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Abstract 
Polymethyl methacrylate (PMMA) bone cements have been used for stabilizing bone 

prostheses and filling cavities due to their suitable mechanical properties. PMMA bone 

cements, with and without addition of magnetic glass-ceramic (MGC), have been 

recently investigated for the treatment of bone cancer. The addition of MGC to PMMA 

bone cements allows for the treatment of cancer via magnetic induction hyperthermia. 

This PhD thesis focused on the potential of MGC addition to commercial dental and 

orthopaedic PMMA cements for bone cancer treatment. MGC was prepared by melt-

quenching technique at 1550°C. It contained a crystalline magnetic phase embedded 

in the glass matrix. MGC was mixed with dental and orthopaedic PMMA cements in 

amounts up to 40%. A method for production of magnetic PMMA cements (MPCs) with 

high reproducibility and dimensional accuracy was developed. The mechanical 

properties, in vitro bioactivity, cytotoxicity and heat generation of the resulted MPCs 

were evaluated.  

Compressive strength and four-point bending tests on MPCs were performed using 

the ISO 5833:2002 standard. The magnetic cements containing up to 30% MGC met 

the ISO 5833:2002 standard requirements. 

In vitro bioactivity was tested in a simulated body fluid (SBF). Apatite crystals started 

to form on the surface of MPCs after 2 weeks of immersion in SBF, showing the 

bioactive properties of these MPCs. Although cytotoxicity test results were found 

inconclusive, there was a decrease in the cell viability with addition of MGC in the bone 

cement. 

Preliminary induction heating tests showed that all MPC samples could be heated to a 

similar temperature range in 5 minutes using magnetic fields compatible with operating 

rooms in hospitals.  

The thermal, mechanical and biological properties of MPCs, analysed during this PhD 

thesis, showed that MPCs are promising biomaterials for the treatment of bone cancer 

using magnetic induction hyperthermia. 

Keywords: Bone cement, PMMA, bone tumour, hyperthermia, magnetic glass 

ceramics, magnetic bone cement 
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1 Introduction 
An ancient physician Hippocrates who is also known as the “father of medicine” said 

“Those who cannot be cured by medicine can be cured by surgery. Those who 
cannot be cured by surgery can be cured by fire. Those who cannot be cured by 
fire, they are indeed incurable”. 

According to the American Cancer Society, there will be an estimated 1,762,450 new 

cancer cases and 606,880 cancer deaths in 2019. Approximately 3,500 people will be 

diagnosed with bone cancer and about 1,660 of people will die [1]. In the UK, an 

average of 550 new cases of bone cancer are diagnosed every year [2]. Bone cancer 

does not only form as primary cancer, it also occurs as secondary cancer which is 

more commonly happen. According to the National Cancer Institute, approximately 

280,000 adults between 18-64 years old, were living with secondary bone cancer in 

2018 in the US alone [3]. There are a variety of treatment techniques for bone cancer 

that have been developed. The most common treatment techniques are listed as 

surgery, chemotherapy and radiotherapy. Whilst medication is used in chemotherapy 

to destroy cancer cells, X-ray beam is applied in radiotherapy.    

Hyperthermia (heat treatment) is one of the techniques, which increases the body 

temperature above 37°C to destroy cancer cells. Although it is an accepted cancer 

treatment technique by the National Cancer Institute and American Cancer Society, it 

is still under clinical trials and mostly applied as an experimental technique [1]. It is 

preferably used in conjunction with chemotherapy and radiotherapy treatments. 

Hyperthermia can be induced for the following cancer types: bladder, breast, liver, 

kidney, pancreas, thyroid and sarcomas (bone and soft tissue cancers). However, 

there are some limitations caused by not being able to reach deep-seated tumours to 

kill cells or prevent the proliferation. Hyperthermia treatment should be applied 

carefully because increasing the time or temperature to reach deep-seated tumor may 

cause severe burnings and kill healthy cells. To date, hyperthermia treatment 

techniques have not been sufficient for bone tissue cancers since they could not be 

heated to a suitable temperature.  
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To overcome the limitations of reaching the deep-seated tumour, different methods 

were developed. Designing a device capable of reaching a deep-seated tumour sites 

to heat up to 46°C without giving any harm to normal, healthy tissues is very 

challenging [4]. This problem was tackled using magnetic materials. When magnetic 

particles are subjected to a variable electromagnetic field, they generate heat due to 

their magnetic properties and start acting as thermoseeds [5]. This technique is known 

as magnetic hyperthermia. In this application, a magnetic material is implanted in the 

tumour and an external alternating magnetic field is applied. The temperature of 

tumour could increase to 41°C-43°C. The increment in the temperature is based on 

the amount of magnetic phase in the composition, properties of magnetic materials, 

intensity and frequency of the magnetic field and thermal properties of bone. Recently, 

considerable attention has been paid to magnetic hyperthermia technique in order to 

treat cancerous cells. It is expected that magnetic hyperthermia will play a crucial role 

in the treatment of deep-seated tumor cells [6, 7].  

In the late 1950s, PMMA (polymethylmethacrylate) bone cements were introduced to 

medical applications for the first time for the fixation of orthopaedic prosthesis. Since 

then, they have been widely used in many medical applications such as orthopaedics, 

dental and vertebral applications. The main reason is due to mechanical properties of 

PMMA bone cement provide a sufficient support to bone and implant. The cement acts 

as a buffer between the prosthesis and bone, and it provides optimal stress and strain 

distribution. Since it creates mechanical bond between bone and prosthesis, it is 

necessary to have valuable mechanical properties. Therefore, it has been mostly 

preferred in hip and knee replacements. 85% of knee replacements and 34% of hip 

replacements are performed using PMMA cement [8]. PMMA cement is not only used 

in total joint replacements to stabilise the prosthesis but also used in fractures, tumour 

surgery and percutaneous vertebroplasty [9]. PMMA bone cement is applied as one of 

the treatment techniques for bone cancer to strengthen the destructive bone and ease 

pain. PMMA bone cement has shown good outcomes for pelvis, spine and other flat 

bones [10].  
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Bone tumours lead to critical size bone defects, which are approximately between 1cm 

to 3 cm [11]. However, cancerous tissues continue growing and spreading to other 

parts of the body, thus the size of defect may exceed 5 cm. Therefore, there are a wide 

variety of sizes and shapes for bone defects. The volume of defect that can be treated 

using PMMA bone cement is usually between 1 mm3 to 20 mm3 [12]. After removal of 

the bone tumour, the cavity is filled with PMMA bonce cement to strengthen the 

weaken bone. If the volume of bone defect is larger than 20 mm3 a prosthesis is 

implanted after the excision of tumoral tissue to support the bone. Afterwards, PMMA 

cement is used to fill the gap between bone and implant as it is applied in hip 

replacement [13]. For these kinds of applications, it has been suggested that the layer 

of PMMA cement should not exceed 5 mm since the thickness affects the temperature 

rise [14].  

PMMA cement goes through an exothermic polymerisation reaction during hardening. 

It was thought that its high exothermic polymerisation reaction could kill bone cancer. 

However, the heat generated by PMMA bone cement was not found to be high enough 

to kill the cancerous cells entirely. Sturup et al [15]., reported that even the high 

exothermic polymerisation rate of the PMMA has no or little necrosis effect on the 

tumour cells in vivo. Thus, combining PMMA cement with magnetic hyperthermia has 

attracted a lot of attention. 

Although there are numerous studies on investigations of magnetic particles, little work 

is done for the assessment of magnetic PMMA cement. Considering the pivotal role of 

bone cement in strengthening fractured and weakened bone, and the effectiveness of 

magnetic materials to heat deep-seated tumour cells, the combination of PMMA bone 

cement with magnetic particles is an innovative technique to cure bone cancer [16]. 

However, it should be noted that the mechanical properties of PMMA cement may 

degrade with the addition of magnetic particles; therefore, the properties of magnetic 

particles and the amount mixed in the PMMA structure must be well evaluated. 

Moreover, ageing and moisture uptake may lead to implant failure over the years after 

the implantation. Wear particles surrounding the implant region can accelerate its 

deterioration. However, few studies investigated effects of ageing and moisture uptake 

of PMMA cement on the mechanical properties yet.  
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PMMA cement is a bioinert material, thus, chemical or biological bonding to the bone 

cannot be stimulated. Hypothetically, magnetic PMMA cement will provide significant 

advantages for treatment of bone cancer via magnetic hyperthermia. Firstly, after 

excision of the tumour cells, the weakened bone is reinforced by bone cement. 

Secondly, the bioactive properties of magnetic glass ceramic will induce bone 

regeneration creating a chemical interfacial bond to the bone [17, 18]. Lastly, when the 

magnetic cement is exposed to a magnetic field, magnetic particles act as 

thermoseeds and start generating heat, which then destroys deep-seated remnant 

tumor cells. Hence, the recurrence of these tumoral tissues will be prevented by this 

technique so that there will be no need for another surgery after this treatment.  If one 

tumour cell is not removed or killed, it may proliferate again. Further approach is 

eliminating chemotherapy and radiotherapy techniques by a successful use of 

magnetic hyperthermia, which has the advantage of not killing healthy cells [19, 20]. 

This thesis investigated magnetic PMMA cements that can be used to treat bone 

cancer using magnetic heat generation. Orthopaedic and dental commercial PMMA 

cements were used in this study; Palacos® and Wintercryl® PMMA cements were 

mixed with magnetic glass-ceramic in different ratios to investigate their properties 

including mechanical properties, bioactivity, cytocompatibility and heat generation 

during magnetic field application. Ageing and storage condition effects on PMMA 

cements were also assessed.  

It was important to prepare samples in a consistent way to obtain reliable test results 

and reduce any variations, which could occur due to inconsistent dimensions, sanding 

and polishing. New silicone moulds were designed and fabricated to easily place and 

remove samples. All samples made using silicone mould had consistent dimensions.  

This study was important to provide further knowledge in improving magnetic PMMA 

cements to be efficiently used in bone cancer treatment. 

1.1 Aims & Objectives  
The main aim of this project is to develop magnetic PMMA cement using an optimal 

ratio of magnetic glass-ceramic (MGC) that meets criteria of ISO 5833:2002 for 

mechanical properties, demonstrates bioactive properties and can efficiently be heated 

to a targeted temperature to kill cancerous cells. In order to achieve the aims, this study 

focuses on answering the following research questions: 
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• What is the best MGC ratio in the cement that can meet the criteria of ISO 

5833:2002 standard for mechanical properties and lead to essential properties 

of cement such as bioactivity, and effective heat generation?  

• Is magnetic PMMA cement cytotoxic?  

• What is the effect of ageing PMMA cement on its mechanical properties?  

• Can magnetic PMMA cements generate heat under magnetic field? If yes, what 

is the current and frequency that can effectively heat the samples under safe 

conditions?   

In order to achieve these aims and answer to the research questions, the main 

objectives are: 

• Synthesis and characterisation of magnetic glass-ceramics  

• Development of a new mould design in order to sustain consistent dimensions 

and surface finish  

• Assessment of mechanical and in vitro heat generation properties of magnetic 

PMMA cements 

• Assessment of in vitro bioactivity and cytocompatibility properties of MPCs 

1.2 Thesis Structure 
This thesis is divided into five chapters as described below: 

Chapter 1 presents an introduction to magnetic PMMA cements, aims and main 

objectives of this thesis.  

A comprehensive literature review is provided in chapter 2. The chapter includes a 

section on bone structure, followed by different types of bone cancer and current 

treatment techniques, their limitations and side effects sections. Chapter 2 also 

contains sections on magnetic hyperthermia, which is aimed to be performed for deep-

seated bone cancer tissues, properties of magnetic glass-ceramics and magnetic 

cement along with their drawbacks and limitations. In the last part, the properties of 

plain and magnetic PMMA cements and their applications are described, including their 

mechanical and heat generation properties under the applied magnetic field.  
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Chapter 3 presents the materials and methods used in this study. Firstly, the 

preparation of magnetic glass-ceramic and its characterisation techniques are 

explained, followed by the design and fabrication of new moulds, made of silicone 

rubber. The preparation and characterisation techniques to determine handling 

properties, mechanical properties and morphology of two commercial PMMA cements 

are further explained. Finally, the last part of chapter 3 presents the preparation and 

characterisation techniques of magnetic PMMA cements, including mechanical 

properties, handling properties, biological properties and preliminary heating test.  

Experimental findings of this study and discussions are divided in two chapters. 

Chapter 4 presents the charaterisation of magnetic glass-ceramic. The experiences in 

fabrication of silicone rubber mould and the dimensions of prepared test samples using 

the test moulds are provided. Lastly, mechanical properties of aged commercial PMMA 

cements as well as their setting properties and morphologies are presented in the 

following part. In Chapter 5, setting properties, mechanical properties, in vitro 

bioactivity, cytotoxicity and heat generation of the resulted magnetic PMMA cements 

are evaluated. A summary of results and discussion are given at the end of each part.  

In Chapter 6, the main results of this research are summarised and discussed. The 

overall conclusions, limitations and possible future studies are reported.  
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2 Literature Review 
2.1 Bone and Bone Structure 
Bone is defined as a rigid endoskeleton which gives shape and mechanically optimal 

support to soft tissues and muscles and also assists movement [21, 22]. It has an 

active growing mechanism which undergoes remodeling throughout life. It consists of 

organic and inorganic phases. The inorganic phase is mainly composed of 

hydroxyapatite [(Ca10 (PO4)6(OH)2] that is a crystalline calcium phosphate salt [22-24]. 

By this way, it has a significant contribution to calcium/phosphate ratio in the body. 

Other inorganic minerals are carbonate, magnesium, sodium and potassium ions [21, 

24]. The organic matrix consists of collagen and non-collagenous organic materials 

[21, 22]. 

There are five major types of bones; long bones (tibia and femur), short bones (tarsal 

bones of the hand and foot), flat bones (skull), irregularly shaped bones (scapula) and 

sesamoid bones (patella). Most of the bones are composed of cortical and trabecular 

bones. Cortical (compact) bone, is found in the outer shell of the diaphysis (middle 

section of a long bone), is strong and dense and it is composed of osteons, osteoblast 

and osteocyte cells. Cancellous (trabecular) bone is lighter and less dense than cortical 

bone, and it consists of osteoblast cells, red blood cells, white blood cells and platelets. 

The mechanical properties of cancellous and compact bones are required in order to 

design biomaterials that would give enough support to the bones, which are given in 

Table 2.1. 

Table 2.1 Mechanical properties of human bone [16] 

 

The bone sections, diaphysis, bone marrow, epiphysis and metaphysis, can be shown 

in long bone structure easier than another type of bones, as can be seen in Figure 2.1. 

The diaphysis is the central region of the long bone, which is a thick cortex involving 

compact bone and medullary cavity.  

 
Tensile 
Strength 
[MPa] 

Compression 
Strength 
[MPa] 

Strain to 
Failure 

Young 
Modulus 
[GPa] 

Cortical Bone 50-150 100-230 1-3 7-30 

Cancellous Bone 10-20 2-12 5-7 0.05-0.5 
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This cavity is filled with bone marrow that can be hematopoietic (red) and fat (yellow) 

tissues. The end sections of the bone are called epiphysis and involve cancellous 

bones. The metaphysis is found between diaphysis and epiphysis, involves a growth 

plate that plays an important role in remodeling during adolescence. Bone tumours 

mostly originate in the metaphysis [21, 22, 25].  

 

Figure 2.1 Schematic figure of the long bone [26] 

Bone has a dynamic structure that regenerates itself. Osteoblast, osteocyte and 

osteoclast cells are crucial for bone regeneration [21, 22, 27]. Osteoblast cells are 

formed of mesenchymal stem cells. Thus, they are responsible for the formation of new 

bone. Eventually, they are trapped in the bone matrix. These entrapped cells then 

transform into osteocyte cells [21, 25], which are responsible for maintaining the 

mineral concentration of the body. Osteocytes are primary cells in the mature bone, 

and thus, they are the most common type of bone cells. However, these cells do not 

divide. The only type of cell that is capable of dividing is the osteogenic cell, which is 

transformed into osteoblast and osteoclast cells to maintain bone repairs and growth. 

Osteoclast cells are responsible for the breakdown of old bone. These cells are 

originated from hematopoietic stem cells, which are monocytes and macrophages [24, 

25]. However, when the cells divide uncontrollably, they cause the growth of lump in 

the bone, which is called bone tumour, and it might be cancerous. Bone cancer and 

types will be explained in the next section.  



 

9 
 

2.2 Bone Cancer 
Abnormal tissue growth, which is named as neoplasm, can be classified as benign or 

malignant [28]. Although a benign tumour is defined as abnormal cell growth, it does 

not spread to another part of the body, and when it is removed, it does not grow back. 

In contrast, a malignant tumour can spread and grow in another part of the body even 

after it is removed [28, 29]. Therefore, while benign tissues are considered as non-

cancerous tissues, malignant tissues are defined as cancerous [30]. Primary bone 

tumours, which originate in the bone, are rare. According to the American Cancer 

Society, there were an estimated 1,762,450 new cancer cases in 2019 and 606,880 

cancer deaths. For bone cancer, about 3,500 new cases will be diagnosed, and about 

1,660 deaths from these cancers are expected. In the United States, in 2018, 

approximately 280,000 adults between the ages of 18-64 were living with metastatic 

bone cancer [1]. Every year, 580 new cases of primary bone cancer are diagnosed in 

the UK [2], yet it can be misleading as it is challenging to differentiate tissue lesions 

from cancerous cells. Conversely, the actual number of bone cancer cases are higher 

than these numbers as cancer does not always originate in the bone, but spreads to 

the bone from another part of the body. This is known as secondary or metastatic 

cancer.  

Metastases more commonly occurs in the bone than primary bone cancer (see Figure 

2.2) [29]. Metastatic cancers can be aggressive and may develop rapidly, as it can 

quickly proliferate even after they are removed. The most common types of primary 

cancer that spread to the bone are prostate, breast, lung, kidney and thyroid cancers 

[29, 31]. Welch-McCaffrey et al [32] ., have stated that, in 70-80% of patients who have 

bone cancer, it has originated in the breast, prostate or lung. Also 20% of the cancer 

is originates in the kidney, thyroid, liver, bowel, cervix, uterus or pancreas. According 

to Needham and Hoskin et al, diagnosed tumours in breast, lung and prostate regions, 

are directly related to metastatic bone cancer [29, 31]. 

 

Figure 2.2  Comparison of metastatic cancer and primary bone tumours [29] 
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2.2.1  Diagnosis of Bone Tumor 
Symptoms of the tumour are usually pain, fractures and swellings. The age of the 

patient and location of the lesion in the body as well as the gender are crucial to 

determine the type of cancer [33]. Blood test, imaging and biopsy techniques are 

performed to understand whether there is a tumour, lymph nodes (small structures, 

which filters bacteria, viruses etc.) or cancer. A blood test is the first analysis, when 

imaging procedures are applied in order to determine the precise location and the size 

of the tumour [34]. Imaging yields valuable information regarding the diagnosis stage, 

the volume of cancerous tissue, observing the stage of healing and recurrence of the 

tissue. An imagining technique is chosen depending on the age of the patient and 

sensitivity to the radiation [29, 34].  

 Different imaging techniques used for diagnosis are; 

• A radiograph is an initial technique applied using x-ray and this technique is 

especially performed for children. It has a low radiation dose, low cost and easy 

to obtain [29, 34].  

• Bone Scan involves radionuclide agent to visualize evaluation of the bone 

tumour. The abnormal tissues tend to absorb radioactive reagents. By this way, 

any region in the bone that has abnormality is detected as “hot spots”. Bone 

scan can be used to determine osseous metastases in the body as well [29].  

• Ultrasound can be used as guidance for biopsy purposes due to its limited 

efficiency to detect the lesions [29]. 

• Computed Tomography (CT or CAT) Scan provides multiplanar imaging while 

exposing the patient to high ionizing radiation using x-ray [33-35]. The radiation 

dose of CT has been reduced in recent years maintaining the quality of imaging, 

due to adverse side effects of radiation, especially in children [34]. It is usually 

preferred for characterisation of bone tumour [29].  

• Magnetic Resonance Imagining (MRI) can detect and differentiate healthy 

and cancerous tissues better than computed tomography [33, 35]. It applies a 

magnetic field to create an image of the lesion rather than radiation [29, 34]. It 

is most suitable for soft tissue lesion detections [29].  
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• Positron Emission Tomography (PET) Scan includes injection of a 

radiotracer within the body. The radiotracer contains glucose which is absorbed 

by high metabolic lesions. PET scan is eligible for the whole-body scan, soft 

tissues and skeleton. It can be combined with CT (PET/CT) or MRI (PET/MRI) 

to improve the detection and localization of the lesion as well as the stage of 

cancer [29, 33-35].  

A biopsy is a further step to the diagnosis of the lesion which is an initial surgical 

procedure. A part of the lesion is removed for histological and pathological examination. 

Biopsy should be applied carefully as there is a high risk of spreading cancer to healthy 

tissues and also to prevent future complications during limb salvage surgery [28, 33, 

36].  

2.3 Primary malignant and benign bone tumours  
The World Health Organization (WHO) has classified bone tumours regarding the 

histologic tissue and their differentiation pattern. A complete diagnosis may not be 

possible in some cases, thereby, evaluation of bone lesion can be done with the help 

of some characteristic information such as patient’s age and a major site of the lesion. 

Gender of the patient can also narrow down the possibilities and help eliminations. The 

WHO classification of the primary bone tumours provided and other characteristic 

information are provided in Table 2.2. 
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Table 2.2 Tumor sites, types, age, gender prevalence and major sites in the body [29, 37] (M=male, F= female) 

Tumour Tumour Type Benign/Malignant Main Age Gender Major Site 

Osteosarcoma Osteogenic tumour Malignant 10-25 M>F Metaphysis of long bone 

Chondrosarcoma Cartilage tumor Malignant 40-70 M>F Pelvis, rib, femur, humerus 

Ewing’s Sarcoma Ewing tumour Malignant 5-20 M=F Long bones, pelvis 

Chordoma Notochordal tumors Malignant 40-70 M=F Sacrum, skull base, spine 

Malignant Fibrous Fibrohistioctic tumour Malignant Adults M>F Metaphysis of long bones 

Osteochondroma Cartilage tumour Benign 10-20 M=F Medullary cavity, femur, tibia 

Enchondroma Cartilage tumour Benign 
Children& 

Adults 
M=F 

Proximal humerus, distal femur, 

hands and feet 

Giant Tumor Cells Giant cell tumour Benign 20-45 F>M Epiphysis of long bones 

Osteoid Osteoma Osteogenic tumour Benign 7-25 M>F Femur, tibia, spine 

Fibrous Dysplasia Miscellaneous lesion Benign 5-30 M=F 
Intramedullary, femur, tibia 

and skull 
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The most common primary malignant bone tumours are osteosarcoma (35%), 

chondrosarcoma (25%), Ewing sarcoma (16%), chordoma (8%) and malignant fibrous 

histiocytoma (5%) (Figure 2.3) [29]. 

 

 
 

Figure 2.3 The percentage of malignant bone cancer types [29] 

The most common primary malignant bone tumour seen in children and adolescents 

is osteosarcoma (osteogenic sarcoma) [34]. It can be mostly seen during the bone 

formation phase. Hypothetically, malignant transformation is derived from 

mesenchymal cells [34, 38, 39]. Osteosarcoma can originate anywhere in the skeleton, 

mostly seen in the centre of the long bones but rarely can be seen in soft tissues. The 

most common parts in the body that osteosarcoma can occur are arms and legs as 

well as around knee and shoulder [34, 38]. In the UK, approximately 30 children are 

diagnosed with osteosarcoma [40].  

Chondrosarcoma usually occurs in cartilage in the bone, which is mostly seen in 

adults between the age of 30 and 80 years old [29]. However, there are some 

incidences that can be seen in children as well  [41].  It can be mostly observed in 

pelvis, femur, humerus, scapula and ribs [29]. 

Ewing sarcoma is mostly seen in children and adolescents between the age of 10 and 

20 years old. The origin tissue of the Ewing sarcoma is still unknown but mostly occurs 

in pelvis, femur and tibia [29]. 

Chordoma is a rarely seen slow-growing type of bone tumour. The origin of the tumour 

mostly is primitive spine, thus, this type of tumour can be seen in the spinal cord and 

in the skull base [28, 29].  

A malignant fibrous histiocytoma is mostly seen in adults who are between the age 

of 30 and 70 years old. It originates in fibroblast, histiocytes and pleomorphic cells. 

Similar to osteosarcoma, it can originate in the centre of a long bone in femur and 

humerus [29]. 
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The most common primary benign bone tumours are osteochondroma (35%), 

enchondroma (20%), giant cell tumour (15%), osteoid osteoma (10%) and fibrous 

dysplasia (5%) (Figure 2.4) [29].  Benign bone tumours are not cancerogenic. However, 

they can be destructive and might need the same treatment techniques as malignant 

bone tumours.  

 

 
 

Figure 2.4 The percentage of primary benign tumour types [29] 

Osteochondroma is a common type of benign tumour in the age range of 10 and 20 

years and mostly seen in the metaphysis of the long bones [37, 38]. 

Enchondroma has a wide range of possibilities that can be seen in anyone [37]. It 

mostly occurs in the diaphysis of the long bones and medullary cavity in the hands and 

feet [38]. 

Giant cell tumour is mostly seen in adults who are in the age between 20 to 45 years 
[37]. This type of benign tumour can be seen in the epiphysis of long bones [37], as 

well as in knee and sacrum [38]. Even though it is a benign tumour, it can still be 

aggressive and regrow after curettage possibly at a rate of 20% to 50% [37, 42].  Some 

clinical studies showed that the transformation of giant cell tumour to the malignant 

tumour is possible [42, 43]. 

Osteoid osteoma is mostly seen children and young adults between 10 and 30 years 

of age [37]. It mostly arises in long bones and rarely in the spine [38]. 

Fibrous Dysplasia is a rare type of primary benign bone tumour and that can be seen 

in children and adults between the age of 5 and 30 years old [37]. The reason for the 

formation of this tumour is due to the failure of bone forming cells. It is mostly seen in 

long bones, pelvis, ribs and skull [37, 38]. 
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2.3.1 Treatment Techniques for Bone Cancer 
After diagnosing the tumour, based on type, size, stage of the tumour and location, an 

appropriate treatment technique is applied. Patient’s age and general health can also 

play an essential factor in that decision. The most common treatment techniques are: 

• Surgery 

• Chemotherapy 

• Radiation therapy 

• Targeted therapy 

Surgery is a primary treatment technique for a bone tumour by removing the entire 

cancerous tissue [36, 44]. It is essential to not leave any cancer cells behind as it can 

grow and proliferate again. Therefore, the outer shell (margin) of the removed tissue is 

pathologically tested. If there are residual cancer cells around the edge, it is called a 

positive margin. On the contrary, negative margin means there are no cancer cells left 

in the region. In order to be sure that the removed region has negative margins, the 

surgeon removes some healthy tissue along with the tumour tissue. This technique is 

called wide-excision. In some cases, the whole limb might be removed, and this is 

called amputation. This type of surgery has been gradually reduced in the past 20 

years [44, 45]. However, it can still be the safest option to prevent recurrence of cancer 

[44]. Another surgery type is limb-salvage, which includes wide-excision. The limb can 

still function, but it will need a bone graft or prosthesis for support [36, 45].  

If the tumour is in pelvic bone, jaw, skull or spine, the wide-excision technique cannot 

be performed. Therefore, the suggested techniques are curettage, cryosurgery and 

bone cement.  Curettage is removing the tumour tissue using a curette by scraping. It 

is not only a treatment technique but also can be used as a diagnosing technique [28, 

29, 45]. In cryosurgery treatment, after removing the tumour tissue within the bone, 

the cavity is filled with liquid nitrogen. The drastic drop in the temperature freezes and 

kills the cancer cells. Bone cement is used to fill the cavity after the removal of tumour 

tissue, and as well as filling the gap between the prosthesis and the bone [45]. More 

information about bone cement are given in Section 2.7. 

Chemotherapy and radiotherapy treatment techniques can be applied solely or 

together, depending on the tumour type and size. These therapy techniques can also 

be applied after the surgery to prevent the reoccurrence of cancer.  
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Chemotherapy uses drugs that are circulated along the bloodstream to reach and kill 

tumour cells. It is mostly performed for osteosarcoma and Ewing sarcoma bone 

tumours [36]. The most common drugs are Doxorubicin (Adriamycin®), Cisplatin, 

Etoposide (VP-16), Ifosfamide (Ifex®), Cyclophosphamide (Cytoxan® ), Methotrexate 

and Vincristine (Oncovin®) [36, 45]. The side effects of the chemotherapy are hair loss, 

mouth soreness, nausea and loss of appetite. However, in the long term, it can damage 

healthy cells, which are mostly blood cells [45].  

In radiotherapy, X-ray beams are applied to shrink and kill cancer cells [36, 46]. In 

order to perform an effective treatment, high doses are applied. However, it can be 

harmful to healthy tissues. Therefore, it is usually applied in conjunction with another 

treatment [36, 46]. There are two types of radiation therapies; external-beam therapies 

and internal radiation therapy. Intensity-modulated radiation therapy (IMRT) and proton 

beam radiation therapy are two examples of external beam therapies and in these 

therapies, radiation is delivered from an outsource machine to the body. IMRT is a 

technique that aims to deliver maximised radiation dose to the tumoral tissue without 

damaging normal tissue. Determination and planning of the dose is done by conformal 

radiation and the beam can be directly sent to targeted area [47]. Proton beam therapy 

uses high energy protons to destroy cancer cells. However, it is only been successful 

in specific cancer types; brain, neck, head and sarcomas [48]. Internal radiation 

therapy, also called brachytherapy, uses permanent or temporary radioactive materials 

inserted into the cancerous tissue. These materials can be seeds, balloons, wires or 

tubes [49]. The side effects of the therapy are fatigue, loss of appetite, redness in the 

skin, hair loss, low blood counts, nausea and vomiting [45].   

In targeted therapy, new generation drugs are specifically designed to detect 

mutations in genes. These mutations cause changes in protein structures of the cells, 

hence, the drugs can recognise and inhibit the proteins[45, 50, 51]. The targeted drugs, 

then, can block the cancerous growth cells and kills them by delivering toxic materials 

into the cells. This type of therapy can be more effective than chemotherapy, especially 

for chordomas. Denosumab (Xgeva® or prolia®), a monoclonal antibody-based drug, 

has been used in targeted therapy for bone cancer [45, 51].  
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According to WHO, cancer treatment techniques can also induce deaths due to their 

side effects. Although the surveillance rate of cancer has been increasing every year, 

there are new treatment techniques emerging to decrease the effects and increase the 

efficiency of the treatments [52]. Regardless of the side effects in the body such as 

nausea and hair loss, there is also an undeniable traumatic psychological effect on 

cancer patients.  

2.3.2 Hyperthermia 
In the last two decades, hyperthermia has been seen as a promising technique that 

aims to destroy cancer cells by increasing the body temperature to a high ‘fever’ using 

an external source [7, 53, 54]. However, hyperthermia has been known since 300 BC 

[19, 20, 55]. Hippocrates and Parmenides emphasised the importance of heat to cure 

any diseases which are not curable by surgery or medicine. The terminology itself 

comes from the Greek word; ‘hyper’ means raise and ‘thermia’ means temperature. It 

attracted attention in the 1970s for the treatment of cancer and since then it has been 

investigated as a low risk treatment with very encouraging and promising potential [20].  

Hyperthermia aims to destroy cancerous cells by raising the temperature to 41-45°C 

while preserving healthy tissues (Figure 2.5). The effectiveness of the therapy depends 

on the exposure time and temperature [19]. This technique can be either performed on 

its own or in conjunction with established therapy techniques such as chemotherapy 

and radiotherapy [19, 56]. According to the studies reported by Issels et al. [57] and 

Kampinga et al. [58] the use of hyperthermia increases the sensitivity of the cells to the 

uptake of chemical drugs and radiation doses since it increases blood flow.  

Exposure to high temperature affects cancerous cells more than healthy cells due to 

physiological and biological changes [19, 20]. The protein damage in cancer cells 

starts at 39°C and that can be irreversible. At 41-42°C cancer cells can be inactivated 

and beyond that, the threshold temperature leading to necrotizing is 45°C. It has been 

clinically indicated that an applied temperature between 41-43°C, enhances the 

efficiency of radiotherapy and chemotherapy. The side effects of radiotherapy and 

chemotherapy may persist even with the adjunctive use of hyperthermia therapy; 

however, these can be minimized by reducing the dosage of chemotherapeutical drugs 

and radiation [20, 55]. 
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Cancer cells have poor blood circulation which causes accumulation of lactic acid with 

a high level of glucose, resulting in low pH [7, 20]. Due to these reasons, cancer cells 

become more sensitive to high temperature, however, the overexpression of a type of 

proteins called heat shock proteins (HSPs) in cancer cells creates thermotolerance 

due to high heat exposure. Exposing the tissue to high temperature (40-44°C) still 

leads the cells to apoptosis due to disorder in the cell cycle, inadequate nutrients and 

low pH [20, 53]. 

 

Figure 2.5 Effect of hyperthermia on cancerous cells [59] 

2.3.2.1 Hyperthermia Techniques 
There are three main application techniques of hyperthermia depending on the location, 

size and stage of cancer. These techniques are whole-body, regional and local 

hyperthermia. The external sources of delivering heat to cancerous tissue are 

microwaves, ultrasound, infrared radiators, radiofrequency energy and other sources 

as implants, hot water and magnetic materials which will be described in the next 

sections below [19, 20, 53, 55]. In order to reach a targeted temperature in the tumour 

site, the specific absorption rate (SAR), a measure of absorption rate by the human 

body, should be considered to define the exposure time and applied energy by the 

external sources [19].  

Whole Body Hyperthermia (WBH) is the most efficient technique for metastatic 

cancer that has spread throughout the whole body [53, 56]. It aims to stabilise the 

temperature in the whole body between 41- 42°C by using different techniques such 

as radiant WBH and extracorporeal WBH [19, 20]. It is important to monitor the 

temperature that reaches the target temperature but does not exceed it. Therefore, the 

temperature of the cancerous tissue site, skin and air are monitored [20]. The heat is 

provided by thermal conduction techniques using hot water baths, hot water blankets, 

thermal chambers and radiant heat. In radiant WBH, microwaves radiation, infrared 

radiation and radiant heat are used.  
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In extracorporeal WBH, heated blood is circulated throughout the bloodstream in the 

body. The process can take 3-4 hours depending on the technique. Reaching the target 

temperature might take 1- 2 hours and that temperature would be maintained for one 

hour, then it will be cooled down for another hour [20, 53]. WBH has been very 

promising in making the cancerous cells sensitive to chemotherapy and radiation [19, 

20, 53, 56]. 

