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Abstract

Stochastic kinetic models (SKMs) are an effective way to model complex biochemical and

cellular systems. They describe how a number of species in a system interact with one

another through time. To infer the parameters of these models, a number of MCMC tech-

niques exist but these can often be both computationally intensive and time consuming

due to the constant need to simulate from the stochastic process at each iteration. When

inferring parameters of quite large or complex models, these simulations can become un-

manageable.

To tackle this, emulators can be used to approximate SKM output, a popular choice being

a Gaussian process, however these do not provide accurate descriptions of output with

multiple modes. A SKM of particular interest which exhibits this behaviour is the Schlögl

system which describes an exchange of chemicals between two material baths. This system,

under certain conditions, is bistable.

This motivates the need to find a flexible emulator that can capture this bimodality. By

using a Dirichlet process mixture of Gaussian processes we explain how this model has

useful features such as the flexibility to increase or decrease the number of components in

the mixture throughout parameter space as necessary.

We apply the model to training data for the Schlögl system with the aim of inferring

the rate constants that gave rise to some noisy data from the system. We also look at a

further approximation using variational inference and find that this gives significant gains

in terms of efficiency.
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8.1 Noisy observations from the Schlögl system at 20 time points. Note that

the output has been rescaled via X2/10000. . . . . . . . . . . . . . . . . . . 89

8.2 Lating hypercube design of training points with N = 200. . . . . . . . . . . 90

8.3 Prior density of α (left) and induced prior on the number of clusters (right). 91

8.4 Prior density of σ2 (left), ν (middle) and ri (right). . . . . . . . . . . . . . . 91

8.5 Prior density of φi with true value (in φ space) in black. . . . . . . . . . . . 93

8.6 Histogram of posterior samples for each φi (at time t = 20) with prior

(orange) overlaid and ‘true’ point (black). . . . . . . . . . . . . . . . . . . . 95

8.7 Boxplot of samples of xt|y against t, with observations overlaid (orange). . . 96

8.8 Histogram of posterior samples for each φi (at time t = 20) with prior

(orange) overlaid and ‘true’ point (black). . . . . . . . . . . . . . . . . . . . 97

8.9 Boxplot of samples of xt|y against t, with observations overlaid (orange). . . 98

8.10 Histogram of posterior samples for each φi (at time t = 20) with prior

(orange) overlaid and ‘true’ point (black). . . . . . . . . . . . . . . . . . . . 99

8.11 Boxplot of samples of xt|y against t, with observations overlaid (orange). . . 99

8.12 Histogram of posterior samples for each φi (at time t = 20) with prior

(orange) overlaid and ‘true’ point (black). . . . . . . . . . . . . . . . . . . . 100

vii



List of Figures

8.13 Boxplot of system data x particles at each time point with observation

overlaid (orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.1 Histogram of posterior samples for each φi (at time t = 20) with prior

(orange) overlaid and ‘true’ point (black). . . . . . . . . . . . . . . . . . . . 110

9.2 Boxplot of system data x particles at each time point with observation

overlaid (orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.1 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 1 . . . . . . . . . . . . . 123

A.2 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 2 . . . . . . . . . . . . . 123

A.3 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 3 . . . . . . . . . . . . . 123

A.4 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 4 . . . . . . . . . . . . . 124

A.5 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 5 . . . . . . . . . . . . . 124

A.6 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 6 . . . . . . . . . . . . . 124

A.7 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 7 . . . . . . . . . . . . . 125

A.8 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 8 . . . . . . . . . . . . . 125

A.9 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 9 . . . . . . . . . . . . . 125

A.10 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 10 . . . . . . . . . . . . 126

A.11 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 11 . . . . . . . . . . . . 126

A.12 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 12 . . . . . . . . . . . . 126

A.13 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 13 . . . . . . . . . . . . 127

viii



List of Figures

A.14 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 14 . . . . . . . . . . . . 127

A.15 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 15 . . . . . . . . . . . . 127

A.16 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 16 . . . . . . . . . . . . 128

A.17 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 17 . . . . . . . . . . . . 128

A.18 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 18 . . . . . . . . . . . . 128

A.19 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 19 . . . . . . . . . . . . 129

A.20 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 20 . . . . . . . . . . . . 129

A.21 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 1 . . . . . . . . . . . . . 129

A.22 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 2 . . . . . . . . . . . . . 130

A.23 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 3 . . . . . . . . . . . . . 130

A.24 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 4 . . . . . . . . . . . . . 130

A.25 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 5 . . . . . . . . . . . . . 131

A.26 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 6 . . . . . . . . . . . . . 131

A.27 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 7 . . . . . . . . . . . . . 131

A.28 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 8 . . . . . . . . . . . . . 132

A.29 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 9 . . . . . . . . . . . . . 132

A.30 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 10 . . . . . . . . . . . . 132

ix



List of Figures

A.31 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 11 . . . . . . . . . . . . 133

A.32 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 12 . . . . . . . . . . . . 133

A.33 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 13 . . . . . . . . . . . . 133

A.34 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 14 . . . . . . . . . . . . 134

A.35 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 15 . . . . . . . . . . . . 134

A.36 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 16 . . . . . . . . . . . . 134

A.37 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 17 . . . . . . . . . . . . 135

A.38 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 18 . . . . . . . . . . . . 135

A.39 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 19 . . . . . . . . . . . . 135

A.40 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 20 . . . . . . . . . . . . 136

A.41 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 1 . . . . . . . . . . . . . 136

A.42 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 2 . . . . . . . . . . . . . 136

A.43 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 3 . . . . . . . . . . . . . 137

A.44 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 4 . . . . . . . . . . . . . 137

A.45 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 5 . . . . . . . . . . . . . 137

A.46 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 6 . . . . . . . . . . . . . 138

A.47 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 7 . . . . . . . . . . . . . 138

x



List of Figures

A.48 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 8 . . . . . . . . . . . . . 138

A.49 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 9 . . . . . . . . . . . . . 139

A.50 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 10 . . . . . . . . . . . . 139

A.51 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 11 . . . . . . . . . . . . 139

A.52 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 12 . . . . . . . . . . . . 140

A.53 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 13 . . . . . . . . . . . . 140

A.54 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 14 . . . . . . . . . . . . 140

A.55 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 15 . . . . . . . . . . . . 141

A.56 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 16 . . . . . . . . . . . . 141

A.57 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 17 . . . . . . . . . . . . 141

A.58 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 18 . . . . . . . . . . . . 142

A.59 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 19 . . . . . . . . . . . . 142

A.60 Trace plot for α (left), marginal posterior density for α (middle) and relative

frequency barplot for the number of cluster at time 20 . . . . . . . . . . . . 142

xi





List of Algorithms

1 Gillespie’s direct method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Metropolis-Hastings sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Likelihood-free MCMC algorithm . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Bootstrap filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Algorithm 8 of Neal (2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 MCMC algorithm to fit a DPM of univariate normals (using Algorithm 8

of Neal (2000)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 MCMC algorithm to fit a DPM of linear regression models (using Algorithm

8 of Neal (2000)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 Bootstrap filter with emulation . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiii





Chapter 1

Introduction

A stochastic kinetic model (SKM) typically refers to a reaction network and a stochastic

description of the dynamics of the species in the network. The most natural Markov jump

process (MJP) representation has been ubiquitously applied to describe epidemics (Lin and

Ludkovski (2014); McKinley et al. (2014)), predator-prey interactions (Boys et al., 2008)

and in systems biology (Golightly and Wilkinson (2011); Owen et al. (2015); Golightly and

Sherlock (n.d.)). Of particular interest in this thesis is the Schlögl system (Schlögl, 1972),

where three different species interact between two material baths. This system exhibits

nonlinear dynamics, and, for particular parameter choices, has two stable states.

Whilst forward simulation of MJPs is straightforward, using for example Gillespie’s direct

method (Gillespie, 1976), the reverse problem of inferring the parameters governing the

MJP can be a challenging problem. In practice, we expect data at discrete times that may

be incomplete (in the sense that only a subset of species counts are observed) and subject

to measurement error. Calculating the observed data likelihood requires summing over

a potentially infinite number of states rendering this calculation practically intractable.

Bayesian inference can in principle take place via computationally intensive methods such

as Gibbs sampling (Boys et al., 2008) or particle Markov chain Monte Carlo (Andrieu

et al. (2010) and Golightly and Wilkinson (2011)). Such methods typically require the

equivalent of many millions of runs of the forward simulator rendering them computation-

ally infeasible for SKMs with many reactions and species. Consequently, several authors

have investigated the use of surrogate models whereby exact (simulation-based) inference

is performed using the surrogate. We briefly review the most well studied approaches.

The chemical Langevin equation or diffusion approximation (Gillespie, 2000) can be found

by matching the first two infinitesimal moments of the MJP to the drift and diffusion

functions of an Itô stochastic differential equation (SDE). Hence, discreteness (but not

stochasticity) is ignored. The resulting SDE is typically intractable but can be discretised,
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with the choice of discretisation controlling computational cost (Golightly and Wilkinson

(2005); Golightly and Wilkinson (2006)). Nevertheless, the observed data likelihood re-

mains intractable, again necessitating the use of (particle) MCMC (Andrieu et al., 2010).

The SDE can be further approximated by linearising the drift and diffusion functions

to give the linear noise approximation (LNA, Van Kampen (1992); Komorowski et al.

(2009)). The resulting process has Gaussian transition densities (for fixed or Gaussian

initial conditions) and therefore admits a tractable observed data likelihood (under the

assumption of additive Gaussian noise, as is often used in practice). Although the LNA is

computationally inexpensive, it is well known to give a poor approximation in low count

number scenarios (Schnoerr et al., 2017). Moreover, it is unable to accommodate SKMs

that give multi-modal output.

Another approach is to regard the output of the SKM as that of an expensive computer

model, allowing the applications of methods from the emulation literature. See e.g. Sacks

et al. (1989), Currin et al. (1991) and Kennedy and O’Hagan (2001). The essential idea is

to generate training data by repeatedly running the SKM simulator (e.g. Gillespie’s direct

method) for various choices of parameter values (the inputs, although time may also be

an input) to obtain realisations of the SKM at each observation time (the outputs). As

shown in Henderson et al. (2009) and Henderson et al. (2010) a Gaussian process (GP) is

used to model the mean and variance, which are smooth nonlinear deterministic functions

of the inputs. This then allows for straightforward prediction of the mean and variance

for parameter values that do not appear in the training set. We may anticipate that a GP

is unable to adequately account for heavy tailed and/or multi-model output exhibited by

some SKMs e.g. the Schlögl system which is bimodal as a function of the parameters.

A typical solution to modelling multi-modal output is to fit a mixture model, which may

also allow for heavier tails. A simple approach to mixture modelling is to pre-specify

the number of components a priori. For example, we might assume that two components

would be adequate for the Schlögl system. However, given a complex reaction network and

a data poor scenario, pre-specifying a satisfactory number of mixture components may be

difficult. We can alleviate this issue by using a Dirichlet process mixture (MacEachern

and Müller (1998) and Neal (2000)), where the number of mixture components can be

inferred from the data.

The main contribution of this thesis is the development and fitting of an emulator that is a

Dirichlet process mixture of Gaussian processes. We believe that this is the first use of this

approach within the SKM setting. In addition, we compare and contrast this approach

with standard likelihood-free approaches from the literature. We illustrate the proposed

methodology using the Schlögl system, for which exact simulation based inference under

the MJP is computationally demanding. The remainder of the thesis is organised as
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follows.

1.1 Outline of thesis

We begin in Chapter 2 by describing the principles of stochastic modelling and defining

notation used for chemical reactions. We describe the Markov jump process representation

of SKMs as well as explain how to simulate from these models via Gillespie’s direct method.

We give examples of SKMs, starting with a simple birth-death model and concluding with

the more complex Schlögl system.

We will adopt a Bayesian approach to make inferences from the data and find the posterior

distribution of the parameters of the SKM. Thus in Chapter 3 we give an overview of

the Bayesian approach to inference and state Bayes’ theorem. For most problems of

practical interest, the parameter posterior is likely to be intractable, necessitating the use

of computationally intensive methods such as MCMC. We then move on to explain how

to perform inference when given noisy data assumed to come from a SKM at a number

of discrete time points. The observed-data likelihood will be intractable for all but the

simplest SKMs, and we therefore consider likelihood-free methods such as likelihood-free

MCMC and sequential Monte Carlo (SMC), including particle filters.

Gaussian processes (GPs) are then defined in Chapter 4 as we begin to explore how to

construct the flexible emulator of SKM output. We give an overview of how a GP can be

used for regression and define the mean function and covariance function. We conclude

this chapter with a simulation study that concerns inferring the hyperparameters of the

GP covariance function. In Chapter 5 we explore the use of GPs for emulation. A key

aspect of GP emulation is choice of appropriate input data. We explore the use of a Latin

hypercube design as a method for giving efficient coverage of the input space. We look at

an example where a GP is used to emulate SKM output as well as diagnostics.

Since we wish to build a mixture of GPs to emulate SKM output we introduce finite

mixture modelling in Chapter 6. The Dirichlet process (DP) is then considered. This

is defined formally and, additionally, through a number of representations to help with

understanding including the stick-breaking process, Chinese restaurant process and Pólya

urn scheme. The use of DPs in mixture modelling is then discussed and we explain how

this can be done using MCMC methods. Two examples are given at the end of this chapter

where we fit a DP mixture (DPM) of normals to data simulated from a three-component

normal mixture to help demonstrate how adaptable a DPM can be. The second example

builds upon this by adding in spatial dependence as we consider fitting a DPM of regression

lines.
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Chapter 7 defines a Dirichlet process mixture of Gaussian processes (DPMGP) model.

We explain how to efficiently evaluate the log-likelihood function for this model by using

efficient tools to invert the large correlation matrix and find the determinant. We show

how each point in the data is assigned to a cluster and explain how we can perform

prediction for this model. We conclude the chapter by fitting the model to data obtained

from a two-component mixture of GPs.

In Chapter 8 we focus on finding the posterior distributions of the stochastic rate constants

for the Schlögl system given noisy data at a small number of time points. We consider

inference using Gillespie’s direct method as well as using our proposed DPMGP emulator

approach. In Chapter 9, we consider a fast but approximate inference scheme for the

DPMGP. Essentially, we consider the variational approach of Ross and Dy (2013) and

adapt it to our setting. Conclusions and possible future research avenues are given in

Chapter 10.
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Chapter 2

Stochastic kinetic models

2.1 Introduction

This chapter introduces the concept of stochastic kinetic models. We introduce notation

used for chemical reactions which describe stochastic kinetic models and which are a

natural way to model complex biochemical and cellular systems.

We describe a method to simulate from stochastic kinetic models, specifically defining

Gillespie’s direct method. We introduce three different stochastic kinetic models: the

simple birth-death model, the Lotka-Volterra model and the more complex Schlögl system.

For further detail of concepts discussed in this chapter see Golightly and Gillespie (2013),

Schnoerr et al. (2017) and Wilkinson (2018).

2.2 Chemical reactions

In order to define stochastic kinetic models and the associated theory, we first consider a

biochemical system in which there are n species denoted by X1, . . . , Xn. How each of the

molecules interact with each other through time is described by a collection of chemical

reactions where we denote the set of m reactions by R1, . . . , Rm.

When a reaction occurs, the level (count) of one or more of the species changes, for

example, an X1 molecule and an X2 molecule might react with each other to produce an

X3 molecule. This would mean the counts of molecules for species X1 and X2 would both

decrease by one and the count of molecules for species X3 would increase by one. We

denote this chemical reaction using the following equation

X1 +X2
c−→ X3.
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The species on the left, X1 and X2, are called the reactants and the specie X3 is the

product. This reaction, under certain assumptions (see Section 2.3), will occur according

to some rate constant c. We now generalise this to define a network of reactions.

A network of reactions is given by a collection of m reaction equations, which describe

how the n species of the system react with one another over time, where a typical reaction

is written

R1 : a11X1 + . . .+ a1nXn
c1−→ b11X1 + . . .+ b1nXn,

R2 : a21X1 + . . .+ a2nXn
c2−→ b21X1 + . . .+ b2nXn,

...
...

Rm : am1X1 + . . .+ amnXn
cm−−→ bm1X1 + . . .+ bmnXn,

where the ci, i = 1, . . . ,m are the kinetic rate parameters of the system. The vector of

rate constants is denoted by c = (c1, . . . , cm)>. Note that it is often more convenient to

work with the log stochastic rates, θ = log c.

The {aij} and {bij} are known as stoichiometric coefficients, where aij gives the number

of reactants of type j in reaction i, with bij giving the number of products. If we write

A = (aij) and B = (bij) as the m×n matrices of stoichiometric coefficients then Q = B−A
gives the net effect matrix. That is where the ijth element describes how a type Ri reaction

changes the count of type Xj species. We often work with the transpose of this net effect

matrix, and define the stoichiometry matrix S by

S = Q> = (B −A)>.

As with the net effect matrix, the stoichiometry matrix encodes other important infor-

mation about the reaction network. For example, vectors in the left null-space of S

correspond to conservation laws in the network, allowing the study of the dynamics of a

reduced number of species which we will see in Section 2.7.

At time t, we denote the number of molecules of type Xj in the system by xj(t), where

the state of the entire system is denoted by x(t) = (x1(t), . . . , xn(t))>.

2.3 Markov jump process

Some assumptions are made about the molecules, mainly that they are in a container of

fixed volume which is well stirred and in thermal equilibrium. Under these assumptions

the movement of the molecules is random and driven by Brownian motion.
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It can then be shown (Gillespie, 1992) that the rate of reactions is constant over a small

interval of time δt and as such each reaction will have an associated stochastic rate constant

which we previously denoted by ci for reaction Ri. Recall that we work with the log

stochastic rates, θ = log c. We assume mass-action kinetics, which states that the rate of

the reaction is proportional to the product of the concentrations of the reactants. Under

this assumption, the rate constant together with the state of the system at time t, x(t),

defines the hazard function hi(x(t),θ) of reaction Ri. Thus, the instantaneous rate of

reaction Ri at time t is hi(x(t),θ)δt in a small time interval δt.

For example, a first order reaction would be of the form

X
eθ−→ 2X.

The instantaneous hazard of this reaction happening in an interval δt is eθδt. If there are

x molecules of species X at time t then the hazard of this reaction, under mass-action

stochastic kinetics, would be

h(x, θ) = eθx.

Consider a second order reaction of the form

X1 +X2
eθ−→ X3.

This would occur when a molecule of type X1 collides with a molecule of type X2. If

there are x1 molecules of species X1 and x2 molecules of species X2 then the hazard of

this reaction is

h(x, θ) = eθx1x2.

The reaction

2X1
eθ−→ X2

is also second order and occurs when two molecules of type X1 collide with each other.

The hazard of this reaction is

h(x, θ) = eθ
x1(x1 − 1)

2!
.

By considering the number of ways in which the reactants (on the left hand side of the

reaction) can react with each other we can generalise the hazard function to be proportional

to a product of binomial coefficients with

hi(x(t), θi) = eθi
n∏
j=1

(
xj(t)

aij

)
. (2.1)
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The total rate (or hazard) of any reaction occuring is simply the sum of hazards,

h0(x(t),θ) =
m∑
i=1

hi(x(t), θi) =
m∑
i=1

eθi
n∏
j=1

(
xj(t)

aij

)
.

The effect of reaction i results in a change to the system state x(t) abruptly and discretely.

If reaction i were to occur at time t, the new state is

x(t) = x(t−) + Si

where Si is the ith column of the stoichiometry matrix S and x(t−) is the state of the

system at the previous time. The time evolution of x(t) is then described by a continuous-

time, discrete-valued Markov process.

Assuming an initial state x0, the state of the system at time t is

x(t) = x0 +
∑
i

SiRi,t

where Ri,t denotes the number of times the ith reaction has occurred by time t. The

process Ri,t is a counting process with intensity hi(x(t), θi), the hazard function defined

above in (2.1). The counting process can be written as

Ri,t = Yi

(∫ t

0
hi(x(s), θi) ds

)
where Yi, i = 1, . . . ,m are independent unit rate Poisson processes. We refer the reader to

Kurtz (1972) and Wilkinson (2018) for more details on this representation.

2.4 Simulation methods and approximations

A number of simulation methods exist to generate realisations from stochastic kinetic

models. They can be computationally expensive depending on the particular system

involved. For example, systems with high levels of species will typically have more reactions

occurring as a result of many species interacting with each other. Consequently a number

of approximation methods exist which aim to take less time than exact methods, at the

expense of some accuracy.
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Algorithm 1 Gillespie’s direct method

1. At time t = 0, set the initial state to be x(0).

2. Calculate the hazard hi(x(t), θi) for each reaction i = 1, . . . ,m and the combined
hazard h0(x(t),θ) =

∑m
i=1 hi(x(t), θi).

3. Simulate the dwell time δt ∼ Exp(h0(x(t),θ)) and set t := t+ δt.

4. Simulate the index of the next occurring reaction j from a discrete distribution with
probabilities hi(x(t), θi)/h0(x(t),θ) for i = 1, . . . ,m.

5. Update the state of the system x according to reaction j.

6. If t < T return to step 2.

2.4.1 Gillespie’s direct method

The most common simulation method is the Gillespie algorithm (Gillespie, 1976) which

is also known as the direct method. This is an exact stochastic simulation method that

allows us to generate exact trajectories from the MJP representation of a stochastic kinetic

model. It is an iterative scheme where, after initialisation, the dwell time (the time that

the process remains in the current state) is an exponential random variable with rate given

by the sum of the hazards of each reaction given the current specie levels, which we earlier

denoted by h0(x(t),θ), the total rate. The reaction which next occurs is then simulated

from a discrete distribution with probabilities being the ratio of the hazard of reaction i

and h0(x(t),θ). That is
hi(x(t), θi)

h0(x(t),θ)
for i = 1, . . . ,m.

The algorithm reaches completion when some time T is reached. The full details of the

algorithm are given in Algorithm 1.

2.4.2 Chemical Langevin equation

We now present an overview of the chemical Langevin equation (CLE) and refer the reader

to Gillespie (2000) for further details.

We begin by considering an infinitesimal time interval, (t, t + dt], over which the reac-

tion hazards will remain constant almost surely. The occurrence of reaction events can

then be regarded as the occurrence of events of a Poisson process with independent re-

alisations for each reaction type. If, over the infinitesimal time increment, we have the

number of reaction events of each type in the m-vector dR(t), it is clear that the elements

9
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are independent of one another and that the ith element is a Po(hi(x(t), θi)dt) random

variable. Thus, we have the expectation and variance as E(dR(t)) = h(x(t),θ)dt and

V ar(dR(t)) = diag{h(x(t),θ)}dt. It follows that the Itô stochastic differential equation

(SDE)

dR(t) = h(x(t),θ)dt+ diag
{√

h(x(t),θ)
}
dW (t)

has the same infinitesimal mean and variance as the true Markov jump process (where

dW (t) is the increment of a m-dimensional Brownian motion). Now since dX(t) =

SdR(t), we obtain

dX(t) = S h(x(t),θ)dt+
√
Sdiag{h(x(t),θ)}S′dW (t), (2.2)

where now X(t) and W (t) are both n-vectors. Equation (2.2) is the SDE commonly

referred to as the chemical Langevin equation and represents the diffusion process which

most closely matches the dynamics of the associated Markov jump process. In high con-

centration scenarios the CLE approximates the stochastic kinetic models well (Gillespie,

2000). In the absence of an analytic solution to (2.2), a numerical solution can be con-

structed. For example, the Euler-Maruyama approximation is

∆X(t) ≡X(t+ ∆t)−X(t)

= S h(x(t),θ)∆t+
√
Sdiag{h(x(t),θ)}S′∆W (t) (2.3)

where ∆t is a small interval of time and ∆W (t) is a mean zero Normal random vector with

variance matrix diag{∆t}. Higher order approximations are possible; see e.g. Kloeden and

Platen (2013).

