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Abstract 

This thesis considers the extent to which phonology (that is, the phonological processor) can 

be considered a module of the mind. It is divided into two parts. In the first, an approach of 

'modest' modularity owing to Fodor (1983) is explored. In the second, the 'massive' 

modularity model, due to evolutionary psychologists in general, but Caruthers (2006a) in 

particular, is examined. Whilst for Fodor (1983, 2000) the mind is only modular around its 

periphery (i.e. only its input and output systems are modules), for massive modularists the 

mind is modular through and through, up to and including its central capacities. The two 

authors, therefore, by extension differ in their definitions of modularity: Fodor (1983, 2000) 

sees 'informational encapsulation' as being essential to modularity, whereas for Carruthers 

(2006) domain specificity is much more important. The thesis concludes that whether 

phonology is a module or not then depends on the definition of modularity, for although a 

substance-free phonology which has no phonetic grounding could count as strong evidence 

for the informational encapsulation (and therefore the modularity) of phonology by Fodor's 

(1983) standards, some aphasiology data has shown that semantic treatments can remediate 

phonological word finding difficulties in aphasia, which would be indicative that phonology 

is not domain-specific, and therefore amodular in the terms of massive modularists like 

Carruthers (2006a).1 In order to answer whether phonology is modular, then, we must first 

define, once and for all, what modularity (and indeed phonology) means. Until then, the 

debate remains, and so does my resolve to settle it. 

1 This result is challenging to Jackendoff’s (2002) parallel architecture of the language faculty 
too, I argue, which requires the phonological (integrative) module to be both informationally 
encapsulated and domain specific. 
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Chapter 1: Introduction 
 

 

Great attention has been paid to complex systems in the sciences, and for good reason. The 

phenomena we wish to understand are all complex, and the problems we need to solve in 

order to understand them are even more so. Take a balloon, for example, filled with helium 

gas. The balloon itself isn’t necessarily complex, but how it interacts with the earth’s 

atmosphere (e.g. how it floats because the gas which fills it (helium) is lighter than the air it 

displaces (which is, of course, mostly made up of nitrogen, oxygen, argon and carbon 

dioxide) is (Simon 2005)). The source of the balloon’s complexity, therefore, isn’t in itself, 

but in its interaction with a more complex system that is the earth’s atmosphere (Simon 

2005). 
 

It might be fair to say then, that complexity arises when systems interact with each other in 

ways that amount to something more than they could ever be by themselves (Simon 2005); 

when they are more than just the sum of their parts, because they’re a part of something else 

as well. Before the big bang the universe was not particularly complex. All there was in the 

cosmos was a gravitational singularity, that is, a point in time and space where gravity is 

infinite, space-time curves infinitely and the laws of physics as we know them cease to exist 

(Hawking 1988). It was after the fact that complexity arose, when stars (and then stellar 

galaxies) were formed, and solar systems within them. Our planet, the earth, is of course 

complex – both in terms of the elements that make it up, and its place in the solar system (and 

therefore the Milky Way).  

 

It has been known for some time now that the complex systems we observe in the natural 

world have hierarchical structures; that they are made up of complex subsystems, which 

themselves are made up of complex subsystems, and so on and so forth (Simon 2005). The 

smaller subsystems interact with each other of course (or else they wouldn’t form larger 

subsystems or systems) but what’s interesting to this project in particular is that the 

frequencies associated with the subsystem interactions drop stealth the higher up the hierarchy 

you go (Simon 2005). 

 

We call complex systems with this property nearly decomposable (Simon and Ando 1961), 

and these have been the subject of scientific research for tens to hundreds of years (Callebaut 
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and Rasskin-Gutman 2005). A question of interest to cognitive scientists especially though is 

this one: 

 

If complexity in our universe at all levels generally takes this 
hierarchical nearly decomposable (or modular) form, is this true of a 
product of the universe -  the mind - as well? Is the human mind (and 
its components) modular? 

 

Jerry Fodor was among the first to try and answer this question and in his 1983 publication 

The Modularity of Mind he claimed that the mind is indeed modular, or it is at least around its 

periphery in the input and output systems. Evolutionary psychologists, however, believe 

Fodor’s (1983, 2000) thesis of mind modularity to be too modest, and that the central systems 

are modular as well. The idea that the mind is modular up to and including its central 

capacities is what we call the massive modularity hypothesis. It was articulated and defended 

by Peter Carruthers in 2006, and it is against these two theses of mind modularity (Fodor’s 

(1983, 2000) modest thesis and Carruthers’ (2006a) massive one) that my research question is 

based. 

 

I question in particular whether the phonological processor is modular. Being part of the 

language faculty (and therefore one of the input systems) both Fodor (1983, 2000) and 

Carruthers (2006a) would argue that it is, but they each have different definitions of 

modularity – and there lies the crux of the problem. For Fodor (2000), a modest modularist, 

informational encapsulation is the defining feature of modularity. Evolutionary psychologists, 

on the other hand, place greater emphasis on domain specificity in their definitions of 

modules in their massive modularity theories (e.g. Sperber 1994; Cosmides and Tooby 1994; 

Pinker 1997; Carruthers 2006a). 

 

This thesis will, therefore, be split into two halves. After providing an introduction to 

modularity in general in Chapter 2 and drawing differences between modest modularity and 

massive modularity in Chapter 3, I will explore whether phonology can be considered a 

modest or massive module of the mind. In Chapter 4 I will consider the extent to which 

phonology can be considered informationally encapsulated and therefore a modest module 

and in Chapter 5 the extent to which it can be considered domain specific and therefore a 

massive one. 
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I do this, because there seems to be even less of a consensus among phonological practitioners 

at present, than there was forty or fifty years ago, and – whilst it would be naive to think that 

there ever will be full agreement as to the modularity or nonmodularity of phonology – I 

would hope that my work (which explores two different definitions of what it means to be 

modular) will contribute to the discussion in at least some small way. I do hope, however, that 

we do one day find an answer to this question – on the one hand, to inform linguistic theory, 

and on the other to better inform the field of aphasiology so that treatments of phonological 

anomia (which is an impaired ability to access words in and retrieve them from the mind 

that’s due to a deficit at the phonological level of language processing) can be improved. 

 

Returning to my previous point, there are a number of reasons for the lack of consensus 

concerning modularity among phonologists Hannahs and Bosch (2018) argue, which I will 

give an overview of very briefly here in order for one to see where my research sits within the 

wider research context. The first (and perhaps most obvious one) is Optimality Theory (or 

OT) (Prince and Smolensky 1993), which caused controversy among generativists (Hannahs 

and Bosch 2018). The framework on which it was built called into question some of the 

claims made within the generative phonology field. These included (but of course weren't 

limited to) one’s reliance on rules to mediate between underlying and surface forms and the 

theory that the two (abstract underlying representations and concrete surface representations, 

that is) are opaquely related (Hannahs and Bosch 2018). 

 

The development of OT, however, is of course not the only contributing factor. Again during 

the 1980s/early 1990s (which was around the time as OT’s advent too), phonologists began to 

question some of the assumptions of abstractness underlying the (then-current) approaches to 

generative grammar. Within OT, e.g., there was an endeavour to ensure that constraints were 

grounded in phonetics (e.g. Pierrehumbert 2000; Archangeli and Pulleyblank 1994; Hayes et 

al. 2004). Outside of OT, there was a trying to tie phonology and phonetics together (as was 

the case with articulatory phonologists (e.g. Browman and Goldstein 1986), usage-based 

phonologists (e.g. Bybee 2003) and exemplar theorists (e.g. Bybee 2006; Johnson 2007) 

(Hannahs and Bosch 2018). 

 

Two other recent developments are likely to have led to this fragmentation within the field, 

Hannahs and Bosch (2018) argue, however – sociophonetics and database studies. 

Sociophonetics, they say, having grown out of the Labovian sociolinguistic paradigm (in 

which sociolinguistic variation – such as the alternation of the allophones [n] and [ŋ] in the 



 4 

pronunciations of words like singing with and without g-dropping, respectively – is examined 

from the perspective of socio-economic contexts) generally has a heavier focus on phonetics 

than it does on phonology. For most sociophoneticians, the phonological system itself is of 

little interest, they point out, though this is, of course, a bit of a sweeping statement. Indeed 

there are (albeit a small number of) phonologists interested in interpreting sociophonetic 

variation in the light of phonological theory (Fruehwald 2013, 2016). This is something I 

touch on in Chapter 4. 

 

The other recent development, database studies, has led to an interest in ‘big’ data and, for 

some practitioners, an assumption that the absence of big data to support a theoretical position 

invalidates it entirely (Hannahs and Bosch 2018). Whilst this seems to be a stance taken by 

empirical scientists in general, I should point out that the problem with this line of thinking in 

phonology in particular is that, from a competence/performance perspective, surface forms 

cannot always account for what is going on underlyingly. 

 

There is more to be understood in phonology than what can be observed and so - if we don’t 

engage with the systems underlying those observations and ask questions based on what 

we’ve found (no matter how big or small our datasets are) - we run the risk of missing 

important pieces of the puzzle, Hannahs and Bosch (2018) point out. For me, both empirical 

concreteness and theoretical abstraction have an important part to play in phonology, and so I 

draw on (but, note: don’t rely on) empirical data from language change in Chapter 4, and 

speech and language pathology in Chapter 5, in order to inform my theoretical thinking. As 

Hannahs and Bosch (2018) put it: 

 

[w]hile empirical concreteness has contributed enormously to our 
understanding of what is possible in human language, there is value 
also in focused exploration into more abstract elements of language: 
elements that we cannot see or measure, such as phonological 
structures, non-surface-true generalizations, and relationships that can 
only be inferred through theoretical analysis 

 

To circle back to my previous point, I make my main contributions to knowledge in Chapters 

4 and 5. In Chapter 4, I conclude that phonology can be considered substance-free and 

therefore can be considered an informationally encapsulated module of the mind according to 

Fodor’s (1983, 2000) definition of (modest) modularity. In Chapter 5, on the other hand, I 

present evidence from the field of aphasiology which is suggestive that phonology is not 

domain specific (and conclude that it is, therefore, amodular to the minds of massive 
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modularists (like Carruthers (2006)) who demand domain specificity in their definitions of 

modularity). 

 

Also in Chapter 5 (and 6), I show how my results are relevant to a broader range of questions 

than those about the modularity of phonology. Firstly, I argue that the models of the language 

faculty in the clinical literature are limited in that they neither offer a clear theory of the 

lexicon and lexical processing, nor do they account for the communication between the 

semantic and phonological submodules they posit in their proposals. Secondly, I argue that 

Jackendoff’s (2002) parallel architecture model of the language faculty better does this, for 

Jackendoff (2002) there aren’t just two component parts to the grammar (semantics and 

phonology) there are three (semantics, syntax and phonology) which are all, what he calls, 

integrative modules, and that they each communicate with one another via interface modules, 

which transform the output of one module it interfaces into an input interpretable by the other 

it interfaces and vice versa. I also argue that Jackendoff’s (2002) theory of the phonetics-

phonology interface (or interfaces) is superior to the one owing to Fodor (1983, 2000) and 

colleagues because theirs, being innate, cannot account for cross-linguistic variation. 

Jackendoff’s (2002) theory, which does not assume innateness, can account for this better, I 

stress. It also provides an answer to the question of where, in the language faculty, is damaged 

when disorders of phonetic encoding/phonemic assembly arise – that answer being, in the 

phonology-phonetics interface. 

 

Towards the end of the thesis I point out, however, that the way in which Jackendoff (2002) 

models the language faculty requires the phonological processor to be both informationally 

encapsulated (as Fodor (1983, 2000) does) and domain specific (as massive modularists like 

Carruthers (2006a) do) and so the data I collect and analyse in Chapter 5 casts doubt on not 

only phonology’s domain specificity, but also Jackendoff’s (2002) model’s representativeness 

of phonology. To finish, I endorse a roughly Fodorian view that phonology is modular in that 

it is informationally encapsulated but not domain specific, albeit tentatively. Further research 

should be conducted with large sample sizes I stress, to confirm or deny whether this is 

indeed the case. 

 

I think it is safe to say that this thesis is an ambitious one, for it considers a question to which 

many a body of research is relevant. It necessarily crosses the disciplines of philosophy of 

mind and language, linguistics, cognitive psychology, evolutionary psychology, language 

science and – to some degree – natural science and computer science, because, as Caruthers 
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(2006a) points out, we all seem to be asking the same questions about modularity but taking 

different routes in order to answer them, which is just journeying us further and further away 

from each other (and most likely the truth). I firmly believe that the only way we’ll reach a 

clearer conclusion about the modularity of phonology than we have right now is to bring 

together different domains of inquiry, and so I hope that the conclusions I come to and 

questions I ask at the end of this cross-disciplinary thesis provide a useful starting point for 

the research of others to bring about the knowledge transfer between all fields that is so 

desperately needed for us to move forward. This research is unique in a number of ways, but 

particularly so in how broad a scope it has.  

 

To begin, I describe the difference between the natural modularity we see in biology and the 

artificial modularity we see in technology, and distinguish between types of biological 

modules (detailing the difference between modules of mind and brain and other biological 

modules seen in our species and others, the difference between cognitive modules and neural 

modules, representative and computational modules and Darwinian and non-Darwinian 

modules) to demonstrate where the Fodorian and Carrutherian modules discussed in this 

thesis sit within the wider research context.  

 

I provide a surface overview of the ways in which they are similar to (both computational, 

cognitive, natural modules of mind) and different (one is Darwinian, and the other is not) 

from one another, and the ways in which they are different from other modules that are e.g., 

representational rather than computational like them, neural rather than cognitive like them, 

biological, but not having to do with the mind or brain like them, and technological instead of 

natural like them, so that we have a rough picture of what Fodorian and Carrutherian modules 

are and aren’t before I dive into a more in-depth discussion of Fodor’s and Carruthers’ 

understandings of modularity. Now with that being said, let us turn to Chapter 2. 

 

 

 

 

 

 

 

 

 



 7 

Chapter 2: An Introduction to Modularity 
 

 

1. Introduction 
Describing the world in terms of the modular organisation of its parts dates as far back as 

1543 when Copernicus’ De Revolutionibus Orbium Coelestium (On the Revolutions of the 

Heavenly Spheres) marked the beginning of the scientific revolution (Callebaut 2005). It 

inspired Leibniz’s and Kant’s work on faculty psychology in the 17th and 18th centuries as 

well as Gall’s work on phrenology in the 18th and 19th, and even now, in 2019, modularity is a 

driving force of much scientific research. In biology, both structural and functional modules 

are recognised, and engineers, having seen the value of modularity as it exists naturally in 

biological systems, have come to make use of modular design principles themselves in the 

technological domain (Wilhem 1997). In the cognitive sciences, modules as systems of 

representation have been proposed by the likes of Chomsky (1965, 1988), and in 1983 Fodor 

launched a debate on whether the mind is made up of functional modules – one that has, of 

course, continued to the present day. Neuroscientists have asked similar questions to the ones 

that cognitive scientists have asked about the mind about the brain, but I will have no more to 

say about those here, for that goes beyond the scope of this thesis. 

 

This chapter provides some conceptual foundations for the enterprise that follows along the 

lines of Callebaut (2005). I first describe the various meanings and uses of the word 

‘modularity’ (for example as explanans in the case of natural modules or explanandum in the 

case of artificial modules). I then provide as general a definition as possible, that applies to 

the wide range of contexts in which it appears in section 2. I will then describe the differences 

between the fields of computational cognitive science and neural cognitive science and their 

modules in section 3.1 before looking in some detail at the differences between cognitive and 

neural modules in section 3.2. Lastly, I will outline the two types of cognitive modules that 

have been explored in the cognitive science literature: (non-Darwinian) computational 

modules (in section 3.3.1.1) and Darwinian computational modules (in section 3.3.1.2). These 

will be the focus of the thesis, and so the chapter after this one (i.e., 3) will be devoted to their 

discussion. 

 

2. Natural modules vs. artificial modules 

In our world, modular systems – whether they be natural ones (as is the case in biology and 

the cognitive and neurosciences) or artificial ones (as is the case in technology) – abound 
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(Simon 1969). They have been discovered by a number of researchers working in a number of 

different research domains, but despite the differences in these researchers' definitions of 

modularity (there are many), they all seem to be in agreement that modules are ‘unit[s] that 

[are] component part[s] of […] larger system[s] and yet possessed of [their] own structural 

and/or functional identit[ies]’ (Moss 2001: 91). 

 

Consider some examples from biology and technology. In biological organisms, cells come 

together with cells of similar structures to perform shared functions as tissues; tissues come 

together to create organs and organs, organ systems (Ritter 1998). The heart, for example, is 

made up of cardiac tissue (which is itself made up of cardiac cells) and functions as part of the 

cardiovascular system to pump blood around the body (Farley et al. 2012). The cardiovascular 

system works together with two other systems (the pulmonary and the systemic) as part of the 

circulatory one, to transport through the blood oxygen and essential nutrients to cells and 

waste products from them (Farley et al. 2012). The parts and systems of cars (which are of 

course technological artefacts), on the other hand, are susceptible to independent breakdown 

and repair because of their modular architectures. Damage to a car’s brake pedal would affect 

the functionality of its brake system, for example, of which it is a part, but not its exhaust or 

steering systems, of which it is not. The functionalities of those, the exhaust and steering 

systems, that is, would remain intact. 

 

It is important to bear two things in mind here, however. Firstly, the structural and functional 

modularities mentioned by Moss (2001) are two very different things, and so don’t 

necessarily map neatly onto one another (I’ll return to this point in more detail in section 3.2.1 

where distinctions between neural modules (i.e., modules of structure) and cognitive modules 

(i.e., modules of function) will be drawn). Secondly, one must bear in mind that different 

research domains make use of quite different research strategies. Modules are said to be ‘top-

down’, for example, when they are the product of a researcher breaking down a complex 

system in a reverse engineering fashion to gain an insight into its inner workings. This is the 

type of module that is typically found in biology and is especially common in cognitive 

science (Bechtel and Richardson 1993). ‘Top-down’ modules aren’t empirically observed but 

brought forth as explanans (Moss 2001; Eble 2005) in straightforward Popperian (1935, 

1959) fashion. Examples of the ‘bottom-up’ research strategy in which small, simple, 

subsystems are pieced together to give rise to a larger, more complex system can be found in 

technological arenas, on the other hand, such as engineering, as well as in neuroscientific 
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research (Barbutti et al. 1993; Fontana and Buss 1994; Adami 2002; Husken et al. 2002). In 

this context, modularity arises as an explanandum as opposed to as explanans (Bolker 2000). 

 

Now, given that this is a thesis on cognitive modularity and not neural modularity (or 

technological modularity, for that matter), and since we’ve established that modules in the 

cognitive sciences are all ‘top-down’ – I will have no more to say about the distinction I’ve 

drawn between top-down and bottom-up research strategies here. To this thesis, what matters 

most is what constitutes a module in the eyes of the researchers who posited them not how 

their characterisations came to be, and so this will be the focus of the subsections that follow. 

 

3. Modularity in cognitive science 

Just as developmentalists and evolutionists disagree about what it means to be a module and 

for a system to be modular in biology, the thesis that the mind is modular in its architecture 

has triggered a tremendous amount of often heated debate in the cognitive sciences as well 

(Callebaut and Rasskin-Gutman 2005). Fodor (1983) is often cited as having had the most 

impact on recent theorising on these matters, for an entirely new discipline, evolutionary 

psychology (which rests on a massively modular conception of cognitive architecture, that is, 

that the mind is composed largely (or even entirely, actually) of computational modules 

(Callebaut and Rasskin-Gutman 2005)) was born out of cognitive scientists contesting 

Fodor’s (1983) thesis that the mind is less modular than that (see section 3.3). One of the most 

obvious reasons why modularity is such a controversial topic in the cognitive sciences, 

however, is that there are two different (and conflicting) approaches to the study of cognitive 

scientific research: computational cognitive science and neural cognitive science (Calabretta 

and Parisi 2005), and so I’ll now turn my attention to that. 

 

3.1 Computational cognitive science vs. neural cognitive science 

The theoretical paradigm of computational cognitive science (or cognitivism) is based on an 

analogy of the mind as the software of a computer, according to which the mind is a system 

that manipulates symbols computationally (Newell and Simon 1976). More recently, though, 

a different kind of cognitive science called neural cognitive science (or as some prefer, 

connectionism (Rumelhart and McClelland 1986)) has arisen, that rejects the analogy of the 

mind as computer software, instead interpreting our cognitive capacities using theoretical 

models known as neural networks that are inspired by both the structure and the functioning 

of the nervous system (Rumelhart and McClelland 1986). For connectionists, the mind is not 

a computational system of symbol manipulation; rather, it is the result of the many 
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interactions that take place among neurons in a neural network. For them, the mind ‘consists 

entirely of quantitative processes in which physiochemical causes produce physiochemical 

effects’ (Calabretta and Parisi 2005: 309). 

 

Cognitivists and connectionists also differ in their assumptions about modularism and 

nativism. While computational cognitive science tends to be strongly modularistic, neural 

cognitive science does not (Calabretta and Parisi 2005). Meanwhile, whilst cognitivists tend 

to be nativists, connectionists tend not to be (Calabretta and Parisi 2005), as Table 2.1 depicts: 

 

 

Two types of cognitive science 
Computational 
cognitive science or 
cognitivism 

Mind as a 
computational 
system of symbol 
manipulation 

Modularist Nativist 

Neural cognitive 
science or 
connectionism 

Mind as the global 
result of the many 
physicochemical 
interactions that take 
place in a network of 
neurons 

Anti-modularist Anti-nativist 

 
Table 2.1 A table showing the two different approaches to studying cognitive science  
 

 

But alas, although cognitivists can be differentiated from connectionists in terms of their 

subscriptions to modular and nonmodular, and nativist and anti-nativist, ideals, one should 

note that cognitivists are divided on some things as well, in particular on their views of the 

adaptive nature of inherited traits. Evolutionary psychologists, for example, believe that 

cognitive modules are one of the many biological modules, and so think of the modular 

structure of the mind as being the result of evolutionary pressures from the environment as the 

modular structures of biological systems are. They, therefore, embrace a strong form of 

adaptationism as well as nativism (Calabretta and Parisi 2005); not only do they believe that 

modules of the mind are a part of a human’s genetic material, they believe that they arose as a 

consequence of evolution (Calabretta and Parisi 2005). 

 

Not all cognitivists subscribe to this idea, however. For example, while Noam Chomsky sees 

the mind as a modular system that has a specific subsystem that is specialised for language 

(Chomsky 1965, 1988), he does not believe that language in humans emerged under any 
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specific evolutionary pressure (Fodor 2000). Nor does Fodor (1998), actually, who is in fact 

in favour of a strong form of nonadaptive modularism (Fodor 1998). I will leave the debate 

between proponents of adaptive modularism and nonadaptive modularism here for now but 

will return to it when I come to describe the differences between the cognitive modules in 

more detail in section 3.3.  

 

3.2 Cognitive modules vs. neural modules 

Although a cognitive scientist (a.k.a. Fodor 1983) popularised the term ‘module’, the concept 

is not a new one. It is not uncommon for the complex systems of the mind or the brain to be 

analysed in terms of collections of less complex subsystems. In the neurosciences, there has 

been a long-standing interest in decomposing into component structures called modules as 

well (Meyering 1994). 

 

I should probably point out that when I speak of neural modules in this section, I don’t mean 

the modules of the artificial neural networks modelled by connectionists that are described in 

section 3.1, since, as I said there, they tend to be nonmodular in their architecture. What I 

mean by neural modules in this context are the natural modules of brains themselves rather 

than the modules of artificial models of them. In this section, then, I draw a distinction 

between the (more functional) modules of the mind that are proposed by cognitivists and the 

(more structural) modules of the brain that are proposed by neuroscientists. 

 

3.2.1 Function vs. structure 

By the end of the nineteenth century neurologists Wernicke, Sherrington and Cajal had 

introduced a new and empirically based theory of the brain according to which its functioning 

took place in a cellular system of neurons (the brain’s operative units (Meyering 1994)) which 

were arranged into more or less functional groups (Schnelle 2010). This was the most 

influential view of the brain’s architecture until the turn of the twentieth century, which 

brought with it enough empirical and conceptual progress to lead Hebb (1949) to propose a 

neural sub-structure like the one in Figure 2.1: 
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Figure 2.1 Hebb’s (1949) neural sub-structure schema (adapted from Schnelle 2010: 9) 

 

 

According to Hebb (1949), cellular organisations operate in very different areas of the cortex, 

which is itself divided into four anatomically distinct areas: the frontal lobe, the parietal lobe, 

the occipital lobe and the temporal lobe, which each contribute to different sub-aspects of 

more globally organised functions such as perception, memory and motor control (Kandel et 

al. 1995). Hebb (1949) individuates the modules of the brain as anatomical entities that come 

together in their operations. This is supported by research in more recent years (e.g. Lettvin et 

al. 1959; Powell and Mountcastle 1959; Kilmer et al. 1969; Hubel and Wiesel 1974) and so in 

general, it seems fair to say that the concept of a module in the neurosciences is one of 

structure rather than of function (Arbib 1987). 

 

By contrast, the models of mind modularity that are proposed by cognitivists are characterised 

in a fundamentally functional way. Particularly prevalent in the cognitive science literature is 

the one developed by Fodor (1983). He began with a cognitive analysis of global 

psychological functions (such as linguistic and perceptual behaviour) and developed a 

circulation 
activity 
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functional taxonomy of them based on the characteristic operational differences between the 

systems involved in their functioning (Meyering 1994).  

 

For cognitivists, modules are postulated rather than observed entities, then (Calabretta and 

Parisi 2005). They are components of theories of mind, which hypothesise that the mind can 

be broken down into a number of functionally independent components that work together to 

explain some phenomenon of interest (Calabretta and Parisi 2005). This was evidenced in 

formal linguistics of the Chomskyan variety, which observed the linguistic judgements of 

native speakers to interpret that there are three autonomous modules that work together in 

linguistic competence: syntax, semantics and phonology. This purely theoretical notion of a 

module is defined and defended by Fodor (1983) in The Modularity of Mind. Evolutionary 

psychologists, who tend to disagree with Fodor (1983) about the extent to which the mind is 

modular and as a consequence, his definition of a module (a point I will come back to in 

section 3.3), have a cognitivist orientation too. They conceive of the mind as a collection of 

specialised and genetically inherited adaptive modules (which are, again, like Fodorian 

modules, in that they have a cognitivist orientation in that they are functionally independent 

(Calabretta and Parisi 2005)). 

 

3.2.2 Closing the gap between functional and structural modules 

There is a tendency for humans to fill in the unspecified details of ontologically ambiguous 

objects (Boyer 2001; Bloom 2004). This is particularly apparent in our responses to theories 

that postulate information structures but leave all of the parameters other than those of the 

theory itself unstipulated (as in the spirit of Chomsky (1965), for example, who theorised that 

the grammar is made up of a syntactic, a semantic, and a phonological component only) 

(Barrett 2006).  It is important to recognise, however, that underspecification must be taken 

seriously if theories like Chomsky’s are to have any real value (Barrett 2006). It is a mistake 

to criticise a theory about psychological entities by filling in parameters that weren’t meant to 

be filled in in the first place and then question the plausibility of the postulated structure based 

on what one has filled in (Barrett 2006). While it might well be reasonable to ask of Chomsky 

where in the brain syntax, semantics and phonology are located, that question is in many ways 

irrelevant to whether his hypothesis is correct or not because it was framed in terms of 

information, not in terms of brain structure. As Marr (1982) rightly pointed out, while there is 

a relationship between hypotheses about information structure and hypotheses about brain 

structure, that relationship is an asymmetric one, and there are many ways in which an 

information structure might be instantiated. 
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Although, then, one can look for correspondences between the two types of modules (i.e. the 

theorised modules of cognitive science and the observed modules of the brain), one cannot 

assume that there will be any. The brain’s organisation into structural modules by 

neuroscientists mightn’t marry up with the cognitive scientists’ compartmentalisation of the 

mind into functional modules, but that does not necessarily mean that either of the theories 

must be wrong as they are each built on entirely different foundations. 

 

3.3 Cognitive modules: Some differences 

Ever since the cognitive revolution in psychology began some 60 or so years ago with 

Chomsky’s (1959) review of Skinner’s (1957) Verbal Behavior, the evidence in favour of 

cognition having a modular architecture – which is, by way of explanation, to say ‘that 

cognition is subserved by a number of innately channelled […] systems whose operations are 

largely independent of, and inaccessible to, the rest of the mind’ (Carruthers and Chamberlain 

2000) – has been mounting up. Initially the evidence only supported Fodor’s (1983) 

conception of cognition being modular around the edges (i.e. the idea that only the input and 

output systems of the mind, that is, those responsible for the five senses of opthalmoception, 

audioception, gustaception, olfaception and tactioception and the system responsible for our 

linguistic competence) are modular (Carruthers and Chamberlain 2000). More recently, 

however, there has been evidence (from e.g. Atran (1990), Baron-Cohen (1995) and Sperber 

et al. (1995)) to suggest that the central systems (i.e. those charged with the generation of 

beliefs from perception or indeed, other beliefs) are modular in structure as well (Carruthers 

and Chamberlain 2000). 

 

Recall also from section 3.1 that while cognitive modularism is typically associated with 

nativism, not every cognitive modularist has taken an evolutionary perspective (Carruthers 

and Chamberlain 2000). Chomsky (1988) and Fodor (1998), for example, have been inclined 

to ignore all evolutionary theorising, thinking of modules as mere by-products of the 

expansion of the hominid neocortex instead (Carruthers and Chamberlain 2000). Evolutionary 

psychologists, on the other hand, share a different position, that evolution by natural selection 

is the only non-cultural explanation we have for the development of organised, functional 

complexity (as Pinker and Bloom (1990) and Pinker (1994) so decisively point out) 

(Carruthers and Chamberlain 2000). 

 

In order to make sense of the various interpretations of modularity in cognitive science, Gobet 

(2015) helpfully distinguished two meanings of modularity: the functional (for example the 
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modules proposed by Fodor (1983) that will be covered in section 3.3.1.1) and evolutionary 

psychologists (which will be the focus of section 3.3.1.2)) and the knowledge meaning (read 

‘representational’) which has some kinship with the notion of modularity used by Chomsky 

(1965, 1988), but not his later work. 

 

This is not dissimilar to Samuels’ (2000) earlier classification of Fodor’s (1983) and 

evolutionary psychologists’ modules as computational modules, but while Fodorian and 

Carrutherian modules bear similarities to one another in terms of their functionality, they 

differ in that the modules of evolutionary psychology are Darwinian (take an evolutionary 

perspective) whereas Fodorian (1983) modules are not. These distinctions are especially 

relevant to those who wish to assess the evidence for the existence of computational modules 

in cognition as I do, and so the following sections will serve to dichotomise them further. 

 

3.3.1 Computational modules 

3.3.1.1 Non-Darwinian modules 

Despite Chomsky’s (1965, 1988) work on modularity in linguistics, it was Fodor (1983)’s 

seminal Modularity of Mind that dominated the theoretical discussions in philosophy and 

psychology, and provided the modern origins of the more general modular models of 

cognition we know today (Lyons 2001; Carruthers et al. 2005). Fodor (1983) argued that there 

is a trichotomous architecture to cognition in that it’s composed of: transducers which serve 

to convert stimuli into signals to be used in processing, central systems which are responsible 

for the likes of general inference, reasoning, and the generation of beliefs and desires and 

input systems which act as intermediaries between the sensory transducers on the one hand 

and the central cognitive system on the other by taking the transducers’ signals and converting 

them into hypotheses about the external world in a format that the central system is able to 

operate on (Meyering 1994). The primary function of input systems Fodor points out is ‘to so 

represent the world as to make it accessible to thought’ (1983: 40). 

 

According to Fodor (1983), there is a world of difference between the rational computations 

of an open cognitive system (i.e. central cognition) and the unconscious, automatic 

computations of a closed perceptual one (i.e. the part of cognition that is made up of input 

systems). The cognitive abilities of input systems, Fodor (1983) stresses, differ from those of 

the central system in two ways. Firstly, input systems are domain specific in that they can 

only generate hypotheses with respect to a very limited class of distal properties (Meyering 

1994). Secondly, modules are informationally encapsulated in that their internal processes are 
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impervious to influence from the rest of cognition, or, to put it more simply than that, that 

information outside the module is inaccessible from within it (Callebaut 2005; Carruthers et 

al. 2005). 

 

By contrast, he says, central systems are characterised by properties that are diametrically 

opposed to domain specificity and informational encapsulation. For Fodor (1983), central 

systems are Quinean (in that the hypotheses they develop such as scientific theories, for 

example, are evaluated in light of everything else that a person happens to believe, and 

therefore their confirmations are global, as opposed to local, phenomena) and isotropic (in 

that in forming those sorts of scientific theories, everything a person knows may in principle 

be relevant for the development and confirmation of those ideas) (Meyering 1994). 

 

In light of these characterisations, Fodor (1983) went on to argue that the input systems 

(which are situated around the mind’s periphery) are modular while central processors are not, 

for according to Fodor (1983), modules must be nine things:  

 

(1) fast in their processing; 

(2) mandatory in their operations; 

(3) computationally shallow; 

(4) inaccessible to the rest of cognition; 

(5) associated with fixed neural architecture and as a result 

(6) exhibit characteristic and specific breakdown patterns; 

(7) have ontogenies that seem to be endogenously determined and follow a characteristic 

pace and sequencing, as well as being  

(8) domain specific and  

(9) informationally encapsulated. 

 

There is indeed overwhelming evidence for each of those features in the sensory and 

linguistic systems (which will be described in due course in Chapter 3), but Fodor has since 

softened his requirements for modularity somewhat, and now conceives of modules as 

‘computational system[s] with […] proprietary database[s which] operate[…] to map [their] 

characteristic inputs onto […] characteristic outputs [and] in the course of doing so, [have] 

informational resources [that] are restricted to what is in [their] proprietary database’ (Fodor 

2000: 63). For Fodor (2000), then, the sine qua non of modularity is informational 

encapsulation: cognitive processes are modular precisely because they exhibit encapsulation, 
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and central cognition (which does not), is resolutely ammodular as a result (Carruthers et al. 

2005). 

Other researchers (e.g. Tooby and Cosmides 1992; Pinker 1997; Scholl and Leslie 1999; 

Carruthers 2003a, b; 2006a) have increasingly argued otherwise, that the mind is more 

modular than the Fodorian perspective of modularity allows. In doing so, they have been 

required to adjust Fodor’s (1983) definition of a module somewhat, though; I will elaborate 

on this in section 3.2.1.2 of this chapter, and even more so in Chapter 3. 

Before drawing this section to a close, I would like to point out that the computational 

modules described above are a very different sort of structure than knowledge meaning (or 

representational) modules. Whilst knowledge meaning modules are systems of representations 

and so are, in a sense, inert in that they won’t eventuate in behaviour until cognitive 

mechanisms manipulate their representations, computational modules are the processing 

devices that do that very thing (Samuels 2000). Computational modules are typically assumed 

in the literature to be symbol (or representation, it makes more sense to say) manipulating 

devices that take representations held in knowledge meaning systems as inputs and 

manipulate them according to formally specifiable rules in order to generate output 

representations (Pylyshyn 1984; Segal 1996). They are, therefore, importantly different with 

regards to the functional roles they play in our cognitive economy, as well as with respect to 

their features. 

3.3.1.2 Darwinian modules 

Whereas Fodor’s (1983, 1998) view of the mind like Chomsky’s (1965, 1988) was and is 

anti-Darwinian in that it is opposed to the idea that modules are naturally selected for 

(Carruthers and Chamberlain 2000), evolutionary psychologists (e.g. Carroll 1988; Garfield 

1991; Barkow et al. 1992; Hirschfield and Gelman 1994; Sperber 1994, 2002; Charland 1995; 

Segal 1996) and their philosophical associate Pinker (1997) tend to subscribe to the very 

much Darwinian-like adaptationist view of the Modern Synthesis that’s due to Williams 

(1966) and Dawkins (1976). This views variety between organisms as being due, in part, to 

their genetic material adapting as a response to their ever-changing environments as they fight 

for survival in them (Callebaut 2005).  

This adaptationist view of the mind is one of the four central tenets of evolutionary 

psychology (the others being computationalism, nativism and massive modularity) (Samuels 
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1998). The first, computationalism, is the view of the mind as an information processing 

device that can be likened to ‘a computer made out of organic components rather than silicon 

chips’ (Cosmides et al. 1992: 7). Thus, Darwinian modules are not Chomskyan modules but 

rather a kind of computational module. The second claim of evolutionary psychology is that 

much of the human mind’s structure is innate, which rejects the familiar empiricist proposal 

that the human mind consists of little more than general-purpose learning mechanisms (the 

view that has been dominant in psychology for most of the twentieth century) in favour of the 

nativist stance that is associated with Chomsky and his followers (Samuels 2000). The third 

fundamental hypothesis that evolutionary psychologists endorse is that the mind is massively 

modular. This is the view that the human mind is largely (or perhaps even entirely) made up 

of Darwinian modules that comprise both the peripheral systems (which Fodor (1983) argued 

are modular) and the central capacities (which Fodor (1983) argued are not) (Cosmides and 

Tooby 1992; Gigerenzer 1994; Leslie 1994; Pinker 1994; Sperber 1994, 2002; Baron-Cohen 

1995; Samuels 1998, 2000).  

 

The final tenet of evolutionary psychology, adaptationism, meanwhile, is roughly the view 

that cognitive modularity is the product of evolution (Samuels 2000).  Its advocates suggest 

that human minds were designed by natural selection in order to solve adaptive problems (e.g. 

‘evolutionary recurrent problem[s] whose solution promoted reproduction, however long or 

indirect the chain by which it did so’ (Cosmides and Tooby 1994: 87)) and so for them the 

modules that make up our minds are simply adaptations that were ‘invented by natural 

selection during the species’ evolutionary history to product adaptive ends in the species’ 

natural environment’ (Tooby and Cosmides 1995: xiii). Its advocates wonder why it is 

uncontroversial that the nonpsychological modules of organisms (for example those in the 

eyes or the liver) are generally best understood as adaptations (Sperber 2002), but it is 

controversial to argue that psychological modules may have arisen through evolution as well 

(Callebaut 2005). I too have asked myself this question. 

 

4. Concluding remarks 

The aim of this introductory chapter was not to spell out what modularity in the cognitive 

sciences is in greater detail than is necessary for a proper understanding of what follows, nor 

was it to survey the various lines of criticism that have been addressed to any of the notions of 

modularity discussed here. Rather, this chapter was written to provide the reader with a bit of 

background about modularity and how different researchers in different research domains 

define it in order to situate my own work within the wider research context. I’d also like to 
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point out that what was discussed in section 3.3 by no means exhausts the ways in which the 

term ‘module’ is used in contemporary cognitive science – for a more comprehensive review, 

one should see Segal (1996) – but what was necessary for this thesis on computational 

modularity was to draw a distinction between Chomskyan modules (which are said to be 

systems of mental representations and so will not be paid any more attention to from here on 

out) and mechanisms that are computer-like in character and are so-called computational 

modules (which will, of course, be the focus of it). Computational modules can be thought of 

as being Darwinian (i.e. those that are adaptive and proposed by evolutionary psychologists) 

or non-Darwinian (those that are proposed by Fodor (1983) and are not). Since this thesis 

aims to assess the evidence for a) whether phonology can be considered a computational 

module of the mind in the Fodorian (1983) sense of the word and b) whether it can be 

conceived as a computational module according to Carruthers (an evolutionary 

psychologist)’s (2006a) definition of a modularity, Chapter 3 will be devoted to discussing 

what it means to be a module according to Fodor (1983) and Carruthers (2006a) more 

thoroughly. The following figure demonstrates the ways in which all of the modules reviewed 

are related. Of course, the ones I am concerned with in the thesis are the bottom two: non-

Darwinian (or Fodorian modules) and Darwinian modules (i.e. those proposed by 

evolutionary psychologists): 
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Figure 2.2 The different types of modules and their relationships with one another 
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Chapter 3: Modest Modularity vs. Massive Modularity 
 

 

1. Introduction 

Recall from Chapter 2 that the modularity hypotheses of today derived, first and foremost, 

from Chomsky’s (1965) work on generative grammar. In Aspects of the Theory of Syntax he 

made two central claims about the architectural structure of the language faculty: (a) that it is 

a module of the mind distinct from ones responsible for, say, music and mathematics and (b) 

that it can itself be divided into a number of submodules relating to language meanings, 

structures and sounds (the semantic, syntactic and phonological modules, respectively) 

(McGilvray 2005). The thesis was revived by Fodor in 1983 with his publication of the 

Modularity of Mind, in which it was extended to all of the low-level cognitive processes 

subserved by the input and output systems around the mind’s edges. This has launched a 

debate in the cognitive sciences is ongoing still (Barrett and Kurzban 2006). 

 

Now, whilst Fodor (1983, 2000) made the case for a sort of minimal (or indeed modest) low-

level peripheral-systems modularity of mind theory according to which one’s mental structure 

can be divided into modular information processing modules in the input and output systems 

that reside around the mind’s periphery (for example for vision, audition, face-recognition, 

various motor-control systems and, most relevantly to this thesis, language-processing, and an 

amodular modular faculty of central cognition (in which concepts are deployed, beliefs 

formed, inferences drawn and decisions made (Browne 1996)), evolutionary psychology 

researchers (e.g. Symons 1987; Cosmides and Tooby 1992, 1994; Tooby and Cosmides 1992; 

Sperber 1994, 1996; Pinker 1997) have argued that a broader notion of modularity is possible. 

For these researchers, the central systems are modular as well and aren’t as different from the 

peripheral systems as Fodor (1983, 2000) thought (Symons 1987; Tooby and Cosmides 1992; 

Cosmides and Tooby 1994; Sperber 1994; Pinker 1997).  

 

Many attempts have been made to disprove this proposal (formally known as the massive 

modularity thesis (Sperber 1994; Samuels 1998; Carruthers 2005)) (e.g. Elman et al. 1996; 

Deacon 1998; Ramachandran and Blakeslee 1998; Buller and Hardcastle 2000; Fodor 2000; 

Panksepp and Panksepp 2000, 2001; Quartz and Sejnowski 2002; Buller 2005), and many 

researchers position their theses somewhere in between those two poles (e.g. Carey 1985; 

Carey and Spelke 1994; Spelke 1994; Smith and Tsimpli 1996; Hauser and Carey 1998; 
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Hermer-Vazquez et al. 1999; Cosmides and Tooby 2001). These in-between theses go beyond 

the scope of this one, though. Thus, this is all I will say about them. 

 

The first section of this chapter provides an overview of Fodor’s (1983) modestly modular 

view and explicates the nine properties he attributes to peripheral modular systems in section 

2.1.1 before describing the differences he draws between peripheral and central cognitive 

systems and explaining why central systems are decidedly nonmodular to his mind in 2.2. In 

section 3, meanwhile, I map out Carruthers’ (2006a) three main arguments for massive 

modularity (the argument from design in section 3.2.1, from animals in section 3.2.2 and from 

computational tractability in section 3.2.3), before describing the definition of a ‘module’ that 

would follow should those arguments have grounds. The result is a thesis of modularity that is 

some distance from Fodor’s (1983, 2000) (in particular in its definition of modularity which 

refers to a more restrictive list of features (Prinz 2006) and in its claim that cognitive systems 

needn’t be informationally encapsulated to be modular as Fodor (2000) so vehemently 

suggests (Barrett and Kurzban 2006)). I explore this in detail in section 3.3, before making 

some concluding remarks in section 4. 

 

2. Modest modularity 

2.1 Fodorian modules 

Recall also from Chapter 2 that Fodor (1983) characterises modules by appeal to nine 

properties as domain specific, innately specified processing systems that deliver ‘shallow’ 

(non-conceptual) outputs (Marr 1983), are mandatory in their operations, swift in their 

processing and isolated from and inaccessible to the rest of cognition, are associated with 

specific neural structures and so are liable to characteristic patterns of breakdown and develop 

according to a paced and distinctively arranged sequence of growth (Carruthers 2006a).  

 

Each of these features call for clarification before I describe why the mind is modular around 

its edges and but not at its centre for Fodor (1983), and so I will comment briefly on the 

various elements of this account (i.e. on their (i) characteristic breakdown patterns, (ii) fixed 

association with fixed neural architecture, (iii) mandatory way of operating, (iv) fast 

processing, (v) ‘shallow’ outputs, (vi) characteristic pace and sequencing, (vii) domain 

specificity, (viii) informationally encapsulation and (ix) limited central access) here. To make 

the exposition as streamlined as possible, the features will be thematically clustered and 

examined on a cluster by cluster basis along the lines of what Prinz (2006) did in Is the Mind 

Really Modular?. Dissociability and localisability will be explored first in section 2.1.1.1, 
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mandatoriness, speed and superficiality in 2.1.1.2, ontogenetic determinism in 2.1.1.3, domain 

specificity in 2.1.1.4 and inaccessibility and encapsulation in section 2.1.1.5. 

 

2.1.1 Features of Fodorian modules 

2.1.1.1 Dissociabilty and localisability 

A functionally dissociable system is one that’s operations can be selectively impaired (i.e. 

damaged independently of the operations of other systems (Robbins 2015)). These selective 

deficits are often observed as a consequence of focal brain injury and are said to strongly 

evidence the claim that mental faculties are localised in biological tissue (Prinz 2006). 

Agnosia (a cognitive disturbance caused by neurological damage affecting a single, sensory 

modality) is a prime example of dissociability and localisability at work. Its first description 

was provided by Lissauer in 1890 who made the claim that focal brain lesions can impair 

either visual or auditory perception leaving the other sensory modalities intact (Lissauer 

1890). This view is one that is shared by Mesulam (2000) too, who claims that the visual 

modality regions adjacent to V1 in the brain are responsible for the processing of the colour, 

form and motion of visual stimuli while the primary auditory cortex in the left hemisphere of 

the brain (A1) is responsible for auditory processing and that damage to each of these areas 

can result in selective impairment.  

