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Thesis Abstract  

Functional cellular metabolism underpins healthy ageing by sustaining cellular 

signalling and organelle function. In turn, cellular metabolism critically depends on 

macronutrient availability and organelle health, which are maintained by cellular 

catabolic pathways, and by autophagy in particular. Importantly, decline in autophagy 

flux and mitochondrial dysfunction are observed in a variety of age-related chronic 

disorders and neurodegenerative diseases. I hypothesized that autophagy impairment 

stands at the root of age-related pathology and set out to test my hypothesis in a 

genetic model of autophagy deficiency. I have established a model where autophagy 

5 (Atg5) knockout cells are forced to produce ATP via oxidative phosphorylation 

(OXPHOS) in culture and uncovered a rapid loss of viability accompanied by a 

reduction in nucleotides. In particular, loss of nicotinamide adenine dinucleotide 

(NAD(H)) levels were most predictive of cellular viability. NADH functions as a cofactor 

in cellular metabolism, maintenance of mitochondrial membrane potential and ATP 

production. I identified several compounds that rescue loss of cellular viability due to 

autophagy dysfunction, of which NAD(H) level normalization by precursor 

supplementation proved most effective.  

I tested the translational potential of my findings in cellular models of Niemann Pick 

Type C1 (NPC1) disease that is characterized by altered lipid metabolism and 

autophagy impairment, and its clinical presentations include spleen and liver 

enlargement, and progressive neurodegeneration. In immortalized NPC1 knockout cell 

lines, NAD(H) precursor treatment rescued cell death in conditions of enforced 

OXPHOS respiration. Furthermore, I identified NAD(H) depletion and increased 

susceptibility to exogenous oxidative stress in primary human fibroblasts isolated from 

NPC1 patients. Corroborating results from other models tested in my study, NAD(H) 

precursor supplementation successfully boosted NAD(H) levels and improved 

resistance to oxidative stress in patient cells.  

In summary, I have demonstrated that autophagy promotes a healthy nucleotide and 

NAD(H) metabolism and that NAD(H) precursor supplementation could protect cells 

and tissues affected by autophagy dysfunction. 
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UPS  ubiquitin-proteasome system  

UQCRFS1  ubiquinol-cytochrome c reductase iron-sulphur subunit 1  

USP15/30  ubiquitin carboxyl-terminal hydrolase 15/30 

UVRAG  UV radiation resistance associated protein  

VDAC  voltage-dependent anion channel 

VPS35  vacuolar protein sorting-associated protein 35 

WIPI  WD repeat domain phosphoinositide-interacting protein 1 

XPC  xeroderma pigmentosum  

Z-VAD-fmk  Z-VAD-fluoromethylketone 
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 Introduction 

1.1 Ageing: A primer 

Age is the major risk factor for development of chronic illnesses and their comorbidities, 

including but not limited to cancer, cardiovascular disease, diabetes, arthritis and 

neurodegeneration. Age-related cellular and metabolic changes however, are not 

limited to the scope of any single disease, thus adding complexity to the research of 

underlying ageing-promoting processes (Guarente, 2014). On a molecular level, 

ageing is associated with metabolic alterations (López-Otín et al., 2016) coupled to the 

complexity of global dysregulation and dysfunction (López-Otín et al., 2013). 

Particularly vulnerable to the effect of time are the post-mitotic tissues of heart, muscle 

and brain (Ferrucci et al., 2015). 

In contrast, healthy ageing is underpinned by a functional metabolism. Major 

processes involved in metabolism control include proteostasis; energy generation and 

sensing; and nicotinamide adenine dinucleotide (NAD(H)) metabolism (Cantó, 

Menzies and Auwerx, 2015; López-Otín et al., 2016). First, control of the abundance 

and correct folding of all cellular proteins is necessary to maintain a healthy cytosolic 

environment (Morimoto and Cuervo, 2014). Proteasome-mediated degradation and 

autophagy pathways act in concert to maintain quality control and functional proteome, 

thus mediating proteostasis (Tanaka and Matsuda, 2014). In addition to proteostasis, 

autophagy maintains a healthy cytoplasm by executing degradation of dysfunctional 

organelles and bulky protein aggregates (Klionsky and Emr, 2000).  

Second, initial stages of energy generation occur in the cytoplasm and link to 

mitochondrial tricarboxylic acid (TCA) cycle, which leads to total substrate oxidation 

and release of electrons that feed the electron transport chain (ETC) and assist in 

energy generation in the form of an adenine triphosphate (ATP) molecule. In addition 

to energy generation, mitochondria are the hubs of amino acid, fatty acid and carbon 

metabolism, iron-sulphur cluster (Fe-S) generation, intracellular calcium (Ca2+) and 

redox signalling, and play a central role in regulation of apoptotic cell death (Weinberg 

and Chandel, 2014; Galluzzi et al., 2018). Mitochondrial health is thus key to cellular 

metabolic fitness and survival.  
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Lastly, involvement of a co-enzyme and a co-substrate of metabolic and redox 

reactions, the NAD(H) molecule (Verdin, 2015), has been explored in its role as a 

substrate for enzymes that help protect cells from age-related decline (Houtkooper, 

Pirinen and Auwerx, 2012; Cantó, Menzies and Auwerx, 2015). Enzymes that require 

NAD+ as a co-factor include sirtuins (SIRTs), known to improve metabolic efficiency in 

conditions of nutrient stresses such as exercise, caloric restriction and fasting (Cantó, 

Menzies and Auwerx, 2015). In addition, poly(ADP-ribose) polymerases (PARPs) 

consume NAD+ to aid DNA damage repair and contribute to metabolic adaptation by 

affecting the rate of glycolysis (Chaitanya, Steven and Babu, 2010; Cantó, Menzies 

and Auwerx, 2015). While SIRT activation has been linked to the protective effect of 

caloric restriction on the pathology of ageing, PARP inhibitors are currently explored 

as a target for cancer treatment (Cantó, Menzies and Auwerx, 2015). 

It is now understood that together, these pathways have evolved to control, sense and 

react to the overall metabolic status of the cell and their individual function as well as 

their crosstalk are necessary for homeostasis maintenance. On the flip side, 

dysregulation of any of the pathways potentiates the development of age-related 

diseases such as neurodegeneration. 

1.2 Proteostasis 

Protein sentinels monitor the health of the entirety of the cellular protein population, 

the proteome, which is vital for the structural and catalytic integrity of the cell. The 

structure of the proteome is different in various cell types and undergoes changes 

during development, upon various insults, and in response to nutrient availability 

(Huang et al., 2015; Harper and Bennett, 2016). Interestingly, the abundance of protein 

orthologs appears to be conserved across species (Vogel and Marcotte, 2012). Thus, 

cells contain multiple pathways of proteome monitoring, health maintenance and 

degradation in response to changes in environmental ques to achieve true adaptation 

and prevent onset of disease (Balch et al., 2008). Loss of proteostasis has been 

described as one of the hallmarks of ageing and has been linked to the pathology of 

many neurodegenerative diseases, including Parkinson’s disease (PD), Huntington’s 

disease (HD), and Alzheimer’s disease (AD) (Wong and Cuervo, 2010; López-Otín et 

al., 2013). 
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1.2.1 Ubiquitin-proteasome system 

The true complexity of a cellular proteome arises from the sheer number of genes 

transcribed in any given cell type, which has been approximated to ten thousand 

transcripts (Harper and Bennett, 2016). Proteins can exist in several forms as a 

consequence of alternative messenger RNA (mRNA) splicing, complex formation, and 

post-translational modification (PTM); and localize to various subcellular 

compartments (Harper and Bennett, 2016). Maintenance of the cellular proteome 

starts at surveillance of the fidelity of mRNA translation and involves a rapid response 

to misfolding, and degradation (Balch et al., 2008; Harper and Bennett, 2016). Protein 

misfolding and dysfunction often occurs as a result of genetic mutations or stress (i.e. 

oxidation, thermal shock, radiation), which lead to loss of native structure. Proteins 

initially adopt their secondary and tertiary structure upon synthesis. Protein folding 

patterns are based on the primary amino acid sequence and the folding process is 

assisted by molecular chaperones, often referred to as heat shock proteins (Labbadia 

and Morimoto, 2015). Upon misfolding, chaperones are recruited to mediate re-folding, 

often in an ATP-dependent folding process (Kim et al., 2013). If the protein damage is 

beyond repair, chaperones can also participate in protein delivery for degradation 

(Arndt, Rogon and Höhfeld, 2007). Specifically, the C-terminus of heat shock cognate 

71 kDa-interacting protein (CHIP) acts as the switch between re-folding and 

proteasome-mediated degradation via its E3-ubiquitin ligase activity (Murata, Chiba 

and Tanaka, 2003).  

Ubiquitin (Ub) is a small, 8.5kDa, highly conserved protein in eukaryotes, which is 

covalently linked to lysine residues of proteins in an ATP-depended process that 

requires three distinct classes of enzymes, called E1 (ubiquitin-activating enzymes), 

E2 (ubiquitin-conjugating enzymes) and E3 (ubiquitin-ligating enzymes) (Figure 1.1). 

(Welchman, Gordon and Mayer, 2005). Protein ubiquitylation serves a diverse set of 

functions in DNA repair, protein transcription, endocytosis and signal transduction 

(reviewed in (Welchman, Gordon and Mayer, 2005)). Additional linkage of more Ubs 

aided by E2, E3 and accessory factors (E4) results in  formation of a ubiquitin chain 

(polyubiquitylation), which is opposed by the function of a class of deubiquitylating 

enzymes (DUBs) (Nijman et al., 2005; Huang and Dixit, 2016). The nature of ubiquitin 

linkage via its seven lysine (K) residues determines the function of protein 

ubiquitylation due to chain recognition by ubiquitin-binding domain adaptor 

proteins(Kwon and Ciechanover, 2017). Formation of a polyubiquitin chain via 
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homotypic K48 (Chau et al., 1989; Finley et al., 1994) or heterotypic K48 and K11 

linkages (Xu et al., 2009) (a minimum of four Ubs) is sufficient for recognition by the 

ubiquitin-proteasome system (UPS) and targets proteins for degradation (Figure 1.1) 

(Welchman, Gordon and Mayer, 2005). 

 

Figure 1. 1 Mechanism of protein ubiquitination 

In UPS, ubiquitylated proteins are delivered to the 26S proteasome, a large protein 

complex consisting of a core particle (20S) and regulatory subunits (19S) located both 

in the cytoplasm and the nucleus (Finley, Chen and Walters, 2016; Collins and 

Goldberg, 2017). CryoEM resolution of the 19S subunits revealed their assembly into 

a ‘lid&base’ model hypothesized to wrap around the core subunit and regulate 

substrate recognition and entry. Delivery of protein cargo to the 26S proteasome is 

followed by its deubiquitylation and ATP-assisted unfolding by the 19S subunits and 

translocation to the core 20S unit for proteolysis (Finley, Chen and Walters, 2016). Due 

to the narrow translocation channel, properly folded or aggregated proteins are 

Protein modification by ubiquitin (Ub) is achieved by a catalytic cascade of three classes of 

enzymes: E1 (ubiquitin activation), E2 (ubiquitin conjugation) and E3 (ubiquitin ligation). 

Two known E1 enzymes, UBA1 and UBA6 form a thioester bond with ubiquitin. 

Approximately 38 E2 enzymes add specificity to the ubiquitylation pathway. E2s are viewed 

as Ub carriers between E1s and E3s via an active site cysteine residue. Approximately 700 

proteins form the E3 family transfer charged Ub onto a lysine residue of the substrate 

protein. E2 and E3 enzymes aid the formation of poly-Ub chains. Ubiquitylation is opposed 

by a family of over 100 deubiquitylases (DUBs). 
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excluded from entry into the core. Once inserted, unfolded protein chains are threaded 

through the core particle and undergo cleavage into smaller amino acid peptides that 

are either further processed for amino acid recycling, or, upon interferon activation, 

externalized on the plasma membrane to serve a role in adaptive cell-mediated 

immunity (Finley, 2009; Collins and Goldberg, 2017).  

Importantly, if protein misfolding leads to oligomer and aggregate formation, i.e. when 

hydrophobic residues get exposed, and the resulting complexes cannot be unravelled, 

the complexes are sequestered in a double membraned vesicle and transported to 

lysosomes, a process referred to as macroautophagy (Zhang et al., 2016) (Discussed 

in sections 1.2.2-1.2.4).  

1.2.2 Autophagy 

Autophagy refers to a set of evolutionarily conserved catabolic pathways that are 

together essential for the physiological pathways of cellular differentiation, 

development, homeostasis maintenance, immunity and ultimately, for survival 

(Mizushima et al., 2008). On the flip side, autophagy has also been linked to 

pathophysiological roles in cancer, ageing and neurodegeneration (Mizushima et al., 

2008). Autophagy (self-eating) occurs in the cytoplasm whereby a dynamic membrane 

rearrangement and cargo engulfment/transport lead to lysosomal degradation of a 

variety of cytosolic targets (proteins, organelles, extracellular organisms) (Klionsky and 

Emr, 2000). Three forms of autophagy have been described to date: microautophagy, 

chaperone-mediated autophagy (CMA) and macroautophagy (Figure 1.2). It is now 

recognized that all forms of autophagy can act in a non-selective (bulk) or a highly 

selective manner assisted by receptors and chaperones. Although the mechanisms of 

cargo delivery and translocation to the lysosomal lumen differ, the end stage of 

autophagy, defined as cargo breakdown and recycling in the lysosomes, is common to 

all three forms. Chaperone-mediated autophagy refers to entry of cytosolic proteins 

into lysosomes via a protein translocation system (Tasset and Cuervo, 2016). In 

contrast to macroautophagy and microautophagy, CMA does not involve membrane 

re-organization. Rather, CMA cargo proteins that contain a KFERQ-like sequence 

(approximately 45% of mammalian proteome) are delivered to lysosomes by cytosolic 

heat shock cognate 71 kDa (HSC70), and enter the lumen through a protein  
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Figure 1. 2 The three forms of autophagy 

translocation complex consisting of a lysosome-associated membrane protein type 2A 

(LAMP2A) oligomer (Tasset and Cuervo, 2016; Kirchner et al., 2019). Therefore, CMA 

mediates degradation of proteins only, and was long considered to be a specific cellular 

response aimed to selectively replenish amino acid pools during periods of starvation. 

Proteins are protected from CMA-mediated degradation by multiple strategies: by sub-

compartmentalization within the cell; by shielding their KFERQ-motif via adapting a 

tertiary structure; by interaction with other proteins or substrates; or by post-

translational modifications to amino acids within or flanking the motif (Cuervo, 2010; 

Kirchner et al., 2019). However, as explored in a review by Tasset and Cuervo, and 

research from the Cuervo group, CMA is likely to play a more specific role in energy 

metabolism homeostasis by targeted degradation of enzymes involved in glucose 

metabolism and promotion of lipolysis (Schneider, Suh and Cuervo, 2014; Tasset and 

Cuervo, 2016).  

Microautophagy: the inward invagination of lysosomal membrane results in engulfment of 

neighbouring cytosolic components. Chaperone-mediated autophagy: KFERQ-like motif 

containing proteins are delivered to the lysosome in a selective manner and translocate 

into the lumen via a LAMP2A oligomer. Macroautophagy: cytoplasmic cargo is recognized, 

engulfed into autophagoasomes and transported to lysosomes along the microtubules. 

Cargo is degraded within the lysosome following autophagosome-lysosome fusion. 
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Microautophagy refers to a direct engulfment of cytoplasmic contents located in the 

proximity of endosomes and lysosomes. Microautophagy, when triggered by 

starvation, proceeds via tubular invaginations of the endosomal/lysosomal membranes 

(Mijaljica, Prescott and Devenish, 2011). Selective forms of microautophagy often 

require involvement of Hsc70. Other proteins involved in microautophagy were 

identified in yeast models and include clathrins and the Niemann-Pick Type C (NPC) 

protein family (summarized in (Tekirdag and Cuervo, 2018)). Selective 

microautophagy was reported in degradation of peroxisomes in yeast growing on 

glucose (pexophagy) (Dunn  William A. et al., 2005), in piecemeal nuclear degradation 

upon cell division or in carbon and nitrogen starvation (nucleophagy) (Roberts et al., 

2002) and upon discovery of mitochondria-derived vesicles (MDVs) that bud off the 

mitochondria and translocate to late endosomes (micromitophagy) (Neuspiel et al., 

2008; Sugiura et al., 2014; McLelland and Fon, 2018).  

1.2.3 Macroautophagy Overview 

Macroautophagy refers to an autophagy pathway that involves a dynamic re-

arrangement of cellular membranes to engulf cytoplasmic cargo, vesicle trafficking to- 

and fusion with- the lysosome. In contrast to the other two autophagy pathways and 

the UPS, macroautophagy is involved in the quality control of long-lived proteins, 

cytoplasmic organelles and bulky cytoplasmic aggregates (Zhang et al., 2016). Multiple 

forms of macroautophagy, from herein referred to as autophagy, have been explored. 

From a metabolic standpoint, low levels of autophagy can occur in unstressed cells 

(basal autophagy), which are rapidly boosted by metabolic, oxidative or genotoxic 

stresses (bulk autophagy). In terms of function, autophagy can be highly selective or 

indiscriminate. Selective autophagy functions to maintain cellular fitness by degrading 

invading organisms (xenophagy), misfolded and aggregated proteins (aggrephagy) 

and dysfunctional/surplus organelles (pexophagy, ribophagy, mitophagy). In contrast, 

indiscriminate autophagy is activated at times when nutrient (amino acids, fatty acids, 

nucleotides) recycling is required for biosynthesis or for further catabolic processing to 

generate energy necessary for cell survival (Levine and Yuan, 2005).   
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1.2.4 Macroautophagy Mechanism 

Formation and elongation of a cup-shaped double-layered membrane (isolation 

membrane, phagophore) marks initiation of autophagy. The origin of this membrane is 

a matter of debate and isolation membranes are likely to arise from multiple sources, 

including the endoplasmic reticulum (ER), the Golgi apparatus, the plasma membrane 

and during starvation perhaps also from organelles like mitochondria (Ravikumar et 

al., 2010; Zhao and Zhang, 2019). Published data also supports a strong link between 

formation and maturation of the isolation membrane and the ER. This link was first 

shown by amino-acid starvation triggered re-localization of key autophagy initiation 

components to the ER and membrane curvature into an Ω (omegasome) shape (Axe 

et al., 2008) and later visualised by electron microscopy as an ER cradle model, where 

the isolation membrane sits between two ER sheets  and is neither assembled de novo 

nor completely identical to the ER (Hayashi-Nishino et al., 2009).  

Although autophagy was first discovered in mammals, it was subsequent studies in 

Saccharomyces cerevisiae that identified a set of autophagy (ATG) genes involved in 

orchestration of the entire process (Tsukada and Ohsumi, 1993; Thumm et al., 1994; 

Suzuki et al., 2007). The autophagy proteins often associate in complexes with distinct 

functions (Table 1.1) (Figure 1.3). The earliest complex, complex I or, Unc-51-like 

kinase 1 (ULK1)-ATG13-ATG101-focal adhesion kinase family interacting protein of 

200kD (FIP200) (or ULK1-ATG13-ATG101-FIP200) (Hara et al., 2008; Chan et al., 

2009; Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009) is regulated by 

cellular energy sensor kinases including mammalian target of rapamycin complex I 

(mTORC1), protein kinase B (PKB, AKT) and adenine monophosphate (AMP)-

activated protein kinase (AMPK), largely due to phosphorylation of ULK1. Additional 

layer of regulation is achieved by the tuberous sclerosis 1-2 complex (TSC1-TSC2 

complex) inhibitory association with FIP200 (Wesselborg and Stork, 2015). Upon 

activation, autophagy complex I relocates to the ER and interacts with members of 

autophagy complex II, or VPS34-VPS15-Beclin1 (Kihara et al., 2001).  

Similarly to autophagy complex I, mTORC1, AMPK and AKT kinases are upstream 

regulators of complex II due to their interactions with all three components of the core 

complex (Wesselborg and Stork, 2015). The core element of autophagy complex II, 

Beclin1, also interacts with a number of regulatory proteins, including ATG14, nuclear 

receptor binding factor 2 (NRBF2), UV radiation resistance associated protein 
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(UVRAG), Rubicon, activating molecule in beclin 1-regulated autophagy protein 1 

(AMBRA1) and B-cell lymphoma 2 (BCL-2) (Wesselborg and Stork, 2015). Beclin1 

association with ATG14 is considered crucial for autophagosome formation (Zhong et 

al., 2009). Complex II produces phosphatidylinositol 3-phosphate (PI(3)P), a lipid 

which assists with positive membrane curvature, and is likely to help the initiation 

membrane in adopting its cup-shaped form. PI(3)P formation also initiates recruitment 

of PI(3)P-binding proteins of the WIPI(1-4) family and by extension a trio of ATG 

proteins, ATG16L1 and a complex of ATG5-ATG12, which mark the site of 

autophagosome formation (Bento et al., 2016).  

Table 1. 1 Eukaryotic ATG protein complex identity 

Protein ID Full Name 
Yeast 

Homolog 
Complex Identity 

ULK1 Unc-51-like kinase 1 Atg1 Complex I 

ATG13 Autophagy 13 Atg13 Complex I 

FIP200 
Focal adhesion kinase family 

interacting protein of 200kD 
Atg17 Complex I 

ATG101 Autophagy 101 
 

Complex I 

Beclin1/ 

BECN1 
Beclin 1 Atg6/VPS30 Complex II 

VPS34/ 

PIK3C3 

Vacuolar protein sorting-

associated protein 34/  

Phosphatidylinositol 3-kinase 

catalytic subunit type 3 

Vps34 Complex II 

VPS15/ 

PIK3R4 

Vacuolar protein sorting-

associated protein 15/  

Phosphoinositide 3-kinase 

regulatory subunit 4 

Vps15 Complex II 

ATG14 Autophagy 14, Barkor Autophagy 14 Complex II 

ATG9 Autophagy 9 Atg9   

WIPI 
WD-repeat protein interacting 

with phosphoinosides 
Atg18 Complex III 

ATG2A/B autophagy 2 Atg2 Complex III 

ATG5 autophagy 5 Atg5 Complex IV 

ATG12 autophagy 12 Atg12 Complex IV 

ATG7 autophagy 7 Atg7 Complex IV (E1) 

ATG10 autophagy 10 Atg10 Complex IV (E2) 

ATG16L autophagy 16-like Atg16 Complex IV 

ATG4A-D autophagy 4 Atg4   

LC3 
microtubule-associated protein 

light chain 3 
Atg8   
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Figure 1. 3 The hierarchy of ATG complexes involved in autophagosome 

formation 

  

Signals including nutrient and energy depletion, oxidative stress, hypoxia or protein 

aggregation converge on sensor kinases (mTORC1, AMPK, AKT), which activate the 

ULK1-ATG13-FIP200-ATG101 complex (complex I) through PTMs of its members. 

Members of complex I and sensor kinases phosphorylate members of VPS34-VPS15-

Beclin1 complex (complex II), which activate local phosphatidylinositol-3-phosphate 

(PI(3)P) production. PI(3)P-binding protein WIPI then recruits ATG2 to the nascent 

phagophore, which is elongated upon membrane donation from ATG9-containing vesicles. 

WIPI also recruits the ATG16L-ATG5-ATG12 complex (complex III) and by extension the 

ATG3-LC3 complex. Pro-LC3 is cleaved by ATG4 and conjugated to 

phosphatidylethanolamine (PE), thus creating a membrane bound form. LC3 then acts to 

recruit autophagic cargo via the LC3-interacting region (LIR) of autophagy receptor 

proteins, but is also required for phagophore maturation, enclosure and trafficking to- and 

fusion with the lysosome. 
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Extension of the isolation membrane and its growth and maturation into an 

autophagosome seems to be linked to vesicles containing the membrane-spanning 

ATG9 protein (Yamamoto et al., 2012; Bento et al., 2016). Recent studies in yeast 

point towards the role of ATG9 in establishing contact sites between the ER and 

phagophore via its interaction formation with the ATG2-WIPI complex (Gómez-

Sánchez et al., 2018). The ATG2-WIPI complex is targeted to early phagophores upon 

PI(3)P formation by the PI(3)P binding domain of the WIPI(1-4) protein (Bento et al., 

2016). Although the exact role of WIPI(1-4) remains a mystery, a recent study of its 

complex partner, ATG2, provides an insight into ATG2 functioning as a membrane 

tether via its two membrane-spanning domains and acts to dock the nascent isolation 

membrane to the ER (Kotani et al., 2018). In addition, it is hypothesized that the ATG2-

WIPI complex is responsible for ATG9 recycling (Reggiori et al., 2004; Zhao and 

Zhang, 2019). 

The final of autophagy complexes recruited to the site of phagophore formation are the 

members of the  ATG16L-ATG5-ATG12 complex and the ATG3-LC3 conjugate (Bento 

et al., 2016). First, ATG12, a ubiquitin-like protein, is covalently bound to ATG5 in a 

process assisted by ATG7 (E1-like enzyme) and ATG10 (E2-like enzyme). The ATG5-

ATG12 associates in a complex with ATG16L via ATG5-ATG16 interaction 

(Mizushima, Noda and Ohsumi, 1999). The ATG16L-ATG5-ATG12 complex is 

recruited to the phagophore by a direct binding between WIPI2 and ATG16L (Dooley 

et al., 2014). Importantly, ATG16L-ATG5-ATG12 complex dissociates from the 

structure upon autophagosome formation and is often used to track early autophagy 

events. By its action as an E3 ubiquitin ligase and the ubiquitin-like nature of ATG12, 

the ATG16L1-ATG5-ATG12 complex recruits ATG3 (E3 like enzyme) of the ATG3-

ATG8 complex (Noda et al., 2013). Human orthologs of the yeast Atg8 proteins  include 

three microtubule associated protein 1 light-chain 3 proteins (MAP1LC3A-C/LC3A-C), 

the γ-aminobutyric acid receptor-associated protein (GABARAP), and the γ-

aminobutyric acid receptor-associated protein like 1 and 2 (GAPARAPL 1/2) (Lee and 

Lee, 2016). MAP1LC3, hereafter referred to as LC3-I, is cleaved by ATG4 to expose 

its C-terminal glycine residue. ATG7 (E1-like enzyme), ATG3 (E2-like enzyme) and 

ATG16L-ATG5-ATG212 (E3-like enzyme) facilitate the conjugation of LC3-I to a 

membrane-resident phosphatidylethanolamine (PE), thus resulting in formation of a 

membrane bound form of LC3 (LC3-II) (Scherz-Shouval et al., 2007). The spatial 
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closeness of ATG3-LC3-I and ATG16L-ATG5-ATG12 required for LC3 processing is 

mediated by specific binding between ATG3 and ATG12 (Noda et al., 2013).  

The role of LC3 in selective autophagy arises through its specific association with 

autophagy receptor proteins that contain an LC3-interacting region, a LIR motif, and a 

ubiquitin binding domain that spatially link ubiquitylated cargo to the autophagic 

machinery (Stolz, Ernst and Dikic, 2014). In addition, LC3 and the ATG core machinery 

have been linked to autophagosome biogenesis, cargo recognition, autophagosome 

closure, transport and fusion with lysosomes (Bento et al., 2016). As the research is 

still ongoing, it is clear that much more needs to be understood about autophagosome 

formation and closure and specifically the multiple roles of and interactions between 

the ATG proteins.  

1.2.5 Selective Macroautophagy 

Of the two conjugates that localize to early phagophore, the ATG5-ATG12 conjugate, 

dissociates from the phagophore and is not directly involved in the later stages of the 

autophagy pathway. In contrast, LC3 conjugation to the inner membrane component 

of the phagophore remains unchallenged for the entirety of the vesicle biogenesis, and 

thus turns LC3 into a substrate designed for degradation upon autophagosome fusion 

with the lysosome (Wesselborg and Stork, 2015). Experimental evidence led to 

discovery of an 8-residue long motif that allows proteins to recognize and bind to LC3, 

and identification of the binding motif in protein sequences led to the description of 

autophagy receptor proteins that link specific cargo to the autophagy pathway in a 

process termed selective autophagy (Johansen and Lamark, 2011). Autophagy 

receptors are proteins that fulfil three required features: direct interaction with LC3 via 

an LC3-interacting region (LIR), ability to recognize substrates, and an inherent ability 

to polymerize or aggregate. Canonical autophagy receptors include p62 

(sequestosome 1 (SQSTM1)), neighbour of breast cancer 1 (NBR1), optineurin 

(OPTN), nuclear domain 10 protein 52 (NDP52; or Ca2+-binding and coiled-coil 

domain-containing protein 2, CALCOCO2), Tax1 binding protein 1 (TAX1BP1), Toll 

interacting protein (TOLLIP) and cellular Casitas B-lineage lymphoma (c-Cbl) 

(Wesselborg and Stork, 2015; Mancias and Kimmelman, 2016). Other non-canonical 

autophagy receptors include proteins that bind either Ub (histone deacetylase 6 

(HDAC6)) or LC3 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), 

BNIP3-like (BNIP3L/NIX), FUN14 domain-containing protein 1 (FUNDC1) and others) 
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(Johansen and Lamark, 2011). Due to their association with LC3 and/or cargo, the 

receptor proteins become autophagy substrates themselves. Although a degree of 

redundancy is built into substrate recognition and multiple autophagy receptors are 

recruited to identical substrates, a degree of specificity exists where different 

combinations of receptors aid degradation of the same cargo in response to different 

triggers (Mancias and Kimmelman, 2016). This phenomenon holds particularly true to 

selective degradation of mitochondria (discussed in section 1.3.5) 

1.3 Mitochondria 

Mitochondria are a dynamic network of tubular organelles of a bacterial origin, 

separated from the rest of the cell by a double membrane coat. Since the first fusion 

event of an eubacteria-like endo-symbiont with an archaea host, the bacteria lost a 

major part of their integral function, became dependent on the host cell for the majority 

of its proteome and developed into the mitochondria I recognize today (Balaban, 

Nemoto and Finkel, 2005). Akin to bacteria, mitochondria contain their own DNA in a 

form of a circular molecule (mtDNA), which encodes a small part of the mitochondrial 

proteome. Thus, mitochondria largely depend on proteins encoded by the host’s 

nuclear DNA (nDNA) for their function, replication and recycling (Balaban, Nemoto and 

Finkel, 2005). Likewise, the host cell became reliant on energy generation and 

signalling by the mitochondrial network (Balaban, Nemoto and Finkel, 2005; Frezza, 

2017). Intermediates, terminal molecules and by-products of mitochondrial metabolism 

escape the organelle and influence the adaptability, metabolic state and survival of the 

host cell  (Frezza, 2017). In addition, mitochondria play a key role in the maintenance 

of cellular and organismal fitness by acting as metabolic hubs that integrate a plethora 

of intra- and extra-cellular signals (Sedlackova and Korolchuk, 2018).  

1.3.1 Mitochondrial structure and dynamics  

Two functionally distinct membranes, the outer mitochondrial membrane (OMM) and 

the inner mitochondrial membrane (IMM) separate mitochondria from the cytosol. The 

OMM is a smooth and highly porous membrane permeable to small solutes through 

the voltage–dependent anion channels (VDACs) (Cogliati, Enriquez and Scorrano, 

2016). The OMM acts as a barrier to the cytoplasmic proteins and is also a site of 

interaction with other organelles, most notably the endoplasmic reticulum (ER) 

(Cogliati, Enriquez and Scorrano, 2016). OMM forms an interface for docking and 
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interaction with cytosolic proteins involved in mitochondria-dependent cell fate 

determination (Cogliati, Enriquez and Scorrano, 2016; Sedlackova and Korolchuk, 

2018). In addition, insertion and stabilization of a subset of cytosolic proteins or 

externalization of the most abundant lipid of the IMM, the cardiolipin (CL) on the OMM, 

act as signals for mitochondrial recycling via macroautophagy (Sedlackova and 

Korolchuk, 2018). In contrast, the IMM is impermeable to ions and larger molecules 

and contains a multitude of carriers that facilitate a controlled transport of metabolites 

(Cogliati, Enriquez and Scorrano, 2016). In addition, IMM and the protein complexes 

embedded within it are the sites of mitochondrial energy generation that is aided by 

the double-membrane nature of the organelle (discussed in section 1.3.2). Thus, two 

metabolically distinguishable compartments are formed within the mitochondrion, an 

intermembrane space (IMS) and a mitochondrial matrix.  

Invaginations and stabilized curvature of the IMM, referred to as cristae formation, can 

also lead to a functionally distinct portion of the IMS, the cristae lumen. A large 

proportion of the IMM in healthy mitochondria adopts the cristae formation (Cogliati, 

Enriquez and Scorrano, 2016). Cristae are stabilised by the mitochondrial contact site 

and cristae organising system (MICOS, also known as MitOS and MINOS) as a tight 

tubular junction on the site proximal to the OMM and by ATP synthase dimer rows at 

the distal region (Strauss et al., 2008; Pfanner et al., 2014). Cristae structure changes 

in response to intra- and extra-mitochondrial cues and, in turn, regulates the efficiency 

of mitochondrial metabolism and plays a role in mitochondrial dynamics and 

programmed cell death (Cogliati, Enriquez and Scorrano, 2016).    

Mitochondria associate into dynamic networks to facilitate inter-organelle exchange of 

metabolites and DNA and to dilute toxins (Detmer and Chan, 2007). In contrast, 

separation of dysfunctional regions is required for organelle distribution to sub-cellular 

locations, particularly in neurons, and for maintenance of mitochondrial fitness via their 

fission-assisted removal from the pool and sequestration for degradation via 

macroautophagy (Lazarou et al., 2015). The flexibility of mitochondrial networks is 

determined by the balance of fusion and fission events and its plasticity can vary in 

different cell types and subcellular locations (Detmer and Chan, 2007). At steady state, 

the mitochondrial network undergoes balanced fusion and fission events to maintain 

its overall morphology. Experimental perturbation of either of the two processes and 

cellular energy availability revealed the rapid rate at which mitochondrial networks 
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adopt either a hyperfused or a fragmented state accompanied by a condensed and 

relaxed cristae morphology, respectively (Detmer and Chan, 2007). Physiologically, 

mitochondria tend to become hyperfused in conditions of low nutrient availability, 

presumably to dilute the available metabolites and avoid recycling via macroautophagy 

(Rambold et al., 2011). In contrast, a balance shift toward the fragmented 

mitochondrial morphology is observed in pancreatic β cells cultured in nutrient excess 

(Molina et al., 2009) and pathological states including apoptosis (Arnoult, 2007), 

ischaemia/reperfusion injury (I/R) (Ong et al., 2010).  

Guanosine triphosphatases (GTPases) conserved from yeast to mammal, are located 

at the IMM and the OMM and regulate the fusion and fission processes (Koshiba et al., 

2004; Westermann, 2010). Mitochondrial fusion is dependent on the proton potential 

across the IMM (mitochondrial membrane potential, mMP) and proceeds in three 

distinct phases. Firstly, fusion requires spatial proximity between two adjacent 

organelles followed by inter-OMM tethering made possible by the action of dynamin-

related guanosine triphosphatases, mitofusin 1 and its paralog mitofusin 2 (Mfn1 and 

Mfn2), which are docked at the OMM via their C-terminal domains (Rojo et al., 2002). 

Approximated membranes are tethered by inter-organelle mitofusin oligomerisation 

(Koshiba et al., 2004). Upon tethering, mitofusins mediate OMM fusion in an action 

dependent on their N-terminal GTPase domain to give rise to a short-lived intact 

mitochondrion with two separate cristae compartments (Koshiba et al., 2004). Finally, 

IMM fusion within the mitochondrion is assisted by optic atrophy 1 (OPA1) GTPase 

(Song et al., 2007). OPA1 is an IMM protein involved in a multitude of mitochondrial 

processes, including but not limited to cristae reorganization, apoptotic signalling and 

IMM fusion. Upon import to the intermembrane space, OPA1 adopts two distinct 

peptide structures, a long peptide anchored to the IMM (L-OPA1) and a soluble short 

peptide (S-OPA1), which remains in the IMS (Song et al., 2007). While L-OPA1 homo-

oligomer assembly is involved in cristae stabilization and thus plays a role in ETC 

efficiency, L-OPA1 interaction with CL, a phospholipid unique to the mitochondrial IMM 

and predominantly located in the inner leaflet, mediates IMM fusion (Ban et al., 2017). 

The role of S-OPA1 in fusion is unclear. Several studies report the possible 

involvement of excessive levels S-OPA1, due to L-OPA1 cleavage, in increased levels 

of fission (Ishihara et al., 2006; Anand et al., 2014). It is however unclear whether S-

OPA1 directly participates in fission, or whether the shift towards fission occurs as an 

indirect consequence of L-OPA1 loss. First indications of S-OPA1 direct involvement 
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in fission come from studies, which report that in mouse embryonic fibroblasts (MEFs) 

transfected with S-OPA1 constructs, S-OPA1 localized to OMM fission sites and 

accelerated mitochondrial fragmentation (Anand et al., 2014). 

Another conserved GTPase, dynamin related protein 1 (DRP1), regulates mMP-

independent mitochondrial fission. The triggers of DRP1 recruitment to mitochondria 

are not well understood, but are thought to occur via its PTMs, specifically via 

phosphorylation (Ni, Williams and Ding, 2015). What is known is that DRP1 recruitment 

to mitochondria is mediated by interactions with several OMM proteins including fission 

1 (FIS1), mitochondrial fission factor (MFF) and mitochondrial dynamics proteins of 

49kDa and 51kDa (MID49 and MID51) (Losón et al., 2013). Upon recruitment, DRP1 

forms oligomeric constriction rings along the OMM and splits the intact mother 

organelle into two daughters. DRP1 oligomerisation primes its GTPase domain for 

GTP binding and hydrolysis, which provides the necessary energy to induce 

conformational changes in the protein and mediates the ring constriction and thus the 

scission event (Mears et al., 2011).  

1.3.2 Mitochondrial energy generation 

The most-widely studied function of the mitochondrial network is its contribution to 

cellular bioenergetics by oxidation of carbon substrates that precedes a process 

referred to as oxidative phosphorylation (OXPHOS). Complete oxidation of the 

pyruvate molecule via the tricarboxylic acid (TCA, Krebs) cycle, beta-oxidation of fatty 

acids and oxidation of amino acids occur in the mitochondrial matrix and each liberate 

electrons (e-). Released e- are then loaded onto carriers including NAD+ and flavin 

adenine dinucleotide (FAD) to form their reducing equivalents (NADH and FADH2) 

(Balaban, Nemoto and Finkel, 2005; Watmough and Frerman, 2010). The next step of 

energy generation occurs at the IMM. Proteins expressed from two distinct genomes 

(the nDNA and mtDNA) localise to the IMM to form four multimeric IMM-docked and -

embedded protein complex structures collectively referred to as the electron transport 

chain (ETC) (Watt et al., 2010). ETC is designed to direct the flow of e- donated by 

NADH and FADH2 to O2, the terminal acceptor. Electron flow across the complexes is 

accompanied by pumping of hydrogen ions (H+, protons) across the IMM at complexes 

I, III and IV of the ETC. H+ pumping across the IMM creates a local electrochemical 

gradient also referred to as the mMP (ΔΨm) (Watt et al., 2010). The resulting 

transmembrane potential of -160mV and concentration of protons in the cristae lumen 
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drives proton flow through the F0 subunit of the F1F0ATP synthase to provide the 

rotational energy for ATP synthesis at the F1 subunit. Aerobic respiration via the 

coupling of ETC together with ATP-synthase activity is collectively referred to as 

OXPHOS (Watt et al., 2010). OXPHOS is also ultimately dependent on adenine 

nucleotide translocases (ANTs) responsible for exchange of adenine diphosphate 

(ADP) and inorganic phosphorus (Pi) from the cytosol and ATP from the mitochondrial 

matrix (Stepien et al., 1992). Once ATP is formed, it is released from mitochondria and 

its high-energy bond is cleaved to release energy required to assist cellular catalytic 

reactions.  

Electron entry into the ETC 

The ETC in the majority of eukaryotes consists of four large membrane embedded 

complexes (C I-IV) and two mobile carriers, ubiquinone and cytochrome c. Complexes 

I and II and quinone facilitate e- entry into the ETC system and link metabolic oxidation 

in the matrix to the Q cycle (Van Vranken et al., 2015; Formosa et al., 2018). Complex 

I (CI), or NADH:ubiquinone oxidoreductase, is the largest of the ETC complexes and 

represents the entry point for the majority of e- to the ETC. In mammals, CI consists of 

44 unique subunits expressed from both mtDNA (7)- and nDNA (37)-encoded genes. 

CI assembly proceeds via subunit assembly into three modules, N-, Q- and P-module, 

each consisting of core and accessory subunits (Formosa et al., 2018). A fully 

assembled CI complex adopts an L-shape with P-module forming the hydrophobic 

membrane embedded arm and Q- and N-modules extending into the mitochondrial 

matrix. N-module forms the tip of the matrix arm and is the site of NADH interaction 

with N-module-associated flavin mononucleotide (FMN) in the matrix arm of CI. e- 

released from NADH at the FMN site then flow through a series of iron sulphur (Fe-S) 

clusters embedded within the core complex subunits of the Q module.  e- then flow into 

the matrix arm (P-module) embedded in the IMM, and load onto ubiquinone at its P-

module binding site within the IMM. Energy released by the transfer of 2e- along the 

P-module is harvested to assist translocation of 4H+ atoms from the matrix into the 

cristae lumen via four antiporter channels opened by redox-state linked conformational 

changes in CI subunits (Jones et al., 2017; Ramsay, 2019). P-module also contains all 

of the mtDNA-encoded CI subunits, which were likely preserved in the mtDNA due to 

their extreme hydrophobicity (Johnston and Williams, 2016). Altogether, CI assembly 
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into a functional complex requires several routes of subunit transcription, folding and 

subcomplex formation assisted by multiple assembly factors (Formosa et al., 2018).  

Complex II (CII), or succinate dehydrogenase (SDH), represents an entry point for e- 

delivered by a CII-associated FAD molecule (Ramsay, 2019). It is the only enzyme of 

the ETC involved in the TCA. CII participates in the TCA cycle by catalysing oxidation 

of succinate into fumarate, thus liberating e- in the proximity of its FAD co-factor (Al 

Rasheed, Rizwan and Tarjan, 2018). In contrast to CI, CII is a small tetrameric protein 

complex, and the only complex of the ETC that is entirely encoded by nDNA (Van 

Vranken et al., 2015). The catalytic core of the complex consists of subunits A and B 

(SDHA, SDHB). SDHA harbours the covalently bound FAD molecule and a succinate-

binding pocket and catalyses e- liberation. SDHB harbours three Fe-S clusters that 

mediate e- flow from FAD to the membrane complex subunits. The membrane docking 

subunits C and D (SDHC, SDHD) contain a heme b co-factor and two ubiquinone 

binding sites (Van Vranken et al., 2015; Al Rasheed, Rizwan and Tarjan, 2018). Lastly, 

CII-mediated e- delivery to ubiquinone is not linked to proton translocation across the 

IMM.  

Electron flow and exit from the ETC 

Ubiquinone, or coenzyme Q (CoQ), is an IMM associated mobile e- carrier composed 

of a quinoid moiety tethered to the IMM by a long carbon hydrophobic tail (50 carbons 

in mammals) (Ramsay, 2019). CoQ adopts three redox states as a fully oxidized 

molecule (Q), a partially reduced ubisemiquinone (•QH) and a fully reduced ubiquinol 

(QH2). Upon full reduction by CI, CII or alternative mitochondrial donors (glycerol-3-

phosphate dehydrogenase (GPDH) and electron transfer flavoprotein (ETF)), all QH2 

molecules become re-oxidized by complex III ((CIII), or ubiquinol-cytochrome c 

oxidoreductase) that passes e- onto cytochrome c (cyt c), the second mobile e- carrier 

of the ETC (Ramsay, 2019).   

CIII is an 11-subunit protein complex that assembles into a homodimer within the IMM 

(Cogliati et al., 2018). CIII harbours a catalytic core, which consists of a single mtDNA 

encoded subunit, cytochrome b and two nDNA-encoded subunits, cytochrome c1 and 

the Rieske iron-sulphur protein (RISP or ubiquinol-cytochrome c reductase iron-

sulphur subunit 1 (UQCRFS1)) (Cogliati et al., 2018). Two e- released during QH2 re-

oxidation into Q are loaded onto two separate e- flow chains, a high potential chain of 
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RISP and a tightly bound cytochrome c1, which load the reduction potential onto cyt c 

and a low-potential cytochrome b chain, respectively. The low-potential chain links to 

proton pumping across the IMM, though the exact mechanism remains unknown (Bazil 

et al., 2013; Ramsay, 2019). The e- separation into the two-flow chains results in 1e- 

transfer to cyt c and 1e- transfer to Q at the cyt b site of CIII. Two cycles of QH2 re-

oxidation complete this cycle, whereby 2e- are loaded onto cyt c, 2e- are accepted by 

Q to form a fully reduced QH2 and 4H+ are pumped across the IMM, together referred 

to as the Q-cycle (Bazil et al., 2013; Ramsay, 2019). 

Cytochrome c is a multifunctional small hydrophobic protein that locates to the outer 

leaflet of the IMM within the cristae lumen (Zaidi et al., 2014). Despite the relatively low 

number of evolutionarily conserved residues within the protein, its structural stability is 

retained in the majority of studied species (Zaidi et al., 2014). Cyt c facilitates e- transfer 

from CIII to CIV of the ETC via its covalently bound and protected heme cofactor 

(Ramsay, 2019).   