Performing exact (simulation based) inference for the diffusion approximation has been

the focus of many authors including Golightly and Wilkinson (2005), Purutcuoglu and Wit

(2007), and Golightly and Wilkinson (2011). Although Golightly and Wilkinson (2011)

find that a particle MCMC scheme based on the CLE can be more computationally efficient

than a similar scheme that works with the Markov jump process directly, the particle

MCMC scheme requires calculation of an estimate of marginal likelihood under the CLE

which can be computationally expensive, depending on the required discretisation.

2.4.3 Linear noise approximation

The LNA was first considered as a functional central limit law for density dependent pro-

cesses by Kurtz (1970) and can be derived in a number of ways. For example, Komorowski

et al. (2009) and Elf and Ehrenberg (2003) derive the LNA by approximating the forward

Kolmogorov equation (satisfied by the transition rate of the MJP) through a Taylor series
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expansion. The first and second moments are used in the approximation however further

moments can be used (Ale et al., 2013). We shall give a more informal derivation similar

to that of Fearnhead et al. (2014) and we refer the reader to the references therein for a

more detailed discussion. In what follows we calculate the LNA for a general SDE before

formulating it as an approximation to the CLE.

Consider a general SDE satisfied by a process {X(t), t ≥ 0} of the form

dX(t) = α(X(t))dt+ εβ(X(t))dW (t) (2.4)

where ε << 1. Partition X(t) into a deterministic path z(t) and a residual stochastic

process M(t) and let z(t) be the solution to

dz(t)

dt
= α(z(t)). (2.5)

We assume that ||X(t) − z(t)|| is O(ε) over a time interval of interest, where || · || is the

Euclidean norm, and substitute X(t) = z(t) + εM(t) into equation (2.4) to give

d(z(t) + εM(t)) = α(z(t) + εM(t))dt+ εβ(z(t) + εM(t))dW (t).

We then Taylor expand α(·) and β(·) about z(t) and collect terms of O(ε) to give the SDE

satisfied by M(t) as

dM(t) = F (t)M(t)dt+ β(z(t))dW (t) (2.6)

where F (t) is the Jacobian matrix with (i, j)th element ∂αi(z(t))/∂zj(t) and αi(z(t)) refers

to the ith element of α(z(t)). Note the use of ε to indicate that the stochastic term in (2.4)

is small and, essentially, that the drift term dominates the diffusion coefficient. However

ε plays no role in the evolution equations, (2.5) and (2.6). Without loss of generality,

therefore, we simplify by setting ε = 1. To further simplify the notation we also drop the

explicit dependence of the hazard function on θ, and of the mean and variance of M(t)

on both θ and z(t).

For the CLE, we have

α(X(t)) = S h(X(t)), β(X(t)) =
√
Sdiag{h(x(t),θ)}S′.

The linear noise approximation of the CLE is therefore defined through

dz(t)

dt
= Sh(z(t),θ) (2.7)

and

dM(t) = F (t)M(t)dt+
√
Sdiag{h(z(t),θ)}S′dW (t) (2.8)

11
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where F (t) has (i, j)th element S∂hi(z(t), θi)/∂zj(t).

For fixed or Gaussian initial conditions, that is M(t1) ∼ N(m(t1), V (t1)), the SDE in

(2.8) can be solved explicitly to give

(M(t)|θ) ∼ N (m(t) , V (t)) (2.9)

where m(t) is the solution to the deterministic ordinary differential equation (ODE)

dm(t)

dt
= F (t)m(t) (2.10)

and similarly
dV (t)

dt
= V (t)F (t)′ + Sdiag{h(z(t),θ)}S′ + F (t)V (t) . (2.11)

Hence, the solution of equation (2.8) requires the solution of a system of coupled ODEs

given by (2.7), (2.10) and (2.11). In the absence of an analytic solution to these equations,

a numerical solution can be used. The approximating distribution of X(t) can then be

found as

(X(t)|θ) ∼ N (z(t) +m(t) , V (t)) . (2.12)

Simulations using the LNA can be obtained by initialising with z(0) = x(0),m(0) = 0

and V (0) = 0 and recursively drawing from (2.12).

2.5 Example: birth-death model

We now look at one of the most simple types of SKM namely the birth-death model which

is used to model population growth and was first introduced in 1925 (Yule et al., 1925).

The birth-death model has just one specie, denoted by X, where x represents the number

of individuals in the population as opposed to the number of molecules as previously.

As is evident from the name, only two reactions can occur in this model; either a birth

or a death. If a birth occurs, the number of individuals in the population increases by

one. Conversely, if a death occurs, the number of individuals decreases by one. Using

the chemical reaction notation we defined earlier, this model is described by the following

system of equations:

R1 : X
λ−→ 2X,

R2 : X
µ−→ ∅.

12
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Figure 2.1: Five time course plots of the population levels in the birth-death model with µ = 1, initial
condition x0 = 10 and λ = 0.7 (left), λ = 1 (middle) and λ = 1.3 (right).

The corresponding stoichiometry matrix for this system is

S =
(

1 −1
)

with the hazard function

h(x(t),θ) = (λx(t), µx(t))> ,

where θ = (log λ, logµ)>.

Figure 2.1 shows five realisations of the birth-death model for different values of the birth

rate λ with the death rate fixed at µ = 1. These are obtained using Gillespie’s direct

method as detailed in Section 2.4.1 using the hazard functions given above. Each starts

with the same initial population size of x0 = 10, where we see the population die out when

the birth rate is lower than the death rate (λ < µ). When λ = µ we see the population level

tends to stabilise, although stochasticity means the population could still die out, which

it does for one of the realisations. Finally, we have λ > µ where we see the populations

grow rapidly as there is a higher chance of births occuring than deaths.

2.6 Example: Lotka-Volterra model

The Lotka-Volterra model is one of the more well known stochastic kinetic models first

introduced by Lotka (1910) and Volterra (1926). Although this model is typically used to

describe predator-prey interactions, the theory on stochastic kinetic models that we have

developed so far still applies. The model describes the evolution of predator (X2) and

prey (X1) specie levels through time. It is fairly simple due to a number of assumptions,

for example, the level of predator depends entirely on the number of prey. The system is

13
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described by three reactions

R1 : X1
eθ1−−→ 2X1,

R2 : X1 +X2
eθ2−−→ 2X2,

R3 : X2
eθ3−−→ ∅.

The first reaction denotes a prey birth and the third reaction represents a predator death.

The second reaction represents an interaction between the two species which results in a

prey death and a predator birth. The corresponding stoichiometry matrix is

S =

(
1 −1 0

0 1 −1

)

with hazard function

h(x(t),θ) =
(
eθ1x1, e

θ2x1x2, e
θ3x2

)>
where we have dropped dependence of x(t) on t for notational simplicity. We can again ob-

tain time course plots from this system through the use of Gillespie’s direct method where

the trajectories exhibit oscillatory behaviour, as depicted in Figure 2.2. The increasing

number of prey due to lack of predator eventually results in an increase in predator levels

which eventually lead to decreasing levels of prey. Note that the predator specie will die

out eventually.
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Figure 2.2: Time course plots of three realisations of species in the Lotka-Volterra system with θ =
log(0.5, 0.0025, 0.3)> and x0 = (71, 79)>.

2.7 Example: Schlögl system

The Schlögl system is a reaction system consisting of three species, X1, X2 and X3, and

four reactions, first proposed by Schlögl (1972). As described in Vellela and Qian (2009),

14
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the system models the concentrations of the dynamic chemical X1 and the concentrations

of chemicals X2 and X3. The system is homogeneous in space and describes an exchange

of chemicals between two material baths. The chemical reactions are

R1 : 2X1 +X2
eθ1−−→ 3X1,

R2 : 3X1
eθ2−−→ 2X1 +X2,

R3 : X3
eθ3−−→ X1,

R4 : X1
eθ4−−→ X3.

The corresponding stoichiometry matrix for this system is

S =

 1 −1 1 −1

−1 1 0 0

0 0 −1 1


with the hazard function

h(x(t),θ) =

(
eθ1x1(x1 − 1)x2

2
,
eθ2x1(x1 − 1)(x1 − 2)

6
, eθ3x3, e

θ4x1

)
where again we have dropped dependence of x(t) on t for notational simplicity. The

system is particularly interesting due to the bistability it exhibits for particular choices of

the rate constants θ and initial values x0. Modelling this behaviour could be challenging

and is one of the reasons we will look at trying to emulate this behaviour. By examining

the stoichiometry matrix of this model we see that the system obeys a conservation law,

that is X1 +X2 +X3 = constant, so we can observe just two of the chemical species, say

X1 and X2, and calculate the path of X3 easily if we need to. Figure 2.3 shows the time

courses of ten independent realisations of the system for each of the different simulation

(or approximation) methods discussed above, each simulated using rate constants θ =

log(3× 10−7, 10−4, 0.000773, 3.276)> and initial conditions x0 = (250, 105, 2× 105)>. We

can see here that Gillespie’s direct method and the CLE can both adequately capture the

bimodal behaviour whilst the LNA fails to satisfactorily explore both modes.

The bimodality that this system exhibits is one of the reasons we wish to build a fast

and flexible emulator where the flexiblity will be key to emulating the system’s output.

We also note that the Schlögl system has large counts of the second and third species,

X2, X3. Now imagine if we were to use Gillespie’s direct method as part of an inference

scheme to learn the stochastic rate constants. The large number of counts means there

will also be a large number of reactions occuring in a small space of time since there are so

many molecules in the system. Hence the dwell time between each reaction will become

15
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small. Simulating all of these reactions using the Gillespie algorithm would therefore be

computationally expensive, especially within an inference scheme requiring many millions

of full realisations.
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Figure 2.3: Time course plots of the species in the Schlögl system for each of the different simulation
methods. All realisations from all methods are given in grey with the top row highlighting (in blue) the
ten time courses obtained using Gillespie’s direct method, middle row highlighting (in blue) the ten time
courses obtained using the CLE and the bottom row highlighting (in blue) the ten time courses obtained
using the LNA.
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Chapter 3

Bayesian inference

3.1 Introduction

The aim of this thesis is to infer the parameters of a stochastic kinetic model given time

course data that may be incomplete and subject to measurement error. We will adopt the

Bayesian framework when performing inference and additionally, during the fitting stage

of the emulator. A particular issue that arises when using such methods with stochastic

kinetic models is that the observed data likelihood is typically intractable, as is the case

for the Schlögl system.

This chapter introduces Bayesian inference and outlines a number of methods that can be

used to perform inference, including Markov chain Monte Carlo (MCMC) and sequential

Monte Carlo (SMC) methods.

3.2 Bayes’ Theorem

Suppose we have observed data x which can be modelled by a probability density func-

tion (or mass function if x is discrete) f(x|θ). The parameters of interest here are the

parameters of the density function θ. The aim is then to quantify our uncertainty about

θ = (θ1, . . . , θd)
> given our observed quantities x. The likelihood function, which contains

all of the information from the data, is

L(θ|x) = f(x|θ).

This represents the density (or mass function if x is discrete) of the data x as a function

of our unknown quantities θ. Often we have some prior beliefs about these parameters θ,

which may be quite strong or weak beliefs, and we represent this prior knowledge through
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our prior density (or mass function if our parameters θ are discrete) π(θ). We can then

combine our prior beliefs with information gathered from the observed data x through

the use of Bayes’ theorem to obtain the posterior distribution. Using Bayes’ theorem the

posterior density is

π(θ|x) =
π(θ)L(θ|x)∫

θ π(θ)L(θ|x)dθ
, (3.1)

where
∫
θ π(θ)L(θ|x)dθ is called the marginal likelihood. The marginal likelihood does not

depend on θ and ensures the posterior density integrates to one. Hence we can express

Bayes’ theorem as

π(θ|x) ∝ π(θ)L(θ|x),

which shows the posterior is proportional to the prior times the likelihood. When θ is

discrete, we would obtain the posterior mass function using the likelihood and the prior

mass function. The marginal likelihood in this case would now be a sum,
∑
θ π(θ)L(θ|x).

Unless stated otherwise, we shall assume that unknown parameters θ are continuous.

Obtaining the posterior can be challenging when working with complex models since the

marginal likelihood in the denominator of (3.1) will not be available in closed form. If

the prior density is of the same functional form as the likelihood, known as conjugacy,

then we can find the posterior distribution in closed form. For the majority of cases

when examining complex models, conjugate priors are often not available or, if they are, a

conjugate prior may not express our prior beliefs sufficiently. In these cases we appeal to

other methods of computing the posterior distribution such as Markov chain Monte Carlo

(MCMC) and sequential Monte Carlo (SMC).

3.3 Markov chain Monte Carlo (MCMC)

Although approximating the posterior density may be straightforward in simple conjugate

cases, models of interest are often rather complex or high dimensional, making it difficult to

obtain the normalising constant. Markov chain Monte Carlo (MCMC) is a method widely

used when conducting Bayesian inference that allows us, in principle, to generate samples

from complex and high-dimensional posterior distributions. A large area of research exists

on MCMC and we direct the reader to Brooks et al. (2011), and Gamerman and Lopes

(2006) for reviews.

The approach allows us to simulate from a Markov chain whose stationary distribution

is our target distribution of interest, in our case the posterior distribution π(θ|x). We

can start the chain at an initial point of our choosing in the support of the posterior and

after a sufficient amount of iterations, the chain will eventually converge to the posterior,

subject to certain conditions, for example, ergodicity and detailed balance. Once the chain
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has converged, any samples obtained will be realisations from the posterior distribution.

Two methods that can be used to construct such chains are the Gibbs sampler and the

Metropolis-Hastings algorithm which we now discuss.

3.3.1 Gibbs sampling

The Gibbs sampler was first introduced by Geman and Geman (1984) and has since become

a common tool when constructing MCMC algorithms.

Suppose that the posterior distribution, π(θ|x), is difficult or even impossible to directly

sample from but the conditional distributions of each of the components of θ are avail-

able for sampling from. Gibbs sampling makes use of these full conditional distributions

(FCDs), denoted by π(θi|θ−i,x), by sampling from each of them in turn. After a suitable

amount of iterations of the sampler, often referred to as burn-in, the chain converges to

the posterior distribution π(θ|x). A justification of this ‘fixed sweep’ Gibbs sampler can

be found in Gamerman and Lopes (2006). The Gibbs sampler is described in Algorithm 2.

Algorithm 2 Gibbs sampler

1. Initialise the state of the chain to θ(0) = (θ
(0)
1 , . . . , θ

(0)
d )> and set the iteration counter

to j = 1.

2. Obtain a new sample θ(j) from θ(j−1) by successive generation from the full condi-
tional distributions

θ
(j)
1 ∼π(θ1|θ(j−1)

2 , . . . , θ
(j−1)
d ,x)

θ
(j)
2 ∼π(θ2|θ(j)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
d ,x)

...
...

...

θ
(j)
d ∼π(θd|θ

(j)
1 , . . . , θ

(j)
d−1,x)

3. Set j := j + 1 and return to step 2.

3.3.2 Metropolis-Hastings

In scenarios where the full conditional distributions are not easy to sample from, an

alternative to Gibbs sampling is required, and so we turn to Metropolis-Hastings sampling.

The algorithm was introduced by Metropolis et al. (1953) and followed up by Hastings

(1970). The method makes use of a proposal density, q(·|·), which should have the same

support as the target and should be easy to simulate from. A proposed value of θ is
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obtained from the associated proposal distribution and then accepted or rejected according

to the acceptance probability which depends on the target distribution, in our case the

posterior. The Metropolis-Hastings algorithm is given by Algorithm 3.

We see that the posterior density appears as a ratio in the acceptance probability and

hence is only needed up to a constant of proportionality.

Algorithm 3 Metropolis-Hastings sampler

1. Initialise the state of the chain to θ(0) and set the iteration counter to j = 1.

2. Generate a proposed value θ∗ from the proposal distribution q(θ|θ(j−1)).

3. Calculate the acceptance probability α(θ(j−1),θ∗) where

α(θ,θ∗) = min

{
1,
π(θ∗|x)q(θ|θ∗)
π(θ|x)q(θ∗|θ)

}
= min

{
1,
π(θ∗)L(θ∗|x)q(θ|θ∗)
π(θ∗)L(θ∗|x)q(θ∗|θ)

}

4. With probability α(θ(j−1),θ∗) set θ(j) = θ∗ and set θ(j) = θ(j−1) otherwise.

5. Set j := j + 1 and return to step 2.

It should be clear that Algorithm 3 defines a homogenous Markov chain.

The proposal density plays an important role in the mixing efficiency of the Markov chain.

Ideally, the Markov chain should move rapidly over the entire parameter space. We now

look at typical choices of q(·|·) when constructing a Metropolis-Hastings scheme.

Symmetric proposal

If the proposal distribution is chosen to be symmetric, the acceptance probability simpli-

fies. A symmetric proposal density has q(θ∗|θ) = q(θ|θ∗), ∀θ∗,θ. Through cancellation

this gives

α(θ,θ∗) = min

{
1,
π(θ∗|x)

π(θ|x)

}
.

Hence the acceptance probability does not depend on the proposal density.
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Random walk proposal

Here, the proposal mechanism is a random walk so that, at iteration j,

θ∗ = θ(j−1) +wj

where wj are independent and identically distributed random variables typically chosen

to be normally distributed with a mean of 0.

Of course, when choosing a distribution for wj , we need to determine an appropriate

variance. If we set the variance too small then the majority of moves will be accepted

since they will constitute small jumps in the parameter space, leading to a chain that is

exploring the space too slowly. Setting the variance too high and we risk too many moves

being rejected leading to poor mixing of the chain and poor exploration of the parameter

space.

Roberts et al. (2001) show that an acceptance probability of 0.234 is optimal, subject to

assumptions regarding the target density and as d → ∞, where d is the dimension of θ.

This leads to the heuristic of setting

Var(wj) =
2.382

d
V̂ar(θ|x).

Independence chains

If the proposal distribution is constructed independently of the current position of the

chain we obtain an independence chain (Tierney, 1994). The proposal density is then

q(θ∗|θ) = g(θ∗). The acceptance probability in this case is

α(θ,θ∗) = min

{
1,
π(θ∗|x)

π(θ|x)

g(θ)

g(θ∗)

}
= min

{
1,
π(θ∗)L(θ∗|x)

π(θ)L(θ|x)

g(θ)

g(θ∗)

}
.

The acceptance probability is increased by choosing g(·) to be close to π(·|x). One possi-

bility is to take the proposal density to be the prior density in which case the acceptance

probability simplifies down to a ratio of likelihoods evaluated at the current and proposed

parameter value. That is

α(θ,θ∗) = min

{
1,
f(x|θ∗)
f(x|θ)

}
.
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Hybrid methods

Consider a scenario where full conditional distributions (FCDs) are available for a subset

of components of θ. It is then possible to perform a Gibbs update for those variables for

which we have tractable FCDs and then perform Metropolis-Hastings steps for the rest.

The resulting chain is termed a hybrid chain. The updates can be performed component-

wise as in the Gibbs sampling algorithm as opposed to a block update of θ. This is then

referred to as Metropolis-within-Gibbs (Gamerman and Lopes, 2006). Of course, we could

perform componentwise Metropolis-Hastings steps for all components of θ if the FCDs

weren’t easy to sample from.

It can be shown that the Gibbs sampler is a special case of the Metropolis-Hastings algo-

rithm, with each iteration consisting of d Metropolis-Hastings steps targeting π(θi|θ−i,x)

with proposal density π(θi|θ−i,x).

3.3.3 Analysis of MCMC output

When performing MCMC methods to sample from the posterior distribution of interest,

we need to monitor convergence. Starting from an initial value, the chain will have a

number of iterates that are known as burn-in before the chain has converged. These

iterates should be removed. Graphical summaries of the iterates can be used to informally

check convergence. A common technique is to view trace plots of the iterates and check

the chain is mixing well and for any obvious problems in the chain, for example poor

mixing or the chain sticking at a number of modes. Autocorrelation plots can also be used

to monitor the autocorrelation in the chain.

There exist more formal methods for checking convergence, see for example Gelman et al.

(1992). The authors here suggest running multiple chains with different initial values and

checking that the chains are indistinguishable after some time, after all, the initial value

should not matter if the chain is correctly sampling from the posterior distribution.

If autocorrelation is high after checking autocorrelation plots, it is possible to thin the out-

put to reduce autocorrelation. Thinning involves keeping every ith iteration and discarding

others to ensure that the resulting samples exhibit low autocorrelation. This technique

is also useful for reducing the storage costs associated with particularly long runs. Some

insight in to how to choose the burn-in period and level of thinning can be found in Raftery

and Lewis (1992).

Once we are satisfied that the chain has converged and is correctly sampling from the pos-

terior distribution we can analyse the output in a number of ways. Plotting histograms or

density plots of the chain allows us to see the shape of the posterior marginal distributions.
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Calculating summary statistics of the output gives us estimates of the summary statistics

of the posterior distribution, for example, the expectation of a particular random variable

can be obtained via

E[θi|x] ≈ 1

N

N∑
j=1

θ
(j)
i

where N is the total number of samples obtained from the MCMC run (after burn-in and

thinned samples are removed) and θ
(j)
i is the jth sample from the posterior distribution

for θi.

3.4 Likelihood-free methods

We now discuss the scenario when the likelihood is intractable which is typical for stochas-

tic kinetic models as described in Chapter 2. In this case, it is not possible to evaluate the

likelihood however it is possible to simulate from the stochastic kinetic model of interest

as described in Section 2.4. Likelihood-free methods of inference allow for us to over-

come evaluating the likelihood by utilising the ability to simulate from the model instead.

To better elucidate the applicability of likelihood-free methods for SKMs, we consider a

state-space framework, within which it is possible to cast an SKM.

3.4.1 State-space framework

Inferring the rate constants of stochastic kinetic models outlined in Chapter 2 using obser-

vations of the system at discrete times is challenging. Suppose that the chemical reaction

system is observed with error at times t = 1, . . . , T according to some observation error

model with parameters Σ. Let y = {y1, . . . ,yT } denote this collection of observed data

and x = {x1, . . . ,xT } represent the latent states at the observation times. Both the la-

tent states and the observations will depend on parameters θ and the state at time t will

depend only on the state at time t− 1, that is the process satisfies the Markov property

π(xt|x0,x1, . . . ,xt−1,θ) = π(xt|xt−1,θ),

where π(xt|xt−1,θ) is the transition density of the state-space model (or the mass func-

tion of an MJP), which we assume is easy to simulate from. The observations {yt} are

conditionally independent given {xt} and θ.