 

See Figure 3.1 for an illustration of the brain’s functional zones (where ‘AA’ represents the 

auditory association cortex, ‘ag’ the angular gyrus, ‘A1’ the primary audition cortex, ‘B’ 

Broca’s area, ‘cg’ the cingulate cortex, ‘f’ the fusiform gyrus, ‘FEF’ the frontal eye fields, 

‘ins’ the insula, ‘ipl’ the inferior parietal lobule, ‘it’ the inferior temporal gyrus, ‘MA’ the 

motor association cortex, ‘mpo’ the medical parietooccopital area, ‘mt’ the middle temporal 

gyrus, ‘M1’ the primary motor area, ‘of’ the orbitofrontal region, ‘pc’ the prefrontal cortex, 

‘ph’ the parahippocampal region, ‘po’ the parolfactory area, ‘ps’ the peristriate cortex, ‘rs’ the 

retrospenial area, ‘SA’ the somatosensory association cortex, ‘sg’ the supramarginal gyrus, 

‘spl’ the superior parietal lobule, ‘st’ the superior temporal gyrus, ‘S1’ the primary 

somatosensory area, ‘tp’ the temporopolar cortex, ‘VA’ the visual association cortex, ‘V1’ the 

primary visual cortex and ‘W’ Wernicke’s area): 
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Figure 3.1 Functional zones in the brain (adapted from Daroff et al. 2012: 95) 

 

 

Adjacent and anterior to the primary visual cortex in the posterior occipital lobe (V1) is the 

visual association cortex (VA). This region contains several areas including V4, which is 

specialised for colour recognition and can cause contralateral hemiachromatopsia (a loss of 

colour perception (or colour blindness)) when damaged (Mesulam 2000). Bilateral damage to 

the primary auditory cortex (A1) (which is the part of the cerebral cortex that’s responsible 

for processing auditory information and plays a pivotal role in the auditory system (Pickles 

2012)) can cause a type of hearing loss called central deafness, meanwhile (Mesulam 2000).  

 

Clinical linguistic research has brought us equivalent cases of selective impairments from 

focal injury such as agrammatism (the loss of complex syntax), dyslexia (disordered reading 

and writing ability) and (something that’s especially relevant to Chapter 5) anomia (a deficit 
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in word retrieval). These three language disorders have been found in individuals that are 

otherwise cognitively normal (Damasio et al. 1996), which would suggest that the capacities 

lost in them are subserved by functionally dissociable mechanisms. Clinical linguistics has 

also brought us examples of localisable systems – those responsible for auditory production 

and comprehension most markedly. Broca’s aphasia, for example, which affects auditory 

production but not auditory comprehension (Darley et al. 1975; Marshall et al. 1990; 

Friedmann 2006; Fogle 2008) is said to be caused by damage to Broca’s area (see ‘B’ in 

Figure 3.1), the posterior-inferior frontal gyrus of the left cerebral hemisphere or the 

surrounding vicinity (Naeser and Hayward 1978; Kertesz et al. 1979; Damasio 1989; Kearns 

2004; Keller et al. 2009). Wernicke’s aphasia, on the other hand (which causes problems in 

the opposite direction in that it affects auditory comprehension but not auditory production 

(Albert et al. 1981)) is said to result from damage to Wernicke’s area (see Figure 3.1’s ‘W’), 

the posterior-superior temporal gyrus of the left cerebral hemisphere (Naeser and Hayward 

1978; Fitzgerald 1996; Kolb and Whishaw 2008). This is, of course, suggestive that the 

mental faculty responsible for language production lies in Broca’s region and the one 

responsible for language comprehension in Wernicke’s region, and that damage to those 

different domains can result in quite different deficits (although one should recall from 

Chapter 2 that functional and structural modules don’t always map onto one another as neatly 

as this). 

 

2.1.1.2 Mandatoriness, speed and superficiality 

Something else that merits an explanation here is the mandatory quality that’s assigned to 

Fodor’s (1983) modules. At its core, mandatory operation has to do with whether a cognitive 

system is in any way controlled by consciousness. If a mechanism is uncontrolled by 

consciousness, which is to say that it is capable of both starting and stopping its operating 

without any mindful effort to do so, then it is what we call mandatory in its processing (Bargh 

and Chartrand 1999). Fodor’s (1983) central point about mandatoriness, essentially, is that 

modules automatically and obligatorily process information; that the processing operations 

observable in input and output systems ‘are mediated by automatic processes which are 

obligatorily applied’ (Marslen-Wilson and Tyler 1981: 327). To illustrate, he gives an 

example from spoken word recognition pointing out that ‘you can’t help hearing an utterance 

of a sentence as an utterance of a sentence’ (Fodor 1983: 52) and that ‘you can’t hear speech 

as noise even if you would prefer to’ (Fodor 1983: 53). This, he says, is because the linguistic 

system’s computations take place independently of will; they involuntarily respond to 
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relevant stimuli and so (can be, and indeed have been) likened to reflexes, specified to apply 

whenever they can (Schwartz 1986).  

 

Further evidence for the mandatoriness of input systems has been found in Stroop-type tasks 

(Stroop 1935) that require their subjects to name the colours in which written words are 

presented to them. When the written words are themselves the names of colours, response 

latencies and accuracies are affected by whether they are the same as or different from the 

colours in which they presented. Latencies are shorter, and accuracies are higher when these 

two things are one and the same, for example, participants more quickly and accurately 

identify a font colour as being pink when it used to scribe the word pink than the word blue 

and vice versa. This suggests that visual-word recognition accesses word meaning 

mandatorily (Coltheart et al. 1999). The same is true for visual-word recognition’s access to 

phonology: naming has been found to be slower and less accurate when a target word is 

phonologically unrelated to the name of its font’s colour than when it is (e.g. if the colour of a 

target word’s font is blue, participants would more quickly identify the word clue than its 

synonym hint as there is more of a phonological similarity (compare [b l u:] vs. [k l u:] and [b 

l u:] vs. [h ɪ n t])) (Coltheart et al. 1999). 

 

Mandatoriness and speed of processing are actually said, by Fodor (1983), to be positively 

correlated qualities. This is because in shadowing experiments (experiments where subjects 

repeat what they hear as quickly as they can) he observed that there was only a 250 msec lag 

on average between the stimuli the subjects were presented with and their responses to them. 

He related the speed of the systems’ analyses to their mandatory means of operating, which he 

said suggested that the latter was the cause of the former. For Fodor (1983), then, if a 

system’s operations are automatic, the natural consequence is that they must also be fast.  

 

The third feature Fodor (1983) attributes to modular systems is that they produce, what he 

calls, ‘shallow’ outputs. The depth of an output is a function of two properties: how much 

computation is required to produce it (i.e. shallow means computationally cheap (Robbins 

2015)) and how specific its informational content is (i.e. shallow means informationally 

general (Robbins 2015)) he says (Fodor 1983). These two properties are correlated too in that 

outputs with more specific content are typically expensive (i.e. take much effort) for a system 

to produce, whereas outputs with more general content can be produced inexpensively (i.e. 

don’t take much effort). For example, it doesn’t take the perceptual system much to process 

shallow concrete words (i.e. words that can be proven by appealing to the physical senses) 
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such as table or chair, but it does to produce abstract terms (which do not have any physical 

referents because they aren’t tangible) or highly theoretical concepts (from theoretical 

quantum physics, for example), which are too semantically dense to meet the shallowness 

criterion (Fodor 1983). 

 

2.1.1.3 Innateness and ontogenetic determinism 

Fodor (1980) also argues that modules are ontogenetically determined in that they develop 

predictably according to a universal maturational timeline in all healthy individuals (Cowie 

1999). In a word, they’re innate, he says. The most obvious example of an innate module of 

the mind for me to give here is language since extensive research into us humans’ capacities 

for language has provided strong support for the nativist view that humans are born with a 

genetic predisposition to learn it. Even before the age of five, children can, without having 

had any formal instruction, comprehend and produce sentences that they have never heard 

before, and it was, in fact, these very capacities children have for language comprehension 

and production that led Chomsky (1965) to formulate the ‘poverty of the stimulus’ argument 

that served as the foundations for the nativist view he proposed in the 1960s. 

 

In Chomsky’s (1965, 1980) eyes, the reason that children can so easily master the complex 

operations of language is that they have an innate knowledge of the rules and principles that 

guide them in developing a grammar. In other words, language learning is facilitated by a 

tendency humans have towards certain structures of language. There exist for us a set of 

constraints including both formal universals (e.g. principles and parameters) and substantive 

universals (e.g. lexical categories and features) (Dabrowska 2015), that are hardwired into the 

brain at birth and manifest without being taught (Crain and Lillo-Martin 1999).  

 

Just as babies naturally develop arms and not wings while they are in the womb, they learn to 

speak and not chirp when they are out of it, and language emerges on a fixed schedule 

(children reliable learn single words at around 12 months of age, come to combine them into 

telegraphic speech at around 18 months, acquire complex grammar at around 24 months and 

so on (Stromswold 1994)), Fodor (1983) argues. Please note, though, that although Fodor 

(1983) sees modules as being innate, he doesn’t necessarily think that they evolved. I touched 

on this point in Chapter 2. 
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2.1.1.4 Domain specificity 

A cognitive processor is said to be domain specific if it is only able to compute solutions to a 

restricted subset of the problems that the mind has to solve as a whole (Cam 1988). In other 

words, domain specificity restricts the class of information the processor is able to accept as 

inputs (Cam 1988). As Fodor (1983: 103) puts it, ‘domain specificity has to do with the range 

of questions for which a device provides answers’ (i.e. the range of inputs for which it 

computes analyses). The narrower the range of inputs a system can compute, the narrow the 

range of questions the system can answer and the narrower the range of those questions, the 

more domain specific the device (Carruthers 2006a; Samuels 2006). 

 

There are results owing to researchers at Haskins Laboratories that strongly suggest that the 

perceptual systems responsible for the phonetic analysis of speech are domain specific. 

Mattingly and Liberman (1988), for example, claim that they are different from the systems 

responsible for the analysis of nonspeech, as experiments have shown that how a signal 

sounds to a listener depends on whether the acoustic context indicates that the signal is 

linguistic or not. The very same signal that is heard as the onset of a syllable when the context 

specifies that the stimulus is speech may be heard as a chirp when it is isolated from the 

speech stream. This certainly seemed to be the case in Mattingly and Liberman’s (1988) 

study: when a brief synthesised resonance of changing centre frequency (like one of the two 

in 3.2 (a)) was presented to participants in isolation, a nonspeech chirp was heard, but when 

the resonance was the transition (i.e. first formant) of a third-formant trajectory in a three 

speechlike formant-pattern (like one of two in 3.2 (b)), listeners heard either the consonant-

vowel (CV) syllable [da] or the CV syllable [ga] depending on the slope of the transition. The 

pattern with the falling transition was heard as [da] and the one with rising transition as [ga]: 

 

 

 

 

 

 

 

 

 

 

 



 29 

  (a)    (b) 

 
 
Figure 3.2 A schematic illustrating the domain specificity of speech perception where (a) 
illustrates isolated resonances and (b) those same resonances producing [d] and [g] in a 
speechlike context (adapted from Mattingly and Liberman 1988: 69) 
 

 

Mattingly and Liberman (1990: 502) argue that ‘when the resonance is presented in isolation, 

the auditory module for timbre interprets its center-frequency slope as a chirp, but when this 

same resonance is in the appropriate context, the phonetic module interprets its slope, together 

with other parts of the pattern, as a phonetic event’. The rather strong implication of this is 

that the computational systems that come into play in the perceptual analysis of speech are 

domain specific in that they are only able to operate on acoustic signals that appear to be part 

of a speech stream (Liberman et al. 1967; Fodor et al. 1974). 

 

2.1.1.5 Inaccessibility and encapsulation 

The final two properties on Fodor’s (1983) list, limited central accessibility and informational 

encapsulation, are closely linked in that they both pertain to the character of information flow 

across systems, albeit in different directions: while limited central accessibility restricts the 

flow of information out of a system, informational encapsulation restricts the flow of 

information into it (Robbins 2015). 

 

Let us look at limited central accessibility first. For Fodor (1983), a system is inaccessible if 

its inner workings are opaque to introspection – that is, if the intermediate-level 

representations it computes are inaccessible to consciousness. This, Prinz (2006) points out, is 
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a characteristic that’s seen in the peripheral systems, given that despite our ability to make use 

of the five (traditionally recognised) senses of seeing (opthalmoception), hearing 

(audioception), taste (gustaception), smell (olfaception), and touch (tactioception) every day, 

we have no introspective access to how our sensory systems operate. Likewise, although we 

have tacit knowledge of our native language (i.e. native speaker competence) and the ability 

to produce it, we do not understand the operations of each and every part of our linguistic 

system (Davenport and Hannahs 2010), note. 

 

Informational encapsulation, on the other hand, concerns the information a cognitive 

mechanism has access to. It has been defined by Fodor (1983: 69) as ‘the claim that the data 

that can bear on the confirmation of perceptual hypotheses includes, in the general case, 

considerably less than the organism may know’. An informationally encapsulated system is 

one that ‘ha[s] access to only some of the information available to the mind as a whole’ 

(Chien 1996: 1), that operates in isolation from any information that’s stored beyond it, 

sensitive only to information stored within the mechanism itself, (in a proprietary database, 

say) and any input it receives (Fodor 1983; Prinz 2006; Robbins 2015). Being informationally 

encapsulated, modules neither consult one another, nor are they ‘susceptible to influence from 

information from higher levels, levels at or above that at which they deliver outputs’ (Currie 

and Sterenly 2000: 147) for example general memory in central cognition (Collins 2005). 

They simply operate quickly and automatically on what they take as input, and can do so 

precisely because their processes’ databases are so well defined (Collins 2005) – this is a 

point I will come back to in section 2.2. 

 

The encapsulation of perceptual systems ‘is evidenced directly by the fact that perception 

does not change when it conflicts with belief, as in cases of visual illusion’, Currie and 

Sterenly (2000: 148), argue. And that certainly seems to be the case. Consider this example 

from Fodor (1983: 66-67): 

 

When you move your head, or your eyes, the flow of images across 
the retina may be identical to what it would be were the head and the 
eyes to remain stationary while the scene moves. So: why don’t we 
experience apparent motion when we move our eyes? Most 
psychologists now accept one or another version of the “corollary 
discharge” answer to this problem. According to this story, the neural 
centers which initiate head and eye motions communicate with the 
input analyser in charge of interpreting visual stimulations. Because 
the latter system knows what the former is up to, it is able to discount 
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alterations in the retinal flow that are due to the motions of the 
receptive organs.  
 
Well, the point of interest for us is that the visual-motor system is 
informationally encapsulated. Witness the fact that, if you (gently) 
push your eyeball with your finger (as opposed to moving it in the 
usual way: by an exercise of the will), you do get apparent motion. 
Consider the moral: when you voluntarily move your eyeball with 
your finger, you certainly are possessed of the information that it’s 
your eye (and not the visual scene) that is moving[, b]ut this explicit 
information, available to you for (e.g.) report, is not available to the 
analyzer in charge of the perceptual integration of your retinal 
stimulations. That system has access to corollary discharges from the 
motor center and to no other information that you possess. 

 

Since a cognitive processor is one that has access to nothing more than the information stored 

within the local structures that subserve it, it is, of course, the lack of access to knowledge 

about what the finger is doing that demonstrates the encapsulation of the visual-motor system 

in this example. The visual mechanisms involved in this exercise are simply not designed to 

take any externally caused movement of the eyeball or any knowledge of that into account 

(Barrett 2005).  

 

The Müller-Lyer (Day 1989) illusion (which also has to do with visual perception) (see Figure 

3.3) is also said to support Fodor’s (1983) claim that input systems are modular. In this 

illusion, two equal-lengthed parallel lines are flanked by arrows pointing inwardly in one case 

and outwardly in the other, but although the lines are of equal length, the one with outward-

pointing arrows consistently appears shorter to those that perceive them. Even when people 

are made aware that the two lines are the same length, the lines still look as though they are 

different lengths to them; they cannot use their knowledge that they are not to alter their 

visual perception that they are. This, Fodor (1983) says, suggests that visual perceptive 

processes are encapsulated from module-external information (such as dimensions, in this 

case): 
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Figure 3.3 A Müller-Lyer illusion with typical central shaft and inward and outward fins 
 

 

A similar effect might be observed if somebody asked one of their friends to remove 

something that was stuck in their eye, for it’s likely that they would blink as their friend’s 

fingers approached it in spite of trusting that their friend wouldn’t hurt them (Chien 1996). If 

this effect was observed, it could count as strong evidence to suggest that the eyelid reflex is 

encapsulated, sensitive only to motions around the eye and not one’s beliefs about other 

people (Chien 1996). It is for this reason that ‘informational encapsulation’ is sometimes used 

interchangeably with ‘cognitive impenetrability’: what one believes does not (and cannot) 

make a difference to how modules work.  

 

Now although Fodor didn’t distinguish the nine properties described above with respect to 

weight or priority in 1983, in later essays (e.g. Fodor 2000) he emphasised informational 

encapsulation at the exclusion of others, as the defining feature of modularity (Garfield 1987; 

Applebaum 1998). 

 

2.2 What is and isn’t modular for Fodor  

We obviously know now from Chapter 2 (and the first section of this one) that Fodor (1983) 

wrote a bold, two-part thesis about the structure of the mind (Wilson 2005). His first claim is 

a positive one, that part of it (i.e. its input systems (those responsible for lower-level cognitive 

functions such as perception and language)) is modular while the second is negative, that 

central cognition (whose systems are responsible for higher-order cognitive functions such as 

belief fixation and practical reasoning) is not (Robbins 2015).  
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Fodor (1983) characterises some of the components of psychological systems by analogy to 

the organisation of computers (or, more specifically, Turing machines), which are, for Fodor 

(1983: 39), ‘as general [an example of a central processing unit] as any kind of computer can 

be’.  Turing machines are, according to Fodor (1983: 39), informationally encapsulated 

devices in that ‘the sole determinants of their computations are the current machine state, the 

tape configuration, and the program [with] the rest of the world being quite irrelevant to the 

character of their performance’. Organisms ‘are forever exchanging information with their 

environments, and much of their psychological structure[s are] constituted of mechanisms 

which function to mediate such exchanges’ (Fodor 1983: 39), meanwhile, so if we are to 

model anything in cognitive psychology on Turing machines, it must not be the mind as a 

whole, but the input systems that are ‘embedded in a matrix of subsidiary systems [(i.e. 

transducers)] which affect their computations in ways that are responsive to the flow of 

environmental events [and function] to provide the [input systems] with information about the 

world’ (Fodor 1983: 39). 

 

These subsidiary systems (or transducers) Fodor (1983) speaks of on page 39 are helpfully 

distinguished from the input systems and central processors in the trichotomous taxonomy he 

provides on page 42: 

 

Input systems function to get information into the central processors; 
specifically, they mediate between transducer outputs and central 
cognitive mechanisms by encoding the mental representations which 
provide domains for the operations of the latter. […] Whereas 
transducer outputs are most naturally interpreted as specifying the 
distribution of stimulations at the ‘surfaces’ (as it were) of the 
organism, the input systems deliver representations that are most 
naturally interpreted as characterizing the arrangement of things in the 
world. Input analyzers are thus inference-performance systems within 
the usual limitations of that metaphor. Specifically, the inferences at 
issue have as their ‘premises’ transduced representations of proximal 
stimulus configurations, and as their ‘conclusions’ representations of 
the character and distribution of distal objects 

 

In other words, there are three different types of mental mechanism for Fodor (1983): 

transducers, input systems, and central systems. Transducers lie at the interface between the 

mind and the world producing symbolic mental representations as output from the physical, 

non-symbolic input they find externally (Cain 2013, 2016); that is, they convert the energy 

that impinges on the body’s sensory surfaces into something that’s computable by the input 

systems (Robbins 2015). The retina (i.e. the light-sensitive tissue that lines the back of the 
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eye), for example, is a transducer that in response to being sensorily stimulated by light, 

produces symbolic output that represents the light’s properties (e.g. its intensity, propagation 

direction, frequency or wavelength, to name a few (Buser and Imbert 1992)) (Cain 2013).  

 

Input systems, on the other hand, are mechanisms that function to ‘present[…] the world to 

thought’ (Fodor 1983: 40) by taking the outputs of the sensory transducers as input and 

transforming them into representations of their distal causes as output by means of 

computation (Cain 2013). These output representations are then passed on to the central 

system which decides on these bases what decisions are to be made about the external world 

(Cain 2016). 

 

As an example, let’s consider what happens when one smells something sweet. First of all, 

sensory information is conveyed to the central nervous system (CNS) and perceived in four 

steps (as exemplified in Figure 3.4): (1) stimulation (where ‘a physical stimulus impinges on a 

sensory neuron or an accessory structure’ (Raven 2006: 1104)); (2) transduction (where ‘the 

stimulus energy is used to produce electrochemical nerve impulses in the dendrites of the 

sensory neuron’ (Raven 2006: 1004)); (3) transmission (where ‘the axon of the sensory 

neuron conducts action potentials along an afferent pathway to the CNS’ (Raven 2006: 1104)) 

and (4) interpretation (where ‘the brain creates a sensory perception from the electrochemical 

events produced by afferent stimulation’ (Raven 2006: 1104)). It is fair to say that we actually 

smell (as well as see, hear, touch and taste) with our brains as opposed to with our sensory 

organs then. 
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Figure 3.4 The path of sensory information (Raven 2006: 1104) 
 

 

When somebody smells something sweet, the chemoreceptors or ciliated neurons located in 

the linings of their nasal passages transduce (i.e. respond to) chemical substances present in 

their environment (in particular Glycophore d = 2.6 compounds which are made up of two 

oxygen atoms that are separated by a diagonal distance of d = 2.6 Angstrom and attached to 

two carbon atoms in a cis- configuration (Fulton 2005)) in order to generate electrochemical 

nerve impulses as output. These are then taken as input by the neurons in the olfactory input 

system which transmit impulses through their axons to the brain for interpretation via the 

olfactory nerve: 
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Figure 3.5 Smell (Raven 2006: 1110) 
 

 

The central system might then use the information that’s been made available to it about 

something smelling sweet together with one’s memory of past events that something that 

smelled sweet tasted sweet too to fixate the belief that the same correlation will be found in 

this instance; that whatever they have in front of them will taste as sweet as it smells.  

 

The olfactory system is only one of six input systems, however, for there are input systems 

that correspond to each of the other traditionally conceived senses as well (i.e. the visual 

system for seeing, the auditory system for hearing, the gustatory system for tasting and the 

somatosensory system for touching) as well as the one for language (Cain 2013) which 

functions to generate from the auditory and visual information associated with the spoken and 

signed modalities of language, respectively, their underlying semantic, syntactic and 

phonological structures. I will have more to say about this, peripheral modularity, that is, in 

section 2.2.1. 

 

2.2.1 Peripheral modularity 

Like transducers, input systems are reflexive and automatic, and like cognitive mechanisms, 

they are inferential and computational, Fodor (1983) claims (Applebaum 1998). They are also 

informationally encapsulated, he says, in that they operate to map characteristic inputs onto 

characteristic outputs using the informational resources stored in their proprietary databases 

only. This makes them modular by definition (Fodor 2000). 
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Because of the arbitrary constraints on input systems’ access to information, they are said to 

be ‘irrational’, and because they operate blindly in the sense that they do so without being 

able to access all that the organism knows they are said to be ‘dumb’. Irrational and dumb 

aren’t actually bad things for modules to be though, it turns out, for it is precisely because of 

the restrictions of the data that’s available to modules that they are able to process things as 

quickly and mandatorily as they do (Carruthers 2005). On pages 64 through 71 Fodor (1983) 

emphasises these points: 

 

[T]he point of the informational encapsulation of input systems […] is 
to restrict the number of confirmation relations that need to be 
estimated as to make perceptual identifications fast. (Fodor 1983: 71) 
 
The informational encapsulation of the input systems is […] the 
essence of the analogy between the input systems and the reflexes. 
(Fodor 1983: 71) 
 
Because [the input systems’] processes are automatic, you save 
computation (hence time) that would otherwise have to be devoted to 
deciding whether, and how, they ought to be performed. (Fodor 1983: 
64) 

 

Central systems, on the other hand, ‘operate without antecedently established constraints on 

the information they are able to recruit in the course of their operations’ (Applebaum 1998: 

319) and are therefore rational, smart, but most importantly amodular (due to their lack of 

informational encapsulation), in Fodor’s (1983, 2000) eyes. 

 

2.2.2 Central nonmodularity 

Fodor’s (1983, 2003) argument for the nonmodularity of central systems has been broken 

down by Robbins (2015: 13) as follows: 

 

1. Central systems are responsible for belief fixation. 

2. Belief fixation is isotropic and Quinean. 

3. Isotropic and Quinean processes cannot be carried out by 

informationally encapsulated systems. 

 

Hence (from 2 and 3): 

4. Belief fixation cannot be carried out by an informationally 

encapsulated system. 
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But: 

 

5. Modular systems are informationally encapsulated. 

 

Hence (from 4 and 5): 

 

6. Belief fixation cannot be carried out be a modular system. 

 

Hence (from 1 and 6): 

 

7. Central systems are not modular. 

 

Two terms call for explication in this argument (isotropy and Quineanness), and so I will do 

that here. Both have to do with the confirmation of scientific hypotheses (Wilson 2005). 

Isotropy, as defined by Fodor (1983: 105), refers to the epistemic interconnectedness of 

beliefs in that ‘everything the scientist knows is, in principle, relevant to determining what 

else he ought to believe’. Carruthers (2003a: 76) gives the following example: 

 

As an illustration of the supposed holism of belief, consider an 
episode from the history of science. Shortly after the publication of 
The Origin of Species a leading physicist, Sir William Thompson, 
pointed out that Darwin couldn’t just assume the long time-scale 
required for gradual evolution from small differences between 
individual organisms, because the rate of cooling of the sun meant that 
the Earth would have been too hot for life to survive at such early 
dates. Now we realize that the Victorian physicists had too high a 
value for the rate at which the sun is cooling down because they were 
unaware of radioactive effects. But at the time this was taken as a 
serious problem for Darwinian theory – and rightly so, in the scientific 
context of the day. 

 

To say that scientific confirmation is Quinean, on the other hand, is to say that ‘the degree of 

confirmation assigned to any given hypothesis is sensitive to properties of the entire belief 

system’ (Fodor 1983: 107), that ‘the shape of our whole science bears on the epistemic status 

of each scientific hypothesis’ (Fodor 1983: 107). Both isotropy and Quineanness preclude the 

encapsulation (and therefore modularity) of central systems since a system’s possession of 

those two features requires it to have ‘potentially unlimited access to the contents of central 

memory’ (Prinz 2006). Put in slightly different terms, isotropy and Quineanness are global 
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properties, and since globality rules out encapsulation, so too do central processes (which 

means they cannot be modular) (Prinz 2006). 

 

For many, Fodor’s (1983) argument is a difficult one to resist, which is unsurprising, really, 

given its logicality. His main points are these: first, that there is a strong negative correlation 

between globality and encapsulation, second that there is a strong positive correlation 

between encapsulation and modularity, and from those two points a third, that there is, 

therefore, a strong negative correlation between globality and modularity (Robbins 2015). For 

Fodor (1983), the more global a process is, the less modular the system is that performs it 

(Robbins 2015). 

 

There are three ways, then, that Fodor’s (1983) conclusion can be countered: the first way is 

to deny that central processes are global, the second is to deny globality and encapsulation are 

strongly negatively correlated and the third to deny that encapsulation and modularity are 

strongly positively correlated (Prinz 2006). The third option (denying that modularity requires 

encapsulation) is the approach Carruthers (2006a) takes. In The Architecture of the Mind 

Carruthers (2006a) draws a distinction between two kinds of encapsulation: ‘narrow-scope’ 

encapsulation (which is seen in systems that cannot draw on information beyond their system 

boundaries during the course of their processing and corresponds to Fodor’s (1983) use of the 

term encapsulation) and ‘wide-scope’ encapsulation (which is seen in systems that indeed do 

have access to exogenous information during the course of their processing, but cannot access 

everything all at once). This, wide-scope encapsulation, that is, is a much weaker sense of 

encapsulation than the one Fodor’s (1983) proposed. As such, it allows for the central systems 

to be seen as modular enterprises after all. 

 

3. Massive modularity 

Researchers in the cognitive science community have gone a step further than Fodor (1983, 

2000) by claiming that the mind is wholly, or at the very least massively, composed of 

modules (Cosmides and Tooby 1992, 1994; Tooby and Cosmides 1992; Sperber 1994, 1996, 

2002; Pinker 1997; Gallistel 2000; Barrett 2006; Barrett and Kurzban 2006). There are a 

number of good reasons, then, for thinking that this is so, and so I will begin this section by 

shedding light on some of these for they will bring to bear on later discussion. In sections 

3.1.1 through 3.1.3 I will look briefly at some of the developmental, pathological and 

experimental evidence for the mind having such an architecture before honing in on 

evolutionary psychologists’ principal theoretical argument for massive modularity in section 
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3.1.4, which has to do with evolution. Section 3.2 will be devoted to the discussion of 

Carruthers (2006a) arguments for massive modularity (the argument from design in section 

3.2.1, the argument from animals in section 3.2.2 and the argument from computational 

tractability in section 3.2.3) and section 3.3 his definition of a module, for it differs from 

Fodor’s (1983, 2000) in quite a number of ways. 

 

3.1 Evidence for modularity 

3.1.1 Developmental evidence 

A variety of arguments (that are themselves of varying strengths) have been put forward to 

support some form of (or at least, some facets of) a massively modular view of the mind 

(Carruthers 2003a). The first set (and indeed the set to be studied in this subsection) have to 

do with development.  

 

Developmental psychologists now generally agree that cognitive development is a process 

that proceeds at different speeds in different domains (such as naïve physics, naïve 

psychology, and, for Atran (2002), naïve biology, for example) (Carruthers 2004).  

Children’s competence in at least some of these domains is observable very early on in 

infancy (Carruthers 2003a; Caruthers 2004), in some cases as young as four months old 

(Carruthers 2004). Evidence for early competence in contact mechanics (and therefore naïve 

physics) has been found too, and so has evidence for early competence in social 

understanding (ergo naïve psychology) (Spelke 1994; Baillargeon 1995; Woodward 1998; 

Phillips et al. 2002).  

 

Cognitive scientists have argued that children’s abilities to know so much, so fast, with so 

little information available to them cannot be explained without deploying some sort of 

‘poverty of the stimulus’ argument like Chomsky’s that was put forward in support of the 

innateness of linguistic knowledge. According to Carruthers (1992, 2003a, 2004), Leslie 

(1994), Spelke (1994), Baron-Cohen (1995) and Dwyer (1999), among others, it is hard to see 

how children can acquire so much knowledge at such young ages with only general-learning 

mechanisms to help them. There must, therefore, be an innately channelled learning module 

for knowledge acquisition in each of the different domains they say, much like there is a 

learning module for the acquisition of linguistic knowledge. 
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3.1.2 Pathological evidence 

Related arguments for some domains being dissociable from others come from 

psychopathological damage studies (Shallice 1998; Tager-Flusberg 1999). During 

development, theory of mind can be damaged while physical/spatial thinking is not, for 

example, and the reverse is possible too, Carruthers (2004) points out. 

  

The first case, actually, is what we see in autism (a developmental condition in which people 

show a selective impairment in the naïve psychological domain in that they can find it 

difficult to understand the mental states of themselves and other people but can be of normal 

intelligence otherwise (Baron-Cohen 1995)). The second case, on the other hand, is 

something seen in children with Williams’ syndrome (a developmental disorder in which 

people have difficulties in the domain of practical problem solving (which of course, 

implicates naïve physics) but not necessarily anywhere else (Karmiloff-Smith et al. 1995; 

Mervis et al. 1999)).  

 

There has also been evidence to suggest that the naïve biological domain can be subject to 

dissociable damage, particularly so from stroke victims who have category-specific semantic 

impairments in the realm of animate vs. inanimate things (Warrington and McCarthy 1983; 

Warrington and Shallice 1984; Sartori and Job 1988; Job and Surian 1998; Atran 2002). 

Warrington and McCarthy (1983) and Warrington and Shallice (1984) were among the first 

people to report this: Warrington and McCarthy (1983) described a patient who had suffered a 

left hemisphere stroke and had impaired production and comprehension performance for non-

living objects but not living ones while Warrington and Shallice (1984) described the opposite 

pattern of breakdown in four patients with the herpes simplex encephalitis virus. 

 

3.1.3 Experimental evidence 

There isn’t as much experimental evidence for modularity of mind as there could be, for most 

of its proponents are theoretical, as opposed to empirical, researchers. What little evidence 

there is, however, is strongly suggestive that the mind is indeed modular (Carruthers 2004). 

 

The first piece of evidence concerns the existence of a geometric module in rats. In 1986, 

Cheng trained rats to search for food in rectangular enclosures. On each trial, food was put in 

a particular corner, and 75 seconds after being shown the food, the disorientated rats were 

allowed to search for it. When there were no other cues, rats searched the correct corner and 

its geometrically equivalent corner (the one diagonally opposite). What was most interesting, 
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however, is that the rats continued to confuse geometrically equivalent locations even in the 

presence of highly salient clues that could disambiguate the geometric information and that 

they would well recognise in other circumstances (such as different odours and colours). The 

rats’ inability to integrate geometric information with information of other kinds led Cheng 

(1986) to suggest that the processing of local spatial geometry is modular, according to Fodor 

(1983)’s definition of the word, as to him the study suggested that geometric processing in 

rats was cognitively impenetrable (or informationally encapsulated, if you prefer). 

 

Since then, similar paradigms of research have been conducted on humans (Cheng and 

Newcombe 2005). Hermer and Spelke (1994, 1996), for example, extended Cheng’s (1986) 

work to human children and found that between the ages of two and four children behaved 

identically to rats when they were disorientated, splitting their choices evenly between the 

correct corner and the diagonally opposite corner of a rectangular room regardless of a 

nongeometric landmark (a blue wall) to relocate an object hidden in one of its four corners. 

Using the data from Hermer and Spelke (1994, 1996) (and indeed their own) as evidence, 

Hermer-Vazquez et al. (1999) went on to sketch out how they thought children might reorient. 

Until children acquire spatial language (at around six years of age), they will, like rats, 

reorient themselves on the basis of spatial representations within a geometric module of mind, 

they explain. 

 

There is also evidence to suggest that Pavlovian (1955) associationist models of simple 

conditioning are ‘subserved by a special-purpose computational system that is designed to 

predict varying temporal contingencies’ (Carruthers 2004: 306). In these sorts of model, a 

behaviourally neutral stimulus called the conditioned stimulus is repeatedly paired with a 

motivating stimulus called the unconditioned stimulus until the subject responds to the former 

in a manner that demonstrates their anticipation of the latter (Gallistel and Gibbon 2001). In 

Pavlov’s experiments which investigated the conditioning and learning by association, recall, 

a dog that was exposed to the ring of a bell (the conditioned stimulus) whenever it was fed 

(the unconditioned stimulus) over and over again, learnt to associate the sound of the bell with 

the expectation that food would come and would salivate upon hearing it.  

 

Gallistel and Gibbon’s (2001) argument for there being an information processing 

computational module that subserves associationist conditioning is as follows: neither the 

delay between stimuli and reinforcements nor the ratio of reinforced to unreinforced 

presentations of conditioned stimuli have been found to affect rates of acquisition. And, while 



 43 

neither of these things can be understood from a perspective that sees learning as the mere 

building of associative connections (i.e. Hebbian synapses), they can be easily explained 

within a computational model which assumes that what animals really do is estimate 

likelihoods and calculate rates of return (Gallistel and Gibbon 2001). 

 

3.1.4 Evidence from evolutionary psychologists 

The fourth and final set of arguments (to be discussed in section 3.1, at least) for massive 

modularity are evolutionary in nature. According to evolutionary psychologists such as Tooby 

and Cosmides (1995), Fiddick et al. (2000) and Cosmides and Tooby (2001), biological 

systems (which they take to include the mind as well) characteristically evolve by becoming 

more modular in response to evolutionary pressures from their environment, by ‘bolting on’ 

additional structures that are specialised to perform particular tasks and solve certain 

problems (Carruthers 2004; Carruthers 2006a). The anti-modular ‘general-purpose computer’ 

model of the mind cannot be correct, in their eyes, for no such computer could evolve in the 

way that the mind seems to. 

 

There is indeed evidence to suggest that this is the case: computational simulations by 

Kashtan and Alon (2005) and Kashtan et al. (2007), for example, have shown that networks 

evolve modularity and evolvability in environments that are subject to change, while 

evolution in environments that are unchanging produces nonmodular networks that are 

comparatively slower to adapt (Kashtan and Alon 2005; Kashtan et al. 2007). Follow up 

studies undertaken by Parter et al. (2007) further support this thesis that it is an organism’s 

changing environment that generates its modular structure. They found that the modularity of 

bacterial metabolic networks is positively correlated with the frequency and degree to which 

their environments change. 

 

The argument is summarised by Tooby and Cosmides (1995: xiii-xv) as follows: 

 

just as the body contains distinct morphological adaptations that 
evolved to perform distinct physiological functions, the mind must 
contain distinct “mental organs,” which evolved to solve a Vast 
Number of adaptive problems that required distinct behavioral 
solutions (Symons 1992, p. 142). Since the behavioral solution to any 
one of these problems wouldn’t have transferred to any of the other 
problems […] each adaptive problem would have selected for its own 
specialized cognitive adaptation. Thus, “our cognitive architecture 
resembles a confederation of hundreds of functionally dedicated 
computers (often called modules 
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In their eyes, when we need a new skill, a new system simply evolves to subserve that. I will 

come back to this point in sections 3.2.1 and 3.2.2, as this has to do with Carruthers’ 

arguments for massive modularity. 

 

3.2 Carruthers’ arguments for massive modularity 

In his 2006 publication The Architecture of the Mind, Carruthers offers a clear and 

comprehensive defence of the idea that the human mind is massively modular. He begins by 

providing a definition of modularity that’s appropriate to the thesis that central cognition is 

modular too, for unlike Fodorian (1983) modules that can be characterised by nine features, 

Carrutherian (2006a) modules are more simply than that function-specific automatic 

processing systems which are independent of one another and whose internal operations are 

largely inaccessible to the rest of cognition. The result is a notion of modularity that is 

dramatically different from Fodor’s (1983) – it is much closer to the use of notion in the 

biological research domain and even closer to its use by researchers in computing (a point I 

will return to in section 3.3). In the book’s first three chapters Carruthers (2006a) put forward 

three arguments for massive modularity (the argument from design, the argument from 

animals and the argument from computational tractability). Each of those will be addressed in 

turn here. 

 

3.2.1 The argument from design 

3.2.1.1 Biological modules  

The first (and arguably the most developed) of Carruthers’ (2006a) arguments for massive 

modularity (the argument from design) follows the lead of Simon (1962), who said that 

systems are optimally designed if they are modular, for the modular organisation of complex 

systems means that they are: 

 

constructed hierarchically out of dissociable sub-systems (each of 
which is made up of yet further sub-systems), in such a way that the 
whole assembly can be built up gradually, adding sub-system to 
subsystem; where the properties of sub-systems can be varied 
independently of one another; and in such a way that the functionality 
of the whole is buffered, to some extent, from changes of damage 
occurring to the parts (Carruthers 2006a: 12) 

 

 

He told the tale of two watchmakers, Tempus and Hora, to illustrate this point. Tempus and 

Hora both made watches from myriad parts and were interrupted frequently by phone calls as 
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they worked, Simon (1962) said. Hora’s designs were no less complex than Tempus’ were, 

but while Hora designed his watches as decomposable systems made up of modules, Tempus 

did not, and so each and every time Tempus was interrupted by the telephone and had to set 

aside his work to answer it, he had to come back and reassemble the whole watch from 

scratch (Simon 1962). By contrast, Hora designed small stable subassemblies (or micro-

assemblies) that could be fashioned into larger stable subassemblies, and so when he was 

interrupted by the telephone, only the last unfinished subassembly had to be reassembled; his 

earlier work, meanwhile, was of course preserved (Simon 1962). 

 

What made Tempus’ watch design so unstable in the end was not the number of parts it had 

but the interdependencies among them (Langlois 1999). This is because in a 

nondecomposable system (like Tempus’), the successful operation of one part depends on the 

successful operations of all others, meaning that when a system is missing parts, it is no 

longer functional (Langlois 1999). In a decomposable system (like Hora’s), on the other hand, 

the proper working of a part depends more on the parts within its subassembly than the parts 

outside of it, which means that it may well be able to operate as it should even if some of the 

system’s other parts are missing (Langlois 1999). 

 

The modularity of technological systems then, by limiting the scope of interactions between 

elements of tasks, can shorten their designs’ developmental times, as it eliminates the need for 

pre-assembly operations Wilhem (1997) points out. It can also reduce their cost of production 

(Garud and Kumaraswamy 1995; Sanchez and Mahoney 1996; Muffatto 1999; Cusumano and 

Nobeoka 1998), economise their scale and scope (Pine 1993; Friedland 1994; Garud and 

Kumaraswamy 1995; Sanchez 1999) and increase their number of compatible suppliers 

(Langlois 1992, 2000; Langlois and Robertson 1992; Garud and Kumaraswamy 1993; Morris 

and Ferguson 1993; Reed 1996; Baldwin and Clark 1997; Sanderson and Uzumeri 1997). The 

main thing that artificial systems (like technological ones) have in common with natural 

systems (like biological ones), though, is that their modularity allows their structures to 

evolve more quickly and easily than they would have been able to had their architecture not 

been modular. Just like technological systems have to be modularised in order that they can 

evolve through new parts being added and old ones subtracted, debugged, improved or 

updated without running the risk of errors being introduced elsewhere (Carruthers 2006a), 

modularity in complex biological systems is essential for their biological evolution through 

natural selection (Wagner and Altenberg 1996; Bolker 2000; Raff and Raff 2000; Wimsatt 
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and Schank 2004; Carruthers 2006a; Futuyma 2009; Epinosa-Soto and Wagner 2010 (see 

also, Carruthers (2006a: 21-22)): 

 

The basic reason why biological systems are organized hierarchically 
in modular fashion is a constraint of evolvability. Evolution needs to 
be able to add new functions without disrupting those that already 
exist; and it needs to be able to tinker with the operations of a given 
functional sub-system – either debugging it, or altering its processing 
in responses to changes in external circumstances – without affecting 
the functionality of the remainder. 

 

Simon’s (1962) argument is really a one from design, then, whether the designer is a human 

engineer (as in the case of technological systems) or natural selection (as in the case of 

biological ones) (Carruthers 2006a).  

 

3.2.1.2 Is the mind a biological module? 

Carruthers (2006a: 13) argues that a belief in massive modularity is ‘well nigh ubiquitous 

across the biological sciences’ and that while not everyone uses the word ‘modularity’, others 

are used to denote the same concept (Nijhout (1991) uses ‘autonomy’, Maynard-Smith and 

Szathmáry (1995) and Kirschner and Gerhart (1998) use ‘compartmentalisation’, Larson and 

Losos (1996) use ‘individualisation’ and West-Eberhard (1996) uses ‘sub-unit organisation’). 

There is indeed a great deal of evidence from the field of biology, suggesting that complex 

biological systems are modular. This has found to be true for many levels of the organism 

such as genes, cells, cellular assemblies, whole organs, organ assemblies, the organism itself 

and even multi-organism units (Seeley 1995; West-Eberhard 2003; Schlosser and Wagner 

2004; Callebaut and Rasskin-Gutman 2005). Consider the evolution of orchids, for example, 

who have adapted through natural selection to promote reproduction (Schiestl et al. 2000).   

 

Orchids reproduce through pseudocopulatory pollination (so-called because the behaviours of 

the individuals involved mimic copulation even though there is no actual sexual activity 

involved (Schiestl et al. 2000)). The pollinator sees the flower as a potential mate and 

attempts to engage in coitus. In doing so, its body makes contact with the viscidium of the 

flower, and pollinium is pulled from the anther, which is connected to the viscidium by 

something called the caudicle (Schiestl et al. 2000). The pollinator then leaves and approaches 

another flower of the same species to copulate, depositing the pollinium to the stigma of the 

second flower and thereby completing the pollination process (Schiestl et al. 2000). 
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In order to increase its chances of pollination, the orchid may mimic a potential female mate 

for the pollinator visually (van der Pijl and Dodson 1966). A prime example of this can be 

seen in the hammer orchid (Drakaea), which is highly modified in that its labellum resembles 

a female Thynnid wasp in both shape and colour to lure in potential partners to pick up and 

deposit its pollen to another Drakaea (Groom and Lamont 2015). 

 

Orchids are also known to exploit the attraction of male insects to female sex pheromones by 

emitting a scent that mimics that of a potential mate (Tan and Nishida 2000). The early spider 

orchid (Ophrys sphegodes), for example, which is pollinated by Adrena nigroaenaea males, 

secretes chemicals that smell similar to the sex pheromones of a female Andrena nigroaenaea 

from glands called osmophores in order to attract them (Shiestl et al. 2000).  

 

Note that in each of the cases presented here, only particular parts of organisms undergo 

adaptations: in Artemia salina, it is the osmoregulation system, in Drakaea it is the labellum 

and in Ophrys sphegodes, it is the osmophores. This is because of the organisms’ modular 

organisations: the modularity of organisms allows evolution to occur as it allows the functions 

of units to be altered without altering the functioning of other units (Riedl 1978; Gilbert et al. 

1996; Raff 1996).  

 

This is also the case in animals as well as plans. Nobody supposes that there could be a single 

general-purpose sensory organ for fulfilling all of the five sensory functions. On the contrary 

what we find are five distinct organs that have been shaped by natural selection to fulfil each 

of the five sensory functions – the eyes for seeing, the ears for hearing, the nose for smelling, 

the tongue for tasting and the skin for touching (Carruthers 2004). By the same token, nobody 

expects to find a single general-purpose organ that fulfils both the functions of the heart and 

lungs or the cardiovascular system and the respiratory system. Rather, the cardiovascular 

system is made up of the heart and blood vessels (arteries, capillaries and veins) and the 

respiratory system the nose, mouth, pharynx, larynx, trachea, bronchi and lungs (Carruthers 

2004). The same, then, should surely be true of the mind, Carruthers argues, if that is a 

biological system too: one ‘should expect there to be one distinct subsystem for each reliably 

recurring function that human minds are called upon to perform’ (Carruthers 2006b: 10) – 

especially seeing as the senses, which like language are subserved by the input systems, are 

thought of as being modular. 
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3.2.1.3 Carruthers’ argument from design summarised 

In short, Carruthers (2006a) argues that the mind is an evolved biological system and as such, 

must, therefore, obey the same principles of design that other biological systems do. His 

argument is neatly summarised on page 25 as follows, and is closely related to his second 

argument from animals, which will be the focus of section 3.2.2): 

 

(1) Biological systems are optimally designed systems, constructed incrementally. 

(2) Such systems, when complex, need to have massively modular organization. 

(3) The human mind is a biological system, and is complex. 

(4) So the human mind will be massively modular in its organization. 

 

3.2.2 The argument from animals 

The computational theory of mind has been the principal position in the field of philosophy 

on how the mind works for the past five plus decades. The first suggestion that something like 

the Turing machine might model the mind well was made by McCulloch and Pitts in 1943, 

and by the 1960s Turing computation came to be central to cognitive science (Rescorla 2017). 

The classical computational theory of mind has two basic tenets. The first is that the mind is a 

representational system and the second is that mental representations are processed 

computationally (Sterenly 1990). I consider these both here. 

