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Abstract 
 

Satellite imagery has the potential to monitor flooding across wide geographical 

regions. Recent launches have improved the spatial and temporal resolution of 

available data, with the European Space Agency (ESA) Copernicus programme 

providing global imagery at no end-user cost. Synthetic Aperture Radar (SAR) is of 

particular interest due to its ability to map flooding independent of weather conditions. 

Satellite-derived flood observations have real-world application in flood risk 

management and validation of hydrodynamic models. 

 

This thesis presents a workflow for estimating flood extent, depth and volume utilising 

ESA Sentinel-1 SAR imagery. Flood extents are extracted using a combination of 

change detection, variable histogram thresholding and object-based region growing. 

An innovative technique has been developed for estimating flood shoreline heights 

by combining the inundation extents with high-resolution terrain data. A grid-based 

framework is used to derive the water surface from the shoreline heights, from which 

water depth and volume are calculated. 

  

The methodology is applied to numerous catchments across the north of England 

that suffered from severe flooding throughout the winter of 2015-16. Extensive 

flooding has been identified throughout the study region, with peak inundation 

occurring on 29th December 2015. On this date, over 100 km2 of flooding is identified 

in the Ouse catchment, equating to a water volume of 0.18 km3. The SAR flood 

extents are validated against satellite optical imagery, achieving a Total Accuracy of 

91% and a Critical Success Index of 77%. The derived water surfaces have an 

average error of 3 cm and an RMSE of 98 cm compared to river stage 

measurements. 

 

The methods developed are robust and globally applicable, shown with an additional 

study along the Mackenzie River in Australia. The presented methodology, alongside 

the increased temporal resolution provided by Sentinel-1, highlights the potential for 

accurate, reliable mapping of flood dynamics using satellite imagery.  
 
Keywords: Flooding, Sentinel-1, Synthetic Aperture Radar, Change Detection, 

Terrain Analysis 
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[1] 
 

Chapter 1. Introduction 
 

1.1. Background 
Understanding the nature of flood events at a location is paramount for mitigating and 

adapting to the risk presented by the hazard (Rahman and Di, 2017). The exposure 

of populations and economic assets to flood risk has increased over the past 

decades, primarily due to expanding urbanisation alongside an increase in event 

magnitude and occurrence due to climate change (IPCC, 2012; Garschagen and 

Romero-Lankao, 2015). Between 1980 and 2013, global flood events caused over 

220,000 fatalities and economic losses exceeding $1 trillion (Winsemius et al., 2016). 

Reducing future flood risk in the context of increasing extreme events is vital for 

developing a more sustainable society (Wang et al., 2015). 

 

However, reliable data on the spatial occurrence of historical flood events can be 

difficult to obtain (Cunha et al., 2011). This is exacerbated by the variable nature of 

flooding. There are numerous sources of inundation, including pluvial (surface water), 

fluvial, groundwater, coastal (such as storm surges and tsunamis) and snowmelt 

events, each with different characteristics, including speed of onset, duration, 

predictability and scale of impacted locations. Flooding is a global phenomenon, 

underlined by the range of source mechanisms, and is widely considered the most 

common natural hazard (Stefanidis and Stathis, 2013; Below and Wallemacq, 2018). 

The Dartmouth Flood Observatory (DFO) collates and maps inundation events, with 

Figure 1.1 showing flood occurrence since 2000, totalling 3,129 events. Given the 

global nature of flooding, sufficient in-situ monitoring is considered geographically 

impractical and likely to be expensive, whilst nominally providing point measurements 

that have questionable use for understanding the dynamics of an event (Maheu et 

al., 2003; Alsdorf et al., 2007). Hydrodynamic models have been developed for most 

types of flooding, and simulations can output flood extent, depth and velocity 

information (Teng et al., 2017). However, there are natural and epistemic 

uncertainties with the development of hydrodynamic models that can reduce 

confidence in their outputs (Merz and Thieken, 2005).  
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Earth observation satellites provide data suitable for mapping a wide variety of 

environmental variables. Within a hydrological context, remote sensing imagery has 

been used to monitor surface water extent (Huang et al., 2018), soil moisture (Gao et 

al., 2017), wetlands (Muro et al., 2016) and snow cover (Snapir et al., 2019). 

Compared to in-situ measurements, the geographical coverage provided by satellite 

imagery significantly improves the potential for mapping wide-scale flooding. There 

are two types of satellite imagery, passive (for example multispectral, often referred 

to as optical) and active (such as Synthetic Aperture Radar (SAR)), both of which can 

delineate flooding. The ability of SAR to acquire imagery irrespective of weather 

conditions makes it the preferred choice for flood mapping (Alsdorf et al., 2007). 

Recent satellite launches have increased the quantity and quality of available data, 

improving the potential of monitoring the intricacies of dynamic environmental 

variables from space. A prime example is the European Space Agency (ESA) 

Copernicus programme, including the Sentinel-1 SAR satellite constellation, which 

provides global imagery every 1-3 days at no cost to the end user.  

 

Numerous algorithms have been developed for deriving flood extent from both optical 

and SAR imagery. For optical imagery, methods of detecting water normally involve 

indices using two or more spectral bands (McFeeters, 1996; Xu, 2006). SAR flood 

mapping is based around the identification of the specular reflection of the radar 

Figure 1.1. Centroid locations and impacted regions for floods between 2000 and 2018 
(n = 3129) recorded in the Dartmouth Flood Observatory (DFO) database. DFO records 

suggest there were over 390,000 fatalities from flooding during this period, with 
approximately 350 million people displaced. 
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signal off the theoretically flat water surface (Henderson and Lewis, 2008). Common 

techniques include histogram thresholding (Matgen et al., 2011), active contour 

models (Horritt et al., 2001) and change detection (Long et al., 2014). Despite the 

successes of SAR flood mapping using the above techniques, there are ongoing 

challenges in accurately and reliably delineating inundation in urban and woodland 

locations (Giustarini et al., 2013; Schumann and Moller, 2015). 

 

Alongside data on flood extent, information on water depth is important for managing 

flood risk during an event. Satellite altimetry can provide surface water height 

measurements, albeit with limited coverage and temporal resolution (Alsdorf et al., 

2007). Subsequently, flood depths are normally indirectly calculated based on 

combining the observed flood extents with terrain data (Cian et al., 2018a). The 

merging of two different sources of data often increases the uncertainty, accounting 

for which is shown to be vital for producing viable depths (Grimaldi et al., 2016).  

 

The successful delineation of multiple flood parameters has many uses within the 

flood management cycle. Near real-time flood mapping, such as that performed by 

the Copernicus Emergency Management Service (European Commission, 2019), 

provides valuable information to emergency services during an event. Satellite 

products are regularly used for validating hydrodynamic model results, alongside the 

potential for data assimilation to improve forecasting during an event (Grimaldi et al., 

2016). Additionally, satellite data has been used for post-event damage assessments 

and has helped inform flood risk mitigation and adaptation strategies (Bovolo and 

Bruzzone, 2007; Rahman and Di, 2017). 

 

The motivation behind this study is to make use of new satellite datasets to provide 

an improved understanding of flood dynamics. The increase in temporal resolution 

provided by Sentinel-1 will allow for improved mapping of changes in flood extent. 

Algorithms will be developed for estimating water depths that sufficiently account for 

the uncertainty produced by SAR flood mapping. The addition of water volume to the 

more commonly reported flood extent and water depth will provide greater insight into 

the evolution of longer duration flood events, whilst providing additional parameters 

for validating hydrodynamic models.  
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1.2. Aims and Objectives 
The overall aim of the project is to develop innovative algorithms for estimating flood 

dynamics using satellite SAR imagery and ancillary geospatial datasets. The multi-

temporal analysis of the results will highlight the improved understanding of flood 

extent, depth and volume throughout an event that recent satellite launches can 

provide, further advancing the capability of mapping and monitoring inundation. The 

work will thus provide: 

• An initial assessment of imagery from the recently launched Sentinel-1 SAR 

satellites for mapping inundation across large geographical areas. 

• Development of novel techniques for delineating water depth and volume 

based on the observed flood extent and terrain data. 

• Establish the potential for greater insight into the flood dynamics of an event 

with the increase in the temporal resolution of imagery. 

• Validation of results against multiple data sources to determine the strengths 

and limitations of the methodology.  

There are a number of objectives that will help the project aim to be achieved, 

detailed below. 

 

Objective 1: Delineating Flood Extent from SAR Imagery (Chapters 4 and 5) 
Flood extents will be extracted from Sentinel-1 SAR imagery using a hybrid 

approach. The goal is to utilise the relative strengths of various established 

processing algorithms to reduce the number of misclassifications in the final flood 

delineation. This will include an assessment of the available Sentinel-1 polarisations, 

both as single images for flood mapping, as well as the potential for a combined 

classification. A number of validation sources will be used to confirm the accuracy of 

the results, including Sentinel-1 optical imagery, aerial imagery and flood 

classifications from other SAR data.  

 
Objective 2: Calculating Water Surface, Depth and Volume (Chapter 6) 
The derived flood extents will be combined with high-resolution LiDAR terrain data to 

allow for an estimation of the water surface. From this, water depths and flood 

volumes will be calculated. This will allow for the multi-temporal analysis of flood 

dynamics to be undertaken. Some of the key challenges are how to account for 

uncertainty when combining the different datasets, including under-prediction of the 
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SAR flood extent and the difference in data resolution. Novel algorithms and 

concepts will be employed to account for the inherent uncertainty of the datasets and 

methodology. Water surfaces will be compared to in-situ gauge records to determine 

accuracy. 

 

Objective 3: Assess the Potential for Improved Understanding of Flood 
Dynamics (Chapters 4, 5, 6 and 8) 
The combination of improved temporal resolution provided by Sentinel-1 and the 

multiple flood characteristics calculated in Objectives 1 and 2 will allow for greater 

insight into the changing dynamics of a flood event. The methodologies will be 

applied to the extensive, prolonged flooding associated with 2015-16 UK winter storm 

season. Results will be compared to in-situ gauge data and precipitation records. The 

improved understanding of the temporal changes in flood hydrology will be assessed, 

providing answers to questions of whether the improved Sentinel-1 acquisition rate is 

sufficient, or if multi-satellite constellations are required to fully monitor and 

understand the life-cycle of a flood. 

 
Objective 4: Confirm the Global Applicability of Algorithms (Chapters 7 and 8) 
One of the advantages of satellite data is the ability to monitor the environment 

anywhere on the planet. Subsequently, flood mapping algorithms should be 

geographically robust and produce similar levels of accuracy irrespective of the flood 

location. This will be tested by applying the final algorithms to an additional case 

study away from the main UK event analysed for the other objectives. This includes 

the assessment of globally available terrain datasets within the context of estimating 

water depths and volumes using the workflow developed for Objective 2. 

 

1.3. Thesis Structure  
Following this introduction, Chapter 2 will provide a review of the current academic 

literature, including a brief overview of flood hazards, remote sensing platforms and 

sensors, before more detail is given on SAR processing for flood extent mapping and 

current algorithms for deriving water depth. Chapter 3 provides details on SAR 

acquisition parameters, introduces the Sentinel-1 data acquisition, and describes the 

SAR pre-processing undertaken to produce analysis-ready data. Chapter 4 provides 

an initial assessment of Sentinel-1 based flood mapping, analysing the changing 
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inundation extents throughout the winter of 2015-16 for a small region south of York, 

UK. This chapter has been published in the Journal of Flood Risk Management. 

Chapter 5 expands and improves on the methodology used in the previous chapter, 

before mapping flood extents across numerous catchments in northern England over 

a three month period. Chapter 6 presents an algorithm for estimating water surfaces, 

depths and volumes based on satellite-derived flood extent and high-resolution 

LiDAR terrain data, with results presented for the Ouse and Aire catchments in the 

UK. Chapter 7 presents an international application of the algorithms from Chapters 5 

and 6, analysing the inundation caused by Tropical Cyclone Debbie along the 

Mackenzie River in Queensland, Australia. Lower-resolution global terrain models 

are used in place of the LiDAR dataset used in Chapter 6, providing an 

understanding of how the algorithms perform across multiple resolutions of terrain 

data. Finally, Chapter 8 provides commentary on the dynamics of the 2015-16 UK 

winter floods, discusses the strengths and limitations of the developed algorithms 

and SAR flood mapping, before highlighting potential avenues for future work.
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Chapter 2. Satellite Remote Sensing and Flooding 
 

2.1. Introduction to Flooding: Sources and Impacts  
Many natural hazards, such as earthquakes and volcanoes, only occur in certain 

locations due to their geological setting. Floods, however, are a global hazard, driven 

by the numerous different source mechanisms that can cause an event. The 

Intergovernmental Panel on Climate Change (IPCC) defines flooding as “The 

overflowing of the normal confines of a stream or other body of water or the 

accumulation of water over areas that are not normally submerged” (IPCC, 2012). 

The Centre for Research on the Epidemiology of Disasters (CRED) publishes annual 

reports analysing the occurrence and impact of natural disasters. Figure 2.1 shows 

how disasters in 2017 compared to the average from the previous decade (Below 

and Wallemacq, 2018). The data shows that between 2007 and 2016, floods were 

the most common natural disaster with an average of 162 major events recorded per 

year. Impacts include an average of 5,553 deaths per year, whilst affecting 85 million 

people per annum, more than any other hazard. Average economic losses from flood 

events are shown to be in the region of $36.7 billion per year.  

 

There are numerous different sources of flooding, each with its own characteristics in 

terms of flashiness (speed of onset), magnitude, duration, predictability and 

monitoring potential. The primary focus will be fluvial, surface water (pluvial) and 

groundwater events, due to their prevalence both in the UK and globally. Heavy or 

prolonged precipitation is often the main cause of these types of event, which can 

result in multi-source flooding, where two or more of these sources are active at a 

single time. Fluvial flood events occur when the stage of a river rises above the 

height of the banks that normally constrain it, resulting in the inundation of the 

floodplain. Surface water flooding occurs when the precipitation inputs are greater 

than the land surface’s potential to store or transport the water, resulting in localised 

inundation. Groundwater inundation is common after prolonged rainfall which leads 

to an increase in the height of the water table, which upon reaching the surface 

causes flooding as the water pools. Other types of flooding, such as those from 

snowmelt, storm surges and tsunamis, or from a reservoir or dam failure, can often 

be challenging to manage due to events being unpredictable, large in magnitude, and 

in some cases located in remote regions. 
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As well as the characteristics of the precipitation event, the size, gradient and land 

cover of a river catchment can also impact flood event characteristics. Anthropogenic 

land-use change can often increase the frequency and magnitude of an event. 

Deforestation in upper catchments can decrease infiltration rates and water storage 

potential, whilst creating faster transport pathways (Owrangi et al., 2014). 

Urbanisation and the replacement of natural land cover with impenetrable surfaces 

alter the storage and runoff properties by reducing infiltration and increasing surface 
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Figure 2.1. CRED statistics comparing the impacts of different natural hazards. From 
top, disaster occurrence, fatalities, people impacted (millions) and economic losses 

(billions US$). Data is shown for 2017, and a yearly average from data between 2007 
and 2016. Adapted from Below and Wallemacq (2018). 



[9] 
 

runoff (Miller et al., 2014). Both mechanisms result in water moving faster into the 

river network, either by overland flow or via man-made culverts and sewer systems, 

which subsequently increases the peak flows whilst reducing the lag time (Huang et 

al., 2008; Braud et al., 2013).  

 

Flood risk is made up of three components; the probability and characteristics of a 

flood event, the exposure of a population and assets to the hazard, and the 

vulnerability of the community and its ability to cope with the impacts during and after 

the event (Jongman et al., 2012). Urbanisation can increase exposure to flooding by 

locating a population, services and businesses in flood-prone regions (Güneralp et 

al., 2015). However, attempts to mitigate flood risk by engineering resilience into 

urban areas and infrastructure makes the concept of risk a complex one to quantify 

(Winsemius et al., 2016). Figure 2.2 shows exposure to flood events for selected 

countries, both in terms of people and economic assets, expressed as absolute 

values compared to relative proportions (Peduzzi et al., 2009; Kundzewicz et al., 

2014). The relationship between relative cost and the absolute cost is not linear 

(Winsemius et al., 2016). For example, in China the absolute costs for both people 

and GDP are high, but as a relative percentage for the country as a whole the values 

look less severe. Conversely, in Guyana, the absolute totals are lower, but the 

proportion affected is higher (Kundzewicz et al., 2014). Generally, the more 

economically developed a country is, the greater it’s potential to mitigate against 

flood risk. In Japan, 9% of the landmass is flood-prone, and due to urbanisation 41% 

of the country’s population and 65% of their national assets are located in these 

regions. However, flood defences mean that exposure is low (Kundzewicz et al., 

2014).  

 

2.1.1. Floods and Climate Change 
A commonly highlighted likely impact of climate change is the increase in extreme 

weather events, including prolonged temperature extremes and more intense rainfall 

events (Orlowsky and Seneviratne, 2012; Fischer and Knutti, 2015). There is 

evidence to suggest that this may subsequently increase the occurrence and severity 

of hydrological hazards, such as droughts and floods (Trenberth, 2011; Arnell and 

Gosling, 2016). A special report was produced in 2012 by the IPCC, titled “Managing 

the Risks of Extreme Events and Disasters to Advance Climate Change Adaption” 

(IPCC, 2012). The report, summarised by Kundzewicz et al. (2014), evaluated the 
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previous research in the literature linking climate change to the spatial and temporal 

pattern of extreme weather and flood events. The authors provide analysis and 

conclusions on the likelihood of climate change-induced alterations in extreme 

weather and subsequent hydrological hazards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the main challenges when assessing climate change impacts is accounting 

for a large amount of uncertainty within the analysis and predictions (Kay et al., 2009; 

Arnell and Gosling, 2016). For example, translating any observed trends in 

precipitation into river flow and changes in flood characteristics is difficult due to the 

lack of in-situ data to substantiate any such relationship, both spatially and temporally 

(Kundzewicz et al., 2014). Based on the evidence the IPCC considered, they report 

that some regions have seen a significant increase in extreme precipitation events, 

concluding that it is likely that this trend will continue, particularly in high latitudes and 

northern mid-latitudes during winter (Trenberth, 2011; IPCC, 2012). Despite the 

predicted increase in extreme events, mean precipitation appears likely to decrease, 

continuing the trend of reducing streamflow into the oceans over the past 60 years 

(Dai et al., 2009; Trenberth, 2011; Madsen et al., 2014). This has the potential to 

create complex water management issues, with regions being exposed to both flood 

events and water scarcity (Prudhomme et al., 2014; Schewe et al., 2014). The report 

also notes that there has been an increase in reported flood disasters and associated 

social and economic impacts over the last 20 years (Milly et al., 2002). However, a 

Figure 2.2. The number of people (left) and assets (right) exposed to flooding each year 
for selected countries, expressed as absolute values against relative values. Originally 

published in Kundzewicz et al. (2014), using data from Peduzzi et al. (2009). 
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portion of this change can likely be attributed to improved reporting of events, as well 

as increased risk to people and infrastructure caused by the urbanisation of flood-

prone regions (Peduzzi et al., 2009; Güneralp et al., 2015). Assessing how climate 

change is going to impact flood risk means combining the uncertainties that come 

from climate change projections with those from predicting future patterns in 

population movement and economic growth (Jongman et al., 2012).  

 
2.2. Remote Sensing and Environmental Monitoring 
Remote sensing can be defined as the acquisition of data for the analysis of the 

environment using a device that is not in contact with the object or region being 

studied (Lillesand et al., 2008). Platforms that provide remote sensing datasets 

include satellites, aircraft, unmanned aerial vehicles (UAVs) and ground-based 

monitoring. The types of data produced are numerous, many of which are available 

across all platforms. These include: multispectral (often referred to as optical) 

imagery; thermal imagery; microwave radar (Radio Detection and Ranging) and 

LiDAR (Light Detection and Ranging), both of which can be used for height 

estimation (altimetry) or image creation (Synthetic Aperture Radar); positional data 

such as GPS; and measurements of earth’s gravity and magnetic fields. The wide 

variety of remote sensing data types available allow for aspects of the atmosphere, 

biosphere, cryosphere, hydrosphere, marine environments and urban areas to be 

monitored and researched. As well as analysing environmental conditions, remote 

sensing data has also been used to help create, calibrate and validate physical 

models of the environment.  

 

2.2.1. Sensor Platform 
Two of the main parameters which determine a sensor’s ability to successfully 

monitor the environment are the spatial resolution of the data and the temporal 

coverage provided. Based purely on these, it can be argued that aerial and UAV 

imagery provides greater reliability for environmental mapping and analysis due to 

the high resolution provided, and the ability to schedule acquisition (Yu and Lane, 

2006; Yan et al., 2015). However, data collection can be expensive and weather 

dependent (Grimaldi et al., 2016). Satellites can provide moderate to high spatial 

resolution data, often at no cost to the end-user. Temporal and spatial resolutions 

vary and are strongly linked, with higher spatial resolution available at the expense of 

temporal coverage (Di Baldassarre et al., 2011; Yan et al., 2015). This has led to the 
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development and launch of satellite constellations, with multiple satellites allowing for 

improved temporal coverage whilst maintaining higher spatial resolutions (Martinis 

and Rieke, 2015; Yan et al., 2015). Compared to aerial imagery, satellites provide 

coverage across a wider geographical area, with swaths up to hundreds of kilometres 

in length and width. Furthermore, data is readily available over the internet, reducing 

the requirements for expertise in planning data acquisition from aerial platforms. Due 

to the operational advantage of satellite data, only datasets captured on these 

platforms will be discussed henceforth. 

 

2.2.2. ESA Copernicus Programme and the Sentinels 
In 2014 the European Commission (EC) and the European Space Agency (ESA) 

started the Copernicus programme as a natural successor to the Global Monitoring 

for Environment and Security (GMES) programme. The aim for Copernicus was to 

launch and operate a series of earth observation satellites, known as the Sentinels, 

providing timely and easily accessible data for the monitoring of the natural and built 

environment. Services are designed to support activities across six key thematic 

areas: land, marine, atmosphere, climate, emergency and security (Copernicus, 

2019). Within these themes, Copernicus data has been used to support a wide 

variety of research and services undertaken by policymakers, public authorities and 

academia. 

 

Currently, there are six operational or planned missions, all of which contain multiple 

satellites. Data types from these missions include SAR imagery (Sentinel-1), 

multispectral imagery (Sentinel-2), radar altimetry (Sentinel-3 and 6) and atmospheric 

monitoring (Sentinel-4 and 5). The first of the satellites was launched in April 2014 

(Sentinel-1a), with two satellite constellations currently in orbit for Sentinel-1, 2 and 3, 

and a single satellite for both Sentinel-5 and 6. The current long-term goal for 

Copernicus is to have up to four satellites in orbit for each of the Sentinel missions, 

totalling 20 satellites across Copernicus, providing regular acquisitions for each of the 

different data types (Copernicus, 2019). 

 

All of the data produced by the Copernicus programme is free to use, and can be 

downloaded by the Copernicus Scihub portal. In their annual report for 2018, 

Copernicus state that there are 185,000 registered users, with 23,000 new products 

made available each day, resulting in a total of 13 million products available 
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(Copernicus, 2018). The provision of freely available Earth observation data has 

wide-ranging benefits across multiple sectors; It is estimated that between €16.2 and 

€21.3 billion has been generated as economic benefits from the Copernicus 

programme since 2008, far eclipsing the €8.2 billion invested by the European 

Commission (Copernicus, 2019). Amongst the societal and environmental impacts 

championed are the reduction in casualties from natural disasters, improvements in 

food security, and higher accuracy when monitoring environmental protection 

compliance (Copernicus, 2019). A Web of Science search shows the number of 

articles with either Sentinel-1, 2 or 3 in their title totals 1,307 between 2014 and 2019, 

showing a high usage of Sentinel data within academia. Furthermore, this is 

increasing annually, from 75 publications in 2015 to 459 in 2018.  

 

2.2.3. Satellite Imagery and Flood Monitoring 
There are two main classes of sensor that acquire satellite imagery: passive sensors, 

which includes multispectral, hyperspectral (both often referred to as optical) and 

thermal imagery; and active sensors, such as Synthetic Aperture Radar (SAR). A 

comparison between multispectral and SAR imagery is provided in Figure 2.3. A list 

of multispectral and SAR imaging satellites, along with the main acquisition 

parameters, can be found in Table 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Figure 2.3. Comparison between multispectral (Sentinel-2, left) and SAR (Sentinel-1, 
right) satellite imagery for Newcastle-upon-Tyne, UK. 
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Satellite Agency Years Active Ground Resolution (m) Revisit (Days Polarisation Band Cost/Scene (US$) - Archive Cost/Scene (US$) - New

ERS-1 ESA 1991 - 2000 25 35 VV C Free ---

ERS-2 ESA 1995 - 2011 25 35 VV C Free ---

JERS 1 JAXA 1992 - 1998 18 44 HH L Free ---

RADARSAT-1 CSA 1995 - 2013 8 - 100 24 HH C 1,155 (pre-2008), 2,770 - 3,465 (post-2008) ---

RADARSAT-2 CSA 2007 onwards 3 - 100 24 Full C 2,770 - 6,000 2,770 - 6,000

ENVISAT-ASAR ESA 2002 - 2012 30 - 1000 35 Single/Dual C Free ---

ALOS-PALSAR JAXA 2006 - 2012 10 - 100 46 Single/Dual L Free - 44 ---

ALOS-PALSAR-2 JAXA 2014 onwards 3 - 100 14 Single/Dual L 1,335 - 4,450 2,670 - 5,785

COSMO-SkyMED ASI 2007 onwards 15 - 100 16 (<1-4 at full constellation) Single/Dual X 730 - 2,655 1,460 - 5,310

TerraSAR-X DLR 2007 onwards 1 - 16 11 Full X 1,216 - 2,985 2,430 - 5,970

TANDEM-X DLR 2010 onwards 3.00 11 Full X 1,216 - 2,985 2,430 - 5,970

Kompsat-5 KARI 2013 onwards 1 - 20 28 Full X 800 - 1,650 1,600 - 3,300

Sentinel-1A ESA 2014 onwards 5 - 100 12 (1-6 at full constellation Dual C Free Free

Sentinel-1B ESA 2016 onwards 5 - 100 13 (1-6 at full constellation Dual C Free Free

Synthetic Aperture Radar (SAR)

Satellite Agency Year Active Ground Resolution (m) Revisit (Days) Cost/km2 (US$) - Archive Cost/km2 (US$) - New
World-View 2, 3 Digital Globe 2009 & 2014 onwards 1.84, 1.24 1.1 20 (min 25 km2) 31.5 (min 500 km2)

SPOT 5, 6, 7 AIRBUS 2002, 2012 & 2014 onwards 10, 6, 6 5 - 26 1.2 (min 500 km2) 1.75 (min 100 km2)
Landsat 5, 7, 8 NASA 1984 - 2013, 1999 & 2013 onwards 30 16 Free Free

MODIS (TERRA, AQUA) NASA 1999 & 2002 onwards 500 0.5 Free Free

Sentinel-2A, 2B ESA 2015 & 2017 onwards 10 5 Free Free

Multispectral (Optical)

Table 2.1. Past and current SAR (top) and major multispectral (bottom) imaging satellites, with main acquisition parameters. 
Costs, where provided, are an estimate and may be inaccurate. Adapted from Grimaldi et al. (2016). 
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Multispectral sensors are passive, relying on solar energy to illuminate the ground 

and recording the naturally reflected energy (Lillesand et al., 2008). They produce a 

series of image bands capturing the reflectance from different portions of the 

electromagnetic spectrum, such as the visible (red, green, blue), near-infrared and 

short-wave infrared wavelengths (Figure 2.4). The range of spectral bands available 

allows for classification based on the varying reflectance of the feature of interest at 

different wavelengths. A common approach is to use indices or decision trees that 

utilise two or more selected spectral bands which display high or low reflectance for 

the particular feature. Examples include the Normalised Difference Vegetation Index 

(NDVI (Huete et al., 2002)), the Modernised Normalised Difference Water Index 

(MNDWI (Xu, 2006)), the Automated Water Extraction Index (AWEI (Feyisa et al., 

2014)) and F-Mask, used to identify regions affected by cloud cover and shadow 

(Zhu and Woodcock, 2012). Equations for common indices used to identify water, 

based on its strong reflectance in the green band and weaker responses in the near- 

and shortwave-infrared wavelengths, can be found in Table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The quantity and variety of data contained within multispectral imagery, including 

both the acquired image bands and derived information such as the indices outlined 

in Table 2.2, means the datatype generally produces good results when machine 

learning classification techniques are used to classify an image. Algorithms have a 

range of complexities and can either be supervised or unsupervised. Images are 

Figure 2.4. The portion of the electromagnetic spectrum utilised by multispectral 
imagery. Spectral band designations for Landsat-7, Landsat-8 and Sentinel-2 are shown. 

Originally published online by NASA (last accessed 07th Jan 2019), available at 
https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/. 

https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/
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classified into regions of similar spectral responses across all bands, representing 

different land covers (Lillesand et al., 2008). Machine learning algorithms can be 

used to identify either a single land cover, such as surface water extent, or to classify 

a full image. Holloway and Mengersen (2018) classed machine learning algorithms 

into four main types: Classification algorithms, including support vector machines and 

random forest, which aim to allocate objects to predefined classes based on user-

defined training samples; Clustering algorithms, such as k-means, which use target 

parameters, such as the number of classes and how distinct these are, to combine 

objects into unlabelled classes without the need for training data; Regression 

algorithms, including neural networks and spectral angle classifications, which 

estimate a continuous response based on previously defined training input variables; 

and Dimension Reduction techniques, such as principal component analysis, which 

reduce the number of variables within an image to define new variables that contain 

the majority of the key information required to classify the data. Examples of 

algorithms used to identify surface water include neural networks (Li et al., 2015; 

Isikdogan et al., 2017), support vector machines (Nandi et al. 2017), random forests 

(Feng et al., 2015) and k-means clustering (Molleri et al., 2010). In their study of 

mapping surface water in Nepal using a variety of machine learning techniques, 

Archarya et al. (2019) found that all algorithms provided accuracies above 90%, with 

random forest producing the greatest reliability. The authors note that accuracy is 

reduced in all algorithms when applied to scenes containing snow. Paul et al. (2018) 

noted that many machine learning algorithms only require a small number of training 

samples to provide accurate results. 

 

Although multispectral imagery is commonly and successfully used within the 

literature for a range of environmental studies, there are some challenges that need 

acknowledging. As a passive sensor, the features shown in an optical image are 

those which first interact with the solar radiation. This means multispectral sensors 

are unable to penetrate cloud cover, which restricts the imaging of ground features if 

present (Alsdorf et al., 2007; Gan et al., 2012). Clouds are intrinsically linked to 

precipitation, and by association cause inundation, which can create the common 

situation of flood events being obscured due to persistent cloud cover. Similarly, data 

captured during the night will suffer from insufficient illumination (Mason et al., 2014). 

Shadows, either from clouds or from tall ground features, can further mask the 
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image, limiting analysis in urban and woodland areas even on clear days (Alsdorf et 

al., 2007; Zhu and Woodcock, 2012). 

 

SAR satellites operate in the microwave portion of the electromagnetic spectrum, 

transmitting a radar pulse towards the earth’s surface and recording the 

backscattered signal that is returned to the satellite (Lillesand et al., 2008). Images 

display the intensity of this return, which is influenced by surface roughness, object 

orientation and the dielectric properties (water content) of the imaged surface (Brivio 

et al., 2002; Henderson and Lewis, 2008). Identification and analysis of specific 

features within SAR images can often be more challenging than multispectral data, 

with a particular backscatter response observed within a SAR image, whether weak 

or strong, potentially corresponding to a number of ground features depending on the 

satellite acquisition parameters and environmental conditions (Esch et al., 2011). 

However, because SAR satellites are an active sensor and produce their own source 

of illumination, they can collect data independent of weather conditions or time of 

day, providing an operational advantage over multispectral satellites for regular 

monitoring the environment (Schumann et al., 2009a; Huang et al., 2018). The focus 

of the remainder of this literature review is on how flooding has been mapped using 

SAR imagery, with more detail provided in Section 2.3. 

 

2.2.4. Information Requirements and Usage 
With regards to flood management and response, remote sensing data has 

previously been used for two main purposes; by emergency personnel during and 

after an event to identify regions affected, and by the hydrodynamic modelling 

community to help improve confidence in model outputs. Both of these require similar 

observations from remote sensing imagery, namely flood extent and depth. This 

information during a flood event allows for emergency personnel to identify which 

population centres and infrastructure are at risk from inundation, allowing for 

buildings to be protected and the safe evacuation of at-risk people (Yulianto et al., 

2015; Cian et al., 2018b). Important in this stage of management is the timely 

creation of the flood data, with the improved temporal resolution of current satellites 

increasing the probability of a flood event being imaged, allowing for near real-time 

monitoring (Martinis et al., 2009, 2015a). Furthermore, high-resolution imagery can 

be used to map flood damage after large events, assisting in post-event recovery 

(van der Sande et al., 2003; Bovolo and Bruzzone, 2007).  
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itrano et al., 2018)Date Author Technique Data Location Reported Accuracy & Validation Source

1995 Hess et al. Supervised Classification Tree SIR-C Amazon, Brazil 99% In-Field Observations

1997 Oberstadler et al. Visual Interpretation ERS-1 Rhine, Germany Visual Comparison to Aerial Imagery

1999 De Roo et al. Maximum Likelihood Supervised Classification ERS-1 Rivers Oder & Meuse 74-82% Aerial Imagery

2001 Townsend Supervised Classification Tree RADARSAT-1 North Carolina, USA 94% Wells on Floodplain *

2005 Bonn & Dixon Supervised Classification RADARSAT-1 Manitoba, Canada Not Reported

2006 Matgen et al. Principal Component Analysis ERS-1 Alzette, Luxembourg Not Reported **

2011 Pulvirenti et al. Fuzzy Classification COSMO-SkyMED Shkodër, Albania 85% Histogram Thresholding Result ***

2013 Westerhoff et al. Multi-Temporal Probability Distribution ENVISAT-ASAR Pakistan & Thailand 90-97% HAND and SAR Statistics **

2014 Mason et al. Double Bounce Scattering Modelling TerraSAR-X Severn, UK 91% Known Flood Locations

2014 Pradhan et al. Texture Analysis TerraSAR-X Terengganu, Malaysia 84% No Source Given

2015 Martinis et al. Tile-Based Thresholding & Fuzzy Classification TerraSAR-X Various 87-99% Aerial and Optical Imagery

2015 Schlaffer et al. Multi-Temporal Harmonic Analysis ENVISAT-ASAR Severn, UK >80% Rural Aerial Imagery

2018 Amitrano et al. Texture Analysis & Fuzzy Classification Sentinel-1, COSMO-SkyMED, RADARSAT-2 Various 93-95% Coperinucus EMS ****

Table 2.3. Selected additional SAR flood mapping methodologies found within the literature. 
Notes on validation and accuracy reporting: 

* 13 points used as validation instead of more continuous data. 
** No accuracy reported, but results used in further hydrodynamic modelling analysis. 

*** Validation dataset derived from same SAR scene used for main analysis, and subsequently likely correlated. 
**** No mention is given of what methods used by the Copernicus Emergency Management Service (EMS) to derive flood extent. 

Table 2.2. Examples of spectral indices used to identify water from optical imagery. Note the AWEI indices 
are developed using Landsat-5, which has multiple SWIR bands (numbers 5 and 7), with the number in 

square brackets depicting which is used. 

Equation Reference

Normalised Difference Water Index NDWI (Green - NIR)/(Green + NIR) McFeeters, 1996

Modernised Normalised Difference Water Index MNDWI (Green - SWIR)/(Green + SWIR) Xu, 2006

Automated Water Extraction Index (No Shadow) AWEInsh 4 x (Green - SWIR[5]) - (0.25 x NIR + 2.75 x SWIR[7]) Feyisa et al., 2014

Automated Water Extraction Index (Shadow) AWEIsh Blue + 2.5 x Green - 1.5 x (NIR + SWIR[5]) - 0.25 X SWIR[7] Feyisa et al., 2014

Index Name
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Physically-based hydrodynamic models provide an understanding of how water flows 

through a catchment during the course of a rainfall event, including identifying areas 

of inundation. Common outputs include flood extent, depth, and water velocities. 

Retrieval of extent and depth from satellite imagery allows for model calibration and 

validation, helping to identify when models are working below requirements (Musa et 

al., 2015; Grimaldi et al., 2016). Furthermore, it is possible to assimilate information 

from satellite images directly into flood models during an event, reducing the 

uncertainty of the model predictions by correcting the model state at the time of the 

satellite pass (Matgen et al., 2010; Giustarini et al., 2011). However, care is needed 

when comparing remote sensing data to model outputs, as inaccuracies in the flood 

extents or depths from the imagery can result in false confidence in the 

hydrodynamic model, or lead to over-parameterisation of the model to match the 

validation dataset (Giustarini et al., 2011; Musa et al., 2015). 

 

2.3. Determining Flood Extent from SAR  
SAR sensors have a side-looking geometry instead of the nadir viewing angle 

typically found onboard multispectral satellites, which results in the microwave pulse 

specularly reflecting away from the satellite when it interacts with a flat surface, such 

as water (Henderson and Lewis, 2008). In a SAR image, these locations are 

synonymous with low backscatter values and can be identified as dark areas 

compared to lighter, stronger backscatter responses that are associated with land 

features (Zhou et al., 2000). The clear difference in backscatter from water and land 

has led to algorithms being developed based on the delineation of the boundary 

between flood and dry land, and the subsequent extraction of the inundated areas. 

Identification of the flood shoreline is normally possible to an accuracy of one pixel 

(Bates et al., 2014; Grimaldi et al., 2016).  

 

Type of algorithms are often divided into pixel-based processes, where each 

individual pixel is classified as its own entity, or object-based algorithms, which look 

to class groups of pixels as a single object based on the probability of them being 

related (Lu et al., 2015; Martinis et al., 2015a). Some of the more common processes 

(image histogram thresholding, active contour models and region growing, and 

change detection) are described in detail below, with Table 2.3 containing information 

on additional techniques used within the wider research community. There is no clear 

consensus within the literature as to the most accurate and robust method for 
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identifying flood areas, and it is common for multiple techniques to be used in 

conjunction within a hybrid workflow (Di Baldassarre et al., 2011; Matgen et al., 

2011). Each technique has examples where it has accurately delineated flood 

extents, with the geographical location, satellite acquisition parameters and 

environmental conditions all varying between studies and potentially impacting 

accuracy (Grimaldi et al., 2016). Additional in-depth reviews on flood mapping from 

SAR imagery can be found in Grimaldi et al. (2016), Schumann et al. (2009a) and 

Yan et al. (2015).  

 

Some SAR acquisition parameters and geographical properties can impact the 

success of the flood mapping algorithms. The specifics of these mechanisms and 

how they impact flood detection are discussed in detail in Chapter 3. However, some 

are briefly mentioned within in the following sections, so definitions are given here to 

assist the reader. Polarisation refers to the orientation that the radar pulse is 

transmitted and received in relation to the satellite antenna. Normally this will be 

either Vertical (V) or Horizontal (H), resulting in four common polarisations (VV, VH, 

HH and HV). The wavelength and frequency of a SAR signal is the portion of the 

electromagnetic spectrum that the sensor is operating in. Common bands used in 

satellite SAR systems are X, C and L, equating to 2.5-3.75 cm, 3.75-7.5 cm, and   

15-30 cm wavelengths respectively. The size of the wavelength determines the size 

of the object that can be imaged.  

 

Speckle in a SAR image is random noise caused by multiple scattering objects within 

a pixel space. For example, two adjacent pixels covering the same field of a crop can 

have different backscatter values due to variations in the individual crops affecting 

the signal pathways. Over a large area, this can cause a ‘salt and pepper’ effect over 

a homogeneous land cover. Due to the side-looking geometry of a SAR sensor, tall 

features, such as mountains or buildings, can impact the microwaves ability to image 

and extract information in urban and woodland regions. This can cause geometric 

artefacts, with the most paramount for flood monitoring being radar shadow, which 

occurs when the feature blocks the radar pulse from imaging the ground immediately 

behind it. These locations show up as dark regions within a SAR image, similar to the 

specularly reflected response from a water surface. The double bounce effect is 

common in flooded urban and woodland locations, and describes the reflection of the 

radar signal off multiple surfaces, in this case the water surface and the protruding 



[21] 
 

feature. This diverts the signal back to the satellite, producing increased backscatter 

instead of the low returns expected with specular reflection.  

 

2.3.1. Histogram Thresholding 
The simplest and quickest method for differentiating between land and water in an 

image is histogram thresholding (Di Baldassarre et al., 2011). The difference 

between the expected water and land backscatter responses can be clearly 

highlighted by plotting the density histogram of the backscatter intensity, with an 

example shown in Figure 2.5 (Matgen et al., 2011). The distribution is theoretically 

bimodal, which allows for a threshold to be determined, and the subsequent 

segmentation of areas of water. Although thresholds can be determined manually 

(Brown et al., 2016), this can often be subjective, time-consuming, and requires 

technical knowledge and experience to be performed successfully (Matgen et al., 

2011; Westerhoff et al., 2013). Therefore the research community commonly utilises 

automated thresholding algorithms, allowing for more timely and consistent 

classification of flood and non-flood regions. Examples include Otsu’s algorithm 

(Otsu, 1979) and the Kittler and Illingworth (KI) algorithm (Kittler and Illingworth, 

1986). Both methods have been successfully used for identifying flooding from SAR 

images, with Schlaffer et al. (2015) and Schumann et al. (2009b) utilising Otsu’s 

algorithm, and Bazi et al. (2005) and Twele et al. (2016) applying the KI algorithm, all 

within a multi-algorithm flood detection frameworks. Landuyt et al. (2018) compared 

the two algorithms, reporting that Otsu’s algorithm has a tendency to overestimate 

flood extent, whilst KI inherently underestimates. 

 

Although flood mapping using a single histogram threshold is common, the variability 

in SAR backscatter responses under variable environmental conditions, alongside 

possible bias with each thresholding algorithm, means there is the potential of under 

or over-prediction of the flood extent. Hostache et al. (2009) provide an example 

where multiple thresholds are calculated from the SAR histogram to account for 

uncertainty, allowing for the classification of the flood map based on the likelihood of 

a region being inundated. Separate gamma distributions are calculated for land and 

water backscatter, with thresholds defined at the minimum land (Tmin) and the 

maximum water (Tmax) backscatter values. Based on these thresholds, the SAR 

image is classified in certainty flooded (backscatter below Tmin), potentially flooded 

(between the two thresholds) and unflooded (above Tmax). 
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Applying global thresholding across a whole SAR scene can be challenging. Large 

differences in the number of pixels within each class are common, and can result in 

the loss of the bimodality of the histogram which can cause an inaccurate threshold 

value being determined (Martinis et al., 2009; Landuyt et al., 2018). Splitting an 

image into smaller regions allows for more reliable identification of the threshold 

value by ensuring the water and land classes have a similar number of pixels (Bovolo 

and Bruzzone, 2007). Martinis et al. (2009) developed a tiling method to identify 

regions that had a clear bimodal histogram, allowing for more reliable determination 

of threshold values using the KI algorithm. The split-based algorithm (SBA) divides a 

scene into non-overlapping tiles. Each tile is further divided into four sub-tiles, then 

for each tile, the coefficient of variation (ratio between the mean and standard 

deviation) of the sub-tiles is calculated. Tiles that are sufficiently bimodal and present 

a lower mean pixel value compared to the whole scene are selected as suitable for 

helping determine the final threshold. The global threshold is calculated from either 

the summed histograms of the tiles selected, or as the median of the individual 

thresholds calculated for each chosen tile. A further development of the SBA, the 

hierarchical split-based algorithm (HSBA), works on a similar premise, but searches 

Figure 2.5. Image histogram showing differences in backscatter for water (cyan) and 
land (blue). The ideal threshold is shown as the low density point between the gamma 

distributions for water and land. Originally published in Matgen et al. (2011). 
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for non-uniform tiles to determine the distribution of individual histograms (Chini et 

al., 2017). This allows for the inclusion of a greater number of local histograms that 

may have been missed in the SBA algorithm due to the fixed tiling process. The 

result is a series of different sized and shaped tiles, each with an associated 

histogram and threshold. Similar to the SBA, these can be averaged, or the 

histograms summed to find a global threshold if required (Chini et al., 2017). Landuyt 

et al. (2018) found that application of Otsu and KI thresholding algorithms within the 

SBA framework resulted in improved accuracy. In particular, Otsu’s algorithms 

showed a 30% increase in overall accuracy with the inclusion of image tiling prior to 

thresholding.  

 

2.3.2. Active Contour Models and Region Growing 
Active contour models (ACM), often referred to as a ‘Snake’, use image statistics to 

settle on a smooth shoreline contour (Horritt et al., 2001). Start locations for the 

algorithm need to be defined, and within the literature have either been chosen 

manually, determined by river locations, or selected based on low backscatter 

responses within the SAR image of interest (Horritt, 1999; Chan and Vese, 2001; 

Landuyt et al., 2018). The ACM is controlled by an energy function, which 

dynamically grows towards the object edge by creating a series of nodes along the 

current water boundary and assessing the adjacent non-flooded pixels for the 

likelihood of belonging to the shoreline contour (Horritt et al., 2001). Whether a pixel 

belongs within the ACM is determined by a goodness function, which is calculated by 

comparing the pixel value to the mean and variance of the pixels already in the 

Snake boundary (Horritt et al., 2001). Other constraints, such as tension and 

curvature, ensure that the flood boundary is smooth and remove the possibility of the 

Snake overlapping itself; in these situations the algorithm develops sub-snakes, 

allowing for multiple flood regions or unflooded locations within the flood boundary to 

be delineated. A Snake will stop growing once all of the adjacent pixels to the nodes 

suggest non-flood conditions, resulting in a flood boundary where minimal energy is 

required to travel along (Horritt et al., 2001). An adaption on the traditional Snake 

algorithm was developed by Mason et al. (2007), with additional constraints based on 

underlying terrain information implemented. The inclusion of height information within 

the energy function resulted in a flood boundary that better followed the edge of the 

topographic floodplain, with the Snake finding a smooth low-energy solution for both 

the terrain and the SAR data.  
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A similar method to ACM is region growing, with the main difference being the 

selection of the flooded area being pixel-based, instead of the more object-based 

operation of the ACM (Matgen et al., 2011). Like an ACM, start locations for the 

algorithm are required, with similar sampling strategies utilised as with a Snake. 

Region growing expands the area of flooding from the starting location to include 

pixels that are homogeneous with the backscatter values of the already identified 

flood region. This continues until a pre-defined threshold is met at the flood 

boundary, which in previous studies have been based on the statistics and 

distributions found within the histogram (Matgen et al., 2011; Giustarini et al., 2013). 

 

Studies using ACMs have produced good results when identifying the flood 

boundary. Horritt et al. (2001) suggested that the algorithm, once properly calibrated, 

will locate the edge of the flood to within one pixel. Their study of flooding along the 

River Thames in 1992 produced a 75% accuracy when compared to aerial imagery, 

with errors mostly coming from the inability of SAR to map inundated vegetation. 

Matgen et al. (2007) found that the ACM identified slightly more flooding (an increase 

of 1-2 pixels) when compared to a histogram threshold classification for their study of 

the floods along the River Alzette in 2003. Matgen et al. (2011) applied a region 

growing based algorithm to delineate flooding for the 2007 River Severn flood event. 

Start locations were determined by thresholding, based on the gamma distributions 

of the land and water classes within the bimodal histogram. Comparing their results 

to 181 aerial imagery defined ground control points, an RMSE of 2.00 pixels was 

found for the flood boundary location. The authors highlight the advantages of using 

SAR derived start positions for ACM and region growing algorithms, instead of the 

river locations commonly used in earlier research, as this allows for improved 

delineation of inundation away from permanent water bodies. Giustarini et al. (2013) 

presented the same methodology, with adjustments made to make the process fully 

automated. The algorithm produces an accuracy of 82% when compared to manually 

derived flood boundaries from aerial photography. A further iteration of this algorithm 

is presented by Lu et al. (2014). They add more robust processing for determining a 

threshold in the absence of a clear bimodal histogram. The updated algorithm is 

applied to RADARSAT images covering the 1997 floods of Ottawa, and compared to 

the previous algorithm iterations and a manually thresholded water extent, with all 

methods validated against water extents derived from aerial imagery. The three 

iterations of the classification algorithm produce total accuracies ranging between 
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93% and 96%. The updated region growing algorithm outperformed the previous 

iterations, with reduced under-prediction of the flood extent.  

 

In their review of SAR flood mapping, Di Baldassarre et al. (2011) noted that 

although results are often good from Snakes, drawbacks include the requirement to 

fine-tune numerous parameters and long processing times when applied over large 

areas. These conclusions are collaborated by Landuyt et al. (2018), who compared 

ACM flood maps to those produced by thresholding and change detection algorithms. 

They note that ACMs have the ability to produce flood maps with increased accuracy, 

albeit often with the requirement for location-specific parameterisation. 

 

2.3.3. Change Detection 
The algorithms discussed in the preceding sections are all based on identifying 

flooding from a single SAR image. However, the increased number of operational 

satellites in recent years has resulted in a large volume of past data being available. 

Satellites that operate on a fixed orbit, such as Sentinel-1, have a back catalogue of 

images that can be compared to highlight any changes in environmental conditions. 

When used in flood detection, this involves comparing a dry, non-flood image to one 

taken when inundation is present. The aim when doing this is to identify those 

regions that are showing the specular reflection of the radar signal, indicative of 

surface water, instead of a stronger backscatter response from unflooded land. By 

subtracting the reference image from the flood image, pixels with a negative shift in 

backscatter are distinguishable from areas that have had minimal change or an 

increase in backscatter between scenes, allowing for flood mapping (Giustarini et al., 

2013; Schlaffer et al., 2015). 

 

To undertake change detection a reference image is required. Poor selection can 

result in false classifications due to the variations in image acquisition parameters, or 

land cover conditions independent of the flood event (Lunetta et al., 2004; Matgen et 

al., 2011). With the potential for hundreds of images to choose from, selecting a 

suitable image can be a time-consuming process. Hostache et al. (2012) proposed a 

series of guidelines to help with reference image selection. Firstly, satellite 

acquisition parameters should match. Previously this would mean that the exact 

same satellite would need to be used. However, as constellations of satellites 

carrying the same payload are becoming more common, it is enough that the sensor 
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collecting and recording the data are the same, thus allowing a greater number of 

images to be considered. By using a reference image from the same sensor as the 

flooded scene, SAR specific parameters such as wavelength and polarisation will 

match. Additionally, radar look angles should correspond as closely as possible, 

ensuring minimal misclassifications due to different geometric effects caused by 

topographic features (such as radar shadow, foreshortening and overlaying) that can 

come from different viewing geometries. For fixed orbit satellites (including Sentinel-

1), this means selecting images from the same orbital track. When planning on-

demand acquisition during an event (such as Cosmo-SkyMED and RADARSAT-2), 

this involves ensuring look direction and angle are equivalent to any reference 

images available for the location. Finally, it is suggested that the reference image 

should come from a similar time period as the flooded image to minimise any large 

changes in backscatter caused by non-flood land cover changes. For example, the 

backscatter characteristics of a bare field in winter will differ from one at the full crop 

height in summer.  

 

Two methods can be employed to ensure the timing of the reference image is 

consistent with flood image acquisition. The first involves creating a composite image 

from numerous scenes captured during the same time period in previous years, with 

the mean or median pixel value extracted to represent average backscatter (Cian et 

al., 2018b). This has the advantage of producing an image without speckle due to 

temporal smoothing of the pixel values. However, the requirement for a number of 

images to be processed and stored can limit the use of composite images within real-

time situations without the prior creation of the reference image. Care is also needed 

to ensure none of the scenes used to create the composite contain flooding, 

particularly in regions prone to annual events. An alternative method is to use a 

single image, commonly the last scene acquired pre-flood (O’Grady et al., 2011). 

Hostache et al. (2012) developed an algorithm for selecting the most suitable 

reference image from numerous candidates based on the spread of land backscatter 

responses. Direct comparison between two SAR images can be subject to 

differences in pixel values caused by speckle, and before undertaking change 

detection each image requires the application of a suitable filter to ensure textual 

consistency of features. Land covers should produce relatively similar levels of 

backscatter away from areas of inundation, particularly if there is a short temporal 

baseline between images. 
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The output from the change detection is an image where each pixel represents the 

difference in backscatter between the reference and flood images. A negative value 

will indicate potential flooding, but the process on its own does not produce a 

deterministic map that is often required in flood management situations. Because of 

this, further processes are normally applied to the difference image, with thresholding 

commonly used to segment regions showing of the greatest negative shift in 

backscatter (Bazi et al., 2005; Moser and Serpico, 2005). Long et al. (2014), in their 

study of multi-year flooding in Namibia, thresholded their difference images based on 

the mean and standard deviation. When compared to Landsat imagery, percentage 

errors ranged between 8.3% and 22.9%. They suggest sources of error come from 

cloud shadow in the reference dataset, differences in SAR image resolutions and 

emergent vegetation obscuring flooding, along with poor reference image selection in 

some situations.  

 

However, it should be noted that having pre-processed the flood image for the 

change detection algorithm, it would be prudent to further classify the data using an 

additional single image technique. Hybrid processing frameworks, utilising two or 

more of the above approaches, have become common as a means of reducing some 

of the sources of misclassifications found when using a single method. Matgen et al. 

(2011) noted that accuracy was improved when a change detection element was 

added to a hybrid processing flow containing histogram thresholding and region 

growing, with RMSE reduced from 2.00 pixels to 1.27 when compared to aerial 

imagery. Chini et al. (2017) used an HSBA framework to apply a change detection 

and region growing algorithm to the 2007 floods near Tewkesbury, with a total 

accuracy of 89% when compared to aerial photography. 

 

2.3.4. Machine Learning Algorithms 
Alongside the more commonly utilised techniques described above, there are 

numerous studies that use machine learning algorithms to identify flood extent from 

SAR imagery. Skakun (2010) applied an artificial neural network algorithm to extract 

flood extent from ERS-2, Envisat and Radarsat-2 images, achieving accuracies 

ranging between 85% and 98%. Insom et al. (2015) used Support Vector Machines 

(SVM) to accurately map inundation in Thailand, noting the superior mapping 

achieved by SVMs when there is a small number of training samples compared to 

other machine learning algorithms. Geng et al. (2017) note the challenges speckle 
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noise can provide when classifying features in a SAR image, before proposing a 

neural network algorithm combined with a spatial smoothing process to limit 

misclassifications. Recent work has showcased machine learning algorithms based 

on a combination of both multispectral and SAR imagery, with particular 

improvements in the quality of training samples used within the classification. 

Benoudjit and Guida (2019) used a stochastic gradient descent supervised 

classification algorithm to delineate flooding based on automatically extracted pre-

flood training samples. They note there is a compromise between the size of training 

samples, the subsequent classification accuracy, and the computational time. The 

authors conclude there are challenges in automatically defining training samples due 

to spatial resolution deficiencies and cloud cover within the optical images, both of 

which result in incorrect labelling of samples or insufficient open water training data. 

Bangira et al. (2019) compared the performance of various machine learning 

algorithms (including SVM, Random Forest (RF) and k-nearest neighbour) when 

mapping complex water in South Africa using training samples from both types of 

imagery, with accuracies ranging between 79.5% for RF and 91.7% for SVM. The 

authors note that the combined thresholding of the SAR and NDWI classified 

multispectral images produced similar accuracy levels to the machine learning 

algorithms, at a lower computational cost.  

 

The application of machine learning algorithms for extracting surface water from SAR 

imagery is relatively unexplored, and although some of the results to date are 

promising, challenges remain with the reliability of automatic selection of training 

samples, and the accurate classification of the flood image at a low computational 

cost. Frameworks that account for these challenges are required before the more 

widespread application of machine learning techniques are used for SAR flood 

detection. 

 

2.3.5. Ongoing Challenges 
Despite the proven utility of SAR to map flooding in open, rural areas, there are still 

challenges in deriving flood extent in other geographical situations. Both urban and 

woodland regions prohibit accurate flood mapping due to the high number of vertical 

structures (buildings or trees) that intercept the radar signal. Higher spatial resolution 

can reduce some of the uncertainty of flood mapping in urban locations, however, 

even images captured at 3 meter resolution can be severely impeded (Giustarini et 
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al., 2013). SAR simulators have been used to mathematically model the radar 

signal’s interaction with urban features to identify the locations likely impacted by 

radar shadow (Mason et al., 2012a). Further analysis of the radar backscatter 

pathways can be used to determine where double bouncing of the radar signal is 

likely to have occurred, allowing for flood identification (Mason et al., 2014). 

However, this method requires high-resolution terrain and surface models, datasets 

which are not available for many locations. Giustarini et al. (2013) used change 

detection to identify and remove any false classifications caused by radar shadow, 

with an accuracy of 82% when validated against aerial photographs. They found that 

around 2% of the flooding within the validation dataset was found in regions affected 

by radar shadow.  

 

Recent research has shown that Interferometric SAR (InSAR) coherence has the 

potential to identify flooding in urban locations (Pulvirenti et al., 2016; Chini et al., 

2019; Li et al., 2019). Coherence is a measure of similarity between the phase and 

amplitudes of two SAR images. In dry conditions, urban areas are typically coherent 

due to the fixed geometry of the ground features, which produce highly correlated 

backscatter signals when imaged from the same satellite position (Figure 2.6). The 

coherence is lost when the urban area is flooded due to variations in the relative 

spatial locations of the scattering surfaces, which subsequently alter the radar 

pathways (Li et al., 2019). Chini et al. (2019) used the coherence between Sentinel-1 

datasets to map inundation in Houston during Hurricane Harvey. They initially map 

buildings to represent locations where double bouncing of the SAR signal is likely, 

before assessing changes between the pre-flood and co-flood coherence in these 

regions to identify inundation. The authors note that the small temporal baseline and 

fixed orbit of Sentinel-1 lends itself to InSAR based flood detection, despite the 

moderate resolution of the data. Li et al. (2019) mapped the urban flooding from the 

same event using higher resolution TerraSAR-X data, utilising multi-temporal SAR 

intensity and coherence within a neural network framework. The authors note that 

accuracy was improved with the addition of coherence to the classification. 

