIFT_REGISTER_MISO_BUFFER: SHIFT_REGISTER_MISO:= (  

b"000000000000", b"000000000000", b"000000000000",  

b"000000000000", b"000000000000", b"000000000000",  

b"000000000000", b"000000000000", b"000000000000", 

b"000000000000", b"000000000000" 

 ); 

 

SIGNAL  FPGA_MISO_PARALLEL      : STD_LOGIC_VECTOR(7 downto 

0)        := "00000000"; 

SIGNAL  FPGA_MOSI_PARALLEL      : STD_LOGIC_VECTOR(CMD_BITS 

DOWNTO 0) := SHIFT_REGISTER_BUFFER(0); 

SIGNAL  FPGA_MOSI_REG           : STD_LOGIC_VECTOR(CMD_BITS 

DOWNTO 0) := "000000000000"; 

 

SIGNAL  CNT                     : INTEGER    : = 0; 

SIGNAL  RESET_CNT               : INTEGER    : = 0; 

SIGNAL  OPTRODE_RST_REG         : STD_LOGIC  : ='0'; 

SIGNAL  PACKET_WAIT_CNT         : INTEGER    : = 0; 

SIGNAL  PACKET_WAIT_MAKER       : STD_LOGIC  : ='0'; 

SIGNAL  PACKET_FINSHED_TAG      : STD_LOGIC  : ='0'; 
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SIGNAL  INDEX_SCHEDULE_CMD      : STD_LOGIC := '0'; 

 

-- PWM PARAMETERS 

TYPE    PWM_REGISTER IS ARRAY (PACKET_WAIT_PRSCL_NUM DOWNTO 0) 

OF INTEGER; 

 

SIGNAL  PWM            : PWM_REGISTER := (                        -

- DEFINE DUTY CYCLES FOR LED ON AND LED OFF,  4000000 , FOR EACH 

PACKET, THE INTERVALS ARE 200MS  

 

--400,400,100,100, 200,200,800,800, 100,100,100,100,  

800,200,800,800, 

--100,100,100,100, 200,800,800,100, 200,200,100,800,  

800,200,800,800 

 

--0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

--0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

 

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

 ); 

 

 

--SIGNAL  PACKET_WAIT_PRSCL                   : INTEGER    := 1; 

SIGNAL  INDEX_PACKET                          : INTEGER    := 0; 

 

begin 

 

 

-- architecture body 

SHIFT_REGISTER_PRO: PROCESS( FPGA_CLOCK ) 

BEGIN  

 

PACKET_FINSHED_TAG_OUT <= PACKET_FINSHED_TAG; 

 

IF (FALLING_EDGE ( FPGA_CLOCK )) THEN  

 

-- RESET ALL THE COUNTERS TO AN APPRORAITE STATE 

      IF ( FPGA_RESET_BUTTON = '0') THEN  

             CNT                         <= 0  ; 

             OPTRODE_RST_REG             <= '0'; 

             PACKET_FINSHED_TAG          <= '1';  

      ELSIF ( CNT = 1000 ) THEN  

             CNT                         <= 0  ; 

             RESET_CNT                   <= RESET_CNT + 1;  

             IF(RESET_CNT = 0) THEN  

                   OPTRODE_RST_REG       <= '0'; 

             ELSIF(RESET_CNT = 1 ) THEN 

                   OPTRODE_RST_REG       <= '1' ;       --

RESETTING HIGH 

                   PACKET_FINSHED_TAG    <= '0';  

                   SHIFT_REGISTER_BUFFER <= 
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SHIFT_REGISTER_BUFFER_LED_ON ;  

 

             ELSIF(RESET_CNT = 2 ) THEN 

                   OPTRODE_RST_REG       <= '0'; 

                   RESET_CNT             <= 2;  

             END IF;--// IF(RESET_CNT = 0) THEN  

      ELSE 

             CNT                         <= CNT + 1; 

      END IF;  --//IF ( FPGA_RESET_BUTTON = '0') THEN  

  

 

-- WHEN PACKET_FINSHED_TAG IS '0', MEANS PACKET IS TRANSMITTING 

      IF ( PACKET_FINSHED_TAG = '0') THEN                    

             IF ( OPTRODE_RST_REG = '1') THEN                           

-- RESET   FROM FPGA BUTTON OF SW1, PINOUT 20 

                   INDEX                <= 0;                           -

- INDEX:  THIS IS FOR TRANSFERRING BIT  BY BIT COUNTING  

                   INDEX2               <= 1;                           -

- INDEX2: THIS IS FOR TRANSFERRING BTYE BY BYTE COUNTING  

                   INDEX_MISO           <= 0; 

 

                   FPGA_SCLK_REG        <='1';                          

-- INTERNAL FPGA SCLK COUNTER (500KHZ) 

                   OPTRODE_CLK_REG      <='0';                          

-- INTERNAL OPTRODE SCLK COUNTER (1.6 MHZ) 

  

                   PACKET_FINSHED_TAG   <= '0';                         

-- COUNTING DOES 3*3 COMMANDS SEND  

                   FPGA_MOSI_PARALLEL   <= 

SHIFT_REGISTER_BUFFER(0);    -- MOSI COUNTER : LST OF SHIFT 

REGISTER BUFFER[0] 

