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Abstract 

 

Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. 

The gold-standard intervention is reperfusion via primary percutaneous coronary 

intervention, however, reperfusion can induce ischaemia-reperfusion injury (IRI). A key 

component of IRI is increased oxidative stress and MI patients often exhibit 

progressive remodelling resulting in heart failure. This lab has previously demonstrated 

that during ageing, oxidative stress drives senescence which contributes to myocardial 

remodeling via the senescence-associated secretory phenotype (SASP), including 

pro-hypertrophic and pro-fibrotic proteins. I therefore hypothesised following MI with 

IRI cellular stress induces senescence which contributes to adverse remodeling via 

similar mechanisms.  

Three-month-old mice underwent 60-minute ligation of the left anterior descending 

coronary artery (LAD) followed by reperfusion, and were assessed for characteristics 

of senescence. To test the impact of senescence post-MI with IRI, I eliminated 

senescent cells pharmacologically using the senolytic drug navitoclax, or targeted 

deletion of p16Ink4a in cardiomyocytes using a novel mouse model (p16-MerCreMer). 

Hearts were assessed using histological and qRT-PCR analysis. Cardiac function was 

assessed via magnetic resonance imaging. 

As expected, LAD ligation resulted in a typical intramural infarct and reduction in 

cardiac function. A significant increase in senescence markers was observed in both 

cardiomyocytes and interstitial cells. Mice treated with Navitoclax demonstrated a 

significant reduction in senescence markers as well as a global reduction in SASP and 

remodelling gene expression. Functionally, treated mice improved at 5 weeks post-

LAD compared to controls, which may be explained by their reduced scar size. In 

comparison, the p16-MerCreMer mouse was insufficient to attenuate remodelling and 

demonstrated no functional improvement. Analysis by cytokine array demonstrated a 

decline in several SASP factors during navitoclax treatment and in vitro studies 

suggest a fibrotic SASP may detrimentally impact cardiomyocytes and angiogenesis. 

These data suggest that eliminating senescent cells or attenuating the SASP are viable 

strategies to improve outcome following IRI.   
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  Introduction 

 

1.1 Coronary heart disease and myocardial infarction 

Cardiovascular diseases (CVDs) account for the highest proportion of deaths and 

disabilities globally, with an estimated 17.5 million deaths in 2012 (Hausenloy and 

Yellon, 2013; World Health Organisation, 2014; Bansilal et al., 2015). The rate of 

coronary heart disease (CHD), one of the most common subsets of CVDs, has been 

declining over the past few decades. However, it still constitutes about a third of 

mortalities in middle aged individuals (Bansilal et al., 2015; Sanchis-Gomar et al., 

2016). A major and severe manifestation of CHD is acute myocardial infarction (MI) 

(Hausenloy and Yellon, 2013). 

 

1.2 Myocardial infarction 

Myocardial infarction is characterised by a sustained period of myocardial ischaemia 

that leads to a disrupted balance between oxygen supply and demand, which results 

in cardiomyocyte (CM) death and necrosis of the myocardium, and potentially 

progressive myocardial remodelling all of which are detrimental to cardiac function. In 

most cases, a MI arises due to the rupture or breakdown of a coronary atherosclerotic 

plaque that generates a thrombus, leading to the coronary artery becoming occluded 

and cessation of blood flow distal to the occlusion (Thygesen et al., 2012; Montecucco 

et al., 2016). The myocardium affected during occlusion is outlined as the area at risk 

(Hausenloy and Yellon, 2013). Acute MI can, however, also be generated by coronary 

artery embolism or dissection, hypotension, anaemia and cocaine use (Boateng and 

Sanborn, 2013).  

 

1.2.1 Classification and diagnosis of the acute coronary syndromes 

Clinical CHD manifests as a spectrum of symptoms collectively termed acute coronary 

syndrome (ACS) which are classified based on severity and the degree and nature of 

the coronary artery blockage. Acute coronary syndrome progresses from unstable 
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angina in which a partial blockage of the artery results in reduced oxygen and patients 

present with chest pain (angina), either at rest or with marginal physical exertion, or 

with pain that is increasing in severity or duration (Boateng and Sanborn, 2013). 

Next on the ACS spectrum is non-ST elevated myocardial infarction (non-STEMI). 

Non-ST elevated myocardial infarction has the same hallmark features as unstable 

angina but also results in MI as indicated by an elevation in biomarkers for myocardial 

trauma (Boateng and Sanborn, 2013). These biomarkers included cardiac troponin 

(cTn) I and T, which are both components of the myocyte contractile unit, and creatine 

kinase (CK) (Thygesen et al., 2012; Aldous, 2013), as these are released into the 

bloodstream subsequent to myocardial damage. The increase in the biomarkers 

differentiates non-STEMI from unstable angina (Silva et al., 2015). However, in this 

setting the occlusion leading to ischaemia still only partially blocks the coronary artery 

(Deckers, 2013) and critically there is no elevation of the ST-segment on an 

electrocardiogram (ECG) (Riezebos and Verheugt, 2013). Upon hospital admission 

the most appropriate therapy path for these patients is revascularisation via drug 

therapy with only patients in the higher risk categories being suitable to undergo high-

risk surgical interventions (Roleder et al., 2015; Silva et al., 2015). Finally, and most 

relevant to this project is the ST-elevated myocardial infarction (STEMI) group. 

ST-elevated myocardial infarction lies at the far end of the ACS spectrum and is 

diagnosed as per the clinical manifestations, seen in unstable angina and non-STEMI, 

but also by a ST-segment elevation as detected by ECG (Boateng and Sanborn, 2013). 

While STEMI patients can be further divided into a number of subgroups, a common 

feature is that in these cases the MI arises from a complete blockage of the artery 

leading to ischaemia and subsequent myocardial damage (Figure 1.1) (Thygesen et 

al., 2012). 
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Once STEMI has been diagnosed, it is essential to immediately reperfuse the heart 

(Boateng and Sanborn, 2013). The recommended treatment is either fibrinolysis 

therapy or primary percutaneous coronary intervention (PPCI) to improve patient 

outcomes (Hausenloy and Yellon, 2013). Fibrinolytic drugs, however, are not an ideal 

option as they do not achieve reperfusion in approximately 20-30% of cases, as they 

are unsuitable for certain patients or in a few instances cause further complications 

such as haemorrhagic stroke (National Clinical Guideline Centre (UK). 2013). 

Therefore, PPCI is the treatment of choice for STEMI and has been shown by many 

randomised control trials to be superior to fibrinolytics. Patients receive fibrinolytics if 

the time delay from the onset of symptoms has been too long to undergo PPCI, which 

in 2011/12 was about 5% of STEMI cases in the UK (Keeley et al., 2003; Boersma and 

Primary Coronary Angioplasty vs. Thrombolysis, 2006; Terkelsen et al., 2009; National 

Clinical Guideline Centre (UK). 2013).  

Primary percutaneous coronary intervention has evolved from the first percutaneous 

transluminal coronary angioplasties performed by Grüntzig in 1979. This technique 

involved inserting a catheter to deliver a balloon, which once inflated, dilated the artery 

Figure 1.1 Myocardial infarction - type 1. 

Type 1 MI showing atherosclerotic plaque and thrombus formation that blocks 
blood flow through coronary artery. This project will only be focusing on MI - type 1. 
Adapted from Thygesen et al (Thygesen et al., 2012) and Pearson Education Inc. 
2010. 
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allowing blood re-flow. It then progressed to the insertion of metal stents after this 

process to avoid restenosis (Figure 1.2), to the stents currently used that can act as a 

drug delivery system (Grüntzig et al., 1979; Lei et al., 2011; Nabel and Braunwald, 

2012). Although globally accepted as the gold-standard treatment for STEMI, the 

acceptable time period to deliver PPCI that is of benefit is still debated. The main 

obstacle to deliver timely PPCI is physical proximity to an appropriate centre (National 

Clinical Guideline Centre (UK). 2013; Whittaker et al., 2013; Jordan and Caesar, 2016). 

Guidelines state a 60-90 minute door-to-balloon time window, which is the time from 

arriving at a PPCI centre to undergoing surgery, and that reperfusion by PPCI ideally 

occurs within 2-3 hours of symptoms presenting (Terkelsen et al., 2009; Windecker et 

al., 2014). These time frames are vital. Within the first hour of occlusion nearly half the 

salvageable myocardium is irrecoverable, and after 3 hours this increases to two-thirds 

(National Clinical Guideline Centre (UK). 2013). However, in some studies and clinical 

settings PPCI is performed irrespective of these time periods being exceeded 

(Terkelsen et al., 2009; Windecker et al., 2014). 
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Since PPCI has become routinely performed, mortality rates post-STEMI have 

declined over the last two decades. In those 20 years, use of PPCI has increased from 

about 12% to over 60% (Lønborg, 2015; Doost Hosseiny et al., 2016) and as such 

mortality rates after 1 year are around 7-10%, which is more than half of what they 

were 20 years ago. The rationale behind the deceleration in mortality rates in the long-

term, despite there being an increase in survival post-MI and PPCI, is the phenomenon 

called ischaemia-reperfusion injury (IRI) and the fact that even after successful PPCI 

many patients still demonstrate a progressive decline in cardiac function as a result of 

adverse remodelling ultimately leading to heart failure and even death (Lønborg, 

2015).  

 

1.3 Ischaemia-reperfusion injury phenomenon 

Despite the advantageous effects of PPCI and other revascularisation methods, the 

resulting reperfusion after an ischaemic event can itself detrimentally impact and 

exacerbate myocardial dysfunction via IRI (Hausenloy and Yellon, 2013; Lønborg, 

Figure 1.2 Primary percutaneous coronary intervention. 

Diagram illustrating insertion of catheter into coronary artery to position balloon 
and stent at the site of blockage, then inflation of balloon, and finally removal of 
catheter and balloon leaving the stent open and reflow of blood through artery. 
Adapted from Healthwise incorporated. 
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2015). Numerous clinical conditions besides MI have been linked to the occurrence of 

IRI. These include, but are not limited to, stroke, organ transplantation and peripheral 

vascular disease (Kalogeris et al., 2012; Widgerow, 2014). Regardless of its systemic 

prevalence, the exact mechanisms behind IRI remain unclear so it cannot be exploited 

therapeutically. The current understanding of the underlying pathophysiology is highly 

complex and multifactorial (Hausenloy and Yellon, 2013; Halladin, 2015; Neri et al., 

2017). 

 

1.3.1 Categories of ischaemia-reperfusion injury  

Ischaemia-reperfusion injury has been categorized into 4 forms: reperfusion-induced 

arrhythmias, myocardial stunning, microvascular obstruction (MVO) and lethal 

myocardial reperfusion injury. The first two are reversible whereas the last two are 

irreversible (Hausenloy and Yellon, 2013). 

Reperfusion-induced arrhythmias can arise at the onset of reperfusion from PPCI. 

They include idioventricular rhythm, ventricular tachycardia and fibrillation, which either 

naturally terminate or can be simply treated (Fröhlich et al., 2013; Hausenloy and 

Yellon, 2013). 

Myocardial stunning is the term for the temporary contractile dysfunction caused by 

the effects of reactive oxidative species (ROS) and calcium ion (Ca2+) overload, as 

described above, and is associated with injury to the microvasculature (Fröhlich et al., 

2013; Hausenloy and Yellon, 2013; Pinto et al., 2017). It can occur even if the 

ischaemic period was around 15 minutes, which is too short to bring about myocardial 

necrosis (Buja, 2005). 

Microvascular obstruction was first reported by Krug et al in 1966 as the “inability to 

reperfuse a previously ischemic region” (Krug et al., 1966). Roughly 30-40% of patients 

that undergo reperfusion suffer from MVO, also known as the “no-reflow” phenomena. 

It is caused by microembolism of platelets, De Novo thrombosis, neutrophil plugging, 

capillary damage associated with compromised vasodilation, release of 

vasoconstricting and thrombogenic elements, or capillary compression via external CM 

or endothelial cell swelling (Moens et al., 2005; Hausenloy and Yellon, 2013; Kidambi 

et al., 2013). Together with endothelial dysfunction, oedema and oxidative stress (OS), 

MVO can be a key mediator in the pathogenesis of microvascular dysfunction. Blood 
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flow in MVO is retarded and there are distinctive areas of hypoperfusion (Moens et al., 

2005). Microvascular obstruction manifestation is associated with numerous adverse 

outcomes in STEMI patients that have been reperfused. They include a larger infarct 

size, poorer short and long term clinical outcomes, lower left ventricle (LV) ejection 

fraction (EF) and, independent of the final infarct size, adverse remodelling and 

function of the LV (Fröhlich et al., 2013; Kidambi et al., 2013). 

Lethal myocardial reperfusion injury refers to the death of CMs during reperfusion, that 

after the ischaemic event were potentially still viable. Confirming the exact extent of 

lethal myocardial reperfusion injury is challenging, and has been indirectly verified 

using therapeutic interventions at the onset of MI both in experimental models and 

STEMI patients. These studies showed a reduction in final infarct size of 40-50%. This 

suggestion that IRI via lethal myocardial reperfusion injury can account for as much as 

50% of the final infarct (Figure 1.3) makes it a hugely important target to potentially 

exploit therapeutically to improve STEMI patient outcomes (Fröhlich et al., 2013; 

Hausenloy and Yellon, 2013; Lønborg, 2015). Factors instrumental in the development 

of lethal myocardial reperfusion injury includes Ca2+ overload, the mitochondria 

permeability transition pore (mPTP) opening, hypercontraction of myofibrils and the 

large burst of OS caused by excessive ROS generation (Hausenloy and Yellon, 2013). 
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It is clear that these processes are important in determining the severity of the patient’s 

symptoms following IRI. From Figure 1.3 it is clear that the size of the infarct is smaller 

if the heart is reperfused, and by association will have improved CM viability and heart 

function. However, these patients still possess a high likelihood of progressing to heart 

failure, and therefore it is possible that other yet unknown cellular events may 

contribute (Konstam et al., 2011; Hausenloy and Yellon, 2013) that may offer targets 

for novel therapeutics.  