Bayesian inference proceeds through the posterior density

π(θ,Σ,x|y) ∝ π(θ)π(Σ)π(x|θ)π(y|x,Σ) (3.2)
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where π(θ) is the prior density for the log kinetic rates θ, π(Σ) is the prior density for the

error model parameters Σ, π(x|θ) is the probability of the unobserved stochastic process

and π(y|x,Σ) is the observation error density which we assume can be evaluated. Note

that this factorisation of the prior density for (θ,Σ)> is based on the assumption that

θ and Σ are independent a priori. Unfortunately the posterior density π(θ,x,Σ|y) is

typically unavailable in closed form and so samples from it are usually generated through

a suitable MCMC scheme, which we consider in the next section.

We will discuss a scheme with a proposal inspired by approximate Bayesian computation

(ABC), that is, one in which system data x are simulated from the stochastic process S(θ)

using Gillespie’s direct method, see Section 2.4.1. Approximate Bayesian computation

(ABC) is an example of likelihood-free inference where the general idea is to simulate

many datasets from the model for different values of our parameters and compare the

simulated data to the observed data. If the simulated data are close enough to the observed

data, subject to some criteria, then the proposed value of the parameter is accepted. It is

typical to compare summary statistics of the simulated data with summary statistics of

the observed data and if the difference is within some tolerance ε then the sample will be

accepted. It is important to note that ABC methods do not generate samples from the true

posterior but rather an approximate posterior, hence the name. For a general background

of ABC methods, see Marjoram et al. (2003) with applications in bioinformatics found in

Wilkinson (2018), Liepe et al. (2014), Liepe et al. (2010) and Toni et al. (2008).

3.4.2 Likelihood-free MCMC

Consider again the setting described above with noisy data y and the task of inferring the

rate constants θ. Given the complexity of (3.2), most notably the dimension of x and the

complex likelihood structure, we consider a method that avoids some of this complexity

by exploiting the ability to forward simulate from π(x|θ).

Consider first the case of fixed and known Σ. A Metropolis-Hastings scheme is constructed

via a joint update of θ and x. Suppose the current state of the Markov chain is (θ,x).

A proposed value, θ∗, is drawn from q(θ∗|θ). Then, conditional on this value, a proposed

new sample path x∗ is drawn from π(x∗|θ∗) via Gillespie’s direct method (Algorithm 1).

Together, the newly proposed pair is accepted with probability min{1, A} where

A =
π(θ∗)

π(θ)
× π(y|x∗,Σ)

π(y|x,Σ)

π(x∗|θ∗)
π(x|θ)

× π(x|θ)

π(x∗|θ∗)
q(θ|θ∗)
q(θ∗|θ)

=
π(θ∗)

π(θ)
× π(y|x∗,Σ)

π(y|x,Σ)
× q(θ|θ∗)
q(θ∗|θ)

.

Note that the problematic term π(x|θ) cancels in the acceptance probability, since it ap-
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pears in both the target and (joint) proposal densities. Such Metropolis-Hastings schemes

are typically referred to as ‘likelihood-free’ (Marjoram et al., 2003) and are closely related

to approximate Bayesian computation (ABC) approaches (Beaumont et al., 2002).

It remains that we can update Σ. As is often assumed in practice, we take an observation

model corresponding to additive Gaussian noise and Σ as a diagonal matrix with dimension

given by the number of observed components with σ2
i in the ith diagonal entry. In this

case, under the specification of a semi-conjugate prior, Gibbs steps are possible for each

σ2
i . The likelihood-free Metropolis-Hastings scheme is given by Algorithm 4.

In practice, this particular Metropolis-Hastings scheme can suffer from small acceptance

rates, unless the observed time course is relatively short (e.g. T ≤ 50). An alternative

approach is to update our beliefs as each observation becomes available, which we now

discuss.

3.4.3 Sequential Monte Carlo (SMC)

Sequential Monte Carlo (SMC) (Smith, 2013) methods allow for sampling the sequence

of target densities π(θ,Σ,xt|y1:t) for t = 1, 2, . . . , T , with y1:t = (y1, . . . , yt)
>. Consider

first the case of known θ and Σ which we drop from the notation. Suppose that, given the

posterior π(xt|y1:t), we observe yt+1 at time t+ 1. Applying Bayes’ theorem sequentially

gives

π(xt+1,xt|y1:t+1) ∝ π(xt|y1:t)π(xt+1|xt)π(yt+1|xt+1)

and therefore

π(xt+1|y1:t+1) ∝ π(yt+1|xt+1)

∫
π(xt|y1:t)π(xt+1|xt) dxt (3.3)

∝ π(yt+1|xt+1)π(xt+1|y1:t).

Of course, π(xt+1|y1:t) will be intractable in practice. Inference may still proceed if a

sample from π(xt|y1:t) is available, by using a suitable sampling based approach. Within

the context of SMC, this approach is known as importance resampling (sometimes referred

to as weighted resampling).
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Importance resampling

We consider first a related Monte Carlo integration technique known as importance sam-

pling. Suppose we have an integral of the form

I =

∫
f(x)g(x) dx

= E(f(X))

where g(x) is a probability density function and evaluation of I is difficult. If it is possible

to generate (independent) draws x(1), . . . ,x(N) from g(·) then

Î =
1

N

N∑
i=1

f(x(i))

is an unbiased estimator of I. If sampling from g(·) is difficult but we can find an alternative

‘proposal’ density q(·) with the same support as g(·) then we first rewrite

I =

∫
f(x)g(x)

q(x)

q(x)
dx

= E

(
f(x)g(x)

q(x)

)
where the expectation is with respect to q(·). Hence, given draws x(1), . . . ,x(N) from q(·),

Î =
1

N

N∑
i=1

f(x(i))g(x(i))

q(x(i))

gives an unbiased estimate of I. This method is known as importance sampling.

Note that by the strong law of large numbers

∫
g(x)

q(x)
q(x) dx ' 1

N

N∑
i=1

g(x(i))

q(x(i))
→ 1 as n→∞.

This leads to the asymptotically unbiased self-normalised importance sampling estimate

Î =
1
N

∑N
i=1 f(x(i))[g(x(i))/q(x(i))]

1
N

∑N
i=1[g(x(i))/q(x(i))]

=
N∑
i=1

f(x(i))w(i) (3.4)
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where

w(i) =
g(x(i))/q(x(i))∑N
j=1 g(x(j))/q(x(j))

, i = 1, . . . , N

are known as normalised importance weights.

Intuitively from (3.4), the normalised weights w(i) can be thought of as the probability

associated with the discrete sample x(i). In importance resampling, we resample (with

replacement) N times amongst the set {x(1), . . . ,x(N)} using the weights as probabilities.

The resulting sample is approximately distributed according to g(·), and the algorithm is

exact as N →∞ (Smith and Gelfand, 1992).

Bootstrap filter

Consider again the target density in (3.3). Suppose that we have an equally weighted

sample {x(i)
t }, i = 1, . . . , N from π(xt|y1:t). SMC methods adopt the approximation

π̂(xt+1|y1:t) =
1

N

N∑
i=1

π(xt+1|x(i)
t ).

We see that the continuous support of xt is replaced by the discrete support of the particle

set, allowing the integral in (3.3) to be replaced by a sum. Therefore we obtain

π̂(xt+1|y1:t+1) ∝ π(yt+1|xt+1)
N∑
i=1

π(xt+1|x(i)
t ). (3.5)

We sample π̂(xt+1|y1:t+1) by applying importance resampling with a proposal density

q(xt+1) = π̂(xt+1|y1:t). That is, for each {x(i)
t }, we draw x̃

(i)
t+1 ∼ π(xt+1|x(i)

t ) using

Gillespie’s direct method and assign the normalised weight

w
(i)
t+1 =

ŵ
(i)
t+1∑N

j=1 ŵ
(j)
t+1

, i = 1, . . . , N

where

ŵ
(i)
t+1 = π(yt+1|x̃

(i)
t+1), i = 1, . . . , N.

Resampling (with replacement) N times amongst {x̃(1)
t+1, . . . , x̃

(N)
t+1} using the weights as

probabilities, gives an equally weighted sample {x(1)
t+1, . . . ,x

(N)
t+1} approximately distributed

according to π(xt+1|y1:t+1).

After initialising with an equally weighted sample {x(1)
0 , . . . ,x

(N)
0 } from the prior π(x0),

we apply this technique recursively for t = 1, 2, . . . , T . The resulting algorithm typically

referred to as the bootstrap filter (Gordon et al. (1993) and Cappé et al. (2007)) or
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sequential importance resampling (SIR).

Extending this approach to include the static parameters is straightforward in principle.

Suppose that we have an equally weighted sample {(θ(1),Σ(1),x
(1)
t ), . . . , (θ(N),Σ(N),x

(N)
t )}

from π(θ,Σ,xt|y1:t). Rewriting the target in (3.5) to include xt gives

π(θ,Σ,xt,xt+1|y1:t+1) ∝
N∑
i=1

δ
(θ(i),Σ(i),x

(i)
t )
× π(yt+1|xt+1,Σ

(i))× π(xt+1|x(i)
t ,θ

(i))

where δ
(θ(i),Σ(i),x

(i)
t )

is the Dirac mass function that assigns 1 if (θ,Σ,xt) = (θ(i),Σ(i),x
(i)
t )

and 0 otherwise. The SIR filter then proceeds by sampling x̃
(i)
t+1 ∼ π(xt+1|x(i)

t ,θ
(i)) for

each x
(i)
t and θ(i). The unnormalised weight is

w̃
(i)
t+1 = π(yt+1|x̃

(i)
t+1,Σ

(i)), i = 1, . . . , N.

The full SIR filter is described in Algorithm 5. In what follows, we refer to the number of

particles as Np.

Unfortunately, SMC methods for static parameters are well known to be afflicted by sample

impoverishment (Li et al., 2014). This occurs when only a small minority of parameter

particles have reasonable weight. After resampling, only a few distinct parameter particles

remain. A number of ad-hoc approaches have been proposed to alleviate this issue. For

example, Gordon et al. (1993) (see also Liu and West (2001)).

A key issue with both SMC and MCMC schemes that we’ve discussed is that they can be

both computationally intensive and time consuming due to the constant need to simulate

proposed realisations from the stochastic process at each iteration using Gillespie’s direct

method for example. This problem can become insurmountable if the number of species

or reactions are not small (see the Schlögl system in Section 2.7) as the time and resources

needed could become unmanageable. A common way around this problem is to simulate

the stochastic realisations (or simply just their values at the observed time-points) using a

fast, efficient but accurate approximation to the stochastic process. Such approximations

are often called emulators which we shall now move on to look at constructing.
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Algorithm 4 Likelihood-free MCMC algorithm

1. Initialise. Set θ(0) and x(0), e.g. θ(0) ∼ π(θ) and set x(0) to be an appropriate value.
Put θ = θ(0) and x = x(0). Set j = 0.

2. Generate a new candidate θ∗ from the symmetric proposal distribution q(θ∗|θ).

3. Propose x∗ ∼ π(x∗|θ∗).

4. Construct the acceptance probability min(1, A) where

A =
π(θ∗)

π(θ)
× π(x∗,y|θ∗,Σ)

π(x,y|θ,Σ)
× q(θ|θ∗)π(x|θ)

q(θ∗|θ)π(x∗|θ∗)

=
π(θ∗)

π(θ)
× π(x∗,y|θ∗,Σ)

π(x∗|θ∗)
× π(x|θ)

π(x,y|θ,Σ)

=
π(θ∗)

π(θ)
× π(y|x∗,Σ)

π(y|x,Σ)

=
π(θ∗)

π(θ)

T∏
t=1

π(yt|x∗t ,Σ)

π(yt|xt,Σ)
,

with probability min(1, A) put (θ(j),x(j)) = (θ∗,x∗) and (θ,x) = (θ∗,x∗), otherwise
put (θ(j),x(j)) = (θ,x).

5. Draw Σ from π(Σ|x,θ,y) and put Σ(j) = Σ.

6. Set j = j + 1 and go to step 2.
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Algorithm 5 Bootstrap filter

• Initialise
At time t = 0, for i = 1, . . . , Np

1. Sample θ(i) ∼ π(θ).

2. Sample X
(i)
t ∼ π(xt) and X̃

(i)
t+1 ∼ π(xt+1|x(i)

t ,θ
(i)) using Gillespie’s direct

method.

3. Calculate and assign a weight to each particle (θ(i), x̃
(i)
t+1) where w̃

(i)
t+1 =

π(yt+1|x̃
(i)
t+1,Σ

(i)).

4. Resample (θ(i), x̃
(i)
t+1,Σ

(i)) Np times with replacement according to normalised

weights {w(1)
t+1, . . . , w

(Np)
t+1 }.

• For times t = 1, . . . , T and i = 1, . . . , Np

1. Sample X̃
(i)
t+1 ∼ π(xt+1|x(i)

t ,θ
(i)) using Gillespie’s direct method.

2. Calculate and assign a weight to each particle (θ(i), x̃
(i)
t+1,Σ

(i)) where w̃
(i)
t+1 =

π(yt+1|x̃
(i)
t+1,Σ

(i)).

3. Resample (θ(i),x
(i)
t ,Σ

(i)) Np times according to the normalised weights

{w(1)
t+1, . . . , w

(Np)
t+1 }.
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Gaussian processes

4.1 Introduction

The aim of this thesis is to infer the posterior distributions of the rate constants of com-

plex stochastic kinetic models, in particular the Schlögl system which was described in

Chapter 2.

Chapter 3 introduced a number of algorithms that can be used to draw samples from the

posterior distribution including two likelihood-free methods. These methods avoid having

to evaluate the intractable observed data likelihood but do require the ability to simulate

from the model for a proposed set of rate constants which would then either be accepted

or rejected. One possibility is to use Gillespie’s direct method to simulate from the model

but this would require simulating a very large number of events which would be quite

time consuming for models such as the Schlögl system. The computational cost can be

alleviated somewhat by replacing the expensive simulator with a cheap surrogate.

In this chapter we begin to consider the emulator we are building. First we give an

overview of Gaussian processes and explain how they can be used for regression, since the

emulation task can be seen as a regression problem. We will describe how we can train a

Gaussian process given a set of inputs and outputs, and finally, how the fitted GP can be

used for prediction.

4.2 GP Regression

Consider the task of inference for input-output mappings using empirical data. We will

assume continuous output data so that the problem is one of regression. Denote an input

as θ and an output as x = x(θ). Suppose that we have data D = {(θi, xi), i = 1, . . . , N}.
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Our primary goal is to make predictions for new inputs θ∗. Clearly we need a function

X(θ) that allows prediction for all possible input values. One possibility is to assume

some parametric form for X and limit attention to that class of functions (for example,

linear functions of the input). Another approach is to give prior probability to every

possible function, giving higher probability to functions we consider more likely. Although

this latter approach may seem intractable, since we have an uncountably infinite set of

functions, it turns out to be possible through the use of a Gaussian process.

Informally, a GP can be thought of as the extension of the multivariate Gaussian distribu-

tion to infinite dimension and are thus considered as non-parametric models. Rasmussen

and Williams (2005) give a formal definition; a GP is a collection of random variables, any

finite number of which have a joint Gaussian distribution. Just as a Gaussian distribution

is completely specified by its mean and variance, a GP is completely specified by its mean

function and covariance function.

Consider a real process X(θ) and let m(θ) be the mean function and k(θ,θ′) be the

covariance function such that

m(θ) = E(X(θ))

and

k(θ,θ′) = Cov(X(θ), X(θ′))

= E
[
(X(θ)−m(θ))(X(θ′)−m(θ′))

]
.

We write the GP prior as

X(θ) ∼ GP (m(θ), k(θ,θ′)),

where X(θ) represents the value of the function at location θ.

Suppose we wish to characterise the GP at a finite set of inputs. Set

ΘN = (θ1, . . . ,θN )>

where, for example, θ1 = (θ1,1, . . . , θ1,d)
> and

X = X(ΘN )

= (X(θ1), . . . , X(θN ))>.

Using the definition of a GP, we know that X has a Gaussian distribution with a mean

vector m(ΘN ) whose ith element is m(θi), and variance matrix K(ΘN ,ΘN ) whose (i, j)th
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element is k(θi,θj). That is

X ∼ N(m(ΘN ),K(ΘN ,ΘN )) (4.1)

where

m(ΘN ) = (m(θ1), . . . ,m(θN ))>

and

K(ΘN ,ΘN ) =


k(θ1,θ1) k(θ1,θ2) · · · k(θ1,θN )

k(θ2,θ1) k(θ2,θ2) · · · k(θ2,θN )
...

...
. . .

...

k(θN ,θ1) k(θN ,θ2) · · · k(θN ,θN )

 . (4.2)

The only constraint on k(·, ·) is that it must generate a symmetric, invertible, positive

definite covariance matrix for any ΘN . We now consider choices of m(·) and k(·, ·).

4.2.1 Mean function

GP prio A typical choice for m(·) is to use a contant mean function, usually 0, which

denotes a lack of prior knowledge of the output. Choosing an appropriate mean function

when using a GP for emulation is important since the fitted mean will revert back to the

prior mean function when we are far away from any training points. We could choose

a fixed mean function if we were confident about the mean of the process. However, it

is often more convenient to specify a basis function whose coefficients β can be inferred

from the data. Bastos and OHagan (2009) suggest this basis function should be chosen

to incorporate any expert prior belief about the underlying function that we are trying

to model with the GP. One choice of basis function is a linear combination of the inputs,

that is

m(θ) = β0 +

d∑
l=1

βlθl, (4.3)

which expresses the data being close to a linear model.

4.2.2 Covariance function

The covariance function specifies the covariance between the outputs and is a function of

the input points θ and θ′. The choice of covariance function will determine the properties

of X(θ) (e.g. stationarity, smoothness, periodicity etc.). Additionally, we would expect

output to be similar for two points that are close in θ space and hence we need to choose

a covariance function that has this property.
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Figure 4.1: Random draws from a GP with squared exponential covariance function and hyperparameters
r = 1 (left), r = 0.1 (middle) and r = 0.01 (right) with σ2 = 1. Grey bands represent 95% probability
intervals.

A typical choice of covariance function is the squared exponential covariance function

(O’Hagan (2006), Rasmussen and Williams (2005)) which depends on hyperparameters

σ2 and r with the form

k(θ,θ′) = σ2 exp

{
−

d∑
l=1

(θl − θ′l)2

r2
l

}
. (4.4)

Alternative covariance functions include the Matérn and rational quadratic covariance

function to name a few. Note that the squared exponential covariance function is a special

case of the Matérn covariance function. The squared exponential has desirable properties

such as stationarity and being infinitely differentiable so that GP realisations are always

smooth.

We now look at the effect of changing the parameters of the squared exponential covariance

function. We can see this by drawing realisations from a zero mean GP with covariance

function as in (4.4), as seen in Figures 4.1 and 4.2.

Figure 4.1 shows the effect of changing the correlation length parameter r. In this illus-

tration r is a scalar since we are in one dimensional θ space although in higher dimensions

it is typical to have different correlation lengths for each dimension. For larger values of

r we see that the functions are very smooth and so the distribution at outputs for inputs

further away from one another are more correlated than if we had a smaller value for r.

Decreasing the value of this parameter results in realisations that are more ‘wiggly’ and so

there is only non-negligible correlation between points that are very close to each other.

In Figure 4.2 we vary the scaling parameter σ2. The effect of this is as expected, where

we see that increasing the value of σ2 results in larger error bands and uncertainty.
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Figure 4.2: Random draws from a GP with squared exponential covariance function and hyperparameters
σ2 = 1 (left), σ2 = 0.5 (middle) and σ2 = 0.1 (right) with r = 0.1. Grey bands represent 95% probability
intervals.

4.2.3 Prediction

Suppose that we have data D = {(θi, xi), i = 1, . . . , N} where xi = x(θi). Consider the

task of inferring the function at a new input θ∗ for which the corresponding output is

denoted X∗. Under a GP prior for x(θ) we have that

X∗(θ∗) ≡ X∗ ∼ N(m(θ∗),K(θ∗,θ∗)).

Similarly, X ∼ N(m(ΘN ),K(ΘN ,ΘN )) using (4.1). Now,

Cov(X∗,X) = Cov(X∗(θ∗), X(ΘN ))

= K(θ∗,ΘN )

where K(θ∗,ΘN ) is defined analogously to (4.2). Similarly, Cov(X, X∗) = K(ΘN ,θ
∗).

Hence, the joint distribution of X and X∗ is given by(
X

X∗

)
∼ N

{(
m(ΘN )

m(θ∗)

)
,

(
K(ΘN ,ΘN ) K(ΘN ,θ

∗)

K(θ∗,ΘN ) K(θ∗,θ∗)

)}
.

Conditioning on the observations x = (x1, . . . , xN )> using multivariate normal results

(A.2) gives

X∗|X = x ∼ N(m∗,K∗), (4.5)

where

m∗(θ∗) = m(θ∗) +K(θ∗,ΘN )K(ΘN ,ΘN )−1{x−m(ΘN )} (4.6)

and

K∗(θ∗) = K(θ∗,θ∗)−K(θ∗,ΘN )K(ΘN ,ΘN )−1K(ΘN ,θ
∗). (4.7)
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Similarly, if we wish to infer the function at a collection of inputs Θ∗ = (θ∗1, . . . ,θ
∗
N∗)
>

with corresponding outputs X∗ = (X(θ∗1), . . . , X(θ∗N∗))
>, we have that

X∗|X = x ∼ N(m∗,K∗)

where m∗ and K∗ become

m∗(Θ∗) = m(Θ∗) +K(Θ∗,ΘN )K(ΘN ,ΘN )−1{x−m(ΘN )}

and

K∗(Θ∗) = K(Θ∗,Θ∗)−K(Θ∗,ΘN )K(ΘN ,ΘN )−1K(ΘN ,Θ
∗).

Figure 4.3 gives an illustrative example of how we can use GP regression. In the first plot

we see random function draws from the GP prior where we have a constant mean function

and squared exponential covariance kernel. Once we observe some data in the second plot,

we can use the above methods to find the fitted GP shown in the third plot, where we see

the mean function adjusts to the training data and the 95% probability bands also tighten

as we move closer to observations. In the space between the training data, the fitted mean

will revert back to the prior mean function and the error bands will also increase due to

the lack of data and increased uncertainty. This is particularly noticeable at the two end

points of the plot. The final plot shows how the GP error bands become even tighter if

we observe more data.

4.2.4 Inferring the hyperparameters

The mean and covariance functions of the GP depend on hyperparameters β, σ2 and r

which need to be inferred from the (training) data. A question that arises here is how

best to choose these hyperparameters. We can proceed by inferring the hyperparameters

of GPs through Bayesian techniques as discussed in Chapter 3. We first specify a prior

distribution on the hyperparameters, typically via the independent prior specification for

each hyperparameter block

π(β, σ2, r) = π(β)π(σ2)π(r).