 

Now, the problem most people have with the computational theory of mind is that, because it 

has the word ‘computational’ in its title, they are inclined to think of the mind as a computer – 

but that’s not what the theory intends (Rescorla 2017). Rather, what the computational theory 

of mind proposes, is for the mind to be thought of as a computational system. Describing the 

mind as a computer strongly suggests that it is susceptible to programming which neither 

minds (nor most Turing-style computational systems, for that matter) are (Rescorla 2017). As 

a result, a number of critics (e.g. Churchland et al. 1990) have falsely objected to the 

computational theory of mind by virtue of their thinking that the mind is not like a 

programmable, general-purpose computer. In reality, though, nobody is saying it is. 

 

With that being said, some of the most widely accepted articulations of the computational 

theory of mind are due to Fodor (1975, 1987, 2000) (see also Fodor and Pylyshyn 1988). One 

of the main contributions he made was that the mind has an inner medium that carries out 

computations, and that compositionality, productivity and systematicity of thought could only 

be explained if that inner medium has a structure of language which has those three 
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properties. According to the language of thought hypothesis, thought and thinking are done in 

a mental language where words express concepts and sentences propositional attitudes (Murat 

2015).  

 

The language of thought hypothesis as it is understood today can be characterised as a 

combination of the following three theses (Murat 2015: 2-3): 

 

A. Representational Theory of Mind (RTM) (cf. Field 1978:37, Fodor 1987:17): 

1. Representational Theory of Thought: For each propositional attitude A, there is 

a unique and distinct (i.e. dedicated) psychological relation R, and for all 

propositions P and subjects S, S As that P if and only if there is a mental 

representation #P# such that 

a. S bears R to #P#, and 

b. #P# means that P. 

2. Representational Theory of Thinking: Mental processes, thinking in particular, 

consists of causal sequences of tokenings of mental representations. 

 

B. Mental representations, which, as per (A1), constitute the direct “objects” of 

propositional attitudes, belong to a representational or symbolic system which is such 

that (cf. Fodor and Pylyshyn 1988:12–3) 

1. representations of the system have a combinatorial syntax and semantics: 

structurally complex (molecular) representations are systematically built up out 

of structurally simple (atomic) constituents, and the semantic content of a 

molecular representation is a function of the semantic content of its atomic 

constituents together with its syntactic/formal structure, and 

2. the operations on representations (constituting, as per (A2), the domain of 

mental processes, thinking) are causally sensitive to the syntactic/formal 

structure of representations defined by this combinatorial syntax. 

 

C. Functionalist Materialism. Mental representations so characterized are, at some 

suitable level, functionally characterizable entities that are (possibly, multiply) 

realized by the physical properties of the subject having propositional attitudes (if the 

subject is an organism, then the realizing properties are presumably the 

neurophysiological properties of the brain). 
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What is most interesting about the language of thought hypothesis however, as Carruthers 

(2006a) points out, is that it has important implications for animal cognition. According to 

Fodor (1975, 1987, 2000), language of thought is not dependent on any natural language, 

which leaves open the possibility that non-linguistic creatures (i.e. animals) can think as well 

(Carruthers 2006a).  

 

Recall from 3.2.1 (i.e. Carruthers’ (2006a) argument from design) that the modularity of 

cognitive capacities constitutes an evolutionary feature than enhances the adaptability of 

organisms so that they can cope more efficiently with their environments. In his second 

argument for massive modularity (the one which comes from animals), Carruthers (2006a) 

develops this point further, claiming that non-human animal minds are also massively 

modular and that the characteristic was conserved during the evolutionary transition from the 

animal mind to the human mind as valuable characteristics often are. 

 

Unlike the argument from design, the argument from animals isn’t summarised in Carruthers 

(2006a), though it has been helpfully broken down by Wilson (2008: 278) like so: 

 

(1) Animal minds are massively modular. 

(2) Human minds are incremental extensions of animal minds. 

(3) So human minds are massively modular. 

 

3.2.2.1 Types of module 

3.2.2.1.1 Learning modules 

Following Gallistel (1990, 2000) and Tooby and Cosmides (1992; 1995), Carruthers begins 

his argument from animals with a ‘reflection on the differing task demands of the very 

different learning challenges that people and animals must face, as well as the demands of 

generating appropriate fitness-enhancing intrinsic desires’ (Carruthers 2006a: 29). It is one 

task to work out the sun’s azimuth angle (which, with other measures such as its zenith angle) 

defines its position in the sky at any given time of day (Seinfield and Spyros 2006; Sukhatme 

2008; Duffie and Beckman 2013) and use it to find your way from point A to point B, but it is 

quite another to follow the Polaris star north, say, and turn 90 degrees clockwise to go east, 

another 90 to go south, and a further 90 to head west, Carruthers (2006a) says. These are both 

learning problems animals can solve, but they require quite different learning mechanisms to 

do so (Carruthers 2006a). 
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To reinforce that argument, Carruthers (2006a) widens his focus on navigation to a number of 

other learning problems such as vision, speech recognition, mind-reading, cheater detection 

and complex skill acquisition. Each of these learning problems pose computational challenges 

that are distinct from the computational challenges of other learning problems, he points out, 

and ‘[s]o for each problem, we should postulate the existence of a distinct learning 

mechanism, whose internal processes are computationally specialized in the way required to 

solve the task’, he says (Carruthers 2006a: 29). Carruthers (2006a: 29) finds it ‘very hard to 

believe that there could be any sort of general learning mechanism that could perform all of 

these different roles’, and he is not alone in this view. Gallistel (2000), Gallistel and Gibbon 

(2001) and Gallistel et al. (2001) have all argued forcefully, for example, that there is no such 

thing. 

 

3.2.2.1.2 Desire modules  

Next, Carruthers (2006a: 30) defines learning as a process that ‘issues in true beliefs, or 

beliefs that are close enough to the truth to support [the] inclusive fitness’ of an individual. 

Desires, he says, therefore aren’t learned in that sense of the word, but need to be formed in 

ways that will support an individual’s inclusive fitness still. Carruthers points out that while 

some desires are ‘instrumental’ in that they are ‘derived from ultimate goals together with 

beliefs about the means that would be sufficient for realizing [them]’ (Carruthers 2006a: 30), 

not all acquired desires are formed that way. Rather, ‘evolutionary psychology postulates a 

rich network of systems for generating new desires in the light of input from the environment 

and background beliefs’ (Carruthers 2006a: 30).  

 

Much of these desires, Carruthers (2006a) says, are, therefore, ‘ultimate’ in the sense that they 

are ‘produced by inferences taking place in systems dedicated to creating desires of that sort’ 

as opposed to being ‘produced by reasoning backwards from the [need] to fulfil some other 

desire’ (Carruthers 2006a: 30). A desire to have sex with someone, for example, isn’t always 

produced by reasoning that such an act is likely to fulfil an evolutionary goal of reproduction, 

he argues. Rather, it can be generated by some sort of system (module) that has evolved for 

that purpose, he says (Carruthers 2006a).  

 

3.2.2.1.3 Other modules  

What emerges from Carruthers’ (2006a) thoughts in Chapter 1 then is a picture of the mind 

being made up of a host of systems specialised for learning, and another host of systems that 

have been designed to generate fitness-enhancing desires, but although this looks like much of 
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the mind is modular, it does not yet follow that the mind is composed exclusively of modules. 

Being well aware of this, Carruthers (2006a) goes on to argue in Chapter 2 that not only do 

animal minds consist of sets of learning modules and desire-generating modules, the systems 

charged with belief-generation and emotion-generation, and the selection, organisation and 

control of action are decomposable as well. As such, there is nothing left of the mind that 

could be considered nonmodular, for all of its primary functions (perception, belief, desire, 

practical reasoning and motor-control) are subserved by modules. 

 

Carruthers (2006a) devotes all but one paragraph of Chapter 2 to defending the first premise 

of his argument from animals (that animal minds are massively modular) (Wilson 2008).1 The 

final remaining one, however, begins as follows, and is taken by Wilson (2008) to be the 

reasoning behind premises (2) and (3) (that human minds are incremental extensions of 

animal minds and that human minds are massively modular, respectively): 

 

Given that animal minds are organized along massively modular lines, 
then normal biological reasoning should lead us to expect that 
massively modular architecture will be preserved in the minds of 
members of Homo sapiens, too. (Carruthers 2006a: 149) 

 

For Carruthers (2006a) it makes sense from an evolutionary perspective that if animal minds 

are massively modular, human minds will be as well. Fitness-enhancing biological structures 

are generally preserved in the evolutionary transition from one species to another, so provided 

it is appropriate to extend biological and evolutionary principles to minds, he says, we should 

expect the mind to be made up of the same modular systems that are present in apes.  

 

3.2.3 The argument from computational tractability 

Carruthers’ (2006a) third and final argument in support of massive modularity is the one from 

computational tractability, which is derived in part from the earlier Fodorian (1983, 2000) 

tractability argument that Carruthers (2006a: 44) has helpfully summarised as follows: 

 

(1) The mind is computationally realized. 

(2) All computational mental processes must be suitably tractable. 

(3) Only processes that are informationally encapsulated are suitably tractable. 

 
1 The chapter also locates those modules within a basic perception/belief/desire/practical 
reason/motor-control architecture, but I will say no more about that for it goes well beyond 
the scope of this thesis. 



 53 

(4) So the mind must consist entirely of encapsulated computational systems. 

 

Carruthers’ (2006a) argument begins like Fodor’s (1983, 2000) with the relatively 

uncontroversial claim, in the cognitive sciences, that cognitive systems are realised 

computationally (Gottschling 2009). If this is correct, then their computations must be 

suitably tractable, he (again, like Fodor (1983, 2000)) claims, which means they must be (at 

least in principle) able to be carried out within finite time (Gottschling 2009). The tractability 

of computations requires them, therefore, to be frugal in two respects: first in that the 

algorithms used in their computation must be suitably simple; and second in that they use in 

their computation only a limited amount of information (Gottschling 2009).  

 

‘[I]n order to be tractable, computations need to be encapsulated’ (Carruthers 2006a: 51) says, 

‘for only encapsulated processes can be appropriately frugal in the informational and 

computational resources that they require’ (Carruthers 2006a: 51). This looks a lot like 

something Fodor (1983, 2000) would have said at first glance, but while that may be, his 

definition of encapsulation here is quite different from Fodor’s (1983, 2000) it turns out, as 

section 3.2.3.1 explores. 

 

3.2.3.1 Narrow-scope vs. wide-scope encapsulation 

On pages 57 through 59 Carruthers (2006a) draws a distinction between narrow-scope and 

wide-scope encapsulation, using a sketch from Atran (2002) of a practical-reasoning systems 

which takes as its initial input whatever is currently the strongest desire for P and conducts a 

search through long-term memory for beliefs of the form Q à P. If it finds one, a belief of 

the form Q à P, that is, it checks its database to see whether Q is something for which a 

motor-scheme exists (i.e. whether Q is something that can be done in the here and now). If so, 

it goes ahead and does that, but if not, it conducts another search, this time for beliefs of the 

form R à Q and so on. The system also has a couple of simple stopping rules, Carruthers 

(2006a: 58) claims, e.g.: ‘[i]f it […] go[es] more than n conditionals deep without success, or 

if it […] search[es] for the right sort of conditional belief without finding one for more than 

some specified time t, then it stops and moves on to the next strongest desire’, making it 

frugal ‘both in the information that it uses, and in the complexity of its algorithms’ – but does 

that count as it being encapsulated? 

 

Well, not in the way that informational encapsulation is traditionally understood, Carruthers 

(2006a) stresses, for here […] the practical-reasoning system can search within the total set of 
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the organism’s beliefs, using structure-sensitive search rules’ (Carruthers 2006a: 58), and 

those beliefs would not affect a cognitively impenetrable system. There does seem to be a 

sense in which the system’s encapsulated though, he points out. And so he draws a distinction 

between narrow-scope and wide-scope encapsulation, where narrowly-scoped encapsulated 

systems are those that cannot be affected by all that’s beyond them, and widely-scoped 

encapsulated systems those that can be affected by some but can’t be by most. See below for 

an explanation: 

 

Put as neutrally as possible, it can be said that the idea of an 
encapsulated system is the notion of a system whose internal 
operations can’t be affected by most or all of the information held 
elsewhere in the mind. But there is a scope ambiguity here.[2] We can 
have the modal term ‘can’t’ take narrow scope with respect to the 
quantifier, or we can have it take wide scope. In its narrow-scope 
form, an encapsulated system would be this: concerning most of the 
information held in the mind, the system in question can’t be affected 
by that information in the course of its processing. Call this ‘narrow-
scope encapsulation’. In its wide-scope form, on the other hand, an 
encapsulated system would be this: the system is such that it can’t be 
affected by most of the information held in the mind in the course of 
its processing. Call this ‘wide-scope encapsulation’. (Carruthers 
2006a: 58) 

 

Since wide-scope encapsulation of information is enough for a system to be frugal (and 

therefore tractable) as demonstrated by the above example, Carruthers (2006a) argues, 

premises (3) and (4) must be revised for the argument from computational tractability to be an 

accurate one. Narrow-scope encapsulation (i.e. encapsulation as it is traditionally understood) 

is not necessary, he says, and so the following is proposed instead (Robbins 2015: 20): 

 

(1) The mind is computationally realized. 

(2) All computational mental processes must be tractable. 

(3) Only processes that are at least weakly (i.e., wide-scope) encapsulated are tractable. 

(4) So the mind must consist entirely of at least weakly encapsulated systems. 

(5) So the mind is massively modular. 

 

 
2 ‘Modal terms like ‘can’ and ‘can’t’ have wide scope if they govern the whole sentence in 
which they occur; they have narrow scope if they govern only a part. Compare: ‘I can’t kill 
everyone’ (wide scope; equivalent to, ‘It is impossible that I kill everyone’) with; ‘Everyone 
is such that I can’t kill them’ (narrow scope). The latter is equivalent to, ‘I can’t kill anyone.’’ 
(Carruthers 2006a: 59) 
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The claim that modules must be encapsulated in Fodor’s narrow-scoped sense was criticised 

by a number of researchers (e.g. Marlen-Wilson and Tyler 1987; Churchland 1988) before 

Carruthers drew a distinction between narrow- and wide-scope encapsulation in 2006a, but 

one of its least complementary critiques is actually due to Prinz (2006) who argues that the 

linguistic system rarely (if ever, in fact) satisfies this requirement. Prinz (2006) argues that 

top-down effects (effects of the high-level central systems) on linguistic processing could 

count as strong evidence that the input systems aren’t encapsulated. He draws special 

attention to the phoneme restoration effect in this argument (which is a perceptual 

phenomenon in which, under certain conditions, sounds that are missing from the speech 

signal can be auditorily hallucinated by the brains of and therefore ‘heard’ by listeners). This 

can be so strong that listeners don’t even pick up that there were actually any phonemes 

missing to begin with, they simply ‘fill-in’ the acoustic gap with a phoneme determined by 

the sentence’s semantic interpretation (Warren and Warren 1970; Samuel 1987; Kashino 

2006). If subjects hear The _eel is on the axel, for example, they experience a /w/ sound in the 

gap, and if they hear The _eel is on the orange, they experience a /p/ sound, Prinz (2006) 

points out. 

 

Something similar is done for the perceptual systems by Churchland (1989), who argues that 

although Fodor (1983) found evidence to suggest the lack of power knowledge has over 

perception in the Müller-Lyer illusion (Day 1989), the well-known duck-rabbit figure (see 

Figure 3.6) shows the opposite, that there are ‘a wide range of elements central to visual 

perception […] which are cognitively penetrable’ (Churchland 1989: 261): 

 

 

 
 
Figure 3.6 The duck-rabbit figure (Jastrow 1899: 312) 
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Unlike in the Müller-Lyer illusion (Day 1989) where a person’s knowledge that the two lines 

in it are of the same lengths cannot change the fact that they are seen to be of different ones, 

knowledge that the duck-rabbit figure is ambiguous and can be seen in one way or the other 

(i.e. either as a duck or as a rabbit) can indeed alter peoples’ perceptions of the figure – which 

would suggest that the visual system has access to knowledge after all. 

 

3.3 Carrutherian modules 

There are two cross-cutting spectra of opinion about how much of the mind is modular, then – 

Fodor’s (1983, 2000) modest opinion and evolutionary psychologists’ massive one (e.g. 

Smith and Tsimpli 1995; Tooby and Cosmides 1995; Segal 1996; Fiddick et al. 2000; 

Carruthers and Chamberlain 2000; Cosmides and Tooby 2001; Carruthers 2006a) – and the 

two camps’ definitions of modularity clearly cannot be the same. According to Fodor (1983), 

whose argument was designed to apply to the input and output systems only, modules are 

domain specific and innately specified processing systems that have their own proprietary 

transducers and that deliver shallow (i.e. non-conceptual) outputs (Carruthers 2003a). They 

are also held to be ‘mandatory in their operation, swift in their processing, isolated and 

inaccessible to the rest of cognition, associated with particular neural structures, liable to 

specific and characteristic patterns of breakdown, and develop according to a paced and 

distinctively-arranged sequence of growth’ (Carruthers 2003a: 68).  

 

Those that argue for a more modular account of cognition, however, have had to weaken 

Fodor’s (1983) definition somewhat so that it can be applied to central systems as well (Smith 

and Tsimpli 1995; Segal 1996; Carruthers and Chamberlain 2000; Carruthers 2006a). In The 

Architecture of the Mind, for example, Carruthers (2006a: 12) lists which of Fodor’s features 

would most likely have to go for his thesis of massive modularity to stand up: 

 

[I]f a thesis of mental modularity is to be remotely plausible, then by 
‘module’ we cannot mean ‘Fodor-module’. In particular, the 
properties of having proprietary transducers, shallow outputs, fast 
processing, significant innateness or innate channeling, and 
encapsulation will very likely have to be struck out. This leaves us 
with the idea that modules might be isolable function-specific 
processing systems […] which are domain specific (in the content [i.e. 
Fodorian] sense), whose operations aren’t subject to the will, which 
are associated with specific neural structures (albeit sometimes 
spatially dispersed ones), and whose internal operations may be 
inaccessible to the remainder of cognition. 
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Of the original set of descriptors for Fodorian modules, then, Carruthers strikes out four, 

leaving him with only domain specificity, dissociability, automaticity, neural localisability, 

and central inaccessibility. Informational encapsulation, notice, is absent from this list. 

 

4. Concluding remarks 

In what follows, I consider the extent to which the phonological processor can be considered 

modular in Fodor’s modest (1983, 2000) sense of the word (in Chapter 4) and modest in 

Carruthers (2006a) massive sense of it (in Chapter 5). For Fodor (2000) informational 

encapsulation is the defining feature of modularity, but for Carruthers (2006a) it is not as 

necessary as another feature – that feature being domain specificity. Carruthers (2006a) places 

greater emphasis on modules of mind having to be domain specific than he does 

informationally encapsulated because, to his mind (recall from the argument from design in 

section 3.2.1 and from animals in 3.2.2), modules only exist to subserve a certain function, 

and so for frugality purposes (recall from his argument from computational tractability in 

3.2.3), they should only be able to operate on information that’s relevant to their specialism. 

A module with a function specific to a domain is ipso facto only concerned with computing 

the kinds of input that have to do with that domain in Carruthers (2006a) eyes – and I am 

inclined to agree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58 

Chapter 4: A Modestly Modular Approach to Phonology 
 

 

1. Introduction 

Formalism and functionalism are two diametrically opposed approaches to linguistics 

(Newmeyer 2010). This functionalist/formalist distinction is particularly apparent in 

phonology given its position within the architecture of the language faculty between the 

mental and the physical (Hannahs and Bosch 2018). Phonetics and phonology are 

traditionally thought of as being two different things. According to formal linguists, 

phonology is concerned with the connections between the internal grammar and the external 

sound system (that is, phonetics) (Hannahs and Bosch 2018)3. In recent years, however, some 

phonologists have come to conflate the two. This has led to a number of unconventional 

conclusions about phonology (and indeed the language faculty in which it resides) (Hannahs 

and Bosch 2018). 

 

As Hannahs and Bosch (2018) rightly point out, usage-based phonological analyses owing to 

the likes of Bybee (2003, 2010) refer to facts about speech as it is used in the real world to 

inform their thinking about language, and corpus-based work (as in that of Durand et al. 

(2014), for example), does the same. Articulatory phonologists (e.g. Browman and Goldstein 

1986) meanwhile, argue that the phonological system is organised in accordance with the 

ways in which speech is articulated, and even optimality theorists (such as Hayes et al. (2004) 

– who are more formal in their approach than Bybee (2003, 2010), Durand et al. (2014) and 

Browman and Goldstein (1986) put together) argue for the phonetic grounding of optimality 

constraints (Hannahs and Bosch 2018).  

 

This blurring of the distinction between phonetics and phonology has gone as far as to lead 

some scholars to assert that phonetics and phonology are actually one and the same thing (e.g. 

Johnson 2007) and others still further that phonology plays no part in the grammar at all 

(Burton-Roberts 2011). Even those who maintain that there’s a distinction between phonetics 

and phonology are in disagreement about where and how the distinction should be drawn. For 

 
3 I should probably point out that when I say phonology here, I’m talking about spoken 
language phonology in particular (hence my reference to the sound system) despite the fact 
that it’s my belief that the only difference between spoken language and signed language is 
that the former is produced by the mouth and perceived by the ears, and the latter is produced 
by the hands and perceived by the eyes, and so underlying, their phonological structures 
should be the same. 
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some (e.g. Archangeli and Pulleyblank 1994; Hayes et al. 2004) phonology is distinct from 

phonetics but is ‘phonetically grounded’, and for others (e.g. Blaho 2008; Hale and Reiss 

2008; Iosad 2013, 2017) the symbols the phonological processor computes are actually 

abstract because phonology is independent of phonetics or ‘substance-free’, as it is so-called. 

 

It is against the phonetically grounded/substance-free debate that this chapter has been 

written, as the substance-free approach to phonology has interesting things to say about 

Fodor’s (1983) informationally encapsulated definition of modularity. A Fodorian modular 

phonology must be substance-free, and the same is true in the opposite direction: if phonology 

is phonetically-grounded, then it can’t be modestly modular. It’s no wonder that we haven’t 

reached a clear conclusion about whether phonology is modular or not then, for many theories 

of phonology are still (incorrectly, I argue) grounded in phonetics. 

 

Personally, I take a position on the substance-free side of the fence. This is, importantly, for 

reasons that don’t have to do with modularity though, which will be discussed in due course 

along (roughly) the lines of Blaho (2008) and Iosad (2013, 2017). Spontaneous 

phonologisation (a phonological process described by Fruehwald in 2013 and 2016) also leads 

me to this line of thinking, and so this is explored also at the end of the chapter. 

 

2. Substance-free phonology 

Phonetically grounded phonologists (e.g. Archangeli and Pulleyblank (1994), and those who 

published papers in Hayes et al. (2004): i.e. Crosswhite (2001), Hayes and Steriade (2004), 

Wright (2004), Jun (2004), Kaun (2004), Blevins and Garrett (2004), Dresher and Zhang 

(2004), Flemming (2004) and Gordon (2004)), blur the distinction between phonetics and 

phonology in their claim that phonological processes are the result of articulatory and acoustic 

factors (Blaho 2008).  They argue that articulatory and acoustic knowledge is encoded in 

phonology in the form of constraints, requiring phonological representations to be 

characterised in accordance with information important to production and perception (Blaho 

2004). 

 

It’s easy to see why people may adopt an approach to phonology such as this one given the 

Jakobonian legacy of substantive markedness and the universal features described in classic 

generative phonology of course (Jakobson et al. 1952; Chomsky and Halle 1968). Even OT, 

which is a relatively recent phonological framework, assumes the phonetic grounding of some 

of its phonological constraints (Prince and Smolensky 1993). A number of other researchers, 
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however, are of the opposing position that phonology is actually autonomous of phonetics; 

that both phonological representations and the processes that compute them are devoid of 

phonetic influence (Dresher et al. 1994; Hale and Reiss 2000a, b; Hume 2003; Avery and 

Rice 2004; Blevins 2004; Blevins and Garrett 2004; Mielke 2004, 2005; Hale et al. 2007; 

Morén 2007a, b, c; Blaho 2008; Hale and Reiss 2008; Iosad 2013, 2017). This argument 

appears to have good grounds. 

 

There are five schools of thought when it comes to substance-free phonology, and they’re 

listed here as follows, from the most substance-free to the least substance-free:  

 

• The Concordia school of thought (Hale and Reiss 2000a, b; 2003, 2008; Hale et al. 

2007) 

• The Toronto school of thought (Avery and Rice 1989; Rice and Avery 1991; Piggott 

1992; Rice 1993; Dresher et al. 1994; Avery 1996; Dresher 2001, 2003) 

• Element Theory (Harris 1990, 1994, 2005, 2006; Harris and Lindsey 1995) 

• The Parallel Structures Model (Morén 2003a, b; 2006, Morén 2007a, b, c) 

• Radically Substance-free Phonology (Odden 2006, 2013; Blaho 2008, Youssef 2010) 

 

For a detailed overview of these many varying schools of thought, one could consult Blaho 

(2008), but for this thesis, it should suffice to say that there are indeed five, and that, although 

they differ in their degrees of substance-freeness, they are all alike in that they reject a one-to-

one correspondence between phonetics and phonology. 

 

In the sub-section that follows (section 2.1), I will offer some assumptions about substance-

free phonology, before summarising some arguments that were offered in the theses of Blaho 

(2008) and Iosad (2013) to support the substance-free position (including gradual 

phonologisation) in sub-section 2.2. I’ll then present a couple of analyses of /ay/ raising in 

Philadelphian English which I believe to evidence a substance-free phonology: Fruehwald’s 

(2013) (in 2.3.1) who assumes that /ay/ raising in Philadelphia is due to spontaneous 

phonologisation, and the phonological analysis that I myself subscribe to, that of Bermudez-

Otero (2017), who claims pre-fortis clipping is what causes /ay/ to raise (in 2.3.2). In section 3 

some concluding remarks are made, mainly that there is plenty pointing to phonology being 

substance-free, and therefore an informationally encapsulated module of the mind. 
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2.1 Some assumptions about substance-free phonology 

According to Blaho (2008: 2), the three major tenets of substance-free phonology are as 

follows: 

 

(1) Phonology refers to the symbolic computational system governing the significant, i.e., 

the non-meaningful level of linguistic competence. Phonology is taken to be universal 

– common to all (natural human) languages and all modalities –, and innate. 

Phonological knowledge is part of [Universal Grammar(]UG[)], but phonetics is not. 

 

(2) Phonological primes are substance-free, in that their phonetic interpretation is 

invisible to phonology, and thus does not play a role in phonological computation. 

 

(3) Markedness and typological tendencies (in the sense of Greenberg (1957, 1978)) are 

not part of phonological competence, but rather an epiphenomenon of how extra-

phonological systems such as perception and articulation work. 

 

A number of arguments have been made in favour of the above, and so I consider those next 

in section 2.2. 

 

2.2 Some existing arguments for a substance-free phonology 

2.2.1 Explanatory adequacy 

An existing argument from Hale et al. (2007) (that was described by Blaho (2008)) for a 

substance-free phonology has to do with explanatory adequacy. As Hale et al. (2007: 662) 

point out, the set of attested languages (that is, the number of languages (living or dead) we 

have evidence to prove existed) is not equal to the set of statable languages (that is, the 

number of languages that a model of phonology can predict). Rather, the relationship looks a 

little something like this (Blaho 2008: 7):  

 

 

(1)  attested   Ì   attestable   Ì   humanly computable   Ì   statable 

 

 

Hale et al. (2007: 663) describe the pattern in the following way: 
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First, the set of attested languages is a subset of the set of attestable 
languages (where ‘attestable’ includes all linguistic systems which 
could develop diachronically from existing conditions—e.g., all 
dialects of English or Chinese or any other language in 400 years, or 
4000 years, etc.). In addition, the set of attestable languages is a subset 
(those which can evolve from current conditions) of the set of 
humanly computable languages. (In our opinion, the human 
phonological computation system can compute a featural change 
operation such as /p/ à [a] / _ d but it is of vanishingly small 
probability that such a rule could arise from any plausible chain of 
diachronic changes.) Finally, the set of humanly computable 
languages is itself a subset of formally statable systems (which could 
include what we take to be humanly impossible linguistic processes 
such as /V/ à [V:] in prime numbered syllables). The key point here 
is that the set of diachronically impossible human languages is not 
equivalent to the set of computationally impossible human languages. 

  

The argument that follows from this view of language, Blaho (2008) reasons, is that ‘it is 

preferable for a model of phonology to have as few assumptions as possible, even at the 

expense of overgenerating’ (Blaho 2008: 8). For example, given three groups of sounds A, B 

and C, if there was evidence of languages with A and B, B and C, and A, B and C, and yet 

there wasn’t any of languages with A and C, then most phonologists would be inclined to 

argue that UG has a rule prohibiting systems consisting of A and C, right? Well, according to 

Blaho (2008), not necessarily. We can’t always assume that what we observe, has a 

phonological reason behind it, she stresses. 

 

It might be that a pattern observed has an extra-phonological explanation having to do with 

production or perception, for a start. To take Blaho’s (2008) trivial example, the fact that there 

have been no sounds produced with the larynx and lips as the articulators, for instance, 

needn’t be encoded in the phonology as some sort of feature co-occurrence restriction, 

because it can already be explained by the anatomy of speech organs, in that the larynx and 

lips are simply too far apart for this to be a possible pattern. 

 

Principles of UG of the type ‘features can combine freely, except for A and B’ or even worse 

‘all sounds are possible except for this one and that one because the articulators are too far 

apart’ are therefore not necessary in Blaho’s (2008) opinion, and nor are they in mine. As 

Blaho (2008) puts it: explanatory adequacy shouldn’t be sacrificed for the sake of 

observational or descriptive adequacy. And so anything that can be explained outside of 

phonology should be. 
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2.2.2 Multiple modalities 

One of the most obvious arguments for the autonomy of representations, though, to my mind, 

comes from the existence of languages that aren’t spoken. A key property of grounded 

phonology, (Blaho 2008) points out, is that constraints refer to aspects of spoken language 

only, even though there are many more modalities than that. Linguistics has long established 

that signed languages are natural human languages in the way that spoken ones are (Stokoe 

1960; Klima and Bellugi 1979; Senghas et al. 2004); there are a number of autonomous and 

mutually unintelligible systems of communication used in deaf communities around the world 

(MacSweeney et al. 2008). Now, to my mind, the only way in which spoken languages and 

signed languages differ is in their methods of production and perception surely (in that spoken 

languages are produced by the mouth and perceived by the ears, whereas signed languages are 

produced by the hands and perceived by the eyes) and so underlyingly, if phonological 

knowledge is as universal to humans as Chomsky and Halle (1968) say it is, then their 

linguistic structures should be the same. 

 

As Blaho (2008) says, it is not easy to see how a phonetically grounded model of phonology 

could account for signed language, for this isn’t a modality in which (oral/nasal) articulatory 

production and acoustic perception plays a part. If it is the case that the constraints of 

phonology are phonetically grounded, then UG must have at least two sets, surely: one for 

spoken language phonology, one for signed language phonology (and possibly others if it 

turns out that those modalities have different phonetics than do the spoken and signed ones). 

Per Blaho’s (2008) (and indeed my own) understanding, the simplest explanation is that 

innate phonology is free of phonetic information concerning production and perception, and 

the mapping from underlying forms to their surface realisations is something that’s acquired 

during language learning instead at an interface between phonology and phonetics. In other 

words, a substance-free phonology would be less of a cognitive load than a phonetically 

grounded one would, and therefore the one most likely to play a part in a human mind that is 

bound by the constraints of memory. 

 

2.2.3 Emergence 

2.2.3.1 Emergent features 

A fundamental question that’s been asked by generative phonologists concerns how 

phonological patterns of the world’s languages are characterised. In generative phonological 

theory, it’s argued that universal (and therefore innate) building blocks of speech sounds 

called distinctive features are responsible for this – and these characterisations have to do with 
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phonetics (e.g. [voice] for which segments can be + or – depending on whether they’re 

produced with the vocal chords vibrating or not, respectively, and [nasal] for which segments 

can be + if they are produced with the velum lowered which allows air to flow through both 

the nose and the mouth or – if there is velic closure, that is if they are produced with the 

velum raised allowing air to flow through the mouth only). 

 

Segments (and natural classes of them) are typically interpreted in the generative phonology 

literature as bundles of these phonetically defined feature sets that match the ways in which 

they are articulated but, although the central idea behind distinctive feature theory (that 

contrasts between phonemes can more elegantly be described in terms of properties of 

segments as opposed to treating segments as alphabetic atoms) makes sense, in many of the 

features being defined by auditory and articulatory terms distinctive feature theory is clearly 

not supportive of the suggestion that phonology is substance-free.  

 

Distinctive feature theory, which draws on the work of Saussure (1966), Trubetzkoy (1969) 

and Jakobson et al. (1952) dates back as far as Jakobson (1942) but received its most 

sophisticated defence at the hands of Chomsky and Halle in 1968 in The Sound Pattern of 

English (SPE). Chomsky and Halle (1968) recast the acoustically defined features as 

articulatory ones so that all distinctive features had to do with articulation. In more recent 

years weaker versions of distinctive feature theory (owing to Kiparsky (1985, 1995), Steriade 

(1987, 1995), Archangeli (1988), Archangeli and Pulleyblank (1994), Hale et al. (2007) and 

Hale and Reiss (2008)) have come about too, but in spite of their weakening of the others’ 

theses, they wholeheartedly maintain that there exists a set of universal and innate features 

that specify segments (Iosad 2013). 

 

More recently still, scholars have shown, however, that there isn’t necessarily a need for 

features to be innate, for they are inducted over the input by the language learner during 

acquisition – that is, they are emergent from the ways in which the productive and perceptive 

systems work (Blaho 2008). In The Emergence of Distinctive Features, for example, Mielke 

(2008) set out to evaluate how well distinctive feature theories could account for the range of 

phonologically active classes in a cross-linguistic database. He compared the success of three 

theories (Jakobson et al.’s (1952) Preliminaries to Speech Analysis (PSA), Chomsky and 

Halle’s (1968) SPE and Clements and Hume’s (1995) Unified Feature Theory (UFT)) against 

a database consisting of 6,007 classes of sounds described in 628 language varieties, to see 

how phonologically active classes (that is, sets of segments that act as targets or triggers in 
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alternations) lined up with the classes that those featural theories predict. It turned out that ‘no 

single theory [was] able to characterize more than 71 percent of the classes, and over 24 

percent [were] not characterizable in any of the theories’ (Mielke 2008: 3); the theory that 

fared the best was that of Chomsky and Halle (1968) – but even that was only able to cover 

4,313 of the 6,077 classes, Mielke (2008) said. 

 

Off the back of these results, Mielke (2008) argued that the segment classes predicted by 

phonological features in the literature aren’t actually representative of those that are active 

extra-grammatically. Thus, a theory in which language learners observe categorical 

distributions in surface forms and map them onto underlying phonological categories is one 

that would explain the natural and unnatural class patterns found in the data. 

 

To his mind, then, humans are not born with a limited set of universal features, they are born 

with the ability to create them using the data they’re exposed to during the course of language 

acquisition. The same is said by Hale and Reiss (2000) about a phonological pattern that was 

originally depicted in terms of teleological constraints by Beckman (1997), and so I’ll 

consider this in subsection 2.2.3.2. 

 

2.2.3.2 Emergent patterns 

According to Hale and Reiss (2000b), there is no need for UG to prescribe that which can be 

procured from the physiological. They argue that that pattern described by Beckman (1997) 

isn’t one that is innately imposed but in actuality arises through emergence, and so I 

summarise what they (Beckman (1997) and Hale and Reiss (2000b), that is) had to say about 

that in what follows.4 

 

In Positional Faithfulness, Positional Neutralisation and Shona Vowel Harmony, Beckman 

(1997: 1) argues that: 

 

The distribution of the feature [high] in Shona verbs is a prototypical 
example of positional neutralisation accompanied by vowel 
harmony.[…] In languages which exhibit positional neutralisation of 
vowel contrasts, one or more vowels (generally, the most marked 

 
4 Hale and Reiss (2000a, b) also reject that r-insertion in Massachusetts English (McCarthy 
1993) and opacity effects in Hebrew spirantisation (1996) should appeal to teleological 
constraints, but given the limitations on space in this thesis, I’ve elected to explain the most 
illustrative of the examples only. For an overview of the other two, please feel free to refer 
back to the original text. 
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members of the vowel inventory) may occur distinctively in only a 
small subset of the structural positions available in the language. 
Outside of these positions, the marked vowels may surface only if 
they harmonise with a similar vowel in the privileged position.  

 

The mid vowels /e/ and /o/ in Shona verbs then, she says, ‘are contrastive only in root-initial 

syllables [and may appear] in subsequent syllables only when preceded by a mid vowel in 

root-initial position’ (Beckman 1997: 1). ‘Low vowels neither trigger nor propagate height 

harmony; only [+high] i and u may follow a low vowel, even if the root-initial vowel is mid’ 

(Beckman 1997: 1). ‘Harmony fails to apply between a root-initial mid front e and a 

subsequent round vowel’[, and t]hus, rather than a height-harmonic string of e ... o, we find 

disharmonic e ... u. Harmony applies regularly when the initial vowel is round o’, meanwhile 

(Beckman 1997: 2). 

 

Beckman (1997) goes on to present a full analysis of Shona height harmony, proposing that 

the phonological properties of initial and non-initial syllables (described above) arise due to a 

dispersion of a couple of IDENT constraints: 

 

(1) IDENT-σ1(hi) 

A segment in the root-initial syllable in the output and its correspondent in the input 

must have identical values for the feature [high]. 

 

(2) IDENT(hi) 

Correspondent segments in output and input have identical values for the feature 

[high]. 

 

(1) and (2) together allow faithfulness to the feature [high] to be maintained in some contexts 

but not others, she says, as the context-sensitive constraint IDENT-σ1(hi) in (1) ranks above 

*HIGH (a markedness constraint that is violated by the presence of high vowels), which itself 

ranks above the general constraint IDENT(hi) in (2): 

 

(3) IDENT-σ1(hi) >> *HIGH >> IDENT(hi) 

 

More specifically, Beckman (1997: 8) argues that in Shona:  

 

the ranking of  IDENT-σ1(hi) above the vowel-height markedness 
constraints (see below) permits the full range of height contrasts to 



 67 

occur in initial syllables, and further renders these syllables 
impervious to height harmony. By contrast, the ranking of the context-
free constraint IDENT(hi) below the markedness constraints renders 
noninitial syllables incapable of licensing marked vowels and further, 
susceptible to height harmony.  

 

Hale and Reiss (2000b), on the other hand, argue that many markedness patterns are actually 

emergent – including the one explored by Beckman (1997). Consider the alternative account 

they offer (Hale and Reiss 2000b: 159-160): 

 

Imagine a child exposed to a language L1 that allows high vowels in 
all syllables—initial, medial, and final. Imagine further that L1 has 
initial stress and that stress is realized as relatively increased duration 
and intensity. Given this scenario, it would not be surprising to find 
that a child constructing L2 on the basis of output from L1 consistently 
fails to acquire a contrast between mid and high vowels in relatively 
short, quiet syllables (those that are noninitial and thus unstressed), 
but succeeds in acquiring it in initial syllables, which are stressed and 
thus longer and louder. This mapping from L1 to L2 is an example of 
“sound change”—in particular, […] a “conditioned merger”[.] 
 
On the other hand, it is highly implausible that a child would 
consistently fail to correctly analyze the mid/high contrast in longer, 
louder (stressed) syllables, yet successfully analyze the contrast in 
relatively short, quiet syllables. 
 
We see therefore that the existence of positional faithfulness 
phenomena can be understood as merely reflecting the nature of the 
learning situation[ and is therefore not a reflection of any grammatical 
principle].  

 
If the acoustic cues of a given contrast in the target language are 
correctly analysed by the acquirer in a context where they are 
relatively weak, they will also be analysed correctly in a context 
where they are relatively strong. 

 

They suggest instead that the markedness pattern is an emergent property, rather than an 

innate one. ‘“Positional faithfulness” is due’ Hale and Reiss (2000b: 160) claim, ‘not to the 

nature of phonology [itself], but to the “sifting effect” of acquisition on the incidental, 

arbitrary nature of the phonetic substance associated with phonological symbols’.  

 

Beckman’s claim that positional faithfulness constraints should be encoded in the grammar is 

therefore rejected by Hale and Reiss (2000b) as, for them, if something can be explained by 

something external to phonology (as is the case here, because ‘those [effects] observed by 

Beckman already have a coherent extragrammatical account within acquisition theory’ (Hale 
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and Reiss 200b: 160)), then it need not and should not be fixed into it in the form of 

teleological constraints. There is no reason why UG should stipulate that faithfulness in less 

prominent positions is outranked by faithfulness in more prominent positions if the same 

pattern emerges through perception, they say. ‘[B]uilding positional faithfulness into a theory 

of universal phonology is a misuse, or abuse, of phonetic substance in theory construction’ 

according to Hale and Reiss (200b: 160), and Blaho (2008: 4) agrees. As she puts it: ‘it would 

be superfluous to duplicate this ‘knowledge’ and build it into our model of phonology’. 

 

The conclusion Hale and Reiss (2000b: 162) draw from the above example (and their 

reanalyses of r-insertion in Massachusetts English (McCarthy 1993) and opacity effects in 

Hebrew spirantisation (McCarthy 1996), for that matter) is that: 

 

the best way to gain an understanding of the computational system of 
phonology is to assume that the substance of phonological entities is 
never relevant to how they are treated by the computational system, 
except in arbitrary, stipulative ways. What this means is that many of 
the so-called phonological universals (often discussed over the rubric 
of markedness) are in fact epiphenomena deriving from the interaction 
of extragrammatical factors like acoustic salience and the nature of 
language change. […] We propose extending the Saussurean notion of 
the arbitrary nature of linguistic signs to the treatment of phonological 
representations by the phonological computational system. Phonology 
is not and should not be grounded in phonetics since the facts that 
phonetic grounding is meant to explain can be derived without 
reference to phonology.  

 

I think it’s safe to say that Hale and Reiss’ (2000b) argument for a phonology that is 

substance-free (due to their demonstration that the markedness tendency seen in Shona verbs 

can be explained on phonetic grounds) is a convincing one – duplicating what’s going on 

outside of the grammar inside it is a waste of time and space, surely, and so would be avoided 

by a computational system at all costs. 

 

Recall Carruthers’ (2006a) argument from computational tractability in Chapter 3. The mind, 

including the grammar and the component parts of it, are computationally realised, he says, 

and all computational processes must be suitably tractable so that they can be carried out 

within finite time (Carruthers 2006a: 44): 

 

(1) The mind is computationally realized. 

(2) All computational processes must be suitably tractable. 
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In computational phonology, the field that approaches the study of sound patterns from a 

computational perspective, problems are classified into two types: tractable problems and 

intractable problems (Heinz 2011a, b). According to Heinz (2011a: 9): 

 

Problems are tractable iff there is a algorithm which implements 
this function in fewer than f(n) steps where f is a polynomial 
function and n is the length of the input (this input is the problem 
instance in some string-based representation). Decidable 
problems which cannot be so bounded are intractable. 

 

He also stresses, though, that the variables of restrictiveness and complexity affect 

computational tractability as well. The more restrictive a computational system, he says, the 

less complex it is. And the less complex a computational system, the more tractable it is. 

 

Now, OT has been criticised by some (e.g. Idsardi 2006; Vaux 2008) for its computational 

complexity as it is, Iosad (2013: 47) points out. Idsardi (2006) and Vaux (2008) have each 

criticised OT for being too complex, and therefore not tractable enough. Of course, the 

smaller the set of constraints that exist in phonology, the more restrictive the phonological 

computational system would be. The more restrictive it would be, the less complex it would 

be, and the less complex it would be, the more tractable would be. 

 

I’m inclined to argue, then, that if it is the case that phonology is a computational system, and 

it’s imperative that computational systems are tractable, then it wouldn’t express patterns with 

phonological constraints that are already expressed by phonetics, because that isn’t being very 

restrictive at all. A computational phonology would not make more work for itself by 

handling something grammatically that’s already being handled extra-grammatically if it’s 

aim was to be tractable, for that would be the opposite of restrictive (or as Carruthers 2006a 

puts it, frugal) – that would be extravagant, lavish, wasteful. The fewer constraints a 

phonological computational system has the better. For the more constraints it has, the less 

restrictive à more complex à less tractable it is. 

 

John Ohala has similarly argued that markedness tendencies (for similar reasons) should be 

explained phonetically as opposed to phonologically. For an extensive exploration, one 

should see Ohala (1998). Various work on learnability owing to Boersma et al. (2003), 

Escudero and Boersma (2003), Boersma (2006, 2007), Apoussidou (2006) and Boersma and 

Hamann (2007) strongly supports Hale and Reiss’ (2000) claim too; their studies showed that 

rankings can be derived from phonetic data during language learning as well (Blaho 2008). 
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2.2.4 Diachrony 

A fourth and final existing argument for substance-free phonology to be considered in this 

thesis concerns diachrony. Although diachronic change is not (usually) assumed to play a part 

in synchronic linguistic competence, there is no denying the fact that it is related to the 

synchronic system’s functioning in some way, as Iosad (2013) says, and so I consider it here. 

Classical generative phonologists (Chomsky and Halle 1968), diachronic generative 

phonologists (Kiparsky 1965, 1968; King 1969), natural phonologists (Stampe 1972; 

Donegan and Stampe 1979), natural generative phonologists (Vennemann 1972a, b, 1974; 

Hooper 1976), phonologists interested in variation and sound change in progress (Labov 

1971; Labov et al. 1972), those concerned with phonetic explanations of phonetic patterning 

and sound change (Ohala 1974, 1981; Thurgood and Javkin 1975; Hombert et al. 1979), and 

researchers working on intrinsic and extrinsic variations in speech (Wang and Fillmore 1961; 

Chen 1970; Mohr 1971) have been at great debate about the relation between 

synchrony/diachrony and phonetics/phonology, and for many (dating as far back as Baudouin 

de Courtenay (1972), actually) ‘the original cause of the emergence of alternants is always 

purely anthropophonics’ Baudouin de Courtenay (1972: 184); they believe that phonological 

structure is derived from phonetic substance. 

 

Hyman (1972, 1976), a phonologist who considers himself to sit somewhere in between 

generative phonology and the structural phonology of the Prague school of thought (e.g. 

Trubetzkoy 1939; Martinet 1960) is concerned, in particular, with a process he calls 

phonologisation, which refers to the change of a phonetic property into a phonological one. It 

is thought by some phonologists (e.g. Iosad 2013) that the theory of phonologisation counts as 

evidence for a substance-free phonology, and I can certainly see why. 

 

Spanning the years of 1972 to 1976, Hyman gave a number of definitions for 

phonologisation, including, but not limited to, these ones: 

 

A universal phonetic tendency is said to become ‘phonologized’ when 
language-specific reference must be made to it, as in a phonological 
rule (Hyman 1972: 170). 
 
phonologization, whereby a phonetic process becomes phonological 
[…] (Hyman 1975: 171). 
 