              ELSE 

                       IF ( (FPGA_SCLK_COUNTER = 

FPGA_SCLK_PRSCL) and ( FPGA_SCLK_REG = '0') ) THEN   -- IN EACH 

FPGA SCLK RISING EDGE , COUNTING INDEX FOR MOSI 

         

                           IF(INDEX < CMD_BITS) THEN                           

-- INDEX: USED TO COUNT CMD BITS OUT FOR FPGA_MOSI  

                              INDEX <= INDEX + 1; 

                           ELSE 

                              INDEX  <= 0;      

                              INDEX2 <= INDEX2 + 1;                            

-- INDEX2: USED TO COUND CMD NUMBERS FOR EACH PACKET: 3*3 CMD + 

2*'111111111111' FOR TIME DELAY   

                              INDEX_MISO <= INDEX_MISO +1 ;   

 

                                IF (INDEX2 = TAPS) THEN                        

-- TAPS : 11 (3*3 + 2 )   

                                       INDEX2 <= 0; 

                                ELSIF(INDEX2 = 0 ) THEN 

                                       PACKET_FINSHED_TAG <= 

'1';                -- IF INDEX2 IS 0 , IT MEANS EACH PACKET HAS 
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FINISHED TRANSMITTING  

                                       INDEX_SCHEDULE_CMD <= 

NOT INDEX_SCHEDULE_CMD ;  

 

------------------------------------------------------  THIS IS 

FOR DELIVERING VARIABLE DUTY PWM TO STIMULATION --------------- 

 

 

                                             -- 

PACKET_WAIT_PRSCL_IN 

 

IF(INDEX_PACKET < PACKET_WAIT_PRSCL_NUM) THEN 

            PWM(0)   <= 

TO_INTEGER(UNSIGNED(PACKET_WAIT_PRSCL_IN));                                                    

PWM(PACKET_WAIT_PRSCL_NUM DOWNTO 1)  <=  

PWM (PACKET_WAIT_PRSCL_NUM-1 DOWNTO 0); 

                   PACKET_WAIT_PRSCL <=  PWM(0);   

-- PUT DUTY ON AND DUTY OFF IN A SHIFT BUFFER 

-- PACKET_WAIT_PRSCL <=  PWM(INDEX_PACKET);  -- PUT DUTY ON AND 

DUTY OFF IN A SHIFT BUFFER 

-- INDEX_PACKET <= INDEX_PACKET + 1 ;  

ELSE 

                        INDEX_PACKET <= 0; 

END IF; 

-- THIS IS FOR DELIVERING VARIABLE DUTY PWM TO STIMULATION ----

------ 

 

END IF;  --// IF (INDEX2 = TAPS) THEN    

 

  IF (INDEX_MISO = MISO_TAPS) THEN 

           INDEX_MISO <= 0; 

  END IF;  --//  IF (INDEX_MISO = MISO_TAPS) THEN 

 END IF;  --//  IF(INDEX < CMD_BITS) THEN 

END IF;  --//  IF ((FPGA_SCLK_COUNTER = FPGA_SCLK_PRSCL) and 

( FPGA_SCLK_REG = '0')) THEN 

 

 

IF (FPGA_SCLK_COUNTER < FPGA_SCLK_PRSCL) THEN                 

-- SPI CLOCK COUNTER : 500KHZ = 2000 NS,  (50NS*40)/50NS,  40/2 

= 20 

      FPGA_SCLK_COUNTER <= FPGA_SCLK_COUNTER +1; 

   ELSE 

      FPGA_SCLK_COUNTER <= 0; 

      FPGA_SCLK_REG     <= NOT FPGA_SCLK_REG;  

  END IF; --//IF (FPGA_SCLK_COUNTER < FPGA_SCLK_PRSCL) THEN 

END IF;  --// IF ( OPTRODE_RST_REG = '1') THEN 

 

IF ( OPTRODE_RST_REG = '1') THEN   

   FPGA_SCLK_OUT       <= FPGA_SCLK_REG AND '0';    

ELSE 

 

   IF( INDEX = 8 OR INDEX = 9 OR INDEX = 10 OR INDEX = 11 OR 
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INDEX2 =4 OR INDEX2 = 8 ) THEN           

 -- DEALY1 : THIS IS FOR GENERATING LOW VOLTAGE FOR SCLK FOR 4 

CLOCK CYCLES BETWEEN EACH 2 CMD 

                FPGA_SCLK_OUT            <= FPGA_SCLK_REG AND 

'0';                                                      

                   ELSE 

                FPGA_SCLK_OUT            <= FPGA_SCLK_REG;    

            END IF; 

         END IF; 

 

 IF ( (FPGA_SCLK_COUNTER = FPGA_SCLK_PRSCL) and ( FPGA_SCLK_REG 

= '0') and ( INDEX = CMD_BITS)) THEN   -- SENDING OFF MOSI 

  FPGA_MOSI_PARALLEL       <= SHIFT_REGISTER_BUFFER(INDEX2);          

             END IF; 

       FPGA_MOSI_OUT       <= FPGA_MOSI_PARALLEL(INDEX);   