The posterior is then given up to proportionality as

π(β, σ2, r|x) ∝ π(β, σ2, r)L(β, σ2, r|x) (4.8)

where L(β, σ2, r|x) is the likelihood under the GP. We shall omit the dependence on the

hyperparameters in the covariance matrix and mean vector and write K(ΘN ,ΘN |σ2, r) =
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Figure 4.3: Random draws from a GP (top left), training data (top right), fitted GP (bottom left) and
fitted GP with more observations (bottom right). Grey bands represent 95% probability intervals.

K for notational simplicity. Hence we obtain

L(β, σ2, r|x) = (2π)−N/2|K|−1/2 exp

(
−1

2
(x−m(ΘN ))>K−1(x−m(ΘN ))

)
, (4.9)

and the log-likelihood is

l(β, σ2, r|x) = logL = −N
2

log 2π− 1

2
log |K|− 1

2
(x−m(ΘN ))>K−1(x−m(ΘN )). (4.10)

As discussed by Rasmussen and Williams (2005), each of the terms of the log-likelihood in

equation (4.10) have the following interpretations: the only term involving the data is the

data-fit 1
2(x−m(ΘN ))>K−1(x−m(ΘN )); 1

2 log |K| is the complexity penalty depending

only on the covariance function and the inputs and N
2 log 2π is a normalization constant.

Naturally, the full posterior in (4.8) is intractable, given the complex dependence of the

likelihood on σ2 and r. It should be noted that if the mean function is taken to be (4.3),

a semi-conjugate prior specification is possible for β, allowing a Gibbsian update of this

hyperparameter, by placing a normal inverse gamma prior on (β, σ2)T . Another simple

approach adopted by Baggaley et al. (2012), among others, is to fix β at estimates obtained

from a simple least squares fit.

We can appeal to MCMC methods as discussed in Section 3.3 to draw samples from
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the posterior distributions for these hyperparameters. Alternatively, as discussed in Ras-

mussen and Williams (2005), we could optimise the log-likelihood in (4.10) over the hy-

perparameters in order to set the hyperparameters of the GP prior, a method known as

empirical Bayes.
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Figure 4.4: Simulated data from a GP.

4.2.5 Example: Simulation study

In this section we will study a synthetic dataset generated from a Gaussian process and

infer the hyperparameters using MCMC to demonstrate how we can learn the hyperpa-

rameters of the covariance function. We took

X(θ) ∼ GP (0, k(θ, θ′))

with covariance function of the form

k(θ, θ′) = σ2 exp

{
(θ − θ′)2

r2

}
.

Figure 4.4 shows the simulated data generated from the Gaussian process. We assume a

zero mean function and infer the scale σ2 and correlation length r, where the true values

used to draw the data were σ2 = 0.1 and r = 0.5 with N = 100. Since we are performing

Bayesian inference we require prior distributions on each of these hyperparameters. We

chose distributions that represent fairly vague prior beliefs about the parameters as shown
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Figure 4.5: Left: Prior density for r. Right: Prior density for σ2.

in Figure 4.5. We choose a lognormal prior for r and inverse gamma prior for σ2,

r ∼ LN(0, 0.5)

and

σ2 ∼ IG(1, 1).

Since it is not possible to specify a conjugate prior here, we used Metropolis-Hastings

updates for each of the parameters which were treated as separate blocks. Since both

parameters are positive, we use lognormal random walks as our proposal mechanism.

That is, at iteration j we propose

ψ∗1 = ψ
(j)
1 + w

(j)
1 , ψ∗2 = ψ

(j)
2 + w

(j)
2 ,

where w
(j)
i

indep∼ N(0, τ2
i ), i = 1, 2 and ψ = (log r, log σ2)>. The tuning parameters τ2

i were

chosen following advice in Section 3.3.2.

Performing an initial run of 1K iterations for tuning and then performing a longer run of

20K, we keep every 10th iterate to obtain the posteriors shown in Figure 4.6. The ‘true’

values used to simulate the data are found in orange on the density plots, where we can

see that the marginal hyperparameter posteriors are consistent with the true values that

generated the data.
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Figure 4.6: Left: Posterior density for r. Right: Posterior density for σ2.
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Figure 4.8: Fitted GP with grey 95% bands.
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Chapter 5

Emulation

5.1 Introduction

In this chapter we consider the task of constructing an appropriate emulator. The use

of Gaussian processes (GPs) to construct emulators is described in Sacks et al. (1989),

Currin et al. (1991) and Kennedy and O’Hagan (2001). The idea is to obtain training

data by running the expensive simulator a limited number of times and fit a GP to the

resulting output.

Using a GP in this way allows for fully probabilistic interpolation between output values

for which there is no input in the training set.

Emulators are commonly used for approximating deterministic processes where repeat

simulations at the same input gives the same output. This is not the case for stochastic

kinetic models, which will produce different outputs for the same input, in this case the

rate constants. Moreover, for the Schlögl system, there is more than one stable state.

Recent work has looked at using emulators for stochastic output (Henderson et al., 2009)

within the context of SKMs where a GP is used to model the mean and variance, which

are smooth nonlinear deterministic functions of the inputs.

We shall consider the task of using a single GP to emulate the prey output of the Lotka-

Volterra model as well as consider some common diagnostic tools.

5.2 Training data design

In order to use a GP for emulation, we must first train the GP with training data. In the

context of emulating SKM output, the training data will be simulator output of the SKM

obtained via Gillespie’s direct method, as discussed in Section 2.4.1. For a given number
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Figure 5.1: Latin hypercube design in two-dimensions with 5 design points.

of training points (which may be dictated by computational budget), we wish to maximise

coverage of the input space. A poor choice of design can lead to parts of the design space

not being well explored which in turn can lead to an inaccurate emulator in certain parts

of the input space. We therefore aim to acquire points that are well spread out over the

design space; a space filling design.

One possible approach is to use a Latin hypercube design by utilising Latin hypercube

sampling which was first described by McKay et al. (1979). A Latin hypercube is a

generalisation of the two-dimesional equivalent Latin square. A Latin square is defined

as a square grid where there is only one point in each row and each column as shown in

Figure 5.1. When the Latin hypercube is projected onto either axis, the points provide

good coverage in that dimension. This generalises to higher dimensions, where projecting

the points onto any subset of the input axes produces a well covered design. However,

it should be noted that this approach does not necessarily ensure the whole space is well

covered. In the most extreme case, for two dimensions, the points could lie precisely on the

diagonal and still produce a valid Latin square. To tackle this potential issue, Morris and

Mitchell (1995) proposed the maximin Latin hypercube design which works by maximising

the distance between points in a Latin hypercube sample. This is achieved by producing a

list of the minimum distance between points for each design using the Euclidean distance

d(θ,θ′). The maximin design maximises the minimum distance between design points. A

comparison of the regular Latin hypercube design and the maximin design can be found

in Figure 5.2 which demonstrates how the maximin design produces a more even spread

of the design space providing a favourable set of points over the regular Latin hypercube

design. This was achieved by making use of the Latin hypercube samples package (Carnell,

2016) in R (R Core Team, 2016).
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Figure 5.2: Two dimensional designs with 100 points. Left: Latin hypercube design. Right: Maximin
Latin hypercube design.

5.2.1 Application to SKMs

Suppose that we have observations on

Y (t) = F>X(t) + εt, εt
indep∼ N(0,Σ), t = 1, . . . , T (5.1)

where F is an n (number of species) × d (number of observed components) constant matrix

allowing for observation of a subset of components of X(t). Recall from Section 3.4.1 that

the joint posterior is given by

π(θ,Σ,x|y) ∝ π(θ)π(Σ)π(x|θ)π(y|x,Σ)

where in the case of (5.1)

π(y|x,Σ) =
T∏
t=1

N(yt;F
>xt,Σ)

and N(·;m, V ) denotes the density of a multivariate Gaussian random variable with mean

vector m and variance matrix V .

Given observed data y and the training data, it is possible in theory to fit the emulator

and statistical model (5.1) jointly using an MCMC scheme. However, this is likely to

be extremely computationally expensive compared to fitting the emulator and statistical

model separately. By fitting separately, we can fit each emulator at each time point

independently and in parallel and then fit the statistical model. This approach is advocated

by Bayarri et al. (2007) and adopted by Henderson et al. (2009) and Baggaley et al. (2012)

among others.
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Rather than build a complex emulator whose inputs are both the log-rate parameters and

time, we propose to pragmatically build parameter only emulators at each observed time-

point. This has the advantage that the emulators can be built and evaluated/sampled in

parallel.

Recall the likelihood-free Metropolis-Hastings scheme of Algorithm 4. A likelihood-free

Metropolis-Hastings scheme that uses the (fitted) GP surrogate as the inferential model

can be implemented straightforwardly by replacing draws from the MJP simulator in step

3, with draws from (4.5).

If interest lies primarily in inference for θ, a more efficient Metropolis-Hastings scheme

can be constructed by noting that under the GP and (5.1) it is possible to integrate out

x. Using a subscript e to denote use of an emulator, we have the approximate posterior

πe(θ,Σ|y) ∝ π(θ)π(Σ)πe(y|θ,Σ) (5.2)

where

πe(y|θ,Σ) ∝ |V ∗(θ)|−1/2 exp

{
−1

2
(y −M∗(θ))>V ∗(θ)−1(y −M∗(θ))

}
,

where M∗(θ) has tth element given by m∗t (θ) (4.6) and V ∗(θ) = diag{K∗t (θ) + Σ} (4.7).

Finally, we note that the fitted GP, as described, would give exactly the training output

when evaluated at the training input. Accounting for the uncertainty in the SKM output

can be done in a number of ways e.g. by modifying the covariance function by including an

additional term for the case θ′ = θ or by following a similar method to Henderson et al.

(2010) where SKM output would be emulated with a Gaussian distribution where the

mean and variance are both nonlinear deterministic functions derived from the (posterior)

predictive means of two independent GPs. We shall consider the former of these two

methods in what follows.

5.3 Example: Lotka-Volterra prey output

In this section we consider the use of a GP to emulate the prey output from the Lotka-

Volterra model (Section 2.6) at a single point in time. The system is described by three

48



Chapter 5. Emulation

reactions

R1 : X1
eθ1−−→ 2X1,

R2 : X1 +X2
eθ2−−→ 2X2,

R3 : X2
eθ3−−→ ∅.

where the rate constants θ = (θ1, θ2, θ3)> are the parameters we would want to infer in

our calibration process given some noisy data.

To demonstrate how to use a GP for emulation of stochastic kinetic model output we will

emulate the prey species (X1) of this model. We will keep two of the three rate constants

(θ1, θ2) fixed so that we can easily visualise the GP in one-dimensional θ3 space.

We first need to train our emulator with training data which we generate using Gillespie’s

direct method at a set of design points in θ3 space. Since this is a one-dimensional case

we can simply make our set of N training points an evenly spaced grid of points between

two bounds. If we had more than one-dimension we could use a Latin hypercube design

(Section 5.2) to ensure our design points were optimally spaced. In a calibration setting

we could, for example, choose the bounds to be in the tails of the prior distribution of the

rate constants. For this illustrative example, we shall use values that are well within the

tails of the marginal posterior for θ3 as found in the analysis in Golightly and Wilkinson

(2011). The bounds are chosen to be log 0.15 < θ3 < log 0.3 and we fix θ1 = log 0.5 and

θ2 = log 0.0025. These are typical values chosen to give the oscillatory behaviour seen in

Section 2.6.

When emulating deterministic output, repeat simulations at the same input will give the

same output. This is not the case for stochastic output as repeat simulations will give

similar but different results. For this reason we will require M replicate observations of

the simulator output at each of our N design points in order to capture the variation

in the output. The choice of both N and M represents a trade-off between speed and

accuracy; choosing these to be too large results in a more accurate emulator but at greater

computational cost. For this example we choose N = 10 design points with M = 5

replicates at each point, which should be sufficient in providing an accurate emulator. We

use Gillespie’s direct method to obtain simulator output at our design points therefore

forming our training data (Figure 5.3). We fit the following GP to the training data where

we drop subscripts for X1 and θ3 for ease of exposition,

X(θ) ∼ GP (0, k)
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Figure 5.3: Training data at N = 10 points in θ3 space.

with covariance function of the form

k(θi, θj) = σ2 exp

{
(θi − θj)2

r2

}
+ τ2δij .

Note we are modelling stochastic output so the extra term τ2δij in the covariance function

is necessary to account for uncertainty in the output for a given input. As described in

Section 4.2.5, we appeal to MCMC methods to infer the hyperparameters of the GP where

we use Metropolis-Hastings updates for each of the parameters. We place a lognormal prior

on r and inverse gamma priors on σ2 and τ2,

r ∼ LN(0, 0.5), σ2 ∼ IG(1, 1) and τ2 ∼ IG(1, 1).

Performing an initial run of 1K iterations for tuning and then performing a longer run

of 20K, we keep every 10th iterate to reduce autocorrelation. We obtain the marginal

posteriors densities shown in Figure 5.4. By fixing the hyperparameters at their posterior

means we can obtain the fitted GP shown in Figure 5.6 which demonstrates how well the

GP works as an emulator in this scenario when we have stochastic output. Averaging

over the posterior uncertainty in the hyperparameters is also possible although Henderson

et al. (2009) find that fixing at the posterior means has a negligible effect on predictive
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performance. In a calibration setting we would need to interpolate the distribution of

stochastic kinetic model output at new points in θ-space which is now straightforward to

do using our emulator. We would simply condition on the training data, as described in

Section 4.2.3, allowing us to interpolate the distribution at new points in space. In the

next section we look at a number of diagnositics to assess the emulator fit.

5.3.1 Diagnostics

After we have constructed our emulator we can assess how well it performs as an approx-

imate replacement for our simulator. We discuss two diagnostics below and direct the

reader to Bastos and OHagan (2009) for a detailed overview of diagnostics for emulators.

In the following examples of diagnostics we require a set of data which will be used for

validation. If the input space was greater than one-dimension then we could use a new

Latin hypercube design over the same input space and use our simulator at each point to

give us our validation data. However, it may be infeasible to generate a new set of data

to use for validation and so diagnostics must therefore be calculated using the existing

training data. In this case we could appeal to a ‘leave-one-out’ approach (Rougier et al.,

2009) where one data point is removed from the training data, the emulator is fit on the

remaining training data and the omitted data point is used for diagnositics.

Since our Lotka-Volterra example above is one-dimensional we simply use a new grid of

N∗ points over the same input space. Because of the stochasticity in our outputs we also

have M∗ replicates at each of these points, just as we did in our training data. This new

data (θ∗,x∗) will then be used for validation. For the above example we use a validation

set of N∗ = 30 with M∗ = 5 replicates.
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Figure 5.4: Left: Posterior density for r. Middle: Posterior density for σ. Right: Posterior density for τ .
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Figure 5.6: Fitted GP mean function with grey 95% bands.

Probability integral transform

As described in Gneiting et al. (2007), the probability integral transform (PIT) can be

used to check that the Gaussian assumption is valid for our emulator. The PIT is defined

as

DPIT(θ∗i ) = Φ

[
x(θ∗i )−m∗(θ∗i )√

k∗(θ∗i , θ
∗
i )

]
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for each datum in our validation set. If the Gaussian assumption of our emulator is

correct then DPIT(θ∗i ) should have a standard uniform distribution. Plotting a histogram

of these diagnostics (Figure 5.7, left) for the Lotka-Volterra example above we see that

the assumptions seem valid as the histogram looks reasonably flat. Deviations from this

would suggest that the distributional assumptions of the emulator are not valid.

Individual prediction errors

Another diagnostic we can use to assess how well our emulator is fitting is to calculate the

individual prediction errors (Bastos and OHagan, 2009). The individual prediction errors

are defined as

DIPE(θ∗i ) =
x(θ∗i )−m∗(θ∗i )√

k∗(θ∗i , θ
∗
i )

,

for each datum in our validation set. If the emulator can suitably represent the simulator

then these prediction errors should be approximately normal. We should therefore expect

approximately 95% of these prediction errors to be within the interval (−2, 2). When

plotting the prediction errors we should expect a random scatter with no obvious patterns

as this could suggest that the stationarity assumption is not appropriate. If we look at

Figure 5.7 (right) we can see the majority of our errors are within the interval, suggesting

the emulator is fitting adequately.
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Figure 5.7: Diagnostics for the Lotka-Volterra emulator.
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Dirichlet processes

6.1 Introduction

Within the context of SKMs, a satisfactory emulator should account for output uncertainty

at the same input and be able to account for multimodality, as exhibted, for example, by

the Schlögl system (Section 2.7).

In Chapter 4 we defined Gaussian processes and in Chapter 5 we explained how they can

be used to emulate output and interpolate between training points. We now consider an

emulator based on a mixture of Gaussian processes. By using a mixture we will be able

to model the bimodal nature that the Schlögl system exhibits. Of course we could use

a two-component mixture of Gaussian processes and assume that this would adequately

model the Schlögl output at certain times. We propose to avoid this ad hoc approach by

placing a Dirichlet process prior on the number of components.

In this chapter we provide the necessary background on Dirichlet processes. We begin by

introducing finite mixture models in the simple context of normal random variables. We

then move on to the Dirichlet process and give a formal definition and several intuitive

representations including the well-known Chinese restaurant process. We then demon-

strate how the process can be used in mixture modelling (Ferguson (1973), Antoniak

(1974)) and look at two examples where we have a simple mixture of normals, and also a

two-component regression mixture.

6.2 Finite mixture modelling

Mixture modelling allows us to describe a potentially complex distribution using a collec-

tion of much simpler distributions. Instead of assuming that all of the data was drawn
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from a single distribution, the data could be made up of multiple sub-populations. For

this reason, mixture models are widely used in density estimation and clustering problems.

We begin by considering univariate data for which the general form of a finite mixture

model is

f(x|θ) =
k∑
j=1

πjfj(x|θj),

where k is the number of groups, or components, and θj are the component-specific pa-

rameters of the jth component and fj is a probability density function or probability

mass function depending on whether or not x is continuous or discrete. The parameters

π = (π1, . . . , πk) are the weights of each component such that

k∑
j=1

πj = 1, πj > 0 ∀j.

A popular choice of density is the normal density, in which case we obtain a Gaussian

mixture model, where each component is parameterised by a mean and variance giving

f(x|µ,σ) =
k∑
j=1

πjN(x;µj , σ
2
j ).

To demonstrate this approach using a very simple example, suppose we have some ex-

changeable scalar data x1, . . . , xn that we assume to be drawn from some unknown distri-

bution shown in Figure 6.1. Fitting a two component Gaussian mixture model to these

data will result in a bimodal distribution, where not only the means are different between

the components but the variances also differ. Fitting a single normal distribution to this

data may not be appropriate. We may also fit a three component Gaussian mixture which

may provide a better fit to the data, but is less parsimonious than using fewer parameters.

A potential problem with finite mixture modelling is specifying the number of compo-

nents, a problem which can be alleviated by appealing to infinite mixture models. By

their nature, infinite mixture models induce an infinite dimensional parameter space and

thus fall within the area of Bayesian non-parametrics (Hjort et al., 2010).

6.3 Typical representations

The Dirichlet process is a conjugate prior for infinite dimensional categorical distributions

– a generalisation (to infinite dimension) of the result that the Dirichlet distribution is a

conjugate prior for the categorical (multinomial) distribution. We now provide an overview

and describe the common representations of the Dirichlet process before considering in-
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x

µi = µ∗2µi = µ∗1

Figure 6.1: Gaussian mixture model

finite mixture models. The overview provided here is somewhat brief and we refer the

reader to either Ferguson (1973) and Antoniak (1974) or the more recent book by Hjort

et al. (2010) for further details on the underlying measure theory for Dirichlet processes.

Dirichlet processes were first introduced by Ferguson (1973) as a prior distribution for

nonparametric analysis. Let G0 be a distribution over some space Θ and α > 0. Then, a

distribution G is said to follow a Dirichlet process if

(
G(A1), . . . , G(Ak)

)
∼ Dir{αG0(A1), . . . , αG0(Ak)} (6.1)

for every finite measurable partition A1, . . . , Ak of Θ.

The Dirichlet process is essentially an infinite generalisation of the Dirichlet distribution,

somewhat analogous to how the Gaussian process is an infinite generalisation of the normal

distribution. From the definition we see that all marginals of G are Dirichlet distributed.

The distribution G0 is called the base distribution and α is the concentration parameter.

The base distribution is the expected value of the process, that is E(G) = G0, and must

have the same support as G.

The concentration parameter controls how similar the process is to the base distribution.

For α→ 0, realisations of θ (the parameters fromG whereG follows a Dirichlet process) are

concentrated around a single point and in the limit α→∞ realisations become similar to

the base. It follows that the probability of two distinct components (of realisations from G)

being equal, Pr(θi = θj) for i 6= j, tends to 0 as α → ∞ (assuming G0 is continuous)

whereas Pr(θi = θj) → 1 as α → 0. This is illustrated in Figure 6.2 where each row has

three independent realisations from a Dirichlet process with α = 1, 10, 100 from top to

bottom respectively. The base distribution in this case is chosen to be G0 = N(0, 1). We

observe that for the smaller values of α our (discrete distribution) realisations G are defined

over fewer atoms with some having large mass. It follows that (theoretically) if α = 0 we

would have a single point mass at some value θ ∈ R. For larger values of α we see that the

realisations (distributions) have increasingly more unique atoms, each having relatively

small weight. If, in theory, α = ∞ then this distribution would be defined over infinitely

many atoms each of which has mass 0, that is, the distribution would be G0 = N(0, 1).
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Figure 6.2: Multiple realisations from a Dirichlet process with G0 = N(0, 1) and α = 1, 10, 100 from top
to bottom respectively.

Figure 6.3 shows the convergence of G to the base distribution as α increases. This shows

the empirical cumulative distribution function (CDF) for each of the respective realisations

shown within Figure 6.2. As α increases, the CDF of these realisations becomes more like

that of a N(0, 1) distribution, that is, G→ G0 as α→∞.

There are a number of representations of the Dirichlet process, and we provide details of

some commonly used ones here.

6.3.1 Stick-breaking process

The Dirichlet process can be represented as a stick-breaking process (Sethuraman, 1994).

Since the distribution drawn from a Dirichlet process is discrete, we can write the density
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Figure 6.3: Empirical CDF from multiple realisations from a Dirichlet process with G0 = N(0, 1) and
α = 1, 10, 100 from top to bottom respectively.

function as

f(θ) =

∞∑
k=1

πkδθk(θ)

where {θk}∞k=1 are our parameters drawn from the base distribution (which we call atoms),

{πk}∞k=1 are the corresponding weights and δθk is a Dirac mass function that equals 1 at

θk and 0 elsewhere.

The parameters/atoms θk are each drawn from the base distribution of the Dirichlet

process, G0. The weights (or probabilities) are then constructed through a stick-breaking

approach where we imagine a stick of unit length and we repeatedly break off segments of

length πk (Figure 6.4). This is achieved via beta random variables, where

πk = π̃k

k−1∏
l=1

(1− π̃l) and π̃k ∼ Beta(1, α), k = 1, . . . ,∞,
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1

π1 π2 π3 π4
· · ·

Figure 6.4: Stick-breaking illustration

and π1 = π̃1.

