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Abstract 

 
The dual nature of reactive oxygen species (ROS) is a widely recognised paradox.  

For many years, mitochondrial ROS were characterised as the main cause of ageing 

and chronic ROS production was documented in many age-related diseases. In 

contrast, recent studies have described ROS as signalling molecules essential for 

maintaining cellular homeostasis.  

 

Further experimentation has revealed that the extent of ROS production, as well as 

the location, can be important in determining the behaviour of ROS. The best 

example is the process known as Reverse Electron Transport (RET). RET is 

associated with a large increase in site-specific ROS production at CI and is 

responsible for stimulating key signalling pathways that control stress adaptation and 

cellular fate. Additionally, the expression of the alternative NADH dehydrogenase, 

Ndi1, which promotes ROS-RET, leads to extension of lifespan in Drosophila 

melanogaster. Exploring ROS-RET signalling may be instrumental in understanding 

the role of ROS in health and disease.  

 

In the following chapters, I investigate the mechanisms behind ROS-RET.  I use ex 

vivo ROS measurements in the brain of Drosophila melanogaster to demonstrate that 

ROS-RET occurs under physiological conditions when flies are exposed to heat 

stress. I describe in detail how manipulation of the electron transport chain affects the 

occurrence of ROS-RET. My results reveal that the entry of electrons through CI and 

CII is essential for ROS-RET to occur. However, blocking the exit of electrons (CIII-

CIV) increases ROS production but not via ROS-RET. Finally I have performed a 

genome-wide RNAi screen, taking advantage of the alternative oxidase (AOX) that 

supresses ROS-RET, where I have found new candidate genes responsible for 

regulating mitochondrial ROS levels. 

 

In summary, I provide evidence of how ROS-RET can be regulated in vivo including 

its physiological stimulation, factors essential for its generation and new genes 

involved in its regulation.  
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Chapter 1 Introduction 

 
1.1 Overview of Mitochondria  

Mitochondria are essential cytosolic organelles found in most eukaryotic cells. The 

primary role of mitochondria is the production of energy, in the form of adenosine 

triphosphate (ATP). ATP is popularly known as the cellular ‘energy currency’, as it is 

instrumental in allowing cells to perform all fundamental biological processes. Hence, 

mitochondria are most commonly referred to as the ‘powerhouses of the cell’ and are 

present in all human cell types, except for mature erythrocytes (Cedikova et al., 

2016). Additionally, mitochondria are responsible for other vital cellular functions and 

in the last two decades, have also been shown to participate in cellular signalling 

(Chandel, 2014), as I shall discuss below. The mitochondrial density of a cell varies 

between specific cell types, depending on the total energy demand. For example, 

mitochondria are more abundant in cells that require a continuous supply of energy, 

such as brain and muscle cells, which are metabolically highly active (van der Bliek et 

al., 2017). Most cells heavily rely on the energy that mitochondria generate to 

maintain cellular homeostasis. This includes the brain, the central organ of our 

nervous system, responsible for controlling our basic physiological functions, as well 

as being the centre of our consciousness that makes us human (Stefanatos and 

Sanz, 2018).  

 

Given that mitochondria possess such an integral role in energy production within our 

cells, it is no surprise that the occurrence of mitochondrial dysfunction is associated 

with a wide range of diseases. There are two types of disease related to 

mitochondrial dysfunction, (i) mitochondrial diseases that are a consequence of 

mutations in mitochondrial proteins (Wallace, 1999) and (ii) diseases where 

mitochondrial dysfunction occurs independently of mutations in genes encoding 

mitochondrial proteins (Wallace, 2005). A few examples of the latter group includes; 

diabetes, metabolic syndrome and many neurodegenerative diseases, such as 

Parkinson’s disease (Lane et al., 2015).  In addition, the link between mitochondria 

and ageing is well established and the accumulation of defective mitochondria is one 

of the hallmarks of the ageing process (Lopez-Otin et al., 2013). For these reasons, 

mitochondrial research is at the forefront of current scientific agenda (Picard et al., 

2016). Scientists are focusing on attempting to elucidate the mechanisms behind 
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mitochondrial dysfunction, which could lead to the discovery of future therapeutics 

and solutions to facilitate healthy ageing (Sun et al., 2016) (Cedikova et al., 2016).  

 

  Origins and evolution of mitochondria 

The origin of mitochondria began approximately 1.5 billion years ago, as single 

prokaryotic cells that were engulfed by primordial eukaryotic cells and later became 

dependent on each other, forming a symbiotic relationship (Margulis, 1975). 

Subsequently, the endosymbiont evolved into pleomorphic structures possessing a 

double membrane and their own circular double-stranded DNA, known today as 

mitochondria (Roger et al., 2017). Over the millions of years of evolution, 

mitochondria have retained a small fraction of their genetic system. In humans, 

mitochondria are responsible for encoding 1% of mitochondrial proteins, amounting 

to 37 genes. The mitochondrial DNA encodes 13 core hydrophobic subunits of the 

respiratory chain, along with 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs 

(rRNAs), required for mitochondrial protein synthesis (Anderson et al., 1981). The 

nuclear DNA currently encodes the majority of mitochondrial proteins, as the original 

mitochondrial genes have been transferred over to the nucleus. Mitochondrial 

proteins encoded by the nuclear genome are synthesised in the cytoplasm and then 

imported into mitochondria via specific translocation machinery, involving 

mitochondrial-targeting sequences (Kang et al., 2018). Since the endosymbiotic 

event, mitochondria have evolved into dynamic organelles and developed a range of 

vital cell signalling processes. The close relationship developed over time, between 

mitochondria and the rest of the cell, is crucial for maintaining cellular homeostasis 

(Malina et al., 2018).  

 

 Structure and function of the mitochondria  

The fundamental structure of mitochondria encompasses a double membrane, which 

defines two aqueous compartments (Figure 1.1). Individually, these 4 components 

each have their distinct roles in the production of energy (McCarron et al., 2013). The 

outer mitochondrial membrane (OMM), which resembles eukaryotic membranes in 

function and biochemical composition, separates the contents of the mitochondria 

from the cytosol. It functions in regulating the passage of proteins and small 

molecules in and out of the mitochondria (Crompton, 1999). This is predominantly 

mediated by the Translocase of the outer membrane (TOM) complex, which resides 
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in the OMM and governs the transport of larger polypeptides, through the recognition 

of mitochondrial targeting sequences (Hill et al., 1998) (Endo and Yamano, 2010). 

Also present are a family of porins, which allow smaller (<10 kDa) proteins and ions 

to freely diffuse across the membrane (Weeber et al., 2002). Unlike the OMM, the 

inner mitochondrial membrane (IMM) is only permeable to small-uncharged 

molecules such as oxygen, carbon dioxide and water. In order to complete the 

transport of nascent mitochondrial proteins, the translocase of the inner membrane 

23 (TIM23) family, is present to facilitate the final steps of the TOM complex 

(Wiedemann and Pfanner, 2017). The IMM assists with the generation of energy as it 

accommodates the electron transport chain (ETC), necessary for oxidative 

phosphorylation (OXPHOS). It forms characteristic folds known as cristae, to 

establish a high surface area, thereby increasing the abundance of the respiratory 

chain and the yield of energy production (Cogliati et al., 2016). 

 

Another key component involved in the production of energy is the intermembrane 

space (IMS), formed in-between the OMM and the IMM. Transportation of protons 

across the IMM to the IMS, by respiratory complexes within the ETC, allows the 

creation of an electrochemical proton gradient, which drives ATP synthesis (Berry et 

al., 2018). Due to the permeability of the OMM, the IMS is chemically equivalent to 

the cytoplasm, unlike the mitochondrial matrix, (the second aqueous compartment), 

which is enclosed by the IMM (Mannella et al., 2001). The matrix is a dense 

environment and residence to many enzymes involved in the citric acid cycle (CAC) 

and β-oxidation, as well as the mitochondrial DNA (mtDNA). The CAC results in the 

oxidation of pyruvate and amino acids, whilst β-oxidation predominantly oxidises fatty 

acids. The circular mtDNA found in the mitochondrial matrix is stored into structures 

known as nucleoids. Nucleoids are spherical structures lacking a membrane and 

filled with a protein network, which function to regulate mitochondrial DNA 

transcription and replication and protect the mtDNA from damage (Lee and Han, 

2017). Additionally, the mitochondrial matrix possesses nuclear-encoded ribosomes, 

necessary for the transcription and translation of the mitochondrial proteome (Mai et 

al., 2017). The matrix is also required for the maintenance of the electrochemical 

proton gradient across the IMM. Here, the matrix is kept at a high pH of ~7.8, in 

comparison to the IMS, which is kept at ~7.0-7.4, to make proton translocation into 

the IMS favourable (Porcelli et al., 2005). 
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Figure 1.1 Diagram of mitochondria 

The complex structural architecture of mitochondria is responsible for the diverse 

array of biological processes that occur within these organelles. One of the major 

processes occurring in mitochondria is OXPHOS, which in many cell types supplies 

most of the cellular ATP (Mookerjee et al., 2017). OXPHOS receives electrons from 

CAC and β-oxidation, two other metabolic processes that occur within the 

mitochondria (Bratic and Trifunovic, 2010). During β-oxidation, fatty acids transported 

into the mitochondrial matrix are oxidised by a 4-step reaction, to ultimately produce 

acetyl-CoA. Acetyl-CoA can then be further oxidised by CAC, leading to the 

production of reducing equivalents, used to feed electrons into the respiratory chain 

(Sajnani et al., 2017). The central role of mitochondria in OXPHOS, CAC and β -

oxidation highlight their importance. However, they also contribute to a wide range of 

other biochemical reactions, for example the ornithine cycle. This process is 

responsible for converting ammonia into urea, in which the first two steps occur within 

the mitochondria. Additionally, mitochondria are also essential for the production of 

iron-sulphur clusters that are involved in electron transfer processes, in the 

mitochondria and other cellular compartments (Lill, 2009). Without mitochondria and 

consequently iron-sulphur clusters, essential cellular processes, such as nuclear 

DNA replication or transcription, cannot occur (Stehling and Lill, 2013).  

 

Mitochondria are also pivotal for maintaining and regulating calcium (Ca2+) 

homeostasis. Ca2+ is sequestered in the mitochondrial matrix and used for signalling 

This diagram highlights the double membrane structure which mitochondria possess (OMM 

(outer mitochondrial membrane) and IMM (inner mitochondrial membrane), giving rise to the 

two aqueous compartments (IMS (intermembrane space) and matrix). 
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purposes. The release of Ca2+ from mitochondria can influence different cell survival 

pathways, such as apoptosis and autophagy (Rizzuto et al., 2012). Furthermore, 

mitochondria have also been reported to play a role in numerous signalling pathways 

including growth factor signalling, hypoxic and immune responses and processes of 

cellular differentiation and migration through the production of reactive oxygen 

species (ROS), discussed in detail below (Tait and Green, 2012).  

 

 The electron transport chain (ETC) 

The primary function of mitochondria is the production of energy through the process 

of OXPHOS. In many cell types, this is the primary source of ATP generation, 

covering an approximate 80% of cellular energy demand (Papa et al., 2012). The 

synthesis of ATP requires the intricate arrangement of four individual complexes 

(complex I, II, III, and IV) collectively known as the ETC and the mitochondrial ATP 

synthase (complex V). These five complexes are embedded into the IMM, and each 

possesses its own distinct functions, which co-operatively orchestrate the generation 

of energy (Rutter et al., 2010). The first four complexes (complexes I – IV) participate 

in the step-wise transfer of electrons to the final electron acceptor, which in aerobic 

organisms is oxygen. 

 

Electrons enter the ETC via reducing equivalents from CAC or β-oxidation, such as 

NADH (nicotinamide adenine dinucleotide) and FADH2 (flavin adenine dinucleotide), 

which function to shuttle electrons to complexes I and II (CI and CII), respectively.  

Other sites of electron entry include the glycerol-3-phosphate dehydrogenase 

(G3PDH), which also donates electrons directly to the Coenzyme Q (CoQ) pool 

(Mracek et al., 2013). Additionally, the electron-transferring-flavoprotein 

dehydrogenase (ETF-QO) and dihydroorotate dehydrogenase (DHODH) are also 

involved in the reduction of CoQ. Once electrons are donated to CI and CII, they are 

transferred down the chain to CoQ. Complex III (CIII) then passes the electrons, from 

the CoQ pool, further down the chain to the next electron carrier, cytochrome C (Cyt 

C). From here complex IV (CIV) receives the electrons from Cyt C and passes them 

to oxygen, which acts as a final electron acceptor. These continuous redox reactions 

are also coupled with the transport of protons from the matrix, into the IMS, by three 

of the respiratory complexes (CI, CIII and CIV). The movement of protons across the 

IMM contributes to the production of a proton motive force (pmf), which promotes the 
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fifth complex (CV) to carry out the final reaction of ATP synthesis (Figure 1.2) (Berry 

et al., 2018). 

 

Figure 1.2 Schematic diagram of the ETC. 

 Mitochondrial mobile electron carriers  

Two mobile electron carriers accomplish the transfer of electrons between the ETC 

complexes: CoQ and Cyt C. CoQ is a lipid-soluble cofactor, which resides in the IMM 

and can freely diffuse across the membrane. It accepts electrons from CI and CII, as 

well as the several other mitochondrial dehydrogenases, mentioned previously and 

transfers them onto respiratory CIII (Quinzii and Hirano, 2010). In its oxidised state 

(CoQ, ubiquinone) receives electrons, whereas in its reduced state (CoQH2, 

ubiquinol) it donates electrons. The latter allows CoQ to function as an antioxidant 

within the mitochondria and other cellular compartments (Hernandez-Camacho et al., 

2018). However, under its radical intermediate form (CoQ_., semiubiquinone) it also 

exists as a pro-oxidant. CoQ is involved in a wide range of other cellular pathways 

(Lenaz, 2001), therefore mutations in the genes involved in its synthesis, lead to a 

deficit of CoQ and cause severe mitochondrial disorders (Quinzii and Hirano, 2010). 

The function of CoQ is central for the production of ATP in the mitochondria. Hence, 

it has been proposed to be involved in the detection of metabolic alterations via 

changes in the redox state of the ETC (Guaras et al., 2016). Later, I will discuss how 

changes in the CoQH2:CoQ ratio alter the generation of mitochondrial ROS. 

Diagram displaying the 5 individual complexes involved in OXPHOS. Additionally, it 

highlights the flow of electrons down the chain and the transport of protons into the IMS. 
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The other mobile electron carrier of the ETC is Cyt C that transfers electrons between 

CIII and CIV. Similarly to CoQ, Cyt C is found either oxidised or reduced. Cyt C is a 

central regulator of apoptosis and its release from the mitochondrion, to the cytosol, 

has the potential to trigger cell death (Kluck et al., 1997). It has been proposed that 

only the oxidised form can trigger caspase activation and cell death (Pan et al., 

1999), therefore sensing of the ETC redox state, by Cyt C, can be coupled with the 

regulation of apoptosis. However, other reports indicate that both forms, oxidised and 

reduced, trigger apoptosis (reviewed in (Brown and Borutaite, 2008)). Finally, in 

parallel to CoQ, Cyt C can also act as an antioxidant scavenging superoxide 

(Pasdois et al., 2011), or as a pro-oxidant promoting the formation of superoxide 

(Giorgio et al., 2005).  

 

 Complex I (CI) 

CI, otherwise known as NADH:ubiquinone oxidoreductase, is the first and largest 

component of the ETC. It carries out the oxidation of NADH, receiving two electrons, 

which are subsequently donated to CoQ. Alongside the transfer of electrons, it also 

transports a total of four protons across the IMM to the IMS, contributing to the pmf 

(Figure 1.3) (Rhooms et al., 2019) (Zhu et al., 2016) (Sharma et al., 2009). This multi-

domain respiratory enzyme is composed of 45 subunits, which amounts to a weight 

of 980 kDa. Of these 45 subunits, 7 are encoded by mtDNA, whilst the remainder are 

nuclear-encoded (Wirth et al., 2016). 14 out of the 45 subunits are core subunits, 

which are involved in the transfer of electrons from NADH to CoQ, whereas the rest 

are accessory subunits. A small number of the accessory subunits are assembly 

factors, required for the complete assembly of CI (McKenzie and Ryan, 2010). 

However the role of these subunits is yet to be characterised (Carroll et al., 2006). 

Electron microscopy has revealed that CI occupies an L-shaped structure, where the 

embedded long arm spans the IMM and the short arm protrudes into the 

mitochondrial matrix (Parey et al., 2018) (Sanchez-Caballero et al., 2016). The 

hydrophilic matrix domain of CI is the site of electron donation, where the soluble 

carrier; NADH, binds and catalyses the reduction of a flavin mononucleotide (FMN), 

situated at the top of the complex.  Following oxidation of NADH, the electrons are 

passed through CI via a series of redox reactions, involving 7 subunits containing Fe-

S clusters. This transfer of electrons occurs until they reach the ubiquinone-binding 

site (IQ), located near the hydrophobic membrane-bound domain. The binding of CoQ 
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at this site allows the complete transfer of electrons and subsequent reduction of 

CoQ to CoQH2 (Parey et al., 2018) (Murphy, 2009). The traditional CI chemical 

inhibitors, rotenone and piericidin A, are both able to target and prevent the binding 

of CoQ to CI (Parey et al., 2018) (Sharma et al., 2009). Accompanying the electron 

transfer through the hydrophilic region is the transport of protons to the IMS, 

occurring within the hydrophobic domain of CI. Within the hydrophobic arm, there are 

7 core mtDNA encoded subunits, which all participate in the translocation of protons 

across the IMM (Brandt et al., 2003). It has been proposed that the energy produced, 

as a result of the redox reactions during electron transfer, is able to power a 

conformational change in the hydrophobic domain, allowing the passage of protons 

(Sazanov, 2014). CI can be sectioned into three different zones based on their 

distinct activities. The first is the N module, which partakes in the electron flow 

through CI, starting at the FMN site. The second is the Q module, involving the 

ubiquinone-binding site where the reduction of CoQ occurs. The final module, which 

regulates the movement of protons across the membrane, is defined as the P module 

(Mimaki et al., 2012).  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Diagram displaying the structure of Complex I. 

 Complex II (CII) 

The second member of the ETC, CII, is the enzyme succinate dehydrogenase (SDH). 

CII is by far the simplest of the respiratory complexes, formed by four subunits 

Electrons from NADH are transferred to the IF site of CI and are passed through the complex 

to the IQ site, indicated by the dotted line). At the IQ site ubiquinone binds and accepts the 

electrons. In addition, CI is responsible for the transport of 4 protons across the IMM, to the 

IMS. 
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(SDHA, SDHB, SDHC and SDHD), all of which are nuclear-encoded. It is anchored 

into the IMM by the two smaller subunits, SDHC and SDHD. The remaining two 

peripheral subunits, SDHA and SDHB, are situated in the mitochondrial matrix 

(Cecchini, 2003) (Bowman and Birch-Machin, 2016).  SDH possesses a dual 

functionality, as it is the only complex involved in both OXPHOS and CAC. Its 

functional role is catalysing the oxidation of the small metabolite succinate, an 

intermediate from the CAC, into fumarate (Cecchini, 2003). This reaction releases 

two electrons, which are then donated to the CoQ pool. Since this complex does not 

participate in the movement of protons to the IMS, it does not contribute to the pmf. 

The overall mechanism of CII begins with the reduction of covalently bonded FAD 

group, associated with subunit SDHA. From here, the electrons are sequentially 

passed through subunit SDHB, via three integral Fe-S clusters ([2Fe-2S], [4Fe-4S] 

and [3Fe-4S]). The final transfer of electrons occurs when CoQ binds to the 

membrane-bound domain of CII, forming CoQH2 (Figure 1.4) (Rutter et al., 2010). CII 

inhibitors are categorized under two distinct classes, dependent on their targeted 

binding site. These include either the succinate-binding site or the ubiquinone-binding 

site of CII. A highly recognised inhibitor of CII, is malonate, which competes with 

succinate to bind to the FAD co-enzyme (Kim, 2002).  

 

 

 

 

 

 

 

 

 

Figure 1.4 Diagram displaying the structure of Complex II. 

 

 Complex III (CIII) 

Coenzyme Q:cytochrome c oxidoreductase also referred to as bc1 complex or CIII is 

the third respiratory enzyme in the ETC. It continues the flow of electrons down the 

Succinate is oxidised to form fumarate and electrons are passed through CII via 3 Fe-S 

clusters, indicated by the dotted line, until being passed to ubiquinone. 
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chain, by oxidising CoQH2 and subsequently reducing Cyt C, through the transfer of 

two electrons. In parallel to electron transfer, it also transports four protons across 

the membrane, contributing to generate the pmf (Xia et al., 2013). In total, there are 

11 subunits that constitute a fully assembled dimeric CIII, one of which is encoded by 

mtDNA (Murphy, 2009). Three of the subunits form a catalytic core, namely 

cytochrome c1, cytochrome b and the Rieske iron-sulphur protein. The redox 

reactions are achieved via the presence of haem groups within the cytochrome c1 

and b subunits as well as the [2Fe-2S] cluster within the Rieske protein. Additionally, 

CIII possesses two quinone (Q) binding sites, Qo and Qi, which are instrumental for 

the movement of electrons and protons through the complex (Crofts, 2004). The Qo 

site is situated towards the IMS and is responsible for accepting electrons from 

CoQH2, in addition to the translocation of four protons into the IMS. The Qi site is 

orientated towards the matrix side of the membrane, where it acquires two protons 

from the matrix and two electrons to reduce CoQ. The movement of electrons and 

protons throughout CIII, relies on the completion of the Q cycle, involving the two 

mentioned Q sites. The electron transfer within CIII is split into two steps, therefore 

the whole process and complete reduction of Cyt C, requires two rounds of the Q 

cycle (Xia et al., 2013). The cycle proceeds with the binding of CoQ to the Qo site, 

which subsequently gains two electrons and two protons. From here, the 2 electrons 

are passed through two distinct pathways, whilst the two protons are shuttled directly 

to the IMS. The first electron is transferred to the Rieske iron-sulphur cluster and then 

sequentially passed to the haem group in cytochrome c1 (cyt c1). Cyt C present in 

the membrane is then able to bind to cyt c1 within CIII and receive this electron, 

becoming partially reduced. In this same cycle, the second electron obtained from 

CoQH2, is passed down to two haem groups of cytochrome b, cytochrome bL and 

cytochrome bH. At the Qi site, a bound CoQ accepts this electron along with a proton 

retrieved from the matrix, to become partially reduced. This cycle is then repeated 

once more to allow the complete oxidation of CoQ at the Qo site, as well as the full 

reduction of both Cyt C and CoQ (at the Qi site) (Larosa and Remacle, 2018). This 

process transports a total of four protons to the IMS, as well as removing two 

additional protons from the matrix, therefore CIII is able to greatly contribute to the 

pmf (Crofts, 2004). The most recognised inhibitors of CIII are antimycin A, 

myxothiazol and stigmatellin. Antimycin A targets the Qi site of CIII (Murphy, 2009), 

whereas the latter two are able to bind to the Qo site of the enzyme (Zhang et al., 

1998).  
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Figure 1.5 Diagram displaying the structure of Complex III. 

 Complex IV (CIV) 

CIV, also known as cytochrome c oxidase, is the final enzyme involved in the 

transport of electrons within the ETC. Its role is to catalyse the oxidation of Cyt C, 

transferring the electrons to the final electron acceptor oxygen and terminating the 

flow of electrons. It is also the third complex where electron transport is coupled with 

proton translocation across the IMM to the IMS. Mammalian CIV is composed of 13 

subunits, in which the three largest (COX I, COX II and COX III) are encoded by 

mtDNA (Timon-Gomez et al., 2018). CIV exists as an active dimer embedded into the 

membrane and consists of 3 distinct regions, I, II and III (Li et al., 2006). I and II are 

involved in coordinating the redox reactions carried out by CIV, whilst region III 

stabilises the structure. The electron transfer reactions are achieved by the presence 

of metal centres, in the catalytic site of the enzyme.  Within region I resides a haem 

group, haem a, as well as a binuclear centre formed by haem a3 and the copper 

centre, CuB. Incorporated into region II is another copper centre referred to as CuA 

(Shimada et al., 2017). The first step in the mechanism of CIV is the interaction 

between reduced Cyt C and the CuA centre of region II. Here the transfer of 

electrons occurs from the haem group within Cyt c to the prosthetic copper centre. 

CuA then shuttles the electrons through the two haem groups of region I, reaching 

the second copper centre, CuB. The binuclear centre is the site of water formation 

where molecular oxygen (O2) is split into 2 monooxygen and reduced. The complete 

Ubiquinone binds to the Qo site of CIII and transfers 2 electrons. The first electron is passed 

through CIII until it reaches the cyt c1 and is sequentially transferred to Cyt c. The second 

electron is passed onto the Qi site of CIII, which is then used to reduce ubiquinol. The complete 

reduction of Cyt C requires two cycles and subsequently transports four protons to the IMS.  
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reaction requires 4 Cyt C molecules to donate four electrons to O2, along with four 

protons retrieved from the matrix. The overall reaction catalysed by CIV is:  

     

O2 + 4e- + 4H+ ➔ 2H2O 

 

Additionally, a further four protons are transported into the IMS from the matrix 

(Figure 1.6) (Kim et al., 2009). Inhibitors of CIV, such as cyanide (CN), carbon 

monoxide (CO), nitric oxide (NO) and hydrogen sulphide (H2S) all target the oxygen-

binding binuclear centre (Pearce et al., 2008) (Dorman et al., 2002).  

 

 

 

 

 

  

 

 

 

 

Figure 1.6 Diagram displaying the structure of Complex IV.  

 

 The Chemiosmosis Theory 

In the 1960’s Peter Mitchell proposed the chemiosmosis theory, describing the 

mechanism of how ATP is produced within the mitochondria (Mitchell, 1961). Today 

this theory is widely accepted and explains the molecular mechanisms that drive 

OXPHOS. The theory states that an established electrochemical proton gradient 

across the IMM, acts as stored energy that can drive the synthesis of ATP. The pmf 

is generated through the translocation of protons across the membrane, leading to a 

positively charged IMS. As previously discussed, the production of this proton 

gradient is coupled to electron transfer and accomplished by three components of the 

ETC, CI, CIII and CIV. The movement of protons down the gradient, into the matrix, 

Cyt C binds and transfers electrons to CIV. Electrons are passed through the complex via two 

copper centres (indicated by the dotted line), until reaching the final electron acceptor, O2, to 

form water. CIV is also involved in the translocation of four protons into the IMS.  
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creates an energy potential, which is then harnessed, by the enzyme ATP synthase, 

to catalyse the phosphorylation reaction and synthesise ATP (Morelli et al., 2019).  

 

The electrochemical proton gradient is used to generate the pmf that is required for 

the production of energy, by mitochondria. The pmf is produced with the energy 

released from transferring electrons between the four respiratory complexes, as 

described in detail below. Pmf has two components, namely, the mitochondrial 

membrane potential and the pH gradient (Brand and Nicholls, 2011). Changes to the 

pmf can affect all the other cellular processes, where the mitochondrion is involved, 

for example, redox and calcium homeostasis, proteostasis and metabolic reactions. 

Thus, the pmf has a strong influence on the signalling occurring between the 

mitochondria and the rest of the cell (Berry et al., 2018).  

 

 ATP Synthase  

ATP Synthase, otherwise known as CV, is the fifth complex involved in OXPHOS. It 

is an IMM proton pump that catalyses the synthesis of ATP from ADP and inorganic 

phosphate (Pi). CV consists of 15 subunits, which are arranged into two central 

domains, F0 and F1 (Walker, 2013), (Neupane et al., 2019). The F0 domain occupies 

a hydrophobic ring-like structure, bound to the IMM and is comprised of 

approximately 8 identical subunits, called the c subunit. The F1 region extends 

outwards into the mitochondrial matrix and is assembled by 5 subunits, α, β, γ, δ and 

ε. Nearest to the membrane is the primary stalk formed by the subunits γ, δ and ε, 

which are attached to a hexamer of 3 alternating α and β subunits. Also attached is 

the peripheral stalk which connects the F0 and F1 domains and is comprised of 

subunits a, b, d, F6 and oligomycin sensitivity-conferring protein (OSCP) as well as 

the accessory subunits e, f, g and A6L (Figure 1.7) (Jonckheere et al., 2012). The 

role of the F0 domain is to pump protons through the complex, whilst the F1 domain 

forms the catalytic head, where the ATP synthesis occurs. CV is able to synthesise 

ATP by harnessing energy from the electrochemical proton gradient. The energy 

released from this gradient, fuels the rotation of CV and catalyses the production of 

energy (Stock et al., 1999). The first step in the mechanism of CV, is the passing of 

protons through subunit c, of the membrane bound region, which deposits the 

protons into the mitochondrial matrix. The movement of these protons causes the F0 

domain of CV to rotate 120°.  This rotation stimulates the rotary mechanism of the 

central stalk, specifically the γ subunit, which induces conformational changes within 
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the catalytic region of F1. Within the 3α3β hexamer, three catalytic sites bind the 

substrate (ADP and Pi) and through a series of three conformational changes (open, 

loose and tight), ATP is released (Figure 1.7) (Stock et al., 1999) (Senior et al., 

2002). A well-studied inhibitor of CV is the antibiotic oligomycin, which binds to the F0 

region, therefore preventing the passage of protons through the enzyme, 

consequently inhibiting ATP synthesis (Symersky et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Diagram displaying the structure of ATP Synthase. 

 Alternative respiratory enzymes; AOX and Ndi1  

In addition to the five basic respiratory complexes of the OXPHOS system, seen in 

mammalian mitochondria, many organisms such as plants, fungi and bacteria, also 

express alternative respiratory enzymes (McDonald, 2009) (Saari et al., 2019). 

Alternative enzymes can also be found in animals, including some chordates such as 

Ciona intestinalis but not in humans or flies (McDonald et al., 2009) (McDonald and 

Gospodaryov, 2019). The expression of these alternative respiratory systems, in the 

aforementioned organisms, evolved as a survival response to toxins present in the 

surrounding environment that targeted the ETC (McDonald et al., 2009) (McDonald 

and Gospodaryov, 2019). Alternative enzymes function to bypass interrupted 

electron flow that may have occurred as a result of damage to the standard ETC 

The membrane bound region, F0 and peripheral region, F1 are outlined. Protons move from the 

IMS through the c subunit of CV into the matrix, indicated by the dotted line. The movement of 

protons causes a rotary motion the catalytic head, consisting of α and β subunits, which 

catalyse the production of ATP.  
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components, or environmental stresses that inhibit CI, CIII or CIV (Saari et al., 2019). 

Therefore this evolutionary trait, of possessing alternative respiratory enzymes, 

protects mitochondria from dysfunction, by overcoming the stress of limited electron 

flow. This protective mechanism allows the maintenance of mitochondrial energy 

production (Saari et al., 2019), as well as the maintenance of mitochondrial 

processes coupled with OXPHOS, such as synthesis of Fe-S clusters or nucleotides 

and one-carbon metabolism reactions (Schiff et al., 2012). For unknown reasons, 

alternative respiratory enzymes became redundant in most animals, (including 

humans and flies), during evolution and therefore have been removed from their 

genomes (McDonald et al., 2009) (McDonald and Gospodaryov, 2019).  

 

There are two classes of alternative respiratory enzymes, the alternative NADH 

dehydrogenases and the alternative oxidases, which all possess the ability to recover 

electron flow at specific points of the ETC. Most organisms possess both types of 

enzymes at the same time (McDonald and Gospodaryov, 2019). However, unlike the 

standard respiratory complexes, they do not pump protons into the IMS and therefore 

do not contribute to the pmf, directly. Thus, these alternative respiratory systems 

cannot fully restore ATP synthesis. Another characteristic feature is their structural 

simplicity consisting of a single polypeptide, encoded by the nuclear genome, in 

contrast to the complex multi-subunit structures that form the standard ETC 

components. This contributes to their quick and easy assembly, with less opportunity 

of becoming damaged (Saari et al., 2019). 

 

The Alternative Oxidase (AOX), found in plant and fungi mitochondria, is able to 

reduce O2 to water through the direct transfer of electrons from CoQ, thus bypassing 

CIII and CIV.  AOX is a small integral dimeric polypeptide, bound to the matrix facing 

side of the IMM, where it is activated by accumulation of CAC intermediates and a 

highly reduced CoQ pool (Figure 1.8) (Vanlerberghe, 2013) (Fernandez-Ayala et al., 

2009). Upon activation, a conformational change within its structure elevates its 

affinity for CoQH2, beyond that of CIII. Due to its alternative pathway of electron flow, 

independently of CIII and CIV, AOX also confers cyanide resistance (Hakkaart et al., 

2006). To take advantage of these systems, scientists have been able to express 

AOX in the mitochondria of higher eukaryotes, mainly from the tunicate Ciona 

intestinalis (Hakkaart et al., 2006) but also from the fungus Aspergillus nidulans 

(Perales-Clemente et al., 2008). In mammalian cells and Drosophila melanogaster, 
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the co-expression of AOX was shown to partially rescue the lethal phenotype caused 

by knocking down CIII/CIV subunits or inhibiting CIII/CIV with antimycin and cyanide, 

respectively (Rajendran et al., 2019) (Dogan et al., 2018) (Szibor et al., 2017) (Sanz 

et al., 2010a) (Kemppainen et al., 2014) (Fernandez-Ayala et al., 2009). In addition, 

AOX has been described to rescue pathological phenotypes that are not caused by 

CIII or CIV inhibition, in Drosophila melanogaster. A non-extensive list includes: (i) 

mutations in the antioxidant gene, dj-1β (Fernandez-Ayala et al., 2009), (ii) knock 

down of the catalytic subunit of the mtDNA polymerase (Humphrey et al., 2012), (iii) 

accumulation of β-amyloid protein in the fly brain (El-Khoury et al., 2016) or (iv) 

disruption of Jun N-terminal kinase signalling during development (Andjelkovic et al., 

2018). All of these phenotypes are associated with elevated levels of ROS and/or 

oxidative stress. AOX is a powerful tool to reduce mitochondrial ROS levels when 

ectopically expressed in mammals and insects, which I will discuss in detail later in 

this thesis.  

 

The second class of alternative respiratory enzymes is the alternative NADH 

dehydrogenases.  Examples that belong to this group are the NADH dehydrogenase 

internal 1 (Ndi1), NADH dehydrogenase external 1 (Nde1) and the NADH 

dehydrogenase external 2 (Nde2).  This class of rotenone-insensitive enzymes 

transfers electrons directly to the CoQ pool through the oxidation of NADH, 

subsequently bypassing CI (Matus-Ortega et al., 2015).  Ndi1 is found in plants, fungi 

and the mitochondria of some animals (Gospodaryov et al., 2014), embedded into 

the IMM, facing the matrix (Figure 1.8) (Bahadorani et al., 2010). In some species of 

fungi such as Saccharomyces cerevisiae, CI has been completely lost during 

evolution and Ndi1 is the only NADH dehydrogenase located in the mitochondrial 

matrix (Yagi et al., 2006).  In parallel to AOX, Ndi1 (from Saccharomyces cerevisiae, 

Ciona intestinalis and Aspergillus nidulans) has been inserted into the genome and 

subsequently expressed in the mitochondria, of mouse and human cells, as well as 

flies (Yagi et al., 2006) (Gospodaryov et al., 2014) (Perales-Clemente et al., 2008). 

Ndi1 expression confers resistance to CI inhibitors (e.g. rotenone or metformin), in 

mammalian cells and fruit flies (Seo et al., 1998) (Seo et al., 2004), as well as 

rescuing the lethal phenotype caused by the knockdown of CI subunits (Bai et al., 

2001) (Park et al., 2007) (Marella et al., 2010) (Cho et al., 2012) (Wheaton et al., 

2014). The therapeutic use of Ndi1 has been strongly explored in models of 

Parkinson’s disease, since CI dysfunction is one of the hallmarks of this disease 
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(Schapira et al., 1990). In fact, Ndi1 has been shown to rescue fly and mouse models 

of Parkinson’s disease (Seo et al., 2006) (Barber-Singh et al., 2009) (Sanz et al., 

2010b) (Vilain et al., 2012). Finally, expression of Ndi1 either from Saccharomyces 

cerevisiae or Ciona intestinalis, has been shown to extend lifespan in fruit flies 

(Bahadorani et al., 2010) (Sanz et al., 2010b) (Hur et al., 2013) (Gospodaryov et al., 

2014).  

 

 

Figure 1.8 Schematic diagram showing the expression of alternative respiratory 
enzymes, Ndi1 and AOX. 

1.2 Reactive Oxygen Species (ROS) 

Free radicals are atoms or molecules with one or more unpaired electrons, rendering 

them highly unstable. As a result of this instability, they are able to take single 

electrons from molecules around them. When produced within biological systems, 

free radicals can cause injury, known as oxidative damage (Pamplona and Barja, 

2007). The most common free radicals found in cells are derived from O2 and known 

as reactive oxygen species (ROS). Another group derived from nitrogen, referred to 

as reactive nitrogen species (RNS) and reviewed in (Pacher et al., 2007), are also 

abundant. However, during this thesis, I focus primarily on ROS. O2 is an oxidant due 

to the presence of two unpaired electrons with parallel spins in its external orbital 

(Magder, 2006); therefore, O2 accepts electrons one at a time. The incomplete 

Ndi1 and AOX are both expressed within the matrix facing side of the IMM. Ndi1 directly 

reduces NADH to NAD+ and transfers electrons to the CoQ, thereby bypassing CI. AOX takes 

electrons directly from the CoQ pool and reduces O2 into H2O. 
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reduction of O2 mainly occurs during processes consisting of univalent electron 

transfer, such as OXPHOS (Barja, 1999). Accordingly, ROS are formed when O2 is 

incompletely reduced with 1, 2 or 3 electrons. ROS represent a large group of 

molecules, all possessing different stabilities and half-lives. Examples of ROS include 

the free radicals: superoxide anion (O2•−), hydroxyl radical (OH•−), singlet oxygen 

(1O2) and hydroperoxyl radical (HO2•). However, not all ROS are free radicals such as 

the non-radical entity hydrogen peroxide (H2O2) (Lambert and Brand, 2009).  

 

ROS are abundantly generated by mitochondria, however, they are also produced in 

large amounts in other cellular compartments, such as peroxisomes and cytosol, 

discussed in detail below. It has been well established that cells require a basal level 

of ROS, acting as signalling messengers, to maintain cellular homeostasis (Murphy, 

2009). Endogenous antioxidants scavenge the excess ROS and detoxify them into 

less reactive products. When ROS overwhelm the antioxidant defence mechanisms 

and start to deviate from the optimum cellular levels, they can inflict damage onto 

their nearby surroundings (Hekimi et al., 2011). Here they react with other 

components of the cell, resulting in oxidative damage to proteins, DNA and lipids 

(Ray et al., 2012). In recent years, there has been a rise in research behind the 

mechanisms of ROS production and the delicate balance between their beneficial or 

destructive behaviour. 

 

There are numerous types of ROS that can be produced, however, in this section, I 

will focus on discussing the three most common forms of ROS produced, as a result 

of electrons leaking from the ETC (Scialo et al., 2013). These specifically include 

superoxide, hydrogen peroxide and hydroxyl radical.  

 

The most common type of ROS, produced by the ETC (Esterhazy et al., 2008), is 

superoxide (O2-.), which is generated during the univalent reduction of oxygen:  

 

O2 + e- ➔ O2- 

 

This reaction is the first to yield ROS, in the form of superoxide, which can 

subsequently be converted into a variety of other oxidative molecules, via a cascade 

of downstream chemical reactions. Superoxide is highly reactive, due to the 

presence of an unpaired electron and consequently has a short half-life (Esterhazy et 
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al., 2008). This form of ROS is able to react with the Fe-S and modify cysteine 

groups, within proteins. Superoxide on its own can non-enzymatically dismutate into 

H2O2 (Paulsen and Carroll, 2010). However, this is a very slow process therefore, 

cells have evolved specialised antioxidant enzymes, belonging to the family of 

superoxide dismutases (SOD), which specifically target superoxide. SOD converts 

superoxide into the less reactive H2O2 by the following reaction:  

 

                               SOD 

2O2- + 2H+ ➔ H2O2 + O2 

 

The activity of SOD is highly efficient (due to its low Km for superoxide) and 

scavenges free superoxide, almost immediately (Sheng et al., 2014) at a rate of ~109 

M−1s−1 compared to the spontaneous dismutation of superoxide (~105 M−1s−1).  

 

Hydrogen peroxide (H2O2) is produced when O2 receives two electrons. Given that 

H2O2 is not a free radical, it is more stable and possesses a longer half-life (~1 ms), 

in comparison to superoxide (Bak and Weerapana, 2015). H2O2 is considered to be 

the most abundant cellular ROS (Bienert et al., 2006). Due to its stability and neutral 

charge, it can move between cellular compartments and interact with biomolecules 

far away from its site of production (Lee et al., 2011). H2O2 is the product of a 

dismutase reaction involving two molecules of superoxide, which is usually achieved 

by the activity of SOD (Wang et al., 2018). There are three families of antioxidants 

responsible for metabolising H2O2, namely catalases, glutathione peroxidases and 

peroxiredoxins, which catalyse the following reaction; 

          

2H2O2 ➔ 2H2O + O2 

 

The hydroxyl radical (OH) is produced when O2 is incompletely reduced with three 

electrons. It is the most reactive form of ROS and for this reason, is considered the 

most toxic. The reactivity of the hydroxyl radical is so high and unpredictable that 

there is no enzymatic antioxidant dedicated to its detoxification, in contrast to 

superoxide or H2O2 (Scialo et al., 2013). Unlike superoxide and H2O2, it can directly 

interact with DNA, inflicting damage, which subsequently leads to DNA mutations. 

The hydroxyl radical is produced via a two-step reaction involving the encounter of 
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both superoxide and H2O2. These reactions are known as the Haber-Weiss and 

Fenton reactions, which utilise ferrous ions as a metal catalyst (Lipinski, 2011).  

 

Fe3+ + O2-  ➔  Fe2+ + O2 

Fe2+ + H2O2 ➔  Fe3+ + -OH + OH 

O2- + H2O2 ➔ OH + -OH + O2 

 

 Antioxidants  

Antioxidants include a wide range of systems dedicated to the removal of oxidants 

from cells and exist as either enzymes or non-enzymatic organic molecules. Cells 

have specialised enzymatic systems dedicated to maintaining ROS at non-toxic 

levels. In 1969, McCord and Fridovich discovered the first enzymatic antioxidant 

dedicated to detoxifying superoxide in cells, called SOD (McCord and Fridovich, 

1969). This was a historical discovery as it confirmed the production of superoxide in 

vivo and prompted the development of the Free Radical Theory of Ageing, proposed 

by Denman Harman (Harman, 1956). The term antioxidant covers a broad range of 

enzymes and molecules; however in this section I will focus on the enzymes involved 

in the specific detoxification of superoxide and H2O2.  

 

As previously mentioned, SOD is involved in the dismutation of superoxide into H2O2 

and O2. There are three distinct isoforms of mammalian SOD, which differ according 

to their roles, metal association and subcellular location. (Hayyan et al., 2016). The 

first is SOD1 (CuZnSOD), which is in charge of managing cytosolic superoxide 

levels. The second is the manganese-containing SOD2, found exclusively within 

mitochondria. The final SOD, better known as ECSOD, which is also associated with 

Cu and Zn ions, is localised to the extracellular matrix to protect surrounding tissues 

from high levels of superoxide (Sheng et al., 2014). 

 

Detoxification of H2O2 into innate water molecules can occur via three different 

families of enzymes (reviewed in (Veal et al., 2007)). The first is catalase, 

predominantly situated in the peroxisomes, whose activity results in the conversion of 

H2O2 into water and O2. In addition, there are two other major families of enzymes, 

which participate in the degradation of H2O2, including glutathione peroxidases and 

peroxiredoxins. These enzymes are located in the cytosol, mitochondria and other 

cytosolic compartments, such as nuclei, according to their specific isoforms. The 
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glutathione peroxidases require the presence of 2 reduced glutathione (GSH) 

molecules (Mailloux, 2018). This reaction involves the reduction of H2O2 forming a 

glutathione disulphide (GSSG) and water (Handy and Loscalzo, 2012). The reduction 

of GSSG, to restore the pools of GSH and continue the detoxification of H2O2, is 

catalysed by glutathione reductase, which acquires electrons from NADPH to 

complete the reaction (Mailloux, 2018). The peroxiredoxins, use a similar mechanism 

to glutathione peroxidase, where the reduction of H2O2 occurs in the presence of 

another co-substrate, thioredoxin 2 (Trx2) (Handy and Loscalzo, 2012). Within the 

active site of peroxiredoxins are 2 conserved cysteine residues, which are 

responsible for the reduction of H2O2. Following the degradation of H2O2 the oxidised 

cysteine residue forms an intermolecular disulphide bridge, with the second cysteine 

residue. Trx2 then sequentially restores the reductive state of peroxiredoxins. Trx2 

can then be reactivated by thioredoxin reductase, using the reductive properties of 

NADPH. It has been widely established that peroxiredoxins are the major family of 

enzymes involved in the detoxification of H2O2 (Mailloux, 2018). In addition to the 

removal of H2O2, glutathione peroxidases are also implicated in the detoxification of 

lipid peroxides (Ursini and Bindoli, 1987).  

 

 Oxidative stress 

The accumulation of ROS in cells is associated with the damage to proteins, DNA, 

and lipid membranes (Pamplona and Barja, 2007). As previously discussed, cells 

have evolved antioxidant systems whose primary function is to prevent oxidative 

damage (Pamplona and Costantini, 2011). However, when antioxidants become 

overwhelmed with high levels of oxidants, oxidative stress occurs. If it is not 

controlled, oxidative stress will inflict oxidative damage that may cause permanent 

molecular damage (Sies, 1997). Accumulation of oxidative damage has been shown 

during ageing (Forster et al., 1996) (Gan et al., 2012) (Akila et al., 2007) and in many 

degenerative diseases (D'Amico et al., 2013) (Navarro et al., 2009) (Du et al., 2009). 

It is clear that oxidative stress is deleterious and happens during ageing, as well as 

age-related diseases but it remains to be established whether it is a cause or a 

consequence. Here, I will focus on the damage that can be instigated by superoxide, 

H2O2  and hydroxyl radical.  