Local Hyperthermia is commonly used for superficial, intracavitary, intraluminal and 

intracranial tumours such as breast cancer, malignant gliomas, head and neck cancers, 

locally advanced cancers and soft tissue sarcomas [53]. The heat is delivered with 

microwaves, radiofrequency and ultrasound using superficial applicators or probes 

such as spiral, waveguide, current sheet, horn or compact applicators [19, 53, 56]. The 

penetration depth of local hyperthermia is not deeper than 3-4cm and the temperature 

reaches 42°C - 43°C. There are three techniques to deliver heat depending on the 

region of cancerous tissue. The external or superficial technique is performed for the 

tumour below the skin using external applicators with high-frequency energy waves. 

This is a convenient technique for breast cancer and cervical lymph node metastases 

from head and neck cancer. Endocavitary or intraluminal technique is performed by 

inserting radiative probes into the organs which have natural openings such as vagina, 

rectum, cervix and urethra. Interstitial is similar to endocavitary technique but 

anaesthesia is applied in order to place the probe into a deeply seated tumour site. 

This technique can be performed for brain tumours as well [19, 20, 56].  

Regional (part-body) Hyperthermia is preferred for deep-seated and locally 

advanced cancers (not eligible for surgery) such as bladder, cervical, rectal, prostate, 

soft tissue and ovarian cancers [19, 20, 53]. Depending on the size and location of the 

cancerous tissue, there are three different techniques to apply regional hyperthermia 

using external applicators, thermal perfusion and continuous hyperthermic 

intraperitoneal perfusion (CHPP). The external applicators can be named as 

radiofrequency and microwave which is used to distribute heat to deeply seated 

cancers [19, 20, 53]. However, it is hard to deliver and sustain the thermal conditions 

without over-heating the normal surrounding tissue [19]. The limbs and some organs 

can be heated to the target temperature using thermal perfusion technique which is 

circulating heated blood. CHPP is an alternative technique for curing stomach and 

peritoneal mesothelioma cancers. 
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This technique can be applied with chemotherapeutic drugs as well which is then called 

hyperthermic intraperitoneal chemotherapy (HIPEC). CHPP or HIPEC is performed 

during the surgery circulating warmed fluid (with or without anticancer drug) through 

the peritoneal layers increasing the temperature within the region to 41-42°C [19, 20, 

53]. 

2.3.2.2 Side Effects and Limitations of Hyperthermia Treatments 
Although the applied temperature is maintained between 41-43°C, the deposition of 

heat can cause blisters, pain and burnings. Maintaining a homogenous temperature 

within and around the targeted area stands out as the main limitation of hyperthermia 

treatment. The distribution of heat to the targeted area is challenging since the heat 

can harm healthy tissue. Secondly, heat shock proteins (HSPs) can hamper the 

effectiveness of applied heat to the cancer cells [20, 55]. 

2.3.3 Magnetic Hyperthermia 
Magnetic hyperthermia or magnetic field hyperthermia technique has been a promising 

solution to address the limitations and side effects of the aforementioned therapy 

techniques. Considerable attention has been paid to this treatment technique when 

using magnetic materials [16] such as magnetite [60] and magnetic glass-ceramics [54, 

61, 62]. These studies will be described in Section in 2.6.2 and 2.8 respectively. When 

magnetic materials are subjected to a variable electromagnetic field they generate heat 

and start acting as thermoseeds depending on their magnetic properties [5].  

Using magnetic materials results in more localized heat distribution to the deep-seated 

cancerous bone tissues while preserving the healthy cells, so that higher temperature 

(46-48°C) can be applied [19, 20, 55]. The heat generation can be achieved by 

hysteresis loss and eddy current, which are explained below [55].  

Hysteresis loss (Figure 2.6) is achieved by placing the magnetic material inside a 

conductive coil. It is known that a current flowing through a conductive coil induces a 

magnetic field. This magnetic field (H, A/m) can be strengthened by increasing the 

voltage, which in turn increases the magnetic intensity as well as the flux density (B, 
Tesla) of the magnetic material to a maximum saturation point. When the solenoid 

current is removed, flux density reduces to a point higher than the initial flux of the 

magnetic material. From this point on, restarting the solenoid current in the opposite 

direction, repeats the process in the opposite polarity and a loop is formed called the 

hysteresis loop. 
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The hysteresis loss is the area of the enclosed loop as seen in Figure 2.6, which is in 

the form of heat energy. For instance, if the area of the loop is small then the hysteresis 

loss is small [55].  

 

Figure 2.6 shows a standard B-H curve [63] 

When a conductive coil is connected to an alternating current, according to Faraday’s 

law, an electromotive force (EMF) is induced inside the material. This interacts with the 

magnetic flux (B) of the coil and forms eddy currents. The eddy currents cause power 

loss in the form of heat, which is called eddy current loss [55].The magnetic glass-

ceramics have attracted attention due to their heat generation abilities under magnetic 

field that can kill the cancerous cells. In addition to that some glass-ceramics can 

enhance bone regeneration after surgery. The properties of glass-ceramics and 

magnetic glass-ceramics are described in next sections 2.6 and 2.6.2 . 

2.4 Glass and Glass-Ceramic  
Ceramics are crystalline inorganic materials composed of at least two chemical 

elements [64, 65].  Glasses are non-crystalline, amorphous structures prepared by the 

rapid cooling of the melt. Because they do not go through crystallisation, they maintain 

their amorphous structure [66]. However, glass-ceramics are polycrystalline materials 

that consist of a mixture of glass and ceramic phases, hence they show both 

amorphous and crystalline phases. Therefore, glass-ceramics show better mechanical 

strength compared to the glasses [67]. The difference between glass structure and 

crystalline structure can be seen in Figure 2.7. While crystals have long range and 

organised atoms, glasses have the short atomic range and disorganised atoms.  
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Figure 2.7 Difference between A) amorphous and B) crystalline structure of SiO2 [61] 

The specific volume-temperature diagram (Figure 2.8) explains the behaviour of 

crystalline and amorphous materials during the change in the temperature. Cooling a 

liquid from high temperature will either form a crystal or supercooled liquid. For 

crystalline materials during cooling from point A to point B, specific volume decreases 

dramatically. Decreasing the temperature below the melting temperature (Tm) leads to 

crystallisation and it causes a sharp decrease in the volume. From point B to point C, 

the specific volume continues decreasing slowly and the melt solidifies becoming a 

crystalline material. If the material can be cooled rapidly below the melting point without 

going through the crystallisation and there are no discontinuous changes in the 

structure during the cooling, then it becomes a supercooled liquid. During supercooled 

liquid phase, the change in the specific volume is not sudden as it occurs with 

crystalline materials. The decrease in the temperature will increase the viscosity 

gradually and lead to atom movements and rearrangements in the structure.  

At further decreases in the temperature, the viscosity is so high that the supercooled 

liquid will become a solid (Point D). Glass transition range, where on the curve 

connection between supercooled liquid and glassy state, is defined as transition 

temperature (Tg). The glass can be characterised by Tg value and it is a very important 

indicator that shows the temperature where the glass starts showing viscoelastic 

behaviour [64, 68, 69]. 
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Figure 2.8 Diagram of specific volume-temperature variation for amorphous and crys-

talline materials [70] 

2.5 Formation of Glass-ceramics from Glass 
The production of glass-ceramics starts with the production of glass. A scheduled 

controlled heat treatment process allows the formation of glass-ceramics from a base 

glass and that allows the glass-ceramics to have different properties over the glass.  

The formation of glass-ceramics involves nucleation and crystallisation steps resulting 

in the crystallisation of the glass. During the nucleation phase, a sufficient number of 

nuclei is formed when the material is further heated up to crystallisation temperature, 

the nuclei will grow into crystals within the glass structure [71]. It is crucial to perform 

a careful and controlled heat treatment to form a sufficient number of small crystals. 

The number, growth rate and size of crystals can be controlled by the time and 

temperature of heat treatment and this can alter the properties of the GC [66]. 

 

A 

B 
C 

D 
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2.6  Bioactive Glasses and Glass-Ceramics  
Bioceramic materials have been developed for use in medical and dental applications. 

Their high biocompatibility features make them primary materials for supporting and/or 

replacing the hard tissues such as bone and tooth. Bioceramic materials are divided 

into three groups: bioinert, resorbable and bioactive materials. Whilst bioinert materials 

(zirconia and alumina) cannot form any chemical bond between the tissue and the 

implant, bioactive materials (bioactive glasses and glass-ceramics) can provide 

chemical interactions between the living tissue and the implant, forming an interfacial 

bonding to the bone that enhances the bone regeneration. Resorbable materials 

(calcium phosphates) are degradable materials that can be simultaneously replaced 

by the tissue in a period of time [72].   

Bioactivity of a material can vary based on the composition and type of the material 

and it can have an impact on the formation of interfacial bonding between the implant 

and host tissue. To evaluate the bioactivity level of the material, the bioactivity index 

(IB) is used.  

IB=100/t0.5bb, 

In the formula, t0.5bb is the time needed for 50% of the implant surface to form a chemical 

bond with the bone [73-75]. According to its bioactivity level, the bioactive materials are 

classified into two groups, class A and class B.  

If IB value is greater than 8 the material is defined as osteoproductive. These materials 

do not only bond to the bone and induce new growth but also help the formation of soft 

tissues. These type of materials are involved in Class A materials [75]. 

If IB value is lower than 8 but greater than 0 then the material is defined as 

osteoconductive. These materials bond to the bone and enhance the bone growth but 

do not stimulate soft tissue formation [75]. 

Bioactive glass-ceramics have attracted attention in the medical field since they trigger 

the chemical reaction that forms a strong interfacial bond to connective tissue and 

enhances the regeneration and ingrowth of bone [18]. This makes them appropriate 

and very useful biomaterials not only to replicate natural bone but also to replace the 

bone tissue while triggering the stem cell growth. 
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The formation of bonding to the bone is created by hydroxycarbonate apatite layer 

(HCA) formation on the surface of the bioactive material and as stated in Section 2.1, 

apatite is found in the mineral phase of the bone. Such similarity creates a strong 

interfacial bonding. In vitro, a simulated body fluid (SBF) that mimics human blood 

plasma, is used to test the bioactivity of the materials. After immersion in the SBF 

solution, the ion exchange and chemical reaction between the fluid and materials 

induce the formation of HCA layer [72, 75]. Figure 2.9 represents SEM images of the 

HCA formation on the surface of a bioactive glass-ceramic. The formation and growth 

of globular apatite crystals can clearly be seen throughout the 28-day immersion in 

SBF [76]. Such strong bounding between HCA and the glass in vitro mimics the 

interfacial bonding that takes place in the body [72]. Buhner and Lemaitre et al. [77] 

reported that in vitro bioactivity test, which uses SBF, is not convenient to predict 

interfacial bonding of the material in vivo. It is known that, SBF solution only mimics the 

inorganic part of human blood plasma, therefore, it does not maintain and provide 

physiological conditions in the human body. Moreover, the solution is lack of proteins 

and the carbonate content is not controlled. Due to these facts, SBF should be 

combined with cell experiments for a better evaluation [29]. 

 

Figure 2.9 SEM images of HCA layer on a bioactive glass-ceramic A) 1-day B) 3-day 

C) 7-day  D) 28-day [76] 

In the early 1970s, Larry L. Hench and his colleagues have tried different glass 

compositions which would bind to the bone [73]. Then, in 1971, Hench et al., published 

a paper which mentioned the first bioactive glass, Bioglass® (45S5), having a 

composition of 45% SiO2, 24.5% CaO, 24.5%Na2O and 6%P2O5 (wt%). The glass is 

named 45S5 because the composition has 45% SiO2 and Ca/P ratio is 5:1 in molar 

ratio and 45S5 Bioglass® is approved by the FDA to be used as a bone graft [66, 72-

74]. Examples of other bioglass compositions explored by Hench and his colleagues 

will be provided in Section 2.6.1. 

A B C D 
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 The main conditions of achieving bioactive glass were determined as having less than 

60 mol % SiO2, high content of CaO and Na2O and high CaO/P2O5 ratio. The phase 

diagram of Na2O-CaO-SiO2 (Figure 2.10) at constant 6 wt % P2O5, created by Hench, 

shows the change in the bioactivity of glass and glass-ceramics depending on the 

change in the composition [71, 78, 79].  

 

Figure 2.10 Na2O-CaO-SiO2 diagram for bioactivity at a constant 6% P2O5 (wt %) [79] 

 

According to the diagram, region I represents class B glasses, having compositions 

between 52 and 60 mol% SiO2; they show lower bioactivity rate between IB=2 and IB=8. 

Hydroxyapatite is one of the main examples of class B bioactive ceramics. Class A 

glasses belong to region V which shows the highest bioactivity as IB=8 and IB=10. 

These bioactive glasses are 45S5 Bioglass® and 55S4.3 Bioglass® (see Table 2.3 for 

the composition). An example of class A glass-ceramic is Cervital®. The composition 

of some common bioactive glass and glass-ceramics is given in Table 2.3. The 

bioactive materials in this class not only enhance the osteoconductivity (enhancing 

bone formation) but also promote osteoinductivity (enhancing transformation of 

undifferentiated cells to osteoblast cells). Region II represents bioinert materials since 

increasing the content of SiO2 decreases the reactivity of the glass. Region III 

represents resorbable bioactive materials and they degrade within a few days. Region 

IV type biomaterials are not forming glass structure [71, 75, 78, 79]. 
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2.6.1 Commercial Bioactive Ceramics 
Bioactive glasses have low strength to be used in load-bearing applications. This issue 

leads to producing glass-ceramics (GC). The bioactive glass-ceramics have been 

widely used in orthopaedic load-bearing applications due to their high mechanical 

strength. The composition of the bioactive glasses and glass-ceramics can be tailored 

or modified for required uses. The compositions of the most common bioactive glasses 

and glass-ceramics are given in Table 2.3. Bioceramics such as Ceravital® (glass-

ceramics), Dicor® (glass-ceramics), Bioverit® (glass-ceramics) and Cerabone® A-W 

(glass-ceramics) and bioglasses such as 45S5, 45S5,4F and 55S4.3 have been in the 

market since 1985 [80-83]. 

Table 2.3 Composition of the most common commercial bioactive glass and glass-

ceramics (in wt %) [78, 82, 84, 85] 

Composition(wt%)  45S5 45S5.4F      55S4.3        Ceravital®     Dicor®        Bioverit®  A/W® 

SiO2 45 45 55 46.2 61.9 38.7  34 

CaO 24.5 14.7 19.5 20.2 3.92 -  44.7 

Na2O 24.5 24.5 19.5 4.8 - 10.4 - 

P2O5 6 6 6 - - 8.2 16.2 

CaF2 - 9.8 - - - - 0.5 

Ca(PO3)2 - - - 25.5 - - - 

MgO - - - 2.9 15.5 27.7 4.6 

K2O - - - 0.4 15.4 6.8 - 

Al2O3 - - - - 0.6 1.4 - 

MgF - - - - - 4.9 - 

TiO2 - - - - - 1.9 - 

 



 

28 
 

The mechanical properties of Bioglass®, Cerabone A-W®, Bioverit® and Ceravital® are 

provided in Table 2.4 along with the properties of bone. The table shows that bending 

strength, fracture toughness and Vickers hardness of commercial Bioglass® is lower than 

cortical bone, whilst glass-ceramics are either above or within the range. Therefore, 

Bioglass® is mostly used in non-load bearing applications. Bioglass has good biological 

properties such as biocompatibility and bioactivity but its poor mechanical properties lead to 

development of composite materials to provide better mechanical properties that can be 

used in load-bearing applications. These biomaterials are commonly used for dental 

implants, eye lenses, cranial repairs and orthopaedic applications [86]. Moreover, they also 

can be used in drug delivery systems, cell separations, coatings on the prostheses, 

compositions of scaffolds and magnetic hyperthermia treatment of cancer [87-89].  

Table 2.4 Comparison between mechanical properties of bone, commercial bioactive 

glass and glass-ceramics (adapted from [90-92]) 

 

Materials Vickers 
Hardness 

(MPa) 

Bending 
Strength 

(MPa) 

Fracture 
toughness 

(MPa) 

Young’s 
Modulus 

(GPa) 

Cortical Bone 60-75 50-150 2-12 7-30 

Concellous 
Bone 

40-60 10-20 0.1 0.05-0.5 

Bioglass® 45S5 4.58±9.4 40-42 0.6 35 

Cerabone® A/W 680 215 2.0 118 

Bioverit® 500 100-160 0.5-1.0 70-88 

Ceravital® 294 100-130 4.6 100-159 
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2.6.2 Bioactive magnetic glass-ceramics 
Magnetic glass ceramics (MGCs) provide two major advantages for hyperthermia 

treatment of bone cancer. Firstly, they are bioactive thus, they create a strong bond to 

the bone by forming an apatite-like layer on the surface and promote bone growth. 

Secondly, when they are subjected to a variable electromagnetic field they generate 

heat due to their magnetic properties and start acting as thermoseeds [5]. It is expected 

that these features will provide better results in the treatment of bone cancer via 

magnetic hyperthermia technique. The effect of high temperature on cancer cells and 

magnetic hyperthermia technique was discussed in Section 2.3.2 and 2.3.3. Different 

compositions of magnetic glass-ceramics and their magnetic properties have been 

reported in the literature. 

The first bioactive magnetic glass ceramic, 40Fe2O3-29CaO-31SiO2-3B2O3-3P2O5 

(wt%), was synthesised by Kokubo et al. [93] to treat musculoskeletal tumours. This 

magnetic glass ceramic (MGC), containing 36 wt% magnetite, had 32 A.m2/kg of 

saturation magnetisation and 10 kA/m of coercive force. Moreover, in vivo study 

showed that outer cortex of a rabbit’s tibia was heated to 43°C in 5 minutes under a 

magnetic field of 24 kA/m and 100 kHz frequency. The result of the study showed that 

the thermoseed behaviour of the magnetic glass ceramic was efficient for the 

hyperthermic treatment of cancer [93]. 

Bretcanu et al. [61] synthesised a magnetic glass-ceramic, 24.7SiO2-13.5Na2O-

13.5CaO-3.3P2O5-14FeO-31Fe2O3 (wt%), which provided a unique crystalline phase. 

The composition had 45 wt% magnetite, thereby, it was named S45. The generated 

saturation magnetization was 34 A.m2/kg and coercive force was 6.8 kA/m. Bioactivity 

tests showed apatite-like layer formation on the surface after soaking for 2 weeks in a 

simulated body fluid (SBF). 
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In order to evaluate the effect on magnetic properties depending upon the 

crystallographic structure and microstructure of the system SiO2-Na2O-CaO-P2O5-

FeO-Fe2O3. Bretcanu et al. [6] prepared a different composition of MGCs having 35% 

of magnetite (wt%), that was named S35. The effect of magnetite amount on the 

magnetic properties was analysed using two MGCs, S35 and S45. Characterisation 

tests showed that S35 had a smaller amount of iron oxides and smaller crystal sizes 

than S45. However, S45 had a higher amount of crystallized magnetite resulting in 

higher saturation magnetisation. S35 had 65W/g and S45 had 25W/g power loss under 

40kA/m magnetic field and 440 kHz frequency. The quantity of iron ions had a 

significant impact on the structure and the characteristics of the hysteresis cycle [6]. 

Table 2.5 Compositions of S35 and S45 magnetic glass ceramics [6] 

Composition (wt%) 

Glass SiO2 Na2O CaO P2O5 FeO Fe2O3 

S35 29.3 15.9 15.9 3.9 10.9 24.1 

S45 24.7 13.5 13.5 3.3 14.0 31.0 

 

Ebisawa et al. [62] synthesised a magnetic glass ceramic in the system of 40Fe2O3-

32CaO-31SiO2-3P205 (wt%) containing 36wt% magnetite, which was named CSFe+P. 

However, the bioactivity test results demonstrated that there wasn’t any apatite-like 

layer formation. Therefore, 3B2O3 (wt%) was included in the composition and named 

CSFe+BP. According to the in vivo and in vitro bioactivity tests this CSFe+BP showed 

high bioactivity properties forming an apatite-like layer and bonding to the bone. 

Furthermore, when the MGC was exposed to a magnetic field, the saturation 

magnetisation was 32 A.m2/kg and the coercive force was 10 kA/m.  

Table 2.6 Compositions of CS+FeP and CS+FeBP MGCs [62] 

 Composition (wt%) 

Glass CaO  SiO2 Fe2O3 B2O3 P2O5 
CSFe + P 32.0 31.0 40 0.0 3.0 

CSFe + BP 29.0 31.0 40 3.0 3.0 
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Synthesis of 35SiO2-25CaO-5P2O5-9MnO-10Li2O-16Fe2O3 (wt%) magnetic glass-

ceramic, which was named as 10LFS, was performed and characterized by Wang et 

al. Regarding the results of magnetic field application at 80 kA/m, the glass-ceramic 

showed 0.01 A.m2/kg saturation magnetism with 4 kA/m coercive force [94]. 

Recently, a composition of 45CaO-33SiO2–16P2O5-4.5MgO-0.5CaF2 (wt%) containing 

25% graphite-modified Fe3O4 magnetic glass ceramic (BFC) was synthesised by Zhao 

et al. The composition showed 10.6 Am2/kg saturation magnetism when it was exposed 

to 1600 kA/m magnetic field. In order to analyse the temperature rise in the sample, 

an alternating magnetic field of 1.9 kA/m and 252 kHz was applied. The temperature 

increase was 20°C after 20 seconds of magnetic field exposure. Power loss was 

determined as 8.4 W/g. According to in vitro bioactivity test, formation of apatite layer 

was observed after 5 days of immersion in SBF [95]. 
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Table 2.7 Compositions of the synthesised magnetic glass-ceramics 

 Composition (wt%)  

Material 
 

CaO 

 

SiO2 

 

FeO 

 

Na2O 

 

P2O5 

 

Fe2O3 

 

B2O3 

 

MgO 

 

CaF2 

 

Li2O 

 

MnO2 

 

References 

MGC by Kokubo 29.0 31.0 - - 3.0 40.0 3.0 - - - - [93] 

10LFS 25.0 35.2 - - 5.0 16.0 - - - 10.0 9.0 [94] 

CSFe+P 32.0 31.0 - - 3.0 40.0 - - - - -  

[62] CSFe+BP 29.0 31.0 - - 3.0 40.0 3.0 - - - - 

S35 15.9 29.3 10.9 15.9 3.9 24.1 - - - - -  

[61] S45 13.5 24.7 14.0 13.5 3.3 31.0 - - - - - 

BFC 45.0 33.0 - - 16.0 - - 4.5 0.5 - - [95] 
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According to the aforementioned studies, magnetic glass-ceramics can be sufficiently 

used to treat bone cancer and to reinforce apatite-like layer growth. These glass-

ceramics can be added into bone cements as fillers. This can be advantageous since 

the bone cements are widely used for orthopaedic applications. The acrylic bone 

cement, polymethyl methacrylate (PMMA), is the most used cement for the 

orthopaedic surgeries, however, this cement does not show any tendency to create an 

attachment to the bone tissue. Therefore, the magnetic glass-ceramic containing 

PMMA bone cements can have the ability to enhance bone formation supporting 

prosthesis and filling the cavities in the bone and to generate heat under magnetic field.  

PMMA bone cement and magnetic glass-ceramic containing PMMA bone cement will 

be extensively explained in the following sections 2.7 and 2.8.  

2.7 Polymethyl Methacrylate Bone Cement 
A standard definition of cement is “a binding element or agent such as a substance to 

make objects adhere to each other” [96]. Cement is not only used in civil engineering 

but also used in modern medicine, whilst sharing a common purpose and elements.  

Bone cement has been used in medical applications for more than 50 years. There are 

two common types of bone cement used in medical applications, calcium phosphate 

cement (CPC) and polymethyl methacrylate (PMMA) cements. CPCs are mixtures of 

one or more calcium phosphate (CPs) powders with water or aqueous solutions that 

can set at room or body temperature. CPCs can easily be moulded or injected into 

irregular cavities of the bone tissue, restoring the structure and functions of the bone, 

and stimulating new bone formation. Due to their similarity with biological 

hydroxyapatite (HA), the mineral phase of natural bones and teeth, CPCs have been 

found in several applications as fillers for bone fractures or bone defects, 

craniomaxillofacial, dental and orthopaedic applications. However, CPCs are brittle 

and due to that reason their inferior low mechanical properties limit their use in load-

bearing applications [97]. Maintaining suitable mechanical properties to support the 

bone is essential for orthopaedic applications and this reason leads to the use of 

PMMA bone cement widely.  PMMA bone cement is a crucial material for orthopaedic 

and dental surgeries due to its valuable mechanical properties and biocompatibility. 

PMMA cements are described as self-curing acrylic bone cements that undergo an 

exothermic reaction when the powder and liquid components are mixed. It has been 

successfully utilised for stabilising and anchoring prostheses (see Figure 2.11) and as 

well as filling voids and vertebral fractures [98].  
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Figure 2.11 Schematic image of cemented femoral stem implantation in hip 

arthroplasty (ABC=acrylic bone cement, [98]) 

PMMA cement does not adhere to the bone when it is used with prostheses but it acts 

as a grout that fills the space between the prosthesis and the bone (Figure 2.11). It 

creates an interlock between the bone and the prostheses that helps to distribute 

optimal stress and provide a buffer effect for the excessive force to the bone [99]. 

Consequently, it protects the bone against high local stresses and transfers load 

evenly from the prostheses to the bone. For such load-bearing applications, the 

mechanical properties of the cement have become significant. In addition to the many 

valuable properties of the cement, it is mouldable and can be readily formed into 

specific shapes [100].  

Although PMMA bone cement is the most widely used type of cement, its biological 

and mechanical properties have a significant influence on long-term orthopaedic 

applications [101]. The medical applications that the cement is widely used are 

vertebral, orthopaedic and dental applications and also drug delivery. [102] Moreover, 

there are on-going studies to treat bone tumour using PMMA bone cement containing 

magnetic particles. It has been found that magnetic bone cement can kill the cancer 

cells via applied electromagnetic fields [60]. The magnetic PMMA bone cement studies 

will be explained in Section 2.8. 

PMMA bone cement is prepared by mixing the liquid and the powder components 

which are shown in Table 2.8 [18, 100]. The ratio between the powder and liquid is 

mostly 2:1 (g/ml). The powder component contains a polymer, PMMA, and an initiator 

which is benzoyl peroxide (BPO) [14].  
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A radiopacifier, which can be either barium sulphate (BaSO4) or zirconium dioxide 

(ZrO2) is included into the powder component as a contrast agent in order to make the 

cement radiopaque, so it becomes visible under X-Ray [14]. BaSO4 usually tends to 

cluster in the mass of cement, which might cause the mechanical properties of the 

cement to weaken. Studies showed that ZrO2 does not cause clustering in the cement 

and provides better contrast under X-ray [103]. The liquid component contains a 

monomer, methyl methacrylate (MMA) and an activator, N, N-dimethyl-p-toluidine 

(DMPT) to accelerate the speed of the reaction. Additionally, to prevent the self-curing 

(auto-polymerisation) of the composition when it is exposed to light or high 

temperatures during the storage, a stabiliser, hydroquinone is included in the liquid 

component [18, 104]. Through the mixing procedure hydroquinone is inhibited, and the 

reaction can start [103, 105, 106]. 

Table 2.8 Components of PMMA Bone Cement [100] 

a Antibiotics can be either added in powder component or in liquid. 
b Colorant can either be in powder or in the liquid component  

 

A colourant can be added into the liquid and/or powder component to make the cement 

more visible and differentiate it from the bone. Chlorophyll is one of the examples of 

the colourants which gives a green colour to the cement [107]. Additionally, antibiotics 

can be added either into the powder or liquid components or can be found in both 

components. This helps to treat bacterial infections that might occur around the implant. 

The composition of some of the commercial PMMA bone cements is provided in Table 

2.9.

Powder Liquid 

Polymer – polymethyl methacrylate, PMMA Monomer–methyl metharyclic, MMA 

Radiaopacifier-barium sulphate or zirconium 

dioxide (BaSO4 or ZrO2) 

Activator - N,N-dimethyl-p-toulidine 

(DMPT) 

Initiator- benzoyl peroxide (BPO) Stabilizer-hydroquinone 

Antibioticsa-  (e.g. gentamycine) Antibioticsa-  (e.g. gentamycine) 

Colorantb (e.g. chlorophyll) Colorantb (e.g. chlorophyll) 
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Table 2.9 The commercially available PMMA bone cements 

 Simplex P 
[105] [108] 

Palacos R 
[105, 109] 

[108] 

Palacos MV 
[110] 

Palacos LV 
[111] 

CMW1 
[105] 

Cemex XL 
[108] 

Cemex RX 
[108] 

Powder Component 40.00 40.00 40.0 40.00 39.99 50.00 40.00 

PMMA (wt%) 88.50 84.5 86.00 84.00 88.84 85.00 88.27 

BPO (wt%) 1.50 0.75 0.9 1.00 2.05 3.00 2.73 

BaSO4 (wt%) 10.00 - - - 9.10 12.00 9.00 

ZrO2 (wt%) - 15.00 12.00 15.00 - - - 

Liquid Component 20 .00 20.00 20 20.00 18.37 18.33 13.30 
MMA (wt%) 97.50 92.00 92.00 92.00 99.18 98.20 99.10 

DMPT (wt%) 2.50 2.00 2.00 2.00 0.82 1.80 0.90 

Hydroquinone (ppm) 80.00 60.00 60.00 60.00 25.00 75.00 75.00 

Viscosity  Medium High Medium Low High Low  Medium 

*Viscosity will be extensively explained in Section 2.7.2.1  
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2.7.1 Polymerisation of PMMA bone cement 
PMMA bone cement is formed by a polymerisation reaction (addition polymerisation) 

between powder and liquid components. The chemical structures of MMA and PMMA 

are given in Figure 2.12. 

 

Figure 2.12: Chemical structure of MMA and PMMA [112] 

There are three stages in the polymerisation process; initiation, propagation and ter-

mination stages. Initiation stage starts with the formation of a free radical group as a 

consequence of the reduction and oxidation reaction between BPO and DMPT. By this 

reaction, BPO is decomposed by DMPT into a benzoyl radical group. This radical group 

then reacts with MMA monomer (Figure 2.13), which is then called initiation stage [18, 

100, 107, 112]. Propagation stage is typically the growth of the chain. Newly formed 

free radical groups attach to the carbon double bonds (C=C) of another monomer and 

create long chains, shown in Figure 2.14. The addition of each new chain releases 

energy which is approximately 57kJ/mol of MMA. Therefore, the polymerisation reac-

tion is an exothermic reaction, which typically reaches 86-100°C in air (dry environment) 

[18, 100, 107, 112]. It has been reported that polymerisation reaction of PMMA cement 

reached 40°C when the cement was in saline solution (wet environment) at room tem-

perature. In addition to that, polymerisation reaction was delayed for 5 minutes when 

the cement was in the solution [113].The exothermic reaction and temperature of 

PMMA cement is not only affected by the environment but also surface to volume ratio 

of the cement has an influence. The exothermic reaction temperature increases with 

the increase in thickness of PMMA cement. Therefore, the layer of cement was limited 

as 3-5 mm depending on the interdigitating of cancellous bone [99], although defect 

size may vary. Termination stage (Figure 2.15) is described as when the reaction 

stops since the free radical groups attach to the last monomers and there is no un-

paired electron left, hence a new free radical group cannot be formed [18, 107]. 
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Figure 2.13 Initiation stage of polymerisation reaction [99, 114] 

 

 
Figure 2.14 Propagation stage of polymerisation reaction [99, 114] 

 

 
Figure 2.15 Termination stage polymerisation reaction [99, 114] 
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The rapid chain growth continues with the free radical attaching MMA monomers until 

reaching 100,000 to 1,000,000 molecular weights of PMMA polymer. In this stage heat 

generation and viscosity increase but mobility of MMA monomer decreases. When the 

last radical groups attached to the last monomers and electrons are paired the reaction 

terminates [99]. However, BPO content in PMMA powder has an impact on termination 

rate. Increasing the initiator (BPO) content level in PMMA decreases the 

polymerisation time and termination rate, which results in lower the molecular weight. 

It should be noted that molecular weight influences properties of polymers, therefore, 

measuring molecular weight of PMMA is important. It can be determine using gel 

permeation chromatography technique.  

Molecular weight of the polymerised cement highly depends on the molecular weight 

of PMMA beads and MMA, concentration of initiator, sterilisation technique and 

presence of stabiliser. It has an influence on properties of the cement such as swelling 

of PMMA powders, viscosity of dough, waiting time and mechanical properties of cured 

cement [100, 115]. It was reported that lower molecular weight PMMA cement had 

lower mechanical properties compared to high molecular weight PMMA cement [116].  

2.7.2 Properties of Bone Cement 
PMMA bone cement is a bioinert material and therefore, it does not form any chemical 

interaction with the bone. In contrast, its mechanical properties attracted attention and 

thus, it is the most widely used bone cement in the medical applications. However, 

there are some factors that can alter their mechanical and biological properties. The 

properties of the cement and the factors will be described in this section.  

2.7.2.1 The Setting Mechanism 
The cold-curing (auto-polymerisation) process is divided into four groups; Mixing, 

waiting (dough), working and hardening (setting) time (Figure 2.16). The definition and 

the properties of each phase are explained below.  

 

Figure 2.16 Time scale of the curing phases of typical PMMA cements 
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Mixing time is defined as the integration of powder and liquid until a homogenous 

mixture is obtained. MMA starts to dissolve the powder and releases BPO which 

initiates the reaction. In this stage, powder and liquid should not be mixed aggressively 

as this increases porosity and this affects the mechanical properties of the cement. 

Mixing time varies between 30 seconds and one minute [14, 117]. 

Waiting time/ dough time starts from the beginning of the mixing phase and 

terminates when the paste can be touched by a gloved finger without sticking. The time 

of this phase lasts for 2-4 minutes at ambient temperature (18-22°C) and relative 

humidity between 40 and 60%. The viscosity of the cement and as well as room 

temperature and humidity can shorten or lengthen the waiting time. If the cement is 

intended to be injected, it should be poured into a syringe or injection gun at the end 

of the mixing phase, before the start of the waiting phase [14, 117]. 

Working time is the period that cement can be injected/placed into the cavity of the 

bone. This phase lasts approximately 3-8 minutes depending on the viscosity, ambient 

temperature and humidity. It is important that the implantation of the cement is 

completed before the working period ends [14, 117]. 

