
Automatic Generation of

Distributed Runtime Infrastructure

for Internet of Things

Saleh Mohamed

School of Computing

Newcastle University

In Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

January 2020

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements.

Saleh Mohamed

January 2020

Acknowledgements

First and foremost, I would like to express my appreciations and thanks to my supervisory

team, Dr. Matthew Forshaw and Dr. Nigel Thomas for their dedicated continuous advice,

guidance and encouragement throughout the course of my PhD program.

My heartfelt gratitude goes to Dr. Andew Dinn and Dr. Simon Woodman from Red

Hat for their invaluable input into this work.

I would like to express my profound gratitude to Professor Paul Watson and Professor

Darren Wilkinson for offering me the opportunity to join the Centre for Doctoral Training

in Cloud Computing for Big Data (CDT-CCBD). My gratitude also extends to the entire

team of CDT-CCBD particularly the members of Cohort One for their unwavering support

and creating a perfect working environment.

Over the course of my studies at Newcastle University, I have worked with and

befriended a lot of great people from members of staff, as well as from different student

communities, to whom I am thankful to everyone of them.

I would also like to thank my external examiner, Professor Omer Rana of Cardiff

University and my internal examiner Dr Steve McGough for an enjoyable and engaging

viva examination, and for their constructive feedback.

Finally, and most importantly, I would like to take this opportunity to express my

sincere gratitude to my family. This work would not have been possible without their love,

understanding, encouragement and patience.

Abstract

The Internet of Things (IoT) represents a network of connected devices that are able to

cooperate and interact with each other in order to reach a particular goal. To attain this,

the devices are equipped with identifying, sensing, networking and processing capabilities.

Cloud computing, on the other hand, is the delivering of on-demand computing services –

from applications, to storage, to processing power – typically over the internet. Clouds

bring a number of advantages to distributed computing because of highly available pool of

virtualized computing resource. Due to the large number of connected devices, real-world

IoT use cases may generate overwhelmingly large amounts of data. This prompts the use

of cloud resources for processing, storage and analysis of the data. Therefore, a typical IoT

system comprises of a front-end (devices that collect and transmit data), and back-end –

typically distributed Data Stream Management Systems (DSMSs) deployed on the cloud

infrastructure, for data processing and analysis.

Increasingly, new IoT devices are being manufactured to provide limited execution

environment on top of their data sensing and transmitting capabilities. This consequently

demands a change in the way data is being processed in a typical IoT-cloud setup. The

traditional, centralised cloud-based data processing model – where IoT devices are used

only for data collection – does not provide an efficient utilisation of all available resources.

In addition, the fundamental requirements of real-time data processing such as short

response time may not always be met. This prompts a new processing model which is

based on decentralising the data processing tasks. The new decentralised architectural

pattern allows some parts of data streaming computation to be executed directly on edge

devices – closer to where the data is collected. Extending the processing capabilities to the

IoT devices increases the robustness of applications as well as reduces the communication

overhead between different components of an IoT system. However, this new pattern

viii

poses new challenges in the development, deployment and management of IoT applications.

Firstly, there exists a large resource gap between the two parts of a typical IoT system (i.e.

clouds and IoT devices); hence, prompting a new approach for IoT applications deployment

and management. Secondly, the new decentralised approach necessitates the deployment

of DSMS on distributed clusters of heterogeneous nodes resulting in unpredictable runtime

performance and complex fault characteristics. Lastly, the environment where DSMSs are

deployed is very dynamic due to user or device mobility, workload variation, and resource

availability.

In this thesis we present solutions to address the aforementioned challenges. We

investigate how a high-level description of a data streaming computation can be used

to automatically generate a distributed runtime infrastructure for Internet of Things.

Subsequently, we develop a deployment and management system capable of distributing

different operators of a data streaming computation onto different IoT gateway devices

and cloud infrastructure.

To address the other challenges, we propose a non-intrusive approach for performance

evaluation of DSMSs and present a protocol and a set of algorithms for dynamic migration

of stateful data stream operators. To improve our migration approach, we provide an

optimisation technique which provides minimal application downtime and improves the

accuracy of a data stream computation.

Table of Contents

List of Figures xv

List of Tables xix

List of Algorithms . xxi

1 Introduction 1

1.1 Overview . 1

1.2 Research Problem . 4

1.3 Contributions . 5

1.4 Thesis Structure . 6

1.5 Related Publications . 7

2 Background 9

2.1 Fundamentals of Data Stream Processing 9

2.1.1 Stream Dataflows and Operators 10

2.1.2 Data Stream Management Systems (DSMSs) 13

2.2 Virtualisation . 14

2.2.1 Hyperviser-based Virtualisation . 14

2.2.2 Container-based Virtualisation . 15

2.3 IoT-cloud Integration . 16

2.4 Data Stream Operator Migration . 17

2.4.1 Improved Pause-Drain-Resume . 19

2.4.2 Parallel Processing of Events During Migration 20

2.4.3 Checkpointing and Restore . 21

x Table of Contents

3 IoT Application Deployment and Management 27

3.1 Introduction . 28

3.2 Related Work . 30

3.3 IoT Application Deployment and Management Challenges 32

3.3.1 Resource Imbalance . 33

3.3.2 Reactive Systems . 33

3.3.3 Automation . 34

3.4 Modelling of Stream Computation Deployment 35

3.4.1 Data Processing Model . 37

3.4.2 Computation Deployment Model 38

3.4.3 Example Use Case: Stream computation deployment modelling. . . 41

3.4.4 System Design . 42

3.5 Implementation Details . 45

3.5.1 Deployment Client . 45

3.5.2 Deployment Server . 45

3.6 Evaluation . 51

3.7 Conclusion . 57

3.7.1 Limitations . 58

3.7.2 Future Work . 59

4 Performance Evaluation of Distributed Event-based Systems 61

4.1 Introduction . 62

4.2 Related Work . 63

4.2.1 Performance Evaluation of Distributed Event-based Systems 63

4.2.2 Fault Injection . 64

4.3 Fault Injection Techniques . 65

4.3.1 Hardware Fault Injection . 68

4.3.2 Software-based Fault Injection . 68

4.3.3 Simulation-based Fault Injection . 69

4.3.4 Fault Injection Requirements . 70

4.4 Relevant Tools . 72

Table of Contents xi

4.4.1 Byteman Agent . 72

4.4.2 Thermostat . 74

4.5 Design of Fault Injection Environment . 75

4.5.1 Fault Load . 75

4.5.2 Byteman Rules . 77

4.5.3 Test Scenario . 78

4.5.4 Test Coordinator . 78

4.5.5 Target System and its Execution Environment 79

4.6 Evaluation . 79

4.6.1 Example scenario . 79

4.6.2 Experiments and Results . 83

4.7 Conclusion . 85

4.7.1 Future Work . 86

5 Dynamic Migration of Stateful Data Stream Operators 87

5.1 Introduction . 88

5.2 Related Work . 90

5.2.1 Query Plan Migration . 90

5.2.2 Cloud-based Migration . 91

5.2.3 Operator Migration in Cloud-IoT Integration 93

5.2.4 Computation Offloading . 94

5.2.5 Virtualisation-based Migration . 95

5.3 Challenges in Operator Migration . 97

5.4 System Model . 100

5.4.1 System Architecture . 102

5.5 General Migration Protocol . 105

5.6 State Transfer . 108

5.6.1 State transfer Agorithms . 108

5.6.2 State Transfer Implementation . 110

5.7 Migration Related Metrics in DSMSs . 113

5.7.1 Performance and System Metrics 113

xii Table of Contents

5.7.2 Migration-induced Metrics . 115

5.8 Experimental Setup . 116

5.8.1 Data Stream Processing Workload 116

5.8.2 Metrics Collection . 118

5.9 Experiments and Evaluation . 119

5.10 Conclusion . 125

6 Optimisation Technique for Data Stream Operator Migration 129

6.1 Introduction . 130

6.2 System Model . 133

6.2.1 Migration Model . 133

6.2.2 System Architecture . 135

6.3 Migration Protocol . 137

6.4 Consistency Checking and Synchronisation Algorithms 140

6.4.1 Consistency Checking . 140

6.4.2 Synchronisation Process . 143

6.4.3 Working Example . 149

6.4.4 Use Case . 154

6.5 Implementation Details . 156

6.5.1 Message Routing . 156

6.5.2 Serial Number Annotation . 157

6.5.3 Polling Consumer . 158

6.5.4 Producer and Consumer Redirection 160

6.6 Experiments and Evaluation . 160

6.6.1 Results and Evaluation . 161

6.6.2 Summary of the Experimental Results 177

6.7 Conclusion . 179

6.7.1 Future Work . 181

7 Conclusion 183

7.1 Thesis Summary . 183

Table of Contents xiii

7.2 Limitations . 185

7.3 Future Research Directions . 186

7.3.1 Real-time Monitoring for Self-adapting IoT-cloud Infrastructure . . 186

7.3.2 Preemptive Migration of Data Stream Operators 187

References 189

Appendix A Deployment Template for Data Stream Computation 207

List of Figures

2.1 Demonstrates a time-based tumbling window of 4 seconds. 12

2.2 Demonstrates a time-based sliding window with length and slide of 4 and 2

seconds respectively. 12

2.3 Demonstrates a session window with timeout of 2 seconds. 13

2.4 Shows the difference between hypervisor-based and container-based virtual-

isation. 16

3.1 IoT-cloud integration model showing different levels of infrastructure. . . . 28

3.2 A conceptual model for automating IoT-cloud runtime infrastructure gener-

ation. 36

3.3 A representation of data stream computation on IoT-cloud infrastructure . 38

3.4 A model of execution plan for deployment and management of data stream-

ing operators on IoT-cloud infrastructure. 39

3.5 An example of IoT-cloud integration systems in smart city domain. 41

3.6 A high level architecture of the proposed deployment framework. 44

3.7 An overview of gateway deployment model. 47

3.8 An overview of cloud deployment model. 49

3.9 Performance comparison between real and virtual Raspberry Pi. 52

3.10 How install task execution time changes for different number of gateway

devices. 54

3.11 How install task execution time changes for different number of VMs. . . . 55

3.12 How update task execution time changes for different number of gateway

devices. 56

xvi List of Figures

3.13 Shows how uninstall task execution time changes for different number of

gateway devices. 57

4.1 Shows different components of a fault injection environment. 67

4.2 System architecture to support dynamic code-injection of event-based and

stream processing systems. 76

4.3 Code injection of probabilistic processing delays in a distributed Spark cluster. 84

4.4 Overhead of dynamic code injection on (a) CPU, (b) Memoryw1223 85

5.1 Shows what is considered as memory state of an operator in the context of

this work. 98

5.2 Shows parallel operator execution in data stream processing. 101

5.3 A high level architecture of the proposed migration system. 103

5.4 General protocol for data stream operator migration. 106

5.5 Shows how state information is transferred from source to target operator. 111

5.6 Representative workload used during the experiments. 117

5.7 Illustration of client side flow control mechanism. 118

5.8 How processing time and throughput are affected by migration process. . . 121

5.9 The effect of increasing event rate on (a) state size, (b) downtime and (c)

execution time. 123

5.10 The effect of increasing window size on (a) state size, (b) downtime and (c)

execution time . 126

6.1 Overview of how parallel migration approach works. 134

6.2 A high-level architecture of the proposed migration system. 136

6.3 Parallel migration protocol for data stream operator migration. 138

6.4 Example of consistent state between a source and a target operator. 141

6.5 How serial numbers are transferred from windowed events to a newly

generated event . 144

6.6 Interplay between algorithms used for consistency checking and synchroni-

sation process between source and target nodes. 148

6.7 A sample event stream for the working example. 150

List of Figures xvii

6.8 Windowing of events by source and target operators. 150

6.9 New events generated by source and target operators. 151

6.10 A sequence of events as received by the consistency checking algorithm. . . 151

6.11 Final order of events sent to the output queue. 151

6.12 Windowing of events by source and target operators 152

6.13 Windowing of events by source and target operators 152

6.14 A sequence of events as received by the consistency checking algorithm. . . 152

6.15 Final order of events sent to the output queue. 152

6.16 Windowing of events by source and target operators 153

6.17 Windowing of events by source and target operators 154

6.18 A sequence of events as received by the consistency checking algorithm. . . 154

6.19 Final order of events sent to the output queue. 154

6.20 Message routing from input queue to temporary input queue. 157

6.21 Message polling from temporary output queue. 159

6.22 CDF plots showing migration impact on CPU and memory consumption

on cloud-based VMs. 162

6.23 Time series plots showing migration impact on CPU and memory consump-

tion on cloud-based VMs. 163

6.24 Time series plots showing migration impact on CPU and memory consump-

tion on the message broker. 164

6.25 CDF plots showing migration impact on CPU and memory consumption

on resource-constrained devices. 167

6.26 Time series plots showing migration impact on CPU and memory consump-

tion on resource-constrained devices. 168

6.27 Time series plots showing how throughput and processing time are impacted

by migration process. 169

6.28 CDF plots showing how total migration time is affected by change in event

rates, window sizes and synchronisation factors. 173

6.29 Synchronisation overhead on total execution time. 174

xviii List of Figures

6.30 How different combination of event rates and window sizes affect total

execution time. 176

List of Tables

1.1 How cloud computing and IoT compliments each other. 2

2.1 Comparison of existing migration works on IoT and cloud infrastructure . 26

3.1 Execution environments for Experiment 1. Each 1vcpu is equivalent to

Intel® Broadwell E5-2673 v4. 52

3.2 Execution environments for Experiment 2. Each 1vcpu is equivalent to

Intel® Broadwell E5-2673 v4. 54

4.1 Execution environments for the experiments. Each 1vcpu is equivalent to

Intel® Broadwell E5-2673 v4. 83

5.1 Execution environments for Experiment 1. Each cloud-based VM is based

on Standard DSv3 instance type (2.4 GHz Intel Xeon® E5-2673 v3). 120

5.2 Parameter options (top rows) and observed mean values (bottom rows) for

Experiment 2. 122

5.3 Parameter options (top rows) and observed mean values (bottom rows) for

Experiment 3. 125

6.1 Comparing our approach with existing parallel migration approaches . . . 132

6.2 Execution environments for Experiment 2. 166

6.3 Parameter options (effect of changing event rate on execution time). 170

6.4 Parameter options (effect of changing window size on execution time). . . . 171

6.5 Parameter options (effect of synchronisation factor on execution time). . . 171

6.6 Summary statistics of execution time for different event rates. 171

6.7 Summary statistics of execution time for different window sizes. 172

xx List of Tables

6.8 Summary statistics of execution time for different synchronisation factor. . 172

6.9 Parameter options and and results of Experiment 5. 174

6.10 Parameter options for Experiment 6. 176

List of Algorithms

5.1 State transfer from the source operator to the state store 108

5.2 State retrieval from the state store to the target operator 109

6.1 Consistency checking algorithm . 142

6.2 Synchronisation algorithm . 146

6.3 Synchronisation process when source operator is ahead of target operator . 147

6.4 Synchronisation process when target operator is ahead of source operator . 148

Chapter 1

Introduction

1.1 Overview

Internet of Things (IoT) refers to the network of interconnected devices in the form of

computers, sensors, tags etc., which have the ability to generate, exchange and consume

data as well as act on their environment [57]. The primary purpose of the IoT is to collect

information about the environment, try to understand it, and act upon it. The concept of

interconnecting such devices has existed for decades. However, the recent confluence of

several technology trends such as Ubiquitous Computing [208], IP-based networking [175],

advances in data analytics, and the rise of cloud computing have brought the IoT much

closer to reality [164, 7].

The number of interconnected devices exceeded the number of people in the world for

the first time in 2010 [64]. A recent study by IoT Analytics [96] on the state of the IoT in

2018 shows that the number was estimated to be 18 billion in 2018, and is expected to

reach 34 billion by 2025. Consequently, IoT will become one of the main sources of Big

Data.

Cloud computing is a paradigm in which a shared pool of configurable computing

resources such as networks, servers, storage, applications, and services can be provisioned

and released rapidly on-demand with minimal user or provider interaction [29, 136].

Cloud computing is characterised by the following five features [136]: 1) On-demand

self-service – where computing resources can be automatically provisioned as needed. 2)

Broad network access – resources are available over the network using standard mechanisms

2 Introduction

such as workstations and mobile phones. 3) Rapid elasticity – resources can be elastically

provisioned. 4) Measured service – providing transparency between cloud providers and

consumers by monitoring, controlling and reporting the utilised services. 5) Resource

pooling – serving multiple consumers in a multi-tenant model.

Although cloud computing and IoT are two different technologies, their characteristics

are often complementary [57, 25]. For example, while IoT devices generate massive

amounts of data, they are generally characterised with limited computational capabilities.

In contrast, cloud computing provides remotely accessible, virtually unlimited capabilities

in terms of storage, computing and networking without being a source of large amounts of

data. While IoT serves as a source of data, clouds can provide resources to process and

store the data. Table 1.1 summarises how the two technologies complement each other on

several aspects.

Feature IoT Cloud computing

Big Data Serves a source of Big Data Can provide resources to
manage Big Data

Storage Very limited Virtually unlimited
Computing resources Limited Virtually unlimited
Reachability Very limited Widespread

Role of Internet Acts as a point of
convergence

Acts as a means of
delivering services

Applications Run on both physical and
virtual hardware

Run on virtualised
environment

Table 1.1: How cloud computing and IoT compliments each other.

Due to their complementary nature, IoT-cloud integration (also know as Cloud of

Things [2] or Sensor-Cloud [216]) has been a very active research area for many years (see

Section 2.3). A number of open source projects, such as, OpenIoT [153], Kaa [107] and

Xively [212] explore this complementarity to bring out their combined benefits.

Traditionally, such integration supports a centralised processing model which facilitates

the use of cloud-based resources (such as computing and storage) and features (such as

elasticity, accessibility, reliability and security) to process and store the vast amount of

data generated by IoT devices. The IoT-cloud infrastructure consists of a network of highly

1.1 Overview 3

heterogeneous physical objects (sensors and gateway devices) that enables the Internet of

Things and directly or indirectly (through a middleware) connected to cloud resources.

However, with the increase in performance of IoT devices, the traditional centralised,

cloud-based processing is becoming inefficient as it leaves the available computing resources

on the devices untapped. Today’s IoT-cloud infrastructure can be seen as a logical hierarchy

of computing resources, and provides resource continuum between one end (smart devices)

of the infrastructure to the other (cloud). In order to efficiently utilise available resources

in IoT devices, some of the data processing on cloud infrastructure must be offloaded to the

IoT devices with enough resource to process the data. Offloading part of a computation

near to where the data is generated comes with several benefits:

1. Reducing operational costs such as network bandwidth and server resources associated

with transmitting all raw data to cloud services.

2. Ensuring low latencies and response times as unnecessary cloud round-trips are

eliminated.

3. Enhancing privacy and security of classified and sensitive data as transferring data

by definition exposes it to more threats as does storing it in shared data centres.

4. Improving reliability by making services available even in the event of an interruption

to a cloud connection, fore example, due to power outage at the cloud data centre.

In this thesis we investigate how a high-level description of a data streaming computation

can be used to automatically generate a distributed, runtime infrastructure for IoT-cloud

integration. The infrastructure that meets resource requirements of the data stream

operators within the computation.

Data Stream Management Systems (DSMSs) process events streams in real-time (events

are processed as they are generated). Modern DSMSs are designed be deployed on a highly

distributed infrastructure to provide parallelism and elasticity. However, when deployed

on an integrated IoT-cloud infrastructure, it poses new challenges [31]. Firstly, it results

in a very large gap in terms of computing resources exposed by different parts of the

infrastructure (clouds and IoT devices). Hence, when generating runtime infrastructure

for IoT-cloud integration, we need to take into account the diverse nature of processing

capabilities of different devices and cloud resources.

4 Introduction

Secondly, the environment in which DSMSs are deployed is very dynamic and un-

predictable. Changes in event rate, performance degradation due to compute resources

scarcity, and device malfunctioning are some of the factors that influence the runtime

behaviour of IoT-cloud infrastructure. DSMSs need to cope with the dynamism of the

runtime environment by regenerating the infrastructure in order to meet the requirements

of the data streaming computation.

1.2 Research Problem

The overall objective of this thesis is to design, implement and evaluate an automated

system for runtime generation of IoT-cloud infrastructure of a data streaming application.

The infrastructure that is distributed across various IoT devices and cloud platforms,

and satisfies resource requirements of each data stream operator within the computation.

The system should, at runtime, be capable of reacting to the dynamism of IoT-cloud

infrastructure by regenerating the infrastructure. In order to achieve this, we investigate

the following research problems:

Modelling the deployment of data stream computation: How do we model the de-

ployment of a data stream computation to provide a comprehensive description of

a computation and its operations? What are the relationships between operations

within a data stream computation, and their execution environments?

Data stream operator deployment and management: How can we automate the

process of deploying different operators within a data streaming computation into

different IoT devices and cloud platforms? The deployment strategy should enable

the management of the operators over their entire life-cycles by supporting dynamic

redeployment of a computation and reconfiguration of data streaming parameters.

Performance evaluation of distributed event-based systems: The runtime behaviour

of distributed event-based systems is very unpredictable due to, for example, dy-

namism introduced by the underlying infrastructure, user mobility and variation in

event rate. It is necessary to gain an understanding of the runtime performance of

these systems so that we can make optimal deployment decisions. The main problem

1.3 Contributions 5

is, how do we evaluate the runtime performance of these systems and ensure that

such evaluation approach is non-intrusive and does not add significant overhead to

the hosting node?

Dynamic migration of stateful data stream operators: When working with oper-

ators that are stateful, state information must be preserved during redeployment

and management of such operators. State migration in data stream processing is

challenging as state size can become very large due to unbounded nature (long

running) of events streams. Therefore, any solution to operator state migration

should not impact performance of the data stream application significantly, and

should always guarantee minimal application downtime.

Optimising migration process for stateful operators: Efficient optimisation tech-

niques are needed to support seamless migration of stateful operators for classes of

data streaming applications that do not tolerate application downtime.

1.3 Contributions

The research problem presented in Section 1.2 can be divided into two subproblems. One

is the initial deployment of a data stream computation, and the other is the management

of the data stream operators within the computation over their entire life-cycle. This

thesis addresses both aspects and makes the following main contributions:

(i) A detailed survey of the state-of-the-art in data stream applications deployment on

cloud and IoT infrastructure, performance evaluation of event-based systems and

migration of stateful computations.

(ii) An approach for modelling a data streaming computation and its deployment. The

approach simplifies the task of automating the deployment and management of data

stream operators.

(iii) A deployment framework for dynamically generating a distributed runtime infras-

tructure of a data stream computation. The generated infrastructure is distributed

across different levels of IoT-cloud integration for efficient utilisation of available

6 Introduction

resources. Moreover, the framework allows dynamic reconfiguration of data streaming

parameters.

(iv) A novel approach for evaluating runtime performance of event-based systems using

a non-intrusive, dynamic code injection technique. One can use the approach, for

example, to dynamically inject faults for dependability evaluation or instrumenting

a running application to influence its behaviour without the need to recompile the

application.

(v) An efficient approach for dynamic migration of a stateful data stream operator.

The approach makes use of incremental state transfer and in-memory storage to

significantly reduce the impact on the performance of an application, as well as

guaranteeing short application downtime.

(vi) A novel optimisation approach (as a key contribution of the thesis) for data stream

operator migration which allows a parallel execution of source and target operators,

hence, reducing application downtime virtually to zero.

1.4 Thesis Structure

Chapter 1 describes the motivations behind the work carried out as part of this thesis,

highlights the research problem and main contributions, and provides a description

of the related peer-reviewed publications produced during the course of this PhD

program.

Chapter 2 presents a brief discussion on background information and technologies used

for creating solutions presented in this thesis.

Chapter 3 presents a new approach for deploying and managing data stream computa-

tions. We outline the related challenges and describe a modelling approach which

addresses these challenges and enables automating deployment and management

tasks. We present implementation details, and evaluate the framework to demonstrate

its effectiveness.

1.5 Related Publications 7

Chapter 4 describes an approach for performance evaluation of event-based systems

using dynamic code injection technique, and demonstrate its applicability as a fault

injection mechanism. The design of fault injection environment is presented to

demonstrate a typical deployment of the approach across remotely and distributed

running Java Virtual Machines. The approach is finally evaluated using two different

use cases; one as an application to fault injection, and the other as instrumentation

for runtime collection of performance metrics.

Chapter 5 outlines the challenges of operator migration and explores an efficient approach

for dynamic migration of stateful data stream operators. We present a general

migration protocol and a set of algorithms that facilitate incremental transfer of state

information into an in-memory data store. We identify performance and system level

metrics that may be affected by the migration process, and evaluate the migration

approach against these metrics.

Chapter 6 presents an optimisation technique for stateful operator migration which

employs concurrent execution strategy of source and target operators. A parallel

migration protocol and a set of synchronisation algorithms for consistency checking

are presented, and demonstrated through a working example. We show that this

technique reduces application downtime significantly when compared to the general

migration approach presented in Chapter 5.

Chapter 7 provides a general summary of the works presented in this thesis, and proposes

a number of future research directions that have arisen from the works presented in

this thesis.

1.5 Related Publications

Some parts of this thesis have been published in the following peer-reviewed papers:

[139] Mohamed, S., Forshaw, M., and Thomas, N. (2017). Automatic generation of

distributed run-time infrastructure for internet of things. In Proceedings - 2017

IEEE International Conference on Software Architecture Workshops, ICSAW 2017,

pages 100–107.

8 Introduction

In this paper we introduced our framework for generating runtime infrastructure for IoT

systems from a high-level declarative description of data stream computation. We evaluated

our system experimentally, and we were able to demonstrate favourable performance in

comparison with existing similar frameworks. Through experiments, we also demonstrated

that our framework can scale horizontally to hundreds of IoT gateway devices and dozens

of virtual machines. This paper forms the basis of Chapter 3.

[140] Mohamed, S., Forshaw, M., Thomas, N., and Dinn, A. (2017). Performance and

Dependability Evaluation of Distributed Event-based Systems. In Proceedings of the

8th ACM/SPEC on International Conference on Performance Engineering - ICPE

’17, pages 349–352.

In this paper we presented our dynamic code injection approach for performance evaluation

of distributed event-based system. We demonstrated its usability and efficiency by

performing dynamic fault injection on a distributed cluster of data stream processing

application. Our approach provides practitioners with a usable set of tools which address

many common issues inhibiting automated and holistic performance and dependability

evaluation of event-based systems. This paper contributes in part to Chapter 4 of this

thesis.

Chapter 2

Background

Overview

In this chapter, we present an overview of the basic technologies

and related work underpinning the research carried out in this thesis.

We begin by providing some background information on basic concepts

related to data streaming (Section 2.1). Section 2.2 discusses two types

of virtualisation technologies that have been extensively used for creating

solutions presented in various chapters of the thesis. Section 2.3 presents

opportunities and challenges arising as a result of integrating two existing

disruptive technologies (i.e. cloud and IoT). Section 2.4 discusses various

approaches for stream operator migration.

2.1 Fundamentals of Data Stream Processing

As more and more objects are interconnected by the Internet, large amounts of data are

being generated in the form of continuous streams. In some application domains, such as,

manufacturing, financial markets and healthcare, there is an increasing need to process and

analyse these streams of data in real-time so as to detect emerging patterns [69]. A data

stream represents an unbounded sequence of events potentially from disparate sources [89].

10 Background

Events in a data stream may represent sensor measurements, image data from surveillance

cameras and satellites, internet and web traffic or credit card transactions, for example.

Formally, a data stream, also known as an input stream, is a sequence of events e1, e2,

e3, . . . , that arrive in time order. Each event is represented as ei = (ti, Pi), where ti is the

timestamp denoting the event’s creation time, and Pi is the associated payload of ei.

Data stream processing is a computing paradigm that supports the gathering, processing,

and analysis of a high-volume, heterogeneous stream of data to extract insight and

actionable results in real-time. Events in the data stream are processed by special types

of queries known as Continuous Queries (CQs) which continuously execute over streams

of data. The continuous execution of queries over data streams enables different types

of application scenarios, such as the ability to generate alerts in real-time. In network

traffic management, for example, CQs can be used to monitor network behaviour in order

to detect anomalies such as link congestion and their cause. In financial applications,

CQs may be used to monitor trends in order to detect fraudulent behaviours as they

happen [16].

2.1.1 Stream Dataflows and Operators

A stream dataflow describes how data moves during processing of events in data streams.

Dataflows are commonly represented as directed graphs, where nodes represent the

processing elements (operators) and edges represent the flow of data between the operators.

Operators in data streaming are basic functional units that consume events from input

sources, contain logic to process the events, and produce new events as an output for

further processing.

Operators can be either stateless or stateful depending on whether they maintain any

history (state) of the previously processed events or not. Stateless operators do not need

to maintain any history of the previously received events as processing of each event is

independent of any other event in the stream. Examples of stateless operators include

Map and filter operators. In contrast, stateful operators need to maintain information

about previously received events in order to process subsequent events. Join and aggregate

are two examples of stateful operators.

2.1 Fundamentals of Data Stream Processing 11

Operators may further be classified into four groups:

1. Data source and sink operators - allow stream computation to communicate

with external systems. Data source operators connect to external input sources

(e.g., a file or a message broker) to ingest events into a data stream computation,

while data sink operators produce output of a computation to external systems (e.g.,

databases and message queues).

2. Transformation operators - process one event at a time by applying some trans-

formation to the event data and generate a new event as an output. Transformation

operators process each event independently, hence, they are stateless.

3. Rolling aggregation operators - combine current state with incoming events to

perform aggregation such as sum, average and count, and generate an updated rolling

aggregate value. These types of operators are stateful.

4. Window operators - continuously create finite sets of events from an unbounded

event stream so that the computation is performed on the finite sets instead. Events

are usually assigned to a set based on time or number of tuples (count). A time-based

window is defined over a period of time interval (e.g. events received in the last 10

seconds). A tuple-based window is defined over a number of received events (e.g. the

last 50 events).

Different semantics are used to define different types of windows in data stream

processing. Below we describe the semantics of the most common window types.

1) Tumbling Windows

Tumbling windows assign events to non-overlapping windows (an event can not belong to

more than one window). When a triggering criterion is met, all events in a window are

sent to an evaluation function for processing. Tumbling windows can be either count-based

or time-based. Count-based tumbling window defines how many events are collected before

processing of events inside the window is triggered. Time-based tumbling widow defines a

time interval during which events are collected in the window. Figure 2.1 demonstrates

how a time-based tumbling window works.

12 Background

0 2 4 6 8 10 12 Time
(secs)

4 1 5 2 2731463

4 1 5 2

463
2731

Fig. 2.1: Demonstrates a time-based tumbling window of 4 seconds.

2) Sliding Windows

Sliding windows are defined on the basis of their length and slide to provide overlapping

windows of fixed size. While length defines the size of a window, slide determines the

interval over which a new window is created. If slide is equal to length, the sliding window

becomes tumbling window. Figure 2.2 demonstrates time-based sliding window with length

and slide equal to 4 and 2 seconds respectively..

0 2 4 6 8 10 12 Time
(secs)

4 1 2 2731463

4 1 2

463

2731

2

46 31

3

Fig. 2.2: Demonstrates a time-based sliding window with length and slide of 4 and 2
seconds respectively.

3) Session Windows

Session windows group events happening in adjacent times filtering out periods of time

when there are no events. Session windows are defined by a session gap value that

determines the time of inactivity to consider the session has expired. Events that belong

in the same session are grouped in the same window. Figure 2.3 demonstrates how

session-based windows work.

2.1 Fundamentals of Data Stream Processing 13

0 2 4 6 8 10 12 Time
(secs)

4 1 271463

4 1

463

27

1

Fig. 2.3: Demonstrates a session window with timeout of 2 seconds.

2.1.2 Data Stream Management Systems (DSMSs)

A DSMS – also called Stream Processing Engines (SPE) – is the software used for processing

and management of continuous data streams. DSMSs are analogous to traditional DataBase

Management Systems (DBMSs). However, while DBMSs require data to be persistently

stored and indexed before it could be processed, DSMSs are designed to work with transient

data that are continuously updated. Similarly, while DBMSs run a user query just once

to return a complete result, DSMSs executes (CQs) which run continuously to provide

updated results as new data arrives [56, 49, 169].

Since their inception, DSMSs have been evolving to address the challenges introduced

by processing of infinite streams of data. The first generation of DSMSs were extensions

to traditional DBMSs modelled to provide long running queries over dynamic data, and

restricted to running on a single machine with no support for scalability and fault tolerance.

This group includes TelegraphCQ [36], NiagaraCQ [40], Tribecca [186], Aurora [4] and

Stream Mill [18]. Medusa [19] and Borealis [3] are examples of second generation of DSMSs

that tried to extend Aurora to support distributed processing, load balancing and task

migration across participating nodes. However, these systems still lacked key features of

modern DSMSs such as parallel processing and support for user defined functions [56].

Modern DSMSs are generally cloud-based, highly scalable to support large-scale data

processing, and are able to cope with varying workloads. Some of the most popular

systems include Storm [196], S4 [150], Samza [151], Heron [68] and MillWheel [6]. These

systems have been developed to perform distributed stream processing while providing

fault-tolerant mechanisms in a highly distributed environment. They provide users with

a choice to write their own functions using programming languages and operator graphs

14 Background

instead of specifying high-level declarative queries. Spark [219] and Flink [30] are general

modern DSMSs that offer a common runtime for both streaming and batch (bounded data

stream) processing. In addition, they expose a rich set of libraries to support querying of

relational databases, graph processing and machine learning. These features allow users

to perform complex data processing and data analytics tasks.

Most of public cloud platforms provide their own managed solutions for data stream

processing. Amazon Kinesis Data Streams (KDS) [14], Azure Stream Analytics [15]

and Google Cloud Dataflow [45] provide on-demand real-time analytics service for faster

development and easier management of highly distributed data streaming applications in

the cloud.

2.2 Virtualisation

Virtualisation is a technology that allows one to create multiple simulated computing

environments or dedicated resources from a single physical hardware or an operating

system kernel. Among the many benefits of virtualisation include the ability to run

legacy applications, providing execution environment isolation, increased efficiency and

productivity, multi-tenancy, and faster provisioning of applications and resources [187, 33].

Virtualisation is a key enabler of cloud computing and containerisation technologies, along

with the advent of web 2.0 and the increased bandwidth availability on the Internet [27]. In

what follows, we provide an overview of the two most common virtualisation technologies.

2.2.1 Hyperviser-based Virtualisation

This type of virtualisation requires the use of a special software called hypervisor. A

hypervisor (also known as virtual machine monitor) separates the physical resources from

the virtual environments – the things that need the resources or Virtual Machines (VMs) –

and manages the resources so that the virtual environment can use them efficiently. In

this way, a hypervisor allows a host machine to support multiple guest VMs by allowing

sharing of its resources (CPU, memory, disk) between the VMs.

There are two types of hypervisors; Type 1 hypervisor (native or bare metal) which run

directly on host hardware. This is how most of the enterprises virtualise their hardware

2.2 Virtualisation 15

resources. Some of the most popular Type 1 hypervisors include Hyper-V [199], VMware

ESXi [84] and Xen [20]. The second type of hypervisor is called Type 2 hypervisor (hosted)

which runs as a software layer on the host operating system and is mostly used to virtualise

a single machine (desktop or laptop) hardware. Examples of Type 2 hypervisors are

VirtualBox [206] and Parallel Desktop [156].

Users only interact with a virtual environment by running their applications on virtual

machines. Resources in the physical environment are allocated by hypervisor to virtual

machines on-demand. Even though different VMs can be run on the same physical

hardware simultaneously, they are logically separated from each other. This means that

if one VM experience an error, the error does not propagate to other VMs on the same

machine. VMs are also very portable — since they are independent of the underlying

hardware, they can be packaged as image files and moved between physical machines or

remote servers.

2.2.2 Container-based Virtualisation

More recently, container-based virtualisation has emerged as a light-weight alternative to

hypervisor-based virtualisation, and provides a wall that offers increased isolation between

groups of processes running on the same Operating System (OS). Unlike hypervisor-

based virtualisation, containers do not emulate any of the underlying hardware. Instead,

the virtualised environments (guest OS or applications) communicate with the host OS

kernel, which then makes the appropriate calls to the physical hardware [181]. Hence, the

technology is better known as operating system-level virtualisation. Figure 2.4 further

highlights the difference between the two main virtualisation technologies.

Container-based virtualisation is not new, but its prominence began to increase in

2014 with the introduction of Docker [137] — an open-source implementation of OS-level

virtualisation and by far the most popular containerisation platform. Using Docker, one can

package an application with all of its dependencies into a standardised unit or container,

which makes developing, deploying and running of the application much easier and faster.

Moreover, Docker speeds up application development by allowing application containers

to be written locally, and then integrated into a deployment workflow.

16 Background

 Infrastructure Infrastructure

Hypervisor (Type 1) Operating System

Container Engine

Guest
OS

Guest
OS

Guest
OS

Bins/Lib Bins/Lib Bins/Lib

App 1 App 2 App 3

Bins/Lib

App 1

Bins/Lib

App3

Bins/Lib

App 2

Hypervisor Virtualisation Container Virtualisation

Fig. 2.4: Shows the difference between hypervisor-based and container-based virtualisation.

Docker uses client-server architecture where the client talks to a Docker daemon inside

the server. The daemon is responsible for building, running and distributing Docker

containers. Client and daemon can both run on the same machine or can be connected

remotely, for example, through sockets or RESTful API. Docker users only interact with

a Docker client which accepts commands from a user and communicate back and forth

with Docker daemon. Docker containers are created from Docker images — an executable

package that includes everything needed to run an application. Docker offers mechanism to

store images in a private or public registries so that they can be shared between developers.

2.3 IoT-cloud Integration

IoT and cloud computing are two complementary technologies that have independently

seen rapid evolution [133]. Their integration, however, brings about new opportunities in

the field of Computing. The adoption of cloud and IoT integration enables new scenarios of

smart services and applications. For example, Sensing and Actuation as a Service (SAaaS)

provides pervasive access to user data, as well as automatic control logics over a cloud.

Similarly, Sensor Events as a Service (SEaaS) makes events of interest available to users

over cloud infrastructure [161, 52]. Sensor Cloud [217, 77] is a model for integrating large-

scale sensor networks with sensing applications and cloud computing infrastructure. The

model allows pervasive computation using sensors as interface for cyber-physical worlds,

2.4 Data Stream Operator Migration 17

cloud for data computing and internet as the communication medium. More scenarios for

smart services applications that are enabled by this new paradigm are presented in [25].

Connecting a large number of sensing-enabled physical objects like smart phones and

PCs to the Internet generates what is called “big data”. The size of big data exceeds

the capabilities of the commonly used hardware environment and software tools used for

collection of the data. This necessitates the existence of a smart environment which is

capable of reacting to the needs of big data by providing an efficient data storage and

retrieval mechanism, as well as elastic and reliable processing. Cloud computing offers

such an environment as a new management mechanism enabling efficient processing and

extraction of valuable knowledge from big data [7].

Like many other emerging technologies, IoT-cloud integration is facing a number

of challenges in the delivery of reliable services, and prompts new research directions.

Consequently, this new computing paradigm has attracted much attention from researchers.

Singh et al [179] present communication protocols and data fusion related challenges, and

introduces a smart semantic framework to encapsulate the processed information from

sensor networks.

Puliafito et al [160] discuss the limits of current IoT and cloud solutions in terms of

secure self-configuration, and presents a cloud-based architecture that allows IoT devices

to interact with several federated cloud providers. Security and privacy have been identify

as the key challenges in [57, 133] that have been directly inherited from each of the two

technologies (IoT and cloud). In some of the IoT application use cases, IoT devices collects

sensitive information, such as personal or critical infrastructure details. IoT devices are well

known for being resource constrained, hence, are more vulnerable to attacks and threats.

The security and privacy of the cloud, on the other hand, have been the main concerns

for new adopters of cloud-based technologies. A comprehensive study on challenges and

issues, as well as newly arising research directions are presented in [11, 2].

2.4 Data Stream Operator Migration

Data stream operators can be either stateless or stateful (see Section 2.1.1 for details). For

stateless operators such as select and project operators, the commonly adopted migration

18 Background

approach is pause-drain-resume strategy as discussed by Zhu et al [222]. With this

approach, the source operator is initially put into paused state where it is stopped from

receiving new data. The drain phase allows the operator to finish processing the in-flight

tuples (tuples that have already been received by the operator but not further acted upon).

Once all the in-flight turples are processed, the resume phase is executed by relaunching

the operator on the target node.

Stateless operator migration is considered trivial for most of data streaming use cases,

but not so when it comes to mission critical and situational aware (capable of recognising

a situation of interest as soon as possible in order to be able to react to it accordingly)

data streaming applications, such as those in military and healthcare domain where any

downtime introduced before resume phase might have undesired effect. Smooth transition

between source and target operators is always important for guaranteeing both Quality of

Service (QoS) – the measure of overall performance of a system as seen by users – and

Quality of Experience (QoE) – the measure of the overall level of user satisfaction – to the

end user. Several improvements to pause-drain-resume for stateless operators have been

considered such as those presented by Gulisano et al [73] and Zhu et al [222].

Stateful operators such as join, aggregate and window operators maintain information

about past events and use that information for processing future events. The partially

processed results which are typically placed in memory buffer, and other static information

such as those stored on hard disks are all part of operator state. Stateful migration is

challenging as it necessitates transfer of state from source operator to target operator

without the loss of integrity – accuracy and consistency of the results. In addition to state

transfer, migrating stateful operators might require rewiring of datastreams [78]. Rewiring

involves reconnecting input streams from data sources or upstream operators, and output

streams to sinks or downstream operators.

Different techniques for dynamic migration of processing elements in data stream have

been already presented in the literature. Initial approaches [222, 114, 215] were based on

migration of a continuous query plan to a semantically equivalent plan over streaming

data. This approach provides a mechanism for migrating multiple stateful data streaming

operators at the same time. With increasing popularity of distributed computing, more

2.4 Data Stream Operator Migration 19

recently, techniques for migrating individual operators of a data stream computation have

been implemented and widely used.

Modern DSMSs are designed to be deployed on a cloud infrastructure in order to

provide support for large-scale, distributed data streaming application deployments. Live

Virtual Machines (VM) migration techniques [44, 149] are very powerful and significantly

minimise applications downtime during migration, as well as improving data centres

manageability [75]. More recently, efforts to exploit standard VM technology for IoT

applications have been presented in [170, 75, 172, 37]. This allows adaptation of traditional

VM migration techniques within a wide IoT spectrum in order to transparently migrate

running state of an application from one IoT device to another.

Although VMs have been widely used in both cloud and IoT infrastructure, one of

the major problems they suffer from is portability. This is because VMs are bound

to a specific platform with its underlying virtualisation technologies. Container-based

virtualisation on the other hand have been gaining a lot of attention for both cloud and

IoT application deployment due to their small footprint and portability. When containers

are migrated, only services that applications packaged inside the containers are dependant

on are moved with them. Containers can also be deployed and run on different types

of host environments as long as the host operating system supports the virtualisation

technology. For IoT infrastructure, where storage and processing capabilities are limited,

container-based virtualisation is becoming increasingly popular. Even though container

migration is relatively a new area, several migration techniques [146, 129, 128] are already

in place to allow live migration of containers from one processing node to another. In the

rest of this section, we provide an outline of the widely used migration approaches in data

stream applications.

2.4.1 Improved Pause-Drain-Resume

The Pause-drain-resume approach is only adequate for dynamically migrating stateless

operators (e.g. map and filter operators). In contrast, stateful operators need to maintain

state information from previous tuples so that it can be used in processing of new tuples.

During the drain phase, only in-flight tuples are processed while the state information of

20 Background

the operator is ignored. As a result, the basic pause-drain-resume approach is not able to

handle stateful operators such as aggregate, window and join operators [166].

Several strategies that are built on top of the basic pause-drain-resume approach

have been presented in order to deal with stateful migration of continuous query plans

and data stream operators. Zhu et al [222] propose a Moving State (MS) strategy for

ensuring seamless migration of continuous query plan with join operators while ensuring

the correctness of query results. MS strategy involves three steps: 1) state matching for

identifying common states between old and new plan, 2) state moving to allow sharing

of common states, and 3) state recomputing for rebuilding unmatched states. Yang et

al [215] outline the shortcomings of MS strategy and extends it to provide support for

general query plans (queries with different types of operators).

