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Abstract 

Clostridioides difficile is a Gram-positive enteric human pathogen capable of colonising the 

gut, and causing C. difficile infection (CDI), which can be life threatening. With a shifting CDI 

demographic, increasing virulence and high re-infection rates, an increased understanding of 

basic C. difficile physiology is required to identify new intervention targets. 

As an anaerobic pathogen, C. difficile must be transmitted through the aerobic environment 

as specially adapted cells called endospores. The process of transitioning from vegetative 

cells, that are active in the gut, to the metabolically inactive endospores is known as 

sporulation and requires considerable remodelling of the mother cell. Firstly, the mother cell 

produces an asymmetric septum, designating a portion of its cytoplasm as the forespore, 

which will eventually become the mature endospore. The mother cell then engulfs the 

forespore to produce a cell-within-a-cell structure. The forespore matures before lysis of the 

mother cell releases the endospore into the environment. The sporulation process involves 

considerable changes in all cell components, including remodelling of the cell wall 

peptidoglycan. This work focuses on the remodelling of peptidoglycan throughout 

sporulation, with a particular focus on the engulfment mechanisms. 

C. difficile peptidoglycan was characterised at various stages of engulfment. Surprisingly, the 

muropeptides identified in vegetative cells were detected throughout early stages of 

engulfment. Importantly, the proportions of each muropeptide differ throughout the 

process, indicating varying organisation of the peptidoglycan even at this early stage of 

sporulation. 

In parallel, this work also aimed to identify and characterise peptidoglycan modifying 

enzymes involved in sporulation. SpoIID and SpoIIP are peptidoglycan hydrolases that have 

been implicated in Bacillus subtilis sporulation. These proteins were purified, characterised 

and their activities tested on various peptidoglycan types. SpoIIP is a bifunctional amidase 

and endopeptidase that produces the substrates for the lytic transglycosylase, SpoIID. SpoIID 

activity was shown to be impacted by zinc binding, and the catalytic residue was identified. 

C. difficile peptidoglycan is unusual in that it is predominantly deacetylated. In order to 

further probe peptidoglycan remodelling during sporulation, polysaccharide deacetylase 

genes in C. difficile were investigated. Ten putative genes were identified and 2 were cloned 

and recombinantly expressed. Both putative deacetylases were characterised and were 

shown to be active on acetylated peptidoglycan, implicating them in peptidoglycan 

remodelling. 

This work furthers current understanding of C. difficile peptidoglycan biology during 

sporulation, both in providing a detailed analysis of cell wall composition, and characterising 

key engulfasome enzymes. It further opens new research avenues by identifying potential 

peptidoglycan deacetylases in C. difficile. Together, this provides a deeper understanding of 

key mechanisms involved in the production of the infective agents in CDI that could be 

explored as novel therapeutic targets. 
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Chapter 1. Introduction 

1.1. Clostridioides difficile 

Clostridium difficile, recently renamed Clostridioides difficile (Lawson et al., 2016; Oren and 

Rupnik, 2018), is a Gram-positive, anaerobic and opportunistic human pathogen. When the 

normal gut flora is disturbed, C. difficile proliferates in the bowel leading to inflammation 

and toxin release, resulting in the clinical presentation of C. difficile infection (CDI). In 2018, 

more than ten thousand CDI cases were reported in England alone, with almost 5,700 

infections reported in the first 6 months of 2019 (Public Health England, 2019). 

CDI can range from mild to severe diarrhoea and pseudomembranous colitis, to the 

potentially fatal toxic mega colon (Sayedy, Kothari and Richards, 2010), with systemic 

complications such as multiple organ failure associated with the most severe cases (Di Bella 

et al., 2016). After an initial case of CDI, a patient is 15-30% more likely to have a second, 

recurrent infection (Tang-Feldman et al., 2003), either with the same or a different strain of 

C. difficile. Following resolution of this first recurrence, a second recurrence will occur in 40% 

of patients, with further recurrences reported in 45-65 % of patients (Song and Kim, 2019). 

The financial cost of an initial CDI is estimated at $5,200-8,600 and for recurrent CDI is 

estimated to be ~$14,000 per recurrence (Ghantoji et al., 2010). 

Typically, CDI is encountered in elderly patients, those treated with long-term broad-

spectrum antibiotics, those exposed to a healthcare setting, or the otherwise 

immunocompromised (Eze et al., 2017). Disruption of the normal gut flora, normally due to 

broad spectrum antibiotic treatment, results in an empty niche for C. difficile to proliferate 

into, and consequently cause CDI. The role of the normal microbiota is becoming 

increasingly implicated in CDI; in terms of preventing germination of spores, from a general 

protective stance, and in terms of providing colonisation resistance, thus preventing C. 

difficile expansion (Bibbò et al., 2014; Di Bella et al., 2016; Ducarmon et al., 2019; Leslie et 

al., 2019). The roles of the normal flora and colonisation resistance in CDI are extensively 

reviewed in Ducarmon et al (2019). 

Crucially, the demographic of CDI is shifting; younger and antibiotic naïve patients are 

presenting with CDI in the community (Garg et al., 2013; Bloomfield and Riley, 2016); 

approximately 30% of CDI cases are not associated with canonical risk factors (Smits et al., 

2016). Furthermore, links between CDI and proton pump inhibitor usage (Janarthanan et al., 

2012) and irritable bowel syndrome (Reddy and Brandt, 2013) have recently been uncovered 

suggesting a larger proportion of the population is at risk of CDI.  

The clinical symptoms of CDI have primarily been related to the activity of the toxins 

released by C. difficile, though toxin titre does not correlate with disease severity (Akerlund 

et al., 2006). Three different C. difficile toxins have been described; TcdA, TcdB and CDT, 

though not all strains of C. difficile will produce all toxins (Sun et al., 2010; Carman et al., 

2011; Eckert et al., 2015; Di Bella et al., 2016; Salazar et al., 2017). TcdA and TcdB are the 

most thoroughly understood, and thought to contribute significantly to the aetiology of CDI 

(Di Bella et al., 2016). TcdA/B inactivate Rho GTPases, a set of proteins integral to several 

host cell processes, with glucosylation of these Rho GTPases resulting in cytoskeletal 

breakdown, which in turn leads to loss of tight and adherent junctions between enterocytes 
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and increased epithelium permeability (Di Bella et al., 2016). Furthermore, the loss of cell 

contacts leads to apoptosis and necrosis of tissue, activating the inflammasome. These 

changes thus lead to loss of intestinal barrier function and neutrophilic colitis (Rupnik, 

Wilcox and Gerding, 2009; Di Bella et al., 2016). CDT similarly leads to loss of the actin 

cytoskeleton integrity in the host via actin ADP- ribosylation and may also be involved in C. 

difficile adherence; CDT is implicated in reorganisation of the host epithelial cell’s 

microtubule cytoskeleton, leading to the projection of long cell extensions which wrap 

around bacterial cells (Schwan et al., 2009, 2014).  

In addition to the cytotoxic effects of the toxins, the immune response to CDI is becoming 

more heavily implicated in the clinical presentation of disease, with the intensity of the host 

immune response correlating with disease severity (Ng et al., 2010; Cowardin et al., 2015). 

Treatments for CDI are relatively limited; only three antibiotics are currently recommended 

for use in the UK (vancomycin, metronidazole and fidaxomicin) (Public Health England, 

2013), with resistance to vancomycin and metronidazole increasing (Peng et al., 2017), and 

evidence of plasmid-mediated metronidazole resistance reported (Boekhoud et al., 2019). 

Use of these drugs also exacerbates gut dysbiosis which can further increase the severity of 

disease and lead to recurrent infections. It is noteworthy that the CDI-associated antibiotics 

clindamycin and ciprofloxacin have recently been implicated in CDI in a microbiome-

independent manner; administration of the antibiotics to cell culture resulted in reduced 

mucosal barrier function (Kester et al., 2019).Consequently, several new avenues of 

intervention are being investigated to reduce CDI prevalence. 

Faecal microbiota transplant (FMT), seeks to restore the gut flora of the patient and is 

reported to have a success in excess of 90% (Cammarota, Ianiro and Gasbarrini, 2014; Sbahi 

and Di Palma, 2016; Quraishi et al., 2017; Ianiro et al., 2018). This option is generally only 

used after several recurrent CDI episodes that do not respond to antibiotic regimens. 

Treatment with non-toxigenic C. difficile may also interrupt the infection-relapse cycle. In 

hamster models, treatment with spores of a non-toxigenic C. difficile strain protected the 

hamsters from subsequent CDI (Sambol et al., 2002). Consequently, the possibility of a 

similar intervention is currently under investigation in human subjects, with a clinical trial 

suggesting reduced recurrence in treated patients (Gerding et al., 2015). Several vaccines 

against C. difficile toxins have been produced and are under development (Bézay et al., 

2016; de Bruyn et al., 2016; Sheldon et al., 2016; Kitchin et al., 2019), though these typically 

neutralise TcdA and/or TcdB rather than prevent colonisation. Bezlotoxumab is a 

monoclonal antibody therapy which is licensed for the prevention of CDI recurrence in high 

risk patients (Deeks, 2017).  

As the demographic shift seen in CDI is combined with an aging population, increasing 

resistance and virulence, and the financial burden of CDI, new therapies and interventions 

are urgently required. To facilitate the discovery of new treatments and interventions more 

must be understood about the fundamental biology of C. difficile. 
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1.2. The life cycle of C. difficile 

As an anaerobic organism, C. difficile must undergo drastic changes to its fundamental 

biology to persist in the aerobic environment, consequently allowing transmission between 

hosts. To this end, C. difficile produces endospores, henceforth referred to as spores (Figure 

1-1). Indeed, C. difficile strains that cannot form spores are unable to persist or effectively 

transmit disease in a mouse model of infection (Deakin et al., 2012). These metabolically 

dormant spores are released into the aerobic environment, where they can persist for 

extended periods of time, until favourable conditions are encountered.  

During a CDI a patient will shed spores during, and after, the course of infection (Barra-

Carrasco and Paredes-Sabja, 2014). These spores persist in the immediate environment, 

resistant to most hospital disinfection procedures (reviewed in Barra-Carrasco & Paredes-

Sabja, 2014) and can also be transferred through the environment to multiple potential 

hosts (Barra-Carrasco and Paredes-Sabja, 2014). Spores are carried on the shoes of hospital 

workers (Janezic, Mlakar and Rupnik, 2018) and can survive disinfection of hospital gowns 

and surfaces (Dyer et al., 2019), for example.  

Once the spores encounter a favourable environment, for example if they are ingested by a 

susceptible individual, they germinate to produce vegetative cells. Spore germination is 

initiated upon the binding of germinants, such as bile salts and amino acids (Setlow, 2003; 

Setlow, Wang and Li, 2017), to, as yet not fully identified, germinant receptors on the spore 

(Kochan et al., 2018; Rohlfing et al., 2019). During this irreversible process, the spore 

rehydrates, the cortex is degraded, and a vegetative cell is eventually produced (Vincent and 

Manges, 2015). The primary bile salts cholate and chenodeoxycholate can be conjugated to 

taurine, to give taurocholate or taurochenodeoxycholate, or to glycine to produce 

glycocholate or glycochenodeoxycholate. These primary bile salts, found in the large 

intestine, can be metabolised by normal flora, producing the secondary bile salts 

deoxycholate and lithocholate respectively. Both chenodeoycholate and lithocholate 

prevent spore germination, with chenodeoycholate also preventing the vegetative growth of 

C. difficile. Taurocholate, cholate and deoxycholate promote spore germination (Sorg and 

Sonenshein, 2009, 2010; Vincent and Manges, 2015). When the normal flora is disturbed 

there is an increase in the ratio of cholate to chenodeoxycholate derivatives, leading to a 

relative increase in the pro-germination bile salts, thus promoting C. difficile outgrowth (Sorg 

and Sonenshein, 2009, 2010; Vincent and Manges, 2015). The resident microbiota of the 

host may have a further role to play; for example, sialic acid release from host glycans by 

Bacteroides thetaiotaomicron, a resident microbiota model organism, has been implicated in 

facilitating the expansion of C. difficile in the gut (Ng et al., 2013). Synthesis of secondary bile 

acids by Clostridium scindens (Kang et al., 2008) has also been implicated in increased 

resistance to C. difficile; when C. scindens was introduced to a murine CDI model disease was 

ameloiorated (Buffie et al., 2015). 

Upon germination, vegetative cells proliferate and release toxins, form biofilms, or go on to 

produce more spores (Figure 1-1). It has been suggested that sporulating cells continue to 

produce toxins; Ransom et al. (2018) reported red fluorescence from tcdA-rfp (red 

fluorescent protein) fusion in cells that had formed phase bright, and in some cases mature, 

spores, though the authors acknowledge this could be residual fluorescence, where a cell 
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has produced toxin and then a spore (Ransom et al., 2018). It is assumed some of the spores 

produced may remain in the host, increasing the likelihood of reinfection and persistence. 

 

Figure 1-1: Infection cycle of C. difficile  

C. difficile spores (purple circles) exist in the environment and are ingested (1). (2) In a susceptible individual, 

the spores then germinate, producing vegetative cells (blue rectangles) that are capable of replicating in the 

bowel, producing toxin, biofilms or spores. Vegetative cells release toxins (green stars) that significantly 

contribute to the symptoms of CDI. A subset of cells will undergo sporulation (blue and purple cells). The 

spores are then released into the environment (3), where they may go on to colonise/ infect other individuals 

(4), persist on hospital equipment such as beds (5), or re-infect the same host.   
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 Spores as the transmissible agent 

Spores consist of several layers (Figure 1-2) that protect the metabolically inactive core 

where genetic information is stored.  

 

Figure 1-2: Spore architecture  

C. difficile produces spores as the transmissible agent of CDI. Each layer is discussed below. Image adapted 

from Paredes-Sabja et al., 2014. 

The spore core contains the genetic material transferred from the mother cell. The DNA is 

protected by small acid-soluble proteins, calcium-chelated dipicolonic acid and a reduced 

water content (Setlow, 2007).  

Surrounding the spore core is an inner membrane, impenetrable to small molecules, 

including water (Paredes-Sabja, Shen and Sorg, 2014). A thick layer of highly modified 

peptidoglycan surrounds the germ cell wall and is discussed in detail in section 1.5.3. The 

germ cell wall is a layer of peptidoglycan derived from the mother cell, distinct from the 

cortex peptidoglycan. Whilst the germ cell wall peptidoglycan will become part of the cell 

wall of the germinating cell, the cortex peptidoglycan is specifically digested by cortex lytic 

enzymes during germination (Paredes-Sabja, Shen and Sorg, 2014).  

The spore coat is a proteinaceous layer that is related to resistance to several disinfection 

methods including chemical and heat inactivation and irradiation (Setlow, 2006). Much of 

our understanding of coat proteins comes from B. subtilis (Eichenberger, Fawcett and Losick, 

2002; Ramamurthi, Clapham and Losick, 2006; Wang et al., 2009; Pereira et al., 2018), and 

whilst many coat proteins are conserved, C. difficile has some notable deviations from the 

model organism. For example, SpoIVA is required for both B. subtilis and C. difficile spore 

formation, whereas SpoVM, which is largely dispensable in C. difficile, is essential in B. 

subtilis (Putnam et al., 2013; Ribis et al., 2017). Furthermore, SpoIVD, which recruits various 

proteins to the B. subtilis basement layer and is crucial to enabling SpoIVA to encase the 

maturing spore, is key to B. subtilis spore formation, but there is no obvious homologue in C. 

difficile (Wang et al., 2009; Putnam et al., 2013). Furthermore, the coat is increasingly being 

implicated in roles beyond resistance to external stresses. The coat protein CotE is 

implicated in binding to mucin, which in turn is related to increased colonisation and more 

severe symptoms in a mouse model of disease. This suggests CotE, and the coat in general, 

may have a more direct role in pathogenesis (Hong et al., 2017). 
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The outermost layer, the exosporium, is a proteinaceous layer but its role is not thoroughly 

understood (Barra-Carrasco and Paredes-Sabja, 2014). Some studies suggest that it might be 

involved in spore adherence (Mora-Uribe et al., 2016) and bacterial fitness and persistence 

(Calderón-Romero et al., 2018). 

Together, these adaptations protect the DNA from multiple stressors, making spores 

incredibly resilient. For example, it is thought that spores have the capability to survive the 

harsh environment of space and may even be able to survive re-entry into the atmosphere, 

thus leading to the hypothesis that life on earth could have originated from spores 

(Nicholson et al., 2000; Horneck et al., 2012). 
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1.3. Sporulation 

The process of forming spores, known as sporulation, is schematised in Figure 1-3. After 

duplicating the chromosome, the vegetative cell forms an asymmetric septum, thus 

designating the smaller portion of the cytoplasm as the forespore, and the larger section of 

the cytoplasm as the mother cell. In B. subtilis, a portion of the copied chromosome is 

trapped in the forespore compartment, before being pumped into the forespore by SpoIIIE 

as soon as septation is completed (Lopez-Garrido et al., 2018). After a copy of the 

chromosome is transferred, the mother cell surrounds the forespore to form a cell-within-a-

cell structure in a process known as engulfment (Figure 1-3). The forespore is then matured 

by the formation of the different spore layers, before the mother cell lyses, releasing the 

mature spore into the environment. The spore then persists until favourable conditions are 

encountered, upon which the spore germinates into a vegetative cell, ready to produce 

toxins, biofilms or spores once again.  

 

 

Figure 1-3: Sporulation cycle of C. difficile.  

A proportion of the vegetative C. difficile cells in the bowel undergoes sporulation. Firstly, an asymmetric 

septum is formed (1) which then curves (2). The mother cell then engulfs the smaller compartment until a cell 

within-a-cell structure is formed (3). The forespore is matured, then the mother cell lyses releasing the mature 

spore into the environment (4). The spore persists until favourable conditions are encountered, at which point 

the spore germinates (5), forming a new vegetative cell, ready to begin the cycle once again.   
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 Regulation of sporulation 

Sporulation has been most extensively studied in B. subtilis, though more studies are being 

conducted in C. difficile as fundamental differences between the two bacteria are 

uncovered. The control of sporulation is one area with clear differences; whilst B. subtilis and 

C. difficile share many components of the sporulation machinery, they are often employed 

differently, as demonstrated in Figure 1-4. 

 

 

Figure 1-4: Regulation of sporulation  

B. subtilis and C. difficile share many of the components of the control of sporulation pathways, although they 

interact differently and have different roles. Spo0A is the master regulator in both organisms. Key differences 

include; σE is not required for σG activation and σG is not required for σK activation in C. difficile as it is in B. 

subtilis (Zhu, Sorg and Sun, 2018). Dashed arrow relates to the dispensable regulation of σE by σF in C. difficile. 

Direction of the arrow indicates direction of regulation.  

The master regulator of sporulation, in both B. subtilis and C. difficile, is the DNA binding 

protein Spo0A (Molle et al., 2003; Deakin et al., 2012; Rosenbusch et al., 2012) (Figure 1-4). 

Disruption of spo0A in C. difficile leads to an inability to produce spores and an inability to 

persist or transfer between individuals in mouse models (Deakin et al., 2012). Spo0A is also 

implicated in toxin production and regulation (Deakin et al., 2012; Mackin et al., 2013) and 

biofilm production (Dapa et al., 2013). Indeed, in ribotype 027 strains, Spo0A may negatively 

regulate toxin production, as deletion of the gene leads to increased TcdA and TcdB levels in 

a mouse model of infection (Deakin et al., 2012). The regulation of toxin production by 

Spo0A may be strain specific however, with conflicting results on the toxin production of 630 

Δerm Δspo0A strains (Underwood et al., 2009; Deakin et al., 2012; Rosenbusch et al., 2012).  



9 
 

In B. subtilis, Spo0A binding in the mother cell results in the activation of the RNA 

transcription factor σF in the forespore, which in turn results in σE activity in the mother cell 

(Hoch, 1993). This σE activity causes σG activation in late sporulation, which ultimately results 

in σK activity in the mother cell (Fimlaid and Shen, 2015).  

In contrast, there is much less intercompartmental communication between the sigma 

factors in C. difficile (Figure 1-4). In the mother cell, Spo0A activity leads to σE activation, 

which in turn leads to σK activation during late sporulation, potentially mediated via SpoIIID 

(Saujet et al., 2014). In the forespore compartment, Spo0A activation leads to σF activation, 

which in turn leads to σG activation (Saujet et al., 2014). σF in the forespore contributes to σE 

activation in the mother cell, but this interaction is dispensable in C. difficile (Fimlaid and 

Shen, 2015). There may also be some degree of auto-activation of σG (Fimlaid and Shen, 

2015).  

The activity of these specific sigma factors at specific times allows the coordinated and 

controlled transcription and translation of various proteins thought to be involved in 

sporulation. 
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1.4. Peptidoglycan  

Peptidoglycan is a macromolecule found encompassing the cell membrane of almost all 

bacteria, and is key in maintaining cell shape and viability (Vollmer, Blanot and de Pedro, 

2008).  

In order to analyse the composition of the peptidoglycan of a given species, the 

peptidoglycan is first digested into its building blocks, muropeptides, by a muramidase. 

Muropeptides are then separated by reverse phase high pressure liquid chromatography 

(HPLC) (Glauner, 1988) before identification by mass spectrometry (MS). Recent methods 

such as nuclear magnetic resonance (NMR) studies (Meroueh et al., 2006; Kim, Chang and 

Singh, 2015), ultra high pressure liquid chromatography (UPLC) (Kühner et al., 2014) and 

direct injection of the HPLC eluate directly into a MS (Bui et al., 2009), have allowed for the 

peptidoglycan components of various species to be characterised, including, but not limited, 

to: E. coli, B. subtilis, Enterococcus gallinarum, Borrelia burgdorferi, C. difficile, 

Campylobacter jejuni , Streptomyces coelicolor, Neisseria gonorrhoeae, Staphylococcus 

aureus and Caulobacter cresentus) (Ghuysen and Strominger, 1963; Schleifer and Kandler, 

1972; Blundell and Perkins, 1981; Glauner, Höltje and Schwarz, 1988; Atrih et al., 1999; 

Grohs et al., 2000; Bui et al., 2009; Peltier et al., 2011; van der Aart et al., 2018; Billini et al., 

2019; Frirdich et al., 2019; Jutras et al., 2019). 

 Peptidoglycan composition 

Peptidoglycan is typically formed by strands of alternating N-acetylglucosamine (GlcNAc) and 

N-acetylmuramic acid (MurNAc) residues linked by β-1,4 glycosidic bonds. These glycan 

strands are then connected by short peptides, typically alanine-glutamine-

mesodiaminopimelate (mesoDAP)-alanine bound to the MurNAc residues (Vollmer et al., 

2008; Isidro et al., 2017; Peltier et al., 2013). In E. coli, the majority of peptides are joined 

between amino acids at the third and fourth positions on the peptide stems (Glauner, 1988; 

Glauner, Höltje and Schwarz, 1988) as schematised in Figure 1-5. The termini of glycan 

strands often contain a 1,6-anhydro-MurNAc residue (Vollmer, 2008; Vollmer et al., 2008)  

 

 

Figure 1-5: Peptidoglycan composition.  

E. coli peptidoglycan is formed of GlcNAc- MurNAc polymers, crosslinked by peptide stems, typically 

tetrapeptides crosslinked between amino acids at the third and fourth positions. The end of a glycan strand is 

modified slightly, to contain a 1, 6-anhydro-muramic acid residue. 

Whilst the “general” composition of peptidoglycan is detailed above, modifications in the 

glycan strands, peptide stems and crosslinks are widespread (Schleifer and Kandler, 1972; 

Vollmer, 2008; Vollmer, Blanot and de Pedro, 2008). For example, the glycan strand can be 
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modified by O- acetylation (Blundell and Perkins, 1981), N- deacetylation (Peltier et al., 2011; 

Moynihan, Sychantha and Clarke, 2014) or N-glycolation of the MurNAc residue (Raymond et 

al., 2005). The terminal amino acid of a peptide stem is also known to be variable; E. coli, for 

example, has been shown to be able to incorporate any of the provided amino acids as long 

as the amine group was found in a D-stereocentre (Lupoli et al., 2011). Amidation of the 

second and third position amino acid is not uncommon (Vollmer, Blanot and de Pedro, 2008; 

Figueiredo et al., 2012); amidation of the third amino acid may aid in evasion of the host 

immune system (Vijayrajratnam et al., 2016). Crosslinkages are not exclusively directly 

between peptide stems; Staphylococcus aureus peptidoglycan requires pentaglycine bridges 

between peptide stems to withstand the internal turgor pressure (Monteiro et al., 2019). 

 Peptidoglycan synthesis 

Peptidoglycan synthesis can be considered in three phases: the cytoplasmic (reviewed in 

Barreteau et al., 2008), the membrane-associated (Bouhss et al., 2008) and the crosslinking 

stages (Vollmer, Blanot and de Pedro, 2008) (Figure 1-6). 

Firstly, fructose-6-phosphate is metabolised to uridine diphosphate GlcNAc (UDP-GlcNAc), 

which is then used to produce uridine diphosphate MurNAc (UDP-MurNAc) (Barreteau et al., 

2008). Formation of UDP-MurNAc is the first committed step in peptidoglycan synthesis and 

requires two enzymes; MurA and MurB (Marquardt et al., 1992; Benson et al., 1993; Tayeh 

et al., 1995). The peptide stem is then built upon UDP-MurNAc to produce UDP-MurNAc-

pentapeptide. Typically, L-Ala, D-Glu and mesoDAP are added by MurC (Liger et al., 1995), 

MurD (Pratviel-Sosa et al., 1994) and MurE (Abo-Ghalia et al., 1985), respectively, with the 

dipeptide D-Ala-D-Ala added by MurF (Duncan, Van Heijenoort and Walsh, 1990; Yan et al., 

2000).  

MraY then transfers the phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl 

phosphate, producing lipid I (Boyle and Donachie, 1998; Manat et al., 2014). UDP-GlcNAc is 

then transferred to lipid I by MurG to produce lipid II (Ha et al., 2000). Lipid II is flipped 

across the membrane by MurJ and/ or FtsW (Mohammadi et al., 2011; Sham et al., 2014; 

Kumar et al., 2019), which is then transported to the peptidoglycan layer of the bacterium, 

before crosslinking by glycosyltransferases and transpeptidases occurs. 
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Figure 1-6: Schematic summary of peptidoglycan synthesis  

Peptidoglycan synthesis begins in the cytoplasm with the synthesis of UDP-GlcNAc from fructose-6-phosphate. 

This is used by MurA and MurC to synthesise UDP-MurNAc. The pentapeptide stem is added to UDP-MurNAc 

by MurC, MurD, MurE and MurF. MraY catalyses the reaction of the UDP-MurNAc pentapeptide and 

undecaprenyl phosphate to form lipid I. MurG then adds GlcNAc, forming lipid II, which is then flipped across 

the membrane and into the periplasm by MurJ. Glycosyltransferases then form longer glycan strands which are 

crosslinked by transpeptidases and incorporated into the peptidoglycan sacculus.  
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1.5. C. difficile vegetative cell peptidoglycan 

There has been little investigation into peptidoglycan synthesis in C. difficile, however 

homologues of several peptidoglycan synthesis enzymes have been identified in the genome 

(Isidro et al., 2017).  

Whilst the peptidoglycan composition of C. difficile resembles that of E. coli, there are some 

key differences, summarised in Figure 1-7. 

 

 

Figure 1-7: Schematic comparison of E. coli and C. difficile peptidoglycan composition  

E. coli peptidoglycan glycan strands predominantly contain GlcNAc (purple), whilst C. difficile is deacetylated 

and contains GlcN (pink). Crosslinks in E. coli are typically 4-3 between two tetrapeptides, whereas the most 

common dimer in C. difficile peptidoglycan contains a 3-3 crosslink between a tetra- and tripeptide.  

 The glycan backbone of C. difficile peptidoglycan 

The sugar backbone of C. difficile is modified; 93% of GlcNAc residues are deacetylated to 

glucosamine (GlcN) (Peltier et al., 2011). This deacetylation has previously been described in 

B. subtilis though to a much lesser extent, where ~17% of GlcNAc residues are deacetylated 

(Atrih et al., 1999).  

Peptidoglycan deacetylation is associated with increased resistance to lysozyme (Amano et 

al., 1977) and increased virulence; when pgdA was deleted in Streptococcus pneumoniae, 

cells were more sensitive to lysozyme and mice were less susceptible to disease (Vollmer 

and Tomasz, 2000). Furthermore, in Listeria monocytogenes peptidoglycan deacetylation is 

key to evasion of the host immune system (Boneca et al., 2007). Deletion of a key 

deacetylase gene, pgdA, results in reduced infectivity in mouse models of S. pneumoniae 

infection (Blair et al., 2005) for example. 

Deacetylation can have physiological functions, with the Bacillus anthracis deacetylases 

BA1961 and BA3679 implicated in vegetative cell elongation and division (Balomenou et al., 

2013). BA0330 and BA0331 are putative polysaccharide deacetylases implicated in the 
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adaptation of B. anthracis to high salt concentrations and maintenance of cell shape, 

respectively, though they do not alter the peptidoglycan structure per se, but may stabilise 

the cell wall (Arnaouteli et al., 2015).  

In C. difficile, σV is critical to lysozyme resistance, increasing deacetylation of peptidoglycan. 

Removal of the σV gene results in an attenuated virulence strain that is less able to cause CDI 

in a hamster model of infection (Ho et al., 2014), highlighting the key role of lysozyme 

resistance, and therefore peptidoglycan deacetylation, in CDI. 

Consequently, deacetylases are attractive targets in novel therapeutic development.  

1.5.1.1. Peptidoglycan deacetylases  

Peptidoglycan deacetylases belong to the carbohydrate esterase 4 family of enzymes 

(http://www.cazy.org) (Lombard et al., 2014) which also includes chitin and 

chitooligosaccharide deacetylases and acetylxylan esterases. Members typically adopt a 

distorted (α/β)8 barrel fold, use divalent metal ions in catalysis and all contain a NodB 

homology domain (Pfam domain PF01522), within which the catalytic motif is found 

(Caufrier et al., 2003; Nakamura, Nascimento and Polikarpov, 2017). 

Part of the NodB homology domain is the well conserved Asp-His-His triad, which is typically 

used to coordinate a metal ion, in conjunction with a water molecule (Nakamura, 

Nascimento and Polikarpov, 2017; Aragunde, Biarnés and Planas, 2018). This metal ion is 

often zinc (Andrés et al., 2014), but cadmium, cobalt, iron and magnesium binding have all 

been described, with differing effects depending on the enzyme in question (Martinou, 

Koutsioulis and Bouriotis, 2002; Blair and van Aalten, 2004; Taylor et al., 2006; Chibba et al., 

2012). Cobalt binding, for example, is associated with a ~30-fold increase in S. pneumoniae 

PdgA (SpPdgA) activity (Blair et al., 2005). Removal of the metal ion in SpPgdA abolishes 

deacetylase activity (Blair et al., 2005), treatment with 10µM EDTA is sufficient to reduce 

Streptococcus mutans PdgA activity by 97% (Deng et al., 2009), and treatment with EDTA 

prevents the activity of Vibrio cholerae chitin deacetylase (Andrés et al., 2014), 

demonstrating the conservation of metal binding and its key role in activity. 

Characterised peptidoglycan deacetylases identified to date deacetylate GlcNAc to GlcN, 

with the notable exception of PdaA in B. subtilis, which is implicated in MurNAc 

deacetylation to muramic-δ-lactam during spore formation (Blair and van Aalten, 2004; Blair 

et al., 2005). 

 The peptide stems and crosslinks of C. difficile 

Analysis of the peptidoglycan of C. difficile vegetative cells has revealed ~70% of crosslinks 

between peptides are between 2 amino acids at the third positions (Peltier et al., 2011). This 

difference in crosslinkage highlights a difference in the synthesis pathways of C. difficile and 

E. coli peptidoglycan. The 4-3 crosslinks typically seen in E. coli peptidoglycan are formed by 

the D, D-transpeptidase activity of penicillin binding proteins (PBPs) (Waxman and 

Strominger, 1983; Pratt, 2008; Zapun, Contreras-Martel and Vernet, 2008). In contrast, the 

3-3 crosslinks that predominate in C. difficile peptidoglycan are typically formed by L,D-

transpeptidases (Sütterlin et al., 2017).  

Both alanine and glycine have been described as the terminal amino acid in C. difficile 

peptide stems (Peltier et al., 2011). The physiological relevance of the terminal amino acids 

http://www.cazy.org/
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is unknown in C. difficile, although, in Vibrio cholerae, incorporation of non-canonical amino 

acids has been implicated in determination of peptidoglycan mass, strength and the ability 

of the cells to resist osmotic stress (Cava et al., 2011). 

 C. difficile spore cortex peptidoglycan  

The spore cortex peptidoglycan of C. difficile is significantly different to that of the 

vegetative cell as demonstrated in Figure 1-8 and in preliminary work (Kelly, 2016). 

 

 

Figure 1-8: C. difficile vegetative cell versus spore peptidoglycan.  

Vegetative cell peptidoglycan contains many more crosslinks than spore peptidoglycan. Muramic-δ-lactam 

residues have only ever been described in spore cortex peptidoglycan, and crosslinks between peptides are 

significantly reduced.  

GlcNAc deacetylation in spore cortex peptidoglycan is reduced to 54.7%, from the ~93% 

seen in vegetative cells (Peltier et al., 2011; Coullon et al., 2018). Although the mechanisms 

that lead to this reduction are unclear, one possibility could be due to reduced 

peptidoglycan deacetylase activity during sporulation, possibly during engulfment. 

Monomers (disaccharides with peptide stems) are more prevalent in the spore 

peptidoglycan, accounting for up to 90% of all muropeptides detected, and dimers (two 

disachaarides joined by two crosslinked peptide stems) are reduced to about 10% of all 

detected muropeptides from ~56% in the vegetative cell (Peltier et al., 2011; Coullon et al., 

2018).  

Furthermore, 24% of all muropeptides contain a modified MurNAc residue: the peptide stem 

is removed from MurNAc, prior to MurNAc deacetylation and lactam ring formation to 

produce muramic-δ-lactam (MAL) (Gilmore et al., 2004; Coullon et al., 2018). MAL residues 

are unable to carry peptide stems, and consequently the crosslinking index of spore 
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peptidoglycan is significantly reduced to 4.9% (Coullon et al., 2018). Similarly modified spore 

cortex peptidoglycan has been described in B. subtilis spores where crosslinking was reduced 

to ~3% of MurNAc residues, with ~50% of the MurNAc residues modified to MAL residues 

(Warth and Strominger, 1972; Atrih et al., 1996).  

It is thought that this highly modified spore peptidoglycan contributes to the hardiness of 

the spore, for example by maintaining spore core dehydration (Atrih et al., 1996). 

 Peptidoglycan remodelling during engulfment 

Engulfment refers to the surrounding of the smaller compartment by the larger, which is 

referred to as the mother cell. Again, most of our current understanding comes from work 

completed in the model Gram-positive model organism B. subtilis.   

During engulfment, the asymmetric septum curves and the mother cell membrane moves 

around the forespore, until the advancing membrane meets and fuses, producing the cell-

within-a-cell forespore structure. 

For the mother cell membrane to advance, the steric hindrance of peptidoglycan must be 

removed without compromising cell integrity. Based largely on studies in B. subtilis, it has 

been shown that both peptidoglycan digestion and synthesis are required at the leading 

edge to allow engulfment. 

Peptidoglycan synthesis has been localised to the advancing membrane using fluorescent 

microscopy (Meyer et al., 2010). Blocking peptidoglycan synthesis with cephalexin, a PBP 

inhibitor, or fosfomycin, which blocks the initial step in peptidoglycan synthesis, prevents 

engulfment of the smaller compartment (Meyer et al., 2010; Ojkic et al., 2016), suggesting 

peptidoglycan synthesis is required for engulfment. Indeed, several peptidoglycan synthesis-

related enzymes were specifically localised in the forespore and seen to track the leading 

edges of the advancing membrane during engulfment (Ojkic et al., 2016). Furthermore, 

inhibition of the C. difficile sporulation-specific PBP SpoVD by cefotoxin prevents spore 

formation (Srikhanta et al., 2019), demonstrating the requirement of continued 

peptidoglycan synthesis in spore formation. 

Microscopy work in B. subtilis has demonstrated that peptidoglycan is digested uniformly 

across the septum, but that the septal peptidoglycan is never completely digested (Tocheva 

et al., 2013; Ojkic et al., 2016; Khanna et al., 2019), contrary to previous “septal thinning 

hypotheses” (Chastanet and Losick, 2007). 

The most recent model of engulfment, proposed whilst this work was ongoing, is that 

initially proposed by Ojkic et al., (2016), and recently strengthened based on observations in 

B. subtilis (Khanna et al., 2019). Ojkic et al. (2016) proposed a model, termed the make-

before-break model, in which new peptidoglycan is first inserted ahead of the advancing 

membrane by a forespore associated synthesis machinery. This new peptidoglycan is then 

targeted for digestion by peptidoglycan hydrolases, which results in peptidoglycan removal, 

allowing the mother cell membrane to move into this newly available space through 

entropic forces as illustrated in Figure 1-9.  



17 
 

 

Figure 1-9: Make-before-break model of engulfment.  

Glycan strands run parallel to the long axis of the cell. Blue circles denote old mother cell peptidoglycan, and 

green newly inserted peptidoglycan. Red lines are peptide bonds linking peptidoglycan types. New 

peptidoglycan is first inserted ahead of the leading edge, before the bond between the old and new 

peptidoglycan is digested by the DMP complex (black cross). This process is repeated, creating space for the 

mother cell membrane move into the newly created space (black arrow) (Ojkic et al., 2016). 
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1.6. The DMP machinery 

The DMP machinery consists of SpoIID, SpoIIM and SpoIIP and was first identified in B. 

subtilis, but has recently been described in C. difficile and other spore-formers (Morlot et al., 

2010; Kelly and Salgado, 2019). In B. subtilis SpoIIP is an amidase and transpeptidase, 

capable of removing the peptide stems from E. coli peptidoglycan, leaving “denuded” glycan 

strands that are the substrate for the lytic transglycosylase activity of SpoIID (Chastanet and 

Losick, 2007; Morlot et al., 2010). SpoIID activity first requires naked glycan strands, and 

produces glycans with a terminal 1,6- anhydro-MurNAc residue (Morlot et al., 2010) as 

shown in Figure 1-10. 