 

 

      ELSIF(PACKET_FINSHED_TAG = '1') THEN                                             

 

     PACKET_WAIT_PRSCL_REG_ON  <= PACKET_WAIT_PRSCL*100;              

-- 8000000=800*10000 means 400ms 

     PACKET_WAIT_PRSCL_REG_OFF <= PACKET_WAIT_PRSCL*100;              

-- 4000000=400*10000 means 200ms                                                      

-- 6542600=65426*100        

--------------------------------------------------------------

-------- 

 

             IF (INDEX_SCHEDULE_CMD = '1') THEN    -- LED OFF  

                   IF ( PACKET_WAIT_CNT = 

PACKET_WAIT_PRSCL_REG_OFF ) THEN  

                     PACKET_WAIT_CNT        <= 0 ; 

                     PACKET_WAIT_MAKER      <= NOT 

PACKET_WAIT_MAKER ; 

                     PACKET_FINSHED_TAG     <= '0'; 

                   ELSE 

                     PACKET_WAIT_CNT        <= PACKET_WAIT_CNT 

+ 1; 

                     FPGA_SCLK_OUT          <= '0';   

                   END IF; 

             ELSE  

                    IF ( PACKET_WAIT_CNT = 

PACKET_WAIT_PRSCL_REG_ON ) THEN  

                     PACKET_WAIT_CNT        <= 0 ; 

                     PACKET_WAIT_MAKER      <= NOT 

PACKET_WAIT_MAKER ; 

                     PACKET_FINSHED_TAG     <= '0'; 

                   ELSE 

                     PACKET_WAIT_CNT        <= PACKET_WAIT_CNT 

+ 1; 

                     FPGA_SCLK_OUT          <= '0';   

                   END IF; 

             END IF; 
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             IF (INDEX_SCHEDULE_CMD = '1') THEN    -- LED OFF  

              SHIFT_REGISTER_BUFFER <= 

SHIFT_REGISTER_BUFFER_LED_OFF ;    

             ELSE  

              SHIFT_REGISTER_BUFFER <= 

SHIFT_REGISTER_BUFFER_LED_ON ;  

             END IF; 

--------------------------------------------------------------

------------------------------- 

 

      END IF; --//IF ( PACKET_FINSHED_TAG = '0') THEN 

 

IF (OPTRODE_CLK_COUNTER < OPTRODE_CLK_PRSCL) THEN 

       OPTRODE_CLK_COUNTER <= OPTRODE_CLK_COUNTER +1; 

ELSE 

       OPTRODE_CLK_COUNTER <= 0; 

       OPTRODE_CLK_REG <= NOT OPTRODE_CLK_REG;  

END IF;      

   

OPTRODE_CLK_1600KHZ  <= OPTRODE_CLK_REG;               -- 

OPTRODE_CLOCK : 1.6 MHz 

END IF; --//IF (FALLING_EDGE ( FPGA_CLOCK )) THEN  

END PROCESS SHIFT_REGISTER_PRO; 

 

FPGA_CS_OUT             <= SPI_CS_REG; 

OPTRODE_RST             <= OPTRODE_RST_REG; 

 

end architecture_SPI_STIMULATION; 

 

 

Appendix H. PID Phase Shift Analysis 

%% This is matlab code for PID Kernel magnitude response and 

phase response analysis  

  

close all; 

clc; 

clear all; 

    

**************************************************************

******** 

% Author:              Lijuan & Patrick %  

% First Version:       18/1/2018 Created by Lijuan % 

% Second Version:      PID kernel analysis 

% Description:          

**************************************************************

******** 
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close all;  

clc;  

clear all;  

  

%% impulse response  

% Andy Phase Shift Kernel Frequency Response Analysis  

%         ____________ 

%   x(t) |            |  y(t) 

%------->|    h(t)    |------> 

%        |____________| 

%                                                 

%      h(t) = e^(-kt)cos( wt + phase)   

%                                              

% 

%               cos(phase)s + k*cos(phase) -(2*pi*f)*sin(phase) 

%   => H(s) =  ------------------------------------------------

------- 

%                         s^2 + k^2 + 2ks + w^2 

% 

%                                s^2 + k^2 + 2ks + w^2 

% transfer function = -----------------------------------------

------ 

%                    cos (phase)s + k*cos(phase) -(2*pi*f)*sin(phase) 

w     = linspace (0,100,512); 

k     = 1.25; 

f     = 2; 

figure; 

for phase   = 0:45:360  

    G_AD_phase  = tf([1*cos(phase) k*cos(phase)-

(2*pi*f)*sin(phase)], [1 2*k k*k+(2*pi*f)^2]); 

    [G_AD_phase, P_AD_phase] = bode(G_AD_phase, w);    

    subplot(211); plot(w,G_AD_phase(:)); 

    hold on; 

    subplot(212); plot(w,P_AD_phase(:)); 

    hold on;    

end 

  

  

 

 

 

 

 

 

 

 

  

% impulse response  

% PID Phase Shift Kernel Frequency Response Analysis   

%         ____________ 

%   x(t) |            |  y(t) 

%------->|    h(t)    |------> 
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%        |____________| 