2.4.2 Parallel Processing of Events During Migration

In the parallel processing migration approach, source and target operators are allowed

to run in parallel for the larger part of migration duration. The main objective is to

reduce application downtime introduced by the pause phase in the previous approach.

This approach works by initially specifying a migration start time when all tuples are

grouped as either old or new. Old tuples are those with timestamp less than the migration

start time, and the rest become new tuples. Input and output queues are shared by both

source and target operators. When target operator is launched, it begins processing new

tuples only. However, the source operator processes both old and new tuples. When all

old tuples have been processed by the source operator, the source operator can be safely

discarded.

Parallel processing is prone to duplicate and out of order messages. Out of order

messages can happen when the target operator starts generating results that are produced

by processing of new tuples while the source operator has not finished processing of all of

the old tuples. Likewise, when the source operator has finished processing the old tuples,

and before being terminated, the old operator may generate all-new tuple results that

might have already been processed by the target operator. In order to ensure accuracy

2.4 Data Stream Operator Migration 21

and consistency of the output during migration period, tuple re-ordering and duplicate

removal mechanisms must be put in place downstream.

Parallel Track (PT) strategy [222] and its extensions [114, 215] represent early adoption

of the parallel processing approach. For applications that require smooth and constant

output, this approach provides an alternative as output events are continuously produced

during the entire migration process.

2.4.3 Checkpointing and Restore

Checkpointing and restore (checkpointing/restore) refers to the technique of saving the

state of a running process at a certain point in time, so that it may later be used to

restart the process (to the exact same state). Traditionally, checkpointing/restore of

operator state has been used as a mechanism for failure recovery. Since then, there have

been different applications of checkpointing/restore such as application debugging and

load balancing in high performance computing. Checkpointing/restore has many other

applications in cloud-based environment including, switching off idle VMs in order to

save energy, on-demand cloning of VMs, and dynamic allocation of VMs for stateless

workloads [221].

More recently, checkpointing/restore has been widely used by cloud vendors and

container-based technologies alike to facilitate live migration of VM and containers respec-

tively. When used for migration purpose, checkpointing/restore allows users to suspend a

running VM or container while capturing its current state into a collection of files on disk,

so that the VM or container can be restarted later from the same state.

Existing implementations of checkpointing/restore differ in terms of Operating System

(OS) level they operate on. Lowest level implementation of checkpointing/restore target

OS kernel directly, and provides a simple mechanism for users to checkpoint and restore

running VMs. Other implementations such as CRIU [47] targets both kernel and user-space

levels to facilitate checkpointing and restarting of running containers. For live migration

of VMs or containers, the captured state on disk needs to be transferred from host node

to target node before restoration phase. This ensures correct restoration of VM’s or

container’s state. Different strategies are being used to transfer state information from a

22 Background

source to a target node, both aiming at reducing network utilisation or downtime [183].

Below we briefly describe the three most widely used strategies.

Pre-copy

Pre-copy [149, 44] aims at minimising downtime during the migration process by maximising

memory mirroring synchronisation between source node and target node. Pre-copy has

three main phases – iteration, stop-and-copy and restart phase. During iteration phase,

state mirroring between source node and target node is maximised by iteratively copying

the virtual state (VCPUs, device states, and some kernel data), external connections

state and physical memory state of source node. During this phase, the source node still

continues with execution, so it is highly likely that some of the memory pages would be

modified during the previous iteration. The updated (dirty) memory pages in both source

and target node are continuously synchronised until number of remaining memory pages in

the source node is less than a pre-defined threshold, or number of iterations is greater than

a predefined iterations threshold. During stop-and-copy phase the source node is frozen

and the final copying of memory pages is performed. In the restart phase, the target node

is launched [183, 121].

The pre-copy method is best suited for read-intensive operations with few memory page

updates. This results in a very short downtime. In contrast, the speed at which memory

pages are updated may be faster than the network transmission speed for write-intensive

operations. As a result, this will have a negative effect on both total migration time and

downtime. In a situation where the network cannot keep up with applications that are

sufficiently write-intensive, the migration process will fail.

Post-copy

Post-copy was proposed by Michael et al [80]. In post-copy, data is copied to a target

node only after the target VM has started. First, the source VM is suspended, then the

minimal state of CPU, device states and kernel data is transferred to the target node. The

target VM is then started and finally memory pages in the source node are transferred to

the target node. Three enhancements to the original approach were initially proposed in

order to improve performance of post-copy.

2.4 Data Stream Operator Migration 23

Demand paging – If target VM tries to access a page that has not been transferred yet,

it will generate a page fault. The target node can then request the corresponding page

from the source node. This mechanism ensures that each page is transferred from

source to target at most once. However, as the number of page faults increases, so is

the number of network round trip between source and target nodes. Consequently,

there will be a substantial delay to the target start time.

Active pushing – Is a proactive approach by the source node to push memory pages to

target node while the target node is continuously executing. This approach reduces

the duration of residual dependencies on source node and avoids transferring memory

pages that have already been faulted by target node. Active pushing can be used

simultaneously with demand paging to guarantee that each page is transferred only

once.

Prepaging – Works by actively predicting memory pages that might be accessed by the

target node in the near future so that the source node can push those pages before

page fault occurs. The smaller the percentage of page faults, the better, and the

more effective the prepaging algorithm.

Hybrid-copy

Hybrid-copy works by combining both pre-copy and post-copy algorithms. Different

variations of Hybrid-copy algorithms are presented in [167, 87, 121]. The pre-copy algorithm

is run as the first step of migration process during which the source node continues running

while memory pages are transferred to the target node. Once all the pages have been copied,

the source node is suspended. The processor state and all the remaining memory pages are

all transferred to the target node before the target node is restarted. Any memory pages

that are still existing at the source node will be synchronised using post-copy algorithm

which kicks off just after the VM is restarted at the target node.

The advantage of using hybrid-copy over a single pre-copy or post-copy is that each

one tries to counteract the shortcomings of the other. For example, it has been mentioned

earlier that post-copy incurs a heavy performance loss when number of page fault increases

significantly due to increase in round-trip latency. In extreme cases, page faults can bring

24 Background

down the services running on the migrated VM completely. Hybrid-copy algorithm can

reduce number of page faults caused by post-copy algorithm significantly due to existence

of pre-copy algorithm. Similarly, hybrid-copy also tries to solve the shortcoming in the

pre-copy algorithm caused by write-intensive workload [121].

Several optimisation techniques to pre-copy and post-copy algorithms have been

proposed in order to improve their performance and reduce downtime. Such techniques

include Dynamic Self-Ballooning (DSB) [80] and Memory Page Compression (MPC) [105,

188, 87]. DSB which is based on Ballooning [203] – a minimally intrusive technique for

resizing memory allocation of VMs. DSB tries to avoid transmission of free memory pages

during the execution of pre-copy or post-copy algorithm. Transferring of free memory

pages incurs unnecessary resource utilisation and potentially increases total migration

time. In contrast, MPC techniques try to reduce the size of memory pages before transfer.

Compressing memory pages reduces the amount of data to be transferred from source node

to target node. This allows pre-copy algorithm to cope with write-intensive workloads and

consequently, reducing the downtime.

Table 2.1 provides comparisons for different existing migration works which use one

of the approaches presented in this section. We have classified the works in terms of

target, migration unit, task, downtime and overhead. The target defines the IoT or cloud

infrastructure where the migration approach is supported. Migration unit represents the

minimum migratable component of a data stream computation that can be transferred.

Task is the specific migration problem that is being addressed. Different works in the

literature try to solve different migration problems. These problems include, how to perform

migration efficiently, what type of information should be migrated, when should migration

happen in order to minimise service disruption, or whether migration should happen or not

based on some policies that specify the trade-off between the cost and benefits of migration

process. Downtime specifies whether services are disrupted or not during migration, while

overhead tries to identify the main cause of performance degradation.

As it can be observed from the table, existing works have failed to utilize the resource

continuum and to address the problem of resource imbalance between the two types

of infrastructure, that is, cloud and IoT devices. They mainly focus on migration of

2.4 Data Stream Operator Migration 25

a computation from one node to another, both deployed on the same type of physical

infrastructure, that is, cloud platforms, edge or mobile devices. Moreover, the presented

migration processes employ state transfer mechanisms that impose large application

downtimes. The two works that try to avoid transfer of state information (Parallel track

and Unimico) are only applicable to general query migration without support for individual

operators. Modern migration strategies need to be working at operator level so that they

can support migration of highly distributed data stream computations.

In order to address some of the drawbacks of the existing data stream operator migration

techniques, firstly, this thesis provides an efficient migration mechanism that make use of

incremental state transfer and in-memory data storage to significantly reduce application

downtime, as presented in Chapter 5. Secondly, in Chapter 6, we extend our migration

approach to support seamless migration of stateful operators for classes of data stream

applications that do not tolerate application downtime.

26
Background

Approach Target Migration unit Task Downtime Overhead
Gedik et al [69] cloud operator when/how yes state transfer/external storage
MigCEP [155] mobile devices operator when/where/how yes state transfer
Ding et al [58] cloud operator what/how yes state transfer
Moving State [222] not specified query how yes state re-computation
Parallel Track [222] not specified query how no duplicate removal and re-ordering
Kalantarian et al [108] mobile devices computation when/where NA NA
Unimico [157] cloud query how no window synchronisation
GenMig [114] not specified query how yes time synchronisation
Foglets [172] cloud and fog nodes operator how yes state transfer
Resa [192] cloud operator how yes state transfer and external storage
Dwarakanath et al [61] mobile and sensor devices operaor how yes state synchronisation and external backup
Wang et al [205] mobile-edge cloud service whether/when/where NA NA
Machen et al [129] mobile-edge cloud service how yes state synchronisation
HybMig [215] not specified query how yes state re-computation
Ksentini et al [116] edge cloud service whether/where NA NA
Hao et al [76] cloud service whether/where/how yes state transfer
Kea [51] mobile cloud computation whether NA NA
Cuckoo [111] mobile cloud computation how NA NA
Ma et al [128] edge servers service how/where yes state transfer

Table 2.1: Comparison of existing migration works on IoT and cloud infrastructure

Chapter 3

IoT Application Deployment and

Management

Overview

In this chapter, we present a framework for automating the generation

of a distributed runtime infrastructure for IoT applications which is based

on an optimised, high-level description of a computation on streaming data.

By taking into account the diverse range of processing capabilities of IoT

devices and available cloud resources, the framework efficiently deploys

each operation within a data streaming computation on the basis of each

operator’s compute resource requirements. Furthermore, the framework

allows dynamic adaptation to changes in specification and requirements.

We begin by providing a conceptual model for a holistic approach in

managing IoT systems. We then extend the DAG model to represent a

data stream computation in an IoT-cloud integration. The extended DAG

model is used to derive a deployment model which allows deployment

and management of a computation across different types of IoT-cloud

infrastructure. We demonstrate the applicability of our model using a

typical IoT use case for smart cities. Finally, we evaluate performance

of the framework for different types of deployment and management tasks

and show that it guarantees short execution times.

28 IoT Application Deployment and Management

3.1 Introduction

The Internet of Things (IoT) represents a network of connected devices that are able to

cooperate and interact with each other in order to reach a particular goal. To attain this, the

devices are equipped with identifying, sensing, networking and processing capabilities [12,

209]. Due to the large number of connected devices in a real-world IoT use-case, the

amount of data generated is overwhelmingly large. This prompts the use of cloud resources

to process, analyse and store the data. Hence, a typical IoT-cloud system comprises of

front-end objects (edge devices) that collect and transmit data, and back-end (the cloud)

for data management.

Figure 3.1 shows an IoT-cloud integration model consisting of: (1) IoT devices – devices

that reside at the very edge of an IoT system used mainly as data sources, although some

of them provide limited execution environments. (2) Gateway devices – intermediary

devices that integrate data from IoT devices, which perform several functions such as

protocol translation, pre-processing and filtering of data. (3) Cloud-based data processing

an management systems – utilizing virtually unlimited computing resources provided by

the cloud. (4) Applications – IoT application use cases.

Sensors

Wearables

Raspberry Pi

Smart phone

M
es

sa
ge

 s
er

ve
r

Management API

Data stream processing

Storage Analytics

V
is

ua
lis

at
io

n

Healthcare

IoT devices Gateways Data processing,management and presentation Application

Industrial

Smart city

 RFIDs
MXE 5400i

Fig. 3.1: IoT-cloud integration model showing different levels of infrastructure.

IoT-cloud integration represents a platform that provides a cost-effective way of com-

puting resources utilisation for resource-intensive IoT applications. While IoT and cloud

computing are different in many aspects, their characteristics are mostly complemen-

tary [11]. For example, IoT devices are well known for limited capabilities in terms of

processing power and storage. Hence, IoT can benefit from computation power and storage

3.1 Introduction 29

capabilities guaranteed by the cloud. Meanwhile, the Cloud can benefit from connecting

and managing with a number of new real-world scenarios that can lead to the emergence

of new types of cloud-based services [142].

More recently, IoT devices that provide limited execution environments on top of their

data sensing and transmitting capabilities have been emerging. In addition, there has

been an increase in high-performance gateway devices capable of providing computation

environment equivalent to standard cloud-based machines [138]. Consequently, this changes

the way in which data is being managed in a typical IoT-cloud setup. The traditional

centralized, cloud-based data processing model does not provide an efficient utilization

of all available resources. Moreover, the fundamental requirements of real-time data

processing such as short response time are not always met.

The new decentralized architectural pattern allows some of the processing logic to be

executed directly on edge devices. Extending the processing capabilities to edge devices

increases the robustness of IoT applications as well as reduces the communication overhead

between different components of an IoT system [24]. However, this pattern poses a new

challenge in the development, deployment and management of IoT applications. It results

in a big resource gap between the two spectra of an IoT system (clouds and edge devices),

and hence, prompting a new approach for IoT applications deployment and management.

Generating infrastructure of an IoT application that spans both cloud and edge devices

is one of the main challenges of building industrial scale IoT applications [193]. Existing

IoT application deployment frameworks do not take into account the diverse memory,

storage and other processing capabilities between different parts of an IoT system. They

either try to leverage existing cloud deployment standards and frameworks to add support

for deploying applications running on edge devices, or implementing new frameworks that

support deployments on edge devices only. These frameworks are then used in conjunction

with the existing cloud-based frameworks to enable deployment on both cloud and edge

infrastructure (see Section 5.2 for more details).

In this chapater, we present a framework for dynamic generation of runtime IoT

Infrastructure that spans from the edge of an IoT system close to where data is collected,

to cloud resources where processing and analysis of the data normally take place. In the

30 IoT Application Deployment and Management

context of this work, dynamic generation of runtime IoT infrastructure refers to an elastic

IoT and cloud environment that enable dynamic deployment and management (migration

and auto-scaling) of data streaming operators. Our framework is capable of distributing

different parts (operators) of a data streaming computation into different IoT gateways

and cloud frameworks. In particular, this chapter makes the following contributions.

1. A modelling approach to describe a data stream computation for automatic deploy-

ment and management of data stream operators into an IoT-cloud infrastructure.

2. Extends Kura [118] – an IoT gateway deployment and management framework, to

provide support for deployment and management of data stream operators onto

multiple gateway devices, as well as the ability to automate the tasks.

3. Design and implementation of a framework for distributing data streaming computa-

tion onto different gateway devices and cloud infrastructure for better utilisation of

the available resources.

The remainder of this chapter is organised as follows. Section 3.2 discusses the related

work. Section 3.3 outlines challenges in IoT-cloud application deployment and management.

The modelling of data stream computation deployment and its various components are

presented in Section 3.4. Section 3.5 outlines how the system is implemented. In Section 3.6

we evaluate the performance of the system before concluding in Section 3.7.

3.2 Related Work

A number of ongoing research in the area of IoT application deployment and management

already exists, but they fail to bridge the gap between the resource-constrained devices

and virtually unlimited resources in the cloud. Vögler et al [201] developed a framework

for automatic provisioning and deployment of components of new IoT applications on

resource-constrained devices. The framework was evaluated using a real-world industry

scenario (Building Management Domain). However, the evaluation was performed in

a cloud environment where IoT devices were virtualized as Docker containers. Real

IoT devices are spatially distributed over a large geographical area, hence introducing

large communication overhead. Although we have adopted similar approach, we take the

aforementioned characteristic of IoT devices into account when validating our deployment

3.2 Related Work 31

and management framework by conducting a performance comparison between real and

virtual IoT devices (simulated IoT devices in cloud environment).

Distefano et al [60] propose SAaaS (Sensing and Actuation as a Service) framework

for providing on-demand virtual sensing resources. They envision an open market where

developers can acquire and share virtual devices to provide lower-level infrastructure

functionalities for their IoT applications. COLT [200] was developed as a solution for

managing, deploying and executing light-weight IoT applications running on IoT edge

devices. COLT allows application providers to submit their applications to IoT market

repository where users can buy a licence and deploy these applications into their own IoT

devices. The main focus on these two frameworks is on improving collaboration, sharing

and re-use of IoT devices and applications.

Hur et al[91, 92] propose a Semantic Service Description (SSD) ontology for semantic

representation of IoT devices and services to support interoperability between devices and

different platforms. Their SSD defines three concepts i.e. Property, Capability and Server

Profile in order to ensure interoperability between platforms and devices. Deployment

of devices and services is done by generating platform-specific service descriptions using

semantic metadata of both devices and platforms. Although their work targets two

prevailing IoT challenges of heterogeneity and automatic deployment, they only target a

specific area, i.e. devices level (hardware) compatibility with existing platforms, and their

deployment.

Li et al [123] extend the capabilities of the TOSCA [21] standard beyond cloud

deployment to automate the deployment of IoT applications at edge devices. TOSCA was

designed to improve interoperability between applications running on a cloud infrastructure.

Li et al [122] propose an IoT PaaS for supporting efficient and scalable IoT delivery by

leveraging a cloud service delivery model. These two works are examples of extensions of

cloud deployment solutions to support deployment on IoT devices. Transplanting bare

cloud solutions into an IoT setup can lead to inefficient utilization of resources within

the devices. Smart Fabric [173] is an infrastructure-agnostic artifact topology deployment

framework that extends MADCAT [95] to describe applications and its components. The

32 IoT Application Deployment and Management

framework allows migration of application topologies between different heterogeneous

cloud-based deployment targets.

The solutions presented by the open source community and commercially available

frameworks tackle different and diverse range of IoT problems. For example, IoTivity [97]

focuses on interoperability and discoverability of heterogeneous IoT devices. Kaa [107]

acts as a middleware to facilitate communications between front-end and back-end IoT

infrastructure. Cayenne [144] works merely with Raspberry Pis that are connected with

sensors and actuators, and enforce the use of drag-and-drop interface to accelerate the

design and development of IoT projects. ServIoTicy [176] is cloud-based IoT platform

focusing on real-time data processing of IoT workloads.

The research works presented in this section provide different mechanisms for generating

an IoT infrastructure, however, they do not take into consideration the dynamic nature

of such infrastructure. In contrast, we provide a mechanism for generating an IoT

infrastructure and optimisation techniques through reconfiguration of data streaming

properties in this chapter, and migration of data stream operators in Chapters 5 and 6.

3.3 IoT Application Deployment and Management

Challenges

Although IoT and cloud tend to complement each other in terms of resources, role and

reachability, see the discussion in Section 1.1, their integration brings about many challenges

and issues. We refer the reader to [11, 2, 57, 164, 142] for general discussions on challenges

and issues resulted by IoT-cloud integration. In this chapter we provide a discussion on

three challenges that we believe need particular consideration in the area of IoT-cloud

application deployment and management. These are; resource imbalance, reactive systems

and automation. We then in subsequent sections, model and implement a framework that

addresses these challenges.

3.3 IoT Application Deployment and Management Challenges 33

3.3.1 Resource Imbalance

IoT systems are very complex systems, consisting of front-end devices such as sensors

and gateways for collecting and forwarding data respectively, to the back-end applications

for further processing and analysis. These back-end applications and frameworks are

normally deployed on cloud infrastructure and are logically isolated from the front-end

devices and services using middleware or message brokers (also known as message servers).

The two types of infrastructure – front-end and back-end infrastructure possess different

capabilities in terms of computing resources they expose. This heterogeneity of IoT-cloud

integration, in terms of the computing resources they expose, is one of prevailing challenges

of designing, implementing, deploying and managing large IoT systems.

Existing research (see Section 3.2), has failed to bridge the resource gap between different

IoT devices and only provide a partial solution to the problem. They either focus on

deployments on resource-constrained devices, or automating deployment and provisioning

of virtual machines that only run on cloud platforms. Distributing a computation over

the entire IoT infrastructure will allow efficient utilization of available resources. For

example, sensors and IoT gateways will not have to forward every reading to the back-end

applications deployed on a cloud platform. Instead, only the partially processed results

will be forwarded to the cloud infrastructure, hence, reducing data traffic over the network

and operational cost in general.

3.3.2 Reactive Systems

Real-time data processing systems need to be reactive. According to Reactive Mani-

festo [162], a reactive system has the following characteristics:

Responsive – System must respond to changes in requirements in a timely manner so as

to enrich user experience and deliver consistent quality of services. Responsiveness

improves usability and makes it easy for problems to be detected and dealt with

effectively.

Resilient – The system remains highly available even in the presence of failure. Resilience

directly affects responsiveness of a system. In order for a system to be responsive, it

needs to be available, and for a system to be available after failure, a special failure

34 IoT Application Deployment and Management

handling mechanism such as replication, containment or isolation needs to be put in

place.

Elastic – Ability of a system to react to changes in input rate. An elastic system adapts

to varying workload dynamically (auto-scaling) by increasing or decreasing resources

required to service the workload. Auto-scaling can be achieved by designing a

system that can replicate its components and distribute the input data among the

components.

Message-driven – A system should be able to react to its surrounding environment

and asynchronously pass messages between its components. Such interaction model

promotes loose-coupling of its components, hence, improving manageability.

Existing deployment frameworks are not designed for deployment into and management

of reactive systems [162, 124]. While managing such systems, their reactive characteristics

must not be compromised. A system should be able to respond to users even during a

period of reconfiguration of its parameters or maintenance, for example.

3.3.3 Automation

Due to the size of typical IoT systems such as those found in health care, smart city and

industrial IoT, where thousands of connected devices communicate and exchange data

between them, managing these systems without a certain degree of automation can be

cumbersome. Therefore, IoT systems need to adapt to changes in user requirements and

system specifications at run-time. For instance, being able to automatically switch sensors

on/off, provisioning of new devices and virtual machines, adjust sensor sampling rate,

installing and running new algorithms for data analysis, without significant disruption of

the services provided by the system.

In order to address the aforementioned challenges, we have developed a framework

that takes an optimized, high-level, description of a computation on streaming data as

its main input and automatically generates a distributed run-time infrastructure for the

Internet of Things (IoT). Our framework is capable of mapping different operations within

a data streaming computation to different IoT devices and cloud resources.

3.4 Modelling of Stream Computation Deployment 35

In addition, the framework can react at run-time to changes in the system specification

and requirements, and automatically regenerate the infrastructure upon receiving a new

optimised deployment plan. The operation to device/cloud resources mapping is governed

by an optimal deployment plan (see Section 3.4.2) which specifies where each operation

should be deployed based on their computing resource requirements. By exploiting the

resource imbalance of an IoT-cloud integration systems and deploying different components

of a data streaming computation where they fit best, we are able to bridge the resource

gap between the resource-constrained devices of and IoT system and cloud infrastructure.

3.4 Modelling of Stream Computation Deployment

Managing IoT systems is a complex process given the number of devices and data streaming

parameters [81]. Furthermore, the systems are inherently dynamic – devices can join or

leave the system at any moment, while data streaming properties can also change over

time, prompting reconfiguration of the parameters. Manual management of these systems

is infeasible. Automating the task also needs different actors to work together in order to

guarantee optimal resource usage while adhering to data stream application specifications

and requirements.

Figure 3.2 shows our conceptual model of how to automate deployment and management

operations in IoT systems. A real-time monitor collects statistics related to the run-time

infrastructure, which can be used to monitor the requirements placed on the system. In

addition, the real-time monitor regularly reports performance related metrics so that the

infrastructure can be proactively modified in order to maintain the guaranteed quality

of service. When the requirement of the system cannot be fulfilled by the existing

infrastructure due to change in the environment, the real-time monitor triggers a re-

optimisation process of the computation.

An optimiser generates a model of data flow which is based on current state and

capabilities of the infrastructure, and set of functional and non-functional requirements

that can be placed on the system. One important aspect of optimising the computation

is to run a cost model that can be used to determine energy and computing resources

required by different components of a computation. The final output of the optimiser is a

36 IoT Application Deployment and Management

Resource catalogue Package repository Deployment plan

Deployer

Infrastructure
specific deployer

Infrastructure
specific deployer

Infrastructure
specific deployer

O
pt

im
is

er
R

ea
l-t

im
e

m
on

ito
r

Presentation and application

In
pu

t
In

fra
st

ru
ct

ur
e

D
ep

lo
ym

en
t s

ys
te

m

Smart sensors
and IoT gateways

Cloud-based
infrastructure

Mobile and
wearable devices

Fig. 3.2: A conceptual model for automating IoT-cloud runtime infrastructure generation.

deployment plan that specifies where each component of a computation should be executed

based on the requirements of each individual component, and the available resources on

the infrastructure. The aim is to push computation or part of it closer to data sources in

order to lower networking cost, or to offload the computation from resource-constrained

devices in order to preserve both computing resource and battery life of the devices.

The new deployment plan is passed to a deployment system for dynamically enacting

the new runtime infrastructure of the IoT system. The deployer may have to query the

resource catalogue for additional information about the infrastructure. The resource

catalogue provides a registry of all available devices and cloud-based virtual machines and

the amount of resources they expose. It also contains device-specific information such as

a unique device identifier (ID), IP address, physical location as well as device metadata

such as device type, model, serial number and device manufacturer.

Depending on the type of operation, deployment or provisioning of a new device, for

example, the deployer may also have to contact package repository for deployment packages,

jar files and other artefacts necessary for dependency resolution. The deployment system

needs to cope with different types of IoT infrastructure, from cloud, to gateway devices

including embedded and mobile devices, as well as sensors with reasonable computational

power.

3.4 Modelling of Stream Computation Deployment 37

The conceptual model shown in Figure 3.2 represents a holistic approach for managing

IoT systems. The focus of this chapter, however, is in automating the deployment system

for generating the runtime infrastructure. In particular, we assume the existence of

functioning grayed components shown in the figure. The rest of this section is presented

as follow: Section 3.4.1 extends the DAG model to represent data stream processing in

IoT-cloud integration. In Section 3.4.2, a model for enabling automatic deployment of data

stream computation is presented. Section 3.4.3 validates the deployment model with an

example use case. Finally, the design of the deployment framework is outlined in Section

3.4.4.

3.4.1 Data Processing Model

At a very high-level, modern distributed data stream processing systems execute by first

receiving data from event sources, processing the events through a pipeline of continuous

operators where each operator performs a specific task, and finally, output the results to a

downstream systems for storage or presentation. Each continuous operator in a pipeline

may process events in parallel and forwards its results to other operators. The pipeline is

represented as Direct Acyclic Graph G = (V, E), where each vertex v ∈ V represents a

processing element, and an edge (u, v) ∈ E represents a stream of events flowing from a

processing element u to another processing element v. The DAG is then deployed on a

homogeneous infrastructure such as cloud for execution.

In this chapter, we extend the DAG model by representing a data stream computation

as shown in Figure 3.3 in order to incorporate the diversity in IoT-cloud infrastructure. A

computation consists of one or more event sources – these are IoT devices that generate

the data. Events from disparate sources are stored in a data ingestion system DI such as

queues inside a message sever, or a buffer within an operator to temporarily hold events

before being processed. Events inside data ingestion systems are forwarded to one or more

downstream operators OP for processing using a push or pull mechanism. With a push

mechanism, the data ingestion mechanism pushes events to the operator. The operator

then needs to cope with the data ingestion rate, or should have a means of dealing with it,

otherwise, it may introduce bottleneck on the system. A pull mechanism, on the other

38 IoT Application Deployment and Management

hand, allows an operator to fetch new events only when it is ready. With this approach,

an operator cannot be overloaded with data since it decides when it needs more, but may

lead to overflow of message queues.

Computation

E
ve

nt
 s

ou
rc

es

E
ve

nt
 s

in
ks

 OP1

 DI 1 OP1

 OP1

 DI2 OP2

Fig. 3.3: A representation of data stream computation on IoT-cloud infrastructure

A computation may have one or more operators each performing a specific task such

as filtering, aggregation or other types of events transformation. An operator can be

placed on either cloud or gateway infrastructure depending on its computing resource

requirement. Less resource-intensive tasks such as filtering and aggregation, for example,

can be executed directly on gateway devices, while more complex tasks such as running

algorithms for time series analysis of the data can be deployed on cloud infrastructure.

Furthermore, different instances of the same operator can execute in parallel (OP1). The

output of an operator are either passed to a downstream operator’s input buffer in case of

pipelined processing, or are temporarily stored in a queue (DI2) before being ingested into

the next downstream operator. In the case of an operator executing the last task of the

computation, the output is directly forwarded to an event sink for storage or visualisation.

3.4.2 Computation Deployment Model

To allow deployment of a data streaming computation across a variety of IoT devices

and cloud platforms, and management over their entire life-cycle of the computation, we

provide a deployment model which is based on the JavaScript Object Notation (JSON)

standard. The model describes the operations of a computation together with their vertical

and horizontal relations with the execution environment. A vertical relation describes

3.4 Modelling of Stream Computation Deployment 39

the environment into which an operation is hosted, while horizontal relation shows how

events are exchanged between an operation and its immediate predecessor and successor

running within the same or on a different host. Its immediate predecessor or successor

could be another operator within the computation performing a different task, or a data

ingestion system used for temporarily holding events. For the purpose of clarity and

simplicity, we represent both operators as well as data ingestion systems as operations

within a computation. With this abstraction, therefore, an operation can behave like an

operator by processing the events, or can just be used to hold events that wait to be

passed to another operator.

Figure 3.4 provides an overview of the structure of the model. By describing a

computation in this way, we improve the portability of the deployment plan so that it can

be used to automate the generation of runtime infrastructure distributed across a variety

of edge devices and cloud platforms.

Fig. 3.4: A model of execution plan for deployment and management of data streaming
operators on IoT-cloud infrastructure.

An operation defines one vertical (runs on) and three horizontal (executes, reads from

and writes to) relations. The runs on relation describes the environment (node) in which

40 IoT Application Deployment and Management

an operation is hosted. A node can be either a cloud-based VM, or a physical device within

an IoT infrastructure. Nodes from within and different type of infrastructure exhibit

different characteristics in terms of processing power, and software stack and libraries that

are needed to run the operation. Consider an operation that has been containerised in

order to facilitate portability across different infrastructure. The containerisation may

be well supported in a cloud environment, but may require extra software stack to be

present on some of the IoT devices so that the container can be supported by the device

environment. Our model captures these types of software dependencies in order to prepare

a node for deployment of such operation.

In addition to software dependencies, a node that represents a host environment carries

metadata about the device. Device unique identification (ID), physical location in terms

of longitude and latitude, type and model are example of information required to assess

the suitability of running an operation on that host. Lastly, a node must describe its

available computing resources in terms of CPU and memory.

The executes relation describes the task associated with the operation. A task can

be one of the three types - installation, configuration or uninstallation of a data stream

operator such as filter and aggregate, or can merely represent a data ingestion mechanism

such as queues for temporarily holding events. Each of the three types of tasks defines

its own properties. For example, a task of type deploy includes name and location of a

package or jar file required to launch the operator as well as a list of arguments required by

the operator. A data ingestion task, on the other hand, specifies an ingestion mechanism

or tool, protocol supported by the tool, and address of an operator to connect to the tool

in order to store or access data.

The two remaining horizontal relations; reads from and writes to are used to describe

event flow direction by connecting an operation with its predecessors and successors. An

operation can have more than one predecessor or successor as we have seen from our

modelling of a computation in Figure 3.3. This may involve merging of event streams

from disparate sources before processing them, or splitting of output streams to multiple

targets. The reads from and writes to relations specify source and target addresses where

an operation can connect.

3.4 Modelling of Stream Computation Deployment 41

3.4.3 Example Use Case: Stream computation deployment mod-

elling.

We demonstrate the applicability of our deployment model for generating runtime infras-

tructure of IoT-cloud systems using a simulated IoT system for smart cities. In smart

city domain such as Newcastle Urban Observatory [198], sensors are deployed at different

location within a city in order to monitor the urban environment. The sensors collect

different types of real-time data such as temperature, wind speed, air quality and parking

spaces. The data is then explored and analysed and the results can be used to inform the

public about various city services.

Figure 3.5 provides an overview of the developed system. For this demonstration, we

only used temperature sensors where temperature readings are collected every second

and forwarded to gateway devices (Raspberry Pis) for pre-processing. The pre-processed

data is then sent to a cloud-based data ingestion system, Mosquitto [63]. Mosquitto is a

lightweight publish/subscribe message broker that implements the MQTT [119] protocol.

A publish/subscribe messaging semantic allows each message in a queue to be forwarded

to all subscribers of the queue (also known as multicast). We use the Spark framework

deployed in the cloud environment to process and analyse the temperature readings.

 Raspberry PI
Raspbian, Java, OSGi, Kura

VM

 (M
es

sa
ge

 b
ro

ke
r)

U
bu

nt
u,

 J
av

a,
 M

os
qu

itt
o

 VM (DSMS)
Ubuntu, Java, Spark, Docker

 Raspberry PI
Raspbian, Java, OSGi, Kura

DB

sensors

sensors

gateways

cloud

 VM (DSMS)
Ubuntu, Java, Spark, Docker

 VM (DSMS)
Ubuntu, Java, Spark, Docker

Fig. 3.5: An example of IoT-cloud integration systems in smart city domain.

The data streaming computation for processing and analysing the temperature readings

represents two streaming operators. The first is an average operator that takes a stream

42 IoT Application Deployment and Management

of temperature readings over a specified time-window, and returns average temperature

over that time window. The second operator, forecast, performs a time series analysis of

the data and generates a model for daily temperature forecasting. Based on computing

resource requirements for each operator, the average operator is implemented using the

OSGi-based Kura framework and has to be deployed and executed in parallel on two

gateway devices, while the forecast is implemented using Spark time series library, and

needs to be deployed on a cloud platform.

We model the deployment of above computation using three different operations. One

operation for each gateway, cloud-based resources and message ingestion system. Listing

3.1 shows a model template for deployment on gateway devices. For a complete deployment

template of the computation, see Appendix A.1. The gateway devices (Raspberry PIs) are

considered to be of the same model and with similar capabilities. If devices are of different

types, each type should be modelled differently. The four relations associated with an

operation are all presented with their relevant and required properties for deployment.

Using the modelled template for deployment on gateway devices increases the portability

and reproducibility of the same deployment plan. In this example, we have only considered

two gateway devices, but in Section 3.6 we demonstrate how the same deployment plan

template can be used to deploy a data streaming operator into a larger number (200

devices) of gateway devices.

Once the deployment is complete, the stream operator running on particular devices can

be managed using the same deployment template. If, for example, we want to dynamically

increase the publish rate, which corresponds to the expiry time of the window before

average temperature is calculated and sent downstream in this case, from 5 to 10 seconds.

Only two parameters will need to be reconfigured in the template. The task.type will

change from deploy to update, as well as the publish.rate.

3.4.4 System Design

In order to address the challenges of automatic generation of an IoT infrastructure

which takes into consideration the resource-imbalance between IoT devices and virtual

machines running on different cloud platforms, in this section we present the design of our

3.4 Modelling of Stream Computation Deployment 43

1 {Computation:[
2 {Operation:[
3 {OP-ID:"001"},
4 {source:"sensors",
5 node:[
6 {metadata:[
7 {ID:"GW-01"},
8 {type:"Raspberry PI"},
9 {model:"B+"},

10 {location:[
11 {longitude:"54.977722"},
12 {latitude:"-1.625544"}
13]}
14]},
15 {softeware_stack:[
16 {OS:"Raspbian"},
17 {libraries:"Java, OSGi, Kura"}
18]},
19 {resources:[
20 {CPU:"1.4GHz"},
21 {memory:"1GB"}
22]}
23],
24 task:[
25 {Type:"deploy"},
26 {binary:"filter.dp"},
27 {Arguments:[
28 {publish.topic:"temp-readings"},
29 {publish.rate:"5"},
30 {publish.qos:"2"}]
31 }],
32 target:"MQTT broker" }
33]}
34

Listing 3.1: Model template for deployment and management of data
stream operators on gateway devices.

IoT-cloud deployment and management framework. The framework takes a description of

a data stream computation and distributes different operations within the computation to

different IoT devices and cloud infrastructure on the bases of resource requirement of each

operation.

Figure 3.6 provides a high-level overview of the IoT-cloud deployment and management

framework. Central to the framework design is a deployment plan – the main input to the

system. At a very high-level, the plan defines mappings between different operators of

a data stream computation, and physical and virtual devices for initial deployment of a

44 IoT Application Deployment and Management

computation, or may signify a reconfiguration process of data streaming parameters of the

existing deployment.
D

ep
lo

ym
en

t p
la

n

D
ep

lo
ym

en
t c

lie
nt

Deployment
object

Deployment
object

Deployment
object

D
ep

lo
ym

en
t s

er
ve

r Gateway manager

Cloud manager

G
at

ew
ay

in

fra
st

ru
ct

ur
e

C
lo

ud

in
fra

st
ru

ct
ur

e

C
om

m
an

d
ch

an
ne

l

Package repository

Fig. 3.6: A high level architecture of the proposed deployment framework.

The entry point to the system is the deployment client – a service that continuously

listen for a new deployment plan from the optimiser, and directly interacts with other

external components and users of the system. The main function of the client program

is to generate one or more deployable objects from a deployment plan. Each deployable

object represents a single operator, and encapsulates all the necessary information about

the operator as shown in Listing 3.1. If there are dependencies between operators, the

client adds the order in which the objects or operators should be deployed before they are

forwarded to the deployment server.

The Deployment Server is a cloud-based system for enacting a IoT-cloud infrastructure.

Inside the server, deployment objects are received and forwarded to their corresponding

deployment manager. Even though deployment objects are given order numbers by the

deployment client, they are passed down to the server asynchronously. The deployment

server may receive the objects in any order. The server ensures that if there are dependencies

between operators, the corresponding deployment objects for those operators are deployed

in the order assigned by the deployment client. The actual deployment of the operators is

performed by gateway and cloud managers. The gateway manager deploys and manages

applications running on IoT gateway devices. On the other hand, the cloud manager

deploys and manages application running on cloud infrastructure. Lastly, the server also

hosts a package repository for storing deployment packages, jar files and other artefacts

necessary for dependency resolution.

3.5 Implementation Details 45

3.5 Implementation Details

In this section, we describe the implementation details of different components of our

IoT-cloud deployment and management framework. The framework consists of two main

components – deployment client and deployment server. The deployment server as depicted

in Figure 3.6 includes infrastructure specific deployment managers. The data exchange

between different parts of the system are facilitated through socket communication. A

socket is an endpoint of a two-way communication link between two programs running on

a network uniquely identified by combination of IP address and a port number.

3.5.1 Deployment Client

The main function of deployment client is to receive a new deployment plan from the

optimiser, parse the plan into different types of deployment objects that correspond to

different target infrastructure. The data transfer mechanism between the client and other

components, as mentioned above, is socket communication which is implemented using Java

Socket API. As far as communication with other components is concerned, the deployment

client provides both server and client implementation of socket communication to optimiser

and deployment server respectively. As a server, the deployment client continuously listen

to new connection from the optimiser. The optimiser generates new deployment plans

whenever a reconfiguration of the existing deployment or a new deployment is required.

When a new deployment plan is received, the client parses the JSON object into one

or more deployable objects. A Deployable object is a representation of a single operation

specified inside the deployment plan. For each generated deployable object, the client

queries the resource catalogue for specific information about the device such as resolving

IP address, authentication details, and exact location of executable JAR file or deployment

package. The objects are then passed down to the server where they get serviced by their

corresponding deployment managers.

3.5.2 Deployment Server

For a single computation with several operations, the deployment server is where infras-

tructure specific deployment objects that represent different operations inside a deployment

46 IoT Application Deployment and Management

plan are received and processed. When an object is received, the server determines which

deployment manager the object should be forwarded to based on the information within

the object itself. The object is then submitted to the corresponding device specific handler

classes. The handlers are responsible for generating messages in a format that can be

understood by their downstream deployment managers.

Gateway Manager

The Gateway manager leverages the MQTT protocol and Eclipse Kura to establish

communication to gateway devices, deploy operators on the devices and remotely manage

both devices and operators. Kura runs on Java Virtual Machine (JVM) and is based

on the OSGi [154] framework – a dynamic component system for Java. Kura provides a

foundation for building modular, gateway-based Java applications that can be managed

through its web-based User Interface (UI). The main drawback of Kura UI is that it

can only connects to a single device at any particular time, making it inefficient for

performing mundane administrative tasks on large IoT systems. In addition, by relying

on its UI only, it is impossible to automate these deployment and management tasks.

Our implementation of the Gateway manager extends the capabilities of Kura to allow

deployment and management of multiple gateway devices with Kura running on them, and

support task automation (for both deployment to and management of the IoT gateway

devices).

Figure 3.7 gives an overview of the Gateway Manager implementation which fol-

lows request/response messaging model over MQTT as well as different technologies used

for its implementation. The model provides a REST-like API (Application Program-

ming Interface) for sending requests to and receiving responses from gateway devices via

MQTT broker. The API allows users to perform CRUD-like (Create, Read, Update and

Delete) operations on remote devices by executing three different commands (GET,PUT

and EXEC). Users of the system would normally invoke GET command to retrieve a list

of deployed packages/applications and current state of installed applications (configurable

properties), PUT command to update an application state, and EXEC command to

install/uninstall packages or start/stop applications.

3.5 Implementation Details 47

Paho client

Kura

GW1

GW2

GWn

M
os

qu
itt

o
se

rv
er

Paho client

Kura

Paho client

Kura
P

ah
o

cl
ie

nt

G
at

ew
ay

 m
an

ag
er

Fig. 3.7: An overview of gateway deployment model.

MQTT topics are hierarchical and have semantic indicating a resource residing at

a particular location “[location]/[resource]”. Supported topic and message formats are

defined in the MQTT Specification [152]. The most recent versions of Kura add application

ID in the topic structure to logically separate multiple applications running on the same

device and allows them to communicate without the risk of topic namespace collision.

With this feature, two or more operators can be deployed and executed at the same time

on a single device.

When the gateway manager receives a deployment object from the deployment handler,

it first determines the type of operation and validates the supplied parameters against

the operation to determine if it can successfully construct and send request to a remote

device. Based on the received information from the server, the gateway manager will

build a request topic of the form "$EDC/account_name/ target_id/app_id/resource".

Where, "$EDC " is a topic prefix attached to control topics in order to distinguish them

from data topics. "account_name" identifies a group of devices and users such as name

of an organisation or of an IoT system. "target_id" represents a single gateway device

within an organisation or IoT system where the resource is requested from. "app_id"

is a unique identifier of an application running on a target gateway device. "resource"

identifies a resource owned by the referenced application. For each request, the gateway

manager produces a unique request and requester identifications and uses information

from the initially built request topic to automatically generate a response topic of the

form “$EDC/account_name/requester_id/app_id/REPLY/request_id".

"$EDC/account_name/target_id/app_id/resource"
$EDC/account_name/requester_id/app_id/REPLY/request_id

48 IoT Application Deployment and Management

1 Request topic: $EDC/cbn/pi01/CONF-V1/PUT/configurations/app-01
2 Request payload
3 Payload metrics:
4 request_ID="request-01"
5 requester_ID="client-01"
6 Payload body:
7 <ns2:properties>
8 <ns2:property type="Integer" array="false"
9 name="publish.rate">

10 <ns2:value>10</ns2:value>
11 </ns2:property>
12 </ns2:properties>
13 Response topic: $EDC/cbn/client-01/CONF-V1/REPLY/request-01
14 Response payload: Response code

Listing 3.2: Request/response topics and message payload for gateway
deployment and management.

Once the response topic is created, the manager opens a connection to a cloud-based

MQTT broker using Paho MQTT client [62] and subscribes to a response topic before

sending a request message. The MQTT broker is implemented using Eclispe Mosquitto

framework. Kura provides a number of applications that can service requests forwarded to

control topics. In addition, it provides a base class that users can extend to support more

customised requests. Listing 3.2 shows an example of Kura compatible request/response

topic and payload that can be used to update the publish rate of a gateway device.

