

An Energy Efficient non-volatile FPGA Digital

Processor for Brain Neuromodulation

by

Lijuan Xia

A thesis presented for the degree of

Doctor of Philosophy

School of Engineering
Newcastle University, UK

January 2020

 ii

 iii

Abstract

Brain stimulation technologies have the potential to provide considerable clinical benefits for

people with a range of neurological disorders. Recent neuroscience studies have shown that

considerable information of brain states is contained in the low frequency local field potential

(If-LFP; below 5Hz) recordings with application in real-time closed-loop neurostimulation for

treating neurological disorders. Given these signals can be sampled at low sampling rate and

hence provide sparse data streams, there is an opportunity to design implantable

neuroprosthesis with long battery lifecycles which enables enough processing power to

implement long-term, real-time closed loop control algorithms. In this thesis, a closed-loop

embedded digital processor has been created for use in rodent neuroscience experiments. The

first contribution of this work is to develop a mathematical analytical design approach of

feedback controller for suppressing high-amplitude epileptic activity in the neuron mass model

to form a better understanding of how to perform a better closed-loop stimulation to control

seizures. The second contribution and the third contribution are combined to present an

exploratory energy-efficient digital processor architecture built with commercial off-the-shelf

non-volatile FPGAs and microcontroller for sparse data processing of brain neuromodulation. A

digital hardware design of an exemplar PID control algorithm has been implemented on this

proposed digital architecture. A new power computing diagram of this time-driven approach

significantly reduced the power consumption which suggests that a digital combined control

system of non-volatile FPGAs and microcontroller outweighs a digital control system of

microcontroller with microcontroller regarding computing time cost and energy consumption

supposing one microcontroller is always required. Taken together, this digital energy-efficient

processor architecture gives important insights and viewpoints for the further advancements of

neuroprosthesis for brain neurostimulation to achieve lower power consumption for sparse

sampling data rate.

 iv

Acknowledgements

First, I would like to express my wholehearted thanks to my primary supervisor Dr. Patrick

Degenaar throughout the past five years’ research in the United Kingdom. He is a marvelous

researcher and supervisor. I greatly appreciate the time, efforts and dedication of the wonderful

supervision you have given to me. Thanks for being a strong advocate of my work and keeping

my best interest in your mind. It has truly been a rewarding experience to work in your world-

class collaborative neuroprosthesis lab where I got my first taste of research.

I would like to acknowledge my co-supervisors Professor Andrew Jackson and Dr. Graeme

Chester. I cannot find the right words to complement their support and continuous help for me.

Much of what I learned about neuroscientific knowledge came from the many engaging

meetings and discussions I had with Professor Andrew Jackson over my second year PhD. Many

thanks also go to my postgraduate panel Dr. Alex Bystrov for serving as my PhD annual report

panel and providing invaluable feedback.

I’d also like to thank Dr. Geoff Merrett and Dr. Rishad Shafik to be part of my PhD thesis examiner

committee. Your time and dedication to review this thesis are deeply appreciated by me.

My time at Newcastle was absolutely enriched by all the talented researchers I interacted with

on a daily basis. Thank you with all of my heart to all the past and present colleagues in the

Neuroprosthesis lab and the microsystem group, especially Dr.Ahmed Soltan, Dr. Musa Al-

Yaman, Dr. Graeme Coapes, Dr. Jun Luo, Dr. Austin Ogweno, Ms.Rachael Savidis, Dr. Reza

Ramezani, Dr. Fahimeh Dehkhoda and Mr.Dimitrios Firfilionis.

I would also like to thank all the lovely and friendly staff in the School of Electrical and Electronic

Engineering of Newcastle University, especially those technicians who helped me with making

the experimental test of proposed PCBs featured in this thesis possible.

Finally, I’d like to thank all my Newcastle gals who have supported me all the way throughout

the past five years outside the lab environment. You girls are literally a ray of sunshine in my

research life outside the lab environments. Helen Kenny, thanks for keeping me fit on our

morning runs and after-work runs. Hang Xiang, I couldn’t ask for a better friend who I can form

a brain storm with on weekly basis.

My gratitude also goes to my family in Shanghai, who have encouraged and supported me to

finish my PhD work. I am more than grateful that I chose to spend my dynamic young time (22-

27 years) getting closer to the pursuit of truth of science and philosophy.

 v

Hard journey, but I am healthy, happy, more present and grateful than ever.

Thank you from the bottom of my ever-expanding heart for all your support.

And so, Done and Done!

• Gratitude for their great support

Dedication

To my daddy (夏卫东),

Thank you for all your love, effort and continuous

support. You are the best daddy.

To my mummy (陈芳),

Thank you for giving me birth, you are the only and

most lovely mommy I could have.

To my brother (夏晨峰),

Thank you for bringing laugh to my life and keeping

me company, my dearest brother.

 vi

 vii

List of Achievements

Published papers:

• IEEE International conference papers

1. Lijuan Xia, Ahmed Soltan, Junwen Luo, Andrew Jackson, Graeme Chester and

Patrick Degenaar, "Closed-loop Proportion-Derivative Control for Suppressing

Epileptic Seizure in a Neural Mass Model," submitted to IEEE International

Symposium on Circuits and Systems (IEEE ISCAS2019).

2. Lijuan Xia, Junwen Luo, Ahmed Soltan, Andrew Jackson, Graeme Chester and

Patrick Degenaar, "A Rodent Control System for Closed-loop Optogenetic

Stimulation to Suppress Seizures," published in the 18th IEEE Nano Conference (IEEE

Nano2018), 2018, 1-4

3. Lijuan Xia, Ahmed Soltan, Junwen Luo, Graeme Chester and Patrick Degenaar, "A

Flash-FPGA based Rodent Control System for Closed-loop Optogenetic Control of

Epilepsy," published in the 51th International Conference of the IEEE International

Symposium on Circuits and Systems (IEEE ISCAS2018), 2018, 1-5.

4. Lijuan Xia, Nabeel Fattah, Ahmed Soltan, Andrew Jackson, Graeme Chester and

Patrick Degenaar, “A Low Power Flash-FPGA based Brain Implant Micro-System of

PID”, published in the 39th International Engineering in Medicine and Biology

Conference (IEEE EMBC2017), 2017, pp. 8006-8009

5. Ahmed Soltan, Lijuan Xia, Andrew Jackson, Graeme Chester and Patrick Degenaar,

“Fractional Order PID System for Suppressing Epileptic System”, published in 4th

IEEE International Conference on Applied System Innovation(IEEE ICASI 2018)

Under Review Manuscript:

• IEEE Journal Paper

I. Lijuan Xia, Ahmed Soltan, Junwen Luo, Andrew Jackson, Graeme Chester and Patrick

Degenaar, " An Energy-efficient Reconfigurable Closed-loop Processor for Sparse Data

Processing of Brain Neuromodulation," Submitted to IEEE Transactions on Biomedical

Circuits and Systems. (preparing for resubmission)

PhD Research Awards

 viii

I. Doctoral Training Awards Conference, School of Engineering, Newcastle University,

23/24 April 2017, best poster awards and best presentation awards.

II. Doctoral Training Awards Conference, School of Engineering, Newcastle University,

23/24 April 2018, best presentation awards.

III. Newcastle University Doctoral Training Awards (2014-2018).

IV. Newcastle University Oversea Research Scholarship (2014-2017).

International and local Symposium

I. School of Electrical and Electronic Engineering, Newcastle University, Annual Research

Conference 23/24 January 2015, poster.

II. School of Electrical and Electronic Engineering, Newcastle University, Annual Research

Conference, 21/22 January 2016, (Oral Presentation – 12 minutes).

III. School of Electrical and Electronic Engineering, Newcastle University, Annual Research

Conference, 21/22 January 2017, (Oral Presentation – 12 minutes).

IV. Lecture Presentation in The International Symposium on Circuits and Systems

(ISCAS2018, Italy, Florence) , (Oral Presentation – 15 minutes).

V. Poster Presentation in The IEEE Nano conference (IEEE nano 2018, Ireland, Cork)

• Group presentations

28 lab presentations to the biomedical lab group.

 ix

List of Acronyms

 Magnetic Flux

µ Permeability

µLED Micro Light-Emitting Diode

AP Action Potential

ADR Average Detection Rate

ALU Arithmetic Logic Unit

AM Amplitude Modulated

AED Anti-epileptic Drugs

ASK Amplitude Shift Keying

BGA Ball Grid Array

BLE Bluetooth Low Energy

BPSK/QPSK Binary/Quadrature Phase Shift Keying

CANDO Controlling Abnormal Network Dynamics Using Optogenetics

CCK Complementary Code Keying

CCS Current Controlled Stimulation

ChR2 Channel-Rhodopsin 2

COFDM Coded Orthogonal Frequency Division Multiplexing

CRC Cyclic Redundancy Check

DBS Deep Brain Stimulation

DC Direct Current

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

DSP Digital Signal Processing

EEG Electroencephalogram

EI Epileptogenicity Index

FIR Finite Impulse Response

FDA Food and Drug Administration

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

FP False Positive

FN False Negative

IC Integrated Circuit

ICA Independent Component Analysis

 x

TP True Positive

TN True Negative

JPEG Joint Photographic Experts Group

JTAG Joint Test Action Group

KDS Kinetis® Design Studio

LFP Local Field Potential

MCU Microcontroller

M-QAM M-Ary Quadrature Amplitude Modulation

MSE Mean-Square Error

N Number of Turns

NMM Neural Mass Model

NI National Instrument

NORD National Organization for Rare Disorders

OCD Obsessive Compulsive Disorder

Optrode Optical Probes

PCA Principle Component Analysis

PCB Printing Circuit Board

PD Proportional Derivative

PID Proportional Integral Derivative

PCB Printing Circuit Board

PCB Printing Circuit Board

PID Proportional Integral Derivative

SAR Specific Absorption Rate

SLA Stereo lithography Apparatus

STL Stereo Lithography

SoC System on Chip

UPS Uninterruptible Power Supply

UWB Ultra-Wideband

VHSIC Very High-Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

VNS Vagus Nerve Stimulation

USEA Utah Slanted Electrode Array

WHO World Health Organization

WPT Wireless Power Transfer

 xi

Relative contribution

This table shows the joined efforts between me and our teammates who are involved in Control

Abnormal Neuron Dynamics by Optogenetics (CANDO) projects from 2014 to 2018. They

contributed to this PhD research projects either by providing research insights or by technical

assistance.

Component Type Correspondents Comments

FPGA PCB Board

Design
Hardware Miss Lijuan Xia Altium Designer

MCU PCB Board

Design
Hardware Miss Lijuan Xia Altium Designer

FPGA FSM Master

Implementation
Software

Miss Lijuan Xia and

Mr. Dimitrios Firfilionis

(jointly)

VHDL

(Microsemi Libero)

C++

(Kinetis Design Studio)

FPGA FSM Slave

Implementation
Software

Miss Lijuan Xia and

Mr. Dimitrios Firfilionis

(jointly)

VHDL

(Microsemi Libero)

C++

(Kinetis Design Studio)

PID Algorithm

Implementation
Software Miss Lijuan Xia

VHDL

(Microsemi Libero)

C++

(Kinetis Design Studio)

Matlab

 xii

Optical Algorithm

Implementation
Software

Miss Lijuan Xia and Dr.

Patrick Degenaar

(jointly)

VHDL

(Microsemi Libero)

C++

(Kinetis Design Studio)

Matlab
Black Box Design

and Fabrication
Hardware

Miss Lijuan Xia and

Mr. Jeffrey Warren

(jointly)

Technician

GUI Design for

communicating

with Black Box

GUI Miss Lijuan Xia Matlab

Experimental

Testing

Experimental

Testing
Miss Lijuan Xia

1.Power Supply:

Keysight E3648A Dual

Output DC Power Supply

2.Current Multimeter:

Keysight 34460A Digit

Multimeter

3.Oscilloscope:

Agilent Technologies MSO-

X 4034A Mixed signal

oscilloscope

4.Waveform Generator:

Keysight 33500B Series

Waveform Generator

5.Power Analyzer:

Agilent Technologies

N6705B DC Power Analyzer

 xiii

Contents

Chapter 1. Introduction ... 15

1.1 Motivation...15

1.2 Current commercial neurostimulator review ...16

1.3 Contribution and organisations..18

1.4 Thesis outline ..19

Chapter 2. Medical background and literature review ... 20

2.1 Chapter overview ..20

2.2 Overview of current neurostimulation methodology ...21

2.3 Proposed next generation neuroprosthesis ...30

Chapter 3. Closed-loop control in the brain models ... 32

3.1 Chapter overview ..32

3.2 Modelling epileptiform activity ..33

3.2.1 Jansen’s neural mass model ..33

3.2.2 Model parameter choice ...37

3.3 Closed-loop feedback control ..42

3.3.1 Proportional-derivative control of neuron mass model (PD-NMM)..........................42

3.3.2 Proportional-integral control of neural mass model (PI-NMM)46

3.4 Results and analysis ...48

3.4.1 Closed-loop PD-NMM simulation ..48

3.4.2 Closed-loop PI-NMM simulation ...54

3.5 Controller design for proposed algorithms ...58

3.6 Conclusion ...59

Chapter 4. Algorithm Hardware Implementation ... 62

4.1 Chapter Overview ..62

4.2 Hardware Comparison ...63

4.2.1 FPGA Overview ...64

4.2.2 MCU Overview ..67

4.2.3 Comparison between MCUs and non-volatile FPGAs ...68

4.3 PD Algorithm Implementation ...76

4.4 Conclusion ...83

Chapter 5. Closed-loop Energy-Efficient Digital Processor .. 85

5.1 Chapter Overview ..85

5.2 System Architecture ..86

5.3 Processing Flow ...89

 xiv

5.3.1 PID Control Algorithm ... 89

5.3.2 Optical Converter ... 90

5.3.3 Digital Neural Interface ... 92

5.3.4 nvFPGA Version Implementation .. 95

5.3.5 Microcontroller implementation .. 96

5.3.6 System Integration FF Design .. 97

5.4 Results and Analysis .. 99

5.4.1 Algorithm Verification .. 99

5.4.2 Flash Freeze Verification ... 105

5.4.3 Power Measurement Results .. 107

5.5 Conclusion .. 112

Chapter 6. Conclusion ... 115

6.1 Original Contributions ... 115

6.2 Future Work .. 116

6.3 Concluding Remarks .. 118

 15

Chapter 1. Introduction

1.1 Motivation

In recent decades, millions of people have been affected by epileptic seizures, and this

number continues to rise [1] [2]. With accelerating progress in responsive

neurostimulation research, there has been a growing interest in developing closed-loop

implantable neurostimulators aiming to treat drug-resistant epilepsy. Most existing

implantable devices apply sensor probes to record brain activities (EEG, LFP, MCG etc.)

[3] [4]. Moreover, these neurostimulators’ control units have been designed to interface

with recording sensor probes to deliver stimulation inside the brain to help control

epileptic neurons [5] [6]. One of the most successful commercial devices to date, the

Neuropace responsive stimulator, attempts to analyse brain recordings in order to

detect seizure patterns prior to seizure intervention by delivering electrical charges. This

technology is defined as supervised open loop stimulation [7]. The weakness of the

supervised open loop stimulation strategy is that seizure detection accuracy has a direct

effect on the stimulation performance. In other words, any false alarms generated by

the seizure detection algorithms will lead to false stimulations which can cause potential

security issues [8]. Hence, the open research question arises: how to determine real-

time closed-loop control algorithms to help suppress seizures, and how to implement

the proposed control algorithms into battery-powered hardware devices with flexible

reprogrammability for epilepsy treatment research.

However, most published closed-loop controller design work are mathematical

modeling-based [9], [10], [11]. And hence it is difficult to map those algorithms in

wearable or implantable hardware devices with a reasonable power consumption. Even

though engineers are capable of attemping to map complicated and sophisticated

supervised open loop algorithms and closed-loop control algorithms in

implantable/wearable devices, it will lead to a certain level of power-hungry design with

limited reprogrammability [12], [13]. This can cause a series of issues for implantable

devices, as most implantable neurostimulators are typically required to operate on the

limited power budget of a wearable battery and desire reprogrammability during the

neuroscience experiment tests. These results demonstrate that a simple closed-loop

 16

reprogrammable control algorithm is needed for hardware designs in the closed-loop

neuroprosthesis to help treat epilepsy to further benefit biological experiments.

In this thesis, in order to help answer the open question, we shall study the feasibility of

this next generation low-power neurostimulators’ implementation to deliver closed-

loop stimulation for controlling seizures. We will focus on the theoretical exploration of

a feasible closed-loop control algorithm to suppress seizures, and propose the feasibility

of mapping the proposed algorithm into a digital controller with limited power

consumption.

1.2 Current commercial neurostimulator review

The first FDA clinically-proven implantable device for epilepsy treatment is the Vagus

nerve stimulation device (VNS) [14]. A VNS device is a small electrical device similar to

a pacemaker which is placed under the skin of the chest for delivering bursts of

electricity. The electrical charge is sent to a probe in the Vagus nerve which can help

change the electrical signals in the brain. A VNS device operates on a wearable battery

and develops open-loop stimulus by delivering a fixed frequency electrical pulse.

However, the VNS device cannot cure epilepsy fundamentally, and can only help make

epilepsy symptoms less severe and less frequent. Hence, the most recent widely

reported therapy is responsive neurostimulation (RNS)[15]. The RNS system is a device

or stimulator which is surgically placed on the bone covering the brain. The stimulator

delivers small pulses of stimulation to the implanted brain area whenever abnormal

brain activity is detected by seizure detection algorithms. The RNS system has been

clinically proven to reduce seizures and improve patients’ life quality in some cases. RNS

was approved by the U.S. Food and Drug Administration (FDA) in 2013.

In recent years, there have been efforts to advance the current existing open loop brain

stimulation towards a closed-loop brain control system which can deliver therapeutic

modulation as well as providing fixed frequency stimulations [16]. The main efforts of

the closed-loop control systems can fall into two categories: low power hardware

architecture and closed-loop control algorithms to suppress seizures.

From a hardware perspective, neuroengineers have made extraordinary strides in

integrating sophisticated specific integrated circuits consisting of basic electronic

elements such as transistors, resistors and capacitors onto tiny silicon chips for implant

 17

surgery in a low power, low thermal, and small sized manner[17] [18] [19]. Recent

progress in neuroprosthesis research has led neuroengineers and neuroscientists to

record brain activity of electroencephalograms (EEG) [20] and local field potential (LFP)

[18], analyse the recordings and deliver subsequent treatments in real-time by means

of closed-loop control systems [21]. Implantable silicon chips have been reported to

perform electrical recordings, multichannel recordings with activity extraction, electrical

stimulation and optical stimulation [22].

From an algorithm modelling perspective, closed-loop controllers for suppressing

epileptic seizures have been proven to be a promising strategy for suppressing seizures.

Proportional algorithms have been used to control seizure amplitude in rats. Integral

control is employed to provide feedback for the charge-balanced suppression of seizures

[23]. Differential control models are used to eliminate activity in a theoretical math

model of human cortical and electrical activity [24]. However, there are two weakness

to the above algorithm work. One is that for closed-loop PID based algorithm work, the

control parameters are suggested or picked up based on the designers’ experience with

a ‘trial and error’ approach. Secondly, most of the algorithms are theoretical modelling-

based and do not have a feasible hardware implementation for applying them in

controlled rodent neuroscience experiments.

To conclude, the most common way to understand how neuron network works is to do

electrical physiological recordings and picking up the electrical signals generated by the

neurons. Recent neuroscience efforts report that considerable information about the

brain’s state is contained in low-frequency local field potential recordings in real-time

closed loop neurostimulation for neurological disorders [25]. Given that these recording

signals can be sampled at low rates thus providing a sparse data stream, there is an

opportunity for bioengineers to design implantable neuroprosthetics with long battery

lifecycles and sufficient processing power to implement a long-term, real-time and

closed loop control algorithm. The key objective of this research project is to explore the

next generation of embedded optogenetic-optoelectronic brain implants for application

in controlled rodent neuroscience experiments. Hence once a device is created, it can

be used to explore and generate stimulus for the modulation of in-vitro epileptic activity

using closed-loop stimulation in rodent brain slices.

 18

1.3 Contribution and organisations

This thesis concerns how to build the next-generation of energy-efficient digital

processors for low-sampling-rate data processing to deliver neurostimulation to

targeted neuron networks. The major contributions of this thesis are listed as follows:

1. The closed-loop PD control framework in brains: The first advancement that we

have proposed is an analytical approach to closed-loop Proportional-Derivative

(PD) control that can be applied to determine the stimulation parameters for

suppressing high-amplitude epileptic activity in a neural mass model. This allows

us to explore the relationship between the model parameters of inducing

seizures and the PD feedback controller parameters of stabilising seizures which

helps develop a better understanding of how best to suppress epileptic seizure

activity by applying closed-loop stimulation. This computational modelling work

parallels the in vitro closed-loop optogenetic stimulation experiments.

2. The comparison efforts between different digital platforms (MCUs and FPGAs).

A comparison study of non-volatile FPGAs was conducted and shows some

extinct properties compared to other digital platforms (MCU, GPU, DSP etc.).

Hence, another contribution is the feasibility study of flash-based FPGAs for this

application by comparing FIR filter implementations on a microcontroller and an

FPGA.

3. The energy efficient digital processor design: A rodent wearable digital

processor has been built using a commercial off-the-shelf non-volatile FPGA and

microcontroller platform for low-sampling-rate data processing. Taking

advantage of the distinct flash freeze mode of non-volatile FPGAs, a co-processor

MCU can be programmed to send a pulse to a non-volatile FPGA to enable

entering and exiting an ultra-low power flash freeze (sleep) model to save on

energy consumption (8.032uA). A new power computing diagram based on non-

volatile FPGAs and microcontroller architecture have been integrated onto a

2.5cm x 2.5cm PCB board.

 19

1.4 Thesis outline

Following the thesis motivation is constructed as follows:

Chapter 2: Medical background and literature review. This chapter reviews the relevant

background and state-of-the-art optogenetic implants for brain neurostimulation.

Firstly, the medical background of epilepsy seizures is introduced, followed by a review

of epilepsy treatments. The focus then moves onto reviewing and comparing the current

progress of neuroprosthesis for seizure control. Finally, the hardware implementation

publications of neuroprosthesis are justified.

Chapter 3: Closed-loop control of the brain. This chapter presents an analytical

approach to closed-loop PID controls to determine stimulation parameters inside the

stabilisation area for suppressing high amplitude epileptic seizure activity generated by

a neural mass model. The model suggests that the PID control algorithm with

appropriate PID parameter settings within the stabilisation area can help control high

amplitude epileptic activity generated from a neural mass model. This chapter then

details the possible feasible design of optimised hardware implementation of the

proposed PID control algorithm.

Chapter 4: System implementation. This chapter depicts the system implementation of

the proposed algorithm developed in chapter 3. Different digital hardware platforms

have been compared from different prospects, then an optimized PID control algorithm

has been presented in chapter 4.

Chapter 5: Energy efficient digital processor case study. This chapter details a low

power digital processor built by non-volatile FPGAs and MCU chips for this low-

sampling-rate data processing. Then an energy-efficient reconfigurable closed-loop

processor has been employed to interface with an implantable device to carry electrical

recordings and optogenetic stimulation for brain neurostimulation.

Chapter 6: Conclusion. Chapter 6 summarizes the main work of the thesis and concludes

the contribution of the thesis. Future work is also presented in this chapter.

 20

Chapter 2. Medical background and literature review

2.1 Chapter overview

In recent decades, responsive neurostimulation has been recognized as potential great

potential alternative to help treat drug-resistant epilepsy (DRE). The key challenge of

how to build a highly portable and reliable integrated neural interface with more

responsive control algorithms for seizure suppression is still an open question. In other

words, how can we best design intelligent algorithms for seizure suppression and map

those proposed control algorithms into battery-powered hardware platforms before

scientists can apply this promising technology for further commercialization.

Mathematicians and neuroscientists are working on designing more intelligent

responsive neurostimulation algorithms to deliver stimulation strategies to achieve

better experimental results. Electrical engineers are currently working towards

designing lower power consumption electrical systems to deliver stimulations within a

battery powered device. In recent years, there have been joint efforts between

mathematicians and neuroscientists to investigate different control algorithms to

deliver neurostimulation to treat epilepsy. This includes supervised open loop

stimulation algorithms and closed-loop stimulation algorithms. Supervised open loop

stimulation can detect seizures before they happen or even predict seizure patterns

based on real-time recordings [26]. Once seizure patterns are detected or predicted, this

responsive neurostimulation system can deliver an electrical stimulation or other

stimulation method to stop the seizures. Closed-loop control algorithms refer to

continuous closed-loop control in order to stabilise network dynamics and prevent the

development of seizures [27]. From a hardware perspective, engineers are working on

system-level designs of miniaturised, low-power neural interface implementation of

supervised open loop algorithms and closed-loop control algorithms to generate real

time stimulation for seizure suppression [28]. However, implementing a highly portable

and reliable integrated neural interface is still an open question. This chapter is designed

to provide a systematic review of neurostimulation methods for seizure suppression

from an algorithm perspective and hardware perspective. Hence, we shall explain where

the research opportunities lie in the field of closed-loop digital controllers to implement

 21

closed-loop algorithms.

Section 2.2 will review the neurostimulation in detail, and section 2.3 will provide a

systematic review of hardware. Section 2.4 will conclude this chapter and offer an

outlook for the following chapters.

2.2 Overview of current neurostimulation methodology

Epileptic seizures can be defined as a neurodisorder disease inside the brain

characterised by an enduring predisposition to having seizures [29]. There are about 30

different epileptic seizure syndromes which can be subdivided into three main

categories: spreading seizures, widespread seizures and focal seizures. Focal onset

seizures refer to partial seizures, meaning a seizure only happens in one area of the brain.

In this project, we are mainly interested in studying neurostimulation strategies to help

treat focal onset seizures. In the rest of this thesis, we will refer to focal onset seizures

by using the term “seizures”. Figure 2.1 shows a 10-second pre-recording dataset plot

of seizures onsets in the brain cortex of a rodent.

Figure 2.1: Seizure onset local field potential recordings from a rat’s cortex lasting 10

seconds. The dataset was provided by Professor Andrew Trevelyan from the Institute of

Neuroscience at Newcastle University, recorded in Trevelyan’s lab in 2015.