The role of α is easier to see in this representation. For instance, for small α the first

component will have a large weight to it since a lot of the stick will be broken off. In

contrast, large α will result in small lengths of the stick breaking off for each component.

Approximations can then be made through truncation (Ishwaran and Zarepour, 2002).

The truncation parameter N < ∞ should be chosen such that the the first N − 1 stick

lengths have accounted for most of the unit length stick and the remaining length is

negligible. Setting π̃N = 1 ensures that the weights sum to 1. The approximation can

then be used as a Dirichlet process prior; see Ishwaran and James (2001) where the authors

present Gibbs sampling methods for fitting models with stick-breaking priors thus allowing

for the posterior to be approximated through MCMC.

6.3.2 Chinese restaurant process

Another representation of the Dirichlet process is through the Chinese restaurant process

(Aldous, 1985).

We begin by imagining a Chinese restaurant (or any cuisine you like) with infinitely

many tables. When a new customer enters the restaurant, they sit down at a table with

probability proportional to the number of diners already at that table. With probability

proportional to α the customer will sit at a new table by themselves. This process continues

until all n customers have been seated. At this point N c ≤ n tables will be occupied, and

the individuals at each table are interpreted as being clustered together. It follows that N c

is the number of unique clusters. The phrase ‘the rich get richer’ springs to mind here

as tables with large numbers of people will have high probability of being the table to be

chosen by the next customer.

This representation only specifies the distribution over the partitions, essentially only

performing the clustering of the observations (or customers). Drawing independent re-

alisations from G0 and assigning a value to each table results in a discrete distribution

with probabilities proportional to the number of customers at that table. This discrete

distribution is a draw G which is a draw from a Dirichlet process with base distribution

G0 and concentration parameter α. This process is exchangeable, that is to say, the order

in which the n customers arrive does not affect the final probability distribution.
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6.3.3 Pólya urn scheme

Another way to visualize a Dirichlet process (and the associated Chinese restaurant pro-

cess) is via a Pólya urn scheme (Blackwell and MacQueen, 1973). For this analogy it is

useful to consider α ∈ N although the probabilities of observations being assigned to each

cluster (to be defined) hold for any α ∈ R>0.

In this visualisation, we imagine we have an urn filled with α black balls. We then carry

out the following steps. We draw a ball from the urn.

• If the ball is black, we return the ball back to the urn along with a uniquely coloured

ball we have generated.

• If the ball drawn is not black we generate an additional ball of the same colour as

the one drawn and return both back into the urn.

This process continues until n balls have been drawn. Once the nth ball has been drawn

(and the appropriate action taken) the black balls are discarded from the urn. At this

point there will be N c ≤ n uniquely coloured balls within the urn and the distribution over

these colours is equivalent to the distribution over the tables within the Chinese restaurant

process. Drawing independent realisations from G0 and assigning a value to each unique

colour results in a discrete distribution with probabilities proportional to the number of

each coloured ball. Again this process is also exchangeable, that is, if n people each select

one ball, the order in which the people are arranged does not affect the final probability

distribution.

The probability of assigning the ith person/ball to table/ball colour j under both of these

alternative representations is

Pr(ci = j|c1, . . . , ci−1) =
ncij

α+ i− 1
, for j = 1, . . . , N c,

Pr(ci = N c + 1|c1, . . . , ci−1) =
α

α+ i− 1
,

where ncij denotes the current number of observations assigned to cluster j (at iteration i),

ci is the cluster indicator variable for observation (person/ball) i and N c is the number of

unique clusters that currently exist (N c = 0 when i = 1).

6.3.4 Posterior distribution

Let (θ1, . . . , θn) be a sequence of i.i.d.(independently and identically distributed) samples

from G. Since G is a distribution over Θ, each θi ∈ Θ for i = 1, . . . , n. As above, A1, . . . , Ak

is a finite measurable partition of Θ and we let nj = {i : θi ∈ Aj}, that is, nj is the number
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of θi (observed samples) that are in the partition Aj . Using the conjugacy between the

multinomial and Dirichlet distributions, we can find the posterior distribution of G as

(
G(A1), . . . , G(Ak)|θ1, . . . , θn

)
∼ Dir{αG0(A1) + n1, . . . , αG0(Ak) + nk}.

Since this is true for all measurable paritions of Θ we recognise that the posterior distri-

bution is also a Dirichlet process (Teh, 2011), and we write

G|θ1, . . . , θn ∼ DP
( α

α+ n
G0 +

n

α+ n

∑n
i=1 δθi
n

, α+ n
)
.

6.3.5 Predictive distribution

We can use the same ideas as above, from Teh (2011), to find the predictive distribution

θn+1|θ1, . . . , θn, that is, upon marginalising out G. Given our i.i.d. samples (θ1, . . . , θn),

the predictive distribution for θn+1 will be

θn+1|θ1, . . . , θn ∼
1

α+ n

(
αG0 +

n∑
i=1

δθi
)
.

This is a mixture distribution where θn+1 will be drawn from either the base distribution

(thus a new cluster being created) or will be drawn from the empirical distribution
∑n

i=1 δθi
(thus the n+ 1th observation joining an existing cluster). This is essentially what occurs

when considering the Pólya urn representation (Blackwell and MacQueen, 1973) of the

Dirichlet process. The colour of the next ball, θn+1, will depend on the colours of all of

the balls drawn previously (θ1, . . . , θn).

6.4 Dirichlet Process Mixture modelling

One problem with mixture modelling is determining the number of components to fit a

priori. Use of a Dirichlet process (DP) in mixture modelling allows us to avoid specifying

the number of components, as this essentially induces a countably infinite number of

components, but only certain components will have data assigned to them.

As a simple example, suppose we have the same exchangeable data from earlier (see Fig-

ure 6.1). Suppose we want to model the underlying distribution as a mixture of normal

distributions, where each observation will have a mean µi and variance σ2
i . By drawing

these parameters from a distribution G where we place a DP prior on G we induce cluster-

ing of them, due to realisations from the DP being discrete distributions and hence there

being a positive probability that some of these parameters will be identical. The clustering
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x

µi = µ∗2µi = µ∗1

x
µi = µ∗2µi = µ∗1

µi = µ∗3

Figure 6.5: Possible clustering of observations using a DP mixture

of the means µi and variances σ2
i therefore induces a clustering of the observations. This

model for these data can be written as

Xi|µi, σ2
i ∼ N(µi, σ

2
i ) i = 1, . . . , n

(µi, σ
2
i )|G ∼ G

G ∼ DP (α,G0).

The concentration parameter α determines the level of clustering, where larger values result

in more clusters and the realisations from the process tend towards the base distribution

G0. The base distribution G0 must have the same support as the process, and so in our

scenario we need a base distribution for the means and variances. We take a normal-

inverse-gamma distribution. Figure 6.5 demonstrates how different clusterings could be

appropriate for the same data as seen in Figure 6.1 and how the DP mixture can vary in

the number of clusters. In the first graphic the DP mixture assigns each data point to one

of two clusters, whereas in the second graphic, the DP mixture finds three clusters to be

more appropriate and the variance and means of these clusters will change accordingly,

thus demonstrating the flexibility of the DP mixture - we have not specified the number

of clusters to use.

6.4.1 Fitting through MCMC

Inference for Dirichlet process mixture models can be achieved through MCMC; see for

example MacEachern and Müller (1998). Neal (2000) gives an overview of a number of

algorithms that can be used, some of which are more desirable than others in terms of

efficiency.

The final algorithm in Neal (2000) is one of the more popular approaches as it has been

shown to be one of the most efficient sampling methods for Dirichlet Process mixtures

(Papaspiliopoulos and Roberts, 2008). We will discuss this algorithm due to its efficiency

and ability to work with non-conjugate priors. The algorithm uses a Gibbs sampling

approach and enhances mixing through the use of auxiliary variables, of which there
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are m. These auxiliary variables are the parameters of additional clusters to represent

components without any observations assigned. The Markov chain will consist of cluster

indicator variables ci for each data point xi and also the cluster-specific parameters φc.

For each iteration of the scheme, the algorithm loops over the data xi for i = 1, . . . , n

and allocates each one in turn given the current allocation of the rest. Using similar

notation to allocate observation xi, we let k− be the number of distinct cj for j 6= i and

let h = k− + m. If the current observation is a singleton (in a cluster by itself, that is

ci 6= cj for all j 6= i) then we let the first auxiliary variable have the value φci and draw the

rest from the base distribution G0. If the observation is currently in a cluster with other

observations (that is ci = cj for some j 6= i) then we draw all m auxiliary variables from

the base distribution G0. The existing clusters are labelled {1, . . . , k−} and the auxiliary

clusters are labelled {k− + 1, . . . , h}. The observation is then allocated to a cluster by

sampling its cluster indicator from a discrete distribution with probabilities

Pr(ci = c|c−i,x,φ1, . . . ,φk−+l) ∝


n−i,c

n− 1 + α
f(xi|φc,xc) for 1 ≤ c ≤ k−

α/m

n− 1 + α
f(xi|φc) for k− + 1 ≤ c ≤ h

,

where n−i,c is the number of observations currently assigned to cluster c excluding obser-

vation i. We then delete any cluster that has no data assigned. Once all of the observa-

tions have been allocated to a cluster, we simply update the cluster-specific parameters

conditional on the data assigned to them using appropriate Gibbs sampling or Metropolis-

Hastings steps. The algorithm can be summarised in Algorithm 6.

6.4.2 Inferring the concentration parameter α

The concentration parameter α can be inferred from the data along with the parameters

of the DP as shown in Escobar and West (1995). It can be shown that the posterior for α

only depends on the distinct number of clusters in use k, that is

π(α|c,x,φ) = π(α|k).

If we suppose that the prior density for α is a Gamma prior, α ∼ Ga(a, b), Escobar and

West (1995) show that through use of an auxiliary Beta random variable η, the posterior

for α can be expressed as a mixture of two Gamma densities. Thus, to sample from the

posterior for α, we would sample η ∼ Beta(α + 1, n). We then calculate the weights of
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Algorithm 6 Algorithm 8 of Neal (2000)

Initialise. Let the Markov chain consist of cluster indicator variables ci for each data point
xi, i = 1 . . . , n and also the cluster-specific parameters φc. Repeatedly sample as follows:

• For i = 1 . . . , n

1. Let k− be the number of distinct cj for j 6= i and let h = k− +m. Label these
values in {1, . . . , k−}.

2. If ci = cj for some j 6= i, draw values independently from the base distribution
G0 for those φc for which k− < c ≤ h.

3. If ci 6= cj for all j 6= i, let ci have the label k−+1, and draw values independently
from the base distribution G0 for those φc for which k− + 1 < c ≤ h.

4. Draw a new value for ci from {1, . . . , h} using probabilities

Pr(ci = c|c−i,x,φ1, . . . ,φk−+l) ∝


n−i,c

n− 1 + α
f(xi|φc,xc) for 1 ≤ c ≤ k−

α/m

n− 1 + α
f(xi|φc) for k− + 1 ≤ c ≤ h

,

where n−i,c is the number of observations currently assigned to cluster c ex-
cluding observation i. We then delete any cluster that has no data assigned.

• For c = c1 . . . , cn, update the cluster-specific parameters using Bayes’ theorem.

• Return to step 1.

the two Gamma densities by

πη
(1− πη)

=
a+ k − 1

n(b− log η)
.

We then sample α from its full conditional

α|η, k ∼ πηGa(a+ k, b− log η) + (1− πη)Ga(a+ k − 1, b− log η).

A specific choice of prior for α is an implicit prior on the number of components k. From

Antoniak (1974), the prior distribution on k may be written as

π(k|α, n) = Cn(k)n!αk
Γ(α)

Γ(α+ n)
, k = 1, 2, . . . , n,

where Cn(k) = π(k|α = 1, n) thus does not involve α and can be calculated using recur-

rence formulae for Stirling numbers. Using simulation and integrating over αs we can then

obtain prior probabilities for the number of clusters k for a specific prior on α.
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Figure 6.6: Histogram of data obtained from a three-component normal mixture with ‘true’ density overlaid
(blue).

6.4.3 Example: Three-component normal mixture

We now look at an example of fitting a Dirichlet process mixture model to data obtained

from a three-component normal mixture. This will demonstrate the flexibility of the model

and how we do not need to pre-specify the number of components to use, something that

can be quite difficult to do when modelling mixtures.

Following on from our earlier illustration where we modelled the unknown distribution

as a mixture of normals with unknown mean and variance, we will perform a simulation

study by generating some data from a three-component mixture of normals and then

fit a Dirichlet process mixture model using the MCMC algorithm outlined above. The

distribution we simulate our data from has the corresponding density function

f(x) = 0.2N(x;−3, 0.72) + 0.5N(x; 0, 0.52) + 0.3N(x; 3, 12),

and we draw n = 500 realisations from the associated distribution. The data are given in

Figure 6.6 where we see three distinct peaks and the ‘true’ density is overlaid.

The means and variances of each data point will be drawn from a Dirichlet process and

hence we need a suitable base distribution. A normal-inverse-gamma (NIG) prior is an

appropriate choice of prior here as it will allow for a conjugate update of the parameters.

That is

σ2 ∼ IG(aσ, bσ) and µ|σ2 ∼ N(µ0, σ
2λ0),
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Figure 6.7: Posterior probabilities for the number of clusters (left) with prior probabilities overlaid in
orange, marginal posterior density for α (middle) with prior density overlaid in orange and trace plot for
α (right).

where aσ = 1, bσ = 1, µ0 = 0 and λ0 = 1 are the hyperparameters. The Dirichlet process

mixture model is defined as

xi|µi, σ2
i ∼ N(µi, σ

2
i ) i = 1, . . . , n

(µi, σ
2
i )|G ∼ G

G ∼ DP (α,G0),

G0 = NIG(µ0, λ0, aσ, bσ),

α ∼ Ga(aα, bα).

Using MCMC we can fit the model using Algorithm 7. After 100 burn-in iterations are

removed, every 100th iterate is stored (to reduce autocorrelation between the samples) to

give us 1K samples from the posterior. Figure 6.7 shows the posterior probabilities for

the number of clusters as well as the posterior density for the concentration parameter.

The distribution of the number of clusters is quite varied here, suggesting the data can be

plausibly described by more than the 3 components used to simulate the data.

Samples from the posterior predictive distribution can be obtained using methods de-

scribed in Section 6.3.5, where we draw x∗ ∼ N(µ∗, σ∗2). The pair (µ∗, σ∗2) will be drawn

from the base distribution with probability proportional to α or from the empirical dis-

tribution
∑n

i=1 δ(µi,σ2
i ) for each MCMC iterate. Figure 6.8 shows a histogram of samples

from the predictive distribution.

6.4.4 Example: Two-component regression mixture

In this simulation study we simulate data from a two-component linear regression mixture

with equal proportions. We will then fit a Dirichlet process mixture to the data which

will then indicate how many components are required. For example, we may find that
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Figure 6.8: Samples from the posterior predictive distribution (orange) overlaid on to the histogram of the
data with the ‘true’ density overlaid in blue.

a single component, corresponding to a simple linear regression model, could model the

data adequately.

We took the input space to be a grid of n = 500 points in one-dimensional θ space between

-1 and 1 giving p = 2 regression coefficients, β = (β0, β1)>. We wish to model the output

X(θ) as a linear function β0 + β1θ. With equal probability each simulated point will be

obtained from one of the two components where component i is

Xi(θj) = βi0 + βi1θj + εij , i = 1, 2

with εij
indep∼ N(0, σ2

i ). The first component has regression line with β1
0 = 1, β1

1 = 0.5 and

noise σ2
1 = 0.1 and the other has the parameters β2

0 = −1, β2
1 = 1 with noise σ2

2 = 0.05.

The data are shown in Figure 6.9.

The regression coefficients and error variance will be drawn from the Dirichlet process and

hence we need a suitable base distribution. A normal-inverse-gamma is an appropriate

choice again. That is

σ2 ∼ IG(aσ, bσ) and β|σ2 ∼ N(µβ, σ
2Vβ),

where aσ, bσ,µβ and Vβ are the hyperparameters.
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Figure 6.9: Data obtained from a two-component regression mixture.

We then have the following model, which we fit using Algorithm 8,

X(θi)|βi, σ2
i ∼ N(βi0 + βi1θi, σ

2
i ) i = 1, . . . , n

(βi, σ
2
i )|G ∼ G

G ∼ DP (α,G0)

G0 = NIG(µβ, Vβ, aσ, bσ)

α ∼ Ga(aα, bα).

After a small burn-in period of 100 iterations, the chain looks to have converged as can

be seen in any of the trace plots in Figures 6.11 to 6.14. Keeping every 10th iterate (to

reduce autocorrelation), we obtain 1K samples from the posterior. Figures 6.10 show the

posterior probabilities for the number of clusters as well as the posterior density for the

concentration parameter. We can see the modal number of clusters is 2, which is what

we expected, with the data informing us that there must be at least two clusters since we

have zero probability of one cluster in this case.

Using the samples from the posterior distribution, we can draw values from the predictive

distribution as a way to visualise the fitted mixture model. Figure 6.15 shows samples

from the predictive fit at a number of new points in θ space. It is evident that the resulting

mixture has picked out the two components in the simulated data without the need to

pre-specify the number of components we wanted to fit, thus demonstrating the flexibility

of a Dirichlet process mixture model.
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Figure 6.10: Posterior probabilities for the number of clusters (left) with prior probabilities overlaid in
orange and marginal posterior density for α (right) with prior density overlaid in orange.
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Figure 6.11: Trace plot of posterior samples for β0 and β1 for the first cluster.

We could easily imagine this data as being some multi-modal stochastic model output at

each point in θ space at one point in time. Of course, the stochastic nature of the biological

models discussed in Chapter 2 would mean we should really have replicate observations

at each point and typically we would need to use something more complex than simple

linear regression. We now expand on this idea in the next chapter.
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Figure 6.12: Trace plot of posterior samples for β0 and β1 for the second cluster.
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Figure 6.13: Trace plot of posterior samples for σ2 for the first (left) and second (right) cluster.
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Algorithm 7 MCMC algorithm to fit a DPM of univariate normals
(using Algorithm 8 of Neal (2000))

Initialise. Let the Markov chain consist of cluster indicator variables ci for each data point
xi, i = 1 . . . , n and also the cluster-specific parameters φc = (µc, σ

2
c )
>. Repeatedly sample

as follows:

• For i = 1 . . . , n

1. Let k− be the number of distinct cj for j 6= i and let h = k− +m. Label these
values in {1, . . . , k−}.

2. If ci = cj for some j 6= i, draw values independently from the base distribution
G0 = NIG(µ0, λ0, aσ, bσ) for those φc for which k− < c ≤ h.

3. If ci 6= cj for all j 6= i, let ci have the label k−+1, and draw values independently
from the base distribution G0 = NIG(µ0, λ0, aσ, bσ) for those φc for which
k− + 1 < c ≤ h.

4. Draw a new value for ci from {1, . . . , h} using probabilities

Pr(ci = c|c−i,x,φ1, . . . ,φk−+l) ∝


n−i,c

n− 1 + α
N(xi;µc, σ

2
c ) for 1 ≤ c ≤ k−

α/m

n− 1 + α
N(xi;µc, σ

2
c ) for k− + 1 ≤ c ≤ h

,

where n−i,c is the number of observations currently assigned to cluster c ex-
cluding observation i. We then delete any cluster that has no data assigned.

• For c = c1 . . . , cn, update the cluster-specific parameters using Bayes’ Theorem and
drawing from the posteriors.

1. Draw σ2
c ∼ IG(a∗σ, b

∗
σ)

2. Draw µc|σ2
c ∼ N(µ∗0, σ

2
cλ
∗
0)

• Sample α as in Section 6.4.2.

• Return to step 1.
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Algorithm 8 MCMC algorithm to fit a DPM of linear regression models
(using Algorithm 8 of Neal (2000))

Initialise. Let the Markov chain consist of cluster indicator variables ci for each data point
xi, i = 1 . . . , n and also the cluster-specific parameters φc = (βc, σ

2
c )
>. Repeatedly sample

as follows:

• For i = 1 . . . , n

1. Let k− be the number of distinct cj for j 6= i and let h = k− +m. Label these
values in {1, . . . , k−}.

2. If ci = cj for some j 6= i, draw values independently from the base distribution
G0 = NIG(µβ, Vβ, aσ, bσ) for those φc for which k− < c ≤ h.

3. If ci 6= cj for all j 6= i, let ci have the label k−+1, and draw values independently
from the base distribution G0 = NIG(µβ, Vβ, aσ, bσ) for those φc for which
k− + 1 < c ≤ h.

4. Draw a new value for ci from {1, . . . , h} using probabilities

Pr(ci = c|c−i, ·) ∝


n−i,c

n− 1 + α
N(xi;β0c + β1cθi, σ

2
c ) for 1 ≤ c ≤ k−

α/m

n− 1 + α
N(xi;β0c + β1cθi, σ

2
c ) for k− + 1 ≤ c ≤ h

,

where n−i,c is the number of observations currently assigned to cluster c ex-
cluding observation i. We then delete any cluster that has no data assigned.

• For c = c1 . . . , cn, update the cluster-specific parameters using Bayes’ Theorem and
drawing from the posteriors.

1. Draw σ2
c ∼ IG(a∗σ, b

∗
σ)

2. Draw µc|σ2
c ∼ N(µ∗β, σ

2
cV
∗
β )

• Sample α as in Section 6.4.2.

• Return to step 1.
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Figure 6.14: Trace plot of posterior samples for α.
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Figure 6.15: Samples from the posterior predictive distribution (orange) with data overlaid (blue).
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Chapter 7

Dirichlet process mixture of

Gaussian processes

7.1 Introduction

In Chapter 2 we introduced stochastic kinetic models and in Chapter 3 explained how we

might perform inference for the parameters of these models, the stochastic rate constants,

through the use of likelihood-free methods.

These likelihood-free methods require us to be able to simulate from the model, something

which can become very demanding for complex models with a large number of reactions

and species. This suggests the use of an approximate model, or emulator, to be used in

place of the expensive simulator.

In Chapter 5 we explained how Gaussian processes can be used as an emulator by consid-

ering the spatial correlation between training inputs. Placing particular emphasis on the

Schlögl model, we require a mixture of Gaussian processes. In Chapter 6 we explained the

concept of mixture modelling, defined Dirichlet processes and demonstrated how they can

be used in mixture modelling through two examples.

In this chapter we construct the model which we will use to emulate SKM output by

combining the concepts of Dirichlet processes and Gaussian processes to create a Dirichlet

process mixture of Gaussian processes. Moreover, we provide details of how to fit the

resulting emulator to training data generated from the SKM simulator.
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7.2 Adding spatial correlation

We require a flexible model of the output from a generic stochastic kinetic model. The

previous Dirichlet process mixture (DPM) of normals isn’t appropriate since there is no

dependence between the log rates θ. We need to build this spatial dependence in to the

emulator. Figure 7.1 depicts this spatial dependence, under the simplifying assumption

of two-dimensional θ space, and shows three θ values at which predicted output may be

required. For proposed rates θ̃, we need to approximate the distribution X(θ̃) at this

new location in θ space. The output here should be highly correlated with the output

of nearby locations. Hence if we train our emulator with enough simulator output (black

points), we can use prediction to find an accurate approximate distribution at new points

(orange points).
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Figure 7.1: Grid of points in θ space where observations are obtained and three example proposed θ̃ points
(orange) at which X(θ̃) is required.