Cloud Manager

Cloud Manager generates cloud infrastructure for processing and analysing data generated

by remote devices. For portability and isolation point of view, our framework deploys

and manages data stream operators packaged inside Docker containers. Docker allows

packaging of an application with all of its dependencies into a standardized Linux container.

The container can then be deployed on a variety of platforms such as private or public

clouds, local machines and servers.

The design and choice of technology decisions for the cloud manager are governed

by the system non-functional requirements outlined in Section 3.3.2. For instance, we

use Docker Swarm [189] to ensure high availability (fault-tolerance) of the system in a

distributed environment. The high availability feature in Swarm allows a graceful handling

of fail-over from multiple replicas in case of a manager instance failure. It also allows

3.5 Implementation Details 49

replication of services running on worker containers, and if one or more of the nodes crash,

the manager recreates the services by launching new containers on one of the healthy

nodes. Scalability is provided by declaring a number of tasks that you want to run for

each service, and the Swarm manager will automatically adapt by adding or removing

tasks to maintain the desired state.

Figure 3.8 shows the cloud infrastructure model generated by the cloud manager. The

model is based on launching a standalone Spark cluster in a streaming mode to generate

a cloud computing environment for the telemetry data received from remote devices.

Spark provides a connector for injecting data from MQTT brokers. We run each Spark

process (executors and driver program) on a separate Docker container. The containers

are connected by Docker’s own overlay network. In this way, we are able to run multiple

Spark processes on each machine (node).

Spark worker

Swarm worker

Docker image
repository

C
lo

ud
 m

an
ag

er

Swarm cluster

Noden

Node1

Node2

Spark worker

Swarm worker

Spark worker

Swarm worker

Spark worker

Swarm worker

Spark manager

Swarm manager

Spark worker

Swarm worker

Fig. 3.8: An overview of cloud deployment model.

When a cloud deployment object is received, the cloud manager inspects the object to

determine the type of operation and prepares all arguments required during its execution.

The manager then selects one node from the list of available nodes as Swarm manager

and establish a secure connection to it using Java Secure Shell (SSH) library. A Swarm

cluster initialization script together with other scripts that are used for running services

are then copied to the manager node, and the initialization script is executed to launch a

Swarm cluster.

50 IoT Application Deployment and Management

To enable other nodes to join the cluster in the future, the manager node creates three

files and copies them to each of the remaining nodes. One file contains a unique token that

allows a worker to join the cluster, the second file contains a unique token for elevating

a worker node into manager node and the third file contains manager node hostname.

Finally, the manager node creates an overlay network to enable container-to-container

networking. Native support for overlay network in Docker was introduced from Docker

Engine v1.12.0 and allows multiple services to be attached to the same network.

When the Swarm manager is up and running, the cloud manager connects and copies

the Swarm cluster joining script on each of the remaining nodes. The cloud manager

then logs in into each of the remaining nodes and executes the script to allow the nodes

to join the Swarm cluster as workers. The cloud manager then connects back to the

Swarm manager and deploy Spark workers as a service on a Swarm cluster and attach

the service to the overlay network created earlier. Swarm allows two different types of

services, replicated and global. To create a replicated service, the total number of replicas

is specified for the Swarm manager to schedule onto the available nodes (both manager

and worker nodes). On the other hand, the Swarm manager will schedule one task on

each available node for a global service. In order to support elastic scaling of the running

services, our framework only supports the creation of replicated services. By specifying

a desired number of replications for Spark work services, the Swarm manager evenly

distributes these workers across all cluster nodes.

Finally, from inside the Swarm manager a Spark master is deployed as another service

and attached to the same overlay network. Beside launching the master service, the script

also executes the Spark submit command to run the Spark streaming operation from

the previously downloaded JAR file. When Spark workers eventually connect to Spark

master, the generated Spark cluster can be viewed through the master’s web UI. Both

Spark master and worker services are created using custom built Docker images. The

images are cached inside every node in order to reduce networking overhead.

3.6 Evaluation 51

3.6 Evaluation

In this section, we evaluate the performance of the presented IoT-cloud deployment and

management framework for generating distributed runtime infrastructure of a data stream-

ing computation. Three experiments in total were performed for executing three different

tasks: (1) install – for deploying operators on both cloud and gateway devices. (2) uninstall

– for uninstalling operators running on gateway devices. (3) update – for reconfiguration

a parameter of an operator running on gateway devices. For each experiment, the same

IoT-cloud use case example presented in Section 3.4.3 was used for workload generation

and processing.

Experiment 1: Performance comparison between real and virtual Raspberry

Pi

One of the characteristics of IoT systems is having large number of connected devices.

IoT deployment and management systems must cope with this very large number of

devices. In the following experiments, we demonstrate how our deployment system can

scale up to cope with the large number of devices by simulating virtual gateways in a cloud

environment using container virtualisation technology. This approach allows us to create

hundreds of virtual gateways on-demand. The purpose of this experiment is to justify our

use of virtual devices by comparing their performance to that of real gateway device.

A Docker container based on Raspbian Jessie base image with Kura framework added

to the image was used for creating a virtual Raspberry Pi. From Newcastle University’s

own OpenStack private cloud, we selected the smallest available instance, m1.small, to

provide the execution environment for the container. Table 3.1 shows the details of each

execution environment used for this experiment.

To run the experiment, three types of gateway tasks (install, uninstall and update)

were executed one at a time on a virtual Raspberry Pi, and total execution time for each

task was measured. For each task, the experiment was repeated 10 times, and average

execution time was calculated. The entire experiment was repeated using a real Raspberry

Pi whose computing resources are also summarised in Table 3.1.

52 IoT Application Deployment and Management

Node OS CPU Memory (GB) Disk storage (GB)
Deployment client MacOS Serra 2.2 GHz 16 250
Deployment server Ubuntu 14.04 1vcpu 7 16
MQTT broker Ubuntu 14.04 1vcpu 7 16
Real Raspberry Pi Raspbian Jessie 900MHz 1 8
Virtual Raspberry Pi Ubuntu 14.04 1vcpu 2 8
Table 3.1: Execution environments for Experiment 1. Each 1vcpu is equivalent to Intel®
Broadwell E5-2673 v4.

0

500

1000

1500

Install Uninstall Update

Task Type

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Device Real Raspberry Pi Virtual Raspberry Pi

Fig. 3.9: Performance comparison between real and virtual Raspberry Pi.

Figure 3.9 summarises the results of running this experiment on both real and virtual

Raspberry Pi. For uninstall task, the execution time was reduced by 3% when performed on

virtual Raspberry Pi. Similar behaviour was realised for update task, where the execution

time on virtual Raspberry Pi was 4% lower compared to that of real Raspberry Pi. As for

install task, the performance improvement of running the task on virtual Raspberry Pi

was more notable. The execution time on virtual Raspberry Pi was this time 12% lower.

From our observation, the main reason behind the significant increase in performance is;

unlike when installing the operator on cloud based VM where the Docker image used for

launching the operator is cached within the VM, gateway devices don’t cache operator

locally. Therefore, install task on a gateway device involves the device downloading the

operator from the package repository which is located in the same private OpenStack

cloud and shares the same private network as the virtual Raspberry Pi. This makes the

process of downloading the operator into a virtual Raspberry Pi relatively quicker than

doing the same with a real Raspberry Pi.

3.6 Evaluation 53

Based on the above observation, it is clear that the emulated gateway environment

does not significantly influence performance of our deployment approach. Keeping that in

mind, virtual Raspberry Pis were used in all subsequent experiments that require the use

of gateway devices.

Experiment 2: Install - Deployment a computation across IoT-cloud infras-

tructure

The purpose of this experiment is to demonstrate how the IoT-cloud based deployment

framework presented in this chapter can be used to distribute different operators of a

data stream computation across a cloud and gateway infrastructure. In doing so, we

also assess the performance of our deployment approach by measuring the total time

required to deploy the computation on both cloud and gateway infrastructure. The total

execution time is measured by the deployment client as the time from when the client

receives the deployment plan from the optimiser, until responses from all participating

nodes are received. Each single run of the experiment involves deployment on both cloud

and gateway devices at the same time, however, execution times for the two different types

of infrastructure are measured independently so that performance of the system on each

type of infrastructure can be studied separately. The total execution time of the system is

then taken as the maximum of the two.

For gateway deployment, 200 virtual Raspberry Pi were created on University’s private

cloud as Docker containers with each container running on its on VM instance. In addition,

another 30 VMs were launched on the Azure cloud platform for cloud-based deployment.

Table 3.2 shows the execution environments used during this experiment. The cloud

deployment involves generating runtime infrastructure which is based on launching a

containerized Spark streaming standalone cluster that is managed by Docker Swarm. Two

additional Docker images, one configured as Spark master and the other as Spark worker

were created and cached inside all host machines.

Beginning with 50 gateway devices, and increase the number by 50 until all 200 virtual

devices were used, a total of four experiments were performed for gateway deployment.

Each experiment is repeated 10 times, and the mean execution times were calculated. The

54 IoT Application Deployment and Management

process is repeated for cloud deployment with 5 VMs, and increase the number of VMs

each time by 5 until all 30 VMs were used. The results of running these experiments are

depicted in Figures 3.10 and 3.11

Node OS CPU Memory (GB) Disk storage (GB)
Deployment client MacOS Sierra 2.2 GHz 16 250
Deployment server Ubuntu 14.04 1vcpu 7 16
MQTT broker Ubuntu 14.04 1vcpu 7 16
Virtual Raspberry Pis Ubuntu 14.04 1vcpu 2 8
Table 3.2: Execution environments for Experiment 2. Each 1vcpu is equivalent to Intel®
Broadwell E5-2673 v4.

0

10

20

30

40

50

60

70

80

50 100 150 200

No. of devices

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

No. of devices 50 100 150 200

Fig. 3.10: How install task execution time changes for different number of gateway devices.

Figure 3.10 shows the mean execution times for different number of devices plotted as a

line graph, with distribution of the measurements expressed as box plots. The mean values

tend to increase steeply as number of devices increases. This behaviour is highly attributed

to the nature in which Kura framework is implemented. The management commands from

Kura to devices are executed serially, hence, the execution time is highly affected by the

increase in number of devices. The spread of the measurements also increases as number

of devices increases showing unpredictable execution times as number of devices increases.

3.6 Evaluation 55

5

10

15

5 10 15 20 25 30

No. of VMs

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

No. of VMs
5

10

15

20

25

30

Fig. 3.11: How install task execution time changes for different number of VMs.

Mean execution times for cloud deployment (Figure 3.11) tend to increase gradually

as the number of VMs increases. The improved performance was mainly due to the fact

that commands for cloud deployment are sent in parallel to different VMs. In contrast,

there is a clear unpredictability in the way measurements are spread as the number of

VMs increases with few noticeable outliers.

The two plots also show that, for the same number of nodes, gateway deployment is

quicker when compared to cloud deployment. For example, according to the experimental

results, it takes 10.47 seconds to deploy and run an operator on 50 gateway devices,

compared to 10.93 seconds for performing the same task on 30 cloud-based VMs. Cloud

deployment involves successfully launching Spark streaming cluster that is managed by

Swarm cluster. This process should take considerably longer when compared with just

running single operator on gateway devices.

Experiment 3: Managing operators on gateway devices after initial deploy-

ment

Following the initial placement of a computation, this experiment demonstrates how the

presented deployment framework can be used to manage operators, as well as gateway

56 IoT Application Deployment and Management

devices on which the operators are deployed over the entire life-cycle of a computation.

Although the focus of this experiment is on managing gateway devices and part of

a computation deployed on those devices, it is also possible to reconfigure part of a

computation running on cloud-based infrastructure dynamically. For example, we may

want to scale-up Spark workers or change batch size. A new deployment plan can be

generated for relaunching the Spark cluster with the desired configuration.

Two management tasks, uninstall and update were performed during this experiment.

uninstall involves stopping and removing an operator from a gateway device, while update

reassigns the publish.rate parameter of streaming computation to a new value. This

experiment used the same setup and execution environment for deployment in gateway

devices as presented in Experiment 2.

0

5

10

15

20

50 100 150 200

No. of devices

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

No. of devices 50 100 150 200

Fig. 3.12: How update task execution time changes for different number of gateway devices.

Figures 3.12 and 3.13 show the mean execution times of executing update and uninstall

tasks respectively for different number of devices. For update task, both mean execution

times and measurements spread (variance) increase gradually with the increase in number

of devices. On the other hand, the change in mean execution times for uninstall resembles

3.7 Conclusion 57

0

10

20

30

40

50

60

70

80

50 100 150 200

No. of devices

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

No. of devices 50 100 150 200

Fig. 3.13: Shows how uninstall task execution time changes for different number of gateway
devices.

that of install task presented in Experiment 2, the distribution of the values are more

compact in uninstall task instead.

3.7 Conclusion

In this chapter, we have presented a framework for automatic generation of distributed

runtime infrastructure for Internet of Things. The framework takes an optimized high-level

description of a data streaming computation (using high-level functions in data streaming

models) and deploy each operation (function) in the computation on different IoT gateway

devices and cloud infrastructure. The framework takes into consideration resource gap

between different parts of an IoT infrastructure, by deploying operators where they can

be serviced best.

The framework can also be used to manage an IoT system over its entire life-cycle by

dynamically regenerating the infrastructure to reflect changes in requirements or workload.

Using the framework, a user can dynamically update configurable parameters of a data

stream without the need to stop the computation. A stream’s publish rate, for example, can

58 IoT Application Deployment and Management

be increased or decreased at runtime to provide a flow control mechanism for downstream

operators.

Our experimental results show that the framework can be used to deploy into and

manage hundreds of emulated gateway devices efficiently with short execution times. By

comparing the performance of virtual to that of real gateway device, we showed that

the emulated environment did not have significant influence on our experimental results.

Likewise, we demonstrated how the framework can be used effectively to deploy part a

computation on a cluster of cloud-based VMs.

3.7.1 Limitations

Although the presented framework is capable of dynamically re-enacting the infrastructure

in order to cope with the dynamism and unpredictability of IoT systems, there are situations

where the presented model by itself cannot provide integrity of the computation by only

re-modelling and re-generating the infrastructure the way it is presented in this chapter.

Consider an example of a situation where a real-time monitor reports a performance

degradation due to a bottleneck caused by a particular processing node within a data

streaming computation. The node which hosts one of the operators is struggling to cope

with the resource requirement for that operator. The decision is taken to replace the

struggling node with a more powerful node, a process that entails generation of new

optimised deployment plan.

In principle, the above process involves migration of an operator from one node to

another. Relaunching the operator on different node using the presented model would

suffice to guarantee the integrity of the computation if the operator is stateless. Stateful

operators as described in Section 2.1.1, however, store data related to processing of previous

events as state information, and can be used for processing of future events. Re-generating

an infrastructure of a stateful operator on a different node requires not only migrating

the operator to the new node, but also transferring its state information to that node.

In Chapter 5, we extend our data stream computation deployment and management

framework by providing a mechanism for stateful operator migration. Because state

transfer is costly, and introduces application downtime, in Chapter 6, we optimise our

3.7 Conclusion 59

migration approach to provide a means of stateful operator migration without the need

for state transfer. This is made possible by recreating the state information through

synchronisation between old and new operators.

Real-time data streaming applications often come with strict latency and throughput

requirements. Management operations such as auto-configuration of data stream parame-

ters, like many other types of instrumentations, may introduce overhead on performance of

data stream applications. Therefore, continuous performance evaluation of these systems is

essential. Most DSMSs provide mechanisms for monitoring performance but the coverage

is limited to within the scope of the individual system. Apache Spark [220] for example,

provides runtime metrics about what is happening within Spark jobs. In our deployment

model, we would like to be able to evaluate end-to-end performance of the data stream

computation, or compare performance of an operator when deployed on different types of

infrastructure.

Runtime performance monitoring can be performed by dynamic instrumentation of

applications so that relevant metrics can be collected and analysed. However, dynamic

instrumentation techniques are often more complex to implement and most of the existing

instrumentation techniques impose significant overhead on host resources [112].

In Chapter 4, we present our approach for performance monitoring of distributed event-

based systems which employs dynamic code injection technique to change the behaviour of

a stream processing system, and at the same time monitor its performance. Our approach

is more generic compared to other techniques as it only requires the instrumented system

to provide an interface that expose its classes and methods.

3.7.2 Future Work

There are two areas where our existing work can be extended so as to improve performance,

as well as increase coverage in different IoT domains. Firstly, based on our initial

experimental results, further optimisation of the framework is necessary particularly in

the area of gateway deployment and management. Kura, the open source framework

used to facilitate gateway deployment and management has its own limitations, some of

them, such as automation and managing multiple devices at the same time, have already

60 IoT Application Deployment and Management

been addressed by this work. However, as mentioned in Section 3.6, Kura performs serial

execution of multiple commands resulting in high execution times. Therefore, one aspect

of optimisation would be to parallelise the command execution process so that requests

that are sent to different devices are executed concurrently.

Kura supports deployment and management on devices that run Linux-based distribu-

tions only. Due to an increasingly large amount of devices running proprietary software

in the market, it is currently impossible to guarantee high compatibility with most of

the existing IoT devices. Having said that, several open-source IoT operating systems

besides Linux-based distributions exist. Extending the current work to support variety of

open-source IoT operating systems such as Brillo [8], Contiki [46] and Ubuntu core [197]

will form part of the future work.

Chapter 4

Performance Evaluation of

Distributed Event-based Systems

Overview

In this chapter, we present our dynamic code injection approach to

address one of the aforementioned limitations from the previous chapter

(Section 3.7.1) – performance evaluation of distributed event-based sys-

tems. First, we demonstrate the usability of our approach by performing

a dynamic fault injection on a distributed data stream processing system

to simulate runtime behaviour of a system under processing delay fault.

Using the same approach, we then show how runtime performance metrics

can be collected and analysed in order to understand the runtime behaviour

of the system under such a particular type of fault.

We experimentally evaluate our approach and show that it is non-

intrusive as it does not influence the runtime behaviour of the system

under evaluation. Furthermore, our approach is very efficient as it does

not add significant overhead to the host system resources.

62 Performance Evaluation of Distributed Event-based Systems

4.1 Introduction

Event-based systems and Complex Event Processing (CEP) engines [127] are an increasingly

critical component in modern large-scale software deployments. In order to make optimal

deployment and resource management decisions, it is necessary to gain an understanding of

performance of the systems. However, the performance and dependability characteristics

of these systems are not well understood [67]. Furthermore, there are compelling scenarios

to motivate autonomic operation and fault recovery of event-based systems, but there

is a reluctance – particularly within industrial applications – to add complexity to fault

resolution scenarios. There is the belief that software will be buggy, especially under error

cases and code which is executed infrequently.

Existing approaches to evaluate event-based systems have focused on the instrumenta-

tion of applications or infrastructure, but few have the ability to capture the interactions

between the software deployment and its runtime environment [158]. The emerging bench-

marks for stream processing systems generally only consider application-level metrics and

not infrastructure issues [74].

Our work was motivated by the limitations of existing approaches, limiting their

usefulness to evaluate the performance of distributed event-based systems. Firstly, many

approaches require the re-compilation of application code. Secondly, there is limited

flexibility when faults can be injected in the application lifecycle. Finally, coordinating

complex test scenarios enacted across multiple nodes in distributed clusters is an open

challenge.

We present an approach which addresses these key challenges to evaluate the perfor-

mance, using a non-invasive dynamic code injection tool, Byteman [59]. Our approach

allows a practitioner to instrument an application, and develop code injection rules with

only the knowledge of the public interface of the application, and without the need to

adapt or re-compile the application. We can ‘attach’ our tool to a deployment at runtime,

and dynamically load and unload our rules during the execution of the system under

evaluation. Our system facilitates greater test coverage. Finally, our approach allows

programmatic specification of complex fault scenarios, across distributed nodes.

4.2 Related Work 63

The remainder of this chapter is organised as follows. Section 4.2 discusses related work.

In Section 4.3 we provide an outline of fault injection with emphasis on modelling the

fault injection environment as well as techniques for hardware and software fault injection.

Section 4.4 provides short introduction to Byteman and Thermostat – The two tools we

have used in our performance evaluation approach for code injection and metrics collection

respectively. The design of the fault injection environment is presented in Section 4.5. In

Section 4.6, we experimentally evaluate the effectiveness of our approach before concluding

in Section 4.7.

4.2 Related Work

4.2.1 Performance Evaluation of Distributed Event-based Sys-

tems

Performance evaluation of distributed event-based systems has not been studied well and

remains an active research area. Lopez et al [126] explore the performance of Apache

Storm, Apache Flink, and Apache Spark Streaming, with respect to message processing

performance in the presence of node failures. The authors provide experimental results from

a testbed comprising eight virtual machines, comprising one master node and eight workers.

To emulate node failures, one virtual machine is turned off. Meanwhile, Heorhiadi et al [79]

propose Gremlin, an approach to evaluating fault-tolerance of microservice architectures,

through network-level manipulation of inter-service messages.

Vögler et al [202] demonstrate the use of the AspectJ aspect-oriented programming

(AOP) framework to instrument and collect performance measurements from an Apache

Spark and Apache Storm cluster. This research focuses on the instrumentation of pro-

duction stream processing systems, while our research furthers the application of fault

injection in event-based systems, by supporting dynamic injection of faults and automated

management of the testing lifecycle, including infrastructure provisioning.

Hummer et al [90] present a taxonomy of classes of faults encountered in event-based

systems such as, Event Stream Processing (ESP) and Complex Event Processing (CEP)

systems. Pietrantuono et al [158] present a characterisation of software faults arising from

64 Performance Evaluation of Distributed Event-based Systems

the runtime environment. Both of these efforts are complementary to ours. Their findings

can inform our ‘Fault load’ and our derived Byteman rules.

4.2.2 Fault Injection

Fault injection has been been studied extensively and well established techniques are com-

monly used. Initial fault injection approaches targeted systems hardware. Messaline [10]

and RIFLE [130] are examples of earlier pin-level hardware fault injection systems for

dependability evaluation of microprocessors. Massaline is capable of applying multiple

injection faults simultaneously while at the same time controlling fault existence and

frequency. Signals collected from the target system are used to provide feedback to the

injector. RIFLE allows injection of different types of faults, and is not only capable of

detecting whether the injected fault has caused an error or not, but can also determine

the effective duration of the fault. These capabilities eliminate the need of implementing

different feedback mechanism [223].

Various software fault injection tools were later developed, and included classical tools

such as ORCHESTRA [54], NFTAPE [185]. ORCHESTRA was developed specifically for

testing dependability of distributed protocols. Faults are injected through an added extra

layer called PFI (Protocol Fault Injection) to the protocol stack. Fault injection is done at

the message-level by intercepting and manipulating incoming and outgoing messages of

a target protocol, or by probing a participant (injecting spontaneous messages into the

system). NFTAPE introduces the concept of LightWeight Fault Injector (LFI) to work

with multiple fault models, with diverse fault triggering modes to support multiple target

systems. The tool provides an API to facilitate development of new fault injectors.

DEFINE [109] is a fault injection and monitoring tool targeting distributed applications.

The tool is capable of injecting multiple faults simultaneously in both software systems

and machines (hardware) in distributed systems, as well as monitoring the fault impact

and its propagation. Loki [35] is another tool for fault injection in distributed systems

which injects faults by utilising the idea of partial view of the global state of a target

system. Setting up a fault injection experiment involves the user specifying which state

each machine of the target system should be in (the global state). To reduce the impact

4.3 Fault Injection Techniques 65

of fault injection such as runtime intrusion, Loki performs post-runtime analysis of an

experiment for performance and dependability evaluation.

The prevalence of Java framework in developing highly distributed applications has

resulted in creation of fault injection tools that specifically target Java applications

and their JVM (Java Virtual Machine) environment. Jaca [134] for example, offers

mechanisms for validating Java-based object-oriented applications using fault injection

techniques. Jaca makes use of computational reflection (ability of a program to modify

itself) and Javaassist [42] to allow bytecode to be transformed during program load time.

Jaca.net [99] extends Jaca to provide fault models associated to UPD (User Datagram

Protocol) communication.

FIONA [100] is a fault injection tool for validating fault-tolerance of UDP-based Java

network applications. It makes use of JVMTI (Java Virtual Machine Tool Interface) [106]

which enables the development of debugging and monitoring tools for Java applications. By

using JVMTI tool, faults can be injected without the need to alter the target application.

Jacques-Silva et al [102] extend FIONA to offer support for distributed Java applications,

centralised configuration of multiple fault scenarios and simultaneous execution of multiple

fault models.

Tools for performing simulation-based fault injection have existed for decades. They

include VERIFY [178] and MEFISTO-C [66]. VERIFY uses an extension of VHDL

for describing behaviour of hardware components in case of faults, enabling hardware

manufacturers who provide the hardware design libraries to express their knowledge of

the fault behavior of their hardware components. MEFISTO-C uses VHDL simulator to

inject faults via simulator commands into variables and signals specified in the VHDL

model. It offers users with predefined fault models as well as other features to setup and

automatically execute fault injection campaigns on a network of UNIX workstations.

4.3 Fault Injection Techniques

Fault injection is defined in [70] as the validation technique of the dependability of fault-

tolerant systems which consists in the accomplishment of controlled experiments where

the observation of the system’s behaviour in the presence of faults is induced explicitly by

66 Performance Evaluation of Distributed Event-based Systems

the written introduction (injection) of faults in the system. It is a deliberate insertion of

faults into an operational system in order to test the system robustness and error-handling

capabilities, hence, allowing users of the system to obtain confidence in the system’s

ability to deliver a proper service. Fault injection is a powerful technique for evaluating

performance and dependability (study of failures and errors) of systems under faults.

Fault injection techniques come with additional benefits in performance and depend-

ability evaluation. The benefits include:

• Identifying design weaknesses in a system such as part of system where a single error

could lead to severe consequences due to propagation of that error to other system

components.

• Estimating a failure coverage and timing for efficient implementation of fault-

tolerance mechanisms.

• Assessing the efficacy of fault-tolerance mechanism implemented in the target system

(the execution environment running the actual workload), with an opportunity to

provide feedback for correction or enhancement prior to deployment in the production

environment.

Arlat et al [10] presented a FARM model for characterising a fault injection environment

for a given target system, where, ‘F’ is an input domain representing a set of faults that

can be deliberately injected into the system. Each fault in ‘F’ is characterised by injection

time – denoting a point in time after starting the workload when the fault is injected,

and location – specifying where in the target system the fault should be injected, for

example, an address of a memory location [71]. ‘A’ specifies another set of input domain

used to functionally exercise the system. The set includes any type of input data such as

sensor readings, communication messages, or general workload which is supposed to be

representative of the target system usage.

‘R’ is an output domain of a fault injection campaign which represents a set of readouts

corresponding to the behaviour of the system during the campaign. The readouts set is

determined by identifying the difference between the fault-injected and fault-free system.

Lastly, ‘M’ represents a different set of output of derived measures obtained from fault

injection. The measures may for example, include fault coverage which describes possible

4.3 Fault Injection Techniques 67

Controller

Data analyser

Fault injector Workload
generator Monitor Data collector

Target

Fault library Workload library

Fault injection environment

Fig. 4.1: Shows different components of a fault injection environment.

effect of the fault such as system failure, or effect-less fault – which does not propagate

into an error or failure [71].

Figure 4.1 shows another conceptual model for characterising fault injection environment

as presented in [86]. The system that is under evaluation is usually referred to as the

target. The target receives input from the workload generator and the fault injector. The

workload generator (applications, benchmarks, synthetic workload) provides the target

with input to execute before, as well as during a fault injection experiment, while fault

injector introduces faults into the target. Workloads and faults are specified through their

respective libraries as show in Figure 4.1.

When a fault is injected into a target system, the monitor tracks the behaviour of the

target system as it executes commands, and initiates the data collector whenever necessary.

The data collection process is performed online, while data processing and analysis which

is performed by data analyser happens off-line. All entities in the model are orchestrated

by the controller, which is a program that can be run on the same or different machine as

the target.

Previous works on fault injection have classified fault injection techniques into three

main types; hardware , software and simulation based fault injection. In what follows, we

provide an overview of each of the three fault injection types.

68 Performance Evaluation of Distributed Event-based Systems

4.3.1 Hardware Fault Injection

Hardware fault injection employs additional hardware to introduce faults into a target

system hardware [86]. It is widely accepted approach to evaluate the behaviour of a piece

of hardware in the presence of faults, and plays a key role in the design of robust hardware

components. The classical approaches allow conducting fault injection at the physical

level, for example, by disturbing the hardware environmental parameters or modifying the

value of integrated circuit pins [70]. Hardware fault injection can be further divided into

two categories depending on their fault types and locations where the faults are injected:

Hardware fault injection with contact – The fault injector are in direct physical

contact with the target system. Example are tools for directly changing power supply

of microprocessors or manipulating data pins on a circuit board [223].

Hardware fault injection without contact – The fault injector has no direct physical

contact with the target system. An example of this is the use of an external source to

produce different types of radiations, such as, heavy ion radiation or electromagnetic

interference, in order to affect the target system [223].

Hardware fault injection techniques are often costly and impractical as they may

require the use of special purpose hardware [207]. In addition, as more components are

integrated into electronic chips, it makes it difficult for pin level injection to cover internal

faults adequately. In order to address these difficulties, it is typically a common practice

in recent years to emulate hardware faults using Software-implemented fault Injection

(SWiFI) techniques [185, 5, 132]. SWiFI techniques typically operate at the assembly

or machine code level, which makes it easier to emulates hardware faults at that level.

For example, a hardware fault such as gate level stuck-at on an integrated circuit can be

emulated by corrupting memory location or register that would be affected by a faulty

gate using software instead of physically tampering with the hardware [148].

4.3.2 Software-based Fault Injection

As software becomes increasingly pervasive in safety-critical systems, it is fundamentally

important to provide some degree of assurance on the safety of such systems. Unfortunately,

it is impossible to offer assurance that a software is fault-free, and we must assume that

4.3 Fault Injection Techniques 69

complex software systems have design or implementation faults. Software fault injection

is a deliberate insertion of faults into a software system under controlled environment in

order to assess the effect of such faults on the system [182].

Software fault injection methods can be categorised on the basis of when the faults are

injected – at compile time or at runtime.

Compile time fault injection – Program instructions must be modified before the

program image is loaded and executed. The modified code changes target program

instructions when executed to make it an erroneous program image, and when

executed, it activates the fault. This approach requires no additional software during

runtime. Because the fault effect is hard-coded inside the program, the approach

can be used to emulate permanent faults.

Runtime fault injection – Program instructions are modified when the program is

already running. A special mechanism is needed to trigger the fault during program

execution. Commonly, three types of trigger mechanism are used: (1) Time-out

– A timer is used to trigger a fault at a predetermined time. (2) Exception/trap

– Triggers a fault whenever a certain event or condition occurs, such as when a

program executes a particular instruction. (3) Code insertion – Instructions for fault

simulation are added at runtime using a fault injector.

Unlike hardware fault injection where faults are introduced in the early stages such as

during the design phase, software fault injection is applied later in the development cycle.

It is oriented towards implementation details, and can address application state as well as

communication and interactions between different components of a software system.

4.3.3 Simulation-based Fault Injection

Simulation-based fault injection involves evaluating the behaviour of the target system by

creating a simulation model of the system, and faults are introduced to alter the logical

values of the model [70]. The simulation models are coded in a description language

such as VHDL (Very high speed integrated circuit Hardware Description Language) using

special simulation tools. Two different techniques have been proposed and efficiently used

to implement simulation-based fault injection.

70 Performance Evaluation of Distributed Event-based Systems

In the first approach, the model of the target system is enriched with special data types,

or with special components, which are in charge of supporting fault injection. For example,

a VHDL code can be modified by adding dedicated fault components called saboteurs –

a component added to VHDL model for fault injection purpose which remains inactive

during normal operation. Alternatively, a mutation of an existing VHDL component

description can be performed to generate a new description mutants. A mutant is a model

which contains a dormant block of code during normal operation. The code is activated

by fault injection to alter operational logic [223].

The second approach involves augmenting simulation tools with algorithms that allow

not only the evaluation of fault-free behaviour of the system, but also its behaviour in

the presence of faults. This approach normally provides the best performance as it does

not involve modification of VHDL code [223], but requires the code of the simulation tool

being available and easily modifiable.

Simulation based fault injection techniques have higher controllability and observability

of the system behaviour in the presence of faults when compared to hardware and software

based techniques. They are simple and cheaper in terms of effort and time, and impose

no risk of damaging the target system as experimentation is performed on the system

model. Nevertheless, simulation-based techniques may lack higher accuracy possessed by

the other techniques [113].

4.3.4 Fault Injection Requirements

1) Representativeness

Representativeness is a fault injection fundamental characteristic which refers to the ability

of fault load to be injected in a given target system to be representative of the of the faults

the system may experience during its normal operation in order to guarantee a realistic

evaluation. The representativeness of injected faults is important for obtaining confidence

on the correctness of the results for performance and dependability evaluation, otherwise

what is observed from the experiments would not represent what normally happens during

the normal operation of a target system. In order to achieve representativeness, defined

4.3 Fault Injection Techniques 71

fault models must be realistic in terms of types, distribution of injected faults, as well as

the failure modes [148].

A comprehensive study of faults representation is presented in [147] where a strategy of

selecting fault locations to achieve realistic fault loads is proposed. The study reveals that

fault representativeness is highly affected by fault distribution (locations on the target

software where faults are injected), and non-representative faults can significantly affect

the accuracy and increase the cost of a fault injection mechanism.

2) Intrusiveness

Intrusiveness is defined as the difference between the behaviour of a system during normal

operation and when is subjected to fault injection campaign. A fault injection system

needs to be non-intrusive – its impact to the target system should not be significant so

as to affect the results of the experiments. Being non-intrusive is particularly important

in hard real-time processing systems where timing predictability may be disturbed by

additional overhead introduced by the fault injection mechanism [55]. Most of existing

fault injection techniques suffer from temporal intrusion – slowing down the execution

of the target system, as well as spatial intrusion – customising target system for fault

injection [218].

3) Portability

Is the characteristic of a fault injection technique of being applicable to different target

systems with few or no modifications. Most of the existing software fault injection

techniques are not portable as they involve modifications of the target system [218].

A portable fault injection techniques should support different software and hardware

technologies. Moreover, a target system may, for example, be accessible only as executed

binary code, commercial off-the-shelf software. To be able to deal with closed source

software, a fault injection approach should not require source code availability or detailed

information regarding the internals of the target system.

72 Performance Evaluation of Distributed Event-based Systems

4) Efficiency

Represents a measure of how fast a fault injection mechanism can achieve useful results

and the total cost incurred in terms of resource usage. A fault injection campaign normally

involves iteration of a high number of fault injection experiments, each experiment focusing

on a particular type of fault and requiring the execution of the target application in the

presence of injected fault. Therefore, the total time required to run the entire campaign

depends on the number of faults considered, as well as the time required to execute every

single experiment. In order to improve efficiency of a fault injection mechanisms, the

number of experiments should be minimised while guaranteeing statistically significant

evaluation of the target system [71].

5) Flexibility

A property of fault injection mechanism which makes it applicable for different fault

injection environments with different fault models. Flexible fault injection mechanism

should have the ability to incorporate new fault models, as well as customising existing

ones.

4.4 Relevant Tools

In this section, we provide a brief discussion on Byteman and Thermostat – the two tools

that we have used for creating our solution in this chapter.

4.4.1 Byteman Agent

Byteman [59] is a Java bytecode manipulation tool which makes it possible to inject

Java code into a running Java application, or directly into Java Virtual Machine (JVM)

classes, at application load time or while the application is running in order to change

the operation of a Java application. With Byteman, there is no need to stop, prepare

and recompile your application. This makes Byteman a perfect tool for monitoring live

deployment or tracing execution of a specific code in a program. If an application begins

4.4 Relevant Tools 73

misbehaving, a trace code can be injected to see what is happening. In general, Byteman

can be used to facilitate and automate the following operations:

• Tracing the execution of specific code of an application and retrieve application or

JVM state.

• Subverting normal execution of a program by making unscheduled method calls or

forcing an expected return call or throwing of an exception.

• Monitoring and collecting runtime statistics about an application or JVM operation

such as garbage collection.

• Orchestrating the behaviour of independent threads in multi-threaded applications.

In addition, the tool comes with a library of built-in calls that can be used to simplify

common operations such as counting significant events, directing trace output to a file

system, identifying timings and timeouts.

Byteman uses simple Java-based Event Condition Action (ECA) rules to describe

how an application behaviour should be transformed at runtime. Injected behaviour is

dynamically linked into the target method so it can refer to method parameters and local

variables, read and write the fields of objects existing inside the target method and even

call the objects own methods. The Event part of a rule defines where during an execution

of an application the side-effect should occur, the Condition ensures whether the side-effect

should happen or not, and the Action specifies what the side-effect should be.

Listing 4.1 shows a Byteman rule template with minimal set of clauses required for a

rule to compile. Any line beginning with ‘#’ character represents a comment, which may

occur inside or outside the body of a rule definition, and must be placed on a seperate line.

The RULE keyword (line 2) is followed by one or more characters that acts as a runtime

name of the rule. There is no strict requirement for providing unique rule names but they

become helpful during debugging of an application.

Lines 3 - 5 identify an event – specific time within a target method and location the

side-effect should be applied. The class name follows the CLASS keyword, and identifies a

class within an application or JVM where the target method belongs to. The METHOD

keyword specifies the name of the target method. The method name may be written with

74 Performance Evaluation of Distributed Event-based Systems

1 # rule description
2 RULE <rule name>
3 CLASS <class name>
4 METHOD <method name>
5 AT INVOKE <class.method name>
6 BIND <bindings>
7 IF <condition>
8 DO <actions>
9 ENDRULE

Listing 4.1: Byteman rule template with minimal set
of clauses for the rule to compile.

or without parameters or return type. If the side-effect is to be applied to a constructor of

class, the METHOD must be followed by <init> expression.

AT INVOKE keyword is a location specifier and places the trigger point just before

the call to the method specified after the keyword. Several other location specifiers are

provided by Byteman as a trigger point within a target method. If no location specifier

is provided inside the rule, it defaults to AT ENTRY which places a trigger point just

before the first executable instruction in the trigger method. Binding specification which

returns values for variables and method parameters which can be subsequently referenced

from the rule body are place after the BINDING keyword (line 6). Each time the rule is

triggered the values are recomputed.

Line 7 specifies a rule condition – a boolean expression inside an IF clause. For a

rule which should always be fired, a TRUE expression is available which can be specified

after IF clause. If rule condition evaluates to true, line 8 which represents an action or

side-effect to be placed on the specified location is executed. An action represents an

sequence of Java expressions separated by semicolon possibly with a return value.

4.4.2 Thermostat

Thermostat [194] is an instrumentation tool for monitoring and management of running

Java Virtual Machines (JVMs) allowing users to monitor and measure a number of perfor-

mance metrics about their Java applications. The tool provides support for monitoring

multiple JVMs running on multiple hosts deployed locally or in a cloud environment. The

available information range from CPU and memory usage, threads activities, I/O calls,

4.5 Design of Fault Injection Environment 75

classes and method calls to garbage collection. Users have access to a Graphical User

Interface (GUI) view of activity of local and distributed JVMs in real time. The tool backs

up all collected metrics to a persistent store so they can be reviewed offline.Thermostat

consists of three main services:

Agent – This service needs to be running on all host machines where JVMs need to be

monitored. Agent collects and aggregates data and sends it to the backend persistent

storage. The data is collected from both the host machines and the JVMs running

on them.

Storage – Is database backend where collected information is stored so it can be retrieved

later and processed. Currently, Thermostat supports MongoDB [141] backends. In

production environment, an HTTP layer (web endpoint) is placed in front of the

storage to hide the storage from direct connection and to allow connections with

credentials through HTTPS.

Client – Provides mechanism to query the backend storage for data and display it in a

sensible format. Thermostat provides users with both GUI and Command Line (CL)

clients.

Besides metrics collection, Thermostat supports additional operations that can be

directly executed on JVMs. A Thermostat user can send a command, for example, to kill

a JVM, perform a full garbage collection, profile JVM, detect deadlocks or inject Byteman

rules and view the results in real-time.

4.5 Design of Fault Injection Environment

Figure 4.2 shows a typical deployment of our approach to add dynamic code injection

to an event-based systems distributed across remotely running Java Virtual Machines

(JVMs). In the following, we describe the main components of the environment.

4.5.1 Fault Load

The fault load represents a set of faults that are prevalent in distributed event-based

systems. The faults are characterised by their types, intended activation times, activation

locations and occurrence rates. Our approach supports fault models for both hardware

76 Performance Evaluation of Distributed Event-based Systems

Node n
OS

JVM

Therm
ostat

Storage Layer

M
ongoDB
Node 1

M
ongoDB
Node n

M
ongoDB

System
tap

JVM
 1

JVM
 2

Bytem
an Agent

Therm
ostat

Agent
OS /procSpark Executor

Spark W
orker

Controller

Fault Load
Taxonom

y
W

orkload
Characterisation

Test Coordinator

Therm
ostat

Client

Bytem
an Rules

OS
Application

Engine
JVM Test Scenario

Rule com
position and m

etadata

Com
m

and Channel

Logging and m
etrics

Infrastructure Deployer

OpenStack
Azure

AW
S EC2

…

Load/Unload Logging/
M

etrics

JVM
 n

…

W
orkload Generator + Producer

Synthetic
W

orkloads
Bench
m

ark
Trace
Data

Production
M

etrics

Target	system
	+	execution	environm

ent

Fig.4.2:
System

architecture
to

support
dynam

ic
code-injection

ofevent-based
and

stream
processing

system
s.

4.5 Design of Fault Injection Environment 77

and software fault injection. To address the problem of faults representativeness we adopt

the fault loads presented in [90, 158] for faults experienced by a system under the test and

runtime environment.

Despite being an emerging field of research, event-based processing still lacks common

fault model. In order to address this issue, Hummer et al [90] established a general model

from 5 core sub-areas in distributed event-based systems which captures specific properties

of different areas. Their model identifies 12 different types of fault classes (types) that

are highly relevant to event-based systems. Based on their taxonomy of fault classes, 6

categories of fault sources (the artifacts of the system which are potentially or positively

responsible for causing the fault) were also identified. Pietrantuono et al. [158] introduce

environmental fault operators to classify faults originating from the execution environment

where a target system is running instead of faults from within the target system itself. The

fault load however catches both software faults (e.g. faults originating from OS file system

and device drivers) and hardware faults (e.g. disk, I/O devices and physical memory

faults).

4.5.2 Byteman Rules

The defined Fault Load acts as the basis when developing a Byteman ruleset which captures

these failure types, targeting components of the runtime system to recreate these faults.

Byteman rules may be written to target components at different levels of applications and

infrastructure:

• Operating system (OS) and environment issues can be targeted, e.g. node crash,

network connectivity, resource contention or launching of external processes leading

to interference.

• We can explore the impact of JVM-specific issues e.g. Stop-the-World (STW) garbage

collection, memory leaks and thread deadlocks.

• Issues arising related to the particular event-based system under test, e.g. Spark-

specific exceptions and faults.

Finally, we consider domain-specific faults concerning the user’s application, e.g.

performance degradation. At each level, we consider two broad classes of rules:

78 Performance Evaluation of Distributed Event-based Systems

Instrumentation – Collection of metrics not otherwise exposed by the system. We can

optionally share state between Byteman rules at runtime, such that the enactment

of a rule be conditional on global system state; e.g. a rule could be triggered when a

tuple arrives to a worker node with high CPU load.

Fault injection – A class of rule to bring about a failure of a component, representative

of a real-world fault. For example, one may trigger node crashes, deadlocks, or

impose probabilistic delays to processing.

4.5.3 Test Scenario

One or more rules may be then composed, alongside timing information and other required

metadata, to construct a test scenario. A single experiment may require more than one

rule, each rule performing a specific task, for fault injection and metrics collection for

example. When developing a test scenario, the order in which rules are injected into

the target application is important. When determining the impact of fault injection on

computing resources, for example, we need to observe resource usage before faults are

injected.

4.5.4 Test Coordinator

Test coordinator represents a fault injection control system capable of generating workload

(workload generator) for a given test scenario, automatically deploying test infrastructure

and enacting code injection through Thermostat client. Our tool support event-based

synthetic workload as well as workload from data stream benchmarks (e.g. [43, 177, 110])

that are representative of the test scenario. The infrastructure deployer (see Chapter 3)

targets both private and public cloud frameworks.