 

Identifying flooding in vegetated areas brings the additional challenge of the 

variability in plant structure depending on the season, particularly when using 

methods that require a temporal analysis like change detection (Pulvirenti et al., 

2016). This limits the application of InSAR for identifying flooded vegetation due to 
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the lack of coherence in dry conditions. Algorithms developed to identify flooded 

vegetation include decision trees (Martinez and Le Toan, 2007; Betbeder et al., 

2014), fuzzy classifications (Pierdicca et al., 2008; Pulvirenti et al., 2013) and 

supervised classifications (Hess et al., 1995; Voormansik et al., 2014). Tsyganskaya 

et al. (2018) developed a time-series based approach for identifying temporarily 

flooded vegetation in Namibia using the ratio between cross- and co-polarised data, 

which displays a marked increase in value when compared to non-flooded images for 

the same region (Figure 2.7). Results are obtained using a k-means clustering 

algorithm and thresholding, with an overall accuracy of 85% compared to the visual 

interpretation of optical imagery. They note that this methodology has the potential 

for highlighting flooding in urban areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. SAR backscatter intensity and coherence for different levels of urbanisation, 
in flooded and non-flooded conditions. Columns show grassland (a), roads (b), buildings 
with low-level flooding (c), and buildings with high-level flooding (d). In particular, note the 

lack of coherence in vegetated and flat land covers during non-flood (columns (a) and 
(b), 3rd row), and the loss of coherence in more built-up locations when flooded (columns 

(c) and (d), 4th row). Originally published in Li et al. (2019). 
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With the improvements made in satellite data and flood mapping algorithms, near 

real-time inundation monitoring is possible. Although the temporal resolution is 

improving for fixed orbit SAR satellite, it is still unlikely that any images will be 

captured for short-term events, unless a satellite is specifically tasked to acquire data 

(Grimaldi et al., 2016). The use of constellations of satellites can improve revisit 

times, however, there will still be situations where flood events are insufficiently 

imaged.  

 

Along with the improved imagery provided by recent satellites launches, the 

infrastructure for delivering and processing the data has also been enhanced. For 

example, data from the Sentinel satellites is often transmitted through the European 

Data Relay System (EDRS), a series of geostationary satellites that allow faster 

delivery of data by removing the requirement for acquisition satellites to have line-of-

Figure 2.7. Variation in normalised backscatter values for VV (a) and VH (b) 
polarisations and derivatives (VV + VH (c), VV – VH (d) and VV / VH (e)) for open water, 

dry land and flooded vegetation. Originally published in Tsyganskaya et al. (2018). 
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sight with the ground receiver stations (Torres et al., 2012; ESA-ARTES, 2017). The 

result is that Sentinel data is often available within an hour of acquisition. Advances 

in computing infrastructure, such as cloud computing, allows for image pre-

processing and classification to be completed in a timely manner, increasing the 

opportunities for results being used by emergency personnel or assimilated into flood 

forecasting models. Examples of automated flood classification algorithms include 

those developed by Lu et al. (2014), Martinis et al. (2015b), Mason et al. (2012a), 

Twele et al. (2016) and Westerhoff et al. (2013). Ensuring that these algorithms are 

robust across different SAR satellites and acquisition parameters, geographical 

location, size of the study area and environmental conditions should be the next 

steps undertaken. Current examples of on-demand, real-time operational flood 

detection services include the Copernicus Emergency Management System (CEMS) 

and the Dartmouth Flood Observatory (DFO), which acquire and process satellite 

imagery for emergency services during an event. 

 
2.4. Deriving Flood Surfaces, Depths and Volumes 
Previous studies have proposed a number of methodologies for estimating the height 

of the water surface, either via direct measurement or indirect estimation. Direct 

methods involve using sensors which are primarily designed to measure the height of 

the Earth’s surface, such as LiDAR and altimeters, or InSAR processing from the 

SAR datasets used to derive flood extent. Indirect techniques focus on combining the 

derived flood extents with terrain models to estimate the shoreline heights and 

interpolating these to form a water surface. The depth and volume of the flood can 

subsequently be calculated by subtracting the elevation data from the water surface.  

 

2.4.1. Water Surfaces: Direct Measurements  
InSAR has been used to create numerous globally available DEMs, such as SRTM 

(Shuttle Radar Topography Mission), and is commonly used to measure the 

deformation of the Earth’s surface (Chen et al., 2016). To determine any change in 

surface height over time, two overlapping SAR images are co-registered for 

locational accuracy before analysing the temporal differences in phase and amplitude 

of coherent microwave signals to derive any changes (Refice et al., 2014). Due to the 

specular reflection of the radar signal over water, there is minimal backscatter from 

which to determine coherence between signals, limiting water height estimation via 

InSAR (Alsdorf et al., 2001). However, the lack of coherence itself has previously 
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been used to map flood extent, provided there is a small temporal baseline between 

the two images (Refice et al., 2014). Estimations of height variation are possible at 

the edge of the flood where emergent vegetation or buildings protruding the water 

surface, particular for longer duration events, where there is an increase in 

temporally coherent backscatter caused by the double bounce effect (Pulvirenti et al., 

2016). An example is provided by Jung et al. (2010), who characterised the 

floodplains of the Amazon and Congo Rivers using InSAR, before using 

measurements of height variation to identify temporal flood dynamics. 

 

Radar altimeters are another form of active microwave sensing. Working as a 

profiling tool, altimeters transmit a nadir, short-wavelength radar pulse towards the 

earth and recording the time taken for the signal echoes to return to the sensor, 

which can then be used to determine the height of the surface in relation to the 

satellite altitude (Kouraev et al., 2004; Crétaux and Birkett, 2006; Tarpanelli et al., 

2013). Originally designed for monitoring the sea surface height, previous studies 

have shown that altimetry data can be applied for monitoring terrestrial hydrology, 

such as lakes and rivers (Berry et al., 2005; Jarihani et al., 2013; Birkinshaw et al., 

2014; Villadsen et al., 2015). Waveforms are averaged over the altimeter footprint to 

provide water level heights estimates with an accuracy in the range of 0.3-0.6 m 

(Smith, 1997; Coe and Birkett, 2004; Crétaux and Birkett, 2006). Birkinshaw et al. 

(2014) used ERS-2 and ENVISAT datasets to determine river stage, subsequently 

used to estimate discharge for the Mekong and Ob Rivers when combined with 

Landsat derived water extents. Jarihani et al. (2013) compared the accuracy of five 

different altimetry missions when observing the height of Lake Argyle, Australia. They 

found RMSEs ranging between 0.04 m (ICESat, a laser altimeter) and 1.5 m 

(TOPEX/Poseidon), noting that results were more accurate on newer satellites that 

had improved onboard retracking algorithms for terrestrial water bodies. 

 

There are many challenges when monitoring terrestrial water bodies using altimeters. 

Waveform shape of the return signal varies with land cover. Over oceans, echoes 

from the water surface produce waveforms following the Brown model (Berry et al., 

2005). Waveforms models from terrestrial water bodies are often referred to as flat-

patch or quasi-specular, and comprise of a more pronounced signal peak compared 

to ocean waveforms (Berry et al., 2005). However, data over land is often more 

complex due to additional contamination, either from land and off-nadir water bodies, 
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and extracting the water body signal can often be a difficult process. Homogenous 

water footprints are only available on reaches over 1 km, and the use of retracking 

algorithms is required to extract the water surface signal from the complex 

waveforms that can be produced from terrestrial geographies (Berry et al., 2005). 

Deriving accurate water heights is generally only possible when the river or lake 

width exceeds 200-400 m (Tarpanelli et al., 2013). Furthermore, tracking onboard the 

altimeter instruments can lose surface lock in areas of highly variable topography, 

causing a loss of data for water bodies located in mountainous regions (Kouraev et 

al., 2004). Satellite altimeters provide limited spatial coverage, with many parts of the 

Earth’s surface not covered. Altimeter footprints are normally over several kilometres, 

with an along-track spacing between 300 m to 6-7 km, and orbit-to-orbit spacing of 

tens to hundreds of kilometres (Fu, 2001). Revisit times are normally in the order of 

10 to 35 days. The reduced spatial and temporal coverage for satellite altimeters 

increases the possibility of a flood event being missed (Alsdorf et al., 2007). 

Furthermore, when combining flood extent and water height measurements from 

different satellites, there is likely to be a mismatch in acquisition timing. In these 

situations, care is needed to ensure any changes in flood characteristics between 

acquisitions are accounted for within the data analysis. 

 

2.4.2. Water Surfaces: Indirect Estimation 
Many of the satellites used to directly measuring water surfaces suffer from 

limitations with their spatial and temporal coverage, as well as requiring technical 

knowledge and complex processing techniques to determine water heights from the 

data. As an alternative, methods for indirectly estimating the water surface have been 

developed based on combining the derived flood extent with widely available terrain 

information. Indirect methods reduce the requirement for additional real-time data, 

allowing for quicker analysis and lower costs, whilst limiting the uncertainty 

propagating from mismatched acquisition timings. However, it can be assumed that 

any estimate of a water surface determined by an indirect method is unlikely to have 

the same level of accuracy as a direct measurement. Differences in dataset 

resolution between the satellite imagery and terrain model, classification inaccuracies 

when deriving the flood extent, accuracy of the terrain model, and the algorithms 

developed to interpolate the shoreline heights into a surface can all produce errors 

within the derived water surface (Schumann et al., 2009a; Zwenzner and Voigt, 2009; 

Cohen et al., 2018).  
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Digital Terrain Models (DTM) and Digital Elevation Models (DEM) provide elevation 

data at a variety of geographical scales, spatial resolutions and vertical accuracies 

(Figure 2.8). The freely available Shuttle Radar Topography Mission (SRTM) DEM is 

available across the globe at 30-90 m resolution. LiDAR data is available covering 

much smaller geographical areas and can provide high-resolution data as low as    

25 cm. As well as selecting an appropriate spatial resolution when indirectly 

measuring a water surface, the level of height accuracy needs to be acknowledged. 

A comprehensive assessment of SRTM for hydrological purposes was undertaken by 

Ludwig and Schneider (2006). Comparing SRTM to a local reference terrain model 

(DGM25), they report height errors ranging between -5 and 10 m for slopes less than 

5°, with the error increasing up to 30 m for slopes above 50°. Rodriguez et al. (2006) 

assessed SRTM performance across different continents, finding absolute height 

errors ranging between 5.6 m and 9 m. LiDAR data normally comes at a vertical 

accuracy of +/- 15 cm RMSE (Data.Gov.UK, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A key principle when estimating a water surface is ensuring it is hydraulically 

coherent. Raclot (2006) states that hydraulic energy decreases as a flood wave 

moves downstream, resulting in a reduction in water level. Additionally, Mason et al. 

Figure 2.8. Spatial resolution and vertical accuracy for sources of topographic 
information and DEMs at local, regional and global scale. Originally published in 

Schumann and Bates (2018). 
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(2007) suggest that the decline in flood shoreline height should be smooth. When 

combining SAR flood extents with terrain data, shoreline heights are inherently noisy 

and often do not follow these principles. It is unlikely that the spatial resolution of the 

imagery and DTM will match, which means that the true topographic flood boundary 

may differ from those created from the SAR data (Schumann et al., 2009a; Cohen et 

al., 2018). Locational inaccuracies can often be by a number of pixels depending on 

the differences in resolutions of the datasets. This can be further exacerbated by 

flood detection algorithms failing to identify the full extent of inundation due to 

emergent vegetation at the flood boundary, or classification inaccuracy in woodland 

and urban locations (Horritt, 2003). This can result in an underestimation of the 

shoreline height when the flood extents are combined with the DTM. Subsequently, 

flood boundary heights are often edited to remove any potentially erroneous data 

points located near urban and woodland regions, and in areas of steeper slope 

(Hostache et al., 2009; Mason et al., 2012b).  

 

A number of algorithms have been developed in the literature to estimate a water 

surface whilst addressing the uncertainties described above. Matgen et al. (2007) 

generated a series of cross-sections perpendicular to the flood, allowing for 

comparison of the shoreline heights on each bank, with adjustments to the flood 

orientation and location to ensure correlation. A moving average filter is applied to 

the updated height values along each bank, before a water surface is interpolated 

using a variety of techniques. The authors find that surfaces created by Multiple 

Linear Regression provide superior results compared to Triangular Irregular Network 

(TIN) and Spline water surfaces, which are more impacted by erroneous shoreline 

heights. Schumann et al. (2007) further develop the algorithm to create the 

Regression and Elevation-based Flood Information eXtraction (REFIX) model. 

Waterline heights are extracted from flood cross-sections, before being smoothed 

using linear regression. A TIN surface is subsequently created from the shoreline 

heights, allowing for improved water surface representation in complex hydrological 

situations. Schumann et al. (2008a) go on to test terrain datasets at various 

resolutions using the REFIX model, achieving RMSE values ranging between 0.35 m 

(LiDAR) and 1.07 m (SRTM). A similar approach is proposed by Zwenzner and Voigt 

(2009), who utilise a dense network of cross-sections, each of which is individually 

adjusted until height agreement is found on both sides of the flood. This accounts for 

potential uncertainties from the satellite observations, resulting in an updated flood 
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extent mask. Shoreline heights are smoothed using a moving average filter, before a 

TIN of the water surface is created. The authors highlight the potential for poor 

estimation in locations of steep terrain, where a small change in extent can result in a 

large variation in water height. The above methods assume flat water across the 

plane of the flood when adjusting the cross-sections, which may be over-generalising 

the hydrology occurring during the flood. 

 

Both Schumann et al. (2008b) and Hostache et al. (2009) attempt to account for the 

inherent uncertainty of indirect flood level estimation by producing multiple water 

depth maps to highlight different probabilities of inundation. Schumann et al. (2008b) 

classified a flooded SAR image using numerous thresholds to account for 

classification uncertainty, alongside adjusting the geolocation of the resultant flood 

regions to resolve positional uncertainty, such as that caused by emergent 

vegetation. Fixed cross-sections are subsequently used to extract shoreline height 

values from all flood classifications, allowing for statistical measures (mean, median, 

percentiles etc.) to be used to derive a range of TIN water surfaces and depth maps, 

providing a measure of probability. Hostache et al. (2009) produced two thematic 

flood maps using histogram thresholding to represent the likely minimum and 

maximum flood extent, which are in turn used to produce a range of waterline height 

values. Hydraulic coherence principles are applied to numerous flood cross-sections 

to force decreasing heights downstream, resulting in a reduced range of possible 

height values at each location. Prior to this, any cross-sections located near urban or 

woodland areas, or that intersect steep terrain, are removed due to the uncertainty in 

the flood extent classification. The results are subsequently used to validate 

hydrodynamic model results.  

 

As well as the cross-section based techniques described above, there are algorithms 

based on individually evaluating points along the flood boundary. Mason et al. 

(2012b) present an algorithm for selecting distributed edge points in both rural and 

urban locations. Uncertain rural shoreline points are removed from locations of high 

slope, before a geospatial dilation and erosion operation is applied, with points 

without locational consistency before and after the process being removed as 

potentially suspect. Remaining points are adjusted for emergent vegetation based on 

local SAR backscatter variances, a technique noted as having a high error margin by 

the authors. Shoreline heights are extracted in urban areas from locations unaffected 
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by radar shadow. All points are subsequently thinned to limit spatial clustering, 

reducing those with similar location and observed heights using Principal Component 

Analysis. Brown et al. (2016) created points every 100 m along the flood boundary, 

before extracting height values from a high-resolution LiDAR DTM and creating a 

water surface TIN utilising those points not found on steep slopes.  

 

A common assumption when estimating water surfaces is that they can be 

considered flat across smaller regions. Based on this, Huang et al. (2014) estimated 

water surfaces for numerous subsets of a large flood in the Murray-Darling basin, 

Australia, by iteratively filling a terrain dataset until the locations of water depth 

matched the satellite observed extent. A similar technique was used by Matgen et al. 

(2016), who produced water surface maps under the assumption of consistent water 

depth for each section of a flood. The Height Above Nearest Drainage (HAND) 

dataset (described in Section 3.4.2.1) is repeatedly thresholded until an optimal fit is 

found to the satellite observed flood extents. Cian et al. (2018a) created water 

surfaces for each individual flood polygon by finding stability in the percentile values 

of the boundary heights. The methodology first removes likely over and 

underestimation of flood heights via the 5th and 95th percentiles. The algorithm then 

checks the gaps between every 5th percentile, looking for similarity. The flood surface 

is selected by the largest percentile pair with less than 10 cm difference between 

them, with the final height being the median of the two values. Cohen et al. (2018) 

presented the Floodwater Depth Estimation Tool (FwDET), which interpolates 

unedited shoreline heights using a pixel-based nearest neighbour algorithm, 

concluding that the technique overestimates the water surface in steep terrain and 

urban areas.  

 

Indirectly derived flood surfaces are often validated against in-situ river stage, high 

water marks, hydrodynamic models or aerial photography (Di Baldassarre et al., 

2011). Reported accuracies range from tens of centimetres (Matgen et al., 2007; 

Hostache et al., 2009) through to meters (Oberstadler et al., 1997; Zwenzner and 

Voigt, 2009). Vertical accuracy for many LiDAR DTMs is in the region of 10 to 15 cm 

(West et al., 2018; Zhang et al., 2019a), and many studies produce accuracies within 

this. Sources of error, as previously mentioned, are commonly attributed as the 

mismatch in resolution between the SAR and DTM data, and the underestimation of 

the SAR flood extent due to emergent vegetation (Zwenzner and Voigt, 2009; Cian et 
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al., 2018a). The second of these is systemic in the prevalent trend of under-

predicting the water surface when using indirect methodologies when compared to 

direct measurements (Mason et al., 2012b).  

 

2.4.3. Depth and Volume Calculation 
Once a water surface has been created, it is possible to calculate the flood depths by 

subtracting the DTM, as demonstrated by Cian et al. (2018a) and Cohen et al. 

(2018). Depths can subsequently be used to calculate the water volume, which can 

provide vital information for emergency planners during an event, particularly if water 

pumping is being undertaken (Brown et al., 2016). An example is presented for the 

Chao Phraya River in Thailand by Rakwatin et al. (2013). Their methodology uses 

river levels to create daily water surfaces over a 2 month period. These are 

subsequently clipped to locations identified as flooded in RADARSAT imagery, and 

used to calculate the volume. The research produces a dense time-series of water 

volumes, with sub-catchment water movements analysed via segmentation of the 

study area. This highlights the potential for the monitoring of flood dynamics at 

multiple scales. However, the methodology is limited by the requirement for a dense 

river gauge network to reliably create the water surfaces, data that is commonly 

available more sparsely.  

 
2.5. Big Data Computing and Analytics 
The term “Big Data” became common in the late 2000s as a result of the increase in 

data volume brought on by the internet age (Li et al., 2016). Big data is defined as 

the requirement for state-of-the-art hardware, software and database technologies to 

allow for the capture, storage, manipulation, analysis and presentation of a dataset 

(Ma et al., 2015; Li et al., 2016). Big data can come in many forms, including social 

media metrics, electronic communications, transaction data, and infrastructure 

monitoring, as well as the geospatial datasets used within this thesis (Li et al., 2016). 

With the continuing launch of new Earth Observation satellites, the quantity of openly 

available imagery is rapidly expanding. These increases in data pose significant 

challenges, and the computing infrastructure required for the storage, analysis and 

dissemination of the data similarly requires advancing, highlighting that satellite 

remote sensing resides within the big data domain (Ma et al., 2015).  
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There are a number of ways in which a dataset can be “big”. The three Vs of big 

data, namely volume, velocity and variety, further describe some of the challenges 

associated with big data (Li et al., 2016). If the volume of a dataset is such that the 

use of scalable computer systems, such as clusters and cloud computing, provide a 

cost, time or performance benefit compared to traditional IT infrastructure, then it is 

typically classed as big data (Sun and Scanlon, 2019). Velocity within a big data 

context can refer to the speed of data acquisition, as well as the required timeline for 

data analysis (Sun and Scanlon, 2019). There are numerous types of spatial data, 

both satellite acquired or otherwise, all of which require different data formats, 

processing and levels of uncertainty. Additional big data Vs have been proposed, 

including veracity, visualisation and value, highlighting the breadth of challenges 

associated with processing complex datasets (Li et al., 2016). All of the Vs are 

relevant to remote sensing of the environment. Some of the main challenges include: 

the large volume of data produced by earth observation satellites (as highlighted in 

Section 2.2.2. (Copernicus, 2018)); time-critical remote sensing applications that 

require fast acquisition, transmission and processing of data in near real-time (Sun 

and Scanlon, 2019); varying levels of accuracy from different data sources, making 

uncertainties within analysis hard to quantify (Li et al., 2016); and the visualisation of 

large, multi-temporal datasets, results and uncertainty (Li et al., 2016). Solving these 

challenges will allow for the near real-time, large scale environmental analysis 

utilising the global, multi-temporal and multi-sensor datasets currently available (Ma 

et al., 2015; Sun and Scanlon, 2019). 

 

There are a number of technologies that provide solutions to the challenges of big 

data. Scalable high-performance computing (HPC) infrastructures, including both 

clusters and cloud computing, allow for agile processing of large datasets by 

increasing the number of processors, memory and disk space (Ma et al., 2015). The 

increased processing power available through HPC allows for improved processing 

speed and greater algorithm complexity, allowing for the further development of near 

real-time applications and machine learning frameworks (Ma et al., 2015; McCabe et 

al., 2017). With the ability to scale the number of processors to match the desired 

application, raw processing power is no longer the limiting factor when analysing a 

large volume of data (Ma et al., 2015). Typically, one of the more time-consuming 

stages are data input-output operations, and one of the key principles within HPC is 

the idea of moving the code to the data across parallel processors. This results in 
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operations that are computationally heavy with limited data transfer, ultimately 

reducing processing time (Ma et al., 2015; Li et al., 2016).  

 

Improvements have been made in storage of remote sensing datasets with the 

application of NoSQL databases and Data Cubes. NoSQL (Not Only Structured 

Query Language) is a distributed database technique designed to store non-

relational data within a scaleable framework, which utilises key-value pairings to 

allow for fast data retrieval upon request (Ma et al., 2015). Data cubes store 

information within a multi-dimensional array (typically latitude, longitude and time), 

allowing for simplified access to multi-temporal data for the user (Augustin et al., 

2019). The Australian Geoscience Data Cube (Lewis et al., 2017) was one of the first 

major implementations of data cube technology, with subsequent frameworks 

developed across many countries and regions based on the open-source technology 

(Augustin et al., 2019). One of the principles behind data cubes is the production of 

Analysis Ready Data (ARD), where the majority of the pre-processing is undertaken 

by the institutions that acquire that data (such as satellite agencies) due to their 

greater accessibility to HPC facilities (Augustin et al., 2019). This allows data to 

become more accessible to a wider variety of end-users by reducing the knowledge 

and infrastructure requirements to complete analysis.  

 

There are services that combine many of the above technologies into user-friendly 

tools, allowing for processing and analysis of large volumes of satellite imagery. 

Examples include Google Earth Engine (GEE) and Amazon Web Services (AWS). 

These services both provide ARD from a number of satellites whilst being supported 

by cloud computing infrastructure, allowing the user to undertake fast, complex 

analysis of multi-temporal satellite datasets (Gorelick et al., 2017; McCabe et al., 

2017). The availability of a back-catalogue of historical satellite data stored on these 

platforms can allow for improved training of machine learning algorithms (McCabe et 

al., 2017). An example of historical hydrological analysis is presented by Pekel et al. 

(2016), who produced the Global Surface Water Explorer using GEE by analysing 

the multi-temporal Landsat imagery to identify surface water, allowing for analysis of 

changes in water occurrence and seasonality through time.  
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2.6. Summary and Research Opportunities 
Recent satellite launches have ushered in a new, data-rich era of earth observation. 

Temporal coverage has been improved for sensors providing medium to high-

resolution imagery through the development of satellite constellations. Whilst data 

from some on-demand satellites can be costly, the Copernicus Sentinel programme 

provides data from a variety of sensors free of charge. Advancements in computing 

allow for processing algorithms and image analysis to be completed faster, opening 

up the possibility of near real-time monitoring. For flooding, remote sensing can help 

improve our understanding of the changing dynamics of an event. It is now possible 

to get multiple images of the same flood event, allowing for analysis of how the 

extent, depth, slope and water volume change through flood onset, peak and 

recession. 

 

SAR provides an operational advantage when mapping flooding due to its ability to 

penetrate cloud cover. Flood mapping from SAR imagery is a well-researched topic. 

Both pixel and object-based algorithms have been developed to identify open water 

from images, highlighting the specular reflection of the radar signal. Hybrid 

frameworks, combining multiple traditional processing techniques, have become 

common and help to reduce false classifications. Challenges remain, primarily when 

identifying inundation under vegetation and within the urban environment. Due to the 

high impact of flood events in urban areas, improving sensing in these locations has 

become a high priority for research.  

 

Data fusion of the SAR derived flood extents and terrain models allow for estimation 

of the water surface, and subsequently water depth and volume. Key within this 

process is accounting for uncertainty, with inaccurate flood extents and the mismatch 

in resolution between datasets likely to introduce errors. Various methods have been 

developed for identifying the true topographic edge of the flood extent, however, 

these have the potential for over-generalising the shoreline heights. Further research 

is needed into how best to identify locations of accurate flood delineation to allow for 

subsequent water surface interpolation. 

 

Research has shown that automated, global, near real-time flood monitoring is 

achievable using some of the algorithms currently developed. Operational flood 

monitoring allows for derived flood maps to be used by emergency personnel or 



[43] 
 

assimilated into hydrodynamic models. However, there is no clear consensus as 

which methodology is the most reliable and accurate. Most studies focus on singular 

flood events or source of satellite data, with no consideration of robustness across 

different acquisition parameters or environmental conditions. Furthermore, good 

validation datasets are often hard to find, resulting in a lack of consistency and 

confidence in the reported accuracies. Ensuring algorithms are scalable for global 

applications, adaptable for different satellite parameters and robust to accurately 

identify flooding in various environmental settings is important for new research going 

forward. 
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Chapter 3. SAR Acquisition and Pre-Processing 
 
3.1. SAR Image Acquisition 
Radio detection and ranging, more commonly known as radar, was first utilised as a 

source of imagery by the military in the late 1940s. Seasat, the first civilian satellite 

carrying a radar instrument, was launched in 1978, and since then there have been 

numerous spaceborne platforms collecting radar imagery (major radar satellite 

missions are summarised in Table 2.1), alongside aerial and ground-based systems. 

Radar imaging systems are active, meaning they provide their own source of 

illumination, and work by transmitting a microwave pulse towards the earth’s surface 

and recording the reflected signal returned to the sensor (Lillesand et al., 2008). As 

an active sensor, they can image during the night and independent of weather 

conditions (Alsdorf et al., 2007).  

 

There are two common types of imaging radar, side-looking radar (SLR or SLAR) 

and synthetic aperture radar (SAR). SLR has deficiencies in spatial resolution 

(discussed in Section 3.1.1.) that led to the development of SAR. Figure 3.1 gives an 

overview of how a SAR system operates. As it travels along its orbit, a SAR 

instrument is constantly alternating between transmitting a microwave pulse and 

recording the returning echoes (Lillesand et al., 2008). Ground features are imaged 

by multiple pulses, with advanced processing and merging of the signals resulting in 

an increased illumination time for ground objects. The frequency of the returned 

signal from a feature will differ based on the location of the object in relation to the 

satellite, known as the Doppler shift. Within the radar beam, target features ahead of 

the sensor will have an upshift in frequency, whilst those behind will have a downshift 

(Rees, 2013). Correcting the returned signals for their Doppler shifts allows for the 

merging of pulses, improving the signal-to-noise ratio and spatial resolution of the 

resulting image (Lillesand et al., 2008).  

 

Radars are normally side-looking, and transmit microwave signals at angles typically 

ranging between 15° and 50° from nadir. The side-looking imaging geometry of SAR 

satellites results in a number of key angle descriptors used to explain the location of 

the data collected in relation to the satellite (Figure 3.2). These include the look angle 

(sometimes referred to as the elevation angle), which is the angle from nadir that the 
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radar signal is transmitted along (Mather and Koch, 2011). Complementary to the 

elevation angle is the depression angle, the angle from 90° horizontal at the satellite 

to the region of interest. The incidence angle describes the angle between the radar 

beam and nadir at the point of intersection with the ground surface, whereas the local 

incidence angle describes the relationship between the radar signal and the ground 

surface once local land slope has been taken into account (Mather and Koch, 2011). 

The distance between the radar and the point of interest on the ground is known as 

the slant-range, with the ground-range being the corresponding distance from the on-

ground satellite position to the target (Lillesand et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerous aspects of the return signal are recorded at the satellite, including the 

amplitude of the return, the phase of the wavelength, and the time taken for the 

signal to return (Lillesand et al., 2008). Slant-range distance to a reflector can be 

calculated based on the time for the return signal to reach the satellite and the speed 

of sound. The data displayed within a radar image is known as backscatter and 

represents a measure of the amount of the transmitted radar microwaves returned to 

the satellite from the Earth’s surface (Lillesand et al., 2008). Commonly the strength 

of the signal is displayed in decibels (dB), which represents the log-transform of the 

signal power returned to the satellite. Images are normally displayed in greyscale, 

Figure 3.1. Conceptual diagram of how a Synthetic Aperture Radar system acquires 
data. Multiple pulses of the SAR beam illuminate the ground target as the satellite travels 
along its orbit. Signals have different Doppler shifts depending on the target position in 
relation to the satellite. Adjusting for Doppler frequencies and signal merging allows for 
imaging of the target using the synthetic aperture, which is equivalent to the distance 
travelled whilst imaging the target. In the image shown, the synthetic aperture is the 

distance between 1 and 5, compared to the physical antenna shown in yellow. Published 
in Mather and Koch (2011). 
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with white pixels representing areas where a large proportion of the radar signal is 

returned to the sensor and dark pixels are where minimal signal backscatter has 

occurred.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main component which dictates backscatter strength is surface roughness, 

which is itself a function of land cover, object shape and size (Lillesand et al., 2008; 

Grimaldi et al., 2016). Figure 3.3 gives examples of how the scattering of the 

microwave signal varies with land cover, between non-flooded and flooded situations. 

Water is theoretically flat, and will specularly reflect the radar signal resulting in 

minimal signal return to the satellite (Henderson and Lewis, 2008; Jung et al., 2010). 

This is in contrast to the higher amounts of backscatter produced by other land 

surfaces. For example, a region of vegetation will produce more backscatter due to 

the greater number of irregular objects for the signal to interact with, causing an 

increase in surface roughness and volume scattering of the radar signal (Schumann 

and Moller, 2015; Twele et al., 2016). In an urban area, the radar signal often 

interacts with more than one feature due to the close proximity of high reflectance 

Figure 3.2. Synthetic Aperture Radar (SAR) imaging geometry, showing key angle 
descriptors including look angle, incidence angle and local incidence angle. Published 
online at http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/page1.html 

(last accessed 03/03/2019). 

http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/page1.html
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targets. Known as double bouncing, the microwave signal can interact with the 

ground followed by a building (or vice-versa), resulting in a large proportion of the 

transmitted radar signal being returned to the satellite (Schumann and Moller, 2015). 

When mapping surface water, double bouncing of the SAR signal in urban and 

woodland regions masks the specular reflectance from the water surface, often 

leading to an underestimation of the water extent (Zwenzner and Voigt, 2009). 

Depending on the orientation of the double bounce feature this can result in a 

stronger return signal compared to dry conditions (Horritt et al., 2001; Giustarini et al., 

2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

The dielectric properties, or water content, of the feature being imaged can influence 

the amount of backscatter produced. Microwaves are unable to penetrate water, a 

relationship that can result in two effects depending on the environmental situation 

(Liang et al., 2012). The first is the reflection of the radar signal from open water, 

either specularly if the surface is flat, or more scattered if there is wind roughening of 

the surface (Alsdorf et al., 2007). The second mechanism occurs when the land 

Figure 3.3. Backscattering characteristics for different land covers (from left, grassland, 
forest and urban environments) in dry (top) and wet (bottom) conditions. Expected 

responses from both short and long wavelength SAR systems shown. Mechanisms to 
note include; the specular reflection of the radar signal from open water (bottom left), the 

volume scattering of shorter wavelengths in forest canopies irrespective of flood 
conditions (middle), and the double bounce of the radar signal from tree trunks and 
buildings in urban and forest environments, an effect which strengthens if water is 
present (middle and right). Originally published in Schumann and Moller (2015). 
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cover has high water content, such as saturated vegetation or soil. In drier 

conditions, some of the radar signals are reflected into these surfaces, reducing 

backscatter within an image (Jackson, 2002; Liang et al., 2012). However, when 

saturated the radar signal fully reflects off the complex surface, increasing scattering 

in all directions, including towards the satellite (Saatchi and van Zyl, 1995; Lillesand 

et al., 2008). In the case of soil, backscatter will increase with soil wetness up until 

surface water forms, at which point specular reflectance will occur and the signal 

returned to the satellite will decrease to almost zero (Baghdadi et al., 2008; Mitchell 

et al., 2014). As well as the environmental conditions being imaged, certain 

acquisition parameters can also impact backscatter, as discussed in the following 

sections. 

 

3.1.1. Image Resolution 
The spatial resolution of radar data is made up of two components: range resolution, 

which describes the cell size in the direction of the radar pulse; and azimuth 

resolution, which defines the cell dimension parallel to the orbit of the satellite. The 

two resolution aspects are determined by different physical acquisition parameters 

and can vary in size from each other.  

 

Range resolution is determined by the length of the pulse of the transmitted signal. 

For objects to be distinguishable in range direction they have to be at least half a 

pulse length removed from one another. If the objects are closer, then the return 

signals will overlap and the radar system will be unable to differentiate between them 

(Rees, 2013). When considered in the slant-range domain, range resolution is 

consistent with the distance from the instrument. However, the ground-range 

resolution is inversely proportional to the cosine of the depression angle, meaning 

the data resolution increases with increasing distance from the instrument (Lillesand 

et al., 2008).  

 

Azimuth resolution is dependent on the beamwidth, which is proportional to the 

wavelength of the transmitted microwaves and sensor altitude, and inversely 

proportional to the antenna length. In real-aperture SLR systems, the transmitted 

beam width increases with slant-range distance, creating a decrease in azimuth 

resolution at far-range (Rees, 2013). Short-range resolution can be improved by 

utilising smaller wavelengths or a longer antenna, or by flying the instrument at a 
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lower altitude. However, often these requirements are impractical and fail to resolve 

the worsening of the azimuth resolution with range, restricting real-aperture surveys 

to aerial platforms and imaging small study areas at a short-range distance (Lillesand 

et al., 2008). 

 

SAR systems are designed to overcome the degradation in spatial resolution with 

distance from the instrument and the loss of resolution with sensor altitude. A short 

physical antenna is still found on the instrument, however, a longer synthetic aperture 

is created from the motion of the instrument over the time, creating an array of 

antennae that can mathematically be considered a single entity (Lillesand et al., 

2008). The far-range is imaged for a longer time period than the near-range, resulting 

in an increase in effective antenna length with slant-range distance, which can result 

in synthesised apertures several kilometres in length at far-ranges. Ground objects 

are imaged with numerous radar pulses, encompassing the full range of Doppler 

shifts as the satellite travels from behind to ahead of the object. Processing and 

correcting these signals to the centroid Doppler frequency allows for narrow effective 

beamwidths to be determined, subsequently creating a constant azimuth resolution 

(Lillesand et al., 2008). SAR azimuth resolution is calculated as being approximately 

half of the physical antenna length, with shorter antenna lengths producing a finer 

resolution (Rees, 2013).  

 

3.1.2. SAR Wavelength and Frequency 
SAR data is collected within the microwave region of the electromagnetic spectrum, 

which is segmented into several bands of specific wavelengths and frequencies that 

sensors commonly operate within (Table 3.1). Satellite SAR systems normally 

operate at C-band (RADARSAT-2 and Sentinel-1, frequency 5.405 GHz, wavelength 

5.6 cm) or X-band (COSMOS-SkyMED and TerraSAR-X, frequency 9.65 GHz, 

wavelength 3.11 cm) frequencies, although occasionally longer wavelength L-band 

instruments (ALOS-2, frequency 1.27 GHz, wavelength 23.5 cm) are used. The 

wavelength of a signal has a direct impact on which ground features contribute to the 

backscatter return within an image (Mather and Koch, 2011). The smaller the 

wavelength, the smaller the object that the SAR signal will interact with. This can 

create a more varied response from vegetation and bare soil as the true nature of the 

surface roughness is captured within the image, instead of a more generalised return 

captured by longer wavelengths (Lillesand et al., 2008).  
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Both long and short wavelength systems can have situational advantages where the 

imagery provides superior mapping of surface water (Martinis and Rieke, 2015). For 

open water bodies, shorter wavelengths provide better delineation of the shoreline, 

particularly if the land surrounding the water body is flat (Voormansik et al., 2014). 

However, shorter wavelengths are also more susceptible to increased backscatter 

from surface water waves (Grimaldi et al., 2016). Images from longer wavelength 

sensors provide increased canopy penetration, allowing for water identification in 

forested areas via analysis of the backscatter to identify where double bouncing 

between the flood surface and the tree trunks has occurred (Voormansik et al., 2014; 

Chapman et al., 2015). Manavalan (2018) suggested that overall, longer wavelength 

L-band sensors are the preferential choice for flood monitoring due to their 

applicability across a greater variety of geographical settings. However, the choice of 

wavelength is normally determined by the availability of satellites and images, 

instead of the optimal parameters based on thematic need. The prevalence of shorter 

wavelength satellites in orbit means most research and operational flood monitoring 

is completed using C- or X-band images, despite potentially improved mapping in 

certain situations using L-band sensors. 

 

3.1.3. SAR Polarisation 
The polarisation of SAR data refers to the orientation of the transmitted and received 

signal in relation to the satellite antenna (Lillesand et al., 2008). Typically, the radar 

signal is transmitted either vertically (V) or horizontally (H), with one of the vertical (V) 

or horizontal (H) components of the backscattered response recorded (Figure 3.4). 

This results in four common polarisations: HH (Horizontally transmitted – Horizontally 

Table 3.1. Radar band designations, frequency and wavelength. Adapted from Mather 
and Koch (2011). 

Band Designation Frequency (MHz) Wavelength (cm)

P 300 - 1,000 30 - 100

L 1,000 - 2,000 15 - 30

S 2,000 - 4,000 7.5 - 15

C 4,000 - 8,000 3.75 - 7.5

X 8,000 - 12,000 2.5 - 3.75

Ku 12,000 - 18,000 1.667 - 2.5

K 18,000 - 27,000 1.111 - 1.667

Ka 27,000 - 40,000 0.75 - 1.111
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recorded), HV (Horizontally transmitted – Vertically recorded), VH (Vertically 

transmitted – Horizontally recorded) and VV (Vertically transmitted – Vertically 

recorded). HH and VV polarisations are often referred to as co-polarised imagery, 

whilst HV and VH are cross-polarised. Land covers can produce varying backscatter 

responses depending on the image polarisation, making it a key consideration when 

analysing an image for a particular thematic area. An example of how backscatter 

varies between VH and VV polarisations is shown in Figure 3.5.   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
As with other land covers, image polarisation can have an impact on how 

successfully a water classification algorithm performs. The consensus is that HH 

polarised data achieve the greatest accuracy in identifying open water (Henry et al., 

2006; Manjusree et al., 2012). However, data from Sentinel-1, which forms the basis 

of the research presented in the following chapters, is only available in VH and VV 

polarisations. In their comparison between the available Sentinel-1 polarisations, 

Twele et al. (2016) found that VV imagery provided better flood boundary delineation 

due to the preservation of the vertical component of the radar signal when interacting 

with protruding vegetation (the double bounce effect), allowing for a clearer definition 

of the flood shoreline. However, VV imagery is more susceptible to increased 

backscattering from surface roughening of the water surface, often caused by wind or 

heavy rain (Brisco et al., 2008). Cross-polarised data is less affected by roughening, 

and has been shown to have high accuracy when mapping open water, but can 

suffer from falsely classifying land as water (Manjusree et al., 2012). This is due to 

Figure 3.4. Polarisation within Sentinel-1, which is transmitted vertically (V, shown left), 
and received both vertically (V) and horizontally (H, shown right). Other SAR systems 

often transmit horizontally instead of, or alongside, the vertical signal. 
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the higher amount of volume scattering and depolarization of the radar signal caused 

by vegetation, resulting in a highly variable land response to the radar signal, 

including regions of lower backscatter similar to water (Jin and Xu, 2013; Twele et al., 

2016). Due to the differences in classification accuracy with each polarisation, the 

use of multiple polarisations when available is recommended, with improved flood 

delineation achieved by the removal of misclassifications caused by polarisation 

specific mechanisms (Henry et al., 2006; Brisco et al., 2008; Manjusree et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5. Comparison between VH (left) and VV (right) polarised images for water 
(Kielder reservoir, UK (Top)) and urban (Newcastle upon Tyne, UK (Bottom)) settings. 

The VV data shows a higher susceptibility for noisier returns from water bodies, caused 
by wind roughening of the water surface. Note the improved detail shown for urban 

features in VV polarisation. Each panel is scaled to the extent shown to allow for clearer 
showcasing of image differences. Backscatter values vary considerably between the top 
and bottom panels despite the similar colour scales displayed. Images from 1st January 

2016. 
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3.1.4. Speckle 
A common aspect of SAR imagery is speckle, caused by multiple sources of 

scattering within a pixel feature space that produce variable backscatter responses 

(Brivio et al., 2002). This results in a ‘salt and pepper’ effect on the image, with pixels 

from the same land cover having inconsistent backscatter values. Speckle can be 

reduced by applying a local adaptive filter, with the aim of smoothing out 

homogeneous surfaces whilst preserving object edges (Lillesand et al., 2008). 

Numerous filters have been applied in the literature when pre-processing a SAR 

image, including Median (Pradhan et al., 2014; Martinis et al., 2015b); Frost (Matgen 

et al., 2007; Schumann et al., 2008a); Gamma MAP (Manjusree et al., 2012; Long et 

al., 2014); Lee (Brivio et al., 2002; Chung et al., 2015); Refined Lee (Nakmuenwai et 

al., 2017; Martinis et al., 2018); and Lee Sigma (Zwenzner and Voigt, 2009; Brown et 

al., 2016) filtering. As well as the type of filter, other parameters such as the number 

of looks, window size and sigma can all impact the amount of smoothing achieved by 

a filter. There is no qualitative method for determining the best technique for speckle 

suppression, with filter selection often decided based on the subjective judgement of 

the researcher.  

 

3.1.5. Radar Shadow, Foreshadowing, Layover and Foreshortening 
As previously mentioned, SAR sensors are side-looking, which can result in 

geometric distortions within an image at locations where the radar signal interacts 

with tall features, such as mountains or buildings (Rees, 2000; Huang et al., 2017). 

There are three main types of these terrain effects; radar shadow, foreshadowing 

and layover (Figure 3.6). Radar shadow refers to the inability of the radar signal to 

illuminate the land immediately behind a large obscuring feature (Rees, 2000). 

Accounting for shadowing is particularly important when mapping surface water, as 

these areas show up as dark regions within a SAR image, similar to locations of low 

backscatter (Giustarini et al., 2013; Huang et al., 2017). Foreshadowing in a SAR 

image is the increase in backscatter from the side of a mountain facing the satellite, 

and is caused by the decrease in local incidence angle due to the slope of the terrain 

(Mather and Koch, 2011). Foreshortening often occurs when mountainous regions 

are imaged at lower radar look angles, resulting in the compression of the depicted 

ground distance in the range direction caused by different signal travel times 

between the top and base of a mountain (Lillesand et al., 2008). Similar to 

foreshortening is layover, which is the complete overlapping of the upper part of a 
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feature with its base due to the signal interacting with the mountain top first, and 

tends to occur when feature slopes are steeper (Lillesand et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2. Sentinel-1 SAR 
Sentinel-1 is a constellation of two satellites, both carrying the same payload of a C-

band SAR instrument. Both satellites nominally fly opposite each other along the 

same orbit, providing conflict-free data acquisition allowing the creation of a 

consistent archive of imagery on a global scale (Geudtner et al., 2014). The regular 

orbit and freely available medium-high resolution imagery provided by Sentinel-1 has 

allowed improved insight and monitoring of environmental processes. A search of 

recent publications shows a range of thematic areas utilising Sentinel-1 data, 

including surface water, wetlands, soil moisture and flood monitoring (Boni et al., 

2016; Muro et al., 2016; Twele et al., 2016); land deformation studies, including 

Figure 3.6. Common geometric errors found within SAR data caused by regions of high 
topography. Shadowing is of particular interest for water body mapping studies due to its 
similarity to the low backscatter response from water. Image published online by ESA, 

available at https://earth.esa.int/handbooks/asar/CNTR1-1-2.html (last accessed 
03/03/2019). 

https://earth.esa.int/handbooks/asar/CNTR1-1-2.html
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earthquakes, landslides and land subsidence (Barra et al., 2016; Dai et al., 2016; 

Sowter et al., 2016); volcano monitoring (González et al., 2015; Lau et al., 2018); 

cryosphere science (Mouginot et al., 2017; Karvonen, 2018; Lemos et al., 2018); sea 

ice, ocean wave, ship and oil spill detection (Muckenhuber et al., 2016; Shao et al., 

2016; Velotto et al., 2016); agricultural and forestry studies (Minh et al., 2017; 

Rüetschi et al., 2017; Torbick et al., 2017); and urban change monitoring (Cao et al., 

2018; Corbane et al., 2018; García et al., 2018).  
 
3.2.1. SAR Instrument 
The Sentinel-1 satellites carry a payload of a C-Band SAR instrument, which 

operates at a central frequency of 5.405 GHz, and a central wavelength of 5.547 cm. 

The instrument has an antenna 12.3 m in length, a beam width of 0.23°, and a pulse 

width ranging between 5-100 μs (ESA, 2018a). Sentinel-1 comes with the ability to 

move the transmitted radar beam in both range (-13.0° to 12.3°) and azimuth (-0.9° to 

0.9°) directions, allowing for the collection of images via the Terrain Observations 

with Progressive Scans SAR (TOPSAR) methodology (De Zan and Guarnieri, 2006). 

Sentinel-1 can operate in single or dual polarisation modes, with a switchable 

transmit chain and two simultaneously operating receiver chains allowing this. The 

instrument contains an internal calibration scheme, ensuring that there is a high 

degree of radiometric stability by monitoring the differences in amplitude and phase 

between the transmitted and received signals (ESA, 2018a). Each Sentinel-1 satellite 

has a data storage capacity of 1.4 Gb, and the ability to transmit data at a rate of 520 

Mbit/s (ESA, 2018a). 

 

3.2.2. Orbit Information and Coverage 
Sentinel-1 operates along a polar sun-synchronous orbit, with each satellite circling 

the Earth 175 times throughout a 12 day repeat period (ESA, 2018b). The two 

Sentinel-1 satellites fly opposite each other along the same orbit track, reducing the 

repeat period for the constellation to 6 days. Revisit frequency for the constellation, 

or how often a point on the ground is imaged independent of orbit track, is around 3 

days at the equator, and less than 1 day at high latitudes (Figure 3.7). Satellites are 

kept within a target drift RMS of fewer than 50 m from the intended flight path, 

allowing for improved reliability for change detection analysis and SAR interferogram 

creation (Geudtner et al., 2014).  
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3.2.3. Acquisition Modes 
Sentinel-1 has four available acquisition modes: Extra Wide Swath (EW), 

Interferometric Wide Swath (IW), Stripmap (SM) and Wave (WV). Each mode is 

designed for different imaging situations, with the satellite automatically switching 

mode depending on the geographical location targeted during acquisition. An 

overview of SM, EW and WV is given here, with a more detailed explanation of IW 

supplied, as this is the default acquisition mode over land. Figure 3.8 provides a 

diagrammatic overview of how each acquisition mode works.  

 

The main application for EW data is in marine monitoring, including sea-ice tracking 

and oil spill detection. Images are dual-polarised, and available across 410 km 

swaths, with incidence angle ranging between 18.9° and 47.0°. The spatial resolution 

of EW data is 20 x 40 m (range x azimuth) (ESA, 2018c). Sentinel-1 rarely operates 

in SM mode, with its use restricted to the imaging of small islands, and when 

requested for assistance for real-time disaster monitoring and management. Despite 

its limited use, the acquisition parameters of SM mode are designed to match those 

of the ERS and ENVISAT missions. A single swath of 80 km is acquired at a fixed 

range of incidence angles, which is chosen from 6 predefined overlapping swaths. 

Data is dual-polarised and supplied at 5 m ground resolution (ESA, 2018d). Wave 

Figure 3.7. Sentinel-1 revisit frequency for the two satellite constellation. Coverage at the 
equator is approximately every 3 days, with sub-daily at the poles. Image published 

online by ESA (2018b). 
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mode (WV) is the default conflict-free acquisition mode over the oceans. Data is 

collected as a series of 20 x 20 km vignettes, providing continuity with ERS and 

ENVISAT. Vignettes are spaced 100 km apart, and alternate incidence angle 

between 23° and 36°. Images are provided at 5 m spatial resolution, and in VV 

polarisation (ESA, 2018e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3.1. IW and TOPSAR Acquisition 
IW is the default acquisition mode over land and is acquired using the Terrain 

Observation with Progressive Scans SAR (TOPSAR) technique. Developed by De 

Zan and Guarnieri (2006), TOPSAR corrects for some of the radiometric errors that 

come from traditional SAR scanning techniques (such as ScanSAR) whilst providing 

data at a higher resolution. Scalloping is the light and dark banding in the range 

direction of a SAR image and is caused by inaccurate estimation of the Doppler 

centroid mean frequency due to the full range of possible Doppler shifts not being 

captured (Meta et al., 2008). Although it is possible to remove this with post-

Figure 3.8. Sentinel-1 acquisition modes. Interferometric Wide Swath (IW) is the default 
mode over land. Image published online by ESA, available online at 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload (last 
accessed 03/03/2019). 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload
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processing, methods often result in a reduction of resolution and cause decorrelation 

of the data, limiting interferometric studies (De Zan and Guarnieri, 2006). TOPSAR 

removes the effects of scalloping without the requirement of post-processing and is 

currently in use onboard TerraSAR-X and Sentinel-1 (D’aria et al., 2007; Meta et al., 

2008). TOPSAR works by additionally steering the radar beam in the azimuth 

direction as well as continuing to steer in the range direction, as shown in Figure 3.9 

(De Zan and Guarnieri, 2006). The resulting image has improved signal to noise ratio 

(SNR) due to each ground feature being illuminated by the full range of Doppler 

frequencies within the azimuth antenna pattern (Meta et al., 2008; Geudtner et al., 

2014). The improved consistency in the SNR with azimuth almost entirely removes 

any scalloping in the data, with TerraSAR-X showing a decrease in scalloping from 

1.2 dB to 0.3 dB when comparing TOPSAR to ScanSAR (Meta et al., 2008).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For Sentinel-1 IW data acquisition, three overlapping image sub-swaths are 

combined to create an image with an overall swath width of 250 km. Each sub-swath 

contains six bursts, which are processed individually as a single-look complex (SLC) 

scene prior to merging, shown in Figure 3.10 (ESA, 2018f). Data is collected at a 

spatial resolution of 5 m (range) by 20 m (azimuth), before being resampled to pixels 

of 10 m. Incidence angles across the swath range between 18.9° and 47.0° (ESA, 

2018f). 

Figure 3.9. TOPSAR, the acquisition method used in Sentinel-1 IW mode. The antenna 
scans in both range and azimuth direction as the instrument travels along its orbit (De 

Zan and Guarnieri, 2006). 
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3.2.4. Sentinel-1 Data Products 
Sentinel-1 data is available from the Copernicus database in a number of different 

formats, with the intended application dictating which is most appropriate for the user 

to download. The data products can be split into three levels: Level-0, which 

describes the raw data; Level-1, which includes Single Look Complex (SLC) and 

Ground Range Detected (GRD) datasets; and Level-2, which are products 

specifically created for analysing oceans, including Ocean Wind Field (OWI), Ocean 

Swell Spectra (OSW) and Surface Radial Velocity (RVL) (ESA, 2018g). 

 

The Level-1 products, SLC and GRD, are the most commonly used data types for 

terrestrial applications. A number of processing steps are applied to the raw data to 

create either product, summarised in Figure 3.11. Although both are classed as 

Level-1 products, SLC can be considered as the input dataset for the creation of 

GRD data. SLC provides data in slant-range geometry, with the phase of the 

backscattered signal preserved alongside amplitude (ESA, 2018h). Phase 

information is needed for the creation of interferograms, meaning SLC data is 

required as an input when creating terrain datasets and for ground deformation 

studies. GRD data, as the name suggests, is delivered in ground-range geometry, 

Figure 3.10. An example of the separate TOPSAR bursts prior to merging into the final 
GRD Sentinel-1 product. Note the six bursts for each of the three sub-swaths, each with 
enough overlap to ensure a consistent product once merged. Image published online by 

ESA (2018f). 
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having been projected onto a WGS84 ellipsoid. The phase information is lost during 

the multi-looking of the SLC data, used to create square pixels and reduce noise 

within the GRD products. Pixel values represent the amplitude of the returned signal 

(ESA, 2018h). Despite the disadvantage of reduced information, GRD data is 

arguably delivered in a more user-friendly format, allowing for image analysis without 

the requirement for technical knowledge of complex SAR processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.3. Sentinel-1 Pre-Processing 
The following sections briefly describe the processing steps undertaken to transform 

a GRD image, downloaded from the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/), into the SAR image used for identifying flood extent in 

the following chapters. Processing was completed using the Sentinel Applications 

Platform (SNAP) Sentinel-1 Toolbox and the Python library that utilises the software 

tools. Within the SNAP software, help notes are available to provide guidance on 

how each tool operates, with information from these sources referenced as SNAP 

(2018) henceforth. 

 

3.3.1. Applying Orbit Information 
The orbit information within the metadata of a downloaded Sentinel-1 GRD product is 

likely to contain inaccuracies. The relevant information, namely satellite position and 

velocity information, can be updated using either precise or restituted orbit data, 

correcting the orbit state vectors within the metadata (SNAP, 2018). Precise orbits 

provide the optimal level of accuracy, however, these can take days-to-weeks to 

Figure 3.11. Processing flow used to produce SLC and GRD deliverables from raw 
Sentinel-1 data. Image published online by ESA (2018h). 

https://scihub.copernicus.eu/
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produce, resulting in the restituted orbits often being used for near real-time 

applications (SNAP, 2018).  

 

3.3.2. Thermal Noise Removal and Radiometric Calibration 
SAR images can be subject to random additive thermal noise caused by the motion 

of electrons in the satellite circuitry due to temperature differences. With Sentinel-1 

utilising the TOPSAR acquisition method, thermal noise can become particularly 

apparent between image sub-swaths due to the difference in timing between 

acquisitions (Park et al., 2018). The thermal noise is removed using SNAP software, 

which use product-specific noise Look-up Tables (LUT) to deduce and apply 

corrections to the data, creating continuous intensity profiles across sub-swaths 

(SNAP, 2018). 

 

The Level-1 GRD images have no correction applied to account for any radiometric 

bias across the scene. It is possible to assess data quality using uncalibrated data, 

however, to allow for further thematic analysis the data needs normalising to 

represent the scattering coefficient, which compares the observed signal strength to 

the backscatter intensity expected for a defined area (SNAP, 2018). This allows for 

the direct comparison between images collected from different dates, satellite tracks, 

operational modes and sensors. Data is normally calibrated to either Beta Nought 

(β0), Sigma Nought (σ0) or Gamma Nought (γ0), with the different backscatter 

conversions determining the orientation of the reference area used to calibrate the 

data (Figure 3.12).  

 

β0 represents the backscatter brightness across a reference frame in slant range 

geometry, defined as:  
 

𝛽𝛽0 =  𝛽𝛽/𝐴𝐴𝛽𝛽. 

 

where β is the radar backscatter, and Aβ is the reference rectangle (Small, 2011). β0 

is often determined as a precursor to terrain flattening, which calibrates the data in 

relation to the local terrain instead of the WGS84 ellipsoid (SNAP, 2018).  

 

 

(1) 
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σ0 describes the scattering coefficient within a horizontal plane of the ground surface 

(Aσ), with 𝜎𝜎𝐸𝐸0 in the below equation referring to the σ0 in relation to the ellipsoid model 

(Small, 2011).  

 

𝜎𝜎𝐸𝐸0 = 𝛽𝛽0 .
𝐴𝐴𝛽𝛽
𝐴𝐴𝜎𝜎

=  𝛽𝛽0 . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸 . 

γ0 represents the backscatter intensity for a reference frame perpendicular to the 

radar line of sight (Aγ). As above, 𝛾𝛾𝐸𝐸0 depicts gamma nought in relation to the local 

ellipsoid (Small, 2011). 

 

𝛾𝛾𝐸𝐸0 = 𝛽𝛽0 .
𝐴𝐴𝛽𝛽
𝐴𝐴𝛾𝛾

=  𝛽𝛽0 . 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝐸𝐸 . 

             

For the case of Sentinel-1, three Look-up Tables (LUT) are available within SNAP 

software, which converts the observed data to either β0, σ0 or γ0 (SNAP, 2018). 

Figure 3.12. The different reference frames (in relation to the satellite slant-range 
geometry) used to calibrate SAR backscatter (Small, 2011). In the research presented 
data has been calibrated to Aσ, shown by the purple square, representing the scattering 

coefficient in relation to the ground ellipsoid. 

(2) 

(3) 
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Firstly, the scaling applied to the data in the initial level 1 pre-processing is removed, 

before the LUT is used to calibrate the data using the following equation:  

 

𝑣𝑣𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣(𝑠𝑠) =
|𝐷𝐷𝐷𝐷𝑖𝑖|2

𝐴𝐴𝑖𝑖2
 

 

where 𝑠𝑠 is the relative pixel value in β0, σ 0 or γ0 based on 𝐷𝐷𝐷𝐷𝑠𝑠 (the input image pixel 

value), and Ai, the corresponding betaNought(𝑠𝑠), sigmaNought(𝑠𝑠) or 

gammaNought(𝑠𝑠) from the LUT (SNAP, 2018). Where pixels fall between the values 

within the LUT, bi-linear interpolation is used to determine the new pixel value 

(SNAP, 2018). 