The simulator output that we train our emulator with will be built up with M replicates

at each of the N locations in d dimensional θ space. These points are chosen in order to

optimise the spread of the locations in d dimensional θ space which is achieved by using a

maximin Latin hypercube design (Section 5.2). If we were trying to emulate a deterministic

process then there would be no need for replicate observations at each point in space since

the output would be identical for the same input. However, since the process is both

stochastic and possibly multi-modal (e.g. Schlögl system) then the replicate observations

are necessary if we want the emulator to capture the marginal distribution correctly at

each point in the input space.

We begin with the simpler problem of how to build the emulator at only a single point in

time and suppress any dependence on t. The emulator will then be fit, independently, at

each time point where we have data. The training data, that is the data we use to train

the emulator at each time point, is then the collection of observations

X = (X1(θ1), . . . , XM (θ1), . . . , X1(θN ), . . . , XM (θN ))>.
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We could fit a Gaussian process (GP) to this data if we assumed the output was marginally

normal, however, recalling the Schlögl system in Chapter 2, we wish to have a more flexible

emulator that will be able to adequately model mulit-modal output. We therefore consider

a mixture of GPs which would allow us to model the bimodal behaviour of the Schlögl

system. A finite mixture of say two components might be sufficient but we can make use

of Dirichlet process mixture modelling as discussed in Chapter 6 which means we don’t

need to specify the number of components a priori. Thus, we build a Dirichlet process

mixture of Gaussian processes (DPMGP) as follows

Xi(θj)|β, σ2, r, ν
indep∼ N{m(θj),K(θj)} i = 1, . . . ,M, j = 1, . . . , N

β, σ2, r, ν|G ∼ G

G|α,G0 ∼ DP (α,G0)

G0 = NpIG(m0, V0, aσ, bσ)× LNd(ar, br)× IG(aν , bν)

α ∼ Ga(aα, bα)

where β, σ2, r, ν are all GP hyperparameters. This model allows each observation Xi(θj)

to be clustered individually for i = 1, . . . ,M, j = 1, . . . , N which is necessary when fitting

to SKM output since each draw from the simulator will be independent.

If we look at the model hierarchy we can see that it is the parameters of the GP mean

and covariance functions that are drawn from the DP, not the actual GP functions. This

induces clustering of the observations, essentially assigning each to a GP. We use the

typical choice of correlation function for each GP, the squared exponential function where,

for GP k, we have

(Hk)ij = exp

{
−

d∑
l=1

(θil − θjl)2/r2
kl

}
. (7.1)

The covariance matrix for GP k is then Kk = σ2
k(νkInk +Hk) where nk is the total number

of observations assigned to cluster k and we add a nugget parameter νk for numeric stability

and to act as a noise model for the observations.

If we assume that the prior mean function is linear in the d parameters θi and there is

one replicate at each point in space then the design matrix X and parameter vector β is

X =


1 θ11 · · · θd1

1 θ12 · · · θd2

...
...

. . .
...

1 θ1N · · · θdN

 and βk =


βk0

βk1

...

βkd

 . (7.2)

The base distribution is then a combination of independent distributions over these hy-
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perparameters, where we place a normal-inverse-gamma prior on the coefficients of the

mean function and scale, a lognormal prior on the components of the correlation lengths

rk and an inverse gamma prior on the nugget parameters νk.

There are examples of similar models in the literature, particulary in Biology (McDowell

et al. (2018), Hensman et al. (2014), Cooke et al. (2011)). These models are similar to

our approach as the GP hyerparameters are drawn from the DP, however we will have

replicate observations at each point in θ space and thus we can exploit this to produce

some novel ways of reducing the computational cost of fitting as demonstrated below.

7.3 Evaluation of the log-likelihood function

The log-likelihood function is the sum of the cluster-specific log-likelihood functions. Each

cluster log-likelihood function involves calculating the determinant and inverse of a poten-

tially large covariance matrix Kk = σ2
k(νkInk + Hk), where Hk is the nk × nk correlation

matrix calculated using the squared exponential covariance function, that is, has elements

as in (7.1) and nk is the total number of observations assigned to cluster k. The size

of Kk can lead to numerical instabilities in the calculation of its inverse and determinant

as well as incurring considerable computational expense. However, these quantities can

be determined via calculations on much smaller matrices due to their block structure.

We assume that the number of (input) θ–points with observations assigned to the cluster

is N and each θi has ni replicates assigned to the cluster. The total number of observations

assigned to the cluster is nk =
∑

i ni. The derivation will also make use of an nk × N
“design” matrix J which indicates which observations (rows) correspond to which θ value

78



Chapter 7. Dirichlet process mixture of Gaussian processes

(columns), where

J =



1 0 0 · · · 0 0

1 0 0 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · 0 1



n1 rows

n2 rows

nN rows

(7.3)

The mean vector for the cluster will then be of length nk and can be written as JXβ. In

the following derivations we drop the dependence on cluster number for ease of exposition,

but in practice, the following quantities would have a subscript k to denote that they are

calculated for cluster k.

7.3.1 Inverse of the correlation matrix

The covariance matrix is K = σ2(νIn + H) and the inverse of its correlation matrix is

determined as follows. First we can write

(νIn +H)−1 = (νIn + JHNJ
>)−1,

where J is as in (7.3). Here the N × N matrix HN is a correlation matrix between the

realisations at distinct θi in the cluster. Using the Woodbury identity (Hager, 1989)

(A+ CBD)−1 = A−1 −A−1C(B−1 +DA−1C)−1DA−1 (7.4)

we have

(νIn + JHNJ
>)−1 = ν−1In − ν−1J(H−1

N + ν−1J>J)−1ν−1J>

= ν−1In − ν−2J(H−1
N + ν−1J>J)−1J>.
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Now D = J>J = diag(n1, n2, . . . , nN ) is an N × N diagonal matrix whose diagonal

elements are the number of observations for each θi in the cluster. Hence

(νIn +H)−1 = ν−1In − ν−2J(H−1
N + ν−1D)−1J>

= ν−1In − ν−2J(IN + ν−1HND)−1HNJ
>.

This result allows us to find the inverse of a large n × n matrix by only calculating the

inverse of a smaller N ×N matrix, thus being more computationally efficient.

7.3.2 Determinant of the correlation matrix

Since the correlation matrix can be written as νIn + JHNJ
>, its determinant can be

simplified using Sylvester’s determinant identity (Sylvester, 1851): for matrices A (m×n)

and B (n×m), we have det(Im +AB) = det(In +BA). Hence, for our problem we have

that

det(νIn + JHNJ
>) = νn det(In + ν−1JHNJ

>)

= νn det(IN + ν−1J>JHN )

= νn det(IN + ν−1DHN ).

Therefore the determinant of the n × n correlation matrix can be calculated in terms of

the determinant of an N ×N matrix, again offering computational savings.

7.3.3 Log-likelihood function

Using the above methods we can now efficiently evaluate the log-likelihood function (with

the full derivation in Appendix A.3).

The data is stacked as x = (x1(θ1), x2(θ1), . . . , xn1(θ1), . . . , x1(θN ), . . . , xnN (θN ))> =

(x>1 , . . . ,x
>
N )> where xi is a ni× 1 vector of all observations assigned to the cluster at θi.

The log-likelihood contribution of the cluster is given by (up to an additive constant)

−2 log f{x1(θ1), . . . ,xN (θN )}

= 2n log σ + n log ν + log |IN + ν−1DHN |

+
1

νσ2

{
(x− JXβ)>(x− JXβ)

− ν−1(x̄−Xβ)>D(IN + ν−1HND)−1HND(x̄−Xβ)

}
.
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7.4 Assigning each point to a cluster

Implementing the Dirichlet process mixture is fairly straightforward using Algorithm 8 of

Neal (2000) as previously discussed in Section 6.4.1. We will revisit the algorithm again

now with the focus of using it for fitting the DPMGP model.

We sample each of the MN elements of the allocation vector c one at a time conditional

on the rest as follows. Let Ψj = (βj , σ
2
j , νj , rj)

> be the cluster-specific parameters of the

jth cluster and let xi represent any one of the MN observations we wish to assign, for

i = 1, . . . ,MN . Choosing a new value for ci, that is allocating the ith observation to a

cluster, we let k− be the number of unique cj for j 6= i. If the current value of ci = cj

for some j 6= i then the cluster-specific parameters of the l auxiliary clusters are drawn

from the base distribution G0. If the ith observation is a singleton then the parameters of

one of the l auxiliary clusters are assigned the values of the current cluster parameters of

ci and the remaining l − 1 (for l > 1) auxiliary clusters have parameters drawn from the

base distribution. The existing clusters with data assigned are labelled {1, . . . , k−} and

the auxiliary clusters are labelled {k− + 1, . . . , k− + l}. We now draw a value for ci from

{1, . . . , k− + l} using the probabilities

Pr(ci = c|c−i,x,Ψ1, . . . ,Ψk−+l) ∝


n−i,c

MN − 1 + α
f(xi|Ψc,xc) for 1 ≤ c ≤ k−

α/l

MN − 1 + α
f(xi|Ψc) for k− + 1 ≤ c ≤ k− + l

where n−i,c is the number of observations in cluster c excluding the ith observation and

xc is the data currently assigned to cluster c.

Suppose that observation xi is the response at input θ. Then the density f(xi|Ψc) =

N{xi;β>c θ, (νc + 1)σ2
c} and f(xi|Ψc,xc) is the density of Xi further conditioned on the

data xc currently assigned to the cluster. The cluster has n−i,c observations assigned at

a collection of Nc ≤ N points in θ–space which we shall denote Θc. Let θcj = (Θc)j for

j = 1, . . . , Nc and suppose there are n−i,cj observations at each θcj–point in the cluster.

The joint distribution of the data xc in the cluster and observation xi is a (n−i,c + 1)-

dimensional normal with mean

( n−i,c1 elements︷ ︸︸ ︷
mc(θc1), . . . ,mc(θc1), . . . ,

n−i,cNc elements︷ ︸︸ ︷
mc(θcNc), . . . ,mc(θcNc),mc(θ)

)>
=

(
J−i,cXcβc

mc(θ)

)

and covariance matrix

σ2
c

(
νcIn−i,c + J−i,cHNcJ

>
−i,c J−i,chc

h>c J
>
−i,c νc + 1

)
,
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where hc is a Nc× 1 vector containing the correlation between xi(θ) and the observations

in the cluster, with elements

(hc)j = exp

{
−

d∑
l=1

(θl − θcjl)2/r2
l

}
.

Using standard multivariate normal results (A.2) the density f(xi|Ψc,xc) = N(xi;µ
∗
c , σ
∗2
c )

has mean

µ∗c = β>c θ + ν−1
c h>c Dc{INc − ν−1

c (INc + ν−1
c HNcDc)

−1HNcDc}(x̄c −Xcβc)

and variance

σ∗2c = σ2
c

[
νc + 1− ν−1

c h>c Dc{INc − ν−1
c (INc + ν−1

c HNcDc)
−1HNcDc}hc

]
.

7.5 Prediction

Since we are using this model to build an emulator, prediction will play an important

role in simulating from the distribution of the DPMGP at new input points. To predict

X(θ̃) at a new point in θ space we use the MCMC output of samples from the posterior

distribution and take a random iteration to give us a (posterior) value for each of α, k and

cluster-specific parameters Ψ∗1, . . . ,Ψ
∗
k, where Ψ = (β, σ2, ν, r)>. We then draw a cluster

to assign θ̃ to from the following mixture

π(Ψ̃|·) ∼ α

α+MN
G0(Ψ̃) +

1

α+MN

k∑
i=1

niδΨ̃∗i

where ni is the number of observations in cluster i. This results in either drawing a

new cluster (with probability proportional to α) or an existing cluster (with probability

proportional to ni). Thus, larger clusters (in terms of ni) will have a higher probability of

being drawn than smaller clusters. The value for our realisation for X(θ̃) depends on the

cluster realisation drawn above. If this is a new cluster then X(θ̃) ∼ N{β̃>θ̃, (ν̃ + 1)σ̃2},
where (β̃, σ̃2, ν̃) is a realisation from the base distribution G0. If this is an existing cluster,

say cluster c, then the realisation has to be consistent with the GP in that cluster and so

(similar to the fitted distribution in the previous section) X(θ̃) ∼ N(µ̃, σ̃2), where

µ̃ = β>c θ̃ + ν−1
c h>c Dc{INc − ν−1

c (INc + ν−1
c HNcDc)

−1HNcDc}(x̄c −Xβc)
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and

σ̃2 = σ2
c

[
νc + 1− ν−1

c h>c Dc{INc − ν−1
c (INc + ν−1

c HNcDc)
−1HNcDc}hc

]
,

after suppressing the dependence of X(θ̃) on Ψ.

7.6 Example: Two-component GP mixture

We will now look at an example of fitting this model to data simulated from a two-

component mixture of Gaussian processes. The resulting predictive fit will demonstrate

the flexibility of the model especially considering that the number of clusters does not

need to be specified a priori.

The input space is chosen to be a grid of N = 50 points in one-dimensional θ space

between −1 and 1 with M = 50 replicate observations at each point. We will use a linear

mean function m(θ) = β0 + β1θ for both GPs. With equal probability each point will

be obtained from one of two GPs independently. One GP has mean function coefficients

β0 = −4, β1 = 0.5 with covariance kernel hyperparameters σ2 = 0.1, ν = 6 and correlation

length r = 0.1 where we use the squared exponential covariance function

(K)ij = exp{−(θi − θj)2/r2}.

The other GP has mean function coefficients β0 = 4, β1 = 5 with covariance kernel hy-

perparameters σ2 = 0.4, ν = 4 and correlation length r = 0.1. The data is shown in

Figure 7.2.

The aim here is to fit the DPMGP model to these data and assess the predictive fit, since

we could easily imagine SKM output varying through θ space in a similar manner. The

model we fit is

Xi(θj)|β, σ2, r, ν
indep∼ N{m(θj),K(θj)} i = 1, . . . ,M, j = 1, . . . , N

β, σ2, r, ν|G ∼ G

G|α,G0 ∼ DP (α,G0)

G0 = NpIG(m0, V0, aσ, bσ)× LNd(ar, br)× IG(aν , bν)

α ∼ Ga(aα, bα)

In this case, p = 2, d = 1 and we choose the following prior hyperparameters: m0 =

(0, 3)>, V0 = 10I2, aσ = 0.2, bσ = 0.1, aν = 1, bν = 0.01, ar = −1, br = 1, aα = 1 and

bα = 1, selected such that prior information is fairly weak. Upon fitting this model with
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Figure 7.2: Data obtained from a two-component GP mixture.

MCMC, after 1K burn-in removed, we retain every 20th iterate to obtain 1K samples from

the posterior. Figure 7.3 shows the marginal posterior densities for both the number of

clusters and the concentration parameter α. We can see the largest posterior probability

is for two clusters with a non-negligible probability of three clusters being necessary to

fit the data. Given that the simulated data is from a two-component mixture, this is

expected.

Since we wish to use this model for emulation, the predictive distribution is of primary

interest and so we can predict from this by averaging over the posterior samples (obtained

with MCMC) as described in Section 7.5. Using a grid of new points in θ-space we

obtain Figure 7.4 where we see both component mean functions are adequately captured.

Additionally, the fitted model is able to account for the different variances used to generate

the data. We can also assess the fit by looking at the univariate predictive densities by

choosing points in θ-space. Here we choose points where we had training data so we can

compare the predictive density to these. Figure 7.5 shows these univariate densities at

three training points, where we can see the bimodal behaviour sufficiently accounted for.
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Figure 7.3: Marginal posterior density for α (top left) with prior density overlaid in orange, trace plot
for α (top right) and posterior probabilities for the number of clusters (bottom) with prior probabilities
overlaid in orange.
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Figure 7.4: Samples from the posterior predictive distribution (orange) with training data overlaid (blue).
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Figure 7.5: Univariate predictive densities (orange) with density of training data (blue).
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Calibration

8.1 Introduction

The aim of this project is to find a flexible and efficient approach for inferring the rate con-

stants of stochastic kinetic models as defined in Chapter 2. In Chapter 7 we constructed

a flexible model that used Dirichlet processes (Chapter 6) to allow for the number of clus-

ters to vary. To allow for spatial variation we use Gaussian process regression (Chapter 4)

which will allow us to interpolate the distribution between training inputs.

In this chapter we investigate the use of a Dirichlet process mixture of Gaussian processes

as an emulator for stochastic kinetic model output. We train the emulator by fitting

the model to training data. Using the techniques described in Chapter 3, we will use

the emulator as part of a larger inference scheme that will sample from the posterior

distribution of the stochastic rate constants, given data at discrete time points that may

be incomplete and subject to measurement error.

8.2 Schlögl system

We will infer the stochastic kinetic rate constants, c1, . . . , c4, or rather, the log of these

constants, θ = log c, using data from the Schlögl system (Section 2.7) with reaction
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equations

R1 : 2X1 +X2
eθ1−−→ 3X1,

R2 : 3X1
eθ2−−→ 2X1 +X2,

R3 : X3
eθ3−−→ X1,

R4 : X1
eθ4−−→ X3.

8.2.1 Data

As described in Chapter 3, output from SKMs is observed discretely in time with some

observation noise. From these observations we wish to infer the parameters of the under-

lying model. To provide a challenging data-poor scenario, we will start our analysis by

only looking at noisy data of the second specie X2 and so we will only emulate the system

data for this one specie. The following noisy X2 data, Figure 8.1, are drawn from the

Schlögl system where we assume that the variance of the noise is known to be σ2 with

σ = 1000 at times t = 1, 2, . . . , 20. That is,

yt(θ) = xt(θ) + εt, t = 1, 2, . . . , 20,

where the εt are i.i.d with εt ∼ N(0, 10002). Each point will be observed from a different

experiment, for example in a real world scenario you could imagine 20 petri dishes, each

initialised with the same initial conditions, and then at time t = 1 we record the measure-

ment in the first petri dish, at t = 2 we record the measurement in the next petri dish

and so on until t = 20. The data in Figure 8.1 are simulated with the parameter choice

θ = log(3×10−7, 10−4, 0.000773, 3.276) (Owen et al., 2015) that ensures we have biomodal

output to provide a challenging emulation scenario.

The first step in the calibration is to fit the emulator to training data. The approach we

take is to fit independent emulators at each time point. At each of these time points, we

will fit the emulators to training data in a Latin hypercube design where the same design

will be used at each time point. Having T = 20 independent emulators is computationally

beneficial as it means that each can be fit in parallel.

Once we have the emulator trained at each time point, we will then have a mechanism

for approximately simulating from the model, that is X̂t ∼ π̂(xt|θ), for different values

of the rate constants. Of course we could use Gillespie’s direct method, but we anticipate

that use of the emulator will result in substantial efficiency gains. We assess accuracy by

comparing the posteriors obtained under the emulation approach to those obtained using

the Markov jump process (MJP) as the inferential model.
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We apply the SMC scheme as described in Section 3.4.3, where the distribution at a

new proposed value θ∗ = log c∗ will be approximated by sampling from the predictive

distribution for the independent Dirichlet Process mixtures of Gaussian processes fitted

to training data at each time t = 1, 2, . . . , 20. In what follows, we provide implementation

details.
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Figure 8.1: Noisy observations from the Schlögl system at 20 time points. Note that the output has been
rescaled via X2/10000.

8.2.2 Training data

To generate training data, we require N points in θ space that will each have M replicate

observations of SKM output. At each of these N points in a Latin hypercube design

(LHD), Section 5.2, in θ space, we will simulate from the model M times in order to

obtain M replications with the aim of fitting a Dirichlet Process mixture of Gaussian

Processes (DPMGP) at each time point independently.

The following analysis uses N = 200 points and M = {10, 20, 40} replicates of training

data at each time point. We found that the choice of N gave an adequate balance between

accuracy and efficiency and investigate the effect of increasing M . The initial counts of

the species are x1(0) = 250, x2(0) = 105, x3(0) = 2× 105 which is the typical choice used

to observe the bifurcating behaviour (Owen et al., 2015). To ensure that the parameters

are on a reasonable scale, we rescale the data by letting X2 = X2/10000 and φi = θi−ai
bi−ai

where ai and bi are the lower and upper bounds of the LHD. Here we choose the bounds
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such that they are in the tails of the posterior distribution found in Owen et al. (2015).

The bounds are chosen to be −15.6 < θ1 < −14.6,−10 < θ2 < −8.5,−8 < θ3 < −4.5 and

1 < θ4 < 2. If previous analysis was not available to us we could choose these bounds to be

in the tails of the prior distributions for θ. The training inputs can be seen in Figure 8.2

where the Latin hypercube was constructed using the maximin method as described in

Section 5.2.
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Figure 8.2: Lating hypercube design of training points with N = 200.

The parameter choices for the prior distributions are V0 = 10× Ip, aσ = 1, bσ = 0.01,ar =

(0, 0, 0, 0)>, br = 0.1 × Id, aν = 1, bν = 0.01, aα = 1, bα = 1. The prior mean, m0, for

the coefficients of the mean function m(θ) = β0 +
∑p

i=1 βiθi are chosen to be the least

squares estimates of the coefficients found when fitting a regression to the training data.

Figure 8.3 shows the prior placed on α and the induced prior on k, the number of clusters.

Figure 8.4 shows the prior densities for the remaining hyperparameters.

90



Chapter 8. Calibration

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

D
en

si
ty

1 3 5 7 9 11 13 15 17 19

Cluster

P
ro

ba
bi

lit
y

0.
00

0.
02

0.
04

0.
06

0.
08

Figure 8.3: Prior density of α (left) and induced prior on the number of clusters (right).
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Figure 8.4: Prior density of σ2 (left), ν (middle) and ri (right).
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We fit independent emulators at each time point by inferring the hyperparameters. This

required running the MCMC scheme described in Chapter 7 in parallel for the training

data at each time point. This meant that we could fit at each time independently. After

a 2K iteration burn-in was removed, 10K samples were thinned by 10 to give 1K samples

from the hyper-parameter posterior at each time point. Trace plots A.3.4 were examined

in order to determine that the chain was mixing well between the number of clusters. The

total run times for fitting are given towards the end of the chapter, where the algorithms

were coded in C and ran on a high performance cluster with multiple cores (Intel Xeon

2.2 GHz processors on 20 cores).

8.2.3 Inference

We will use the sequential Monte Carlo scheme as described in Section 3.4.3, to sample

from the marginal posterior distributions under the MJP and emulation approach. The

observations y are assumed to be noisy measurements of the true system data x with

known noise σ2. To provide a challenging inference scenario, we took σ = 1000, which

is an order of magnitude smaller than typical output values. This translates to a known

error of σ = 0.1 when in the rescaled X2 space. We could infer the observational error

from the data as part of the inference scheme but keep this fixed to keep focus on inferring

the stochastic rate constants.