Setting time is the phase when cement hardens and become a solid structure. During 

this phase, volumetric and thermal shrinkage takes place in the cement (Shrinkage will 

be explained in Section 2.7.2.2). Setting time usually takes 10-15 minutes [14, 117]. 

The time scale should be carefully followed as a few minutes could affect the 

workability of cement. Any delay in waiting and working time will make the cement stiff 

and hardened, hence, the surgeon will not be able to inject or place the cement into 

the body [14, 117].  

According to ISO 5833:2002 [118], the setting time (tset) starts from the beginning of 

the mixing phase until the cement reaches the setting temperature (Tset) and the Tset 

is calculated through Equation 2-1, 

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
2

                                             Equation (2-1)   

where Tmax is the maximum temperature that the reaction reaches and Tamb is the 

ambient temperature. Tset defines the setting temperature [118]. The curve below 

(Figure 2.17) shows the exothermic polymerisation reaction of the cement where Tmax 

and Tset can be determined.  
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Figure 2.17 Shows determination of maximum temperature and setting time according 

to ISO 5833-2002 [118] 

 

The length of each phase has an important effect on handling and placing/injecting the 

cement into the patient’s bone. If the waiting time is too long, then the surgeon will 

have to wait until it gets workable, but this is usually undesirable as the conditions 

during the surgery can get severe while the wound is open. In contrast, dough stage 

(working time) should be long enough to be able to handle the cement and place into 

the wound in time.  

All commercial bone cement companies are required to provide the time scale of the 

phases depending on the ambient temperature in surgery rooms. This information 

must be strictly followed by the surgeon and/or practitioner since any delay during the 

operation or exceeding the time phases can cause complications in the body, as the 

cement will become stiff and hardened. Due to this reason, the cement will not be 

workable anymore as it affects the handling process and the surgeon will not be able 

to inject or place the cement into the body. A few minutes or even seconds is important 

during the handling process. Therefore, practise and knowledge by the user, who is 

mostly a surgeon and/or a practitioner, is highly recommended before using it during 

surgery. It is recommended to have two cement kits in case of any complication during 

the mixing or handling the cement.  
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The factors that affect the setting mechanism are explained below;  

Mixing speed: Rapid and aggressive mixing can lengthen the dough time, resulting in 

increased porosity and poor mechanical strength [99]. 

Room Temperature: Dough and setting times decrease with increasing room 

temperature, whereas in low temperatures both the dough and setting time are longer 

[119, 120]. The effect of temperature on the time profile of cement can be seen in 

Figure 2.18. 

 

Figure 2.18 Effect of room temperature on the phases of Palacos®  MV (medium viscos-

ity) bone cement  [110] 

Humidity: Setting time increases proportionally to humidity. In order to reduce the 

variations in setting time, humidity should be controlled at 50±10%  [119]. 

Viscosity: There are three types of cement viscosities defined as low, medium and 

high. The liquid to powder ratio (LPR) determines the viscosity of the cement. As the 

ratio goes from low to high, the waiting and setting time get shorter [14, 121]. Low 

viscosity cements have longer waiting time, shorter working time since it sustains the 

sticky phase longer than medium and high viscosity cements. Medium viscosity bone 

cements have properties of both low and high viscosity cements. Curing starts in a low 

viscosity condition during the mixing phase and the viscosity gradually increases 

during the waiting time [9, 100]. High viscosity bone cements have a very short waiting 

and setting time. The cement will be doughy immediately and ready to be applied. It is 

crucial to determine the end of the working time before it becomes unworkable.  
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This is advantageous to the surgeon as it identifies longer working times [100, 122]. 

Working time for high viscosity cement needs to be closely monitored; it is not always 

easy to determine the end of the working time when it gets too rigid to interdigitate with 

the bone. The influence of viscosity of PMMA bone cement (i.e. Palacos® bone cement) 

on mixing, waiting, working and setting time is shown in Table 2.10. The viscosity of 

the cement is important to provide a longer time to allow injecting the cement into 

cavities. It should also have a shorter setting time to prevent any inclusion of blood into 

the cement, which decreases the durability of the cement [14, 121].  

Table 2.10 Setting properties of Palacos® LV (low viscosity), MV (medium viscosity) 

and R (high viscosity, HV) bone cements at 22°C (The data presents approximated 

times) 

Viscosity Mixing Time Waiting Time Working Time Setting Time 
Palacos® LV 30 s 5 min 7 min 10 min 

Palacos® MV 30 s 1.5 min 5.5 min 8 min 

Palacos® R (HV) 30 s 50 s 4.5 min 7.5 min 

 

2.7.2.2  Shrinkage 
Shrinkage is described as a reduction in the volume of material. During the 

polymerisation reaction, volumetric shrinkage occurs in the cement and at the end of 

the curing, volumetric shrinkage is accompanied by thermal shrinkage when the 

cement has gained its mechanical properties. The volumetric shrinkage can vary 

between ranges of 2% - 7% [123, 124]. Volumetric shrinkage is presented as a change 

of volume in converting monomer to the polymer during the formation process [125]. It 

is reported that shrinkage is mostly related to the residual monomer level after curing.  

It is reported that mixing time, the ratio between BPO and DmpT and powder to liquid 

ratio have a major effect on shrinkage [126]. Thermal shrinkage occurs due to the 

exothermic reaction at the end of the curing phase when the cement has gained its 

mechanical properties [126, 127].  

PMMA bone cement is injected or placed between bone and prosthesis and the 

exothermic reaction takes place in the body. Consequential drop in temperature due 

to the temperature differences between metal, bone and cement leads to the shrinkage 

that will result in loosening in the interface of cement and prosthesis [128, 129].  
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Polymerisation shrinkage can also develop porosity due to the solidification process 

from liquid to solid. Contribution to porosity and shrinkage decreases mechanical 

properties, bending strength and fatigue life. Residual stress in the bone is an induced 

consequence of shrinkage in the cement, which can cause microcracks in the cement 

resulting in failure of the prosthesis [126]. In order to achieve good clinical outcomes, 

the characteristics and dimensional stability of the cement should be considered. 

Minimizing potential shrinkage in the structure is an important factor to maintain the 

desired mechanical properties of the cement.  

2.7.2.3 Porosity  
Porosity can be described as a fraction of empty spaces within the solid mass/volume. 

One of the complications in the bone cement is porosity due to mixing technique, 

mixing speed, trapped air and shrinkage [130]. Air interaction while mixing the cement 

and transferring the cement into the gun can increase the porosity in the cement 

structure [131]. Thus, vacuum mixing reduces the porosity by 40% since it prevents air 

interaction. On the contrary, hand mixing has the highest possibility of leading to a 

more porous structure. Lewis et al [132]., reported that the average porosity of 

manually mixed Simplex® P was between 9.4% and 12.5%. However, when it was 

mixed with vacuum mixing technique the average porosity was between 0.5% and 

6.5%.  

High porosity in the structure reduces mechanical strength and fatigue life. In addition 

to this, excessive porosity in the structure can also induce shrinkage and initiation of 

microcracks. This results in decreasing fracture toughness. Reducing the porosity may 

prevent the risk of revision in joint replacement surgery [123, 131, 133]. 

2.7.3 Mechanical Properties 
Mechanical properties of bone cements are important in load-bearing applications over 

the lifetime of the patient [60]. It is expected that the cement transfers the load evenly 

from the implant to the bone. As was previously mentioned, the composition of bone 

cement, mixing technique and additives may influence mechanical properties of PMMA 

bone cement [107]. Therefore, mechanical properties of bone cements must be tested 

under established test requirements of ISO and ASTM standards which are also 

requested by the FDA [107, 134]. ISO 5833-2002 standard [118] and ASTM F451-16 

(Standard Specifications for Acrylic Bone Cement) [135] should be followed to ensure 

that mechanical properties of PMMA bone cement are eligible to be used in human 

body for a long term treatment. 
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The standards define the requirements of compressive strength, bending strength and 

bending modulus for PMMA bone cements and the tests are performed 24±2 hours 

after the mixing starts. According to the report provided by the FDA, compressive 

strength can be determined using either ISO 5833:2002 or ASTM 451-16 since both 

standards specify the same conditions. The minimum requirement of compressive 

strength of PMMA bone cement is 70 MPa and the test sample dimensions are 

determined as 6±0.1 mm in diameter and 12±0.1 mm height. Regarding ISO 

5833:2002 specifications, the test machine should be at least 4 kN with a crosshead 

speed between 19,8 mm/min and 25,6mm/min; however, ASTM 451-16 do not specify 

minimum load cell. The requirement of a deformation crosshead speed is between 20 

mm/min and 25,4mm/min. Schematic diagram of compression test is provided in 

Figure 2.19.  

 

Figure 2.19 Schematic diagram of compression test (h0 refers to initial height, F is the 

applied force, d is diameter, ∆h is the difference between initial height and the height 

after compression) 

The standards provide a typical load-displacement curve of PMMA bone cement 

sample (Figure 2.20) and the test is stopped when the sample fractures or ultimate 

load has been passed. 

 

Figure 2.20 Typical load-displacement curve, 1- ultimate load, 2- yield load, 3- 2% offset 

line and a defines upper yield point (standard ISO 5833:2002) 
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Compressive strength is calculated for each sample by dividing applied force to cross-

sectional area (mm2), as shown in Equation 2-2. The force should be recorded at the 

point of fracture, upper yield point or 2% offset line, whichever occurs first.  

             𝜎𝜎 = 𝐹𝐹
𝐴𝐴0

                                                                 Equation 2-2 

 

Where σ is stress, F is applied force, A0 is the initial cross-sectional area of the sample. 

Determination of bending strength and modulus is specified in IS0 5833:2002 standard, 

which requires four-point bending test. The standard indicates that samples should be 

75±0.1 x 10±0.1 x 3.3±0.1 mm. PMMA bone cement should have a minimum bending 

strength of 50MPa and a minimum bending modulus of 1800 MPa using a 5mm/min 

crosshead speed. A schematic diagram of four-point bending test set-up is shown in 

Figure 2.21.  Bending modulus and bending strength are calculated as described in 

Equation 2-3 and Equation 2-4 

 

Figure 2.21 Schematic diagram of the four-point bending test set-up of ISO 5833-2002 

 

   𝐸𝐸 = △𝐹𝐹𝑇𝑇
4𝑓𝑓𝑇𝑇ℎ3

∗ (3𝑙𝑙2 − 4𝑎𝑎2)                                      Equation 2-3 

   𝐵𝐵 = 3𝐹𝐹𝑇𝑇
𝑇𝑇ℎ2

                                                           Equation 2-4 
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Where, E (MPa) is bending modulus and B (MPa) is bending strength, 

△ 𝐹𝐹  is the load range (50 N – 15 N = 35 N); 

a is the distance between the inner and outer loading points (20 mm); 

l is the distance between the outer loading points (60 mm); 

f is the difference between the deflections at 15 and 50N (mm); 

b is the average measured width of the specimen, (mm); 

h is the average measured thickness of the specimen, (mm); 

F is the force at fracture (N) 

The commercial bone cements containing antibiotics, COPAL® G+C, COPAL® G+V, 

Palacos® R+G, CMW® 1G, SmartSet® GHV and Refobactin® Bone Cement R, were 

tested using ISO 5833 standard requirements for compressive strength, bending 

strength and bending modulus. As can be seen in Figure 2.22, all the bone cements 

passed the threshold values. The comparison between the commercial cements 

showed that whilst SmarSet® GHV had the lowest compressive strength, bending 

strength and bending modulus values, CMW® 1G had the highest results among the 

other commercial bone cements [136]. It should be considered that the addition of 

antibiotics might weaken the bending strength of the cement. 

 

Figure 2.22 Comparison of mechanical tests results between commercial bone cement 

[136] 
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The typical flexural strength versus compressive strength properties of femur cortical 

bone, dentine and PMMA bone cement are illustrated using Edu Pack 2018 in Figure 

2.23. The database does not contain PMMA bone cement but PMMA itself. Despite 

the cement having valuable mechanical properties, femur cortical bone has higher 

flexural and compressive strength than PMMA whilst dentine has similar flexural 

strength with PMMA. In the figure, PMMA shows flexural strength between 72.3-131 

MPa and compressive strength between 72.4 and 124 MPa. 

 
Figure 2.23 Compressive strength vs Flexural strength (EduPack 2018) 

2.7.4 Drawbacks of PMMA bone cement 
Even though PMMA bone cement has been successfully used in many applications, it 

has some complications and drawbacks. In the United Kingdom, 80.000 hip prostheses 

were performed in 2012 and approximately 8.600 prostheses had undergone through 

revision surgeries [137]. According to the National Joint Registry’s annual report 

published in 2018 (covering from 2003-2017 and excluding insufficient reports) a total 

of 2,308,950 joint replacements were performed and 992,090 of them were hip 

replacements. 27,650 of these replacements had undergone through revisions. 

Moreover, it was reported that 34% of the primary hip replacements were performed 

using bone cement [8]. NHS has reported that approximately 1 in 10 people go through 

revision surgery every year [138]. One of the most significant reasons of prosthetic 

implants is aseptic loosening [139]. This may occur due to wear debris from the surface 

of prosthetic implants and ineffective application techniques of bone cement [140]. 
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PMMA is an inert biomaterial, therefore, chemical or biological bonding to the bone 

cannot be formed and it may cause a failure of the implant by the formation of a fibrous 

layer. Hence, wear particles surround the implant and accelerate the deterioration [18]. 

The toxicity of MMA and the high exothermic polymerization reaction can cause 

chemical and thermal necrosis of healthy bone cells and the function of the immune 

system might be destroyed [141]. In addition to that, leakage of the residual monomer 

may also go into the blood supply which causes toxicity in the cells. 

Even if PMMA has good mechanical strength under static conditions, it might break 

under much lower stresses than the expected ultimate strength values [142]. One of 

the reasons of that is adding radiopacifiers such as zirconium or barium sulphate 

reduces the mechanical properties of the bone cement due to agglomeration in the 

mass of cement and this might cause loosening of the implant [101]. However, the 

performance of the cement might also be affected by their chemical composition, 

mixing methods, viscosity, porosity and other additives (i.e antibiotics) as well as 

sterilisation methods [100]. 

The increase of failure rates (~10%) 5-10 years post-surgery is a further complication 

to the use of PMMA. The reason for these failures, besides aseptic loosening reasons 

which were mentioned above, is ageing and moisture uptake rate of the PMMA cement. 

However, these reasons are not widely investigated. Some studies showed that 

mechanical properties start decreasing over time [143, 144]. 

2.8  Magnetic Bone Cement 
Malignant bone tumours reduce the quality of bone and can cause fractures. Therefore, 

bone cement implantation is applied not only to reinforce the bone but may also treat 

the bone tumour. Due to the high exothermic polymerization reaction of PMMA, it has 

been thought that the malignant tumour cells can be killed by the released heat from 

the cement [145]. Sturup et al., reported that even the high exothermic polymerization 

rate of the PMMA has no or little necrosis effect on the tumour cells in vivo [4, 15]. 

Among all the cancer treatment techniques, magnetic hyperthermia is expected to play 

a key role in the treatment of deep-seated tumour cells. To date, hyperthermia 

treatment techniques have not been effective for bone tissue cancer since the bone 

tissue could not be heated up to a suitable temperature. Studies showed that magnetic 

bone cements show promising results for this field of research [16].  
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Preparation for hyperthermia treatment starts with excision of the cancerous bone 

tissue and is followed by filling the cavity with magnetic based PMMA bone cement 

[146]. The affected volume is then exposed to an alternating magnetic field to increase 

the temperature of the cement and margins up to 46°C to kill any remnant cancer cells 

and to help prevent any reoccurrence [61]. 

The composite PMMA bone cement containing the magnetic glass ceramic prepared 

by Bretcanu et al., reported in Section 2.6.2, was characterised performing calorimetric 

and heating induction tests. In order to analyse the thermal effects of MGC amount in 

the cement, MGC was mixed into the composition of bone cement in different 

percentages (10, 15 and 20% (wt %)). The resulted composites named P10, P15 and 

P20, respectively. Powder to liquid ratio was kept at 2:1 (g/ml).  In order to analyse the 

mechanical properties of the composite samples, the mechanical tests were performed 

according to the standard of ISO 5833:2002. The test results are shown in Figure 2.24. 

While the compressive strength test results showed higher values than the required 

value, 70 MPa, the bending strength test results showed a gradual decrease increasing 

the MGC content. P20 had a lower value than the required value, 50MPa [147]. 

 

Figure 2.24 shows the mechanical test results of control (PMMA bone cement without 

MGC), P10, P15 and P20 bone cements a) compressive strength b) bending strength 

c) bending modulus (The red line refers to the minimum requirement values of ISO 

5833:2002) [147] 
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In vitro magnetic induction test results showed that the saturation magnetisation was 

1.6, 2.5 and 4.2 Am2/kg for P10, P15 and respectively P20. Coercitive force showed a 

similar trend for all the samples (approximately 9.7 kA/m). It has been observed that 

thermal power losses increased with the increase of amount (wt%) of the magnetic 

glass ceramic. In order to analyse the effect of applied magnetic fields on the heating 

properties of the samples, different magnetic fields, 18, 25.6 and 31.2 kA/m were 

performed for 10 minutes (Figure 2.25). It can be stated that increasing the magnetic 

field, the temperature of the magnetic bone cement samples increases. The MG63 

tumour cells were seeded on P10 sample in order to analyse the effect of magnetic 

hyperthermia on the cancer cells in the magnetic field of 18 kA/m. The cellular death 

was observed after 30 minutes at 43°C [148].  

 

Figure 2.25 Temperature- time profiles of P10, P15 and P20 and PMMA (control sample 

without MGC) a) at 18 kA/m b) at 25.6 kA/m c) at 31.2 kA/m d) specific power loss of 

the samples at each magnetic field [148] 

 

Kawashita et al [60]., developed a new PMMA bone cement (PMMAc), using a PMMA 

powder to MMA liquid weight ratio of 2:3. The bone cement was combined with 

magnetite in ratios of 40%, 50% and 60% (wt%) and named as M-40c, M-50c, and M-

60c, respectively. PMMAc was used as a control group. Weight ratios of compositions 

are shown below in Table 2.11. 
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Table 2.11 Composition of PMMA containing magnetite in wt% [60] 

 Powder (wt%) Liquid (wt%) Ratio (wt%) 
Sample Fe3O4 PMMA MMA PMMA/MMA 
M-40c 40 24 36 2:3 

M-50c 50 20 30 2:3 

M-60c 60 16 24 2:3 

PMMAc 0 40 60 2:3 

 

The authors showed that increasing the amount of magnetite in the composition the 

setting time increased due to inhibition of polymerisation of MMA [60]. SEM results 

demonstrated that magnetite particles were uniformly dispersed in PMMA bone 

cement, except for M-60c which had a high viscosity. Therefore, the sample M-60c 

was not analysed in further tests. During the polymerisation of the samples, the 

temperatures were recorded to analyse the effect of magnetite particles on the peak 

temperature. The temperature vs time graph of PMMAc, M-40c and M-50c can be seen 

in Figure 2.26. The PMMAc had the highest exothermic peak at 95°C after 10 min. M-

40c had an exothermic peak at 85°C after approximately 13 min and M-50c had the 

lowest peak at 75°C after 14.5 min. It was clear that increasing the weight of the 

magnetite in the cement composition lowered the peak temperature during the 

polymerisation reaction [60].  

 

Figure 2.26 Temperature-time variation during polymerisation of magnetite bone 

cement, PMMA-c, M-40c and M-50c [60] 
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As agglomeration of radiopacifiers leads to a decrease in the mechanical properties, it 

was thought that the addition of magnetite particles might behave in the same way as 

well. Therefore, the compressive strength test was performed to understand the 

behaviour of the samples. The compressive strength of the cement decreased with the 

increase of the magnetite content in the cement from 40 to 50 wt%. However, the 

addition of magnetite slightly increased the compressive strength compared to plain 

PMMA sample. The test results are shown in Table 2.12. 

Table 2.12 Compressive strength (MPa) of M-40c, M-50c and PMMAc [60] 

Sample Number of tested samples Compressive strength (MPa) 
M-40c 15 91.4± 6.1 

M-50c 15 89.2± 6.5 

PMMAc 14 85.3± 6.9 

 

The magnetic induction test was performed exposing the samples to 300 Oe (~24 kA/m) 

alternating magnetic field for 10 minutes in order to observe the heating rate of the 

samples. As expected, the control sample PMMAc did not show any change in 

temperature under 300 Oe magnetic field for 10 minutes (see Figure 2.27). However, 

M-40c and M-50c reached temperatures of 70°C within 30 seconds of exposure to 300 

Oe magnetic field. Therefore, the applied magnetic field was reduced to 120 Oe (~10 

kA/m)  and the temperature of M-40c slightly increased up to 40°C, whereas M-50c 

reached around 48°C in 10 minutes [60]. 

 

Figure 2.27  Heat generation under 120 Oe and 300 Oe magnetic fields during 10 min 

exposure time for PMMAc (plain PMMA), M40c and M50c [60] 
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2.9 Summary of Literature Review 
Surgery stands as a main technique for treatment of bone cancer tissue. After excision 

of cancerous tissues, PMMA bone cement is used to support the weakened bone. 

Chemotherapy and radiotherapy techniques are still necessary in order to kill remnant 

cancerous cells that reoccurrence can be prevented. However, it is well-known that 

chemotherapy and radiotherapy can damage healthy cells and cause potential side 

effects in the body. Moreover, hyperthermia has been seen a promising technique to 

destroy cancer cells by increasing the temperature up to 45°C. Whilst hyperthermia 

showed positive results for superficial tumour tissues, it was not effective for deep 

seated tissues. Increasing the temperature or application time caused deposition of 

heat and burnings. Moreover, the applied temperature could not be applied 

homogenously within and around the targeted area. Due to these limitations, 

considerable attention has been paid to magnetic hyperthermia.  

Magnetic material selection is crucial not only for heat generation abilities but also for 

creating interfacial bonding to bone. However, most of the magnetic glass-ceramics 

(MGC) proposed by several authors did not show bioactive properties, except the 

MGCs developed by Bretcanu et al. [61] and Kokubo et al [93]. Since PMMA bone 

cement has already been used in bone cancer surgery, the addition of MGC in the 

cement has been recently investigated for the treatment of bone cancer. However, it 

should be noted that magnetic PMMA cement can only be used for bone cancer 

treatment and not applicable for soft tissue cancers. From the fundamental theory and 

previous works in this area, the following conclusions can be drawn that increasing 

MGC content slightly decreased mechanical properties of cement but increased the 

heat generation. In the literature, the magnetic PMMA cement reported by Kawashati 

et al. [60] was lack of bioactive properties and therefore, the cement would not enhance 

stimulation of osteoconductivity.  

In this study, it was important to produce magnetic PMMA cement that meets the 

criteria of standard ISO 5833:2002 for mechanical properties, exhibits bioactive and 

cytocompatibility properties and can be heated to a targeted temperature to kill the 

cancerous cells. 

In the next chapter, preparation and characterisation methods of MGC, plain PMMA 

cement and magnetic PMMA cement are presented. 
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3  Methodology 
In this chapter, the materials and methods used in this study are presented. Firstly, the 

production of magnetic glass-ceramics and their characterisation techniques are 

explained. Next, silicone rubber mould design and design justifications are described. 

Finally, preparation and characterisation techniques of plain and magnetic PMMA 

cements are presented.  

3.1 Production of Magnetic Glass Ceramics 
Magnetic glass-ceramic in the system of 24.7SiO2-13.5Na2O-13.5CaO-3.3P2O5-

14FeO-31Fe2O3 (wt%), which was developed by Bretcanu et al. [61] was produced by 

the melting and quenching technique. The raw reagents used for the MGCs are given 

in Table 3.1. They were weighed and mixed in a plastic bottle using a roller mixer for 

an hour. After that, the mixture was transferred into a Pt-Rh crucible.  

Table 3.1 Raw reagents for producing MGC 

 

  

 

 

 

 

 

The heat treatment was performed in two stages. Firstly, the raw reagents were 

decomposed in a furnace (Carbolite, CWF-B 1200, UK) at 900°C using a 10°C/min 

heating rate and 1 hour holding time. The crucible containing the raw reagents was 

weighed before and after decomposition stage to calculate the mass loss (wt%) during 

decomposition. The crucible was subsequently transferred into a melting furnace 

(Carbolite, HTF 1800, UK) and the decomposed reagents were melted at 1550°C using 

a 10°C/min heating rate and 25 minutes holding time. The decomposition and melting 

processes of the MGC are shown in Figure 3.1 

Raw Reagents (Sigma Aldrich, UK) Purity  

Na2CO3 
 
≥99.5% 

CaCO3 
≥98.5-
100.5% 

SiO2 ≥98% 

Fe2O3  ≥99% 

Ca3(PO4)2 
 
≥96.0%  

FeC2O4.2H2O ≥99% 
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Figure 3.1. Decomposition and melting processes of the reagents 

The melt was quenched in cold water and glass-ceramic frits were immediately drained 

and left to dry overnight (Figure 3.2). The crucible after quenching the melt and the 

MGC frits were weighed to calculate the yield (wt%).  

As reported by Bretcanu et al. [61], the magnetite phase formed during quenching and 

there was no need for another heat treatment. In addition to that, secondary heat 

treatment would affect the properties of magnetic phase since the crystal sizes should 

be small for an efficient heat generation.  

 

Figure 3.2. Magnetic glass-ceramic frits after quenching in cold water 

Magnetic glass ceramic frits were ground using a single zirconia grinding bowl milling 

machine (Planetary Mono Mill Pulverisette 6, Fritsch GmbH, Germany) at a rotational 

speed of 420 rpm for four 3 minutes cycles. In order to obtain ≤53µm of particle sizes, 

the collected powder was sieved using an automatic sieve shaker (Impact Test 

Equipment Ltd, UK). Characterisation of Magnetic Glass Ceramics 

 



 

57 
 

3.2  Characterisation of Magnetic Glass Ceramics 
 In order to identify the crystalline phase, characteristic temperatures and 

morphological structure of glass ceramics, X-ray diffraction (XRD), differential thermal 

analyses (DTA), hot-stage microscope (HSM) and scanning electron microscope (SEM) 

was performed. 

3.2.1 X-Ray Diffraction Analysis 
X-ray powder diffraction (XRD) was performed to identify the presence of magnetite 

crystalline phase in the magnetic glass ceramics using a Philips PW3040/60 X-ray 

generator. This technique provides unique fingerprints of the amorphous and 

crystalline phases the materials. When X-Ray beams are passed through amorphous 

materials do not exhibit sharp peaks but crystalline materials can produce sharp 

diffraction peaks. It is due to periodically arranged atoms in a crystal. The diffraction 

peaks give information on unit cell matrix of a crystalline material, crystal size, phase 

identification and superlattice structure. The diffraction occurs when the Bragg’s law is 

satisfied and the equation is given below. 

nλ = 2d sinθ  

where λ is the wavelength of the incident X-rays, n is an integer, d is the interplanar 

spacing of the crystal and θ is the angle of incidence.  

MGC powder, iron oxide and pure magnetite were analysed operating the XRD at 40kV 

and 30mA using a Cu-Kα X-ray radiation source with a characteristic wavelength (λ) 

of 1.5418Å. The detector was set to scan over a range of 2θ angles from 10 º to 70 º, 

at a step size of 0.02º, 2s per step. The results were analysed using X’Pert High Score 

software. MGC powder peaks were compared to reference materials, iron oxide and 

pure magnetite, for magnetite phase identification. While iron oxide would only have 

hematite phase, pure magnetite would have only magnetite phase.  

3.2.2  Differential Thermal Analysis 
In order to investigate the glass transition (Tg) temperature and crystallization 

temperature (Tc) of the novel magnetic glass-ceramic sample, the differential thermal 

analysis (DTA) was performed using Setaram Labsys instrument. This technique 

identifies the difference in temperature between the sample and the reference under 

similar conditions when the samples are exposed to heat. Exothermic and endothermic 

peaks show the changes in crystallinity, dehydration, physical changes and chemical 

reactions in the sample.  
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Alumina, an inert material, was used as the reference sample. DTA was performed in 

air, up to a maximum temperature of 1550 ºC with a 20 ºC/min heating rate. A mass of 

~50mg was used for both the MGC sample and alumina reference. DTA was 

performed three times for each batch. The results were recorded and analysed using 

Calisto software. 

3.2.3 Hot-Stage Microscope 
A heating microscope (Misura, Expert System Solutions, Italy) was used to observe 

the sintering behaviour of the MGC sample. The test was carried out in the air, up to 

1550 ºC using a heating rate of 5 ºC/min. The powder was pressed in a small cylindrical 

die (2 mm diameter x 3 mm height) and placed on a holder. The changes in silhouettes 

of the material at different temperatures were analysed and recorded by a video-

camera. The shrinkage in the area of the sample was calculated at different 

temperatures based on the change in the area of the sample using Equation 3-1.     

     Shrinkage (%) = 1- 
𝐴𝐴𝑇𝑇
𝐴𝐴0

× 100                                                      Equation 3-1                

where in A0 (mm2) is the initial area of the material and AT (mm2) is the area of the 

material at temperature T.  

3.2.4 Scanning Electron Microscope 
Hitachi TM3030 scanning electron microscope, was used at 15kV to analyse the 

morphology of magnetic glass-ceramics powdered sample. Elemental composition of 

the samples was observed using energy dispersive X-ray (EDX) analysis.  
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3.3 Mould Design and Design Justifications 
Consistency in the dimensions and finish of samples is very important in order to obtain 

reliable and accurate results from mechanical tests. To accommodate various 

standards and future tests, the moulding system should be able to adapt to different 

shapes and sizes. It should also allow repeated use and be sufficiently flexible to 

facilitate removal of samples.  

Test sample moulds are typically made from machined blocks of 

polytetrafluoroethylene (PTFE) that are the same size as the test samples. Whilst 

PTFE is a suitable material due to its relatively high stiffness and resistance to 

adhesion, removing the samples from such rigid PTFE moulds can result in rough 

edges on the samples. The standards anticipate and even allow for this, suggesting 

that sanding the edges is an appropriate method to remove rough edges of each 

sample. However, sanding or abrasive removal of PMMA cement could result in 

undesirable changes in mechanical and chemical properties and may introduce 

surface defects. Thus, the results of flexural and compression tests may not provide 

representative values of the cement obtained from PTFE moulds. Additionally, sanding 

each sample causes dimensional inconsistencies within the sample batch and is a 

time-consuming operation.  

The key features of a good mould design may be summarised as:  

• easy to manufacture 

• low cost of materials and labour 

• reusable design 

• ease of forming and removing samples 

• durable 

• provide reproducible samples with consistent dimensions 

By setting these objectives, the samples should be usable directly from the mould with 

no further requirements for post-processing such as sanding to control the size or 

surface finishing. Silicone rubber allows the aforementioned features through its 

beneficial properties such as low cost, easily modifiable and dimensional accuracy. 
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3.3.1  General Mould Fabrication Technique 
Prior to fabrication of silicone rubber mould, the acrylic box and patterns of the samples 

were designed and drawn in Autodesk Inventor with the required dimensions (Figure 

3.3). A laser cutter was used to cut separate components (walls, base and sample 

patterns) on acrylic sheets. The components were designed with mortices and tenons 

(Figure 3.4) which helped to assemble the final mould with ease.  

 

Figure 3.3 Assembly design of the acrylic box drawn using Autodesk Inventor 

 

Figure 3.4 Acrylic components used for a box design 

After assembling the box, a silicone mould release agent was applied on its inner 

surfaces in order to support removal of the silicone rubber easily after curing. The 

moulds were made of silicone rubber using Xiameter® silicone rubber base and 

catalyst (RTV-3120 base and RTV-3000 F catalyst).  

40 mm 
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In order to have a rigid solid silicone rubber mould, the ratio of base to catalyst was 10 

to 1 (wt %) [149].  The volume of each mould was calculated and converted into weight. 

The calculated amounts of the silicone base and catalyst were mixed into a plastic 

container using a wooden stick for 1-2 minutes to obtain a homogenous mixture. 

Afterwards, the plastic container was placed in a vacuum chamber and degassed to 

speed up the removal of the internal air bubbles produced during mixing. After 

approximately 1 minute, when the air bubbles at the surface decrease, the container 

was removed from the vacuum chamber. The mixture was poured into the acrylic box 

from 20 cm distance to reduce the formation of air bubbles. The acrylic moulding box 

was returned into the vacuum chamber for 1 minute to release any trapped bubbles in 

the structure and it was kept at room temperature overnight to fully cure.  

3.3.2 Fabrication of Four-Point Bending Test Sample Mould  
The dimensions of the sample patterns were drawn in Autodesk Inventor with 

dimensions of 75±0,1 x 10±0,1 x 3,3±0,1 mm as indicated in standard BS ISO 5833-

2002 (Implants for surgery — Acrylic resin cements) for performing 4-point bending 

tests.  The box cavity was designed to fit three sample patterns, as seen in Figure 3.5-

A. The patterns were designed to have features at the ends of the samples as sacrificial 

overflow spaces to accommodate any excess cement during the forming process; this 

allowed for more rapid mould filling and a location for temperature probes. The 

surfaces of sample patterns were refined using a 300-grit carbide paper, to have 

smooth surfaces of the cement samples. Narrow holes were provided for the mould’s 

sacrificial cavity using metal wires (~2mm diameter) as shown in Figure 3.5-B.  

 

Figure 3.5 A) Acrylic box with the wires B) Silicone mould in the acrylic box during curing  
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3.3.3 Fabrication of Compressive Test Sample Mould  
Standard ISO 5833-2002 suggests that samples should have 6±0.1mm diameter and 

12±0.1mm height to perform compressive strength test. Therefore, cylinder sample 

patterns made of precision ground steel bars were cut in the required dimensions. An 

additional sample size with 12±0.1mm in diameter and 24±0.1mm in height was made, 

using steel cylinders, in order to understand the effect of sample dimensions on 

compressive strength. The rationale for double dimension sample preparation was to 

understand the effect of thickness on compressive test results since the polymerisation 

temperature, porosity and defects in the samples would be different relative to the 

dimensions. This was investigated since the defect sizes in the bone may vary. The 

reason for using steel bars instead of acrylic was that the laser-cutting machine melted 

the edges of the samples, which reduced the dimensions by approximately 1 mm. Ten 

cylindrical patterns for each mould were cut with required dimensions and the most 

dimensionally consistent three patterns were used. The compression strength test 

sample mould box can be seen in Figure 3.6. 