When target application is running, rules can be injected using Thermostat client.

Thermostat provides mechanism to install Byteman into JVM and inject Byteman rules

into Java applications or methods within the JVM for monitoring purpose. The injected

code when invoked, sends events of interest to Thermostat in JSON format. Thermostat

saves events to the persistent storage for analysis and visualisation. The command channel

represents a direct communication channel between client and agent.

4.6 Evaluation 79

4.5.5 Target System and its Execution Environment

The target system represents an event-based system in which we want to evaluate its

performance under the influence of code (fault) injection. Event-based systems like those

found in Stream Data Processing (SDP) and Complex Event Processing (CEP) are typically

deployed in a distributed environment for parallel processing of events. Byteman as an

instrumentation tool, can only inject code into applications and JVM methods running on

the same node. On the other hand, Thermostat is designed for monitoring the same in a

distributed environment. Thermostat-Byteman integration provides mechanism to inject

code into applications and JVM running on different nodes.

On each compute node we instrument, we run Thermostat agent to collect infrastructure

level metrics (CPU and physical memory usage) for JVMs running on that node. The

agent saves the metrics into the the Thermostat storage which is deployed on a separate

node. Special Byteman rules are used to collect application level metrics and forward

them to the Thermostat for persistent storage.

4.6 Evaluation

In this section, we present experimental evaluation of our approach for performance analysis

of event-based systems using data streaming computation as an example scenario. We

demonstrate the applicability of our code injection approach through fault injection and

instrumentation for performance metric collection.

4.6.1 Example scenario

In the following experiment, we demonstrate the effectiveness of our code injection approach

using Spark streaming library. The workload is a Spark streaming word count application

where a message producer reads lines of text from a file and publishes them into a Kafka

message broker [115]. The streaming application consumes the lines of text from the server

using the Spark-Kafka connector and performs two Spark built-in RDD transformations

(flatMap, mapToPair) as well as an aggregation (reduceBykey) to generate the word counts

in a batch interval of 1 second. The flatMap transformation takes a line of text and splits

80 Performance Evaluation of Distributed Event-based Systems

it into separate words and generates a collection of all words in a batch. The mapToPair

transformation counts each word in each batch. Finally, the reduceByKey cumulates the

sum from each batch.

Instrumentation of Spark Streaming (Metrics collection)

In the first part of this example scenario, we instrument our Spark streaming application

to collect different types of batch metrics. In the following section (Section 4.6.2), we

make use of these metrics to evaluate the performance of the streaming application under

the influence of fault injection.

Spark streaming provides a mechanism through its StreamingListner interface to access

different types of batch metrics when a certain event occurs. The listener can be used

for receiving information about an ongoing streaming computation. For example, when

a batchCompleted event happens, users can access information such as batch processing

start and end times, and batch size (total number of records in the batch). Using our tool,

we implement the SteamingListener interface and inject the code at runtime in order to

access different types of information when processing of each batch is completed. For the

purpose of this experiment, the following information is collected:

Processing time – The end-to-end (total) time it takes to process each batch of data.

Schedulling delay – The time a batch has to wait in a queue for the processing of

the previous batches to finish.

Total delay – The sum of processing time and scheduling delay.

Batch size – Total number of records inside a batch.

Listing 4.2 shows a Byteman rule used to instrument Spark streaming batches every time

an onBatchCompleted event happens. The event, which is specified by line 2 and 3, is a call

to the onBatchCompleted method defined inside the JobListener class. The code injection

happens just before the method exits. Line 5 specifies a built-in helper class containing a

set of methods that can be called in the condition and action clauses. Binding specification

(line 6) computes values of the specified variables everytime a call to onBatchCompleted is

made. These variables are locally defined inside the onBatchCompeleted method.

4.6 Evaluation 81

1 RULE Instrumentation of Spark job batches

2 CLASS spark.JobListener

3 METHOD onBatchCompleted

4 AT EXIT

5 HELPER org.jboss.byteman.thermostat.helper.ThermostatHelper

6 BIND timestamp = $time,

7 input_size = $inputSize,

8 processing_time = $processingTime,

9 scheduling_delay = $schedulingDelay,

10 total_delay = $totalDelay

11 IF TRUE

12 DO

13 debug("Sending batch metrics to thermostat");

14 send("map", new Object[] {

15 "timestamp", timestamp,

16 "batch_size", input_size,

17 "processing_time", processing_time,

18 "scheduling_delay", scheduling_delay,

19 "total delay", total_delay

20 });

21 ENDRULE

Listing 4.2: Byteman Rule used for collecting application metrics.

The rule condition (line 11) allows the rule to be executed every time a call to

onBatchCompleted happens. The last part of the rule lists the actions that happen just

before onBatchCompleted method exits. First, a debugging message is printed, then, the

send method which is defined inside the ThermostatHelper class (line 5) is invoked taking

bound variables as arguments. The send method forwards data (value of bound variables)

to the Thermostat for storage and analysis.

82 Performance Evaluation of Distributed Event-based Systems

Fault Simulation Through Code Injection

In the second part of this experiment, we simulate a faulty behaviour in our data stream

processing example using code injection approach. We introduce a processing delay in one

of the Spark streaming operators and observe the impact of the delay on the performance

of the data stream computation in terms of throughput and processing time. For this

experiment, we inject code inside the mapToPair operator, but the process would be

similar for the other two operators in the computation.

The delay is introduced at a fixed interval – when a fixed number of messages have

been processed. We have implemented our message producer such that a trace packet (a

special message) is generated after every user-defined number of messages have been sent

to the Kafka server. A delay is introduced just before the trace packet is processed by the

mapToPair operator.

1 RULE Introducing processing delay fault into a Spark streaming operator

2 CLASS spark.MyPairFunction

3 METHOD call

4 AT ENTRY

5 BIND value = $1

6 IF (value.toString().startsWith("t_p"))

7 DO

8 debug("Introducing 10 millisecond delay");

9 TimeUnit.MILLISECONDS.sleep(10);

10 ENDRULE

Listing 4.3: Byteman rule for injecting 10 milliseconds processing delay fault.

Listing 4.3 shows the Byteman rule used for introducing processing delay fault. The

rule is triggered every time when a call to the call method which is defined inside the

MyPairFunction class is made (line 2 and 3). MyPairFunction which implements Spark’s

PairFunction interface overrides the call method to include logic for the mapToPair

operator. Line 4 specifies the location of the code injection as just before the first

executable line inside the call method. The call method takes a single string (word) as its

4.6 Evaluation 83

only parameter. In line 5, binding to the parameter of the method is done so that it is

easily accessible in the subsequent parts of the rule. The rule condition (line 6) checks for

a trace packet (t_p) which is concatenated with a timestamp to denote the time when the

trace packet was generated. Lines 7 - 9 print a debugging information and introduce a

10ms delay every time a trace packet is received but before it is processed.

4.6.2 Experiments and Results

Experiment 1: Performance Evaluation Under Processing Delay

For this experiment, the Spark streaming application is deployed on a cluster of cloud

resources (Azure cloud) which consists of one single-node Kafka server, one Spark master

node and three Spark worker nodes. Table 4.1 summarises the execution environment

used for the experiment.

The Kafka producer is configured to generate a trace packet after every 1000th message.

Immediately after the Spark streaming application is launched, the Byteman rule for Spark

metric collection (Listing 4.2) is injected. This enables throughput and processing time

measurements to be collected and stored in the Thermostat back-end storage. The normal

processing of messages is allowed to continue for two minutes before we begin introducing

processing delays using Byteman rule of Listing 4.3. The processing delay is introduced

in all the nodes running Spark workers at one-minute interval. The workers are then left

to run for two more minutes while they are both under the influence of fault injection.

Finally, the rules are dynamically unloaded from the workers at the same interval of one

minute so that the computation reverts to its normal processing.

Node OS CPU Memory (GB) Disk storage (GB)
Producer MacOS Sierra 2.2 GHz 16 250
Kafka server Ubuntu 14.04 1vcpu 4 8
Spark master Ubuntu 14.04 1vcpu 7 16
Spark workers Ubuntu 14.04 1vcpu 7 16

Table 4.1: Execution environments for the experiments. Each 1vcpu is equivalent to Intel®
Broadwell E5-2673 v4.

Figure 4.3 shows the results of our experimentation on application throughput and

processing time, where the red lines are the actual time series and the green lines represent

84 Performance Evaluation of Distributed Event-based Systems

the moving averages. The vertical annotation lines mark the time when delaying faults

were introduced to the system. At points I1, I2 and I3 are where we inject a 10ms

processing delay on every 1000th message processed, for worker node one, two and three

respectively. We see this leads to progressively increased processing time, and degraded

throughput as more delays are introduced to other workers. At points U1, U2 and U3 are

where we unload the rules from worker node one, two and three respectively. It can be

seen that processing time and throughput immediately recover to their original level.

I1 I2 I3 U1 U2 U3

0

5000

10000

18:50 18:52 18:54 18:56 18:58 19:00

P
ro

c
e

s
s
in

g
 T

im
e

(m
s
)

I1 I2 I3 U1 U2 U3
0

50000

100000

150000

18:50 18:52 18:54 18:56 18:58 19:00

Time (hour:minute)

T
h

ro
u

g
h

p
u

t
(R

e
c
o

rd
s
/s

e
c
)

Fig. 4.3: Code injection of probabilistic processing delays in a distributed Spark cluster.

Experiment 2: Impact of Dynamic Code Injection Approach on Underlying

Resources

Here we evaluate the impact of the dynamic loading and unloading of Byteman rules into

a production Apache Spark cluster using the same workload and execution environment

(Table 4.1) of Experiment 1. For this experiment, we initially run the application for 10

minutes without code injection. Then, we dynamically load the rule and let application

run for another 10 minutes under the influence of fault injection before the rule is unloaded.

The CPU and memory usage with and without code injection are recorded using the

Thermostat tool.

4.7 Conclusion 85

Figure 4.4(a) shows the empirical CDF (Cummulative Density Frequency) plot of CPU

load, while Figure 4.4(b) shows JVM Eden Space Memory Consumption. In both cases, we

observe that our code-injection approach has negligible impact on host resource utilisation,

giving us confidence our approach is non-intrusive.

0.00

0.25

0.50

0.75

1.00

0 20 40 60

CPU Utilization (%)

F
n

(x
)

Legend

Standard

Instrumented

(a)

0.00

0.25

0.50

0.75

1.00

0 100 200

Eden Space Memory Consumption (MB)

F
n

(x
)

Legend

Standard

Instrumented

(b)

Fig. 4.4: Overhead of dynamic code injection on (a) CPU, (b) Memoryw1223 .

4.7 Conclusion

In this chapter, we have shown how a dynamic code injection approach can be used

to instrument distributed event-based systems for performance evaluation. Using this

approach, we have been able to simulate a processing delay fault in data streaming

computation and observe how the computation behaves under the fault. Furthermore, we

have demonstrated how system and application level metrics can be dynamically collected

from a streaming computation, stored and analysed with the help of Thermostat tool so

that the runtime behaviour of the system under fault can be studied and understood.

Our ability to compose rules together allows us to explore sophisticated test scenarios

representative of those specified in fault loads for event based systems. Our developed tool

is also portable, and can be used with any stream processing system with little modification.

Our simple rule specification, as highlighted in Section 4.4.1, allow rules to be written for

any application whose Java public interface is known. In Section 4.6.2, we experimentally

86 Performance Evaluation of Distributed Event-based Systems

show our tool to be minimally intrusive with the loading and unloading of our rulesets

having negligible impact on the target system workload and its underlying infrastructure.

The presented model (see Section 4.5) is flexible, and permits integration of different

types of fault models into our fault injection environment to reflect the type of event-based

system under test. This approach provides practitioners with a usable tools which address

many common issues inhibiting automated and holistic performance of event-based systems.

By offering automated test infrastructure deployment and tooling support for runtime

code injection, we lower the experimental effort required for evaluating performance of

event-based systems. We consider this as a valuable tool and we have extensively made

use of it in both Chapters 5 and 6 to influence the normal behaviour of a data steam

application and monitor its performance during migration process.

4.7.1 Future Work

The future work will involve enhancing the current functionalities of the tool to provide

full scale evaluation of our approach in terms of modelling of more sophisticated failure

scenarios including Software-implemented Fault Injection (SWiFI) for hardware fault

simulation. We can, for example, simulate a complete node failure in a cluster of nodes

and observe how the remaining nodes cope with workload processing.

The fault model we adopted in our approach [90] incorporates different types of event-

based systems – Event Stream Processing (ESP), Complex Event Processing (CEP),

Wireless Sensor Networks (WSN) and Event Driven Business Management (EDBM). In

our example scenario (see Section 4.6.1), we demonstrated the aplicability of our approach

on Spark streaming framework, which is based on ESP. Although they share the same

types of fault models, behaviour exhibited by different types of event-based systems may

differ when subjected to different types of faults. Therefore, further work will involve

extending evaluation of the tool for other types of event-based systems.

Chapter 5

Dynamic Migration of Stateful Data

Stream Operators

Overview

The runtime environment of an IoT application is very dynamic. Data

input rates may fluctuate, for example, impacting the efficient utilisation

of computing resources. In addition, device mobility may impose addi-

tional networking cost. Efficiently managing IoT applications after initial

deployment is fundamentally important. In Chapter 3, we presented a

framework for IoT applications deployment that offers the support for

management of applications over their entire life-cycles by dynamically re-

generating the runtime infrastructure. However, the presented framework

does not provide support for state migration to manage stateful operators.

In this chapter, we extend our previous work in Chapter 3 by providing

an approach for dynamic migration of stateful data stream operators. To

this end, we employ our dynamic code injection technique presented

in Chapter 4 to influence data streaming operations and monitor their

runtime performance. We demonstrate the effectiveness of our approach

using synthetic workload that is representative to the real-world data

stream workload and present our experimental evaluation. The results

show that our approach is non-intrusive, and does not add significant

overhead to hosts resources.

88 Dynamic Migration of Stateful Data Stream Operators

5.1 Introduction

Data Stream Management Systems (DSMSs) process continuous stream of events from

disparate sources over a long period of time. As a result, and due to dynamic nature of

the processing environment, several data stream characteristics such as events arrival rate

and burstiness may change over time since initial deployment of data stream operators on

a computing node.

Consider a smart camera for automatic licence plate recognition that has been deployed

on a route where vehicles have been diverted due to a traffic accident on a nearby

route. That camera may experience a sudden surge in events arrival rate due to a traffic

congestion caused by an accident that happened somewhere else. Consequently, and

because of resource-constrained and low-energy battery-powered characteristics, such

camera may not cope with new events’ arrival rate.

Mobile devices – smartphones and wearable devices for example, are becoming more

and more influential in human lives due to their ease of use and portability. Bundled with

latest hardware and software technologies, they are heavily integrated in IoT fabric and

mostly prevalent in domains like healthcare for monitoring patients, and entertainment

for advertisement and targeted content. However, these devices are subject to frequent

and random location change due to unpredictable users mobility. Performance of IoT

applications may degrade as mobile users move from one location to another. Mobile

users connected to their local edge servers might experience high latency when they move

outside their locality while still connected to their local servers, for example. To ensure no

degradation to their services while in their new location, users should dynamically be able

to connect to the nearest edge server in their new location.

The two scenarios above necessitate migration of a processing element from one

computing node to another. For smart camera application for example, migration should

be undertaken in order to maintain the low latency requirement of such a situational-aware

application. The streaming computation need to be migrated to a more powerful device

whether at the same level of an IoT-cloud infrastructure or further down the hierarchy.

Likewise, to maintain low-latency of the IoT application running in a mobile device, the

5.1 Introduction 89

streaming computation running on a local server needs to be migrated to a nearest server

at the new location.

Recent migration related research work in IoT-cloud paradigm has put much emphasis

on vertical migration (computation offloading) of processing elements from low-energy

powered IoT devices to edge or cloud servers (see Section 5.2.4) for the purpose of saving

energy and improving performance of the devices. However, very few have considered

the other way round, or between device to device [163, 61]. Furthermore, there has been

a wide interest on mobility induced migration of services hosted on edge servers (see

Section 5.2.3), in order to maintain low latency constraints and reduce network resource

utilisation.

In this chapter we present our general migration approach for stateful data stream

operator while making the following contributions:

1. A migration protocol that supports migration of stateful data stream operators from

one processing node to another within the entire IoT-cloud infrastructure.

2. A set of algorithms for incremental transfer and retrieval of in-memory state infor-

mation to and from an in-memory data store respectively. Because all read/write

operations are performed in memory, the algorithms ensure short application down-

time during migration.

The remainder of this chapter is set out as follows. Section 5.2 discusses related work.

In Section 5.3 we outline the challenges in data stream operator migration in the context

of IoT and cloud. Section 5.4 presents the conceptual model of the general migration

system. A comprehensive description of the migration protocol is presented in Section 5.5.

Section 5.6 provides details of how state information are transferred to and from the state

store. In Section 5.7, important metrics that are relevant to data stream processing are

discussed. In section 5.8 we describe the type of workload used during experimentation

and how important metrics are gathered. Experiments and evaluation of the migration

approach is presented in Section 5.9, before concluding in Section 5.10.

90 Dynamic Migration of Stateful Data Stream Operators

5.2 Related Work

5.2.1 Query Plan Migration

Migration in stream processing has been extensively studied, modelled and optimised

in the literature. Previous work on migration have focused on minimising computing

resource utilisation, reducing total migration time and maintaining steady output during

the transition period. Some earlier works [222, 114, 215] introduced the problem of runtime

migration and optimisation of continuous query plans containing stateless and stateful

operators. Long-running continuous queries may become inefficient over time due to

changes in workload characteristics. Event input rate, for example, may change depending

on the time of the day, or relocation of event sources. Based on current runtime statistics,

a query optimiser generates a more efficient and semantically equivalent plan to replace

the old plan.

Zhu et al [222] introduce two strategies; Moving State (MS) and Parallel Track (PT),

for dynamic migration of continuous query plans that contain stateful operators, to a

semantically equivalent plan over a streaming data. MS performs migration in three steps;

state matching, state moving and state recomputing. During state matching and moving,

tuples are moved from old plan to new plan if their states match, that is, have same schema

(structural and semantic constraints). State recomputing is performed for all unmatched

states. On the other hand, in PT strategy old and new plans are executed in parallel

during the entire migration process until all old tuples (tuples with timestamp less than

migration start time) in the old plan are completely purged. Unlike MS, PT guarantee

continuous delivery of output, and does not entail a latency peak as in MS due to state

recomputing, but PT strategy it is prone to duplicate and out of order messages. Thus,

PT requires an enhanced mechanism for duplicate removal and re-ordering of messages.

Kramer et al [114] and Yang et al [215] propose GenMig and HybMig respectively to

address the shortcomings of MS and PT. The original MS and PT only support migration

of CQ plans containing join operators. GenMig is a general CQ plan migration approach

that extends PT to allow migration of CQs that contain stateful operators other than join

operators. GenMig treats CQ plans as black boxes containing arbitrary operators. At

5.2 Related Work 91

migration start time, GenMig defines a split time (denoting the migration end time). The

old and new plans are executed in parallel, but all tuples with timestamp older than the

split time are processed by old plan, whereas the new plan processes the rest of the tuples.

HybMig on the hand, is built on top of both MS and PT and employs subquery sharing

technique - a method used in steam processing to eliminate redundancy. By combining the

two strategies, and extending them to provide support for general query plans, HybMig

outperforms both the MS and PT in all aspects.

Pham et al [157] extend Window Recreation Protocol [73] to allow migration of CQ

plans containing multiple stateful operators without state transfer. To avoid the overhead

of state transfer and zero downtime during migration, the protocol migrates query at a

window boundary to re-construct the state of originating operator at the target node,

and support migration of queries containing operators with different window semantics

(time-based or tuple-based). Using a timestamp, a stop point of the last window at the

originating node can be synchronised with the start point of the next window at the target

node. As the protocol works at window boundaries, it is not efficient for larger window

sizes as migration process could take too long to complete.

5.2.2 Cloud-based Migration

With popularity of cloud infrastructure, and as the demand for real-time processing

increased, stream processing took a shift from centralised to distributed processing[22]. A

number of Distributed Stream Processing frameworks [3, 72, 26] began to emerge. Such

frameworks make use of runtime schedulers to determine the placement of a Continuous

Query (CQ) plan operators across a cluster of computing nodes to optimise data stream

applications performance [210].

Elasticity – the ability to add and remove operators dynamically – also became an

important characteristic of these frameworks. Elastic stream processing frameworks can

dynamically adapt to changing workload conditions. When scaling up a stateful operator,

operator state needs to be available at the new operator location. Consequently, several

techniques [192, 73, 211, 58] for stateful operator migration tailored for cloud-based stream

processing were proposed.

92 Dynamic Migration of Stateful Data Stream Operators

Elasticity in DSMSs is generally achieved through state migration. Gedik et al [69]

propose a technique to perform elastic auto-parallelisation of stream operators and migra-

tion of partitioned stateful operators. In their work, they provide a state management

API that can be used to reason at runtime about a state of an operator that is stored in a

local key-value store. Their migration protocol uses state API to perform state migration

with minimal state movement. The protocol has two phases, that is, donate and collect

phase. During donate phase, data items inside a state that needs to migrated are packaged

and sent to a backing store (external database). In the collect phase, packages in the

backing store are retrieved and sent to their destination and in-memory store of of those

destinations are updated. For very large state size, this approach incurs a heavy network

utilisation overhead and application downtime due to state transfer to and from an external

database.

Wu et al [211] present ChronoStream - a distributed stream processing system - to

support transparent elasticity and high availability in latency-sensitive stream processing.

In ChronoStream, operator state is modelled as computation state (all application-level data

structures) and configuration state (runtime relevant parameters). Periodic checkpoints

of computation and configuration states are stored in a remote node to facilitate state

migration or replaying of data streams in case of scaling up of failure of an operator. Their

migration approach is full of fault tolerance features that require expensive input/output

accesses to a persistent storage.

Ding et al [58] propose a migration mechanism capable of performing a live and

progressive state migration for elastic processing of partitioned stream operators. They

claim that ‘zero service disruption’ is not possible as migration process inevitably disrupts

input processing. In addition, they maintain that migration and task execution can not

happen at the same time. Hence, their emphasis is on how to reduce state synchronisation

overhead by transferring operator state progressively. In order to reduce overall migration

cost, an optimal operator task migration algorithm is used to assign task to different

operators while at the same time satisfying load balancing constraints. They further

investigate the trade-off between synchronisation overhead and result delay during state

5.2 Related Work 93

migration so that the selection of migrated tasks can be optimised to lower the latency

spike.

5.2.3 Operator Migration in Cloud-IoT Integration

Integration of cloud and IoT infrastructure posed new challenges in distributed stream

processing. Data processing elements (operators) have to be distributed across cloud

infrastructure and a number of heterogeneous devices with different processing capabilities.

Unlike cloud-based migration where a streaming operator can be migrated from one node

to another with equivalent or similar processing capabilities, migration in Cloud-IoT setup

is more challenging due to a number of factors such as mobility, availability and capabilities

of devices.

Ottenwalder et al [155] present MigCEP which describes a plan model migration

approach which uses time-graph data structure to model costs and durations of future

migrations as well as placements in order to probabilistically determine future migration

targets and suitable times to start a migration process. The planned ahead of time

migration is achieved by exploiting application knowledge of mobile CEP and by predicting

mobility pattern of mobile devices. In their experimental evaluation of their approach,

they have shown that the selection of suitable targets from a time-graph has shown to

reduce the cost of state migration in terms of network utilisation.

Dwarakanath et al [61] propose an algorithm that optimises migration of operators

in a distributed CEP system for device-to-device networks. Their algorithm is based on

passive replication and rollback recovery techniques to partially transfer internal state of

operators to an external backup node. By reducing the amount of information transferred

and buffered in the external backup, the authors expected a better latency/bandwidth

trade-off.

Saurez et al [172] propose a migration algorithm for moving situation-aware application

components between different nodes within a fog network. Migration can be either QoS-

driven where migration process is initialised proactively when latency goes above a specified

threshold, or reactively if proactive migration could not be timely initiated. Reactive

migration happens, for example, when a particular fog node becomes unresponsive, or as

94 Dynamic Migration of Stateful Data Stream Operators

a workload-driven where migration process happens when an application component in

a particular node experience a busty need of resources. In either case, their migration

process involves transfer of both volatile and persistent state of a child node from one

parent node to another.

Wang et al [205] make use of a Markov Decision Process (MDP) framework to study

service migration in Mobile Edge Clouds (MEC) in order to determine whether and where

to migrate services within MECs. They try to simplify a Sequential Decision Making

problem as a distance-based MDP model. By approximating the underlying state space

as the distance between mobile user and service location within MECs, they are able

to formulate a cost model which is used to efficiently design optimal service migration

policies for 2-D mobility in MECs. A 1-D mobility-driven service migration with specifically

defined cost function was first considered in [116]. A more effective solution to 1-D mobility

problem was presented in [204] where transmission and migration cost are assumed to be

constant.

5.2.4 Computation Offloading

Within cloud-IoT setup, different terminologies are used to refer to techniques of moving

a computation or its processing elements from one processing node to another. These

terms include, computation offloading [108, 51, 204, 111] – vertical migration of processing

elements from one level of IoT infrastructure (normally from a low power device) to another

(with enough power to run the computation). For example, from a wearable device to a

mobile phone or from a mobile phone to a cloud infrastructure. Service handoff [128, 75] –

moving services accessed by an edge application from one edge server (cloudlet) to another

as a result of mobility induced migration. As a mobile device moves, services connected

to it are also moved from one edge server to another in order to preserve low end-to-end

latency.

Kalantarian et al [108] present a dynamic computation offloading mechanism that can

predict the benefits of running a classification algorithm locally (within a wearable device)

or remotely (in a mobile device) on the basis of a desired sample rate. This is done in

two stages. First, a classifier that minimises power consumption for a given accuracy

5.2 Related Work 95

threshold is selected among a number of possible classifiers. Then, the power consumption

of running the selected classifier locally and remotely is compared. The offloading of local

computation is only done whenever the local cost of running the classifier is greater than

the remote cost. In this work, the emphasis is on when and where should the computation

be moved.

Kea [51] is a profiling-based computation offloading system that automatically decides

whether offloading is beneficial or not for smartphones. The decision making is based

on two criteria: the power consumption of the application and the elapsed time for

processing the sensor data. The decision to compute locally (on a phone) or remotely (in a

cloudlet/cloud) changes based on the characteristics of applications, type of hardware used

and communication latency between the phone and the remote resource. Cuckoo [111] is

another similar framework which simplifies the development of smartphone applications

that can benefit from computation offloading. Cuckoo provides a dynamic runtime system,

that can, at runtime, decide whether a part of an application will be executed locally

or remotely. It can be used to easily and efficiently write and run applications that are

capable of offloading computation dynamically.

5.2.5 Virtualisation-based Migration

Finally, container virtualisation technologies such as Docker provide small memory foot-

prints, isolation and portability, and allow fast startup times and rapid delivery of applica-

tions. As a result, containers have seen a widely adoption for running different types of

production workloads, and highly integrated in various cloud platforms. While some of

these cloud platforms such as Amazon Container Service [13] and Google Inc. Container

Engine [45] provision VMs to host containers primarily to mitigate security and isolation

concerns, others like IBM Container Cloud [93] run containers directly on cloud hosts [146].

In order to harness the power of containers, distributed stream applications are packaged

as container services and then deployed across the entire Cloud-IoT infrastructure. This

trend facilitates the need for dynamic container migration between different types of IoT

infrastructure. Most of the existing container-based migration approaches are directly

96 Dynamic Migration of Stateful Data Stream Operators

inherited from VM live migration [44], while the one presented in [128] takes advantage of

layered storage system in a container image to reduce file transfer overhead.

The adaptation of cloud-based live VM migration across cloudlets (edge servers) was

proposed by Ha et al [75]. In their approach, they make use of Dynamic VM Synthesis [171]

technique which realises that most of VM images are derived from a small number of

widely-used base images. Therefore, a VM image is divided into two stacks, that is, base

VM and launch VM. The base VM can be pre-loaded into Cloudlets before the start of

migration process. On the other hand, the launch VM contains all application specific

software that are downloaded either offline or at runtime. The result is that during

migration, only the binary difference between launch VM and its base VM (VM overlay)

needs to be transferred between cloudlets.

Ma et al [128] extend the live VM migration approach further to allow container-based

migration of high speed offloading service handoff across edge servers as a result of user

mobility. Their approach is based on Docker container migration that only encapsulate

and transfer the thin writable container layer and its incremental runtime status. This

is done with the help of Docker layered structure. The base image layer which can be

obtained from any Docker image hosting service is downloaded prior to migration process.

Both VM-based and container-based approaches have shown to reduce the file system

transfer size during migration process.

Similar layered approach is presented by Machen et al [129] for live migration of

mobile edge-cloud applications running in a virtualised environment (VMs or containers).

With layered approach, a containerised application is split into multiple layers and only

those layers that do not already exist in the destination node are transferred. They

adopt the common container operation ‘checkpoint and restore’ to suspend the guest OS,

catch and save the in-memory state of the running applications, and finally by using file

synchronisation techniques, to incrementally update the destination OS. Their layered

approach allows them to transfer common services to both guest and destination OS ahead

of migration process so as to reduce service downtime during migration process.

Voyager [146] is another container-based migration framework that combines the power

of CRIU-based [47] memory migration and data federation capabilities of union mount

5.3 Challenges in Operator Migration 97

to perform container migration. Data federation and lazy replication of persistent state

is started before the migration process and imposes no downtime as once the memory

state is restored in the target, the container has access to the persistent data. Therefore,

application downtime is virtually due to check-pointing and restore of in-memory state

using CRIU. CRIU needs to transfer the whole container file system during migration,

resulting in inefficiency and high network overhead.

5.3 Challenges in Operator Migration

One of the main characteristics of data stream applications is continuous processing of

unbounded incoming stream of data (continuous stream) using a fixed amount of memory.

Often, these streams of data are most valuable when they are analysed in real-time – as

they are generated. Hence, data streaming applications generally come with a strict set of

requirements such as high throughput and low latency in order to cope with the rate of

incoming data. Improvement in cloud technologies, parallelisation and elastic scaling of

processing elements provide a partial solution for dealing with and deriving value from

data.

More recently, edge computing has been employed to push part or all of computation

next to the data sources as a means of dealing with latency-sensitive applications. A

good migration protocol should consider the inherent nature of stream flow and should be

optimised to maintain data stream characteristics. A migration approach that disrupts

data stream continuity may results in backlog of unprocessed events. This behaviour not

only causes processing delays but also may have undesired consequences for certain types

of application domain where real-time processing of events or low latency requirements

have to be strictly observed.

Events in data stream processing systems carry timestamps that signify when a

particular event was generated. Most of these systems assume total ordering of events –

the order in which events are received by a stream operator is the same as their timestamp

ordering. With this assumption, any event received by a stream operator is supposed

to have a timestamp greater than the timestamps of all events received earlier by the

same operator. Out-of-order events can result in producing incorrect matches or wrong

98 Dynamic Migration of Stateful Data Stream Operators

results that can lead to undesired effects for some data streaming use cases such as those

found in a healthcare domain. Some existing migration approaches as described earlier

disturb the order in which events are generated. In such a situation, it is quite important

that a special mechanism is implemented for re-ordering of events before they are sent

downstream.

Streaming applications are highly characterised by stateful computations. Another

major challenge in operator migration is how to deal with state of the computation. In

contrast to a stateless computation, stateful computation must maintain information

derived from processing of previous events as state information. Output of a stateful

computation is based on processing of multiple events. As events are received by an

operator at different times, earlier events must be retained and kept by the operator

as state. In the context of this work, we only consider events that have been already

consumed by an operator and added into the window but yet to be processed as the

memory state of the operator. Figure 5.1 illustrates what comprises the memory state

by showing the windowed events waiting to be processed by the operator at migration

start time. During migration process, the stream computation must be transferred with

its state information (events inside the current window) to their new destination in order

to guarantee correctness of the results.

Event source

Input queue Output queue

memory state
(windowed events)

Operator

Fig. 5.1: Shows what is considered as memory state of an operator in the context of this
work.

For memory intensive streaming tasks, the size of the state information may become

very large. Transferring such large state information over the network is very expensive

and may exceed the available bandwidth. In addition, the longer it takes to move the

state information between nodes the longer becomes the queue of events waiting to be

5.3 Challenges in Operator Migration 99

processed on the producer side, hence, imposing long application downtime and result

delay. A good migration approach is the one that has an efficient mechanism in place

to transfer or recreate state information from source node to target node with minimal

overhead on network resource utilisation and application downtime.

Previous works [58, 195, 129] have associated migration process as a task for solving

one or more of the following problems:

Whether – A decision making process to determine if migration is required or not.

There exist a trade-off between the cost and benefit of migration.

How – Deriving an efficient mechanisms for state transfer that reduces state synchro-

nisation overhead and service downtime during migration process.

Where – Deriving optimal migration policies to determine the best candidate among

a set of available target nodes.

When – Process of predicting migration ahead of time based on various factors in a

dynamic execution environment.

What – A decision to determine how much of the state should be transferred. It

could be possible to rebuild the state in target node using just a portion of the state in

source node. Hence, reducing the cost of data transfer.

Early efforts on migration in data streaming systems [222, 114, 215] focussed on

optimising migration of an entire continuous query plan. Modern data streaming systems

are highly decentralised, where query components (operators) are distributed across a

cluster of computing nodes. These operators can then be efficiently managed independently.

More recently, different attempts have been made for operator migration in a distributed

environment leveraging both cloud and IoT infrastructure. MigCEP [155] assumes a

knowledge of user mobility pattern to plan migration ahead of time for cloud and IoT

infrastructure for the purpose of reducing end-to-end latency and network utilisation. In

real-world, however, user mobility patterns are unpredictable, and the planned migration

may never happen. Some of the existing works employ common fault-tolerant mechanism;

rollback recovery and passive replication [58], or periodic checkpointing [211] to facilitate

state migration and replaying of data streams in case of a failure of an operator. These

100 Dynamic Migration of Stateful Data Stream Operators

fault-tolerant mechanisms are very expensive in terms of network usage and slow in terms

of input/output accesses.

Gedik et al [69] propose a technique to perform elastic auto-parallelisation of stream

operators and migration of partitioned stateful operators where state information is

temporarily stored in an external disk imposing heavy penalty on write/read accesses.

Our migration approach makes use of memory-based storage which has been proven to

be an effective way to accelerate the processing of real-time applications [50]. Saurez et

al [172] propose migration protocol for moving situational-aware application components

between fog nodes based on mobility pattern of sensors and dynamic computational needs

of an application. However, details on how state information is transferred from one fog

node to another are not discussed.

In this chapter, we address the above challenges. In particular, we present a migration

approach which iteratively stores an operator state on memory-based storage in order

to accelerate the saving and retrieving of state information while substantially reducing

application downtime. Furthermore, our approach guarantees a total ordering of events

during the migration process by storing and retrieving events in order they were generated,

and ensuring that the target operator cannot process new events until all old events that

are part of state information have been processed.

5.4 System Model

In this section, we present the design of our migration system of which the migration

process is facilitated by communication between migration coordinator and migration

agents through a message broker. We call this a management (command) channel and it

uses a synchronous request-response pattern over a messaging protocol. The synchronous

request-response pattern provides a guarantee that the order of responses would be

maintained in the order of requests, hence, allowing systematic execution of migration

protocol presented next on Section 5.5.

With increase in popularity of virtualisation technology, application deployment method-

ologies increasingly leverage the power and benefits of containers. Particularly for porta-

bility, isolation and small footprint point of view, we make an assumption that stream

5.4 System Model 101

operators are packaged inside containers. These containers are deployed in a distributed

cluster of computing nodes where each node hosts a single container. This is because

our migration agent which has to be deployed on each node for monitoring the hosted

container on that node can only work with a single container at a time.

Figure 5.2 shows a typical streaming operator P running in a parallel mode (P1, P2, . . .

Pn) across a set of distributed nodes N1 to Nn. By parallelism, we mean running multiple

replicas of the same operator. Each replica of P is connected to the same input source

(a message broker) but processes a different set of input data. To achieve this desired

behaviour, a point-to-point messaging service is used. In a point-to-point messaging domain,

message senders (producers) and message receivers (consumers) exchange messages through

a destination called a queue. What distinguishes point-to-point from other messaging

domains is that a message inside a queue can only be consumed by one consumer. BR1

and BR2 are message broker instances acting as input stream source and output stream

destination respectively. Operator P with its runtime memory state S are all packaged

inside a container C.

N1

N2

Nn

Pn

Sn

P2

S2

P1

S1

Source Sink

C1

C2

Cn

BR1
BR2

P1’

S1’

N1’

C1’

Fig. 5.2: Shows parallel operator execution in data stream processing.

102 Dynamic Migration of Stateful Data Stream Operators

Our task is to migrate one instance (replica) of P , such as, P1 from N1 to a different

node N ′
1. The process which entails transfer of both P1 and its memory state S1 to N ′

1.

The challenge is how to efficiently transfer the state of the operator while ensuring low

or zero downtime, at the same time, maintaining the integrity of the computation. Our

approach leverages the power of container technology such as isolation and portability

to relaunch the operation on a different node with minimal performance overhead, and

efficient resource utilisation across the entire infrastructure. Equally important, we make

sure that our migration approach does not compromise the correctness of computation

results.

5.4.1 System Architecture

Figure 5.3 depicts the main components of the migration system, and shows how these

components interact. We classify these components into three main groups depending on

where they are executed during a migration process (locally), on messaging server, or on

VMs/physical devices. In the following, we describe the functionalities provided by the

components in each group.

Local Execution

Local execution refers to all migration components that are executed locally by the user

of the migration system. These components are stand alone applications that can ideally

be deployed and executed on a central machine that directly accessible by the user. Local

executed components include Migration coordinator and Performance metrics extractor.

Migration coordinator defines the user interaction point with the migration process and

generates commands that are used in migration protocol discussed in Section 5.5. Migration

coordinator interacts with message broker only through MQTT messaging protocol where

requests (commands) and responses are sent to and fetched from. metric-extractor as the

name implies, implements mechanism for retrieving different types of performance metrics

that enable us to evaluate the efficacy of our migration approach (see Section 5.8.2).

5.4 System Model 103
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

State	store	

Input	(BR1)	 Output	(BR2)	

Virtual/physical	devices	

Message	server	

Local	execution	

Source	node	(N1)	 Target	node	(N1’)	

Command	message	service	

Migration	
coordinator	

Performance	
metrics	extractor		

JMS	queues	

Byteman	agent	

Thermostat	agent	

Docker	container	(C1’)	

M
ig
ra
tio

n	
ag
en

t	Target	
operator	(P1’)	

Byteman	agent	

Thermostat	agent	

Docker	container	(C1)	

M
ig
ra
tio

n	
ag
en

t	 Source	
operator	(P1)	

Fig. 5.3: A high level architecture of the proposed migration system.

Message Server

Message server (broker) provides a loosely coupled communication channel between migration-

coordinator and migration-agents. Adopting message-oriented architecture makes our mi-

gration system flexible and removes complexity for future expansion. With this architecture

components in the system are loosely-coupled, and can be removed and new ones added

easily. It also allows the two main components, migration-coordinator and migration-agents

to perform their tasks independently.

The two messaging functionalities – one that provides command channel between migration-

coordinator and migration-agents, and the other that routes messages for stream processing

engine – are all bundled in the same message broker. This is not a requirement and the

functionalities can be provided by two different servers without impacting performance of

104 Dynamic Migration of Stateful Data Stream Operators

our migration approach. In addition, the presented model shows both input and output

queues of an operator deployed within the same messaging server. However, the model

supports other cases where the two queues might have bee deployed in different servers.

Virtual/Physical Devices

This part of the architecture represents the two participating nodes (source and target

nodes) that are part of cloud-IoT infrastructure. The two nodes can be either VMs

running on cloud resources, or physical devices within IoT infrastructure with support for

running Docker containers, and mechanism to facilitate deployment of message-oriented

middleware. Apart from hosting a containerised data streaming operator, each of the

participating nodes hosts three more components – migration-agent, byteman-agent and

a thermostat-agent. Migration-agent receives commands from migration-coordinator and

executes those commands within the node or inside the running container in order to

change the behaviour of the streaming application.

Some of the commands mandate injection of Byteman rules into a running container.

When a rule needs to be injected inside a running container, migration-agent forwards the

command to byteman-agent which like the operator itself is bundled inside the container.

The rules are used to instruct message consumers within operators to change their message

input and output queues from original to temporary queues and vice versa. Another

service that needs to be deployed within a processing node is a thermostat-agent. This

agent continuously collects nodes’ resource usage metrics that are used for evaluation of

our migration approach.

Additionally, the model includes a state store which provides a temporary storage for

state information during migration period. Ideally, the store should be deployed as close

as possible to the nodes in order to reduce state transfer and retrieval times. Such as, on

the same data centre as the source and target nodes, or on edge cloud which is nearest to

the IoT devices.

5.5 General Migration Protocol 105

5.5 General Migration Protocol

In this section, we present a protocol for general data stream operator migration. The

protocol outlines a sequence of instructions that are exchanged between different actors of

the migration process. These instructions are either commands that need to be executed

by the receiving agent, or a response from an agent as a result of executing a particular

command. The entire protocol is presented as a Message Sequence Chart (MSC) [94] in

Figure 5.4 and involves four actors; coordinator, source agent, target agent and state store.

The use of intermediate storage provides loose coupling between source and target

operators and ensure that data is not lost if one of the operators crashes during migration

process. In contrast, performing direct transfer of state from source to target operator

would require a strong and expensive coordination mechanism in order to deal with

failures during migration process. Furthermore, unlike existing similar protocols presented

in UniMiCo [157] and in Forglets [172], there is no direct communication between the

coordinator, source agent and target agent in our protocol. All communications between

the three are through a message broker. This feature makes our protocol more extensible.

Before migration is initialised, only a source operator is running. This should be

expected as migration can not happen if source operator is down. That behaviour actually

necessitates replacement of the operator through a failure recovery mechanisms that are

in place, which is beyond the scope of this chapter.

Migration process begins by coordinator sending a role-assignment commands to both

source and target agents (Steps 1 and 2). The role-assignment command specifies what

role should each agent assume for that particular migration process. Agent can either be

assigned a source or target role depending on whether it is hosting a source operator or

will be hosting a target operator after completion of migration process respectively.

Upon receiving a role-assignment command, an agent prepares its environment for

fulfilling future commands that are specific to that role. A role-assignment command

comes with all necessary information required by an agent to prepare for that role. For

example, a role-assignment command sent to a target node includes a name of the docker

image that will be used later for launching the operator inside the target node. An agent

first checks if the image already exists locally, if not, it downloads the image from a given

106 Dynamic Migration of Stateful Data Stream Operators

image repository which is also specified within the role-assignment command. This process

guarantees that the image exists when needed later on during migration process.

Coordinator Source Agent Target Agent State Store

Initially, only source
 operator is running

Role assignment1

Role assignment2

Role confirmation

Role confirmation

Launch-retrieve3

Target operator is launched
 and begins watching the
store for saved state

Pause-transfer4

Source operator is paused
 and start saving the sate into
 the store iteratively

Save-state5

Retrieve-state

Pause-transfer confimation

Launch-retrieve confirmation

Target operator continues with
 processing of events

Clean-up6

Clean-up7

Clean-up response

Clean-up response

loop [while state transfer is not complete]

Fig. 5.4: General protocol for data stream operator migration.

5.5 General Migration Protocol 107

After finishing environment setup for their respective roles, both agents sends back

confirmation message to migration coordinator confirming successful execution of the

command, and for the migration process to proceed.

Next, the coordinator sends a launch-retrieve command to the target agent (Step 3).

When the target agent receives launch-retrieve command, the agent launch the the target

operator in migration mode. When launched in a migration mode, the operator begins

watching the state store for state information while message consumer inside the operator

is paused. In doing so, we avoid out-of-order processing of events as events that are part

of state information are retrieved and processed first before any new event is consumed.

In Section 5.6 we provide detailed description on how state is transferred to and retrieved

from the state store. The coordinator then sends pause-transfer command (Step 4) to

the source agent so that source operator can be paused and the process of transferring

state information to the store begins. When the agent receives this command, it sends

a message to the source operator to stop consuming any new events, and package and

transfer its memory state to the state store.