Complex IV ((CIV), or cytochrome c oxidase), links oxidative mechanism and e- flow 

through the ETC to reduction of O2 into H2O (Zong et al., 2018; Ramsay, 2019). 

Although published literature disagrees on the number of protein subunits, varying from 

7 to 13, three core subunits are encoded in mtDNA and form the catalytic core 

(Yoshikawa et al., 2012; Ramsay, 2019). The complex core subunit 1 and 2 contain 

two heme (hemeA, hemeB) and two copper redox sites (CuA, CuB), which catalyse a 

directional CuA, hemeA, hemeB, CuB e- transfer. Subunit 3 does not contain a redox 

active metal co-factor, but was hypothesized to facilitate the terminal step of the ETC, 

the O2 binding and reduction (Yoshikawa et al., 2012). It is not known where the proton-

transfer across the IMM occurs within CIV, though several hypotheses suggest a link 

to the O2 reduction site within subunit 3 and acidic amino acid-lined channels 

(Yoshikawa and Shimada, 2015; Ramsay, 2019).  

ETC complexes normally assemble to form highly-ordered stable structures of CI 

monomer associated with a CIII dimer and a variable number of CIV complexes (Jha, 

Wang and Auwerx, 2016). Additionally, CI homodimerization is hypothesized to lead 

to the assembly of a high-molecular ordered structure referred to as the respirasome 

(Jha, Wang and Auwerx, 2016). Supercomplex (SC) and respirasome assembly is 

thought to stabilize the CI-CIV structure, increase the efficiency of e- transfer due to a 
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tighter ETC confirmation and lesser distances between mobile carrier binding sites and 

thus lower risk of e- escape into matrix from reaction intermediates (Ramsay, 2019).  

1.3.3 Additional mitochondrial functions 

Mitochondria perform a set of diverse yet interconnected functions beyond their role of 

energy generation. As discussed above, intermediates of mitochondrial metabolism re-

routed to the cytosol contribute to cellular anabolism and influence cellular adaptation 

to stresses (Frezza, 2017). Other mitochondrial biosynthetic functions include Fe-S 

cluster maturation and a minor, yet essential role in pyrimidine synthesis (Lill and 

Kispal, 2000; Gattermann et al., 2004). Fe-S clusters are protein co-factors that assist 

with protein catalytic functions, e- transfer and regulation of gene expression (Lill and 

Kispal, 2000). Studies in a yeast model identified a eukaryotic Fe-S cluster synthesis 

pathway, conserved from bacteria to mammals, which does not proceed in the 

absence of mMP and requires mitochondrial matrix enzymes and IMM transporters for 

the export into the cytosol (Lill and Kispal, 2000). Similarly, the majority of pyrimidine 

biosynthesis occurs in the cytosol, the de novo synthesis pathway depends on an IMM 

enzyme, dihydroorotate dehydrogenase (DHODH), which was hypothesized to interact 

with ETC SCs (Gattermann et al., 2004; Fang et al., 2013). DHODH faces the IMS and 

catalyses oxidation of dihydroorotate into orotate, a uridine monophosphate (UMP) 

precursor, by channelling e- from the dihydroorotate to Q via its resident FMN molecule 

(Fang et al., 2013). 

Mitochondria also functionally interact with other cellular organelles, as explored in a 

recent review (Lackner, 2019). The most widely studied interactions are between 

mitochondria and the ER through mitochondria-associated membranes (MAMs), which 

are involved in the regulation of Ca2+ signalling. Mitochondrial Ca2+ intake is dependent 

on mMP and the organelle’s close proximity to the ER via MAMs, which provide a 

platform for microdomain signalling highly enriched in key signalling molecules. Efflux 

and influx pathways maintain overall mitochondrial levels of Ca2+. The OMM is 

permeable, though directed calcium import into the IMS was shown to be mediated 

and directed by VDACs at MAMs (Gincel, Zaid and Shoshan-Barmatz, 2000). Ca2+ 

uptake into the mitochondrial matrix is orchestrated by the mitochondrial calcium 

uniporter complex (MCU) and its regulators (Baughman et al., 2011; De Stefani et al., 

2011). Ca2+ efflux across the IMM is maintained by the coordinated action of 

sodium/calcium/lithium exchanger pump (NCLX) and a direct Ca2+/H+ antiporter that 
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exchanges Ca2+ for protons across the membrane at the expense of the proton motive 

force (pmf) for ATP synthesis (De Marchi et al., 2014; Jaquenod De Giusti, Roman and 

Das, 2018). Mitochondria can protect cells from short aberrant Ca2+ peaks by importing 

Ca2+ into their matrix and thus respond to increased metabolic demand via increased 

ATP generation due to Ca2+-dependent stimulation of TCA rate-limiting enzymes: 

pyruvate, isocitrate and α-ketoglutarate dehydrogenases (Denton, 2009). However, 

Ca2+ overload that can result from high level of transfer from the ER stores, or 

increased levels or sensitivity of Ca2+ transporters can lead to toxicity, dissipation of 

the mMP and cell death (Ichas and Mazat, 1998; Galluzzi et al., 2018).  

Cell death initiation occurs upon a persistent chemical or physical insult to the cell. Cell 

death can occur as a programmed event, apoptosis, or an accidental event, necrosis 

(Galluzzi et al., 2018). Mitochondria directly or indirectly participate in cell death 

execution via six of the twelve described cell death pathways, including direct 

mitochondria-executed intrinsic apoptosis via mitochondrial outer membrane 

permeabilization (MOMP) or mitochondrial permeability transition (MPT) upon loss of 

IMM integrity (Galluzzi et al., 2018). Mitochondria also indirectly participate in extrinsic 

apoptosis, parthanatos, ferroptosis and lysosome-dependent cell death (Galluzzi et al., 

2018). The intrinsic apoptosis pathway consists of an ATP-dependent, highly ordered 

and regulated event governed by pro- and anti-apoptotic members of a BCL-2 protein 

family that transiently or permanently localize to the OMM (Sedlackova and Korolchuk, 

2018). MOMP is characterized by increased cyt c solubility (Kagan et al., 2004), its 

dissociation from the IMM into the IMS and escape into the cytosol via OMM pores 

created by insertion of pro-apoptotic BCL-2 family members (Galluzzi et al., 2018). 

Upon release from mitochondria, cyt c interacts with its cytosolic binding partners and 

participates in the formation of a multimeric protein structure, called the apoptosome, 

that cleaves caspase 3 and thus initiates an apoptotic signalling cascade (Galluzzi et 

al., 2018). MPT-driven necrotic cell death is associated with a sudden increase of IMM 

permeability by channel formation in response to a burst of Ca2+ or ROS, which leads 

to an increased H2O intake, loss of cristae formation, loss of mMP, mitochondrial 

swelling and cell death (Berghe et al., 2014).  

1.3.4 Mitochondrial quality control 

Mitochondria utilize H+ and e- released by oxidation of dietary sources to generate an 

electrochemical gradient across the IMM by selectively pumping H+ into the IMS and 



22 
 

channelling e- to reduce O2 into H2O at CIV of the ETC. However, e- that leak from the 

ETC interact with nearby O2 molecules and lead to production of free radical species, 

particularly the superoxide (•O2) (Ramsay, 2019). The •O2 is normally detoxified to a 

more stable species hydrogen peroxide (H2O2), by mitochondrial matrix and IMS 

superoxide dismutases (SODs), MnSOD and Cu/ZnSOD respectively (Wallace, 2005). 

On one hand, ROS released from the ETC due to stalled e- flow in conditions of calorie 

excess (leading to ETC over-reduction) or mitochondrial dysfunction can act as 

signalling molecules and promote cellular adaptation to such stresses (Scialò et al., 

2016). On the other hand, dysfunction of ETC complexes can lead to increased ROS 

release in the form •O2 that can react with H2O and give rise to a highly reactive and 

damaging hydroxyl radicals (•OH) that interact with their immediate environment and 

damage mitochondrial and cellular proteins, lipids and DNA and promote further ROS 

release in neighbouring mitochondria via a ROS-induced ROS release mechanism 

(Wallace, 2005; Zorov, Juhaszova and Sollott, 2006). In addition, •O2 can interact with 

nitric oxide (NO), present in mitochondria in an abundance reaching μM 

concentrations, to form a peroxynitrite species (ONOO-), a highly damaging reactive 

nitrogen species (RNS) (Murray et al., 2003).  

Mitochondrial dysfunction in dividing cells promotes establishment of an irreversible 

cellular arrest, senescence, and was shown to contribute to tissue ageing (discussed 

in section 1.5.2). In addition, mitochondrial health is particularly crucial in post-mitotic 

cells and tissues, in which the load of dysfunctional organelles cannot by diluted by 

mitotic cell division, and in neurons specifically, due to the distance the mitochondria 

have to travel for efficient recycling in the cell body (Wallace, 2005; Lin and Beal, 2006). 

Therefore, eukaryotic cells developed tight monitoring of mitochondrial function and 

efficient quality control systems to prevent damage accumulation and further 

dysfunction (Sedlackova and Korolchuk, 2018).  

Mitochondrial quality control (MQC) mechanisms are triggered by several 

perturbations. First, the majority of mitochondrial proteome is encoded in the nuclear 

DNA and nascent amino acids chains require efficient transport to and import into 

mitochondria (Balaban, Nemoto and Finkel, 2005). Mitochondrial protein import 

machinery was shown to be dependent on the organelle’s bioenergetic state, as 

functional import machinery requires mMP and ATP (Martin, Mahlke and Pfanner, 

1991; Harbauer et al., 2014). Thus, protein import acts as a sensor of mitochondrial 
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function and loss of mMP due to loss of substrate or inefficient ETC results in import 

deficiency (Martin, Mahlke and Pfanner, 1991). Depending on the severity and length 

of import perturbation, the same signal can initiate two distinct pathways of MQC.  

Mild import inefficiency results in the activation of mitochondrial unfolded protein 

response (UPRmt) via an activating transcription factor associated with stress-1 (ATFS-

1) in C. elegans; and activating transcription factors 4 and 5 (ATF4 and ATF5) in 

mammals (Shpilka and Haynes, 2017). ATFS-1 is a nucleus-encoded protein, first 

identified in C. elegans (Martinus et al., 1996), which contains two localisation signals, 

a mitochondrial targeting sequence (MTS) and a nuclear localisation sequence (NLS) 

(Nargund et al., 2012). The MTS of ATFS-1 was shown to be weak and highly 

responsive to mitochondrial protein import dysfunction (Nargund et al., 2012). Efficient 

protein import promotes ATFS1 entry into the mitochondrial matrix, followed by 

cleavage by Lon, a mitochondrial protease, and ATFS1 degradation (Nargund et al., 

2012). In contrast, loss of mitochondrial protein import results in ATFS-1 translocation 

to the nucleus (Nargund et al., 2012). ATFS-1-initiated gene expression promotes 

synthesis of chaperones, ROS detoxification systems and mitochondrial import 

machinery (Nargund et al., 2012; Shpilka and Haynes, 2017). Thus, the ATFS-1 

mediated UPRmt response is dampened when the improvement of mitochondrial 

function leads to reconstituted ATFS-1 import. Similarly to ATFS-1,  PTEN-induced 

kinase 1 (PINK1) is normally imported into the mitochondrial matrix and cleaved by the 

presenilin-associated rhomboid-like (PARL) protease (Jin et al., 2010). Prolonged 

perturbation of mitochondrial protein import leads to PINK1 accumulation and 

stabilization at the OMM, thus marking the first step of whole-organelle degradation in 

a process of selective autophagy, termed mitophagy (Jin et al., 2010) (discussed in 

section 1.3.5). Altogether, mitochondrial stress presenting as loss of protein import 

triggers two distinct, but complementary pathways. While ATFS-1 mediates 

transcriptional adaptation to mitochondrial dysfunction, PINK1/Parkin mediate 

degradation of dysfunctional mitochondria to protect cells from excessive stress from 

depolarised organelles (Jin et al., 2010; Nargund et al., 2012). 

Recent advances in EM imaging led to the discovery of small, uniform vesicles budding 

from mitochondria. Termed MDVs, these structures contain selected mitochondrial 

cargo destined for  inter-organellar signalling and trafficking to peroxisomes and 

lysosomes (Neuspiel et al., 2008; Sugiura et al., 2014; McLelland and Fon, 2018). 
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MDVs shed in the proximity of protein import sites independently of the mitochondrial 

fission machinery, and are trafficked in a PINK1/Parkin or vacuolar protein sorting-

associated protein 35 (VPS35) dependent manner, determined by their final 

destination  (Neuspiel et al., 2008; McLelland et al., 2014). In addition, MDVs 

participate in mitochondrial dynamics, by turnover of membrane sites enriched in 

DRP1 (Wang et al., 2015), in movement, by releasing mitochondria from their docking 

sites (Lin et al., 2017) and in immune response by mitochondrial antigen presentation 

(Matheoud et al., 2016; McLelland and Fon, 2018). Enrichment of oxidised proteins in 

MDV vesicles also hints at MDV role in the mitochondrial quality control (Soubannier 

et al., 2012; McLelland and Fon, 2018). Importantly, MDV formation by budding off 

functional organelles means its cargo is fully enclosed in a single or double membrane 

and does not require the autophagic machinery to facilitate vesicle trafficking and 

recycling. Indeed, a study of MDV formation and trafficking found that MDV delivery to 

lysosomes is independent of both, ATG5 and LC3 proteins (Soubannier et al., 2012). 

In summary, researchers have so far identified three main models of MQC subject to 

the scale and severity of mitochondrial dysfunction. Short-term perturbations in 

mitochondrial protein import active a  UPRmt–dependent transcription program; 

oxidative damage can trigger small scale mitochondrial recycling and signalling via 

MDVs; while persistent and severe insults result in whole organelle degradation by the 

process of selective autophagy (mitophagy) (Jin et al., 2010; Nargund et al., 2012; 

McLelland and Fon, 2018). 

1.3.5 Mitophagy 

Mitophagy is a form of MQC that leads to whole organelle recycling. Several forms of 

mitophagy have been identified, though they all proceed through a common pathway 

of LC3 interaction region (LIR) stabilization on the OMM, recruitment of the autophagic 

machinery and ultimately, engulfment and trafficking of the dysfunctional organelle to 

the lysosome for recycling. The most-widely studied form of whole organelle recycling 

is a pathway dependent on large-scale OMM protein ubiquitylation in response to 

mitochondrial depolarization, referred to as the ubiquitin- or PINK1/Parkin-mediated 

mitophagy (Lazarou et al., 2015). The involvement of PINK1 and Parkin proteins in 

selective mitochondrial recycling was first reported in studies of pharmacological 

induction of mMP collapse and protein overexpression (Narendra et al., 2008, 2010; 

Matsuda et al., 2010) and (Matsuda et al., 2010; Narendra et al., 2010) investigations 
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of the PINK1/Parkin pathway have since relied on the same concept of overexpression 

of either of the two proteins or large-scale acute mitochondrial depolarization 

(Whitworth and Pallanck, 2017). It is difficult to estimate how such methods, although 

effective in elucidating the underlying MQC mechanisms, relate to physiological 

conditions and further study is required to identify this pathway’s triggers in vivo 

(Whitworth and Pallanck, 2017). Other forms of stress-induced mitophagy proceed in 

the absence of protein ubiquitylation and require an alternative set of autophagy 

receptors that are expressed in response to specific stresses including hypoxia and 

oxidative stress (Figure 1.4). 

Ubiquitin-mediated mitophagy 

Mitochondrial depolarization triggers two sets of interconnected events at the IMM and 

at the OMM. First, mitochondrial fusion, fission and cristae structure depend on the 

balance of long and short isoforms of OPA1 (Ishihara et al., 2006; Song et al., 2007; 

Anand et al., 2014; Ban et al., 2017).  Loss of mMP results in excessive OPA1 cleavage 

by an intermembrane ATP-dependent zinc metalloprotease, Yme1L, and promotes 

mitochondrial fragmentation (Ishihara et al., 2006; Song et al., 2007). Second, stalled 

protein import in the absence of mMP leads to PINK1 to stabilisation at the OMM and 

its autophosphorylation (Figure 1.4A).  

Activated PINK1 then phosphorylates ubiquitin and activates Parkin, and E3 enzyme, 

thus leading to a feed-forward loop of OMM protein ubiquitylation (Okatsu et al., 2012; 

Koyano et al., 2014; Harper, Ordureau and Heo, 2018), which is opposed by the action 

of mitochondrial ubiquitin carboxyl-terminal hydrolases 15 and 30 (USP15 and USP30) 

(Bingol et al., 2014; Van Humbeeck et al., 2014). Mitochondrial movement along actin 

filaments and fusion with other organelles are stalled due to ubiquitylation and 

proteasome-mediated degradation of mitochondrial Rho GTPase1 (MIRO-1) (Wang et 

al., 2015) and Mfn1/2 (Tanaka et al., 2010), respectively. Collectively, these events 

lead to separation of the depolarized organelle from its network by loss of inner and 

outer membrane fusion and motility impairment and thus prepare it for sequestration 

by the autophagy machinery.  
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Figure 1. 4 The multiple forms of mitochondrial quality control 

 

  

(A-C) Mitophagy mediates whole-organelle degradation upon physical interaction of 

autophagy receptors with LC3-II to facilitate nascent membrane recruitment, 

autophagosome formation and organelle engulfment. (A) Canonical autophagy receptors 

(optineurin, NDP52, NBR1, p62, AMBRA) localize to depolarized mitochondria due to 

PINK1 stabilization, parkin recruitment and OMM protein ubiquitylation. (B) Expression 

and OMM insertion of non-canonical autophagy receptors including FUNDC1, BNIP3 and 

NIX, increases upon O2 depletion. (C) Oxidation of cardiolipin (CL), an IMM resident lipid, 

promotes its externalization to the OMM, its recognition by LC3-II and recruitment of a 

nascent membrane. (D) Additional form of MQC occurs via membrane budding to form 

mitochondria-derived vesicles (MDVs) that carry mitochondrial contents and signalling 

molecules to multiple sub-cellular compartments including lysosomes and peroxisomes.  
 

Figure modified from (Sedlackova and Korolchuk, 2018). 
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Finally, Parkin-mediated ubiquitylation of other mitochondrial targets including VDACs, 

B-cell lymphoma 2 (BCL-2), components of the mitochondrial protein import system 

(TOM70, TOM40, TOM20) and DRP1 recruits mitophagy receptors, OPTN, NDP52 

and TAX1BP1 via  their ubiquitin binding domains (Lazarou et al., 2015). Another 

mitophagy receptor, AMBRA1, is recruited to mitochondria via its interaction with 

Parkin (Van Humbeeck et al., 2011). Autophagy receptors recruitment to the OMM 

spatially links dysfunctional mitochondria to the autophagy machinery via their LIR 

domains and mediate the formation of an autophagic vesicle around the organelles 

(Johansen and Lamark, 2011). Altogether, studies of the PINK1/Parkin pathway 

identify a system of rapid recognition, separation, sequestration and recycling of 

mitochondria damaged beyond repair. 

Ubiquitin-Independent Autophagy 

Efficient mitochondrial clearance is required in conditions of insufficient levels of O2, 

the ETC terminal e- acceptor (Figure 1.4B). Hypoxia, or oxygen depletion, promotes 

expression of three non-canonical mitophagy receptors- FUNDC1, BNIP3 and NIX 

(Bruick, 2000; Fei et al., 2004; Li et al., 2014). BNIP3 and NIX are two atypical pro-

apoptotic members of the BCL-2 protein family thought to participate in mitophagy by 

homodimer formation, insertion into the OMM and direct LC3 recruitment (Zhang and 

Ney, 2009; Novak et al., 2010). Similarly to the BNIP3 and NIX, FUNDC1 inserts into 

the OMM and recruits LC3 via its cytoplasm-facing LIR domain (Liu et al., 2012). In 

addition, FUNDC1 interaction with LC3 is regulated by phosphorylation of a tyrosine 

18 residue within its LIR domain, which becomes dephosphorylated in hypoxia as a 

result of an upstream kinase inactivation (Liu et al., 2012). 

Oxidative stress, which results in lipid peroxidation, induces mitophagy in a mechanism 

dependent on CL externalization to OMM (Figure 1.4C). CL is a phospholipid unique 

to the inner leaflet of the IMM and by its unique conical structure contributes to IMM 

fluidity (Unsay et al., 2013; Pointer and Klegeris, 2017). In healthy organelles, CL is 

implicated in supporting ETC assembly and efficiency, in H+ pumping, IMM fusion and 

cristae stabilisation (Pointer and Klegeris, 2017). Upon increased peroxidation, CL 

interacts with phospholipid scramblase 3 to facilitate its externalization on the OMM. 

Externalized CL is recognized by LC3 via its CL-recognition sequence and thus leads 

to the recruitment of the autophagic machinery (Liu et al., 2003; Chu et al., 2013).  
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A little explored form of ubiquitin/PINK1/parkin-independent mitophagy was first 

identified in an autophagy-based screen adapted for mitophagy (Allen et al., 2013). 

Depletion of iron by cell treatment with iron chelators resulted in a ROS-independent 

and mMP-independent mitophagy induction (Allen et al., 2013). It was since reported 

that iron depletion induces mitophagy in a Caenorhabditis elegans model (Schiavi et 

al., 2015), in a pathogenic yeast strain Candida glabrata (Nagi et al., 2016), and in a 

Drosophila melanogaster model (Lee et al., 2018). However, at least the nematode 

study reports the dependence of iron-chelation-induced mitophagy on the PINK1, 

Parkin and BNIP3 homologs (Schiavi et al., 2015). The difference in models, length of 

treatment and type of iron chelators used could all underlie the contradictory reports. 

Specifically, deferiprone, an iron chelator used in the original screen is thought to 

initiate mitophagy without inducing a collapse in mMP, a characteristic that is not 

replicated in the nematode study (Allen et al., 2013; Schiavi et al., 2015). Finally, if 

DFP is indeed confirm to induce mitophagy independently of PINK1 and Parkin as the 

authors suggest, it could provide an alternative therapeutic route to promoting MQC in 

patients suffering from Parkinson’s disease (Allen et al., 2013). 

Basal Mitophagy 

A vast amount of research was for decades focused on the discovery of MQC 

pathways in stress conditions in vitro which led to an increased interest in mitophagy 

as a housekeeping process implicated in health and disease. To visualise mitophagy 

in vivo and address the existence of mitochondrial recycling in absence of significant 

stressors, basal mitophagy, Ganley group developed a mito-QC transgenic mouse 

model (McWilliams and Ganley, 2016; McWilliams et al., 2016). Steady state 

mitophagy events and mitophagy dynamics can be studied in any fixed or live tissue 

of this mouse, thanks to incorporation of a pH-sensitive mitochondrial signal, which 

differentiates between mitochondria residing in the cytoplasm with an innate pH of 7.8 

in the matrix and mitochondria engulfed in lysosomes at pH 4.5-5. Initially, study of 

heart and kidney tissue uncovered regions with increased number of mitophagy events 

(McWilliams et al., 2016). Further study into the underlying mechanisms reports that 

basal mitophagy is not dependent on PINK1 (McWilliams et al., 2018). The lack of 

PINK1/Parkin involvement in basal mitophagy was further confirmed in mito-QC and 

mt-Keima Drosophila studies, in which levels of mitophagy were readily detectable in 

dopaminergic neurons and other cell types of control, PINK1 and parkin null flies (Lee 
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et al., 2018). Authors of a study from a second mitophagy mouse model based on a 

pH-sensitive fluorescent reporter, the mt-Keima from Finkel group, report that 

approximately 80% of basal mitophagy events in the Purkinje cells of the cerebellum 

are Atg5-dependent, and basal mitophagy in the embryonic liver and brain of Atg7-/- 

mouse was greatly diminished (Sun et al., 2015). Studies from the two mouse models 

highlight a great heterogeneity of mitophagy levels between and within tissues. It is 

also becoming clear that a considerable amount of mitochondrial recycling in basal 

conditions occurs independently of autophagy and is perhaps mediated directly by 

MDVs (Figure 1.4D). 

1.3.6 Mitochondrial Biogenesis 

Mitochondrial biogenesis (MB) maintains the health and abundance of the 

mitochondrial network in times of increased degradation. Successful MB has to 

integrate newly synthesized lipids with a mitochondria-targeted nucleus-encoded 

proteome (Ploumi, Daskalaki and Tavernarakis, 2017). Adding further complexity, 

assembly of a functional ETC requires independent expression of two genomes and 

tight coordination and quality control to prevent proteotoxic stress (Ramsay, 2019). A 

variety of intra- and extra-cellular stimuli converge on a small number of nuclear 

transcription factors and their co-activators to promote large-scale nuclear gene 

expression programmes. The nuclear respiratory factors 1 and 2 (NRF1 and NRF2) 

and the nuclear erythroid 2-like 2 (NFE2L2) are among the best-characterized nuclear 

transcription factors, which regulate transcription of mitochondrial import and 

transcription machinery, several ETC subunits and detoxification response and thus 

contribute to the coordination of nuclear and mitochondrial genome expression 

(Scarpulla, 2011; Ploumi, Daskalaki and Tavernarakis, 2017). Peroxisome proliferator-

activated receptor γ (PPARγ) coactivators PGC-1α and PGC-1β are known tissue 

specific positive regulators of MB, initially identified in adipocyte differentiation 

signalling, though the complexity of upstream and downstream signalling, as well as 

interactions with other regulators of MB remains to be elucidated (Ploumi, Daskalaki 

and Tavernarakis, 2017). Interestingly, PGC-1α can bind to NRF1 directly and act as 

an upstream transcriptional inducer (Scarpulla, 2011). Further exploration of PGC-1α 

uncovered its role in the integration of multiple metabolic signalling pathways via PTMs 

by AMPK and by an NAD+-dependent deacetylase sirtuin 1 (SIRT1) (discussed in 

section 1.4.2) (Scarpulla, 2011).  
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1.4 Nicotinamide adenine dinucleotide 

1.4.1 NAD+: a co-enzyme in redox reactions 

Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous molecule crucial for cellular 

energy metabolism, protein transcription, and protein post-translational modification 

pathways (Cantó, Menzies and Auwerx, 2015). According to the Kyoto Encyclopaedia 

of Genes and Genomes (KEGG) reaction database, NAD+ participates in over a 

quarter (2378 of 9972) of all identified enzymatic reactions as a co-enzyme or a co-

substrate (DBGET Search Result: REACTION NAD, no date). NAD+ consists of two 

nucleobases, an adenine and a nicotinamide (NAM), connected by two phosphate-

ribose groups (Figure 1.5). In all living cells, NAD exists in two forms, an oxidised form 

(NAD+) and a reduced form (NADH) (Cantó, Menzies and Auwerx, 2015). As a co-

enzyme, NAD+ accepts hydride equivalents from the major energy-producing catabolic 

pathways including glycolysis, β-oxidation and the TCA cycle to form NADH. Thus, 

NAD+ abundance directly influences the activity of metabolic enzymes and adjusts the 

rate of metabolic flux to the rate of NADH consumption.  NADH is re-oxidized primarily 

by CI of the ETC and thus links substrate oxidation to energy generation by donating 

the e- necessary for ATP production within mitochondria (Cantó, Menzies and Auwerx, 

2015).  

Although little is known about the true dynamics of subcellular-compartment-specific 

NAD+ biosynthesis and consumption, it is recognized that organelles contain distinct 

pools of NAD(H) and that cells protect the redox potential carried by NAD+/NADH within 

mitochondria (Yang et al., 2007). It is important to note that the mammalian IMM was 

long thought to be impermeable to both NAD+ and NADH and to contain no direct 

transport systems for the nucleotide cofactors (Lin and Guarente, 2003; Davila et al., 

2018). It was also believed that cells had overcome this particular challenge by an 

indirect transfer of reducing equivalents across the IMM in the form of the glycerol-

phosphate shuttle, ethanol-acetaldehyde and the malate-aspartate shuttle. However, 

recently published work challenges these concepts and supports the theory that, 

similarly to yeast and plant mitochondria, mammalian IMM contains an unidentified 

NAD(H) transporter (Davila et al., 2018). It is also worth considering that redox 

reactions that utilise NAD+ as a co-enzyme alter its oxidation/reduction ratio, but have 

no effect on total NAD(H) levels. 
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Figure 1. 5 NAD+ synthesis and degradation 

Distinct metabolic pathways utilize precursors L-tryptophan and three forms of vitamin B3 

(NA, NAM and NR) to synthesize NAD+. (A) NA is converted to NAD+ by the Preiss-Handler 

pathway, which utilizes PRPP, ATP and glutamine as donors of ribose-1-phosphate group, 

adenine nucleotide, and an NH2 group in three sequential enzyme-assisted steps to form 

NAMN, NAAD and NAD+, respectively. (B) L-Tryptophan enters the kynurenine pathway 

to form an unstable ACMS, which undergoes nonenzymatic cyclization to QA. QA feeds 

into the Preiss-Handler pathway via PRPP-dependent QPRT-catalysed formation of 

NAMN. (C) ACMS is enzymatically re-directed from QA formation to form AMS, which 

either undergoes total oxidation or spontaneously converts to PA. (D)  NAD+ precursors 

NR and NAM enter the NAD+ salvage pathway. Both are converted to NMN upon cellular 

entry by NRK1-2 and NAMPT, respectively. The NMNAT1-3 enzymes catalyse synthesis 

of NAD+ NMN by adding an adenine nucleotide to NMN. 
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1.4.2 NAD+: a co-substrate to NAD+-consuming enzymes 

In contrast, NAD+ alone acts as a co-substrate to non-redox cellular enzymes that 

cleave NAD+ to ADP-ribose and NAM (Figure 1.5). NAD+ links cellular metabolic status 

to protein post-translational modifications (PTMs) by regulating the activity of SIRTs, 

an NAD+-dependent highly conserved class of deacetylases; and poly(ADP-ribose) 

polymerases (PARPs; also referred to as ADP-ribosyltransferase diphtheria toxin-like 

1 (ARTD1)). In addition, cyclic ADP-ribose (cADPR) synthases located on the plasma 

membrane, including CD38 and CD157, cleave NAD+ to produce a secondary 

messenger involved in Ca2+ and insulin signalling and in cell cycle progression 

(Malavasi et al., 2008; Cantó, Menzies and Auwerx, 2015). The two products of NAD+ 

cleavage perform distinct functions. The NAM moiety locally exerts feedback inhibition 

on NADases in distinct mechanisms. SIRT function is inhibited by NAM-mediated 

reversal of NAD+ cleavage in a reaction termed nicotinamide exchange (Avalos, Bever 

and Wolberger, 2005). In PARPs, NAM occupies the NAD+ binding pocket and thus 

prevents its catalytic activity (Henning, Bourgeois and Harbison, 2018). Nicotinamide 

role in CD38 inhibition is not known. It is also important to note that nicotinamide is a 

precursor for NAD+ recycling (discussed in section 1.4.4), and due to its rapid 

conversion to NAD+ is unlikely to inhibit NADases in vivo  when administered externally 

(Hwang and Song, 2017). In contrast to NAM, ADP-ribose participates in the enzymatic 

activity of NADases either as a terminal sidechain acceptor (SIRTs) or as a metabolic 

precursor (PARPs, CD38/CD157).  

NAD+-dependent deacetylases 

Seven sirtuin enzymes are known in mammals, three of which reside in mitochondria 

(SIRT3, SIRT4 and SIRT5), one is principally cytoplasmic (SIRT2) and three reside 

predominantly within the nucleus (SIRT1, SIRT6 and SIRT7) (Cantó, Menzies and 

Auwerx, 2015). Sirtuins, aided by NAD+, catalyse acyl moiety removal from protein 

lysine residues in a six-step reaction described in detail by Sauve (Sauve, 2010), which 

is initiated by NAD+ association with the SIRT binding pocket. Computer-based 

modelling provides a model whereby NAD+ interaction with two active residues of the 

binding site leads to its destabilization, nicotinamide bond cleavage and release of 

ADP-ribose, which accepts the acetyl group from the target acetyl-lysine residue to 

form O-acetyl-ADP-ribose. Of the seven known sirtuins, one sirtuin in each subcellular 

location (SIRT1, SIRT2 and SIRT3) possesses a strong deacetylase potential. Other 
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sirtuins possess a varied set of abilities including NAD+-dependent lipoamidase 

(SIRT4), NAD+-dependent mono-ADP-ribosyltransferase (SIRT6), desuccinylase 

/demalonylase/deglutarylase (SIRT5) and, lastly, p53 NAD+-dependent deacetylase 

(SIRT7). In physiological terms, sirtuins are activated by increased NAD+ levels in 

response to exercise, fasting and calorie restriction and promote cellular catabolism 

(Cantó, Menzies and Auwerx, 2015).  

Extensive study of the best understood of sirtuins, SIRT1, has been carried out in 

mouse models of genetic manipulation via silencing, knockout or overexpression. 

Although reports present contradictory results, the general consensus dictates that 

increased SIRT1 activity leads to improvements of metabolic adaptation and mimics 

the benefit of caloric restriction on the symptoms of metabolic syndrome (Boutant and 

Cantó, 2014). Among SIRT1 targets are nuclear histones, the deacetylation of which 

increases histone binding, DNA condensation and represses transcription. In addition, 

activated SIRT1 removes acyl residues from proteins involved in DNA damage 

response and repair proteins and regulators including p53 (represses transcriptional 

activity); Ku70 (increased DNA repair, sequestration of BAX); FOXL2 (promotes cell 

cycle progression), Werner helicase (decreases helicase and exonuclease activity), 

xeroderma pigmentosum C (XPC, enhances XPC-mediated nucleotide excision 

repair). SIRT1 also enhances activity of transcription factors including, but not limited 

to forkhead box group O (FOXO) (increased transcriptional activity); heat shock factor 

1 (increased transcription of heat shock proteins); PPARγ (fat mobilization), PGC-1α 

(increased gluconeogenesis and fatty acid oxidation). Importantly, SIRT1 also 

mediates inhibitory deacetylation of PARP1 to protect cells from parthanatos, PARP-

induced cell death by NAD+ depletion in response to extensive DNA damage 

(Rajamohan et al., 2009; Cantó, Menzies and Auwerx, 2015). Furthermore, SIRT1 is 

also implicated in repression of PARP1 gene expression (Rajamohan et al., 2009).    

Poly-(ADP-ribose) polymerases 

Original research of the PARP enzymes largely focused on their role in DNA damage 

repair inflammation and cell death. Following DNA damage, PARPs detect single- and 

double-strand breaks via their DNA-binding domain and undergo a conformational 

change that leads to NAD+ cleavage. ADP-ribose released upon NAD+ cleavage is 

then used by PARPs as a substrate for generation of poly(ADP-ribose) (PAR) and 
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PARP and histone PARylation. Protein PARylation then leads to recruitment of the 

DNA repair machinery. Protein PARylation is a reversible PTM, which is rapidly (2-5 

min after formation) opposed by PAR glycohydrolase (PARG), ADP-ribosylhydrolase 

3 (ARH3) and O-acyl-ADP-ribose deacylase 1 (OARD1) (Bernardi et al., 1997; Ray 

Chaudhuri and Nussenzweig, 2017).  Proteins which contain a PAR-binding domain 

are then recruited to the DNA break to mediate its repair (Okano et al., 2003). The 

majority of research is focused on PARP1 and PARP2 thought to account for the 

majority of PAR activity in the cell (Cantó, Menzies and Auwerx, 2015). Beyond its role 

in DNA damage response and parthanatos-induced cell death, PARP1 also has an 

impact on cell fate determination by mediating PARylation of p53. Covalent attachment 

of PAR to p53 conceals its nuclear export signal thereby blocking  recognition by a 

nuclear export factor, which results  in p53 sequestration in the nucleus and increased 

gene expression of p53 gene targets (Kanai et al., 2007). Further research of PARPs 

and ADP-ribose transferases uncovers diverse functions of the 18 or so family 

members, many of which need further characterization, but may include regulation of 

chromatin modulation, ubiquitylation, and glucose metabolism  (Fouquerel et al., 2014; 

Gupte, Liu and Kraus, 2017) 

Cyclic ADP-ribose synthases 

Cyclic ADP-ribose synthases, CD38 and CD157, reside on and span the plasma 

membrane and, in contrast to SIRTs and PARPs, can consume both extra- and intra-

cellular NAD+ pools (Cantó, Menzies and Auwerx, 2015). CD38 was discovered first 

and remains the more intensively studied member of the protein family (Reinherz et 

al., 1980; Malavasi et al., 2008). Although initially discovered on the plasma membrane 

of immune cells, CD38 is also expressed in various non-immune cells and in tissues 

including muscle, brain and liver (Malavasi et al., 2008; Cantó, Menzies and Auwerx, 

2015). The traditional view of CD38 is that of a type II membrane protein with its C-

terminal catalytic NAD(P)+ binding pocket exposed to the extracellular environment 

(Malavasi et al., 2008). Opposing that view are reports of CD38 adopting the opposite 

membrane orientation (a type III membrane protein) and thus expose its C-terminus to 

the cytoplasm and act intracellularly (Zhao, Lam and Lee, 2012; Matalonga et al., 

2017). Studies by the Lee group first demonstrated that the catalytic site of CD38 folds 

correctly and remains fully functional when exposed to the intracellular environment 

(Zhao et al., 2011) and later found that the determinants of CD38 membrane 
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orientation are four positively-charged amino acid residues located on the N-terminus 

(Y. J. Zhao et al., 2015). Accordingly, it is then entirely possible that CD38 can 

consume both intra- and extra-cellular NAD(P)+ levels and influence both 

environments. 

CD38 and CD157 cleave NAD+ and NADP+ into NAM and via their hydrolase, cyclase 

and nicotinamide transferase activity generate Ca2+ mobilizing second messengers: 

ADP-ribose (ADPR) and cyclic ADP-ribose (cADPR) by NAD+ cleavage and nicotinic 

acid-adenine dinucleotide phosphate (NAADP) by NADP+ cleavage (Malavasi et al., 

2008). In addition, recent studies report that CD38 can also cleave nicotinamide 

mononucleotide (NMN) (Grozio et al., 2013; Camacho-Pereira et al., 2016), an 

intermediate metabolite of NAD synthesis/salvage pathway and thus limiting NMN 

pools available for NAD+ synthesis, which can have implications for NAD+-boosting 

therapeutic strategies (discussed in section 6.2).  

NAD+ cleavage by SIRTs, PARPs and CD38 leads to release of ADP-ribose, which 

participates in their enzymatic activity and can act as a second messenger, and in NAM 

that is recycled into NAD+ through a series of enzyme-assisted steps referred to as the 

NAD+ salvage pathway (Cantó, Menzies and Auwerx, 2015). Through their concerted 

action, SIRTs, PARPs and CD38 aid cellular and/or tissue adaptation to intra- and 

extra-cellular stresses at the expense of the available NAD+ pools. SIRT1/3/5 activity 

is tightly linked to NAD+ levels as determined by their Michaelis constant Km (Cantó, 

Menzies and Auwerx, 2015). In contrast, PARP activity is not regulated by NAD+ levels, 

but rather by levels of DNA damage. The indiscriminate action of PARPs can thus lead 

to severe depletion of NAD+ to 10-20% of normal levels upon large scale DNA damage 

induced by genotoxic treatments (Goodwin et al., 1978; Skidmore et al., 1979; Barbosa 

et al., 2007). The impact of CD38 on intra- and extracellular NAD+ pools was 

demonstrated in a CD38 knockout mouse model, in which loss of CD38 alone results 

in a 10- to 20-fold increase in NAD+ in studies liver, muscle, brain and heart tissue 

(Aksoy et al., 2006). This avid consumption of short-lived NAD+ pools by PARPs and 

CD38 leads to competition with and limitation of SIRT activity in the cytoplasmic and 

nuclear compartments. In addition, PARP1 was also found to localize to mitochondria 

and participate in mtDNA repair (Rossi et al., 2009) and is thus likely to also affect 

mitochondrial NAD+ pools and carbon metabolism. 
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1.4.3 NAD+/NADH in subcellular compartments 

Accurate measurement of the NAD+:NADH ratio is critical for understanding the 

interdependence of the two functions of NAD+ as a co-factor to metabolic pathways 

and as a co-substrate to PTM-modulating enzymes. Although it is recognized that the 

NAD+:NADH ratio fluctuates in response to energy demands, the true estimation of 

NAD+:NADH ratio is complex due to technological limitations, i.e. detection of protein-

free and protein-bound NAD(H) molecules, and indirect form of measurement 

(pyruvate:lactate ratio as a reflection of NAD+:NADH ratio) (Sun et al., 2012).  Pyruvate 

reduction to lactate occurs when glucose catabolism exceeds the capacity of the 

mitochondrial TCA cycle and leads to the oxidation of a single NADH molecule to 

NAD+. Sun and colleagues argue that the P/L ratio is highly labile and not reflective of 

the true NAD+:NADH ratio (Sun et al., 2012). Despite the technical considerations, it is 

widely accepted that in mammalian cells and tissues, the total NAD+:NADH ratio is 

approximately 10:1 while the cytoplasmic protein-free NAD+:NADH ratio reaches as 

high as 700:1, thus favouring use of NAD+ as a cofactor in oxidation reactions (Lin and 

Guarente, 2003; Anderson et al., 2017). In addition, the published estimate of 

mitochondrial protein-free NAD+:NADH ratio of 7:1 points to the existence of discreet 

NAD+:NADH pools, which are resistant to depletion even in treatments which 

drastically deplete cytosolic and nuclear NAD+ (Yang et al., 2007; Pittelli et al., 2010) 

1.4.4 NAD+ biosynthesis  

The balance between NAD+ consumption and NAD+ biosynthesis governs the cellular 

NAD+ pool. NAD+ undergoes rapid fluctuations and is subject to a constant cycle of 

synthesis, degradation and recycling (Rajman, Chwalek and Sinclair, 2018). Due to its 

rapid utilization, studies from the 1960s-1980s indicate that NAD+ has a relatively short 

half-life (up to 10h in mammals) (Elhassan, Philp and Lavery, 2017). NAD+ and its 

pyridine precursors (L-tryptophan, nicotinic acid (NA), nicotinamide riboside (NR) and 

NAM) are extracted from dietary sources in the small intestine (Gross and Henderson, 

1983; Cantó, Menzies and Auwerx, 2015). To enter circulation, NAD+ is cleaved into 

its precursor NMN and further processed into NR and NAM (Gross and Henderson, 

1983). Mammalian cells, with the exception of neurons, cannot import NAD+ directly 

and must therefore synthesize it locally from circulating precursors, NR, NMN and NAM  

that enter cells via nucleoside transporters and feed into NAD+ salvage pathway 

(Cantó, Menzies and Auwerx, 2015). In contrast, L-tryptophan and NA feed into NAD+ 
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de novo synthesis pathways mainly in the kidney and the liver (Figure 1.5A,B) (Cantó, 

Menzies and Auwerx, 2015; Katsyuba et al., 2018). For local NAD+ synthesis that 

combats its consumption, cells rely on recycling NAD+ cleavage by-product, NAM, by 

the salvage pathway (Figure 1.5D) (Rajman, Chwalek and Sinclair, 2018). Both, de 

novo and salvage pathways require a ribose phosphate moiety from 5-phosphoribosyl-

α-1-pyrophosphate (PRPP), the rate-limiting substrate of purine synthesis formed from 

ribose-5-phosphate, a product and an intermediate of the pentose phosphate pathway 

(PPP) and glycolysis (Hove-Jensen et al., 2017). In addition, both, de novo and salvage 

pathways, also require ATP, from which an adenine nucleoside moiety is liberated to 

form the purine component of NAD+ and can therefore only occur in conditions of ATP 

surplus  (Figure 1.5B,D) (Cantó, Menzies and Auwerx, 2015; Rajman, Chwalek and 

Sinclair, 2018). 

De novo NAD+ biosynthesis 

NA, also known as niacin or vitamin B3, and the essential amino acid L-tryptophan 

stand at the root of de novo NAD+ biosynthesis (Figure 1.5A), (Cantó, Menzies and 

Auwerx, 2015). Taken up from the diet, L-tryptophan feeds into the kynurenine 

pathway (Rajman, Chwalek and Sinclair, 2018). In the rate-limiting step of the pathway, 

L-tryptophan undergoes modification to an unstable intermediate, α-amino-β-

carboxymuconate-ε-semialdehyde (ACMS). ACMS constitutes a branch point in the de 

novo synthesis pathway and can either undergo spontaneous cyclisation into quinolinic 

acid (QA), an NAD+ precursor, or enzyme-assisted redirection towards total oxidation 

or production of picolinic acid (PA) in kidney and liver (Figure 1.5C) (Katsyuba et al., 

2018). The enzyme required is a conserved α-amino-β-carboxymuconate-ε-

semialdehyde decarboxylase (ACMSD) and it is hypothesized that only when its 

enzymatic activity is saturated does ACMS proceed to spontaneously form QA (Grant, 

Coggan and Smythe, 2009). Next, QA and NA enter the Preiss-Handler pathway by 

accepting a ribose-1-phosphate group from PRPP and an adenine nucleotide from 

ATP to sequentially form NA mononucleotide (NAMN) and NA adenine dinucleotide, 

respectively (NAAD) (Figure 1.5A) (Cantó, Menzies and Auwerx, 2015). In the latter 

step, ATP cleavage and adenine nucleotide transfer onto NAMN is catalysed by a 

family of NMN adenylyltransferases (NMNATs) that also participate in the NAD+ 

salvage pathway (Cantó, Menzies and Auwerx, 2015). In mammals, three isoforms of 

NMNATs (NMNAT1-3) localize to nucleus, cytoplasm (cytosolic face of the Golgi 
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apparatus), or mitochondria, respectively (Berger et al., 2005). Last step of NAD+ de 

novo synthesis requires ATP- and glutamine-dependent NAAD amidation by NAD+ 

synthase (NADSYN). It is important to note that de novo NAD+ synthesis is likely to 

occur mainly in tissues, which express high levels of the rate-limiting enzymes 

(ACMSD, NADSYN), including but not limited to the liver and the kidney (Cantó, 

Menzies and Auwerx, 2015; Katsyuba et al., 2018). 