 

Figure 3.6 Compression test sample box with steel patterns 

3.3.4 Fabrication of Cytocompatibility Test Sample Mould  
The acrylic box was designed having four-disc patterns so that the PMMA cement 

samples would be placed into 12-well cell culture plates to perform cell viability assay. 

Considering the dimensions of the wells in the cell culture plate, the acrylic discs were 

cut with dimensions of 20 mm diameter and 5 mm height using a laser-cut machine. 

The acrylic box and the four patterns are shown in Figure 3.7. 
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Figure 3.7 Cell viability assay sample box with disc patterns 

3.3.5 Fabrication of Induction Heating Test Sample Mould 
The acrylic box was designed having four cubic patterns. Eight 10x10x10 mm3 cubes 

were laser-cut, measured by a calliper, out of which four were chosen and fitted into 

the acrylic box as seen in Figure 3.8. To discard any unwanted variables caused by 

weight inconsistency during the induction heating tests, special care was taken to 

achieve dimensional accuracy throughout the samples.  

 

Figure 3.8 Induction heating test sample box with cubic patterns 

3.4 PMMA Cement 
As previously discussed in section 2.7, polymethylmethacrylate (PMMA) bone cement 

involves two components: poly (methyl methacrylate) (PMMA) powder and methyl 

methacrylate (MMA) liquid. They form a solid rigid cement after the mixture of two 

components undergo free radical polymerisation reaction. In this study, two 

commercially available cement kit, Palacos® MV powder and liquid (Heraeus Kulzer, 

UK) bone cement and Wintercryl rapid repair powder and liquid (John Winter & Co, UK) 

dental cement were used throughout the study. As discussed in section 2.7.4, ageing 

and moisture uptake can affect the properties. In order to evaluate the effect of ageing 

on the mechanical properties both plain cement, Palacos® MV (P0) and Wintercryl (W0) 

were assessed at different time points (1, 2, 3, 7, 14, 21, 28, 60 and 180 days). 
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 P0 samples were always stored in closed air. In addition to the effect of ageing, W0 

samples were stored in open and closed air. For closed air storage sealed plastic bags 

were used. Although gas diffusion was still possible from the plastic bags, the influence 

of humidity on the PMMA cement samples could be analysed. Therefore, the aim was 

to understand the effect of storage condition over time on further release of residual 

MMA monomer. For each time point and conditions, six samples were prepared and 

four-point bending test, compressive test and hardness test were carried out.  

3.4.1 Humidity and Ambient Temperature Data 
According to the requirements in standard ISO 5833:2002, humidity and ambient 

temperature were recorded during the whole experimental procedure for cement 

preparation, since the beginning of the mixing period and until the hardening of the 

cement samples. For this reason, El-sub 2 data logger (Lascar,UK) was used to record 

both ambient temperature and humidity.  

3.4.2 Preparation of PMMA Cement  
The samples were prepared following the manufacturer’s instructions and standard 

ISO 5833:2002). Palacos® MV cement was provided in a kit, which contained one 

ampoule of MMA liquid (20mL) and one pack of PMMA powder (40g). Wintercyl cement 

kit had PMMA powder (3kg) and MMA component (1L). The composition of PMMA 

cements were provided by the safety data sheets (SDS) are given in Table 3.2. 

Table 3.2 Composition of Palacos®MV and Wintercryl Cement 

 
   Composition (wt%) Palacos ® MV Wintercryl Cement 

   
  P

ow
de

r 

poly(methyl acrylate, methyl 

methacrylate)  86% >98% 

dibenzoyl peroxide 0.9% - 

zirconium dioxide 12% - 

colourant Colorant E141 N/A 

Li
qu

id
 

methyl metacrylate 92.6% > 90% 

N,N-dimethyl-p-toluidine 2% < 1.0% 

ethylene glycol dimethacrylate - 2.5-10% 

colourant E141  - 

hydroquinone 60 ppm N/A 

*N/A, the information is not provided on the SDS of the product 
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The cement components and silicone sample mould were stored at room temperature 

(18-22°C) for two hours prior to mixing. The preparation technique, mixing time and 

powder to liquid ratio was strictly kept identical for both types of cements, Palacos® 

MV and Wintercyrl. The mixing ratio between the powder and liquid components was 

kept at 2:1 (g/ml). The liquid component was measured and poured into a ceramic 

mixing bowl firstly and after that, powder component, which was already weighed, was 

added into the liquid. Two components were mixed by hand using a spatula, for 

approximately 30s until a homogenous mixture was obtained.  

The ceramic bowl was closed with a lid during the waiting time to prevent evaporation 

of MMA liquid [14]. The waiting time was typically between 2-5 minutes, however, this 

varied depending on the ambient temperature. Therefore, the mixture was checked 

regularly with a gloved finger until it didn’t stick on the glove. The working time was 

between 1.5-2 minutes. During the working time phase, a consistent kneading 

procedure was performed to break up any remaining pockets of the powder component 

so that the powder would be homogenously distributed in the paste. The dough was 

then placed into the required mould for hardening phase. Mixing, waiting, working and 

hardening times were constantly recorded for every sample regardless of the type of 

test. Prior to each sample preparations, the moulds were marked to identify the 

orientation and position. For every sample preparation, the same position was used. 

The samples were then marked and coded after the removal from the mould.  

3.4.2.1 Four-point Bending Test Sample Preparation 
The fabrication of four-point bending test mould is described in Section 3.2.2. For the 

preparation of the test samples, cement dough was divided into two pieces and formed 

into two rolls (approximately 50mm long and 4-6 mm diameter) having equal weights 

(Figure 3.9). These rolls were then placed into the moulds. Thermocouples were 

positioned into the sides of the mould, protruding into the sacrificial end spaces to 

record the temperature-time profile of the cement.  

Since ISO standard 5833:2002 required to use 25 gram of PMMA cement for 

monitoring temperature, the standard could not be followed due to limited Palacos 

cement kit. Therefore, silicone mould was designed to accommodate thermocouples 

through the sacrificial edges. By this way, the temperature profiles of cement samples 

could still be recorded and comparisons within and between the sample batches could 

be made.  
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However, it was acknowledged that the recorded temperature would not reflect the 

actual polymerisation temperature of PMMA cement because the polymerisation starts 

at the centre of the samples. Since the samples would be used for four-point bending 

test, the thermocouples could not be placed in the centre. Aluminium (~1.5 mm 

thickness) and wooden plates were placed on the top of the mould. Two weights, 5 kg 

each, were placed on the wooden plate to apply an even pressure on the cement 

samples.  

  

Figure 3.9 Rolls of Palacos® cement samples in the four-point bending mould 

3.4.2.2  Compressive Test Sample Preparation 
The fabrication of compressive test sample mould is described in 3.2.3. The test 

samples were prepared in a similar way as four-point bending test samples. As 

previously mentioned, the compression test samples were prepared in two different 

sizes; 6 x 12 mm and 12 x 24 mm. The reason of different sizes was to understand the 

influence of dimensions and application since polymerisation temperatures, porosities 

and defect sizes would be different between two sizes. The representative image of 

Wintercryl cement samples placed into the moulds can be seen in Figure 3.10. As the 

mould cavities for this test were cylindrical, it is pertinent to note that forcing the cement 

into the cavities may have resulted in trapped air. Therefore, the cement, in the dough 

stage, were rolled thin and compressed after being placed into the cavities.  

This ensured that the cement took the shape of the mould fully and pushed excess air 

out. Aluminium (~1.5 mm thickness) plate was placed on the top of the mould. A 3 kg 

weight was used for these samples. 



 

67 
 

 

Figure 3.10 Wintercryl cement samples in two different sizes for the compression tests 

 

3.5 Characterisation of PMMA Cement Samples 
3.5.1 The Setting Temperature 
Polymerisation temperature of each cement was recorded using T-type wire 

thermocouples connected to the TC-08 thermocouple data logger (Pico Technology, 

UK) and data was continuously gathered using Picolog software. Prior to placing the 

thermocouples through the sacrificial ends, the travel distance of the thermocouples 

was measured and labelled. The thermocouple tips were then sprayed with silicone 

mould release and inserted through the mould. After mixing the cement, when it 

reached the working time it was placed in the mould in two rolls. Four thermocouples 

recorded the temperature of the cements from each side of the bars, and one 

thermocouple recorded the ambient temperature, as shown in Figure 3.11. For each 

batch of cement prepared for four-point bending test, the time and temperature were 

recorded from the beginning of the mixing period.  

The temperature-time curves were plotted to determine the maximum temperature in 

order to identify the setting temperature and time, as shown in Figure 2.17, Section 

2.7.2.1. Setting temperature and time were calculated using Equation 2-1. Also, a 

stopwatch was used to record mixing, waiting and working time of each cement. It 

should be noted that method of setting time evaluation suggested by ISO 5833:2002 

could not be followed due to not having enough amount of cement material. The mould 

design only allows to understand the behavior of cement during setting time and effects 

of ambient temperature on setting time of the material. However, this design does not 

allow to exhibit materials accurate setting time and temperature properties. 
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Figure 3.11 Silicone mould with five thermocouples, T1, T2, T3, T4 and T5 

3.5.2 Bending Strength and Modulus 
Mechanical properties of the cement are important for load-bearing applications. 

According to standard ISO 5833-2002, PMMA bone cement should have a minimum 

bending strength of 50MPa and a minimum bending modulus of 1800 MPa. Therefore, 

a four-point bending test was performed to assess the bending modulus and strength 

of the samples using a standard calibrated test machine AGS-X (Shimadzu, Japan) 

with a load cell of 1kN and a cross-head speed rate of 5mm/min, as specified in the 

ISO 5833:2002 standard. Test samples with dimensions of 75±0,1 mm length, 10±0,1 

mm width and 3,3±0,1 mm thickness were prepared according to this standard. In order 

to achieve reliable test data of the cement, dimensional measurements were taken ten 

times along the thickness and width and four times for the length using a digital calliper.  

The four-point bending rig was set with a distance between the outer loading points of 

60 mm and a distance between inner loading points of 20 mm, as shown in Figure 3.12. 

In order to align the samples in the centre of the bed, the distance was measured and 

marked based on the dimensions of the sample. Each sample was carefully placed in 

the centre of the rig. In order to measure the deflection of the samples, an LVDT sensor 

was installed which was integrated into the manufacturer’s data-logging system. 
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 The sensor measures the mid-span deflection of the sample and the crosshead 

measures the stroke. The force and stroke were zeroed and calibrated before each 

testing session. The deflection of the specimen against applied force was recorded 

using TrapeziumX software supplied by the manufacturer. The applied stroke and 

resultant force were continuously increased until failure of the specimen or until the 

mid-span deflection of the sample reached a 12 mm safety limit.  

The aged test samples of Wintercryl cement, W0, (kept in open air and in closed air 

storage) and Palacos® cement, P0, (kept in closed air storage) were tested 1, 2, 3, 7, 

14, 21, 28, 60 and 180 days after setting. Bending modulus and bending strength were 

calculated using Equation 2-3 and Equation 2-4. Although ISO 5833:2002 suggests 

performing the tests on five samples to calculate the average of each test group, all 

tests were completed using six samples (n=6, providing 162 samples in total). 

 

Figure 3.12 Four-point bend test setting 

3.5.3 Compressive Strength 
Compressive strength was tested in line with the standard BS ISO 5833:2002 and the 

requirement for the compressive strength value is minimum 70MPa. Palacos® and 

Wintercryl cements (kept in open air and closed air storage) with 6±0.1mm diameter 

and 12±0.1mm height and double dimension Wintercryl cement samples (kept in 

closed air storage) with 12±0.1mm diameter and 24±0.1mm height were tested. Each 

sample was measured five times along the height and across the diameter using a 

calibrated digital calliper. The aged test samples of W0 (kept in open air and closed air 

storage) and P0 (kept in closed air storage) were tested 1, 2, 3, 7, 14, 21, 28, 60 and 

180 days after setting. Each batch had six samples and the average and standard 

deviation were calculated (n=6, providing 216 samples in total). 
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Figure 3.13 Compressive strength test 

Prior to the test, the force and stroke were zeroed and calibrated according to 

manufacturer’s instructions. The centre of the plate, where the sample would be placed, 

was marked. Each sample was then tested using AGS-X (Shimadzu, Japan) with a 

load cell of 10kN, at a constant cross-head speed of 20mm/min and a 50N pre-load, 

as shown in Figure 3.13. During the test, load against displacement was continuously 

recorded and the test was stopped when the ultimate load point been reached, or 

fracture occurred. Load-displacement data was converted to a stress-strain curve. A 

2% offset line was taken for each individual sample for the calculation of compressive 

strength. Stress was calculated by dividing the force by the initial cross- sectional area, 

as described in Equation 2-2.   

The percentage strain (Ɛ%) of the sample was calculated, as shown in Equation 3-2. 

𝜀𝜀% = �∆ℎ
ℎ0
� 𝑥𝑥100                                                       Equation  3-2 

Where ∆h represents the difference between initial height and the height after 

compression, h0 is the initial height of the sample. 

10 mm 
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3.5.4 Vickers Hardness Test 
In order to investigate the resistance of samples to indentation, a micro-hardness test 

was carried out using HV-100 (Mitutoyo, UK) hardness machine. The broken samples 

from the four-point bending test were used for the hardness test on the same day after 

the bending test. The aged test samples of W0 (kept in open and closed air storage) 

and P0 were tested 1, 2, 3, 7, 14, 21, 28, 60 and 180 days after setting. Each batch 

containing 6 samples were tested 3 times (n=6, providing 162 samples, 486 reading in 

total). 

The surface of the samples was refined with a 600-grit carbide paper to flatten the 

surface. The load was set to 2.5kg and held for 10 seconds for each test (Figure 3.14). 

The microscope attached to the machine was used to measure the two diagonal 

lengths, d1 and d2, after the load was removed, as shown in Figure 3.15. The automated 

calculation of the HV value was given by the test machine on the display.  

 

Figure 3.14 Representative image of Vickers hardness test 

 

Figure 3.15 Representative image of indentation 

 



 

72 
 

3.5.5 Scanning Electron Microscope 
Hitachi TM3030 scanning electron microscope (SEM) was used at 15kV to analyse the 

microstructure of the samples and elemental composition of the samples was observed 

using energy dispersive X-ray (EDX) analysis. In addition to this, the samples were 

gold coated (15nm) for better visualisation and observed under Tescan Vega 3 SEM 

at 8kV. The sample side in contact with silicone mould was examined under SEM for 

all samples.    

3.6 Magnetic Glass-Ceramic Containing PMMA Cement 
Two cement brands, Palacos® MV and Wintercryl rapid repair, were used to produce 

magnetic glass ceramic (MGC) cement samples. The MGC powder was mixed 

separately with Palacos® MV and Wintercryl cements in different wt% ratios; 10, 20, 

30 and 40%.  

The tests samples were named P10, P20, P30 and P40 for Palacos® MV and W10, 

W20, W30 and W40 for Wintercryl cements regarding the weight percentage of the 

MGC in the samples. MGC containing Wintercryl cement samples were called W-MGC 

and similarly, MGC containing Palacos® cement samples were called P-MGC for all 

MGC ratios (10, 20, 30 and 40 wt%). 

3.6.1 Humidity and Ambient Temperature Data 
The humidity and ambient temperature were measured in line with ISO 5833:2002 as 

described in Section 3.3.1.  

3.6.2 Preparation of Magnetic Cement  
Powder to liquid ratio (MGC+PMMA: MMA) was kept as 2:1 g/ml to have a medium 

viscosity cement. Appropriate amounts of PMMA and MGC powders were mixed 

manually in a glass beaker using a spatula to evenly blend both powder components. 

The powder mixture was then added to the liquid component. MGC cement samples 

were prepared following the same procedure described in Section 3.3.2. Mixing, 

waiting, working, and hardening times were recorded for each batch of the specimens.  

3.6.2.1 Four-Point Bending Strength and Modulus Test Sample Preparation 
Four-point bending flexural strength and modulus test samples were prepared as 

described in Section 3.3.2.1.  P0 and W0, plain cements, were used as control samples 

(n=6). For each batch of W-MGC and P-MGC, six samples were prepared (n=6, 

providing 48 samples in total).  
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3.6.2.2 Compressive Strength Test Sample Preparation 
The test samples were prepared, as described in Section 3.3.2.2. P0 and W0, plain 

cements, were used as control samples (n=6). For each batch of P-MGC and W-MGC, 

six samples were prepared (n=6, providing 48 samples in total).  

3.6.2.3 Cytocompatibility Test Sample Preparation 
The mould fabrication is described in Section 3.2.4. When the cement was in the dough 

stage, it was weighed and divided into four pieces. Each piece was rounded as a ball-

like shape and placed into the mould. The ball-like shapes were gently compressed to 

ensure the cement would fill the disc shapes. A 3 kg weight was placed on the top of 

the mould. A representative image of the magnetic cement placed into the mould can 

be seen in Figure 3.16.  

 

Figure 3.16 Magnetic cement test samples placed in cell viability test mould 

3.6.2.4 Induction Heating Test Sample Preparation 
The mould fabrication is described in Section 3.2.5. Since the test would be performed 

in non-contact conditions, cubic shape was preferred to minimise the contact between 

the acrylic holder and test sample. For the preparation of induction heating test 

samples, the cement in dough stage was weighed and divided into four pieces. Each 

piece was rounded like a ball and placed into the moulds. In order to have sharp 

shapes of cubic structure, the cement was carefully placed and pushed into the mould. 

A representative image of magnetic cement samples placed into the mould can be 

seen in Figure 3.17. A 3 kg weight was placed on the top of the mould.  
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Figure 3.17 Magnetic cement samples placed in induction heating test mould 

3.7 Characterisation of Magnetic Cement Samples 
3.7.1 The Setting Temperature 
Polymerisation temperature and time were recorded as described in Section 3.4.1. 

Setting time and temperatures of the samples were calculated through Equation 2-1.   

3.7.2 Four-Point Bending Strength and Modulus Test 
The test was set up and performed, as described in Section 3.4.2. The control (W0 and 

P0) and magnetic cement samples (P10, P20, P30, P40 and W10, W20, W30, W40) 

were tested 24±2 hours after the cement samples were polymerised. Bending strength 

and modulus was calculated using Equation 2-3 and Equation 2-4. The average and 

standard deviations of each test group were calculated (n=6, 48 samples) 

3.7.3 Compressive Strength Test 
The compressive strength test was set up and performed as described in Section 3.4.3. 

Both control and MGC cement samples were tested 24±2 hours after the cement 

samples were polymerised. Stress (σ) and strain (ɛ%) were calculated through 

Equation 2-2 and Equation 3-2 in order to evaluate 2% offset line as described in 

Section 3.4.3. The average and standard deviations of each test group were calculated 

(n=6, 48 samples). 

3.7.4 Vickers Hardness Test 
The broken samples from the four-point bending test were used for the hardness test 

on the same day after the bending test. The test was performed as described in Section 

3.4.4. Each batch had six samples. For each test group, the average values and 

standard deviations were calculated (n=6, 48 samples in total, 162 readings). 
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3.7.5 Analysis of Water Absorption 
The Archimedes method was followed to calculate the water absorption of the 

composite cement samples. Three samples from each group were used to calculate 

the average water absorption (%) and standard deviations. A density determination kit 

that was set up in Kern analytical balance (ABT 220-5DM). After taking the dry weight 

of samples, they were submerged in water and weighed in water. Finally, they were 

taken out of the water and weighed again to record the wet weight. Water on the 

surface was gently removed using a tissue before mass determination. The water 

absorption was determined using Equation 3-3, 

%water absorption = (m1−m0)
(m1−m2)

× 100                       Equation 3-3 

where m1 is wet mass, m0 is dry mass, and m2 is submerged mass.  

3.7.6 Scanning Electron Microscope 
A Hitachi TM3030 scanning electron microscope was used at 15kV to analyse the 

microstructure of magnetic PMMA cements. Elemental composition of the samples 

was observed using energy dispersive X-ray (EDX) analysis.  

3.7.7 In vitro Bioactivity Characterisation 
In vitro bioactivity of the composite samples was assessed using simulated body fluid 

(SBF) solution proposed by Kokubo et al [150]. The ion concentrations in the solution 

mimics human blood plasma to enhance the formation of an apatite-layer on the 

surface of the bioactive samples.  

SBF solution was prepared following the instructions in Kokubo’s procedure using a 1-

litre plastic bottle. The reagents from 1 to 8, given Table 3.3, were chronologically 

added into 700 mL deionized water at 20 minutes intervals. It was essential to dissolve 

the reagents entirely before adding the next reagent. The pH values and temperature 

were measured continuously using a portable pH meter FiveGo™ F2 (Mettler Toledo, 

Switzerland). Before adding reagent 9 (Tris buffer), deionized water was added until 

the solution was 1L. 
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Table 3.3 Reagents used for the preparation of SBF (pH 7.4, 1L) 

 

 

Tris buffer was added in small amounts until the solution reached 7.45 pH value and 

then HCl and the rest of the Tris buffer were alternately added to keep pH values 

between 7.42-7.45. After dissolving the entire amount of Tris buffer the pH value and 

temperature were stabilised with HCL at 7.40 at 36.5°C. Kokubo’s protocol stated that 

the solution could be kept in the fridge for only one month. Therefore, the new SBF 

solution was prepared every month during the bioactivity test.  

The test samples, W0, W10, W20, W30 and W40, were cut by laser cutting machine 

approximately 5 mm wide and 3 mm thick. In vitro bioactivity test was carried out for 1, 

2, 3, 4, 8, 12, and 24 weeks and three samples were used for each time point. The 

samples were placed in plastic bottles, and 5 mL SBF solution was added. During the 

test, the samples were kept at 37°C in the incubator, and the solution was refreshed 

twice a week. This was done with extra care so that all samples were placed in the 

containers in the same position. 

After each time-point, samples were removed from the bottle using tweezers and 

washed gently with deionised water to remove any unattached apatite particles. Next, 

the samples were left to dry at ambient temperature for 1 day. The scanning electron 

microscope was used to analyse the apatite layer on the surface of the samples. The 

characterisation and morphology of the samples were observed using SEM and EDX, 

as mentioned in Section 3.6.6. 

Order Reagent Amount Purity % 

1 NaCl 8.035 g 99.5 
2 NaHCO3 0.355 g 99.5 

3 KCl 0.225 g 99.5 

4 K2HPO4 3H2O 0.231 g 99.0 

5 MgCl2･6H2O 0.311 g 98.0 

6 1M-HCl 35 mL - 

7 CaCl2 0.292 g 95.0 

8 Na2SO4 0.072 g 99.0 

9 Tris Buffer 6.118 g 99.0 

10 1M-HCl 0-10 mL - 
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3.7.8 Cytocompatibility Tests 
In vitro biological behaviour of MGC cements was assessed using two different assays; 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)] and Alamar 

Blue™. These assays measured cell adhesion, cell viability and proliferation. The 

cytocompatibility tests were performed at Northern Institute of Cancer Research, 

Newcastle University, with the collaboration of Dr Kenny Rankin. The MTT assay 

experiment was carried out with the MRes student, Nick Inmann. All tests were 

performed using the side of the sample that was in contact with silicone mould. 

3.7.8.1 Tissue cell culture for MTT assay 
Osteosarcoma, U2OS, cancer cells were cultured using Dulbecco’s Modified Eagle 

Medium, DMEM, (Sigma, UK) supplemented with 1% L-glutamine, 10% fetal bovine 

serum (FBS), 1% penicillin/streptomycin in T125 flasks. The flasks were kept in an 

incubator at 37°C (5% CO2 and 95% air in a humidified atmosphere). The cell media 

was refreshed every 2 days.  

When the cells reached 70-80% confluency, the media in the flask was aspirated, and 

10 mL of PBS were added to wash the cells. The flask was gently shaken to rinse the 

entire surface, and then PBS was aspirated. 3 mL of trypsin/EDTA (Gibco®) was 

added to detach the cells, and the flask was returned to the incubator and left for 5 

minutes. The flask was checked again under an optical microscope, to look for 

undetached cell; to detach these cells, the flask was gently tapped. To wash the walls 

of the flask 7mL of fresh media were added in the flask and resuspended several times 

to collect the detached cells in a 50mL falcon tube. These cells were centrifuged at 500 

rpm for 5 minutes, and then the trypsinised media was decanted. 10mL of fresh media 

was then added to neutralise any residual trypsin. The cells were resuspended several 

times to break apart any clumps to achieve homogeneity. Cells were counted using a 

Hemacytometer (Sigma-Aldrich) in order to calculate the number of cells in 1mL cell 

suspension. The total number was divided by 4 and multiplied by 1x104 since each 

square (total four squares) of Hemacytometer had a value of 0.1 µL.  
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3.7.8.2   MTT Assay  
MTT colourimetric assay was performed using Thiazolyl Tetrazolium Bromide (MTT, 

Sigma, UK) to evaluate cell viability and cell attachment of samples. In this assay, the 

viable cells would change the colour of MTT from yellowish to deep purple. This is due 

to the mitochondrial dehydrogenase of living cells that reduces the MTT dye to 

insoluble formazan, which has a deep purple colour. Then the formazan crystals are 

dissolved in a solvent reagent such as acidified isopropanol.  

MTT assay was performed only on W0, W10, W20, W30 and W40 samples using 

U2OS cell lines since Palacos® MV cement kit could not be obtained for this assay. 

The test was performed for 1, 3 and 7 days as triplicate. Three samples for each test 

group and time point were prepared (n=3, 54 samples) as described in Section 3.5.2.3. 

It should be noted that six W0 samples were used. These samples were divided into 

two plates as W0-1 (plate-1) and W0-2 (plate-2). Three wells of each plate were used 

for positive controls (C+), media with U2OS cells. The disc-shaped samples were 

placed as shown in Figure 3.18. The samples were kept in 70% ethanol for 1 hour for 

sterilisation and then washed with PBS to neutralize the ethanol.  

 

Figure 3.18 Schematic diagram of 12-well plates for MTT assay set up 

At 0 time point, the sterilised samples were placed in a new 12-well plate. 5x105 cells 

in 200 µL were seeded on the top surface of each sample and in the empty positive 

control wells. The plates were returned into the incubator to allow cell attachment and 

kept for 30 minutes. After that, 1.5mL of media was added into each well. The 

schematic diagram of the procedure is shown in Figure 3.19. 
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Figure 3.19 Schematic diagram of seeding the cells on the top surface of the samples 

At each time point (1, 3 and 7 days), The MTT powder was weighed out in an amount 

to be diluted with media in 5mg/mL ratio. Sterilised 50 mL falcon tube was covered 

with Al foil to avoid light penetration. The MTT solution was mixed using a Vortex mixer 

until it dissolved in media. The solution was transferred to a new 50mL falcon tube 

using a 0.2µm pore size filter and a 20mL syringe. The disc-shaped samples were 

transferred to new 12 well-plates so that the MTT solution would only react with cells 

which were adhered on the surface of the samples. The old 12 well-plates were kept 

in order to analyse the positive control wells. Afterwards, 1.5mL of MTT solution was 

added to each well, and the plates were wrapped with Al foil. After 4 hours of incubation, 

MTT solution was aspirated, and 1.5mL of 100% isopropanol was added to each well. 

The plates were wrapped with foil again and placed on a plate rocker for 60 min at 

room temperature.  

500 µL solubilized cells were removed from each well and placed in Eppendorf tubes 

and centrifuged at 12000 rpm for 1 minute to separate the cement debris that would 

affect the results. 200µL of the centrifuged solution was transferred into a 96 well-plate. 

100% isopropanol solution was used as a negative control. 200 µL of 100% 

isopropanol was added in an empty well of 96-well plate. The spectrophotometer 

absorbance readings were taken at 570nm using a plate reader (680- Bio-Rad, UK).  

The percentage of cell viability was expressed using Equation 3-4,  

Cell Viability % =  Asample
Acontrol 

× 100                                                  Equation 3-4 

where Asample refers to the absorbance value of the samples and Acontrol refers to 

the absorbance value of the positive control. 
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3.7.8.3 Tissue Cell Culture for Alamar Blue Assay 
The Alamar Blue assay was performed using two cell lines, human osteoblast (OBS) 

and U2OS cells. Both cell lines were cultured in RPMI (Roswell Park Memorial Institute) 

1640 media (Sigma, UK) supplemented with 1% L-glutamine, 10% fetal bovine serum 

(FBS),1% penicillin/streptomycin in T125 flasks. The flasks were kept in an incubator 

at 37°C (5% CO2 and 95% air in a humidified atmosphere). The cell media was 

refreshed every 2 days. The cells were split and counted as described in 3.6.8.1.  

3.7.8.4 Alamar Blue Assay 
Cell proliferation on the surface of Palacos® MV and Wintercryl magnetic cements were 

assessed using Alamar Blue™ assay for 1, 3, 7, 10 and 14 days. In this assay, 

oxidation-reduction (REDOX) activity takes place which indicates the metabolic activity 

of cells. Due to the REDOX reaction, the AlamarBlue®, REDOX indicator, changes its 

colour from oxidized blue, non-fluorescent, to reduced pink, highly fluorescent.  

The disc-shaped W0, P0, W-MGC and P-MGC samples, were prepared as described 

in 3.5.2.3, were laser-cut in quarters. Five samples for each W-MGC and P-MGC 

groups were prepared (n=5, 200 samples in total). However, W0 and P0 groups had 

six samples and these samples were divided in two groups. The samples in plate-1 

were called W0-1 or P0-1 and the samples in plate-2 were called W0-2 or P0-2 (n=10, 

100 samples in total). Throughout the assay, the total number of samples was 300 and 

1200 readings were taken. 

Five wells of each plate were used for positive controls (C+), media with cells. The 

disc-shaped samples were placed in 24 well-plates, as shown in Figure 3.20. The 

samples were soaked in 1mL of 70% ethanol for one hour for sterilisation. The ethanol 

was then aspirated and neutralised by adding 1mL of RPMI to each well. The 24 well-

plates were incubated at 37 °C in 5% CO2 for 24 hours. The plates were then taken 

from the incubator, and the samples were transferred into new 24-well plates. 
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Figure 3.20 Schematic diagram of 24-well plates for Alamar Blue assay set up 

(* indicates that the column was not used) 

 

At 0 time point, the two cell lines, OBS and U2OS, were counted and collected in dif-

ferent falcon tubes in the same way as described in Section 3.6.8.1. 1x104 cells in 20µL 

of culture medium (RPMI) were seeded directly onto the top surface of each sample, 

and the plates were returned into the incubator. After 2 hours, 1mL of RPMI media was 

added to each well and returned to the incubator. The procedure was performed, as 

shown in Figure 3.19. 

At 1, 3, 7, 10 and 14-day time-points, the samples were transferred to a new 24-well 

plate. The day 1 time-point 24 well-plate were kept due to containing positive control 

(cells+media) wells. In the new 24 well plates, the five wells were used for negative 

control (only media). The media in each well was refreshed adding 1mL of fresh RPMI 

media, and in order to perform the assay, 100 µL (10% v/v) of AlamarBlue™ was added. 

The plates were wrapped with Al foil and placed in an incubator at 37 °C in 5% CO2 for 

4 hours.  

After the incubation, 4 aliquots of 150µL media from each well were transferred into 96 

well plates (Costar) for fluorescence reading at 540nm and 580nm using FLUOstar® 

Omega plate reader (BMG Labtech). Remaining Alamar blue in the wells was aspirated, 

and 1mL of fresh RPMI was added into each well before the incubation period for the 

next time-point assay. 

The cell viability was calculated as suggested in the manufacturer’s protocol through,  
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𝐶𝐶𝑇𝑇𝑙𝑙𝑙𝑙 𝑉𝑉𝑉𝑉𝑎𝑎𝑉𝑉𝑉𝑉𝑙𝑙𝑉𝑉𝑡𝑡𝑉𝑉 % =  𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

× 100                                                               Equation 3-5 

Where Fsample is fluorescence readings of the samples (W-MGC, P-MGC and their 

controls) and Fcontrol is fluorescence readings of control cells.  

3.7.9 Fluorescence Imaging 
The OBS and U2OS cell attachment was observed on the surfaces of the W0, W-MGC 

and also P0, P-MGC samples. The cells were seeded, as described in Section 3.6.8.3. 

In order to observe the cell attachment Vectashield® Hardset™ Antifade Mounting 

medium with DAPI (H-1500, Vector Laboratories, UK) stain was used. This technique 

allows staining the nucleus and DNA of the cell. According to the manufacturer’s 

protocol, the samples were mounted on the microscope slides by applying a drop of 

dye (approximately 25 µL) to the surface of the sample. A coverslip was carefully 

placed on the top without causing any air bubbles, which could hinder the image. The 

samples were cured at room temperature for approximately 15-20 minutes. As the dye 

was sensitive to any lights, the samples were wrapped with Al foil and kept in the fridge 

(4°C).  

Leica DM6 fluorescence microscope integrated with LAS X software was used to 

observe and record the stained cells images. DAPI was set in the software which 

excites at 360nm and emits at 460nm.  

3.7.10 SEM Microscope Imagining for cell attachment 
Tescan Vega3 (Tescan, UK) SEM was used to detect cell attachment for both cell lines 

(U20S and OBS) on P0 and P-MGC for 1 and 3-day time-points. Additionally, control 

samples, absent from cells, were observed under SEM to determine the effects of 

chemicals and treatments used through the cell fixation process, which are explained 

below. 

For cell fixation, the samples were kept in 2% glutaraldehyde Sorenson’s buffer 

solution (GA) overnight. After this step, the dehydration steps were applied. The 

samples were washed with PBS for 15 minutes twice, and then they were soaked in 

25%, 50% and 75% ethanol solutions respectively, for 30 minutes each. In the end, 

the samples were kept in 100% ethanol for two hours, aspirating and refreshing the 

ethanol after the first hour. The samples were critical point dried (Bal-tec, UK) to 

remove the residual water in their structure. The dried samples were gold coated 

(15nm) and placed in a vacuum chamber of SEM. The images were taken at 200x and 

1000x magnification at 8kV.  
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3.7.11  Induction Heating Test 
It is essential to analyse the magnetic heating characterisation of the MGC containing 

bone cement samples to predict the behaviour of the materials when exposed to 

hyperthermia treatment in the body. As previously mentioned in Section 2.3.2, the 

temperature above 42oC kill cancerous cells. This experiment was designed to 

increase temperatures to between 50-55 ºC and to hold the temperature between these 

ranges. Although this ~5 ºC higher than the minimum 42 ºC, the increased temperature 

allows for heat losses in vivo. 

The test samples were prepared, as described in Section 3.5.2.4. They were weighed 

in order to assess any weight loss during induction heating. The dimensions of the 

samples were measured using a digital calliper. Both MGC containing Palacos® and 

Wintercryl cements and control samples were tested (n=5, in total 50 samples). 