[…] what begins as an intrinsic byproduct of something, predicted by 
universal phonetic principles, ends up unpredictable, and hence, 
extrinsic. (Hyman 1976: 408). 
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But what exactly would phonologisation look like, one might wonder? In Phonological 

Involvement in Phonetic Change, Fruehwald (2013) paints a picture. 

 

2.2.5 Gradual phonologisation 

According to Fruehwald (2013), two things have to do with phonologisation: a phonetic 

process called coarticulation and a phonological one called differentiation. To exemplify these 

processes (and how they play a part in phonologisation), he brings evidence from a 

hypothetical sound change to a vowel /V/, which appears in two totally different segmental 

contexts /__ x/ and /__ y/. I summarise his explanation in the exposition that follows. 

 

Fruehwald (2013) presents the distributions of [Vx] (in red) and [Vy] (in blue) in F1 x F2 

vowel space as in Figure 4.1, where F1 stands for the first formant of vowel space (which is 

inversely related to vowel height) and F2 the second formant (which has to do with the degree 

of backness of a vowel), according to Ladefoged (2006). A formant, Ladefoged (2006) says, 

is the concentration of acoustic energy that surrounds a particular frequency in a speech wave. 

Each formant corresponds to a certain resonance in the vocal tract, and we can distinguish one 

vowel from another by the differences they have between these overtones (e.g. we could 

distinguish /i/ and /u/ by their F2 values (backness) seeing as /i/ is a high front vowel and /u/ a 

high back one, and /i/ from /æ/ in terms of their F1 values (height) given that /i/ is a high 

front, and /æ/ a low front, vowel). 

 

 

 
Figure 4.1 Distribution of contextual variants ([Vx] and [Vy]) of a hypothetical vowel 
(Freuhwald 2013: 61) 
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As you can see, Figure 4.1 clearly demonstrates the difference in [Vx] and [Vy]’s articulation 

– [Vy] is produced further back than [Vx]. However, there are a couple of ways in which [Vx] 

and [Vy] could have been generated, Fruehwald explains. On the one hand, it could have been 

through phonological differentiation in that /y/ could have spread some feature f  (say, [+ 

back]) onto /V/, creating a featurally distinct and therefore phonologically different allophone 

of /V/: 

 

(1) V à Vf  / __ y 

 

In this case, [V] (in red) and [Vf ] (in blue) would have independent targets for phonetic 

implementation (as is depicted in Figure 4.2): 

 

 

 
Figure 4.2 Independent targets of phonetic implementation produced by phonological 
differentiation (Fruehwald 2013: 62) 
 

 

On the other hand, however, it might have been the case that phonology wasn’t involved at all 

and rather, that there was only one mapping to the phonetic target [Vx] (from its underlying 

representation /V/), and [Vy] was produced due to a coarticulatory pressure being placed on 

[Vx] by [y], pulling its production back. In this case, [Vx] and [Vy] don’t have independent 

targets for phonetic implementation: 
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Figure 4.3 The effect of coarticulation on shifting productions from intended targets 
(Fruehwald 2013: 63) 
 

 

Now, it should be clear from Fruehwald’s (2013) example, at this point, why phonetic 

coarticulation could be reanalysed as phonological differentiation – and that’s what 

phonologisation is. Before they undergo diachronic change, you see, the ways in which [V] 

and [Vx], and [Vf ] and [Vy] are realised in F1 x F2 vowel space look more or less the same. 

When [V] and [Vf ] and [Vx] and [Vy] change diachronically, however, a difference can be 

observed. 

 

Firstly, in the case of phonological differentiation [V] and [Vf ] have independent targets of 

phonetic implementation, so it is possible for them to have separate diachronic trajectories as 

in Figure 4.4. In the case of phonetic coarticulation, however, the realisation of [Vy] is yoked 

to that of [Vx]. What this means, is that the diachronic trajectory of [Vy] is yoked to that of 

[Vx] too, and so the same thing has to happen to each of them (as in Figure 4.5): 

 

Compare the two: 
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Figure 4.4 The interaction of phonological feature spreading and diachronic phonetic change 
(Fruehwald 2013: 64) 
 
 
 

 
Figure 4.5 The interaction of phonetic coarticulation and diachronic phonetic change 
(Fruehwald 2013: 64) 
 

 

Figure 4.4, Fruehwald (2013) explains, illustrates the interaction between phonological 

feature spreading and diachronic change. The data represents an independent shift of [V] 

frontwards along F2; [Vf ] does not move. In Figure 4.5, which illustrates phonetic 

coarticulation’s interaction with diachronic phonetic change, [Vx] shifts frontwards along F2, 

and so too does [Vy] given that it’s yoked to [Vx], it is explained by Fruehwald (2013). This 

is interesting because phonologisation is, in fact, the reanalysis of a difference between two 

segments being due to phonetic coarticulation as being due to a phonological process with 

featurally distinct objects, Fruehwald (2013) says and, through diachronic change data, we 

can pinpoint precisely when that phonologisation takes place. 
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The effects of the reanalysis of phonetic coarticulation as phonological differentiation are 

illustrated by Fruehwald (2013: 68) with the following figure: 

 

 

  
Figure 4.6 The reanalysis of phonetic coarticulation as phonological feature spreading, and its 
effect on the rate of phonetic change 
 

 

In the top graph in Figure 4.6, you can see that [Vx] and [Vy] undergo the same change until 

roughly 1930, which means that up until that point the difference between the two must have 

been due to phonetic coarticulation (the trajectory of [Vy] was yoked to [Vx], which meant 

that they each underwent the same change). At around the year of 1930, however, you can see 

that the former ([Vx], now [V]) continues on along its previous path being affected by the 

change, whereas the latter ([Vy], now [Vf ] does its own thing because affected it is no longer. 

This is because, at this point, the phonetic effect was reanalysed as being phonological, and so 

the process entered the grammar creating two featurally distinct allophones [V] and [Vf ] 

which had independent targets of phonetic implementation, and therefore independent 

trajectories of change. 

 

For representative examples of real phonologisation at play one might want to read Barnes’ 

(2006) work on vowel neutralisation or Kingston’s (2007) on tonogenesis – but for now, it 

should suffice to say that phonologisation could also count as evidence for a substance-free 

phonology, for the difference between phonological and phonetic patterns establishes the 

existence of two different domains of grammar (Iosad 2013).  
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2.3 Alternative arguments for a substance-free phonology 

2.3.1 Spontaneous phonologisation 

Now, with all that about gradual phonologisation being said in section 2.2.5, I should 

probably point out that if gradual phonologisation could count as evidence for a substance-

free phonology, then Fruehwald’s (2013, 2016) argument against gradual phonologisation in 

favour of one for spontaneous phonologisation in Philadelphian English could count as 

evidence that’s even better. If his analysis of the phonological pattern is proven to be correct, 

then it is even more challenging to the view that there isn’t a qualitative difference between 

phonetic and phonological representation and computation than those of the phonologists 

arguing for gradual phonologisation are. In his dataset, Fruehwald (2013, 2016) found 

evidence to suggest that the phonological processes which differentiate allophones enter the 

grammar at the very onset of sound changes, rather than partway through the change as late-

stage reanalyses. This means that they cannot simply be the codifications of phonetic effects, 

he says, because, at the outset of the changes, there were no phonetic effects to be codified. 

 

Canadian /ay/ raising – wherein the diphthong /ay/ surfaces as /ʌy/ before voiceless 

consonants has been a topic of linguistic interest since the 1940s. A number of researchers 

have written about raising thereafter, in Canadian varieties of English and other ones. It was 

this that was the focus of Chapter 5 of Fruehwald’s doctoral dissertation which was published 

in 2013, and also a later paper The Early Influence of Phonology on a Phonetic Change which 

appeared in Language three years later in 2016. He analyses /ay/ raising in longitudinal data 

extracted from the Philadelphia Neighborhood Corpus (Labov and Rosenfelder 2011) which 

spans the speech of people born between 1889 and 1998, and demonstrates that in the data all 

/ay/ diphthongs before underlyingly voiceless consonants pattern together, regardless of 

whether or not their trigger (the proceeding plosive) is voiced on the surface or not. 

 

Fruehwald (2013) found, more specifically, that pre-voiceless /ay/ raising applied before 

flapped /t/ and /d/ in the same way it did before un-flapped /t/ and /d/, which suggests, he said, 

that the neogrammarian phonetic change targeted an underlying phonological category as 

opposed to a surface phonetic one. Fruehwald’s (2013) findings are clearly really relevant to 

questions about the contested relationship between phonetics and phonology, then, and so it’s 

important that they’re looked at. 

 

Fruehwald (2013: 111) begins his argument by providing the following ordered rule analysis, 

to show where and how /ay/ raising occurs in Philadelphian English: 
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 Writer rider 
Input ɹaitəɹ ɹaidəɹ 
RAISING ɹʌitəɹ - 
FLAPPING ɹʌiɾəɹ ɹaiɾəɹ 
Output ɹʌiɾəɹ ɹaiɾəɹ 

 
Table 4.1 Opaque interaction between /ay/ raising and flapping 
 

 

As you’ll see from the table above, /ay/ raising applies opaquely with respect to flapping, 

Fruehwald (2013, 2016) argues. Whilst words like write which have voiceless codas are 

produced with the raised variant of the vowel /ʌy/, words like ride which have voiced ones 

are produced with the variant that is not raised (i.e. [ay]). /ay/ raising also occurs before 

flapped /t/, but not flapped /d/. So a word like writer in which the /t/ is flapped will surface 

with the higher diphthong, whereas for a word like rider with a flapped /d/, /ay/ raising will 

not apply. 

 

It therefore looks like raising is phonological, he says. That it is triggered before a flapped /t/ 

which is voiced on the surface, only because the /t/ is voiceless underlyingly. He argues that it 

is not how the trigger is realised phonetically that is relevant to this sound change, but rather, 

the voicing of the underlying representation. 

 

Some phonetic arguments have been made for /ay/ raising, however, (e.g. those of Joos 

(1942) and Chambers (1973) and Moreton and Thomas (2007)), and so Fruehwald (2013) 

carefully considers those explanations, in order to see whether the way in which /ay/ patterns 

in the Philadelphian data set can be attributed to phonetic pressures after all. Pre-voiceless 

vowel shortening is the phonetic precursor for pre-voiceless /ay/ raising that’s most 

commonly argued for in the literature, and so he began with that one.  

 

According to Joos (1942) and Chambers (1973), /ay/ diphthongs are long gestures that are 

shortened before voiceless segments and so in order to shorten the diphthong, they argue, a 

speaker may well raise the nucleus of it to reduce gesture length. To test Joos’ (1942) and 

Chambers’ (1973) hypotheses that /ay/ raising is due to duration, Fruehwald (2013) assessed 

the median duration (in msecs) of /ay/ before flapped /t/ and surface /t/ and flapped /d/ and 

surface /d/ after putting them in order of shortest to longest (as in Table 4.2): 
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Segment Context Median duration (msecs) 
/t/  Flapping 111 
/t/ Surface 144 
/d/ Flapping 156 
/d/ Surface 237 

 
Table 4.2 Median /ay/ durations by context (adapted from Fruehwald 2013: 117) 
 

 

As the table shows, /ay/ before flapped /t/, surface /t/ and flapped /d/ form a set of shorter 

distributions, and /ay/ before surface /d/ forms another, longer one. If Joos (1942) and 

Chambers (1973) were right in what they were saying, that /ay/ raising is phonetically 

conditioned by diphthong duration, then this would predict flapped /t/, surface /t/ and flapped 

/d/ all participate in raising, Fruehwald (2013) points out. However, since /ay/ raising only 

occurred before flapped and surface /t/s in the Philadelphian data, it is evident that their thesis 

is incorrect, he says. 

 

A second phonetic conditioning hypothesis comes from Moreton and Thomas (2007). They, 

like Fruehwald (2013), make an argument against Joos (1942) and Chambers’ (1973) 

prevoiceless shortening account, pointing out that in dialects in which /ay/ is 

monophthongised, the monophthongisation is actually least advanced before voiceless 

segments, meaning it’s at its longest in this context and therefore at its least likely to raise as a 

result of being shortened. They hypothesise alternatively that the glide is peripheralised in 

pre-voiceless contexts, a hypothesis which cleverly captures, Fruehwald (2013: 116) says, 

‘both the coarticulatory pressure to raise the nucleus towards the glide, and the resistance to 

monophthongization’.  

 

Fruehwald (2013) considers this phonetic conditioning explanation for /ay/ raising too, but 

since /ay/ doesn’t raise before /r/ in Philadelphia, he has to do so with data derived from 

Rosenfelder (2005), who studied /ay/ raising in Victoria, British Columbia. The ways in 

which surface /t/ and /d/ and flapped /t/ in Rosenfelder’s (2005) data are given in Figure 4.7 

below: 
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Figure 4.7 Nucleus to glide trajectories in Victoria, British Columbia (Fruehwald 2013: 199) 
 

 

Now, whilst it’s quite clear from the figure that glide targets are more peripheralised before 

the voiceless obstruents than the voiceless one to a degree that isn’t in proportion to the 

heights of the nuclei they proceed (which would seem to support the glide peripheralisation 

hypothesis) in Victoria, British Columbia, it also predicts something quite different from what 

we see in the Philadelphian data, Fruehwald (2013) figures. 

 

If flapped /d/ was less peripheralised than surface /d/ (in the same way that flapped /t/ is less 

peripheralised than surface /t/ and as the peripheralisation hypothesis would predict) and 

flapped /d/, therefore, had a more similar glide target to surface /d/ and flapped /t/ than surface 

/t/, Fruehwald (2013) points out, then the glide peripheralisation hypothesis would predict that 

only surface /t/ (the most peripheralised of all) would undergo raising. We can see from 

Figure 4.8 though that this is not the case – raising applies to both variants of /t/  (Fruehwald 

2013: 121): 
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Figure 4.8 /ay/ height by date of birth and context 

 

 

The trajectories in Figure 4.8 (which plots /ay/ height by date of birth and contexts (before 

surface and flapped /t/ and surface and flapped /d/), as you can see, match neither the 

predictions of the duration precursor hypothesis (which predicts that flapped /t/, surface /t/ 

and flapped /d/ all participate in raising) nor the glide peripheralisation hypothesis (that only 

surface /t/ does), then, for n this dataset ‘the height of /ay/ appears to pattern according to the 

underlying phonological voicing of the following segment, with {surface /t/, flapped /t/} 

patterning together, and {surface /d/, flapped /d/} patterning together’, with surface and 

flapped /t/ undergoing raising, and surface and flapped /d/ not undergoing it (Fruehwald 2013: 

120). 

 

The fact that /ay/ raising applies to underlyingly voiceless /t/ and /ɾ/, despite their surface 

realisations, Fruehwald (2013) argues, points to this being a phonologically conditioned 

change, not a phonetically conditioned one. This is, of course, a qualitative conclusion, 

however, and so he ran his data through Stan (a probabilistic programming software) to see 

whether this argument was one that could be supported by statistics. 

 

Fruehwald (2013) plotted the estimated F1 trajectories for /ay/ in each context faceted by 

from (surface or flapped) together with 95% highest density posterior (HPD) intervals (i.e. the 

coloured bands in the graph) which specified a probability of 95% that the true value for each 

context lay within the coloured band associated with it. The potential scale reduction factor 

(𝑅") is less than 1 for this dataset Fruehwald (2013) says, which suggests that the model 

adequately depicts the data being analysed: 
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Figure 4.9 Model estimates of /ay/ height, faceted by surface vs. flapped realisations 
 

 

Unlike the hypothetical example of gradual phonologisation in which [Vx] and [Vy] 

underwent a change together due to a phonetic effect until around the time of 1930, at which 

point the change was reanalysed as being phonological, and two featurally distinct allophones 

[V] and [Vf ] were formed and underwent change separately, phonologisation was observed at 

the outset with ay-raising, Fruehwald (2013) argues.  

 

You can indeed see quite clearly from Figure 4.9 that surface /t/ and flapped /t/, and surface 

/d/ and flapped /d/ have always had independent trajectories. And, in Figure 4.10, which plots 

the same trajectories but faceted by the underlying stop to see whether it is this, specifically, 

that affects naming, you can see why Fruehwald came to this conclusion even more clearly. 

/ay/ before /t/ (as both a surface form, and as the underlying form of flap)’s estimated 

normalised F1 value lowers over time (indicating that it raises in height), whereas /d/ (in both 

its surface and flapped underlying forms) does not: 

 

 

 
 Figure 4.10 Model estimates of /ay/ height, faceted by /t/ vs. /d/ 
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The fact that /ay/ before /t/ and /ay/ before /d/ follow different trajectories from the get-go, 

suggests, Fruehwald (2013) says,  that the change didn’t bring to bear on phonetics during the 

change at all, and so phonological factors have greater explanatory power than phonetic ones 

in the case of /ay/ raising. He suggests that the phonological differentiation of /ay/ as high or 

low is due to a grammatical process that entered the phonology before the change came about. 

These results, of course, pose a challenge for the commonly accepted view that 

phonologisation (the process by which a phonetic pattern becomes a phonological one, recall) 

occurs gradually and, as such, has important implications for theories of phonology – 

including the one of interest to this thesis that is the substance-free framework. 

 

Fruehwald’s (2013) account of /ay/ raising is clearly incompatible with theses in which the 

boundary between phonetics and phonology is blurred like phonetically grounded phonology 

ones, because the change, to his mind at least, had nothing to do with phonetics. It is not 

incompatible with the substance-free phonology thesis though of course, as according to this 

one phonological knowledge is not simply the codification of phonetic patterns, but rather 

something more abstract. As such, I think it’s safe to say that Fruehwald’s (2013) work can 

count as strong evidence against the former, and for the latter. 

 

Note though that most of this discussion thus far has been about what Fruehwald (2013) has 

said didn’t happen to /ay/. Evidence from his 2013 dissertation demonstrated that /ay/ raising 

was likely neither (a) phonetically conditioned by diphthong duration as Joos (1942) and 

Chambers (1973) hypothesise, and nor was it (b) phonetically conditioned by glide 

peripheralization (which was what Moreton and Thomas’s (2007)) offered as an explanation. 

Rather, Fruehwald (2013) argues, /ay/ raising is a phonologically conditioned change.  

  

He explains that if two variants of a speech sound are to diverge in their phonetics over time, 

then that must be because they are treated as quantitatively different categories (that is, as 

different allophones) by speakers from the moment that they begin to diverge. He argues that 

the split of /ay/ into two allophonic categories is not the reanalysis of a phonetic change (as 

would be the case if this was phonetic coarticulation being reanalysed as phonological 

differentiation). Rather, that the longer term phonetic change is only possible precisely 

because /ay/ split into two allophones before the phonetic change began. This split is what 

allowed for their phonetic targets to diverge phonetically according to the voicing 

specification of the following segment, flapped /t/ or flapped /d/, he says, with one 
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undergoing a gradual (phonetic) change in height (before flapped /t/) and the other remaining 

low (before flapped /d/). 

 

If this is the case though, then the next question that arises is this one: how did those two 

categorically different variants of /ay/ come to exist in the first place to be conditioned by 

flapping? An answer is provided by Bermudez-Otero (2017) and so I discuss that here. 

 

2.3.2 The enhancement-of-clipping hypothesis 

An alternative (although related) phonological analysis of the pattern (that I’m more inclined 

to concur with because the analysis can explain /ay/ raising in a number of other varieties of 

English including Canadian and Scottish5) is the one offered by Bermudez-Otero (2017). 

Although different from Fruehwald’s (2013, 2016), this argument is still consistent with a 

modular architecture of the mind in which phonology free of phonetic substance in that there 

are actually two different types of process involved in /ay/ raising – pre-fortis clipping and 

flapping which are phonological, and the raising of the vowel itself, which is phonetic. 

 

Pre-fortis clipping, Bermudez-Otero (2017) argues, is a categorical phonological process that 

applies at the stem-level of phonology, and therefore underapplies when the voiceless segment 

that conditions it belongs to a suffix at the word-level. Since flapping occurs across word 

boundaries (e.g. ‘sit in the park’ ‘si[ɾ] in the park’ (Kaisse and Shaw 1985)), this must be a 

post-word level process (Kiparsky 1985; Kaisse and Shaw 1985) he says, occurring at the 

phrase-level of phonology. He argues furthermore, that since phrase-level processes occur 

after stem-level ones, flapping applies after clipping. 

 

 

 

 

 

 

 

 
5 The analysis offered by Bermudez-Otero explains not just /ay/ raising in Philadelphian 
English, but /ay/ raising in Ontario, Canada (see Chambers (1973, 1989, 2006); Chambers and 
Hardwick (1986); Thomas (1991) Rosenfelder (2007) and in Scotland (see Aitken (1981), 
Agutter (1988), McMahon (1991)) – for a more nuanced discussion of how prefortis clipping 
affects /ay/ raising in these varieties of English, one should consult Bermudez-Otero (2017). 
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Figure 4.11 The stem-level, word-level and phrase-levels of phonology (adapted from 
Bermudez-Otero and Trousdale 2012: 700) 
 

 

Raising, Bermudez-Otero (2017) argues, is a phonetic process that applies opaquely with 

respect to clipping (not flapping as Fruehwald (2013, 2016) believes to be the case). It is the 

clipped allophone only which undergoes the /ay/ raising change under his proposal, and 

therefore the rule for raising is: 

 

not aɪ à ʌi / __[-voice]    
but a$ɪ à ʌ$i 
 
 
As is exemplified by the following set of data: 
 
 
 

Stem level (clipping) 
rider writer idle title 
ɹaɪd ɹa$ɪt aɪdəl ta$ɪtəl  

Word level  ɹaɪdəɹ ɹa$ɪtəɹ  aɪdəl   ta$ɪtəl  
Phrase level (flapping) ɹaɪɾəɹ  ɹa$ɪɾəɹ  aɪɾəl   ta$ɪɾəl 
Phonetics (raising) ɹaɪɾəɹ ɹʌ$iɾəɹ aɪɾəl   tʌ$iɾəl 

 
Table 4.3 Derivations in early 20th-century Philadelphia (adapted from Bermudez-Otero 
2017: 8) 
 
 
 
 

Stem-level 

Word-level 

Phrase-level 

PH
O

N
O

LO
G

Y
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Now, whilst this weakens Fruehwald’s (2013) argument for this sound change being 

‘phonologisation’ that occurs spontaneously as opposed to gradually, it importantly preserves 

his core argument that a phonetic change operated over surface phonological representations. 

Bermudez-Othero (2017) proposes that a pre-existing phonological process (pre-fortis 

clipping) created two different allophones of /ay/, [ai] and [ăi], before /ay/ began to raise 

phonetically. The phonetic change that resulted in the raising of pre-voiceless /ay/, he says, 

targeted the clipped allophone ([ăi]) only. 

 

This analysis makes more sense, to my mind, given that pre-fortis clipping and /ay/-raising 

are observed elsewhere in identical environments – consider, for example, the distribution of 

/ay/ raising in Scottish English (Bermudez-Otero 2017: 13-14): 

 

In Scottish English, /aɪ/, among other vowels, is… 

 

• clipped before all consonants other than voiced continuants,    

 e.g. sign, side, life, sight 

• unclipped elsewhere 

e.g. sigh, dive 

 

If it’s the case that raising targets only clipped tokens of /aɪ/, it would follow that in Scottish 

English, raising would only target tokens of /aɪ/ that have been clipped by the Scottish Vowel 

Length Rule (SVLR) (and would do so even when those tokens are followed by a voiced 

consonant). 

 

Evidence for this has indeed been found by (Scobbie et al. 1990: 241): 

 

• [ʌ$i] clipped by the SVLR  and so raised:  sign, side, life, sight 

• [aɪ] unclipped by the SVLR and so unraised: lie, alive 

 

Bermudez-Otero (2017) then, like Fruehwald (2013, 2016), importantly draws a distinction 

between phonological processes (clipping and flapping, in this instance) and a phonetic 

process (that is, raising) in his account of the diachronic change in Philadelphian English. 

This analysis (unlike analyses of the change which attribute it to phonetic conditioning) is, of 

course, consistent with a modular feedforward architecture of the grammar in which 

phonology precedes phonetics. 
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This analysis importantly demonstrates a difference between changes that occur in a 

phonological module (in which clipping and flapping apply) and a phonetic one (where 

raising applies). This is supportive of the substance-free framework of phonology, which 

separates phonology from phonetic substance. 

 

3. Concluding remarks 

As you can see, there is a wealth of evidence pointing towards phonology being substance-

free. In section 2.2 I explored some existing arguments for a substance-free phonology, 

including explanatory adequacy in 2.2.1, multiple modalities in 2.2.2, emergence in 2.2.3, 

diachrony in 2.2.4 and gradual phonologisation in 2.2.5.  

 

After that, I examined the extent to which Fruehwald’s (2013) account of /ay/ raising as being 

due to spontaneous phonologisation, not gradual phonologisation, could count as even 

stronger evidence for a substance-free phonology and concluded that, if correct, it could. 

Since phonetic change for the variants within that vowel category were best explained in 

terms of phonological allophony than in phonetic disposition, it is easier to see how this could 

be the case if phonology wasn’t grounded in phonetics than if it was. The Philadelphian data 

was suggestive that phonology can bring about change without making any reference at all to 

phonetics, and more specifically that the divergent pattern of change is best attributed to 

categorical allophones that were created by the phonology at the outset of it, which is of 

course what a substance-free phonology thesis would predict. 

 

However, as I point out in the later subsections of this Chapter I myself actually subscribe to 

an alternative analysis of the pattern, the one owing to Bermudez-Otero (2017), which 

although different from Fruehwald’s (2013) is still supportive of a substance-free view of 

phonology. Bermudez-Otero (2017) also argues for separate phonological (clipping and 

flapping) and phonetic (raising) processes in his analysis, which is very much in alignment 

with a substance-free framework of phonology which separates phonological processes from 

phonetic ones, with phonological processes occurring inside the phonology, and phonetic 

processes outside of it. 
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Chapter 5: A Massively Modular Approach to Phonology 
 

 

1. Introduction 

The chapter examines the extent to which phonology can be considered domain specific and 

therefore a module of the mind by massive modularists’ (in particular Carruthers 2006a’s) 

standards. To do so it considers the effects semantically- and phonologically-targeted 

treatments have on phonological anomia (a disorder of naming that has to do with damage to 

the phonological level of language processing) under the rationale that if it is the case that the 

phonological processor is a domain specific module of the mind, it must be able to operate 

only on input relevant to its function, that is, phonological information. If semantically-

targeted treatments were found to facilitate word retrieval in people with phonological 

anomia, then this could count as evidence that the phonological processor is ammodular, for it 

would demonstrate an ability of phonology to operate on semantic information (i.e. input that 

is irrelevant to its function), I argue. 

 

An understanding of the complex cognitive system that’s involved in spoken word production 

is a prerequisite for a proper understanding of the disorders of naming that are observed in 

aphasia, Raymer (2005) rightly points out, as they are actually caused by damage that disrupts 

that system’s activity. Many models of spoken word productions’ details have been subject to 

great debate, but in spite of this, there is a general agreement among researchers that there are 

two stages (semantic and phonological) involved in the word retrieval process (Caramazza et 

al. 2000; Herbert 2004), though, as I point out in section 2.4.1 (2.4.1.1 specifically) syntax is 

involved as well. Researchers also generally agree that subsequent to these stages exist post-

lexical processes in which speech production is planned (Raymer 2005). 

 

The current cognitive approach to the assessment of and intervention into naming disorders in 

aphasia locates language breakdown in normal models of language processing at one, some or 

all of these levels, and so the chapter will begin with a detailed discussion of those models. I 

also present my preferred model (one that isn’t currently referenced in the clinical literature, 

that of Jackendoff (2002)). This model, in my opinion, better explains how and where syntax 

plays a part, where the lexicon (and the lexical entries) that make it up is stored, and how 

modules are connected to and communicate with one another. There are number of problems 

with the models of word retrieval referenced by clinicians, and Jackendoff’s (2002) solves 

them all, I point out. I also, importantly, explain how word retrieval can be handled by 
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Jackendoff’s (2002) model of the language faculty. It is not just a model of competence, but 

of performance too, I point out. And in my eyes, is the most superior of all argued for so far.  

 

I begin by outlining leading theories and areas of agreement and disagreement among the 

theorists each model is due to, before assessing the adequacy of their abilities to account for 

the word retrieval errors we see in normal (in section 2) and aphasic (in section 3) patients. 

In section 4 though (which is the largest one of all) I turn my attention to anomia therapy, and 

both qualitatively and quantitatively consider what the results of 43 studies conducted 

between the years of 1980 and 2002 have to say about the domain specificity and modularity 

of phonology, which is that it is neither domain specific nor modular. My results show that 

phonology can operate on semantic information, in that semantic therapy is able to treat 

phonological anomia. Section 5 concludes. 

 

2. Models of spoken word production 

Cognitive models of word retrieval paint a picture of how the processes involved in it are 

organised, and as a result, are clinically relevant in that they provide a framework for the 

formulation of testable hypotheses about language behaviour (Laine and Martin 2006). Data 

that has been used to test these hypotheses include the speech errors that are produced by 

normal speakers (Fromkin 1971) and people with aphasia (Dell et al. 1997), as well as 

analyses of tip of the tongue states in normals and aphasics (Brown and McNeill 1966), as 

section 2.2.1.1 and (briefly) 2.2.4.1 explore. The evidence from each of these sources has 

made a significant contribution to the development of cognitive models; without speech error 

and tip of the tongue data, we wouldn’t know anywhere near as much about spoken word 

production as we do today. 

 

Current cognitive models of word retrieval have their origins in the neuroanatomical models 

of language breakdown in aphasia that were proposed by 19th century neurologists (Laine and 

Martin 2006). In 1825, for example, Jean-Baptiste Bouillon distinguished between two types 

of language production impairments: one that affected ones’ underlying knowledge of words, 

and one that affected the planning and execution of the speech movements that were required 

to produce them (Laine and Martin 2006). A similar distinction was drawn by Jacques Lordat 

in 1843, and by 1865 the third frontal convolution had been identified by Broca as being the 

site of expressive language (i.e. Broca’s area). By 1874 Wernicke had  linked language 

comprehension to the left superior temporal lobe’s posterior two-thirds (i.e. Wernicke’s area) 

(Laine and Martin 2006). 
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Broca’s (1865) and Wernicke’s (1874) investigations into neuroanatomical sites of language 

acted as the foundations on which the more detailed models of the mental operations that 

underlie language production were built. In fact, it was Wernicke’s (1874) work together with 

that of Lichtheim (1885) that led to the first fully-fledged model of the language system: the 

Wernicke-Lichtheim model (which was, rather self-explanatorily, named after the pair). The 

Wernicke-Lichtheim model had interesting applications to aphasiology for two reasons: on 

the one hand, because it identified the component parts of the language processor (centres for 

auditory images (A), motor images (M) and concept elaboration (C) as well as auditory 

perceptual (a) and motor encoding (m)), and because it described different profiles of aphasia 

in terms of disruption (see the slashes with numbers) to those components or to the spaces 

between them, they said (Laine and Martin 2006).  

 

A lesion at site (A) in Wernicke-Lichteim’s model, which is Wernicke’s region, would result 

in Wernicke’s aphasia whereas if there were a lesion at site (M) (which is Broca’s region), 

Broca’s aphasia would result. This is because A, is where auditory word images are processed 

(Laine and Martin 2006) (the hence comprehension problems) and Wernicke’s aphasia), and 

(M) where motor images are processed (Laine and Martin 2006) (hence Broca’s aphasia 

which causes problems with production: 
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Figure 5.1 A depiction of the Wernicke-Lichtheim model of language processing and the 
different aphasia profiles accounted by the model (Laine and Martin 2006: 5) 
 

 

Now, although the Wernicke-Lichtheim model isn’t what we would consider particularly 

descriptive today it was compared to other models in its time, and it was enough so that its 

assumptions led to the creation of the classical taxonomies of aphasic syndromes that were 

used in the assessment of and intervention into aphasia in the 60s and 70s (Geschwind 1965; 

Benson 1979). 

 

Wernicke and Lichtheim’s brain-behaviour approach (that is, their belief that language 

components have neuroanatomical correlates) was being cared for less and less by the 1980s, 

however. At his point researchers were beginning to develop more functional, as opposed to 

structural, approaches to the modelling of the language system (Morton and Patterson 1980; 

Dell 1986; Kay and Ellis 1987; Howard and Franklin 1988). Spoken word retrieval was 

mostly modelled, by this point, by ‘box and arrow diagrams’ (e.g. Morton (1970, 1979), 

Butterworth (1989) (and even Levelt et al. 1999)) which owed their instantiations to analogies 

with computers. They made use of boxes to illustrate stores of representations (e.g. 

semantic/phonological/morphological) and arrows the processes between them (e.g. which 

took the output of one representational store’s route as input to the next) (Herbert 2004; Laine 

and Martin 2006). These functional, box and arrow models have proved useful clinically 
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speaking as diagnostic frameworks in the field of aphasiology (as we’ll soon see), for their 

detailed descriptions of the language processor’s components provided clinicians with clear 

profiles of their patients’ spared and impaired processes that enabled them to more precisely 

pinpoint the language impairments that were underlying the patients’ language disorders, and 

what aspects of language in particular (e.g. semantic/phonological) should be targeted to treat 

them (Laine and Martin 2006). The functional approach to modelling also provided a 

vocabulary with which to describe disorders of language in terms of behaviourist phenomena. 

This is just as important an advance now as it was back then (even if interest in behavioural-

neuroanatomical correlates has been brought back by innovations in neuroimaging (Laine and 

Martin 2006). 

 

A renewed interest in brain imaging studies has led some to question how specified these ‘box 

and arrow’ models actually are, and connectionist computational models have been developed 

(through applications of the advances in the computer simulation technology of mental 

phenomena) to take their place (e.g. Shattuck-Hufnagel 1979; Stemberger 1985; Dell 1986, 

1989). You see, whereas box and arrow models group representations together in one or more 

boxes, connectionist models specify even further than that, representing individual items as 

nodes (Herbert 2004). These nodes are connected both within and between hierarchical levels; 

and although some still assume that language is processed temporally in one level after the 

other, others argue that processing can occur in one level at the same time that processing is 

occurring in others (Herbert 2004). I explore each of those types of models in section 2.2. 

 

However, the relationship between models of spoken word production and the diagnosis and 

treatment of language disorders is, of course, a co-dependent one. Whilst models of language 

production can be used to diagnose and treat disorders of language, systematic case studies of 

language disorders can be (and indeed have been) used to test how well models of language 

production can account from them. Aphasic speech error data has been used in particular for 

this –  but so too has the speech error data of normal speakers and data from tip of the tongue 

states in both normal and aphasic speakers as I said earlier – and so this section and the next 

one will devote discussion to that. 

 

I begin this section with a description of how words are thought to be represented in and 

retrieved from the mental lexicon by Morton (1970, 1979) in 2.1.1, before pointing out the 

problems with that approach. I draw on speech error and tip of the tongue data in order to do 

so, and I have drawn a distinction between Morton’s (1970, 1979) model (which just has one 
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step) and those of others (which are made up of two steps) in section 2.2. 

 

The first two-step model I consider (in 2.2.2) is that of Butterworth’s (1989) semantic lexicon 

model (which is similar to Morton’s (1970, 1979) model in many ways, except that it 

incorporates an explicit level of lexical-semantic processing (the semantic lexicon) which the 

logogen model does not). I then map out Levelt et al.’s (1999) WEAVER++ model (in 2.2.3) 

before contrasting the pair of feed-forward activation models (Butterworth (1989) and Levelt 

et al.’s (1999), that is) with Stemberger (1985) and Dell’s (1986) interactive activation models 

in 2.2.5.  In section 2.3 I discuss the process by which the phonological information that is 

retrieved from stored lexical representations is converted into a form that can be used by the 

articulators for speech, and in doing so cover two well-known slot-and-filler models Shattuck-

Hufnagel (1979) and Dell’s (1989) interactive accounts of phonological encoding which 

describe how segments are slotted into syllabic frames in sections 2.3.1 and 2.3.2, 

respectively. 

 

Some concluding remarks are then made about the adequacy of these models. I point out the 

questions these models leave unanswered, and how a model like Jackendoff’s (2002) is able 

provide what we’re looking for. In particular, I criticise the current models for not explaining 

the part syntax plays in language processing, and how connections are made and 

communication is handled between the semantic, syntactic and phonological (what 

Jackendoff (2002) calls integrative) processors. I also highlight how one could and should 

view the phonology-phonetics/phonetics-phonology interface module(s), as well as where the 

lexicon is and what it does, in particular how it operates in tandem with the rest of the 

(integrative and interface) modules. A more detailed discussion of anomia begins in section 

3. 

 

2.1 One-step models 

One of the most representative examples of one-step models of spoken word production (and 

therefore the only one I’ll consider in this chapter) is that of Morton (1970, 1979).  

 

2.1.1 Morton’s (1970, 1979) logogen model  

In Morton’s (1970, 1979) logogen model lexical items are represented as logogens, which are 

said to be counting devices that are put in place ‘whenever there is an input of an attribute that 

matches one of those attributes specified within the defining set for that logogen’ (Nickels 

1997: 11). In speech production these logogens accumulate conceptual-semantic information 
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from the cognitive system (which is depicted at the top of the diagram) and deliver it to be 

expressed by the phonological output lexicon (i.e. the first, rectangular box in Figure 5.2), he 

claims: 

 

 

 
 
Figure 5.2 The logogen model of spoken word production (Nickels 1997: 11) 
 

 

Each logogen is assigned a threshold, and when the count of the accumulated conceptual-

information exceeds that threshold the logogen that was assigned it ‘fires’, sending a phonological 

code to the response buffer (i.e. the second, rectangular box) which results in the production of 

speech. 

 

The single step involved in this process (taking information from the cognitive system and turning 

it into speech) is what the term ‘one-step’ in one-step models refers to; despite there being two 

boxes (the phonological output lexicon and the response buffer) there is only one (phonological) 

process necessary to get from the cognitive system to speech. Now, when one-step models are 

used in clinical work, many researchers believe that the diagnosis and treatment of aphasia being 

offered by clinicians using them is unsatisfactory, for it relies on an inadequate interpretation of 

the problem at hand. To their minds, there are actually two levels of representation (and therefore, 

two steps that need to be taken in order to retrieve words). As such, many two-step models of 

spoken word production have been proposed in more recent years (as section 2.2 explores). 
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2.2 Two-step models 

Two-step models postulate two levels of language processing: a semantic one and a phonological 

one (with semantic representations of lexical items being accessed at the semantic level of 

language processing and their respective phonological representations from the phonological level 

of language processing at which instructions for realisations phonetically are given). Evidence for 

the existence of these levels has been found in the speech of both normal and aphasic speakers. 

I’ll cover evidence from normal speakers in section 2.2.1.1.1 of this chapter, and evidence from 

aphasic speakers in 2.2.1.1.2. 

 

2.2.1 Semantic and phonological levels 

2.2.1.1 Evidence for independent semantic and phonological levels 

2.2.1.1.1 Evidence from normal speakers 

Speech errors or ‘slips of the tongue’ are by no means an infrequent occurrence in the everyday 

speech of normal speakers (Nickels 1997).  They are not thought to occur randomly, though. 

Rather, systematically so, and so over the years, they’ve been extensively exploited for the 

insights they can provide about the production of spoken words (Nickels 1997). 

 

2.2.1.1.1.1 Speech errors 

Shattuck-Hufnagel (1979, 1987), Stemberger (1985), (Dell 1986, 1989) and (Butterworth 1989), 

for example, use speech error data as support for the theoretical models of spoken word 

production they’ve proposed in recent years that argue for two levels of representation in lexical 

access as opposed to just the single level of representation that’s argued for in Morton’s (1970, 

1979) one-step logogen theory. The argument for two levels of lexical representation (one 

organised by meaning and the other organised by sound), they say, is based on the independence 

of semantics and phonology in errors (as evidenced by targets that are substituted with 

semantically related but not phonologically related words and those that are substituted with 

phonologically related words but not those that are related semantically) such as those in the 

following examples that were put forward by Fromkin (1971: 46): 

 

(a) Semantically related:  I like to - hate to get up in the morning 

      the oral - written part of the exam 

 

(b) Phonologically related:  bottle (target: bottom) of page five 

      while the present - pressure indicates 
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Within a model that has just a single level of representation, semantic errors such as like for hate 

and oral for written can be easily accounted for by the logogen model, Nickels (1997: 16) argues:  

 

As the lexicon (comprising output logogens) accumulates semantic 
information from the cognitive system, a range of semantically related 
items will be activated at one time and random noise within the 
system (e.g. temporary lowering of a threshold due to recent firing of 
a logogen) may result in a non target semantically related to the 
logogen firing. 

 

But it is less of an easy feat trying to explain the occurrence of phonologically related real word 

errors (e.g. bottle for bottom and present for pressure) within Morton’s (1970, 1979) model, for 

logogens are said to accumulate conceptual-semantic information, and so processing problems 

will result in errors that are semantically related only, she points out Nickels (1997). Once the 

logogen delivers the conceptual-semantic information from the cognitive system to the 

phonological output lexicon to be expressed errors might well occur in encoding,  Nickels (1997) 

says, but this is what we call a phonemic process as opposed to a phonological one (I’ll come 

back to this point properly in section 3) and so the result will be random phonemic errors that 

result in non-words (or real-words but just by chance) as opposed to errors which involve the 

switching out of the target word for something that is phonologically similar (Nickels 1997). 

 

2.2.1.1.1.2 Tip of the tongue states 

Models with single levels of representations and therefore ‘all or nothing’ retrieval of lexical 

items also have difficulty in accounting for tip of the tongue states in normal speakers. In a tip of 

the tongue state a speaker ‘knows’ the word that they want to produce, but can’t access its form 

from memory. They might be able to evidence their knowledge of the word by saying something 

about it (e.g. that it begins with this or that sound or that it is similar in meaning to this word or 

that one), but when it comes to accessing its information in its entirety they’re - for lack of a 

better word or phrase here – stumped. Tip of the tongue states can shed further light then on the 

inner workings of the speech production system in that they capture it in a state of interruption, as 

opposed to impairment, either because of something we call blocking or something else we call 

incomplete activation (Herbert 2004) (which is a point I’ll come back to in due course). 

 

Brown and McNeill (1966) were among the first to study the kind and quantity of information 

subjects have available to them in tip of the tongue states. They induced these states in subjects by 

reading them the definitions of low frequency English words (e.g. ‘a navigational instrument used 

in measuring angular distances, especially the altitude of the sun, moon, and stars at sea’ for 
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sextant) and asking them to identify what it was that they were describing.  

 

Subjects who didn’t recall the target word in this particular example immediately but felt that they 

knew the word was in there somewhere provided two kinds of information to Brown and McNeill 

(1966) while they searched for it: semantic and phonological. They were also asked to make 

Brown and McNeill aware of any other words that came to mind in their attempt to access the 

target one and these could be divided into two types as well: those that were similar in meaning 

(e.g. astrolabe, compass, divider, protractor) and those that were similar in sound (e.g. secant, 

sextet and sexton).  

 

Brown and McNeill (1966) pointed out that the nearer subjects were to the successful recall of the 

target words, the more accurate the information was that they possessed. This insight led Brown 

(1991) to formulate two hypotheses about the cause of tip of the tongue states (recall): on the one 

hand, he said that they could be due to blocking, and on the other that they could be due to 

incomplete activation. The blocking hypothesis suggests that similar sounding words to the target 

are activated as well as the target and in turn obstruct its retrieval while the incomplete activation 

hypothesis suggests that tip of the tongue states arise when a target fails to reach the threshold 

level of activation that’s necessary for its retrieval (Brown 1991). 

 

A series of experiments designed to test the two hypotheses owing to Brown (1991) was 

performed by Jones (1989) and Jones and Langford (1987). The studies used the same 

methodology as did Brown and McNeill (1966), but modified it slightly to accompany each 

definition they provided to subjects with a phonologically related, semantically related, both 

phonologically and semantically related or both phonologically and semantically unrelated prime 

(e.g. when presented with the definition ‘medieval forerunner of chemistry’ to induce a tip of the 

tongue state for the target word alchemy, the phonologically related prime axial was presented as 

well). Jones (1989) found tip of the tongue states to be more common when the target and prime 

were phonologically related or both phonologically and semantically related than semantically 

related or both phonologically and semantically unrelated, which led them to conclude that the 

results were more consistent with Brown’s (1991) blocking hypothesis than they were with his 

incomplete activation one. 

 

There were a number of problems with this study, however, in particular in that the prime stimuli 

differed in difficulty (read: some were high frequency words and some were low ones) and 

subjects weren’t provided with their definitions so if their meanings weren’t already known the 
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efficacy of the semantic primes couldn’t be properly measured. Due to this, Meyer and Bock 

(1992) carried out two further experiments following Jones (1989) and Jones and Langford’s 

(1987) methodologies (but made sure to present primes’ definitions as well to avoid differences in 

difficulty contributing to any faciliatory effects found). 

 

Results revealed that words were retrieved more often when their definitions were followed by 

phonologically, semantically or phonologically and semantically related words than they were 

when they were followed by phonologically and semantically unrelated ones. They didn’t find 

any evidence to suggest that the provision of semantically or phonologically related information 

reduced target words’ accessibility either (which the blocking hypothesis would of course predict) 

and so Meyer and Bock (1992) suggested that the partial activation hypothesis looked more likely 

than the blocking one for this set of data. 

 

When considering the kinds of responses produced by participants in tip of the tongue states the 

logogen model fails once again then, Nickels (1997) stresses. Just as was the case with speech 

error data, although the logogen model can easily explain the production of words that are 

semantically related to the target it can’t account for phonologically related responses (Nickels 

1997). Furthermore, the availability of partial phonological knowledge in tip of the tongue states 

is completely incompatible with a threshold model like the logogen one, for in the logogen model 

(remember) the logogen either reaches an activation threshold at which point the full phonological 

form is made available, or it remains below the threshold for activation on the phonological form, 

and no information is retrieved (Nickels 1997). There is no point at which, in the logogen model, 

partial information is made available, and so those circumstances described in tip of the tongue 

states cannot be adequately accounted for by it (Nickels 1997). 

 

2.2.1.1.2 Evidence from aphasic speakers 

Two cases from the aphasiology literature (JCU (from Howard and Orchard-Lisle 1984) and EST 

(from Kay and Ellis 1987)) have been cited over and over again to support the assertion that there 

are two independent semantic and phonological levels of language processing (e.g. Lesser 1989) 

as well. Whilst JCU made semantic errors but not phonological ones in their speech, EST made 

phonological errors but not semantic, which researchers have taken to be indicative that there are 

two processing levels – one semantic and one phonological – that can be impaired independently 

of each other. I come back to cover these case studies (among a number of others) in more detail 

in section 3 (sections 3.1 and 3.2, to be exact), but for now, in section 2, I think it should suffice 

to say that they are thought to have deficits in language processing at two different levels: JCU a 
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deficit at the semantic one (hence the semantic but not phonological errors) and EST a deficit at 

the phonological one (hence the phonological errors, but not semantic). 