NAD recycling via the salvage pathway 

NAD+ salvage pathway is key to maintenance of cellular NAD+ levels and utilises two 

other forms of vitamin B3, NAM (also known as niacinamide) and NR, as initial inputs 

(Figure 1.5D). NR and NAM enter the cell via ubiquitously expressed equilibrative 

nucleoside transporters (ENTs), plasma membrane channels that facilitate influx and 

efflux of nucleosides and nucleobases (Boswell-Casteel and Hays, 2017). Upon entry 

into cells, NR is converted to NMN by the ubiquitous ATP-dependent nicotinamide 

riboside kinases (NRK1 and NRK2). Similarly, NAM is converted to NMN in an ATP- 

and PRPP- dependent catalytic step by NAMPT (Cantó, Menzies and Auwerx, 2015). 

NAMPT-mediated conversion of NAM into NMN is the rate-limiting step of the NAD+ 

salvage pathway route from NAM that can be targeted by an NAMPT specific inhibitor 

FK866 (Hasmann and Schemainda, 2003; Khan, Tao and Tong, 2006; Pittelli et al., 

2010). Additionally, conversion of NAM to NMN, and ultimately to NAD+, relieves NAM-

mediated inhibition PARP and SIRT activity (Avalos, Bever and Wolberger, 2005; 

Henning, Bourgeois and Harbison, 2018). NMN conversion to NAD+ requires addition 

of an adenine nucleoside that is catalysed by NMNATs, a family of enzymes shared 

between the salvage and the de novo NAD+ synthesis pathways (Berger et al., 2005).  
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1.5 Age-related dysfunction of autophagy, mitochondrial bioenergetics 

and NAD+ metabolism 

1.5.1 Loss of proteostasis and autophagy impairment 

In young and healthy cells, the proteostasis network ensures correct protein 

expression, folding, function and recycling. Over time, intra- and extra-cellular 

stressors, including heat stress, oxidative stress and toxins, impact on protein 

conformation and can result in partial unfolding and exposure of hydrophobic regions 

to the cytosolic environment and aggregation (Hipp, Kasturi and Hartl, 2019). Protein 

aggregate formation can arise by chaotic interaction due to exposure of hydrophobic 

amino acid residues or ordered by interaction between β-sheet-assisted formation of 

toxic oligomers and fibrils (Moreno-Gonzalez and Soto, 2011). It is still debated 

whether it is the soluble (oligomer) or insoluble (fibril) aggregate form, which is toxic to 

the cellular environment (Ross and Poirier, 2005; Winklhofer, Tatzelt and Haass, 

2008). Protein aggregation is challenged by the action of cellular chaperones that 

shield affected regions from interaction, attempt re-folding and, if facing unresolvable 

protein aggregation, promote aggregate sequestration into protein aggresomes and 

eventually into insoluble intracellular inclusions (Hipp, Kasturi and Hartl, 2019).  

Analyses of aggresomes and insoluble fractions revealed presence of protein 

chaperones, proteasome subunits, ubiquitin and autophagy receptors, a sign that the 

misfolding/aggregation was recognised, but their clearance was unsuccessful (Kopito, 

2000; Xia et al., 2008; Henderson et al., 2017). Interestingly, existing evidence 

supports two distinct models of disease onset. Firstly, accumulation of mutated or 

chronically misfolded proteins overwhelms the proteostasis systems, and leads to 

both, loss-of-function and gain-of-function phenotypes leading to cellular dysfunction 

(Balchin, Hayer-Hartl and Hartl, 2016; Hipp, Kasturi and Hartl, 2019). Secondly, age-

related disruption in degradation pathways could underlie the toxicity of accumulating 

disease-associated proteins in both, wild-type and mutant form, which can lead to 

impairment of RNA homeostasis or disruption of recycling pathways by sequestration 

of their components (Balchin, Hayer-Hartl and Hartl, 2016).  

Age-related loss of the proteostatic capacity, expression of mutant proteins with 

unusual folding patterns or altered stability and protein aggregate formation have all 

been linked to proteinopathies and neurodegenerative disorders (NDs) (Labbadia and 
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Morimoto, 2015). In addition, an ever increasing number of NDs is characterised by 

protein aggregate accumulation in insoluble cellular or extracellular aggregates and by 

perturbations in the protein degradation pathways (Labbadia and Morimoto, 2015; 

Sweeney et al., 2017). Most notably, autophagy impairment at various stages of the 

pathways was identified in multiple NDs including Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral 

sclerosis (ALS) and in disorders presenting with early onset neurodegeneration, 

including lysosomal storage disorders (LSD) like Niemann Pick Type C1 (NPC1) 

disease (Wong and Cuervo, 2010; Guo et al., 2018). Reduction in autophagy initiation 

(AD), enhanced autophagy repression (HD), altered cargo recognition (HD, PD), 

impaired autophagosome trafficking (HD, ALS), inefficient autophagosome fusion with 

lysosomes (LSD) and loss of lysosomal function (AD, LSD) have all been implicated in 

NDs (Wong and Cuervo, 2010; Nah, Yuan and Jung, 2015) 

In vivo studies have provided evidence for the causal role of autophagy in cellular 

health, homeostasis, and survival. Conversely, autophagy perturbation has been 

implicated in ageing, cell death and neurodegeneration. Mouse models of 14 core 

autophagy gene knockouts have been generated to date, of which genes encoding  

ATG conjugation proteins show disease-relevant phenotypes as neonates or adults 

(Kuma, Komatsu and Mizushima, 2017). Firstly, the generation of an Atg5 knockout 

mouse clarified the importance of autophagy as a protective nutrient liberation process 

in periods of severe starvation (Kuma et al., 2004). Although mice survive the early 

embryonic stage thanks to the maternal contribution of Atg5 RNA (Tsukamoto et al., 

2008), the pups die shortly after birth presumably due to inability to survive the post-

natal starvation period upon separation from the placental nutrient supply prior to first 

feeding (Kuma et al., 2004). In addition, Atg5 knockout mice also showed a 

neurological defect presenting as suckling failure, which can be alleviated by neuron-

specific expression of ATG5 (Yoshii et al., 2016). Other phenotypes of autophagy 

mouse models include delayed clearance of apoptotic cells in Atg5 deficient mouse 

embryonic stem cells in culture (Qu et al., 2007); and altered mitochondrial 

morphology, peroxisome accumulation and increased levels of ubiquitylated proteins 

and protein aggregates in Atg7 deficient mice (Komatsu et al., 2005). Furthermore, 

tissue specific autophagy perturbations in these mouse models led to understanding 

of autophagy in tissue homeostasis. Both, systemic Atg5 mosaic deficiency and a liver-

specific Atg7 deletion led to increased tumorigenesis in the liver (Takamura et al., 
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2011). Although the exact mechanism of tumour formation is unknown, the authors 

hypothesized that tumorigenesis occurs due to constitutive Nrf2 activation as an 

indirect result of p62 accumulation in autophagy-deficiency. In addition, a neuron 

specific Atg5 knockout results in motor and behavioural aberrations (Hara et al., 2006). 

On a molecular level, absence of autophagy in neuronal cells led to formation of 

intracellular inclusions positive for ubiquitin, and ultimately resulted in swelling and loss 

of Purkinje cells in the cerebellum and in increased apoptosis of granular cells in the 

neighbouring granular layer (Hara et al., 2006). Atg mutant mice and cells isolated from 

these animals thus provide a good model to study the pathology of autophagy-

impairment on organellar health and metabolism. 

1.5.2 Mitochondrial dysfunction  

Mitochondrial dysfunction, the resulting production of ROS and damage to cellular 

macromolecules were long thought to drive ageing and age-related pathology. Initially 

proposed by Harman (Harman, 1972), the mitochondrial free-radical theory of ageing 

as a single cause of age-related dysfunction is now challenged and a more complex 

picture of ageing is emerging, which spans beyond macromolecule damage and  

includes dysregulation of cellular signalling as a contributor (Theurey and Pizzo, 2018). 

Due to the involvement of mitochondria in cellular homeostasis and central metabolic 

pathways they are still considered to be major contributors to the ageing phenotype 

and feature in the majority of proposed theories of ageing. First, the chronic exposure 

of mtDNA to ROS, a lack of protective histones and the higher error rate of mtDNA 

polymerase lead to a time-dependent increase in mtDNA mutation load (Wallace, 

2005). Deleterious mutations, although originally diluted within the mitochondrial 

population, can over time drift towards WT or mutant and undergo clonal expansion 

and compromise mitochondrial ATP production (Greaves et al., 2014). In addition, age-

related increase of mtDNA insertion into nDNA centromeric regions was observed in a 

study of healthy young and aged rat tissue, though the physiological role and potential 

pathogenesis have not been explored (Caro et al., 2010). However, mtDNA liberation 

from the organelle and interaction with cytosolic DNA sentinels as a stimulus of 

inflammation is currently under investigation. In addition, increased levels of circulating 

mtDNA was detected in samples from aged humans and correlated with the expression 

of pro-inflammatory molecules (Pinti et al., 2014). 
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Second, three pathogenic alterations of cardiolipin (CL)  have been described, 

altogether encompassing CL damage by oxidation; CL level alteration by altered 

biosynthetic and degradation pathways; and aberrant CL modelling (Chicco and 

Sparagna, 2007). CL functions at the IMM include stabilization of ETC complexes and  

spatial organization of cristae (Paradies et al., 2010). A study of aged rat tissue 

identified a link between age-related increase in CL oxidation levels and CI dysfunction 

(Petrosillo et al., 2008). It is since appreciated that many mitochondrial membrane 

complexes and transporters require healthy and abundant CL pools for optimal 

function (Chicco and Sparagna, 2007; Böttinger et al., 2012). Importantly, although not 

yet experimentally confirmed, it is logical to suspect that increased CL oxidation may 

result in CL depletion through upregulation of its recycling pathway (Chicco and 

Sparagna, 2007). Decreased levels of CL were first reported from healthy aged rat 

brain tissue (Ruggiero et al., 1992) and since identified in multiple models of age-

related pathology (Chicco and Sparagna, 2007).  Decrease in mitochondrial CL content 

seems to be particularly important for the pathogenesis of PD. One of the proteins 

implicated in the development of PD, α-synuclein, directly associates with CL, adopts 

an α-helical fold in its unstructured region and becomes less prone to aggregation 

(Ghio et al., 2016). Therefore, age-related loss of CL could destabilize α-synuclein and 

result in aggregate formation. Interestingly, association between α-synuclein and 

mitochondria can lead to a range of mitochondrial phenotypes, including but not limited 

to mitochondrial fragmentation, decreased CI activity, increased ROS release and 

mitophagy activation (Nakamura, 2013)  

Furthermore, mitochondria were shown to perform an essential role in stabilization of 

a tumour-suppressive mechanism termed cellular senescence. Cell senescence is 

defined as an irreversible cell cycle arrest associated with a pro-inflammatory and pro-

oxidant secretory phenotype (Correia-Melo et al., 2016). Beyond its role in cancer 

prevention, senescence contributes to age-related decline by imposing the senescent 

phenotype on neighbouring healthy cells and thus spreading dysfunction, oxidative 

damage and inflammation (Coppé et al., 2008; Childs et al., 2015). In a proof of 

concept study, Correia-Melo and colleagues demonstrated that senescence-induction 

and stabilisation does not occur in cells which lack mitochondria altogether (Correia-

Melo et al., 2016). Although healthy mitochondria are capable of adopting a pro-oxidant 

state to establish senescence (Correia-Melo et al., 2016), mitochondrial dysfunction in 

proliferating human cells and a mouse progeria model drives a form of senescence 
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termed the mitochondrial-dysfunction-associated senescence (MiDAS) (Wiley et al., 

2016). Importantly, decrease in cytoplasmic NAD+/NADH ratio, ATP depletion, AMPK 

activation and p53 phosphorylation are key to the establishment of cell cycle arrest and 

senescence secretory phenotype in response to mitochondrial dysfunction (Wiley et 

al., 2016). Mitochondrial dysfunction leads to excessive NAD+ reduction to NADH, 

which in turn deactivates glycolysis and glycolytic ATP production. Supplementation of 

cell permeable pyruvate, maintenance of a normal cytoplasmic NAD+/NADH ratio by 

pyruvate reduction to lactate, and glycolysis activation prevent senescence in cells with 

dysfunctional mitochondria (Wiley et al., 2016). These studies confirm that 

dysfunctional mitochondria might drive age-related phenotypes not only via increased 

oxidative damage, but more importantly, by negatively affecting cellular metabolism 

and signalling pathways. 

1.5.3 Age-related NAD+ depletion 

NAD+ is a co-factor of cellular redox reactions in the cytoplasmic and mitochondrial 

pathways of glucose oxidation (glycolysis and TCA cycle) and a substrate for plasma 

membrane, nuclear, cytoplasmic and mitochondrial enzymes (Cantó, Menzies and 

Auwerx, 2015). The involvement of cellular metabolism in ageing was explored upon 

identification of the key role of a small set of evolutionarily conserved longevity and 

stress-response pathways in yeast, worm, fly and rodent models during the 20th 

century, and further confirmed in primate models in 2009  (Campisi et al., 2019). These 

studies had contributed not only to our understanding of the plasticity of ageing via 

lifespan extension, but also led to a realization that modulation of healthspan is 

achievable. Limiting calorie excess by dietary restriction and by exercise are the most 

robust metabolic interventions, which lead to lifespan and healthspan extension. 

Multiple studies have since confirmed the metabolic link between these interventions 

to increased NAD+ availability due to rapid NADH oxidation, and thus to modulation of 

SIRT expression/activity and the downstream protein PTMs and transcription 

programmes (Bonkowski and Sinclair, 2016). In addition to SIRTs, the role of PARPs 

and cyclic ADP-ribose synthases in contributing to age-related defects has been 

explored in cellular and mouse models, in which both protein families indiscriminately 

consume NAD+ when activated (Cantó, Menzies and Auwerx, 2015).  

NAD+ decline with age is a phenomenon that was reported as a result of increased 

PARP activity (Pacher and Szabo, 2008), increased CD38 expression  (Camacho-
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Pereira et al., 2016) and decreased flux through the NAM-mediated salvage pathway 

(Stein and Imai, 2014). Age-dependent increase in PARP activity due to increased 

levels of DNA damage and increased expression of CD38 deplete the intra-cellular 

pool of available NAD+. Combined with the age-dependent reduction of NAMPT activity 

(Stein and Imai, 2014), these conditions perpetuate the perfect storm of NAD depletion, 

loss of NAM recycling and thus SIRT inactivation. Study of human tissue samples at 

different ages partially supports this hypothesis (Massudi et al., 2012). In this study, an 

age-dependent increase in DNA damage correlated with an increase in PARP activity, 

depletion of NAD+ and, in the elderly, in reduction in SIRT1 activity. It is important to 

mention that stronger correlations were observed in the male population than in 

females and might warrant further study with increased statistical power. Another study 

utilised the power of magnetic resonance-based non-invasive in vivo imaging of human 

brain and revealed an age-dependent decrease in total NAD+ levels, concomitant with 

reduction in NAD+ and an increase in NADH levels, indicative of metabolic dysfunction 

(Zhu et al., 2015). 

Building on discoveries of the last decade, NAD+ decline is now considered as one of 

the hallmarks of ageing. The ever-increasing understanding of cellular, tissue specific 

and circulatory NAD+ metabolism offers a multitude of possible ‘biomarkers’ of NAD+ 

metabolism for exploration in disease pathology. Indeed, as a key player in 

metabolism, disruption of NAD+ levels was reported in a plethora of diseases 

associated with metabolic syndrome, including cancer, obesity, diabetes mellitus type 

2, non-alcoholic fatty liver disease, atherosclerosis and depression (Okabe et al., 

2019). In addition, dysregulated NAD+ metabolism and loss of SIRT function is 

implicated in neurodegeneration. First, although no single common source of cellular 

disruption is conclusively linked to Alzheimer’s disease, metabolic disruption and 

deficient DNA repair were both implicated in disease onset and progression (Obulesu 

and Rao, 2010; Yin et al., 2016). Moreover, NMNAT2 mRNA levels negatively correlate 

with AD in human post-mortem brain tissue (Ali et al., 2016). These findings, combined 

with the high failure rate of AD clinical trials focusing anti-amyloid compounds 

(Cummings, 2018), substantiated the rationale of repurposing NAM, an FDA approved 

supplement for treatment of several skin conditions, as an NAD+-boosting strategy to 

slow or reverse the disease progression.  
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Similarly to AD, analysis of blood samples from PD patients and aged-matched healthy 

control group revealed a decrease in NAD+:NADH ratio (white blood cells), a reduced 

NAD+:NADP+ ratio (red blood cells), and decreased levels of total circulating NA 

metabolites, expressed as a sum of NA, NAM and uric acid  (plasma) (Wakade et al., 

2014). Correspondingly, two novel small-molecule activators of NAMPT prevent loss 

of dopaminergic neurons in a rat model of PD (De Jesús-Cortés et al., 2015). 

Conversely, increased levels of NAM N-methyltransferase (NNMT) were detected in 

post-mortem brain tissue of PD patients (Parsons et al., 2002). NNMT catalyses 

formation of N-methyl-NAM, a degradation metabolite destined for clearance, although 

novel hypotheses of N-methyl-NAM as a signalling metabolite are explored (Pissios, 

2017). Importantly, N-methyl-NAM was hypothesized to be toxic to mitochondrial CI 

function due to its structural similarity to a known CI toxin that induces parkinsonism 

by selectively poisoning dopaminergic neurons, the 1-methyl-4-phenylpyridinium 

(MPP+) (Williams and Ramsden, 2005). This observation is relevant to modelling and 

therapeutic targeting of PD, but could also explain the anecdotal toxicity of high doses 

of NAD+-precursor supplementation in cellular and animal models and might become 

a cautionary tale in future NAD+-boosting strategies aimed to combat age-related NAD+ 

decline.  

1.5.4 Correlation and causality relationships in age-related dysfunction 

Autophagy deficiency vs. mitochondrial health 

Autophagy plays a crucial role in MQC, particularly stress-induced whole organelle 

recycling (Narendra et al., 2008, 2010; Sedlackova and Korolchuk, 2018). Stress-

induced and basal autophagy maintain mitochondrial health and are crucial for healthy 

ageing (Figure 1.6). In one particular example, study of a cardiomyocyte-specific Bnip3 

and Nix double knockout mouse model study identified their role in what authors 

referred to as ‘mitochondrial pruning’, a life-long basal autophagy activation that 

prevents the development of cardiomyopathy (Dorn, 2010). Deficient mitochondrial 

clearance as a cause of age-related dysfunction is best demonstrated in familial PD, 

particularly where PINK1 and Parkin mutations underpin the disease (Pickrell and 

Youle, 2015), but also in sporadic cases, in which accumulation of α-synuclein 

interferes with autophagosome maturation and autophagosome-lysosome fusion, 

resulting in autophagy flux impairment, dysfunctional organelle accumulation and 

disease pathology (Tanik et al., 2013).  
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Figure 1. 6 Interrelatedness of age-related dysfunction 

  

Autophagy flux, mitochondrial function, and NAD+ levels all decline with age and underpin 

some of the hallmarks of ageing. It is unclear which hallmark is disturbed first in ageing 

and/or pathology. Current research indicates that decline of each of the three hallmarks in 

isolation compromises cellular function. Knowledge of pathways and enzymes that 

promote interrelatedness between the three hallmarks is limited.  
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Strong evidence supports the idea that mitochondrial ROS promote starvation-induced 

autophagy. The first line of evidence comes from HeLa cell models, in which depletion 

of mtDNA (ρ°) or SOD2 prevent starvation-induced ROS-mediated AMPK activation 

and autophagy stimulation (Lionaki et al., 2015). ROS also modulate autophagy and 

other cellular processes by modifying cysteine residues and thus promoting formation 

of intra- and inter-protein disulphide bonds that affect protein conformation and 

function. In particular, two proteins involved in distinct stages of the autophagy pathway 

are regulated by disulphide bond formation. First, ATG4 is responsible for LC3-I 

cleavage prior to conjugation to PE and later for LC3-II recycling upon autophagosome 

fusion with lysosome. ATG4 de-lipidation activity is decreased upon disulphide bond 

formation in response to ROS, whereas its initial LC3-I cleavage remains thus leading 

to increased levels of autophagosome formation (Scherz-Shouval et al., 2007). 

Second, disulphide bond formation promotes p62 oligomerisation and confers 

oxidative stress resistance by autophagy promotion (Figure 1.6) (Carroll et al., 2018). 

Finally, mounting evidence now suggests an interplay of excessive mitochondrial ROS 

production and autophagy initiation in establishment of cancer metabolism, whereby 

excessive activation of autophagy promotes cancer cell survival (Li et al., 2011). 

NAD+ deficiency vs. mitochondrial function 

A correlation between NAD+ depletion due to PARP hyperactivation and mitochondrial 

dysfunction was first observed in human neurodegenerative progeria syndromes. 

Studies of XPA (Fang et al., 2014), Cockayne syndrome group B protein (CSB) 

(Scheibye-Knudsen et al., 2012) and ataxia-telangiectasia mutated (ATM) protein 

(Valentin-Vega et al., 2012) report dysregulated mitochondrial bioenergetics and 

recycling as a result of SIRT1 inactivity. Importantly, PARP inhibition by AZD2281 

(olaparib) and NAD+ precursor supplementation both rescued the mitochondrial 

pathology and progeria phenotypes in models of all three syndromes (Cantó, Menzies 

and Auwerx, 2015). A similar concept was also confirmed in CD38 knockout mice, 

which maintain mitochondrial function, measured as respiration-driven ATP synthesis, 

better than their WT littermates (Camacho-Pereira et al., 2016). In addition, CD38 

transfection into a cell line model led to acute depletion of cellular NAD+ and NADH 

levels; aberrations in mitochondrial morphology and function; and metabolic re-wiring 

towards aerobic glycolysis (Camacho-Pereira et al., 2016). This study also reiterated 

the crucial role of mitochondrial SIRT3 activation as the mediator of the beneficial 
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effects of elevated NAD+, which leads to SIRT3-mediated deacetylation of ETC 

subunits to promote OXPHOS and in a more direct fashion, deacetylation of  SOD2 to 

activate ·O2 detoxification (van de Ven, Santos and Haigis, 2017). Furthermore, the 

involvement of age-related NAD+ decline in mitochondrial dysfunction was 

demonstrated in a mouse study where aged and SIRT1 KO animals presented with 

lower mtDNA-encoded gene expression that was demonstrated to rely on nuclear 

NAD+ availability (Gomes et al., 2013).  

In turn, age-related mitochondrial dysfunction and elevated levels of e- leakage from 

the ETC results in decreased coupling of substrate (NADH, FADH2) oxidation and ATP 

production. Loss of ATP, a key donor of adenine moiety in NAD+ biosynthesis, limits 

the flux through NAD+ biosynthetic and salvage pathways (Figure 1.5D, Figure 1.6) 

(Pinson et al., 2019). Additionally, chronic loss of OXPHOS function decreases the 

NAD+:NADH ratio, deactivates SIRT1-mediated mitochondrial biogenesis and SIRT3-

mediated detoxification, and in a vicious cycle potentiates further ATP depletion and 

loss of cellular function and viability (Wallace, 2005).  

Maintenance of NAD+ levels vs. autophagy 

Autophagy was identified as a contributor to age-related neurodegeneration and 

implicated in the pathology of AD, PD, ALS and HD. The main role of autophagy as a 

nutrient liberation pathway, links autophagy to cellular biosynthetic pathways by 

providing the building blocks and precursors for macromolecule synthesis. More 

specifically, study of Atg7 WT and Atg7-deficient tumours revealed the crucial role of 

autophagy in the maintenance of glutamine/glutamate levels, cellular energy charge 

and total adenosine, uridine and cytidine levels (Guo et al., 2016). Interestingly, 

glutamine supplementation prevented the exhaustion of all nucleosides in Atg7-

deficient tumours. Although not explored in this study, depletion of glutamine and 

adenosine may contribute to altered NAD+ metabolism and might warrant further 

research in cancer and age-related models of autophagy deficiency (Figure 1.6). 

Conversely, NAD+-mediated SIRT promotes autophagy induction. First, transient 

SIRT1 overexpression leads to increased levels of autophagy flux by mimicking 

nutrient starvation. Importantly, SIRT1-mediated autophagy stimulation is dependent 

on its deacetylase activity (Lee et al., 2008). First, deacetylation of transcription factors 

including members of the forkhead box protein O (FoxO) protein family promotes 
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expression of multiple core autophagy genes (Webb and Brunet, 2014). Second, direct 

SIRT1-mediated deacetylation of ATG proteins, including ATG5, ATG7 and LC3, is 

required for starvation-induced autophagy at the stage of phagophore expansion 

(Huang et al., 2015). Moreover, PARP1 activation was linked to autophagy initiation in 

response to DNA damage via signalling through AMPK (Muñoz-Gámez et al., 2009; 

Chen et al., 2015). In the earlier study, concurrent pharmacological inhibition of 

autophagy and stimulation of DNA damage-PARP1 axis led to cell death and suggests 

a protective role of autophagy-mediated recycling in DNA damage repair (Muñoz-

Gámez et al., 2009). 

1.5.5 Niemann Pick type C1 disease: an example of interplay between 

autophagy and mitochondrial dysfunction 

Niemann Pick type C1 (NPC1) disease is a rare and fatal autosomal recessive LSD, 

which presents with accumulation of unesterified cholesterol in the liver, spleen and 

central nervous system (Vanier, 2010). The disease is caused by a mutation in one of 

two genes NPC1 or NPC2. NPC1 and NPC2 genes encode membrane-anchored and 

soluble lysosomal lipid transporters, respectively. Mutations of NPC2 account for only 

5% of the diagnosed cases (Wassif et al., 2016). The more commonly affected protein, 

NPC1, is a transmembrane protein of the late endosome and lysosome. Loss of 

function mutations of NPC1 lead to sphingolipid, mostly cholesterol, sphingomyelin and 

glycosphingolipid, accumulation in late endosomes and lysosomes (Vanier, 2010). The 

age of onset and disease progression in NPC1 patients is heterogeneous and varies 

from a neonatal rapidly fatal disease to an adult-onset chronic neurodegenerative 

disorder (Vanier, 2010). The classic juvenile NPC patients present with early onset 

neuropathology as motor deficits progressing into cognitive decline, dementia, ataxia 

and seizures (Berry-Kravis et al., 2018). Molecular neuropathological defects lead to 

formation of Alzheimer’s-like neurofibrillary tangles, degeneration, axonal dystrophy 

and demyelination (Vanier, 2010). Complicating the search for an effective intervention 

in NPC1 is the lack of understanding of molecular mechanisms at the root of disease 

onset that explains the biochemistry and clinical presentations of this disease (Lloyd-

Evans and Platt, 2010).   

Sphingolipid accumulation was long thought to be the root cause of the molecular 

pathology of NPC1 and was the target of therapeutic treatment research. Miglustat (N-

butyldeoxynojirimycin, Zavesca®; Actelion Pharmaceuticals), a reversible inhibitor of 
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glycosphingolipid biosynthesis capable of crossing the blood-brain barrier (BBB), is 

currently the only approved treatment for NPC disease shown to consistently slow 

neurological disease progression and improve patient survival (Lachmann et al., 2004; 

Patterson et al., 2012; Pineda, Walterfang and Patterson, 2018). 2-hydroxypropyl-β-

cyclodextrin (HPβCD, VTS-270), a cholesterol binding and liberating compound, was 

successfully tested in a small phase 1-2a study (Ory et al., 2017) and is currently tested 

for safety and efficacy in a multinational, randomized, double-blind phase 2b/3 trial 

(clinicaltrials.gov, NCT02534844). The largest drawback of  HPβCD as a potential 

treatment of NPC1 is its exclusion by the BBB and thus it’s direct impact on cholesterol 

accumulation in neurons is less than optimal (Pontikis et al., 2013). The latest 

therapeutic approach to enter clinical trials is treatment with histone deacetylase 

inhibitors (HDACi). The underlying basis of HDACi use is to promote NPC1 expression 

and studies using mouse embryonic fibroblasts expressing NPC1 I1061T, the most 

common NPC1 allele mutation, and other missense NPC1 mutant proteins, show 

success in NPC1 stabilization and in cholesterol decrease (Pipalia et al., 2017). One 

such HDACi molecule, vorinostat, is currently under evaluation in a completed 

phase1/2a trial (clinicaltrials.gov, NCT02124083).  

Studies of NPC1 knockout cell lines and NPC1 patient fibroblast have identified 

additional molecular pathologies, which associate with the disease. First, a defect in 

autophagic flux was shown in multiple models of NPC1 disease and in fibroblasts from 

NPC1 patients (Sarkar et al., 2013). Second, a study of fibroblasts from healthy 

subjects and NPC1 patients revealed abnormal mitochondrial morphology, 

bioenergetics and membrane cholesterol content in NPC cells (Woś et al., 2016). 

Third, NPC1 disease is characterized by an accumulation of cholesterol in neuronal 

and hepatocyte mitochondria. The exact mechanism of cholesterol trafficking and its 

intracellular origin are not fully elucidated (reviewed in (Torres et al., 2017)), and 

neither is the resulting mitochondrial dysfunction. Nevertheless, increased cholesterol 

in mitochondrial membranes could lead to alterations in membrane fluidity, a shift 

towards mitochondrial fragmentation, and deficient OXPHOS, and subsequently result 

in increased oxidative stress and loss of mMP (Vázquez et al., 2012; Torres et al., 

2017). HPβCD-assisted release of cholesterol from mitochondrial membranes is 

sufficient to rescue inhibition of the ATP synthase observed in NPC1 KO cells 

(Kennedy et al., 2014). Changes associated with cholesterol accumulation in 

mitochondrial membranes are consistent with findings of an increased glycolytic 
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phenotype (Kennedy et al., 2014). Although the role of NAD+ metabolism in NPC1 

disease has not yet been investigated, one small mouse study of infantile NPC1 

disease has demonstrated that NAM supplementation leads to improvement of 

cognitive function, as demonstrated by a passive avoidance shock chamber test 

(Marshall, Borbon and Erickson, 2017). Although the search of NPC1 therapy has so 

far focused on cholesterol and other lipid trafficking, studies in cellular and mouse 

models of the disease expanded the knowledge of other mechanisms potentially 

contributing to disease pathology, including autophagy impairment and dysregulated 

mitochondrial function. Further understanding of the cause and effect relationships and 

contribution to disease pathology of any or all of these pathways could contribute to 

the development of therapeutics that may alleviate liver disease and 

neurodegeneration symptoms of NPC1.  

1.6 Aims & Objectives 

Age is the main risk factor for prevalent chronic late-onset diseases in developed 

countries. Research over the last decade has contributed to our understanding of 

molecular pathology and metabolic dysfunction that correlate with disease pathology 

and clinical symptoms, but the underlying cause of disease onset and progression is 

still largely unknown. Concurrent with previous theories of age-related damage 

accumulation and newer theories of metabolic dysregulation, mitochondrial 

bioenergetics dysfunction was identified in multiple disorders. Similarly, autophagy 

impairment and NAD+ depletion positively correlate with neurodegeneration and 

metabolic disorders. It is becoming clear that the study of these pathways should not 

happen in isolation and the wider impact of developed therapeutics should be 

considered.  I hypothesized that autophagy dysfunction stands at the root of age-

related molecular dysfunction and through loss of recycling results in aberrations of 

MQC and NAD+ metabolism.  Within the scope of this study I approached this complex 

issue by utilizing a genetic model of autophagy impairment, the immortalized Atg5-/- 

MEFs to characterize the downstream effect of autophagy abolition on mitochondrial 

function and the dynamics of NAD+ metabolism. To investigate the relationship and 

interdependence of autophagy, mitochondrial quality control, NAD+ metabolism and 

cellular function I designed the following aims: 
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Main aim 1: Establish whether autophagy abolition alone is sufficient to cause 

dysfunction of mitochondrial bioenergetics and NAD+ metabolism. 

Specific aim 1.1: Characterise mitochondrial structure and function changes in Atg5-/- 

MEFs cultured in a glucose-based medium.  

Specific aim 1.2: Investigate the ability of Atg5-/- MEFs to adapt to increased OXPHOS 

demand by culture in a galactose-based medium. 

Specific aim 1.3: Characterize metabolic changes in Atg5-/- MEFs. 

Specific aim 1.4: Investigate main findings from Atg5-/- MEFs in autophagy-deficient 

and disease-relevant NPC1-/- MEFs. 

Specific aim 1.5: Upon identification of common pathways of dysfunction, study the 

underlying cause by genetic and pharmacological means. 

Main aim 2: Identify potential therapeutic compounds to target dysfunction and 

translate findings to NPC1 patient fibroblasts. 

Specific aim 2.1: Identify small compounds that target autophagy/mitochondrial /NAD+ 

metabolism aberrations. 

Specific aim 2.2. Study the relevance of findings and therapeutics from immortalized 

MEF models in human patient fibroblasts. 
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 Materials & Methods 

2.1 Cell lines obtained 

Immortalized Atg5+/+ and Atg5-/- mouse embryonic fibroblasts (MEFs) were kindly 

provided by Dr Noboru Mizushima, Tokyo, Japan (Kuma et al., 2004). Immortalized 

Npc1+/+ and Npc1-/- MEFs were a kind gift from Dr Peter Lobel, New Jersey, USA 

(Loftus et al 1997, Sarkar et al 2013). HEK293GPG and primary WT and Npc1KII1061T 

MEFs, were a gift from Dr Daniel Ory, St. Louis, USA (Ory, Neugeboren and Mulligan, 

1996; Praggastis et al., 2015). HEK293T cells were obtained from the American Type 

Culture Collection. Control young human female fibroblasts (10705, 10763, 10632, 

10263, 10156) were a kind gift from Dr Devin Oglesbee, Rochester, USA and Npc1 

patient fibroblasts (GM17912, GM17924, GM18387, GM18402 and GM18417) were 

obtained from Coriell Cell Repositories. 

Table 2. 1 Mouse and human model cell lines 

Cell Line Cell type Source Reference 

MEF Atg5+/+  immortalised 
Dr Noboru Mizushima  

(Tokyo Medical and Dental 
University) 

(Kuma et al., 2004) 

MEF Atg5-/- immortalised (Kuma et al., 2002) 

MEF Npc1+/+  immortalised Dr Sovan Sarkar  
(University of Birmingham, 

UK ) 

(Sarkar et al., 2013).  

MEF Npc1-/-  immortalised (Sarkar et al., 2013).  

HEK293GPG immortalised 

Dr Daniel Ory  
(Washington University in 

St. Louis, USA) Ory et al., 1996 

HEK293T immortalised ATCC CRL-3216™ 

 

Table 2. 2 Human control and NPC1 patient fibroblasts 

Study Label 
Catalogue 

ID 
Gender Age 

Disease 
Affected 

Allele 1 Mutation  
Allele 2 Mutation 

CTRL (1) 10176 Female 24 no none 

CTRL (2) 10263 Female 21 no none 

CTRL (3) 10632 Female 22 no none 

CTRL (4) 10705 Female 26 no none 

CTRL (5) 10763 Female 21 no none 

NPC1 (1) GM17912 Female  11  yes [P1007A]L;[T1036M)]L 

NPC1 (2) GM17924 Female  21 yes c.451_452delAGL;[Y825C]C 

NPC1 (3) GM18387 Female  33 yes [D874V]L;[Y890X]L 

NPC1 (4) GM18402 Female  10 yes [D700N]TM;[F1221fsX]L  

NPC1 (5) GM18417 Female  25 yes  [I1061T]L; [I1061T]L 

 

file:///E:/old%20versions%20and%20files/Thesis/Methods%20Table.xlsx%23RANGE!_ENREF_228
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2.2 Cell stock maintenance 

Cells were maintained in DMEM (Sigma) supplemented with 10% FBS (Sigma), 

100Uxml-1 penicillin/streptomycin (Sigma) and 2mM L-glutamine (Sigma). Control and 

NPC1 patient primary fibroblasts were cultured as above, except with 15% FBS. All 

cells were cultured in atmospheric oxygen conditions at 37°C and 5% CO2 in a 

humidified incubator. HEK293GPG virus packaging cells require various culture 

supplements further described in section 2.3.1. 

Table 2. 3 Cell culture: consumables 

Consumable Manufacturer/Vendor Catalogue Number 

75 cm² TC treated flask with filter cap Greiner-Bio one 658175 

175 cm² TC treated flask with filter cap Greiner-Bio one 661175 

6-well cell culture plates Fisher 11825275 

12-well cell culture plates Fisher TKB-100-110R 

24-well cell culture plates Fisher TKB-100-115H 

CELLview cell culture slide Greiner-Bio one 543079 

10cm TC plates (TPP yellow edge) Helena biosciences 93100 

Serological pipettes 10 ml Sarstedt 86.1254.001 

Serological pipettes 25 ml Sarstedt 86.1685.001 

Serological pipettes 5 ml Sarstedt 86.1253.001 

Glass Pasteur pipettes 230 mm VWR 612-1702 

0.6 ml 'Crystal Clear' microcentrifuge 
tube Starlab E1405-0600 

1.5 ml microcentrifuge tubes Starlab S1615-5500 

2 ml 'Crystal Clear' Microcentrifuge Tube Starlab E1420-2000 

15 ml Centrifuge Tube, Conical (Sterile), 
Loose Starlab E1415-0200 

50 ml Centrifuge Tube, Conical (Sterile), 
Loose Starlab E1450-0200 

CryoTube vials Fisher Scientific 377267 

Mr. FrostyTM freezing container Fisher Scientific 5100-0001 

Coverglass 13 mm/0.16 mm VWR 631-0150 

Nalgene™ 25mm Syringe Filters, 0.2µm 
pore size Fisher Scientific 15352388 

0.45 µm Membrane Filter, PTFE (Sterile) Starlab P7166-6800  

BD Discardit™ Eccentric Luer-Slip Two-
Piece Syringe Fisher Scientific 10345844 

Slide-A-Lyzer# 2K MWCO Dialysis 
Cassettes Fisher Scientific 10127483 
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Table 2. 4 Cell culture maintenance: reagents 

Reagent Manufacturer/Vendor 
Catalogue 
Number 

20x PBS New England BioLabs 9808 

Acryl Aquaclean WAK-Chemie Medical GmbH WAK-AQA-250-50L 

DMEM Sigma D6546 

Foetal Bovine Serum (FBS) Sigma F0804 

L-glutamine solution Sigma G7513 

Penicillin/Streptomycin Sigma P4333 

Rely+OnTM VirkonTM VWR 148-0202  

Trypsin-EDTA solution Sigma T3924 

2.3 Stable and transient cell line generation 

2.3.1 Retroviral transduction 

Stable expression of the ATG gene in the Atg5-/- MEFs was carried out by Dr 

Bernadette Carroll (current affiliation at School of Biochemistry, University of Bristol, 

University Walk, Bristol, UK) using a retroviral transduction protocol with the pMXs-IP-

eGFP-mAtg5 construct (Addgene 38196). The viruses were packaged in HEK293T. 

293T cells were seeded in a 10cm dish (6x106/10ml/dish) in antibiotic-free culture 

medium with 0.1mM MEM non-essential amino acid solution (Sigma) and 1mM sodium 

pyruvate (Sigma). Next day, cells were transfected with plasmids containing the 

packaging (Gag/Pol) and envelope (VSV-G) genes (kindly gifted by Michael Lazarou) 

and the pMXs-IP-eGFP-mAtg5 construct with the Lipofectamine 2000 reagent (Fisher 

Scientific) in OptiMEM (Invitrogen) as per manufacturer’s instruction. Following 

overnight transfection, culture medium was replaced with fresh antibiotic-free medium 

that was collected after 24h. The virus containing medium was filtered through 0.45µm 

pore-size filter and overlayed, on 70% confluent Atg5-/- MEFs for 24h in the presence 

of 10μgxml-1 polybrene (Sigma). Cells stably expressing the mAtg5 gene were 

optimized for protein expression via puromycin selection (2µgxml-1). Stable cell lines 

were maintained in lower levels of puromycin (1µgxml-1) until seeding for experimental 

purposes. 

Stable expression of NPC1 in Npc1-/- MEFs was achieved via retroviral transduction. 

HEK293GPG cells were cultured in high glucose DMEM (Sigma) supplemented with 

10% FBS (Sigma), 50Uxml-1 penicillin/streptomycin (Sigma), 4mM L-glutamine 

(Sigma), 1mM sodium pyruvate (Sigma), 0.1mM MEM non-essential amino acid 

solution (Sigma), 1μg/mL tetracycline (Sigma), 2µgxml-1 puromycin (Santa Cruz 
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biotechnology) and 0.3mgxml-1 G418 (Enzo Life Sciences), referred to as 293GPG 

medium. HEK293GPG cells were seeded into 10cm dishes (5.5x106/10ml/dish) 48h 

prior to DNA transfection. When cell growth reached approximately 90% confluency, 

293GPG medium was replaced with tetracycline-free, 293GPG medium, to allow for 

expression of viral packaging components. Cells were then transfected with either 

U3BstX empty or NPC1 retroviral expression plasmid (Ory et al., 1996; Wu et al., 2004) 

with 4μg of DNA using Lipofectamine 2000 (Fisher Scientific) in OptiMEM (Invitrogen) 

according to manufacturer instruction. Transfection medium was replaced with 

tetracycline-free, 20% FBS containing 293GPG medium 16h later. Virus-containing 

medium was collected 48h post transfection and was filtered through a 0.45μm 

membrane filter (Starlab). Viral transduction was performed by overlaying 70% 

confluent Npc1-/- MEFs seeded in a 6-well plate with 1ml of virus-containing medium 

mixed with 1ml full nutrient medium in the presence of 8μgxml-1 polybrene (Sigma). 

Following overnight incubation, diluted virus-containing medium was replaced with 

fresh full nutrient medium supplemented with 200μgxml-1 hygromycin B (InvivoGen) for 

selection of transduced cells. Medium with antibiotic was replaced every 2-3 days to 

keep transduced cells in antibiotic selection for 10 days. Stable cell lines were 

maintained in lower levels of hygromycin B (20μgxml-1) until seeding for experimental 

purposes. 

Table 2. 5 Retroviral transduction: reagents 

Reagent/Consumable Manufacturer/Vendor 
Catalogue 
Number 

10cm TC plates (TPP yellow edge) Helena biosciences 93100 

0.45 µm Membrane Filter, PTFE 
(Sterile) Starlab P7166-6800  

Hexadimethrine bromide (Polybrene) Sigma H9268 

Hygromycin B Gold InvivoGen ant-hg-1 

L-glutamine solution Sigma G7513 

Lipofectamine® 2000 Fisher Scientific 10696153 

MEM Non-essential Amino Acid 
Solution Sigma M7145 

Neomycin (G418 Sulfate) Enzo Life Sciences 
ALX-380-013-

G005 

OptiMEM Invitrogen 11058021 

Penicillin/Streptomycin Sigma P4333 

Puromycin Santa Cruz biotechnology sc-108071A 

Sodium Pyruvate Sigma S8636 

Tetracycline  Sigma 87128 
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2.3.2 siRNA transfection 

ON-TARGETplus SMARTpool siRNA against mouse Ndufs3, Sdha, Uqcrfs1 or non-

targeting control were purchased from GE Healthcare’s Dharmacon (Table 2.4). Final 

siRNA concentration of 100nM was used for silencing, and transfections were 

performed with Lipofectamine 2000 (Fisher Scientific) in OptiMEM (Invitrogen) on Atg5-

/- MEFs at 90% confluency. On the next day, transfected cells were split and seeded 

into 6 well plates (1:10 dilution) for continued growth. 48h after initial transection a 

second transfection was carried out with 20nM siRNA using the same procedure. 

Following re-transfection, cells were either lysed in RIPA buffer and subjected to 

immunoblotting for determination of knockdown efficiency or re-seeded into 6-well 

plates (0.3x106/2ml/6-well) followed by a switch and culture in a galactose-based 

medium for cell death assessment (procedure outlined in section 2.4). 

Table 2. 6 siRNA transfection: reagents 

Reagent Manufacturer 
Catalogue 
Number 

SMARTpool: ON-TARGETplus mouse Ndufs3 siRNA Dharmacon 
L-047009-01-
0005 

SMARTpool: ON-TARGETplus mouse Sdha siRNA Dharmacon 
L-046818-01-
0005 

SMARTpool: ON-TARGETplus mouse Uqcrfs1 siRNA Dharmacon 
L-057582-01-
0005 

 
SMARTpool: ON-TARGETplus non-targeting siRNA  Dharmacon D-001810-04 

Lipofectamine® 2000 
Fisher 
Scientific 10696153 

OptiMEM Invitrogen 11058021 

2.3.3 Generation of knockout cell lines using CRISPR/Cas9 gene editing 

Atg5-/-, Atg7-/- and Rb1cc1-/- MEFs were generated using the clustered regularly 

interspaced short palindromic repeats (CRISPR)/Cas9 system. Ensembl, Aceview and 

CHOPCHOP databases were used to design CRISPR guide RNAs (gRNAs), 20 

nucleotide sequences that determine the specificity of Cas9 nuclease to an exon 

present in all common splicing variants of a gene of interest. The gRNA oligomer was 

then annealed and ligated to a BbsI-linearized pspCas9(BB)-2A-GFP expression 

plasmid  (Ran et al., 2013; a gift from Michael Lazarou). First, designed oligomers were 

diluted to a stock concentration of 100μM in RNase free H2O (Fisher Scientific). 