 

For the research presented in this study, data is calibrated to σ 0. Previous studies 

have shown that using σ 0 provides improved land-water separation within the image 

histogram (Bioresita et al., 2018; Giordan et al., 2018). Some studies have 

recommended the use of calibrations that take local terrain into consideration, as 

opposed to using a local ellipsoid (Small, 2011; Huang et al., 2018). In the SNAP 

software, this would comprise calibrating to β0, and terrain flattening to γ0. However, 

due to the unlikelihood of flooding occurring in high terrain regions, it was decided 

that calibrating to σ 0 would be sufficient. 

 

3.3.3. Speckle Filtering 
Speckle filtering removes the effects of local variations in backscatter, resulting in a 

smoother image that can be more accurately used in classifications. For the initial 

study of flood mapping in Yorkshire, a median filter was applied to the SAR images. 

A median speckle filter works by comparing the pixel of interest to those in its 

immediate neighbourhood and replacing the cell value with the median value of these 

pixels. A user-defined grid shape and size determines the number of pixels used in 

the calculation, with a rectangular neighbourhood with an odd number of pixels along 

the grid edges (5 x 5, 7 x 7 etc.) commonly used, ensuring the pixel being filtered is 

located in the centre of the neighbourhood. A median filter with a neighbourhood of   

5 x 5 pixels was applied to the images for the initial study. The median filter has been 

widely used in the literature, and often provides good results when removing speckle 

in regions of land cover with minimal variation in baseline backscatter. However, it 

can result in over-smoothing of the data in locations where there is a wide range of 

(4) 
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backscatter values, such as at the flood boundary (Mansourpour et al., 2006; Lee et 

al., 2009).  

 

After the initial study, a comprehensive visual comparison was made of various 

speckle filters to ascertain if further improvement can be achieved in maintaining 

edge features whilst continuing to sufficiently filter homogenous areas. Superior 

filtering is achieved by the Refined Lee filter. The Refined Lee filter is an adaption of 

the Lee filter, which uses the local statistics to minimise the mean square error 

(MMSE) of the pixel value in relation to its neighbours (Lee, 1983). However, similar 

to the median filter the original iteration of the Lee filter struggled to maintain edges 

and highly reflective points within an image (Lee et al., 2009). This lead to the 

development of the Refined Lee filter. The filter uses edge-aligned non-square 

neighbourhood windows to help maintain edges, whilst continuing to use MMSE to 

reduce noise in homogenous areas (Lee et al., 2009). Edges are identified by 

assessing the local image variance, with the neighbourhood subdivided and filtered 

individually if an edge or point feature is detected (Lee et al., 2009). High pixels 

values are maintained if a defined number of neighbouring pixels are above the 98th 

percentile for the image (Lee et al., 2009). For the SAR image processing completed 

in this research, it was found that the default parameters in the SNAP software (7 x 7 

window size) provided good speckle suppression (Figure 3.13).  

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4. Terrain Correction  
Topographic features are often distorted in SAR images due to the side-looking 

geometry of the instrument. To create an image that accurately represents the true 

Figure 3.13. Speckle filtering used within the research presented in the following 
chapters. From left to right, unfiltered data, Median speckle filter (5 x 5 window), and 

Refined Lee speckle filter (7 x 7 window). Images are VH polarisation. 
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ground locations of features terrain correction is applied, which adjusts the input 

image based on the satellite orbit, look angle and underlying topography (SNAP, 

2018). Terrain correcting allows for comparison between scenes independent of 

satellite source and viewing geometry. The Range Doppler orthorectification 

methodology (Small and Schubert, 2008) is applied, utilising the module built within 

the SNAP software. Along with the input image, precise orbit and timing information, 

a reference Digital Elevation Model (DEM), by default the Shuttle Radar Topography 

Mission (SRTM) 3 arc-second dataset, are used to transform the image (SNAP, 

2018). Once the data has been terrain corrected, it is resampled to a user-defined 

pixel spacing, which by default is 10 m, before all images are co-registered to ensure 

locational accuracy between orbits. Due to the large range of backscatter values in 

an image, pixel intensity values are converted to decibels (dB) via log scaling 

(10*log10σ°), a dimensionless unit that allows for direct comparison between scenes 

from different satellite sources. Sentinel-1 images contain border noise (seen as very 

low values) as an artefact of the pre-processing used to create GRD products 

(SNAP, 2018). Although this can be removed earlier in the processing, it was found 

the SNAP tool for this (“S-1 GRD Border Noise Removal”) provided inconsistent 

results. For each orbit, a minimum value mosaic is created from the processed 

images to identify locations of border noise, before all images are masked to remove 

these locations.   

 
3.4. Digital Terrain Data 
Digital terrain data (DTD) is commonly used to provide additional information for 

environmental analysis, often through the calculation of topographic parameters such 

as surface slope, curvature or watershed delineation. DTDs provide a numerical 

representation of the vertical distance between the ground terrain and a reference 

surface, such as mean sea level (Li et al., 2004; Hirt, 2014). Terrain information can 

be acquired using a variety of platforms, including ground-based, airborne and 

satellite surveying methods, and derived from imagery (using photogrammetry), 

LiDAR point clouds and radar (using InSAR) datasets (Li et al., 2004; Maune, 2007; 

Hirt, 2014). The resultant DTDs are available across a range of geographical extents 

(from local to global), spatial resolutions (cm to km) and with varying vertical 

accuracies (as shown in Figure 2.8 (Schumann and Bates, 2018)). Representation of 

terrain information can be in a number of formats, including contours, continuous 

raster grids (where the cell value represents the centroid terrain height), irregularly 
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distributed points and triangulated irregular networks (TINs) (Maune, 2007; Hirt, 

2014).  

 

There are two main data types described by the term DTD, Digital Surface Models 

(DSM) and Digital Terrain Models (DTM). DSMs represent the topographic height 

including surface features, such as vegetation and buildings, whilst DTMs describe 

the ground terrain without the inclusion of surface features (Hirt, 2014). An additional 

term, Digital Elevation Models (DEM), is commonly used, although less well defined. 

Some authors describe DEMs as being synonymous with DTMs as they represent 

the bare earth terrain (Maune, 2007; Hirt, 2014), however, many acquisition and 

processing techniques utilised to create global DEMs result in a DSM representation 

of terrain due to the inclusion (or lack of removal) of man-made and vegetative 

structures (Proietti et al., 2017). Authors have suggested that DTMs have a higher 

degree of accuracy than DEMs, with data collection targeted at representing complex 

topographic features, such as steeper slopes and ridges, sometimes missed by more 

general acquisition techniques (Li et al., 2004; Maune, 2007). In these situations, 

DTMs provide a better depiction of the ground terrain when displayed as contours or 

discrete points, however, this additional detail is usually lost when converted to raster 

format (Maune, 2007). Another common definition of DEM is that it represents a 

general term for DTD, incorporating both DSM and DTM when no additional dataset 

specifics are provided by the publishing body (Maune, 2007; Hirt, 2014). 

 

Within a satellite flood mapping context, terrain data is commonly used to refine 

observations by identifying regions that are unlikely to be inundated but may be 

susceptible to false classifications, such as radar shadow, helping improve the 

accuracy of the flood maps produced (Long et al., 2014; Twele et al., 2016). In 

Chapters 4, 5 and 6 of this thesis, three terrain models are used; the Ordnance 

Survey (OS) Terrain 5 m DTM, the Shuttle Radar Topography Mission (SRTM) DEM, 

and the Environment Agency LiDAR Composite DTM. Information on these datasets 

provided below. Further global terrain models are used in Chapter 7, with details on 

the creation and accuracy of these datasets provided at the start of that chapter. 

 

3.4.1. Ordnance Survey (OS) Terrain 5m DTM 
The OS terrain datasets cover the whole of Great Britain, and are available at 5 m or 

50 m spatial resolutions. The source terrain data is created from aerial imagery, 
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which is automatically processed to create a TIN, providing an accurate 

representation of intricate topographic features (Ordnance Survey, 2017). Surface 

features, such as buildings and vegetation, are removed from the source TIN to 

create the resultant DTM, which is smoothed to remove any spikes or wells. For the 

OS Terrain 5 dataset, information is available as either a 5 m raster or as contours 

with 5 m spacing, both of which are interpolated from points extracted from the 

source TIN (Ordnance Survey, 2017). The contours provide an improved 

representation of the feature edges and height changes in steep locations, whilst the 

raster provides a continuous grid of height values. The dataset is updated quarterly 

based on a rolling 3-5 year acquisition pattern (Ordnance Survey, 2017). Accuracy is 

assessed by comparing the height values to GPS measurements. Reported accuracy 

for the OS Terrain 5 is 1.5 m RMSE in urban environments, and 2.5 m RMSE in rural 

locations (Ordnance Survey, 2017). The higher accuracy in urban environments 

allows for greater confidence for customers when undertaking modelling and analysis 

in complex environments, supporting a variety of activities including urban 

infrastructure planning and development, flood risk assessments, and environmental 

analysis (Ordnance Survey, 2017). 

 

3.4.2. Shuttle Radar Topography Mission (SRTM) 
SRTM is a near-global DEM acquired between the 11th and 22nd of February 2000 

using separate C- and X-band radar instruments flown onboard the Space Shuttle 

Endeavour (Farr et al., 2007). Interferometric processing of the C-SAR data is used 

to create a 90 m (3 arc-second) DEM, whilst the X-SAR data, with some smoothing 

and gap-filling from the C-SAR, forms the basis of a 30 m (1 arc-second) dataset 

(Farr et al., 2007). The data is freely available, with coverage provided between 56°S 

and 60°N.  

 

The aim of the SRTM mission was to provide data with a horizontal accuracy of 20 m, 

and an absolute vertical accuracy of 16 m (Kolecka and Kozak, 2014). Reported 

accuracies from the Jet Propulsion Laboratory (JPL) for the C-SAR DEM is 8.8 m 

absolute geolocation error and 6.2 m absolute elevation error. Further publications 

suggest that values do not exceed 20 m horizontal error, less than the pixel size of 

the DEM, and 12.6 m vertical error (Rodriguez et al., 2006; Kolecka and Kozak, 

2014; Satgé et al., 2015). Studies have shown that vertical accuracy is improved in 

flat regions, with an increasing error in forested regions and locations with a higher 
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gradient (Sun et al., 2003). Absolute errors ranging between 5 and 10 m have been 

reported on slopes below 10°, increasing up to approximately 18 m on slopes above 

10° (Gorokhovich and Voustianiouk, 2006; Satgé et al., 2015). 

 

Within this research project, the 30 m X-SAR SRTM product is used due to its higher 

resolution. A comprehensive assessment of the use of this DEM for hydrological 

purposes was undertaken by Ludwig and Schneider (2006). They compare SRTM to 

a local reference terrain model (DGM25), along with 31 surveyed Ground Control 

Points (GCP). As with other studies, the greatest difference occurs in high slope 

regions and forested areas. The study shows for slopes less than 5°, there is an error 

in the SRTM ranging between -5 and 10 m, within the SRTM target absolute vertical 

error value of 16 m. This error increases to up to 30 m for slopes above 50°. It should 

be noted that the authors recognise that the reference data set may also contain 

errors and that the assessment of SRTM accuracy may be imprecise.  

 

Both the OS Terrain 5 m DTM (in Chapter 4) and the SRTM DEM (in Chapter 5) are 

used to help filter out the regions of higher topography where flooding is unlikely and 

false-positive misclassifications from radar shadow are likely. The DEM derived filter 

is made up of two components, using the topographic slope and the Height Above 

Nearest Drainage (HAND) metric. The slope dataset is thresholded at 3°, using the 

assumption that any area with a slope higher than this is unlikely to be inundated. 

However, there are exceptions to this, such as taller features located on the 

floodplain, like river banks, which can be submerged despite their high slope. The 

HAND part of the filter is designed to remove the exclusion of features such as these, 

with a threshold of 20 m used. 

 

3.4.2.1. Height Above Nearest Drainage (HAND) 
Developed by Rennó et al. (2008) and Nobre et al. (2011), HAND is a measure of the 

relative height difference between a location and its point of entry into the river 

network. The algorithm takes inputs of a terrain model and the river network (which 

itself can be derived from the topographic data (Ozdemir and Bird, 2009)), before 

calculating the flow paths surface water would take from each pixel to its 

hydrologically related river or stream. The output is a raster dataset, with the Z-value 

for each pixel referring to the vertical height difference between the start location and 

the river.  
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Since its development, HAND has been used in numerous studies using SAR to map 

surface water or flooding, primarily as a filter to identify and remove regions 

susceptible to radar shadow (Martinis et al., 2015a; Schlaffer et al., 2015; Twele et 

al., 2016; Bhatt et al., 2017). Of particular interest is the study by Bioresita et al. 

(2018), which investigated the stage within the processing that HAND based terrain 

filtering should occur to optimise the SAR flood mapping accuracy. They conclude 

that application before segmenting the image into flood and non-flood regions 

provided more accurate results than filtering post-classification. The removal of areas 

of foreshadowing and radar shadow prior to performing histogram thresholding 

reduces the chance of artificial skewing of the data histogram, allowing for greater 

confidence in the accuracy of the chosen threshold (Long et al., 2014). When 

compared to other hydrological indices, such as Topographic Wetness Index (TWI) 

and the Multi-Resolution Valley Bottom Flatness (MrVBF), HAND has been shown to 

improve accuracy when mapping surface water (Huang et al., 2017; Rahmati et al., 

2018).  

 

Despite the positive applications of HAND outlined above, it should be noted that the 

success of HAND, like any other DEM derived dataset, is dependent on the quality 

and resolution of the underlying terrain data (Gharari et al., 2011; McGrath et al., 

2018; Loritz et al., 2019). Hydrological indices, such as HAND and TWI, often 

produce poorer results in flat, low-lying regions due to DEM errors and the often 

strong surface slope component within the respective algorithm. Huang et al. (2017) 

highlight the increased variance when using the MrVBF algorithm in locations where 

HAND produces scores of 0 m, suggesting that in certain situations the MrVBF may 

be preferable for removing false surface water classifications delineated by remote 

sensing. When utilising HAND within flood mapping studies, additional consideration 

is needed towards the type of flooding being identified. HAND is intrinsically linked to 

the hydrological network, and likely to be more capable at confirming inundation 

caused by fluvial sources, particularly if a low threshold value is chosen. There is the 

possibility that other sources of flooding, such as pluvial and snowmelt, will cause 

inundation on flat ground vertically removed from the river network, locations that will 

have a high HAND value and subsequently may be flagged as suspect.   
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3.4.3. UK Environment Agency LiDAR Composite 
The 2 m LiDAR composite DTM, produced for England and Wales by the 

Environment Agency (EA), is used in Chapter 6. The raw dataset is updated annually 

via aerial LiDAR survey, with the composite made up of approximately 10,000 

individually surveys (Environment Agency, 2019). Each new survey is merged with 

the existing composite using a feathered buffer approach (for example, the 2 m 

composite uses a 30 m buffer) to ensure the seamless surface integration, with 

greater weighting given to heights produced by newer surveys or those with finer 

resolutions (Environment Agency, 2019). Data is available to download as either a 

raw point cloud containing all the LiDAR returns, or in raster format as a DSM or 

DTM. The data is natively a DSM due to the sensors inability to penetrate foliage, 

and the strong return of buildings and infrastructure. Filtering removes any 

permanent (trees, buildings) or temporary (vehicles, livestock) features, resulting in a 

DTM of the underlying topography (Data.Gov.UK, 2017). The DTM has a vertical 

accuracy of +/- 15 cm RMSE and a spatial accuracy of 40 cm, and is available at 25 

cm, 50 cm, 1 m and 2 m spatial resolutions (Data.Gov.UK, 2017; Environment 

Agency, 2019). Datasets are freely available, and currently cover approximately 75% 

of England, primarily located around the river network and the surrounding 

floodplains. However, the cm-scale datasets provide reduced coverage compared to 

the meter scale DTMs. The EA have recently announced their aim to cover the whole 

of England with 1 m LiDAR by 2020 (UK Authority, 2018). The 2 m composite is used 

to help estimate flood surface and volume (Chapter 6), with the spatial resolution 

chosen as it is the closest match to Sentinel-1. 

 
3.5. Summary 
This chapter has provided a detailed introduction to the main satellite dataset used 

throughout the following thesis, Sentinel-1 SAR imagery. This includes an overview 

of SAR acquisition terminology and parameters, such as wavelength, polarisation 

and speckle, with examples of how these may impact the detection of surface water 

from SAR imagery. As a continuation of Section 2.2.2, which introduced the ESA 

Copernicus programme, Section 3.2 provided a detailed overview of Sentinel-1, 

including the instrument payload, orbit information, and the TOPSAR data acquisition 

mode used to acquire the IW imagery used to derive flooding in Chapters 4 and 5. 

Sentinel-1 GRD products require a number of pre-processing steps prior to thematic 

analysis, primarily, radiometric calibration, speckle filtering and terrain correction. The 
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theory and application of each of these processes have been provided. In particular, 

Figure 3.13 provides an example of the noise attenuation achieved by the different 

speckle filtering applied in Chapters 4 (Median filter) and 5 (Refined Lee filter). 

Finally, this chapter has defined the different types of digital terrain data commonly 

used in geospatial analysis, before introducing the three main terrain datasets used 

within this thesis, OS Terrain, SRTM and EA Composite LiDAR. The acquisition 

methods and reported accuracies are provided for each of these, alongside a brief 

outline of their use in later chapters, including a description of the application, 

strengths and limitations of the HAND index. 
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Chapter 4. Determining Flood Extent from SAR: Initial Assessment 
 

The following chapter is adapted from the paper “Multi-temporal Synthetic Aperture 

Radar Flood Mapping using Change Detection” which has been published in the 

Journal of Flood Risk Management. The full reference details are: 

 

Clement, M.A., Kilsby, C.G. and Moore, P. (2018) Multi-temporal Synthetic 

Aperture Radar Flood Mapping using Change Detection. Journal of Flood Risk 

Management. 11(2):152-168. DOI: 10.1111/jfr3.12303 

 

The aim of this chapter is to develop an initial workflow for extracting flood extent 

from Sentinel-1 SAR imagery. This has been undertaken for a small, flood-prone 

region south of York, which suffered from significant inundation during the 2015-16 

UK winter floods. Results from this preliminary study will be used to inform 

adjustments to the initial methodology, which is subsequently applied in Chapter 5 to 

delineate the widespread flooding that occurred across many catchments in the north 

of England during the winter of 2015-16.  

 
4.1. 2015-16 UK Winter Floods 
The work presented in Chapters 4, 5 and 6 will focus on the analysis of the flooding 

caused by the 2015-16 UK winter storms. The UK Meteorological Office introduced 

the naming of storms ahead of the 2015-16 winter season as part of an initiative to 

improve public safety via clearer media and governmental communication of 

upcoming windstorms (Met Office, 2015). A total of eleven storms were named 

between November 2015 and March 2016, with a summary of these storms and their 

main impacts provided in Table 4.1.  

 

The winter of 2015-16 set numerous meteorological and hydrological records. A 

summary is provided here, with a more in-depth analysis presented in Barker et al. 

(2016), Burt (2016) and McCarthy et al. (2016). In terms of rainfall, there were new 

monthly and seasonal rainfall accumulation records for locations across Scotland, 

Wales and northern England. It was the second wettest winter (December-January-

February) on record (since 1850) for the UK, with 159% of normal rainfall 

accumulation (1981-2010) for the time period (McCarthy et al., 2016). December 



[73] 
 

2015 was the wettest month on record since 1910, with rainfall across Wales, 

Scotland and northern England 2-4 times what is normally seen for the time of year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

As expected with the observed record-setting precipitation, the hydrological response 

during the winter of 2015-16 was similarly extreme in terms of its spatial extent, 

duration and frequency. Various rivers exceeded their record peak flows on 

numerous occasions throughout the winter, as successive storms brought heavy, 

prolonged rainfall to saturated catchments. An overview of the mean seasonal flow, 

as a percentage of the 30-year average, is provided in Figure 4.1. A new record for 

daily outflow across all of Great Britain was set on the 5th Dec in the aftermath of 

Storm Desmond, surpassing the previous record by 30% (Barker et al., 2016). In 

December 2015 new records for monthly mean river flow were established for 

Table 4.1. List of named storms during the 2015-16 winter storm season. Adapted from 
Met Office information (https://www.metoffice.gov.uk/barometer/uk-storm-centre/2015-16) 

(last accessed 7th March 2019) 

Abigail 12-13 Nov 2015 84 Heavy Rainfall North-West Scotland 20,000 homes without power.

Some building damage; Road 
closures.

100,000 homes without power; 
Travel disruptions.

Katie 27-28 Mar 2016 106 --- Southern England

Jake 2 Mar 2016 83 ---
South Wales, South-

West England

Flooding.

Flooding; Travel disruptions.

Travel disruptions.

13,000 homes without power; 
Travel disruptions.

3,000 homes without power; 
Travel disruptions.

Imogen 8 Feb 2016 96 ---
Wales, Southern 

England

Gertrude 29 Jan 2016 105 ---
Scotland, Northern 

England

Henry 1-2 Feb 2016 90 Heavy Rainfall North-East England

6,000 homes without power; 
Travel disruptions.

3,500 homes without power; 
Travel disruptions.

Desmond 5-6 Dec 2015 81
Max. Rainfall Total 
(48 hours): 405 mm

Northern England
Flooding of 5,200 homes; 61,000 

homes without power; Travel 
disruptions.

Barney 17-18 Nov 2015 85 ---
Central-West England, 

Wales

Clodagh 29 Nov 2015 97 ---
Republic of Ireland, 
Northern England, 

Scotland

Frank 29-30 Dec 2015 85
Additional Rain on 
Saturated Ground

North-West UK

Western UK

Eva 24 Dec 2015 72
Additional Rain on 
Saturated Ground

ImpactsName Dates Active
Max. Wind 
Gust (mph)

Rainfall Affected Region

https://www.metoffice.gov.uk/barometer/uk-storm-centre/2015-16
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numerous catchments, including the Eden, Tees, Tyne and Wharfe, where flows 

were over 3 times what would normally be expected (Barker et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Mean river flows for November 2015 to January 2016 for major rivers 
throughout the UK, expressed as a percentage of long term average flows (1981-2010). 

Circled values represent those where a new record river flows occurred. Originally 
published in Barker et al. (2016). 
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The high river flows led to widespread flooding across much of northern UK and 

Scotland. The first severe flood warnings and property evacuations occurred in 

Cumbria on the 14th Nov, and by the passage of Storm Eva on 26th Dec over 500 

flood warnings were in effect across northern England and Wales. It has been 

estimated that in some catchments peak flows reached those expected for 1-in-200 

year return periods (Barker et al., 2016). Impacts from the flooding include; a large 

numbers of households and businesses becoming inundated, including 16,000 

properties in England during December 2015 (Hansard, 2016), with 5,000 business 

reporting being affected by the flooding; disruption and failure of transport networks, 

including bridges at Pooley Bridge and Tadcaster being washed away; the loss of 

agricultural crops and livestock, including 2,000 sheep in Cumbria; and disruption to 

utilities supply such as water and electricity, with 23,000 homes without power in 

Northumberland during Storm Desmond (Barker et al., 2016). Over £200 million has 

been provided by the government to assist the recovery of impacted regions, and to 

implement adaptation and mitigation strategies to reduce future flood risk (Barker et 

al., 2016). It is also estimated that over £1.3 billion has been paid out by insurance 

companies to cover damages sustained during the flooding (ABI, 2016). Despite the 

wide range of impacts, it is estimated the current flood defences performed well, 

protecting 20,000 properties from becoming inundated (Hansard, 2016).  

 
4.2. Methodology 
4.2.1. Location  
A 400 km2 study area in Yorkshire, UK, was selected for an initial assessment of the 

ability of satellite SAR to delineate flooding. The region, shown in Figure 4.2, 

stretches from the south of York down to Selby, and west beyond Tadcaster. The 

area is largely agricultural rural, with two major rivers flowing through it: the Wharfe 

and Ouse. The region suffered from spatially and temporally variable flooding during 

December 2015 and January 2016, when Storms Desmond (5-6th Dec), Eva (24th 

Dec) and Frank (29-30th Dec) brought widespread rainfall across the north of the UK.  

 

4.2.2. Datasets 
The main aim of the chapter is to assess the ability of Sentinel-1 SAR data to monitor 

flooding. A review of methods previously used to delineate surface water from SAR 

imagery is provided in Chapter 2. There are thirteen Sentinel-1 SAR images acquired 

over the study region between the 5th Dec and 10th Jan, listed in Table 4.2. 
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Radiometrically calibrated and terrain corrected Sentinel-1 images are available from 

Google Earth Engine (GEE), which provides free cloud computing facilities for 

research (GEE, 2015). The pre-processing steps undertaken on the imagery 

matches those described in Chapter 3 (GEE, 2015). The availability of pre-processed 

satellite imagery within GEE makes it a valuable tool for remote sensing practitioners, 

removing the requirement for this initial processing to be completed locally upon 

download. The cloud infrastructure also allows for wide-scale analysis, both spatially 

and temporally, to be completed with ease. The initial scene selection and change 

detection processing were completed using the GEE infrastructure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.2. The 400 km2 study region, shown by the red box, for which flood extents 
have been determined between December 2015 and January 2016. 
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The polarisation of a SAR image can impact the accuracy of flood delineation 

algorithms, as highlighted in Chapter 3. Sentinel-1 is available in two polarisations, 

VH and VV, both of which have different sources of potential false classifications. VH 

data produces a wider range of backscatter values from vegetated land surfaces, 

leading to potential overlap with the low backscatter values associated with water 

(Manjusree et al., 2012). VV polarised images are more susceptible to increased 

backscatter from roughening of the water surface, often caused by wind or heavy 

rain, resulting in inundation not being identified (Manjusree et al., 2012). The 

limitations of each polarisation as environmental conditions vary requires 

acknowledgement when using Sentinel-1 for flood mapping. Previous research 

concluded that VV provides a slight advantage when identifying flooding when using 

Sentinel-1 data (Twele et al., 2016). To allow for further comparison both 

polarisations have been processed using the same methods within this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within the methodology, a terrain filter is applied to remove areas where the 

topographical location suggests that flooding is unlikely, but where SAR image 

acquisition may result in misclassification. For this, the Ordnance Survey 5 m Digital 

Terrain Model (DTM) was used to create Height above Nearest Drainage (HAND) 

and slope datasets. The slope aspect of the filter is required to remove areas of radar 

shadow, found when large vertical structures limit the ability of the SAR system to 

record data from the lee of the feature. The minimal radar response in these areas is 

similar to that of flat water. The HAND dataset represents the topographic difference 

Table 4.2. List of Sentinel-1 scenes used, with acquisition date, percentage of study area 
covered, satellite track ID and the number of images used to calculate the reference 

image. 

Sentinel-1 Image Date Footprint % Track ID Num. Ref. Images

SIA_IW_GRDH_1SDV_20151205T061404_20151205T061429_008903_00CBC9_2323 05/12/2015 100 81 18

SIA_IW_GRDH_1SDV_20151208T174942_20151208T175007_008954_00CD3E_349B 08/12/2015 100 132 4

SIA_IW_GRDH_1SDV_20151210T062205_20151210T062230_008976_00CDE1_1951 10/12/2015 100 154 10

SIA_IW_GRDH_1SDV_20151213T175808_20151213T175833_009027_00CF27_4F38 13/12/2015 68.1 30 7

SIA_IW_GRDH_1SDV_20151217T061404_20151217T061433_009078_00D09B_ECA6 17/12/2015 100 81 18

SIA_IW_GRDH_1SDV_20151220T174947_20151220T175012_009129_00D20A_C0F7 20/12/2015 100 132 4

SIA_IW_GRDH_1SDV_20151222T062204_20151222T062229_009151_00D2AF_17F0 22/12/2015 100 154 10

SIA_IW_GRDH_1SDV_20151225T175803_20151225T175828_009202_00D428_9464 25/12/2015 68.2 30 7

SIA_IW_GRDH_1SDV_20151229T061403_20151229T061428_009253_00D59B_CC2A 29/12/2015 100 81 18

SIA_IW_GRDH_1SDV_20160101T174941_20160101T175006_009304_00D70A_60DE 01/01/2016 100 132 4

SIA_IW_GRDH_1SDV_20160103T062204_20160103T062229_009326_00D7AC_C9F2 03/01/2016 100 154 10

SIA_IW_GRDH_1SDV_20160106T175807_20160106T175832_009377_00D920_8394 06/01/2016 68.4 30 7

SIA_IW_GRDH_1SDV_20160110T061404_20160110T061433_009428_00DA93_B5C5 10/01/2016 100 81 18
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between a pixel and its hydrologically determined nearest watercourse (Rennó et al., 

2008; Nobre et al., 2011). The addition of HAND reduces the impact of the slope filter 

in the lowlands by including features such as river banks, which would be otherwise 

removed. For this project, a HAND threshold of 20 m, along with 3° slope, were 

combined to create the terrain filter.  

 

4.2.3. Validation Datasets and Accuracy Descriptors 
A cloud-free satellite optical image was collected by Sentinel-2 on the 29th Dec, 12 

hours after a Sentinel-1 image was acquired. The use of optical imagery to validate 

SAR water extractions has become common practice, despite the potential errors in 

classifying water using optical indices. However, the lack of in-situ data to act as a 

reference means the Sentinel-2 image has been used to validate the SAR flood 

extents. To extract the water bodies from the optical image the Modified Normalised 

Difference Water Index (MNDWI) was applied, defined by (Xu, 2006) as: 

 

𝑀𝑀𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 =
𝐺𝐺𝐺𝐺𝑣𝑣𝑣𝑣𝑠𝑠 − 𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆
𝐺𝐺𝐺𝐺𝑣𝑣𝑣𝑣𝑠𝑠 + 𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆

 

 

with band 3 and band 11 representing the Green and Shortwave-Infrared (SWIR) 

wavelengths within the Sentinel-2 instrumentation. The MNDWI highlights the strong 

absorption of SWIR radiation by water bodies, improving on other water extraction 

indices, notably the Normalised Difference Water Index (NDWI) (McFeeters, 1996), 

by providing better separation between water and urban areas. The MNDWI dataset 

can theoretically be segmented at zero to identify areas of water, however, 

differences in sensor acquisition parameters and geographical image characteristics 

can create a differing range of potential threshold values, necessitating the need for 

individual image thresholding. To achieve this Otsu’s method was employed, 

maximising the variance between the water and land classes (Otsu, 1979).  

 

 

 

 
 
 

 

Flooded Non-Flooded
Flooded A B

Non-Flooded C D

Reference Flood Extents

SAR Derived 
Flood Extents

Table 4.3. Example of a contingency table used to validate SAR flood extents against a 
reference dataset. 

(5) 



[79] 
 

The SAR and MNDWI flood extents have been compared using a contingency 

matrix, an example of which is shown in Table 4.3. This method of relating spatial 

data is regularly used to determine the accuracy of satellite-derived flood extents 

(Gan et al., 2012; Giustarini et al., 2015; Schlaffer et al., 2015). A number of 

accuracy metrics are reported when comparing the data this way, including 

Producer’s Accuracy (PAf), or the amount of inundation in the reference (optical) 

image that has been correctly identified as flooding in the SAR image, instead of 

being misclassified as land. This is determined by:  
 

PAf = 
𝐴𝐴

𝐴𝐴 + 𝐶𝐶
 

 

User’s Accuracy (UAf) describes the amount of land in the reference image that has 

been misclassified as flooding in the SAR data, and is defined as:  

 

UAf = 
𝐴𝐴

𝐴𝐴 + 𝐵𝐵
 

 

Furthermore, the Total Accuracy (TA) of the SAR flood extents in relation to the 

optical inundation maps can be determined with:  

 

TA = 
𝐴𝐴 + 𝐷𝐷

𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐷𝐷
 

 

One of the issues with reporting TA when assessing flood extents is the over-

sensitivity towards correctly identified non-flooded regions, which can often take up a 

large proportion if the study region compared to the areas of flooding (Stephens et 

al., 2014). This can result in an overestimation of the accuracy of the derived flood 

extents. An additional statistic that can be calculated is the Critical Success Index 

(CSI), which removes the correctly identified non-flooded pixels from the calculation, 

leaving:  

 

CSI = 
𝐴𝐴

𝐴𝐴 +𝐵𝐵+ 𝐶𝐶
 

 

(6) 

(7) 

(8) 

(9) 
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This result still has the potential to misrepresent the results, producing an improved 

result with larger floods, or when the result has over-predicted the flood extent as 

opposed to under-predicting (Stephens et al., 2014). The combination of CSI, UAf 

and PAf can adequately describe the accuracy of the flood classification, whilst 

identifying where any potential errors have occurred. The final statistic that is 

commonly reported is Cohen’s kappa coefficient (Cκ), which describes the likelihood 

that the relationship between the two extents is due to chance (Foody, 2006). This is 

scaled between 0 and 1, with 0 meaning completely due to chance. Cκ is calculated 

by:  

 

Cκ = 
𝑇𝑇𝐴𝐴 − 𝑃𝑃𝑃𝑃
1 − 𝑃𝑃𝑃𝑃

 

 

Pe is the proportion of correct classifications that may be attributed to chance, 

calculated from false-positive and false-negative results (Foody, 2006; Hunt et al., 

2010). Although there are no set guidelines for what defines a good agreement, it is 

generally considered that values above 0.7 are optimal for producing confidence in 

the relationship between the two datasets (O’Grady et al., 2013). 

 

The Environment Agency (EA) Flood Maps for Planning (FMP) contain modelled 

indicative results of areas likely to be inundated during a 100 year river or 200 year 

sea flood event (known as Zone 3, referred as 100 year event henceforth), as well as 

a 1000 year event from either source (Zone 2) (Porter and Demeritt, 2012). The 

extents have been modelled using a DTM with the flood defences removed, allowing 

for a subsequent dataset highlighting the areas protected by the current flood 

defences during a 100-year event. A further map showing the areas designated for 

storage areas is available, with these locations used to attenuate the flood peak in 

vulnerable areas. The SAR derived flood extents have been compared to the EA 

FMP, providing an evaluation of the correlation between the remote sensing data and 

modelled results. Within the study region, a 100-year flood would inundate 53.4 km2 

of the area (13.4% of the study region), including 10.4 km2 classed as water storage 

areas (2.6%), with an additional 24.9 km2 being actively protected by defences 

(6.2%).  

 

(10) 
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An aerial photograph, taken on the 27th Dec by the National Police Air Service 

(NPAS) Carr Gate helicopter (twitter @NPAS_CarrGate), has been used in Figure 

4.8 to provide supplementary information about the hydrological conditions in the 

region prior to the satellite crossing. The image was taken as the helicopter was to 

the west of the study region, close to Tadcaster on the River Wharfe. The image 

looks eastwards, towards the confluence of the Ouse and the Wharfe.  

 

4.2.4. Flood Mapping Workflow 
A Change Detection and Thresholding (CDAT) methodology, adapted from Long et 

al. (2014), was used to determine the flooding extent. Figure 4.3 provides a 

diagrammatic overview of the workflow. The first step requires a non-flood reference 

image for change detection. Selection of this image can influence the outcome, with 

seasonal differences in land use and variances in satellite acquisition parameters 

(e.g. orbit direction and incidence angle) requiring consideration (Hostache et al., 

2012). The reference images in this study were calculated using a collection of 39 

previous Sentinel-1 images, dated between 3rd Jul 2015 and the 5th Nov 2015. 

Ideally, the time period used to create the reference collection would be similar to 

that of the flooding. However, due to the relatively short time Sentinel-1 has been 

operational, the majority of winter images suffer from either flooding or poor pre-

processing within GEE, leading to the inclusion of summer images to ensure 

coverage for each satellite track. For each flood scene analysed, the images from the 

same satellite track are selected, with the median value from this subset taken for 

each pixel to create the final reference image. Four different satellite tracks provide 

coverage over the study area, with the number of images in each reference image 

collection ranging from 4 to 18, as summarised in Table 4.2. 

 

As discussed in Chapter 3, SAR suffers from speckle due to the variation in the radar 

return within a pixel caused by multiple scattering sources. This results in a salt and 

pepper effect across homogenous land covers, which can be removed by applying a 

local adaptive filter (Esch et al., 2011). For this initial study, both the flood and 

reference images had a median 5 x 5 filter applied to attenuate the speckle, allowing 

for clearer regions of water for delineation. The difference between the flood and the 

reference image is calculated under the premise that change detection highlights 

variations in the radar return to the satellite, and by proxy changes in land cover or 

conditions. It is expected that flooding will cause a large negative difference due to 
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the specular reflection of the radar signal by water, compared to the normal, stronger 

land backscatter response. 

 

The difference image is subsequently masked based on terrain, with composition and 

parameters of the filter described previously. The application of the filter removes just 

over 8 km2, or 2%, of the study region. A threshold approach is applied to the 

difference image to extract the largest negative change in backscatter, thus 

highlighting the area’s most likely to be inundated. Long et al. (2014) determined the 

ideal threshold to be:  

 

PF < ({μ[D] – fc * {σ[D]}) 
 

where PF is the pixels identified as flooded, μ and σ the mean and standard deviation 

of D, the difference image, and fc is a coefficient. Optimal fc was found to be 1.5 

(Long et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Workflow used to extract the flood extents from SAR imagery for this study. μ 
and σ represent the mean and standard deviation. 

(11) 
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It was determined that an additional processing step was required compared to the 

original CDAT methodology. This is due to seasonal changes in land cover 

occasionally producing similar decreases in backscatter as flooding within the 

difference image, such as when an agricultural field has crops during the summer 

months to when the field is bare once the field has been harvested. For this filter, a 

global threshold defining the land-water boundary was determined by applying Otsu’s 

algorithm (Otsu, 1979) to the histograms of the flooded SAR images used in the 

study, with only the areas identified as inundated by both the SAR threshold and the 

CDAT process used as the final flood extent.  

 

The results are mapped, allowing direct comparisons between the two polarisations, 

as well as flooding identified from the Sentinel-2 optical imagery and the EA FMP. An 

estimate is also made of the number of days each pixel was inundated during the 37 

day study period. Each satellite image has been allocated a number of days, 

calculated as an even distribution of the time between the preceding and following 

satellite passes. For each pixel, the image scores for the dates when flooding has 

been identified are summed to provide an estimate for the number of days the pixel 

was inundated. The study area has been sub-divided for this purpose, with different 

weightings required when the images do not cover the full region. 

 
4.3. Results 
4.3.1. Polarisation Comparison 
Both polarisations display a similar sequence for the amount of flooding throughout 

the study period (Figure 4.4). The image collected on the 29th Dec provides the 

maximum flood extent for both polarisations, showing the aftermath of Storms Eva 

and Frank. On this date, 6.7% and 6.1% of the study region was inundated for VH 

and VV respectively. Preceding this date is a slight downward trend in flood extent 

from the initial image on 5th Dec, with extents of 2.3% (VH) and 2.0% (VV), to 25th 

Dec, with 0.7% (VH) and 1.0% (VV) of the region inundated. A decrease in flood 

extent is observed following 29th Dec, before an increase on 10th Jan to 4.9% (VH) 

and 4.2% (VV), the second greatest extent observed. 

 

Both VH and VV polarisations are available for all images, allowing a comparison of 

their ability to delineate flooding. The observed time-series between the two datasets 

are similar, as seen in Figure 4.4. The satellite crossing on 17th Dec provides a match 
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in the extent of flooding between the two polarisations, although only 80.4% of the 

identified areas correspond. All other images provide differing flooding extents 

between VH and VV, with an even split for the greatest estimator. Figure 4.5 shows 

the relationship between the two datasets. A strong linear distribution is observed, 

with an R2 value of 0.87. At lower extents of flooding, VV identifies a greater area of 

inundation, with the polarisations matching at 1.6%. As the extent of flooding grows, 

VH identifies an increasingly greater proportion of the region as inundated compared 

to VV, with 6.0% in VH equating to 5.1% in VV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Two dates show a considerable difference between the two polarisations. On the 20th 

Dec, the flood extent from VH (1.9%) is almost double that of VV (1.0%), with the VH 

identifying potential pluvial flooding that is missed by the VV. Similarly, on 1st Jan, VV 

(2.9%) identifies just 61.7% of the flood extent as estimated from VH (4.7%). On this 

date, the difference is largely within the main body of flooding, with the VH identifying 

a uniform water surface compared to the smaller separate areas seen in the VV 

(Figure 4.6). It can be hypothesised that the lack of consistency in the VV backscatter 

response is caused by the wind roughening of the water surface. 

 

Figure 4.4. Percentage of the region identified as flooded for the VH and VV 
polarisations. Dates with full satellite coverage are joined to show the approximate 
sequence of flooding. Other data points, labelled as partial, have 68% of the region 

covered by Sentinel-1 and are likely to underestimate the extent of flooding. 
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4.3.2. Validation 
The MNDWI water extent of the Sentinel-2 optical image of the 29th Dec has been 

used to validate the flood extents from the two polarisations of the SAR image 

collected on the same day. The accuracy descriptors for both polarisations are 

Figure 4.5. The relationship between the percentages of the study region identified as 
flooded for the VH and VV polarisations. Grey line represents y=x as a reference. 

Figure 4.6. Comparison of the flood extents from the 1st Jan. VH SAR image (Left), VV 
SAR image (Middle), and derived flood extents (Right). Note VV shows an inconsistent 
body of water compared to VH due to increased backscatter on the water surface in the 

SAR image, likely caused by wind roughening of the water. 
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shown in Table 4.4. Producer’s accuracy for identifying flooded pixels is slightly 

better with VH, showing a greater inclusion of Sentinel-2 identified water pixels in the 

flood extent. However, VV produces 94.3% user’s accuracy compared to 87.0% for 

VH, showing less misclassification of land as water using this polarisation. Overall the 

total accuracies and CSI are similar, with 0.4% and 2.7% difference respectively, with 

VV producing stronger scores for both. The kappa coefficient (κ) varies from 0.778 

for VH to 0.799 for VV, showing a good relationship between the optical result and 

the two polarisations, with minimal correlation caused by chance.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 4.7 provides a mapped comparison between flood extents from the SAR and 

optical datasets. There is a good correlation between the three datasets for the large 

area of water which represents the inundated floodplain next to the Wharfe and Ouse 

Rivers. The differences between the datasets can be characterised in four ways: 

permanent water bodies identified in the optical image but not in the SAR, 

misclassification of shadow areas as water within the optical image, extraction of the 

edges of flat man-made features within the SAR, and potential misclassification of 

land within the VH SAR image.  

 

Both VH and VV polarisations have identified the edges of some urban features as 

flooded. This is most notable with the flat tarmac associated with an airport, 

VH
SAR - Sentinel-1 No Flood Flood SAR Total User's %

No Flood 364.4 8.7 373.1 97.7
Flood 3.5 23.4 26.9 87.0

Ref. Total 367.9 32.1 400.0
Producer's % 99.0 73.0

VV
SAR - Sentinel-1 No Flood Flood SAR Total User's %

No Flood 366.5 9.2 375.7 97.6
Flood 1.4 22.9 24.3 94.3

Ref. Total 367.9 32.1 400.0
Producer's % 99.6 71.5

Reference - Sentinel-2

Reference - Sentinel-2

Table 4.4. Contingency tables showing the accuracy of the methodology for both 
polarisations. The MNDWI computed from a Sentinel-2 scene acted as a reference 

dataset. Black values represent km2, red values are percentages. Total accuracy for VH 
was 97%, with a Cohen’s Kappa of 0.778 and a CSI of 65.7%. Total accuracy for VV was 

97.4%, with a Kappa of 0.799 and a CSI of 68.4%. 
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highlighted in Figure 4.7, which provides a similar specular reflectance as water. 

There are matching flood extents between the Sentinel-2 validation dataset and the 

VV polarisation in these areas on the 29th Dec. The VH polarisation identifies 

additional sections of the runway edges as inundated compared to the other imagery. 

The suggested flooding may be correct, however, caution is required due to the 

potential for misclassification around these features.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Areas of pluvial flooding are highlighted in locations away from the floodplains. These 

areas are likely to be agricultural fields that have become inundated. Both 

polarisations identify smaller fields not classed as water in the MNDWI, with VH also 

extracting some larger areas. The VV flood extents provide a better match to the 

MNDWI dataset, suggesting the additional flood areas identified with the VH are 

Figure 4.7. Validation of the results for a subset of the region against the Sentinel-2 
image. (Top left) True colour composite Sentinel-2 satellite image for the 29th Dec. (Top 

middle) Sentinel-1 SAR image for the 29th Dec, VH polarisation. The location of the 
described airport is shown by the red box. (Top right) VV polarised SAR image. (Bottom 

left) MNDWI, calculated from the Sentinel-2 image, with blue representing water. (Bottom 
middle) Comparison of extracted flood extents, with blue representing those from VH 
SAR, red from optical and black represents areas identified in both. (Bottom right) VV 

flood extents compared to reference dataset. 
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unlikely to be accurate. However, the misclassification of shadows as water within the 

reference dataset can complicate the accuracy assessment of the SAR derived flood 

maps when using optical data as a reference. 
 

An aerial image from the 27th Dec, captured by the NPAS Carr Gate police 

helicopter, has been used to provide secondary validation of the results (Figure 4.8). 

The image has been geolocated based on road and railway locations, visible above 

the flood water in both datasets. Although the image is two days before the satellite 

crossing, the similarities are good, with the main flooded regions showing a match. 

Despite the lack of statistical metrics, there is still benefit in comparing the satellite 

data with other sources of imagery to confirm the results. 

 

4.3.3. Flood Dynamics 
The multiple satellite images of the region over the study period enabled tracking of 

the advance and retreat of the floodwaters. A good example is the recession of the 

peak event on 29th Dec, through two satellite passes on 1st Jan and 3rd Jan (Figure 

4.9). At first inspection, the polarisations show a similar pattern of recession, 

particularly where the main body of flooding is concerned. There are three main 

areas where waters recede during the five day period: to the east of the image on the 

Wharfe, towards the north of the image below York, and downstream of the 

confluence of the two rivers. However, as mentioned previously, VV polarisation 

produces an erroneously reduced flood extent for 1st Jan, with areas of flooding likely 

missing from this analysis. 

 

The other main bodies of flooding around the Wharfe and Ouse display a minimal 

change in surface area. However, it can be observed that the 3rd Jan locations along 

the river reach are being classed as land rather than flooded. This suggests a 

reduction in the depth of water, allowing features such as river banks to protrude the 

water surface.  
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Figure 4.8. Comparison between an aerial photograph from Dec 27th (from 
@NPAS_CarrGate) (top), and the identified flood areas from VV polarised SAR on the 

29th Dec (bottom). Red square and arrow show approximate location and viewing 
direction of the helicopter. Locations A (railway embankment) and B (B1223) provide 

georeferencing examples. Point C shows The Foss joining the River Wharfe, and point D 
shows the confluence of the Wharfe and the Ouse Rivers. Field level flooding is visible in 

both datasets, with an example given at E. Differences in flood extent are potentially 
caused by the 2-day time gap between the images. 
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To provide an overview of the most flood-prone areas in the region an estimate has 

been made for the number of days each pixel was flooded during the 37 day study 

period (Figure 4.10). Both polarisations display a similar pattern along the course of 

the rivers, with the greatest inundation located within the floodplains of the Wharfe 

and Ouse before the confluence. Some of these areas are shown to have flooded for 

the whole study period. Downstream of the confluence flooding only occurred after 

the extreme rainfall experienced during Storm Eva, when the peak flood extents are 

found. There are major differences with the mapping of inundated fields, with some 

areas identified as flooded for most of the study period within the VH map, whilst only 

being minimally highlighted by VV.   
 

4.3.4. Comparison with EA FMP 
It has been reported that some rivers in the UK exceeded their 100 or 200 year return 

period during the winter 2015-2016 floods (Barker et al., 2016; NHMP, 2016). 

Accordingly, the SAR derived inundation extents have been compared to the EA 

FMP 100 year flood zone, as well as the areas designated for storage of floodwater 

and protected by flood defences (Figure 4.11).  

 

An area of 53.4 km2 of the 100-year flood area is undefended, and at risk of flooding 

during such an event. At peak flood, 49.2% (VH) and 48.0% (VV) of these regions 

Figure 4.9. The retreat of flood waters during the aftermath of Storms Eva and Frank. VH 
(left) and VV (right) polarisations for satellite orbits on the 29th Dec, 1st Jan and 3rd Jan 

are shown. 
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were inundated, suggesting the flooding was not a 100-year event in this area at the 

time of the satellite passes (Figure 4.12). Within the 100-year flood boundary,      

10.4 km2 has been designated as water storage areas. At maximum, 79.3% and 

79.1% of these areas were inundated for VH and VV respectively, with Figure 4.11 

suggesting the area downstream of the confluence was close to capacity. Arguably 

the most important information within the EA FMP is the areas protected from the 

100-year event by the flood defences. At peak flood, a total of 2.3 km2 became 

inundated using the VH data, with 2.2 km2 for VV, under 10% of the protected areas 

in the region (Figure 4.13). This is largely to the west of Figure 4.11. Overall, the 

time-series for flooding for each designated area closely follows the overall flood 

sequence observed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The EA FMP largely encompass the main bodies of flooding identified in the satellite 

data. The percentage of the flooding that occurred outside any of the designated 

FMP areas has been calculated for each date (Figure 4.14), with mean percentages 

of 18.0% (VH) and 9.5% (VV). There are some dates where identified flood outside of 

the FMP prediction is high. The 5th Dec (VH and VV), 20th Dec (VH) and 22nd Dec 

(VH) have less than 75% of identified flooding within the FMP areas, with the SAR 

data all showing a large amount of pluvial flooding on these dates. 

Figure 4.10. The estimated number of days each pixel is inundated for VH (left) and VV 
(right) polarisations. The total number of days in the study period is 37. Each image is 

assigned a number of days representing an even distribution of the time to the preceding 
and following satellite passes. For each pixel, the images identified as flooded have been 

summed to provide an estimate total days flooded. 
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Figure 4.11. The EA FMP for a subset of the study region (left), showing 1 in 100-year 
flood, areas protected by flood defences, and flood storage areas. Extracted flood 
extents for VH, VV and where they overlap for the 29th Dec (right) for comparison. 

Figure 4.12. Area of flooding identified within the EA FMP 100 year flood boundary, and 
the proportion located in a designated flood storage area. Partial data points represent 
those without full satellite coverage. Total area for the 100-year flood region is 53.4 km2 

(13.4% of the study area), including 10.4 km2 designated as flood storage areas. 
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Figure 4.13. Amount of flooding within the protected areas identified in the EA FMP. 
Partial data points represent those without full satellite coverage. Protected areas cover 

24.9 km2, or 6.2%, of the study region. 

Figure 4.14. Amount of flooding identified that is not found within the boundaries of the 
EA FMP. Partial data points represent those without full satellite coverage. 80.4% of the 

area of interest, or 321.7 km2, is not included in any of the EA FMP zones. 
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4.4. Discussion  
The following section provides a brief discussion on the results produced from the 

presented initial flood mapping study. Further in-depth conclusions regarding the 

dynamics of the 2015-16 floods and the use of satellite SAR to map and monitor 

flood extent will be provided in Chapter 8, incorporating results and discussion points 

from applying the adjusted flood mapping algorithm across the north of England. 

 

The validation of the SAR results against the Sentinel-2 MNDWI dataset provides 

good correlation for both polarisations. Long et al. (2014) completed a similar 

comparison with optical imagery to determine the total accuracy of the original CDAT 

method, achieving accuracies ranging between 77.1% and 91.7%. The 97.0% and 

97.4% total accuracies for the VH and VV polarisations achieved in this study 

suggests the adaption applied to the original method provides an improvement. 

Producer’s and user’s accuracies, and Cohen’s kappa coefficient (κ) all provide good 

results, with sources of misclassification identified in both the SAR and the optical 

imagery classification. CSI values are similar for both polarisations, with 65.7% for 

VH and 68.4% for VV. These compare favourably to CSI values calculated from the 

contingency table reported in Long et al. (2014), which range from 9.6% to 28.5%.  

 

Similar to the results presented by Twele et al. (2016), the VV polarisation provided a 

slight improvement in accuracy compared to VH. However, both polarisations 

produce similar validation results in this study, and considering the inaccuracies 

associated with identifying inundation using SAR, it is still unclear which of the two 

Sentinel-1 polarisations is the preferential choice for delineating flooding. 

 

The largest source of inaccuracy comes from the SAR flood extents failing to classify 

areas of water identified within the validation dataset (cell “B” within Table 4.3). It 

should be noted that the optical validation dataset is fundamentally different from the 

SAR flood extents as it represents the surface water extent, whereas the change 

detection processing removes permanent water bodies within the SAR workflow.  

 

There are some caveats that require acknowledging when using optical data to 

validate the SAR flood extents. It should be noted that optical imagery, as a satellite 

product, potentially suffers from inaccuracies within the water identification process. 

Therefore, it cannot be considered as a definitive measure of flood extent accuracy. 
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Furthermore, a single reference image was used in this study, when ideally multiple 

images would be available to confirm the accuracy of the flood extents from each 

polarisation. However, the limitations of optical imagery, namely its inability to 

penetrate cloud cover, restricts the number of available scenes. Within this study, the 

VV flood extents on 1st Jan appear inadequate when compared to the preceding and 

following flood extents. This is likely to be caused by the susceptibility of VV to 

increased backscatter from roughening of the water surface due to wind or heavy 

rain (Brisco et al., 2008; Manjusree et al., 2012). If a suitable optical reference 

dataset was available for this date, it is expected that the validation outcome would 

produce a reduced level of accuracy for VV. The variability in perceived results 

accuracy on non-validation dates highlights the need for further validation of flood 

extents produced using the two Sentinel-1 polarisations, particularly in varying 

environmental conditions.  

 

Caution must be exercised in interpreting the data as an accurate representation of 

the flooding time series due to the sparse nature of the satellite images, with gaps of 

two to four days between the Sentinel-1 scenes. This is exacerbated by satellite 

crossings not covering the full extent of the study area, potentially underestimating 

the full extent. As well as the maximum flood extent, the speed of onset and 

recession is important for stakeholders to fully manage the impacts of an event. The 

linearity of the rising and falling limbs around the 29th Dec peak is questionable. 

Furthermore, the peak extent seen from the images on the 29th Dec is unlikely to 

capture the true maximum extent. There is no method to accurately extrapolate the 

data points to determine the timing and magnitude of the peak flood, as well as the 

onset and recession speed, without the inclusion of in-situ data. Future events will 

benefit from the full constellation of two Sentinel-1 satellites, providing a denser time 

series, allowing better estimation of the flood dynamics. 

 

One of the advantages of using satellite data to map flood extents is the ability to 

identify wide-scale pluvial flooding away from the floodplains. This data can be costly 

and time consuming to collect on the ground, with resources often allocated to urban 

areas during an event due to the more profound risk and impacts. Flooded fields 

have been identified using the CDAT methodology, although there is variability 

between the VH and VV polarisations. Comparing the results to the Sentinel-2 image, 

it appears likely that VH overestimates field flooding, with VV providing a more 
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plausible representation. Cross-polarised images have been shown to have a wider 

range of backscatter values from vegetated land covers, potentially creating an 

overlap with the water backscatter responses, subsequently causing an 

overestimation of the flood extent (Manjusree et al., 2012; Twele et al., 2016). 

However, further in-situ data during times of flood is required to fully understand the 

relative accuracies of the polarisations at this scale, and to help explain the temporal 

pattern of pluvial flooding.  

 

The EA FMP are used for consultation within the UK planning process (Porter and 

Demeritt, 2012). The clarification of their accuracy provided by the SAR flood maps 

supports their continued use for this purpose. Agreement was found between the 

flood maps and both polarisations of SAR data for the locations of fluvial flooding. 

Having been created from a hydraulic model, the close correlation between the maps 

and the satellite data on the floodplains is to be expected. Differences come away 

from the floodplains, with the EA FMP not designed to predict the location of pluvial 

or groundwater flooding.  

 
4.5. Identified Areas for Methodology Improvement 
The initial study successfully mapped flooding within a small region of Yorkshire over 

a 5 week period. The calculated total accuracies in this chapter compare well to 

validation statistics reported elsewhere in the literature produced by other flood 

mapping techniques. Chapter 5 will attempt to map inundation over a longer time 

period (November 2015 to February 2016) and over a wider geographical region. 

Upon reflection, there are several methodological improvements which should 

improve the robustness and accuracy of the flood mapping workflow. The intention is 

to implement these within the wider study undertaken in Chapter 5. A brief 

introduction to these changes is given below, with details of their application provided 

in the next chapter. 

 

• Speckle filtering. A median (5 x 5 window) speckle filter was applied to both 

SAR and reference images for the initial study. The filter successfully reduced 

the image speckle, however, on occasion the lack of edge detection within the 

filter resulted in an over-smoothing of the flood boundary. Further speckle 

filters are to be investigated for the expanded study. Visual interpretation will 



[97] 
 

be used to identify suitable results, with the target of smoothing homogenous 

land covers whilst maintaining edge features.  

 

• Reference images. The reference images will be recreated for the expanded 

study. The addition of images from the relevant post-flood time periods will 

allow for better representation of dry conditions for the time of year. 

Furthermore, speckle filtering of the reference image will be removed, with the 

multi-temporal smoothing of the image deemed to sufficiently represent the 

spatial variations in backscatter for regions of the same land cover.  

 

• SAR image thresholding. One of the simplest techniques for determining 

flooding extent from a SAR image is histogram thresholding, with the lower 

water backscatter pixels separated from the stronger land response. For the 

initial study, a single threshold was determined via Otsu’s algorithm, which 

performed well due to the relatively small geographical area containing a high 

amount of flooding. The expanded study will cover the north of England, and 

will utilise the full swath width of Sentinel-1 SAR images, with incidence angles 

ranging between 29° and 46°. It has been shown that both water and the 

various land covers have varying backscatter responses with changes in 

incidence angles (Pham-Duc et al., 2017; Bioresita et al., 2018). To account 

for this, the aim is to develop a technique for determining the relationship 

between the ideal land-water threshold value and incidence angle, to allow for 

reliable, full swath flood detection using the developed methodology. 