 

Models that incorporate two levels of lexical representation can easily account for speech errors 

and the availability of information in tip of the tongue states in normals and aphasics however, 

and so I provide a summary of some of the most widely discussed models made up of two levels 

of representation here: Butterworth’s (1989) semantic lexicon model (in section 2.2.2) and Levelt 

et al.’s (1999) WEAVER ++ model (in 2.2.3), as well as Stemberger’s (1985) and Dell’s (1986) 

interactive activation models in section 2.2.5.1. In 2.3.1 and 2.3.2, respectively, I discuss 

Shattuck-Hufnagel (1979) and Dell’s (1989) interactive activation accounts of phonological 

encoding, before arguing for a model that looks more along the lines of Jackendoff’s (2002) one 

and turning my attention to anomia and anomia therapy in sections 3 and 4. 

 

2.2.2 Butterworth’s (1989) semantic lexicon model 

In 1989, Butterworth developed a model with two levels of lexical representation (lexical-

semantics and a phonological lexicon) at which lexical access occurs temporally. First, lexical-

semantics (which is a transcoding device that takes as input a semantic code from the cognitive 

system and outputs a phonological address) is accessed. After that, the phonological output 

lexicon is (which is another transcoding device that takes the phonological address (recall, the 

output from lexical-semantics) and outputs the phonological form). Access is strictly top-down 

for Butterworth (1989), (which remember means information flows downward only and can’t be 

fed back from the lower levels up to the higher ones (except if they’re the results of checking 

procedures (hence the two-way arrows in Figure 5.3), but that’s not really relevant to this thesis)). 

You can see this in the following figure: 
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Figure 5.3 The proposed stages of spoken word production: Butterworth’s (1989) semantic 
lexicon model (from Nickels 1997: 21) 
 

 

Butterworth’s (1989) semantic lexicon is made up of pairs of feature sets that associate semantic 

properties (those that comprise the criterion for the semantic search for a word in lexical-

semantics, that is) with phonological ones in the phonological output lexicon (e.g. such as the 

number of syllables a word has, which of these are stressed and the segments that make up the 

syllables’ onsets, nuclei and codas). Within the phonological output lexicon there exists pairs of 

addresses (output from the semantic lexicon) and strings of phonemes for the formation of words, 

and so unlike Morton’s (1970, 1979) model of spoken word production, Butterworth’s (1989) can 

easily explain the independence of semantically related and phonologically related spontaneous 

speech errors, it’s pointed out. 

 

Semantically related errors may occur for one of two reasons, Butterworth (1989) argues: (a) 

because of an error in generating a semantic search criterion, or (b) due to an error in matching a 

correctly generated search criterion with its partner representation in lexical-semantics (Nickels 

1997). Phonological errors, by contrast, occur for just one reason only, when there is a failure to 

match a correctly retrieved (from lexical-semantics) phonological address with its partner in the 

phonological output lexicon and a near neighbour, instead of the target, is activated by accident 

(Nickels 1997). 
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Once again, unlike Morton’s (1970, 1979) model, Butterworth’s (1989) can give us a 

straightforward explanation of how partial phonological information is available to subjects in tip 

of the tongue states (Nickels 1997). Having accurately accessed a phonological address from the 

semantic lexicon, speakers might well be unable to retrieve the item that’s at that address in the 

phonological output lexicon (Nickels 1997). If this is the case, the speaker might at that point 

produce no response, or use the address itself (that is, the one they retrieved from the semantic 

lexicon) to provide information about the target (that’s in the phonological output lexicon) 

(Nickels 1997).  

 

Addresses bear a relationship to the things that reside there in that similar addresses point to 

similar sounding words. The speaker could, therefore, retrieve a phonological neighbour (a word 

that phonologically resembles the target) or they could make use of the information that’s in the 

phonological address to make ‘guesses’ at the target (relating in phonologically related words and 

nonwords) (Nickels 1997), e.g. if looking for the target word anemone a speaker might well say 

enemy (if the phonological address points to a similar sounding word), anometer (an otherwise 

phonologically similar real word) or anenome  (a nonword) if they make use of the phonological 

information initial phoneme [æ], and four syllables but switch out the placement of the phonemes 

[n] and [m]. They might also even just report the phonological information they’re aware of itself 

instead of trying to do anything with it (e.g. the word I’m looking for begins with ‘a’ and has four 

‘beats’); this is something we see all the time, in aphasics especially. 

 

2.2.3 Levelt et al.’s (1999) WEAVER++ model 

Now, whilst researchers are in general in agreement that there exist independent semantic and 

phonological levels of representation in spoken word production, there has been disagreement as 

to whether there exists or doesn’t exist an intermediate level of representation (known as the 

lemma level) between them. Kempen and Huijbers (1983) were the first to propose the lemma 

level in models of spoken word production. The lemma, they said, is a semantically and 

syntactically specified representation that mediates between conceptual-semantic and 

phonological representations, and so a level depicting its processing belongs between them. 

Levelt et al. (1999) argue, however, that the lemma mediates between not conceptual-semantic 

but lexical-semantic representations and phonological representations, and that it is at the lemma 

level that information about an item’s syntax is made available. Now, whether the lemma 

mediates between conceptual-semantic representations and phonological representations or 

lexical-semantic representations and phonological representations to both Kempen and Huijbers 

(1983) and Levelt et al. (1999) this much, at least, is clear: there are two stages to lexicalisation 
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(one from the semantic to the syntactic, and one from the syntactic to the phonological).  

 

According to Levelt et al. (1999), there are three major steps that underlie speaking 

(conceptualisation, formulation and articulation). After perceiving an object-form (for argument’s 

sake, let’s say an apple), the concept is identified by the person perceiving it, and a message 

(which tells the formulation processor what that is) is sent by the conceptualisation processor. The 

formulation processor would then take the messages and access the appropriate word (i.e. the 

noun apple) in the mental lexicon to express it. It’d then encode syntactic and morpho-

phonological structures for the result, and the result would be a phonetic plan (i.e. an articulatory 

program) for the utterance (Roelofs 2000). Finally, the articulators would execute the articulatory 

program, and the result of that would be speech (Roelofs 2000), as is exemplified by Roelofs 

(2000) in Figure 5.4: 

 

 

 
 

Figure 5.4 The types of process involved in speaking according to WEAVER++ (Roelofs 
2000: 73) 
 

 

Lexical access for Levelt et al. (1999), then, consists of lemma retrieval and word-form encoding 
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processes which are part of the formulation stages of syntactic encoding and morpho-

phonological encoding, respectively (Roelofs 2000).  In lemma retrieval, lexical concepts are used 

to retrieve lemmas (which are, again, representations of the syntactic properties of words) from 

memory, and lemma retrieval makes these properties available for syntactic encoding processes 

that contain slots for the specification of abstract morpho-syntactic parameters (such as mood, 

tense, person and number) (Roelofs 2000). In word-form encoding, on the other hand, lemmas 

and their parameter values are used to recover the appropriate morpho-phonological properties 

from memory (Roelofs 2000). The purpose of this is to construct phonetic plans (Roelofs 2000).  

 

2.2.4 Evidence that the lemma (syntax) is independent of phonology 

A number of studies have sought to prove the independence of syntactic (i.e. lemma level) 

information from phonological (i.e. lexeme level) information to evidence that word production 

processes take two steps. If a lemma level exists, syntax will be made available before phonology, 

people say, and evidence from tip of the tongue studies (described in 2.2.4.1) and 

neuropsychological studies (2.2.4.2) have suggested that this might indeed be the case. 

 

2.2.4.1 Tip of the tongue studies 

Evidence to support the independence of syntax and phonology has been found in tip of the 

tongue studies involving normal subjects (Caramazza and Miozzo 1997; Vigliocco et al. 1997). In 

both Caramazza and Miozzo’s (1997) and Vigliocco et al.’s (1997) studies subjects were provided 

with definitions of words which elicited tip of the tongue states and asked questions about the 

items that they weren’t able to name to gauge their knowledge of the words’ syntactic (e.g. 

grammatical gender) and phonological (e.g. the first and last sound and the number of syllables) 

properties. The studies showed that subjects in a tip of the tongue state were able to report the 

grammatical gender of words they were unable to name, whether their phonological properties 

were available or not. The results have of course been interpreted as support for the existence of 

an intermediate level of language processing between the semantic and the phonological at which 

syntactic information is available, for syntactic features were known to the speakers even when 

the full phonological form wasn’t. 

 

2.2.4.2 Neuropsychological studies 

Further evidence to support the independence of syntax and phonology has been found in 

neuropsychological studies (e.g. Henaff Gonon et al. 1989; Badecker et al. 1995; Vigliocco et al. 

1999). In the earliest (Henaff Gonon et al.’s (1989)) study the case of a French anomic subject, 

GM was reported. GM presented with fluent speech, but marked word finding problems were 
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evident. While he was able to correctly identify the grammatical gender of the words of the 13/14 

test items he was unable to find, though, identification of information relevant to the words’ 

phonological forms was less accurate, which suggested to Hennaff Gonon et al. (1989) that 

syntactic and phonological information were made available to the patient at two different points 

in time. 

 

Badecker et al. (1995), meanwhile, report the case of Dante, a patient who presented with anomia 

as a result of a meningoencephalitis. According to Badecker et al. (1995) when presented with 

pictures he’d been unable to name in a picture naming experiment, Dante was able to identify the 

grammatical gender of 106 of the 111 items, but was unable to provide any phonological 

information about the words at all (not their first sound, not their last sound and not their length). 

The authors interpreted the results of the study as evidence in support of a two-step level of 

spoken word production: Dante had access to the lemma level (at which syntactic information 

was made available), but access to phonology after that was absent altogether. 

 

More recent research (owing to Vigliocco et al. 1999) came to the same conclusion. Vigliocco et 

al. (1999) described the case of MS who was able to identify whether items were count or mass 

nouns despite not being able to find the items’ phonological forms to produce them during a 

picture naming task. They too attributed their data to syntactic and phonological information 

being represented at separate, syntactic and phonological levels. 

 

2.2.5 Activation within two-step models 

Not all models that have two levels of language processing have two levels of lexical access, 

however, and as Nickels (1997) says, it’s important we maintain that distinction. Activation can 

be one of two things: feed-forward or interactive. As its name suggests, in the former activation 

moves level by level throughout the system, whereas in the latter activation can move forward 

and backwards. In models with discrete activation processing, there is, therefore, no temporal 

overlap between stages, but in models with interactive activation processing, there is.  

 

Both one-step models (e.g. Morton’s (1970, 1979) logogen model) and some two-step models 

(e.g. Butterworth 1989, 1992; Levelt 1992; Levelt et al. 1999) assume discrete activation 

processing, that is that processing has to finish at one level before it can start at the next. 

Activation in these models feeds forward, one stage at a time, with the output from one level 

being the input to the level that follows it (Morgart 2015). Dell’s (1986) two-step model (and 

subsequent versions of it (e.g. Dell et al. 1997; Dell 1988, 1989)), on the other hand, differ 
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from Butterworth's (1989, 1992), Levelt's (1992) and Levelt et al.’s (1999) two-step models, 

for in Dell’s (1986, 1988, 1989) and Dell et al.’s (1997) models temporal overlap in 

processing between adjacent stages is assumed. This, interactive activation, that is, is 

something that’s also assumed by Stemberger (1985) and Shattuck-Hufnagel (1979), as we’ll 

see in sections 2.2.5.1 and 2.3.1, respectively. 

 

2.2.5.1 Stemberger (1985) and Dell’s (1986) interactive activation models 

Both Stemberger (1985) and Dell (1986) have developed models in which there are two levels of 

representation that can be likened to those in the models of Butterworth (1989) and Levelt et al. 

(1999), but, as I’ve said above, whereas in Butterworth’s (1989) and Levelt et al.’s (1999) models 

activation occurs at each level one after the other, the mechanism by which lexical items are 

accessed in Stemberger (1985) and Dell’s (1986) models involves interactive activation.  

 

Stemberger (1985) and Dell’s (1986) models have units at a lexical level (called that in 

Stemberger’s (1985) but the word/morpheme model in Dell’s (1986)) which are similar to lemma 

levels in that they correspond to spoken words and a phoneme level (called that in both 

Stemberger’s and Dell’s models) at which phonemes are supposedly stored. Dell’s (1986) model 

has three other levels (a syllable level and a rime level above the phoneme level and a feature 

level below it), but he omits these from later descriptions and depictions of the model (such as 

Dell (1989)), and so I won’t say too much about them here. 

 

 

 

 
 

Figure 5.5 Stemberger’s (1985) interactive activation model (adapted from Stemberger 1985) 
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Figure 5.6 Dell’s (1986) interactive activation model (adapted from Dell 1986). Word/morpheme 
level nodes are initially activated from semantic representations that aren’t in the diagram. At the 
phoneme level on = onset, nu = nucleus and co = coda 
 

 

In both Stemberger (1985) and Dell’s (1986) models activated units (or nodes) send some of their 

activation to every other unit/node they are connected to. More highly activated nodes have larger 

effects on other nodes, of course, whereas less highly activated nodes have smaller effects. 

Differences in activation at one level are reflected at the other levels, and activation from lower 

levels feeds back to higher levels of the system (e.g. activated phoneme nodes will spread 

activation to words that are made up of those particular phonemes, meaning that non-target words 

can become partially activated if they are phonemically similar to (that is, are made up of similar 

phonemes to) the target). 

 

These interactive two-step models can, therefore, account for the semantic and phonological 

errors produced in tip of the tongue states in a similar way to Butterworth’s (1989) non-interactive 

two-step model, then. Conceptual-semantic information activates units at the lexical level (in 

Stemberger (1985)) and the word/morpheme level (in Dell (1986)) that represent that information, 

and errors arise because of the systematic spread of activation to non-target units and them being 

mistaken for targets as a result. This can also be the case at the phoneme level; consider how easy 

it would be for feather to be mistaken for leather in Figure 5.5, which phonologically differs from 

the target in its first phoneme only. 

 

Now, although Stemberger (1985) and Dell’s (1986) models have phoneme levels and Dell’s 

(1986) has feature, rime and syllable levels), what they don’t do is specify how phonological 
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encoding is accomplished. Separate models of phonological encoding have been proposed, 

however (by Shattuck-Hufnagel (1979) and Dell (1989)), and so I’ll consider them next. 

 

2.3 Phonological encoding 

In the previous sections, I’ve discussed some of the mechanisms in models that can lead to the 

retrieval of a word’s phonological form. After that, though, ‘the phonological form has to be 

translated into an articulatory programme for controlling the speech musculature’ (Nickels 

1997: 45). This process is what we call phonological encoding. 

 

There are a number of models of phonological encoding out there, and almost all of them 

incorporate some sort of ‘slot-and-filler’ mechanism by which the sounds of words (the fillers) 

have to be inserted into their position in the word frame (that is, their slot). It is this process that is 

the source of many phonological speech errors, Nickels (1997) points out, and so this section 

begins by classifying the speech errors we see that are phonologically related to their targets. It 

moves on, then, to a detailed description of the factors that have even found to constrain their 

occurrence (an account that closely follows that of Shattuck-Hufnagel (1979), which is the paper 

that motivated the making of her model). I go on to describe Shattuck-Hufnagel’s (1979) model 

of phonological encoding after that and discuss, as she does, how the various error types might 

arise in it. Next, I make a move to describe the ways in which Dell’s (1986, 1989) interactive 

activation model is similar to Shattuck-Hufnagel’s (1979) slot-and-filler model, and how, like 

Shattuck-Hufnagel’s (1979), it can account for phonological encoding errors. 

 

2.3.1 Shattuck-Hufnagel’s (1979) interactive activation account of phonological encoding 

2.3.1.1 How speech errors are classified 

In her 1979 publication Speech Errors as Evidence for a Serial-order Mechanism in Sentence 

Production Shattuck-Hufnagel made use of the MITCU (Massachusetts Institute of Technology 

Cornell University) corpus of speech errors to develop a scan-copier model of phonological 

encoding. Out of the 6000 speech errors collected over six years in the corpus Shattuck-Hufnagel 

(1979) found five types (substitution, exchange, shift, addition and omission). She exemplifies 

these on page 299 as follows (Shattuck-Hufnagel 1979: 299): 

 

1. Substitution: A target segment is replaced by an intrusion segment, which may or may not 

have an apparent source within the utterance, e.g. 

  (a) It’s a shallower test - chest, but broad 

  (b) Anymay, I think (anyway) 
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  2.  Exchange: Two target segments change places in the target sequence, each serving as the 

other’s intrusion segment, e.g. 

  (a) emeny (enemy)  

  (b) It’s past fassing - fast passing by 

 

  3.  Shift: A target segment disappears from its appropriate location and appears at another 

location in the target sequence, e.g.  

  (a) State-lowned- and owned-land (state-owned-land) 

  (b) in a b ack blo - black box 

 

  4. Addition: An extra segment is added to the target sequence; this intrusion may or may not 

have an apparent source within the utterance, e.g.  

  (a) either the plublicity would be bad (publicity) 

  (b) they bring abrout - about a   

 

  5.  Omission: A target segment is dropped from the target sequence’ there may or may not be 

a similar sequence elsewhere in the utterance, e.g. 

  (a) the d ug -the drugs 

  (b) piano sonata  umber ten (number) 

 

Shattuck-Hufnagel (1979) also went on to categorise these five types of speech error along the 

dimension of something she called the direction of influence (i.e. wherein the sentence the source 

of error was). When the source was later in the sentence, Shattuck-Hufnagel (1979) classified the 

error as anticipatory (e.g. the addition in 4(a)), and when the source was earlier she classified the 

error as being perseveratory (e.g. the addition in 4(b)). Like the additions in 4(a) and (b) 

omissions and substitutions can be either anticipatory or perseveratory, Shattuck-Hufnagel (1979) 

said, though it isn’t always the case that additions, omissions or substitutions have to have an 

identifiable source, she stresses (and then exemplifies in 1(a) and (b) and 5 (a) and (b)). Shifts can 

likewise be anticipatory or perseveratory, she says, but unlike additions, omissions and 

substitutions, these errors do indeed need to have an identifiable source. Exchanges, lastly, were 

classified as being neither anticipatory nor perseveratory. This is of course because in exchanges 

there is more than one source and so the direction of influence goes both ways. Take the emeny 

for enemy example from (2a), for instance. In this, both the /n/ and the /m/ have a part to play and 

can be described as the source, in that they switch places. 
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2.3.1.2 How speech errors arise 

In light of these errors, Shattuck-Hufnagel (1979) developed a model of three parts which has 

been described, super succinctly, by Nickels (1997: 53): 

 

1. a dual representation consisting of serially ordered slots and an equal number of 

independently represented target segments, at least at the word level and at the sound 

level; [and] 

2. a scan-copier that selects the appropriate segment from the set of two monitors: a check-

off monitor, which marks or deletes segments as they are copied into their target slots, and 

an error monitor, which detects and deletes or otherwise edits error-like sequences in a 

planned utterance. 

 

At the word level, ordered frameworks of word slots are generated and corresponding sets of 

target items retrieved from the lexicon to be stored (short-term) in a buffer. The scan-copier scans 

the target sets in the buffer for the ones that belong to the first of the ordered slots, and once those 

morphemes are found, they’re copied into their positions. At this point, there is a check-off 

monitor that either marks the used morphemes as used (or deletes them from their sets if they’re 

no longer needed) and the scan-copier moves onto the next slot, to repeat the process until all 

slots have been filled. 

 

At the phoneme level, the same process is found but this time with phonemes as opposed to 

morphemes ones and ordered frameworks of, of course, phoneme-sized slots rather than ones that 

are morpheme-sized. Words are entered into a short-term storage buffer as they are retrieved, 

once again, with basic sets (such as initial, medial and final phonemes) lined up to be slot into 

their positions in the syllables of the target lexical items that are derived from rules of syllable 

structure and stress patterns. The scan-copier scans the buffer for what it needs each time (e.g. it 

scans the initial/final consonantal sets for the onsets/codas and medial sets for vowel phonemes 

for nuclei (or indeed for liquid or glide phonemes which can also act as nuclei)). 

 

According to Shattuck-Hufnagel (1979), each of the five errors described above can be accounted 

for as being due to some sort of problem with this segment selection process. These too have been 

helpfully summarised by Nickels (1997: 54) as follows: 

 

1. Exchanges arise from misselection by the scan-copier (but intact check-off, as described 

earlier). 
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2. Anticipatory substitutions arise from miss election and then failed check-off, 

perseveratory substitutions from failed check-off and then misselection. “No source” 

substitutions are explained as incompletely or incorrectly transferred to the slot location, 

or an extra word found its way erroneously into the set and was miss elected (e.g. as in 

‘Freudian” slips. 

3. Additions involve miss election and failed check-off, where the miss election os of a 

segment for a slot that should have been empty. 

4. Omissions are argued to arise from miss election of a null element followed by failed 

check-off. 

5. Shifts are explained by two full misselections, one of a target for a null slot and the other 

of a null segment for a target slot. 

 

In 1987, however, Shattuck-Hufnagel reexamined the evidence for the existence of processing 

units between word and phoneme levels and, in light of speech error data involving the movement 

or replacement of onsets, suggested that syllabic structure plays a more significant role in 

phonological encoding than she had initially thought. She went on to instead propose a two-stage 

model of phonological encoding that allowed for the serial encoding of syllabic structure. For a 

more thorough explanation than space permits me to give here, one should really refer to the 

original text. 

 

2.3.2 Dell’s (1989) interactive activation account of phonological encoding  

Dell’s (1989) interactive activation model is like Shattuck-Hufnagel’s (1987) slot-and-filler 

model in a couple of ways, both in that it can account for phonological encoding and in that Dell 

(1989), like Shattuck-Hufnagel (1987), revised his earlier (1986) model to allow syllables to 

encoded serially (previously he had assumed simultaneous encoding of onset, nucleus and coda 

within syllables). 

 

According to Dell (1989), there exists in the mind two networks (a lexical network and a word-

shape network) as in Figure 5.7. This, of course, captures the conception that the phonological 

structure of a word has two components: a sequence of slots that specifies the shape of the word 

and the kinds and quantities of syllables and phonemes it contains, and a representation of the 

sounds that fill them: 
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Figure 5.7 Dell’s lexical and word shape networks (adapted from Dell 1989). The intended word 
here is ‘cat’ as indicated by the flag on the listing of ‘cat’ at the word level in the lexical network. 
The dotted lines in the diagram represent connections between the lexical network and the word 
shape network, and the arrows between phoneme categories in the word shape network their 
sequence of activation. As in Dell’s (1986) model, On = onset, Nu = nucleus and Co = coda 
 

 

To Dell’s (1989) mind, the lexical network is where words in the word level are connected with 

the phonemes that make them up in the phoneme level. At the phoneme level, phonemes are 

specified for their position in the syllable (i.e. whether they’re syllable initial (lie in the onset), 

syllable medial (lie in the nucleus) or syllable final (lie in the coda)). 

 

Word nodes in the lexical network are also connected to word shape header nodes that represent 

the pattern of phoneme categories for them, he says (e.g. the word node for ‘cat’ in Figure 5.7 is 

connected to the word shape header node ‘CVC’ which tells the speaker the word to be produced 

is a single closed syllable). The word shape header node then connects to a series of phoneme 

categories (e.g. the word shape header node ‘CVC’ for the word node ‘cat’ connects to three 

phoneme categories On (onset), Nu (nucleus) and Co (Coda) where /k/, /æ/ and /t/ will go, 

respectively).  

 

The word that’s currently being phonologically encoded in Dell’s (1989) model is flagged (quite 

literally so with a flag in his drawing of the model but with an arbitrary amount of activation (100 
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units) in the mind) as being the ‘current’ word. Upcoming words in the phrase are primed for 

retrieval with a lesser amount of activation (50 units), and during each time step, nodes send some 

fraction of their activation to nodes they are connected to above and below them. 

 

After a certain number (that’s determined by the speech rate) of time steps has passed the most 

highly activated phonemes (in the category nodes of the word shape network) are selected for 

speech production. What order they’re articulated in depends on the word shape network’s word 

shape header nodes: these are sent activation from word nodes in the lexical network, and the 

header that’s the most highly activated gets to decide what phonemes appear where.  

 

Phonological errors occur, Dell (1989) says, if an incorrect phoneme is more active than the 

correct one of the same category (as was the case in his 1986 model). Say the target, like in Figure 

5.7, was ‘cat’ for example. If the phoneme /t/ in onset position (which was meant for ‘tack’, not 

‘cat’) was more activated than was /k/ in onset position, it might well be mistakenly selected for 

speech production resulting in the real word error ‘tat’. Likewise, if the null coda (which was 

meant for ‘car’) or /k/ coda (which was meant for ‘tack’) were more activated than the /t/ coda, a 

speaker might well produce ‘ca’ or ‘cack’ instead of ‘cat’. 

 

2.4 Concluding remarks 

In this (rather large) section, some background research to current methods in the remediation 

of spoken word production after brain damage has been outlined. Some of the key 

assumptions of cognitive neuropsychology have been discussed, as have some of the sources 

of data that have been called on to develop spoken word production theories (such as speech 

error data, tip of the tongue data and data from people with aphasia). The degree to which 

each can adequately account for speech error data has been analysed to some degree, but 

whilst word finding difficulties can indeed be explained by these models, the phonological 

mechanisms in the models aren’t actually substance-free (and, as I made clear in Chapter 4, 

this is the theory of phonology that I myself subscribe to).  

 

I am, of course, supportive of the idea that there are multiple components of language 

processing – a semantic one, and a phonological one – the aphasiology data evidences that 

much. I also see no reason why semantics and phonology couldn’t be active at the same time. 

However, whilst it wasn’t (and still isn’t) my intention to propose a new model of word 

retrieval in this thesis, what I will say is this: 
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If phonology is substance-free (and it certainly seems to be so), then the phonological 

component of word retrieval should be devoid of phonetic content. Rather, phonology and 

phonetics should be instantiated separately, with an interface (or interfaces) amid them that 

bridge(s) the gap between the two. Importantly, deficits in the interface(s) (or beyond it/them) 

shouldn’t be described as phonological ones of word retrieval (even if the interface(s) is/are 

connected to phonology). 

 

Another shortcoming of what’s so far been sketched out in the clinical literature is that the 

models don’t make it clear what the role of the lexicon is, where lexical entries are stored, 

where syntax is situated and how connections between the semantic, syntactic and 

phonological modules are made and communication handled. Thankfully, in Foundations of 

Language: Brain, Meaning, Grammar, Evolution, Jackendoff (2002) offers a solution to each 

of these problems.  

 

2.4.1 An alternative account owing to Jackendoff (2002) 

2.4.1.1 The role of syntax  

Traditional generative grammar only sees syntax as being generative. Neither semantics nor 

phonology are, in the eyes of generativists. There is ‘a fundamental assumption embedded 

deep in the core of generative theory[…] that the free combinatoriality of language is due to a 

single source, localized in syntactic structure’ (Jackendoff 2002: 107). Jackendoff (2002) 

takes issue with this, and develops ‘the alternative assumption that language has multiple 

sources of combinatoriality, each of which creates its own characteristic type of structure’. 

The outcome is a theory of grammar which has a has a tripartite organisation and in which 

phonology, syntax and semantics are equally as generative as each other. In Jackendoff’s 

(2002) model, syntax is all but one of the three parallel generative components. It is among 

the combinatorial systems, but it is far from the only one (Jackendoff 2002: 126): 

 

‘[The figure reveals] the role of syntax in the parallel 
architecture. […] Syntactic structure serves as a “way-station” 
between [the semantic and phonological] structures, making the 
mapping between them more articulate and precise. Thus, 
although syntax is in the center [...], the grammar is no longer 
syntactocentric[.] Rather, syntax is simply one of the three major 
generative components in the grammar’ 

 

This model, as well as being different from models we see in traditional generative grammar, 

is different from the models of word retrieval we viewed earlier (e.g. the logogen model 
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(Morton 1970, 1979), the semantic lexicon model (Butterworth 1989), the WEAVER++ 

model (Levelt et al. 1999), the interactive activation models (Stemberger 1985 and Dell 

1986), and models which gave interactive activation accounts of phonological encoding 

(Shattuck-Hufnagel 1979 and Dell 1989). 

 

The first difference between aphasiological models of word retrieval and Jackendoff’s (2002) 

is that under Jackendoff’s (2002) view, there aren’t just two components of word retrieval 

(semantics and phonology) there are three: one having to do with phonology, another having 

to do with syntax (which was absent, as its own module at least, from all of the models 

discussed thus far) and one still more having to do with phonology. 

 

2.4.1.2 The integrative and interface modules 

Jackendoff (2002) argues for phonological, syntactic and conceptual processors (which are 

similar to Fodor’s (1983, 2000) modules, but it’s necessary to point out here that his use of 

the word  module is a little different than Fodor’s (1983, 2000), as is some other terminology 

he uses. What Fodor calls modules Jackendoff calls processors, and for Jackendoff, there are 

three types: 

 

• inferential processors (which are the exact same thing as Fodor’s central systems), 

• integrative processors (Fodor’s modules) and 

• interface processors (which make the integrative processors able to communicate) 
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Figure 5.8 Jackendoff (2002)’s model of the language faculty (Jackendoff 2002: 199) 
 
 

According to Jackendoff’s (2002) model of the language faculty, there are three integrative 

processors independent of one another: the phonological integrative processer (which 

processes phonological structures), the syntactic integrative processor (which processes 

syntactic ones), and the conceptual integrative processor (which of course, processes 

structures that are conceptual). The conceptual integrative processor is sometimes called the 

semantic integrative processor, and I myself use the terms conceptual and semantic 

interchangeably throughout. 

 

They communicate with one another via interfaces: the phonological and syntactic integrative 

processors are interfaced by a phonological structures-semantics structures (PS-SS) processor, 

the syntactic and conceptual integrative processors being interfaced by a syntactic structures-

conceptual structures (SS-CS) processor and the phonological and conceptual integrative 

processors take the phonological structures-conceptual structures (PS-CS) as an interface. 

 

Under his view, phonology, syntax and semantics are all informationally encapsulated 

modules, which communicate with one another via interfaces that take their outputs and turn 

them into inputs the other modules are able to interpret – the PS-SS processor turns 

phonological output into syntactic input and vice versa, the SS-CS processor syntactic output 

into semantic input and vice versa, and the PS-CS processor phonological output into 

semantic input, and semantic output into phonological input. 
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There are also a couple of phonetics-phonology interfaces specialised for perception and 

production that a) tally well with a substance-free view of phonology and b) importantly 

account for anomias that are phonological and post-phonological in nature. It’s because of 

these interfaces, first and foremost, that I subscribe to a model of the mind like Jackendoff’s 

(2002), and so I’ll describe them here. 

 

2.4.1.2.1 The interfaces 

Some have said that the phonetics-phonology interface is mediated by a transduction process 

that converts substance-free phonological forms into substance-laden phonetic ones. This 

approach to the interface (that is, that it is a transducer) is indeed the one that’s argued for by 

Fodor (1983) (recall from Chapter 2, section 2.2), but it can be traced back even further, to 

Chomsky and Halle (1968) and Jakobson et al. (1952). In more recent years, Hale et al. 

(2007) and Hale and Reiss (2008) have also assumed this position. 

 

What’s interesting about theories like these (well, to this thesis at least) is that in 

differentiating between phonology and phonetics (and separating them with a substance 

infusing transducer), they can more adequately account for the difference between 

phonological and post-phonological deficits than current aphasiological models can (see 3.2). 

Phonological deficits occur due to damage of the phonological module, and post-phonological 

deficits due to damage of the phonetics-phonology interface(s), I imagine. 

 

In the Foundations of language: Brain, memory, grammar, evolution, Jackendoff (2002) 

offers an alternative view of the interface (or interfaces, I should say), which is the one that I 

myself am inclined to concur with. Jackendoff (2002) doesn’t just propose that there is one 

interface between phonology and phonetics, you see, he proposes that there are two: one from 

audition, which translates phonetic data having to do with hearing into phonological data, and 

one to vocalisation, which translates phonological data, into data having to do with speaking. 

 

These interfaces are therefore different from the others (the PS-SS, SS-CS and PS-CS 

processors), as whilst the interface processor from audition is designed to take only phonetic 

information as input and the interface processor from vocalisation is designed to take only 

phonological information as input (meaning that they’re specialised for one domain each), the 

modules between phonology and syntax and syntax and phonology are specialised for two; 

the interfaces between phonology and syntax, syntax and semantics and phonology and 

semantics in Jackendoff’s (2002) model are required to have access to both the vocabulary of 
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both the sending and the receiving module (the phonology/syntax for both phonology and 

syntax, the syntax/semantics for syntax and semantics, and so on) (Scheer 2014). Jackendoff 

(2002) calls the phonetics-phonology interfaces domain specific, and the PS-SS, SS-CS and 

PS-CS interfaces bi-domain specific. 

 

2.4.1.2.1.1 A side note on the phonetics-phonology interface 

Whilst what’s going on in the interfaces looks a little like transduction as Jakobson et al. 

(1952), Chomsky and Halle (1968), Fodor (1983, 2000), Hale et al. (2007) and Hale and Reiss 

(2008) etc., say in that they each serve to transform the output of one module (that’s only 

interpretable by the module to which it belongs) into an input interpretable by another 

module, as you delve deeper into Jackendoff’s (2002) discourse it’s apparent that there is an 

important difference.  

 

As Iosad (2013, 2017) so rightly points out about the phonetics-phonology interface, 

Jackendoff’s (2002) processors are a lot richer compared to conceptions of the interface 

owing to Fodor (1983) in which the translation of information interpretable by one system to 

information interpretable by another is undertaken by transduction (e.g. Pylyshyn 1984). 

Transducers, for one, are innate and invariant (Hale et al. 2007: 647) and, in being so, they, of 

course, cannot adequately account for language variation in the same way that Jackendoff’s 

non-innate (and therefore not invariant) interface phonetics-phonology processors can: 

 

these two transducers [perception à phonology and phonology 
à articulation] are innate and invariant – they are identical in all 
humans (barring some specific neurological impairment) and do 
not change over time or experience (i.e., they do not “learn”) 

 

In the ‘poor’, innate interface model (that’s akin to the conception of Fodor (1983)) the 

mapping between phonological units and phonetic ones (having to do with production and 

perception) is consistent cross-linguistically for the most part.6 This, of course, inadequately 

accounts for the variation we see between languages. In Jackendoff’s (2002) ‘rich’, interface 

model, on the other hand, Iosad (2013, 2017) helpfully highlights, knowledge is not innate but 

may be learned, and so there is no expectation of universality. 

 

 
6 Although Hale et al. (2007) do have a place for language specific mapping mechanisms 
(Iosad 2013, 2017). 
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Like Jackendoff (2002) (and indeed Iosad (2013, 2017), I hold the belief that the phonetics-

phonology interface, or interfaces, are best viewed not as deterministic transducers, but as 

something akin to a module (or modules) that translate phonetic information into 

phonological information, and/or phonological into phonetic. As Iosad (2013, 2017) says, this 

view of the interface is necessary for the variability of phonetic phenomena. Models of the 

mind which paint a picture of interfaces as being nothing more than transducers cannot 

adequately account for the wide range of variability we see between surface representations, 

and so they surely can’t be correct. 

 

Jackendoff’s (2002) parallel architecture model solves two problems that the models of word 

retrieval in the clinical literature cannot, then: a) it describes the part syntax plays in the 

grammar, b) it describes how syntax is instantiated (as an integrative module like the 

phonological and semantic integrative modules), and c) how those integrative modules, if 

informationally encapsulated, communicate with one another (via interface modules). It also, 

as I said, tallies well with the substance-free phonology thesis, in that it explains where 

phonetics, if not grounded in phonology, is instantiated and how phonology and phonetics 

communicate (via yet two more interfaces, one for perception and one for production). 

 

Jackendoff (2002) doesn’t stop there, though. He also, in the parallel architecture model, 

makes a convincing case for the role of the lexicon, and how that, together with everything 

else, plays its part in language processing. 

 

2.4.1.3 The lexicon and lexical entries 

Jackendoff’s (2002) parallel architecture of the language faculty once again challenges some 

of the assumptions made in traditional generative grammar. The first assumption it challenges 

is that lexical items are stored in long-term memory and enter the grammar by being inserted 

into syntactic structures. The second is that those lexical items are always words. In his 

parallel architecture, lexical items emerge as parts of the modules that interface integrative 

modules. Lexical items aren’t always just words either; they are of heterogeneous sizes. Some 

are smaller than words, e.g., affixes, and some are larger than words, e.g. idioms (Jackendoff 

2002). 

 

For most generativists, the lexicon is the store of words in long-term memory, which are used, 

by the grammar, to construct phrases and sentences (Jackendoff 2002). ‘It is widely agreed 
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that a word is to be regarded as a long-term memory association of phonological, syntactic, 

and semantic features’, Jackendoff (2002: 130) says, including by himself. 

 

However, ‘whilst mainstream generative grammar, following Chomsky (1965), inserts lexical 

items as a whole into syntactic structure; their phonological and semantic features [aren’t] 

interpreted [until] later in the derivation by the appropriate components’ (Jackendoff 2002: 

130). But whilst this approach isn’t impossible, Jackendoff (2002) points out, it does raise the 

question of why syntax should carry around all of those phonological and semantic features 

that it can’t itself see. Other researchers over the years, having had a problem with this too, 

have suggested as a solution late lexical insertion, but whilst these approaches are an 

improvement in that syntax doesn’t have to carry around the phonological and semantic 

features for as long, it still has to carry them, which doesn’t make much sense, he stresses 

(Jackendoff 2002). 

 

Something quite different is suggested in his sketch of a parallel architecture. ‘A word, by 

virtue of it having features in each of the components of grammar, serves as part of the 

linkage between the multiple structures’, he says (Jackendoff 2002: 130). The proper way to 

regard [a word] is as a small-scale three-way interface rule[ which] lists a small chunk of 

phonology, a small chunk of syntax, and a small chunk of semantics’ (Jackendoff 2002: 130).  

 

ten Hacken (2019) provides a most helpful example from Dutch. The lexical entry for the 

word cheese (which, in Dutch is kas), will look a little something like this, he says: 

 

 (1) a. /kas/ 

  b. noun, non-neuter 

  c. [Thing CHEESE] 

 

This explains why people with semantic anomia sometimes mistakenly say ham when they 

mean to say cheese, because although syntactically they are the same, they are different 

semantically and phonologically. An intact phonological processor likely wouldn’t pose a 

problem. But an impaired semantic one might, especially given that cheese and ham are often 

associated with one another, in that they, apparently, make a perfect food pairing. The lexical 

entry for ham in Dutch (ham) would look something along the lines of this: 
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(2) a. /hɑm/ 
b. noun, non-neuter 
c. [Thing CHEESE] 

 

If the function of lexical items, Jackendoff (2002) argues, is to serve as interface rules, then, 

the lexicon as a whole has to be regarded as part of the interface components. ‘[T]he formal 

role of lexical items is not that they are “inserted” into syntactic derivations, [he says,] but 

rather that they establish the correspondence of certain syntactic constituents with 

phonological and [semantic] structures’ (Jackendoff 2002: 31). 

 

Now, in addition to the usual lexical items that list all three structures (phonology, syntax and 

semantics), there exist lexical items that have phonology and semantics but no syntax, 

phonology and syntax but no semantics, syntax and semantics with no phonology and stored 

pieces of phonology that lack both syntax and semantics. 

 

Examples of lexical items that have phonology and semantics but no syntax can appear alone 

as utterances, but cannot be combined into sentences with other words. These include 

(Jackendoff 2002: 131-132): 

 

a. yes, no 

b. hello, goodbye, thanks 

c. ouch, oops, wow, phooey, hooray, gadzooks, oboy, oy vey, dammit, shit, yuck, 

upsey-daisy 

d. hey, fiddlesticks, pshaw, humph, oo-la-la 

e. shh, psst, tsk-tsk 

f. abracadabra, hocus-pocus 

g. bow-wow, cockadoodledoo 

 

Words that have phonology and syntax but no semantics include the it in it’s hot in here 

which is present to carry tense and tense only, Jackendoff (2002: 132) points out, and an 

example of a lexical item that has syntax and semantics but no phonology is mainstream 

generative theory’s PRO which serves as the subject of infinitives (Bill tried [PRO to talk]). 

 

Stored pieces of phonology that lack both syntax and semantics, meanwhile, include the 

nonsense refrains that are used to take up metrical structure in songs: fiddle-de-dee, hey-
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diddle-diddle, hickory-dickory-dock, eenie-meenieminie-moe, she-bop-she-bop, rikiti-tikiti-

tin [and] ink-a-dink-a-doo’, he says (Jackendoff 2002: 132). 

 

So, to recap, lexical entries for Jackendoff (2002) are stored in long-term memory, and 

combined to form linguistic structures in short-term memory during language production. 

Jackendoff’s (2002) model of competence is even more relevant to word retrieval than that, 

though. He uses it to sketch a model of performance. 

 

2.4.1.4 Lexical processing 

According to Jackendoff, there should be a clear connection between theories of competence 

(linguistic structure) and theories of performance (language processing). As such, he makes 

sure to show how his parallel architecture, and in particular, his treatment of the lexicon in the 

model, fits nicely into analyses of lexical access in production. 

 

 

 
 

Figure 5.9 Chomsky’s model of language (ten Hacken 2019: 207) 

 

 

The standard architecture for generative grammar from Aspects looks a lot like what’s 

sketched out in the model of language above. Generativists, recall, see grammar as being both 

syntactocentric and derivational as so, in Figure 5.9 above, with the generative capacity of 

language coming from syntax and syntax only (Jackendoff 2002). Linguistic structure is built 

by an initial stage of syntactic derivation in traditional generative grammar, Jackendoff (2002) 

explains. These derivational rules produce levels of syntactic structure that are subjected to 
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semantic and phonological interpretation. Semantic and phonological structures, therefore, do 

not have any generative capacities of their own (Jackendoff 2002). 

 

The logical directionality of this syntactocentric architecture, however, is at odds with the 

logical directionality of language processing, it’s pointed out by Jackendoff (2002), for in 

perception, one has to get from sounds to meanings (phonology to semantics) and in 

production, from meanings to sounds (semantics to phonology). Jackendoff’s (2002) parallel, 

constraint-based architecture, on the other hand, is not. In fact, it bears a striking resemblance 

to theories of processing, particularly Levelt et al.’s (1999). 

 

‘A crucial role in this processor is played by linguistic working-memory’, Jackendoff (2002: 

200) emphasises, ‘which is to be understood not just as a static storage space for linguistic 

material, but as a dynamic “workbench” or “blackboard” on which processors can cooperate 

in assembling linguistic structures. It has three divisions or “departments” or “buffers,” 

corresponding to the three levels of linguistic structure’ (Jackendoff 2002: 200). 

 

In language production, the processor starts with figuring out what concept it wants to retrieve 

the word for in the semantic integrative module. The module then sends a call to the lexicon 

(in long-term memory), asking what saved structures (from as small as affixes, remember) 

could potentially express parts of that, and various candidates are activated. The lexical items 

activated then compete for integration into semantic working-memory. At some point, one 

wins – this is called lexical selection in the clinical literature. 

 

Once the lexical item’s semantic structure is bound from long-term to working-memory, its 

syntactic and phonological structures follow suit and bind to their blackboards. Mind, this is 

all being done incrementally, Jackendoff (2002) emphasises – although this description of the 

model’s processing sounds sequential, it is not necessary for one level of structure to be fully 

formed in order for its interfaces to start passing information up and down the line Jackendoff 

(2002). 

 

Once the other (syntactic and phonological) structures are all activated in their respective 

domains, the semantic, syntactic, and phonological structures combine together to create the 

intended message. Phonology, of course, speaks via an interface to phonetics, and the word is 

pronounced. 
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This clearly tallies well with Levelt et al.’s (1999) model WEAVER++ model (recall from 

section 2.2.3) which makes mention of lemmas and word forms (and of course, all others that 

do). Levelt et al.’s (1999) lemmas and word forms have clear correspondences in 

Jackendoff’s (2002) model, even though there aren’t ‘lemma retrieval’ or ‘word-form 

encoding’ areas argued for by Jackendoff (2002) as they are Levelt et al. (1999): 

 

At the moment in time when a lexical item is initially activated, 
only its semantics is of interest. The conceptual integrative 
processor, which binds the lexical item to part of the thought 
being expressed sees nothing but meaning. The next step is to use 
the semantics-syntax interface to put some material on the syntax 
blackboard. For this process, it is crucial to activate and bind the 
item’s syntax. Then the syntactic integrative processor can begin 
to work this item into the syntax of the utterance being built. 
None of the processors invoked so far can see the item’s 
phonology-so for all intents and purposes they are working with 
the item’s lemma. And whether or not the item’s phonology is 
activated in long-term memory at this point is irrelevant to these 
processors. Similarly, the later step of phonological integration is 
carried out by the syntax-phonology interface processor and the 
phonology interface processor. These can see only the relation of 
the item’s syntax to its phonology, and are more oblivious to its 
meaning. Hence they are in effect working with the item’s word 
form. 

 

Now, given the constraints on time and space, I will leave the discussion of Jackendoff’s 

(2002) model here for now, so that my musings don’t venture too far beyond the scope of this 

thesis, which was originally set to answering the question of whether or not phonology can or 

cannot be considered modular according to the definitions of modest (Fodor 1983, 2000) and 

massive (Carruthers 2006a) modularists. However, whilst it was not my intention in this 

thesis to pitch one model of the mind against another, or necessarily make an argument for 

Jackendoff’s (2002) model or even one of my own, it is worth thinking about this at least 

some shallow depth, I believe, as the conclusions I come to at the end of this thesis 

interestingly provide some support for, and against, the model of the mind Jackendoff 

proposed in 2002. In Chapter 4, I presented evidence for phonology’s informational 

encapsulation, and in the rest of Chapter 5 (coming up) I present evidence against 

phonology’s domain specificity, both of which are required, I argue, by Jackendoff (2002). 

 

In what follows, I return to the exploration of whether or not the phonological module can be 

considered domain specific, through experimental treatment of phonological anomia with 
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semantic and phonological therapies. I begin with a description of anomia in this next section, 

section 3. 

 

3. Anomia 

We obviously know now that aphasia is an acquired disorder of language that presents as a 

result of damage to the brain areas responsible for the production and/or comprehension of 

language and its components and that, depending on the site or sites of damage and the 

relative impairment or sparing of the language components, different subtypes of aphasia can 

emerge (Helm-Estabrooks et al. 2014). As I mentioned in section 2, there are two major 

subtypes of aphasia: Broca’s aphasia and Wernicke’s aphasia. These are caused by damage to 

the lateral frontal, suprasylvian, pre-rolandic area or the adjacent subcortical periventricular 

white matter, and the posterior third of the superior temporal gyrus, respectively (Helm-

Estabrooks et al. 2014). 