Second, oligoduplexes were formed by oligomer annealing and 5’ end phosphorylation 

in a PCR reaction as follows: 1μl of each of the pair of oligomers were mixed in a PCR 
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reaction tube with 1μl of 10x T4 DNA ligase buffer (New England BioLabs), 1μl of T4 

polynucleotide kinase (New England BioLabs) and 6μl of sterile RNase free H2O. PCR 

reactions were placed on a Veriti 96-Well Thermal Cycler (Applied Biosystems) and 

proceeded through cycles as follows: cycle 1 (37°C for 30min), cycle 2 (95°C for 5min) 

followed by cycle 3 (a ramp down to 25°C at -5°C/min) and a hold cycle (4°C).  

Ligation of oligoduplexes with pspCas9(BB)-2A-GFP expression plasmid was 

preceded by plasmid digestion with Bbsl (Fisher Scientific) for 15min at 37°C. 10ng of 

plasmid were mixed with 1ul of Bbsl restriction enzyme and 2μl of 10x fast digest green 

buffer in a total volume of 20μl prepared in sterile RNase free H2O. The linearized 

plasmid was then resolved on a 0.8% agarose gel and extracted from the gel using a 

Qiaquick gel extraction kit (Qiagen). Oligoduplex to plasmid ligation was achieved by 

mixing 6ul of oligoduplex reaction, 10ng of digested pspCas9(BB)-2A-GFP expression 

plasmid, 1μl of 10x T4 ligase buffer and 1μl of T4 DNA ligase (New England BioLabs) 

prepared to a total volume of 10μl in sterile RNase free H2O. Ligation reaction was 

carried out at a constant temperature of 16°C overnight.  

Bacterial transformation was then prepared using 10μl of NEB® 10-beta Competent E. 

coli (High Efficiency) (New England BioLabs), 4µl of ligation product. Transformation 

mixtures were incubated on ice for 30min, heat-pulsed at 42°C for 30sec, incubated 

on ice for 2 min, followed by the addition of 950μl of S.O.C. medium (Invitrogen) and 

1h incubation at 37°C in a shaker set at 220rpm. Following 1h incubation, 300µl of 

each transformation reaction was plated on LB agar (Fisher Scientific) plates 

containing 100μgxml-1 ampicillin (Sigma) and incubated overnight at 37°C. Colonies 

were picked and grown in 5ml of LB broth (Fisher Scientific) overnight at 37°C in a 

shaker set to 220rpm. Plasmid DNA was extracted using the QIAprep Spin Miniprep 

Kit (Qiagen) to a final volume of 50μl in warm (60°C) sterile RNase free H2O and sent 

for sequencing (Eurofins Genomics). Npc1+/+ MEF cell line seeded into a 6-well plate 

was then transfected with the correct DNA ligation products. Cells were allowed to 

grow for 48h post seeding before transfection with Lipofectamine 2000 (Fisher 

Scientific) with 1.6μg DNA in OptiMEM (Invitrogen). Cells were trypsinised and re-

suspended in FACS sorting medium (5% FBS (BioSera), 1mM ETDA (Sigma) in PBS) 

24h post transfection. GFP-positive cells were individually sorted by FACS into 96-well 

cell culture plates. Immunoblotting was performed to screen for an autophagy defect 

in single cell colonies after expansion. 
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Table 2. 7 CRISPR guide RNA generation: primer design 

Accession 
Target Gene 

/Exon 
Species Primer Sequence 

NM_053069  
– isoform 1 

Atg5/exon 6 mouse 
5’ caccgACCAGTTTTGGGCCATCAAC 3’ 

5’ aaacGTTGATGGCCCAAAACTGGTc 3’ 

NM_053069  
– isoform 1 

Atg5/exon 7 mouse 
5’ caccgCTTTCATCCAGAAGCTGTTC 3’ 

5’ aaacGAACAGCTTCTGGATGAAAGc 3’ 

NM_001253717 Atg7/exon 3 mouse 
5’ caccgGAACGAGTACCGCCTGGACG 3’ 

5’ aaacCGTCCAGGCGGTACTCGTTCc 3’ 

NM_001253717 Atg7/exon 4 mouse 
5’ caccgCACTGAACTCCAACGTCAAG 3’ 

5’ aaacCTTGACGTTGGAGTTCAGTGc 3’ 

NM_009826.4  
Rb1cc1/exon 

3 
mouse 

5’ caccgTATGTGTTTCTGGTTAACAC 3’ 

5’ aaacGTGTTAACCAGAAACACATAc 3’ 

NM_009826.4  
Rb1cc1/ exon 

10 
mouse 

5’ caccgCTAACAGCTCTATTACAAGG 3’ 

5’ aaacCCTTGTAATAGAGCTGTTAGc 3’ 

 

Table 2. 8 CRISPR guide RNA generation: equipment & reagents 

Equipment/Reagent/Consumable Manufacturer/Vendor 
Catalogue 
Number 

Veriti 96-Well Thermal Cycler  Applied Biosystems   

Burner Bunsen Natural Gas 13mm SLS BUR3000 

Glass spreaders Sigma S4522-6EA 

10x fast digest green buffer  Thermo Fisher Scientific B72 

α-select Gold Efficiency Competent 
Cells Bioline BIO-85027 

Agarose Thermo Fisher Scientific BP1356-500 

Ampicillin Sigma A5354 

96-well plates Fisher Scientific 11835275 

CytoOne non-treated culture dish Starlab CC7672-3394 

EDTA Sigma EDS 

FastDigest BbsI (Bpil) Fisher Scientific FD1014 

Invitrogen™ S.O.C. Ready-to-Use 
Medium Fisher Scientific 11528896 

LB Agar, Miller (powder) Fisher Scientific 10734724 

LB Broth, Miller Fisher Scientific 10638013 

Lipofectamine® 2000 Fisher Scientific 10696153 

NEB® 10-beta Competent E. coli  New England BioLabs BIO-85025 

OptiMEM Invitrogen 11058021 

peqGREEN Peqlab 37-5000 

PfuUltra II Fusion HS DNA Polymerase Agilent Technologies 600672 

pspCas9(BB)-2A-GFP Ran et al., 2013 x 

QIAprep Spin Miniprep Kit Qiagen 27104 

QIAquick Gel Extraction Kit Qiagen 28704 

RNase free H2O GE Healthcare B-003000-WB-100 

Stable Competent E. coli (High 
Efficiency) New England BioLabs C3040 
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S.O.C. medium Invitrogen 15544034 

T4 DNA ligase  New England BioLabs M0202S 

T4 DNA ligase reaction buffer  New England BioLabs  B0202S 

T4 polynucleotide kinase  New England BioLabs M0201S 

Tris-Acetate-EDTA 50x Fisher Scientific BP1332-1 

XL10-Gold® Ultracompetent Cells Agilent Technologies 200314 

2.4 Experimental culture media and conditions 

Two types of cell culture media were used in this study. First, a glucose-based medium 

prepared as high glucose DMEM (Sigma) supplemented with 10% FBS (BioSera), 

100Uxml-1 penicillin/streptomycin (Sigma) and 2mM L-glutamine (Sigma). Second, to 

induce mitochondrial respiration, cells were cultured in a glucose-free Gibco™ DMEM 

(Fisher Scientific) supplemented with 10% FBS (BioSera), 100Uxml-1 

penicillin/streptomycin (Sigma) and 4mM L-glutamine (Sigma), 10mM D-galactose 

(Sigma) 10mM HEPES (Sigma) and 1mM sodium pyruvate solution referred to as 

galactose-based medium. 

Table 2. 9 Experimental culture media: composition 

Reagent Manufacturer/Vendor Catalogue Number 

DMEM Sigma D6546 

Gibco™ DMEM  Fisher Scientific 12307263 

Foetal Bovine Serum (FBS) BioSera FB1001H 

L-glutamine solution Sigma G7513 

Penicillin/Streptomycin Sigma P4333 

HEPES Sigma H0887 

Sodium Pyruvate Solution Sigma S8636 

D-galactose Sigma G0750 

 

For experimental purposes, Atg5+/+ and Atg5-/- MEFs and Npc1+/+ and Npc1-/- MEFs, 

and human control and NPC1 patient fibroblasts were always seeded into cell culture 

dishes in glucose-based medium 24h prior to treatment start. Cells were washed in 

sterile PBS 24h after seeding and fed glucose- or galactose-based media as indicated. 

Type of cell culture vessel, length of treatment and experimental conditions are 

summarized at the start of each experimental method.  
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2.5 Mitochondrial function assessment 

2.5.1 Seahorse analysis 

For all Seahorse-based analyses, Atg5+/+ and Atg5-/- MEFs (0.8x104 cells/well) were 

seeded directly into Seahorse XF24 cell culture microplates (Agilent, 100777-004). 

Cells were re-fed a glucose-based medium 24h after seeding and cultured for a further 

20h before the start of a Seahorse-based analysis. All Seahorse-based measurements 

were carried out in collaboration with Dr Satomi Miwa (Institute for Cell and Molecular 

Biology, Newcastle University, Newcastle upon Tyne, UK). Two-tailed unpaired 

Student’s t-tests were carried out to determine the statistical differences between 

sample averages from three independent experiments. 

Whole cell bioenergetics - OCR and ECAR measurements 

Cellular oxygen consumption rates (OCR) and extracellular acidification rate (ECAR) 

in Atg5+/+ and Atg5-/- MEFs were measured in parallel using a Seahorse XF24 analyser 

in unbuffered basic medium supplemented with 5mM glucose, 1mM sodium pyruvate, 

2mM L-glutamine and 3% FBS or for galactose-based medium with 10mM galactose, 

1mM sodium pyruvate, 4mM L-glutamate and 3% FBS. During analysis the following 

compounds were added to test mitochondrial activity and cellular bioenergetics flux: 

0.5µM oligomycin to inhibit ATP synthase, 2.5µM FCCP to stimulate mitochondrial 

oxygen consumption to maximum capacity, 80mM 2-deoxyglucose (2-DG) to inhibit 

glycolytic flux and 0.5µM rotenone with 2.5µM antimycin A to inhibit complex I and III 

respectively. Calculation of ATP production was carried out as described in (Mookerjee 

et al., 2015).  

Permeabilised cell bioenergetics: Complex I- and II-linked respiration 

To measure complex I- and II-linked respiration, cells were permeabilised using 

Seahorse XF Plasma Membrane Permeabilizer (Agilent Technologies) and OCR was 

measured in the assay buffer (115mM KCl, 10mM KH2PO4, 2mM MgCl2, 3mM HEPES, 

1mM EGTA and 0.2% fatty acid-free BSA, pH 7.2, at 37°C) with complex I substrates 

(10 mM pyruvate and 1 mM malate) or complex II substrate (4mM succinate and 0.5uM 

rotenone).. During analysis the following compounds were added to test mitochondrial 

activity and cellular bioenergetics flux: 4mM ADP, 0.5µM oligomycin, 2.5µM FCCP, 

and 2.5µM antimycin A. 
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Table 2. 10 Seahorse analysis: reagents 

Reagent Manufacturer/Vendor Catalogue Number 

2-deoxyglucose Sigma D8375 

ADP Sigma A5285 

Antimycin A Sigma A8674 

D-galactose Sigma G0750 

D-glucose Sigma G8270 

FCCP Sigma C2920 

Malate Sigma M6413 

Oligomycin Sigma O4876 

Pyruvate Sigma P5280 

Rotenone Sigma R8875 

2.5.2 High-resolution respirometry assay 

For a respirometry-based assay, Atg5+/+ and Atg5-/- MEFs (0.3x106 cells/well) were 

seeded into 6-well cell culture dishes. Cells were switched into glucose or galactose-

based media 24h after seeding and cultured for a further 20h before the start of a 

respirometry-based analysis. All respirometry-based measurements were carried out 

in collaboration with Prof Alberto Sanz (Institute for Cell and Molecular Biology, 

Newcastle University, Newcastle upon Tyne, UK). 

Respirometry measurements were performed in permeabilized cells using an 

OROBOROS Oxygraph-2k system. Following 20h culture in a galactose-based 

medium, cells were trypsinized, collected, counted and 1x106 cells were re-suspended 

in O2k media (0.5mM EGTA, 3mM MgCl2, 60mM lactobionic acid, 20mM taurine, 

10mM KH2PO4, 20mM HEPES, 110mM D-sucrose, 1g/L BSA, fatty acid free). 

Suspended cells were transferred into Oxygraph-2k chambers, permeabilized with 

digitonin (10 µgxµl-1), and sequentially supplemented with pyruvate (5mM) and malate 

(2mM), ADP (4mM), and succinate (10mM). The Oxygraph-2k chambers were left to 

equilibrate after each compound addition for measurement of O2 consumption. All 

measurements were carried out in 2ml volume at 37°C. Two-tailed unpaired Student’s 

t-tests were carried out to determine the statistical differences between sample 

averages from three independent experiments. 
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Table 2. 11 High-resolution respirometry measurement: reagents 

Reagent Manufacturer/Vendor Catalogue Number 

ADP Sigma A2754-1G 

Digitonin Santa Cruz biotechnology sc-280675 

L-(−)-Malic acid Sigma 02288-10G 

Sodium pyruvate Sigma P-8574 

Dimethyl succinate Sigma W239607 

2.5.3 mMP measurements 

For mMP measurements, Atg5+/+ and Atg5-/- MEFs (0.8x104 cells/well) cells were 

seeded into 96-well-size CELLview cell culture slide (Greiner Bio-One). Following 40h 

culture in a galactose-based medium, and treatment with indicated compounds, cells 

were co-stained with 16.7nM tetramethylrhodamine, methyl ester (TMRM; Fisher 

Scientific) and 100nM mitotracker green (MTG; Fisher Scientific). 10x stock of each 

compound was prepared in conditioned galactose-based medium (24h culture on Atg5-

/- MEFs, collected and filtered through a 0.22µm pore-size filter) and 100μl were added 

directly to PBS-washed culture wells. Following a 30min incubation in the dark at 37°C, 

the dye-containing medium was aspirated, cells were washed and re-fed non-dye 

containing conditioned medium. Live cell imaging was performed in a maintained 

atmosphere of 37°C and 5% CO2 using and LSM700 microscope (Zeiss) with a C-

Apochromat 40x/1.20 W Korr M27 water immersion lens equipped with photon-

multiplier tubes. The excitation sources used were solid state laser lines 488nm and 

561nm. Image analysis was performed in ImageJ (version 1.49) (National Institutes of 

Health) by outlining cells as regions of interest to determine a ratio of TMRM to MTG 

raw integrated density values per cell. Quantification was performed on 30–40 cells 

per condition in three independent experiments. Two-tailed unpaired Student’s t-tests 

were carried out to determine the statistical differences between sample averages from 

three independent experiments. 

Table 2. 12 mMP measurement: reagents 

Consumable/Reagent Manufacturer/Vendor 
Catalogue 
Number 

Nalgene™ 25mm Syringe Filters, 0.2µm 
pore size 

Fisher Scientific 
15352388 

BD Discardit™ Eccentric Luer-Slip Two-
Piece Syringe 

Fisher Scientific 10345844 

CELLview cell culture slide Greiner Bio-One 543079 

TMRM Fisher Scientific T668 

MTG Fisher Scientific M7514 



64 
 

2.6 MS-based metabolomics 

Atg5+/+ and Atg5-/- MEFs (0.3x106/well), and Npc1+/+ and Npc1-/- MEFs (0.2x106/well) 

were seeded in 6-well plates and cultured in the galactose-based medium for 16h and 

48h, respectively. Two sets of wells were seeded in parallel, one for establishing cell 

number count and cell protein measurements, the second for metabolic processing. 

The first set of cells were trypsinized, counted to establish cell number/well and 

processed for immunoblotting (discussed in 2.13). The second set was processed at 

indicated time points by a rapid wash with cold PBS and addition of chilled lysis buffer 

(50% methanol (Sigma), 30% acetonitrile (Sigma), 20% dH2O) at concentration of 

2x106 cells/ml. Cell lysates were collected into chilled Eppendorf tubes, agitated 10x 

by triturating with a P1000 and stored at -20°C until all samples were collected. All 

samples were then vortexed for 45s and centrifuged at 13 000rpm. Sample 

supernatants were transferred into a fresh Eppendorf tube and subjected to liquid 

chromatography-MS analysis in collaboration with Dr Oliver D.K. Maddocks (Institute 

of Cancer Sciences, University of Glasgow, Glasgow, UK). 

Output from MS-based analysis was subjected to statistical analysis by MetaboAnalyst 

4.0. To determine the relatedness between Atg5+/+ and Atg5-/- MEFs samples, I 

employed a principal component analysis (PCA), a form of multivariate statistical 

analysis applied to non-scaled and auto-scaled (mean-centred and divided by SD of 

each variable) data sets. Furthermore, a univariate statistical test coupled with         

Atg5-/-/Atg5+/+ fold change of each metabolite were plotted on a volcano plot. Statistical 

significance of differences was determined using the Student’s t-test with P value 

corrected with false discovery rate (FDR) method of Benjamini and Hochberg, which 

does not assume a consistent standard deviation (SD). 

Table 2. 13 MS-based cell collection: reagents 

Consumable/Reagent Manufacturer/Vendor Catalogue Number 

Methanol Fisher Scientific 10675112 

Acetonitrile Sigma 271004 

2.7 NAD+/NADH assay 

Isolated NAD+/NADH measurements in human control and NPC1 patient fibroblasts 

were performed using a Promega detection NAD/NADH-GloTM assay as per 

manufacturer’s instructions (Promega). Cells subcultured in the galactose-based 



65 
 

medium only or supplemented with NAM and NMN (varied concentrations) for 4 

passages were seeded into cell culture 96-well plates (0.8x104 cells/well) and left to 

grow for an additional 48 hours. Cells were then equilibrated at RT for 5min, medium 

was discarded and 75µl of PBS and 75µl of lysis buffer containing 

dodecyltrimethylammonium bromide (DTAB, Sigma) (0.1% DTAB in 0.2N NaOH) were 

added to each well. 30µl of each sample was saved for a protein concentration 

measurement. 2x 50µl of total volume from each well were transferred to clean wells 

for separate NAD+ and NADH measurements. 25µl of 0.4N HCl was added to wells of 

NAD+ measurement and the plate was sealed prior to 15min incubation at 60°C. 

Following a 10min equilibration period at RT, NAD+ measurement wells were topped 

up with 25µl of 0.5M Trizma® base solution (Sigma). 50µl of 0.5M Trizma® 

hydrochloride (Sigma) was added to wells of NADH measurement. β-NAD+ (Sigma) 

and β-NADH (Sigma) standards were prepared at 500nM, 100nM, 50nM, 10nM and 

5nM concentrations. 25µl of each standard and each sample were transferred to an 

opaque 96-well plate and topped up with 25µl of the NAD/NADH-GloTM (Promega) 

reagent. Plates were then sealed and incubated at RT in the dark for 1h. Luminescence 

output was captured, normalized to NAD+/NADH standards and protein levels. 

Statistical analysis was carried out on average values of quadruplicate measurements 

of 5x control cell lines and 5x NPC1 patient cell lines. Initially, one-way analysis and 

multiple comparisons were used to determine whether NAD+ and NADH levels vary 

between three groups of cell lines based on an autophagy deficit (control, no 

autophagy impairment detected (NAI) and autophagy deficient (AI)). Later, linear 

regression analysis was carried out in Graphpad Prism 8 on log2 transformed dose 

data and individual NAD+ measurement values to determine whether increasing doses 

of NAM and NMN supplementation leads to a linear increase in NAD+ levels. 

Table 2. 14 NAD+/NADH assay: reagents 

Reagent Manufacturer/Vendor Catalogue Number 

DC Protein Assay Kit BioRad 500-0112 

DTAB Sigma D8638 

NAD/NADH-Glo™ Assay Promega G9072 

Trizma® base  Sigma T1503 

Trizma® hydrochloride  Sigma T5941 

β-NAD+ Sigma N0632  

β-NADH Sigma N8129 
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2.8 ROS measurements  

ROS measurements were carried out and analysed by two different methods, flow 

cytometry (primary human fibroblast) and confocal imaging (MEFs). For the confocal 

imaging of fixed samples, Atg5+/+ and Atg5-/- MEFs were seeded on 13mm coverglass 

(VWR) into a 6-well plate (0.3x106/well) to keep seeding densities consistent with other 

experiments. Superoxide formation was detected using a final concentration of 2.5µM 

MitoSOX (Invitrogen). A 10x stock of MitoSOX was prepared in conditioned culture 

medium and was added to cultured cells 20h after a switch to the galactose-based 

medium, followed by a 10min incubation at 37°C in the dark. Cells were then fixed in 

3.7% formaldehyde (FA; Sigma) for 5min, washed thrice in 1xPBS and mounted on 

glass slides (VWR) using a non-DAPI fluoroshield mounting medium (abcam). 

Fluorescence images of fixed cells were compiled at RT on an inverted DMi8-CS 

microscope (Leica), with a Plan-Apochromat 40x/1.30 oil immersion objective, 

equipped with an ORCA-Flash4v2.0 camera (Hamamatsu). The excitation source used 

is a Sola365 light engine (Lumencor). Image analysis was performed in ImageJ 

(version 1.49) (National Institutes of Health). MitoSOX intensity per cell was quantified 

after thresholding was applied by using the region of interest (ROI) feature in ImageJ. 

The significance of observed differences in MitoSOX intensity was determined by a 

two-tailed unpaired Student’s t-test on data from three independent experiments. 

Imaging and quantification of MitoSOX intensity was done in collaboration with Dr 

Filippo Scialo. 

For flow cytometry-based ROS analysis, human fibroblasts were subcultured in a 

galactose-based medium for 4 passages. Cells were then seeded in 6-well dishes 

(0.15x106), left to grow for 48h and then stained with 10µM 5-(and-6)-2′,7′-

dichlorodihydrofluorescein diacetate, acetyl ester (-H2DCFDA; Life Technologies) for 

30min in the dark at 37°C. Stained cells were then trypsinized, spun and re-suspended 

in a FACS sorting medium (3% FBS (BioSera) in PBS). Flow cytometry data (10 000 

hits) was acquired on BD FACSCanto™ benchtop analyser (BD Biosciences), and 

analysed using the FlowJo software. First, data was gated to exclude debris or doublet 

events. Second, geometric averages of the resulting populations were calculated. 

Statistical analysis was carried out on geometric averages of 3x control cell lines and 

3x NPC1 (AI) patient cell lines.  
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Table 2. 15 ROS measurement: reagents 

Consumable/Reagent Manufacturer/Vendor Catalogue Number 

13mM Coverglass VWR 631-0150 

20x PBS New England BioLabs 9808 

Foetal Bovine Serum (FBS) BioSera FB1001H 

Fluoroshield mounting medium abcam ab104135 

Formaldehyde solution Sigma F8775 

Microscope slides, SuperFrost® VWR 631-0116 

MitoSOX Invitrogen LSM36008 

2.9 BN PAGE analysis 

Blue Native polyacrylamide gel electrophoresis (BN-PAGE) was carried on Atg5+/+ and 

Atg5-/- MEFs (1.5x106/dish), and Npc1+/+ and Npc1-/- MEFs (1.2x106/dish). Atg5 and Npc1 

cells were seeded into 10cm dishes (1.5x106/10ml/dish) and switched to both, glucose 

and galactose-based media for 16h and 48h, respectively. Cells were collected for 

mitochondrial isolation and BN-PAGE analysis at the indicated time points. Dr Yoana 

Rabanal-Ruiz (current affiliation at Regional Center for Biomedical Research, University 

of Castilla-La Mancha, Spain) supervised and helped with optimization of the 

mitochondrial isolation protocols. 

Table 2. 16 BN-PAGE solutions: composition 

Homogenization 
solution 

Solubilization 
base solution 

Loading dye 3x gel buffer 

20mM HEPES-KOH 
pH7.6 

20mM BisTris 
pH7.4 

100mM BisTris 
pH7.0 

150mM BisTris 
pH7.1 

220mM D-mannitol 50mM NaCl 50mM ε-amino n-
caproic acid  

200mM ε-amino n-
caproic acid 70mM sucrose 10% glycerol 

1mM EDTA *10mM DTT 
5% Coomassie blue 
G   

*0.5mM PMSF     20x Anode buffer 

*2mM DTT    1M BisTris pH7.0 

*2x Halt inhibitors     

4% acrylamide gel 
13% acrylamide 

gel 
Empty well buffer 10x Cathode buffer 

33.3% 3x gel buffer 
33.3% 3x gel 
buffer 20mM BisTris pH7.0 500mM Tricine 

43.8% of 30% 
acrylamide 

12.93% of 30% 
acrylamide 50mM NaCl 

150mM BisTris-
unbuffered 

20% glycerol 0% glycerol 10% glycerol 
0.2% Coomassie 
blue G 

2.9% MQH2O 53.7% MQH2O 
0.5% Coomassie 
blue G   

* reagents to be added immediately before use 
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2.9.1 Sample Preparation – Mitochondrial Isolation. 

Cell Homogenisation 

Cells grown in 10cm dishes were scrapped in 5ml of ice-cold PBS and transferred into 

a 15ml falcon tube. Cells were pelleted at 2900rpm for 5min in a table top centrifuge 

pre-cooled to 4°C, resuspended in 3ml of homogenisation solution transferred into a 

homogeniser and processed with 60 strokes. Homogenised cells were transferred into 

pre-chilled 1.5ml Eppendorf tubes and centrifuged at 2900rpm for 5min in a table top 

centrifuge pre-cooled to 4°C to pellet cellular debris. Supernatant was transferred into 

a fresh pre-chilled 1.5ml Eppendorf tube immediately after centrifugation. A total of 5x 

subsequent washes were carried out until no pellet was observed. 3ml of cell 

homogenate were then pooled and 300μl of supernatant was collected and stored as 

a whole cell lysate for immunoblot analysis. 

Mitochondrial isolation 

Whole cell homogenates were further processed to isolate mitochondria.  

Approximately 2.5ml of homogenate was transferred into fresh pre-chilled 1.5ml 

Eppendorf tubes and centrifuged at 13,000rpm for 10min in a table top centrifuge pre-

cooled to 4°C. Supernatant was removed and collected as cytoplasmic fraction. The 

pellet that consisted of isolated mitochondria was resuspended in homogenisation 

solution and washed twice by centrifugation at 13,000rpm for 10min. Mitochondrial 

pellet was then re-suspended in 70-100μL of homogenisation solution and protein 

concentration was determined using the DC Protein Assay Kit (BioRad) and a 

FLUOstar Omega plate reader (BMG Labtech). 25μl aliquots of isolated mitochondria 

were stored at -80°C. 

2.9.2 BN-PAGE analysis 

Isolated mitochondria were solubilised in presence of either digitonin (Santa Cruz 

Biotechnology) or triton X-100 (Sigma) detergents to study supercomplex and 

holocomplex assembly, respectively. Digitonin was first prepared as a 5% solution and 

boiled for 5min to achieve full solubilisation. 30μg of isolated mitochondria were 

pelleted and re-suspended by 20x trituration in 30μl of solubilisation base solution 

supplemented with 100mM dithiothreitol (DTT) (Fisher Scientific) and digitonin (0.8-

1%) (Santa Cruz Biotechnology) or triton X-100 (0.8%-1%), as indicated in figure 
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legends. Following resuspension, samples were incubated on ice for 20min to achieve 

solubilisation. Mitochondrial debris and insoluble material were pelleted by 

centrifugation at 13 000rpm for 10min at 4°C. The supernatant was then mixed with 

3μl BN-PAGE loading dye. 30μl of solubilised samples were separated on a 4%-13% 

gradient acrylamide (Severn Biotech) BN-PAGE gel. The gradient gel was mixed and 

poured using a set up comprising of a gradient maker (Fisher Scientific 11544424) and 

a peristaltic pump in the presence of 0.1% ammonium persulfate (Sigma) and 0.13% 

TEMED (Sigma). The protein ladder was prepared as a mixture of 10mg/mL 

thyroglobulin (669kDa; Sigma), 10mg/mL ferritin (440kDa; Sigma) and 10mg/mL 

bovine serum albumin (140kDa and 67kDa; Sigma) in ladder solution (20mM BisTris 

pH 7.0, 50mM NaCl, 10% glycerol and 0.5% Coomassie Blue G). Cathode and anode 

buffers were used for protein separation. Cathode buffer in the inside chamber and 

clear anode buffer in the outside chamber were used for separation until sample dye 

front reached ½ of the gel in running conditions of 100V, 10mA for 1h. The run was 

then paused and a Coomassie Blue G-free cathode buffer was used to replace 

Coomassie Blue-G-containing cathode buffer. Following cathode buffer switch, gel run 

conditions were adjusted to 300V, 15mA and gel was ran for a further 1h 20min. The 

gel run conditions were maintained at 4°C. 

BN-PAGE transfer was performed using a wet transfer method in presence of pre-

chilled Tris-Glycine buffer (25mM Trizma® base (Sigma), 0.192M glycine (Sigma), 

supplemented with 10%/20% methanol (Fisher Scientific) onto an Immobilon-P 

polyvinylidene difluoride membrane (PVDF, Merck Milipore IPVH00010). Transfer 

conditions of 100V for 1h were sufficient for transfer of high-molecular weight 

complexes. PVDF membranes with transferred protein complexes were then incubated 

in de-stain buffer (40% methanol (Fisher Scientific), 10% glacial acetic acid (Sigma)) 

to reveal and mark the molecular weight ladder, prior to incubation in blocking solution 

(5% skimmed dry milk (Marvel), 0.1% Tween20 (Sigma) in PBS) for 1 hour at RT. The 

blocking solution was drained and membranes were incubated with primary antibodies 

diluted in blocking solution at 4°C overnight. Following overnight incubation, draining 

of the primary antibody, membranes were washed thrice in PBS, PBS-0.1% Tween 20, 

and PBS for 5min each. Membranes were then incubated with the corresponding 

secondary antibodies conjugated to horseradish peroxidase (HRP) for 1 hour at RT. 

The following secondary antibodies were used: anti-rabbit HRP (1:5000, Sigma), anti-

mouse HRP (1:5000, Sigma). Membranes were washed thrice in PBS, PBS-Tween 20 
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and PBS as before. Clarity western ECL substrate (BioRad) was used to visualise 

chemiluminescence on LAS4000 (Fujifilm). BN-PAGE is a qualitative method, 

nevertheless, conclusions drawn from chemiluminescence signal are based on three 

independent experiments. 

Table 2. 17 BN-PAGE: reagents 

Consumable/Reagent Manufacturer/Vendor Catalogue No. 

20x PBS New England BioLabs 9808 

2x Halt complete phosphatase and 
protease inhibitor cocktail Fisher Scientific 10311494 

30% Acrylamide/Bis-acrylamide Severn Biotech 20-2100-10  

Ammonium persulphate (APS) Sigma A3678 

BisTris  Santa Cruz Biotechnology sc-216088A 

Bovine Serum Albumin (BSA) Sigma 5482 

Clarity western ECL substrate BioRad 170-5061 

Coomassie blue G250 Sigma B0770 

DC Protein Assay Kit BioRad 500-0112 

Digitonin Santa Cruz Biotechnology sc-280675 

D-Mannitol Sigma M4125 

DTT Fisher Scientific R0861 

EDTA Sigma EDS  

Ferritin Sigma F4503 

Glacial acetic acid Sigma 537020 

Glass homogeniser Sigma D8938  

Glycerol Sigma  G5516 

Glycine Sigma G8898 

Goat-α-mouse HRP Sigma A2554 

Goat-α-rabbit HRP Sigma A0545 

Gradient mixer Fisher Scientific 11544424 

HEPES Sigma H3375  

Immobilon-P polyvinylidene difluoride 
(PVDF) membrane Millipore IPVH00010 

Marvel non-fat dry milk powder Asda N/A 

Methanol Fisher Scientific 10675112 

N,N,N’,N’-Tetramethylethylenediamine 
(TEMED) Sigma T9281 

NaCl Sigma  S7653 

PMSF Sigma 93482  

Rabbit-α-guinea pig HRP Dako P0141 

Sucrose Sigma S0389 

Thyroglobulin Sigma T9145 

Tricine Sigma T0377 

Triton X-100  Sigma X100 

Trizma® base (Tris) Sigma T1503 

Tween 20 Sigma P1379 

ε-amino n-caproic acid  Calbiochem 1381 
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Table 2. 18 BN-PAGE: antibody list 

ETC 
Complex 

Protein 
name 

Antibody 
Species 

Dilution Rate Vendor 
Catalogue 
Number 

CI NDUFA9 ms  1:1000 abcam  ab14713 

CII SDHA rb  1:1000 NEB  D6jgm 

CIII UQCRC2 ms  1:1000 abcam  ab14745 

CIV MT-CO1 rb  1:1000 abcam  ab14705 

CV ATP5A ms  1:50 000 abcam  ab14748 

 PDHA ms  1:1000 abcam MSP07 

2.10 Cell viability measurements 

2.10.1 MTT assay following H2O2 treatment 

Cell viability upon H2O2 treatment was measured indirectly by a high-throughput 

methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Human control and NPC1 

patient fibroblasts were seeded into a 96-well plate (0.1x104 cells/well) following 

subculture of 4 passages in the galactose-based medium. Cell viability was challenged 

by H2O2 addition 48h after seeding. H2O2 concentrations are indicated in corresponding 

figure legends. Following a 2h incubation after H2O2 addition, 2.5µg/ml MTT (Sigma, 

M2128) was added to each well and cells were incubated in the dark at 37°C for 

additional two hours. After MTT incubation and prior to crystal solubilisation, formazan 

formation was captured by bright field EVOS xl core microscope (Invitrogen), with a 

Plan-Apochromat 20x/0.8 M27 air immersion objective, equipped with an Axiocam 503 

camera. Formazan crystals were then solubilized by addition of 200µl of 40mM HCl in 

isopropanol (Sigma, 34863), followed by a 10min shaking incubation at room 

temperature. Absorbance was read at 570nm. All absorbance values were first 

corrected with protein concentration values obtained from a duplicate plate and then 

normalized to an internal control of non H2O2 treated cells. Statistical analysis in the 

form of non-linear regression analysis was carried out on averages of triplicate 

measurements of 3x control cell lines and 3x NPC1 patient cell lines challenged with 

several doses of H2O2 as indicated in the figure legend, and on triplicate 

measurements of a single CTRL and NPC1 cell subcultured in media supplemented 

with increasing doses of NAM and NMN and challenged with the highest dose of H2O2. 

Non-linear regression analyses were carried on log2 transformed doses and 

normalized y-axis values (cell viability) to determine whether cells elicited a dose-

response change in cell viability. Non-linear regression analysis was carried out in 

Graphpad Prism 8 using the log(agonist) vs. normalized response – variable slope 
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analysis on individual values. Analysis residuals were plotted on quantile-quantile plots 

to determine whether data meet the assumption of normal distribution and fit the model 

of dose-response. 

2.10.2 Fluorescent dye based cell viability assay 

Atg5+/+ and Atg5-/- MEFs (0.06x106 cells/well) were seeded into a 12-well plate. 

Following a 23h culture in galactose medium, cell viability was assessed using Ready 

Probes Cell Viability Imaging kit (Fisher Scientific, #R37609) as per company 

instructions. Briefly, NucBlue Live reagent (Hoechst 33342) and NucGreen Dead 

reagent (FITC/GFP) were added to the media for 30 min to determine cell viability by 

counting total vs. dead cells. NucBlue Live reagent stains all cell nuclei, while 

NucGreen Dead reagent stains only the nuclei of cells with compromised plasma 

membrane. Cells were imaged on an inverted DM IL LED Leica microscope equipped 

with an Invenio 3SII digital camera (3.1 Mpix Colour CMOS; DeltaPix). Cell viability 

was not quantified in this experiment. 

2.10.3 Immunoblotting-based cleaved caspase 3 detection 

Cell viability was assayed in Atg5+/+ and Atg5-/- MEFs (0.3x106 cells/well), Npc1+/+ and 

Npc1-/- MEFs (0.2x106 cells/well), and all CRISPR/Cas9 autophagy-deficient cell lines 

(0.2x106 cells/well). Cells were seeded into 6-well plates and cultured in the galactose-

based medium until morphology changes associated with apoptosis were detected 

(time points varied for different cell lines and are indicated in figure legends). Cells 

were then imaged on an inverted DM IL LED Leica microscope equipped with an 

Invenio 3SII digital camera (3.1 Mpix Colour CMOS; DeltaPix) and processed for 

immunoblotting-based detection of caspase 3 cleavage (discussed in section 2.13) 

2.11 Compound treatment rescue of cell death 

All cell death rescue treatments were optimized in 6-well culture dishes. Atg5+/+ and 

Atg5-/- MEFs (0.3x106 cells/well), and Npc1+/+ and Npc1-/- MEFs (0.2x106 cells/well) 

were seeded in 6-well plates and switched to the galactose-based medium at 24h post-

seeding. Tested compounds (Table 2.19) were mixed into the galactose-based 

medium prior to the switch. Five to six concentrations were tried of each compound to 

establish, which concentration is the most effective. Treatment success was initially 
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confirmed by cell morphology at a 24h (Atg5-/-) or a 72h (Npc1-/-) time point and further 

confirmed by immunoblotting-based detection of lack of caspase 3 cleavage. 

Table 2. 19 Compounds used to rescue cell death 

Reagent 
Manufacturer/ 

Vendor 
Catalogue 
Number 

Solvent MW 
Final 
Conc. 

Z-VAD-fmk Enzo life sciences 
ALX-260-02-
M001 

DMSO 467.50 20μM 

N-Acetyl-L-Cysteine Sigma A7250 H2O 163.19 10mM 

MitoQ10 Kindy gifted by Dr Michael Murphy DMSO 678.81 100nM 

S1QEL2.2 
Life Chemicals 
Europe F2068-0013 DMSO 470.00 500nM 

Sodium Pyruvate Sigma P2256 H2O 110.04 10mM 

ML385 Sigma SML1833 DMSO 511.59 5μM 

FK866 Sigma F8557 DMSO 427.97 10nM 

Sirtinol Cambridge 
Bioscience 

CAY10523 DMSO 394.50 20μM 

Olaparib CAY10621-5 DMSO 434.50 10μM 

78c Merck 5.38763 DMSO 413.53 200nM 

Nicotinamide Sigma 72340 H2O 122.12 varied 

β-Nicotinamide 
Mononuncleotide 

Sigma N3502 H2O 334.22 
varied 

Nicotinamide Riboside Chromadex 14315 H2O 290.70 5mM 

Celecoxib 

Kindly gifted by Dr Peter Banks 

DMSO 381.37 10μM 

Hydroxy celecoxib DMSO 397.4 2.5μM 

Rapamycin Sigma R8781 DMSO 915.17 100nM 

Lithium Chloride Sigma L7026 DMSO 42/39 1mM 

H2O2 Sigma H1009 H2O 34.01 varied 

2.12 Immunoblotting 

2.12.1  Sample preparation 

Cells cultured in 6-well plates were washed in 1x ice-cold PBS and lysed in 50-100μl 

of RIPA buffer (Sigma) supplemented with 1x Halt complete phosphatase and protease 

inhibitor cocktail (Fisher Scientific). Following a 20min incubation on ice, cell lysates 

were centrifuged for 10min at 13 000rpm at 4˚C and the supernatant was transferred 

into a fresh pre-chilled microcentrifuge tube. Protein content in the supernatant of 

whole cell lysates was quantified using the DC Protein Assay Kit (BioRad) and a 

FLUOstar Omega plate reader (BMG Labtech). Samples were prepared to equal 

concentrations in 2x Laemmli sample buffer (BioRad) supplemented with 5% β-

mercaptoethanol (Sigma), boiled at 100°C for 5min and cooled for 10min at RT prior 

to storage at -80°C. 
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2.12.2 Immunoblotting 

30-40μg of protein from each sample was separated on 10%, 12% or 15% acrylamide 

Tris-Glycine gels (prepared as mixture of MQH2O, acrylamide (Severn Biotech), Tris 

1.5M pH8.0/Tris 1.0M pH6.8 (Sigma) TEMED (Sigma) and APS (Sigma). Gels were 

ran in a Tris-Glycine buffer (250mM Trizma® base (Sigma), 1.92M glycine (Sigma), 

1% SDS (Fisher Scientific) and transferred onto an Immobilon-P polyvinylidene 

difluoride membrane (PVDF, Merck Milipore IPVH00010) membrane using Trans-

Blot® Semi-Dry transfer set (BioRad) at 17V for 1h in Tris-Glycine buffer (Trizma® 

base (Sigma), 1.92M glycine (Sigma). Blotted membranes were incubated in a 

blocking solution (5% skimmed dry milk (Marvel), 0.1% Tween20 (Sigma) in PBS) for 

1 hour at RT. The blocking solution was drained and membranes were incubated with 

primary antibodies (Table 2.21) diluted in blocking solution at 4°C overnight.  

Following overnight incubation, the primary antibodies were recovered, and 

membranes were washed thrice in PBS, PBS-0.1% Tween 20, and PBS for 5min each.  

Membranes were incubated with the corresponding secondary antibodies conjugated 

to horseradish peroxidase (HRP) for 1 hour at RT. The following secondary antibodies 

were used: anti-rabbit HRP (1:5000 Sigma A0545), anti-mouse HRP (1:5000 Sigma 

A2554), anti-guinea pig (1:5000 Dako Denmark P0141). Membranes were washed 

thrice in PBS and PBS-0.1% Tween 20, and PBS for 5min each. Clarity western ECL 

substrate (BioRad) was used to visualise chemiluminescence on LAS4000 (Fujifilm). 

Quantification of immunoblots was carried out in the ImageJ software (version 1.49) 

(National Institutes of Health) by measuring raw integrated density of each protein 

band after background subtraction. Protein levels were normalized to loading controls. 

Two-tailed unpaired Student’s t-test was carried out on the experimental data from at 

least three independent experiments to establish the significance of observed 

changes. One immunoblot in this study was generated by Dr Elsje G. Otten (current 

affiliation at MRC Laboratory for Molecular Biology, Cambridge, Francis Crick Avenue, 

Cambridge Biomedical Campus, Cambridge, UK). 

Table 2. 20 Immunoblotting: reagents 

Reagent/Consumable Manufacturer/Vendor Catalogue Number 

20x PBS New England Bio 9808 

2x Laemmli buffer BioRad 1610737 

30% Acrylamide/Bis-acrylamide Severn Biotech 20-2100-10 

Ammonium persulphate (APS) Sigma A3678 
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Bovine Serum Albumin (BSA) Sigma A2153 

Clarity western ECL substrate BioRad 170-5061 

DC Protein Assay Kit BioRad 500-0112 

DC Protein Assay Kit BioRad 500-0112 

Empty Gel Cassettes, mini, 1.0 mm Life Sciences NC2010 

Empty Gel Cassettes, mini, 1.5 mm Life Sciences NC2015 

Gel loading tips Starlab 1022 0600 

Glycine Sigma G8898 

Goat-α-mouse HRP Sigma A2554 

Goat-α-rabbit HRP Sigma A0545 

Immobilon-P polyvinylidene difluoride 
(PVDF) membrane Millipore IPVH00010 

Marvel non-fat dry milk powder Asda N/A 

Methanol Fisher Scientific 10284580 

N,N,N’,N’-Tetramethylethylenediamine 
(TEMED) Sigma T9281 

Phosphatase inhibitor cocktail 100X Fisher Scientific 1861280 

Polyoxyethylene sorbitan (Tween-20) Sigma 93774 

Precision Plus Protein™ Dual Colour 
Standards BioRad 610374 

Rabbit-α-guinea pig HRP Dako P0141 

RIPA Sigma R0278 

SDS 20% Fisher Scientific 10607443 

Thick blotting paper VWR 732-0594 

Trizma® base (Tris) Sigma T1503 

β-mercaptoethanol (β-mE) Sigma M3148 

 

Table 2. 21 Immunoblotting: primary antibodies 

Protein 
Identity 

Protein 
name 

Antibody 
Species 

Size 
(kDa) 

Dilution 
Rate 

Vendor 
Catalogue 
Number 

ETC - CI NDUFA9 ms 40  1:1000 abcam ab14713 

ETC - CI NDUFB8 rb 22  1:1000 abcam ab110242 

ETC - CI NDUFB9 rb 22  1:1000 abcam ab106699 

ETC - CI NDUFS1 rb 75  1:1000 abcam ab169540 

ETC - CI NDUFS3 ms 30  1:1000 abcam ab110246 

ETC - CI NDUFV2 rb 27  1:1000 Proteintech 15301-1-AP 

ETC- CII SDHA rb 70  1:1000 NEB D6jgm 

ETC- CIII UQCRC2 ms 49.5  1:1000 abcam ab14745 

ETC- CIV MT-CO1 rb 57  1:1000 abcam ab14705 

ETC- CV ATP5A ms 53  1:50 000 abcam ab14748 

OMM VDAC ms 39  1:1000 abcam ab14734 

OMM TOMM20 ms 16  1:1000 abcam ab56783 

dynamics OPA1 rb 110  1:1000 abcam ab42364 

dynamics DRP1 ms 82  1:1000 abcam ab56788 

dynamics Mfn2 ms 86  1:800 sigma HPA030554 
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mito other NDI1 rb 50  1:1000 
Takao Yagi's lab (Scripps 

Institute, CA) 

oxidation Prdxn-SO3 rb 26  1:2000 abcam ab16830 

autophagy ATG5 rb 56  1:1000 Sigma A0856 

autophagy 
FIP200 
(Rb1cc1) Rb 200 1:1000 NEB 12436S 

autophagy p62 gp 62  1:1000 Progen GP62-C 

autophagy LC3B rb 14-16  1:1000 CST 3868S 

loading ctrl actin rb 42  1:1000 CST 4967 

2.13 Autophagy flux assay 

2.13.1 Immunoblot-based measurement 

Autophagy flux in Npc1+/+ and Npc1-/- MEFs and human control and NPC1 patient 

fibroblasts was established in both glucose and galactose-based culture conditions 

(and treatments) by immunoblotting for LC3-I and LC3-II levels to establish levels of 

both forms in steady-state, in state of induced autophagy, and state of autophagy block 

introduced by bafilomycin A1 (BAF A1,Enzo Life Sciences, BML-CM110-0100). First, 

autophagy flux was established in each cell line relative to its control by comparing 

basal state of LC3-II levels (upon culture in medium alone) to LC3-II levels upon 

inhibition of autophagosome degradation by BAF A1 treatment. In MEFs, BAF A1 was 

mixed with galactose medium to a final concentration of 100nM and added to cells 

upon medium switch. Cells were then collected and processed for immunoblotting 24h 

after treatment start. In human fibroblasts, autophagy impairment was first tested upon 

culture in a glucose-based medium. Control and NPC1 patient fibroblasts (0.120x106 

cells/well) were seeded into 6-well plates, left to grow for 48h. BAF A1 was added 

directly to cell culture medium in each well to prevent confounding effect by cell re-

feeding. Cell were collected and processed for immunoblotting 4h after BAF A1 

addition. Autophagy flux upon culture in the galactose-based medium was established 

after subculture in the medium for 4 passages and following the same protocol as 

above. In addition, effect of autophagy enhancers and compounds that rescue cell 

death on autophagy flux was established by co-treatment with BAF A1 and the different 

compounds in galactose medium in the same conditions as above. All collected 

samples were processed by immunoblotting as described in section 1.13. 
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2.13.2 Immunofluorescence-based measurement 

Human fibroblasts were seeded on sterile coverslips and cultured in glucose medium. 