  

%                                                   d(delta(t))          

%      h(t) = Kp*delta(t)+ Ki*integral(delta(t))+Kd*----------   

%                                                      dt  

%               kd*s^2 + Kp*s + Ki 

%      H(s) = ------------------------- 

%                       s 

% 

%                                  s 

%     transfer function = ------------------------ 

%                           kd*s^2 + Kp*s + Ki 

  

wpid    = linspace (0,100,512); 

  

  

% kp      = 10.2; 

% ki      = 58.8; 

% kd      = 123.4; 

  

 kp      = 0.01; 

 ki      = 1.6; 

 kd      = 0.01; 

  

figure 

for ki    = 1.4:0.2:2 

% for kp    = 0.01:0.04:0.13 

%  for kd     = 123:10:153    

G_PID_phase  = tf([1 1], [kd kp ki]); 

[G_PID_phase, P_PID_phase] = bode(G_PID_phase, wpid);  

  

  

%% option1 

  

% subplot(121);plot(wpid,G_PID_phase(:)/100); 

% legend('Kp = 0.01','Kp = 0.05','Kp = 0.09','Kp = 0.13') 

% hold on; 

% subplot(122);plot(wpid,P_PID_phase(:)); 

% legend('Kp = 0.01','Kp = 0.05','Kp = 0.09','Kp = 0.13') 

% hold on; 

  

  

subplot(121);plot(wpid,G_PID_phase(:)/100); 

legend('Ki = 1.4','Ki = 1.6','Ki = 1.8','Ki = 2') 

hold on; 

subplot(122);plot(wpid,P_PID_phase(:)); 

legend('Ki = 1.4','Ki = 1.6','Ki = 1.8','Ki = 2') 

hold on; 

  

 end 
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Appendix I. Optical Converter 

 

close all; 

clc; 

clear all; 

  

      

**************************************************************

******** 

% Author:              Lijuan & Patrick %  

% First Version:       28/9/2017 Created by Patrick % 

% Second Version:      2/10/2017 Created by Lijuan %     

% Description:         Inverse sigmoid function of optical 

converter analysis, define photon flux in terms of mW/mm2. 

Typical range would be 1e-3 to 1e1. The neural response should 

be 50% at 0.7mW/mm2 

 

**************************************************************

******** 

 

  

% -------------------------------------------------------------

------- 

%% Sigmoid function 

% -------------------------------------------------------------

------- 

% define photon flux in terms of mW/mm2. Typical range would be 

1e-3 to 1e1.  

 

% the neural response should be 50% at 0.7mW/mm2 

f = 1e-6; 

for n =1:70 

    f = f * 1.4; 

    flux(n) = f; 

end 

  

Vt = 1.45; 

  

% sigmoid function in the logarithmic domain 

Response = (Vt*flux)./(1+(Vt*flux));  

  

% Return the neuron response at 0.7mW/mm2.  

% The result should be 0.5 

Neural_Response_at_threshold = Response(40) 

  

figure;  
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semilogx(flux,Response,'k'); 

title('ChR2 neural response vs light intensity'); 

set(gcf, 'color', 'w') 

xlim([1e-4 1e2]) 

xlabel('light intensity (mw/mm^{2})'); 

ylabel('Normalised neural response'); 

  

% -------------------------------------------------------------

------------ 

%% Inverse Sigmoid function 

% -------------------------------------------------------------

------------ 

  

%settings 

R_threshold = 0.7;          % Determines the normalised neural 

threshold  

                            % for which to intervene. This needs 

to take 

                            % into account many variables 

including genetic 

                            % expression, LED light intensity 

and optical 

                            % traversal through the tissue. It 

will 

                            % ultimately have to be 

experimentally 

                            % calibrated for each LED. 

minPWM = 0.5;               % minimal PWM time (in ms) for a 

stimulation  

                            % frame. This will be related to the 

                            % intervention frequency e.g. 100Hz, 

which may 

                            % be separate to recording frequency 

maxPWM = 10;                % maximum PWM time (in ms) for a 

stimulation  

                            % frame This will be related to the  

                            % intervention frequency e.g. 100Hz, 

which may 

                            % be separate to recording frequency 

  

% Define response in terms of maximum possible response. i.e. 

between 0 - 

% 1; 

Response = 0:0.01:1; 

  

% inverse sigmoid function with light flux in terms of mW/mm2 

for 10ms 

lightFlux = (Response ./(Vt * (1-Response))); 

  

% The neural response above is calibrated as the average plateau 

response  

% resulting from continuous illumination. HOWEVER, we are 
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interested in 

% pulsed illumination with a defined PWM between 0.1 - 10ms 

(assuming 100Hz  

% sampling - or at least 100Hz intervention).                               