 

Superoxide cannot directly damage proteins, but it can attack Fe-S clusters, which 

results in the release of iron and H2O2, as well as disruption of protein activity 
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(Esposito et al., 2013). Therefore the attack of Fe-S by superoxide can result in the 

generation of hydroxyl radicals, via Fenton reactions, which accelerate oxidative 

damage. Ageing and age-related diseases are characterised by an increase in ROS 

levels (both superoxide and H2O2), free iron and oxidative damage (Massie et al., 

1985) (Massie et al., 1983) (Hofer et al., 2008) (Forster et al., 1996) (Gan et al., 

2012) (Akila et al., 2007) (Seo et al., 2008). It is possible to speculate that the age-

related increase in superoxide causes the release of iron. Increased iron levels, 

together with accumulation of superoxide and H2O2, would produce the hydroxyl 

radical, which in turn would initiate the oxidative damage, observed in old individuals. 

Supporting the former hypothesis, are the observations from feeding an enriched iron 

diet to Caenorhabditis elegans, which increased oxidative stress (Valentini et al., 

2012). Furthermore, in a Drosophila model of Alzheimer’s disease, chelating free iron 

or reducing ROS levels restored lifespan to normal (Rival et al., 2009), which further 

supports the role of iron and hydroxyl radical in triggering oxidative stress. 

 

ROS with high reactivity, such as hydroxyl radical and peroxynitrite, are able to attack 

any biological molecule, of the cell. These specific types of ROS can react with lipid 

membranes, initiating lipid peroxidation (Bielski et al., 1983). Polyunsaturated fatty 

acids (PUFAs), within membranes, are particularly sensitive to oxidative attack, due 

to the presence of structural double bonds (Pamplona et al., 1996). Lipid peroxidation 

has two main characteristics; first of all, it operates as a chain reaction where 

oxidised fatty acids perform electrophilic attacks on non-oxidised fatty acids to take 

their electrons, causing the oxidation of the attacked fatty acids. Secondly, reactive 

carbonyl species (RCS) are generated as by-products of lipid peroxidation. These 

RCS can spread oxidative damage long distances from their site of generation 

(reviewed in (Pamplona, 2011). Lipid peroxidation is stopped by the presence of fat-

soluble antioxidants such as vitamin E (Wang and Quinn, 2000) or the neutralisation 

of lipid hydroperoxides, by glutathione peroxidases (Ursini and Bindoli, 1987).  

 

The most harmful consequence of ROS is damage inflicted onto DNA. This is due to 

the fact that DNA contains the information needed to synthesise all cellular 

components and cannot be replaced, once it is irreversibly damaged (Sanz et al., 

2006). In vitro, hydroxyl radical, peroxynitrite and other highly reactive free radicals, 

can attack DNA directly and cause different lesions including: single- and double-

strand breaks, point mutations and deletions. mtDNA has been proposed to be 
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particularly vulnerable to oxidative damage due to its proximity to the ETC, which is 

supported by data demonstrating that levels of oxidative damage detected in mtDNA, 

are higher than in nuclear DNA (Richter et al., 1988). Similarly, mtDNA accumulates 

mutations at a higher rate in comparison to nuclear DNA (Ladoukakis and Zouros, 

2017).  Mutations in mtDNA increase during ageing and have been linked to the 

onset of ageing and age-related diseases (Greaves et al., 2012) (Su et al., 2018). 

However, some studies indicate that mutations in mitochondria are not caused by 

oxidative damage but by errors during replication and subsequent clonal expansion 

(Larsson, 2010) (Lefevre-Borg et al., 1988) (Kauppila et al., 2018).  

 

Free radicals can inflict damage to proteins in a heterogeneous manner (reviewed in 

(Stadtman, 2006) (Stadtman and Levine, 2003)). For example, oxidative damage can 

affect the whole protein (e.g. protein fragmentation and cross-linking with other 

proteins) or specific amino acids. As I have discussed above, proteins containing Fe-

S clusters are particularly sensitive to oxidative attack by superoxide (Imlay, 2006). 

Additionally, cysteine and methionine are the two amino acids more prone to 

oxidative modifications (Stadtman et al., 2003) (Held and Gibson, 2012). These 

modifications can be either irreversible or reversible. Irreversible oxidation reactions 

include the carbonylation of several amino acid residues, nitration of tyrosine 

residues and the over-oxidation of cysteine forming sulfinic and sulfonic acids, all of 

which have been implicated in oxidative damage (Cai and Yan, 2013). Overall, 

ageing is characterized by the accumulation of oxidised proteins (Forster et al., 

1996), which can be caused either by the increase in oxidative stress associated with 

ageing or by an age-related decline in the mechanisms of protein quality control 

(Sohal and Weindruch, 1996) (Higuchi-Sanabria et al., 2018).   

 

 ROS as signalling molecules 

Over the past decade, the role of ROS as cellular signalling messengers has been 

under a lot of scrutiny, within the scientific community (Holmstrom and Finkel, 2014). 

In light of the overwhelming amount of evidence that exists today, ROS are now 

widely recognised as redox signalling molecules that can orchestrate multiple 

different signalling pathways, essential for maintaining cellular health and viability.  

 

The general mechanism of signal transduction is through ROS-mediated redox 

reactions, with key cysteine residues (Ray et al., 2012). Both superoxide and H2O2 



24 
 

can react with the thiol groups of cysteine, to induce oxidative modifications. Cysteine 

residues are highly conserved and account for only 2% of amino acid content (Bak 

and Weerapana, 2015). In addition, they are the only amino acid to possess a thiol 

functional group; collectively making cysteine residues unique and effective for signal 

transduction (Kettenhofen and Wood, 2010).  Oxidative modifications to the thiol 

groups within cysteine residues can induce structural changes, which alters protein 

activity. As previously mentioned, these cysteine oxidation reactions can be either 

irreversible, where they are predominantly associated with damage, or reversible, 

where they are involved in redox signalling. Reversible modifications of the cysteine 

residues can include S-sulfenation, S-nitrosylation, S-glutathionylation and disulphide 

bond formation. These redox-related modifications can alter the catalytic activity and 

function of the protein, to initiate specific signalling pathways, within the cell, 

discussed in detail below (Paulsen and Carroll, 2010). 

 

S-sulfenation of cysteine residues yields the formation of the sulfenic acid. Following 

this reaction, sulfenic acid can then be oxidised further to produce more stable forms 

of oxidative modifications, both reversible (i.e. S-glutathione) and irreversible (i.e. 

sulfinic and sulfonic acid). Thus, the formation of sulfenic acid can lead to divergent 

downstream consequences (Poole et al., 2004). S-sulfenation is mostly achieved 

through the interaction with H2O2, however, can also occur through oxidation with 

peroxynitrite and other forms of ROS (Cai and Yan, 2013). This form of cysteine 

oxidation has been associated with numerous signalling pathways, involving the 

activity of various proteins and transcriptions factors, such as Fos and Jun (activator 

protein-1) (Claiborne et al., 1999), as well as Nf-ĸB (Pineda-Molina et al., 2001). For 

example, some studies have reported that the formation of sulfenic acid within aldose 

reductase, provides protection against cardiac ischemia reperfusion in rats 

(Kaiserova et al., 2006). In addition, S-sulfenation is needed for the initiation of T-cell 

growth and proliferation (Michalek et al., 2007). Protein S-nitrosylation is carried out 

by RNS, such as NO and peroxynitrite. This modification can occur on tyrosine, 

serine and threonine residues, as well as cysteine residues. There is evidence that 

S-nitrosylation can provide cardio-protection during ischemia reperfusion (Murphy et 

al., 2012) (Sun et al., 2007). However, the excessive nitrosylation of specific proteins 

has also been observed in multiple diseases, such as neurodegenerative disorders 

and cardiovascular disorders (reviewed in (Foster et al., 2009)). S-glutathionylation 

occurs as a result of ROS and RNS, during oxidative stress. It can also be achieved 
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by the endogenous antioxidant glutathione, under low GSH/GSSG ratios. This form 

of modification leads to a mixed disulphide bond and can protect proteins from 

downstream irreversible oxidative modifications, to form sulfinic and sulfonic acids 

(Cooper et al., 2011). Similarly to other types of cysteine oxidation, glutathionylation 

has been implicated in both physiological and pathological processes. In terms of cell 

signalling, glutathionylation has been shown to regulate proteins kinases such as 

mitogen-activated protein kinase (MAPK) (Templeton et al., 2010) as well as 

transcription factors, including Nf-ĸB (Reynaert et al., 2006). These support the role 

of glutathionylation in a wide range of processes such as proliferation, differentiation 

and apoptosis. However, this oxidative modification has also been associated with 

neurodegenerative disease, cancer and type 2 diabetes (Cooper et al., 2011). 

Disulphide bond formation through ROS or RNS in proteins is different to the mixed 

disulphide produced during glutathionylation, between proteins and GSH. Disulphide 

bonds are produced between two cysteine residues, within the structure of a protein, 

causing structural and functional changes, which can regulate cellular stress 

responses. For example, a disulphide bond created in Keap1, in response to 

oxidative stress, leads to the activation of NF-E2-related factor 2, which elevates the 

expression of antioxidants (Cai and Yan, 2013). 

 

The two forms of ROS that are predominantly associated with redox signalling are 

H2O2 and superoxide. This is due to their higher stabilities, compared to other more 

harmful ROS entities, such as the hydroxyl radical. Additionally, H2O2 and superoxide 

predominantly target proteins or Fe-S groups within proteins and cannot directly 

target DNA and lipids, in contrast to the hydroxyl radical. H2O2 is particularly effective 

as a signalling molecule as it can diffuse across membranes and travel long 

distances, from where it was originally produced, due to its long half-life (Bak and 

Weerapana, 2015). The activity of superoxide as a signalling molecule is subject to 

controversy, due to its chemical properties. The short half-life of superoxide means 

that it is not able to travel far and therefore reacts primarily with proteins in close 

proximity to its site of generation (Wang et al., 2018). However, recent studies have 

discovered channels within the OMM of the mitochondria, specifically for the 

transport of superoxide, thus supporting its role as a signalling molecule, (Hayyan et 

al., 2016). 

The first encounter of ROS as a signalling molecule was during the 1990s, where an 

increase in cellular proliferation was detected, upon addition of H2O2, triggered by the 
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activation of pathways regulated by NF-kB (Schreck et al., 1991). NF-kB is involved 

in a wide range of cellular survival pathways, including immune responses, 

autophagy, proliferation, differentiation and apoptosis. Since then, the interaction 

between ROS and other signalling pathways has been extensively studied. Specific 

pathways include, the MAPK cascade, which is able to regulate many critical cellular 

processes, through downstream phosphorylation events, such as survival, cell 

growth, differentiation and cell death (Dhillon et al., 2007). The hypoxia inducible 

factor (HIF-1), which is stabilised by ROS, is primarily involved in triggering a 

response under low oxygen conditions and promotes cellular survival (Jung et al., 

2008).  As I mentioned above, the Keap1-Nrf2-ARE signalling pathway, regulated by 

ROS-mediated-oxidation of cysteine residues, is involved in the activation of an 

antioxidant response to counteract oxidative stress. The phosphoinositide-3-kinase-

Akt pathway (PI3K-Akt), is also activated by ROS to initiate downstream processes 

responsible for protein synthesis, cell proliferation and cell growth. In addition, ROS 

can also participate in the regulation of Ca2+ ions through the opening of channels, 

such as mPTP (in the IMM) (Zhang et al., 2016). Recently, there has been evidence 

that H2O2 can also induce redox signalling through peroxiredoxins or the co-substrate 

thioredoxin, which are able to relay the signal directly to target proteins (Netto and 

Antunes, 2016).  

 

 Cellular ROS 

As discussed above, mitochondria are an important source of ROS; however there 

are also enzymes that reside in the cytoplasm and distinct cellular compartments that 

contribute to the generation of ROS. These can be categorised according to their 

location within the cell, for example (i) the plasma membrane, (ii) cytosol, (iii) 

peroxisome and (iv) endoplasmic reticulum (Brown and Borutaite, 2012), discussed 

in detail below. 

 

One of the most prevalent non-mitochondrial sources of ROS originates from the 

plasma membrane generated by the trans-membrane NADPH oxidases, otherwise 

known as the NOX family. In mammals, there are seven tissue specific NOX isoforms 

in total, all with the primary role of producing ROS (superoxide or H2O2) (Krause, 

2004). In fact, NOX are the only family of enzymes whose primary function is the 

generation of ROS (Drummond et al., 2011), whereas in other enzymes it can be 

argued that ROS are produced as by-products. One of the main roles of NOX-
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derived ROS is triggering an innate immune response. For example, in macrophages 

the integral NOX enzymes can produce and release a burst of superoxide outside of 

the cell, which can target and kill harmful microbes (Panday et al., 2015). Within the 

cytosol there are the NO synthase (NOS) enzymes and lipoxygenases (LOX). In 

normal conditions, NOS enzymes are responsible for the production of the essential 

signalling molecule, NO. Conversely, under conditions of limited substrate or cofactor 

availability, the enzyme’s activity can shift to the production of superoxide (Xia and 

Zweier, 1997). In addition, studies have revealed that cytosolic superoxide and H2O2 

can promote further ROS production by NOS, by shifting NO production to 

superoxide production (Sun et al., 2010). Cytosolic LOX enzymes catalyse the 

oxidation of the unsaturated fatty acid arachidonic acid, released from the plasma 

membrane. A by-product of this redox reaction is the formation of superoxide. Further 

research has shown a possible interaction between the metabolites produced by 

LOX and the NOX enzymes, in which these LOX metabolites trigger ROS production 

from NOX (Cho et al., 2011b). Also found in the cytosol are the xanthine oxidase 

enzymes, typically involved in the metabolism of hypoxanthine, to produce uric acid. 

However, due to their oxidase properties, they are also able to participate in the 

direct transfer of electrons to oxygen, leading to the generation of superoxide, H2O2 

and NO. ROS produced as a result of Xanthine oxidase enzymes possess both 

negative and positive consequences. For example, the activity of xanthine oxidase 

has been reported to be higher in carcinogenic tissues compared to healthy tissue. In 

this model, it was been proposed that ROS produced by xanthine oxidase has 

promoted the progression of cancer by stimulating cell proliferation. However, ROS 

produced via xanthine oxidases has also been associated with cell signalling, 

including pathways linked to apoptosis and cell differentiation (Battelli et al., 2016).  

 

Peroxisomes are small cytosolic organelles, residence to many enzymes that are 

involved in catalysing the oxidation of substrates such as long-chain fatty acids, 

polyamines or D-amino acids. During these metabolic reactions, electrons from the 

oxidised substrates are passed to O2 to form ROS (Sandalio et al., 2013).  A few 

examples of enzymes, present in the peroxisome that generate ROS, include acyl-

CoA oxidase (for β-oxidation of fatty acids), urate oxidase, xanthine oxidase and D-

amino acid oxidase (Schrader and Fahimi, 2006). To neutralize the high amounts of 

H2O2 generated, the antioxidant catalase is highly expressed in the peroxisome 

(Schrader and Fahimi, 2006). Another subcellular compartment, involved in the 
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production of ROS, is the endoplasmic reticulum (ER). Amongst many of the ROS 

generating enzymes found in the ER, is the cytochrome P450 heme-containing 

polypeptide, which resides in the ER membrane. These enzymes are responsible for 

the oxidation of a broad range of substrates, in which the acquired electrons are 

simultaneously passed to oxygen (Zangar et al., 2004). Oxidative enzymes such as 

Ero1 and the NOX family are important for the production of ROS, to achieve folding 

of newly-synthesised nascent proteins, through the formation of disulphide bonds 

(Yoboue et al., 2018).  Overall, there are multiple ways, in which ROS can be 

produced in the cytosol, excluding the mitochondria. Similarly to mitochondrial ROS, 

these have also been linked to signalling pathways as well as numerous disease 

pathologies (Zhang et al., 2016).  

 

 Mitochondrial ROS 

Mitochondria have been considered for a long time as the main generators of ROS 

(Barja, 2019). However, this is due to the lack of comprehensive studies measuring 

ROS generation from different sources in the same experimental conditions (Sanz, 

2016). A recent study by Martin Brand’s laboratory addressing this question showed 

that in C2C12 human myoblasts only 45% of the ROS produced by the cells come 

from the mitochondrion (Wong et al., 2019). Similarly, previous studies have 

suggested that peroxisomes produce higher levels of ROS than mitochondria, in the 

liver (reviewed in (Brown and Borutaite, 2012)). 

 

In any case, mitochondria are one of the most important generators of ROS within 

the cell. Furthermore, mitochondrial ROS remain the most studied and the only free 

radicals that have shown a direct connection with ageing and age-related diseases, 

in multiple independent studies and several animal species, including humans 

(reviewed in (Sanz, 2016) (Barja, 2019) (Wallace, 2005)). Given that respiration 

requires a vast amount of the overall O2 supply, the mitochondrial matrix is rich in O2, 

which is therefore vulnerable to reduction via escapee electrons from the ETC. The 

extent of electrons leaking from the ETC during OXPHOS is unclear, particularly in 

vivo. Early estimations suggested that, during normal conditions, 1-4% of electrons 

leak and generate ROS (Barja, 2007). However, a more conservative updated 

estimation reduces this amount, to less than 0.1% of electrons (Larosa and Remacle, 

2018). Within the mitochondria, there are 11 acknowledged sites where electrons can 

escape and reduce O2, with one electron to produce superoxide (reviewed in (Wong 



29 
 

et al., 2017)). However, only CI and CIII have been shown to produce ROS under 

relevant physiological conditions, where independent approaches, such as chemical 

and genetic in vivo inhibition of the complex have been utilised to confirm the source 

of ROS (reviewed in (Murphy, 2009) (Stefanatos and Sanz, 2011) (Wong et al., 

2019), (Chandel, 2010) (Weinberg et al., 2015) (Sanz, 2016) (Chouchani et al., 

2016)).  

 

Within CI, there are two established sites of ROS production, namely the IF 

(Chouchani et al., 2016) and the IQ (Treberg et al., 2011) sites. A minority of reports 

have also suggested the Fe-S N2 cluster of CI, as a site of ROS production (Genova 

et al., 2001) (Herrero and Barja, 2000). The IF site represents the FMN region of CI, 

where NADH binds and donates two electrons. The IQ site is the site where CoQ 

binds to and receives two electrons, from CI. All the sites in CI contribute to the 

generation of mitochondrial matrix superoxide (Zhao et al., 2019). Inhibitors of the IQ 

site within CI, such as rotenone and piericidin A, both lead to an increase in 

superoxide production at the IF site. This is the consequence of a highly reduced IF 

site, when the downstream electron flow is blocked, which increases the 

NADH/NAD+ ratio and leads to the increased production of superoxide (Murphy, 

2009). Superoxide production at the IQ site has been proposed to occur during the 

process of reverse electron transport (RET) when the CoQ pool is highly reduced 

(Murphy, 2009). However, others have proposed that only the IF site produces ROS 

in both a forward and reverse direction (Pryde and Hirst, 2011). Strong support for 

the IQ site comes from the development of a new class of antioxidants calls S1QELs 

(suppressors of site IQ electron leak) (Brand et al., 2016). S1QELs scavenge 

superoxide exclusively produced at the IQ site and have been shown to protect 

against ischemia-reperfusion (IR), in vivo (Brand et al., 2016). As I will discuss in 

detail below, IR is characterised by the production of ROS by CI via RET (Brand et 

al., 2016) and therefore the protection of S1QELs against IR injury, supports the IQ 

site as the location of electron leakage. 
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At present, there is only one recognised site of electron leakage and superoxide 

production within CIII, the Qo site, where CoQH2 binds and undergoes oxidation 

(Muller et al., 2003) (Muller et al., 2004). At this site, superoxide can be deposited 

into both the matrix and the IMS.  Mitochondria from rat and mouse skeletal muscle, 

showed that around 63% and 50% of superoxide ends in the matrix, respectively 

(Treberg et al., 2010) (Muller et al., 2004). The inhibitor antimycin A binds to the Qi 

site of CIII and leads to a dramatic increase in superoxide production at the Qo site. 

This is due to an accumulation of electrons upstream of the Qi site, leading to the 

formation of a ubisemiquinone radical (QH-) and the univalent reduction of O2 

(Murphy, 2009). Another condition, which is known to affect superoxide generation at 

the Qo site is the mitochondrial membrane potential. It has been proposed that RET 

also occurs within CIII when electrons, at the Rieske iron-sulphur cluster, move back 

towards the Qo site and produce superoxide (Bleier and Drose, 2013).  

Figure 1.9 Schematic diagram demonstrating the sites of ROS production from CI and 
CIII of the ETC. 

 

CII is usually overlooked as an important generator of ROS (Drose, 2013). However, 

mutations in CII that increase superoxide generation have been related to cancer 

(Ishii et al., 2005), neurodegeneration (Ackrell, 2002) and reduced lifespan (Walker et 

al., 2006). Electrons can leak from the IIF site of CII, where the FAD cofactor oxidises 

CI possesses two sites (IQ and IF) which both generate ROS into the mitochondrial matrix. CIII 

has one site of ROS production (Qo), which is capable of producing ROS in both the matrix 

and IMS. 
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succinate, when both CI and CIII are inhibited (Quinlan et al., 2012). Superoxide 

production from IIF can occur with electrons flowing in forward or reverse direction but 

superoxide is always directed to the mitochondrial matrix. Aside from the major 

respiratory complexes, mitochondrial superoxide generation can also occur via 

NADH/NAD+ linked enzymes, collectively known as 2-oxoacid dehydrogenase 

complexes. During the oxidation of their specific substrates, this group of enzymes 

form ROS at their flavin sites. These metabolic enzymes include alpha-ketoglutarate 

dehydrogenase, pyruvate dehydrogenase, branched-chain-2-oxoacid dehydrogenase 

and 2-oxoadipate dehydrogenase (Quinlan et al., 2014). Another group of enzymes 

that can generate ROS include those that interact with the CoQ pool. For example, 

G3PDH, DHODH and ETF:CoQ, which all participate in the reduction of CoQ. 

G3PDH oxidises G3P and feeds the electrons directly to the CoQ pool. The Q 

binding site of this enzyme has been proposed to be the site of superoxide 

production (Mracek et al., 2014). The DHODH enzyme executes the oxidation of 

dihydro-orotate and subsequently donates the electrons to CoQ. Similarly to G3PDH, 

superoxide can be generated at the CoQ binding site (Hey-Mogensen et al., 2014). 

Lastly, the ETF:QO passes electrons to the CoQ, derived from β oxidation of fatty 

acids. Studies suggest that superoxide production occurs as a result of the singular 

electron transfer from the flavin site to the CoQ binding site (Watmough and Frerman, 

2010). 

 

In addition, there are two other reported families of proteins that contribute to the 

production of mitochondrial ROS. The first is the p66Sch adaptor protein, which upon 

cytosolic stress signals is imported to the mitochondria, where it mediates the direct 

reduction of O2 molecules with electrons from Cyt C (Kaludercic and Giorgio, 2016). 

The final example is the mitochondrial monoamine oxidases (MAO) found in the 

OMM (Edmondson, 2014). These enzymes catalyse the oxidation of amines, which 

consequentially produces a significant amount of ROS, associated with a few 

disease pathologies, such as Parkinson’s disease (Fitzgerald et al., 2014). 

 

 Methods of measuring mitochondrial ROS levels; resolution vs physiological 
relevance  

Measuring ROS levels is challenging due to their high reactivity and short half-lives. 

For these reasons, the hydroxyl radical, which is extremely reactive and unstable, is 

the hardest form of ROS to study. This is particularly true for in vivo measurements; 
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thus the majority of studies regarding mitochondrial ROS production have been 

performed using in vitro techniques and mainly in isolated mitochondria. The use of 

isolated mitochondria has revealed important evidence surrounding how and where 

ROS can be produced. For example, the ETC complexes, where electrons leak from 

specific sites to incompletely reduce oxygen and generate ROS. However, in vitro 

studies cannot provide information about how ROS are produced in vivo and which 

enzymes generate ROS, in relevant physiological circumstances.  

 

The use of isolated mitochondria has many drawbacks; however it has been 

extremely useful in allowing the high-resolution study of how mitochondrial ROS are 

generated (Sanz, 2016). Through these high-resolution techniques, it has been 

possible to identify specific enzymes and the sites within those enzymes, where ROS 

are produced. For example, it has facilitated the distinction between the production of 

ROS through forward electron transport or RET. High-resolution is achieved by the 

use of specific substrates and inhibitors to manipulate the redox state of the ETC and 

the pmf (Wong et al., 2018). Using this approach, it is possible to study the sites of 

ROS production, exclusively at CI, by feeding mitochondria with CI-linked substrates 

(e.g. pyruvate and glutamate), in combination with rotenone. The major disadvantage 

of using isolated mitochondria is the lack of physiological relevance, caused by 

removing mitochondria from the cell for ROS measurements. Under these 

circumstances, mitochondria lose the ability to interact with other intracellular 

components and are exposed to unnaturally high levels of O2. Thus, measurements 

are performed using saturated concentrations of substrates that are rarely observed 

in vivo. Working with cells in vitro eliminates certain disadvantages that isolated 

mitochondria possess (Sanz, 2016). However, the conditions under which cells are 

generally cultured i.e. high O2 and glucose levels also limits the physiological 

relevance of ROS measurements. The following two examples illustrate the 

limitations of using cells to study mitochondrial ROS. Firstly, fibroblasts from muscle 

biopsies of patients suffering from mitochondrial diseases, in some cases, have no 

mitochondrial phenotypes, when cultured in vitro (Rodenburg, 2011). Secondly, 

human fibroblasts become senescent after a few rounds of replication, when cultured 

in high O2 levels (20%). This phenotype is dependent on the levels of mitochondrial 

ROS and can be prevented when they are reduced (Passos et al., 2007). However, 

senescence does not occur in the same fibroblasts if they are cultured under 
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physiological O2 levels (~3%) (Busuttil et al., 2003). These examples further 

emphasise why in vitro experiments should be interpreted with caution.  

 

In vivo ROS measurements are much more limited in number and current studies 

using in vivo techniques possess two major drawbacks (Wang et al., 2013). First of 

all, they lack the resolution achieved by studies using isolated mitochondria and 

secondly the conflict surrounding the quantification versus visualisation of ROS 

levels. In this section, I will briefly discuss different approaches available to overcome 

these disadvantages and allow high-resolution in vivo ROS measurements.  

 

It is possible to measure ROS in vivo in the presence or absence of specific 

inhibitors, to increase the resolution of the measurements. The inhibitors are fed or 

injected into the animal model, to determine where and how ROS are produced. The 

typical example is the administration of rotenone to prevent RET (Scialo et al., 

2016a) (Chouchani et al., 2014a). Here one of the main problems is the toxicity of the 

drug for the animal, the difficulties of targeting specific tissues or cell types and 

undesirable side effects of the inhibitor. To obtain tissue specificity, genetic 

approaches can be used to target specific subunits of the respiratory complexes, 

leading to reduced levels of the specific complex. An example of this is the 

knockdown of CI subunits to prevent RET, in Drosophila (Scialo et al., 2016a) or the 

knockdown of CIII subunits to abolish ROS production at the Qo site (Diebold et al., 

2019). Finally, the use of alternative respiratory enzymes allows the redox state of 

the CoQ pool to be manipulated, which subsequently leads to an increase or 

decrease, in the production of superoxide (Scialo et al., 2017). In summary, chemical 

and genetic inhibition of the respiratory complexes, as well as the expression of 

alternative respiratory enzymes, increases the resolution of mitochondrial ROS 

measurements, performed in vivo or ex vivo.  

 

One method of measuring ROS in vivo and ex vivo is using microscopy, which allows 

the visualisation of ROS that can be subsequently quantified. However, the 

quantification of ROS levels using microscopy can be quite challenging (Xu and Xu, 

2016). On the other hand, techniques available for allowing the precise quantification 

of ROS, such as, Mass Spectrometry (MS), measure the reduced and oxidised state 

of a ROS probe but they do not allow the visualisation of ROS, in vivo. An example is 

the MitoB/MitoP method, developed by the laboratory of Mike Murphy in Cambridge, 
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which takes advantage of a ratiometric approach to precisely detect H2O2, in the 

mitochondrial matrix (Cocheme et al., 2011). An advantage of this technique is the 

reduction of experimental variability that may occur through autoxidation of the probe 

or differential accumulation, within the mitochondria. However, one of the drawbacks 

of MitoB/MitoP and other approaches that rely on MS for detection, is that they are 

highly invasive and require a significant amount of sample.  

 

The visualisation of ROS levels can be achieved using chemical probes, which 

fluoresce once oxidised and can be measured using fluorescence microscopy. 

However, the use of fluorescent probes can be impossible to correlate with real 

values of ROS levels and ROS levels are usually reported as arbritary units. 

Alternatively, the oxidation of the same probes can be measured by flow cytometry 

(Kauffman et al., 2016) or using liquid chromatography together with MS (LC-MS) 

(Zielonka et al., 2009). These methods make quantification more reliable and 

reproducible between experiments.  

 

There are many different fluorescent probes for specific types of ROS (reviewed in 

(Xu and Xu, 2016)). The probes most commonly used are 2',7'-

dichlorodihydrofluorescein diacetate (H2DCF), for total ROS levels and 

dihydroethidium, for superoxide. H2DCF belongs to a group of cell-permeable 

compounds called dihydroflourescein (H2F). Once H2DCF enters cells, the acetate 

group, which allows the entry of H2DCF into the cell, is cleaved via cellular esterases.  

Upon oxidation H2F is converted to the highly fluorescent 2',7'-dichlorofluorescein 

(DCF). H2DCF is normally used to measure H2O2 within cytosolic compartments of 

cells. The main advantage of this probe is its high sensitivity. However, H2DCF has 

low specificity towards peroxides, as it also reacts with other ROS and RNS. In 

addition, it also has high autoxidation rates (Kalyanaraman et al., 2012). Another 

fluorescent probe is Dihydroethidium (DHE), which is commonly used to detect 

superoxide (Robinson et al., 2006). The variant of DHE, known as MitoSOX, allows 

DHE to be targeted to mitochondria using tri-phenyl-phosphonium (TPP). MitoSOX 

has become the most popular probe to detect mitochondrial ROS. However, DHE 

and therefore MitoSOX, have many drawbacks including lack of specificity, where 

other ROS and RNS are also able to oxidise MitoSOX. Additionally, MitoSOX 

increases fluorescence upon intercalation into DNA, both nuclear and mitochondrial, 

as well as the potential of auto-oxidation, thus is not always a direct indicator of 
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superoxide and can produce misleading results (Zielonka and Kalyanaraman, 2010). 

The lack of specificity can be addressed by using MS to allow the specific detection 

of 2-hydroxyethidium, which is formed as a result of superoxide oxidation (Zhao et 

al., 2003). Despite all these problems, MitoSOX remains a quick and inexpensive 

way of studying mitochondrial superoxide levels, particularly considering the lack of 

reliable alternatives for measuring superoxide.  Recently, an improved version of 

MitoSOX, called MitoNeoD, has been developed (Shchepinova et al., 2017). It has 

been reported that MitoNeoD can overcome the two main problems of MitoSOX 

previously discussed, including the lack of specificity and increased fluorescence 

upon intercalation into DNA.  

 

To achieve in vivo ROS measurements, using the probes discussed above, they can 

be either fed or injected into the animal model. However, due to their high 

autoxidation rates, this can be challenging and increases variability, thus reducing 

reproducibility among experiments (Sanz, 2016). A partial solution is to use these 

probes ex vivo, taking advantage of their cell permeability. Alternatively, it is possible 

to utilise genetically encoded fluorescence detectors that can be expressed in 

specific tissues or cells (Sanz, 2016). For the detection of H2O2, the two most 

commonly used options are the redox-oxidation Green Fluorescent Protein (roGFP) 

(Albrecht et al., 2011) and Hydrogen Peroxide protein (Hyper) (Choi et al., 2001). 

Unfortunately, there is no reliable alternative for specifically measuring superoxide. 

The circularly permuted Yellow Fluorescent Protein (cpYFP) was previously 

proposed as a superoxide sensor (Wang et al., 2008), however, has since been 

shown not to specifically detect superoxide (Muller, 2009). All of these 

aforementioned methods are ratiometric detectors, similar to MitoB/MitoP. In these 

cases, the ratiometric system is based on two different excitations wavelengths, one 

for the oxidised and the other for the reduced form of the protein. Here, the 

fluorescent protein is fused to a peroxide sensor, which confers their specificity and 

determines their sensitivity. Genetically encoded sensors have an important 

advantage over chemical probes, as they can be targeted to specific organelles 

within the cell. For example, the laboratory of Tobias Dick has produced roGFP 

proteins fused to the oxidant receptor peroxidase 1 (Orp1, roGFP-Orp1), which 

detects H2O2, in the mitochondria or the cytosol (Albrecht et al., 2011).  roGFP allows 

fixation of the samples, which increases the potential number of samples examined 

and in vivo estimations of ROS levels. Genetically encoded sensors are generally 
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more specific but less sensitive, in comparison to chemical probes. However, new 

and more sensitive roGFP probes fused to peroxiredoxin proteins have been 

developed to detect basal levels of H2O2, in both the mitochondria and cytosol 

(Morgan et al., 2016). Another disadvantage of the genetically encoded sensors 

versus the chemical probes, is that they require the transformation of cells or whole 

animals. This could be technically challenging and very expensive, in the case of 

mice and other mammal models.  

 

Finally, it is recommended to confirm the specificity of any ROS signal measured. 

ROS measurements could be repeated in the presence of specific antioxidants that 

must reduce the intensity of the signal. For example, during the detection of 

superoxide, the overexpression of SOD would significantly reduce the signal. 

Conversely, overexpression of catalase must reduce a H2O2 signal without altering 

any superoxide signal being measured.  

 

All the probes and sensors described above have advantages and disadvantages 

that need to be considered carefully. The use of chemical probes offers a quick, 

sensitive and inexpensive way of detecting ROS levels and allows performing 

multiple experiments, in parallel. However, they possess issues with the specificity of 

the ROS detected and are prone to technical artefacts. Genetically encoded sensors 

are more specific but less sensitive and require complex systems of expression that 

increase the time and resources invested in ROS measurements, thus limiting the 

number of experiments. Therefore the use of one or another approach will depend on 

the experimental design and the resources available.  

 

 The physiological relevance of site-specific ROS production at CIII 

It is now apparent that ROS can behave as signalling molecules in cells, as well as 

contributing to oxidative damage. It has been established that ‘good’ ROS participate 

in signalling and have low or moderate reactivity, i.e. H2O2 and superoxide. In 

contrast to ‘bad’ ROS, which are highly reactive and cause oxidative damage, e.g. 

hydroxyl radical or peroxynitrite. The physiological effect of ROS is determined by 

three factors, namely (i) where and when they are produced, (ii) the amount 

generated and (iii) the type of ROS (Sanz, 2016). As discussed before, ROS involved 

in signalling are produced at specific times and places, in moderate amounts and 

have low reactivity. Conversely, oxidative stress is characterised by uncontrolled 



37 
 

production of ROS, with high reactivity that leads to oxidative damage. As 

mitochondria have a central role in metabolism, a lot of research has focused on this 

organelle as a potential site for the creation of signalling ROS messengers. As 

discussed above, the two major sites of ROS production detected in isolated 

mitochondria, are respiratory complexes I and III (Wong et al., 2017). Thus, both CI 

and CIII derived ROS have been implicated in vital physiological processes, as well 

as being associated with ageing and age-related diseases, by in vivo studies 

(Stefanatos and Sanz, 2018).  

 

CI possesses two sites that generate ROS into the mitochondrial matrix (St-Pierre et 

al., 2002). An intriguing mechanism of CI is that it can produce ROS, with electrons 

flowing in both a forward and reverse direction (Robb et al., 2018). Paradoxically, 

reports showing a role of CI ROS in cellular signalling indicate that ROS are mostly 

produced in the reverse direction. I will discuss in detail the mechanism and 

physiological pathways behind ROS produced via RET (ROS-RET), in the following 

section. In this section, I will focus on the physiological relevance of ROS produced 

by CIII. 

 

So far, only the Qo site of CIII has been shown to produce ROS (Brunelle et al., 

2005). CIII ROS production is bidirectional, with approximately half of the ROS being 

generated into the IMS and the other half into the mitochondrial matrix (Treberg et 

al., 2010) (Muller et al., 2004). The production of ROS into the IMS can be 

particularly useful for transmitting mitochondrial information directly to the cytosol. 

Here the ROS act as signalling messengers and have the potential to interact with a 

vast array of redox-regulated proteins (reviewed in (Sena and Chandel, 2012)). 

Studies from the laboratory of Navdeep Chandel have established an association 

between ROS generated at the Qo site of CIII and multiple physiological processes 

(Schieber and Chandel, 2014). For example, Chandel’s work has shown that CIII 

ROS are required to stabilise HIF-1α, in response to hypoxia (Chandel et al., 2000). 

Upon CIII inhibition, using the Qo site inhibitors myxothiazol and stigmatellin, or the 

genetic depletion of the Rieske-iron sulphur protein, the stabilisation of HIF-1α was 

prevented, thus supporting the role of CIII ROS production within this process 

(Brunelle et al., 2005) (Bell et al., 2007). In addition, CIII derived ROS has also been 

shown to regulate the differentiation of adipocytes from mesenchymal stem cells. 

This process requires an increase in OXPHOS, which subsequently increased 
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electron leak and superoxide production at CIII (Tormos et al., 2011). Suppressing 

the increased ROS levels, using similar techniques described earlier, prevented 

differentiation, therefore demonstrating its dependence on the production of ROS. 

Finally, CIII derived ROS have also been affiliated with the activation of T cells (Sena 

et al., 2013) as well as TGF-β signalling (Jain et al., 2013).  

 

ROS produced at CIII have also been associated with negative effects during 

pathological situations. For example, a link between air pollution and ROS has been 

suggested, which promotes death of alveolar epithelial cells (Soberanes et al., 2009). 

In this model, ROS produced at the Qo site of CIII were responsible for triggering 

apoptosis, by activation of the redox-sensitive kinase ASK1 (Apoptosis signal-

regulating kinase 1). It is known that air pollution causes the release of pro-

inflammatory cytokines, such as IL-6, which induces lung inflammation. The release 

of IL-6 by alveolar macrophages occurs in response to the increase in ROS produced 

by CIII (Soberanes et al., 2019).  Furthermore, in a Kras-driven mouse model of lung 

cancer, CIII derived ROS were shown to be required for both proliferation and 

tumorigenesis in cancer cells (Weinberg et al., 2010). The anti-proliferative effects of 

metformin on cancer may be caused by the inhibition of ROS generated by CIII 

(Wheaton et al., 2014). Accordingly, expression of Ndi1 in metformin-treated cells 

restores both ROS production at CIII (but not at CI) and the proliferation capacity of 

the cells, when injected into mice (Wheaton et al., 2014).  

 

 The physiological relevance of site-specific ROS production via Reverse 
Electron Transport (RET) at CI 

In 1961, Chance and Hollunger demonstrated that feeding the CII-linked substrate, 

succinate, to isolated mitochondria resulted in the reduction of NAD+ back to NADH, 

a process that they termed reverse electron transport (RET) (Chance and Hollunger, 

1961). For many years, RET was dismissed as an in vitro artefact. However, in the 

last 10 years, evidence has accumulated supporting the occurrence of RET in vivo, 

thus re-establishing its scientific interest. RET is a phenomenon observed at CI of the 

respiratory chain, where electrons move in the reverse direction back to CI, from 

CoQH2. Coinciding with the process of RET, there is a significant rise in ROS 

production from CI. The exact site of electron leak during RET is unclear, and both 

the IF and IQ sites have been proposed as the source of ROS (Pryde and Hirst, 2011) 

(Quinlan et al., 2013). For RET to occur there are two required conditions: a highly 
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reduced CoQ pool and a high pmf, both of which are essential to make the reverse 

flow of electrons possible. Previous studies have shown that the use of the inhibitor, 

FCCP, to abolish the polarised membrane prevented the occurrence of RET (Robb et 

al., 2018). Additionally, preventing the binding of CoQ to CI, via targeted IQ site 

inhibitors, such as rotenone, also prevents the process of RET. In each case, the 

dramatic increase in ROS associated with RET, was also abolished. ROS-RET has 

since been recognised in a number of physiological processes, discussed in detail 

below (Scialo et al., 2016a). 

 

The physiological occurrence of ROS-RET was first reported during IR 

(Paraidathathu et al., 1992) (Lesnefsky et al., 2004) (Chen et al., 2006). A paper from 

Michael Murphy’s laboratory at Cambridge (Chouchani et al., 2014a) showed that O2 

starvation during ischemia leads to the rapid accumulation of succinate. During 

reperfusion and restoration of O2, CII starts metabolising the abundant supply of 

succinate, leading to a highly reduced CoQ pool and sustained high membrane 

potential. In combination, these two conditions, stimulate RET and the extensive 

production of ROS associated with it (Chouchani et al., 2014a). 

 

Since 2014, ROS-RET has been implicated in many other physiological processes 

(Scialo et al., 2017). In contrast to the IR model, ROS produced during RET in these 

cases are not detrimental. Instead they have been shown to play an essential role in 

activating specific signalling pathways, required for maintaining cellular homeostasis. 

For example, the differentiation of myoblasts into myotubes requires the generation 

of ROS-RET (Lee et al., 2011). Genetically silencing CI subunits or culturing cells in 

rotenone, prevented differentiation. The role of ROS during this process was further 

confirmed by adding antioxidants, which also prevented cellular differentiation. 

Another function of ROS-RET is the regulation of CI levels and its integration into 

respiratory supercomplexes (Guaras et al., 2016). When cells were cultured in a 

sugar-rich medium, rotenone increased ROS production, indicating forward electron 

flow. However, when fatty acids were used as the primary fuel to supply electrons to 

mitochondria, ROS-RET was observed, indicating the reverse flow of electrons 

(Guaras et al., 2016). Interestingly, the occurrence of ROS-RET caused oxidation of 

CI subunits, which subsequently reduced both CI levels and its integration into 

supercomplexes. This demonstrates an adaptation affecting the assembly of 

supercomplexes, depending on the type of substrates available for oxidation. When 
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electrons from the oxidation of substrates enter the ETC downstream of CI, the 

complex is degraded and supercomplexes are restructured, to favour CIII/CIV 

association versus CI/CIII/CIV (Cogliati et al., 2013).   

 

Altering the respiration rate to the levels of O2 in the blood is an essential task. In 

mammals, cells located in the carotid body are responsible for this process. When O2 

levels are low, the chemoreceptors of the carotid body trigger a response that 

increases the respiration rate. The former response requires both the activity of CI 

and the presence of ROS, to occur (Fernandez-Aguera et al., 2015) (Arias-Mayenco 

et al., 2018). In the absence of CI, the presence of rotenone or high concentrations of 

antioxidants, the cells of the carotid body are unable to respond to changes in O2 

levels and mouse models cannot increase respiration, during hypoxia. Furthermore, 

CI ROS seems to also play an essential role in the immune response, similarly to CIII 

derived ROS. Macrophages react to the presence of pathogenic bacteria by 

triggering a pro-inflammatory response, characterised by the generation of several 

types of cytokines. This immune response requires mitochondrial ROS, which is 

triggered by exposing or injecting lipopolysaccharides (LPS) in macrophages and 

experimental animals, respectively (West et al., 2011). A comprehensive study from 

the laboratory of Luke O’Neill at Trinity College has shown that the metabolism of 

macrophages is reprogrammed, in the presence of bacteria. Mitochondrial respiration 

was manipulated to produce ROS instead of ATP and these ROS triggered the 

expression of pro-inflammatory cytokines. The pro-inflammatory response was 

abolished in the presence of rotenone, FCCP or expressing AOX, indicating that 

ROS were produced by RET.   

 

Finally, our laboratory has shown that ROS-RET can also be induced in vivo by the 

expression of the alternative Ndi1, described before. RET is stimulated by the 

expression of Ndi1, due to the direct transfer of electrons from the oxidation of 

NADH, to the CoQ pool. Thus, leading to a highly reduced CoQ and a dramatic 

increase in ROS, observed in the fly brain (Scialo et al., 2016a). As expected, this 

increase in ROS was abolished by blocking the IQ site with rotenone or by dissipating 

the membrane potential with FCCP. In addition, preventing the reduction of CoQ with 

AOX or knocking down subunits of CI, also abolished ROS, supporting RET as the 

source. Surprisingly, Ndi1-induced ROS-RET has also been shown to significantly 

extend the lifespan of Drosophila melanogaster, irrespective of diet or the 
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background (Sanz et al., 2010b) (Scialo et al., 2016a) (Bahadorani et al., 2010) (Hur 

et al., 2013)).  Furthermore, NDX, an alternative NADH dehydrogenase found in 

Ciona intestinalis, has also been reported to lead to lifespan extension (Gospodaryov 

et al., 2014). Due to the fact that Ndi1 can bypass CI, it can rescue CI subunit 

mutations (Sanz et al., 2010b) (Cho et al., 2012), thus, Ndi1 expression protects 

mitochondrial function against the effects of ageing and several other stress 

conditions. Evidence, in support of the former, includes the increase in mitochondrial 

respiration in old flies expressing Ndi1 (Sanz et al., 2010b), as well as an increase in 

mitochondrial ATP production, in models of Parkinson’s disease (Vilain et al., 2012). 

More surprisingly, Ndi1 can also protect against the knockdown of Sod2, which 

increases mitochondrial superoxide levels (Scialo et al., 2016a). In the Sod2-KD 

model, flies expressing Ndi1 lived longer and their mitochondria respired more 

efficiently than the controls, despite having higher levels of mitochondrial ROS. This 

indicates that ROS-RET can act as a signal, which activates pro-survival pathways 

over the background noise of ROS, caused by knockdown of Sod2 or the age-related 

progressive increase in ROS.  

 

In light of the recent evidence, there has been speculation that ROS-RET plays a 

pivotal role in signal transduction and maintaining cellular homeostasis. ROS-RET is 

connected to two central components of metabolism, including both the redox state 

of the CoQ pool (which provides information about electron flow through the ETC) 

and the pmf (which is essential in regulating mitochondrial ATP production). In 

addition, ROS generated during the process of RET can be modulated in intensity 

and duration. For these reasons, ROS-RET is an ideal signalling system responsible 

for communicating information from the mitochondria, to the rest of the cell (reviewed 

in (Scialo et al., 2017)). Thus, research dedicated to understanding the mechanisms 

behind ROS-RET, may be pivotal in understanding the role ROS play in health and 

disease. 