The process of saving the state by the source operator and retrieving it by the target

operator (Step 5) is done incrementally for performance reasons such as minimising

downtime and reducing network overload (see Section 5.6.2 for more detail). When all

state information has been transferred, the source operator sends through the store a special

flag to the target operator to signifies the end of the process, pause-transfer confirmation

command is sent afterwards to the coordinator to indicate a successful transfer of state

information. When end of process flag is received by the target operator, message consumer

inside the target operator is initialised and processing of events resumes.

The target agent also sends launch-retrieve confirmation command back to the coordi-

nator to indicate a successful resumption of processing of events.

When migration coordinator receives confirmation of remove-divert commands, migra-

tion process is complete. Steps 6 and 7 in Figure 5.4 are post migration house-keeping

operations. They involve cleaning up of execution environment inside source and target

nodes in order to release unused resources, and prepare the nodes for future migration

process by resetting migration and synchronisation agents.

108 Dynamic Migration of Stateful Data Stream Operators

5.6 State Transfer

In this section we present the state transfer algorithms used to transfer operator’s memory

state from source operator to target operator. The entire process is presented as Algo-

rithms 5.1 and 5.2. During migration process, Algorithm 5.1 is executed by the source

operator, while Algorithm 5.2 is executed by the target operator.

5.6.1 State transfer Agorithms

For performance reasons outlined in Section 5.6.2, the maximum state size that we can

save on a state store at any time is 1 MB. Therefore, when saving the state incrementally,

the maximum allowable data size is transferred in each iteration unless if the remaining

state is less than the maximum allowable size (1 MB).

Algorithm 5.1 State transfer from the source operator to the state store
1: Input: state, path
2: procedure send_state(state, path)
3: max_bytes – Maximum number of bytes that can be transferred at one time
4: data – Contains data that should be transferred in current iteration
5: start_index – First index of the current data
6: end_index – Last index of the current data
7: start_index = 0
8: end_index = max_bytes
9: while state.length - start_index > 0 do

10: data← copy_state(state, start_index, end_index)
11: if path is not empty then
12: wait
13: end if
14: send_state(data, path)
15: start_index← end_index
16: end_index← start_index + max_bytes
17: end while
18: data← copy_state(state, start_index, state.length)
19: if data.length > 0 then
20: if path is not empty then
21: wait
22: end if
23: send_state(data, path)
24: end if
25: send ’end’ flag
26: end procedure

5.6 State Transfer 109

Algorithm 5.1 begins by specifying the start and end positions of the first portion

of the state (lines 7 - 8). As it would be expected, the start and end positions of the

first portion are 0 and 1048576 respectively (1 MB length of data). In lines 9 - 17, the

maximum allowable state size is iteratively sent to the state store. Line 10 copies the data

that should be transferred during the current iteration. Before the data is transferred,

in lines 11 - 13 the algorithm checks if data store is empty or not. This check prevents

overwriting the previously saved data on the store. In the following section when we

discuss and justify the choice of our data store, we point out that saving new data to the

store overwrites the existing data. However, if the store is not empty, the algorithm knows

that the previously saved data still exists (has not been retrieved), hence, it should wait

until the store becomes empty.

Lines 14 - 16 is where the data is saved in the store and both start and end positions

are updated to reflect the next portion of the state. In lines 18 - 24 the remaining state is

copied and transferred when the store becomes empty. Finally, a flag is sent to the store

to indicate the completion of state saving process.

Algorithm 5.2 State retrieval from the state store to the target operator
1: Input:path
2: procedure retrieve_state(path)
3: data – Current data to be sent in a byte array
4: state – Holds all of the state retrieved so far
5: set_notification(path)
6: wait_for_notification()
7: data← read_state(path)
8: delete_data(path)
9: if data not equals to ’end’ flag then

10: state← state + data
11: RETRIEVE_STATE(path)
12: else
13: return
14: end if
15: end procedure

In contrast, Algorithm 5.2 is executed by the target operator during migration process.

The algorithm begins by setting a notification service so that when data on the store

changes, it receives a notification (line 5). When a notification arrives, the algorithm

proceed on retrieving new data from the store (line 6 - 7). The data inside the store is

then deleted (line 8) so that the first algorithm which is executed by the source operator

110 Dynamic Migration of Stateful Data Stream Operators

gets the chance to send more data. In lines 9 -14, a check is performed first to see if

the retrieved data is not an end flag. If it is not, the state information is updated, and

recursively the whole process is repeated until an end flag is received.

5.6.2 State Transfer Implementation

In Section 5.3 we gave an outline of challenges associated with stateful operator migration.

One such challenges is a consistent and meaningful transfer of operator state. When a

stateful operator is migrated to a new node, its state needs to be moved with it so that

when computation resumes on the new node, it continues from exactly the same point at

which it was stopped in order to guarantee the accuracy of the computation. Furthermore,

we need to address the issue of a very large state transfer without overburdening the

network, while at the same time minimising downtime. In this section, we present our state

transfer approach that addresses the aforementioned challenges. The approach supports

incremental transfer of operator’s runtime state from a source to a target node.

We make use Apache Zookeeper [224] framework – a high-performance coordination ser-

vice for distributed applications, to represent a storage store. With Zookeeper, distributed

applications can coordinate with each other through a shared hierarchical namespace

similar to standard file system called znodes. A namespace is a sequence of paths separated

by a slash (/). Every znode which is represented as a path can store data as well as become

a parent of other znodes (also known as children nodes). Unlike file system where data is

stored on the disk, data in a znode is kept in memory to ensure high throughput and low

latency. To allow coordinated updates, data stored in a znode includes version number,

timestamp and size in bytes among others. Reading and writing data in a znode is done

atomically – read operation gets all the data, while write operation replaces all the data

stored on a znode.

To allow an incremental transfer and retrieval of state information, we make use of

watches service provided by the Zookeeper. watches allows a Zookeeper client (application

that reads data from Zookeeper server) to set a watch event so that, when data inside a

znode for which the watch was set changes, the client gets a one-time notification. This

5.6 State Transfer 111

mechanism allows us to synchronise the writing and the reading of state between source

and target operators.

Figure 5.5 shows an overview of flow of commands from migration coordinator to

migration agents and the two operators that result in transfer of state during migration

process. The entire process corresponds to step 3 through step 5 of the migration protocol

presented in Figure 5.4.

Source node

State

Agent

Operator

Target node

Coordinator

Zookeeper node

laun
ch-r

etrie
vepause-transfer

State

Operator

B
yt

em
an

 a
ge

nt

AgentB
yt

em
an

 a
ge

nt

Fig. 5.5: Shows how state information is transferred from source to target operator.

Under normal processing condition,when an operator is first launched, message con-

sumer inside the operator automatically connects to and consumes messages from the

message broker, and the processing of events begins immediately. When launching target

operator during migration, this behaviour can results to an out-of-order processing of

events as new events consumed from the message broker can get processed before old

events that are part of state information are retrieved and processed. The accuracy of the

results can also be compromised as the processing of new events might as well depends on

the information from old events. To prevent the possibility of such outcome, the target

operator is always launched in a migration mode. Under a migration mode, the consumer

inside the operator is stopped from consuming any messages before the entire state is

retrieved.

When migration coordinator sends launch-retrieve command to the target agent, step

1 in Figure 5.5, the agent launches the target operator with a Byteman script injected at

launch time. The Byteman script serves three purposes; first, to notify the operator of

112 Dynamic Migration of Stateful Data Stream Operators

the ongoing migration process, secondly, to stop message consumer inside the operator

from consuming any more messages, and lastly to relay information about the location

where operator state will be stored (Zookeeper address and znode name). The target

operator then connects to the Zookeeper server and sets a watch event on the znode, and

waits for any notification on data change on the znode. In this way, the target operator

incrementally retrieves all the operator state before the Byteman script injected earlier is

removed and processing of events proceeds as normal.

Sending of launch-retrieve command by the coordinator to the target operator is

immediately followed by sending of pause-transfer command to the source operator as

shown in Figure 5.4. When pause-transfer command is received by the source agent, the

agent executes a Byteman script on a running source operator. The script has similar

purposes as the one executed by the target agent earlier - notifying the source operator of

the beginning of the ongoing migration process, pausing message consumer from reading

any new messages, and passing information about the location where state information

should be saved. The source operator then connects to Zookeeper and incrementally starts

saving the state. Removing the Byteman script once state transfer process is finished is

not necessary in this case as the operator gets terminated afterwards.

Our decision of using Zookeeper as a state store over conventional databases is mainly

due to two reasons, (a) maintaining high throughput and low latency as all state data

is kept in memory, and (b) making a simple mechanism for implementing a notification

system where state can be saved and retrieved incrementally. Zookeeper has a default

maximum number of bytes that can be stored in a any node at one time (1 MB). This

number however, is configurable by users, but increasing the maximum default value

impacts on the performance as Zookeeper is not design to work as a database. In our

approach, we maintain the good performance characteristics of Zookeeper in terms of high

throughput and low latency by not transferring more than 1 MB of state information at

one time.

5.7 Migration Related Metrics in DSMSs 113

5.7 Migration Related Metrics in DSMSs

In this section, we discuss different types of metrics that are pertinent to data stream

processing, and how quantifying these metrics during the migration process can help us

evaluate the impact and efficacy of a migration approach on these systems. Metrics mea-

surement, for example, can make it possible to determine computing resources requirement,

perform cost/benefit analysis of a migration approach, or compare one migration approach

against the other. We start by outlining the importance of maintaining both performance

related and system metrics. Then, we introduce migration-induced metrics - those that

only become apparent during migration process.

5.7.1 Performance and System Metrics

One of the characteristics of data stream processing systems is to process events coming

at very high rate from diverse event sources. DSMSs are typically evaluated using two

main performance metrics: throughput and latency [117, 110]. Their effectiveness and

efficiency are primarily judged by how much they can cope with the unbounded nature

of incoming events without compromising data stream processing characteristics such as

high throughput and low latency. Performance metrics measurement is very important in

evaluating data stream processing systems. Performance of such systems can degrade as a

result of introducing or integrating extra features such as dynamic migration of processing

elements.

Throughput: In data stream processing, throughput is measured as number of events

a system can process in a given unit of time [117]. DSMSs are designed with

high throughput in mind. When throughput degrades, it can lead to a bottleneck

– congestion of events waiting to be processed by a particular operator. Several

techniques have been employed in order to improve throughput in data stream

processing systems. Apache Spark [219] for example, implements micro-batch

processing or Discretized Stream (DStream) [220] – a processing model in which

an incoming stream of events is divided into groups of small batches before being

processed. Resharding of data streams [38, 101], elastic and parallel execution of data

processing elements [32, 125, 131, 78] are some of key features of modern DSMSs

114 Dynamic Migration of Stateful Data Stream Operators

that provide high throughput and deal with unpredictability in data stream input

rates.

Latency: While processing many events in a given unit of time is fundamental to data

stream processing, how fast events are processed is equally important in some data

streaming application scenarios [117]. In real-time fraud detection for example, a

streaming application needs to react to a particular event pattern in a timely manner

after the events have been generated in order to detect and prevent any fraudulent

behaviour [174]. Latency defines how fast events are processed. Two distinct types

of latency have been presented in [110] – event time and processing time latencies.

Event time latency is measured from the time an event is created to the time when

results of its processing are generated. On the other hand, processing time latency is

the total time taken by a data stream processing system in processing an event or a

group of events and producing the results after the events have been received by the

system.

DSMSs are designed with low latency in mind in order to fulfil the requirements of

real-time data stream processing. While micro-batching of event streams is implemented

to improve throughput in some of DSMSs, it has undesired effect on latency. Batching of

events before processing them tends to increase latency. Data stream processing systems

that are characterized with very low latency such as Storm [196] and Flink [30] tend to

process one event at time in order to minimise event time (end-to-end) and processing

time latencies.

We have seen above that parallel execution of processing elements is one of the

mechanisms used to speed up events processing in DSMSs in order to meet high throughput

and low latency requirements [48]. But this technique requires additional CPU resources.

On the other hand, batching of events before processing allows them to be temporarily

placed in memory. Both low latency and high throughput processing demand extra

computing resources, that is one of the reasons why real-time data stream processing is

inherently resource-intensive. Cloud-based resources are used to cope with the demand of

real-time processing through horizontal scaling (increasing the number of VMs) or vertical

scaling (increasing the size of VMs), albeit at extra cost. CPU, network and memory

5.7 Migration Related Metrics in DSMSs 115

usage are the key system metrics that need to be consistently monitored during operator

migration so that resource usage overhead introduced by a migration process doesn’t

significantly disturb processing of events [159, 155].

While IoT has become a major source of data, increasingly more smart devices that

provide considerably powerful execution environments such as sensors and smart phones

are being manufactured. This paves the way for moving computation from cloud to devices

near to, or where data is generated [214]. But, these devices don’t possess the same

capabilities as their back-end counterpart (cloud-based VMs), such as providing unlimited

pool of shared virtual resources. Therefore, it is important to monitor utilisation of their

available resources (CPU, network, memory) and try to restrict the overhead particularly

when running resource-intensive operations.

5.7.2 Migration-induced Metrics

In addition to impacting on the inherent characteristics of data stream processing and the

underlying computing resources, a migration process introduces its own characteristics

that directly affect performance of DSMSs. We call these migration-induced metrics.

Ideally, migration-induced metrics should only exist during migration period and disappear

afterward. Below we provide short description of each and explain why it is important to

minimise their impact.

Execution time: Total time required to execute migration process under varying condi-

tions such as window size and event arrival rate. Ideally, migration execution time

should be confined to a very short period of time. Execution time does not directly

affect performance of DSMSs, instead it prolongs the time over which quality of

service is degraded due to impact on one or more of the inherent characteristics of

data stream processing, or due to limited availability of computing resources.

Downtime: A fraction of time during migration process at which output is halted due to

processing operation being paused or stopped completely. As discussed in Section

5.1, downtime introduces delays to the processing results, an effect that can not be

tolerated in situational-aware applications.

116 Dynamic Migration of Stateful Data Stream Operators

Data transferred size (state size): Refers to the amount of data (state) that needs to

be transferred from a source node to a target node during migration process. The

larger the state size the longer it takes to transfer the state from a source node to a

target node, hence the more networking resources required. In general, state size

has knock-on effect on both downtime and execution time.

A good migration approach is the one that has minimal impact on performance of

DSMSs, and incurs little or no extra cost on computing resources. Such an approach

provides a seamless transition from source to target node, and copes with the resource

imbalance nature of cloud-IoT infrastructure so that it can be executed at any level of

the infrastructure. In the following section, we present various experiments to quantify

some of the metrics that are relevant to the presented migration approach, we evaluate

the results and assess the efficiency and effectiveness of the approach.

5.8 Experimental Setup

In this section, we describe the workload used during the experimentation and evaluation

of our migration approach. In addition, we provide details of how important metrics were

collected during the experiments.

5.8.1 Data Stream Processing Workload

Figure 5.6 shows at a high-level how synthetic workload is generated to form a data stream

processing pipeline. The primary requirement of a synthetic workload generator is that

the generated workload should be representative of the real workload, and preserve all the

important characteristics of the real workload [17]. In our case, for example, the workload

generator should be able to simulate event generation at a very high speed and from

multiple event sources. Using synthetic workload makes our experiments more manageable

and can be repeated in a controlled manner.

Simulated event sources (ES) generate events at a user specified event rate. Event

sources are implemented using Artemis JMS client API. Artemis provides a built-in service

to limit the rate at which messages are sent from a client to a server known as Rate

5.8 Experimental Setup 117

Limited Flow Control. We employ Rate Limited Flow Control to make sure that a message

producer (event source) does not produce messages at a rate higher than the desired rate.

Two parameters are required for launching workload generator: global_event_rate and

source_count. The global_event_rate is the maximum event rate as they are received by

the queue Q1, while source_count represents the total number of simulated event sources.

In the interest of accuracy and simplicity, the global_event_rate parameter needs to be

an integer multiple of source_count. For example, if a user wants to simulate 4 event

sources generating workload at global rate of 2000 events per second, the client program

will launch 4 message producers each with maximum rate of 500 events per second.

Event sources (ES)

ES

ES

ES

1

2

n

Q 1 Q 2

P Sink

Fig. 5.6: Representative workload used during the experiments.

Generated events are temporarily stored in an any-cast queue Q1 deployed inside an

Artemis server before they are consumed by an operator P . Message consumer inside P is

also implemented using Artemis JMS client API, and uses different flow control mechanism

provided by the API. Ideally, we would like events to be consumed and processed as

quickly as possible in order to prevent the message broker from being overwhelmed with

data. Therefore, the Rate Limited Flow Control employed in the producer side is not

appropriate on the consumer side unless the consumer knows the producer rate in advance.

However, one of the purpose of messaging systems is to decouple senders of messages from

consumer of messages. Message consumers are completely independent and know nothing

about message senders. Therefore, in this case, we employ a Window-Based Flow Control

(Figure 5.7) which allows Artemis consumer to pre-fetch messages into a special buffer

on the client side before they are consumed by the client. This improves performance by

reducing network round trip as the clients need not contact the server every time they are

ready to consume the next message.

118 Dynamic Migration of Stateful Data Stream Operators
	
	
	
	
	
	
	
	
	

	
	

	 	
	

m3	 m2	 m1	mn	 	 m4	

Pre-fetch	buffer	

Consumer	

Message	queue	

Artemis	server	 Artemis	client	

Fig. 5.7: Illustration of client side flow control mechanism.

Window-Based Flow Control allows a user to specify the size of pre-fetch buffer which

by default is set to 1 MB. It also provides an option to have an unbounded buffer size

as long as the client program has enough memory to cope with the oncoming event rate.

Our consumer implementation uses unbounded buffer size to allow messages to be sent

close to consumer all the time.

When events are received by operator P , they are windowed by the length of time

specified when the operator is launched. We have packaged the operator as a Docker

container and make sure that the Docker image required to launch the container is cached

on both source and target nodes, so that the total execution time of migration algorithm

is not impacted by image transfer time from a remote Docker image repository. The new

generated events by the operator, which are the time-based count of original events are

forwarded down-stream and temporarily stored on a different any-cast queue Q2, also

deployed on the same message broker as Q1. Events inside Q2 are finally consumed by

another JMS client and passed to the sink.

5.8.2 Metrics Collection

In Chapter 4, we presented our dynamic code injection approach that makes it possible

to add program traces into a running program and change the behaviour of the program.

In this chapter, we employ the same approach to extract application level performance

metrics. With this approach, metrics can be collected at any time before, during and

after migration process without modifying the data streaming computation. We can easily

remove the instrumentation code at any time after the migration process has finished.

5.9 Experiments and Evaluation 119

Before migration start time, we inject two Byteman rules into the source operator.

The first rule records the initial timestamp (Tinitial) and adds it as a header property of

an event. The initial timestamp denotes the time at which an event was received by an

operator. The second rule records the time a new event is generated as a result of current

window expiring as the final timestamp (Tfinal).

For the target operator, the two rules are injected during the operator launch time.

This is because we need to be able to collect target operator metrics as soon as the operator

begins processing of the first event. The processing latency of a particular window is

calculated by subtracting the initial timestamp of the first event in that window from

the final timestamp (Tfinal – (Tinitial)first_event). Throughput is the number of events that

can be processed by a streaming application at each unit of time [117]. Hence, we have

calculated throughput as the total number of events processed per unit window time.

In addition to application level metrics, we also collect data about CPU utilization

and memory consumption on every node involved in the migration process. This is done

using Thermostat tool presented in Section 4.4.2. On each node, we deploy a Thermostat

agent to collect resource usage data for the node and each JVM running on that node.

The agent forwards the collected data to a Thermostat data storage which is deployed on

a dedicated machine. To retrieve the stored data for analysis and evaluation, we make use

of the Thermostat shell client.

5.9 Experiments and Evaluation

In this section we present experimental results and evaluation of our parallel migration

algorithm for data stream operators. First, we begin by discussing the type of workload

used during the experimentation. We then describe how application and system level

metrics used for evaluating our migration system are extracted. Finally, we present a set

of experiments and evaluate performance of the general migration approach presented in

this chapter against various metrics that are outlined on Section 5.7. For each experiment

we describe its purpose, the execution environment, present the results graphically and

provide our evaluation of the approach.

120 Dynamic Migration of Stateful Data Stream Operators

Experiment 1: How processing time and throughput are affected by migration

process

The aim of this experiment is to validate our migration approach against two of the

fundamental properties of data streaming processing – latency and throughput. In Section

5.7.1 we have emphasised the importance of observing and maintaining these properties

when introducing extra features to a data stream workflow.

Using the workload outlined in Section 5.8.1 with event rate and window size of 20000

events/second and 2 seconds respectively, the source operator was first launched and

left running for 5 minutes. In doing so, we allowed the processing time latencies and

throughput to stabilise before migration process is initialised. After the elapse of the 5th

minute, the migration protocol was initialised by the migration coordinator. Likewise, at

the end of migration process the target operator is left to continue running for another five

minutes before the operation is terminated in order to let processing times and throughput

recover to their steady states. Table 5.1 shows the execution environment used for this

experiment.

Node OS CPU Memory (GB) Disk storage (GB)
Migration manager MacOS Sierra 2.2 GHz 16 250
Message broker Ubuntu 14.04 2vcpu 8 30
Source Ubuntu 14.04 2vcpu 8 30
Target Ubuntu 14.04 2vcpu 8 30
Storage backend Ubuntu 14.04 1vcpu 2 30

Table 5.1: Execution environments for Experiment 1. Each cloud-based VM is based on
Standard DSv3 instance type (2.4 GHz Intel Xeon® E5-2673 v3).

Figure 5.8 depicts the results of this experiment where migration period is indicated

with start and end vertical lines. Figure 5.8(a) shows a time series of processing time

latency featuring values before, during and after migration. The observed mean processing

times before and during migration were 1,873.75 and 5,582.67 milliseconds with median

values of 1,905.00 and 1,583.00 respectively. This is equivalent to 198% increase. The high

increase in processing time during migration is attributed to the fact that events that

have already been received by the source operator but not processed yet when migration

process is initiated become part of the state information. The state information then

needs to be transferred to and retrieved from the state store before being processed by

5.9 Experiments and Evaluation 121

the target operator. Recalling from Section 5.8.2, processing time latency is measured

from the time when an event is received by the operator to the time when a new event is

generated. This includes the time events spend when they are transferred from the source

to target operator.

start end
0

2000

4000

6000

8000

10000

12000

14000

16:58 17:00 17:02 17:04 17:06 17:08

Timestamp (hr:min)

P
ro

c
e

s
s
in

g
 T

im
e

(m
s
)

(a)

start end0

20000

40000

60000

80000

100000

120000

16:58 17:00 17:02 17:04 17:06 17:08

Timestamp (hr:min)

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/w
in

d
o
w

−
s
iz

e
)

(b)

Fig. 5.8: How processing time and throughput are affected by migration process.

After migration, the processing time gradually recovers and the observed mean process-

ing time was 1,995.47 seconds with median value of 2,023.50, equivalent to 6.5% increase in

the mean processing time before migration. The reason for this increase can be explained

by Figure 5.8(a) where recovery time seemed to last few seconds after migration process

has finished.

122 Dynamic Migration of Stateful Data Stream Operators

Figure 5.8(b) shows the impact of migration process on throughput. For this experiment,

throughput is measured as total number of events processed in each window. The mean

throughput before and during migration were 42,025 and 27,334 events, each with a

median value of 40,000 corresponding to a 35% reduction in throughput. Once the

migration process is finished, initially, the target operator needs to process events from

both state store and from the backlog of new events from the server, hence, high increase

in throughput. The throughput eventually recovers to a steady state. The observed mean

throughput after migration was 44,444 events and median value of 40,000.

Experiment 2: How execution time, state size and application downtime are

affected by different event rates

In data stream processing, event rate can be unpredictable particularly if input events are

collated from disparate input stream sources. In this experiment, we study the effect of

varying event input rate on migration induced metrics outlined in Section 5.7.2 – execution

time, state size and application downtime. Unlike system and application level metrics,

migration induced metrics only exist during migration process, but their effect can be

prolonged beyond migration time in situations of, for example, very high event input rate.

Execution time here refers to the total time taken by migration process to complete, and

doesn’t reflect the time taken to run a complete experiment.

Parameter run 1 run 2 run 3 run 4 run 5
Events rate (events/s) 4000 8000 12000 16000 20000
Window size (s) 50 50 50 50 50
Mean execution time (s) 22.2043 24.0900 27.7425 29.7037 31.3377
Mean state size (MB) 8.4092 15.6176 28.4859 34.2214 35.8466
Mean downtime (s) 14.3473 15.5558 21.4732 23.1460 24.2572

Table 5.2: Parameter options (top rows) and observed mean values (bottom rows) for
Experiment 2.

An experiment begins by first launching a source operator, which will keep processing

the events for a specified amount of time before migration process begins. When migration

process ends, target operator would normally carry on processing for another duration of

time that doesn’t affect migration execution time. The exact execution (migration) time

is presented as the time between start and end vertical lines as depicted on various time

5.9 Experiments and Evaluation 123

series plots presented in earlier experiments. The execution environment used is same as

the one shown in Table 5.1.

Table 5.2 displays different combinations of parameter options for each single run of the

experiment. During the experiment, each run was executed 20 times and mean execution

time, state size and downtime were calculated, the results of which are also displayed on

Table 5.2.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

State Size (MB)

C
u

m
m

u
la

ti
v
e

 F
re

q
u

e
n

c
y

(a)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

Downtime (s)

C
u

m
m

u
la

ti
v
e

 F
re

q
u

e
n

c
y

(b)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

Execution time (s)C
u

m
m

u
la

ti
v
e

 F
re

q
u

e
n

c
y

Event rate (events/s) 4000 8000 12000 16000 20000

(c)

Fig. 5.9: The effect of increasing event rate on (a) state size, (b) downtime and (c)
execution time.

The Empirical Cumulative Distribution Functions (ECDFs) of Figure 5.9 summarise the

results of this experiment. The state size is highly affected by change in event rate as shown

by the large rightward shift of the entire distribution in Figure 5.9(a). When event rate

124 Dynamic Migration of Stateful Data Stream Operators

increases, state size also increases, because by increasing event rate the possibility of having

more events inside the window also increases, hence, larger state size. The substantial

increase in mean state sizes shown in Table 5.2 further underlines our observation.

Figure 5.9(b) shows how application downtime is influenced by event rate. The figure

shows that as the event rate increases, the downtime also increases. This is also supported

by substantial increase in mean downtime as shown in Table 5.2. As we have seen before,

event rate is directly proportional to the state size. As a results, the larger the size of the

state information, the more iterations are needed to transfer the state into the state store.

Consequently, application downtime also increases.

Figure 5.9(c) shows the effect of increasing event rate on total execution time of the

migration process. The two properties exhibit direct proportionality between them, an

argument that is also supported by the increase in mean execution time as event rate

increases (Table 5.2). In principle, application downtime is a subset of the total migration

execution time. Therefore, increasing event rate has a knock-on effect on both state

size, downtime and execution time. According to the experimental results, the minimum

execution time was 19.707s with a downtime of 13.251s, and corresponds to event rate

of 4000 events/s. On the other hand, the maximum execution time was 38.093s with

downtime of 28.624s, which corresponds to the event rate of 20000 events/s.

Experiment 3: How execution time, state size and application downtime are

affected by different window sizes

Similar to the previous experiment, in this experiment we study the effect of changing

window size on total execution time of migration process, state size, and application

downtime. The execution environment used is same as the one shown in Table 5.1.

Table 5.3 shows the choice of parameter combination for this experiment. As in Experiment

2, each run of the experiment is repeated 20 times, and the mean execution times, state

sizes and downtimes are as shown on Table 5.3.

The results of the experiment are shown in Figure 5.10. In contrast to the results

of Experiment 2 for event rate, both state size, downtime and execution time are not

affected by change in window size. This is shown by the compactness and overlapping of

5.10 Conclusion 125

Parameter run 1 run 2 run 3 run 4 run 5
Events rate (events/s) 10000 10000 10000 10000 10000
Window size (s) 10 50 100 200 400
Mean execution time (s) 22.7737 25.5430 25.1449 25.8712 25.8071
Mean state size (MB) 16.9735 20.8340 19.6761 21.5106 19.6412
Mean downtime (s) 15.0051 19.3445 18.8632 19.6695 19.4383

Table 5.3: Parameter options (top rows) and observed mean values (bottom rows) for
Experiment 3.

distribution functions in Figure 5.10, as well as the mean values on Table 5.3. The only

notable exception is when window size is equal to 10 seconds where both ECDFs plots

and the mean values show a significant gap with the rest of the results.

The state size is always bounded by the maximum number of events a window can

accommodate. But migration process can be initiated at any time during the windowing

of events, hence, there is no guarantee that having a large window size will always result

in larger state size. Hence, is not a guarantee that having a large window size will always

result to a larger sate size at migration start time. If each run of the experiment is

repeated for a very large number of times (e.g. more than 100), then the average values

for execution time and state size would increase with the increase in window size. The

minimum execution time recorded was 19.968s corresponding to window size of 10s with

downtime of 12.003s, while the maximum execution time was 34.690s with downtime of

28.745s, and corresponds to window size of 100s.

5.10 Conclusion

Migration of processing elements in stateful data stream processing is challenging. It

requires transfer of state information from a source to a target operator – a process that

may become very costly in terms of available networking resources. Existing container-

based migration approaches inherit checkpointing and restore strategy from the traditional

VM migration (see Section 5.2.5). With this strategy, the memory state and entire file

system state are packaged and transferred to the target node – a process that becomes

redundant when the portability property of a container is considered. In addition, it is an

126 Dynamic Migration of Stateful Data Stream Operators

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40

State Size (MB)

C
u

m
m

u
la

ti
v
e

 F
re

q
u

e
n

c
y

(a)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40

Downtime (s)

C
u

m
m

u
la

ti
v
e

 F
re

q
u

e
n

c
y

(b)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40

Execution time (s)C
u

m
m

u
la

ti
v
e

 F
re

q
u

e
n

c
y

Window size (s) 10 50 100 200 400

(c)

Fig. 5.10: The effect of increasing window size on (a) state size, (b) downtime and (c)
execution time

established practice in the existing works to temporarily store state information on disk,

introducing very expensive read/write operations.

In this chapter we have presented our migration approach for stateful data stream

operator that support incremental transfer of operator memory state to a target operator

through an in-memory storage. Because nothing is stored on the disk, state transfer process

is fast. Our approach leverages container technology to improve portability, and ensures

only a small footprint is migrated. Our experiments show that the presented approach

introduced minimal impact on performance of the data stream processing application.

5.10 Conclusion 127

Processing time latency and throughput deteriorated for a short period of time, but

recovered quickly once migration process is completed.

In addition, we have demonstrated the effect of increasing event rate and window size

on migration-induced metrics – state size, application downtime and total execution time.

While we have witnessed a significant increase in both state size, downtime and execution

time when event rate was increased, the value of these metrics were not always influenced

by increasing window size. Our migration approach guarantees short downtime (less than

14s), as well as short execution time (less than 20s) for low event rates (less than 10000

events/s).

Although the presented approach has shown to effectively transfer state information

from a source node to a target node, for certain types of data streaming applications such

as those generating events at very high rate (e.g.), the state size may become very large.

As Zookeeper is not designed for bulk storage, therefore, even in situations where network

bandwidth is not restrictive, for performance reason only 1 MB of data can be stored at a

given Zookeeper node. Consequently, this behaviour increases the number of iterations

during state transfer significantly. This behaviour comes as a limitation to our approach.

As more and more iterations are required to transfer the state, the application downtime

also increases.

Another limitation of our approach is, it requires a user to have a good understanding of

underlying operator implementation in order to perform the migration protocol at runtime.

However, modern DSMSs provide out-of-the-box support for management features such

as auto-scaling, fault-tolerance and operator migration. This behaviour allows the data

streaming systems to automatically perform such operations seamlessly with minimal user

intervention. To overcome the limitation of the presented migration approach, we envisage

some parts of our migration protocol to be embedded inside the data streaming operators

early during their implementations. For example, every operator may implement its own

migration agent that is capable of facilitating migration process for that operator and

attached to it. In addition, a DSMS may incorporate a memory-based storage system and

defines the parameters required for connecting to it, as well as sending and retrieving data

to and from the store.

Chapter 6

Optimisation Technique for Data

Stream Operator Migration

Overview

In the previous chapter (Chapter 5), we presented our approach for

efficient dynamic migration of stateful data stream operators. The ap-

proach makes use of in-memory data storage, incremental state transfer

and containerisation technology to minimise migration impact on data

stream processing, and reduce overhead on host resources usage.

In order to improve the performance of our migration approach, in this

chapter we present and evaluate a novel optimisation technique for stateful

data stream operator migration. The technique involves running source

and target operator concurrently for a larger part of a migration process,

while allowing the state information to be reconstructed downstream. We

propose a new migration protocol to support concurrent execution of

source and target operators, and a set of algorithms for checking and

enforcing a consistent state between the operators. Our experimental

results show that our optimisation technique is non-intrusive, short-lived

and resource-efficient.

130 Optimisation Technique for Data Stream Operator Migration

6.1 Introduction

Existing migration algorithms are optimised for energy, cost, latency, and resources

utilisation (as discussed in Section 5.2). We argue that these optimisations do not support

some of the widely implemented IoT use cases. For example, when dealing with real-time

data stream processing in some particular domains such as healthcare, it is important to

ensure the accuracy of data analysis is maintained during the migration process as any

error on the result of the analysis may lead to wrong diagnosis of patients.

Furthermore, these approaches are built on top of techniques that are well known

for introducing service or application downtime, pause-drain-resume and checkpointing

and restore, for example. Downtime introduces delays in receiving the results of analysis

and might impact both users’ Quality of Service (QoS) and Quality of Experience (QoE).

Needless to say that such effect can not be tolerated in a situational-aware application

domains.

In this chapter, we propose an optimisation technique for dynamic migration of a

stateful data stream operator which does not involve state transfer as an extension to our

general migration approach presented in Chapter 5. With this technique, the source and

target operators are allowed to run in parallel for the larger part of a migration process

while consistent state is being recreated downstream.

This approach brings two main benefits over the existing general approaches discussed

in Section 5.2. Firstly, state transfer as we have seen in Section 2.4 is very costly for

stream processing in particular. The unbounded nature of input stream when combined

with complex processing semantics, such as streams joining over a very large window size

(greater than one hour, for example), may lead to a sizeable operator state of hundreds

of gigabytes. Moving such state between physical devices (IoT devices and gateways) or

VMs demands a substantial amounts of network resources. When working in situations

where network resources are limited or unpredictable, large state transfer may lead to

performance degradation.

Secondly, different from most of the previous works, parallel execution of source

and target operators in our approach allows continuous delivery of results and reduces

application downtime to zero virtually.

6.1 Introduction 131

Generally, a good migration approach has three main characteristics; (1) Non-disruptive

– having minimal impact on data steam performance metrics (e.g., throughput and latency).

(2) Short-lived – migration process completes within a short period of time. (3) Resource-

efficient – having minimal overhead on host compute resources. These characteristics can

only be realised through a detailed and comprehensive evaluation [82].

Several works in the past have tried to adopt parallel approach for migrating a data

stream computation. Zhu et al [222] introduced Parallel Track strategy for migration

of continuous query plans that only contain join operators. Later, GenMig [114] and

HybMig [215] were proposed as general approaches for continuous query migration. The

two approaches extend Parallel Track strategy to support migration of continuous queries

with different types of operators. However, contemporary data stream processing systems

support processing of highly distributed query components (operators). These operators

can be conveniently deployed and managed independently. Hence, only migration of

a subset of operators may be required, rendering the previous query plan migration

approaches inefficient.

Pham et al. [157] proposed UniMiCo – a continuous query migration protocol that

extends Window Recreation Protocol (WRP) [73] to allow migration of continuous queries

with multiple stateful operators without state transfer. The original WRP only supports

migration of continuous queries with a single stateful operator. Unlike the previous

continuous query plan migration approaches, UniMiCo can migrate individual operators

within a query, however, this approach lacks thorough evaluation of its efficiency.

Megaphone [82] employs different technique for reconfiguring stateful timely dataflow

operators where a large migration process can be broken down into a sequence of small

migrations during each of which the system can still process data. State migration in

Megaphone is driven by updates to configuration function which is supplied as data

(control inputs) alongside a timely dataflow stream, each update bears a logical timestamp

specifying when migration should happen. Therefore, configuration updates have the

form of a triple (t, k, w) indicating that as of time t, the state and values associated with

key k will be located at worker k. However, this approach is specifically designed for

timely dataflow stream processing systems such as Naiad [143], and would require extra

132 Optimisation Technique for Data Stream Operator Migration

Approach Target Unit of migration Downtime Data flow Evaluation

Parallel Track [222] not specified query no acyclic migration time,
throughput

Unimico [157] cloud query no acyclic response time

GenMig [114] not specified query yes acyclic memory, throughput

HybMig [215] not specified query yes acyclic cpu, memory,
output rate

Megaphone [116] cloud operator no cyclic latency

Our approach edge/cloud operator no acyclic
cpu, memory, latency,

throughput,
migration time

Table 6.1: Comparing our approach with existing parallel migration approaches

coordination and communication mechanisms to make it feasible for general data stream

processing systems. Furthermore, the approach was designed with only latency objectives

(minimising latency spikes during migration), other characteristics of a good migration

approach were not evaluated. Based on their experimental results, the latency spikes for

some of the evaluated queries were more than 100% at the start of the migration process,

compared to 48.55% in our approach (see Experiment 3 in Section 6.6.1).

Table 6.1 compares our approach with existing migration aproaches implementing

parallel execution strategy. It can be observed that none of the previous approach targets

the entire IoT-cloud infrastructure. In contrast, our approach provides a holistic approach

for migrating data stream operators deployed on both edge and cloud infrastructure.

Furthermore, early works on parallel migration focused on moving entire queries. Modern

DSMSs are highly decentralized where individual operators are distributed over a cluster

of machines resulting in a change of focus from query to operator management. Although

Megaphone performs migration at operator level, it only targets a specific type of data

streaming applications (timely dataflow). Finally, compared to previous works, we provide

a comprehensive evaluation of our approach covering both performance and system metrics.

In summary, in this chapter we makes the following contributions:

1. A protocol for dynamic migration of stateful data stream operators that allows

source and target operators to run in parallel for larger part of the migration process

in order to significantly reduce downtime virtually to zero.

6.2 System Model 133

2. An algorithm for determining the consistent state between source and target operator

so that the source operator can be terminated without compromising the accuracy

of data stream processing application.

3. A set of synchronisation algorithms that can enforce a consistent state between

source and target operator in order to speed up the migration process.

4. A mechanism for the re-ordering of events, and removal of duplicates, when source

and target operators run in parallel.

The remainder of this chapter is structured as follows. Section 6.2 models the migration

process and presents the architectural design of the system. Our parallel migration protocol

is presented in Section 6.3. In Section 6.4 we discuss the details of our consistency checking

and synchronisation algorithms, and provide a working example to prove the correctness

of our approach. Section 6.5 discusses the implementation details of the most fundamental

components that facilitate the parallel migration process. Experimentation and evaluation

of the system are presented in Section 6.6, before concluding in Section 6.7.

6.2 System Model

In this section we present the conceptual model of our parallel migration approach. We

extend our previous model presented earlier in Section 5.3 to incorporate additional features

that facilitate our parallel migration approach. In Section 6.2.1, we provide an overview of

how parallel migration approach works, and then present the architectural design of the

entire migration system in Section 6.2.2.

6.2.1 Migration Model

The parallel migration approach presented in this chapter supports migration of a tumbling

window count operators. Unlike sliding window, where a tuple can exist in more than

one window period, in tumbling window all tuples expire at the same time. Therefore,

each tuple will exist in a single window period only. Although our experimental results

are performed on time-based windows, this approach would as well seamlessly work for

count-based windows. This is because the logic behind the approach does not depend on

134 Optimisation Technique for Data Stream Operator Migration

SinkSource

P1

S1

C1

P1’

S1’
C1’

BL2BL1 BR2

BR1

BL3

Q1 Q1’ Q2’ Q2

Fig. 6.1: Overview of how parallel migration approach works.

any other window semantics apart from the one stated above. Furthermore, the serial

numbers (see Section 6.3) of the first and last events in a window are the only information

required from that window for consistency checking and state synchronization. With

some modifications, this approach can be extended to support migration of other types of

aggregate operators such as sum and average.

Figure 6.1 depicts, without the loss of generality, an overview on how our parallel

migration approach works. P1 and P ′
1 represent source and target operators respectively.

At time t, which signifies migration start time, the following sequence of actions are

executed at runtime:

1. Broker logic BL1 is executed to divert messages from point-to-point queue Q1 to

a temporary multicast queue Q′
1. Unlike point-to-point, multicast queue allows

each message inside the queue to be consumed by all current message subscribers

(consumers) on that queue. In this way, consumers from both source and target

operators will receive exactly the same messages for the entire duration when the two

operators run in parallel.

2. Messages forwarded to Q′
1 are annotated with monotonically increasing serial numbers

using broker logic BL2. For the sake of simplicity, every time a migration process is

initiated, serial numbers are reset to 0 and increased by 1 for every new message.

3. We inject Byteman rule BR1 into P1 so that the source operator can start consuming

messages from temporary queue Q′
1 and sends output to temporary queue Q′

2.

6.2 System Model 135

4. Execute broker logic BL3 to begin monitoring for consistent state between source and

target operator. Up to this time, as only source operator is running, the broker logic

just forwards every message processed by P1 from Q′
2 to their final destination Q2.

5. Target operator P ′
1 is launched with Byteman rule BR2. The rule prompts P ′

1

immediately after launch to start consuming messages from Q′
1 and forward its

output to Q′
2. From this point, the two operators run in parallel until consistency on

their output is reached. Broker logic BL3 still forwards messages coming from P1 to

Q2 and discards all messages originating from P ′
1.

6. When consistency is reached, broker logic BL3 swaps the type of messages forwarded

to Q2 from that processed by source operator P1, to the ones processed by target

operator P ′
1. Any message originating from the source operator will be discarded from

this point onwards. At the same time, the source operator is stopped and disconnected

from input and output queues.

7. Finally, broker logic BL1 and Byteman rule BR2 are removed from Q1 and P ′
1

respectively in order to allow P ′
1 to consume and forward messages from the original

queues, Q1 and Q2 respectively.

6.2.2 System Architecture

Figure 6.2 depicts the updated version of Figure 5.3 with new features shown in dark colour.

The new features are three services that provide runtime capabilities for manipulating

events that need to be processed. These services are, message-router, message-interceptor

and synchronisation-agent representing BL1, BL2 and BL3 respectively of Figure 6.1

above. Message-router is used to redirect messages from their original input queue to

a temporary queue. Message-interceptor adds a unique serial number to every message

redirected to the temporary input queue. These serial numbers (as explained in Sec-

tions 6.3 and 6.4), are exclusively used in determining consistent state between source

and target operators. Finally, synchronisation-agent implements the logic for determining

the consistent state – a point where a source operator can be safely shut down without

compromising the accuracy of the results.

136 Optimisation Technique for Data Stream Operator Migration

The new model also includes a temporary multicast queue (Q′
1) used during migration

period to route events to both source and target nodes, as well as a point-to-point output

queue (Q′
2) for temporarily holding output events for consistency checking. Lastly, since in

parallel migration approach we are not concerned with state transfer, the storage feature

is removed from the new version of the model.

Message server

Output (Q2’)

Virtual/physical devices

Local execution

 Input (Q1’) Output (Q2) Input (Q1)

Source node Target node

Command message service

Message
router (BL1)

Synchronization
agent (BL3)

Migration
coordinator

Performance
metrics extractor

JMS queues

Thermostat agent

Docker container

M
ig

ra
tio

n
ag

en
t Target

operator (P1’)

Byteman agent (BR1)

Thermostat agent

Docker container

M
ig

ra
tio

n
ag

en
t Source

operator (P1)

Message
intercept (BL2)

Byteman agent (BR2)

Fig. 6.2: A high-level architecture of the proposed migration system.

The message broker (server) may be deployed either on cloud infrastructure to support

migration within the cloud environment, or on a remote device for supporting device-to-

device migration. The main implication of running the message server directly on IoT

devices is the availability of enough compute resources to support such deployment. How-

ever, increasingly IoT devices with enough processing capabilities are being manufactured

to enable deployment of resource-intensive applications. While some popular IoT deploy-

6.3 Migration Protocol 137

ment frameworks such as Kura come with built-in messaging support by incorporating

message servers in their binaries.