PWM_time = lightFlux * R_threshold; 

  

for n = 1: length(PWM_time) 

     

    % for neural responses resulting in ultra-short PWM times, 

simply set 

    % the output to zero. This is effectively a lower end 

threshold 

    if PWM_time(n) < minPWM; PWM_time(n) = 0; end 

     

    % If the required light intensity is too high, the PWM time 

will exceed 

    % the maximum time allowable within a frame. Thus this needs 

to 

    % saturated to that maximum time. 

    if PWM_time(n) > maxPWM; PWM_time(n) = maxPWM; end 

     

end 

  

% write LUT to file 

PWMLUT(:,1) = Response'; 

PWMLUT(:,2) = round(PWM_time,1)'; 

csvwrite('pwm_LUT.csv',PWMLUT); 

  

% Plot figures 

figure;  

semilogy(Response, lightFlux); 

title('Light flux vs neural response'); 

%set(gcf, 'color', 'w') 

xlabel('Normalised neural response'); 

ylabel('light intensity (mw/mm^{2})'); 

  

figure;  

semilogy(Response, PWM_time); 

title('Light PWM vs neural response'); 

%set(gcf, 'color', 'w') 

xlabel('Normalised neural response'); 

ylabel('PWM time (ms)'); 

  

figure; 

subplot(121); 

semilogy(Response, lightFlux); 

title('Light flux vs neural response'); 

%set(gcf, 'color', 'w') 

xlabel('Normalised neural response'); 

ylabel('light intensity (mw/mm^{2})'); 

subplot(122); 

semilogy(Response, PWM_time); 
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title('Light PWM vs neural response'); 

%set(gcf, 'color', 'w') 

xlabel('Normalised neural response'); 

ylabel('PWM time (ms)'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix J. Neuron Mass Modelling  

       

**************************************************************

******** 

% Author:              Lijuan & Patrick %  

% First Version:       2/6/2016 Created by Lijuan % 

% Second Version:      14/10/2017 Created by Lijuan %     

% Description:         Neuron Mass Modelling with PID feedback 

 

**************************************************************

******** 
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%%  Neural Mass Model Transfer Function 

% Neunal Mass Model Transfer Function in jw domain 

% Figure 3-6 Plotting and Figure 3-9 

 

clear all 

close all 

clc 

  

%%  Neunal Mass Model Transfer Function 

% He    = 3.25; 

% Te    = 0.0108;  

% Ge    = tf(  [0 He*Te], [Te*Te 2*Te 1] );    % this is laplace 

transform of He 

% figure; 

% bode(Ge); 

%  

% Hi    = 22; 

% Ti    = 0.02; 

% Gi    = tf(  [0 Hi*Ti], [Ti*Ti 2*Ti 1] );    % this is laplace 

transform of Hi 

% figure; 

% bode(Gi); 

%  

  

% C1    = 135   

% C2    = 0.8*C1; 

% C3    = 0.25*C1; 

% C4    = 0.25*C1; 

% s     = tf('s'); 

% v0    = 6; 

% e0    = 2.5 

% r     = 0.56 

% Ks    = e0*r/2; 

% Gnmm  = Ge/(1+Ks^2*Ge*(C3*C4*Gi - C1*C2*Ge)); % laplace 

transform of NMM 

  

% Gnmm  = Ge/(1+Ks^2*Ge*(C3*C4*Gi - C1*C2*Ge)); % laplace 

transform of NMM 

%  

% figure; 

% impulse(Gnmm); 

%  

% figure; 

% step(Gnmm); 

  

% Neunal Mass Model Transfer Function in jw domain 

for He_w    = 5:2:9 

  

w            = 0:0.01:500; 

%He_w         = 4.5 

% Ks_w         = 2.5*0.56*2./(j*w); 

Ks_w         = 2.5*0.56/2; 
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Te_w         = 0.0108;  

Ge_w         = He_w*Te_w./[(j*w*Te_w + 1).^2];    % this is 

laplace transform of He 

  

Hi_w         = 17; 

Ti_w         = 0.02; 

Gi_w         = Hi_w*Ti_w./[(j*w*Ti_w + 1).^2];    % this is 

laplace transform of Hi 

  

C1           = 135   

C2           = 0.8*C1; 

C3           = 0.25*C1; 

C4           = 0.25*C1; 

v0           = 6; 

e0           = 2.5 

r            = 0.56 

Ks_w         = e0*r/2; 

  

Gnmm_w      = Ge_w./(1+Ks_w.*Ks_w.*Ge_w.*(C3*C4*Gi_w - 

C1*C2*Ge_w)); % laplace transform of NMM 

  

Real_NMM    = real(Gnmm_w); 

Imag_NMM    = imag(Gnmm_w); 

  

% 

figure;subplot(211);plot(log10(w),abs(Gnmm_w));subplot(212);pl

ot(log10(w),phase(Gnmm_w));set(gca, 'xscale', 'log'); 

% figure;subplot(211);plot(log10(w),sqrt(Real_NMM.^2 + 

Imag_NMM.^2 ));subplot(212);plot(log10(w),atan(Imag_NMM.*(Real

_NMM).^(-1)));set(gca, 'xscale', 'log'); 

  

%% Ki, Kp 

% den_Gnmm_w  = Real_NMM.^2 + Imag_NMM.^2; 

den_Gnmm_w  = Real_NMM.^2 + Imag_NMM.^2; 

Ki          = -w.*Imag_NMM./den_Gnmm_w ; 

Kp          = -Real_NMM ./den_Gnmm_w; 

Kd          = Imag_NMM./(w.*den_Gnmm_w) ; 