 

Broca’s aphasia is otherwise known as expressive aphasia and is so-called because it is 

characterised by impaired language production with unimpaired language comprehension 

(Kertesz 1982). Wernicke’s aphasia, on the other hand, (which goes by the name of receptive 

aphasia as well), causes problems of a similar vein but in the opposite direction. While a 

Broca’s patient experiences problems with language production but not its comprehension, a 

Wernicke’s patient has them with comprehension but not production (Albert et al. 1981). 

Other (more minor) subtypes of aphasia include conduction aphasia, transcortical motor 

aphasia, transcortical sensory aphasia and global aphasia (Helm-Estabrooks et al. 2014), and 

with all of the different subtypes, different symptoms are associated. Some level of anomia 

meanwhile seems to be seen in all of the aphasias (Manasco 2014). 

 

Anomia (as I’ve briefly touched on before but will describe in more detail here) is an 

impaired ability at accessing words in and retrieving them from the mental lexicon 

(Goodglass and Wingfield 1997). This can range from a mild difficulty in producing desired 

words during conversational discourse to a virtual inability to produce them under any 

conditions at all (Helm-Estabrooks et al. 2014). Being that anomia is a symptom of aphasia, it 

is thought to result from damage to the regions of the brain associated with it in the left 

hemisphere (Woollams et al. 2008). This damage can be either traumatic or acquired 

(Damasio 1992), with causes of traumatic brain injury including the likes of falls, accidents or 

violence involving a blow to the head, and causes of acquired brain injury poisoning, 

infection, strangulation, choking, drowning, stroke, heart attacks, brain tumours, aneurysms 
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and even neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease and 

Huntington’s disease (Budd et al. 2010). 

 

In part 2 of this chapter, I provided an overview of some theories of spoken word production. 

The theories were developed with the aim of accounting for the patterns of speech errors we 

see in normal subjects and evaluated in terms of their ability to do so, but one could (and 

indeed Nickels (1997) does) argue that a model of language processing cannot be considered 

sufficient or efficient unless it can account for impaired performance as well as performance 

that is unimpaired. Some authors (for example Butterworth (1989, 1992) and Monsell (1987)) 

have used neuropsychological data as support for the sufficiency/efficiency of some 

theoretical models over others and this – using neuropsychological data to inform theory 

about how the mind is modelled, that is – is critical, according to Nickels (1997: 99): 

 

I would argue that a model of language processing cannot be 
considered adequate unless it can account for patterns of impaired 
performance in addition to the “normal” speech error and 
experimental data. The use of neuropsychological data in this way 
rests on the assumption that patterns of language breakdown reflect 
the structure of the normal language system. Thus, “the differences 
between normal language mechanisms and the set of language 
mechanisms available to aphasics are [considered to be] subtractive— 
that is, the aphasic is simply lacking some of the components 
available to normal language speakers, rather than inventing new 
ones” (Saffran, 1982, p.318).  

 

Now, whilst the assumption that aphasics’ ‘patterns of language breakdown reflect the 

structure of the normal language system’ (Nickels 1997: 99) is by no means a universally 

accepted one, it is the basis of the neuropsychological approach to aphasia therapy that is used 

today and is, therefore, implicit in much of what follows here. Discussion of aphasia 

treatment, however, will be best left to section 4 – in this section, I will first describe the 

different deficits of spoken word production in aphasia and relate them to the theoretical 

models that were reviewed in the previous one.  

 

As I’ve said, in the past people have concerned themselves with relating the type of 

breakdown in naming to specific aphasic syndrome categories. Benson (1979) was among the 

first researchers to do this; he drew a distinction between four anomias (word production 

anomia, paraphasic word production anomia, word selection anomia and nominal anomia) 

and related them to four aphasic syndromes (Broca’s aphasia, Wernicke’s aphasia, conduction 

aphasia and anomic aphasia, respectively). Syndrome labels aren’t always reliable indicators 
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of the locus of difficulty in word retrieval, however, (as we’ll see in section 4), and so more 

recently researchers have reduced Benson’s four forms down to just three (for example 

Lambon Ralph et al. (2000). Lambon Ralph et al. (2000) distinguish between semantic 

anomia (a word finding difficulty caused by damage to the semantic level of language 

processing), phonological anomia (a word finding difficulty caused by damage to the 

phonological) and classical anomia (a form of anomia in which patients present with word 

finding difficulties that are neither caused by damage to the semantic not the phonological 

levels of language processing). 

 

In this present chapter I’d prefer to be a bit more specific about the phonological aspect of 

word retrieval than Lambon Ralph et al. (2000) are however and differentiate between 

phonological (or word form) anomia and something called disordered phoneme assembly as 

Laine and Martin (2006) do in Anomia: Theoretical and Clinical Aspects. Like Lambon Ralph 

et al. (2000), Laine and Martin (2006) also argue for three anomias, but whereas Lambon 

Ralph et al. (2000) argue for semantic, phonological and classical anomias, Laine and Martin 

(2006) argue for semantic anomia, word form (read phonological) anomia and disordered 

phoneme assembly, which correspond to the main stages of word production in a standard 

logogen model: retrieval of meaning (at the semantic stage), retrieval of the word form (from 

the phonological output lexicon) and programming the relevant phonological output (in the 

phonological output buffer). 

 

These anomia types also find their correspondences in the more recently founded functional 

models Laine and Martin (2006) point out (such as Levelt et al. (1999’s) model of word 

retrieval). In Levelt et al’s (1999) model, ‘semantic anomia would roughly correspond to 

conceptual- and lemma-level deficits’ and ‘[w]ord form [that is, phonological] anomia […] to 

difficulties in accessing the lexeme that specifies […] phonological information of the to-be-

produced target word’ they say (Laine and Martin 2006: 37). Disordered phoneme assembly, 

meanwhile, corresponds to ‘impairments in the later processes of [e.g.] phonetic encoding that 

are needed to create the “articulatory score” of the target word for motor output’ (Laine and 

Martin 2006: 37). This, of course, has nothing to do with lexical access (a point I’ll come 

back to in section 3.2). To reiterate what I said in section 2.4, though, aphasiology models of 

word retrieval’s phonological levels are grounded in substance. If phonology is substance-

free, then a model which makes use of an interface theory like Jackendoff’s (2002) would 

account for the inner workings of the mind more accurately. Phonological anomia and 

disordered phoneme assembly could still be differentiated if the phonological component of 
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the model were to be substance-free. In Jackendoff’s (2002) model, semantic anomia could be 

explained by damage to the semantic integrative module, phonological anomia the 

phonological integrative module and disordered phoneme assembly the interface module 

between phonology and phonetics. 

 

Now, regardless of the differences in terminology, Benson’s (1979) differentiation between 

semantic anomia and word selection anomia, Lambon Ralph et al. (2000)’s between semantic 

and phonological and Laine and Martin’s (2006) between semantic and word form are all 

alike in the way that they separate semantic processes from phonological ones, and I will take 

this division as the starting point in my discussion. Discussions of the breakdown of word 

retrieval in aphasia have often centred around two specific papers: Howard and Orchard-

Lisle’s (1984) and Kay and Ellis’ (1987) which each detail a single case study of an aphasic 

subject with impaired picture naming. Ellis and Young (1988) used these two subjects (JCU 

from Howard and Orchard-Lisle (1984) and EST from Kay and Ellis (1987)) to illustrate the 

division between semantic and phonological levels of impairment in naming, and in the 

following subsections, I will do the same. 

 

The remainder of this section is split into two halves. In the first, I consider semantic anomia 

and in the second phonological, as well as deficits beyond phonological access in section 

3.2.2 of 3.2 to explain why they won’t be a topic of discussion in section 4. 

 

3.1 Semantic anomia 

Unsuccessful attempts at word retrieval often result in speech errors that resemble the target 

in meaning (semantic speech errors) or in sound (phonological speech errors). These are taken 

to be symptomatic of anomia. The first, semantic speech errors (or more accurately, semantic 

paraphasias with which irretrievable target words are substituted with words that are 

semantically related to them such as refraction for reflection (which both have to do with the 

dispersion of light (Damasio 1992; Fitzgerald 1996; Marshall et al. 1998)) are most 

commonly observed in people with semantic anomia. Phonological paraphasias, on the other 

hand, which are the substitutions of target words with words or nonwords that resemble them 

phonologically (like viscosity ([vɪskɒsɪti]) for velocity ([vɪlɒsɪti]) (a real word, formal error), 

for example, or chromosome ([krəʊməsəʊn]) for chromosome ([krəʊməsəʊm]) (a nonword 

phonemic error) (Brookshire 1996)) are said to be symptomatic of phonological anomia. 
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Semantic paraphasias suggest that while phonological information about a target word can be 

successfully retrieved by the patient, not all of its semantic information can be (Nickels 1997). 

Phonological paraphasias, on the other hand, sometimes suggest that while semantic 

information about a target is available for retrieval, there are problems with a patient’s access 

to the sounds constituting its spoken form (Nickels 1997), (though that isn’t always the case, 

as we’ll soon see). 

 

This section starts by reviewing some case studies of patients who produce semantic 

paraphasias in their attempts at word retrieval and are as such thought to have deficits at the 

semantic level of language processing. This is shortly followed by a review of studies in 

which participants produce phonological paraphasias (in 3.2), who are thought to have deficits 

at the phonological one. I must point out here, however, that I use the term ‘semantic system’ 

somewhat loosely throughout the thesis, as the nature of semantic representation is a matter of 

dispute. While some researchers (e.g. Levelt 1989) have argued for separate conceptual- and 

lexical-semantic levels in word retrieval, others (e.g. Riccoch et al. 1988; Caramazza et al. 

1990; Hillis et al. 1990) have argued for a single, modality-independent central system. 

People have even ‘argued for a multicomponent semantic system that separates visual and 

verbal semantics (Paivio 1991) or is organised along the different sensory-functional domains 

(Warrington & Shallice, 1984)’ (Laine and Martin 2006: 40).  

 

I will use semantic system to refer to all of these things, but will draw distinctions in what 

follows for purposes of clarity. A question that begs to be answered in this thesis as well (and 

so I do that in sections 3.1.1 and 3.1.2), though, is ‘which semantic errors reflect impaired 

access to conceptual-semantic representations and which reflect permanent erasure of 

conceptual-semantic representations from long-term memory (Laine and Martin 2006)’? 

Progressive neurological diseases are thought to lead to either impaired access to (as in cases 

of progressive fluent aphasia or progressive non-fluent aphasia) or loss of (as in cases of 

semantic dementia) representations. Aphasias associated with non-progressive neurological 

damage such as strokes and head injuries, meanwhile, are thought only to impair access 

(Laine and Martin 2006). 

 

As you’ve likely deduced from the discussion thus far, then, I’ll be describing the difference 

between these through an exploration of cases found in the aphasiology literature. I’ll study 

Howard and Orchard-Lisle’s (1984) JCU and Hillis et al.’s (1990) KE in section 3.1.1, and 

Murre et al.’s (2001) AM in section 3.1.2. 
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3.1.1 Impairment in access to conceptual-semantic representations 

Howard and Orchard-Lisle (1984) describe the case of JCU, a global aphasic who was 

rendered with a large fronto-temporo-parietal haemorrhage lesion in her left hemisphere and a 

smaller one in her right following a stroke. Both her comprehension and production was 

impaired, they said, with spontaneous speech being restricted to simple yes/no responses and 

a repertoire of recurrent utterances like I don’t understand. Picture naming was poor too (JCU 

was only able to name 5 out of a possible 30 items from the Western Aphasia Battery (an 

instrument for the assessment of aphasics) correctly (Kertesz and Poole 1974)) but she was 

sensitive to phonemic cueing (a type of anomia therapy). When provided with phonemic cues 

(such as the first sound /t/ of the target tiger) JCU was able to name a further 18 out of 25 

items correctly. Howard and Orchard-Lisle (1984) investigated in detail the effect of 

phonemic cues on her naming and found them to not only be highly effective for JCU, but 

that she could be induced to produce semantic errors when provided with false cues that were 

semantically related to the target. The target tiger could be cued by /l/ for example, for /l/ is 

the initial phoneme of lion, tiger’s semantic coordinate. 

 

When these errors were re-presented to her in a picture verification task (e.g. she was shown a 

picture of a tiger and asked Is this a lion?), JCU incorrectly accepted 55% of her semantic 

errors as the correct name for the picture. These observations, together with the one that 

JCU’s output phonology (which was measured by single word repetition tasks) was 

preserved, more or less, led Howard and Orchard-Lisle (1984) to conclude that JCU’s 

semantic errors were due to underspecified semantic representations at the semantic level of 

language processing. 

 

Hillis et al. (1990), on the other hand, described the case of KE, a 52 year old right handed 

male who’d had a thrombo-embolic stroke six months before the study started. Like JCU, 

KE’s speech output was limited, but for KE this was to single nouns and well-known phrases. 

Repetition of words and nonwords was preserved, and phonological paraphasias were few and 

far between. Hillis et al. (1990) tested KE’s performance on a number of single word 

production tasks (auditory word to picture matching, visual word to picture matching, oral 

naming, written naming, oral reading and writing to dictation) and found that he made 

significant semantic errors in all (as can be seen by the results in Table 5.1, which depicts his 

performance on semantic tasks): 
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Task Total correct 
(n=144) 

% correct Semantic 
errors/normal 
errors 

% semantic 
errors 

Auditory word 
to picture 
matching 

83 58 58/61 95 

Visual word to 
picture 
matching 

91 63 39/53 74 

Oral naming 80 56 59/64 92 
Written naming 77 53 50/67 75 
Oral reading 84 58 52/60 87 
Writing to 
dictation 

84 58 40/60 67 

 
Table 5.1 KE’s performance on semantic tasks (adapted from Hillis et al. 1990: 203) 
 

 

KE’s semantic processing was so impaired, in fact, that he made different errors for the same 

stimulus across a number of the tasks (when presented with a picture of an arm in an oral 

naming task and asked its name KE said finger, e.g., but when shown the same picture in a 

written naming task he said leg, when reading aloud he said ear and when writing to dictation 

hand). This led Hillis et al. (1990) to conclude that KE had a central semantic processing 

deficit that could be explained within a single modality-independent semantic system that 

represents the perceptual, functional and relational components of concepts like the one in 

Morton’s (1970) logogen model. 

 

Howard and Orchard-Lisle’s (1984) patient JCU’s deficits couldn’t, on the contrary, be 

accounted for by this sort of structure though Butterworth et al. (1984) point out, for although 

JCU was impaired in verbal comprehension tasks, she performed perfectly normally in a 

nonverbal picture association task making her word retrieval difficulties lexical-semantic in 

nature. JCU’s pattern of impairments could, however, be explained by two-step models like 

their own, they say, that propose partially independent modality-specific semantic systems.7 

According to Butterworth et al. (1984), within their model, an impairment at the semantic 

lexicon level with unimpaired semantic/conceptual representations would give rise to the kind 

of deficits JCU displays. 

 

 

 

 
7 Clearly, then, it could be described by Levelt et al.’s (1999) WEAVER++ model as well.  
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3.1.2 Permanent erasure of conceptual-semantic representations from long-term memory 

In their article Slowly Progressive Aphasia without Generalized Dementia Mesulam (1982) 

described six patients with progressive aphasia (‘a slowly progressing aphasic disorder 

without the additional intellectual and behavioural disturbances of dementia’ (Mesulam 1982: 

592)). While these were not the first reported cases of the condition (see Pick (1892), 

Warrington (1975) and Schwartz et al. (1979) for other representative examples), Mesulam’s 

(1982) paper was the first to highlight the fact that patients with neurodegenerative diseases 

could present with focal cognitive deficits (Murre et al. 2001). Following the publication of 

Mesulam’s (1982) seminal report, over a hundred patients with progressive aphasia have been 

recorded. It’s become clear from these, though, that the term has been used to describe two 

very different disorders: progressive non-fluent aphasia and progressive fluent aphasia (see 

Hodges and Patterson 1996 for a more thorough review). 

 

Now, whilst the phonological and syntactic aspects of language are damaged in patients with 

non-fluent aphasia, patients with progressive fluent aphasia’s speech structures are not (Croot 

et al. 1998). They do, progressive fluent aphasics, that is, display difficulty in producing the 

names of what were once familiar people, places and objects (i.e. noun retrieval) however, as 

well as deficits in word comprehension, failing to understand the most straightforward of 

questions sometimes and/or keep up with conversational discourse.  

 

Deficits are seen on a number of different verbal based semantic tasks such as picture naming, 

word to picture matching, category fluency (e.g. ‘producing as many exemplars from a 

semantic category (e.g. animals) in 1 min’ (Murre et al. 2001: 649)), picture sorting (i.e. 

‘grouping black-and-white line drawings depending on various pre-specified criteria, such as 

living versus non-living; electrical versus non-electrical and so on’ (Murre et al. 2001: 649)), 

naming an item when given a verbal description of it (e.g. ‘toaster’ for ‘an electrical kitchen 

appliance that is used for browning bread’ (Murre 2001: 649)) and the other way round, 

verbally describing an item when given its name (i.e. ‘an electrical kitchen appliance that is 

used for browning bread’ for ‘toaster’) (Hodges et al. 1992; Hodges and Patterson 1996; 

Murre et al. 2001). 

 

On non-verbal testing of semantic memory, patients show deficits when they’re asked to 

select the appropriate colours for black and white line drawings of what were once familiar 

objects (such as ‘green’ for an apple and ‘orange’ for an orange), to use once familiar objects 

appropriately (such as a comb to comb their hair), to draw once familiar objects from memory 
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and to match common animal sounds to appropriate pictures (such as a meow to a cat and and 

a bark to a dog) (Bozeat et al. 2000; Hodges et al. 2000; Murre et al. 2001). Patients typically 

perform well on tests of non-verbal problem solving, visuo-perceptual and spatial ability and 

working memory though, even in the latter stages of the disease (Breedin et al. 1994; Hodges 

et al. 1994; Waltz et al. 1999; Murre et al. 2001). 

 

The relatively selective loss of semantic memory seen in progressive fluent aphasia has led 

researchers (e.g. Snowden et al. 1989; Hodges et al. 1992; Breedin et al. 1994) to adopt the 

term ‘semantic dementia’ for it instead, and in 1992 Hodges et al.’s put forward five 

diagnostic features, which were succinctly summarised in 1997 by Nickels as follows 

(Nickels 1997: 113): 

 

(i) selective impairment of semantic memory causing severe anomia, impaired spoken 

and written single-word comprehension, reduced generation of exemplars on category 

fluency tests and an impoverished fund of general knowledge; 

(ii) relative sparing of other components of language output and comprehension, notably 

syntax and phonology; 

(iii) normal perceptual skills and nonverbal problem-solving abilities;  

(iv) relatively preserved autobiographical and day-to-day (episodic) memory and  

(v) a reading disorder with the pattern of surface dyslexia. 

 

Hodges et al. (1992) went on to describe five patients who presented with these features, and 

whilst all five of the patients’ semantic systems were impaired, one patient (PP) was affected 

more than most. When asked whether she’d ever been to America, for example, PP replied 

‘what’s America?’, and when asked what her favourite food was replied ‘food, food, I wish I 

knew what that was’. What’s most interesting though is that while PP could match a 

photograph of an object to an unusual view of that object (i.e. another photograph of it taken 

from above, below or the side) when presented with visually similar distractors, she was 

unable to name any of the objects in question.  

 

With regards to picture sorting tests from the Semantic Memory Test Battery (which, rather 

self explanatorily, is used to test participants’ abilities to remember meaning) all five of 

Hodges et al.’s (1992) patients performed poorly, able to pictures using broad distinctions 

(such as living vs. not living) but unable to do so with subtler distinctions (such as British vs. 

foreign animal or fierce vs. non-fierce animal). When it came to intermediate level 
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distinctions (such as separating household items from musical instruments from vehicles and 

land animals from sea creatures from birds), PP was impaired on those too (though the others 

weren’t significantly affected). 

 

Perhaps the most representative case of semantic dementia, however, is the one described in 

Murre et al. (2001) of AM. AM was a 64 year old well-educated man with an undergraduate 

degree in engineering and a master’s degree in science. He worked in management 

(responsible for over 450 employees) for a renowned international company and was referred 

for clinical examination after presenting to his general practitioner with progressive word 

finding and comprehension difficulties. A structural MRI revealed temporal atrophy in the left 

hemisphere of his brain, and upon examination, his speech was semantically empty (though 

fluent with preserved syntax and phonology).  

 

When it came to picture naming AM was considerably compromised, scoring only 3 out of 48 

correct when tested on a set of high frequency items that should have been familiar to him 

(Knott et al. 1997). He most frequently responded with nothing at all, but on occasion 

produced some short, circumlocutory responses that were very vague. Semantic paraphasias 

were rare, and no phonological paraphasias were observed at all in AM’s naming. AM’s 

performance on a word-picture matching task using the same items that were elicited by the 

picture naming task was relatively normal, and the same was true for other word-picture 

matching tasks (though he did display a frequency effect with better comprehension of 

higher-frequency items than lower-frequency ones). Of the errors AM produced on the word-

picture matching tasks semantic ones were most common, and he was also impaired on a 

semantic feature questionnaire which required him to answer with a yes or no to simple 

questions such as ‘Does an ostrich have a long neck?’. 

 

The nonverbal version of the Pyramids and Palm Trees test (which was made to measure 

conceptual knowledge) proved particularly difficult for AM:  whilst his repetition of single 

words and nonwords was within normal limits for items up to three syllables long, he had a 

strong tendency for phonological errors in longer words and nonwords, and words of a low 

frequency. Further evidence for a conceptual-level impairment came from AM’s difficulties 

in the appropriate selection and use of everyday items (he put a closed umbrella over his head 

horizontally in a rain storm and orange juice into his lasagne, for example). 

A sample of his AM’s speech demonstrating the extent to which he was unable to retrieve 

words is given below (Murre et al. 2001: 651): 
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Examiner: Can you tell me about a time you were in hospital? 
AM: Well one of the best places was in April last year here (ha ha) 
and then April, May, June, July, August, September and then October, 
and then April today. 
Examiner: Can you remember April last year? 
AM: April last year, that was the first time, and eh, on the Monday, 
for example, they were checking all my whatsit, and that was the first 
time, when my brain was, eh, shown, you know, you know that bar of 
the brain (indicates left), not the, the other one was okay, but that was 
lousy, so they did that and then doing everything like that, like this 
and probably a bit better than I am just now (indicates scanning by 
moving his hands over his head). 

 

Now, although the three cases presented here (JCU from Howard and Orchard-Lisle (1984), 

KE from Hillis et al. (1990) and AM from Murre et al. (2001)) all exemplify patterns of 

deficit that can be called semantic anomia, AM differs from JCU and KE in that his semantic 

anomia is due to dementia, not aphasia, and therefore cannot be treated. Treatments for 

semantic anomia in aphasia are designed to strengthen connections between semantic and 

lexical representations (Jefferies and Lambon Ralph 2006; Antonucci and Reilly 2008), but in 

dementia, it is too late for that as those connections haven’t been weakened through damage 

but lost altogether (Peach and Shapiro 2012). This thesis will, therefore, look at cases of 

semantic anomia in aphasia only, from here on out. No more will be said about disorders of 

semantic memory, and cases of them that are in the collection of texts I extract my data from 

will be excluded from my analysis in section 4. 

 

3.2 Phonological anomia 

In this section, I turn my attention to the wide range of phenomena that have to do with 

deficits in the retrieval of a lexical item’s phonological form. Patients with phonological 

anomia are those that have intact processing at the semantic level, but fail to retrieve the 

phonological forms of target words in output (Nickels 1997). Phonological errors can occur 

for one of two reasons, though: a) because there is impaired access to the phonological 

representations themselves (the reason which will be explored in section 3.2.1) or b) because 

of impairments in the processes involved in phonological encoding (which is the one that’ll be 

focus of 3.2.2) (Nickels 1997). Only the first kind of error can be attributed to phonological 

anomia, however, as only these have to do with lexical access. The second kind of error is due 

to some post-lexical impairment, as section 3.2.2 will explain. 
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3.2.1 Impairment in access to output lexicons from the lexical-semantic system 

The first possible post-semantic place of impairment that could lead to anomia is in the 

connections between semantics and the output lexicon, Laine and Martin (2006) say. With 

this, one would expect to find word retrieval impairments with unimpaired comprehension 

and normal performance on word production tasks that can be completed without semantic 

support (Laine and Martin 2006). 

 

The most clear-cut cases of impairment in access to output lexicons from the lexical-semantic 

system are perhaps those that were provided by Lambon Ralph et al. (2000), who reported on 

two traumatic head injury patients (GM and JS). GM’s word retrieval difficulties were milder 

than those of JS: his score on the Boston Naming test (a tool that’s used in speech and 

language pathology to determine patients’ abilities to name) was 31/60 while JS’ was 16/60. 

When GM failed to retrieve a target, he tended to produce circumlocutions such as ‘the burial 

chamber for Egyptian kings… it’s got three ‘beats’’ for ‘pyramid’, though semantic errors 

(that were spontaneously rejected) were sometimes produced as well. GM evidenced tip of the 

tongue behaviour too, in that he was able to provide phonological information about targets 

(such as the number of syllables they were made up of, as evidenced by ‘three ‘beats’’ for 

‘pyramid’) in the aforementioned example. JS, on the other hand, didn’t evidence any 

phonological knowledge, and circumlocutions for JS were produced upon request only. For JS 

omissions were the most frequently occurring error type, though he did produce (and like 

GM, spontaneously reject) semantic errors as well. 

 

Neither GM nor JS produced any phonological paraphasias in speech output tasks, and they 

both performed within the normal range on word comprehension and semantic-associative 

tasks (with the exception of GM on something called the PALPA Word Semantic Association 

task (which is used to check for impairments in semantic processing) where he had problems 

with abstract items). Repetition and reading performances on both words and nonwords were 

also within normal limits, which (together with the rest of the results) would suggest semantic 

processing (but not phonological processing) was intact in both patients. 

 

The data paints a picture, Lambon Ralph et al. (2000) argue, of patients who have access to 

the meanings of target words (and sometimes even partial information about them), but not 

enough phonological information to retrieve the targets as nonanomics would be able to. GM 

and JS’ lack of access to full phonological information leads to a selection problem, they say, 
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whereby semantically close alternatives to targets with more easily accessible phonologies 

compete for output (and sometimes win). 

 

Similar patterns were reported in 1987 by Kay and Ellis who described the case of EST, a 

patient whose word retrieval deficits were dramatic, but speech was so fluent that he was able 

to conceal them in spontaneous speech by using alternative words to, or circumlocutions in 

place of, the target. In picture naming tasks he produced both semantic and phonological 

errors and in auditory-verbal repetition tasks better repetition of real words than non-words, 

but a semantic deficit couldn’t be the cause of EST’s anomia Kay and Ellis (1987) argued, for 

he showed complete comprehension of the object names he was unable to process for 

production.  

 

Kay and Ellis (1987) attributed EST’s anomia to a difficulty in activating spoken word forms 

in an intact phonological (output) lexicon instead, stressing that it was his access to items that 

was impaired not the items themselves, as evidenced by his ability to retrieve names 

successfully sometimes after extensive effort. They also assembled a more formal argument 

for their assertion, pointing out that EST showing a superiority for words over non-words in 

auditory-vocal repetition tasks could very well suggest ‘that [the] lexical phonological entries 

for such words [could] in fact function in response to [that] type of stimulus and […] 

contribute to successful word repetition performance’ (Kay and Ellis 1987: 626).   

 

3.2.2 Impaired phoneme assembly 

A distinction must be made, however, between phonological errors that occur as a result of  

difficulties with lexical access as in 3.2.1 and phonological errors that occur as a result of 

something further ‘down’ models of spoken word retrieval, after the phonological form has 

been retrieved. Lexical access (as you’ll recall from section 2 of this chapter) is generally 

thought of by Butterworth (1989) and Levelt et al. (1999) as being made up of a number of 

hierarchically organised processes. According to Levelt et al.’s (1999) lexical access theory, 

as an example, whereby after the phonological form has been retrieved it is encoded with 

information interpretable by the system that’s responsible for its articulation (Laine and 

Martin 2006). To my mind, deficits in this domain should not be thought of as phonological 

anomia, then, since phonological anomia is a lexical retrieval deficit having to do with an 

inability in accessing the phonological form, and these deficits appear post-lexically after the 

phonological form has already been retrieved.  
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The terms phonological encoding and phonetic encoding and phonological assembly and 

phoneme assembly are used interchangeably in the literature to mean the same thing, but the 

danger, I feel, in doing this is that it blurs the distinction between phonetics and phonology 

(which, to my mind, are, of course, two entirely different things). The terms phonological 

encoding and phonological assembly being used in the aphasiology literature to describe a 

disorder that is post-phonological in nature can be confusing, I feel, and so I’ll use the terms 

phonetic encoding and phoneme assembly only from this point onwards. Recall also that 

disorders of phonetic encoding/phoneme assembly can easily be described in Jackendoff’s 

(2002) model which argues for a phonological integrative module (which could be the locus 

of phonological anomia) and a phonology-phonetics interface module (which could be the 

locus of disorders of phonetic encoding/phoneme assembly. 

 

The classical aphasic syndrome that’s been linked to anomia due to impaired phoneme 

assembly is conduction aphasia (Laine and Martin 2006). This is a form of fluent aphasia in 

which comprehension is fairly well preserved, but speech output (which is otherwise well 

articulated, actually) is punctuated by phonological paraphasias (Laine and Martin 2006). 

These errors are often quite close to the target, which suggests that the patient producing them 

was able to retrieve the correct lexical-phonological representations for them, but failed with 

prearticulatory (i.e. phonemic) planning (Kohn 1984). People with conduction aphasia are 

particularly sensitive to word length, with longer words causing more production problems 

than shorter ones due to the larger amounts of phonological information they’re made up of 

(Laine and Martin 2006). 

 

A typical case of conduction aphasia has been described by Laine et al. (1992) who explored 

the nature of naming deficits in 10 people with classical aphasia syndromes. C2, a 64 year old 

patient with symptoms of conduction aphasia was mildly anomic, scoring 44/60 on the 

Boston Naming Test and below normal performance on two others (a 106 picture naming task 

and a synonym production task). Over half of C2’s naming errors were phonological, and of 

those that were left, only one was semantic (though even that he corrected). C2 scored perfect 

performance on a semantically based picture classification task, a word to picture matching 

task and a visual odd-one-out semantic-associative task, and these things, coupled with the 

fact that estimated familiarity of targets had no bearing on success, led Laine et al. (1992) to 

conclude that C2 had a phoneme assembly deficit that affects spontaneous speech, oral 

naming and word repetition. 
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The phonological errors e.g. ‘beelwharrow’ for ‘wheelbarrow’ that occur in nonaphasic slips 

of the tongue, note, are generally attributed to errors in post-lexical phonological processes 

(such as the copying of segments into slots, for example, in a slot-and-filler model like 

Shattuk-Hufangel (1979)’s, for their speaker’s phonological knowledge is intact (Nickels 

1997). When aphasic subjects are in tip of the tongue states however, only partial 

phonological information (such as the initial phoneme of the word or the number of syllables 

it has) is available for lexical retrieval, and so more complex phonological real word and 

nonword errors (such as ‘Siam’ (a real word error) and ‘sympoon’ (a nonword error) for the 

target ‘sampan’ (Brown and McNeill 1966)) are produced. 

 

The phonological errors observed can help researchers reach a conclusion about the cause of 

them, but there are many more reliable ways of distinguishing deficits of lexical access and 

post-lexical phoneme assembly deficits than that, such as ‘silent phonology’ tasks, for 

instance. In these types of task, subjects are asked questions such as ‘Do ‘write’ and ‘right’ 

sound the same?’ (a task that requires a judgement of homophony) and ‘Do ‘white’ and 

‘bright’ rhyme?’ (a task requiring, rather self explanatorily, a judgment of rhyme). Pseudo-

homophone detection judgement tasks (e.g. ‘Which one sounds like a real word - ‘brane’ or 

‘plane’?’) may be used too, as may phonological lexical decision judgement tasks (e.g. ‘Does 

‘brane’ sound like a real word or not?’). Whether or not patients can perform these types of 

task demonstrates whether or not they can access phonological representations. If they are 

better at these tasks than they are at producing the same words, we can conclude that the 

problem is post-lexical in nature. 

 

Since this chapter has to do with lexical access (and therefore word retrieval deficits that are 

lexical and not post-lexical in nature), I won’t be including participants with disorders of 

phoneme assembly in my analysis of anomia therapy in section 4. Researchers don’t always 

specify the cause of their participants’ phonological anomias, however; so if the cause of a 

participant’s phonological anomia is unclear, I won’t include them in my analysis either. An 

alternative option would be for me to assess the phonological errors myself in order to work 

out whether they are due to impaired access to the phonological representations themselves or 

because of impairments in the processes involved in retrieving the representations for phone 

assembly, but given that I’m not a clinician I’m clearly not qualified to do so. My analysis 

will, therefore, include the following: participants with semantic anomia (which always does 

have to do with lexical access) and participants with true phonological anomia (i.e. 

participants whose phonological disorder been diagnosed (by aphasiologists) as being at the 
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lexical level). This I’ll, of course, come back to when I discuss my data source and sampling 

in 4.1. 

 

4. Anomia therapy 

In this section I will be comparing the effects of semantic and phonological therapies at 

treating semantic and phonological anomia in order to see whether the semantic and 

phonological processors are domain specific and therefore modular by Carruthers (2006a)’s 

definition. If semantic therapy was found to treat phonological anomia (recall from the 

introduction to this chapter (and indeed the introduction to the thesis in general)) this would 

count as clear evidence that the phonological processor was able to operate on semantic input 

and so not modular, for domain specific processors, recall from chapter 3, are those that are 

able to only operate on input that’s relevant to their function. Input relevant to the function of 

the phonological processor would, of course, be phonological, not semantic, and so it will be 

interesting to see how the different therapy’s efficacies at treating phonological anomia 

pattern.  

 

4.1 Data source and sampling 

Now, since impairments of word retrieval are a common symptom of aphasia, much clinical 

time has been spent attempting their remediation. Anomia therapy has focused on improving 

access to words’ meanings in the semantic system (semantic therapy) and improving access to 

words’ representations in the phonological output lexicon (phonological therapy), but there is 

a complex relationship between the types of language deficits patients have and the types of 

tasks that are used in therapy to remediate them (Whitworth et al. 2013). Semantic tasks, for 

example, have been used with the aim of facilitating word retrieval in people with semantic 

impairments as well as people with phonological impairments. Phonological tasks, 

meanwhile, have been used to treat both phonological anomia and semantic anomia too, and 

so tasks aren’t always targeted to the level of language breakdown like they were a long time 

ago. 

 

Since semantic tasks focus on word meanings, examples include word to picture matching 

(both spoken and written), word to picture verification, feature matching and feature 

verification, categorisation, relatedness judgements, generation of semantic features and the 

provision of semantic information in cues (Whitworth et al. 2013). Phonological tasks, on the 

other hand, which promote access to word forms, include the likes of repetition and reading 

aloud, as well as tasks which ask participants to reflect more explicitly on a words’ 
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phonological features, e.g. by counting syllables, identifying initial phonemes or syllables or 

performing rhyme judgments. The provision of phonological and orthographic cues by 

therapists are counted as phonological tasks too, in the literature, and although orthographic 

approaches to treatment mightn’t at first glance look very phonological for they have to do 

with graphemes, not phonemes, I feel this warrants a bit of discussion here as there is 

evidence to suggest that orthographic cues work just as well as phonological ones do (e.g. 

Bruce and Howard 1987; Best et al. 1997; Basso et al. 2001; Hickin et al. 2002a). 

 

In 1987, Bruce and Howard successfully treated five people with word finding difficulties 

with an aid that made use of orthographic cues. This was replicated by Best et al. (1997) in a 

single case study, and it was found that both graphemic and phonemic cues improved naming. 

Best et al. (1997) suggested that the reason why orthographic cues work is because they 

enable the client to develop an (unconscious) strategy whereby they link graphemes to their 

respective insufficiently activated phonemes so that enough activation to facilitate their 

retrieval can be delivered: ‘[i]t appears that the treatment affect[s] a fundamental change in 

[…] word finding, altering automatic […] not strategic processes in [the] linguistic system’ 

(Best et al. 1997: 134). With regards to orthographic approaches to treatment, then, like Bruce 

and Howard (1987), Best et al. (1997), Basso et al. (2001) and Hickin (2002a) (among others) 

I’ll be counting them as phonological tasks in this chapter.8 

 

In this thesis, the emphasis will be on studies that involve investigation of single cases or 

series of single cases which enable a detailed examination of patterns of deficit. In studies 

which combine patients into groups, the results are uninterpretable and therefore 

uninformative (Ellis and Young 1988). A number of research papers that are devoted to single 

case studies (and series of single case studies) spanning 1980 to 2002 that examine the 

efficacy of treatments for word retrieval impairments have been collected by Nickels (2002), 

and it’s from that collection of papers that I compile my own. 

 

The scope of my review has to be narrower than Nickels’ (2002), though, for whilst Nickels 

(2002) restricted her review of the literature to papers published in peer reviewed journals and 

books that address impairment-level treatments of spoken word production in aphasia (and so 

did not review those that ‘address[ed] treatments that […] use alternative (non-linguistic) 

 
8 I will remove orthographic therapies from the data set at the end of Chapter 5, though, to see 
whether without them a different effect is observed for phonological therapy’s efficacy at 
treating phonological anomia. 
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means of communication to overcome a word-retrieval/production impairment’ (e.g. drawing 

(Hunt 1999; Sacchet et al. 1999)) (Nickels 2002: 936), those that ‘focus[ed] on impairments at 

an articulatory level’ (e.g. apraxia of speech (Ballard et al. 2000; Wambaugh and Doyle 

1994)) (Nickels 2002: 937), ‘treatments “beyond the single word”’ (e.g. sentence processing 

(Mitchum et al. 2000)) (Nickels 2002: 937) or ‘rehabilitation [that’s] primarily focused at 

reducing levels of handicap/disability where the rehabilitation is not impairment-based’ (e.g. 

Lesser and Algar 1995) (Nickels 2002: 937), my review restricts itself to those papers in 

Nickels (2002) that focus on the remediation of spoken word retrieval only (excluding 

importantly case studies where the causes of patients’ deficits have to do with disorders of 

phoneme assembly). 

 

As I said in section 3, this chapter is concerned with the retrieval of the phonological form, 

which means that word retrieval deficits that are post-lexical in nature and therefore don’t 

have to do with lexical access such as disorders of phoneme assembly must be excluded from 

the analysis. If there were phonetics/phonology mismatches in the data set, what the efficacy 

of semantic therapies at treating phonological anomias could contribute to debates about the 

modularity of phonology is unclear. 

 

Something I should also point out though, is that whilst Nickels (2002) reports on cases that 

have more than one damaged level of language impairment (e.g. AER, TRC and PA from 

Nickels and Best (1996) who have semantic and post-lexical, semantic and phonological and 

semantic and post-lexical impairments, respectively), I will include only the cases that have 

semantic impairments only, or phonological impairments only, in my analysis. Nickels (2002) 

also reports on cases that attempt to facilitate word retrieval with both semantically and 

phonologically targeted treatments (e.g. Aftonomos et al. 1997), but since I need to answer 

the question of whether the phonological processor is domain specific (and therefore able to 

operate only on phonological input) or not, I’d do better to compare the effects of 

semantically targeted treatments (that act as semantic input) and phonologically targeted 

treatments (that act as phonological input) have on phonological anomia only; mixed 

treatments which make use of both semantics and phonology wouldn’t reveal anything about 

the domain specificity of phonology, for if they helped with word retrieval it would be unclear 

whether it was the semantic input or the phonological input in them that was responsible for 

the remediation. 

 

Now, with that being said, of the 43 papers reporting treatment for impaired word retrieval 
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summarised in Nickels (2002), only 10 met these criteria. The 33 papers that have been 

excluded from the analysis (and my reasons for excluding them) are presented in Table 5.2 

below, but even in the 10 papers I do present I have had to exclude some results along the 

way (for being statistically insignificant), on the one hand, and participants (for their 

treatment having been mixed or for their impairments or treatment outcome being mixed or 

unknown) on the other. Where the latter was the case, I’ve made sure to explain the reasoning 

behind my exclusion of them in my qualitative analysis of the data sample to follow. And, 

when the reasons for exclusion were even more complicated than that (as was the case with, 

e.g. Pederson et al. (2001) and Fink et al. (2002)), I’ve mapped those out in the analysis as 

well. 
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Paper Participant Impairment Treatment Outcome 
(treated) 

Reason for 
exclusion 

Primarily semantic tasks 
Lowell et al. 
(1995) 

BB Conduction 
aphasia 

Semantic Yes Impairment 
unknown 

BG Anomic 
aphasia 

Semantic Yes Impairment 
unknown 

SB Conduction 
aphasia 

Semantic No Impairment 
unknown 

McNeil et al. 
(1997) 

BO Anomic 
aphasia 

Semantic Yes Impairment 
unknown 

McNeil et al. 
(1998) 

BO Anomic 
aphasia 

Semantic Yes Impairment 
unknown 

Nickels and 
Best (1996)  

AER Semantic and 
post-lexical 

Semantic No Impairment 
mixed 

Semantic 
 
  

Yes Impairment 
mixed 

Semantic Yes Impairment 
mixed 

TRC Semantic and 
phonological 

Semantic Yes Impairment 
mixed 

Semantic No Impairment 
mixed 

PA 
 

Semantic and 
post-lexical 

Phonological Yes Impairment 
mixed 

Semantic No Impairment 
mixed 

Semantic and phonological tasks 
Aftonomos 
et al. (1997) 

VAMC 
patients 1, 
2, 3 

? Semantic and 
phonological 

? More than 
one patient, 
impairment 
unknown, 
treatment 
mixed and 
outcome 
unknown 

Patients 1, 
2 9, 11, 18, 
20 

? Semantic and 
phonological 

? More than 
one patient, 
impairment 
unknown, 
treatment 
mixed and 
outcome 
unknown 

Patients 4, 
8, 16, 17 

? Semantic and 
phonological 

? More than 
one patient, 
impairment 
unknown, 
treatment 
mixed and 
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outcome 
unknown 

Annoni et al. 
(1998) 

JNH Semantic and 
phonological 

Semantic and 
phonological 

? Impairment 
mixed, 
treatment 
mixed and 
outcome 
unknown 

GE Semantic Semantic and 
phonological  

? Treatment 
mixed and 
outcome 
unknown 

EG ? Semantic and 
phonological 

? Impairment 
unknown, 
treatment 
mixed and 
outcome 
unknown 

Deloche et 
al. (1993) 

RB Surface 
dysgraphia 

Orthographic 
and semantic 

Yes Impairment 
unknown and 
treatment 
mixed 

GC Morpholexical 
and word 
retrieval 

Orthographic 
and 
phonological 

Yes Impairment 
unknown and 
mixed and 
treatment 
mixed 

Deloche et 
al. (1997) 

B Word finding Orthographic, 
semantic and 
phonological 

Yes Impairment 
unknown and 
treatment 
mixed 

L Word finding Orthographic, 
semantic and 
phonological 

Yes Impairment 
unknown and 
treatment 
mixed 

A, D, J, Q, 
C, K 

Word finding Orthographic, 
semantic and 
phonological 

Yes More than 
one patient, 
impairment 
unknown and 
treatment 
mixed 

I, O Word finding Orthographic, 
semantic and 
phonological 

Yes More than 
one patient, 
impairment 
unknown and 
treatment 
mixed 

H, G, P, M, 
R 

Word finding Orthographic, 
semantic and 
phonological 

Yes More than 
one patient, 
impairment 
unknown and 
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treatment 
mixed 

N Word finding Orthographic, 
semantic and 
phonological 

No Impairment 
unknown and 
treatment 
mixed 

E Word finding Orthographic, 
semantic and 
phonological 

No Impairment 
unknown and 
treatment 
mixed 

F Word finding Orthographic, 
semantic and 
phonological 

No Impairment 
unknown and 
treatment 
mixed 

Eales and 
Pring (1998) 

MB Semantic Semantic and 
phonological 

Yes Treatment 
mixed 

NO ? Semantic and 
phonological 

Yes Impairment 
unknown and 
treatment 
mixed 

PU Semantic Semantic and 
phonological 

Yes Treatment 
mixed 

SK ? Semantic and 
phonological 

Yes Impairment 
unknown and 
treatment 
mixed 

Greenwald et 
al. (1995) 

SS Semantic and 
phonological 

Semantic and 
phonological 

Yes Impairment 
mixed and 
treatment 
mixed 

Semantic and 
phonological 

Yes Impairment 
mixed and 
treatment 
mixed 

Semantic and 
phonological 

No Impairment 
mixed and 
treatment 
mixed 

MR Semantic and 
phonological 

Semantic and 
phonological 

Yes Impairment 
mixed and 
treatment 
mixed 

Semantic and 
phonological 

Yes Impairment 
mixed and 
treatment 
mixed 

Semantic and 
phonological 

No Impairment 
mixed and 
treatment 
mixed 

Hillis (1998) HG Semantic and 
phonological  

Semantic Yes Impairment 
mixed and 
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treatment 
mixed  

Phonological Yes Impairment 
mixed and 
treatment 
mixed 

Phonological Yes Impairment 
mixed and 
treatment 
mixed 

Semantic and 
phonological 

Yes Impairment 
mixed and 
treatment 
mixed 

Le Dorze 
(1991) 

LR Phonological Semantic and 
orthographic 

Yes Treatment 
mixed 

Le Dorze 
and Pitts 
(1995) 

RT Semantic and 
phonological 

Semantic and 
phonological 

Yes Impairment 
mixed and 
treatment 
mixed 

Semantic and 
phonological 

? Impairment 
mixed and 
treatment 
mixed 

Semantic ? Impairment 
mixed and 
treatment 
mixed 

Semantic No Impairment 
mixed and 
treatment 
mixed 

Li et al. 
(1988) 

- Conduction 
aphasia 

Semantic and 
phonological 

No Impairment 
unknown and 
treatment 
mixed 

Semantic Yes Impairment 
unknown and 
treatment 
mixed 

Pederson et 
al. (2001) 

KB Phonological  Unsupervised 
computerised 
semantic 

Yes Treatment 
unsupervised 
and patients 
Danish 

Unsupervised 
computerised 
phonological 

Yes Treatment 
unsupervised 
and patients 
Danish 

Unsupervised 
computerised 
orthographic 

Yes Treatment 
unsupervised 
and patients 
Danish 
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JI Semantic Unsupervised 
computerised 
semantic 

Yes Treatment 
unsupervised 
and patients 
Danish 

Unsupervised 
computerised 
phonological 

Yes Treatment 
unsupervised 
and patients 
Danish 

Unsupervised 
computerised 
orthographic 

Yes Treatment 
unsupervised 
and patients 
Danish 

RI Phonological  Unsupervised 
computerised 
semantic 

Yes Treatment 
unsupervised 
and patients 
Danish 

Unsupervised 
computerised 
phonological 

Yes Treatment 
unsupervised 
and patients 
Danish 

Unsupervised 
computerised 
orthographic 

Yes Treatment 
unsupervised 
and patients 
Danish 

Sbisa et al. 
(2001) 

ML ? Phonological Yes Impairment 
unknown 

Semantic Yes Impairment 
unknown 

Spencer et 
al. (2000) 

NR Phonological 
and post-
lexical 

Semantic and 
phonological 

Yes Impairment 
mixed and 
treatment 
mixed 

Thompson 
and Kearns 
(1981) 

- ? Semantic and 
phonological 

Yes Impairment 
unknown and 
treatment 
mixed 

Primarily phonological tasks 
Basso et al. 
(2001) 

RF Anomia Orthographic Yes Impairment 
unknown 

Phonological No Impairment 
unknown 

Phonological Yes Impairment 
unknown 

MR Word retrieval Orthographic Yes Impairment 
unknown 

Phonological Yes Impairment 
unknown 

Phonological Yes Impairment 
unknown 

Beeson 
(1999) 

ST Post-lexical Orthographic Yes Impairment 
neither 
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semantic nor 
phonological 

Carlomagno 
et al. (2001) 
 

Patients 1-8 ? Phonological ? More than 
one patient, 
impairment 
unknown and 
outcome 
unknown 

Phonological ? More than 
one patient, 
impairment 
unknown and 
outcome 
unknown 

Fink et al. 
(2002) 

GM Post-lexical Phonological Yes Impairment 
neither 
semantic nor 
phonological 

AS Phonological 
and semantic 

Phonological Yes Impairment 
mixed 

BM Phonological 
and semantic 

Phonological Yes Impairment 
mixed 

EL Phonological 
and post-
lexical 

Phonological Yes Impairment 
mixed and 
one is neither 
semantic nor 
phonological; 
treatment 
unsupervised 

EG Post-lexical Phonological Yes Impairment 
neither 
semantic nor 
phonological; 
treatment 
unsupervised 

RH Phonological Phonological Yes Treatment 
unsupervised 

Kiran et al. 
(2001) 

RD Conduction 
aphasia 

Orthographic 
and 
phonological 

Yes Impairment 
unknown 

RN Conduction 
aphasia 

Orthographic 
and 
phonological 

Yes Impairment 
unknown 

Miceli et al. 
(1996) 

RBO Phonological 
and post-
lexical 

Phonological Yes Impairment 
mixed 

GMA Phonological 
and post-
lexical 

Phonological Yes Impairment 
mixed 

Murray and 
Karcher 
(2000) 

HR ? Orthographic Yes Impairment 
unknown 
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Raymer et al. 
(1993) 

CG Phonological 
and post-
lexical 

Phonological Yes Impairment 
mixed 

RJ Phonological, 
semantic and 
post-lexical 

Phonological Yes Impairment 
mixed 

MR Phonological, 
semantic and 
post-lexical 

Phonological Yes Impairment 
mixed 

RE Phonological 
and semantic 

Phonological Yes Impairment 
mixed 

Robson et al. 
(1998) 

GF Phonological, 
post-lexical 
and semantic 

Phonological Yes Impairment 
mixed 

Phonological No Impairment 
mixed 

Phonological No Impairment 
mixed 

Sugishita et 
al. (1993) 

HK, MH, 
SK 

? Phonological Yes More than 
one patient 
and 
impairment 
unknown 

MK, BY, 
ST, MT, 
TI, YA, YK 

? Phonological Yes More than 
one patient 
and 
impairment 
unknown 

AI, TD ? Phonological Yes More than 
one patient 
and 
impairment 
unknown 

YH ? Phonological Yes Impairment 
unknown 

TZ, TE ? Phonological No More than 
one patient 
and 
impairment 
unknown 

Pashek 
(1997) 

KR Apraxia of 
speech 

Phonological Yes Impairment 
unknown 

Phonological Yes Impairment 
unknown 

Pashek 
(1998) 

WT Noun and 
verb retrieval 

Phonological Yes Impairment 
unknown 

Phonological Yes Impairment 
unknown 

Rose et al. 
(2002) 

AB Phonological 
and post-
lexical 

Phonological 
and 
orthographic 

Yes Impairment 
mixed 

Phonological Yes Impairment 
mixed 
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Phonological Yes Impairment 
mixed 

Other tasks 
MB MB Phonological Semantic ? Outcome 

unknown 
Thompson et 
al. (1986) 

S1 Word retrieval Semantic ? Impairment 
unknown and 
outcome 
unknown 

S2 Word retrieval Semantic Yes Impairment 
unknown 

S3 Word retrieval Semantic No Impairment 
unknown 

 

Table 5.2 A breakdown of the 33 single case (and series of single case) studies of word 
retrieval in Nickels (2002) that I’ve excluded from my analysis and my reasons for doing so 
 

 

Something else I’d like to point out before I delve into the discussion of the case studies 

leftover though is this: whilst in 1985 Howard et al. drew a distinction between three terms: 

cueing (which has to do with the immediate effects of treatment), facilitation (which has to do 

with the effects of treatment measured some time later (e.g. an hour, say)), and therapy 

(which has to do with the long-term effects of treatment), I should point out here that when I 

say therapy I don’t necessarily mean it in Howard et al. 1985’s sense. Rather I use treatment 

and therapy interchangeably to mean the same thing, facilitate to mean remediate and cueing 

to refer specifically to types of semantic and phonological (treatments/therapies – see) that 

make use of semantic and phonological cues, respectively. 