 

1.3.2 Pathophysiology 

Ischaemia-reperfusion injury is composed of both the myocardial ischaemic and 

reperfusion phases (Hausenloy and Yellon, 2013; Widgerow, 2014).  

At the onset of ischaemia, the rapid switch to an anaerobic metabolic state and the 

changes in biochemical demands negatively impact the myocardium. Oxidative 

phosphorylation is arrested due to lack of oxygen causing depolarisation of the 

mitochondrial membrane, loss of adenosine triphosphate (ATP) and suppression of 

the myocardium to contract as normal. Cellular metabolism rapidly shifts to anaerobic 

Figure 1.3 Contribution of ischaemia-reperfusion injury to final infarct size. 

Graph illustrating the potential contribution of both myocardial ischaemia and IRI to 
the final infarct size. Adapted from Hausenloy et al (Hausenloy and Yellon, 2013). 
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glycolysis generating lactic acid and an accumulation of hydrogen ions (H+) that 

reduces the intracellular pH levels, inhibiting myofibril contraction and closure of the 

mPTP. To counterbalance the H+ increase membrane sodium-hydrogen (Na+-H+) ion 

exchangers are activated that expel H+ for sodium ions (Na+). The depletion of ATP 

through halted production and hydrolysis means that the sodium-potassium (3Na+-2K+) 

ATPase transporters cannot function to remove the build-up of Na+, creating an 

intracellular Na+ overload. The cell responds by utilising the sodium-calcium (2Na+-

Ca2+) exchangers, but by addressing the Na+ overload this causes an intracellular Ca2+ 

overload. Calcium dependent proteases are subsequently activated causing tissue 

damage through disrupting cellular structures (de Groot and Rauen, 2007; Kalogeris 

et al., 2012; Hausenloy and Yellon, 2013; Widgerow, 2014). Calpains are a family of 

proteases that activates sarcomeric apoptosis and degrade structural proteins leading 

to cell death, as well as proteolysis of myofibril proteins that alter CM contractility and 

contributes to heart failure (Kalogeris et al., 2012; Neri et al., 2017). 

Reperfusion delivers oxygen and substrates essential for aerobic ATP generation, and 

also restores physiological pH levels by washing out lactic acid. However, reperfusion 

also initiates damaging mechanisms. The oxygen influx triggers the electron transport 

chain within the mitochondria to be reactivated generating high amounts of ROS. 

Reactive oxygen species levels are augmented by other sources including reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and xanthine oxidase 

brought in by neutrophil and endothelial cells in the restored blood flow. Ischaemia-

reperfusion injury mediated by ROS occurs via attracting more neutrophils to the CM, 

opening of the mPTP and disrupting sarcoplasmic reticulum (SR) function. The SR 

exacerbates the intracellular Ca2+ overload by releasing more Ca2+ into the cytosol. 

ROS also denatures enzymes and directly damages DNA. The overall effect of an 

increase in ROS, overload of Ca2+ and opening of the mPTP in IRI is mediated through 

myofibril hypercontracture, endothelial dysfunction and inflammatory cascade 

activation (Kalogeris et al., 2012; Hausenloy and Yellon, 2013; Neri et al., 2017). 

Furthermore ROS can act as a potential contributor to mitochondrial Ca2+ overload, 

which can be a major contributor to increasing ROS levels, therefore creating a 

feedback loop to continually maintain a state of Ca2+ overload and increased ROS 

(Kaneko et al., 1990; Murphy and Steenbergen, 2007; Penna et al., 2009). In addition 

to these effects, ROS can have downstream consequences including stimulating an 



 

10 

 

extremely organised, acute inflammatory response characterised by increased 

expression of pro-inflammatory genes and cytokine release. Indeed it has been 

demonstrated in models of MI that the release of pro-inflammatory cytokines including 

tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) are 

increased (Neri et al., 2015). While these pathophysiological processes contribute 

directly to CM death, MI and IRI also impact on the biology of the surviving myocardium 

and may contribute to adverse myocardial remodelling although the exact mechanisms 

by which this occurs remains unclear (van der Laan et al., 2012; Muhlestein, 2014; 

Vanezis et al., 2016).  

 

1.4  Myocardial repair and adverse remodelling 

Shortly after MI, repair mechanisms are stimulated by the damaged myocardium and 

the heart undergoes remodelling that can have dramatic effects on the heart, both 

structurally and functionally. The process of repair in the myocardium following an MI 

can be divided into multiple stages. The first phase is composed of CM death either by 

apoptosis or necrosis, which is initiated within 6 hours of a coronary occlusion 

(Blankesteijn et al., 2001). The timings and stimuli to trigger apoptosis and necrosis in 

the heart post-MI is still debated. It has been suggested that apoptosis occurs 

predominantly in the early acute stages after MI between 6 and 8 hours of the occlusion 

and necrosis is subsequently activated over the period between 12 hours and up to 4 

days after MI (Blankesteijn et al., 2001). Additionally, as necrosis is a passive process 

is has been postulated that activation of necrosis occurs if the cell ATP levels are 

diminished resulting from IRI, whereas the CM will undergo apoptosis if ATP is 

available (Krijnen et al., 2002).  

Apoptosis followed by necrosis would also fit as only necrosis is associated with an 

inflammatory response, which is the second phase of myocardial repair starting at 

around 12 hours and continuing for roughly 3 days (Blankesteijn et al., 2001). This 

phase involves the activation of the complement cascade, release of cytokines and 

ROS. All three act in unison to recruit immune cells including neutrophils, monocytes 

and leukocytes as well as other cells such as fibroblast and endothelial cells. 

Neutrophils secrete components to augment cell recruitment to the injured myocardium 

as well as oxidative and protease factors (Nah and Rhee, 2009). Reduction of 
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neutrophil levels in animal models of MI and IRI resulted in smaller overall infarcts, 

suggesting that neutrophils are involved in cardiac injury (Romson et al., 1983; Jordan 

et al., 1999). Cytokines such as TNF-α not only act as chemoattractants but also 

upregulate fibroblast matrix metalloprotease (MMP) expression to regulate collagen 

deposition in the extracellular matrix (ECM) (Nah and Rhee, 2009; Lin et al., 2015). 

Overall, the inflammatory phase acts to attract cells to remove cell debris released from 

dead CMs and that are required for the third phase; the proliferative phase to lead to 

granulation (Blankesteijn et al., 2001; Nah and Rhee, 2009). 

The granulation tissue generated after MI is primarily directed by the myofibroblast 

population (Blankesteijn et al., 2001). Myofibroblasts produce collagens that are 

continuously synthesised to keep levels stable. They also are contractile within the 

ECM. This contractile function is not involved in cardiac contraction, but acts to close 

and strengthen the wound. Inefficient myofibroblast recruitment and organisation can 

weaken the infarct, however, excessive fibrosis is deleterious to cardiac function 

(Blankesteijn et al., 2001; Baum and Duffy, 2011; Davis and Molkentin, 2014). Another 

important event during the granulation phase is angiogenesis, or formation of new 

blood vessels (Honnegowda et al., 2015). Angiogenesis is vital for cardiac repair to 

supply the myocardium with adequate oxygen and nutrients to meet the elevated 

metabolic demand of the proliferating cells during this stage of wound repair (Darby et 

al., 2014; DiPietro, 2016; Broughton et al., 2018). 

After several weeks of granulation, the infarct begins to stabilise over the fourth phase; 

the maturation phase, which continues for up to 2 months after MI. The scar is never 

fully resolved, and as such myofibroblasts remain resident within the region for 

numerous years (Blankesteijn et al., 2001; Czubryt, 2012). This results in a stiffer heart 

with impaired contractility and relaxation, as well as interfering with cardiac electrical 

conduction increasing the risk of arrhythmias (Czubryt, 2012). 

The morphological changes the heart undergoes during and after repair in response 

to injury are termed pathological remodelling events (Cohn et al., 2000). These 

encapsulate all alterations to both the function and structure of the myocardium, such 

as CM hypertrophy, dilated ventricular wall and fibrosis (Azevedo et al., 2016). Initially 

after MI the scar formation leads to the LV wall becoming thinner, longer and the 

internal volume increases. The heart starts to undergo remodelling where the CMs 

become hypertrophic to increase the wall mass. The amount of remodelling that occurs 
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is proportional to the level of injured myocardium, and if not resolved, the hypertrophy 

and dysfunctional contraction of the LV will continue to decline with time causing 

progression to heart failure (Konstam et al., 2011). Cardiac dysfunction predisposing 

the patient to heart failure is the primary outcome of adverse remodelling (Azevedo et 

al., 2016). This adverse remodelling is again linked to an inflated inflammatory 

response and elevated cytokine levels including interleukins, transforming growth 

factor-β (TGF-β) and TNF-α (Konstam et al., 2011; van der Laan et al., 2012). The 

presence of these inflammatory mediators is again central to the establishment of IRI, 

and patients with heart failure and IRI are associated with a more adverse prognosis 

(Kleinbongard et al., 2011; Joost et al., 2016). 

 

1.4.1 Myocardial regeneration 

Although the heart is a relatively quiescent organ and the majority of CMs are post-

mitotic, it does have a limited but measurable potential to regenerate CMs. It is also 

evident that this regenerative potential contributes to recovery following MI and IRI in 

a meaningful way (Carvalho and de Carvalho, 2010; Bergmann et al., 2015).  

Some of the best evidence that CMs are replaced during normal myocardial 

homeostasis is provided by (Bergmann et al., 2015). This study took advantage of the 

C14 released during the cold war nuclear bomb testing to retrospectively carbon date 

CM DNA in order to compare the turnover of an individual’s CMs to their chronological 

age. Using this technique, it was demonstrated that in CMs the majority of postnatal 

DNA synthesis occurs during the first two decades of life, with the highest CM turnover 

observed during the first decade of life, and after the first decade around 80% of CMs 

will not be exchanged throughout the lifetime of the heart. It was also shown that CM 

turnover and exchange is at a much lower rate than other cardiac cell types such as 

endothelial and mesenchymal cells (Bergmann et al., 2015).  

Cardiomyocyte regeneration also contributes to recovery post-MI (Malliaras et al., 

2013). Cardiomyocytes possessing mitotic activity post-MI are located in both the 

border zone (BZ), adjoining the area of scar, and remote zone (RZ), areas further away 

from the scar. Post-infarct the number of mitotic CMs in the LV are more than three 

times higher than is normally expected, requiring further explanation as to why this 

replication is insufficient to repair the infarct (Beltrami et al., 2001). Although other 
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studies report an increase in CM proliferation after MI, there are discrepancies 

regarding the source of these new CMs. Some studies name recruited endogenous 

stem cells as the primary source. Others state that due to the absence of stimulating 

cytokines and other signals, circulating stem cell numbers are too low to be the source 

and therefore new CMs arise from resident CMs. However, it has also been shown that 

CMs arise from both sources (Beltrami et al., 2001; Carvalho and de Carvalho, 2010; 

Malliaras et al., 2013; Nakada et al., 2017). 

In a healthy, un-infarcted heart, it has been proposed that that the majority of CM 

turnover arises from a subpopulation of CMs that retain some degree of proliferative 

potential, as roughly 90% of resident stem cells have been reported to be in a state of 

quiescence (Hsieh et al., 2007; Ellison et al., 2013; Malliaras et al., 2013; Senyo et al., 

2013; van Berlo et al., 2014; Ellison-Hughes and Lewis, 2017). However, following 

injury, including hypoxia and MI, there is an increase in CM proliferation and also 

stimulation of quiescent stem and progenitor cells to contribute to CM replacement 

within the BZ (Hsieh et al., 2007; Ellison et al., 2013; Malliaras et al., 2013). While a 

number of cardiac stem cell populations have been described (Cai et al., 2008; Zhou 

et al., 2008; Smart et al., 2011), perhaps the most extensively studied is the c-kit 

positive population. However, approximately 1% of c-kit expressing cells are cardiac 

stem cells, and therefore identification of cardiac stem cells should be used in 

conjunction with the additional markers Sca-1 (positive expression), CD31 (negative 

expression), CD45 (negative expression) and tryptase (negative expression) (Ellison 

et al., 2013; Vicinanza et al., 2017).  

During repair post-MI with IRI, proliferation and generation of endothelial cells is also 

essential for the process of angiogenesis. Angiogenesis is an essential recovery and 

remodelling mechanism after MI for the revascularisation of damaged myocardium (He 

et al., 2017), by maintaining survival, function and stimulating growth of CMs (Cochain 

et al., 2013). Preventing angiogenesis in vivo promoted progression to heart failure in 

a model of CM hypertrophy and dilated cardiomyopathy (Shiojima et al., 2005), 

pressure overload via transverse aorta constriction (Sano et al., 2007), and hypoxia 

and necrosis following transgenic removal of laminin-α4 (an important ECM protein) 

from the myocardial blood vessels (Wang et al., 2006). Additionally, models stimulating 

angiogenesis at the time of MI in a mouse led to improved cardiac function (Tirziu et 
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al., 2007) and reactivated CMs that entered a state of reversible contractile arrest, or 

hibernation, that evaded cell death (May et al., 2008). 

 

1.4.2 Therapeutic strategies trialled for ischaemia-reperfusion injury 

Considering the impact PPCI has had on survival rates following MI, there has been a 

great effort to identify therapies to limit IRI so that the clinical progression of these 

patients is favourable (Hausenloy and Yellon, 2013).  