 

1.3 Mitochondrial ROS and age-related diseases 

The ageing process is a universal phenomenon in all animals, characterised by 

inevitable deterioration, which ultimately leads to death (Lopez-Otin et al., 2013). 

Over the past decade, the importance of researching the mechanisms behind ageing 

has been established by the evident increase of the elderly population, which 

currently shows no indication of slowing down. Coinciding with the ageing population 
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is the corresponding increase of age-related disease prevalence (LeBrasseur et al., 

2015). Excessive mitochondrial ROS production has been repeatedly implicated in 

the ageing process and has also been observed in numerous age-related 

pathologies (Vos et al., 2010). This is particularly observed in neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s diseases (Kim et al., 2015). In 

Alzheimer’s disease, enhanced oxidative stress has been reported, resulting in 

damaged neurons, within the brain. In addition, different studies have shown 

decreased levels of antioxidants in patients of Alzheimer’s disease (Zhao and Zhao, 

2013). Parkinson’s disease has been associated with a decrease in the activity of 

respiratory CI, which leads to excessive production of ROS (Schapira, 2008). This 

was later supported by the parkinsonism phenotype induced by the CI inhibitors, 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone (Betarbet et al., 

2000). Although both these neurodegenerative disorders present an increase in 

oxidative stress, it is still unclear if mitochondrial ROS is the cause or consequence of 

Alzheimer’s and Parkinson’s disease (Kim et al., 2015). Elevated mitochondrial ROS 

production can also be observed in the pathology of cancer (Rodic and Vincent, 

2018). It has previously been established that DNA damage induced by oxidative 

stress can increase the risk of cancer (Moloney and Cotter, 2018). Recently, 

mitochondrial ROS have also been shown to possess a regulatory role in cancer 

progression. Here, the cancer cells can maintain ROS at precise concentrations, 

enough to stimulate growth and proliferation but low enough to avoid apoptosis and 

autophagy. Therefore allowing the rapid growth and progression associated with 

cancer cells (Idelchik et al., 2017). Type II diabetes is another age-related disorder, 

where patients have been identified to have increased ROS production. It has been 

proposed that the sustained ROS-dependent activation of downstream insulin 

signalling pathways, can lead to insulin resistance (Abdul-Ghani et al., 2009). A final 

example of heightened mitochondrial ROS production is in cardiovascular diseases. 

Here it has been shown that the oxidation of low density lipoproteins (LDLs), by ROS, 

is a direct cause of atherosclerosis (Panth et al., 2016). 

 

In most of these cases, the source of ROS observed in these pathologies has not 

been investigated. For example if the ROS are generated at specific sites, such as CI 

or CIII, or produced non-specifically, as a result of a defective metabolism. Answering 

this question may help the development of more specific therapies that prevent 

oxidative stress, without altering redox signalling. 
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 Historical importance of MFRTA; evidence for and against  

In the 1950’s Denman Harman proposed the free radical theory of ageing, describing 

free radicals as the primary cause of ageing (Harman, 1956). This was later modified 

in 1972 to the mitochondrial free radical theory of ageing (MFRTA), which 

characterised mitochondria as biological clocks. In this updated version of the theory, 

free radicals produced exclusively in the mitochondria accumulate, leading to 

oxidative stress, which induces the ageing process (Harman, 1972). Since this theory 

was first introduced, extensive research exploring the relationship between ageing 

and mitochondrial ROS has been instigated. The evidence from these studies has 

accumulated, both supportive and contradictory (reviewed in (Sanz et al., 2006) 

(Sanz and Stefanatos, 2008) (Barja, 2019)).  Although this theory is still popular, it 

does not take into consideration the recent advancements surrounding the role of 

ROS in redox signalling ((Lapointe and Hekimi, 2010) (Sanz, 2016).  Below I 

describe in detail the evidence for and against the MFRTA.  

 

The first line of evidence, supporting the MFRTA, revealed a positive correlation 

between ROS and age, (Toroser et al., 2007) (Sanz et al., 2010a) (Cocheme et al., 

2011) as well as a correlation between short-lived animals and higher ROS levels, 

compared to long-lived species (Barja et al., 1994). This was further supported by an 

increase in oxidative stress and mitochondrial dysfunction, a classic hallmark of 

ageing in old individuals and short-lived species (Chistiakov et al., 2014). Additionally 

in many age-related diseases, such as Parkinson’s disease (Kim et al., 2015), cancer 

(Idelchik et al., 2017), cardiovascular diseases (Garcia et al., 2017b) and diabetes 

(Abdul-Ghani et al., 2009), high levels of ROS and oxidative stress could be 

detected. All the previously described evidence, supporting the MFRTA, are 

observational in nature and based on correlations. Contradictory evidence started to 

accumulate when alternative experimental approaches were used, to test the 

predictions of the theory. The experimental manipulation of antioxidant levels brought 

about inconsistent data, which began to challenge the integrity of MFRTA. Studies 

were able to demonstrate that the overexpression of antioxidants and the 

administration of non-enzymatic antioxidants, such as vitamin E and C, to decrease 

ROS levels showed no beneficial effects on longevity (Ernst et al., 2013). 

Furthermore, diminishing antioxidant levels did not shorten lifespan as expected 

either (reviewed in (Sanz et al., 2006)). For example in C.elegans, the knockdown of 
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all SOD enzymes, did not lead to a decrease in longevity, despite a rise in 

superoxide levels (Van Raamsdonk and Hekimi, 2012) (Yang et al., 2007) (Van 

Raamsdonk and Hekimi, 2009) (Yang et al., 2007) (Doonan et al., 2008). Similarly, in 

a heterogeneous SOD2 knockdown mouse model, no effect on lifespan was 

observed, although mice suffered from higher levels of ROS and oxidative damage 

(Van Remmen et al., 2003). Additionally, in Drosophila melanogaster it has been 

demonstrated that the overexpression of MnSOD and the expression of a 

mitochondrial targeted catalase have no effect or negative effects on lifespan, 

respectively (Mockett et al., 2010). The direct manipulation of mitochondrial ROS 

production was then used to test the validity of the MFRTA. Reducing the production 

of superoxide from the ETC did not extend lifespan in fruit flies (Sanz et al., 2010a). 

In fact, in flies and worms an increase in mitochondrial ROS was shown to extend 

lifespan (reviewed in (Ristow and Schmeisser, 2011) (Sanz, 2016) (Hekimi et al., 

2011)). For example the clk-1 mutation in worms, targeting CoQ, increased both 

mitochondrial ROS and lifespan (Wong et al., 1995). In addition, administration of CI 

inhibitors, rotenone or paraquat, as well as mutations in ETC subunits, were 

associated with an increase in ROS production, which positively affected longevity in 

worms (Yang and Hekimi, 2010). In Drosophila melanogaster, there is no positive 

effect on lifespan associated with feeding rotenone or paraquat (Scialo et al., 2016a). 

However mutations in CI, which increase ROS in the muscle (Owusu-Ansah et al., 

2013) and the aforementioned expression of Ndi1, which increases mitochondrial 

ROS production, both extend lifespan. All these manipulations that increase ROS 

and extend lifespan are reverted by overexpression or administration of antioxidants, 

showing that these beneficial effects are ROS dependent.  

 

Despite the accumulation of contradictory evidence, overall, the MFRTA has been 

pivotal in advancing the field of ageing and ROS. Research surrounding this theory 

has enabled a deeper understanding of the physiological processes that ROS 

participate in, providing the tools to understand the dual role that ROS play in redox 

signalling and oxidative stress. 

 

 The concept of hormesis 

It has been established that damaged mitochondria produce higher levels of ROS 

and accumulate during ageing. Paradoxically to this, are studies demonstrating that 

boosting mitochondrial ROS levels, in young individuals, extends lifespan. The 
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concept of hormesis has been used to provide an explanation for these contradictory 

facts. Hormesis is defined as an adaptive response in which mild stress in early life 

will induce resistance to higher levels of stress, in later life. In the case of 

mitochondrial ROS, increasing their levels would stimulate protective survival 

mechanisms to counteract the stress and produce antioxidant systems, capable of 

removing the ROS signal (Luna-Lopez et al., 2014). Mitochondrial hormesis is known 

as mitohormesis (Yun and Finkel, 2014) and has been used to explain how 

mitochondrial ROS regulate lifespan (Ristow and Schmeisser, 2011). From the point 

of view of mitohormesis, the exposure of ROS in early life can induce the expression 

of antioxidants that protect against oxidative stress, in later life (Schulz et al., 2007). 

The problem with this explanation is that fails to explain why the overexpression of 

the same antioxidants does not extend lifespan, as discussed previously. 

Additionally, mitohormesis also fails to explain why ROS produced at different sites 

can impose different downstream effects, through targeting distinct physiological 

pathways (Luna-Lopez et al., 2014). 

 

 Importance of studying mitochondrial ROS signaling 

It has been well established that cells rely on healthy and active mitochondria to 

provide cellular energy, as well as maintaining cellular homeostasis, through the 

activation of numerous signalling pathways. At the forefront of mitochondrial 

signalling is the controlled production of mitochondrial ROS, a by-product of 

OXPHOS. Mitochondrial ROS can diffuse across the double membrane, as signalling 

messengers, in response to stress and regulate the redox state of key cysteine 

residues in target proteins. Once homeostasis has been restored, antioxidant 

systems are activated to remove the ROS signal (Shadel and Horvath, 2015). 

However, the unregulated and excessive production of mitochondrial ROS has been 

implicated in a wide range of pathologies, including the ageing process. It appears 

that during early life mitochondrial ROS protects cells and promotes cell viability, 

which is ultimately lost in later life, where ROS drives oxidative stress. It has been 

shown that three factors can determine the behaviour of ROS. Firstly, the type of 

ROS, in which low reactive molecules such as H2O2 participate in signalling and 

highly reactive molecules as the hydroxyl radical, cause oxidative damage. Secondly, 

the location and duration of ROS production. As previously discussed, ROS 

produced by CI activate different downstream targets, in comparison to ROS 

produced by CIII. Similarly, ROS produced in response to stress can help cells to 
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cope with that stress, whereas ROS produced continually will cause oxidative stress.  

Finally, the amount of ROS produced, where low amounts modulate the activity of 

signalling pathways and high amounts contribute to ageing and the onset of age-

related diseases (Hekimi et al., 2011).  

One of the important unanswered questions in the field of redox biology, is how ROS 

signalling is lost during ageing and how oxidative stress takes a leading role 

(Stefanatos and Sanz, 2018). The two major sites of mitochondrial ROS production 

within the mitochondria are CI and CIII, which can both regulate superoxide 

production depending on the electron flow through the ETC and the pmf. As I 

discussed for ROS-RET, changing ROS levels in response to alterations in 

mitochondrial respiration, is one of the characteristics that makes mitochondrial ROS 

suitable to participate in redox signalling. However, mitochondria fail to communicate 

information in the presence of a dysfunctional ETC, which is observed during ageing 

and in mitochondrial diseases. For example, in Drosophila, CI levels and activity 

declines in aged flies, compared to early adulthood (Scialo et al., 2016a). It has been 

previously shown that CI inhibition prevents RET (Scialo et al., 2016a), therefore the 

reduction of CI activity during ageing would gradually lead to the inhibition of RET 

and the alteration of any physiological processes, which ROS-RET regulate. It is 

possible that during early life, ROS are produced specifically through regulated 

processes, which are ultimately lost during ageing. Thus, in later life, there is a switch 

in ROS production, to create non-specific, unregulated ROS, which drives the 

oxidative stress, we see in older individuals (Stefanatos and Sanz, 2018). To 

understand how ROS signalling fails, it is essential to measure mitochondrial ROS 

levels across all ages and test whether the place, time and intensity of ROS, changes 

during ageing. In the future, this could be central to developing treatments, which 

ameliorate age-related diseases and facilitate healthy ageing.  

 

1.4 Drosophila melanogaster as a model system 

The common fruit fly, also known as Drosophila melanogaster, was first introduced to 

scientific research as a model organism in the 1900s. Since then, research on 

Drosophila has contributed to understanding further, a wide range of scientific topics 

such as ageing, behaviour, genetics and human disease (Fernandez-Moreno et al., 

2007).  A total of six Nobel prizes have been awarded to researchers working with 

fruit flies, most recently being in 2017 (Guo et al., 2016).  
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The Drosophila genome consists of only 4 pairs of chromosomes; X/Y, II, III and IV. 

Although due to the notably small size of chromosome 4, the majority of genes are 

encoded on the first three chromosomes (Kaufman, 2017).  In 1910, Thomas Hunt 

Morgan discovered the Drosophila white-eyed mutant (Morgan, 1910), which was the 

catalyst for the deep understanding of fruit fly genetics we hold today (Fernandez-

Moreno et al., 2007). At present, the entire fruit fly genome, of approximately 13,600 

genes, has been characterised, making them an obvious choice for carrying out 

genetic studies (Adams et al., 2000). One of the advantages of using Drosophila 

melanogaster as a model organism is the existence of public stock centres where fly 

lines carrying drivers, transgenes or mutations, are available for the whole 

community. Two of the most important stock centres are the Bloomington Drosophila 

Stock Centre (BDSC, https://bdsc.indiana.edu/) and the Vienna Drosophila Resource 

Centre (VDRC, https://stockcenter.vdrc.at/control/main).  

 
The life cycle of Drosophila melanogaster is short, consisting of an approximate 10-

day developmental period, categorised into 4 distinct stages: embryo, larva, pupa 

and adult. The Drosophila life cycle begins with the fertilisation of an embryo encased 

in an egg, which undergoes embryogenesis for 24 hours. From embryos, they 

develop into larvae, starting with the first instar larva, which feeds on the 

carbohydrate-protein-based food media. Following on from first instar larva, they 

moult into second instar larva, which burrow into the culture medium and enter a 

second moulting phase. The mature 3-day-old third instar larvae start to migrate up 

the surfaces of the containers and here they develop into pupae. During pupation, 

metamorphosis occurs to develop fully formed adult flies, from the coordinated 

assembly and maturation of imaginal disks and histoblasts, present in the larvae. 

After a pupation period of 4 days, the adult flies eclose from their pupae and can 

survive for an approximate 2 – 3 months at 25°C (Figure 1.10).  As Drosophila are 

poikilothermic, their rate of development and longevity can be controlled using 

temperature. At 25 °C, it will take an average of 10 days to produce adult flies 

however at a lower temperature of 18 °C, the process is much slower, taking up to 20 

days (Fernandez-Moreno et al., 2007).   
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Figure 1.10 Diagram of the Drosophila life cycle. 

 

 Advantages of using Drosophila as a model organism   

There are many reasons that make the fruit fly an advantageous model organism. 

The first is that they allow in vivo experimentation to study an entire organism, 

therefore can overcome the limitations associated with in vitro studies, such as the 

artificial conditions in which cells are cultured. Secondly, working with Drosophila is 

cost-effective due to their low maintenance costs. In addition, fruit flies have a short 

lifespan, when compared to the average 3-year lifespan of mice, and produce a high 

number of offspring. Furthermore, fruit flies are small 3 mm long invertebrates, 

available in much higher numbers than bigger animals and can be reared in confined 

spaces, allowing many biological repeats in a short time frame, to confirm results 

(Hirth, 2010). One of the tools that makes Drosophila an extremely valuable model 

organism is its powerful genetics. Since their first introduction to laboratories more 

than 100 years ago, scientists have been able to map out the entire fly genome and 

develop an extensive range of genetic techniques, allowing the effortless 

manipulation of targeted genes (Sun et al., 2013). There are two defined categories 

of genetic manipulation: (i) loss-of-function (LOF) and (ii) gain-of-function (GOF). LOF 

The Drosophila life cycle is categorised into four stages, including embryos, larvae, pupae and 

adults.  
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includes the partial or complete removal of a targeted gene, whilst GOF involves 

strategies to increase the expression of a specific gene. There are different strategies 

that individually or in combination allow modification of gene expression in 

Drosophila, including the use of (i) P-element insertional mutagenesis, (ii) gene 

silencing through RNA interference (RNAi), (iii) FLP-FRT recombination, (iv) 

CRISPR-Cas9 genome editing and (v) PhiC31 mediated site-specific recombination 

(reviewed in (Cooley et al., 1988) (Theodosiou and Xu, 1998) (Bier et al., 2018) (Gao 

et al., 2008) (Heigwer et al., 2018)). Another advantage is the similarity of the human 

and fly genome, where 75% of disease-related genes in Drosophila possess 

homologues in humans (Pandey and Nichols, 2011). This offers the potential to study 

the effects of human diseases in flies, to elucidate their biological mechanisms and 

discover future therapies.  

 

 GAL4/UAS system to control gene expression  

The GAL4/UAS (upstream activator sequence) system is a highly used tool that 

allows the manipulation of targeted gene expression in Drosophila (Brand and 

Perrimon, 1993). The basis of this system consists of two elements; the first is the 

functional incorporation of the yeast GAL4 transcription factor and secondly the 

presence of a UAS sequence which GAL4 binds to, neither of which are 

endogenously present in fruit flies (Scialo et al., 2016b). Each of these components is 

distributed between two separate lines. The yeast transcription factor GAL4 is 

expressed in the presence of a promoter, whilst the targeted gene is expressed 

downstream of the UAS sequence. When these two lines are crossed the 

transcription factor GAL4 is able to bind to the UAS, thus driving expression of the 

downstream gene of interest. The resulting progeny will express the transgenes of 

interest (Figure 1.11). This system allows the spatial and temporal control of gene 

expression depending on the chosen promoter. To achieve spatial control, the 

promoter can be either ubiquitous or tissue-specific. 
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Figure 1.11 Schematic diagram of the GAL4-UAS and GeneSwitch GAL4 (GS) system. 

 

 

 

 

(A) GAL4-UAS system; Virgin female flies carrying the GAL4 promoter are crossed with male 

flies carrying the transgene. This leads to the binding of GAL4 to the UAS-transgene, resulting 

in the expression of the transgene. (B) GeneSwtich GAL4 (GS) system; Similarly to GAL4-

UAS virgin female flies are crossed with male transgene flies however the GAL4 transcription 

factor is only induced in the presence of RU-846 leading to the expression of the transgene.    
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The GeneSwitch GAL4 (GS) system is a modified GAL4 protein that is only active in 

the presence of the synthetic progesterone analogue, mifepristone (RU486). This 

allows control over when and where the modified expression is activated (Nicholson 

et al., 2008). Thus, in theory, it allows work with an identical background in both 

experimental and control group where the only difference is the presence of RU486 

in the fly food. However, GS has many drawbacks including its leakiness, where the 

transgene can be expressed even in the absence of RU486 (Poirier et al., 2008). GS 

is particularly problematic when working when RNAi transgenes designed for 

depleting endogenous Drosophila genes (Scialo et al., 2016b). In the former case, 

genes are also depleted in the control, (without RU486) when strong drivers are 

used. Therefore GS requires appropriate controls and confirmation that the control 

group has normal levels of expression of the gene of interest.  

 

 Genetic screening 

Further demonstrating the advantages of Drosophila’s genetic tool kit is the ability of 

performing large-scale genetic screens, to characterise gene function and their 

respective biological mechanism (Perrimon et al., 2010). In Drosophila, the most 

common method used to perform screens is the targeted silencing of genes using 

RNA interference (RNAi). This is achieved by the integration of double-stranded 

RNAs, transported in a transgenic vector. These double-stranded RNAs cause 

targeted degradation of individual mRNA strands, thereby inhibiting gene expression 

(Mohr, 2014). RNAi provides an in vivo genetic platform to observe links between 

genotype and phenotype easily. This genetic technology has enabled the execution 

of large scale, unbiased, high-throughput genetic screens allowing the analysis of 

approximately 12,500 gene targets, equating to 91% of the Drosophila genome 

(Heigwer et al., 2018). To date, genetic screens in Drosophila have played an 

essential role in understanding metazoan development, circadian rhythm, cellular 

signalling pathways and a range of disease mechanisms (Mohr et al., 2010). 

 

 Drosophila and ageing studies  

Drosophila melanogaster is a convenient model for the research of ageing and age-

related diseases. The most valid reason is the short lifespan, of approximately 2-3 

months, (depending on genetic background and temperature where flies are 

cultured), making them ideal candidates for carrying out in vivo lifespan studies 
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quickly and easily (Sun et al., 2013). Their short lifespan allows ageing researchers 

to quickly identify genetic mutations, drugs or environmental interventions that can 

lead to the extension or reduction of longevity, within a whole organism. Thus, 

making fruit flies extremely valuable within ageing studies (He and Jasper, 2014). 

The powerful genetics of Drosophila allows manipulating the expression of any gene 

suspected to be implicated in the ageing process (Clancy et al., 2001) or expressing 

genes that do not exist in Drosophila but can modify its lifespan (Humphrey et al., 

2009). Drosophila has greatly contributed to our knowledge about age-related 

diseases such as Parkinson’s disease. For example, the genetic association between 

Pink1 and parkin was first described in fruit flies (Park et al., 2006). Pink1 and parkin 

mutants display reduced lifespan, male sterility and abnormal flight and climbing 

abilities (Guo, 2012). These phenotypes can be quantified and studied to discovery 

specific therapies that can recuse the phenotypes (Tufi et al., 2014). The former is 

true for other diseases such as cancer (Dar et al., 2012) and ageing (Brandt and 

Vilcinskas, 2013), where the ability of the flies to display disease phenotypes 

provides us with the tools to investigate and identify new therapeutic agents. 

 

 Studying mitochondrial function in Drosophila  

Over the years, experiments using Drosophila have contributed a vast amount to the 

field of mitochondrial disease and studying the role of mitochondria in ageing. In 

parallel to humans, flies accumulate defective mitochondria during ageing and in 

models of neurodegeneration (Cho et al., 2011a). One advantage of using 

Drosophila for mitochondrial studies is that mitochondrial proteins are highly 

conserved between humans and flies. In addition, the nuclear-encoded mitochondrial 

proteins are also highly conserved, allowing for the genetic manipulation of these 

genes to study specific mitochondrial diseases. Detailed information about these 

nuclear-encoded mitochondrial proteins, such as their functions, ontology and 

respective human homologues, can be easily found in the Mitodrome database 

(Fernandez-Moreno et al., 2007). Due to the variety of different genetic tools that flies 

have to offer, there have been many mitochondrial mutation models reported in the 

literature. For example, mutations that affect the OXPHOS subunits (Walker et al., 

2006) (Frolov et al., 2000) (Kemppainen et al., 2014) (Da-Re et al., 2014) (Chen et 

al., 2015) or other mitochondrial proteins (Vos et al., 2010) (Dorn et al., 2011) 

(Phillips et al., 1989). These allow us to observe the phenotypes associated with 

individual mutations. An example is the fly mutant technical knockout (tko), which 
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carried a point mutation in the mitoribosomal protein S12 gene. This tko fly mutant 

mimics the phenotype seen in the corresponding human mitochondrial disease, such 

as ETC deficiency, developmental delay, seizures and hearing loss (Jacobs et al., 

2004). Another example is the Leigh Syndrome (LS) fly model caused by mutations 

in the CI subunit ND2. In this model flies experience CI deficit, abnormal flight, 

mechanically induced paralysis, metabolic defects, neurodegeneration and 

decreased lifespan (Burman et al., 2014). An important advantage of being able to 

observe phenotypes in these Drosophila mitochondrial disease models is the ability 

to find therapeutics, which can reverse the disease pathologies in the flies (Foriel et 

al., 2015). For example, in the previously discussed LS mitochondrial disease model, 

a study reported that the administration of rapamycin was able to extend lifespan by 

rescuing metabolic defects. Drosophila are also highly important for the study of 

mitochondrial dysfunction during ageing. During ageing, Drosophila mitochondria 

exhibit alterations in morphology and functionality (Cho et al., 2011a). Using flies we 

can examine, in vivo, the effect of ageing on the activity of the individual ETC 

components and ROS production, as well as observing the global effect of 

mitochondrial dysfunction. Fruit flies, therefore, provide us with the potential to 

analyse the link between mitochondria and ageing. Finally, age-related disease can 

be studied in flies, including the Parkinson’s model discussed earlier, which exhibits 

similar phenotypes observed in humans (Tufi et al., 2014).  
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1.5 Aims 

Over the past decade, it has been widely established that ROS possess two distinct 

behaviours, within cells. Firstly, they are described as toxic by-products that trigger 

oxidative stress and drive the progression of ageing (Barja, 2014). Conversely, ROS 

are also recognised as signalling molecules, which are instrumental in maintaining 

cellular homeostasis (Ray et al., 2012). At present, it is not clear how these 

contrasting identities are determined. However, it has been speculated that signalling 

ROS messengers are characterised by site- and time-specific production, under 

controlled conditions, involving ROS with low reactivity, such as H2O2 and 

superoxide. On the other hand, harmful ROS involved in oxidative damage is 

generated at non-specific sites, in uncontrolled circumstances and involves highly 

reactive ROS, such as the hydroxyl radical (Sanz, 2016). The most acknowledged 

example of site-specific ROS production, which takes into account all of the previous 

criteria, is ROS-RET, occurring at CI. This process occurs under specific conditions, 

as a result of redox changes in the ETC, including a highly reduced CoQ pool and a 

sustained increase in the pmf. In addition, RET triggers a significant increase in ROS 

production, specifically at CI, which can subsequently be neutralised (Chance and 

Hollunger, 1961) (Chouchani et al., 2014a). Recent studies have reported the 

occurrence of RET in specific cell signalling pathways, reviewed in (Scialo et al., 

2017). However, despite all the evidence surrounding the occurrence of ROS-RET in 

vivo and its physiological importance, it is still unclear how the conditions required for 

RET initiation are reached. Therefore, the aims for my thesis were to investigate the 

mechanisms responsible for triggering ROS-RET, to establish (i) how it can be 

stimulated in vivo, (ii) how altering electron flow through the ETC can effect ROS-

RET and (iii) which cellular components are involved in the regulation of ROS-RET. 

The specific aims of each Chapter were; 

 

1) To identify if and how ROS-RET can be stimulated, physiologically in the fly 

brain (Chapter 3). 

2) To study the effects of blocking electron entry into the ETC on ROS-RET, 

through CI and CII inhibition (Chapter 4). 

3) To study the effects of blocking electrons from exiting the ETC on ROS-RET, 

through CIII, CIV and CV inhibition (Chapter 5) 
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4) To identify novel genes involved in the regulation of ROS-RET, by performing 

a Genome-Wide RNAi screen using AOX expression to prevent ROS-RET 

(Chapter 6).  
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Chapter 2 Materials and Methods 

 

2.1 Reagents  

All of the reagents used during the experiments included in this thesis are listed in 

Table 2.1, along with their providers and catalogue numbers. 

Table 2.1 List of chemical reagents.   

Reagent  Company Catalogue number 

Active Dried Yeast  Dutscher Scientific 789093 

Adenosine 5’-diphosphate Sigma A2754-5X1G 

Antimycin A Santa Cruz 

Biotechnology 

Sc-202467A 

Bovine Serum Albumin (BSA) Sigma  A7906-100G 

Bradford Reagent Sigma B6916-500ML 

Chloroform  Sigma 288306 

Nuclease free dH2O Qiagen 129112 

Dichlorofluorescin (H2DCF) Sigma D6883-50MG 

Dimethylsulfoxide (DMSO), sterile 

filtered 

Santa Cruz 

Biotechnology 

Sc-359032 

DNase I  Fisher Scientific 10649890 

DNase I 10x Buffer Fisher Scientific 10202730 

Drosophila agar Type II Dutscher Scientific 789150 

Ethanol (EtOH) Fisher Scientific 

UK 

E/0650DF/17 

Ethyleneglycol-bis(2-amino-ethylether)-

N,N,N’,N’-tetracetic acid (EGTA) 

Sigma 03777-10G 
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D-(+)-Glucose  Sigma  16325-1KG 

Sn-Glycerol-3-phosphate 

bis(cyclohexylammonium) salt 

Sigma G7886-5G 

HEPES Sigma 50046-1KG 

High-Capacity cDNA Reverse 

Transcription Kit 

Applied 

Biosystems 

4368814 

Isopropanol Sigma 190764 

Magnesium Chloride, Hexahydrate Santa Cruz 

Biotechnology 

Sc-203126A 

Maize meal TRS / 

MitoSOX Life Technologies M36008 

Nipagin (Methyl 4-hydroxybenzoate) Sigma H5501-100G 

Sodium Acetate (NaAc pH 5.2 3M) Life Technologies AM9740 

Phosphate Buffered Saline (PBS) tablets Cambio MC-09-9400-100 

Potassium Chloride (KCl) Sigma P9333-500G 

Potassium cyanide (KCN) Sigma 60178-25G 

Potassium Hydroxide (KOH) Sigma 484016-1KG 

Potassium Phosphate, Monobasic 

(KH2PO4) 

Santa Cruz 

Biotechnology 

Sc-203211A 

L-Proline Sigma P5607-25G 

Propionic acid  VWR 8.00605.2500 

Pyruvic acid monopotassium salt Sigma 860077-1G 

Random Hexamer Primer Thermo Fisher 

Scientific 

48190011 
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Rotenone Santa Cruz 

Biotechnology 

Sc-203242 

Saccharose (sucrose) Sigma 27480.294 

SensiFAST SYBR Hi-ROX Kit Bioline BIO-92020 

(+)-Sodium L-ascorbate Sigma A4034-100G 

Sodium pyruvate Sigma P2256-25G 

Sodium succinate dibasic hexahydrate Sigma S9637-500G 

Soybean flour Santa Cruz 

Biotechnology 

Sc-215897A 

TMPD (N,N,N’,N’-Tetramethyl-p-

phenylenediamine dihydrochloride) 

Sigma 87890-25G 

Treacle Bidvest 90028S 

Tris-HCl Promega H5121 

Trizol/TRIreagent  Fisher Scientific 11312940 

Wheat germ MP biomedicals 0290328805 - 5 lb 
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2.2 Fly Husbandry  

All flies were maintained on standard media, (1% agar, 1.5% sucrose, 3% glucose, 

3.5% dried yeast, 1.5% maize, 1% wheat, 1% soya, 3% treacle, 0.5% propionic acid, 

0.1% nipagin), prepared as described below and kept in 12 hours light:dark cycle 

incubators. Incubators were set to different temperatures depending on the 

experiment. Due to the fact that flies are poikilothermic they adapt to environmental 

temperature (Dillon et al., 2009), therefore in higher temperatures they develop faster 

than in lower temperatures. In normal conditions, flies were kept at 25°C whereas 

stocks were maintained at 18°C. For heat stress experiments flies were exposed to 

32°C for 3-4 hours, unless otherwise indicated. All experimental flies were female 

flies unless otherwise stated.  

For collection, flies were anaesthetised using CO2 and placed in vials containing 2 ml 

of standard fly food with 20 flies per vial. Vials were changed every 2-3 days. Two 

different strains were used as controls; white Dahomey strain (wDAH) and w1118. All 

lines were backcrossed, for at least 6 generations, into wDAH or w1118, or they were 

used in the original w1118 background in the case of RNA interference (RNAi) lines 

from the Vienna Drosophila Resource Centre (VDRC) used in the screen. Two 

different drivers were used to express UAS-transgenes: daughterless-Gal4 (daGAL4) 

and tubulin-Gene-Switch (tubGS). For experiments using RNAi lines of the ETC 

subunits the following strategy was used. First of all the daGAL4 driver was used to 

achieve expression throughout development. However, if this driver caused lethality 

or a weak phenotype resulting in mortality soon after eclosion, the tubGS driver was 

used, restricting expression during adulthood only.  These particular drivers were 

picked due to the level of expression induced. For example, tubulin drivers are 

considered to induce stronger levels of expression, where as daughterless are 

considered to have milder effects. Therefore, the daGAL4 driver was used instead of 

the stronger tubGAL4 driver, to lower the possibility of lethality when expressed 

during development however, the stronger tubGS driver was used instead of the 

daGS to maximise expression of the RNAi during adulthood. The control lines, driver 

lines and UAS-lines used in this thesis are summarised in Table 2.2. Expression of 

UAS-transgenes was achieved by crossing virgin females, carrying one of the two 

drivers, with males carrying the UAS-transgene. Appropriate controls were generated 

by crossing female virgins carrying the driver, (daGAL4 or tubGS), with male control 

flies, of the same background, (i.e. wDAH or w1118). Fly crosses were made in bottles 
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with 30 ml of fly food or 5 ml vials and flipped every 2-3 days for a maximum of 4 flips 

to avoid contamination and whilst virgins were still young. Each bottle reached a 

density of approximately 100 – 300 flies depending on the genotype. For example, 

less flies eclosed from bottles containing KD of the ETC complexes, which were 

overall weaker than control flies. 
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Table 2.2 List of fly stocks. 

Fly Strain Source Details 

wDAH Prof Linda Partridge/University College London White Dahomey, white-eye control type background 

w1118 VDRC w1118, white-eye control type background 

wDAH; UAS-Sod2 Bloomington Drosophila Stock Centre (BDSC) Superoxide dismutase 2 (Mn) under UAS control on the 
2nd chromosome (24494) 

wDAH; UAS-mtCat 8M Prof William Orr / Southern Methodist University 
Dallas 

Catalase targeted to the mitochondrion under UAS 
control on the 2nd chromosome.  

wDAH; daGAL4 

 

BDSC GAL4 under the control of the daughterless promoter on 
the 3rd chromosome. 

w1118; UAS-ND-75 VDRC RNAi against NADH dehydrogenase (ubiquinone) 75 kDa 
subunit (CI subunit) on 2nd chromosome. (CG2286, 
100733/KK) 

w1118; UAS-ND-42 VDRC RNAi against NADH dehydrogenase (ubiquinone) 42 kDa 
subunit (CI subunit) on 2nd chromosome. (CG6343, 
110787/KK) 

wDAH; tubGS Prof Scott Pletcher/University of Michigan Gene-Switch GAL4 under control of the tubulin promoter, 
White Dahomey background, 3rd chromosome. 
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w1118; tubGS Prof Scott Pletcher/University of Michigan GeneSwitch GAL4 under control of the tubulin promoter, 
w1118 background, 3rd chromosome. 

wDAH; UAS-SdhD VDRC RNAi against Succinate dehydrogenase, subunit D (CII 
subunit) on 2nd chromosome. (CG10219, 101739/KK) 

w1118;UAS-UQCR-Q VDRC RNAi against UQCR-Q on the 2nd chromosome. 
(CG7580, 101371/KK) 

wDAH; UAS-AOX F6 Prof Howy Jacobs/ University of Tampere AOX from C.intestinalis under UAS control (allele F6) on 
the 2nd chromosome.  

wDAH; UAS-AOX F6; 
tubGS 

 AOX from C.intestinalis under UAS control (allele 
F6),Gene-Switch GAL4 under control of the tubulin 
promoter, 

wDAH; UAS-Ndi1B20 Prof Howy Jacobs/University of Tampere Ndi1 from S.cerevisae under UAS control (allele B20) on 
the 2nd chromosome. 

w1118; UAS-empty VDRC Landing site VIE-260B, insertion on the 2nd chromosome 
at position 22019296 (5’ to CR33987) 

w1118;UAS-VhaPPA1-1 VDRC RNAi against Vacuolar H+ ATPase PPA1 subunit 1on the 
2nd chromosome. (CG7007, 47188/GD) 

w1118; UAS-CG30373 VDRC RNAi against CG30373 on the 2nd chromosome. 
(CG30373, 104802/KK) 

w1118; UAS-ABCB7 VDRC RNAi against ATP binding cassette subfamily B member 
7 on the 2nd chromosome. (CG7955, 106039/KK) 

w1118; UAS-Mitofilin VDRC RNAi against Mitofilin on the 2nd chromosome. (CG6455, 
106757/KK) 

w1118; UAS-Cchl VDRC RNAi against Cytochrome c heme lyase on the 2nd 
chromosome. (CG6022, 101382/KK) 
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w1118; UAS-mRpS25 VDRC RNAi against mitochondrial ribosomal protein S25 on the 
2nd chromosome. (CG14413, 101443/KK) 

w1118; UAS-CG11200 VDRC RNAi against Carbonyl reductase on the 2nd 
chromosome. (CG11200, 101697/KK) 

w1118; UAS-CG7071 VDRC RNAi against CG7071 on the 2nd chromosome. (CG7071, 
110726/KK) 

w1118; UAS-Cul3 VDRC RNAi against Cullin 3 on the 2nd chromosome. (CG42616, 
109415/KK) 

w1118; UAS-Ppn VDRC RNAi against Papilin on the 2nd chromosome. (CG33103, 
108005/KK) 

w1118; UAS-CG9853 VDRC RNAi against CG9853 on the 2nd chromosome. (CG9853, 
107346/KK) 

w1118; UAS-crb VDRC RNAi against crumbs on the 2nd chromosome. (CG6384, 
39177/GD) 

wDAH ; UAS-levy VDRC RNAi against levy on the 2nd chromosome. (CG17280, 
101523) 

w1118; UAS-ATPsynδ VDRC RNAi against ATP Synthase, δ subunit on the 2nd 
chromosome. (CG2968, 100621) 
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 Preparation of the fly food 

The fly food was prepared using the ingredients described in Table 2.3. The 

ingredients were weighed into a glass beaker, according to the required volume and 

mixed. To prepare a litre, approximately 750 ml of deionized water was added to the 

mixture and heated to 37°C, on a hot plate, under continuous agitation with a 

magnetic stirrer. Once the mixture had reached 37°C, the yeast undergoes 

fermentation for 10 minutes, after which the temperature was further increased to 

80°C and left to boil for 25 minutes. The remaining deionized water was added, to 

reach the total desired volume. The food was then allowed to cool to 70°C before the 

addition of propionic acid and nipagin (diluted in EtOH to a 10% (w/v) stock solution). 

 

The cooled mixture was then dispensed into vials (2 ml or 5 ml) or bottles (30 ml) and 

left at room temperature to set, for approximately 60 minutes. Food was stored at 

4°C and used within 14 days. Before use, food was left at room temperature to warm 

up, for approximately 60 minutes. Activation of the modified GAL4 protein GS was 

achieved by adding mifepristone (RU-486) into the standard fly food mixture. A 100 

mM stock solution of RU-486 was prepared in EtOH and diluted to the final 

concentration to which 200 μL was added to molten food (1 μM during development 

and 500 μM during adulthood). Adult flies were fed the drug (500 μM) from eclosion 

for up to 10 days before being used for experiments unless otherwise stated. A fresh 

Table 2.3 List of fly food ingredients. 

Standard medium for 1000ml 

% in food Quantities Component 

1% (w/v) 10g Drosophila agar Type II 

1.5% (w/v) 15g Saccharose (sucrose) 

3% (w/v) 30g D-(+)-Glucose 

3.5% (w/v) 35g Active Dried Yeast 

1.5% (w/v) 15g Maize meal 

1% (w/v) 10g Wheat germ 

1% (w/v) 10g Soybean flour 

3% (w/v) 30g Treacle 

0.5% (v/v) 10ml Propionic acid 

0.1% (w/v) 5ml Nipagin M 
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stock of RU-486 was prepared every 2 weeks and the appropriate volume was added 

to the standard food, to reach desired concentration.  

 Addition of ETC inhibitors to the fly food 

I prepared stock solutions for the different ETC inhibitors in EtOH, except for cyanide, 

which was dissolved in water. After diluting the stock solution, to reach the desired 

final concentration of inhibitor, I added 100 μl onto the surface of the set pre-made fly 

food. The inhibitors were added on top of the 2 ml vials of food and left on a shaker 

at 4°C overnight, to allow even distribution and absorption into the food. Vials were 

covered in aluminium foil to prevent contamination. Control vials were prepared 

concurrently, where the vehicle without drug was added on top of the food. Table 2.4 

lists the different ETC inhibitors and concentrations used in this thesis. The flies fed 

inhibitors were starved before being transferred onto the food with the ETC inhibitors. 

Starvation was achieved by transferring the flies into empty vials for 1 hour.  

 

Table 2.4 List of ETC inhibitors and their concentrations 

Inhibitor (Complex) Solvent 
Stock 

concentration 
Final concentrations 

Rotenone (CI) EtOH 1 mM 600 µM, 900 µM or 1 
mM 

Dimethyl Malonate 
(CII) 

EtOH 8.750 M 600 µM 

Myxothiazol (CIII) EtOH 1 mM 10 µM, 50 µM, 100 
µM, 500 µM or 1 mM 

Cyanide (CIV) H2O 1 M 12 mM or 18 mM 

Oligomycin (CV) EtOH 1 mM 10 µM or 50 µM 

FCCP (uncoupler) EtOH 1 mM 600 µM, 900 µM or 1 
mM 

 

 Heat Stress model 

Female flies of approximately 3 days old were transferred from a 25°C incubator, 

(non-stressed conditions), to a 32°C incubator, (heat stress, HS), for 3-4 hours, 

unless otherwise stated. Flies were used immediately for experiments, (e.g. ROS 

measurements in the fly brain), after HS. This model is outlined in Figure 3.4. During 

the HS signalling experiment, studying the effect of HS during 1-6 hours, flies were 

exposed to HS and measured after every hour.  In experiments where flies subjected 
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to HS were also fed inhibitors, the flies were starved for 1 hour before being 

transferred onto drug food and placed in 32°C incubators. This included the control 

flies fed the vehicle, which were also starved for 1 hour.  The implementation of the 

HS model during the lifespan experiments is detailed below.  

 Lifespan Experiments  

For the lifespan experiments, female wDAH flies were used. 20 flies were collected 

one day after eclosion and transferred to 2 ml vials of standard fly food. Each 

experimental condition had 5 independent replicates of 1 vial, (100 flies in total per 

condition) and each experiment was repeated twice. All vials were maintained at 

25°C in a 12 hours light:dark cycle controlled incubator with the exception of the 

period of time during which experimental flies received their treatments. Flies were 

changed into fresh food vials every 2-3 days and the number of dead flies was 

scored. The goal of the lifespan experiments used in this thesis was to test whether 

induction of ROS-RET using HS could extend lifespan. HS was induced as described 

above to the experimental group and one control group, fed with 600 μM of rotenone 

as described in Section 2.2.3. HS was repeated three times a week. The other two 

control groups were kept at 25°C, where one was fed with 600 μM of rotenone. Three 

different experimental designs were used; (1) HS 3 times per week during the first 25 

days of life, (2) HS 3 times per week from day 25 to day 50 and (3) HS 3 times per 

week constantly throughout the lifespan of the flies. Figure 3.15-3.16 contains a 

summary of the experimental plan.  

 Genome-Wide RNAi Screen 

For the screen, 12,719 RNAi lines were acquired from VDRC (Dietzl et al., 2007) 

(https://stockcenter.vdrc.at/control/main). The laboratory acquired all the lines from 

the KK library (~9,646 lines) and then lines from the GD library for those genes that 

were not covered in the KK library. Integration of the transgenes in the GD lines is 

achieved via  P-element transposition, which results in random integration, unlike the 

KK RNAi lines which use PhiC31 site-specific integration (Dietzl et al., 2007) (Bischof 

et al., 2007). The specific integration site of the KK RNAi library, where the hairpin 

constructs are targeted to is the 30B landing site. However, recently it has been 

demonstrated that in fact there are two possible integration sites (Green et al., 2014). 

Studies have revealed that 75% of KK lines possess the 30B insertion site and the 

remaining 25% possess both the intended 30B site as well as the 40D landing site 

https://stockcenter.vdrc.at/control/main
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(Vissers et al., 2016). This produces the potential for off target and non-specific 

phenotypes for the approximate 25% of KK RNAi lines that possess both integration 

sites, which is documented for on the VDRC website. A total of 12,372 different fly 

genes covering >91% of protein-coding genes in the Drosophila melanogaster 

genome were studied. The screen was initiated in Tampere (Finland) and finished in 

Newcastle (United Kingdom) and took over 5 years to be completed. The selected 

dose of RU-486 (1 µM), added to the fly food to induce the expression of the RNAi 

construct and/or AOX, was chosen based on preliminary experiments performed by 

Essi Kiviranta and Alberto Sanz in Tampere (Finland). In these experiments, it was 

established that 1 μM of RU-486 in the fly food was the optimal dose to rescue the 

lethal phenotype, caused by the knock-down of 4 different genes encoding subunits 

of CIV (COX4, COX5A, COX5B, COX7A). Dr Rhoda Stefanatos and I completed the 

screen in Newcastle where all lines were screened at least once.  

The 12,719 RNAi lines were analysed in batches of 100-300 lines per week. In most 

cases, males carrying the UAS-RNAi transgene were selected directly from the vials 

received from VDRC. Males were crossed with virgin females carrying the tubGS 

driver, (control group), or females carrying both the driver and UAS-AOX construct 

(AOX group). Crosses were performed in vials of food containing 1 μM of RU-486 at 

25°C. Flies mated and laid eggs for 5 days, after which adult flies were discarded 

from the vials. After 10 days, vials were scored for the presence of larvae, pupae or 

adult flies, during 3 consecutive days. I defined lethality as the absence of flies 3 

days after the expected eclosion time, (10 days), in the control group. Then, I 

established three different lethal phenotypes; (1) lethal at embryo stage, where no 

larvae was observed in the vial, (2) lethal at larval stage, where larvae were observed 

but no pupae and (3) lethal at pupal  stage, where pupae were observed but no adult 

flies. Within the list of scored lethal genes, I identified a gene as an AOX rescue gene 

when larvae, pupae or adults were observed in the AOX group but not in the control 

group. Negative and positive controls were included in each batch of screened flies, 

to identify potential problems with either the quality of food or the concentration of 

RU-486. These controls were used to select which lines needed to be rescreened. 

The negative and positive controls were virgin tubGS crossed with wDAH males and 

virgin tubGS>AOX crossed with UAS-COX4-KD flies, respectively. I rescreened a 

total of 189 RNAi lines that were originally scored as rescue AOX genes, as 

described above. The rescreen was performed in the same conditions as the original 
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screen, (including reordering of the flies from VDRC), with the exception that vials 

were scored for 5 days instead of 3 days after eclosion. AOX rescue was confirmed 

only when the knock-down caused a lethal phenotype in the control group that was 

rescued, (i.e. flies eclosed), or alleviated, (e.g. no larvae or pupae in the control but 

larvae or pupae in the AOX group), by the presence of AOX. I performed data 

analysis of the results of the screen in collaboration with Dr Alberto Sanz. First of all, I 

used data from the original screen. For this analysis, I selected the list of genes that 

were scored as lethal, as described before. Secondly, I used data from the rescreen 

of 189 RNAi lines. For this analysis, I used only the list of confirmed AOX rescue 

genes as indicated before. The analysis was performed using Gene Ontology (GO) 

analysis with the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) (Huang da et al., 2009) (https://david.ncifcrf.gov/summary.jsp). I also 

performed network analysis of protein-protein associations among the AOX rescue 

genes using STRING (Szklarczyk et al., 2017) (http://string-db.org/). For DAVID, the 

Function Annotation Clustering Analysis tool was selected with default settings. 