 

4.2 Data analysis 

4.2.1 A qualitative analysis of the data 

4.2.1.1 Primarily semantic tasks  

4.2.1.1.1 Marshall et al. (1990) 

Marshall et al. (1990) undertook three single case studies to examine the effects word to 

picture matching tasks had on word retrieval in patients with aphasia. The patients studied 

differed in their deficits (one having a deficit in access to the phonological output lexicon and 

the other two in semantics), but all three were treated with semantic therapy (semantic 

discrimination tasks). 

 

The first case, RS, was a 45 year old company director who’d suffered a left hemisphere 

cerebrovascular accident (CVA) in November 1986 which resulted in both dysphagia and 
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right hemiplegia. When seen ten months later in 1987 RS had good comprehension still but 

had developed anomia, with a particular difficulty in retrieving verbs. On a word to picture 

matching test (owing to Kay et al. (1989) in which words are matched with pictures (one 

being the target and the other four semantic distractors)), RS scored 39/40, and on a spoken 

synonym matching test (whereby pairs of high- or low-imagery words are judged for 

similarity of meaning) RS scored better on high-imagery words than he did low- ones (36/38 

compared with 26/38, respectively). On the pictorial version of the Pyramids and Palm trees 

test (Howard and Orchard-Lisle 1984) (which looks at semantic associations between 

objects), RS made three errors only, which, it should be noted, is within the normal range. 

 

RS was able to readily discriminate between correct and inappropriate names for pictures, but 

could not be induced into making semantic errors with semantic or phonological cueing. With 

regards to written stimuli, on these words, he also performed adequately. When it came to RS’ 

ability to read aloud single words he was almost unimpaired, reading all classes of words well 

and both high- and low-imagery words without error. RS’ deficits led Marshall et al. (1990) to 

conclude that RS had a deficit in accessing words from the phonological output lexicon. Not 

in semantics, not in output phonology (i.e. phoneme assembly) but in the route connecting 

these, rather.  

 

The type of treatment used to remediate RS’ word retrieval was semantic. Given 50 drawings 

of low frequency words to name, 25 of these were to be treated whilst the other 25 acted as 

controls. Over a 2 week period around 3 hours of therapy time was devoted to semantic 

matching tasks with the treated groups, and at the end of the 2 weeks it became evident that 

RS was significantly better at naming treated items than untreated items (20/25 compared 

with 10/25, x2 = 5.16, p < 0.05). This suggests, at first glance, that the phonological processor 

isn’t domain specific and therefore massively modular, for semantic therapy was found to 

facilitate naming. 

 

IS, on the other hand, was a 76 year old retired civil servant who had been left dysphasic and 

right hemiplegic too following a left hemisphere CVA in the January of 1988. After a period 

of intensive speech therapy, IS was discharged to a nursing home 4 months later in May, 

where she remained up until Marshall et al. (1990) conducted their study. Like RS IS 

presented with good comprehension of simple conversation, but her deficits seemed more 

likely to be semantic in nature for she had poor expressive language that was non-fluent and 
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limited to just social phrases such as greetings and salutations and high frequency nouns. IS 

had quite severe word retrieval difficulties and performed poorly on semantic tasks. 

 

On Kay et al.’s (1989) word to picture matching task IS performed poorly (scoring 25/40 for 

spoken stimuli and 19/40 for written). On a synonym matching task with high- and low-

imagery items IS scored just 24/38 for spoken presentations and 21/38 for written ones and on 

the Pyramids and Palm Trees test (Howard and Orchard-Lisle 1984) just 34/50. IS’ poor 

performance on semantic tasks in conjunction with the fact that IS made 0 errors on a test 

when phonemic distractions were used but only 14/20 when semantic distractors were made 

for a diagnosis of semantic anomia, which Marshall et al. (1990) tried to treat with a semantic 

therapy similar to that they used with RS. 

 

A hundred drawings were presented to IS for naming which were divided into 4 groups of 25. 

Group 1 was treated after a 2 week period and Group 2 after 4 weeks. Groups 3 and 4 (the 

control groups) remained untreated. Around 2 to 2 and a half hours was devoted to therapy in 

each 2 week period, and two types of picture matching tasks were used.  

 

The scores (out of 25) for the 4 groups showed that improved naming followed treatment. IS 

scored 10/25 on Group 1 before treatment, and 22/25 after it. On Group 2, meanwhile, IS 

scored 10/25 before treatment as she did on Group 1, and after treatment this score increased 

to 23/25. After the first 2 weeks, IS performed significantly better on Group 1, which she’d 

received treatment for than she did Group 2, which she hadn’t (x2 = 6.10,  p < 0.02). 

Following the second period of treatment (after 4 weeks) on Group 2, IS performed 

significantly better on this than she did on Groups 3 and 4 (x2 = 11.86, p < 0.01) see Table 5.3 

for a breakdown of IS’ scores which demonstrate the positive effect semantic therapy had on 

word retrieval in semantic anomia, which one would expect if semantics were a domain 

specific module of mind:  
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 Before 
treatment 

 After 2 
weeks 

 After 4 
weeks 

Group 1 10 Treated 22 Not treated 20 
Group 2 10 Not treated 13 Treated 23 
Group 3 9 Not treated 12 Not treated 14 
Group 4 7 Not treated 13 Not treated 10 

 
Table 5.3 IS’ scores (out of 25) for the four groups at successive testing (adapted from 
Marshall et al. 1990) 
 

 

The third case (of FW, a 76 year old woman who’d suffered a left hemisphere CVA in the 

May of 87) was similar to that of IS. FW’s speech was marked by severe word finding 

difficulties that were said by Marshall et al. (1990) to be due to a semantic comprehension 

deficit (as evidenced by semantic errors in naming (13 were produced when trying to name 

120 line drawings) and poor performance on Kay et al.’s (1989) word to picture matching test 

(in which she scored 28/40 for auditory presentation and 23/40 for visual). 

 

During therapy, FW was given 50 drawings but was only able to name 17 of them. These 

were divided into a treatment group and a control group (9/25 and 8/25 of the correctly named 

items in each of them, respectively). Picture matching tasks, though, administered for around 

3 and a half hours each week over a 3 week period showed that unlike IS’, FW’s semantic 

impairment couldn’t be treated by semantic therapy. A slight improvement was seen in 

naming, for the treated group (from 8/25 correct to 11/25 correct), but this result was not a 

significant one. 

 

Marshall et al. (1990) also conducted a group study with RS, IS and FW which made use of a 

similar therapeutic task, but was required to be carried out in their own homes with a relative 

or volunteer, as opposed to a therapist, assisting. Semantically treated items showed 

significant gains when compared with controls, which is interesting, but since no therapist 

was present at the time of testing and testing was not recorded I’ve decided not to include the 

results of the group studies in my analysis, for since the accurate administration of treatment 

can’t be guaranteed, there is nothing to say that quality was controlled. 

 

4.2.1.1.2 Marshall et al. (1998) 

Marshall et al. (1998) reported on four patients diagnosed with jargon aphasia (RMM, TD, JC 

and CM). Of these four patients, all had problems with word retrieval as was evidenced by 

their respective scores on naming tests (0/40, 7/40, 7/40 and 14/40). A diagnosis of deficit 
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was only given for one of the patients (CM), though, and so I won’t be including the results of 

the others’ treatments in my analysis. 

 

CM’s speech, Marshall et al. (1998) said, largely consisted of neologistic jargon which was, 

for the most part, incomprehensible. Social phrases and the occasional relevant noun or noun 

phrase were produced, and he was better at reading aloud than he was repeating. CM showed 

an awareness of his speech and language disorder and, recognising that his wife was 

struggling to understand him, was keen to receive therapy. Nevertheless, when it came to 

talking, CM seemed not to have good comprehension. Unsure whether he was making sense 

or not during conversational discourse, he often looked to his conversational partner for 

confirmation, but his poor comprehension was confirmed by his scores on a series of tasks (a 

minimal pair discrimination requiring picture selection task (37/40), an auditory lexical 

decision test (127/160), spoken and written word to picture matching tests (39/40 and 32/40) 

and a synonym matching test (47/60: 27/30 for high image words and a lower 20/30 for low 

image words). 

 

In order to determine the exact nature of CM’s deficit, Marshall et al. (1998) asked him to 

name or repeat items and judge the correctness of his responses by saying yes or no or by 

pointing at cards displaying either a tick or a cross. On experiment 1 (a naming experiment) 

CM was asked to name 40 pictures from the PALPA test and judge whether or not his 

responses were correct. CM often produced more than one response per picture, which is why 

there are 49 judgements included in the data. His total score of correct judgements was only 

32/49 with 14 of those being a perfect score on his correct responses, but of the 35 incorrect 

responses that CM had to judge, he incorrectly did so for half (scoring 6/13 on his verbal 

paraphasias, 11/20 on his neologisms, 1/1 on his phonological errors and 0/1 on one that was 

labelled by Marshall et al. (1998) as ‘other’). 

 

It was found that CM was better at judging repetition than naming, however, (59/66 (26/26 

for correct responses, 3/3 for verbal paraphasias, 19/20 for neologisms and 11/17 for 

phonological errors)), which indicated to Marshall et al. (1998) that CM’s problems more 

than likely had to do with access to semantics or from semantics to the phonological output 

lexicon than they did something post-lexical (for repetition doesn’t make use of the two stages 

of word production that naming does: the need to access semantics or the need to access 

phonology from semantics). 
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A picture selection task (experiment 3) was used to identify which impaired naming process it 

was that impacted CM’s monitoring. In the task, CM was shown two semantically related 

pictures and heard one of their names, and was required to point to the picture that matched 

the name heard. Marshall et al. (1998) hypothesised that if it was the impaired retrieval of 

semantic representations that disrupted CM’s monitoring, a decline in awareness should be 

observed, but if, on the other hand, it was the accessing of phonology from semantics that was 

impaired, monitoring should be preserved, actually. 

 

40 items in the task stimulated 48 responses, and of the whole 48, CM made only one error 

when judging his picture selection responses. With regards to the responses themselves, most 

of his failures occurred with phonological errors as opposed to semantic ones. These results, 

coupled with those of experiment 3 brought about a diagnosis of an anomia that was due to 

damage to access to the phonological output lexicon for CM, which Marshall et al. (1998) 

tried to treat with semantic therapy tasks in experiments 5 and 6. 

 

In experiment 5, CM was shown two semantically related pictures (for example of a hammer 

and a nail) and asked to point to one of the pictures upon hearing its spoken name before 

trying to name the other (i.e. pointing to the picture of the hammer when hearing the word 

hammer before trying to name the picture of the nail). It was expected that this task might 

assist naming by priming the relevant semantic field and increasing activation to phonology 

from the semantic lexicon, but results showed that this wasn’t the case (see his pre-therapy 

scores out of 40 compared with his post-therapy scores out of 40 in Table 5.4): 

 

 

Responses Naming 
Unprimed Primed 

Correct 6/40 6/40 
Semantic errors 3/40 5/40 
Phonological errors 6/40 6/40 
Verbal paraphasias 12/40 10/40 
Neologisms 12/40 11/40 
No response 1/40 2/40 

 
Table 5.4 Unprimed and primed naming in CM (adapted from Marshall et al. 1998: 99) 
 

 

In experiment 6, CM was required to associate the concepts of target pictures with those of 

semantically related written words before selecting the name of the picture from four options 
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(the target itself and three semantic distractors). Six one hour therapy sessions were provided, 

and the efficacy of it was evaluated by asking CM to name the same 40 pictures before and 

after therapy. An untreated control group of pictures (which were matched for frequency) was 

tested in the same way, but therapy was found to have no effect on naming (in fact, CM’s 

performance at naming both sets of words declined over the therapy period as the results in 

Table 5.5 show): 

 

 

Responses Controls Treated items 
Pre-therapy Post-therapy Pre-therapy Post-therapy 

Correct 14/40 7/40 13/40 11/40 
Phonological 
error 

8/40 6/40 6/40 7/40 

Semantic error 8/40 8/40 6/40 3/40 
Verbal 
paraphasia 

4/40 6/40 2/40 7/40 

Neologism 6/40 13/40 13/40 12/40 
 
Table 5.5 Pre- and post-therapy naming of treated and control items (adapted from Marshall 
et al. 1998: 100) 
 

 

In short, then, neither of the semantic therapies seemed to be effective at treating CM’s 

phonological anomia. This is, of course, of interest to this thesis, because it’s what a 

massively modular model of phonology would predict. 

 

4.2.1.1.3 Nettleton and Lesser (1991) 

In Nettleton and Lesser’s (1991) study of anomia therapy, six aphasic patients with naming 

difficulties were selected according to the following criteria (Nettleton and Lesser 1991: 142): 

 

(a) diagnosed as aphasic on the Boston Diagnostic Aphasia Examination (BDAE) 

(Goodglass and Kaplan 1983); 

(b) at least six months after a single cerebrovascular accident, i.e. well past the period of 

substantial spontaneous recovery; 

(c) with good hearing and visual acuity; 

(d) without dysarthric difficulties; 

(e) within the age range 50-70 years; 

(f) with a naming difficulty, as assessed on the Boston Naming Test (BNT) (Goodglass 

and Kaplan 1983). 
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Two subjects were diagnosed as having problems with the semantic system, two were 

diagnosed as having problems relating to the phonological lexicon and two with problems at 

the level of phoneme assembly. After Lesser (1989), the criteria used to distinguish the three 

types of naming disorder were as follows: 

 

(1) For a naming disorder relating to the semantic system (Nickels et al. 1991: 142-143): 

i. Performance on the auditory word-picture matching test of semantic ability 

from Psycholinguistic Assessments of Language Processing in Aphasia 

(PALPA) (Kay et al. 1991) fell below 39/40, i.e. the cut-off level for normal 

performance. […] 

ii. The majority of errors on the BNT consisted of semantic paraphasias. 

iii. When cued by a phonemic cue for a semantic associate of a target word, the 

subject generally produced the cued associate and accepted it as correct for the 

target. 

 

(2) For a naming disorder relating to the phonological output lexicon (Nickels et al. 

1991: 143): 

i. The score in the auditory word-picture matching subtest from PALPA was at 

least 39/40. 

ii. The majority of errors on the BNT consisted of anomic circumlocutions. […] 

iii. The percentile for the repetition subtests in the BDAE was at or above the 

percentile for the auditory and comprehension subtests. 

 

(3)  For a naming disorder relating to the phonological output buffer (Nickels et al. 1991: 

143): 

i. The score on the auditory word-picture matching subtest from PALPA was at 

least 39/40. 

ii. The majority of errors on the BNT were phonemic paraphasias […]. 

iii. Repetition percentile on the BDAE was below the percentile for auditory 

comprehension. 

 

Two subjects were studied in each of the three categories. Two men, PD and FF, met the 

criteria for a naming disorder relating to the semantic system and two women, DF and MC, 

met the criteria for a naming disorder relating the phonological output lexicon. For a naming 

disorder relating the phonological output buffer another two women, MH and NC, met the 
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criteria, but since the latter two patients’ problems had to do with assembly and not access, I 

shall be excluding them from my analysis, and so no more will be said about them here. 

 

PD was a 55 year old car park attendant with fluent aphasia following a cerebral infarct six 

months prior in the left parietal area. FF was a 68 year old former labourer who had a fluent 

aphasia that was marked by empty speech and poor auditory comprehension. DF was a 63 

year old housewife who’d been left with a moderate aphasia following a stroke the year 

before and had relatively good social communication skills and MC a 57 year old housewife 

whose eight year ago stroke due to an embolism following mitral stenosis left her with non-

fluent, agrammatic and dysprosodic speech as can be seen in the patient profiles in Table 5.6: 
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Subjects 
Naming disorder related to the semantic system 
PD Male, aged 55, car park attendant 

Six months post stroke, with fluent aphasia 
BDAE comprehension 59% 
PALPA comprehension 75% (nine close 
semantic errors) 
BNT 20% (+17% with a semantic cue, 
+10% with a phonemic cue) 
On PTM pictures accepted most cued 
semantic associates as correct 

FF Male, aged 68, retired labourer 
Three years post stroke, with fluent aphasia, 
hemiplegia and hemianopia 
BDAE comprehension 15% 
PALPA comprehension 62% (12 close 
semantic errors) 
BNT 12% (+7% with a semantic cue, +0% 
with phonemic cue) 
On PTM pictures accepted all cued 
semantic associates as correct 

Naming disorder related to the phonological lexicon 
DF Female, aged 63, housewife 

One year post stroke, with severe anomic 
aphasia 
BDAE comprehension 90% 
PALPA comprehension 97% 
BNT 10% (with +0% with a semantic cue, 
+0% with a phonemic cue) 

MC Female, aged 57, housewife 
Eight years post stroke, with non-fluent 
agrammatic aphasia 
BDAE comprehension 50% 
PALPA comprehension 97% 
BNT 19% (+0% with a semantic cue, +25% 
with a phonemic cue) 

 
Table 5.6 Subjects (adapted from Nettleton and Lesser 1991: 145) 
 

 

The materials to be used in therapy were taken from the Cambridge pictures (Howard et al. 

1985) (which are 300 drawings of common objects). These pictures were given the name Set 

A, to distinguish them from the subsets AT, AU and AUS. Each subject was asked to name 

the 300 pictures in Set A, and from the items they were unable to name, a random selection of 

100 was made (meaning that each subjects’ subsets were different). For each subject’s 100 

drawing subset, the 100 items were randomly split down the middle to make a further two sets 

of 50, a set to be treated (AT) and a set to remain untreated (AU). The remaining 200 items 

from Set A for each patient acted as a control group, and this was given the label AUS (A 
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UnSeen), so Set A (300) comprised three subsets of 50, 50 and 200, AT, AU and AUS, 

respectively. 

 

The next eight weeks constituted the therapy phase; each subject attended clinic for an hour of 

therapy twice a week during this period, whereby either semantic naming therapy or 

phonological therapy was given. Each subject experienced only one type of therapy though, 

with the two patients diagnosed with semantic anomia (PD and FF) receiving model 

appropriate semantic therapy and the two patients diagnosed with phonological anomia (DF 

and MC) model appropriate phonological therapy. Patients’ abilities to name the items in Set 

A post-therapy were compared with their ability to name them pre-therapy to measure their 

effects. The semantic and phonological therapies were found to largely work, with PD seeing 

a significant improvement at naming AT (the treated items) after the therapy phase p < 0.05 

(x2 = 4.4.840) but not the untreated items or the unseen items (AU or AUS).  

 

DF scored significantly better on AT after the therapy phase than she did before it (x2 = 5.121; 

p = 0.025) but not AU or AUS too, and just like the others MC saw significant improvement 

in her AT scores post-therapy (x2 = 6.428; p = 0.01) but no significant changes in her AU or 

AUS ones. When it came to FF’s scores, however, although he saw some improvement in 

naming the AT items post-therapy (going from 2 pre-therapy to 6 post-), this result was not 

statistically significant. It can be said, then, that whilst semantic therapy facilitated word 

retrieval in one patient with semantic anomia (PD) which is consistent with the thesis that 

semantics is a domain specific module of the mind, it did not do the same for the other (FF). 

Phonological therapy, meanwhile, saw naming improve in both patients with phonological 

anomia (DF and MC). This, of course, is what one would expect if phonology were domain 

specific and therefore massively modular. 

 

4.2.1.2 Semantic and phonological tasks 

4.2.1.2.1 Best et al. (1997) 

In 1997 Best et al. reported the case of a man with dysphagia following a stroke. He presented 

with severely impaired word finding abilities, and so they intervened with a number of 

treatments, including a case study that compared the effects of lexical (both semantic and 

phonological treatment) with phonological treatment and a case study that looked at whether 

naming could be treated with a phonological cueing aid (see Bruce and Howard 1987). A set 

of pilot treatments were conducted prior to the two treatment studies, but since the methods of 
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these weren’t reported in any great depth, I’ve made the decision to exclude them from my 

analysis.  

 

The patient, JOW, was 62 years old at the time of the study. He was a former entrepreneur, 

and had suffered a left hemisphere stroke in the September of 1990 (though there was no scan 

information to specify the exact site of his lesion). JOW had had speech and language therapy 

from one year post-trauma (the September of 91), when he also began to attend a local stroke 

support group for people with dysphagia. Testing on the Western Aphasia Battery classified 

JOW as an anomic aphasic, with a quotient of 69.  

 

JOW performed within normal limits on a number of input processing tasks such as auditory 

discrimination and auditory lexical decision. Semantic processing of concrete items was also 

good (JOW scored 95% on both the auditory and written versions of word to picture matching 

tests with semantic and visual distractors (n = 40) (Kay et al. 1992)) and on the three picture 

version of the Pyramids and Palm Trees test (Howard and Patterson 1992) JOW’s score was 

within normal limits. 

 

When asked by Best et al. (1997) to describe the goings on in a picture, JOW said the 

following (where the words in the parentheses represent the intended targets determined on 

the basis of pointing, and the words in the square parentheses the therapists’ prompt 

question): 

 

‘A tree, a plag, am er kite there’s bun and a girl and a boy and what 
do you call it? A bicycle, no sorry what’s it called? (dog) A garage 
and um a bais oh (radio) no not a bicycle. [What are they doing?] 
They’re sat on a bike and pouring out something. He’s reading a 
book. Is that enough? 

 

Word finding difficulties were clearly obvious in JOW’s pre-treatment speech, then, but 

further testing confirmed this to be the case. On a picture naming task, it was evident JOW’s 

performance was impaired; he was only able to name 28% of a set of 194 pictures correctly. 

Interestingly, he was better at naming items that were high in operativity than those that 

weren’t (Rank sum test, z = 2.00,  P = 0.05) and those that were rated high in 

imageability/concreteness than those that rated low on those measures (Rank sum test, z = 

2.29, p = 0.025).  
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These findings, together with the fact that JOW’s naming accuracy was not significantly 

affected by animacy, frequency, familiarity, age of acquisition, number of syllables or number 

of phonemes pointed Best et al. (1997) to a diagnosis of a breakdown in language processing 

at the lexical-semantic level. His error responses suggested the same thing, they said, with his 

main error types being of no response (34% of the time) or the provision of semantically 

related information (11% of it). Only 2% of JOW’s responses were phonologically related to 

the target, which Best et al. (1997) took to be evidence against a phoneme assembly deficit. 

The fact that JOW’s naming wasn’t influenced by variables such as frequency or length led 

them to conclude that his breakdown couldn’t be anything other than semantic, for those 

variables are generally held to reflect processing beyond that.   

 

The effect of lexical therapy (both semantic and phonological) was considered first in study 1, 

but since this thesis is concerned with the effects of separate semantic therapies and 

phonological therapies only, I won’t be including the lexical therapy part to study 1 in my 

analysis. The second part to study 1 was concerned with the effects of semantic therapy, 

however, which is something I definitely will be paying attention to. 

 

Provided with a set of pictures (n = 36) that had a picture of the target on the face of the card 

and four semantically related names written on the reverse, JOW’s task for the semantic 

therapy part to study 1 was to underline the target name and write it below the picture (e.g. 

when the target was apple, a picture of an apple appeared on the front of the picture card, and 

the words apple, banana, orange and pear on the back, requiring JOW to underline the 

written word apple on the back of the card and write it beneath the picture on the front). 

 

After this, the effects of phonological treatment was considered in study 2. 50 items JOW 

found hard to name were selected for therapy, and matched in difficulty to 50 control items. 

The control items were used to detect whether any improvement found on treated items would 

generalise to untreated ones, and treatment took place for an hour a week, over five weeks 

using an electronic cueing aid that had nine keys labelled with letters that produced their 

corresponding phoneme (plus schwa) when pressed. JOW was instructed to use the aid every 

time he was unable to name a picture, and interestingly enough the phonological treatment 

with a cueing aid resulted in a highly significant improvement (from 8% targets being 

correctly named pre-therapy to 40% post- (z = 3.86, p = 0.001)) which generalised to naming 

of untreated items (z = 2.05, p < 0.05). Similarly significant results were seen with the 
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semantic treatment with 45 targets being named correctly post-treatment from 21 pre-

treatment evidencing improved naming.  

 

This is interesting to a thesis of modularity, as if semantics was a domain specific massive 

module then we would only expect the semantic therapy to have had an effect on naming in 

semantic anomia and, of course, both the semantic and the phonological therapy were found 

to have had. This could count as evidence against the semantic processor’s domain 

specificity, then, and by extension its massive modularity. 

 

4.2.1.2.2 Hillis (1989)  

In 1989, Hillis looked at the efficacy of treatment at reducing aphasic naming errors too. Two 

severely aphasic patients who made frequent semantic errors in both spoken and written 

naming were studied, but contrasting patterns of errors across a variety of tasks revealed that 

their naming errors arose from different deficits underlyingly. Whilst patient 1’s errors were 

said to be caused by a single, semantic deficit, patient 2’s errors were said to have two sources 

(an inability to retrieve the correct phonological representations from the lexicon for spoken 

naming and an inability to maintain the graphemic representation of the word when it was 

being written). Because patient 2’s errors are caused by a mixed deficit, I shan’t be including 

the results of their treatment in the analysis. The results of treatment for patient 1 will still be 

considered, however, and so we’ll look at their case report in more detail in what follows. 

 

Patient 1 was a 51 year old, college educated male who’d suffered a thromboembolic stroke 

three months prior to the investigation. A computerised tomography (CT) scan revealed that 

this was due to infarction in the left fronto-parietal area of his brain, and a right hemiplegia 

followed (which resolved over the course of the next two weeks to a mild paresis of the right 

arm only). Patient 1’s ambulation improved to a normal gait but apraxia persisted, and by the 

time he’d reached seven weeks post-onset it was clear that his expression and comprehension 

of language was compromised. On the Minnesota Test for Differential Diagnosis of Aphasia 

(which tests comprehension), patient 1 was able to point to named objects with only 30% 

accuracy, his yes or no responses to acontextual questions were only at chance level of 

accuracy and his reading comprehension was severely impaired too. Most errors made on 

word to picture matching tasks were semantic confusions (e.g. dog for cat), and when tested 

on a total of 144 items with a series of tasks (spoken naming, written naming, reading aloud, 

writing to dictation, spoken word to picture matching and written word to picture matching) 
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around 40% of his responses for each were errors (most of which were semantic as can be 

seen in Table 5.7): 

 

 

Task Error rate (%) Semantic errors (%) 
Spoken word to picture 
matching 

42.4 40.3 

Written word to picture 
matching 

36.8 27.1 

Spoken naming 44.4 40.9 
Written naming 46.5 34.7 
Writing to dictation 41.7 27.7 
Reading aloud 41.7 36.1 

 
Table 5.7 Patient 1’s performance on lexical tasks (where the stimuli for each task was 144 
names for or pictures of concepts) 
 

 

Patient 1’s homogenous pattern of semantic errors across all six tasks, Hillis (1989) said, 

indicated a unitary impairment in semantics – an impairment which went on to be treated with 

phonological therapy. 

 

A set of 50 black and white line drawings of objects and events that were familiar to the 

patient served as stimuli in the phonological therapy. Patient 1 was asked to name all 50 

stimuli in three consecutive sessions, and the ten he was unable to name each time were 

selected for treatment. The remaining 40 were used as controls, to measure the efficacy of the 

treatment. Change in performance on naming across the spoken and written modalities was 

evaluated. Patient 1 was presented with a random picture from the stimulus set (of ten items) 

followed by the following hierarchy of cues (adapted from Hillis 1989: 634) until the target 

was written accurately: 

 

6. Pictured stimulus (independent written name). 

5. Scrambled anagram and two distractors. 

4. Scrambled anagram without distractors. 

3. Initial letter cue. 

2. Spoken name (correct writing to dictation). 

1. Written name presented briefly (correct delayed reproduction). 
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The subject was then asked to say the word, but no feedback was given about whether they 

had done either of those things rightly or wrongly. The percentages of accurately written and 

spoken names produced in response to the picture stimuli were recorded, and results showed 

that not only did both oral and written naming improve significantly with phonological 

treatment on trained words, but that this generalised to untrained words as well. This, of 

course, isn’t consistent with what a massively modular model of semantics would predict. If 

semantics were massively modular, then it would have to be domain specific, and, as I’ve said 

before, if semantics were domain specific, then it wouldn’t be able to operate on input 

irrelevant to its function as it does here with phonological information. 

 

4.2.1.2.3 Hillis and Caramazza (1994)  

Hillis and Caramazza, meanwhile, present a series of single subject studies of brain-damaged 

patients who each make semantic errors in naming. A cognitive analysis of each case’s 

performance provided evidence to propose relatively selective impairment to components of 

lexical processing, but whilst Hillis and Caramazza diagnosed cases (KE and JJ) as having 

one primary deficit (a semantic impairment) they diagnosed two others (HW and SJD) as 

having word retrieval impairments that were due to damage to two levels of lexical processing 

(at the level of one modality specific output lexicon (the phonological for HW and the 

orthographic for SJD) and to sublexical procedures for converting sound to print and print to 

sound). PM, on the other hand, who was their fifth patient, was diagnosed with substantial 

impairments in accessing information from both the phonological and orthographic lexicons 

and in using orthography to phonology and phonology to orthography procedures. 

 

Neither the results from HW and SJD’s cases nor the results from PM’s will be included in 

my own data analysis. Attention will be paid to KE and JJ, however, and so I describe their 

diagnoses and treatments here. KE was a 51 year old, well educated (to college level) male 

who suffered a left fronto-parietal infarct six months prior to the study. His identical pattern 

of performance across lexical tasks was interpreted as evidence for selective impairment to 

the semantic system. A set of 144 items were presented to him for spoken naming, written 

naming, writing to dictation, reading aloud, spoken word to picture matching and written 

word to picture matching and of all the incorrect responses that KE made, nearly all were 

semantic.  

 

A set of 50 drawings of familiar objects (to test nouns) and 10 drawings of familiar actions (to 

test verbs) was presented for consecutive oral and written naming without feedback. When the 
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patient was unable to name the item, a hierarchy of phonological cues were provided. 

Following a correct response, each of the cues were provided again but in reverse order, until 

the patient was able to produce the name for the item independently when looking at the 

picture, and results showed that treatment with the phonological cueing strategy resulted in 

improved naming of both trained and untrained items for KE. 

 

JJ, on the other hand, was a 67 year old ex-corporate executive who sustained a left temporal 

and basal ganglia stroke 9 months before he began treatment with Hillis and Caramazza 

(1994). Like KE, JJ had a college education (2 years) and also like KE, he showed selective 

damage to the semantic component of lexical processing. On the lexical tasks that were 

presented to KE, JJ also showed frequent semantic errors, though whilst KE showed semantic 

errors across all categories of words, KE showed semantic errors across all categories of 

words but animals. According to Hillis and Caramazza (1994) this could be explained by 

assuming selective damage to the semantic system that selectively spared semantic 

representations. Why or how that would occur they didn’t know, but they did stress that 

unlike PM, his ability to use sublexical sound to letter and letter to sound mechanisms was 

spared. The effects on spoken naming performance on two different types of treatment were 

compared, a semantic word to picture matching treatment and a phonological cued reading 

treatment. Results of the two treatment approaches showed that whilst the semantic treatment 

facilitated JJ’s ability to name items (of the 20 pictures that were presented to JJ for naming 

an average of one or two (and therefore 10-20% of) items he was unable to name before 

treatment he was able to following it) a change in picture naming performance wasn’t seen for 

JJ with the phonological treatment.  

 

The fact that JJ has semantic anomia which was treated by semantic therapy but not 

phonological therapy suggests, to my mind, that semantics is indeed domain specific (and so 

massively modular). KE’s result, on the other hand, was inconsistent with a thesis of massive 

modularity, for word retrieval in her semantic anomia was facilitated by phonological therapy. 

This suggests that the information semantics operated on, in this case, wasn’t relevant to its 

function.  

 

4.2.1.2.4 Pederson et al. (2001) 

Pederson et al. (2001) investigated the effects of computerised rehabilitation of anomia in 

aphasia with three single case studies. The therapy was carried out in the patients’ own homes 

without the presence of a speech and language therapist, and it wasn’t overseen by any other 
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clinician, family member or friend either. Just like I excluded Marshall et al. (1990)’s 

unsupervised group study from my analysis, then, so too will I exclude this one. I also 

exclude this one because the patients were selected from the neurological departments of the 

Bispebjerg and Hvidovre hospitals in Copenhagen, Denmark and through the Danish Stroke 

and Aphasia Association, meaning that the Western Aphasia Battery (WAB) (Kertesz 1982) 

and Psycholinguistic Assessment of Language Processing Abilities (PALPA) (Kay et al. 

1992) tests used in the assessments of their anomias had to be translated from English and 

adapted for Danish for use in this study.  

 

Whilst I’ve listed Pederson et al. (2001) as one of the studies excluded in Table 5.2, given that 

my reason for doing so didn’t have to do with the patients’ impairments and treatments being 

mixed or the patients’ impairments and treatment outcomes being unknown (as the rest of 

them do) I decided to elaborate here. No more will be said about Pederson et al. (2001) now, 

and so I’ll turn my attention to Raymer and Ellsworth (2002). 

 

4.2.1.2.5 Raymer and Ellsworth (2002) 

Raymer and Ellsworth (2002) compared the effects of semantic and phonological therapies on 

verb retrieval in a patient (WR) with semantic verb retrieval impairments. Accuracy of picture 

naming was examined on trained and untrained verbs before and after therapy, and results 

showed that the treatments significantly improved naming (with trained verbs showing a 

significant improvement and untrained verbs no improvement). The effects of a rehearsal type 

of treatment were also studied, but since this involved repetition of targets only it had to with 

post-lexical processing (i.e. phoneme assembly) it doesn’t meet the criteria to be included in 

my analysis. 

 

The star of the single subject investigation WR was a 54 year old woman who discontinued 

schooling aged 13 to become a hairdresser. A left hemisphere CVA left her with a right 

hemiparesis and non-fluent aphasia that was marked by word retrieval difficulties. A CT scan 

taken at the time of the CVA revealed a left dorsolateral frontal lesion which encompassed a 

portion of Broca’s area (as well as the anterior insular region and subcortical white matter), so 

it made sense that her aphasia was one that caused problems with production. Standardised 

testing with the WAB (Kertesz 1982) 3 months post-stroke led to a more formal diagnosis of 

transcortical mortal aphasia, and results of the Bosting Naming Test (owing to Kaplan et al. 

1983) and Action Naming Test (Obler and Albert 1986), respectively, indicated that her 

naming problems had more to do with verbs than they did nouns (naming for nouns was 
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affected minimally for her level of education (44/60 correct) whereas picture naming for 

verbs was quite a way reduced (37/62 correct)). 

 

To evaluate her word retrieval difficulties further, WR was tested on a noun and verb battery 

made up of 30 verbs and two sets of 30 nouns. The battery included four tasks, the first two 

owing to Zingeser and Berndt (1990) and the other two to Williamson et al. (1995) which 

Raymer and Ellsworth (2002: 1034) described as follows: 

 

(1) Picture naming: WR viewed each of the 90 black and white line drawings of the noun 

and verb stimuli and provided a one word label for the object or action depicted in 

each picture. 

(2) Sentence completion: The examiner read aloud a phrase as WR also read along. She 

then completed each of the 90 sentences with an appropriate noun or verb. 

(3) Crossmodal picture-to-word matching: WR pointed to one of three words that 

corresponded to the target picture (e.g., write). In the related condition, both distractor 

words were semantic coordinates of the 90 targets (e.g., read, draw), and in the 

unrelated condition, both distractor words were unrelated to the 90 targets (e.g., ask, 

take). 

(4) Picture-picture associate matching: WR pointed to one of two pictures that was most 

closely related to a target picture (e.g., baking a pie). The distractor pictures were 

semantic coordinates of the 90 correct pictures in one condition (e.g., correct—grilling 

a steak; distractor—peeling a potato) and were unrelated in a second condition (e.g., 

correct—peeling a potato; distractor—leaking water). For half of the picture associate 

pairs, in the unrelated condition, the distractor picture from the unrelated condition 

became the correct answer when a completely unrelated foil picture replaced the other 

associate picture. 

 

WR’s results on the battery are displayed in Table 5.8: 
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Task Nouns Verbs 
Spoken picture naming 52/60 22/30 
Sentence completion 52/60 24/30 
Picture-picture associate match   
 Related 45/60 21/30 
 Unrelated 57/60 39/30 
Crossmodal picture-word match   
 Related 56/60 28/30 
 Unrelated 60/60 30/30 

  
Table 5.8 Number of items correct for WR on the Florida Noun/Verb Battery, a set of lexical 
tasks for noun and verb comprehension and retrieval (adapted from Raymer and Ellsworth 
2002: 1035) 
 

 

To determine whether her naming impairments related to the semantic or phonological level 

of language processing WR’s performance on picture matching tasks (which rely on semantic 

processing for correct responses) was examined, for impairment on them would suggest that 

semantic dysfunction contributed to her naming difficulties. It was found that her 

performance was slightly below levels observed with normative subjects. This led Raymer 

and Ellsworth (2002) to conclude that WR’s word retrieval deficits were at the semantic level 

of language processing, and after that, they began her treatment. 

 

WR was asked to name 222 black and white line drawings of various actions. Responses that 

were the target or a synonym for the target were accepted as correct. Analysis of WR’s errors 

in two baseline tests indicated that WR made 44-45% errors in verb naming and on the basis 

of this performance, 60 verbs that WR had consistent difficulty in naming were selected as 

experimental stimuli. The 60 items were split into three groups: 20 for use with phonological 

treatment, 20 for use with semantic treatment and 20 for a control set (which later became the 

rehearsal treatment set, though this has no place in this thesis).  

 

WR was given two to three 1 hour sessions per week over the course of four months. In 

treatment phase 1, WR underwent phonological treatment for the first set of verbs and after a 

week-long break underwent semantic treatment with the second set. In both the phonological 

and the semantic treatment, WR was presented with a picture to name aloud and given 

feedback with regards to her response accuracy. When her response was inaccurate, she was 

asked two questions designed to help her develop a word retrieval strategy consistent with 

that of a normative subject’s. In phonological treatment, the questions encouraged WR to 

think about the sounds of the target words (e.g. for the word pay she was asked an initial 
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phoneme question ‘Does pay start with [p]?’ and a rhyming word question ‘Does pay sound 

like way?’) and in semantic treatment, the questions encouraged her to think about the 

meanings of them (e.g. for bake the coordinate verb question ‘Is this similar to grilling?’ was 

asked, as was the associated noun question ‘Does this have to do with pie?’). 

 

Results showed that when phonological treatment was applied to the first set, MR’s verb 

naming performance rose from an average of 8.33% correct in the baseline sessions to a 90% 

correct criterion level, which was found to be statistically significant on a McNemar’s test (x2 

= 14.06, p < 0.001). This is clearly inconsistent with what a domain specific and therefore 

massively modular model of phonology would predict. WR also saw her verb naming 

performance improve with semantic treatment, though: when semantic treatment was applied 

to the second set an average of 17.5% correct across the baseline sessions rose to a 100% 

criterion level thereafter and a significant McNemar’s test result was found for this too: (x2 = 

13.07, p < 0.001). 

 

4.2.1.3 Primarily phonological tasks  

4.2.1.3.1 Fink et al. (2002) 

Now, although Fink et al.’s (2002) study is to be excluded from my analysis it’s worth 

mentioning here because my reasoning for excluding it is more complicated than that of other 

studies. Fink et al. (2002) assessed the benefits of a computer delivered, hierarchical 

phonological cueing protocol under two conditions of instruction with six different patients: 

(1) with full clinician guidance for GM, AS, and BM, and (2) with full independence for EL, 

EG and RH. Since no speech and language therapist was present during the second condition 

of instruction with EL, EG and RH, I’ve decided to exclude the results of it from my analysis, 

but I’ve also decided to exclude the results of those that were clinically guided (GM, AS and 

BM) too, but for reasons having to do with their deficits.  

 

Testing revealed that GM’s primary locus of impairment was at the level of phoneme 

assembly, which meant that he had to be excluded from the analysis because his impairment 

was neither semantic nor phonological. While AS and BM’s primary deficits were at the 

access to phonological output lexicon level of language processing, however, both of them 

had some involvement of the semantic system meaning that their impairments were mixed 

and they couldn’t be studied.  
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This meant that for a number of different reasons, not one of the six patients studied in Fink et 

al. (2002) could be included in my analysis: GM’s impairment was post-lexical, AS and BM’s 

impairments were mixed, and when it came to EL, EG and RH regardless of their level of 

impairment (which were mixed as well, actually (impaired access to the phonological output 

lexicon and phonological encoding (that is, phoneme assembly)), a deficit in phoneme 

assembly and a deficit in accessing phonology from semantics, respectively), not one of them 

could be considered because of the study design that their therapy revolved around (they were 

part of a self-guided group). 

 

4.2.1.3.2 Hickin et al. (2002a) 

Hickin et al.’s (2002a) study set out to investigate whether the use of phonological and 

orthographic cues in the treatment of word finding difficulties was effective or not. The study 

used a case series design, and the participants involved were 8 people with acquired aphasia 

who were all at least a year post-onset, had a single left CVA and had word finding 

difficulties as a significant symptom of their aphasia. Detailed assessment of each participant 

was carried out to diagnose the type of aphasia they had (see Table 5.9), but a diagnosis of the 

impairment underlying the word retrieval difficulty was only made for 4 of the 6 (PH, DC and 

NK (who were all diagnosed as having difficulties with mapping between semantics and 

phonology, that is, a deficit with access to the phonological output lexicon) and SC (who was 

diagnosed with two sources of word retrieval difficulties, problems at the semantic level of 

language processing and problems with phoneme assembly)).  