Despite the capacity for CM regeneration, this mechanism is clearly insufficient to fully 

repair the extensive damage produced following MI and IRI (Bergmann et al., 2009; 

Bergmann et al., 2015; Foglia and Poss, 2016). Maintaining cardiac function following 

injury relies on remodelling presenting its own problems (Kehat and Molkentin, 2010), 

as detailed above. As such, there has been extensive research and clinical trials into 

the possibility of using stem or cellular therapies to enhance CM regeneration post-MI 

or in patients suffering from heart failure (Min et al., 2002; Lalit et al., 2014). 

Unfortunately, despite these promising pre-clinical studies, Phase I and II clinical trials 

transplanting stem cells with the aim to repair cardiac damage have shown variable 

outcomes, likely due to a combination of factors such as method of delivery and type 

of stem cell transplanted (Sheng et al., 2013; Chen et al., 2015; Lemcke et al., 2018). 

Additionally, cardioshere cardiac derived stem cells have been tested in clinical trials, 

demonstrating promising results from the pre-clinical CADUCEUS study (Makkar et al., 

2012) especially regarding the safety profile of this therapy (Marbán, 2014; Kapelios 

et al., 2016; Chakravarty et al., 2017). However, again subsequent trials (ALLSTAR 

and CAREMI trial) have failed to demonstrated improvements in heart function 

correlating with attenuating remodelling after MI following treatment with cardiosphere 

cardiac derived stem cells (Tyler et al., 2018; Rikhtegar et al., 2019).  

Likewise, promising pre-clinical trials showing the benefit of promoting angiogenesis 

following MI to improve recovery led to a number of clinical trials. However, these also 

have resulted in varying outcomes with many not replicating the positive results from 

in vivo studies (Silvestre, 2012; Gaspar et al., 2019). Mostly these have been based 

on the transplantation of bone-derived stem cells, with results varying from 

unsuccessful transplantation to a modest increase in LV EF (Tateishi-Yuyama et al., 

2002; Assmus et al., 2006; Lunde et al., 2006; Schächinger et al., 2006), or testing 
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gene delivery of pro-angiogenic growth factors (Losordo et al., 1999; Kastrup et al., 

2005; Stewart et al., 2006; Stewart et al., 2009). Transplantation of growth factors have 

also been trialled (Schumacher et al., 1998; Unger et al., 2000; Simons et al., 2002), 

but neither strategy have developed any therapies with a clear benefit and further 

studies are necessary (Gaspar et al., 2019).  

An alternative therapy for myocardial IRI that has been trialled is the use of anti-

inflammatory therapies, given the role inflammation plays in directing myocardial repair 

and remodelling (Huang and Frangogiannis, 2018). Again, studies have seemed 

encouraging, yet clinical trials are unable to consistently recapitulate the beneficial 

outcomes from murine models to patients (Roberts et al., 1976; Peters et al., 1978; 

Bush et al., 1980; Gislason et al., 2006; Brophy et al., 2007). This is likely due to the 

heterogeneity of MI and repair processes between patients, therefore generating more 

targeted and tailored approaches may be more successful in the future (Huang and 

Frangogiannis, 2018). 

Given the prominent role OS and ROS play in establishing IRI, antioxidants have also 

been suggested as a therapy (Hausenloy and Yellon, 2013). However, like the 

regeneration, angiogenic and anti-inflammatory therapies, the outcomes from clinical 

trials varies (Barta et al., 1991; Westhuyzen et al., 1997; Demirag et al., 2001; Marczin 

et al., 2003) and as such the National Institute for Health and Care Excellence no 

longer recommends administering antioxidant supplements to patients post-MI 

(National Institute for Health and Care Excellence (NICE), 2007). 

Instead of using antioxidants to target OS generally, antioxidants have also been 

developed that specifically target mitochondrial OS. These antioxidants specific to 

mitochondria include MitoQ, which is able to enter and accumulate within the 

mitochondria where it is reduced to form an active antioxidant. The accumulation of 

MitoQ makes it a more potent antioxidant compared to normal antioxidants, and 

therefore an attractive potential therapy. MitoQ was tested in a model for IRI, where 

rats were orally administered MitoQ in their water supply, their hearts were then 

excised, perfused by a Langendorff system, and then subjected to ischaemia followed 

by reperfusion. The MitoQ regime correlated with improved cellular and tissue function, 

decreased cytochrome c release and limited mitochondrial dysfunction (Adlam et al., 

2005). However, this work needs to be continued to trial the effects of MitoQ and other 
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mitochondria-targeting antioxidants on heart function in humans before it can be 

accepted as a routine therapy to protect against the effects of IRI (Xia et al., 2016). 

Given the lack of promising therapies for IRI as a mechanism to limit adverse 

remodelling and improve cardiac function, alternative strategies and targets are 

desperately required. A number of studies from this lab have demonstrated that in the 

heart and other tissue systems, including the liver, lungs and brain, OS can induce 

cellular senescence (Hewitt et al., 2012; Jurk et al., 2014; Ogrodnik et al., 2017; Birch 

et al., 2018; Anderson et al., 2019). Furthermore, in a number of animal models it has 

been shown that senescence could contribute to myocardial remodelling (Bujak et al., 

2008; Zhu et al., 2013). The role of senescence in other CVDs associated with 

increased OS, such as MI with IRI, has not been investigated and is postulated to 

represent a potential therapeutic target in this study.  

 

1.5 Cellular senescence 

Cellular senescence was classically defined as a somatic cell irreversibly losing the 

potential to proliferate, and which has permanently exited the cell cycle (Passos et al., 

2009; Campisi, 2013; Childs et al., 2015). As such, senescence is also considered to 

be a potent anti-cancer mechanism. Unfortunately senescence may contribute to 

tissue dysfunction, as an accumulation of senescent cells is associated with many age-

related disorders (Campisi and d'Adda di Fagagna, 2007).  

Senescence was first described in 1961 by Hayflick and Moorehead (Hayflick and 

Moorhead, 1961) and has been classified into the following groups; replicative, stress-

induced premature senescence (SIPS), and oncogenic induced senescence (OIS) 

(Lowe et al., 2016). 

 

1.5.1 Replicative senescence 

Replicative senescence was the first type of cellular senescence to be discovered and 

defined in 1961 (Hayflick and Moorhead, 1961). In this study they discovered that 

embryonic fibroblasts had a finite potential to replicate. In culture the fibroblasts were 

capable of 50 divisions ± 10, however, past this point they were unable to continue 

proliferating and went into a state of permanent arrest (Passos et al., 2009). Years 
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later it was reported that telomeres, the nucleotide tandem repeats capping 

chromosomes to keep chromosomes stable (Martínez and Blasco, 2015), were the 

stimulus for initiating senescence (Passos et al., 2009). As a result of inefficiencies in 

DNA replication with each round of cellular division, the telomeric regions progressively 

shorten, until they can no longer protect the chromosome ends, termed uncapping, 

and are recognised as DNA double strand breaks (DSBs). This elicits a DNA damage 

response (DDR), and an upregulation of p53, and the cell therefore exits the cell cycle. 

If this damage is not repaired, cell replication is inhibited irreversibly. This event is 

called “Hayflick Limit”, which was first used in 1974 to describe this discovery (Burnett, 

1975; Shay and Wright, 2000).  

 

1.5.2 Stress-induced premature senescence 

Another form of senescence is SIPS. Stress-induced premature senescence refers to 

senescent events stimulated by non-oncogenic stress stimuli and in somatic cells that 

have not yet reached their Hayflick limit. This type of senescence shares many 

molecular and cellular characteristics with replicative senescence and OIS (Suzuki et 

al., 2013). In the case of SIPS sub-lethal stress stimuli, including OS, prompt 

senescence through accumulation of DNA damage that activates the DDR (Dumont et 

al., 2000). Although this form of DDR and senescence activation does not require 

telomere shortening this lab has recently demonstrated that telomeres also play a role 

in SIPS. It was shown that not only are telomeres highly susceptible to stress-inducible 

DNA damage, from OS or irradiation, but also the DNA repair machinery is not able to 

efficiently repair DSBs. Therefore, unlike the majority of genomic DNA damage, which 

can be repaired, these telomere-associated foci of DNA damage, termed TAF, are 

persistent. This persistent presence of DSBs continuously activates the DDR and 

induces senescence, regardless of telomere length (Figure 1.4) (Victorelli and Passos, 

2017; Anderson et al., 2019). As such TAFs are not only an important mediator of 

senescence but also a robust marker of SIPS (Hewitt et al., 2012).  
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Further demonstrating that continued replication is not required for senescence 

induction are the observations that post-mitotic cells can acquire a senescent 

phenotype. Neurons and adipocytes have been identified in vivo, both human and 

mice, to express markers and characteristics of senescent cells such as elevated 

p21CIP, senescence-associated β-galactosidase (SA-β-Gal) activity and pro-

inflammatory interleukin levels (Sedelnikova et al., 2004; Minamino et al., 2009; van 

Deursen, 2014; Ogrodnik et al., 2019b). Non-diving cells are not immune from 

mutations occurring, and there is increasing evidence demonstrating that post-mitotic 

cells such as CMs and neurons can become senescent. However, the role of 

senescence has not been fully characterised in all post-mitotic cells and diseases 

affecting them, and further investigations are essential to answer outstanding 

questions (Campisi and d'Adda di Fagagna, 2007; van Deursen, 2014; Sapieha and 

Mallette, 2018; Anderson et al., 2019; Ogrodnik et al., 2019b; Walaszczyk et al., 2019).  

Figure 1.4 Replicative senescence vs stress-induced premature senescence. 

Normal telomere shortening with each cell division leads to telomeres being 
uncapped and recognised as DNA damage leading to senescence, or replicative 
senescence, on left panel. The central panel illustrates how mild-stress causes 
single-stranded breaks that accelerate the rate at which a cell becomes senescent; 
a form of SIPS. DSBs on the other hand immediately activate the DDR and the cell 
is prematurely senescent. Taken from Victorelli and Passos (Victorelli and Passos, 
2017). 
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1.5.3 Oncogene-induced senescence 

Oncogene-induced senescence operates as a tumour suppressor mechanism that 

acts to prevent benign tumours developing into malignant tumours, which have an 

immortal phenotype and cannot become senescent. When activated, the oncogene 

Ras induces a short period of cellular proliferation that is then halted. Simultaneously, 

there is a rise in the levels of p53 and p16INK4a proteins, both of which are tumour 

suppressors and play pivotal roles in the establishment of senescence (Campisi and 

d'Adda di Fagagna, 2007; Courtois-Cox et al., 2008; Kilbey et al., 2008).  

 

1.5.4 Common pathways controlling senescence 

While the mechanism driving the induction maybe different in these different classes, 

a common feature of senescence is that DNA damage and activation of the DDR are 

central events in senescence establishment. The DDR network exists to detect DNA 

damage, halt cell cycle progression and initiate DNA damage repair mechanisms 

(Hanawalt, 2015). The tumour suppressor and transcription factor p53 plays a vital role 

in regulating the DDR. Transcriptional activation of many specific downstream genes, 

including the cyclin-dependent kinases (CDK) inhibitor p21CIP, initiates the DDR to halt 

cell cycle progression and repair DNA (Lieberman et al., 2017). p21CIP blocks CDK2 

from inhibiting the retinoblastoma (Rb) protein family members (Figure 1.5). Activated 

Rb drives senescence by halting the cell progressing through the cell cycle. p53 and 

subsequently p21CIP can be activated by numerous stimuli including the CDK inhibitor 

p14ARF/19Arf (in humans/mice) which are other suggested senescence biomarkers 

(Campisi and d'Adda di Fagagna, 2007; Capparelli et al., 2012; Childs et al., 2015). 

Persistent DDR activation due to a failure in repairing the DNA damage will lead to a 

cell to undergo apoptosis, autophagy or senescence (Lieberman et al., 2017). 

Another important CDK inhibitor that causes cell cycle arrest is p16INK4a. In this case, 

activated p16INK4a prevents CDK4/6 from exerting inhibitory effects on Rb family 

members (Figure 1.5). Together p21CIP and p16INK4a are both often upregulated in 

many types of senescent cells. Some studies report that majority of senescent cells 

express p16INK4a (Baker et al., 2011). p16INK4a and p21CIP appear to be the best CDK 

inhibitors as candidates or senescence biomarkers (Baker et al., 2011; Capparelli et 

al., 2012; Childs et al., 2015; Watanabe et al., 2017).  
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Many studies have highlighted the importance that p16INK4a plays in senescence 

development and disease pathogenesis (Muñoz-Espín et al., 2013; Munoz-Espin and 

Serrano, 2014; Da Silva-Álvarez et al., 2019). With this in mind a mouse model with a 

drug inducible system of p16Ink4a expressing cells was developed in 2011 (Baker et al., 

2011; Naylor et al., 2013). The INK-ATTAC mouse model was designed to express 

caspase-8 under transcriptional control of p16Ink4a expression. Upon administration of 

the drug AP20187, the caspase-8 proteins in the senescent cell membranes would 

dimerise to activate caspase-8 and initiate apoptosis of p16Ink4a expressing senescent 

cells (Baker et al., 2011). Improved outcomes were observed when AP20187 was 

administered including hindered tumour formation, delayed age-related organ 

dysfunction and improved life span (Baker et al., 2011; Baker et al., 2016). 
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Figure 1.5 Activation of senescence. 