Following 48h culture, cells were fixed and permeabilized in 100% methanol chilled at 

-20°C for 5min and blocked in normal goat serum/PBS–Tween for 1 h, all at room 

temperature and incubated with LC3 antibody (1:1000, Cell Signalling Technology, 

3868S). Cells were washed and incubated with Alexa Fluor 488 goat anti-rabbit (H+L) 

antibody (1:1000; Fisher Scientific; A-11008) for 1 h at room temperature. Coverslips 

were mounted on slides with Prolong Gold antifade reagent with DAPI (Fisher 

Scientific). Fluorescence images were compiled at room temperature on an Axio 

observer Z1 microscope (Zeiss), with a Plan-Apochromat 20x/0.8 M27 air immersion 

objective, equipped with an Axiocam 503 camera. Analysis was performed in ImageJ 

(version 1.49) (National Institutes of Health) using thresholding and regions of interest 

to determine numbers of LC3 puncta per cell. Statistical analysis was carried out on 

triplicate measurements of 5x control cell lines and 2x NPC1 NAI patient cell lines and 

3x NPC1 AI patient cell lines by as pair-wise two-tailed unpaired Student’s t-tests. 
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 Autophagy deficiency leads to cell death by apoptosis in 

the context of obligatory mitochondrial respiration. 

3.1 Introduction 

Accumulation of dysfunctional protein aggregates and organelles is a characteristic 

feature of aged cells and tissues and is likely to occur as a result of decreased 

efficiency of cellular catabolism (see section 1.5.1) (Marino and Lopez-Otin, 2004; 

Cuervo et al., 2005). Genetic autophagy impairment was shown to lead to 

neurodegeneration, premature ageing phenotypes, aberrations to mitochondrial 

structure and function, and increased cell death in multiple mouse models (Komatsu 

et al., 2005; Qu et al., 2007). Cells isolated from mouse models of autophagy deficiency 

provide an excellent model to study underlying molecular pathology of diseases 

presenting with an autophagy defect. They also provide a good platform for evaluating 

efficacy and toxicity of potential therapeutic compounds. However, the relatively brief 

survival, sensitivity, and the technical difficulty and expense of isolation and culture of 

primary cells limit their adaptability to high-throughput compound screening (Marroquin 

et al., 2007). Therefore, tumour- and tissue-derived immortalized cells have become 

the staple of cell-based drug-discovery efforts (Marroquin et al., 2007). However, most 

cell culture media have a high glucose content and cells in culture often adapt to this 

glucose abundance by generating the majority of their ATP via aerobic glycolysis even 

in the presence of healthy mitochondria and saturating O2 levels (Ibsen, 1961). This 

glucose-addiction phenomenon can often disguise underlying mitochondrial defects, 

and in the context of drug-discovery, mask a compound’s effect on mitochondrial 

bioenergetics and its potential toxicity in vivo (Marroquin et al., 2007). Therefore, cell 

culture in galactose, an alternative carbon substrate that forces cells to respire via 

OXPHOS due to no net ATP gain from glycolysis, is recommended to circumvent the 

glucose-addiction phenomenon in cultured cells (Rossignol et al., 2004; Marroquin et 

al., 2007). 

In the first set of experiments, I examined mitochondrial bioenergetics in the context of 

autophagy abolition in immortalized Atg5-/- MEFs cultured in the glucose-based 

medium. In addition, I focused on optimizing a galactose-based culture for the purpose 

of revealing potential mitochondrial defects masked by glucose addiction. Upon 

observations of rapid loss of viability of autophagy deficient cells in galactose media, I 
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sought to elucidate the underlying mechanism of pathology revealed by enforced 

mitochondrial respiration. 

3.2 Metabolic re-wiring is present in glucose-addicted Atg5-/- MEFs  

To determine whether a block in autophagy-mediated mitochondrial quality control 

affects mitochondrial function, I investigated the effect of a genetic autophagy knockout 

in Atg5-/- MEFs by assessing mitochondrial bioenergetics in vitro. Two main methods 

currently employed in intact mitochondria/cells/tissues for the measurement of 

mitochondrial metabolism are the high-throughput high-sensitivity Seahorse XF 

Extracellular Flux Analyzer (Seahorse XF, Seahorse Bioscience Inc./Agilent) and low-

throughput high-sensitivity Oxygraph-2k respirometry (O2k, Oroboros Instruments) 

(Ballard, Horan and Pichaud, 2012).   

The O2k system is based on real-time measurement of O2 concentration and 

consumption as an indirect measurement of ETC function in isolated mitochondria or 

cells suspended in O2-saturated medium (Oroboros Instruments, 2019). Manual 

injection of ETC substrates and inhibitors allows for flexibility in substrate titration 

assessment of the ETC complex function and mitochondrial membrane integrity 

(Oroboros Instruments, 2019). In addition to O2 consumption, the Seahorse XF system 

is capable of an indirect measurement of metabolic re-wiring to aerobic glycolysis via 

changes in extracellular pH (Agilent, 2019). Seahorse XF is also advantageous due to 

lower cell numbers required for a stable measurement and is particularly useful for 

measurements in cells cultured in monolayers. However, the Seahorse XF system 

requires extensive optimization and each assay is limited to injection of only four pre-

determined compounds. An important technical difference between the O2k and the 

Seahorse XF systems lies in the cell state during measurement. While in Seahorse 

XF, adherent cells are analysed in their native state, i.e. adhered to the bottom of a 24-

well or 96-well plate, the O2k requires for cells to be analysed in suspension. Both 

methods were used in my study to determine mitochondrial bioenergetics in Atg5+/+ 

and Atg5-/- MEFs cultured in glucose-based and galactose-based media.  
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3.2.1 ATP production via OXPHOS is decreased in Atg5-/- MEFs 

Seahorse XF-based analysis of intact cells revealed a significant metabolic re-wiring 

to ATP generation via glycolysis in the Atg5-/- MEFs compared to control (Figure 3.1A). 

Initially, oxygen consumption rate (OCR) was measured in intact Atg5+/+ and Atg5-/- 

MEFs by sequential injections of oligomycin (ATPase inhibition, measurement of 

proton leak), FCCP ((carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone), 

stimulates ETC due to IMM permeabilization) and antimycin A (CIII inhibition, induces 

complete block of oxygen consumption). Data gathered in this experimental set-up 

allows for identification of basal respiration, ATP production, proton leak, spare 

respiratory capacity and non-mitochondrial respiration levels (Fig 3.1A). Interestingly, 

basal respiration rate and the spare respiratory capacity are both reduced in Atg5-/- 

MEFs. Extracellular acidification rate (ECAR) measurement was carried out by 

sequential addition of oligomycin, FCCP, 2-DG (competitive glucose inhibition, 

functions to inhibit glycolysis) and antimycin A + rotenone (CIII and CI inhibitors) to 

establish the proportion of ATP generated via glycolysis based on a method published 

previously (Figure 3.1B) (Mookerjee et al., 2015). I observed that a greater proportion 

of ATP was generated by aerobic glycolysis in Atg5-/- MEFs and total ATP generation 

potential seems to be reduced, though not significantly (Fig 3.1C). In addition, 

increased rate of pyruvate reduction to lactate in Atg5-/- MEFs was confirmed by 

metabolite profiling of cells cultured in glucose medium (Figure 3.1D). Altogether, 

Seahorse-based measurements in intact cells reveal that Atg5-/- MEFs generate less 

ATP via OXPHOS and rely on glycolytic ATP production to make up for the difference, 

which indicates an underlying defect in OXPHOS utilization.  
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Figure 3. 1 Atg5-/- MEFs cultured in glucose-based medium undergo metabolic 

re-wiring 

  

(A-D) Mitochondrial bioenergetics vary between Atg5+/+ and Atg5-/- MEFs. (A,B) Seahorse 

analysis of OCR and ECAR were analysed in basal conditions or following additions of 

oligomycin, FCCP, 2-DG, antimycin A and rotenone as indicated. (C) ATP production 

calculation was based on Seahorse analysis in Atg5+/+ and Atg5-/- MEFs pre-cultured in 

glucose-based medium for 20h. (D) Intracellular lactate levels were detected by LC-MS 

analysis in Atg5+/+ and Atg5-/- MEFs pre-cultured in glucose medium for 20h. Error bars 

represent S.E.M. *p<0.05 (n=3). Seahorse analyses were carried out in collaboration with 

by Dr Satomi Miwa. Dr Oliver Maddocks carried out LC-MS sample processing. 
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3.2.2 ETC alterations in Atg5-/- MEFs cultured in a glucose-based medium 

Further Seahorse analysis was performed on permeabilized cells to investigate the 

nature of mitochondrial dysfunction in Atg5-/- MEFs. Addition of CI and CII substrates 

(pyruvate+malate, and succinate, respectively) allows for distinction of electron flow 

via CI-CIII-CV SC chains, and CII-CIII-CIV SC chains (Fig 3.2A,B). Similarly to O2k 

respirometry, permeabilized cells are stimulated to respire by addition of ADP, a 

complex V substrate (state 3ADP). Subsequent additions of oligomycin (state 4oligomycin), 

FCCP (state 3uncoupled) and antimycin (complete ETC inhibition) allow for mitochondrial 

CI-/CII-linked function assessment by the respiratory control ratio (RCR), a product of 

state 3 division by state 4. RCR indicates the coupling between respiration (O2 

consumption) and ADP phosphorylation to ATP (Brand and Nicholls, 2011).  Coupling 

of CI-linked e- flow to ATP production is significantly reduced in Atg5-/- MEFs. Thus, 

Seahorse XF analysis in permeabilized adherent cells uncovered an underlying defect 

of e- flux through CI of the ETC and, perhaps, a compensatory increase in the CII-

linked respiration in Atg5-/- MEFs (Fig 3.2C).  

Additionally, Atg5-/- MEFs present with a significant downregulation of nuclear-encoded 

CI matrix subunits (Ndufb8, Ndufs3, Ndufa9 and Ndufv2) when cultured in glucose 

medium (Figure 3.2D,E). Levels of other mitochondrial ETC complex subunits and a 

control OMM protein (Mfn2) remain unchanged (Figure 3.2D). The Ndufv2 and Ndufs3 

proteins are subunits of matrix CI N and Q modules, respectively, while the Ndufa9 

protein acts as a supernumerary subunit of the Q module (Sánchez-Caballero, 

Guerrero-Castillo and Nijtmans, 2016; Zhu, Vinothkumar and Hirst, 2016) (Figure 

3.2E).  
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Figure 3. 2 Functional and structural CI deficiency is observed in Atg5-/- MEFs 

 

  

(A-C) CI-linked mitochondrial bioenergetics are altered in Atg5-/- MEFs. Seahorse 

analysis of OCR was carried out in permeabilized cells cultured in CI (PM) (A) or CII (S) 

(B) based media. OCR measurements occurred in basal conditions or following additions 

of oligomycin, FCCP, 2-DG, antimycin A and rotenone as indicated. (D) Representative 

immunoblots and quantification of CI-CV complex subunits in Atg5+/+ and Atg5-/- MEFs 

cultured in a glucose-based medium. (E) Graphic representation of CI of the ETC and 

the predicted location of probed significantly reduced (red) and non-reduced (blue) 

subunits. Error bars represent S.E.M. *p<0.05, **p<0.01 ***p<0.001 (n=3). Seahorse 

analyses were carried out in collaboration with Dr Satomi Miwa. 
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Importantly, all three subunits are located in the matrix region of CI involved in NADH 

oxidation and their downregulation in autophagy deficient cells could reflect a loss of 

the matrix arm. Little is known about the function and location of the most significantly 

affected subunit of CI, the Ndufb8 protein. It has been assigned as a supernumerary 

subunit of the membrane P module (Sánchez-Caballero, Guerrero-Castillo and 

Nijtmans, 2016; Zhu, Vinothkumar and Hirst, 2016), and some literature fails to 

mention the subunit altogether (Elurbe and Huynen, 2016). It is perhaps a loose 

association with the complex that hampers Ndufb8 assignment and detection of 

localisation in CI, as well as its pronounced loss in the autophagy deficient cells. The 

reason for stability of the Ndufb9 subunit levels, as opposed to other probed CI 

subunits remains unclear. Although the role of the accessory Ndufb9 subunit in CI is 

unknown, its involvement in CI Fe-S cluster assembly has been suggested and recent 

findings predict that due to its location at the distal end of the membrane arm, and its 

conservation across species, Ndufb9 may be involved in CI-CIII interaction and SC 

assembly (Gu et al., 2016). Altogether, by studying mitochondrial bioenergetics, I 

uncovered lower capacity of CI-linked OCR and downregulation of some nDNA-

encoded CI matrix subunits in Atg5-/- MEFs. Despite my observations, Atg5-/- MEFs 

retain their viability and proliferative capacity when cultured in glucose-based medium.  

3.3 Mitochondrial dysfunction in Atg5-/- MEFs leads to apoptotic cell 

death 

It was previously observed that galactose-based culture not only reveals drug toxicity 

(Marroquin et al., 2007), but also leads to loss of cell viability in cells suffering from 

severe defects in oxidative phosphorylation (Robinson et al., 1992). Based on the data 

obtained previously, I hypothesized that reduced mitochondrial quality control in 

autophagy deficiency would result in mitochondrial dysfunction, which may be masked 

by glucose addiction. To test this hypothesis, I cultured Atg5+/+ and Atg5-/- MEFs in 

glucose- and galactose-based media and monitored the effect of autophagy 

impairment on cell viability. Furthermore, I assessed SC assembly, and ROS 

production in both media to examine whether CI-linked dysfunction is an artefact of 

glucose addiction, or persists upon cell culture in the galactose-based medium. 
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3.3.1 Cell culture in a galactose-based medium forces cells to rely on OXPHOS 

The dependency of Atg5+/+ and Atg5-/- MEFs respiration on OXPHOS in galactose 

medium was first confirmed by supplementation of glucose and galactose growth 

media with rotenone (CI inhibitor) and antimycin A (CIII inhibitor). Supplementation with 

either of the inhibitors resulted in rapid cell death in cells cultured in a galactose-based 

medium, but had no effect on cells in glucose culture (Figure 3.3A). Additionally, 

metabolite profiling revealed a significant reduction of lactate levels in both cell types 

when cultured in a galactose-based medium, when compared to culture in glucose-

based medium (Figure 3.3B). Lastly, a switch of Atg5+/+ and Atg5-/- MEFs to the 

galactose-based medium results in increased levels of electron transport chain (ETC) 

subunits (confirmed by increase of mRNA levels, data not shown) (Figure 3.3C). I have 

thus confirmed that cell culture in galactose-based media promotes cellular 

dependency on OXPHOS and time-dependent increase in ETC subunit expression.  

3.3.2 ETC functional defects revealed upon culture of Atg5-/- MEFs in galactose-

based medium 

To examine whether increased ETC subunit expression affects ETC complex and SC 

structure I carried out qualitative BN-PAGE analysis on mitochondrial fractions isolated 

from Atg5+/+ and Atg5-/- MEFs after 20h culture in glucose- and galactose-based media. 

Samples solubilised in digitonin (Dig; SC analysis) or triton X-100 (TX-100; individual 

complex analysis) were resolved on a gradient polyacrylamide gel and immunoblotted 

with an anti-Ndufa9 antibody to detect CI (Figure 3.4A) (Lazarou et al., 2007). First, 

levels of CI holocomplex detected in TX-100 solubilized samples did not vary between 

Atg5+/+ and Atg5-/- MEFs in either culture media. Second, assembly of CI into SCs was 

detected in dig-solubilised samples by the presence of a high molecular weight bands 

corresponding to CI-CIII2-CIVn SCs. In these conditions, all of CI species were detected 

in high-order SC assembly. This finding is not surprising as it was previously reported 

that functional CI assembly depends on its association with a CIII2, and it is thus 

expected that in a healthy scenario, mitochondria will only contain functional CI within 

the SC structure (Schägger et al., 2004; Moreno-Lastres et al., 2012).   



86 
 

 

Figure 3. 3 Cell culture in galactose-based medium forces cells to rely on 

OXPHOS 

  

(A) Bright field microscopy images of Atg5+/+ and Atg5-/- MEFs cultured in glucose or 

galactose-based media only or supplemented with 1μM rotenone, or 40μM antimycin A 

were imaged after 3 hours of treatment. (n=1). (B) Intracellular lactate levels were detected 

by LC-MS analysis in Atg5+/+ and Atg5-/- MEFs pre-cultured in glucose-based or galactose-

based medium for 20h. (n=3). (C) Representative western blots of Atg5-Atg12 conjugate; 

CI subunits: Ndufa9, Ndufb8, Ndufb9, Ndufs3 and Ndufv2; CII subunit Sdha; CIII subunit 

Uqcrc2; ATP synthase subunit Atp5a and OMM membrane protein Mfn2 and Tomm20 in 

Atg5+/+ and Atg5-/- MEFs switched to galactose-based medium. Scale bar represents 

200μm.  Error bars represent S.E.M. ***p<0.001 (n=3). Dr Oliver Maddocks carried out LC-

MS sample processing. Western blot data was generated by Dr Elsje G. Otten. 
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In contrast, a subset of CIII2 remained free of SC assembly (Figure 3.4B). Solubilisation 

of mitochondria by both, dig and TX-100, led to appearance of same size bands of CII 

in all four conditions, which indicates that CII does not to participate in SC assembly in 

galactose fed cells (3.4B). No gross differences between levels of individual complexes 

or SCs were detected between samples from Atg5+/+ and Atg5-/- MEFs, from which I 

conclude that no aberrant SC assembly or complex structural defects are present. 

Interestingly, increased levels of high molecular weight species corresponding to 

CI+CIII2+CIVn SCs were detected in cells upon culture in the galactose-based medium 

(Figure 3.4A).  

Following analysis of ETC complex structure, I focused on analysis of its function. Cells 

cultured in galactose-based medium were analysed by Seahorse XF Analyser and O2k 

respirometry methods to assess ETC functionality linked to O2 consumption and its 

coupling to ATP generation. In contrast to the respirometry measurement upon cell 

pre-culture in glucose-based medium, addition of CI substrates to oxygraph medium 

revealed a significantly lower rate of O2 reduction in Atg5-/- MEFs compared to Atg5+/+ 

MEFs (Figure 3.4C). This reduced capacity for O2 reduction persisted upon addition of 

CII substrate. In addition, Seahorse-based analysis revealed a lower potential of non-

permeabilized Atg5-/- MEFs to generate ATP via OXPHOS (Figure 3.4C). Altogether, 

these results confirm the presence of a mitochondrial defect, pertaining to the ETC, in 

Atg5-/- MEFs. Noteworthy is the lack of glycolysis-mediated ATP production in either 

cell line, further confirming that cell culture in the galactose-based medium provides a 

good model to study OXPHOS.  
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Figure 3. 4 Culture in galactose-based medium leads to changes in 

mitochondrial bioenergetics without affecting ETC complex assembly 

  

(A-B) ETC holocomplex and SC levels and structure are not altered in Atg5-/- MEFs pre-

cultured for 20h in glucose- or galactose-based media. (A) BN-PAGE immunoblots of CI 

(Ndufa9) holocomplexes solubilised in 1μM triton X-100 (TX-100), or SCs solubilised in 

0.8μM digitonin (dig). (B) BN-PAGE immunoblots of CI (Ndufa9), CII (Sdha) and CIII 

(Uqcrc2) holocomplexes solubilised in 1μM triton X-100 (TX-100), or SCs solubilised in 

0.8μM digitonin (dig). (C) Respirometry analysis was carried out by sequential additions of 

CI substrates pyruvate and malate (PM), ADP, and a CII substrate succinate (S) into 

suspension of 1 million cells permeabilized with digitonin and pre-cultured in galactose-

based medium for 20h. (C) ATP production calculation was based on Seahorse analysis in 

Atg5+/+ and Atg5-/- MEFs pre-cultured in glucose-based medium for 20h. Error bars 

represent S.E.M. *p<0.05, ***p<0.001 (n=3). Seahorse and respirometry analyses were 

carried out in collaboration with Dr. Satomi Miwa and Prof Alberto Sanz, respectively. 
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3.3.3 Galactose culture of MEFs results in increased ROS production and loss 

of mMP 

I further hypothesised that loss of autophagic clearance of dysfunctional mitochondria 

would lead to high levels of electron leakage from the ETC and increased ROS 

generation. Release of ROS was examined by staining cells with MitoSOX Red, a 

mitochondria-targeted superoxide-sensitive dye. MitoSOX-based staining revealed 

higher levels of mitochondrial superoxide generation in autophagy deficient Atg5-/- 

MEFs cultured in glucose medium, which, increased further upon a switch and culture 

in galactose medium (Figure 3.5A,B). As expected by increased dependency of ATP 

generation on OXPHOS, superoxide levels increased in both cell lines upon culture in 

the galactose-based medium. Cellular oxidative damage load in Atg5-/- MEFs was 

examined by western blot analysis of hyperoxidized peroxiredoxin (peroxiredoxin-SO3 

(Prdx-SO3)), an enzyme involved in the antioxidant system, subjected to an 

irreversible inactivation due to increased oxidative stress (Woo et al., 2003). Compared 

to controls, Atg5-/- MEFs lysates contain significantly higher levels of the inactive 

peroxiredoxin form in glucose medium that, similarly to MitoSOX signal, increase in 

both cell lines upon culture in galactose medium (Figure 3.5C).   

mMP maintenance relies on CI/CIII/CIV-dependent H+ pumping across the IMM 

initiated by e- flow through the complexes (Ramsay, 2019). I hypothesized that 

decreased reduction of O2 (Figure 3.4B) combined with increased e- leak (Figure 

3.5A,B) in my model are likely to contribute to IMM depolarization. Measurement of 

mMP was carried out in live cells in situ. Tetramethylrhodamine methyl ester (TMRM), 

a slow cationic dye used for steady state mMP measurement, was co-loaded into cells 

with non-potential dependent MitoTracker green (MTG) (Dalle Pezze et al., 2014). 

Confirming my hypothesis, analysis of the ratio of TMRM to MTG per cell revealed IMM 

depolarisation in Atg5-/- MEFs cultured in galactose-based medium. No significant 

difference was observed between the two cell lines when cultured in glucose-based 

medium (representative images not shown) (Figure 3.5E). 
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Figure 3. 5 Culture in galactose-based medium leads to increased ROS levels 

in Atg5-/- MEFs 

 

(A-C) ROS load is increased in Atg5-/- MEFs. (A) Representative images of MitoSOX 

fluorescence of Atg5+/+ and Atg5-/- MEFs cultured for 22h in glucose- and galactose-based 

media. (B) Quantitation of MitoSOX intensity in the same conditions as (A). (C) 

Representative western blots and quantitation of peroxiredoxin-SO3 (Prdx-SO3) levels of 

Atg5+/+ and Atg5-/- MEFs cultured in glucose and galactose-based media. Prdx-SO3 levels 

were normalised to actin. (D) Representative immunofluorescence images of dual stained 

cells with TMRM and MTG upon culture in galactose-based medium. (E) Quantitation of 

TMRM:MTG ratio in the same conditions as (D). Scale bars represent 20μm. Error bars 

represent S.E.M., *p<0.05, **p<0.01, ***p < 0.001 (n=3). 
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3.3.4 Culture in galactose-based medium leads to apoptotic cell death of        

Atg5-/- MEFs. 

Importantly, a switch to and subsequent culture of Atg5-/- MEFs in galactose led to 

increased levels of cell death, defined by morphological changes and cell detachment, 

and observed by bright field microscopy (Figure 3.6A). Higher level of cell death of 

Atg5-/- MEFs in galactose medium was further confirmed by a cell viability assay 

(Figure 3.6B). Levels of apoptosis and autophagy deficiency were probed by western 

blot analysis and significantly increased levels of caspase 3 cleavage, a marker of 

apoptosis, were observed in Atg5-/- MEFs compared to Atg5+/+ MEFs (Figure 3.6C). In 

addition, Atg5-/- MEFs were transduced with a human GFP-ATG5 fusion construct to 

rule out the possibility that clonal differences are the cause of the difference of cell 

death levels between Atg5+/+ and Atg5-/- MEFs. Reintroduction of ATG5 into Atg5-/- 

MEFs resulted in complete rescue of cell death upon culture in galactose medium 

(Figure 3.6C). Furthermore, an autophagy defect in Atg5-/- MEFs, and autophagy 

reconstitution in Atg5-/-+GFP-ATG5 MEFs was confirmed by the absence of LC3-I to 

LC3-II processing; and by increased levels of an autophagy receptor and substrate 

p62 and rescue of LC3 processing, respectively (Figure 3.6C). Finally, Z-VAD-

fluoromethylketone (Z-VAD-fmk) a cell membrane permeable pan-caspase inhibitor, is 

traditionally used to confirm the apoptotic mode of cell death via inhibition of caspase 

activity. Culture supplementation with Z-VAD-fmk added to media after 20h of culture 

led to increased Atg5-/- MEFs cell viability, as observed by bright field microscopy 

(Figure 3.6D), despite the detection of increased levels of caspase 3 cleavage (Figure 

3.6E). In my model, Z-VAD-fmk does not prevent caspase 3 cleavage, but rather 

seems to prevent its downstream activity, thus preventing cell death signalling. 

Increased survival of cells Atg5-/- MEFs in medium supplemented with Z-VAD-fmk thus 

supports my hypothesis that cells cultured in galactose medium die via apoptosis.  
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Figure 3. 6 Enforcing mitochondrial respiration in autophagy deficient cells 

leads to cell death 

  

(A) Bright field microscopy images of Atg5+/+ and Atg5-/- MEFs switched to galactose-based 

medium upon 24h of culture. (B) Cell death of Atg5-/- MEFs cultured in galactose medium 

was further confirmed by ReadyProbes fluorescent dyes in the same condition as (A). (C) 

Representative western blot and quantitation of cell death marker, cleaved caspase 3; and 

of autophagy markers p62 and LC3, in Atg5+/+, Atg5-/-, Atg5-/- stably expressing GFP-ATG5 

MEFs cultured in glucose and galactose-based media for 24h. (D) Bright field microscopy 

images of Atg5-/- MEFs cultured in galactose-based medium only or supplemented with Z-

VAD-fmk (20μM; added to culture medium at 20h). Cells were imaged after 24h in culture. 

(E) Quantitation of caspase 3 cleavage in the same conditions as (D) Cleaved caspase 3 

levels were normalised to actin. Error bars represent S.E.M. Scale bar represents 200μm.  

***p<0.001 (n=3).  
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3.3.5 Multiple model cell lines of autophagy-deficiency die an apoptotic cell 

death upon culture in a galactose-based medium. 

To test whether apoptotic cell death in galactose medium is specific to the loss of the 

Atg5 protein I utilised the CRISPR/Cas9 system to generate multiple autophagy-

deficient cell lines. Atg5, Atg7 and Rb1cc1 (FIP200) are proteins involved in early 

stages of the autophagy pathway (Figure 1.2) and their loss results in autophagy 

impairment and neurodegeneration (Komatsu et al., 2005; Hara et al., 2008; Liang et 

al., 2010). The success of a gene knockout was confirmed upon single clone expansion 

by testing for an autophagy defect by western blot analysis of LC3 lipidation status and 

p62 protein levels (data not shown). Subsequent prolonged culture of Atg5-/-, Atg7-/- 

and Rb1cc1-/- MEFs in galactose-based medium, but not in glucose-based medium, 

resulted in apoptotic cell death observed by bright field microscopy (Figure 3.7A) and 

confirmed by analysing cleaved caspase 3 levels by western blotting (Figure 3.7B). I 

conclude that apoptotic cell death in galactose media is a general phenotype of 

autophagy deficient cells. 
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Figure 3. 7 Enforced OXPHOS leads to apoptotic cell death in multiple 

autophagy knockout models 

  

(A) Bright field microscopy images of Atg5-/-, Atg7-/- and Rb1cc1-/- MEFs and corresponding 

control cell lines cultured in galactose medium for 110h. (B) Representative western blot of  

targeted proteins Atg5-Atg12 conjugate and Rb1cc1, autophagy markers p62 and LC3, and 

an apoptosis marker, cleaved caspase 3, in Atg5-/-, Atg7-/- and Rb1cc1-/- MEFs in the same 

conditions as (A). Scale bar represents 200μm. Error bars represent S.E.M. Cleaved 

caspase 3 levels were normalised to actin levels. ***p<0.001. (n=3). 
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3.4 Chapter Conclusions 

Experimental results presented in this chapter characterize the degree to which 

mitochondrial bioenergetics depend on functional autophagy. I first observed that 

genetic interruption of autophagy leads to compromised mitochondrial bioenergetics 

(Figure 3.1A,B) accompanied by metabolic re-wiring towards aerobic glycolysis (Figure 

3.1B,C). A more detailed assessment of mitochondrial ability to channel e- via CI-CIII2-

CIV or CII- CIII2-CIV routes revealed dysfunction in CI-linked respiration (Figure 3.2A-

C) accompanied by a striking loss of CI core and accessory matrix-arm subunits 

encoded in nDNA (Figure 3.2D). CI modules that form the matrix arm, the N (NADH 

oxidation) and Q (ubiquinone reduction) modules, harbour the FMN cofactor and a 

series of Fe-S clusters necessary for e- liberation from NADH, and e- channelling along 

the Fe-S clusters to the ubiquinone binding site (Giachin et al., 2016; Sánchez-

Caballero, Guerrero-Castillo and Nijtmans, 2016). Current models of CI assembly 

propose that addition of the N-module constitutes the last step immediately prior to 

assembly factor removal and initiation of CI catalytic activity (Sánchez-Caballero, 

Guerrero-Castillo and Nijtmans, 2016). Thus, loss of CI matrix arm in dysfunctional 

mitochondria could lead to the loss of CI activity and a defect in mitochondrial 

energetics. However, structural analysis of CI assembly and incorporation into SCs did 

not reveal any gross aberrations (Figure 3.4A). Further information is required to 

characterize the true extent of ETC defect in glucose-cultured cells. A proteomics-

based study of ETC complexes from isolated mitochondria would build on my findings 

of whole-cell CI subunit depletion, while a BN-PAGE based study of in-gel activity of 

ETC complexes would inform about CI and SC ability to reduce substrate in situ. 

Further study of the causes of subunit depletion, i.e. reduced expression or increased 

degradation, would improve my understanding of the underlying molecular mechanism 

of isolated CI deficiency in glucose-cultured autophagy deficient cells. However, the 

relevance of my findings to a physiological scenario, excluding cancer, is questionable. 

It is quite possible that my observations of isolated CI deficiency in Atg5-/- MEFs are 

artefacts of glucose addiction and merely reflect an adaptation to a larger mitochondrial 

defect, which is masked by cell culture in a glucose-based medium. 

I therefore switched glucose-cultured Atg5+/+ and Atg5-/- MEFs into a galactose-based 

medium to force cells to depend on mitochondria to maintain cellular bioenergetics and 

thus reflect a more physiologically relevant scenario. I first confirmed that galactose-

based culture increased cellular dependency on OXPHOS-based ATP production by 
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testing cell sensitivity to mitochondrial toxins and by measuring cellular lactate levels 

(Figure 3.3 A,B). Remarkably, I observed rapid changes of cellular morphology 22h 

after media switch followed by apoptotic cell death of Atg5-/- MEFs at 24h (Figure 3.6). 

Studies of ETC structure upon cell culture medium switch revealed a time-dependent 

increase of all ETC subunits (Figure 3.3C) and increased SC formation (Figure 3.4A,B) 

in both cell lines. However, the lack of a structural defect in Atg5-/- MEFs was not 

indicative of ETC functionality. Study of mitochondrial bioenergetics revealed a 

decrease in what appears to be CI-linked respiration coupling to O2 consumption 

(Figure 3.4C), lower potential for ATP generation (Figure 3.4D), and increased ROS 

production (Figure 3.5A,B) in Atg5-/- MEFs. Altogether, the ETC dysfunction and 

increased e- leakage correlate with the loss of mMP prior to cell death (Figure 3.5D,E). 

In summary, cell culture in galactose-based media led to identification of a defect in 

mitochondrial bioenergetics and loss of cell viability. Results from the glucose- and 

galactose-based studies lead us to hypothesize that the defect is ETC specific, likely 

linked to increased CI expression upon-galactose culture and a result of loss coupling 

of CI-mediated e- entry to O2 reduction to H2O at CIV. These results suggest that 

increased dependency on mitochondrial respiration (i.e. in neurons) can be damaging 

to cells deficient in autophagy and mitochondria might provide an exciting target for 

therapies downstream of autophagy dysfunction. 

3.5 Chapter Discussion 

3.5.1 Implications of increased ROS production on CI activity 

CI is the largest and most intricate complex of the ETC composed of 44 discrete 

proteins. CI subunit expression, mitochondrial import, assembly and degradation are 

multifactorial and subject to multiple forms of quality control (Karunadharma et al., 

2015; Giachin et al., 2016; Zhu, Vinothkumar and Hirst, 2016). Recent LC-MS based 

analysis of ETC subunit longevity revealed a difference in the half-lives of ETC complex 

subunits (Karunadharma et al., 2015). The most persistent difference was identified 

between mtDNA and nDNA-encoded subunits, likely due to the fact that mtDNA 

encoded subunits are hydrophobic membrane proteins that encode the core of ETC 

complexes and largely rely on autophagy for their recycling (Vincow et al., 2013; 

Johnston and Williams, 2016). Subunits encoded in the nucleus had a 14% shorter 

half-life irrespective of their localization to the membrane- or matrix-resident ETC 

modules. As expected, subunits docked to the IMM via their transmembrane helices 
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that form the membrane-bound modules of ETC complexes had, on average, lower 

turnover rates than their matrix-facing and matrix-resident counterparts 

(Karunadharma et al., 2015). Of most interest to my study was the observation that 

subunits of the CI matrix arm and membrane-bound accessory subunits undergo faster 

turnover than the core CI members, perhaps due to their proximity to damaging 

ROS/RNS species. In fact, mitochondrial matrix proteases Lon and caseinolytic 

peptidase proteolytic subunit (ClpP) were found to associate with, and degrade the 

subunits of CI matrix arm and several membrane-bound peptides upon IMM 

depolarization and increased ROS release (Pryde, Taanman and Schapira, 2016). The 

subunits that had undergone degradation in this study (NDUFA9, NDUFB8, NDUFS1, 

NDUFS2 and NDUFV2) largely overlap with those tested in my study (NDUFA9, 

NDUFB8, NDUFS3, NDUFV2). The overlap between the two studies suggests that the 

loss of CI subunits upon culture of Atg5-/- MEFs in a glucose-based medium could be 

a reflection of an attempt to mitigate the potential harmful consequences of CI 

dysfunction. Interestingly, the loss of nDNA encoded CI subunits was not reflected as 

a loss of CI complex when analysed by BN-PAGE. This could reflect the lower 

sensitivity of the BN-PAGE method or the nature of CI assembly, whereby a selective 

loss of the CI matrix arm may not impede its incorporation in SCs (Schägger et al., 

2004; Moreno-Lastres et al., 2012). 

CI is one of the major sites of ROS release in vivo and is itself susceptible to ROS/RNS-

induced inactivation (Clementi et al., 1998; Brown and Borutaite, 2004; Hurd et al., 

2008; Ryan et al., 2012). Although initially proposed as a system for CI dysfunction 

(reviewed in (Brown and Borutaite, 2004)), the FMN molecule and Fe-S co-factors in 

ETC complexes were reported to be resistant to modification by oxidative and 

nitrosative stresses (Pearce et al., 2005). Instead, ROS/RNS-mediated inhibition is 

likely mediated by PTM of the individual complex subunits (Ryan et al., 2012). Four 

ROS/RNS-associated PTMs of CI subunits were identified as S-glutathionylation, S-

nitrosation, tyrosine nitration and carbonylation (Chithra and Bharath, 2019). Although 

several CI subunits are targets of the latter two PTMs, the impact of subunit 

carbonylation and nitration on CI function remains unknown (Chithra and Bharath, 

2019). S-glutathionylation is a spontaneous and reversible adduct formation between 

a cysteine thiol group and oxidised glutathione (GSSG) (Fratelli et al., 2002). Two CI 

subunits, NDUFS1 and NDUFV1, are susceptible to S-glutathionylation upon 

mitochondrial incubation with GSSG or oxidative and nitrosative species (Taylor et al., 
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2003). Investigation of the effect of subunit S-glutathionylation revealed an increase in 

ROS production and inhibition of CI activity (Taylor et al., 2003).   

S-nitrosation was first reported to reversibly inhibit CI in macrophages (Clementi et al., 

1998). Further study of CI S-nitrosation identified a single CI subunit, ND3, that is 

modified by this PTM (Galkin and Moncada, 2007; Galkin et al., 2008). ND3 is a core 

CI mtDNA-encoded subunit that contains a cysteine-39 residue in an unstructured loop 

that is only exposed to the matrix when CI adopts a de-active state (Galkin et al., 2008). 

Interestingly, it was previously described that only the de-active state of CI, adopted 

due to loss of substrate or O2, is susceptible to functional inhibition by S-nitrosation 

(Galkin and Moncada, 2007). Interestingly, CI conformation changes and activity state 

do not affect its association with SCs and therefore cannot be detected by a BN-PAGE 

analysis (Babot et al., 2014). Altogether, these studies led to the identification of a 

potential mechanism of CI inactivation and a therapeutic target that has been further 

explored in models of ischaemia-reperfusion (I/R) injury, and in the design of 

pathogenesis-activated therapeutics (Chouchani et al., 2013; Methner et al., 2014; 

Galkin and Moncada, 2017). Furthermore, although regulated enzyme-assisted S-

nitrosation is reversible upon challenge by the cellular detoxification enzymes, CI is 

also susceptible to irreversible modifications by ONOO- species (Galkin and Moncada, 

2007). Implications of this research highlight that the perfect storm of shortage of 

mitochondrial substrate and increased load of ROS/RNS can lead to an irreversible CI 

inactivation and pathology. Having identified a CI-linked dysfunction and increased 

release of ·O2 in my models, it would be interesting to explore the range of ROS/RNS-

mediated PTMs of CI to establish whether the reduced CI activity I observed is linked 

to increased ROS load and pathological CI deactivation. 

3.5.2 CI-linked dysfunction in autophagy deficiency – relevance to the ageing 

field 

Accumulation of dysfunctional mitochondria and harmful increase in ROS have long 

been assumed to contribute to the general ageing phenotype and to the pathogenesis 

of age-related, particularly neurodegenerative disorders. Some of these assumptions 

stem from reports of the pathology of mitochondrial disease (MD), otherwise known as 

mitochondrial energy generation disorders (Frazier, Thorburn and Compton, 2019). 

MD is clinically diverse, and heterogeneous in terms of mode of inheritance, disease 

onset and tissue specificity (Frazier, Thorburn and Compton, 2019). Mutations in a 
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total of almost 300 mtDNA and nDNA genes have been linked to MD, ranging from 

genes that have a direct impact on mitochondrial energetics to those with a wider 

impact on mitochondrial homeostasis and general cellular metabolism (Frazier, 

Thorburn and Compton, 2019).  

CI deficiency is the most commonly observed cause of MD (Smeitink, van den Heuvel 

and DiMauro, 2001; Scheffler, 2015). To date, pathogenic mutations were identified in 

genes encoding the core subunits of the complex (14/14), accessory subunits (13/30) 

and CI assembly factors (11/15) (Frazier, Thorburn and Compton, 2019). Of utmost 

importance is a finding that despite the intense progress in identification of pathogenic 

mutations that result in CI deficiency, the disease-causing mutation of over 50% of 

patients presenting with a CI defect has not been identified (Scheffler, 2015). Apart 

from genetic mutations, it is worth considering that oxidative and non-oxidative PTM-

mediated modulation of CI activity could be at play (Chithra and Bharath, 2019; 

Gowthami et al., 2019). Decreased levels and activity of CI have, amongst other 

mitochondrial defects, been reported from models of healthy ageing (Bowling et al., 

1993; Petrosillo et al., 2008), disease-relevant models and patient tissues suffering 

from cardiovascular disease (Cabré et al., 2017; Forte et al., 2019), PD (Greenamyre 

et al., 2001), and AD (Fukuyama et al., 1996; Aksenov et al., 1999; Rhein et al., 2009). 

It has long been assumed that loss of CI activity in these tissues underlie some, if not 

all, of the pathology. However, recent findings from fly (Scialò et al., 2016), fish 

(Baumgart et al., 2016) and mouse models (Zhang et al., 2015) challenge these 

assumptions, for long-term mild CI-inhibition leads to increased lifespan in the fly and 

fish models and improved cognition in an AD mouse model. Moreover a recent detailed 

characterization of brain pathology in a PD patient cohort confirmed that CI-deficiency 

occurs in all regions of the PD brain and does not correlate with mtDNA-damage, or α-

synuclein aggregation in the substantia nigra (Flønes et al., 2018). In fact, less α-

synuclein aggregation was observed in neurons with the most prominent CI-deficiency. 

These ground-breaking studies reflect my results from glucose-cultured cells where CI 

levels and activity are reduced in autophagy-deficiency. In addition, I have shown that 

forcing mitochondrial respiration in these conditions promotes ROS release and cell 

death. Together, these results suggest that a decline in CI levels and activity may be 

deliberate, protective and merely a consequence of age-related mitochondrial or 

autophagy dysfunction. 
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3.5.3 Study limitation  

One major limitation of this study is the lack of information about cellular mitochondrial 

mass. Logically, loss of autophagy-mediated whole-organelle clearance could result in 

accumulation of dysfunctional mitochondria that would alter cellular bioenergetics and 

release excessive amount of ROS species. Alternatively, increased mitochondrial 

recycling via non-autophagy dependent MDV budding could maintain a stable pool of 

organelles. However, the experimental evidence to support either of these 

assumptions is lacking and inconsistent, mainly due to the variability of mitochondrial 

markers utilized to measure mitochondrial content (addressed below).  Establishment 

of mitochondrial mass in my model cell lines would help us ascertain the true extent of 

mitochondrial dysfunction and answer the underlying question of whether dysfunction 

in Atg5-/- MEFs arises as a consequence of an accumulation of a small population of 

damaging non-recycled dysfunctional mitochondria (if mitochondrial mass increases), 

or a more widespread dysfunction of the majority of organelles (if no increase is 

detected). Measurement of mitochondrial mass could also alter my interpretation of 

results obtained by respiratory analyses and ROS measurement. Finally, the 

underlying cause of mitochondrial dysfunction, ROS release, mMP dissipation, their 

correlation/causation relationships to cell death, and their potential as therapeutic 

targets are further explored in Chapter 4. 
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 Autophagy deficiency promotes NAD(H) nucleotide 

imbalance 

4.1 Introduction  

Two functions of autophagy are crucial for cellular physiology. Firstly, maintenance of 

a healthy pool of cellular organelles and proteins protects cells from dysfunction and 

developing disease-related pathologies (Labbadia and Morimoto, 2015). Secondly, 

liberated pools of carbohydrates, lipids, nucleotides and amino acids act as anabolic 

substrates for biosynthesis and cellular growth or undergo catabolic processing for 

energy generation or gluconeogenesis. Thus they directly impact upon cellular energy 

generation and glucose oxidation pathways (Rabinowitz and White, 2010).  