6.3 Migration Protocol

In this section we present a new protocol for supporting parallel migration of data stream

operators. The protocol describes how instructions are exchanged between the main actors

of the migration process. During the migration process, messages or instructions are

exchanged between four actors; coordinator, source agent, target agent and synchronisation

monitor. Figure 6.3 shows graphically the interactions between the actors. The greyed out

features at the beginning and end of the protocol work exactly as described in Section 5.5.

In what follows, we only provide a detailed description of the additional features of the

protocol.

When migration is initialised, the coordinator invokes a routine inside message broker

to divert messages from the original input queue to a temporary multicast queue. The

coordinator sends a role-assignment command (Steps 1 and 2) to both source and target

agents. Upon receiving confirmation of successful execution of role-assignment from both

agents, the coordinator then sends a divert command to source agent (Step 3). Divert

command, when executed on source operator redirects message consumers within the

operator to start consuming messages from a temporary input multicast queue where

messages are annotated with unique serial numbers, and to forward processed results to

a temporary output queue where messages are checked for consistent state, Q′
1 and Q′

2

respectively in Figure 6.1.

Upon receiving confirmation of divert commands, the coordinator sends a start-

monitor command to the synchronisation agent inside the message broker (Step 4). The

synchronisation agent is hosted inside the message broker so as to limit message transfer

overhead during consistency checking process. Start-monitor command, when executed, it

invokes a synchronisation algorithm that begins comparing serial numbers of messages

originating from source and target operators, and adjust them if necessary to bring them

into a consistent state. In Section 6.4, we will be looking into the inner workings of the

138 Optimisation Technique for Data Stream Operator Migration

consistency checking and synchronisation algorithms. These two mechanisms allow us to

perform stateful operator migration without the need for state transfer.

[h]

Coordinator Source Agent Target Agent Sync monitor

Initially, only source
 operator is running

Role assignment1

Role assignment2

Role confirmation

Role confirmation

Divert3

Instruct source operator
 to consume events from
 temporary input queue

Divert response

Start monitor4

Launch-divert5

Launch target operator while
 consuming messages from
 temporary input queue

Both operators running
 in parallel

Consistency checking algorithm
 executingLaunch-divert response

Consistency reached

Terminate source operator6 Consistency checking algorithm
 keep execution until diverts
 are removed

Target operator continues
 running while source
 operator is terminated

Terminate confirmation

Remove divert7

Remove divert confirmation

Clean-up8

Clean-up9

Clean-up response

Clean-up response

6.3 Migration Protocol 139

Fig. 6.3: Parallel migration protocol for data stream operator migration.

The launch-divert command (Step 5) is sent to, and executed by, the target agent only

when the synchronisation algorithm is already running. This is to ensure that events are

not being held inside the temporary output queue at any time during migration process.

In addition to launching the target operator inside the target node, this command works

exactly as divert command executed earlier by source agent – add diversions so that

message consumer and producer inside the target operator begin consuming messages

from and forwarding messages to the temporary input and output queues respectively.

Successful execution of launch-divert command allows source and target operators to

run in parallel, and messages from multicast temporary queue are routed to and processed

by both operators. From this point onwards, the synchronisation algorithm starts receiving

messages processed by both source and target operators.

When consistent state is reached, by any of the three possible scenarios discussed in

Section 6.4.2, the migration coordinator gets informed by synchronisation monitor and

dispatches terminate command (Step 6) to source agent. Terminate command when

executed, stops the source operator from processing any more messages and subsequently

destroyed while target operator continues with the processing. Upon receiving confirmation

of terminate command, the coordinator first removes diversion of messages to temporary

input queue which was introduced at the very beginning of migration process.

Finally, the coordinator sends remove-divert command (Step 7) to the target agent.

This command when executed, returns the flow of messages to its initial condition (before

migration process was initiated). The diversions introduced in Step 5 are removed so

that message consumer and producer inside the target operator can begin consuming and

forwarding messages from original input and output queues respectively.

Steps 8 and 9 are post migration house-keeping operations and work exactly as described

in Section 5.5.

140 Optimisation Technique for Data Stream Operator Migration

6.4 Consistency Checking and Synchronisation Algo-

rithms

In this section, we present our consistency checking and synchronisation algorithms that

are aimed at monitoring and deriving consistent state on the output of source and target

operators. The whole process is presented as a set of four algorithms (Algorithms 6.1

to 6.4) that are executed during Step 4 of migration protocol of Figure 6.3, and depicted

as BL3 in migration process overview of Figure 6.1.

6.4.1 Consistency Checking

We define consistent state between two operators running in parallel during migration

process (source and target operators) as the runtime state that happens when the serial

numbers of the most recent events in their respective expired current windows (ready

for processing) are equal, and the newly processed events by the operators are received

downstream next to each other. When this happens, then we know that until this point,

the two operators have processed exactly the same number of events. Hence, there are in a

consistent state and its is safe to stop one of the operators without losing any information.

Figure 6.4 illustrates the concept of consistency with example of two operators running

in parallel. Events from upstream queue are forwarded to both operators (multicast) and

are windowed as shown in the figure. If we assume non-existence of delays in the network

and events are received downstream in order – that is, first processed events from both

operators are received first and so on. The newly processed events for each window consist

of a serial number of the most recent event in the window and total number of events as

a new payload. We can see from the figure the serial numbers of the third windows or

of the newly processed events ([12, 4] and [12, 2]) are equal. Therefore, at this point the

two operators are in a consistent state (they have processed exactly the same number of

events regardless of their previous windows sizes).

The consistency checking process is executed from the same node where the message

broker is deployed in order to reduce networking overhead when consuming and sending

events between the two output queues (Q2 and Q′
2) of Figure 6.1. For this, we make an

6.4 Consistency Checking and Synchronisation Algorithms 141

12

4

16

4

20

4

8

3

5

5

4

4

10

6

12

2

17

5

20

3

Source operator

Target operator

Events flow direction

Events flow direction

Fig. 6.4: Example of consistent state between a source and a target operator.

assumption that Q2 and Q′
2 are deployed on the same message broker. In Addition, Q′

2

and Q2 represent input and output queues to the consistency checking process respectively.

In the following discussion, we refer to all events processed by the source operator as

source events, and events processed by the target operator as target events.

Events are consumed by Algorithm 6.1 from input queue Q′
2, and get prepared for

consistency checking before being passed into Algorithm 6.2. Algorithm 6.2 is where

synchronisation process begins, and ends by calling Algorithm 6.3 or Algorithm 6.4

depending on which operator is ahead of the other.

At any time during its execution, Algorithm 6.1 holds references to two contiguous

events from an input queue as old event (Eold) and new event (Enew). The algorithm

begins by consuming a new event from an input queue and assign it to Enew (line 9). In

lines 10-13, we check if old event (Eold) is equal to null – Eold is not assigned to any event

yet. This check allows us to determine if the event that have just been consumed from an

input queue is the first event since the beginning of migration process. If Eold is equal to

null, we consider the new event (Enew) as old event (Eold) and read next event as the new

event (Enew) immediately. For consistency checking, we need both old and new events to

be available.

Next, we check that if both old and new events have been processed by the same

instance of an operator (lines 14-20). Which means, both events are either coming from

(have been processed by) source or target operator. This checking is very important in

142 Optimisation Technique for Data Stream Operator Migration

Algorithm 6.1 Consistency checking algorithm
1: Input: S - Synchronisation factor
2: Eold - old event
3: Enew - new event
4: SNsource - source event serial number
5: SNtarget - target event serial number
6: offset - difference between source and target events serial numbers
7: synchronised - indicates whether consistency has been reached or not
8: while not synchronised do
9: Enew ←read next event from temporary output queue

10: if Eold = null then
11: Eold ← Enew

12: Enew ←read next event from temporary output queue
13: end if
14: if Eold and Enew originate from the same operator then
15: if Eold originates from source operator then
16: forward Eold to output queue
17: end if
18: Eold ← Enew

19: start new iteration
20: end if
21: if Eold originates from source operator then
22: SNsource ← retrieve serial number from Eold

23: SNtarget ← retrieve serial number from Enew

24: else
25: SNtarget ← retrieve serial number from Eold

26: SNsource ← retrieve serial number from Enew

27: end if
28: offset← SNsource − SNtarget

29: synchronised←SYNCHRONISE(Eold, Enew, SNsource, SNtarget, S, offset)
30: end while
31: send notification to coordinator
32: while queue is not empty do
33: Enew ← read next event from the queue
34: if Enew originates from target operator then
35: forward Enew to the output queue
36: end if
37: end while

two ways. Firstly, it helps us determine whether consistency check should be performed

or not. Checking for consistency is only meaningful if Eold and Enew were processed by

different instances of an operator (source and target operators).

Secondly, during synchronisation process, events still need to be continuously delivered

to their final destination – Q2 in this case. But parallel migration approaches like ours are

susceptible to duplicate results. In order to address this problem, before consistency is

achieved, only events that have been processed by the source operator are forwarded to

6.4 Consistency Checking and Synchronisation Algorithms 143

their final destination, while others are discarded. In contrast, once consistency is reached,

events that originate from target operator are forwarded to their final destination instead,

the rest are discarded.

If the check performed on line 14 fails, we are in a situation where two contiguous

events have been processed by separate operator instances (source and target operators),

and warrants consistency checking. Lines 21-28 extract serial numbers of the two events,

and calculate offset as the difference between serial number of the source event and that

of target event. The offset tells us how much ahead one instance of operator is compared

to the other in terms of processing the original events. In line 29, Algorithm 6.2 is called

to begin a synchronisation process. As we will shortly see in this section, Algorithm 6.2

makes use of information within the Eold and Enew, and the synchronisation factor S, to

determine whether the source and target operators are strongly or weakly synchronised,

or not at all.

If consistent state has not been reached or can not be derived based on the current Eold

and Enew, the algorithms starts from the beginning again by reading next event (Enew) –

Line 9. Otherwise, a notification is sent to migration coordinator so that the coordinator

can terminate the source operator (Line 31). Line 32 through line 37 are then executed

to make sure that all remaining events inside the input queue Q′
2 are processed after

consistent state has been reached. However, from this point onwards, only events that

originates from target operator are forwarded to the output queue Q2.

6.4.2 Synchronisation Process

Synchronization is the process of making a source and a target operators attain consistent

state. Consistency between the two operators can either be achieved automatically or

can be enforced by synchronizing their outputs. The main purpose of synchronisation

process is to find a point in time when the source operator can be terminated during

migration process without impacting on the data stream processing accuracy. This point

in time is determined by the remaining three algorithms. The synchronisation mechanism

presented here is only applicable for a windowed count operator, and makes use of serial

numbers that have been dynamically added to events at the onset of migration process

144 Optimisation Technique for Data Stream Operator Migration

and before the events are processed. The serial numbers are maintained afterwards in

order to determine if the source and target operators are in a state of consistency, or if

they are not, but the consistent state can be enforced.

In order to be able to enforce the consistent state, we assume that events are received

and processed in an increasing order of their serial numbers, and the difference between

serial numbers of any two contiguous events is equal to one. After events have been

processed (counted) for a given window, the serial number of the most recent event placed

in that window is considered as the serial number of the newly processed (generated)

event.

We illustrate the wrapping up of generated event serial number using an example in

Figure 6.5. The figure shows a stream of events consumed by an operator where each

event for the sake of clarity, consists of a serial number (SN) shown on the top row, and a

payload which is in this case, a random real number at the bottom row. The generated

event for each window period is displayed at the bottom of Figure 6.5, and consists of a

new payload at the bottom (representing total number of events for that window), and

serial number of the most recent event placed in that window at the top. Before we explore

the details of the remaining algorithms, below we give definitions of new terminologies

that we introduce in this section.

in out

17
5

12
3

9
5

Fig. 6.5: How serial numbers are transferred from windowed events to a newly generated
event

Strong synchronisation – Refers to an ideal situation where source and target operators

come into consistent state without the need of enforcing synchronisation. This

happens when serial numbers of the most recent events in their respective windows are

equal regardless of their window count value. Based on our assumption that events are

processed in order of increasing serial numbers, when strong synchronisation happens,

6.4 Consistency Checking and Synchronisation Algorithms 145

both source and target operator would have processed the same number of events.

Therefore, at that point, it is safe to allow termination of source operator without

impacting the accuracy of stream processing computation. Strong synchronisation

imposes very small overhead to the performance of our migration system in terms of

throughput and latency but increases the execution time of the algorithm significantly.

Weak synchronisation – When one instance of the operator is ahead of the other and

we still try to achieve a consistent state by forcefully synchronising their output. This

is possible for count-based operator with unique serial-number annotated stream

events. Like strong synchronisation, weak synchronisation does not compromise the

accuracy of streaming computation and reduces execution time of the algorithm

considerably, but has a detrimental effect on throughput and latency of stream

computation.

Synchronisation factor (S) – Is a user defined non-negative integer used to determine

the type of synchronisation required during migration process. When S is equal to

zero, consistency can only be determined through strong synchronisation. That is,

serial numbers of the most recent events of the two currently processed windows from

target and source operator must be equal. Any value of S greater than zero indicates

that a weak synchronisation can be used during migration process. Furthermore, it

specifies how much a source or target operator can be ahead of the other before we

can employ weak synchronisation mechanism. In other words, the difference between

their most recent serial numbers in their respective windows should be equal or less

than S before weak synchronisation mechanism can be applied. The larger the value

of S the quicker is the synchronisation process.

The first of the three synchronisation algorithms is depicted in Algorithm 6.2. The

algorithm begins by checking if offset is greater thatn the synchronisation factor. Depending

on which instance of an operator is ahead of the other, the offset can be either positive,

zero or negative and as it has been shown in Algorithm 6.1, is always calculated by taking

out serial number of target event from that of source event (SNsource - SNtarget). For

consistent state to be derived, offset should always be smaller or equal to the required

synchronisation factor S. This is the first check performed in Algorithm 6.2 (lines 7-12).

146 Optimisation Technique for Data Stream Operator Migration

Algorithm 6.2 Synchronisation algorithm
1: Input: S, Eold, Enew, SNsource, SNtarget, offset
2: Output: synchronised - Indicates whether consistency is reached or not
3: procedure SYNCHRONISE(Eold, Enew, SNsource, SNtarget, offset, S)
4: Enext - next event from the input queue
5: valuenext - current value of next consumed event
6: valuenew - new value of an event
7: if offset > S then
8: if Eold originates from source operator then
9: forward Eold to the output queue

10: Eold ← Enew

11: end if
12: return synchronised← false
13: else if offset = 0 then
14: forward source event to the output queue
15: return synchronised← true
16: else if offset > 0 then
17: SOURCE_AHEAD_SYNCHRONISATION(Enext, offset)
18: else
19: TARGET_AHEAD_SYNCHRONISATION(Eold, Enew, SNsource, offset)
20: end if
21: return synchronised← true
22: end procedure

If this check fails, the procedure returns false indicating that, based on the current old and

new events (Eold and Enew), as well as the required synchronisation factor S, consistency

can not be attained. However, before that, old event (Eold) needs to be forwarded to the

output queue if it is a source event (processed by source operator), and then, new event

(Enew) becomes old event. Lines 13-15 checks for strong synchronisation condition which

happens when serial numbers of the two events matches (offset is equal to zero). When

consistent state is reached by strong synchronisation, the last source event is forwarded

to the output queue regardless whether it is an old or a new event, and the algorithm

returns true to indicate a consistent state. In lines 16 - 20 a check is performed to see if

the source operator is ahead of the target operator. If that is the case, Algorithm 6.3 is

invoked, otherwise, Algorithm 6.4 is invoked.

Algorithm 6.3 performs synchronisation process when source operator is ahead of target

operator. The offset value indicates by how many events is source operator is ahead of

target operator, and since offset is smaller than or equal to the required synchronisation

factor S, consistent state can be derived by subtracting offset from the count value of the

6.4 Consistency Checking and Synchronisation Algorithms 147

Algorithm 6.3 Synchronisation process when source operator is ahead of target operator
1: Input: Enext, offset
2: procedure source_ahead_synchronisation(Enext, offset)
3: valuenext - current value of the next consumed event
4: valuenew - new value of the next consumed event after applying correction
5: forward source event to the output queue
6: while true do
7: Enext ← read next event from input queue
8: if Enext originates from source operator then
9: start new iteration

10: end if
11: valuenext ← retrive value from Enext

12: valuenew ← valuenext − offset
13: if valuenew <= 0 then
14: offset← |−valuenew|
15: start new iteration
16: end if
17: forward Enext with modified value to output queue and exit loop
18: break
19: end while
20: end procedure

next target events valuenext. Line 5 forwards the last-to-be source event to the output

queue. Then, the next event (Enext) is read from the input queue and since we are only

concerned on modifying target events, we ignore any source event from this point onwards

(lines 7 - 10). In lines 11 - 17, we take out the value of offset from the count value

(V aluenext) of the next target event, the result become new value (V aluenew) of the next

event (Enext). If offset happens to be larger than the count value of the next event, the

reminder is repeatedly deducted from next target event count value. The first next event

with new count value greater than zero after deducting the offset becomes the first target

event to be forwarded to the output queue. Line 18 signifies the end of synchronisation

process and prevents the reading of next event.

When target operator is ahead of source operator, the synchronisation process gets less

complicated and is performed using Algorithm 6.4. Up until synchronisation start point,

all target events have been discarded, and because target is just ahead of offset number of

events, we do not want to lose those discarded events. The idea is to add the discarded

extra (offset) events to the last source event before it is forwarded to the output queue.

The algorithm begins by checking whether Eold is a source event (line 5), and retrieve both

count value (valuesource) and serial number (SNsource) from Eold, the offset is then added

148 Optimisation Technique for Data Stream Operator Migration

to both valuesource and SNsource (lines 6 - 8). The new count value (valuenew) and serial

number (SNnew) represent the last source event to be forwarded to the output queue (line

9). Otherwise, if Enew happens to be the source event instead of Eold, the above process is

performed by modifying count and serial number of Enew (lines 10 - 14).

Algorithm 6.4 Synchronisation process when target operator is ahead of source operator
1: Input: Eold, offset
2: procedure source_ahead_synchronisation(Eold, offset)
3: valuesource - current value of the source event
4: valuenew - new value of the source event after applying correction
5: if Eold originates from source operator then
6: valuesource ← retrive value from Eold

7: valuenew ← valuesource + offset
8: SNnew ← SNsource + offset
9: forward Eold to output queue with modified value and SN

10: else
11: valuesource ← retrive value from Enew

12: valuenew ← valuesource + offset
13: SNnew ← SNsource + offset
14: forward Enew to output queue with modified value and SN
15: end if
16: end procedure

Algorithm 6.2

Algorithm 6.4

Algorithm 6.3

Algorithm 6.1
Is source ahead of
target? (offset > 0)

output queue

Input queue

No

Yes

offset = 0

Yes

No

offset <= SNo

Yes

Fig. 6.6: Interplay between algorithms used for consistency checking and synchronisation
process between source and target nodes.

Figure 6.6 summarises the interactions between the four algorithms outlined above.

Events from the input queue are consumed by Algorithm 6.1 where initial checking is done

to determine if consistency checking can be performed. In addition, necessary information

6.4 Consistency Checking and Synchronisation Algorithms 149

required by subsequent algorithms such as serial numbers and offset are retrieved. Next,

if offset is equal to zero – which corresponds to strong synchronisation – Algorithm 6.2

is executed. Otherwise, a check is performed to find out if offset is equal to or less than

the synchronisation factor (S). If it is not, Agorithm 6.1 consume the next event from

input queue and repeats the whole process. Otherwise, another check to determine which

operator is ahead of the other is performed and the corresponding algorithm (Algorithm

6.3 or 6.4) is executed.

6.4.3 Working Example

In this section, we demonstrate the correctness of our consistence checking and synchroni-

sation algorithms by considering a stream of twenty events shown in Figure 6.7. Without

loss of generality, each event is represented by its serial number at the top and a random

real number at the bottom as its payload. If we consider the event stream of Figure 6.7 as

the state of events inside of multicast queue Q1′ of Figure 6.1, each event will be forwarded

to all subscribers (source and target operator in this case) to the queue. Since we are using

time based-window, and assume that each operator runs on different node where their

system clocks are no synchronized, each operator will window events differently based on

their internal clock. Because their windows are not synchronized, hence, they will expire at

different times and containing different events most of the time. In addition, one operator

may be running slower than the other due to resource shortage on the host node. The

only time where they may consistently have same number of events is when we have a

very large window size with a very low event rate. ?

Below we demonstrate the correctness of our algorithms for three possible scenarios.

First, we consider a situation where serial numbers of last events placed in their respective

most recent windows are equal regardless of window sizes. This reflects a consistent state

as a result of strong synchronisation of the two operators. Then, we consider two different

cases of weak synchronisation – when source operator is ahead of target operator, and then

when target operator is ahead of source operator. For the sake of clarity and simplicity,

we consider a synchronisation factor S equal to 3 for each of the three cases. Choosing

a different value of S would only affect the time taken by the two operators to reach

150 Optimisation Technique for Data Stream Operator Migration

a consistent state. With S equal to 3, the consistent state can only be enforced if the

absolute difference between serial numbers of source and target events is less than or equal

to three.

SN 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Payload 1.2 3.5 2.0 5.1 6.7 1.9 0.2 1.6 1.8 2.4 5.4 4.9 3.2 3.3 1.3 1.7 0.5 2.4 2.8 3.6

Direction of flow

Fig. 6.7: A sample event stream for the working example.

Strong Synchronisation

Let Source and Target represent a source and target operators subscribed to and consum-

ing events from the multicast queue Q′
1 of Figure 6.1 respectively. Each operator might

window the events differently using its own timer that is based on the clock of the system

on which the operator is deployed. In order to demonstrate a situation that would lead to

consistent state due to strong synchronisation, we assume events are windowed by source

operator and target operators as shown in Figure 6.8.

After all the windows have been processed, the final output for source and target

operator should be as presented in Figure 6.9, which consists of a serial number of the

most recent event in the window, and the total number of events for that window.

Source

payload 3.6, 2.8, 2.4 0.5, 1.7, 1.3, 3.3 3.2, 4.9 5.4, 2.4, 1.8, 1.6 0.2, 1.9, 6.7, 5.1, 2.0 3.5, 1.2

SN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target

payload 3.6, 2.8 2.4, 0.5, 1.7 1.3, 3.3, 3.2, 4.9 5.4, 2.4, 1.8 1.6, 0.2, 1.9, 6.7, 5.1 2.0, 3.5, 1.2

SN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 6.8: Windowing of events by source and target operators.

If we assume that the synchronisation algorithm receives the first six processed events

from the operators in a sequence shown in Figure 6.10. We can observe that events [9,

2] and [9, 4] from source and target operators respectively meet the criterion for strong

6.4 Consistency Checking and Synchronisation Algorithms 151

Source

payload 3 4 2 4 5 2

SN 3 7 9 13 18 20

Target

payload 2 3 4 3 5 3

SN 2 5 9 12 17 20

Fig. 6.9: New events generated by source and target operators.

Origin Source Target Source Target Source Target

Events [​SN, payload​] [3, 3] [2, 2] [7, 4] [5, 3] [9, 2] [9, 4]

 Fig. 6.10: A sequence of events as received by the consistency checking algorithm.

Origin Source Source Source Target Target Target

Events [​SN, payload​] [3, 3] [7, 4] [9, 2] [12, 3] [17, 5] [20, 3]

Fig. 6.11: Final order of events sent to the output queue.

synchronisation – their serial numbers are equal. The two events bring target and source

operator into consistent state automatically. Before consistency is reached, events [2, 2] and

[5, 3] from target operator are discarded, while events [3, 3] and [7, 4] from source operator

are forwarded downstream. For the two events that matches their serial numbers, [9, 2]

and [9, 4], only the one that originates from the source operator is forwarded downstream

while the other is discarded as well. Beyond the point of consistency, only events processed

by target operator are forwarded downstream. The final number of events sent downstream

are as shown in Figure 6.11, which sums up to twenty to show that all events have been

accounted for.

Weak Synchronisation (Source operator is ahead of target operator)

Using the same event stream of Figure 6.7, we consider different scenario of windowing of

events by the two operators as shown in Figure 6.12. The final output for each operator

based on their respective windowing of events are show in Figure 6.13. We can observe

that there is no possibility of strong synchronisation in this case. Instead, by using a

152 Optimisation Technique for Data Stream Operator Migration

Source

payload 3.6, 2.8, 2.4, 0.5, 1.7 1.3, 3.3, 3.2, 4.9 5.4, 2.4, 1.8, 1.6 0.2, 1.9, 6.7, 5.1, 2.0 3.5, 1.2

SN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target

payload 3.6 2.8, 2.4, 0.5, 1.7 1.3, 3.3, 3.2, 4.9, 5.4 2.4, 1.8, 1.6, 0.2, 1.9 6.7, 5.1, 2.0, 3.5, 1.2

SN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 6.12: Windowing of events by source and target operators

Source payload 5 4 4 5 2

SN 5 9 13 18 20

Target payload 1 4 5 5 5

SN 1 5 10 15 20

Fig. 6.13: Windowing of events by source and target operators

Origin Source Target Source Target Source Target

Events [​SN, payload​] [5, 5] [1, 1] [9, 4] [5, 4] [13, 4] [10, 5]

Fig. 6.14: A sequence of events as received by the consistency checking algorithm.

Origin Source Source Source Target Target

Events [​SN, payload​] [5, 5] [9, 4] [13, 4] [15, 2] [20, 5]

Fig. 6.15: Final order of events sent to the output queue.

6.4 Consistency Checking and Synchronisation Algorithms 153

user defined synchronisation factor of 3, which means that, with some manipulation,

synchronisation can be enforced when the absolute difference between the serial numbers

of any two successive events from different operators is less than or equal to three, the two

operators can be brought into a consistent state.

If synchronisation algorithm receives the first six events from both operators in the

manner as in Figure 6.14, we can see that the difference of serial numbers between the

fifth ([13,4]) and sixth ([10, 5]) events is equal to three – source operator is ahead by three

events. Before consistency is reached, events [1, 1] and [5, 4] from target operator are

discarded, while events [5, 5] and [9, 4] from source operator are forwarded downstream.

For the two events that satisfy weak synchronisation condition, that is, [13, 4] and [10,

5], we calculate offset as the difference between their serial numbers. Then we discard the

one that originates from target operator and forward the other one downstream. From this

point onwards, only events originating from target operator are forwarded downstream, but

we have to modify the count value of the next event by subtracting offset from it. Therefore,

event [15, 5] is replace by [15, 2]. The final order of events forwarded downstream would

be as shown in Figure 6.15, which again sum up to twenty, the original number of events.

Weak Synchronisation (target operator is ahead of source operator)

Now we demonstrate another possible scenario of weak synchronisation where target

operator happens to be ahead of source operator. The possible windowing of events by

source and target operator that can lead to weak synchronisation is show in Figure 6.16,

and final results after processing the events in Figure 6.17.

If the algorithm receives the first six events from both operators in the manner shown

in Figure 6.18, we can see that the difference between the serial number of the fourth ([14,

8]) and fifth ([11, 1]) events is equal to three. The target operator is ahead by three events.

Source

payload 3.6 2.8, 2.4, 0.5, 1.7, 1.3, 3.3, 3.2, 4.9, 5.4 2.4 1.8, 1.6, 0.2, 1.9 6.7, 5.1 2.0, 3.5, 1.2

SN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target

payload 3.6, 2.8, 2.4, 0.5, 1.7, 1.3 3.3, 3.2, 4.9, 5.4, 2.4, 1.8, 1.6, 0.2 1.9 6.7, 5.1 2.0, 3.5 1.2

SN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 6.16: Windowing of events by source and target operators

154 Optimisation Technique for Data Stream Operator Migration

Source

payload 1 9 1 4 2 3

SN 1 10 11 15 17 20

Target

payload 6 8 1 2 2 1

SN 6 14 15 17 19 20

Fig. 6.17: Windowing of events by source and target operators

Origin Source Target Source Target Source Target

Events [SN, payload] [1, 1] [6, 6] [10, 9] [14, 8] [11, 1] [15, 1]

Fig. 6.18: A sequence of events as received by the consistency checking algorithm.

Origin Source Source Source Target Target Target Target

Events [SN, payload] [1, 1] [10, 9] [14, 4] [15, 1] [17, 2] [19, 2] [20, 1]

Fig. 6.19: Final order of events sent to the output queue.

Before consistency is reached, events [6, 6] from target operator is discarded, while

events [1, 1] and [10, 9] from source operator are forwarded downstream. For the two

events that satisfy weak synchronisation condition (assume the same synchronisation factor

of 3), that is, [14, 8] and [11, 1], we calculate the offset as the absolute difference between

their serial numbers, and discard the one that originates from target operator. Since source

operator is behind by the offset amount, we modify the events that originates from source

operator by adding offset to both of its serial number and value (count) before forwarding

it downstream. That is, event [11, 1] is replaced by [14, 4]. From now on, only events

from target operator will be forwarded downstream. The final number of events forwarded

downstream would be as shown in Figure 6.19.

6.4.4 Use Case

Searching for empty parking spaces has become a big task in most big cities and towns,

due to increasing population and car ownership. To alleviate the problem, IoT-enabled

smart parking systems are deployed to monitor and control available parking spaces in

6.4 Consistency Checking and Synchronisation Algorithms 155

real time. These systems enhance the efficiency of parking resources by reducing the

uncertainty of finding an empty parking space, which in turn reduces traffic congestion

and road accidents.

Consider a very large and busy, city-wide car park monitoring system used to manage

various multi-level car parks where vehicle detection sensors are installed at entry and

exit gates of the parks. The sensors detect vehicles entering and exiting the parks and

send events to the on-premises battery powered gateway devices where count operators

are deployed and running. The counts for entry and exit gates are computed by different

gateway devices and the results are forwarded downstream possibly to another gateway

device for calculating the available parking places.

After a long and continuous period of operations, unexpectedly one of the gateway

devices may run out of power and require battery replacement. A process that would

involve migrating the operator running on the device into a different gateway device. If

this happens during the normal operating hours, where there is less movement of vehicles

entering and exiting the car parks, it could be possible to apply our migration approach

presented in Chapter 5 which implements an enhanced pause− drain− resume strategy.

This is because the downtime that will be introduced by the pause operation will not

result in a backlog of a very large number of events waiting to be counted. However, if

the migration needs to happen during busy hours, just before the beginning or after the

end of a large event for example, the downtime that would be introduced by our previous

approach may result in heavy traffic queues and potentially causing accidents inside or

outside the car parks depending on whether the migration happens at an entry or exit

gate.

In such situations, the parallel migration approach presented in this chapter may be a

better option. Migration can be performed without interfering with the counting of the

vehicles entering and exiting car parks. This can be done by launching another counting

operator and allow it to run in parallel with the operator running on a device that needs

battery replacement until their outputs are synchronized.

156 Optimisation Technique for Data Stream Operator Migration

6.5 Implementation Details

In this section, we provide implementation details of our parallel migration approach.

For the sake of clarity, we only discuss the implementation of the key components of our

system. In our implementation, Byteman has been used extensively to influence runtime

behaviour of normal operations. However, where build-in functionalities that can be used

to attain such influence are provided by the underlying infrastructure, our implementation

makes use of such functionalities for two main reasons. Firstly, we don’t want to add extra

overhead on the underlying resources by continuously running Byteman rules while the

support for performing the same operation is already provided. Secondly, Byteman requires

the existence of public interface where a user can define the code injection point. For

some complex Java frameworks such as Artemis, selecting the code injection point is not a

straightforward task. For these reasons, implementation of some of the key components

outlined below (Message Routing, Serial Number annotation and Polling Consumer) make

use of built-in support provided by Artemis broker.

6.5.1 Message Routing

In order to enable parallel execution of operator logic during dynamic operator migration,

source and target operators need to consume exactly the same events from input queue.

However, in most data stream processing pipelines, queues with anycast (point-to-point)

semantic are deployed to support automatic partitioning of input data and auto-scaling

of processing elements. These type of queues are not directly supported by our dynamic

migration approach as source and target operators will end up consuming different events

during migration process. To change this behaviour, right at the migration start time and

before target operator is launched, we reroute messages from their original input queue

– which is based on point-to-point semantic – to a dynamically created temporary input

queue with multicast semantic.

Rerouting of messages is accomplished using a Message Rerouter integration pattern

provided by Apache Camel [9]. Camel is a Java framework that implements Enterprise

Integration Patterns (EIP) [83] to provide easy way of connecting different types of

enterprise applications in a loosely coupled manner. Camel provides JMS component

6.5 Implementation Details 157

for JMS-compliant message brokers. A component (also known as an endpoint factory)

provides a mechanism for connecting to other systems. Generally, one would use a

component to create endpoints – addresses from which Camel consumers and producers

receive and send requests and responses respectively. Consumer endpoints and producer

endpoints are connected by a route, which is, a step-by-step movement of messages

through possible different types of message processing and decision making. Messages

from a consumer endpoint are received by a message consumer while message producer

forwards messages that have been through the route to the producer endpoint.

Fig. 6.20: Message routing from input queue to temporary input queue.

Figure 6.20 provides an overview of how message rerouting for our parallel migration

approach is implemented. Events (or messages in Camel language) are received from

consumer endpoint (input queue) which represents a source of messages and which is

connected directly to the beginning of a route. Once consumed, a message is converted

into an exchange object – a wrapper encapsulating a message with all of its properties and

metadata – before being passed to the route. Ideally, a Message Router would include a

logic for filtering messages into different destinations based on their content. But, in our

case, we need every message to be delivered to producer endpoint (temporary input queue

for migration process). Therefore, the message router contains empty route implemented

solely for the purpose of passing each message to producer endpoint, eventually to their

final destination – the temporary input queue.

6.5.2 Serial Number Annotation

In Section 6.4.2 we have extensively discussed the importance of the dynamically-added

serial numbers in determining the consistent state of source and target operators during the

158 Optimisation Technique for Data Stream Operator Migration

migration process. We also stressed on the two conditions that should be imposed when

annotating events with serial numbers. Firstly, the serial numbers should be monotonically

increasing. Secondly, the difference between serial numbers of any two contiguous events

must be equal to one. Some message brokers, Artemis for example, provide mechanism to

allow users to automatically generate unique message IDs – Universal Unique Identifiers

(UUIDs). These types of IDs are primarily used for duplicate detection and can not be

used for the purpose of consistency checking as they will eliminate any possibility of strong

synchronisation.

An alternative approach would be for event producers (event sources) to add serial

numbers that satisfy the two requirements when events are generated, or the use of event

times (timestamps inserted when events are created). This option would only work if all

events are generated by the same source, and not when we have multiple sources as total

ordering of events is not guaranteed.

Another possible approach would be to put the logic for adding serial numbers inside

the route when forwarding messages from input queue to temporary input queue as

described in Section 6.5.1. However, instead of increasing the overhead of executing Camel

routes inside the server, we decided to make use of Artemis built-in functionality that

allows user to intercept and modify packets as they enter or exit the server. Interceptors,

allow execution of custom code from within the server on each packet (a smallest unit of

data that is transferred between two points on a network). Artemis provides two types

of interceptors – incoming and outgoing interceptors for packets entering and exiting

the server respectively. For this work, we have made use of outgoing interceptor so that

out-of-order events coming from different sources are first automatically ordered by the

server based on their original timestamps before serial numbers are added.

6.5.3 Polling Consumer

The Consumer endpoint implemented in Section 6.5.1 is mostly associated with a client-

server architecture and is called event-driven consumer. Event-driven consumer waits

on a particular messaging channel idly for a message to arrive before it wakes up to

consume the message. This type of consumer was ideal for solving the problem presented

6.5 Implementation Details 159

on Section 6.5.1, that is, dynamic rerouting of messages from anycast to multicast queue.

But during consistency checking process as described on Section 6.4, we need to keep hold

of two messages (old event and new event) at any particular time in order to be able to

compare their serial numbers. While checking for consistency between any two contiguous

events, consumer is not supposed to receive a new event. Therefore, we need a different

mechanism that would give us more control over the way in which messages are received

by consumer and injected into the algorithm. Camel provides another type of consumer

called polling consumer. A polling consumer also known as a synchronous receiver actively

checks for a new message from a particular source only when instructed to do so.

The implementation of consistency checking algorithm uses similar approach as the

one presented in Section 6.5.1, but is based on polling consumer. When used during

consistency checking, a polling consumer allows polling of a new event to happen only after

the processing of the current new and old events has finished. In general, we replace the

event-driven consumer endpoint of Figure 6.20 with a polling consumer endpoint, input

queue with temporary output queue, temporary input queue with output queue and add

the logic for consistency check inside the route.

Figure 6.21 outlines the features mentioned above. Consumer polls for a new event

from consumer endpoint (temporary output queue). The new event is passed into a route

which executes a special consistency checking logic on both new and old events. Once

the checking is finished, producer forwards or discards one of the events (as described

in section 6.3) to the producer endpoint (output queue). Only then, consumer may be

instructed to poll for the next event.

Fig. 6.21: Message polling from temporary output queue.

160 Optimisation Technique for Data Stream Operator Migration

The pull mechanism has been introduced in this section to enable the synchronization

process to happen smoothly. At any time during the process, two events; one form

source operator and the other from target operator, must be held by the algorithm for

consistency checking. After the consistency check has completed, one of the two held

events is forwarded downstream. In order to maintain continuity of consistency checking,

the algorithm must pull the next event from the broker immediately.

6.5.4 Producer and Consumer Redirection

When messages are diverted to the temporary input queue, we need to stop message

consumers inside the source and target operators from consuming messages from the input

queue, and to begin consuming messages from the temporary queue instead. Similarly,

we need to redirect message producers inside both operators to begin sending processed

events to temporary output queue so that the consumer inside the consistency checking

logic can begin polling for events.

This redirection has to be done dynamically and seamlessly so that disruption to event

processing is minimal and user experience is not compromised. We adopt the same code

injection approach presented in Chapter 4. Using a Byteman agent, two different set of

rules are implemented, one for consumers and the other for producers. The rules are

injected into source operator immediately after events have been rerouted to temporary

input queue, and injected into target operator when it is first launched during a migration

process.

6.6 Experiments and Evaluation

In this section, experimental results and evaluation of our parallel migration approach

for data stream operators are presented. In addition to measuring different application

level performance metrics evaluated against the general migration approach in Section 5.9,

system level metrics, CPU utilisation and memory usage in particular are considered.

Furthermore, the same data streaming workload and metrics extraction method discussed

in Sections 5.8.1 and 5.8.2 respectively are used. All cloud-based VMs used during the

experiments are based on Standard DSv3 instance type (2.4 GHz Intel Xeon® E5-2673

6.6 Experiments and Evaluation 161

v3) with the exception of the storage backend which is based on B1ms (2.3 GHz Intel®

Broadwell E5-2673 v4).

6.6.1 Results and Evaluation

Experiment 1: Percentage CPU utilisation and memory consumption on cloud-

based VMs

In Section 5.7 we gave an outline of what constitutes a good migration approach in terms

computing resources utilisation. One of the characteristics of cloud computing is providing

on-demand and elastic resource allocation [98]. But these services come with extra costs,

hence, a good migration approach should have minimal overhead on host computing

resources.

In this experiment we evaluate the impact of our migration approach on CPU and

memory for cloud-based VMs by comparing CPU and memory usage before, during and

after migration. To this end, we launch the source operator with event rate and window

size set to 100 and 5 respectively and leave it to run for 10 minutes before migration is

initiated. By doing so, we allow enough time for resource usage on the source node to

attain a steady state before migration starts. Then, migration process is initiated with a

synchronization factor of 2. When the migration process completes, the target operator is

left to continue processing events for further 10 minutes before being terminated. The

execution environment used is same as the one shown in Table 5.1.

The Cumulative Empirical Density Functions (CEDFs) of Figure 6.22 show CPU usage

and memory consumption before and during migration for the source node, as well as,

during and after migration for the target node. The use of ECDF functions allows us

to easily observe the distribution of values within an experiment as well as comparing

distributions of different experiments. In Figure 6.22(a), for example, we can see that

CPU usage on the source node for both before and during migration never exceeded 20%

of the available CPU cycles. The two lines in Figure 6.22(a) – one representing CPU usage

before and the other during migration – do not reveal any significant variation over the

two distinct periods where 80% of the time CPU utilization remains less than 3%. This

shows that our migration approach imposes only a modest overhead on source node’s CPU

162 Optimisation Technique for Data Stream Operator Migration

usage. The same conclusion can be deduced on source node’s memory consumption based

on the results of Figure 6.22(b) with memory usage seemed to slightly increase during

migration as shown by the rightward step behaviour.

Figure 6.22(c) and (d) show both CPU utilisation and memory usage respectively for

the target node during and after migration. Although average CPU utilisation during

migration is more than double that of after migration, the maximum CPU utilisation

during migration is only 10% of the total available CPU resources, and memory usage

remains less than 30 MB for the entire migration period, or 0.4% of the total available

physical memory (8 GB).

0.00

0.25

0.50

0.75

1.00

0 10 20 30
CPU Utilization (%)

C
D

F

Legend
During−migration

Before−migration

(a)

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Eden Space Memory Consumption (MB)

C
D

F

Legend
During−migration

Before−migration

(b)

0.00

0.25

0.50

0.75

1.00

5 10 15 20 25
CPU Utilization (%)

C
D

F

Legend
During−migration

After−migration

(c)

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Eden Space Memory Consumption (MB)

C
D

F

Legend
During−migration

After−migration

(d)

Fig. 6.22: CDF plots showing migration impact on CPU and memory consumption on
cloud-based VMs.

A fined-grained detail of CPU and memory usage of source and target nodes are

presented using time series plots of Figure 6.23. The plots are annotated with vertical lines

to mark the beginning and the end of migration process, and a moving average (green

line) is inserted to clearly show any pattern or trend that may exist.

6.6 Experiments and Evaluation 163

start

0

10

20

30

40

15:46 15:48 15:50 15:52 15:54
Timestamp (hr:min)

C
P

U
 u

s
a
g
e

(%
)

(a)

end

0

10

20

30

40

15:56 15:58 16:00 16:02 16:04
Timestamp (hr:min)

C
P

U
 u

s
a
g
e

(%
)

(b)

start

0

200

400

600

800

1000

15:46 15:48 15:50 15:52 15:54
Timestamp (hr:min)

M
e

m
o

ry
 u

s
a

g
e

(M
B

)

(c)

end

0

200

400

600

800

1000

15:56 15:58 16:00 16:02 16:04
Timestamp (hr:min)

M
e
m

o
ry

 u
s
a
g
e

(M
B

)

(d)

Fig. 6.23: Time series plots showing migration impact on CPU and memory consumption
on cloud-based VMs.

Figure 6.23(a) shows CPU utilisation on source node for the whole duration of the

operator execution. The primary observation here is that initially, when the operator is

first launched, and long before the migration process begins, we observe the maximum

CPU usage due to Docker engine initialising various system processes when a container is

initially launched. However, once the usage stabilises, the difference in CPU usage during

and before migration is insignificant compared to total available CPU cycles as indicated

by the smoother line.

Similarly, when the target operator is first launched on target node, CPU usage is at

maximum as depicted in Figure 6.23(b). Even though the launching of target operator

happens within the migration duration, the high CPU usage during that time is not mainly

attributed by the migration process. Another noteworthy feature in the plot shows how

CPU utilisation quickly stabilises and remains steady until the the target operator is

terminated. Similar behaviour is depicted by Figure 6.23(c) and (d) for memory usage.

164 Optimisation Technique for Data Stream Operator Migration

The intermittent spikes in memory usage observed before and after migration are primarily

due to some background processes such as garbage collection being initialised.

Compared to results presented in the previous works, our experimental results show

that CPU and memory usage tend to increase for a very short period of time before

beginning to stabilize and return to normal. In contrast, the results presented in [114]

and [215] show memory usage to continuously increase over the entire period of migration

fo Parallel Track approach, and higher fluctuation for both CPU and memory usage for

GenMig approach.

start end

0

2

4

6

8

10

12

15:45 15:50 15:55 16:00 16:05
Timestamp (hr:min)

C
P

U
 u

s
a
g
e

(%
)

(a)

start end

0

200

400

600

15:45 15:50 15:55 16:00 16:05
Timestamp (hr:min)

M
e
m

o
ry

 u
s
a
g
e

(M
B

)

(b)

Fig. 6.24: Time series plots showing migration impact on CPU and memory consumption
on the message broker.