We place truncated Gamma priors on φi where we truncate at 1. We choose two parameters

αφ, λφ for the prior φi ∼ Ga(αφ, λφ)|φ<bi such that the prior is not too informative.

Specifically, we place independent Ga(2, 5) priors on each φi as shown in Figure 8.5 with

the ground truth values of the φi.
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Figure 8.5: Prior density of φi with true value (in φ space) in black.

The SMC scheme for inference under the MJP is given by Algorithm 5. For completeness,

we additionally provide the SMC scheme that we use for calibration via use of the emulator

in Algorithm 9.

Note that to alleviate particle degeneracy, we include an additional rejuvenation step. Es-

sentially, if the number of distinct particles is less than Np/2, we draw new parameter and

state values from a Metropolis-Hastings kernel that has the target posterior as its invariant

distribution. See Cappé et al. (2007) for further details. For the proposal mechanism, we

use a normal random walk on the logit scale, with innovation variance calculated from the

particle set. Including this step in Algorithm 5 is straightforward and can be achieved by

simply replacing draws from the MJP (via Gillespie’s direct method) with draws from the

DPMGP (emulator).

We now compare and contrast calibration results under the MJP and emulation approach.
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Algorithm 9 Bootstrap filter with emulation

• Initialise
At time t = 0, for i = 1, . . . , P

1. Sample θ(i) ∼ π(θ).

2. Sample X̃
(i)
t+1 ∼ π̂(xt+1|θ(i)) using the DPMGP emulator.

3. Calculate and assign a weight to each particle (θ(i), x̃
(i)
t+1) where w̃

(i)
t+1 =

π(yt+1|x̃
(i)
t+1,Σ).

4. Resample (θ(i), x̃
(i)
t+1) Np times according to the normalised weights

{w(1)
t+1, . . . , w

(Np)
t+1 }.

• For times t = 1, . . . , T and i = 1, . . . , Np

1. Sample X̃
(i)
t+1 ∼ π̂(xt+1|θ(i)) using the DPMGP emulator.

2. Calculate and assign a weight to each particle (θ(i), x̃
(i)
t+1) where w̃

(i)
t+1 =

π(yt+1|x̃
(i)
t+1,Σ).

3. Resample (θ(i), x̃
(i)
t+1) Np times according to the normalised weights

{w(1)
t+1, . . . , w

(Np)
t+1 }.

4. If the number of distinct θ samples is less than Np/2, rejuvenate:

Propose θ∗ ∼ q(θ∗|θ(i)) and X∗s ∼ π̂(xs|θ∗), s = 1, . . . , t + 1. Accept the pair
(θ∗, x̃∗t+1) with probability min(1, A) where

A =
π(θ∗)

π(θ(i))
×
∏t+1
s=1 π(ys|x∗s,Σ)∏t+1
s=1 π(ys|x

(i)
s ,Σ)

× q(θ(i)|θ∗)
q(θ∗|θ(i))
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MJP as inferential model

We run the SMC scheme with Gillespie’s direct method as the simulator. The posterior

obtained using this method will be considered as the true posterior, as we are not using

any type of emulator or approximation.

We run the SMC scheme with 500K particles to obtain a good approximation to the

posterior without too much computational effort. The run time for this took just under

63 hours. Results are shown in Figure 8.6.

φ1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

φ2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

φ3

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

φ4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Figure 8.6: Histogram of posterior samples for each φi (at time t = 20) with prior (orange) overlaid and
‘true’ point (black).
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Figure 8.7: Boxplot of samples of xt|y against t, with observations overlaid (orange).

The true values of the rate constants used to simulate the noisy data can be found well

within the bulk of the marginal posterior distributions. We can see that the analysis has

been informative, with a reduction in uncertainty from prior to posterior. Figure 8.7 shows

boxplots of the marginal posteriors of each latent state xt. As expected, the simulated

data are consistent with the posteriors.

Emulator as inferential model

We now investigate the posterior obtained using the DPMGP emulator. Recall that the

posterior here is an approximation of the true posterior since we are no longer simulating

actual system data but instead simulating from the emulator within the inference scheme.

The interpolation between the training points will therefore introduce some additional

uncertainty into the posterior distribution. This problem can be alleviated by increasing

the number of training points, either by increasing the number of points in the LHD

(N) or increasing the number of replicates at each point in θ space (M). Due to the

block structure of the covariance matrices as described earlier, it is preferable to increase

M rather than N as we only require calculating the inverse and determinant of N × N
matrices regardless of the size of M . We will therefore investigate the effect the number

of replicates has on the accuracy of the posterior distributions obtained.

M = 10 replicates

We begin by fitting the DPMGP emulators at each time point with just M = 10 replicates

at each of the training inputs.
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Figure 8.8 shows histograms of each marginal parameter posterior. Although it is clear

that the posterior samples are consistent with the ground truth, they are generally incon-

sistent with the posterior under the MJP (see Figure 8.6). The observed multi-modality

could be due to particle degeneracy, since output of the DPMGP emulator with M = 10

replicates naturally exhibit a higher variance than that of an exact simulator. Conse-

quently, draws from the emulator are less likely to be ‘consistent’ with the data (given the

measurement error variance) resulting in relatively few θ samples with reasonable weight.

This additional variance can be seen in Figure 8.9.
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Figure 8.8: Histogram of posterior samples for each φi (at time t = 20) with prior (orange) overlaid and
‘true’ point (black).
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Figure 8.9: Boxplot of samples of xt|y against t, with observations overlaid (orange).

M = 20 replicates

Here we fit the emulators to training data at the same LHD of N = 200 points but now

with M = 20 replicates at each training point, double that of the previous case.

Figure 8.10 shows the marginal posteriors obtained using these independent emulators

at each time point. Posterior variance is reduced (relative to the M = 10 case) and

the majority of the sampled values of φ1 and φ3 are consistent with the true posteriors

shown in Figure 8.6. Nevertheless, there is still some considerable mismatch between the

marginal posteriors for φ2 and φ4 under the DPMGP (M = 20) and those under the MJP.

Figure 8.11 shows boxplots of samples from the marginal posterior of each latent state.

Again, we see greater variability compared to Figure 8.7.

98



Chapter 8. Calibration

φ1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

φ2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

φ3

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

φ4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Figure 8.10: Histogram of posterior samples for each φi (at time t = 20) with prior (orange) overlaid and
‘true’ point (black).
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Figure 8.11: Boxplot of samples of xt|y against t, with observations overlaid (orange).
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M = 40 replicates

In this final case we double the number of replicate observations again at each point in φ

space. Clearly as we increase the number of replicates, the number of total training data

observations increases, therefore increasing the fitting time in each case. So although our

emulator will become more accurate, the time taken to fit each will increase. Computa-

tional considerations are discussed below.

The posterior densities for φ3, φ4 seem to be consistent with the true values used to simulate

the noisy data. Moreover, compared to the M = 10 and M = 20 cases, there is less

mismatch between posteriors obtained under the DPMGP and those under the MJP.
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Figure 8.12: Histogram of posterior samples for each φi (at time t = 20) with prior (orange) overlaid and
‘true’ point (black).
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Figure 8.13: Boxplot of system data x particles at each time point with observation overlaid (orange).

Comparisons and computational cost

The run time for the inference here was 15 hours, much faster than using Gillespie, however,

the fitting time of the emulator of course needs to be accounted for, and this takes the

total time to around 6 days. Table 8.2 gives marginal posteriors means under each scheme

as well as standard deviations in parentheses.

Model Run time (hours) Training time (hours)

MJP 63 —
DPMGP (M = 10) 14 46
DPMGP (M = 20) 15 96
DPMGP (M = 40) 15 145

Table 8.1: Computation cost for each model.

Model φ1 φ2 φ3 φ4

MJP 0.503 (0.116) 0.451 (0.108) 0.226 (0.058) 0.144 (0.085)
DPMGP (M = 10) 0.388 (0.194) 0.134 (0.167) 0.401 (0.184) 0.470 (0.238)
DPMGP (M = 20) 0.522 (0.134) 0.203 (0.162) 0.197 (0.180) 0.477 (0.218)
DPMGP (M = 40) 0.338 (0.112) 0.181 (0.132) 0.127 (0.074) 0.088 (0.079)

Table 8.2: Table of marginal posterior means with standard deviations in parentheses.
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Chapter 9

A variational approach

9.1 Introduction

The aim of this thesis is to find a fast but accurate approximation to SKM output that can

then be used in an inference scheme to infer the stochastic rate parameters. In the previous

chapter we used a DPMGP model as an emulator. Although this model was flexible enough

to model a system such as the Schlögl system, the computational burden associated with

fitting the emulator to training data precluded its use as a viable alternative to the MJP

as an inferential model.

In this chapter we introduce the variational approximation method before looking at ap-

plying the variational approach to our problem of fitting the DPMGP emulator to training

data. This means we will be introducing a further approximation into the analysis, but

this trade-off will give a reduction in the total computational cost of using the emulator.

9.2 Variational inference

Previously we employed MCMC methods to fit the emulator by sampling from the poste-

rior distribution of the DPMGP parameters. Although MCMC allowed us to draw from

such a complex posterior, it can suffer from convergence issues as well as lack efficiency.

We now outline an approximate, computationally cheap alternative to using MCMC – the

variational approach.

Developed in the machine learning field, variational inference is used to approximate com-

plex posterior distributions through use of simpler distributions. In what follows, we give

a brief overview of variational inference but refer the reader to Blei et al. (2017) and Blei

et al. (2006) for more detailed discussion.
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Let x = (x1, . . . , xn)T be the set of observed data and z = (z1, . . . , zm)T be the set

of latent variables with joint density π(z,x). Performing inference to learn about the

latent variables given the data here means computing the posterior density π(z|x). Bayes’

theorem gives

π(z|x) =
π(z,x)

π(x)
,

and recall that the denominator is the marginal density of the data, often called the

evidence, and is calculated by marginalising out the latent variables from the joint density,

π(x) =

∫
π(z,x) dz.

When performing variational inference, a family of densities, Q, over the latent variables

is specified where q(z|ν) ∈ Q is an approximation to the posterior (with dependence on

variational parameters ν which we suppress from now for ease of notation). The aim

is to then find the best approximation which is the one closest to π(z|x) in Kullback-

Leibler (KL) divergence. The KL divergence (Kullback and Leibler, 1951) is a measure

of proximity between two densities f and g computed by taking the expectation (with

respect to f) of the logarithmic difference between the two, that is

KL(f(x)||g(x)) =

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx.

This measure is asymmetric, hence KL(f(x)||g(x)) 6= KL(g(x)||f(x)), and is minimised

when the two densities are exact, that is, f(·) = g(·). In variational inference, the following

optimisation is performed

q∗(z) = arg min
q(z)

KL(q(z)||π(z|x)) (9.1)

as this will give us q∗(z) that is closest to the posterior density π(z|x).

Looking again at the KL divergence and expanding the conditional density π(z|x) we have

KL(q(z)||π(z|x)) = Eq[log q(z)]− Eq[log π(z|x)]

= Eq[log q(z)]− Eq[log π(z,x)] + log π(x). (9.2)

Hence, computing the KL divergence requires computing the log evidence, log π(x).

Given that the log evidence is hard to compute, we instead optimise the evidence lower

bound (ELBO)

ELBO(q) = Eq[log π(z,x)]− Eq[log q(z)]. (9.3)
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We now show that the ELBO in (9.3) is equivalent to the KL divergence in (9.2) up to an

additive constant. We have that

KL(q(z)||π(z|x)) =

∫
z
q(z) log

q(z)

π(z|x)
dz

= −
∫
z
q(z) log

π(z|x)

q(z)
dz

= −
(∫

z
q(z) log

π(z,x)

q(z)
dz −

∫
z
q(z) log π(x)dz

)
= −

∫
z
q(z) log

π(z,x)

q(z)
dz + log π(x)

∫
z
q(z)dz

= −
∫
z
q(z) log

π(z,x)

q(z)
dz + log π(x)

= −ELBO(q) + log π(x). (9.4)

Equation 9.4 shows that the ELBO is simply the negative KL divergence plus the log evi-

dence, which is a constant with respect to q(z), thus, maximising the ELBO is equivalent

to minimising the KL divergence and so this becomes the objective function that requires

optimisation. It remains that we can specify a variational family Q to fully describe the

optimisation problem.

One of the simplest families to use is the mean-field variational family which assumes that

each of the latent variables are mutually independent. Each latent variable has its own

density such that

q(z) =

m∏
j=1

qj(zj).

Each of these densities qj(zj) is found through optimisation by maximising the ELBO

in 9.3.

If we now focus on the jth latent variable zj , the variational distribution can be dervied by

considering the conditional distribution given all of the other parameters, a similar idea

to Gibbs sampling in Section 3.3.1. By fixing all of the other variational factors ql(zl) for

l 6= j, finding the optimal qj(zj) is an optimisation problem which can be solved through

coordinate ascent variational inference (Bishop, 2006). By fixing all other variational

factors, considering the ELBO as a function of qj(zj) and differentiating, the optimal

density is found to be proportional to the exponential of the expected log conditional

density. That is,

q∗j (zj) ∝ exp{E−j [log π(zj |z−j ,x)]}.
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9.3 Nonparametric mixture of Gaussian processes

The largest portion of computational cost of the DPMGP emulator method was the fitting

of the emulator to training data at each time point. Although each time could be fit in

parallel, every single training point (out of a total of N×M) had to be allocated given all of

the other allocations, meaning this step could not be parallelised and thus caused the fitting

to be computationally prohibitive. We therefore turn to a variational approach to fitting

a mixture of GPs, specifically the model described in Ross and Dy (2013). This model

uses a hierarchical setup for the latent functions and so instead of the hyperparemeters of

the GPs being drawn from the DP (as in the DPMGP model earlier) the latent functions

themselves are drawn from the DP.

9.3.1 Model overview

To describe the model we begin by assuming that there is just one replicate at each point

in input space. Let θ = (θ1, . . . , θN )T be the N -vector of inputs and X = (x1, . . . , xN )T be

the N -vector of observations and σ2
e be the observational error. The covariance function

is the squared exponential with elements (K)ij = σ2 exp{−(θi − θj)2/2l2}. Below we give

the model from Ross and Dy (2013). The authors also have certain constraints on the data

which they use as a mechanism for incorporating expert opinion, something which we omit.

The variational approximation requires us to use the stick-breaking representation of the

Dirichlet process, as discussed in Section 6.3.1, where the finite approximation requires

setting a truncation parameter L. For k = 1, . . . , L,

f (k)|θ ∼ N(0,K(k))

xi|f , zi, σ2
e ∼ N(z>i fi, σ

2
e)

zi|ρi ∼ Cat(ρi)

ρik|v = vk

k−1∏
j=1

(1− vj)

vk|α ∼ Beta(1, α).

As can be seen, this differs slightly from the earlier DPMGP model. Firstly, the actual GP

functions are now drawn from the DP, as opposed to the GP hyperparameters being the

variables drawn from the DP. This allows for the observations to be distributed around

these GP functions with error σ2
e . Further, allocation of each observation xi is through a

binary indicator vector zi. This change allows for a variational distribution to be found

as the likelihood of the observations can be written as a simple product of normals over

the clusters and number of observations, something which could not be done for the
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previous DPMGP model. We now also assume a zero mean function and a slightly altered

covariance function for simplicity.

The standard variational approach as discussed above is to use the mean-field variational

family and so we assume the following factorisation of the joint distribution as

q∗({f (L)})q∗(v)q∗(Z).

The following expressions are the variational distributions as found in Ross and Dy (2013).

The variational distribution over the latent functions is

q∗({f (L)}) =

L∏
k=1

N(µ(k), C(k))

where

C(k) = (K(k)−1
+R(k))−1

µ(k) = C(k)R(k)x

and

R(k) =
1

σ2
e

diag(E[Z]1k , . . . ,E[Z]Nk).

The matrix R(k) is simply a diagonal matrix with diagonal element i given by the proba-

bility of observation i being in cluster k. The variational distribution over v, the variables

used to construct the stick-lengths in the stick-breaking representation of the DP, is

q∗(v) =

L∏
k=1

Beta

1 +

N∑
i=1

E[Z]ik , α+

L∑
j=k+1

N∑
i=1

E[Z]ik

 .

The variational distribution over Z, the indicator variables of the observations, is

q∗(Z) =
N∏
i=1

L∏
k=1

rzikik

where

rik =
ρik∑L
k=1 ρik

and

log ρik = log
1√

2πσ2
e

− 1

2σ2
e

(
x2
i − 2xiE

[
f

(k)
i

]
+ E

[
f

(k)2

i

])
+ E[log vk] +

k−1∑
j=1

E[log(1− vj)] .
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For large sets of training data some of these calculations may become infeasible, in par-

ticular the covariance matrix will become rather large. As a consequence of the replicate

observations at each point in θ space we appeal to the block structure of the covariance

matrix so that we can make use of some ‘tricks’ to avoid ever storing this rather large

C matrix. Essentially, utilising the construction of the large matrix C as the inverse of

K−1 and R we can then exploit the block structure of K and make use of the Woodbury

identity to rewrite C as a collection of diagonal and smaller matrices. Full details can be

found in Appendix A.4.

The remaining hyperparameters of the model, namely σ2
e (the observation error), l (the

correlation length) and σ2 (the scale in the covariance matrix) are all assumed to be fixed

in Ross and Dy (2013). We wish to also learn these parameters from the training data

and so we apply the following methods. For the observational error σ2
e we use maximum

likelihood estimation, where

σ̂2
e =

∑N
i=1

∑L
k=1 E[Z]ik

(
xi − E

[
f

(k)
i

])2

∑N
i=1

∑L
k=1 E[Z]ik

.

For the remaining GP hyperparameters, we adopt a pragmatic and computationally ef-

ficient approach. We anticipate the assumption of a similar covariance structure in each

mode to be reasonable in practice, and therefore fit a single GP to a subset of the training

data (to reduce computation time) using an MCMC scheme (similar to that mentioned

in Section 4.2.5). This step is performed prior to the variational inference scheme. We

then perform variational inference with all GP hyperparameters fixed at their posteriors

means.

9.3.2 Application to SKMs

We wish to utilise the model of Ross and Dy (2013) in our calibration setting to gain

some computational efficiency and so we simply use this in place of the DPMGP model

from Chapter 7. Of course, a key requirement is to be able to use the surrogate output

to predict at new points in θ space. Predictive densities can be calculated by finding the

univariate means and variances at each of the θ points and conditioning on the training

data where for each cluster (omitting cluster subscripts) we calculate

µ∗ = k>∗ (K + σ2
eIN )−1x̄ (9.5)

and

σ2
∗ = σ2

e + k∗∗ − k>∗ (K + σ2
eIN )−1k∗. (9.6)
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Here, K is the covariance matrix between all of the training data, k∗ is the covariance

between the training data and the point in θ space where we wish to predict, k∗∗ is

the covariance between the point and itself (which is then the scale σ2). Finally, x̄ is the

weighted average at each point with ith element as the weighted average of all observations

at θi, with weights given by the probabilities r of being in the cluster. The predictive

densities are then calculated as

f(x) =
L∑
k=1

r̄·kN(x;µ∗k, σ
2
∗k)

where r̄·k is the probability of being in cluster k. Thus, in order to emulate the output at

a new point in θ space, a cluster would first be simulated using the cluster probabilities r̄·k

and then a normal variate would be simulated with the corresponding mean and variance,

(9.5) and (9.6) respectively. For this variational approach we require setting the truncation

parameter L since this uses the stick-breaking approach as discussed in Section 6.3.1. Due

to the bimodal nature of the Schlögl system we expect the number of clusters to be

fairly low and set this at L = 10. Following analysis in Ross and Dy (2013) we run the

algorithm until a pre-specified number of iterations is reached where we initialise Z so

that all observations are allocated to the same cluster. Another minor difference in the

variational approach compared to the MCMC is that we assume a fixed concentration

parameter α = 1 which we expect may have only a minor effect on the inference.

Schlögl emulation

As in Chapter 8, we consider the task of inference for the rate constants in the Schlögl

system, using data at discrete times. To allow comparison, we use the same data and

priors as in Section 8.2. Likewise, the calibration scheme is as before (see Algorithm 5),

with the DPMGP emulator replaced by the variational inference (VI) model.

Figure 9.1 shows marginal posterior densities for each (transformed) rate constant. The

output of the calibration scheme is generally consistent with the true values that produced

the data. The emulator gives state output at each time point that is consistent with the

corresponding observation (see Figure 9.2). Despite this, some inconsistencies with the

MJP posterior remain, as can be seen from the summaries in Table 9.1.

Nevertheless, posterior accuracy under the Ross and Dy (2013) surrogate (with VI) is

comparable to that of the DPMGP surrogate (fitted exactly), yet computational efficiency

is much improved. The total computational cost is reduced by a factor of 6 compared to

using the MJP as the inferential model, and by a factor of almost 15 compared to using

the DPMGP, as seen in Table 9.2.
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Figure 9.1: Histogram of posterior samples for each φi (at time t = 20) with prior (orange) overlaid and
‘true’ point (black).
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Figure 9.2: Boxplot of system data x particles at each time point with observation overlaid (orange).
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Model φ1 φ2 φ3 φ4

MJP 0.503 (0.116) 0.451 (0.108) 0.226 (0.058) 0.144 (0.085)
DPMGP (M = 10) 0.388 (0.194) 0.134 (0.167) 0.401 (0.184) 0.470 (0.238)
DPMGP (M = 20) 0.522 (0.134) 0.203 (0.162) 0.197 (0.180) 0.477 (0.218)
DPMGP (M = 40) 0.338 (0.112) 0.181 (0.132) 0.127 (0.074) 0.088 (0.079)

VI (M = 40) 0.280 (0.223) 0.333 (0.228) 0.252 (0.172) 0.214 (0.184)

Table 9.1: Table of marginal posterior means with standard deviations in parentheses.

Model Run time (hours) Training time (hours)

MJP 63 —
DPMGP (M = 10) 14 46
DPMGP (M = 20) 15 96
DPMGP (M = 40) 15 145

VI (M = 40) 11 <1

Table 9.2: Computation cost for each model.
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Conclusion

The intention of this thesis was to develop an emulator for stochastic kinetic models based

on a mixture of Gaussian processes. Furthermore, we required this mixture to be flexible

enough so that the number of components was not fixed. Using the emulator as part of an

inference scheme then allows for the parameters of stochastic kinetic models to be inferred.

We began by introducing stochastic kinetic models (SKMs), chemical equations and also

the Markov jump process representation of SKMs. Exact simulation methods were ex-

plored, specifically looking at Gillespie’s direct method (Gillespie, 1976) before moving on

to look at approximations such as the chemical Langevin equation and linear noise approx-

imation. These approximations ignore the discreteness of the MJP but not the inherent

stochasticity. The resulting computational efficiency of these schemes has been exploited

by Golightly and Wilkinson (2005) and Komorowski et al. (2009) among many others,

yet they are unable to successfully accomodate behaviours such as bifurcation. Three

examples of SKMs were given, each one increasing in complexity (number of reactions

and species). The birth-death model is a simple case with just one specie and two reac-

tions. The Lotka-Volterra model (Lotka (1910), Volterra (1926)) describes the interaction

between two species (predator and prey) through three reactions and exhibits interesting

auto-regulatory behaviour for certain parameter choices. The final SKM we described

was the Schlögl system (Schlögl, 1972); a system which, under certain conditions, exhibits

bimodal stationarity.