 

Figure 1-10: Peptidoglycan digestion by the DMP machinery.  

Intact E. coli peptidoglycan can be digested by the amidase activity of SpoIIP producing naked glycans and 

peptide stems. Crosslinked peptides can be further digested by SpoIIP’s endopeptidase activity to produce free 

tetrapeptides. The denuded glycans are further digested by SpoIID to produce disaccharides where 1,6-

anhydro-MurNAc is found at the terminus.  

 SpoIIM 

In B. subtilis, SpoIIM is thought to be the first protein of the DMP complex to localise to the 

asymmetric septum during engulfment and is under the control of the early sigma factor σE 
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(Smith, Bayer and Youngman, 1993; Chastanet and Losick, 2007). SpoIIM is unique in the 

DMP complex in that it is not predicted to have any enzymatic activity, it is thought to act as 

a scaffold for SpoIIP and SpoIID to localise to the membrane, first recruiting SpoIIP then 

SpoIID to the asymmetric septum (Aung et al., 2007; Chastanet and Losick, 2007). When 

spoIIM is deleted, both SpoIIP and SpoIID localisation is disrupted (Chastanet and Losick, 

2007). 

Deletion of spoIIM prevents B. subtilis from forming spores; presumably because SpoIIM 

gene products are required for the downstream production of σG-associated gene products 

(Smith, Bayer and Youngman, 1993), and its role in recruiting SpoIIP and SpoIID to the 

advancing membrane (Chastanet and Losick, 2007).  

 SpoIIP  

Transcription of spoIIP is controlled by σE in B. subtilis (Piggot and Hilbert, 2004), and the 

protein localises to the midpoint of the mother cell membrane, before tracking the leading 

edges of the advancing membrane, as demonstrated by microscopy of green fluorescent 

protein (GFP) fusion proteins (Abanes-De Mello et al., 2002; Chastanet and Losick, 2007).  

Peptidoglycan digestion assays have demonstrated that B. subtilis SpoIIP is an amidase and 

an endopeptidase; cleaving the peptide stems from the glycan chains, and peptide stems 

from each other respectively (Aung et al., 2007; Morlot et al., 2010). Similarities between B. 

subtilis SpoIIP and CwlV lead to the identification of H189 and H278 as amidase catalytic 

residues, as mutation of these residues to arginine abolished SpoIIP activity (Chastanet and 

Losick, 2007).  

Deletion of spoIIP in B. subtilis results in the formation of membrane bulges, thought to be 

the consequence of the uncoupling of peptidoglycan synthesis and degradation (Meyer et 

al., 2010). Additionally, SpoIIP depleted cells are unable to complete engulfment to produce 

heat resistant spores (Eichenberger, Fawcett and Losick, 2002). 

This inability of ΔspoIIP cells to produce heat resistant spores is not surprising given the 

enzymatic activity of SpoIIP, and the requirement of SpoIIP products for SpoIID activity. 

 SpoIID 

SpoIID is under transcriptional control of the mother cell-produced σE. Like with SpoIIP, GFP-

fusions in B. subtilis have demonstrated SpoIID initially localises to the septal midpoint then 

tracks the advancing edge, though some diffuse mother cell membrane localisation is 

observed (Chastanet and Losick, 2007). In B. subtilis ΔspoIIP strains, SpoIID localisation is 

lost, demonstrating the dependency of SpoIID on SpoIIP for localisation to the advancing 

mother cell membrane (Aung et al., 2007; Chastanet and Losick, 2007; Gutierrez, Smith and 

Pogliano, 2010). Deletion of spoIID results in the inability to form spores, with membrane 

bulges observed in B. subtilis (Gutierrez, Smith and Pogliano, 2010).  

SpoIID itself has enzymatic activity as a lytic transglycosylase (CAZy family GH23); digestion 

of the glycosidic bond between GlcNAc and MurNAc results in the production of 1,6-

anhydro-MurNAc containing muropeptides (Abanes-De Mello et al., 2002; Scheurwater, Reid 

and Clarke, 2008; Gutierrez, Smith and Pogliano, 2010; Morlot et al., 2010; Pfeffer et al., 

2012). This reaction mechainism is distinct from that ustilised by lysozymes for example, 
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where the glyosidic bond is hydrolysed and does not result in the formation of 1,6-anhydro-

MurNAc residues (Figure 1-11). 

 

Figure 1-11: Lytic transglycosylases produce 1, 6-anhydro-MurNAc residues 

The glycosidic bond between two sugar residues in peptidoglycan is digested by lytic transglycosylases 

producing products containing 1,6-anhydro-MurNAc residues. Figure modified from (Pfeffer et al., 2012) 

However, SpoIID is inactive on “intact” peptidoglycan and requires the peptide-free denuded 

glycan strands produced as a consequence of SpoIIP activity (Abanes-De Mello et al., 2002; 

Gutierrez, Smith and Pogliano, 2010; Morlot et al., 2010). This need for sequential SpoIIP-

SpoIID activity is proposed to prevent the release of muropeptides that may trigger 

immediate spore germination (Shah et al., 2008).   

Point mutation of glutamate 88 in B. subtilis results in a loss of enzymatic activity (Morlot et 

al., 2010) and prevents spore formation (Gutierrez, Smith and Pogliano, 2010), suggesting 

E88 is a key catalytic residue, and demonstrating that SpoIID activity is key in engulfment 

and, consequently, in sporulation.  

During the course of this work, the structure of C. difficile SpoIID was determined to 1.95 Å 

by Nocadello et al., in 2016 and a mechanism for SpoIID activity based on the structure of 

SpoIID co-crystallised with the artificial substrate triacetylchiotriose (NAG3) (PDB ID: 5I1T) 

was proposed (Nocadello et al., 2016).  

SpoIID consists of an α-helix rich α-domain, which forms the “hand”, and a β-strand rich β-

domain forming the “arm” of the protein (Nocadello et al., 2016). Two NAG3 substrate-

analogue molecules sit across subsites -4 to +3, with the three sugar units of one molecule 

occupying positions -4, -3 and -2, and those in the second molecule occupying subsites +1, 

+2 and +3, with contacts between SpoIID and the sugars across all subsites.  

By computationally fitting a MurNAc residue in the unoccupied -1 subsite, the authors 

propose an enzymatic mechanism (Nocadello et al., 2016). Firstly, the carbonyl of E101, 

equivalent to E88 in B. subtilis SpoIID, protonates the oxygen of the β-1,4-MurNAc -GlcNAc 

glycosidic bond. The C6 hydroxyl group of MurNAc is then deprotonated by O6 of E101, 

while Y194 facilitates nucleophilic attack of O1 by O6 within the MurNAc ring, to form the 

cyclical 1,6 -anhydro-MurNAc residue.  

Several residues are described as interacting with the NAG3 substrate: Y229, W325, S196, 

Q324, E101, E148, H318, C164, H145, Y213 and S210 (Nocadello et al., 2016).  
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Figure 1-12: SpoIID model with artificial substrate. 

Panel A shows the structure of SpoIID (pale yellow) co-crystallised with NAG3, produced by Nocadello et al. 

(2016) (PDB ID: 5I1T), with the grey sphere representing the presumed zinc residue, and the grey sticks the 

NAG3 substrate. Panel B shows the NAG3 binding domains in greater detail. 

Of note are the interactions of Y194, S196, Q324 and H318 which are proposed to interact 

with the acetyl groups of NAG3. C. difficile peptidoglycan is known to be highly deacetylated 

(Peltier et al., 2011; Coullon et al., 2018) (section 1.5), therefore, the in vivo relevance of this 

interaction is questionable as one would expect SpoIID to interact primarily with GlcN, not 

GlcNAc, containing peptidoglycan. Furthermore, NAG3 lacks the MurNAc residue that would 

be present in the biological ligand, and the presence of this MurNAc may influence the entire 

network of proposed binding sites, though the authors propose there is room within subsite 

-1 for the expected MurNAc residue (Nocadello et al., 2016). Mutation of S196 and Q324 to 

alanine reduced the ability of SpoIID to digest acetylated E. coli peptidoglycan (Nocadello et 

al., 2016), and mutation of the equivalent H138 in B. subtilis prevented spore formation 

(Gutierrez, Smith and Pogliano, 2010; Morlot et al., 2010), suggesting some of the SpoIID-

NAG3 interactions might be biologically relevant.  
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1.7. Aims 

The overarching aim of this thesis was to further the understanding of C. difficile engulfment 

during sporulation, particularly with regards to the involvement of the DMP complex and 

peptidoglycan composition.  

The first aim was to characterise the changes to peptidoglycan as C. difficile cells move away 

from a vegetative state, towards the highly specialised spore cortex peptidoglycan. Whilst C. 

difficile vegetative cell peptidoglycan and spore peptidoglycan was characterised 

immediately preceeding this work (Peltier et al., 2011; Kelly, 2016), the actual process of the 

shift from vegetative to spore peptidoglycan had not been investigated. The results of these 

analyses are presented in Chapter 3. 

Secondly, this work set out to investigate the DMP complex in C. difficile; specifically, its 

enzymatic activity and the crystal structure of the components. Prior to this only the DMP 

complex of B. subtilis had been assessed in any manner. The results of these investiagations 

are presented in Chapter 4. 

Following the work on the DMP complex, I hypothesised that the acetylation state of 

peptidoglycan may impact, or even direct, the activity of SpoIID and SpoIIP during 

engulfment, which may have implications for our current understanding of engulfment. 

Therefore, the third aim of this work was to identify and characterise potential 

peptidoglycan deacetylases that may be active during sporulation in C. difficile. This work is 

presented in Chapter 5. 
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Chapter 2. Materials and methods 

2.1. Bacterial strains and growth conditions 

 Escherichia coli  

E. coli NEB5-α cells [New England Biolabs (NEB)] incubated at 37 oC were used for cloning 

throughout this work. For recombinant protein expression, Rosetta DE3 [Novagen] cells 

were used, in the media (Table 2-2) and at the temperature identified as optimal for the 

expression of that construct (section 2.4). A complete list of E. coli mutants used/produced 

in this thesis can be found in Table 2-1. 

Table 2-1: E. coli strains used in this work 

Strain 
number 

Plasmid 
name 

Host 
strain 

Plasmid 
backbone 

Resistance Description 

PS042 N/A Rosetta NF1329 Amp, Cm TEV expression 

PS219 pAXK001 NEB5-α pET-M11  Km Storage strain for plasmid 
containing soluble fragment of 
C. difficile 630 spoIID (AA 26-
354) 

PS220 pAXK001 Rosetta pET-M11 Km, Cm Expression strain containing 
soluble fragment of C. difficile 
630 spoIID (AA 26-354)  

PS221 pAXK002 NEB5-α pET-M11 Km Storage strain for plasmid 
containing soluble fragment of 
C. difficile 630 spoIIP (AA 27-
399)  

PS222 pAXK002 Rosetta pET-M11 Km, Cm  Expression strain containing 
soluble fragment of C. difficile 
630 spoIIP (AA 27-399)  

PS350 pMLD179 NEB5-α pET-M11 Km Storage strain for plasmid 
containing soluble fragment of 
C. difficile 630 spoIIP (AA 27-
399) with H142R mutation 
introduced via inverse PCR 

PS351 pMLD180 NEB5-α Pet-M11 Km Storage strain for plasmid 
containing soluble fragment of 
C. difficile 630 spoIIP (AA 27-
399) with H222R mutation 
introduced via inverse PCR 

PS359 pAXK003 NEB5-α pET-M11 Km Storage strain for plasmid 
produced to introduce C140A 
mutation in soluble fragment of 
C. difficile 630 spoIID (AA 26-
354)  

PS360 pAXK004 NEB5-α pET-M11 Km Storage strain for plasmid 
produced to introduce C146A 
mutation in soluble fragment of 
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Strain 
number 

Plasmid 
name 

Host 
strain 

Plasmid 
backbone 

Resistance Description 

C. difficile 630 spoIID (AA 26-
354) 

PS361 pAXK005 NEB5-α pET-M11 Km Storage strain for plasmid 
produced to introduce H145A 
mutation in soluble fragment of 
C. difficile 630 SpoIID (AA 26-
354)  

PS362 pAXK006 NEB5-α pET-M11 Km Storage strain for plasmid 
produced to introduce E101A 
mutation in soluble fragment of 
C. difficile 630 SpoIID (AA 26-
354)  

PS383 pAXK017 NEB5-α pET-M11 Km Storage strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD630_15520 (AA 
29-293)  

PS384 pAXK018 NEB5-α pET-M11 Km Storage strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD_32570 (AA 30-
275)  

PS385 pAXK019 NEB5-α pET-M11 Km Storage strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD_13190 (AA 36-
247)  

PS386 pAXK020 NEB5-α pET-M11 Km Storage strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD_27240 (AA 53-
232)  

PS387 pAXK021 Rosetta pET-M11 Km, Cm Expression strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD630_32570 (AA 
30-275)  

PS388 pAXK022 Rosetta pET-M11 Km, Cm Expression strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD630_15520 (AA 
29-293)  

PS389 pAXK023 Rosetta pET-M11 Km, Cm Expression strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD630_13190 (AA 
36-247)  

PS390 pAXK024 Rosetta pET-M11 Km, Cm Expression strain for plasmid 
containing soluble fraction of C. 
difficile 630 CD630_27240 (AA 
53-232)  

PS459 pAXK025 NEB5-α pET-M11 Km Storage strain for plasmid 
containing soluble fraction of C. 
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Strain 
number 

Plasmid 
name 

Host 
strain 

Plasmid 
backbone 

Resistance Description 

difficile 630 CD_14440 (AA 45-
249) 

PS490 pAXK026 NEB5-α pET-M11 Km Storage strain for plasmid 
produced to introduce H134A 
mutation in soluble fragment of 
C. difficile 630 spoIID (AA 26-
354) 

PS491 pAXK027 Rosetta pET-M11 Km, Cm Expression strain for plasmid 
produced to introduce H134A 
to soluble fragment of C. 
difficile 630 spoIID (AA 26-354) 

E. coli strains used in this thesis. Strain numbers refer to the strain number in the Salgado lab strain collection. 

Amp= ampicillin, Cm= chloramphenicol, Km= kanamycin. All strains were made during this work, except strain 

number PS042 which was already in the Salgado lab strain collection, and strains PS350 and PS351 which were 

made by Dr M Dembek.   
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Table 2-2: Media compositions 

Media name Abbreviation Description Quantity per litre Manufacturer  

Lysogeny Broth LB General purpose 
E. coli growth 
media 

20 g Lysogeny 
Broth pellets  

Fisher 

Brain heart 
infusion- 
supplemented 

BHIS General purpose 
C. difficile 
growth media 

37 g Brain heart 
infusion  

Oxoid 

5 g Yeast extract  Melford 
1 g L-cysteine  Sigma 

Terrific broth* TB Expression of 
sSpoIID, sSpoIIP 
and associated 
mutant proteins 

24 g Yeast 
extract  

Melford 

12 gTryptone  For Medium 
4 ml Glycerol Merck 

Millipore 
TB supplement N/A Buffer 

autoclaved 
separately and 
added to TB 
post- autoclave 

23.1 g Potassium 
phosphate 
monobasic  

Merck 
Millipore  

125.4 g 
Potassium 
phosphate 
dibasic 

Merck 
Millipore 

Auto-induction 
media terrific 
broth 

AIM TB Expression of 
deacetylase 
constructs 

55.85 g AIM TB 
with trace 
elements  

For Medium 

Sporulation 
media 

SM For production 
of C. difficile 
spores 

90 g Bacto 
Peptone  

BD 
Biosciences 

5g Proteose 
peptone  

Fulka 

1g Ammonium 
sulphate  

Sigma 

1.5 g Tris Base Sigma 

All media were made using MilliQ water and autoclaved before use. TB and AIM TB were autoclaved on a 

shorter cycle of 121 oC for 20 minutes. *recipe for TB is in 900ml of MilliQ prior to autoclave. Once cooled 

100ml of autoclaved TB supplement was added aseptically. For solid media, 15g/L agar was added before 

autoclaving.  
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 Clostridioidies difficile 

All C. difficile strains (Table 2-3) were grown anaerobically (10% H2, 10% CO2, 80% N2) in a 

DG250 workstation [Don Whitley Scientific] at 37 oC, in an appropriate medium, as described 

in Sections 2.9  

Table 2-3: C. difficile strains used in this work 

No C. difficile strains were produced as part of this work; therefore, the creator/source laboratory of each 

strain is given. ACE refers to allele coupled exchange (Ng et al., 2013), ATc to anhydrotetraceycline.   

Strain 
number 

Strain name Description Source 

PS0002 630 Virulent clinical strain isolated in Zurich 1982 
((Hussain, Roberts and Mullany, 2005)) 

Adriano 
Henriques 

PS0003 630 Δerm Erythromycin sensitive derivative of C. difficile 630 Adriano 
Henriques 

PS0020 630 Δerm 
ΔspoIIQ 

ΔpyrE fixed via ACE, spoIIQ removed by ACE Neil 
Fairweather 

PS0022 630 Δerm 
ΔspoIID 

ΔpyrE fixed via ACE, spoIID removed by ACE Marcin 
Dembek 

PS0026 630 Δerm 
ΔspoIIP 

ΔpyrE fixed via ACE, spoIIP removed by ACE Marcin 
Dembek 

PS0050 630 Δerm 
ΔspoIIIAH 

ΔpyrE fixed via ACE, spoIIIAH removed by ACE Adriano 
Henriques 

PS0094 630 Δerm 
ΔpyrE Ptet  
spo0A 

ΔpyrE truncated by ACE and spo0A placed under 
control of ATc- inducible promoter. 

Marcin 
Dembek 

PS0097 630 Δerm 
ΔsigE 

ΔpyrE fixed via ACE, sigE removed by ACE Marcin 
Dembek 

PS0099 630 Δerm 
ΔsigF 

ΔpyrE fixed via ACE, sigF removed by ACE Marcin 
Dembek 
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2.2. Bacterial storage 

All strains produced as part of this thesis were catalogued in the Salgado lab strain 

collection. 1 ml of an overnight LB or BHIS (E. coli strains and C. difficile strains, respectively) 

culture of the sequencing-verified isolate was resuspended in 1ml sterile 50% glycerol and 

frozen at -80 oC.  

2.3. Molecular biology 

All oligonucleotides (Table 2-4 and Table 2-5) were designed using Geneious 11.0.4 (Kearse 

et al., 2012). Oligonucleotides were designed to be approximately 20-40 bp long, ending 

with a GC clamp, and to have an annealing temperature within 5 oC of its primer pair. XhoI 

and NcoI restriction sites were incorporated into each primer to allow for a cut and stick 

approach to cloning. Additionally, all oligonucleotides contained a 5’ GATC modification, to 

facilitate polymerase binding. All oligonucleotides were synthesised by Eurofins and 

dissolved in the recommended volume of PCR-grade water [Ambion] to 100 pg/μl. 

All soluble constructs were cloned into the pET-M11 backbone. This introduces an N-

terminal 6x His-tag linked to a Tobacco Edge Virus (TEV) cleavage site, allowing for simple 

removal of the His-tag during purification. All plasmids produced during this work are listed 

in Table 2-6. 

Table 2-4: Oligonucleotides produced in this thesis 

Name Oligonucleotide sequence  
(5’→ 3’) 

Description Tm (oC) 

339 GCAATGTCTTCAGAGTTTGATATAG
AAGC 

Forward primer to introduce E101A to 
SpoIID35-354 via inverse PCR 

62.4 

340 ACCAGCTAGTACTCCACATAAATAG
TTC 

Reverse primer to introduce E101A to 
SpoIID35-354 via inverse PCR 

62.2 

341 GCAACTGATTATAAACATTGTCAAG Forward primer to introduce C140A to 
SpoIID35-354 via inverse PCR 

56.4 

342 TACTACTGCATTTTTATGTTTACTAG Reverse primer to introduce C140A to 
SpoIID35-354 via inverse PCR 

55.3 

343 GCATGTCAAGAATATAAGAG Forward primer to introduce H145A to 
SpoIID35-354 via inverse PCR 

51.1 

344 TTTATAATCAGTACATACTACTG Reverse primer to introduce H145A to 
SpoIID35-354 via inverse PCR 

51.7 

345 GCACAAGAATATAAGAGTTATG Forward primer to introduce C146A to 
SpoIID35-354 via inverse PCR 

52.8 

346 TGTTTATAATCAGTACATACTAC Reverse primer to introduce C146A to 
spoIID35-354 via inverse PCR 

52.5 

367 GCAAAAAATGCAGTAGTATGTACT
G 

Forward primer to introduce H134A to 
sSpoIID35-354 

58.1 

368 TTTACTAGATTTACCATGTTCTTGTT
TATATAC 

Reverse primer to introduce H134A to 
sSpoIID35-354 

59.5 

414 GATCCCATGGTTAAATATGAAGGA
AAATG 

Forward sCD_1556 from gDNA and add 
restriction site, removing AA 1-28 

51.1 

416 GATCCTCGAGTTATTTTATCAACTC
AG 

Reverse primer for sCD_14440 from gDNA 
and add restriction site, removing AA 1-35 

50 
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Name Oligonucleotide sequence  
(5’→ 3’) 

Description Tm (oC) 

420 GATCCCATGGAATAAACTATTAAAT
AAAGAGG 

Forward primer to get sCD_27240 from 
gDNA and add restriction site. Paired with 
#437 to remove AAs 1-24 

53 

421 GATCCCATGGCATAATACACATAAT
CAAG 

Forward to get sCD_25980 from gDNA and 
add restriction site. To remove AAs 1-22. 

50 

423 GATCCCATGGGACATGTCTAGAAA
AAAAG 

Forward primer to get sCD_15220 from 
gDNA and add restriction site. To remove 
AAs 1-28 

54 

424 GATCCTCGAGTTATATTAAAATTTT
AAATTGATAAC 

Reverse primers to get sCD_15220 from 
gDNA and add restriction site. To remove 
AAs 1-28 

51.6 

425 CTCGAGCTACTTAAATACATCACTA
AG 

Forward primer to get sCD_13190 from 
gDNA and add restriction site, removing 
AA 1-35 

58.9 

426 CTCGAGCTACTTAAATACATCACTA
AG 

Reverse primer to get sCD_13190 from 
gDNA and add restriction site, removing 
AA 1-35 

55.2 

427 GATCCCATGGGAGGAAAAAATTAA
TAATG 

Forward primer to get sCD_3257 from 
gDNA and add restriction site, removing 
AA 1-29 

51.6 

428 GATCCTCGAGTTATAAGTTTTCTTG
CC 

Reverse primer to get sCD_32570 from 
gDNA and add restriction site, removing 
AA 1-29 

51.7 

429 GATCCTCGAGCACCACCACCACCAC Forward primer for inverse PCR of pET-
M11 with XhoI and GATC 5’ extensions 

65.7 

430 GATCCCATGGGCCCTGAAAATAAA
GATTCTC 

Reverse primer for inverse PCR of pET-
M11 with XhoI and GATC 5’ extensions 

63.4 

452 GATCCCATGGATGGATACTAATGG
AAATGTTTTG 

Amplify sCD_14440 from gDNA pair with 
primer 416 

60.8 

453 GATCCTCGAGTTACTTTTGCACTTG
CT 

Reverse for sCD_25980 from gDNA 
without other binding sites. Pair with 
primer 421 

53 

Oligonucleotides produced in this thesis to amplify target genes from C. difficile 630 or C. difficile 630 Δerm 

gDNA for production of expression vectors.  
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Table 2-5: Other oligonucleotides used in this thesis  

Name Oligonucleotide 
sequence 

Description Tm (oC) 

211 GATCCCATGGGATCTTAT
AAAAATGTAGAATTAACT
GAAAAACC 

Forward primer to clone spoIID26-354 into pET-M11 with 
cleavable N-terminal 6xHis tag 

58 

212 GATCCTCGAGTTAGTATA
TATCTTTTATTTTTGTATCT
GTGTAG 

Reverse primer to clone spoIID26-354 into pET-M11 with 
cleavable N-terminal 6xHis tag 

58.9 

213 GATCCTCGAGCTAATTTTT
TTGTTTAAAATATTCATCC
AAAATC 

Forward primer to clone spoIIP27-339 into pET-M11 with 
cleavable N-terminal 6xHis tag 

57.4 

214 GATCCCATGGGAAATCAA
GATGATTTTTTAAAGTTTT
TAGTAAATTC 

Reverse primer to clone spoIIP27-339into pET-M11 with 
cleavable N-terminal 6xHis tag 

57.8 

330 AGAGGATGTGAGACTTAT
TCAAATTC 

Forward primer to introduce H142R in spoIIP27-339 58.5 

331 AGTATGATATATCAAAAT
TCTTGGATTTTC 

Forward primer to introduce H142R in spoIIP27-339 57.2 

347 AGAAGAGATGCTAGGGA
TTTAAC 

Forward primer to introduce H222R in spoIIP27-339 57.1 

348 TAAGTCTATCGCTATATCC
ACTG 

Reverse primer to introduce H222R in spoIIP27-339 57.1 

These oligonucleotides had already been designed by Dr M Dembek before the start of this work and were 

used in the production of the associated strains.   
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Table 2-6: Plasmids constructed in this work 

Construct Host 
plasmid 

Description 

sSpoIID pET-M11 Contains SpoIID35-354 with a TEV-cleavable N-terminal 
6xHis-tag  

sSpoIIDE101A pET-M11 Contains SpoIID35-354  where glutamate 101 has been 
mutated to alanine via inverse PCR. Protein tagged with a 
TEV-cleavable N-terminal 6xHis-tag 

sSpoIIDH134A pET-M11 Contains SpoIID35-354  where histidine 134 has been 
mutated to alanine via inverse PCR. Protein tagged with a 
TEV-cleavable N-terminal 6xHis-tag 

sSpoIIDC140A pET-M11 Contains SpoIID35-354  where cysteine 140 has been mutated 
to alanine via inverse PCR. Protein tagged with a TEV-
cleavable N-terminal 6xHis-tag 

sSpoIIDH145A pET-M11 Contains SpoIID35-354  where histidine 145 has been 
mutated to alanine via inverse PCR. Protein tagged with a 
TEV-cleavable N-terminal 6xHis-tag 

sSpoIIDC146A pET-M11 Contains SpoIID35-354  where cysteine 146 has been mutated 
to alanine via inverse PCR. Protein tagged with a TEV-
cleavable N-terminal 6xHis-tag 

sSpoIIP pET-M11 Contains a N-terminally 6xHis-tagged spoIIP27-339.
 Tag is 

cleavable by TEV 

CD630_1319 pET-M11 Contains all of CD630_13190 except the predicted 
transmembrane region (Amino acids 1-35). Protein 
produced is tagged with a TEV cleavable 6xHis-tag 

CD630_1522 pET-M11 Contains all of CD630_15220 except the predicted 
transmembrane region (Amino acids 1-28). Protein 
produced is tagged with a TEV cleavable 6xHis-tag 

CD630_32570 pET-M11 Contains all of CD630_32570 except the predicted 
transmembrane region (Amino acids 1-29). Protein 
produced is tagged with a TEV cleavable 6xHis-tag 

CD630_14440 pET-M11 Contains all of CD630_14440 except the predicted 
transmembrane region (Amino acids 1-35). Protein 
produced is tagged with a TEV cleavable 6xHis-tag 

CD630_27240 pET-M11 Contains all of CD630_27240 except the predicted 
transmembrane region (Amino acids 1-24). Protein 
produced is tagged with a TEV cleavable 6xHis-tag 

 

 Production of expression vectors 

The pET-M11 backbone was amplified from a lab stock by polymerase chain reaction (PCR) 

using oligonucleotides specific to pET-M11 plasmid, before 2 h digestion with DpnI [NEB] at 

37 oC to remove parent plasmid. The reaction was terminated by incubation at 80 oC for 20 

minutes before gel extraction after electrophoresis on 1 % agarose [Melford] supplemented 

with Sybr safe [Invitrogen] to 1X. The gel region to be excised was identified using a Safe 

Imager 2.0TM [ThermoFisher Scientific] and the plasmid extracted using a Gel extraction kit 

[Sigma]. The preparation was digested with XhoI and NcoI-HF in Cutsmart buffer [NEB], for 1-
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2 h at 37 oC before supplementation with 1 μl Antarctic phosphatase [NEB], and Antarctic 

phosphatase buffer to 1X, to prevent plasmid re-circularisation. Linear plasmid was gel 

purified [Sigma], using the >2 % agarose gel protocol provided by the manufacturer.  

Target protein sequences were submitted to TMHMM 2.0 (Moller, Croning and Apweiler, 

2001), to identify possible transmembrane regions. Based on this, the target genes were 

amplified from C. difficile 630 or C. difficile 630 Δerm genomic DNA without these predicted 

transmembrane regions.  

For amplification of spoIID and spoIIP, reactions were set up as described in Table 2-7 using 

oligonucleotides designed by Dr M Dembek, as listed in Table 2-5 and thermocycling as 

described in Table 2-8 using KOD Hot-start polymerase [Merck]. Point mutations were 

introduced in plasmids encoding SpoIID26-354 (sSpoIID) and SpoIIP27-339 (sSpoIIP) via inverse 

PCR using the appropriate oligonucleotides (Table 2-4) and plasmid from strains PS219 or 

PS221, respectively (Table 2-1). All reactions were carried out as described for the 

production of pET-M11 sSpoIID.  

Table 2-7: Composition of sSpoIID and sSpoIIP KOD Hot-start- based PCR reactions 

Component Volume in reactions (µl) Volume in negative control (µl) 

PCR grade water 21 22 
10 µM forward primer 1.5 1.5 
10 µM reverse primer 1.5 1.5 
pET M11 DNA Sufficient for 10ng 0 
KOD hot start master mix 25 25 

 

Table 2-8: KOD Hot-start- based PCR thermocycling conditions 

Stage Time Temperature (oC) 

1) Polymerase activation 2 min 95 
2) DNA Denaturation 20 s 95  
3) Annealing 10 s  Primer pair dependent 
4) Extension 25 or 20 s/Kb 70  
5) Termination 10 min 70  

Thermocycling conditions for KOD-based PCR reactions were determined as per manufacturer’s instructions. 

Stages 2 to 4 were repeated 30 times before progression onto step 5. An extension time of 25 s/Kb was used 

for templates >3000bp, and 20s/kb for templates 1000-3000bp as recommended by the manufacturer. The 

melting temperature was determined by the primer with the lowest annealing temperature in a primer pair. 

For amplification of putative deacetylase genes, reactions were set up as described in Table 

2-9 and thermocycling performed as described in Table 2-10. As Phusion polymerase [NEB] 

was used, the melting temperature used was adjusted by +3 oC to the lowest calculated 

annealing temperature of the primer pair, as suggested by the manufacturers.   
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Table 2-9: Composition of Phusion-based PCR reactions 

Component Volume in reactions (µl) Volume in negative control (µl) 

PCR grade water To 50 µl To 50 µl 
10 µM forward primer 2.5 2.5 
10 µM reverse primer 2.5 2.5 
gDNA Sufficient for 250 ng 0 
Phusion buffer 10 10 
DMSO 1 1 
dNTPs 1 1 
Phusion 0.5 0.5 

 

Table 2-10: Phusion based PCR thermocycling conditions 

Stage Time Temperature (oC) 

1) Denature 30 s 98 
2) Melting 10 s  98  
3) Anneal 20 s Lowest Tm of pair + 3 oC 
4) Extension 30s/Kb 72 
5) Final extension 10 mins 72 

Thermocycling was undertaken as described above. Steps 2 to 4 were repeated 34 times before progressing to 

stage five. 30 s/Kb extensions time was recommended by the manufacturers for gDNA templates. The 

manufactures suggest increasing the Tm 3oC above the lowest melting temperature of the primer pair. 

The PCR products were then analysed by agarose gel electrophoresis as described above, at 

100 V for approximately 40 minutes, depending on the length of the gel bed. Gels were then 

imaged [Bio-Rad], and the mass of the PCR product compared to that of a reference (Mass 

ruler [ThermoFisher scientific]), and to the expected size in base pairs of the product.  

Target PCR products were combined with 2 μl each of XhoI and NcoI-HF and Cutsmart buffer 

[NEB] to 1X, diluted with PCR-grade water. These reactions were then incubated at 37 oC for 

1-2 h, before termination by incubation at 80 oC for 2 minutes.  

After PCR clean up [Sigma], digested gene and plasmid fragments were incubated with T4 

QuickStick ligase [ThermoFisher Scientific] and incubated for 15 minutes at room 

temperature. NEB5-α cells were transformed with ligation reactionusing a standard 

transformation protocol. Briefly: NEB5α cells were aliquoted into pre-chilled Eppendorfs and 

incubated with the ligated vector for 30 minutes on ice at a ratio of 3:1, 5:1 or 10:1 as 

required to achieve transformants. Cells were heat shocked at 42oC for 30 seconds and 

allowed to recover on ice for 2 minutes before addition of super optimal broth with 

catabolite repression (SOC) outgrowth medium [NEB]. Cells were incubated for an hour at 37 
oC with shaking before plating the entire volume on appropriately antibiotic-supplemented 

LB agar for overnight incubation at 37 oC (Table 2-2).  

Transformants were initially screened by colony PCR before verification by sequencing. For 

colony PCR, OneTaq [NEB] polymerase reactions were set up: a master mix of 2 μl T7 

forward primer (Table 2-11), 2 μl of T7 reverse primer (Table 2-11), 50 μl of OneTaq 2X 
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Master Mix with standard buffer [NEB] and 46μl of water was split into 10 μl aliquots. 

Individual reactions were inoculated with one transformant, and the same clone was re-

plated onto a fresh agar plate supplemented with the appropriate antibiotics. Thermocycling 

was undertaken as described in Table 2-12. PCR products were run on a 1 % agarose gel, as 

previously described. If PCR products were detected as expected, the same clone was used 

to inoculate an overnight culture. Plasmid DNA was extracted using a miniprep kit [Sigma], 

eluted in water, and sent for Sanger sequencing [Eurofins]. 1 ml of the same overnight 

culture was stored at -80 oC and added to the Salgado strain collection upon confirmation by 

sequencing.  

Table 2-11: Colony PCR oligonucleotides 

Oligonucleotide name Sequence Tm (oC) 

T7 forward TAATACGACTCACTATAGGG 54.3 
T7 reverse GCTAGTTATTGCTCAGCGG 57.5 

These oligonucleotides were a kind gift of the Waldron lab.  

Table 2-12: Colony PCR thermocycling conditions 

Stage Time Temperature (oC) 

1) DNA Denaturation 30 s 94  
2) Annealing 30 s 56  
3) Extension 1 min 68  
4) Final extension 5 mins 68  

Colony PCR was undertaken using OneTaq polymerase [NEB] before sending plasmids for Sanger sequencing. 

Steps 1 to 3 were repeated 30 times before progression to step 4.  

Once verified by sequencing, DNA obtained in the original miniprep was used to transform 

Rosetta cells [NEB], as described for NEB5-α cells. 1 ml aliquots of transformed cells were 

frozen in 1ml 50 % glycerol and stored in the Salgado strain collection.  

 Bioinformatic identification of putative deacetylases  

Potential polysaccharide deacetylases in C. difficile were identified using the default settings 

on the online tool HMMER 2.3 (ebi.ac.uk/Tools/hmmer/) to search within Clostridia (tax ID: 

186801) for orthologues to the known S. pneumoniae deacetylase SpPdgA (Blair et al., 2005) 

(PDB ID 2C1G). Results retrieved were filtered to those relating to C. difficile 630. This was 

repeated using B. cereus Bc1974 (Giastas et al., 2018) (PDB ID 5N1J) and B. subtilis PdaA 

(Blair & van Aalten, 2004) (PDB ID 1W17), but no additional targets were identified. Using 

this approach, 10 putative deacetylases were identified.  

From these 10 putative deacetylases, 5 were selected as potentially involved in C. difficile 

peptidoglycan deacetylation during sporulation based on known regulation by sporulation 

specific sigma factors (Saujet et al., 2013; Dembek et al., 2015), or by potential interactions 

with sporulation-associated proteins, as based on assessment using the STRING server 

(string-db.org/cgi/input.pl) (Szklarczyk et al., 2019). Cloning of the genes associated with 

these proteins was then attempted as described in section 2.3.1. 
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2.4. Protein expression, purification and quantification 

 Protein quantification 

Purified proteins were routinely quantified using absorbance at 280 nm as measured by 

Nanodrop [Thermo].  

Where more accurate concentrations were required, for example in ICP-MS or CD, Bradford 

assays were used. 100 µl of 2-fold dilutions of samples to be tested were aliquoted into a 96-

well plate [Corning] and incubated for 5 minutes with 100 µl of PierceTM Coomassie Plus 

Bradford reagent [Thermo] before reading absorption at 595 nm in a spectrophotometer 

[BioTek]. A standard curve ranging from 0-20 µg/ml of bovine serum albumin (BSA) in diluent 

was used to calculate the sample protein concentration.  

 SDS-PAGE 

Denaturing sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE) was 

used for the qualitative analysis of protein production and purity. As all proteins investigated 

in this study were expected to be between 10-200 kDa, 12% resolving and 5% stacking gels 

were used as a standard, with 15% gels occasionally used (Table 2-13). All gels were 

manually prepared using the Mini-PROTEAN Handcast system and ran in Mini-PROTEAN 

Tetra cell systems [Biorad] in Tris-Glycine running buffer (25 mM Tris base pH 8.3, 250 mM 

glycine, 0.1% (w/v) SDS).Samples were boiled in 1X loading buffer (100 mM Tris base pH 8.8, 

4% SDS, 20% glycerol, 0.2% bromophenol blue, 200mM DTT) at 95oC for 10 minutes before 

loading, and ran at 200 V for 45-60 minutes, using PageRuler protein ladder [ThermoFisher 

Scientific] as protein molecular weight markers. Gels were stained with InstantBlue 

[Expedeon] before destaining in water, and imaging [Bio-Rad ChemiDoc].  