% figure(2); subplot(121);plot(Kp,Ki,'linewidth',2); 

xlabel('Kp');ylabel('Ki');title('PI Controller'); 

%            subplot(122);plot(Kp,Kd,'k','linewidth',2); 

xlabel('Kp');ylabel('Ki');title('PD Controller'); 

           

%subplot(221);plot(Kp,Ki); legend('He=5','He=7','He=9'); 

xlabel('Kp');ylabel('Ki');title('PI Controller');hold on; 

subplot(121);plot(Kp,Kd); legend('He=5','He=7','He=9'); 

xlabel('Kp');ylabel('Kd');title('PD Controller');hold on; 

end 

%  

for Hi_w    = 15:2:19 

w            = 0:0.01:500; 

He_w         = 3; 

% Ks_w         = 2.5*0.56*2./(j*w); 
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Ks_w         = e0*r/2; 

Te_w         = 0.0108;  

Ge_w         = He_w*Te_w./[(j*w*Te_w + 1).^2];    % this is 

laplace transform of He 

  

% Hi_w       = 17; 

Ti_w         = 0.02; 

Gi_w         = Hi_w*Ti_w./[(j*w*Ti_w + 1).^2];    % this is 

laplace transform of Hi 

  

C1          = 135   

C2          = 0.8*C1; 

C3          = 0.25*C1; 

C4          = 0.25*C1; 

Gnmm_w      = Ge_w./(1+Ks_w.*Ks_w.*Ge_w.*(C3*C4*Gi_w - 

C1*C2*Ge_w)); % laplace transform of NMM 

  

Real_NMM    = real(Gnmm_w); 

Imag_NMM    = imag(Gnmm_w); 

  

% 

figure;subplot(211);plot(log10(w),abs(Gnmm_w));subplot(212);pl

ot(log10(w),phase(Gnmm_w));set(gca, 'xscale', 'log'); 

% figure;subplot(211);plot(log10(w),sqrt(Real_NMM.^2 + 

Imag_NMM.^2 ));subplot(212);plot(log10(w),atan(Imag_NMM.*(Real

_NMM).^(-1)));set(gca, 'xscale', 'log'); 

  

%% Ki, Kp 

% den_Gnmm_w  = Real_NMM.^2 + Imag_NMM.^2; 

den_Gnmm_w  = Real_NMM.^2 + Imag_NMM.^2; 

  

Ki          = -w.*Imag_NMM./den_Gnmm_w ; 

Kp          = -Real_NMM ./den_Gnmm_w; 

Kd          = Imag_NMM./(w.*den_Gnmm_w) ; 

  

%  

% Ki          = -w.*Imag_NMM ; 

% Kp          = Real_NMM ; 

% Kd          = -1000*Imag_NMM./w ; 

  

%subplot(223);plot(Kp,Ki); legend('Hi=15','Hi=17','Hi=19'); 

xlabel('Kp');ylabel('Ki');title('PI Controller');hold on; 

subplot(122);plot(Kp,Kd); legend('Hi=15','Hi=17','Hi=19'); 

xlabel('Kp');ylabel('Kd');title('PD Controller');hold on; 

end 
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%%  Figure3-7 Plotting  

clear all 

close all 

clc 

%%  PARAMETER SET UP                           

tstart           = 0;                         % START TIME 

tend             = 8 ;                        % END TIME  

tinterp          = 1;                         % NORMALIZED STEO 

SIZE 

h                = 0.001;                     % STEP SIZE 

T                = tstart:h*tinterp:tend;     % STIMULATION TIME 

Nl               = length(T);                 % TIME SIMULATION 

NUMBERS 

nsq              = length(T);                  

y0               = zeros(6, Nl);              % SIX VARAIBLES 

FOR DIFFERENTIAL EQUATIONS PAIRS 

  

He               = 7;                     % He : average excitory 

synaptic gain 

Hi               = 22;                    % Hi : average inhitory 

synaptic gain 

  

%%  OPEN LOOP  

tic 

  

[ Y ]            = runSheetPRamp_LJ(y0,T,He,Hi); 

y_1              = Y(1,:); 

y_2              = Y(2,:); 

y_3              = Y(3,:); 

y_4              = Y(4,:); 

y_5              = Y(5,:); 

y_6              = Y(6,:); 

LFP              = y_3 - y_5 ; 

  

  

%%  CLOSED LOOP  

Kp               = 90;                     % proportional term  

Kp 
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Ki               = 2;                      % Integral term      

Ki 

Kd               = 0;                     % derivative term    Kd 

y_initial        = Y; 

  

[Y1]             = runSheetPRamp_PID_LJ(y0,T,Kp,Ki,Kd,He,Hi); 

y1_1             = Y1(1,:); 

y1_2             = Y1(2,:); 

y1_3             = Y1(3,:); 

y1_4             = Y1(4,:); 

y1_5             = Y1(5,:); 

y1_6             = Y1(6,:); 

LFP1             = y1_3 - y1_5 ; 

toc 

  

%% plotting  

T2               = tend:h*tinterp:tend*2;     