For most epilepsy patients, seizure treatment starts with medication. For drug-resistant

 22

epilepsy patients, a combined analysis (EEG, computerized tomography, magnetic

resonance imaging etc.) is used to diagnose the specific seizure type for patients and

where is the potential seizure onset area [30]. An accurate diagnosis of a patient’s

seizure conditions gives patients the best opportunity for effective treatment.

Early stage seizure control can be achieved by applying appropriate stimulation

technologies to seizure onset networks using implantable microelectronics. Researchers

have made promising progress with three commercially-produced biomedical

neurostimulation devices for epilepsy treatments: Deep Brain Stimulation (DBS) [31],

Vagus Nerve Stimulation (VNS) [32], and Responsive Neurostimulation System (RNS)[33].

I. Vagus Nerve Stimulation (VNS)

VNS can be defined as a medical treatment process that involves the implantation of a

battery-powered device underneath the skin of a patients’ chest, which delivers

electrical stimulation to the Vagus nerve. A second small incision is made in the neck to

attach two tiny wires to the Vagus nerve. The wires are threaded invisibly up the neck

from the device to the Vagus nerve. Bursts of electricity are sent via the wire to the

Vagus nerve. For epilepsy treatment, these electrical pulses are delivered to the Vagus

nerve affecting where seizures are assumed to start in the brain and may help to prevent

abnormal electrical activity.

II. Deep Brain Stimulation (DBS)

DBS is a neurosurgical procedure which involves the surgical implantation of an invasive

device into the brain for delivering electrical stimulation into a targeted area of the brain.

Bursts of electricity are sent along wires which can help to prevent seizures by changing

electrical signals in the brain.

III. Responsive Neurostimulator System (RNS)

RNS is also the world’s first implanted neurostimulator for epilepsy approved by the US

Food and Drug Administration (FDA) for clinical use. The main RNS system is a small

implantable device that is adjustable and reversible. It is tailored to different patient

cases regarding where it is placed and how it is used. RNS mainly involves a device

(stimulator) placed inside the skull. Tiny wires and leads are placed on the seizure focal

onset area for delivering stimulus. The main RNS devices analyse brain activity patterns

 23

to detect seizure patterns before they happen and deliver an electrical charge or drug

to stop seizures.

Table 1 : A general overview of VNS, DBS, and RNS [34]

Categories Figure Demonstration Hardware Structure

VNS

typical 50% improvement on 75%

of patients

First approved: 1994

Stimulus target: vagus nerve

Stimulus strength: 0.25-2mA

Stimulus frequency: 30Hz

Duty cycle: 30second on, 5 mins off

DBS

85% (of total cohort of 40 children)

saw reductions, some up to 100%

with an overall 78% reduction

Stimulus target: thalamus

Stimulus strength: 2mA

Stimulus frequency: 130Hz

Duty cycle: 90-450 us on,

RNS

data not shown yet

First approved: 2013 (pre market)

Recording target: cortical surface

above seizure focus

Stimulus target: seizure focus

Stimulus strength: 3mA (0.5-12mA)

Stimulus frequency: 100/200Hz

Duty cycle: 169 us on, 100 ms off

Tables 1 compares the three main epilepsy treatment methods. Besides AED treatment

and dietary treatment, the main treatments for epilepsy can be generally divided into

the following categories, specifically the commercial biomedical neurostimulation

devices DBS, VNS and RNS can be described as follows:

 24

I. Deep Brain Stimulation (DBS)

DBS is a neurosurgical procedure which involves the implantation of an invasive device

by surgery into the brain for delivering electrical stimulation into the targeted area of

the brain. DBS can be also seen as an alternative supplementary treatment where a part

of the brain can be stimulated to stop symptoms of the condition. Bursts of electricity

are sent along wires which can help to prevent seizures by changing electrical signals in

the brain. The DBS approach can also be employed to control a variety of debilitating

neurological diseases (essential tremor, Parkinson’s disease, obsessive compulsive

disorder, epilepsy etc.).

Figure 2.2: It shows a simplified schematic of a DBS system implanted in the body of a

human being from Massachusetts General Hospital’s website. It contains an electrode,

a lead and a generator. The electrode is implanted inside the brain and the generator is

implanted in the chest. Brain surgery is required for DBS systems. All parts of the device

are subdermal.

For DBS treatment, brain surgery is necessary for fitting the device into patient’s brain.

Figures 2 -2 demonstrate the procedures involved in deep brain stimulation surgery:

1) Part 1: the electrode:

A thin, insulated electrode is put through small openings (incisions) on top of the

skull for reaching the epileptic seizure onset area to deliver electrical stimulus to

the target site [35].

 25

2) Part 2: the wire:

An insulated wire is passed under the skin of the head, neck and shoulder to

connect the electrode to the neurostimulator [36].

3) Part 3: the implanted pulse generator:

A battery-powered neurostimulator (pulse generator) is placed under the skin

near the collarbone to send off electrical pulses to the brain that interfere with

the neural activity at the target site [37].

Possible side effects of DBS approach include the following:

1. Wound infection after the operation

2. Complications if the device malfunctions

3. Complications after the surgery, such as bleeding in the brain

4. An increase in symptoms of depression and anxiety

Efficacy of DBS:

Recent trials show a modest improvement in seizure reduction, about a 15% reduction

of seizure onset frequency [38].

II. Vagus Nerve Stimulation (VNS)

VNS can be defined as a medical treatment process that involves the implantation of a

device which delivers electrical stimulation to the Vagus nerve. It can be viewed as a

supplementary treatment alternative for treating intractable epilepsy. In addition, VNS

can also be used to treat drug-resistant depression which does not respond to typical

depression therapies. Nowadays, scientists and researchers are investigating applying

VNS as a potential supplement treatment for a variety of conditions (multiple sclerosis,

headaches, pain and Alzheimer’s disease).

The Vagus is the tenth cranial nerve and arises from the medulla that carries both

afferent and efferent fibres. The afferent Vagus fibres connect to the nucleus of the

solitary tract which connects to the central nervous system. In conventional Vagus nerve

stimulation approaches, the general procedure is to put a small generator similar to a

matchbox-size pacemaker under the skin below the left collarbone. A second small

incision is made in the neck to attach two tiny wires to the Vagus nerve. The wires are

threaded internally up the neck from the device to the Vagus nerve. Bursts of electricity

 26

are sent via the wire to the Vagus nerve. For epilepsy treatment, these electrical pulses

are delivered to the Vagus nerve affecting where seizures are assumed to start in the

brain, and can help to prevent abnormal electrical activity. This device then sends

impulses to the brain to prevent the electrical activity which causes seizures.

Figure 2.3: It shows a simplified schematic description of VNS systems implanted in a

human body, as shown on a VNS Therapy Website. It contains an electrode, a lead and

a generator. The electrode is implanted in the Vagus nerve and the generator is

implanted in the chest. AspireSR is the first and only VNS therapy that provides

responsive stimulation. Brain surgery is not required for VNS treatment.

For VNS treatment, brain surgery is not necessary. There are two major electrical

devices in the VNS therapy shown in Figure 2.3:

1) Part 1: the lead wire

The lead wires from the generator are tunnelled up through a patients’ neck and

wrapped around the left Vagus nerve for delivering electrical stimulus to the

Vagus nerve [39].

2) Part 2: the generator

An implantable electrical device (similar to pacemaker) is implanted under the

skin below the left collarbone [40].

Possible problems caused by the VNS system are as follows:

 27

1. Coughing

2. Headaches

3. Neck pain

4. Sore throat

5. Difficulty breathing

Efficiency of VNS:

Recent publications show that VNS offers a mean seizure reduction of 28% for patients,

with 23% of patients having reduction in seizure frequency over 50%.

III. Responsive Neurostimulator System (RNS)

Responsive Neurostimulator System, also known as RNS therapy, is the world’s first

implanted neurostimulator for epilepsy treatment to be approved by the US Food and

Drug Administration (FDA) for clinical use. The main RNS system is comprised of a small

implantable device that is adjustable and reversible. It is tailored to different patient

cases regarding where it is placed and how it is used. The RNS device is similar to a heart

pacemaker, but instead it can monitor brain waves and respond to seizure-like brain

activity. RNS mainly involves a device (stimulator) placed under the skull. Tiny wires and

leads are placed on a seizure focal onset area for delivering stimulus. Based on the RNS

control algorithms, the main RNS devices generate small pulses or bursts of stimulation

to the brain when abnormal brain activity is detected. The systems can help to stop

seizures before the actual seizures spread [41]. The RNS procedure is reversible and can

be turned off or taken out if it does not work.

 28

Figure 2.4: A simplified schematic description of RNS systems implanted in a human body,

as demonstrated on the NeuroPace RNS website. It displays an electrode, a lead and a

generator. An electrode and a generator are implanted inside the skull [42]. Brain

surgery is required for RNS systems.

The main RNS system is composed of three parts:

1) Part 1: the electrode

The electrode lead is placed under the skull.

2) Part 2: the wire

The tiny wire is fed under the skin.

3) Part 3: the stimulator

 The stimulator is placed in one or two places on top of the skull where the

epilepsy activity might occur according to different patients.

The RNS system continuously monitors brain activity and aims to generate electrical

stimulus when seizure patterns are detected. The main procedures shown in Figure 2.4

are listed as follows:

1. Step 1: Monitor

The RNS system records brain activity in real-time.

2. Step 2: Detect

 29

 The RNS system is programmed to recognise unusual or abnormal electrical

activity which might lead to seizures.

3. Step 3: Response

Once abnormal brain activity is recognised, the system will respond to the

neuron network by delivering pulses of electrical stimulation. The objective

is to help bring the brain’s electrical activity back to its normal state.

The challenges of RNS are:

1. Identifying patients who would benefit from the RNS system.

2. Identifying how best to treat these patients with the optimal stimulation

strategy.

Efficacy of RNS:

Recent clinical report results show that the median frequency reduction was 56%, and

the mean reduction was 43% - 100%. Observation of this study suggests that automated

seizure detection positively affects electrographic seizure activity. However, this study

is still the preliminary phase of trials [43] .

The specification of three responsive neurostimulation systems for controlling epileptic

seizures are listed in the following table 2.2. A comparison between DBS, VNS and RNS

has also been presented from both clinical and engineering perspectives. Furthermore,

a more general comparison of two different categories of epilepsy treatment (brain

resection surgery and neurostimulation devices) is presented in table 2.3.

Table 2.2 illustrates that brain responsive stimulation can provide great hope for

patients with medically resistant epilepsy for reducing their seizures. The main challenge

for biomedical engineers is how to use integrated circuit technology to create safe,

robust and smaller responsive closed-loop electrical devices (such as neural interfaces,

brain implants, brain machine interfaces etc.).

• Robust: Robust refers to low noise, low power consumption, reliable, high

performance and high-security in general [44].

• Smart: Smart refers to how a device can listen to neurons, understand neurons

and extract information accordingly, then transmit the data out and

simultaneously stimulate the neurons by feedback control algorithms [45].

 30

A comparison between our neurostimulation systems and other existing

neurostimulation systems has been listed in table 2.4 from recording, stimulation

perspectives.

Table 2.2: Comparison of Closed-loop Control Systems in our work.

Treatment Neural

Recording

Optogenetic

Stimulation

Details

VNS

Yes

Yes

No

Open Loop Stimulation of Vagus

Nerves

DBS

Yes

No

Open Loop Stimulation of Focal

Onset Neurons

RNS

Yes

No

Electrical recording for seizure onset

area, open loop electrical

stimulation near seizure onset area.

Our Work

Yes

Yes

Continuous closed-loop ontogenetic

intervention for ongoing discharges

of characteristic of seizures

2.3 Proposed next generation neuroprosthesis

Epilepsy has been widely recognized as an induction in normal brain activity under

various trigger conditions in neural networks, in rats and humans [46] [47] . References

[48] describe several neural mass network models for studying dynamic mechanisms of

neocortical focal seizures from different perspectives of computational modelling and

system theory . Publication [49] demonstrates that abnormal values of the external

input can generate high amplitude epileptic activity in the Jansen's neural mass model

(the Jansen's NMM). Closed-loop controllers have been reported to connect stimulation

input with correspondingly-generated local field potential to achieve local suppression

of epileptic activity in neural networks [11] [50] . Over the last decade, researchers have

made extraordinary progress in the development of PID type controllers to stabilize

various epileptic seizure activities in neural mass models and brain tissue in the field of

 31

control engineering. Wang et al [51] proposes a proportional-integral controller to

generate a real-time feedback to help stabilize the high-amplitude epileptic signal

generated by the Jansen’s neural mass model.

Chapter 3 applies a proportional-derivative controller to provide feedback for

suppressing high amplitude epileptic activity in the Jansen's NMM. The objective of

chapter 4 is to implement a physical PD controller incorporating with the ASIC neural

interface to suppress epileptic seizures in real neuroscience experiences by tuning

proper gain parameters. In chapter 5, we also compared the PD algorithm optimized for

microcontroller and FPGA architecture implementation and the total power

consumption compared over respective wake-up and sleep processing cycles. The

described result is not immediately obvious. We used one of the most highly efficient

microcontroller currently available for this task which uses the 28nm technology node.

In contrast, the nvFPGA available to us uses the 90nm technology node. Also, recursive

functions and ring buffers are more easily implemented on a general-purpose processor

than a FPGA. Nevertheless, we demonstrated the proof-of-concept that the nvFPGA is

more energy-efficient for low-level closed-loop processing than microcontrollers.

 32

Chapter 3. Closed-loop control in the brain models

3.1 Chapter overview

The final section of the previous chapter reviewed recently published efforts in neuron

mass computational models. In this chapter, a closed-loop computational modelling

study will be presented to describe the model-dependent feedback modulation of

epileptic activity with stimulation intervention. This mathematical work mainly focuses

on computational modelling that parallels in vitro closed-loop optogenetic stimulation

experiments, shown in figure 3.1.

Figure 3.1: High-level schematic diagram of closed-loop control of brain activities from

the perspective of computational modelling and in-vitro experiments. In computational

modelling blocks, the plant is the neural mass model for describing the experimentally

observed ongoing seizure-like brain activities. The controller is used to suggest potential

control algorithms interacting with neuron mass models to describe the output of closed-

loop control in the brain.

The overall goal of both this modelling work and in-vitro experiments is to demonstrate

that closed-loop stimulation with biologically plausible parameterisation settings can

alter ongoing epileptic activity in vitro. The purpose of the modelling work in this chapter

is to explain the experimental observations of how the pathological electrical recording

 33

activities are controlled through stimulation by setting up proper control parameters

[52].

In the following sections of this chapter, an abstract neural mass model will be

introduced in section 3.2, followed by the methodology of closed-loop feedback control

to intervene in neural mass model activity in section 3.3. Section 3.4 describes the

simulation results and analysis of how pathological activity is altered through

stimulation by altering the control algorithm parameters.

3.2 Modelling epileptiform activity

3.2.1 Jansen’s neural mass model

Figure 3.2: A simplistic schematic and block diagram of the neural mass model. (a) An

approximation of all mini-columns to be 50µm* 50 µm in size where ‘E’ and ‘I’ mean

excitatory and inhibitory subpopulations which can be modelled by a Wilson-Cowan E-I

unit [48]. (b) A closed-loop block diagram of an exemplar feedback controller feeding to

the Jansen's NMM.

Epilepsy has been widely recognised as the induction in normal brain activity under

various trigger conditions in neuron networks, from rats to humans. Several neuron

mass network models have been studied using dynamic neurological mechanisms to

generate neocortical focal seizures similar to the experimentally observed ongoing

 34

seizure signals [53]. Jansen’s neuron mass model is featured at the interaction of the

interlinked excitatory and inhibitory feedback loops and synaptic connection intensities

[54]. Previously published work has described that abnormal values of external input

and the connection intensities between excitatory and inhibitory populations can

generate high-amplitude oscillations in Jansen's neural mass model (Jansen's NMM)

which represent seizure-like epileptic signals [55], [56]. The most recent reported

bifurcation studies found that the imbalance of the excitatory population and inhibitory

population connectivity in Jansen’s NMM will generate high amplitude epileptic seizure

signals [46]. Hence, we have applied Jansen’s NMM as a test bench to different closed-

loop controllers to tune appropriate biologically plausible parameterisations for

delivering feedback as stimulation to intervene epileptic signals in the Jansen’s NMM

(For simplicity, Jansen’s NMM will be adopted in the reminder of this chapter).

In this chapter, Jansen’s NMM is proposed to describe the experimentally observed

ongoing electrical recording of targeted neuron network. To be specific, we used a

simplified Jansen neural mass model to describe the experimentally observed ongoing

activity including epileptiform spikes and discharges. Neural population models show

the activity of neuronal tissue in terms of average activity (either firing activity or field

potential) of populations of neurons. Generally, principal excitatory neurons are

grouped into one population, and inhibitory neurons are grouped into another

population [57], [58]. Overall, this results in a system of two ordinary differential

equations describing neuron network activity. Such an abstract approach means that we

disregard spatial variations in activity. This is justified, as we observed less spatial

variation in the dynamics across different channels. Such an approach has been shown

to be sufficient to capture the most epileptiform dynamics observations in vitro and in

vivo. Thus, a simple neural population model is the most cost-effective choice for a

computational model which does not require an explicit assumption and is

mathematically easy to work with.

 35

Figure 3.3: Block diagram of Jansen's NMM in which blue and yellow blocks

mathematically detail excitatory and inhibitory subpopulations of the neural mass model.

This also presents an approximation of all mini-columns to be 50µm* 50 µm in size where

‘E’ and ‘I’ signify excitatory and inhibitory subpopulations in cortical tissue.

In figure 3.3, a simplified Jansen's NMM has been detailed as a neurophysiologically-

inspired mathematical model by a population of 'feed-forward' pyramidal neurons,

receiving inhibitory and excitatory feedback from local interneurons.

Figure 3.3 describes each of the neuron populations as two blocks of 'E' and 'I' which

represent excitatory and inhibitory subpopulations. Figure 3.3 divides Jansen's NMM

into three interacting subpopulations:

1) Subpopulation 1 represents excitatory feedback subpopulations,

2) Subpopulation 2 represents inhibitory feedback subpopulations,

3) Subpopulation 3 is the main subpopulation.

In subpopulation 1, C1 and C2 represent the average numbers of synaptic contacts in

the excitatory feedback loop, while in subpopulation 2, C3 and C4 are the average

numbers of synaptic contacts in the inhibitory feedback loop. Excitatory synaptic

dynamic function ℎ𝑒(𝑡) and inhibitory synaptic dynamic function ℎ𝑖(𝑡) linear systems

transform the average postsynaptic membrane potential. ℎ𝑒(𝑡) and ℎ𝑖(𝑡) are defined

as follows in equation (3.1) and equation (3.2).

 36

 ℎ𝑒(𝑡) = {𝐴𝑎𝑡𝑒−𝑎𝑡 𝑡 > 0
0 𝑡 < 0

(3.1)

ℎ𝑖(𝑡) = { 𝐵𝑏𝑡𝑒−𝑏𝑡 𝑡 > 0

0 𝑡 < 0

(3.2)

In equation (3.1) and equation (3.2), 𝐴 and 𝐵 describe the maximum amplitude of

excitatory and inhibitory population, while 𝑎 and 𝑏 are the lumped representation of

the sum of the reciprocal of the time constant of passive membrane and all other

spatially distributed delays in the dendritic network. As linear systems of ℎ𝑒(𝑡) and

ℎ𝑖(𝑡) convert axonal pulses to postsynaptic potential, the impulse response of ℎ𝑒(𝑡)

and ℎ𝑖(𝑡) are shaped to resemble an excitatory postsynaptic potential (EPSP) and an

inhibitory postsynaptic potential (IPSP) respectively. The input to these linear systems is

pulse density, which enables us to mimic the integrating action of the soma. In addition,

𝑝(𝑡) is modelled by Gaussian noise as the input for triggering Jansen's NMM while 𝑦(𝑡)

is the output of Jansen's NMM which can be interpreted as local field potential of the

NMM. 𝑆𝑖𝑔𝑚 function in equation (3.3) describes the average membrane potential of a

population of neurons into an average pulse density of action potentials fired by the

neurons.

𝑠𝑖𝑔𝑚(𝑣) =

2𝑒0

1 + 𝑒𝑟(𝑣0−1)

(3.3)

Each postsynaptic potential (PSP) of subpopulation 1 and subpopulation 2 labelled in

Figure 3.3 can be modelled by two differential equations as follows:

 𝑑2𝑦

𝑑𝑡2
= 𝐴𝑎𝑥(𝑡) − 2𝑎

𝑑𝑦

𝑑𝑡
− 𝑎2𝑦(𝑡)

(3.4)

Equation (3.4) can be rewritten as:

 𝑑𝑦

𝑑𝑡
= 𝑧(𝑡)

(3.5)

 𝑑𝑧

𝑑𝑡
= 𝐴𝑎𝑥(𝑡) − 2𝑎

𝑑𝑧

𝑑𝑡
− 𝑎2𝑦(𝑡)

(3.6)

 37

Where can be rewritten as 𝑥(𝑡) and 𝑦(𝑡) are the input and output signal respectively.

Hence, six different equations are derived from equation (3.5) and equation (3.6) as

following:

 𝑑𝑦0

𝑑𝑡
= 𝑦3(𝑡)

(3.7)

 𝑑𝑦3

𝑑𝑡
= 𝐴𝑎𝑆𝑖𝑔𝑚(𝑦1(𝑡) − 𝑦1(𝑡)) − 2𝑎𝑦3(𝑡) − 𝑎2𝑦0(𝑡)

(3.8)

 𝑑𝑦1

𝑑𝑡
= 𝑦4(𝑡)

(3.9)

 𝑑𝑦4

𝑑𝑡
= 𝐴𝑎{𝑝(𝑡) + 𝐶2𝑆𝑖𝑔𝑚(𝐶1𝑦0(𝑡))} − 2𝑎𝑦4(𝑡) − 𝑎2𝑦1(𝑡)

(3.10)

 𝑑𝑦2

𝑑𝑡
= 𝑦5(𝑡)

(3.11)

 𝑑𝑦5

𝑑𝑡
= 𝐵𝑏{𝐶4𝑆𝑖𝑔𝑚[𝐶3𝑦0(𝑡)] } − 2𝑎𝑦5(𝑡) − 𝑏2𝑦2(𝑡)

(3.12)

Where 𝑦0 , 𝑦1 , 𝑦2 are the output of three postsynaptic potential blocks (subpopulation

1, subpopulation 2 and subpopulation 3). The three pairs of differential equations

(equation (3.7) and equation (3.8), equation (3.9) and equation (3.10), equation (3.11)

and equation (3.12)) are solved by applying an integration method of the Fehlberg

fourth-fifth order Runge-Kutta method [59]. Table 2.1 shows the neural mass model

parameters.

3.2.2 Model parameter choice

The choice of different parameters will determine different output of the Jansen Neural

Mass Model . The connectivity constants; 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are proportional to the

average number of synapses between the pyramidal cells and the excitatory feedback

elements. The connectivity constants 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are proportional to the average

number of synapses between the pyramidal cells and the inhibitory feedback elements.

𝐶1, 𝐶2, 𝐶3 and 𝐶4, and can be detailed as follows:

 38

1. 𝐶1 is the synapses number which is generated by the feed-forward neurons to

the excitatory neurons feedback loop.

2. 𝐶2 is proportional to the synapses number which is made by the excitatory

feedback loop to the feedforward neurons’ dendrites.

3. 𝐶3 stands for the synapses number which is generated by the feed-forward

neurons to the inhibitory feedback loop dendrites.

4. 𝐶4 represents the synapses number which is generated by the inhibitory

feedback loop to the feedforward neuron dendrites.

[] did a study of the visual cortex pyramidal cell which suggests that

 𝐶1 + 𝐶3 = 𝐶2 + 𝐶2
′ + 𝐶4 (3.13)

 [60] reported that in a mouse’s somato-motor cortex, a pyramidal cell axon would

make 87% of its synapses and 13% on shafts. Therefore White [61] observed that a

synapses made a spine onto an excitatory cell, but a synapse on a shaft is equally likely

to be on an excitatory or an inhibitory cell. Hence, about 6.5% of the synapses made by

a pyramidal cell are inhibitory, therefore:

𝐶3

𝐶1+ 𝐶3
= 6.5/100 (3.14)

 In another publication, Liu [62] claimed that 80% of the synapses were of the excitatory

type, which is made on a pyramidal cell dendrite in a cat’s motor cortex, hence:

(𝐶2+𝐶2

′)

(𝐶2+𝐶2
′)+𝐶4

= 0.8 (3.15)

The main excitatory feedback loop is composed of pyramidal cells, as most excitatory

cells in the visual cortex are pyramidal cells. Considering the excitatory cells population

is homogeneous in synapse patterns, the synapses number made by the feedforward

neuron of a cortical column on the excitatory feedback loop should be the same as the

synapses number made by the excitatory feedback loop on the feedforward neurons.

This leads to:

 𝐶1 = 𝐶2 + 𝐶2
′ (3.16)

According to [61], 20% of asymmetrical synapses of the excitatory type in layer IV of the

cortex are formed by thalamo-cortical terminals:

 39

 𝐶1 = 𝐶2 + 𝐶2
′ = 0.2 => 𝐶2

′ = 𝐶2/4 (3.17)

Substituting () in (), which can be shown as:

𝐶2

𝐶1
= 0.8 (3.18)

From () and (), we get:

 𝐶3 = 𝐶4 (3.19)

The synapses on the excitatory and inhibitory feedback loop are very ambiguous.

Substituting (3.16) and (3.19) in (3.15) yields 𝐶1 = 4𝐶3. To be specific, the relationship

between C1 and C3 may vary due to the different biological materials in the synapses

counts. Let’s assume that 𝐶1 = 4𝐶3 which will generate:

 𝐶1 =
𝐶2

0.8
= 4𝐶3 = 4𝐶4 (3.20)

(3.20) allows us to represent 𝐶1, 𝐶2, 𝐶3 and 𝐶4 with one constant 𝐶

 𝐶1 = 𝐶 (3.21)

 𝐶2 = 0.8𝐶 (3.22)

 𝐶3 = 0.25𝐶 (3.23)

 𝐶4 = 0.25𝐶 (3.24)

The variable C will vary under different physiological constraints, as it presents different

synaptic phenomena in different biological applications. One of the applications is a

neurotransmitter depletion which is very common and will generate drastic

consequences.