Diagram showing stress stimuli activating p53/p21CIP and p16INK4a pathways 
ultimately leading to Rb inhibition, exit from the cell cycle and initiation of 
senescence. If senescence becomes fully established it develops the SASP, and if 
not cleared (aka chronic senescence) will lead to tissue dysfunction. Acute 
senescence is beneficial for processes such as wound repair and tumour 
suppression. Adapted from Childs et al (Childs et al., 2015). 
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1.5.5 Classical senescence marker 

Senescence-associated β-galactosidase has been the most prevalent biomarker used 

for senescence, mainly because it is simple to detect and many senescent cell types 

have shown up-regulation of the lysosomal β-galactosidase at pH6.0. At this pH, this 

biomarker is found to only be expressed by senescent cells and not by cells in any 

other state both in vitro and in vivo. The colorimetric assay using the substrate X-Gal 

detects the level of β-galactosidase in situ. Developed in 1995, this assay has been 

used and reported extensively in over 2,400 publications to detect cellular senescence 

(Lee et al., 2006; Campisi and d'Adda di Fagagna, 2007; Itahana et al., 2013).  

Despite its universal utilisation, the role of SA-β-Gal in senescence has not been 

completely defined and some studies challenge its efficiency and suitability. There are 

some studies that found this assay generated false positive data, or did not generate 

consistent, reproducible results. As senescence is a multi-factorial process, and 

considering the issues surrounding the SA-β-Gal assay, it is wise to use this biomarker 

in combination with other biomarkers of senescence (Lee et al., 2006). 

 

1.6 Senescence, age-related disease and the senescence-associated 

secretory phenotype 

Senescence drives the ageing phenotype (McHugh and Gil, 2018). A number of 

studies from this lab and others have demonstrated that senescence via OS plays a 

role in organ dysfunction in a number of different tissue systems, including the liver, 

lungs, brain and heart (Passos et al., 2010; Jurk et al., 2014; Birch et al., 2015; 

Ogrodnik et al., 2017; Anderson et al., 2018; Anderson et al., 2019; Ogrodnik et al., 

2019b; Walaszczyk et al., 2019). A hallmark of senescent cells is the production of the 

senescent-associated secretory phenotype (SASP). The SASP is a complex 

combination of numerous factors including growth factors, cytokines, chemokines, 

ECM factors, proteases and many others that have potent signalling properties and 

are released from the senescent cell. It can act in both an autocrine manner, to 

maintain senescence in the cell, and a paracrine fashion to drive the establishment of 

senescence in neighbouring cells (Figure 1.6) (Acosta et al., 2008; Coppé et al., 2008; 

Kuilman et al., 2008; Coppé et al., 2010; Rodier and Campisi, 2011; Watanabe et al., 

2017). The SASP is initiated by the DDR and has been demonstrated to take around 
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7-10 days to fully develop at which point the cell is irreversibly senescent (Coppé et 

al., 2008; Passos et al., 2009). 

 

The SASP can be highly detrimental in some scenarios and can: cause and maintain 

chronic inflammation; promote tumours depending on the oncogenes involved and 

whether p53 is deficient; and also hinder tissue repair and alter tissue architecture 

which are both related to the ageing process (Demaria et al., 2015; Velarde and 

Demaria, 2016; Watanabe et al., 2017). Evidence has shown that senescence can 

initiate malignant tumour formation in vivo through the accumulation of certain types of 

senescent cells, in particular senescent fibroblasts, and via components of the SASP 

communicating with activated oncogenes (Coppé et al., 2010; Rodier and Campisi, 

2011; Childs et al., 2015). These components include IL-6 and interleukin-8 (IL-8), 

however, the SASP is incredibly complex and not all SASP proteins stimulate cancer 

development (Rodier and Campisi, 2011).  

Regardless of the SASP factors involved and the final outcome, an important definition 

of a senescent cell is its ability for paracrine communication with other cells. The 

presence of the SASP is what separates a non-senescent cell that has exited the cell 

Figure 1.6 Cellular changes after induction of senescence. 

Initiation of senescence from different stimuli elicits DNA damage that in many 
cases activates the DDR causing the cell to become senescent, adopting many 
hallmarks of senescence including hypertrophy and the SASP. The SASP can act 
in an autocrine and paracrine manner to initiate senescence in different cell types. 
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cycle, for example a quiescent or terminally differentiated cell, to a senescent cell 

(Watanabe et al., 2017).  

In terms of ageing and disease, the SASP drives tissue dysfunction via ECM 

deterioration, disrupting stem cell function, deregulating cell differentiation and 

promoting inflammation (Figure 1.7) (van Deursen, 2014). Proteases are components 

of the SASP and their cleavage activity on receptors, ligands and the ECM disrupts the 

integrity of the tissue (Parrinello et al., 2005; Laberge et al., 2012). Tissue function can 

also be adversely affected by induction of a SASP due to components, such as IL-6 

and IL-8, promoting tissue fibrosis and inflammation (van Deursen, 2014). The SASP 

is a cocktail of up to 40-80 signalling factors many of which have known pro-

inflammatory roles (Coppé et al., 2010; Freund et al., 2010), and can impact normal 

cell differentiation, as demonstrated by senescent fibroblasts in in vitro co-cultures 

leading to aberrant epithelial differentiation, proliferation and migration, mostly via the 

activity of the SASP factor matrix metalloproteinase-3 (MMP-3) (Parrinello et al., 2005). 

Additionally, senescent fibroblasts and the SASP factors they secrete can promote the 

process termed epithelial-mesenchymal transition (van Deursen, 2014). Epithelial and 

mesenchymal cells act synergistically to create an epithelial barrier in organs stabilised 

by the ECM produced by mesenchymal cells, however, cytokines released from 

senescent fibroblasts can stimulate them to change their phenotypes. In cancer this 

process is important in the generation of tumour cells. As well as this, epithelial-

mesenchymal transition enables tumour cells to migrate and invade alternative tissues 

progressing the tumour to a metastatic cancer (Laberge et al., 2012). This process has 

also been shown to be involved in a range of other diseases of the pulmonary system, 

including asthma, chronic obstructive pulmonary disease and idiopathic pulmonary 

fibrosis (Bartis et al., 2014), to the gastrointestinal, renal and digestive system, 

affecting the pathogenesis of Crohn’s disease (Jiang et al., 2017), glomerulonephritis 

(Jinde et al., 2001) and liver fibrosis (Zeisberg et al., 2007b). All the above processes 

initiated by a SASP led to tissue dysfunction which is associated with ageing and age-

related pathologies (Childs et al., 2015).  

Stem cell dysfunction has also been attributed to senescence and the SASP (van 

Deursen, 2014). The BubR1 mouse is a model of accelerated ageing with a 

hypomorphic BubR1 allele reducing the activity of this mitotic checkpoint regulator 

resulting in mice displaying several hallmarks of progeria and ageing phenotypes 
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(Baker et al., 2004). In the muscle and adipose tissue from the BubR1 mouse, the stem 

cell populations were strongly affected by a senescent environment and levels were 

around 3-fold lower than in age-matched wild type mice (Baker et al., 2013). This data 

supports the idea that with ageing senescence induces tissue dysfunction by 

preventing efficient regeneration of tissues (van Deursen, 2014)  

 
 

 

A model that supports the hypothesis of a SASP contributing directly to ageing and 

tissue dysfunction is the INK-ATTAC mouse (Baker et al., 2011). As described above, 

administration of the compound AP20187 leads to activation of caspase 8 in p16Ink4a 

expressing cells resulting in the targeted clearance of p16Ink4a positive, senescent cells 

(Baker et al., 2011; Baker et al., 2016). When crossed onto the BubR1 line, treatment 

with AP20187 led to a reduction in senescence and SASP markers in the skeletal 

muscle, eye, adipose, kidney and heart, correlating with fewer events of sarcopenia, 

cataracts, accumulated adipose tissue, kidney dysfunction, glomerulosclerosis, CM 

hypertrophy and cardiac death (Baker et al., 2011; Baker et al., 2016). This result has 

also been replicated in an INK-ATTAC mouse crossed with the MAPTP301SPS19 line, 

Figure 1.7 Age-related cellular disorders. 
Cellular senescence is associated with many aspects of ageing, chronic diseases 
and tissue dysfunction. This occurs via several pathways that utilise the SASP, 
which allows a senescent cell to signal in a paracrine fashion to neighbouring cells 
to impair regeneration, trigger inflammation, and alter cellular architecture through 
the ECM, fibrosis and abnormal cell differentiation. Taken from van Deursen, J. 
(van Deursen, 2014). 
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which displays elevated levels of tau in neurons resulting in neurodegenerative 

symptoms (Bussian et al., 2018). Tau plays a structural role in the formation and 

stabilisation of microtubules that are components of neuronal cytoskeletal system, as 

well as a signalling role in maintaining homeostasis in the brain. Therefore, mutations 

to tau can cause either loss of function or aberrant gain of function that is toxic to the 

neuron (Gendron and Petrucelli, 2009; Rosenmann et al., 2012). These mice were 

shown to accumulate factors relating to the SASP and senescent astrocytes and 

microglia, both mitotic cells of the nervous system (Streit, 2006; Gonzalez-Perez and 

Quiñones-Hinojosa, 2012), and their clearance improved neuron density and other 

characteristics of neurodegeneration (Bussian et al., 2018). When INK-ATTAC mice 

were fed a high fat diet or dosed with the insulin receptor antagonist S961 (Vikram and 

Jena, 2010), they developed insulin resistance and were utilised as a model of Type II 

diabetes (Aguayo-Mazzucato et al., 2019). These mice also displayed an augmented 

SASP profile yet after AP20187, or pharmacological clearance of senescence, SASP 

factors were significantly reduced correlating to improvements in diabetes associated 

pathologies suggesting the SASP does play a role in disease (Aguayo-Mazzucato et 

al., 2019).  

 

1.7  Senescence and the heart 

Cardiovascular diseases are also associated with ageing as a significant risk factor 

(Dhingra and Vasan, 2012; Niccoli and Partridge, 2012; Balakumar et al., 2016). 

Despite studies showing an association between CVDs and senescence hallmarks, 

there are uncertainties regarding senescence as a causative factor in CVDs in vivo, 

and how exactly the role senescence plays may be detrimental to the heart (Serrano 

and Andrés, 2004b; Erusalimsky and Kurz, 2005). 

This may be in part be due to the concept that replicative senescence occurring as a 

result of telomere shortening during cell proliferation and DNA division has been 

considered the major contributor to the accumulation of senescence with age (Childs 

et al., 2015; McHugh and Gil, 2018). While this can explain the accumulation of 

senescence in rapidly dividing tissues it seems unlikely that this would be the primary 

driver of senescence in the heart which is relatively quiescent (Anderson et al., 2019).  
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However, there is data that suggests that if telomere dysfunction is induced this is 

associated with changes in the heart that are characteristic of myocardial ageing. In 

comparison to humans, mice possess very long telomeres that are five-ten times 

longer than human telomeres (Calado and Dumitriu, 2013). Therefore, to model human 

ageing because of telomere dysfunction due to replicative senescence an mTERC-/- 

transgenic mouse, was established. These mice lack an RNA component of 

telomerase, the enzyme that maintains telomere length (Blasco et al., 1997; Toussaint 

et al., 2002) and as such all the cells in these mice, including the germ cells, lack the 

ability to extend or maintain their telomeres (Blasco et al., 1997). Therefore, telomere 

length is inherited with each generation and with each generation mice offspring 

display progressive telomere shortening which by generation 3 (G3) results in critically 

short telomeres and chromosomal instability (Artandi et al., 2000) resembling 

replicative senescence.  

Mice from G3 or later generations have a premature ageing phenotype with increased 

incidence of tumours (Artandi et al., 2000). These mice also displayed characteristics 

of cardiomyopathies, comprising of increased end diastolic pressure, decreasing LV 

mass : volume ratio and CM hypertrophy in the LV (Leri et al., 2003), hallmarks which 

are associated with ageing in humans (Villari et al., 1997). This suggests that ageing 

by telomere attrition and induced senescence can be causative to CVD development 

(Leri et al., 2003). While in the normal physiological state replicative senescence may 

not be the mechanism of cardiac senescence (Anderson et al., 2019) the mTERC-/- 

mouse supports the observation that the induction of senescence through shortening 

telomeres is associated with remodelling in the heart which is detrimental to cardiac 

health. (Leri et al., 2003; Deng et al., 2008). In addition, mice lacking Sirtuin 1 or Bmi, 

genes that antagonise the senescence program, develop cardiac dysfunction, 

hypertrophy, fibrosis and subsequently a dilated cardiomyopathy (Tong et al., 2013; 

Gonzalez-Valdes et al., 2015). In contrast, global deletion of p53, a master 

transcriptional regulator of both senescence and apoptosis, protects against pressure 

overload and MI induced heart failure (Matsusaka et al., 2006; Sano et al., 2007).  

Other evidence that senescence may be detrimental to myocardial health is the link 

between cardiomyopathy and chemotherapies including doxorubicin. Doxorubicin is an 

anthracycline often used to treat some types of cancer. It is known to trigger 

senescence in CMs and leads to cardiomyopathies sometimes years after treatment 
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has ended depending on the dose of the drug (Maejima et al., 2008; Spallarossa et al., 

2009; Piegari et al., 2013). Doxorubicin induces senescence by targeting telomeric 

binding factors that under normal physiological conditions aid in telomere and 

chromosomal stability and by increasing p53 levels. Downregulation of these telomeric 

binding factors led to senescence, however, if the level of downregulation exceeded a 

certain threshold then the cell may go down the apoptosis pathway (Spallarossa et al., 

2009). This model provides further evidence that drug therapies such as doxorubicin 

can induce senescence in CMs, and that hypertrophy and a loss of regeneration 

potential can result in cardiomyopathies and heart failure (Spallarossa et al., 2009).  

More recently, our lab has also begun to dissect the mechanism by which senescence 

contributes to myocardial ageing. Our data suggests that CM senescence not only 

accumulates with age but also promotes myocardial remodelling dysfunction. 