STRING analysis was performed using default setting followed by kmeans clustering 

analysis using 3 clusters.  
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2.3 Quantitative real-time PCR (qPCR) 

 RNA Extraction  

For each sample, a total of 10 whole flies were anaesthetised on ice and stored 

immediately at -80°C in 1.5 ml tubes. Once frozen, flies were mechanically 

homogenized in 50 µl of cold TRIreagent, and a further 250 µl of TRIreagent were 

added, which was mixed by inversion. The homogenized samples were then 

incubated at room temperature for 5 minutes. Following incubation, 50 µl of 

chloroform were added to the samples and mixed thoroughly, before being incubated 

again for 3 minutes, at room temperature. Samples were then centrifuged for 15 

minutes at 12,000 g at 4°C. The upper aqueous phase was then transferred to a new 

tube, where a 1:1 volume of isopropanol was added and mixed vigorously. Then 

samples were incubated at room temperature for 10 minutes, to allow the RNA to 

precipitate out of solution and centrifuged again for 10 minutes. The residual 

supernatant was removed by pipetting and the pellet was washed by adding 500 µl of 

75% EtOH in DEPC and centrifuged for 5 minutes at 7,500 g at 4°C.  The EtOH was 

removed and the pellet was left to air dry for 5 minutes, at room temperature. To 

remove any DNA contamination, the RNA pellet was first re-suspended in 89 µl of 

DNAse/RNAse free H2O. Then 1 µl of DNAse1 and 10 µl of DNAse1 buffer were 

added to each sample. Tubes were mixed gently by pipetting and incubated in a 

water bath for 60 minutes at 37°C, to allow the reaction to take place. After 

incubation 10 µl of 3 M sodium acetate (pH 5.2) were added, followed by 275 µl of 

95% EtOH in DEPC water and mixed thoroughly. Samples were then stored at  -

20°C overnight to allow the RNA to precipitate. Following precipitation, the samples 

were centrifuged at 16,000 g for 20 minutes at 4°C and the remaining supernatant 

was then removed. The pellet was then washed using 1 ml of 75% EtOH in DEPC 

and centrifuged again. EtOH was removed and one final wash step took place before 

drying the pellet at room temperature for 5 minutes. Depending on the size of the 

pellet, 10-20 µl of DEPC water were added to resuspend the pellet, and then the 

RNA concentration was measured using a Nano-Drop 2000C, (Thermo Scientific, 

Wilmington, USA). The concentrations of RNA were then adjusted to no more than 2 

µg/µl with DEPC water and stored at -80°C for cDNA synthesis.  

 cDNA Synthesis 

To ensure there was enough cDNA for multiple qPCR measurements, cDNA 

synthesis was performed in triplicate for each sample. Finally, the cDNA from the 
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triplicates was pooled in one single tube. Each cDNA synthesis had a final volume of 

20 µl, consisting of 10 µl master mix and 10 µl of the sample. All samples and 

reagents were defrosted on ice and samples were diluted with Nuclease-free H2O to 

achieve an RNA maximum concentration of 2 µg. The master mix was prepared 

using the reagent in Table 2.5.  

 

 

 

 

 

PCR tubes were used to carry out cDNA synthesis. 10 µl of the sample were added 

first to the PCR tube, followed by 10 µl of the master mix. The tubes were spun down  

and placed in the PCR Thermocycler, (Applied Biosystems, California). The following 

programme was used: 25°C for 10 minutes, 32°C for 120 minutes, 85°C for 5 

minutes and finished at 4°C. 

 q-PCR using the Standard Curve Method 

Primers were designed using the Primer 3 web designing software (Untergasser et 

al., 2012) (http://primer3.ut.ee/), for each gene. For the SYBR green reagent used 

the recommended amplicon length is <200 base pairs. In addition, the Tm was set at 

60°C and GC content was set at 50%.  

To create the standard curve a serial dilution was made using four points. The cDNA 

samples were thawed on ice and 5 µl of every sample were added to a new tube to 

make a stock solution. This stock was then diluted 1:1, using nucleic acid-free water, 

making the first point of the standard curve. Serial dilutions were then prepared by 

taking 20 µl of the solution and diluting with 80 µl of nucleic acid-free water, this was 

repeated three times to obtain four standard dilutions in total. The four points of this 

standard curve were 1, 1:10, 1:100 and 1:1000. cDNA samples were diluted 1:20 to 

ensure they would sit in the linear part of the standard curve. 

All plates were prepared with a standard curve for each set of primers, (each target 

genes and the housekeeping gene), as well as the samples for each set of primers. 

Table 2.5 List of reagents used during cDNA synthesis. 

Reagents MM 1x (10 µl) 

10x RT Buffer   2.0  µl 

25x dNTP Mix (100mM) 0.8  µl 

10x Random Primers  2.0  µl 

MultiScribe Reverse Transcriptase 1.0  µl 

Nuclease-free H20 4.2  µl 
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The house-keeping gene acted as a control and gave a baseline to which the target 

gene expression was compared to. Standards and samples were run in triplicates in 

fast optical 96 well plates, (Applied Biosystems, San Francisco, USA), for qPCR. A 

master mix containing nuclease-free H2O, SYBR green and the forward and reverse 

primers was prepared for each primer set, using the amounts shown in Table 2.6. 

 

 

The plate was prepared by pipetting 4 µl of standards and samples and then 16 µl of 

the master mix, containing primers specific to either target gene or house-keeping 

gene, to obtain 20 µl of reaction mix in each well in total. The plate was then sealed 

using a clear cover and inserted in the StepOne, qPCR machine (Applied 

Biosystems, San Francisco, USA). The programme used followed a cycle of 95°C for 

2 minutes, then 95°C for 5 seconds, 60°C for 10 seconds and 72°C for 10 seconds.  

The last three steps were repeated for 40 cycles. Measurements were taken during 

the 72°C extension stage. The obtained values were quantified using the StepOne 

v2.1 software.  Raw values obtained from the quantification of target genes were 

normalised against the raw values from the quantification of the house-keeping gene. 

All primers used in this thesis are outlined in the Table 2.7.  

 

 

 

 

 

 

 

Table 2.6 List of reagents used for qPCR.  

Reagents MM 1x (16 ul) 

Nuclease-free H2O 5.2  µl 

2x SYBR Green SensiFast Hi-Rox buffer                    10  µl 

20µM Forward Primer   0.4  µl 

20µM Reverse Primer   0.4  µl 
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Table 2.7 List of Primers.  

Gene/Primer Name Primer Sequence 

SdhD Forward 5’- CTCTGGACTGTGGAGCGAATT-3’ 

SdhD Reverse 5’- GGATGACGACAGAGATGGCC-3’ 

VhaPPA1-1 Forward 5’- AACGTTCCTGTGGCTCTTCC-3’ 

VhaPPA1-1 Reverse 5’- GTTTGAGGAGGCCAGGAACC-3’ 

Ppn Forward 5’- ATTTAGGACCTTGGACGCCG-3’ 

Ppn Reverse 5’- GCTTCTCCTCCACGCAATCT-3’ 

Cchl Forward 5’ GCAATACAGCCATCACCCGA-3’ 

Cchl Reverse 5’- AGGCCGATTTTGCATCTCCA-3’ 

Rpl32 Forward 5’- AGCATACAGGCCCAAGATCGTGAAGAA-3’ 

Rpl32 Reverse 5’- CACGTTGTGCACCAGGAACTTCTTGAA-3’ 

Act88f Forward 5’- AGGGTGTGATGGTGGGTATG-3’ 

Act88f Reverse 5’- CTTCTCCATGTCGTCCCAGT-3’ 
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2.4 High-Resolution Respirometry measurements 

Measurements of mitochondrial oxygen consumption were performed by high-

resolution respirometry in homogenates from whole flies or fly heads (Sperl et al., 

1997). 10-20 female flies, (whole flies), or 20-30, (fly heads), were immobilised on ice 

and transferred to a mortar at 4°C to which 500 µl of ice-cold isolation buffer without 

BSA, (250 mM sucrose, 5 mM tris-HCl, 2 mM EGTA, pH 7.4), were added. Flies were 

then gently homogenised with a pestle to minimise mitochondria damage, caused by 

rupture of the mitochondrial external membrane. Fly homogenates were collected in 

a beaker, after being filtered through a polyamide net to remove debris. An additional 

500 µl, (for whole flies), or 300 µl, (for fly heads), of isolation buffer without BSA was 

added and the homogenate was collected into a tube. Samples were prepared every 

time just before making oxygen consumption measurements.  

The Oxygraph 2-K, (Oroboros Instruments, Innsbruck, Austria), was used to measure 

mitochondrial oxygen consumption of fly homogenates. The Oxygraph 2-K is 

specially designed to perform high-resolution respirometry measurements with small 

amounts of sample (Hutter et al., 2006). Before adding the samples, the chambers of 

the oxygraph machine were cleaned thoroughly, with 70% EtOH and distilled water, 

to ensure any residual inhibitors or substrates from previous runs were removed. In 

between runs, the chambers were washed thoroughly 3 times with EtOH and water. 

A total of 1.9 ml of assay buffer with BSA, (120 mM KCl, 5 mM KH2PO4, 3 mM 

HEPES, 1 mM EGTA, 0.5 mM MgCl2, 0.2% (w.v) BSA, pH 7.2), were added to the 

chambers, followed by 100 µl of the homogenate. For each run, one chamber would 

contain the control group whilst the other would contain the experimental group. To 

reduce variability between the chambers, the groups were alternated between every 

run. The chambers were closed after adding the samples and the run was initiated. 

Substrates and ETC inhibitors were added only after the O2 flux signal was stable. 

Hamilton Gastight syringes, (Hamilton Bonaduz AG, Bonaduz, Switzerland), were 

used to add the substrates and inhibitors. To initiate CI+CIII+CIV respiration the 

following substrates were added to the chambers: 5 µl of 2 M pyruvate, 5 µl of 2 M L-

proline and 4 µl of 0.5 M ADP. Once a stable reading was obtained, CI-linked 

respiration, (i.e. CI+CIII+CIV), was inhibited using 1 µl of 1 mM rotenone stock. Then 

60µl of 0.65M sn-glycerol-3-phosphate (G3P) were added to stimulate CIII+CIV 

respiration and after a stable reading was obtained, 1 µl of 5 mM antimycin A was 

added to inhibit CIII. Finally, 5 µl of 0.8 M ascorbate and 4 µl of 0.25 M TMPD were 



74 
 

added to the chambers to initiate CIV respiration, through the donation of electrons to 

Cyt C. Once the O2 flux signal was stable, 1 µl of 1 M cyanide was added to inhibit 

CIV respiration. A minimum of 3 independent biological samples, per group were 

used in each experiment.  

Quantification of oxygen consumption was performed using the Oroboros DataLab 

5.0 software. Raw values were measured by recording the stabilised rate of O2 flux 

after the addition of appropriate substrates. For CI-linked respiration, (also referred to 

as CI+CIII+CIV respiration), the rate after the addition of pyruvate+proline+ADP was 

taken. CIII-linked, (also known as CIII+CIV respiration), was quantified by recording 

the stabilised rate after addition of G3P. Finally, CIV-linked respiration, (also known 

as CIV respiration), was measured by taking the stabilised rate of respiration after 

addition of ascorbate+TMPD and subtracting the residual respiration after cyanide 

was added. When head homogenates were used, only CI+III+IV respiration was 

measured. This was due to the fact that preparing head homogenates is very time 

consuming and these homogenates have fewer mitochondria, therefore it is difficult 

to get good estimations for CIII+CIV linked respiration. Oxygen flux raw values were 

normalised to the amount of fly protein added to the chamber. The protein 

concentration measurements were carried out using the Bradford assay. Final values 

were expressed as picomoles of oxygen per min-1 per mg-1 unless otherwise stated.  
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2.5 ROS Measurements in the Drosophila Brain 

Approximately 5-10 female flies were used for each genotype/condition. 10-20 flies 

were transferred to an ice-cold vial and anesthetised then kept on chilled aluminium 

foil to maintain immobilisation. A minimum of 5 brains were imaged per experimental 

condition but additional brains were dissected, incase of any damage occurring to the 

brains during dissection. Using forceps the immobilised flies were placed one by one 

in 70% EtOH for 30 seconds to remove the hydrophobic layer surrounding the flies, 

which may have caused them to float, making dissection difficult. Once cleaned, flies 

were then dried and transferred to a glass dissecting dish well, containing chilled 1X 

PBS. Under a light microscope the brains of flies were carefully dissected, using 

dissection forceps, ensuring that the brain was fully intact without damage, which 

could lead to the presence of outliers in the measurements. Each experimental group 

was dissected in less than 10 minutes to minimise damage to the brain. All trachea 

and tissue surrounding the brain was removed, to allow clean staining and imaging. 

A minimum of 5 brains was used for each group. After dissection, the brains were 

gently transferred to fresh PBS to be cleaned and then relocated to a small glass 

dish well. A Pasteur pipette coated in silicon was used, to avoid any brains attaching 

to the inside wall of the pipette during transfer. The excess PBS was removed, and 

100 µl of PBS solution containing the appropriate fluorophore were added at the 

concentrations indicated in Table 2.8. 

 

 

The working concentration of the fluorophore was prepared at the desired 

concentration in 1X PBS, prior to dissection.  The same preparation was used for all 

of the different groups within the experiment to reduce variability. MitoSOX was used 

to measure mitochondrial superoxide levels whilst H2DCF was used to measure total 

cellular peroxide levels. Experiments using MitoSOX were carried out in collaboration 

with Filippo Scialo. Once the chosen fluorophore was added, forceps were used to 

Table 2.8 List of fluorophores used to measure ROS. 

Fluorophore Stock in DMSO Working Concentration Wavelength 

MitoSOX  2.5 mM 30 µM 510/580 nm 

H2DCF 10 µM 30 µM 495/529 nm 
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carefully attach the brains to the bottom of the dish well facing upwards. The dish 

well was then placed onto a shaker at speed 50 rpm at room temperature and 

incubated for 10 minutes in the dark, due to light sensitivity of the probes. After 

incubation, the fluorogenic dye was removed, and the brains were washed with 300 

µl of 1X PBS using a pipette to gently mobilise the brains. Once washed the fly brains 

were transferred to a poly-lysine coated 35 mm glass-bottom culture dish containing 

1X PBS. The fly brains were mounted to the bottom of the dish well, using the 

forceps, with the antennal lobe facing towards the glass in a line. The dish well was 

then transferred onto the microscope stage of the SP8 confocal microscope, (Leica 

Microsystems, Wetzlar, Germany). The microscope was set with a 10x 0.3 NA 

objective and an argon laser with the required wavelength needed to excite the 

respective dyes was used, (noted in the table above). To acquire Z stack images, 

LasX software was used. The same number of stacks was used for each sample to 

minimize variability. The average total intensity was quantified for each individual 

brain using FIJI/ImageJ software (https://imagej.net/Fiji). 

2.6 Statistical Analysis 

All data were analysed with GraphPad Prism 8, (GraphPad Software, California), using 

one-way ANOVA or the unpaired Student’s T-test as appropriate. Lifespan survival 

curves were analysed using the log-rank Mantel Cox Test. Values shown represent 

means ± SEM unless otherwise indicated. p<0.05 was taken as statistically significant 

and represented by *, p<0.01 was represented by ** and p<0.001 was represented by 

***. 
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Chapter 3 Heat Stress Induces ROS-RET physiologically in 
Drosophila Melanogaster 

 

3.1  Reverse Electron Transport 

RET is the flow of electrons from the CoQH2 to CI, reducing NAD+ to NADH (Scialo 

et al., 2016a). For RET to occur, two conditions are required, including a highly 

reduced CoQ pool and a high pmf (Robb et al., 2018). Once triggered, studies have 

shown that a dramatic increase in ROS production from CI occurs, as a result of RET 

(Robb et al., 2018). 

The dual nature of ROS has been extensively explored in the past decade, where 

studies have shown that ROS possess roles in both oxidative stress and redox 

signalling (Sanz, 2016). Results from previous experiments using the alternative 

respiratory enzyme, Ndi1, showed that RET produces a ROS-dependent beneficial 

effect on lifespan in Drosophila. Ndi1 mediated ROS production has also been 

shown to protect mitochondrial function in both SOD2-KD and PINK1-KD models, 

which under normal circumstances cause mitochondrial dysfunction (Scialo et al., 

2016a). This suggests that ROS produced specifically via RET may possess 

signalling properties, capable of initiating downstream protective pathways in order 

to promote healthy ageing. Thus leading to the increase in lifespan, observed in the 

Ndi1 flies. Understanding the mechanisms behind RET will allow us to induce 

beneficial ROS-RET that in theory can extend lifespan and protect mitochondrial 

function.  

The Ndi1 model provides us with stimulation of RET, in vivo, however Ndi1 isn’t 

endogenously expressed in either humans or flies. Therefore in this Chapter, I 

attempt to determine if RET can occur physiologically, in Drosophila.  

  RET Under Physiological Conditions 

RET was first discovered in the 1960’s in isolated mitochondria but was considered 

to be an in vitro artefact lacking physiological relevance (Chance and Hollunger, 

1961). However, recently, RET has been recognised in a number of cell signalling 

processes as well as having a significant role within ageing (Scialo et al., 2017).  

The most frequently documented occurrence of RET is during ischemia-reperfusion 

(IR). IR occurs when tissue is re-oxygenated after a period of oxygen starvation. 
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During ischemia, succinate levels rise rapidly causing RET to be stimulated when 

oxygen is re-introduced. This leads to a dramatic increase in ROS production and 

causes injury to the surrounding tissue (Chouchani et al., 2014a). This example of 

RET, in physiological conditions, shows that when ROS is produced in a disorderly 

and uncontrolled manner it can be detrimental. Other cases that require a ROS-RET 

signal include the differentiation of myoblast into myotubes (Lee et al., 2011), hypoxia 

response in carotid bodies (Fernandez-Aguera et al., 2015) and during bacterial 

infection, where macrophages stimulate ROS-RET in order to produce an 

inflammatory response against the infection (Mills et al., 2016a). At present, it is 

uncertain how the highly reduced CoQ pool and high pmf, needed for RET to occur, 

can be generated and sustained physiologically. 

To achieve physiological stimulation of RET; I subjected Drosophila melanogaster to 

a stress condition. Here I hypothesised that under stress, mitochondria would need to 

adapt and produce a beneficial ROS signal, via RET, to protect mitochondrial 

function during the stress condition. Therefore the stress would need to create both a 

highly reduced CoQ and high pmf to promote CI to switch ROS production from a 

forward direction, in non-stressed conditions, to a reverse direction in order to initiate 

RET. For these reasons I selected heat stress (HS). HS triggers a rise in energy 

demands and causes mitochondria to consume more O2. This increases the flow of 

electrons, into the ETC, to allow mitochondria to respire more. This boost of electrons 

could lead to the production of a high CoQH2:CoQ ratio, thereby stimulating RET and 

the corresponding ROS signal, to counteract the HS (Figure 3.1). Therefore the 

characteristic increase in ROS production, seen in all RET models, would be the first 

indication if RET was being achieved.  
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Figure 3.1 Schematic diagram illustrating the differences in ROS production at CI 
during forward (FET) and reverse (RET) electron transport. 

 

 

 

During FET, in non-stressed conditions (top panel), electrons move from complex I to 

ubiquinone down the electron transport chain. ROS production occurs at CI when electrons 

escape and react with nearby O2 molecules. However when the ubiquinone pool becomes highly 

reduced and a high-membrane potential is established, RET is initiated (bottom panel). Thus 

electron transport shifts to the reverse direction, from ubiquinol back to CI, leading to a large 

increase in ROS production at CI. 
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  Validating RET at Complex I 

To validate the induction of a physiological RET-ROS signal; two inhibitors, rotenone 

and FCCP were used.  

The well-established CI inhibitor, rotenone, works by binding to the CoQ-binding site 

of CI, therefore, preventing the transfer of electrons to CoQ (Murphy, 2009). In non-

stressed conditions, during forward electron transport, interrupting the flow of 

electrons down the chain would lead to increased ROS production at CI due to 

electron leakage (Figure 3.2A). However, during RET, rotenone binding blocks the 

flow of electrons back to CI, leading to the prevention of RET. For this reason it was 

anticipated that ROS would decrease following the addition of rotenone, if RET was 

occurring (Figure 3.2B). 

FCCP uncouples the electron transport chain from OXPHOS by forming pores in the 

IMM, thereby releasing protons and subsequently dissipating membrane potential 

(Brennan et al., 2006). RET is dependent on achieving a high pmf, therefore 

administration of FCCP would prevent the stimulation of RET. Similarly to rotenone it 

was also expected that feeding FCCP during RET would lead to a decrease in ROS 

production (Figure 3.3). 

Previous experiments using the Ndi1 fly model confirmed the prevention of RET, with 

both rotenone and FCCP (Scialo et al., 2016a). Therefore in this chapter, I took 

advantage of these inhibitors to help determine if a RET-ROS signal could be 

achieved physiologically in the fly. 
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Figure 3.2 The effects of rotenone during FET and RET. 

(A) In non-stressed conditions rotenone binds to CI preventing the transfer of electrons to 

ubiquinone, therefore leading to an increase in ROS production at CI. (B) During RET, 

electrons move backwards from ubiquinol to CI therefore in the presence of rotenone a 

decrease in ROS is observed, due to rotenone preventing the flow of electrons and subsequent 

electron leak at CI 
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Figure 3.3 The effect of FCCP in normal conditions. 

 

 

 

 

 

 

 

The uncoupler FCCP works by forming pores in the inner mitochondrial membrane, leading to 

the escape of protons and dissipation of membrane potential. 
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3.2  Results 
 

 Heat stress increases ROS production 

I wanted to study the effect of exposing flies to 32°C for several hours. To do this I 

transferred flies from 25°C (non-stressed conditions) to 32°C (HS) for 6 hours and 

then measured ROS levels in dissected fly brains, after every hour, using two 

different fluorescent probes, H2DCF and MitoSOX. H2DCF was used to measure total 

cellular ROS in the form of peroxides, as it emits fluorescence when oxidised by 

H2O2 and other peroxides. To then further confirm a change in ROS, I used MitoSOX, 

which fluoresces when oxidised by superoxide. Due to MitoSOX possessing a 

positive charge, it is able to detect superoxide produced specifically in the 

mitochondrial matrix (Pavelescu, 2015). Experiments using MitoSOX were performed 

in collaboration with Dr Filippo Scialo. During the experiments I found that H2DCF 

gave a strong signal throughout the brain, which also localised at the antennal lobe. 

The MitoSOX signal was weaker in comparison to H2DCF, however also appeared to 

localise at the antennal lobe, therefore supporting that both dyes are successfully 

absorbed into the fly brain.  As Drosophila are ectothermic animals they rely on the 

temperature of their immediate surroundings to adjust their metabolic rate, making 

them ideal for carrying out HS experiments (Figure 3.4).  

HS had no effect on ROS production after 1 and 2 hours, where no change was 

observed in comparison to the control at 25°C. After 3 hours of HS, ROS levels 

significantly increased, which was detected using both dyes. ROS levels stayed 

elevated at 4 hours; however, after 5 hours ROS decreased back down to those seen 

at 1-2 hours (Figure 3.5). This indicates the presence of a dynamic ROS signal 

induced by HS, which is switched on at 3 hours and terminated at 5 hours.  

Once I had established a specific time point, in which HS was able to increase ROS 

production, I repeated HS for 4 hours to confirm an increase when compared to 

control flies at 25°C. As expected, after 4 hours ROS production was increased 

(Figure 3.6). Between the two experiments shown in Figure 3.5B and 3.6D there was 

shown to be a larger response to HS in the latter. This could be due to the fact that 

these experiments were performed on separate occasions, which could affect the 

magnitude of ROS response between experiments. For example, using different 

aliquots of fluorescent dye, a different pool of flies, different controls and variations 
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with the microscope on different days, therefore it is difficult to compare results from 

different experiments. 
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Figure 3.4 Diagram demonstrating the ROS measurement protocol. 

 
 
 
 
 
 
 
 

 

Flies are transferred to 32°C for 4 hours. Fly brains are then dissected and incubated 

in either MitoSOX or H2DCF for 10 minutes. ROS levels are measured using confocal 

microscopy and the images are quantified. 

 
 



86 
 

 

 
Figure 3.5 ROS measurements of flies subjected to heat stress over a 6 hour time 
course. 

 (A) ROS measurements in the brain using H2DCF after 2 hours of heat stress compared to 

normal conditions, demonstrating that there is no change in ROS occurring (N = >8) (B) H2DCF 

(N = >8) and (C) MitoSOX time course over 6 hours of HS (N = >8). Flies were approximately 

3 days old. P Values were calculated using One-Way ANOVA. Data are shown as mean ± 

SEM. p < 0.05 was taken as statistically significant and represented by *, p<0.01 was represent 

by ** and p<0.001 was represented by ***. MitoSOX data was carried out in collaboration with 

Dr Filippo Scialo.  
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Figure 3.6 ROS measurements of flies subjected to 4 hours of heat stress. 

Representative images of dissected fly brains stained with (A) H2DCF (N = >6) and 

(C) MitoSOX (N = >9) from control flies (25°C) and flies subjected to thermal stress (32°C for 

4 hours). Quantifications of (A) and (C) are shown in (B) and (D), respectively. Flies were 

approximately 3 days old. P Values were calculated using unpaired Student’s T-test. Data are 

shown as mean ± SEM. p < 0.05 was taken as statistically significant and represented by *, 

p<0.01 was represent by ** and p<0.001 was represented by ***. MitoSOX data was carried 

out in collaboration with Dr Filippo Scialo.   
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 Heat Stress changes the way CI produces ROS 

I tested that rotenone was able to reach the brain and inhibit mitochondrial respiration 

in the fly brain after 4 hours of feeding. Lower doses, (600 μM), did not show any 

major alteration in respiration but high doses, (900 μM and 1 mM), significantly 

reduced respiration rate, by approximately 50% (Figure 3.7A). Following confirmation 

of CI inhibition with rotenone after 4 hours, ROS measurements were conducted. As 

expected, rotenone increased ROS production during forward electron transport 

when flies were in non-stressed conditions (25°C). This increase was detected even 

using lower doses (600 μM) where no inhibition in respiration was observed, using an 

in vitro approach (Figure 3.7B – E). 

I then measured the effect of rotenone on the ROS levels during HS. As shown 

previously, an increase in ROS was observed after 4 hours of HS. However, upon 

addition of rotenone, this increase was abolished and ROS levels were similar to 

those seen in non-stressed conditions (Figure 3.8). These results support the 

initiation of a RET during HS, which can be prevented by inhibiting CI with rotenone.  

 



89 
 

 

Figure 3.7 The effect of rotenone on ROS production in normal conditions. 

 
 

(A) Mitochondrial respiration of fly head mitochondria after feeding flies with differing 

concentrations of rotenone (600 µM, 900 µM and 1 mM) (N = >9). Images of dissected fly 

brains stained with (B) H2DCF (N = >7) and (D) MitoSOX (N = >7), showing control flies fed 

the vehicle (EtOH) (left panel) and CI inhibitor rotenone (right panel) for 4 hours.  (C) 

Quantification of B. (E) Quantification of D. Flies were approximately 3 days old. P Values were 

calculated using unpaired Student’s T-test. Data are shown as mean ± SEM. p < 0.05 was 

taken as statistically significant and represented by *, p<0.01 was represent by ** and p<0.001 

was represented by ***. MitoSOX data was carried out in collaboration with Dr Filippo Scialo.   

. 



90 
 

 

Figure 3.8 The effect of rotenone on ROS production during heat stress. 

 

Images of dissected fly brains stained with (A) H2DCF (N = 8) and (B) MitoSOX (N = >9) 

showing the effect on ROS production after feeding flies rotenone under HS (32°C). 

Quantifications of (A) and (B) are shown in (C) and (D), respectively. Flies were approximately 

3 days old.  P Values were calculated using One-Way ANOVA. Data are shown as mean ± 

SEM. p < 0.05 was taken as statistically significant and represented by *, p<0.01 was represent 

by ** and p<0.001 was represented by ***. MitoSOX data was carried out in collaboration with 

Dr Filippo Scialo.   
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 Dissipating proton motive force with FCCP prevents RET during heat stress.  

After using rotenone to confirm RET, I then used FCCP to prevent a high membrane 

potential from being achieved. Feeding flies with FCCP did not alter mitochondrial 

respiration in fly brain mitochondria (Figure 3.9A). However, in normal conditions, 

FCCP was capable of increasing ROS production using both H2DCF and MitoSOX 

(Figure 3.9 C-F).  

When transferred to HS, an increase in ROS could be seen, which was then 

abolished in the presence of FCCP (Figure 3.10). Therefore by dissipating the RET 

stimuli; membrane potential during HS, RET was prevented. 

It has been previously shown that dissipating the mitochondrial potential can lead to 

the relocation of MitoSOX from the mitochondria and into the cytosol, 

resulting in an increased ROS signal (Roelofs et al., 2015). 

However, due to the fact that we observe an increase in ROS in normal conditions in 

the presence of FCCP and a contrasting decrease in ROS during HS, which 

correspond to the H2DCF results, these data suggest this is not occurring during 

these experiments.   
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Figure 3.9 The effect of FCCP on ROS production in non-stressed conditions. 

 

 

(A) Oxygen consumption of fly head mitochondria after feeding flies with varying 

concentrations of FCCP (600 µM, 900 µM and 1 mM) (N = 5). Representative images of 

dissected fly brains stained with (B) H2DCF (N = >7) and (C) MitoSOX (N = >6) after feeding 

the flies with FCCP in non-stressed conditions (25°C). Quantifications of (B) and (D) are shown 

in (C) and (E), respectively. Flies were approximately 3 days old. P Values were calculated 

using unpaired Student’s T. Data are shown as mean ± SEM. p < 0.05 was taken as statistically 

significant and represented by *, p<0.01 was represent by ** and p<0.001 was represented by 

***. Same control used for Figure 3.7D as 3.9D, due to these 3 groups being measured in the 

same experiment. MitoSOX data was carried out in collaboration with Dr Filippo Scialo.   
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Figure 3.10 The effect of FCCP on ROS production during heat stress. 

 

 

 

Representative images of dissected fly brains stained with (A) H2DCF (N = >6) and (B) 

MitoSOX (N = 9) after feeding flies with FCCP in non-stressed conditions (25°C). 

Quantifications of (A) and (B) shown in (C) and (D) respectively. Flies were approximately 3 

days old. P Values were calculated using One-Way ANOVA. Data are shown as mean ± SEM. 

p < 0.05 was taken as statistically significant and represented by *, p<0.01 was represent by 

** and p<0.001 was represented by ***. MitoSOX data was carried out in collaboration with Dr 

Filippo Scialo.   
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  ROS produced during heat stress originates from mitochondria  

To confirm the location of ROS being produced during HS, I took advantage of the 

antioxidants SOD2 and Catalase, by overexpressing them in the fly. SOD2 resides in 

the mitochondrial matrix and converts superoxide into the less reactive ROS, H2O2. 

Catalase is then able to completely detoxify H2O2, to produce inert water and O2. For 

these experiments, I over-expressed a mitochondrial-targeted catalase (Kwong et al., 

2000) (Figure 3.11). I predicted that by overexpressing both these mitochondrial 

antioxidants I would be able to manipulate the levels of ROS produced during HS, to 

determine whether or not it originates from mitochondria. These experiments were 

done in collaboration with Dr Filippo Scialo.  

When measuring ROS using MitoSOX, SOD2 overexpression revealed a decrease in 

mitochondrial superoxide during HS. These results support the ability of SOD2 to 

convert superoxide into H2O2, which was further confirmed by an increase in H2DCF 

signal, indicating more peroxides (Figure 3.12). 

Overexpression of the mitochondrial-targeted catalase enzyme showed a significant 

decrease in total cellular H2O2 levels, after 4 hours in 32°C. However, no change in 

mitochondrial superoxide levels were observed when measured with MitoSOX. 

These data are consistent with the fact that Catalase converts H2O2 into water, 

thereby leading to the decrease in ROS but without altering superoxide levels 

(Figure 3.13). 

The results obtained using the expression of antioxidants, SOD2 and catalase, 

demonstrated that MitoSOX and H2DCF successfully detect mitochondrial 

superoxide and cytosolic peroxides, respectively. Therefore, due to the ROS 

fluctuating specifically in the mitochondria, these results identified mitochondrial ROS 

production during HS, providing further evidence that RET is being stimulated.  
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Figure 3.11 Diagram depicting the role of antioxidants inside the mitochondria. 

 
 

 

 

 

SOD2 catalyses the dismutation of superoxide into H2O2. Whereas mitochondrial targeted 

catalase detoxifies H2O2 into water. 
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Figure 3.12 The effect of SOD2 overexpression on ROS production during heat stress.  

(A) ROS measurements using H2DCF to measure H2O2 levels in flies overexpressing SOD2 (N 

= >8). (B) ROS measurements using MitoSOX to measure superoxide levels in flies 

overexpressing SOD2 (N = >9). Quantifications of (A) and (B) shown in (C) and (D) 

respectively. Flies were approximately 3 days old. P Values were calculated using One-Way 

ANOVA. Data are shown as mean ± SEM. p < 0.05 was taken as statistically significant and 

represented by *, p<0.01 was represent by ** and p<0.001 was represented by ***. MitoSOX 

data was carried out in collaboration with Dr Filippo Scialo.   
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Figure 3.13 The effect of mitochondrial-catalase expression on ROS production during 
heat stress. 

 

(A) ROS measurements using H2DCF to measure H2O2 levels in flies overexpressing Catalase 

(N = >10). (B) ROS measurements using MitoSOX to measure superoxide levels in flies 

overexpressing Catalase (N = >8). Quantifications of (A) and (B) shown in (C) and (D) 

respectively. Flies were approximately 3 days old. P Values were calculated using One-Way 

ANOVA. Data are shown as mean ± SEM. p < 0.05 was taken as statistically significant and 

represented by *, p<0.01 was represent by ** and p<0.001 was represented by ***. This 

antioxidant data was carried out in collaboration with Dr Filippo Scialo.   
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 Heat stress cannot stimulate RET in old flies 

It has been previously shown that CI activity decreases with age. In Drosophila, 

mitochondrial respiration at day 50 is strongly decreased, particularly CI-respiration 

(Scialo et al., 2016a). Since I have confirmed in this chapter that the CI inhibitor, 

rotenone, is able to prevent RET from occurring I wanted to test if this age–related 

loss of CI activity, would affect the stimulation of RET.  

Consistent with prior studies (Scialo et al., 2016a), which show that ROS increases 

with age, ex vivo ROS measurements using H2DCF increased significantly at 25 and 

50 days in non-stressed conditions (25°C) (Figure 3.14A). In support of results 

reported previously in this chapter, when 25-day-old flies were subjected to HS for 4 

hours there was an increase in ROS, which was restored to control levels upon the 

addition of rotenone (Figure 3.14B). Therefore indicating the stimulation of ROS-RET 

in the 25-day-old flies. However, when conducting the same experiment with 50-day-

old flies no increase was observed in the flies exposed to HS. These results suggest 

that due to a decrease in activity at 50 days, CI loses the ability to switch to RET 

(Figure 3.14C). 
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Figure 3.14 The effect of heat stress on ROS production in young and old flies. 

 

 

(A) Representative images of brains stained with H2DCF comparing ROS levels in young flies 

(2 – 3 days old), 25 day old flies and 50 day old flies (N = >8). (B) ROS measurements from 

25 day old flies subjected to HS and rotenone (600 µM) (N = >8).  (C) ROS measurements 

from 50 day old flies subjected to HS and rotenone (600 µM) (N = >7). (D) Quantification of A 

(E) Quantification of B (F) Quantification of C. Due to these three experiments being performed 

on separate occasions it is difficult to interpret the different intensities between the different 

images. P Values were calculated using One-Way ANOVA. Data are shown as mean ± SEM. 

p < 0.05 was taken as statistically significant and represented by *, p<0.01 was represent by 

** and p<0.001 was represented by ***. 
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  Intermittent induction of ROS-RET and its effect on lifespan  

I developed the HS model to test whether RET could be physiologically stimulated in 

flies and if this RET-ROS would provide the same lifespan extension, as the Ndi1 

model. After confirming the stimulation of RET, I wanted to see if the beneficial effect 

on longevity could be repeated using HS.   

To conduct these lifespan experiments, I designed three different groups. In each 

group, the flies were exposed to HS at different stages, to determine an optimal 

period of time that could promote lifespan extension. The groups were as follows; HS 

throughout the entire lifespan (hereafter referred to as intermittent HS), HS from the 

1st day of eclosion to the 25th day (hereafter referred to as 1-25) and HS from the 25th 

day to the 50th day (hereafter referred to as 25-50) (Figure 3.15). All three groups 

were kept at 32°C for 4 hours, 3 times per week.  

Intermittent HS was chosen to see if consistent stimulation of ROS-RET, for 4 hours 

3 times per week, could extend lifespan. 1-25 was selected due to previous studies 

showing that manipulation involving mitochondria or metabolism, such as fasting, or 

induction of mitochondrial fission, extend lifespan only when implemented during a 

brief period of time in early adulthood of the fly (Rana et al., 2017) (Catterson et al., 

2018). The last group, 25-50, was chosen to see the effect of HS on longevity, in 

older flies.  However, due to previous results showing that CI eventually loses the 

capacity to create ROS-RET, HS was stopped at 50 days.  

Within each group, I had 4 different conditions to help resolve any changes in 

lifespan that might occur. The first condition was 25°C (non-stressed conditions) 

which acted as the primary control. These flies were kept in the same incubator and 

transferred to normal fresh food every 2 days. The second condition was 32°C (heat 

stress), where flies were kept in 32°C incubators 3 days a week for 4 hours and 

transferred to normal food every 2 days. The third condition was 32°C + ROT. Here 

flies were flipped onto food containing rotenone and transferred to 32°C for 4 hours, 

3 times a week, before being flipped back onto normal food and placed in 25°C. This 

condition acted as a control for the HS condition, as the addition of rotenone would 

prevent RET, therefore in theory, if HS were successful in increasing lifespan, we 

would expect this to be abolished in the presence of rotenone. The fourth group was 

25°C + ROT, where flies were constantly kept in 25°C. However they were also fed 
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rotenone for 4 hours, 3 times per week. This condition acted as a control for the 32°C 

+ ROT to observe the effect of repeatedly feeding flies rotenone (Figure 3.16). 
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Figure 3.15 Diagram outlining the 3 different groups of the lifespan experiments as 

well as the 4 conditions used during the lifespan experiments and how this was 

applied on a weekly basis. 

(A) As shown, intermittent HS occurs throughout the Drosophila’s lifespan. The 1-25 group is 

subjected to HS from eclosion to 25th day, whilst the 25-50 groups is subjected to HS from 

the 25th to the 50th day. (B) The flies were subjected to the different conditions three times 

per week, namely Monday, Wednesday and Friday. The four different conditions included (i) 

25°C, (ii) 25°C + ROT, (iii) 32°C and (iv) 32°C + ROT. 
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 Heat stress does not extend lifespan in Drosophila melanogaster 

Exposing WDAH flies to 32°C for 4 hours 3 times per week throughout adulthood did 

not extend Drosophila lifespan.  In comparison to the control (25°C), both treatments 

(32°C and 25°C + ROT) decreased lifespan. However, flies showed greater 

sensitivity when both treatments were delivered together (32°C + ROT group), which 

decreased lifespan even further by approximately 20 days (Figure 3.16A). This 

decrease may be explained by the changes in ROS production we see in later life of 

the flies (Figure 3.16B). Therefore, once CI can no longer produce RET-ROS, the 

stress of 32°C and rotenone has detrimental effects on lifespan.  

During the first 25 days of adulthood, neither rotenone feeding nor HS had an effect 

on the lifespan (Figure 3.16C). This indicates that throughout early adulthood the 

flies can adapt to overcome stress conditions, more sufficiently than in later life.  

HS was not able to extend lifespan when flies were exposed during the 25th to the 

50th day of adulthood either. No significant difference was observed between the 

control, 32°C and 25°C + ROT. However, similarly to intermittent HS, exposing flies 

to both HS and rotenone during later adulthood led to a significant decrease in 

lifespan (Figure 3.17A). Since this sensitivity towards 32°C +ROT was specific to the 

groups exposed in late adulthood and was not seen in the early adulthood group, it 

further confirms an age-specific inhibition of RET. Thus, indicating that mitochondria 

can no longer adapt to counteract both HS and rotenone, ultimately leading to the 

significant decrease in lifespan. 

Analysis of the different experimental groups, exposed to conditions at different time 

periods, revealed clear correlations. Figure 3.17A shows all of the control groups 

(25°C) together, where as expected, no change in lifespan was observed between 

the 3 different conditions. The 25°C + ROT group lifespans were not affected when 

exposed to rotenone during only 1-25 and 25-50 days (Figure 3.17B). However there 

was a slight decrease detected in longevity, when exposed to rotenone 3 days per 

week, throughout the whole lifespan. A similar trend was observed in the 32°C 

group, where flies exposed to HS from 1-25 and 25-50 days, showed no difference in 

lifespan, whilst flies exposed to intermittent HS, observed a decrease in lifespan 

(Figure 3.17C). These data clearly show that flies can adapt to a stress condition, i.e. 

rotenone feeding or HS, in early adulthood more effectively than in later life. 

Interestingly, the 32°C + ROT group lifespans were significantly reduced when flies 



105 
 

were exposed constantly and during 25-50 days to HS (Figure 3.17D), in comparison 

to 1-25 days which were not affected (Figure 3.17B).  

Supporting previous observations, this indicates that the flies subjected to stress in 

later life, i.e. intermittent HS and 25-50 were not able to adapt and overcome stress 

conditions as well as the flies subjected to stress in early lie i.e. 1-25. It is possible 

that this lack of adaptation is caused by a depletion of CI activity, in older adult flies. 

As previously shown in Drosophila, CI levels are dramatically decreased at day 50. 

Additionally when 50-day-old flies were subjected to HS, no ROS-RET response was 

observed. These data together suggest that the loss of CI activity, as the flies age, 

leads to the inability of CI to switch to RET, from forward electron transport. In doing 

so it prevents the stimulation of downstream adaptation pathways that can 

counteract the stress condition, thereby leading to a decrease in longevity. This is in 

contrast to the 1-25 lifespan studies, in which a fully functioning CI can switch to 

RET, leading to the generation of ROS and protection against stress-induced 

damage. 
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Figure 3.16 The effect of heat stress throughout the Drosophila lifespan. 

 (A) Survival curve data displaying the effect of intermittent HS throughout lifespan. (B) Survival 

curve data displaying the effect of subjecting flies to HS from 1-25. (C)  Survival curve data 

displaying the effect of subjecting the flies to HS from 25-50 days. HS (32°C) is indicated in 

red and HS + rotenone (32°C + ROT) is indicated in blue. (N = 200). Lifespan survival curves 

were analysed using the log-rank Mantel Cox Test. p<0.05 was taken as statistically significant 

and represented by *, p<0.01 was represented by ** and p<0.001 was represented by ***. 
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Figure 3.17 Comparison of the different groups from Drosophila lifespans. 

 
 
 

 (A) Survival curves displaying data of the control (25°C) conditions from each group. Group 

25-50 are indicated in red. (B) Survival curves displaying data of the 25°C+ROT conditions 

from each group. (C) Survival curves displaying data of the 32°C conditions from each group. 

(D) Survival curve data of the 32°C +ROT conditions from each group. Group 1-25 are 

indicated in blue and group 25-50 are indicated in red. (N = 200). Lifespan survival curves were 

analysed using the log-rank Mantel Cox Test. p<0.05 was taken as statistically significant and 

represented by *, p<0.01 was represented by ** and p<0.001 was represented by ***. 
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3.3 Discussion  

In summary, I have been able to demonstrate that RET can be stimulated 

physiologically in the brain of the fly, using HS. Results displayed an increase in 

ROS production after 3 hours of HS, which was detected using both H2DCF for 

cellular ROS and MitoSOX for mitochondrial superoxide. I confirmed ROS were 

produced via RET using rotenone and FCCP, established inhibitors of RET stimuli, 

which were both able to terminate RET. Additionally, the over-expression of 

antioxidants SOD2 and a mitochondrially-targeted Catalase indicated that ROS 

produced during HS originates from the mitochondria, in agreement with MitoSOX, 

providing further evidence of RET in vivo. 

I observed that under HS, ROS production is dynamic and behaves as a transient 

signal, which is initiated at 3 hours and terminated after 5 hours. To characterise the 

site of ROS production, occurring during 3 and 4 hours of HS, I used rotenone and 

FCCP, which were both able to abolish the ROS signal, indicating ROS-RET. The 

use of rotenone as an inhibitor of RET has previously been shown in numerous 

studies. For example, during Ndi1 expression in Drosophila, both rotenone and 

FCCP were able to reduce the levels of ROS-RET (Scialo et al., 2016a). Additionally, 

CI inhibition using rotenone was also able to decrease ROS-RET-induced injury 

during IR (Chouchani et al., 2014a). Thus further supporting the elevated ROS levels 

observed during HS, as being RET-induced. Interestingly, rotenone and FCCP both 

resulted in opposing effects when introduced in non-stressed conditions compared to 

HS. At 25°C, rotenone and FCCP both caused an increase in ROS, in contrast to the 

decrease in ROS under HS. The contrasting effects on ROS production, using 

rotenone and FCCP, dependent on the direction of CI activity, i.e. forward or reverse 

electron transport, provided a reliable and reproducible method of identifying the 

presence of ROS-RET. 