The A and B parameters of the PSP functions are proportional to the output magnitude

of the PSD block. [54] proposed that 𝐴 = 3.25 𝑚𝑉 and 𝐵 = 22 𝑚𝑉 . There is another

publication which modified the amplitude of the PSPs based on certain neural properties.

Therefore, A and B could be modified with a degree of freedom. Moreover, the A and B

parameters of the PSP blocks are inversely proportional to the PSP duration, which are

less likely to vary over relative short periods. [49] suggests that 𝑎 = 100𝑠−1 and 𝑏 =

 40

50𝑠−1. Table 3.1 details the parameter choosing for modelling simulation in

the Jansen’s NMM.

 41

Table 3.1: Physiological biological plausible parameters interpretation, and standard values of the parameter in Jansen’s neural mass model.

Parameters Description Standard value

He Average gain of excitatory synaptic 3.25 𝑚𝑉

Hi Average gain of inhibitory synaptic 22 𝑚𝑉

τe Synaptic time constant for excitatory subpopulation 0.0108 𝑠

τi Synaptic time constant for inhibitory subpopulation 0.02 𝑠

C1, C2 Synaptic contacts in excitatory feedback loop C1=135, C2=0.8*135

C3, C4 Synaptic contacts in inhibitory feedback loop C3=0.25*135, C4=0*135

ν0, e0, r Non-linear sigmoid function ν0=6 𝑚𝑉, e0=2.5,

 r =0.56𝑚𝑉−1

 42

3.3 Closed-loop feedback control

3.3.1 Proportional-derivative control of neuron mass model (PD-NMM)

Figure 3.4: The closed-loop scheme of a PD-NMM control scheme. (a) Block diagram of

the PD-based controller feeding into the Jansen’s Neuron Mass Model. (b) The high-level

simplified equivalent form of PD-NMM control scheme. 𝑮𝒑𝒅(𝒔) is the Laplace transform

of a PD controller to describe the transfer function of PD control, and 𝑮𝑵𝑴𝑴(𝒔) is the

Laplace transform of Jansen’s Neuron Mass Model to show the transfer function of

Jansen’s Neuron Mass Model. 𝒓(𝒕) is the desired output of Jansen’s Neuron Mass Model.

𝒆(𝒕) is the error signal of the closed-loop control scheme. 𝒖(𝒕)is the output of the PD

controller. PD-NMM is used to describe the closed-loop proportional-derivative control

of the neural mass model.

In this section, we aim to investigate the feedback control theory to develop different

 43

types of controllers to generate closed-loop stimulation feeding into neuron mass

models for altering ongoing epileptiform activity. Primarily, the proportional-derivative

controller is designed to provide stimulation for suppressing high amplitude epileptic

activity generated by Jansen's NMM shown in figure 3.4. Graphical stability

methodology has been adopted to produce an analytical design approach for choosing

proportional and derivative gain parameters to stabilise high amplitude activity of

Jansen’s NMM. Therefore, the analytical design approach of this closed-loop system

makes the closed-loop PD feedback control independent of a specific neuron model,

which can also be applied to control methodology studies of other promising neuron

models in the future. Furthermore, we intervene the feedback to the neuron mass

network model to study the potential experimental observations on how the

pathological activity is altered through stimulation by altering different control

algorithms. Finally, we suggest an optimised hardware architecture for closed-loop

algorithm implementation in custom-designed hardware in chapter 4.

Epileptic activity in a neural mass model can be categorised as high amplitude limit cycle

oscillation born in Hopf bifurcation [57], which indicates that the fixed point of Jansen’s

NMM will lose its stability. In figure 3.4, the designed closed-loop controller has been

proposed to provide feedback stimulations to stabilise the unstable fixed point of a

neural mass model for preventing the generation of Hopf bifurcation to suppress high

amplitude epileptic activity. Figure 3.4 shows the interaction between the PD controller

and Jansen’s NMM, where 𝑢(𝑡) is the output of the PD controller (stimulation signals),

while 𝑦(𝑡) is the output of Jansen’s NMM model (local field potential). In order to define

the stabilisation area of proportional-derivative gain parameters, a graphical stability

analysis method can be applied by using the following four steps:

 44

Derivation of the characteristic equation of closed-loop PD-NMM Model

 Step 1: Derive Laplace Transform of Jansen's NMM

𝐺𝑁𝑀𝑀(𝑠) =

𝐻𝑒(𝑠)

1 + 𝐻𝑒(𝑠)𝐾𝑠2[𝐻𝑖(𝑠)𝐶3𝐶4 − 𝐻𝑒(𝑠)𝐶1𝐶2]

(3.13)

 Step 2: Derive Laplace Transform of PD Controller

 𝐺𝑝𝑑(𝑠) = 𝐾𝑝 + 𝐾𝑑𝑠

(3.14)

 Step 3: Derive the characteristic equation of PD-Jansen's NMM closed-loop

 control system shown in figure 3.4 (b)

 ∆(𝑠) = 1 + 𝐺𝑝𝑑(𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0

(3.15)

 (The derivation details of characteristic equation

 1. 𝑟(𝑡) = 0, =>

 2. 𝐺𝑝𝑑(𝑠)𝐺𝑁𝑀𝑀(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
∗

𝑌(𝑠)

𝑈(𝑠)
=

𝑌(𝑠)

𝐸(𝑠)
, =>

 3. 𝑅(𝑠) − 𝑌(𝑠) = 𝐸(𝑠), =>

 4. 1 + 𝐺𝑝𝑑(𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0)

 Step 4: Make the variable substitution: 𝒔 = 𝒋𝝎

 ∆(𝑗𝜔) = 1 + 𝐺𝑝𝑑(𝑗𝜔)𝐺𝑁𝑀𝑀(𝑗𝜔) = 0

(3.16)

The characteristic equation of PD-Jansen's NMM closed-loop control system shown in

equation (3.16) defines the stability space boundary of the PD-Jansen's NMM feedback

 45

control system.

Given that 𝐺𝑁𝑀𝑀(𝑗𝜔) is a complex function, we can rewrite

𝐺𝑁𝑀𝑀(𝑗𝜔) as|𝐺𝑁𝑀𝑀(𝑗𝜔)| = √𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔), the characteristic equation of

PD-Jansen's NMM control system, as:

𝐾𝑝 =

−𝛿𝑅𝑁𝑀𝑀
(𝜔)

𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)

(3.17)

𝐾𝑑 =

𝛿𝑅𝑁𝑀𝑀
(𝜔)

𝜔[𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)]

(3.18)

Where |𝐺𝑁𝑀𝑀(𝑗𝜔)| = √𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔).

 46

3.3.2 Proportional-integral control of neural mass model (PI-NMM)

Figure 3.5: The closed-loop scheme of the PI-NMM control scheme. (a) Block diagram of

the PI-based controller feeding into Jansen’s Neuron Mass Model. (b) The high-level

simplified equivalent form of the PI-NMM control scheme. 𝑮𝒑𝒊(𝒔) is the Laplace

transform of the PI controller to describe the transfer function of the PI controller, and

𝑮𝑵𝑴𝑴(𝒔) is the Laplace transform of Jansen’s Neuron Mass Model to show its transfer

function. 𝒓(𝒕) is the desired output of Jansen’s Neuron Mass Model. 𝒆(𝒕) is the error

signal of the closed-loop control scheme. 𝒖(𝒕)is the output of the PI controller. PI-NMM

is used to describe the closed-loop proportional-integral control of Jansen’s Neuron Mass

Model.

For comparison, a PI controller is studied to provide the stimulus feed into a neural mass

model for simulation in this section. Figure 3.5 shows a closed-loop scheme of

proportional-integral control of Jansen’s neural mass model. The derivation of the

characteristic equation of a closed-loop PI-NMM model is shown as follows:

 47

Derivation of characteristic equation of closed-loop PI-NMM model

 Step 1: Derive Laplace Transform of Jansen's NMM

𝐺𝑁𝑀𝑀(𝑠) =

𝐻𝑒(𝑠)

1 + 𝐻𝑒(𝑠)𝐾𝑠2[𝐻𝑖(𝑠)𝐶3𝐶4 − 𝐻𝑒(𝑠)𝐶1𝐶2]

(3.19)

 Step 2: Derive Laplace Transform of PI Controller

𝐺𝑝𝑖(𝑠) = 𝐾𝑝 +

𝐾𝑖

𝑠

(3.20)

 Step 3: Derive the characteristic equation of PI-Jansen's NMM closed-loop

 control system shown in figure 3.5(b)

 ∆(𝑠) = 1 + 𝐺𝑝𝑖 (𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0 (3.21)

The derivation details of characteristic equation:

 1. 𝑟(𝑡) = 0, =>

 2. 𝐺𝑝𝑖(𝑠)𝐺𝑁𝑀𝑀(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
∗

𝑌(𝑠)

𝑈(𝑠)
=

𝑌(𝑠)

𝐸(𝑠)
, =>

 3. 𝑅(𝑠) − 𝑌(𝑠) = 𝐸(𝑠), =>

 4. 1 + 𝐺𝑝𝑖(𝑠)𝐺𝑁𝑀𝑀(𝑠) = 0)

 Step 4: Make the variable substitution: 𝑠 = 𝑗𝜔

 ∆(𝑗𝜔) = 1 + 𝐺𝑝𝑖(𝑗𝜔)𝐺𝑁𝑀𝑀(𝑗𝜔) = 0

(3.22)

The characteristic equation of PI-Jansen's NMM closed-loop control system shown in

equation (3-22) defines the stability space boundary of the PI- NMM feedback control

system. Supposing 𝐺𝑁𝑀𝑀(𝑗𝜔) is a complex function, 𝐺𝑁𝑀𝑀(𝑗𝜔) as |𝐺𝑁𝑀𝑀(𝑗𝜔)| =

 48

√𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔), the characteristic equation of PI- NMM control system can be

rewritten as:

𝐾𝑝 =

−𝛿𝐼𝑁𝑀𝑀
(𝜔)𝜔

𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)

(3.23)

 𝐾𝑖 =

−𝛿𝑅𝑁𝑀𝑀
(𝜔)

𝜔[𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔)]

(3.24)

Where |𝐺𝑁𝑀𝑀(𝑗𝜔)| = √𝛿𝐼𝑁𝑀𝑀

2 (𝜔) + 𝛿𝑅𝑁𝑀𝑀

2 (𝜔).

3.4 Results and analysis

3.4.1 Closed-loop PD-NMM simulation

• PD-NMM stabilisation area

Epileptic activity is caused by the imbalance of the excitation and inhabitation of

neuronal population in neural mass models. In computation modelling work, it can be

recognised as being caused by extremely large excitatory parameters 𝐻𝑒 or small

inhibitory parameters 𝐻𝑖 respectively. Hence, the goal of this section is to discuss the

effect of the two parameters 𝐻𝑒 and 𝐻𝑖 on the stabilising region of the proposed PD

controller and PI controller.

Simulations have been demonstrated for plotting the stabilization relationship of PD

gain parameters 𝑘𝑝 and 𝑘𝑑 with respect to two cases:

• Hyper-excitation scenario : 𝐻𝑒 = 5,7,9

• Low inhibition scenario: 𝐻𝑖 = 15,17,19

Figures 3.6 (a) and 3-6 (b) show the effect of excitatory parameter 𝐻𝑒 and inhibitory

parameter 𝐻𝑖 on the stabilisation area plot of the proposed PD control of the Jansen’s

neural mass model according to equations (3.17) and (3.18). Stabilising regions of the

PD-NMM controller for abnormal values of 𝐻𝑒 and 𝐻𝑖 are also highlighted in blue and

orange in figures 3.6 (a) and3-6 (b) respectively. The relationship of 𝑘𝑝 and 𝑘𝑑 is

dependent on the specific neural model. Hence the whole analytical design can also be

applied to other neural models as well.

 49

Figure 3.6: The effect of excitatory parameters 𝐻𝑒 and inhibitory parameters 𝐻𝑖 on

changing the stabilising area of 𝐾𝑝 and 𝐾𝑑 within the PD controller. (a) The stabilisation

area of the PD controller differs from 𝐻𝑒 =5, 7, 9 respectively. (b) The stabilisation area

of the PD controller differs from 𝐻𝑖 =15, 17, 19 respectively.

• Real-time simulation results

According to the stabilisation area in figure 3.6, we simulated the following two cases:

 50

• Hyper-excitation scenario: 𝐻𝑒 = 7 , 𝐻𝑖 = 22

• Low inhibition scenario: 𝐻𝑒 = 3.25 and 𝐻𝑖 = 17

Specific PD control gain parameters are picked up from the corresponding stabilisation

areas highlighted in figure 3.6(a) and figure 3.6(b) for further simulation which will be

detailed in this section.

• Hyper-excitation scenario

When 𝐻𝑒 is set as 7 and 𝐻𝑖 is set 22, Jansen’s NMM shows a hyper excitation scenario

which can generate high amplitude output. The high amplitude signals resemble high

amplitude epileptic seizure-like oscillations which are also plotted in the first eight

seconds of figure 3.7. After eight seconds, the feedback generated by the proposed PD

controller with the chosen PD gain is intervened into the real-time Jansen’s neuron mass

model for further simulation.

In figure 3.7(a), Kp = 100, Ki = 0, Kd = −2 have been picked up specifically from the

stabilisation area highlighted in figure 3.6(a) to provide feedback stimulation from

hyper-excitation simulations in Jansen's NMM (𝐻𝑒 = 7 and 𝐻𝑖 = 22).

In comparison, Kp = 100, Ki = 0, Kd = −8 are outside the stabilisation area which can

be found in figure 3.6(b). Kp = 100, Ki = 0, Kd = −8 are used for simulation, shown in

figure 3.7(b). Since the parameters Kp = 100, Ki = 0, Kd = −8 are picked outside the

stabilised area, it does not help to suppress the high amplitude signal generated in

Jansen’s NMM model, and even worse, it oscillates the NMM model to make more

hyper-exaction.

 51

Figure 3.7: In the hyper-excitation scenario (𝑯𝒆 = 𝟕 , 𝑯𝒊 = 𝟐𝟐), the comparison of

output of Jansen's NMM for the first eight second simulation without the PD controller,

and the second eight second simulation with stimulation feedback from the PD controller.

(a) PD control gain set up is chosen inside the stabilisation area (𝑲𝒑 = 𝟏𝟎𝟎, 𝑲𝒊 =

𝟎, 𝑲𝒅 = −𝟐). (b) A PD control gain set up is chosen outside stabilisation area (𝑲𝒑 =

𝟏𝟎𝟎, 𝑲𝒊 = 𝟎, 𝑲𝒅 = −𝟖).

 52

• Low inhibition scenario

In figure 3.8, Kp = 30, Ki = 0, Kd = −1.3 have been chosen from figure 3.6(b) as the

PD gain parameters for providing feedback stimulation for a low inhabitation neural

mass model simulation of (𝐻𝑒 = 3.25 and 𝐻𝑖 = 17). The above two experiment sets

prove that the PD controller provides stimulation feedback to intervene with Jansen's

NMM to suppress high amplitude epileptic seizures. It can be seen that the output of

Jansen's NMM was high amplitude activity, which has been clearly demonstrated in the

first 8 seconds, then under the intervention of PD controller feedback, the seizure

network has been stabilised into low amplitude activity as a comparison. The graphical

design of the stability analysis method has been applied to choose PD controller gain

parameters for suppressing seizures in Jansen's NMM. Therefore, in this specific neural

mass model simulation, high amplitude epileptic activity has been successfully

suppressed by applying a closed-loop PD controller to deliver feedback stimulation with

a proper PD gain parameters setup.

 53

Figure 3.8: Under the low inhabitation scenario (He = 3.25, Hi = 17), the comparison

of output of Jansen's NMM for the first eight-second simulation without the PD

controller, and the second eight-second simulation with stimulation feedback from the

PD controller. (a) The PD control gain set up is chosen inside the stabilisation area (𝐾𝑝 =

30, 𝐾𝑖 = 0, 𝐾𝑑 = −1.3). (b) A PD control gain set up is chosen outside the stabilisation

area (𝐾𝑝 = 200, 𝐾𝑖 = 0, 𝐾𝑑 = −1.3).

 54

3.4.2 Closed-loop PI-NMM simulation

• PI-NMM stabilisation area

Figure 3.9: the efficiency of excitatory parameters 𝐻𝑒 and the inhibitory parameters

𝐻𝑖 on changing the stabilising area within the PI controller. (a) The stabilisation area of

the PI Controller differs with 𝐻𝑒 =5, 7, 9 respectively. (b) The stabilisation area of the PI

controller differs with 𝐻𝑖 =15, 17, 19 respectively.

Figure 3.9(a) and figure 3.9(b) show the effect of excitatory parameters 𝐻𝑒 and 𝐻𝑖 of

the proposed PI control of Jansen’s neural mass model according to equation (3.23) and

 55

equation (3.24). Stabilising regions between 𝐾𝑝 and 𝐾𝑖 of the PI-NMM controller for

abnormal values of 𝐻𝑒 and 𝐻𝑖 scenarios are also plotted in figure 3.9 (a) and figure 3.9

(b) respectively.

• Real-time simulation results

For performing real time closed-loop simulations, in the first eight seconds the neural

mass model generates high amplitude epileptic like signals shown in figure 3.10(a) and

figure 3.10(b). After eight seconds, we chose a set of the PI controller gain parameters

set up for hyper-excitation simulations and low-inhabitation simulations.

For the hyper-excitation scenario, in figure 3.10(a), 𝐾𝑝 = 400, 𝐾𝑖 = 5800 and 𝐾𝑑 =

0 are picked up inside the stabilisation area as the PI controller gain set up. Figure 3.10(a)

shows how the neural mass model changes after the PI controller intervenes. Moreover,

𝐾𝑝 = 400, 𝐾𝑖 = 10000 and 𝐾𝑑 = 0 , which are outside the stabilisation area, are

applied to provide stimulation to Jansen’s NMM in figure 3.10(b). It can be observed

that epileptic seizures can be suppressed by proper PI gain choice, i.e. those which are

located inside stabilisation area in hyper-excitation scenario.

For the low-inhabitation scenario, in figure 3.9(b), 𝐾𝑝 = 150, 𝐾𝑖 = 20000 and 𝐾𝑑 =

0 are chosen inside the stabilisation area for the PI controller gain set up. Figure 3.11(a)

demonstrates how Jansen’s NMM behaves after the PI controller gain set up. For

comparison, 𝐾𝑝 = −50, 𝐾𝑖 = 20000 and 𝐾𝑑 = 0 are picked up as gain parameters

outside the stabilisation area for simulations in figure 3.11(b). It can be seen that

epileptic seizures are controlled by proper PI gain choice, i.e. those which are located

inside stabilisation area in the low-inhabitation scenario.

 56

• Hyper-excitation scenario

Figure 3.10: In the hyper-excitation scenario (𝑯𝒆 = 𝟕 , 𝑯𝒊 = 𝟐𝟐), the comparison of

output of Jansen's NMM for the first eight-second simulation without the PI controller,

and the second eight-second simulation with stimulation feedback from the PI controller.

(a) A PI control gain set up is chosen inside stabilisation area (𝑲𝒑 = 𝟒𝟎𝟎, 𝑲𝒊 =

𝟓𝟖𝟎𝟎, 𝑲𝒅 = 𝟎). (b) A PI control gain set up is chosen outside stabilisation area (𝑲𝒑 =

𝟒𝟎𝟎, 𝑲𝒊 = 𝟏𝟎𝟎𝟎𝟎, 𝑲𝒅 = 𝟎).

 57

• Low inhibition scenario

Figure 3.11: In the low inhabitation scenario (𝑯𝒆 = 𝟑. 𝟐𝟓 , 𝑯𝒊 = 𝟏𝟕), the comparison

of output of Jansen's NMM for the first eight-second simulation without the PI controller,

and the second eight-second simulation with stimulation feedback from the PD controller.

(a) A PI control gain set up is chosen inside stabilisation area (𝑲𝒑 = 𝟏𝟓𝟎, 𝑲𝒊 =

𝟐𝟎𝟎𝟎𝟎, 𝑲𝒅 = 𝟎). (b) A PI control gain set up is chosen outside stabilisation area (𝑲𝒑 =

−𝟓𝟎, 𝑲𝒊 = 𝟐𝟎𝟎𝟎𝟎, 𝑲𝒅 = 𝟎).

 58

Simulation results show that the output signal (local field potential) of Jansen's NMM

without the PD control and PI control feedback was high amplitude epileptic seizure

activity, which then became low amplitude activity with feedback stimulation from the

PD controller and PI controller. A graphical stability analysis method was employed to

determine the stability region of the PD controller and PI controller for plotting the

stabilised parameter space. As a result, stabilised regions of the PD controller and PI

controller parameters have been simulated, which can provide proportion and

derivative gain choice to be used for stabilising epileptic seizure activity in Jansen's NMM.

3.5 Controller design for proposed algorithms

This chapter has verified that PI controller design and PD controller design can help

suppress high amplitude activity generated by neural mass models which represents

high amplitude seizure activity. This also provides us with a solid computation proof that

closed-loop control is a promising strategy to help control neurodisorder diseases. The

next stage of this work is to implement plausible control algorithms in implantable

hardware devices with minimal power consumption. The goal is to establish a

quantitative relationship between the chosen controller parameters and the neural

mass model’s excitatory and inhibitory parameters. This provides a guideline for the

choice of controller parameters to help suppress high amplitude seizure signals in the

math model.

This modelling work suggests that the PI control algorithm and PD control algorithm

could be potential candidates for pacemakers. The tradeoff of mapping the PI control

algorithm and PD control algorithm in hardware can be listed as follows:

• A PI controller is more stable than a PD controller

• PI controller hardware implementation memory costs more than a PD controller,

as PI controllers require continuous history and memory updates

• A PI controller costs more time to finish per computation than a PD controller

 Stability Hardware
Resources cost

Hardware
computing time

 59

cost

PI control Yes Expensive Long

PD control No Cheap Short

In closed-loop biomedical control systems, we aim to create a closed-loop control

system which aims for low computation time cost, meaning minimal computation cost.

PI hardware design will take longer to compute and occupy larger memory to implement

compared to PD hardware design. Even PIs can provide larger stability regions of gain

parameters than PDs. By selecting proper gain parameters inside the PD stabilising area,

we can still stabilise the neural mass model by selecting the proper parameters.

3.6 Conclusion

In this chapter, we introduced a mathematical computational study of the closed-loop

control of the brain. Jansen’s Neural Mass Model has been chosen as a test bench to

mimic a human brain in section 3.2. Section 3.3 demonstrated how to apply PID control

algorithms for generating feedback as the stimulus feeding into Jansen’s neural mass

model. Based on the stabilisation area analysis, we have found that with proper PI and

PD gain parameters set up, we can stabilise the amplitude activity generated by Jansen’s

Neuron Mass Model in section 3.4.

This chapter also provides an analytical approach for closed-loop control of brain

modelling by providing the flexibility to substitute math models or control algorithms

for more exploratory efforts. Furthermore, we also presented an analytical approach to

closed-loop PD controllers and PI controllers to determine the stimulation parameters

for suppressing high-amplitude epileptic activity in the neural mass model.

The proposed graphical stability analysis approach method certifies that the design of

this feedback controller was analytical, revealing a cause and effect relationship in a

theoretical manner. This allows us to explore the relationship between the model

parameters of inducing epileptic activity and feedback controller parameters, to form a

better understanding of the mechanism of suppressing epileptic seizure activity by

applying closed-loop feedback stimulation methodology (pharmacology stimulation,

electrical stimulation and optogenetic stimulation etc.). Different parameter sets of PD

and PI gains have been listed in the following table to provide a better understanding of

 60

the clinical seizure onset parameter choice.

PI and PD controller suggestions for NMM model

Closed-loop PD-NMM system

Epilepsy scenario PD parameter suggestion

Hyper-excitation scenario

𝐻𝑒 = 7 , 𝐻𝑖 = 22

 Kp = 100, Ki = 0, Kd = −2

Low inhabitation scenario

𝐻𝑒 = 3.25 , 𝐻𝑖 = 17

 Kp = 30, Ki = 0, Kd = −1.3

Closed-loop PI-NMM system

Epilepsy scenario PI parameter suggestion

Hyper-excitation scenario

𝐻𝑒 = 7 , 𝐻𝑖 = 22

 Kp = 400, Ki = 5800, Kd = 0

Low inhabitation scenario

𝐻𝑒 = 3.25 , 𝐻𝑖 = 17

 Kp = 150, Ki = 20000, Kd = 0

 61

Relative contribution

Correspondent Contribution

Miss Lijuan Xia

Dr. Patrick Degenaar

1. A closed-loop PD-NMM model and a closed-

loop PI-NMM model are investigated in this

chapter, different sets of Kp, Kd gain and of Kp,

Kd gain parameters inside stabilisation areas

are chosen for simulations, and will be

employed in next chapter for hardware

implementation.

2. This modelling study suggests that PD

controllers and PI controllers can help to

suppress high amplitude seizure signals in a

computational neuron mass model

successfully.

Correspondent Future work

Miss Lijuan Xia

Dr.Yujiang Wang

Dr. Patrick Degenaar

1. A spatial-temporal mathematical brain model

needs to be investigated to mimic brain

activities for leading a better understanding of

brain function in diseased states.

2. Various seizure patterns apart from high

amplitude epilepsy seizure-like signals need to

be studied to imitate seizure signals.

3. Different control algorithms (PI, PID, machine

learning algorithms) need to be applied to

intervene with the neural mass models as a

closed-loop control system.

4. The optogenetic stimulation math model needs

to be conducted to interface with PID

algorithms for supplying into the neuron mass

model.

 62

Chapter 4. Algorithm Hardware Implementation

4.1 Chapter Overview

The previous chapter has conducted a closed-loop brain control modelling study to

suggest a plausible PD control algorithm for intervening with the neuron mass model to

suppress epileptic seizures. The main objective of this chapter is to investigate the

feasibility of a low power digital implementation of PD algorithm which will be optimized

for minimal energy consumption in sparse sampling rate processing application. Figure

4-1 details a general overview of the framework of this chapter. Section 4.1 gives a

general overview of this chapter. Section 4.2 compares different digital hardware

platforms between the commercial off-the-shelf microcontrollers and FPGAs. Then the

comparison results and analysis will be discussed in this section and the selection of the

specific digital platform for our biomedical application will be shown as a conclusion.