Several directions of study have focused on the role of autophagy-mediated nutrient 

liberation in sustaining cellular metabolism. Recent studies from the White laboratory 

reveal a substantial metabolic re-wiring in autophagy deficient cancer cells, which likely 

occurs to support nucleotide synthesis and sustain oxidative metabolism for 

maintenance of growth. First, pulse-chase studies with isotope-labelled carbon and 

nitrogen atoms in amino acids and in glucose identified autophagy as a pathway central 

to glucose and energy metabolism in starved tumour cells (Guo et al., 2016). Second, 

the group identified that supplementation of starved BRaf V600E/+ tumour-derived 

cells with TCA cycle precursors (sodium pyruvate or glutamine) prevent starvation 

induced loss of viability (Strohecker et al., 2013).  Further supporting their findings from 

a cellular model, the critical role of autophagy in cancer promotion comes from a study 

of a conditional whole-body Atg7 knockout in a mouse model of KRas-driven lung 

cancer (Karsli-Uzunbas et al., 2014) . Despite an observation that the mice suffered 

from a shortened lifespan due to increased susceptibility to infection and early-onset 

neurodegeneration, the growth and development of pre-existing tumours was severely 

stunted and authors detected appearance of cells positive for caspase 3 activation, 

suggesting an altered tumour cell fate when substrates provided by autophagy-

mediated recycling are no longer available.  

Outside the realm of cancer biology, the role of autophagy in cellular metabolism was 

recently explored in the control of immune cell differentiation and activation (reviewed 

in (O’Neill, Kishton and Rathmell, 2016; Riffelmacher, Richter and Simon, 2018). 
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Briefly, the multiple roles of autophagy in differentiation and activation of immune cells 

include mitochondrial depletion to promote aerobic glycolysis and thus push cells into 

a state of high proliferation prior to differentiation; breakdown of lipid droplets to release 

free fatty acids to sustain fatty acid oxidation; and degradation of cargo destined for 

externalization on the plasma membrane. In addition, autophagy seems to be critical 

for the maintenance of a quiescent state of hematopoietic stem cells (HSCs) and 

‘stemness’ in old HSCs by the clearance of active mitochondria (Ho et al., 2017), 

though the mechanism of clearance was not explored in this study.  

Although it is now clear that autophagy is necessary for rapid metabolic reprogramming 

during periods of starvation, activation of immune cells or prolonged proliferation in 

cancer, it is unclear how autophagy impairment affects cellular homeostasis in non-

starvation conditions, and cellular function upon the change of an energy substrate. I 

focused the experiments outlined in this chapter on exploring how autophagy 

impairment influences cellular metabolism in my model with a specific interest in the 

spatial interaction of the two aspects of autophagy function, the functional and 

metabolic, and how they converge on cell survival.   

4.2 Autophagy deficiency leads to NADH and NAD+ depletion  

4.2.1 Identification of NAD(H) nucleotide imbalance in Atg5-/- MEFs 

To elucidate the upstream mechanism of mitochondrial bioenergetic dysfunction and 

cell death in Atg5-/- MEFs, I carried out targeted metabolic profiling, focusing on 

investigations of pathways involved in glucose metabolism and OXPHOS, namely 

glycolysis, the PPP and the TCA cycle. Additionally, amino acid and nucleotide levels 

were probed to determine the impact of autophagy deficiency on the levels of metabolic 

substrates and the cellular energy charge (Rabinowitz and White, 2010; De la Fuente 

et al., 2014; Guo et al., 2016). Cells cultured in the galactose-based medium were 

subjected to metabolite extraction 16h after medium switch, consistent with 

mitochondrial bioenergetics measurement timeframe and well before any apoptosis-

related morphological changes can be observed by bright-field microscopy and while 

no caspase 3 cleavage can be detected by western blotting (not shown).  

Mass peak data output of the metabolomics study was first corrected to cellular protein 

levels and then subjected to statistical analysis by MetaboAnalyst 4.0. To determine 
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the relatedness, or lack thereof, between Atg5+/+ and Atg5-/- MEFs I employed a 

principal component analysis (PCA), a form of multivariate statistical analysis. The 

nature of PCA predisposes the result to bias towards highly abundant variables (H. 

Yamamoto et al., 2014), and indeed, analysis of data that did not undergo any degree 

of normalization led to separation of the most abundant metabolites (Figure 4.1A,B). 

Thus, the variables were first normalized by auto-scaling (mean-centred and divided 

by SD of each variable) by the MetaboAnalyst platform (Appendix 1) and then 

subjected to the PCA analysis.  A scatter plot of PC score vectors (observations plot) 

revealed separate clusters of autophagy-efficient and autophagy-deficient MEFs thus 

strongly suggesting that autophagy deficiency promotes a distinguishable change in a 

cell’s metabolic profile (Fig 4.1C). I then evaluated a scatter plot of the corresponding 

factor loading to discern which metabolites contribute to the separation of the two 

groups (Fig 4.1D), identifying a group of metabolites consisting mostly of nucleotides 

and a separate group of pentose phosphate pathway intermediates.  

Furthermore, I carried out univariate statistical testing to determine which metabolites 

varied significantly between the two cell lines. A volcano plot was assembled to 

demonstrate the most significantly changing metabolites determined by the Student’s 

t-test with p value corrected with false discovery rate (FDR), coupled with Atg5-/- / 

Atg5+/+ fold change of each metabolite (Figure 4.2A). By plotting the magnitude of 

change against the measure of statistical significance, I identified NADH as the most 

significantly depleted metabolite in Atg5-/- MEFs. In contrast, glucose-6-phosphate was 

the only significantly enriched metabolite that met the cut-off criteria of the volcano plot. 

A full list of ‘discovered’ metabolites, i.e. those with adjusted p values low enough to 

ensure that no more than 1% of these discoveries are false positives (Q=1%) was 

determined using the original FDR method of Benjamini and Hochberg (Figure 4.2B). 

The method analyses each metabolite individually without assuming a consistent SD 

(Fig 4.2B). 
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Figure 4. 1 Multivariate analysis of metabolic data from Atg5+/+ and Atg5-/- MEFs 

 

(A) PCA loadings plot of non-scaled data. (B) List of top 10 most abundant metabolites 

in Atg5+/+ and Atg5-/- MEFs. (C) PCA scores plot based on auto-scaled data. (D) PCA 

loadings plot based on auto-scaled data. 
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Figure 4. 2 Univariate analysis of metabolic data from Atg5+/+ and Atg5-/- MEFs  

Log2 conversion of metabolite concentration averages was performed and compared 

between the Atg5+/+ and Atg5-/- MEFs to visualise the fold change and statistical 

significance change of each metabolite in a heatmap (Figure 4.3). This type of 

visualisation corroborates the findings of the unbiased and unsupervised analysis 

performed in the MetaboAnalyst, but in addition informs about the overall state of all 

intermediates of a given pathway. Many intermediates of glucose oxidation pathways 

of glycolysis and the TCA cycle vary significantly between the two cell lines (Figure 

4.3A). However, there is a lack of an overall change in one direction, thus the pathways 

look largely unperturbed. In contrast, the intermediates of the PPP and levels of many 

amino acids are significantly increased in Atg5-/- MEFs (Figure 4.3A,B). Nonetheless, 

it is difficult to infer the biological significance of this finding without a time course data. 

The lack of depletion in amino acid levels in my model is likely due to the fact that only 

macroautophagy is expected to be impaired in Atg5-/- MEFs and CMA or 

microautophagy could contribute to amino acid replenishment (Tasset and Cuervo, 

2016).  

(A) Volcano plot representation of all analysed metabolites in a pairwise comparison of 

Atg5+/+ and Atg5-/- MEFs. The data were plotted as log2 fold change versus –log10 of the 

FDR adjusted p-value. The significance cut-off was set to an FDR adjusted p-value of 0.05 

(-log10 (adjusted p value) > 1,3). Fold change significance cut-off was set at a two-fold 

change (-1 ≥ log2 (fold change) ≥ 1). Thresholds are shown as dashed red lines. 

‘Discovered’ metabolites identified by univariate analysis are labelled in red. (B) A full list 

of ‘discovered’ metabolites. FC – fold change. 
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Figure 4. 3 Pathway-identity-based depiction of metabolomics data from Atg5+/+ 

and Atg5-/- MEFs  

  

(A,B) Metabolite profiling in Atg5+/+ and Atg5-/- MEFs. Metabolites are depicted as a 

heatmap of log2(FC) of Atg5-/- MEFs to Atg5+/+. (A) Metabolite organization is based on 

their association to glucose oxidation pathways of glycolysis, pentose phosphate pathway 

(PPP) and tricarboxylic acid (TCA) cycle. (B) Amino acids are organized alphabetically. 

Nucleotide order is first alphabetical and depends on the energy charge they carry. (C) 

Pooled NAD+ and NADH levels. (D) Adenylate energy charge (AEC) AEC=(ATP + 0.5 

ADP)/(ATP + ADP + AMP). Error bars represent S.E.M. *** p < 0.001. Dr Oliver Maddocks 

carried out LC-MS sample processing. 

 



107 
 

In addition, cells are cultured in an excess of amino acids, thus a lack of recycling might 

not have a significant impact on intracellular amino acid levels. It does not appear as 

if the flux through the PPP is impaired. In contrast, the relative increase of 6-

phosphogluconolactone and 6-phosphogluconate suggest an increased re-direction of 

glucose-6-phosphate from glycolysis to the oxidative phase of PPP, which serves to 

reduce NADP+ to NADPH and promote ROS detoxification and anabolism 

(Hanschmann et al., 2013). The lack of increase in ribose-5-phosphate relative to the 

other PPP intermediates could be relevant. Ribose-5-phosphate is the bridge between 

the oxidative and non-oxidative phases of the PPP and serves as a precursor for the 

nucleotide and amino acid synthesis (Hove-Jensen et al., 2017). Following that train of 

thought, the most negatively affected cluster of metabolites in Atg5-/- MEFs is the 

nucleotide pool (Figure 4.3B). Perhaps unsurprisingly, I observed a significant 

decrease in ATP levels and a corresponding, though not significant, increases in ADP 

and AMP. Interestingly, adenylate energy charge (AEC) calculated as a proxy to 

cellular metabolic energy status first described by Atkinson and Walton (Atkinson and 

Walton, 1967) although significantly different between the two cell lines, did not deviate 

from what is considered the normal interval (0.7 and 0.95) (Fig 4.3C) (De la Fuente et 

al., 2014). 

Unexpectedly, both NAD+ and NADH, were significantly reduced. Total NAD levels, 

expressed as a sum of NAD+ and NADH (expressed as (NAD(H)), is also reduced 

(Figure 4.3D). A limitation of my approach is that the metabolic profiling analysis was 

carried out on whole cell lysates, so NADH depletion could occur in any cellular 

compartment. However, if considered in the context with my membrane potential 

measurement in Atg5-/- MEFs (Figure 3.5), it is likely that at least a portion of the NADH 

depletion occurs in mitochondria. Due to the relevance of NADH to mitochondrial 

function and the recently described relevance of NAD+ depletion to ageing, I selected 

NAD+ metabolism the corresponding pathways for further study. 

4.2.2 Causal role of NAD metabolism in galactose-induced cell death 

Identification of NAD(H) as the most significantly depleted metabolite in Atg5-/- MEFs 

focused my research on the role of NAD+ and its reduced form, NADH in the cell. 

Redox imbalance and the decrease of total NAD levels led us to question whether 
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NAD+ depletion plays a role in cell death. To interrogate this hypothesis, I focused on 

the main pathway of NAD+ synthesis in cells, the NAD+ salvage pathway. As discussed 

previously (section 1.4.4), NAMPT is the rate-limiting enzyme of the NAM branch of 

NAD+ salvage pathway (Fig 4.4A). A potent inhibitor of NAMPT, an FK866 compound, 

identified in an anti-tumour drug screen, was found to decrease levels of NAM 

conversion by approximately 97% compared to control (Hasmann and Schemainda, 

2003; Khan, Tao and Tong, 2006). Furthermore, a respirometry study on pre-treated 

permeabilized cells showed FK866 reduced CI-linked O2 consumption but did not have 

an effect on activity of other ETC complexes. In this study, FK866 treatment slowed 

down cellular proliferation and metabolism and led to apoptotic cell death (Hasmann 

and Schemainda, 2003). Although multiple pathways lead to NAD+ biosynthesis in 

cells, I tested whether inhibition of NAMPT by FK866 and the resulting depletion of 

NAD+ would be sufficient to initiate cell death in wild type MEFs cultured in galactose-

based medium and thus phenocopy the defect in Atg5-/- MEFs. Indeed, 

supplementation of galactose medium with FK866 led to exacerbation of caspase 3 

cleavage in Atg5+/+ MEFs upon prolonged (48h) culture, thus confirming that NAD+ 

depletion may play a role in the cell death of Atg5-/- MEFs cultured in a galactose-based 

medium (Figure 4.4B,C). It is also worthwhile to note that NAMPT inhibition was not 

detrimental to the survival of Atg5+/+ MEFs cultured in a glucose-based medium and 

thus seems to affect only cells which are actively respiring. 

I further focused on the role of mitochondria-specific NADH depletion. By transiently 

transfecting Atg5-/- MEFs with a non-proton translocating single-subunit NADH–

ubiquinone reductase from Saccharomyces cerevisiae (Ndi1) I expected to see 

amelioration of the cell death phenotype (Seo et al., 2000). NDI1 expression in a 

Drosophila model was previously shown to rescue of CI KD lethality by effectively by-

passing CI and  donating e- directly to the ubiquinone pool (Sanz et al., 2010). Based 

on my findings of decreased CI function (Figure 3.1A,B) I hypothesized that increased 

e- flow to the ETC would lead to increased cell survival. To my surprise, Ndi1 

expression in my model led to further cell death exacerbation (Figure 4.4D,E). A logical, 

but initially overlooked, explanation of this unexpected result springs to mind. The 

presence of Ndi1 in my system is likely to contribute to faster mitochondrial NADH 

turnover to NAD+. However, due to the lack of proton-pumping associated with Ndi1 

function, lower ΔΨ per molecule of NADH would be expected, thus further contributing 

to loss of mMP.  
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Figure 4. 4 Exploration of NADH depletion causality in apoptosis 

  

(A) Graphic representation of the NAM branch of NAD salvage pathway. In red: the 

rate-limiting enzyme of the NAM branch NAMPT and its inhibitor, FK866. (B) Bright 

field microscopy images of Atg5+/+ MEFs cultured in glucose or galactose-based media 

supplemented with 10nM FK866 or vehicle (DMSO). Cells were imaged 48h after 

medium switch and treatment start when we observed morphological changes 

associated with apoptosis. (C) Representative western blot and quantification of 

cleaved caspase 3 levels in the same conditions. (D) Bright field microscopy images of 

Atg5-/- MEFs transiently expressing GFP-NDI1 (NDI1) or GFP after 18h culture in a 

galactose-based medium. (E) Representative western blot and quantification of 

cleaved caspase 3 and NDI1 levels in the same conditions as (D). Scale bar represents 

200µm. Error bars represent S.E.M. Cleaved caspase 3 levels were normalised to 

actin. **p<0.01, ***p<0.001, (n=3). 
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4.3 NAD nucleotide-boosting strategies promote Atg5-/- MEFs survival  

4.3.1 Inhibition of NADases 

Having established the role of NAD(H) depletion in cell death causation, I next aimed 

to confirm that boosting NAD+ levels is sufficient to rescue cell death in my models. 

Current exploration into pharmacologically boosting NAD+ levels in the field of aging 

focuses on three approaches – NAD+ precursor supplementation, inhibition of 

NADases and activation of NAD+ biosynthesis by targeting the activity of a rate-limiting 

NAMPT enzyme (Rajman, Chwalek and Sinclair, 2018). Of the three approaches, I 

chose to explore supplementing cell culture medium with NAD+ precursors and 

inhibiting NAD+ consuming enzymes.  

To investigate whether NAD depletion occurs as a result of increased activity of cellular 

NADases, I treated Atg5-/- MEFs with inhibitors against the major classes of NADases, 

SIRTs, PARPs, and CD38 (Fig 4.5A) (Rajman, Chwalek and Sinclair, 2018). I based 

the selection of inhibitors used in this study on their described efficiency and ability to 

inhibit the largest number of family members (Murai et al., 2012; Villalba and Alcaín, 

2012). Supplementation of galactose-based medium with olaparib (PARPs), sirtinol 

(SIRTs) or 78c (CD38) led to the rescue of cell death of Atg5-/- MEFs (Figure 4.5B,C). 

These results have several implications to consider. Firstly, I hypothesize that all of 

these interventions would result in a boost of NAD+ levels due to its reduced cleavage 

as a co-substrate, but cannot rule out off-target effects without a direct NAD+ 

measurement and/or directly measuring levels of enzyme activity. Secondly, I can 

conclude that the function of any of these enzymes is likely not necessary for cellular 

survival in these conditions. 
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Figure 4. 5 NADase inhibition rescues viability of Atg5-/- MEFs 

4.3.2 Supplementation of NAD+-salvage pathway precursors 

In the second line of investigation, I chose to supplement galactose-based medium 

with two NAD+ precursors NAM and NR, which enter the NAD+ salvage pathway 

through two separate branches and are converted into NMN (Fig 4.6A). NAM and NR 

supplementation have the highest potential of translational application for age-related 

chronic diseases and are both currently explored in over 50 clinical trials 

(https://clinicaltrials.gov/). Medium supplementation with each of the two precursors 

led to a robust rescue of cell survival and proliferation of Atg5-/- MEFs (Fig 4.6B,C).  

(A) Graphical representation of the NAM branch of NAD+ salvage pathway. In red: 

inhibitors of PARPs, SIRTs and CD38 used in this study. (B) Bright field microscopy 

images of Atg5-/- MEFs cultured in a galactose-based medium supplemented with 

100µM 78c, 10µM olaparib, 20µM sirtinol or vehicle (DMSO). Cells were imaged 24h 

after medium switch and start of the treatment. (C) Representative western blot and 

quantification of cleaved caspase 3 levels in the same conditions as (B) Scale bar 

represents 200µm. Error bars represent S.E.M. Cleaved caspase 3 levels were 

normalised to actin levels. ***p<0.001. (n=3). 
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Figure 4. 6 NAD precursor supplementation rescues viability of Atg5-/- MEFs 

 

To confirm that cell death rescue occurs as a result of increased NAD(H) levels and 

not as an indirect result of increased NAM levels in the cells, I tried a reversibility study 

by co-treating cells with NAM and FK866 to prevent NAM conversion to NAD+. 

However, consistent with the original study (Hasmann and Schemainda, 2003), this 

strategy did not prove effective and no reversibility was achieved, likely due to the 

previously described antidote effect of NAM on FK866 activity (data not shown). I can 

thus only conclude that decline in cellular NAD(H) levels is responsible for cell 

commitment to apoptosis and interventions aimed at recovery of NAD(H) levels 

improve cell viability. 

(A) Graphical representation of the NAM and NR branches of NAD+ salvage pathway. 

In red: NAM and NR precursor molecules. (B) Bright field microscopy images of Atg5-

/- MEFs cultured in a galactose-based medium supplemented with 5mM NAM or 5mM 

NR. Cells were imaged 24h after medium switch and start of the treatment. (C) 

Representative western blot and quantification of cleaved caspase 3 levels in the same 

conditions as (B) Scale bar represents 200µm. Error bars represent S.E.M. Cleaved 

caspase 3 levels were normalised to actin. ***p<0.001. (n=3). 
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4.4 Mitochondrial dysfunction and apoptosis are linked to the depletion 

of NADH levels. 

4.4.1 Increased availability of CI substrates exacerbates cell death 

NADH:ubiquinone oxidoreductase, or complex I, is the entry point of electrons 

delivered by NADH into the ETC. CI is the largest of the four complexes of the ETC 

and has been shown to be the major site of mitochondrial superoxide production (Hirst, 

King and Pryde, 2008). Since I observed decreased CI-linked O2 consumption in Atg5-

/- MEFs (Figure 3.4C), I endeavoured to characterise the role of CI and ETC in 

galactose-induced cell death. Low CI-linked O2 consumption could be linked to several 

phenomena. First, decreased CI holocomplex assembly or supercomplex assembly 

would lead to the lack of sites for NADH oxidation, but my BN-PAGE gels have shown 

no gross defects in CI assembly (Fig 3.4A). An alternative mechanism could centre on 

low availability of NADH, either due to the lack of TCA substrate or due to increased e- 

leak from semiubiquinone, thus potentially uncoupling NADH consumption from mMP 

generation and O2 reduction. I sought to identify the potential role of each branch. 

First, I explored the potential benefits of supplementing cells with additional pyruvate. 

I hypothesized that increased pyruvate availability as a TCA substrate, in contrast to 

galactose, which requires processing to enter into glycolysis (Rogers and Segal, 1981), 

would provide a more accessible substrate for oxidation and help bridge any potential 

period of energy stress upon first introduction of galactose. In addition, pyruvate is an 

established antioxidant for cells cultured in a glucose-based medium. I therefore 

cultured Atg5-/- MEFs in a galactose-based medium supplemented with SP a cell-

permeable form of pyruvate (in addition to galactose). Surprisingly, increased 

availability of a mitochondrial TCA cycle substrate, which I hypothesized would boost 

mitochondrial function, led to significantly higher levels of cell death in Atg5-/- MEFs 

(Fig 4.7A,B). To show that the effect of pyruvate supplementation on cell death its due 

to its role as a TCA substrate, I treated cells with UK-5099, an inhibitor of mitochondrial 

pyruvate carrier (MPC) (Zhong et al., 2015). Interestingly, cell treatment with UK-5099 

had a moderate cell death rescue effect (Fig 4.7A,B). More importantly, co-treatment 

with SP and UK-5099 led to a complete reversal of SP-mediated cell death 

exacerbation, suggesting that pyruvate presence within the mitochondria as a 

substrate for the TCA cycle has a negative effect on cell survival. Metabolic profiling of 

cells supplemented with SP revealed a shift in NAD redox state by increased NADH 
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re-oxidation to NAD+ in Atg5-/- MEFs (Fig 4.7C). Increased pyruvate and lactate levels 

in Atg5-/- MEFs cells supplemented with pyruvate indicate that a portion of NADH is 

utilized for cytoplasmic pyruvate oxidation to lactate by the enzyme lactate 

dehydrogenase to re-generate cellular NAD+ levels to support glycolytic flux and 

activity of NAD+-consuming enzymes. However, intermediates of the TCA cycle are 

also enriched in Atg5-/- MEFs supplemented with pyruvate and improved cell viability 

in cells treated with UK-5099, which I hypothesize led to decreased pyruvate 

availability in mitochondria, also support my hypothesis that increased mitochondrial 

respiration in the absence of MQC is detrimental and can lead to the loss of cell 

viability.   

 

 

 

 

 

Figure 4. 7 Exposure of Atg5-/- MEFs to increased levels of OXPHOS substrate 

exacerbates cell death 

(A) Bright field microscopy images of Atg5-/- MEFs cultured in the galactose-based medium 

for 22 hours, supplemented with 10mM sodium pyruvate (SP), 50μM UK-5099 (UK), or both 

(SPUK), at 0h. (B) Representative western blot and quantification of caspase 3 cleavage in 

the same conditions as (A). (C) Intermediates of glycolysis and PPP, and nucleotides 

depicted as a heatmap of log2(FC) of Atg5-/- MEFs supplemented with SP to Atg5-/- MEFs 

cultured in the galactose-based medium. Scale bar represents 200µm. Error bars represent 

S.E.M. Cleaved caspase 3 levels were normalised to actin. *p<0.05, **p<0.01***p<0.001. 

(n=3). 
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4.4.2 Role of ETC in cell death of Atg5-/- MEFs  

Next, I employed culture condition changes and pharmacological and genetic 

approaches to further explore whether manipulation of entry and flow of e- through the 

ETC can modulate cellular viability. I first cultured cells in either atmospheric levels of 

oxygen (21% O2) or a hypoxic (1% O2) environment. Hypoxic culture was employed to 

restrict OXPHOS by reducing oxygen tension (Papandreou et al., 2006; Solaini et al., 

2010). Among the many unknowns, which accompany hypoxic culture of cells growing 

in a galactose-based medium, the most prominent one is the ability of cells to cope 

with metabolic re-wiring towards aerobic glycolysis in the absence of glucose. In spite 

of my expectations, control cells were capable of growth in hypoxic conditions, 

potentially by re-wiring TCA metabolism to support life on glutamine (Metallo et al., 

2011) (data not shown). Hypoxic cell culture of Atg5-/- MEFs in the galactose-based 

medium resulted in a complete rescue of apoptotic cell death and increased cell 

proliferation (Figure 4.8A,B). 

To investigate whether decreased e- flow through the ETC can alleviate cell death in 

my model, I tested genetic manipulation of ETC function by siRNA knockdown (KD) of 

nuclear-encoded subunits of the ETC. A single subunit of each of the complexes was 

selected for genetic targeting based on their role within the complex itself. The 

NADH:ubiquinone oxidoreductase core subunit S3 (Ndufs3) of the CI hydrogenase 

module is one of the iron-sulphur protein components and features early in CI 

subcomplex and holocomplex assembly (Vogel et al., 2007). Mutations in NDUFS3 are 

linked to Leigh syndrome (Bénit et al., 2004; Lou et al., 2018), a child-onset 

neurological disorder resulting from a severe CI deficiency. Knockdown of NDUFS3 

was previously shown to result in a loss of CI incorporation in SCs tracked by the 

NDUFA9 CI subunit (Lapuente-Brun et al., 2013). Succinate dehydrogenase complex 

flavoprotein subunit A (Sdha) of CII was targeted because it is the major catalytic 

subunit of CII, a site of succinate oxidation and it was shown to produce a bioenergetics 

defect, without excessive ROS release or increased proliferation (Guzy et al., 2008).   
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Figure 4. 8 Decreased e- flux through the ETC ameliorates cell death of Atg5-/- 

MEFs 

  

(A) Bright field microscopy images of Atg5-/- MEFs cultured in a galactose-based 

medium in atmospheric oxygen (21% O2) or hypoxia (1% O2). (B) Representative 

western blot and quantification of caspase 3 cleavage in the same conditions as (A). 

(C) Bright field microscopy images of Atg5-/- MEFs transfected with scrambled, ETC 

complex I (Ndufs3), ETC complex II (Sdha) and ETC complex III (Uqcrfs1) subunit-

specific siRNA. (D) Quantitation of siRNA-mediated knockdown efficiency. (E) 

Representative western blot and quantification of caspase 3 cleavage and levels of 

Ndufs3, Sdha and Uqcrc2 subunits of ETC complexes. (F) Bright field microscopy 

images of Atg5-/-MEFs cultured in a galactose-based medium for 24hs, supplemented 

with 10μM CP2, a mild Complex I inhibitor, or vehicle (PEG) at 0h. (G) Representative 

western blot and quantitation of caspase 3 cleavage in the same conditions as (F). 

Scale bar represents 200µm. Error bars represent S.E.M. Cleaved caspase 3, Ndufs3, 

Sdha and Uqcrc2 levels were normalised to actin. *p<0.05, **p<0.01***p<0.001. (n=3). 
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And finally, the ubiquinol-cytochrome c reductase iron-sulphur subunit (Uqcrfs1, 

Rieske Iron-Sulphur Polypeptide (RISP)) is a member of a three-subunit catalytic 

complex of CIII necessary for e- transport  (Diaz, Enríquez and Moraes, 2012). Uqcrfs1 

is also the last CIII subunit incorporated into the complex immediately following Fe-S 

cluster addition to its C-terminal region (Fernandez-Vizarra and Zeviani, 2018). 

Although reports do not agree on whether Uqcrfs1 knockdown leads to a reduction or 

production of ROS, all studies agree that Uqcrfs1 silencing decreases mitochondrial 

respiration due to a loss of CIII catalytic activity even in absence of an assembly defect 

(Owens et al., 2011; Diaz, Enríquez and Moraes, 2012; Rabinovitch et al., 2017). 

Figure 4.8D shows the knockdown efficiency of the targeted subunits (Uqcrc2, a 

structural CIII subunit, was used as a proxy for Uqcrfs1/RISP) compared to control 

cells transfected with scrambled siRNA. The relatively low levels of suppression, I 

hypothesize, is driven by the potential of cells to tolerate reduction of OXPHOS-linked 

respiration (CI and CIII) and TCA cycle (CII) while their ability to redirect their 

metabolism towards aerobic glycolysis is severely limited. I have previously observed 

that CI and CIII participate in SC assembly in MEFs cultured in galactose-based 

medium and thus CI likely constitutes the major route of e- entry and flow within the 

ETC (Fig 3.4B). It was therefore not surprising that Ndufs3 and Uqcrfs1 silencing led 

to a significant delay of cell death (Fig 4.C,E). In contrast, KD of Sdha, a CII subunit, 

had no obvious effect on cell viability and a combination of Ndufs3 and Sdha silencing 

did not provide any additional benefit compared to Ndufs3 silencing alone.  

To then explore a pharmacological CI-targeted intervention I chose to test CP2, a 

recently discovered tricyclic pyrone compound. CP2 was first  shown to lead to 

amelioration of pathological phenotypes in Alzheimer’s mice by the promotion of 

mitochondrial trafficking in neurons, and by decreasing the load of amyloid-β 

aggregation (Hong et al., 2009). Upon further study in mouse neurons by Trushina 

group (Zhang et al., 2015), CP2 was shown to accumulate in mitochondria, increase 

ETC coupling, and mildly inhibit CI activity by occupying a CI redox centre, the flavin 

mononucleotide (FMN). Similarly to CI KD, CP2 treatment in Atg5-/- MEFs led to 

increased cell viability upon culture in galactose medium (Fig 4.8F,G). Thus, although 

the presence of a CI defect in autophagy deficiency is yet to be unequivocally 

confirmed, I have shown in these proof-of-concept experiments that strategies 
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decreasing e- flow through the ETC delay cell death induced in my model of autophagy-

deficient cells forced to rely on OXPHOS. 

4.4.3 Strategies targeted at the reduction of ROS delay cell death  

To investigate the role of ROS in the initiation of apoptotic cell death upon Atg5-/- MEF 

culture in the galactose-based medium, I supplemented culture medium with N-

acetylcysteine (NAC), the acetylated form of cysteine that acts as a precursor for the 

synthesis of glutathione of the antioxidant system (Dodd et al., 2008), and a 

mitochondria-targeted ubiquinone antioxidant, MitoQ10, (James et al., 2005). Although 

both treatment strategies led to improvements in cell viability (Fig 4.9A,B), MitoQ10 only 

led to a partial rescue and it is possible that a higher concentration might have a more 

beneficial effect. However, I did confirm that MitoQ10 supplementation led to a 

decrease of superoxide load in Atg5-/- MEF (Fig 4.9C). Although effective, neither NAC 

nor MitoQ10 scavenge ROS released from CI specifically. For this purpose I cultured 

Atg5-/- MEFs in a galactose-based medium supplemented with a suppressor of e- leak 

from the CI Iq site (S1QEL2.2) (Brand et al., 2016). S1QELs are novel compounds 

previously shown to diminish ROS originating from reverse electron transport at CI 

ubiquinone binding site, yet not affect OXPHOS or cell growth (Brand et al., 2016; 

Banba et al., 2019). A targeted suppression of superoxide generation at CI by the 

S1QEL2.2 treatment significantly reduced cell death of Atg5-/- MEFs (Fig. 4.9C,D). The 

significance of S1QEL2.2-mediated cell death rescue is yet to be explored further, but 

if S1QELs are truly confirmed to prevent RET it could suggest the CI ROS leak occurs 

due to over-reduction of the ubiquinone pool. Together these data confirm that ROS in 

Atg5-/- MEFs are likely to be of mitochondrial origin and cell death can be rescued by 

increasing the capacity of the antioxidant system, or by preventing ROS release. 



119 
 

 

Figure 4. 9 ROS scavenging strategies rescue cell death of Atg5-/- MEFs 

  

(A) Bright field microscopy images of Atg5-/- MEFs cultured in a galactose-based medium 

for 24h, supplemented with 2.5mM NAC, 20nM MitoQ10 or vehicles at 0h. (B) 

Representative western blot and quantification of caspase 3 cleavage in the same 

conditions as (C). Bright field microscopy images of Atg5-/- MEFs cultured in a galactose-

based medium for 24h, supplemented with 500nM S1QEL2.2 or vehicle (DMSO) at 0h. 

Scale bar represents 200µm. Error bars represent S.E.M. Cleaved caspase 3, Ndufs3, 

Sdha and Uqcrc2 levels were normalised to actin levels. ***p<0.001. (n=3). 
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4.5 Recovery of NADH levels coincides with the restoration of mMP 

Thus far, I have explored the two branches of enquiry, NADH depletion and 

mitochondrial dysfunction, in isolation. Multiple strategies targeted at either branch 

were successful in promoting cell viability (Fig 4.10A). Both, supplementation with 

NAM/NR, and ROS scavenging had an effect on their respective target, i.e. boosting 

NAD levels and decreasing ROS levels. However, the impact of interventions aimed at 

either branch could result in unintended effects.  

Increased levels of NAD+ could lead to a boost in the antioxidant system and increased 

ETC coupling via activation and the concerted action of SIRT1 and SIRT3 (Ansari et 

al., 2017; Singh et al., 2017). Similarly, predicted lower respiration rates due to 

silencing or inhibition of ETC components might result in lower rates of ROS release. 

To investigate which of these phenomena best correlates with cell death rescue, I 

singled out a treatment from each of the employed strategies and carried out MitoSOX-

based staining to evaluate ROS production and metabolic profiling to quantify levels of 

NAD+/NADH. As predicted, levels of superoxide production were mildly, but 

significantly reduced in MitoQ10 treated cells (Fig 4.10A,B). Surprisingly, NAM 

supplementation did not have any effect on superoxide formation and a previously 

unreported increase of superoxide release was detected in CP2 treated cells. Thus, 

reduction in mitochondrial ROS release is not achieved in all conditions that prevent 

cell death. In contrast, all tested treatments led to the recovery of NADH levels and a 

corresponding recovery in mMP (Fig. 4.10C,D,E). It is worth to note that neither of the 

selected treatments, which rescue cell viability, improve cellular ATP levels. In fact, of 

all the tested nucleotides, recovery of NADH levels is the most predictive of cell 

viability.  

 

  



121 
 

 

Figure 4. 10 NADH-linked maintenance of mMP is critical for cell survival of 

Atg5-/- MEFs 

  

(A,B) Superoxide levels, quantified by MitoSOX staining, do not correlate with cellular 

survival. (A) Representative images of MitoSOX fluorescence of Atg+/+ and Atg5-/- MEFs 

cultured in a galactose-based medium alone or supplemented with 5mM NAM, 10μM CP2 

or 20nM MitoQ10 for 24h. (B) Quantitation of MitoSOX intensity in the same conditions as 

(A). (C,D) Treatments that improve cell viability increase mMP in Atg5-/- MEFs. (C) 

Representative immunofluorescence images of cells stained with TMRM and MTG. (D) 

Quantitation of TMRM:MTG ratio in the same conditions as (C). (E) Metabolite profiling is 

depicted as a heatmap of log2(FC) change of Atg5-/- MEFs treatment with the 

corresponding compound to Atg5-/- MEFs in galactose alone. Scale bars represent 20μm. 

Error bars represent S.E.M., *p<0.05, **p<0.01, ***p < 0.001. (n=3). 
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To investigate whether the recovery of mMP is necessary and sufficient to prevent cell 

death in my model, I carried out a dose-variable supplementation with oligomycin, an 

ATP synthase inhibitor. ATP synthase consumes mMP by channelling protons pumped 

into the IMS by the ETC.  Standard dose of oligomycin (10μM), traditionally used to 

induce mitophagy (in co-treatment with a CIII inhibitor, antimycin A) in glucose-cultured 

cells, led to a cell death reminiscent of that in response to antimycin and rotenone 

treatment in cells cultured in a galactose-based medium (Fig 3.3A). However, 

employing a simple bright field microscopy-based observation of cell death 

morphology, I identified a dose of oligomycin, which prevented cell death (Fig 4.11A). 

I further confirmed my finding by an immunoblot-based investigation of caspase 3 

cleavage (Fig 4.11B). Finally, mMP measurement revealed that addition of 1nM 

oligomycin at the time of the culture medium switch helps cells maintain a healthy ΔΨ 

(Fig 4.11C). 
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Figure 4. 11 Increasing mMP alone is sufficient to prevent cell death of Atg5-/- 

MEFs 

4.6 Chapter conclusions 

In Chapter 3, I characterized the changes in ETC complex composition and 

bioenergetics and discussed how autophagy impairment drives mitochondrial 

dysfunction, ROS release, loss of mMP and apoptotic cell death. In chapter 4, I have 

shown that autophagy abolition is sufficient to drive disruption of nucleotide and 

NAD(H) metabolism (Figure 4.1/4.2/4.3B). By interfering with the NAD+ salvage 

pathway in Atg5+/+ MEFs, I have demonstrated that depletion of the NAD pool is 

sufficient to drive apoptosis in wild type cells that rely on mitochondrial OXPHOS for 

ATP generation (Figure 4.4B,C). I have further demonstrated that low levels of NADH 

negatively correlate with mMP and cell survival in Atg5-/- MEFs (Figure 4.4D,E; Figure 

(A) Bright field microscopy images of Atg5-/- MEFs cultured in a galactose-based 

medium supplemented with increasing doses of oligomycin (0.1pM - 10µM) or vehicle 

(DMSO). Cells were imaged at 44h to estimate the true cell death rescue potential of 

the treatment.  (B) Representative western blot and quantification of caspase 3 

cleavage in cells supplemented with 1nM oligomycin or vehicle (DMSO). Scale bar 

represents 20µm (C) Representative immunofluorescence images of TMRM and MTG 

stained cells cultured in the same condition as in (B). (D) Quantitation of TMRM:MTG 

ratio in the same conditions as (C). Scale bar represents 200µm. Error bars represent 

S.E.M. Cleaved caspase 3 levels were normalised to actin levels. *p<0.05, **p<0.01. 

(n=3). 
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4.7C; Figure 4.10E). My results also indicate that, at the timepoint I chose for my 

investigation, levels of superoxide release are increased, but do not always correlate 

with cellular survival and thus cannot be the sole cause of all of the observed pathology 

(Figure 4.10A,B). Therefore, I have identified two separate branches of molecular 

pathology which arise as a result of autophagy abolition, firstly, mitochondrial ROS 

release and secondly, NAD(H) depletion.  

Mitochondrial dysfunction in my system resembles a runaway system. Several lines of 

my investigation show that mild impairment of mitochondrial OXPHOS by genetic or 

pharmacological interference with e- entry and the flow through the ETC promotes 

cellular viability (Figure 4.7 A,B; Figure 4.8C-G, Figure 4.11A-D). In contrast, increased 

e- entry into the ETC or increased levels of accessible substrate promote cell death 

(Figure 4.4D,E; Figure 4.7A,B). The negative impact of mitochondrial OXPHOS in a 

system that lacks a major portion of its quality control relates to elevated release of 

ROS. ROS detoxification by three distinct routes of action, i.e. supplementation with 

NAC, MitoQ10 and S1QEL2.2, promotes cellular viability and supports my hypothesis 

that mitochondrial dysfunction contributes to cell death in my model (Figure 4.9A-D). I 

have also identified two potential targets of therapeutic potential at the mitochondrial 

route of dysfunction relating to mild ETC complex inhibition and ROS scavenging. I 

discuss the translational potential of ROS scavenging and pyruvate entry modulation 

in section 1.7.2. 

Depletion of nucleotides, and specifically of the NAD(H) pool, could arise by multiple 

mechanisms and lead to a variety of downstream dysfunctions. Due to the complexity 

of NAD+ synthesis, subcellular localization and consumption, it would be difficult to 

pinpoint the exact cause of depletion and thus identify a specific pathway or enzyme 

to target by either inhibition or activation strategies. Nevertheless, two results of my 

metabolic profiling suggest that some of the total NAD+ depletion I observe could be 

due to lower flux through the synthesis pathways. Specifically, two metabolites that are 

required for NAD+ salvage and de novo synthesis, ATP and ribose-5-phosphate, are 

both significantly decreased in Atg5-/- MEFs compared to Atg5+/+ MEFs (Figure 4.3A,B; 

Figure 1.5 (Hove-Jensen et al., 2017). Increased NAD+ consumption by NADases in 

my system is supported by my study of SIRT1/2, PARP1/2 and CD38 inhibition, all of 

which lead to cell death rescue (Figure 4.5). Measurement of the total NAD(H) levels 

upon NADase inhibition, or the activity of individual enzymes might be required to 
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pinpoint the direct cause of NAD(H) depletion. From the current results, I can conclude 

that inhibition of each group of enzymes should lead to a greater total pool of NAD+ 

and that activity of none of the targeted enzymes is essential for cell survival. On a 

similar note, boosting NAD+ levels by NAM and NR supplementation led to a complete 

rescue of cell death in Atg5+/+ MEFs (Figure 4.6). By metabolic profiling of Atg5-/- MEFs 

supplemented with NAM, I confirmed that NAM is readily converted to NAD+ and NADH 

(Figure 4.10E). 

Although I initially studied the two branches of mitochondrial dysfunction and NAD+ 

metabolism aberration in isolation, the spatial-temporal relatedness of the two could 

not be overlooked. Mitochondrial metabolism and function requires sufficient levels of 

NAD+ to promote carbon oxidation by acting as an e- donor to the TCA cycle and, in 

the form of NADH, shuttle e- to CI of the ETC (Balaban, Nemoto and Finkel, 2005). In 

addition, mitochondrial SIRTs and PARPs require NAD+ as a substrate to maintain the 

fidelity of mitochondrial ETC and DNA repair (Cantó, Menzies and Auwerx, 2015). 

Taking all of the above into account, I suggest that the major underlying pathology of 

autophagy deficiency is NAD(H) depletion, which in turn affects mitochondrial function 

and ultimately leads to mitochondrial depolarization and apoptosis. 

4.7 Chapter discussion 

4.7.1 The chicken and egg of NADH depletion and mitochondrial dysfunction in 

autophagy-deficiency 

Metabolomic profiling in my study supports the idea that autophagy deficiency leads to 

depletion of cellular NAD(H) pool and NADH availability for mitochondrial respiration. 

In contrast to other studies, which suggest that NAD+ promotes cell viability due to its 

interaction as a co-substrate to longevity-promoting SIRTs (Mouchiroud et al., 2013; 

Camacho-Pereira et al., 2016), my model shows the underlying mechanism of 

improved mitochondrial function might be of a different nature. my approach to 

boosting NAD+/NADH levels not only by supplementing precursors of NAD+ via its 

salvage pathway, but also by inhibition of NAD+ consuming enzymes shows that cell 

death in my model can likely be rescued by simply increasing the availability of the 

NAD+ nucleotide as a co-factor for mitochondrial metabolism and maintenance of 

mMP.  
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However, autophagy impairment also leads to compromised mitochondrial recycling 

and thus leads to accumulation dysfunctional organelles (Lazarou et al., 2015). Within 

mitochondria, NADH links carbon oxidation to ETC by donating e- to CI of the ETC. If 

e- are liberated from NADH, donated to the ETC, but leak before they fully contribute 

to proton pumping at CIII and CIV, the loop would be broken and indiscriminate NADH 

oxidation by CI could occur, thus leading to NADH depletion, and ROS-mediated 

damage. ROS levels and damage to cellular macromolecules lead to increased activity 

of NAD-consuming enzymes (SIRTs and PARPs) and depletion of NAD+ (Merksamer 

et al., 2013; Hegedűs and Virág, 2014). I have so far not been able to establish the 

cause of NAD(H) depletion in autophagy deficiency, but it seems likely that both, 

mitochondrial dysfunction-linked increased consumption of NADH, and depletion of the 

cytoplasmic NAD+ pool by SIRTs and PARPs both contribute to loss of cellular viability. 

4.7.2 Limitations and translational potential 

The main limitation of this study was the lack of information about where NAD+/NADH 

depletion occurs. I carried out my metabolomics profiling on whole cell lysates to 

capture the largest possible amount of metabolomics data relating to autophagy 

deficiency and mitochondrial dysfunction, which allowed us to study the levels of 

macromolecules recycled by autophagy including the intermediates of carbon 

metabolism. From my study, I was able to conclude that whole-cell levels of amino 

acids and the majority of metabolic pathways remain unperturbed in my model and it 

is specifically nucleotides, which are negatively affected. Further study of subcellular 

NAD pools and their oxidation states would benefit from the recent development of 

NAD/(P)/H sensor and reporter molecules that can be targeted to any subcellular 

compartment (Hung et al., 2011; Bilan et al., 2014; Y. Zhao et al., 2015; Cambronne 

et al., 2016). Specifically, mitochondrial targeting of such sensors could provide further 

insight into real-time changes in NAD oxidation states in my model. Furthermore, such 

probes could also validate the results of my current and future therapeutic strategies, 

including NADase inhibition, NAD+-precursor supplementation and ETC modulation. 

Another limitation of this study is the lack of understanding of the main contributors to 

the NAD(H) depletion in my system. A proteomics- and metabolomics- approaches 

could help elucidate the involvement of NAD+ synthesis enzymes and intermediates, 

respectively, to identify a potential bottleneck. Additionally, optimization of immunoblot 

assays of PARP and SIRT activity, and fluorescence-based NAD(H) detection assays 
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is currently underway within the group and should lead to the identification of the main 

NAD+-consumption pathways in these cells. Preliminary data point to an excessive 

PARP activation upon Atg5-/- MEFs culture in the galactose-based medium, which 

precedes cell death. In fact, my preliminary study indicates that both PARP and SIRT 

activity diminish in the last two hours prior to caspase 3 cleavage (data not shown), 

further supporting my finding that NAD+ levels are depleted in my model.  