Beside its primary function of decoupling senders and receivers of messages, messaging

servers like Artemis come bundled with extra features that allow users to interact with

messages whilst in transit. In our case, for example, we make use of interceptor service

extensively to intercept packets entering the server and modify their content. We also

execute Camel routes directly from the server for the purpose of diverting messages from

one queue to another, and running consistency checking mechanism (see Section 6.5) .

6.6 Experiments and Evaluation 165

In so doing, and depending on the server configuration as well as available computing

resources on the server node, running one or more of these services at the same time may

degrade server performance. Therefore, one aspect of this experiment is to realise if our

migration approach introduces considerable overhead on server host resources.

Figure 6.24 shows CPU and memory usage for the server node before, during and after

migration. In Figure 6.24(a) we can see that, although average CPU utilization appears to

double at some point during migration, the overall CPU usage remains less than 10% at

all times during migration period. In addition, Figure 6.24(b) shows that memory usage is

not impacted by the migration process. The sawtooth pattern behaviour on the figure is a

result of garbage collection cycles occurring when eden memory space (where new objects

are created) fills up.The experimental results further underline that our migration process

does not slow down consumption and processing of events.

Experiment 2: Percentage CPU utilisation and memory consumption on resource-

constrained devices

In the previous experiment, we have demonstrated the feasibility of our migration approach

in terms of overhead on host resources usage in a cloud environment. In this experiment,

we perform a similar experiment, in a simulated resource-constrained environment in order

to show the generic nature of our parallel migration approach in terms of its applicability at

different levels of cloud-IoT infrastructure. To this end, we select the smallest available VM

instance from Microsoft Azure Cloud (Standard B1s) and use it as execution environment

for the source and target operator in order to simulate an IoT device with limited computing

power. Standard B1s comes with 1 core of virtual CPU (equivalent to 2.3 GHz Intel®

Broadwell E5-2673 v4), and 1 GB of memory.

Using the same migration parameter values as in Experiment1 (event rate, window size

and synchronisation factor), the source operator is launched and left to run for 10 minutes

before migration is initiated, and when migration process ends, the target operator is left

processing for the next 10 minutes before being terminated. Table 6.2 shows the execution

environment used for this experiment.

166 Optimisation Technique for Data Stream Operator Migration

Node OS CPU Memory (GB) Disk storage (GB)
Message broker Ubuntu 14.04 1vcpu 1 30
Source Ubuntu 14.04 1vcpu 1 8
Target Ubuntu 14.04 1vcpu 1 8
Storage backend Ubuntu 14.04 1vcpu 2 30
Migration manager MacOS Sierra 2.2 GHz 16 250

Table 6.2: Execution environments for Experiment 2.

The results of Experiment2 are presented in Figure 6.25 and Figure 6.26. CPU

utilisation on source node before and during migration is shown in Figure 6.25(a). Before

migration began, 90% of the times CPU utilisation was less than 5%. The utilisation

increased slightly during the migration period, as the probability of having CPU utilisation

less than 5% drops from 0.9 to 0.73 (90% to 73%). Despite of this noticeable increase,

the overall CPU utilisation does not exceed 25% at any time during migration process.

Memory usage before and during the migration is presented in Figure 6.25(b). Although

memory usage approaches maximum limit in a few isolated instances, the overall usage

is very low as 88% of the time the usage is insignificant compared to the total available

physical memory.

Target operator exhibits similar resource usage characteristics to that of source operator

as illustrated by Figure 6.25(c) and (d) with the exception of higher average CPU utilisation

during migration. This behaviour might be attributed by the fact that, several system

level processes are launched at the same time when a container is launched.

Figure 6.26(a) and (b) shows CPU utilisation time series plots covering an entire

execution time for source and target operators respectively. The behaviour of these two

plots resembles those of Figure 6.23(a) and (b) for Cloud-based VMs with slight increase in

average CPU utilisation during migration period. This slight increase should be expected

as the Cloud-based VM contains twice the number of cores to that of simulated resource-

constrained environment. Warming up phase should also be taken into consideration when

the target operator container is first launched where several system level processes need

to be initialised by Docker daemon. Figure 6.26(c) and (d) show memory usage time

series plots for source node and target node respectively where average usage over each

operator execution duration is presented by the smoother line – the moving average. The

6.6 Experiments and Evaluation 167

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
CPU Utilization (%)

C
D

F

Legend
During−migration

Before−migration

(a)

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Eden Space Memory Consumption (MB)

C
D

F

Legend
During−migration

Before−migration

(b)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
CPU Utilization (%)

C
D

F

Legend
During−migration

After−migration

(c)

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Eden Space Memory Consumption (MB)

C
D

F

Legend
During−migration

After−migration

(d)

Fig. 6.25: CDF plots showing migration impact on CPU and memory consumption on
resource-constrained devices.

observed memory usage median values for source and target nodes are 4.25 MB and 4.10

MB respectively.

Experiment 3: How processing time and throughput are impacted by migra-

tion process

Similar to previous experiments, we first launch the source operator and leave it running

for 10 minutes before migration process is initialised. Events rate and window size are

maintained at 100 and 5 respectively. When the initial 10 minutes elapsed, the migration

process is initialized with synchronisation factor of 2. At the end of the migration process,

the target operator is allowed to continue processing for another 10 minutes before is

terminated. This gives sufficient time for throughput and processing time latency to

recover and return to the level they were prior to migration process. Although the two

cloud instances used for launching source and target operator are similar in terms of their

execution environments, there could be other factors such as slower running instance that

168 Optimisation Technique for Data Stream Operator Migration

start

0

10

20

30

40

13:30 13:35 13:40
Timestamp (hr:min)

C
P

U
 u

s
a
g
e
 (

%
)

(a)

end

0

10

20

30

40

13:40 13:45 13:50
Timestamp (hr:min)

C
P

U
 u

s
a
g
e
 (

%
)

(b)

start

0

200

400

600

800

1000

13:30 13:35 13:40
Timestamp (hr:min)

M
e
m

o
ry

 u
s
a

g
e

 (
M

B
)

(c)

end

0

200

400

600

800

1000

13:40 13:45 13:50
Timestamp (hr:min)

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

(d)

Fig. 6.26: Time series plots showing migration impact on CPU and memory consumption
on resource-constrained devices.

might influence the recovery time. The execution environment used is same as the one

shown in Table 5.1.

We present our results of this experiment in Figure 6.27. Before migration starts, the

processing time median value was 5495ms. As explained in Section 5.8.2, the calculation of

processing time latency includes the time events are being held inside the window before

that window expires (window size). Since window size is fixed, we could have removed it

from processing time calculation without affecting our experimental results at all. In that

case, the processing time pre-migration median value would be 495ms, but we opted to

include window size in the calculation of processing time as window semantic is part of

operator implementation.

During migration period, the median value increases by 48.55% to 8161ms. This increase

is mainly attributed by execution of consistency checking and synchronisation algorithms.

Before migration, once a window expires, events inside the window are processed and

resulting new event is forwarded to an output queue immediately. In contrast, during

6.6 Experiments and Evaluation 169

migration period, the resulting new event is temporarily held for consistency checking

before being forwarded to an output queue. Shortly after migration process ends, median

value for processing time drops down to 5490.5ms. This rapid recovery is essential and

indicates that whatever the impact the migration process had on the processing time

latency, it does not propagate beyond migration duration.

start end

4000

5000

6000

7000

8000

07:45 07:50 07:55 08:00
Timestamp (hr:min)

P
ro

c
e

s
s
in

g
 T

im
e

(m
s
)

(a)

start end

0

50

100

150

07:45 07:50 07:55 08:00
Timestamp (hr:min)

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/w
in

d
o
w

−
s
iz

e
)

(b)

Fig. 6.27: Time series plots showing how throughput and processing time are impacted by
migration process.

Figure 6.27(b) shows the throughput over the three distinct periods (before, during

and after migration process) of the experiment. Before migration began, the recorded

median throughput was 129 events. However, during migration period, the median value

remained the same (129). The median throughput recorded between the end of migration

process until the source operator is terminated was 130. In general, this results shows

that our migration approach does not impact throughput significantly. Figure 6.27(b)

underlines our findings as it can be clearly noticed that throughput before, during and

after migration are visually indistinguishable.

170 Optimisation Technique for Data Stream Operator Migration

Experiment 4: How execution time is affected by changing data streaming

and migration parameters

In the previous experiments, we have evaluated different metrics that are inherent to data

streaming processing to evaluate our migration approach. In this experiment we make use

of migration-induced metrics (as described in Section 5.7.2) – migration process execution

time in particular – to further prove the applicability and efficacy of our parallel migration

approach.

The consistency checking and synchronisation algorithms (presented in Sections 6.4.1

and 6.4.2) works on new events that are generated by processing of their prospective

windows. Therefore, consistency checking can not happen until there is at least two

generated events resulted from processing of two expired windows one from each source

and target operators. As an implication, there is a tight coupling between window size

and when the consistency check begins. In addition, for a given event rate, the larger the

window size, the more events are collected, consequently, the smaller the possibility of

serial numbers of two events processed by source and target nodes separately matching,

hence, the longer the synchronization process. Likewise, this behaviour can happen when

event rate increases. As a result, execution time can be affected by both window size and

event rate.

In this experiment, we considered event rate, window size and synchronisation factor

as the main factors that influence our migration process total execution time. We divided

the experiment into three groups, and for each group, we fixed the values of two of the

parameters and varied the values of the other as shown on Tables 6.3 to 6.5. Then, each

combination of 3 variable values in a group is considered as single run of an experiment,

and each run ws executed 20 times and the average values were calculated. The execution

environment used is same as the one shown in Table 5.1.

Parameter Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Events rate (events/s) 50 100 200 400 800 1600
Window size (s) 2 2 2 2 2 2
Synchronisation factor 5 5 5 5 5 5

Table 6.3: Parameter options (effect of changing event rate on execution time).

6.6 Experiments and Evaluation 171

Parameter Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Events rate (events/s) 100 100 100 100 100 100
Window size (s) 1 3 6 9 12 15
Synchronisation factor 5 5 5 5 5 5

Table 6.4: Parameter options (effect of changing window size on execution time).

Parameter Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Events rate (events/s) 100 100 100 100 100 100
Window size (s) 2 2 2 2 2 2
Synchronisation factor 0 2 4 6 8 10

Table 6.5: Parameter options (effect of synchronisation factor on execution time).

The experimental results are graphically presented using Empirical Cumulative Distri-

bution Functions (ECDFs) of Figure 6.28, and and also summarised on Tables 6.6 to 6.8.

The three plots in Figure 6.28 help us compare distribution of execution times for different

event rate, window size and synchronisation factor. In Figure 6.28(a) for example, the

compactness of the distribution functions shows that increasing event rate results in slight

increase in execution time. In addition, the range of execution time values slightly increases

with an increase in event rate. Although the maximum execution time tends to increase

with the increase in event rates, the minimum values converge at 20 seconds as shown on

Table 6.6. However, the median values seemed to be not affected by increase in event rate.

Events rate Minimum Maximum Median
50 19.728 38.262 22.2885
100 20.529 35.736 22.4055
200 19.788 43.908 22.1615
400 20.026 50.615 24.0365
800 19.888 50.057 22.3063
1600 18.337 51.698 22.4145

Table 6.6: Summary statistics of execution time for different event rates.

In contrast, execution time tends to be affected more with the increase in window size

as shown in Figure 6.28(b) and Table 6.7. As stated earlier, as window size increases, two

points of concern arise that directly affect the consistency checking mechanisms: firstly,

consistency checking algorithm needs to wait much longer before it receives the output

events. Secondly, more events are collected in a window that makes synchronisation

process more complex. Another noteworthy feature is; both minimum and maximum

172 Optimisation Technique for Data Stream Operator Migration

Window size Minimum Maximum Median
1 18.432 25.372 19.2690
3 19.093 26.443 21.3075
6 23.464 32.007 24.1110
9 26.889 37.057 27.4705
12 29.753 47.928 30.3205
15 31.823 52.932 48.2420

Table 6.7: Summary statistics of execution time for different window sizes.

Synchronisation factor Minimum Maximum Median
0 21.539 57.529 40.8055
2 20.015 53.819 24.0265
4 19.573 49.888 22.0040
6 19.864 28.091 21.9180
8 20.173 29.408 21.9585
10 19.584 25.706 22.0435

Table 6.8: Summary statistics of execution time for different synchronisation factor.

execution times tend to increase with an increase in window size. The figure also shows

that, the distribution functions becomes less and less compact as window size increases,

which indicates a very high increase in execution time as window-size increases. Table

6.7 further underscores our experimental observation where the median values increase

significantly with increase in event rate.

The effect of changing synchronisation factor on migration algorithm execution time is

depicted in Figure 6.28(c), and also summarized on Table 6.8. While maximum execution

times tend to increase with the decrease in synchronisation factor, the minimum execution

times appears to merge toward 20 seconds. Similar behaviour was observed when changing

event rate. This shows a significant improvement when compared to the results presented

in [163] where minimum migration time of 60 seconds were recorded fro migrating a service

between two tiers of a multi-tier cloud-fog infrastructure.

The figure also shows that strong synchronisation (when synchronisation factor equal

to zero) is hard to attain. This is because the probability of source and target operator to

generate events with same serial number is very small, hence, consistency checking process

takes considerably longer. In general, the figure shows that execution time increases as

synchronisation factor decreases. Table 6.8 shows both median and maximum values

decrease as synchronisation factor increases.

6.6 Experiments and Evaluation 173

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80

Execution time (s)

C
D

F

Event rate
50

100

200

400

800

1600

(a)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80

Execution time (s)

C
D

F

Window size
1

3

6

9

12

15

(b)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80

Execution time (s)

C
D

F

Sync factor
0

2

4

6

8

10

(c)

Fig. 6.28: CDF plots showing how total migration time is affected by change in event
rates, window sizes and synchronisation factors.

Experiment 5: Determining synchronisation overhead on total execution time

In Section 6.3 we presented our parallel operator migration protocol which consists of a

sequence of instructions that are exchanged and executed between migration coordinator

and migration agents. In addition, the protocol involves execution of synchronisation

algorithm in order to determine a consistent state between source and target operator. Most

of the instructions executed prior to or after the execution of synchronisation algorithms

are not affected by the way in which events are processed. Although some of them, for

example, adding serial numbers dynamically might be affected by how fast events are being

received by the messaging server, and can consequently slow down the migration process.

But we believe that the execution time overhead is largely attributed by consistency

checking and synchronisation algorithms. Hence, the aim of this experiment is to evaluate

the impact of synchronisation process on total execution time of the migration process.

174 Optimisation Technique for Data Stream Operator Migration

Parameter Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10
Events rate (events/s) 100 200 300 400 500 600 700 800 900 1000
Window size (s) 15 15 15 15 15 15 15 15 15 15
Synchronisation factor 10 10 10 10 10 10 10 10 10 10
Baseline (s) 18.276 18.680 18.055 18.680 18.320 18.601 19.063 19.070 19.066 18.762
Sync-overhead (s) 14.569 15.034 14.920 14.937 16.334 18.011 20.558 25.642 26.935 32.065
Total (s) 32.844 33.715 32.974 33.617 34.655 36.612 39.621 44.713 46.002 50.827

Table 6.9: Parameter options and and results of Experiment 5.

Previous experiment reveals how execution time increases with the increase in window

size. Apparently, out of the three considered parameters, it is the window size that seems

to affect execution time more, particularly for larger window size values. Therefore, in this

experiment, we fix window size to the highest value used in the previous experiment and

vary event rate. Table 6.9 shows parameter options for different runs of the experiment.

Each run of the experiment is executed 20 times, and the average total execution time

and synchronisation time are computed. We then calculate the baseline execution time as

the difference between total execution time and synchronisation time, the result of which

can also be found in Table 6.9.The execution environment used is same as the one shown

in Table 5.1.

0

10

20

30

40

50

100 200 300 400 500 600 700 800 900 1000

Events rate (events/second)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

legend
baseline

sync

total

Fig. 6.29: Synchronisation overhead on total execution time.

6.6 Experiments and Evaluation 175

Results of this experiment are further depicted in Figure 6.29. The primary observation

is, for lower event rate (fewer than 625 events/second), synchronisation overhead is always

less than baseline overhead. This is because low event rate results to fewer events in the

window, and fewer events means an increased probability of matching source and target

events serial. In contrast, synchronisation overheads begin to dominate for higher event

rate for the opposite reason. While synchronisation overhead begins to rise sharply, the

baseline execution time remains relatively the same, but always greater than window size

(15s).

Experiment 6: How different combination of event rates and window sizes

affect total migration time

From the earlier experiments we have shown that execution time is primary affected by

window size. The larger the window size, the longer it takes for migration process to

begin, and source and target operator to reach a consistent state. Although not to the

same degree as window size, there is also a direct proportionality between event rate

and execution time. Events rates in data stream processing are unpredictable and tend

to fluctuate depending on several factors such as time of the day or number of active

event sources. Since most of DSMSs come with different windowing semantics for efficient

processing of long running streams, we need to explore combinations of window size and

event rate that would make our parallel migration approach feasible.

In performing this experiment, we increase maximum event rate considerably to

represent a state of consistently high input rate, at the same time trying to make window

size as large as possible. We start with a window size of 5s and event rate of 100

events/second, and gradually increase them until we get maximum values of 300s and 50,000

events/second respectively. Because the migration process might take an unexpectedly

long time to complete for some combinations of high event rate and large window size, we

set a maximum threshold 1000s of which only runs of experiment where execution time is

less than this value are considered. All combinations of event rate and window size that

results in execution times that are larger than the threshold represents states during data

176 Optimisation Technique for Data Stream Operator Migration

	

Fig. 6.30: How different combination of event rates and window sizes affect total execution
time.

stream processing where migration of an operator should not be considered. Table 6.10

shows the parameter options for different runs of the experiment.

Parameter Values
Synchronisation factor 30
Window size (s) {5, 10, 50, 100, 200, 300}
Event rate (events/s) {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 50000}

Table 6.10: Parameter options for Experiment 6.

Similar to the previous experiment, each combination of parameter options is executed

20 times and the mean execution time is calculated. The execution environment used is

same as the one shown in Table 5.1.

The results of this experiment are presented as a heatmap of Figure 6.30, which are

consistent with our previous observation from Experiment4 – execution time increases as

both window size and event rate increase. The best and most efficient migration time is

during the time of low event rate and small window size as shown by the dark green colour

on the figure where execution times are the smallest.

6.6 Experiments and Evaluation 177

Because it is not always possible to have both low event rate and small window size,

the figure shows areas where various combinations of event rates and window sizes generate

execution times that are well below threshold. Essentially, the figure provides a user with

various options regarding when migration process can be performed efficiently in relation

to the combined effect of event rate and window size.

The unshaded white area represents execution times that fell beyond the threshold,

and corresponds to both high event rate and large window size. These are the areas where

migration process should not be considered as the time it takes for the process to finish is

impractical and might not be tolerated for most of the data stream processing use cases.

In general, this migration approach will become counter productive for data streaming

applications with very high event rates or very large window sizes, and may completely

fail to synchronize source and target operators when both event rate and window size are

very large. Hence, Figure 6.30 provides key decision points that need to be considered

before using this approach.

Changing operator complexity will also make our approach unusable as the presented

synchronization algorithm was designed specifically for a count-based windowed operator.

Generalization of the algorithm for different types and complexity of operators will required

a complete rethinking of the logic. However, with few modifications, the algorithms can

be extended to support migration of different types of aggregate operators.

6.6.2 Summary of the Experimental Results

In Section 6.6.1 above, we have presented several experiments for evaluating the efficacy of

our parallel migration approach. First, we evaluated the impact of our migration approach

on the underlying computing resource on both source, target and server nodes. Standard

cloud-based VMs were used for this, and the results showed that the CPU utilisation

and memory consumption during migration was minimal and did not differ much from

that of source and target nodes prior to and after migration process respectively. Both

nodes showed relatively higher CPU utilisation when operators which were packaged inside

Docker containers were initially launched. Arguably, this behaviour is highly attributed

by Docker engine initialising various system processes when starting a container. While

178 Optimisation Technique for Data Stream Operator Migration

memory consumption remained relatively the same over entire migration period for the

server node, average CPU utilisation increased by 100%. Despite that increase, overall

CPU utilisation was less than 10% over the whole duration of migration process.

Experiment 2 was designed to realise the feasibility of our migration approach on

resource-constrained devices. By using the smallest available VM instance, the previous

experiment was repeated using exactly the same stream processing configurations, yet

the behaviour of both CPU utilisation and memory consumption ware quite similar. In

general, in performing these experiments, we have demonstrated the applicability of of our

migration approach on both cloud-based and resource-constrained-based infrastructure.

The effect of migration process on processing time latency and throughput was evaluated

in Experiment 3. The results of this experiment showed that average processing latency

during migration increased from 5471.5 ms to 8161 ms (49% increase). This increase is

apparently, the result of execution of synchronisation algorithm during which events are

temporarily held for consistency checking before being forwarded to the output queue.

Throughput on the other hand, remained relatively the same during all stages of migration

process. Continuous delivery of processing results without throughput degradation signifies

a zero downtime migration process.

The purpose of Experiment 4 was to understand the relationship between execution time

and data stream processing properties – event rate, window size and synchronisation factor.

The results of the experiment showed that as event rate increases, average execution time

also slightly increases, but it is the increase in window size that had the most remarkable

effect. Execution time seemed to increase drastically for larger values of window size.

Theoretically, as window size increases, probability of having two serial numbers of two

contiguous events one from source operator and the other from target operator match

decreases. Further observations revealed that execution time has inverse relationship with

synchronisation factor. For the special case of strong synchronisation (synchronisation

factor of equal to zero) in particular, the execution time was considerably long.

The overhead introduced by synchronisation algorithm on total migration time was

exposed on Experiment 5. In this experiment, the total execution time was divided into

two parts; baseline execution time and synchronisation overhead. For low event rates, the

6.7 Conclusion 179

baseline execution time was always greater than synchronisation overhead. In contrast,

as event rate increased, the synchronisation overhead began to dominate. The effect of

increasing event rate on baseline execution time however, was very minimal.

After observing how event rate and window size affect total execution time individually,

in Experiment 6 we evaluated their combined effect so that an optimal migration time

can be sensibly selected. A combination of both small window size and low event rate

resulted in the shortest execution times. In real-word data stream processing use cases,

that combination might not always be possible as window size for example, may be fixed

to a particular value over a long period of time. The heatmap gives us other options where

different combinations of event rates and window sizes would result in execution times

that are within the specified threshold. For example, for a given window size, migration

can only be performed when event rate drops below a particular value.

6.7 Conclusion

In this chapter, we have presented our migration approach for stateful data stream operator

that does not involve state transfer as an optimisation to our general migration approach

discussed in Chapter 5. With this optimisation technique, state information is recreated by

allowing source and target operators to run in parallel in large part of migration process.

In doing so, we have addressed some of the challenges associated with operator migration.

In particular, we have avoided state transfer, a situation that can become costly in terms

of network resource utilisation, and reduce application downtime during migration process

to zero.

In Section 2.4.2 we identified duplicate and out-of-order messages as the major issues

intrinsic to parallel migration approach. Our migration approach addresses these issues by

first, annotating events with unique and monotonically increasing serial numbers. Secondly,

a special mechanism that makes use of the serial numbers ensures that events processed

by different operators are re-ordered downstream before being forwarded to their output

queue.

The results of our experimentation showed that the presented approach is not resource

intensive, and can be run on both cloud-based and resource-constrained machines with small

180 Optimisation Technique for Data Stream Operator Migration

CPU utilisation overhead and small memory footprint. Moreover, migration downtime is

reduced virtually to zero as the number events processed per second (throughput) was

not impacted by introduction of migration process. Lastly, after realising the effect of

increasing event rate and window size on total migration execution time, we provided

users of the migration system with general understanding of what combinations of event

rate and window size would lead to short execution times so that the migration approach

becomes feasible and practical.

Although our proposed operator migration approach of running the two operators in

parallel results in the use of twice the number of resources during migration process, the

resource implications of using this approach can only be realized on source node – where

the source operator is running. This is based on our earlier assumption that the target

operator is always deployed on a different node. Memory usage and CPU utilization on

the target node will not be affected by running the two operators in parallel. The only

impact will be due to execution of the migration algorithm by the migration agent on the

target node which has been experimentally shown to be very minimal (see Figure 6.22

through Figure 6.26).

As for the source node which might have already running on stretched resources, it

all depends on how long the synchronization process lasts. Figure 6.28 shows empirically

how both event rate, window size and synchronization factor affect the execution time

of migration algorithm. In order to reduce the resource implications on the source node

particularly at the time of high event rates and large window sizes, the synchronization

factor which has an inverse relationship with execution time should be configured by the

user to be reasonably large.

During migration process, events need to be duplicated both at the input and output

queues. This behaviour doubles the amount of network resources required to transfer

events from the input queue to the operator, and then to the output queue. If network

resources are restrictive, the synchronization factor should be set as large as possible so as

to reduce the migration algorithm execution time. In addition, most of IoT management

systems provide users with the ability to configure data stream parameter on the fly. Hence,

when using this approach during the time of very high event rate and large window size,

6.7 Conclusion 181

these parameters can be temporarily adjusted in order to facilitate a quick and seamless

migration process.

6.7.1 Future Work

One area of future work is optimizing the current algorithm to minimise execution time

for large window size. Window lengths in data stream applications come in different

sizes, ranging from few seconds to couple of hours depending on a use case. Our current

implementation of parallel migration approach works on a window boundary – consistency

checking mechanism only runs after at least each operator (source and target operator) has

finished processing of one window of events. This is a limitation to our approach as window

size can sometimes be very large and fixed. One approach would be to perform consistency

checking prior to events being added to a window. This will completely eliminate window

dependency.

In its current state, our parallel migration approach supports migration of count

operator only, since the synchronisation algorithm is specifically implemented for this type

of operator. However, because the core of the algorithm involves numerical manipulation

of serial numbers and count values, as a future work, we will investigate on how this

approach can be generalised to provide support for other types of aggregate operators;

sum and average operators, for example.

The results of our final experiment shows there is a tradeoff between event rate and

window size (see Figure 6.30). Another possible extension to our approach in the future

would be to develop a dynamic policy to decide when a migration can be performed. For

example, rather than performing migration instantly, one would wait until event rate drops

to a rate where migration is likely to complete within a specified threshold. The threshold

could be application area dependent, so that, for applications that can tolerate longer

pauses, migration can be performed instantly, while for applications that might need very

low disruption, migration may be delayed for some time.

Chapter 7

Conclusion

7.1 Thesis Summary

This thesis has investigated how a high-level description of a data stream computation can

be used to dynamically generate a distributed runtime infrastructure for IoT applications.

Specifically, we seek to provide infrastructure that meets user requirements and compute

resource demands of different operators within the computation. To achieve this, we had

to investigate a number of research problems as outlined in Section 1.2.

In Chapter 3 we modeled, designed and implemented a framework for deployment

and management of a data stream computation. The framework enables the placement

of different operators of a data stream computation into different IoT gateway devices

and cloud platforms. Besides, we showed how the framework can be used to dynamically

manage operators over their entire life cycles Despite its usability and applicability in

a number of IoT applications use cases, two major challenges were encountered during

the development of the framework; a) how to understand the runtime performance of

data stream computations during deployment and management operations? b) how do we

manage stateful data stream operators?

In Chapter 4, we addressed the first challenge by proposing a new approach for

performance evaluation of event-based systems which employs a non-intrusive dynamic

code injection technique. Compared to the existing approaches, our approach can easily

be generalised to other target systems, as it only requires the target system to provide a

public interface of its classes and methods. Furthermore, we empirically evaluated our

184 Conclusion

approach and showed that it is minimally intrusive – have negligible impact on the target

system workload processing and its underlying compute resources. In Chapter 5, we

presented a mechanism for stateful operator migration to address the second challenge

of our deployment and management framework. Our experimental results showed the

migration mechanism does not have a significant impact on the performance of the data

stream computation. Moreover, we have shown that there is a strong direct proportionality

between increase in state size and application downtime. While certain classes of data

streaming applications may tolerate short downtimes, for others downtime may result in

undesired outcomes. Subsequently, in Chapter 6 we explored an optimisation process for

our stateful operator migration that enables operator migration without the need state

transfer, and reduces application downtime virtually to zero.

Extending the IoT runtime infrastructure close to where the data is generated, and

deploying data stream operators where they would be serviced best brings about a number

of benefits (see Section 1.2 for details). In general, we offer an efficient approach for

bridging the resource gap between different IoT devices and cloud platforms, and provide

an IoT resource continuum from one end of IoT system (near to where the data is collected)

to another (the cloud). Furthermore, by offering dynamic regeneration and reconfiguration

of data stream parameters, we have addressed the uncertainty and dynamism of runtime

infrastructure in data stream processing.

Throughout this thesis we have made use of a variety of implementation systems.

Some of them such as, Byteman and Thermostat are common throughout the thesis.

This is because the functionality provided by these tools are relevant to every solution

implemented in the main chapters of the thesis. Furthermore, although they are meant to

provide different type of services, Thermostat comes with Byteman already integrated in

it to simplify the process of tracking, monitoring and modifying the events.

In Chapter 4 we have made use of Spark Streaming API as a tool for processing

of event streams. Spark is a unified analytics engine that provides flexible in-memory

data processing for both batch, real-time and advanced analytics. Spark Streaming API

also provides end-to-end integration with Kafka through built-in connectors to provides

exactly-once semantic of event ingestion despite of any failure. In Chapters 5 and 6

7.2 Limitations 185

however, we have replaced Kafka with Artemis in order to simplify implementation of

our migration protocols. Artemis provides additional services that facilitate and simply

interactions with events. We need these interactions in order to be able to have access to

in-flight events. For example, Artemis comes with Camel clients to allow easy integration

Artemis and other systems.

7.2 Limitations

Our experimental evaluations were based on synthetic workloads designed to emulate

the characteristics of a real data stream workload, such as, high speed events from

multiple sources. Use of synthetic workload enabled us to perform portable and repeatable

experiments in a controlled environment. Synthetic workload also gives greater flexibility in

scaling any benchmark for different scale factor [103]. However, while synthetic workload is

considered as the right approach for evaluating event-based systems, the nature of the real

workload is more challenging. Real world data stream workload may contain properties

and complexities that are difficult to simulate. This is especially true for unstructured

data which is predicted to account for 90% of all data generated over the next decade [180].

Therefore, evaluating the system with real workload in addition to the more controlled

synthetic workload would have give us assurance of the practicability and effectiveness of

our approaches.

In Chapter 3, we have shown how our data stream computation deployment and

management framework can scale up to hundreds of gateway devices and dozens of VMs.

In cloud environment, scaling up of the computation and parallelisation of operators are

provided by the underlying frameworks (Docker Swarm and Spark Streaming). Spark,

in addition, provides a mechanism for state management to deal with elastic scaling of

stateful operators. However, in its current state, our scaling mechanism provided by

the framework on gateway devices does not consider the possibility of having stateful

operators running on the devices. Kura, the framework we used to enable deployment and

management of data stream operators on gateway devices does not offer built-in state

management capabilities.

186 Conclusion

Another limitation of our data stream computation deployment and management

approach is the lack of direct support for mobile devices. Smart mobile devices are packed

with sensors and numerous technologies that help us seamlessly communicate with other

devices in our homes, offices, stores, cars, etc. When used as gateway devices for IoT, they

add much richer and deeper contexts by interacting with the environment around them

and collecting information from the build-in or near-by sensors. The use of smart mobile

devices offers new opportunities to create efficient services and solutions in a number of IoT

use cases. In healthcare, for example, mobile health (m-health) applications use mobile

devices to deliver healthcare services anytime and anywhere, transcending organisational,

temporal and geographical barriers [168].

Due to their proprietary nature, support for different types of mobile devices can be

provided by introducing an additional service which connects mobile infrastructure and our

deployment and management framework. This service will act as a translation layer for the

commands generated by our framework to support different type of mobile infrastructure.

The translated commands can then be forwarded to an device-specific applications which

may be deployed within the devices to handle the requests.

7.3 Future Research Directions

The contributions of this thesis make available several possible directions of future research,

outlined below.

7.3.1 Real-time Monitoring for Self-adapting IoT-cloud In-

frastructure

In our current system, a change in runtime infrastructure is represented by the generation of

a new deployment plan (see Figure 3.2). The deployment plan is passed to the deployment

and management system by a user as a static file. To enable dynamic adaptation of

runtime infrastructure that is tailored to changes in user requirements or compute resources

availability, we must have a comprehensive monitoring system able to observe and report

real-time statistics about the underlying infrastructure (CPU, memory and network usage),

7.3 Future Research Directions 187

and application (response time and throughput). When the requirements of a data

streaming computation can not be fulfilled by the existing infrastructure (on the basis of

reported real-time statistics), an alarm could be raised to trigger a re-optimisation process

and redeployment of the computation.

As a future research direction, we can explore how a real-time monitor can be incor-

porated into our deployment and management framework to enables self-adaptive IoT

applications. One approach would be making use of our non-intrusive code injection

approach presented in Chapter 4, and add tracer packets to monitor and report various

runtime statistics of interest.

Existing approaches are either designed for monitoring resources on cloud-based VMs

as in [28, 135, 120, 213], containers as in [184, 53, 145], end-to-end link quality as in

[190, 85, 41, 34], or application-level as in [104, 165, 65]. These approaches cannot be

directly used for IoT-cloud systems, hence, there is a lack of a unified approach to monitor

an entire IoT-cloud system. The problem is highly attributed by the existing challenges

imposed by these systems, such as, management of devices mobility, scalability and resource

availability, as well as interoperability between different vendor locked-in devices [191].

7.3.2 Preemptive Migration of Data Stream Operators

Our work can be further extended to support preemptive migration across different types

of infrastructure within an IoT-cloud integration. Using runtime statistics collected by

real-time monitor, we can apply statistical methods to predict or forecast resource usage

and performance of a data stream computation. This will enable us to determine a point

in time in the future where migration of an operator can be planned. Planning migration

ahead of time in IoT-cloud infrastructure can reduce the uncertainty imposed by the

dynamism of the infrastructure, although remains to be a research problem.

Existing efforts to address the problem only focus on a particular aspect of IoT-cloud

infrastructure. Ottenwalder et al [155], for example, model costs and durations of future

migrations as well as placements in order to probabilistically determine future migration

targets and suitable times to start a migration process. However, their model is only based

on mobile devices where mobility patterns of a device is predicted and used to plan future

188 Conclusion

migrations. The models presented in [88, 39, 23], on the other hand, are based on time

series prediction techniques to predict time-varying resource demands of cloud-based VMs.

Aazam et al [1] present a mechanism for predicting resource demands for provisioning

purpose on Fog infrastructure.

References

[1] Aazam, M. and Huh, E. (2015). Dynamic Resource Provisioning Through Fog Micro
Datacenter. In IEEE International Conference on Pervasive Computing and Communi-
cation Workshops (PerCom Workshops), pages 105–110.

[2] Aazam, M., Khan, I., Alsaffar, A. A., and Huh, E. N. (2014). Cloud of Things:
Integrating Internet of Things and Cloud Computing and the Issues Involved. In
International Bhurban Conference on Applied Sciences and Technology, pages 414–419.

[3] Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H.,
Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., and Zdonik,
S. B. (2005). The Design of the Borealis Stream Processing Engine. In International
Conference on Innovative Data Systems Research, pages 277–289.

[4] Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., and Zdonik, S. (2003). Aurora: A New Model and Architecture
for Data Stream Management. International Journal on Very Large Databases, 12(2):120–
139.

[5] Aidemark, J., Vinter, J., Folkesson, P., and Karlsson, J. (2001). Goofi: Generic
Object-Oriented Fault Injection Tool. In Dependable Systems and Networks, pages
83–88.

[6] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R., McVeety,
S., Mills, D., Nordstrom, P., and Whittle, S. (2013). MillWheel: Fault-tolerant Stream
Processing at Internet Scale. International Journal of Very Large Databases, 6(11):1033–
1044.

[7] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015).
Internet of Things: A Survey on Enabling Technologies, Protocols and Applications.
IEEE Communications Surveys and Tutorials, 17(4):2347–2376.

[8] Android Things (2018). Build with Android Things. [online] https://androidthings.
withgoogle.com/#!/, Last Accessed 23-10-2018.

[9] Apache Camel (2018). Camel. [online] http://camel.apache.org/, Last Accessed
1-07-2018.

[10] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Martins, E., and Power, D. (1990). Fault
Injection for Dependability Validation. IEEE Transactions on Software Engineering,
16(2):166–182.

https://androidthings.withgoogle.com/#!/
https://androidthings.withgoogle.com/#!/
http://camel.apache.org/

190 References

[11] Atlam, H. F., Alenezi, A., Alharthi, A., Walters, R. J., and Wills, G. B. (2017).
Integration of Cloud Computing with Internet of Things: Challenges and Open Issues.
In IEEE International Conference on Internet of Things (iThings), pages 670–675.

[12] Atzori, L., Iera, A., and Morabito, G. (2010). The Internet of Things: A Survey.
Computer Networks, 54(15):2787–2805.

[13] AWS (2018a). Amazon Elastic Container Service. [online] https://aws.amazon.com/
ecs/, Last Accessed 11-06-2018.

[14] AWS (2018b). Amazon Kinesis Data Streams. [online] https://aws.amazon.com/
kinesis/data-streams/, Last Accessed 29-12-2018.

[15] Azure Stream Analytics (2018). An On-demand Real-time Analytics Service
to Power Intelligent Action. [online] https://azure.microsoft.com/en-gb/services/
stream-analytics/, Last Accessed 29-12-2018.

[16] Babu, S. and Widom, J. (2001). Continuous Queries Over Data Streams. In ACM
SIGMOD International Conference on Management of Data, pages 109–120.

[17] Bahga, A. and Madisetti, V. K. (2011). Synthetic Workload Generation for Cloud
Computing Applications. Journal of Software Engineering and Applications, 04(07):396–
410.

[18] Bai, Y., Thakkar, H., Wang, H., Luo, C., and Zaniolo, C. (2006). A Data Stream
Language and System Designed for Power and Extensibility. In ACM International
Conference on Information and Knowledge Management, pages 337–346.

[19] Balazinska, M., Balakrishnan, H., and Stonebraker, M. (2004). Contract-Based
Load Management in Federated Distributed Systems. In Conference on Symposium on
Networked Systems Design and Implementation, pages 15–15.

[20] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., and Warfield, A. (2003). Xen and the Art of Virtualization. ACM SIGOPS
Operating Systems Review, 37(5):164–177.

[21] Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F. (2014). TOSCA: Portable
Automated Deployment and Management of Cloud Applications. In Advanced Web
Services, pages 527–549.

[22] Biswas, A. R. and Giaffreda, R. (2014). IoT and Cloud Convergence: Opportunities
and Challenges. In IEEE World Forum on Internet of Things, pages 375–376.

[23] Bobroff, N., Kochut, A., and Beaty, K. (2007). Dynamic Placement of Virtual
Machines for Managing SLA Violations. In 10th IFIP/IEEE International Symposium
on Integrated Network Management, pages 119–128.

[24] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog Computing and its Role
in the Internet of Things. In ACM Mobile Cloud Computing Workshop, pages 13–16.

https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://azure.microsoft.com/en-gb/services/stream-analytics/
https://azure.microsoft.com/en-gb/services/stream-analytics/

References 191

[25] Botta, A., de Donato, W., Persico, V., and Pescap, A. (2014). On the Integration
of Cloud Computing and Internet of Things. In International Conference on Future
Internet of Things and Cloud, pages 23–30.

[26] Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M.,
Thatte, M., and White, W. (2007). Cayuga: A General Purpose Event Monitoring
System. In International Conference on Innovative Data Systems Research, pages
412–422.

[27] Cafaro, M. and Aloisio, G. (2011). Grids, Clouds and Virtualization. Springer,
London.

[28] Caglar, F. and Gokhale, A. (2014). iOverbook: Intelligent Resource-Overbooking
to Support Soft Real-Time Applications in the Cloud. In International Conference on
Cloud Computing, pages 538–545.

[29] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011).
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments
and Evaluation of Resource Provisioning Algorithms. Software - Practice and Experience,
41(1):23–50.

[30] Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A., Markl, V., and Tzoumas, K.
(2015). Apache Flink: Unified Stream and Batch Processing in a Single Engine. Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering, 36(4):28–38.

[31] Cardellini, V., Grassi, V., Lo Presti, F., and Nardelli, M. (2017). Optimal Oper-
ator Replication and Placement for Distributed Stream Processing Systems. ACM
SIGMETRICS Performance Evaluation Review, 44(4):11–22.

[32] Cardellini, V., Lo Presti, F., Nardelli, M., and Russo Russo, G. (2018). Decentralized
Self-Adaptation for Elastic Data Stream Processing. Future Generation Computer
Systems, 87:171–185.

[33] Carrión, J. V., Moltó, G., De Alfonso, C., Caballer, M., and Hernandez, V. (2010). A
Generic Catalog and Repository Service for Virtual Machine Images. In Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering Conference
on Cloud Computing, pages 1–15.

[34] Cervino, J., Rodriguez, P., Trajkovska, I., Mozo, A., and Salvachua, J. (2011). Testing
a Cloud Provider Network for Hybrid P2P and Cloud Streaming Architectures. In
International Conference on Cloud Computing, pages 356–363.

[35] Chandra, R., Lefever, R. M., Joshi, K. R., Cukier, M., and Sanders, W. H. (2004).
A Global-State-Triggered Fault Injector for Distributed System Evaluation. IEEE
Transactions on Parallel and Distributed Systems, 15(7):593–605.

[36] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M. (2003).
TelegraphCQ : Continuous Dataflow Processing for an Uncertain World. In ACM
SIGMOD International Conference on Management of Data, pages 668–668.

192 References

[37] Chaufournier, L., Sharma, P., Le, F., Nahum, E., Shenoy, P., and Towsley, D. (2017).
Fast Transparent Virtual Machine Migration in Distributed Edge Clouds. In ACM/IEEE
Symposium on Edge Computing, pages 1–13.

[38] Chen, G. J., Wiener, J. L., Iyer, S., Jaiswal, A., Lei, R., Simha, N., Wang, W.,
Wilfong, K., Williamson, T., and Yilmaz, S. (2016). Realtime Data Processing at
Facebook. In ACM SIGMOD International Conference on Management of Data, pages
1087–1098.

[39] Chen, H., Fu, X., Tang, Z., and Zhu, X. (2015). Resource Monitoring and Prediction in
Cloud Computing Environments. In 3rd International Conference on Applied Computing
and Information Technology/2nd International Conference on Computational Science
and Intelligence, pages 288–292.

[40] Chen, J., DeWitt, D. J., Tian, F., and Wang, Y. (2000). NiagaraCQ: A Scalable Con-
tinuous Query System for Internet Databases. ACM SIGMOD International Conference
on Management of Data, pages 379–390.

[41] Chen, K., Chang, Y., Hsu, H., Chen, D., Huang, C., and Hsu, C. (2014). On
the Quality of Service of Cloud Gaming Systems. IEEE Transactions on Multimedia,
16(2):480–495.

[42] Chiba, S. (2000). Load-Time Structural Reflection in Java. In European Conference
on Object-Oriented Programming, pages 313–336.

[43] Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M., Liu, Z.,
Nusbaum, K., Patil, K., Peng, B. J., and Poulosky, P. (2016). Benchmarking Streaming
Computation Engines: Storm, Flink and Spark Streaming. In International Parallel
and Distributed Processing Symposium, pages 1789–1792.

[44] Clark, C., Fraser, K., and Hand, S. (2005). Live Migration of Virtual Machines. In
Symposium on Networked Systems Design and Implementation, pages 273—-286.

[45] Cloud, Google (2018). Containerized Application Management at Scale. [online]
https://cloud.google.com/kubernetes-engine/, Last Accessed 11-06-2018.

[46] Contiki (2018). Open Source OS for the Internet of Things. [online] http://www.
contiki-os.org/, Last Accessed 23-10-2018.

[47] CRIU (2018). CRIU. [online] https://criu.org/, Last Accessed 05-06-2018.

[48] Cugola, G. and Margara, A. (2012a). Low Latency Complex Event Processing on
Parallel Hardware. Parallel and Distributed Computing, 7(2):205 – 218.

[49] Cugola, G. and Margara, A. (2012b). Processing Flows of Information. ACM
Computing Surveys, 44(3):1–62.