Senescence induced dysfunction was caused both directly as the senescent 

phenotype is directly associated with CM hypertrophy and also indirectly via the 

production of a SASP which promotes myofibroblast differentiation and inhibits 

proliferation of different cardiac cell lineages in vitro (Anderson et al., 2019). We have 

described a mechanism by which rarely cycling or even post-mitotic CMs accumulate 

senescence with age. These data suggest that OS, because of mitochondrial 

dysfunction, induces DNA damage in telomeric regions leading to the formation of TAF. 

In both mice and humans these TAF are a persistent form of DDR and induce CM 

senescence through the classical senescence-inducing pathways, p21CIP and p16INK4a 

(Anderson et al., 2019).  

Senescence has been reported to drive the ageing phenotype (McHugh and Gil, 2018), 

and CVDs are also associated with ageing as a significant risk factor (Balakumar et 

al., 2016). Despite studies showing an association between CVDs and senescence 

hallmarks, there are uncertainties regarding senescence as a causative factor in CVDs 

in vivo, and how exactly the role senescence plays may be detrimental to the heart in 

terms of numerous cardiovascular pathologies (Serrano and Andrés, 2004a; 

Erusalimsky and Kurz, 2005). 

 



 

29 

 

1.7.1 Senescence, ageing and regeneration 

There is a clear association between senescence, impaired regenerative potential with 

age and the progression of degenerative diseases in other self-renewing tissues 

(Sahin and Depinho, 2010). Studies investigating CM turnover in mice and humans 

have presented data suggesting the same may be true of the heart. Wild type and mdx 

mice (a model of cardiomyopathy) both demonstrated the ability to undergo CM 

renewal, which was reduced with age (Richardson et al., 2015a) and in their CM 

studies Bergmann et al demonstrated in humans CMs retain the potential to regenerate 

throughout life, however, CM turnover decreases from approximately 0.8% at 20 years 

to around 0.3% at 70 years (Figure 1.8) (Bergmann et al., 2015). While the direct 

contribution of senescence to age-related impaired CM regeneration is unclear, there 

are a number of possible mechanisms by which this may occur. 

 

 

CM proliferation contributes directly to CM turnover (Hsieh et al., 2007; Loffredo et al., 

2011; Malliaras et al., 2013; Senyo et al., 2013), therefore it is possible that CM 

senescence of the subpopulation of proliferative CMs may directly impair myocardial 

function through cyclin kinase inhibitor expression and cell cycle exit (Alam et al., 

2019a). It has also been demonstrated that the accumulation of senescence with age 

is not exclusive to the CM population. Lewis-McDougall et al show with age the human 

cardiac stem cell progenitor population that are c-kitpos/CD31negCD45neg also can 

Figure 1.8 Turnover of human cardiomyocytes. 

Graph illustrating the exponential decrease in CM renewal rates with age. By the 
second decade of life the CM turnover rate is <1%, at about 0.8%, which declines 
to around 0.3% in later life (70-80 years). Taken from Bergmann et al (Bergmann 
et al., 2015). 
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become senescent and accumulate in the heart (Lewis-McDougall et al., 2019). 

Expression of p16INK4A, SA-β-Gal and DNA damage markers in these stem progenitor 

cells increased proportionally with age. Those stem progenitor cells positive for 

senescence markers were not positive for proliferation markers, and when 

transplanted into young mice that were subjected to permanent LAD ligation the rates 

of progression to heart failure correlating with attenuated regeneration was elevated 

when compared to young mice receiving proliferative progenitor cells in this MI model. 

Additionally, in vitro senescent stem progenitor cells generated a SASP that induced 

the by stander effect in healthy cultures by increasing senescence induction and 

preventing proliferation (Lewis-McDougall et al., 2019). This combined with the data 

from our lab also showing senescence and the SASP accumulates with age, 

attenuates proliferation and is associated with cardiac dysfunction but in the CM 

population (Anderson et al., 2019) supports the hypothesis that senescence within 

many cardiac cell lineages results in a diminished regenerative potential that 

contributes to dysfunction with age or after injury.  

This data regarding senescence in the cardiac stem cells could also potentially explain 

the failure of pre-clinical trials to translate clinically into regenerative therapies (Lewis-

McDougall et al., 2019). Preclinical studies focus on the use of young healthy animals 

(Hsieh et al., 2007; Malliaras et al., 2013) whereas using aged subjects would be more 

clinically relevant (Redgrave et al., 2016). The epidemiology of CVDs shows that the 

prevalence of CVDs increases in a linear fashion with age (Yazdanyar and Newman, 

2009), and thereby most individuals will have a higher level of background myocardial 

senescence (McHugh and Gil, 2018; Anderson et al., 2019) that would create an 

unfavourable environment via the SASP hindering the success of regeneration 

transplant strategies (Lewis-McDougall et al., 2019; Oldershaw et al., 2019).  

 

1.7.2 Role of senescence in cardiac remodelling  

During our previous studies, we have demonstrated even in young animals induced 

senescence contributes to adverse myocardial remodelling and cardiac dysfunction 

(Anderson et al., 2019). As discussed earlier, OS and ROS generation are known 

inducers of cellular senescence. Using a mouse model for cardiac specific 

overexpression of monoamine oxidase-A (MAO-A), an oxidative enzyme that 

generates ROS in the form of hydrogen peroxide (H2O2) (Lairez et al., 2009; Sturza et 
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al., 2013), we demonstrated that young mice CM overproduction of OS was associated 

with increased CM senescence, as demonstrated by the formation of TAF. These mice 

also demonstrated CM hypertrophy and cardiac dysfunction all of which could be 

rescued in part by treatment with the anti-oxidant N-acetyl cysteine (NAC) (Anderson 

et al., 2019). Data which demonstrates a direct association between OS, senescence, 

myocardial remodelling and cardiac function (Anderson et al., 2019). 

Senescence-associated secretory phenotype factors, however, have a range of effects 

depending on the circumstances, resulting in the heterogeneous nature of senescent 

cells (Coppé et al., 2010). For example, senescence and the SASP are also central 

components in embryonic development and initiating tissue repair. In development, 

senescence acts in a regulatory manner in tissue development and patterning, 

including the pharyngeal arches that give rise to the aortic arch (Muñoz-Espín et al., 

2013; Storer et al., 2013; Phillips et al., 2019). Interfering with senescence and SASP 

factors resulted in patterning defects across both murine, chick, zebrafish, human other 

species’ embryos, demonstrating that senescence is a conserved and essential event 

to control development (Storer et al., 2013; Rhinn et al., 2019). In tissue repair, wounds 

stimulate migration of fibroblasts to the injured tissue that differentiated into 

myofibroblasts. These myofibroblasts proliferate for a period of time depositing ECM 

to begin the process of wound closure, followed by transient induction of senescence 

in the myofibroblasts that express a SASP. This switch to the senescent phenotype 

serves to limit myofibroblast proliferation and SASP, which includes MMPs that 

degrade ECM proteins, limiting fibrosis and promoting clearance of these senescent 

myofibroblasts (Jun and Lau, 2010a; Rodier and Campisi, 2011; Demaria et al., 2015; 

Watanabe et al., 2017).  

However, in other disease settings fibroblast senescence is associated with the 

production of a SASP that contributes to chronic inflammation and is pro-fibrotic. In the 

liver, senescence within the hepatocyte population correlated with liver steatosis, or fat 

accumulation, predisposing the mouse to elevated inflammation and fibrosis (Jurk et 

al., 2014; Ogrodnik et al., 2017). The same trends have been observed in models of 

pulmonary fibrosis (Schafer et al., 2017; Waters et al., 2018) and kidney disease 

(Valentijn et al., 2018) (Chawla and Kimmel, 2012; Knoppert et al., 2019).  

Similar data has been reported for the heart. The heart is a multicellular organ, and the 

contribution of senescence in other cardiac cell types should also be taken into 
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account. Senescence induction and regulation within the fibroblast population is 

essential for the formation of a scar, which is needed to prevent cardiac rupture, and 

also to limit excessive fibrosis, which is important in order to retain as much cardiac 

function as possible (Leask, 2015; Meyer et al., 2016). The role of cardiac fibrosis after 

injury was resolved using murine models including transverse aortic constriction (TAC) 

and a p53/p16Ink4a knockout model (Meyer et al., 2016). In the TAC model, the aorta 

was surgically ligated to simulate pressure overload-induced cardiac hypertrophy and 

fibrosis (Rockman et al., 1991), and in wild type mice this resulted in increased fibrosis, 

expression of a panel of senescence markers and evidence showing that mostly 

myofibroblasts were the cell type undergoing senescence. Next, TAC was performed 

on p53 and p16Ink4a knockout mouse models to understand the role of these pathways 

in fibroblast senescence. Senescence markers were only decreased in double 

knockout mice and correlated with more extensive fibrosis and reduced cardiac 

function. Interestingly this severe phenotype was not achieved if only p53 or p16Ink4a 

was knocked out (Meyer et al., 2016). Due to the parallel nature of these two pathways 

(Figure 1.5), they may act in a compensatory manner when one is disrupted (Leong et 

al., 2009) , however, dual-knockouts of both p53 and p16Ink4a increase the risk of 

tumourigenesis (Sharpless et al., 2002). 

Fibroblasts have been shown to become senescent subsequent to MI and in vitro both 

ischaemia and hypoxia induce senescence in cardiac fibroblasts, indicated by 

increased expression of p53 and p21Cip (Zhu et al., 2013; Zhu et al., 2015). It has also 

been suggested that senescence plays a role in limiting the extent of fibrosis post-MI 

as p53 inhibition increases myofibroblast proliferation and collagen production in vitro. 

Mice lacking expression of p53 have also been shown to have an increased scar size 

following MI compared to control but displayed an increased inflammation, including 

the expression of known SASP proteins including IL-1, chemokine ligand 1 (CXCL1), 

CXCL2, monocyte chemoattractant protein 1 (MCP-1), IL-6, granulocyte chemotactic 

protein 2 (GCP-2) and macrophage colony-stimulating factor (M-CSF) some of which 

are known inducers of fibrosis (Zhu et al., 2013; Schafer et al., 2018). As such, while 

in the short term senescence and the SASP may limit fibrosis, an accumulation of 

senescent fibroblasts post-MI might also contribute to chronic inflammation 

exacerbating ongoing cardiac collagen deposition and fibrosis formation. Therefore, 

the SASP plays a key role in mediating the effects, beneficial and detrimental, 
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observed during senescence in the heart (Zhu et al., 2013; Zhu et al., 2015). 

Additionally with age, clearance of senescent cells, especially via the immune system, 

deteriorates (Rodier and Campisi, 2011). As such inefficient removal of senescent 

fibroblasts may occur in the older patients who are most likely to suffer a MI. This may 

ultimately predispose this patient group towards chronic inflammation and fibrosis, 

which would be detrimental to cardiac function (Zhu et al., 2013). 

Traditionally the composition of the heart has been thought to primarily consist of 

fibroblasts, although recent evidence suggest that more than 50% of murine cardiac 

cells are endothelial cells and only around 12% are fibroblasts (Pinto et al., 2017). As 

discussed previously, angiogenesis is an essential recovery and remodelling 

mechanism after MI to stimulate new blood vessel growth for revascularisation of 

damaged myocardium (He et al., 2017). Senescence in the endothelial cell population 

has been shown to reduce angiogenesis and impair recovery in induced models of 

CVD (Sano et al., 2007; Erusalimsky, 2009; Cameron et al., 2016). In a mouse model 

of pressure overload in the LV, elevated levels of endothelial cell senescence markers 

were observed which was associated with vascular rarefaction (the loss of vasculature 

associated with hypertension (Gogiraju et al., 2015; Cameron et al., 2016). Removal 

of these senescence signals, using p53 knockout mice lines or pharmacologically 

targeting p53 using pifithrin-α, reversed this phenomena resulting in elevated 

angiogenesis as well as leading to other beneficial events associated with remodelling 

and function including reduced fibrosis and LV dilation (Sano et al., 2007; Gogiraju et 

al., 2015).  

Endothelial cell senescence has also been attributed as causal to increased 

inflammation of the vascular networks (Shimizu and Minamino, 2019), OS and 

endothelial dysfunction (Donato et al., 2018), which can result in a SASP mediated 

endothelial-to-mesenchymal transition (EndMT). This process describes the transition 

of a differentiated endothelial cell into an alternative cell type, and has been shown to 

contribute to the fibroblast population after injury in the heart (Zeisberg et al., 2007a; 

von Gise and Pu, 2012; Pérez et al., 2017). Detached endothelial cells shift their 

expression of endothelial markers, such as CD31, to a myofibrotic profile of markers 

composed of collagens and MMPs after stimulation from a range of signalling proteins 

(Twist, Slug, Snail and zinc finger E-box protein homeobox-1) (Stenmark et al., 2016). 

As EndMT has been shown to occur after exposure to TGF-β1 and contribute 
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significantly to cardiac fibrosis in the TAC model, EndMT has been suggested a novel 

target to limit fibrosis and attenuate disease progression (Piera-Velazquez et al., 

2011). 

Although there are many detrimental effects of excessive OS, preventing OS entirely 

may be detrimental itself if vital signalling pathways required for homeostasis or repair 

are deterred. Evidence to support the dual-role of ROS paradigm is the failure of 

antioxidants to alleviate injury, for example MI, or extend lifespan (Sanz et al., 2006). 