Within this study, I explored several paths of dysfunction that occur downstream of 

autophagy abolition and identified multiple therapeutic targets within mitochondria to 

protect them from runaway NADH consumption and excessive ROS release. I also 

established that antioxidant supplementation may be beneficial in this system. 

Although, ROS have long been associated with the pathogenesis of age-related 

disease and neurodegeneration, the majority of clinical trials testing the efficacy of 

general antioxidant and vitamin supplementation failed to show improved outcomes 

and reported an increase in all-cause mortality upon chronic- or high-dose 

supplementation (reviewed in (Schmidt et al., 2015). Thus, the therapeutic potential of 

mitochondria-targeted antioxidants including Coenzyme Q10 and MitoQ10 was 

evaluated. However, neither of these antioxidants stopped PD progression 

(NCT00740714) (Snow et al., 2010; Beal et al., 2014). Similarly, vitamin E/C and 

coenzyme Q supplementation efficacy were tested in an AD clinical trial 

(NCT00117403), with no success in ameliorating amyloid β or Tau pathology in 

cerebrospinal fluid (Galasko et al., 2012). Worryingly, vitamin supplementation instead 

led to faster cognitive decline. Lastly, one further phase 2 clinical trial is currently 

planned, though not yet recruiting. This trial is aimed at short-term effects of MitoQ10 

supplementation on the vasodilation in AD patients (NCT03514875). These studies 

show that although successful in ameliorating cell death in my model, antioxidant 

supplementation in the form of vitamins or MitoQ10 is currently not successful in the 

clinic. 

In addition, my findings corroborate a new line of PD research based on an observation 

reported from a retrospective study of patients with diabetes mellitus type 2 (DMT2) 

who were treated with glitazone (GTZ), a member of a class of insulin sensitizing 

compounds otherwise known as thiazolidinediones (TZD)  (Brauer et al., 2015). TZDs 

were previously described as PPARγ activators and mild CI inhibitors (Scatena et al., 

2004). However, upon discovery of the mitochondrial pyruvate carrier (MPC), TZDs 
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were reported to specifically inhibit MPC-mediated pyruvate transport into 

mitochondria (Scatena et al., 2004; Divakaruni et al., 2013). Interestingly, DMT2 

patients on glitazone were 28% less likely to develop PD, when compared to DMT2 

patients on other anti-diabetic medication (Brauer et al., 2015). Although the effect was 

quite mild in real terms (6.4 individuals compared to 8.8 individuals per 10 000), and 

limited to patients with diabetes, it did prompt further study of pyruvate metabolism and 

mitochondrial function in animal models of PD (Ghosh et al., 2016). In this study, use 

of MSDC-0160, a specific MPC inhibitor, prevents neurodegeneration and motor 

deficits in genetic- and MPTP-induced PD mice. These results mirror my use of UK-

5099 in Atg5-/- MEFs, whereby the inhibition of pyruvate entry into mitochondria 

promoted cell viability in cells that lack autophagy. 

However, the effect of a TZD pioglitazone compound was tested in a phase 2 clinical 

trial in PD (NCT01280123) and the trial outcomes were not found to be sufficient to 

support a larger trial (Investigators, 2015). Furthermore, two MPC inhibitors, 

pioglitazne (NCT00760578) and MSDC-0160 (NCT01374438, NCT00760578) were 

tested in phase 2 clinical trials. Published results of the  MSDC-0160 study indicate 

that cerebellar glucose metabolism is maintained in patients in the treatment group, 

compared to its decline in the placebo group (Shah et al., 2014). However, two phase 

3 trials were terminated due to the lack of drug efficacy (NCT01931566; 

NCT02284906) and no further trials in AD are currently underway. Thus, mitochondria-

targeted strategies of antioxidant treatment and modulation of pyruvate entry to 

mitochondria supported by the findings in this study proved ineffective for the treatment 

of neurodegeneration in the clinical setting. In contrast, multiple clinical trials of 

NAD(H)-supplementation strategies to treat neurodegenerative and age-related 

disorders are currently underway and show early success (discussed in section 6.2).  
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 NAD(H) deficiency is identified in a disease-relevant 

model presenting with autophagy impairment. 

5.1 Introduction  

Physiological deficiency of autophagic flux is not limited to defects in pathway initiation, 

but can occur at any stage of cargo recognition, autophagosome formation, vesicle 

trafficking and lysosome-autophagosome fusion (Menzies, Fleming and Rubinsztein, 

2015). Autophagic stress was previously reported from multiple models of NPC 

disease, including neurons from Npc1-/- mice (Liao et al., 2007; Meske et al., 2014), in 

NPC patient fibroblasts (Pacheco, Kunkel and Lieberman, 2007) and in human 

embryonic stem cell-derived neurons (Ordonez et al., 2012; Sarkar et al., 2013). One 

consistent observation between all studies is the accumulation of autophagosomes, 

though authors diverge on their hypotheses of the underlying cause and best course 

of treatment. One group argues that autophagosome accumulation is a result of 

increased autophagy induction (Pacheco, Kunkel and Lieberman, 2007), others 

advocate defective clearance as the underlying cause (Sarkar et al., 2013; Meske et 

al., 2014). Moreover, the Ordonez study supports both views (Ordonez et al., 2012). 

Furthermore, treatment with HPβCD that mobilizes cholesterol from endosomes and 

lysosomes and rescues what is considered the underlying pathology of the disease, 

was reported to both increase (Meske et al., 2014) and block (Sarkar et al., 2013) 

autophagic flux. Studies from neuronal cultures derived from patient fibroblasts 

suggest that accumulation of autophagic vesicles leads to mitochondrial fragmentation 

and can itself contribute to toxicity in neurons with high levels of spontaneous 

autophagy (Ordonez et al., 2012). In these neurons, inhibition of autophagy initiation 

by 3-MA treatment prevented mitochondrial fragmentation, and interestingly also led 

to reduction of p62 puncta (Ordonez et al., 2012). The lack of understanding of the 

underlying cause of NPC disease and differences between models and tissue 

presentation of the disease complicate translation of any potential therapeutic 

treatment into the clinic (discussed in more detail in section 1.5.4).   

I have so far explored the effects of autophagy interruption at the stages of initiation 

and characterized the resulting changes in mitochondrial function and NAD(H) 

homeostasis. I next sought to test whether a late-stage block in autophagy flux would 

lead to a similar cellular phenotype. For my study, I first chose a knockout model of 
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NPC disease, the Npc1+/+ and Npc1-/- MEFs, that were previously characterized with 

impaired autophagy flux and autophagosome accumulation (Sarkar et al., 2013) and 

explored the state of mitochondrial bioenergetics and NAD(H) metabolism. I then 

aimed to explore the translational potential of my findings using a patient fibroblast 

model of NPC. 

5.2 Npc1-/- MEFs display phenotypes similar to Atg5-/- MEFs  

Current knowledge of NAD(H) metabolism in NPC is quite limited. As of yet, no 

published study has focused on the levels and metabolism of NAD(H) in NPC patient 

cells or mouse/cell models. Evidence of the potential benefit of nicotinamide 

supplementation arises from a single small study of mice with infantile NPC disease. 

Authors of this observational study hypothesize that nicotinamide may act as a histone 

deacetylase inhibitor or by modulation of oxidative stress (Marshall, Borbon and 

Erickson, 2017).  

In contrast, several studies characterized mitochondrial dysfunction in NPC to date. In 

a mouse study of NPC disease, authors reported increased levels of cholesterol 

associated with both the outer and inner mitochondrial membranes (Yu et al., 2005). 

Further characterization of mitochondrial function revealed inefficient respiration, loss 

of ATP and mitochondrial depolarization in NPC mouse brains, which improved upon 

incubation of isolated mitochondria with HPβCD (Yu et al., 2005). Mitochondria were 

later reported to  adopt a fragmented morphology in human embryonic stem cell-

derived neurons, but no further effort was made to characterize mitochondrial 

bioenergetics (Ordonez et al., 2012). A recent characterization of mitochondrial mass 

and function in cells derived from NPC1 patients shows increased cholesterol content 

in mitochondrial membrane, mitochondrial accumulation and a corresponding 

increased respiration, but surprisingly, with no changes in mMP, and decreased ROS 

and ATP levels (Woś et al., 2016).  It is interesting to note that although reports from 

NPC models agree that mitochondrial dysfunction is present, its exact nature in terms 

of bioenergetics, morphology and metabolism seems to vary between the multiple 

mouse and human models. 

5.2.1 ETC alterations in Npc1-/- MEFs cultured in a glucose-based medium 

In an approach similar to my study of Atg5+/+ and Atg5-/- MEFs, I first cultured Npc1+/+ 

and Npc1-/- MEFs in a glucose based-medium and characterized the state of 
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mitochondrial bioenergetics. First, Seahorse XF-based analysis of non-permeabilized 

cells revealed a lower basal respiration rate (prior to oligomycin addition) and lower 

spare respiratory capacity (following addition of FCCP) in Npc1-/- MEFs (Figure 5.1A). 

OCR and ECAR measurements were then used to calculate total ATP level production 

and the proportion of ATP produces by OXPHOS or by glycolysis (Figure 5.1A,B) 

(Mookerjee and Brand, 2015). Npc1-/- MEFs have the same potential for ATP 

generation as Npc1+/+ MEFs, although a significantly greater proportion of ATP is 

generated by aerobic glycolysis (Figure 5.1C). Thus, although the mitochondrial 

bioenergetics are compromised in Npc1-/- MEFs, they are capable of cellular metabolic 

rewiring to supplement any depletion of cellular energy charge.  

I then performed Seahorse XF analysis of mitochondrial respiration on permeabilized 

cells in the presence of either CI substrates (pyruvate+ malate) or a CII substrate 

(succinate). CI-linked state 3ADP respiration (following ADP addition) was reduced in 

Npc1-/- MEFs (Figure 5.2A), while no dysfunction was found in CII-linked analysis 

(5.2B). State 3ADP was then expressed as a ratio to state 4oligomycin to indicate the 

coupling between O2 consumption and ADP phosphorylation (Figure 5.2C). CI-linked 

RCR was significantly lower in Npc1-/- MEFs when compared to Npc1+/+ MEFs. In 

contrast, the coupling between O2 consumption and ADP phosphorylation upon CII 

substrate feed was significantly increased in Npc1-/- MEFs (Figure 5.2C).  

Immunoblot-based analysis of ETC subunit levels revealed a significant depletion of 

CI core (Ndufs3 and Ndufv2) and accessory (Ndufa9) subunits from the matrix arm, 

and a relatively short-lived membrane arm subunit (Ndufb8) (Karunadharma et al., 

2015; Zhu, Vinothkumar and Hirst, 2016). In contrast the Ndufb9 membrane arm 

subunit remained unaffected. In addition, levels of CIII (Uqcrc2) and CV (Atp5a) 

subunits were decreased, though not significantly. Uqcrc2 is an accessory subunit of 

CIII and might not reflect CIII catalytic activity. Furthermore, the CII-CIII2-CIV linked 

respiration (state 3ADP) and RCR, as measured by Seahorse XF, are not altered in 

Npc1-/- MEFs and thus suggest that CIII2, CIV and ATP synthase activities are not 

affected in Npc1-/- MEFs. 
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Figure 5. 1 Npc1-/- MEFs cultured in glucose-based medium undergo metabolic 

re-wiring 

  

(A-C) Mitochondrial bioenergetics vary between Npc1+/+ and Npc1-/- MEFs. (A,B) 

Seahorse analysis of OCR and ECAR were analysed in basal conditions or following 

additions of oligomycin, FCCP, 2-DG, antimycin A and rotenone as indicated. (C) ATP 

production calculation was based on Seahorse analysis in Npc1+/+ and Npc1-/- MEFs pre-

cultured in glucose-based medium for 48h. Error bars represent S.E.M. *p<0.05. (n=3). 

Seahorse analyses were carried out in collaboration with Dr Satomi Miwa. 
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5.2.2 Npc1-/- MEFs die upon prolonged culture in a galactose-based medium  

A switch of Npc1+/+ and Npc1-/- MEFs into a galactose-based medium led to a time-

dependent increase of all mitochondrial ETC subunit levels, but not OMM proteins, in 

both cell lines (Figure 5.3A). This result suggests that the upregulation of mitochondrial 

ETC subunit expression upon galactose-based culture is autophagy-independent. 

More importantly, Npc1-/- cells recover the downregulated CI subunits to the levels 

comparable to wild-type cells, indicating that CI subunit downregulation observed upon 

culture in a glucose-based medium is an active, reversible process. Similarly, 

increased presence of SCs in mitochondria from both cell lines was detected by BN-

PAGE analysis upon the switch to and culture in a galactose-based medium (Figure 

5.3B). Interestingly, levels of CI holocomplex, detected after mitochondrial membrane 

solubilisation with TX-100 were comparable between both conditions and cell lines 

(Figure 5.3B). Culture in glucose-based medium revealed a drastically lower amount 

of SCs in Npc1-/- MEFs, which improved and recovered to Npc1+/+ levels upon a switch 

to galactose. The one difference that was maintained between cell lines was the lack 

of a very high molecular weight species in extracts from Npc1-/- MEFs detected upon 

membrane solubilisation with digitonin (Figure 5.3B). I hypothesize that this species 

corresponds to a structure consisting of a CI dimer (CI2), a CIII dimer (CIII2) (Jha, Wang 

and Auwerx, 2016). Although the lack of the CI2CIII2 band was consistent between 

multiple replicates, the physiological significance of the CI2CIII2 assembly remains 

unknown. Due to technical difficulties were not able to measure mitochondrial 

bioenergetics in cell lines cultured in a galactose-based medium. I did, however, obtain 

cellular measurement of mitochondrial ROS levels and found an increased e- leak in 

Npc1-/- MEFs cultured in both media (Figure 5.3C).  
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Figure 5. 2 Functional and structural CI deficiency is observed in Npc1-/- MEFs 

(A-C) CI-linked mitochondrial bioenergetics is altered in Npc1-/- MEFs. Seahorse analysis 

of OCR was carried out in permeabilized cells fed with CI (PM) (A) or CII (S) (B) 

substrates. OCR measurements occurred in basal conditions or following additions of 

oligomycin, FCCP, 2-DG, antimycin A and rotenone as indicated. (C) Respiratory control 

ratio (RCR) was calculated in both conditions. (D) Representative immunoblots and 

quantification of CI-CV complex subunits in Npc1+/+ and Npc1-/- MEFs cultured in a 

glucose-based medium. (E) Graphic representation of CI of the ETC and the predicted 

location of probed significantly reduced (yellow) and unaffected (green) subunits. Cells 

were pre-cultured in a glucose-based medium for 48h prior to all experiments. Error bars 

represent S.E.M. *p<0.05, **p<0.01 ***p<0.001. (n=3). Seahorse XF analyses were 

carried out in collaboration with Dr Satomi Miwa. 
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Figure 5. 3 Cell culture in galactose-based medium increases ETC levels and 

ROS release 

  

(A) Representative western blots of p62, an autophagy receptor; CI subunits: Ndufa9, 

Ndufb8, Ndufb9, Ndufs3 and Ndufv2; CII subunit Sdha; CIII subunit Uqcrc2; CIV subunit 

mt-CoI; ATP synthase subunit Atp5a; and OMM membrane protein Mfn2 and Tomm20 

in Npc1+/+ and Npc1-/- MEFs switched to galactose-based medium for 48h. (B) BN-PAGE 

immunoblots of CI (Ndufa9) holocomplexes solubilised in 1μM triton X-100 (TX-100), or 

SCs solubilised in 0.8μM digitonin (dig). (C) Quantitation of MitoSOX intensity measured 

by FACS upon 60h culture in galactose-based medium. Error bars represent S.E.M. 

*p<0.05, ***p<0.001. (n=3). 
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Finally, prolonged culture of Npc1-/- MEFs in galactose medium led to increased levels 

of apoptotic cell death observed by bright field microscopy as cell detachment and 

confirmed by caspase 3 cleavage immunoblotting (Figure 5.4A,B). By bright field 

microscopy, I confirmed that stable expression of the NPC1 protein and culture 

medium supplementation with Z-VAD-fmk were both sufficient to rescue cell death 

(Figure 5.4A). By immunoblotting analysis of autophagy markers, p62 and LC3, I was 

also able to observe that LC3-II levels increase in all cell lines upon culture in a 

galactose-based medium and that higher levels of both markers, p62 and LC3-II 

indicative of a block in autophagy flux, were detected in Npc1-/- MEFs (Figure 5.4B).   

In summary, the described sets of experiments suggest that the mitochondrial 

dysfunction I characterized in Atg5-/- MEFs occurs in a model of late-stage autophagy 

block, the Npc1-/- MEFs. To ascertain that Npc1-/- MEFs respond to the modulation of 

ETC, mitochondrial metabolism and ROS scavenging in a similar fashion to Atg5-/- 

MEFs I repeated several key experiments. First, cell transduction with an alternative 

NADH oxidoreductase, Ndi1, further reduced cellular survival (Figure 5.5A). Second, 

supplementation of extra substrate in the form of cell-permeable pyruvate significantly 

increased the rate of cell death in Npc1-/- MEFs (Figure 5.5B). Finally, mitochondria- 

and CI- specific ROS scavenging by MitoQ10 and S1QEL2.2, led to a moderate, but 

significant increase in cell viability (Figure 5.4C,D). I have thus demonstrated that 

Npc1-/- MEFs not only display the key signs of mitochondrial dysfunction found in Atg5-

/- MEFs, but that their response to metabolic and ETC modulation is analogous to that 

of Atg5-/- MEFs. Lastly, I have demonstrated that mitochondrial ROS contributes to the 

loss of cell viability in both models of autophagy deficiency. 
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Figure 5. 4 Npc1-/- MEFs lose viability upon culture in galactose-based 

medium 

 

(A) Bright field microscopy images of Npc1+/+ and Npc1-/- MEFs cultured in galactose-

based medium only (72h) or supplemented with Z-VAD-fmk (20μM; added to culture 

medium at 66h). (B) Representative western blot and quantitation of cell death marker, 

cleaved caspase 3; and of autophagy markers p62 and LC3, in Npc1+/+, Npc1-/-, Npc1-/- 

stably expressing NPC1 MEFs cultured in glucose or galactose-based media for 72h. 

Cleaved caspase 3 levels were normalised to actin. Error bars represent S.E.M. Scale 

bar represents 200μm. **p<0.01, ***p<0.001. (n=3).  
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Figure 5. 5 Npc1-/- MEFs phenocopy key findings from Atg5-/- MEFs upon 

culture in galactose-based medium 

 

  

(A-D) Bright field microscopy images; representative western blots and quantitation of 

caspase 3 cleavage in Npc1-/- MEFs transiently transfected with Ndi1 (A); or in Npc1-/- 

MEFs cultured galactose-based medium supplemented with 10mM sodium pyruvate 

(SP) (B); 20nM MitoQ10; or 500nM S1QEL2.2 all supplemented and re-fed at 0h and at 

each 24h interval (C,D). Cleaved caspase 3 levels were normalised to actin. Error bars 

represent S.E.M. Scale bar represents 200μm.  *p<0.05, ***p<0.001. (n=3).  
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5.2.3 Npc1 KO leads to aberrant glucose metabolism and NADH depletion 

I have so far established that Npc1-/- MEFs show the signs of mitochondrial, and 

specifically CI dysfunction similar to Atg5-/- MEFs. The next logical step was to 

establish whether NADH depletion underlies the dysfunction I observed. I therefore 

carried out metabolic profiling of nucleotide and amino acid levels, and intermediates 

of the glycolysis, PPP and TCA cycle in both cell lines. Npc1+/+ and Npc1-/- MEFs were 

subjected to metabolite extraction after 48h culture in a galactose-based medium, 

consistent with the timeframe of mitochondrial bioenergetics measurements. Mass 

peak data output of the metabolomics study was first corrected to cellular protein levels 

and then subjected to statistical analysis by MetaboAnalyst 4.0. Log2 conversion of 

metabolite concentration averages and statistical analysis (the Student’s t-test with p 

value corrected with false discovery rate (FDR)) of metabolite averages between the 

Npc1+/+ and Npc1-/- MEFs were plotted in the form of a heatmap (Figure 5.6).  

Loss of Npc1 had a variable effect on the levels of amino acids (Figure 5.6). Many 

amino acids were highly enriched in Npc1-/- MEFs, which includes all of the essential 

amino acids (in italics), cysteine, proline and asparagine. In contrast, the three most 

negatively affected amino acids are aspartate, glutamate and glutamine, which are 

also among the most abundant, and their depletion could be a result of a loss of protein 

recycling, impaired biosynthesis/uptake or increased usage. Importantly, glutamine 

and aspartate are necessary for purine and pyrimidine de novo synthesis and their loss 

could be an indication of a wider dysfunction (Tong, Zhao and Thompson, 2009). In 

contrast, the first three intermediates of glycolysis, galactose, glucose-6-phosphate, 

and fructose-1,6-bisphosphate are depleted. Glucose-6-phosphate is an intermediate 

of both glycolysis and the PPP. Increased utilization of glucose-6-phosphate by the 

PPP could explain both the relative decrease of an upstream intermediate, galactose-

6-phosphate, and the depletion of a downstream glycolysis intermediate, fructose-1,6-

bisphosphate. Increased levels of all detected PPP intermediates further support this 

hypothesis. Importantly, regardless of the changes upstream, the levels of glycolytic 

metabolites downstream of fructose-1,6-bisphosphate appear to be unperturbed 

(Figure 5.6).  

The relative loss of pyruvate in Npc1-/- MEFs could, similarly to glucose-6-phosphate, 

be rationalized by its increased flux to acetyl coenzyme A (acetyl-CoA) that feeds into 

the TCA cycle. In fact, the progression of the TCA cycle in the forward direction (from 
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acetyl-CoA to oxaloacetate) seems to be stalled, suggesting that the whole cycle and 

NADH/FADH2 generation could be compromised in these cells. In fact, the two most 

significantly depleted intermediates, 2-oxogluterate (also known as α-ketoglutarate) 

and malate, together with isocitrate (not detected) are subject to oxidation, and e- 

donation to NAD+. Surprisingly, what could be described as an impairment of 

mitochondrial bioenergetics, does not seem to have an effect on the levels and charge 

of the adenine nucleotide. In fact, the only nucleotide that is compromised in both, 

abundance and charge, is the uridine nucleotide.  

Most importantly, I detected a significant depletion of NADH in Npc1-/- MEFs, and thus 

validated the result from Atg5-/- MEFs (Figure 4.3). Altogether, metabolite profiling in 

Npc1-/- MEFs revealed signs of dysregulation of all the investigated pathways and 

depletion of selected amino acids and nucleotides. These results suggest that the 

central cellular metabolism is perturbed in Npc1-/- MEFs to a much higher degree than 

in Atg5-/- MEFs. These findings were not unexpected, considering the different nature 

of autophagy perturbation in the two models and, in the case of NPC1, the downstream 

effect of lipid metabolism dysregulation. However, it is possible that the different nature 

of dysfunction could also lead to a different mechanism of cell death.  

In the NPC1 model, I did not explore the underlying mechanism of NADH depletion, 

but rather focused the study to elucidate whether NAD+ precursor supplementation can 

alleviate the dysregulation of cellular metabolism and prevent the observed loss of cell 

viability upon culture in a galactose-based medium. First, I established that a single 

dose of NAD+ precursor, NAM, added to the galactose-based medium prior to culture 

medium switch, was sufficient to rescue caspase 3 cleavage and cell death in Npc1-/- 

MEFs (Figure 5.7A). Metabolite profiling at 48h confirmed that NAM supplementation 

boosted levels of NAD+ and corrected a defect in NADH levels in Npc1-/- MEFs (Figure 

5.7B). Unexpectedly, NAM supplementation corrected levels of glycolysis and TCA 

intermediates, and also led to a steady state increase in the levels of all amino acids. 

These findings reveal a link between NAD(H) levels and/or its function as a co-factor 

in the cellular metabolism, amino acid import or maintenance. Altogether, NAM 

supplementation led to a significant improvement in cellular viability and correction of 

metabolic dysfunction in Npc1-/- MEFs. 
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Figure 5. 6 Pathway-identity-based depiction of metabolic data from Npc1+/+ 

and Npc1-/- MEFs 

  

Metabolites are depicted as a heatmap of Log2(FC) of Npc1-/- MEFs to Npc1+/+ MEFs. 

Metabolite organization is based on their association to glucose oxidation pathways of 

glycolysis, pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle. Amino 

acids are organized alphabetically. Nucleotide order is first alphabetical and depends on 

the energy charge they carry. Dr Oliver Maddocks carried out LC-MS sample processing. 
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Figure 5. 7 NAM supplementation restores TCA metabolite and nucleotide 

levels in Npc1-/- MEFs 

  

(A) Bright field microscopy images and representative western blots of cleaved caspase 

3 in Npc1-/- MEFs cultured in a galactose-based medium only or supplemented with NAM. 

Cells were imaged 72h after medium switch and treatment start when we observed 

morphological changes associated with apoptosis. Scale bar represents 200µm. Error 

bars represent S.E.M. Cleaved caspase 3 levels were normalised to actin levels. 

**p<0.01. (n=3). (B) Metabolites are depicted as a heatmap of log2(FC) of Npc1-/- MEFs 

supplemented with NAM to Npc1-/- MEFs cultured in galactose-based medium only. 

Metabolite extraction was carried out after 48h of culture in a galactose-based medium. 

Metabolite organization is based on their association with glucose oxidation pathways of 

glycolysis, pentose phosphate pathway (PPP) or tricarboxylic acid (TCA) cycle. 

Nucleotide order is first alphabetical and depends on the energy charge they carry. Dr 

Oliver Maddocks carried out LC-MS sample processing.  
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5.2.4 Impaired autophagy flux in Npc1-/- MEFs can be restored by small 

molecule supplementation 

Our initial hypothesis states that it is the block in autophagy that stands at the root of 

dysregulated mitochondrial and NAD(H) metabolism. I have thus far confirmed that 

mitochondrial and NAD(H) dysfunction does occur in Npc1-/- MEFs and that cell death 

in this model can be attenuated by either ROS scavenging or NAM supplementation. 

To establish that autophagy impairment is ultimately responsible for the observed 

molecular phenotypes and loss of cell viability, I sought to examine whether 

reconstitution of autophagy flux in Npc1-/- MEFs protects these cells from apoptotic cell 

death.  

Previous studies demonstrated that autophagic flux can be restored in Npc1-/- MEFs 

(Sarkar et al., 2013; Maetzel et al., 2014). Two lines of inquiry identified three 

interventions to induce autophagy flux in these cells: starvation and rapamycin (which 

trigger mTOR-dependent autophagy induction (Maetzel et al., 2014)), and lithium 

chloride (mTOR-independent autophagy induction (Sarkar et al., 2013)). I chose 

rapamycin and lithium chloride as positive controls for this experiment. Further choice 

of tested compounds was based on a recent screening study carried out in the lab in 

collaboration with Dr Peter Banks (High Throughput Facility, Newcastle University), 

which aimed to identify compounds capable of restoring autophagy flux in Npc1-/- MEFs 

cultured in a glucose-based medium (unpublished data). The two hits of interest in the 

screen were rofecoxib and celecoxib.  

I chose to initially test celecoxib, an FDA approved compound that inhibits 

cyclooxygenase-2, an enzyme involved in pro-inflammatory signalling (Davies et al., 

2000). Celecoxib was first approved for treatment of osteoarthritis and rheumatoid 

pain, but is currently the subject of over 16 active and recruiting, and over 40 completed 

phase 4 clinical trials due to observations of its multiple cellular targets and an anti-

proliferative effect in cancer models (https://clinicaltrials.gov/) (Gong et al., 2012). 

Published studies disagree on the effect of celecoxib on autophagy. It was first shown 

to induce autophagy in cancer cell lines (Huang and Sinicrope, 2010; Liu et al., 2014) 

and later reported to inhibit autophagy due to increased lysosomal pH in a leukaemia 

cell line (Lu et al., 2016). Altogether, I selected rapamycin (as a positive control), lithium 

chloride, celecoxib and hydroxycelecoxib (an inactive metabolite of celecoxib as a 

negative control) for testing.  
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I first established the dosage for each compound based on previous literature and their 

toxicity in cells cultured in the galactose-based medium. I then supplemented the 

galactose-based medium with each compound and observed LC3-II levels, as a direct 

readout of steady-state autophagosome number, and p62 levels as a readout of 

autophagosome turnover (Klionsky et al., 2012). To determine autophagic flux, I 

carried out all experiments in the presence or absence of bafilomycin A1 (BAF A1) at 

a saturating concentration. BAF A1 is an inhibitor of lysosomal V-ATPase, that leads 

to lysosomal pH neutralization and thereby loss of autophagosome degradation 

(Klionsky et al., 2012). LC3-II and p62 levels were then compared between untreated 

(steady state) and BAF A1 treated conditions (flux).  

I first observed that levels of both, LC3-II and p62 increase in all BAF A1 supplemented 

conditions in Npc1+/+ MEFs, suggesting that galactose-based culture alone induces 

autophagy in wild type cells (Figure 5.8A). Increase of LC3-II and p62 levels in BAF A1 

supplemented conditions seems less prominent in Npc1-/- MEFs (Figure 5.8B). I further 

detected a decrease in steady state levels of p62 in both cell lines upon the treatment 

with rapamycin (Rap) and celecoxib (Figure 5.8A,B). By BAF A1 supplementation I 

confirmed that p62 degradation in these conditions is mediated by autophagy (Figure 

5.8A-D). Similarly, I detected an increased LC3-II ratio in BAF A1 treated cells cultured 

in the presence of rapamycin and celecoxib relative to steady-state levels, a result that 

is indicative of increased autophagy flux (Figure 5.8C,D). Cell supplementation with 

hydroxycelecoxib had no effect on any of the examined readouts and does not seem 

to be involved in autophagy regulation. Interestingly, lithium chloride (LiCl) that was 

previously shown to induce autophagy in Npc1-/- MEFs (Sarkar, 2013) had no effect on 

autophagy flux in cells cultured in a galactose-based medium. In summary, I confirmed 

that rapamycin treatment improves autophagic flux in both cell lines and discovered 

that celecoxib supplementation mimics the effect of rapamycin, though the mechanism 

of autophagy induction by celecoxib remains unknown. 
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Figure 5. 8 Autophagy can be restored in NPC1-/- MEFs 

 

5.2.5 Autophagy restoration promotes cell viability in Npc1-/- MEFs 

Having established that rapamycin and celecoxib induce autophagy flux in Npc1-/- 

MEFs, I examined their effect on cellular viability. As predicted, a single dose of 

rapamycin and celecoxib at 0h that were shown to increase autophagic flux were also 

sufficient to prevent caspase 3 cleavage and cell death (Figure 5.9A,B). 

Supplementation with hydroxycelecoxib had no effect on cell survival. Unexpectedly, 

lithium chloride, despite not having restored autophagy flux in this model, led to cell 

death rescue. I did not examine this result in any more detail, but it might be worth a 

further investigation as it might provide an alternative route to rescue dysfunction in 

this cell line. Many studies report the beneficial effect of lithium supplementation on 

mitochondrial respiration and mMP (Bachmann et al., 2009), CI activity (de Sousa et 

al., 2015) and mitochondrial mobility (Chen et al., 2010), some or all of which could be 

a result of increased autophagy-mediated clearance of dysfunctional mitochondria. 

(A-D) Rapamycin and celecoxib boost autophagy flux in Npc1+/+ and Npc1-/- MEFs. 

Representative western blots of autophagy markers, p62 and LC3, in Npc1+/+ MEFs (A) 

and Npc1-/- MEFs (B), cultured in the galactose medium only, or supplemented with 

100nM rapamycin (Rap), 10mM lithium chloride (LiCl), 10μM celecoxib (Cele) or 2.5μM 

hydroxycelecoxib (Hele) in the presence or absence of 100nM bafilomycin A1 (BAF A1) 

for 24h. Quantitation of p62 and LC3-II levels in Npc1+/+ MEFs (C) and Npc1-/- MEFs (D) 

in the same conditions as (A,B). Error bars represent S.E.M. Levels of autophagy markers 

were first normalised to actin and later expressed as a ratio between +BAF A1 and steady 

state conditions. *p<0.05, **p<0.01, ***p<0.001. (n=3). 

   

 



146 
 

However, studies also suggest that lithium treatment induces increased expression of 

anti-apoptotic Bcl-2 protein and decreased expression of pro-apoptotic BAX protein 

(Chen and Chuang, 1999; Chen et al., 1999; Youdim and Arraf, 2004), which might be 

worth following up as it could lead to cell death prevention downstream of autophagy 

impairment, mitochondrial dysfunction and NADH depletion by opposing apoptosis. 

                

Figure 5. 9 Multiple tested compounds rescue cell death in Npc1-/- MEFs 

 

  

(A) Representative bright field microscopy images of Npc1-/- MEFs cultured in the 

galactose medium only, or supplemented with 100nM rapamycin (Rap), 10mM lithium 

chloride (LiCl), 10μM celecoxib (Cele) or 2.5μM hydroxycelecoxib (Hele) for 72h. (B) 

Quantitation of caspase 3 cleavage in the same conditions as (A). Cleaved caspase 3 

levels were normalised to actin. Error bars represent S.E.M. ***p<0.001. (n=3). 
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5.3 Investigation of NPC1 human patient fibroblasts 

Human NPC1 patient fibroblasts and age-matched controls were used to investigate 

the translational potential of my results from the studies using mouse models of 

autophagy deficiency, the Atg5 KO and Npc1 KO MEFs. Five female cell lines were 

selected per group with the aim of achieving the best possible age-match. All selected 

NPC1 patient cell lines were previously shown to have a defect in cholesterol 

esterification and positive filipin staining, which are the staple laboratory procedures 

utilized in NPC1 diagnosis (Park et al., 2003). Cell line selection was aimed to achieve 

a coverage of juvenile and adult-onset of disease and to include a wide range of 

common and rare, non-sense, mis-sense and frameshift NPC1 mutations (Table 5.1) 

(Park et al., 2003; Geberhiwot et al., 2018). Four patients (NPC1 1-4) carry two 

different NPC1 mutations, most of which occur in the lysosomal lumen (L) I region of 

loop I (D874V, Y890X, P1007A, T1036M, (and also I1061T). Other mutations occur in 

lumen A region (c.451_452delAG), lumen M region (F1221), a transmembrane (TM) V 

region (D700N) and in a cytoplasm (C) H region (T825C) (Davies and Ioannou, 2000; 

Park et al., 2003). The fifth patient was homozygous for the most prevalent NPC1 

mutation, the I1061T missense that results in an increased targeting of the mutated, 

but functional NPC1 protein for degradation by the proteasome (Gelsthorpe et al., 

2008). Interestingly, each patient carried at least one allele with a mutation on the 

vesicle lumen-facing region of NPC1. Patients 1, 3 and 5 all carried both mutations in 

the loop I region, while patients 2 and 4 carried their lumen-facing mutations in loop A 

and an unstructured C-terminus-proximal lumen region, respectively (Davies and 

Ioannou, 2000). To the best of my knowledge, none of these cell lines had been 

previously profiled with respect to an autophagy defect. 
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Table 5. 1 Primary human fibroblasts used in this study 

Study Label 
Catalogue 

ID 
Gender Age 

Disease 
Affected 

Allele 1 Mutation  
Allele 2 Mutation 

CTRL (1) 10176 Female 24 no none 

CTRL (2) 10263 Female 21 no none 

CTRL (3) 10632 Female 22 no none 

CTRL (4) 10705 Female 26 no none 

CTRL (5) 10763 Female 21 no none 

NPC1 (1) GM17912 Female 11 yes [P1007A]L;[T1036M)]L 

NPC1 (2) GM17924 Female 21 yes c.451_452delAGL;[Y825C]C 

NPC1 (3) GM18387 Female 33 yes [D874V]L;[Y890X]L 

NPC1 (4) GM18402 Female 10 yes [D700N]TM;[F1221fsX]L  

NPC1 (5) GM18417 Female 25 yes  [I1061T]L; [I1061T]L 

5.3.1 Identification of autophagy deficiency in NPC1 patient fibroblasts 

Autophagy impairment in CTRL and NPC1 patient fibroblasts was monitored in 

glucose-based medium by steady state number of LC3 puncta, which correlate with 

autophagosome formation and degradation (Klionsky and Emr, 2000; Sarkar et al., 

2013). The number of steady-state LC3 puncta in all control human fibroblasts was low 

(less than 10 per cell) (Figure 5.10A,B). Intriguingly, the variability of LC3 puncta 

numbers was high in NPC1 patient fibroblasts (Figure 5.10A) and led to identification 

of two cell lines with no apparent autophagy impairment (NAI), and three cell lines with 

a potential autophagy impairment (AI) (Fig 5.1A,B). To confirm the absence and 

presence of an autophagy defect in NPC1 cells, whole cell lysate levels of LC3-II were 

monitored under conditions of inhibition of autophagosome fusion with the lysosome 

by treating cells with BAF A1 at a saturating concentration. CTRL cells displayed low 

levels of LC3-II in steady state conditions, which increased upon a four hour treatment 

with BAF A1 (Figure 5.10C). Analysis of NPC1 cells revealed variable LC3-II levels at 

steady state and an irregular effect of LC3-II accumulation upon the treatment with 

BAF A1 (Figure 5.10C). Patient cell lines 1 and 2 (NPC1 (1) and NPC1 (2)), which had 

low numbers of LC3 puncta also displayed lower steady state levels of LC3-II (Figure 

5.10C). NPC1 samples re-run in a shuffled order to dispel the possibility of a gel edge-

effect confirmed that NPC1 cell lines 1 and 2 are autophagy efficient (Appendix 2). In 

contrast, western blot analysis of NPC1 cell lines 3-5 corroborated results from 

immunofluorescence and confirmed that these cells are autophagy deficient, though 

autophagy flux does not appear to be blocked completely (Figure 5.10D). Three CTRL 

cell lines (2, 3 and 5) were then selected, based primarily on their growth rate, to 
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complement analysis of the three autophagy-deficient NPC1(3-5) cell lines. A repeated 

western blot run that contains the six selected cell lines further reveals the true extent 

of LC3-II accumulation in NPC1 cell lines as loaded next to CTRLs (Figure 5.10E). 

I have previously established that NADH levels decrease in models of autophagy 

deficiency (Figures 4.3 and 5.7) and sought to examine whether this relationship 

persists in patient-derived cells presenting with a partial block in autophagy. To 

replicate the culture conditions from my MEF-based study, I cultured CTRL and NPC1 

patient fibroblasts in the galactose-based medium. All cells were able to tolerate sub-

culture in the galactose-based media with no apparent signs of cell death. I thus 

cultured cells for 14 days and characterized cellular NAD(H) and ROS levels as well 

as collecting cells for metabolic profiling. A kit-based measurement of NAD(H) levels 

was not sensitive enough to detect the levels of NADH in either CTRL or NPC1 cell 

lines (data not shown). Instead, I detected a significant depletion of whole-cell NAD+ 

levels in NPC1 (AI) cell lines relative to the CTRL cells (Figure 5.11A). NAD+ levels 

were not affected in NPC1 patient fibroblasts that do not have a defect in autophagy 

(NAI) (Figure 5.11A). Metabolic profiling of the three CTRL (2,3,5) and three NPC1 (3-

5) cell lines further verified the kit-based measurement by detecting a significant 

reduction in NAD+ levels (Figure 5.11B). This method also detected a large and highly 

significant depletion of NADH, and corroborated my findings from genetic autophagy-

deficient models. In addition, although glycolysis and nucleotide levels do seem to be 

affected in NPC1 patient cells, the perturbations do not mirror those identified in Npc1-

/- MEFs and the TCA cycle in NPC1 patient fibroblasts is not perturbed. Lastly, I 

performed a flow cytometry-based analysis of cellular ROS levels by a H2DCFDA stain 

and detected a significantly higher levels of ROS in all three NPC1 (AI) cell lines when 

compared to CTRLs (Figure 5.11C,D; Appendix 3). 
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Figure 5. 10 Autophagy deficiency is present in some NPC1 patient fibroblasts 

  

(A) Immunofluorescence staining with anti-LC3 antibody in CTRL and NPC1 patient 

fibroblasts. (B) LC3 puncta quantification in the same conditions as (A) following patient 

cell line classification into cells displaying no autophagy impairment (NAI) or autophagy 

impairment (AI).  Scale bar represents 20µm. (C-D) Representative immunoblots and 

combined analysis of cellular autophagy levels in control and NPC1 patient fibroblasts 

treated with 100nM bafilomycin A1 (BAF A1) or vehicle (DMSO) for 24h. Error bars 

represent S.E.M. LC3 levels were normalised to actin. *p<0.05.  
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Figure 5. 11 Reduced NAD(H) levels and increased ROS are detected in NPC1 

patient fibroblasts  

  

(A) NAD level measurement by Promega’s NAD/NADH-GloTM assay corrected for 

cellular protein levels in CTRL and NPC1 patient fibroblasts after sub-culture in the 

galactose-based medium. Data from NPC1 cell lines was split based on cell classification 

of displaying no autophagy impairment (NAI) or autophagy impairment (AI). (B) Metabolite 

profiling in CTRL and NPC1 (AI) cells. Metabolites are depicted as a heatmap of log2(FC) 

of NPC1s to CTRLs. Metabolite organization is based on their association with glucose 

oxidation pathways of glycolysis and tricarboxylic acid (TCA). Nucleotide order is first 

alphabetical and depends on the energy charge they carry. (C) Representative flow 

cytometry peaks of CTRL and NPC1 cellular ROS levels detected by H2DCFDA 

fluorescence intensity after sub-culture in the galactose-based medium (same conditions 

and length as (A) and (B). (D) Quantitation of H2DCFDA fluorescence intensity 

differences between CTRL and NPC1 (AI) cells. Error bars represent S.E.M. * p < 0.05. 

Dr Oliver Maddocks carried out LC-MS sample processing. 
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5.3.2 Autophagy deficiency in patient fibroblasts correlates with NAD depletion 

and increased sensitivity to ROS 

Despite increased cellular ROS load and a significant depletion in both NAD+ and 

NADH, NPC1 human fibroblasts do not die upon prolonged culture in a galactose-

based medium. Increased susceptibility of NPC1 patient fibroblasts to exogenous 

stress was previously reported in glucose-based culture (Zampieri et al., 2009). To 

determine whether depletion of NAD(H) in NPC1 patient fibroblasts increases their 

sensitivity to a short burst of oxidative stress, fibroblasts sub-cultured in a galactose-

based medium for 14 days were exposed to increasing concentrations of H2O2. The 

percentage of viable cells was determined in NPC1 (AI) and CTRL human cell lines 

immediately after exposure to H2O2 by the MTT assay, in which 3-(4,5-Dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, a yellow water-soluble compound gets 

converted to a water-insoluble purple formazan crystals by mitochondrial 

dehydrogenases (Riss et al., 2016). Cell viability response to increasing H2O2 

supplementation was non-linear in CTRL and NPC1 cell lines. CTRL fibroblasts 

tolerate H2O2-induced oxidative stress at low H2O2 doses (Figure 5.12A). In fact, low 

doses of H2O2 seem to initiate a hormetic effect in CTRL cell lines by increasing their 

metabolic activity and redox potential, as measured by an increased conversion of 

MTT to formazan to the levels above baseline (Figure 5.12B). The two highest H2O2 

doses I tested, 700μM and 1000μM respectively led to an approximately 50% and 

100% decrease in cellular viability (Figure 5.12A,B).  