Table 2-13: SDS-PAGE gel compositions 

Component Final concentration 

Stacking gel (5%) 12% gel 15% gel 

30% Bis-acrylamide 5% 12% 15% 
1.5 M Tris base pH 
6.8 

126 mM - - 

1.5 M Tris base pH 
8.8 

- 375 mM 375 mM 

10% SDS 0.1% 0.1% 0.1% 
10% APS 0.1% 0.1% 0.1% 
TEMED 0.05% 0.05% 0.05% 

Bis-acrylamide, SDS, Ammonium persulphate (APS) and N,N, N’, N’-tetramethylene diamine (TEMED) were used 

for protein separation. 
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 Western blots 

2.4.3.1. sSpoIID, sSpoIIP and respective mutants 

SDS-PAGE was undertaken as described above and protein transferred to NovexTM 

polyvinylidene difluoride (PVDF) membrane [ThermoFisher scientific], pre-equilibrated in 

Bjerrum-Schafer-Nielsen buffer (48 mM Tris base, 39 mM glycine pH 9.2 20% (v/v) methanol) 

using a semi-dry transfer method and a Bio-rad Trans-Blot Turbo system at 25V for 30 

minutes. Transfer efficiency was assessed using Ponceau S [Sigma] before incubation in 1% 

(w/v) milk in Tris-buffered saline with Tween (TBST ) buffer (50 mM Tris base pH 7.6, 150 

mM NaCl, 0.1% Tween 20) overnight at 4 oC to block non-specific binding. Membranes were 

then incubated in 1:15000 primary antibody raised against purified protein [Morivian 

Biotechnology] in 5% (w/v) milk for an hour with agitation, washed 3 times in TBST and once 

in Tris-buffered saline (TBS) buffer (50 mM Tris base pH 7.6, 150 mM NaCl) before incubation 

in 5% milk containing 1:2500 horse radish peroxidase (HRP) conjugated antibodies for 1 hour 

at 4 oC. Excess secondary antibody was removed by washing twice in TBST then once in TBS. 

Clarity Western ECL Blotting Substrate [Bio-Rad] was used to visualise antibody-bound 

protein as per manufacturer’s instructions, before imaging using a Bio-Rad ChemiDoc XRS+ 

system.  

2.4.3.2. Deacetylase constructs  

As above, 100ng of purified deacetylases were separated by SDS-PAGE on 15% gels, before 

transfer to a 0.45 µm pore size nitrocellulose membrane using a semi-dry transfer technique. 

The membranes were washed once in TBST before blocking in 5% milk (w/v) for 2 h at room 

temperature. Blots were incubated with primary sera (1:2500 in PBS) for 90 minutes at room 

temperature with agitation, before washing 3 times in TBST and once in TBS prior to 

incubation with secondary antibody and detection as described for sSpoIID/ sSpoIIP blots. 

Primary sera from rabbits inoculated with purified peptides specific to the protein of interest 

were produced by BioServ UK. 

2.5. Purification of sSpoIID and sSpoIIP constructs 

sSpoIID, sSpoIIP and their associated mutants, were expressed and purified routinely, for use 

in protein characterisation assays and X-ray crystallography trials. 

 Protein expression 

Preliminary expression tests indicated the optimal expression conditions of SpoIID and 

SpoIIP. 1 L of antibiotic supplemented Terrific broth (TB) was inoculated with 10 ml 

overnight LB culture, grown at 37oC with agitation to OD600 ~0.6-0.8 before supplementation 

with glucose to a final concentration of 1% (v/v) and induction of protein expression by the 

addition of isopropyl β-D-1- thiogalactopyranoside (IPTG) to 1 mM. Cultures were incubated 

with shaking overnight at 18 oC.  

 Protein purification 

Cells were harvested by centrifugation at 4000 xg 20 minutes at 4 oC. The pellet was 

resuspended in lysis buffer (50 mM Tris base pH 8.0, 300 mM NaCl, 20 mM imidazole, 100 

μg/ml lysozyme, 10 μg/ml DNase, 1 tablet of cOmplete EDTA-free protease inhibitor cocktail 

[Roche]) before sonication. Sonication was performed at 4 oC and consisted of 10 minutes of 
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5 seconds pulse at max speed and 5 seconds of rest on ice. The insoluble fraction was 

removed by centrifugation at 20,000 rpm for 30 minutes 4 oC (JA 25.50 rotor Avanti JX 26-P) 

and the supernatant filtered through a 0.45 μm syringe filter [Pall]. Immobilised metal ion 

affinity chromatography (IMAC) was used to purify His-tagged protein from the cell lysates; 

the filtered supernatant was applied to a 5ml HisTrap HP column [GE healthcare] pre-

equilibrated in IMAC buffer A (Table 2-14) on the ÅKTA start [GE Healthcare]. His-tagged 

protein was eluted in 50 mM Tris base pH 8.0, 300 mM NaCl, 250 mM Imidazole in 10 ml 

fractions using the program in Table 2-15. 

Table 2-14: Protein purification buffers 

Buffer name Contains 

IMAC A 50 mM Tris base pH 8.0, 300 mM NaCl, 20 mM imidazole 
IMAC B 50 mM Tris base pH 8.0, 300 mM NaCl, 250 mM imidazole 
SEC 20 mM Tris base pH 8.0, 150 mM NaCl 
Dialysis 50 mM Tris base- pH 8.0, 300 mM NaCl 
SEC+ EDTA 20 mM Tris base pH 8.0, 150mM NaCl, 5 mM EDTA 

All buffers were filtered through 0.22 µm filters before use. EDTA; ethylenediamineteraacetic acid. 

 

Table 2-15: sSpoIID/ sSpoIIP IMAC purification 

Step Conditions 

Prime and equilibration 5 CV 
Sample application Sample dependent 
Wash out unbound 10 CV 
Gradient elution 0-100% IMAC B over 15 CV 

CV corresponds to column volumes, which in the case of IMAC would be 5ml. Sample application volume was 

determined by the volume of cell lysate applied to the column. IMAC B is 50 mM Tris base pH 8.0, 300 mM 

NaCl, 250 mM imidazole. 

Fractions containing protein were pooled and dithiothreitol (DTT) added to a final 

concentration of 5mM before incubation with 1:100 Tobacco edge virus (TEV) protease to 

remove the 6xHis tag. Imidazole was removed by dialysing the protein against 5L of 50 mM 

Tris base pH8.0, 300 mM NaCl, overnight at 4 oC. Protein was recovered by reverse IMAC 

purification and collection of the flow through. Protein was concentrated using Amicon 

30,000 Da molecular weight cut off (MWCO) spin concentrators before application to a 

HiLoad Superdex S200 16/600 size exclusion chromatography (SEC) column [GE Healthcare] 

using an ÅKTA Pure at 4 oC. The protein was eluted in SEC buffer (Table 2-14) and collected in 

2ml fractions. Fractions containing protein were pooled and further concentrated and 

aliquoted before freezing at -80 oC.  

 Investigation of oligomeric state 

sSpoIID and sSpoIIP were incubated on ice in a buffer containing a final concentration of 15 

mM DTT. After 2 h incubation the protein was analysed by SEC using a Superdex 200 GL 10-
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300 analytical column pre-equilibrated in SEC buffer (Table 2-14) supplemented with 15 mM 

DTT. The size of eluted protein was assessed by SDS-PAGE.  

2.6. Deacetylase construct purification 

 Protein expression  

One litre of auto induction media terrific broth base with trace elements (AIM TB) [For 

Medium] was inoculated to OD600 0.1 with an overnight culture of the expression strains 

containing pET-M11 vectors for production of CD630_3257(30-275), CD630_1522(29-293) or 

CD630_1319(36-247). Cultures were incubated with shaking (180 rpm) at 37 oC for 5 h for 

expression of CD630_1522(29-293) and overnight CD630_3257(30-275), and CD630_1319(36-247), 

before centrifugation at 4,000 rpm (JA 25.50 rotor Avanti JX 26-P) for 30 minutes. Cells were 

resuspended in 1X PBS and centrifuged once more at 4,000 rpm for 25 minutes. The 

supernatant was removed, and the pellet frozen at -20 oC.  

 Protein purification 

Pellets were processed as described for sSpoIID/sSpoIIP purification although cells were 

lysed using 3 sets of 5 minutes sonication on cycle setting with power at 60-70% (Bandelin 

sonoplus), and the wash out unbound step of IMAC was reduced to 5 CV. SEC was 

undertaken at room temperature. 

2.7. Characterisation of proteins 

 Circular dichroism 

Samples for circular dichroism (CD) were transferred into a buffer appropriate for CD (50 

mM sodium phosphate pH 8.0, 50 mM NaF for CD630_1522 constructs, 25 mM sodium 

phosphate for CD630_1319 constructs) by washing 3 times using 10,000 Da MWCO Vivaspin 

500 concentrators [Sartorius], pre-equilibrated with the appropriate buffer. 

When performing scans, buffer-exchanged proteins were diluted to approximately 0.025 

mg/ml as measured by Bradford assay (section 2.4.1). A quartz cuvette of 1 mm path length 

[Hellma] was soaked in 1% hellmanex overnight, then rinsed in water and with the 

appropriate CD buffer. The cuvette was filled with buffer and scans undertaken on a Jasco J-

810 spectrophotometer with a Jasco PTC-423S temperature controller. Scans configurations 

are detailed in Table 2-16.  
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Table 2-16: Circular dichroism scan parameters 

Parameter Value for 
sSpoIID & 
mutants  

Value for 
sSpoIIP & 
mutants 

Value for 
CD630_1319 
constructs 

Value for 
CD630_1522 
constructs 

Sensitivity Standard Standard Standard Standard 
Start 260 nm 260 nm 260 nm 260 nm 
End 180 nm 180 nm 190 nm 185 nm 
Pitch 0.5 nm 0.5 nm 0.5 nm 0.5 nm 
Scan Continuous Continuous Continuous Continuous 
Speed 50 nm/min 50 nm/min 50 nm/min 50 nm/min 
Response 4 s 4 s 4 s 4 s 
Bandwidth 2 2 2 2 
Accumulation 4 10 10 4 

CD spectra were acquired as above at 20 oC. Slightly different wavelength ranges were scanned to prevent the 

high tension (HT) value exceeding 600 V with certain proteins. 

Protein samples were analysed, and the CD of the buffer alone subtracted from the CD of 

the proteins before submission to Dichroweb for analysis (Whitmore and Wallace, 2004, 

2008), using the CDSSTR algorithm with reference set 4 (Sreerama and Woody, 2000). In 

parallel, the mean residue ellipticity was manually calculated using Equation 2-1. 

Equation 2-1 Calculation of mean residue ellipticity in deg. cm2.dmol-1   

[Θ]mrw =
(MRW × Θobs)

10 × d × c
 

CD values in mdeg were retrieved from the JASCO instrument and used to calculate the mean residue ellipticity ([Θ]mrw) in 

deg.cm2.dmol-1 where MRW is the mean residue weight , Θobsthe observed ellipticity in degrees, d the path length of the 

cuvette in cm and c the concentration of protein in g/ml. MRW is calculated from the molecular mass/ (n-1) where N is the 

number of amino acids in the protein 

For thermal stability analysis (thermal melts), the temperature was increased incrementally 

from 20 oC to 95 oC and the CD of the unfolding protein monitored as described in Table 

2-17. Proteins were buffer exchanged and diluted to approximately 0.25 mg/ml prior to 

analysis. The melting temperature (Tm) of the proteins was calculated by calculation of the 

first derivative using the Savitzky-Golay filter within the Jasco software. 
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Table 2-17: Circular dichroism melt parameters 

 Parameter Value for sSpoIID, sSpoIIP 
and associated mutants 

Value for CD630_1522 
constructs and His1319 

Value for 
s1319 

Sensitivity Standard Standard Standard 
Start 
temperature 

20 oC 20 oC 20 oC 

End 
temperature 

95 oC 95 oC 90 oC 

Data pitch 1 oC 1 oC 1 oC 
Bandwidth 2 nm 2 nm 2 nm 
Response 4 s 4 s 4 s 
Monitor 
wavelength 

222 nm 222 nm 222 nm 

Temperature 
slope 

1 oC/ min 1 oC/min 1 oC/min 

Protein melts were recorded at 222 nm. The melt of s1319 was undertaken between 20 oC and 90 oC due to 

technical restraints. 

 Inductively coupled plasma mass spectrometry  

The metal content of all purified proteins was assessed by inductively coupled plasma- mass 

spectrometry (ICP-MS). 

sSpoIID and sSpoIIP were diluted with SEC buffer to 10 μM (as determined by A280), and, 

where appropriate, 5 mM EDTA added. A Superdex 200 GL 10/300 column [GE] was pre-

equilibrated in SEC buffer with and without 5 mM EDTA, and used to elute the proteins, 

ensuring that EDTA-containing samples were always separated before untreated samples, 

and that the column was always in the appropriate SEC buffer. 0.5 ml fractions were 

collected for metal content analysis.  

To prepare samples for ICP-MS, 300 μl of each sample was combined with 2.7 ml of 2.5% 

nitric acid [Suprapur, Merck] containing the internal standards 20 ppb silver and platinum or 

20 ppb indium and platinum. Samples were analysed by Drs Kevin Waldron/ Anna 

Barwinska-Sendra onto a Thermo x-series ICP-MS using a Cetac 900 autosampler. The ICP-

MS was operating in collision cell mode using 3.0 ml/min flow of 8% hydrogen in helium as 

the collision gas. Samples were ionised within an argon plasma (99.99%) purity and analysed 

using the peak-jump method (100 sweeps, 20-30 MS dwell time n 3-5 channels per isotope, 

separated by 0.02 atomic mass units (AMU). Ions of Mg, Mn, Cu, Co, and Zn were quantified 

by comparison of the number of ions hitting the detector to a standard curve containing 

known numbers of the aforementioned ions. Two biological replicates per construct were 

analysed.   

Soluble constructs of s1319, s1522, where the 6xHis tag had been removed, were also 

analysed as above. Samples were not treated with EDTA, but the column, injection port and 

loop were washed in SEC + EDTA buffer, before re-equilibration in SEC buffer. 
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 Estimation of molecular weight 

Analytical SEC allows the estimation of the molecular weight of a protein based on elution 

volume. A collection of protein standards with known molecular weights were used to 

determine the calibration curve of the size exclusion column. The equation describing the 

calibration curve, as per Equation 2-2 , is then used to calculate the mass of the protein of 

interest. Calibration curves at room temperature were performed by Dr Anna Barwinska-

Sendra, and at 4oC by Paola Lanzoni-Manguchi.  

Equation 2-2: Calculation of Kav 

𝐾𝑎𝑣 =
𝑉𝑒 − 𝑉𝑜
𝑣𝑐 − 𝑣𝑜

 

Kav; partition coeffiecient and can be related to the logMW of a protein via a calibration curve, Ve is the elution 

volume of the protein of interest, Vo is the void volume of the column, and Vc is the volume of the column. All 

volumes are in ml. 

 Determination of accurate mass of purified putative deacetylases 

The accurate masses of purified putative deacetylases were determined by Dr Joe Gray. 

Briefly; pure protein preparations were acidified to final concentration of 0.5% formic acid 

which was then injected into a CapTrap column [nanoLCMS Solutions] and eluted using a 

NanoAquity HPLC [Waters] at 0.05ml/min. Initial condition was 5% buffer B (0.1% formic acid 

in acetonitrile) in buffer A (0.1% formic acid in water) with elution over a gradient to 70% 

buffer B over 22 minutes followed by a step of 100% buffer B over 5 minutes before finally 

returning to 5% buffer B. Eluate was directed into an Impact II [Bruker] mass spectrometer 

using the standard Apollo electrospray ionisation ion source with a capillary voltage set at 

2800V, temperature 180oC, 5L/min drying gas with the nebuliser spray gas pressure set to 

0.8 bar. Data was collected over m/z 200-2500. Spectra were analysed using Compass 

DataAnalysis package [Bruker] with “Maximum entropy” charge deconvolution plug-in 

(parameters: adduct ions H+, low mass 5000 m/z, high mass 100000 m/z with resolving 

power at 40,000 and resolution to high). 

2.8. Structure determination 

 Protein crystallisation 

Purified samples of sSpoIID, sSpoIIP and the respective mutated versions at a concentration 

between 8-15 mg/ml were used to set up commercially available crystallisation screens: 

Morpheus, JCSG+, Structure [Molecular Dimensions], PACT [Qiagen], and Index [Hampton 

Research]. Sitting drop screens were set up using a Mosquito dispensing robot [TTP Labtech] 

in 1:1 (100nl:100nl) and 2:1 (200nl:100nl) protein to reservoir ratios. Trays were stored at 

20oC and checked for the presence of crystals using a 16X optical zoom light microscope 

[Leica]. 

sSpoIIDE101A crystals appeared within 24-48 h in Index C6 (60% TacsimateTM pH 7.0) and were 

harvested by Dr Arnaud Baslé and cryoprotected in paraffin oil before flash freezing in liquid 

nitrogen until diffraction experiments at Diamond Light Source (DLS) synchrotron.  
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 Data collection and processing for sSpoIIDE101A 

Data were collected over 200o with images recorded every 0.1o with 0.4 second exposure 

time at beamline I04-1 at Diamond Light Source. Data collection was performed by Dr 

Arnaud Baslé as part of the Newcastle-Durham-York beamtime allocation group. 

The DIALS user interface (DUI) was used for spot detection, indexing and integration and 

refinement. These steps were repeated until the signal to noise ratio (I/σI) was 

approximately 1.5 in the lowest resolution shell. Data was then scaled within DUI.  

Scaling was carried out using the Aimless pipeline (Evans, Murshudov and IUCr, 2013), within 

CCP4i2 (Potterton et al., 2018), followed by cell content estimation. 

 Structure determination of sSpoIIDE101A 

Molecular replacement was undertaken within CCP4i2 using Phaser (McCoy et al., 2007) 

with the SpoIID structure (PDB ID: 5TXU) as a search model (Nocadello et al., 2016).  

The resulting maps and model were refined using REFMAC5 (Vagin et al., 2004) followed by 

manual model building in Coot (Emsley et al., 2010), in iterative cycles until Rfree and Rmerge 

converged. A final refinement step and model validation was undertaken in Phenix (Adams 

et al., 2010). 

 Thin layer chromatography 

Thin layer chromatography (TLC) was undertaken on sSpoIIDE101A by Dr Lucy Crouch 

according to standard protocols (Briliūtė et al., 2019). Briefly, a sample was spotted onto 

silica plates before separation in a 2:1:1 butanol/ acetic acid/ water ratio, followed by 

staining with diphenylamine-aniline-phosphoric acid stain (1 ml of 37.5% HCl, 2 ml of aniline, 

10 ml of 85% H3PO3, 100 ml of ethyl acetate and 2 g diphenylamine).  

2.9. Peptidoglycan isolation and modification 

 E. coli peptidoglycan 

E. coli BW25113 Δlpp, a strain of E. coli lacking the lipoprotein Lpp (Baba et al., 2006) was 

used for peptidoglycan purification (Baba et al., 2006). Isolation was largely carried out as 

previously described (Glauner, 1988; Dembek et al., 2018). Briefly, cells were grown in LB to 

OD600 ~0.8 before centrifugation at 5000 rpm 4 oC (JA 25.50 rotor Avanti JX 26-P). Pellets 

were resuspended in ice-cold MilliQ and added dropwise to boiling and stirring 8% HPLC-

grade SDS and allowed to boil for 30 minutes. Warm water washes were used to remove  

SDS until the preparation was SDS-free as determined by the Hayashi test (Hayashi, 1975)., 

335 µl of supernatant was combined with 7 µl 0.5% methylene blue, 170 µl 0.7 M sodium 

phosphate pH 7.2 and 1ml of chloroform before vortexting. A pink/ colourless choloroform 

layer indicates SDS removal, whereas a blue layer indicates SDS is still present in the 

supernatant. Pellets were then suspended in 10 mM Tris-Cl pH 7.0 10 mM NaCl, with 

amylase to 1 mg/ml final concentration. After 2 h incubation at 37 oC, pronase E was added 

to 0.1 mg/ml and incubated for a further hour. SDS was added to a final concentration of 2% 

and samples were boiled for a further 15 minutes. SDS was removed as above, and the 

resulting PG stored in 0.02% sodium azide at 4 oC.  
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 C. difficile peptidoglycan 

2.9.2.1. Growth conditions 

Peptidoglycan from C. difficile 630 Δerm, C. difficile 630 Δerm Ptetspo0A, C. difficile 630 Δerm 

ΔspoIID, C. difficile 630 Δerm ΔspoIIP, C. difficile 630 Δerm ΔspoIIQ, C. difficile 630 Δerm 

ΔspoIIIAH, C. difficile 630 Δerm ΔsigE and C. difficile 630 Δerm ΔsigF was extracted as below. 

Overnight BHIS cultures of each strain were used to inoculate pre-reduced BHIS 1:200, which 

were allowed to grow to early stationary phase (OD600 ~0.7-1.6) before being used to 

inoculate 400 ml pre-reduced sporulation media (SM). SM cultures were incubated 

anaerobically at 37 oC overnight.  

2.9.2.2. Cell wall purification 

Cells were pelleted by centrifugation at 4000 ×g, at 4 oC for 25 minutes and resuspended in 

50mM Tris-Cl pH 7.0. Cell suspension was added dropwise to boiling 8% SDS and allowed to 

boil for 15 minutes. Once cooled, the mixture was washed twice in 1 M NaCl 12,000 ×g 30 

minutes [JA25-50 Beckman coulter], and then with warm MilliQ until free of SDS, as judged 

by a lack of foaming during resuspension. Once free of SDS, cells were lysed using a Precellys 

cell disruptor [Bertin Instruments], in 2 ml tubes filled 1/3 with acid washed glass beads 

(150-212µm [Sigma]) on a cycle of 3 seconds pulse at max speed (setting 6.5) and 3 seconds 

of rest. Preparations were cooled on ice between sets. Disruption was repeated until cells 

were judged to be lysed by light microscopy (100X oil objective Nikon Ti). Beads were 

removed by filtering samples through a glass frit, and beads were washed with MilliQ. The 

filtrate was centrifuged 2000 ×g 5 minutes and the supernatant reserved before the pellet 

was washed in warm MilliQ water (2000 ×g 5 minutes). The supernatants containing broken 

cells was then centrifuged for 30 minutes at 25,000 ×g at room temperature. The pellet was 

resuspended in 100 mM Tris-Cl pH 7.5 20 mM MgSO4 and incubated at 37 oC with stirring for 

2 h with DNaseI (10 µg/ml) and RNase (50 µg/ml). CaCl2 was added to 10 mM and trypsin to 

1 µg/ml and incubated overnight at 37 oC with stirring. SDS was added to a final 

concentration of 1% and the preparation was incubated at 80oC 15 minutes, then 

centrifuged 25,000×g 30 minutes and resuspended in 8 M LiCl2 before incubation at 37 oC 15 

minutes. Pellets were then washed twice in MilliQ. Samples were frozen at -80 oC overnight, 

before freeze drying [Christ freeze drier]. 

2.9.2.3. Purification of peptidoglycan from cell walls 

Freeze dried cell wall (5 mg) was incubated at 4 oC for 48 h with 2700 µl hydrofluoric acid. 

The samples were then centrifuged, and waste HF removed before re-filling the tubes with 

ice water and centrifuging again. The pellet was then washed once with water, once with 

100 mM Tris-Cl pH 7.0, and twice again with water. Recovered peptidoglycan was stored in 

0.05% sodium azide at 4 oC. 

 Chemical acetylation of peptidoglycan 

Aliquots of purified E. coli and C. difficile vegetative cell peptidoglycan were chemically 

acetylated using a method based on that described previously (Vollmer and Tomasz, 2000). 

One volume of peptidoglycan was combined with 0.25 volumes saturated sodium 

bicarbonate and 0.25 volumes 5% acetic acid, freshly prepared from acetic anhydride. After 

30 minutes incubation with stirring at 4 oC, a further 0.25 volumes of acetic acid was added 

and incubated as described again, then at room temperature for one hour. Peptidoglycan 

was recovered and washed 3 times with water by centrifugation at 90,000 rpm for 30 
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minutes [Hitachi Himac CS150NX with TLA 100.3 rotor]. The resulting acetylated 

peptidoglycan was stored in 0.02% sodium azide at 4 oC until use in digestion experiments. 

Acetylation was confirmed by mass spectrometry; in E. coli, meso-diaminopimelic acid 

(mesoDAP) was acetylated, and in C. difficile, both the mesoDAP and glucosamine normally 

present were acetylated.  

2.10. Peptidoglycan digestion assays 

 sSpoIID/ sSpoIIP digests of E. coli peptidoglycan 

Peptidoglycan (10 µl) purified from E. coli BW25113 Δlpp (as described in section 2.9.1), was 

incubated in peptidoglycan digestion buffer (10 mM Hepes pH 7.2, 50 mM NaCl, 0.05% 

Triton X‐100, 1 mM ZnCl2), with a final concentration of sSpoIID/ sSpoIIP (as purified in 

section 2.4.3.1) of 10 µM, for 24 h with stirring at 37 oC. Total reactions were supplemented 

with cellosyl buffer (80 mM sodium phosphate pH 4.8) and cellosyl [kindly provided by 

Hoechst, Frankfurt, Germany] to a final concentration 0.04 mg/ml and incubated overnight 

at 37 oC with stirring. Reactions were terminated by boiling at 100 oC for 10 minutes before 

drying (ScanVac). Dried samples were reconstituted in 0.25 M sodium borate buffer pH 9.0 

and water before reduction with sodium borohydride. Samples were reduced by the 

addition of a small amount of solid sodium borohydride in sodium borate buffer pH 9.0. 

Reactions were terminated and acidified to pH 3-4 using 20 % HPLC-grade phosphoric acid.  

Samples were then briefly centrifuged, and the supernatant frozen at -20 oC until high 

pressure liquid chromatography (HPLC) and mass spectrometry (MS).  

2.10.1.1. Liquid chromatography mass spectrometry of sSpoIID/ sSpoIIP digestions 

Samples prepared as above were analysed by liquid-chromatography mass spectrometry 

(LC-MS) aided by Dr Joe Gray. Samples were diluted 10-fold in 0.2 % formic acid before 

injection of 20µl into the HPLC-system (Agilent 1100, using an ACE3 C-18AQ column (2,1 x 

150 mm)). Reverse phase HPLC (RP-HPLC) was undertaken at 0.2 ml/min in buffer A (0.1 % 

TFA in water), to a maximum of 85 % buffer B (0.1 % TFA in acetonitrile) over 80 minutes.  

Eluate from RP-HPLC was directed to a LTQ-FT mass spectrometer [Thermo]. Electrospray 

ionisation voltage was set to 4.2 kV and the transfer capillary temperature to 250 oC. Mass 

spectra were collected between m/z= 150-2000 with MS2 fragmentation spectra triggered 

for all ion signals >5x103 intensity. 

 sSpoIID/ sSpoIIP digests on chemically acetylated peptidoglycan 

Untreated and treated E. coli BW25113Δlpp and C. difficile 630 Δerm peptidoglycan (as 

described in 2.9.3) were digested largely as described in section 2.10.1. Where C. difficile 

peptidoglycan was used, 30 µl of purified peptidoglycan was used. 

2.10.2.1. Liquid chromatography mass spectrometry of acetylated peptidoglycan 

digests 

LC-MS was undertaken as described in section  2.10.1.1 with the following modifications. An 

Agilent 1100 HPLC system was used with an ACE3 C-18AQ 1X150mm column at 35 oC. After 

an 8 minute divert time, the muropeptide mixture was ionised using an IonMax ionisation 

source in positive ion mode, sheath gas set to 4, spray voltage 4.2 kV with capillary Temp 

200 oC. Parent scans from the IonTrap were acquired between 300 and 2000 m/z, UltraZoom 

scans were undertaken on the most intense ion in the parent scan (±5 Da), MS2 was then 
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triggered within 2.5 m/z, normalised collision energy=35 within minimum signal threshold 

set to 5000 counts.  

 Digests with putative deacetylases 

Digests were performed largely as described for sSpoIID/sSpoIIP digestion assay with the 

following alterations. Samples were incubated with 30 µl of E. coli Δlpp peptidoglycan and 

using the soluble proteins purified as described in section 2.6. Samples were reduced by the 

addition of 100ul 1M sodium borohydride in sodium borate pH 9.0 and acidified using 20 % 

formic acid.  

LC-Ms was undertaken as described in section 2.10.2.1 

2.11. Structural analysis of peptidoglycan 

All mass-spectra analyses were aided by Dr Joe Gray. 

 Liquid chromatography mass spectrometry - Linear trap quadrupole Fourier 

transform (LTQ-FT) 

Peptidoglycan purified from C. difficile 630 strains: Δerm ΔspoIIQ, Δerm ΔspoIID, Δerm 

ΔspoIIP¸ Δerm ΔspoIIIAH, Δerm ΔpyrE Ptet spo0A, Δerm ΔsigE and Δerm ΔsigF (as described in 

section 2.9.2), was digested by the addition of  cellosyl (0.01 mg ) in cellosyl buffer for 24 h 

with stirring at 37 oC. After 24 h, a further aliquot of cellosyl (0.01 mg) was added and 

incubated for another 24 h. Cellosyl digestion was terminated by boiling for 10 minutes. 

After equilibration to room temperature, sodium borate buffer pH 9.0 with a few sodium 

borohydride crystals was added and the reaction was reduced for 30 minutes. Reduction 

reactions were terminated and acidified using 20% HPLC-grade phosphoric acid.  

Reduced muropeptides were diluted 10-fold in 0.1% trifluoroacetic acid to give a final 

volume of 20 µl in total recovery autosampler vials [Waters]. After centrifugation at 15000 

rpm for 5 minutes, 2 µl were injected onto the NanoAcquity ultra-performance liquid 

chromatography (UPLC) system [Waters] fitted with an ACE3 C18 0.5X150 mm column 

[HiChrom]. A gradient of 0.1% formic acid (buffer A) and 0.1% formic acid in acetonitrile 

(buffer B) with a flow rate of 50 µl/min and a column temperature of 35 oC was used.  

The initial 5 minutes of UPLC flow was diverted to waste, with the remainder of the eluted 

muropeptides subjected to LQT-FT Mass spectrometry [Thermo]. Muropeptides were 

ionised by electrospray ionisation at 1.4kV and analysed at a resolution of 100,000. A second 

fragmentation (MS2) was set to occur if any ion was at charge state 3 or lower using 

automated ion charge state screening. Data-dependent neutral loss (DDNL) was set so that if 

an ion corresponding to the parent ion without any of the fragments described in Table 2-18 

was observed in the MS2, a further fragmentation (MS3) would be triggered. All spectra 

were analysed using the manufacturer’s Qualbrowser software [Thermo].  
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Table 2-18: Data dependent neutral loss parameters 

Species Charge state m/z 

MurNAc 1+ 277.116 
2+ 137.550 

MurNAc (non reduced) 1+ 257.089 
GlcNAc 1+ 203.039 

2+ 101.540 
GlcN 1+ 161.068 
Glu 1+ 129.043 
Ala 1+ 71.037 
Gly 1+ 57.021 

If the loss of one of the above species was observed in the MS2, MS3 would be triggered. 

 Development of an MZmine2 database 

The masses and identities used to develop the MZmine2 (Pluskal et al., 2010) database were 

ascertained by manually assessing every spectrum that triggered an MS3 scan. 

Initially, the neutral mass of the parent ion was calculated, and ions corresponding to 

expected losses (Table 2-19) were followed, elucidating the structure of the muropeptide as 

it fragmented. When no expected masses could be observed, Chemdraw [Perkin Elmer] was 

used to build the remaining mass to account for the entire neutral mass. Where identities 

could not be solved, the entry was removed from analysis. Chemdraw was also used for 

chemical formula and expected neutral mass determination. 

Table 2-19: Approximate expected losses in MS analysis 

Ion +1 charge (m/z) 

GlcNAc 202 
GlcN 160 
MurNAc(reduced) 277 

MurNAc(non-reduced) 275 
1,6 anhydro-MurNAc 185 

Ala 71 

Ala(OH) 89 
Glu 129 

mesoDAP 172 
Gly 57 

Gly(OH) 75 

Losses expected when analysing mass spectra. Ala(OH) and Gly(OH) correspond to Ala and Gly residues found 

on the termini of peptide stems.  

 Mzmine2-powered analysis of LTQ-FT data 

MZmine2 version 2.37 (Katajamaa, Miettinen and Oresic, 2006; Pluskal et al., 2010) was 

used in conjunction with the aforementioned custom database to analyse the LTQ-FT data. 

Raw data files were imported into MZmine2, MS1 and MS2 scans were detected, a 

chromatograph built from this data, and the chromatograph deconvoluted. Isotope peaks 
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were identified, chromatograph of independent samples aligned, and peaks identified using 

the custom database. Results were then filtered to include only rows with at least one peak 

and two isotopes. Parameters for all steps are available in Table 2-20. 

The 10 most abundant peaks in C. difficile 630 ΔpyrE Δerm Ptet spo0A (referred to as wild 

type in these experiments) were identified as peaks of interest, and the area under the curve 

(AUC) for these peaks extracted for each sample and normalised to the sporulation 

efficiency of that strain. The AUC of all 10 muropeptides of interest was summed to give the 

total AUC for each sample. The AUC accounted for by a given muropeptide was then 

expressed as a percentage of the AUC accounted for by all 10 muropeptides.  

Table 2-20: MZmine2 processing parameters 

Step Parameter Value 

Peak detection 
1 

Retention time 0.00-82.02 

 MS level 1 
 Polarity + 
 Spectrum type Profile 
 Mass detector Exact mass 
 Noise 1E3 
Peak detection 
2 

Retention time 0.00-82.02 

 MS level 2 
 Polarity + 
 Spectrum type Centroided 
 Mass detector Centroid 
 Noise 1E1 
Chromatogram 
builder 

MS level 1 

 Polarity + 
 Spectrum type Any 
 Time span  0.2 min 
 Minimum height 2.5E3 
 m/z tolerance 0.0 m/z or 20.0 ppm 
Deconvolution Local minimum search 15.0% chromatographic threshold 

Search minimum in RT range (min) 
0.05 
Minimum relative height (5.0%) 
Minimum absolute height (1E3) 
Minimum ratio of peak top/edge 1.5 
Peak duration range (min) 0.00-2.00 

 m/z centre calculation Median 
 m/z range for MS2 scan 

pairing  
0.02 Da 

 RT range for MS2 scan 
pairing 

0.1 min 

Isotopic peak 
grouper 

m/z tolerance 0.0 m/z or 20 ppm 
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Step Parameter Value 
 RT tolerance 0.2 absolute min 
 Monotonic shape Unchecked 
 Maximum charge  4 
 Representative isotope Lowest m/z 
Alignment- join 
aligner 

m/z tolerance 0.05 m/z or 0 ppm 

 Weight for m/z 75 
 RT tolerance 1.0 absolute minutes 
 Weight for RT 25 
 Require same charge state No 
 Requires same ID No 
 Compare isotope pattern No 
Identification- 
custom 
database 

Database file  

 m/z tolerance 0.05 m/z or 0 ppm 
 RT tolerance  1.0 absolute minutes 
Filter- peak list 
rows 

Minimum number of peaks in 
row 

1 

 Minimum peaks in isotope 
pattern 

2 

 m/z  Unchecked 
 RT  Unchecked 
 Peak duration Unchecked 
 Chromatographic FWHM Unchecked 
 Parameter No parameter identified 
 Only identified? Unchecked 
 Text in identity Unchecked 
 Text in comment Unchecked 
 Keep or remove rows Keep rows that match criteria 
 Keep only peaks with MS2 

scan (GNPS) 
Unchecked 

 Reset the peak number ID Unchecked 
 Remove source peak list after 

filtering  
Unchecked 

MZmine2 parameters used during automated processing of the peptidoglycan of various C. difficile mutants. 
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Chapter 3. Characterisation of C. difficile peptidoglycan throughout engulfment  

3.1. Introduction 

As C. difficile is an anaerobic organism it must undergo radical changes to its physiology 

whilst forming spores to permit transmission through the aerobic environment. Once the 

asymmetric septum is formed and the cell is committed to sporulation, the mother cell must 

engulf the forespore to produce a cell-within-a-cell structure. This process requires 

remodelling of the cell wall in such a manner that the integrity of the cell is not prematurely 

compromised.  

The cell wall of Gram-positive bacteria contains of a thick layer of peptidoglycan, that must 

be constantly synthesised and digested to allow vegetative growth and cell division (Dik et 

al., 2017). Peptidoglycan is comprised of long glycan strands, canonically alternating N-

acetylglucosamine (GlcNAc) and N-acetyl-muramic acid (MurNAc) residues. These long 

glycan strands are then connected by short peptides, typically tetra or tripeptides, that are 

crosslinked between the amino acids at the third and fourth position, or between two third 

position amino acids (Sütterlin et al., 2017).  

C. difficile vegetative cell peptidoglycan characterisation revealed several differences when 

compared to the Gram-positive model organism B. subtilis and the Gram-negative model 

organism E. coli. Whereas E. coli peptidoglycan exclusively contains GlcNAc, both B. subtilis 

and, to a greater extent, C. difficile consist of deacetylated GlcNAc (GlcN): 17% of B. subtilis 

GlcNAc residues are deacetylated, where 93% are deacetylated in vegetative C. difficile 

peptidoglycan (Atrih et al., 1999; Peltier et al., 2011). GlcNAc deacetylation has been 

observed in the peptidoglycan of other species such as Bacillus cereus (Araki et al., 1971), 

Streptococcus pneumoniae (Ohno, Yadomae and Miyazaki, 1982; Vollmer and Tomasz, 2000) 

and Lactobacillus fermentum (Logardt and Neujahr, 1975). The degree of deacetylation has 

been related to both physiological conditions (Balomenou et al., 2013) and as a response to 

suboptimal conditions, for example oxidative stress induced deacetylation in Helicobacter 

pylori (Wang et al., 2010). 

In C. difficile, 3-3 crosslinks account for 73% of crosslinks, in contrast to the predominance of 

4-3 crosslinks in E. coli (Peltier et al., 2011; Sütterlin et al., 2017).  

The peptidoglycan found in the spore cortex is substantially different to that of the 

vegetative cell. Every second MurNAc residue is replaced by a MAL residue, which is unable 

to carry stem peptides. Consequently, crosslinking in C. difficile spore peptidoglycan is 

reduced from 33.8% (Peltier et al., 2011) in vegetative cells to 4.9% (Coullon et al., 2018). 

The degree of deacetylation is also altered, with a reduction from ~93% (Peltier et al., 2011) 

in vegetative cells to ~55% (Coullon et al., 2018) in the spore cortex peptidoglycan. 