The experiment was carried out at room temperature. The system was set up as in 

Figure 3.21. The cubic samples were placed in an acrylic holder, which was suspended 

in the middle of an induction coil, in a non-contact position. The infrared thermal 

camera, FLIR C2 (FLIR Systems, USA), was set at the point of the edge of the sample 

as indicated in the image.  

In this way, the heat generated in the sample could be measured by a single camera 

measuring the three edges to provide more homogenous heat distribution throughout 

the sample rather than measuring only one face of the sample. The coil, acrylic sample 

holder and ambient temperature were also recorded by a thermal camera. Thus, the 

effect of radiation and convection from the surrounding material could be observed.  
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Figure 3.21 Schematic diagram of induction heating test set-up (*indicates the 

temperature measuring point on the sample) 
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The induction current was chosen so that the corresponding MGC samples would be 

heated to above 50°C within a similar range in 5 minutes. It was aimed to apply the 

lowest current possible to reach and maintain the targeted temperature for every 

sample group. Therefore, small gradients of current have been tested and optimal 

current for 10% MGC containing cement was found as 310A to reach temperature 

between 50-55 ºC. The same procedure was applied to determine the holding current 

in order to maintain the temperature for five minutes. The induction current was 

manually reduced with the increase of MGC content from 10% to 40%. This reduce 

was approximately 25%, however, further increases or decreases were applied based 

on trial and error method. As a result of this, the magnetic samples were heated using 

currents between 200A and 310A depending on the MGC content at 290 kHz for 5 

minutes using an induction heating system (Easy Heat 0224, Ambrell, USA). Once 

within the temperature range, the applied current was reduced to set the current value 

to keep the sample within the temperature range for another 5 minutes. This current 

value was called holding current. Table 3.4 shows the heating and holding currents 

based on the MGC content in the cement. The temperature changes on the surface of 

the sample, acrylic holder and coil were recorded in every 1 second by ResearchIR 

software and manually noted every 60 seconds. 

Table 3.4 Induction heating of the samples 

 
Heating Current (A) Holding Current (A) 

0%MGC 310 270 

10%MGC 310 270 

20%MGC 240 210 

30%MGC 220 187 

40%MGC 200 170 

 



 

86 
 

3.8 Statistical Analysis 
Statistical analysis of all quantitative data was analysed using Sigma Plot 13. The 

Shapiro-Wilk test was used to evaluate the normal distribution of the data. If the data 

was normally distributed (p>0.05) the results were statistically analysed performing 

one-way and two-way Analysis of Variance (ANOVA) followed by Tukey’s post hoc 

tests to compare the means of samples. One-way Anova was performed for the data 

involved one factor (magnetic cement samples), in order to determine the statistical 

differences between sample groups. Two-way Anova was performed for the data 

involved two factors (time points and PMMA cement samples) in order to determine 

statistical differences between and within the sample groups. If the data was not 

normally distributed (p<0,05), Mann-Whitney non-parametric test was performed to 

determine statistical differences between and within the sample groups. The 

statistically significance value was set as p<0.05.  

Box and whiskers were plotted to present the distribution of data, which shows 

maximum, upper quartile (Q3), median (Q2), lower quartile (Q1) and minimum. In this 

study, Minitab 18 was carried out to plot the data. A schematic diagram of box and 

whisker is shown in Figure 3.22. Calculations of Q1 and Q3 are given in equation 3-6 

and equation 3-7. Interquartile range (IQR) is the difference between Q3 and Q1 (see 

equation 3-8), which presents 50% of data. Outliers are calculated using equation 3-9 

and equation 3-10 below; 

 𝑄𝑄1 =  (1/4) (𝑛𝑛 + 1)                                                                       Equation 3-6 

 𝑄𝑄3 =  (3/4) (𝑛𝑛 + 1)                                                                       Equation 3-7                                                                        

𝐼𝐼𝑄𝑄𝐼𝐼 = 𝑄𝑄3 − 𝑄𝑄1                                                                                Equation 3-8 

Outlier 1 = 𝑄𝑄1 − 1.5(𝐼𝐼𝑄𝑄𝐼𝐼)    Equation 3-9 

Outlier 2 = 𝑄𝑄3 + 1.5(𝐼𝐼𝑄𝑄𝐼𝐼)   Equation 3-10 

Where 𝑛𝑛 is sample number.  

 



 

87 
 

 

Figure 3.22 Schematic diagram of box and whisker plot 
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4 Results and Discussion: Production and 
Characterisation of Magnetic Glass Ceramic and 
PMMA Cement 

This chapter presents the results of the production and characterisation of MGC. 

Silicone rubber mould design and the dimensions of prepared samples are 

demonstrated. Next, setting properties and morphologies of plain PMMA cement 

samples and the influence of ageing and storage conditions on mechanical properties 

of these cements are evaluated. 

4.1 Production of Magnetic Glass-Ceramic  
Glass-ceramic composition, preparation technique and melting temperature may alter 

their bioactivity, crystalline phases, mechanical properties and magnetism [151]. In this 

study, MGC in the system Na2O-CaO- SiO2-P2O5 - Fe2O3-FeO was produced by 

melting at 1550°C and quenching in water as described in Section 3.1. The frits (Figure 

4.1-A) were ground and sieved (Figure 4.1-B) to obtain powder particles smaller than 

53 µm (Figure 4.1-C). Each batch was produced, ground and sieved individually. The 

batches were then mixed into a larger batch in order to prevent variations in particle 

size distribution between the batches. The larger batch was used for producing test 

samples to obtain accurate results since the variations in particle sizes distribution can 

affect the results.  

 

Figure 4.1 A) MGC frits B) Grinding and sieving C) MGC powder 

In order to assess the yield percent of obtained MGC frits and MGC powder, the 

following equation is used 

Yield percent= 𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝑇𝑇𝐹𝐹 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚
𝑇𝑇ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝐴𝐴𝑇𝑇𝐹𝐹 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚

 𝑥𝑥100                                                  Equation 4-1  

 

10 mm 50 mm 50 mm 

A B C 
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Table 4.1 presents the theoretical mass of MGC and the actual mass of three batches 

of MGC frits and obtained powders. The theoretical mass of MGC was 10 grams. 

However, only 7.40 ±0.3 g of frits was obtained, as part of the material remained on 

the crucible walls. Thus, yield was 74±3%. After grinding and sieving procedures, the 

obtained powder was 6.50±0.4 g, hence, the yield decreased to 65±4%.  

Table 4.1 Theoretical and actual mass of the MGC obtained after quenching, grinding 

and sieving (The data presents mean value ± standard deviation (μ ±σ), 𝑛𝑛=3)  

Material Theoretical mass 
of MGC  

Actual mass of 
MGC Frits 

Obtained MGC 
Powder 

Mass (g) 10 7.40±0.3  6.50±0.4  

    

Approximately 12% of the material was lost during grinding and sieving. The crucible 

(Figure 4.2-A) with and without the reagents, after decomposition of the MGCs (Figure 

4.2-B) and after quenching the melt (Figure 4.2-C) was weighed out.  

 

Figure 4.2 A) Raw reagents in Pt crucible B) Decomposed reagents in Pt crucible C) 

Residual MGC melt inside and around the Pt crucible after quenching (yellow arrows 

indicate the MGC residuals) 

Table 4.2 provides the mass measurements of the materials and crucibles throughout 

the MGC production. The main reason for the difference between actual and 

theoretical mass was detected when the crucible was weighed after quenching the 

MGC. It showed that approximately 26% of the material could not be quenched and 

was left inside and around the crucible as noted in Figure 4.2-C. As it can be seen from 

Table 4.2, there was approximately 27.4% mass loss during the decomposition phase. 

This is due to the decomposition of Na2CO3, CaCO3 and FeC2O4.2H2O reagents, which 

was reported by several studies [152-157].  

A B C 

10 mm 10 mm 10 mm 
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Table 4.2 Mass measurements of the reagents and crucible throughout the melting 

and quenching procedure (The data presents mean value ± standard deviation (μ ±σ), 

𝑛𝑛=3) 

 

4.2 Characterisation of Magnetic Glass-Ceramic (MGC) 
4.2.1 X-Ray Diffraction (XRD) 
The XRD patterns obtained from MGC powder and the reference materials, magnetite 

and hematite powders, are presented in Figure 4.3. XRD patterns of eight batches of 

MGC powder and the reference materials are presented in Appendix A.1. A crystalline 

magnetite phase embedded in the amorphous glass phase can be clearly seen for 

MGC pattern. Magnetite crystal peaks were detected at 2θ value around 18.1°, 30.25°, 

35.74°, 43.25°, 53.74, 57.2° and 62.8°. A small amorphous halo could be observed at 

2θ between 26° and 38° which is in accordance with the other studies [61, 158]. As the 

plot shows, the MGC had only magnetite phase and the lack of non-magnetic hematite 

phase proved that the applied melting temperature was optimal to allow transformation 

of hematite (raw material) into crystalline magnetite. The influence of melting 

temperature on formation of crystalline magnetite was reported by Bretcanu et al [159]. 

It was found that increasing the melting temperature from 1400°C to 1550°C increased 

the crystalline magnetite and reduced hematite phase in the composition.  

  

Figure 4.3 The XRD pattern of MGC, magnetite and hematite powders (M=magnetite 

crystals) 
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4.2.2 Differential Thermal Analysis (DTA) 
DTA curve of MGC powder, using a heating rate of 20°C/min up to 1550°C is shown 

in  Figure 4.4. DTA curves of six batches of MGC powder are presented in Appendix 

A.2. The curve exhibits characteristic temperature of glass-ceramics such as glass 

transition temperature (Tg), crystallisation temperature (Tc) and melting temperature 

(Tm). Tg was detected at 516°C, which is similar to Tg values for iron-rich glass-

ceramic compositions [160]. This also proved that there was an amorphous phase in 

the glass-ceramics structure. Two exothermal peaks were observed at 624°C (Tc1) 

and 754°C (Tc2) related to the crystallisation temperatures. Two endothermal peaks 

were observed at 1068°C (Tm1) and 1294°C (Tm2) related to the melting temperatures. 

The two crystallisation and melting temperature peaks showed that two different 

crystalline phases formed during heating to 1550°C. Bretcanu et al. [6] reported the 

crystallisation of hematite and iron silicate for magnetic glass-ceramics in the system 

of Na2O-CaO- SiO2-P2O5 - Fe2O3-FeO during heating to 1550°C. 

 

 Figure 4.4 DTA curve obtained for MGC at 20oC/min (The circled area is an error of the 

DTA thermocouple at low temperature and can be ignored) 

 

 

-30

-25

-20

-15

-10

-5

0

5

0 200 400 600 800 1000 1200 1400 1600

H
ea

t F
lo

w
 (µ

V)

Tc1 Tc2 

Tm1 
Tm2 

Tg 

Ex
ot

he
rm

ic
 

En
do

th
er

m
ic

 



 

92 
 

4.2.3 Hot Stage Microscope (HSM) 
HSM was carried out in air up to 1050°C using a heating rate of 5°C/min in order to 

determine the shrinkage of the material. The silhouettes of the cylindrical samples were 

recorded and analysed by the software. Figure 4.5 shows characteristic silhouettes of 

the cylindrical sample during heating. 

At room temperature (TAT), the sample had sharp edges. It can be clearly seen that 

increasing the temperature to 998°C, reduced the size of the silhouette and slightly 

rounded the edges. From 998°C to 1045°C, the sample became smaller and more 

rounded and at 1048°C, the sample had a sphere-like shape and started to melt.  

  
 

    

Figure 4.5 HSM silhouettes of typical MGC recorded at different temperatures 

Figure 4.6 shows the shrinkage (%) of the sample throughout the heating process. 

Sintering and softening steps can be identified from the graph. Sintering started at T1 

(572°C) and ended at T2 (684°C). The sample started to soften at T3 (~900°C) and 

ended at T4 (~998°C). The sample had a sphere-like shape at T5 (1048°C) and started 

to melt. The shrinkage of the sample before melting was ~18%. The sintering 

temperature range can be determined as 650-900°C. Tg (glass transition temperature) 

is related to viscosity of material. Therefore, Initial sintering temperature takes place 

after Tg [161, 162]. Although the heating rates were different, comparisons between 

DTA and HSM showed Tg and T1 took place at similar temperatures (Table 4.3). 

Moreover, Tc1 is similar to T2 and Tm1 is similar to T5.  

Table 4.3 Comparison between characteristic temperatures obtained from DTA and 

HSM 

DTA Tg Tc1 Tc2 Tm1 Tm2 
T°C 516 624 754 1068 1294 

HSM T1 T2 T3 T4 T5 
T°C 572 684 900 998 1048 

 

  TAT = 22 °C  T4= 998C   T5 = 1048°C  T1= 572 °C  T2= 684 °C  T3= 900 °C 



 

93 
 

 

   Figure 4.6 Shrinkage of typical MGC (corresponding to Figure 4.5) during heating  

4.2.4 SEM Analysis  
In order to analyse the morphology of the MGC powder, SEM analysis was performed. 

Figure 4.7 shows that sieved MGC powder had particles size less than 53 µm, irregular 

shapes and sharp edges. The majority of particles were smaller than 20µm and these 

fine particles tended to form clusters around the big particles, which were in the range 

of 30-50µm. In Figure 4.7-B and C, columnar octahedral shapes (indicated with red 

arrow) were observed, which represent the magnetite crystals embedded in the amor-

phous residual phase, in accordance with the literature [61, 163, 164]. Magnetite crys-

tals were formed during quenching and were uniformly spread in the glass matrix. 

There was no need to perform any chemical etching to observe the magnetite phase 

since it was visible on the SEM as produced after grinding and sieving. 

Electron diffraction X-ray (EDX) was performed on the glass-ceramics in order to as-

sess the elemental composition, which consists of Fe, Na, P, Si and Ca. Figure 4.7 

shows the EDX images and spectra of the MGC performed on the marked areas, mag-

netite crystalline phase (red circle) and glass-ceramic itself (yellow circle). The EDX 

spectrum of a “crystalline phase” showed a higher peak for Fe, when compared to 

“amorphous phase” spectrum. The intensity of Na, Si, P and Ca peak was lower in the 

“crystalline phase spectrum”.  
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 Figure 4.7 SEM image of MGC particles a) 500x magnification b) 2000x magnification 

c) 6000x magnification and EDS spectra (same scale) of MGC D-i) yellow circle 

(“amorphous phase”) D-ii ) red circle (“crystalline phase”) 

 

4.2.5 Summary of Results and Discussions 
In this section, yield percent of the produced MGC and its properties obtained from 

XRD, DTA, HSM and SEM were presented. In order to determine crystalline phases of 

the MGC, XRD was carried out and the results were compared to XRD patterns of 

hematite and pure magnetite. It was found that MGCs only showed magnetite 

crystalline phase and a broad amorphous phase was observed between 26° and 38°.  

Endothermic and exothermic peaks of MGC were investigated using DTA. These 

peaks referred to crystallisation and melting temperatures of this glass-ceramic. Two 

exothermic peaks and two endothermic peaks were observed during crystallisation and 

melting processes, which showed that there were two crystalline phases. The MGC 

crystallised at 624°C (Tc1) and 754°C (Tc2) and melted at 1068°C (Tm1) and 1294°C 

(Tm2). The Tg of MGC was detected at 516°C, which was consistent with a study 
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performed by Karamanov et al [160]. According to Bretcanu et al. [6] the two crystalline 

phases were hematite and silicate iron.   

The behaviour of MGC during sintering and softening processes was evaluated by a 

heating microscope at a heating rate of 5°C/min at 1050°C. During the heating process, 

shrinkage (%) in area and corresponding silhouettes of MGC at specific temperatures 

were determined. The shrinkage of the sample before melting was ~18%. MGC started 

to sinter at 572°C, the softening phase started at 900°C and the beginning of melting 

phase was at 1048°C. 

 According to the SEM images, ground and sieved particles of MGC were smaller than 

≤53µm with sharp edges. Interestingly, magnetite crystals could be observed on the 

surface of MGC samples without etching. SEM images indicated that a crystalline 

magnetite phase was homogenously embedded in a glassy matrix. This showed a 

successful formation and growth of magnetite crystals in the glass structure by the 

traditional melting and quenching technique. The presence of crystalline magnetite 

phase was confirmed using XRD and SEM. The crystalline phase embedded into an 

amorphous phase will not only act as thermoseeds under the applied alternating 

current, but it will also increase the strength of glass. Several studies showed that 

magnetite base glass-ceramics show promising results in hyperthermia applications 

and bone regeneration [6, 17, 54, 61, 94, 163, 164]. The bioactivity properties of the 

obtained MGC after mixing with PMMA cement will be explained in Section 5.1.7. 

In the next section, the design and fabrication of silicone rubber moulds will be 

presented.  
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4.3 Fabrication of PMMA Cement Samples Using Silicone 
Rubber Mould 

ISO 5833:2002 and ASTM F451-16 standards indicate that test sample moulds should 

be made from machined blocks of PTFE. It has high stiffness and resistivity to adhesion, 

but it may cause rough edges and surface defects on the samples, as well as undesired 

dimensions. Sanding or abrasive removal of PMMA cement could result in undesirable 

changes in mechanical and chemical properties and may have introduced surface 

defects and micro cracks. Thus, the results of flexural and compression tests may have 

not provided representative values of the cement. Additionally, sanding each sample 

would increase dimensional inconsistencies within the sample batch and was a time-

consuming operation. Several studies reported that PMMA samples moulded in PTFE 

moulds required dry sanding to correct the dimensions and polishing to smoothen the 

rough edges and surfaces [144, 165-168].  

The fabrication process of the silicone rubber mould for desired shapes and 

dimensions was quick, reliable and required only limited equipment. The dimensions 

of the test samples were consistent and did not require any further post-processing 

such as sanding to size or finishing. Since more than 650 samples were prepared 

during this study, this was a helpful method to reduce inconsistency in test results and 

save time. All dimensions of the test samples were measured after the samples were 

removed from silicone rubber moulds. 

4.3.1 Four-point Bending Test Samples 
In order to achieve reliable data of the sample dimensions, measurements were taken 

ten times for the thickness and width and four times for the length using a digital calliper. 

Table 4.4 presents the average values and standard deviations of 210 samples (both 

types of cement, with and without MGC) using the same mould. The required 

dimensions, as identified in the standards, were obtained within the specified 

tolerances. However, the dimension of the length could be largely ignored as the span 

length was used to perform the flexural strength test. Similarly, the sacrificial end 

spaces were also ignored as some were filled whilst others were only partially filled. 

Figure 4.8 shows Palacos® cement samples after they were removed from the mould. 

Table 4.4 Dimensions of four-point bending samples 

 

 

Length (mm) Width (mm) Thickness (mm) 

74.16 ± 0.57 9.97±0.06 3.32±0.05 
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Figure 4.8 Palacos® cement four-point bending test samples after removal from the 

mould (Arrow indicates the sacrificial ends) 

 

4.3.2 Compressive Test Samples 
As previously stated, test samples were prepared to the dimensional requirements of 

ISO 5833:2002 standard (h=12mm, ø=6mm). Moreover, in order to assess the 

influence of dimensions on compressive strength, Wintercryl cement samples were 

also prepared in double dimensions (h=24mm, ø=12mm), which was called W-DD/Bag. 

All sample measurements were taken five times along the length and across the 

diameter using a digital calliper. Table 4.5 shows the average values and standard 

deviations of 210 samples prepared in line with standard ISO 5833:2002 and 54 

samples prepared in double dimensions using the same moulds. Figure 4.9 shows 

Wintercryl cement samples prepared in double dimensions after they were removed 

from the mould to perform compressive strength test. 

Table 4.5 Dimensions of compressive strength test samples   

 

 

 

 

Figure 4.9 Wintercryl cement compressive strength test samples (double dimension) 

 

Samples Length (mm) Diameter (mm) 
Standard Dimensions  12.01 ± 0.08 5.97±0.06 
Double Dimensions 23.99 ± 0.10 11.93±0.09 

10 mm 

10 mm 
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4.3.3 Cytocompatibility Test Samples  
In order to place and remove the samples with ease from the 12-well cell culture plate, 

they were designed in disc shapes with 20 mm diameter and 5 mm thickness, 

considering the dimensions of the cell culture plates which were approximately 22 mm 

diameter and 6.9 mm height. The thickness and diameter of the samples were 

measured four times along the thickness and across the diameter. The average of the 

measurements and standard deviations of total 203 samples prepared for the test 

using the same mould were calculated and are presented in Table 4.6.  

Table 4.6 Dimensions of cytocompatibility test samples 

 

 

As previously reported, using a laser-cutter reduced the dimensions of disc-shape 

acrylic patterns approximately 1 mm due to melting of the edges. This reduction in 

diameter can be largely ignored since the discs could fit into the wells and it would not 

have any significant effect on the test results. Figure 4.10 shows Wintercryl cement 

samples after they were removed from the mould.   

 

Figure 4.10 Wintercryl cement cytocompatibility test samples 

4.3.4 Induction Heating Test Samples 
The test samples were designed and fabricated in cubic shapes to be placed in the 

acrylic holder, which was suspended in the middle of an induction coil. It is important 

to note that although there were no dimensional requirements for this test, special care 

was taken to avoid any significant inconsistency, which would cause a mass difference 

within and between the sample groups. All the measurements were repeated five times 

for reliability. Figure 4.11. 

Table 4.7 shows the average values and standard deviations of 50 samples. All 

samples were prepared using the same mould. A representative image of 20% MGC 

containing Palacos® cement (P20) is shown in Figure 4.11. 

Diameter (mm) Thickness (mm) 

19.19 ± 0.27 5.03±0.32 

20 mm 
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Table 4.7 Dimensions of induction heating test samples 

Length (mm) Width (mm) Height (mm) 

10.13 ± 0.18 9.64±0.09 10.07±0.08 

 

 

Figure 4.11 Palacos® cement containing 20% MGC samples (P20) used for induction 

test 

4.3.5 Summary of Results and Discussions 
In this section, the design and fabrication of silicone moulds and the dimensions of test 

samples were presented. The fabrication of silicone rubber mould was cheap and quick. 

It facilitated placing and removing the samples without any difficulties and all samples 

had consistent dimensions.  

Special care was taken for the fabrication of mechanical test sample moulds. The 

dimensions of the samples using requirements of standard ISO 5833:2002 were 

75±0,1 x 10±0,1 x 3,3±0,1 mm for four-point bending test samples and 6±0.1mm 

diameter and 12±0.1mm height to perform compressive strength test. The additional 

compressive strength test samples were aimed to have double dimensions of standard 

test samples: 12±0.1mm in diameter and 24±0.1mm in height. This was done to 

evaluate the influence of dimensions, which could lead to different setting time and 

temperature as well as defects and porosities in the cement structure. The 

measurements taken using a calliper after removing the samples from the mould 

indicated that the required dimensions of ISO 5833:2002 standard were fulfilled.  

Cytocompatibility test samples were approximately 20 mm in diameter and 5 mm 

height. The measurements taken using a digital caliper showed that the dimensions of 

disc-shape acrylic patterns were reduced approximately by 1 mm due to laser-cut 

machine that melted the edges. Heating test samples were approximately 10x10x10 

mm3.  

The next section presents handling properties, polymerisation temperature and 

microstructure and mechanical properties of the two commercial PMMA cements.  

10 mm 
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4.4 Characterisation of PMMA Cement  
Commercial dental and orthopedic cements, Wintercryl (W) and Palacos® (P), 

respectively, were used in this study to evaluate their setting properties, microstructure, 

and mechanical properties. Although IS0 5833:2002 standard does not require an 

investigation of ageing effects on long-term mechanical properties of the cement, most 

of the failures in implants may strongly be related to this since the polymers can highly 

be affected by temperature and moisture in the environment. Therefore, the cement 

samples were aged up to 6 months to analyse the influence on mechanical properties 

of the samples.  

Wintercryl (W) and Palacos® (P) cement samples were prepared as described in 3.3.2. 

Figure 4.12 demonstrates representative temperature (Figure 4.12-a) and humidity 

(Figure 4.12-b) recordings in different days. Test 1, test 2 and test 3 indicate different 

days that the samples were prepared in the same laboratory. The range of ambient 

temperature was between 20 and 25 ºC. The relative humidity was in a range of 40-

57%, which is consistent with standard ISO 5833:2002.  Relative humidity between 30-

60% is suggested for operating rooms in hospitals by AIA (American Institutes of 

Architects) and ASHREA (American Society of Heating, Refrigerating and Air-

conditioning Engineers). However, HTM (Health technical Memorandum) 2025 

suggests that relative humidity should be kept between 40-60% [169]. It is important 

to note that ambient temperature and relative humidity play important roles in setting 

properties of PMMA bone cement, as reported in Chapter 2. The relative humidity lower 

than 40% and higher than 60% can influence the working time for 1-3 minutes [170].  
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Figure 4.12 a) Relative humidity and b) corresponding temperature profiles during 

preparation of PMMA cement 

4.4.1 Setting Properties and Polymerisation Temperature of Cement 
The setting properties of the cements were evaluated mixing approximately 6 grams 

of powder with 3 ml of liquid (2:1g/ml). When the powder was in contact with the liquid, 

the temperature and time recordings were started. Mixing, working and waiting times 

were also manually recorded. The mixing time was approximately 30-40 seconds for 

every cement preparation, while the working time was kept to approximately 1.5-2 

minutes. During the working time, the cement was divided into two parts and placed in 

the mould. Mixing, waiting and working times, of Palacos® (P) and Wintercryl (W) 

cement samples are summarised in Table 4.8. It was found that Palacos cement® had 

a shorter waiting time than Wintercryl cement at 23 ±1°C. While total time was 

approximately between 6-7.8 minutes for Wintercryl, it was approximately between 4-

5.2 minutes for Palacos®. 

Table 4.8 Setting properties of Palacos® (P) and Wintercryl (W) cement samples at 

23°C ±1 (The data presents mean value ± standard deviation (μ ±σ) for waiting time, 

5≤𝑛𝑛≤3)  

Material Ambient 
Temperature 

Mixing 
Time 
(∆T1) 

Waiting 
Time 
Interval 
(∆T2) 

Working 
Time Interval 
(∆T3) 

Total Time 
(∆T1+∆T2+∆T3) 

W 23 ±1°C ~30-40 s 4.3±0.8 

min 

~1.5-2 min ~6-7.8 min 

P 23 ±1°C ~30-40 s 2.1±0.4 

min 

~1.5-2 min ~4-5.2 min 
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It was expected that the setting properties of the cement samples would change at 

different ambient temperatures in accordance with the literature [14, 120]. Since the 

laboratory was not temperature controlled, the samples could not be prepared at a 

constant temperature. Therefore, the waiting times of the prepared samples were 

always recorded and assessed to understand how the ambient temperature influenced 

the setting properties of the cement. Table 4.9 provides waiting times of the cement at 

different ambient temperatures when the mixing and working times were kept constant. 

As expected, the increase of the ambient temperature from 19°C to 25°C, accelerated 

the waiting times for both P and W cements.  

Table 4.9 Waiting times of Wintercryl (W) and Palacos® (P) cement samples at different 

ambient temperatures (The data presents mean value ± standard deviation (μ ±σ) for 

waiting time interval, 5≤𝑛𝑛≤3) 

 

The polymerisation reaction temperature profiles of Palacos® and Wintercryl cements 

were recorded as described in 3.4.1. Typical exothermic reaction temperatures during 

the polymerisation of selected Wintercryl and Palacos® cement samples at 23.7±0.1°C 

are shown in Figure 4.13. As previously reported, the waiting time of Palacos® cement 

was shorter than Wintercryl cement. The temperature recordings of the cement 

samples also confirmed that Palacos® cement samples reached the maximum 

polymerisation temperature in a shorter time than Wintercryl cement samples. The 

maximum temperature reached by P and W samples were 30.5°C and 32°C 

respectively (when the ambient temperature was 23.7±0.1°C). Since the temperatures 

were measured from sacrificial ends, these measurements do not reflect actual 

polymerisation temperatures. However, according to the graph and presented waiting 

times, it can be assumed that setting time of Palacos® cement may be shorter than 

Wintercryl cement.  

 Waiting Time Interval (∆T2) (min) 
Ambient Temperature W P 

25.5 ±0.5°C 3.2±0.2 1.5±0.3 

20.5 ±0.5°C 5.9±0.3 2.9±0.4 

19 ±0.5°C 6.7±0.5 4.1±0.2 
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Figure 4.13 Polymerisation reaction temperature during the setting process of 
Palacos® (P) and Wintercryl (W) cement samples at 23.7°C (The temperature 

fluctuations in the circled area are due to touching the thermocouples while placing the 

samples in the mould) 

It is worth noting that powder to liquid ratio, compositions of liquid and powder 

components and the amount of DMPT (N,N-dimethyl-p-toulidine) and BPO (benzoyl 

peroxide) have an impact on maximum polymerisation temperatures. It was reported 

that the size and size distribution of PMMA powder may also influence the temperature 

[171].   

The temperature readings were taken from two cement bars at a time using four 

thermocouples; T1, T2, T3 and T4, see Figure 4.14. The pairs of cement bars prepared 

from each batch are coded A1-A2 (batch A), B1-B2 (batch B) and C1-C2 (batch C). 

Temperature recordings of three batches (6 samples) Wintercryl cement samples at 

23.9±0.1°C are shown in Figure 4.15 (see Appendix B.1 for Palacos® cement). As the 

temperature measurements taken from both sides of the samples showed variations, 

the sample pairs and groups varied as well. These variations were due to not fully filling 

the sacrificial ends. Smaller volume of sacrificial ends led to lower temperature 

readings. Polymerisation temperature varied between approximately 29°C and 32°C. 
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Figure 4.14 Schematic diagram of sample and thermocouple positions 

 

 

Figure 4.15 Temperature-time profiles of groups A, B and C of Wintercryl cement 

samples. (The temperature fluctuations in the circled area are due to touching the 

thermocouples while placing the samples in the mould) 

The aim of recording the time and temperature of cement samples was to estimate the 

setting time and temperature. Since the sacrificial ends showed variations, this could 

not be done accurately. However, an example of how to determine the setting time for 

W cement, using B1-T1 pair is presented in Figure 4.16. Setting time of the cement 

was 9.2 minutes and setting temperature was 28°C. The temperature readings were 

not taken from the centre point of the samples to not create any surface defects since 

they would be used for the four-point bending test.  
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Figure 4.16 Temperature-time profile of Wintercryl cement sample (B1-T1). Tmax refers 

to maximum temperature, Tset refers to the setting temperature and tset is the setting time 

 

4.4.2 Scanning Electron Microscope Imaging 
The SEM analysis on the powder components of Wintercryl and Palacos® cements are 

provided in Figure 4.17a and Figure 4.17b respectively. The powder particle sizes of 

Winercryl were in the range of 10 to 100 µm. The majority of particles was smaller than 

50 µm (Figure 4.17a). The powder particle sizes of Palacos® cement were mostly in 

the range of 10 to 60 µm with the majority of powder particles smaller than 50µm. 

Furthermore, Palacos® cement powder component contains radiopacifier, zirconium 

oxide (ZrO2), which are the white particles dispersed between PMMA beads in Figure 

4.17b. The particles size of ZrO2 is less than 5 µm. 

 

Figure 4.17 SEM images (100x magnification, backscattered electron imaging) of a) 

Wintercryl powder particles and b) Palacos® powder particles  
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Figure 4.18 presents the SEM images and corresponding EDS spectra of Wintercryl 

(Figure 4.18-a) and Palacos® (Figure 4.18-b) cements (after polymerisation). The 

elemental composition of the cement samples confirmed that Wintercryl cement 

sample only had carbon (C) and oxygen (O) elements, whilst Palacos cement had C, 

O and zirconium (Zr) elements. The radiaopacifier reagent, zirconia, could still be 

observed on the surface of the cement. The size of ZrO2 particles were less than 10 

µm and the particles formed small clusters (10-40 µm size). 

  

 

 

 

 

 

 

Figure 4.18 Morphology (500x magnification, backscattered electron imaging) and 

EDS spectra (same scale) of the cements a) Wintercryl cement b) Palacos® cement  

For a deeper investigation on the surface morphology of Wintercryl and Palacos® 

cements, the samples were gold coated and analysed under Tescan SEM at 8kV. 

Figure 4.19-A shows the morphology of Wintercryl cement sample. PMMA beads of 

Wintercryl cement were in spherical forms in the range of 5 to 55 µm sizes.  As can be 

seen, polymerisation of MMA created connections between PMMA beads; however, 

the beads could still be distinguished on the surface of the cement, maintaining their 

spherical shapes. The polymerisation of MMA monomer created some porosity. The 

length of the pores varied between 25 and 125 µm. The SEM image of Palacos® 

cement is shown in Figure 4.19-B. Similar to Wintercryl, spherical PMMA granules <50 

µm were observed. Zirconia particles are less than 5 µm (see yellow arrows); however, 

they formed clusters with sizes between 10-40 µm. Pores created during 

polymerisation have sizes between 25-100 µm. 

60 µm  60 µm  

a b 

ZrO2 

cluster 
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Figure 4.19 Morphology of plain a) Wintercryl and b) Palacos® cement samples at 

500x magnification using secondary electron imaging, (yellow arrows represent zirco-

nia particles) 

Figure 4.20 shows the two surfaces of PMMA cement that were in contact with alumin-

ium sheet (Figure 4.20-A) and silicone rubber (Figure 4.20-B). The surface that was 

contact with aluminium sheet was different than the surface was contact with silicone 

rubber. Whilst PMMA beads could be distinguished in Figure 4.20-B, the PMMA beads 

were covered with a layer of converted MMA in Figure 4.20-A. This may indicate that 

silicone rubber mould had hydrophobic properties, which caused low amount of con-

verted monomer on the surface since PMMA beads could be distinguished on the sur-

face of the cement. However, it could be seen that the side was in contact with alumin-

ium sheet had higher amount of converted MMA monomer compared to the other side. 

 
Figure 4.20 Morphology (500x magnification, backscattered electron imaging) of A) 

Aluminium sheet contacted side B) Silicone rubber contacted side of plain Wintercryl 

PMMA cement sample  
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4.4.3 Four-Point Bending Test 
Bending strength and bending modulus properties of aged W-Air (Wintercryl cement 

kept in open air storage), W-bag (Wintercryl cement kept in closed air storage) and P-

bag cement (Palacos cement kept in closed air storage) samples were assessed using 

four-point bending tests. Wintercryl cement samples were kept in open and closed air 

storage for 6 months whereas Palacos samples were always kept in a closed air 

storage. A representative image of fractured W-bag samples is provided in Figure 4.21. 