The characteristic features of this ROS signal make it distinctive from other sources 

of ROS production. The data showed that HS-induced-ROS, is site-specific at CI, 

resulting from the process of reverse electron transport, which is triggered under 

specific circumstances i.e. highly reduced CoQ and high membrane potential. In 

addition, the signal was shown to be transient, as ROS production was terminated 2 

hours after initiation. This evidence suggests that under stress, such as HS, 

mitochondria respond by altering metabolic activity to establish both a high 
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CoQH2:CoQ ratio and a pmf, promoting CI to switch to a reverse direction and 

stimulate a ROS-RET signal. This ROS can then diffuse through the cell, interacting 

with target proteins and stimulating downstream survival pathways, to counteract the 

stress condition. After 2 hours of ROS-RET the signal is switched off causing ROS to 

return back to basal levels. The restoration of ROS levels after this period of time 

under HS could be caused by the reestablishment of cellular homeostasis, therefore 

leading to the ROS-RET signal being switched off. Here, ROS-RET may stimulate 

beneficial processes such as proteostasis and autophagy, which would ultimately 

remove any damage caused by HS, allowing the return of normal cellular function. 

Under such circumstances the ROS-RET signal would no longer be required and 

therefore would be switched off, leading to the reduction of ROS back down to basal 

levels. This process describes a highly controlled system, where site-specific ROS is 

produced through a distinct process and removed after a certain period of time, in 

order to prevent over-oxidation of cellular components, which would lead to damage.  

The age-dependent decline in CI activity has been reported in multiple animal 

models (Tatarkova et al., 2016), more specifically in Drosophila (Scialo et al., 

2016a). Given that RET is dependent on the uninterrupted activity of CI, which my 

results demonstrate in the following chapter, I wanted to confirm whether CI 

depletion in older adult flies, would affect the stimulation of ROS-RET. My data 

indicated that between 25 and 50 days CI levels are altered, leading to a change in 

how ROS are produced. In early adulthood of flies, HS triggered a ROS-RET 

response, which was abolished upon the addition of rotenone. However, under the 

same experimental techniques, the 50-day-old flies showed no significant changes in 

ROS levels, under HS or in the presence of rotenone. These results clearly showed 

that RET was not being stimulated by HS in the 50-day-old flies, as no increase in 

ROS was observed in 32°C and rotenone was not able to decrease ROS production. 

Due to similar ROS levels being observed in non-stressed conditions and HS, this 

indicated that ROS was being produced either in the forward direction or 

unspecifically elsewhere. Interestingly, rotenone had no effect on ROS production 

either. In previous results of this chapter, I was able to show that rotenone has 

contrasting effects on ROS production, depending on the activity of either forward or 

reverse electron transport. In early life during forward electron transport rotenone 

was able to elevate ROS levels, therefore, based on these results an increase in 

ROS would have been expected, upon the addition of rotenone if forward electron 
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transport was occurring. This indicates that ROS levels are already elevated due to 

CI depletion in later life, which causes an increase in ROS through the same 

mechanisms as CI inhibition, via rotenone. The elevated ROS levels in the 50-day-

old flies, compared to early adulthood flies, support this suggestion.  

To study the downstream consequences of a physiological ROS-RET signal 

triggered during HS, I designed a lifespan experiment to observe the effects of 

intermittent HS-derived-RET and if it could elicit beneficial effects on lifespan, 

reflecting the Ndi1-RET model (Scialo et al., 2016a). The results from the lifespan 

experiments established that HS could not extend longevity, using the selected 

periods of time. Firstly, this could be due to the fact that the Ndi1 model is stimulating 

RET constantly within the fly, leading to a dramatic increase in ROS. Therefore in the 

HS lifespan study, the stimulation of RET for 4 hours, 3 times a week may not have 

been enough to produce the beneficial effect on longevity, observed in the Ndi1 

expressing flies. Alternatively, previous lifespan studies carried out in Drosophila 

have described a small window of opportunity in early adulthood, in which 

manipulating mitochondrial function, can lead to lifespan extension (Rana et al., 

2017). Therefore, it is possible that different time points may be more effective at 

achieving an increase in lifespan through HS-derived-RET e.g. development (when 

Ndi1 is active). The lifespan results obtained, suggest that after 25 days there is an 

age-related decline in CI activity, which prevents the stimulation of ROS-RET. In 

which case, future studies should take this into consideration when selecting 

alternative time periods. Despite not observing an increase in lifespan, the results 

from these experiments supported the age-dependent change in ROS production. 

Here, the flies subjected to HS in early life (1-25), showed no change in lifespan, 

compared to controls in non-stressed conditions. Whereas both groups in later life 

(intermittent HS and 25-50), exhibited decreased longevity, when subjected to both 

HS and rotenone feeding. Previous results of this chapter revealed a change in the 

ability of CI to switch from a forward to a reverse direction between 25 and 50 days 

in Drosophila. This suggests that the two later-life groups exposed simultaneously to 

both rotenone and HS, were unable to trigger ROS-RET to counteract the stress 

conditions, thereby leading to an accumulation of damage, detrimental to the flies. In 

contrast to the early life group (1-25), which could stimulate adaption responses 

through ROS-RET, to protect mitochondrial function and maintain longevity. In 

regards to the lifespan results it is also important to consider differences that occur to 
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feeding rates during ageing. As flies age they tend to eat less food, which could 

therefore impact how much drug the flies are consuming for the two groups fed 

rotenone. However due to the fact that in both groups (intermittent HS and 25-50) 

where rotenone is fed to the flies in later life a decrease in lifespan is observed when 

flies are subjected to both HS and rotenone, this suggests that the flies are eating 

the drug food in later life. Age related changes to mitochondrial density and function 

would also likely cause a change to ROS production. Here, the increase in 

dysfunctional mitochondria and mutations could have an effect on the ability of CI to 

produce ROS-RET, as previously discussed.  

Finally, I have shown that the ROS changes occurring during HS can be measured 

using both H2DCF and MitoSOX. Due to previous studies suggesting H2O2 as the 

primary source of ROS produced during RET, I chose to use H2DCF to study ROS in 

the following chapters. 

In conclusion, the results from this chapter have provided me with a method of 

stimulating ROS-RET physiologically in the fly brain, using HS. I can now take 

advantage of this system to gain a deeper understanding of the mechanisms behind 

RET i.e. factors essential for its stimulation or modulation. Additionally, I was able to 

show that the progressive age-related loss of CI can prevent ROS-RET from 

occurring, which can affect stress adaptations in later life. 
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Chapter 4 Effect of limiting the entry of electrons into the 
mitochondrial ETC on ROS-RET. 

 

4.1 Manipulating the Redox State of CoQ 

A highly reduced CoQ pool is essential for triggering RET (Robb et al., 2018). The 

discovery of RET occurred when Chance and Hollunger observed that feeding the 

ETC with succinate, (a CII substrate), lead to the production of NADH from NAD+ 

and a rise in ROS generation (Chance and Hollunger, 1961). We now know that RET 

was achieved as a result of high concentrations of succinate feeding the 

mitochondrial ETC, causing the CoQ pool to become extremely reduced. 

There are multiple different routes in which electrons can enter the ETC and 

contribute to the reduction of CoQ. One of the major sources being via CI, where 

soluble NADH, produced through the oxidation of sugars, proteins and fats, is 

oxidised to NAD+. This process donates two electrons that are transferred down the 

ETC to generate energy (Zhao et al., 2019). Equally important is CII, which oxidises 

succinate into fumarate via a prosthetic FAD and transfers the electrons directly to 

CoQ (Sousa et al., 2018). In fact, increased oxidation of succinate, by CII, is 

responsible for triggering ROS-RET during IR (Chouchani et al., 2014a). Although CI 

and CII are considered the main entry points for electrons, there are other 

dehydrogenases that also introduce electrons downstream of CI and CII.  For 

example, G3PDH, which oxidises G3P, through the reduction of FAD into FADH2 and 

then carries the electrons to ubiquinone (Mracek et al., 2013). The ETF-QO also 

contributes to the reduction of the ubiquinone pool, by directly passing electrons to 

Co-Q from another mitochondrial matrix flavoprotein (Chokchaiwong et al., 2019). 

Lastly, the enzyme DHODH transfers electrons to the CoQ pool, acquired from 

catalysing the mitochondrial oxidation step in pyrimidine biosynthesis (Singh et al., 

2017).  

All electrons entering the ETC, via these different pathways, pass through CoQ, thus 

making CoQ a central component of the ETC. For this reason the redox state of CoQ 

allows the rest of the cell to sense the metabolic activity of the mitochondria. For 

example, if the flow of electrons has been interrupted, the CoQ will be over-reduced, 

or if there are not enough electrons in the ETC, CoQ will be highly oxidised. 

Therefore it is possible that the CoQ is part of a system, which allows the sensing of 
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mitochondrial state to be coupled with the generation of a signal that can activate 

changes to fine-tune mitochondrial respiration and metabolism. When mutations 

arise in any of the 10 genes encoding the synthesis and assembly of CoQ, it causes 

chronic dysfunction that phenocopies mitochondrial disease (Bentinger et al., 2010). 

Additionally, mitochondrial diseases caused by mutations in genes not involved in the 

assembly or structure of CoQ can also causes depletion in CoQ levels (Yubero et al., 

2016). This highlights the importance of CoQ and its potential role in promoting RET. 

In Chapter 3, I was able to confirm that RET occurs under physiological conditions 

after exposing flies to HS. This provided a physiological model, in which I could take 

advantage of, to further understand the mechanisms that trigger RET. Using a 

hypothesis-driven approach to identify components involved in the generation of 

RET, I decided to manipulate the five respiratory complexes of the mitochondrial 

ETC. First of all, I decided to study how preventing the entry of electrons into the 

ETC and therefore the reduction of CoQ, would affect the generation of a ROS-RET 

signal. To achieve this, I used both chemical and genetic inhibition of CI and CII in 

order to test the effects of short term and long term inhibition, respectively. It was 

important to use both short and long term to provide two models of inhibition. Firstly, 

short term inhibition, allows me to observe the acute effects after 4 hours of blocking 

the respiratory complexes. Secondly, long term genetic inhibition, allows the 

observation of adaptations including changes in the expression of transcripts and 

proteins occurring over long periods of inhibition.  

Here I predicted that blocking the entry of electrons into the ETC, via inhibition of CI 

and CII, would prevent the occurrence of a highly reduced CoQ pool and therefore 

inhibit the stimulation of RET.  

In order to achieve a more comprehensive vision of how manipulation of CI and CII 

activity affects ROS signalling, I decided to perform experiments under conditions 

where electrons flow through CI in the forward direction, (25°C), and conditions 

where electrons also flow in a reverse direction, (after exposure to 32°C for 4 hours, 

see Chapter 3 for details).  
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4.2 Reduction of CI activity 

CI, the largest of the respiratory chain complexes, occupies an L-shaped structure, 

which consists of a long hydrophobic arm embedded into the IMM and a hydrophilic 

arm that protrudes into the mitochondrial matrix (Zhu et al., 2016). As previously 

shown in Chapter 3, the CI inhibitor, rotenone, was able to increase ROS production 

in non-stressed conditions. However under a stress condition (HS), rotenone 

decreased ROS production. This indicated that during HS, CI can switch to produce 

ROS via RET, which was validated using the membrane potential dissipater, FCCP. 

After testing chemical inhibition using rotenone, I wanted to genetically inhibit CI to 

observe the effect of reducing the levels of CI, the primary site of ROS-RET 

generation. Therefore, I tested two genetic knockdown models of the CI subunits, 

ND-75 and ND-42.  

The core subunit ND-75 (NDUFS1) resides in the hydrophilic region of CI. Here it 

participates in electron transfer between the flavin, where NADH is oxidised, to the 

CoQ pool (Brandt, 2006) (Figure 4.1). Thus I anticipated that silencing ND-75 would 

stop the movement of electrons through CI and decrease the amount of electrons 

contributing to the reduction of CoQ. Previous papers using the same CI subunit had 

reported a clear KD (Garcia et al., 2017a). 

 

In addition, I studied an accessory subunit of CI; ND-42 (NDUFA10) found in the 

hydrophobic region of CI (Stroud et al., 2016) (Figure 4.1). Although its role within CI 

is unclear, ND-42 seems instrumental for the reduction of ubiquinone. The KD of ND-

42 has previously been shown to phenocopy mutations in Pink1. Conversely, when 

overexpressed, ND-42 was able to partially rescue Pink1 mutants, corresponding to 

results from the Ndi1 fly model (Pogson et al., 2014). These data suggest that 

alterations in mitochondrial morphology associated with Pink1 and ND-42 depletion, 

could be related to a defect in ROS signalling, caused by a loss of ROS-RET.  
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Figure 4.1 Schematic diagram indicating the RNAi constructs used to target CI 
subunits.  

 

 

 

 

 

 

 

 

 

ND-75 is found in the hydrophilic arm, where transfer of electrons to CoQ occurs, 

therefore its knockdown prevents the entry of electrons into CI. ND-42 resides in the 

hydrophobic region, near to the CoQ binding site where electrons are passed to CoQ. 

Knockdown of both genes blocks the transfer of electrons to the CoQ pool, therefore 

inhibition the formation of a high CoQH2:CoQ ratio.  
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4.3 A fully functional CI is required for ROS-RET. 

I checked that the KD of ND-75 effectively decreased CI function by measuring 

mitochondrial respiration in whole fly lysates. As expected, a significant decrease, 

specific to CI-linked respiration alone, was observed in ND-75-KD flies, 

(DaGAL4>ND-75-KD), when compared to wild type control flies, (DAH>ND-75-KD) 

(Figure 4.2A). This is in agreement with the phenotype observed after knocking down 

two different CI subunits, ND-39 and ND-19 (Sanz et al., 2010b) (Scialo et al., 

2016b). Additionally, I performed qPCR to quantify the RNAi line (Figure 4.2B), which 

also confirmed the presence of CI KD. After confirming, that CI-linked respiration was 

specifically decreased, I then measured ROS levels in non-stressed conditions 

(25°C), where electrons flow through CI in the forward direction. At 25°C, no 

significant difference was observed between the KD flies and their respective control 

flies (Figure 4.2B). I then transferred the flies into HS to test whether reduction in CI-

linked respiration altered the stimulation of ROS-RET. As shown previously, a clear 

increase in ROS levels was observed in control flies exposed at 32°C, when 

compared to the control flies at 25°C. Interestingly, this increase was not observed in 

ND-75-KD flies at 32°C, indicating that a fully functioning CI is required for ROS 

produced via RET (Figure 4.2C). 

The efficiency of the RNAi against ND-42 to deplete CI was again confirmed by 

measuring mitochondrial respiration. As observed when ND-75 subunit was KD, 

there was a significant decrease in CI-linked respiration in the ND-42-KD flies, 

(DaGAL4>ND-42-KD), compared to the control flies, (DAH>ND-42-KD) (Figure 4.3A). 

The decrease in respiration observed was similar in both CI subunits. As in the case 

of ND-75-KD, no effect in CIII-linked or CIV-linked respiration backflow in the mutant 

flies. However due to the experiments being performed separately it cannot be 

determined how strong the decrease in CI activity is when comparing the two 

subunits. The health of the flies does suggest that the expression of the ND-75-KD 

flies was stronger than the ND-42-KD flies, as they were weaker than the latter. 

 
 
Ex-vivo ROS measurements at 25°C showed no difference in ROS production 

associated with the KD of ND-42 (Figure 4.3B). However, under HS, we observed 

that mutant flies were not able to up-regulate ROS levels, as observed in the controls 

(Figure 4.3C). In summary, I have shown that genetic depletion of two CI subunits, 

which reduce mitochondrial respiration, prevent the triggering of ROS-RET in 
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physiological, together with the results obtained using rotenone to chemically block 

CI, demonstrates that CI is required for ROS-RET. 
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Figure 4.2 Effect of ND-75-KD on ROS production in non-stressed conditions and 
during heat stress. 

 

(A) Mitochondrial respiration using CI-linked, CIII-linked and CIV-linked substrates in ND-75-

KD whole fly homogenates, (DaGAL4>ND-75-KD), compared to the respective controls, 

(DAH>ND-75-KD) (N = 7).  (B) Quantification of mRNA levels in ND-75-KD flies by qPCR. 

Control flies (DaGAL4>DAH and DAH>ND-75-KD) and KD flies (DaGAL4> ND-75-KD) were 

used (N = 3). (C) Quantification of ROS levels in fly brains in controls and ND-75-KD fly brains 

in non-stressed conditions (25°C) (N = >6). (D) Quantification of ROS levels in fly brains in 

controls and ND-75-KD fly brains subjected to HS (32°C) (N = 7). Flies were approximately 3 

days old. P Values were calculated using unpaired Student’s T-test and One-Way ANOVA, 

where appropriate. Data are shown as mean ± SEM. p < 0.05 was taken as statistically 

significant and represented by *, p<0.01 was represent by ** and p<0.001 was represented by 

***. 
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Figure 4.3 Effect of ND-42-KD on ROS production in non-stressed conditions and 
during heat stress. 

 

(A) Mitochondrial respiration using CI-linked, CIII-linked and CIV-linked substrates in ND-42-

KD flies whole fly homogenates, (DaGAL4>ND-42-KD), compared to the respective controls, 

(DAH>ND-42-KD) (N = 7). (B) Quantification of ROS levels in fly brains in controls and ND-42-

KD fly brains in non-stressed conditions (25°C) (N = >7). (C) Quantification of ROS levels in 

fly brains in controls and ND-42-KD fly brains subjected to HS (32°C) (N = 7). Flies were 

approximately 10 days old. P Values were calculated using unpaired Student’s T-test and One-

Way ANOVA, where appropriate. Data are shown as mean ± SEM. p < 0.05 was taken as 

statistically significant and represented by *, p<0.01 was represent by ** and p<0.001 was 

represented by ***. 
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4.4 Reduction of CII activity  

CII is by far the simplest component of the ETC and is anchored into the IMM by the 

two smaller subunits. It consists of only 4 assembled subunits including SdhA and 

SdhB found in the soluble domain, which catalyses succinate oxidation, as well as 

SdhC and SdhD, which constitute the membrane-bound domain, responsible for 

transferring electrons to the ubiquinone pool (Rutter et al., 2010). To study how 

decreasing entry of electrons through CII affects ROS signalling, I inhibited CII using 

malonate, to block the entry of electrons into the complex and expressed an RNAi 

construct against the SdhD subunit, to prevent the binding of CoQ. 

 

Malonate is a well-established competitive inhibitor of CII. It reversibly binds to the 

active site, which resides in the SdhA subunit of the complex, therefore competing 

with the CII substrate, succinate (Kim, 2002) (Figure 4.4).  Here it was predicted that 

by using malonate to inhibit the oxidation of succinate, the transfer of electrons to the 

CoQ pool would be decreased, avoiding the reduction of CoQ and therefore 

preventing ROS-RET. Dimethyl-malonate was used instead of malonate to facilitate 

the entry of the inhibitor into the cells and subsequently into the mitochondria.  

 

Since malonate achieves inhibition of the SdhA subunit, found in the hydrophilic 

region of CII, I wanted to genetically target the membrane-bound region. For this 

reason, I chose to use and RNAi to knock down the SdhD subunit (Figure 4.4). This 

subunit participates in the direct reduction of the CoQ pool (Hagerhall, 1997). 

Therefore I anticipated that the disruption of electron transfer to ubiquinone, through 

knocking down SdhD, would prevent the stimulation of RET.  
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       Figure 4.4 Schematic diagram showing the methods of CII inhibition used. 

 

Malonate targets the catalytic region of CII found in the SdhA subunit, therefore 

preventing the entry of electrons into CII. RNAi construct of SdhD was used, which is 

normally involved in the direct transfer of electrons to the CoQ pool.  
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4.5 CII is required for triggering ROS-RET. 

Mitochondrial respiration was measured to test whether malonate is able to reach the 

brain and inhibit CI-linked respiration, after 4 hours of feeding. Succinate, a CII 

substrate and citric acid cycle intermediate, has a very low permeability across the 

mitochondrial inner membrane in Drosophila melanogaster and other insects (Miwa 

et al., 2003) (Sanz et al., 2010c). For this reason, CII-linked respiration was not 

measured using this technique. Mitochondrial respiration showed no significant 

change in CI-linked respiration. Mitochondrial CI-linked respiration was not altered 

after feeding flies with dimethyl-malonate for 4 hours (Figure 4.5A). These results 

show that any effect on ROS production is not caused by the interruption of electron 

flow through CI, however, it is not known whether CII is inhibited in the experimental 

condition assayed.  

Under non-stressed conditions (25°C), dimethyl-malonate feeding had no effect on 

the ROS levels in the fly brain (Figure 4.5B). However, feeding with dimethyl-

malonate prevented the increase in ROS that occurs after 4 hours of HS. These 

results suggest that CII is also required for the production of RET (Figure 4.5C). 

To further confirm the requirement of CII for initiation of RET; I used an alternative 

approach depleting CII levels by expressing an RNAi construct against SdhD. Due to 

the lack of a reliable respirometry method to evaluate the efficiency of the KD, I 

validated the KD by qPCR. This experiment was done in collaboration with Dr Filippo 

Scialo. Figure 4.6A shows a significant decrease in the mRNA levels of SdhD. In 

addition, I measured mitochondrial respiration to check that CI-linked respiration was 

not affected by CII disruption. However, in contrast to the results gained using 

malonate, there was a decrease in CI-linked respiration in SdhD-KD flies, 

(TubGS>SdhD-KD), compared to control flies, (TubGS>DAH), whereas CIII and CIV 

linked respiration did not change (Figure 4.6B). This effect on CI activity could be due 

to the fact that CII is part of the Krebs cycle therefore inhibiting CII genetically may 

also inhibit CI indirectly by preventing the donation of electrons from NADH and other 

electron carriers.  

I then measured ROS levels in the SdhD-KD flies to see their effect on the 

stimulation of RET during HS. In non-stressed conditions (25°C) there was no 

change in ROS levels (Figure 4.6C), reflecting the results obtained from 
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pharmacological inhibition using dimethyl-malonate or when CI-subunits were 

knocked-down. However, when SdhD-KD flies were subjected to HS for 4 hours, a 

significant decrease in ROS levels was observed compared to the control flies at 

32°C (Figure 4.6D). The fact that CI-linked respiration was affected by depleting CII 

complicates the interpretation of the ROS data. Therefore is it not possible to discard 

the fact that suppression of ROS-RET is potentially caused by alterations in CI. 
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Figure 4.5 Effect of malonate on ROS production in non-stressed conditions and 
during heat stress. 

 

 

(A) Mitochondrial respiration of fly head mitochondria fed 600 μM of dimethylmalonate (N = 5). (B) 

ROS measurements of brains in flies fed 600 μM of dimethyl-malonate, in non-stressed conditions 

(25°C) (N = 7). (C) ROS measurements of brains in flies fed 600 μM of dimethyl-malonate subjected 

to HS (32°C) (N = 8). Flies were approximately 3 days old. P Values were calculated using unpaired 

Student’s T-test and One-Way ANOVA, where appropriate. Data are shown as mean ± SEM. p < 

0.05 was taken as statistically significant and represented by *, p<0.01 was represent by ** and 

p<0.001 was represented by ***. 
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Figure 4.6 Effect of SdhD-KD on ROS production in non-stressed conditions and 
during heat stress. 

(A) Quantification of mRNA levels in SdhD-KD flies by qPCR. Control flies (TubGS>DAH and 

DAH>SdhD-KD) and KD flies (TubGS>SdhD-KD) were used (N = 3). (B) Mitochondrial 

respiration of SdhD-KD fly whole fly homogenates showing CI-linked, CIII-linked and CIV-

linked respiration as indicated (N = 7).  (C) ROS measurements of SdhD-KD in non-stressed 

conditions (25 °C) (N = >7). (D) ROS measurements of SdhD-KD flies in heat stress (32°C) (N 

= >7). Flies were approximately 10 days old. P Values were calculated using unpaired 

Student’s T-test and One-Way ANOVA, where appropriate. Data are shown as mean ± SEM. 

p < 0.05 was taken as statistically significant and represented by *, p<0.01 was represent by 

** and p<0.001 was represented by ***. 
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4.6 Discussion 

The results from this chapter show that limiting the entry of electrons into the ETC, 

via CI and CII inhibition, prevents the occurrence of RET. Thus confirming that CI 

and CII activity are both essential for the stimulation of physiological ROS-RET. 

Additionally, I was able to demonstrate that both short term and long term inhibition 

of CI and CII, using chemical inhibition and genetic silencing respectively, were 

sufficiently able to prevent the initiation of RET, during HS.  

As previously established in Chapter 3, short term chemical inhibition of CI using 

rotenone was able to inhibit RET from occurring, by preventing the backflow of 

electrons from the CoQ pool to CI. To further confirm this, I manipulated the 

expression of two CI subunits, ND-75 and ND-42, by genetically silencing them to 

achieve long term CI inhibition. Both models exhibited the same effect on ROS-RET 

as rotenone, where the burst in ROS production during HS-induced-RET was 

abolished. This provides strong evidence that active CI is necessary for RET. An 

interesting observation occurred when ND-42-KD flies in HS revealed an even further 

decrease in ROS levels, compared to the control flies in non-stressed conditions. 

This could be due to a reduction of CI assembly, which would lead to an overall 

decrease in ROS being generated at CI. The same decrease may not have been 

observed in the ND-75-KD flies due to a difference in the levels of RNAi expression 

between the two subunits. However, this would have to be tested using Blue Native 

Electrophoresis (BNE) to study the levels of CI in each model. In this case we would 

expect to observe even lower levels of CI in ND-42-KD flies in comparison to ND-75-

KD flies, resulting in the decrease in ROS.  

When CII was inhibited, using either chemical inhibition with dimethyl-malonate or 

genetic reduction using an SdhD-KD fly model, the stimulation of RET during HS was 

prevented. Mitochondrial respiration of SdhD-KD flies revealed a decrease in oxygen 

consumption specific to CI-linked respiration, which was not reflected in the dimethyl-

malonate fed flies. This is possibly due to the fact that CII, otherwise known as SDH, 

also plays a role in the CAC, which delivers electrons to the ETC. Hence, the long-

term and stronger inhibition of SDH by genetic depletion would most likely lead to a 

reduction in electron supply at CI, thus responsible for the decrease in respiration. 

This decrease was not observed in CIII respiration due to the substrate G3P being 

used, which introduces electrons directly to the CoQ pool via the enzyme G3PDH. 
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Electrons are then transferred directly to CIII, from CoQ, therefore bypassing CI. This 

effect was not observed when using chemical inhibition. This may be due to that fact 

that malonate feeding provided us with short-term inhibition of CII. Therefore, the 

effect after 4 hours may not have been enough to disrupt electron supply, from the 

Krebs cycle to CI. Unlike the long-term inhibition represented by the SdhD-KD flies, 

therefore resulting in decreased CI-linked respiration. An alternative explanation is 

that a increase in CII levels can affect the assembly of CI into supercomplexes, which 

has been shown in C.elegans and human cells (Guaras et al., 2016). Under these 

circumstances, degradation of CI from the supercomplexes would occur through long 

term chronic inhibition. Therefore allowing adaptations and changes to expression of 

transcripts and proteins, including posttranslational modification, which would not be 

possible under short-term inhibition, using malonate. Despite the fact that I was not 

able to confirm the inhibition of CII in the mitochondria of fly heads after 4 hours of 

malonate feeding, I was able to show that malonate elicits the same effect on ROS 

production as the SdhD-KD flies, indicating CII inhibition. Additionally, although there 

is the possibility that RET was prevented via CI inhibition in the SdhD-KD flies, 

malonate prevented RET without altering activity of CI respiration, suggesting that 

the genetic depletion of CII reduces RET through the same mechanism as malonate.  

In conclusion, these results show that CI and CII inhibition suppresses RET. This has 

been supported previously by numerous studies. For example, in flies expressing 

Ndi1, depletion of CI activity was shown to prevent the occurrence of ROS-RET 

(Scialo et al., 2016a). Another study showed that in Ndufs2-null mice the arterial 

chemoreceptors lost their ability to sense oxygen levels and stimulate a hypoxia 

response due to the suppression of RET (Fernandez-Aguera et al., 2015). In 

addition, the inhibition of CI has been shown to prevent succinate driven RET during 

IR, providing protection against IR injury (Chouchani et al., 2014a). Collectively, my 

results and those of previous studies show the necessity of both CI and CII activity to 

supply electrons to the CoQ pool, thus forming a high CoQH2:CoQ ratio and the 

subsequent stimulation of RET.  
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Chapter 5 Effect of limiting the exit of electrons from the 
mitochondrial ETC on ROS-RET 

 

5.1 Halting the exit of electrons 

The stimulation of RET relies primarily on the flow of electrons, determining the redox 

state of the CoQ pool and the transport of protons across the inner mitochondrial 

membrane, to achieve a highly reduced CoQ pool and establish a high proton motive 

force, respectively (Scialo et al., 2017). At present, it is unknown how CoQ becomes 

highly reduced or how a high pmf is accomplished and sustained to trigger RET, in 

physiological conditions. Since the individual complexes, that constitute the ETC, 

orchestrate the movement of electrons and protons, it is reasonable to postulate that 

the manipulation of these complexes may produce the conditions favourable for RET.  

In Chapter 4, I demonstrated that RET requires free circulation of electrons through 

CI and CII to occur and that inhibiting these complexes prevents RET. Blocking the 

exit of electrons through the inhibition of either CIII or CIV should increase the 

reduction state of CoQ. However, it is unclear how the pmf will be affected under 

these conditions in vivo, as both CIII and CIV are involved in the translocation of 

protons across the IMM. Thus, inhibition of the complexes would block proton 

pumping. If upon CIII and CIV inhibition, CV starts to work in a reverse direction, by 

transporting protons from the matrix to the IMS, the pmf will be maintained and ROS-

RET may be triggered. However, if CV does not work in reverse or the binding of 

ATP Inhibitory Factor 1 (ATPIF1) to CV occurs, preventing CV from working in the 

reverse direction, then a high pmf will not be established and ROS-RET will not be 

stimulated.  

Different studies in isolated mitochondria and cells show that blocking respiratory CIII 

and CIV boosts mitochondrial ROS levels (Taylor and Moncada, 2010) (Rajendran et 

al., 2019). However, it is unclear whether this increase in ROS is produced at CI via 

RET, or by other sites within the ETC, such as CIII.  The effect of inhibiting CIV on 

ROS production is particularly relevant since three different signalling molecules 

have been reported to inhibit CIV in physiological conditions, namely CO 

(Zuckerbraun et al., 2007), NO (Beltran et al., 2002) and H2S (Sun et al., 2012). In 

addition, mutations in several CIV subunits, that affect the assembly and function of 

the complex, have been described in mitochondrial patients (DiMauro et al., 2012). 
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Therefore is it essential to understand whether blocking CIII and CIV increases ROS 

in vivo and if so where and how these ROS are generated.  

5.2  Maintaining a High Proton Motive Force 

RET is extremely sensitive to decreases in membrane potential, which constitutes 

one component needed to generate a pmf (Robb et al., 2018). Therefore it was 

important to address the question of how a high pmf is maintained during RET. In 

vitro, inhibiting CV with oligomycin slows down electron transfer, resulting in the 

reduction of CoQ. Oligomycin also maintains a high pmf by preventing the re-entry of 

protons from the matrix, therefore establishing the two conditions that are needed to 

trigger ROS-RET. Additionally, several publications have reported an increase in 

ROS production upon the addition of oligomycin in isolated mitochondria or cells in 

culture, including Drosophila S2 cells (Liu and Schubert, 2009) (Fukuoh et al., 2014) 

(Zhou et al., 2018). 

Furthermore, physiological inhibition of CV activity has also been reported to 

increase ROS levels. For example, in macrophages exposed to LPS, glycolysis is 

increased to compensate for the reduction in mitochondrial ATP production. Under 

these circumstances, mitochondria produced ROS via RET, resulting from an 

increase in succinate oxidation and inhibition of ATP synthase (CV), that increased 

membrane potential (Mills et al., 2016b). Similarly, blocking CV with oligomycin, or 

knocking-down CV subunits, in Drosophila S2 cells increased ROS production 

(Fukuoh et al., 2014). Thus these data suggest that the inhibition of CV can achieve 

a high CoQH2:CoQ ratio, by slowing down respiration and also establish a high pmf 

to potentially stimulate ROS-RET.  There are two prospective examples of how CV 

inhibition could be accomplished physiologically. The first is through a protein called 

ATP inhibitory factor 1 (ATPIF1). ATPIF1 has been shown to bind to CV during 

mitochondrial dysfunction, stopping CV from working in the reverse direction and 

therefore preventing ATP depletion (Chen et al., 2014). It has also been reported that 

ATPIF1 is capable of binding to CV in normal conditions when overexpressed, 

therefore preventing the movement of protons into the matrix, leading to a high 

proton motive force (Garcia-Bermudez and Cuezva, 2016). Experimental data has 

shown that during binding of ATPIF1 to CV in normal conditions, there is an increase 

in ROS production, suggesting the stimulation of RET (Esparza-Molto et al., 2017). 

The second mechanism proposed to inhibit CV physiologically is through alpha-

ketoglutarate (2-oxoglutaric acid).  A recent study showed that supplementation of 



130 
 

alpha-ketoglutarate was able to inhibit CV and extend lifespan by approximately 50% 

in C.elegans.  In parallel with alpha-ketoglutarate administration was an increase in 

ROS production (Chin et al., 2014a). Therefore it is possible that alpha-ketoglutarate 

is able to produce the conditions needed for the stimulation of RET resulting in the 

lifespan extension, also observed in the Ndi1 RET model (Scialo et al., 2016a). In 

addition, the Alzheimer’s candidate drug J147 has also been reported to inhibit CV. 

Alongside CV inhibition, J147 has also been shown to increase membrane potential 

and superoxide levels in human cells and extend lifespan in Drosophila (Goldberg et 

al., 2018). This beneficial effect on longevity, seen in Drosophila, could be related to 

the mechanism by which Ndi1 extends lifespan.  

Therefore, in this Chapter, I wanted to study the effect of manipulating the exit of 

electrons, from the ETC, in order to initiate RET. To do this, I inhibited CIII and CIV, 

to block the exit of electrons and CV, to slow-down electron exit and maintain a high 

pmf. In all three models, I used both chemical inhibition and genetic reduction of the 

complexes. I studied the effect of such experimental manipulations in non-stressed 

conditions to determine if RET could be initiated. ROS measurements were used to 

identify any increase in ROS production, characteristic of RET. Subsequently, 

rotenone was used to confirm if RET was the source of increased ROS, as in 

previous chapters I have shown that CI inhibition prevents RET from occurring. 

Additionally, I also checked the effect of CIII, CIV and CV inhibition under HS, which 

as I have demonstrated in Chapters 3 and 4 causes the stimulation of RET and the 

production of ROS, in physiological conditions.  
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5.3 Decreasing Complex III activity 

Coenzyme Q: cytochrome c oxidoreductase, otherwise known as cytochrome bc1 or 

Complex III (CIII), is the third respiratory enzyme in the ETC. It is responsible for 

transporting electrons from the CoQ pool to Cyt C, as well as pumping protons to the 

IMS, to contribute to the generation of the electrochemical proton gradient, required 

for ADP phosphorylation (Berry and Huang, 2011). CIII consists of two Q sites, which 

both possess roles in the Q cycle needed for the transportation of electrons and 

protons. The first is the Qo site that resides near the outer face of the IM. The Qo site 

oxidises ubiquinol and transfers half of the electrons to Cyt C as well as transporting 

four protons to the IMS. The second is the Qi site, which is situated near the matrix 

side of the IM and is involved in reducing CoQ and taking protons from the matrix 

(Xia et al., 2013). To inhibit CIII, I used myxothiazol to block the Qo site and prevent 

the entry of electrons into CIII and I knocked-down UQCR-Q, (fly orthologue of the 

ubiquinol-cytochrome c reductase complex III subunit VII), to prevent the binding of 

CoQ to CIII.  

The antibiotic, myxothiazol, produced by Myxococcus fulvus can bind to the Qo site of 

CIII and therefore inhibit electron transfer from ubiquinol to the Rieske iron-sulfur 

protein (Thierbach and Reichenbach, 1981) (Figure 5.1). This specific inhibitor was 

chosen to stop the movement of electrons downstream of the CoQ pool. I 

hypothesised that by preventing the exit of electrons from the ETC, caused by the 

presence of myxothiazol, the CoQ pool will become highly reduced, allowing the 

stimulation of RET. The alternative CIII Qi site inhibitor, antimycin A, was not chosen 

as I wanted to prevent the entry of electrons into CIII, which occurs at the Qo site. 

Additionally, it has been reported that antimycin A dramatically increases ROS 

production at the Qo site of CIII. Therefore this inhibitor would not have been suitable, 

considering I was initially interested in studying the production of ROS from CI, when 

CIII is inhibited.   

UQRC-Q is a 9.5kDa core subunit within CIII responsible for the binding of 

ubiquinone (Barel et al., 2008) (Figure 5.1). Therefore silencing of this gene allowed 

me to inhibit CIII, by preventing the transfer of electrons from CoQ. I anticipated that 

knocking down this gene would lead to the accumulation of a high CoQH2:CoQ ratio, 

one of the conditions needed to trigger RET. 
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Figure 5.1 Schematic diagram indicating the binding site of myxothiazol and the RNAi 
construct used to target the CIII UQRC-Q subunit. 

 

 

 

 

 

 

 

Myxothiazol binds to the Qo site of CIII, preventing the binding of ubiquinol and subsequently 

the transfer of electrons. UQRC-Q resides near the Qo site, and participates in CoQ binding.  

Both types of inhibition will inhibit the entry of electrons into CIII, therefore causing the 

accumulation of electrons upstream the ETC, resulting in a highly reduced CoQ pool.  
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5.4 The effect of decreasing CIII activity on ROS-RET signalling 

 The CIII inhibitor, myxothiazol, does not trigger ROS-RET in the brain of 
Drosophila melanogaster.  

The first experiments I carried out were to confirm that myxothiazol can reach the 

brain of the flies and inhibit CIII, after 4 hours of feeding. To determine a suitable 

concentration of myxothiazol, I measured mitochondrial respiration using a range of 

different drug concentrations. I wanted to find a high enough concentration, with the 

potential to trigger ROS-RET by reducing the CoQ pool but minimising any potential 

damage. I tested 5 different concentrations spanning from 10 μM to 1 mM (Figure 

5.2). Although reduced mitochondrial respiration was observed with all doses, 

statistical significance was only reached with doses ≥100 μM. The highest doses 

reduced respiration between 62 to 92% (Figure 5.2C-E). 

Next, I measured ROS in all 5 different concentrations of myxothiazol. No significant 

change in ROS was observed using 10 μM of myxothiazol; however flies fed with 50 

μM displayed a decrease in ROS (Figure 5.3A). When exposed to HS, the control 

flies showed an increase in ROS levels in the brain, as expected. Flies fed with 10 or 

50 μM of myxothiazol, under HS, also displayed increased ROS levels, however 50 

μm was significantly lower that the control at 32°C (Figure 5.3B). The effect of 100 

μM myxothiazol on ROS production led to a decrease, similarly to the lower dose of 

50 μM at 25°C (Figure 5.3C). However, at 32°C, the same dose completely abolished 

the increase in ROS, with levels reflecting those of the control in non-stressed 

conditions (Figure 5.3D). This was an interesting observation since the dose that 

suppresses ROS-RET, does not induce ROS at 25°C, discarding the possibility that 

CI is inhibited and suggesting that the effect was caused by dissipating the pmf. 

Surprisingly, higher doses of myxothiazol ≥500 μM, increased ROS both at 25 and 

32°C (Figure 5.4A-B). If this increase in ROS levels was due to the stimulation of 

RET, I would have expected this to be attenuated with the addition of rotenone. 

However, ROS levels increased even further, when 1 mM myxothiazol and rotenone 

were added together in the fly food (Figure 5.4C). It is also important to discuss the 

fact that 100 μM and 500 μM of myxothiazol both display similar degrees of inhibition, 

when comparing the respiration data, despite their opposing effects on ROS 

production. Although this is observed it is difficult to interpret the levels of inhibition 

from these experiments alone, due to the fact that they were performed on separate 

occasions and using a different pool of flies. It would be interesting to explore this 
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further in the future and test both concentrations of myxothiazol in the same 

experiment to compare the respiration rates. Here, it is possible that we would 

observe even higher levels of inhibition using the higher dose of 500 μM compared to 

100 μM, which could explain the opposing effects on ROS production. 

With the present data, it is clear that CI is not producing ROS via RET, during CIII 

inhibition with myxothiazol. It is possible, however, that CI could be producing ROS in 

a forward direction encouraged by a high NADH/NAD+ ratio, occurring as a result of 

strongly inhibited respiration, achieved in presented circumstances. In addition, it is 

also possible that ROS are being produced at other sites of the ETC, for example CII 

(Quinlan et al., 2012), alpha-ketoglutarate dehydrogenase (Mailloux et al., 2016) or 

even non-mitochondrial sites such as cytosolic NADPH oxidases (Wong et al., 2019).  
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Figure 5.2 The effect of myxothiazol on respiration. 

 

 

 

Mitochondrial respiration of fly head mitochondria after feeding flies with varied concentrations 

of myxothiazol using (A) 10 μM (N = 5), (B) 50 μM (N = 6), (C) 100 μM (N = 5), (D) 500 μM (N 

= 7) and (E) 1 mM (N = 5). Flies were approximately 3 days old. P Values were calculated 

using unpaired Student’s T-test. Data are shown as mean ± SEM. p < 0.05 was taken as 

statistically significant and represented by *, p<0.01 was represent by ** and p<0.001 was 

represented by ***. 
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Figure 5.3 The effect of myxothiazol (10, 50, 100 μM) on ROS production in non-
stressed conditions and during heat stress. 

Quantification of ex vivo ROS measurements in fly brains fed 10-100 μM myxothiazol 

(A) 10 and 50 μM in non-stressed conditions (25°C) (N = >6), (B) 10 and 50 μM under 

HS (32°C) (N = 8), (C) 100 μM in non-stressed conditions (25°C) (N = >8)and (D) 100 

μM under HS (32°C) (N = >5). Flies were approximately 3 days old. P Values were 

calculated using unpaired Student’s T test and One-Way AVOVA, where appropriate. 

Data are shown as mean ± SEM. p < 0.05 was taken as statistically significant and 

represented by *, p<0.01 was represent by ** and p<0.001 was represented by ***. 
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Figure 5.4 The effect of myxothiazol (500 μM, 1 mM) on ROS production in non-
stressed conditions and during heat stress. 

 

 

Quantification of ex vivo ROS measurements in fly brains of flies fed 500 μM – 1 mM 

of myxothiazol (A) 500 μM and 1 mM in non-stressed conditions (25°C) (N = >7), (B) 

1 mM in HS (32°C) (N = >8) and (C) 1 mM in non-stressed conditions (25°C) also fed 

rotenone (600 μM) (N = >7). Flies were approximately 3 days old. P Values were 

calculated using One-Way AVOVA. Data are shown as mean ± SEM. p < 0.05 was 

taken as statistically significant and represented by *, p<0.01 was represent by ** and 

p<0.001 was represented by ***. 
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  Genetic depletion of CIII does not stimulate ROS-RET 

To understand whether the increase in ROS, observed by reducing electron transfer 

through CIII, was an acute effect or could also be observed during long-term CIII 

inhibition, I knocked-down the gene encoding for the CIII subunit, UQRC-Q. First, I 

confirmed the reduction in CIII-linked respiration by using high-resolution 

respirometry. As anticipated, CI and CIII linked respiration were reduced in the 

UQRC-Q-KD flies, (TubGS>UQCRQ IR), compared to the control group, 

(TubGS>w1118), whereas CIV-linked respiration was not affected (Figure 5.5A). This 

is in contrast with the results obtained when CI subunits were targeted (Figure 4.3A 

and 4.4A), where CIII linked and CIV linked respiration were not altered. However 

this is expected as blocking electron flow downstream of CI, leading to a decrease in 

CIII and CIV-linked respiration, will prevent the electrons reaching O2 and will 

subsequently lead to a decrease in CI-linked respiration. This correlates with 

previous studies, which show that CIII dysfunction can reduce CI levels in vitro. 

After validating the reduction of CIII activity, I carried out ROS measurements. In non-

stressed conditions, there was a significant increase in the levels of ROS in the brain 

of UQCR-Q-KD flies, compared to the controls (Figure 5.5B). When flies were 

exposed to HS, both the control and UQCR-Q-KD flies at 32°C had increased ROS 

levels, compared to the control at 25°C. However, the ROS levels in the UQCR-Q-KD 

flies subjected to HS were slightly lower than those of the HS controls (Figure 5.5C). 

To determine if this increase in ROS in the UQCR-Q-KD flies was as a result of RET 

being stimulated, I fed the KD flies rotenone. However, ROS levels did not change in 

the presence of rotenone, indicating that ROS-RET was not occurring (Figure 5.5D). 

These results are in agreement with the results observed using doses of myxothiazol 

that inhibit mitochondrial respiration more than 60% (Figure 5.2C-E) and indicate that 

acute or chronic inhibition of CIII does not trigger ROS-RET. 
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Figure 5.5 The effect of UQCR-Q-KD on ROS production in non-stressed conditions and 
during heat stress. 

 

(A) Mitochondrial respiration in UQCR-Q-KD whole fly homogenates, (TubGS> UQCR-Q-KD), 

compared to the respective controls, (TubGS>w1118) (N = 6). (B) ROS measurements of 

UQCR-Q-KD fly brains in non-stressed conditions (25°C) (N = >7). (C) ROS measurements of 

UQCR-Q-KD fly brains subjected to heat stress (32°C) (N = 8). (D) ROS measurements of 

UQCR-Q-KD fly brains at 25°C fed rotenone (600 µM) (N = >7). Flies were approximately 10 

days old after being fed RU-486 to induce expression. P Values were calculated using unpaired 

Student’s T-test and One-Way AVOVA, where appropriate. p < 0.05 was taken as statistically 

significant and represented by *, p<0.01 was represent by ** and p<0.001 was represented by 

***. 
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5.5 Decreasing Complex IV activity 

Cytochrome c oxidase or Complex IV (CIV) is the final respiratory complex, in the 

ETC, involved in electron transport. Its role is to accept four electrons from Cyt C and 

then carry out the reduction of O2, the final electron acceptor, into water (Timon-

Gomez et al., 2018). During this process, CIV also pumps four protons to the IMS 

contributing to the generation of the proton gradient, necessary for ATP synthesis (Lu 

and Gunner, 2014). The structure of mammalian CIV consists of 13 subunits where 3 

larger subunits form the catalytic core. Subunits I and II control the movement of 

electrons and protons, whereas subunit III confers structural integrity of CIV. Subunit 

I is home to 2 haem centres, haem a and haem a3. Additionally, haem a3 forms a 

binuclear centre with the copper centre, CuB, which is involved in the reduction of O2. 