C. difficile sporulation is controlled by a series of sigma factors under the control of the 

master regulator Spo0A (Saujet et al., 2013). The mother cell sigma factor σE and the 

forespore sigma factor σF are under the direct control of spo0A (Piggot and Hilbert, 2004; 

Saujet et al., 2013; Pettit et al., 2014; Ribis, Fimlaid and Shen, 2018), with evidence that σF 

does stimulate σE in C. difficile, but is not strictly necessary (Pishdadian, Fimlaid and Shen, 
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2015). SpoIID and SpoIIIAH are produced in the mother cell in response to σE, with σF 

controlling the expression of spoIIP and spoIIQ in the forespore (Saujet et al., 2013). Of note 

is the differential expression of SpoIIP; whilst thought to be confined to the forespore in C. 

difficile, SpoIIP is expressed in the mother cell in B. subtilis (Ribis, Fimlaid and Shen, 2018), 

with so far unknown implications to function and activity. 

We sought to characterise the changes to peptidoglycan throughout engulfment; from the 

crosslink rich vegetative cell, to the MAL containing spore peptidoglycan. Mutant strains 

carrying deletions σE and σF, as well as each of the known engulfment proteins (DMP and 

SpoIIQ and SpoIIIAH (Q:AH)) were used. These strains allow a degree of control of 

sporulation; each strain is sporulation defective and halted at a different stage of 

sporulation due to the absence of either the sigma factor or specific proteins. The wild type 

strain has the master regulator of sporulation, spo0A, under the control of an inducible 

promoter, therefore, in the absence of inducer, no cells will sporulate (Dembek et al., 2017). 

The peptidoglycan of these “arrested”, sporulation-stalled mutants was characterised by 

high resolution HPLC-MS.  

 Identification of muropeptides 

All C. difficile strains used in this analysis were produced and characterised by Dr Marcin 

Dembek. For analysis of the composition of peptidoglycan in vegetative cells, we used a 

strain with spo0A under an inducible promoter (C. difficile 630 ΔpyrEΔerm Ptet-spo0A) in the 

absence of the inducer anhydrotetracycline to ensure cells do not initiate sporulation. As 

such, the peptidoglycan analysed will originate exclusively from vegetative cells, unlike that 

in previous studies (Peltier et al., 2011; Bern, Beniston and Mesnage, 2016) where it is 

possible some cells had already initiated sporulation. 

Peptidoglycan was purified as described in section 2.9.2 and digested with the muramidase 

cellosyl, generating muropeptides for separation by HPLC and analysis by Fourier transform 

mass spectrometry (FT-MS) (section 2.11). HPLC separates the muropeptides (MP) based on 

their hydrophobicity, with monomers generally eluting before crosslinked species. After the 

parent scan, a second level of mass spectrometry was completed on the ion of interest 

(MS2), and, if particular ions were observed, a further level of MS (MS3) was undertaken. All 

ions triggering MS3 were manually analysed. Those that could be identified as muropeptides 

formed a database consisting of 49 unique muropeptides in several charge states with 

various adducts. This database was then used for automatic analysis (section 3.2) of 

muropeptides originating from sporulation-stalled C. difficile mutants. Muropeptides 

determined to be formed due to in-source decay during ionisation (i.e. those missing only 

GlcN or MurNAc residues) were excluded from the database. 

To identify a muropeptide, the neutral mass of the ion of interest was calculated and any 

possible adducts were identified using the parent scan (MS1) (panel B Figure 3-1). For 

example, the ion 866.8774 triggered MS2 and MS3 scans (black filled triangle in hashed box 

of Figure 3-1), but there is a more dominant ion in the spectra at 855.8856. These two ions 

are related by a mass:charge (m/z) difference of approximately 10.99, suggesting that 

866.8774 is the doubly charged sodium adduct of 855.8856. With this in mind, the neutral 
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mass of both the sodium adduct (the mass spectra of which we used to identify the 

muropeptide), and the protonated ion (855.8856) were calculated.  

The first component of the muropeptide is deduced by subtracting the first major ion seen 

in the MS2, in this case 1571.3248, from the calculated neutral mass of the ion (1731.74024 

Da), giving a difference of 160.4, approximately the predicted mass of a GlcN residue (~161). 

From there, the next ion observed (marked II in panel B, Figure 3-1) also corresponds to a 

GlcN loss. This is followed by the ion marked III which corresponds to the loss of a MurNAc 

residue. At this point we can now see this ion (~1133 m/z) in the MS3 (Figure 3-1D), and 

therefore move to using the MS3 for structure determination, as this often provides more 

detail. Ion IV corresponds to an in-line alanine (that is, an alanine that is not at the end of a 

peptide stem represented by the ion 1066 m/z), ion V to a glutamic acid, VI a mesoDAP, VII a 

terminal alanine, VIII a second mesoDAP residue, IX a second glutamic acid residue, and 

finally ion X, an in-line alanine residue. This then leaves a deficit that can be accounted for 

by a MurNAc residue and the mass of the sodium adduct. The accurate mass of this 

structure can be calculated at 1709.75684 Da, with the theoretical mass 1709.7466 Da, 

demonstrating the accuracy and power of FT-MS.  

A similar strategy to the one described above was used for all muropeptides identified in 

this work. However, in some cases it was necessary to use the mass deficit characteristic 

profiles in terms of C. difficile peptidoglycan in order to assign a putative identity to these 

muropeptides. 
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Figure 3-1: Identification of muropeptides from mass spectra.  

Muropeptides were separated by HPLC with the eluate injected into the FT-MS. Parent scans (panel B) are used to calculate the neutral mass of the ion of interest. The 

MS2 (panel C) and MS3 (panel D) are used in conjunction with expected ions to determine the identity of the muropeptide of interest. In this example, the parent ion at 

~866 m/z (marked [M+Na]2+), dashed box) is a sodium adduct of the ion at ~855 m/z ([M+H]2+), therefore the neutral mass of the 855 ion is calculated in addition to that of 

the sodium adduct. An ion corresponding to a GlcN residue is observed as at ~1571 in the MS2. Ion II corresponds to a second GlcN and ion III to a MurNAc residue. At this 

point the MS3 is used. Ions VI-X correspond to Ala, Glu, mesoDAP, terminal Ala, mesoDAP, Glu and a final Ala residue. The remaining mass can be accounted for by the 

presence of a MurNAc residue, and a sodium ion. Thus, the identity is determined as GlcN MurNAc AEmA AEm GlcN MurNAc. 
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 Major muropeptides identified in C. difficile peptidoglycan 

The ten most abundant muropeptides were designated as the major muropeptides and 

identified as described in section 3.1.1. The observed neutral masses, identities and the 

percentage of the area under the curve (AUC) each muropeptide accounts for are shown in 

Table 3-1, with the spectra and muropeptide structures shown in Figure 3-2. Muropeptides 

1 and 2 are considered monomers, muropeptides 3-9 dimers, and muropeptide 10 a trimer.  

Table 3-1: Major muropeptides of interest in C. difficile 630 ΔpyrE Δerm Ptet -spo0A 

MP Retention 
time (mins) 

Observed 
neutral 
mass (Da) 

Identity Cross 
link 
type 

AUC (%) 

1 18.67 885.3815 GlcN MurNAc AEmG N/A 5.6 
2 21.94 899.3971 GlcN MurNAc AEmA N/A 6.6 
3 25.43 1271.5616 GlcN MurNAc AEmA AEm 3-3 1.8 
4 29.15 1695.7309 GlcN MurNAc AEmG AEm  3-3 10.7 
5 30.26 1638.7095 GlcN MurNAc AEm AEm GlcN 

MurNAc 
3-3 5.0 

6 31.11 1766.7681 GlcN MurNAc AEmA AEmG GlcN 
MurNAc 

3-3 2.2 

7a/b 32.11/34.45 1709.7466 GlcN MurNAc AEmA AEm GlcN 
MurNAc 

3-3 53.9 

8 34.05 1751.7572 GlcNAc MurNAc AEmA AEm GlcN 
MurNAc 

3-3 3.1 

9 35.78 1780.7837 GlcN MurNAc AEmA AEmA GlcN 
MurNAc 

4-3 10.7 

10 38.62 2520.0961 GlcN MurNAc AEmA AEm AEm GlcN 
MurNAc GlcN MurNAc 

3-3-3 0.4 

Muropeptides derived from C. difficile 630 ΔpyrE Δerm Ptet- spo0A were separated by HPLC and analysed by FT-

MS. The top ten muropeptides (MP) were identified and are listed in terms of retention time during HPLC. The 

observed mass was calculated and the MS2 and MS3 used to assign an identity to the muropeptide, as 

described in section 3.1.1. For dimers and trimers, crosslinks were predominantly seen between amino acids at 

the third position, though muropeptide 9 was linked between amino acids at the third and fourth positions. 

The area under the curve (AUC) each muropeptide accounts for is given as a percentage of the total area 

under the curve accounted for by all 10 muropeptides of interest. GlcN: glucosamine, MurNAc: N-

acetylmuramic acid, A: alanine, E: glutamic acid, m: mesoDAP, G: glycine, GlcNAc: N-acetylglucosamine. 
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Figure 3-2: HPLC FT-MS analysis of C. difficile 630 ΔpyrE Δerm Ptet -spo0A peptidoglycan.  

Muropeptides were separated by HPLC before analysis by FT-MS. Panel A shows the total ion chromatograph. 

The numbered peaks in panel A correspond to the identities in Table 3-1, and the structures presented in panel 

B. Retention times are given in minutes, along with the theoretical mass of each muropeptide. All MurNAc 

residues are reduced. 

 

The monomer containing the 3-3 cross linked AEm AEmA peptide (muropeptide 2) was the 

most common monomer, accounting for 6.64% of the total area of the 10 

majormuropeptides. This muropeptide was also the most common monomer in the analysis 

by Peltier et al., (2011) and Bern et al., (2016). 

The most common dimer was muropeptide 7, which eluted as two peaks. Again, this 

identification is consistent with previous reports (Peltier et al., 2011; Bern, Beniston and 

Mesnage, 2016).  

Of the top ten muropeptides, only one was a trimer. This is consistent with the lower 

occurrence of trimers (~30% of the area attributed to all identified peaks) reported 

elsewhere (Peltier et al., 2011; Bern, Beniston and Mesnage, 2016). Differences in the 

number of trimers observed may be due to differences in HPLC setup; different buffer 

compositions, gradients, column sizes and types will affect the elution profiles achieved. 

Future work may involve trialling gradients that allow the resolution of more hydrophobic, 

and larger muropeptides, as these tend to elute from the column later, and therefore may 

not have high quality mass spectra associated.  
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Of all the muropeptides identified in this experiment, 67% were fully deacetylated. Peltier et 

al., (2013) reported deacetylation at 93%. This discrepancy is likely because we identified 

several low abundance GlcNAc containing muropeptides, which would result in a lower 

proportion of the total number of unique muropeptides identified being fully deacetylated. 

However, 90% of the top ten muropeptides are fully deacetylated.  

Of the 26 unique dimers identified during this work, 53.1% were 3-3 crosslinked. This is 

consistent with previous characterisations of C. difficile peptidoglycan (Peltier et al., 2011), 

and the analysis of Bern et al. (2016), which was published during this work, where 52.9% 

and 54% of dimers were found to be 3-3 crosslinked, respectively. The proportions of 

monomeric peptide stems to crosslinked is shown in Table 3-2, and compared with previous 

data (Peltier et al., 2011; Bern, Beniston and Mesnage, 2016).  

Table 3-2: Monomers and crosslinked species in C. difficile peptidoglycan 

Muropeptide size Percentage of all identified muropeptides (%) 

This experiment 
n MPs=49 

Peltier et al. (2011) 
n MPs=39 

Bern et al. (2016) 
n MPs=65 

Monomer 34.69 19.44 36.92 
Dimer 53.06 52.78 33.85 
Trimer 12.24 27.78 29.23 

Monomers, dimers and trimers as a percentage of all identified muropeptides in this study compared with 

those of two previous studies (Peltier et al., 2011; Bern, Beniston and Mesnage, 2016). As represented by n 

MPs, this study identified 49 unique muropeptides (not including muropeptides that were identified and 

determined to be the products of in source decay), Peltier et al. (2011) identified 39 muropeptides and Bern et 

al. (2016) 65.  

Whilst our values for monomers and dimers are similar to either Peltier et al (2011) or Bern 

et al., (2016), we identified fewer trimers. This may be due to several factors including 

differences in growth media, phase of C. difficile 630 ΔpyrE Δerm Ptet-spo0A growth, or 

differences in HPLC gradient and acidification prior to analysis. 
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 Muropeptides with alternative terminal amino acids 

As part of this analysis, several muropeptides with termini other than alanine and glycine 

were identified (Table 3-3), largely as described in section 3.1.1. Whilst some of these had 

previously been identified (Bern, Beniston and Mesnage, 2016), seven are described for the 

first time.  

Table 3-3: Muropeptides identified in C. difficile 630 ΔpyrE Δerm Ptet -spo0A with unusual terminal amino acids 

RT 
(min) 

Muropeptide Observed 
neutral 
mass (Da) 

Theoretical 
neutral 
mass (Da) 

Crosslink 
type 

Reported 
by Bern et 
al (2016)? 

17.14 GlcN MurNAc AEmS 915.3991 915.3921 N/A Yes 
19.96 GlcNAc MurNAc 

AEmR  
1026.476 1026.472 N/A No 

26.49 GlcN MurNAc AEmB 913.4207 913.4128 N/A No 
27.54 GlcN MurNAc AEmR 

AEm GlcN MurNAc 
1794.825 1794.811 3-3 Yes 

28.50 GlcN MurNAc AEmS 
AEm GlcN MurNAc 

1725.754 1725.742 3-3 No 

33.00 GlcNAc MurNAcanhydro 
AEm 

850.3505 850.3444 N/A No 

35.17 GlcNAc MurNAcanhydro 
AEmG 

907.3788 907.3658 N/A No 

42.21 GlcN MurNAc AEmI/L 941.4588 941.4441 N/A Yes 
43.77

/ 
43.85 

GlcN MurNAc Aem 
AEmV GlcN MurNAc 

1737.796 1737.778 3-3 Yes 

45.26 GlcN MurNAc AEmY 
AEm GlcN MurNAc 

1801.783 1801.773 3-3 Yes 

46.64 GlcN MurNAc AEmA 
AEmV GlcN MurNAc  

1808.842 1808.815 3-3 Yes 

47.28 GlnNAc MurNAc AEm 
AEmP/V GlcN MurNAc 

1779.811 1779.789 3-3 No 

49.93 GlcN MurNAc AEmF 975.4398 975.4284 N/A Yes 
53.33 GlcN MurNAc AEmI/L 

GlcN MurNAc 
1751.814 1751.794 3-3 Yes 

57.54 GlcNAc MurNAc 
AEmI/L GlcN MurNAc 

1793.827 1793.804 3-3 No 

Observed and theoretical masses are given. Where muropeptides have not been previously identified (Bern, 

Beniston and Mesnage, 2016), the determination of their structure is described below. MurNAcanhydro refers to 

1,6-anhydro-MurNAc, B refers to γ-amino butyric acid. All MurNAc residues were reduced. 

3.1.3.1. GlcNAc MurNAc AEmR 

A monomer was identified with a neutral mass of 1026.48 Da. The presence of GlcNAc can 

be confirmed as the difference between the neutral mass and the ion at 824.29 is 202.2, 

which indicates the loss of a GlcNAc residue. Following this are ions corresponding to 



57 
 

MurNAc, L-Ala and D-Glu (II, III and IV respectively Figure 3-3). This results in ~348.98 Da to 

account for which can be attributed to a terminal arginine residue, assuming the presence 

of a mesoDAP residue. Often the loss of a terminal amino acid can be seen from the sugar 

residues, though this is not the case here. However, the software ChemDraw [PerkinElmer] 

returns a theoretical mass of 1026.4720 Da for this muropeptide, suggesting this is indeed a 

valid identification.  

This terminal amino acid has been previously identified, but with a GlcN-MurNAc sugar 

backbone (Bern, Beniston and Mesnage, 2016) with a neutral mass of 984.4611 Da, 

approximately 42 Da smaller than the muropeptide described here. This further strengthens 

our identification, as a difference of 42 Da corresponds to the addition/removal of an acetyl 

group. It can be expected that this will likely occur on the GlcNAc residue as deacetylation of 

GlcNAc in C. difficile is high, thus suggesting the muropeptide eluting at 19.96 minutes is 

GlcNAc MurNAc AEmR.
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Figure 3-3: Muropeptide eluting at 19.96 minutes. 

The ion marked I corresponds to a loss of a GlcNAc residue from the parent ion. Ions corresponding to MurNAc, L-Ala, and D-Glu are then seen (marked II, III, IV 

respectively). The remaining mass is then attributed to mesoDAP and D-Arg. Panel A is the parent scan, B the MS2 and C the MS3. Ions marked in panels B and C 

correspond to the ion fragments marked in panel D. Panel D provides a schematic of the muropeptide identified with the retention time (RT) given in minutes. The oserved 

and calculated (in parentheses) neutral masses are provided. The ion marked with a triangle in panel A is the parent ion. All MurNAc residues were reduced.. 
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3.1.3.2. GlcN MurNAc AEmB 

The muropeptide eluting at 26.49 minutes was identified as GlcN MurNAc AEmB, with B 

representing γ-aminobutyric acid (GABA). Similarly to the muropeptide eluting at 19.96 

minutes (section 3.1.3.1), the MS2 and MS3 only provided information as far as the glutamic 

acid residue in the peptide stem (Figure 3-4). Again, assuming the loss of a mesoDAP residue 

from the remaining mass of ~276 Da, 104 Da remains to be attributed. It can be assumed 

that this 104 Da will correspond to a terminal amino acid, as the neutral mass is too small to 

account for a dimer structure. A candidate identity for this terminal residue is GABA. 

This muropeptide has a theoretical neutral mass of 913.4128 Da. With a loss of ~103 from 

MurNAc in the MS2 and MS3, observed as the ion present at ~373 m/z, followed by the 

expected ion corresponding to alanine, it can be concluded that this peptide stem likely 

contains a terminal GABA residue, the first time that this has been described in 

peptidoglycan. This muropeptide should be enriched and further characterised to confirm 

the presence of GABA at position 4 of the peptide stem. GABA has been implicated in 

resistance to acidic pH in Clostridium perfringens and is synthesised in vivo via the 

decarboxylation of glutamate by glutamte decarboxylase (Li and Cao, 2010).
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Figure 3-4: Muropeptide eluting at 26.49 minutes.  

The muropeptide eluting at 26.49 was determined to have a neutral mass of 913.42072. GlcN is observed (I), followed by MurNAc, (marked II), L-Ala (ion III) and D-Glu (IV). 

Not marked, but used in the confirmation of the identity, was the ion seen in the MS2 at 650, which corresponds to the terminal GABA residue. Panel A is the parent scan, 

B the MS2 and C the MS3. Ions marked in panels B and C correspond to the ion fragments marked in panel D where the retention time (RT) is given in minutes with the 

observed and calculated (in parentheses) neutral mass. The ion marked with a triangle in panel A is the parent ion. The MurNAc residue is reduced. GABA; γ-amino butyric 

acid. 
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3.1.3.3. GlcN MurNAc AEmA AEmS GlcN MurNAc  

A muropeptide with a D-Ala-mesoDAP 4-3 crosslink and a terminal serine residue was 

identified eluting at 28.5 minutes.  

Whilst a monomer containing a terminal serine residue has been previously described (Bern, 

Beniston and Mesnage, 2016), and is also seen in this experiment (retention time 17.14 

minutes), this is the first time the dimer has been characterised.  

Incorporation of serine to the terminal position of the peptide stem is associated with 

resistance to vancomycin in other bacteria (Ammam et al., 2013). Whilst C. difficile contains 

vancomycin-resistance associated genes, it is not yet resistant to vancomycin, which may be 

a consequence of the high proportion of D-Ala terminating muropeptides (Ammam et al., 

2013). Enzymes required for serine integration into the peptide stem have been identified in 

C. difficile (Ammam et al., 2013), further validating this identification. 
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Figure 3-5: Identification of muropeptide eluting at 28.5 minutes  

Panel A shows the parent scan, panel B the MS2 and panel C the MS3. Ions marked on panels B and C correspond to the ion fragments marked in panel D. Panel D also 

provides the retention time (RT) in minutes, the observed and theoretical masses (theoretical mass in parentheses). Both MurNAc residues are reduced.
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3.1.3.4. GlcNAc MurNAcanhydro AEm 

A muropeptide containing a GlcNAc residue and a 1,6-anhydro-MurNAc residue was 

observed to elute at 33 minutes. The tripeptide monomer with this sugar combination has 

not been reported before, though 1,6-anhydro-MurNAc containing muropeptides have been 

previously reported (Peltier et al., 2011). 

The presence of a 1,6-anhydro-MurNAc residue is usually associated with either the activity 

of a lytic transglycosylase, or corresponding to the terminal sugar in the glycan chain 

(Vollmer, 2008).
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Figure 3-6: Identification of muropeptide eluting at 33.00 minutes.  

The presence of the GlcNAc is clear as a fragment ion (at ~648) from the parent ion. Ions II and III in the MS2 correspond to the 1,6-anhydro-MurNAc residue, and the 

alanine, though the fragmentation pattern is slightly different as the loss of lactyl-alanine is observed. Using the MS3, an ion containing glutamic acid is seen. The remaining 

mass can then be accounted for by the presence of a terminal mesoDAP residue. Panel A is the parent scan, B the MS2 and C the MS3. Ions marked in panels B and C 

correspond to the ion fragments marked in panel D where the retention time (RT) is provided in minutes, the observed and theoretical masses (in parentheses) provided. 

The ion marked with a triangle in panel A is the parent ion. The MurNAc residue is reduced.
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3.1.3.5. GlcNAc MurNAcanhydro AEmG 

Similarly to the muropeptide eluting at 33.00 minutes, the muropeptide observed eluting at 

35.17 minutes was deduced to contain the GlcNAc-1,6-anhydro-MurNAc sugar backbone, 

with the loss of alanine (Figure 3-7 ion III) and a terminal glycine residue (IV) leaving a deficit 

that can be accounted for by the presence of glutamic acid and mesoDAP, as would be 

expected in a peptide stem.  

The presence of a terminal glycine has been reported previously, though never in 

conjunction with this sugar backbone (Peltier et al., 2011; Bern, Beniston and Mesnage, 

2016). 
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Figure 3-7: Identification of muropeptide eluting at 35.17 minutes  

The muropeptide eluting at 35.17 minutes was inferred to be a monomer. Panel A is the parent scan, B the MS2 and C the MS3. Ions marked in panels B and C correspond 

to the ion fragments marked in panel D where the retention time (RT) is provided in minutes, the observed and theoretical masses (in parentheses) provided. The ion 

marked with a triangle in panel A is the parent ion. Ions corresponding to GlcNAc 1,6-anhydro-MurNAc and alanine (ions I II and III respectively) were observed, followed by 

and ion corresponding to a terminal glycine residue (ion IV), the remaining unaccounted mass was accounted for by the presence of the usual D-Glu and mesoDAP residues. 
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3.1.3.6. GlcNAc MurNAc AEmV AEm GlcN MurNAc  

A dimer containing a terminal valine residue was observed eluting at 47.28 minutes (Figure 

3-8). A loss of 117 can be seen following the ion corresponding to the loss of GlcNAc or Ala, 

which may suggest a terminal valine residue, though no further ions that would correspond 

to the remaining structure are seen. Using ChemDraw, the neutral mass of this muropeptide 

was calculated to be 1779.7885 Da. A version of this muropeptide was previously reported 

(Bern, Beniston and Mesnage, 2016), but only with all GlcNAc residues deacetylated to GlcN. 
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Figure 3-8: Identification of muropeptide eluting at 47.28 minutes  

The muropeptide eluting at 47.28 minutes was determined to contain a terminal valine residue, based on the fragment ions observed, and the parent mass. Ions I, II, III, IV 

and V correspond to identification of GlcNAc, GlcN, MurNAc alanine, and glutamic acid respectively. Panel A is the parent scan, B the MS2 and C the MS3. Ions marked in 

panels B and C correspond to the ion fragments marked in panel D where the retention time (RT) is provided in minutes, the observed and theoretical masses (in 

parentheses) provided. The ion marked with a triangle in panel A is the parent ion. Both MurNAc residues are reduced.
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3.1.3.7. GlcNAc MurNAc AEmI/L AEm GlcN MurNAc 

The muropeptide eluting at 57.54 minutes was determined to contain leucine or isoleucine 

at the terminal position. A dimer with this terminal amino acid has been previously 

reported, but was associated with fully deacetylated GlcNAc residues, whereas here, we see 

the partially deacetylated backbone as the loss of GlcNAc from the parent ion is present as 

the strong 1591 ion in the MS2 (Figure 3-9).
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Figure 3-9: Identification of muropeptide eluting at 57.54  

A muropeptide containing a terminal leucine or isoleucine residue was observe eluting at 57.54 minutes. The presence of the leucine/isoleucine can be observed as the ion 

marked V. One GlcNAc residue, and one GlcN residue (ions I and II respectively) are observed, indicating this muropeptide differs from that previously identified (Bern, 

Beniston and Mesnage, 2016).All muropeptides are reduced. Panel A is the parent scan, B the MS2 and C the MS3. Ions marked in panels B and C correspond to the ion 

fragments marked in panel D where the retention time (RT) is provided in minutes, the observed and theoretical masses (in parentheses) provided. The ion marked with a 

triangle in panel A is the parent ion. Both MurNAc residues are reduced.
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The incorporation of non-canonical D-amino acids (NCDAAs) has been previously described 

in C. difficile peptidoglycan (Bern, Beniston and Mesnage, 2016). This work expands on this; 

verifying those NCDAA-termini and identifying novel termini (Table 3-3). 

NCDAAs are also observed in other bacteria (Caparrós, Pisabarro and de Pedro, 1992; Cava 

et al., 2011) and are incorporated post-peptidoglycan synthesis. This is yet to be 

investigated fully in C. difficile, though enzymes that may be involved in terminal amino acid 

switching have been identified (Cava et al., 2011; Ammam et al., 2013).  

 Amidated muropeptides 

One muropeptide, eluting at approximately 31 minutes, was determined to have an 

observed neutral mass of 1412.64784 Da. 

Ions correspondinf to the loss of GlcN, MurNAc and alanine were easily identified. The 

alanine was followed by an ion that could be attributed to either glutamic acid, which would 

be seen as a 129.04312 ion in the MS2/3, or a glutamine residue, which would be seen as a 

128.05912 ion. Therefore, the remainder of the structure was determined using both the 

mass deficit and the masses of known amino acids. 

Using this approach and ChemDraw, two possible structures were identified: i) GlcN 

MurNAc AQmA AQmAlactyl or ii) GlcN MurNAc AQmA AEmAlactyl where one of the 

mesoDAP residues is amidated (Figure 3-10). Both muropeptides are feasible as neither are 

definitively observed in the spectra. However, as losses that could correspond to glutamate 

and mesoDAP (an ion of 128.8611 from alanine followed by an ion the is 171.1995 smaller, 

the amidation on this muropeptide was assigned to the glutamic acid residues, though this 

identification comes with the caveat that the losses observed on the spectra are not 

definitive.  

 

Figure 3-10: Various amidation options of muropeptide eluting at 31.59 minutes  

Panel A shows the expected non-amidated muropeptide and its theoretical neutral mass. Panel B shows the 

configuration of the muropeptide where both expected glutamic acid residues are amidated to glutamate 

(Gln), and its associated theoretical neutral mass. Panel C shows a second possibility, one of the two glutamic 

acid residues are amidated to glutamate, and one of the mesoDAP (m-DAP) residues is amidated to yield m-

DAP†. Muropeptides B and C have equivalent calculated neutral masses, therefore distinguishing between the 

two is difficult.  

The glutamic acid residues may have been amidated in vivo. Analysis by Ammam et al. 

(2013) identified peptidoglycan precursors that may have been amidated either on the Glu 
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or mesoDAP residues, though similar amidation was not identified in analyses of mature C. 

difficile peptidoglycan (Peltier et al., 2011; Bern, Beniston and Mesnage, 2016). Amidation of 

isoGlu has recently been implicated in control of crosslinking in Enterococcus faecium, 

Mycobacterium tuberculosis and Mycobacterium smegmatis: a lack of isoGlu amidation lead 

to a reduction in crosslinking of peptidoglycan by PBPs (Ngadjeua et al., 2018; Pidgeon et al., 

2019). 

Whilst one alanine residue is bound to MurNAc, the second alanine is bound only to a lactyl 

group. This may indicate that, in vivo, there is a MurNAc residue bound here, however this is 

not seen in this analysis. This may be because the MurNAc-alanine bond has been broken in 

vivo, leaving lactyl-alanine, or that the MurNAc has been lost during ionisation.  
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3.2. Peptidoglycan composition during sporulation in C. difficile 

 Stalling sporulation at different stages 

The rationale of this experiment is based on the control of sporulation in C. difficile (Figure 

1-4). We hypothesised that by characterising the peptidoglycan of sporulation-stalled 

strains, we would achieve a “step-by-step” view of sporulation in C. difficile. Deletion of sigE 

and sigF would arrest the sporulation process early in engulfment and would prevent the 

transcription of several genes, including spoIID and spoIIP, respectively. Deletion of spoIID, 

spoIIP, spoIIQ and spoIIIAH would allow the direct impact of these proteins on peptidoglycan 

remodelling to be identified. 

All mutants were able to undergo asymmetric division to varying degrees, but none of these 

strains were able to produce mature spores. Sporulation efficiency was considered to be the 

ability to form asymmetric septa, which was determined to be; 78% for ΔsigE mutants, 

approximately 30% in ΔspoIID/P and ΔsigF mutants, around 45% in ΔspoIIIAH, and as low as 

22% in ΔspoIIQ. It is worth noting that sporulation efficiency in the wildtype strain is 

between 30-50%, depending on growth media, and that all mutants are stalled soon after 

asymmetric septa formation (Dembek et al., 2018). This varying degree of sporulation has 

implications in the peptidoglycan composition analysis, as samples contain a mixture of 

sporulating and vegetative cells. The analysis presented here considers this caveat and all 

calculations were normalised according to sporulation efficiency of the specific strain.  

 Using MZmine2 

MZmine2 is an open source software that allows automated identification of compounds in 

a mass spectrum, given a database (Pluskal et al., 2010). An imported mass spectrum must 

undergo various steps of processing within MZmine2, such as peak detection, peak building 

and chromatograph deconvolution, for example, before ion identification. Following this, a 

custom database can be provided, which MZmine2 then uses to assign identities to the 

various detected ions. The database used in this work was produced by the manual 

evaluation of all MS3 spectra produced as part of the analysis of 630 Δerm Ptet -spo0A cells 

peptidoglycan and is provided in 6.7.Appendix A.  

 Major muropeptides identified throughout sporulation 

The same 10 major muropeptides identified in the parental strain are observed in the 

peptidoglycan from the different mutants, as seen in Figure 3-11, Figure 3-12 and Figure 

3-13. This was unexpected, as we had hypothesised that deletion of key genes would 

prevent peptidoglycan remodelling to varying degrees, but that distinct changes would be 

observed. 
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Figure 3-11: HPLC FT-MS analysis of peptidoglycan from C. difficile 630 Δerm ΔsigE.  

Muropeptides from C. difficile 630 ΔpyrE Δerm Ptet -spo0A and C. difficile 630 Δerm ΔsigE. Panel A shows the total ion chromatographs, with the peaks labelled with 

numbers corresponding to muropeptides identified in analysis of wildtype peptidoglycan (panel B) and the peaks labelled with letters corresponding to those identified in 

the C. difficile 630 Δerm ΔsigE peptidoglycan analysis (panel C). Each muropeptide is accompanied by the retention time in minutes and the theoretical neutral mass. All 

MurNAc residues are reduced.
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Figure 3-12: Peptidoglycan analysis of C. difficile 630 Δerm ΔsigF  

Muropeptides from C. difficile 630 ΔpyrE Δerm Ptet -spo0A and C. difficile 630 Δerm ΔsigF. Panel A shows the total ion chromatograph, with the peaks labelled with numbers 

corresponding to muropeptides identified in analysis of wildtype peptidoglycan (panel B) and the peaks labelled with letters corresponding to those identified in the C. 

difficile 630 Δerm ΔsigF peptidoglycan analysis (panel C). Each muropeptide is accompanied by the retention time in minutes and the theoretical neutral mass.  All MurNAc 

residues are reduced.
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Figure 3-13: HPLC FT-MS analysis of peptidoglycan isolated from C. difficile mutant strains.   

Muropeptides from C. difficile 630 ΔpyrE Δerm Ptet -spo0A, C. difficile 630 Δerm ΔspoIID, C. difficile 630 Δerm 

ΔspoIIP, C. difficile 630 Δerm ΔspoIIQ and C. difficile 630 Δerm ΔspoIIIAH, were separated by HPLC before 

analysis by FT-MS. Panel A shows the total ion chromatograph. Numbered peaks correspond to the identities 

in panel B. Muropeptide B is as identified in Figure 3-11 and Figure 3-12. Retention times are given in minutes, 

with the theoretical mass of each muropeptide. All MurNAc residues are reduced. 
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The area under the curve (AUC) accounted for by each major muropeptide in the 

peptidoglycan from each mutant strain was calculated and is provided in 6.7.Appendix A, 

with Figure 3-14 demonstrating the differences between strains.  

 

Figure 3-14: Variation of each of the major muropeptides across strains  

The area accounted for by each muropeptide and the total area accounted for by the 10 muropeptides of 

interest were normalised to the sporulation efficiency of the strain in question. The area under the curve (AUC) 

refers to the normalised area accounted for by a given muropeptide in a given strain, values for which are in 

6.7.Appendix A. Muropeptide (MP) numbers refer to those identified in Table 3-1. WT; C. difficile 630 ΔpyrE 

Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔsigE, ΔF; C. difficile 630 Δerm ΔsigF, ΔD; C. difficile 630 Δerm 

ΔspoIID, ΔP; C. difficile 630 Δerm ΔspoIIP, ΔQ; C. difficile 630 Δerm ΔspoIIQ and ΔAH; C. difficile 630 Δerm 

ΔspoIIIAH.  

Upon visual analysis of Figure 3-11 to Figure 3-13, the elution profiles of each strain look 

remarkably similar. However, when we use MZmine2 to quantify these changes we see 

there are some differences between strains. For example, muropeptide 3 is not detected by 

MZmine2 in ΔsigE, ΔsigF or ΔspoIID mutant profiles; however, there are peaks in the 

chromatograph that, when checked manually, contain this muropeptide. This phenomenon 

is likely a result of the parameters used during peak detection, peak joining and peak 

identification during the MZmine2 automated analysis. Several parameters may be 

responsible for this discrepancy, and this should be investigated further in the future 

ensuring that all peaks present in the chromatograph, that can be manually identified, are 

detected and identified by MZmine2. The discussion of the results presented in this thesis is 

done with this caveat in mind. Furthermore, the peptidoglycan of C. difficile 630 Δerm ΔsigE 

contains several partially or fully acetylated muropeptides (see section 3.2.4.1). 
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 Changes to peptidoglycan throughout sporulation 

To better interpret these results, the data were processed so that a comparison of the area 

accounted for by each of the muropeptides to the same muropeptide in the wild type strain 

could be undertaken. These results are provided in 6.7.Appendix A and Figure 3-15. 

 

Figure 3-15: Comparison of each major muropeptide peak in mutant vs wildtype strains.   

The difference between the normalised area under the curve (AUC) attributed to a given muropeptide (MP) in 

peptidoglycan isolated from mutant strains compared to that from wild type. Data is provided in 6.7.Appendix 

A. ΔE; C. difficile 630 Δerm ΔsigE, ΔF; C. difficile 630 Δerm ΔsigF, ΔD; C. difficile 630 Δerm ΔspoIID, ΔP; C. difficile 

630 Δerm ΔspoIIP, ΔQ; C. difficile 630 Δerm ΔspoIIQ and ΔAH; C. difficile 630 Δerm ΔspoIIIAH. MP numbers are 

as in Table 3-1..  
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Further to this, the proportions of monomers (muropeptides 1 and 2) to crosslinked 

muropeptides was assessed (Figure 3-16), to investigate if net crosslinking was altered 

throughout sporulation. 

 

Figure 3-16: Changes to crosslinking across mutants  

The proportion of the normalised area under the curve (AUC) accounted for by monomers (muropeptides 1 

and 2) and crosslinked muropeptides (muropeptides 3-10) was calculated and expressed as a percentage. 

Muropeptide (MP) numbers refer to those identified in Table 3-1. WT; C. difficile 630 ΔpyrE Δerm Ptet -spo0A, 

ΔE; C. difficile 630 Δerm ΔsigE, ΔF; C. difficile 630 Δerm ΔsigF, ΔD; C. difficile 630 Δerm ΔspoIID, ΔP; C. difficile 

630 Δerm ΔspoIIP, ΔQ; C. difficile 630 Δerm ΔspoIIQ and ΔAH; C. difficile 630 Δerm ΔspoIIIAH. Data is provided 

in 6.7.Appendix A. 

In all the mutant strains, the greatest changes seen to the muropeptide profile are in 

muropeptides 2 (GlcN MurNAc AEmA) and 7 (GlcN MurNAc AEmA AEm GlcN MurNAc). An 

increase in muropeptide 2 dominates over the reduction in muropeptide 7 in ΔsigF, ΔspoIID 

and ΔspoIIQ, perhaps suggesting that deletion of these genes results in either an increase in 

endopeptidase activity, cleaving the bonds between peptide stems of peptidoglycan 

strands, or, conversely, a reduction in crosslinking between these stem peptides during 

peptidoglycan synthesis. The opposite is true in ΔsigE, ΔspoIIP and ΔspoIIIAH; there is a net 

increase in muropeptide 7. 
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3.2.4.1. C. difficile 630 Δerm ΔsigE peptidoglycan 

As σE controls the early steps in sporulation, it is expected that there will be little difference 

from the vegetative cell peptidoglycan.  

 

Figure 3-17: Changes to the 10 most abundant muropeptides in C. difficile 630 ΔpyrE Δerm Ptet spo0A 

peptidoglycan in C. difficile 630 Δerm ΔsigE peptidoglycan.   

The percentage of the normalised area under the curve (AUC) attributed to each muropeptide is visualised 

with the same muropeptide in the wild type (WT) for comparison. Muropeptide identities correspond to those 

in Figure 3-11. WT; C. difficile 630 ΔpyrE Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔsigE. Data is provided in 

6.7.Appendix A. 