The fractures mostly occurred between the inner and outer loading points (See Figure 

3.12, Chapter 3) rather than in the area of highest stress concentration, which is 

between the inner loading points, in the middle of the sample.  

 

Figure 4.21 Representative images of W-bag four-point bending test samples 

The time points were 1, 2, 3, 7, 14, 21, 28, 60, 180 days. Six samples were tested for 

each time point (162 samples in total). For the first three time points, not all samples 

fractured. On day 1, while five samples of W-air fractured and only three samples of 

W-bag and four samples of P-Bag fractured. On day 2, four samples of W-air, five 

samples of W-bag and two samples of P-bag fractured.  

On day 3, three samples of W-air, two samples of W-bag and P-bag fractured. 

Moreover, one out of six test samples of W-air on day 2, 60 and 180, one sample of 

W-bag on day 21 and one sample of P-bag on day 60 fractured unpredictably (non-

standard fracture). These samples were not included in data. These anomalies were 

due to the human error during the initial setting of the test rig and inner loading points. 

20% of mean values of bending strength and modulus were analysed and these 

sample that have non-standard fractures were found below the limit. A representative 

image of a Wintercryl cement sample (W-air) tested on day 60 is shown in Figure 4.22. 

10 mm 
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Figure 4.22 Representative image of W-air sample on day 60 with non-standard 

fracture 

As mentioned above, anomalies were excluded from the analysis. Table 4.10 provides 

the sample sizes of W-bag, W-air and P-bag sample groups at each time point, for 

bending strength (B) and bending modulus (E). The reason of different sample sizes 

of B and E for the same time point was due the samples, which did not fracture under 

the applied forces. For those samples, bending strength could not be calculated since 

it required the force at the fracture; however, bending modulus could be still calculated 

using load range between 50 N and 15 N.  

Table 4.10 provides the sample sizes (𝑛𝑛) of W-air, W-bag and P-bag samples at each 

time point for bending strength (B) and bending modulus (E) results.  

Time 
Points 

 Day  
1 

Day  
2 

Day 
 3 

Day  
7 

Day 
14 

Day 
21 

Day 
28 

Day 
60 

Day 
180 

W-Bag 

 

B 𝑛𝑛=3 𝑛𝑛=5 𝑛𝑛=2 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 

E 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 

W-Air 

 

B 𝑛𝑛=5 𝑛𝑛=3 𝑛𝑛=3 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=5 

E 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=5 

P-Bag 

 

B 𝑛𝑛=4 𝑛𝑛=2 𝑛𝑛=2 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 

E 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 

 

10 mm 
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Figure 4.23 and Figure 4.24 present bending strength results of the W-bag, W-air and 

P-bag samples for each time-point. The results show that all the samples had higher 

bending strength than the minimum requirements of ISO 5833:2002 standard (50 MPa). 

Over time, from day-1 to day-180, bending strength increased. Although, the growth 

was not linear and varied during the 6 months, it was probably due to the 

inhomogeneity of the material. Range of values for all samples were between 51.8 and 

77.4 MPa (see Figure 4.23). The minimum value occurred on day-3 time point for W-

air sample and the maximum value occurred on day-60 time point for P-bag sample. 

For day-3 time point, there were only two samples for W-bag and P-Bag cement groups 

so the graph (Figure 4.23) shows only the mean, minimum and maximum values. 

Regarding the mean values, the range of variation of bending strength was between 

55.8 and 73.6 MPa (see Figure 4.24). Similarly, P-bag sample had only two samples 

on day-2 time point. Moreover, two-way ANOVA followed by Tukey post hoc analyses 

showed that there was no significant difference between W-bag, W-air and P-bag 

samples (p>0.05). However, each sample group (W-Bag, W-Air and P-Bag) showed 

significant differences (p<0.05) over the 6-month time period. 

 

 

Figure 4.23 Data range of bending strength results of W-Bag, W-Air and P-Bag for 

each time point. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values.  
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Figure 4.24 Bending strength results of W-Air, W-Bag and P-bag samples at different 

time points. The data presents mean value ± standard deviation (μ ±σ). The line is the 

minimum requirement of IS05833:2002 standard, 50MPa.  

Figure 4.25 and Figure 4.26 display bending modulus results for W-Bag, W-air and P-

Bag samples at each time point. The results show that all the samples had a higher 

bending modulus than the minimum requirement of ISO 5833:2002 (1800 MPa). 

Similar to bending strength results, bending modulus of the samples showed an 

increase comparing day-1 and day-180 despite the variations throughout the ageing 

process. Range of values for all samples were between 2.1 GPa and 3.7 GPa (see 

Figure 4.25). The minimum value occurred on day-2 time point for P-bag sample and 

the maximum value occurred on day-180 time point for P-bag sample. Regarding the 

mean values, the range of variation of bending modulus was between 2.4 GPa and 3.6 

GPa (see Figure 4.26). Two-way ANOVA followed by Tukey post hoc analyses showed 

that there was no significant difference (p>0.05) between W-bag, W-air and P-bag but 

there were significant differences within the sample groups (p<0.05). Whilst W-bag 

samples showed significant differences (p<0.05) after day-7 time point, P-bag samples 

had significant differences (p<0.05) after day-21 time point compared to day-1 samples. 

However, W-air samples showed significant differences (p<0.05) only on day-60 and 

day-180 compared to day-1 samples.   
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Figure 4.25 Data range of bending modulus results of W-Bag, W-Air and P-Bag for each 

time point. The mean values of the samples are expressed with the X, and horizontal 

lines represent the median values.  

 

 

Figure 4.26 Bending modulus results of W-Air, W-Bag and P-bag samples at different 

time points. The data presents mean value ± standard deviation (μ ±σ). The line is the 

minimum requirement of IS05833:2002 standard, 1800MPa. 
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Typical stress-strain curves of the samples tested at each time point were analysed to 

understand their behavior under the applied force. The stress-strain curves of W-air, 

W-bag and P-bag are shown in Figure 4.27. The stress values at the fracture points 

were in a range of 54 MPa and 72 MPa. The minimum value was obtained for W-air 

and the maximum value was obtained for W-bag. The maximum strain (%) values 

decreased continuously throughout the ageing process. All samples were relatively 

ductile on days 1 to 3; thereafter, they all gradually transitioned into a more brittle state.  
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Figure 4.27 Stress-strain curves obtained during four-point bending test at each time 

point for typical a) W-Bag, b) W-Air and c) P-Bag samples 

 

In the literature, investigation of ageing effects on mechanical properties of PMMA 

cement is limited. According to the tests performed in dry conditions, the polymerisation 

of PMMA cement may continue more than 5 years. Throughout the ageing process, 

bending strength and bending modulus increased [98, 144, 172] and this was attributed 

to further polymerisation and evaluation of interpenetrating network [98].  

In this study, the bending strength and bending modulus of W-air, W-bag and P-bag 

increased from day-1 to day-180 even though this increase was non-linear. However, 

it was clearly seen that they exhibited variations throughout ageing, which is consistent 

with the study performed by Ayre et al [144]. Although the variations are strongly 

related to the inhomogeneity of the material, it may also be affected by the test 

conditions [173] and storage conditions [172]. The test environment and storage 

environment were not temperature controlled. The temperature and humidity 

recordings of test environment is presented in Appendix B.2. There was no significant 

change in the test environment during four-point bending test. Moreover, W-air and W-

bag samples were always tested on the same day and variations between the groups 

can be seen at different time points. Comparing W-air and W-bag, the storage 

conditions (bag and air) may have had more influence on mechanical properties 

regarding the moisture uptake and ambient temperature [98, 144].  
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4.4.4 Compressive Strength Test 
Wintercryl and Palacos® cement samples were aged to analyse the time influence on 

compressive strength properties. As previously stated, Wintercryl cement samples 

were kept in a bag and in air to understand the effect of storage condition (moisture 

uptake). In addition, the cement samples were prepared with two different dimensions, 

ø6x12h (mm) and ø12x24h (mm) to analyse the impact of dimensions on compressive 

strength properties since the samples had different polymerisation temperatures, 

porosities and defects. Figure 4.28 shows a representative image of Wintercryl cement 

samples after the compressive strength test; the height of the samples was reduced, 

and they were compressed into barrel-like shapes.  

 

 Figure 4.28 Wintercryl cement (W-air on day-1 time point) samples after compressive 

strength test (Initial dimensions ø6x12h mm) 

One out of six samples of W-air on day-3 and P-bag samples on day-1 and day-2 time 

points unexpectedly fractured. Similarly, one out of six samples of W-DD/Bag (double 

dimension kept in closed air storage) also unexpectedly fractured on day 28, shown in 

Figure 4.29. These samples were considered anomalous and excluded from the data. 

20% of mean values of compressive strength were analysed and these sample that 

had unexpected fractures were found below the limit. The reason of the anomalies can 

be linked to uneven surfaces and non-homogenous internal structure. Table 4.11 pro-

vides the number of samples of W-air, W-bag, W-DD/Bag and P-Bag samples included 

in data for compressive strength calculations. 

 

 

Figure 4.29 W-DD/Bag samples on day-28 after compressive test. The arrow indicates 

the second sample in the group, which was fractured. (Initial dimensions ø12x24h mm) 

10 mm 
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Table 4.11 Sample size (𝑛𝑛) of W-air, W-bag, W-DD/Bag and P-bag sample groups at 

each time point for compressive strength test results 

Time 
Points 

Day 
1 

Day 
2 

Day 
3 

Day 
7 

Day 
14 

Day 
21 

Day 
28 

Day 
60 

Day 
180 

W-Bag 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6  𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 

W-Air 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 

P-Bag 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 

W-DD/Bag 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 

 

In order to calculate the compressive strength (σ2%) of W-air, W-bag and P-bag 

samples, 2% offset was taken on the elastic region of the stress-strain curves (Figure 

4.30). The maximum compressive strength (σmax) was detected and marked on the 

curve.  

 

Figure 4.30 Stress-Strain curve of a selected sample to demonstrate the calculation of 

yield and compressive strength. Red line indicates 2% offset line. The dashed circle 

refers to 50N pre-load applied for 3 seconds. 

 

The 2% offset line could not be calculated for all the W-DD/Bag samples. The 

maximum load cell was 10kN and some samples required forces higher than the 10kN 

to pass the 2% offset line or to break, whichever occurred first. Therefore, the force-

displacement curves were incomplete. In order to standardise the compressive 

strength (σ2%) results, the gradients of the force vs displacement curves were analysed.  
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Since the gradients of the samples were similar, 10% below the maximum force values 

were taken in order to calculate the stress and strain values. Figure 4.31 shows force-

displacement curves of three W-DD/Bag samples at day-1 time point, which did not 

pass 2% offset line due to the machine load cell limitations. 

 

Figure 4.31 Three samples of W-DD/Bag at day-1 time point 

Compressive strength test results of W-bag, W-air and P-bag are presented in Figure 

4.32 and Figure 4.33. The graphs show compressive strength (σ2%) of the samples, 

which was calculated using 2% offset as shown in Figure 4.30. All samples met the 

minimum requirement of ISO 5833:2002 standard (70 MPa) and displayed a nonlinear 

pattern over the total period of 180 days. The range of values for all samples was 

between 60 and 118 MPa (see Figure 4.32). The minimum strength value occurred for 

W-Air sample on day-2 time point and the maximum strength value occurred for P-bag 

sample on day-60 time point. Regarding the mean values of all samples, the strength 

of all samples varied between 74.6 and 110.4 MPa (Figure 4.33). The mean values of 

W-Air samples showed the lowest compressive strength on day-2 and day-3 time 

points; however, these samples gradually increased over time. The highest values of 

compressive strength were obtained for P-bag samples. Two-way ANOVA analyses 

followed by Tukey post-hoc test showed that there were significant differences 

between W-Bag, W-Air and P-Bag sample groups (p<0.05). While there were no 

significant differences (p>0.05) within sample groups of W-Bag and W-Air compared 

to day-1 time point, P-Bag samples showed significant differences (p<0.05) from day-

14 time point compared to day-1 time point.  
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Figure 4.32 Data range of compressive strength test results of W-Bag, W-Air and P-

Bag samples for each time point. The mean values of the samples are expressed with 

the X, and horizontal lines represent the median values. (Initial dimensions are ø6x12h 

mm) 
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Figure 4.33 Compressive strength results of W-Bag, W-Air and P-Bag for each time-

points. The data presents mean value ± standard deviation (μ ±σ). The line is minimum 

requirement of IS05833:2002 standard, 70MPa. (Initial dimensions are ø6x12h mm)  

 

Day
 18

0

Day
 60

Day
 28

Day
 21

Day
 14

Day
 7

Day
 3

Day
 2

Day
 1

120

110

100

90

80

70

60

50

Co
m

pr
es

si
ve

 S
tr

en
gt

h 
(M

Pa
)

70

W-Bag
W-Air
P-Bag



 

119 
 

Compressive strength test results of W-DD/Bag samples for each time point are 

presented along with results of W-bag samples in Figure 4.34 and Figure 4.35. W-

DD/Bag samples were prepared to understand how the dimensions would affect the 

compressive strength since increasing the thickness would have an influence on 

polymerisation temperature, porosities and possible defects in the samples. Moreover, 

the defect sizes in the bone vary as reported previously, therefore, thickness of applied 

PMMA cement varies as well due to this reason it was important to investigate the 

effect of thickness. Compressive strength (σ2%) of W-DD/Bag samples were calculated 

using 2% offset as shown in Figure 4.30 and the samples that did not pass 2% offset 

line were included in the data as described above (Figure 4.31). All W-DD/Bag samples 

met the requirement of standard ISO-5833:2002 (70 MPa) even though the dimensions 

were different. An outlier was detected on day-14 time point for W-DD/Bag sample (64 

MPa), which is shown in Figure 4.34. This outlier was not included in calculation of 

mean values and standard deviation, which is presented in Figure 4.35. The range of 

values for all samples were between 68.8 and 108 MPa. Regarding the mean values 

of W-DD, the compressive strength (σ2%) values varied between 78.2 and 86.3 MPa 

(Figure 4.35). W-DD/Bag samples did not show a significant variation during ageing 

process (p>0.05). Compared to W-Bag samples, W-DD/ Bag samples had more 

reliable results due to reduced defect sizes since the sample preparation was easier 

than W-bag samples. Moreover, surface of the W-DD/Bag samples were flatter and 

even than surface of W-Bag samples. However, W-bag and W-DD/Bag samples were 

significantly different (p<0.001) regarding two-way ANOVA followed by Tukey post-hoc 

analyses. 
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Figure 4.34 Data range of compressive strength test results of W-Bag and W-DD/Bag 

for each time point. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values. (Initial dimensions are ø6x12h mm for W-

bag and ø12x24h mm for W-DD/bag) 
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Figure 4.35 Compressive strength results of W-Bag and W-DD/Bag for each time point. 

The data presents mean value ± standard deviation (μ ±σ). The line is minimum 

requirement of IS05833:2002 standard, 70MPa. Outlier is not included. (Initial 

dimensions are ø6x12h mm for W-bag and ø12x24h mm for W-DD/Bag) 
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The typical stress-strain curves of W-bag (Figure 4.36-a), W-air (Figure 4.36-b), P-bag 

(Figure 4.36-c) and W-DD/Bag (Figure 4.36-d) samples at each time point are pre-

sented in Figure 4.36. The highest stress values of typical W-Bag, W-Air, P-Bag and 

W-DD/Bag throughout the ageing process were 102 MPa, 99 MPa, 118 MPa and 

90MPa, respectively.  

 
Figure 4.36 Stress-Strain curves of selected samples from a) W-Bag, b) W-Air, c) P-Bag 

and d) W-DD/Bag for each time point. The dashed circle refers the 50N pre-load applied 

for 3 seconds. 

 

The average values and standard deviations of maximum compressive strength (σmax) 
values of W-Bag, W-Air, W-DD/Bag and P-Bag samples for each time point are shown 

in Table 4.12. The highest values of compressive strength were obtained for P-bag 

samples (112 MPa). 
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Table 4.12 Maximum strength values of compressive test results of W-Bag, W-Air, W-

DD-BAGand P-Bag samples. The data presents mean value ± standard deviation (μ 

±σ). 

 Compressive Strength (σmax, MPa) 

Time Points/ 
Samples 

W-Bag  W-Air  W-DD/Bag P-Bag  

Day 1 86.2 ± 11.0 88.0±7.4 88.6±2.5 83.1±7.9 

Day 2 88.2±7.5 81.3±11.5 90.2±1.3 95.9±3.1 

Day 3 95.3±5.5 83.3±8.5 90.2±1.3 94.2±7.3 

Day 7 100.9±6.6 82.6±6.9 88.3±1.8 98.1±7.1 

Day 14 94.2±5.7 87.2±7.0 89.6±1.3 103.5±9.2 

Day 21 92.7±7.8 90.8±5.6 86.3±4.0 103.4±9.6 

Day 28  88.2±9.3 81.3±4.4 90.2±13.6 95.4±7.1 

Day 60 93.9±10.3 100.6±8.9 88.3±2.4 112.3±6.9 

Day 180  92±7.5 90.3±4.7 88.0±1.7 105.1±7.5 

 

Similar to bending strength and modulus results, compressive strength results of W-

air, W-bag and P-bag also showed variations, which is in line with the results reported 

by Ayre et al [144]. These variations are also strongly related to the inhomogeneity of 

the material. It should be noted that W-air, W-bag, P-bag and W-DD/Bag for each time 

point were tested at the same conditions. P-bag samples showed higher compressive 

strength than W-bag samples, which confirmed the effect of pre-mixed ZrO2 particles. 

Salih et al. [174] reported the influence of radiopacifier zirconium oxide on mechanical 

properties of PMMA cements  due to having higher compressive strength than the 

polymer itself. The studies performed on ageing PMMA cement in air and an isotonic 

fluid showed different outcomes. Whilst the samples aged in air followed an increasing 

trend in flexural and compressive strength, the samples aged in the fluid showed 

reductions in the mechanical properties [98, 144, 172]. This highlights the importance 

of ageing conditions on mechanical properties.  
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4.4.5 Vickers Hardness Test 
Vickers hardness was measured after the four-point bending test, using the half sam-

ples obtained. The influence of ageing on the hardness properties was tested on W-

air, W-bag and P-bag cements at each time point as described in Section 3.4.4. Figure 

4.37 and Figure 4.38 show the results of Vickers hardness test for 18 measurements 

(n=6, repeated three times) on W-Bag, W-Air and P-Bag cements for each time point. 

The hardness of the cements increased over the time period with a similar trend and 

the results are in accordance with a study performed by Ayre et al [144]. The hardness 

of P-bag samples was significantly higher than W-air and W-bag samples. The range 

of values for all samples were between 13.8 MPa and 25.8 MPa (see Figure 4.37). The 

minimum hardness value occurred for W-air sample on day-7 time point and the max-

imum value occurred for P-bag sample on day-180 time point. The mean values of all 

samples varied between 14.9 and 24.8 MPa (see Figure 4.38). The presence of ZrO2 

in the Palacos cement composition may be the reason for the higher hardness, which 

is in a good agreement with several studies [144, 174, 175]. According to two-way 

ANOVA with Tukey post-hoc analyses, there was no significant difference between W-

bag and W-air (p>0.05) regarding the time-points; however, comparisons between P-

bag and W-bag showed that the samples were significantly different at each time point. 

There were significant differences within the sample groups. W-Air, W-bag and P-bag 

samples, which aged more than two days, were found significantly different compared 

to day 1 samples (p<0.001).  

 
Figure 4.37 Data range of Vickers hardness test results for W-Bag, W-Air and P-Bag 

samples tested at each time points. The mean values of the samples are expressed with 

the X, and horizontal lines represent the median values. (n=6, r=3) 
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Figure 4.38 Vickers Hardness test results of W-bag, W-air and P-bag samples for each 

time point. The data presents mean value ± standard deviation (μ ±σ), (n=6, r=3). 

 

4.4.6 Summary of Results and Discussions 
In this section, setting and microstructure properties of Palacos and Wintercryl cement 

samples were provided. Moreover, the influence of ageing process on mechanical 

properties of the PMMA cements were presented.  

 

Time recordings throughout the preparation stage of the PMMA cements showed that 

Palacos cement had a shorter waiting time than Wintercryl cement. Whilst the interval 

waiting time of Palacos was 2.1±0.4 min, it was 4.3±0.8 min for Wintercryl cement. It 

was speculated that Palacos cement may also have a shorter setting time based on 

temperature profiles demonstrated in Figure 4.13. This difference in handling 

properties of the two cement was attributed to the variation of the composition and 

particle size of PMMA cements.  

SEM images demonstrated that PMMA beads of Wintercryl powder component varied 

in a range of 10-100 µm. PMMA beads of Palacos cement varied in a range of 10 to 

60 µm. It was also shown that PMMA beads could be distinguished on the surface of 

polymerised structure and this showed incomplete polymerisation between polymer 

and monomer. It should be noted that PMMA dissolves in MMA [176].  
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Mechanical properties of aged samples were evaluated using four-point bending, 

compressive strength and Vickers hardness tests. All samples met the requirement of 

ISO 5833:2002 for bending strength (50 MPa), bending modulus (1.8 GPa) and 

compressive strength (70 MPa).  

The range of average bending strength for all samples was between 55.8 and 73.6 

MPa and bending modulus was between 2.4 and 3.6 GPa. Similarly, compressive 

strength test results demonstrated that all samples had higher compressive strength 

than the 70 MPa requirement of this standard. The range of average compressive 

strength for all samples was between 74.6 and 110.4 MPa. Although bending and 

compressive strength of the samples exhibited a non-linear increase with ageing time. 

This was attributed to non-homogenous structure of the cement due to incomplete 

polymerisation within the polymer matrix and variations in pore sizes. Moreover, stress-

strain curves (Figure 4.27) obtained from the four-point bending test demonstrated the 

slight transition from ductility to brittleness. In addition to this, Vickers hardness of the 

samples gradually increased throughout the ageing period. The average Vickers 

hardness for all samples was in a range of 14.9 and 24.8 MPa. 

Comparing Palacos cement and Wintercryl cements throughout their ageing processes, 

there were no significant differences on bending strength and bending modulus of the 

cement samples.  However, all sample groups were significantly different to each other 

for compression tests. Palacos cement samples showed higher compressive strength 

results (mean values between 80 and 110 MPa), which were related to the pre-mixed 

ZrO2 ceramics in the composition of the cement. Interestingly, it was observed that W-

DD/Bag exhibited lower compressive strength (mean values between 78 and 86 MPa) 

than W-bag samples. This could be due to the limitations of performing the test using 

10kN load cell test machine. Since the compressive force-displacement curves were 

not completed, a method was used to estimate the 2% offset compressive strength 

(σ2%) of these samples. Therefore, 10% below the maximum force was considered and 

converted to stress (σmax-10%). However, this was a prediction since the actual 

maximum force could not be detected. Moreover, W-DD/Bag did not show any trend 

regarding the ageing process.  

Overall, this part of the study was important to establish a baseline and help to practise 

and improve the methodology before adding magnetic glass ceramics. All test samples 

were prepared using silicone mould design in order to have reliable and accurate test 

data. In that way, the test samples did not need any sanding or polishing to correct the 
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dimensions. This part of the study required preparation of more than 600 samples. 

Practising the application many times led to understand the behaviour of PMMA 

cement and optimisation of cement moulding into silicone rubber mould. In several 

studies PTFE mould was used since it was required in standard ISO 5833:2002. The 

authors reported that the prepared samples needed further processes such as sizing 

and polishing. However, silicone rubber mould was not only used to obtain accurate 

dimensions but to monitor the sample temperature. The setting time and temperature 

measurements of PMMA cement were performed using four-point bending silicone 

mould design rather than following standard ISO 5833:2002 due to limited material. 

Moreover, it was necessary to understand the influences of ageing and different 

dimension on mechanical properties of PMMA cement samples. Before the addition of 

magnetic glass ceramic in PMMA cement, it was essential to gain accuracy and 

consistency in sample preparation and testing.  

 

In the next chapter, effects of MGC addition, from 10% to 40% (wt%), in Palacos and 

Wintercryl cement samples in handling properties, polymerisation reaction temperature, 

morphology of cements, mechanical properties, cytocompatibility and bioactivity 

properties as well as heat generation properties will be presented.  
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5 Results and Discussion: Characterisation of Magnetic 
PMMA Cement 

In this chapter, results of characterisation of magnetic PMMA cements are presented. 

Characterisation techniques involved setting, microstructure, mechanical, and 

cytotoxicity, bioactive and heating properties of magnetic PMMA cement.  

Magnetic glass ceramic (MGC) containing Wintercryl cement samples were called W-

MGC and similarly, MGC containing Palacos® cement samples were called P-MGC for 

all MGC ratios (10, 20, 30 and 40 wt%). Wintercryl cement samples with 10, 20, 30 

and 40% MGC powder were called W10, W20, W30 and W40 and similarly, Palacos 

cement samples were called P10, P20, P30 and P40. Plain Wintercryl and Palacos® 

cement samples, which did not have any MGC powder were called W0 (0% MGC) and 

P0 (0 % MGC) respectively. These samples were used as controls. 

5.1 Characterisation of Magnetic Cement 
MGC containing Palacos® (P-MGC) and Wintercryl (W-MGC) samples were prepared 

as described in 3.5.2. The ambient temperature and humidity of the fume cupboard 

were recorded during magnetic PMMA cement preparations. Figure 5.1 demonstrates 

representative temperature (Figure 5.1-a) and humidity (Figure 5.1-b) recordings in 

different days. Test 1 and test 2 indicate different days that the samples were prepared 

in the same laboratory. Whilst the range of temperature recordings were between 20 

and 25 ºC, the relative humidity was in a range of 47 and 60% (rh%). The relative 

humidity was higher than 40%, which was in accordance with standard ISO 5833:2002. 

As previously reported (see Section 4.4), relative humidity can play an important role 

in viscosity of PMMA cement, which leads to variations in waiting and setting time of 

the cement.  
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Figure 5.1 a) Temperature and b) corresponding relative humidity (%) profiles during 

preparation of magnetic PMMA cement samples in different days 

 

5.1.1 Setting Properties of MGC Cements 
The setting properties of the cements were evaluated for approximately 6 grams of 

powder mixed with 3 ml of liquid (2:1g/ml). When the powder (PMMA+MGC) was in 

contact with the liquid, the temperature and time recordings were started. In addition, 

the mixing, working and waiting times were also manually recorded. The mixing time 

was maintained to approximately 30-40 seconds for every cement preparation and the 

working time was kept approximately 1.5-2 minutes. Each mould allow the preparation 

of two cement samples. Therefore, during the working time, the cement was divided 

into two parts and placed in the mould. Table 5.1 and Table 5.2 report the setting 

properties of W-MGC and P-MGC with their control groups (W0 and P0) respectively. 

Increasing the MGC content from 10% to 40% in the samples, increased the waiting 

time of the cements.  
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As reported in Section 4.4.1, the ambient temperature had an impact on waiting times 

of the samples.  

Table 5.1 Waiting times of W0, W10, W20, W30 and W40 samples (The data presents 

mean value ± standard deviation (μ ±σ) for waiting time, 5≤𝑛𝑛≤3) 

Sample Code Ambient 
Temperature (°C) 

Waiting Time Interval 
(min) 

W0 23±1 4.3±0.8  

W10 23.5±0.5 4.9±0.7   

W20 23.5±0.5 6.2±0.8 

W30 23.5±0.5 7.4±0.5 

W40 22±0.5 8.8±0.6 

 

Table 5.2 Waiting times of P0, P10, P20, P30 and P40 samples. The data presents 

mean value ± standard deviation (μ ±σ) for waiting time, 5≤𝑛𝑛≤3) 

Sample Code Ambient 
Temperature (°C) 

Waiting Time Interval 
(min) 

P0 23±1 2.1±0.4  

P10 22±0.3 3.9±0.4 

P20 22.5±0.6 4.5±0.2 

P30 22.4±0.1 6.10±0.1 

P40 20±0.1 9.6±0.3 

 

Temperature profiles of P-MGC and W-MGC cement samples were recorded as 

described in Section 3.6.1. Figure 5.2 presents temperature curves of P20 samples at 

22.2-23°C (see Appendix C.1 for W-MGC and P-MGC samples). The temperature 

readings were taken for two cement bars at a time using four thermocouples, T1, T2, 

T3 and T4 (see Section 4.4.1). The pairs of cement bars prepared from each batch are 

coded A1-A2 (batch A), B1-B2 (batch B) and C1-C2 (batch C), see Figure 4.14. As 

seen in Figure 5.2, maximum polymerisation reaction temperatures varied between 

26.08 and 29.4°C. This variation was due to improper filling of the sacrificial ends and 

caused lower temperature readings between and within the samples.  
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Figure 5.2 Polymerisation reaction temperature during the setting process of P20 sam-

ples at 22.2-23°C ambient temperature (The temperature fluctuations in the circled 

area are due to touching the thermocouples while placing the samples in the mould). 

Since sacrificial ends showed variations, setting time and temperature could not be 

calculated. However, temperature readings of typical P0, P10, P20, P30 and P40 sam-

ples are shown in Figure 5.3. The stars on the curves indicate the corresponding set-

ting times and temperatures (see Section 3.4.1). P0 samples had the highest setting 

temperature (27.8°C) and the shortest setting time (9 minutes). Increasing the MGC 

addition in the cements increased the setting time and slightly reduced the setting tem-

perature, see Table 5.3.  

 

Figure 5.3 Temperature-time profiles of selected P0, P10, P20, P30 and P40 samples. 

The stars indicate setting temperature and time of the samples (see Figure 4.16). (The 

temperature fluctuations in the circled area are due to touching the thermocouples while 

placing the samples in the mould) 
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Table 5.3 Setting time and temperatures of P-MGC and P0 samples 

Setting Properties P0 P10 P20 P30 P40 

Setting Time (min) 9.0 11.9 13.95 15.1 26.2 

Setting Time (s) 540 710 837 906 1569 

Setting Temperature (°C) 27.8 26.3 26.5 25.3 21.9 

 

During cement sample preparation, it was observed that increasing MGC content from 

10% to 40% increased waiting time. The increase of MGC amount in the cements 

reduced the viscosity of the cement. As the ratio of powder to liquid was kept at 2:1 

(g/ml), increasing the amount of MGC powder in the cements resulted in the amount 

of PMMA powder being reduced. The ratio of powder to liquid was kept constant in 

order to compare the findings with a study performed by Bruno et al [163]. Moreover, 

powder accumulation in the cement was prevented by keeping the ratio constant since 

the total amount of powder increased by increasing MGC addition from 10% to 40%. It 

should be noted that densities of MGC and PMMA powder were different, therefore it 

did not mean the volumes were equal. The density of PMMA powder was 1.2/cm3 (at 

20°C, Wintercryl PMMA Cement SDS) and according to the density measurements 

using pycnometer (repeated three times), the density of MGC was 3.57±0.05 g/cm3 (at 

20°C). Based on the calculations, the volume ratios between MGC and PMMA are 4%, 

8%, 14% and 22% (v/v %). Thus, the ratio between PMMA powder and MMA liquid 

reduced with the increase of MGC content. This led to longer waiting times and lower 

viscosity of the obtained cements. Bruno et al. [163] observed that increasing the 

magnetic glass ceramic amount from 10% to 20% (wt%) did not have a significant 

effect on the setting time of PMMA cements. However, Shin et al. [177] reported that 

decreasing viscosity of PMMA cement increased waiting time. Moreover, Kawashati et 

al. [60] confirmed that increasing magnetite particles from 40% to 60% (wt%) 

proportionally increased the setting time of PMMA cement since the magnetite 

particles may reduce the polymerisation reaction of MMA.  
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5.1.2 SEM Analysis of Magnetic Cements 
The surface morphology and elemental composition of W-MGC and P-MGC samples 

were analysed using SEM. The magnetite crystals on the glass particles were still 

visible in magnetic cement samples, see Figure 5.4. SEM analyses showed that the 

particle sizes of MGC on the surface of the cements were relatively consistent between 

samples. SEM images of W-MGC and P-MGC cement samples and their 

corresponding EDS spectra of the samples are presented in Figure 5.5. MGC particles 

were uniformly distributed on the surface of all samples. They were mostly embedded 

into polymerised cement structure and their size was less than 50μm. Some of the 

glass particles are indicated with red circles on the images. As the amount of MGC 

particles increased from 10% to 40%, the peak of Fe in EDS spectra increased. 

Palacos powder contains ZrO2 (zirconia) particles and these are indicated with red 

arrows on SEM images. The peaks of Zr in the EDS spectra images overlapped the 

peaks of P. ZrO2 particles tended to agglomerate on the surface forming clusters with 

a size of 10-40µm. 

 

Figure 5.4 SEM image of W30 cement sample that had visible magnetite crystals on 

the glass residual (2000x magnification). Red arrows refer to magnetite crystals.  

15 µm 
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Figure 5.5 SEM images of MGC containing Palacos and Wintercryl cements (250x 

magnification) and corresponding EDS spectra a) W10 b) P10 c) W20 d) P20 e) W30 f) 

P30 g) W40 h) P40. Red arrows = ZrO2 particles in Palacos cement and red circles = 

the glass particles. 
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5.1.3 Four-point Bending Test 
The influence of the MGC addition on the bending strength and bending modulus was 

analysed through four-point bending tests, see Section 3.6.2. All samples were tested 

after 24±2 hour. Figure 5.6 shows an image of W20 samples after the test. The fracture 

occurred towards the centre of the samples. 

 

Figure 5.6 W-20 samples after four-point bending test 

P-Bag and W-Bag cement samples, which were tested after 24±2 hours (day-1 time 

point), were used as control sample groups (P0 and W0). These samples were called 

W0 (0% MGC) and P0 (0% MGC) referring to plain Wintercryl and Palacos cement 

samples. As previously reported in Section 4.4.3, three out of six samples in W-Bag 

and one out of five samples of P-Bag point didn’t fracture on day-1 time point. Also, 

one out of six samples from W20 did not fracture. The sample sizes of control groups 

and W-MGC and P-MGC for calculation of bending strength (B) and modulus (E) are 

summarised in Table 5.4. 

Table 5.4 provides the sample sizes (𝑛𝑛) of W-MGC and P-MGC samples along with their 

control groups for bending strength (B) and bending modulus (E) results.  
 

 W0 W10 W20 W30 W40 P0 P10 P20 P30 P40 
B 𝑛𝑛=3 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=4 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 

E 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 

 

Figure 5.7 and Figure 5.8 present bending strength results of W-MGC and P-MGC 

samples as well as P0 and W0. W-MGC and P-MGC cement samples containing up 

to 30% MGC met the minimum requirement for the bending strength of standard ISO 

5833:2002, 50 MPa. However, P40 and W40 did not meet the requirements since the 

mean values were lower than 50 MPa. 