 

 

Participant Years post-onset Age Aphasia type 
HM 6 45 Broca’s 
PH 3 77 Anomic 
SC 5 65 Mixed/Wernicke’s 
DC 5 70 Anomic 
OL 2 65 Anomic 
NK 3 52 Anomic 
IK 3 68 Broca’s 
KR 8 38 Broca’s 

 
Table 5.9 Background information for the participants included in the study, including 
aphasia type as assessed by the Comprehensive Aphasia Test (Swinburn et al. 2004) (adapted 
from Hickin et al. 2002a: 986) 
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Since SC’s impairment diagnosis was mixed and a diagnosis of impairment wasn’t given for 

GM, OL, IK or KR, I shan’t be including any of them in my data analysis. I’ll be concerning 

myself with the results of PH, DC and NK only, who, interestingly, were said to be the three 

who benefited most from therapy. 

 

The study consisted of three phases of around eight weeks in length. First, there was an 

assessment phase, and after that, there was a treatment phase (which focused on improving 

word finding by using phonological cues in a picture naming task). Progress was monitored 

over a number of assessments, with one at the beginning and one at the end of the study. 

 

As part of phase 1, naming was assessed using a set of 200, black and white line drawings. 

Naming was tested at the beginning and the end of the assessment phase to establish baseline 

naming performance. Written naming was assessed using a subset of items (40 in total) taken 

from the set and comprehension, auditory discrimination, short-term memory, reading and 

repetition were assessed using the tests detailed in Table 5.10: 

 

 

Test n Participants 
PH DC NK 

Picture naming tests 1 and 2: mean 200 0.36 0.67 0.56 
Semantic tests 
CAT spoken word to picture matching test 30 0.93 1.00 0.93 
CAT written word to picture matching test 30 0.97 0.97 0.97 
Pyramids and Palm Trees test (three picture version) 52 0.90 0.92 0.87 
Picture naming: semantic errors as a proportion of total errors  0.25 0.50 0.33 
Phonological tests 
ADA auditory discrimination test 40 0.68 0.85 0.90 
Short-term memory test: phoneme span  2.50 2.30 2.70 
Repetition of words 152 0.97 0.95 0.99 
Repetition of nonwords 26 0.58 0.50 0.81 
Repetition of nonwords: initial phoneme correct 26 0.88 0.85 0.96 
Picture naming: phonological errors as a proportion of total errors  0.05 0.11 0.00 
Reading real words 152 0.97 0.97 0.92 
Reading nonwords 26 0.35 0.15 0.08 
Reading nonwords: initial phoneme correct 26 0.85 0.92 0.92 

 
Table 5.10 Participants’ performances on a number of background assessments (adapted from 
Hickin et al. 2002a: 987) 
 

 

During the treatment phase, 200 items were divided into two sets, one a treatment set and one 

a control one. The treated set was divided again into two sets of 50 (one to be treated with 
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phonological cues and the other orthographic), and assessments were made before and after 

treatment to test the treatments’ efficacies.  

 

As I said earlier, treatment took place for around 8 weeks, with each session lasting around 

one to one and a half hours. Items were presented for naming, and if they were unsuccessfully 

retrieved so too were the phonological or orthographic cues. In the phonological cueing 

therapy, the first phoneme (plus schwa) and an unrelated distractor were presented first and if 

the patient was still unable to retrieve the target the phonological information provided in cues 

increased to the first syllable and then the whole word. In the orthographic cueing therapy the 

same process was followed, except instead of the cues being spoken by the therapist they 

were written down by them.  

 

As a result of the treatment, eight participants (including PH, DC and NK) showed a 

significant improvement in naming the treated items. Only one showed significant 

improvement on the untreated items (DC), but all three showed overall more significant 

improvement on the treated items than the untreated items, which is consistent with a 

massively modular model of phonology that requires its domain specificity. None of the 

participants showed a significant advantage of one cue over the other. 

 

4.2.1.3.3 Hickin et al. (2002b) 

Hickin et al. (2002b) investigated the effects of phonological treatment on word finding in 

aphasia too. They present the results of therapy from two patients: HM and PH. HM is a 

married male with two children in his forties who was working as a carpenter/cabinet maker 

when he suffered a single, left hemisphere stroke 5 years prior to his involvement in the study. 

Following his stroke HM and his wife separated, meaning he gets to see his children less 

often than he would have liked to. Living alone now in a flat, he attends a day care centre 

three times a week, where he’s busy building a model railway. HM’s other interests include 

steam trains and rock music, and he is said to have an expressive aphasia (that is, an aphasia 

that causes problems with production). 

 

PH, meanwhile, is a seventy something year old female, who has lived in London all her life 

but now lives there in sheltered accommodation. PH is very sociable, engaging in bingo, 

lunches and day trips out to the south coast. PH has a large and supportive family that live 

nearby, with whom she has regular contact. Like HM, PH is said to have suffered a left 

hemisphere stroke three years before being involved in the study. PH’s diagnosis is of 
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aphasia. Unlike HM, her expressive speech is fluent, and she frequently experiences word 

finding problems. 

 

Table 5.11 shows the results of the assessments that were carried out to diagnose the specific 

deficits in language processing that led to HM and PH’s aphasias. 

 

 

Deficit HM PH 
1. Naming 200 pictures 
(number of correctly named 
items) 

44 36 

2. CAT spoken word to picture 
matching (n = 30) 

100 93 

3. CAT written word to picture 
matching (n = 30) 

87 97 

4. Pyramids and Palm Trees (n 
= 52) 

94 90 

5. Percentage of semantic 
naming errors (out of total 
naming errors) 

52 25 

6. Imageability effect in 
naming 

N Y 

7. ADA spoken discrimination 
(n = 40) 

82 68 

8. Short-term memory 
phonemes 

1.4 2.5 

9. Repetition of words (n = 
152) 

73 97 

10. Repetition: non-words (n = 
26) 

31 58 

11. Repetition non-words: 1st 
phoneme correct (n = 26) 

54 88 

12. Percentage of phonemic 
naming errors (out of total 
naming errors) 

20 5 

13. Length effect in naming Y N 
14. Reading words (n = 152) 70 97 
15. Reading non-words (n = 
26) 

0 35 

16. Reading non-words: 1st 
phoneme correct 

38 85 

17. Written naming (n = 25 for 
HM and 40 for PH) 

16 38 

 

Table 5.11 Language assessment in percentages prior to therapies (from Hickin et al. 2002b: 
72) 
 



 174 

Hickin et al. (2002b) concluded of the results that whilst HM and PH both made semantic 

errors in naming, neither of them had semantic processing deficits. HM’s difficulties with 

naming and repetition, coupled with the fact that his naming was affected by length led 

Hickin et al. (2002b) to conclude that his deficit could either have been in phonology or in 

access to the output lexicon, and so I will eliminate him from my own analysis because his 

exact diagnosis is unclear. PH, meanwhile, was said to have a deficit in access to the 

phonological output lexicon. Her superior performance to HM’s in reading and repetition 

suggested to Hickin et al. (2002b) that her output phonology was intact but not easily 

accessed, and this, together with the fact that her semantic processing was relatively intact as 

well, led to a diagnosis of a phonological access deficit in the mapping of semantics to 

phonology. 

 

Phase 1 of treatment (which was phonological) focused on picture naming involving a choice 

of cue. In the second phase of treatment, Hickin et al. (2002b) moved away from picture 

naming, however, instead encouraging the use of targeted words in interaction related to PH’s 

interests. During phase 1 of treatment, 50 words were treated with phonological cues. When 

PH was unable to name a picture (or made an error in picture naming), she was exposed to the 

first sound of the word along with that one or more distractors. Targets and distractors were 

matched for syllable structure but were different in terms of their first sounds, as well as not 

being semantically related to the target, e.g. banana and piano for tornado. In phase 2, on the 

other hand, the emphasis was on the use of target words in everyday speech. Tasks included 

naming to definition, naming in a pseudo-realistic speech situation, making lists, reminiscing, 

telling anecdotes and conversational discourse around certain subjects. In all of the sessions, 

PH had access to pictures and written semantic cues if they needed them. It’s clear, them, that 

phase 2 of PH’s treatment, although semantically targeted, would involve some implicit 

phonological activation. For this reason, I have decided to define that phase of treatment as 

being mixed (semantic-phonological) and have struck it from my analysis. Results showed 

that PH made gains in picture naming in phase 1 (the phonological task). 

 

4.2.1.3.4 Jokel and Rochon (1998) 

In Jokel and Rochon (1998), finally, treatment for an aphasic patient PD with severe naming 

difficulties is described. The 90 year old woman (who had suffered a left frontal haemorrhage 

in the July of 95)’s initial diagnosis was of global aphasia with a probable phonological 

output impairment, but Jokel and Rochon (1998) went on to conduct a number of assessments 

on to confirm whether or not this was the case.  
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Pictureable nouns were administered over four different tasks (confrontation naming, spoken 

word to picture matching, repetition and reading aloud). In the confrontation naming tasks 

PD’s ability to name 134 items was tested three times in three separate sessions to establish a 

baseline naming performance for her (this was only 10% correct). Another set of 120 items 

were used in the word to picture matching, repetition and reading aloud tasks, and PD 

achieved 100% in the naming of these items. Because of the pervasive word retrieval deficit 

and having demonstrated intact comprehension, repetition and reading aloud performance for 

stimuli she was unable to retrieve in confrontation naming, it was hypothesised that she had 

an impaired phonological output lexicon. 

 

Three different types of phonological treatment were provided: repetition, reading and 

sentence completion. The 120 (above) words were divided into four separate sets, with 30 in 

each of the treatment conditions (e.g. repetition (30), reading (30) and sentence completion 

(30)) and 30 acting as a control group. Treatment on each set was given for five days, with all 

three types of treatment being provided each day. Performance on a confrontation naming 

task which contained all 120 items was measured before and after each treatment condition, 

and it was found that confrontation naming pre- vs. post-repetition was 0/30 vs. 2/30, pre- vs. 

post-reading 4/30 vs. 12/30 and pre- vs. post-sentence completion 2/30 vs. 0/30. The only 

significant difference found was for that of the reading treatment (Fisher’s Exact test p = 

0.04), and when it came to the sentence completion treatment, the post-treatment score was 

lower than the pre-treatment, suggesting that treatment had the opposite effect of what was 

wanted. 

 

This left a total of 10 case studies made up of 18 participants and 24 results that were relevant 

to this thesis: 
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Paper Participant Impairment Treatment Outcome (treated) 
Primarily semantic tasks 
Marshall 
et al. 
(1990) 
 
 

RS Phonological Semantic Yes 
IS Semantic Semantic Yes 
FW Semantic Semantic No 

Marshall 
et al. 
(1998) 
 
 

CM Phonological Semantic No 
Semantic No 

Nettleton 
and Lesser 
(1991) 

PD Semantic Semantic Yes 
FF Semantic Semantic No 
DF Phonological  Phonological Yes 
MC  Phonological  Phonological Yes 

Semantic and phonological tasks 
Best et al. 
(1997) 

JOW  Semantic Semantic  
(Study 1: semantic 
therapy 

Yes 

Phonological (Study 2: 
cueing aid therapy) 

Yes 

Hillis 
(1989) 

Patient 1 Semantic Phonological  Yes 

Hillis and 
Caramazza 
(1994) 

JJ Semantic Semantic Yes 
Phonological No 

KE Semantic Phonological  Yes  
Raymer 
and 
Ellsworth 
(2002) 

WR Semantic Phonological Yes 
Semantic Yes 

Primarily phonological tasks 
Hickin et 
al. (2002a) 

PH Phonological Phonological  Yes 
DC Phonological Phonological  Yes 
NK Phonological Phonological  Yes 

Hickin et 
al. (2002b) 

PH Phonological Phonological (phase 1) Yes 

Jokel and 
Rochon 
(1998) 

PD Phonological 
 
 

Phonological No 
Phonological Yes 
Phonological No 

 
Table 5.12 A breakdown of the 10 single case studies of word retrieval relevant to this thesis 
 

 

Some others had to be struck out too though, along the way. This was a decision that was 

made on statistical significance grounds, and so I go on to explain that in what follows in 

4.2.2. 
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4.2.2 Outcome classification (treated vs. untreated) 

Now, something needs to be said about the outcome column here. In this thesis, I chose to 

classify therapies as having treated anomias when the patients’ naming was better on a set of 

items post-therapy than it was pre-, and the improvement was found to be statistically 

significant. When patients named a set of items better after they’d received therapy for their 

anomia than they had before but no statistical significance was found, then the classification 

of not-treated was given. Rather self explanatorily, though, if the number of correctly named 

items stayed the same before and after therapy or if fewer items were correctly named after it 

than there were before the patient received therapy for their anomia, the therapy was 

classified as having not treated the patient. 

 

However, whilst some researchers calculated statistical significance in this way (i.e. through 

tests that made use of 2x2 contingency tables to see whether there existed a relationship 

between the independent variable (otherwise known as the cause, which in this case was 

treatment (pre- and post-)) and the dependent variable (otherwise known as the effect, which 

was of course, in this case was outcome (number of items named correctly and incorrectly)) 

such as the chi-squared test or Fisher’s exact test, for example (Kim 2017), others were more 

interested in whether the effects observed could be generalised to control items (e.g. Marshall 

et al. 1990), and so didn’t calculate statistical significance in the way that is of interest to this 

thesis. When this was the case (or when statistical significance wasn’t calculated at all, for 

that matter), I made sure to extract the data myself from the studies (well, where I was able to 

at least), in order to calculate the statistical significance of the effects of treatment on outcome 

using the Fisher’s exact test calculator within the SPSS statistical package for Mac.9 

 

4.2.2.1 Marshall et al. (1990) 

As I pointed out in section 4.2.1.1.1 Marshall et al. (1990) did indeed find their results for RS 

to be statistically significant, but the statistical significance reported had to do with whether 

his performance on treated items was better than that on untreated items. Now, whilst this was 

interesting from a qualitative perspective in that it looked like his naming improved with 

treatment, in order to make for a fair test I had to see whether this could be supported by 

statistics by running the numbers of items he did and didn’t name pre-treatment and post-

treatment through a Fisher’s exact test in SPSS. This was easy enough to do as the authors 

 
9 An explanation of why the Fisher’s exact test was used is given in 4.2.3.1. 
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made it known to the reader that in the to-be-treated set of 25 items, only 8 were named 

correctly pre-treatment compared with 20/25 post-.  

 

The effect observed was one that could be considered statistically significant; a p value of 

0.0014 was produced (which is <.05 (the p value taken to be the level of statistical 

significance in the social sciences)) and, as such, the semantic therapy for phonological 

anomia, in this case, was classified as having treated it. 

 

The results reported by Marshall et al. (1990) for patients IS and FW were again not really 

relevant to this study, and so I conducted Fisher’s exact tests for those too to see whether 

there was a relationship between treatment and naming for them. Marshall et al. (1990) point 

out in their paper that IS’ score on Group 1 items prior to therapy was 10/25 and after it 

22/25, which gives us a significant result: p = 0.0009 and so the semantic therapy for IS’ 

semantic anomia was classified treated too. It was said about FW meanwhile, that she scored 

8/25 on a set of items pre-treatment and 11/25 on the same set after 3 weeks of treatment. 

This, as one would probably predict, produced a statistically insignificant result (of p = 

0.5607), and so I classified the semantic therapy that was used to facilitate word retrieval in 

FW’s anomia as untreated. 

 

4.2.2.2 Marshall et al. (1998) 

Marshall et al. (1998), on the other hand, didn’t test for statistical significance – but then 

again, nor did they have to. CM, who had phonological anomia, received two types of 

semantic treatment. In one experiment (experiment 5) semantic treatment made no difference 

to naming (6/40 items were named correctly pre-treatment and the same number again, 6/40, 

post-treatment), and in the other (experiment 6) CM was actually worse at naming after 

treatment than they were before (13/40 and 11/40 items were correctly named pre- and post-

treatment, respectively). This led me to classify neither the first nor the second treatment as 

having treated CM’s phonological anomia without further tests for statistical significance, as 

can be seen in Table 5.12. 

 

4.2.2.3 Nettleton and Lesser (1991) 

Nettleton and Lesser (1991) conducted their tests of statistical significance in the same way 

that I would have. They compared the number of items that were named pre- and post-

semantic treatment by each of the semantic subjects (PD and FF), and before and after 

phonological treatment by the patients with phonological anomia (DF and MC). As I said in 
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section 4.2.1.1.3 results indicated that semantic treatment did indeed facilitate word retrieval 

in semantic anomia in PD’s case (14% of the items were named correctly pre-treatment 

compared with 36% post-), and these results were found to be statistically significant by 

Nettleton and Lesser (1991) (p < 0.05 (x2 =4.840)) which led me to immediately classify 

semantic therapy as having treated semantic anomia in the case of PD.  

 

For FF, though, whose anomia was also semantic, although some improvement was seen in 

naming following therapy (6% of items were named after compared with 2% before), the 

results did not reach significance. Thus semantic anomia was classified as having not treated 

semantic anomia in this case. 

 

For DF, whose anomia was phonological, scores were significantly better after semantic 

therapy than they were before (x2  = 5121; p = 0.025). Before therapy for DF, percentage 

success in naming was 20% and after therapy it was 46%, so a classification of treated was 

given. 

 

Last but by no means least MC, who like DF was a phonological anomic who received 

phonological therapy, performed significantly better after it than she did before (x2 = 6.428; p 

= 0.01). Their percentage success went from 20% to 50% before and after naming and so their 

therapy, like PDs and DFs, was classified as having treated anomia in this instance. 

 

4.2.2.4 Best et al. (1997) 

Now, Best et al.’s (1997) report required me to calculate statistical significance for their 

results too, because although for JOW, a patient with semantic anomia, they found 

phonological therapy to significantly facilitate word retrieval (taking him from an average of 

8% of items named correctly before treatment to an average of 40% (without an aid) after it 

(Wilcoxon, z = 3.86, p = 0.01)), when referring to the before and after results of semantic 

therapy, they reported that semantic therapy significantly improved naming but did specify 

what p value led them to come to that conclusion.  

 

Statistically significant results for phonological therapy’s (p = 0.0003) and semantic therapy’s 

(p = 0.0178) effects on naming were found through Fisher’s exact tests (after the percentages 

were put back to raw token numbers, that is) by myself, however. And so I made sure to 

classify the two as having treated the patients’ anomias. 
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4.2.2.5 Hillis (1989) 

It was when I looked into the statistical significance of Hillis (1989) that I really ran into 

problems. Not only did Hillis not report raw token numbers for items named before and after 

treatment, the percentages provided were done so on two figures which were difficult to 

decipher. As such, I made the decision to exclude this study from my own, which is why it’s 

missing from Table 5.12. I couldn’t conclude anything about how many words had been 

retrieved at each point with any accuracy at all, and I didn’t want to run the risk of any 

mistakes being made interpreting their results impacting my own. 

 

4.2.2.6 Hillis and Caramazza (1994) 

The semantic therapy that was used to facilitate word retrieval in JJ’s semantic anomia was 

classified as having successfully treated it, whereas the phonological therapy that was used 

was not. As Hillis did in her 1989 study, though, Hillis and Caramazza (1994) depicted JJ and 

KE’s performances pictorially. Percentages of correctly named nouns were plotted, but those 

percentages weren’t (for the most part) provided (and nor were the raw token numbers that 

those percentages were figured out from).  

 

Hillis and Caramazza (1994) did say, however, that phonological treatment did not facilitate 

word retrieval in JJ who had semantic anomia, and so I was automatically able to put that in 

the untreated pile. Semantic therapy, on the other hand, was said to improve naming in JJ 

though and a p value of <0.02 was reported, and so I classified that as having treated JJ’s 

anomia. Improvement in naming in KE was seen by Hillis and Caramazza (1994), but since 

no statistical tests were conducted by them nor were percentages/numbers reported to the 

reader that I could have used to carry out tests of my own, effects for KE were excluded. 

 

4.2.2.7 Raymer and Ellsworth (2002) 

Raymer and Ellsworth’s (2002) study didn’t need any intervention. Only one participant was 

involved (MR), and both the therapies she had (semantic and phonological) were found to 

facilitate word retrieval in her semantic anomia. WR saw her naming performance 

significantly improve from 17.5% correct to 100% correct with phonological treatment (p < 

0.001). Naming performance rose from an average of 8.33% of words named correctly pre-

treatment to a 90% correct criterion level for semantic treatment. This was found by Raymer 

and Ellsworth (2002) to be statistically significant also (again, p < 0.001), and so the semantic 

therapy was classified by myself as having treated her semantic anomia too. 

 



 181 

4.2.2.8 Hickin et al. (2002a) 

Hickin et al. (2002a), who studied the effects of phonological treatment on phonological 

anomia in three participants (PH, DC and NK) reported statistically significant results for all. 

PH saw an improvement to 55% correctly named items of 200 post-treatment from an average 

of 35% pre-, DC an improvement from 72% of 200 items correctly to 89% post-treatment and 

NK from 57% to 71% post-treatment. All 3 results were said to have generated p values of 

<0.01, and so the therapies were all classified as having treated phonological anomia in this 

thesis. 

 

4.2.2.9 Hickin et al. (2002b) 

In Hickin et al. (2002b), PH’s anomia was studied once more. They received phonological 

treatment. n equalled 50, and PH was able to name items an average of 34% of the time 

before phonological treatment compared with 60% of the items after it was administered. A 

Fisher’s exact test result comparing the 17/50 words named before treatment and 33/50 words 

after treatment (calculated by myself) ruled the increase statistically significant with a p value 

of 0.0025.  

 

4.2.2.10 Jokel and Rochon (1998) 

The final report’s results to be reviewed here, are that of Jokel and Rochon’s (1998) who 

compared the efficacies of three phonological therapies at treating phonological anomia in a 

participant called PD. 120 words were divided into 4 sets, and 3 of those were treated with 

repetition, reading and sentence completion. Scores for naming were reported as 0/30 vs. 2/30 

pre- vs. post-repetition, 4/30 vs. 12/30 pre- vs. post-reading and completion 2/30 vs. 0/30 pre- 

vs. post-sentence completion. With the third phonological treatment, then, a negative effect on 

naming was observed and so this was classified as not having treated PD’s phonological 

anomia. With the first two (repetition and reading) positive effects were observed, but the 

reading treatment was the only one a significant difference in naming (Fisher’s Exact test p = 

0.04) was found for, and so whilst the second treatment was classified as having treated PD, 

like the third treatment, the first was not. 

 

This left 9 case studies made up of 16 participants and 22 results to be quantitatively 

analysed: 
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Paper Participant Impairment Treatment Outcome (treated) 
Primarily semantic tasks 
Marshall 
et al. 
(1990) 
 
 

RS Phonological Semantic Yes 
IS Semantic Semantic Yes 
FW Semantic Semantic No 

Marshall 
et al. 
(1998) 
 
 

CM Phonological Semantic No 
Semantic No 

Nettleton 
and Lesser 
(1991) 

PD Semantic Semantic Yes 
FF Semantic Semantic No 
DF Phonological  Phonological Yes 
MC  Phonological  Phonological Yes 

Semantic and phonological tasks 
Best et al. 
(1997) 

JOW  Semantic Semantic  
(Study 1: semantic 
therapy 

Yes 

Phonological (Study 2: 
cueing aid therapy) 

Yes 

Hillis and 
Caramazza 
(1994) 

JJ Semantic 
 

Semantic Yes 
Phonological No 

Raymer 
and 
Ellsworth 
(2002) 

WR Semantic Phonological Yes 
Semantic Yes 

Primarily phonological tasks 
Hickin et 
al. (2002a) 

PH Phonological Phonological  Yes 
DC Phonological Phonological  Yes 
NK Phonological Phonological  Yes 

Hickin et 
al. (2002b) 

PH Phonological Phonological (phase 1) Yes 

Jokel and 
Rochon 
(1998) 

PD Phonological 
 
 

Phonological No 
Phonological Yes 
Phonological No  

 

Table 5.13 A breakdown of the 9 single case studies of word retrieval that I’ve included in my 
analysis 
 

 

4.2.3 A quantitative analysis of the case studies 

4.2.3.1 Statistical significance testing 

We can, of course, determine whether relationships exist between independent variables 

(otherwise known as causes) and dependent variables (otherwise known as effects) by testing 

for statistical significance. In data sets such as mine, where the distribution of one categorical 
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variable (in this case, treatment type) is to be compared with the distribution of another 

categorical variable (e.g. like mine, treatment outcome) either the chi-squared test or Fisher’s 

exact test tend to be used (Kim 2017). 

Now in order to determine whether a statistically significant relationship existed between 

treatment type (the independent variable) and treatment outcome (the dependent variable) in 

this thesis, a couple of tests (one looking at the relationship between treatment type and 

treatment outcome in patients with phonological anomia and another between treatment type 

and treatment outcome in patients with an anomia that was semantic) had to be conducted. 

The chi-squared test, however, should only be used in cases of large sample sizes, for it 

applies an approximation and mine (n=22) was definitely not that. Fisher’s exact test, on the 

other hand, runs a procedure that works for small sized samples too (Kim 2017), and so that 

was the one I used. 

I calculated the statistical significance of the effect of treatment type on treatment outcome in 

both phonological and semantic anomia with two Fisher’s exact tests using the SPSS 

statistical package for Mac; results and discussion can be found in the following section. 

4.2.3.2 Results and discussion 

Of the 9 studies I decided to include in my analysis, 22 different results for the effects of 

therapy type on anomia type were elicited. Results showed that phonological anomia could be 

treated with phonological therapy 7 times out of 9 (or 78%) of the time and semantic therapy 

1 out of 3 (33%): 

 

Therapy type Therapy result 

Treated Not treated 

Semantic therapy 1 2 

Phonological therapy 7 2 

Table 5.14 The effects of semantic therapy and phonological therapy at treating phonological 
anomia in the sample 
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Semantic anomia, on the other hand, could be treated with semantic therapy 71% of the time 

(5 times out of 7) and phonological therapy 67% (2 out of 3 times): 

 

Therapy type Therapy result 

Treated Not treated 

Semantic therapy 5 2 

Phonological therapy 2 1 

Table 5.15 The effects of semantic therapy and phonological therapy at treating semantic 
anomia in the sample 

 

 

This is interesting at first glance, because although phonological therapy looks to be much 

more effective than semantic therapy at treating phonological anomia, the fact that semantic 

therapy has a successful effect 33% of the time is indicative that the phonological processor is 

able to act on semantic input after all (a third of the time, in fact), which would suggest that 

phonology is neither domain specific nor massively modular. 

 

Fisher’s exact tests which considered the effects the two therapy types had on the treatment 

outcome in patients with semantic and phonological anomia showed that the above results 

weren’t statistically significant, however. The results for patients with phonological were p = 

0.2364, which, being >0.05 (the p value taken to be the level of statistical significance in the 

social sciences), counts as weak evidence against the null hypothesis, and so it is unlikely that 

there exists a relationship between treatment type and treatment outcome in patients with 

phonological anomia.  

The p value for the outcomes of therapy types happening by chance in people with semantic 

anomia was even greater at 1, which means that the result for people with semantic anomia is 

even less statistically significant than the one for people with phonological anomia is. For 

patients with semantic anomia, it is even less likely that treatment type and treatment outcome 

are related than they are for phonological anomia. 

Now, the reason I studied the efficacies of semantic and phonological therapies at treating 

semantic anomia when this thesis questions whether phonology can be considered a module 

of the mind is because, if both semantics and phonology were part of the grammar, we would 
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expect them to pattern the same way. Noel Burton-Roberts (2011) argues that phonology, in 

being grounded in phonetics, is neither modular nor part of the grammar (while semantics is), 

but since a treatment type/treatment outcome relationship was found for neither phonology 

nor semantics, this is indicative, to my mind, that whatever their statuses are, modular or 

ammodular, it’s likely that they’re the same – either both of them are parts of a modular 

grammar or neither of them are parts of a modular grammar. 

However, there are a number of variables at play here that have the ability to affect the 

statistical significance of these results. The size of the sample is the one that first comes to 

mind, but word frequency and length and orthography are known, in the aphasiology 

literature, to also affect naming and so I consider those in 4.2.3.2.1. It’s also important to 

consider the effects that publication bias (if there’s been any) could have on the conclusion I 

come to in this thesis, and so I will do that too in section 4.2.3.2.2. 

4.2.3.2.1 The effects on statistical significance 

4.2.3.2.1.1 Sample size 

When constructing a sample, one should really consider the number of results necessary to 

achieve representativeness of the sample in the wider context, but agreeing on the optimum 

number of subjects that guarantees this representativeness has always been a bit of an issue 

for linguists (Silva-Corvalán 2001). In early work, it was thought that linguistic behaviour 

was relatively homogenous so small samples would be sufficient to measure correlation (e.g. 

Labov (1966: 181) proposed that ‘10-20 instances of a given variable is sufficient to assign a 

value that fits into a complete matrix’), but more recently people (e.g. Milroy (1987)) have 

proposed that sample sizes this small are insufficient with Milroy (1987) arguing that n=30 

should be taken as the watershed between sufficient and insufficient samples. 

Of course, it should go without saying that the smaller the sample size the less sure we can be 

about the accuracy of the conclusions we draw from that sample, but as Milroy and Gordon 

(2003) rightly point out, sample sizes are partly dictated by practicalities (as mine was). A 

great deal of data was considered; it just wasn’t all relevant to the answering of my research 

question, it turned out. This is because clear cases of semantic anomia and phonological 

anomia are few and far between – as are purely semantic and purely phonological therapies. 

The ways in which researchers diagnosed phonetic disorders as phonological ones posed a 

problem too, as did the ways in which they tested for statistical significance. It makes sense to 

say then that while we can draw qualitative conclusions from my data sample (e.g. the fact 

that semantic therapy was found to treat anomia 33% of the time could cast doubt on theories 
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that phonology is a domain specific massive module), because n only equalled 22 (and the 

efficacies of only 3 semantic therapies at treating phonological anomia were considered) we 

should draw quantitative conclusions only tentatively. More robust results would be produced 

from a sample that was greater in size than mine, and so I suggest that for future research. 

 

4.2.3.2.1.2 Factors that affect naming 

4.2.3.2.1.2.1 Word frequency and length 

There have also been a number of other factors found to affect naming such as word 

frequency, word length, familiarity, age of acquisition, imageability and concreteness, 

operativity, and animacy (Nickels 1997). 

 

Newcombe et al. (1965), for example, found there to exist a linear relationship between the 

latency of word naming and the words to be named’s frequencies, with lower frequency 

words taking longer to name than higher ones. Something similar was seen in a number of 

other studies (e.g. Howes 1964; Rochford and Williams 1965; Butterworth et al. 1984; 

Howard et al. 1985), but whilst Newcombe et al. (1965) found there to be a negative 

correlation between word frequency and response latencies (as word frequency went up, 

response latencies went down), others found word frequency and naming accuracy to be 

positively correlated (the higher in frequency a word was, the more accurately it was named 

by participants). 

 

Nevertheless, despite the seeming robustness of these results, not everyone (e.g. Howard et al. 

1985; Caramazza and Hillis 1990; Nickels and Howard 1995) has found word frequency to 

affect naming. Nickels and Howard (1995), for instance, studied the effects of frequency on 

naming in 27 aphasic subjects and found that frequency was only a significant predictor of 

performance for 2 of them; the other 25 did not evidence any effects of frequency on naming. 

Nickels and Howard (1995) suggest that the stark contrast of their results compared with other 

people’s might well be because word frequency, in other studies, is oftentimes confounded 

with other variables (especially length, to which I’ll now turn). In order to determine the 

amount of variance accounted for by frequency alone, Nickels and Howard (1995) argue, 

authors would do well to conduct multiple regression analyses. 

 

With regards to word length, a negative correlation between that and naming accuracy has 

been found by most authors (Dubois et al. 1964; Goodglass et al. 1976; Caplan 1987; Ellis et 

al. 1983). As was the case with word frequency, though, not every aphasic has been found to 
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show an effect of word length on naming (EST, from Kay and Ellis (1987), didn’t, for 

example, and Best (1995) actually describes the case of a patient who showed a reverse length 

effect (that is, found shorter words harder to name than longer ones)). 

 

4.2.3.2.1.2.2 Orthography 

Now, regardless of whether word frequency and word length or indeed other variables which 

have the potential to affect naming that I briefly mentioned but that I didn’t go into in section 

4.2.2.2.1 (such as familiarity, age of acquisition, imageability and concreteness, operativity, 

and animacy (see Nickels (1997) for a thorough review) had an effect on naming in the 

participants in my data set, I am particularly interested in figuring out whether treating 

orthographic therapy as being phonological therapy might have affected the results also.  

 

Of the 7 studies that made use of phonological treatments (Nettleton and Lesser 1991; Hillis 

and Caramazza 1994; Best et al. 1997; Jokel and Rochon 1998; Hickin et al. 2002a; Hickin et 

al. 2002b; Raymer and Ellsworth 2002), 3 of them made use of graphemes as well as 

phonemes in the phonological treatment (Best et al. 1997; Hickin et al. 2002a; Hickin et al. 

2002b). In these 3 studies were 5 results, and so I excluded them from my analysis to see how 

much of an effect including orthographic treatments had. 4 had to do with phonological 

anomia, and, interestingly enough, it did affect the results, bringing the efficacy of 

phonological therapy at treating phonological anomia down to 60% of the time from 78%.  

 

 

Therapy type Therapy result 

Treated Not treated 

Semantic therapy 1 2 

Phonological therapy 3 2 

Table 5.16 The effects of semantic therapy and phonological therapy at treating phonological 
anomia in the sample (excluding those phonological therapies that made use of orthography) 

 

 

The effect of semantic therapy on phonological anomia stayed the same, of course, at 33% 

and so, with phonological therapies that make use of orthography excluded, there is even less 

of a difference between the efficacies of phonological treatments and semantic treatments at 
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treating phonological anomia, which could count as evidence that phonology is, indeed, 

ammodular. 

 

I will point out, though, that once again, the p value produced by a Fisher’s exact test was 1, 

which is, of course, not significant at p < 0.5. This means that, although we can conclude that 

spoken phonological therapies and semantic therapies have a similar success rate for the 

treatment of phonological anomia (3/2 compared with 2/2, respectively) in this particular 

sample, it is difficult to determine whether the same success rates would be seen beyond it. 

 

4.2.3.2.2 The effects of publication bias 

Publication bias is defined as the failure to publish the results of a study on the basis of the 

negativity of its findings (DeVito and Goldacre 2018). In empirical research this is a common 

occurrence – studies that have positive results are more likely to be published than studies that 

have negative ones. Meta-analyses like mine (which involve statistical analysis of pooled 

data) should therefore ask themselves whether their data collection has been affected by 

publication bias, as the answer ‘yes’ to his question would (and should) affect their data 

analysis. One way to test for this is by using a funnel plot. If the data when plotted looks to be 

in the shape of a symmetric funnel, then publication bias is unlikely, it is said. If the plotted 

data looks asymmetric, on the other hand, then the opposite is thought to be true (Hedin et al. 

2016). 

 

Egger’s regression is the standard statistical measure for quantifying funnel plot asymmetry, 

DeVito and Goldacre (2018) explain, but the minimum required number of studies for the use 

of it is 10. Of course, in this thesis, only 2 studies (which elicited a total of 3 results) were 

collected for the analysis of the effects of semantic therapy at treating phonological anomia, 

and so my set is too small for this assessment. 

 

It is important to bear in mind the possible impact publication bias may have on the 

conclusions I come to in this thesis regardless, I think, for if a number of negative results, that 

is, a number of studies evidencing that semantic therapy did not effectively treat phonological 

anomia, went unpublished, had they been so, the percentage of semantic therapy effectively 

treating phonological anomia in the data may have been much lower. It may have even been 

so low that I was led to a different conclusion, that phonology is indeed domain specific, and 

therefore modular. 
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Now, this is not an argument I’m making. There isn’t enough evidence to do so. But this is a 

variable that neither I can (nor any scientist can) control for that has the potential to affect the 

analysis of the results and therefore the conclusion of this thesis, and so this is something that 

should be brought attention to in any scientific study. 

 

5. Concluding remarks 

I guess it’s possible to argue from the above, then, that, according to Carruthers’ (2006a) 

definition of modularity, phonology could well be considered ammodular. This is because for 

Carruthers (2006a) the domain specificity (the inability of it to operate on anything that is 

irrelevant to its function) of a cognitive processor is necessary for its modularity, and 

semantic therapy, in being able to treat phonological anomia 33% of the time, demonstrates 

that on those occasions, the patients’ phonological processors were operating on semantic 

information. This would suggest that that phonology is neither domain specific nor massively 

modular, as semantic information is of course, irrelevant to the function of phonology.  

 

As I said though, we should be careful how much we make of this conclusion, as a Fisher’s 

exact test produced a p value of 0.2364 when orthography was included in the phonological 

therapies and 1 when it wasn’t, which means that the results weren’t statistically significant 

either way, and so we should proceed with caution in trying to generalise what was observed 

in this narrow sample to the wider population. 

 

What I will say is this, though: with such small numbers you’re unlikely to get a significant p 

value from Fisher’s exact tests anyway, regardless of the ways in which the data patterns. 

Interested to see what pattern would produce a significant p value I ran some hypothetical 

Fisher’s exact tests and found that in order for the results to be significant, phonological 

therapy would have had to have treated phonological anomia 100% of the time and semantic 

anomia 0% of the time. Even if phonological therapy treated phonological anomia 8 times out 

of 9 and semantic therapy 1 time out of 3 the p value would have been > 0.05 (0.1273): 
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Therapy type Therapy result 

Treated Not treated 

Semantic therapy 1 2 

Phonological therapy 8 1 

Table 5.17 The hypothetical effects of semantic therapy and phonological therapy at treating 
phonological anomia if the data patterned differently 

 

 

For this reason, then, I think it’s safe to say then that my results might not necessarily be 

statistically insignificant because of the data’s patterning. Rather, it might be because the 

sample was simply too small. We could, therefore, (very) tentatively conclude that phonology 

is amodular, but in order to reach a clearer conclusion than the one I have here, further 

research must be conducted.  
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Chapter 6: Conclusion 
 

 

This philosophy of mind (and language) thesis was unique in that it drew on data from 

different domains of linguistics (phonology and language change, in particular) in Chapter 4, 

and a different field of inquiry altogether (that of speech and language pathology) in Chapter 

5, in order to shed some light on the question of whether or not phonology can be considered 

a module of the mind. My hope was that an answer would one day inform the models of word 

retrieval that are used in aphasiology, and in turn, the work of speech and language 

pathologists to improve treatment for phonological anomia. 

 

In Chapter 4, I explored the extent to which phonology could be considered substance-free, 

and therefore an informationally encapsulated, Fodorian (1983, 2000) module of the mind, 

and in Chapter 5, whether or not word retrieval in phonological anomia could be facilitated by 

phonological therapy alone (or semantic therapy too), and therefore whether or not phonology 

could be considered a domain specific, Carrutherian (2006a) module.  

 

At first glance, it looked as though each Chapter led me to a different conclusion; that 

phonology is substance-free and therefore can be considered modular according to Fodor’s 

(1983, 2000) definition of modularity on the one hand (in 4), but isn’t domain specific and 

therefore can’t be considered modular according to Carruthers’ (2006a) definition on the other 

(in 5). 

 

This finding has important implications for Jackendoff’s (2002) parallel architecture for the 

language faculty. Jackendoff’s (2002) model, recall, is made up of three informationally 

encapsulated integrative modules (phonology, syntax and semantics) with likewise 

informationally encapsulated interface modules between them, that convert phonological to 

syntactic information (and vice versa), syntactic to semantic information (and vice versa) and 

semantic to phonological information (once again, and vice versa). The phonological, 

syntactic and semantic modules, therefore, operate on information specialised for their 

domain only (phonology on phonological information, syntax or syntactic information and 

semantics on semantic information).  

 

Cognitive systems are informationally encapsulated, remember, to the extent that in the 

course of processing a given set of inputs (that are relevant or irrelevant to their function) 



 192 

they cannot access information stored beyond the module; all they have to go on is the 

information that’s contained in those inputs, and what’s stored in the system itself. Phonology 

is informationally encapsulated in this model, in that is free of phonetic substance. It is at the 

phonetics-phonology interface, he proposes, that underlying phonological representations are 

turned into surface phonological representations, and at the phonetics-phonology interface 

(for he proposes two different ones) that phonetic forms become phonological.  

 

Domain specific cognitive systems, remember, operate only on certain sorts of inputs – those 

that are specialised for their domain. They can operate only on inputs relevant to their 

function, as phonology, syntax and semantics all do in this model. The two features, although 

similar, are decidedly different then in that domain specificity restricts what information is 

accepted as input – what kind of information makes a system operate – and informational 

encapsulation restricts what kind of information is able to influence its operation. 

 

To reiterate, Jackendoff’s model (2002) therefore requires phonology to be both 

informationally encapsulated and domain specific. To his mind, phonological data is free of 

phonetic substance (because phonetic data is computed to become phonological data before it 

enters the module), and the phonological processor is domain specific, in that it is specialised 

to operate on the domain of phonological data only.  

 

The finding in Chapter 5 of this thesis that the phonological processor was able to operate on 

semantic information in that phonological anomia could be facilitated by semantic anomia 

therapy, in evidencing that phonology is not domain specific leads us to a question, also, 

Jackendoff’s parallel architecture of the language faculty. If phonology is not domain specific, 

it is neither modular, according to Carruthers (2006a), nor does Jackendoff’s (2002) model 

appropriately capture its character.  

 

Once again though, I will point out that Chapter 5’s conclusion wasn’t as clear-cut as the one 

in Chapter 4 was. The results in my dataset were found through Fisher’s exact tests to be 

statistically insignificant, and so a definitive answer as to whether semantic therapy 

consistently facilitates word retrieval in phonological anomia (making phonology non-domain 

specific and ergo not massively modular) will require more results to be analysed than have 

been so here.  
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Using statistical procedures, one is able to determine whether the null hypothesis (that what’s 

observed was due to chance, and chance only) is accepted or rejected, and since my results 

weren’t statistically significant, scientifically speaking, we should accept that. However, there 

is something to be said about the sample size here. In focusing exclusively on the statistical 

significant results of studies that involved investigation of single cases or series of single 

cases in which patients had semantic impairments only, or phonological impairments only, 

and received therapies that were purely semantic and/or purely phonological, a large number 

of papers I extracted from Nickels’ (2002)’s catalogue had to be excluded from the analysis in 

order to ensure accuracy. Of the 43 papers available, only 9 turned out to meet the criteria for 

inclusion. This left me with a sample size of n = 22 (which is perhaps what made for the 

statistically insignificant test results, rather than the patterning). 

 

As I said in Chapter 5, with a sample size as small as mine was (just 12 results for the 

treatment of phonological anomia) it’s unlikely a Fisher’s exact test would have yielded any 

statistically significant p values, no matter the patterning of the data. If the same pattern were 

observed in a sample ten times the size than mine (i.e. if 120 results were yielded instead of 

12 with phonological therapy treating phonological anomia successfully 70 times out of 90 

instead of 7 times out 9, and semantic therapy treating phonological anomia 10 times out of 

30 successfully instead of 1 time out of 3, then the Fisher’s exact test p value would have 

indeed been statistically significant (at 0, no less): 

 

 

Therapy type Therapy result 

Treated Not treated 

Semantic therapy 10 20 

Phonological therapy 70 20 

Table 6.1 The hypothetical effects of semantic therapy and phonological therapy at treating 
phonological anomia if the data patterned the same, but the sample were ten times the size 

 

 

If this were the case, one would be able to conclude confidently that although phonological 

therapy was better at facilitating word retrieval in people with phonological anomia, semantic 

therapy did too 33% of the time, which would count as clear evidence against phonology’s 

domain specificity (and massive modularity). 
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My results might well have posed a challenge to the view that phonology is domain specific if 

my sample size was larger then, which is interesting because if that were the case, one might 

conclude that whether phonology can be considered modular or not depends, really, on your 

definition of modularity. The fact of the matter is though; it was not. The sample size was 

small, and so whilst we can say that there is no real difference between the efficacies of 

semantic and phonological therapies at treating phonological anomia in this data set, it’s 

difficult to say too much about what this means for modularity without being able to 

generalise what’s been seen in this portion of the population to the whole population (which is 

what a statistically significant result would have allowed us to do). 

 

It’s safe to say then that this thesis has raised a number of questions. On the one hand, I’ve 

argued that phonology is substance-free and therefore can be considered an informationally 

encapsulated Fodorian (1983, 2000) module of the mind but on the other have found (an 

albeit small and statistically insignificant amount of) evidence to suggest that phonology 

might not be domain specific after all and therefore ammodular by Carruthers’ (2006a) 

definition.  

My results incline me to conclude (albeit tentatively) that phonology is substance-free and 

therefore modular in the modest sense of the word, but not domain specific (and therefore not 

modular) in the massive one – which of course casts some doubt on whether the model of the 

mind described by Jackoff is adequate after all, since Jackendoff (2002) requires phonology to 

be both. 

 

However, whilst we can define a module as being informationally encapsulated but not 

domain specific in theory, it’s not clear to me how that would work in practice. A non-

domain specific phonological module would be able to operate on, say, semantic and 

syntactic information. But, in it being informationally encapsulated, semantic and syntactic 

knowledge wouldn’t be able to influence its operations. This doesn’t make much sense. 

 

I should also probably point out, that even in a substance-free model of phonology, domain 

specificity is expected. For if phonology is able to operate only on substance-free 

phonological computation, then it is specialised for the domain of substance-free phonological 

computation, not substance-free semantic computation, say, or substance-free syntactic 

computation. To me, it appears that the two, informational encapsulation and domain 
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specificity, that is, would go hand in hand, though that’s not what the results of this thesis 

predict. 

 

Of course, a study of a similar methodology to this one but of a larger sample size than mine 

would have to be carried out in order to confirm or deny whether that latter component of my 

conclusion (that phonology is not domain specific) is indeed the case. Because although I 

have found some evidence to suggest that phonology is able to operate on semantic 

information and is therefore not domain specific, as I’ve said, the sample size was small 

making for a statistically insignificant result. There are a number of other variables that have 

the potential to have affected these results too, including, but not limited to, the possibility 

that publication bias could have influenced which effects of semantic anomia therapy at 

treating phonological anomia were published, and which ones weren’t. As I said in Chapter 5, 

studies that have positive results are more likely to be published than studies that have 

negative ones in the sciences, and had there been more studies with negative results been 

published and included in my data set, then the percentage of semantic therapies that were 

found to treat phonological anomia in thesis may well have been lower than 33%. 

 

I regret that a more definitive answer to my research question has not been found, but hope 

that what I have done lies some significant groundwork for future study by establishing a 

direction of inquiry, and sufficiently summarising the limitations with the current study such 

that they can be circumvented if a similar one were to be undertaken. Whether phonology is 

modular or not then, as ever, remains a mystery. But until we have just one thesis of 

modularity (and phonology, for that matter), I think that’s likely to be the case.  
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