Section 4.3 depicts the design and development of PD firmware implementation for the

entire system. Conclusions will be given in the final section 4.4.

Figure 4-1: Chapter four overview. This chapter starts by describing different hardware

platforms, then compares them from different perspectives, then selects a hardware

platform for our application. Finally, we describe the firmware implementation of the

chosen algorithm in our control unit.

 63

4.2 Hardware Comparison

With the final aim of implanting neural interface for patients with neurological disorders,

emerging evidence indicates there is an increasing need for developing wearable, low-

power consumption, miniaturized embedded devices. For testing the performance and

capabilities of these closed-loop neural interfaces, non-human primates and rodents are

preferred by neuroscientists to use for neuroscience experimental models. Thus, there

is of overwhelming interest in developing tools for closed-loop control experiments, for

freely moving rodents. One of the design debates is a trade-off of the use of different

hardware platforms between application specific integrated circuits (ASICs) and digital

platforms. Three potential digital implementation platforms are discussed and

compared in the following Table 4-1 for a further selection of one of the platforms:

Table 4-1: Comparison between different hardware platforms for embedded system

applications. We mainly compare ASICs, FPGAs and MCUs as the implementation

platforms regarding re-programmability, power consumption and speed. We also list the

requirement for our biomedical application.

 Reprogrammability Power Consumption
Computing

Time Cost

ASIC No Low Fast

FPGA Yes moderate Fast

MCU Yes High Moderate

Requirement Yes Low Fast

In order to develop an optimal processing unit with a power management system which

can be tested in freely moving rodents, we desire to design a platform capable of

implementing the closed-loop optogenetic stimulation with tight real-time constraints,

and low power consumption to enable a battery life of over 24 hours. Therefore, for this

biomedical application, our key requirements are listed as follows:

1) Reprogrammability: A platform can communicate with the neural interface ASIC

probe which constructs an ASIC finite state machine (FSM) of implementing a command

interpreter that can send out LFP recordings and receive instructions to control LED

emission. The commands are communicated by a digital interface using a serial

 64

peripheral interface (SPI) protocol [63].

2) Low latency: A platform can require low processing power to perform low latency

closed-loop control algorithms with tight time constraints for achieving minimal

processing delay.

3) Small size: A platform can be sufficiently compact to be installed on the freely

moving rat system for neuroscience experiments.

4) Lightweight: A platform need to be lightweight (<20g for a large rodent) to be

mounted on the back and head of a freely moving rodent for long time neuroscience

experiments.

Hence, we decide to compare two digital platforms between FPGAs and MCUs as digital

processors can provide flexible programmability. A general overview of FPGAs and

MCUs is given in the following sections.

4.2.1 FPGA Overview

Figure 4-2: The conceptual scheme of FPGA architectures. A basic FPGA platform is

composed of an array of logic block, a hierarchy of reconfigurable interconnects which

allow the block to be wired together. For most FPGA platforms, logic blocks include

memory elements that may be simple flip-flops ore more complete blocks of memory.

An FPGA is defined as a prefabricated silicon device that can be electrically programmed

 65

to become any arbitrary design of digital circuits and systems. The conceptual scheme

of an FPGA is shown in Figure 4-2, it contains:

• Logic blocks

• Routing channels

• I/O interfaces

A FPGA includes an array of programmable logic blocks and a hierarchy of reconfigurable

interconnects which makes the blocks to be wired together. Many logic gates can also

be inter-wired in different configurations. The logic blocks can be programmed to

perform complex combinational functions or only simple logic gates like AND and XOR.

Logic blocks also contain memory elements that are simple flip-flops or more complete

blocks of memory. The FPGA configuration is generally specified by the hardware

description language (HDL).

There are two main commercial off-the-shelf FPGAs available on the market today based

on the basic process technology: SRAM based FPGAs with static RAM memory cells

holding their configuration patterns and flash-based logic arrays with nonvolatile

memory cells. On one hand, SRAM memory is a volatile memory meaning that the

configuration is lost when power is removed. On the other hand, the main other form

of memory is flash memory. Flash memory evolves from EEPROM (Electrically erasable

programmable read only memory). There are two main types of flash memory: NOR or

NAND. Flash memory cell is effectively a transistor in nature. Flash is a similar in

composition to a MOSFET with an added floating gate which acts as an electron trap.

The expectation for this project is that the SRAM based FPGAs will present higher static

power than the flash-based FPGAs yet yield a lower dynamic power. IGLOO nano is a

product nano of non-volatile FPGA released by Microsemi Company. IGLOO nano flash

FPGA provides ultra-low static and low dynamic power consumption. The logic size is

ranging from 10000 gates to 250000 gates. The unique capabilities of Flash*Freeze

mode in the non-volatile FPGA fabrics can help reduce power dramatically.

 66

Figure 4-3: Example system of enter and exit from Flash*Freeze mode to regular normal

operation within 100 usec. Flash*Freeze mode allows the non-volatile FPGAs to enter a

low power (~24µW) mode and retain all internal memory and flip-flop states.

Flash*Freeze technology can enable the rapid stopping and starting of the FPGA fabrics

and related I/O while preserving the state of FPGA fabrics shown in Figure 4-3. This mode

will also allow the device to go into a low power mode that also holds all internal

memory and flip-flop states as well as output values. There is a great potential medical

application as a prime area for using flash freeze mode taking advantage of the relatively

low sampling rate. This would allow for prolonged periods of down time yet remove the

requirement for re-configuration and would also respond rapidly to wake-up

requirements.

To conclude, the major advances in adopting non-volatile FPGAs than SRAM-based

FPGAs for biomedical applications can be concluded into three reasons:

1. Lower System Cost:

High-performance non-volatile FPGAs can deliver an analogous features and functions

identical with SRAM-based FPGAs on the grounds that marvelous progresses have been

made in shrinking flash memory cells and the capability to integrate the flash into

unconventional logic processes.

 67

2. Reduced System Footprint and Power Consumption

An external configuration memory is not required for flash-based logic arrays. As a result,

non-volatile FPGAs generally has reduced system footprint and lower power

consumption.

3. Less Startup Time:

For non-volatile FPGAs, the configuration memory is with the logic arrays on the same

chip while SRAM-based FPGAs still require more startup time to load the configuration

time.

4.2.2 MCU Overview

Figure 4-4: A simplified microcontroller scheme. A single chip microcontroller contains

the processor includes the CPU (Processor), non-volatile memory for the program (ROM

or Flash), volatile memory for input and output (RAM), clock module and I.O control unit.

A microcontroller (MCU) is a small computer on a single integrated circuit. Computer

architecture can be thought as a set of rules and methods that describe the functionality,

organization and implementation of a given computer system. In Figure 4-4, it can be

seen that computer architecture involves the instruction set architecture design,

microarchitecture design, logic design and implementation.

 68

One of the key differences between powerful CPU and MCU is the way how the

instruction sets are implemented to control the functionality of the processor. There are

two main computer instruction sets shown in Figure 4-4.

• CISC (Complex Instruction Set Computer)

• RISC (Reduced Instruction Set Computer)

In this efforts, ARM Cortex M4 based architecture is chosen for its wide capability of

core of DSP (Digital Signal Processor) with an FPU (Floating Point Unit), along with

further instructions for handling single precision floating. These instructions operate on

an extended register bank of 3 single precise registers and provide single precision

floating point arithmetic, comparison, data transfer between the extension registers,

core register and memory .

4.2.3 Comparison between MCUs and non-volatile FPGAs

In this section, we will compare a flash-based FPGA with a MCU in terms of power

consumption and time cost. The experimental methodology is to apply two platforms to

organize an optimized Linear Time-Invariant (LTI) filter implementation for providing a

fair comparison between the MCU (ARM Cortex M4) and the non-volatile FPGA (IGLOO

nano). Then we will choose a digital platform for our application based on the measured

performance. The main reason we use FIR filter as an exemplar example to implement

is that it is the fundamental unit of our closed-loop PID control algorithms which will be

also demonstrated in the next section 4.3.

In digital hardware implementation, the PID digital implementation falls within the

scheme of linear, time invariant (LTI) filters. In this case, the proportion, integration and

derivative can be treated as an LTI filter which can be represented by convolution with

a finite impulse response of truncated length impulse h(t). The LTI filter can be written

as:

 𝑦 = 𝑥(𝑛) ∗ ℎ(𝑛)

(4-19)

The formula is read as y is the convolution of x and h where the

operation of sum of products is called convolution. This formula

 69

can also be detailed as

 𝑦 = ∑ 𝑥(𝑡 − 𝑁)ℎ(𝑛)

𝑁−1

𝑛=0

 (4-2)

Truncating the length of the corresponding FIR filter will impose a low frequency limit of

the filter. It means the computed integral signal will be correct only above a frequency

given by the reciprocal of the length of FIR filter. Convolution, a basic element of FIR

filter, has been described in Figure 4-5. We will detail the FPGA implementation and

MCU implementation of the convolution in the following sections.

Figure 4-5: A simplified hardware design of implementing the linear time invariant

digital design of FIR filter. The row array 𝑥0, 𝑥1, 𝑥2, 𝑥3 … … is used for saving incoming

signal while one column array ℎ0, ℎ1, ℎ2, ℎ3 … … is applied for holding the pre-set FIR

kernel of impulse response.

• Optimized FPGA implementation of FIR filter

In Figure 4-6, it shows how to construct a finite impulse response implementation

(supposing the filter taps is 16 taps) in VHDL for FPGAs. A basic logic cell architecture of

FIR filter is shown as follows.

 70

i. A 16*1 row buffer bank of 8-bit row register is receiving local field potential from

optrode for further PID control

ii. A 1x1 MUX is used for row buffer bank to select corresponding row register for

multiplication

iii. Three 16*1 column buffer banks of 8 bit column register is used to hold

proportional Dirac Delta kernel, integral unit step kernel , derivative Gaussian

kernel as convolution kernel to do further multiplication.

iv. A 1x1 MUX is used for column buffer bank to select corresponding column buffer

bank for multiplication

v. An accumulator adds all results of multiplication which has been send to output

DACDAT buffer bank for generating further close loop neural stimulation.

vi. A 16*1 buffer bank of 8-bit register is PID control output for generating further

pulse width modulation feedback to optrode for close loop optogenetic

stimulation.

Figure 4-6: Direct FPGA Implementation of FIR Filter Architecture. It describes an

optimized FIR filter implementation in the non-volatile FPGA. A 16*1 row 8-bit buffer

bank and a 1*16 column 8-bit buffer bank are employed to store incoming recordings

 71

and filter taps respectively. Two multiplexers are used to select incoming data and filter

coefficients for multiplication to do further accumulation.

• Optimized FIR Filter of MCU implementation

In comparison, we construct an optimized FIR filter implementation in C++ language for

microcontrollers shown in Figure 4-7

Figure 4-7: Ring buffer implementation of FIR filter in Microcontroller. (a) The row buffer

is used to save input into the buffer array. Pointer is used to address the corresponding

 72

buffer. (b) A ring representation of data buffer array.

In Listing 4-2, It demonstrates an optimized ring buffer FIR Filter execution in

microcontroller which is thus the process of an infinite for(;;) loop that triggers a new

iteration every time that new sample input is available in AD1GetValue(); Two pointers

are applied to save addresses of incoming data address and filter taps address separately.

One multiplication is for multiplying incoming data and filter taps for further

accumulation. Two pointers will shift with each iteration.

It mainly consists of the following instructions:

• We first digitize the incoming analogy signal for an ADC module for sampling.

• We then assign a buffer pointer for saving the address of the incoming buffer.

• After saving the measurement into the incoming buffer, we do the multiplication

with kernels for accumulation as the filter output.

• The filter output can be pushed into a DAC module as a continuous output.

• Measured FPGA Power Comparison

After the FIR filter implementation of the MCU and the non-volatile FPGA, current

consumption of the microcontroller and the FPGA have been tested a multimeter (Digital

 73

multimeter, Truevolt Series 34465A) demonstrate in Figure 4-12(a). The measurement of

the non-volatile FPGA implementation is comparatively obvious. Once the FPGA board is

powered up, we can evaluate the power usage by current consumption, using the current

measurement pins on the boards.

Figure 4-8: Set the multimeter to measure current and attach the probe of the

multimeter to pin1 and pin4 when the board is in normal operation. (a) the photograph

taken from the hardware testbench setup. (b) the simplified schematic demonstration

of the closed-loop hardware set up.

 Steps to measure the current consumption of the non-volatile FPGA:

• Take out the power (V1) and ground pin (G1) of the power analyzer (Agilent

Technologies N6705B) DC Power Analyzer.

• Take out the power (V2) and ground pin (G2) of the non-volatile FPGA chip

(IGLOO nano chip).

• Connect the power (V1) and ground pin (G1) of the power analyzer and the

power (V2) and ground pin (G2) of the non-volatile FPGA.

 74

• Measured MCU vs FPGA Power Consumption

To provide a fair comparison between the MCU and the non-volatile FPGA, we have

implemented the optimized FIR filter in the flash FPGA and MCU. We first set the filter

taps and architecture as 16 taps.

For further analysis, we decided to draw the energy consumption per convolution to

provide comparison. We have set the microcontroller and the non-volatile FPGA

frequency as 1MHz. Thus, comparison of energy per convolution has been compared in

Figure 4-9. Red line plots how the energy cost per convolution of the non-volatile FPGA

changes with filter tap increases. Blue line draws how the energy cost per convolution

of microcontroller changes with filter tap increases. When filter taps are below 250, the

energy cost per convolution of the non-volatile FPGA implementation is lower than the

energy cost per convolution of microcontroller. If the filter taps are below 50, the non-

volatile FPGA has an obvious edge over than microcontroller than microcontroller.

Then comparison of computing time cost per convolution has been compared in Figure

4-10. If we set the non-volatile FPGA and microcontroller as 1MHz, the computing time

of filter implementation between the non-volatile FPGA and the MCU has been shown

in Figure 4-10. It can be seen that the FIR filter taps are below 50 taps, the non-volatile

FPGA has an edge over microcontroller. As FIR filter is implementation in a ring buffer

way, so the time cost and current consumption of filter implementation of

microcontroller will not change dramatically with taps. Then MCU shows its strength

over the non-volatile FPGA.

To conclude, it can be seen that with the same frequency setting (1MHz), the non-

volatile FPGA takes less time than microcontroller in implementing filter when filter tap

numbers are less than 128. When filter taps is 16, the IGLOO nano non-volatile FPGA is

8 times less than microcontroller implementing 16 taps filter. Under this circumstance,

the IGLOO nano FPGA takes 2.392 𝑛𝐽 energy to implement a 16 taps FIR filter while

microcontroller Cortex M4 spends 34.479 𝑛𝐽 energy to execute 16 taps FIR filter.

 75

Figure 4-9: Comparison of measured time cost per optimized convolution (us) between

the FRDM K22F MCU ARM CORTEX M4 and the IGLOO Nano FPGA. The blue line shows

how the measured energy consumption per convolution in ARM Cortex M4 increasing

with filter taps. The red line shows how the measured energy consumption per

convolution in IGLOO nano increasing with filter taps.

Figure 4-10: Comparison of measured energy consumption per optimized convolution

(nJ) between the FRDM K22F MCU ARM CORTEX M4 and the IGLOO Nano FPGA. The

blue line shows how the measured computing time cost per convolution in ARM Cortex

M4 increasing with filter taps. The red line shows how the computing time cost per

convolution in IGLOO nano increasing with filter taps.

 76

Conclusion:

a. Energy cost per convolution: The non-volatile FPGA has an edge over than

microcontroller in energy cost per convolution algorithm implementation when

filter taps is below 250 when the MCU and the non-volatile FPGA are set as the

same frequency.

b. Time cost per convolution: The non-volatile FPGA has an edge over than

microcontroller in time cost per convolution algorithm implementation when

filter taps is below 150 when the MCU and the non-volatile FPGA are set as the

same frequency.

c. Filter tap: With filter taps increase, the MCU will show strength over the non-

volatile FPGA in time cost and current consumption.

4.3 PD Algorithm Implementation

This closed loop microsystem is aimed at intervening neural network via generating

closed-loop optogenetic feedback to control epilepsy. Based on the previous modelling

effort in Chapter 3.2, the PID algorithm show it can be applied to intervene with the

activity of neural mass model to suppress epilepsy activity.

In industry, proportional-integral-differential (PID) systems have become the most

commonly used closed-loop controllers used within industry. This is due to their

simplicity and effectiveness in processing an error signal (actual measured signal

compared to input reference signal) and producing a response to reduce/remove this

error. In the above system example, the desired signal, which could be a set or varying

value, is supplied to the PID controller. This input will produce a response by the process

that is being controlled. This response is fed back to the PID which subtracts it from the

input reference to produce an error (E(t)). It is this error that is used within the PID

process itself. Each element carries out its individual mathematical computation and the

results are summed together. The resulting signal is then used to drive the process. This

operation will continue in pursuit of an error signal equating to zero.

 77

• From Math to Hardware

Figure 4-11 describes the math definition of derivative and integral. Mathematically,

the derivative of a given function is the slope of the curve at any point. The integral of a

given function is the area subtended under the curve between two points.

Figure 4-11: Mathematical definition of differentiation and integration. Differentiation

can be defined as differential calculus which concerns with the study of the rates at which

quantities change. Integration can be defined as integral calculus. A definite integral of

a function can be represented as the signed area of the region bounded by its graph.

Here we need to present the effect of the differentiation and integration operator

applied to recorded brain signals. Brain signal is obtained by first converting the brain

signal in an electrical voltage signal, by means of a sensor. The electrical waveform is

sampled by Analog-to-Digital converter, at a sample rate of 100 Hz (that is, 100 samples

per second are collected). Each sample is a floating-point number. After the signal is

sampled, we need to send it to the hardware for processing. After the hardware

processing, it will send the digitalized signal to DAC for generating an analogy signal.

Let's take an example. If we choose a filter length N=16 samples, and the sampling

frequency is 100 Hz which means per second 100 samples are taken and the sampling

rate is 0.01 second. It will give us a correct integral filtering above 100 Hz. The optrode

sampling rate is 100 samples/second which represents every sample data costs 0.01

 78

second, and the local field potential frequency band of interest is 1Hz to 100Hz.

accordingly, we set the filter window taps is 100.

So, what is the time domain representation of FIR filter to achieve proportion,

integration and differentiation?

Table 4-4: FIR Filter Parameters Taps Number Calculation Steps

Filter Parameter Filter Parameter Description

Sampling Frequency 𝑓𝑠 = 100𝐻𝑧 (4-3)

Sampling Ratio 𝑑𝑡 = 0.01𝑠 (4-4)

 Cut off frequency 𝑓𝑐𝑢𝑡𝑜𝑓𝑓 = 1𝐻𝑧 (4-5)

 Filter Taps 𝑁𝑡𝑎𝑝 =
1

𝑓𝑐𝑢𝑡𝑜𝑓𝑓∗𝑑𝑡
=

1

1∗0.01
= 100 (4-6)

1) Proportion

If a signal is convolved with Dirac delta function 𝛿(𝑡), the result is identical to the original

signal, except for a delay due to the position of the non-zero inside the Dirac Delta FIR

Filter. In time domain, the 𝛿(𝑡) function is a null filter which only contains a zero

amplitude for all samples except for one sample which contains a value of 1.

Theoretically, the Dirac delta function 𝛿(𝑡) cannot be realised in hardware. A Gaussian

curve can be used to realise the Dirac delta function 𝛿(𝑡) in hardware. It will generate

the same theoretical convolution results but will produce incremental weighting to each

input value as the filter output.

Figure 4-12 describes the theoretical delta function. The impulse response of

proportional filter is shown Figure 4-13 (a) and the fast Fourier transform (FFT) of

proportion kernel is displayed in Figure 4-13 (b). It can be seen frequency spectrum of

proportional filter is ranging from 0 to 100Hz which means that the proportion filter is a

low pass filter in frequency domain.

𝑦(𝑡) = 𝑥(𝑡) ∗ 𝛿(𝑡) = 𝑥(𝑡)

(4-7)

The proportional filter kernel can be written as:

ℎ(𝑡) = 𝛿(𝑡) (4-8)

 79

Figure 4-12: Schematic representation of the theoretical Dirac delta function by a line

with an arrow. The height of the arrow is to specify the value of any multiplicative

constant.

Figure 4-13: Proportional Kernel of Proportion Controller. (a) Impulse Response of

Proportional Controller in Time Domain. (b) Frequency Response of Proportional

Controller Analysed by Fourier Transform in frequency domain.

2) Integration

The integral operation will correspond to the past errors. The integration of error will

accumulate over time which will allow the integral control to overcome the small current

 80

error. If the 𝑥(𝑡) signal is convolved with the integral 𝛿(𝑡), the output signal will be a

time integral of the original signal. If we apply the integration of the 𝛿(𝑡) , it will

generate a unit step function also called Heaviside step function. Under this

circumstance, we should continue the integration for a long time, ensuring to get a FIR

filter for enough length, for obtaining proper integration over all the frequency

spectrum. The theoretical Heaviside function is shown in Figure 4-14.

The integration filter kernel is shown in Figure 4-14. The impulse response of integration

filter is shown in Figure 4-15(a), the FFT of integration kernel is displayed in Figure 4-

15(b). From frequency domain, the integration filter is a low pass filter which the cut off

frequency of integration filter:

𝑦(𝑡) = 𝑥(𝑡) ∗ ∫ 𝛿(𝑡)𝑑𝑡 = ∫ 𝑥(𝑡)𝑑𝑡 ∗ 𝛿(𝑡) = ∫ 𝑥(𝑡)𝑑𝑡

(4-9)

The integration filter kernel can be written as:

ℎ(𝑡) = ∫ 𝛿(𝑡)𝑑𝑡

(4-10)

Figure 4-14: Schematic representation of the theoretical Heaviside function by a line with

an arrow. The height of the arrow is to specify the value of any multiplicative constant.

 81

Figure 4-15: Integration Kernel of Integration Controller. (a) Impulse Response of

Integration Controller in Time Domain. (b) Frequency Response of Integration Controller

Analysed by Fourier Transform in frequency domain.

3) Differentiation

If the 𝑥(𝑡) signal is convolved with the differentiation of 𝛿(𝑡) , the output signal will be

a time derivative of original signal. If we differentiate the 𝛿(𝑡), we will get an impulse

response of Unit Doublet function in mathematical definition. The differentiation filter

kernel is shown in Figure 4-16. The impulse response of differentiation filter has

displayed in Figure 4-17(a) and the FFT of differentiation kernel is displayed in Figure 4-

17(b). From the frequency domain information of differentiation filter, differentiation

filter is a band pass filter.

𝑦(𝑡) = 𝑥(𝑡) ∗
𝑑𝛿(𝑡)

𝑑𝑡
=

𝑑𝑥(𝑡)

𝑑𝑡
∗ 𝛿(𝑡) =

𝑑𝑥(𝑡)

𝑑𝑡

(4-11)

The differentiation filter kernel can be written as:

ℎ(𝑡) =
𝑑𝛿(𝑡)

𝑑𝑡
=

𝑑𝛿(𝑡) − 𝑑𝛿(𝑡 − ∆𝑡)

∆𝑡
=

𝑑𝛿(𝑡)

∆𝑡
−

𝑑𝛿(𝑡 − ∆𝑡)

∆𝑡

(4-12)

 82

Figure 4-16: Schematic representation of the derivation of the theoretical Dirac delta

function by lines with arrows. The height and symbol of the arrow are to specify the value

of any multiplicative constant.

Figure 4-17: Differentiation Kernel of Differentiation Controller. (a) Impulse Response of

Differentiation Controller in Time Domain. (b) Frequency Response of Differentiation

Controller Analysed by Fourier Transform in frequency domain.

The proportional, integration, and differentiation kernels will be stored as lookup tables

in the non-volatile FPGA implementation. Physically, these are stored as three column

 83

buffer banks consisting of an 8-bit column registers implementing on novel flash-based

logic arrays. These three kernels will be employed to do multiplication with incoming

digitalized local field potential recordings for achieving convolution.

4.4 Conclusion

This chapter reviews different reprogrammable digital hardware candidates from

computing time and power consumption. Section 4.2 conducted a case study of

comparing FIR filter implementation on a microcontroller and a non-volatile FPGA. The

non-volatile FPGA outweigh microcontroller in terms of computing time and power

consumption for our application. Section 4.3 introduces a hardware implementation of

PID controller from theoretical analysis and digital hardware implementation. This

chapter has laid the foundation for next chapter for hardware candidate selection and

PID algorithm integration with a bi-directional neural interface.

 84

Relative Contribution

Correspondent Contribution

Miss Lijuan Xia

Dr. Patrick Degenaar

1. The digital hardware evaluation between

FPGAs and MCUs has been reviewed in this

chapter.

2. The feasibility study of non-volatile FPGAs

has been presented by comparing the

convolution implementation on an off-the-

shelf microcontroller and a non-volatile

FPGA.

3. This chapter also reports the feasibility

study of PID algorithm implementation

onto a wearable digital processor in the

next chapter.

Correspondent Future Work

Miss Lijuan

Dr. Patrick Degenaar

1. A more comprehensive comparison between

non-volatile FPGAs and MCUs need to be

studied to prove the feasibility of the non-

volatile FPGA.

2. More digital processors (GPUs, DSPs) can be

applied to conduct a more fair and

comprehensive comparison.

 85

Chapter 5. Closed-loop Energy-Efficient Digital Processor

5.1 Chapter Overview

Recent neuroscience studies have demonstrated that considerable information about

brain states can be contained in low-frequency Local Field Potentials (lf–LFPs; below 5

Hz) with applications in real-time closed-loop neurostimulation for neurological

disorders [64], [65], [66]. Given these signals can be sampled at low sampling rate (below

100 Hz) and thus provide a sparse data stream, there is an opportunity to design

implantable neuroprosthesis with long battery lifetime and sufficient processing power

to implement the long-term and real-time closed-loop control algorithms.