10 mm 
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Increasing the MGC content in Palacos and Wintercryl cement samples gradually 

lowered the bending strength. Only W30 showed a slight increase compared to W20. 

The range of values for all magnetic cements were between 42.1 MPa and 64.4 MPa, 

see in Figure 5.7. The minimum value occurred for P40 and the maximum value 

occurred for W10 compared to the control samples. Moreover, the minimum bending 

strength values of W20 and P30 were below the requirement of the standard, which 

were 46 and 48 MPa respectively. The range of mean values of bending strength for 

magnetic cement samples was between 47.5 and 58.5 MPa (see Figure 5.8). The 

average values of W0 and P0 samples were 60.2 and 62 MPa respectively. One-way 

ANOVA followed by Tukey post hoc test showed that there was no significant 

difference (p>0.05) between P-MGC and W-MGC cements. W40, P40, P30 and P20 

samples were significantly different (p<0.05) compared to the control samples.  

 

Figure 5.7 Data range of bending strength results of control samples (P0 and W0), W-

MGC and P-MGC. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values.  
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Figure 5.8 Bending strength results of control samples (P0 and W0), W-MGC and P-

MGC samples. The data presents mean value ± standard deviation (μ ±σ). The line is 

minimum requirement of IS05833:2002 standard, 50MPa. 

Bending modulus results of W-MGC, P-MGC and their control groups are presented in 

Figure 5.9 and Figure 5.10. All samples had higher bending modulus values than the 

standard requirement (1.8GPa). As the MGC addition increased in the samples, 

bending modulus values gradually increased. This increase was in a good agreement 

with the rule of mixing for composite materials [178]. The combination of two or more 

materials can result in having better properties compared to the individual materials. 

Whilst polymers show low elastic modulus and high ductility, glass-ceramics show high 

elastic modulus and high brittleness. Therefore, addition of MGC from 10% to 40% in 

PMMA cement gradually increased the bending modulus. The minimum value was 

obtained for W10 (2.3GPa) and the maximum value was obtained for W40 and P40 

samples (4GPa) compared to control groups, Figure 5.9. The range of mean values 

for bending modulus for all magnetic cement samples varied between 2.7 and 3.8 GPa 

(Figure 5.10). The average values for W0 and P0 were 2.7 and 2.8 GPa respectively. 

One-way Anova followed by Tukey post-hoc analyses showed that there was no 

significant difference (p>0.05) between W-MGC and P-MGC samples. However, W40, 

P40, W30, P30 and P20 samples were significantly different (p<0.001) compared to 

their control samples. 
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Figure 5.9 Data distribution of bending modulus results of control samples (P0 and W0), 

W-MGC and P-MGC. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values. 
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Figure 5.10 Bending modulus results of control samples (P0 and W0), P-MGC and W-

MGC samples. The data presents mean value ± standard deviation (μ ±σ). The 

horizontal line represents the minimum requirement of IS05833:2002 standard: 

1800MPa.  
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The typical stress-strain curves of W0, W-MGC, P0 and P-MGC samples are 

represented in Figure 5.11 and Figure 5.12. The stress-strain curves exhibited that with 

the addition of MGC to cement, the samples became more brittle. At the fracture point, 

W0 and P0, control samples, demonstrated higher stress values than magnetic cement 

samples, 60 and 62.3 MPa. W10 and P10 samples showed the maximum stress values 

at the fracture points, which were 58 and 60.5 MPa respectively, compared to other 

magnetic samples. W40 and P40 samples showed the minimum stress values at the 

fracture points, which were 49 MPa and 47 MPa. Increasing MGC content from 10% 

to 40% in the cement samples decreased the maximum strain (%) of the cement 

samples. Moreover, P-MGC samples had lower strain at the fracture points than W-

MGC samples.  

 

Figure 5.11 Stress-strain curves of W0 (control), W10, W20, W30 and W40 samples 
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Figure 5.12 Stress-strain curves of P0 (control), P10, P20, P30 and P40 samples 
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Four-point bending results showed that increasing MGC in the cement decreased the 

bending strength and increased the bending modulus. These results are in a good 

agreement with several studies [163, 179]. It should be noted that compatibility of 

mechanical properties between contacted tissues and bone cement is crucial. The test 

results showed that bending strength of magnetic PMMA cement samples were within 

the range of cortical bone. Moreover, bending modulus of magnetic PMMA samples is 

similar to the cortical bone.  

A study reported by Bruno et al. [163] showed that the addition of 20% (wt%) magnetic 

glass ceramic in PMMA cement did not meet the criteria of the standard since the 

bending strength results were lower than the requirement (50MPa). 

In this study, the results showed that up to 30 % MGC addition in the cement samples 

met the standard criteria. The stress-strain curves also verified that the MGC addition 

caused a transition into a brittle-state. It should be noted that the ratio between PMMA 

powder and MMA liquid reduced with the addition of MGC particles and this may have 

contributed to a decrease in bending strength. Increasing the MGC content from 20% 

to 40% showed that P-MGC samples presented a slightly lower bending strength than 

W-MGC samples. The reason of this could be due to the presence of pre-mixed ZrO2 

(radiopacificer) particles in the composition of Palacos samples that could reduce the 

mechanical properties [174]. Moreover, there was no significant change in temperature 

and relative humidity during the four-point bending test (see Appendix C.2). 

5.1.4 Compressive Strength Test 
Compressive strength tests were used to assess the effect of MGC addition. All 

samples were tested after 24±2 hour. Compressive strength (σ2%) and maximum 

strength values (σmax) were calculated as described in Section 4.4.4. Figure 5.13 

shows a representative image of W40 samples after the test.  

 

Figure 5.13 W40 samples after performing compressive strength test 

10 mm 
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P-Bag and W-Bag cement samples, which were tested after 24±2 hours (day-1 time 

point), were used as control sample groups. These samples were called W0 (0% MGC) 

and P0 (0% MGC) referring to plain Wintercryl and Palacos cement samples. One of 

the six samples from W10, W20 and P40 cements were discarded due to uneven 

surfaces as it would dramatically affect the test results. Table 5.5 provides sample 

sizes of W-MGC and P-MGC samples along with the control groups, W0 and P0.  

Table 5.5 provides sample sizes (𝑛𝑛) of W0, W-MGC, P0 and P-MGC samples for 

compressive strength test results 

W0 W10 W20 W30 W40 P0 P10 P20 P30 P40 
𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=6 𝑛𝑛=5 

 

Compressive strength results of P-MGC and W-MGC are presented along with the 

control groups in Figure 5.14 and Figure 5.15. All samples met the minimum 

requirement of ISO 5833:2002 standard. The addition of MGC content up to 30 (wt%) 

had a negligible influence on compressive strength; however, with MGC content of 

40%, there was a notable decrease for both types of cement. According to Figure 5.14, 

the highest compressive strength (σ2%) value of MGC containing samples was 

obtained for W10 (98.2 MPa) compared to the control samples. The minimum value 

was obtained for P40 (61 MPa). The range of mean values of compressive strength 

(σ2%) for magnetic cement samples varied between 72 and 86.2 MPa, Figure 5.15. The 

average compressive strength values for W0 and P0 were 86.9 and 80.4 MPa 

respectively. One-way ANOVA followed by Tukey post hoc test showed that there were 

no significant differences (p>0.05) between W-MGC and P-MGC and as well as within 

the groups (p>0.05).  
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Figure 5.14 Data range representation of compressive strength results of P-MGC and 

W-MGC with the control groups. The mean values of the samples are expressed with 

the X, and horizontal lines represent the median values.  

 

 

Figure 5.15 Compressive strength values of W-MGC and P-MMGC samples with the 

control groups. The data presents mean value ± standard deviation (μ ±σ). The line is 

minimum requirement of IS05833:2002 standard, 70MPa 
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The typical stress-strain curves of W-MGC, W0, P-MGC and P0 samples used to are 

shown in Figure 5.16 and Figure 5.17. As can be seen from the figures, with addition 

of MGC in the content, compressive stress decreased. The maximum stress values for 

magnetic cement samples were obtained for W10 and P10, compared to the control 

groups, which were 97 and 91 MPa. W40 and P40 samples had the minimum 

compressive stress values, which were 68 MPa and 74 MPa.  

 

Figure 5.16 Stress-strain curves of selected W0, W10, W20, W30 and W40 samples 

 

Figure 5.17 Stress-strain curves of selected P0, P10, P20, P30 and P40 samples 

Maximum compressive strength (σmax) values of W-MGC, P-MGC and their control 

samples are shown in Table 5.6. For all samples, maximum compressive strength of 

the samples was slightly higher than compressive strength (σ2%). The highest 

compressive strength was obtained for P10 and the lowest for P40. 
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Table 5.6 Compressive strength values of W-MGC and P-MGC samples (Data 

presents mean values and standard deviations) 

 Compressive Strength (σmax, MPa) 
Glass content W  P 

0%  86.2±11.0 83.1±7.9 

10% 87.7±9.3  92.0±9.1 

20% 86.3±3.1  87.3±9.8 

30% 86.4±6.5  88.2±9.0 

40% 80.0±7.2  76.7±4.0 

 

Both maximum compressive strength (σmax) and 2% compressive strength (σ2%) values 

of P-MGC and W-MGC samples met the minimum requirement of ISO 5833:2002 

standard, which is in line with a considerable volume of studies [60, 163, 179]. Four-

point bending and compressive strength results showed that up to 30% of MGC 

addition in PMMA cements met the requirements, despite of manual mixing. Increasing 

the MGC addition decreased PMMA powder content in the cement; therefore, the MGC 

particles may have acted as reinforcements in the structure and caused 

agglomerations. A study performed by Moloney et al. reported that the compressive 

strength decreased due to glass beads did not uniformly adhere to polymer matrix 

[180].  

5.1.5 Vickers Hardness Test  
The hardness of the P-MGC and W-MGC samples along with their control groups were 

tested using the Vickers Hardness test as described in Section 3.6.4. The results of 

W-MGC, P-MGC and the control groups (W0 and P0) for 18 data points (n=6, repeated 

three times (r=3)) are presented in Figure 5.18 and Figure 5.19. Two outliers were 

identified and presented in the data for Figure 5.18; however, these are not included 

in the data for Figure 5.19. After a notable increase in hardness with 10% MGC, further 

addition of MGC continued to increase hardness at a more gradual rate. These results 

are in a good agreement with several studies [181, 182]. In Figure 5.18, the maximum 

value was obtained for P40 (31.1 MPa) and the minimum value was obtained for W10 

(21MPa) compared to the control groups. The range of mean values of Vickers 

hardness for magnetic cement samples varied between 22.2 and 28 MPa, Figure 5.19. 

The average values for W0 and P0 were 14.8 and 19.4 MPa respectively. 
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 According to one-way Anova followed by Tukey post-hoc analyses, W-MGC and P-

MGC samples were significantly different (p<0.001). The presence of ZrO2 (zirconia 

oxide, radiopacifier) in Palacos cement can be shown as a reason of this significant 

difference. The analyses within the sample groups showed that there were significant 

differences between MGC (wt %) concentrations in all samples (p<0.001) with some 

exceptions; W20 and W30 were not significantly different (p>0.005) and similarly, no 

significant difference was found between P10 and P20 (p>0.005).  

 

Figure 5.18 Data ranges of Vickers hardness test results of W0, P0, W-MGC and P-

MGC samples with the outliers. The mean values of the samples are expressed with the 

X, and horizontal lines represent the median values, n=6, r=3. 

 

Figure 5.19 Vickers Hardness test results of W0, P0, W-MGC and P-MGC samples 

without the outliers. The data presents mean value ± standard deviation (μ ±σ), n=6, 

r=3. 
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5.1.6 Analysis of Water Absorption 
Water absorption of W-MGC and P-MGC samples were measured and calculated 

following Archimedes method as described in Section 3.6.5. The results of W-MGC, P-

MGC and the control samples are shown in Figure 5.20 and Figure 5.21. For magnetic 

cement samples, the minimum value was obtained for W10 (3.5%), and the maximum 

value was obtained for W40 (8.2%), Figure 5.20.  Whilst the average water absorption 

(%) of the magnetic cements was in a range of 4.8-6.6%, it was between 4.7 and 7.2% 

for W0 and P0 respectively. For manually mixed PMMA bone cements, this range 

reflects the typical porosity (%) in the cement [183, 184]. The addition of MGC had 

opposing effects on the two cements; water absorption of W-MGC samples increased, 

whereas it decreased for Palacos cement samples up to 30% MGC addition. Several 

studies reported that the addition of particles/fillers in PMMA samples causes 

increments in porosity [163, 180, 182, 185]. The data range shows that water 

absorption may vary within the samples and this may be due to manual mixing, which 

may cause inhomogeneity. Regarding one-way Anova followed by Tukey post-hoc 

analyses, there was no significant difference between and within the sample groups 

(p>0.05). 

 

Figure 5.20 The data range of water absorption results of W0, P0, W-MGC and P-MGC 

samples. The mean values of the samples are expressed with the X, and horizontal lines 

represent the median values, n=3. 
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Figure 5.21 Water absorption results of P0, W0, W-MGC and P-MGC samples. The data 

presents mean value ± standard deviation (μ ±σ), n=3. 

 

5.1.7 In vitro Bioactivity Characterisation  
Bioactivity plays an important role in forming an interfacial bonding to the bone which 

enhances the bone regeneration as described in Section 2.6. In vitro, the SBF solution 

is used to mimic human body fluid to assess bone-like apatite formation on the surface 

of biomaterials. After immersion in SBF, initially, a silica layer is formed on the surface 

of the sample via ion exchange. This enhances precipitation of Ca+2 and P ions on the 

surface, which then leads to a nucleation and growth of apatite crystals [72]. According 

to the literature, iron ions may inhibit the release of Ca+2 from glass-ceramics due to 

Fe-O-P bonding, which may show resistance to hydration [186].  

In this study, all samples were immersed in SBF solution for up to 6 months to observe 

the bioactivity of magnetic cements. The bioactivity analyses were performed as 

described in Section 3.6.7. SEM micrographs of W0, W10, W20, W30 and W40 at 

different time points are shown in Figure 5.22. As previously mentioned, PMMA 

cements are bioinert materials, therefore, there should not be any sign of bioactivity on 

the surface of plain PMMA cement samples. Although there was no sign of apatite 

formation in the first week, microcracks and apatite crystals on the silica gel layer 

started to form on the W10, W20, W30 and W40 samples after two weeks of immersion 

in SBF. However, the precipitation of apatite on the surface of the samples was found 

non-uniform. 
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Since apatite formation occurs on the glass ceramics the uniformity of apatite layer 

highly depends on the presence of glass-ceramics on the surface of the polymer matrix. 

A globular shape of precipitation was observed on W10 and W30 samples at week 2 

but W20 and W40 samples had formation of a layer, which was attributed to a silica 

gel layer [187] formation on the surfaces. After 1 month of immersion in SBF solution, 

cauliflower-like precipitation of apatite was observed on all the samples and this in 

good agreement with the literature [61, 163, 188]. Whilst the cauliflower-like 

precipitation was maintained on the surface of W30, a large globular-like shape was 

observed on W40 at 2 months of immersion. W10 and W20 had only silica-rich layer 

formation on the surfaces. After 3 and 6 months of immersion, the growth silica-rich 

layer was observed on the surfaces of all samples. Overall, the formation of silica-gel 

layer and cauliflower-like precipitation of apatite indicate that magnetic cement has 

bioactive properties and it could enhance interfacial bonding to bone. 
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Figure 5.22 Morphology of W-MGC samples before (time 0) and after immersion in SBF solution up to 6 months (at 500x magnification)
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The chemical composition of the samples before and after immersion in SBF was analysed 

using EDS. Figure 5.23 presents typical SEM images and corresponding EDS spectra of W0 

and W10 samples before immersion in SBF and after 4 weeks and 6 months of immersion in 

SBF. The EDS analyses were performed in the circled areas. As W0 sample did not have any 

MGC addition it only showed elements of C and O. The EDS analyses on W10 showed that 

after the SBF immersion, precipitation of the peaks of P and Ca increased compared to the 

non-soaked samples.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5.23 SEM micrographs (x1000 magnification) and EDS spectra of A) W0 at time 

0 B) W10 at time 0 C) W10 after 1 months of immersion C) W10 after 6 months of 

immersion 

40 µm 

40 µm 

40 µm 

40 µm 

 

 

C 

O 

A B 

C D 



 

151 
 

5.1.8 Cytocompatibility Tests 
Cell attachment and proliferation on the surface of magnetic cements were analysed 

using MTT and Alamar Blue assays. It should be noted that the sample side in contact 

with silicone mould surface was used for all experiments. According to the literature, 

PMMA cements are toxic due to the release of MMA monomer therefore, they have 

poor tissue compatibility [14, 189]. In contrast, bioactive glass-ceramics show good cell 

attachment and cell proliferation properties [72, 190, 191]. Verne et al. reported that 

cell viability and adhesion of osteosarcoma cells seeded on magnetic cement was 

considerably high [147].  

5.1.8.1 MTT Assay 
The analysis of cytocompatibility of W0 and W-MGC samples were investigated 

performing MTT assay as described in Section 3.6.8.2. For this assay, osteosarcoma 

(U2OS) cells were used. The samples were placed in two 12-well plates as described 

in Section 3.7.8.2 and Figure 3.18. W0-1 samples were placed in the first 12-well plate, 

which had W10 and W20 samples. W0-2 samples were placed in the second 12-well-

plate, which had W30 and W40 samples. The sample sizes are provided in Table 5.7. 

Figure 5.24 and Figure 5.25 show viability (%) of U2OS cells seeded on the samples 

for up to 7 days, see Appendix D for the results without negative control. The average 

cell viability decreased from approximately 180% to 5%. On day 1, W40 samples 

showed relatively higher cell viability than W0 (1,2), W10, W20 and W30 samples. After 

3 days of incubation, cell viability noticeably dropped in all samples, which continued 

to insignificant amounts in day-7. It was detected that on day-3 and day-7, W0-1 and 

W0-2 samples had relatively higher cell viability than W-MGC samples. Overall 

analyses showed that Wintercryl cement showed cytotoxic effects on the cells. 

Increasing the MGC content in cement samples did not increase the cell viability on 

the samples. However, these results were found inconclusive. This could be due to the 

complications that occurred during the test such as debris releases from the samples 

and cell contaminations. As the test was incomplete, statistical analyses were not 

performed and the data was not normally distributed (p<0.05) as well.  

Table 5.7 Sample size (n) of W0 (1,2), W10, W20, W30 and W40 sample groups for 

MTT assay (W0(1,2)= control groups) 

Samples W0-1  W10 W20 W30 W40 W0-2 
Sample size n=3  n=3 n=3 n=3 n=3 n=3 
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Figure 5.24 Data range of cell viability (%) of U2OS cells seeded on W0 and W-MGC 

samples along with negative control (cell1&2) for 1, 3 and 7 days. The mean values of 

the samples are expressed with the X, and horizontal lines represent the median values. 
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Figure 5.25 Cell viability of U2OS cells seeded on W0 and W-MGC samples along with 

negative control (cell1&2) for 1, 3 and 7 days. The data presents mean value ± standard 

deviation (μ ±σ).  
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5.1.8.2 Alamar Blue Assay  
Alamar Blue assay was performed to assess the cell viability of two cell lines, U2OS 

and OBS, seeded on W-MGC, P-MGC and their control groups. The control samples 

were the plain cements P0 and W0. Negative control was the tissue culture. Initially 

five samples were used, and 4 aliquots were taken from each sample (20 data points 

for each group). However, some samples had cell contamination throughout the time-

points and these samples were discarded. Sample size of the sample groups are 

provided in Table 5.8. Alamar Blue assay was repeated several times due to cell 

contaminations that occurred in the assigned incubator in laboratory. 

Table 5.8 Sample size (n) of W-MGC and P-MGC along with the control groups 

Cell Lines Time Points W0-1 W10 W20 W30 W40 W0-2 

U
2O

S 
C

el
ls

 

Day 1 n=5 n=4 n=5 n=5 n=5 n=5 

Day 3 n=5 n=4 n=5 n=5 n=5 n=5 

Day 7 n=5 n=4 n=5 n=5 n=5 n=4 

Day 10 n=5 n=4 n=5 n=5 n=5 n=4 

Day 14 n=3 n=4 n=5 n=5 n=5 n=4 

O
B

S 
C

el
ls

 

Day 1 n=5 n=5 n=5 n=5 n=5 n=5 

Day 3 n=5 n=5 n=5 n=5 n=5 n=5 

Day 7 n=5 n=5 n=5 n=5 n=5 n=5 

Day 10 n=5 n=5 n=5 n=5 n=5 n=5 

Day 14 n=5 n=5 n=5 n=5 n=5 n=5 

Cell Lines Time Points P0-1 P10        P20 P30 P40 P0-2 

U
2O

S 
C

el
ls

 

Day 1 n=4 n=5 n=5 n=5 n=5 n=5 

Day 3 n=4 n=5 n=5 n=5 n=5 n=5 

Day 7 n=3 n=5 n=5 n=5 n=5 n=5 

Day 10 n=3 n=5 n=5 n=5 n=5 n=5 

Day 14 n=2 n=5 n=5 n=5 n=5 n=5 

O
B

S 
C

el
ls

 

Day 1 n=5 n=5 n=5 n=5 n=5 n=5 

Day 3 n=5 n=5 n=5 n=5 n=5 n=5 

Day 7 n=5 n=5 n=5 n=5 n=5 n=5 

Day 10 n=5 n=5 n=5 n=5 n=5 n=5 

Day 14 n=5 n=5 n=5 n=5 n=5 n=5 
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Cell viability (%) results of U2OS cells that were seeded on W0 and W-MGC samples 

along with the negative controls, cell-1 and cell-2, up to 14 days are shown in Figure 

5.26 and Figure 5.27. The results without negative controls are presented in appendix 

D.2. A non-linear decrease of cell viability was observed in all samples with an increase 

of time. The highest cell viability was obtained in day-1 time point for W10 and W0 

(~72%). The lowest cell viability was obtained in day-14 time point for W30 (8.7 %), 

Figure 5.26. Overall, the average cell viability decreased from 67% to 9%, Figure 5.27. 

There was an abrupt decrease of cell viability from day-1 to day-10. There were no 

statistically differences between day-10 and day-14. This major decrease implied that 

W0 and W-MGC samples did not enhance U2OS cell proliferation and attachment, and 

this may have indicated the cytotoxicity. Mann-Whitney analysis showed that that there 

was a significant difference (p<0.001) between time points; however, there was no 

significant difference (p>0.05) between the samples.  

 

Figure 5.26 Data range of U2OS cell viability on W0-1(control sample in plate-1), W0-

2 (control sample in plate 2) and W-MGC samples along with negative control (Cell-

1&2) for 1, 3, 7, 10 and 14 days. The data includes outliers. The mean values of the 

samples are expressed with the X, and horizontal lines represent the median values. 
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Figure 5.27 Percentage of cell viability of U2OS cells on W0-1(control sample in plate-

1), W0-2 (control sample in plate-2) and W-MGC samples along with negative control 

(Cell-1&2) for 1, 3, 7, 10 and 14 days. The data do not include outliers. The data pre-

sents mean value ± standard deviation (μ ±σ). 

Figure 5.28 and Figure 5.29 present cell viability (%) results of U2OS cells, which were 

seeded on P0 and P-MGC samples along with the negative controls, cell-1 and cell-2 

for up to 14 days. The results without negative controls are presented in appendix D.2. 

Similar to W0 and W-MGC samples, the cell viability sharply decreased from day-1 to 

day-14. In Figure 5.28, the highest cell viability was obtained for W0-1 on day-1 (73.2%) 

and the lowest cell viability was observed for P30 on day-14 time point (7.5%), Figure 

5.28. Throughout the time period, the average cell viability decreased from 68% to 8%, 

Figure 5.29. This decrease suggested that P0 and P-MGC samples could have 

cytotoxic effects on U20S cells. Mann-Whitney analysis showed that that there was a 

significant difference (p<0.001) between time points; however, there was no significant 

difference (p>0.05) between the samples. 
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Figure 5.28 The data range of U2OS cell viability on P0-1 (control sample in plate-1), 

P0-2 (control sample in plate-2) and P-MGC samples along with negative control (Cell-

1&2) for 1, 3, 7, 10 and 14 days. The data includes outliers. The mean values of the 

samples are expressed with the X, and horizontal lines represent the median values. 
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Figure 5.29 Percentage of cell viability of U2OS cells on P0-1 (control sample in plate-

1), P0-2 (control sample in plate-2) and P-MGC samples along with negative control 

(Cell-1&2) for 1, 3, 7, 10 and 14 days. The data do not include outliers. The data pre-

sents mean value ± standard deviation (μ ±σ). 
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Cell viability (%) of OBS cells seeded on W0 and W-MGC samples along with the 

negative controls, cell-1 and cell-2 are plotted in Figure 5.30 and Figure 5.31. The 

results without negative controls are presented in appendix D.2. Despite U20S cells 

showing drastic reductions, OBS cells presented more gradual decreases over the 14-

day time period. The aim of performing the test using two cell lines was to compare the 

effect of magnetic PMMA cements on both cancerous and healthy cells. The 

hypothesis was enhancing cell viability of OBS cells whilst decreasing the cell viability 

of U2OS cells. Although the cell viability of OBS cells did not increase gradually, this 

gradual decrease compared to U2OS cells was still favorable. In Figure 5.30, the 

highest cell viability was obtained for W0-2 on day-1 (105.5%) and the lowest was 

obtained for W20 on day-14 (50.6%). Although the percentage of average cell viability 

was still higher than 55% for all samples on day 14, the decrease still implied low cell 

proliferation and attachment as well as cytotoxicity effects of W0 and W-MGC samples 

on OBS cells. Mann-Whitney analysis showed that that there was a significant 

difference (p<0.001) between time points. The comparisons between the samples 

showed that there were significant differences (p<0.001) between the samples, with 

some exceptions. W10 sample was not significantly different (p>0.05) compared to 

W0-1 and W20 and also there was no significant difference (p>0.05) between W20, 

W30 and W40 samples. 

 

 

 

 

 



 

158 
 

 

Figure 5.30 The data range of OBS cell viability W0-1(control sample in plate-1), W0-2 

(control sample in plate 2) and W-MGC samples along with negative control (Cell-1&2) 

for 1, 3, 7, 10 and 14 days. The data includes outliers. The mean values of the samples 

are expressed with the X, and horizontal lines represent the median values.  

 
Figure 5.31 Percentage of cell viability of OBS cells on W0-1(control sample in plate-

1), W0-2 (control sample in plate-2) and W-MGC samples along with negative control 

(Cell-1&2) for 1, 3, 7, 10 and 14 days. The data do not include outliers. The data 

presents mean value ± standard deviation (μ ±σ).  
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The cell viability of OBS cell results for P0 and P-MGC samples along with the negative 

controls, cell-1 and cell-2 are shown in Figure 5.32 and Figure 5.33. Similar to 

Wintercryl cements, OBS cells seeded on P0 and P-MGC samples exhibited a higher 

percentage of cell viability than U2OS cells over the time period. However, a gradual 

reduction of the cell viability was still observed. Whilst the highest cell viability was 

obtained for P0-1 and P10 samples (99%) on day-1 time point, the lowest value was 

obtained for P40 (52%) on day-14 time point, Figure 5.32. Throughout the time period, 

the average cell viability decreased from 90% to 55%, Figure 5.33. Although the 

samples showed more than 55% of cell viability, P0 and P-MGC samples may have 

been cytotoxic. Mann-Whitney analysis showed that there was a significant difference 

(p<0.001) between time points and the sample groups as well. However, there were 

some exceptions. There was no significant difference (p>0.05) between P10, P20 and 

P30. The comparison between P0-1 and P0-2 (p>0.05) showed that they were not 

significantly different as well.  

 

Figure 5.32 The data range of OBS cell viability (%) on P0-1 (control sample in plate-1), 

P0-2 (control sample in plate-2) and P-MGC samples along with negative control (Cell-

1&2) for 1, 3, 7, 10 and 14 days. The data includes outliers. The mean values of the 

samples are expressed with the X, and horizontal lines represent the median values.  
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Figure 5.33 Percentage of cell viability of OBS cells on P0-1 (control sample in plate-1), 

P0-2 (control sample in plate-2) and P-MGC samples along with negative control (Cell-

1&2) for 1, 3, 7, 10 and 14 days. The data do not include outliers. The data presents 

mean value ± standard deviation (μ ±σ).  

 

It is important to note that two cell culture plates were used to hold the samples, as 

shown in Figure 3.20 in Chapter 3. This fact may have caused discrepancies in the 

results. The results showed that using two cell culture plates caused variations. It can 

clearly be seen in the difference between the control samples (W0-1 & W0-2, and P0-

1 & P0-2) at each time point as they should have seen similar results. Considering the 

plates separately, a trend of cell viability reduction with increasing MGC could be seen 

in most tests. However, this trend did not continue from first plate containing MGC10 

and MGC20 (wt%), to the second plate containing MGC30 and MGC40 (wt %) samples. 

As can be seen that OBS cells had higher cell viability than U2OS cells on both 

Wintercryl and Palacos cements with and without MGC addition. Whilst the decrease 

in U2OS cell viability was sharp, OBS cell viability showed a gradual decrease. This 

indicated that OBS cells had higher cell proliferation than U2OS cells on the PMMA 

cement samples.  
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Cell attachment of OBS cells were found higher compared to U2OS cells for both 

cement types on day-1 time point. However, all samples showed poor cytocompatibility 

on U2OS and OBS cells throughout the time points. In addition to this, the reduction in 

cell viability was not in line with the literature [147]. Sharp edges of MGC may have 

destroyed the cells and inhibited their attachments on the surface. Moreover, as 

previously reported, increasing MGC (wt%) content caused a decrease in initiator 

concentration and this may have increased residual MMA in the test samples, which 

was toxic. Therefore, the addition of MGC from 10% to 40% MGC (wt%) addition in 

cement caused a further decrease in the cell viability. As previously reported, the 

sample side in contact with silicone mould surface was used for all work and this may 

have affected the results of MTT and Alamar Blue assays. Since silicone rubber is 

considered a hydrophobic material that has surface contact angle higher than 90° with 

low wettability [192]. Moreover, Rios et al., reported that silicone rubber has lower 

adhesion strength than PTFE. Thus, hydrophobicity of silicone rubber mould may have 

led to lower amount of MMA conversion into polymer holding the PMMA beads on the 

surface. In addition to that, surface properties can affect cell adhesion. It was reported 

that hydrophilic surfaces enhance cell adhesion due to their high wettability and low 

contact angle (<90°) properties [193]. This may have an influence on low cell viability 

on the surface of magnetic and plain PMMA cement samples.  

 

 Figure 5.34 shows the light microscope images of U2OS and OBS cells seeded in 24 

well-plate, showing the growth of cells up to 14 days. As expected, U2OS cells showed 

a higher proliferation rate than OBS cells. U2OS cells reached confluency after day-3 

in 24 well-plate whilst OBS cells showed confluency after day-7 time point. This fast 

growth of U2OS cells caused accumulation in the well.  
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Figure 5.34 Light microscope images (4x magnification) of U2OS and OBS cells 

seeded in 24 well-plates up to 14 days. Colour variation is due to the microscope 

lightening- no cellular impact. Scale bars are 100 µm.  
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5.1.9 Fluorescence Imaging  
In order to evaluate the cell attachment on W0, W10, W20, W30 and W40, as well as 

P0, P10, P20, P30, P40, fluorescence imaging was performed as described in Section 

3.6.9. Representative fluorescence microscopy images of OBS and U2OS cells 

seeded on plain and MGC containing Wintercryl and Palacos® cement samples are 

shown in Figure 5.35.  Blue colour (DAPI staining) represents the nucleus of the cells. 

Other than U2OS cells showing higher cell attachment than OBS cells, no correlation 

was found with cement type or the presence of MGC in the cements. 
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Figure 5.35 Representative fluorescence images of DAPI stained OBS and U2OS cells 

attached on the surface of plain (W0,P0) and MGC containing Wintercryl and Palacos 

cement samples (W-MGC and P-MGC samples). Magnification was changed to secure 

clean images.  

       Palacos-OBS     Wintercryl-OBS      Wintercryl-U2OS        Palacos-U2OS 

Plain 

MGC 10 

MGC 20 
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5.1.10 Cell attachment SEM Imaging 
Further cell attachment analyses on the surface of P0, P10, P20, P30 and P40 samples 

was performed as described in Section 3.6.10. Unfortunately, after the critical point 

drying process (CPD), the samples expanded. In the literature, the effects of CPD 

technique on PMMA cement was not reported; however, it is known that PMMA 

samples can absorb water, and this can cause swelling of PMMA samples [144]. 

Kazarian et al [194]., reported that liquid CO2 may interact with polymers under high-

pressure (~74 bars) and it may lead swelling.  

SEM images of the samples were obtained not only to assess cell attachment, but also 

to understand how the cell culture media, cell fixation protocol and critical point drying 

could affect the samples. Figure 5.36, Figure 5.37, Figure 5.38, Figure 5.39 and Figure 

5.40 show SEM images of P0, P10, P20, P30 and P40 samples respectively, at time 0 

without cells (with and without CPD) and at 1 and 3-day time points of U2OS and OBS 

cells. Yellow arrows on the images indicate cell attachments. Detection of the cells on 

the surface were difficult as most of the cells may have been ruptured due to the 

expansion that occurred during the critical point drying process. Attachment of OBS 

cells on day-1 time point can be clearly seen on Figure 5.36, Figure 5.37, Figure 5.38 

and Figure 5.39. The cells showed a flatten morphology and extended filopodias, which 

has been reported by several studies [195-197]. However, there was no correlation 

found between samples regarding the MGC addition due to rupture of cells and 

morphological changes in the samples, which was attributed to CPD process.