In contrast, all tested H2O2 concentrations had a negative impact on the viability of 

NPC1 patient fibroblasts (Figure 5.12A). % viability of NPC1 cells as a function of H2O2 

dose followed a common non-linear sigmoidal shape often observed in dose-response 

relationships. To test this relationship, I carried out a non-linear regression analysis of 

cell viability as a function of H2O2 dose dependency on cell viability data collected from 

NPC1 and CTRL cell lines using a log(H2O2) vs normalized response (0%-100%)- 

variable slope equation. Goodness of model fit analysis indicates that CTRL cell line 

response to H2O2 challenge does not fit the shape of a dose response curve, most 

likely due to the initial hormetic effect. In contrast, viability of NPC1 cells challenged 

with H2O2 is dose dependent, and my analysis indicates a good fit to the model, despite 

the non-Gaussian distribution of NPC1 data residuals (Figure 5.12C). 
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To explore the causative relationship between NAD(H) depletion and increased 

sensitivity to oxidative stress, one NPC1 (AI) human fibroblast cell line was selected 

for supplementation with increasing concentrations of two substrates of the NAD+ 

salvage pathway, NMN and NAM. Both, NAM (1.0mM, 2.5mM, 5.0mM) and NMN 

(0.1mM, 0.25mM, 1.00mM) supplementation led to a linear increase in cellular NAD+ 

levels (Figure 5.13A,B). NAM and NMN supplementation led to a dose-dependent 

rescue of cell viability, with the highest doses leading to cell viability recovery to 

approximately 100% (Figure 5.13C,D). In addition, the distribution of residuals of non-

linear regression analysis did fit a Gaussian distribution (Figure 5.13C,D) and 

correlation analysis revealed a very strong positive correlation between NAD+ levels 

and viability in NAM (r=0.9522, R2=0.9068, p=0.0478) and NMN (r=0.9941, R2=0.9882, 

p=0.0059) supplemented cells. Of note is that although lower doses of NMN were used 

for practical reasons, 1mM dose of NMN achieved a similar recovery of NAD+ levels 

as a 1mM dose of NAM (0.0 data point on both x-axes) and seems to be as potent as 

5mM dose of NAM in preventing loss of cell viability (Figure 5.13A,B). This observation 

could be a result of the NAM-mediated inhibition of cellular NADases, whereas no 

adverse effects of NMN supplementation have been described (Watson, Askew and 

Benson, 1995; Westphal, Dipp and Guarente, 2007; Marshall, Borbon and Erickson, 

2017). Altogether, I conclude that NAD depletion in NPC1 patient fibroblasts directly 

leads to increased sensitivity to oxidative stress, which can be alleviated by 

supplementation of NAD+ precursors and NAD+ level recovery. 
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Figure 5. 12 NPC1 fibroblasts display increased sensitivity to exogenous 

oxidative stress  

 

(A) Representative bright field microscopy images CTRL and NPC1 cell lines sub-cultured 

in the galactose-based medium, challenged with H2O2 treatment for 2h and processed by 

the MTT assay. (B) Modelled dose-response relationship of cell viability in the same 

conditions as (A). Dotted line represents a 95% confidence interval. Sy.x represents the 

standard deviation of regression residuals. (C) Quantile-Quantile plot of non-linear 

regression analysis residuals. 
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Figure 5. 13 NAD+ recovery correlates with cell viability in NPC1 fibroblasts 

challenged with H2O2 

 

  

(A,B) Long-term supplementation of NAD+ precursors leads to recovery of cellular NAD+ 

levels. NAD level measurement by Promega’s NAD+/NADH-GloTM assay corrected for 

cellular protein in NPC1 (AI) cell line sub-cultured in the galactose-based medium 

supplemented with (A) 1mM, 2.5mM and 5mM NAM and (B) 0.1mM, 0.5mM and1mM 

NMN. (C-D) NAD+ level recovery protects cells from H2O2-induced cell death. Modelled 

dose-response relationship of cell viability in the same conditions of NAM (C) and NMN 

(D) supplementation as (A,B). Miniaturized plots represent the Quantile-Quantile plots of 

non-linear regression analysis residuals. p values were calculated by linear regression 

analysis. Dotted lines represent a 95% confidence interval. Sy.x represents the standard 

deviation of regression residuals.  
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5.4 Chapter Conclusions 

The aim of this chapter was to explore whether the cellular dysfunction characterized 

as a result of autophagy impairment in a genetic model translates to a model relevant 

to human disease. First, I characterized the bioenergetics dysfunction in immortalized 

Npc1-/- MEFs glucose- and galactose-based culture conditions. I detected an increased 

dependency of glucose-addicted Npc1-/- MEFs on ATP production via glycolysis 

(Figure 5.1A,B), but no apparent loss of ATP production potential (Figure 5.2C). 

Further analysis of ETC function and structure uncovered a CI-linked respiration defect 

(Figure 5.2A-C) and an isolated loss of CI subunits (Figurer 5.3.D). A switch of Npc1+/+ 

and Npc1-/- MEFs to a galactose-based medium led to an increased dependency of 

energy generation on OXPHOS, evidenced by increased levels of ETC subunits and 

SC assembly, and mitochondrial ROS generation (Figure 5.3). Prolonged galactose-

based culture also led to apoptotic cell death in Npc1-/- MEFs (Figure 5.4). Metabolic 

profiling of Npc1+/+ and Npc1-/- MEFs revealed disruption in glucose oxidation pathways 

in Npc1-/- MEFs and, most importantly, confirmed my findings from Atg5-/- MEFs by 

detecting a depletion in NADH levels (Figure 5.4). Cell death of Npc1-/- MEFs upon 

culture in a galactose-based medium can be alleviated at all three stages of 

dysfunction. A continuous supplementation of culture media with ROS scavengers 

(Figure 5.5), or single doses of NAM (Figure 5.7) and autophagy inducers, rapamycin 

and celecoxib (Figure 5.9), were all capable of preserving cell viability.  

Female NPC1 patient fibroblasts and age-matched CTRL primary cell lines were 

utilized to study the effect of autophagy-deficiency in a patient-relevant model. 

Autophagy flux and autophagosome number of two NPC1 cell lines resembled those 

of CTRL cell lines (Figure 5.10). Of the two cell lines, NPC1 (1) carries mutations in 

protein regions that face the vesicle lumen (Davies and Ioannou, 2000) and are also 

the 2nd and 3rd most prevalent (Park et al., 2003). NPC1 (2) carries mutations that face 

both, the cytoplasm and the vesicle lumen, but are not common (Park et al., 2003) and 

also do not seem to interfere with autophagy flux. However, I did identify three NPC1 

cell lines with a clear autophagy impairment (Figure 5.10). The autophagy defect was 

strongest in the NPC1 (3) fibroblasts (Figure 5.10) that carry one common mutation, 

the D874V substitution in the loop I region (Davies and Ioannou, 2000; Park et al., 

2003). NPC1 (4) carries an uncommon D700N substitution in a transmembrane 

domain and a frameshift mutation at the C-terminal lumen-facing region of NPC1.  
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Importantly, NPC1 (5) patient is homozygous for the most prevalent I1061T mutation 

and presents with an autophagy dysfunction. It would be interesting to see whether the 

I1061T mutation would have a similar effect in a heterozygous scenario and thus 

increase the relevance of my findings to a wider circle of NPC1 patients. I have also 

established that autophagy deficiency in NPC disease correlates with NAD(H) 

depletion and increased sensitivity to oxidative stress which leads to cell death when 

challenged with H2O2 (Figures 5.11 and 5.12). Finally, NAD+-boosting strategies in the 

form of NAM and NMN supplementation improve cell resistance to exogenous 

oxidative stress in a dose-dependent manner and could thus be considered as 

therapeutics in treating NPC disease presenting with an autophagy impairment. 

Crucially, not all NPC1-disease causing mutations lead to autophagy impairment and 

only testing more patient cell lines would lead to a proper estimate of the therapeutic 

potential of NAD precursor supplementation, if proven to have a benefit in preventing 

NPC disease progression. 

5.5 Chapter Discussion 

5.5.1 Npc1-/- MEF study relevance to neurodegeneration and NPC1 biomarkers 

In this study, I first employed a genetic model of NPC1 disease, the Npc1-/- MEFs as 

an intermediate step between studies of a complete genetic interruption of autophagy 

(Atg5-/- MEFs) and study of human patient fibroblasts. Bioenergetics analysis of both 

immortalized MEF cell lines showed a small, but significant re-wiring of cellular ATP 

production to glycolysis (Figures 3.1 and 5.1). It is also worth keeping in mind that while 

total loss of the Npc1 protein in MEFs led to the disruption of glucose oxidation 

pathways, this was not observed in either Atg5-/- MEFs or NPC1 fibroblasts. Evidence 

from NPC1 mouse models and human NPC1 tissue suggests that metabolic re-wiring 

towards glycolysis does occur in disease-relevant tissues. First, study of NPC patient 

cerebrospinal fluid and post-mortem brain tissue revealed increased presence of 

neuroinflammation markers and glial activation, respectively  (Cologna et al., 2014).  

Chronic glial activation promotes an inflammatory response and ROS release that are 

thought to be central to brain pathology (Thameem Dheen, Kaur and Ling, 2007). 

Cellular re-wiring towards glycolysis was recently observed in activated microglia from 

Npc1-/- mouse model (Npc1nih) that best recapitulates the human neurodegenerative 

phenotype (Cougnoux et al., 2016). Microglia activation was mechanistically linked to 

increased stabilization of the hypoxia-inducible factor 1-alpha (HIF1α) expression. 
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Importantly, mouse treatment with HPβCD prevented HIF1α stabilization and glial 

activation in Npc1-/- mice, thus showing that the molecular trigger for glial re-

programming could be cholesterol accumulation. Also in this study, increased levels of 

HIF1α were found in post-mortem cerebellar tissue from NPC patients. Results of 

these studies collectively show that Npc1-/- cells that are capable of metabolic re-wiring, 

i.e. microglia, do likely depend on increased glucose uptake, glycolytic ATP production, 

and PPP activation to produce NADPH and induce the activity of NADPH oxidase to 

produce ROS (Orihuela, McPherson and Harry, 2016). Chronic microglial activation 

could contribute to the neurodegenerative phenotype by releasing ROS species that 

can challenge nearby neurons. 

Furthermore, metabolic profiling of Npc1-/- MEFs revealed that levels of several amino 

acids were disrupted, a phenomenon not observed in Atg5-/- MEFs. Due to a limited 

sample size collected for LC-MS analysis, I was not able to probe amino acid levels in 

NPC patient fibroblasts. It is therefore difficult to establish whether these aberrant 

findings are relevant to NPC1 disease or simply artefacts of genetic Npc1 depletion 

and cell culture. Results of two studies from a single group support my finding of amino 

acid aberrations in NPC1 disease (Ruiz-Rodado et al., 2014; Probert et al., 2017). The 

authors of these two studies set out to identify biomarkers of NPC disease by proton 

nuclear magnetic resonance (1H NMR) profiling. First, urinary metabolic profiling of 

NPC1 patients and their heterozygous parent identified elevated levels of primarily 

branched-chain amino acids (leucine, isoleucine and valine) in NPC patients (Ruiz-

Rodado et al., 2014). A further study was carried out by blood sample profiling of NPC 

patients, untreated and treated with Miglustat, NPC heterozygous parents, and healthy 

control individuals (Probert et al., 2017). Multivariate analysis of collected data 

suggested that, in addition to the expected disturbances in the levels of lipids, 

circulating lactate levels strongly contributed to the variation observed between NPC1 

patient and healthy control samples. Furthermore, isoleucine, enriched in Npc1-/- MEFs 

in my study, was also increased in circulation of NPC patients compared to healthy 

control. Similarly, enrichment of histidine was identified as a discriminatory variable 

between NPC patients and heterozygous individuals (Probert et al., 2017). Although 

these studies of metabolite levels originate from a single group, their results together 

suggest that NPC1 patients do in fact present with altered amino acid equilibrium, 

though the relevance of this observation to NPC disease pathology is unknown.  
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Interestingly, the urinary metabolic analysis of NPC patients and their heterozygous 

parents also parallels my profiling of Npc1-/- MEFs in another aspect, namely the 

pathway of nicotinic acid/nicotinamide metabolism that seemed to be 

disproportionately affected in NPC patients (Ruiz-Rodado et al., 2014). Specifically, 

nicotinic acid (NA), nicotinamide mononucleotide (NMN) amide and degradation 

products of NAM generated in the liver (2PY, 4PY) were all low in urine samples from 

NPC patients. In contrast, levels of nicotinamide riboside (NR) and quinolinic acid (QA) 

were increased. Authors of this study hypothesized that the changes in NAD+ 

precursors and degradation products could be a sign of niacin deficiency, though the 

causes and consequences of disrupted NA and NAM metabolism are not known. 

Lastly, except for a single small-scale juvenile-onset NPC1 mouse study, in which 

NAD+ supplementation improved some cognition phenotypes, (Marshall, Borbon and 

Erickson, 2017) the extent of dysfunction in NAD(H) metabolism and the potential of 

NAD(H) boosting therapies has not yet been explored. 

5.5.2 NPC1 patient fibroblast study relevance to published research 

Isolation of patient fibroblasts and study of cholesterol esterification and filipin levels  

is commonly used in NPC diagnosis (Park et al., 2003). However, the relevance of a 

study carried out in fibroblasts to cells and tissues affected by the disease, i.e. spleen, 

liver and brain, remains to be established.  In patient fibroblasts cultured in a galactose 

based medium I detected signs of increased ROS generation, some perturbations in 

the glycolysis pathway, NAD(H) depletion, and increased susceptibility to ROS-

induced cell death.  

To my knowledge no previous studies attempted NPC patient fibroblast culture in a 

galactose-based medium. Results of previous studies carried out in glucose-based 

culture of NPC patient fibroblasts vary greatly. First, a study of mitochondrial structure 

and function reports increased mitochondrial mass, a concurrent increase in the rate 

of O2 consumption but reduced ATP content and ROS levels (Woś et al., 2016) and 

thus do not correlate with my findings. In contrast, increased ROS and lipid 

peroxidation were found in NPC patient fibroblasts and NPC deficient human 

fibroblasts and a neuroblastoma cell model  (Zampieri et al., 2009). In addition, authors 

of this study also observed an increased susceptibility of NPC1 patient fibroblasts to 

H2O2 challenge, which led to increased cellular apoptosis (Zampieri et al., 2009). A 

recent study also reported increased mitochondrial mass despite significantly lower 
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transcription levels of nDNA and mtDNA encoded ETC subunits, lower O2 consumption 

rate and higher basal ROS levels in NPC1 patient cells (Yambire et al., 2019). 

Together, these results suggest that NPC1 fibroblasts present with dysfunctional 

mitochondria potentially due to impaired mitochondrial quality control.  

Increased oxidative stress was reported from multiple models of NPC disease and a 

plasma study of NPC patients (Smith et al., 2009; Zampieri et al., 2009). In the context 

of the NPC disease, in vivo biomarkers of increased oxidative stress and lower 

antioxidant defences were detected in plasma-, erythrocyte- and fibroblast-based 

screens of NPC patients (Fu et al., 2010; Ribas et al., 2012). In addition, oxidised 

cholesterol products in patient plasma were identified as specific biomarkers of NPC 

disease, that are modulated by Miglustat treatment (Jiang et al., 2011; Hammerschmidt 

et al., 2018). However, the pathological relevance of increased ROS to disease 

progression in vivo is unknown and mouse antioxidant (vitamin E and vitamin C) 

supplementation, when attempted, had no beneficial effect on mouse lifespan (Smith 

et al., 2009) or rotarod performance, used as a proxy measurement of coordination 

(ataxia) (Bascunan-Castillo, 2004). Nevertheless, it would be interesting to test 

whether more targeted ROS scavenging strategies, such as use of MitoQ10 or 

S1QEl2.2 could be beneficial in alleviating mitochondrial dysfunction in NPC1 disease. 

5.5.3 Study limitations 

As discussed above, culture and study of patient fibroblasts is sufficient for NPC 

diagnosis (Vanier and Latour, 2015). Patient fibroblasts that carry specific mutations 

causing disease are also a more relevant model to study NPC1-mutant protein 

structure, dynamics and degradation, than animal models, including fruit flies, 

zebrafish, mouse and cat models that are currently used to study the disease (reviewed 

in (Fog and Kirkegaard, 2019)). In this study, I have demonstrated that study of patient 

fibroblasts is sufficient to also identify an autophagy and cell viability defect; and 

potential successful treatments. However, human fibroblasts might not be truly 

representative of the cells and tissues affected by disease pathology. An exciting 

method that could be employed to increase the relevance of fibroblasts isolated from 

patients would be to re-program patient fibroblasts into induced pluripotent stem cells 

and then differentiate into disease-relevant cell lines to observe cell line-specific 

functional defects (Karagiannis, 2019). Although these cells are still very much 

removed from an in vivo scenario, such approach could inform about the role of NPC1 
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mutation and absence or presence of an autophagy defect in disease progression and 

serve as a platform for disease modelling and drug testing.  

Reprogramming of NPC patient fibroblasts into a disease-relevant cell line was already 

successfully attempted by multiple groups (Bergamin et al., 2013; Sung et al., 2017). 

In one of the earlier studies, the authors isolated multipotent adult stem cells from NPC 

patients and induced these cells to differentiate into neurons which recapitulated the 

phenotypes of NPC disease (Bergamin et al., 2013). The major limitation of this study, 

i.e. the lack of sufficient cell quantity generated by their method, was addressed in 

multiple studies of induced pluripotent stem cells (iPSCs)-derived neuronal models. 

The authors of these studies established successful cultures and tested the effect of 

compounds with a potential clinical benefit (Sarkar et al., 2013; Lee et al., 2014; 

Maetzel et al., 2014; Yu et al., 2014; Cougnoux et al., 2016). However, the method 

used to generate iPSCs is considered time-consuming, and labour intensive and thus 

may not be appropriate for larger-scale patient tests (Montserrat et al., 2011). In 

addition, the iPSC approach requires cell re-programming to an embryonic-like state, 

which might abolish their relevance to the study of age-related diseases (Hermann and 

Storch, 2013). In the most recent study, authors attempted  generation of induced 

neural stem cells (iNSCs) from isolated patient fibroblasts (Sung et al., 2017). The 

authors applied a relatively simple method of cell reprogramming with two factors and 

succeeded in generating cells capable of differentiation into neurons, astrocytes and 

oligodendrocytes (Sung et al., 2017). This study had also demonstrated the usefulness 

of such a model as a platform for neurodegenerative disease modelling and drug 

testing. However, since this study has not yet been validated by a different research 

group in NPC disease, caution should be exercised in interpreting these results. 

Altogether, advances in somatic cell re-programming could soon provide the platform 

for NPC and other disease modelling that could initially serve to validate findings from 

fibroblast models and thus establish the suitability of fibroblasts for further study. 

Additionally, somatic cell re-programming could provide a novel platform for 

personalized diagnosis and therapeutics.   
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 Discussion 

It is increasingly recognized that age-related cellular dysfunction cannot be explained 

by a single cause and effect relationship and is instead underpinned by a complex 

network of pathway dysfunction, macromolecular damage and loss of metabolic 

homeostasis. The interrelatedness of these hallmarks of ageing is not fully understood 

and is often overlooked. To highlight one hallmark in particular, macroautophagy, a 

cellular pathway that contributes to cellular proteostasis, organelle health and nutrient 

recycling, is a known cytoprotective and pro-survival pathway that is a downstream 

target of multiple interventions that prolong healthspan and/or lifespan (Madeo et al., 

2015). Autophagy is restricted in conditions of nutrient excess (glucose, insulin, cellular 

lipids, ATP, NADH) (Pierzynowska et al., 2018) and in aged tissue due to decreased 

levels of ATG proteins (Lipinski et al., 2010), but can be stimulated genetically, 

pharmacologically and nutritionally. Studies from animal models of age-related disease 

show that autophagy stimulation is beneficial for the treatment of metabolic syndrome 

(Lim et al., 2018), cardiovascular disease (Lavandero et al., 2015), memory loss 

(Glatigny et al., 2019) and neurodegeneration (Menzies et al., 2017). However, open 

questions remain regarding the translational potential of autophagy stimulation to 

human ageing and age-related disease (Maiuri and Kroemer, 2019). Due to the 

multifaceted role of autophagy in supporting cellular health, function and viability, and 

the multitude of upstream regulators and their stimuli, it is difficult to tease out what is 

the upstream cause of autophagy decline in ageing and thus which ‘druggable’ proteins 

to target (Levine and Kroemer, 2019). The nature of autophagy dysfunction also varies 

in aged individuals and patients suffering from either sporadic disease or an inherited 

mutation. Conversely, stimulated autophagy sustains the accelerated growth of 

transformed cells (Nazio et al., 2019) and resistance to starvation in senescence 

(Carroll et al., 2017). Identification of an all-purpose autophagy-targeting therapy is 

thus unlikely and success in any therapeutic approach will likely be achieved by tailored 

approach to a specific disease. 

6.1 Lessons learned from cellular KO models 

To address this issue, I aimed to establish downstream effects of autophagy deficiency 

and identify potential targets, and small compound therapeutics that would form the 

basis of a holistic therapy approach. I undertook two branches of study to investigate 

whether autophagy deficiency alone is sufficient to lead to mitochondrial dysfunction 
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and deregulation of cellular metabolism that were identified as two hallmarks of ageing 

and age-related pathology (López-Otín et al., 2016). To mimic the physiological 

metabolic state in cultured cells, I optimized culture in a galactose-based medium and 

established that it not only leads to loss of cell viability in MEF models of autophagy 

impairment (Atg5-/-, Npc1-/-, and CRISPR/Cas9-generated     Atg5-/-, Atg7-/- and 

Rb1cc1-/- MEFs) (Figures 3.6, 3.7, 5.4), but also uncovers a bioenergetic defect in 

mitochondria and a whole-cell reduction in NAD(H) levels    (Atg5-/- and Npc1-/- MEFs) 

(Figures 3.2, 3.4, 3.5, 4.2, 4.3, 5.1, 5.2, 5.6). I hypothesize that while both phenotypes 

contribute to cellular dysfunction, and existence of an interdependent relationship is 

likely, it is the cellular depletion of NAD(H) levels that leads to the loss of mitochondrial 

membrane potential and ultimately apoptosis.  

Within the scope of this study, I have not been able to uncover the underlying cause 

of NAD(H) depletion. Cellular NAD+ levels are maintained by a dynamic balance 

between de novo NAD+ synthesis, NAD+ salvage and depleted by PARP-, sirtuin- and 

CD38-mediated cleavage (Cantó, Menzies and Auwerx, 2015). The success of NAM 

(and NR) -mediated recovery of NAD(H) levels in Atg5-/- and Npc1-/- MEFs leads us to 

conclude that the NAD(H) depletion I observe is not due to a bottleneck in the NAD+ 

salvage pathway (Figure 1.4D; Figures 4.10, 5.7). Although I cannot comment on the 

activity, or lack thereof, of the NAD+ de novo synthesis, I are currently focusing my 

efforts on measuring activity of the PARP, SIRT and CD38 enzymes in culture and 

their direct impact on NAD(H) level modulation. PARP and CD38 are both capable of 

severely depleting cellular NAD+ pools (Pacher and Szabo, 2008; Camacho-Pereira et 

al., 2016) and activity of both enzymes increases with ageing (Massudi et al., 2012; 

Camacho-Pereira et al., 2016).    

Also in this study, mitochondrial respirometry assays revealed a dysfunction in CI-

linked O2 reduction to H2O that I originally explored via mitochondria-based assays of 

BN-PAGE and immunoblotting to explore a mechanistic cause. However, I could not 

confirm gross aberrations in the levels or assembly of the ETC SCs that would explain 

an underlying structural cause for the dysfunction I detected (Figures 3.4, 5.3). As 

discussed above, targeted cellular metabolic profiling revealed a depletion in CI 

substrate and e- carrier, NADH, in both immortalized models, Atg5-/- and Npc1-/- MEFs. 

I hypothesize that lower levels of NADH might affect the measured fitness of the CI-

CIII-CIV-linked O2 reduction even in the absence of an ETC structural aberration. I 
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believe that this observation highlights the interconnectedness of cellular pathways 

and functions. However, due to plasma membrane non-permeability to NAD(H), 

verifying causation relationships could be particularly challenging. It is therefore worth 

considering whether mitochondria respirometry assays would benefit from 

complementary studies, for example feeding permeabilized mitochondria NADH 

directly to identify whether the CI-CIII-CIV-linked O2 reduction defect can be 

ameliorated.  

Cellular NADH depletion can arise from either increased NADH consumption by 

cellular/mitochondrial NADH oxidases or lower activity/substrate availability of 

cellular/mitochondrial dehydrogenases. My data suggests that at least some of the 

NADH depletion occurs in mitochondria. As changes in the levels of the mitochondrial 

TCA cycle intermediates in Atg5-/- and Npc1-/- MEFs compared to their respective 

controls do not follow a common pattern (Figures 4.3, 5.6), it is unlikely that the NADH 

loss is potentiated by the loss of NAD+ reduction to NADH. Instead I propose a 

mechanism, by which other mitochondrial phenotypes observed in Atg5-/- MEFs, 

increased •O2 production and loss of mMP (Figure 3.5), lead to indiscriminate NADH 

consumption by CI that is not coupled to H+ pumping due to increased e- leakage from 

the ETC/CI. Interestingly, cell supplementation with MitoQ10 and the corresponding 

small, yet significant, recovery of NADH levels suggests that mitochondrial •O2 release 

contributes to NADH depletion and thus contributes to a vicious cycle that leads to the 

loss of cell viability (Figure 4.10). The underlying cause of increased mitochondrial 

ROS load, either as a result of increased e- leakage or overwhelmed and insufficient 

detoxification remains unknown. However, it can be hypothesised that it may result 

from an insufficient mitochondrial recycling by autophagy.  

6.2 Autophagy-NAD(H)-mitochondria axis: therapeutic relevance to age-related 

disease  

Pharmacological stimulation of autophagy, mitochondrial ROS detoxification and NAD+ 

levels elevation all rescue cell viability in the cell-based models. I have demonstrated 

that cell treatment with rapamycin and celecoxib induces autophagy in both, Npc1+/+ 

and Npc1-/- MEFs and rescue cell death of Npc1-/- MEFs (Figures 5.8, 5.9). 

Downstream of autophagy impairment, mitochondrial •O2 and whole-cell H2O2 

scavenging with S1QEL2.2, MitoQ10 and NAC promote cell viability in Atg5-/- and Npc1-

/- MEFs (Figures 4.9, 5.5). Finally, elevating NAD+ levels by a single NAD+ precursor 
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supplementation corrects metabolic deregulation and prevents cell death in both cell 

lines (Figures 4.6, 4.10, 5.7) (Figure 6.1). 

Each of the three main interventions that were successful in this study are currently 

explored as potential therapeutics. As discussed above and in section 1.7.2, the 

translational potential of autophagy stimulation and ROS detoxification into the clinic 

are currently being explored. Of the possible targets for therapeutic exploration, NAD+ 

precursor supplementation has the potential to become the most clinically relevant and 

universal intervention aimed at alleviating cellular pathology in diseases presenting 

with autophagy impairment. Deregulated enzymes involved in NAD+ metabolism and 

low NAD+ levels have been detected in human healthy aged tissue, in patients suffering 

from progeria syndromes, and a plethora of metabolic, cardiovascular, 

neurodegenerative and age-related diseases (Parsons et al., 2002; Salek et al., 2007; 

Borradaile and Pickering, 2009; Gomes et al., 2013; Scheibye-Knudsen et al., 2014; 

Wakade et al., 2014; Zhu et al., 2015; Ali et al., 2016; Chini et al., 2019; Okabe et al., 

2019). These studies highlight NAD+ depletion, similarly to autophagy dysfunction, as 

a fairly universal hallmark of age- and disease-related pathology and the potential of 

NAD+ supplementation as a strategy to alleviate pathology. On a molecular level, NAD+ 

precursor supplementation showed variable levels of success in ameliorating the 

burdens of many of the hallmarks of ageing, including genomic instability, epigenetic 

alterations, stem cell exhaustion, loss of proteostasis, mitochondrial dysfunction, 

deregulated nutrient sensing and cellular senescence (reviewed in (Fang et al., 2017)).  
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Figure 6. 1 Proposed mechanism of cell death caused by autophagy deficiency 

  

We hypothesize that autophagy impairment at the stage of initiation (Atg5-/-,   Atg7-/- and 

Rb1cc1-/-, or autophagosome fusion with lysosome (Npc1-/-) leads to loss of organelle 

quality control (mitophagy) and nutrient recycling (NAD(H)). Loss of NADH affects 

mitochondrial e- flow and contributes to loss of mMP (ΔΨm). In addition, dysfunctional 

mitochondria release ROS that further deplete cellular NADH stores and affect 

mitochondrial function. The vicious cycle of mitochondrial dysfunction and NADH depletion 

ultimately lead to loss of mMP and cell death. Interventions that induce autophagy 

(rapamycin, celecoxib), boost cellular NAD(H) levels (NAM, NR, NMN) and scavenge ROS 

(NAC, MitoQ10 and S1QEL2.2) promote cell viability and combat the effects of autophagy 

deficiency. 
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In animal models of ageing and age-related disease, boosting NAD+ levels by 

supplementation with its precursors NMN, NAM and NR successfully corrected many 

disease phenotypes (reviewed in (Aman et al., 2018)). To highlight a few, NMN 

treatment at the start of reperfusion and continued supplementation thereafter reduces 

the extent of tissue damage following cerebral and cardiac ischaemia (Yamamoto et 

al., 2014; Park et al., 2016). NMN, NR and NAM supplementation alleviate the onset 

and progression of amyloid-β and tau pathology, and improve cognition in AD (Gong 

et al., 2013; Liu et al., 2013; Wang et al., 2016; Hou et al., 2018). Finally, moderate 

NAM supplementation improves glucose metabolism and reduces inflammation in 

mice fed on a high-fat diet, that serve as a model for impaired glucose tolerance and 

diabetes mellitus type 2 (DMT2)  (Mitchell et al., 2018). 

Organismal NAD+ precursor supplementation presents with two potential drawbacks. 

First, elevated levels of NAM could potentiate increased activity of NNMT-mediated 

formation of a degradation metabolite, N-methyl-NAM that was hypothesized to act as 

a CI toxin (Parsons et al., 2002; Williams and Ramsden, 2005). Importantly, elevated 

NNMT levels were in post-mortem brain tissue of PD patients, and in white adipose 

tissue and the liver of diabetic humans and mice  (Williams and Ramsden, 2005; 

Pissios, 2017). Second, elevation of NAMPT, the rate-limiting enzyme of NAD+ salvage 

pathway from NAM, was observed in a range of malignant cancers and its inhibition by 

FK866 is explored as a therapeutic in cancer therapy (Yaku et al., 2018). Thus, 

elevation of NAD+ levels as a result of a therapy may need to be monitored to prevent 

the potentiation of neurodegeneration and tumorigenesis. 

Nevertheless, the success of NAD+-boosting strategies in animal models is currently 

followed up in a series of clinical trials (Table 6.1). Studies of NMN and NAM are 

relatively limited, and the majority of clinical trials have chosen to study the effect of 

NR. Although no results have yet been published from any of the completed phase 1 

and phase 2 studies, further trials are planned or started recruiting individuals for NR-

based study of a range of healthy-ageing and age-related disease including AD, PD, 

DMT2 and chronic kidney disease (CKD). It will thus be interesting to wait for the 

results of these trials and other pre-clinical studies and see whether NAD+-boosting 

strategies truly have as general a therapeutic potential as is indicated by the studies 

to date. 
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Table 6. 1 Clinical trials: NAD+ boosting in age-related pathology  

Identifier Status Phase 
NAD+ 

precursor 
Examined Outcomes 

NCT03151707 Recruiting 4 NR 
NAD+/NADH ratio and bioenergetics in 
the brain of healthy individuals  

NCT03743636 Recruiting 3 NR 
walking performance in patient suffering 
from peripheral artery disease 

NCT02258074 
Not yet 

recruiting 2 NAM 
serum phosphate and fibroblast growth 
factor 23 in patients suffering from CKD 

NCT03061474 Recruiting 2 NAM early tau-phosphorylation in AD 

NCT03850886 Recruiting 2 NAM 

safety and efficacy of NAM 
supplementation on NAFLD in patients 
with DMT2 

NCT00580931 Completed  1/2 NAM 
safety and efficacy of NAM 
supplementation in AD 

NCT04040959 
Not yet 

recruiting 2 NR 
arterial stiffness in patients suffering 
from CKD 

NCT04044131 
Not yet 

recruiting 2 NR 

safety and efficacy of mixture of NR and 
other supplements in AD and PD 
patients 

NCT02942888 
Not yet 

recruiting N/A NR 
memory and blood flow in individuals 
presenting with MCI 

NCT02950441 Recruiting 2 NR 

skeletal muscle metabolic phenotype in 
elderly male individuals (70-80 years of 
age) 

NCT03821623 Recruiting 2 NR 

arterial stiffness and elevated systolic 
blood pressure in middle aged and older 
adults 

NCT03579693 Recruiting 2 NR 
skeletal muscle function in patients 
suffering from CKD 

NCT03565328 Recruiting 2 NR 
effect on skeletal muscle function in 
individuals with heart failure 

NCT03482167 Recruiting 2 NR 
memory and blood flow in individuals 
presenting with MCI 

NCT03962114 Enrolling 2 NR 
treatment of children suffering from 
Ataxia Telangiectasia 

NCT02812238 Completed 2 NR 
comparison of NR and fasting on the 
immune system of healthy volunteers 

NCT03685253 Recruiting  1/2 NR 

clinical and physiological outcomes of 
diabetic neuropathy in patients with 
DMT2 

NCT02921659 Completed  1/2 NR 

safety and efficacy of NR 
supplementation in healthy middle aged 
and older adults 

NCT03423342 Completed  1/2 NR 

safety and tolerability of NR 
supplementation in participant with 
systolic heart failure 

NCT02689882 Completed 1 NR 
pharmacokinetic study in healthy 
individuals 
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NCT02191462 Completed 1 NR 
pharmacokinetic study of three different 
dosages in healthy individuals 

NCT03568968 
Not yet 

recruiting N/A NR 
correction of NAD and metabolism 
deficiency in PD patients 

NCT03808961 
Not yet 

recruiting N/A NR 
inflammation, motor and non-motor 
symptoms in PD patients 

NCT03754842 Recruiting N/A NR 
muscle regeneration in elderly 
individuals (55-80 years of age) 

NCT03816020 Recruiting N/A NR 

neuro-metabolic profile, motor 
symptoms and NAD levels in PD 
patients  

NCT03818802 Recruiting N/A NR 

bone, skeletal muscle and metabolic 
function in aged individuals (65-80 years 
of age) 

NCT02835664 Completed N/A NR 
metabolic health of pre-obese 
individuals 

NCT02303483 Completed N/A NR 
substrate metabolism, insulin sensitivity 
and body composition in obese men 

NCT03562468 Completed N/A NR 
cognitive function, mood and sleep in 
individuals over 55 years of age 

NCT03151239 
Not yet 

recruiting N/A NMN 

insulin levels/sensitivity and vasodilation 
in female participants (55-75 years of 
age) 

     

AD: Alzheimer's disease, CKD: chronic kidney disease, DMT2: diabetes mellitus type 2, 
NAFLD: non-alcoholic fatty liver disease, MCI: mild cognitive impairment, N/A: not applicable, 
NAM: nicotinamide, NR: nicotinamide riboside, NMN: nicotinamide mononucleotide, PD: 
Parkinson's disease 
Data was collated from https://clinicaltrials.gov/.  

 

6.3 Modelling NPC disease 

Profiling of NPC1 patient fibroblasts was carried out to see whether my findings from 

MEF-based genetic models of autophagy blockage translate to a patient scenario 

where autophagy impairment could be complete, moderate, quite mild or non-existent. 

By selecting available fibroblast cells from patients who carry various mutations in the 

NPC1 gene, I discovered that two patient cell lines presented with no autophagy 

impairment (Figure 5.10). In contrast, I have demonstrated that, in the context of NPC 

disease, autophagy impairment in the remaining three patient cell lines correlates with 

reduction in NAD+ levels upon cell culture in a galactose-based medium (Figure 5.10, 

Figure 5.11). Further investigation by metabolic profiling revealed that NPC1 patient 

fibroblasts that present with an autophagy impairment are characterised by severely 

depleted levels of NAD+ and NADH. Although patient fibroblast culture in a galactose-

based medium does not lead to a loss in cell viability, the NPC1 cells contain a higher 
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load of cellular H2O2 and die rapidly when challenged with exogenous oxidative stress 

(Figure 5.12). Most importantly, I have demonstrated that a two-week long cell pre-

treatment with NAD+ precursors NAM and NMN raises NAD+ levels in NPC patient cell 

lines and prevents loss of cell viability when challenged with exogenous H2O2 (Figure 

5.13). These studies provide the basis for a continuing and future studies in mouse 

models of NPC disease, in patient cell-derived neuronal cell cultures and potentially a 

translation into the clinic.  

6.4 Relevance of NPC disease to neurodegeneration 

NPC is a rare autosomal-recessive progressive disorder that can clinically manifest as 

a visceral-neurodegenerative disease (early-infantile,<2 years), neurodegenerative 

disease (late-infantile, 2-6 year; and juvenile 6-15 years) and psychiatric-

neurodegenerative disease (adult onset, 15+ years) (Geberhiwot et al., 2018). The age 

of onset and the severity of the neurodegeneration typically predict the speed of 

disease progression and life expectancy (Geberhiwot et al., 2018). NPC patients with 

adult onset of disease represent approximately 20%-27% of all sufferers and typically 

present with cognitive impairment and psychiatric disease manifestations including 

psychosis and depression (Geberhiwot et al., 2018). Pathologically, NPC disease 

mostly affects liver and spleen (infant and juvenile onset), and brain tissues (mostly 

present in adolescent and adult onset) (Geberhiwot et al., 2018; Fog and Kirkegaard, 

2019). NPC patients with infantile and juvenile disease onset often develop 

hepatomegaly (abnormal liver enlargement) and splenomegaly (abnormal spleen 

enlargement) due to an accumulation of sphingolipids and unesterified cholesterol. 

Liver and spleen disease rarely lead to mortality in NPC disease and clinical 

interventions aimed at lowering liver disease have no effect on ameliorating the 

neurodegenerative phenotypes (Vanier, 2010). The main focus in the treatment and 

drug development is dedicated to the neurological disease. Cholesterol trafficking in 

the brain is unique due to the lack of permeability of BBB to lipoprotein, thus all 

cholesterol within the brain is synthesized locally and undergoes low rates of turnover 

(Zhang and Liu, 2015). Astrocytes in the brain produce cholesterol and its carrier, 

apolipoprotein E (ApoE) that delivers cholesterol to neurons to support neuronal 

synaptic function (Mauch et al., 2001; Zhang and Liu, 2015). To utilize the exogenous 

cholesterol, neurons need to liberate the ApoE bound form to free cholesterol within 

the late endosomes and lysosomes and traffic such cholesterol by the action of NPC1 

and NPC2 proteins (Mauch et al., 2001; Zhang and Liu, 2015). It remains unknown 
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whether it is cholesterol-mediated organellar dysfunction, i.e. disruption of 

mitochondrial function or lysosome-mediated autophagy, or depleted levels of 

available cholesterol to maintain neuronal function that underlie the pathogenesis of 

the NPC1/2 loss of function mutations. Ultimately, NPC1/2 dysfunction leads to 

hypomyelination, neuroaxonal dystrophy and neurodegeneration (Walkley and Suzuki, 

2004; Yu and Lieberman, 2013).  

6.4.1 NPC: similarities to AD 

Parallels have been observed and described between the clinical and molecular 

manifestations of NPC and AD. AD neuropathology was defined by the presence of 

extracellular amyloid plaques and intra-cellular hyper-phosphorylated neurofibrillary 

tangles (NFT) in post-mortem brain tissue from AD patients (Kumar, Singh and Ekavali, 

2015). The structural basis of NFTs consists of tau protein aggregates paired helices. 

Current hypotheses of AD postulate that aberrant amyloid processing and deposition, 

or tau mutations lead to tau hyper-phosphorylation and NFT formation (Kumar, Singh 

and Ekavali, 2015). The interest of AD researchers in NPC disease originates from a 

study, in which post-mortem examination of NPC patient brain tissue identified the 

presence of NFTs with a strong presence of the tau protein (Love, Bridges and Case, 

1995). The tangles in NPC brain tissue were structurally identical to those that define 

the pathology of AD disease, but intriguingly occurred in the absence of tau mutations 

or amyloidal plaques (Auer et al., 1995; Love, Bridges and Case, 1995). NFTs in AD 

and adult-onset NPC were also strongly associated with neurodegeneration and 

strangely absent in the cerebellum of patients suffering from either disease (reviewed 

in (Bergeron, Poulin and Laforce, 2018)). Additionally, two studies of NPC neurons and 

AD neurons from the same laboratory report that the load of NFTs correlates with the 

levels of neuronal free cholesterol (Distl, Meske and Ohm, 2001; Distl et al., 2003).  

The most common genetic risk factor in AD is the epsilon-4 allele of ApoE (ApoE-ε4) 

(Strittmatter and Roses, 1996). ApoE is an enzyme expressed mostly in the liver and 

the brain and is, in the central nervous system, responsible for cholesterol and lipid 

homeostasis (Mahley, 2016). ApoE-ε4 encodes a form of the ApoE enzyme that has a 

lower binding affinity to its plasma membrane receptor, the lipoprotein receptor-related 

protein 1 (LRP1), when compared to an ε3 allele that in culture leads to lower levels of 

cholesterol release from cultured astrocytes (Gong et al., 2002). Thus, at least the 
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ApoE-ε4 form of AD shares a common feature of cholesterol trafficking de-regulation 

with NPC that seems to correlate with NFT formation and neurodegeneration in both 

disorders. 

6.4.2 NPC: similarities to PD 

Connections were also observed between NPC and PD pathology. PD is a 

neurodegenerative disorder characterized by the loss of dopaminergic neurons within 

the substantia nigra region of the brain and Lewy body pathology (Fearnley and Lees, 

1991; Rocha, De Miranda and Sanders, 2018). Lewy bodies are intracellular protein 

aggregates, the main protein component of which was identified as α-synuclein. It is 

believed that genetic mutations, PTMs, oxidation and deficient clearance of α-

synuclein underlie its aggregation (Rocha, De Miranda and Sanders, 2018). The nature 

of involvement of α-synuclein in PD pathology has not yet been elucidated, but its ATP-

dependent aggregation and sequestration into large inclusion bodies is thought to 

prevent its toxicity (Rocha, De Miranda and Sanders, 2018). The pathological link 

between NPC and PD was reported from heterozygote carriers of NPC1 mutations that 

presented with parkinsonism (Kluenemann et al., 2013) and rare aberrant α-synuclein 

phosphorylation pattern and Lewy body formation (2/10 cases) (Saito et al., 2004). It 

is unclear however, whether a PD diagnosis is more prevalent in heterozygote NPC1 

carriers than in the general population. Authors of an earlier in vitro PD study reported 

that oxidised cholesterol metabolites promote α-synuclein fibril formation (Bosco et al., 

2006). Similarly, heterozygous mutation in GBA1 gene encoding a lysosomal 

hydrolase glucocerebrosidase 1, a lysosomal hydrolase, is a genetic risk-factor for PD 

(Aharon-Peretz, Rosenbaum and Gershoni-Baruch, 2004; Crosiers et al., 2016; 

Arkadir et al., 2018). Individuals who carry two mutated GBA1 alleles suffer from 

Gaucher’s disease, the most prevalent lysosomal storage disorder characterised by 

the loss of GCase1 activity and disrupted lysosomal function and macroautophagy 

(Sun and Grabowski, 2010). A study of fibroblasts isolated from four PD patients who 

carry a heterozygous GBA1 mutation revealed an autophagy impairment, increased 

cholesterol levels and cell sensitivity to exogenous oxidative stress (García-Sanz et 

al., 2017). Moreover, genetic variants associated with a variety of lysosomal storage 

disorders were also found to associate with PD (Robak et al., 2017). These studies 

together provide the evidence that lysosomal dysfunction, cholesterol accumulation 

and macroautophagy interruption alone or in combination promote α-synuclein 
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aggregation, may underlie PD pathology, and could provide therapeutic targets for PD 

patients who carry GBA1 mutations and/or present with stalled autophagy or high 

cholesterol. 

6.4.3 NAD(H): the common link? 

Studies of LSDs, NPC, AD and PD identify the interrelatedness between the underlying 

pathology in LSDs, i.e. the impairment of lysosomal function, cholesterol accumulation 

and autophagy impairment, and its role in the potentiation of proteinopathy including 

tau and α-synuclein fibrilization. Another common feature between AD and PD is the 

de-regulation of NAD(H) metabolism (Wakade et al., 2014; De Jesús-Cortés et al., 

2015; Ali et al., 2016), that I also observed in NPC1 patient fibroblasts in this study. 

Following the success of NAD+-boosting strategies in animal models of AD and PD, 

clinical trials have been set up to study the effect of NR supplementation in AD and PD 

patients (Table 6.1). Conversely, following the results of these clinical trials and 

outcomes on observed amyloid, tau and α-synuclein aberration in AD and PD, and 

NAD studies in NPC animal models, it will be interesting to see whether NPC patients 

will be able to also benefit from such interventions strategies and an improved 

understanding of the pathologies and their interrelatedness. 

6.5 Concluding Remarks 

This study has highlighted the interconnectedness of the pathways involved in the 

ageing process. I hypothesized that two functions of macroautophagy, the qualitative 

turnover of mitochondria and bulk recycling of amino acids and nucleotides, stand at 

the root of age-related pathology. I confirmed my hypothesis by identifying a novel link 

between autophagy impairment and de-regulation of NAD(H) metabolism that 

sensitises mitochondria and cells to metabolic and oxidative stresses that can induce 

loss of cellular viability (Figure 1.6). My study established that autophagy stimulation, 

ROS detoxification and NAD(H) level elevation are all relevant strategies to combat 

phenotypes arising from autophagy impairment. Furthermore, for the first time, I report 

that depletion of NAD(H) levels in NPC could underlie disease pathology in 

cells/tissues that suffer from dysfunctional autophagy. I believe that these exciting 

findings can have a wider impact on the study of the NPC disease, on diseases that 

present with autophagy impairment and on general age-related pathology, and could 

form the basis of future therapeutic strategies. 
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Appendices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1. Metabolomic data scaling for statistical analysis 

Box plots and kernel density plots before and after normalization. The box plots show 50 

features due to space limit. The density plots are based on all samples. Selected methods: 

Row-wise normalization (N/A); Data transformation: (N/A); Data scaling: Autoscaling. 
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Appendix 2. Re-arranged loading and LC3-II detection in CTRL and NPC1 cell 

lines 

 

 

Appendix 3. Additional ROS data for CTRL and NPC1 patient cell lines 

 

  

Immunoblot of re-arranged sample loading of NPC1 patient fibroblast cell lines treated 

with 100nM bafilomycin A1 (BAF A1) or vehicle (DMSO) for 24h.  

Flow cytometry peaks of CTRL and NPC1 cellular ROS levels detected by H2DCFDA 

fluorescence intensity after sub-culture in the galactose-based medium. 
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