Figure 5-1: High Level Schematic of Closed-loop Brain Neuromodulation Control System.

Shown are: (a) Scale diagram schematic prototype of brain neuromodulation system:

Brain unit is for electrical recording and optogenetic stimulation; Controller unit is for

data transmission. (b) Shows the schematics of closed-loop algorithm processing; (c)

Compares different communication architectures between ASIC brain implant and

control unit.

In this chapter, we explore the two candidate architectures shown in Figure 5-1(c, i) and

Figure 5-1(c, iii). Our objective of this effort is to explore which of these is optimum

digital architecture in realistic processing conditions. Hence an energy-efferent digital

 86

processor interfacing with an ASIC brain implant can be proposed for closed-loop brain

neuromodulation. We therefore implement an exemplar PID control algorithm

proposed in chapter 3 and chapter 4 on this digital processor for intervening with

epileptic neuron networks to suppress seizures in neuroscience rodent experiments.

The algorithm was optimized for each architecture and the total power consumption

compared over respective wake-up and sleep processing cycles.

We used one of the most highly efficient microcontrollers currently available for this

task which uses the 28nm technology node. In contrast, the only non-volatile FPGA (nv

FPGA) uses the 90nm Programmable digital platforms (DSPs, MCUs, CPU, etc.) are highly

flexible and have been typically used for developing neuroprosthesis systems. Examples

of microcontroller digital implementations for closed-loop neuroprosthesis processors

include [67] and [68]. Such systems could be implemented as shown in Figure 5-1(c, ii),

assuming it to be desirable to have a separate microcontroller to ensure timing accuracy.

However, general purpose systems lack the architectural efficiency of dedicated

hardware.

5.2 System Architecture

Figure 5-2: High block diagram of proposed closed-loop system design of software layer

with implantable ASIC optrode [69] , bi-directional control system of the exemplar PID

control algorithm.

This subchapter mainly describes the system architecture of the bio-directional ASIC

optrode and the digital processor from the hardware and software level. Figure 5-2

 87

shows a high-level block diagram of proposed closed-loop optogenetic stimulation

system integration of the software layer. In the proposed software layer, it mainly

contains three parts:

1. ASIC finite state machine information (ASIC FSM, communications)

2. Controller systems (control algorithms, optical converter)

3. Power unit (Power FSM).

Corresponding to the software layer, Figure 5-3 shows the hardware layer containing

two parts: Brain implant (ASIC neural interface) and, Control unit (nvFPGA,

microcontroller, power battery). The ASIC-based brain implant, which provides

amplification, filtering and digitization of LFP signals as well as current sources for driving

LEDs for optogenetics, has been described in the previous publication [18], [63] .

Figure 5-3: High block diagram of the proposed closed-loop system design of hardware

layer and software layer with an implantable ASIC optrode, a bi-directional control

system of the exemplar control algorithm.

For this specific application, a non-volatile FPGA (IGLOO nano FPGA: AGLN250V2-

VQG100I) chip stands out with its flash freeze technology for significantly reducing

standby current consumption. This non-volatile has been designed with a peripheral

voltage circuit onto a 25mm*25mm flexible printed circuit board (PCB) shown in Figure

5-4 and Figure 5-5. A co-processor microcontroller is also employed to coordinate with

this non-volatile FPGA to activate flash freeze mode to save on power consumption.

Figure 5-4 shows the front end and back end design of the proposed PCB board which

contains six-layer wire layout. Figure 5-5 is the photograph of the designed

 88

25mm*25mm PCB board.

Figure 5-4: A detailed description of the proposed six-layer non-volatile FPGA PCB board

in (a) front of the non-volatile FPGA board, (b) back view of the non-volatile FPGA board,

(c) the FPGA programmer port for reprogramming. This PCB board is designed by Altium

Designer Software.

Figure 5-5: Photograph of the proposed PCB board in (a) front of the non-volatile FPGA

board, (b) back view of the non-volatile FPGA board, (c) is the assembled version between

the non-volatile FPGA and MCU board.

 89

5.3 Processing Flow

This subchapter will introduce the processing flow in the FPGA based digital processor.

First, we will present the PID algorithm and optical converter algorithm as an exemplar

algorithm implementation. Following is the digital serial protocol implementation

between digital processor of closed-loop algorithm and bi-directional neural interface.

In other words, the FPGA based digital processor will receive some recordings from the

implantable neural interface ASIC probe and performs the exemplar closed-loop control

algorithms to convert the signal output into a stimulus pattern for further optogenetic

means on the ASIC probe. The last section of this subchapter is to brief how to program

a co-processor MCU to send a pulse width modulation signal to the FPGA directly to

enable entering and exiting an ultra-low power Flash Freeze mode (8.032uA) to save

energy consumption.

One of the most common used control algorithms in the engineering field is the PID

(Proportional, Integral and Differential) algorithm, or PI, PD variants. It basically

compares the signal with reference and determine the deviation (error) with respect to

that reference. It is also applicable to closed-loop control of biological activity such as

suppression of epilepsy seizures. A target of zero activity within a frequency range can

be given. Then if the activity deviates too much, feedback can be provided to suppress

activity. An exemplar of prior literature in this field has been proven in chapter 3 of this

thesis. Furthermore, to achieve intervention we propose that optogenetics allows for

closed-loop electrical recording and optical stimulation without interference [69]. As

such, we also include an optical conversion algorithm based on the properties of

channelrhodopsin-2 – the primary photosensitization agent used in optogenetics [70],

[71].

5.3.1 PID Control Algorithm

In our application, the closed-loop algorithm is designed to intervene targeted neuron

network through delivering continuous closed-loop optogenetic stimulation to suppress

epilepsy seizures. The intervention philosophy of employing the linear PID algorithm to

stabilize the neuron network has been proven in chapter 3.

Therefore, in the microsystem, we have defined the PID control algorithm as the

 90

summation of proportional operator, integral operator and derivative operator to filter

the incoming real time LFP signal recorded by an exemplar ASIC optrode. The

implementation of PID controller has been detailed in chapter 4.

LFP is sampled by means of an ASIC optrode at a sampling rate of 100Hz (that is, 100 8-

bit samples per second are collected). As PID algorithms can be redesigned into the

scheme of linear, time-invariant (LTI) filters, we need to design our LTI filter kernel in the

time domain of impulse response for performing proportion, integration, differentiation

operation.

5.3.2 Optical Converter

An optical optogenetic stimulus converter has been created for converting output of PID

module to optogenetic Pulse Width Modulation (PWM) stimulus on the probe for

modulating optogenetic infected neurons. Figure 5-6 describes two stages in the optical

converter process, stage 1 is to adapt output of PID controller to total optical stimulus

following on the non-linear inverse sigmoid transfer function shown in Figure 5-6, stage

2 employs a reciprocal counter for modulating duty ratio of fixed period pulses (10ms)

for optogenetic neural stimulation [72].

 91

Figure 5-6: Intensity dependent optical stimulus mechanism: (a) schematic for converting

output of PID controller to width modulated pulse for delivering optogenetic stimulus (Kg

=0.4, Kr = 128, Kge=0.1, Ke=34).

Figure 5-7 shows the relationship between the input and output of the optical converter

design of inverse sigmoid function. The input of the optical converter is the output of

PID control algorithm which can be defined as photon flux in terms of mW/mm2. The

output of optogenetic stimulation from neural interface ASIC probe is defined as light

intensity and PWM stimulation time. Figure 5-7 (a) represents the light intensity from

the output of the inverse sigmoid function corresponding to light flux in terms of

mW/mm2 for 10ms which limits the maximum PWM time (in ms) for an optogenetic

stimulation on intervening epileptic seizure onset neurons. The neural response above

is calibrated as the average plateau response resulting from continuous illumination.

However, the main interested frequency range is in pulsed illumination with a defined

PWM between 0.1 - 10ms (assuming 100Hz sampling - or at least 100Hz intervention).

If the required light intensity is too high, the PWM time will exceed the maximum time

allowable within a frame. Thus, this needs to saturate to the maximum time. Figure 5-7

(b) shows the PWM stimulation time corresponding to normalize neural response with

a defined PWM time between 0.1 - 10ms.

 92

Figure 5-7: Relationship between the input and output of optical converter of inverse

sigmoid function. (a) is the light flux response with the neural response, (b) is the light

PWM stimulation time with the neural response.

5.3.3 Digital Neural Interface

Reza et al reported an application-specific integrated circuit (ASIC) brain implant of

intelligent electrode recording and optical neural stimulation including a fully digital

interface with a serial peripheral interface (SPI) to allow for use with embedded

controllers [69]. The embedded SPI interface of their brain implant relates to a Finite

State Machine (FSM) which implements a command interpreter which is capable of

sending out LFP data whilst receiving instructions to control LED emission. Therefore,

we incorporate a SPI master and corresponding state machine in our digital processor

to interface with the operands in the ASIC. The digital ASIC command set with

corresponding operands have been listed in Table5-1. Figure 5-8 describes the timing

diagram of collaborating a microcontroller and a non-volatile FPGA to enter and exit

flash freeze design of a non-volatile FPGA by driving flash freeze pin.

 93

Table 5-1: Comparison results for different communication protocols.

ASIC Command Set with Corresponding Operands

Command Purpose

0001xxxx LED off

0010xxxx LED On

0101xxxx SET LED

1000xxxx READ LFP

Figure 5-8: Timing diagram of collaborating the microcontroller and the non-volatile

FPGA to enter and exit flash freeze design of the non-volatile FPGA by driving flash freeze

pin.

 94

Figure 5-9: the FPGA implementation of closed-loop control scheme: 1. Down-sampling, 2. PID filter, 3. Optical converter, 4.SPI master.

95

5.3.4 nvFPGA Version Implementation

The implemented processing architecture on the nvFPGA is shown in Figure 5-9, the basic

state transition diagram for the chip-level FSM is shown in Table 5-1. The recorded data is

stored in an 8-bit wide on-chip SRAM. The following closed-loop schematic consists of three

main modules: recoding interface with the head-stage board of the probe, a closed loop

algorithm, and stimulation interface interfacing with the head-stage board of the probe.

Recording Interface

In recording interface, a SPI slave has been designed for interfacing with the data transceiver

and command interpreter to communicate with the master controller of the ASIC optrode. A

SPI recording circuitry has been designed for interfacing with the probe to receive the

command of “READ LFP “.

• Closed-loop Algorithm Implementation

In Figure 5-9, the digital FPGA architecture of an exemplar closed loop algorithm has been

shown to have consisted of the following components:

1. A counter (T) and an 8-bit adder calculate for down sampling the input LFP recordings from

Recording Buffer 1.

2. Two 8-bit 16*1 column buffer banks of 8-bits row registers FIFO Buffer3 and FIFO Buffer4

are used to save incoming recording of two separate frequencies.

3. Three 16*1 column registers PID Kernel Buffer5 of 8-bits are applied to hold proportional

Dirac Delta kernel, integral unit step kernel and derivative Gaussian kernels (displayed in

Figure 5-6) as FIR filter kernels to do further multiplication.

4. A 2 to 1 Mux is used for two column buffer banks FIFO Buffer 3, FIFO Buffer 4 to select either

of the corresponding column register banks for the next 16 to 1 mux.

5. A16 to 1 Mux is used for one column buffer bank FIFO Buffer 3, FIFO Buffer 4 to select a

corresponding column register for multiplication.

6. A 3 to 1 Mux is applied to select the corresponding PID kernel PID Kernel Buffer5 for further

multiplication.

96

7. A16 to 1 Mux is used for one row buffer bank FIFO Buffer 3, FIFO Buffer 4 to select

corresponding column register for multiplication.

8. An accumulator adds all results of multiplication which will be sent to recording buffer FIR

Kernel Buffer 7 for generating further closed-loop neural stimulation.

9. Three registers PID gain Buffer 8 hold PID gain for a further 3 to 1 multiplier to do further

multiplication.

10. Buffer PID output Buffer9 is employed to save the total PID output.

11. A 255*1 buffer bank Sigmoid Buffer 12 of an 8-bit register holds a sigmoid function look

up table for modulating further pulse with feedback to optrode for closed-loop optogenetic

stimulation.

12. A 256*1 multiplier selects sigmoid function output based on the incoming PID output

Buffer10 to the register bank Intensity Command.

• Stimulation Interface

In stimulation interface, a SPI master has been designed for interfacing with FSM the master

controller of the implantable probe for data transceiver and command interpreter. These

commands will be sent off by the non-volatile FPGA based control unit after closed-loop

algorithm processing. The digital ASIC command set with corresponding operands have been

in Table 5-1.

5.3.5 Microcontroller implementation

The implementation of microcontroller (Kinetis K22 MCU: MK22FN512VLH12 MCU) of entire

closed-loop algorithm has been simplified as follows. The recorded data is stored in an 8-bit

wide buffer pointer. Then the input pointer will be passed to a PID filter which is organized

into the ring buffer filter architecture of proportional filter, integral filter and derivative filter.

The output of the PID controller is directly sent into optical stimulation commands to update

LED status. The simplified description of microcontroller implementation is provided here as

we will supply an energy consumption comparison of a microcontroller and a non-volatile

FPGA in the results section to compare their power consumption performance.

97

5.3.6 System Integration FF Design

In Figure 5-10, a schematic circuitry description has shown for detailing the hardware of

explaining flash freeze architecture inside the non-volatile FPGA. A pseudo code of driving

flash and freeze mode has been listed.

Figure 5-10: A simplified schematic diagram of flash freeze mechanism of the non-volatile

FPGA. (a) The peripheral circuit design for getting the non-volatile FPGA to enter and exit the

flash freeze mode by communicating with the agl_ff pin27 of the IGLOO nano FPGA chip. (b)

The timing diagram of Flash Freeze agl_ff pin27 with closed-loop control design.

Figure 5-10 shows the proposed digital architecture for activating Flash Freeze mode by

driving a flash freeze pin from the microcontroller to the non-volatile FPGA. A detailed

breakdown of timing diagram of integrating a MCU and a non-volatile FPGA has been

illustrated in Figure 5-11. To be specific, the entire closed-loop algorithm consumes 0.38ms,

where data is sampled 100Hz (per sample every 10 ms), the design of the non-volatile FPGA

(working frequency: 20MHz) is set to freeze mode after the processing is completed after

0.38ms. When we set the non-volatile FPGA working at 20MHz, the whole algorithm will cost

0.38ms. Then the neural interface ASIC sampled the incoming LFP at 100 Hz, which means per

sample takes 10 ms. A pseudo code of emulating the flash*freeze mechanism of IGLOO nano

chip has been listed. This digital architecture is designed for reducing static power

consumption by setting the non-volatile FPGA into flash-freeze mode.

98

Figure 5-11: (a) two sampled Flash freeze mechanism of the non-volatile FPGA. (b) is the zoom

up of one sampled Flash freeze mechanism of the non-volatile FPGA.

99

5.4 Results and Analysis

In order to demonstrate the functionality of the proposed closed-loop framework design, a

dataset of 55 minutes (split in traces of 10 minutes) of prerecorded neocortical epileptic

seizure local field potential (LFP) recordings were used to verify the performance of the

exemplar closed-loop processing algorithm. The data was collected by neuroscientists working

at the Institute of Neuroscience in Newcastle University from an epileptic adult rodent. The

epileptic seizure recordings were emulated in a waveform signal generator (Keysight 33500B

Series Waveform Generator) and then connected to the proposed digital processor for

hardware verification.

5.4.1 Algorithm Verification

In order to verify the digital implementation of our FPGA implementation of closed-loop

algorithms, we have used a microcontroller-based ADC and DAC module.

• ADC module of microcontroller FRDM K22F Cortex M4 is responsible for digitalizing

the incoming local field potential (LFP).

• DAC module of microcontroller FRDM K22F Cortex M4 is to convert the digital output

of the closed-loop algorithm into an analog output for a verification into oscilloscope.

For testing the frequency response of PID controller, we have utilized a sweep sin wave as the

input.

a. Input: sin wave starting from 1Hz, end to 1KHz. Sweep time is 1 second

b. Output: the output of separate proportional, integral and derivative filter.

100

 Figure 5-12: (a) Comparison of input and output of down sample module with sweep sin wave

signal as input signal for verification. (b) Comparison of input and output of proportional filter

with sweep sin wave signal as input signal for verification. The measured frequency response

of the proportional filter matches with Figure 4-23(b). (c) Comparison of input and output of

integral filter with sweep sin wave signal as input signal for verification. The measured

frequency response of the integral filter matches with Figure 4-25(b). (d) Comparison of input

and output of derivative filter with sweep sin wave signal as input signal for verification. The

measured frequency response of the derivative filter matches with Figure 4-27(b).

101

Figure 5-12 shows the hardware verification of the corresponding hardware design by

capturing the output signal of each module verified by sending corresponding input data.

Figure 5-12(a) describes the comparison of input and output of downsample module where

blue is sweep sin wave and red is the output of proportion filter as a comparison. Figure 5-

12(b) shows the comparison of input and output of proportional filter where blue is sweep sin

wave and red is the output of proportion filter as a comparison. In addition, Figure 5-12(c)

demonstrates the comparison of input and output of integral filter where blue is sweep sin

wave and red is the output of integral filter as a comparison. Finally, Figure 5-12(d) illustrates

the comparison of input and output of derivative filter where blue is sweep sin wave and red

is the output of derivative filter as a comparison.

Furthermore, the pre-recorded seizure local field potential recordings are utilized to verify our

digital processor for biomedical application.

a. Input: epileptic local field potential recordings from rat cortex

b. Output: the output of separate proportional, integral and derivative filter.

Figure 5-13 shows the hardware verification of the corresponding hardware design by

capturing the output signal of each module verified by sending corresponding input data.

Figure 5-13(a) describes the comparison of input and output of downsample module where

blue is epileptic LFP recordings and red is the output of proportion filter as a comparison.

Figure 5-13(b) shows the comparison of input and output of proportional filter where blue is

epileptic LFP recordings and red is the output of proportion filter as a comparison. In addition,

Figure 5-13(c) demonstrates the comparison of input and output of integral filter where blue

is epileptic LFP recordings and red is the output of integral filter as a comparison. Finally,

Figure 5-13(d) illustrates the comparison of input and output of derivative filter where blue is

epileptic LFP recordings and red is the output of derivative filter as a comparison.

102

Figure 5-13: (a) Comparison of input and output of downsample module with epileptic seizure

local field potential recordings of 10 seconds as input signal for verification. (b) Comparison of

input and output of proportional filter with epileptic seizure local field potential recordings of

10 seconds as input signal for verification. (c) Comparison of input and output of integral filter

with epileptic seizure local field potential recordings of 10 seconds as input signal for

verification. (d) Comparison of input and output of derivative filter with epileptic seizure local

field potential recordings of 10 seconds as input signal for verification.

103

In previous chapter 3, different PID gain parameterizations are suggested by closed-loop

modelling work. An exemplar implementation is shown in Figure 5-14 with a proper PID

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 gain setup. We picked up PID gain parameters [𝐾𝑝 𝐾𝑖 𝐾𝑑] as [100, 0,-2] from the

stabilization area plotted in Figure 3-6(a). This PID set up is found to help control high

amplitude epilepsy seizures successfully that is also shown in Figure 3-7(a). Under this

circumstance, [𝐾𝑝 𝐾𝑖 𝐾𝑑] as [100, 0, -2] have been chosen to tune the PID hardware

implementation shown in Figure 5-14 as the first parameter setup for neuroscience rodent

experiments to intervene the neuron network for controlling epilepsy seizures.

 Figure 5-14: Measured non-volatile FPGA hardware results of input and output of PID

controller (𝑲𝒑 = 𝟏𝟎𝟎, 𝑲𝒊 = 𝟎, 𝑲𝒅 = −𝟐). (a) Comparison of FPGA results and matlab results

for 10 second local field potential recordings. (b) Zoomed up verification of comparison of FPGA

results and matlab results from 7th second to 9th second local field recordings. The FPGA

signals are converted into analogue signals by using an external DAC module based on FRDM

K22F microcontroller.

Figure 5-14 has demonstrated the measured non-volatile FPGA hardware results of input and

output of PID controller with comparison to the Matlab reference. The microcontroller

implementation was identical, but we do not show here for brevity. Figure 5-14 (a) describes

the comparison of input and output of downsample module where blue is epileptic seizure

local field potential recordings of 10 seconds and red is the output of proportion filter as a

comparison. Figure 5-14 (b) shows the comparison of input and output of proportional filter

104

where blue is epileptic seizure local field potential recordings of 10 seconds and red is the

output of proportion filter as a comparison.

Figure 5-15: Oscilloscope verification of LED on and LED off command sent from the FPGA to

the ASIC for turning on and turning off LED bonded in ASIC optrode. (a) The zoomed

oscilloscope screenshot showing the data interface neural stimulation LED On command; (b)

The zoomed oscilloscope screenshot showing the data interface neural stimulation LED Off

command.

105

After the PID controller, the output of PID controller is sent into the inverse sigmoid optical

converter for delivering the turn on and turn off the LED bonded on the optrode for delivering

the optical stimulation. In order to verify the LED on and LED off command between the front-

end FPGA and neural interface ASIC, a probe has been hooked up in the connection between

the front-end FPGA and neural interface ASIC to display the signal in oscilloscope (Keysight

MSOX4154A Mixed Signal Oscilloscope). Figure 5-15 demonstrates how the LED on and LED

off be sent to drive the neural interface ASIC to the target LED. Figure 5-15 shows the zoomed

up of the LED on and LED off command.

5.4.2 Flash Freeze Verification

A digital communication protocol has been designed for activating Flash Freeze mode by

driving a flash freeze pin from the microcontroller to the non-volatile FPGA which is also

demonstrated in Figure 5-16. A hardware oscilloscope screenshots verification of the timing-

diagram of integrating the MCU and the non-volatile FPGA has been illustrated in Figure 5-16.

As the entire closed-loop algorithm consumes 0.38ms, where data is sampled 100Hz (per

sample every 10 ms), the design of the non-volatile FPGA (working frequency: 20MHz) is set

to freeze mode after the processing is completed after 0.38ms. The flow mechanism of

collaborating the front-end non-volatile FPGA with a microcontroller to enter and exit the

Flash*Freeze is designed into three stages as follows:

1. Stage1: MCU->FPGA for unfreezing:

The MCU sends the non-volatile FPGA high voltage to enable exiting from flash*freeze mode

(unfreeze mode).

2. Stage2: FPGA->MCU for freezing:

When the non-volatile FPGA finishes computing, it sends an ACK to the MCU, then the MCU

send a low voltage to make the non-volatile FPGA enter flash freeze mode (freeze mode).

3. Stage3: MCU->FPGA for unfreezing:

Once the FPGA receives the next recordings, it will send an ACK to the microcontroller for

sending high voltage to the FPGA to enter flash*freeze mode (unfreeze mode).

106

Figure 5-16: Oscilloscope capture of flash freeze active signal sent from microcontroller to the

non-volatile FPGA flash freeze pin to help enter and exist flash freeze mode. The signal also

represents the time cost for the flash freeze pin in which FF off lasts for 0.38ms and FF on lasts

for 9.62ms in time domain. In FF off mode, the FPGA is in unfreeze mode where SPI recording

and PID algorithm lasts for 96us, optical converter costs 194us and SPI stimulation takes 98us.

During the unfreeze mode, the computing time consisted of SPI recording, PID algorithm,

optical converter and SPI stimulation. The breakdown of the computing time has been shown

107

in Figure 5-16. To be specific, the flash freeze exploration can be split into the following steps:

• SPI recording with PID algorithm :96us

• Optical Converter:194us

• SPI stimulation: 98us

It means the whole processing unit can take 0.38ms, while the non-volatile FPGA is on flash

freeze off mode.

5.4.3 Power Measurement Results

In this chapter, we mainly analyse how power consumption be distributed by exploring this

nvFPGA architecture. We have listed the measured power consumption of the non-volatile

FPGA and the microcontroller during one computing cycle in Table 5-4. It can be observed that

the algorithm computing time for each sample takes 0.38ms. During this period, with a 20

MHz working frequency set up, the non-volatile FPGA consumes 4.78mA (flash freeze mode

off) and while in sleeping mode with the non-volatile FPGA having flash freeze mode on, it

costs 8.15uA.

Table 5-4: Measured power consumption of the non-volatile FPGA (IGLOO Nano) and the

microcontroller (ARM Cortex M4) during one computing cycle

 Non-volatile FPGA MCU

Work Mode FF on FF off Interrupt Mode

Voltage Rail 1.2v 1.2v 3.3v

Current 4.78mA 8.15uA 0.25mA

Time 0.38ms 9.62ms 10ms

108

Figure 5-17: (a) The measured current consumption of the front-end non-volatile FPGA

implementation and MCU implementation. (b) Scalability analysis of flash freeze current

leakage with respect to look up table numbers of non-volatile FPGA.

In comparison, the microcontroller is programmed into sleep mode with a timer set to

generate a pulse signal to the non-volatile FPGA for entering and exiting flash freeze mode. It

109

costs 0.25mA for microcontroller to be a co-processor during the one computing cycle. On the

flash freeze snippet mode (with aforementioned recording settings), the complete system

measured in at 5.12mW, including all the I/O power (i.e. driving the PCB traces).

In order to conduct a proper power consumption comparison, we have implemented the same

closed-loop algorithm in microcontroller with a sleep and wake up mode setup. Figure 5-17

(a) shows the measured power consumption comparison between the non-volatile FPGA

(flash freeze mode on and off) and microcontroller (sleep and wake up on and off). It shows

the strength of dynamic energy consumption of flash compared to commercial digital

microcontrollers. Figure 5-17 (b) describes the scalability analysis of flash freeze current

leakage with respect to look up table numbers of non-volatile FPGA. For non-volatile FPGA

(AGLN010) which contains the least logic cell numbers of 10,000, the leakage power is 2 𝜇𝑤

while for non-volatile FPGA (AGLN250) which contains the most logic cell numbers of 250,000,

the leakage power is 24𝜇𝑤.

In our scenario, AGLN250 has been picked as it contains the maximum LUTs and 25.6%

utilization of LUTs is used for our implementation, and 74.4% of the remaining LUTs can be

applied to explore other algorithms implementation to conduct additional exploratory

stimulation methodologies for controlling epileptic seizure neuron network for

neuroscientists to work with. If we choose an exact AGLN010 FPGA based on our LUT

estimation, it reveals that the power consumption can be further reduced.