166 
 

  

  

  

Figure 5.36 SEM images (500x magnification) of P0 samples A) before B) after 

treatment without cell seeding C) U2OS cells at 1-day time point D) U2OS cells at 3-day 

time point E)OBS cells at 1-day time point F) OBS cells at 3-day time point 
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Figure 5.37 SEM images (500x magnification) of P10 samples A) before B) after 

treatment without cell seeding C) U2OS cells at 1-day time point D) U2OS cells at 3-day 

time point E)OBS cells at 1-day time point F) OBS cells at 3-day time point 
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Figure 5.38 SEM images (500x magnification) of P20 samples A) before B) after 

treatment without cell seeding C) U2OS cells at 1-day time point D) U2OS cells at 3-day 

time point E)OBS cells at 1-day time point F) OBS cells at 3-day time point 
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Figure 5.39 SEM images (500x magnification) of P30 samples A) before B) after 

treatment without cell seeding C) U2OS cells at 1-day time point D) U2OS cells at 3-day 

time point E)OBS cells at 1-day time point F) OBS cells at 3-day time point 
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Figure 5.40 SEM images (500x magnification) of P40 samples A) before B) after 

treatment without cell seeding C) U2OS cells at 1-day time point D) U2OS cells at 3-day 

time point E)OBS cells at 1-day time point F) OBS cells at 3-day time point 
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5.1.11 Induction Heating  
Successful heat generation of magnetic materials is crucial to destroy deep-seated 

bone cancer cells via hyperthermia treatment. The heat generation mostly depends on 

magnetic properties of the material and the parameters of the magnetic field (intensity 

and frequency). As reported in Section 2.3.2.1, the heat generation should be between 

41-45°C to destroy the cells. However, the applied magnetic field should be also safe 

for patients and staff in operating rooms in hospitals and treatment centres.  

Heat generation abilities of MGC containing samples (P-MGC and W-MGC), in 

comparison with the control groups, W0 and P0, were evaluated by performing a 

preliminary induction heating test. Kawashati et al. [60] reported that (see Section 2.8) 

increasing the magnetic material in cement samples exponentially increased the 

generated heat at a constant magnetic field.  

In this study, the hypothesis was that increasing MGC content in the sample would 

reduce the energy needed to heat the sample to a targeted temperature range. 

Therefore, the induction current (A) was reduced as the MGC content increased in the 

samples (see Table 3.4). The reason for this was to control the heat generation in all 

the samples to reach a similar temperature range in 5 minutes. Then, the applied 

currents were reduced according to the MGC content in the sample, in order to 

maintain the generated heat for 5 minutes. The temperature readings were taken every 

60 seconds. The sample sizes per group for heating (stage I) and holding (stage II) 

phases are shown in Table 5.9.  

Table 5.9 Sample number per group for stage 1and stage 2 

 W0 W10 W20 W30 W40 P0 P10 P20 P30 P40 
Stage I 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 

Stage II 𝑛𝑛=2 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=1 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 𝑛𝑛=5 

 

Temperature profiles of control groups, W-MGC and P-MGC samples are presented 

in Figure 5.41 and Figure 5.42. W-MGC and P-MGC samples were successfully heated 

to a range of 55-60°C in 5 minutes (stage I). After the heating process, the 

temperatures were easily maintained ~1-4°C below the maximum temperature that 

they were heated to (stage II). All P-MGC and W-MGC samples followed a similar 

pattern as seen in Figure 5.41 and Figure 5.42. 
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 It was assessed that as the MGC content increased in the cement lower induction 

current was needed since more energy could be absorbed by the sample for heat 

generation. Temperature differences (∆T °C) of W-MGC and P-MGC samples and their 

control samples (W0, P0) at stage I are presented in Table 5.10 and Table 5.11  

respectively. It was expected that W0 and P0 would not generate any heat under the 

applied current; however, there was a slight increase in the temperatures, as seen in 

the figures below, which is due to convection and radiation from the coil. This effect 

will be further discussed in the following paragraphs.  

 

Figure 5.41 Temperature-time profiles of W0, W10, W20, W30 and W40 samples under 

the applied currents for 10 minutes. The temperature curves represent the average 

temperature readings in every 60 seconds collected from the samples. Stage I: heating 

phase and stage II: holding phase. 

 

Table 5.10 Temperature differences of W-MGC and W0 samples at stage 1 

∆T (°C) W0 W10 W20 W30 W40 
Stage I (°C) 8.1±0.2 35.4±2.9 35.5±1.4 36.5±1.3 38.0±1.5  
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Figure 5.42 Temperature-time profiles of P0, P10, P20, P30 and P40 samples under the 

applied currents for 10 minutes. The temperature curves represent the average 

temperature readings in every 60 seconds collected from the samples. Stage I: heating 

phase and stage II: holding phase 

 

Table 5.11 Temperature differences of P-MGC and P0 samples at stage 1 

∆T (°C) P0 P10 P20 P30 P40 
Stage I (°C) 7.6±1.9 32.8±1.4 35.2±1.9 35.8±1.1 36.5±1.7 

 

Table 5.12 shows the temperature readings of W0, P0, P-MGC and W-MGC samples 

at every 60 seconds throughout stage I and stage II. The initial temperatures (T0) had 

a clear influence on the resulting maximum temperatures at the end of the heating 

phase, T300. For instance, W20 and P20 samples had similar initial temperatures (T0), 

which resulted in similar peak temperatures after 5 minutes of the heating process 

(T300). Moreover, P30 was approximately 1°C higher than W30 at T0, and this 

temperature difference was maintained throughout the heating stage. A similar trend 

was observed between P0 and W0 samples. In contrast, P10 and W10 samples did 

not exhibit the same behaviour. While the initial temperatures were similar; the 

temperature difference was approximately 3°C difference at T300. 
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Table 5.12 Temperature recordings of the control samples, P-MGC and W-MGC samples in every 60 seconds throughout heating and 

holding stages. Data is presented as mean and ± standard deviations. 

 T0 T60 T120 T180 T240 T300 T360 T420 T480 T540 T600 

P0 20.5±1.6 23.4±2.0 25.1±2.6 26.2±2.7 27.4±2.6 28.1±2.7 27.3 27.7 27.8 29 29.5 

W0 24.1±0.4 27.6±1.4 29.3±1.0 30.5±1.0 31.8±0.9 32.3±0.6 31.8±0.9 32.4±0.9 32.7±1.3 32.2±1.1 32.8±1.3 

P10 22.1±1.0 34±0.9 42±1.0 47.7±0.8 51.9±1.0 54.9±1.1 53.5±1.1 53.9±1.1 54.0±1.0 54.1±1.4 54.3±1.4 

W10 22.4±0.8 35.1±1.3 44.1±1.8 50.4±2.4 54.7±2.5 57.8±3.0 55.5±1.9 55.8±1.9 56.4±2.1 56.4±2.1 56.2±1.9 

P20 20.9±0.5 33.1±0.9 42.08±1.4 48.36±1.8 52.9±2.2 56.1±1.9 53.7±2 53.2±2.1 52.8±2.1 52.76±2.2 52.6±2.3 

W20 20.6±0.7 33.6±0.9 42.6±0.8 48.6±0.9 52.9±1.0 56.0±1.3 53.2±01 52.6±0.8 52.2±1.1 52.0±1.1 51.7±1.3 

P30 21.5±1.2 34.7±1.3 44.3±2.1 50.4±2.1 54.8±2.0 57.3±1.6 54.6±2.0 54.4±1.8 54.5±2.2 54.5±1.5 54.5±1.6 

W30 20.4±1.2 33.4±0.5 42.3±0.6 48.9±1.1 53.8±0.9 56.9±1.2 54.6±1.1 54.1±0.8 54.0±0.9 54.0±0.8 53.6±1.1 

P40 22.5±0.7 35.8±0.5 45.3±0.8 51.8±0.9 56.1±1.0 59.4±1.2 56.0±0.8 56.2±0.9 55.8±0.9 56.1±1.0 55.8±1.0 

W40 22.2±0.9 36.1±1.0 45.7±1.3 52.6±1.4 56.6±0.9 60.4±1.5 57.2±1.0 56.9±1.0 57.2±1.2 56.7±1.2 56.6±1.0 
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It was found that the initial temperature of the coil had a more significant impact on the 

temperature increase in the sample compared to the other factors such as ambient 

temperatures and initial temperatures of the samples. This impact could be easily 

determined when the induction heating test was repeated on the same samples, 

sample 2 in group P10 (sample code: P10-2) and sample 1 in group W10 (sample 

code: W10-1).  

Figure 5.43 demonstrates the temperature profiles of the sample P10-2, coil and 

ambient temperature for the first and second (repeated) tests. The temperature 

difference between the initial temperatures of P10-2A (sample 2 in group P10, A=first 

test) and P10-2B (sample number 2 in group P10, B=second test) was ~2°C. The initial 

temperature difference between coil-A (coil temperature at first test) and coil-B (coil 

temperature at second test), was approximately 10°C. Therefore, while P10-2A could 

reach 49°C, P10-2B reached 54°C at the end of stage 1. At the end of stage 2, the 

temperature differences between coil-A and coil-B were approximately 6°C, and the 

temperature difference between P10-2A and P10-2B was around 4°C.  

  

Figure 5.43 Temperature-time profile of the P10-2 sample, coil, acrylic holder and 

ambient temperature in the first and second tests. At stage I the current was 310A for 5 

minutes, and at stage II the current was 270A for 5 minutes at a fixed frequency 290 

kHz. The tests are coded as A, meaning first trial and B,, meaning the second trial. 
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Similar effects were observed on W10-1 when it was exposed to the magnetic field at 

different times (A and B), applying 310 A at 290 kHz, as seen in Figure 5.44. W10-1A 

(at first test) and coil-A had similar starting temperatures, 17°C and the sample reached 

53 °C in five minutes. At the second (repeated) test, the starting temperature of coil-B 

was 31°C and the temperature of W10-1B raised from 23.3°C to 61°C in five minutes.  

 

Figure 5.44 Temperature-time profile of the W10-1 sample, coil, acrylic and ambient in 

the first and second trials. At stage I the current was 310A for 5 minutes, and at stage 

II the current was 270A for 5 minutes at a fixed frequency 290 kHz. The tests are coded 

as A, meaning first trial and B, meaning the second trial.  

Although the initial sample temperatures affected the heating stage to reach a target 

temperature, the coil temperature had a larger impact on the peak temperature as there 

was heat transfer (convection and radiation) from coil to the samples. As the coil 

temperature and ambient temperature could not be controlled, it caused variations in 

the final temperatures at the end of the heating stage as well as the holding stage. In 

order to maintain similar conditions for every test sample, the test should be performed 

in a more controlled environment to avoid any variations in the temperature changes. 

Despite these limitations and variations, W-MGC and P-MGC samples were 

successfully heated to above 50°C in five minutes and the temperatures were 

maintained for another 5 minutes, providing that W-MGC and P-MGC showed 

promising results for bone cancer treatment via magnetic hyperthermia. 
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As P0 and W0 lacked any MGC content, they were incapable of generating heat under 

a magnetic field. However, the temperature readings from the camera showed that 

temperatures of the plain cement increased approximately between 5 and 10°C when 

they were exposed to a magnetic field. Therefore, the temperature profiles of selected 

P0 and W0 samples were extensively evaluated with recordings of the coil, sample 

holder and the room temperatures. It should be noted that the sample holder was made 

of acrylic. Thus, temperature profile was expected to be similar to the PMMA based 

cement samples (P0 and W0).   

Figure 5.45 presents the temperature curves of W0, coil, sample holder (made of 

acrylic) and ambient temperature during stage I (310 A and 290 kHz) and stage II (270 

A and 290 kHz). The temperature of W0 increased by 8°C during stage I as the coil 

temperature increased by 15°C. The temperature profiles of the coil and W0 had a 

similar pattern, and during stage II, the temperature of the W0 raised and fell 

proportionally to the temperature of the coil. This influence was also observed on the 

acrylic holder. 

 

Figure 5.45 Temperature-time profile of selected W0, coil, sample holder and ambient 

temperature at during stage I and stage II. The data presents mean values. 
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Similarly, P0 samples showed similar behaviors under the applied magnetic field. 

Figure 5.46 presents the temperature curves of P0, coil, sample holder (made of acrylic) 

and ambient temperature during stage I (310 A and 290 kHz) and stage II (270 A and 

290 kHz). The temperature of W0 increased by 6°C during stage I as the coil 

temperature increased by 20°C. The acrylic holder and P0 sample followed a similar 

trend for all stages due to convection and radiation heating from the coil.  

 

Figure 5.46 Temperature-time profile of selected P0, coil, sample holder and ambient 

temperature at during stage I and stage II. The data presents mean values. 

 

Power to mass ratios of the samples was analysed to evaluate the generated power 

at 310 A and 290 kHz to heat the control (P0 and W0), W-MGC and P-MGC samples. 

The mean values and standard deviations of power to mass ratios of the samples are 

shown in Figure 5.47, and the data ranges of samples are presented in Figure 5.48. 

As the MGC content was increased from 10% to 40%, the applied current was reduced, 

and this resulted in lower power generation to heat the samples. For example, whilst 

the average power applied for P40 samples was 377 (W), it was increased to 974 (W) 

for P10 samples to reach a similar temperature range.  
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Figure 5.47 Power-to-mass ratios of control, W-MGC and P-MGC samples at 310A 

(stage 1). The data presents mean value ± standard deviation (μ ±σ). 

 

Figure 5.48 Data range of power-to-mass ratios of control, W-MGC and P-MGC samples 

at 310A (stage 1). The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values. 

 

In order to understand how much output energy was supplied to the coil in order to 

utilise heat generation in the samples per second the following equation 5-1 was used; 

                            𝐸𝐸 = 𝑃𝑃𝑡𝑡                                                                    Equation  5-1 
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Where E is the energy transferred to the coil (kJ), P is the generated power (kW), and 

t is the time period (s). 

Figure 5.49 shows the average output energy transferred to the coil to heat W0 and 

W-MGC (Figure 5.49-a) and also P0 and P-MGC (Figure 5.49-b) samples. As the MGC 

content increased, the coil needed less energy input to heat the samples to above 

50°C in five minutes and similarly to maintain the temperature. 
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Figure 5.49 Estimated transferred energy to coil to generate and maintain the heat in a) 

W0 and W-MGC and b) P0 and P-MGC samples. The data represents the mean values. 
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Regarding the energy transferred to the coil (Qin), it is not known exactly how much 

energy was transferred from the coil to samples, as some energy dissipated from the 

coil to the environment via radiation (QR) and convection (Qc) and some of the coil 

energy was transferred to the sample, as shown in Figure 5.50. As previously 

discussed, the coil temperature has a small contribution to the increase of the sample 

temperature due to convection and radiation. 

 

Figure 5.50 Representative image of heat transfer from the coil to sample 

Regarding the assumptions above, it was necessary to understand how much heat 

was absorbed by the samples. Since the test was performed in air and the specific 

heat capacity of the W-MGC and P-MGC samples is unknown, the absorbed heat 

cannot be precisely calculated. The estimated heat absorption for the samples was 

calculated using the following equation; 

                               Q=mpcp(ΔT) + mgcg(ΔT)                            Equation 5-2  

Q= absorbed heat (kJ) 

mp= mass of PMMA in the sample (g) 

mg= mass of MGC in the sample (g) 

cp= specific heat capacity of PMMA (kJ/g°C) 

cg= specific heat capacity of MGC (kJ/g°C) 

ΔT= difference between final and initial temperature (Tf-Ti) (°C) 
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In this calculation, specific heat capacities of PMMA and MGC are assumed to be 1.5 

kJ/g°C and 0.9 kJ/g°C, respectively, based on EduPack 2018 software. The estimated 

heat absorptions in W-MGC and P-MGC and the control groups (W0 and P0) are 

shown in Figure 5.51. The calculations were done based on the average mass values 

and temperature changes of the samples, therefore, standard deviations could not be 

calculated. Whilst W40 and P40 could absorb approximately 60 kJ heat, W0 and P0 

absorbed approximately 12 kJ. Heat absorption in the cement was directly related with 

MGC content in cement samples. 
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Figure 5.51 The estimated absorbed heat by control (W0, P0), W-MGC and P-MGC. 

5.1.12 Summary of Results and Discussions 
In this section, effects of MGC addition from 10% to 40% in Palacos and Wintercryl 

cement samples in handling, mechanical, microstructure, heat generation, bioactivity, 

cytocompatibility and heat generation properties were demonstrated with an array of 

experimental studies.  

Time recordings of the cement preparations presented that increasing the MGC 

content in the cement delayed setting time with a longer waiting time. Due to the 

variations in setting temperature and time measurements, addition of MGC in the 

samples could not be compared. As reported previously, ISO5833:2002 could not be 

followed for setting time and temperature measurements because of limited Palacos 

cement kit and MGC. However, it was assumed that setting time also will be longer 

with the increase of MGC in PMMA cement based on a study performed by Kawashati 

et al [60].  
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A homogenous distribution of MGC particles embedded in the polymer matrix was 

observed using SEM imaging. EDS analysis showed a rise in Fe peak element in 

proportion to the increment of magnetic phase content in the cement samples. The 

microstructure analyses showed that PMMA beads were still visible on the surface of 

the cement. As previously reported (Section 4.4.2), this was due to partial 

polymerisation reaction between the powder and liquid components.  

Bending strength of both Palacos and Wintercryl cements decreased with the addition 

of MGC content, while bending modulus increased. All compositions but 40% MGC 

fulfilled the 50MPa and 1.8GPa criteria of standard ISO 5833:2002 for the bending 

strength and bending modulus respectively. The average bending strength of all 

magnetic cement samples (W-MGC and P-MGC) varied between 47.5 and 58 MPa 

and bending modulus of all samples varied between 2.7 and 3.8 GPa. All W-MGC and 

P-MGC samples met the minimum requirement of this standard for compressive 

strength, which was 70MPa. However, a notable decrease was observed with the 

increase to 40% MGC. The average compressive strength of W-MGC and P-MGC 

samples were between 72 and 86 MPa. As it was expected, hardness of the cement 

samples increased with the increase of MGC in the PMMA cements, which was in a 

range of 22.2 and 28 MPa.  

Porosities in PMMA cement had an adverse impact on the mechanical properties of 

the cement. However, porosity in bioactive PMMA cement could enhance their 

integration with soft and hard tissues [198-200]. In this study, it was found that addition 

of MGC from 10% to 40% increased water absorption of Wintercryl cement and a 

similar trend was observed in Palacos cement, with the exception of a decrease with 

20% MGC addition. The range of average water absorption (%) for magnetic samples 

was between 4.8-6.6%. It was speculated that this increase in porosity as well as the 

brittleness of MGC particles might have an influence on the decrease of compressive 

strength in 40% MGC containing cement samples.  

Due to the addition of MGC particles, PMMA cements became bioactive. The growth 

of apatite crystals on the cement samples was observed after 2 weeks of immersion in 

SBF solution.  
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Cytocompatibility tests showed that cell viabilities (%) of U2OS and OBS cell lines 

decreased over the time period. This trend was also true with increasing MGC content 

of cement samples. The average cell viability of U2OS cells on both Palacos and 

Wintercryl cement samples decreased approximately from 68% to 8%. This dramatic 

decrease in U2OS cells showed that these cells were not able to survive when PMMA 

cement was presented. The average cell viability of OBS cells were in a range of 98% 

and 55%. These decreases in cell viabilities were attributed to the increase of MMA 

ratio in proportion to MGC addition in the cement samples. MMA release may have 

been accelerated with the increase of porosity in the cement. Although PMMA cement 

was toxic, it did not have a catastrophic effect on the healthy cells. Although the 

decrease in U2OS cell viability was sharp, the decrease in OBS cell viability was more 

gradual. This was due to the toxicity of PMMA cement that U2OS cells could not 

survive in that environment However, the general decrease in cell viability was 

attributed to the decrease in initiator concentration in the magnetic cement samples 

due to the decrease in PMMA powder content, which may have led to increase in 

residual monomer in the cement samples. Moreover, silicone rubber mould had an 

influence on the surface of PMMA cement as previously reported (see Figure 4.20) 

and this may have caused low monomer conversion holding PMMA beads on the 

surface due to its hydrophobicity. Since the wettability of the surface decreased and 

contact angle increased the cell attachment may have been inhibited. It was reported 

that cells can attach on hydrophilic surfaces better than hydrophobic surfaces[193]. 

However, these results are found inconclusive and there was no pattern found in SEM 

and fluorescence images even though cell attachment was observed.  

All magnetic PMMA cement samples were raised to above 50°C in five minutes at 

constant frequency of 290 kHz. The applied induction current was reduced with the 

increase of MGC addition in cement samples and this showed that less power was 

needed to generate similar heating response. However, a more controlled environment 

was needed to provide more efficient test results and data interpretation. Despite this, 

the samples were effectively heated in a range of 55 and 60°C and maintained at 

similar temperatures (between 53 and 57°C) lowering the induction current for all 

samples.  
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Magnetic hyperthermia has attracted many attentions, however little work is done for 

magnetic PMMA bone cement. Bioactive and magnetic properties are key points to 

provide interfacial bonding to bone and kill remnant cells. Magnetic glass-ceramic, 

which were reported in the literature, were lack of bioactive properties. However, MGCs 

developed by Bretcanu et al [61] and Kokubo et al [93]., showed bioactive properties.  

In this study, magnetic glass-ceramics developed by Bretcanu et al [61]., were mixed 

with PMMA cements, Wintercryl and Palacos cements. All samples were prepared us-

ing silicone mould rather than PTFE mould. This mould provided consistent dimen-

sions and there was no need for dry sanding or polishing, which could have affected 

mechanical properties. Moreover, this mould was used to monitor temperature of ce-

ment during polymerisation. However, there were variations due to not fully filling the 

sacrificial ends.  

A study reported by Bruno et al. [163] showed that the addition of 20% (wt %) magnetic 

glass ceramic in PMMA cement did not meet the criteria of the standard, however, in 

this study, up to 30% MGC addition in Wintercryl and Palacos bone cements met ISO 

5833:2002 standard. In addition to that, magnetic induction test was conducted in air 

and the test samples were in non-contact position. It was analysed that applied current 

and frequency were stable and easily controlled. In the literature, it was reported that 

magnetic induction test was always performed in water and applied current could not 

be stabilised and showed variations [163].There is no work in the literature that per-

formed magnetic induction test in air for magnetic PMMA cement.  

The magnetic PMMA cement samples can be used to fill the void after excision of 

cancer tissues. The volume of bone defect that PMMA cement can be applied is usually 

in a range of 1 mm3 and 20 mm3 [12]. However, it was reported that the layer of PMMA 

cement coating should not be thicker than 5 mm due to high exothermic reaction 

temperature since it may cause bone necrosis [14]. The exothermic reaction 

temperature can be dissipated by circulating blood around the implant and the 

surrounding tissue. After the surgery, magnetic hyperthermia treatment will be applied 

periodically. In order to determine duration and number of sessions of magnetic 

hyperthermia application in vivo tests should be performed using cancerous cells. 

Overall, MGC containing samples, with the exception of 40% addition, showed 

promising results in terms of bone regeneration and hyperthermic cancer therapies.  In 

the next chapter, conclusions and future work will be presented.  
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6 Conclusions and Future Works 
6.1 Conclusions 
In the past few decades, PMMA cement has been widely used in medicine: 

orthopaedics, dental and vertebral applications have been the main areas where 

PMMA has been adopted due to its valuable mechanical properties. To expand its 

application and take advantage of its superior properties, it is important to gain a 

deeper understanding of the material and utilise innovative techniques for 

improvements. Moreover, little work has been done on magnetic glass ceramics 

containing PMMA cements regarding their characterisations. In this study, an array of 

experimental studies was performed to analyse the influence of magnetic glass-

ceramic addition to PMMA cements for bone cancer treatment.  

In this study, MGC glass-ceramics were added to commercial dental and orthopaedic 

PMMA cements in different amounts (10% to 40%) to investigate their mechanical 

properties, in vitro bioactivity, cytotoxicity and heat generation abilities. Plain PMMA 

cements were used as control: these samples were aged in open and closed air 

storage up to 180 days to examine their mechanical properties.  

According to the main results in this study, the following conclusions can be drawn; 

• Magnetic glass ceramics that belongs to the system Na2O-CaO-SiO2-P2O5 -

Fe2O3-FeO were produced at 1550°C by a traditional melting and quenching 

technique. XRD results showed that a magnetite crystalline phase was 

successfully produced during quenching. Magnetite crystals were observed on 

the surface of the magnetic glass ceramics using SEM. MGC was not only 

mixed in PMMA cement to give bioactive and magnetic properties but also to 

provide better mechanical properties. Magnetic PMMA cement was produced 

following standard ISO 5833:2002 for testing mechanical properties. Addition of 

glass-ceramics could increase bending modulus of PMMA cement to give a 

better match to bone according to rule of mixing. Moreover, due to its magnetic 

properties, magnetite phase plays an important role in heat generation during 

magnetic hyperthermia applications.  
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• Reliable and cost-effective fabrication method of silicone rubber mould were 

developed to produce PMMA bone cements with accurate dimensions for 

mechanical properties testing. This mould was found to be an alternative to 

the PTFE mould suggested by standards ASTM F451-16 and ISO 5833:2002. 

More than 100 of PMMA samples could be produced and used without any 

post-processing requirements such as sizing, sanding and polishing. However, 

setting time and temperature measurements through sacrificial ends were not 

successful due to not fully filling the sacrificial ends. It was acknowledged that 

the polymerisation started at the centre of the cement. However, the samples 

would be tested under four-point bending test and therefore, thermocouples 

could not be placed in the centre of the sample.  

• All aged samples met the minimum criteria of ISO 5833:2002 for bending 

strength (50 MPa), bending modulus (1.8 GPa) and compressive strength (70 

MPa). Bending strength and bending modulus of samples showed a non-

linear increase. This increase indicated that setting reaction of PMMA cement 

continued over the 180 days period. Compressive strength of all samples 

showed variations, but a notable increase was observed for Palacos® samples 

throughout ageing process. It was known that the addition of radiopacifier, 

zirconium oxide (ZrO2), might alter the mechanical properties of cements. 

However, in this study, while Palacos cement showed higher Vickers 

hardness, flexural and compressive strength compared to Wintercryl cement, 

there was no significant difference between Wintercryl and Palacos® cements, 

even if Wintercryl cement did not have addition of radiopacifier.  

 

• SEM images showed that plain PMMA cements had porous surfaces and 

some of the PMMA beads could be distinguished on the surface, which 

caused inhomogeneity in the structure.  

 

• Addition of MGC from 10% to 40% (wt%) reduced viscosity of cements and 

increased the waiting time of the cement. It should be noted that increase in 

MGC addition lowered the ratio between PMMA powder and liquid and this 

increased the waiting time of cement. Furthermore, ambient temperatures 

below 22-23°C also increased the waiting time.  

 



 

188 
 

• SEM images showed that MGC particles were well dispersed in the polymer 

matrix. As the amount of MGC particles increased from 10% to 40%, the peak 

of Fe in EDS spectra increased. 

 

• The cement samples with the addition of MGC from 10% to 30% met the 

minimum requirement of standard ISO 5833:2002 for bending modulus (1.8 

GPa). For magnetic cement samples, the average bending modulus values 

was between 2.7 and 3.8 GPa. Bending strength of the cement samples 

decreased with the addition of MGC from 10% to 40% in PMMA cement and 

P40 and W40 samples did not meet the requirement of this standard for 

bending strength (50 MPa). The average bending strength was between 47.5 

and 58.5 MPa. Although there was a sharp decrease in compressive strength 

of 40% MGC containing PMMA samples, all magnetic cement samples met 

the minimum requirement of standard ISO 5833:2002 (70 MPa). The average 

compressive strength was between 72 and 86.2 MPa. There was no 

significant difference between W-MGC and P-MGC cement samples.  

 

•  Vickers hardness of cement samples significantly increased with the increase 

of MGC addition in the cements. The average Vickers hardness of all 

magnetic cement samples varied between 22.2 and 28 MPa.  

 

• Water absorption in Wintercryl cement samples increased with the addition of 

MGC powder in the structure. MGC containing Palacos cement samples 

showed variations. The average water absorption (%) of magnetic cements 

was in a range of 4.8-6.6% 

 

• In vitro bioactivity characterisation demonstrated that formation of apatite 

crystals started after two weeks of immersion in SBF solution, providing the 

bioactivity properties of magnetic cements.  
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• Despite the inconclusive cytocompatibility tests, a decrease in cell viability 

was observed with the increase of MGC addition in cements. However, the 

reduction in U2OS cells were significantly higher than OBS cells. OBS cells 

could be distinguished from the background under SEM but U2OS cells could 

not be distinguished.  

• Preliminary induction heating tests in free air were performed in two stages 

for all samples. Induction current was reduced with the increase of MGC from 

10% to 40% in PMMA cement samples at a constant frequency, 290 kHz. In 

stage I, P-MGC and W-MGC samples were successfully heated within a range 

of 55-60°C. In stage II, induction current was reduced to maintain temperature 

in the cement samples for five minutes. The temperature recordings showed 

that the temperatures were successfully maintained 1-4°C below the 

maximum temperature that they were heated to in stage I. These results 

demonstrated that with the increase of MGC content in PMMA cement the 

required energy for heat generation and temperature maintenance decreased 

due to higher energy absorption.  

 

Overall, this study contributed to build an extensive knowledge of PMMA cements and 

its combination with MGC. According to the main findings in this study, up to 30% MGC 

addition showed promising results to be successfully used in bone cancer treatment 

via magnetic hyperthermia.  

6.2 Future Work 
This PhD research contributed to extend knowledge on the addition of MGC in 

commercial PMMA cements, which showed promising results to be used in bone 

cancer treatment. Moreover, a new mould design was suggested and this, could be a 

better alternative to PTFE moulds. Nevertheless, there are more characterisation 

techniques need to be performed to have a better understanding of PMMA cement and 

magnetic PMMA cement. The suggestions are listed below; 

• Determining setting time of magnetic Palacos cement: 

In this study, it was aimed to calculate setting time of magnetic cement. 

According to standard ISO 5833:2002, 25 grams of cement was needed, and 

this test should have been repeated 2 or 4 times for evaluation of setting time 

and temperature. This amount of Palacos cement and magnetic glass-ceramics 

were not available so this test was not performed. 
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• Assessment of ageing and storage conditions of plain and magnetic PMMA 

cement: 

Mechanical tests of ageing PMMA cement in dry conditions were carried out 

and it was seen that the mechanical properties showed changes over time. 

However, magnetic cements were not exposed to ageing conditions and they 

were always tested 24±2 hours after polymerisation. In order to determine the 

ageing behavior of magnetic cements, it is necessary to perform tests at the 

similar time-point. In addition to dry ageing, wet ageing test could take place in 

an aqueous solution which can replicate human body conditions such as PBS 

(phosphate buffer solution) or SBF (simulated body fluid). 

 

• In vitro induction heating test: 

Heat generation of magnetic PMMA cement was evaluated and it was observed 

that all samples can be heated to above 50°C in five minutes. The test should 

also be carried out for OBS and U2OS cells seeded on magnetic PMMA cement 

to observe if there is any behavioral difference between the cells. Also induction 

test can be carried out in a 37°C wet environment using an implanted magnetic 

bone cement in animal bone.  

 

• Observation of cell attachment on magnetic PMMA cement: 

Since the observation of cell attachments on magnetic PMMA cement was 

inconclusive in this study, cell staining can be more efficient using phalloidin, 

vinculin and paxillin.  

 

• Anticancer drug binding: 

The magnetic PMMA cements can be linked with anticancer drugs, such as 

cisplatinum or doxorubicin. X-ray photoelectron spectroscopy (XPS) can be 

performed to analyse the presence of anticancer drugs. The drug-release 

variation in aqueous solutions can be determined for different pH, temperature 

and time points.  
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Appendix A- Magnetic Glass Ceramics 
A.1 X-Ray Diffraction Analysis 

XRD patterns obtained from eight batches of MGC powder and the reference materials, 

are presented in Figure A.0.1. The detector was set to scan over a range of 2θ angles 

from 10° to 70°, at a step size of 0.05°, 1s per step.  

 

Figure A.1 XRD pattern of 8 batches of MGC, magnetite and hematite powders 

A.2 Differential Thermal Analysis 
DTA curves of 6 batches of MGC powder are presented in Figure A.0.2. 

 

Figure A.2 DTA curves obtained for 6 batches of MGC at 20 C/min 
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Appendix B- PMMA Cement  
B.1 Polymerisation reaction temperature during the setting 
process of Palacos cement 

 

Figure B.1 Temperature-time profiles of A, B and C of Palacos cement samples 

  

B.2 Humidity and temperature of four-point test environment   

Table B. 1  Humidity and temperature recordings of test environment during four-point 

bending test 

Samples (W0 and P0) Temperature (°C) Relative Humidity (rh%) 

Day 1, 2, 3 24.5±0.5 47.2 ±1.1  

Day 7, 14, 21 22.2±1.4 50.3±1.8 

Day 28, 60 and 180 25.0±1.3 45.6±3.7 
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Appendix C- Magnetic PMMA Cement 
C.1 Polymerisation reaction temperature during the setting 
process of W-MGC and P-MGC cement samples 

 

Figure C. 1 Temperature-time profiles of A, B and C of W10 cement samples 

 

Figure C. 2 Temperature-time profiles of A, B and C of W20 cement samples 

 

Figure C.3 Temperature-time profiles of A, B and C of W30 cement samples 
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Figure C..4 Temperature-time profiles of A, B and C of W40 cement samples P10 

 

 

Figure C.5 Temperature-time profiles of A, B and C of P10 cement samples 

 

Figure C.6 Temperature-time profiles of A, B and C of P20 cement samples 
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Figure C.7 Temperature-time profiles of A, B and C of P30 cement samples 

 
Figure C.8 Temperature-time profiles of A, B and C of P40 cement samples 

C.2 Humidity and temperature of four-point test environment   
 

Table C.1 Humidity and temperature recordings of test environment during four-point 

bending test 
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Appendix D- Cytocompatibility Test 
D.1 MTT Assay 

 

 

Figure D.1 Data range of cell viability (%) of U2OS cells seeded on W0 and W-MGC 

samples for 1, 3 and 7 days. The mean values of the samples are expressed with the 

X, and horizontal lines represent the median values. 
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D.2 Alamar Blue Asssay 

 

Figure D.2 Data range of U2OS cell viability on W0-1(control sample in plate-1), W0-2 

(control sample in plate 2) and W-MGC samples for 1, 3, 7, 10 and 14 days. The data 

includes outliers. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values. 

 

 

Figure D.3 The data range of U2OS cell viability on P0-1 (control sample in plate-1), P0-

2 (control sample in plate-2) and P-MGC samples for 1, 3, 7, 10 and 14 days. The data 

includes outliers. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values. 
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Figure D.4 The data range of OBS cell viability W0-1(control sample in plate-1), W0-2 

(control sample in plate 2) and W-MGC samples for 1, 3, 7, 10 and 14 days. The data 

includes outliers. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values.  

 

 

Figure D.5 The data range of OBS cell viability (%) on P0-1 (control sample in plate-1), 

P0-2 (control sample in plate-2) and P-MGC samples for 1, 3, 7, 10 and 14 days. The 

data includes outliers. The mean values of the samples are expressed with the X, and 

horizontal lines represent the median values.  
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