C. difficile 630 Δerm ΔsigE peptidoglycan differs from vegetative cells with respect to 

muropeptides 2, 7 and 8 (Figure 3-15). The reduction in muropeptide 7 and concurrent 

increase in muropeptide 2 may suggest that, by disrupting σE, peptidoglycan synthesis or 

digestion has been affected, leading to a decrease in the crosslinked muropeptide 7. 

Considering that several peptidoglycan remodelling enzymes are regulated by σE and the 

downstream σK (Saujet et al., 2013), for example alanine racemase 2, N-acetylmuramoyl-L-

alanine amidase and UDP-N-acetylmuramyl-tripeptide synthetase, it could be that 

crosslinking is reduced in the sigE mutant during peptidoglycan synthesis. Alternatively, 

peptidoglycan digestion by endopeptidases may be ongoing, digesting muropeptide 7 into 

muropeptide 2. Where σE is inactive, one would still expect SpoIIP activity, as it is under 

control of the forespore-specific σF (Ribis, Fimlaid and Shen, 2018). However, this is partially 

inconsistent with the observation that crosslinked muropeptides as a whole (muropeptides 

3-10) predominate in the ΔsigE mutant (Figure 3-16). It is possible that SpoIIP, or other 

endopeptidases potentially involved in engulfment and not regulated by σE, could have 

some level of specificity that would result in a decrease in muropeptide 7 but be less 

effective in cleaving either Gly termini (muropeptide 4) or the acetylated form of the dimer 

(muropeptide 8). Alternatively, peptidoglycan synthesis and crosslinking enzymes might be 

more active in this mutant.  
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Muropeptide 8 (GlcNAc MurNAc AEmA AEm GlcN MurNAc) is much more predominant in 

this mutant peptidoglycan than is seen in wild type vegetative cells. This muropeptide is 

only partially deacetylated containing both GlcN and GlcNAc. Analysis of the 

chromotographs in Figure 3-11 reveals the presence of acetylated versions of the 10 major 

peaks seen in peptidoglycan in this strain: peak A is the acetylated version of muropeptide 

1, peak B the acetylated version of muropeptide 2, peak C is a partially deacetylated and 

peak D the fully acetylated versions of muropeptide 4, peaks E and G the partially and fully 

acetylated forms muropeptide 9, peak F the fully acetylated muropeptide 7, peak H a fully 

acetylated trimer with a terminal glycine residue, and peak I a fully acetylated version of 

muropeptide 10. This is highly suggestive of a disruption to peptidoglycan deacetylation in 

the σE mutant. Interestingly, σE regulates expression of a deacetylase encoded by 

CD630_13190 (Saujet et al., 2013) and absence of transcription of this enzyme could result 

in a net reduction in deacetylation. That fact that deacetylated muropeptides are still 

present suggests there is some redundancy in deacetylation and indicates that more than 

one deacetylase is active during sporulation.  
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3.2.4.1. C. difficile 630 Δerm ΔsigF peptidoglycan 

Unlike σE, which is produced in the mother cell, σF is produced in the forespore and controls 

the activity of, amongst many other genes, spoIIP, spoIIQ and sigG (Saujet et al., 2013). As σF 

controls spoIIP expression (Saujet et al., 2013; Ribis, Fimlaid and Shen, 2018), it is surprising 

that there is a substantial increase in monomers in this mutant peptidoglycan (Figure 3-18) . 

This suggests that SpoIIP is not the only endopeptidase involved in removing the crosslinks. 

Alternatively, the increase in the monomeric muropeptide 2 and drastic reduction in the 

dimer MP 7 could be a result of disrupting peptidoglycan synthesis, particularly 

transpeptidase-related genes controlled by σF and σG that have yet to be fully characterised 

and investigated in C. difficile. 

 

Figure 3-18: Changes to the 10 most abundant muropeptides in C. difficile 630 ΔpyrE Δerm Ptet spo0A 

peptidoglycan in C. difficile 630 Δerm ΔsigF peptidoglycan The percentage of the normalised area under the 

curve (AUC) attributed to each muropeptide (MP) is visualised with the same muropeptide in the wild type 

(WT) for comparison. Muropeptide identities correspond to those in Figure 3-11. WT; C. difficile 630 ΔpyrE 

Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔsigF. Normalised data is provided in 6.7.Appendix A. 

The intricate nature of the σE and σF regulons means that interpretation of these results and 

elucidation of the role of particular enzymes is challenging. Despite this difficulty, analysis of 

the composition of peptidoglycan of cells stalled at these particular stages provides 

important insight into how and when peptidoglycan is remodelled, not only to allow 

engulfment, but also towards preparing cortex formation.  

3.2.4.2. C. difficile 630 Δerm ΔspoIID peptidoglycan 

Unlike σE, SpoIID is not thought to control the expression of any other genes, though it may 

have implications for SpoIIQ and SpoIIIAH localisation, as SpoIID interacts with SpoIIQ and 

SpoIIIAH in a BACTH system (Dembek et al., 2018). Moreover, SpoIID has been shown to at 

least partially compensate for loss of SpoIIQ (Ribis, Fimlaid and Shen, 2018) which may 

indicate a yet unidentified role of both proteins. 
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Figure 3-19: Changes to the 10 most abundant muropeptides in C. difficile 630 ΔpyrE Δerm Ptet spo0A 

peptidoglycan in C. difficile 630 Δerm ΔspoIID peptidoglycan. The percentage of the normalised area under the 

curve (AUC) attributed to each muropeptide (MP) is visualised with the same muropeptide in the wild type 

(WT) for comparison. Muropeptide identities correspond to those in Figure 3-11. WT; C. difficile 630 ΔpyrE 

Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔspoIID. Normalised data is provided in 6.7.Appendix A. 

It is noteworthy that muropeptides 1, 3 and 10 are not detected by MZmine2 in this mutant 

strain peptidoglycan (Figure 3-19) despite being identified during manual inspection of the 

LC-MS data. This highlights the limitations of using an automated analysis software as it will 

only detect peaks that fit the input parameters. There is a balance to be sought between 

including peaks that are significant and returning false-positive results. Here, it would 

appear the parameters in MZmine2 are too stringent. When testing the software with 

different parameters in order to identify muropeptides 1 ,3 and 10, other artefacts were 

introduced, including in the analysis of vegetative cells, so the original settings (Table 2-20) 

were used throughout. 

Like peptidoglycan from sigE mutants, muropeptide 2 is significantly increased in the 

ΔspoIID mutant. This could be attributed to the continued endopeptidase activity of SpoIIP, 

for example, and other endopeptidases which may also account for the increased 

proportion of monomers in this mutant peptidoglycan compared to the wild type (Figure 

3-13). 



84 
 

3.2.4.3. C. difficile 630 Δerm ΔspoIIP peptidoglycan 

 

Figure 3-20: Changes to the 10 most abundant muropeptides in C. difficile 630 ΔpyrE Δerm Ptet spo0A 

peptidoglycan in C. difficile 630 Δerm ΔspoIIP peptidoglycan The percentage of the normalised area under the 

curve (AUC) attributed to each muropeptide (MP) is visualised with the same muropeptide in the wild type 

(WT) for comparison. Muropeptide identities correspond to those in Figure 3-11. WT; C. difficile 630 ΔpyrE 

Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔspoIIP. Normalised data is provided in 6.7.Appendix A. 

As demonstrated in Figure 3-20 and Figure 3-16, the lack of SpoIIP leads to a peptidoglycan 

very similar to that of seen in vegetative cells. Indeed, the most significant difference is an 

increased proportion of muropeptide 4 (GlcN MurNAc AEmG AEm GlcN MurNAc). It may be 

that SpoIIP is the only endopeptidase able to digest muropeptides with Gly termini for 

example, thus leading to an accumulation of muropeptide 4.  

The similarity with vegetative cell peptidoglycan composition is consistent with what has 

been reported in ΔspoIIP mutants; sporulation is arrested very early and cells cannot 

progress beyond forming asymmetric septa (Dembek et al., 2018). Together, these 

observations seem to indicate that lack of amidase and endopeptidase activity of SpoIIP 

prevents engulfment and the accompanying peptidoglycan remodelling. Indeed, it has been 

proposed that one of the main drivers of engulfment is the cleavage of new peptidoglycan 

by SpoIIP and SpoIID (Ojkic et al., 2016). If so, and as SpoIID activity depends on SpoIIP, 

absence of this protein halts sporulation before engulfment, and possibly the related 

peptidoglycan synthesis, is initiated. 

3.2.4.4. C. difficile 630 Δerm ΔspoIIQ peptidoglycan 

C. difficile SpoIIQ contains a LytM endopeptidase domain, a domain that is present in many 

peptidoglycan digestion enzymes (Meisner et al., 2008; Camp & Losick, 2008). It has been 

hypothesised therefore, that SpoIIQ may act as an endopeptidase during engulfment 

(Crawshaw et al., 2014; Serrano et al., 2016). Whilst the enzymatic activity, if any, of SpoIIQ 

in C. difficile is yet to be established, it is known that SpoIIQ forms a complex with SpoIIIAH 
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(Meisner et al., 2008), and deletion of spoIIQ in C. difficile results in arrest of engulfment 

and the formation of membrane bulges (Serrano et al., 2016; Ribis, Fimlaid and Shen, 2018).  

 

Figure 3-21: Changes to the 10 most abundant muropeptides in C. difficile 630 ΔpyrE Δerm Ptet spo0A 

peptidoglycan in C. difficile 630 Δerm ΔspoIIQ peptidoglycanThe percentage of the normalised area under the 

curve (AUC) attributed to each muropeptide (MP) is visualised with the same muropeptide in the wild type 

(WT) for comparison. Muropeptide identities correspond to those in Figure 3-13. WT; C. difficile 630 ΔpyrE 

Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔspoIIQ. Normalised data is provided in 6.7.Appendix A. 

Crosslinking is much reduced in peptidoglycan isolated from this mutant and is accompanied 

by an increase in monomers, as demonstrated by the increase in muropeptide 2 at the 

presumed expense of muropeptide 7 for example, as demonstrated in Figure 3-16 and 

Figure 3-21. This is likely the result of continued SpoIIP, and potentially other unidentified 

endopeptidases, activity. If this result were solely due to SpoIIP activity, one would expect to 

see a peak corresponding to the AEmA peptide on the chromatograph, though this is 

absent. This could suggest several things: digestion is incomplete, and these peptide stems 

are not released, that they are released but are not observed in these HPLC-MS conditions, 

or that they are released but quickly recycled and therefore don’t accumulate.  

As both SpoIID and SpoIIP are expected to be active in a ΔspoIIQ mutant, it is surprising that 

there is not a large rise in the final SpoIID and SpoIIP products (disaccharides terminating in 

a 1,6-anhydro-MurNAc residue, and small peptide stems respectively (Abanes-De Mello et 

al., 2002; Morlot et al., 2010; Dembek et al., 2018). However, the formation of membrane 

bulges in SpoIIQ mutants seems to indicate that peptidoglycan degradation is affected 

whilst peptidoglycan synthesis continues. Moreover, SpoIIQ has been shown to interact with 

SpoIID and SpoIIP (Dembek et al., 2018), suggesting that lack of SpoIIQ could at least 

partially affect the activity of these peptidoglycan hydrolases. Therefore, the differences 

seen in the peptidoglycan of these mutants, particularly the reduction of crosslinked 

muropeptide 7 and increase muropeptide 2 could be a result of a combination of only 

partial SpoIIP activity and continued peptidoglycan synthesis. 
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3.2.4.5. C. difficile 630 Δerm ΔspoIIIAH peptidoglycan 

SpoIIIAH is not thought to have any enzymatic activity, but forms part of the Q:AH complex, 

proposed to enable mother cell-forespore communication and stabilise the double 

membrane system surrounding the forespore (Morlot and Rodrigues, 2018).  

 

Figure 3-22: Changes to the 10 most abundant muropeptides in C. difficile 630 ΔpyrE Δerm Ptet spo0A 

peptidoglycan in C. difficile 630 Δerm ΔspoIIIAH peptidoglycan The percentage of the normalised area under 

the curve (AUC) attributed to each muropeptide (MP) is visualised with the same muropeptide in the wild type 

(WT) for comparison. Muropeptide identities correspond to those in Figure 3-13. WT; C. difficile 630 ΔpyrE 

Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔspoIIIAH. Normalised data is provided in 6.7.Appendix A. 

Again, muropeptides 2 and 7 are the most altered; muropeptide 2 is increased whilst 7 is 

reduced compared to the wildtype (Figure 3-22). This could also be attributed to continued 

SpoIIP activity. That the overall degree of crosslinking is largely unchanged in comparison to 

the wildtype suggests the changes to muropeptides 2 and 7 are masked by changes to the 

other muropeptides. Deletion of spoIIIAH leads to inverted septa (Serrano et al., 2016), 

preventing sporulation progressing at a very early stage, therefore it is not surprising that 

the spoIIIAH mutant is similar to the vegetative cells, as discussed for the SpoIIQ mutant 

above.  
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3.3. Discussion 

 Vegetative C. difficile 630 ΔpyrE Δerm Ptet-spo0A peptidoglycan 

The major components of exponentially growing C. difficile peptidoglycan had been 

described prior to this work commencing (Peltier et al., 2011). One of the aims of this work 

was to improve on this characterisation, by improving the resolution of the HPLC to allow a 

more complete understanding of peptidoglycan composition in C. difficile. 

The muropeptides identified in this experiment corroborate those previously described 

(Peltier et al., 2011; Bern, Beniston and Mesnage, 2016), and extend the list with novel 

muropeptides (Table 3-3). Muropeptides containing glutamine in place of glutamic acid are 

described for the first time, as is the use of GABA as a terminal amino acid. This suggests yet 

another layer of heterogeneity to peptidoglycan. The significance of these termini in vivo is 

unclear however, due to the low abundance of these muropeptides. Future work should 

involve confirming the prevalence of these novel muropeptides, both in different strains and 

at different phases of growth. Investigation into the impact of the growth media on 

muropeptide termini should also be investigated.  

Whilst the analysis of Bern et al. (2016) did not identify any muropeptides containing 1,6-

anhydro-MurNAc, this analysis confirms previous observations where 1,6-anhyrdo-MurNAc 

was observed (Peltier et al., 2011). A previous analysis identified 2 muropeptides, both 

dimers, containing 1,6-anhyrdo-MurNAc; one with AEmA AEm stem peptides and the second 

with an additional terminal alanine (Peltier et al., 2011). Both muropeptides contained GlcN 

in their backbones. In the current analysis, 3 muropeptides, two monomers and one dimer, 

were identified as containing 1,6-anhydro-MurNAc. In contrast to the dimers seen by Peltier 

et al. (2016), the 1,6-anhyrdo-MurNAc-containing muropeptides identified in this 

experiment contained at least one GlcNAc residue; the monomer contained only GlcNAc, 

whereas the dimer contains one GlcNAc residue and one GlcN residue. This difference may 

be due to the peptidoglycan itself; Peltier et al. (2016) used exponentially growing C. difficile 

630 cultures, whereas we used stationary phase C. difficile 630 ΔpyrE Δerm Ptet-spo0A 

cultures. On the one hand it may be the case that the culture used in the Peltier et al. (2016) 

analysis contained a proportion sporulating cells, which would be expected at this growth 

phase. Our experiment was designed to ensure no sporulating cells would be present by 

using a strain where the master regulator of sporulation spo0A is not active as 

anhydrotetracycline was not included in the growth conditions. This observed difference 

could also be a consequence of the growth phase at harvesting or different growth 

conditions between solid, nutrient rich BHI media (Peltier et al., 2011), liquid, nutrient rich 

TY media (Bern, Beniston and Mesnage, 2016) and liquid, nutrient-limited SM used here. If 

this experiment were to be repeated, it would be interesting to harvest the peptidoglycan 

from exponential phase C. difficile 630 ΔpyrE Δerm Ptet-spo0A cultures grown on solid rich 

media.  

During this work, a further study of C. difficile vegetative cell peptidoglycan was completed 

where novel peptide stem termini were identified (Bern, Beniston and Mesnage, 2016). 

Work presented here offers improved HPLC resolution, confirms some of the termini 

previously identified (Bern, Beniston and Mesnage, 2016) and identifies novel muropeptides, 

therefore furthers our understanding of C. difficile vegetative cell peptidoglycan.  
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 Peptidoglycan changes during early engulfment  

The profiles of peptidoglycan composition of all mutant strains analysed were very similar to 

the vegetative cell peptidoglycan and the changes to the proportions of muropeptides were 

more modest than anticipated. As σE and σF are responsible for the transcription of multiple 

genes, the effect their absence has on peptidoglycan remodelling would be intricate. In any 

case, the small differences observed indicate that some peptidoglycan remodelling is 

required, even at early stages of sporulation. It also provides some indication of other 

potential enzymatic activities involved in remodelling such as specific deacetylases and 

synthases. Most notable were the changes in C. difficile 630 Δerm ΔsigE; several new peaks 

containing partially or fully acetylated muropeptides were identified; this suggests that at 

least one peptidoglycan GlcNAc deacetylase is under the control of σE. 

As SpoIIP and SpoIID are proposed to be responsible for peptidoglycan hydrolysis required 

for engulfment (Meyer et al., 2010; Ojkic et al., 2016), it was surprising to see that, overall, 

changes were not very pronounced. Moreover, as we also know SpoIIQ and SpoIIIAH are 

required for engulfment and lead to membrane bulging (thought to be related to continued 

peptidoglycan synthesis in the absence of peptidoglycan digestion), we also expected a more 

pronounced effect in these mutants. It should be noted that all the mutants are arrested at 

early stages of engulfment and there could be other factors affecting peptidoglycan 

composition that are altered in the absence of these proteins.  

Taken together, these results suggest that we have yet to identify all contributors to 

peptidoglycan remodelling during engulfment. 

 Future work 

In the future, this experiment could be repeated with several improvements. One 

confounding aspect of this analysis is the presence of vegetative cells in the samples 

analysed. Moreover, the low efficiency of sporulation of the mutants (Table 3-4) means that, 

in some cases, vegetative cell peptidoglycan will dominate the analysis. 

Table 3-4: Asymmetric septa formation by various C. difficile strains 

Strain Cells that have produced 
asymmetric septa (%) 

630 Δerm ΔpyrE Ptet -spo0A 0 
630 Δerm ΔsigE 79 
630 Δerm ΔsigF 35 
630 Δerm ΔspoIID 28 
630 Δerm ΔspoIIP 28 
630 Δerm ΔspoIIQ 22 
630 Δerm ΔspoIIIAH 47 

The percentage of cells that had undergone asymmetric septa was assessed by fluorescence microscopy after 

16 hours of growth in SM. Percentages were calculated by dividing the number of cells producing asymmetric 

septa in a field of view by the total number of cells in that field of view and multiplying by 100. All microscopy 

and data processing were undertaken by Dr M Dembek.
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Separating vegetative from sporulating cells prior to peptidoglycan isolation and analysis 

would allow a more definite characterisation of the changes to peptidoglycan composition. 

Taking advantage of well-established fluorescence systems (Serrano et al., 2016) to label 

sporulation-specific proteins would allow separation of vegetative cells and those that have 

undergone asymmetric septation by flow cytometry. Sorting the cells will enrich the 

samples, reducing the contribution of vegetative cell peptidoglycan to the total extracted 

peptidoglycan. The mass spectra of the vegetative cells could then be subtracted from the 

spectra of the mutant strains, leaving only those peaks that represent the muropeptides 

observed in the mutant peptidoglycan.  

It would be interesting to carry out similar experiments with strains lacking σG and σK, which 

control later sporulation events (Saujet et al., 2014). Although engulfment has been 

completed at this point, cortex formation happens at this stage, so more pronounced 

differences to vegetative cells are expected. Comparing the composition at these stages with 

spore cortex peptidoglycan will also provide interesting insights into peptidoglycan 

remodelling during spore formation. 
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Chapter 4. Characterisation of C. difficile sSpoIID and sSpoIIP 

4.1. Introduction 

Both spoIID and spoIIP are found across endospore formers (Galperin et al., 2012; Abecasis 

et al., 2013; Kelly and Salgado, 2019) and are key in engulfment; B. subtilis mutants lacking  

either gene cannot form heat resistant spores (Eichenberger, Fawcett and Losick, 2002) and 

phenotypically form characteristic membrane bulges (Abanes-De Mello et al., 2002; Meyer 

et al., 2010). 

Investigations into the enzymatic activities of SpoIID and SpoIIP have been previously 

conducted using B. subtilis enzymes. B. subtilis and C. difficile SpoIID share 52% sequence 

similarity (36% identity) with the SpoIIP from the 2 organisms sharing 40% similarity (27% 

identity) as determined using EMBOSS Matcher (Waterman and Eggert, 1987). SpoIIP is 

predicted to vary between Bacilli and Clostridia; for example, B. subtilis SpoIIP is predicted to 

contain a N-terminal transmembrane anchor, whereas C. difficile SpoIIP is predicted to 

contain a signal peptide (Kelly and Salgado, 2019). Furthermore, conservation of the 

proposed zinc binding residues of SpoIID is low, even amongst Clostridia (Kelly and Salgado, 

2019). 

B. subtilis SpoIIP acts as an amidase and endopeptidase, removing the peptide stems from 

peptidoglycan to produce the long glycan strands that are the substrate for SpoIID 

transglycosylase activity (Chastanet and Losick, 2007; Morlot et al., 2010). This sequential 

activity has been proposed to prevent the release of free muropeptides, which have been 

implicated in spore germination (Shah et al., 2008). However, the activities of C. difficile 

SpoIID and SpoIIP, and their catalytic residues, had yet to be confirmed.  

Work in this chapter aimed to purify and characterise C. difficile SpoIID and SpoIIP, verify 

their activities in vitro, and to further the understanding of the enzymatic mechanisms 

employed by these proteins. Concurrently with this work, the role of spoIID and spoIIP were 

demonstrated in vivo in C. difficile; deletion of either gene leads to the arrest of sporulation 

and prevents the formation of mature spores (Dembek et al., 2018; Ribis, Fimlaid and Shen, 

2018). 

4.2. Purification and biophysical characterisation 

TMHMM 2.0 (Moller, Croning and Apweiler, 2001) was used to identify predicted 

transmembrane regions of SpoIID and SpoIIP. Cloning of both genes was undertaken in such 

a manner that the identified potential membrane regions were omitted, resulting in 

SpoIID26-354 and SpoIIP27-399, referred to as sSpoIID and sSpoIIP, respectively, throughout the 

rest of this thesis. The theoretical masses of these constructs were calculated using the 

ProtParam server (https:/web.expasy.org/protparam). The resulting strains were used as a 

template to produce point mutants in sSpoIID and sSpoIIP. The constructed plasmids were 

verified by sequencing before transformation into expression strains.  

 Purification 

All sSpoIID and sSpoIIP constructs were purified in the same manner, as described in section 

2.5. Once the protocol was established protein purifications were also routinely undertaken 

by Drs Anna Barwinska-Sendra and Will Stanley. 
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Following the initial affinity sSpoIID purification, fractions eluting during a peak in UV 

measurement were assessed by SDS-PAGE (Figure 4-1A).The ProtParam server estimated 

His-tagged sSpoIID to be 41.682 kDa, therefore the fractions containing a protein of ~40 kDa 

(fractions 4-6) were pooled and incubated overnight with TEV to remove the His-tag. Tag-

free sSpoIID was recovered from the flow through of a second IMAC purification before 

concentration and application to a pre-equilibrated SEC column (Figure 4-1B). The 

theoretical size of tag-free sSpoIID, calculated using Protparam, is 37.684 kDa, therefore 

fractions corresponding to an increase in absorbance, which contained a protein ~38 kDa in 

size, were pooled and concentrated. Using calibration curves (produced by Paola Lanzoni-

Manguchi) and the elution profile of sSpoIID, the estimated size of sSpoIID is approximately 

40 kDa. This suggests sSpoIID was purified as a monomer.  
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Figure 4-1: Purification of sSpoIID.  

sSpoIID was purified as described in section 2.5; by IMAC (A), where absorbance is shown in black, buffer B 

concentration as a dashed blue line, and the fractions pooled and carried onto SEC as red dots. Buffer B is 50 

mM Tris base pH 8.0, 300 mM NaCl, 250 mM imidazole. The SEC chromatograph (B) is labelled as the IMAC 

chromatograph, with fractions marked with red dots analysed by SDS-PAGE (C), demonstrating successful His-

tag removal, that the protein is pure, and is not subjected to degradation during purification. The fractions 

pooled at each stage are marked in red in panel C.
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The purification of sSpoIIDE101A, sSpoIIDC140A, sSpoIIDC146A, sSpoIIDH134A and sSpoIIDH145A was 

carried out following the same protocol as used for sSpoIID (Figure 4-2). All constructs 

behaved in the same manner, eluting as monomers to homogeneity. The results of 

sSpoIIDE101A purification is provided as an example in Figure 4-2.  

 

Figure 4-2: sSpoIIDE101A purification.  

sSpoIIDE101A was purified as described in section 2.5. (A) IMAC purification, (absorbance black line, buffer B 

concentration dashed blue line and fractions pooled and carried forward are marked as red dots) (B) the SEC 

chromatograph and is labelled as panel A. IMAC fractions marked in red in (C) were pooled and incubated with 

TEV prior to application to SEC. Panel C shows the SDS-PAGE analysis of IMAC fractions and the protein post-

SEC. Buffer B is 50 mM Tris base pH 8.0, 300 mM NaCl, 250 mM imidazole.   
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sSpoIIP was purified as described in section 2.5. ProtParam estimated His-tagged sSpoIIP to 

be 38.951 kDa and the tag-free sSpoIIP to be 35.953 kDa. However, both forms of sSpoIIP 

migrate less than expected on SDS-PAGE, closer to the 40 kDa than the 35 kDa marker 

(Figure 4-3A). Despite this, the difference between SEC and IMAC fractions, when analysed 

by SDS-PAGE, indicates that TEV cleavage was successful, so fractions containing protein 

were pooled and concentrated before storage at -80oC.   

 

 

Figure 4-3: sSpoIIP and sSpoIIPH142R purifications  

sSpoIIP (panel A), sSpoIIPH142R (panel B) were purified as described in section 2.4.3.1. Top panels show the IMAC 

purification (absorbance blank line, buffer B concentration dashed blue line and fractions pooled and carried 

forward to marked as red dots). Buffer B is 50 mM Tris base pH 8.0, 300 mM NaCl, 250 mM imidazole. The 

middle panels show the SEC chromatograph and are labelled as the IMAC chromatograph. The bottom panel 

shows the SDS-PAGE analysis of the labelled fractions, those labelled in red were pooled before continuing with 

the purification. sSpoIIPH222R was purified as sSpoIIPH142R.
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Western blot analysis, using either anti-SpoIID or anti-SpoIIP antibodies as appropriate 

(Figure 4-4), suggests that preparations of all proteins were not subject to excessive 

degradation, and thus suitable for biophysical and enzymatic activity analysis.  

 

 

Figure 4-4: SDS-PAGE and western blot analysis of purified proteins.  

Two 12% SDS-PAGE gels, each loaded with 100ng of each protein, were run in parallel, and one was further 

analysed by immunoblot. Panel A shows the SDS-PAGE gel used to resolve sSpoIID and its mutants (right) and 

sSpoIIP and its mutants (left). The second gel was then split and used for western blots (B). Blots were probed 

with rabbit anti-sSpoIID (left) or anti-sSpoIIP (right) antibodies at a 1:15,000 dilution, before conjugation to 

HRP-conjugated secondary antibodies. The sSpoIID antibody is specific to sSpoIID, showing no cross-reactivity 

to sSpoIIP. The sSpoIIP antibody, however, cross-reacts partially with sSpoIID, though the size difference 

between sSpoIID and sSpoIIP demonstrates that the antibody preferentially binds sSpoIIP. Both western blots 

demonstrate the proteins are pure and are not subject to degradation or aggregation. 
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To verify the oligomeric state of sSpoIID and sSpoIIP, purified protein was further analysed 

using the analytical Superdex 200 GL 10/300 Increase column in the presence of 15mM DTT. 

DTT is a reducing agent that prevents the formation of disulphide bonds and thus reduces 

the likelihood of intermolecular interactions. For sSpoIID, comparison of the DTT untreated 

and treated chromatographs (Figure 4-5A) suggests there is little effect of DTT. In the case of 

sSpoIIP, the small peak eluting at approximately 12 ml (Figure 4-5B upper panel) is much 

reduced when the sample was treated with DTT (Figure 4-5 lower panel), suggesting that it 

may correspond to an oligomeric form of sSpoIIP mediated by disulphide bonds. Using 

elution volumes and calibration curves produced by Dr Anna Barwinska-Sendra and Paola 

Lanzoni-Manguchi, sSpoIIP is estimated to be ~52.6 kDa (significantly larger than estimated 

by Protparam), and the small peak eluting at ~12 minutes is estimated to be 147.53 kDa, 

suggesting this small bump may represent either dimerisation or trimerisation of sSpoIIP. 

Estimation of protein mass using gel filtration relies on the assumption that a protein is 

globular in shape; a non-globular protein of a given size will travel through the column 

differently to a globular protein of the same size and elute at a different volume, and thus 

the estimation of their size will be affected (Sahin and Roberts, 2012). In this case, sSpoIIP is 

estimated to be ~53 kDa by gel filtration methods, whilst the predicted mass by Protparam is 

~36kDa. Protparam predicts the mass of a protein by summing the mass of each amino acid 

minus the mass of a water molecule per peptide bond formed (Gasteiger et al., 2005).  

As the majority of purified protein appeared to be in a monomeric state, the purification 

protocol was considered to be appropriate., and the Protparam derived estimated size of 

~36 kDa used throughout.  

 

 

Figure 4-5: Purification of sSpoIID and sSpoIIP in the presence of 15mM DTT  

sSpoIID (A) and sSpoIIP (B) were further purified using an analytical grade SEC column (top panels). sSpoIID and 

sSpoIIP were also incubated and eluted in buffer supplemented with 15mM DTT (bottom panels). Addition of 

DTT removes the smaller, earlier eluting peak seen in the sSpoIIP chromatographs (panel B).   
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 Characterisation of C. difficile sSpoIID and sSpoIIP 

Before the enzymatic activities of sSpoIID and sSpoIIP were investigated, the stability of the 

proteins was assessed by circular dichroism (CD), and the presence/absence of divalent 

metal ions assessed by inductively coupled plasma mass spectrometry (ICP-MS). 

4.2.2.1. Circular dichroism 

The CD spectra of sSpoIID, sSpoIIP and all associated mutants were measured and processed 

as described in section 2.7.1 and are presented in Figure 4-6. The predicted secondary 

structure of each wild type protein was also assessed using PSIPRED, an online server which 

predicts the secondary structure of a provided protein sequence 

(bioinf.cs.ucl.ac.uk/psipred/) (Jones, 1999; Buchan and Jones, 2019), (Table 4-1). 

 

Figure 4-6: Circular dichroism spectra of sSpoIID, sSpoIIP and mutants   

Panel A shows the CD spectra of sSpoIID and related mutants after deconvolution by Dichroweb as described in 

section 2.7.1 and Dembek et al., 2018. Panel B shows the spectra associated with sSpoIIP and its mutants. 

Figure modified from Dembek et al., 2018. CD experiments were aided by Dr Anna Barwinska-Sendra. D; 

sSpoIID, DE101A; sSpoIIDE101A, sSpoIIDH134A; sSpoIIDH134A, DC140A; sSpoIIDC140A, DH145A; sSpoIIDH145A, DC146A; 

sSpoIIDC146A, P; sSpoIIP, PH142R; sSpoIIPH142R, PH222R; sSpoIIPH222R.  
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Table 4-1: Secondary structure prediction and melting temperature of sSpoIID, sSpoIIP and associated mutants 

Protein Method Helix 
(%) 

Strand 
(%) 

Coil 
(%) 

Disordered 
(%) 

Tm 
(oC) 

sSpoIID PSIPRED 24 21 - 55  
CDSSTR 33 17 20 29 60.5 

sSpoIIDE101A CDSSTR 36 18 20 26 63.4 
sSpoIIDC140A CDSSTR 33 17 21 29 54.5 
sSpoIIDC146A CDSSTR 33 17 21 29 57.1 
sSpoIIDH134A CDSSTR 35 17 22 29 55.3 
sSpoIIDH145A CDSSTR 28 19 22 31 54.5 
sSpoIIP PSIPRED 25 11 - 64  

CDSSTR 30 20 20 29 53.7 
sSpoIIPH142R CDSSTR 17 18 26 30 54.2 
sSpoIIPH222R CDSSTR 16 18 25 31 57.8 

PSIPRED predictions of secondary structure composition and CD spectra derived values using the CDSSTR 

algorithm provided by DiChroweb. Melting temperatures, derived using JASCO software, are also provided for 

each construct.  

Visual assessment of the spectra of sSpoIID, its associated mutants (Figure 4-6), and 

reference spectra suggest the proteins are folded and predominantly α-helical (Greenfield, 

2006). This is reflected in the CDSSTR outputs, where 24-36% of each protein is designated 

as α-helical. 

The change in CD of each protein was assessed at 222nm as the temperature was increased 

from 20 oC to 95 oC to determine the melting temperature of the protein, results are 

reported in Table 4-1. Mutation of any of the sSpoIID zinc binding sites (H134, C140, H145 or 

C146) results in a reduction in both ordered domains and in melting temperature, suggesting 

that zinc binding may play a role in the stability of the enzyme. Interestingly, mutation of the 

catalytic glutamate residue increases the melting temperature, presumably as the protein 

becomes more ordered. Similarly, mutation of either of the catalytic residues of sSpoIIP 

increases the melting temperature. 

4.2.2.2. ICP-MS 

The cobalt, copper, manganese and zinc occupancy of purified proteins was assessed by ICP-

MS as a published SpoIID crystal structure was proposed to coordinate zinc (Nocadello et al., 

2016), and SpoIIP may bind zinc based on similarity to CwlV, which can use zinc, cobalt or 

manganese for activity (Shida et al., 2001). Experiments were performed by either Dr Kevin 

Waldron or Dr Anna Barwinska-Sendra. Results are summarised in Figure 4-7 and Figure 4-8. 

Data collected for sSpoIID and sSpoIIDE101A demonstrate that sSpoIID binds zinc in a 1:1 ratio 

and that glutamate 101 is not involved in metal binding. Mutation of the proposed zinc 

binding residues C140 or H145 to alanine abolishes zinc binding, whereas C146A and H134A 

attenuates zinc binding to varying degrees. One would expect that mutation of any of these 

residues would abolish zinc binding, however, it appears H134 and C146 are less critical for 

metal coordination. It may be that other nearby residues or ions can compensate for the loss 

of either of these residues and thus allow some degree of zinc binding. These data confirm 
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that sSpoIID uses C140, C146, H134 and H145 to coordinate Zn2+, as suggested by Nocadello 

et al. (2016) based on their crystal structures (PDB accession identities: 5l1T and 5TXU). As a 

result, subsequent peptidoglycan digestion experiments (section 4.4) were performed in the 

presence of 10mM ZnCl2. 

 

Figure 4-7: ICP-MS analysis of sSpoIID and sSpoIID mutants 

sSpoIID (A), sSpoIIDE101A (B), sSpoIIDH134A (C), sSpoIIDC140A (D), sSpoIIDH145A (E) and sSpoIIDC146A (F) were analysed 

by ICP-MS. Standard deviations from 2 biological replicates are shown. ICP-MS analysis was undertaken by Dr 

Anna Barwinska-Sendra and Dr Kevin Waldron. 
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Figure 4-8: ICP-MS analysis of sSpoIIP and sSpoIIP mutants.  

sSpoIIP (A), sSpoIIPH142R (B), and sSpoIIPH222R (C) were analysed by ICP-MS. Standard deviations from 2 biological 

replicates are shown. ICP-MS analysis was undertaken by Dr Anna Barwinska-Sendra.  
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4.3. Crystallisation of sSpoIID and its point mutants 

sSpoIID and the E101A variant produced diffraction-quality crystals within 24 hours in Index 

condition C6: 60% TascimateTM pH 7.0. E101A was the only sSpoIID mutant to produce 

crystals, which strengthens the hypothesis that the zinc ion has a structural role, stabilising 

the protein. Diffraction experiments were undertaken by Dr Arnaud Baslé. 

 Data processing  

Data collected was indexed, refined, integrated and scaled using Dials (Gildea et al., 2014). 

Resulting data collection parameters are detailed in Table 4-2. 

Table 4-2: Data collection statistics  

Parameter sSpoIIDE101A 

Resolution (Å) 66.1- 2.3 (2.38-2.30) 
Unit cell dimensions  
a, b, c (Å) 97.6046, 97.6046, 

106.054 
α, β, γ (o) 90, 90, 120 
Space group P 31 2 1 
Rmerge 0.01947 (0.1471) 
Total reflections 52848 (5236) 
Unique reflections 26429 (2618) 
Mean I/σI 16.42 (3.09) 
Completeness (%) 99.96 (100.00) 

Values in parentheses relate to the highest resolution shell. 

Data scaled to 2.3 Å was input into CCP4i2 (Potterton et al., 2018), where unit cell content 

was estimated using the Matthews coefficient (Kantardjieff and Rupp, 2003), which 

suggested either 1 or 2 molecules of sSpoIIDE101A could be present in the asymmetric unit 

(Table 4-3).  

Table 4-3: Cell content of sSpoIIDE101A crystal 

Nmol Solvent volume (%) Matthews coefficient Probability 

1 66 3.65 0.55 
2 33 1.82 0.45 

CCP4i2 was used to estimate the cell contents of the crystal. The probabilities of one or two molecules (Nmol) 

in the asymmetric unit were similar. 

 Molecular replacement, refinement and validation 

Within CCP4i2, Phaser (McCoy et al., 2007) was provided with chain A of a previously solved 

SpoIID structure (PDB ID: 5TXU) (Nocadello et al., 2016) and used for molecular replacement. 

Phaser was run twice; once with 1 molecule per asymmetric unit, and once with 2 molecules, 

based on the analysis of the cell content (Table 4-3).  

Using Phaser to search for 2 molecules per asymmetric unit results in a clash within the unit 

cell. Molecular replacement searches with one molecule per asymmetric unit resulted in a 
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good solution, as indicated by the absence of clashes as well as a TFZ score of 16.8 and initial 

and final log-likelihood gain scores of 317 and 6622 respectively.  