Subunit II contains the copper centre CuA and binds directly to Cyt C to accept 

electrons (Srinivasan and Avadhani, 2012). To achieve CIV inhibition I used cyanide 

(CN) that prevents reduction of O2 to water and I knocked-down levy, which is 

required to assemble a fully functioning CIV. 

CN is a well-established competitive inhibitor of CIV and binds to the haem a3-CuB 

binuclear centre of subunit I (Jensen et al., 1984) (Figure 5.6). Binding of CN 

prevents electrons being transferred to molecular O2 and therefore blocks the exit of 

electrons from the ETC.   

The gene levy encodes the orthologue of the human subunit VIa (COX6A) in CIV and 

possesses a regulatory role, responsible for dimerisation of CIV (Kemppainen et al., 

2014) (Figure 5.6). In models where levy is mutated, it has been shown to reduce the 

activity of CIV (Liu et al., 2007) (Kemppainen et al., 2014). I predicted that by using 

both of these methods of CIV inhibition, I would be able to prevent electrons from 

leaving the ETC, increasing the reduction state of the CoQ upstream of CIV, 

therefore allowing the generation of at least one condition required for the initiation of 

RET. 
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Figure 5.6 Schematic diagram indicating the binding site of CN and the RNAi construct 
used to target the CIV levy subunit. 

 

 

 

 

 

 

 

 

 

CN binds to the binuclear centre, (haem a3-CuB) of CIV and inhibits the transfer of electrons 

to molecular oxygen. levy is responsible for the correct assembly and therefore activity of CIV. 

Both types of inhibition will inhibit the exit of electrons from the ETC, therefore causing the 

accumulation of electrons upstream the ETC, resulting in a highly reduced CoQ.  
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5.6 Inhibition of CIV increases ROS production but does not trigger ROS-RET 

 Pharmacological inhibition of CIV increases ROS production. 

To ensure that CN was able to reach the brain and inhibit CIV within the 4 hours of 

feeding, I measured mitochondrial respiration in the heads of the flies, using high-

resolution respirometry. I used two different doses of CN, 12 and 18 mM, that inhibit 

respiration less and more than 50%, respectively, to see if different effects were 

observed, depending on the inhibition of the complex (Figure 5.7A-B). An important 

rise in ROS production, which correlated with the amount of inhibition of CIV, was 

observed in non-stressed conditions (25°C) (Figure 5.7C). When subjected to HS, to 

initiate physiological RET, milder inhibition of CIV did not affect ROS levels, whereas 

stronger inhibition increased ROS levels even more (Figure 5.7D). Rotenone was 

then used in conjunction with the higher dose of CN, to determine if RET stimulation 

was occurring as a result of CIV inhibition. However, ROS levels did not change in 

the presence of rotenone, indicating that ROS-RET was not the cause of the 

increase in ROS observed (Figure 5.7E).  

Since inhibition of CIV activity is an important physiological mechanism to modulate 

mitochondrial respiration, I decided to dissect where the ROS were originating from 

using a combination of different ETC inhibitors.  I focused on CI and CIII since it has 

been widely established that these two respiratory complexes are the two major sites 

of in vivo ROS production, within the mitochondria. First, I decided to use FCCP to 

dissipate the pmf and study whether this manipulation would affect ROS levels after 

CIV inhibition. Interestingly FCCP (600 μM) significantly reduced ROS levels when 

combined with CN in the fly food (Figure 5.8A). Although the FCCP results could 

support ROS-RET as the mechanism triggered by CIV inhibition, the results using 

rotenone clearly demonstrated that RET was not responsible for the elevated ROS 

levels, as no decrease in ROS after blocking the quinone binding site, was observed. 

Therefore, I decided to test whether CIII was implicated, since production by the Qo 

site of CIII also requires a high membrane potential (Larosa and Remacle, 2018). To 

test the former hypothesis, I fed flies with both CN and myxothiazol (100 μM), to 

block the Qo site of CIII and measured ROS levels. Interestingly, myxothiazol 

completely abolished the increase in ROS (Figure 5.8B), supporting CIII as the site of 

ROS production, not CI, when CIV is inhibited.  
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 Figure 5.7 The effect of CN on ROS production in non-stressed conditions and during 
heat stress 

(A) Mitochondrial respiration of fly head mitochondria after feeding flies with 12 mM of CN for 

4 hours (N = 6). (B) Mitochondrial respiration after feeding flies with 18 mM of CN for 4 hours 

(N = 3). (C) Quantification of ROS measurements in fly brains fed 12 and 18 mM of CN at 25°C 

(N = >8). (D) ROS measurements in fly brains fed 12 and 18 mM of CN under HS (32°C) (N = 

9). (E) ROS measurements in fly brain fed 18mM of CN and rotenone (600 µM) at 25°C (N = 

>8). Flies were approximately 3 days old. P Values were calculated using unpaired Student’s 

T-test and One-Way AVOVA, where appropriate. p < 0.05 was taken as statistically significant 

and represented by *, p<0.01 was represent by ** and p<0.001 was represented by ***. 
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Figure 5.8 The effect of CN on ROS production in combination with the uncoupler, 
FCCP and the CIII inhibitor, myxothiazol. 

 

 

 

 

 

 

(A) ROS measurements in fly brains of flies fed 18 mM of CN and 600 μM of FCCP at 25°C 

(N = >7). (B) ROS measurements in fly brains of flies fed 18 mM of CN and 100 μM of 

myxothiazol at 25°C (N = 10). Flies were approximately 3 days old. P Values were calculated 

using One-Way AVOVA. p < 0.05 was taken as statistically significant and represented by *, 

p<0.01 was represent by ** and p<0.001 was represented by ***. 
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 Genetic depletion of CIV elevates ROS production but does not trigger ROS-
RET 

As in the case of CIII, I was interested in identifying differences in blocking CIV, 

acutely (chemical inhibition) or chronically (genetic depletion), on ROS levels. I used 

an RNAi line expressing a transgene against levy to decrease CIV levels and used 

high-resolution respirometry to test the effect on mitochondrial respiration. I 

confirmed a significant decrease in CIV-linked respiration in the levy-KD flies, 

(DaGAL4>levy-KD), compared to the two controls used in this experiment, 

(DaGAL4>DAH and DAH>levy-KD) (Figure 5.9A). Inhibition of CI+CIII+CIV 

respiration was also observed in the levy-KD flies, whereas CIII+CIV respiration was 

significantly decreased only with respect to one of the controls, (DaGAL4>DAH). This 

could be due to background differences between the experimental groups since flies 

were not backcrossed for this experiment and two different backgrounds were used 

(our White Dahomey flies and w1118 flies from Vienna). My results confirm previous 

observations reporting that levy is required for the assembly of CIV and its knock-

down severely compromises the activity of the complex. Furthermore, levy is also 

involved in the assembly of respiratory supercomplexes containing CI (Kemppainen 

et al., 2014). Additionally, as discussed previously, the inhibition of electron flow 

downstream of CI, would lead to the reduction in CI linked respiration, which is 

observed in the both the UQRC-Q-KD and levy-KD fly models.  

Silencing the CIV subunit, levy, induced a large increase in ROS production 

compared to both of the controls (Figure 5.9B). When levy-KD flies were subjected to 

4 hours of HS this increase in ROS was also present compared to the control at 

25°C. However, compared to the control at 32°C there was a slight but non-

significant decrease in ROS levels (Figure 5.9C). To establish the site of ROS 

production and whether the increase in ROS was caused by the stimulation of RET, 

rotenone was fed to the levy-KD flies. Rotenone feeding caused a further increase in 

ROS production, therefore discarding ROS-RET as the source of ROS (Figure 5.9D). 

These results reflected those previously described using CN to inhibit CIV, therefore 

to establish where ROS was being produced during CIV inhibition, I employed the 

same strategy carried out for CN experiments and measured ROS levels in 

conjunction with other inhibitors of the ETC. Feeding FCCP to levy-KD flies 

significantly increased ROS levels, compared to the controls flies (Figure 5.10A). 

Feeding 100 μM of myxothiazol to levy-KD flies also supported the previous 
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conclusion of the CN experiments, where a decrease in ROS back down to control 

levels, was observed (Figure 5.10). 

Overall the results from both chemical and genetic inhibition of CIV indicate that 

when the exit of electrons is blocked, through CIV inhibition, electrons accumulate at 

the Qo site of CIII and consequently cause a dramatic increase in ROS production. 

These data confirm that inhibition of CIV, using two complementary approaches, did 

not stimulate ROS-RET and elevated ROS production, from respiratory CIII.  
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Figure 5.9 The effect of levy-KD on ROS production in non-stressed conditions and 

during heat stress. 

(A) Mitochondrial respiration in levy-KD whole fly homogenates (DaGAL4>levy-KD) 

compared to the respective controls (DaGAL4>DAH and DAH>levy-KD) (N = >5). (B) 

Quantification of ex vivo ROS measurements of levy-KD fly brains in non-stressed 

conditions (25°C) (N = >7). (C) ROS measurements of levy-KD flies subjected to HS 

(32°C) (N = 9). (D) ROS measurements of levy-KD flies at 25°C fed rotenone (600 µM) 

(N = >8). Flies were approximately 10 days old. P Values were calculated using One-

Way AVOVA. p < 0.05 was taken as statistically significant and represented by *, p<0.01 

was represent by ** and p<0.001 was represented by ***. 
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Figure 5.10 The effect of levy-KD on ROS production in combination with the 
uncoupler, FCCP and the CIII inhibitor, myxothiazol. 

 

 

 

 

(A) ROS measurements in the brain of levy-KD flies fed 600 μM of FCCP at 25°C (N = >6). (B) 

ROS measurements in the brain of levy-KD flies fed 100 μM of myxothiazol at 25°C (N = >8). 

Flies were approximately 3 days old. P Values were calculated using One-Way AVOVA. p < 

0.05 was taken as statistically significant and represented by *, p<0.01 was represent by ** 

and p<0.001 was represented by ***. 
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5.7 Reduction of CV activity 

ATP Synthase or Complex V (CV) is the enzyme responsible for the production of 

energy in the form of ATP. It achieves this via the movement of protons down the 

electrochemical proton gradient, which drives ATP synthesis, from ADP and Pi. The 

structure of CV comprises of two key subcomplexes, F0 and F1. The integral 

membrane-bound F0 subcomplex facilitates translocation of protons through CV, 

triggering a rotary motion. The soluble F1 resides in the mitochondrial matrix and 

catalyses ATP synthesis. Connecting these two components is the stalk, which 

spans the length of the complex (Xu et al., 2015). In an attempt to inhibit CV, I used 

the established chemical inhibitor oligomycin and the proposed novel inhibitors 

alpha-ketoglutarate and J147. Additionally, I used an RNAi line targeting the ATPase 

synthase δ subunit to genetically inhibit CV. 

The macrolide antibiotic, oligomycin, is a highly specific inhibitor of CV. It binds to the 

c ring of CV, in the F0 subcomplex (Symersky et al., 2012) (Figure 5.11). Therefore 

its binding blocks the passage of protons through CV to the mitochondrial matrix. 

This should lead to the accumulation of protons in the IMS and subsequently, the 

generation of a high pmf. Another consequence of oligomycin binding is the 

interruption of proton pumping when the membrane becomes too hyperpolarised. 

Due to the electron transfer within the ETC being reliant on the movement of protons 

to drive the redox reactions, oligomycin causes the ETC to come to a halt, forcing 

mitochondria to remain in respiratory State 4. Electrons from within the ETC may 

then gather at CoQ to cause an increase in the CoQH2:CoQ ratio. From these 

observations, it is reasonable to speculate that oligomycin is capable of producing 

the two conditions needed to initiate a ROS-RET signal. Accordingly multiple 

publications have reported an increase in ROS levels in response to blocking CV with 

oligomycin, overexpression of ATPIF1 or the genetic depletion of CV (Liu and 

Schubert, 2009) (Fukuoh et al., 2014) (Formentini et al., 2012).  One publication 

showed that the addition of rotenone suppressed the increase in ROS, suggesting 

that ROS-RET is stimulated during CV inhibition (Chouchani et al., 2014a). However, 

to the best of my knowledge, there has not been a consistent attempt to investigate 

how and where ROS are generated in response to CV inhibition in vivo.  

As discussed previously, AKG has recently been characterised as a novel 

uncompetitive inhibitor of CV (Chin et al., 2014b). This study identified the catalytic β 

subunit of the F1 subcomplex, ATP5B, as the binding site for AKG (Figure 5.11). AKG 
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is a CAC cycle intermediate, produced by the enzyme isocitrate dehydrogenase, 

which catalyses the oxidative decarboxylation of isocitrate. Due to the fact that AKG 

is an endogenous metabolite, it has the potential to be a physiological stimulator of 

RET through the inhibition of CV. Therefore, I hypothesised that physiological 

changes that cause the accumulation of AKG could trigger ROS-RET as a 

physiological response to stress.   

ATP synthase, δ subunit (ATPsyn δ) is situated at the top of the stalk that connects 

F0 and F1 and is essential for the regulation of both proton translocation and ATP 

synthesis (Olahova et al., 2018) (Figure 5.11). RNA interference was used to silence 

the gene encoding ATPsyn δ and achieve CV depletion.  
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Figure 5.11 Schematic diagram indicating the binding sites of oligomycin and AKG 
and the RNAi construct used to target the CV ATPsynδ subunit. 

 

 

 

 

 

 

 

Oligomycin binds to the c subunit of CV, which is responsible for the translocation of protons. 

AKG binds to the ATP5B subunit found in the β subunit of the catalytic head. ATPsyn δ resides 

at the top of the connective stalk. All types of inhibition will prevent the passage of protons and 

the synthesis of ATP, therefore allowing the ETC to slow down, producing a high CoQH2:CoQ 

ratio and also a high proton motive force.  
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5.8 Genetic inhibition of CV triggers ROS-RET 

 Oligomycin specifically inhibits CV without initiation of a ROS-RET signal.  

First, I performed experiments in fly homogenates, where oligomycin was directly 

added to the oxygraph chamber, to obtain a respiratory profile, showing the 

consequences of specific CV inhibition on respiration. This profile was necessary to 

test the abilities of AKG and J147 as CV inhibitors in Drosophila, by comparing the 

effects of the novel inhibitors with the effects of a validated inhibitor, oligomycin.  

Initially, I stimulated State 3, adding ADP and a combination of pyruvate and proline 

to feed CI+CIII+CIV respiration, which caused a significant increase in oxygen 

consumption. Adding oligomycin prevents the transit of protons through CV, raising 

the pmf and initiating State 4 (where oxygen is consumed but ADP is not 

phosphorylated to ATP). As expected, I observed a dramatic inhibition (>95%) in 

mitochondrial respiration, after the addition of oligomycin (Figure 5.12A). To confirm 

that the decrease in respiration was caused by specific inhibition of CV, I added the 

uncoupler FCCP that generates pores in the IMM, allowing protons to return to the 

mitochondrial matrix independently of CV, thus uncoupling mitochondrial respiration 

from ATP synthesis. As anticipated, FCCP restored respiration (Figure 5.12A). Since 

a real State 4 cannot be observed using pyruvate and proline in fruit flies (Miwa et al., 

2003), I repeated the experiments using G3P that feeds electrons directly to the CoQ 

pool, using the G3PDH located in the outer face of the IMM (Miwa et al., 2003). Once 

again, if oligomycin (or any other CV inhibitor) specifically inhibits CV then I expected 

to see a decrease in respiration back down to the levels observed in State 4. First, I 

initiated State 2, adding only G3P to the oxygraph chamber. State 2 is similar to 

State 4, however, during State 2 small amounts of endogenous ADP can be present, 

promoting minimal ATP synthesis. In contrast to State 4, where no ADP is present. 

Addition of ADP triggered State 3, which was once again inhibited by adding 

oligomycin, returning mitochondria into State 4 (Figure 5.12B). As anticipated no 

significant differences were observed between State 2 and State 4 and both were 

significantly lower that State 3. Finally, adding FCCP once again restored the 

respiration, by uncoupling electron transport from OXPHOS, as described in the 

previous experiment (Figure 5.12B). As one final experiment to validate the 

specificity of oligomycin, I initiated State 3 respiration and added FCCP, a slight but 

not statistically significant increase was observed (Figure 5.12C). However, on this 
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occasion oligomycin did not decrease respiration, due to the fact that electron 

transport was no longer dependent on CV to move protons into the matrix. 

In addition to the in vitro experiments, as I did with the previous inhibitors, I wanted to 

also confirm that oligomycin can reach the brain and inhibit CV, after 4 hours of 

feeding. I used two different doses of oligomycin and measured respiration using 

pyruvate and proline as CI substrates. After feeding flies for 4 hours with oligomycin, 

respiration decreased similarly using two doses, 50 μM and 100 μM (Figure 5.13A & 

B). 

To test the effect of oligomycin on the production of ROS, I used two different doses 

of 50 and 100 μM. Unexpectedly, oligomycin did not increase ROS in the brain of 

wild type flies (Figure 5.13C). Moreover, the highest concentration (100 μM) 

decreased ROS levels. Interestingly, oligomycin (50 μM) suppressed ROS-RET in 

wild type flies exposed to HS (Figure 5.13D). In a separate experiment, I tested the 

effect of 100 μM of oligomycin in flies expressing Ndi1. Reflecting the HS data, 

oligomycin decreased ROS, indicating that high doses of oligomycin can suppress 

ROS-RET (Figure 5.13E). Since oligomycin has been described before to increase 

ROS in isolated mitochondria and different cell types (Liu and Schubert, 2009), 

although not in fly brain to the best of my knowledge, I performed a few additional 

experiments. Firstly, I used a much higher concentration of oligomycin (400 μM) that 

decreased ROS levels in the brain, even further than 50 µm (Figure 5.14A). 

Secondly, I fed the flies with two doses of oligomycin 50 μM and 100 μM during a 3 

day period rather than 4 hours (Figure 5.14B). Surprisingly, I did not observe a 

reduction in ROS levels with the lowest dose but the higher dose clearly reduced 

ROS levels in the fly brain. My results show that none of the concentrations or 

experimental conditions assayed, induced ROS-RET. Moreover, oligomycin 

suppressed or reduced ROS-RET in two different models; Ndi1 and HS, discarding 

the theory that oligomycin can induce ROS in the fly brain. 
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Figure 5.12 High-resolution respirometry measurements showing the inhibitory effect 
of oligomycin. 

 

 

 

 

 

 

(A) State 3 respiration using whole fly homogenates was initiated and Oligomycin was added, 

followed by FCCP to uncouple ETC from OXPHOS (N = 6). (B) State 2 for respiration was 

stimulated, followed by the addition of ADP to initiated State 3 (N = 6). Oligomycin was 

subsequently added followed by FCCP (N = 4). (C) State 3 respiration was initiated followed 

by FCCP and oligomycin. Flies were approximately 3 days old. P Values were calculated using 

One-Way AVOVA. Data are shown as mean ± SEM. p < 0.05 was taken as statistically 

significant and represented by *, p<0.01 was represent by ** and p<0.001 was represented by 

***. 
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Figure 5.13 The effect of oligomycin on ROS production in non-stressed conditions. 

 

 

 

 

 

(A) Mitochondrial respiration using whole fly homogenates in flies fed 50 µM of oligomycin for 

4 hours (N = 6). (B) Mitochondrial respiration in flies fed 100 μM of oligomycin for 4 hours (N 

= 6). (C) ROS measurements in brains of flies fed with 50 and 100 μM oligomycin at 25°C (N 

= >7). (D) ROS measurements in brains of flies fed with 50 and 100 μM oligomycin under HS 

(32°C) (N = >5). (E) ROS measurements in brain of flies expressing Ndi1 fed 50 and 100 μM 

of oligomycin (N = >6). Flies were approximately 3 days old. Ndi1 flies were approximately 10 

days old. P Values were calculated using unpaired Student’s T-test and One-Way AVOVA, 

where appropriate. p < 0.05 was taken as statistically significant and represented by *, p<0.01 

was represent by ** and p<0.001 was represented by ***. 
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Figure 5.14 The effect of oligomycin in high concentrations and after 3 days in non-
stressed conditions. 

 

 

 

 

 

 

 

 

 

 

 

(A) ROS measurements in brains of flies fed 400 μM of oligomycin (N = >7). (B) ROS 

measurements in brains of flies fed 50 and 100 μM of oligomycing for 3 days (N = 7). Flies 

were approximately 3 days old. P Values were calculated using unpaired Student’s T-test and 

One-Way AVOVA, where appropriate. p < 0.05 was taken as statistically significant and 

represented by *, p<0.01 was represent by ** and p<0.001 was represented by ***. 
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 Genetic depletion of CV, using ATPSynthase-δ-KD line increases ROS via RET 

Since the results obtained with oligomycin were in contradiction with other reports, 

including measurements in fly cells, showing a clear increase in mitochondrial ROS 

(Fukuoh et al., 2014), I decided to measure ROS levels in the brain of flies with 

depleted levels of CV. To deplete CV, I knocked-down ATPsynδ. To confirm the 

knock-down, I measured mitochondrial respiration. As anticipated, oxygen 

consumption was dramatically decreased using substrates that introduce electrons 

via CI (i.e. CI+CIII+CIV) or downstream (CIII+CIV) in the KD flies, (TubGS> 

ATPsynδ-KD), compared to control flies, (TubGS>DAH) (Figure 5.15A). I found that 

CIV-linked respiration was also reduced, which is surprising since CIV-linked 

respiration is not dependent on the membrane potential and should not be directly 

affected by reducing CV activity. This indicates a possible reduction in mitochondrial 

mass, which coincidentally, has been previously described when ATPsynδ and other 

CV subunits are depleted in Drosophila S2 cells (Fukuoh et al., 2014).  

Next, I tested whether the knock-down of ATPsynδ subunit could stimulate ROS 

production. In contrast to CV inhibition with oligomycin, the genetic depletion of CV 

increased ROS in the fly brain (Figure 5.15B). To establish whether or not this 

increase in ROS was as a result of RET, I fed the KD flies rotenone. In the presence 

of rotenone, ROS levels were decreased significantly, even further than those seen 

in the controls (Figure 5.15C). Under HS, KD and control flies exhibited similar levels 

of ROS (Figure 5.15D). These results were also in contrast to the results of 

oligomycin, which prevented the increase in ROS induced by HS. 

The results obtained by knocking-down ATPsynδ seem to support that genetically 

inhibiting CV, triggers ROS-RET. However, this conclusion should be approached 

with caution. Firstly, these results are in conflict with the results obtained using 

oligomycin, including experiments where higher concentrations (400 μM) or long term 

administration of the drug was used. Secondly, although it is possible that feeding 

flies with oligomycin does not establish a high enough membrane potential to trigger 

RET, it is also possible that the ROS observed in ATPsynδ-KD flies are not 

mitochondrial or are produced non-specifically in the mitochondria (i.e not via RET), 

due to the high levels of damage these flies seem to support. Under this model, the 

decrease in ROS observed after feeding flies with rotenone, would be the result of 

the collapsed pmf that would cause the mitochondria to stop generating ROS. It is 

worth mentioning that the knock-down of ATPsynδ causes an extremely debilitating 
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phenotype with the flies dying just a few days after eclosion. Therefore the flies used 

for these experiments were only 2-3 days old and fed RU-486 for the duration of this 

time after eclosion. Additionally, these flies were weak from eclosion however I did 

not perform analysis of their lifespan with and without RU-486 feeding. This 

phenotype was not observed in the CI, CII, CIII or CIV subunit knock-down models 

and is probably the consequence of extremely low levels of mitochondrial respiration. 

Furthermore, the low CIV-linked respiration observed indicated a reduction in 

mitochondrial mass, which has been shown in S2 cells, upon depletion of CV, by 

knocking down ATPsynδ and other CV subunits (Fukuoh et al., 2014). To determine 

if genetic inhibition of CV can stimulate a RET-ROS response other subunits should 

be explored especially those, which do not display the weak phenotype observed 

when using the ATPsynδ-KD. This may explain the contrasting results displayed 

between the oligomycin and the genetic model, even after feeding oligomycin over 

long periods of time. In the future, it will also be interesting to investigate if CV 

depletion stimulates mitophagy in vivo. Additionally, if this stimulation of mitophagy is 

ROS-dependent and more importantly if this ROS is RET-derived.  
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Figure 5.15 The effect of ATPSynδ-KD on ROS production in non-stressed conditions 
and during heat stress. 

 

(A) Mitochondrial respiration in ATPsynδ-KD whole fly homogenates, (TubGS> ATPsynδ-KD), 

compared to the respective controls, (TubGS>DAH) (N = 5). (B) Quantification of ex vivo ROS 

measurements using H2DCF of ATPsynδ-KD fly brains in non-stressed conditions (25°C) (N= 

9). (C) ROS measurements of ATPsynδ-KD flies subjected to heat stress (32°C) (N = >7). (D) 

ROS measurements of ATPsynδ-KD flies at 25°C fed rotenone (600 µM) (N = >7). The 

ATPsynδ-KD flies used in these experiments were approximately 2-3 days old and fed RU-486 

from eclosion. P Values were calculated using unpaired Student T-test and One-Way AVOVA, 

where appropriate. p < 0.05 was taken as statistically significant and represented by *, p<0.01 

was represent by ** and p<0.001 was represented by ***. 
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 Alpha-ketoglutarate (AKG) is not a CV inhibitor in Drosophila melanogaster 

In an attempt to conciliate the opposite effects on ROS levels observed with the other 

models, oligomycin and knocking-down of ATPsynδ, I decided to test, whether AKG 

inhibited Drosophila CV as an alternative way to block the complex. To validate AKG 

as a specific inhibitor of CV, I carried out similar experiments to the ones shown in 

Figure 5.12, to allow the comparison with oligomycin.   

When using pyruvate+proline as substrates to feed CI with electrons, I observed that 

AKG (0.25 µM) had a potent inhibitory effect (Figure 5.16A). However, the addition of 

the uncoupler FCCP did not restore mitochondrial respiration, indicating that the 

effect of AKG was not caused by CV inhibition. I then used a different substrate, 

G3P, to feed respiration downstream of CI but no inhibition was observed with 0.25 

µM of AKG (Figure 5.16B).  With doses of AKG 3-4 times higher, I observed inhibition 

in respiration but once again it was not restored by FCCP (Figure 5.16B). This 

provides further support that the target of AKG in fly mitochondria is not CV. Finally, I 

performed the last experiment adding AKG + ADP and observed a modest but 

significant increase in respiration (Figure 5.16B). This was not unexpected since 

AKG is a CAC intermediate that can be oxidized producing NADH. My results 

disprove AKG as an inhibitor of Drosophila melanogaster CV, as it has been 

suggested in worms, bovine heart mitochondria and in mammalian cells (Chin et al., 

2014b). The experiments from this particular paper showed that AKG could inhibit CV 

activity by measuring the levels of ATP production, which were shown to decrease 

upon addition of AKG. Additionally, Chin et al demonstrated that in mammalian cells 

and worms AKG lowered oxygen consumption, similarly to my initial experiments. 

Interestingly, when using isolated mitochondria from mouse liver they found that AKG 

lowered respiration in State 3 however not in the presence of oligomycin (State 4). 

Therefore these data are in contrast to my results as I was not able to show that 

FCCP could restore respiration, as it does in presence of the CV inhibitor oligomycin.   

The decrease in respiration upon addition of AKG may be due to the fact that AKG is 

an intermediate belonging to the CAC. It is possible that a build-up of AKG could lead 

to disruption of the CAC. This in turn would affect respiration by hindering electron 

supply via NADH, a co-factor of the CAC. The lack of effect of low doses of AKG on 

respiration by CIII+CIV supports this hypothesis. Since AKG does not inhibit in vitro 

CV, I did not study its effect on ROS levels in the fly brain. 
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Figure 5.16 High-resolution respirometry demonstrating the effect of AKG on State 3 
and 4 respiration. 

 

 

 (A) In the left panel State 3 respiration was initiated using whole fly homogenates and the 

uncoupler FCCP was subsequently added. In the right panel, AKG was added, after the 

initiation of State 3 respiration, followed by FCCP (N = 5). (B) State 4 respiration was initiated 

followed by the addition of ADP to stimulate State 3, to which AKG was added (N = 3). (C) 

State 3 respiration was initiated followed by State 4. AKG was sequentially added until a 

decrease in respiration is observed, followed by the addition of uncoupler FCCP (N = 6). (D) 

AKG was added as a substrate to initiate respiration followed by ADP (N = 4). Flies were 

approximately 3 days old. P Values were calculated using One-Way AVOVA. Data are shown 

as mean ± SEM. * = p < 0.05 signifying statistical significance. 
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 J147 does not significantly alter mitochondrial respiration in Drosophila 
melanogaster 

J147 has been reported to cause inhibition of CV activity, from isolated bovine heart 

mitochondria (Goldberg et al., 2018). Using fly homogenates, I tried a range of 

concentrations of J147 from 2 µM to 4 mM without observing any significant inhibition 

in respiration, using either pyruvate+proline to feed CI+CIII+CIV or G3P to feed 

CIII+CIV (data not shown). In an experiment comparing the effects of oligomycin and 

J147 run in parallel, I showed how different their effects are on respiration (Figure 

5.17). Using double the concentration of J147 shown to inhibit CV in isolated bovine 

mitochondria (i.e. 2 µM) and a combination of pyruvate+proline+G3P to feed the 

ETC, I did not find any inhibition in respiration, compared with oligomycin that 

strongly decreased State 3 respiration in the same experimental conditions (Figure 

5.17 compare panels A and B). Therefore, demonstrating contrasting results to 

previous studies showing that J147 could specifically inhibit CV. As expected, FCCP 

restored or prevented inhibition of respiration when added after or before oligomycin.  

In the previously mentioned Goldberg et al experiments they measured the 

enzymatic activity of CV in isolated bovine heart instead of oxygen consumption. 

Upon the addition of J147 they saw that there was partial inhibition (approximately 

30%) of CV activity, however even under saturating concentrations this inhibition did 

not increase further. During these experiments they used oligomycin as a positive 

control but the results using oligomycin were not shown. These results are in contrast 

with the results I obtained, which showed that J147 and oligomycin possessed 

different effects on respiration in isolated fly mitochondria.  

In summary, I did not find any evidence that J147 is a CV inhibitor in fruit flies, and 

therefore I did not proceed to analyse its effects on ROS levels. 
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Figure 5.17 High-resolution respirometry demonstrating the effect of AKG on State 3 
and 4 respiration, in comparison to oligomycin. 

 

 

 

 

 

(A) State 2 was initiated followed by the addition of ADP to stimulate State 3. J147 was added, 

followed by the uncoupler FCCP and finally the CV inhibitor oligomycin (N = 4). (B) State 2 

was initiated, followed by State 3. Oligomycin was added to inhibit CV, followed by the 

uncoupler FCCP and lastly J147 (N = 4). Flies were approximately 3 days old. P Values were 

calculated using One-Way AVOVA. Data are shown as mean ± SEM. * = p < 0.05 signifying 

statistical significance. These experiment were done in collaboration with Angeline Yek. 
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Figure 5.18 The effect of ATPIF1-OE on ROS production in non-stressed conditions 
and during heat stress. 

(A) Mitochondrial respiration in ATPIF1-OE whole fly homogenates, (DaGAL4W1118> 

ATPIF1-OE), compared to the respective control, (W1118>ATPIF1-OE) (N = 5). (B) 

Quantification of ex vivo ROS measurements using H2DCF of ATPIF1-OE fly brains in non-

stressed conditions (25°C) (N= >8). (C) ROS measurements of ATPIF1-OE flies subjected to 

heat stress (32°C) (N = >8). (D) ROS measurements of ATPIF1-OE flies at 25°C fed rotenone 

(600 µM) (N = >8). Flies were approximately 10 days old. P Values were calculated using 

unpaired Student T-test and One-Way AVOVA, where appropriate. p < 0.05 was taken as 

statistically significant and represented by *, p<0.01 was represent by ** and p<0.001 was 

represented by ***. 
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5.9 Discussion 

The aim for this chapter was to test the effects of inhibiting or reducing the activity of 

CIII, CIV and CV on ROS levels and whether blocking or slowing down the exit of 

electrons from the ETC triggers ROS-RET. To do this, I used both chemical inhibition 

and genetic depletion of the three respiratory complexes mentioned, to achieve both 

short- and long-term inhibition, respectively. ROS measurements were taken in order 

to detect changes in the levels of mitochondrial ROS in the fly brain and different 

inhibitors were used to dissect where and how ROS were being generated.  Although 

an increase in ROS was identified during both CIII and CIV inhibition, rotenone, an 

established RET inhibitor, did not decrease ROS levels. Thus showing that RET was 

not the mechanism responsible for ROS production, when CIII and CIV were 

inhibited. These results collectively show that in order to stimulate RET via 

manipulation of the ETC; preventing the exit of electrons to increase the reduction of 

CoQ pool is not sufficient. This could be due to the fact that pmf is reduced, resulting 

from a decrease in proton pumping by blocking CIII and CIV, which would prevent 

RET.  

When using long-term genetic inhibition of CV, by silencing ATPsynδ, an increase in 

ROS production, which was abolished by rotenone, was detected. This could be 

indicative that a reduction in CV activity, triggers RET. However, experiments 

blocking CV with oligomycin did not show the same result, so the effect of 

blocking/depleting CV on ROS-RET remains inconclusive. I tried to use two new 

proposed inhibitors of CV, AKG and J147 that have been reported to increase 

lifespan in worms and flies, respectively (Goldberg et al., 2018) (Chin et al., 2014b). 

However, in contrast to previous reports, I did not find any evidence of CV inhibition 

in fly homogenates. To the best of my knowledge, there is no published report 

showing direct inhibition of Drosophila CV for any of them and this is the first report 

testing their efficiency in fly mitochondria. 

Chemical inhibition of CIII, using myxothiazol, showed varying results according to 

the concentration used. The lowest dose, 10 µM, did not achieve inhibition of 

respiration and additionally had no effect on ROS production, therefore deeming this 

concentration of myxothiazol redundant for these experiments. Although no 

statistically significant inhibition of respiration was observed using 50 µM of 

myxothiazol, it did elicit a response when measuring ROS levels. This is similar to 
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results shown in Chapter 3, where smaller doses of rotenone were not shown to 

significantly inhibit respiration but increased ROS production to the same extent as 

higher doses, which did significantly reduce respiration. However, in the case of 

myxothiazol, a concentration of 50 or 100 µM, decreased ROS both at 25 and 32°C, 

whereas rotenone had the opposite effect at both temperatures. This indicates 

flexibility in the way CI produces ROS that changes from a forward to a reverse 

direction depending on the temperature, which CIII does not seem to demonstrate.  

Data from other studies have also shown that low doses of myxothiazol decrease 

ROS production at the Qo site. This is due to myxothiazol preventing the binding of 

CoQ to the Qo site and the subsequent transfer of electrons. My data suggests that in 

normal conditions, (25°C), the Qo site of CIII is an important generator of ROS, 

although further experiments are required to confirm this.  Under HS, flies treated 

with low doses of myxothiazol were still able to trigger ROS-RET but at a lower 

intensity than non-treated controls. I speculate that this is caused by a slight but 

significant reduction in proton pumping and therefore the pmf, as a result of 

decreasing the transfer of electrons through CIII. This has been shown in mammalian 

mitochondrial where a progressive reduction in the pmf, reduces ROS-RET (Robb et 

al., 2018). However, to confirm the former point, the pmf would need to be measured, 

which is not an easy task in whole fly brains.  

High doses of myxothiazol ≥ 500 µM, increased ROS production independently of the 

temperature, or the presence of rotenone. These results clearly show that ROS are 

not produced via RET, under these circumstances. However, it is not possible to 

discard CI as the source of ROS completely, given that higher concentrations 

myxothiazol also inhibits CI (Bacsi et al., 2006). Similarly, the genetic inhibition of 

CIII, via knocking-down UQCR-Q, led to a significant increase in ROS production. 

Corresponding to the results using high doses of myxothiazol, the increase in ROS 

was not reversed by the presence of rotenone. Collectively, the results from CIII 

inhibition show that RET cannot be induced using both chemical and genetic 

inhibition. Despite the possibility of a highly-reduced CoQ pool being established 

through CIII inhibition, the loss of two complexes involved in proton translocation 

(CIII-CIV), would prevent the generation of the pmf, required for RET. Accordingly 

previous studies have shown a decrease in membrane potential upon addition of 

myxothiazol. In conclusion, short-term chemical inhibition using 5 doses of 
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myxothiazol or knock-down of a CIII subunit, was not able to stimulate a ROS-RET 

response.  

Both forms of CIV inhibition, using CN and levy-KD flies, for chemical and genetic 

depletion respectively, elicited the same response in ROS production. In each case, 

there was a significant increase in ROS, which was maintained when flies were fed 

with rotenone. These data demonstrated that RET was not occurring, as rotenone 

should have prevented this increase in ROS production, if CIV inhibition had 

successfully initiated RET. To understand where this increase in ROS was originating 

from, other inhibitors of the ETC were used. Myxothiazol (100 µM) reversed the 

increase in brain ROS levels when CIV was inhibited or depleted, indicating the Qo 

site within CIII as the source of ROS production. The results show that ROS-RET 

cannot be initiated through short-term (chemical) or long-term (genetic) inhibition of 

CIV. Although a highly reduced CoQ pool could be achieved through CIV inhibition, it 

is unlikely that the second condition of RET, a high membrane potential, would be 

established. In fact, CIV inhibition would lead to reduced proton translocation to the 

IMS, therefore lowering the pmf. This may provide an explanation as to why RET 

cannot be stimulated. The former has been observed in a mouse model where the 

CIV subunit COX15 is knocked out, specifically in skeletal muscle. The mutant mice 

have a highly reduced CoQH2:CoQ ratio and elevated ROS levels compared to the 

controls but the membrane potential is decreased (Dogan et al., 2018). Suggesting 

that ROS are not being produced by RET, therefore supporting the data I obtained. 

The authors claim that mitochondria from the COX15 KD mice, produce ROS through 

the stimulation of RET, due to the fact that AOX abolished the excessive ROS 

production. However, as previously demonstrated AOX can reduce ROS induced by 

antimycin, at the Qo site of CIII (Sanz et al 2010), as well as ROS produced via RET. 

Paradoxically, decreasing ROS levels in the COX15 KD mice, using the co-

expression of AOX and antioxidants, did not ameliorate the phenotype but in fact 

caused the mice to die faster than the COX15 KD mice alone. This was due to 

impaired mitochondrial myopathy caused by the decreased ROS production.  In 

contrast, AOX extends the lifespan of another mutant mouse model; Bcs1lp.S78G  

knock-down mice. This mouse model displays defective CIII, which induces elevated 

ROS production (Rajendran et al., 2019). Interestingly, results indicate that AOX 

does not alleviate the phenotype through the reduction of ROS levels but rather by 

partially restoring respiration, proton pumping through CI and recycling reduced 
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CoQH2. Thus, leading to the partial restoration of numerous metabolic routes such as 

CAC, pyrimidine synthesis and glycolysis.  Overall, these results suggest that 

inhibition CIII and CIV can result in the production of ROS at different sites of the 

mitochondrial respiratory chain. Additionally, depending on the specific sites of ROS 

production they can promote different downstream physiological effects. Based on 

the results of the studies discussed above, in these mutant models the reduction of 

ROS can elicit positive or negative outcomes, which is dependent on the location of 

generation. These data support the results I obtained in my thesis, using the CIII/CIV 

inhibition models, by displaying increased ROS production by blocking the flow of 

electrons through CIII and CIV, which are not ROS-RET dependent.  In addition 

these models allow the possibility of studying the downstream physiological effects of 

ROS produced as a result of blocking CIII and CIV.  

Contrasting results were obtained when CV was chemically inhibited with oligomycin 

or depleted using an RNAi construct against ATPsynδ. Several experiments 

exposing flies to different concentrations of oligomycin, for different periods of time 

(hours or days), failed to show any increase in ROS levels in the fly brain. 

Furthermore, oligomycin attenuated ROS-RET in two different models, HS and Ndi1 

flies. The latter has been shown before both in mammalian cells and in isolated fly 

mitochondria, where oligomycin reduces ROS in conditions where RET is active, 

such as exposition to LPS, staurosporine or blocking of CV (Mills et al., 2016a) (Sanz 

et al., 2010c) (Santamaria et al., 2006) (Mills et al., 2016a).  These results therefore 

support my results obtained from feeding oligomycin to HS and Ndi1 fly models, 

which both displayed a decrease in ROS. This indicates that blocking CV, in 

situations where RET is occurring, can abolish the increase in ROS.  

Oligomycin has been reported to increase ROS in isolated mitochondria and several 

cell types (including Drosophila S2 cells) (Liu and Schubert, 2009). However, to the 

best of my knowledge, there have been no studies about mitochondrial ROS levels in 

the Drosophila brain. AKG and J147 have been reported to extend lifespan in worms 

and flies by inhibiting CV and triggering a ROS signal that attenuates TOR signalling 

(Goldberg et al., 2018) (Chin et al., 2014b). I hypothesized that the ROS could be 

generated by RET, leading to a similar lifespan extension observed in Ndi1. 

However, I did not find any evidence that either of the two inhibitors target CV in vitro. 

Although the results from depleting ATPsynδ support that long-term inhibition of CV 

triggers ROS-RET, these results must be approached with caution since the flies 
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were extremely weak and the decrease observed with rotenone administration, could 

be caused by a collapse of the membrane potential, rather than blocking RET. I 

observed a similar result when I overexpressed ATPIF1 (Figure 5.18). The 

overexpression of ATPIF1 lead to a dramatic increase in ROS that was attenuated 

with rotenone, indicative of RET stimulation, without altering O2 levels.  However, I 

could not confirm the overexpression of the gene and did not observe any decrease 

in oxygen consumption, therefore the definitive conclusion about the role of CV in 

ROS-RET requires to be addressed in the future.  The laboratory which created the 

OE flies did not carry out qPCR or any other method of confirmation therefore it is 

possible that the flies do not overexpress ATPIF1. In the future it would be of interest 

to try and confirm the OE of ATPIF1 so that the results gained in Figure 5.18 could 

be validated, supporting the hypothesis that CV inhibition can induce ROS-RET.  

In summary, my results indicated that CIII and CIV inhibition increased ROS 

production through an alternative mechanism to RET in the fly brain, whereas the 

effect of CV inhibition on ROS-RET requires further investigation.  
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Chapter 6 A Genome-Wide RNA Interference screen to identify 
genes involved in the regulation of ROS-RET 

 

6.1 The importance of genome-wide RNA interference screens 

RNA interference (RNAi) is a powerful genetic tool in which the introduction of 

double-stranded RNA molecules can promote degradation of a targeted sequence, 

thereby allowing the genetic silencing of a single gene product (Ni and Lee, 2010). 

This technology enables the reverse genetic approach in revealing a gene’s function 

within a cell, through its inhibition (Mohr and Perrimon, 2012). The potential of 

reverse genetics has been harnessed, to carry out large scale genome-wide RNAi 

screens (Mohr et al., 2010). This systematic and unbiased approach allows the 

individual knockdown of genes, within an entire genome, to reveal those that produce 

a specific phenotype when inhibited, giving rise to the identification of novel genes 

involved in several biological pathways (Perrimon et al., 2010). At present, genetic 

screening has commonly been performed in models such as C.elegans, mammalian 

cells and Drosophila melanogaster, amongst others. Since the first genome-wide 

RNAi screen, using Drosophila cells; they have provided a vast amount of insight into 

a wide range of important processes. Drosophila screens alone have been able to 

discover genes involved in circadian rhythm (Sathyanarayanan et al., 2008), 

signalling (Kategaya et al., 2009), cell cycle (Bjorklund et al., 2006), infectious 

diseases (Foley and O'Farrell, 2004) and mitochondrial function (Chen et al., 2008). 

Due to the complete sequencing of the Drosophila genome, this makes flies an 

extremely useful model for carrying out in vivo high-throughput genetic screens. In 

addition, the availability of RNAi lines for the majority of fly genes provides the 

opportunity for genome-wide screening. The aim of this chapter was to take 

advantage of this technique to identify genes with a role in the regulation of 

mitochondrial ROS.  

 

6.2 The use of the alternative oxidase; AOX 

Present in the mitochondria of plants and fungi are alternative oxidases, which can 

bypass specific components of the ETC, namely respiratory complexes I, III and IV. 

Alternative respiratory enzymes are divided into two groups: those that give electrons 

to the CoQ pool, called NADH dehydrogenases, and those that extract electrons from 

the CoQ pool, called alternative oxidases (McDonald and Gospodaryov, 2019). 
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NADH dehydrogenases, such as Ndi1, oxidise NADH to NAD+ and transfer electrons 

to CoQ, by-passing CI. On the other hand, alternative oxidases, such as AOX, use 

electrons from ubiquinol to reduce O2 to water, by-passing complexes III and IV. 

Neither of these systems partake in the direct translocation of protons across the 

IMM. For my screen, I took advantage of the alternative oxidase, AOX, from Ciona 

intestinalis. AOX was cloned and introduced into the fly genome in the laboratory of 

Professor Howy Jacobs in Tampere (Finland) (Fernandez-Ayala et al., 2009). AOX 

resides in the IMM of the mitochondria and can reduce O2 to water directly with 

electrons from CoQH2, thereby supporting electron transport without the need for a 

functional CIII or CIV (Figure 6.1). Previous studies have shown that the expression 

of AOX confers resistance to chemical inhibitors of CIII and CIV, as well as reversing 

lethality caused by genetic modifications to the subunits of CIV (Kemppainen et al., 

2014) (Dogan et al., 2018) (Rajendran et al., 2019). These studies have also 

demonstrated that the phenotypic rescue conferred by AOX during CIII or CIV 

inhibition, occurs in parallel to a decrease in ROS levels (Rajendran et al., 2019) 

(Dogan et al., 2018) (Sanz et al., 2010a). 

It has been established that AOX is able to reduce ROS-RET elicited by ectopic 

expression of Ndi1 (Scialo et al., 2016a), or physiological exposure of flies to HS 

(Scialo, unpublished).  Similarly, AOX is able to decrease ROS-RET in mice when 

RET is induced by injecting mice with LPS (Mills et al., 2016a). In addition to ROS-

RET, AOX is able to attenuate the increase in ROS produced by CIII, when inhibited 

by antimycin in mouse cells (El-Khoury et al., 2013) (Cannino et al., 2012) and fly 

mitochondria (Sanz et al., 2010a). Given that AOX is capable of neutralising both 

CIII-derived ROS and ROS-RET, I undertook a genome-wide RNAi screen, using co-

expression of AOX with RNA interference constructs, targeted against specific 

Drosophila melanogaster genes, to identify novel genes involved in the regulation of 

ROS production. In the previous results chapters, I attempted to identify approaches 

which could initiate RET, physiologically in the fly. Therefore my aim for this chapter 

was to then further identify other genes that controlled the levels of ROS, focusing on 

those that participate in ROS-RET.   
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Figure 6.1 Schematic diagram showing how the expression of AOX by-passes CIII and 
CIV. 