 

• Produce a single thematic flood map. It is likely that the end-users of satellite-
derived flood maps (emergency personnel, the insurance industry, flood 

modellers etc.) will prefer a single inundation map, instead of polarisation 

specific flood extents produced in this chapter. The initial study showed that 

for flood mapping there was no clear preferential polarisation between the VH 

and VV images produced by Sentinel-1. Both have the potential to produce 

polarisation specific misclassifications, with VV more susceptible to increased 

backscatter caused by wind roughening of the water surface, whilst VH has 

more potential to misclassify land as water due to its susceptibility to volume 

scattering. The aim for the next chapter is to produce a single flood map for 



[98] 
 

each date by fusing of data from the two polarisations. This will help to reduce 

polarisation specific errors, allowing for more accurate flood mapping. 

 

• Further validation. Additional sources of validation are to be investigated in an 

attempt to ensure the workflow provides accurate, robust flood extents. New 

validation schemes will be developed to account for permanent water bodies 

in the validation datasets, which are removed by the change detection 

processing of the SAR imagery. 



[99] 
 

Chapter 5. Wider Application of SAR Flood Mapping 
 

The following chapter describes the development of a further iteration of the flood 

detection methodology introduced in Chapter 4. This is subsequently applied across 

an expanded geographical area and temporal extent, outlined in Sections 5.1 and 

5.2. The methodology Section (5.4) will highlight processes that have been updated 

from the previous chapter.  

 
5.1. Study Area 
The initial study mapped flooding in a small section of the Ouse catchment that 

suffered from significant inundation during the winter of 2015-16. However, numerous 

additional locations within the north of England were subjected to extensive flooding 

at this time. One of the main advantages of satellite imagery is its ability to monitor 

environmental variables across wide geographical regions. Figure 5.1 shows some of 

the major catchments located within the north of England, that together form the 

study region for this chapter. The results Section (5.5.3) will analyse results from 

catchments where spatial and temporal patterns of the derived flood extents are of 

note, namely the Ouse, Aire, Eden and Lake District regions. Results from other 

catchments can be found in Appendix B. 

 
5.2. Datasets and SAR Pre-Processing 
Similar to the initial study, the main dataset used in this chapter is Sentinel-1 SAR. 

The expanded study region and time period being analysed has resulted in the 

number of images downloaded and processed to increase to 105 (a comprehensive 

list of used images can be found in Appendix A). Images covering the study region 

are available for 7 different orbit tracks. However, due to the poor geographical 

coverage provided by some of these, only those from 5 tracks (numbers 30, 52, 81, 

132, 154) are selected for processing. Figure 5.2 shows the coverage of each orbit 

across northern England, and Table 5.1 summarises the amount of coverage each 

orbit provides over the study catchments. The selected images are available for 37 

dates throughout the 93 day period (11th Nov 2015 to 11th Feb 2016).  

 

In the initial study utilised GEE to obtain pre-processed SAR imagery for analysis. 

However, to allow for improved speckle filtering within the SAR pre-processing, raw 
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GRD products have been download and processed within the ESA SNAP software 

and the associated python library. Descriptions of the steps applied to pre-process 

the data can be found in Chapter 3. GEE is still utilised to create orbit specific 

reference images, as in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5.1. Study region across the north of England, with key catchments highlighted. 



[101] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The speckle filtering of the flooded SAR images has been updated with the aim of 

reducing the over-smoothing of high contrast features and edges. Numerous filter 

types and parameters have been tested and visually compared to one another (see 

Figure 3.13). It was deemed that the Refined Lee filter sufficiently reduced speckle 

Figure 5.2. Coverage of each Sentinel-1 orbital track (in red) across the north of 
England. This includes orbit 30 (top left), orbit 52 (top middle), orbit 81 (top right), orbit 
132 (bottom left) and orbit 154 (bottom right). Expanded study region shown in black. 

Table 5.1. Sentinel-1 coverage of each study catchment for each orbit track. Good 
coverage shown in bold, with no coverage shown in red. 

Catchment 30 52 81 132 154

Aire 97 34 35 100 100

Eden 100 100 0 100 100

Lakes 99 99 0 52 96

Lune 100 100 0 100 100

Ouse 64 25 63 100 100

Ribble 100 100 0 97 100

Tees 85 51 32 100 100

Tyne 100 99 0 100 100

Wear 100 82 0 100 100

Orbit Track (% Coverage)



[102] 
 

whilst maintaining clarity in flood boundary locations, and has subsequently been 

applied to each image. Furthermore, it was surmised that the creation of the 

reference image via the selection of the median pixel value from a collection of 

unflooded Sentinel-1 images produced a sufficiently smooth image, and 

consequently the speckle filtering of the reference image has been removed. 

 

5.3. Validation Technique and Datasets 
With the increase in the study area, an adjustment to the validation strategy is 

required. In Chapter 4, the contingency matrix was computed across the whole of the 

analysed region. Total Accuracy (TA) and Critical Success Index (CSI) for the pilot 

study were calculated as 97.0% and 65.7% for VH polarisation, and 97.4% and 

68.4% for VV imagery. A large amount of agreement in non-flooded pixels in both 

SAR flood maps and the validation dataset can cause positive skewing when 

reporting TA, and it has been suggested that using CSI will provide a more 

representative metric of the accuracy of flood maps (Stephens et al., 2014). 

Alternatively, validating on small subsets of the overall area of interest can minimise 

any skewing of TA, and allow for a range of values to be established for each 

accuracy metric. Twenty-six different validation areas of 4 km2 (Figure 5.3) are used 

to validate the SAR derived flood extents in this study, producing a range of values 

for TA, CSI, User’s Accuracy (UAf), Producer’s Accuracy (PAf) and Cohen’s Kappa 

(Cκ).  

 

The updated flood extents will be compared to a number of reference inundation 

maps. These include the polarisation specific flood extents from Chapter 4 and the 

MNDWI-Otsu classified Sentinel-2 multispectral image used as validation in the 

preceding chapter. Additional comparisons are made against the flood extents 

produced by the Copernicus Emergency Management System (CEMS), extracted 

from a RADARSAT-2 image. The CEMS flood maps are derived using a semi-

automated approach (Dorati et al., 2018). Both the Sentinel-2 and RADARSAT-2 

images are acquired approximately 12 hours after the Sentinel-1 image captures on 

the 29th Dec. Each validation dataset is likely to contain inaccuracies. However, using 

multiple different datasets for comparison should allow for an improved 

understanding of where these are occurring, and allow for a robust assessment of 

the flood maps presented in this chapter. 
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5.4. Methodology Adjustments 
The methodological concept for deriving flood extents from Sentinel-1 imagery 

remains the same as that presented in Chapter 4. This involves the use of two pixel-

based segmentation techniques as separate processing branches, which are 

subsequently combined to produce a single flood map. The first branch contains the 

Figure 5.3. Validation locations throughout the River Ouse catchment. The results from 
the 29th Dec are used to ascertain accuracy of the results against the flood extents 

produced in Chapter 4, a MNDWI-Otsu classified Sentinel-2 image, and CEMS 
RADARSAT-2 flood extents. Red squares represent coverage and validation across all 

datasets; the blue square is within the Chapter 4 study region and covered by the 
Sentinel-2 imagery; green squares show accuracy assessment against the CEMS flood 

extents and the Sentinel-2 imagery; yellow squares show validation against the Sentinel-
2 imagery only. VV polarised SAR imagery from the 29th Dec shown to give context to 

validation locations. 
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CDAT workflow and the second is based around the histogram thresholding of the 

flooded SAR image. The CDAT branch remains largely unchanged from the original 

study. An updated terrain mask is produced using the SRTM 30 m DEM to replace 

the 5 m OS Terrain DTM used in Chapter 4. The use of a globally available DEM 

ensures applicability of the terrain filtering outside of the UK. There are small 

differences in the output maps produced from the CDAT branch, which can be 

attributed to this change in terrain mask and the updated speckle filtering 

parameters.  

 

The histogram thresholding branch has been heavily modified to improve water 

detection across whole image swaths and to allow for increased automation of the 

processing. Whereas in the previous study a fixed Otsu derived threshold was used 

across all images, a dynamic threshold is now created to account for changes in 

backscatter responses from different land covers with incidence angle, and the 

subsequent variation in the optimal land-water threshold. The variability in water 

backscatter responses with incidence angle have been highlighted by O’Grady et al. 

(2014), Pham-Duc et al. (2017) and Schlaffer et al. (2017), with Chapman et al. 

(2015) providing an example of how a variable threshold can be applied across the 

full swath width of an ALOS PALSAR image. 

 

The relationship between the land-water threshold and incidence angle has been 

derived by analysing numerous image subsets to identify the local threshold value. 

Target sub-regions are selected based on the likelihood of the location containing a 

mix of water and land pixels, which will produce a bimodal histogram from which to 

determine a threshold. These regions are created using the SRTM Water Body 

Dataset (WBD), a by-product of the SRTM mission. The 150 largest water bodies 

from across the study area have been identified and buffered to create masks that 

contain an approximately even number of land and water pixels. Although there is 

some clustering in specific geographical regions, such as the Lake District, each orbit 

track views these locations at a different incidence angle. The combined results from 

the five orbit tracks used within this chapter provide an even spread of locations 

across the full image of Sentinel-1 incidence angles. Within each lake region, areas 

that have a slope above 5° are removed to reduce any histogram skewing caused by 

radar shadow or foreshadowing. The remaining mask is used to extract subsets from 

each SAR reference image created for the change detection processing. The 
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histogram from each extracted region first has to pass a bimodality test, which 

searches for two clear peaks (above 0.07 density) with a deep trough in-between 

these (below 0.04 density). Once a histogram passes this test, a threshold is 

determined by identifying the lowest density between the peaks of the histogram. The 

Minimum-Point (MP) threshold is chosen to curtail the number of misclassifications. It 

is unlikely to represent the full water extent, however selecting a higher threshold will 

result in increased land misclassification. A similar threshold selection strategy was 

utilised by Martinis et al. (2009) and Matgen et al. (2011). 

 

The addition of an object-based region growing element has been implemented to 

account for additional pixels at the edge or within an identified water body that may 

be missed by the MP threshold. To help identify these features, a second set of 

relationships between incidence angle and local threshold have been identified using 

Otsu’s thresholding. Generally, Otsu’s algorithm will tend to select a higher threshold 

than other thresholding methods, resulting in a greater proportion of water pixels 

being correctly classified at the cost of increased misclassification of land as water 

(Landuyt et al., 2018). For each lake sub-region that has an MP threshold 

determined, an Otsu threshold is also calculated. As this step is targeted at 

increasing the identified water extents, locations that produce a lower Otsu’s 

threshold value than the MP threshold are removed from both relationships as 

potentially spurious. 

 

For each polarisation, linear relationships are calculated to describe the variations in 

both MP and Otsu thresholds with incidence angle, based on the collective local 

threshold values. The derived linear equations are applied to a raster containing 

incidence angle data for each orbit track, creating a continuous variable threshold 

dataset which is used to segment each flooded SAR image. This results in a 

separate MP and Otsu water extent datasets for each polarisation. The region 

growing process uses the water pixels identified in the MP flood maps as seeds to 

identify and extract any overlapping flood polygons produced by the variable Otsu’s 

threshold. By restricting the inundation identified by the Otsu’s algorithm to locations 

previously identified as likely to be water, the procedure maximises the inclusion of 

correct water pixels whilst minimising the incorrect classification of land away from 

the flood areas. 
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Similarly to the initial study, the CDAT and thresholded flood areas are combined to 

create a polarisation specific flood map. To be included in these maps a pixel has to 

be identified as flooded by both techniques, meaning it shows the properties of 

having a low backscatter and has also experienced a large negative shift in 

backscatter that represents the change in land cover that flooding causes.  

 

One of the potential improvements identified from the initial study is the production of 

a single flood map, instead of separate extents for each polarisation. The merging of 

the polarisation specific flood maps is achieved using an object-based approach. 

Where regions of inundation have been identified in both polarisations, the maximum 

extent of the overlapping flood locations is used. If flooding is only identified in a 

single polarisation, then it is disregarded. This helps remove two sources of 

polarisation specific misclassification. Firstly, VV imagery has a greater susceptibility 

to wind roughening of the water surface (Manjusree et al., 2012). Selecting the 

maximum extent allows any gaps within the VV extent to be filled with correctly 

identified flooding from the VH imagery. Cross-polarised data (VH) often has 

increased volume scattering from vegetation, producing a wider range of land 

backscatter values that can overlap with the expected water backscatter values 

(Twele et al., 2016). This can cause false-positive flood identification within the VH 

imagery. By combining the data and requiring flooding within a region to have been 

identified within both polarisations, the majority of misclassifications found in the VH 

polarisation are removed.  

 

The spatial resolution of Sentinel-1 imagery is such that there is potential for 

identifying partially flooded fields. The pixel resolution of 10 meters suggests that any 

surface water larger than 100 m2 can be extracted. However, there is much 

uncertainty in doing this due to speckle artefacts that may persist, and consideration 

is needed when identifying small scale floods as to whether the low value assigned to 

a pixel is water or remnants of speckle. It is likely that the larger the area of flooding 

the more confidence the user can have in it being a correctly identified water body. 

With this in mind, the final flood maps have been created with the assumption that 

flood regions of or below 3 x 3 pixels (900 m2) in size are flagged as uncertain, and 

removed due to their relatively small size. 
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5.5. Results 
5.5.1. Variable Thresholding Relationships 
The histogram of each SAR sub-region had to pass a bimodality test before local 

thresholding is undertaken. Examples of histograms that passed and failed this test 

are shown in Figures 5.4, 5.5 and 5.6. Table 5.2 summarises the percentage of sub-

regions deemed adequately bimodal across both polarisations for each orbit track. 

On average 45% of histograms passed the bimodality test in both polarisations. The 

combined VH and VV datasets ended up with 267 and 268 local thresholds to build a 

relationship on respectively, although the number from each specific orbit track 

varied. Common reasons for histograms failing the bimodality test include; more than 

two histogram peaks above the density threshold, often caused by more than a 

single distinct dry land cover being present, such as urban and agricultural locations 

(Figure 5.6); less than two clear histogram peaks, caused by reduced land pixels 

within the sub-region due to the filtering of high topography areas; and the trough 

between the peaks not being defined enough, such as in Figure 5.5.  

 

The local thresholds have been used to determine linear relationships to describe 

how the land-water threshold value varies with incidence angle. Figures 5.7 and 5.8 

show the derived MP variable thresholds for VH and VV polarisation respectively. 

When viewed individually, all orbit tracks follow a similar trend apart from orbit 81, 

which displays an increasing threshold value with incidence angle, instead of the 

expected decreasing relationship, as observed in other orbits. This is likely caused by 

the small number of thresholds used to develop this relationship (n = 9), which are 

located across a relatively narrow portion of the Sentinel-1 image swath. Orbit 52 

covers the near range of incidence angles, and displays a slightly steeper trend than 

the combined relationship. In the VH polarisation for this orbit, there is a cluster of 

points with lower threshold values located at 36-37°, which may be causing a 

drawdown effect on the linear relationship presented. Orbit 30 covers the far range 

half of a swath and shows a similar trend to the combined linear relationship. As 

shown in Figure 5.2, orbits 132 and 154 cover a large proportion of the study area 

and subsequently can build a relationship across the majority of the Sentinel-1 swath 

width. These trends closely follow the overall relationship, with orbit 132 predicting 

slightly higher threshold values and orbit 154 showcasing slightly lower relationship 

than the combined trend. 
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Figure 5.4. Local histogram thresholds for Derwent Water. From left, area of interest around water body (blue) with masked regions (red), 
VH polarisation histograms for each orbital track with chosen MP thresholds displayed, and the same plot for VV polarisation. 
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Figure 5.5. Local histogram thresholds for Cow Green Reservoir. From left, area of interest around water body (blue) with masked 
regions (red), VH polarisation histograms for each orbital track with chosen MP thresholds displayed, and the same plot for VV 

polarisation. No threshold is shown for orbit 30 in VH, which produced an Otsu threshold lower than the MP threshold, and orbits 52 and 
132 for VV, which failed the histogram bimodality test by not having a low enough trough between the visible peaks. 
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Figure 5.6. Local histogram thresholds for Pennington Flash. From left, area of interest around water body (blue) with masked regions 
(red), VH polarisation histograms for each orbital track, and the same plot for VV polarisation.  Due to the triple peaked nature of the 

histograms the bimodality test was not passed, and no thresholds are calculated for this lake for any of the orbit tracks in either 
polarisation. 
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Table 5.2. Number of image subsets that’s passed the bimodality test. 

Figure 5.7. Relationships between incidence angle and identified MP thresholds for each 
orbital track (top) and as a combined dataset (bottom) for VH polarisation. Equation and 

R2 values refer to the final variable threshold. 

Orbit VH VV

30 66 77 141 46.81 54.61

52 52 42 99 52.53 42.42

81 9 9 32 28.13 28.13

132 73 66 136 53.68 48.53

154 67 74 149 44.97 49.66

Total 267 268 557 45.22 44.67

Max. Num. 
Lakes

Pass Bimodality Test
VH% VV%
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The combined dataset, containing all data points from each of the orbit tracks, 

provides a good spread of values across the full range of Sentinel-1 incidence angles 

from which to base the linear relationship upon. R2 values for the VH and VV 

combined relationships are 0.214 and 0.492 respectively. The improved R2 value in 

VV polarisations represents the reduced variability in threshold values, likely caused 

by the more stable backscatter response from land surfaces compared to cross-

polarised data. For example, a large spread in local thresholds can be seen around 

36° and above 43° for VH, whilst for VV the greatest spread is seen at 30°, and a 

small number of outliers at 38°. Despite the reduced R2 value, the relationship 

Figure 5.8. Relationships between incidence angle and identified MP thresholds for each 
orbital track (top) and as a combined dataset (bottom) for VV polarisation. Equation and 

R2 values refer to the final variable threshold. 
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between the incidence angle and local threshold backscatter value is considered 

good for VH polarisation. 

 

Figure 5.9 shows the difference in linear relationships for the MP and Otsu variable 

thresholds. As expected the trends between the two thresholding techniques are 

similar, with the only noticeable difference being a slightly steeper slope on the Otsu 

linear trend in the VV polarisation. R2 is consistent in VV polarisation between the two 

threshold types, however, there is a reduced R2 value for the Otsu relationship in the 

VH polarisation, down to 0.118. On average, Otsu threshold values are 1.41 dB and 

1.55 dB higher for VH and VV polarisation than their MP threshold counterparts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Comparison of the relationship between MP and Otsu local threshold values 
and incidence angle for VH (top) and VV (bottom) polarisations. 
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5.5.2. Validation 
5.5.2.1. Optical Imagery 
Contingency matrices and validation statistics have been calculated for 26 sub-

regions across the main body of flooding within the Ouse catchment (Figure 5.3), 

with the average accuracy metric values presented in Table 5.3. The Sentinel-1 flood 

mapping algorithm performs well, with an average PAf of 77.69%, UAf of 95.39%, TA 

of 89.59%, and a CSI of 74.68%. The mean Cκ is calculated as 0.760.  

 

 

 

 

 

 

 

 

 

 

 

Nine of the validation sub-regions overlap with the polarisation specific flood maps 

produced in Chapter 4. Values for the accuracy descriptors have been recalculated 

for these locations to allow for comparison to the results from this chapter. The 

updated flood mapping algorithm presented in this chapter provides an improvement 

for PAf (an increase of 3.05% for the average values), TA (0.83%), CSI (1.92%) and 

Cκ (0.03). However, average values for UAf have decreased by between 1.04% (VH) 

and 2.15% (VV). If only the 9 sub-regions that cover the polarisation specific maps 

are used, the average UAf for the results from this chapter increases to 96.89%, an 

improvement on the VH value but still below the VV score by 0.66%. One sub-region, 

located in the upper reaches of the River Derwent (number 22 in Figure 5.3), has a 

particularly low UAf value of 78.20%. VV flooding at this location closely matches the 

optical imagery, however, the VH identifies a larger number of pixels as inundated. 

Due to the overlap between the polarisations, the larger VH extent is selected for the 

final flood map, lowering the UAf score when compared to the optical imagery. 

 

Using optical imagery for identifying flooding is subject to uncertainty, which can 

result in a reduction in reported accuracy when being used as a reference dataset 

Min. Mean Max. Min. Mean Max. Min. Mean Max.

PAf 52.78 77.69 92.32 52.17 74.64 90.13 47.42 73.73 91.32

UAf 78.20 95.39 99.63 93.03 96.44 99.42 95.94 97.55 99.55

TA 77.13 89.59 96.73 76.04 88.70 93.83 74.91 88.76 93.65

CSI 51.92 74.68 91.31 50.46 72.76 89.65 46.93 72.35 90.65

Cκ 0.528 0.760 0.929 0.506 0.732 0.862 0.480 0.731 0.852

Ch. 5 Flood Maps Ch. 4 Flood Maps (VH) Ch. 4 Flood Maps (VV)

Table 5.3. Accuracy statistics for validating SAR derived flood extents (from Chapters 4 
and 5) against MNDWI Sentinel-2 flood maps. (Ch. 5 Flood Maps, n = 26; Ch. 4 Flood 

Maps, n = 9). 
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against SAR flood extents. The methods used in this chapter produce different map 

types from the two sources of imagery. A surface water map is produced from the 

optical imagery and a flood map from the SAR data, due to permanent water bodies 

being removed via change detection. To account for the difference in map type, 

additional accuracy metrics are calculated with permanent water locations removed 

from the reference dataset (Table 5.4). The adjustment to the reference dataset has 

resulted in improved validation results for PAf, TA, and CSI, with a slight increase in 

Cκ, and UAf remaining consistent. The minimal change to UAf is expected, as the 

metric reports the amount of the SAR derived flooding that is similarly classed in the 

reference dataset. The SAR flood maps contain minimal permanent water bodies, 

with the slight changes in UAf coming from the removal of these areas to match the 

masking applied to the reference dataset. 

 

 

 

 

 

 

 

 

 

 

The lowest TA (77.75%) and CSI (50.94%) scores occur at region 12, located at 

Tadcaster. The TA and CSI are caused by the low PAf of 51.79%. Cκ is similarly low, 

scoring 0.528. Visual inspection of the location highlights the high number of 

buildings in the surrounding area. These are likely to cause an increase in 

backscatter due to the double bounce effect, resulting in flooding not being identified 

in the SAR imagery. The improved identification of water in the optical imagery due to 

the nadir viewing angle of the sensor results in the poor validation statistics 

observed. 

 

The relationship between each validation metric score and proportional flood area 

within each sub-region is shown in Figure 5.10. This shows two different 

relationships. TA and UAf values remain consistent irrespective of the amount of 

flooding in the validation area, whilst PAf and CSI statistics increase with the 

Table 5.4. Validation statistics for SAR derived flood extents against MNDWI Sentinel-2 
flood maps, with and without locations of permanent water bodies removed, and the 

subsequent change in values. 

Min. Mean Max. Min. Mean Max. Min. Mean Max.
PAf 52.78 77.69 92.32 51.79 80.06 92.84 -0.99 2.37 0.52

UAf 78.20 95.39 99.63 78.01 95.34 99.61 -0.19 -0.06 -0.02

TA 77.13 89.59 96.73 77.75 91.03 97.06 0.62 1.44 0.33
CSI 51.92 74.68 91.31 50.94 76.88 91.77 -0.98 2.20 0.46
Cκ 0.528 0.760 0.929 0.528 0.791 0.935 0.000 0.030 0.006

With Perm. Water No Perm. Water Change
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proportion of the region that is flooded. Not shown is Cκ, which matches the trend 

shown by UAf. Within this study, the validation areas have been manually selected to 

provide a variety of hydrological situations and good geographical coverage across 

the identified inundations. This is intended to give a good indication of the accuracy 

of the flood maps by averaging out any skewing of the results due to flood coverage 

within a single region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.2.2. CEMS Flood Maps 
The CEMS flood map has been used to validate the derived results in two separate 

ways. Firstly, they have been validated against the Sentinel-2 MNDWI reference 

water extent, with the produced metrics compared to those obtained from the 

Sentinel-1 flood maps. Secondly, the CEMS flood extents have been used as the 

reference dataset to ascertain the agreement between the two SAR derived flood 

maps. The CEMS flood maps are covered by 10 of the validation sub-regions. 

 

The validation statistics for the CEMS flood maps against the MNDWI reference data 

are similar to those obtained from the Sentinel-1 flood mapping (Table 5.5). The 

CEMS flood extent has superior scores for UAf and TA, whilst the Sentinel-1 

inundation maps have higher values for PAf, CSI and Cκ. Only PAf and CSI show a 

difference greater than 1%. TA is 91% for both datasets, and CSI is 76.88% and 

75.64% for the Sentinel-1 and CEMS data respectively. Similar ranges of values are 

presented across the two datasets. The CEMS dataset does not cover the region of 

Figure 5.10. Changes in validation metric scores with percentage of region flooded. 
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poorest validation results for the Sentinel-1 flood maps (location 12). However, low 

statistical accuracy can be found in the region north of York (location 8), with poor 

CSI values in both the CEMS and the Sentinel-1 results (49.43% and 59.43% 

respectively) driven by low PAf (49.62% and 59.56%). However, unlike at location 12, 

TA is relatively high (86.02% and 88.81%) due to UAf values above 99%. Cκ values 

are low, with 0.585 for CEMS and 0.679 for Sentinel-1. Location 8 is in a similar 

setting to location 12, with a high number of tall features, including buildings and 

trees, surrounding the identified flood locations, which mask the specular reflection of 

the radar signal. 

 

 

 

 

 

 

 

 

 

 

Table 5.6 shows the results of using the CEMS dataset as a reference for validating 

the Sentinel-1 inundation maps. The average PAf of 91.65%, UAf of 92.21%, TA of 

95.46%, CSI of 84.93% and 0.878 Cκ highlight good agreement between the 

datasets. Differences between the results can be attributed to a higher resolution in 

the CEMS dataset, differences in SAR viewing geometry, and processing induced 

variability in derived flood extent.  

 

 

 

 

 

 

 

 

Min. Mean Max. Min. Mean Max.
PAf 51.79 80.06 92.84 49.62 78.08 92.88

UAf 78.01 95.34 99.61 91.75 96.16 99.27

TA 77.75 91.03 97.06 86.02 91.36 96.94
CSI 50.94 76.88 91.77 49.43 75.64 90.77
Cκ 0.528 0.791 0.935 0.585 0.779 0.929

Ch. 5 Flood Maps CEMS Flood Maps

Table 5.5. Comparison of accuracy metric scores from Sentinel-1 SAR and RADARSAT-
2 CEMS flood extents, both validated against Sentinel-2 flood maps. (Ch. 5 Flood Maps, 

n = 26; CEMS Flood Maps, n = 10). 

Table 5.6. Accuracy assessment of the SAR derived flood extents against CEMS flood 
maps, and how metrics compare to validating the Chapter 5 results against the MNDWI 

data. 

Min. Mean Max. Min. Mean Max.
PAf 84.61 91.65 97.88 51.79 80.06 92.84

UAf 79.38 92.21 96.02 78.01 95.34 99.61

TA 93.96 95.46 96.89 77.75 91.03 97.06
CSI 76.14 84.93 93.85 50.94 76.88 91.77
Cκ 0.841 0.878 0.926 0.528 0.791 0.935

MNDWICEMS
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5.5.3. Catchment Scale Flood Dynamics 
Results are presented below for a selection of the catchments shown in Figure 5.1. 

The catchments not displayed show similar trends in flood extent in relation to river 

stage and the onset of named storms to those detailed below. Further time series 

plots are provided in Appendix B. It should be noted that spurious flood detection due 

to snow and frost is discussed in Section 5.5.4., and suspect data points caused by 

these mechanisms, notably the peak across many catchments on 15th Jan, are not 

discussed in detail in the following catchment analysis sections. 

 

5.5.3.1. River Ouse 
Figure 5.11 shows the amount of flooding in the Ouse catchment compared to river 

stage data from Myton Bridge, Newton-on-Ouse and Cawood, which are distributed 

along the Ure-Ouse River from upstream to downstream. The second-largest peak in 

flood extent (after 15th Jan) is found on the 29th Dec, in the aftermath of Storms Eva 

and Frank. The large extent of flooding is identified despite the satellite image only 

covering 63% of the catchment (orbit 81 in Table 5.1). The peak in flood extent does 

not coincide with the peak stage, with the satellite image captured 35 and 41 hours 

after peak flows at Myton Bridge and Cawood respectively. The Newton-on-Ouse 

stage records are missing from this time, likely due to the high flows being outside 

the operating parameters of the gauging instrument. The previous satellite image on 

the 27th Dec was acquired closer to peak flows, however, only a quarter of the 

catchment is imaged from this orbit (number 52), resulting in the small amount of 

flooding shown in Figure 5.11 at this time. When studying large catchments such as 

the Ouse, care is needed when interpreting flood extent dynamics due to the different 

location and extent of coverage from each orbit. Identifying correlations between the 

stage record and the flood extents in the Ouse is challenging due to the variations in 

coverage, with only some of the peaks in the gauge data displaying corresponding 

inundation growth in the flood maps.  
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Figure 5.11. The amount of flooding identified in the Ouse catchment compared to river stage at the Myton Bridge, Newton-on-Ouse and 
Cawood gauges between 11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as unfilled 
data points. Approximate start period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and 

Imogen) shown for reference. Threshold for minor flooding occurrence taken from Environment Agency gauge information. 
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Figure 5.12. Peak flood extent along the River Ure/Ouse and its tributaries located north of York (29th Dec (left)), and the following 
images (1st Jan (middle) and 3rd Jan (right)) showing the recession of flood waters. Inundated areas identified in dark blue. Urban areas 
shown in grey, woodland regions in green and permanent water bodies in light blue. Myton Bridge (upper) and Newton-on-Ouse (lower) 

gauges highlighted by the orange star. 
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Figure 5.13. Peak flood extent along the River Ouse and its tributaries located south of York (29th Dec (left)), and the following images 
(1st Jan (middle) and 3rd Jan (right)) showing the recession of flood waters. Note the greater temporal consistency of flooding in these 

locations compared to north of York (Figure 5.12). Inundated areas identified in dark blue. Urban areas shown in grey, woodland regions 
in green and permanent water bodies in light blue. Cawood gauge highlighted by the orange star. 
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The Ouse catchment is the largest within the study and has numerous locations 

throughout the catchment that suffer from significant flooding. The flood extent during 

the aftermath of Storms Eva and Frank along the main watercourses, the River Ure 

and River Ouse, are shown in Figures 5.12 (north of York) and 5.13 (south of York). 

Extents from three dates are shown, with 29th Dec representing the largest 

inundation extent, with 1st and 3rd Jan showing the flood retreat. At the maximum 

extent, extensive inundation is observed along the floodplains of the main river and 

its tributaries. Significant flooding is observed around river confluences throughout 

the catchment, with inundation propagating upstream and downstream of where the 

rivers merge. The spatial and temporal consistency of the extreme rainfall inputs 

throughout the catchment ensure that all rivers are at capacity, causing these 

localised inundation maxima at confluences. 

 

The two sections of the river display different rates of water recession. The upstream 

portion of the river displays a faster decrease in flood extent (Figure 5.12). There is a 

clear visible retreat of floodwater at locations that have experienced greater localised 

flooding, such as river confluences. For example, around the Ure-Swale confluence 

in the north of Figure 5.12, the local flood extent on the 3rd Jan is only 40% of that 

observed on the 29th Dec.  

 

Further downstream flooding is more temporally consistent, with only 30% of water 

extent being lost for the region shown in Figure 5.13 across the 6 days (29th Dec to 

3rd Jan). Furthermore, the majority of this change has occurred by the 1st Jan, 

showing a more rapid initial retreat before the catchment hydrology becomes more 

stable, with the input of floodwaters from further upstream equating to the rate of 

water output at this time. A large proportion of the flooding in this area is still visible 

on the 15th Jan, before dissipating by the image captured on the 18th Jan (partial 

coverage) and the 25th Jan (full coverage). Flooding south of York can be divided into 

three main locations; the River Wharfe, the River Ouse upstream of the confluence, 

and the downstream section of the Ouse. The main location of initial water retreat is 

found in the latter of these, to the south-east of the marked gauge location.  

 

There are some locations within the Ouse catchment that suffer from consistent 

inundation throughout the study period. Figure 5.14 shows the number of images 

where flooding has been identified along the River Derwent (with a total of 30 
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covering the location), with similar flood-prone locations being found throughout the 

catchment. The temporal consistency of flooding along the River Derwent varied 

spatially, with more flood-prone sections being inundated for two-thirds of the 

available images, compared to other sections which are only inundation for a third of 

the images. Although the maximum extent is often reported in the media as the 

greatest cause of disruption, prolonged inundation or constant rewetting can extend 

disruption to homeowners, businesses and agriculture. The winter of 2015-16 

brought numerous rainfall events, which individually may not have resulted in 

flooding. However, the successive nature of the storms resulted in precipitation falling 

on saturated ground, causing additional water being added to a hydrological system 

at capacity, increasing overall inundation time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Number of satellite images with flood identified between 11th Nov 2015 and 
11th Feb 2016 along the River Derwent in the Ouse catchment. Locations flooded in two 
or less images are not shown. Permanent water bodies are shown in light blue. Bubwith 

gauge highlighted by the orange star. 
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5.5.3.2. River Aire 
There are two main regions impacted by flooding in the Aire catchment. The first is in 

the upper portion of the river around the Snaygill gauge, and the second is located 

downstream near the Beal gauge. Despite being smaller than the Ouse catchment, 

two of the satellite orbits similarly provide reduced coverage in the Aire catchment. 

Orbits 52 and 81 each only image 35% of the catchment, with orbit 52 capturing the 

upstream portion of the Aire (including Snaygill gauge), and orbit 81 the downstream 

reaches (including Beal gauge). Peaks in the amount of inundation are observed on 

the 16th Nov, 1st Dec and 13th Dec, all of which correspond well to the observed river 

stage at the two gauges. The largest flood event occurred in late December from the 

satellite imagery captured on the 27th (upstream only) to 29th (downstream only), with 

the greatest extent delineated on the 29th Dec (Figure 5.15). This is the result of 

Storm Eva, with peak river flows found at 14:00 on the 26th Dec for Snaygill and 

20:00 on the 27th Dec at Beal, with the respective satellite images acquired 16 and 

34 hours afterwards. Figure 5.16 shows the flood extent for the two locations for the 

16th Nov, and the late December flood, and 3rd Jan. At times of peak flood (shown in 

the top two rows), extensive inundation is visible at both of the locations. For the 16th 

Nov event, the retreat of floodwaters is similar in both locations, with smaller flood 

bodies identified in both locations in the 21st Nov results. For the larger event after 

Storm Eva, floodwaters persist longer at the downstream half of the catchment, being 

clearly identifiable until the 15th Jan, compared to flooding only being delineated on 

the 27th Dec for the upstream portion of the catchment.  

 

5.5.3.3. River Eden 
Flooding in the Eden catchment is observed in two main locations, upstream in the 

Vale of Eden and downstream around the city of Carlisle. Figure 5.17 shows gauge 

data from Temple Sowerby and Sheepmount gauges, located in the respective flood-

prone regions, compared to the extent of flooding in the Eden catchment. Both 

gauges in the Eden catchment display high river flows in the aftermath of Storm 

Desmond, with peak flows observed on the 5th Dec at 23:00 for Temple Sowerby, 

and 10 hours later for Sheepmount. No Sentinel-1 imagery is available during this 

period, and the image on the 8th Dec shows comparatively little flooding (4.01 km2). 

Increased flooding is observed on the 10th and 13th Dec (14.63 km2 and 20.38 km2 

respectively). River flow during this period is lower than observed on the 5th and 6th 

Dec, with a small peak in stage around on the 10th Dec before a continued decrease 
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in river height until the 18th Dec. Inspection of the flood extents on these two dates 

provides very different geographical locations being inundated. On the 10th Dec, 

flooding is observed along the river reaches around the Temple Sowerby and 

Sheepmount gauges (Figure 5.18). However, on the 13th Dec, there is minimal 

flooding in these locations, with possible inundation highlighted in upland locations to 

the south-west of the catchment. These results are suspect and may be false 

classifications due to SAR interactions with snow, with further discussion on this topic 

given in Section 5.5.4. 

 

Given the comparative magnitude of the river flow, the flood extents in the immediate 

aftermath of Storm Desmond are likely to exceed those observed on the 10th Dec. 

However, the minimal inundation observed on the 8th Dec potentially means that 

these waters receded quickly. Alternatively, the antecedent saturated conditions 

prevalent along the River Eden after the Storm Desmond is likely to have 

exacerbated the extent of flooding observed on the 10th Dec, resulting in an 

increased flood extent compared to that expected if the observed precipitation and 

flow conditions occurred as a standalone event.  

 

Figures 5.17 and 5.18 also show a peak in flood extent after Storm Eva on the 27th 

Dec, similar to those observed in other catchments. River stage is high at this time, 

although below the levels observed after Storm Desmond in early December. When 

comparing the locations of flooding on the 27th Dec to those seen on the 10th Dec, 

the extents located around Temple Sowerby are very similar. There is a more 

obvious visual difference in the downstream portion of the catchment, with a more 

continuous water surface observed for the 27th Dec instead of the more segmented 

flood locations seen on the 10th Dec. However, the maximum extents of the flood 

show similarities, highlighting the boundary of the floodplain. Peak flows on the 27th 

Dec are higher than the 10th Dec, and also align better with the acquisition of the 

satellite image. The difference in inundation patterns is likely a function of the water 

depth, with a range of depths possible in this location for the same overall water 

extent. 
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Figure 5.15. The amount of flooding identified in the Aire catchment compared to river stage at the Snaygill (upstream) and Beal 
(downstream) gauges between 11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as 

unfilled data points. Approximate start period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, 
Henry and Imogen) shown for reference. Threshold for minor flooding occurrence taken from Environment Agency gauge information. 
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Figure 5.16. Flood extents around the Snaygill (left) and Beal (right) gauges during peak 
flood in the Aire catchment. Top panel shows the 16th Nov, the middle shows 27th (left) 

and 29th (right) Dec, and the bottom shows the 3rd Jan. Flood extents shown in dark blue, 
permanent water bodies in light blue, woodland locations in green and urban regions in 

grey. Location of gauges are shown by the orange star. 
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Figure 5.17. The amount of flooding identified in the Eden catchment compared to river stage at Temple Sowerby (upstream) and 
Sheepmount (downstream) gauges between 11th Nov 2015 and 11th Feb 2016. Approximate start period of named storms (from left, 

Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and Imogen) shown for reference. Threshold for minor flooding 
occurrence taken from Environment Agency gauge information. 
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5.5.3.4. Lake District 
The Lake District contains a large number of permanent water bodies that can 

potentially act as a source of flooding when exposed to prolonged or intense rainfall. 

During the 2015-16 winter storms flooding is primarily located in three locations; in 

the north of the region along the River Wampool, in the south of the region near the 

confluence of the Gilpin and Kent Rivers, and around low-lying lakes, such as 

Bassenthwaite Lake and Derwent Water, situated along the River Derwent. Figure 

5.19 shows the number of images with flooding identified at each of these locations. 

Figure 5.18. Flood extents around the Temple Sowerby (top) and Sheepmount (bottom) 
gauges during peak flood in the Eden catchment. Left column shows 10th Dec, and right 
shows 27th Dec. Flood extents shown in dark blue, permanent water bodies in light blue, 
woodland locations in green and urban regions in grey. Location of gauges are shown by 

the orange star. 
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Figure 5.19. Number of satellite images with flood identified throughout the Lake District between 11th Nov 2015 and 11th Feb 2016. 
Locations based around the three main flood locations; River Wampool (left), River Derwent at Keswick (middle) and the confluence of 
the River Kent and River Gilpin (right).  Locations flooded in two or less images are not shown. Permanent water bodies are shown in 

light blue. 
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Figure 5.20. The amount of flooding identified across the Lake District compared to river stage at Portinscale and Sedgwick gauges 
between 11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as unfilled data points.  
Approximate start period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and Imogen) 

shown for reference. Threshold for bankfull occurrence taken from National River Flow Archive (NRFA) gauge information (Portinscale) 
and Environment Agency gauge information (Sedgewick). 
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The region experienced a number of peaks in flood extent during the time period, 

including on the 16th Nov (between Storms Abigail and Barney), on the 8th and 10th 

Dec (after Storm Desmond) and on the 27th Dec (between Storms Eva and Frank, 

Figure 5.20). As a comparison gauge stage data is shown from Portinscale on the 

River Derwent, located between Bassenthwaite Lake and Derwent Water, and from 

Sedgwick on the River Kent, located in the south of the region. Both gauges are 

located in regions that suffered from flooding during the study period. It is noted that 

the Lake District provides a spatially variable hydrological setting and that the gauge 

records presented only provide insight for the regions around them.  

 

River stage during Storm Desmond is extremely high, peaking above 4 m for both 

gauges, which is 1.6 m above the minor flooding threshold at Portinscale. Flood 

extents for the images on the 8th, 10th and 13th Dec remain extensive, despite river 

flows dropping lower. The long lag between stage decrease and flood retreat is 

expected considering the extreme nature of the flows observed, and the volume of 

water situated on the floodplains. Our understanding of the peak flood extent across 

the Lake District is hampered by the Sentinel-1 imagery for the 8th Dec only covering 

half of the region. Despite this, it still shows a significant amount of flooding, at a 

similar amount to that observed on the 13th Dec.  

 

A similarly large amount of flooding is observed on the 27th Dec, however, the gauge 

records showcase smaller peaks in river stage compared to Storm Desmond. 

Investigation of the spatial patterns of flooding at this time shows inundation located 

around the three regions shown in Figure 5.19. However, the flooding along the River 

Derwent and River Kent is more temporally consistent prior to the 27th Dec, with the 

majority of the increase in flood extent found along the River Wampool. This 

highlights the differences in hydrological regimes and the subsequent speed of water 

retreat at different locations within the region. Furthermore, Figure 5.19 shows the 

increased water extent of the permanent water bodies during the study period, with 

the surface area of Bassenthwaite Lake and Derwent Water expanded for at least 

half of the images analysed. This highlights the greater water retention by larger 

water bodies compared to the faster return to normal flow conditions observed at 

river gauges. This localised disconnect between the river stage and flood extent, 

along with the longer water storage seen by lakes, can help explain the occasional 
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lack of correlation between the in-situ and satellite observations during an extended 

period of inundation, as seen in early December in Figure 5.20. 

 

5.5.4. Misclassification Due to Snow and Frost 
There is a strong peak observed across all catchments on the 15th Jan. In particular, 

the Ouse catchment shows flood extents approximately 2.5 times what is observed 

for the next largest peak on the 29th Dec, after Storms Eva and Frank. For a peak of 

this size, it would be expected that the gauge records would show similar extreme 

values for river stage. However, on the 15th Jan all the gauges are showing reduced 

flow. There are similar dates where the river stage and flood extents do not correlate 

in particular catchments, such as the 13th Dec in the Eden catchment as previously 

highlighted. Figure 5.21 provides examples of the relationship between stage and 

flood extent for selected gauges. An increase in the percentage of catchment 

flooding is observed between the 13th and 15th Jan, whilst the river stage lowers 

away from the Environment Agency suggested minor flooding thresholds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. Comparison between river stage (in relation to EA minor flooding threshold) 
and catchment-scale flooding for selected gauges and catchments. Visual inspection of 
the 15th Jan flood maps suggest erroneous classifications due to the presence of frost 
and wet snow. This is highlighted by the continuing decrease in river stage before and 

after 15th Jan, contrary to the sharp increase in identified flooding, particularly in the Ouse 
catchment (green and yellow). 
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Comparisons between the flood extents observed on the 13th and 15th Jan are shown 

in Figure 5.22. The new regions of flooding tend to be not located near any 

permanent water body. In fact, closer inspection of the extents shows a reduction in 

the size of the inundation occurring on the river floodplains. The new regions of low 

backscatter can be generally classed as distinct, medium-sized objects. The 

homogeneity of the backscatter response in these areas suggests that there is a 

consistent land cover, either temporary (such as water or snow), or a temporally 

consistent land cover under new environmental conditions (such as bare soil covered 

by frost). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 shows the UKCP09 gridded weather observations (Met Office, 2017) 

across the study region between the 13th and 18th Jan. There was minimal 

precipitation after the 13th Jan, whilst both minimum and mean temperature show a 

sharp decrease from the 15th Jan onwards. The precipitation data is questionable, 

Figure 5.22. Comparison between flood extents on the 13th and 15th Jan. 
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with other sources suggesting the snowfall during this period. The Met Office 

summary of the January 2016 weather (Met Office, 2016) states the occurrence of 

snow on high ground and in the north of England during the middle of the month. 

This is confirmed by phenocam images from the Moor House soil monitoring station, 

part of the Cosmos-UK network operated by the Centre for Ecology and Hydrology 

(CEH). Figure 5.24 shows images from the 13th and 15th Jan, the latter of which 

shows significant snow coverage. This is further confirmed by the Cosmos-UK 

precipitation records at the site (Figure 5.25), which show over 140 mm and 170 mm 

for the 14th and 15th Jan respectively. Based on the evidence from other sources, it 

can be surmised that the gridded dataset is unable to adequately capture snowfall, 

and is only a representation of rainfall. Further to the observed snow occurring at this 

time, the low temperatures also caused widespread frost throughout the middle of the 

month. Figure 5.26 shows the number of frost days in January 2016. Generally, the 

study region had between 10 and 18 frost days, although there is no information on 

which days this occurred on. However, given the low temperatures observed in the 

middle of the month, it can be assumed that these occurred during this timeframe. 

 

Wet snow has been shown in previous studies to produce low backscatter 

responses, similar to those observed from water bodies, due to the specular 

reflection of the radar signal from the snow-air interface (Naeimi et al., 2012; Pivot, 

2012). Areas affected by ground frost produce lower backscatter due to the reduction 

of the dielectric constant of the soil caused by freezing (Rignot and Way, 1994; 

Khaldoune et al., 2011). Due to the similarities in backscatter response between 

flood pixels and snow-frost pixels, separating out the false classifications based 

purely on SAR backscatter intensity is challenging, if not impossible. Ancillary data 

such as topographic information, optical imagery and land cover maps, the analysis 

of the temporal consistency of the flooding, or a fuzzy framework combining multiple 

of the above parameters is often required to refine the flood extents to a more 

accurate representation of the ground conditions (Pulvirenti et al., 2014).  
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Figure 5.23. UKCP09 gridded (5 km2) weather observations across the north of England between 13th and 18th Jan. Top row shows daily 
precipitation (mm), middle row shows mean temperature (°C), and bottom row shows minimum temperature (°C). Columns show each 

date, with the date of suspect flood extents (15th Jan) highlighted in red (SAR imagery taken at approximately 6 am). Total rainfall is 
between 9:00 UTC on Day D to 9:00 UTC on Day D+1. Minimum temperature calculated from measurements between 9:00 UTC on Day 

D-1 to 9:00 UTC on Day D. Mean temperature is taken as an average between minimum temperature and the maximum temperature 
(calculated over the same time period as rainfall). Note 15th Jan is at the start of a cold weather front, and that snow and frost may be 

more prevalent on the following days when no SAR imagery is acquired. 
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Figure 5.24. Phenocam imagery from CEH Cosmos-UK soil monitoring station at Moor 
House, located within the Eden catchment. Top images are from the 13th Jan, and bottom 

images are from the 15th Jan. 

Figure 5.25. Precipitation at the Moor House COSMOS-UK monitoring station. Note 
large amount on the 14th and 15th Jan. Temperature records from the same site (not 

shown) observe temperatures mainly below 0°C around this time, suggesting snowfall. 
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Figure 5.27 shows two potential refinements of the snow-frost misclassifications on 

the 15th Jan. Firstly, the HAND values for each of the low backscatter regions are 

shown. The second technique uses the temporal consistency of flooding for each 

location, via the amount of overlap with the three preceding SAR flood extents (3rd, 

10th and 13th Jan). Using HAND to refine the classification proves sub-optimal. The 

areas of inundation located on the immediate river floodplain have HAND values up 

to approximately 5 m. These values are similar to some of the snow-frost false 

classifications further afield, meaning refinement via topographic information may 

only be applicable in locations with more varied terrain. Using previous flood extents 

to identify and remove suspect new flood areas results in a more likely representation 

of the inundation extent on the 15th Jan. For the area shown in the Figure, a 

reduction in flood extent of around 60% is observed by restricting locations to areas 

that have at least one overlap in the previous three images. Only 34% and 29% of 

the 15th Jan flood extent have overlap with two and three of the preceding images 

Figure 5.26. UKCP09 number of frost days for January 2016. Data gridded from 
observations to 5 km2. 
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respectively. Despite the positives in using such a temporal based method, there are 

potential issues with its widespread use due to different coverage between orbits, 

with the flood maps from the 8th Jan was not selected due to this. Furthermore, there 

is potential for removing correct classifications of new regions of flooding, particularly 

when longer temporal time-frames (such as the 12 days in the example in Figure 

5.27).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6. Summary 
This chapter has presented an update to the existing flood detection methodology 

from Chapter 4. Changes have been made to the histogram segmentation step, with 

improved accounting of the changes in land and water backscatter with incidence 

angle by developing a variable threshold based on local histograms. This allows for 

reliable flood delineation cross the full Sentinel-1 swaths. The addition of an object-

based region growing step helps maximise the inclusion of inundated pixels, 

particularly along the flood edge and in rougher water conditions. The merging of 

polarisation specific flood extents, achieved by taking the maximum extent of any 

overlapping inundated region, reduces the misclassifications highlighted in Chapter 4 

for each polarisation. The production of a single final flood map allows for easier 

interpretation of the results.  

 

Figure 5.27. Refinement of the snow and frost induced misclassifications on the 15th Jan. 
The Ouse catchment around York shown, with HAND (left) and temporal flood 

consistency (right) shown as the basis for refinement. 
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A new validation scheme has been implemented in this chapter, utilising numerous 

smaller subsets of the flood region instead of the whole study area. Validation across 

larger areas is subject to positive skewing of TA if both flood and reference datasets 

contain a large proportion of non-flooded pixels (Stephens et al., 2014). This is 

highlighted with the recalculated of accuracy metrics from Chapter 4, with an average 

TA of 89% for both polarisations, down from 97% in the initial assessment.  

 

Overall, the changes and expansion of the hybrid flood detection workflow perform 

well, with improvements in PAf (average increase of 3.5%), TA (0.9%) and CSI 

(2.1%) compared to updated accuracy metrics produced by the Chapter 4 flood 

extents when validated against Sentinel-2 imagery. Additional comparisons are made 

to CEMS flood maps, delineated from high-resolution RADRSAT-2 imagery, which 

produce average TA and CSI values of 91.4% and 75.6% when validated against the 

Sentinel-2 surface water maps, compared to 91.0% and 76.9% for the presented 

methodology. This shows that the results derived from the two satellites are very 

similar, further highlighted by values of 95.5% and 0.878 for TA and Cκ when directly 

compared.  

 

The flooding observed in the north of England throughout the 2015-16 winter storm 

season was extensive and prolonged. Peak flood extents are observed at the 

beginning of December for the Lake District and Eden catchment, and later in the 

month for the Aire and Ouse catchments. These correspond to precipitation inputs 

from Storms Desmond and Eva respectively. The trends in flood extent match the 

gauge data, albeit with none of the satellite acquisitions coinciding with the peaks in 

river flow. The consistent rainfall inputs throughout December 2015 will have resulted 

in saturated antecedent ground conditions. Potential impacts of this include 

increased flashy responses in the hydrographs, the slow retreat of floods waters, and 

the continual re-flooding of locations throughout the study period. In particular, Figure 

5.14 shows regions of the River Derwent floodplain remaining inundated for 25 out of 

30 possible images. 

 

Although the presented algorithm has successfully detected flooding in rural, open 

locations, there are still geographical locations and environmental situations that can 

result in misclassifications. The inability of SAR to detect surface water in urban and 

woodland settings is well known. Additionally, this chapter highlighted the potential 
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for false-positive classifications caused by wet snow and frost, which produce similar 

low backscatter responses as permanent water bodies. In particular, the amount of 

identified “flooding” in the Ouse catchment on the 15th Jan far eclipses the maximum 

extents associated with Storm Eva, the second largest peak. The similarity in 

backscatter between wet snow, frost and surface water makes removing false 

classifications based solely on SAR imagery difficult. Highlighted here is the potential 

for using terrain data or the temporal consistency of flooding to help determine the 

likelihood of areas of identified flooding being accurate. 

 

The launch of Sentinel-1 has resulted in improved spatial and temporal resolution of 

global, freely available SAR imagery, ideal for widespread flood monitoring. Due to 

the global nature of flooding, one of the requirements of any flood delineation 

algorithm is locational consistency. The developed methodology is based on globally 

available data, with one of the advantages of satellite imagery being the unrestricted 

geographical coverage. Chapter 7 will present an application of the workflow for a 

flood event in Australia, highlighting the potential for flood mapping using the 

developed algorithm irrespective of location.  
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Chapter 6. Water Depth and Volume Estimation 
 

The aim of this chapter is to develop a workflow for estimating additional hydrological 

parameters from the flood extents produced in Chapter 5, allowing for greater insight 

into the dynamics of the 2015-16 winter floods. The proposed methodology is based 

around the fusion of the derived inundation extents with terrain data to determine 

shoreline heights, before interpolating these into a continuous water surface from 

which depths and volumes can be calculated. Initial workflow development is 

undertaken using a UK specific, high-resolution Environment Agency (EA) 2 m 

LiDAR DTM, with the main portion of the results section analysing these outputs. 

Additional results are generated using the globally available SRTM DEM as the 

underlying terrain model, with the aim of ascertaining the comparable accuracy using 

the lower resolution datasets and the applicability of the method on a global scale. 

 

There are two main sources of error that require consideration when determining the 

shoreline heights of a flood using an overlay approach. Firstly, inaccuracies within 

the SAR inundation extents may result in under-prediction of the flood boundary 

location, resulting in the erroneous selection of shoreline heights (Zwenzner and 

Voigt, 2009). The algorithm presented in Chapter 5 identifies flooding by segmenting 

locations of low backscatter in the SAR imagery. Subsequently, there is low 

confidence in the accuracy of the resultant maps in urban and woodland locations 

due to the masking of the specular reflection via the double bounce effect. An 

example of SAR derived inundation, with gaps within the flood boundary coinciding 

with vegetation, is shown in Figure 6.1.  

 

Secondly, the resolution of the SAR imagery and the terrain model are unlikely to 

match (Cohen et al., 2018). For example, the 10 m pixels in the Sentinel-1 imagery 

has a lower resolution compared to the 2 m EA LiDAR DTM, but a higher resolution 

to the 30 m SRTM DEM. The flood boundary delineated from the SAR imagery will 

provide a different representation of the topographic flood edge compared to those 

from the various resolution terrain datasets (a comparison to the LiDAR DTM is 

provided in Figure 6.2). Understanding how accurate the SAR shorelines are in 

relation to the floodplain boundaries, and adjusting the extracted shoreline heights to 

represent this, is vital for successfully creating an accurate flood surface. 
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Figure 6.1. Identified flooding (crosshatch blue) overlaid onto the LiDAR DTM, with OS 
Vector Map Local woodland and river locations shown in dark green and light blue 

respectively. Note gaps in the water surface that correspond to woodland locations, and 
unflooded locations (top of image) where DTM values are similar to nearby flooded 

locations, highlighting potential underestimation of flood extent. 

Figure 6.2. Comparison between Sentinel-1 (derived flood boundary shown by blue line, 
with crosshatch representing flooded) and LiDAR DTM resolution. The satellite observed 
shoreline provides a poor representation of the topographic floodplain compared to the 

higher resolution dataset. 
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6.1. Datasets 
6.1.1. Flood Extent Selection 
In Chapter 5 flood extents were derived for a number of catchments across the north 

of England during the winter of 2015-16. Of the studied catchments, the Ouse and 

Aire contained the greatest extent and longevity of flooding. Although there was 

significant inundation in other catchments, these coincided with individual Sentinel-1 

images instead of multiple successive acquisitions. The ability to determine any 

changes in water slope, depth and volume throughout the Aire and Ouse catchments 

across an extended time period will allow for in-depth analysis of the dynamic life-

cycle of the flood events. Peak extents for the two catchments are found on the 29th 

Dec, with inundation found clearly visible in the following seven images (1st, 3rd, 6th, 

10th, 13th, 15th and 25th Jan. Note only minimal flooding is visible on the 25th Jan in 

the Aire catchment and has not been processed). The focus in this chapter will be on 

deriving a water surface, depths and volumes across these catchments and dates.  

 

The flood extents derived in Chapter 5 can be divided into two broad categories 

based on their geographical location; flooding close to a river, and likely to be fluvial 

in nature; and inundation distanced from permanent water bodies, which are likely to 

be pluvial or groundwater sourced events. The largest water bodies are found in the 

former category, and the work is the chapter is focused on these fluvial locations. 

The selection of relevant flood polygons is achieved using a recursive, location-

based scheme. Firstly, flood regions that are located within 500 m of a river are 

selected. Additional water bodies that are found within 500 m of the selected flood 

locations are then identified and added to the original selection. This iterative process 

continues until no new flood locations are identified.  

 

Within the flood boundaries, there are gaps caused by pixels of higher backscatter in 

the SAR imagery. These may be local topographic highs that have remained 

unflooded and be correctly classified as dry. Alternatively, they could be 

misclassifications due to features protruding the water surface, such as trees or 

buildings, which cause the double bounce effect (see Figure 6.1 for examples). For 

the purpose of calculating flood shoreline height from which to derive a water 

surface, any holes within the flood boundary have been filled, with only the outer 

flood edge being considered as a true shoreline. It is expected that once water 

depths have been calculated that any gaps corresponding to topographic highs will 
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be highlighted as being above the derived water surface, and those caused by 

protruding features will be correctly identified as flooded. The final step involves the 

removal of smaller flood bodies below 10,000 m2 (10 pixels squared) from the 

selection to ensure processing efficiency, with the selected larger water bodies 

providing sufficient shoreline heights to calculate a water surface. It is considered 

that the larger the flood polygon the greater confidence there is in the observed 

extent being accurate in location, with smaller water bodies potentially subject to 

false detections due to speckle, volume scattering, specular reflection from flat, man-

made surfaces and snow-frost misclassifications. It is likely that some of the removed 

smaller inundated regions are correctly classified flood areas. These will be re-

identified later in the processing chain as a location with positive water depth, 

indicating flooding. 