The resulting map and model were then refined using REFMAC5 (Vagin et al., 2004) in 

CCP4i2. Iterative cycles of manual model building in Coot (Emsley et al., 2010) and 

refinement were carried out until Rwork and Rfree converged. MolProbity (Chen et al., 2010) 

was used to assess the quality of the resulting model. Final refinement and model validation 

where carried out using Phenix (Adams et al., 2010, 2011). The final model statistics are 

show in Table 4-4.  

Table 4-4: sSpoIIDE101A refinement statistics 

Parameter sSpoIIDE101A 

Rwork (%) 0.18 (0.22) 
Rfree (%) 0.21 (0.28) 
No. of non-H atoms 2372 
No. of macromolecules 2258 
No. of solvent atoms 113 
Protein residues 283 
Ligands 1 
RMSD  
Bond angle (O) 0.81 
Bond length (Å) 0.007 
Average B factor (Å2) 58.03 
Ramachandran plot, residues 
in 

 

Most favoured regions (%) 96.80 
Allowed (%) 3.20 
Outliers (%) 0.00 

Refinement statistics of the final SpoIIDE101A model, provided by Phenix after multiple rounds of refinement 

using REFMAC5 within CCP4i2 and a final refinement cycle within Phenix.  
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 Model of sSpoIIDE101A 

The refinement statistics (Table 4-4) are summarised by Phenix during model validation into 

a Polygon graph (Urzhumtseva et al., 2009) (Figure 4-9). The Polygon graph allows 

comparison between our model and a predetermined set of models, of similar resolution, in 

the PDB. A good model will have a small, roughly equal polygon shape and be within the 

bounds of the “spokes”.  

 

Figure 4-9: Polygon of sSpoIIDE101A  

Within Phenix, a Polygon graph was produced to allow rapid assessment of key model parameters. Root mean 

square deviation (RMSD) of both the angles and bond lengths are given, along with Rfree and Rwork, the average 

B factor and the clash score. Colours correspond to the frequency with which the value of a given parameter is 

observed within the predefined PDB set with red being a rare value, green usual and blue often seen. 

As seen in Figure 4-9, the polygon generated from our data suggests a good solution, with 

the only outlier being the average B factor, though this is still within acceptable ranges.  

Rwork and Rfree (calculated from 5% non-refined reflections) differ by 0.03%, which is well 

within the ±0.05 difference considered acceptable for a good model (Kleywegt and Jones, 

1997). The root mean square deviation (RMSD) of the bond angles and lengths suggest the 

mean bond angle and length in this model are within the ranges of those published in the 

PDB, which reflects a favourable geometry. Clashes refers atoms being too close which 

would indicate poor positioning, this model has no such clashes. Furthermore, the model has 

no Ramachandran outliers, with the majority of residues in favoured conformations.  

The model is presented in Figure 4-10. 
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Figure 4-10: Crystal structure of sSpoIIDE101A  

Cartoon representation of the SpoIIDE101A structure is show in purple (A). (B) shows the zinc-binding site, and 

relative position of A101 in more detail, with the residues Zn-binding shown as yellow sticks. The zinc atom is 

shown as a grey sphere. A101 is shown as red sticks.   
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4.4. Investigation of sSpoIID and sSpoIIP enzymatic activities 

 sSpoIIP produces the substrates for sSpoIID activity 

To characterise the activities of sSpoIID and sSpoIIP, the purified proteins, alone and in 

combination, were incubated with purified E. coli peptidoglycan. The products of this 

reaction were then further digested with the muramidase cellosyl. Cellosyl digests the 

glycosidic bond between GlcNAc and MurNAc and therefore allows for soluble muropeptides 

to be resolved and identified by HPLC-MS.  

Digestion of E. coli peptidoglycan with cellosyl alone results in 2 major peaks eluting at 

approximately 20 and 40 minutes. These peaks were identified to contain GlcNAc MurNAc L-

Ala D-Glu mesoDAP D-Ala muropeptide (muropeptide 4 Figure 4-11 A and B) and a 4-3 

crosslinked GlcNAc MurNAc L-Ala D-Glu mesoDAP D-Ala dimer, respectively (muropeptide 6 

Figure 4-11 A and B).  

Digestion with sSpoIID followed by cellosyl results in an almost identical chromatograph, 

with the only significant peaks containing muropeptides 4 and 6 (Figure 4-11). This 

demonstrates that sSpoIID has no enzymatic activity on intact E. coli peptidoglycan, as has 

been previously reported for B. subtilis SpoIID (Morlot et al., 2010). If sSpoIID were active, 

one would expect the release of 1,6-anhydro-MurNAc residues, the product of lytic 

transglycosylases (Morlot et al., 2010; Vermassen et al., 2019). 

Incubation with sSpoIIP alone results in a chromatograph with a different elution profile 

(Figure 4-11). Peak 3 is the product of amidase activity on peak 6; as sSpoIIP digests both 

MurNAc-L-Ala bonds in the dimer, it releases the crosslinked peptides. muropeptide 1 (D-Ala 

D-Glu mesoDAP D-Ala) could be produced in two ways; either by amidase activity on peak 4, 

or by endopeptidase activity on peak 3 (L-Ala D-Glu mesoDAP D-Ala crosslinked to L-Ala D-

Glu mesoDAP D-Ala), and is the final product of sSpoIIP digestion. These results confirm that 

sSpoIIP is both an amidase and an endopeptidase and demonstrate that C. difficile sSpoIIP 

functions as B. subtilis SpoIIP (Morlot et al., 2010).  

When sSpoIID and sSpoIIP are co-incubated with peptidoglycan before further digestion with 

cellosyl, the chromatograph changes again; muropeptides 1 and 3 are still present, showing 

that sSpoIIP is active (Figure 4-11). The AUC of peak 2 increases. Peaks 2 and 5 both contain 

an expected product of transglycosylase activity; a muropeptide terminating in a 1, 6-

anhydro-MurNAc residue. Peak 2 is the further digestion of peak 5, producing the smallest 

product of sSpoIID activity. This result verifies previous observations from experiments using 

B. subtilis proteins; that SpoIID requires the products of SpoIIP activity, the denuded glycan 

strands, as a substrate (Figure 4-11C) (Morlot et al., 2010). Dye release assays conducted 

using B. subtilis SpoIID and SpoIIP suggested that SpoIID may have a stimulatory effect on 

SpoIIP activity (Morlot et al., 2010), however, this was not observed in our semi-quantitative 

HPLC-MS assays. This may be due to differences in analysis technique rather than a 

difference in SpoIID/SpoIIP activity between B. subtilis and C. difficile.  

Interestingly, we see 1,6 anhydro-MurNAc containing muropeptides (peaks 2 and 5 Figure 

4-11) in the SpoIIP alone digest. This is surprising considering SpoIIP is not predicted to have 

any transglycosylase activity (Gutierrez, Smith and Pogliano, 2010; Morlot et al., 2010). 

Therefore, we hypothesised that these 1,6-anhydro-MurNAc-containing residues were the 



106 
 

consequence of SpoIIP releasing the peptide stems from the naturally occurring 1,6-

anhydro-MurNAc-containing termini peptidoglycan strands. To test this hypothesis, we 

digested peptidoglycan both in the presence and absence of cellosyl. As can be seen in 

Figure 4-12, only when cellosyl is present is peak 5 observed, confirming our hypothesis.  

 

 

Figure 4-11: sSpoIIP and sSpoIID digest peptidoglycan.  

sSpoIIP produces the substrates for sSpoIID activity. (A) cellosyl, sSpoIID (D), sSpoIIP (P) and sSpoIID sSpoIIP 

(D+P) co-incubations (bottom to top) of E. coli peptidoglycan. Numbers above peaks refer to panel (B). 

Observed mass and structures of muropeptides identified in each peak. Theoretical mass is shown in brackets. 

All MurNAc residues are reduced. Panel C is a schematic of SpoIIP and SpoIID activity, SpoIIP creates denuded 

sugars for SpoIID activity and breaks crosslinks between peptides.  
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Figure 4-12: E. coli peptidoglycan digestion by sSpoIIP in the presence and absence of cellosyl.  

Due to the unexpected presence of muropeptide 5 when digesting E. coli peptidoglycan with sSpoIIP (P + 

Cellosyl), we digested the same peptidoglycan with sSpoIIP but omitted the cellosyl digestion step (P- Cellosyl). 

When cellosyl is absent, muropeptide 5 is not observed, suggesting sSpoIIP digests the peptide stems from 

peptidoglycan with naturally occurring 1,6-anhydro-MurNAc residues present. Panel A shows the HPLC 

chromatograph with the numbered peaks corresponding to the muropeptides identified in panel B. Observed 

and theoretical masses (brackets) are given. All MurNAc residues are reduced. 

 sSpoIIP H142 and H222 are required for enzymatic activity 

H142 and H222 of C. difficile sSpoIIP were mutated to arginine, as they are the equivalent of 

H189 and H278 residues identified as potentially responsible for amidase activity in B. 

subtilis (Chastanet and Losick, 2007).  

When peptidoglycan is incubated with either mutant, the chromatographs are equivalent to 

that seen after digestion with cellosyl alone (Figure 4-13). If H142 and H222 were involved 

solely in amidase activity, one would expect an increase in muropeptide 4 and a concurrent 

reduction in muropeptide 6; as the endopeptidase activity of sSpoIIP followed by the 

muramidase activity of cellosyl would digest peak 6 into peak 4. This is not observed, 
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suggesting that H142 and H222 are involved either directly or indirectly in endopeptidase 

activity. Furthermore, these proteins are unable to produce the substrates required for 

sSpoIID activity as no sSpoIID products are detected when co-incubating peptidoglycan with 

sSpoIIPH142R or sSpoIIPH222R and sSpoIID. 

 

 

Figure 4-13: sSpoIIP H142 and H222 are required for enzymatic activity.   

sSpoIIP H142R and H222R mutants were incubated alone and with sSpoIID. Both mutants appear to be 

enzymatically inactive, as digests resemble those of sSpoIID alone and no 1,6-anhydro-MurNAc residues are 

observed (A and B). Panel C contains a schematic of sSpoIID and sSpoIIP activity. Numbered peaks in panel A 

refer to the muropeptides in panel B. Observed and theoretical masses are provided (theoretical masses are 

given in parentheses). All MurNAc residues are reduced D; sSpoIID, P; sSpoIIP, H142R; sSpoIIPH142R, H222R; 

sSpoIIPH222R.  
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 Glutamate 101 is responsible for sSpoIID catalysis. 

Alignment of B. subtilis and C. difficile sSpoIID identifies E101 as the putative enzymatic 

residue in C. difficile (Morlot et al., 2010; Nocadello et al., 2016). Co-incubation of 

sSpoIIDE101A and sSpoIIP results in a chromatograph like that seen when only sSpoIIP is used 

(Figure 4-14 and Figure 4-11 respectively); amidase and endopeptidase products are 

observed, but muropeptide 2 is not enriched, suggesting no lytic transglycosylase activity. 

This confirms the results of Nocadello et al. (2016) which identified E101 as required for 

catalysis.  

 Mutation of sSpoIID zinc coordinating residues  

Based on the crystal structure determined by Nocadello et al., one would expect that 

mutating any of the four metal binding residues would abolish zinc binding and enzymatic 

activity. However, this does not appear to be the case, as seen in our ICP-MS analysis and 

confirmed by enzymatic activity assays.  

Incubation of peptidoglycan with sSpoIIP and either sSpoIIDC140A or sSpoIIDH145A results in a 

much-reduced production of muropeptide 2 when compared to co-incubation with wild type 

sSpoIID (Figure 4-14). This suggests that the enzymatic activity of these zinc-binding mutants 

is reduced. Interestingly, incubation with sSpoIIDC146A and sSpoIIDH134A (Figure 4-14 and 

Figure 4-15 respectively) reduces sSpoIID activity to a lesser extent; 1,6-anhydro-MurNAc 

containing muropeptides are identified in both analyses, suggesting that not all zinc binding 

residues are essential for enzymatic activity. These results differ from previous 

investigations; mutation of any zinc binding residues to alanine abolished SpoIID activity in 

dye-release assays (Nocadello et al., 2016). We suggest this is a result of our more sensitive 

methodology, LC-MS, rather than relying on spectroscopic measurement of a colour change. 
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Figure 4-14: Residues required for sSpoIID activity.   

Whilst E101 is required for activity, mutation of sSpoIID zinc binding residues produces different effects 

depending on the residue mutated. (A) sSpoIIDE101A is inactive; no additional 1,6-anhydro-MurNAc containing 

muropeptides are produced when co-incubated with sSpoIIP alone. Mutation of C140 or H145 reduces sSpoIID 

activity to a greater extent than mutation of C146 or H134. (B) shows schematics of the muropeptides 

corresponding to the peaks labelled in (A) with observed masses provided. Theoretical masses are provided in 

parentheses. All MurNAc residues are reduced. (C) is a schematic of sSpoIID and sSpoIIP activity on 

peptidoglycan. D; sSpoIID, P; sSpoIIP, E101A; sSpoIIDE101A, C140A; sSpoIIDC140A, C146A; sSpoIIDC146A and H145A; 

sSpoIIDH145A.  
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Figure 4-15: Digestion of E. coli peptidoglycan by sSpoIIDH134A.  

(A) HPLC trace of E. coli Δlpp peptidoglycan digested by cellosyl, sSpoIIDH134A, and sSpoIIDH134A with sSpoIIP. 

Numbered peaks refer to the structures presented in panel B, where observed (top) and theoretical masses (in 

parentheses) are provided. All MurNAc are reduced. DH134A; sSpoIIDH134A, P; sSpoIIP  
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4.5. Acetylation state of peptidoglycan influences sSpoIID and sSpoIIP activity 

Both in this work (section 4.4), and in previous literature (Gutierrez, Smith and Pogliano, 

2010; Morlot et al., 2010; Nocadello et al., 2016), all investigations on sSpoIID and sSpoIIP 

activity were performed using E. coli peptidoglycan, even though the natural SpoIID and 

SpoIIP substrate is C. difficile peptidoglycan. Although the overall architecture of long glycan 

strands made of alternating sugar residues crosslinked by short peptide stems is shared, 

there are some key differences between the Gram-positive C. difficile and Gram-negative E. 

coli peptidoglycan. Whilst 4-3 cross links predominate in E. coli peptidoglycan (Glauner, 

Höltje and Schwarz, 1988), 3-3 crosslinks between mesoDAP residues are the norm in C. 

difficile vegetative cell peptidoglycan (Peltier et al., 2011; Bern, Beniston and Mesnage, 

2016). Furthermore, the sugar backbone of the two peptidoglycans are subtly different; 

where E. coli peptidoglycan is formed of alternating GlcNAc and MurNAc residues, C. difficile 

peptidoglycan is ~90% deacetylated on the GlcNAc residue, resulting in strands of alternating 

glucosamine (GlcN) and MurNAc residues (Peltier et al., 2011).  

To investigate the impact of these differences, if any, on sSpoIID and sSpoIIP activity, both E. 

coli and C. difficile peptidoglycan were chemically acetylated, with the position of any 

additional acetyl groups assessed by mass spectrometry. As can be seen in Figure 4-16, 

untreated E. coli peptidoglycan is predominantly formed of GlcNAc-MurNAc-AEmA 

monomers (peak 1) and 4-3 crosslinked dimers (peak 2). When chemically acetylated, an 

additional acetyl group is positioned on the mesoDAP residue of the monomer, forming peak 

6 and on one of the two mesoDAP residues of the dimer, (to give peak 7 (Figure 4-16). This 

can be seen in the shift in retention time and the addition of ~42Da to the neutral mass of 

the major peaks in the chromatograph.  

In untreated C. difficile peptidoglycan, GlcN-MurNAc-AEmA monomers (Figure 4-17 peak 1) 

and dimers (Figure 4-17 peak 2) predominate. When this peptidoglycan is chemically 

acetylated, acetyl groups are added to available GlcN residues to form GlcNAc and to 

mesoDAP residues as described for E. coli (Figure 4-17 peaks 4 and 5). By comparing the 

digestion profiles of treated and untreated E. coli and C. difficile peptidoglycan, the effect of 

acetyl group and crosslink position on sSpoIID and sSpoIIP enzymatic activities was probed.  
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Figure 4-16: Digestion of chemically acetylated peptidoglycan by sSpoIID and sSpoIIP  

E. coli Δlpp peptidoglycan was digested with cellosyl, sSpoIID (D), SSpoIIP (P) or both sSpoIID and sSpoIIP (D + P) 

and analysed by HPLC-MS. Chemically acetylated E. coli Δlpp peptidoglycan was similarly digested. Numbered 

peaks contain the corresponding muropeptides schematised in panel B. Peaks A and B could not be identified. 

Ac-mDAP corresponds to acetylated mesoDAP. Observed and theoretical masses (in brackets) are provided. All 

MurNAc residues are reduced.  
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Figure 4-17: Digestion of chemically acetylated C. difficile peptidoglycan  

Cellosyl, sSpoIID (D), sSpoIIP (P) or sSpoIID and sSpoIIP (D + P) were incubated either with untreated C. difficile 

peptidoglycan (lower half of panel A), or with chemically acetylated C. difficile peptidoglycan (upper half panel 

A) and the resulting muropeptides resolved and identified using LC-MS. Numbers in panel A correspond to the 

muropeptides in panel B, where observed masses and theoretical masses (in brackets) are provided. Ac-mDAP; 

acetylated mesoDAP. All MurNAc residues are reduced. 
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Digestion of untreated E. coli peptidoglycan with sSpoIID and sSpoIIP produces the peaks 

already described; sSpoIIP acts as an amidase and endopeptidase to produce long glycan 

stands and free peptides, sSpoIID then cleaves these long glycans into short disaccharides 

that terminate in 1,6-anhydro-MurNAc residues (Figure 4-16). Incubation of sSpoIID and 

sSpoIIP with chemically acetylated E. coli peptidoglycan produces similar muropeptides: free 

peptide stems where the mesoDAP has an additional acetyl group (peak 8 Figure 4-16) and 

the GlcNAc-1,6- anhydro-MurNAc disaccharide (peak 5, Figure 4-16). Whilst the UV profiles 

for these peaks are low, inspection of the MS data confirms the presence and identification 

of these peaks.  

Repeating these digests with C. difficile peptidoglycan produces different results, shown in 

Figure 4-17. Incubation of untreated C. difficile peptidoglycan with sSpoIIP produces a tetra-

saccharide strand with a single peptide stem (muropeptide 3); a muropeptide not identified 

in the E. coli digests. Incubation with both sSpoIID and sSpoIIP produces muropeptides 1 and 

2, which are cellosyl digestion products, and muropeptide 3, the product of sSpoIIP 

digestion, with no evidence of any 1,6-anhydro-MurNAc containing muropeptides either in 

the UV chromatographs or in a manual search of the mass spectrum. This suggests sSpoIID is 

incapable of digesting untreated, i.e. deacetylated C. difficile peptidoglycan.  

Incubation of chemically acetylated C. difficile peptidoglycan with sSpoIIP leads to the 

production of muropeptide 6: the amidase product of sSpoIIP with an additional acetyl 

group on one of the mesoDAP residues, as would be expected based on previous digestions 

of E. coli peptidoglycan (section 4.4). Incubation with both sSpoIID and sSpoIIP leads to the 

production of muropeptides 6, 7 and 8. Muropeptides 6 and 7 are the acetylated amidase 

and endopeptidase products of sSpoIIP, with peak 8 being the GlcNAc-1,6-anhydro-MurNAc 

product of sSpoIID activity on the sSpoIIP-produced denuded strands.  
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4.6. Discussion 

The work presented in this chapter was undertaken with the aim of characterising sSpoIID 

and sSpoIIP and their activities in C. difficile. This work demonstrates that, as has been 

described for B. subtilis (Chastanet and Losick, 2007; Morlot et al., 2010), SpoIID acts as lytic 

transglycosylase and SpoIIP as a dual activity amidase and endopeptidase (Figure 4-11). 

Furthermore, zinc binding by sSpoIID is confirmed (Figure 4-7), with the effects of zinc-

binding residue mutations investigated (Figure 4-14).  

 sSpoIIP activty 

sSpoIIP has amidase and endopeptidase activity that cleaves peptide cross links and peptide 

stems from MurNAc residues. The denuded glycan strands are then digested further by 

sSpoIID, ultimately to produce disaccharides that terminate in a 1,6-anhydro-MurNAc 

residue, the product of lytic transglycosylases (Figure 4-11)(Höltje et al., 1975; Herlihey and 

Clarke, 2016).  

 Zinc binding by sSpoIID 

C. difficile sSpoIID binds zinc, in contrast to B. subtilis SpoIID. Peptidoglycan digestion 

experiments, CD (Table 4-1) and ICP-MS data(Figure 4-7), combined with microscopic 

analysis of progression through sporulation (Dembek et al., 2018), have demonstrated that 

not all zinc binding residues are equally important for C. difficile sSpoIID function. 

Deletion of spoIID in C. difficile prevents spore formation, with most cells arrested just after 

the asymmetric septum begins to curve (Dembek et al., 2018; Ribis, Fimlaid and Shen, 2018). 

Complementation of ΔspoIID with spoIIDC140A fails to restore spore formation, with no spores 

detectable in this mutant. ICP-MS analysis shows that zinc binding is completely abolished in 

sSpoIIDC140A and thermal stability CD experiments demonstrate a reduction in the melting 

temperature of sSpoIIDC140A. In vitro peptidoglycan digests with sSpoIIDC140A+sSpoIIP show 

similar levels of 1,6-anhydro-MurNAc products as seen with sSpoIIP alone (Figure 4-14). 

Taken together, this may indicate that sSpoIIDC140A is less stable and therefore less active, 

and that this instability and inactivity may be due to the lack of zinc coordination. This would 

result in reduced in vivo activity of SpoIIDC140A, thus leading to an inability of spoIIDC140A to 

restore normal spore formation in a C. difficile spoIID deletion mutant.  

sSpoIIDH145A also showed a reduction in melting temperature, abolishment of zinc binding 

and a substantial reduction in 1,6-anhydro-MurNAc production in in vitro peptidoglycan 

digestion experiments. Surprisingly, spoIIDH145A was able to partially complement a ΔspoIID  

mutant; sporulation was reduced only 5 fold, with cells at all stages of sporulation visible in 

microscopy images (Dembek et al., 2018). If zinc binding were directly involved in enzymatic 

activity, one would expect that both SpoIIDC140A and SpoIIDH145A, as both are devoid of zinc, 

would be completely inactive in vitro and in vivo. Whilst this appears to be the case in vitro, 

spoIIDH145A can partially restore sporulation to a ΔspoIID mutant, suggesting that there is 

perhaps some degree of compensation in vivo that allows protein stabilisation and some 

degree of activity. Perhaps other residues can compensate for the loss of H145, by 

completing the tetrahedral zinc binding motif. 

sSpoIIDH134A, and to a lesser extent sSpoIIDC146A, maintained some degree of zinc binding and 

in vitro peptidoglycan digestion activity, and were both able to restore spore formation in a 

ΔspoIID mutant to near wild type levels (Dembek et al., 2018). This suggests that not all zinc 
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binding residues are important for catalysis, and that in vivo activity may be greater than in 

vitro activity due to alternative compensatory mechanisms.  

Nocadello et al. (2016) suggested that zinc binding may have a structural role in SpoIID, 

increasing rigidity around the substrate binding groove, which in turn may affect enzymatic 

activity indirectly (Nocadello et al., 2016). Interactions observed between the artificial 

substrate and SpoIID are mediated by main-chain atoms, and therefore one would not 

expect mutation to alanine to completely abolish these interactions. The work conducted in 

this chapter, and in the accompanying paper (Dembek et al., 2018), suggest that zinc does 

indeed play a structural role, which in turn may affect enzymatic activity.  

 Crystal structure 

During the course of this work, the apo structure of C. difficile SpoIID was determined by 

Nocadello et al.,in 2016 to 1.95 Å. This structure (PDB ID 5TXU) was used in molecular 

replacement during model building of sSpoIIDE101A. As can be seen in Figure 4-18, our model 

model can be superimposed well, as would be expected, with a RMSD of 0.164 Å. All four 

proposed zinc binding residues are found in the same region, though their exact positioning 

is slightly shifted. 

 

Figure 4-18: Overlay of apo SpoIID and sSpoIIDE101A.  

(A) The apo SpoIID structure (cyan) published by Nocadello et al (2016) (PDB ID: 5TXU) is overlaid onto 

sSpoIIDE101A (purple). (B) Shows the zinc binding site of both molecules in more detail. Cyan residues are those 

of 5TXU and purple those of sSpoIIDE101A. (C) sSpoIIDE101A (purple) overlaid onto 5I1T (yellow), the NAG3 bound 

substrate (gray sticks) of SpoIID as determined by Nocadello et al (2016), with the proposed residues of 

significance shown as yellow sticks. 

As can be seen in Figure 4-18 H145 is shifted out of position in our model, though this may 

just be due to a lack of substrate moving the loop structure. The orientation of all other 
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residues proposed to interact with the artificial ligand NAG3 is conserved in our sSpoIIDE101A 

model.  

One notable feature of our model is a large unmodelled electron density within the 

proposed substrate binding groove (Figure 4-19) As the catalytic glutamate is mutated to 

alanine, any potential substrate bound to the protein would not be cleavable, so it is 

possible that this density correspond to a natural substrate of SpoIID. However, this density 

could not be unequivocally interpreted as a glycan strand as may be expected. Thin layer 

chromatography of the purified protein did not indicate the presence of any MurNAc 

residues, suggesting that the bound molecule might not be a natural peptidoglycan. It should 

be noted that the crystallisation process can enrich for a certain species in solution so it is 

possible that ligand-bound sSpoIID dominate the crystal, but the sugars would be in a 

concentration lower than the limit of detection of TLC. Future experiments will aim to 

characterise this density; the same preparation of protein will be crystallised and the crystals 

themselves used in both TLC, which will be used to detect a range of sugars not just MurNAc, 

combined with MS analysis, in the hope of identifying the ligand.  

 

Figure 4-19: sSpoIID with unidentified density 

The model of sSpoIID is shown as a grey cartoon, with the unidentified density shown in green. A101 is shown 

as spheres coloured by atom type: carbon, grey; oxygen, red; nitrogen, blue, and the zinc as a violet sphere. 

The density lays across the “hand” and “arm” domains and may represent a substrate or intermediate for/of 

sSpoIID activity. Figure made by Dr Paula Salgado. 

Although crystallisation trials with commercially available screens were set up for all sSpoIID 

mutants, only sSpoIIDE101A produced crystals. Thermostability experiments conducted on all 
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constructs revealed a lower melting temperature of all zinc-binding mutants in comparison 

to sSpoIID and sSpoIIDE101A (Table 4-1) which suggests a reduction in protein stability, that 

could prevent crystal formation in the conditions tested to date. 

In order to try to obtain protein crystals for the remaining mutants, the following 

parameters could be optimised: a) protein concentration b) other commercially available 

crystal screens could be tested or c) the condition that produced sSpoIIDE101A crystals could 

be further optimised by screening pH and concentration of TacsimateTM. Microseeding 

methods using sSpoIID or the E101A crystals could also allow the formation of crystals of the 

other variants. 

 sSpoIID does not stimulate sSpoIIP 

LytC is a major B. subtilis autolysin, the activity of which is enhanced by the enzymatically 

inactive LytB (Chastanet and Losick, 2007). It has been proposed that SpoIID may enhance 

the activity of SpoIIP in a manner similar to that seen on LytC by LytB. This enhancement 

activity has been demonstrated through the use of dye release assays and B. subtilis SpoIID 

catalytically inactive mutants (Morlot et al., 2010). However, no enhancement of activity was 

observed in the semi-quantitative peptidoglycan digests presented in this work; co-

incubation of sSpoIIP and sSpoIIDE101A did not lead to a significant increase in the proportion 

of spoIIP products (namely peaks 1 and 3 Figure 4-11) (Dembek et al., 2018). We hypothesise 

that this difference does not reflect a fundamental difference in the activities of sSpoIID 

between the two species, rather that there is a difference in the accuracy and sensitivity of 

the two methods. Dye release assays rely on the release of a dye that is bound to the sugar 

backbone of peptidoglycan (Zhou, Chen and Recsei, 1988). Therefore, one would not 

necessarily expect an increase in dye release when acted upon by an amidase or 

endopeptidase, as dye would presumably remain bound to the unaffected sugar backbone. 

In contrast, peptidoglycan digestion experiments separate products by HPLC, the eluate of 

which is then assessed by mass spectrometry allowing precise identification of products. 

However, whilst more precise, these HPLC-MS assays are only semi-quantitative in 

comparison to the fully quantitative dye release assays. Ideally, future work would involve 

the development of a quantitative HPLC-MS method, combining both the quantitative 

nature of the dye release assay with the precision of HPLC-MS. One possibility would be the 

injection of a known “standard” peptide that could be used to normalise all data within a 

digest, thus, allowing some degree of quantitative analysis. 

 Acetylation state of peptidoglycan affects sSpoIID and sSpoIIP activity 

As demonstrated in section 4.4, sSpoIID and sSpoIIP appear to digest acetylated 

peptidoglycan, either that of E. coli (Figure 4-16) or chemically acetylated C. difficile 

peptidoglycan (Figure 4-17), to a greater extent than they can digest deacetylated 

peptidoglycan. Indeed, sSpoIID appears incapable of digesting native C. difficile 

peptidoglycan. This suggests that sSpoIID and sSpoIIP have a preference for acetylated 

peptidoglycan and that the type of cross link (i.e. 4-3 as seen in E. coli or 3-3 as in C. difficile) 

has little, if any, impact.  

This may hint to a possible method of distinguishing the newly synthesised, presumably 

GlcNAc-containing, septal peptidoglycan and the deacetylated peptidoglycan found in the 

mother cell wall, which in turn may advance our present model of peptidoglycan 
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remodelling during engulfment (Ojkic et al., 2016). In the current model (Figure 1-9), newly 

synthesised peptidoglycan is inserted at the septum and the peptide bonds between new 

and old peptidoglycan digested (presumably by sSpoIID and sSpoIIP). This creates space for 

the advancing mother cell membrane to expand into.  

Ojkic et al suggest there is some method of distinguishing the peptide bonds linking the old 

and new peptidoglycan from the peptide bonds keeping the layers of mother cell 

peptidoglycan together. Our data suggests that the acetylation state of the peptidoglycan 

itself may influence this specific peptide bond digestion. sSpoIID and sSpoIIP digest mature 

GlcN-containing peptidoglycan to a lesser extent than they digest GlcNAc-containing 

peptidoglycan, which would be found in the newly synthesised peptidoglycan. This suggests 

sSpoIID and sSpoIIP would be inherently less able to digest the mother cell wall 

peptidoglycan than the GlcNAc-containing septal peptidoglycan, which supports the 

hypothesis of Ojkic et al that newly synthesised peptidoglycan is preferentially digested by 

the DMP complex. 

Whilst the role of sSpoIIP as an amidase and endopeptidase is easily accounted for in this 

model, it is harder to account for the lytic transglycosylase activity of sSpoIID. If glycan 

strands are arranged perpendicular to the long axis of the cell as suggested (Ojkic et al., 

2016), peptide bond removal as in Figure 1-9 would be required to free up space for the 

advancement of the mother cell membrane. However, why digestion of denuded strands 

would be required is less obvious and should be investigated.  

4.7. Conclusions and future work 

Work presented in this chapter confirms that sSpoIID and sSpoIIP share similar enzymatic 

activities with their B. subtilis counterparts; sSpoIIP is an amidase and endopeptidase that 

cleaves peptides stems from peptidoglycan to leave denuded glycan strands, the substrate 

of sSpoIID. sSpoIID then cleaves long glycan strands into GlcN(Ac)-1,6 -anhydro-MurNAc 

disaccharides.  

The enzymatic activities of sSpoIIP and sSpoIID were probed further; digestion of acetylated 

peptidoglycan appears to be more complete than deacetylated peptidoglycan, with the 

suggestion that sSpoIID cannot digest deacetylated mature C. difficile peptidoglycan. This 

result may relate to the interactions proposed between SpoIID and the acetyl groups of 

NAG3 by Nocadello et al. Presumably, the newly synthesised septal peptidoglycan is 

acetylated, therefore preferentially digested by SpoIIP and SpoIID, resulting in specific 

digestion of only new peptidoglycan, and not the deacetylated mother cell wall 

peptidoglycan, thus preventing premature cell lysis during engulfment.  

Future work in this area should include co-crystallisation of SpoIID and SpoIIDE101A with other 

peptidoglycan mimics, such as a GlcN trimer and with purified acetylated and deacetylated 

peptidoglycan. Furthermore, some degree of quantitative kinetic analysis of SpoIID/SpoIIP 

digestion of both acetylated and deacetylated peptidoglycan should be performed, to 

determine if the differences observed in section 4.5 are relevant in terms of the engulfment 

time span. A combination of these kinetic analyses and crystallisation trials may result in the 

ability to propose an informed enzymatic mechanism, with regards to substrate specificity of 

SpoIID, which may elucidate any preferential digestion of acetylated peptidoglycan. 
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Furthermore, co-crystallisation could be used to identify potential inhibitors of sSpoIID, 

which in turn may have practical implications in terms of preventing C. difficile sporulation. 

For the above reasons, crystallisation of sSpoIIP should also be pursued, with alternative 

strategies explored. 

Future work should focus on further characterising the changes to peptidoglycan during 

engulfment: how are the activities of sSpoIID and sSpoIIP regulated? Is the “preference” of 

sSpoIID and sSpoIIP for acetylated peptidoglycan biologically relevant? Answering these, and 

similar, questions will advance our knowledge of C. difficile spore formation, and 

consequently potentially provide methods to interrupt this process, which in turn would 

prevent C. difficile persisting in the environment or the gut. 
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Chapter 5. Identification of putative C. difficile polysaccharide deacetylases  

5.1. Introduction 

Whilst the earliest steps in C. difficile peptidoglycan synthesis have not been experimentally 

explored, it is expected that C. difficile peptidoglycan is synthesised containing GlcNAc, and 

that the acetyl group is removed during peptidoglycan maturation to produce the GlcN-

containing peptidoglycan found in the mother cell wall (Peltier et al., 2011; Bern, Beniston 

and Mesnage, 2016), or in the spore cortex (Coullon et al., 2018).  

C. difficile has orthologues (inferred from sequence identity) of all six Mur enzymes which 

are involved in the initial cytoplasmic steps of peptidoglycan synthesis (Heijenoort, 2001). 

MurA is responsible for the first committed step of peptidoglycan synthesis, and whilst the 

homologue in C. difficile has never been experimentally characterised, it seems logical to 

assume it would also catalyse the transfer of phosphoenolpyruvate onto UDP-N-

Acetylglucosamine, as is seen in B. subtilis (Kock, Gerth and Hecker, 2004). If this is the case, 

then C. difficile peptidoglycan would be produced containing GlcNAc. Detailed MS analysis 

has demonstrated that the vegetative cell (section 3.1.1) (Peltier et al., 2011; Coullon et al., 

2018) and spore (Coullon et al., 2018) peptidoglycan is predominantly deacetylated to 

glucosamine (GlcN). Therefore, it is assumed that deacetylation of GlcNAc occurs during a 

peptidoglycan maturation phase.  

Based on this assumption, the potential preferential digestion of acetylated peptidoglycan 

by SpoIID and SpoIIP (section 4.5), the detection of acetylated muropeptides in 

peptidoglycan from a sigE mutant strain (section 3.2.4.1), and the hypothesis of Ojkic et al 

(2016) (that newly inserted peptidoglycan is speficially digested by the DMP machinery 

(Figure 1-9)), a new hypothesis was produced. I hypothesised that the new “immature” 

peptidoglycan is acetylated and contains GlcNAc, whereas the “mature” mother cell wall 

peptidoglycan is deacetylated to contain GlcN, and that this difference in acetylation state 

contributes to the targeted degradation of only the newly synthesised peptidoglycan during 

engulfment. Therefore, we sought to investigate potential polysaccharide deacetylases in C. 

difficile that may significant during engulfment.  

5.2. Identification of putative polysaccharide deacetylases in C. difficile 

HMMER is an online tool that searches against sequence databases and HMM libraries for 

proteins similar to the input query protein (Potter et al., 2018). We limited our search to 

Clostridia (taxID: 186801) and used the S. pneumoniae PgdA sequence as a query. This 

identified 10 potential C. difficile 630 proteins as potential polysaccharide deacetylases 

identified by our bioinformatics search, 5 were selected for cloning in such a manner that 

soluble protein would be produced by recombinant expression. As described in section 2.6, 

predicted transmembrane regions were not included in the amplification of target genes 

from gDNA. As summarised in Table 5-1, only 2 constructs reliably produced soluble protein: 

CD630_1319 and CD630_1522, which were further characterised.  
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Table 5-1: Summary of identified potential polysaccharide deacetylases in C. difficile 

Putative 
deacetylase 
gene 

Notes Cloning  Expression test 

CD630_32480 sigE dependent (Saujet et al., 2013) - - 
CD630_32570 sigE dependent (Fimlaid et al., 2013; 

Saujet et al., 2013; Dembek et al., 
2015) 

Strains PS384 
& PS387 

Potentially 
produced in 
inclusion 
bodies 

CD630_25980 - Unsuccessful - 
CD360_27190 Minor MurNAc deacetylase involved 

in muramic-δ-lactam synthesis, 
renamed pdaA2 (Coullon et al., 2018) 

- - 

CD630_27240 - Strains PS386 
& PS390 

Not reliable 

CD630_13190 sigE dependent (Fimlaid et al., 2013; 
Saujet et al., 2013; Dembek et al., 
2015).  
Gene product observed in spores 
(Lawley et al., 2009) 
Transcriptome and proteome 
unaffected in 630 Δerm Δspo0A vs 
630 Δerm (Pettit et al., 2014) 
Possible link to CD630_15220* 

Strains PS385 
& PS389 

Yes 

CD630_14300 Major MurNAc deacetylase involved 
in muramic-δ-lactam synthesis, 
renamed pdaA1 (Coullon et al., 2018). 

- - 

CD630_14440 - Strain PS459 Not tested 
CD630_15220 Possible link to CD630_13190* 

Upregulated in 630 Δerm Δspo0A 
vegetative cell transcriptome and 
630Δerm proteome (Pettit et al., 
2014) 

Strains PS383 
& PS388 

Yes 

CD630_15560 Possible link to rsiV*. 
In same operon as csfV which is sigV 
regulated and upregulated in 
response to lysozyme stress, 
equivalent of pdaV and GlcNAc 
deacetylases (Ho et al., 2014) 
 

- - 

Potential C. difficile peptidoglycan deacetylases were identified based on homology to known peptidoglycan 

deacetylases. Potential interactions marked * identified using the STRING server (Szklarczyk et al., 2019).  – 

indicates nothing to report.  