In models of Drosophila and C.Elegans ROS secreted from the mitochondria have 

been concluded to have contrary effects, as they can have both beneficial and 

detrimental signalling roles in modulating mitochondrial function and lifespan (Scialò et 

al., 2016). In mammals, elevated ROS have a role in wound repair to promote many 

mechanisms including: vasoconstriction and initiation of thrombus generation; 

attracting neutrophils and other immune cells towards the site of injury; mediating 

phagocytosis to remove invading cells; and triggering repair mechanisms including 

angiogenesis and ECM formation (Dunnill et al., 2017). Consideration of the 

advantageous as well as harmful ROS signalling effects should be made when 

therapeutically targeting OS in disease and ageing (Scialò et al., 2016). 

Hypoxia relating to OS brought about by DDR activation is known to act as a switch 

turning off and on proliferation in CMs. Although uncommon, there have been case-

studies reporting MI events in neonates that share many characteristics with MI in 

adults, such as an altered S-T segment detected by ECG and detection of cTn I and T 

biomarkers. Though there is only about a 50% survival rate in new-borns, and most 

cases are preferentially treated using thrombolytics (Papneja et al., 2017). There is 

one case of a new-born male suffering from MI immediately after birth followed by 

complete regeneration. The patient presented with cyanosis, abnormal ECG and 

elevated cTn biomarkers. The diagnosis was severe cardiac injury and doctors 

detected an occlusion caused by thrombosis in the left anterior descending (LAD) 

artery. The artery had been occluded for over 20 hours before therapy with 

thrombolytics commenced. Interestingly the patient’s cardiac function improved and 

biomarker levels returned to normal. Heart function appeared fully restored and there 

were no apparent structural defects within 2 months of the event, with these findings 

confirmed at the 1 and 3 year follow-ups (Haubner et al., 2016). This case study, along 

with a few others, confirm that CM regeneration accompanied by complete restoration 
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of cardiac function is achievable in neonates. Improving our understanding of the 

mechanisms involved gives the potential of translating this knowledge in the treatment 

of MI in adults (Murugan et al., 2009; Farooqi et al., 2012; Cesna et al., 2013; Haubner 

et al., 2016). 

In post-natal CMs, ROS generated from mitochondria represent a key source of OS. 

The sudden loss of CM proliferation potential shortly after birth has been attributed to 

the shift from the hypoxic environment in the uterus to the post-natal environment and 

the associated mitochondrial ROS damage. In adults, for example during MI, there is 

a reduction in inspired oxygen correlated with a drop in ROS that is able to restart CM 

proliferation, and may be a viable target to stimulate cellular regeneration and 

proliferation (Nakada et al., 2017). It is this train of thought that has halted the practice 

to administer oxygen in STEMI patients. Oxygen therapy was traditionally viewed as a 

method to reduce myocardial injury and reverse the effects of the MI, however, it is 

now considered to contribute to the injury by stimulating increased levels of ROS that 

causes IRI, senescence, and limits proliferation (Stub et al., 2012; Stub et al., 2015). 

In 1986, Murry et al (Murry et al., 1986) first described ischaemic preconditioning (IPC), 

an important discovery demonstrating that short periods of ischaemia and reperfusion 

could reduce the infarct size following MI (Hausenloy et al., 2016). Despite many 

laboratories replicating IPC and publishing data that unravels some of the ambiguities 

surrounding IRI, the exact signalling pathways involved are not entirely known (Penna 

et al., 2009; Hausenloy et al., 2016). Limiting oxygen to therapeutically improve CM 

regeneration appears counter intuitive. However, ROS are known to have numerous 

effects, depending on the source, levels and type of ROS. It also appears that there is 

a small population of resident CMs that can be activated during hypoxia to proliferate 

(Nakada et al., 2017), suggesting they may possess a degree of immunity to the 

detrimental effects of OS. Nakada et al (Nakada et al., 2017) reported that in a mouse 

model of permanent MI (that has not been allowed to reperfuse and therefore has not 

suffered from IRI) the chronic hypoxia led to a significantly increased heart : body 

weight ratio, had smaller fibrotic scars, and a recovered LV systolic function that was 

not achieved in the non-hypoxic controls (Jun and Lau, 2010a). 

Oxidative stress is complex, playing roles in both maintaining tissue homeostasis 

during health (Sanz et al., 2006) but also during disease in promoting inflammation, 

fibrosis and adverse remodelling (Hybertson et al., 2011). The data from our lab 
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supports the hypothesis of accumulating OS driving CM senescence with ageing 

(Anderson et al., 2019), and given the contribution of OS to the pathogenesis of IRI 

post-MI (Kurian et al., 2016), potentially CMs may enter a state of senescence in 

response to MI with IRI , however, to date it has not been thoroughly investigated. If 

senescence is involved following IRI, given the breath of damaging effects that (Figure 

1.9) senescence has on multiple cardiac cell populations, cellular senescence is 

therefore a potentially highly favourable and novel cardiac therapeutic target. 

 

Figure 1.9 Hypothesised association between myocardial infarction, 
ischaemia-reperfusion injury, oxidative stress and cellular senescence. 

After MI, the gold-standard therapy is to undergo timely reperfusion via PPCI. 
Although this salvages any viable myocardium it can stimulate IRI, which is 
associated with generating a state of OS that is also known to drive cellular 
senescence. 

 

1.7.3 Targeting senescence therapeutically  

Cellular senescence is a complex process that when established can have many 

different outcomes depending on the delicate balance of various factors expression, 

that can initiate both beneficial and detrimental events. However, it is an important and 

central event in many pathologies and therefore research is being conducted into many 

potential therapeutic targets (Munoz-Espin and Serrano, 2014; van Deursen, 2014).  

The SASP is a key hallmark of senescence and has been show to exert a variety of 

effects on senescent cells (Coppé et al., 2010; Campisi, 2013). As mentioned earlier, 

in the heart following MI the SASP is controlled by p53 expression. Therefore, p53 

could be a potential therapeutic target to control senescence in cardiac fibroblasts to 

mediate scar formation and avoid rupture, but also to ensure fibrosis doesn’t 

accumulate and become detrimental to heart function (Zhu et al., 2013). Although other 
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studies that administered SASP inhibitors in both animal models and humans 

demonstrated they can have beneficial effects and reverse some characteristics of 

senescence, SASP inhibitors operate via numerous mechanisms. Because of this it is 

not always clear exactly how the SASP inhibitors exerted their effects, and in some 

cases they cause unfavourable side effects (Kirkland and Tchkonia, 2017). 

Due to OS being an established link between IRI and senescence, antioxidants as 

therapeutic agents have also been considered. Quercetin, a senolytic drug, operates 

as a potent antioxidant, however, the effects were limited to only some cell types 

making it not ideal for general use to target senescence (Soto-Gamez and Demaria, 

2017). Other antioxidant research focuses on MAO-A. In the mitochondrial outer 

membrane is MAO-A, an enzyme that catalyses oxidative deamination of monoamines 

and produces the ROS by-product, H2O2. In the heart and other ageing models, MAO-

A has been suggested to be an OS source and associated with other markers of 

senescence (Villeneuve et al., 2013). Data from this lab focused on MAO-A in an 

ageing senescence study. A mouse was generated to have a CM specific 

overexpression of MAO-A, and showed to have increased markers of senescence, 

including TAFs, and cardiac dysfunction. Therapy with the antioxidant NAC rescued 

the phenotype (Anderson et al., 2019). However, elucidating the specific ROS sources 

and how to target them may represent a superior way to therapeutically target OS, as 

antioxidant therapies have given inconsistent results across many IRI and senescence 

trials (Giordano, 2005; Hausenloy and Yellon, 2013). 

Considering the efficiency of the mouse model INK-ATTAC with an inducible clearance 

system for p16Ink4a, this model was also utilised by this lab to address if there was a 

direct link between senescent CMs and hypertrophy (Anderson et al., 2019). Initially, 

young INK-ATTAC mice were irradiated to stimulate TAF formation and then 

underwent a regime of AP20187, the drug that leads to dimerization of caspase 8 in 

p16Ink4a expressing cells triggering apoptosis (Baker et al., 2011; Baker et al., 2016). 

Irradiation was demonstrated to lead to an increase in the mean number of TAFs, 

percentage of TAF positive CMs and CM hypertrophy, all of which were restored with 

AP20187 therapy. This confirms that cells expressing p16Ink4a influence DNA damage 

associated with CM hypertrophy (Anderson et al., 2019).  

However, the INK-ATTAC mouse is bred onto a mouse line that is associated with 

augmented cardiovascular dysfunction (BubR1) which may be too severe to allow 
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senescence cell clearance to improve life expectancy. This cardiovascular dysfunction 

is unrelated to cellular senescence and p16Ink4a expression, therefore it cannot be ruled 

out that targeting senescence in CVDs may improve cardiac function and disease 

pathogenesis (Baker et al., 2011; Naylor et al., 2013). Indeed, this lab has also 

demonstrated that in an aged wild type mouse, senescence is directly detrimental to 

recovery and function following MI. If treated with a senolytic drug pre-emptively before 

permanent MI, the cardiac function of mice was improved and mortality rates due to 

surgery reduced to that reflecting a young mouse (Walaszczyk et al., 2019).  

A potential drug therapy to clear senescence cells are senolytics. Senolytic drugs act 

by triggering activation of apoptotic pathways in senescent cells resulting in senescent 

cell clearance. This is not targeted to specific cell types, rather they act to target 

components of anti-apoptotic pathways to inhibit cellular survival (Table 1.1) (Zhu et 

al., 2015; Kirkland and Tchkonia, 2017; Short et al., 2019). So far the components that 

have been trialled as potential therapeutic targets have included B-cell lymphoma 

(Bcl)-2/Bcl-XL, P13K/Akt, p53/p21CIP, tyrosine kinases and hypoxia inducible factor-1α 

(HIF-1α). However, as with any clinical trial for a developed drug, there are many 

associated complications with translating senolytics into therapies. As senescence is 

associated with ageing, it becomes trickier to test the effects of senolytics with defined 

endpoints at suitable time periods, which may be years after treatment began. 

Considerations also have to be made regarding the benefit of the therapy against any 

potential risks or side effects. A set of guidelines have been defined specifically for 

clinical trials involving senolytics (Burd et al., 2016; Justice et al., 2016).  

However, senolytics are undergoing trails for use in many diseases related to 

senescence. One group has demonstrated improved cardiac function in mice with 

senolytic treatment (Dasatinib and Quercetin) but the results were variable (Zhu et al., 

2015). Some of the more promising senolytic agents have progressed from preclinical 

into clinical trials, including navitoclax (Health, 2017; Kirkland and Tchkonia, 2017). 

Navitoclax (ABT-263) is a senolytic drug that targets the intrinsic apoptotic pathway 

(Figure 1.10). The intrinsic pathway, which is also known as the mitochondrial pathway, 

is triggered when sub-lethal damage to the cell is detected, stimulating activity from 

the anti-apoptotic class of regulatory proteins termed BCL-2 proteins (Montero and 

Letai, 2018). This BCL-2 family of apoptosis inhibitors including BCL-2, BCL-XL (which 

are both class I anti-apoptotic members) and BCL-W are categorised according to their  
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Senolytic Target Outcomes Side effects References 

Navitoclax  
(ABT-263) 

Bcl-2 
family  
(Bcl-2, -
XL, -W) 

Increase 
haematopoietic 
and muscle stem 
cell function 

Reduce 
atherosclerotic 
lesion formation 

Thrombocytopenia (Chang et al., 
2016; Zhu et 
al., 2016) 

Venetoclax  
(ABT-199) 

Bcl-2 Not yet tested in 
vivo as a senolytic 

- (Souers et al., 
2013; Li et al., 
2019) 

ABT-737 Bcl-2 
family  
(Bcl-2, -
XL, -W) 

Increase hair 
follicle stem cell 
function 

Reduce IRI in lung 

Thrombocytopenia (Stamelos et 
al., 2012; 
Yosef et al., 
2016) 

A1331852 Bcl-XL Reduce liver 
fibrosis 

Neutropenia (Zhu et al., 
2017; 
Moncsek et 
al., 2018) 

Dasatinib & 
Quercetin 

Tyrosine 
kinase 
pathways 

Increase cardiac 
function, 
vasomotor function 
and lifespan 

Reduce 
atherosclerosis, 
osteoporosis, 
hepatic steatosis, 
pulmonary fibrosis 

Gastrointestinal 
discomfort 

Headache 

(Zhu et al., 
2015; Roos et 
al., 2016a; 
Farr et al., 
2017; 
Ogrodnik et 
al., 2017; 
Schafer et al., 
2017; Xu et 
al., 2018; 
Justice et al., 
2019) 

Tanespimycin 
(17-AAG) 

HSP90 Increase 
healthspan 

Reduce age-
related symptoms 

Hepatotoxicity (Jhaveri et al., 
2012; 
Fuhrmann-
Stroissnigg et 
al., 2017) 

Fisetin PI3K/AKT Increase lifespan, 
liver and pancreas 
function 

None reported – is 
a natural 
compound 

(Maher, 2015; 
Zhu et al., 
2017; 
Yousefzadeh 
et al., 2018) 

Piperlongumine Multiple 
pathways 

Not yet tested in 
vivo as a senolytic 

- (Wang et al., 
2016; Go et 
al., 2018) 

FOXO4-related 
peptide 

p53 
p21Cip 
serpine 

Increased renal 
function and hair 
growth 

Reduced liver 
toxicity from 
doxorubicin and 
frailty 

No reported 
adverse effects 

(Baar et al., 
2017) 

Table 1.1 Table of senolytics, based on (Kirkland et al., 2017; Kim and Kim, 
2019). 
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BCL-2 homology domains. Class I proteins comprise BH1 to BH4 (Kelekar and 

Thompson, 1998). Together these domains create a hydrophobic groove that is 

constructed from two α-helices that are hydrophobic and six which are amphipathic 

(Liu et al., 2016). The high sequence homology between BCL-2 proteins indicates that 

the groove structure is highly conserved and alterations to BH1, 2 or 3 result in a loss 

of anti-apoptotic activity as heterodimerisation with other BCL-2 proteins is unfeasible 

(Muchmore et al., 1996; Liu et al., 2016).  