 

Flood extents observed on one of the dates required additional processing. There is 

significant uncertainty with the results on the 15th Jan due to false classifications from 

wet snow and frost, which display a similar low backscatter intensity to open water in 

the SAR imagery. As discussed in Chapter 5, one of the potential methods for 

refining these uncertain flood locations is a comparison to the previously derived 

extents. For this chapter, a flood region from the 15th Jan is considered accurate if it 

overlaps with two out of the previous three inundation extents, acquired on the 3rd, 

10th and 13th Jan, as well as passing the previously discussed location and size 

requirements.  

 

For this chapter, the Ouse catchment has been subdivided into 5 distinct regions, 

based on where the identified flooding is most prevalent. This allows processing to 

be achieved in an efficient manner, whilst presenting the opportunity to investigate 

the inter-catchment water movement throughout the study period. Figure 6.3 

provides an overview of the sub-regions within the two catchments. The Sentinel-1 

imagery does not provide full coverage of the Ouse catchment on all dates. In 

particular, extents on the 6th and 10th Jan are missing complete coverage for two of 

the sub-regions (Ouse 4 and 5 on the 6th, Ouse 1 and 4 on the 10th). The 6th Jan 

extents additionally have partial coverage for two other regions (Ouse 2 and 3), 

providing the challenge of having the edge of the image occurring within an area of 

inundation, resulting in the boundary of the flood polygon representing the image 

edge instead of the inundation shoreline. These locations have still been processed 
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to ascertain the robustness of the developed methodology. Only the downstream 

portion of the Aire catchment has been studied. Although there is flooding further 

upstream, these tend to be on a single flood image instead of a longer time-series, 

which do not coincide with the flood dates identified for analysis for the downstream 

portion of the Aire.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

6.1.2. Terrain Models 
Two terrain datasets are used in this chapter. The EA LiDAR 2 m Composite DTM is 

used to develop the methodology and provide initial results. The dataset is updated 

Figure 6.3. Sub-regions within the Aire and the Ouse catchments covering the most flood 
prone locations. Flood extents from the 29th Dec are shown, with those used to calculate 
the water surface shown in blue, and those discarded from the processing (due to their 
small size or distance from a permanent water body) shown in light red. Results on the 

6th Jan have no coverage for Ouse 4 and 5, and partial coverage for Ouse 2 and 3. 
Results on the 10th Jan have no coverage for Ouse 1 and 4. 

Aire 

Ouse 3  

Ouse 5  

Ouse 2  

Ouse 4  

Ouse 1  
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annually via aerial survey, with coverage over a large proportion of England and 

Wales. The developed techniques are subsequently applied using the 1 arc-second 

SRTM DEM, collected via radar satellite in 2000. Further information on both 

datasets, including reported height accuracies, can be found in Chapter 3. 

 

6.1.3. Vector Datasets 
Shoreline heights located near woodland and urban areas are likely to skew the 

calculation of a water surface towards an erroneously low value, caused by the SAR 

observations misrepresenting the shoreline locations resulting in the often under-

predicted inundation edge being found on the lower-lying floodplain (Horritt, 2003). 

Additionally, the change detection processing used in Chapter 5 removes permanent 

water bodies, resulting in the production of a flood map instead of a surface water 

map. Subsequently, sections of the shoreline correspond to locations where the river 

is located instead of the outer flood boundary, misrepresenting the continuous water 

surface that is likely present in these locations. Furthermore, due to the mismatch in 

resolution between SAR and the DTM, the SAR flood boundary can fall within the 

river channel, causing an exacerbation of the under-estimation of the surface height 

by including water surface LiDAR returns. 

 

Vector datasets for urban areas, woodland locations and permanent water bodies 

have been combined to create a mask to identify where the SAR flood extents may 

be inaccurate. Two different groups of vector datasets have been used to correspond 

to the LiDAR and SRTM terrain datasets. For the higher resolution DTM study, vector 

feature classes that form part of the Ordnance Survey (OS) Vector Map Local 

dataset are used. These are available at scales between 1:3,000 and 1:20,000 

(Ordnance Survey, 2018). For the analysis using the SRTM DEM, the CORINE land 

cover map (2012 edition) produced by Copernicus is utilised. Derived using optical 

imagery, CORINE provides data across Europe at a scale of 1:250,000 at a thematic 

accuracy above 85% (EEA, 2017). Once the woodland, urban and water polygons 

are combined from both source datasets, each feature is buffered by 10 m to account 

for inaccuracies in the feature locations and the mismatch in resolution between the 

SAR and the source material used to derive the vector data. A description of how the 

final feature mask is used within the study is given below.  
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The location of flood defences, available from the EA, is utilised in Section 6.2.4. 

Over 32,000 assets have been digitised from survey information and are available at 

a resolution of at least 1:3,000 (Environment Agency, 2018). These assets are 

designed to provide protection against a 1-in-100 river and 1-in-200 coastal flood 

events. As this dataset is not globally available it has not been used in the study 

assessing the applicability of the methodology with SRTM (Section 6.2.6). 

 
6.2. Methodology 
Sections 6.2.1 through 6.2.5 outline the development of the methodology used to 

determine a water surface by combining the SAR derived flood extents with the 

LiDAR DTM, which is subsequently used to calculate water depth and volume. Any 

reference to the terrain data in these sections is referring to the EA LiDAR DTM 

dataset unless stated. Section 6.2.6 reviews any changes to the methodology that is 

required when applied using lower resolution terrain and vector datasets.  

 

6.2.1. Determining Shoreline Heights 
The methodology for determining the height of the flood shoreline is based around 

the assumption that although there may be local inaccuracies in the location of the 

delineated flood edge, at a regional scale the error is on average less than 1 pixel  

(10 m) of the true boundary location. Based on this assumption, an estimate of the 

water surface height can be made for each SAR pixel that is adjacent to the flood 

shoreline by analysing the DTM height values that fall within the pixel (Figure 6.4). 

Different percentiles of the DTM values have been extracted based on whether the 

SAR pixel has been classified as flooded or non-flooded. 

 

For the pixels on the flooded side of the shoreline, a secondary assumption has been 

made, in that the identified regions of inundation are inherently accurate and that any 

uncertainty on the waterside of the flood boundary is due to the mismatch in 

resolution between the SAR and DTM datasets. The mapping algorithm in Chapter 5 

identifies flooding based on the specular reflection of the radar signal. Previous work 

by Santoro and Wegmüller (2014) analysed backscatter responses from 300 m pixel 

ASAR data in relation to land cover. Their work showed that even a small proportion 

of land (greater than 5%) within a pixel space will increase backscatter intensity, 

resulting in the pixel not being classified as water. Depending on how the Sentinel-1 

and LiDAR DTM pixels align, there will be between 25 and 36 height values within 
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each SAR pixel. If the derived flood boundary is completely accurate, then the water 

surface height will be equal to the maximum height value within the wet pixel or the 

minimum value from the dry pixel. However, even if the flood boundary has been 

correctly identified in location, the shape of the shoreline is likely to be inaccurate due 

to the lower resolution of the Sentinel-1 imagery (Figure 6.2). The higher resolution 

DTM will provide a more realistic depiction of the curvature of the flood edge, and it is 

plausible that a small number of DTM pixels within a SAR pixel may be above the 

water surface when the shoreline is derived at a higher accuracy. However, for the 

SAR pixel to still produce a specular reflection of the radar signal, this will likely be 

less than 5% of the height values. The 95th percentile height value for each flooded 

shoreline adjacent SAR pixel is extracted as a potential estimate of the water surface 

height. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The assumed 1-pixel locational accuracy is of greater importance for the non-flooded 

side of the derived shoreline. The double bounce mechanism can often cause under-

prediction of the flood extent when being extracted from SAR imagery. The mapping 

algorithm presented in Chapter 5 is unable to reliably delineate flooding when 

features protrude the water surface, including emergent vegetation at the flood edge. 

In areas of under-detection, there is no accurate method based purely on SAR 

Figure 6.4. SAR derived flood shoreline (red) with adjacent SAR pixels (flooded in blue, 
unflooded in green). Note the number of DTM pixels in each SAR cell, and the range of 

heights found within. 
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backscatter intensity to determine how much further inundation occurs outside the 

derived extent. It is possible that the true flood boundary extends a number of pixels 

beyond the observed shoreline. To negate the likely underestimation of the flood 

boundary, shoreline locations near woodland and urban areas are removed later in 

the processing chain. 

 

Determining shoreline heights from the remaining unflooded pixels is still challenging, 

and liable to inaccuracies. The work by Santoro and Wegmüller (2014) showed that 

only a small percentage of a pixel needs to be land for it to produce significant 

backscatter. For the dry pixels adjacent to the flood boundary, there is no way of 

determining the land to water ratio. The true flood boundary could be close to the 

delineated shoreline location, or closer to the far edge of the SAR pixel. To account 

for this inaccuracy, alongside the overall assumption that open shoreline locations 

derived from the SAR imagery are within a single pixel of the true extent, the median 

height value has been selected from each shoreline adjacent dry SAR pixel as a 

potential water surface height. Although there is likely to be local differences to this, 

over a region this value should provide a good representation of shoreline height. 

 

6.2.2. Grid Creation 
A continuous water surface is produced by mosaicking a series of smaller, local 

water surfaces. This is to allow for the reduction in water surface height as the flood 

wave travels downstream, conforming to the hydraulic and energy loss principles 

outlined by Raclot (2006). The flood extent extracted from each satellite image has 

been subdivided into distinct regions (Figure 6.3), and a 1 km grid is created over the 

derived inundation extent within each sub-region on each date. An example flood grid 

is shown in Figure 6.5. Each cell from this derived grid will be referred to as a flood 

cell henceforth.  

 

6.2.3. Water Surface Height Estimation 
A planar water surface is fitted for each flood cell based on the estimated shoreline 

heights found within its bounds, combining estimates from both flooded and 

unflooded shoreline adjacent SAR pixels. A planar surface is chosen under the 

assumption that water surfaces are likely to be flat over small areas (Cian et al., 

2018a). Although the initial grid contains 1 km cells, each flood cell is buffered by  

500 m in all directions to allow for a smoother transition between neighbouring cells. 
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Furthermore, the flood extent can on occasion exceed widths of 1 km, and the 

buffering of flood cells allows for a water surface to be fitted in locations where no 

shoreline is found within the initial flood cell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

At this stage, heights derived from SAR pixels that fall within 10 m of a permanent 

water body, urban areas or woodland regions are removed to account for 

inaccuracies in the flood boundary, and the subsequent under-estimation of height 

within the analysed SAR pixels. The histogram of the remaining shoreline heights 

within each flood cell are analysed to determine the most likely local water surface 

height (Figure 6.6). The ideal histogram will show a singular peak, giving a clear 

indication of the shoreline height. However, this is often not the case, and a series of 

rules have been developed to help guide the delineation of the water surface 

estimate. Firstly, a target range is determined to discount peaks at heights that are 

deemed unlikely. The lower boundary is defined as the median value of just the water 

SAR pixel height estimates, whilst the upper boundary is set as the 90th percentile 

value of the combined heights dataset. Analysis is subsequently undertaken to 

identify local histogram peaks within the target range. If a single peak is found then 

Figure 6.5. Example of 1 km flood grid covering the SAR observed flood extent. A local 
water surface is estimated for each flood cell, before combining into a continuous water 

surface. 
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this is taken as the water surface height. If two or more peaks are found, then the 

peak with the maximum density is used. If no peaks are found within the bounds then 

histograms of the wet and dry pixel heights are analysed separately, with the same 

aim and process of identifying peaks within the original target bounds, and 

determining the water surface height based on the number of peaks. If two or more 

peaks are found from the water and land datasets then the median value is taken as 

the water surface estimate (an example is shown in Figure 6.7). Any flood cells that 

do not produce a water surface height based on the histogram analysis detailed 

above are left blank, with a height estimate assigned during the focal filtering stage 

described below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Example density histograms of SAR pixel height values found within buffered 
flood cell. Water surface value, shown in red, chosen as peak density of combined 

histogram (black) within search window (orange). Individual water-pixel height and land-
pixel height histograms are shown in blue and green respectively. 
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Although it is expected that the estimated water surface height for each flood cell will 

correspond closely to the neighbouring cells, this is not always the case. This is likely 

caused by local scale inaccuracies in the delineated flood boundary, and a 

subsequent under- or over-estimation of the water surface height. A two-pass focal 

smoothing has been applied across the flood cells. Firstly, each flood cell is 

compared to its adjacent cells, and if the height value of the target cell is either the 

maximum or minimum then the value is replaced with the median of the neighbours. 

This is to remove any large outliers that have occurred. The second pass of the filter 

replaces the target cell value with the median of the cell and its neighbours. This is to 

smooth the transition of flood cell values, resulting in a more realistic portrayal of 

water surface height across the flood by reducing any large gradients between cells, 

and minimising locations where water surface height increases downstream. 

 

Once the final cell heights are calculated, the buffered flood cells (2 km2) are 

rasterised at 10 m pixels, with the z value set to the final cell water surface height. 

The cells are then mosaicked into a continuous flood surface, with the median value 

taken in areas of overlap. Finally, the raster surface is focally smoothed to remove 

any remaining artefacts at the cell boundaries, with the median value taken from a 

search radius of 500 m in x and y directions. 

 

Figure 6.7. Density histograms for a flood cell where the combined SAR pixel heights 
(black) fail to produce a peak within the search window (orange). However, both 

individual land (green) and water (blue) have peak values, with the final water surface 
height taken as the median of these. 
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6.2.4. Deriving Water Depth and Post-Processing 
The derived water surface allows for water depths to be determined across the 

region via subtraction of the LiDAR DTM. This in turn can identify new regions of 

flooding that remained undetected from the SAR imagery, both within and outside of 

the flood extents presented in Chapter 5. Although some of these new regions 

represent correctly identified inundation, such as that under emergent vegetation at 

the flood boundary or in woodland and urban locations, others are likely to be false 

classifications. For example, the calculated water surface can suggest flooding 

across wide stretches of the floodplain that are in reality protected by an 

embankment, and was not inundated during the flood event being studied.  

 

To refine the updated flood areas and remove any false classifications, the depth-

derived water extents have been subdivided using the locations of flood defences 

and embankments. For each subdivision, the amount of overlap between the flood 

extents derived via the two methods (SAR observations and indirect estimate from 

derived water surface) is calculated. If the SAR-derived extent covers more than 50% 

of the depth-derived flood regions, than the expanded water extent is considered 

accurate. This process is completed a number of times, firstly selecting out all pixels 

with depth above 0 m, and subsequently reselecting those above 0.25 m, 0.50 m and 

1 m. It was found that selecting all pixels with positive depth, combined with the 

required 50% overlap with the SAR flood extent, resulted in locations with observed 

inundation in the SAR imagery being flagged as false. This is due to low-level 

flooding causing a significant increase in extent compared to the satellite inundation 

maps. The error margins of the DTM (+/- 15 cm RMSE) along with the applied 

technique for estimating the water surface means that any low-level flooding is 

questionable. The additional assessment of flood extent at depths above 0.25 m,   

0.5 m and 1 m is designed to maximise the identification of likely inundated sub-

divisions by accounting for the uncertainty within the datasets and methods. 

 

In addition to the identified flood sub-divisions, locations that are expected to have a 

water depth, namely permanent water bodies and the SAR identified flood extents, 

are considered correct if they have a flood depth greater than 0 m. Rivers are 

commonly surrounded by embankments, resulting in them being classed as their own 

sub-division in the process described above. Due to the SAR derived maps not 

containing rivers and lakes due to the change detection process, they remain 
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unidentified due to lack of overlap with the input extents. Regions identified in 

Chapter 5 as flooded are occasionally not selected if there is significant growth in the 

depth-derived flood extent, likely caused by an overestimation of the water surface 

height. The addition of areas of positive water depth from the input SAR flood extents 

results in a more accurate representation of the spatial occurrence of flooding. 

However, this produces the same limitations in the location of the flood boundary and 

the potential underestimation of flood extent as is found in the original SAR 

observations. 

 

Finally, locations identified as having a positive water depth from the selected flood 

sub-divisions, permanent water bodies and input extents are merged to create an 

updated water extent, which in turn is used to mask the surface and depth datasets 

to allow for volume estimation solely using the locations where confidence in flood 

likelihood is high. 

 

6.2.5. Calculating Flood Volume 
After the depth maps have been edited to remove erroneously flooded locations, 

water volume is calculated for each pixel by multiplying the cell resolution by the 

calculated depth. These are summed to provide volume estimates for each sub-

region. The subdividing of the flood locations for the Ouse catchment earlier in the 

processing chain allows for regional changes in water volume to be analysed, or full 

catchment analysis of the flood dynamics by combining the water volume values from 

all sub-regions. 

 

6.2.6. Methodology Adjustments for SRTM 
To determine methodological robustness in the absence of high-resolution ancillary 

datasets, regions 2 and 3 for the Ouse catchment on the 29th Dec, 1st Jan and 3rd Jan 

have additionally been processed using the SRTM DEM instead of the LiDAR DTM. 

Most of the processing steps are immediately transferrable when using the lower 

resolution terrain model. In particular, Sections 6.2.1, 6.2.2, 6.2.3 and 6.2.5 have not 

been adjusted apart from the change in terrain and vector datasets. It should be 

noted that the number of DEM height values found within each shoreline adjacent 

SAR pixel is greatly reduced, possibly to a single value. However, the percentile 

selection of estimated heights is not adjusted to allow for methodological consistency 

regardless of the underlying terrain data. The calculation of water depths in Section 
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6.2.4 is similarly applicable. However, the flood embankment based post-processing 

analysis of the newly derived depth locations has been changed, due to the primary 

dataset being UK specific. It should be noted that the embankment segmentation 

process outlined in Section 6.2.4 could be applied successfully to the SRTM derived 

depth locations within the UK, or in other locations with the relevant datasets. 

 

An object-based probabilistic framework has been developed to ascertain the 

likelihood and accuracy of new flood locations, identified as having positive water 

depths from the SRTM water surface. Two parameters of equal weighting are created 

and combined, representing HAND and distance from the SAR observed flood 

locations. Figure 6.8 shows the Z-membership function (Pal and Rosenfeld, 1988) 

used to reclassify both variables, with values used for the χ1 and χ2 thresholds found 

in Table 6.1. HAND has been selected as a variable as it represents the height 

distance between the river and the pixel of interest, with lower HAND values 

representing the reduced water heights required to cause the inundation. HAND 

values of 1 m are given a score of 1 (high probability), with a score of 0 assigned to 

20 m HAND. The closer to the SAR identified flood extents an area of positive water 

depth is, the greater the probability of the locations being connected during peak 

flood. Distances below 10 m are given a score of 1, with 500 m representing a score 

of 0. The individual variables are then combined to provide an overall probability 

map. Finally, the average value for each new depth-derived flood polygon is 

calculated to provide a probability of the area being accurately classified and 

belonging to the flood class. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Z-membership function used in the probability classification. Image originally 
published in Pulvirenti et al. (2011). 
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6.3. Results 
6.3.1. Water Surface 
The derived water surfaces have been compared to in-situ stage records at the time 

of each satellite pass. Twenty-one gauges have been used, spread throughout the 

Ouse and Aire catchments (Figure 6.9). Heights have been extracted for the gauge 

locations from the calculated water surfaces on six of the study dates. The 15th Jan 

has been excluded due to the large uncertainty caused by wet snow and frost SAR 

misclassifications, and the 25th Jan is not used due to the limited gauges covered by 

the water surface due to the reduced extent of flooding. In total 120 comparisons 

between river stage and water surface height are made. To allow for easier 

comparison, water surface heights have been adjusted at each gauge location using 

the local datum provided in the metadata by the EA (further information for each 

gauge supplied in Appendix C). Figure 6.10 shows the relationship between the two 

variables. There is a clear correlation between the datasets, albeit with some 

variability in accuracy, with an R2 value of 0.798. However, the trend does not follow 

an x=y relationship, with the derived water surface tending to overestimate height 

when the river stage is lower and underestimate at times of peak flows. The 

difference in relationship equates to 30 cm error from the x=y at 1 m (observed trend 

equals 1.3 m) and 9 m (8.7 m). 

 

 

 

 

 

 

 

 

χ1 χ2

HAND (m) 1 20

Distance from 
SAR Flood (m) 10 500

Table 6.1. Probability thresholds selected for each variable dataset. 
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Figure 6.9. Gauge locations throughout the Ouse and Aire catchment, and average error 
between derived water surfaces and river stage across six dates. Minus numbers 

represent prevalent underestimation for the derived water surfaces, with positive number 
suggesting over-prediction. 
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The accuracy between the in-situ and derived datasets varies with each gauge. 

Overall, the derived water surfaces have an average overestimation of 0.03 m, with a 

maximum overestimation of 3.79 m and underestimation of 2.47 m (Table 6.2). 

RMSE across all gauges is calculated as 0.98 m, ranging from 0.22 m to 1.68 m. 

Assessing the average error at each gauge individually shows the largest differences 

between the datasets occur in locations where inundation is more extensive (Figure 

6.9). Furthermore, there is a tendency to over-estimate water surface heights in more 

upstream regions of the catchment, and under-predict in low-lying locations 

downstream. 

Figure 6.10. Relationship between the derived water surface heights (datum corrected) 
and river stage across 21 gauges for six imagery dates (n = 120). x = y shown as 

reference. 
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Dec 29th Jan 1st Jan 3rd Jan 6th Jan 10th Jan 13th

Aldwark Bridge Ure 3.79 0.05 0.11 -0.11 1.11 1.11 1.01 1.68
Beal Aire -0.46 -0.35 -0.42 -0.85 -2.47 -1.44 -1.00 1.25

Bolton Percy Bolton Percy Drain 1.80 0.90 0.26 1.55 1.01 1.56 1.18 1.29
Bubwith Derwent -0.66 -0.01 -0.34 No Data -0.49 -0.19 -0.34 0.41

Carlton Bridge Aire -0.81 -0.16 -0.49 No Data -1.28 0.17 -0.51 0.72
Cawood Ouse -0.95 -1.31 -0.53 -0.70 -1.16 -0.77 -0.90 0.94

Chapel Haddlesey Aire -1.19 -0.61 -0.67 -1.05 -2.33 -1.14 -1.16 1.29
Crakehill Topcliffe Swale -0.02 1.70 1.16 0.28 No Data 2.07 1.04 1.31
Elvington Sluices Derwent -0.86 -0.73 -0.44 No Data -0.81 -0.72 -0.71 0.73

Howe Bridge Rye -0.02 0.40 -0.09 No Data No Data 0.17 0.12 0.22
Kirby Wiske Wiske 0.56 2.80 1.08 0.48 No Data 2.03 1.39 1.66

Knottingley Bank Aire -0.13 -0.34 -0.20 -1.00 -1.54 -0.16 -0.56 0.77
Low Marishes Derwent 0.01 2.20 -0.04 No Data No Data 0.29 0.61 1.11

Moor Monkton Ouse -0.27 -0.28 -0.14 -0.09 -0.29 0.43 -0.11 0.28
Myton Bridge Swale -0.29 0.89 0.54 -0.14 0.24 1.83 0.51 0.88

Newton-on-Ouse Kyle No Data -0.36 0.11 -0.40 0.02 0.46 -0.03 0.32
Skelton Ouse -0.24 -0.27 -0.30 No Data -0.38 0.62 -0.11 0.39

Skip Bridge Nidd 0.02 0.57 0.48 -0.08 0.16 1.21 0.39 0.59
Stamford Bridge Derwent -0.18 -0.71 -0.79 No Data 0.01 -0.74 -0.48 0.58

Tadcaster Wharfe 0.08 1.44 0.34 0.91 -0.20 0.42 0.50 0.74
Tadcaster Sluices Wharfe -0.74 2.67 -0.35 -0.29 -0.57 0.02 0.12 1.17

0.03 0.98

Gauge River Difference (m): +ive = Water Surface Higher; -ive = River Stage Higher RMSE
Average 
Error (m)

Total Average

Table 6.2. Difference between derived water surface height and river stage across 21 gauges. 
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The water surface can be used to assess how the slope of the flood changes both 

spatially and temporally. Locations of three transects along the Rivers Aire, Ouse and 

Derwent, are shown in Figure 6.11. The transects highlight the differing flood regimes 

occurring along each of the rivers. Flooding on the River Aire (Transect A) shows a 

gradual lowering of the water surface from the peak on the 29th Dec through to the 

13th Jan (Figure 6.12). The middle third of the transects appear largely flat across all 

dates, with some steeper, potentially erroneous, gradients at the edges. Along the 

River Ouse (Transect B), water surface heights on 29th Dec are far above those seen 

on the following dates (Figure 6.13). All dates show a relatively steep decrease in 

water surface after the confluence of the Ouse and Wharfe Rivers (left of Figure), 

before presenting a flatter surface for the remainder of the transect. The four water 

surfaces calculated in January correspond closely to one another near the 

confluence, before becoming more distinct further downstream, with the 1st and 3rd 

Jan maintaining a higher water surface whilst the 10th and 13th showcase a steeper 

gradient as the water travels downstream. The River Derwent (Transect C) shows 

greater temporally consistency between image dates, which is expected considering 

the similarity between the input flood extents (Figure 6.14). However, the relative 

similarity between dates helps highlight some of the uncertainty and inaccuracies 

found within the methodology and results, as described below.  

 

It should be noted that the calculated water surface is an estimate that has been 

derived using a methodology designed to be broadly applicable across varying 

geographical locations and flood events, based on input inundation data that is likely 

to contain inaccuracies. Accordingly, there are situations where the estimated water 

surface height for a flood cell is inaccurate, and the propagation of these errors can 

be observed in the cross-sections in Figures 6.12, 6.13 and 6.14. The observed 

steep surface gradients and the downstream increase in water surface height, as 

seen in some transects, are unlikely to be accurate. Closer inspection of the SAR 

derived flood extents and the DTM highlights some of the sources of error. An 

example is shown in Figure 6.15, which is located around the localised bump for the 

water surface on the 1st Jan along the River Derwent (Figure 6.14). Comparing the 

inundation extents from the 29th Dec and 1st Jan, there are additional areas of 

potential inundation located on relative topographic highs for the latter date. An 

example of a histogram of height values within an impacted flood cell is shown in 

Figure 6.16. Due to the width of the flooding in this location, three flood cells are 
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positively skewed by the additional flood locations, negating the use of focal filtering 

in attenuating the higher water surface estimates. Refinement of the input flood 

polygons shows an improved, lower histogram for selecting a water surface, with 

around half of the height values in the original histogram coming from the suspect 

locations (Figure 6.16). However, manual adjustment of input flood extents in suspect 

locations will be time-consuming, and alteration of the current automated flood 

selection technique to be stricter may result in accurate flood polygons being flagged 

as questionable elsewhere in the catchment, reducing the input into the presented 

workflow.  
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B C

Figure 6.11. Location of transects in relation to the main body of flooding from 29th Dec 
along the Rivers Aire (A), Ouse (B) and Derwent (C). 
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Figure 6.12. Transects for six of the image dates along the River Aire. Note the slow decline in water surface through time. Steep 
gradients in water surface and locations of increase are likely erroneous. 
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Figure 6.13. Transects for five of the image dates along the River Ouse. Note the extreme water levels observed on the 29th Dec 
compared to the more stable water levels on the following dates. Water levels drop more significantly with distance downstream between 

early and mid-January (right of image). 
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Figure 6.14. Transects for five of the image dates along the River Derwent. Overall water levels are largely consistent. Steep gradients in 
water surface and locations of increase, such as in the 1st Jan transect, are likely erroneous. 
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Figure 6.15. Comparison between the derived flood extents on the 29th Dec and 1st Jan 
for the section of the River Derwent, located where the water surface increases in Figure 
6.14. Note the additional three distinct areas of flooding located on higher ground on the 
second date. These are either joined to the main body of flooding, or pass the selection 

technique due to their relatively large size and proximity to the river. The additional 
heights from the SAR cells in these locations impact the final water surface height for 

three of the buffered flood cells, limiting the ability of the focal filters to smooth the flood 
surface values. 

Figure 6.16. Histograms and derived water surface heights for a downstream flood cell 
from the River Derwent (located in the region shown in Figure 6.15) on 1st Jan, 

comparing all flood extents (red) with a manually edited dataset (black) with false 
classifications on higher terrain removed. Difference between estimated flood surfaces is 

4.17 m. 
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6.3.2. Water Depth and Updated Water Extent 
Water depth maps are produced by subtracting the DTM from the derived flood 

surface. Numerous locations that are not identified as flooded in the SAR imagery 

showcase a positive water depth. Post-processing of these locations, based around 

identifying and removing those areas protected by flood defences, is demonstrated in 

Figure 6.17. Overall, the technique sufficiently removes water depth regions that 

show no indication of being flooded in the satellite imagery. The requirement for 

numerous iterations, where inundation above increasing depths are compared to the 

SAR flood extents, is due to the inherent uncertainty in the SAR flood detection, 

water surface creation and DTM dataset. Solely using pixels with positive water 

depths results in numerous areas of SAR observed flooding being flagged as 

suspect. The iterative process strikes the balance between ensuring the inclusion of 

the SAR derived flooding, whilst restricting the false classification of protected 

locations. There is still an expansion of the flood extent, such as at the edge of the 

flood in the north-west of Figure 6.17, an area potentially impacted by emergent 

vegetation. Table 6.3 shows the amount of the Sentinel-1 derived flood extent that is 

similarly classified after post-processing of the water depth locations. On average, 

the updated water extents identify 90.1% and 88.6% of the SAR derived flood extent 

for the Ouse and Aire respectively. Differences are likely to be caused by false 

classifications within the SAR flood extents, or the under-prediction of the estimated 

water surface height.  

 

Figure 6.18 shows how water depth changes over time, from peak flood through the 

initial recession, for the upper Ouse (region 2), lower Ouse (region 3) and Aire. 

Maximum water depths of up to 12 m are observed, although these tend to be rare, 

small groups of pixels, with more common localised maximum depths often not 

exceeding 8 m. As well as showing changes in depth, these images show the spatial 

retreat of floodwaters over time. For example, water surface area decreases 

significantly for the upper Ouse between the 1st and 3rd Jan, with a large portion of 

the flooding upstream of the confluence along the River Swale retreating. The lower 

Ouse shows more consistency in flood location and depth after the initial retreat after 

the 29th Dec, matching the temporal relationship observed in Figure 6.13. The Aire 

shows constant retreat through every date in the time series. On the 10th and 13th 

Jan, river locations are often not highlighted as having water depth due to the 

reduced extent of flooding inputted into the algorithm. This subsequently reduces the 
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coverage of the flood grid, resulting in less permanent water body locations being 

analysed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17. Editing of locations with water depth based on the locations of 
embankments. These are used to divide the potential flood region, with sub-area that 

have limited overlap with the input SAR observed flood extents flagged as unlikely and 
removed. Note the increase in water extent compared to the SAR flood maps towards 

the north-west of the image. 

Table 6.3. Percentage of SAR observed flood extents that overlap with the updated 
water extents, derived via water surface and depth estimation, and subsequently refined 

based on embankment locations. 

Dec 29th Jan 1st Jan 3rd Jan 6th Jan 10th Jan 13th

Ouse 90.31 88.78 89.53 92.15 92.17 87.70

Aire 92.19 93.53 92.72 83.12 87.28 82.74
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Figure 6.18. Changes in water depth over time for the upper Ouse (region 2, top), lower Ouse (region 3, middle) and Aire (bottom). Dates 
shown (from left) are 29th Dec, 1st Jan, 3rd Jan, 6th Jan, 10th Jan and 13th Jan. Area with no satellite coverage shown for the lower Ouse on 

6th Jan, resulting in a reduced water extent. Transect locations shown for the lower Ouse and Aire on the 29th Dec panels, referencing 
Figures 6.13 and 6.12 respectively. 
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Despite the overarching pattern of flood retreat over time, there are situations where 

inundation has visibly increased. For the upper Ouse, water depths are greater on 

the 10th Jan than the 6th Jan. Similarly, there is a slight increase in depth and extent 

on the 13th Jan for the lower Ouse, compared to the 10th Jan. There are 

approximately 84 hours between the images on the 10th and 13th Jan. Rainfall data 

suggests that there were minimal inputs across the Ouse catchment after the intense 

event observed on the 9th Jan. It is likely that the increase in depth and extent at the 

two locations is caused by the same flood wave travelling downstream. 

 

6.3.3. Water Volume 
Figures 6.19 and 6.20 show how the water volume changes throughout the study 

period for the cumulative Ouse and Aire catchments respectively. Also shown is the 

derived water extent, river stage and cumulative catchment daily rainfall calculated 

from gridded UKCP09 data.  

 

It should be noted that the reported volumes and the changes between image dates 

may be unrepresentative of the actual water dynamics in the catchment. There are 

three primary reasons for this. Firstly, the satellite imagery does not provide full 

catchment coverage with every orbit track, and volumes have only be calculated for 

flood-prone sub-regions instead of the whole catchment. This means that either the 

image acquisition parameters or the defined study region may remove areas of 

inundation, resulting in under-prediction of catchment water volume.  

 

Furthermore, the flood grid used to calculate water surfaces, depths and volumes is 

recreated around the main locations of fluvial flooding on each image date, meaning 

the spatial extent of the flood grid and analysed area changes depending on the 

satellite-derived inundation extent. This results in a different proportion of permanent 

water locations being covered by the flood grid on each date, which can result in 

inconsistencies when assessing the trend in volume. Table 6.4 shows the total 

permanent water bodies in each catchment sub-region, and the percentage of these 

that fall within the flood grid on each image date. As expected, the maximum flood 

extent on the 29th Dec results in the greatest amount of permanent water bodies 

being included by the flood grid. On average, 55% of water bodies are covered by 

the flood grids, with Ouse regions 4 and 5 showing the lowest (45.5%) and highest 

(67.9%) averages respectively.  
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The final source of uncertainty with the reported volumes is the poor representation 

of bathymetry within the DTM. Commonly, water pixels within terrain models display 

the water surface height at the time of data acquisition. The depths calculated for 

these pixels will not be representative of the full water depth to the river bed, and will 

subsequently cause an under-estimation of volume in these locations.  

 

To help understand the flood dynamics considering the lack of river and lake 

bathymetry, and the variable coverage of permanent water bodies in the developed 

methodology, Figures 6.19 and 6.20 show the trends for extent and volume with the 

permanent water bodies both included and removed. These trends match closely, 

and the discussion below and in Chapter 8 will primarily consider the changes in 

flood dynamics as being reliable, albeit with caveats due to poor satellite coverage 

and temporal resolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19. Water volume for the Ouse catchment compared to flood extent (depth 
derived where available, SAR derived if no water surface was created), river stage (from 
Myton Bridge gauge) and cumulative gridded 24 hour rainfall across the whole catchment 

(UKCP09). For water extent (red) and volume (green), circle points represent full 
coverage of the five study regions, square points show partial coverage, and the 
diamond points highlights Jan 15th, where the SAR data suffers from significant 

misclassification due to wet snow and frost. For this date, flood extent locations used to 
derive the volume are selected based on their temporal consistency with previous flood 

dates, instead of the full classification delineated in Chapter 5. The dotted lines and 
unfilled points represent the flood extent and volume with permanent water locations 

removed. Note that not every date with flooding has had a volume calculated due to the 
geographical coverage in relation to the flooding. Rainfall on each date is for 9 am    

(date – 1) to 9am (date of interest). 
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As expected the trends for both extent and volume are similar. Peak flooding is 

observed on the 29th Dec, caused by a large amount of rainfall across both 

catchments on the 25th and 26th Dec, the impact of which is clearly seen in the gauge 

Figure 6.20. Water volume for the Aire catchment in comparison to flood extent (depth 
derived where available, SAR derived if no water surface was created), river stage (from 

Beal gauge) and cumulative gridded 24 hour rainfall across the whole catchment 
(UKCP09). For water extent (red) and volume (green), circle points represent full 

coverage, square points show partial coverage, and the diamond points highlight the Jan 
15th, where the SAR data suffers from significant misclassification due to wet snow and 
frost. For this date, flood extent locations used to derive the volume are selected based 
on their temporal consistency with previous flood dates, instead of the full classification 
delineated in Chapter 5. The dotted lines and unfilled points represent the flood extent 

and volume with permanent water locations removed. Note that not every date with 
flooding has had a volume calculated due to the geographical coverage in relation to the 

flooding. Rainfall on each date is for 9 am (date – 1) to 9am (date of interest). 

Table 6.4. Permanent water bodies (OS Vector Map Local) found within each catchment 
sub-region, and the percentage of these covered by the flood grid on each image date. 

Percentages in italics represent regions without full satellite coverage on the date shown. 

Water Bodies

(km2) 29th Dec 1st Jan 3rd Jan 6th Jan 10th Jan 13th Jan 15th Jan 25th Jan
Aire 7.78 65.4 58.1 62.9 49.5 49.1 57.5 42.4 --- 55.0

Ouse 1 1.61 72.0 50.9 53.4 48.4 --- 46.6 75.8 43.5 55.8

Ouse 2 4.49 69.5 55.0 55.7 51.4 54.3 57.0 67.5 29.8 55.0

Ouse 3 3.40 76.2 66.2 69.1 30.6 67.9 69.1 72.1 45.0 62.0

Ouse 4 1.76 54.5 46.0 47.7 --- --- 47.7 53.4 23.9 45.5

Ouse 5 2.54 71.3 65.0 66.5 --- 72.0 70.1 71.7 59.1 67.9

Average % 68.2 56.9 59.1 45.0 60.9 58.0 63.8 40.2

Average %
% Within Flood Grid used to Calculate Water Surface
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data. Peak extents for the Ouse and Aire catchments are approximately 100 km2 and 

25 km2 respectively, producing volumes of 0.17 km3 and 0.04 km3. 

 

In the Ouse catchment, there is a decreasing trend in flood magnitude for the two 

dates following the peak flood. Water extents reduce to 70 km2 and 60 km2 on the 1st 

and 3rd Jan respectively, correlating to volumes of 0.11 km3 and 0.08 km3. This is 

despite there being a prolonged period of rainfall from the 30th Dec onwards, up until 

the 9th Jan. The rainfall stabilises the river stage between 4 m and 5 m, although 

there are small fluctuations in river flow corresponding to more intense rainfall 

events. Unfortunately, the majority of the SAR images captured during this time have 

limited coverage across the catchment. Water extent and volume on 10th Jan is 

similar to the 3rd Jan despite the reduced coverage available for this date, with a 

water extent of 55 km2 and a volume just below 0.08 km3. Values for the 13th Jan, 

which has full coverage, approximately match those from the 3rd Jan. Overall this 

suggests the catchment system and the floodwaters reached an approximate 

equilibrium during this time, with rainfall inputs equating to flow outputs.  

 

The Aire catchment shows a similar overall trend, although there are occasional 

differences observed between the rate of recession in the water extent and volume 

with the data including permanent water bodies. An example of this is found on the 

3rd Jan. The water volume shows a decreasing trend from the 29th Dec through the 

1st and 3rd Jan, including a decrease of around 0.005 km3 (20% of the volume 

calculated for the 1st Jan) between the 1st and 3rd. However, water extents remain 

more consistent during this time, with only a decrease of 0.15 km2 (less than 1% of 

the extent on 1st Jan). Closer inspection of the water surfaces on these dates shows 

that the 1st Jan has a higher water surface for the majority of the Aire study region, 

which corresponds with the change in volume. The consistency in extent between the 

dates is due to an increased number of flood cells within the grid covering the SAR 

inundation on the 3rd Jan, resulting in a water surface being calculated over a wider 

geographical extent. As a consequence, there is increased inclusion of the 

permanent water bodies found in the Aire catchment on the 3rd Jan compared to the 

1st Jan (Table 6.4). This counteracts the reduced flood extent elsewhere in the region 

which results in the lower water surface height. The trend for the flood extent with 

permanent water bodies removed shows a steeper decrease earlier in the time 

series, although still not matching the gradient of the volume reduction. Similar to the 
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Ouse catchment, water extents and volumes approximately stabilise between the 6th 

and 13th Jan. Gauge records show a more sensitive response to the rainfall inputs at 

the time than in the Ouse catchment, however, this has minimal impact on the flood 

dynamics observed. 

 

As mentioned in Chapter 5, the imagery from the 15th Jan is subject to 

misclassification due to wet snow and frost. Visual inspection has suggested that the 

inundation in the immediate floodplain shows a slight decrease in extent, with the 

majority of new classifications occurring away from these regions. For the analysis is 

this chapter, flood extents that do not have temporal consistency with the inundation 

from previous image dates are flagged as spurious and removed from the dataset 

used to derive the water surface. These attempts to restrict the inclusion of false 

classifications appear to have produced inconsistent results. Updated water extents 

in the Aire catchment are comparable to the preceding dates, although the volume 

shows an increase of almost 50% from the 13th Jan image, suggesting an 

overestimation of the water surface height. In the Ouse catchment, there is still a 

strong peak in both water extent and volume on the 15th Jan. Based on these results, 

it appears that the selection of flood extents based on the temporal consistency of 

inundation still results in erroneous classifications persisting.  

 

By calculating water volumes and extents for separate regions throughout the Ouse 

catchment it is possible to identify patterns in water movement between image dates. 

Figure 6.21 shows the percentage change in water extent and volume from the 

values calculated on the previous image date using the results with the permanent 

water bodies removed. The top graph shows Ouse regions 1-3, covering the main 

watercourse in the catchment. Similar trends are observed for all three regions 

between the 1st and 6th Jan, with a fast initial decline on the 1st Jan, and a more 

steady retreat afterwards. The maximum initial decline for water extent was found in 

region 1 (-58%) and for volume is observed in region 2 (-66%). A difference in pattern 

is observed on the 10th Jan, with region 2 showing an increase in both water extent 

and volume, whereas region 3 shows a continuing decrease. Region 1 has no 

coverage on the 10th Jan. Both region 1 and 3 show increases on the 13th Jan, with 

region 2 decreasing. It can be hypothesised that if region 1 had coverage on the 10th 

Jan, that a similar increase in extent and volume would be seen as is shown for 

region 2, before a subsequent decrease on the 13th Jan. This potentially highlights 
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inter-catchment water movement, with an increase in flooding in the upstream portion 

of the river on the 10th Jan, before the water travels downstream for the 13th Jan 

causing the increases in extent and volume observed in region 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21. Changes in water extent (dashed lines) and volume (solid lines) as a 
percentage compared to the previous image date between Dec 29th and Jan 13th. Values 

shown are with permanent water bodies removed. Top graph shows the main River 
Ure/Ouse branch in the Ouse catchment. Bottom graph shows the River Derwent branch 
of the Ouse catchment and the River Aire. Dec 29th values shown as 0 for extents due to 

the extreme increase in flood extent from the previous imagery date (Dec 25th or 27th) 
across many regions. Volumes first calculated from Dec 29th onwards, resulting in no 

prior values to calculate change from. Flood regions shown in Figure 6.3. 
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The water extents and volumes for region 5 of the Ouse catchment, shown in the 

bottom half of Figure 6.21, are a lot more consistent, with the minimum observed 

water extent and volume equating to 88% and 76% of the maximums observed. 

Region 4 shows some highly variable changes, in particular on the 13th Jan where 

water volume increases by 94%. However, it should be noted that there is no 

coverage on the previous two imagery dates (6th and 10th Jan) and the amount of 

increase is likely to be more gradual than is observed. As there is only a single region 

in the Aire catchment, changes in extent and volume match those observed in Figure 

6.20, with decreases throughout the studied period apart from an increase of 26% 

(extent) and 12% (volume) on the 10th Jan. 

 

6.3.4. Comparison between LiDAR and SRTM Results 
The differences between the water surfaces calculated using the LiDAR DTM and 

SRTM DEM throughout Ouse regions 2 and 3 on the 29th Dec are shown in Figure 

6.22. The SRTM water surface has a maximum increase of 3.42 m and a deficit of 

4.61 m when compared to the LiDAR-derived surface. It should be noted that the 

areas of largest variations are located at the edge of the flood grid away from the 

SAR flood extents, with the largest difference inside the observed inundated area 

being 1.53 m. On average, the SRTM water surface is 0.03 m lower than the LiDAR 

surface, increasing to 0.27 m when restricted to the SAR flood extents.  

 

The spatial patterns broadly show the LiDAR surface producing a higher water 

surface in the downstream portion of the study area, and the SRTM producing 

increased heights further upstream. These patterns can be directly linked to the 

spatial resolution of the terrain models. For example, the LiDAR water surface shows 

an increased height, approximately ranging between 0.7 m and 1.3 m, downstream 

of the confluence of the Ouse and Wharfe Rivers in the south of Figure 6.22. The 

SAR derived flood extents closely follow the embankments in this region (see Figure 

6.17), with these surface features visible in the LiDAR data, whilst being 

unrepresented in the lower resolution SRTM. When analysing the height values 

found within shoreline and embankment adjacent SAR pixels, the LiDAR height 

estimates include the presence of the embankment. This will subsequently produce a 

higher SAR pixel height estimate than the SRTM, which provides a value based 

purely on the floodplain height, subsequently resulting in a higher overall water 

surface from the LiDAR in the region. 
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Figure 6.22. Comparison between the heights of derived flood surfaces for Ouse regions 
2 and 3 from EA LiDAR DTM (with high resolution vector mask) and SRTM 1 arc-second 

DEM (and low resolution vector mask) for the 29th Dec. Input, gap-filled flood extents 
show in black as reference. 
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Further upstream there are areas where the SRTM produces a higher water surface. 

The edge of the floodplains in these areas tend to be defined by steeper gradients. 

When analysing heights within a shoreline adjacent SAR pixel, the overlapping 

LiDAR pixels are generally restricted to the approximate boundary of the SAR pixel 

due to their higher resolution. However, the lower resolution of the SRTM compared 

to Sentinel-1 results in an increase in the effective geographical area analysed when 

estimating the water surface height. The pixel alignment between the datasets can 

result in SRTM cells that have minimal overlap with the SAR pixel being included in 

the analysis. In regions of steeper gradients, this can result in an increased range of 

potential heights, which may include values that are 10’s meters away from the SAR 

shoreline when viewed in the LiDAR data. The larger height range results in 

increased individual SAR pixel water height estimates, subsequently creating a 

higher SRTM water surface in upstream locations. 

 

Table 6.5 provides a comparison between the SAR observed flood extents and the 

updated depth-derived water extents calculated from both the LiDAR and SRTM 

datasets. On average, the SRTM results successfully identifies 86.3% of the SAR 

flood extent, a reduction of 6.9% compared to the LiDAR. The largest difference in 

percentage is found for Ouse region 3 on the 29th Dec, where the LiDAR results 

identify 97.5% of the SAR extent compared to 84.8% from the SRTM. The SRTM 

primarily fails to identify flooding in two locations, the first of which is located in the 

embankment constrained floodplains after the confluence of the Ouse and Wharfe 

Rivers. As discussed previously, the SRTM often produces a lower water surface in 

locations with embankments, and in this case results in reduced depth-derived 

flooding. This can be seen in Figure 6.23, with the general patterns of depth being 

similar when using the two terrain models. However, there are edge location in the 

SRTM that are above the water surface, which are identified as flooding in the SAR 

and LiDAR. The second region of SRTM depth under-prediction is located on the 

River Wharfe close to Tadcaster (south-west of Figure 6.22). This SRTM water 

surface is approximately 0.2 m higher in this location. However, the increased 

variability in the SRTM DEM caused by the presence of buildings and trees, which 

have been removed in the LiDAR DTM, results in some pixels not having sufficient 

depth to be classed as flooded.  
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Extent Match Incl. Prob. > 0.9 Incl. Prob. > 0.8

km2 % Prob > 0.9 Prob > 0.8 Prob > 0.7 % % %

Ouse 2 23.6 32.0 91.2 10.5 20.6 87.4 8.7 10.0 12.1 64.4 91.6 95.6

Ouse 3 24.5 27.1 97.5 3.2 20.8 84.8 2.6 3.6 12.5 76.7 86.3 90

Ouse 2 12.4 18.7 88.9 7.7 10.5 84.8 2.6 10.3 15.6 56.1 70.1 111.2

Ouse 3 17.3 23.3 95.8 6.7 15.0 86.6 2.6 3.6 11.3 64.4 75.5 79.8

Ouse 2 10.1 14.9 90.1 5.8 8.6 85.1 4.2 10.9 12.9 57.7 89.9 130.9

Ouse 3 17.2 22.2 95.6 5.8 15.3 89.2 2.5 3.1 12.9 68.9 80.2 82.9

Average % 93.2 Average % 86.3 Average % 64.7 81.6 98.4

LiDAR (Depth Derived) - SRTM Extent DifferenceLiDAR Depth-Derived Extent

km2 SAR Extent 
Match %

New Flood 
km2

SRTM Depth-Derived Extent

SAR - SRTM Extent Match Additional Area km2Date Region

29th Dec

1st Jan

3rd Jan

SAR Derived 
Flood Extent 

km2

Table 6.5. Similarity between SAR observed flood extents and LiDAR and SRTM derived locations of water depth. 
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A probability framework has been developed to determine the likelihood of new areas 

of water depth belonging to the flood class. This acts as a replacement to the 

embankment segmentation method applied to the LiDAR depth results. A 

comparison between the two methods is provided in Figure 6.23, with a breakdown 

of the probability variables shown in Figure 6.24. The HAND variable map shows a 

large proportion of the shown area (Ouse region 3) having a high probability due to 

the low-lying nature of the terrain. This results in widespread areas of the final 

Figure 6.23. Locations of positive water depth derived from low resolution (top left) and 
high resolution (top right) terrain and vector datasets, with SAR flood extents shown in 

red for reference. Bottom row shows methods for refining newly identified areas of water 
depth to determine their likelihood. Bottom left shows pixel-based probability of 

inundation for the lower resolution datasets (see Figure 6.24), and bottom right shows 
the embankment segmentation method for higher resolution data (see Figure 6.17).  
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probability map scoring in the region of 0.4 to 0.5. Scores are higher closer to the 

SAR flood extents due to the distance variable membership being above 0. An 

object-based assessment of the average flood probability has been used to 

determine the overall likelihood of new depth areas being inundated. Higher scores 

(0.8 and above) are only found close to the satellite-derived flood extents, with 

moderate scores (0.6 to 0.8) found for polygons that extend from the edge of the 

identified flood to further than 500 m distance. A pixel-based approach would 

produce variable probabilities across single flood areas, including high probability 

pixels close to the SAR observed inundation. However, given the flat terrain it is likely 

that the flooding would be consistent across the areas, justifying the use of an object-

based classification.  

 

The extent match between the LiDAR-derived flood extents (including the locations 

identified by the embankment based post-processing) and the SRTM-derived flood 

areas, with the inclusion of flood polygons of varying degrees of probabilities, are 

shown in Table 6.5. The locations of SRTM water depth within the SAR observed 

flood boundaries equates to an average of 64.7% of the LiDAR-derived inundation. 

The addition of probabilities above 0.9 and 0.8 to the baseline SRTM flood areas 

produces respective average agreements of 81.6% and 98.4% with the LiDAR 

extents. However, there is a lot of variability in the degree of correlation across the 

different dates for the two regions. For example, with probabilities over 0.8, the level 

of agreement ranges between 79.8% and 130.9%. It is unlikely that the lower 

resolution SRTM will produce a more reliable flood map than those calculated from 

the higher-resolution DTM, and additional flood locations outside the LiDAR extents 

are of questionable quality.  

 

The comparison between SRTM and LiDAR water volumes show similar patterns to 

the water extent (Table 6.6). There are regions that show a greater improvement in 

the percentage agreement for flood extent with the inclusion of additional SRTM 

probabilities compared to the corresponding water volume. For example, with the 

inclusion of new flood areas at probabilities greater than 0.9, Ouse region 2 on the 

29th Dec has an increase in flood extent match of 27.2%, compared to 15.1% for 

volume. The underlying cause of these differences is likely due to the SRTM DEM 

being a measurement of the surface, including features such as buildings and trees, 

as opposed to the LiDAR DTM which has been processed to provide a 
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representation of the ground terrain. The SRTM will have regions of pixels with an 

increased height compared to the LiDAR, resulting in reduced water depth. Similarly, 

the LiDAR will better represent any localised terrain features which are too small to 

be captured in the SRTM dataset. These small scale variations can result in a large 

difference in volume, even when calculated from similar flood extents. This can also 

work in reverse, shown by Ouse region 2 on the 1st Jan, where the SRTM volume 

provides a closer agreement to the LiDAR compared to the water extent at 0.9 

probability. Individual adjustment of the probability threshold for each region on each 

date is likely to produce a closer match between the datasets for both water extent 

and volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6.24. Probability classification for ascertaining the likelihood of pixels with positive 
water depth in the SRTM results, previously unidentified in the SAR flood extents, 
belonging to the flood class. Top left shows the variable membership derived from 
HAND, with “1” equalling values of 1 m and “0” scaled at 20 m. Top right shows the 

variable membership for distance from SAR derived flood extent, with “1” set at 10 m and 
“0” at 500 m. Bottom left shows the final probability map, created with equal weighting for 

the two memberships on the top row. Bottom right shows the average value for each 
polygon of new positive water depth. 
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6.4. Summary 
This chapter has presented a methodology for deriving water surfaces, depths and 

volumes using the SAR observed flood extents from Chapter 5 and a high-resolution 

LiDAR DTM. The techniques have been developed and applied on the flooding 

observed in the Aire and Ouse catchments, covering the peak flood observed on the 

29th Dec and subsequent water retreat.  

 

When combining satellite flood extents with terrain data, both the mismatch in spatial 

resolution and the accuracy of the flood delineation are often cited as the main 

sources of error. Based on the accuracy of the results in Chapter 5, the assumption 

that the flood shorelines have a 1-pixel accuracy is used to develop a novel workflow 

for estimating shoreline heights. The algorithm uses the terrain found within each 

shoreline adjacent SAR pixel to select a percentile, determined by the SAR 

classification of flood and non-flood, as the pixel height estimate. 

 

A grid-based framework is used to estimate local water surfaces based on SAR pixel 

height estimates that fall within each cell. Neighbourhood filtering and merging of the 

local surfaces produce a continuous water surface. The workflow has successfully 

derived largely plausible water surfaces from which to calculate water depth and 

volume. A comparison is made to in-situ river stage data, with the results producing 

an average overestimation of 3 cm and an RMSE of 98 cm. The comparison shows a 

prevailing under-prediction of water surface height during higher flows and in the 

downstream regions of the catchments, with greater over-estimation further upstream 

Table 6.6. Flood extent and volume changes with inclusion of new SRTM-derived flood 
areas with increasing probability values. Expressed as a percentage of the LiDAR flood 

extent and volume for each sub-region and date. 

Extent % Volumes % Extent % Volumes % Extent % Volumes %

Ouse 2 64.4 61.6 91.6 76.7 95.6 79.5

Ouse 3 76.7 64.3 86.3 69.2 90.0 70.1

Ouse 2 56.1 81.8 70.1 97.5 111.2 136.6

Ouse 3 64.4 68.9 75.5 77.4 79.8 79.8

Ouse 2 57.7 80.9 85.9 107.9 130.9 146.5

Ouse 3 68.9 86.4 80.2 94.6 82.9 96.8

SRTM & Prob. > 80%

29th Dec

1st Jan

3rd Jan

SRTM in SAR Extent SRTM & Porb, > 90%



[184] 
 

and during low flow. The further parametrisation of the workflow is likely to reduce 

these errors, with potential avenues of investigation discussed in Chapter 8.  

 

Depths are calculated by subtracting the LiDAR DTM from the water surfaces. There 

are locations of positive water depth identified outside of the observed SAR flood 

extents. The likelihood of these new inundated areas being correct is determined via 

analysing the results against the location of flood defences and the satellite-derived 

inundation. The ability to identify flooding unobserved by the SAR highlights the 

potential for deriving inundation in woodland and urban areas using the methodology, 

providing value by reducing the well-known limitations when using SAR imagery to 

map flooding. 

 

Water volumes are calculated from the confirmed water depths, allowing for 

catchment-wide analysis of the changing flood dynamics. The ability to derive 

changes in water volumes based solely on satellite imagery, with previous studies 

often utilising satellite altimetry or in-situ gauge data to help derive the water surface, 

allows for the global analysis of flood dynamics with reduced data requirements. Also 

highlighted in the results is the ability to monitor inter-catchment water movement, 

with the improved temporal resolution of Sentinel-1 imagery allowing for the 

approximation of the flood wave transition throughout an event. 

 

Good correlation is observed between rainfall, river flow, flood extent and water 

volume trends. As expected, peak water volume coincides with maximum observed 

flood extent, occurring on the 29th Dec after Storm Eva. All variables show a rapid 

decline after the peak, before an approximate hydrological equilibrium is reached in 

early January. Rainfall reduces after the 10th Jan, resulting in a reduction in river flow 

and flooding. Inter-catchment water movement has been identified in the Ouse 

catchment, with the upstream reaches showing increases in water extent and volume 

on the 10th Jan, before the flood wave moves downstream for the image acquired on 

the 13th.  

 

The absolute volume values produced are not accurate due to how the underlying 

terrain data represents water bodies. LiDAR sensors are unable to measure 

bathymetry, and the DTM shows water surface height at the time of data acquisition. 

Furthermore, the developed algorithm produces varying sizes of flood grid for each 
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date based on the observed SAR inundation extent. Subsequently, the volume 

values do not include water found within the wider catchment river network. However, 

given the scale of observed flooding and the close trend with flood extent, particularly 

when locations of permanent water are removed from the datasets, the reported 

changes in flood volume between image dates provide a good representation of the 

changes in hydrology occurring.  

 

An initial assessment of the global applicability of the methodology is undertaken 

using the lower resolution SRTM DEM. Locations of positive water depth from the 

SRTM capture 86.3% of the area of the SAR derived flood extents, compared to 

93.2% from the fully processed LiDAR depths. SRTM calculated water volumes show 

a reduction in the region of around 25% compared to those from the LiDAR. There 

are many uncertainties raised when using the lower resolution terrain dataset when 

compared to the LiDAR. For example, surface features such as flood embankments 

are contained in the LiDAR data but are unrepresented in the SRTM. The reduced 

height values in embankment constrained floodplains has resulted in a lower water 

surface estimate in these areas. There are further challenges in determining the 

accuracy of new locations of depth-derived inundation in the absence of flood 

embankment datasets.  