One GlcNAc deacetylase, PdaV (identified as CD630_15560 in Table 5-1), has been previously 

identified in C. difficile, and was demonstrated to be upregulated in response to lysozyme 

treatment in a σV dependent manner (Ho et al., 2014). However, there was no investigation 
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into when PdaV was natively active, i.e. was PdaV responsible for the baseline deacetylation 

of C. difficile peptidoglycan, or only enhanced deacetylation seen in response to lysozyme 

stress?  

In many other bacteria, peptidoglycan deacetylation is associated with increased resistance 

to lysozyme (Psylinakis et al., 2005; Ho et al., 2014), reduced infectivity (Blair et al., 2005) 

and is implicated in evasion of the host NOD1 and NOD2 immune receptors (Girardin et al., 

2003; Boneca et al., 2007). It is noteworthy that knock out of the Streptococcus mutans PdgA 

did not affect lysozyme sensitivity (Deng et al., 2009).  

Two of the identified C. difficile putative deacetylases, CD630_1430 and CD630_2719, are 

confirmed  MurNAc deacetylases and were renamed PdaA1 and PdaA2, respectively (Coullon 

et al., 2018), and therefore were not investigated further in this work.  

Deacetylases that are under the control of sporulation related sigma factors (CD630_1319 

and CD630_3257) (Fimlaid et al., 2013; Saujet et al., 2013; Dembek et al., 2015), were cloned 

into pET-M11 vectors, however soluble protein was only produced with the CD630_1319 

construct. 

CD630_1522 and CD630_2724 are not known to be under the control of a sporulation-

associated sigma factor. It is possible that these deacetylases are active during vegetative 

growth, but inhibited during engulfment, in order to ensure only newly synthesised 

peptidoglycan is degraded at the leading edge. Although both were cloned for recombinant 

expression, only the CD630_1552 construct reliably produced soluble protein for 

characterisation.  



125 
 

5.3. Purification of putative polysaccharide deacetylases 

 CD_1319 

For expression of CD630_1319, Rosetta cells transformed with pET M11 CD630_131936-247 

were grown, protein was expressed in AIM TB, and the protein purified as described in 

section 2.6.2. Filtered cell lysate was initially purified by IMAC and fractions containing 

protein pooled (Figure 5-1A). At this point the preparation was split, with half of the sample 

immediately purified further by SEC to produce purified CD630_1319 containing an intact 

6xHis-tag, herein denoted His1319 (Figure 5-1B) and the other half incubated with TEV 

overnight prior to SEC to remove the 6xHis-tag, producing untagged protein (s1319 Figure 

5-1C). SDS-PAGE analysis (Figure 5-1B and C) and western blot analysis (Figure 5-2) shows 

the proteins produced were sufficiently pure for subsequent investigations.  

 

Figure 5-1: Purification of CD_1319.  

(A) IMAC purification of CD_1319, the marked fractions (red) eluted in the presence of buffer B. Buffer B is 50 

mM Tris base pH 8.0, 300 mM NaCl, 250 mM imidazole.  (blue dashed line) were pooled. Half of the 

preparation was immediately purified by SEC (B). The other half was incubated with TEV to remove the 6xHis-

tag prior to further SEC (C). Fractions marked in red in (B & C) were pooled before the next step of purifcation.  
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Figure 5-2: CD630_1319 western blot  

100ng of each protein was resolved on a 15% SDS-PAGE gel, before semi-dry transfer onto a nitrocellulose 

membrane. The membrane was blocked before treatment with the primary antibody, which was raised against 

a CD630_1319-specific peptide, washed, then incubated with the HRP-conjugated secondary antibody. sSpoIID 

and s1522 were included as negative controls. Both s1319 and His1319 were detected by the antibody. 
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 CD_1522 

CD630_1522 was purified as described for CD630_1319, with two samples obtained; the 

6xHis tagged His1522 and the tag-free s1522. Chromatographs, SDS-PAGE (Figure 5-3B and 

C) and western blots (Figure 5-4) all suggest the proteins produced were of sufficient quality 

for further characterisation. 

 

 

Figure 5-3: Purification of CD630_1522.  

Panel A shows the IMAC purification of CD630_1522, the marked fractions (red dots) that eluted in the 

presence of buffer B (blue dashed line) were pooled. Buffer B is 50 mM Tris base pH 8.0, 300 mM NaCl, 250 

mM imidazole.  Half of the protein preparation was immediately further purified by SEC (panel B), whilst the 

other half was incubated overnight with TEV to remove the 6xHis-tag prior to further SEC (panel C). In panels B 

and C, marked fractions (red) were assessed by SDS-PAGE (lower panel) before pooling and concentration of 

the fractions marked red in the SDS-PAGE gel.  
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Figure 5-4: CD630_1522 western blot  

100ng of each protein was resolved on a 15% SDS-PAGE gel before semi-dry transfer onto a nitrocellulose 

membrane. The membrane was blocked, probed with primary antibody, which was raised in rabbits inoculated 

with a CD630_1522-specific peptide, and secondary antibody as described in section 2.4.3.2. Only s1522 and 

His1522 were detected. sSpoIID and s1319 were included as negative controls. 

5.4. Protein characterisation 

 Determination of accurate mass  

Quadrupole time of flight (qTOF) MS was undertaken to determine the accurate masses 

(±1Da) of the purified proteins, both with and without 6xHis-tags (Table 5-2). Calculated 

masses were obtained using the ProtParam tool (web.expasy.org/protparam/). 

Table 5-2: Calculated and observed masses of purified putative deacetylases 

Protein Calculated  
mass (Da) 

Observed  
mass (Da) 

His1319 27521.32 27520.73 
S1319 24523.01 24522.36 
His1522 33974.48 33973.85 
S1522 30976.18 30975.97 

Calculated masses were obtained using the amino acid sequence of the gene fragment expressed and the 

ProtPram tool. Observed masses are the neutral masses derived from qTOF data. This data was acquired by Dr 

Joe Gray at Pinn@cle.  

It is of note that the calculated mass using analytical SEC is significantly different, both for 

s1319 (12.61 kDa) and s1522 (15.5 kDa). These estimates suggest significantly smaller 

proteins than are observed by both qTOF and SDS-PAGE analysis. Analytical SEC methods of 

estimating protein size assume that the proteins are globular, which may not be the case 

here. Currently available peptidoglycan deacetylase structures suggest a “head” domain, 

where the catalytic metal is found, and a longer “tail” as described in the structure of S. 

pneumoniae PgdA (PDB ID: 2C1G) (Blair et al., 2005). If this is the case with s1319 and s1522, 
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this would affect the hydrodynamic radius of the protein, their elution from analytical SEC, 

and thus their estimated masses by this method.  

 ICP-MS 

The metal content of both s1319 and s1522 was assessed by ICP-MS, as many identified 

NodB homology family members use metal ions in their catalysis (Blair et al., 2005; Andrés et 

al., 2014; Bhattacharjee et al., 2017). 

 

 

Figure 5-5: Metal content analysis of putative polysaccharide deacetylases.   

Both s1319 (panel A) and s1522 (panel B) were further purified using an analytical SEC column, before analysis 

of metal content by ICP-MS. Protein concentration is shown in purple, zinc in black, manganese in green, nickel 

in blue, copper in orange and cobalt in gold. Repeats were not possible and therefore no standard deviations 

are shown.  

As can be seen in Figure 5-5, neither protein appears to obviously coordinate any of the 

metal ions tested. However, there is some indication that s1319 might bind zinc to a small 

degree, as demonstrated by the slight increase in zinc eluting concurrently with s1319 

(Figure 5-5A).  

This experiment was only carried out once due to a breakdown of the ICP-MS instrument, 

and therefore biological and technical replicates will be required before any definitive 

conclusions are drawn from this data. Additionally, this experiment should be repeated with 

increasing concentrations of EDTA, to ensure that any metal is truly bound to the protein. 

 Circular dichroism and computational modelling 

Before any investigations into the enzymatic capacities of CD630_1319 and CD630_1522 

were carried out, CD was used to ascertain if the proteins were folded, and to determine 

their thermal stability. Crystallisation screens were performed as described in section 2.8.1. 

To date, no protein crystals have been produced. Therefore, the data retrieved from the CD 

experiments of the tag-free proteins was compared to computational modelling using 

PSIPRED (Buchan and Jones, 2019), I-TASSER (Yang et al., 2015) and Phyre2 (Kelley et al., 

2015).  
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5.4.3.1. Circular dichroism 

Scans and thermal melts were performed as described in section 2.7.1, with the resulting 

spectra provided in Figure 5-6. Melting temperatures and secondary structure details are 

provided in Table 5-3. Secondary structure predictions from PSIPRED are provided for all 

constructs, with I-TASSER and Phyre2 predictions provided for soluble proteins. 

Inspection of the spectra (Figure 5-6), and comparison to spectra of well characterised 

proteins, suggest that the proteins are composed of both α- helical and β-strand elements 

(Greenfield, 2006). The normalised root mean square deviation (NRMSD) value compares 

the observed and expected values of ellipticity at each wavelength, as calculated by 

DiChroweb (Whitmore and Wallace, 2004, 2008). Agreement between the theoretical and 

the observed scan is reflected in a lower NRMSD value, with NRMSD values lower than 0.05 

considered acceptable. Here, all NRMSD are below 0.05 and therefore the data can be 

considered reliable. Low NRMSD values and the shape of the spectra suggests that all 

proteins are stable and folded at pH 8.0.  

 

Figure 5-6: Circular dichroism of two putative deacetylases 

s1319 (panel A), His1319 (panel B), s1522 (panel C) and His1522 (panel D) were analysed by CD, with the mean 

residue ellipticity (MRE) reported. The shapes of the graphs and MRE minima suggest a mixture of α-helical and 

β-strand structural elements.  
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Table 5-3: Circular dichroism of two putative polysaccharide deacetylases 

Protein Method Helix (%) Strand (%) Coil (%) Disordered (%) NRMSD Tm (oC) 

His1319 PsiPred 39 9 - 49 -  
CDSSTR 5 35 23 34 0.034 65 

S1319 PsiPred 41 15 - 43 -  
I-TASSER 38 17 45 - -  
Phyre2 43 17 - 9 -  
CDSSTR 12 32 22 34 0.030 64 

His1522 PsiPred 45 10 - 46 -  
CDSSTR 17 32 12 28 0.033 64 

S1522 PsiPred 49 10 - 41 -  
I-TASSER 33 12 55 - -  
Phyre2 42 12 - 26 -  
CDSSTR 20 27 18 27 0.031 60 

Results of CD scans processed using DiChroweb and the CDSSTR algorithm are summarised and compared with 

the predictions provided by the PSIPRED server. Melting temperatures derived from the first derivative using 

the JASCO software are also provided. CDSSTR α-helical and β-strand element values are the sum of the 

ordered and disordered values reported. Normalised root mean square deviation (NRMSD) values are provided 

for CDSSTR outputs. The disordered % for PSIPRED data includes all residues not accounted for by either α-

helices or β-sheets. 
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5.4.3.2. Computational modelling 

Phyre2 (Kelley et al., 2015) and I-TASSER (Yang et al., 2015) are online tools able to predict 

protein structure based on a given amino acid sequence and structural models. Phyre2 is 

based on remote homology detection whereas I-TASSER is based on fold recognition and ab 

initio modelling.  

A common enzymatic mechanism (Figure 5-7) has been proposed for peptidoglycan 

deacetylase activity, in which the bound metal and the associated Asp-His-His triad is central 

to catalytic activity (Bhattacharjee et al., 2017). The metal ion is thought to interact directly 

with the acetate group of GlcNAc (Bhattacharjee et al., 2017), with substrate specificity 

determined by the presence and rearrangement of various loops around the substrate 

binding groove in a “substrate capping model” (Andrés et al., 2014). A conserved proline 

residue (Figure 5-10), which undergoes hydroxylation of the α-carbon to produce 2-

hydroxyproline, is also thought to be key to catalysis (Fadouloglou et al., 2017). This post-

translational modification increases the activity of a V. cholerae chitin deacetylase tenfold, 

and is thought to stabilise the oxyanion intermediate produced during catalysis (Fadouloglou 

et al., 2017). 

 

Figure 5-7: Proposed peptidoglycan deacetylase mechanism. 

Panel A demonstrates summarises the enzymatic mechanism proposed by Bhattacharjee et al (2017). Panel B 

demonstrates how a conserved aspartate residue acts as a base, activating a water molecule, which then 

attacks the acetate group of GlcNAc, breacking the carbon-nitrogen bond, thus deacetylating GlcNAc. NAG, 

GlcNAc. Figure modified from Bhattacharjee et al (2017).  

5.4.3.2.1. Modelling s1319 structure 

When submitting the sequence of s1319, the highest scoring I-TASSER result is a model 

highly similar to Bacillus cereus Bc1960 GlcNAc deacetylase (PDB ID 4L1G) (Fadouloglou et 

al., 2017). The TM-score is 0.902 (two identical proteins will have a score of 1), with an 

RMSD of aligned residues of 1.28 Å and 0.944 coverage. Superimposition of the returned I-

TASSER model and Bc1960 demonstrates the two structures are highly similar (Figure 5-8B). 

Phyre2 returns several possible models with 100% confidence of the query being a true 

structural homologue, therefore the model with the highest percentage sequence identity 

(28%) was analysed in more detail (Figure 5-8) .This structural homologue is S. pneumoniae 
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peptidoglycan deacetylase (SpPgdA), a metal dependent GlcNAc deacetylase (PDB ID: 2C1G) 

(Blair et al., 2005). The coverage of this model is relatively limited (87%), with a significant 

proportion of SpPgdA absent in the aligned s1319 section, however the catalytic region is 

well conserved. Both Bc1960 and SpPgdA contain metal binding motifs (Blair et al., 2005; 

Fadouloglou et al., 2017) which are partially conserved in s1319 (Figure 5-8C and F, 

respectively); only the aspartate residue is imperfectly conserved in the sequence. However, 

a nearby aspartate residue may be able to contribute to metal coordination. Perhaps this is 

why we see ~25% Zn occupancy in the ICP-MS analysis (Figure 5-5A); in some situations, the 

aspartate residue may be in the correct conformation to permit zinc binding by s1319.  

The I-TASSER and Phyre2 models, and the catalytic domains of 4L1G and 2C1G are highly 

similar; suggesting that s1319 adopts a NodB-like fold.  

 

Figure 5-8: I-TASSER and Phyre2 modelling of s1319  

Both I-TASSER (A) and Phyre2 (D) were used to model the folds adopted by s1319. Panel B shows the I-TASSER 

model of s1319 (dark pink) superimposed on the catalytic domain of the top structural homologue identified by 

I-TASSER, Bc1960 (light pink). Panel C shows Bc1960 metal binding residues Asp81, His 131 and His135. Panel E 

shows the superimposition of the Phyre2 model of s1319 on the template based on SpPgdA. Panel F shows 

conservation of the zinc binding residues of SpPdgA; Asp276, His326 and His330.  

5.4.3.2.2. Modelling s1522 structure  

When submitting s1522 to I-TASSER, the model returned is most similar to a metal 

dependent Streptococcus mutans PgdA (PDB ID 2W3Z), with a TM-score of 0.804 and an 

RMSD of 1.97 Å with coverage at 85% (Figure 5-9B). The model provided by Phyre2 is based 

on Vibrio cholerae chitin deacetylase (Andrés et al., 2014) (PDB ID 4NZ3) with 100% 

confidence, 25% identity and 74% coverage (Figure 5-9E). 

Both structural homologues identified by I-TASSER and Phyre2 demonstrate metal binding 

through a conserved Asp-His-His triad (Deng et al., 2009; Andrés et al., 2014). Whilst s1522 

appears to contain this triad, it may be that the Asp residue is not correctly positioned to 
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bind a metal ion. This would explain why no metal binding was observed during ICP-MS 

analysis (Figure 5-5B). 

 

Figure 5-9: I-TASSER and Phyre2 models of s1522.  

Both I-TASSER (A) and Phyre2 (D) were used to model the folds adopted by s1522. Panel B shows the I-TASSER 

model of s1319 (dark orange) superimposed on the catalytic domain of S. mutans PdgA, as identified by I-

TASSER (lighter orange). Panel C shows the metal binding residues Asp155, His 166 and His170 of S. mutans 

PgdA. Panel E shows the Phyre2 model (dark blue) superimposed on the template based on a Vibrio cholerae 

CE4 family member (light blue). Panel F shows the almost identical conservation of the zinc binding residues of 

the confirmed CE4 family member: Asp97, His97 and His101. 

Both s1319 and s1522 are predicted to fold into a NodB-like homology domain, by both 

Phyre2 and I-TASSER, and all highlighted structures were related to Carbohydrate Esterase 

family 4 (CE4) members (as per the CaZY database (www.cazy.org)). Therefore, s1319 and 

s1522 are likely to be true polysaccharide deacetylases and, potentially, peptidoglycan 

deacetylases.  
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Figure 5-10: Multiple sequence alignment of CE4 family members  

MUSCLE (Madeira et al., 2019) was used to align the sequences of S. pneumoniae PdgA (SpPgda), S. mutans PdgA (SmPdgA), B. cereus 1960 (Bc1960), V. cholerae Chitin de-N-

acetylase (VcChtn), s1319 and s1522. Alignment figure was generated using ESPript 3.0 (Robert and Gouet, 2014) aligning residues 230-430 with the Blosum62 colouring system. 

Residues highlighted in red background are strictly conserved. Those highlighted in yellow were not identified as being strictly conserved in the MUSCLE but are conserved. The D 

residue (SpPgdA residue 241) is conserved across all 6 proteins aligned expect for s1319, where the D is replaced by an L, however there is a D residue in the position immediately 

preceding this residue. The P (SpPgdA position 334) is conserved across all 6 proteins but is presumably identified as X in Bc1960 as it is known to be subject to α-carbon 

hydroxylation (Fadouloglou et al., 2017). 
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 CD630_1319 and CD630_1522 encode peptidoglycan GlcNAc deacetylases  

Based on the predicted CE4 family membership of both CD630_1319 and CD630_1522, the 

peptidoglycan digestion activities for both the 6xHis-tagged and tag-free versions were 

investigated. E. coli Δlpp peptidoglycan was digested with the protein (10µM) followed by 

overnight digestion with cellosyl, and the resulting muropeptides separated and identified 

using LC-MS as described in section 2.10.3. 

Figure 5-11 demonstrates that E. coli peptidoglycan is acetylated; GlcNAc containing 

muropeptides (muropeptides 4 and 7) are the norm when digested with cellosyl (lower 

panel Figure 5-11A). Digestion with SpoIID and SpoIIP was included as an additional control.  

Digestion with either s1522 or H1522 produces largely similar chromatographs (Figure 5-11), 

with muropeptides 3 (GlcN MurNAc AEmA) and 5 (GlcN MurNAc AEmA AemA GlcN MurNAc) 

dominating the chromatograph. Analysis of the mass spectra produced from the eluate of 

these peaks demonstrate that all GlcNAc residues have been deacetylated to GlcN by s1522 

or H1522: muropeptides 4 (GlcNAc MurNAc AEmA) and 7 (GlcNAc MurNAc AEmA AEmA 

GlcNAc MurNAc) are completely deacetylated to muropeptides 3 and 5. This demonstrates 

CD630_1522 encodes for an active GlcNAc deacetylase and that the 6xHis tag does not 

impede activity.  

Digestion of peptidoglycan with either s1319 or His1319 results in a more complex 

chromatograph (Figure 5-11). After digestion with these proteins, muropeptide 4 is fully 

deacetylated to produce muropeptide 3 but the deacetylation of muropeptide 7 is 

incomplete; producing both the partially deacetylated muropeptide 6, where GlcNAc is 

present in one disaccharide and GlcN in the other, and the fully deacetylated muropeptide 5.  

Neither s1319 nor His1319 deacetylated all the peptidoglycan available, perhaps suggesting 

the digestion conditions were sub-optimal. Alternatively, it may be the GlcNAc residues were 

not oriented in a manner to allow digestion by His/s1319, or that only certain sites in the 

peptidoglycan are substrates for His/s1319 (i.e. a certain number of sugar residues may be 

needed for substrate recognition, which may not be possible at all locations on the glycan 

strand). Future work should involve optimising buffer conditions, changing pH and metal 

content as a priority to determine if the reaction can proceed further under different 

conditions. 

The LC-MS analysis undertaken in this work demonstrates that both CD630_1522 and 

CD630_1319 encode for active GlcNAc deacetylases (Figure 5-11), capable of deacetylating 

GlcNAc residues on intact peptidoglycan. Purified s1522 was fully active under the conditions 

tested, whereas conditions for optimal s1319 activity should be investigated further, though 

the presence/absence of the 6xHis-tag does not appear to affect activity. Future work should 

involve optimisation of buffer composition and pH.  

Further investigation into the substrate specificities of s1319 and s1522 should be 

undertaken, as some polysaccharide deacetylases are also capable of deacetylating a variety 

of substrates. Furthermore, kinetic experiments to determine the rate of reaction should be 

coupled with experiments to determine at what point in the cell cycle these deacetylases are 

expressed, as this may have implications for any future therapeutic interventions. 
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Figure 5-11: Peptidoglycan digestion by CD630_1319 and CD630_1522.  

Panel A shows chromatographs resulting from E. coli Δlpp peptidoglycan digestions. Numbered peaks 

correspond to the muropeptides illustrated in Panel B, where observed masses (top) and theoretical masses 

(bottom) are given in Daltons. D + P; SpoIID SpoIIP co-incubation. All muropeptides were reduced.  
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5.5. Discussion 

Work in this chapter has furthered understanding of deacetylases in C. difficile, identifying 

10 putative deacetylases and confirming that CD630_13190 and CD630_15220 encode for 

deacetylases capable of deacetylating GlcNAc residues in intact peptidoglycan.  

 Identification of polysaccharide deacetylases in C. difficile 

By searching the C. difficile 630 genome for homologues to SpPgdA, we identified 10 

putative polysaccharide deacetylases (Table 5-1).  

Based on the hypothesis that newly inserted peptidoglycan is preferentially digested by 

SpoIID and SpoIIP at the leading membrane edge during engulfment, we assessed both 

putative deacetylases that may be associated with the deacetylation of newly inserted 

peptidoglycan during sporulation, as well as putative deacetylases that may not be 

sporulation related as they may be down regulated during sporulation. CD630_32570 has 

been identified as sigE dependent, and therefore also under the control of the master 

regulator spo0A. Whilst a construct lacking the predicted transmembrane region could be 

reliably expressed, the protein was insoluble, and therefore not pursued at this point.  

CD630_13190 has been identified as σE controlled in multiple studies (Saujet et al., 2013; 

Dembek et al., 2015; Fimlaid and Shen, 2015) with the gene product being observed in the 

spore proteome (Lawley et al., 2009). However, no significant change in translation was 

observed in the proteome of 630Δerm Δspo0A compared to 630Δerm (Pettit et al., 2014), 

perhaps indicating that CD630_13190 control is multifactorial, or that CD630_13190 is 

constitutively active and upregulated by spo0A. Due to the proposed σE control, this protein 

may be expressed in early sporulation, and therefore may be involved in the deacetylation of 

newly synthesised peptidoglycan during spore formation.  

CD630_15220 was upregulated in the 630Δerm Δspo0A vegetative cell transcriptome and 

proteome  (Pettit et al., 2014), suggesting CD630_15220 may be suppressed either directly 

or indirectly by Spo0A. CD630_1522 is also proposed to interact with the product of 

CD630_13190, therefore this protein was also characterised.  

 Modelling CD630_1319 and CD630_1522 

Phyre2 and I-TASSER are online tools that enable structure prediction based on similarities 

to structures already deposited in the PDB. Phyre2 is based on similarities to deposited 

structural models, I-TASSER employs iterative threading and de novo building to produce a 

model. Whilst both have inherent biases towards modelling the provided sequence onto 

models already in the PDB, that both servers consistently predict a NodB-like homology 

domain suggests it is highly likely that the two proteins contain this fold and therefore 

belong to the CE4 protein family (http://www.cazy.org/). Furthermore, the predicted 

percentage of α-helices for both I-TASSER and Phyre2 concur with the values obtained 

experimentally by CD, when one combines the helix and coil values provided by CDDSTR 

(Table 5-3). 

Considering the that both proteins are likely members of the CE4 family, the presence of the 

conserved Asp-His-His metal binding triad (Figure 5-10), and the conservation of the 

oxyanion stabilising proline residue (Bhattacharjee et al., 2017), it was surprising that our 

ICP-MS analysis suggested little to no metal bound to the purified proteins (Figure 5-5). 

http://www.cazy.org/
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There was some indication that s1319 may bind zinc at 25% occupancy, but no metal tested 

was detected in the s1522 analysis. It may be that both s1319 and s1522 have a catalysis 

mechanism like that of Colletotrichum lindemuthianum, where no metal ion is required 

(Hekmat, Tokuyasu and Withers, 2003).  

However, in the majority of CE4 family members, including proteins identified in the I-

TASSER and Phyre2 modelling, the bound metal ion is central to catalysis (Blair et al., 2005; 

Andrés et al., 2014; Bhattacharjee et al., 2017). It is expected that, in vivo, the majority of 

the CE4 family members bind a divalent metal ion. Zinc occupancy is preferred by some 

family members (Andrés et al., 2014) whereas cobalt has been implicated in increasing the 

enzymatic activity of SpPdgA by 30-fold, with provision of additional zinc increasing activity 

5.5-fold (Blair et al., 2005). Perhaps, if ICP-MS analysis was undertaken on SpPdgA under 

native levels of zinc, it too would demonstrate only 25% occupancy, and that the enzymatic 

activity seen in Figure 5-11 is attributable to only 25% of the protein used containing zinc.  

Whilst non-metal dependent CE4 family members have been described (Hekmat et al., 2003; 

Blair & van Aalten, 2004), zinc coordination is more common (Blair et al., 2005; Deng et al., 

2009; Andrés et al., 2014). Therefore, the metal binding capacity, if any, of s1319 and s1522 

should be validated and, further ICP-MS analysis should be carried out to determine the 

metal occupancy of s1319 and 1522. Alternatively, if protein crystallisation screens prove 

successful, the identity of any metal present may be confirmed.  

 Future work 

Future work would involve determining at what point during the cell cycle are the 10 

identified deacetylases are expressed, potentially combining the sigma factor mutants used 

in Chapter 3, with RNA sequencing, microarray analysis and/or quantitative PCR. Localisation 

during cell cycle should also be probed; do deacetylases co-localise with other peptidoglycan 

synthesis/modification enzymesthe elongasome or divisome? This in turn may reveal more 

about the physiological function of these deacetylases, i.e. are they involved in vegetative 

growth and cell division, engulfment or the maturation of spore cortex peptidoglycan? 

Determining the crystal structure of these two proteins will enable further understanding of 

the catalytic mechanism and may help determine the presence/absence of a metal ion in the 

conserved Asp-His-His triad. Investigation of the presence, and if applicable role, of the 

unusual 2-hydroxyproline PTM should also be investigated. Co-crystallisation with a panel of 

small molecules or with targeted molecules may also lead to the identification of novel 

inhibitors which may have therapeutic potential. Indeed, a histone deacetylase inhibitor has 

already been demonstrated to inhibit the deacetylase activity of 2 GlcNAc deacetylases in B. 

cereus (Balomenou et al., 2018), and several other deacetylase inhibitors have been 

developed (Chibba et al., 2012; Ariyakumaran et al., 2015; DiFrancesco, Morrison and Nitz, 

2018). 

To complement this potential drug discovery-based avenue of investigation, C. difficile 

deletion mutants of both deacetylases should be used to investigate the sporulation 

efficiency, lysozyme resistance, infectivity and persistence, and toxicity in disease models.  
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Additionally, the uncharacterised deacetylases identified should be investigated further; are 

they active against intact peptidoglycan? When are they expressed? Where are they 

expressed and are they essential for sporulation? 

Whilst many questions remain about the two characterised deacetylases, and the remainder 

of the 10 proteins identified, the potential for therapeutic intervention suggests this could 

be a very interesting avenue of research in C. difficile.



141 
 

Chapter 6. Discussion 

C. difficile continues to be a substantial healthcare burden, with the Center for Disease 

Control (USA) recognising C. difficile as an urgent threat. With the increasing resistance to 

the limited antibiotics available to treat CDI (Peng et al., 2017; Boekhoud et al., 2019) and a 

widening patient demographic (Garg et al., 2013; Bloomfield and Riley, 2016), novel 

interventions are required to prevent and treat CDI. To this end, our knowledge of the 

fundamental biology of C. difficile must be advanced.  

Spores contribute significantly to the pathogenesis of C. difficile by allowing transmission 

and persistence in the aerobic environment, due to their resistance to various commonly 

used decontamination methods (Deakin et al., 2012; Barra-Carrasco and Paredes-Sabja, 

2014; Janezic, Mlakar and Rupnik, 2018; Dyer et al., 2019). As spores are so crucial to CDI it is 

tempting to identify interventions that could disrupt either their formation or persistence. 

Due to the possibility of spores that are resistant to germination, known as “super-dormant” 

spores (Zhang and Mathys, 2019), an intervention that could prevent C. difficile forming 

them in the first place is an attractive alternative. This requires a greater understanding of 

the C. difficile sporulation process, which this work sought to contribute to.  

6.1. Peptidoglycan in C. difficile  

The peptidoglycan of C. difficile vegetative cells is remarkable due to both the prevalence of 

3-3 crosslinks, in comparison to the more canonical 4-3 linkage, and the high level of GlcNAc 

deacetylation (Peltier et al., 2011; Bern, Beniston and Mesnage, 2016). In addition to 

verifying the composition of C. difficile peptidoglycan (Chapter 3), the work presented here 

has identified several additional NCDAA termini present in vegetative cells peptidoglycan 

(section 3.1.3). 

By analysing the peptidoglycan of several sporulation-defective mutants by FT-MS, we have 

been able to probe the changes to peptidoglycan throughout sporulation. Whilst the 

observed changes were not as dramatic as expected, they suggest both that peptidoglycan 

remodelling begins early in sporulation and that these changes may be associated with 

altering the crosslinking and deacetylation levels rather than the presence of novel spore 

cortex-related muropeptides. This analysis relies on a mixture of peptidoglycan isolated from 

vegetative and sporulating cells. It would be interesting to repeat this experiment in order to 

purify peptidoglycan from only those cells that have formed asymmetric septa to allow a 

more specific insight into the changes observed throughout sporulation.  

6.2. B. subtilis and C. difficile - similar but different 

B. subtilis is the model Gram-positive spore-former, with the majority of our understanding 

of sporulation originating from this organism (Illing and Errington, 1991; Popham et al., 

1996; Popham, Gilmore and Setlow, 1999; Molle et al., 2003; Eichenberger et al., 2004; 

Wang et al., 2006; Camp and Losick, 2008; de Hoon, Eichenberger and Vitkup, 2010). 

However, as C. difficile has become more clinically relevant, and more research has been 

conducted, an increasing number of differences have been discovered between seemingly 

conserved processes between the two organisms (Pereira et al., 2013; Saujet et al., 2013, 

2014). 
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Perhaps the most noticeable of these differences are those at the level of control of 

sporulation; despite the conservation of the sigma factors regulating sporulation, the C. 

difficile activation cascade has limited intercompartmental communication, whilst B. subtilis 

requires extensive communication between the mother cell and forespore compartments 

(Fimlaid et al., 2013; Pereira et al., 2013; Saujet et al., 2013) (reviewed in (Paredes-Sabja, 

Shen and Sorg, 2014)).  

This conservation of components but not necessarily of function is further reflected in the 

DMP machinery. SpoIIM is essential in B. subtilis, but dispensable for the formation of 

mature spores in C. difficile (Dembek et al., 2018; Ribis, Fimlaid and Shen, 2018). Our 

investigation on the activities of SpoIID and SpoIIP (section 4.4), demonstrates that SpoIID 

does not enhance the activity of SpoIIP as is reported in B. subtilis (Chastanet and Losick, 

2007). Furthermore, our biophysical studies (section 4.2.2.1) corroborate the evidence of 

Nocadello et al (2016); C. difficile SpoIID contains a tetrahedral zinc binding site, that is 

required for full activity, whereas this zinc site is absent in B. subtilis SpoIID (Nocadello et al., 

2016; Kelly and Salgado, 2019). 

C. difficile SpoIIP was confirmed as a bifunctional endopeptidase and amidase (section 4.4). 

Interestingly, recent studies suggest that C. difficile spoIIP is under the control of σF whereas 

in B. subtilis spoIIP is under the control of σE (Piggot and Hilbert, 2004; Saujet et al., 2013; 

Ribis, Fimlaid and Shen, 2018). This divergent regulation of expression also suggests 

divergent localisation, with σF controlled genes expressed in the forespore and σE in the 

mother cell; SpoIIP likely localises to the forespore during engulfment (Ribis, Fimlaid and 

Shen, 2018). Western blot analysis by Ribis et al (2018), demonstrated the presence of 3 

isoforms of SpoIIP in C. difficile cell lysates, leading the authors to hypothesise that SpoIIP 

may exist as a free, membrane-unbound isoform that is produced in the forespore. 

The DMP complex may have roles beyond that of peptidoglycan digestion. Peptidoglycan 

digestion by the DMP machinery is rate-limiting to engulfment, even when the septal barrier 

has been bypassed (Abanes-De Mello et al., 2002; Gutierrez, Smith and Pogliano, 2010; 

Khanna et al., 2019). The DMP complex has also been implicated in localising spore coat 

proteins; in C. difficile strains lacking DMP, the spore coat proteins SpoIVA and SipL 

mislocalised (Ribis, Fimlaid and Shen, 2018). Together, this suggests the DMP complex may 

have a role beyond peptidoglycan digestion in C. difficile.  

6.3. Current model of engulfment 

For the mother cell to engulf the forespore, it must overcome the barrier formed by the 

septal peptidoglycan; this lead to the septal thinning model of engulfment, where, starting 

at the middle of the septa and progressing outwards, the septal peptidoglycan is completely 

removed (Chastanet and Losick, 2007). However, the septal peptidoglycan is present as a 

thin layer throughout engulfment (Tocheva et al., 2013; Lopez-Garrido et al., 2018). 

Furthermore, peptidoglycan synthesis is required throughout engulfment; disruption of 

peptidoglycan synthesis prevents the mother cell from engulfing the forespore, though 

permits the asymmetric septa to curve into the mother cell (Meyer et al., 2010; Ojkic et al., 

2016). This suggests that the septal thinning model does not completely explain the 

mechanisms of engulfment. 
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The Make-Before-Break model of engulfment was therefore proposed (Ojkic et al., 2016); 

new peptidoglycan is synthesised ahead of the engulfing membrane, using one strand from 

the forespore and one from the lateral mother cell wall peptidoglycan as a template, before 

the newly inserted peptidoglycan is specifically degraded (potentially by the DMP complex). 

This creates space for the engulfing membrane to move into without complete dissolution of 

the septal peptidoglycan or compromising the integrity of the mother cell wall.  

Recent investigations have developed this model (Khanna et al., 2019). Using advanced 

electron microscopy techniques, the authors demonstrate that the septal peptidoglycan 

found between the mother cell and forespore compartments is not completely degraded at 

the start of engulfment from the centre out towards the advancing membrane, but is 

degraded uniformly across the entire septum with a layer of peptidoglycan present 

throughout, contrary to the septal thinning model. This slight thinning requires the DMP 

machinery, and is required to maintain a flexible septum (Khanna et al., 2019).  

Further investigations revealed that the newly synthesised peptidoglycan is inserted ahead 

of the advancing edge and the DMP machineries, and that insertion of this peptidoglycan 

results in deformation of the forespore membrane, presumably as peptidoglycan 

accumulates (Khanna et al., 2019). As the mother cell moves around the forespore, finger-

like projections are observed, which the authors suggest are a result of the newly inserted 

peptidoglycan that is yet to be digested by the DMP complex due to the limited number of 

DMP complexes available in the cell at any given time.  

Furthermore, Khanna et al., (2019) suggest that DMP acts both to tether the engulfing 

membrane to peptidoglycan ahead of the leading edge, and to digest the newly inserted 

peptidoglycan to make room for the engulfing membrane to expand into. However, as the 

digestion of peptidoglycan by the DMP complex is rate limiting, peptidoglycan may be 

digested unevenly along the advancing edge, leading to the production of the finger-like 

projections.  This model is summarised in Figure 6-1. 

  



144 
 

 

Figure 6-1: Current understanding of peptidoglycan remodelling during engulfment 

Panel A shows the model proposed by Ojkic et al., (2016). New peptidoglycan (green) is inserted and bound to 

the mother cell peptidoglycan (blue) (marked 1). The peptidoglycan between the new and old strands is 

specifically digested (cross) before the process is repeated, allowing the membrane to advance. Panel B is 

modified from Khanna et al., (2019); the mother cell membrane (red) is tethered to the peptidoglycan (gray) 

that is inserted ahead of the membrane. The DMP complexes (yellow pacman) tether the mother cell 

membrane to the peptidoglycan in addition to their peptidoglycan digestion role, thus the mother cell may 

move ahead unevenly, resulting in finger-like projections. Figures modified from Ojkic et al., (2016) and Khanna 

et al., (2019) 

Interestingly, when peptidoglycan synthesis is inhibited, SpoIIP localisation to the leading 

edge is reduced, but still possible, suggesting that SpoIIP preferentially binds newly 

synthesised peptidoglycan (Ojkic et al., 2016). Assuming this newly synthesised 

peptidoglycan is acetylated, this may explain our data suggesting that acetylated 

peptidoglycan is preferentially digested by SpoIID and SpoIIP (section 4.5). This in turn 

bolsters the hypothesis that the DMP complex can target the newly synthesised 

peptidoglycan due to the difference in acetylation seen between the “mature” deacetylated 

mother cell, and the newly synthesised, acetylated, septal peptidoglycan. Furthermore, the 

published crystal structure of SpoIID (Nocadello et al., 2016) has interactions between the 

acetyl groups of the NAG3 substrate and SpoIID throughout the proposed substrate binding 

groove, perhaps hinting at the possible preference of SpoIID, and the DMP complex as a 

whole, for acetylated peptidoglycan.  