 

 

The BH3 domain is highly important for the BCL-2 proteins to bind and act 

antagonistically on proteins that stimulate apoptosis, termed class II and III proteins. 

Neither class possesses either BH1 or 2, but BH3 is present (class II also have BH4, 

whereas class III are also referred to as BH3-only proteins) (Kelekar and Thompson, 

1998). In the class I and II proteins, BH4 can bind to and form a heterodimer with BCL-

2 associated X protein (BAX). Evading apoptosis in this manner differs to the classical 

binding and inhibition of BH3 pro-apoptotic proteins, and requires further investigation 

(Liu et al., 2016) as preventing cell death via BAX binding may not always be sufficient 

(Hanada et al., 1995). 

Figure 1.10 Navitoclax mechanism of action. 

Illustration of navitoclax mechanism of action. It binds to anti-apoptotic proteins 
BCL-XL/2 to displace pro-apoptotic factors such as BIM and BID. Once released, 
BIM and BID can bind to BAX and BAK generating a pore in the outer 
mitochondrial membrane and stimulate the release of cytochrome c from the 
mitochondria to activate the caspase cascade, via caspases 9 and 3, to trigger 
apoptosis of the senescent cell. Adapted from Rosell, R. et al and Montero, J. and 
Letai, A. (Rosell et al., 2013; Montero and Letai, 2018).  
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In contrast, the class III proteins apoptotic-promoting activity is essential in efficiently 

regulating apoptosis. This group of proteins is extensive and diverse including the 

proteins BCL-2 interacting mediator of cell death (BIM) and BH3-interacting domain 

death agonist (BID) amongst many others (Shamas-Din et al., 2011). Both these pro-

apoptotic proteins during homeostasis are sequestered and inactivated via binding to 

anti-apoptotic proteins such as BCL-2 and BCL-XL. Upon stimulation from an apoptotic 

signal BIM and BID are released, or administration of a BH3-mimetic such as 

navitoclax will preferentially displace BIM and BID releasing them into the cytoplasm 

(Zhu et al., 2016), and once unbound BIM and BID are then able to bind to BAX and 

BCL-2 homologous antagonist killer (BAK). Binding directly initiates oligomerisation of 

BAX and BAK generating pores and mitochondrial outer membrane permeabilisation 

(MOMP). Once this occurs proteins that reside in the inner membrane space of 

mitochondria including cytochrome c are able to migrate into the cytoplasm signalling 

the “point of no return” for the cell (Kelekar and Thompson, 1998; Shamas-Din et al., 

2011). Once in the cytoplasm, cytochrome c can form complexes and activate caspase 

9, which is the first caspase in the caspase cascade and ultimately results in apoptosis 

of the cell (Figure 1.10) (Kelekar and Thompson, 1998; Rosell et al., 2013; Edlich, 

2018). 

Currently there is no published data investigating navitoclax action on CMs in a model 

of IRI. However, it is the first senolytic drug that demonstrated high potency, high 

specificity and high efficiency for binding to its target, in multiple different senescent 

cell types (Chang et al., 2016), and promising data from trials of navitoclax on aged 

mice heart function both with and without permanent MI (Walaszczyk et al., 2019), 

therefore led to navitoclax being selected for trial on CMs in this project.  

Another therapeutic option would be to target the pathways activating senescence. 

The p16INK4a pathway is an important pathway triggering senescence (Figure 1.6). The 

INK-ATTAC mouse model demonstrated highly efficient clearance of p16Ink4a 

expressing senescent cells (Baker et al., 2011) and previous work confirmed that these 

senescent cells are associated with DNA damage inducing hypertrophy (Anderson et 

al., 2019). Because of this evidence, targeting p16Ink4a specifically in the CMs may be 

an efficient mechanism to clear detrimental senescence without impacting other cell 

types, for example fibroblasts that require senescence to drive wound healing (Rodier 

and Campisi, 2011). For this study, a novel CM-specific knockout model for p16Ink4a 
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was developed to investigate the specific role p16Ink4a has in initiating CM senescence 

and the contribution of CM senescence to cardiac dysfunction after MI with IRI.  

 

1.8 Aims 

Considering the evidence in the literature supporting a detrimental role and critical 

need to target IRI post-MI, the strong association of IRI and cellular senescence to OS, 

and how CMs retain a small regeneration and proliferation potential that can be 

influenced by the degree of ROS, all led to the hypothesis and primary aims of this 

project. This project focused on the CMs in the BZ following IRI and investigated the 

role of senescence of these CMs and how they impact infarct size and cardiac function. 

The aims and hypotheses of this project are defined below: 

1. Quantify senescence in an in vivo model of MI and IRI using LAD ligation. 

Reperfusion after MI leads to IRI generating ROS which triggers senescence in 

cardiomyocytes and other cardiac cell lineages. 

2. Investigate the potential utilisation of the senolytic compound navitoclax 

therapeutically post-MI and IRI in an in vivo mouse model. 

Senescence induced following IRI in the heart contributes to adverse 

remodelling and is detrimental to recovery. Clearance of senescent cells 

pharmacologically using a senolytic will attenuate adverse remodelling and 

cardiac function will improve. Therefore, progression to heart failure will be 

delayed or prevented. 

3. Generate a novel transgenic model in which p16Ink4a is specifically knocked out 

of the CM population and to test if recovery is improved following MI and IRI 

when CM senescence is attenuated. 

Cardiomyocytes have been observed to senesce in a model of MI with IRI. 

Preventing activation of the p16Ink4a pathway via floxing exon 1α of p16Ink4a will 

stop CM senescence and attenuate adverse remodelling resulting in improved 

cardiac function.  
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4. Examine the contribution of non-CMs in the myocardium to cardiac dysfunction 

and adverse remodelling. Develop in vitro models of cardiac fibroblast 

senescence to study the effects of a fibrotic SASP on numerous cardiac cell 

types when senescence is induced. 

Cardiac cells as well as CMs, including fibroblasts, are undergoing senescence 

resulting in excessive fibrosis and a reduction in reparative and regeneration 

mechanisms. 
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Chapter 2. Materials and Methods 

 

All mice used for the following experiments were male C57BL/6 (3-4 months of age, 

purchased from Charles River) and treated accordingly to the UK Home Office Animals 

Scientific Procedures Act, 1986 (UK Government, 1986). Mice were housed in the 

Functional Genetics Unit in the Institute of Genetic Medicine, Newcastle University, 

unless otherwise stated.  

 

2.1 Coronary artery ligation mouse model 

Surgical occlusion of the LAD coronary artery, a major coronary artery of the LV, is 

deemed to be a reproducible and representative model of MI, and is the standard 

model currently used (Salto-Tellez et al., 2004). All surgeries were carried out 

according to a Home Office approved protocol (P011C564C – Protocol 8) (Redgrave 

et al., 2016) under appropriate conditions by a microsurgeon, Dr Rachael Redgrave.  

In brief, intra-operative analgesia was induced by pre-treating mice with 

fentanyl/fluanison (0.4ml/kg, Hypnorm) prior to anaesthesia using isoflurane, which 

was maintained using mechanical ventilation following endotracheal intubation (2.5% 

isoflurane/97.5% oxygen, 130-140 stroke rate, stroke volume initially 5ml/kg – 

increased to 7.5ml/kg post-thoracotomy). At the forth intercostal space, left-side 

thoracotomy was executed to allow removal of the pericardium and enable a 7-0 

prolene suture to be placed around the LAD and loosely tied. An infarction was 

simulated by inserting a piece of 1-2mm PE-10 tubing into the suture loop and 

tightening the suture knot to terminate blood flow for 60 minutes (Figure 2.1). After this 

period the PE-10 tubing was removed to allow the LAD to be reperfused. Reperfusion 

was visually confirmed before the chest cavity was closed and anaesthesia 

discontinued. Mice were extubated once breathing spontaneously and received 

buprenorphine (0.05mg/kg, Vetergesic) for post-operative analgesia. Whilst 

recovering, the mice were placed in a 33°C incubator until they regained normal 

physical activity.  



 

46 

 

 

 

2.2 Navitoclax treatment 

Navitoclax was prepared in a lipid vehicle solution consisting of EtOH, polyethylene 

glycol and Phosphal 50 PG in a 1:3:6 ratio respectively, according to Chang et al 

(Chang et al., 2016). During the Navitoclax treatment, mice also received a dose of 5-

ethynyl-2-deoxyuridine (EdU) at 100μg/mg of body weight (BW), via intraperitoneal 

injection (IP) for 7 days, to allow for identification of newly generated cells. 

Details regarding the specific experimental procedures are outlined in section 4.3 but 

in brief mice were provided Navitoclax (ABT263, A10022, AdooQ Bioscience LLC) 

daily at a dose of 50mg/kgBW/day from day four post-LAD ligation for 7 days via oral 

gavage. Control mice for this study also had LAD ligation surgery but received a lipid-

vehicle control (EtOH, glycol and Phospal 50 PG alone in a 1:3:6 ratio respectively) via 

oral gavage for the treatment period as well as EdU via IP.  

 

2.2.1 Cardiac magnetic resonance imaging 

Magnetic Resonance Images (MRI) were generated at 3 and 5 weeks post-LAD 

ligation on the horizontal bore 7.0T Varian microimaging system (Varian Inc., Palo Alto, 

CA, USA) (Davison, 2014; Redgrave et al., 2016) situated at the Campus for Ageing 

and Vitality, Newcastle University. During scanning mice were housed in the Keith Unit 

Figure 2.1 Position of suture around the left anterior descending coronary 
artery. 

Tubing tied in the suture compresses the LAD ceasing blood flow for 60 minutes, 
simulating MI and producing an ischaemic region. After this, the tubing is removed 
to allow reperfusion and IRI to occur. The suture is left (indicated by the arrow) to 
minimise damage to the ventricle wall and allow easy identification of the affected 
region. Scale bar = 2mm.  
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on site. The MRI scans were performed by Dr Simon Tual-Chalot, Dr Anna 

Walaszczyk, and Emily Dookun (E.D.); E.D. solely performed the analysis and 

interpretation of images.  

Mice were anaesthetised using isoflurane (3.5% initially and once unconscious 

isoflurane reduced to 1.5% with 1L/min oxygen) administered by facemask then placed 

on a specially designed stage with integrated electrocardiographic, cutaneous, 

temperature and respiratory monitors. To ensure that the orientation of the heart was 

optimal for imaging, a scout image was performed. Once correctly orientated, the 

whole heart was imaged using FLASH cine MR sequence. Each MR sequence is 

initiated by the R wave of the electrocardiogram (ECG), which corresponds to end 

diastole. Short, continuous axis slices with a 1mm thickness were acquired so that the 

whole LV could be visualised (Davison, 2014; Redgrave et al., 2016). 

 

2.2.2 Magnetic resonance imaging analysis 

Images were analysed using Image J (NIH) using a previously published methodology 

in accordance with (Schneider et al., 2006; Davison, 2014; Redgrave et al., 2016). All 

images for each individual axis slice were combined to give a stack image showing the 

heart at that axis throughout the cardiac cycle. At the point of end diastole and end 

systole, the area of the epicardium and endocardium were measured (Figure 2.2). 

From this the total myocardial area for that slice could be calculated. Other variables 

relating to ventricular volumes and cardiac function were calculated and are outlined 

in Table 2.1. 
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Figure 2.2 Measurements taken for magnetic resonance imaging analysis. 

Images were taken in a series of stacks at 1mm intervals from apex to base. The 
border of the LV epicardium (pink) and endocardium (yellow) were measured in 
each stack to quantify the area of myocardium and other subsequent variables 
outlined in Table 2.1 analysed from the MRIs.  
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Table 2.1 Variables quantified from magnetic resonance imaging analysis.  

Calculations used to determine variables assessed from MRI analysis. 

Variable Equation 

Total Myocardial Volume 

(mm3) 

Myocardial Area per slice (mm2) x Number of slices 

throughout ventricle x Slice thickness (1mm/slice) 

Left Ventricle Mass* 

(mg) 

Myocardial Volume (mm3) x Myocardial Specific 

Gravity (1.05mg/mm3) 

Left Ventricle Volume 

per slice (mm3)  

Endocardial Area (at end diastole or end 

systole)(mm2) x Slice thickness (1mm/slice) 

End Diastolic Volume  

(LV-EDV) (μl) 

Ʃ Left Ventricle Volume per slice at end diastole 

End Systolic Volume  

(LV-ESV) (μl) 

Ʃ Left Ventricle Volume per slice at end systole 

Stroke Volume 

(SV) (μl) 

LV-EDV (μl) – LV-ESV (μl) 

Ejection Fraction  

(EF) (%) 

[SV (μl) / LV-EDV (μl)] x 100 

Cardiac Output  

(CO) (ml/min) 

[SV (μl) x Heart Rate (BPM)] / 1000 

*Presented as the average of LV mass independent of end diastolic and end systolic measurements  

 

2.3 Novel transgenic mouse generation 

While the above pharmaceutical approaches should provide insight into the therapeutic 

potential of senolytic treatments for IRI, since they influence senescence systemically 

they are insufficient to address questions regarding the direct contribution of CM 

senescence to myocardial remodelling. To address this, I developed a novel transgenic 

model in which p16Ink4a is specifically knocked out in the CM population. This model 

has been achieved by crossing two established transgenic mouse models; the αMHC-

MerCreMer line (ID 005657, The Jackson Laboratory) and the p16Ink4aflox/flox line (ID 

B6.129(Cg)-Cdkn2atm2.1Nesh/Nci, NCI Mouse Repository).  
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The αMHC-MerCreMer line works on the principal of the cardiac specific promoter 

myosin heavy chain (αMHC) controlling the expression of Cre recombinase 

(Laboratory, 2017). Cre recombinase has been widely utilised across many research 

fields due to the simplicity in purifying and expressing this enzyme (Sauer, 2002; 

Gilbertson, 2003; Kos, 2004; Brault et al., 2007; Wirth et al., 2007; Birling et al., 2009; 

Wang et al., 2011; Lanza et al., 2012). It acts by genetically altering or mutating 

transgenes by inserting DNA cassettes into chromosomes. It is predominantly used to 

orchestrate the removal of a gene that is flanked with loxP sites. These sites are bound 

with a high affinity to Cre leading to dimer formation bringing the loxP sites together 

and excision of the gene (Van Duyne, 2015). In this case, αMHC-MerCreMer was an 

inducible form of Cre that was activated upon administration of a synthetic ligand, 

tamoxifen or 4-hydroxytamoxifen (4-OHT). (Kam et al., 2012). Therefore, in this system 

the Cre expression can be precisely stimulated at certain time-points to clear 

senescence expression specifically in CMs.  