110

Figure 5-18: Comparison of energy cost per computing cycle of the non-volatile FPGA and the

microprocessor. This figure also shows the energy cost per cycle with respect to algorithm

complexity of the MCU and the non-volatile FPGA.

To provide a fair comparison, Figure 5-18 compares the measured energy cost per computing

cycle of the non-volatile FPGA. When algorithm complexity increases, Figure 5-18 also

highlight the non-volatile FPGA has a lower energy consumption strength over the commercial

digital microcontrollers. The breakdown of the look up table has been investigated in the

Table 5-5. Table 5-5 also shows the utilization of resources in the design of the closed-loop

algorithm. It shows the whole design consumes 25.6% of the available resources on the non-

volatile FPGA, which has been optimized for closed-loop algorithms.

111

Table 5-5: Measured Look up Table (LUT) Distribution of Closed-loop Algorithm Design

implemented on the non-volatile FPGA IGLOO nano Chip

 LUT LUT

Utilization

Utilization

LUT Utilization of Entire Architecture

SPI Slave for

Recording

32 32/6144 0.5%

Closed-loop

Algorithm

827 827/6144 13.5%

SPI Master for

stimulation

712 712/6144 11.6%

Total 1571 1571/6144 25.6%

Break Down of the Closed-loop Architecture

Downsample 128 128/6144 2.1%

PID Algorithm 444 444/6144 7.2%

Optical Converter 255 255/6144 2.3%

Figure 5-19 also uses the pie chart to demonstrate the breakdown of logic cells utilization of

closed-loop digital implementation. In this design, it is possible to add more filters working in

parallel with each other, with not adding massive computing latency by taking advantage of

the FPGA parallel computing architecture.

112

Figure 5-19: Breakdown of power consumption of look up table distribution of closed-loop

architecture. Shown are: (a) Look Up Table Utilization of Overall Architecture. (b) Break Down

of the Exemplar Closed-loop algorithm.

5.5 Conclusion

In this chapter, we have presented an exploratory energy-efficient digital processor

architecture built with the commercial off-the-shelf non-volatile FPGA and microcontroller for

sparse data processing of brain neuromodulation. Taking a commonly-used algorithm with

reference target application, the front-end non-volatile FPGA is used to implement the

exemplar algorithm implementation and a MCU co-processor is applied to coordinate to

enable entering and exiting an ultra-low power Flash*Freeze mode of the front-end non-

volatile FPGA. The main features of this effort are as follows.

i. The first key advancement is that we develop and implement a new power computing

diagram based on the FPGA+MCU architecture. This time-driven approach significantly

reduced power consumption which suggests that a digital combined control system of

the non-volatile FPGA and micro controller outweighs a digital control system of

microcontroller with microcontroller regarding computing time cost and energy

consumption.

ii. The second key improvement of this work is that its potential flexibility to be employed

in neuroscience research experiments. This work presents a digital implementation of

113

an exemplar Proportional-Integral-Derivative (PID) control algorithm which can be

applied theoretically to suppress epileptic seizure neuron networks by setting up

proper gain parameters in neuroscience research experiments.

iii. Furthermore, a 55-minutes dataset of offline seizure LFP recordings from rat cortex

has been applied to verify this digital processor with closed-loop algorithm

implementation. It also shows the efficient-energy consumption of 116 nJ/computing

cycle which means the wearable digital processor can runs for more than 14 days on a

wearable 3.7V LiPo 180mAh Battery.

iv. This non-volatile FPGA digital architecture can be further translated to a System on

Chip (SoC) design for integrating with an implantable neural interface (ASIC) chip to do

electrical recording and optogenetic stimulation to form a closed-loop SoC.

This is the first cohort exploratory study to apply such an energy-efficient digital architecture

to interface with brain implants for controlling neural networks with optogenetic stimulation

to treat epilepsy. The small size and low power consumption can enable new neuroscience

experiments in the study of neural control behaviour. Although this digital architecture was

conducted in the field of brain implants, this digital architecture might also have great

potential to impact clinical applications. This digital processor can also be further adapted to

other embedded electronic devices for sparse signal processing to achieve lower energy

consumption (IoT, cellphones, cardiac pacemaker, etc.).

114

Relative Contribution

Correspondent Contribution

Miss Lijuan Xia

Dr. Patrick Degenaar

Mr. Dimitrios Firfilionis

1. A new power computing diagram based on the

FPGA+MCU architecture has been proposed in

this chapter.

2. The proposed Proportional-Integral-Derivative

(PID) control algorithm which can be applied

theoretically to suppress epileptic seizure

neuron networks by setting up proper gain

parameters in neuroscience research

experiments.

3. This non-volatile FPGA digital architecture can

be further translated to a System on Chip (SoC)

design for integrating with an implantable

neural interface (ASIC) chip to do electrical

recording and optogenetic stimulation to form

a closed-loop SoC.

Correspondent Future Work

Miss Lijuan

Dr. Patrick Degenaar

1. More algorithms apart from PID controller can

be explored for the rest of look up tables on the

non-volatile FPGA to integrate with the FSM

implementation for benefitting neuroscience

research experiments.

2. For the wireless power transfer, the required

components are the battery, embedded system

power management, and the power of the

transmitter and receiver.

115

Chapter 6. Conclusion

This thesis concerns a closed-loop control system of brain which demonstrates that closed-

loop stimulation methodology can alter ongoing epileptiform activity in vitro. A closed-loop

computational modelling work has been proposed to show that with proper PI controller gain

set up and PD controller gain set up, closed-loop PI controller and PD controller can help

suppress high amplitude epilepsy seizure-like activities. Furthermore, different digital

hardware platforms have been examined for an energy-efficient hardware implementation of

PI and PD controller implementation for closed-loop optogenetics experiments in rodent brain

slices. Last but not least, the proposed embedded PI and PD controller have been designed to

connect with a bidirectional intelligent optoelectronic probe for closed-loop electronic

recording and optogenetic stimulation.

This chapter will summary the main contribution of each chapter in this thesis and identify the

future work. And the final part of this chapter will demonstrate concluding remarks.

6.1 Original Contributions

The major contribution of this work can be presented by the two following points:

Chapter 2 has given a basic overview of the human brain function and some neurological

diseases. Epilepsy and epilepsy treatments are also examined in this chapter. Anti-epileptic

drugs (AEDs) are mainstays in stopping epileptic seizures from happening. However, there are

also other options for those patients whose seizures are not stopped by taking medication. An

operation on the brain can help control seizures and improve their life quality. Firstly, surgical

resective surgery can be used to remove the focal onset part of patients’ brain that causes

seizure. Secondly, the Vagus nerve stimulation can also be employed to disrupt the nerve

pathways that seizure impulses take through your brain. Finally, the deep brain stimulation

and closed-loop responsive neurostimulator systems can be adopted to implant a brain probe

device for delivering stimulation to the target nervous system. Closed-loop neuroprosthesis

systems are reviewed from the hardware and control algorithm perspectives.

Chapter 3 has depicted a closed-loop computational modelling work to deliver closed-loop

stimulation for intervening the neuron mass model. In this study, we took the Jansen’s neuron

mass model as a test bed to develop a closed-loop control system for controlling high

116

amplitude epileptic-like signal. PI controller and PD controller are used to deliver optogenetic

stimulation for intervening the neuron mass network. A graphical stability method was used

to determine the stability area of PI type controller and PD type controller in the control

parameter space for the proposed neuron mass model, which shows a theoretical guideline

for the parameter choosing of PI control and PD controller. The real time simulation results

show that with appropriate PI and PD gain choosing from the derived stabilization area, the PI

controller and PD controller can help to suppress high amplitude epileptic like seizure signals

in the proposed neural mass model.

Chapter 4 has reviewed different hardware platforms to suggest a proper hardware platform

satisfying the proposed specifications in terms of reprogrammability, power consumption and

computation time cost for our biomedical application. After a comparison case study, the non-

volatile FPGA was chosen for our biomedical application as it has reasonable power

consumption and computing time cost with a great reprogrammability. Additionally, a low-

power optimized digital implementation of PID control algorithm suggested from the

computational modelling efforts in Chapter3 was described in this chapter.

Chapter 5 highlights how to integrate the PID controller implementation with an FSM

command interpreter of an ASIC-based neural interface to drive the bi-directional neural

interface optrode to receive electrical recording and deliver optogenetic stimulation based on

the proposed closed-loop controller. By exploiting the flash freeze function of the non-volatile

FPGA, a co-processor microcontroller is programmed to send a pulse width modulation (PWM

signal) to the non-volatile FPGA directly for enable entering and exiting an ultra-low power

flash freeze mode to save power consumption. A portable 2.5cm*2.5cm PCB board has been

designed for the proposed non-volatile FPGA chip with peripheral voltage converter. The

proposed PCB design can offer the feasibility for neuroscientists to work with for rodent

epilepsy control experiments, with the long-term goal of employing them into real human

surgery trial in the following years.

6.2 Future Work

The suggested advancement of each chapter has been listed in the end of each chapter. To

summarize, it can be highlighted from two viewpoints:

• Algorithm research

117

1. Neuron mass models:

Since the Jansen’s neural mass model disregards spatial variations in activity, more detailed

and comprehensive neural mass models need to be advanced in spatial domain to represent

more numbers of neuron populations with higher precision and higher accuracy.

2. Different seizure patterns:

Seizures can be categorised into different patterns: high amplitude, high frequency and high

amplitude oscillations etc. In chapter 3, we justify that the appearance of epilepsy seizure

onset might be caused by the imbalance of excitatory and inhibitory parameters. However,

seizures can also be caused by the imbalance of excitatory and inhibitory neuron connectivity,

or the stimulus strength. More seizure patterns need to be discovered to help build a better

understanding of seizure onset and then form a better understanding of how to build the next

generation of closed-loop control systems to treatment epilepsy.

3. Closed-loop algorithm:

In this study, we used the Jansen’s neural mass model to develop a systematic design

approach to determine the control parameters of the proposed closed-loop controllers. It

should be highlighted that the proposed design methodology is independent of the specific

neuron mass model. More reasonable algorithms (machine learning, effective seizure

detection, adaptive learning etc.) need to be explored to integrate with the neural mass model

for providing the closed-loop stimulation to control epileptic signals.

• Hardware research:

1. Different hardware platforms

In this thesis, two digital platforms (MCU, FPGAs) have been reviewed in terms of

reprogrammability, power consumption and computational time cost. More digital hardware

platforms (CPU, GPU, MCU, DSP, FPGA, CPLD etc.) need to be reviewed and compared to

provide a fair and comprehensive comparison to benefit brain machine interfaces research

field.

2. Optimized digital implementation of algorithm

When the closed-loop algorithms are suggested by computational modelling work, the

optimized digital implementation of closed-loop algorithms need to be examined and

118

demonstrated. Smaller size PCB boards of digital implementation are also required to benefit

the long-term animal experiences.

6.3 Concluding Remarks

It is my firm belief that brain machine interface (BMI) will be a great asset for disabled

individuals with neurological disorder diseases and motor or sensory impairments as an

assisted living device. Recent progresses in brain machine interface research has led neuro-

engineers and neuroscientists to record the electroencephalogram (EEG) or local field

potential (LFP), analyse recordings and deliver subsequent treatments in real time by means

of a closed-loop control system. Neural Interface, a subspecialty of BMI, aims to use tiny

implantable/wearable devices to change precise electrical signals in nerves for the treatment

of a range of debilitating chronic diseases.

This thesis has presented a system-level design of miniaturized, low-power neural interface

implementation of novel closed-loop control algorithms to generate real time stimulation for

seizure suppression. As the project (CANDO) we involved in is in the fourth year of its seven-

year journey, more and more algorithms are expected to be on trial for rodent control

experiments to test their algorithm performance on seizure suppression. I believe my thesis

effort will be a solid proof of PID algorithm to be tested in neuroscience experiments and will

provide a solid foundation and contribution for future neuroscience research field for seizure

suppression.

119

References

[1] B. K. MacDonald, “The incidence and lifetime prevalence of neurological disorders in a
prospective community-based study in the UK,” Brain, vol. 123, no. 4, pp. 665–676,
2000.

[2] M. Vila and S. Przedborski, “Targeting programmed cell death in neurodegenerative
diseases,” Nat. Rev. Neurosci., vol. 4, no. 5, pp. 1–11, 2003.

[3] X. Liu, H. Zhu, M. Zhang, A. G. Richardson, T. H. Lucas, and J. Van Der Spiegel, “Design
of a low-noise, high power efficiency neural recording front-end with an integrated real-
time compressed sensing unit,” Proc. - IEEE Int. Symp. Circuits Syst., vol. 2015-July, pp.
2996–2999, 2015.

[4] M. Yin, D. A. Borton, J. Aceros, W. R. Patterson, and A. V. Nurmikko, “A 100-channel
hermetically sealed implantable device for chronic wireless neurosensing applications,”
IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 2, pp. 115–128, 2013.

[5] E. Krook-Magnuson, C. Armstrong, M. Oijala, and I. Soltesz, “On-demand optogenetic
control of spontaneous seizures in temporal lobe epilepsy,” Nat. Commun., vol. 4, pp.
1376–1378, 2013.

[6] M. T. Salam, M. Mirzaei, M. S. Ly, D. K. Nguyen, and M. Sawan, “An implantable
closedloop asynchronous drug delivery system for the treatment of refractory
epilepsy.,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 4, pp. 432–42, 2012.

[7] F. T. Sun, M. J. Morrell, R. E. Wharen, S. F.T., M. M.J., and W. J. R.E., “Responsive Cortical
Stimulation for the Treatment of Epilepsy,” Neurotherapeutics, vol. 5, no. 1, pp. 68–74,
2008.

[8] S. Ramgopal et al., “Seizure detection, seizure prediction, and closed-loop warning
systems in epilepsy,” Epilepsy Behav., vol. 37, pp. 291–307, 2014.

[9] S. Santaniello, G. Fiengo, L. Glielmo, and W. M. Grill, “Closed-loop control of deep brain
stimulation: a simulation study.,” IEEE Trans Neural Syst Rehabil Eng, vol. 19, no. 1, pp.
15–24, 2011.

[10] B. Shan, J. Wang, B. Deng, X. Wei, H. Yu, and H. Li, “UKF-based closed loop iterative
learning control of epileptiform wave in a neural mass model,” Cogn. Neurodyn., vol. 9,
no. 1, pp. 31–40, 2014.

[11] B. J. Gluckman, H. Nguyen, S. L. Weinstein, and S. J. Schiff, “Adaptive electric field
control of epileptic seizures.,” J. Neurosci., vol. 21, no. 2, pp. 590–600, 2001.

[12] T. K. T. Nguyen et al., “Closed-loop optical neural stimulation based on a 32-channel
low-noise recording system with online spike sorting,” J. Neural Eng., vol. 11, no. 4,
2014.

[13] N. Verma et al., “A Micro-Power EEG Acquisition SoC With Integrated Feature
Extraction Processor for a Chronic Seizure Detection System,” IEEE J. Solid-State Circuits,
vol. 11, no. 4, pp. 804–817, 2014.

120

[14] L. V Borovikova et al., “Vagus nerve stimulation attenuates the systemic inflammatory
response to endotoxin.,” Nature, vol. 405, no. 6785, pp. 458–462, 2000.

[15] L. Jehi, “Responsive neurostimulation: The hope and the challenges,” Epilepsy Curr., vol.
14, no. 5, pp. 270–271, 2014.

[16] V. Gilja, C. A. Chestek, I. Diester, J. M. Henderson, K. Deisseroth, and S. V. Krishna,
“Challenges and Opportunities for Next-Generation Intacortically Based Neural
Prostheses,” IEEE Trans. Biomed. Eng., vol. 58, no. 7, pp. 1891–1899, 2011.

[17] Y. Liu et al., “A 64-Channel Versatile Neural Recording SoC With Activity-Dependent
Data Throughput,” vol. 11, no. 6, pp. 1344–1355, 2017.

[18] R. Ramezani et al., “On-Probe Neural Interface ASIC for Combined Electrical Recording
and Optogenetic Stimulation,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 3, pp. 576–
588, 2018.

[19] S. Farshchi et al., “A 128-channel 6 mW wireless neural recording IC with spike feature
extraction and UWB transmitter,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 4,
pp. 312–321, 2014.

[20] R. R. Harrison et al., “A low-power integrated circuit for a wireless 100-electrode neural
recording system,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 123–133, 2007.

[21] M. S. Chae, Z. Yang, M. R. Yuce, L. Hoang, and W. Liu, “A 128-channel 6 mW wireless
neural recording IC with spike feature extraction and UWB transmitter,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 17, no. 4, pp. 312–321, 2009.

[22] W. Biederman et al., “A 4.78 mm2 Fully-Integrated Neuromodulation SoC Combining
64 Acquisition Channels with Digital Compression and Simultaneous Dual Stimulation,”
IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1038–1047, 2015.

[23] V. K. Jirsa, W. C. Stacey, P. P. Quilichini, A. I. Ivanov, and C. Bernard, “On the nature of
seizure dynamics,” Brain, vol. 137, no. 8, pp. 2210–2230, 2014.

[24] P. Anantachaisilp and Z. Lin, “Fractional Order PID Control of Rotor Suspension by Active
Magnetic Bearings,” Actuators, vol. 6, no. 1, p. 4, 2017.

[25] A. Jackson, “Neuroscience: Brain-controlled robot grabs attention,” Nature, vol. 485,
no. 7398, pp. 317–318, 2012.

[26] I. Osorio, M. G. Frei, and S. B. Wilkinson, “Real-time automated detection and
quantitative analysis of seizures and short-term prediction of clinical onset.,” Epilepsia,
vol. 39, no. 6, pp. 615–627, 1998.

[27] A. Berenyi, M. Belluscio, D. Mao, and G. Buzsáki, “Closed-Loop Control of Epilepsy by
Transcranial Electrical Stimulation,” Science (80-.)., vol. 337, no. 6095, pp. 735–737,
2012.

[28] X. Liu, M. Zhang, B. Subei, A. G. Richardson, T. H. Lucas, and J. Van Der Spiegel, “The
PennBMBI: Design of a general purpose wireless brain-machine-brain interface system,”
IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 2, pp. 248–258, 2015.

[29] R. S. Fisher et al., “Epileptic seizures and epilepsy: Definitions proposed by the
International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy

121

(IBE),” Epilepsia, vol. 46, no. 4, pp. 470–472, 2005.

[30] C. K. Mbuba, A. K. Ngugi, C. R. Newton, and J. A. Carter, “The epilepsy treatment gap in
developing countries: A systematic review of the magnitude, causes, and intervention
strategies,” Epilepsia, vol. 49, no. 9, pp. 1491–1503, 2008.

[31] S. Li, A. L. Zaninotto, I. S. Neville, W. S. Paiva, D. Nunn, and F. Fregni, “Clinical utility of
brain stimulation modalities following traumatic brain injury: Current evidence,”
Neuropsychiatr. Dis. Treat., vol. 11, pp. 1573–1586, 2015.

[32] A. J. Rush et al., “Vagus nerve stimulation (VNS) for treatment-resistant depressions: A
multicenter study,” Biol. Psychiatry, vol. 47, no. 4, pp. 276–286, 2000.

[33] M. J. Morrell and R. N. S. S. in E. S. Group, “Responsive cortical stimulation for the
treatment of medically intractable partial epilepsy.,” Neurology, vol. 77, no. 13, pp.
1295–1304, 2011.

[34] M. A.H., H. C.H., and B. G.H., “Vagus Nerve Stimulation in the Treatment of Refractory
Epilepsy,” Neurotherapeutics. 2009.

[35] A. Beuter, J. P. Lefaucheur, and J. Modolo, “Closed-loop cortical neuromodulation in
Parkinson’s disease: An alternative to deep brain stimulation?,” Clin. Neurophysiol., vol.
125, no. 5, pp. 874–885, 2014.

[36] T. Wichmann and M. R. DeLong, “Deep Brain Stimulation for Movement Disorders of
Basal Ganglia Origin: Restoring Function or Functionality?,” Neurotherapeutics, vol. 13,
no. 2, pp. 264–283, 2016.

[37] P. J. Grahn et al., “A neurochemical closed-loop controller for deep brain stimulation:
Toward individualized smart neuromodulation therapies,” Front. Neurosci., vol. 8, no.
8 JUN, pp. 1–11, 2014.

[38] B. C. Lega, C. H. Halpern, J. L. Jaggi, and G. H. Baltuch, “Deep brain stimulation in the
treatment of refractory epilepsy: Update on current data and future directions,”
Neurobiol. Dis., vol. 38, no. 3, pp. 354–360, 2010.

[39] A. P. Amar, M. L. Levy, C. Y. Liu, and M. L. J. Apuzzo, “Vagus Nerve Stimulation,” Proc.
IEEE, vol. 96, no. 7, pp. 1142–1151, 2008.

[40] C. M. DeGiorgio et al., “Prospective long-term study of vagus nerve stimulation for the
treatment of refractory seizures,” Epilepsia, vol. 41, no. 9, pp. 1195–1200, 2000.

[41] A. Hartshorn and B. Jobst, “Responsive brain stimulation in epilepsy,” Ther. Adv. Chronic
Dis., vol. 9, no. 7, pp. 135–142, 2018.

[42] “RNS System User Manual,” 2010.

[43] E. Ben-Menachem, “Neurostimulation-past, present, and beyond,” Epilepsy Curr., vol.
12, no. 5, pp. 188–191, 2012.

[44] G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar, and K. V. Shenoy, “A high-performance
brain-computer interface,” Nature, vol. 442, no. 7099, pp. 195–198, 2006.

[45] S. Zanos, A. G. Richardson, L. Shupe, F. P. Miles, and E. E. Fetz, “The neurochip-2: An
autonomous head-fixed computer for recording and stimulating in freely behaving

122

monkeys,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 4, pp. 427–435, 2011.

[46] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston, “The dynamic brain:
From spiking neurons to neural masses and cortical fields,” PLoS Comput. Biol., vol. 4,
no. 8, 2008.

[47] J. Jacobs, P. LeVan, R. Chander, J. Hall, F. Dubeau, and J. Gotman, “Interictal high-
frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent
of spikes in the human epileptic brain,” Epilepsia, vol. 49, no. 11, pp. 1893–1907, 2008.

[48] Y. Wang, M. Goodfellow, P. N. Taylor, and G. Baier, “Dynamic Mechanisms of
Neocortical Focal Seizure Onset,” PLoS Comput. Biol., vol. 10, no. 8, 2014.

[49] O. Faugeras, “Bifurcation Analysis of Jansen ’ s Neural Mass Model,” Neural Comput.,
vol. 18, no. 12, pp. 3052–3068, 2006.

[50] B. A. Lopour and A. J. Szeri, “A model of feedback control for the charge-balanced
suppression of epileptic seizures,” J. Comput. Neurosci., vol. 28, no. 3, pp. 375–387,
2010.

[51] J. Wang, E. Niebur, J. Hu, and X. Li, “Suppressing epileptic activity in a neural mass model
using a closed-loop proportional-integral controller,” Sci. Rep., vol. 6, no. May, pp. 1–
12, 2016.

[52] L. Xia, A. Soltan, Y. Wang, A. Jackson, G. Chester, and P. Degenaar, “Closed-loop
Proportion-Derivative Control Stabilization Analysis for Suppressing Epileptic Seizures
in a Neural Mass Model,” vol. 1, pp. 1–4.

[53] O. David, D. Cosmelli, and K. J. Friston, “Evaluation of different measures of functional
connectivity using a neural mass model,” Neuroimage, vol. 21, no. 2, pp. 659–673, 2004.

[54] B. H. Jansen, G. Zouridakis, and M. E. Brandt, “A neurophysiologically-based
mathematical model of flash visual evoked potentials,” Biol. Cybern., vol. 68, no. 3, pp.
275–283, 1993.

[55] J. Touboul, F. Wendling, P. Chauvel, and O. Faugeras, “Neural mass activity, bifurcations,
and epilepsy,” Neural Comput., vol. 23, no. 12, pp. 3232–3286, 2011.

[56] A. Spiegler, S. J. Kiebel, F. M. Atay, and T. R. Knösche, “Bifurcation analysis of neural
mass models: Impact of extrinsic inputs and dendritic time constants,” Neuroimage, vol.
52, no. 3, pp. 1041–1058, 2010.

[57] E. M. IZHIKEVICH, “Neural Excitability, Spiking and Bursting,” Int. J. Bifurc. Chaos, vol.
10, no. 06, pp. 1171–1266, 2000.

[58] S. ichi Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields,”
Biol. Cybern., vol. 27, no. 2, pp. 77–87, 1977.

[59] P. Kaps and P. Rentrop, “Generalized Runge-Kutta methods of order four with stepsize
control for stiff ordinary differential equations,” Numer. Math., vol. 33, no. 1, pp. 55–
68, 1979.

[60] V. N. Murthy and E. E. Fetz, “Oscillatory activity in sensorimotor cortex of awake
monkeys: synchronization of local field potentials and relation to behavior,” J.
Neurophysiol., vol. 76, no. 6, pp. 3949–3967, 1996.

123

[61] E. L. White and D. Czeiger, “Synapses made by axons of callosal projection neurons in
mouse somatosensory cortex: Emphasis on intrinsic connections,” J. Comp. Neurol.,
1991.

[62] X. B. Liu, Z. H. Zheng, M. C. Xi, and C. P. Wu, “Distribution of synapses on an
intracellularly labeled small pyramidal neuron in the cat motor cortex,” Anat. Embryol.
(Berl)., 1991.

[63] S. S. Ghoreishizadeh et al., “Four-Wire Interface ASIC for a Multi-Implant Link,” pp. 1–
12, 2017.

[64] R. A. Andersen, S. Musallam, and B. Pesaran, “Selecting the signals for a brain-machine
interface,” Curr. Opin. Neurobiol., vol. 14, no. 6, pp. 720–726, 2004.

[65] B. Engelhard, N. Ozeri, Z. Israel, H. Bergman, and E. Vaadia, “Inducing Gamma
Oscillations and Precise Spike Synchrony by Operant Conditioning via Brain-Machine
Interface,” Neuron, vol. 77, no. 2, pp. 361–375, 2013.