 

It should be noted that SRTM has been surpassed in terms of resolution and 

accuracy by other global DEMs, both those commercially and freely available (Proietti 

et al., 2017). Furthermore, having been acquired in 2000, there are likely to be 

differences in the representation of ground terrain between SRTM and the current 

real-world topography. It is possible that the use of a more recent DEM, either at the 

same resolution as SRTM or finer, would produce results more closely correlated to 

those obtained using the LiDAR DTM. However, the results produced by SRTM are 

still of value. There is a large back-catalogue of research using SRTM, with its 

limitations well understood, and it provides a good benchmark for comparison with 

other global DEMs when undertaking geospatial analysis. Further investigation into 

the global robustness of the presented methodology is provided in Chapter 7, 

including an assessment of different globally available DEMs (in comparison to 

SRTM) to ascertain their suitability for estimating flood dynamics using the 

techniques developed in this chapter.
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Chapter 7. Global Terrain Models and Deriving Flood Dynamics 
 

The aim of this chapter is to further ascertain the global applicability of the 

methodology developed in Chapters 4, 5 and 6 by applying them to a different flood 

event. The new case study, based in Queensland, Australia, provides an additional 

opportunity for comparing the performance of different globally available terrain 

datasets within the flood dynamics workflow.  

 

7.1. Study Location and Data 
Widespread flooding occurred along the Mackenzie River, in Queensland, Australia, 

as a result of heavy rainfall from Tropical Cyclone Debbie in late March and early 

April 2017. The study region is shown in Figure 7.1. The confluence of the Mackenzie 

and Isaac Rivers, around which a large proportion of the flooding occurred, is 

approximately 200 km south of Mackay, 700 km north-west of Brisbane, and around 

20 km east of the edge of Junee State Forest. The shown study region is 

approximately 210 by 40 km. Flood extents have been derived from a Sentinel-1 

image acquired on the 31st March 2017, with validation provided from a Sentinel-2 

image captured on the 1st April. The temporal gap between the acquisitions by the 

two satellites is 5 hours. The Sentinel-2 image only provides coverage over the top 

portion (62%) of the study region. Also shown in Figure 7.1 is the location of three 

river gauges, with the Isaac River at Yatton furthest north, the Mackenzie River at 

Bingegang to the west and Dawson River at Boolburra in the south of the study 

region. These are used to help provide hydrological context to the derived flood 

dynamics.  

 

7.1.1. Global Terrain Models 
Table 7.1 provides information on a range of commercial and freely available global 

terrain datasets. Four DEMs have been selected for application within the 

methodology developed in Chapter 6 to determine their comparable accuracy when 

deriving flood dynamics. These include SRTM (providing continuation from Chapter 

6); an SRTM derivative with smoothing and vegetation removal applied; and the 

freely available ASTER GDEM v2 and ALOS World 3D DSM, chosen due to their 

consistent spatial resolution with SRTM (1 arc-second, or approximately 30 m). The 

following sections give a brief overview of each terrain dataset, including data 

sources and reported accuracies. A comparison between the four datasets is 
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provided in Figure 7.2. Each has been used to estimate the flood shoreline heights 

and in the calculation of water depths and volumes. The terrain mask used to assist 

the derivation of flooding from the SAR imagery has only been calculated using 

SRTM, as in Chapter 5.  

 

7.1.1.1. SRTM 
Information regarding the acquisition and accuracy of the 1-arc second SRTM DEM 

is provided in Chapter 3.  

 

7.1.1.2. Smoothed SRTM 
Geoscience Australia (GA) has produced a smoothed, vegetation removed version of 

the original SRTM dataset (Geoscience Australia, 2010). This dataset has been 

downloaded through Google Earth Engine (GEE, 2019a). Landsat imagery has been 

used to identify locations of significant vegetation, with border terrain heights 

interpolated into these areas to provide an estimate of terrain height under 

vegetation. The documentation for the dataset states that this process has worked 

best on small woodland areas in flat locations, with reduced reliability if the 

vegetation is found on more variable terrain. After the vegetation effects are removed 

the dataset is smoothed. An adaptive filter is applied, with different window sizes 

used depending on the underlying terrain and the degree of noise in the original 

SRTM.  

 

The smoothed SRTM has been validated against a variety of datasets, including 

permanent survey marks (n = 1198), contour datasets (2 m interval) and LiDAR 

terrain models (5 m resolution). Mean errors vary between 1.29 m and 3.74 m, with 

RMSE errors between 3.87 m and 6.59 m (Geoscience Australia, 2010). Known 

sources of error have been identified as the lack of removal of urban structures 

(which is not attempted in the processing), incomplete or poor removal of vegetation 

features, and occasional noise artefacts, both from the original SRTM and introduced 

in the processing. Although not a global dataset, the Australian smoothed SRTM has 

been included to highlight the potential added value that can be achieved if the pre-

processing techniques are applied globally.  
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Figure 7.1. Study region (in blue) along the Mackenzie River in Queensland, Australia. Sentinel-2 coverage 
shown in red cross-hatch. Confluence between Isaac and Mackenzie Rivers visible on left, with gauges at 

Yatton, Bingegang and Boolburra shown from top to bottom. Panel on right shows study location within 
Queensland, with the flooding occurring 700 km north-west of Brisbane. 
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Coverage
Vertical Horizontal

ALOS World 3D 30m JAXA ALOS-1 2006-2011
Potential with 

ALOS-2/3
30 7 7 82°N to 82°S

ASTER GDEM v2 NASA Terra 2000-2009
v3 released late 

2019
30 15-20 15-20 83°N to 83°S

MERIT
Yamazaki et al., 

2017
Various

Other DEM 
Products

None 90 ~2 Not Specified Global

SRTM NASA
Space Shuttle 

Endeavour
2000.00 None 30-90 7-12 6-9 60°N to 56°S

TanDEM-X DEM Airbus & DLR
TanDEM-X & 
TerraSAR-X

2010-2014
Update planned 

post-2020
12-90 <10 <10 Global

Coverage Price
Vertical Horizontal

ALOS World 3D 5m JAXA ALOS-1 2006-2011
Potential with 

ALOS-2/3
5 5 5 Global

€4 per sq.km DSM; 
€12.8 per sq.km DTM 

Euro-Maps 3D GAF Cartosat-1 2005 onwards
Planned update 

missions
5

<10 - Slope 
Dependent

<10
2.5 million 

sq.km
€4 per sq.km 

NextMap World Intermap Various
Other DEM 

Products
None 10 or 30 10 Not Specified Global €0.006 per sq.km 

PlanetDEM 30 PlanetObserver Various
Other DEM 

Products
None 30 <10 <10 Global €25,000 - €50,000

Reference3D Airbus SPOT-5 2002-2015 None 20 - 30
10 - Slope 

Dependent
10

80 million 
sq.km

€7 per sq.km 

SPOT DEM Airbus SPOT-5 2002-2015 None 20 - 30
10-30 - Slope 
Dependent

10-20
80 million 

sq.km
€2.3 per sq.km 

Vricon DSM Vricon
DigitalGlobe 

Imagery
None 

specified

When new 
stereo-pairs are 

acquired
0.5 - 10 3 3 Global

$2 to $25 per sq.km 
DSM; $35 per sq.km 

DTM 

WorldDEM Airbus & DLR
TanDEM-X & 
TerraSAR-X

2010-2014
Update planned 

post-2020
12 <4 <10 Global

€10 per sq.km DSM; 
€16 per sq.km DTM 

Accuracy (m)
Freely Available Datasets

Commercial Datasets
Accuracy (m)

Horizontal 
Resolution (m)

Horizontal 
Resolution (m)

Source Satellite
Years 

Acquired

Update 
Frequency

Update 
Frequency

SatelliteSource
Years 

Acquired

Table 7.1. Global freely available and commercial DEMs, along with main acquisition, resolution, accuracy and cost 
information. Datasets with spatial resolution coarser than 100 m are not listed. Adapted from Proietti et al. (2017), with 

additional information from Wessel (2016) and Yamazaki et al. (2017). 
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7.1.1.3. ASTER GDEMv2 
Acquired using NASA’s Terra satellite, the second version of the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEM 

(GDEM) was released in 2011. Elevation data is derived from stereo pairs of infrared 

imagery, with over 1.4 million scenes used to create the DEM. ASTER GDEMv2 has 

been compared to a number of validation datasets, including absolute geodetic 

references and national elevation grids in the US and Japan, and laser altimetry 

measurements from ICESat. Reported accuracies when compared to the national 

grids and geodetic references produce a mean error ranging between -0.2 m and      

-0.7 m, with an accuracy of 17 m at the 95% confidence level (Tachikawa et al., 

Figure 7.2. Comparison between the four terrain datasets used in this study: SRTM (top 
left), Geoscience Australia produced smoothed SRTM with vegetation removed (top 

right), ALOS World 3D30 (bottom left), and ASTER GDEMv2 (bottom right). 
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2011). Average differences over forested areas are larger, with reported values of  

7.4 m in Japan and 8.0 m in the US. Over Australia, the comparison with ICESat 

produced a mean error of -2.83 m, a standard deviation of 7.08 m and an RMSE of 

7.62 m (Tachikawa et al., 2011). The dataset is released with known artefacts, 

including high-frequency noise in higher topographic regions, poor delineation of 

water bodies, and occasional voids due to lack of coverage or cloud cover. 

 

7.1.1.4. ALOS World 3D (AW3D30) 
The ALOS World 3D DSM has been produced by the Japan Aerospace Exploration 

Agency (JAXA) using panchromatic stereo-mapping of data acquired between 2006 

and 2011 onboard the Advanced Land Observing Satellite (ALOS). The dataset is 

freely available from Google Earth Engine (GEE, 2019b). High spatial resolution      

(5 m) DEMs and DSMs, created from ALOS imagery, have been resampled to 1-arc 

second to create the freely available AW3D30. To ascertain the vertical accuracy of 

the resampled dataset, 5,121 independent and global validation locations have been 

used. These produce an average error of -0.44 m, a standard deviation of 4.38 m 

and an RMSE of 4.40 m (Tadono et al., 2016). As a comparison, SRTM produces 

values of -1.00 m (average error), 7.43 m (standard deviation) and 7.50 m (RMSE) 

using the same validation locations (Tadono et al., 2016).  

 

7.1.2. Global Land Cover Data 
Two separate sources of globally available land cover information are used in this 

chapter. The Global Land Cover Map (GlobCover) is derived by ESA from data 

acquired in 2009 by ENVISAT’s Medium Resolution Imaging Spectrometer (MERIS) 

instrument, and is available globally at a spatial resolution of approximately 300 m 

(ESA, 2010). Water bodies, urban locations and woodland areas have been 

extracted to form the land cover mask. There are a wide variety of vegetation classes 

within GlobCover, and which of these form the vegetation mask is open to 

interpretation. Any land cover that is predominately woodland has been used in this 

case; however, land covers that suggest mixed vegetation (which may include 

woodland) have been disregarded. A list of GlobCover land cover classes and 

whether they have been used or not can be found in Appendix D.  

 

In addition to the general land cover classification, a medium-high resolution water 

body specific dataset has been used to improve the delineation of water within the 
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feature mask. Pekel et al. (2016) analysed the full time-series of Landsat imagery to 

produce a dataset of water occurrence and seasonality, known as the Global Surface 

Water Explorer. Locations with water occurrence greater than 10% have been 

identified and joined with the GlobCover feature mask. As in Chapter 6, each feature 

is buffered to help account for uncertainty in the location of the feature datasets. This 

has been increased to 20 m given the lower resolution of some of the vector 

datasets, and the subsequent increased mismatch in resolution with Sentinel-1. 

 
7.2. Flood Extent Delineation 
The Sentinel-1 image from the 31st March 2017 has been processed using the 

workflow presented in Chapter 5. This includes the use of GEE to produce a median 

reference image from 30 Sentinel-1 images acquired between 1st Jan and 30th June 

2018. The terrain mask, comprising of locations with high HAND and slope, has been 

created using SRTM. The relationships between the incidence angle and the two 

local thresholds (MP and Otsu) are the same as those derived in Chapter 5.  

 

Similarly, the processing steps used to extract water extent from the optical validation 

image in previous chapters are applied here. Locations of water are identified using 

the Modified Normalised Difference Water Index (MNDWI, Xu (2006)) before being 

segmented using Otsu’s threshold. The validation metrics described in Chapter 4 

have been calculated using a 5 km grid covering the optical flood extent, providing 

insight into the spatial patterns of accuracy between the datasets.  

 

7.2.1. Results 
Flooding has been successfully identified from the SAR imagery throughout the study 

area. Examples of the identified flood extent in comparison to the Sentinel-1 imagery 

is provided in Figure 7.3. In total, 977.4 km2 of flooding has been identified, equating 

to 10.6% of the study region highlighted in Figure 7.1.  

 

7.2.2. Validation 
There are locations with significant differences in the flood extents derived from the 

Sentinel-1 and Sentinel-2 imagery. Despite covering a smaller proportion of the study 

region (62%), the optical image identifies 1197.5 km2 of inundation, more than the 

SAR derived flood extent. Sentinel-1 identifies 58.1% of the inundated areas derived 

from Sentinel-2. An example of the difference in derived flooding is provided in Figure 
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7.4, showing the region around the confluence of the Isaac and Mackenzie Rivers. 

The top row shows that the SAR flood detection algorithm works well in identifying 

the locations where specular reflection has occurred. However, there are regions of 

higher backscatter within the flood boundary not extracted from the Sentinel-1 that 

have been identified as flooded in the Sentinel-2. These coincide with locations of 

significant vegetation. Within the Sentinel-2 image (bottom left panel) sediment-rich 

water is visible around the vegetation in the centre of the region shown.  

 

There are two possible reasons for the difference in flood classification. The first is 

that the presence of trees has resulted in an increase in backscatter, either from 

volume scattering of the radar pulse from the tree canopy, or by the double bounce 

effect when the signal penetrates through to ground level, subsequently masking the 

expected low backscatter flood signal. The inability to reliably map inundation in 

woodland locations is a well-known disadvantage of flood mapping using SAR 

imagery. The nadir viewing angle of the optical imagery allows for improved 

identification of the ground conditions, in this case allowing for flooding to be 

identified between the trees. There is clear variation in between the MNDWI values 

for open water and the flooding in woodland areas. Although both have been 

extracted by the Otsu algorithm, manual adjustment of the threshold may result in 

only the selection of open water, providing a closer match to the Sentinel-1 extents. 

However, visual inspection of the Sentinel-2 image shows clear inundation under the 

vegetation, suggesting the Otsu segmentation has provided accurate results.  

 

The other potential explanation is that there was a significant change in water height 

during the five hours between the two image acquisitions. Table 7.2 shows river 

heights at three gauges (locations are shown in Figure 7.1) at the time of the image 

acquisition. During the 5 hours between the satellite orbits, the two gauges upstream 

of the confluence show a decrease in river stage, whilst the gauge downstream 

displays an increase in water height, showing the transition of the flood wave. Both 

the upstream gauges are around 40 km before the confluence, with the downstream 

gauge approximately 110 km after. It is possible that the water inputs from both rivers 

have resulted in a bottleneck around the confluence, causing a prolonged increase in 

water height in the central part of the study area resulting in the additional flooding 

identified in the Sentinel-2. Unfortunately there is no gauge at the confluence to 

provide a clear indication of the river signal during this time. 
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Figure 7.3. Flood extents derived from the Sentinel-1 imagery. Columns show (from left) VH SAR imagery, VV SAR 
imagery, derived flood extent, and a study region overview showing the location of each example panel. 
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Figure 7.4. Differences in the flood extents derived from Sentinel-1 and Sentinel-2 imagery. Top row (from left) 
shows VH SAR imagery, VV SAR imagery and derived flood extent. Bottom row (from left) shows True Colour 

Composite (TCC) Sentinel-2 image, MNDWI classification, and flood extent derived from Otsu’s thresholding the 
MNDWI map. 
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As expected with such large differences between the SAR and optical derived flood 

extents, accuracy scores are lower than those reported in Chapter 5. Figure 7.5 

shows the validation scores for each metric (PAf, UAf, TA and CSI) throughout a 5 km 

grid covering the reference flood extent (which does not cover the full Sentinel-1 

derived extent). Summary statistics are provided in Table 7.3. PAf shows highly 

variable results, with an inter-quartile range of 45.9%. The median of 59.7% 

highlights the increased flood extent in the validation dataset, with the grid 

visualisation showing distinct areas where there is minimal classification from the 

SAR imagery compared to the optical. UAf produces a median value of 99.4%, with 

the majority of the study area showing scores above 97%. The maximum flood 

boundaries derived from each dataset are similar, as can be seen by the extent 

comparison in Figure 7.5. This means the majority of the SAR identified flooding falls 

within the optical inundated areas, resulting in the high UAf. This strongly translates 

into the TA scores, with the cells located at the flood edge producing high values due 

to the correlation between the maximum flood extent. Average TA is 86.9%, which is 

likely positively skewed due to the high amount of non-flood locations across both 

datasets in some grid cells. The lack of variability in UAf results in the CSI closely 

matching the patterns and statistics of PAf.  

 
 
 
 
 
 
 
 
 
 

Table 7.2. River stage at the three gauges at the time of Sentinel-1 and Sentinel-2 
imagery acquisition. 

Sentinel-1 Sentinel-2

01/04/2017 05:00 01/04/2017 10:00

Isaac River @ Yatton 17.21 16.90 -0.32

Mackenzie River @ Bingegang 9.61 8.90 -0.71

Dawson River @ Boolburra 10.20 11.62 1.42

River Stage (m)

Change



[197] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.5. Accuracy scores for the Sentinel-1 flood extents when validated against the 
Sentinel-2 inundation locations. Validation undertaken using a 5 km grid. Top left shows 
a visual comparison between the extents, including location of overlap. Top middle and 
right show PAf and UAf respectively, with TA and CSI shown in bottom left and middle. 

Table 7.3. Summary statistics for each of the validation metrics shown in Figure 7.5. 
Shown is the minimum, 25th quartile, median, 75th quartile and maximum of the combined 

grid cells. 

Q MIN Q 25 Q MED Q 75 Q MAX

PAf 0.00 31.19 59.65 77.13 97.90

UAf 0.00 97.71 99.43 99.83 100.00

TA 28.94 72.97 86.89 95.68 99.99

CSI 0.00 31.17 58.92 76.76 97.66
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7.3. Water Surface, Depth and Volume Estimation 
Due to the large differences between the SAR and optical flood extents, both 

datasets will be used as the basis for estimating water surfaces using each DEM. 

The locations of positive water depth calculated from each terrain model will be 

compared to the respective satellite-observed flood extent used as input to ascertain 

the level of agreement, providing an approximation of success for each respective 

DEM within the methodology.  

 

7.3.1. Methodological Adjustments 
Apart from the changes in terrain and vector datasets described previously, the 

methodology presented in Chapter 6 is applied with only minor adjustments. The 

same refinement techniques are utilised for deselecting smaller water bodies and 

those distanced from the river network, as well as filling gaps within the flood 

boundaries that may correspond to the locations of surface features. The amount of 

flooding observed, removed and added in each of these steps is summarised in 

Table 7.4. Due to the width of the inundated area, the size of the cells within the flood 

grid has been increased from 1 km to 3 km, minimising the number of cells that do 

not contain SAR pixel height estimates within them. Additionally, the rural nature of 

the study area suggests there is a lack of flood defences along the river. Even if there 

are embankments, information on their location is difficult to obtain. Due to the lack of 

data, both at this location and on a global scale, the refinement of the areas with 

positive water depth via segmentation using the locations of flood defences is not 

performed. 

 

 

 

 

 

 
 
 
 
 
 
 

Table 7.4. Amount of satellite derived flooding (both SAR and optical), and the 
subsequent amount used to calculate water surface, depth and volume after locational 

deselection and gap filling. 

SAR Flood Extent 977.4 944.6 47.9 992.5

Optical Flood Extent 1197.5 1177.1 65.7 1242.8

Full Derived 
Flood (km2)

Derived Flood 
used as Input 

(km2)

Gaps Filled 
(km2)

Total Flood 
Input (km2)
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7.3.2. Results 
7.3.2.1. Water Surfaces 
Figure 7.6 shows the range in water surface height produced by the four DEMs when 

using each input flood extent. The optical input produces an average height range of 

5.00 m with a maximum variation of 8.23 m, compared to 5.14 m and 10.40 m for the 

SAR input. There is good correlation for the locations of greatest variability in the 

SAR and optical derived water surfaces. The large variations are primarily caused by 

the ASTER water surface being significantly lower than those derived from the other 

DEMs. By removing the ASTER water surfaces, the average range is reduced to 

under 1.5 m for both input flood extents, with maximum differences of around 3 m. 

The ASTER GDEM shows the smallest average difference between the SAR and 

optical water surfaces at 1.27 m, with the unsmoothed SRTM having the largest at 

2.03 m. The water surfaces derived from each DEM have similar height variations 

between the different input extents, with the SAR water surfaces having a typical 

maximum increase of 2.1 m, compared to 7.8 m in the optical counterparts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. Variability in water surfaces produced from the four DEMs using optical (left) 
and SAR (right, with the optical extent shown in blue as reference) flood extents as 

inputs. Each surface raster is clipped to their respective input flood extent. 
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Direct comparison between the water surfaces derived using the unsmoothed and 

smoothed SRTM datasets show average height differences of 0.88 m and 0.73 m 

when using the optical and SAR inputs respectively, with the unsmoothed terrain 

model producing higher surfaces in both cases.  

 

7.3.2.2. Locations of Water Depth 
Figures 7.7 and 7.8 show the locations of water depth calculated for each DEM when 

combined with the SAR (7.7) and optical (7.8) input flood extents. There are a few 

patterns of note. Firstly, the ASTER produces a very noisy result irrespective of input, 

with minimal correlation to the corresponding observed flood extents. The smoothed 

SRTM provides a more continuous depth map compared to the raw SRTM, with the 

prevalent noise in the unsmoothed dataset often resulting in smaller, separated 

groups of pixels with water depth. Overall, the ALOS, SRTM and smoothed SRTM 

depth maps all match the respective satellite extents reasonably well, with Table 7.5 

summarising the number of pixels with water depth as a percentage of the flood 

extent observed by each satellite.  

 

Based on the visual and statistical assessment of the results, it becomes clear that 

the ASTER GDEM is unsuitable for terrain-based flood assessment using the 

developed methodology. The agreement between derived water depths and 

observed flood extents are 15% to 25% below those from the other DEMs. This result 

is largely expected. Out of the DEMs tested, the ASTER dataset is the only one 

where the river system is not easily identifiable in Figure 7.2 due to the inherent noise 

on the floodplain. The large amount of noise within the dataset results in numerous 

groups of pixels remaining above the derived water surface within the main body of 

observed flooding.  

 

Water depths from the ALOS and two SRTM DEMs all produce similar percentage 

agreements when compared to the SAR input flood extents. When using the optical 

extents as input, ALOS and the smoothed SRTM identify approximately 89% of the 

input, 5% more than the raw SRTM. When using the SAR observations, the 

unsmoothed SRTM produces around 81% correlation, ahead of ALOS at 79% and 

the smoothed SRTM at 77%.  
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Across all of the depth maps there are distinct regions within the input (gap-filled) 

flood boundary that remain above the derived water surfaces. However, when 

compared to the satellite observed flood extents these locations tend to correspond 

with unflooded regions. In these locations, the lack of flooding across both the 

satellite observations and depth-derived results helps confirm the presence of local 

topographic highs which have remained above the water surface.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7. Water depths calculated from each DEM using the SAR flood extents (with 
the gap-filled extents shown by red crosshatch) as input. Top left is SRTM, top right is 
the smoothed SRTM, bottom left is the ALOS and bottom right is the ASTER GDEM. 
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Figure 7.8. Water depths calculated from each DEM using the optical flood extents (with 
the gap-filled extents shown by red outline) as input. Top left is SRTM, top right is the 

smoothed SRTM, bottom left is the ALOS and bottom right is the ASTER GDEM. 

Table 7.5. Percentage of satellite observed flooding (both the full extent and the adjusted 
input) that have derived positive water depths for each of the DEMs. Full satellites 

derivations include classifications not used as an input into the flood surface algorithm. 
Input extents include filled gaps, locations which may have been undetected in the 

satellite imagery due to the presence of local topographic high. 

Full Optical Input Optical Full SAR Input SAR

ALOS World 3D30 89.3 88.6 78.0 78.8

ASTER GDEMv2 59.6 59.4 59.7 60.2

SRTM 84.2 83.7 80.3 81.1

Smoothed SRTM 89.2 89.2 75.7 76.6
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7.3.2.3. Additional Flood Locations 
All of the DEMs produce new areas of water depth outside of the respective satellite 

observed extents. When using the SAR input, the smoothed SRTM produces the 

greatest amount of new water depth locations, with just under 500 km2. Much of this 

corresponds to gaps within the outer extremities of the observed inundation, such as 

the central location for each panel in Figure 7.7. These locations tend to be classed 

as flooded within the optical data. As discussed earlier, there is uncertainty in the 

accuracy of the SAR flood observations as they only identify 58% of the flood extent 

derived from the optical imagery. It is plausible that the SAR underestimates the 

extent of flooding due to the presence of vegetation, with the optical derived flood 

areas provide a better representation of the ground conditions at the time the SAR 

image is acquired. If this assumption is taken as correct, then there is added value to 

be found in the new flood locations identified from the SAR depth maps. The greatest 

improvement in this regard comes from the smoothed SRTM, which identifies an 

additional 12% to match 70% of the optical observed inundation. Similar numbers are 

produced by the ALOS dataset. It should be noted that ASTER GDEM actually 

identifies less than 50% of the optical observed flood area, showing a loss of 

accuracy compared to the original SAR flood delineation. However, caution is 

needed when using the new areas of water depth to expand on the observed flood 

extents given the uncertainties in the datasets and methodologies.  

 

When using the Sentinel-2 input extent, the ASTER and raw SRTM highlight the 

most potential new flood locations, identifying approximately 280 km2 and 250 km2 

respectively. This includes locations in the south-west of Figure 7.8, where the optical 

water extent is restricted to the river locations. It can be surmised that the ALOS and 

smoothed SRTM provide a better representation of the hydrological terrain in these 

locations, with their respective water depth maps either providing agreement with the 

Sentinel-2 observations, or showing consistent areas of water depths if found outside 

the optical flood extent. The inherent noise in the ASTER and raw SRTM results in 

dispersed small groups of pixels with water depth, both within and outside of the 

observed flood extent (Figure 7.8). It should be noted that all of the optical depth 

maps show a significant increase in flooding outside of the Sentinel-2 observed 

inundation, caused by the grid-based methodology expanding the analysed region 

beyond the Sentinel-2 image bounds.  
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7.3.2.4. Water Volumes 
Calculated volumes vary drastically between the input datasets (Table 7.6). The SAR 

input extents produce the highest water volume when using the ASTER dataset. This 

appears contrary to the other results, which shows the water surfaces derived using 

ASTER are typically the lowest, and subsequently have the smallest agreement with 

the SAR observed flooding. Water depths calculated using the ASTER produce 

average and maximum values of 2.4 m and 59.3 m respectively. Results from ALOS 

produce similar maximum water depths of 59.1 m, compared to the two SRTM depth 

maps which show a substantially lower maximum of around 20 m. All three datasets 

produce average water depths ranging between 1.4 m and 1.9 m. The higher depth 

and volume values produced by the ASTER are likely caused by the noise prevalent 

throughout the dataset. Interestingly, the water volumes calculated from ASTER 

using the optical input match more closely to those from the other datasets. Mean 

water depths across all datasets with the Sentinel-2 input are between 2.7 m and   

3.1 m. The ASTER still produces extreme depth values (as does ALOS), however, 

when combined with the reduced number of pixels with water depth, the resulting 

volume is comparable to those calculated from the other DEMs.  

 

 

 

 

 

 

 

 

 

 

 

 

When using the SAR input, the ALOS, SRTM and smoothed SRTM produce water 

volumes that correlate well with the respective agreements between the derived 

water depth and the SAR observed flood extents. The raw SRTM produces the 

greatest match to the SAR observations (80.3%), which translates into the highest 

volume (1.87 km3). Between the three datasets there is a range in volume of        

0.47 km3 and a 4.6% difference in agreement with the SAR flood extent. With the 

Table 7.6. Water volumes calculated from each terrain model and input extent 
combination. Note volumes only calculated for the extent of the satellite observed 

inundation, with any new locations displaying a positive water depth discarded due to the 
underlying uncertainty. 

SAR Optical

ALOS 1.47 3.16

ASTER 2.33 3.22

SRTM 1.87 3.68

Smoothed SRTM 1.40 3.57

Volume (km3)
Input Extents
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optical input extents, the two SRTM datasets produce higher water volumes, driven 

by higher mean water depths above 3 m, compared to the ALOS, which produces 

average depths of 2.7 m. For the raw SRTM, this counteracts the decreased spatial 

extent of water depths, ultimately resulting in the highest water volume of the three. 

The range between water volumes for the three DEMs is 0.52 km3, with a difference 

of 5.1% for agreement between the depth locations and optical flood extent. 

 

The ALOS and smoothed SRTM provide an interesting comparison when using the 

optical input, showing a large variation in water volume (3.16 km3 and 3.57 km3 

respectively) despite locations of water depths from both having a similar agreement 

with the observed flood extents (89%, Table 7.5). Furthermore, the datasets produce 

comparable water volumes (0.07 km3 difference) when using the SAR input extents. 

Figure 7.9 shows the differences between the two DEMs, the derived water surfaces 

using the optical flood input, and the subsequent water depths. Generally, the ALOS 

DEM and water surface are higher than the smoothed SRTM counterparts, with 

average differences across the study area of 91.6 cm and 15.5 cm respectively. 

However, there are consistent areas of higher water depths from the smoothed 

SRTM, such as towards the north of the region shown. These correspond to areas of 

significant vegetation in the Sentinel-2 image. The creation of the smoothed SRTM 

includes filtering to remove vegetation, whilst the ALOS data shows high variability, 

with an underlying greater average height, in these locations due to the prevalent 

surface features. There is less vegetation in the southern part of Figure 7.9, resulting 

in reduced differences between the two water depth datasets, although still remaining 

highly variable. Although the ALOS DEM has less noise compared to the ASTER and 

raw SRTM, the increased surface heights in areas of vegetation have a significant 

impact on the calculated water depths and volumes. The similarity in volumes when 

using the SAR inputs can be explained by these vegetated locations not being within 

the Sentinel-1 observed extent, and consequently are not used within the volume 

calculation. 
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7.4. Summary 
The aim of this chapter was to investigate the strengths and potential limitations of 

the developed methodologies when applied at a global scale. Three lower-resolution, 

globally available DEMs, along with one Australia specific terrain dataset, have been 

compared to ascertain which produces the optimal results when estimating flood 

depth and volume. 

 

Sentinel-1 imagery has been used to derive flood extent using the hybrid workflow 

developed in Chapter 5, resulting in the successful identification of areas of specular 

reflection, synonymous with flooding. However, there are large differences when 

compared to the Sentinel-2 optical image used as validation, acquired 5 hours after 

Figure 7.9. Comparison between results generated from the ALOS and smoothed SRTM 
DEMs. Top left shows the Sentinel-2 image; top right is the height difference between 
input DEMs; bottom left shows the prevalently higher water surface from the ALOS; 

bottom right shows the variations in calculated water depths. Legend on right describes 
the two right-hand panels. 



[207] 
 

the SAR image. One of the known limitations of SAR flood mapping is the inability to 

reliably derive inundation under vegetation. The optical image has identified flooding 

in a number of woodland locations, with these areas remaining unidentified in the 

SAR due to higher backscatter values. These locations may have been inundated at 

the time the SAR image is acquired, highlighting the possibility that the Sentinel-2 

image provides a more accurate delineation of inundation at the time of the Sentinel-

1 pass. Overall, the difference in the two satellite-derived flood extents results in poor 

accuracy metrics, including an average CSI of 58.9%. 

 

However, the conclusion that the Sentinel-1 has failed to identify flooded vegetation 

is potentially false, and it is equally plausible that both SAR and optical flood maps 

accurately represent the ground conditions at the time of their respective image 

acquisition. Analysis of gauge data suggests that the satellite imagery has been 

acquired around peak flood, with river flow decreasing upstream and increasing 

downstream between the satellite orbits. This potentially signifies a change in flood 

dynamics that can explain the variations in flood extent, with the flood wave moving 

downstream through the confluence of the Isaac and Mackenzie Rivers, creating a 

bottleneck of floodwater that remains during the Sentinel-2 image. Caution is needed 

when using a different source of satellite data as validation for SAR flood maps. It is 

rare for two sources of data to be collected simultaneously. This thesis has found 

gaps of 5 hours (Australia) and 12 hours (UK) between SAR and optical image 

acquisitions. As shown for the Mackenzie River, it is possible that the two satellite 

images represent different ground conditions, particularly in flashier river regimes. 

Without further data it is impossible to ascertain which of the two explanations for the 

difference in satellite-observed extents presented in this chapter is correct. 

 

As expected, the quality of the underlying terrain model has a major impact on the 

accuracy of the derived water depths and volumes. Higher accuracy, less noisy 

datasets are shown to produce more plausible results when comparing locations of 

water depth to the satellite observed flood extent. Of the global datasets tested, the 

water depth results derived from the ALOS produce the greatest reliability, correlating 

with 89.3% of the optical and 78.0% of the SAR observed flood. The former is 

comparable to the LiDAR-based study completed in Chapter 6, which had an 

average agreement of 93%. The ASTER performs poorly compared to the other 

terrain models due to the large amount of noise within the dataset. The respective 
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good and poor performances of the ALOS and ASTER DEMs have been previously 

highlighted in catchment delineation studies (Keys and Baade, 2019), coastal 

flooding assessment (Zhang et al., 2019b) and general accuracy assessments 

(Alganci et al., 2018). 

 

The smoothed, vegetation-removed version of the SRTM produced by Geoscience 

Australia achieves similar results to the ALOS data. When using the optical flood 

input, locations of water depth calculated using the smoothed SRTM provide a closer 

match to the observed inundation (89.2%) compared to the raw SRTM (84.2%). 

Conversely, when using the SAR input extents there is a better agreement using the 

unsmoothed SRTM (80.3% compared to 75.7% for the smoothed). The original 

SRTM produces a higher average water surface irrespective of input flood extent, an 

artefact of vegetation noise within the unsmoothed terrain model. There is minimal 

vegetation within the observed SAR flood extent, and the smoothing of the SRTM 

dataset results in an average height reduction of 0.26 m. This is compared to 1.01 m 

within the optical flood extents, which contains areas of substantial vegetation. The 

combination of a higher water surface from the unsmoothed SRTM (by an average of 

0.73 m), along with the reduced vegetation noise in the analysed region of the terrain 

dataset, results in the greater correlation between water depth locations from the raw 

SRTM and the SAR flood extents.  

 

The depth maps produced from the unsmoothed SRTM often show small, dispersed 

groups of pixels with water depth. In comparison, using the smoothed SRTM results 

in a larger, more spatially consistent areas of water depth. Although the smoothed 

SRTM may miss some of the observed flooding when using the SAR input, it could 

be argued that the more continuous depiction of water depth is more reliable than the 

spatially inconsistent representation derived from the raw SRTM. The further 

parameterisation of the developed algorithm will likely yield improvements in the 

statistical appraisal of the results when using the smoothed dataset. Overall, the 

results from the smoothed SRTM are good, and the wider application of the algorithm 

used to create this Australia specific DEM is encouraged.  

 

The results include the identification of new locations of water depth outside of the 

Sentinel-1 flood extents. Given the inherent uncertainty in the SAR flood mapping, 

the global DEMs and the processing algorithms, caution is required when assessing 
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the accuracy of flooding that is derived, and not observed. However, the presented 

methodology has the potential to add value to the SAR flood maps, namely in helping 

highlight inundation in urban and woodland settings. This is likely to be very 

situational, and further investigation is required to ascertain the best techniques for 

determining the accuracy of secondary flood extent information.  

 

Overall, the algorithms developed in this thesis have been shown to be globally 

applicable, allowing for the mapping flood extent, depth and volume using SAR 

imagery and ancillary geospatial datasets. This is with a caveat, given the difference 

in the SAR and validation flood maps, and the uncertainty in the flood hydrology 

occurring during the time of image acquisition. Further case studies are required to 

ensure the algorithms are applicable in all geographical situations, alongside 

confirming the accuracy of the techniques applied. The assessment of globally 

available terrain datasets is valuable, and the expansion of the study in terms of flood 

location and DEMs analysed will help inform future hydrological, remote sensing and 

geospatial research. In particular, a number of the datasets listed in Table 7.1 

provide either finer resolution or higher level of vertical accuracy than those used 

within this chapter, albeit at a monetary cost in some examples. Completing similar 

comparisons with these DEMs as has been presented here will provide further insight 

into the relative strengths and limitations of each terrain dataset, whilst providing a 

measure of how accuracy is improved with increased user costs. 
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Chapter 8. Discussion and Conclusion 
 

The following discussion will critically asses the developed algorithms and analysis 

presented in the preceding chapters in relation to the Aims and Objectives outlined in 

Section 1.2. As stated earlier, the aim of the project was to develop innovative 

algorithms for estimating flood dynamics using SAR imagery and ancillary geospatial 

datasets. The project objectives specified the development of workflows to estimate 

flood extent, depth and volume from satellite imagery and terrain data, the results of 

which are used to assess the utility of recent satellite datasets in providing further 

understanding of the dynamics of a flood event. Furthermore, all algorithms were to 

be globally applicable to maximise the potential application using Sentinel-1 imagery. 

 

8.1. Dynamics of the 2015-16 UK Winter Floods 
The results presented in this thesis highlight the extreme nature of the flooding 

caused by the 2015-16 winter storms. Numerous precipitation events brought 

prolonged and intensive rainfall, resulting in widespread inundation across many 

catchments in the north of England. Numerous flood characteristics have been 

derived using satellite imagery, which in conjunction with in-situ gauge records and 

gridded catchment-wide rainfall, help describe the onset, peak, equilibrium and 

recession of the flooding throughout the study period. 

 

The results from Chapter 5 show the changes in SAR derived flood extent for a three 

month period for the Aire, Eden and Ouse catchments, along with the Lake District. 

In each catchment, the timing and magnitude of the peak flood correspond well to 

those observed within the gauge records. Storm Desmond caused the greatest flood 

extent in the Eden catchment and Lake District during early December, whilst Storm 

Eva triggered widespread inundation throughout the Aire and Ouse catchments later 

in the month. The algorithms in Chapter 6 have been used to calculate water surface 

slope, depth and volumes for the Aire and Ouse catchments based on the observed 

flood extents and terrain data. In-situ data from these catchments show that 

precipitation and river flow correlate strongly, with peak flows occurring up to a 

couple of days after maximum precipitation inputs. As expected, flood extent and 

water volume broadly match these trends, with peak inundation occurring on the 29th 

Dec, with significant flooding visible until mid and late January in the Aire and Ouse 

catchments respectively.  
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The consecutive nature of the rainfall events is likely to have caused consistently 

saturated ground conditions and high river flows, subsequently exacerbating the 

impacts of each individual precipitation event. In Chapter 5, the slow retreat of 

inundation and the continual re-flooding of low-lying areas is identified in the Ouse 

catchment and Lake District (Figures 5.14 and 5.19). In Chapter 6, rainfall data 

shows more consistent inputs across the Aire and Ouse catchments between the 30th 

Dec and 8th Jan, resulting in an approximate stabilisation of river flow. There are still 

peaks in river stage during this time, a result of periods of more intense rainfall. It is 

likely that there is minimal water infiltrating into the ground at this time due to the soil 

water storage being at capacity, subsequently reducing the lag time between 

precipitation inputs and river flow increase. The Aire catchment in particular shows a 

very flashy response to rainfall inputs on the 3rd, 6th and 9th Jan, with river stage 

increasing by more than 1 m in each case (Figure 6.20).  

 

Ideally, it would be possible to clearly derive the above intricacies in flood dynamics 

from the satellite imagery. However, there are limitations when using satellite data, 

namely the lack of temporal resolution and geographical coverage when studying 

large catchments. The linear representation of the temporal changes in flood extent 

and volume presented in this thesis is unlikely to be accurate. In Chapter 6, peak 

floods in both the Ouse and Aire catchments occur on the 29th Dec (discounting the 

15th Jan in the Ouse catchment due to classification errors), before a rapid retreat on 

the 1st and 3rd Jan, a trend that broadly matches the in-situ measurements. Flood 

extent and volume values on the 3rd and 10th Jan are similar in the Ouse catchment 

(the 6th Jan shows much lower values but has limited coverage), supporting the idea 

of a catchment in temporary hydrological equilibrium. In the Aire catchment, flood 

extent and volume trends on the 6th and 10th Jan match those observed for river flow, 

including a slight increase in inundation of the 10th Jan, which coincides with the 

rising limb in the hydrograph as a result of intense rainfall on the 9th Jan. This 

highlights the potential for monitoring broad trends of flood dynamics from space, 

albeit without the finer temporal detail. 

 

There are a number of distinct flood-prone regions in the Ouse catchment. Flood 

extents and water volumes have been calculated for each sub-region individually, 

with the aim of identifying the transition of the flood wave through the catchment. An 

example is found on the 10th Jan, with the upper regions of the Ouse showing a 
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relative increase in flood extent and volume (Figure 6.21). This is followed by the 

downstream regions showing increased inundation on the 13th Jan, coinciding with 

flood recession in the upstream locations. This inter-catchment analysis has great 

potential for improving our understanding of the temporal and spatial characteristics 

of a flood within a catchment.  

 

Alongside the analysis of flood extent and water volume, the estimation of the water 

surface allows for changes in slope to be determined. Results from three separate 

transects are presented in Section 6.3.1, with the River Ouse transect in particular 

showing interesting results (Figure 6.13). As expected with the extent of flooding 

observed across the catchment, the derived water surface on the 29th Dec is 

significantly higher than those from the following dates. The left of the transect is 

located at the confluence of the Ouse and Wharfe Rivers, and there are minimal 

variations in water surface height at this location for the other shown dates. It is likely 

that the large inputs of water from both rivers has resulted in a bottleneck effect, 

maintaining the consistently high water levels. The increase in pooling of water 

around confluences can be observed in the SAR flood extents throughout the study 

area. At the other end of the transect, 8 km downstream from the confluence, water 

surfaces on the 1st and 3rd Jan are approximately half a meter higher than the 10th 

and 13th. This evolution of the flood surface suggests the hydrology has shifted from 

a more equilibrated system, with a gentler gradient downstream, to a more recession 

orientated situation with a steeper water slope. Figure 6.21 shows a reduction in 

extent and volume of 6% and 19% respectively between the 3rd and 10th Jan.  

 

The goal of Objective 3 was to ascertain the potential for improved understanding of 

flood dynamics based on satellite-derived products. The algorithms presented in this 

thesis have successfully produced data on flood extent, water surface slope, water 

depth and volume. The combined analysis of these observations has provided new 

insights into the dynamics of the 2015-16 UK winter floods, both in a temporal and 

spatial context. Future flood events will benefit from the full constellation of Sentinel-

1, with the second satellite improving the temporal resolution compared to the 

presented analysis. The results have potential for validating hydrodynamic models 

using multiple parameters. 
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8.2. Comments on Methodology 
Objectives 1 and 2 outline the development of algorithms for delineating flood extent 

from SAR imagery, and combining these with terrain data to estimate water depth 

and volume. The results presented throughout this project have shown that these 

Objectives have been successfully achieved. The final results have high accuracy 

when compared to other sources of data. The following paragraphs will highlight 

some of the specific strengths and limitations of the workflow. Specifics of potential 

future adjustments to the developed techniques are detailed in Section 8.5.1. 

 

A hybrid methodology for extracting flood extent from SAR imagery has been 

conceptualised in Chapter 4 and refined in Chapter 5. Included in the workflow are 

change detection, variable radiometric thresholding and object-based region growing 

processes. All methods are applied to both available polarisations before an object-

based merging scheme is applied to produce a single flood map. Each technique has 

been designed to detect inundation, either by identifying the change in surface 

conditions from pre-flood conditions, or by analysing the co-flood imagery as a 

singular dataset. Although each process can be used to map flooding individually, the 

combination of these methods, as well as the polarisations, helps eliminate some of 

the sources of misclassification common with SAR flood mapping. 

 

Within the change detection step, references images have been created using the 

median pixel value from a stack of images acquired along the corresponding orbit 

track. This is easily achieved using Google Earth Engine, and can provide an 

advantage over using a single image as a reference by removing any short-term 

environmental or speckle effects propagating into the difference image. Previous 

work in the literature has highlighted the changes in backscatter with incidence angle 

for various land covers (O’Grady et al., 2014; Chapman et al., 2015). This can result 

in under- or over-estimating the land-water threshold if a static boundary is applied. 

In Chapter 5 a relationship between incidence angle and land-water threshold is 

derived based on segmenting local histograms of the backscatter of permanent water 

bodies and their surrounding land. The relationship allows for improved delineation of 

surface water using histogram thresholding across full image swaths. Initial 

polarisation specific flood maps are produced, which are subsequently combined via 

selecting the maximum of the overlapping inundated locations. Previous research 

has highlighted the improved accuracy possible by combining polarisation specific 
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flood maps (Manjusree et al., 2012). The techniques used in this thesis helps remove 

polarisation specific classification errors, such as wind-roughening of the water 

surface in VV imagery, and false classifications from volume scattering in VH.   

 

In Chapter 5, the SAR flood extents are validated against Sentinel-2 optical imagery, 

producing a CSI score of 76.9% and a TA of 91.0%. These values appear 

comparable to accuracies reported elsewhere the literature (Martinis et al., 2015b; 

Landuyt et al., 2018), albeit with the caveat of direct statistical comparisons being 

difficult due to the differences in how validation of SAR flood maps is undertaken and 

reported. Comparisons are also made to CEMS flood maps, produced using higher-

resolution SAR imagery. There is a high degree of similarity between the two SAR 

flood maps, both when directly compared (TA of 95.4%, an improvement on the 

results of Amitrano et al. (2018)) or the comparative metrics against the Sentinel-2 

optical results (less than 1.2% and 0.3% difference for CSI and TA respectively). The 

similarity in flood extents highlights the role that medium-resolution SAR imagery, 

such as that acquired by Sentinel-1, has in flood management alongside more costly, 

higher resolution imagery sources.  

 

Chapter 6 presents a grid-based methodology for estimating water surfaces, depths 

and volumes based on the SAR derived flood extents and a high-resolution LiDAR 

DTM. One of the main challenges outlined at the beginning of Chapter 6 was 

accounting for uncertainty, both from the shoreline position of the SAR flood extents 

and those introduced by the mismatch in dataset resolution. A novel approach is 

used to determine boundary height estimates based on the analysis of the terrain 

found within the shoreline adjacent SAR pixels. The methodology is based on two 

key assumptions, namely that locations classified as flooded in the SAR imagery are 

inherently correct, and that the shoreline location has a one-pixel accuracy at the 

regional scale. Each shoreline adjacent SAR pixel has a height estimated based on 

these assumptions, with the 95th percentile and median height values selected for 

flood and non-flood pixels respectively.  

 

The SAR pixel heights are subsequently used to derive local water surfaces within a 

grid framework. A rule-based system is used to estimate the most likely local water 

surface height based on the histogram of the SAR heights within each grid cell. 

Neighbourhood filtering of the derived cell water surfaces helps removes any outliers, 
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whilst ensuring a smooth water surface transition downstream. Water surfaces for 

each grid cell are merged to create a continuous water surface, which is used to 

calculate water depths and volumes. The likelihood of new areas of flooding is 

confirmed using a novel segmentation technique based on the location of flood 

embankments.  

 

The derived water surfaces are compared to in-situ river gauges, with a mean error of 

3 cm and an RMSE of 98 cm. Compared to other results reported in the literature, 

these values show a slightly lower accuracy (Di Baldassarre et al., 2011), although 

there is uncertainty when comparing results between different studies due to the 

variety of validation sources (including model results, field data and in-situ gauges), 

each with their own potential inaccuracies. Locations of derived water depth largely 

correspond to the satellite-observed flood extents, identifying approximately 90% of 

the inundated area. The lack of full correlation highlights an underestimation of the 

water surface height in some locations, potentially caused by emergent vegetation 

limiting the delineation of the full flood extent from the SAR imagery, an issue 

identified in Mason et al. (2012b) and Zwenzner and Voigt (2009). The calculated 

volumes closely match the trends of the flood extents, as well as in-situ precipitation 

and river flow datasets.  

 

Despite the successes outlined above, there are geographical situations where the 

algorithms produce a less accurate representation of the likely flood dynamics. These 

are largely found with the estimation of the water surface, with the methodology for 

extracting flood extent from SAR imagery performing well, albeit with the drawbacks 

commonly found when using SAR data, which are described in detail in Section 8.4.  

 

There is a visible bias in the derived water surfaces when compared to in-situ stage 

data. At this stage it should be noted that the in-situ gauge data used to validate the 

water surfaces may be inaccurate. Depending on the operating parameters of the 

gauging instrument, measurement quality can be questionable during periods of high 

flow. Additionally, there is contradictory metadata regarding site datum are provided 

by the Environment Agency and the National River Flow Archive which may have 

resulted in the imprecise adjustment of the water surface measurements for Figure 

6.10. However, the clear trend of overestimation at low flows and in the upstream 

part of the catchment, and the under-prediction during higher flows and the 
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downstream portion of the flood merits investigation (Figure 6.9). Additionally, results 

are less accurate when flooding is more extensive. There are a number of steps 

within the methodology that may be contributing to the observed inaccuracies. 

 

There are potential errors introduced when estimating the water surface heights for 

each SAR pixel. The assumption that the SAR flood maps successfully classify 

inundation to within 1 pixel may be false in some localised settings. Any under-

estimation of flood extent will cause an under-prediction of water height, due to the 

analysed terrain heights being located within the main body of flooding, instead of 

representing the flood boundary (Horritt, 2003). When estimating the dry SAR pixel 

heights, the use of the median value can result in questionable results depending on 

the underlying terrain. For example, in flatter terrain there is a greater probability of 

the flood boundary extending beyond the shoreline adjacent pixel due to the 

increased backscatter from emergent vegetation. The median height is also unlikely 

to sufficiently capture water surface variability when the flood boundary is located 

next to embankments (Hostache et al., 2009). This highlights the inherent complexity 

and challenges when trying to estimate flood shoreline heights.  

 

The current rule-based process for determining water surface height within each 

flood grid cell operates by first setting search based on the statistics of the input SAR 

pixel heights, before identifying the peak density as the local water surface. The 

boundaries are designed to reduce the impact of SAR flood under-estimation, which 

can result in histogram peaks at lower topographic heights. However, there are 

situations where plausible peaks in the histogram fall just outside the set boundaries 

(such as in Figure 6.7), resulting in a more rudimentary, percentile-based estimate 

being made for the water surface height for the grid cell.  

 

Although theoretically each grid cell will have similar height values to its neighbours, 

in practice the inaccuracies in derived flood extent alongside the uncertainties from 

the methodology can result in large differences between cells. The transects in 

Chapter 6 highlight some areas for improvement. There are steeper gradients in the 

water surfaces which are unlikely, likely caused the poor estimation of both SAR pixel 

and flood cell water heights. Alongside sections of steeper gradients, the Derwent 

transect also shows water surface increasing with flow downstream on the 1st Jan 

(Figure 6.14). This is due to erroneous flood extents forming the input to the surface 
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estimation workflow (Figure 6.15), highlighting the need for accurate delineation from 

the SAR imagery. However, it’s the view of the author that a “perfect” flood 

delineation from is unlikely, and so a robust scheme for selecting which observed 

flooding is used as the input for later processing is required. A balance is needed to 

ensure enough accurate flood shorelines are selected whilst removing the majority of 

the false positives, which is largely achieved throughout the study area and period 

presented in this thesis.  

 

The volume totals presented in Chapter 6 are not a true reflection of water volume 

across the Aire and Ouse catchments. River bathymetry is rarely available in terrain 

datasets, with the heights in locations of permanent water is often representative of 

the water surface at the time of data acquisition. Furthermore, the flood grid is 

recalculated for each image date based on the extent of observed flooding, 

subsequently resulting in a different proportion of permanent water bodies included 

for each time-stamp of the analysis. To account for this (Figure 6.19 and 6.20), 

comparisons are made between flood extent and water volume values with and 

without the locations of permanent water, with a similar trend observed between the 

two. Although there is some uncertainty with the absolute values, the changes in 

volume through time can still be used to help provide valuable insight into the flood 

dynamics.  

 
8.3. Global Applications of SAR Flood Mapping  
Flooding is a global hazard, and one of the advantages of satellite data is the ability 

to acquire imagery of flood events irrespective of location. The goal of Objective 4 

was to ensure the algorithms developed in Chapters 5 and 6 are globally applicable.  

Chapter 7 presents a study of the flooding in Queensland, Australia caused by 

Tropical Cyclone Debbie in 2017. Flood extents have been extracted with no 

changes to the hybrid methodology, which combines change detection, variable 

thresholding and object-based region growing. Despite the success in identifying 

locations of specular reflection in the SAR imagery, there are large differences in the 

overall flood extent when compared to optical data (acquired 5 hours afterwards), 

with two possible reasons being proposed for the lack of correlation. The areas of 

uncertainty are found in predominately vegetated locations, which has potentially 

limited the ability of the SAR to identify the inundation (Figure 7.4). Alternatively, river 

stage data highlights the transition of the flood wave through the catchment between 
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satellite orbits, potentially resulting in an increase in inundation extent at the time of 

the Sentinel-2 image (Table 7.1). The uncertainty from the Australia case study 

highlights the need for further investigations to confirm the accuracy of the flood 

delineation algorithm achieved for the UK in Chapter 5, and to provide full confidence 

that Objective 4 has been met.  

 

An initial comparison is made in Chapter 6 between the LiDAR DTM, used to 

produce the volume results for the UK described above, and SRTM, which is 

available globally. Using the lower resolution dataset produces a reduction in derived 

extent and volume of 35% and 26% respectively. Variations between the results are 

largely caused by the different representation of surface features in the underlying 

terrain models, which propagate into the derived water surfaces. For example, the 

lack of representation of features such as embankments in the SRTM has resulted in 

lower water surfaces in some downstream locations. Elsewhere, the SRTM produces 

higher water surfaces when the shoreline is found amongst steeper gradients. The 

larger DEM cell size covers a wider area, with the single pixel height value providing 

a large RMSE compared to the actual range of heights within the cell space (Satgé et 

al., 2015). When the DEM cells overlapping the SAR pixel are analysed, this results 

in a wider range of height values on which to base a surface water estimate, often 

causing over-prediction.  

 

As with the LiDAR results, there are locations of positive water depth derived from 

the SRTM that are outside the SAR observed extents. However, these locations have 

not been refined using the same embankment-based technique as before due to the 

ancillary dataset being UK specific. Instead a probabilistic framework has been 

devised combining the HAND index and distance from the observed Sentinel-1 flood 

extents (Figure 6.24). Using the average probability value for new flood areas, it is 

found that the inclusion of probabilities above either 0.8 or 0.9 resulted in the closest 

match to the LiDAR-derived extent and volume. However, the results are very 

situational. For example, at probabilities over 0.8, agreement for flood volume ranges 

between 70.1% and 146.5%. Only two variables are used in the framework, likely 

rendering it overly sensitive to extreme values, and with the variability of the initial 

results, caution is required when using the probability-based refinement without user 

interaction.  
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Chapter 7 contains a comparison between the performance of three global DEMs 

(ALOS World 3D30, SRTM (1 arc-second) and ASTER GDEM v2) within the 

methodology developed in Chapter 6. Also used is an Australia specific version of 

SRTM, which has had vegetation noise removed and a smoothing filter applied. Initial 

results show that ALOS produces good reliability in deriving locations of water depth, 

matching 78% and 89% of the SAR and optical derived flood extents respectively. 

The SRTM similarly performs well (80% and 84% match with SAR and optical). 

However, visual inspection shows locations of water depth are often found in smaller 

dispersed pixel groups, instead of the more continuous locations found in ALOS 

(Figures 7.7 and 7.8). The smoothing of the SRTM remedies this, producing results 

similar to the ALOS, suggesting that the pre-processing undertaken has the potential 

to improve results from hydrological applications using SRTM. The ASTER data 

shows itself unsuitable for future use due to the high degree of noise found within the 

dataset. Further research is needed to confirm the most suitable choice of terrain 

model for global estimation of flood depth and volume. Based on the results in 

Chapter 7, this should include ALOS, SRTM (1-arc second), and, if possible, a 

smoothed SRTM, alongside other lower-resolution datasets, such as the MERIT and 

TanDEM-X 3-arc second products. Ideally, future studies will include a variety of 

validation sources, allowing for a more reliable assessment of the accuracies 

produced by each terrain model. 

 

The recent launch of the Sentinel-1 constellation enhances the temporal resolution of 

freely-available medium-to-high resolution imagery. The improvements in satellite 

technology coincide with increased access to high-performance computing (HPC - 

such as Google Earth Engine and ESA Grid Processing on Demand (G-POD (ESA, 

2015)). These technological advances provide the capability to analyse a large 

number of images as they are acquired, allowing for near real-time flood monitoring. 

The availability of flood extents during an event provides a vital resource for 

emergency management and response, as well as allowing for data assimilation and 

validation of hydrodynamic models. A key requirement for near real-time flood 

monitoring is timely access to data after acquisition. Sentinel-1 data is typically 

available within a few hours of acquisition, utilising the European Data Relay Service 

(EDRS) to deliver data without the requirement for Sentinel-1 to have a line of sight 

to the ground station (Torres et al., 2012). Currently, platforms such as the 

Copernicus Emergency Management System (CEMS), the Dartmouth Flood 
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Observatory (DFO, 2019), and the Luxembourg Institute of Science and Technology 

(LIST) HASARD tool (Chini et al., 2019), which is hosted on G-POD, all provide 

examples of operational near real-time flood delineation. Further examples of near 

real-time algorithms in the literature include those proposed by Boni et al. (2016), 

Martinis et al. (2009, 2015b) and Mason et al. (2012a). The algorithms developed in 

the preceding chapters would require adjusting for near-real-time applications, 

namely to allow for faster and distributed processing within an HPC environment. To 

the best of this author’s knowledge, the currently available real-time services do not 

supply an estimate of water depth and volume. The addition of this information, 

whether via the presented algorithms or other techniques in the literature, will allow 

for improved, evidence-based emergency management during an event. 