In Chapter 3, after giving an overview of the Bayesian framework including Markov chain

Monte Carlo (MCMC) methods, we considered likelihood-free methods which can be

utilised for inferring the rate constants of SKMs. Likelihood-free MCMC was one such

method but often suffers from small acceptance rates in the Metropolis-Hastings step.

As a way to overcome this problem, Sequential Monte Carlo (SMC) methods were then

described, in particular the Bootstrap filter (Gordon et al. (1993), Cappé et al. (2007)),
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where our posterior beliefs are updated as each observation (in this case in time t) becomes

available. All of these methods would require simulating from the SKM of interest by us-

ing Gillespie’s direct method. However, this is likely to be computationally prohibitive

in cases where many reactions occur between observation times. This necessitated the

development of a cheap surrogate model.

Chapter 4 gave an overview of Gaussian processes (GPs) and how they can be used for

regression. After defining GPs and looking at the mean and covariance functions, we

described how GP regression can be used for prediction and also how we can fit a GP

to data by inferring the hyperparameters of the mean and covariance functions. After

a simulation study at the end of this chapter, we then moved on to describe how GPs

could be used in an emulation setting (Chapter 5) with emphasis on SKM output. Of

course, if the output of the SKM of interest is fairly symmetric and unimodal then a

single GP emulator would be sufficient as the cheap approximation method. However,

when considering the bimodality of the Schlögl system a mixture of GPs would be more

appropriate.

It is possible to build an emulator from a finite mixture of GPs and even place a prior

on the number of components, but by placing a Dirichlet process prior on the number

of components we have not only bypassed the need to specify the number a priori but

also avoided placing an upper limit on how many components there can be. The Dirichlet

process (DP) was introduced in Chapter 6 both formally and informally by looking at

different representations such as the Chinese restaurant process and Pólya urn scheme.

A Dirichlet process mixture (DPM) model (Ferguson (1973), Antoniak (1974)) has an

infinite number of components in the mixture where only a finite number of which have

observations allocated to them. We illustrated DPM models using two examples: a uni-

variate mixture of normals and a mixture of regressions models. In each case we fitted the

DPM using MCMC (Neal, 2000).

We required an emulator that approximates the SKM output as a function of the rate

constants and hence need to account for spatial dependence (in the space of the rate con-

stants) which we achieved through GP regression. The emulator also needed to be flexible

such that the number of components needed could increase or descrease as necessary.

Thus, by combining the ideas of GPs and DPMs we built a Dirichlet process mixture of

Gaussian processes (DPMGP) in Chapter 7. We described how we could evaluate certain

parts of the likelihood more efficiently as well as how each data point is assigned to a

cluster through the approach of Neal (2000). We then showed how the model fits to data

simulated from a two component mixture of GPs and we were able to adequately account

for the bimodal behaviour of the observed data.

In Chapter 8 the DPMGP model was used as an emulator for the Schlögl system. The
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multi-modal output from this system proved to be a good test case for using the DPMGP

as an emulator since the output is fairly complex, and can not be modelled with just a

single GP. We inferred the posterior distribution of the rate constants by first running

the Bootstrap filter with Gillespie’s direct method. This allowed exact (simulation-based)

inference of the rate constants, and provided a benchmark with which to compare com-

peting, albeit approximate, methods. We then investigated the DPMGP approximation

by using the fitted emulator as part of an SMC scheme to infer the rate constants. We

explored different levels of approximation by changing the number of replicate observa-

tions at each point in θ-space. We found, as expected, the posteriors to be closer to the

‘true’ posteriors (obtained by Gillespie’s direct method) as the number of replicate ob-

servations increased, thereby making the emulator more accurate. This of course came

with more computational cost in terms of training the emulator. Specifically, we found

that the total CPU time for training the emulator with 10 replicate observations at each

point was 46 hours, increasing to 96 hours with 20 replicates and finally 145 hours with 40

replicates. The inference time however was not affected as much with all three emulators

taking around 15 hours. The emulator was more efficient overall than the MJP model

only in the case of 10 replicates, with a total run time of 60 hours (compared to 63 hours

with the MJP).

Because of the computational cost of fitting the emulator to a large amount of points (which

involves allocating each point individually in serial) we began exploring an approximate

inference scheme known as variational inference (Chapter 9). We began the chapter by

giving an overview of variational inference and then moved on to look at a slightly different

DPMGP model introduced by Ross and Dy (2013). We then used the VI approximation

as the emulator model for output from the Schlögl system, just as we did in Chapter 8

with the DPMGP. The marginal posterior densities obtained here were consistent with

the true values used to simulate the observations. The loss in accuracy here was due to

the further approximation being made by using variaional inference. However, the payoff

here means that the computational cost is reduced much further when compared to using

Gillespie’s direct method in the inference scheme.

10.1 Future work

There are many possible extensions to the work in this thesis. Most notably, a more in-

depth study of inference for the Schlögl system would be desired. Thus far, inference was

based on a relatively small selection of training data. With improvements made in terms

of efficiency due to the variational approach, the training set could be expanded in θ space

as well as the number of replicates. It would be expected that the posterior distribution
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obtained with a larger training set would be even more similar to the posterior obtained

using the MJP model. Nevertheless, further experiments are required to determine an

adequate balance between computational efficiency and calibration accuracy.

Inference for the Schlögl system was based on data at 20 time points for the second species.

A possible route to explore could be performing inference using data at more or fewer

points in time in order to see the effect this has on the approximate posterior obtained.

Another possibility could be performing inference given data of a different species of the

system.

Although we have focused on the use of a DPMGP emulator for calibration of stochastic

kinetic models, we note its potential uses for calibration of a wider class of models. Many

complex stochastic processes exhibit dynamics that are not well described by a single GP.

For example the double–well diffusion process (Buffett et al., 2013) is ubiquitously used to

model relative paleointensities which provide estimates of the strength of the Earths’ axial

dipole and polarity (Morzfeld et al., 2017). Typical datasets used to calibrate such models

contain thousands of observations, motivating the need for efficient inference schemes such

as the one considered here.

It may also be possible to exploit the computational efficiency of the surrogate, whilst

exactly targeting the posterior under the MJP, by using a delayed acceptance MCMC

scheme (e.g. Golightly et al. (2015)). Essentially, in an initial screening stage, proposals

are tried under the surrogate, and the expensive MJP simulator is only run for those

proposals that pass this initial step. Since the likelihood under the MJP is intractable,

this approach will require use of a pseudo-marginal Metropolis-Hastings scheme (see e.g.

Andrieu et al. (2010)). This is a promising avenue for future research.
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A.1 Probability density functions

A.1.1 Inverse gamma distribution

A positive random variable X has an inverse gamma distribution, denoted X ∼ IG(α, β),

with shape parameter α and scale parameter β with probability density function

π(x) =
βα

Γ(α)
(1/x)α+1 exp (−β/x).

A.1.2 Lognormal distribution

A positive random variable X has a lognormal distribution, denoted X ∼ LN(µ, σ2), with

probability density function

π(x) =
1

x

1

σ
√

2π
exp

(
−(log x− µ)2

2σ2

)
.

A.2 Some useful multivariate normal (MVN) results

Characterisation: Y = (Y1, . . . , Yq)
> has a multivariate normal distribution with mean µ

and variance Σ, denoted by N(µ,Σ) or Nq(µ,Σ) if its density is

p (y;µ,Σ) = (2π)q/2|Σ|1/2 exp

{
−1

2
(y − µ)>Σ−1(y − µ)

}
.

Linear transformations: if A is a r×q matrix of constants and b is a r-dimensional vector
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of constants and Y ∼ Nq(µ,Σ) then

AY + b ∼ Nr(Aµ+ b , AΣA>)

Marginal Distributions: if Y is divided into two blocks, Y1 containing the first q1 compo-

nents of Y and Y2 containing the other q2 = q− q1 components, then applying a partition

of µ and Σ of the form

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)

leads to Yi ∼ Nqi(µi,Σii), i = 1, 2.

Conditional distributions: still using the same partitions on Y , µ and Σ,

Y1|Y2 = y2 ∼ Nq1 (µ1·2,Σ11·2)

where µ1·2 = µ1 + Σ12Σ
−1
22 (y2 − µ2) and Σ11·2 = Σ11 −Σ12Σ

−1
22 Σ21. Similar results can

be obtained for Y2|Y1 by exchanging the indices with 1 and 2.

Reconstruction of the joint distribution: if Y1|Y2 ∼ Nq1(µ1 +B1[y2−µ2],B2) for q1× q2

and q1 × q1 matrices of constants B1 and B2 respectively and Y2 ∼ Nq2(µ2,Σ2) then

Y =

(
Y1

Y2

)
∼ Nq

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]

where Σ11 = B2 +B1Σ22B
>
1 and Σ>21 = Σ12 = B1Σ22.
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A.3 Dirichlet process mixture of Gaussian processes

A.3.1 Log-likelihood function

Using efficient methods to calculate the inverse and determinant of the large n× n corre-

lation matrix, we can efficiently evaluate the log-likelihood function. The data is stacked

as (x1(θ1), x2(θ1), . . . , xn1(θ1), . . . , x1(θN ), . . . , xnN (θN ))> = (x>1 , . . . ,x
>
N )> where xi is a

ni× 1 vector of all observations assigned to the cluster at θi. The log-likelihood contribu-

tion of the cluster is given by (up to an additive constant)

− 2 log f{x1(θ1), . . . ,xN (θN )}

= log |σ2(νIn +H)|+ {(x>1 , . . . ,x>N )> − JXβ}>{σ2(νIn +H)}−1{(x>1 , . . . ,x>N )> − JXβ}

= 2n log σ + log |νIn +H|+ 1

σ2
{(x>1 , . . . ,x>N )> − JXβ}>(νIn +H)−1{(x>1 , . . . ,x>N )> − JXβ}

= 2n log σ + log |νIn + JHNJ
>|

+
1

σ2
{(x>1 , . . . ,x>N )> − JXβ}>{ν−1In − ν−2J(IN + ν−1HND)−1HNJ

>}

{(x>1 , . . . ,x>N )> − JXβ}

= 2n log σ + n log ν + log |IN + ν−1DHN |

+
1

νσ2
{(x>1 , . . . ,x>N )> − JXβ}>{In − ν−1J(IN + ν−1HND)−1HNJ

>}

{(x>1 , . . . ,x>N )> − JXβ}.

The final term can be simplified by noting that J>(x>1 , . . . ,x
>
N )> = (n1x̄1, . . . , nN x̄N )> =

Dx̄, where x̄ = (x̄1, . . . , x̄N )> is the N×1 vector of means at each θ-point, and J>J = D.
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To ease notation let x = (x>1 , . . . ,x
>
N )>.

{(x>1 , . . . ,x>N )> − JXβ}>{In − ν−1J(IN + ν−1HND)−1HNJ
>}{(x>1 , . . . ,x>N )> − JXβ}

= (x>1 , . . . ,x
>
N )(x>1 , . . . ,x

>
N )> − ν−1(x>1 , . . . ,x

>
N )J(IN + ν−1HND)−1HNJ

>(x>1 , . . . ,x
>
N )>

+ (JXβ)>JXβ − ν−1(JXβ)>J(IN + ν−1HND)−1HNJ
>JXβ

− 2(x>1 , . . . ,x
>
N )JXβ + 2ν−1(JXβ)>J(IN + ν−1HND)−1HNJ

>(x>1 , . . . ,x
>
N )>

= x>x− ν−1x̄>D(IN + ν−1HND)−1HNDx̄+ β>X>DXβ

− ν−1β>X>D(IN + ν−1HND)−1HNDXβ − 2x̄>DXβ+

2ν−1β>X>D(IN + ν−1HND)−1HNDx̄

= x>x+ β>X>DXβ − 2x̄>DXβ

− ν−1{x̄>D(IN + ν−1HND)−1HNDx̄+ β>X>D(IN + ν−1HND)−1HNDXβ

− 2β>X>D(IN + ν−1HND)−1HNDx̄}

= (x− JXβ)>(x− JXβ)− ν−1(x̄−Xβ)>D(IN + ν−1HND)−1HND(x̄−Xβ).

Hence, the log-likelihood is given by (up to an additive constant)

−2 log f{x1(θ1), . . . ,xN (θN )}

= 2n log σ + n log ν + log |IN + ν−1DHN |

+
1

νσ2

{
(x− JXβ)>(x− JXβ)

− ν−1(x̄−Xβ)>D(IN + ν−1HND)−1HND(x̄−Xβ)

}
.
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A.3.2 Gibbs step for β

The prior distribution for β|σ2 ∼ N(m0, σ
2V0) has density, for β ∈ Rp,

π(β|σ2) ∝ exp

{
− 1

2σ2
(β −m0)>V −1

0 (β −m0)

}
.

Using Bayes’ Theorem, the posterior density is

π(β|σ2,x) ∝ π(β|σ2)f{x1(θ1), . . . ,xN (θN )}

∝ exp

{
− 1

2σ2
(β −m0)>V −1

0 (β −m0)

}
× exp

{
− 1

2νσ2

[
(x− JXβ)>(x− JXβ)

− ν−1(Dx̄−DXβ)>(IN + ν−1HND)−1HN (Dx̄−DXβ)
]}

∝ exp

{
− 1

2σ2

[
(β −m0)>V −1

0 (β −m0) + ν−1(x− JXβ)>(x− JXβ)

− ν−2(Dx̄−DXβ)>(IN + ν−1HND)−1HN (Dx̄−DXβ)
]}

∝ exp

{
− 1

2σ2

[
β>V −1

0 β +m>0 V
−1

0 m0 − 2β>V −1
0 m0 + ν−1x>x+ ν−1β>X>DXβ

− 2ν−1x̄>DXβ − ν−2x̄>D(IN + ν−1HND)−1HNDx̄

+ 2ν−2β>X>D(IN + ν−1HND)−1HNDx̄

− ν−2β>X>D(IN + ν−1HND)−1HNDXβ
]}

∝ exp

{
− 1

2σ2

[
β>V −1

0 β − 2β>V −1
0 m0 + ν−1β>X>DXβ

− 2ν−1x̄>DXβ + 2ν−2β>X>D(IN + ν−1HND)−1HNDx̄

− ν−2β>X>D(IN + ν−1HND)−1HNDXβ
]}

∝ exp

{
− 1

2σ2

[
β>
(
V −1

0 + ν−1X>DX − ν−2X>D(IN + ν−1HND)−1HNDX
)
β

− 2β>
(
V −1

0 m0 + ν−1X>Dx̄− ν−2X>D(IN + ν−1HND)−1HNDx̄
) ]}

∝ exp

{
− 1

2σ2
(β −m∗)>V ∗−1(β −m∗)

}
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after completing the square, where

m∗ = V ∗{V −1
0 m0 + ν−1X>Dx̄− ν−2X>D(IN + ν−1HND)−1HNDx̄}

V ∗ = {V −1
0 + ν−1X>DX − ν−2X>D(IN + ν−1HND)−1HNDX}−1.

Thus the posterior is β|σ2,x ∼ N(m∗, σ2V ∗).

A.3.3 Metropolis-Hastings step for σ2, ν, r

We perform a joint update on these three parameters due to the correlation that exists

between them. The problem stems from the high correlation between σ2 and ν and so

we use the following change of variables ν ′ = σ2ν and perform the random walk on

ν ′ as opposed to ν. We shall denote the vector of these parameters as ψ = (σ2, ν ′, r)

which will be (2+d)-dimensional. Using Metropolis-Hastings with a proposal distribution

q(ψ∗|ψ) = LN(logψ,Ω), where Ω is the tuning parameter, the acceptance probability is

α(ψ∗|ψ) = min(1, A), where

A =
π(ψ∗)

π(ψ)
× f(x|ψ∗)

f(x|ψ)
× q(ψ|ψ∗)
q(ψ∗|ψ)

=
π(σ∗2)πν(ν ′∗)π(r∗)

π(σ2)πν(ν ′)π(r)
× σ2

σ∗2
× f(x|ψ∗)

f(x|ψ)
×
∏d+2
i=1 ψ

∗
i∏d+2

i=1 ψi

since πν′(ν
′) = πν(ν ′)/σ2. Taking logs gives, up to an additive constant

logA = log π(σ∗2)− log π(σ2) + log πν(ν ′∗)− log πν(ν ′) + log π(r∗)− log π(r)

+ log σ2 − log σ∗2 + log f(x|ψ∗)− log f(x|ψ) +

d+2∑
i=1

(logψ∗i − logψi)

= log π(σ∗2)− log π(σ2) + log πν(ν ′∗)− log πν(ν ′) + log π(r∗)− log π(r)

+ log f(x|ψ∗)− log f(x|ψ) +
d+2∑
i=2

(logψ∗i − logψi).

A.3.4 MCMC diagnostics

Trace plots were examined in order to determine that the chain was mixing well between

the number of clusters.
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M = 10 replicates
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Figure A.1: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 1
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Figure A.2: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 2
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Figure A.3: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 3
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Figure A.4: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 4
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Figure A.5: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 5
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Figure A.6: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 6
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Figure A.7: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 7

0 200 400 600 800 1000

0.
5

1.
0

1.
5

2.
0

Iteration

α

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

1.
2

α

D
en

si
ty

1 2 3 4 5 6 7 8 9 10

No. of clusters

R
el

at
iv

e 
fr

eq
ue

nc
y

0.
0

0.
1

0.
2

0.
3

0.
4

Figure A.8: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 8
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Figure A.9: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency barplot
for the number of cluster at time 9
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Figure A.10: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 10
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Figure A.11: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 11
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Figure A.12: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 12
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Figure A.13: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 13
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Figure A.14: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 14
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Figure A.15: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 15
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Figure A.16: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 16
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Figure A.17: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 17
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Figure A.18: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 18
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Figure A.19: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 19
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Figure A.20: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 20

M = 20 replicates
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Figure A.21: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 1
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Figure A.22: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 2
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Figure A.23: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 3
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Figure A.24: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 4
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Figure A.25: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 5
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Figure A.26: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 6
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Figure A.27: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 7
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Figure A.28: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 8
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Figure A.29: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 9
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Figure A.30: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 10
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Figure A.31: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 11
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Figure A.32: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 12
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Figure A.33: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 13
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Figure A.34: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 14
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Figure A.35: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 15
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Figure A.36: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 16
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Figure A.37: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 17
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Figure A.38: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 18
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Figure A.39: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 19
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Figure A.40: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 20

M = 40 replicates
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Figure A.41: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 1
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Figure A.42: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 2
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Figure A.43: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 3
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Figure A.44: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 4
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Figure A.45: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 5

137



Appendix A. Miscellaneous

0 200 400 600 800 1000

0.
5

1.
0

1.
5

2.
0

2.
5

Iteration

α

0.0 0.5 1.0 1.5 2.0 2.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

α

D
en

si
ty

1 3 5 7 9 11 13 15

No. of clusters

R
el

at
iv

e 
fr

eq
ue

nc
y

0.
00

0.
05

0.
10

0.
15

Figure A.46: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 6
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Figure A.47: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 7
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Figure A.48: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 8
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Figure A.49: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 9

0 200 400 600 800 1000

0.
5

1.
0

1.
5

2.
0

Iteration

α

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

α

D
en

si
ty

1 3 5 7 9 11 13

No. of clusters

R
el

at
iv

e 
fr

eq
ue

nc
y

0.
00

0.
10

0.
20

0.
30

Figure A.50: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 10
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Figure A.51: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 11
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Figure A.52: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 12
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Figure A.53: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 13
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Figure A.54: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 14
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Figure A.55: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 15
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Figure A.56: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 16
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Figure A.57: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 17
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Figure A.58: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 18
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Figure A.59: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 19
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Figure A.60: Trace plot for α (left), marginal posterior density for α (middle) and relative frequency
barplot for the number of cluster at time 20

142



Appendix A. Miscellaneous

A.4 Variational approach

The variational model as discussed in Section 9.3 requires working with quite large matri-

ces. In particular, the matrix C(k) = (K(k)−1
+R(k))−1, for each k, is NM ×NM in size

which becomes very large when fitting to training data with a large amount of replicates

(M) or locations (N). This section describes methods to avoid storing this matrix since

we only need certain elements of it for calculations in the algorithm.

A.4.1 Calculating the mean

One part of the algorithm where we require the large matrix C(k) is during the calculation

of the mean of each of the Gaussian processes. The mean for cluster k is

µ(k) = C(k)R(k)x

where

R(k) =
1

σ2
e

diag(E[Z]1k , . . . ,E[Z]Nk).

In the following derivation we drop the dependence on cluster number for ease of exposi-

tion, but in practice, the following quantities would have a subscript k to denote that they

are calculated for cluster k. We start by rewriting C = (K−1 +R)−1 by making use of the

block structure of the covariance matrix K = νINM + JKNJ
>, where J is as defined in

Section 7.3 and KN is the N ×N covariance matrix. This gives

C = (K−1 +R)−1

= {(νINM + JKNJ
>)−1 +R}−1.

Now using the identity (νINM + JKNJ
>)−1 = ν−1INM − ν−2J(IN + ν−1KN∆)−1KNJ

>

(shown in Section 7.3.1) gives

C = {ν−1INM − ν−2J(IN + ν−1KN∆)−1KNJ
> +R}−1.

We can now apply the Woodbury identity (7.4) with A = R + ν−1INM (an NM × NM
diagonal matrix), B = (IN + ν−1KN∆)−1 (an N ×N matrix), C = −ν−2J (an NM ×N
matrix) and D = KNJ

> (an N ×NM matrix) where ∆ = J>J = diag(M,M, . . . ,M) to
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give

C = (R+ ν−1INM )−1

+ ν−2(R+ ν−1INM )−1J [{(IN + ν−1KN∆)−1}−1

− ν−2KNJ
>(R+ ν−1INM )−1J ]−1KNJ

>(R+ ν−1INM )−1

= (R+ ν−1INM )−1

+ ν−2(R+ ν−1INM )−1J{(IN + ν−1KN∆)

− ν−2KNJ
>(R+ ν−1INM )−1J}−1KNJ

>(R+ ν−1INM )−1.

Note that C is now formed using a collection of diagonal matrices and smaller N × N
matrices, and so we can determine µ = CRx by right multiplying by Rx to give

µ = (R+ ν−1INM )−1Rx

+ ν−2(R+ ν−1INM )−1J{(IN + ν−1KN∆)

− ν−2KNJ
>(R+ ν−1INM )−1J}−1KNJ

>(R+ ν−1INM )−1Rx.

This formulation gives a much more manageable approach to determining µ without the

need to store the large NM ×NM matrix C: it only requires the calculation of large but

diagonal matrices, N ×N matrices and the sparse NM ×N matrix J .
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