[66] A. Jackson and T. M. Hall, “Decoding Local Field Potentials for Neural Interfaces,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 10, pp. 1705–1714, 2017.

[67] G. Gagnon-Turcotte et al., “A wireless optogenetic headstage with multichannel
electrophysiological recording capability,” Sensors (Switzerland), vol. 15, no. 9, pp.
22776–22797, 2015.

[68] C. P. Young, S. F. Liang, D. W. Chang, Y. C. Liao, F. Z. Shaw, and C. H. Hsieh, “A portable
wireless online closed-loop seizure controller in freely moving rats,” IEEE Trans. Instrum.
Meas., vol. 60, no. 2, pp. 513–521, 2011.

[69] R. Ramezani et al., “On-Probe Neural Interface ASIC for Combined Electrical Recording
and Optogenetic Stimulation,” vol. XX, pp. 1–9, 2017.

[70] K. Nikolic, N. Grossman, M. S. Grubb, J. Burrone, C. Toumazou, and P. Degenaar,
“Photocycles of channelrhodopsin-2,” Photochem. Photobiol., vol. 85, no. 1, pp. 400–
411, 2009.

[71] N. Grossman, K. Nikolic, M. S. Grubb, J. Burrone, C. Toumazou, and P. Degenaar, “High-
frequency limit of neural stimulation with ChR2,” Proc. Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. EMBS, pp. 4167–4170, 2011.

[72] J. J. Nassi, M. C. Avery, A. H. Cetin, A. W. Roe, and J. H. Reynolds, “Optogenetic
Activation of Normalization in Alert Macaque Visual Cortex,” Neuron, vol. 86, no. 6, pp.
1504–1517, 2015.

124

125

Appendix A. Schematic Circuits of MCU Circuits

126

Appendix B. Schematic Circuits of FPGA Circuits

127

Appendix C. Power Converter

128

Appendix D. PCB Board

Front

129

End

130

Appendix E. The first prototype of MCU and FPGA PCB Board

Front

131

End

132

Appendix F. VHDL for FSM Recording Implementation

--

-- Company: MICROSEMI

-- File: SPI_MASTER.vhd

-- <Revision number>: <Date>: <Comments>

-- Targeted device: <Family::IGLOO> <Die::AGLN250V2>

<Package::100 VQFP>

-- Author: LIJUAN XIA

--

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

USE ieee.std_logic_signed.all;

entity SPI_MASTER_V16 is

GENERIC (

 CMD_BITS : POSITIVE: = 7;

-- 8-1 BITS OF EACH CMD, 8 BITS ARE INFORMATION

 MISO_TAPS : POSITIVE: = 15;

-- THIS IS FOR COUNTING RECORDING DATA FOR FURTHER FILTERING

 FPGA_SCLK_PRSCL : POSITIVE: = 9;

-- SPI CLOCK: 1000KHZ, 1000 NS (50*20) 20/2 = 10

 TAPS : POSITIVE: = 10

);

Port (

FPGA_CLOCK : IN std_logic;

-- FPGA CLOCK : 20MHZ , 50 NS , PIN15

FPGA_MISO : IN std_logic;

-- MCU MOSI : PTD2

FPGA_SCLK : IN std_logic;

-- SPI CLOCK : 1MHZ , 1000 NS, 1MS, PTD1

FPGA_CS : IN std_logic;

-- SPI CS : PTC4

 FPGA_OUT_16_BITS : OUT std_logic_vector (15

DOWNTO 0)

);

End SPI_MASTER_V16;

Architecture architecture_SPI_MASTER_V16 of SPI_MASTER_V16 is

 -- signal, component etc. declarations

 SIGNAL FIR_FILTER_FLAG : std_logic := '0';

 SIGNAL FPGA_MISO_REG : std_logic := '0';

133

 SIGNAL FPGA_SCLK_REG : std_logic := '0';

 SIGNAL FPGA_CS_REG : std_logic := '1' ;

 SIGNAL FPGA_FLAG : std_logic := '0';

 SIGNAL FPGA_MISO_PARALLEL : std_logic_vector (CMD_BITS

DOWNTO 0) := (OTHERS => '0');

 SIGNAL INDEX_MISO : INTEGER RANGE 0 TO 7 := 0 ;

 SIGNAL INDEX_SHIFT_REGISTER : INTEGER RANGE 0 TO 27:= 0 ;

 TYPE SHIFT_REGISTER IS ARRAY (MISO_TAPS downto 0) OF

std_logic_vector (7 DOWNTO 0) ;

 SIGNAL SHIFT_BUFFER : SHIFT_REGISTER :=

(b"00000000",b"00000000",b"00000000",b"00

000000", b"00000000",b"00000000",b"00000000",b"00000000",

b"00000000",b"00000000",b"00000000",b"00000000",b"00000000",b"

00000000",b"00000000",b"00000000");

 TYPE KERNEL_VALUE IS ARRAY (MISO_TAPS downto 0) OF

std_logic_vector (7 DOWNTO 0);

 SIGNAL KERNEL : KERNEL_VALUE := (

b"00000001",b"00000001",b"00000001",b"00000001",b"00000001",b"

00000001",b"00000001",b"00000001" ,

b"00000001",b"00000001",b"00000001",b"00000001",b"00000001",b"

00000001",b"00000001",b"00000001");

-- SIGNAL KERNEL : KERNEL_VALUE := (

--

b"11111111",b"11111111",b"11111111",b"11111111",b"11111111",b"

11111111",b"11111111",b"11111111",

--

b"11111111",b"11111111",b"11111111",b"11111111",b"11111111",b"

11111111",b"11111111",b"11111111");

 SIGNAL ACCUMULATOR : STD_LOGIC_VECTOR (15 DOWNTO

0) :="0000000000000000";

 SIGNAL SIG_OUT : STD_LOGIC_VECTOR (7 DOWNTO

0) :="00000000";

 SIGNAL SHIFT_BUFFER_0 : STD_LOGIC_VECTOR (7 DOWNTO

0) :="00000000";

 SIGNAL I : INTEGER RANGE 0 TO MISO_TAPS :=

0;

begin

INDEX_SHIFT_REGISTER_PRO : PROCESS (INDEX_MISO)

BEGIN

 IF (INDEX_MISO = 0) THEN

-- FPGA_OUT_8_BITS (7 DOWNTO 0) <= FPGA_MISO_PARALLEL;

-- OUTPUT 8 BIT DATA FOR NEXT MODULE (DAC/OPTICAL CONVERTER)

134

 INDEX_SHIFT_REGISTER <= INDEX_SHIFT_REGISTER + 1;

 -- COUNTING 8 BIT PARALLEL DATA INTO SHIFT BUFFER

 SHIFT_BUFFER (0) <= FPGA_MISO_PARALLEL;

 SHIFT_BUFFER (MISO_TAPS DOWNTO 1) <=

 SHIFT_BUFFER (MISO_TAPS-1 DOWNTO 0);

 FIR_FILTER_FLAG <= '1';

 ELSE

 FIR_FILTER_FLAG <= '0';

 END IF;

END PROCESS INDEX_SHIFT_REGISTER_PRO;

--ACCUMULATOR_PRO : PROCESS(FPGA_CLOCK,INDEX_MISO)

ACCUMULATOR_PRO : PROCESS(INDEX_MISO,FPGA_CLOCK)

BEGIN

IF (FPGA_CLOCK'EVENT AND FPGA_CLOCK = '1') THEN

 IF (INDEX_MISO = 0) THEN

 SHIFT_BUFFER_0 <= FPGA_MISO_PARALLEL;

 ACCUMULATOR(15 DOWNTO 0) <=

SHIFT_BUFFER(0)*KERNEL(0) + SHIFT_BUFFER(1)*KERNEL(1) +

SHIFT_BUFFER(2)*KERNEL(2) + SHIFT_BUFFER(3)*KERNEL(3) +

SHIFT_BUFFER(4)*KERNEL(4) + SHIFT_BUFFER(5)*KERNEL(5) +

SHIFT_BUFFER(6)*KERNEL(6) + SHIFT_BUFFER(7)*KERNEL(7) +

SHIFT_BUFFER(8)*KERNEL(8) + SHIFT_BUFFER(9)*KERNEL(9) +

SHIFT_BUFFER(10)*KERNEL(10) + SHIFT_BUFFER(11)*KERNEL(11) +

SHIFT_BUFFER(12)*KERNEL(12) + SHIFT_BUFFER(13)*KERNEL(13) +

SHIFT_BUFFER(14)*KERNEL(14) + SHIFT_BUFFER(15)*KERNEL(15);

 FPGA_OUT_16_BITS <= ACCUMULATOR(15

DOWNTO 0);

 END IF;

END IF;

END PROCESS ACCUMULATOR_PRO;

MISO_SHIFT_REGISTER_PRO : PROCESS(FPGA_SCLK)

BEGIN

 FPGA_MISO_REG <= FPGA_MISO;

-- PUT THE INPUT SERIAL MISO FROM MCU/ASIC TO "FPGA_MISO_REG"

 IF(FPGA_CS = '0') THEN

-- SPI CS ACTIVE LOW

 IF (FPGA_SCLK'EVENT AND FPGA_SCLK = ‘1’) THEN

-- RISING EDGE OF FPGA_SCLK

 IF (INDEX_MISO = 0) THEN

 FPGA_MISO_PARALLEL(0) <=

FPGA_MISO_REG;

 INDEX_MISO <= INDEX_MISO + 1;

 ELSIF (INDEX_MISO = 1) THEN

 FPGA_MISO_PARALLEL(1) <=

135

FPGA_MISO_REG;

 INDEX_MISO <= INDEX_MISO + 1;

 ELSIF (INDEX_MISO = 2) THEN

 FPGA_MISO_PARALLEL(2) <=

FPGA_MISO_REG;

 INDEX_MISO <= INDEX_MISO + 1;

 ELSIF (INDEX_MISO = 3) THEN

 FPGA_MISO_PARALLEL(3) <=

FPGA_MISO_REG;

 INDEX_MISO <= INDEX_MISO + 1;

 ELSIF (INDEX_MISO = 4) THEN

 FPGA_MISO_PARALLEL (4) <=

FPGA_MISO_REG;

 INDEX_MISO <= INDEX_MISO + 1;

 ELSIF (INDEX_MISO = 5) THEN

 FPGA_MISO_PARALLEL (5) <=

FPGA_MISO_REG;

 INDEX_MISO <= INDEX_MISO + 1;

 ELSIF (INDEX_MISO = 6) THEN

 FPGA_MISO_PARALLEL(6) <=

FPGA_MISO_REG;

 INDEX_MISO <= INDEX_MISO + 1;

 ELSIF(INDEX_MISO = 7) THEN

 FPGA_MISO_PARALLEL (7) <=

FPGA_MISO_REG;

 INDEX_MISO <= 0;

 END IF; --// (INDEX_MISO = 0)

 END IF; --// (FPGA_SCLK'EVENT AND FPGA_SCLK =

‘1’)

-- THIS IS FOR MISO TO

RECEIVE 8 BIT DATA INTO PARALLEL ------------------------------

 END IF; --// (FPGA_CS = '0')

END PROCESS MISO_SHIFT_REGISTER_PRO;

end architecture_SPI_MASTER_V16;

Appendix G. VHDL for FDM Stimulation Implementation

--

-- Company: NEWCASTLE UNIVERSITY

136

--

-- File: SPI_STIMULATION.vhd

-- File history:

-- SPI_STIMULATION: 4/1/2017:

-- Description:

--

-- Targeted device: <Family::IGLOO> <Die::AGLN250V2>

<Package::100 VQFP>

-- Author: LIJUAN XIA

--

--

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

USE ieee.std_logic_signed.all;

entity SPI_STIMULATION is

GENERIC (

 -- BAUDRATE: Positive: = 4160

 TAPS : POSITIVE := 10 ;

-- THIS IS FOR CMD NUMBER , THIS IS FOR SENDING 3*3 CMD TO TURN

LED ON OR LED OFF + 2 FOR TIME DELAY

 MISO_TAPS : POSITIVE := 15 ;

-- THIS IS FOR COUNTING RECORDING DATA FOR FURTHER FILTERING

 CMD_BITS : POSITIVE := 11 ;

-- 8+4-1 BITS OF EACH CMD, 8 BITS ARE INFORMATION, 4 BITS ARE

TIME DELAY

 CMD_NUMBERS : POSITIVE := 1;

-- 2 CMD SO FAR: LED ON, LED OFF

 FPGA_SCLK_PRSCL : POSITIVE := 19 ;

-- SPI CLOCK : 500KHZ, 2000 NS (50*40) 40/2 = 20

 OPTRODE_CLK_PRSCL : POSITIVE := 6 ;

-- OPTRODE CLOCK : 1.6MHZ , 625 NS (50 * 12.5) 12.5/2 = 6.25

-- PACKET_WAIT : , 200 MS / 50 NS = 200 000000/50 = 4000000 ,

FOR EACH PACKET, THE INTERVALS ARE 200MS

 PACKET_WAIT_PRSCL_NUM : POSITIVE := 31;

-- THIS IS A BUFFER SIZE FOR DETERMINING HOW LONG WILL EACH

PACKET WILL WAIT

 BAUDRATE : POSITIVE := 100

);

port (

 FPGA_CLOCK : IN STD_LOGIC;

-- PIN15 : FPGA CLOCK 20MHZ, 50NS

 FPGA_RESET_BUTTON : IN STD_LOGIC;

-- PIN10 : RESET_BUTTON: RESETTING

 PACKET_WAIT_PRSCL_IN : IN STD_LOGIC_VECTOR(15

DOWNTO 0); --

 FPGA_SCLK_OUT : OUT STD_LOGIC;

137

-- SPI CLOCK : 500KHZ, 2000 NS (50*40)

 FPGA_MOSI_OUT : OUT STD_LOGIC;

-- SPI MOSI

 FPGA_CS_OUT : OUT STD_LOGIC;

-- SPI CHIP SELECT

 PACKET_FINSHED_TAG_OUT : OUT STD_LOGIC;

-- PACKET FINSHED TAG OUT

 OPTRODE_RST : OUT STD_LOGIC;

-- OPTRODE RESET

 OPTRODE_CLK_1600KHZ : OUT STD_LOGIC

-- OPTRODE CLOCK : 1.6MHZ , 625 NS (50 * 12.5) 12.5/2 = 6.25

);

End SPI_STIMULATION;

Architecture architecture_SPI_STIMULATION of SPI_STIMULATION is

 -- signal, component etc. declarations

 -- signal, component etc. declarations

-- THIS SIGNAL DEFINITION IS FOR DEFINING PACKET SIGNAL

SIGNAL PACKET_WAIT_PRSCL : INTEGER := 800;

SIGNAL PACKET_WAIT_PRSCL_REG_ON : INTEGER := 0;

SIGNAL PACKET_WAIT_PRSCL_REG_OFF : INTEGER := 0;

SIGNAL FPGA_SCLK_COUNTER : INTEGER RANGE 0 TO

FPGA_SCLK_PRSCL :=0;

SIGNAL FPGA_SCLK_REG : STD_LOGIC := '0';

SIGNAL OPTRODE_CLK_COUNTER : INTEGER RANGE 0 TO

OPTRODE_CLK_PRSCL :=0;

SIGNAL OPTRODE_CLK_REG : STD_LOGIC := '0';

SIGNAL OPTRODE_RESET_COUNTER : INTEGER RANGE 0 TO

OPTRODE_CLK_PRSCL :=0;

SIGNAL OPTRODE_RESET_REG : STD_LOGIC := '0';

SIGNAL OPTRODE_RESET_I : INTEGER RANGE 0 TO 1 :=0;

SIGNAL PRSCL : INTEGER RANGE 0 TO 5208:=0;

SIGNAL DATAFLL : STD_LOGIC_VECTOR(10 downto

0) := "00000000000";

SIGNAL INDEX : INTEGER RANGE 0 TO

CMD_BITS:=0;

SIGNAL INDEX2 : INTEGER RANGE 0 TO

(TAPS+1):= 0;

SIGNAL INDEX_MISO : INTEGER RANGE 0 TO

(MISO_TAPS+1) := 0 ;

SIGNAL SPI_CS_REG : STD_LOGIC :='1';

TYPE SHIFT_REGISTER IS ARRAY (TAPS DOWNTO 0) OF

STD_LOGIC_VECTOR (CMD_BITS DOWNTO 0);

138

SIGNAL SHIFT_REGISTER_BUFFER_LED_ON :

SHIFT_REGISTER :=

(--

LED ON

b"111100000000", b"111100010000" , b"111100000110",

b"111111111111", b"111100000000" , b"111100100000",

b"111100000101", b"111111111111" , b"111100000000",

b"111100100000", b"111100000100"

);

SIGNAL SHIFT_REGISTER_BUFFER_LED_OFF :

SHIFT_REGISTER :=

(--

LED OFF

b"111100000000", b"111100010000" , b"111100000110",

b"111111111111", b"111100000000" , b"111100010000",

b"111100000101", b"111111111111" , b"111100000000",

b"111100010000", b"111100000100"

);

SIGNAL SHIFT_REGISTER_BUFFER : SHIFT_REGISTER := (

b"000000000000", b"000000000000", b"000000000000",

b"000000000000", b"000000000000", b"000000000000",

b"000000000000", b"000000000000", b"000000000000",

b"000000000000", b"000000000000"

);

TYPE SHIFT_REGISTER_MISO IS ARRAY (MISO_TAPS DOWNTO 0) OF

STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL SHIFT_REGISTER_MISO_BUFFER: SHIFT_REGISTER_MISO:= (

b"000000000000", b"000000000000", b"000000000000",

b"000000000000", b"000000000000", b"000000000000",

b"000000000000", b"000000000000", b"000000000000",

b"000000000000", b"000000000000"

);

SIGNAL FPGA_MISO_PARALLEL : STD_LOGIC_VECTOR(7 downto

0) := "00000000";

SIGNAL FPGA_MOSI_PARALLEL : STD_LOGIC_VECTOR(CMD_BITS

DOWNTO 0) := SHIFT_REGISTER_BUFFER(0);

SIGNAL FPGA_MOSI_REG : STD_LOGIC_VECTOR(CMD_BITS

DOWNTO 0) := "000000000000";

SIGNAL CNT : INTEGER : = 0;

SIGNAL RESET_CNT : INTEGER : = 0;

SIGNAL OPTRODE_RST_REG : STD_LOGIC : ='0';

SIGNAL PACKET_WAIT_CNT : INTEGER : = 0;

SIGNAL PACKET_WAIT_MAKER : STD_LOGIC : ='0';

SIGNAL PACKET_FINSHED_TAG : STD_LOGIC : ='0';

139

SIGNAL INDEX_SCHEDULE_CMD : STD_LOGIC := '0';

-- PWM PARAMETERS

TYPE PWM_REGISTER IS ARRAY (PACKET_WAIT_PRSCL_NUM DOWNTO 0)

OF INTEGER;

SIGNAL PWM : PWM_REGISTER := (-

- DEFINE DUTY CYCLES FOR LED ON AND LED OFF, 4000000 , FOR EACH

PACKET, THE INTERVALS ARE 200MS

--400,400,100,100, 200,200,800,800, 100,100,100,100,

800,200,800,800,

--100,100,100,100, 200,800,800,100, 200,200,100,800,

800,200,800,800

--0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

--0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

);

--SIGNAL PACKET_WAIT_PRSCL : INTEGER := 1;

SIGNAL INDEX_PACKET : INTEGER := 0;

begin

-- architecture body

SHIFT_REGISTER_PRO: PROCESS(FPGA_CLOCK)

BEGIN

PACKET_FINSHED_TAG_OUT <= PACKET_FINSHED_TAG;

IF (FALLING_EDGE (FPGA_CLOCK)) THEN

-- RESET ALL THE COUNTERS TO AN APPRORAITE STATE

 IF (FPGA_RESET_BUTTON = '0') THEN

 CNT <= 0 ;

 OPTRODE_RST_REG <= '0';

 PACKET_FINSHED_TAG <= '1';

 ELSIF (CNT = 1000) THEN

 CNT <= 0 ;

 RESET_CNT <= RESET_CNT + 1;

 IF(RESET_CNT = 0) THEN

 OPTRODE_RST_REG <= '0';

 ELSIF(RESET_CNT = 1) THEN

 OPTRODE_RST_REG <= '1' ; --

RESETTING HIGH

 PACKET_FINSHED_TAG <= '0';

 SHIFT_REGISTER_BUFFER <=

140

SHIFT_REGISTER_BUFFER_LED_ON ;

 ELSIF(RESET_CNT = 2) THEN

 OPTRODE_RST_REG <= '0';

 RESET_CNT <= 2;

 END IF;--// IF(RESET_CNT = 0) THEN

 ELSE

 CNT <= CNT + 1;

 END IF; --//IF (FPGA_RESET_BUTTON = '0') THEN

-- WHEN PACKET_FINSHED_TAG IS '0', MEANS PACKET IS TRANSMITTING

 IF (PACKET_FINSHED_TAG = '0') THEN

 IF (OPTRODE_RST_REG = '1') THEN

-- RESET FROM FPGA BUTTON OF SW1, PINOUT 20

 INDEX <= 0; -

- INDEX: THIS IS FOR TRANSFERRING BIT BY BIT COUNTING

 INDEX2 <= 1; -

- INDEX2: THIS IS FOR TRANSFERRING BTYE BY BYTE COUNTING

 INDEX_MISO <= 0;

 FPGA_SCLK_REG <='1';

-- INTERNAL FPGA SCLK COUNTER (500KHZ)

 OPTRODE_CLK_REG <='0';

-- INTERNAL OPTRODE SCLK COUNTER (1.6 MHZ)

 PACKET_FINSHED_TAG <= '0';

-- COUNTING DOES 3*3 COMMANDS SEND

 FPGA_MOSI_PARALLEL <=

SHIFT_REGISTER_BUFFER(0); -- MOSI COUNTER : LST OF SHIFT

REGISTER BUFFER[0]

 ELSE

 IF ((FPGA_SCLK_COUNTER =

FPGA_SCLK_PRSCL) and (FPGA_SCLK_REG = '0')) THEN -- IN EACH

FPGA SCLK RISING EDGE , COUNTING INDEX FOR MOSI

 IF(INDEX < CMD_BITS) THEN

-- INDEX: USED TO COUNT CMD BITS OUT FOR FPGA_MOSI

 INDEX <= INDEX + 1;

 ELSE

 INDEX <= 0;

 INDEX2 <= INDEX2 + 1;

-- INDEX2: USED TO COUND CMD NUMBERS FOR EACH PACKET: 3*3 CMD +

2*'111111111111' FOR TIME DELAY

 INDEX_MISO <= INDEX_MISO +1 ;

 IF (INDEX2 = TAPS) THEN

-- TAPS : 11 (3*3 + 2)

 INDEX2 <= 0;

 ELSIF(INDEX2 = 0) THEN

 PACKET_FINSHED_TAG <=

'1'; -- IF INDEX2 IS 0 , IT MEANS EACH PACKET HAS

141

FINISHED TRANSMITTING

 INDEX_SCHEDULE_CMD <=

NOT INDEX_SCHEDULE_CMD ;

-- THIS IS

FOR DELIVERING VARIABLE DUTY PWM TO STIMULATION ---------------

 --

PACKET_WAIT_PRSCL_IN

IF(INDEX_PACKET < PACKET_WAIT_PRSCL_NUM) THEN

 PWM(0) <=

TO_INTEGER(UNSIGNED(PACKET_WAIT_PRSCL_IN));

PWM(PACKET_WAIT_PRSCL_NUM DOWNTO 1) <=

PWM (PACKET_WAIT_PRSCL_NUM-1 DOWNTO 0);

 PACKET_WAIT_PRSCL <= PWM(0);

-- PUT DUTY ON AND DUTY OFF IN A SHIFT BUFFER

-- PACKET_WAIT_PRSCL <= PWM(INDEX_PACKET); -- PUT DUTY ON AND

DUTY OFF IN A SHIFT BUFFER

-- INDEX_PACKET <= INDEX_PACKET + 1 ;

ELSE

 INDEX_PACKET <= 0;

END IF;

-- THIS IS FOR DELIVERING VARIABLE DUTY PWM TO STIMULATION ----

END IF; --// IF (INDEX2 = TAPS) THEN

 IF (INDEX_MISO = MISO_TAPS) THEN

 INDEX_MISO <= 0;

 END IF; --// IF (INDEX_MISO = MISO_TAPS) THEN

 END IF; --// IF(INDEX < CMD_BITS) THEN

END IF; --// IF ((FPGA_SCLK_COUNTER = FPGA_SCLK_PRSCL) and

(FPGA_SCLK_REG = '0')) THEN

IF (FPGA_SCLK_COUNTER < FPGA_SCLK_PRSCL) THEN

-- SPI CLOCK COUNTER : 500KHZ = 2000 NS, (50NS*40)/50NS, 40/2

= 20

 FPGA_SCLK_COUNTER <= FPGA_SCLK_COUNTER +1;

 ELSE

 FPGA_SCLK_COUNTER <= 0;

 FPGA_SCLK_REG <= NOT FPGA_SCLK_REG;

 END IF; --//IF (FPGA_SCLK_COUNTER < FPGA_SCLK_PRSCL) THEN

END IF; --// IF (OPTRODE_RST_REG = '1') THEN

IF (OPTRODE_RST_REG = '1') THEN

 FPGA_SCLK_OUT <= FPGA_SCLK_REG AND '0';

ELSE

 IF(INDEX = 8 OR INDEX = 9 OR INDEX = 10 OR INDEX = 11 OR

142

INDEX2 =4 OR INDEX2 = 8) THEN

 -- DEALY1 : THIS IS FOR GENERATING LOW VOLTAGE FOR SCLK FOR 4

CLOCK CYCLES BETWEEN EACH 2 CMD

 FPGA_SCLK_OUT <= FPGA_SCLK_REG AND

'0';

 ELSE

 FPGA_SCLK_OUT <= FPGA_SCLK_REG;

 END IF;

 END IF;

 IF ((FPGA_SCLK_COUNTER = FPGA_SCLK_PRSCL) and (FPGA_SCLK_REG

= '0') and (INDEX = CMD_BITS)) THEN -- SENDING OFF MOSI

 FPGA_MOSI_PARALLEL <= SHIFT_REGISTER_BUFFER(INDEX2);

 END IF;