T_CLOSED         = tstart:h*tinterp:tend*2;     % STIMULATION 

TIME 

LFP_CLOSED_LOOP  = [LFP,LFP1*30]; 

figure; subplot(121); plot(T,LFP);  legend('without 

PI');xlabel('time/s');ylabel('y(t)(mv)') 

        subplot(122); plot(T2,LFP1,'k'); legend('with 

PI');xlabel('time/s');ylabel('y(t)(mv)') 

figure;  

plot(T_CLOSED,LFP_CLOSED_LOOP(1:length(T_CLOSED)));xlabel('tim

e/s');ylabel('y(t)(mv)') 

 

%%  Figure3-8 Plotting 

clear all 

close all 

clc 

  

%%  PARAMETER SET UP                           

tstart           = 0;                         % START TIME 

tend             = 8 ;                        % END TIME  

tinterp          = 1;                         % NORMALIZED STEO 

SIZE 

h                = 0.001;                     % STEP SIZE 

T                = tstart:h*tinterp:tend;     % STIMULATION TIME 

Nl               = length(T);                 % TIME SIMULATION 

NUMBERS 

nsq              = length(T);                  

y0               = zeros(6, Nl);              % SIX VARAIBLES 

FOR DIFFERENTIAL EQUATIONS PAIRS 

  

He               = 7;                         % He: average 

excitatory synaptic gain 

Hi               = 17;                        % Hi: average 

inhitatory synaptic gain 
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%%  OPEN LOOP  

tic 

[ Y ]            = runSheetPRamp_LJ(y0,T,He,Hi); 

   

y_1              = Y(1,:); 

y_2              = Y(2,:); 

y_3              = Y(3,:); 

y_4              = Y(4,:); 

y_5              = Y(5,:); 

y_6              = Y(6,:); 

LFP              = y_3 - y_5 ; 

  

  

%%  CLOSED LOOP  

Kp               = 25;                     % proportional term  

Kp 

Ki               = 0;                      % Integral term      

Ki 

Kd               = 2;                     % derivative term     

Kd 

y_initial        = Y; 

  

[Y1]             = runSheetPRamp_PID_LJ(y0,T,Kp,Ki,Kd,He,Hi); 

y1_1             = Y1(1,:); 

y1_2             = Y1(2,:); 

y1_3             = Y1(3,:); 

y1_4             = Y1(4,:); 

y1_5             = Y1(5,:); 

y1_6             = Y1(6,:); 

LFP1             = y1_3 - y1_5 ; 

toc 

  

%% plotting  

T2               = tend:h*tinterp:tend*2;     

T_CLOSED         = tstart:h*tinterp:tend*2;     % STIMULATION 

TIME 

LFP_CLOSED_LOOP  = [LFP,LFP1*10-5]; 

figure; subplot(121); plot(T,LFP);  legend('without 

PD');xlabel('time/s');ylabel('y(t)(mv)') 

        subplot(122); plot(T2,LFP1,'k'); legend('with 

PD');xlabel('time/s');ylabel('y(t)(mv)') 

figure;  

plot(T_CLOSED,LFP_CLOSED_LOOP(1:length(T_CLOSED)));xlabel('tim

e/s');ylabel('y(t)(mv)') 

%% Library 1: Open loop Stimulation  

 

function  [ Y ]=runSheetPRamp_LJ(y0,T,A,B) 

                                              % y0: 12006*1  

                                              % T : 1*2001 

%% Parameter set up 

e0                   =  2.5 ;                 % maximum firing 

rate of the neural population  
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r                    =  0.56 ;                % steepmess 

v0                   =  6  ;                  % firing rate 

 

a                    =  100;                  % a parameter of 

PSP is inversely proportional to the duration of PSP 

b                    =  50;                   % b parameter of 

PSP is inversely proportional to the duration of PSP 

 

C                    =  135;                  % C is to vary 

under different physiolodical constrants  

C1                   =  C;                    % C1 accounts for 

synaptic depletion 

C2                   =  0.8*C; 

C3                   =  0.25*C; 

C4                   =  0.25*C; 

 

%%  white noise 

% the random white noise input p(t) will have an amplitude 

varying 

% between 120 and 320 pulses per second 

 

sigma                = 2.4;                   % mean value : 2.4 

standard_deviation   = 2 ;                    % standard 

deviation : 2 

p                    = sigma + 

standard_deviation.*randn(length(T),1);   

h                    = 0.001;                 % STEP SIZE 

Nl                   = length(T);             % 2001 

nsq                  = length(T); 

 

Y                    = y0;                    % y0=zeros(6*Nl,1); 

                                              % SIX VARAIBLES 

FOR DIFFERENTIAL EQUATIONS PAIRS 

%for i = 1 : Nl 

for i = 1 : Nl-1 

     

% y_1                  = Y(1:nsq,i);            % 1:nsq = 1:2001, 

i  

% y_2                  = Y(nsq+1:2*nsq,i); 

% y_3                  = Y(2*nsq+1:3*nsq,i); 

% y_4                  = Y(3*nsq+1:4*nsq,i); 

% y_5                  = Y(4*nsq+1:5*nsq,i); 

% y_6                  = Y(5*nsq+1:6*nsq,i); 