[50] Dai, D., Li, X., Wang, C., Sun, M., and Zhou, X. (2012). Sedna: A Memory Based
Key-Value Storage System for Realtime Processing in Cloud. In IEEE International
Conference on Cluster Computing Workshops, Cluster Workshops, pages 48–56.

https://cloud.google.com/kubernetes-engine/
http://www.contiki-os.org/
http://www.contiki-os.org/
https://criu.org/

References 193

[51] Das, R. B., Bozdog, N. V., Makkes, M. X., and Bal, H. (2017). Kea: A Computation
Offloading System for Smartphone Sensor Data. In International Conference on Cloud
Computing Technology and Science, CloudCom, pages 9–16.

[52] Dash, S. K., Mohapatra, S., and Pattnaik, P. K. (2010). A Survey on Applications of
Wireless Sensor Network Using Cloud Computing. International Journal of Computer
Science and Emerging Technologies, 1(4):50–55.

[53] David, B., Edward, D. M., Patricia, T. E., and Barreto, J. (2016). Performance Eval-
uation of a Lightweight Virtualization Solution for HPC I/O Scenarios. In International
Conference on Systems, Man, and Cybernetics.

[54] Dawson, S., Jahanian, F., and Mitton, T. (1996a). ORCHESTRA: A Probing and
Fault Injection Environment for Testing Protocol Implementations. In International
Conference on Computer Performance and Dependability Symposium, page 56.

[55] Dawson, S., Jahanian, F., Mitton, T., and Teck-Lee Tung (1996b). Testing of Fault-
Tolerant and Real-time Distributed Systems via Protocol Fault Injection. In Annual
Symposium on Fault Tolerant Computing, pages 404–414.

[56] Dias De Assuncao, M., Veith, A. d. S., and Buyya, R. (2018). Distributed Data
Stream Processing and Edge Computing: A Survey on Resource Elasticity and Future
Directions. Journal of Network and Computer Applications, 103:1–17.

[57] Díaz, M., Martín, C., and Rubio, B. (2016). State-of-the-Art, Challenges, and Open
Issues in the Integration of Internet of Things and Coud Computing. Journal of Network
and Computer Applications, 67:99–117.

[58] Ding, J., Fu, T. Z. J., Ma, R. T. B., Winslett, M., Yang, Y., Zhang, Z., and Chao, H.
(2016). Optimal Operator State Migration for Cloud-Based Data Stream Management
Systems. Computing Research Repository (CoRR), pages 1–15.

[59] Dinn, A. E. (2011). Flexible, Dynamic Injection of Structured Advice Using Byteman.
International Conference on Aspect-oriented Software Development Companion, pages
41–50.

[60] Distefano, S., Merlino, G., and Puliafito, A. (2013). Application Deployment for
IoT: An Infrastructure Approach. In IEEE Global Communications Conference, pages
2798–2803.

[61] Dwarakanath, R., Koldehofe, B., and Steinmetz, R. (2016). Operator Migration
for Distributed Complex Event Processing in Device-to-Device Based Networks. In
Workshop on Middleware for Context-Aware Applications in the IoT, pages 13–18.

[62] Eclipse Paho (2018). Paho. [online] https://www.eclipse.org/paho/, Last Accessed
23-10-2018.

[63] Eclispse Mosquitto (2018). An open source MQTT broker. [online] https://mosquitto.
org/, Last Accessed 10-10-2018.

https://www.eclipse.org/paho/
https://mosquitto.org/
https://mosquitto.org/

194 References

[64] Evans, D. (2012). The internet of things how the next evolution of the internet is
changing everything (april 2011). White Paper by Cisco Internet Business Solutions
Group (IBSG).

[65] Farokhi, S., Lakew, E. B., Klein, C., Brandic, I., and Elmroth, E. (2015). Coordinating
CPU and Memory Elasticity Controllers to Meet Service Response Time Constraints.
In International Conference on Cloud and Autonomic Computing, pages 69–80.

[66] Folkesson, P., Svensson, S., and Karlsson, J. (1998). A Comparison of Simulation
Based and Scan Chain Implemented Fault Injection. In Symposium of Fault-Tolerant
Computing, pages 284–293.

[67] Forshaw, M., Thomas, N., and McGough, A. S. (2016). The Case for Energy-Aware
Simulation and Modelling of Internet of Things (IoT). In International Workshop on
Energy-Aware Simulation, pages 1–4.

[68] Fu, M., Agrawal, A., Floratou, A., Graham, B., Jorgensen, A., Li, M., Lu, N.,
Ramasamy, K., Rao, S., and Wang, C. (2017). Twitter Heron: Towards Extensible
Streaming Engines. In International Conference on Data Engineering, pages 1165–1172.

[69] Gedik, B., Schneider, S., Hirzel, M., and Wu, K. L. (2014). Elastic Scaling for Data
Stream Processing. Transactions on Parallel and Distributed Systems, 25(6):1447–1463.

[70] Gil, D., Gracia, J., Baraza, J. C., and Gil, P. J. (2003). Study, Comparison and
Application of Different VHDL-based Fault Injection Techniques for the Experimental
Validation of a Fault-Tolerant System. In Microelectronics Journal, pages 41–51.

[71] Goloubeva, O., Rebaudengo, M., Reorda, M. S., and Massimo, V. (2006). Software-
Implemented Hardware Fault Tolerance. Springer Science+Business Media, LLC.

[72] Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., and Valduriez, P. (2010).
StreamCloud: A Large Scale Data Streaming System. In International Conference on
Distributed Computing Systems, pages 126–137.

[73] Gulisano, V., Jimenez-Peris, R., Patino-Martnez, M., Soriente, C., and Valduriez,
P. (2012). StreamCloud: An Elastic and Scalable Data Streaming System. IEEE
Transactions on Parallel and Distributed Systems, 23(12):2351–2365.

[74] Gupta, D., Perronne, L., and Bouchenak, S. (2016). BFT-Bench: A Framework to
Evaluate BFT Protocols. In ACM International Conference in Performance Engineering,
pages 109–112.

[75] Ha, K., Abe, Y., Chen, Z., Hu, W., Amos, B., Pillai, P., and Satyanarayanan, M.
(2015). Adaptive VM Handoff Across Cloudlets. Technical Report, CMU School of
Computer Science.

[76] Hao, W., Yen, I.-L., and Thuraisingham, B. (2009). Dynamic Service and Data
Migration in the Clouds. In IEEE International Conference on Computer Software and
Applications, pages 134–139.

References 195

[77] Hassan, M., Song, B., and Huh, E.-n. (2009). A Framework of Sensor - Cloud
Integration Opportunities and Challenges. In International Conference on Ubiquitous
Information Management and Communication, pages 618–626.

[78] Heinze, T., Aniello, L., Querzoni, L., and Jerzak, Z. (2014). Cloud-Based Data Stream
Processing. In ACM International Conference on Distributed Event-Based Systems,
pages 238–245.

[79] Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M. K., and Sekar, V. (2016).
Gremlin: Systematic Resilience Testing of Microservices. In International Conference
on Distributed Computing Systems, pages 57–66.

[80] Hines, M. R., Deshpande, U., and Gopalan, K. (2009). Post-Copy Live Migration of
Virtual Machines. ACM SIGOPS Operating Systems Review, 43(3):14–26.

[81] Hirmer, P., Breitenbücher, U., Franco da Silva, A. C., Képes, K., Mitschang, B., and
Wieland, M. (2017). Automating the Provisioning and Configuration of Devices in the
Internet of Things. Complex Systems Informatics and Modeling Quarterly, 9:28–43.

[82] Hoffmann, M., Kalavri, V., Liagouris, J., Lattuada, A., Roscoe, T., and McSherry,
F. (2018). Megaphone: Latency-conscious State Migration for Distributed Streaming
Dataflow. Computing Research Repository (CoRR).

[83] Hohpe, G. and Woolf, B. (2003). Enterprise Integration Patterns: Designing, and
Deploying Messaging Solutions. Addison-Wesley.

[84] Hostway, U. (2011). VMware ESXi Cloud Simplified. Comprehensive Explanation of
the Features and Benefits of VMware ESXi Hypervisor.

[85] Hsu, W. and Lo, C. (2014). QoS/QoE Mapping and Adjustment Model in the
Cloud-based Multimedia Infrastructure. IEEE Systems Journal, 8(1):247–255.

[86] Hsueh, M.-C., Tsai, T. K., and Iyer, R. K. (1997). Fault Injection Techniques and
Tools. Computer, 30(4):75–82.

[87] Hu, L., Zhao, J., Xu, G., Ding, Y., and Chu, J. (2013). HMDC: Live Virtual Machine
Migration Based on Hybrid Memory Copy and Delta Compression. Applied Mathematics
and Information Sciences, 7(2):639–646.

[88] Huang, Q., Su, S., Xu, S., Li, J., Xu, P., and Shuang, K. (2013). Migration-Based
Elastic Consolidation Scheduling in Cloud Data Center. In IEEE 33rd International
Conference on Distributed Computing Systems Workshops, pages 93–97.

[89] Hueske, F. and Kalavri, V. (2018). Stream Processing with Apache Flink. O’Reilly
Media, Inc., Sebastopol, CA 95472.

[90] Hummer, W., Inziger, C., Leitner, P., Satzger, B., and Dustdar, S. (2012). Deriving a
Unified Fault Taxonomy for Event-Based Systems. In ACM International Conference
on Distributed Event-Based Systems, pages 167–178.

196 References

[91] Hur, K., Chun, S., Jin, X., and Lee, K.-H. (2015a). Towards a Semantic Model for
Automated Deployment of IoT Services across Platforms. In IEEE World Congress on
Services, pages 17–20.

[92] Hur, K., Jin, X., and Lee, K. H. (2015b). Automated Deployment of IoT Services
Based on Semantic Description. In World Forum for Internet of Things, pages 40–45.

[93] IBM (2018). IBM Cloud Kubernetes Service. [online] https://www.ibm.com/cloud/
container-service, Last Accessed 11-06-2018.

[94] International Telecommunication Union (2018). Message Sequence Chart (MSC).
[online] https://www.itu.int/rec/T-REC-Z.120, Last Accessed 15-09-2018.

[95] Inzinger, C., Nastic, S., Sehic, S., Vögler, M., Li, F., and Dustdar, S. (2014). MADCAT:
A Methodology for Architecture and Deployment of Cloud Application Topologies. IEEE
Systems of Systems Engineering, pages 13–22.

[96] IoT Analytics (2019). State of the IoT 2018. [online] https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/, Last Accessed 02-
03-2019.

[97] IoTivity (2018). IoTivity. [online] https://www.iotivity.org/, Last Accessed 18-09-
2018.

[98] Ismail, B. I., Mostajeran Goortani, E., Ab Karim, M. B., Ming Tat, W., Setapa,
S., Luke, J. Y., and Hong Hoe, O. (2016). Evaluation of Docker as Edge Computing
Platform. In IEEE Conference on Open Systems, pages 130–135.

[99] Jacques-Silva, G., Drebes, R., Weber, T., and Martins, E. (2005). Injecting Com-
munication Faults to Experimentally Validate Java Distributed Applications. Lecture
Notes in Computer Science, pages 235–245.

[100] Jacques-Silva, G., Drebes, R. J., Gerchman, J., and Weber, T. S. (2004). FIONA: A
Fault Injector for Dependability Evaluation of Java-Based Network Applications. In
Third IEEE International Symposium on Network Computing and Applications, pages
303–308.

[101] Jacques-Silva, G., Lei, R., Cheng, L., Jerry Chen, G., Ching, K., Hu, T., Mei, Y.,
Wilfong, K., Shetty, R., Yilmaz, S., Banerjee, A., Heintz, B., Iyer, S., and Jaiswal, A.
(2018). Providing Streaming Joins as a Service at Facebook. International Conference
on Very Large Database Endowment, 11(12):1809–1821.

[102] Jacques-Slva, G., Drebes, R. J., Gerchman, J., Trindade, J. M. F., Weber, T. S., and
Jansch-Pôrto, I. (2006). A Network-Level Distributed Fault Injector for Experimental
Validation of Dependable Distributed Systems. International Computer Software and
Applications Conference, 1:421–428.

[103] Jain, R. (1991). The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. Wiley-Interscience,
New York, NY, April 1991.

https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.itu.int/rec/T-REC-Z.120
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://www.iotivity.org/

References 197

[104] Jamshidi, P., Sharifloo, A. M., Pahl, C., Metzger, A., and Estrada, G. (2015). Self-
Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution. In International
Conference on Cloud and Autonomic Computing, pages 208–211.

[105] Jin, H., Li, D., Wu, S., Shi, X., and Pan, X. (2009). Live Virtual Machine Migration
With Adaptive Memory Compression. In IEEE International Conference on Cluster
Computing, pages 1–10.

[106] JVMTI (2018). Java Virtual Machine Tool Interface. [online] https://docs.oracle.
com/javase/7/docs/technotes/guides/jvmti/index.html, Last Accessed 08-11-2018.

[107] KAA (2018). Most Flexible IoT Platform. [online] http://www.kaaproject.org/,
Last Accessed 18-09-2018.

[108] Kalantarian, H., Sideris, C., Mortazavi, B., Alshurafa, N., and Majid, S. (2017).
Dynamic Computation Offloading for Low-Power Wearable Health Monitoring Systems.
IEEE Transactions and Biomedical Engineering, 64(3):621–628.

[109] Kao, W.-L. and Iyer, R. (1994). DEFINE: A Distributed Fault Injection and
Monitoring Environment. Workshop on Fault-Tolerant Parallel and Distributed Systems,
pages 252–259.

[110] Karimov, J., Rabl, T., Katsifodimos, A., Samarev, R., Heiskanen, H., and Markl, V.
(2018). Benchmarking Distributed Stream Processing Engines. Computing Research
Repository (CoRR).

[111] Kemp, R., Palmer, N., Kielmann, T., and Bal, H. (2010). Cuckoo: A Computa-
tion Offloading Framework for Smartphones. In International Conference on Mobile
Computing, Applications, and Services, pages 59–79.

[112] Kempf, T., Karuri, K., and Gao, L. (2007). Software instrumentation. Wiley
Encyclopedia of Computer Science and Engineering, pages 1–11.

[113] Kooli, M. and Di Natale, G. (2014). A Survey on Simulation-Based Fault Injection
Tools for Complex Systems. In 9th IEEE International Conference on Design and
Technology of Integrated Systems in Nanoscale Era.

[114] Kramer, J., Yang, Y., Cammert, M., Seeger, B., and Papadias, D. (2006). Dynamic
Plan Migration for Snapshot-Equivalent Continuous Queries in Data Stream Systems.
Current Trends in Database Technology, 4254:497–516.

[115] Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A distributed messaging
system for log processing. In International Workshop on Networking Meets Databases,
pages 1–7.

[116] Ksentini, A., Taleb, T., Chen, M., and Symposium, M. (2014). A Markov Decision
Process-Based Service Migration Procedure for Follow Me Cloud. In IEEE International
Conference on Communications, pages 1350–1354.

[117] Kumar, M. and Singh, C. (2017). Building Data Streaming Applications with Apache
Kafka. Packt Publishing Ltd., Birmingham.

https://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/index.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/index.html
http://www.kaaproject.org/

198 References

[118] Kura. Eclipse Kura. https://www.eclipse.org/kura/. [Online; Last Accessed 17-10-
2018].

[119] Kura. MQTT Namespace Guidelines. https://eclipse.github.io/kura/ref/
mqtt-namespace.html. [Online; Last Accessed 15-05-2018].

[120] Kwon, S. and Noh, J. (2013). Implementation of Monitoring System for Cloud
Computing. International Journal of Modern Engineering Research, 3:1916 – 1918.

[121] Lei, Z., Sun, E., Chen, S., Wu, J., and Shen, W. (2017). A Novel Hybrid-Copy
Algorithm for Live Migration of Virtual Machine. Future Internet, 9(3):37.

[122] Li, F., Claessens, M., Vögler, M., and Dustdar, S. (2013a). Towards Automated
IoT Application Deployment by a Cloud-based Approach. In IEEE 6th International
Conference on Service-Oriented Computing and Applications, pages 61–68.

[123] Li, F., Vögler, M., Claessens, M., and Dustdar, S. (2013b). Efficient and Scalable
IoT Service Delivery on Cloud. In Proceedings of IEEE Intenational Conference on
Cloud Computing (CLOUD’2013), pages 740–747.

[124] Lightbend (2018). Microservices in Production. [online] https://info.lightbend.com/
rs/558-NCX-702/images/COLL-white-paper-microservices-conductr.pdf, Last Accessed
20-04-2018.

[125] Lindemann, T., Kauke, J., and Teubner, J. (2018). Efficient Stream Processing of
Scientific Data. In International Conference on Data Engineering Workshops.

[126] Lopez, M. A., Lobato, A. G. P., and Duarte, O. C. M. (2016). A performance
comparison of open-source stream processing platforms. In Global Communications
Conference, pages 1–6.

[127] Luckham, D. C. (2001). The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[128] Ma, L., Yi, S., and Li, Q. (2017). Efficient Service Handoff Across Edge Servers via
Docker Container Migration. In ACM/IEEE Symposium on Edge Computing, pages
1–13.

[129] Machen, A., Wang, S., Leung, K. K., Ko, B. J., and Salonidis, T. (2018). Live Service
Migration in Mobile Edge Clouds. IEEE Wireless Communications, 25(1):140–147.

[130] Madeira, H., Rela, M., Moreira, F., and Silva, J. (1994). RIFLE: A General Purpose
Pi-Level Fault Injector. In Dependable Computing, volume 852, pages 199–216.

[131] Mai, L., Kuppa, V., Dhulipalla, S., Rao, S., Zeng, K., Potharaju, R., Xu, L., Suh,
S., Venkataraman, S., Costa, P., Kim, T., and Muthukrishnan, S. (2018). Chi: A
Scalable and Programmable Control Plane for Distributed Stream Processing Systems.
In International Conference on Very Large Data Base Endowment, volume 11, pages
1303–1316.

https://www.eclipse.org/kura/
https://eclipse.github.io/kura/ref/mqtt-namespace.html
https://eclipse.github.io/kura/ref/mqtt-namespace.html
https://info.lightbend.com/rs/558-NCX-702/images/COLL-white-paper-microservices-conductr.pdf
https://info.lightbend.com/rs/558-NCX-702/images/COLL-white-paper-microservices-conductr.pdf

References 199

[132] Maia, R., Henriques, L., Costa, D., and Madeira, H. (2002). Xception™-Enhanced
Automated Fault-Injection Environment. In International Conference on Dependable
Systems and Networks.

[133] Malik, A. and Om, H. (2018). Cloud computing and internet of things integration:
Architecture, applications, issues, and challenges. In Sustainable Cloud and Energy
Services, pages 1–24. Springer.

[134] Martins, E., Rubira, C. M., and Leme, N. G. (2002). Jaca: A Reflective Fault
Injection Tool Based on Patterns. In International Conference on Dependable Systems
and Networks, pages 483–487.

[135] Meera, A. and Swamynathan, S. (2013). Agent Based Resource Monitoring System
in IaaS Cloud Environment. In First International Conference on Computational
Intelligence: Modeling Techniques and Applications, volume 10, pages 200 – 207.

[136] Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing. Computer
Security Division, Information Technology Laboratory,National Institute of Standard
and Technology.

[137] Merkel, D. (2014). Docker: Lightweight Linux Containers for Consistent Development
and Deployment. Linux Journal, 2014(239):2.

[138] Min, D., Xiao, Z., Sheng, B., Quanyong, H., and Xuwei, P. (2014). Design and
Implementation of Heterogeneous IOT Gateway Based on Dynamic Priority Scheduling
Algorithm. Transactions of the Institute of Measurement and Control, 36(7):924–931.

[139] Mohamed, S., Forshaw, M., and Thomas, N. (2017a). Automatic Generation of
Distributed Runtime Infrastructure for Internet of Things. In International Conference
on Software Architecture Workshops, pages 100–107.

[140] Mohamed, S., Forshaw, M., Thomas, N., and Dinn, A. (2017b). Performance and
Dependability Evaluation of Distributed Event-based Systems. In 8th ACM/SPEC on
International Conference on Performance Engineering, pages 349–352.

[141] MongoDB (2017). Deploy a fully managed cloud database in minutes. [online]
http://www.mongodb.com/, Last Accessed 02-11-2017.

[142] Mukherjee, M., Adhikary, I., Mondal, S., Mondal, A. K., Pundir, M., and Chowdary,
V. (2017). A vision of IoT: Applications, Challenges, and Opportunities with Dehradun
Perspective.

[143] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi, M.
(2013). Naiad: A Timely Dataflow System. In ACM Symposium on Operating Systems
Principles, pages 439 – 455.

[144] MyDevices (2018). Finished IoT Solutions - Turnkey or Fully Customizable. [online]
https://www.mydevices.com/, Last Accessed 18-09-2018.

[145] N, P. E., Mulerickal, F. J. P., Paul, B., and Sastri, Y. (2015). Evaluation of Docker
Containers Based on Hardware Utilization. In International Conference on Control
Communication Computing, pages 697–700.

http://www.mongodb.com/
https://www.mydevices.com/

200 References

[146] Nadgowda, S., Suneja, S., Bila, N., and Isci, C. (2017). Voyager: Complete Container
State Migration. In International Conference on Distributed Computing Systems, number
Section III, pages 2137–2142.

[147] Natella, R., Cotroneo, D., Duraes, J. A., and Madeira, H. S. (2013). On Fault Repre-
sentativeness of Software Fault Injection. IEEE Transactions on Software Engineering,
39(1):80–96.

[148] Natella, R., Cotroneo, D., and Madeira, H. S. (2016). Assessing Dependability with
Software Fault Injection. ACM Computing Surveys, 48(3):1–55.

[149] Nelson, M., Lim, B.-H., Hutchins, G., et al. (2005). Fast transparent migration
for virtual machines. In USENIX Annual Technical Conference, General Track, pages
391–394.

[150] Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010). S4: Distributed Stream
Computing Platform. In IEEE International Conference on Data Mining, pages 170–177.

[151] Noghabi, S. A., Paramasivam, K., Pan, Y., Ramesh, N., Bringhurst, J., Gupta, I.,
and Campbell, R. H. (2017). Samza: Stateful Scalable Stream Processing at LinkedIn.
In International Conference on Very Large Databases, pages 1634–1645.

[152] OASIS (2018). OASIS Standard. [online] http://docs.oasis-open.org/mqtt/mqtt/v3.
1.1/os/mqtt-v3.1.1-os.html, Last Accessed 07-05-2018.

[153] OpenIoT (2018). The Open Source Internet of Things. [online] https://github.com/
OpenIotOrg/openiot, Last Accessed 10-12-2018.

[154] OSGi Alliance (2018). The Dynamic Module System for Java. [online] https:
//www.osgi.org/, Last Accessed 20-03-2018.

[155] Ottenwälder, B., Koldehofe, B., Rothermel, K., and Ramachandran, U. (2013).
MigCEP: Operator Migration for Mobility Driven Distributed Complex Event Processing.
In ACM International Conference on Distributed Event-Based Systems, pages 183–194.

[156] Parallels (2018). Run Windows on your Mac. [online] https://www.parallels.com/uk/,
Last Accessed 29-12-2018.

[157] Pham, T. N., Katsipoulakis, N. R., Chrysanthis, P. K., and Labrinidis, A. (2017).
Uninterruptible Migration of Continuous Queries Without Operator State Migration.
ACM International Conference on Management of Data, Record, 46(3):17–22.

[158] Pietrantuono, R., Russo, S., and Trivedi, K. (2015). Emulating Environment-
Dependent Software Faults: Position Paper. In International Workshop on Complex
Faults and Failures in Large Software Systems, pages 34–40.

[159] Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., and Seltzer,
M. (2006). Network-Aware Operator Placement for Stream Processing Systems. In
International Conference on Data Engineering, volume 2006, page 49.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://github.com/OpenIotOrg/openiot
https://github.com/OpenIotOrg/openiot
https://www.osgi.org/
https://www.osgi.org/
https://www.parallels.com/uk/

References 201

[160] Puliafito, A., Celesti, A., Villari, M., and Fazio, M. (2015). Towards the Integration
Between IoT and Cloud Computing: An Approach for the Secure Self-Configuration of
Embedded Devices. International Journal of Distributed Sensor Networks, 11(12):286860.

[161] Rao, B. B. P., Saluia, P., Sharma, N., Mittal, A., and Sharma, S. V. (2012). Cloud
Computing for Internet of Things and Sensing Based Applications. In Sixth International
Conference on Sensing Technology, pages 374–380.

[162] ReactiveManifesto (2018). The Reactive Manifesto. [online] http://www.
reactivemanifesto.org/, Last Accessed 25-05-2018.

[163] Rosário, D., Schimuneck, M., Camargo, J., Nobre, J., Both, C., Rochol, J., and
Gerla, M. (2018). Service Migration From Cloud to Multi-tier Fog Nodes for Multimedia
Dissemination With QoE Support. Sensors, 18(2):1–17.

[164] Rose, K., Eldridge, S., and Chapin, L. (2015). The Internet of Things: An Overview.
Understanding the Issues and Challenges of a More Connected World. The Internet
Society, (October):80.

[165] Rossi, F. D., de Oliveira, I. C., De Rose, C. A., Calheiros, R. N., and Buyya, R.
(2015). Non-Invasive Estimation of Cloud Applications Performance via Hypervisor’s
Operating Systems Counters. In International Conference on Networks, pages 177–184.

[166] Rundensteiner, E. A., Ding, L., Zhu, Y., Sutherland, T., and Pielech, B. (2005). Cape:
A constraint-aware adaptive stream processing engine. In Stream Data Management,
pages 83–111. Springer.

[167] Sahni, S. and Varma, V. (2012). A Hybrid Approach to Live Migration of Virtual
Machines. In IEEE International Conference on Cloud Computing in Emerging Markets,
pages 1–5.

[168] Santos, J., Rodrigues, J. J., Silva, B. M., Casal, J., Saleem, K., and Denisov, V.
(2016). An IoT-Based Mobile Gateway for Intelligent Personal Assistants on Mobile
Health Environments. Journal of Network and Computer Applications, 71:194–204.

[169] Sattler, K. U. and Beier, F. (2013). Towards Elastic Stream Processing: Patterns
and Infrastructure. In Cental Europe (CEUR) Workshop Proceedings, volume 1018,
pages 49–54.

[170] Satyanarayanan, M. (2013). Cloudlets: At the Leading Edge of Cloud-Mobile
Convergence. In International ACM SIGSOFT Conference on Quality of Software
Architectures, pages 1–2.

[171] Satyanarayanan, M., Bahl, P., Cáceres, R., and Davies, N. (2009). The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4):14–23.

[172] Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., and Ottenwälder, B. (2016).
Incremental Deployment and Migration of Geo-distributed Situation Awareness Appli-
cations in the Fog. In ACM International Conference on Distributed and Event-based
Systems, pages 258–269.

http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/

202 References

[173] Schleicher, J., Vögler, M., Christian, I., and Dustdar, S. (2015). Smart Fabric -
An Infrastructure-Agnostic Artifact Topology Deployment Framework. IEEE Software,
32(2):42–49.

[174] Schultz-Møller, N. P., Migliavacca, M., and Pietzuch, P. (2009). Distributed Com-
plex Event Processing With Query Rewriting. In ACM International Conference on
Distributed Event Based Systems, page 1.

[175] Seitz, N. (2003). ITU-T QoS Standards for IP-Based Networks. IEEE Communica-
tions Magazine, 41(6):82–89.

[176] Servioticy (2018). Servioticy. [online] https://github.com/servioticy/servioticy, Last
Accessed 13-07-2018.

[177] Shukla, A., Chaturvedi, S., and Simmhan, Y. (2017). RIoTBench: An IoT Benchmark
for Distributed Stream Processing Systems. Concurrency and Computation: Practice
and Experience, 29(21):e4257.

[178] Sieh, V., Tschache, O., and Balbach, F. (1997). VERIFY: Evaluation of Reliabil-
ity Using VHDL-Models With Embedded Fault Descriptions. In 27th International
Symposium on Fault-Tolerant Computing, pages 32–36.

[179] Singh, D., Tripathi, G., and Jara, A. J. (2014). A Survey of Internet-of-Things:
Future Vision, Architecture, Challenges and Services. In IEEE World Forum on Internet
of Things, pages 287–292.

[180] Singh, S. and Singh, N. (2012). Big Data analytics. In International Conference on
Communication, Information Computing Technology, pages 1–4.

[181] Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and Peterson, L. (2007).
Container-Based Operating System Virtualization: A Scalable, High-Performance Alter-
native to Hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages
275–287. ACM.

[182] Song, N., Qin, J., Pan, X., and Deng, Y. (2011). Fault Injection Methodology and
Tools. In International Conference on Electronics and Optoelectronics, volume 1, pages
47–50.

[183] Soni, G. and Kalra, M. (2013). Comparative Study of Virtual Machine Migration
Techniques and Challenges in Post Copy Live Virtual Machine Migration. International
Journal of Computer Applications, 84(14):19–25.

[184] Stankovski, V., Trnkoczy, J., Taherizadeh, S., and Cigale, M. (2016). Implementing
Time-critical Functionalities with a Distributed Adaptive Container Architecture. In
18th International Conference on Information Integration and Web-based Applications
and Services, iiWAS ’16, pages 453–457. ACM.

[185] Stott, D., Floering, B., Burke, D., Kalbarczpk, Z., and Iyer, R. (2000). NFTAPE: A
Framework for Assessing Dependability in Distributed Systems with Lightweight Fault
Injectors. In IEEE International Computer Performance and Dependability Symposium,
pages 91–100.

https://github.com/servioticy/servioticy

References 203

[186] Sullivan, M. and Heybey, A. (1998). Tribeca: A System for Managing Large
Databases of Network Traffic. In USENIX Annual Technical Conference, pages 13–24.

[187] Suresh, S. and Rao, M. (2018). A Methodical Review Of Virtualization Techniques
In Cloud Computing. International Journal of Computing Science and Information
Technology, Special Issue, pages 2278–9669.

[188] Svard, P., Tordsson, J., Hudzia, B., and Elmroth, E. (2011). High Performance Live
Migration Through Dynamic Page Transfer Reordering and Compression. In IEEE
International Conference on Cloud Computing Technology and Science, pages 542–548.

[189] Swarm (2018). Swarm mode overview. [online] https://docs.docker.com/engine/
swarm/, Last Accessed 29-10-2018.

[190] Taherizadeh, S., Jones, A. C., Taylor, I., Zhao, Z., Martin, P., and Stankovski,
V. (2016). Runtime Network-Level Monitoring Framework in the Adaptation of Dis-
tributed Time-Critical Cloud Applications. In International Conference on Parallel and
Distributed Processing Techniques and Applications, page 78.

[191] Taherizadeh, S., Jones, A. C., Taylor, I., Zhao, Z., and Stankovski, V. (2018).
Monitoring Self-Adaptive Applications Within Edge Computing Frameworks: A State-
of-the-Art Review. Journal of Systems and Software, 136:19–38.

[192] Tan, T., Ma, R. T. B., Winslett, M., Yang, Y., Yu, Y., and Zhang, Z. (2013). Resa:
Realtime Elastic Streaming Analytics in the Cloud. In ACM International Conference
on Management of Data, volume 19, pages 1287–1288.

[193] Theodoridis, E., Mylonas, G., and Chatzigiannakis, I. (2013). Developing an IoT
Smart City Framework. In International Conference on Information, intelligence,
systems and applications, pages 180–185.

[194] Thermostat (2018). The powerful, free and open source instrumentation tool for
the Hotspot JVM. [online] http://icedtea.classpath.org/thermostat/, Last Accessed
15-02-2018.

[195] To, Q.-C., Soto, J., and Markl, V. (2018). A Survey of State Management in Big Data
Processing Systems. The International Journal on Very Large Databases, 27(6):847–872.

[196] Toshniwal, A., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D., Taneja, S., Shukla,
A., Ramasamy, K., Patel, J. M., Kulkarni, S., Jackson, J., Gade, K., and Fu, M. (2014).
Apache Storm. In ACM SIGMOD International Conference on Management of Data,
pages 147–156.

[197] Ubuntu Core (2018). Powering the next wave of smart IoT. [online] https://www.
ubuntu.com/core, Last Accessed 23-10-2018.

[198] UO (2018). Urban Observatory. [online] http://uoweb1.ncl.ac.uk/, Last Accessed
12-07-2018.

[199] Velte, A. and Velte, T. (2009). Microsoft Virtualization With Hyper-V. McGraw-Hill,
Inc.

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://icedtea.classpath.org/thermostat/
https://www.ubuntu.com/core
https://www.ubuntu.com/core
http://uoweb1.ncl.ac.uk/

204 References

[200] Vögler, M., Li, F., Claessens, M., Johannes, M. S., Sehic, S., Nastic, S., and Schahram,
D. (2015a). COLT: Collaborative Delivery of Lightweight IoT Applications. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, 150:265–272.

[201] Vögler, M., Schleicher, J., Inzinger, C., and Dustdar, S. (2015b). A Scalable
Framework for Provisioning Large-Scale IoT Deployments. ACM Transactions on
Internet Technology, pages 1 – 20.

[202] Vögler, M., Schleicher, J. M., Inzinger, C., Nickel, B., and Dustdar, S. (2016). Non-
Intrusive Monitoring of Stream Processing Applications. In International Conference of
Systems of Systems Engineering, pages 162–171.

[203] Waldspurger, C. A. (2002). Memory Resource Management in VMware ESX Server.
ACM SIGOPS Operating Systems Review, 36(SI):181.

[204] Wang, S., Urgaonkar, R., He, T., Zafer, M., Chan, K., and Leung, K. K. (2014).
Mobility-Induced Service Migration in Mobile Micro-Clouds. In IEEE Military Commu-
nications Conference, pages 835–840.

[205] Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., and Leung, K. K. (2015).
Dynamic Service Migration in Mobile Edge-Clouds. In IFIP Networking Conference
(IFIP Networking).

[206] Watson, J. (2008). Virtualbox: Bits and Bytes Masquerading as Machines. Linux
Journal, 2008(166):1.

[207] Wei, J., Thomas, A., Li, G., and Pattabiraman, K. (2014). Quantifying the Accuracy
of High-Level Fault Injection Techniques for Hardware Faults. In 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 375–382.

[208] Weiser, M. (1993). Ubiquitous computing. Computer, IEEE Computer Society Press,
26(10):71–72.

[209] Whitmore, A., Agarwal, A., and Da Xu, L. (2015). The internet of things—a survey
of topics and trends. Information Systems Frontiers, 17(2):261–274.

[210] Wu, S., Kumar, V., Wu, K.-L., and Ooi, B. C. (2012). Parallelizing Stateful Operators
in a Distributed Stream Processing System: How, Should You and How Much? In
ACM International Conference on Distributed Event-Based Systems, pages 278–289.

[211] Wu, Y. and Tan, K.-L. L. (2015). ChronoStream: Elastic Stateful Stream Computa-
tion in the Cloud. In International Conference on Data Engineering, pages 723–734.

[212] Xively (2018). Public Cloud for Internet of Things. [online] https://xively.com/,
Last Accessed 10-12-2018.

[213] Y. Al-Hazmi, K. C. and Magedanz, T. (2012). A Monitoring System for Federated
Clouds. In 1st International Conference on Cloud Networking (CLOUDNET).

[214] Yang, S. (2017). IoT Stream Processing and Analytics in the Fog. IEEE Communi-
cations Magazine, 55(8):21–27.

https://xively.com/

References 205

[215] Yang, Y., Rgen Krä Mer, J., Papadias, D., and Seeger, B. (2007). HybMig: A Hybrid
Approach to Dynamic Plan Migration for Continuous Queries. IEEE Transactions on
Knowledge and Data Engineering, 19(3).

[216] Yuriyama, M. and Kushida, T. (2010). Sensor-Cloud Infrastructure Physical: Phys-
ical Sensor Management with Virtualized Sensors on Cloud Computing. Computer
Science, IBM, pages 1–8.

[217] Yuriyama, M., Kushida, T., and Itakura, M. (2011). A New Model of Accelerating
Service Innovation with Sensor-Cloud Infrastructure. In Annual SRII Global Conference,
pages 308–314.

[218] Yuste, P., Ruiz, J. C., Lemus, L., and Gil, P. (2003). Non-Intrusive Software-
Implemented Fault Injection in Embedded Systems. In Latin-American Symposium on
Dependable Computing, pages 23–38.

[219] Zaharia, M., Chowdhury, M., Das, T., and Dave, A. (2012a). Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In 9th
USENIX Conference on Networked Systems Design and Implementation, pages 2–2.

[220] Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. (2012b). Discretized Streams:
An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters. In
USENIX conference on Hot Topics in Cloud Ccomputing, pages 10–10.

[221] Zhang, I., Denniston, T., Baskakov, Y., and Garthwaite, A. (2013). Optimizing VM
Checkpointing for Restore Performance in VMware ESXi. In USENIX Annual Technical
Conference, pages 1–12.

[222] Zhu, Y., Rundensteiner, E. A., and Heineman, G. T. (2004). Dynamic Plan Migration
for Continuous Queries Over Data Streams. In ACM International Conference on
Management of Data, pages 431–442.

[223] Ziade, H., Ayoubi, R., and Velazco, R. (2004). A Survey on Fault Injection Techniques.
The International Arab Journal of Information Technology, 1(2):171–186.

[224] Zookeeper (2018). Apache Zookeeper. [online] https://zookeeper.apache.org/, Last
Accessed 22-11-2018.

https://zookeeper.apache.org/

Appendix A

Deployment Template for Data

Stream Computation

Listing A.1: Deployment Plan for a computation with three operations

1 { "Computation":[

2 {"Operation":[

3 {"OP-ID":"001"},

4 {"source":"sensors",

5 "node":[

6 {"metadata":[

7 {"ID":"GW-01"},

8 {"type":"Raspberry PI"},

9 {"model":"B+"},

10 {"location":[

11 {"longitude":"54.977722"},

12 {"latitude":"-1.625544"}

13]}

14]},

15 {"softeware_stack":[

16 {"OS":"Raspbean"},

17 {"libraries":"Java, OSGi, Kura"}

208 Deployment Template for Data Stream Computation

18]},

19 {"resources":[

20 {"CPU":"1.4GHz"},

21 {"memory":"1GB"}

22]}

23],

24 "task":[

25 {"Type":"deploy"},

26 {"binary":"filter.dp"},

27 {"Arguments":[

28 {"publish.topic":"temp-readings"},

29 {"publish.rate":"5"},

30 {"publish.qos":"2"}]

31 }],

32 "target":"MQTT broker" }

33]},

34 {"Operation":[

35 {"OP-ID":"002"},

36 {"source":"GW-01",

37 "node":[

38 {"metadata":[

39 {"ID":"DI-01"},

40 {"type":"Message broker"},

41 {"Protocol":"MQTT"},

42 {"location":"cloud"}

43]},

44 {"softeware_stack":[

45 {"OS":"Ubuntu 14.04"},

46 {"libraries":"Java"}

47]},

209

48 {"resources":[

49 {"CPU":"4VCPus"},

50 {"memory":"16GB"}

51]}

52],

53 "task":[

54 {"Type":"ingestion"},

55 {"binary":"mosquitto.jar"},

56 {"Arguments":[

57 {"topic":"temp-readings"}

58]

59 }],

60 "target":"VM-01" }

61]},

62

63 {"Operation":[

64 {"OP-ID":"003"},

65 {"data_in":"DI-01",

66 "node":[

67 {"metadata":[

68 {"ID":"VM-0001"},

69 {"type":"VM"},

70 {"location":"cloud"}

71]},

72 {"softeware_stack":[

73 {"OS":"Ubuntu 14.04"},

74 {"libraries":"Java, Docker"}

75]},

76 {"resources":[

77 {"CPU":"4VCPus"},

210 Deployment Template for Data Stream Computation

78 {"memory":"16GB"}

79]}

80],

81 "task":[

82 {"Type":"deploy"},

83 7 {"binary":"timeseries-forecast.jar"},

84 {"Arguments":[

85 {"suscribe.topic":"temp-readings"},

86 {"main.class":"forecast.Main"},

87 {"rdd.bachsize":"1"},

88 {"spark.workers"5"}

89]

90 }],

91 "target":"DB"}

92]},

93

94 {"Placement":[

95 {"OP_ID":"001", "P_ID":"PI-1, PI-2"},

96 {"OP_ID":"002", "P_ID":"ActiveMQ" },

97 {"OP_ID":"003", "P_ID":"VM-1, VM-2, VM-3"}

98]}

99]}

100

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms

	1 Introduction
	1.1 Overview
	1.2 Research Problem
	1.3 Contributions
	1.4 Thesis Structure
	1.5 Related Publications

	2 Background
	2.1 Fundamentals of Data Stream Processing
	2.1.1 Stream Dataflows and Operators
	2.1.2 Data Stream Management Systems (DSMSs)

	2.2 Virtualisation
	2.2.1 Hyperviser-based Virtualisation
	2.2.2 Container-based Virtualisation

	2.3 IoT-cloud Integration
	2.4 Data Stream Operator Migration
	2.4.1 Improved Pause-Drain-Resume
	2.4.2 Parallel Processing of Events During Migration
	2.4.3 Checkpointing and Restore

	3 IoT Application Deployment and Management
	3.1 Introduction
	3.2 Related Work
	3.3 IoT Application Deployment and Management Challenges
	3.3.1 Resource Imbalance
	3.3.2 Reactive Systems
	3.3.3 Automation

	3.4 Modelling of Stream Computation Deployment
	3.4.1 Data Processing Model
	3.4.2 Computation Deployment Model
	3.4.3 Example Use Case: Stream computation deployment modelling.
	3.4.4 System Design

	3.5 Implementation Details
	3.5.1 Deployment Client
	3.5.2 Deployment Server

	3.6 Evaluation
	3.7 Conclusion
	3.7.1 Limitations
	3.7.2 Future Work

	4 Performance Evaluation of Distributed Event-based Systems
	4.1 Introduction
	4.2 Related Work
	4.2.1 Performance Evaluation of Distributed Event-based Systems
	4.2.2 Fault Injection

	4.3 Fault Injection Techniques
	4.3.1 Hardware Fault Injection
	4.3.2 Software-based Fault Injection
	4.3.3 Simulation-based Fault Injection
	4.3.4 Fault Injection Requirements

	4.4 Relevant Tools
	4.4.1 Byteman Agent
	4.4.2 Thermostat

	4.5 Design of Fault Injection Environment
	4.5.1 Fault Load
	4.5.2 Byteman Rules
	4.5.3 Test Scenario
	4.5.4 Test Coordinator
	4.5.5 Target System and its Execution Environment

	4.6 Evaluation
	4.6.1 Example scenario
	4.6.2 Experiments and Results

	4.7 Conclusion
	4.7.1 Future Work

	5 Dynamic Migration of Stateful Data Stream Operators
	5.1 Introduction
	5.2 Related Work
	5.2.1 Query Plan Migration
	5.2.2 Cloud-based Migration
	5.2.3 Operator Migration in Cloud-IoT Integration
	5.2.4 Computation Offloading
	5.2.5 Virtualisation-based Migration

	5.3 Challenges in Operator Migration
	5.4 System Model
	5.4.1 System Architecture

	5.5 General Migration Protocol
	5.6 State Transfer
	5.6.1 State transfer Agorithms
	5.6.2 State Transfer Implementation

	5.7 Migration Related Metrics in DSMSs
	5.7.1 Performance and System Metrics
	5.7.2 Migration-induced Metrics

	5.8 Experimental Setup
	5.8.1 Data Stream Processing Workload
	5.8.2 Metrics Collection

	5.9 Experiments and Evaluation
	5.10 Conclusion

	6 Optimisation Technique for Data Stream Operator Migration
	6.1 Introduction
	6.2 System Model
	6.2.1 Migration Model
	6.2.2 System Architecture

	6.3 Migration Protocol
	6.4 Consistency Checking and Synchronisation Algorithms
	6.4.1 Consistency Checking
	6.4.2 Synchronisation Process
	6.4.3 Working Example
	6.4.4 Use Case

	6.5 Implementation Details
	6.5.1 Message Routing
	6.5.2 Serial Number Annotation
	6.5.3 Polling Consumer
	6.5.4 Producer and Consumer Redirection

	6.6 Experiments and Evaluation
	6.6.1 Results and Evaluation
	6.6.2 Summary of the Experimental Results

	6.7 Conclusion
	6.7.1 Future Work

	7 Conclusion
	7.1 Thesis Summary
	7.2 Limitations
	7.3 Future Research Directions
	7.3.1 Real-time Monitoring for Self-adapting IoT-cloud Infrastructure
	7.3.2 Preemptive Migration of Data Stream Operators

	References
	Appendix A Deployment Template for Data Stream Computation