6.4. Peptidoglycan deacetylases 

Whilst peptidoglycan deacetylases have been described in various organisms, only recently 

have C. difficile peptidoglycan deacetylases been identified and characterised (Ho et al., 

2014; Coullon et al., 2018). 
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CD630_14300 and CD630_27190 were determined to encode MurNAc deacetylases and 

renamed pdaA1 and pdaA2 respectively. Deletion of pdaA1 dramatically affects the 

peptidoglycan structure of C. difficile spores; muramic-δ-lactam residue-containing 

muropeptides represented only 0.4% of the spore cortex muropeptides, whereas in the 

parental strain, muramic-δ-lactam is present in ~24% of muropeptides. In a ΔpdaA1ΔpdaA2 

double mutant, muramic-δ-lactam-containing muropeptides are abolished completely; thus, 

PdaA1 and PdaA2 have been designated as the major and minor MurNAc deacetylases in C. 

difficile. Mutation of pdaA1 resulted in reduced sporulation rate, delayed germination, and 

delayed virulence, implicating deacetylation of peptidoglycan in C. difficile fitness and 

pathogenesis (Coullon et al., 2018). 

Here, we characterised 2 of 10 identified putative peptidoglycan deacetylases; CD630_1319 

and CD630_1522. The non-membrane associated domains of both proteins were soluble 

when expressed in E. coli, and both proteins were active against E. coli peptidoglycan in 

peptidoglycan digestion experiments (section 5.4.4). Further characterisation of s1319 and 

s1522 should include verification of metal binding capacity, extended crystal screening and 

further investigation into their enzymatic activities. Of particular interest is investigation of 

any possible interactions between the DMP complex and the identified deacetylases. It may 

be that the deacetylases are differentially expressed during sporulation, leading to the newly 

synthesised septal peptidoglycan remaining acetylated long enough to be specifically 

targeted by the DMP complex for degradation during engulfment. This would allow the 

targeted peptidoglycan digestion described (Ojkic et al., 2016; Khanna et al., 2019), 

protecting the mother cell from premature lysis. Even if the deacetylases and the DMP 

complex do not directly interact, the impact of the deacetylases on the rate of SpoIIP and 

SpoIID activity should be investigated - do SpoIID and SpoIIP really prefer deacetylated 

peptidoglycan? 

The deacetylases pose an interesting new avenue of research. Not only is little known about 

them in C. difficile, but deacetylases in other organisms have direct links to pathogenesis 

(Vollmer and Tomasz, 2000; Boneca et al., 2007). Furthermore, peptidoglycan deacetylases 

have been identified as drug targets in B. cereus and B. anthracis (Balomenou et al., 2018; 

Giastas et al., 2018). 

6.5. The engulfasome 

The most recent models of engulfment (Ojkic et al., 2016; Khanna et al., 2019), combined 

with observations that SpoIIP may exist as a free isoform in C. difficile (Ribis, Fimlaid and 

Shen, 2018), that peptidoglycan synthesis is required for engulfment to continue (Meyer et 

al., 2010) and that SpoIID and SpoIIP may preferentially digest acetylated peptidoglycan, 

together with observed interactions between DMP and the SpoIIQ:SpoIIIAH complex 

(Serrano et al., 2016; Dembek et al., 2018), lead to the development of the concept of the 

engulfasome (Kelly and Salgado, 2019). 

Like the elongasome and divisome (Den Blaauwen et al., 2008; Adams and Errington, 2009; 

Lutkenhaus, Pichoff and Du, 2012; Szwedziak and Löwe, 2013), the engulfasome would 

contain several proteins localising around a site of activity at a given time, in this case at the 

engulfing membrane. The engulfasome would span the distance between the mother cell 

and forespore allowing for both peptidoglycan digestion and synthesis in a controlled 
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manner. It seems likely that all the components of the system have yet to be identified, but 

we hypothesise that the DMP complex, Q:AH complex and a peptidoglycan synthesis and/or 

modifying machinery, at least, are present. The engulfasome does not refer to a static 

complex but rather to a dynamic association of various components and regulators 

throughout the engulfment process. 

Furthermore, we hypothesise that whilst critical components may be conserved between 

spore-formers, the specific function of each component may deviate between species 

(Figure 6-2). For example, SpoIIM is essential for sporulation in B. subtilis (Chastanet and 

Losick, 2007), whilst it is largely dispensable in C. difficile (Dembek et al., 2018; Ribis, Fimlaid 

and Shen, 2018).   
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Figure 6-2: The engulfasome may differ between classes and species Panel A shows the sigma factor control of 

proposed engulfasome components in B. subtilis, with their arrangement at the engulfing membrane 

demonstrated in the righthand panel. Panel B demonstrates how the different sigma factor control of the 

proposed components may lead to an alternative organisation at the engulfing membrane. The proteins 

controlled by each sigma factor are coloured in the sigma factor cascade as they are in the schematic. Solid 

lines denote the dependency of one sigma factor upon another, with the dashed arrow depiciting a dispensible 

interaction. The scissors and question mark in the schematic of the C. difficile engulfasome refer to the 

possibiiltiy that C. difficile SpoIIP is processed to release a non-membranebound isoform (Ribis, Fimlaid and 

Shen, 2018). The dashed lines arouns SpoIIM demonstrate that SpoIIM is known to be dispensible for 

successful engulfment in C. difficile (Dembek et al., 2018). Figure modified from Kelly and Salgado (2019). 

6.6. Future directions 

Several lines of enquiry are available to further characterise the engulfasome and its 

regulation.  

The identification of 3 isoforms of SpoIIP, expected to be produced in the forespore (Ribis, 

Fimlaid and Shen, 2018), should be investigated. Are all 3 isoforms relevant in vivo? 
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Identifying whether SpoIIP is active when membrane-associated or free in the 

intermembrane space during engulfment is key in furthering our model of engulfment. To 

this end, super-resolution microscopy imaging using fluorescent tags such as SNAP or 

mCherry could be carried out.  

The apparent preferential digestion of acetylated peptidoglycan by SpoIID and SpoIIP 

requires further investigation. To this end, time resolved peptidoglycan digestions with 

internal, quantifiable, controls should be developed. In these experiments, two parallel 

peptidoglycan digests, one containing chemically acetylated peptidoglycan and the other 

native C. difficile peptidoglycan, would be sampled at discrete time points, and the 

peptidoglycan characterised at various time points. This may highlight any differences in the 

extent of peptidoglycan digestion at a given timepoint depending on the peptidoglycan 

digested. In a similar manner, s1522 could be used as a tool to deacetylate E. coli 

peptidoglycan. The product of this reaction could then be used to investigate the impact of 

the type of crosslink present in the peptidoglycan, as E. coli peptidoglycan is primarily 4-3 

crosslinked in comparison to the 3-3 crosslinks seen in C. difficile.  

The identification and partial characterisation of s1319 and s1522 raises many questions. To 

investigate when in the cell cycle each putative deacetylase is expressed, a PCR-based 

approach, such as reverse transcriptase PCR or quantitative PCR could be employed. 

Alternatively luciferase reporter strains (Oliveira Paiva et al., 2016) could be used in 

conjunction with the C. difficile 630 ΔpyrE Δerm Ptet-spo0A strain. Similar to previous 

experiments (Oliveira Paiva et al., 2016) cells would initially be grown in the absence of 

anhydrotetracycline, to ensure no cells were sporulating, the whole cell lysate of a sample of 

this culture would be taken to use as time point zero, sporulation would be induced, and 

samples regularly taken to assay the whole cell lysates for luciferase activity as the cells 

sporulated. Split-SNAP tagged proteins combined with super-resolution microscopy could 

allow for in vivo investigation of localisation and possible interactions (Cassona et al., 2016; 

Serrano et al., 2016). Interactions between deacetylases, and between deacetylases and 

other components of the engulfasome, could be investigated in vitro using BACTH or ELISA 

systems, or pull-down assays.  

6.7. Final comments 

This work set out to further the understanding of C. difficile engulfment. Here, we have 

characterised the peptidoglycan of vegetative cells and investigated the peptidoglycan of 

several engulfment-defective mutants to begin understanding peptidoglycan remodelling 

during sporulation. We have also characterised the peptidoglycan digestion activities of 

SpoIID and SpoIIP, generated a new hypothesis on how the DMP complex specifically targets 

the septal peptidoglycan for digestion during engulfment, and begun to test it by 

investigating a novel group of proteins potentially important for engulfment - the 

deacetylases.  

Whilst many questions remain to be investigated, this work has contributed to the 

knowledge in the field and acts as the basis for further work.  
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Appendix A  

Table A-1: Custom MZmine2 database 

ID m/z Retention 
time (min) 

Identity Formula 

7 851.357
8 

33 GlcNAc MurNAc anhydro AEm 850 C34H54N6O19 

8 871.383
7 

18.26 GlcNAc MurNAc Aem 870 C34H59N7O19 

10 916.406
4 

17.14 GlcN MurNAc AEmS 915 C35H61N7O21 

11 886.394
8 

18.6 GlcN MurNAc AEmG 885 C34H59N7O20 

12 886.430
6 

21.02 GlcN MurNAc AEmG 885 C34H59N7O20 

13 886.394
8 

18.6 GlcN MurNAc AEmG885 C34H59N7O20 

14 907.365
6 

18.75 GlcN MurNAc AEmG Na adduct 885 C34H59N7O20 

15 984.394
8 

18.6 GlcN MurNAc AEmG phosph adduct 
885 

C34H59N7O20 

16 454.69 18.6 GlcN MurNAc AEmG Na adduct 885 C34H59N7O20 

17 462.67 18.6 GlcN MurNAc AEmG K adduct 885 C34H59N7O20 
18 908.386

1 
35.17 GlcNAc MurNAcanhydro AEmG 907 C36H57N7O20 

19 725.321
5 

18.67 MurNAc AEmG 724 C28H48N6O16 

20 514.245
3 

19.96 GlcNAc MurNAc AEmR CD only 1026 C40H70N10O21 

21 643.305 21.29 GlcN MurNAc AD 642 C24H42N4O16 
23 900.401

6 
22.16 GlcN MurNAc AEmA 899 C35H61N7O20 

24 900.400
5 

22.23 GlcN MurNAc AEmA 899 C35H61N7O20 

25 900.400
3 

24.51 GlcN MurNAc AEmA 899 C35H61N7O20 

26 450.706
3 

24.78 GlcN MurNAc AEmA 2+ 899 C35H61N7O20 

27 998.382 24.66 GlcN MurNAc AEmA 2H3PO4+ 899 C35H61N7O20 
28 922.391

8 
21.94 GlcN MurNAc AEmA 2Na+ 899 C35H61N7O20 

29 469.681
2 

24.66 GlcN MurNAc AEmA 2K+ 899 C35H61N7O20 

30 471.710
7 

23.45 GlcN MurNAc AEmA 2H3PO4 2K+ 
899 

C35H61N7O20 

31 482.703
6 

23.45 GlcNAc MurNAc AemA 2Na 941 C37H36N7O21 
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ID m/z Retention 
time (min) 

Identity Formula 

32 490.687
3 

23.65 GlcNAc MurNAc AemA 2K 941 C37H36N7O21 

33 739.338
8 

21.94 MurNAc AEmA 738 C29H50N6O16 

34 739.339
5 

24.66 MurNAc AEmA 738 C29H50N6O16 

35 914.428 26.49 GlcN MurNAc AEmB 913 C36H63N7O20 
36 476.689

6 
26.64 GlcN MurNAc AEmB k2+ 913 C36H63N7O20 

37 928.444
7 

32.74 GlcN MurNAc AEm927 C37H65N7O20 

38 942.466
1 

42.21 GlcN MurNAc AEmI/L 941 C38H67N7O20 

39 942.463
2 

42.35 GlcN MurNAc AEmI/L 941 C38H67N7O20 

40 490.71 42.15 GlcN MurNAc AEmI/L K2+ 941 C38H67N7O20 
41 976.447

1 
49.93 GlcN MurNAc AEmF 975 C14H65N7O20 

44 815.373
3 

50.15 MurNAc AEmF CD based termini 814 C35H54N6O16 

45 820.366
2 

30.18 GlcN MurNAc AEm AEm GlcN 
MurNAc 3-3 2+ 1638 

C64H110N12O37 

47 839.359
2 

30.26 GlcN MurNAc AEm AEm GlcN 
MurNAc 3-3 2xH3PO4+ 1638 

C64H110N12O37 

48 869.36 30.18 GlcN MurNAc AEm AEm GlcN 
MurNAc 3-3 H3PO42+ 1638 

C64H110N12O37 

49 839.33 30.26 GlcN MurNAc AEm AEm GlcN 
MurNAc 3-3 2K+ 1638 

C64H110N12O37 

50 599.893
4 

30.18 GlcN MurNAc AEm AEm GlcN 
MurNAc 3-3 3K+ 1638 

C64H110N12O37 

51 739.832
6 

30.26 GlcN MurNAc AEm AEm MurNAc 
1477 

C58H99N11O33 

52 841.374
8 

31.67 GlcNAc MurNAc AEm AEm GlcN 
MurNAc 1680 

C66H112N12O38 

54 928.407
8 

20.05 GlcNAc MurNAc AEmG 927 C36H61N7O21 

55 629.779
1 

22.68 GlcN MurNAc AEmG Aem 3-3 1257 C49H83N11O27 

56 848.881
2 

28.96 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 1695 

C66H113N13O38 

57 848.878 28.96 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 isotope 1695 

C66H113N13O38 

58 848.879
9 

31.01 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 1695 

C66H113N13O38 

59 848.900
3 

33.08 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 1695 

C66H113N13O38 
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ID m/z Retention 
time (min) 

Identity Formula 

60 848.901
1 

33.17 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 1695 

C66H113N13O38 

62 897.868
2 

29.15 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 2H3PO4+ 1695 

C66H113N13O38 

63 946.857
6 

29.15 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 2H3PO4+ 1695 

C66H113N13O38 

64 946.857
4 

29.23 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 2H3PO4+ 1695 

C66H113N13O38 

65 860.391 31.38 GlcN MurNAc AEmG AEm GlcN 
MurNAc 3-3 2Na+ 1695 

C66H113N13O38 

66 869.885
3 

30.81 GlcNAc MurNAc AEmG AEm GlcN 
MurNAc 3-3 1737 

C68H115N13O39 

67 869.904
7 

34.94 GlcNAc MurNAc AEmG AEm GlcN 
MurNAc 3-3 1737 

C68H115N13O39 

68 650.789
1 

24.27 GlcNAc MurNAc AEmG Aem 3-3 
1299 

C51H85N11O28 

70 870.889
6 

30.89 GlcNAc MurNAc AEmG AEm GlcN 
MurNAc 3-3 isotope 1737 

C68H115N13O39 

71 855.887
1 

31.77 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 1709 

C67H115N13O38 

72 855.886
3 

32.02 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 1709 

C67H115N13O38 

73 855.889
8 

33.17 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 1709 

C67H115N13O38 

74 855.886
9 

3445 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 1709 

C67H115N13O38 

75 855.886
9 

34.45 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 1709 

C67H115N13O38 

76 855.888
2 

35.88 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 1709 

C67H115N13O38 

77 855.887
5 

35.98 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 1709 

C67H115N13O38 

79 916.372
1 

32.11 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 2Na 2H3PO4 1709 

C67H115N13O38 

80 866.874
3 

32.25 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 2Na  1709 

C67H115N13O38 

81 866.877
4 

32.17 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 2Na  1709 

C67H115N13O38 

82 866.886 34.61 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 2Na 1709 

C67H115N13O38 

83 953.867
7 

32.11 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 2H3PO4x2  1709 

C67H115N13O38 

84 875.364
8 

32.45 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 2K isotopes  1709 

C67H115N13O38 

85 583.568
8 

32.11 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 3K+ 1709 

C67H115N13O38 
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ID m/z Retention 
time (min) 

Identity Formula 

86 583.904
7 

34.45 GlcN MurNAc AEmA AEm MurNAc 
GlcN 3-3 3K+  1709 

C67H115N13O38 

87 775.352
9 

32.74 GlcN MurNAc AEmA AEm MurNAc 
3-3 1548 

C61H104N12O34 

88 876.895
2 

33.96 GlcNAc MurNAc AEmA AEm MurNAc 
GlcN 3-3 2+ 1571 

C69H117N13O39 

89 876.894
5 

34.05 GlcNAc MurNAc AEmA AEm MurNAc 
GlcN 3-3 2+ 1751 

C69H117N13O39 

91 876.897
6 

36.19 GlcNAc MurNAc AEmA AEm MurNAc 
GlcN 3-3 2+ 1751 

C69H117N13O39 

92 876.895
1 

38.16 GlcNAc MurNAc AEmA AEm MurNAc 
GlcN 3-3 2+ 1751 

C69H117N13O39 

93 887.883
2 

34.19 GlcNAc MurNAc AEmA AEm MurNAc 
GlcN 3-3 2Na+ 1751 

C69H117N13O39 

94 887.880
6 

36.65 GlcNAc MurNAc AEmA AEm MurNAc 
GlcN 3-3 2Na+ 1751 

C69H117N13O39 

95 867.392
9 

49.11 GlcNAc MurNAc GlcN 
MurNAcanhydro AEmA AEm 4-3 CD 
only 1731 

C68H109N13O39 

96 868.880
9 

49.79 GlcNAc MurNAc AEmA AEm GlcN 
MurNAc anhydro 3-3 Some evi 1731 

C69H113N13O38 

97 866.878
2 

50.15 GlcNAc MurNAc AEmA AEm GlcN 
MurNAc anhydro 3-3 Some evi 1731 

C69H113N13O38 

98 866.881
3 

53.56 GlcNAc MurNAc AEmA AEm GlcN 
MurNAc anhydro 3-3 Some evi 1731 

C69H113N13O38 

99 866.880
9 

53.75 GlcNAc MurNAc AEmA AEm GlcN 
MurNAc anhydro 3-3 Some evi 1731 

C69H113N13O38 

100 453.706
2 

25 lactyl AEmA EmA 3-3 905 C36H59N9O18 

101 683.790
4 

33.63 GlcNAc MurNAc AEmA AEmAlactyl 
3-3 2Na 1343 

C53H89N11O29 

102 672.805 33.36 GlcNAc MurNAc AEmA AEmAlactyl 
3-3 2+ 1343 

C53H89N11O29 

103 647.782
3 

25.43 GlcN MurNAc AEmA AEm 3-3 1271 C50H85N11O27 

104 696.769
8 

25.43 GlcN MurNAc AEmA AEm 3-3 2Na 
2H3PO4 1271 

C50H85N11O27 

105 636.787
3 

29.92 GlcN MurNAc AEmA AEm 3-3 2Na  
1271 

C50H85N11O27 

106 734.768
2 

25.43 GlcN MurNAc AEmA AEm 3-3 
2H3PO4 1271 

C50H85N11O27 

107 708.323
2 

35.52 GlcN MurNAc AEmA lactylAEm 
unkwn Xlnk 1414 

C56H94N12O30 

108 708.321
4 

37.62 GlcN MurNAc AEmA lactylAEm 
unkwn Xlnk 1414 

C56H94N12O30 

109 891.408
2 

33.96 2 GlcN MurNAc AEmA AEmA 4-3 
1780 

C70H120N14O39 
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ID m/z Retention 
time (min) 

Identity Formula 

110 891.406
8 

35.6 2 GlcN MurNAc AEmA AEmA 4-3 
1780 

C70H120N14O39 

111 940.398
1 

33.96 2 GlcN MurNAc AEmA AEmA 4-3 
H3PO42+ 1780 

C70H120N14O39 

112 940.396
3 

35.78 2 GlcN MurNAc AEmA AEmA 4-3 
H3PO42+ 1780 

C70H120N14O39 

113 607.251
9 

34.05 2 GlcN MurNAc AEmA AEmA 4-3 K3+ 
1780 

C70H120N14O39 

115 951.390
1 

34.05 2 GlcN MurNAc AEmA AEmA 4-3 Na 
H3PO42+ 1780 

C70H120N14O39 

116 890.420
8 

30.47 2 GlcN MurNAc AEmA AEmA 4-3 1 
MurNac unred 1778 

C70H118N14O39 

117 939.413 30.55 2 GlcN MurNAc AEmA AEmA 4-3 1 
MurNac unred H3PO4 1778 

C70H118N14O39 

118 911.931
3 

32.53 GlcNAc MurNAc AEmA GlcN 
MurNAc AEmA 1 MurNAc unred 
Unkwn Xlink CD mostly 1820 

C72H120N14O40 

119 912.412
2 

35.78 GlcNAc MurNAc AEmA GlcN 
MurNAc AEmA 4-3 1822 

C72H122N14O40 

121 913.918
8 

38.08 GlcNAc MurNAc AEmA GlcN 
MurNAc AEmA 4-3 1822 

C72H122N14O40 

122 923.92 38.16 GlcNAc MurNAc AEmA AEmA GlcN 
MurNAc 2Na+ obs and exp -1Da 
1822 

C72H112N14O40 

123 884.393
5 

31.01 GlcN MurNAc AEmG AEmA GlcN 
MurNAc 3-3 2+ 1766 

C69H118N14O39 

124 884.394
2 

31.11 GlcN MurNAc AEmG AEmA GlcN 
MurNAc 3-3 2+ 1766 

C69H118N14O39 

125 589.931
9 

31.01 GlcN MurNAc AEmG AEmA GlcN 
MurNAc 3-3 3+ 1766 

C69H118N14O39 

126 589.931
6 

31.11 GlcN MurNAc AEmG AEmA GlcN 
MurNAc 3-3 3+ 1766 

C69H118N14O39 

127 933.386
4 

31.11 GlcN MurNAc AEmG AEmA GlcN 
MurNAc 3-3 H3PO4 2+ 1766 

C69H118N14O39 

128 978.442
3 

35.03 LactylAEmA LactylAEmA 3-3 see 
notes977 

C39H64N10O19 

129 489.226
8 

27.2 LactylAEm AEmA 4-3 see notes 976 C39H64N10O19 

130 869.905
4 

43.77 GlcN MurNac Aem AEmV GlcN 
MurNAc 3-3 1737 

C69H129N13O38 

131 919.394
8 

43.85 GlcNAc MurNAc AEmA AEmB GlcN 
MurNAc 3-3 speculative 1836 

C73H124N14O40 

132 888.878
2 

44.03 GlcNAc MurNac Aem AEmV GlcN 
MurNAc 3-3 2K+ 1737 

C69H119N13O38 

133 891.417
1 

47.28 GlnNAc MurNAc AEM AEMP/V GlcN 
MurNAc 1779 

C71H121N13O39 
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ID m/z Retention 
time (min) 

Identity Formula 

134 890.912
8 

47.36 GlnNAc MurNAc AEM AEMP/V GlcN 
MurNAc 1779 

C71H121N13O39 

135 905.929
1 

46.64 GlcN MurNAc AEmA AEmV GlcN 
MurNAc 3-3 1808 

C72H124N14O39 

136 905.928
5 

50.15 GlcN MurNAc AEmA AEmV GlcN 
MurNAc 3-3 1808 

C72N124N14O39 

137 926.434
2 

50.65 GlcNAC MurNAc AEmA AEmV GlcN 
MurNAc 4-3 1850 

C74H126N14O40 

138 686.820
7 

48.12 GlcN MurNAc AEMV lactylAEM 3-3 
CD 1371 

C55H93N11O29 

139 898.922
2 

27.54 GlcN MurNAc AEmR AEm GlcN 
MurNAc 3-3 1794 

C70H122N16O38 

140 898.417
1 

40.85 GlcN MurNAc AEmR AEm GlcN 
MurNAc 3-3 1794 

C70H122N16O38 

141 898.918
9 

38.79 GlcN MurNAc AEmR AEm GlcN 
MurNAc 3-3 1794 

C70H122N16O38 

142 876.914
5 

53.33 GlcN MurNAc AEmI/L GlcN MurNAc 
3-3 1751 

C70H122N13O38 

143 884.409
9 

26.28 GlcN MurNAc AEmE AEm GlcN 
MurNAc 3-3 exp and obsv -1Da 1767 

C69H117N13O40 

144 897.920
7 

57.54 GlcNAc MUrNAc AEmI/L GlcN 
MurNAc 3-3 1793 

C72H123N13O39 

145 877.389
8 

27.77 GlcN MurNAc AEmI/L GlcN MurNAc 
3-3 1752 

C67H115N15O39 

146 863.884
3 

28.5 GlcN MurNAc AEmS AEm GlcN 
MurNAc 3-3 1725 

C67H115N15O39 

147 883.899
6 

39.21 GlcNAc MurNAc(nonred) AEmS AEm 
GlcN MurNAc 3-3 1765 

C69H115N13O40 

148 707.840
5 

31.59 GlcN MurNAc AQmA AQmlactylA 3-
3 mostly CD inferred 1412 

C56H96N14O28 

149 902.407 45.26 GlcN MurNAc AEmY AEm GlcN 
MurNAc 3-3 1801 

C73H119N13O39 

150 1254.06
6 

35.31 GlcN MurNAc x3 AEm AEm AEmG 
ambiguous Xlinks 3+ 2506 

C98H167N19O56 

151 849.358 35.31 GlcN MurNAc x3 AEm AEm AEmG 
ambiguous Xlinks 3K+ 2506 

C98H167N19O56 

152 849.362
4 

35.44 GlcN MurNAc x3 AEm AEm AEmG 
ambiguous Xlinks 3K+ 2506 

C98H167N19O56 

153 893.040
8 

36.52 GlcN MurNAc x3 AEm AEmA AEmG 3 
H3PO4+ 2577 

C101H172N20O5
7 

154 1261.57
4 

38.41 GlcN MurNAc x3 AEm AEm AEmA  
3+ 2520 

C99H169N19O56 

155 1261.57
5 

38.51 GlcN MurNAc x3 AEm AEm AEmA  
3+ 2520 

C99H169N19O56 

156 854.367
4 

38.62 GlcN MurNAc x3 AEm AEm AEmA  
3K+ 2520 

C99H169N19O56 
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ID m/z Retention 
time (min) 

Identity Formula 

157 848.707
6 

38.41 GlcN MurNAc x3 AEm AEm AEmA  
3Na+ 2520 

C99H169N19O56 

158 848.707 38.51 GlcN MurNAc x3 AEm AEm AEmA  
3Na+ 2520 

C99H169N19O56 

159 886.689
1 

38.62 GlcN MurNAc x3 AEm AEm AEmA  
3K 3H3PO4+ 2520 

C99H169N19O56 

160 906.37 38.62 GlcN MurNAc x3 AEm AEm AEmA  
2XH3PO4+ 2520 

C99H169N19O56 

161 874.035
3 

40.22 GlcN MurNAc x3 AEm AEm AEmA 
3H3PO4+ 2520 

C99H169N19O56 

162 854.032
3 

38.7 GlcN MurNAc x3 AEm AEm AEmA  
3K+ 2520 

C99H169N19O56 

163 1282.57
9 

41.02 GlcNAc 2GlcN AEmA 2AEm 2562 C101H171N19O5
7 

164 1297.09
9 

40.22 3GlcN 3MurNAc 2AEmA AEmA 2591 C102H174N20O5
7 

165 877.706
5 

39.85 3GlcN 3MurNAc 2AEmA AEmA 3K+ 
2591 

C102H174N20O5
7 

166 877.706
5 

39.96 3GlcN 3MurNAc 2AEmA AEmA 3K+ 
2591 

C102H174N20O5
7 

167 872.387 39.85 3GlcN 3MurNAc 2AEmA AEmA 3K+ 
2591 

C102H174N20O5
7 

168 930.366
3 

40.22 3GlcN 3MurNAc 2AEmA AEmA 
3H3PO4x2+ 2591 

C102H174N20O5
7 

169 901.387
5 

41.7 3GlcN 3MurNAc 3AEmA 2662 3K+ C105H179N21O5
8 

170 902.745
4 

44.03 GlcNAc 2GlcN 3MurNAc 3AEmA 
2704 

C107H181N21O5
9 

171 1098.99 44.34 GlcNAc GlcN 2MurNAc lactylAEm 
AEmA AEm 2194 

C87H145N17O48 

172 1070.97
5 

37.2 2GlcN 2MurNAc lactylAEm AEm 
AEmG 2139 

C84H141N17O47 

175 708.321
7 

37.7 GlcN MurNAc AEmA AEmAlactyl 
1414 

C56H94N12O30 

178 869.903
7 

43.85 GlcN MurNAc AEmV Aem GlcN 
MurNAc 3-3 1737 

C69H119N13O38 

All the muropeptides manually identified in the analysis of C. difficile 630 ΔpyrE Δerm Ptet- 

spo0A, their adducts and alternative charge states were collated, along with their 

mass:charge ratio (m/z), retention time (RT), deduced identity (identity) and empirical 

formula (formula). The identity field also contains a rough estimate of the neutral mass, and 

in some cases, notes on the muropeptide identification. The fields, and their arrangement, 

are as dictated by the MZmine2 software. GlcN; glucosamine, GlcNAc; N-acetylglucosamine, 

MurNAc; N-acetylmuramic acid, A; Alanine, E, Glutamic acid, m; mesoDAP, G; glycine,  S; 

serine, R; arginine, B; γ-aminobutyric acid, I/L; Isoleucine/ leucine, V; valine,P; proline, Y; 

tyrosine, F; phenylalanine.  
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Table A-2: Area under the curve of 10 muropeptides of interest - raw data 

 
Area under curve (total ion counts) 

WT ΔE ΔF ΔD ΔP ΔQ ΔAH 

Total 4.3E+07 1.1E+07 5.4E+07 1.5E+07 2.8E+07 6.8E+07 3.9E+07 
MP 1 2.4E+06 4.3E+04 1.0E+06 0.0E+00 9.8E+05 2.1E+06 3.7E+06 
MP 2 2.8E+06 2.4E+06 3.1E+07 6.6E+06 3.4E+06 4.8E+07 5.8E+06 
MP 3 7.7E+05 0.0E+00 0.0E+00 0.0E+00 3.1E+05 0.0E+00 4.7E+05 
MP 4 4.6E+06 1.8E+06 4.4E+06 1.7E+06 5.3E+06 1.2E+06 4.9E+06 
MP 5 2.1E+06 2.2E+05 1.2E+05 1.5E+05 8.9E+05 1.5E+05 1.8E+06 
MP 6 9.4E+05 3.0E+05 2.4E+06 3.2E+05 5.8E+05 0.0E+00 5.6E+05 
MP 7 2.3E+07 3.7E+06 7.4E+06 4.2E+06 1.1E+07 6.9E+06 1.0E+07 
MP 8 1.3E+06 1.8E+06 3.8E+06 8.3E+05 2.0E+06 4.8E+06 1.9E+06 
MP 9 4.5E+06 6.0E+05 3.6E+06 1.4E+06 2.6E+06 4.0E+06 9.3E+06 
MP 10 1.7E+05 0.0E+00 1.8E+05 0.0E+00 1.6E+05 0.0E+00 2.1E+05 

The 10 muropeptides of interest were extracted from the MZmine2 output for each strain with the raw values 

provided above. MP; muropeptide, WT; C. difficile 630 ΔpyrE Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔsigE, i; 

C. difficile 630 Δerm ΔsigF, ΔD; C. difficile 630 Δerm ΔspoIID, ΔP; C. difficile 630 Δerm ΔspoIIP, ΔQ; C. difficile 630 

Δerm ΔspoIIQ and ΔAH C. difficile 630 Δerm ΔspoIIIAH MP numbers refer to those identified in the wild type 

peptidoglycan analysis Table 3-1.   
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Table A-3: Area under the curve of 10 muropeptides of interest - normalised data 

 Normalised area under curve (%) 

WT ΔE ΔF ΔD ΔP ΔQ ΔAH 

Sporulation 
efficiency (%) 

0.0E+00 79 35 28 28 22 47 

Peak area        

Total area 4.3E+07 8.6E+06 1.9E+07 4.2E+06 7.7E+06 1.5E+07 1.8E+07 
Peak 1 area 2.4E+06 3.4E+04 3.6E+05 0.0E+00 2.8E+05 4.5E+05 1.7E+06 
Peak 2 area 2.8E+06 1.9E+06 1.1E+07 1.8E+06 9.6E+05 1.1E+07 2.7E+06 
Peak 3 area 7.7E+05 0.0E+00 0.0E+00 0.0E+00 8.7E+04 0.0E+00 2.2E+05 
Peak 4 area 4.6E+06 1.4E+06 1.6E+06 4.7E+05 1.5E+06 2.7E+05 2.3E+06 
Peak 5 area 2.1E+06 1.8E+05 4.1E+04 4.1E+04 2.5E+05 3.3E+04 8.6E+05 
Peak 6 area 9.4E+05 2.4E+05 8.6E+05 9.0E+04 1.6E+05 0.0E+00 2.6E+05 
Peak 7 area 2.3E+07 2.9E+06 2.6E+06 1.2E+06 3.2E+06 1.5E+06 4.9E+06 
Peak 8 area 1.3E+06 1.4E+06 1.3E+06 2.3E+05 5.7E+05 1.1E+06 9.1E+05 
Peak 9 area 4.5E+06 4.8E+05 1.2E+06 3.8E+05 7.4E+05 8.9E+05 4.4E+06 
Peak 10 area 1.7E+05 0.0E+00 6.2E+04 0.0E+00 4.5E+04 0.0E+00 1.0E+05 

The 10 muropeptides of interest were extracted from the MZmine2 output for each strain with the normalised 

values provided above. Data were normalised to the sporulation efficiency of each strain. MP; muropeptide, 

WT; C. difficile 630 ΔpyrE Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔsigE, i; C. difficile 630 Δerm ΔsigF, ΔD; C. 

difficile 630 Δerm ΔspoIID, ΔP; C. difficile 630 Δerm ΔspoIIP, ΔQ; C. difficile 630 Δerm ΔspoIIQ and ΔAH C. 

difficile 630 Δerm ΔspoIIIAH MP numbers refer to those identified in the wild type peptidoglycan analysis Table 

3-1. Sporulation efficiencies were calculated by Dr Marcin Dembek.  
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Table A-4: Normalised percentage area under the curve accounted for by each muropeptide in each strain 

MP Normalised percentage area under curve (%) 

WT ΔE ΔF ΔD ΔP ΔQ ΔAH 

MP 1 5.6 0.4 1.9 0.0 3.6 3.0 9.5 
MP 2 6.6 22.0 57.8 43.5 12.4 71.6 14.7 
MP 3 1.8 0.0 0.0 0.0 1.1 0.0 1.2 
MP 4 10.7 16.3 8.2 11.0 19.3 1.8 12.5 
MP 5 5.0 2.1 0.2 1.0 3.2 0.2 4.7 
MP 6 2.2 2.8 4.5 2.1 2.1 0.0 1.4 
MP 7 53.9 34.1 13.6 27.9 40.8 10.2 26.7 
MP 8 3.1 16.8 7.0 5.5 7.3 7.1 5.0 
MP 9 10.7 5.6 6.6 9.0 9.6 6.0 23.8 
MP 10 0.4 0.0 0.3 0.0 0.6 0.0 0.5 

Sporulation efficiency- normalised areas under the curve are expressed as a percentage of the total normalised 

area under the curve of all 10 muropeptides of interest. MP; muropeptide, WT; C. difficile 630 ΔpyrE Δerm Ptet -

spo0A, ΔE; C. difficile 630 Δerm ΔsigE, i; C. difficile 630 Δerm ΔsigF, ΔD; C. difficile 630 Δerm ΔspoIID, ΔP; C. 

difficile 630 Δerm ΔspoIIP, ΔQ; C. difficile 630 Δerm ΔspoIIQ and ΔAH C. difficile 630 Δerm ΔspoIIIAH MP 

numbers refer to those identified in the wild type peptidoglycan analysis Table 3-1.  
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Table A-5: Difference between area under curve attributed to a given muropeptide in a given mutant cell 

peptidoglycan compared to the wild type 

MP Change to normalised percentage area under curve 

ΔE ΔF ΔD ΔP ΔQ ΔAH 

MP 1 -5.1 -3.7 -5.6 -2.0 -2.5 3.9 
MP 2 15.4 51.2 36.9 5.8 65.0 8.1 
MP 3 -1.8 -1.8 -1.8 -0.7 -1.8 -0.6 
MP 4 5.6 -2.5 0.3 8.6 -8.9 1.8 
MP 5 -2.9 -4.8 -4.0 -1.8 -4.8 -0.3 
MP 6 0.6 2.3 -0.1 -0.1 -2.2 -0.8 
MP 7 -19.8 -40.3 -25.9 -13.1 -43.6 -27.2 
MP 8 13.6 3.8 2.3 4.2 3.9 1.8 
MP 9 -5.1 -4.1 -1.7 -1.1 -4.7 13.2 
MP 10 -0.4 -0.1 -0.4 0.2 -0.4 0.1 

The difference in the normalised percentage area under the curve for a given muropeptide in a mutant cell 

peptidoglycan compared to that seen in the wild type peptidoglycan. MP; muropeptide, WT; C. difficile 630 

ΔpyrE Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔsigE, i; C. difficile 630 Δerm ΔsigF, ΔD; C. difficile 630 Δerm 

ΔspoIID, ΔP; C. difficile 630 Δerm ΔspoIIP, ΔQ; C. difficile 630 Δerm ΔspoIIQ and ΔAH C. difficile 630 Δerm 

ΔspoIIIAH MP numbers refer to those identified in the wild type peptidoglycan analysis Table 3-1.  
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Table A-6: Comparison of crosslinking between mutant cell peptidoglycans and the wild type 

Strain  Total normalised 
percentage area under 
curve (%) 

Monomers Crosslinked 

WT 12.2 87.8 
ΔE 22.4 77.6 
ΔF 59.7 40.3 
ΔD 43.5 56.5 
ΔP 15.9 84.1 
ΔQ 74.7 25.3 
ΔAH 24.2 75.8 

Normalised percentage areas under the curve were summed for monomers and crosslinked muropeptides. 

Muropeptides 1 and 2 were considered monomers, with muropeptides 3-10 considered crosslinked. MP; 

muropeptide, WT; C. difficile 630 ΔpyrE Δerm Ptet -spo0A, ΔE; C. difficile 630 Δerm ΔsigE, i; C. difficile 630 Δerm 

ΔsigF, ΔD; C. difficile 630 Δerm ΔspoIID, ΔP; C. difficile 630 Δerm ΔspoIIP, ΔQ; C. difficile 630 Δerm ΔspoIIQ and 

ΔAH C. difficile 630 Δerm ΔspoIIIAH MP numbers refer to those identified in the wild type peptidoglycan 

analysis Table 3-1. 

 