 

y_1                  = Y(1,i);            % 1:nsq = 1:2001, i  

y_2                  = Y(2,i); 

y_3                  = Y(3,i); 

y_4                  = Y(4,i); 

y_5                  = Y(5,i); 

y_6                  = Y(6,i); 

 

dy_1dt               = 
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y_2;                                                                             % 

y(1)<-y0, y(2)<-y3 

dy_2dt               = A*a*(2*e0./( 1 + exp( r.*(v0- (y_3 -

y_5))))) - 2*a*y_2-a^2*y_1;          

dy_3dt               = 

y_4;                                                                             % 

y(3)<-y1, y(4)<-y4 

dy_4dt               = A*a*(p(i,:) + C2*(2*e0./( 1 + exp( r.*(v0- 

( C1*y_1)))))) - 2*a*y_4-a^2*y_3;           

dy_5dt               = 

y_6;                                                                             % 

y(5)<-y2, y(6)<-y5 

dy_6dt               = B*b*(C4* (2*e0./( 1 + exp( r.*(v0- 

( C3*y_1 )))))) - 2*b*y_6 -b^2*y_5; 

 

%Y(:,i+1)            = Y(:,i) + 

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt]; 

increase             = 

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt]; % 6*1 matrix 

Y(:,i+1)             = Y(:,i) + increase ; 

 

% LFP                = y1 - y2 = y(3)-y(5);   

end 

 

%Y                    = single(Y)'; 

end 
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%% Library 2: Closed loop Stimulation  

 

function   [Y] = runSheetPRamp_PID_LJ(y0,T,Kp,Ki,Kd,A,B) 

%% parameter set up 

e0                  =  2.5 ;                  % maximum firing 

rate of the neural population  

r                   =  0.56 ;                 % steepmess 

v0                  =  6  ;                   % firing rate 

  

a                   =  100; 

b                   =  50; 

  

C                   =  135; 

C1                  =  C; 

C2                  =  0.8*C; 

C3                  =  0.25*C; 

C4                  =  0.25*C; 

  

%% white noise 

% the random white noise input p(t) will have an amplitude 

varying 

% between 120 and 320 pulses per second 

sigma               = 2.4;                    % mean value : 2.4 

standard_deviation  = 2 ;                     % standard 

deviation : 2 

h                   = 0.001;                  % STEP SIZE 

Nl                  = length(T); 

nsq                 = length(T); 

Y                   = y0; 

p                   = sigma + standard_deviation.*randn(length(T),1);   

  

desired             = 0;                      % desired output, 

or reference point 

  

%%  

for i = 1 : Nl-1  

% y_1                 = Y(1:nsq,i); 

% y_2                 = Y(nsq+1:2*nsq,i); 

% y_3                 = Y(2*nsq+1:3*nsq,i); 

% y_4                 = Y(3*nsq+1:4*nsq,i); 

% y_5                 = Y(4*nsq+1:5*nsq,i); 
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% y_6                 = Y(5*nsq+1:6*nsq,i); 

  

y_1                  = Y(1,i);            % 1:nsq = 1:2001, i  

y_2                  = Y(2,i); 

y_3                  = Y(3,i); 

y_4                  = Y(4,i); 

y_5                  = Y(5,i); 

y_6                  = Y(6,i); 

%% PID Controller  

y_t(:,i)             =  y_3 - y_5;                               % 

local field potential  

Error(:,i+1)         =  desired - y_t(:,i);                      % 

error with reference equal to zero 

Prop(:,i+1)          =  Error(:,i+1);                            % 

error of proportional term 

Der(:,i+1)           = (Error(:,i+1) - Error(:,i));              % 

derivative of the error 

Int(:,i+1)           = (Error(:,i+1) + Error(:,i));              % 

integration of the error 

I(:,i+1)             = Int(:,i+1);                               % 

the sum of the integration of the error 

PID(:,i+1)           = Kp*Prop(:,i) + Ki*I(:,i+1)+ Kd*Der(:,i);  % 

the three PID terms 

   

%%  NMM Model  

dy_1dt              = y_2;                    % y(1)<-y0 , y(2)<-

y3 

dy_2dt              = A*a*(2*e0./( 1 + exp( r.*(v0- (y_3 -

y_5))))) - 2*a*y_2-a^2*y_1;          

dy_3dt              = y_4;                    % y(3)<-y1,  y(4)<-

y4 

dy_4dt              = A*a*(p(i,:) +  PID(:,i+1) + C2*(2*e0./( 1 

+ exp( r.*(v0- ( C1*y_1)))))) - 2*a*y_4-a^2*y_3;           

dy_5dt              = y_6;                                   % 

y(5)<-y2,  y(6)<-y5 

dy_6dt              = B*b*(C4* (2*e0./( 1 + exp( r.*(v0- 

( C3*y_1 )))))) - 2*b*y_6 -b^2*y_5; 

  

  

%Y(:,i+1)            = Y(:,i) + 

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt]; 

increase             = 

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt]; % 6*1 matrix 

Y(:,i+1)             = Y(:,i) + increase ; 

  

% LFP                = y1 - y2 = y(3)-y(5);   

end 

  

%Y                    = single(Y)'; 

end 
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