 

Often these tools utilise more costly, higher resolution imagery from satellites such as 

TerraSAR-X, RADARSAT-2 and COSMO-SkyMED when activated during a large 

flood event. The ability to guarantee imagery for a particular location at a specific 

time can be vital during an event, and highlights why the more costly imagery is 

procured during an emergency. However, this study has shown that analysis of the 

freely available imagery from Sentinel-1 can provide equally valuable information. 

The accuracy of the flood maps produced in Chapter 5 are comparable to those 

produced by CEMS using higher resolution RADARSAT-2 imagery (Table 5.5). The 

regular Sentinel-1 imagery throughout a flood life cycle can help improve our 

understanding of the flood dynamics through the onset, peak and retreat of an event. 

However, as shown for the UK case study, Sentinel-1 is likely to miss the flood peak 

due to the fixed orbit. A likely solution is the use of multi-satellite constellations, as 

demonstrated by Boni et al. (2016) and Martinis and Rieke (2015), resulting in a 

further increase to the temporal resolution of flood extents.  

 
8.4. Limitations of SAR Flood Mapping 
Despite the advantages of using SAR imagery to map flooding, there are still well-

known limitations that require addressing. The biggest drawback is SAR’s inability to 

map flooding when features protrude the water surface, which results in the double 

bounce effect. This limits the classification of inundation in urban and woodland 

locations, whilst also causing extent under-prediction when emergent vegetation is 

present at the flood edge.  
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Potential examples of these interactions are found within the preceding chapters, 

although without further validation data it is unclear as to whether significant 

inundation has been missed in the presented flood maps. In Chapter 5, extensive 

flooding has been identified immediately upstream and downstream of York in the 

Ouse catchment (Figures 5.12 and 5.13), and around Carlisle in the Eden catchment 

(Figure 5.18). However, minimal inundation was detected within the city limits. This is 

contrary to media reports, which suggest that there was significant flooding in both 

cities during Storms Desmond (Carlisle) and Eva (York) (BBC, 2015a, 2015b). It 

should be noted that the floodwaters may have receded during the time between the 

peak flow in the hydrographs and satellite images being acquired, although it would 

be expected that given the scale of the inundation that some would persist. The lack 

of urban flooding in York in both Sentinel-1 and CEMS flood maps shows that the 

challenge is a wider SAR data challenge, instead of a spatial resolution issue. 

Current work within the discipline is focusing on the use of SAR coherence for 

identifying flooding in urban settings (Chini et al., 2019; Li et al., 2019). Although 

these methods show potential, the work in this field is currently in its infancy. 

Questions remain about the ability of medium resolution sensors to sufficiently derive 

flooding via coherence, the impacts of radar shadow from buildings, and the level of 

refinement required to remove naturally incoherent land covers (vegetation) from any 

classification. 

 

Flooding under vegetation often provides a different challenge due to the variability in 

backscatter response with vegetation type. The prevalence of volume scattering from 

the tree canopies in C-Band imagery, such as that from Sentinel-1, limits signal 

penetration through to ground level. L-Band sensors, such as that onboard ALOS-2, 

have greater potential for monitoring flooded vegetation due to the increased canopy 

penetration (Plank et al., 2017). Depending on the canopy thickness and 

composition, Sentinel-1 imagery will show a minimal difference in backscatter 

intensity between wet and dry conditions, making assessing changes in the ground 

conditions impossible. However, there is potential for delineating flooding under 

emergent vegetation or flooded grassland and shrubs, due to the more noticeable 

change in backscatter. Recent examples include time series analysis of polarisation 

ratio (VV/VH) (Tsyganskaya et al., 2018) and indices such as the Normalised 

Difference Flood in Vegetation Index (NDFVI) (Cian et al., 2018b).  

 



[222] 
 

Highlighted in this research is the potential for false classifications due to the low 

backscatter responses produced by ground frost and wet snow. In Chapter 5, there 

are extensive low backscatter responses across the north of England on the 15th Jan. 

However, this contradicts weather records at the time, which show limited rainfall and 

a lowering of river stage, alongside gridded temperature observations which display a 

drop to around freezing point. Determining which classifications are false is difficult 

due to the similarity in backscatter intensity between water, wet snow and frozen 

ground. Suggested ancillary information to help refine the results include terrain data 

and the spatial overlap of previously identified flooding, both of which have their 

drawbacks depending on geographical location and satellite coverage (Figure 5.27). 

The latter is used to refine the flood extents for volume estimation in Chapter 6. 

Despite the removal of suspect inundation, calculated volumes are still larger than 

expected. In particular, volumes in the Ouse catchment on the 15th Jan are greater 

than on the 29th Dec, the flood peak caused by Storm Eva (Figure 6.19). Further 

investigation into automated methods for refining the flood classifications in the 

presence of wet snow and frost is required. 

 

Sentinel-1 operates on a fixed, conflict-free orbit, and is rarely specifically tasked to 

image a flood event based on predictions of maximum inundation. As such, the 

majority of the satellite passes presented here fail to coincide with the peak river flow 

of the hydrographs shown in Chapter 5, and there is no method for accurately 

temporally interpolate the extent of flooding. The linearity of the time series for flood 

extent and volume displayed in Chapters 5 and 6 is not a representation of the true 

flood dynamics between image dates. It should be noted that only one of the 

Sentinel-1 satellites being operational at the time, resulting in approximately 3-6 day 

coverage over the UK. With both satellites operation coverage is improved, with 

images every 2-3 days for all of the UK. However, even at full constellation it is likely 

that Sentinel-1 acquisitions will not capture the peak of the flood. Further to the 

temporal gaps in data, large catchments such as the Ouse are often only partially 

covered by the satellite imagery. The under-estimation of the reported inundation 

statistics when an image does not provide full coverage needs to be acknowledged 

when assessing the flood dynamics across wide geographical areas.  
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8.5. Future Work 
Despite the successful development and application of algorithms for determining 

flood extent, depth and volume, there is inevitably improvements to be found. The 

following sections highlight potential future work, including further expansion of the 

presented deterministic algorithms, and the potential for the development of a 

probabilistic flood mapping or machine learning frameworks. Underlying all of these 

is the requirement for more case studies to further understand the strengths and 

weaknesses of the presented algorithms, and to provide additional validation of 

results.  

 

8.5.1. Further Development of Current Algorithms 
There are a number of steps within the presented work that could be further tested 

and parametrised.  

 

The relationship between the ideal local land-water threshold and incidence angle 

has been defined using SAR backscatter histograms of permanent water bodies and 

their surrounding locations. All orbit tracks are combined, resulting in around 260 

individual thresholds for each polarisation, which cover the full Sentinel-1 swath 

width, upon which the variable threshold is defined. There is scope for either 

confirming or updating the variable threshold by analysing additional local 

histograms. This can be achieved by adding new permanent water locations using 

the current methodology, or by updating the bimodality test to increase the number of 

the existing histograms successfully analysed. The current rule-based system is 

susceptible to rejecting histograms that have uneven water and land peaks (caused 

by the removal of high slope locations), multiple dry peaks (when urban and rural 

areas are present), or those without a deep trough between the peaks. The addition 

of further rules will allow for the inclusion of other suitable histograms that have been 

previously rejected. Alternatively, a more statistical assessment of each histogram, 

such as the Ashman’s D value, which assesses the difference between two Gaussian 

distributions (Chini et al., 2017), is likely to result in an increased number of local 

histograms passing the bimodality test.   

 

The technique for estimating waterline heights based on the assumption that over a 

region, the location of the satellite-derived flood boundary is inherently correct. 

Heights are estimated each shoreline-adjacent SAR pixel, with the 95th percentile 
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and median height values from the underlying terrain selected for flood and dry pixels 

respectively. However, these values may misrepresent the shoreline height due to 

the potential underestimation of the SAR flood extents and the difference in dataset 

resolution. Examples of potential future parameterisation tests include the addition of 

height estimates from additional dry SAR pixels further away from the shoreline, or 

the selection of multiple heights from within each dry SAR pixel (25th, 50th, 75th 

percentiles). It is likely that the locational accuracy of the satellite flood boundary will 

vary with the underlying terrain. Locations with gentle gradients at the flood edge will 

have a greater chance of the inundation extending beyond the shoreline adjacent 

SAR pixel, with the specular reflection masked by emergent vegetation. In steeper 

terrain, the flood boundary is likely to be clearer in the SAR imagery, albeit with 

greater uncertainty when combining with terrain data due to the broader range of 

possible heights. Additionally, Mason et al. (2012b) demonstrated that although 

emergent vegetation masks the specular reflection of the radar signal, there is 

potential for identifying flooding using the increased backscatter caused by the 

double bounce effect, albeit with large uncertainty bounds. The development of a 

rule-based system for selecting the SAR pixel height, which accounts for underlying 

terrain gradients, SAR backscatter (both within the flood image and variations from 

dry reference backscatter) and land-cover, is likely to produce more geographically 

robust results. 

 

The addition of improved accounting for erroneous shoreline heights in locations 

where the edge of the SAR image intersects the body of flooding will further increase 

the reliability of the workflow. An example of this can be seen for the 6th Jan in Figure 

6.18. Currently no additional processing is applied in these locations when 

calculating water surfaces within the shoreline adjacent SAR pixels, resulting in lower 

height values from the floodplain being used to calculate local water surfaces. The 

removal of observed flood edges that correspond to the image edge instead of the 

targeted flood boundary will allow for more realistic surfaces to be produced in these 

locations. 

 

There are adjustments that could be made in the selection of local water surface 

heights. The current system uses a search window based on the histogram statistics, 

within which peak values are identified. However, there are occasions where there is 

no peak within the search boundaries, in which case a rule-based system is used to 
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determine the water surface height. Often in these situations, a clear, plausible 

histogram peak is found just outside the search window. An iterative system is 

proposed, where the selection boundaries become more open if no initial peak is 

found. This will allow for a local water surface height to always be determined based 

on the histogram of the SAR pixel heights, theoretically making the process more 

robust.  

 

In Chapter 6 the refinement of the water depth maps is completed based on the 

location of flood embankments. This allows for updated flood extents to be produced, 

which includes new locations of inundation unobserved by SAR, whilst accounting for 

the successful protection of low-lying land by the flood defences. However, the 

dataset of flood defences is UK specific, and spatial information of this kind is unlikely 

to be easily obtainable on a global scale. It may be possible to derive the locations of 

flood embankments, either from high-resolution terrain dataset (again, if available) or 

from Sentinel-1 imagery, as demonstrated by Wood et al. (2018). In the absence of 

embankment data, a probabilistic refinement framework is suggested based on 

terrain and distance from SAR identified flooding. The results show potential for 

producing similar refinement of new potential inundated areas as the embankment-

based technique. Further investigation is needed to test, and likely improve, the 

reliability of probabilistic framework, including the inclusion of additional global 

datasets, and the undertaking of thorough sensitivity analysis. 

 

8.5.2. Probabilistic Flood Mapping 
The field of remote sensing for flood management is highly active, with new methods 

and applications being regularly developed in academia and industry. Due to this, the 

limitations of SAR flood mapping are well understood, namely the inability to reliably 

map inundation in urban and woodland locations, and the potential for emergent 

vegetation to cause underestimation of the full flood extent.  

 

Given the inherent uncertainty with SAR flood mapping, the development and 

application of probabilistic frameworks have their merits. Probabilistic and fuzzy flood 

mapping has previously been demonstrated by Pierdicca et al. (2008) and Pulvirenti 

et al. (2011). The topics and processing techniques applied in these studies are 

worth revisiting after the launch of Sentinel-1, and with recent advancements in 

processing algorithms and analysis. There are a number of variables that can help 
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inform a probabilistic flood classification, including various SAR data products and 

ancillary datasets. The methodologies used in this thesis, and the majority of 

algorithms in the literature, are based on the use of SAR backscatter intensity to 

identify the specular reflection of the radar signal off the water surface. However, 

recent studies have shown that SAR polarimetry and interferometric coherence can 

both indicate flooding, including in vegetated and urban locations where SAR 

backscatter alone is unreliable (Tsyganskaya et al., 2018; Li et al., 2019). Flooding 

impacts the SAR backscatter response by altering the smoothness and height of the 

imaged ground surface, subsequently changing the radar pathways. Change 

detection is an effective technique for identifying inundation due to these alterations 

in ground conditions, as demonstrated with backscatter intensity in Chapters 4 and 5. 

Similar analysis based on the changes in SAR return signal with inundation can be 

undertaken when using polarisation ratios (VV/VH), or when comparing dry-dry 

image coherence to dry-flooded.  

 

The number of available SAR segmentation processes, either based on the co-flood 

image or changes from dry conditions, means a robust probabilistic framework can 

be developed. There are two potential techniques for achieving this. Firstly, each 

method can be used to deterministically identify flooding, with locations highlighted 

as inundated using multiple processes having a higher probability when combined 

(Schumann et al., 2009b). Alternatively, probability functions (such as the Z-function 

shown in Figure 6.8) can be used to classify each technique with regards to the 

likelihood of flooding (Pulvirenti et al., 2011). These can then be combined to provide 

overall probabilities. Additional information based on terrain, such as the HAND index 

used within this thesis, and land cover maps, notably urban and woodland regions, 

can help further understand the probabilities and uncertainty produced by the SAR 

flood maps.  

 

8.5.3. Machine Learning Frameworks for SAR Flood Mapping 
Another approach to satellite flood mapping is the utilisation of machine learning 

algorithms. Sections 2.2.3 and 2.3.4 outline the current applications within the 

literature for multispectral and SAR imagery respectively. The research and 

development of machine learning algorithms for extracting surface water from SAR 

imagery is relatively unexplored, with numerous challenges requiring solutions before 

more widespread use occurs. A priority amongst these is the utilisation of emerging 
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HPC technologies (as discussed in Section 2.5) to allow for the efficient transfer, 

processing, storage and analysis of large volumes of data using machine learning 

algorithms, which tend to have a heavy computing cost (Sun and Scanlon, 2019).  

 

Similar to the probabilistic frameworks outlined above, machine learning algorithms 

have the potential to utilise SAR coherence and polarisation ratios within the learning 

and classification processes to improve the reliability of the results. Li et al. (2019) 

provide an example of a deep-learning neural network to map urban inundation 

based on SAR intensity and coherence. The increasing amount of SAR imagery (and 

derivatives) has great potential for improving the consistency and quality of training 

samples used in learning algorithms (McCabe et al., 2017). Furthermore, past 

machine learning implementations have combined sources of imagery (optical and 

SAR) to increase both the quantity and quality of training data, whilst allowing 

analysis to be undertaken at a finer temporal resolution (Bangira et al., 2019; 

Benoudjit and Guida, 2019). The further development of the current machine learning 

frameworks, including the addition of SAR image derivatives to the training datasets, 

improved automated labelling of training samples, and the deployment of algorithms 

onto HPC clusters or cloud computing services, has potential to provide another 

source of reliable flood extent mapping.  

 

8.5.4. Validation Framework 
Further validation is required to confirm the accuracy of the presented algorithms. For 

the UK case study, a TA of 91% and a CSI of 77% are achieved when compared to 

optical imagery. The Australia study produced greater spatial variability in reported 

accuracy, albeit with large uncertainty over the similarity of the hydrological 

conditions between SAR and validation image acquisition. More case studies with 

suitable validation data will allow for increased confidence in the algorithm. 

 

Validation of spaceborne derived flood maps is often a challenge. In-situ datasets 

normally lack the geographical coverage to adequately determine the quality of the 

classification. Results from hydrodynamic models commonly have large 

uncertainties. Often the default is to compare the extents to those derived from a 

different satellite or aerial image, nominally using optical sensors, which are 

frequently rendered unusable by cloud cover. Furthermore, any remote sensing 
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classification is likely to have inaccuracies, which need acknowledging when being 

used as the source of validation.  

 

There is a lack of consistency in the literature with validating satellite observed flood 

extents, making it difficult to ascertain which algorithms provide the most accurate 

results. There are a number of variables that can impact an accuracy assessment, 

including which SAR imagery is used, the processing methodology, source of the 

validation dataset, and the geographical setting. Furthermore, different accuracy 

metrics are commonly applied, and on varying scales. As shown in Chapters 5 and 7, 

TA and CSI can vary significantly across the same flood, and the land-to-flood ratio in 

a validation area can change the produced accuracy values. Accounting for all of 

these variables often masks the information that is of interest, namely how SAR 

acquisition parameters and the applied processing techniques have changed the 

quality of the classification. 

 

A useful endeavour would be the development of a validation standard. This would 

include a number of case studies, encompassing SAR data from a variety of 

satellites, alongside a variety of reliable validation sources, with fixed validation areas 

and metrics. Recently, Landuyt et al. (2018) published a study directly comparing a 

number of techniques across a variety of flood events. The scaling up of this work, 

both in terms of the algorithms compared and flood events analysed, would allow for 

easier direct comparison between different flood delineation algorithms. Furthermore, 

multiple case studies will ensure algorithms are robust in terms of geographical 

location, as well as sensor-specific acquisition parameters. Overall, the direct 

comparison between algorithms will help inform future research opportunities, whilst 

providing confidence to non-expert stakeholders with regards to the accuracy of the 

flood maps. Making the various SAR and validation datasets openly available will 

allow for fast, informative comparisons for future research projects, whilst helping to 

encourage further collaboration in the hydrological remote sensing community. 

 

The derived water surfaces have been compared to in-situ gauge measurements. 

Although providing an indication of accuracy, stage measurements can be unreliable 

when flows exceed instrument design parameters, a possibility during the extreme 

events analysed in Chapter 6. Therefore, additional research would include finding 

other validation sources for the reported water surfaces, depths and volumes. The 
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derived water surfaces could potentially be validated against spaceborne altimetry, 

although there are drawbacks caused by the limited coverage provided by altimetry 

satellites. The upcoming Surface Water and Ocean Topography (SWOT) mission, 

due for launch in September 2021, will provide improved spaceborne water height 

measurements, alongside simultaneous extent data. This is going to revolutionise 

hydrological monitoring from space. SWOT data has utility for validating the 

algorithms presented in this thesis, alongside providing its own estimates of flood 

dynamics. There is also the possibility of using aerial or Unmanned Aerial Vehicles 

(UAVs) as validation platforms, both of which have the ability to carry LiDAR sensors. 

Although there are still challenges due to weather dependence, cost and survey 

planning, there is potential to arrange data acquisition to coincide with the satellite 

orbit, allowing for greater confidence in the validation.  

 

Hydrodynamic models and flood observations from remote sensing have been 

previously used to validate one another (Matgen et al., 2016; Scarpino et al., 2018). 

As well as a comparison of flood extent, other hydrodynamic model outputs such as 

water depths and volumes, can be compared to results produced by the algorithms 

presented in this thesis. Care is required when undertaken such comparisons to 

ensure that a suitable model, with accurate parameterisation, is used. The 

development and application of a suitable hydrodynamic model is outside the remit of 

the current project. However, there is future scope in cross-validating hydrodynamic 

model outputs with remote sensing observations across multiple flood parameters.    

 
8.6. Conclusions 
This thesis has presented a series of innovative, globally-applicable algorithms for 

accurately mapping flood dynamics (extent, depth and volume) based on SAR 

imagery and terrain data, achieving the aims of the project that were specified in 

Chapter 1. Chapters 5 presents a hybrid workflow for delineating flood extents from 

Sentinel-1 SAR, applied to the flooding observed in the UK during the winter of 2015-

16. The results are shown to be accurate when validated against flood maps from 

other data sources. Challenges remain in delineating inundation in urban and 

woodland locations when using SAR data. Chapter 6 combined the SAR flood 

extents with high-resolution LiDAR terrain data to provide estimates of water depth 

and volume. A novel framework is presented for deriving shoreline height, with a grid-

based technique used for creating water surfaces. Inter-catchment water movements 
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are identified from the results, which show good correlation to river flow and rainfall. 

Chapter 7 applied the derived methodologies to an international case study. The 

processes generally perform well, although further validation is required. The results 

show that lower-resolution global DEMs can still be used to estimate flood dynamics. 

Of the global terrain models tested, the less noisy ALOS DEM produced the most 

reliable results.  

 

Overall, the project objectives have largely been successfully met, albeit with the 

requirement for further global case studies to confirm the applicability of the 

algorithms developed and the results accuracy. The work highlights the vital role 

satellite remote sensing plays in flood risk management. In particular, the ability to 

monitor wide geographical regions provides an advantage over in-situ 

measurements. Commonly, spaceborne flood mapping research in the literature 

does not fully analyse the temporal nature of flooding, whilst often only reporting 

flood extent and depth. The high temporal resolution of Sentinel-1 allows for 

improved mapping of the changing characteristics of a flood during an event. 

Reporting flood volume alongside other descriptors provides additional insight into 

the onset, peak and retreat of a flood, with the inter-catchment analysis having the 

potential for increasing our understanding of catchment-scale inundation dynamics. 

These improved insights have value throughout the flood management cycle, 

including helping to assess future flood risk, assisting emergency management 

during an event, and for validating hydrodynamic models. 



[231] 
 

Bibliography 
ABI (2016) New figures reveal scale of insurance response after recent floods ABI. [Online]. 

Available from: https://www.abi.org.uk/news/news-articles/2016/01/new-figures-reveal-
scale-of-insurance-response-after-recent-floods/. Last Accessed 05/03/2019. 

Acharya, T.D., Subedi, A. and Lee, D.H. (2019) Evaluation of Machine Learning Algorithms 
for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors. 19, 2769. 
doi:10.3390/s19122769. 

Alganci, U., Besol, B. and Sertel, E. (2018) Accuracy Assessment of Different Digital Surface 
Models. ISPRS International Journal of Geo-Information. 7:(3), 114. 
doi:10.3390/ijgi7030114. 

Alsdorf, D., Birkett, C., Dunne, T., Melack, J. and Hess, L. (2001) Water level changes in a 
large Amazon lake measured with spaceborne radar interferometry and altimetry. 
Geophysical Research Letters. 28:(14), 2671–2674. doi:10.1029/2001GL012962. 

Alsdorf, D., Rodríguez, E. and Lettenmaier, D.P. (2007) Measuring surface water from 
space. Reviews of Geophysics. 45:(2), RG2002. doi:10.1029/2006RG000197. 

Amitrano, D., Di Martino, G., Iodice, A., Riccio, D. and Ruello, G. (2018) Unsupervised Rapid 
Flood Mapping Using Sentinel-1 GRD SAR Images. IEEE Transactions on Geoscience 
and Remote Sensing. 56:(6), 3290–3299. doi:10.1109/TGRS.2018.2797536. 

Arnell, N.W. and Gosling, S.N. (2016) The impacts of climate change on river flood risk at the 
global scale. Climatic Change. 134:(3), 387–401. doi:10.1007/s10584-014-1084-5. 

Augustin, H., Sudmanns, M., Tiede, D., Lang, S. and Baraldi, A. (2019) Semantic Earth 
Observation Data Cubes. Data. 4, 102. doi:10.3390/data4030102. 

Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P. and Anguela, T.P. (2008) Analysis of 
TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural 
fields. Remote Sensing of Environment. 112:(12), 4370–4379. 
doi:10.1016/j.rse.2008.08.004. 

Bangira, T., Alfieri, S.M., Menenti, M. and van Niekerk, A. (2019) Comparing Thresholding 
with Machine Learning Classifiers for Mapping Complex Water. Remote Sensing. 11, 
1351. doi:10.3390/rs11111351. 

Barker, L., Muchan, K. and Turner, S. (2016) The winter 2015 / 2016 floods in the UK : a 
hydrological appraisal. Weather. 71:(12), 324–333. doi:10.1002/wea.2822. 

Barra, A., Monserrat, O., Mazzanti, P., Esposito, C., Crosetto, M. and Scarascia Mugnozza, 
G. (2016) First insights on the potential of Sentinel-1 for landslides detection. 
Geomatics, Natural Hazards and Risk. 7:(6), 1874–1883. 
doi:10.1080/19475705.2016.1171258. 

Bates, P.D., Pappenberger, F. and Romanowicz, R.J. (2014) Uncertainty in Flood Inundation 
Modelling. In: Applied Uncertainty Analysis for Flood Risk Management. Imperial 
College Press. 232–269. doi:10.1142/9781848162716_0010. 

Bazi, Y., Bruzzone, L. and Melgani, F. (2005) An unsupervised approach based on the 
generalized Gaussian model to automatic change detection in multitemporal SAR 
images. IEEE Transactions on Geoscience and Remote Sensing. 43:(4), 874–887. 
doi:10.1109/TGRS.2004.842441. 

BBC (2015a) Storm Desmond: Thousands of people flooded out of homes - BBC News. 
[Online]. Available from: https://www.bbc.co.uk/news/uk-35023558. Last Accessed 
22/05/2019. 

BBC (2015b) UK floods: Cost of Storms Eva and Desmond could top £1.5bn - BBC News. 



[232] 
 

[Online]. Available from: https://www.bbc.co.uk/news/business-35189179. Last 
Accessed 10/09/2019. 

Below, R. and Wallemacq, P. (2018) Annual Disaster Statistical Review 2017 Centre for 
Research on Epidemiology of Disasters. [Online]. Available from: 
https://www.cred.be/publications. Last Accessed 22/09/2019. 

Benoudjit, A. and Guida, R. (2019) A Novel Fully Automated Mapping of the Flood Extent om 
SAR Images Using a Supervised Classifier. Remote Sensing. 11, 779. 
doi:10.3390/rs11070779. 

Berry, P.A.M., Garlick, J.D., Freeman, J.A. and Mathers, E.L. (2005) Global inland water 
monitoring from multi-mission altimetry. Geophysical Research Letters. 32:(16), L16401. 
doi:10.1029/2005GL022814. 

Betbeder, J., Rapinel, S., Corpetti, T., Pottier, E., Corgne, S. and Hubert-Moy, L. (2014) 
Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. Journal 
of Applied Remote Sensing. 8:(1), 083648. doi:10.1117/1.JRS.8.083648. 

Bhatt, C.M., Rao, G.S., Diwakar, P.G. and Dadhwal, V.K. (2017) Development of flood 
inundation extent libraries over a range of potential flood levels: a practical framework 
for quick flood response. Geomatics, Natural Hazards and Risk. 8:(2), 384–401. 
doi:10.1080/19475705.2016.1220025. 

Bioresita, F., Puissant, A., Stumpf, A. and Malet, J.P. (2018) A method for automatic and 
rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sensing. 10, 217. 
doi:10.3390/rs10020217. 

Birkinshaw, S.J., Moore, P., Kilsby, C.G., O’Donnell, G.M., Hardy, A.J. and Berry, P.A.M. 
(2014) Daily discharge estimation at ungauged river sites using remote sensing. 
Hydrological Processes. 28:(3), 1043–1054. doi:10.1002/hyp.9647. 

Boni, G., Ferraris, L., Pulvirenti, L., Squicciarino, G., Pierdicca, N., Candela, L., Pisani, A.R., 
Zoffoli, S., Onori, R., Proietti, C. and Pagliara, P. (2016) A Prototype System for Flood 
Monitoring Based on Flood Forecast Combined with COSMO-SkyMed and Sentinel-1 
Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing. 9:(6), 2794–2805. doi:10.1109/JSTARS.2016.2514402. 

Bonn, F. and Dixon, R. (2005) Monitoring flood extent and forecasting excess runoff risk with 
RADARSAT-1 data. Natural Hazards. 35:(3), 377–393. doi:10.1007/s11069-004-1798-1. 

Bovolo, F. and Bruzzone, L. (2007) A Split-Based Approach to Unsupervised Change 
Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage 
Assessment. IEEE Transactions on Geoscience and Remote Sensing. 45:(6), 1658–
1670. doi:10.1109/TGRS.2007.895835. 

Braud, I., Breil, P., Thollet, F., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S. and 
Michel, K. (2013) Evidence of the impact of urbanization on the hydrological regime of a 
medium-sized periurban catchment in France. Journal of Hydrology. 485, 5–23. 
doi:10.1016/j.jhydrol.2012.04.049. 

Brisco, B., Touzi, R., van der Sanden, J.J., Charbonneau, F., Pultz, T.J. and D’Iorio, M. 
(2008) Water resource applications with RADARSAT-2 – a preview. International 
Journal of Digital Earth. 1:(1), 130–147. doi:10.1080/17538940701782577. 

Brivio, P.A., Colombo, R., Maggi, M. and Tomasoni, R. (2002) Integration of remote sensing 
data and GIS for accurate mapping of flooded areas. International Journal of Remote 
Sensing. 23:(3), 429–441. doi:10.1080/01431160010014729. 

Brown, K.M., Hambidge, C.H. and Brownett, J.M. (2016) Progress in operational flood 
mapping using satellite synthetic aperture radar (SAR) and airborne light detection and 
ranging (LiDAR) data. Progress in Physical Geography. 40:(2), 196–214. 



[233] 
 

doi:10.1177/0309133316633570. 

Burt, S. (2016) New extreme monthly rainfall totals for the United Kingdom and Ireland: 
December 2015. Weather. 71:(12), 333–338. doi:10.1002/wea.2801. 

Cao, H., Zhang, H., Wang, C. and Zhang, B. (2018) Operational Built-Up Areas Extraction for 
Cities in China Using Sentinel-1 SAR Data. Remote Sensing. 10:(6), 874. 
doi:10.3390/rs10060874. 

Chan, T.F. and Vese, L.A. (2001) Active Contours Without Edges. IEEE Transactions on 
Image Processing. 10:(2), 266–277. doi:10.1109/83.902291. 

Chapman, B., McDonald, K., Shimada, M., Rosenqvist, A., Schroeder, R. and Hess, L. 
(2015) Mapping regional inundation with spaceborne L-Band SAR. Remote Sensing. 
7:(5), 5440–5470. doi:10.3390/rs70505440. 

Chen, M., Tomás, R., Li, Z., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J. and Gong, X. 
(2016) Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) 
Using Satellite Radar Interferometry. Remote Sensing. 8:(6), 468. 
doi:10.3390/rs8060468. 

Chini, M., Hostache, R., Giustarini, L. and Matgen, P. (2017) A Hierarchical Split-Based 
Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test 
Case. IEEE Transactions on Geoscience and Remote Sensing. 55:(12), 6975–6988. 
doi:10.1109/TGRS.2017.2737664. 

Chini, M., Pelich, R., Pulvirenti, L., Pierdicca, N., Hostache, R. and Matgen, P. (2019) 
Sentinel-1 InSAR Coherence to Detect Floodwater in Urban Areas: Houston and 
Hurricane Harvey as A Test Case. Remote Sensing. 11:(2), 107. 
doi:10.3390/rs11020107. 

Chung, H.W., Liu, C.C., Cheng, I.F., Lee, Y.R. and Shieh, M.C. (2015) Rapid response to a 
typhoon-induced flood with an SAR-derived map of inundated areas: Case study and 
validation. Remote Sensing. 7:(9), 11954–11973. doi:10.3390/rs70911954. 

Cian, F., Marconcini, M., Ceccato, P. and Giupponi, C. (2018a) Flood depth estimation by 
means of high-resolution SAR images and LiDAR data. Natural Hazards and Earth 
System Sciences Discussions. 18, 3063–3084. doi:10.5194/nhess-2018-158. 

Cian, F., Marconcini, M. and Ceccato, P. (2018b) Normalized Difference Flood Index for 
rapid flood mapping: Taking advantage of EO big data. Remote Sensing of 
Environment. 209, 712–730. doi:10.1016/j.rse.2018.03.006. 

Coe, M.T. and Birkett, C.M. (2004) Calculation of river discharge and prediction of lake 
height from satellite radar altimetry: Example for the Lake Chad basin. Water Resources 
Research. 40, W10205. doi:10.1029/2003WR002543. 

Cohen, S., Brakenridge, G.R., Kettner, A., Bates, B., Nelson, J., McDonald, R., Huang, Y.F., 
Munasinghe, D. and Zhang, J. (2018) Estimating Floodwater Depths from Flood 
Inundation Maps and Topography. Journal of the American Water Resources 
Association. 54:(4), 847–858. doi:10.1111/1752-1688.12609. 

Copernicus (2018) Copernicus Sentinel Data Access Annual Report 2018. [Online]. Available 
from: https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/AnnualReport2018. 
Last Accessed 05/01/2020 

Copernicus (2019) Copernicus Market Report - February 2019. [Online]. Available from: 
https://www.copernicus.eu/sites/default/files/2019-
02/PwC_Copernicus_Market_Report_2019_PDF_version.pdf. Last Accessed 
05/01/2020 

Corbane, C., Lemoine, G., Pesaresi, M., Kemper, T., Sabo, F., Ferri, S. and Syrris, V. (2018) 



[234] 
 

Enhanced automatic detection of human settlements using Sentinel-1 interferometric 
coherence. International Journal of Remote Sensing. 39:(3), 842–853. 
doi:10.1080/01431161.2017.1392642. 

Crétaux, J.-F. and Birkett, C. (2006) Lake studies from satellite radar altimetry. Comptes 
Rendus Geoscience. 338:(14–15), 1098–1112. doi:10.1016/j.crte.2006.08.002. 

Cunha, L.K., Krajewski, W.F., Mantilla, R. and Cunha, L. (2011) A framework for flood risk 
assessment under nonstationary conditions or in the absence of historical data. Journal 
of Flood Risk Management. 4:(1), 3–22. doi:10.1111/j.1753-318X.2010.01085.x. 

D’aria, D., Zan, F. De, Giudici, D., Guarnieri, A.M. and Rocca, F. (2007) Burst-mode SARs 
for wide-swath surveys. Canadian Journal of Remote Sensing. 33:(1), 27–38. 
doi:10.5589/m07-008. 

Dai, A., Qian, T., Trenberth, K.E. and Milliman, J.D. (2009) Changes in Continental 
Freshwater Discharge from 1948 to 2004. Journal of Climate. 22:(10), 2773–2792. 
doi:10.1175/2008JCLI2592.1. 

Dai, K., Li, Z., Tomás, R., Liu, G., Yu, B., Wang, X., Cheng, H., Chen, J. and Stockamp, J. 
(2016) Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 
TOPS time series interferometry. Remote Sensing of Environment. 186, 501–513. 
doi:10.1016/j.rse.2016.09.009. 

Data.Gov.UK (2017) LIDAR Composite DTM - 2m - Metadata. [Online]. Available from: 
https://data.gov.uk/harvest/gemini-object/bb9cb765-e69e-4271-ba29-e94e8291f195. 
Last Accessed 27/09/2018. 

De Roo, A., van der Knijff, J., Horritt, M., Schmuck, G. and De Jong, S. (1999) Assessing 
flood damages of the 1997 Oder flood and the 1995 Meuse flood. In: Proceedings - 2nd 
International Symposium on Operationalization of Remote Sensing. Enschede, The 
Netherlands. 1999. doi:10.1016/S1464-1909(01)00054-5. 

De Zan, F. and Guarnieri, A.M. (2006) TOPSAR: Terrain observation by progressive scans. 
IEEE Transactions on Geoscience and Remote Sensing. 44:(9), 2352–2360. 
doi:10.1109/TGRS.2006.873853. 

DFO (2019) Dartmouth Flood Observatory, Founded 1993. [Online]. Available from: 
http://floodobservatory.colorado.edu/index.html. Last Accessed 22/05/2019. 

Di Baldassarre, G., Schumann, G.J.P., Brandimarte, L. and Bates, P. (2011) Timely Low 
Resolution SAR Imagery To Support Floodplain Modelling: a Case Study Review. 
Surveys in Geophysics. 32:(3), 255–269. doi:10.1007/s10712-011-9111-9. 

Dorati, C., Kucera, J., Marí Rivero, I. and Wania, A. (2018) Product User Manual for 
Copernicus EMS Rapid Mapping. [Online]. Available from: https://ec.europa.eu/jrc. Last 
Accessed 21/05/2019. 

EEA (2017) CORINE Land Cover. European Commision, Copenhagen, Denmark. 

Environment Agency (2018) Spatial Flood Defences. [Online]. Available from: 
https://data.gov.uk/dataset/6884fcc7-4204-4028-b2fb-5059ea159f1c/spatial-flood-
defences-including-standardised-attributes. Last Accessed 22/09/2019. 

Environment Agency (2019) Environment Agency Geomatics Survey Data. [Online]. 
Available from: 
https://www.arcgis.com/apps/MapJournal/index.html?appid=c6cef6cc642a48838d38e72
2ea8ccfee&fbclid=IwAR0DMG2wcB_9nlIAiklRRk4BCEr7wrp7ZfvtcC8hUlrln63uUxD9urlt
tXA. Last Accessed 05/01/2020. 

ESA-ARTES (2017) European Data Relay Satellite System (EDRS) Overview. [Online]. 
Available from: https://artes.esa.int/edrs/overview. Last Accessed 03/02/2019. 

https://doi.org/10.1016/S1464-1909(01)00054-5


[235] 
 

ESA (2010) GlobCover Portal. [Online]. Available from: 
http://due.esrin.esa.int/page_globcover.php.  Last Accessed 01/07/2019. 

ESA (2015) Grid Processing on Demand. [Online]. Available from: https://gpod.eo.esa.int/. 
Last Accessed 22/05/2019. 

ESA (2018a) SAR Instrument - Sentinel-1 SAR Technical Guide - Sentinel Online. [Online]. 
Available from: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-
instrument. Last Accessed 27/09/2019. 

ESA (2018b) User Guides - Sentinel-1 SAR - Revisit and Coverage - Sentinel Online. 
[Online]. Available from: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-
sar/revisit-and-coverage. Last Accessed 27/09/2019. 

ESA (2018c) User Guides - Sentinel-1 SAR - Extra Wide Swath - Sentinel Online. [Online]. 
Available from: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-
sar/acquisition-modes/extra-wide-swath. Last Accessed 27/09/2019. 

ESA (2018d) User Guides - Sentinel-1 SAR - Stripmap - Sentinel Online. [Online]. Available 
from: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-
modes/stripmap. Last Accessed 27/09/2019. 

ESA (2018e) User Guides - Sentinel-1 SAR - Wave - Sentinel Online. [Online]. Available 
from: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-
modes/wave. Last Accessed 27/09/2019. 

ESA (2018f) User Guides - Sentinel-1 SAR - Interferometric Wide Swath - Sentinel Online. 
[Online]. Available from: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-
sar/acquisition-modes/interferometric-wide-swath. Last Accessed 27/09/2019. 

ESA (2018g) User Guides - Sentinel-1 SAR - Product Types and Processing Levels - 
Sentinel Online. [Online]. Available from: https://earth.esa.int/web/sentinel/user-
guides/sentinel-1-sar/product-types-processing-levels. Last Accessed 27/09/2019. 

ESA (2018h) User Guides - Sentinel-1 SAR - Level-1 - Sentinel Online. [Online]. Available 
from: https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-
processing-levels/level-1. Last Accessed 27/09/2019. 

Esch, T., Schenk, A., Ullmann, T., Thiel, M., Roth, A. and Dech, S. (2011) Characterization of 
Land Cover Types in TerraSAR-X Images by Combined Analysis of Speckle Statistics 
and Intensity Information. IEEE Transactions on Geoscience and Remote Sensing. 
49:(6), 1911–1925. doi:10.1109/TGRS.2010.2091644. 

European Commission (2019) Copernicus Emergency Management Service. [Online]. 
Available from: 
https://emergency.copernicus.eu/mapping/#zoom=4&lat=40.7626&lon=0.78575&layers=
0BT00. Last Accessed 08/08/2019. 

Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., 
Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., et al. (2007) The 
shuttle radar topography mission. Reviews of Geophysics. 45:(2005), 1–33. 
doi:10.1029/2005RG000183. 

Feng, Q., Gong, J., Liu, J. and Li, Y. (2015) Flood Mapping Based on Multiple Endmember 
Spectral Mixture Analysis and Random Forest Classifier - The Case of Yuyao, China. 
Remote Sensing. 7, 12539-12562. doi:10.3390/rs70912539. 

Feyisa, G.L., Meilby, H., Fensholt, R. and Proud, S.R. (2014) Automated Water Extraction 
Index: A new technique for surface water mapping using Landsat imagery. Remote 
Sensing of Environment. 140, 23–35. doi:10.1016/j.rse.2013.08.029. 



[236] 
 

Fischer, E.M. and Knutti, R. (2015) Anthropogenic contribution to global occurrence of 
heavy-precipitation and high-temperature extremes. Nature Climate Change. 5:(6), 560–
564. doi:10.1038/nclimate2617. 

Foody, G.M. (2006) What is the difference between two maps? A remote senser’s view. 
Journal of Geographical Systems. 8:(2), 119–130. doi:10.1007/s10109-006-0023-z. 

Fu, L.L. (2001) Ocean Circulation and Variability from Satellite Altimetry. J.C. Gerold Siedler 
and G. John (eds.). Cambridge, Massachusetts (USA): Academic Press. 
doi:10.1016/S0074-6142(01)80116-9 

Gan, T.Y., Zunic, F., Kuo, C.-C. and Strobl, T. (2012) Flood mapping of Danube River at 
Romania using single and multi-date ERS2-SAR images. International Journal of 
Applied Earth Observation and Geoinformation. 18:(1), 69–81. 
doi:10.1016/j.jag.2012.01.012. 

Gao, Q., Zribi, M., Escorihuela, M.J. and Baghdadi, N. (2017) Synergetic use of sentinel-1 
and sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors. 17:(9), 
1966. doi:10.3390/s17091966. 

García, A.J., Bakon, M., Martínez, R. and Marchamalo, M. (2018) Evolution of urban 
monitoring with radar interferometry in Madrid City: performance of ERS-1/ERS-2, 
ENVISAT, COSMO-SkyMed, and Sentinel-1 products. International Journal of Remote 
Sensing. 39:(9), 2969–2990. doi:10.1080/01431161.2018.1437299. 

Garschagen, M. and Romero-Lankao, P. (2015) Exploring the relationships between 
urbanization trends and climate change vulnerability. Climatic Change. 133:(1), 37–52. 
doi:10.1007/s10584-013-0812-6. 

GEE (2015) Google Earth Engine: Sentinel-1 SAR GRD. [Online]. Available from: 
https://explorer.earthengine.google.com/#detail/COPERNICUS%2FS1_GRD. Last 
Accessed 06/03/2019. 

GEE (2019a) ALOS DSM: Global 30m. [Online]. Available from: 
https://developers.google.com/earth-
engine/datasets/catalog/JAXA_ALOS_AW3D30_V1_1?fbclid=IwAR09OQ. Last 
Accessed 30/06/2019. 

GEE (2019b) DEM-S: Australian Smoothed Digital Elevation Model. [Online]. Available from: 
https://developers.google.com/earth-
engine/datasets/catalog/AU_GA_DEM_1SEC_v10_DEM-
S?fbclid=IwAR0npHXaD6M8Z2Os4ymFnSRr8CP3P75hQPuKCqFXOt_FrGG1pEJv4dX
yYlg. Last Accessed 30/06/2019. 

Geng, J., Wang, H., Fan, J. and Ma, X. (2017) Deep Supervised and Contractive Neural 
Network for SAR Image Classification. IEEE Transactions on Geoscience and Remote 
Sensing. 55:(4), 2442-2459. doi:10.1109/TGRS.2016.2645226. 

Geoscience Australia (2010) 1 second SRTM Derived Digital Elevation Models User Guide – 
Version 1.0.3. [Online]. Available from: 
https://d28rz98at9flks.cloudfront.net/72759/1secSRTM_Derived_DEMs_UserGuide_v1.
0.4.pdf. Last Accessed 22/08/2019. 

Geudtner, D., Torres, R., Snoeij, P., Davidson, M. and Rommen, B. (2014) Sentinel-1 
System capabilities and applications. In: Proceedings - IEEE Geoscience and Remote 
Sensing Symposium. Quebec City, Canada. 2014. doi:10.1109/IGARSS.2014.6946711. 

Gharari, S., Hrachowitz, M., Fenicia, F. and Savenije, H.H.G. (2011) Hydrological landscape 
classification: investigating the performance of HAND based landscape classifications in 
a central European meso-scale catchment. Hydrology and Earth System Sciences. 15, 
3275-3291. doi:10.5194/hess-15-3275-2011. 

https://doi.org/10.1016/S0074-6142(01)80116-9


[237] 
 

Giordan, D., Notti, D., Villa, A., Zucca, F., Calò, F., Pepe, A., Dutto, F., Pari, P., Baldo, M. 
and Allasia, P. (2018) Low cost , multiscale and multi-sensor application for flooded 
area mapping. Natural Hazards and Earth System Science. 18, 1493–1516. 
doi:doi.org/10.5194/nhess-18-1483-2018. 

Giustarini, L., Matgen, P., Hostache, R., Montanari, M., Plaza, D., Pauwels, V.R.N., De 
Lannoy, G.J.M., De Keyser, R., Pfister, L., Hoffmann, L. and Savenije, H.H.G. (2011) 
Assimilating SAR-derived water level data into a hydraulic model: a case study. 
Hydrology and Earth System Sciences. 15:(7), 2349–2365. doi:10.5194/hess-15-2349-
2011. 

Giustarini, L., Hostache, R., Matgen, P., Schumann, G.J.P., Bates, P.D. and Mason, D.C. 
(2013) A Change Detection Approach to Flood Mapping in Urban Areas Using 
TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing. 51:(4), 2417–
2430. doi:10.1109/TGRS.2012.2210901. 

Giustarini, L., Chini, M., Hostache, R., Pappenberger, F. and Matgen, P. (2015) Flood 
hazard mapping combining hydrodynamic modeling and multi annual remote sensing 
data. Remote Sensing. 7:(10), 14200–14226. doi:10.3390/rs71014200. 

González, P.J., Bagnardi, M., Hooper, A.J., Larsen, Y., Marinkovic, P., Samsonov, S. V. and 
Wright, T.J. (2015) The 2014-2015 eruption of Fogo volcano: Geodetic modeling of 
Sentinel-1 TOPS interferometry. Geophysical Research Letters. 42:(21), 9239–9246. 
doi:10.1002/2015GL066003. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R. (2017) 
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote 
Sensing of Environment. 202, 18-27. doi:10.1016/j.rse.2017.06.031. 

Gorokhovich, Y. and Voustianiouk, A. (2006) Accuracy assessment of the processed SRTM-
based elevation data by CGIAR using field data from USA and Thailand and its relation 
to the terrain characteristics. Remote Sensing of Environment. 104:(4), 409–415. 
doi:10.1016/j.rse.2006.05.012. 

Grimaldi, S., Li, Y., Pauwels, V.R.N. and Walker, J.P. (2016) Remote Sensing-Derived Water 
Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and 
Challenges. Surveys in Geophysics. 37:(5), 977–1034. doi:10.1007/s10712-016-9378-y. 

Güneralp, B., Güneralp, İ. and Liu, Y. (2015) Changing global patterns of urban exposure to 
flood and drought hazards. Global Environmental Change. 31, 217–225. 
doi:10.1016/j.gloenvcha.2015.01.002. 

Hansard, H.C. (2016) Flooding Debate, Volume 604, Column 69. [Online]. Available from: 
https://publications.parliament.uk/pa/cm201516/cmhansrd/cm160105/debtext/160105-
0002.htm#16010519000001. Last Accessed 05/03/2019. 

Henderson, F.M. and Lewis, A.J. (2008) Radar detection of wetland ecosystems: a review. 
International Journal of Remote Sensing. 29:(20), 5809–5835. 
doi:10.1080/01431160801958405. 

Henry, J.B., Chastanet, P., Fellah, K. and Desnos, Y.L. (2006) Envisat multi-polarized ASAR 
data for flood mapping. International Journal of Remote Sensing. 27:(9–10), 1921–1929. 
doi:10.1080/01431160500486724. 

Hess, L.L., Melack, J.M., Filoso, S. and Wang, Y. (1995) Delineation of Inundated Area and 
Vegetation Along the Amazon Floodplain with the SIR-C Synthetic Aperture Radar. 
IEEE Transactions on Geoscience and Remote Sensing. 33:(4), 896–904. 
doi:10.1109/36.406675. 

Hirt, C. (2014) Digital Terrain Models. Encyclopedia of Geodesy. Springer International 
Publishing, Switzerland. doi:10.1007/978-3-319-02370-0_31-1. 



[238] 
 

Holloway, J. and Mengersen K. (2018) Statistical Machine Learning Methods and Remote 
Sensing for Sustainable Development Goals: A Review. Remote Sensing. 10, 1365. 
doi:10.3390/rs10091365. 

Horritt, M. (1999) A statistical active contour model for SAR image segmentation. Image and 
Vision Computing. 17:(3–4), 213–224. doi:10.1016/S0262-8856(98)00101-2. 

Horritt, M., Mason, D.C. and Luckman, A.J. (2001) Flood boundary delineation from 
Synthetic Aperture Radar imagery using a statistical active contour model. International 
Journal of Remote Sensing. 22:(13), 2489–2507. doi:10.1080/01431160152497691. 

Horritt, M. (2003) Waterline mapping in flooded vegetation from airborne SAR imagery. 
Remote Sensing of Environment. 85:(3), 271–281. doi:10.1016/S0034-4257(03)00006-
3. 

Hostache, R., Matgen, P., Schumann, G.J.P., Puech, C., Hoffmann, L. and Pfister, L. (2009) 
Water Level Estimation and Reduction of Hydraulic Model Calibration Uncertainties 
Using Satellite SAR Images of Floods. IEEE Transactions on Geoscience and Remote 
Sensing. 47:(2), 431–441. doi:10.1109/TGRS.2008.2008718. 

Hostache, R., Matgen, P. and Wagner, W. (2012) Change detection approaches for flood 
extent mapping: How to select the most adequate reference image from online 
archives? International Journal of Applied Earth Observation and Geoinformation. 
19:(1), 205–213. doi:10.1016/j.jag.2012.05.003. 

Huang, C., Chen, Y., Wu, J., Chen, Z., Li, L., Liu, R. and Yu, J. (2014) Integration of remotely 
sensed inundation extent and high-precision topographic data for mapping inundation 
depth. In: Proceedings - 3rd International Conference on Agro-Geoinformatics. Beijing, 
China. 2014. doi:10.1109/Agro-Geoinformatics.2014.6910580. 

Huang, C., Nguyen, B.D., Zhang, S., Cao, S. and Wagner, W. (2017) A Comparison of 
Terrain Indices toward Their Ability in Assisting Surface Water Mapping from Sentinel-1 
Data. International Journal of Geo-Information. 6:(140), 1–16. doi:10.3390/ijgi6050140. 

Huang, H., Cheng, S., Wen, J. and Lee, J. (2008) Effect of growing watershed 
imperviousness on hydrograph parameters and peak discharge. Hydrological 
Processes. 22:(13), 2075–2085. doi:10.1002/hyp.6807. 

Huang, W., DeVries, B., Huang, C., Lang, M., Jones, J., Creed, I. and Carroll, M. (2018) 
Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sensing. 
10:(5), 797. doi:10.3390/rs10050797. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.. (2002) Overview of 
the radiometric and biophysical performance of the MODIS vegetation indices. Remote 
Sensing of Environment. 83:(1–2), 195–213. doi:10.1016/S0034-4257(02)00096-2. 

Hunt, E.R., Gillham, J.H. and Daughtry, C.S.T. (2010) Improving potential geographic 
distribution models for invasive plants by remote sensing. Rangeland Ecology and 
Management. 63:(5), 505–513. doi:10.2111/REM-D-09-00137.1. 

Insom, P., Cao, C., Boonsrimuang, P., Liu, D., Saokarn, A., Yomwan, P. and Xu, Y. (2015) A 
Suppoert Vector Machine-Based Particle Filter Method for Improved Flooding 
Classification. IEEE Geoscience and Remote Sensing Letters. 12:(9), 1943-1947. 
doi:10.1109/LGRS.2015.2439575. 

IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate 
Change Adaptation. Christopher B. Field, Vicente Barros, Thomas F. Stocker, and Qin 
Dahe (eds.). Cambridge: Cambridge University Press. [Online]. Available from: 
https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-
advance-climate-change-adaptation/. 

Isikdogan, F., Bovik, A.C. and Passalacqua, P. (2017) Surface Water Mapping by Deep 



[239] 
 

Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing. 10:(11), 4909-4918. doi:0.1109/JSTARS.2017.2735443. 

Jackson, T.J. (2002) Remote sensing of soil moisture: Implications for groundwater recharge. 
Hydrogeology Journal. 10:(1), 40–51. doi:10.1007/s10040-001-0168-2. 

Jarihani, A.A., Callow, J.N., Johansen, K. and Gouweleeuw, B. (2013) Evaluation of multiple 
satellite altimetry data for studying inland water bodies and river floods. Journal of 
Hydrology. 505, 78–90. doi:10.1016/j.jhydrol.2013.09.010. 

Jin, Y.Q. and Xu, F. (2013) Polarimetric scattering and SAR information retrieval.  Hoboken, 
N.J.: John Wiley & Sons Inc. 

Jongman, B., Ward, P.J. and Aerts, J.C.J.H. (2012) Global exposure to river and coastal 
flooding: Long term trends and changes. Global Environmental Change. 22:(4), 823–
835. doi:10.1016/j.gloenvcha.2012.07.004. 

Jung, H.C., Hamski, J., Durand, M., Alsdorf, D., Hossain, F., Lee, H., Hossain, A.K.M.A., 
Hasan, K., Khan, A.S. and Hoque, A.K.M.Z. (2010) Characterization of complex fluvial 
systems using remote sensing of spatial and temporal water level variations in the 
Amazon, Congo, and Brahmaputra Rivers. Earth Surface Processes and Landforms. 
35:(3), 294–304. doi:10.1002/esp.1914. 

Karvonen, J. (2018) Estimation of Arctic land-fast ice cover based on dual-polarized Sentinel-
1 SAR imagery. The Cryosphere. 12, 2595–2607. doi:10.5194/tc-12-2595-2018. 

Kay, A.L., Davies, H.N., Bell, V.A. and Jones, R.G. (2009) Comparison of uncertainty 
sources for climate chnage impacts: flood frequency in England. Climate Change. 92, 
41–63. doi:10.1007/s10584-008-9471-4. 

Keys, L. and Baade, J. (2019) Uncertainty in Catchment Delineations as a Result of Digital 
Elevation Model Choice. Hydrology. 6:(1), 13. doi:10.3390/hydrology6010013. 

Khaldoune, J., Van Bochove, E., Bernier, M. and Nolin, M.C. (2011) Mapping Agricultural 
Frozen Soil on the Watershed Scale Using Remote Sensing Data. Applied and 
Environmental Soil Science. 2011, 1–16. doi:10.1155/2011/193237. 

Kittler, J. and Illingworth, J. (1986) Minimum Error Thresholding. Pattern Recognition. 19:(1), 
41–47. doi:10.1016/0031-3203(86)90030-0. 

Kolecka, N. and Kozak, J. (2014) Assessment of the Accuracy of SRTM C- and X-Band High 
Mountain Elevation Data: A Case Study of the Polish Tatra Mountains. Pure and 
Applied Geophysics. 171:(6), 897–912. doi:10.1007/s00024-013-0695-5. 

Kouraev, A. V, Zakharova, E.A., Samain, O., Mognard, N.M. and Cazenave, A. (2004) Ob’ 
river discharge from TOPEX/Poseidon satellite altimetry (1992-2002). Remote Sensing 
of Environment. 93:(1–2), 238–245. doi:10.1016/j.rse.2004.07.007. 

Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., 
Mechler, R., Bouwer, L.M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G.R., 
Kron, W., Benito, G., et al. (2014) Flood risk and climate change: global and regional 
perspectives. Hydrological Sciences Journal. 59:(1), 1–28. 
doi:10.1080/02626667.2013.857411. 

Landuyt, L., Van Wesemael, A., Schumann, G.J.P., Hostache, R., Verhoest, N.E.C. and Van 
Coillie, F.M.B. (2018) Flood Mapping Based on Synthetic Aperture Radar: An 
Assessment of Established Approaches. IEEE Transactions on Geoscience and 
Remote Sensing. 57:(2), 722–739. doi:10.1109/TGRS.2018.2860054. 

Lau, N., Tymofyeyeva, E. and Fialko, Y. (2018) Variations in the long-term uplift rate due to 
the Altiplano–Puna magma body observed with Sentinel-1 interferometry. Earth and 
Planetary Science Letters. 491, 43–47. doi:10.1016/j.epsl.2018.03.026. 



[240] 
 

Lee, J. Sen (1983) Digital image smoothing and the sigma filter. Computer Vision, Graphics 
and Image Processing. 24:(2), 255–269. doi:10.1016/0734-189X(83)90047-6. 

Lee, J. Sen, Wen, J.H., Ainsworth, T.L., Chen, K.S. and Chen, A.J. (2009) Improved sigma 
filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and 
Remote Sensing. 47:(1), 202–213. doi:10.1109/TGRS.2008.2002881. 

Lemos, A., Shepherd, A., McMillan, M., Hogg, A.E., Hatton, E. and Joughin, I. (2018) Ice 
velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ 
Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. The Cryosphere. 12:(6), 2087–
2097. doi:10.5194/tc-12-2087-2018. 

Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, 
J., Woodcock, R., Sixsmith, J., Wu, W., Tan, P., Li, F., Killough, B., Minchin, S., 
Roberts, D., Ayers, D., Bala, B., Dwyer, J., Dekker, A., Dhu, T., Hicks, A., Ip, A., Purss, 
M., Richards, C., Sagar, S., Trenham, C., Wang, P. and Wang, L.-W. (2017) The 
Australian Geoscience Data Cube - Foundations and lessons learned. Remote Sensing 
of Environment. 202, 276-292. doi:10.1016/j.rse.2017.03.015. 

Li, L., Chen, Y., Xu, T., Liu, R., Shi, K. and Huang, C. (2015) Super-resolution mapping of 
wetland inundation from remote sensing imagery based on integration of back-
propagation neural network and genertic algorithm. Remote Sensing of Environment. 
164, 142-154. doi:10.1016/j.rse.2015.04.009. 