 FPGA_MOSI_OUT <= FPGA_MOSI_PARALLEL(INDEX);

 ELSIF(PACKET_FINSHED_TAG = '1') THEN

 PACKET_WAIT_PRSCL_REG_ON <= PACKET_WAIT_PRSCL*100;

-- 8000000=800*10000 means 400ms

 PACKET_WAIT_PRSCL_REG_OFF <= PACKET_WAIT_PRSCL*100;

-- 4000000=400*10000 means 200ms

-- 6542600=65426*100

--

 IF (INDEX_SCHEDULE_CMD = '1') THEN -- LED OFF

 IF (PACKET_WAIT_CNT =

PACKET_WAIT_PRSCL_REG_OFF) THEN

 PACKET_WAIT_CNT <= 0 ;

 PACKET_WAIT_MAKER <= NOT

PACKET_WAIT_MAKER ;

 PACKET_FINSHED_TAG <= '0';

 ELSE

 PACKET_WAIT_CNT <= PACKET_WAIT_CNT

+ 1;

 FPGA_SCLK_OUT <= '0';

 END IF;

 ELSE

 IF (PACKET_WAIT_CNT =

PACKET_WAIT_PRSCL_REG_ON) THEN

 PACKET_WAIT_CNT <= 0 ;

 PACKET_WAIT_MAKER <= NOT

PACKET_WAIT_MAKER ;

 PACKET_FINSHED_TAG <= '0';

 ELSE

 PACKET_WAIT_CNT <= PACKET_WAIT_CNT

+ 1;

 FPGA_SCLK_OUT <= '0';

 END IF;

 END IF;

143

 IF (INDEX_SCHEDULE_CMD = '1') THEN -- LED OFF

 SHIFT_REGISTER_BUFFER <=

SHIFT_REGISTER_BUFFER_LED_OFF ;

 ELSE

 SHIFT_REGISTER_BUFFER <=

SHIFT_REGISTER_BUFFER_LED_ON ;

 END IF;

--

 END IF; --//IF (PACKET_FINSHED_TAG = '0') THEN

IF (OPTRODE_CLK_COUNTER < OPTRODE_CLK_PRSCL) THEN

 OPTRODE_CLK_COUNTER <= OPTRODE_CLK_COUNTER +1;

ELSE

 OPTRODE_CLK_COUNTER <= 0;

 OPTRODE_CLK_REG <= NOT OPTRODE_CLK_REG;

END IF;

OPTRODE_CLK_1600KHZ <= OPTRODE_CLK_REG; --

OPTRODE_CLOCK : 1.6 MHz

END IF; --//IF (FALLING_EDGE (FPGA_CLOCK)) THEN

END PROCESS SHIFT_REGISTER_PRO;

FPGA_CS_OUT <= SPI_CS_REG;

OPTRODE_RST <= OPTRODE_RST_REG;

end architecture_SPI_STIMULATION;

Appendix H. PID Phase Shift Analysis

%% This is matlab code for PID Kernel magnitude response and

phase response analysis

close all;

clc;

clear all;

**

% Author: Lijuan & Patrick %

% First Version: 18/1/2018 Created by Lijuan %

% Second Version: PID kernel analysis

% Description:

**

144

close all;

clc;

clear all;

%% impulse response

% Andy Phase Shift Kernel Frequency Response Analysis

% ____________

% x(t) | | y(t)

%------->| h(t) |------>

% |____________|

%

% h(t) = e^(-kt)cos(wt + phase)

%

%

% cos(phase)s + k*cos(phase) -(2*pi*f)*sin(phase)

% => H(s) = --

% s^2 + k^2 + 2ks + w^2

%

% s^2 + k^2 + 2ks + w^2

% transfer function = ---

% cos (phase)s + k*cos(phase) -(2*pi*f)*sin(phase)

w = linspace (0,100,512);

k = 1.25;

f = 2;

figure;

for phase = 0:45:360

 G_AD_phase = tf([1*cos(phase) k*cos(phase)-

(2*pi*f)*sin(phase)], [1 2*k k*k+(2*pi*f)^2]);

 [G_AD_phase, P_AD_phase] = bode(G_AD_phase, w);

 subplot(211); plot(w,G_AD_phase(:));

 hold on;

 subplot(212); plot(w,P_AD_phase(:));

 hold on;

end

% impulse response

% PID Phase Shift Kernel Frequency Response Analysis

% ____________

% x(t) | | y(t)

%------->| h(t) |------>

145

% |____________|

% d(delta(t))

% h(t) = Kp*delta(t)+ Ki*integral(delta(t))+Kd*----------

% dt

% kd*s^2 + Kp*s + Ki

% H(s) = -------------------------

% s

%

% s

% transfer function = ------------------------

% kd*s^2 + Kp*s + Ki

wpid = linspace (0,100,512);

% kp = 10.2;

% ki = 58.8;

% kd = 123.4;

 kp = 0.01;

 ki = 1.6;

 kd = 0.01;

figure

for ki = 1.4:0.2:2

% for kp = 0.01:0.04:0.13

% for kd = 123:10:153

G_PID_phase = tf([1 1], [kd kp ki]);

[G_PID_phase, P_PID_phase] = bode(G_PID_phase, wpid);

%% option1

% subplot(121);plot(wpid,G_PID_phase(:)/100);

% legend('Kp = 0.01','Kp = 0.05','Kp = 0.09','Kp = 0.13')

% hold on;

% subplot(122);plot(wpid,P_PID_phase(:));

% legend('Kp = 0.01','Kp = 0.05','Kp = 0.09','Kp = 0.13')

% hold on;

subplot(121);plot(wpid,G_PID_phase(:)/100);

legend('Ki = 1.4','Ki = 1.6','Ki = 1.8','Ki = 2')

hold on;

subplot(122);plot(wpid,P_PID_phase(:));

legend('Ki = 1.4','Ki = 1.6','Ki = 1.8','Ki = 2')

hold on;

 end

146

Appendix I. Optical Converter

close all;

clc;

clear all;

**

% Author: Lijuan & Patrick %

% First Version: 28/9/2017 Created by Patrick %

% Second Version: 2/10/2017 Created by Lijuan %

% Description: Inverse sigmoid function of optical

converter analysis, define photon flux in terms of mW/mm2.

Typical range would be 1e-3 to 1e1. The neural response should

be 50% at 0.7mW/mm2

**

% ---

%% Sigmoid function

% ---

% define photon flux in terms of mW/mm2. Typical range would be

1e-3 to 1e1.

% the neural response should be 50% at 0.7mW/mm2

f = 1e-6;

for n =1:70

 f = f * 1.4;

 flux(n) = f;

end

Vt = 1.45;

% sigmoid function in the logarithmic domain

Response = (Vt*flux)./(1+(Vt*flux));

% Return the neuron response at 0.7mW/mm2.

% The result should be 0.5

Neural_Response_at_threshold = Response(40)

figure;

147

semilogx(flux,Response,'k');

title('ChR2 neural response vs light intensity');

set(gcf, 'color', 'w')

xlim([1e-4 1e2])

xlabel('light intensity (mw/mm^{2})');

ylabel('Normalised neural response');

% ---

%% Inverse Sigmoid function

% ---

%settings

R_threshold = 0.7; % Determines the normalised neural

threshold

 % for which to intervene. This needs

to take

 % into account many variables

including genetic

 % expression, LED light intensity

and optical

 % traversal through the tissue. It

will

 % ultimately have to be

experimentally

 % calibrated for each LED.

minPWM = 0.5; % minimal PWM time (in ms) for a

stimulation

 % frame. This will be related to the

 % intervention frequency e.g. 100Hz,

which may

 % be separate to recording frequency

maxPWM = 10; % maximum PWM time (in ms) for a

stimulation

 % frame This will be related to the

 % intervention frequency e.g. 100Hz,

which may

 % be separate to recording frequency

% Define response in terms of maximum possible response. i.e.

between 0 -

% 1;

Response = 0:0.01:1;

% inverse sigmoid function with light flux in terms of mW/mm2

for 10ms

lightFlux = (Response ./(Vt * (1-Response)));

% The neural response above is calibrated as the average plateau

response

% resulting from continuous illumination. HOWEVER, we are

148

interested in

% pulsed illumination with a defined PWM between 0.1 - 10ms

(assuming 100Hz

% sampling - or at least 100Hz intervention).

PWM_time = lightFlux * R_threshold;

for n = 1: length(PWM_time)

 % for neural responses resulting in ultra-short PWM times,

simply set

 % the output to zero. This is effectively a lower end

threshold

 if PWM_time(n) < minPWM; PWM_time(n) = 0; end

 % If the required light intensity is too high, the PWM time

will exceed

 % the maximum time allowable within a frame. Thus this needs

to

 % saturated to that maximum time.

 if PWM_time(n) > maxPWM; PWM_time(n) = maxPWM; end

end

% write LUT to file

PWMLUT(:,1) = Response';

PWMLUT(:,2) = round(PWM_time,1)';

csvwrite('pwm_LUT.csv',PWMLUT);

% Plot figures

figure;

semilogy(Response, lightFlux);

title('Light flux vs neural response');

%set(gcf, 'color', 'w')

xlabel('Normalised neural response');

ylabel('light intensity (mw/mm^{2})');

figure;

semilogy(Response, PWM_time);

title('Light PWM vs neural response');

%set(gcf, 'color', 'w')

xlabel('Normalised neural response');

ylabel('PWM time (ms)');

figure;

subplot(121);

semilogy(Response, lightFlux);

title('Light flux vs neural response');

%set(gcf, 'color', 'w')

xlabel('Normalised neural response');

ylabel('light intensity (mw/mm^{2})');

subplot(122);

semilogy(Response, PWM_time);

149

title('Light PWM vs neural response');

%set(gcf, 'color', 'w')

xlabel('Normalised neural response');

ylabel('PWM time (ms)');

Appendix J. Neuron Mass Modelling

**

% Author: Lijuan & Patrick %

% First Version: 2/6/2016 Created by Lijuan %

% Second Version: 14/10/2017 Created by Lijuan %

% Description: Neuron Mass Modelling with PID feedback

**

150

%% Neural Mass Model Transfer Function

% Neunal Mass Model Transfer Function in jw domain

% Figure 3-6 Plotting and Figure 3-9

clear all

close all

clc

%% Neunal Mass Model Transfer Function

% He = 3.25;

% Te = 0.0108;

% Ge = tf([0 He*Te], [Te*Te 2*Te 1]); % this is laplace

transform of He

% figure;

% bode(Ge);

%

% Hi = 22;

% Ti = 0.02;

% Gi = tf([0 Hi*Ti], [Ti*Ti 2*Ti 1]); % this is laplace

transform of Hi

% figure;

% bode(Gi);

%

% C1 = 135

% C2 = 0.8*C1;

% C3 = 0.25*C1;

% C4 = 0.25*C1;

% s = tf('s');

% v0 = 6;

% e0 = 2.5

% r = 0.56

% Ks = e0*r/2;

% Gnmm = Ge/(1+Ks^2*Ge*(C3*C4*Gi - C1*C2*Ge)); % laplace

transform of NMM

% Gnmm = Ge/(1+Ks^2*Ge*(C3*C4*Gi - C1*C2*Ge)); % laplace

transform of NMM

%

% figure;

% impulse(Gnmm);

%

% figure;

% step(Gnmm);

% Neunal Mass Model Transfer Function in jw domain

for He_w = 5:2:9

w = 0:0.01:500;

%He_w = 4.5

% Ks_w = 2.5*0.56*2./(j*w);

Ks_w = 2.5*0.56/2;

151

Te_w = 0.0108;

Ge_w = He_w*Te_w./[(j*w*Te_w + 1).^2]; % this is

laplace transform of He

Hi_w = 17;

Ti_w = 0.02;

Gi_w = Hi_w*Ti_w./[(j*w*Ti_w + 1).^2]; % this is

laplace transform of Hi

C1 = 135

C2 = 0.8*C1;

C3 = 0.25*C1;

C4 = 0.25*C1;

v0 = 6;

e0 = 2.5

r = 0.56

Ks_w = e0*r/2;

Gnmm_w = Ge_w./(1+Ks_w.*Ks_w.*Ge_w.*(C3*C4*Gi_w -

C1*C2*Ge_w)); % laplace transform of NMM

Real_NMM = real(Gnmm_w);

Imag_NMM = imag(Gnmm_w);

%

figure;subplot(211);plot(log10(w),abs(Gnmm_w));subplot(212);pl

ot(log10(w),phase(Gnmm_w));set(gca, 'xscale', 'log');

% figure;subplot(211);plot(log10(w),sqrt(Real_NMM.^2 +

Imag_NMM.^2));subplot(212);plot(log10(w),atan(Imag_NMM.*(Real

_NMM).^(-1)));set(gca, 'xscale', 'log');

%% Ki, Kp

% den_Gnmm_w = Real_NMM.^2 + Imag_NMM.^2;

den_Gnmm_w = Real_NMM.^2 + Imag_NMM.^2;

Ki = -w.*Imag_NMM./den_Gnmm_w ;

Kp = -Real_NMM ./den_Gnmm_w;

Kd = Imag_NMM./(w.*den_Gnmm_w) ;

% figure(2); subplot(121);plot(Kp,Ki,'linewidth',2);

xlabel('Kp');ylabel('Ki');title('PI Controller');

% subplot(122);plot(Kp,Kd,'k','linewidth',2);

xlabel('Kp');ylabel('Ki');title('PD Controller');

%subplot(221);plot(Kp,Ki); legend('He=5','He=7','He=9');

xlabel('Kp');ylabel('Ki');title('PI Controller');hold on;

subplot(121);plot(Kp,Kd); legend('He=5','He=7','He=9');

xlabel('Kp');ylabel('Kd');title('PD Controller');hold on;

end

%

for Hi_w = 15:2:19

w = 0:0.01:500;

He_w = 3;

% Ks_w = 2.5*0.56*2./(j*w);

152

Ks_w = e0*r/2;

Te_w = 0.0108;

Ge_w = He_w*Te_w./[(j*w*Te_w + 1).^2]; % this is

laplace transform of He

% Hi_w = 17;

Ti_w = 0.02;

Gi_w = Hi_w*Ti_w./[(j*w*Ti_w + 1).^2]; % this is

laplace transform of Hi

C1 = 135

C2 = 0.8*C1;

C3 = 0.25*C1;

C4 = 0.25*C1;

Gnmm_w = Ge_w./(1+Ks_w.*Ks_w.*Ge_w.*(C3*C4*Gi_w -

C1*C2*Ge_w)); % laplace transform of NMM

Real_NMM = real(Gnmm_w);

Imag_NMM = imag(Gnmm_w);

%

figure;subplot(211);plot(log10(w),abs(Gnmm_w));subplot(212);pl

ot(log10(w),phase(Gnmm_w));set(gca, 'xscale', 'log');

% figure;subplot(211);plot(log10(w),sqrt(Real_NMM.^2 +

Imag_NMM.^2));subplot(212);plot(log10(w),atan(Imag_NMM.*(Real

_NMM).^(-1)));set(gca, 'xscale', 'log');

%% Ki, Kp

% den_Gnmm_w = Real_NMM.^2 + Imag_NMM.^2;

den_Gnmm_w = Real_NMM.^2 + Imag_NMM.^2;

Ki = -w.*Imag_NMM./den_Gnmm_w ;

Kp = -Real_NMM ./den_Gnmm_w;

Kd = Imag_NMM./(w.*den_Gnmm_w) ;

%

% Ki = -w.*Imag_NMM ;

% Kp = Real_NMM ;

% Kd = -1000*Imag_NMM./w ;

%subplot(223);plot(Kp,Ki); legend('Hi=15','Hi=17','Hi=19');

xlabel('Kp');ylabel('Ki');title('PI Controller');hold on;

subplot(122);plot(Kp,Kd); legend('Hi=15','Hi=17','Hi=19');

xlabel('Kp');ylabel('Kd');title('PD Controller');hold on;

end

153

%% Figure3-7 Plotting

clear all

close all

clc

%% PARAMETER SET UP

tstart = 0; % START TIME

tend = 8 ; % END TIME

tinterp = 1; % NORMALIZED STEO

SIZE

h = 0.001; % STEP SIZE

T = tstart:h*tinterp:tend; % STIMULATION TIME

Nl = length(T); % TIME SIMULATION

NUMBERS

nsq = length(T);

y0 = zeros(6, Nl); % SIX VARAIBLES

FOR DIFFERENTIAL EQUATIONS PAIRS

He = 7; % He : average excitory

synaptic gain

Hi = 22; % Hi : average inhitory

synaptic gain

%% OPEN LOOP

tic

[Y] = runSheetPRamp_LJ(y0,T,He,Hi);

y_1 = Y(1,:);

y_2 = Y(2,:);

y_3 = Y(3,:);

y_4 = Y(4,:);

y_5 = Y(5,:);

y_6 = Y(6,:);

LFP = y_3 - y_5 ;

%% CLOSED LOOP

Kp = 90; % proportional term

Kp

154

Ki = 2; % Integral term

Ki

Kd = 0; % derivative term Kd

y_initial = Y;

[Y1] = runSheetPRamp_PID_LJ(y0,T,Kp,Ki,Kd,He,Hi);

y1_1 = Y1(1,:);

y1_2 = Y1(2,:);

y1_3 = Y1(3,:);

y1_4 = Y1(4,:);

y1_5 = Y1(5,:);

y1_6 = Y1(6,:);

LFP1 = y1_3 - y1_5 ;

toc

%% plotting

T2 = tend:h*tinterp:tend*2;

T_CLOSED = tstart:h*tinterp:tend*2; % STIMULATION

TIME

LFP_CLOSED_LOOP = [LFP,LFP1*30];

figure; subplot(121); plot(T,LFP); legend('without

PI');xlabel('time/s');ylabel('y(t)(mv)')

 subplot(122); plot(T2,LFP1,'k'); legend('with

PI');xlabel('time/s');ylabel('y(t)(mv)')

figure;

plot(T_CLOSED,LFP_CLOSED_LOOP(1:length(T_CLOSED)));xlabel('tim

e/s');ylabel('y(t)(mv)')

%% Figure3-8 Plotting

clear all

close all

clc

%% PARAMETER SET UP

tstart = 0; % START TIME

tend = 8 ; % END TIME

tinterp = 1; % NORMALIZED STEO

SIZE

h = 0.001; % STEP SIZE

T = tstart:h*tinterp:tend; % STIMULATION TIME

Nl = length(T); % TIME SIMULATION

NUMBERS

nsq = length(T);

y0 = zeros(6, Nl); % SIX VARAIBLES

FOR DIFFERENTIAL EQUATIONS PAIRS

He = 7; % He: average

excitatory synaptic gain

Hi = 17; % Hi: average

inhitatory synaptic gain

155

%% OPEN LOOP

tic

[Y] = runSheetPRamp_LJ(y0,T,He,Hi);

y_1 = Y(1,:);

y_2 = Y(2,:);

y_3 = Y(3,:);

y_4 = Y(4,:);

y_5 = Y(5,:);

y_6 = Y(6,:);

LFP = y_3 - y_5 ;

%% CLOSED LOOP

Kp = 25; % proportional term

Kp

Ki = 0; % Integral term

Ki

Kd = 2; % derivative term

Kd

y_initial = Y;

[Y1] = runSheetPRamp_PID_LJ(y0,T,Kp,Ki,Kd,He,Hi);

y1_1 = Y1(1,:);

y1_2 = Y1(2,:);

y1_3 = Y1(3,:);

y1_4 = Y1(4,:);

y1_5 = Y1(5,:);

y1_6 = Y1(6,:);

LFP1 = y1_3 - y1_5 ;

toc

%% plotting

T2 = tend:h*tinterp:tend*2;

T_CLOSED = tstart:h*tinterp:tend*2; % STIMULATION

TIME

LFP_CLOSED_LOOP = [LFP,LFP1*10-5];

figure; subplot(121); plot(T,LFP); legend('without

PD');xlabel('time/s');ylabel('y(t)(mv)')

 subplot(122); plot(T2,LFP1,'k'); legend('with

PD');xlabel('time/s');ylabel('y(t)(mv)')

figure;

plot(T_CLOSED,LFP_CLOSED_LOOP(1:length(T_CLOSED)));xlabel('tim

e/s');ylabel('y(t)(mv)')

%% Library 1: Open loop Stimulation

function [Y]=runSheetPRamp_LJ(y0,T,A,B)

 % y0: 12006*1

 % T : 1*2001

%% Parameter set up

e0 = 2.5 ; % maximum firing

rate of the neural population

156

r = 0.56 ; % steepmess

v0 = 6 ; % firing rate

a = 100; % a parameter of

PSP is inversely proportional to the duration of PSP

b = 50; % b parameter of

PSP is inversely proportional to the duration of PSP

C = 135; % C is to vary

under different physiolodical constrants

C1 = C; % C1 accounts for

synaptic depletion

C2 = 0.8*C;

C3 = 0.25*C;

C4 = 0.25*C;

%% white noise

% the random white noise input p(t) will have an amplitude

varying

% between 120 and 320 pulses per second

sigma = 2.4; % mean value : 2.4

standard_deviation = 2 ; % standard

deviation : 2

p = sigma +

standard_deviation.*randn(length(T),1);

h = 0.001; % STEP SIZE

Nl = length(T); % 2001

nsq = length(T);

Y = y0; % y0=zeros(6*Nl,1);

 % SIX VARAIBLES

FOR DIFFERENTIAL EQUATIONS PAIRS

%for i = 1 : Nl

for i = 1 : Nl-1

% y_1 = Y(1:nsq,i); % 1:nsq = 1:2001,

i

% y_2 = Y(nsq+1:2*nsq,i);

% y_3 = Y(2*nsq+1:3*nsq,i);

% y_4 = Y(3*nsq+1:4*nsq,i);

% y_5 = Y(4*nsq+1:5*nsq,i);

% y_6 = Y(5*nsq+1:6*nsq,i);

y_1 = Y(1,i); % 1:nsq = 1:2001, i

y_2 = Y(2,i);

y_3 = Y(3,i);

y_4 = Y(4,i);

y_5 = Y(5,i);

y_6 = Y(6,i);

dy_1dt =

157

y_2; %

y(1)<-y0, y(2)<-y3

dy_2dt = A*a*(2*e0./(1 + exp(r.*(v0- (y_3 -

y_5))))) - 2*a*y_2-a^2*y_1;

dy_3dt =

y_4; %

y(3)<-y1, y(4)<-y4

dy_4dt = A*a*(p(i,:) + C2*(2*e0./(1 + exp(r.*(v0-

(C1*y_1)))))) - 2*a*y_4-a^2*y_3;

dy_5dt =

y_6; %

y(5)<-y2, y(6)<-y5

dy_6dt = B*b*(C4* (2*e0./(1 + exp(r.*(v0-

(C3*y_1)))))) - 2*b*y_6 -b^2*y_5;

%Y(:,i+1) = Y(:,i) +

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt];

increase =

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt]; % 6*1 matrix

Y(:,i+1) = Y(:,i) + increase ;

% LFP = y1 - y2 = y(3)-y(5);

end

%Y = single(Y)';

end

158

%% Library 2: Closed loop Stimulation

function [Y] = runSheetPRamp_PID_LJ(y0,T,Kp,Ki,Kd,A,B)

%% parameter set up

e0 = 2.5 ; % maximum firing

rate of the neural population

r = 0.56 ; % steepmess

v0 = 6 ; % firing rate

a = 100;

b = 50;

C = 135;

C1 = C;

C2 = 0.8*C;

C3 = 0.25*C;

C4 = 0.25*C;

%% white noise

% the random white noise input p(t) will have an amplitude

varying

% between 120 and 320 pulses per second

sigma = 2.4; % mean value : 2.4

standard_deviation = 2 ; % standard

deviation : 2

h = 0.001; % STEP SIZE

Nl = length(T);

nsq = length(T);

Y = y0;

p = sigma + standard_deviation.*randn(length(T),1);

desired = 0; % desired output,

or reference point

%%

for i = 1 : Nl-1

% y_1 = Y(1:nsq,i);

% y_2 = Y(nsq+1:2*nsq,i);

% y_3 = Y(2*nsq+1:3*nsq,i);

% y_4 = Y(3*nsq+1:4*nsq,i);

% y_5 = Y(4*nsq+1:5*nsq,i);

159

% y_6 = Y(5*nsq+1:6*nsq,i);

y_1 = Y(1,i); % 1:nsq = 1:2001, i

y_2 = Y(2,i);

y_3 = Y(3,i);

y_4 = Y(4,i);

y_5 = Y(5,i);

y_6 = Y(6,i);

%% PID Controller

y_t(:,i) = y_3 - y_5; %

local field potential

Error(:,i+1) = desired - y_t(:,i); %

error with reference equal to zero

Prop(:,i+1) = Error(:,i+1); %

error of proportional term

Der(:,i+1) = (Error(:,i+1) - Error(:,i)); %

derivative of the error

Int(:,i+1) = (Error(:,i+1) + Error(:,i)); %

integration of the error

I(:,i+1) = Int(:,i+1); %

the sum of the integration of the error

PID(:,i+1) = Kp*Prop(:,i) + Ki*I(:,i+1)+ Kd*Der(:,i); %

the three PID terms

%% NMM Model

dy_1dt = y_2; % y(1)<-y0 , y(2)<-

y3

dy_2dt = A*a*(2*e0./(1 + exp(r.*(v0- (y_3 -

y_5))))) - 2*a*y_2-a^2*y_1;

dy_3dt = y_4; % y(3)<-y1, y(4)<-

y4

dy_4dt = A*a*(p(i,:) + PID(:,i+1) + C2*(2*e0./(1

+ exp(r.*(v0- (C1*y_1)))))) - 2*a*y_4-a^2*y_3;

dy_5dt = y_6; %

y(5)<-y2, y(6)<-y5

dy_6dt = B*b*(C4* (2*e0./(1 + exp(r.*(v0-

(C3*y_1)))))) - 2*b*y_6 -b^2*y_5;

%Y(:,i+1) = Y(:,i) +

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt];

increase =

h*[dy_1dt;dy_2dt;dy_3dt;dy_4dt;dy_5dt;dy_6dt]; % 6*1 matrix

Y(:,i+1) = Y(:,i) + increase ;

% LFP = y1 - y2 = y(3)-y(5);

end

%Y = single(Y)';

end

160