 

 

 

 

 

 

 

 

 

AOX resides on the matrix side of the IMM where it takes electrons directly from the ubiquinol 

pool, reducing O2 into water, therefore bypassing respiratory CIII and CIV. 
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6.3 Hypothesis behind the screen 

It has been well established that mitochondrial ROS signalling is required for 

maintaining cellular homeostasis (Shadel and Horvath, 2015). However, any 

imbalances in the redox signalling system can trigger oxidative stress. For example, 

ROS-RET seems to regulate many physiological processes, such as triggering 

appropriate cardiorespiratory responses to hypoxia (Fernandez-Aguera et al., 2015) 

or activation of macrophages in the presence of pathogens (Mills et al., 2016a). 

Nevertheless, in all redox-regulated processes, exquisite control of ROS levels is 

critical to prevent oxidative damage. In the case of IR, a pathological example of 

ROS-RET, ROS production is unregulated and produced under dysfunctional 

circumstances, resulting in tissue injury caused by excess ROS levels (Chouchani et 

al., 2014b). Due to AOX’s ability to decrease ROS production at CIII and prevent 

ROS-RET from occurring, I used the expression of AOX to identify genes involved in 

regulating ROS levels, during development. I hypothesised that the downregulation 

of genes involved in the maintenance of basal ROS levels, or switching off ROS-RET 

signal, would lead to dysfunctional ROS production and ultimately generate a lethal 

phenotype. Under these circumstances, expression of AOX would lead to the 

reduction of ROS levels and rescue or palliate any lethal phenotype, therefore 

allowing me to identify novel genes responsible for the regulation of mitochondrial 

ROS production, in vivo (Figure 6.2).  
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Figure 6.2 Schematic diagram showing how the expression of AOX can manipulate 

ROS production from the ETC and rescue lethal phenotypes in KD lines. 

 

 

 

 

In the left panel (without AOX expression) the KD of genes involved in regulating RET and CIII 

ROS production will cause excessive generation of ROS leading to a lethal phenotype. 

However, the expression of AOX, which prevents ROS-RET (through the oxidation of 

ubiquinol) and decreases CIII ROS production (through the reduction of electrons entering CIII) 

will rescue the lethal phenotype. 



175 
 

6.4 Screening strategy  

The screening strategy employed was based on the use of RNAi constructs targeted 

against specific fly genes, in combination with the Gene Switch GAL4 (GS) system, 

to allow spatial and temporal control of gene expression, previously explained in 

Chapter 2. The synthetic progesterone analogue mifepristone (RU-486) was used to 

drive RNA interference (and AOX) expression, during development. Figure 6.3 

summarises the overall strategy of the screen. UAS-RNA interference (RNAi) male 

flies were selected and crossed with virgin female flies carrying the Tubulin-GS driver 

alone (control group) or in combination with the UAS-AOX construct (AOX group). 

These crosses were then placed in vials of food containing 1 µM RU-486 and left to 

mate and lay eggs for 5 days, after which adults flies were discarded from the vials 

and eggs were left to develop. After 10 days the vials were scored for the presence 

of larvae, pupae or adult flies, which was then repeated for 2 consecutive days. 

Selection of candidate genes depended on the rescue of any developmental delay or 

lethal phenotype by AOX expression. The rescue was identified as the absence of 

larvae, pupae or adults in the control group and their presence in the AOX group. 
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Figure 6.3 Diagram displaying the strategy of the genome-wide RNAi screen. 

 

UAS-RNAi male flies were crossed with control virgin females and UAS-AOX virgin females. 

The flies were placed in vial of food containing 1 µM drug (RU-486) and after 10 days the vials 

were scored for the presence of larvae, pupae or adult flies. Selection of candidate genes 

depended on rescue of any developmental delay or lethality phenotype by AOX expression. 

Therefore lines, which had normally developed flies in the control or those showing a lethal 

phenotype in the presence of AOX were discarded. 
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6.5 Analysis of the identified hits 

I screened 12,719 different RNAi lines from the VDRC RNAi Library (Dietzl et al., 

2007), covering 12,372 genes (>90% of the fly genome). From the first list of 

screened hits, I discarded any lines that were screened more than once, which did 

not produce the same result, in the different trials.  Then, I started my analysis with 

12,575 unique RNAi lines targeting 12,234 genes. The knockdown of 1,448 genes 

(12% of the total screened) caused a lethal phenotype (Table 6.1). Most lethal genes 

caused interruption of development at the pupal stage (61%), whereas only 8% of 

genes did not produce larvae when knocked down (Table 6.1). AOX rescued the 

lethal phenotype of 322 genes, (22% of total lethal genes), with most of the rescues 

occurring when development was arrested at the pupal stage (57%), versus 

embryonic and larval stages (18% and 25%, respectively) (Table 6.1).   

Next, I performed Gene Ontology (GO) term enrichment analysis, using those genes 

that caused a lethal phenotype. I used the Functional Annotation Clustering Analysis 

tool from DAVID (Huang da et al., 2009) to select clusters of genes containing 

specific enriched terms.  According to GO analysis (Table 6.2) most genes that were 

identified as lethal were related to “splicing” (Annotation Cluster 1), “cytosolic and 

mitochondrial translation of proteins” (Annotation Cluster 2), “nucleotide-binding” 

(Annotation Cluster 3), “transcription” (Annotation Cluster 4) and “cell cycle/division” 

(Annotation Cluster 5). These results are unsurprising since interrupting any of the 

former processes is expected to disrupt development. I found the term 

“mitochondrion” in Annotation Cluster 6, and “mitochondrial electron transport” term 

in Annotation Cluster 20 (data not shown). Based on the former results, I manually 

inspected genes encoding OXPHOS components and found that 36 out of 87 genes 

screened, caused a lethal phenotype (41%)  (Table 6.3). Between 40-60% of the 

genes encoding for CIII, CIV and CV subunits were lethal, whereas the same was 

true for fewer than 40% of the genes encoding for subunits of the other respiratory 

complexes (Table 6.3). AOX rescued 100% of lethal genes encoding CIV subunits 

and 67% of those encoding CIII subunits, whereas for the other respiratory 

complexes only 1 gene was rescued for each. Furthermore, a rescreen of the 

positive hits confirmed 100% of the genes encoding complexes III and IV subunits 

but none of those encoding for subunits of the other respiratory complexes (Table 

6.4). Interestingly, none of the genes encoding antioxidants caused lethality when 

knocked down (data not shown).  The latter was not completely unexpected since, in 
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different animal species, it has been shown that antioxidant levels can be drastically 

abolished without interrupting development (Martin et al., 2009) (Van Remmen et al., 

2003) (Elchuri et al., 2005) (Van Raamsdonk and Hekimi, 2012) (Doonan et al., 

2008). 

Given that Drosophila RNAi lethality screens are prone to both false positives and 

negatives (Dietzl et al., 2007), I rescreened 189 RNAi lines. I selected 156 (78%), 42 

(21%) and 6 (3%) lines where AOX rescued pupal, larval and embryonic lethality, 

respectively. The different number of lines rescreened was intended to reflect the 

different % of genes rescued by AOX at the three different stages. However, I chose 

to screen more lines rescued at the pupal stage rather than embryonic stage 

because the latter is more prone to suffer from false positives, caused by bacterial 

growth on food. I confirmed 41 hits (20%) as AOX rescue (Table 6.5), indicating that 

my screen strategy was prone to false positives. This was not unexpected and has 

been reported before in other RNAi fly screens (Fukuoh et al., 2014). In the rescreen 

list, 11 OXPHOS genes were included. Interestingly, the 11 genes were lethal again 

in the rescreen but only the 8 genes encoding subunits of CIII-CIV were rescued by 

AOX this time. This indicates that rescreening is required, to confirm AOX rescue 

hits. Accordingly, positive hits that were not rescreened this time should be 

rescreened in the future.  

The motivation behind the screen was to identify novel genes involved in the 

regulation of mitochondrial ROS. A large proportion of the 41 confirmed genes 

rescued by AOX (68% vs 32%), did not contain any reference to mitochondria, 

according to the GO information contained in Flybase (https://flybase.org/). This 

notable difference could be due to the overall abundance of mitochondrial proteins in 

a cell being significantly lower than non-mitochondrial. However, further 

characterisation of these non-mitochondrial genes may reveal a novel relationship 

involving the mitochondria, which has not been previously established. It is possible 

that some of the genes identified, encoded protein isoforms that can be targeted to 

the mitochondrion, however these mitochondrial isoforms have not yet been 

identified. For example, it has been recently described that mitochondrial isoforms 

can be produced by non-canonical translation in yeast (Monteuuis et al., 2019). It 

would be interesting to check whether this phenomenon also occurs in Drosophila 

and whether this applies to any confirmed hits, in my list. 

GO analysis of the confirmed rescued candidates showed two clusters of genes 
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(Table 6.6) containing terms related with “oxidative phosphorylation”, “mitochondrial 

respiratory chain complex IV” and “mitochondrial respiratory chain complex III”. I also 

performed network analysis for protein interactions using STRING (von Mering et al., 

2005) with default settings. This analysis revealed a clear network connecting all 

mitochondrial proteins (with the exception of ABCB7). Apart from the mitochondrial 

genes, only 2 other pair of genes were connected: CG7071 and VhPPA1-1 and Cul3 

and CSN3 (Figure 6.4). Kmeans clustering analysis revealed 3 different clusters with 

genes encoding ETC proteins, other mitochondrial genes (mRpS25, mRpS26 and 

Cchl) and the rest of genes confirmed as hits. 

Using FlyAtlas2 and Flybase to analyse tissue distribution of the AOX rescue hits I 

found that most genes had ubiquitous expression throughout the whole fly body, with 

moderate expression within the brain. A few of the hits had high expression on in 

specific tissues of the fly for example CG31882, CG9853, CG42616 and CG5585, 

where expression was mainly localised to the testis. Furthermore, hits such as 

CG2079 and CG16885 had high expression in the gut and trachea, with low 

expression elsewhere. As expected, those with the high tissue expression throughout 

the whole body included CG106604, CG9603, CG7181, CG8784 and CG4168, which 

all encode mitochondrial ETC subunits. From these hits CG33103, CG16885 and 

CG7007 had especially high expression in the head, eye and trachea and gut, 

respectively. Hits with very low tissue expression throughout the body included hits 

CG7760, CG14230 and CG7071. 

 

 
 

Table 6.1 Number of genes screened indicating lethal genes and lethal genes 

rescued by AOX. 

Phenotype Number 

of Genes 

Hits % Embryonic 

Stage 

% Larval 

Stage 

% Pupal 

Stage 

% 

Lethal 12234 1448 12 111 8 450 31 887 61 

Rescued 1448 322 22 57 18 81 25 184 57 
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Table 6.2 Functional Annotation Clustering Analysis of lethal genes. 

Annotation Cluster 1 Enrichment Score: 18.1 
  

Category Term Fold 

Enrichment 

Benjamini 

GOTERM_BP_DIRECT GO:0000398~mRNA splicing, via spliceosome 3.2 0.000 

GOTERM_CC_DIRECT GO:0071011~precatalytic spliceosome 3.7 0.000 

GOTERM_CC_DIRECT GO:0071013~catalytic step 2 spliceosome 3.5 0.000 

KEGG_PATHWAY dme03040:Spliceosome 2.2 0.000 

    

Annotation Cluster 2 Enrichment Score: 17.6 
  

Category Term Fold 

Enrichment 

Benjamini 

UP_KEYWORDS Ribonucleoprotein 5.3 0.000 

UP_KEYWORDS Ribosomal protein 5.2 0.000 

GOTERM_BP_DIRECT GO:0032543~mitochondrial translation 4.7 0.000 

GOTERM_BP_DIRECT GO:0002181~cytoplasmic translation 4.1 0.000 

GOTERM_CC_DIRECT GO:0005840~ribosome 4.0 0.000 

GOTERM_CC_DIRECT 

GO:0005762~mitochondrial large ribosomal 

subunit 5.3 0.000 

GOTERM_MF_DIRECT GO:0003735~structural constituent of ribosome 2.5 0.000 

GOTERM_CC_DIRECT GO:0022625~cytosolic large ribosomal subunit 4.0 0.000 

GOTERM_CC_DIRECT GO:0022627~cytosolic small ribosomal subunit 4.3 0.000 

KEGG_PATHWAY dme03010:Ribosome 1.4 0.006 

    

Annotation Cluster 3 Enrichment Score: 14.4 
  

Category Term Fold 

Enrichment 

Benjamini 

UP_KEYWORDS Nucleotide-binding 2.0 0.000 

UP_KEYWORDS ATP-binding 2.1 0.000 

GOTERM_MF_DIRECT GO:0005524~ATP binding 1.7 0.000 
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Annotation Cluster 4 Enrichment Score: 11.8 
  

Category Term Fold 

Enrichment 

Benjamini 

UP_KEYWORDS Transcription 2.4 0.000 

UP_KEYWORDS Transcription regulation 2.2 0.000 

UP_KEYWORDS Activator 3.2 0.000 

GOTERM_BP_DIRECT GO:0006351~transcription, DNA-templated 1.9 0.000 
    

Annotation Cluster 5 Enrichment Score: 6.6 
  

Category Term Fold 

Enrichment 

Benjamini 

UP_KEYWORDS Cell cycle 3.2 0.000 

UP_KEYWORDS Cell division 3.1 0.000 

UP_KEYWORDS Mitosis 3.1 0.000 

GOTERM_BP_DIRECT GO:0051301~cell division 2.4 0.000 

    

Annotation Cluster 6 Enrichment Score: 5.7   

Category Term Fold 

Enrichment 

Benjamini 

UP_KEYWORDS Mitochondrion 2.1 0.000 

UP_KEYWORDS Transit peptide 2.5 0.000 

    

Annotation Cluster 7 Enrichment Score: 5.4   

Category Term Fold 

Enrichment 

Benjamini 

GOTERM_BP_DIRECT GO:0000470~maturation of LSU-rRNA 6.6 0.000 

GOTERM_CC_DIRECT 

GO:0030687~preribosome, large subunit 

precursor 4.1 0.000 

GOTERM_BP_DIRECT GO:0000460~maturation of 5.8S rRNA 6.7 0.006 

    

Annotation Cluster 8 Enrichment Score: 5.2   

Category Term Fold 

Enrichment 

Benjamini 
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GOTERM_MF_DIRECT 

GO:0003899~DNA-directed RNA polymerase 

activity 5.4 0.000 

GOTERM_CC_DIRECT 

GO:0005666~DNA-directed RNA polymerase III 

complex 6.4 0.000 

UP_KEYWORDS Nucleotidyltransferase 3.3 0.000 

GOTERM_BP_DIRECT 

GO:0006383~transcription from RNA polymerase 

III promoter 6.9 0.000 

KEGG_PATHWAY dme03020:RNA polymerase 3.1 0.000 

UP_KEYWORDS DNA-directed RNA polymerase 6.0 0.000 

GOTERM_BP_DIRECT 

GO:0006360~transcription from RNA polymerase 

I promoter 6.0 0.001 

GOTERM_CC_DIRECT 

GO:0005736~DNA-directed RNA polymerase I 

complex 5.1 0.006 

    

Annotation Cluster 9 Enrichment Score: 5.1   

Category Term Fold 

Enrichment 

Benjamini 

UP_KEYWORDS DNA replication 4.1 0.000 

GOTERM_BP_DIRECT GO:0006260~DNA replication 3.4 0.000 

KEGG_PATHWAY dme03030:DNA replication 2.3 0.014 

    

Annotation Cluster 

10 

Enrichment Score: 3.9   

Category Term Fold 

Enrichment 

Benjamini 

UP_KEYWORDS Aminoacyl-tRNA synthetase 5.9 0.000 

UP_KEYWORDS Ligase 2.2 0.000 
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Table 6.3 OXPHOS genes screened indicating the number of lethal genes (when knocked-
down) and rescued by AOX.  

Genes Genes Screened Lethal % Rescued % 

CI 48 38 14 37 1 7 

CII 6 5 1 20 1 100 

CIII 12 10 6 60 4 67 

CIV 17 14 6 43 6 100 

CV 21 18 9 50 1 11 

Table 6.4 OXPHOS genes rescreened indicating the number of lethal genes (when knocked-
down) and rescued by AOX. 

 Genes Genes Screened Lethal % Rescued % 

CI 48 1 1 100 0 0 
CII 6 1 1 100 0 0 

CIII 12 4 4 100 4 100 

CIV 17 4 4 100 4 100 
CV 21 1 1 100 0 0 
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Table 6.5 Confirmed candidate genes rescued by AOX 

FlyBase Id Annotation 

Symbol 

Symbol VDRC 

ID 

Description in STRING 

FBgn0035244 CG7955 ABCB7 106039 "ATP binding cassette subfamily B member 7 (ABCB7) is a transporter that likely 

dimerizes to form a functional transporter. ABCB7 may act in the mitochondria to 

transport substrates necessary for the maturation of ICS proteins, which are involved 

in iron homeostasis (743 aa)". 

FBgn0265598 CG44425 Bx 109933 "Beadex, isoform B; Beadex (384 aa)". 

FBgn0037788 CG3940 CAH7 108233 "CG3940, isoform A; Carbonate dehydratase activity; zinc ion binding. It is involved in 

the biological process described with- one-carbon metabolic process (304 aa)". 

FBgn0024249 CG7760 cato 101564 "Cousin of atonal; Sequence-specific DNA binding transcription factor activity; protein 

dimerization activity. It is involved in the biological process described with- regulation 

of transcription, DNA-templated; sensory organ development (189 aa)". 

FBgn0038925 CG6022 Cchl 101382 "Cytochrome c heme lyase; Links covalently the heme group to the apoprotein of 

cytochrome c (281 aa)". 

FBgn0032811 CG10268 CG10268 110640 "Phosphomevalonate kinase activity. It is involved in the biological process described 

with- isoprenoid biosynthetic process; cholesterol biosynthetic process (189 aa)". 

FBgn0037543 CG10903 CG10903 109610 "Uncharacterized protein, isoform A; S-adenosylmethionine-dependent 

methyltransferase activity. It is involved in the biological process described with- 

neurogenesis; metabolic process (276 aa)". 

FBgn0034500 CG11200 CG11200 101697 "Carbonyl reductase (NADPH) activity. It is involved in the biological process 

described with- metabolic process; Belongs to the short-chain 

dehydrogenases/reductases (SDR) family (355 aa)". 

FBgn0040588 CG13841 CG13841 100876 "annotation not available (120 aa)". 

FBgn0031062 CG14230 CG14230 104096 "Probable RNA-binding protein CG14230; mRNA binding; nucleotide binding; nucleic 

acid binding. It is involved in the biological process described with- neurogenesis (580 

aa)". 

FBgn0029525 CG18273 CG18273 107818 "LD21943p; It is involved in the biological process described with- neurogenesis 

(1377 aa)". 
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FBgn0050373 CG30373 CG30373 104802 "annotation not available (158 aa)". 

FBgn0051882 CG31882 CG31882 100160 "annotation not available (121 aa)". 

FBgn0260467 CG7071 CG7071 110726 “annotation not available (302 aa)”. 

FBgn0036173 CG7394 CG7394 101490 "Mitochondrial import inner membrane translocase subunit TIM14; Probable 

component of the PAM complex, a complex required for the translocation of transit 

peptide-containing proteins from the inner membrane into the mitochondrial matrix in 

an ATP-dependent manner. May act as a co-chaperone that stimulate the ATP-

dependent activity (By similarity) (128 aa)". 

FBgn0086605 CG9853 CG9853 107346 "Golgi to ER traffic protein 4 homolog; May play a role in insertion of tail-anchored 

proteins into the endoplasmic reticulum membrane (339 aa)". 

FBgn0044324 CG10712 Chro 101663 "Chromator, isoform A; Histone binding. It is involved in the biological process 

described with- metaphase plate congression; chromosome organization; mitotic 

spindle organization; mitotic anaphase; metamorphosis; chromosome segregation; 

chromatin organization; mitotic spindle assembly checkpoint (926 aa)". 

FBgn0032833 CG10664 COX4 109338 "Cytochrome-c oxidase activity. It is involved in the biological process described with- 

negative regulation of neuroblast proliferation; cell proliferation; mitochondrial electron 

transport, cytochrome c to oxygen; mitotic cell cycle; Golgi organization (182 aa)". 

FBgn0040529 CG9603 COX7A 106661 "Cytochrome c oxidase subunit 7A, mitochondrial; This protein is one of the nuclear-

coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in 

mitochondrial electron transport (98 aa)". 

FBgn0263911 CG7181 COX8 104047 "Cytochrome-c oxidase activity. It is involved in the biological process described with- 

mitochondrial electron transport, cytochrome c to oxygen (68 aa)". 

FBgn0259685 CG6383 crb 39177 "Crumbs, isoform C; Crumbs is a transmembrane protein that binds to multiple 

proteins such as sdt, par-6, AP-2alpha, yrt, ex and Moe. It contributes to organization 

of zonula adherens, epithelial morphogenesis, apico-basal cell polarity, and is a 

negative regulator of Notch activity and growth control via the Hippo pathway. In 

photoreceptor cells it is involved in morphogenesis, ninaE trafficking and prevention 

of light-dependent photoreceptor degeneration (2253 aa)". 
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FBgn0027055 CG18332 CSN3 101516 "COP9 signalosome complex subunit 3; Component of the COP9 signalosome 

complex (CSN), a complex involved in various cellular and developmental processes. 

The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway 

by mediating the deneddylation of the cullin subunits of the SCF-type E3 ligase 

complexes, leading to decrease the Ubl ligase activity of SCF. The CSN complex 

plays an essential role in oogenesis and embryogenesis and is required for proper 

photoreceptor R cell differentiation and promote lamina glial cell migration or axon 

targeting. It also promotes [...] (445 aa)". 

FBgn0261268 CG42616 Cul3 109415 "Cullin 3, isoform F; Ubiquitin-protein transferase activity; ubiquitin protein ligase 

binding; Belongs to the cullin family (934 aa)". 

FBgn0015031 CG14028 cype 102336 "Cyclope (Cype) is a cytochrome c oxidase subunit VIc homolog acting as an 

enhancer of dpp pathway phenotypes. Cype is involved in hair and cell growth and in 

ommatidia development (77 aa)". 

FBgn0035600 CG4769 Cyt-c1 109809 "Cytochrome c1, isoform A; Electron transporter, transferring electrons within CoQH2-

cytochrome c reductase complex activity; iron ion binding; heme binding. It is involved 

in the biological process described with- oxidative phosphorylation; mitochondrial 

electron transport, ubiquinol to cytochrome c (307 aa)". 

FBgn0029944 CG2079 Dok 108544 "Downstream of kinase (Dok) is a membrane-associated protein that functions 

upstream of Shark to activate Jun kinase signaling during embryonic dorsal closure 

(622 aa)". 

FBgn0053810 CG33810 His1:CG33810 109034 "His1-CG33810; DNA binding. It is involved in the biological process described with- 

chromatin assembly or disassembly; nucleosome assembly (256 aa)". 

FBgn0037657 CG11990 hyx 103555 "Hyrax, isoform A; Hyrax is recruited by signaling pathway specific transcriptional 

regulators such as arm and ci and is important for the output of Wingless and 

Hedgehog pathways, respectively (538 aa)". 

FBgn0019960 CG6455 Mitofilin 106757 "MICOS complex subunit Mic60; Component of the MICOS complex, a large protein 

complex of the mitochondrial inner membrane that plays crucial roles in the 

maintenance of crista junctions, inner membrane architecture, and formation of 

contact sites to the outer membrane (By similarity) (739 aa)". 

FBgn0030572 CG14413 mRpS25 101443 "Probable 28S ribosomal protein S25, mitochondrial; Structural constituent of 

ribosome. It is involved in the biological process described with- translation (167 aa)". 
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FBgn0036774 CG7354 mRpS26 100067 "Probable 28S ribosomal protein S26, mitochondrial; Structural constituent of 

ribosome. It is involved in the biological process described with- translation; Belongs 

to the mitochondrion-specific ribosomal protein mS26 family (225 aa)". 

FBgn0011227 CG8764 ox 35829 "Cytochrome b-c1 complex subunit 9; This is a component of the ubiquinol-

cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is 

part of the mitochondrial respiratory chain. This subunit interacts with cytochrome c1 

(By similarity)". 

FBgn0003137 CG33103 Ppn 108005 "Papilin; Essential extracellular matrix (ECM) protein that influences cell 

rearrangements. May act by modulating metalloproteinases action during 

organogenesis. Able to non- competitively inhibit procollagen N-proteinase, an 

ADAMTS metalloproteinase; Belongs to the papilin family (2898 aa)". 

FBgn0036973 CG5585 Rbbp5 106139 "Retinoblastoma-binding protein 5 homolog; Component of the SET1 complex that 

specifically di- and trimethylates ’Lys-4’ of histone H3 and of the MLL3/4 complex 

which also methylates histone H3 ’Lys-4’ (489 aa)". 

FBgn0261792 CG5454 snRNP-U1-C 108933 "U1 small nuclear ribonucleoprotein C; Component of the spliceosomal U1 snRNP, 

which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent 

assembly of the spliceosome. U1-C is directly involved in initial 5’ splice-site 

recognition for both constitutive and regulated alternative splicing. The interaction with 

the 5’ splice-site seems to precede base-pairing between the pre-mRNA and the U1 

snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base 

pairing of the 5’ end of the U1 snRNA and the 5’ splice-site region (By similarity). 

Regulat [...] (145 aa)". 

FBgn0038320 CG4931 Sra-1 108876 "Cytoplasmic FMR1-interacting protein; Specifically Rac1-associated protein 1 (Sra-1) 

is an essential protein that is a component of the WAVE actin nucleator complex that 

controls actin cytoskeleton remodeling and also interacts with Fmr1 and Rac1. Sra-1 

controls morphogenesis and synapse organization (1291 aa)". 

FBgn0015828 CG10415 TfIIEalpha 100572 "Transcription factor IIEalpha (TfIIEalpha) is the large subunit of the RNA polymerase 

II general transcription factor TFIIE. TfIIEalpha, together with TfIIEbeta, is essential 

for transcription initiation in vitro and acts with RNA polymerase II and the other 

general transcription factors (429 aa)". 

FBgn0250814 CG4169 UQCR-C2 100818 "Ubiquinol-cytochrome-c reductase activity; metal ion binding. It is involved in the 

biological process described with- mitochondrial electron transport, ubiquinol to 

cytochrome c (440 aa)". 
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FBgn0036728 CG7580 UQCR-Q 101371 "Ubiquinone binding; ubiquinol-cytochrome-c reductase activity. It is involved in the 

biological process described with- mitochondrial electron transport, ubiquinol to 

cytochrome c (89 aa)". 

FBgn0032538 CG16885 Vajk2 102569 "annotation not available (270 aa)". 

FBgn0028662 CG7007 VhaPPA1-1 47188 "Vacuolar H[+] ATPase PPA1 subunit 1, isoform A; Proton-transporting ATPase 

activity, rotational mechanism; hydrogen ion transmembrane transporter activity. It is 

involved in the biological process described with- ATP hydrolysis coupled proton 

transport; mitotic spindle organization; Belongs to the V-ATPase proteolipid subunit 

family (212 aa)". 
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Table 6.6 Functional Annotation Clustering Analysis of lethal genes rescued by AOX. 

Annotation Cluster 1 Enrichment Score: 3.8 
  

Category Term Fold 

Enrichment 

Benjamini 

KEGG_PATHWAY dme00190:Oxidative phosphorylation 9.8 0.000 

GOTERM_MF_DIRECT GO:0004129~cytochrome-c oxidase activity 51.6 0.002 

GOTERM_BP_DIRECT 

GO:0006123~mitochondrial electron transport, 

cytochrome c to oxygen 80.9 0.040 

GOTERM_CC_DIRECT 

GO:0005751~mitochondrial respiratory chain 

complex IV 65.1 0.014 

  
  

    

Annotation Cluster 2 Enrichment Score: 2.4 
  

Category Term Fold 

Enrichment 

Benjamini 

KEGG_PATHWAY dme00190:Oxidative phosphorylation 9.8 0.000 

GOTERM_CC_DIRECT 

GO:0005750~mitochondrial respiratory chain 

complex III 110.5 0.000 

GOTERM_BP_DIRECT 

GO:0006122~mitochondrial electron transport, 

ubiquinol to cytochrome c 80.9 0.002 

GOTERM_MF_DIRECT 

GO:0008121~ubiquinol-cytochrome-c reductase 

activity 77.4 0.013 
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Figure 6.4 Schematic diagram of STRING analysis showing protein interactions 

between the 41 confirmed hits. 

 

 

 

 

 

 

 

 

The mitochondrial genes, mostly consisting of subunits of the respiratory complexes III and IV 

and other mitochondrial proteins, are shown in green and blue. Two other connections also 

revealed were Cul3 and CSN3, as well as CG7071 and VhaPPA1-1. 
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6.6 Selection criteria of candidate genes 

To further characterise the AOX rescue hits and test whether they were able to alter 

mitochondrial ROS levels, I measured mitochondrial ROS in the brain of selected 

RNAi lines. I used a specific selection criterion to comprise a shorter list of 12 

confirmed genes rescued by AOX. Selection of candidate genes was firstly 

dependent on the possession of human orthologues. This was important to identify 

genes involved in the regulation of RET that are also conserved in humans, giving 

the potential for future therapeutics involved in targeting ROS signalling. The second 

criterion was a moderate to high expression of the target gene in the head of the fly 

during early adulthood, according to data reported in Flybase in the “Expression 

Data” section. This was important due to the fact that ROS would be measured in the 

brain of the young fly.  

Table 6.5 outlines a brief description of each of the candidate genes including 

location and function within the cell. The only exception of these criteria was the gene 

CG30373, an uncharacterised Drosophila gene, unknown to possess any human 

homologues. This gene was chosen to validate the AOX rescue phenotype even 

further, by testing a gene of unknown function. This approach could also help reveal 

the different roles of ROS in different species (i.e. insects versus mammals) and how 

ROS levels are regulated, specifically in the fruit fly. From the remaining 11 

confirmed genes, 4 hits were well-characterized mitochondrial proteins whereas the 

rest had not been reported to possess any association with mitochondria, to the best 

of my knowledge. The genes encoding mitochondrial proteins were Cchl (CG6022), 

ABCB7 (CG7955), Mitofilin (CG6455) and mRpS25 (CG14413). ABCB7 and Cchl are 

involved in the processing of heme groups. ABCB7 (ATP-binding cassette subfamily 

B member-7) encodes a mitochondrial inner membrane heme transporter, important 

for delivering iron to proteins containing Fe-S clusters (Sato et al., 2011). Cchl 

(cytochrome c heme lyase) is found in the IMS and functions to aid the assembly of 

Cyt C, by providing the heme group (Babbitt et al., 2017). This heme is instrumental 

in the transfer of electrons from CIII to CIV. Another inner mitochondrial membrane 

protein is Mitofilin, in charge of maintaining mitochondrial cristae structure and 

contact sites with the ER, organisation of respiratory complexes and regulation of 

mitochondrial protein import (Xu et al., 2015). The final mitochondrial gene encoding 

mRpS25 (mitochondrial ribosomal protein subunit 25), is a structural component of 

the mitochondrial ribosome and is required for the synthesis of mitochondrial 
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proteins, encoded by genes arranged in the mitochondrial DNA (Bugiardini et al., 

2019a).  

Another candidate gene included the uncharacterised fly gene, CG7071, whose 

human homologue TMEM199 is a transmembrane protein. In yeast, this protein is 

responsible for the assembly of the proton pump, Vacuolar H+ ATPase (V-ATPase) 

(Vajro et al., 2018). Interestingly a gene encoding the subunit 1 of the Vacuolar 

H+ ATPase PPA1 (VhaPPA1-1) (CG7007) was another confirmed AOX rescue hit. As 

expected STRING network analysis showed that both these genes interact with each 

other (Figure 6.4), since TMEM199 ensures the correct assembly of the Vo domain 

embedded in the membrane, where VhaPPA1-1 resides. The role of this V-ATPase 

is the translocation of protons into endomembrane organelles and vesicles such as 

lysosomes and Golgi apparatus, to maintain a low pH required for digestion of 

damaged protein and organelles (Hirata et al., 1997).  

The final 5 hits were CG11200 (carbonyl reductase), Cul3 (Cullin3), Ppn (Papilin), 

GET4 (CG9853) and crb (crumb). CG11200 is an enzyme from a superfamily of 

short-chain dehydrogenase/reductase (SDR) (Zhang et al., 2014), specifically with a 

role as an NADPH-dependent carbonyl reductase involved in the reduction of 

carbonyl groups, where NADHPH serves as the donor (Sgraja et al., 2004). Cul 3 is 

an ubiquitin ligase protein, involved in the ubiquitination of damaged proteins 

targeted for degradation (Tan et al., 2017). Ppn is an extracellular matrix protein, 

required for the arrangement of the extracellular matrix, during development (Fessler 

et al., 2004). GET4 is required for the transport of tailor-anchored proteins from the 

Golgi to the endoplasmic reticulum (Gristick et al., 2014). The final candidate gene is 

crb a transmembrane protein involved in the organisation of the epithelia and 

establishment of cellular polarity (Guerin et al., 2017). 
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6.7 Effect of knocking down candidate genes on brain mitochondrial ROS 
levels 

After comprising a list of 12 candidate genes rescued by AOX, I wanted to test 

whether they participate in regulating mitochondrial ROS levels. To achieve this, I 

measured ROS levels in the brains of the lines, carrying RNAi constructs against the 

candidate genes and their respective controls. To overcome the lethality observed as 

a result of knocking down the genes during development, I fed the flies RU-486 only 

after eclosion. Thus, limiting the depletion of the protein only during adulthood. I 

measured ROS in the brains of 10 day old flies. From the list, 10 out of the 12 genes 

had increased ROS levels when knocked down during adulthood (Figure 6.5).  

The two candidate genes that did not show a significant increase in ROS were 

mRpS25 and CG11200. It was surprising that downregulation of mRpS25 did not 

elicit an increase in ROS, due to the fact that it is responsible for the direct translation 

of the components from the ETC, encoded by mitochondrial DNA.  It is known that 

disruption of the respiratory chain components can lead to dysfunction and increased 

ROS production, which is commonly observed in mitochondrial diseases (Kirkinezos 

and Moraes, 2001).  Therefore, it was expected that the reduction of CIII and CIV 

subunits, resulting from the KD of mRpS25, would also lead to an increase in ROS 

production. Mutations in mitochondrial ribosomal proteins (MRP) subunits have been 

previously reported in patients clinically diagnosed with mitochondrial disorders 

(Menezes et al., 2015). A recent study showed that a patient suffering from 

mitochondrial encephalomyopathy, resulting from mutated MRPS25 (human 

orthologue of mRpS25), had decreased expression of CI, CIII and CIV (Bugiardini et 

al., 2019b). Although ROS levels in mRpS25 mutants have not been reported 

elsewhere, MRPL35, which encodes a protein in the large subunit of the 

mitochondrial ribosome, leads to elevated ROS levels, when down-regulated in vitro 

(Zhang et al., 2019). Similarly, in Chapter 5, I have shown that knockdown of 

subunits of CIII, CIV and CV increases mitochondrial ROS levels in the fly brain. 

However, I did not observe any significant change in ROS, when I knocked down 

mRpS25. It is possible that AOX rescued the lethal phenotype not by reducing ROS 

production but instead by improving electron transport and therefore overcoming any 

dysfunction occurring, due to the reduced activity of CIII and CIV. Interestingly, 

another MRP subunit (mRpS26) was also confirmed in my rescreen, which needs to 

be rescreened in the future (data not shown). Checking ROS levels in these other 

subunits could help to clarify the effect of interrupting mitochondrial translation on 
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ROS production. Furthermore, rescreening all the genes encoding mitochondrial 

ribosomal subunits in different conditions, such as using a different concentration of 

RU-486 or a different driver, could produce different results. Therefore, the question 

of whether interruption of mitochondrial translation increases ROS or not, remains 

unanswered. The second candidate gene which failed to show any rise in 

mitochondrial ROS levels was, CG11200, the predicted fly orthologue of the human 

dehydrogenase/reductase X-linked (DHRSX). DHRSX is a short-chain 

dehydrogenase/reductase (SDR).  Another member of the SDR superfamily, DHRS2 

(dehydrogenase/reductase 2), was found to be down-regulated in tumorous tissue 

associated with oesophageal cancer. In this cancer model, decreased activity of 

DHRS2 led to increased mitochondrial ROS production, in vitro (Zhou et al., 2018). It 

is possible that the knockdown of mRpS25 and/or CG11200 causes an increase in 

ROS only during development or in different tissues (or cell types) aside from the 

brain. Measuring mitochondrial ROS during development or in other tissues may 

produce a different result and explain why AOX rescued the lethal phenotype, without 

altering ROS production in the brain. Despite the two hits that did not exhibit an effect 

on ROS levels, the results from the other 10 candidate genes show that using AOX 

expression is a promising new strategy to reveal genes that possess a regulatory role 

in mitochondrial ROS production.  

 

 

 

 

 

 

 



195 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 ROS measurements of 12 candidate genes in normal conditions (25°C). 

 

(A) CG30373-KD (N = 7), (B) ABCB7-KD (N = >7), (C) Mitofilin-KD (N = >8), (D) Cchl-KD (N 

= >7), (E) mRpS25-KD (N = >7), (F) CG11200-KD (N = >7), (G) CG7071-KD (N = >8), (H) 

Cul3-KD (N = >8), (I) Ppn-KD (N = >9), (J) GET4-KD (N = >7), (K) VhaPPA1-1-KD (N = >7) 

and (L) crb-KD (N = >8). Flies were approximately 10 days old after being fed RU-486 to induce 

expression. P Values were calculated using unpaired Student’s T-test and One-Way ANOVA, 

where appropriate. Data are shown as mean ± SEM. p < 0.05 was taken as statistically 

significant and represented by *, p<0.01 was represent by ** and p<0.001 was represented by 

***. 
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6.8 AOX rescues the knockdown of genes that induce RET-dependent and 
RET-independent ROS 

Results from the previous section showed that most of the confirmed hits, rescued by 

AOX, increased mitochondrial ROS levels when knocked down. Following these 

data, I wanted to determine how those ROS were being produced. Therefore I chose 

3 candidate genes, to characterise their ROS production further and to test whether 

ROS were being generated via RET, or by another mechanism. The 3 genes I 

selected were VhaPPA1-1 (CG7007), Ppn (CG33103) and Cchl (CG6022). The 

reasoning for choosing the proton-pump subunit VhaPPA1-1 was due to the fact that 

another hit, CG7071, encoding an assembly factor of this transmembrane protein, 

was also a positive AOX rescue hit. Therefore, I wanted to explore this pathway 

further, to study whether reduction in the acidification of non-mitochondrial 

organelles, such as lysosomes, could induce ROS-RET. The second gene, Ppn, was 

chosen as previous experimentation had confirmed lethality in Drosophila and 

C.elegans, when it was knocked down during development. In these models, severe 

cellular defects in ECM arrangement were observed without reporting any alterations 

to mitochondrial phenotype (Kramerova et al., 2000). Therefore I wanted to study 

how alterations in ECM caused a mitochondrial phenotype that was rescued by AOX. 

Lastly, I chose to characterise, Cchl, a gene encoding a protein needed for the 

assembly of heme group in mitochondrial Cyt C. This gene was selected to serve, as 

a positive control since the KD of Cchl would prevent Cyt C from accepting or 

donating electrons from CIII to CIV, respectively. Thus, effecting the electron flow 

through CIV, which as I described in Chapter 5, increases the leak of electrons at the 

Qo site of CIII. Furthermore, the bypassing CIII and CIV, ellicted by AOX expression 

should decrease the ROS production in Cchl-KD flies and rescue the lethal 

phenotype.  

The method of characterisation was to measure ROS levels in the brain, in 

combination with feeding the CI inhibitor rotenone to one of the experimental groups. 

Given that rotenone inhibits RET, this would allow the distinction between ROS-RET 

and non-ROS-RET production. Respiration was also measured to infer whether ROS 

were being increased due to alterations in mitochondrial respiration.  

To check the knockdown of VhaPPA1-1, I performed qPCR, which confirmed lower 

expression levels of the gene in the line expressing the RNAi construct (Figure 6.8A). 

To validate the rise in ROS production observed previously, I repeated ROS 
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measurements in normal conditions. As expected, the ROS levels increased when 

VhaPPA1-1 was genetically silenced, compared to its respective controls (Figure 

6.8B). In an attempt to determine the type of ROS responsible for the elevated levels, 

during inhibition of VhaPPA1-1, I fed the knockdown flies rotenone. The effect of 

rotenone feeding completely abolished the increase in mitochondrial ROS (Figure 

6.8C). These results suggest that ROS-RET is activated when VhaPPA1-1 is down-

regulated. The developmental lethality observed in the VhaPPA1-1 knockdown flies 

may be caused by a sustained un-regulated ROS-RET signal, which is ultimately 

rescued by the expression of AOX. When I measured mitochondrial respiration using 

high-resolution respirometry, I did not observe any difference between the groups, 

indicating that the knockdown of VhaPPA1-1 does not significantly impair 

mitochondrial respiration in adult flies (Figure 6.8D). 

qPCR measurements confirmed a significant decrease in the expression of Ppn in 

the knockdown flies, compared to the control, therefore I moved onto ROS 

measurements (Figure 6.9A). In normal conditions, inhibition of Ppn elevated the 

ROS levels significantly, in comparison to the control, reflecting prior data (Figure 

6.9B). To depict where this ROS generation was occurring, within the ETC, I fed the 

knockdown flies rotenone. Quantification of ROS levels in the brain, revealed that 

rotenone had no effect on ROS production in the Ppn knockdown flies (Figure 6.9C). 

These results determined that the ROS production occurring, as a result of Ppn 

inhibition, was not through the activation of ROS-RET. Based on the fact that AOX 

was able to rescue the lethal phenotype of Ppn-KD during development, it is 

therefore reasonable to postulate that this was due to AOX preventing excess ROS 

production, caused by electrons leaking from the Qo site of CIII. However, to confirm 

this hypothesis experiments using myxothiazol will need to be conducted. Finally, no 

difference was detected in CI, CIII or CIV-linked respiration (Figure 6.9D). Suggesting 

that Ppn does not have a direct effect on the mitochondrial ETC and that ROS 

elevation, when Ppn is down-regulated, is not a direct consequence of interrupting 

electron flow or proton pumping.  

The targeted decrease in Cchl expression of the knockdown flies was confirmed by 

performing qPCR (Figure 6.10A). Repetition of ROS measurements in normal 

conditions confirmed that the knockdown of Cchl increases mitochondrial ROS levels 

(Figure 6.10B). To further characterise the origin of ROS produced during inhibition 

of Cchl, I fed rotenone to the knockdown flies; however no effect on ROS production 
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was observed (Figure 6.10C). The lack of effect of rotenone confirmed that the 

stimulation of RET was not the source of ROS, in this case. These data indicate that 

excessive ROS production is occurring at CIII, suggesting that AOX is able to 

alleviate this increase during development. This result was expected since 

knockdown of Cchl will limit the amount of Cyt C that is able to transfer electrons 

from CIII to CIV. Therefore mimicking the consequences observed during the 

inhibition of CIV with cyanide or preventing the assembly of the CIV, by knocking 

down levy. Accordingly, I observed a specific decrease in CIV-linked respiration in 

the knock down flies (Figure 6.10D). This was caused by a decrease in Cyt C activity, 

which in normal conditions is able to accept electrons from TMPD (Veltri et al., 1978). 

The fact that inhibition was specific to CIV-linked respiration, indicates that the 

knockdown only mildly affects the levels of active Cyt C and that the block in electron 

flow is not as strong as those implemented in Chapter 5. Although, it was enough to 

increase ROS in the fly brain, indicating that even moderate reduction in electron 

flow, can increase ROS levels by CIII.  
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Figure 6.6 Characterisation of VhaPPA-1-1-KD flies. 

(A) Quantification of mRNA levels in VhaPPA1-1-KD flies by qPCR. Control flies 

(TubGS>Empty vector and w1118> VhaPPA1-1-KD) and KD flies (TubGS>VhaPPA1-1KD) 

were used (N = 4). (B) ROS measurements in the brain of VhaPPA1-1-KD flies in non-stressed 

conditions (25 °C) (N = >7). (C) ROS measurements in the brain of VhaPPA1-1-KD flies fed 

rotenone (600 µM) in 25 °C (N = >8). (D) Mitochondrial respiration of VhaPPA1-1-KD whole fly 

homogenates showing CI-linked, CIII-linked and CIV-linked respiration as indicated (N = 4). 

Flies were approximately 10 days old after being fed RU-486 to induce expression. P Values 

were calculated using unpaired Student’s T-test and One-Way ANOVA, where appropriate. 

Data are shown as mean ± SEM. p < 0.05 was taken as statistically significant and represented 

by *, p<0.01 was represent by ** and p<0.001 was represented by ***. 
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Figure 6.7 Characterisation of Ppn-KD flies. 