Li, S., Dragicevic, S., Castro, F.A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., 
Haworth, J., Stein, A. and Cheng, T. (2016) Geospatial big data handling theory and 
methods: A review and research challenges. ISPRS Journal of Photogrammetry and 
Remote Sensing. 115, 119-133. doi:10.1016/j.isprsjprs.2015.10.012. 

Li, Y., Martinis, S. and Wieland, M. (2019) Urban flood mapping with an active self-learning 
convolutional neural network based on TerraSAR-X intensity and interferometric 
coherence. ISPRS Journal of Photogrammetry and Remote Sensing. 152, 178–191. 
doi:10.1016/j.isprsjprs.2019.04.014. 

Li, Z., Zhu, Q. and Gold, C. (2004) Digital Terrain Modelling: Principles and Methodology.  
Boca Raton, Fla., London: CRC. 

Liang, S., Li, X. and Wang, J. (2012) Advanced remote sensing : terrestrial information 
extraction and applications.  Amsterdam ; London: Elsevier Academic Press. 

Lillesand, T.M., Kiefer, R.W. and Chipman, J.W. (2008) Remote sensing and image 
interpretation. 6th ed.. Hoboken, N.J.: John Wiley & Sons. 

Long, S., Fatoyinbo, T.E. and Policelli, F. (2014) Flood extent mapping for Namibia using 
change detection and thresholding with SAR. Environmental Research Letters. 9:(3), 
035002. doi:10.1088/1748-9326/9/3/035002. 

Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H. and Zehe, E. (2019) A 
topographic index explaining hydrological similarity by accounting for the joint controls of 
runoff formation. Hydrology and Earth System Sciences. 23, 3807-3821. 
doi:10.5194/hess-23-3807-2019. 

Lu, J., Giustarini, L., Xiong, B., Zhao, L., Jiang, Y. and Kuang, G. (2014) Automated flood 
detection with improved robustness and efficiency using multi-temporal SAR data. 
Remote Sensing Letters. 5:(3), 240–248. doi:10.1080/2150704X.2014.898190. 

Lu, J., Li, J., Chen, G., Zhao, L., Xiong, B. and Kuang, G. (2015) Improving pixel-based 
change detection accuracy using an object-based approach in multitemporal SAR flood 
images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing. 8:(7), 3486–3496. doi:10.1109/JSTARS.2015.2416635. 

Ludwig, R. and Schneider, P. (2006) Validation of digital elevation models from SRTM X-



[241] 
 

SAR for applications in hydrologic modeling. ISPRS Journal of Photogrammetry and 
Remote Sensing. 60:(5), 339–358. doi:10.1016/j.isprsjprs.2006.05.003. 

Lunetta, R.S., Johnson, D.M., Lyon, J.G. and Crotwell, J. (2004) Impacts of imagery temporal 
frequency on land-cover change detection monitoring. Remote Sensing of Environment. 
89:(4), 444–454. doi:10.1016/j.rse.2003.10.022. 

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A. and Jie, W. (2015) Remote 
sensing big data computing: Challenges and opportunities. Future Generation Computer 
Systems. 51, 47-60. doi:10.1016/j.future.2014.10.029. 

Madsen, H., Lawrence, D., Lang, M., Martinkova, M. and Kjeldsen, T.R. (2014) Review of 
trend analysis and climate change projections of extreme precipitation and floods in 
Europe. Journal of Hydrology. 519, 3634–3650. doi:10.1016/j.jhydrol.2014.11.003. 

Maheu, C., Cazenave, A. and Mechoso, C.R. (2003) Water level fluctuations in the Plata 
Basin (South America) from Topex/Poseidon Satellite Altimetry. Geophysical Research 
Letters. 30:(3), 2019. doi:10.1029/2002GL016033. 

Manavalan, R. (2018) Review of synthetic aperture radar frequency, polarization, and 
incidence angle data for mapping the inundated regions. Journal of Applied Remote 
Sensing. 12:(2), 021501. doi:10.1117/1.JRS.12.021501. 

Manjusree, P., Prasanna Kumar, L., Bhatt, C.M., Rao, G.S. and Bhanumurthy, V. (2012) 
Optimization of threshold ranges for rapid flood inundation mapping by evaluating 
backscatter profiles of high incidence angle SAR images. International Journal of 
Disaster Risk Science. 3:(2), 113–122. doi:10.1007/s13753-012-0011-5. 

Mansourpour, M., Rajabi, M.A. and Blais, J.A.R. (2006) Effects and performance of speckle 
noise reduction filters on active radar and SAR images. In: Proceedings - Workshop on 
Topographic Mapping from Space, Ankara, Turkey. 2006 

Martinez, J. and Le Toan, T. (2007) Mapping of flood dynamics and spatial distribution of 
vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of 
Environment. 108:(3), 209–223. doi:10.1016/j.rse.2006.11.012. 

Martinis, S., Twele, A. and Voigt, S. (2009) Towards operational near real-time flood 
detection using a split-based automatic thresholding procedure on high resolution 
TerraSAR-X data. Natural Hazards and Earth System Sciences. 9:(2), 303–314. 
doi:10.5194/nhess-9-303-2009. 

Martinis, S. and Rieke, C. (2015) Backscatter analysis using multi-temporal and multi-
frequency SAR data in the context of flood mapping at River Saale, Germany. Remote 
Sensing. 7:(6), 7732–7752. doi:10.3390/rs70607732. 

Martinis, S., Kuenzer, C., Wendleder, A., Huth, J., Twele, A., Roth, A. and Dech, S. 
(2015a) Comparing four operational SAR-based water and flood detection approaches. 
International Journal of Remote Sensing. 36:(13), 3519–3543. 
doi:10.1080/01431161.2015.1060647. 

Martinis, S., Kersten, J. and Twele, A. (2015b) A fully automated TerraSAR-X based flood 
service. ISPRS Journal of Photogrammetry and Remote Sensing. 104, 203–212. 
doi:10.1016/j.isprsjprs.2014.07.014. 

Martinis, S., Plank, S. and Ćwik, K. (2018) The use of Sentinel-1 time-series data to improve 
flood monitoring in arid areas. Remote Sensing. 10, 583. doi:10.3390/rs10040583. 

Mason, D.C., Horritt, M.S., Amico, J.T.D., Scott, T.R. and Bates, P.D. (2007) Improving River 
Flood Extent Delineation From Synthetic Aperture Radar Using Airborne Laser 
Altimetry. IEEE Geoscience and Remote Sensing. 45:(12), 3932–3943. 
doi:10.1109/TGRS.2007.901032. 



[242] 
 

Mason, D.C., Davenport, I.J., Neal, J.C., Schumann, G.J.P. and Bates, P.D. (2012a) Near 
real-time flood detection in urban and rural areas using high-resolution synthetic 
aperture radar images. IEEE Transactions on Geoscience and Remote Sensing. 50:(8), 
3041–3052. doi:10.1109/TGRS.2011.2178030. 

Mason, D.C., Schumann, G.J.P., Neal, J.C., Garcia-Pintado, J. and Bates, P.D. (2012b) 
Automatic near real-time selection of flood water levels from high resolution Synthetic 
Aperture Radar images for assimilation into hydraulic models: A case study. Remote 
Sensing of Environment. 124, 705–716. doi:10.1016/j.rse.2012.06.017. 

Mason, D.C., Giustarini, L., Garcia-Pintado, J. and Cloke, H.L. (2014) Detection of flooded 
urban areas in high resolution Synthetic Aperture Radar images using double scattering. 
International Journal of Applied Earth Observation and Geoinformation. 28:(1), 150–
159. doi:10.1016/j.jag.2013.12.002. 

Matgen, P., Idrissi, A. El, Henry, J., Tholey, N., Hoffmann, L., Fraipont, P. De and Pfister, L. 
(2006) Patterns of remotely sensed floodplain saturation and its use in runoff 
predictions. Hydrological Processes. 20, 1805–1825. doi:10.1002/hyp.5963. 

Matgen, P., Schumann, G.J.P., Henry, J.-B., Hoffmann, L. and Pfister, L. (2007) Integration 
of SAR-derived river inundation areas, high-precision topographic data and a river flow 
model toward near real-time flood management. International Journal of Applied Earth 
Observation and Geoinformation. 9:(3), 247–263. doi:10.1016/j.jag.2006.03.003. 

Matgen, P., Montanari, M., Hostache, R., Pfister, L., Hoffmann, L., Plaza, D., Pauwels, 
V.R.N., De Lannoy, G.J.M., De Keyser, R. and Savenije, H.H.G. (2010) Towards the 
sequential assimilation of SAR-derived water stages into hydraulic models using the 
Particle Filter: Proof of concept. Hydrology and Earth System Sciences. 14:(9), 1773–
1785. doi:10.5194/hess-14-1773-2010. 

Matgen, P., Hostache, R., Schumann, G.J.P., Pfister, L., Hoffmann, L. and Savenije, H.H.G. 
(2011) Towards an automated SAR-based flood monitoring system: Lessons learned 
from two case studies. Physics and Chemistry of the Earth, Parts A/B/C. 36:(7–8), 241–
252. doi:10.1016/j.pce.2010.12.009. 

Matgen, P., Giustarini, L., Chini, M., Hostache, R., Wood, M. and Schlaffer, S. (2016) 
Creating a water depth map from SAR flood extent and topography data. International 
Geoscience and Remote Sensing Symposium (IGARSS). 7635–7638. 
doi:10.1109/IGARSS.2016.7730991. 

Mather, P.M. and Koch, M. (2011) Computer processing of remotely-sensed images : an 
introduction. 4th ed.. Chichester, West Sussex, UK ; Hoboken, NJ: Wiley-Blackwell. 

Maune, D.F. (2007) Digital Elevation Model Technologies and Applications: The DEM Users 
Manual. 2nd ed.. Bethesda, MD: American Society for Photogrammetry and Remote 
Sensing. 

McCabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., Lucieer, 
A., Houborg, R., Verhoest, N.E.C., Franz, T.E., Shi, J., Gao, H. and Wood, E.F. (2017) 
The future of Earth observation in hydrology. Hydrology and Earth System Sciences. 21, 
3879-3914. doi:10.5194/hess-21-3879-2017. 

McCarthy, M., Walsh, S. and Kendon, M. (2016) The meteorology of the exceptional winter 
of 2015 / 2016 across the UK and Ireland. Weather. 71, 305–313. 
doi:10.1002/wea.2823. 

McFeeters, S.K. (1996) The use of the Normalized Difference Water Index (NDWI) in the 
delineation of open water features. International Journal of Remote Sensing. 17:(7), 
1425–1432. doi:10.1080/01431169608948714. 

McGrath, H., Proulx-Bourque, J.-S., Bourgon, J.-F., Nastev, M. and Abo El Ezz, A. (2018) A 



[243] 
 

Comparison of Rapid DTM Based Approaches for on-demand Flood Inundation 
Mapping. In: Proceedings - IEEE International Geoscience and Remote Sensing 
Symposium. Valencia, Spain. 2018. doi:10.1109/IGARSS.2018.8517772. 

Merz, B. and Thieken, A.H. (2005) Separating natural and epistemic uncertainty in flood 
frequency analysis. Journal of Hydrology. 309:(1–4), 114–132. 
doi:10.1016/j.jhydrol.2004.11.015. 

Met Office (2015) UK Storm Centre - Met Office Barometer. [Online]. Available from: 
https://www.metoffice.gov.uk/barometer/uk-storm-centre. Last Accessed 05/03/2019. 

Met Office (2016) Summary - January 2016. [Online]. Available from: 
https://www.metoffice.gov.uk/climate/uk/summaries/2016/january. Last Accessed 
06/05/2019. 

Met Office (2017) UKCP09 Datasets. [Online]. Available from: 
https://www.metoffice.gov.uk/climate/uk/data/ukcp09/datasets. Last Accessed 
21/05/2019. 

Meta, A., Prats, P., Steinbrecher, U., Mittermayer, J. and Scheiber, R. (2008) TerraSAR-X 
TOPSAR and ScanSAR comparison. In: Proceedings - 7th European Conference on 
Synthetic Aperture Radar. Friedrichshafen, Germany. 2008 

Miller, J.D., Kim, H., Kjeldsen, T.R., Packman, J., Grebby, S. and Dearden, R. (2014) 
Assessing the impact of urbanization on storm runoff in a peri-urban catchment using 
historical change in impervious cover. Journal of Hydrology. 515, 59–70. 
doi:10.1016/j.jhydrol.2014.04.011. 

Milly, P.C.D., Wetherald, R.T., Dunne, K.A. and Delworth, T.L. (2002) Increasing risk of great 
floods in a changing climate. Nature. 415, 514. doi:10.1038/415514a. 

Minh, D.H.T., Ienco, D., Gaetano, R., Lalande, N., Ndikumana, E., Osman, F. and Maurel, P. 
(2017) Deep Recurrent Neural Networks for mapping winter vegetation quality coverage 
via multi-temporal SAR Sentinel-1. IEEE Geoscience and Remote Sensing Letters. 
15:(3), 464–468. doi:10.1109/LGRS.2018.2794581. 

Mitchell, A.L., Milne, A.K. and Tapley, I. (2014) Towards an operational SAR monitoring 
system for monitoring environmental flows in the Macquarie Marshes. Wetlands Ecology 
and Management. 23:(1), 61–77. doi:10.1007/s11273-014-9358-2. 

Molleri, G.S.F., Kampel, M. and Leao de Moraes Novo, E.M. (2010) Spectral classification of 
water masses under the influence of the Amazon River plume. Acta Oceanol. Sin. 
29:(3), 1-8. doi:10.1007/s13131-010-0031-1. 

Moser, G. and Serpico, S.B. (2005) Generalized minimum-error thresholding for 
unsupervised change detection from SAR amplitude imagery. In: Proceedings - IEEE 
International Geoscience and Remote Sensing Symposium. Seoul, South Korea. 2005. 
doi:10.1109/IGARSS.2005.1526436. 

Mouginot, J., Rignot, E., Scheuchl, B. and Millan, R. (2017) Comprehensive Annual Ice 
Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data. Remote 
Sensing. 9:(4), 364. doi:10.3390/rs9040364. 

Muckenhuber, S., Korosov, A.A. and Sandven, S. (2016) Open-source feature-tracking 
algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery. The Cryosphere. 
10:(2), 913–925. doi:10.5194/tc-10-913-2016. 

Muro, J., Canty, M., Conradsen, K., Hüttich, C., Nielsen, A., Skriver, H., Remy, F., Strauch, 
A., Thonfeld, F. and Menz, G. (2016) Short-Term Change Detection in Wetlands Using 
Sentinel-1 Time Series. Remote Sensing. 8:(10), 795. doi:10.3390/rs8100795. 

Musa, Z.N., Popescu, I. and Mynett, A. (2015) A review of applications of satellite SAR, 



[244] 
 

optical, altimetry and DEM data for surface water modelling, mapping and parameter 
estimation. Hydrology and Earth System Sciences. 19:(9), 3755–3769. 
doi:10.5194/hess-19-3755-2015. 

Naeimi, V., Paulik, C., Bartsch, A., Wagner, W., Kidd, R., Park, S.E., Elger, K. and Boike, J. 
(2012) ASCAT surface state flag (SSF): Extracting information on surface freeze/thaw 
conditions from backscatter data using an empirical threshold-analysis algorithm. IEEE 
Transactions on Geoscience and Remote Sensing. 50:(7), 2566–2582. 
doi:10.1109/TGRS.2011.2177667. 

Nakmuenwai, P., Yamazaki, F. and Liu, W. (2017) Automated extraction of inundated areas 
from multi-temporal dual-polarization RADARSAT-2 images of the 2011 central Thailand 
flood. Remote Sensing. 9:(1), 78. doi:10.3390/rs9010078. 

Nandi, I., Srivastava, P.K. and Shah, K. (2017) Floodplain Mapping through Support Vector 
Machine and Opyical/Infrared Images from Landsat 8 OLI/TIRS Sensors: Case Study 
from Varanasi. Water Resource Management. 31, 1157-1171. doi:10.1007/s11269-
017-1568-y. 

NHMP (2016) National Hydrological Monitoring Programme: Hydrological summary for the 
United Kingdom: December 2015. [Online]. Available from: 
http://nora.nerc.ac.uk/512654/1/HS_201512 v2.pdf. Last Accessed 06/03/2019. 

Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C.D., Rodrigues, G., Silveira, A., Waterloo, 
M. and Saleska, S. (2011) Height Above the Nearest Drainage - a hydrologically 
relevant new terrain model. Journal of Hydrology. 404:(1–2), 13–29. 
doi:10.1016/j.jhydrol.2011.03.051. 

O’Grady, D., Leblanc, M. and Gillieson, D. (2011) Use of ENVISAT ASAR Global Monitoring 
Mode to complement optical data in the mapping of rapid broad-scale flooding in 
Pakistan. Hydrology and Earth System Sciences. 15:(11), 3475–3494. 
doi:10.5194/hess-15-3475-2011. 

O’Grady, D., Leblanc, M. and Gillieson, D. (2013) Relationship of local incidence angle with 
satellite radar backscatter for different surface conditions. International Journal of 
Applied Earth Observation and Geoinformation. 24:(1), 42–53. 
doi:10.1016/j.jag.2013.02.005. 

O’Grady, D., Leblanc, M. and Bass, A. (2014) The use of radar satellite data from multiple 
incidence angles improves surface water mapping. Remote Sensing of Environment. 
140, 652–664. doi:10.1016/j.rse.2013.10.006. 

Oberstadler, R., Honsch, H. and Huth, D. (1997) Assessment of the mapping capabilities of 
ERS-1 SAR data for flood mapping : a case study in Germany. Hydrological Processes. 
11, 1415–1425. doi:10.1002/(SICI)1099-1085(199708)11:10<1415::AID-
HYP532>3.0.CO;2-2. 

Ordnance Survey (2017) OS TERRAIN 5: User guide and technical specification OS Terrain 
5 User guide. [Online]. Available from: https://www.ordnancesurvey.co.uk/docs/user-
guides/os-terrain-5-user-guide.pdf. Last Accessed 22/05/2019 

Ordnance Survey (2018) OS VectorMap Local. [Online]. Available from: 
https://digimap.edina.ac.uk/webhelp/os/osdigimaphelp.htm#data_information/os_produc
ts/vectormap_local.htm. Last Accessed 27/09/2019. 

Orlowsky, B. and Seneviratne, S.I. (2012) Global changes in extreme events: regional and 
seasonal dimension. Climatic Change. 110:(3–4), 669–696. doi:10.1007/s10584-011-
0122-9. 

Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE 
Transactions on Systems, Man, and Cybernetics. 9:(1), 62–66. 



[245] 
 

doi:10.1109/TSMC.1979.4310076. 

Owrangi, A.M., Lannigan, R. and Simonovic, S.P. (2014) Interaction between land-use 
change, flooding and human health in Metro Vancouver, Canada. Natural Hazards. 
72:(2), 1219–1230. doi:10.1007/s11069-014-1064-0. 

Ozdemir, H. and Bird, D. (2009) Evaluation of morphometric parameters of drainage 
networks derived from topographic maps and DEM in point of floods. Environmental 
Geology. 56:(7), 1405–1415. doi:10.1007/s00254-008-1235-y. 

Pal, S.K. and Rosenfeld, A. (1988) Image enhancement and thresholding by optimization of 
fuzzy compactness. Pattern Recognition Letters. doi:10.1016/0167-8655(88)90122-5. 

Park, J.W., Korosov, A.A., Babiker, M., Sandven, S. and Won, J.S. (2018) Efficient Thermal 
Noise Removal for Sentinel-1 TOPSAR Cross-Polarization Channel. IEEE Transactions 
on Geoscience and Remote Sensing. 56:(3), 1555–1565. 
doi:10.1109/TGRS.2017.2765248. 

Paul, A., Tripathi, D. and Dutta, D. (2018) Application and comparison of advanced 
supervised classifiers in extraction of water bodies from remote sensing images. 
Sustainable Water Resource Management. 4, 905-919. doi:10.1007/s40899-017-0184-
6. 

Peduzzi, P., Dao, H., Herold, C. and Mouton, F. (2009) Assessing global exposure and 
vulnerability towards natural hazards: the Disaster Risk Index. Natural Hazards and 
Earth System Science. 9:(4), 1149–1159. doi:10.5194/nhess-9-1149-2009. 

Pekel, J.-F., Cottam, A., Gorelick, N. and Belward, A.S. (2016) High-resolution mapping of 
global surface water and its long-term changes. Nature. 540:(7633), 418–422. 
doi:10.1038/nature20584. 

Pham-Duc, B., Prigent, C. and Aires, F. (2017) Surface water monitoring within Cambodia 
and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. 
Water. 9:(6), 1–21. doi:10.3390/w9060366. 

Pierdicca, N., Chini, M., Pulvirenti, L. and Macina, F. (2008) Integrating Physical and 
Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR. Sensors. 
8:(7), 4151–4164. doi:10.3390/s8074151. 

Pivot, F.C. (2012) C-band SAR imagery for snow-cover monitoring at Treeline, Churchill, 
Manitoba, Canada. Remote Sensing. 4:(7), 2133–2155. doi:10.3390/rs4072133. 

Plank, S., Jüssi, M., Martinis, S. and Twele, A. (2017) Mapping of flooded vegetation by 
means of polarimetric Sentinel-1 and ALOS-2 / PALSAR-2 imagery. International 
Journal of Remote Sensing. 38:(13), 3831–3850. doi:10.1080/01431161.2017.1306143. 

Porter, J. and Demeritt, D. (2012) Flood-risk management, mapping, and planning: 
Theinstitutional politics of decision support in England. Environment and Planning A. 
44:(10), 2359–2378. doi:10.1068/a44660. 

Pradhan, B., Hagemann, U., Shafapour Tehrany, M. and Prechtel, N. (2014) An easy to use 
ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-
X satellite image. Computers and Geosciences. 63, 34–43. 
doi:10.1016/j.cageo.2013.10.011. 

Proietti, S., Lorenzon, F., Uttenhaler, A., Klaus, A. and Probeck, M. (2017) Overview of 
Global DEM: Assessment of the current global DEMs and requirements for an updated 
global DEM. [Online]. Available from: 
https://insitu.copernicus.eu/library/reports/OverviewofGlobalDEM_i0r7.pdf. Last 
Accessed 05/01/2020 

Prudhomme, C., Giuntoli, I., Robinson, E.L., Clark, D.B., Arnell, N.W., Dankers, R., Fekete, 



[246] 
 

B.M., Franssen, W., Gerten, D., Gosling, S.N., Hagemann, S., Hannah, D.M., Kim, H., 
Masaki, Y., et al. (2014) Hydrological droughts in the 21st century, hotspots and 
uncertainties from a global multimodel ensemble experiment. Proceedings of the 
National Academy of Sciences. 111:(9), 3262–3267. doi:10.1073/pnas.1222473110. 

Pulvirenti, L., Pierdicca, N., Chini, M. and Guerriero, L. (2011) An algorithm for operational 
flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Natural 
Hazards and Earth System Science. 11:(2), 529–540. doi:10.5194/nhess-11-529-2011. 

Pulvirenti, L., Pierdicca, N., Chini, M. and Guerriero, L. (2013) Monitoring flood evolution in 
vegetated areas using Cosmo-Skymed data: The Tuscany 2009 case study. IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 6:(4), 
1807–1816. doi:10.1109/JSTARS.2012.2219509. 

Pulvirenti, L., Marzano, F.S., Pierdicca, N., Mori, S. and Chini, M. (2014) Discrimination of 
Water Surfaces , Heavy Rainfall , and Wet Snow Using COSMO-SkyMed Observations 
of Severe Weather Events. IEEE Transactions on Geoscience and Remote Sensing. 
52:(2), 858–869. doi:10.1109/TGRS.2013.2244606. 

Pulvirenti, L., Chini, M., Pierdicca, N. and Boni, G. (2016) Use of SAR Data for Detecting 
Floodwater in Urban and Agricultural Areas: The Role of the Interferometric Coherence. 
IEEE Transactions on Geoscience and Remote Sensing. 54:(3), 1532–1544. 
doi:10.1109/TGRS.2015.2482001. 

Raclot, D. (2006) Remote sensing of water levels on floodplains : a spatial approach guided 
by hydraulic functioning. International Journal of Remote Sensing. 27:(12), 2553–2574. 
doi:10.1080/01431160600554397. 

Rahman, S. and Di, L. (2017) The state of the art of spaceborne remote sensing in flood 
management. Natural Hazards. 85:(2), 1223–1248. doi:10.1007/s11069-016-2601-9. 

Rahmati, O., Kornejady, A., Samadi, M., Nobre, A.D. and Melesse, A.M. (2018) Development 
of an automated GIS tool for reproducing the HAND terrain model. Environmental 
Modelling and Software. 102, 1–12. doi:10.1016/j.envsoft.2018.01.004. 

Rakwatin, P., Sansena, T., Marjang, N. and Rungsipanich, A. (2013) Using multi-temporal 
remote-sensing data to estimate 2011 flood area and volume over Chao Phraya River 
basin, Thailand. Remote Sensing Letters. 4:(3), 243–250. 
doi:10.1080/2150704X.2012.723833. 

Rees, W.G. (2000) Simple masks for shadowing and highlighting in SAR images. 
International Journal of Remote Sensing. 21:(11), 2145–2152. 
doi:10.1080/01431160050029477. 

Rees, G. (2013) Physical principles of remote sensing. 3rd ed.. Cambridge ; New York: 
Cambridge University Press. 

Refice, A., Capolongo, D., Pasquariello, G., DaAddabbo, A., Bovenga, F., Nutricato, R., 
Lovergine, F.P. and Pietranera, L. (2014) SAR and InSAR for Flood Monitoring: 
Examples With COSMO-SkyMed Data. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing. 7:(7), 2711–2722. 
doi:10.1109/JSTARS.2014.2305165. 

Rennó, C.D., Nobre, A.D., Cuartas, L.A., Soares, J.V., Hodnett, M.G., Tomasella, J. and 
Waterloo, M.J. (2008) HAND, a new terrain descriptor using SRTM-DEM: Mapping 
terra-firme rainforest environments in Amazonia. Remote Sensing of Environment. 
112:(9), 3469–3481. doi:10.1016/j.rse.2008.03.018. 

Rignot, E. and Way, J.B. (1994) Monitoring freeze-thaw cycles along North-South Alaskan 
transects using ERS-1 SAR. Remote Sensing of Environment. 49:(2), 131–137. 
doi:10.1016/0034-4257(94)90049-3. 



[247] 
 

Rodriguez, E., Morris, C.C. and Belz, J.J. (2006) A global assessment of the SRTM 
performance. Photogrammetric Engineering and Remote Sensing. 72:(3), 249–260. 
doi:10.14358/PERS.72.3.249. 

Rüetschi, M., Schaepman, M.E. and Small, D. (2017) Using Multitemporal Sentinel-1 C-band 
Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in 
Northern Switzerland. Remote Sensing. 10:(2), 55. doi:10.3390/rs10010055. 

Saatchi, S.S. and van Zyl, J.J. (1995) Estimation of canopy water content in Konza Prairie 
grasslands using synthetic aperture radar measurements during FIFE. Journal of 
Geophysical Research. 100:(D12), 25481–25496. doi:10.1029/95jd00852. 

Santoro, M. and Wegmüller, U. (2014) Multi-temporal synthetic aperture radar metrics 
applied to map open water bodies. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing. 7:(8), 3225–3238. 
doi:10.1109/JSTARS.2013.2289301. 

Satgé, F., Bonnet, M.P., Timouk, F., Calmant, S., Pillco, R., Molina, J., Lavado-Casimiro, W., 
Arsen, A., Crétaux, J.F. and Garnier, J. (2015) Accuracy assessment of SRTM v4 and 
ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. International 
Journal of Remote Sensing. 36:(2), 465–488. doi:10.1080/01431161.2014.999166. 

Scarpino, S., Albano, R., Cantisani, A., Mancusi, L., Sole, A. and Milillo, G. (2018) 
Multitemporal SAR Data and 2D Hydrodynamic Model Flood Scenario Dynamics 
Assessment. International Journal of Geo-Information. 7, 105. doi:10.3390/ijgi7030105. 

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N.W., Clark, D.B., Dankers, R., 
Eisner, S., Fekete, B.M., Colón-González, F.J., Gosling, S.N., Kim, H., Liu, X., Masaki, 
Y., et al. (2014) Multimodel assessment of water scarcity under climate change. 
Proceedings of the National Academy of Sciences. 111:(9), 3245–3250. 
doi:10.1073/pnas.1222460110. 

Schlaffer, S., Matgen, P., Hollaus, M. and Wagner, W. (2015) Flood detection from multi-
temporal SAR data using harmonic analysis and change detection. International Journal 
of Applied Earth Observation and Geoinformation. 38, 15–24. 
doi:10.1016/j.jag.2014.12.001. 

Schlaffer, S., Chini, M., Giustarini, L. and Matgen, P. (2017) Probabilistic mapping of flood-
induced backscatter changes in SAR time series. International Journal of Applied Earth 
Observation and Geoinformation. 56, 77–87. doi:10.1016/j.jag.2016.12.003. 

Schumann, G., Hostache, R., Puech, C., Hoffmann, L., Matgen, P., Pappenberger, F. and 
Pfister, L. (2007) High-resolution 3-D flood information from radar imagery for flood 
hazard management. IEEE Transactions on Geoscience and Remote Sensing. 45:(6), 
1715–1725. doi:10.1109/TGRS.2006.888103. 

Schumann, G.J.P., Matgen, P., Cutler, M.E.J., Black, A., Hoffmann, L. and Pfister, L. (2008a) 
Comparison of remotely sensed water stages from LiDAR, topographic contours and 
SRTM. ISPRS Journal of Photogrammetry and Remote Sensing. 63:(3), 283–296. 
doi:10.1016/j.isprsjprs.2007.09.004. 

Schumann, G., Matgen, P. and Pappenberger, F. (2008b) Conditioning Water Stages 
From Satellite Imagery on Uncertain Data Points. IEEE Geoscience and Remote 
Sensing Letters. 5:(4), 810–813. doi:10.1109/LGRS.2008.2005646. 

Schumann, G.J.P., Bates, P.D., Horritt, M.S., Matgen, P. and Pappenberger, F. (2009a) 
Progress in integration of remote sensing–derived flood extent and stage data and 
hydraulic models. Reviews of Geophysics. 47:(4), RG4001. 
doi:10.1029/2008RG000274. 

Schumann, G.J.P., Di Baldassarre, G. and Bates, P.D. (2009b) The Utility of Spaceborne 



[248] 
 

Radar to Render Flood Inundation Maps Based on Multialgorithm Ensembles. IEEE 
Transactions on Geoscience and Remote Sensing. 47:(8), 2801–2807. 
doi:10.1109/TGRS.2009.2017937. 

Schumann, G.J.P. and Moller, D.K. (2015) Microwave remote sensing of flood inundation. 
Physics and Chemistry of the Earth. 83–84, 84–95. doi:10.1016/j.pce.2015.05.002. 

Schumann, G.J.P. and Bates, P.D. (2018) The Need for a High-Accuracy , Open-Access 
Global DEM. Frontiers in Earth Science. 6, 1–5. doi:10.3389/feart.2018.00225. 

Shao, W., Zhang, Z., Li, X. and Li, H. (2016) Ocean wave parameters retrieval from Sentinel-
1 SAR imagery. Remote Sensing. 8, 707. doi:10.3390/rs8090707. 

Skakun, S. (2010) A neural network approach to flood mapping using satellite imagery. 
Computing and Informatics. 29, 1013-1024.  

Small, D. and Schubert, A. (2008) Guide to ASAR Geocoding Remote Sensing Laboratores, 
University of Zurich. [Online]. Available from: http://www.geo.uzh.ch/microsite/rsl-
documents/research/publications/other-sci-communications/2008_RSL-ASAR-GC-AD-
v101-0335607552/2008_RSL-ASAR-GC-AD-v101.pdf. 

Small, D. (2011) Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE 
Transactions on Geoscience and Remote Sensing. 49:(8), 3081–3093. 
doi:10.1109/TGRS.2011.2120616. 

Smith, L.C. (1997) Satellite remote sensing of river inundation area, stage, and discharge: a 
review. Hydrological Processes. 11:(10), 1427–1439. doi:10.1002/(SICI)1099-
1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S. 

Snapir, B., Momblanch, A., Jain, S.K., Waine, T.W. and Holman, I.P. (2019) A method for 
monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a 
Himalayan river basin. International Journal of Applied Earth Observation and 
Geoinformation. 74:(October 2018), 222–230. doi:10.1016/j.jag.2018.09.011. 

Sowter, A., Bin Che Amat, M., Cigna, F., Marsh, S., Athab, A. and Alshammari, L. (2016) 
Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the 
Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth 
Observation and Geoinformation. 52, 230–242. doi:10.1016/j.jag.2016.06.015. 

Stefanidis, S. and Stathis, D. (2013) Assessment of flood hazard based on natural and 
anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards. 68:(2), 
569–585. doi:10.1007/s11069-013-0639-5. 

Stephens, E., Schumann, G.J.P. and Bates, P. (2014) Problems with binary pattern 
measures for flood model evaluation. Hydrological Processes. 28:(18), 4928–4937. 
doi:10.1002/hyp.9979. 

Sun, G., Ranson, K.J., Kharuk, V.I. and Kovacs, K. (2003) Validation of surface height from 
shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of 
Environment. 88:(4), 401–411. doi:10.1016/j.rse.2003.09.001. 

Sun A.Y. and Scanlon, B.R. (2019) How can Big Data and machine learning benefit 
environment and water management: a survey of methods, applications, and future 
directions. Environmental Research Letters. 14, 073001. doi:10.1088/1748-
9326/ab1b7d 

Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., 
Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R. and Carabajal, C. (2011) 
ASTER Global Digital Elevation Model Version 2 - Summary of Validation Reults. 
[Online]. Available from: 
https://ssl.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validati
on_report_final.pdf. 



[249] 
 

Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K. and Iwamoto, H. (2016) 
Generation of the 30 M-MESH global digital surface model by ALOS prism. International 
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - 
ISPRS Archives. 41, 157–162. doi:10.5194/isprsarchives-XLI-B4-157-2016. 

Tarpanelli, A., Barbetta, S., Brocca, L. and Moramarco, T. (2013) River Discharge Estimation 
by Using Altimetry Data and Simplified Flood Routing Modeling. Remote Sensing. 5:(9), 
4145–4162. doi:10.3390/rs5094145. 

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D. and Kim, S. (2017) Flood 
inundation modelling: A review of methods, recent advances and uncertainty analysis. 
Environmental Modelling and Software. 90, 201–216. 
doi:10.1016/j.envsoft.2017.01.006. 

Torbick, N., Chowdhury, D., Salas, W. and Qi, J. (2017) Monitoring rice agriculture across 
Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote 
Sensing. 9, 119. doi:10.3390/rs90201019. 

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, 
B., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B., Rosich, B., et al. 
(2012) GMES Sentinel-1 mission. Remote Sensing of Environment. 120, 9–24. 
doi:10.1016/j.rse.2011.05.028. 

Townsend, P. (2001) Mapping seasonal ooding in forested wetlands using multi-temporal 
Radarsat SAR. Photogrammetric Engineering and Remote Sensing. 67:(7). 

Trenberth, K. (2011) Changes in precipitation with climate change. Climate Research. 47:(1), 
123–138. doi:10.3354/cr00953. 

Tsyganskaya, V., Martinis, S., Marzahn, P. and Ludwig, R. (2018) Detection of Temporary 
Flooded Vegetation Using Sentinel-1 Time Series Data. Remote Sensing. 10:(8), 1286. 
doi:10.3390/rs10081286. 

Twele, A., Cao, W., Plank, S. and Martinis, S. (2016) Sentinel-1-based flood mapping: a fully 
automated processing chain. International Journal of Remote Sensing. 37:(13), 2990–
3004. doi:10.1080/01431161.2016.1192304. 

UK Authority (2018) Environment Agency to extend LiDAR data to all of England. [Online]. 
Available from: https://www.ukauthority.com/articles/environment-agency-to-extend-
lidar-data-to-all-of-england/. Last Accessed 27/09/2018. 

van der Sande, C.J., de Jong, S.M. and de Roo, A.P.J. (2003) A segmentation and 
classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk 
and flood damage assessment. International Journal of Applied Earth Observation and 
Geoinformation. 4:(3), 217–229. doi:10.1016/S0303-2434(03)00003-5. 

Velotto, D., Bentes, C., Tings, B. and Lehner, S. (2016) First Comparison of Sentinel-1 and 
TerraSAR-X Data in the Framework of Maritime Targets Detection: South Italy Case. 
IEEE Journal of Oceanic Engineering. 41:(4), 993–1006. 
doi:10.1109/JOE.2016.2520216. 

Villadsen, H., Andersen, O.B., Stenseng, L., Nielsen, K. and Knudsen, P. (2015) CryoSat-2 
altimetry for river level monitoring — Evaluation in the Ganges–Brahmaputra River 
basin. Remote Sensing of Environment. 168, 80–89. doi:10.1016/j.rse.2015.05.025. 

Voormansik, K., Praks, J., Antropov, O., Jagomagi, J. and Zalite, K. (2014) Flood mapping 
with TerraSAR-X in forested regions in Estonia. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing. 7:(2), 562–577. 
doi:10.1109/JSTARS.2013.2283340. 

Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S. and Bai, X. (2015) Flood hazard risk 
assessment model based on random forest. Journal of Hydrology. 527, 1130–1141. 



[250] 
 

doi:10.1016/j.jhydrol.2015.06.008. 

Wessel, B. (2016) TanDEM-X DEM Products Specification Document. [Online]. Available 
from: https://elib.dlr.de/108014/1/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf. 
Last Accessed 05/01/2020 

West, H., Horswell, M. and Quinn, N. (2018) Exploring the sensitivity of coastal inundation 
modelling to DEM vertical error. International Journal of Geographical Information 
Science. 32:(6), 1172-1193. doi:10.1080/13658816.2018.1444165. 

Westerhoff, R.S., Kleuskens, M.P.H., Winsemius, H.C., Huizinga, H.J., Brakenridge, G.R. 
and Bishop, C. (2013) Automated global water mapping based on wide-swath orbital 
synthetic-aperture radar. Hydrology and Earth System Sciences. 17:(2), 651–663. 
doi:10.5194/hess-17-651-2013. 

Winsemius, H.C., Aerts, J.C.J.H., van Beek, L.P.H., Bierkens, M.F.P., Bouwman, A., 
Jongman, B., Kwadijk, J.C.J., Ligtvoet, W., Lucas, P.L., van Vuuren, D.P. and Ward, 
P.J. (2016) Global drivers of future river flood risk. Nature Climate Change. 6:(4), 381–
385. doi:10.1038/nclimate2893. 

Wood, M., de Jong, S.M. and Straatsma, M.W. (2018) Locating flood embankments using 
SAR time series: A proof of concept. International Journal of Applied Earth Observation 
and Geoinformation. 70, 72–83. doi:10.1016/j.jag.2018.04.003. 

Xu, H. (2006) Modification of normalised difference water index (NDWI) to enhance open 
water features in remotely sensed imagery. International Journal of Remote Sensing. 
27:(14), 3025–3033. doi:10.1080/01431160600589179. 

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J.C., 
Sampson, C.C., Kanae, S. and Bates, P.D. (2017) A high-accuracy map of global terrain 
elevations. Geophysical Research Letters. 44:(11), 5844-5853. 
doi:10.1002/2017GL072874. 

Yan, K., Di Baldassarre, G., Solomatine, D.P. and Schumann, G.J.P. (2015) A review of low-
cost space-borne data for flood modelling: topography, flood extent and water level. 
Hydrological Processes. 29:(15), 3368–3387. doi:10.1002/hyp.10449. 

Yu, D. and Lane, S.N. (2006) Urban fluvial flood modelling using a two-dimensional diffusion-
wave treatment, part 1: mesh resolution effects. Hydrological Processes. 20:(7), 1541–
1565. doi:10.1002/hyp.5935. 

Yulianto, F., Sofan, P., Zubaidah, A., Sukowati, K.A.D., Pasaribu, J.M. and Khomarudin, 
M.R. (2015) Detecting areas affected by flood using multi-temporal ALOS PALSAR 
remotely sensed data in Karawang, West Java, Indonesia. Natural Hazards. 77:(2), 
959–985. doi:10.1007/s11069-015-1633-x. 

Zhang, K., Gann, D., Ross, M., Biswas, H., Li, Y. and Rhome, J. (2019a) Comparison of 
TanDEM-X DEM with LiDAR Data for Accuracy Assessment in a Coastal Urban Area. 
Remote Sensing. 11, 876. doi:10.3390/rs11070876. 

Zhang, K., Gann, D., Ross, M., Robertson, Q., Sarmiento, J., Santana, S., Rhome, J. and 
Fritz, C. (2019b) Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for 
Hispaniola and implications for mapping vulnerability to coastal flooding. Remote 
Sensing of Environment. 225, 290–306. doi:10.1016/j.rse.2019.02.028. 

Zhou, C., Luo, J., Yang, C., Ll, B. and Wang, S. (2000) Flood Monitoring Using Multi-
Temporal AVHRR and RADARSAT Imagery. Photogrammeric Engineering & Remote 
Sensing. 66:(5), 633–638. 

Zhu, Z. and Woodcock, C.E. (2012) Object-based cloud and cloud shadow detection in 
Landsat imagery. Remote Sensing of Environment. 118, 83–94. 
doi:10.1016/j.rse.2011.10.028. 



[251] 
 

Zwenzner, H. and Voigt, S. (2009) Improved estimation of flood parameters by combining 
space based SAR data with very high resolution digital elevation data. Hydrology and 
Earth System Sciences. 13, 567–576. doi:10.5194/hess-13-567-2009. 

 

 

 



[252] 

Appendix A: List of Sentinel-1 Images 
Sentinel-1 Image Date Time Ascending/Descending Orbit Track

S1A_IW_GRDH_1SDV_20151111T061339_20151111T061404_008553_00C1EA_ED0E 11/11/2015 06:13 DESCENDING 81
S1A_IW_GRDH_1SDV_20151111T061404_20151111T061429_008553_00C1EA_2EAA 11/11/2015 06:14 DESCENDING 81
S1A_IW_GRDH_1SDV_20151112T180609_20151112T180634_008575_00C288_4D80 12/11/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151112T180634_20151112T180659_008575_00C288_0CBA 12/11/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151114T174942_20151114T175007_008604_00C35D_E3EE 14/11/2015 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20151114T175007_20151114T175032_008604_00C35D_AA73 14/11/2015 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20151116T062140_20151116T062205_008626_00C401_1F80 16/11/2015 06:21 DESCENDING 154
S1A_IW_GRDH_1SDV_20151116T062205_20151116T062230_008626_00C401_A2FD 16/11/2015 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20151116T062230_20151116T062255_008626_00C401_F220 16/11/2015 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20151119T175744_20151119T175809_008677_00C566_3F33 19/11/2015 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20151119T175809_20151119T175834_008677_00C566_76DF 19/11/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151119T175834_20151119T175859_008677_00C566_A3A0 19/11/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151121T062955_20151121T063020_008699_00C610_E5E5 21/11/2015 06:29 DESCENDING 52
S1A_IW_GRDH_1SDV_20151121T063020_20151121T063045_008699_00C610_AA06 21/11/2015 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20151123T061323_20151123T061357_008728_00C6D9_123F 23/11/2015 06:13 DESCENDING 81
S1A_IW_GRDH_1SDV_20151123T061406_20151123T061434_008728_00C6DA_49F3 23/11/2015 06:14 DESCENDING 81
S1A_IW_GRDH_1SDV_20151124T180609_20151124T180634_008750_00C76C_10EA 24/11/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151124T180634_20151124T180659_008750_00C76C_4683 24/11/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151126T174948_20151126T175013_008779_00C83F_0877 26/11/2015 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20151126T175013_20151126T175038_008779_00C83F_DCC2 26/11/2015 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20151128T062140_20151128T062205_008801_00C8E2_4EF9 28/11/2015 06:21 DESCENDING 154
S1A_IW_GRDH_1SDV_20151128T062205_20151128T062230_008801_00C8E2_DFD2 28/11/2015 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20151128T062230_20151128T062255_008801_00C8E2_5590 28/11/2015 06:22 DESCENDING 154

Sentinel-1 Image Date Time Ascending/Descending Orbit Track
S1A_IW_GRDH_1SDV_20151201T175739_20151201T175804_008852_00CA54_B2A1 01/12/2015 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20151201T175804_20151201T175829_008852_00CA54_A306 01/12/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151201T175829_20151201T175854_008852_00CA54_808D 01/12/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151203T062955_20151203T063020_008874_00CAF3_EAC9 03/12/2015 06:29 DESCENDING 52
S1A_IW_GRDH_1SDV_20151203T063020_20151203T063045_008874_00CAF3_FAA5 03/12/2015 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20151205T061339_20151205T061404_008903_00CBC9_43AF 05/12/2015 06:13 DESCENDING 81
S1A_IW_GRDH_1SDV_20151205T061404_20151205T061429_008903_00CBC9_2323 05/12/2015 06:14 DESCENDING 81
S1A_IW_GRDH_1SDV_20151206T180609_20151206T180634_008925_00CC68_587A 06/12/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151206T180634_20151206T180659_008925_00CC68_8584 06/12/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151208T174942_20151208T175007_008954_00CD3E_349B 08/12/2015 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20151208T175007_20151208T175032_008954_00CD3E_FEB2 08/12/2015 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20151213T175743_20151213T175808_009027_00CF27_1B55 13/12/2015 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20151213T175808_20151213T175833_009027_00CF27_4F38 13/12/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151213T175833_20151213T175858_009027_00CF27_74BB 13/12/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151215T062955_20151215T063020_009049_00CFCD_BE83 15/12/2015 06:29 DESCENDING 52
S1A_IW_GRDH_1SDV_20151215T063020_20151215T063045_009049_00CFCD_F652 15/12/2015 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20151217T061322_20151217T061356_009078_00D09A_3C46 17/12/2015 06:13 DESCENDING 81
S1A_IW_GRDH_1SDV_20151217T061404_20151217T061433_009078_00D09B_ECA6 17/12/2015 06:14 DESCENDING 81
S1A_IW_GRDH_1SDV_20151218T180608_20151218T180633_009100_00D134_A692 18/12/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151218T180633_20151218T180658_009100_00D134_5ADF 18/12/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151220T174947_20151220T175012_009129_00D20A_C0F7 20/12/2015 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20151220T175012_20151220T175037_009129_00D20A_24B0 20/12/2015 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20151222T062139_20151222T062204_009151_00D2AF_8276 22/12/2015 06:21 DESCENDING 154
S1A_IW_GRDH_1SDV_20151222T062204_20151222T062229_009151_00D2AF_17F0 22/12/2015 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20151222T062229_20151222T062254_009151_00D2AF_7270 22/12/2015 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20151225T175738_20151225T175803_009202_00D428_9A5F 25/12/2015 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20151225T175803_20151225T175828_009202_00D428_9464 25/12/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151225T175828_20151225T175853_009202_00D428_8FD1 25/12/2015 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20151227T062954_20151227T063019_009224_00D4C4_0147 27/12/2015 06:29 DESCENDING 52
S1A_IW_GRDH_1SDV_20151227T063019_20151227T063044_009224_00D4C4_F6E0 27/12/2015 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20151229T061338_20151229T061403_009253_00D59B_F24A 29/12/2015 06:13 DESCENDING 81
S1A_IW_GRDH_1SDV_20151229T061403_20151229T061428_009253_00D59B_CC2A 29/12/2015 06:14 DESCENDING 81
S1A_IW_GRDH_1SDV_20151230T180608_20151230T180633_009275_00D635_8A92 30/12/2015 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20151230T180633_20151230T180658_009275_00D635_A1CA 30/12/2015 18:06 ASCENDING 103
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Sentinel-1 Image Date Time Ascending/Descending Orbit Track
S1A_IW_GRDH_1SDV_20160101T174941_20160101T175006_009304_00D70A_60DE 01/01/2016 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20160101T175006_20160101T175031_009304_00D70A_D4B8 01/01/2016 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20160103T062139_20160103T062204_009326_00D7AC_355B 03/01/2016 06:21 DESCENDING 154
S1A_IW_GRDH_1SDV_20160103T062204_20160103T062229_009326_00D7AC_C9F2 03/01/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160103T062229_20160103T062254_009326_00D7AC_4BD4 03/01/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160106T175742_20160106T175807_009377_00D920_544D 06/01/2016 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20160106T175807_20160106T175832_009377_00D920_8394 06/01/2016 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20160106T175832_20160106T175857_009377_00D920_BD87 06/01/2016 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20160108T062954_20160108T063019_009399_00D9C6_850D 08/01/2016 06:29 DESCENDING 52
S1A_IW_GRDH_1SDV_20160108T063019_20160108T063044_009399_00D9C6_B8BA 08/01/2016 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20160110T061321_20160110T061355_009428_00DA92_2DFD 10/01/2016 06:13 DESCENDING 81
S1A_IW_GRDH_1SDV_20160110T061404_20160110T061433_009428_00DA93_B5C5 10/01/2016 06:14 DESCENDING 81
S1A_IW_GRDH_1SDV_20160111T180608_20160111T180633_009450_00DB32_0CCD 11/01/2016 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20160111T180633_20160111T180658_009450_00DB32_4FED 11/01/2016 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20160113T174946_20160113T175011_009479_00DC0B_EB97 13/01/2016 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20160113T175011_20160113T175036_009479_00DC0B_61B3 13/01/2016 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20160115T062138_20160115T062203_009501_00DCAF_B4E4 15/01/2016 06:21 DESCENDING 154
S1A_IW_GRDH_1SDV_20160115T062203_20160115T062228_009501_00DCAF_D397 15/01/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160115T062228_20160115T062253_009501_00DCAF_61F2 15/01/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160118T175737_20160118T175802_009552_00DE25_F77D 18/01/2016 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20160118T175802_20160118T175827_009552_00DE25_27C1 18/01/2016 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20160118T175827_20160118T175852_009552_00DE25_433B 18/01/2016 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20160120T062954_20160120T063019_009574_00DECB_BCE9 20/01/2016 06:29 DESCENDING 52
S1A_IW_GRDH_1SDV_20160120T063019_20160120T063044_009574_00DECB_7549 20/01/2016 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20160122T061337_20160122T061402_009603_00DFAF_52C9 22/01/2016 06:13 DESCENDING 81
S1A_IW_GRDH_1SDV_20160123T180607_20160123T180632_009625_00E051_616A 23/01/2016 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20160123T180632_20160123T180657_009625_00E051_1C89 23/01/2016 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20160125T174940_20160125T175005_009654_00E129_B71B 25/01/2016 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20160125T175005_20160125T175030_009654_00E129_777A 25/01/2016 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20160127T062138_20160127T062203_009676_00E1D0_5EC0 27/01/2016 06:21 DESCENDING 154
S1A_IW_GRDH_1SDV_20160127T062203_20160127T062228_009676_00E1D0_343F 27/01/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160127T062228_20160127T062253_009676_00E1D0_7F70 27/01/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160130T175741_20160130T175806_009727_00E345_E92A 30/01/2016 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20160130T175806_20160130T175831_009727_00E345_B6FD 30/01/2016 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20160130T175831_20160130T175856_009727_00E345_EE89 30/01/2016 17:58 ASCENDING 30

Sentinel-1 Image Date Time Ascending/Descending Orbit Track
S1A_IW_GRDH_1SDV_20160201T062951_20160201T063016_009749_00E3EF_1469 01/02/2016 06:29 DESCENDING 52
S1A_IW_GRDH_1SDV_20160201T063016_20160201T063041_009749_00E3EF_F308 01/02/2016 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20160201T063041_20160201T063106_009749_00E3EF_3DB4 01/02/2016 06:30 DESCENDING 52
S1A_IW_GRDH_1SDV_20160204T180607_20160204T180632_009800_00E561_75FD 04/02/2016 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20160204T180632_20160204T180657_009800_00E561_40D5 04/02/2016 18:06 ASCENDING 103
S1A_IW_GRDH_1SDV_20160206T174945_20160206T175010_009829_00E633_C42C 06/02/2016 17:49 ASCENDING 132
S1A_IW_GRDH_1SDV_20160206T175010_20160206T175035_009829_00E633_3D29 06/02/2016 17:50 ASCENDING 132
S1A_IW_GRDH_1SDV_20160208T062141_20160208T062206_009851_00E6D3_581F 08/02/2016 06:21 DESCENDING 154
S1A_IW_GRDH_1SDV_20160208T062206_20160208T062231_009851_00E6D3_9F7B 08/02/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160208T062231_20160208T062256_009851_00E6D3_C142 08/02/2016 06:22 DESCENDING 154
S1A_IW_GRDH_1SDV_20160211T175736_20160211T175801_009902_00E85C_D011 11/02/2016 17:57 ASCENDING 30
S1A_IW_GRDH_1SDV_20160211T175801_20160211T175826_009902_00E85C_7A7E 11/02/2016 17:58 ASCENDING 30
S1A_IW_GRDH_1SDV_20160211T175826_20160211T175851_009902_00E85C_B533 11/02/2016 17:58 ASCENDING 30

Appendix A. List of the 105 Sentinel-1 images used to derive flood extent in Chapter 5, 
along with key metadata. 
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Appendix B: Tyne Catchment. Amount of flood extent identified in the Tyne catchment compared to river stage at the Corbridge gauge 
between 11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as unfilled data points. Approximate 

start period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and Imogen) shown for reference. 
Threshold for minor flooding occurrence taken from Environment Agency gauge information. 
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Appendix B: Ribble Catchment. Amount of flood extent identified in the Ribble catchment compared to river stage at the Samlesbury gauge 
between 11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as unfilled data points. Approximate 

start period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and Imogen) shown for reference. 
Threshold for minor flooding occurrence taken from Environment Agency gauge information. 
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Appendix B: Tees Catchment. Amount of flood extent identified in the Tees catchment compared to river stage at the Darlington Broken Scar 
gauge between 11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as unfilled data points. 

Approximate start period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and Imogen) shown for 
reference. Threshold for minor flooding occurrence taken from Environment Agency gauge information. 
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Appendix B: Wear Catchment. Amount of flood extent identified in the Wear catchment compared to river stage at the Sunderland Bridge 
gauge between 11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as unfilled data points. 

Approximate start period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and Imogen) shown for 
reference. Threshold for minor flooding occurrence taken from Environment Agency gauge information. 
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Appendix B: Lune Catchment. Amount of flood extent identified in the Lune catchment compared to river stage at the Caton gauge between 
11th Nov 2015 and 11th Feb 2016. Low coverage (less than 70% of catchment) SAR images shown as unfilled data points. Approximate start 

period of named storms (from left, Abigail, Barney, Clodagh, Desmond, Eva, Frank, Gertrude, Henry and Imogen) shown for reference. 
Threshold for minor flooding occurrence taken from Environment Agency gauge information. 



[259] 
 

Appendix C: River Gauge Metadata 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Datum (m) Flooding (m) Datum (m) Bankfull (m)
Aldwark Bridge Ure 8.56 3.00 6.9; 6.10

Beal Aire 5.15 4.00 5.50 3.95 5.15; 5.21; 6.9; 6.10; 6.20
Bolton Percy Bolton Percy Drain 0.00 6.00 6.9; 6.10

Bubwith Derwent 0.00 5.50 6.9; 6.10
Carlton Bridge Aire 1.47 4.50 6.9; 6.10

Caton Lune 10.63 3.60 10.70 3.60 Appendix B
Cawood Ouse 0.24 6.10 5.11; 5.21; 6.9; 6.10

Chapel Haddlesey Aire 4.85 1.34 6.9; 6.10
Corbridge Tyne 23.26 3.30 Appendix B

Crakehill Topcliffe Swale 11.90 4.25 12.00 4.30 6.9; 6.10
Darlington Tees 34.00 2.50 37.20 2.60 Appendix B

Elvington Sluices Derwent 0.00 6.30 6.9; 6.10
Howe Bridge Rye 15.20 4.00 6.9; 6.10
Kirby Wiske Wiske 20.17 2.00 20.30 Unknown 6.9; 6.10

Knottingley Bank Aire 5.02 4.50 6.9; 6.10
Low Marishes Derwent 14.96 3.58 15.00 5.80 6.9; 6.10

Moor Monkton Ouse 5.00 3.79 6.9; 6.10
Myton Bridge Swale 8.19 3.75 5.11; 5.21; 6.9; 6.10; 6.19

Newton-on-Ouse Kyle 5.75 3.32 5.70 Unknown 5.11; 6.9; 6.10
Portinscale Derwent 72.47 Unknown 72.60 2.46 5.20;
Samlesbury Ribble 6.00 4.83 9.50 5.90 Appendix B

Sedgwick Kent 18.82 1.70 18.90 4.00 5.20;
Sheepmount Eden 6.93 3.45 9.90 7.00 5.17;

Skelton Ouse 4.57 3.00 4.60 6.96 6.9; 6.10
Skip Bridge Nidd 7.58 3.01 8.20 Unknown 6.9; 6.10

Snaygill Aire 89.02 4.00 5.15; 5.21;
Stamford Bridge Derwent 0.00 9.00 5.10 Unknown 6.9; 6.10

Sunderland Wear 40.20 2.20 40.20 2.28 Appendix B
Tadcaster Wharfe 6.55 2.90 6.60 Unknown 6.9; 6.10

Tadcaster Sluices Wharfe -0.03 7.30 6.9; 6.10
Temple Sowerby Eden 92.37 3.00 92.40 4.20 5.17; 5.21

Figures Data ShownGauge River
Environment Agency NRFA

Appendix C. River gauges and relevant metadata used throughout this thesis. NRFA 
refers to the National River Flow Archive. 
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Appendix D. GlobCover land use map and land cover classes. Chapter 7 feature mask consists of land cover numbers; 40, 50, 60, 70, 
90 and 100 (various types of woodland); 160 and 170 (regularly inundated woodland); 190 (artificial surfaces); 210 (water). Mosaic 

vegetation land covers, notably 110 and 120, are not included in this study as they form the majority of the study area. However, a case 
can be made for their inclusion given the woodland component of the vegetation mix. 
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