(A) Quantification of mRNA levels in Ppn-KD flies by qPCR. Control flies (TubGS>Empty 

vector) and KD flies (TubGS> Ppn-KD) were used (N = 4). (B) ROS measurements in brains 

of Ppn-KD flies in non-stressed conditions (25 °C) (N = >8). (C) ROS measurements in brains 

of Ppn-KD flies fed rotenone (600 µM) at 25 °C (N = >9). (D) Mitochondrial respiration of Ppn-

KD whole fly homogenates showing CI-linked, CIII-linked and CIV-linked respiration as 

indicated (N = 6). Flies were approximately 10 days old after being fed RU-486 to induce 

expression. P Values were calculated using unpaired Student’s T-test and One-Way ANOVA, 

where appropriate. Data are shown as mean ± SEM. p < 0.05 was taken as statistically 

significant and represented by *, p<0.01 was represent by ** and p<0.001 was represented by 

***. 
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Figure 6.8 Characterisation of Cchl-KD flies. 

 

(A) Quantification of mRNA levels in Cchl-KD flies by qPCR. Control flies (TubGS>Empty 

vector) and KD flies (TubGS> Cchl-KD) were used (N = 4). (B) ROS measurements in brains 

of Cchl-KD flies in non-stressed conditions (25 °C) (N = >7). (C) ROS measurements in brains 

of Cchl-KD flies fed rotenone (600 µM) at 25 °C (N = 10). (D) Mitochondrial respiration of Cchl-

KD whole fly homogenates showing CI-linked, CIII-linked and CIV-linked respiration as 

indicated (N = 6). Flies were approximately 10 days old after being fed RU-486 to induce 

expression. P Values were calculated using unpaired Student’s T-test and One-Way ANOVA, 

where appropriate. Data are shown as mean ± SEM. p < 0.05 was taken as statistically 

significant and represented by *, p<0.01 was represent by ** and p<0.001 was represented by 

***. 
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6.9 Discussion 

Elucidating the processes behind the generation of mitochondrial ROS, is central to 

gaining insight into their complex relationship with ageing, in order to ameliorate age-

related disease and promote healthy ageing. To confront this challenge, I conducted 

a genome-wide RNAi screen to identify new genes involved in the regulation of 

mitochondrial ROS production. This method facilitated an unbiased and systematic 

approach on a large scale, taking advantage of AOX that reduces excessive ROS 

production at both CI and CIII.  After screening >13,500 RNAi lines (covering >90% 

of the fly genome), I reported 41 genes, whose knockdown during development 

caused a lethal phenotype, which is rescued by AOX expression. The former 

suggests that these genes are involved in the regulation of ROS during development 

and supports ROS signalling as a vital process needed for normal development, of 

an adult fly. As expected, many of the genes identified, encoded both CIII and CIV 

subunits, due to AOX being able to complement mutations or chemical blocks in both 

CIII and CIV (Rajendran et al., 2019) (Dogan et al., 2018) (Fernandez-Ayala et al., 

2009) (Sanz et al., 2010a). Subsequent analysis of 12 confirmed hits showed that the 

majority of genes, (10 out of 12), increase ROS levels when knocked down, only in 

adults.  My results support the concept of using AOX to screen for genes involved in 

the generation of mitochondrial ROS. Remarkably 67% of genes encoding CIII 

subunits and 100% for genes encoding CIV subunits, which caused a lethal 

phenotype, were rescued by AOX, with 100% confirmation in the rescreen. On the 

other hand, AOX did not rescue any of the genes encoding subunits of complexes I, 

II or V. Among the CIII subunit RNAi lines, whose lethality was rescued by AOX, I 

found UQCR-Q. Surprisingly, the knockdown of either levy or ATPsynδ did not cause 

any developmental arrest. However, the knockdown of 9 different genes, encoding 

CV subunits, were lethal and none of them were rescued by AOX. This indicates that 

those flies are probably arrested during development for a lack of ATP, rather than 

excess ROS levels.   

Although some new and novel ROS regulators were identified by the screening 

strategy, used in the present study, I have identified numerous drawbacks that will 

need to be addressed for future screens or rescreens. (i) The confirmation of targets 

identified during the initial screen was quite low (~20%), which may be due to several 

reasons. For example, Drosophila lethality screens are prone to false positives and 

negatives, due to contamination of the vials with bacteria that prevent the 
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development of viable flies. Here, if the contamination is confined to the controls, a 

false positive would be detected, whereas, if it occurred in the AOX group, it would 

produce a false negative, resulting in this gene being discarded. Similarly, if not all 

female flies are virgins, or there is a male fly among the females, a false negative or 

positive may occur. For example, if there is one or more non-virgin fly among the 

controls a false negative is possible, whereas if the same occurs among the AOX 

flies the outcome would be a false positive. Since hundreds of vials were 

simultaneously prepared and screened every week, the technical errors described 

above may have occurred more often than anticipated. Additionally, due to the high 

numbers of vials needed per week, the quality of the food and concentration of RU-

486 could also be variable between repetitions. For future work regarding the screen 

it may be useful to make note of those hits, which showed signs or bacterial infection 

and carry out rescreens to identify any false negatives or false positives. (ii) Due to 

technical reasons the completion of the screen took over four years, which could 

have led to changes in the food, flies (do to background changes and accumulation 

of mutations) or even the RU-486, during this time. In addition, the dose of drug used 

to express the RNAi constructs (and AOX) was set up at the beginning of the screen 

and was optimal to rescue the lethal phenotype, caused by the knockdown of three 

different CIV subunits, by AOX. Lower doses did not cause a lethal phenotype, 

whereas higher doses prevented the rescue by AOX. This explains why only a 

moderate number of OXPHOS genes were lethal (41%). Higher doses would have 

increased the number of lethal genes detected but as a side effect the number of 

genes rescued by AOX would have decreased. Although, internal controls including 

an RNAi line against COX4 (CIV-IV-KD), was used during the screen, ‘recalibration’ 

of the optimal concentration every time would have helped to increase the 

reproducibility. (iii) The use of duplicates or triplicates in each round would also have 

helped to increase the reproducibility, although this would have raised both costs and 

time required to complete the screen. (iv) Using a ubiquitous driver may prevent the 

detection of genes that are important for ROS regulation in specific tissues. Similarly, 

genes that are involved in ROS regulation, in a certain tissue, can cause lethality in 

another tissue by a mechanism that is not ROS dependent. (v) Finally, an alternative 

to a genome-wide RNAi screen may be to screen only certain families of genes, such 

as, mitochondrial ribosomal proteins or MAPK proteins, instead of the whole genome. 

A limited screen would allow using different concentrations of drug, more replicates in 

each round and the use of several different drivers.  
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For a small number of the confirmed hits, an increase in ROS can be justified by their 

function within the cell. For example, the ABCB7 protein is responsible for the 

transport of iron from the mitochondria, into the cytosol. Therefore, its inhibition would 

cause a build-up of iron within the mitochondria and lead to an increase in ROS 

generation. Additionally, the role of Mitofilin involves the organisation of the ETC in 

supercomplexes; hence any disruption to the activity of Mitofilin would lead to a 

dysfunctional ETC and elevate ROS levels in the mitochondria. Nevertheless, the 

majority of hits possess no previous association with the mitochondria, or the 

production of ROS and therefore they are possible novel ROS regulators.  

From the 3 confirmed genes that increased mitochondrial ROS levels and were 

characterised further, VhaPP1-1 was identified as a potential novel regulator of ROS-

RET.  When down-regulated, VhaPP1-1 displayed an increase in ROS, which was 

abolished in the presence of the RET inhibitor, rotenone. These data suggested that 

depletion of VhaPP1-1 can trigger ROS-RET. Interestingly another gene required for 

the assembly of the VhaPPA proton pump, CG7071, was also identified as an AOX 

rescue hit, which reinforces the involvement of VhaPPA1-1 as a ROS regulator. In 

the future, it would be interesting to test whether the increase in ROS, elicited by 

CG7071, is also caused by triggering RET.  Vacuolar ATPses are instrumental for 

the acidification of the lysosome, which is required for the turnover of damaged 

proteins and organelles. Therefore depletion of VhaPPA1-1 could cause the 

accumulation of damaged mitochondria that activates a ROS-RET signal, to 

stimulate mitochondrial turnover. Mitochondrial ROS levels have been described to 

activate mitophagy (Pirastu et al., 1990) (Wang et al., 2012) but where and how 

these ROS are generated remains to be elucidated. The models developed during 

my thesis could help answer that question. 

Although inhibition of VhaPPA1-1 had no effect on the mitochondrial respiration of 

the knockdown flies, this may have been due to the sample preparation, as samples 

consisted of whole bodies. Under these conditions, most of the mitochondria are 

muscle mitochondria from the thorax (Cocheme et al., 2011); therefore it is possible 

that mitochondrial respiration is altered specifically in the brain where ROS were 

measured.  

Ppn is a component of the ECM. Results from downregulation of this gene revealed 

an increase in ROS production that was not attenuated when the RET inhibitor 

rotenone was administered. It is plausible that this ROS is generated at the Qo site of 
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CIII. However, to confirm this, it will be necessary to repeat ROS measurements in 

the presence of myxothiazol.  The inhibition of Ppn also had no effect on 

mitochondrial respiration when whole flies where used but a different result could be 

obtained if only fly heads are used instead. With the present information, it is not 

possible to depict the mechanism by which Ppn increases mitochondrial ROS and 

how this alteration interrupts fly development. In the future, further experiments 

including tissue-specific measurements of mitochondrial respiration and knockdown 

of other proteins that interact with Papilin, such as metalloproteinases, will help to 

understand how its knockdown affects mitochondrial ROS levels. 

Cchl was identified as a novel fly regulator of both CIV activity and ROS production. 

Downregulation of Cchl exhibited a CIV-specific decrease in respiration, explained by 

lower levels of functional Cyt C, which normally functions to transfer electrons to CIV. 

The fact that CI and CIII-linked respiration were not affected, indicates that Cyt C is in 

excess, in the ETC.  Interestingly, reducing the amount of functional Cyt C 

reproduces the effect of chemical inhibition and genetic silencing of CIV subunits. In 

Chapter 5, it was established that the Qo site of CIII was the most probable source of 

ROS, during CIV inhibition and I hypothesize that the same site is producing ROS 

when Cchl is knocked down. The AOX rescue can be explained either because its 

expression prevents excessive ROS production by CIII, or because it complements 

the reduction in CIV activity. Experiments overexpressing antioxidants such as SOD2 

or mitochondrial-targeted catalase, used in Chapter 3, will help to clarify this point. 

In summary, my screen strategy using AOX has been able to identify new regulators 

of mitochondrial ROS production, in the fly brain. The effectiveness of this strategy 

requires the rescreen of any candidate gene, confirmation of the knockdown by 

qPCR or western-blot and measuring ROS levels in independent experiments with 

and without specific ETC inhibitors. Furthermore, the use of other RNAi fly lines 

targeting other parts of the gene is highly recommendable, to further confirm the 

results. The latter will need to be performed in the future for the different genes I 

have found and described. Finally, the strategy presented here can be adapted to the 

specific needs of any researcher for example screening deformations of the fly eye 

(Ma et al., 2009), using tissue-specific drivers to study particular organs or cells, or 

selecting specific families of genes to be screened.  

 



206 
 

Chapter 7 General Discussion 

 
7.1 Introduction  

It has become apparent over the last decade that the behaviour of Reactive Oxygen 

Species (ROS), within our cells, represents a double-edged sword. On the one hand, 

their excessive production is responsible for oxidative stress that drives cellular 

dysfunction and damage (Barja, 2014). On the other hand, basal levels of ROS are 

essential for maintaining cellular homeostasis (Ray et al., 2012). From the 

perspective of the MFRTA, ROS have been well documented. Here, mitochondrial 

ROS are described as toxic by-products of metabolism that accumulate with age and 

create a vicious cycle of mitochondrial dysfunction, a universal hallmark of ageing 

(Lopez-Otin et al., 2013). Studies have been able to confirm an age-dependent 

increase in the extent of oxidative damage, as well as a negative correlation between 

ROS levels and lifespan, in multiple animal models and species (Cui et al., 2012). 

Moreover, chronic mitochondrial ROS production has been recognised in a diverse 

range of age-related diseases such as Parkinson’s disease (Zhang et al., 1999), 

Alzheimer’s disease (Wang et al., 2014), diabetes (Anderson et al., 2009), 

cardiovascular disease (Puca et al., 2013) and cancer (Kudryavtseva et al., 2016). 

Despite the vast amount of experimental data supporting the MFRTA, contradictory 

evidence has challenged the integrity of this theory. For example, it is anticipated that 

the concentration of mitochondrial ROS influences lifespan, however, administration 

of antioxidants or manipulation of endogenous antioxidant expression, to moderate 

ROS levels, has not been shown to extend lifespan (Sanz et al., 2006) (Liu, 2014). 

Additionally, the direct reduction of ROS,  by e.g. the expression of AOX in fruit flies, 

does not increase longevity (Sanz et al., 2010a). In fact, in many cases an increase 

in mitochondrial ROS has led to lifespan extension (Yang and Hekimi, 2010) (Scialo 

et al., 2016a) (Hekimi et al., 2011) (Schmeisser et al., 2011). These contrasting data 

highlight the complexity of studying the role of ROS, due to their dual identity both as 

signalling molecules and toxic by-products of metabolism. 

 

In their role as cellular messengers, mitochondrial ROS production has been shown 

to be necessary for many biological processes. For example, without mitochondrial 

ROS it is not possible to initiate a pro-inflammatory response required for activating 

innate immunity or establishing a senescence phenotype to prevent cancer (Mills et 
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al., 2016a) (Soberanes et al., 2019) (Nelson et al., 2018). Paradoxically, ROS are 

also required for promoting cell proliferation and differentiation (Diebold and Chandel, 

2016). A primary example of this is seen in cancer cells, where ROS are maintained 

at heightened levels in order to encourage proliferation (Moloney and Cotter, 2018). 

To achieve this process, ROS target specific pathways including HIF, NF-ĸB, MAPKs 

and PI3K (Galanis et al., 2008) (Huang et al., 2016) (Wang et al., 2017) (Lu et al., 

2017). Other studies have also shown that mitochondrial ROS can regulate blood 

pressure (Dhalla et al., 2000), programmed neuronal cell death (Tan et al., 1998) and 

even the length and quality of sleep (Kempf et al., 2019). These findings all support 

the role of mitochondrial ROS as essential regulators in redox signalling.  It is now 

essential to study what defines the behaviour of ROS, for example the mechanisms 

behind how they are produced.  

 

CI and CIII, of the respiratory chain, are the two major sites of ROS production within 

the mitochondria and have both been implicated in numerous specific cellular 

pathways. One of the most characteristic and best-described processes, leading to 

site- and time-specific ROS production is RET. The process of RET, which results in 

augmented ROS production at CI, has recently been described to play a central role 

in distinct physiological and pathological processes. These include the differentiation 

of myoblasts into myotubes, triggering an immune response to bacterial infection and 

sensing and reacting to hypoxia by arterial chemoreceptors in the carotid body 

(Garaude et al., 2016) (Fernandez-Aguera et al., 2015) (Lee et al., 2011). In all of the 

former situations, ROS are not produced at random but rather as a signal in 

response to specific stimuli, at specific times and specific sites. Furthermore, there 

are mechanisms that both stimulate and terminate the ROS-RET signal. Interestingly, 

it has also been shown that the expression of Ndi1 from Saccharomyces cerevisiae 

promotes a sustained ROS-RET signal, when expressed in the mitochondria of 

Drosophila melanogaster (Scialo et al., 2016a). Continuous activation of ROS-RET 

signalling leads to lifespan extension in fruit flies (Scialo et al., 2016a) (Sanz et al., 

2010b) (Bahadorani et al., 2010) . Unfortunately, the downstream pathways 

responsible for these beneficial effects, elicited by Ndi1 expression, are yet to be 

determined. Presently, we know that activation of RET requires a highly reduced 

CoQ pool, along with a high proton motive force but so far only speculation has been 

provided surrounding how RET can be stimulated, in physiological conditions. 

Exploring the mechanisms behind ROS-RET and the signalling pathways that drive 
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its downstream outcomes may be instrumental in understanding the role of ROS in 

health and disease. Thus, it can provide us with new strategies to stimulate ROS 

signalling in young individuals or to restore it in later life, to promote healthy ageing.  

 

7.2 Main findings and contributions to the field 

 

Since its discovery in 1961, RET was considered to be an in vitro phenomenon 

(Chance and Hollunger, 1961). This perception began to change when publications 

reporting the production of ROS-RET in the mitochondria from ischemic tissues 

started to emerge, thus increasing the interest surrounding RET (Lesnefsky et al., 

2004), (Chen et al., 2006). These reports showed that the detrimental effects of IR 

were palliated when rotenone was administered to animal models (Lesnefsky et al., 

2004), (Chen et al., 2006). However, it was a publication from the laboratory of Mike 

Murphy in Cambridge, which brought RET to the forefront of research. This study 

confirmed the existence of ROS-RET in vivo as well as being the main mechanism 

responsible for the oxidative damage, occurring as a result of IR (Chouchani et al., 

2014a). Since then, ROS-RET has been shown to be instrumental in many biological 

events, discussed previously in this thesis. It has been well documented that the 

stimulation of RET requires both a high CoQH2:CoQ ratio and a high proton motive 

force, to make RET favourable. Nevertheless, evidence surrounding how these two 

essential conditions are achieved in vivo has not been established (Scialo et al., 

2017).  

 

One of the aims of my thesis was to test whether ROS-RET occurs in physiological 

conditions and to dissect how the redox state of CoQ and the proton motive force 

contribute to this. In Chapter 3, I showed that heat stress (HS) triggers ROS-RET in 

the brain of Drosophila melanogaster. Under HS, there is an increase in energy 

demand that enhances oxidative phosphorylation, increasing the entry of electrons 

into the ETC. According to unpublished data from our laboratory, the increase occurs 

due to a rise in the activity of not only CI and CII but also of other dehydrogenases, 

such as G3P, ETF-QO and DHOD, which can also reduce the mitochondrial CoQ 

pool. This boost of electrons entering the ETC increases the reduction state of CoQ 

and also drives the transport of protons across the inner membrane, thus 

establishing a high proton motive force.  In summary, HS creates the perfect 

conditions for inducing RET, allowing CI to switch from a forward to a reverse 
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direction, thereby altering the mechanism of CI ROS production.  This burst in 

mitochondrial ROS can be modulated in intensity and duration, to produce a signal in 

response to stress. To confirm that ROS were produced via RET; I used the specific 

CI inhibitor, rotenone and the mitochondrial uncoupler, FCCP. Both of them have 

been extensively used to confirm the existence of ROS-RET in the literature (Robb et 

al., 2018) (Scialo et al., 2016a) (Chouchani et al., 2014a). When rotenone and FCCP 

were supplemented, to block the quinone binding site of CI and dissipate the proton 

motive force respectively, ROS-RET was prevented. Interestingly, in non-stressed 

conditions (25°C), both rotenone and FCCP increased ROS in the fly brain, indicating 

production of ROS by CI and/or CIII in the forward direction. However, under HS both 

mitochondrial inhibitors decreased ROS levels, supporting production of ROS by CI 

in the reverse direction. These results reflected those seen in Ndi1 flies, where 

rotenone and FCCP decrease ROS (Scialo et al., 2016a).  

 

Lastly, I used the over-expression of two antioxidants SOD2 and a mitochondrial-

targeted catalase to confirm the location of the ROS production. Results from these 

experiments showed that the increased ROS production, in response to HS, was 

originating exclusively from the mitochondrial matrix, as expected from a ROS-RET 

signal. My results using the referred specific mitochondrial inhibitors and antioxidants 

showed that ROS-RET can occur in the fly brain in physiological conditions. 

Interestingly, mitochondrial ROS levels were increased after only 3 hours at 32°C 

and returned to the level of unexposed controls, after 5 hours. This supports the idea 

that ROS-RET is not produced randomly but as a signal to adapt to HS. Accordingly, 

unpublished data from the Sanz’s laboratory showed that preventing ROS-RET 

under HS, attenuates the expression of genes involved in the anti-stress responses 

and dramatically shortens the lifespan of the flies. 

 

It is widely accepted that mitochondrial dysfunction is one of the hallmarks of ageing 

(Lopez-Otin et al., 2013). The two main phenotypes of ‘old’ mitochondria are a 

decrease in ATP production and an increase in mitochondrial ROS generation 

(Gabbita et al., 1997) (Drew et al., 2003) (Sanz et al., 2010a) (Cocheme et al., 2011), 

(Pollard et al., 2016). Some reports have described that during ageing, CI activity is 

the first to be altered and to a much greater extent than the other ETC components in 

flies and humans (Scialo et al., 2016a) (Cooper et al., 1992) (Cabre et al., 2017). 

Similarly, in Parkinson’s patients, CI has been reported to be the most affected 
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respiratory complex. CI inhibitors elicit a Parkinson’s like phenotype in humans and 

animal models (Tanner et al., 2011). Additionally, CI dysfunction has also been 

observed in mouse models of ataxia (Pollard et al., 2016), associated with cancer 

proliferation (Gui et al., 2016) and even in psychiatric conditions such as bipolar 

disorder (Duong et al., 2016). Our laboratory has shown that CI-linked respiration is 

specifically reduced from 50 days onwards followed by a decrease in the levels of CI, 

in 75 days old flies (Scialo et al., 2016a). Interestingly, the decrease in CI-activity 

occurs in parallel with the increase in mitochondrial ROS levels in the fly brain (Scialo 

et al., 2016a). Given that ROS-RET is dependent on the activity of CI, I hypothesized 

that age-related alterations of CI could lead to changes in redox signalling, mediated 

by ROS-RET.  This would explain the protective effect of Ndi1 on mitochondrial 

function observed both in old flies (Sanz et al., 2010b) and in pink1 and Sod2 

mutants, since Ndi1 would rescue redox signalling, through the stimulation of ROS-

RET (Scialo et al., 2016a), (Vilain et al., 2012). 

 

As I anticipated, at 50 days, mitochondria from old flies were unable to trigger ROS-

RET, in response to HS. Similarly, no increase in ROS was observed in response to 

rotenone, under non-stressed conditions. 50 day old flies had very high levels of 

mitochondrial ROS in the brain and did not change ROS production in response to 

stress, in contrast to the younger flies. For example, 25 day old flies, had higher 

levels of mitochondrial ROS than controls but they were still able to trigger ROS-

RET, in response to HS. I proposed a model where HS (and possibly other types of 

stress) during early life, would encourage a fully functioning CI to switch from 

producing ROS in a forward direction to RET. Producing a rise in ROS that would act 

as signalling molecules, to trigger various pro-survival pathways. Once the 

appropriate pathways are stimulated, and cellular homeostasis is re-established, the 

ROS-RET signal is terminated, and ROS decreases to basal levels. However, during 

ageing the decline in CI activity attenuates the ROS-RET response, preventing the 

stimulation of the required survival pathways. Thus, providing an explanation as to 

why I did not observe a ROS-RET response, in 50 day old flies, when mitochondrial 

respiration is significantly decreased. I speculated that the decline of redox signalling 

contributes to the accumulation of damaged mitochondria, which causes the 

unregulated production of ROS. In contrast to ROS-RET, the high levels of 

mitochondrial ROS observed in old individuals, cannot be neutralised, which 

therefore drives the oxidative stress that is observed in old flies (Jacobson et al., 
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2010), (Magwere et al., 2006). In addition, the background oxidative stress also 

interferes with normal redox signalling, altering processes that require ROS signalling 

(Figure 7.1). For example, autophagy (Scherz-Shouval et al., 2007); a process that is 

strongly reduced when flies become old (Simonsen et al., 2008). 

Figure 7.1 The effect of CI ROS production in young versus old flies. 

Inducing ROS-RET by subjecting flies, for four hours, 3 times per week to HS, did not 

extend lifespan. This is in contrast with the results previously shown by Ndi1 

In young flies, when a stress occurs, RET is stimulated to produce ROS signalling messengers 

which can leave the mitochondria and target cysteine groups of specific proteins to restore 

cellular homeostasis. Eventually, the ROS signal is terminated. However, in old flies, CI levels 

progressively decrease during ageing. Thus, RET can no longer be stimulated to overcome 

the stress condition by promoting cellular survival pathways. Instead, CI dysfunction leads to 

chronic ROS production, which drives oxidative stress and further damage.  
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expression (Scialo et al., 2016a). This could be due to a number of different reasons, 

for example, the duration of ROS-RET, the intensity of the signal or the tissues where 

ROS-RET is induced. In the case of Ndi1, the signal seems to be activated all of the 

time, whereas, in the HS model, RET only lasts for 2 hours. It would be interesting to 

test whether exposing flies to HS more often (e.g. every day), would positively affect 

lifespan. In addition, Ndi1 increases mitochondrial ROS levels higher than HS, so it is 

possible that the intensity of the signal during HS is not enough to activate the same 

mechanisms that Ndi1 does. It cannot be discarded either that the effect of Ndi1 on 

longevity, is due to its expression during development. Alternatively, it is possible that 

ubiquitous Ndi1 expression, increases ROS-RET in tissues that are not affected by 

HS. Time- and tissue-specific expression of Ndi1 will help to answer the former 

questions.  Interestingly, exposing flies to HS in combination with rotenone, 

dramatically shortened lifespan, when the combined treatment was administrated 

after day 25. Thus, when I fed 50-day-old flies with rotenone and exposed them to 

HS, many of them died within hours. This data indicates that ROS-RET is 

instrumental for stress adaptation, thus preventing RET, dramatically decreases 

survival under stress, in an age-dependent manner. The fact that suppressing ROS-

RET did not have any effect in young flies, in the conditions assayed, indicates the 

existence of stress adaptation mechanisms in early life that are lost during ageing.   

 

After establishing that ROS-RET occurs physiologically, I developed different fly 

models to study in detail how the individual components of the ETC contribute to the 

formation of ROS-RET, in vivo. Starting with CI and CII, I was able to confirm that the 

entry of electrons into the ETC is essential for the production of ROS-RET. When 

electron entry was blocked, using both short-term and long-term inhibition of CI and 

CII during HS, the increase in ROS was abolished. This data indicated that without 

the activity of CI and CII the CoQ pool could not reach the reduction state required to 

initiate ROS-RET. Previous studies from our laboratory, have shown that reduction of 

CI activity (by knocking down ND-39) reduces RET, during expression of Ndi1 (Scialo 

et al., 2016a). Other laboratories have also found that CI inhibition by rotenone was 

able to prevent ROS-RET during IR (Chouchani et al., 2014a) or to stop the pro-

inflammatory response caused by injecting mice with LPS that is also ROS-RET 

dependent. Additionally, genetic depletion of CI, specifically in cells of the carotid 

body abolished the increase in ROS in response to hypoxia, as well as the 

organismal response, of increasing respiratory rate in mice, in the presence of low 
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oxygen levels (Arias-Mayenco et al., 2018) (Mills et al., 2016a). Collectively, these 

observations all confirm the necessity of CI and CII activity in the formation of ROS-

RET.  

 

I then studied the effect of blocking the exit of electrons from the ETC, via the 

inhibition of CIII and CIV. In contrast to blocking CI and CII, I hypothesised that 

inhibiting the flow of electrons would lead to an accumulation of electrons upstream 

of CIII and CIV, promoting a highly reduced CoQ (Jacobson et al., 2005), (Drew et 

al., 2003), (Zuckerbraun et al., 2007), (Eghbal et al., 2004). Prior to my own 

experimentation, it has been documented that the endogenous CIV inhibitors, such 

as NO, CO and H2S, could elicit an increase in mitochondrial ROS levels after 

blocking CIV (Taylor and Moncada, 2010). Therefore I hypothesised that inhibition of 

either CIII or CIV would trigger ROS-RET. The conclusion from all my experiments 

was that blocking the exit of electrons elevated ROS production, as previously 

described but not due to the stimulation of RET.  

  

The results obtained after CIII short-term inhibition were difficult to interpret. I 

observed a dose-dependent effect, where small doses reduced ROS production and 

high doses lead to increased ROS levels. The decrease in ROS, caused by low 

doses of myxothiazol, may be explained by two previous observations. The first is 

partial inhibition of CI, caused by the inhibition of CIII (Bacsi et al., 2006), which 

would prevent ROS-RET from occurring. The second and non-exclusive is a 

decrease in membrane potential caused by the inhibition of CIII. It has been reported 

in mammalian cells that inhibition of CIII with antimycin A, makes CV work in the 

reverse direction (i.e. transporting protons from the matrix to the intermembrane 

space) to maintain the mitochondrial membrane potential (Metzen et al., 2003). 

Under these circumstances, ATPIF1 is activated to inhibit the reverse motion and 

prevent ATP hydrolysis. This preserves energy levels, but it decreases membrane 

potential (Gaude and Frezza, 2014). It is possible that the same depolarisation 

occurs in fruit flies, since ATPIF1 has two fly orthologues, explaining why ROS-RET 

does not occur in the fly brain in response to CIII inhibition (Metzen et al., 2003). 

Obviously to confirm the implication of the membrane potential, its measurement in 

the fly brain would be required, which is technically challenging.  
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Higher concentrations of myxothiazol induced a substantial rise in mitochondrial ROS 

levels. This increase in ROS was insensitive to rotenone feeding, discarding ROS-

RET as the source. It is possible that under these conditions, the increase in ROS is 

the result of chronic damage to the mitochondria and global dysfunction, with 

electrons leaking from non-specific places, within and outside the ETC. Long-term 

genetic inhibition of CIII also resulted in a large increase in ROS production that was 

proven not to be due to RET either. An alternative possibility is that CII is generating 

the ROS since it has been described that CII ROS production may occur in response 

to CIII/CI inhibition (Quinlan et al., 2012). To test the latter hypothesis, I fed flies with 

the CII inhibitor, malonate and observed a significant decrease in ROS production 

(data not shown), supporting CII as the source of ROS, during inhibition of CIII with 

high doses of myxothiazol. However, this may require further confirmation, by testing 

a genetic model of CII depletion, since I was not able to confirm CII inhibition in the 

fly brain using malonate. In any case, my results clearly show that CIII inhibition, both 

long and short term, was not able to stimulate ROS-RET in vivo.  

 

CIV inhibition using either chemical or genetic approaches, elicited an increase in 

ROS production. Further characterisation indicated that the increase in ROS was not 

produced via RET but instead was originating from the Qo site of CIII. This was 

confirmed by the use of the Qo site inhibitor, myxothiazol. Similarly to CIII inhibition, 

blocking the electron flow through CIV would decrease the proton motive force, due 

to CIV no longer contributing to the transfer of protons across the inner membrane. 

Consequently, the decrease in the proton motive force would prevent the occurrence 

of ROS-RET at CI. However, the first upstream site of CIV able to generate ROS is 

CIII. Therefore the inhibition of electron flow at CIV would lead to an accumulation of 

electrons at CIII, increasing the electron leak and ROS generation at the Qo site of 

this complex. ROS produced at the Qo site are released into both the mitochondrial 

matrix and the intermembrane space (Muller et al., 2004). Superoxide produced in 

the intermembrane space is usually converted into peroxides by SOD, which enables 

them to diffuse into the cytoplasm and interact with proteins. This makes CIII an 

advantageous site for sending ROS signals directly to the cytoplasm (Chandel, 

2010).  Recently, ROS generated at the Qo site of CIII have been described as 

initiators of important signalling events. For example, during hypoxia, CIII acts as an 

oxygen sensor and releases ROS from the Qo site, to trigger a survival response. 

CIII-derived-ROS are required to stabilise HIF-1α, therefore when the Qo site inhibitor 
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stigmatellin, is administered, HIF-1α is not stabilized and consequently degraded 

(Chandel et al., 2000).  During the last 10 years the laboratory of Navdeep Chandel 

and associates, have shown that ROS produced at the Qo site are required for 

physiological processes, such as proliferation in certain types of cancer, activation of 

T cells, adipocyte differentiation or production and release of IL-6 (Chandel et al., 

2000) (Diebold et al., 2019) (Weinberg et al., 2010) (Tormos et al., 2011). However, it 

remains unsolved how CIII increases ROS production in vivo. In the future, it would 

be interesting to test whether the inhibition of CIV, is responsible for the processes 

mentioned before and if this inhibition occurs physiologically. The latter is possible 

since at least three endogenous messengers (NO, CO, H2S) have been shown to 

block CIV as previously discussed (Taylor and Moncada, 2010).  

 

One of the genes identified from the screen, Cchl, reduced CIV activity and also 

increased mitochondrial ROS levels. Knockdown of Cchl during development was 

lethal, despite no significant alterations in mitochondrial respiration, apart from the 

mild decrease in CIV-linked respiration. The fact that the lethal phenotype was 

rescued by AOX, indicates that even mild inhibition of CIV can increase ROS and this 

can have deleterious consequences in the normal development of the fly. Our results 

do not support the idea that blocking CIV induces ROS-RET (Dogan et al., 2018), 

although this may not be the case in other organisms or tissues. In summary the 

results from the inhibition of CIII and CIV showed in both cases, an important 

increase in ROS as previously reported (Srinivasan and Avadhani, 2012). However, 

my results demonstrated that ROS are not produced via RET in the mitochondria of 

the fly brain when electron flow through CIII and CIV is interrupted.  

 

Finally, CV showed contrasting results when inhibited. Results regarding acute CV 

inhibition, using oligomycin, could not elicit a ROS-RET response. This contradicts 

what has been previously reported in the literature using different models (Chouchani 

et al., 2014a; Fukuoh et al., 2014; Mills et al., 2016a), see Chapter 5 for details. 

Feeding flies with oligomycin resulted in a decrease in mtROS, in the brain, using a 

wide range of concentrations and varying time periods. During HS, a physiological 

RET model, oligomycin also attenuated the ROS-RET response. Furthermore, 

feeding oligomycin to Ndi1 flies also decreased mitochondrial ROS levels. 

Suppression of ROS-RET by oligomycin, has been independently reported by other 

studies (Sanz et al., 2010c), (Santamaria et al., 2006), (Mills et al., 2016a). When 
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long-term genetic inhibition was employed, a rotenone sensitive increase in 

mitochondrial ROS levels was detected, suggestive of ROS-RET. However, these 

results should be interpreted with caution. Knockdown of ATPsynδ produces a 

dramatic decrease in mitochondrial respiration and the flies that eclose are very weak 

and die within days. Therefore, it is possible that rotenone feeding alongside strong 

CV inhibition could produce severe mitochondrial dysfunction, resulting in the proton 

motive force becoming completely collapsed. This could cause massive cell death 

leading to the observed decrease in mitochondrial ROS levels. Studying cell death in 

the fly brain, under these experimental conditions, will help to confirm or discard this 

hypothesis. In summary, my results regarding the role of CV inhibition, in relation to 

the stimulation of ROS-RET, were inconclusive and further investigation is required 

to establish how manipulation of CV affects mitochondrial ROS levels.  

 

In an alternative attempt to study the mechanisms behind the regulation of ROS-

RET, I used a high-throughput unbiased approach, by performing a genome-Wide 

RNAi screen that covered over 90% of fly genes. Using the expression of AOX, a 

RET suppressor (Scialo et al., 2016a); I identified various genes involved in the 

modulation of mitochondrial ROS levels.  Given that AOX is also able to decrease 

ROS produced by CIII (Sanz et al., 2010a), I used rotenone in my ROS 

measurements to distinguish between ROS-RET and CIII-derived ROS production. 

Using this strategy, I identified a new gene whose knockdown stimulates ROS-RET 

in the fly brain: VhaPPA1-1. Interestingly, another gene, CG7071, required for the 

assembly of VhaPPA1 was also identified in my screen, and I confirmed that upon its 

knockdown, mtROS levels are also increased. However, whether the increase in 

ROS, after the knockdown of CG7071, is ROS-RET dependent requires further 

confirmation. Two other genes, Ppn and Cchl, were shown to be involved in the 

regulation of mitochondrial ROS levels. However, my data does not support ROS-

RET, as the mechanisms of production. It is possible that they are produced at the 

Qo site of CIII, which would explain why AOX was able to decrease and rescue the 

lethal phenotype. However, confirmation with CIII inhibitors, such as myxothiazol, is 

needed.  Additionally I showed that knockdown of Cchl, limited the entry of electrons 

to CIV and supported previous results of CIV inhibition, such as depletion of levy or 

cyanide administration, which resulted in an increase in ROS upstream of CIV. 

Overall, my screen strategy was successful in identifying new genes involved in the 

regulation of mtROS levels, in the brain. Thus, it shows AOX as a powerful tool for 
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similar screens, where the strategy could be adapted to the needs of the user, e.g. 

performing tissue-specific screens or targeting only individual families of genes.  

 

In summary, my work has dissected how ROS-RET occurs in the fly brain.  Using ex 

vivo ROS measurements, I provided evidence that ROS-RET can be stimulated 

physiologically using HS. I have shown that RET depends on the free entry of 

electrons into ETC and that blocking electron exit increases ROS but not via RET.  

This is particularly interesting for CIV, which can be blocked by endogenous 

messengers, such as NO and CO. My experiments using myxothiazol showed that 

CIII is the place where electrons leak when CIV is blocked. I have also generated a 

list with more than 40 candidate genes, with the potential to regulate mitochondrial 

ROS levels in vivo. In addition, I have characterised three of the candidate genes, 

including one that is involved in the generation of ROS-RET. Finally, one of the most 

important contributions of my thesis is the generation of several new fly models to 

study ROS. Including, ROS specifically produced via RET (HS and knockdown of 

ATPsynδ) or ROS produced by CIII (inhibition using cyanide or knocking down levy 

or Cchl). Similarly, these fly models will make it possible to study the physiological 

consequences of being unable to induce ROS-RET under stress (e.g. by knocking 

down CI/CII subunits or blocking RET with rotenone or FCCP). In addition, they will 

allow the study of how sporadic or chronic high levels of mitochondrial ROS 

upstream of CIV (blocking CIII/CIV with myxothiazol/cyanide or knocking down 

UQCR-Q, levy or Cchl) affects lifespan. Characterising these fly models in detail will 

provide us with a more comprehensive understanding of how ROS signalling 

operates in vivo, allowing the discovery of new drug targets to combat ageing and 

age-related diseases. 

 

7.3 Future Work  

The on-going challenges regarding the measurement of ROS levels have previously 

limited the study of ROS. The vast majority of previous studies have been performed 

in vitro using isolated mitochondria or cell culture, which presents a range of 

drawbacks, reviewed in my introduction. Briefly, the use of isolated mitochondria 

removes the organelle from its natural environment, leading to a loss of physiological 

relevance. Although cell culture eliminates this disadvantage, the conditions in which 

they are grown in, for example, hyperoxic oxygen levels and glucose-rich media 

again, lead to poor physiological relevance. Furthermore, the use of non-
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physiological concentrations for ETC substrates or the use of inhibitors can lead to 

high rates of ROS production that are not observed in vivo. To overcome these 

limitations observed with in vitro techniques, in vivo strategies of ROS measurements 

are starting to be implemented (Cocheme et al., 2011) (Albrecht et al., 2011). The 

use of in vivo or ex vivo methods allows for a more accurate representation of ROS 

dynamics, occurring within an organism. 

 

For my thesis, I have measured mitochondrial ROS levels in the dissected brain of 

Drosophila melanogaster. This approach allows ex vivo measurements with a 

consistent area of tissue (the whole brain) to minimise variation between samples, a 

disadvantage of using other tissue such as muscle. I initially used two fluorescent 

dyes to validate the results obtained in Chapter 3. First of all H2DCF, a well-

established cell-permeable and highly sensitive general ROS detector 

(Kalyanaraman et al., 2012) and secondly MitoSOX, another extended ROS probe 

that is targeted into the mitochondrion and is preferentially oxidised by superoxide 

(Zielonka and Kalyanaraman, 2010). I confirmed that the signals detected using 

H2DCFA and MitoSOX were attenuated in response to the expression of a 

mitochondrial-targeted catalase and the overexpression of SOD2 in the 

mitochondrion, respectively. However, both probes present several drawbacks as 

reviewed in (Sanz, 2016). To confirm the results of my thesis, it may be beneficial to 

explore other complementary approaches to quantify mitochondrial ROS, in vivo. 

This will help to validate my results and test the physiological relevance of the 

processes, described in my thesis. I propose several alternative approaches. First of 

all, the use of the ratiometric probe MitoB/MitoP (Cocheme et al., 2011), which would 

allow a precise estimation of the levels of mitochondrial H2O2 in Drosophila 

homogenates or specific tissues. In addition, I would image cells or fly organs 

measuring ROS using both ex vivo and in vivo techniques, by using the genetically 

encoded mitochondrial H2O2 redox reporter mtORP1-roGFP (Albrecht et al., 2011). 

Furthermore, highly sensitive reporters, using the same principle as the former 

example, have been engineered by the laboratory of Tobias Dick in Heidelberg that 

could be expressed in the fly, to replace the old mtORP1-roGFP (Albrecht et al., 

2011). It may also be interesting to measure ROS in different fly tissues, such as the 

flight muscle, gut or fat body, which have been shown to have different proteomic 

responses to alterations that extend lifespan, such as reduced insulin signalling (Tain 

et al., 2017). In this study, mitochondrial respiration was altered in fat body but not in 
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brain, skeletal muscle or gut. It would be interesting to test whether ROS are altered 

in these alternative tissues and if alterations in ROS are instrumental for extending 

lifespan. In addition, unpublished results from the Sanz’s laboratory, show that 

genetic depletion of CoQ, by knocking down genes involved in CoQ synthesis, 

causes an increase in mitochondrial ROS in skeletal muscle but not in the brain.   

 

The next step in this line of research will be to take advantage of the HS model to 

induce ROS-RET and explore the pathways that are activated in response to this 

signal. Unpublished data from our laboratory show that preventing ROS-RET, using 

AOX or mitochondrial-targeted catalase expression to decrease ROS levels, 

shortens lifespan under HS. This supports a major role of ROS-RET signalling, in 

stress adaptation. To study this further, a hypothesis-driven approach could be used 

to test whether pathways that have been shown to be ROS regulated, for example, 

Nf-ĸB, HIFs, PI3K and MAPK, are activated by ROS-RET. A non-hypothesis driven 

approach to study transcriptomic and metabolomics changes, in response to ROS-

RET, has been already carried out in our laboratory. The results from this approach 

have shown that ROS-RET is required for activating pro-survival pathways in 

response to HS (Scialo and colleagues, unpublished results). ROS-RET activation 

diverts glycolytic intermediates to the pentose phosphate pathway, to produce 

NADPH and precursors for nucleotide biosynthesis. Finally, in the future, it will be 

interesting to use new proteomics approaches (Bagwan et al., 2018) to detect post-

translational modifications in proteins (including changes in redox-sensitive 

cysteines) (Menger et al., 2015) in response to ROS-RET.  

 

The identification of ROS-RET is based on the administration of rotenone and FCCP, 

to block the CI quinone-binding site and dissipate the mitochondrial proton motive 

force, respectively. Although these effects are well characterized in vitro, it remains to 

be determined whether they accomplish the same in vivo and specifically in the 

conditions assayed in the present work, i.e. the Drosophila brain. Therefore, another 

future objective is to assess both parameters in parallel to ROS measurements in the 

brain. Measuring the redox state of the CoQ pool is relatively simple using LC-UV, 

which our group has done in the past for Ndi1 flies in collaboration with Prof Placido 

Navas (Scialo et al., 2016a). However, measuring the proton motive force is more 

technically challenging. In fact, in most cases, only one of its components, the 

mitochondrial membrane potential, is assessed. Although measurements of the 
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mitochondrial membrane potential per se are easier to perform, there are still a lot of 

technical difficulties summarised in (Perry et al., 2011). Therefore, similarly to 

mitochondrial ROS measurements, most data have been obtained in vitro using 

isolated mitochondria or cells.  A new method combining MS and click chemistry has 

been recently published showing promising results in the mouse heart (Logan et al., 

2016). Using the same approach in the fly brain will help to determine how 

mitochondrial membrane potential changes during ROS-RET, as well as allowing us 

to confirm the role of FCCP in dissipating the membrane potential and how CIII and 

CIV inhibition affects this parameter.  

 

My experiments involved in the manipulation of CV levels or activity were 

inconclusive. Unexpectedly, the well-characterized CV inhibitor, oligomycin, 

decreased ROS under non-stress conditions and prevented ROS-RET under HS as 

well as in Ndi1 flies. Future work should explore alternative CV inhibitors and 

knocking down other CV subunits, including different components of the F1 and F0 

regions. Alternatively, experiments overexpressing the fly orthologue of ATPIF1 ( 

CG13551) must be repeated. Despite the promising data I obtained, I was not able to 

demonstrate the overexpression of ATPIF1 and neither were the authors that 

generated the UAS-ATPIF1 flies. Therefore these results have not been included in 

my thesis. Making new fly models of ATPIF1 with and without e.g. a GFP tagged 

version to confirm its expression will help to clarify the role of ATPIF1 and CV, in 

mitochondrial ROS production. Experiments involving ATPIF1 are particularly 

relevant due to the many functions ATPIF1 seems to play in cancer and non-cancer 

cells (Garcia-Aguilar and Cuezva, 2018).  

Future work regarding the screen should focus on dissecting how VhaPPA1-1 

triggers ROS-RET. First, I would repeat the ROS experiments with CG7071, to test 

whether its knockdown also triggers RET. Following confirmation, I would test other 

subunits of the V-ATPase, by knocking them down, to observe if they are also 

involved in regulating ROS-RET to identify if this effect is dependent of the activity of 

V-ATPase. Secondly, I would try to dissect the mechanisms, by which V-ATPases 

regulate mitochondrial ROS production. Additionally, I would study the rest of the 

confirmed genes from the AOX screen to identify new regulators involved in ROS-

RET signalling. These experiments must include confirmation that AOX not only 

rescues the lethal developmental phenotype but also reduces ROS in adult flies. 

Finally, I would perform alternative screens using AOX, by targeting families of genes 
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that based on data from the literature affect ROS production. These screens, with 

fewer lines to be studied, will allow the use of different RU486 concentrations to 

titrate AOX expression and the expression of the RNAi construct and different drivers 

to study tissue-specific ROS production.  

 

7.4 Final Conclusions 

In conclusion, in my thesis, I described a physiological method of inducing ROS-RET 

in the fly brain, using HS. To dissect this ROS signal further, I manipulated the levels 

of individual components of the mitochondrial ETC. Here, my results showed that 

maintaining electron flow through CI and CII , of the respiratory chain, is instrumental 

for triggering ROS-RET. Blocking the exit of electrons from the ETC via CIII and CIV 

inhibition increased ROS through an alternative mechanism, excluding RET. The 

effect of CV inhibition of ROS-RET was inconclusive with acute and long-term 

inhibition providing contrasting results. Finally, I performed a genome-wide RNAi 

screen that was successful in identifying new genes involved in the regulation of 

ROS. Using AOX I reported 40 candidate genes, one of which, VhaPP1-1, I 

confirmed is involved in regulating ROS-RET in the fly brain (Figure 7.2).  
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Figure 7.2 Diagram displaying the ROS-RET signal. 

 

 

The results of this thesis show that subjecting flies to heat stress, provides the conditions 

needed in order to stimulate ROS-RET physiologically in the fly brain, between 3-5 hours. In 

addition, I have been able to demonstrate that CI and CII are essential for establishing a 

ROS-RET signal. Furthermore, results from a genome-wide RNAi screen were able to 

identify VhaPP1-1, as a potential RET regulator.  
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