The p16Ink4aflox/flox line has been created with loxP sites flanking exon 1α of p16Ink4a 

(B6.129(Cg)-Cdkn2atm2.1Nesh/Nci, 01XBU, NCI Mouse Repository). Therefore, when 

crossed with the Cre mouse (B6.FVB(129)-A1cfTg(Myh6-cre/Esr1*)1Jmk/J, 005657, The 

Jackson Laboratory), these exons are spliced out leaving a truncated version of 

p16Ink4a (p16-/-, Figure 2.3). Once recombined with Cre, previous studies were unable 

to detect any levels of p16Ink4a protein in this mouse model (Monahan et al., 2010), 

which implies that the truncated p16Ink4a protein is likely to be unstable. 
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2.3.1 Genotyping polymerase chain reactions 

For identification and genotyping purposes, ear notches were taken from transgenic 

mice. To extract the DNA, the notches were incubated in 75µl of Hotshot Lysis buffer 

(25mM NaOH, 0.2mM EDTA, pH 12, in purified water (ddH2O)) in a 95°C heat block 

for at least one hour, or until the notch has dissolved. At this stage, the notches in 

solution were cooled to 4°C for 10 minutes before 75µl of Hotshot Neutralising buffer 

(40mM trizma hydrochloride, pH5, in ddH2O) was added. Extracted DNA was stored 

at 4°C for the short term (up to 1 month) and -20°C for long-term storage. 

Once DNA was extracted, genotyping polymerase chain reactions (PCRs) were 

performed to identify the mice genotypes. The following PCRs were used: to detect the 

floxed p16Ink4a (p16f/f) allele primers (diluted 1:2 in ddH2O) for p16Ink4a common 

Reverse, p16Ink4a wild-type Forward and p16Ink4a floxed Forward were used; S1X A and 

B Cre primers (diluted 1:10 in ddH2O) identified MerCreMer positive and negative mice; 

and p16Ink4aLCred PCR used primers (diluted 1:10 in ddH2O) specifically designed to 

generate a product if p16Ink4a exon 1α had been successfully floxed out (Monahan et 

al., 2010). Sequences for these primers can be found in Table 2.2.  

 

Figure 2.3 Schematic of generation of p16Ink4a floxed mice from crossing the 
p16Ink4aflox/flox line with the Myh6-MerCreMer line. 

Upon administration of tamoxifen therapy, Cre recombinase was activated to 
splice out the p16Ink4a exon 1α that is flanked by loxP sites. 
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Table 2.2 Sequences for primers used for genotyping polymerase chain 
reactions. 

Name Primer Sequence 

p16Ink4a f/f F  GTATGCTATACGAAGTTATTAGGTACTGC 

p16Ink4a wild-type F GTTTTGGAGCAGCAGGGATT 

p16Ink4a common R CTATGTCAGATTTGGCTAGGGAGT 

S1X-A Cre F TAACCAGTGAAACAGCATTGCTG 

S1X-B Cre R GGACATGTTCAGGGATCGCCAGGCG 

p16Ink4a LCred F TACCACAGTTTGAACAGCGTGA 

p16Ink4a LCred R AACCAACTTCCTCCTTCCCC 

 

For all PCRs, a previously verified (by E.D.) positive control was used if available and 

ddH2O used as negative control to ensure no contaminant or false positive bands were 

observed. Master mix solutions were prepared according to the template in Table 2.3 

and 18µl of completed master mix added to 2µl of extracted DNA.  

Table 2.3 Polymerase chain reaction master mix reagent volumes. 

Volume  

(X=number of samples) 

Reagent 

Xµl F primer (dilutions above) 

Xµl R primer (dilutions above) 

10Xµl Dream Taq 2X (K1082, ThermoFisher Scientific) 

6Xµl ddH2O 

 

PCR products were identified by gel electrophoresis using a 2% agarose in Tris-

acetate-EDTA (TAE) gel containing ethidium bromide (EtBr). Samples (8µl) were run 
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against a 100bp ladder (4µl) at 125V for 30 minutes and imaged using a UV 

transilluminator. The product sizes for genotyping PCRs are outlined in Table 2.4. Only 

homozygous floxed mice were used for experimentation, with or without Cre to 

generate floxed allele mice (p16f/f) or deleted allele mice (p16-/-). 

Table 2.4 Polymerase chain reaction product sizes. 

Name Product size  

p16f/f genotyping  

(Monahan et al., 2010) 

Wild-type (WT) 194bp  

LoxP (f/f) 261bp 

p16-/- identification 

(Monahan et al., 2010) 

LCred (-/-) ≈300bp (or unaplifiable product of 

3.9kb if floxed exon 1α not deleted) 

Cre 280bp 

 

2.4 Tissue collection and processing 

If the heart was not to be used for histological analysis, some animals underwent 

cardiac puncture to obtain ≤1ml blood immediately prior to being culled. Animals were 

anaesthetised using isofluorane and a 25G needle inserted along the midline of the 

abdomen through the diaphragm and into the heart.  

At the end of each in vivo study, mice were culled by a Schedule 1 method; dislocation 

of the neck. Hearts for histological analysis were dissected after termination 

immediately and placed into a 50mM solution of potassium chloride to stop heart 

contractions at diastole (to allow the accurate measurement of hypertrophy). The 

hearts were then washed in phosphate buffered saline (PBS), trimmed to remove any 

excess fat, connective tissue, outflow tract vessels, and then weighed before 

embedding.  

For some studies, upper ventricles and atria superior to the LAD ligation suture were 

removed, placed in Trizol and stored at -80°C for RNA analysis. For other studies, 

upper ventricles and atria superior to suture, right ventricle inferior to suture and LV 

inferior to suture were placed in RIPA buffer for protein analysis. When required, 

additional organs including liver, lungs, kidneys, muscle and testis, were also collected, 
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cryo-embedded and snap frozen for RNA or histological analysis. To enable the 

subsequent controlling for mouse size in the MRI analysis (e.g. LV mass) legs were 

removed from all mice, tibias dissected and tibia length recorded (Yin et al., 1982). 

 

2.4.1 Tissue embedding 

For cryo-embedding, hearts and other organs were cryo-protected by incubating in 

30% sucrose and at 4°C with agitation for 6 hours. Tissues where then embedded in 

optimal cutting temperature compound (OCT), in the appropriate orientation, on dry ice 

and stored at -80°C.  

For wax embedding, hearts were first fixed in a solution of 4% paraformaldehyde (PFA) 

at 4°C overnight with gentle agitation. After several washes with PBS, tissues were 

dehydrated using an ethanol (EtOH) gradient (50% 3 hours room temperature (RT), 

70% 2 hours RT, 70% overnight 4°C, 95% 1 hour RT, followed by 4 repeated washes 

for 2 hours in 100% EtOH). Once dehydrated, the hearts were placed into glass vials 

and left in Histoclear for two 1 hour incubations, before replacing with Histoclear wax 

for 4 hours. The hearts were then equilibrated in repeated changes of paraffin over 3-

4 days at 60°C and then finally embedded in the desired orientation.  

The hearts were sectioned to produce 10μm thick transverse sections on a cryostat or 

5μm thick transverse sections on a microtome, and collected as sister sections on 

Superfrost Plus slides (Thermo Scientific). All hearts, LAD ligated and controls, were 

cut fully from apex to atrium. The ischaemic region of ligated hearts was defined as the 

region of the heart inferior to the LAD ligature. 

 

2.5 Histology and immunofluorescence 

Heart sections embedded in OCT first were thawed at RT. Paraffin-embedded heart 

sections underwent de-paraffination (two 10 minute Histoclear incubations), followed 

by rehydration (100%, 90%, 70% and 50% EtOH for 2 minutes each), and antigen-

retrieval (in a pressure cooker for 5 minutes in 0.01M Citrate buffer (pH6.3)) prior to 

staining.  



 

55 

 

For immunofluorescence, all sections were fixed in 4% PFA for 20 minutes, followed 

by several PBS washes. Samples were permeabilised in a 0.5% Triton-X solution, 

washed in PBS, and then blocked in 10% Foetal Calf Serum (FCS) for 1-2 hours at 

RT. Slides were incubated with primary antibody (1°Ab) overnight at 4°C or for 1 hour 

at RT. After more PBS washes the next day, the secondary antibody (2° Ab) was 

applied to the slides and incubated for 1-2 hours at RT in the dark. Once stained, slides 

were washed in PBS and coverslips were mounted using Vectashield Antifade 

Mounting Medium with DAPI (H-1500, VectorLab). A complete table of all antibodies 

used can be found in Table 2.5. 
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 Antibody Dilution Raised in/ 

wavelength 

Catalogue 

number 

Company 

1° Ab Anti-p21Cip 1:4 Rat Hugo291 Abcam 

Anti-troponin C 1:400-

800 

Goat ab30807 Abcam 

Anti-p16Ink4a 1:200 Rabbit 100401170 Rockland 

Anti-vimentin 1:200 Mouse Ab8978 Abcam 

Anti-γH2Ax 1:200 Rabbit 9718 Cell 

Signalling 

Anti-ETS-related 

gene (ERG) 

1:1000 Rabbit ab92513 Abcam 

2°Ab Donkey anti-rat 1:200 594nm A21209 Life 

Technologies 

Donkey anti-goat 1:200-

500 

488nm A11055 Life 

Technologies 

Donkey anti-rabbit 1:500 594nm R37119 Life 

Technologies 

Donkey anti-

mouse 

1:500 647nm A31571 Life 

Technologies 

Goat anti-rabbit 

IgG biotinylated 

1:200  PK-6101 Vectorlab 

Misc DSC-Fluorescein 1:500 488nm A-2001 Vectorlab 

DAPI 1:500 358nm MBD0015 Sigma 

WGA 1:500 594/647nm W11262/ 

W32466 

Invitrogen 

  

Table 2.5 List of antibodies use for all analyses. 
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2.5.1 p21Cip and troponin C dual staining 

For staining of p21Cip, the cleanest staining was achieved when using paraffin sections. 

The 1°Abs used were anti-p21Cip (1:4 using supernatant, rat, Hugo291, Abcam), the 

CM marker troponin C (1:400, goat, ab30807, Abcam), and 2° Abs used were donkey 

anti-rat (1:200, 594nm, A21209, Life Technologies) and donkey anti-goat (1:200, 

donkey anti-goat, 488nm, A11055, Life Technologies). After 2° Ab incubation, slides 

were washed a minimum of five times in PBS and then mounted in Vectashield 

Antifade Mounting Medium with DAPI (H-1500, VectorLab). 

 

2.5.2 p16Ink4a, troponin C and vimentin triple staining 

The protocol above in 2.5 was adapted and optimised since I encountered problems 

with non-specific membrane staining of the p16Ink4a antibody. Consequently, for 

p16Ink4a antibody labelling, cryo-embedded sections were incubated in 0.5% Triton-X 

for 10 minutes and washed once in PBS for 5 minutes prior to fixing. The sections were 

then fixed in 4% PFA, PBS washed and permeabilised in 0.5% Triton-X as described 

above. Sections were then blocked using 10% donkey serum (D9663, Sigma) as the 

2° Abs used are both raised in donkey. Primary Ab incubation was carried out overnight 

at 4°C or for 1 hour at RT using anti-p16Ink4a (1:200, rabbit, 100401170, Rockland), 

anti-troponin C (1:800, ab30870, Abcam) and anti-vimentin (1:200, mouse, ab8978, 

Abcam). Slides were washed in PBS and incubated in 2° Abs: donkey anti-rabbit 

(1:500 at 594nm against p16Ink4a, R37119, Life Technologies); donkey anti-goat (1:500 

at 488nm against troponin C, A11055, Life Technologies); and donkey anti-mouse 

(1:500 at 647nm against vimentin, A31571, Life Technologies), containing DAPI 

(1:500, MBD0015, Sigma) for 45 minutes at RT. After 2° Ab incubation, slides were 

washed a minimum of five times in PBS and then mounted in Dako Fluorescence 

Mounting Media (Agilent, S3023). 

 

2.5.3 Senescence-associated β-galactosidase staining 

Cryo-embedded sections were stained using the SA-β-Gal Staining Kit (#9860, Cell 

Signaling Technology) as per the manufacturer’s instructions (Cell Signaling 

Technology, 2016) with the following modifications for tissue sections: 1) Slides were 

thawed at RT; 2) fixed using the provided fixative solution for 15 minutes and washed 
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three times in PBS; 3) β-Galactosidase staining solution was prepared at pH 6 and 

added to each slide; 4) slides were incubated at 37°C until the blue colour had 

developed (at approximately 48 hours after application; 5) slides were washed with 

PBS, dehydrated in 95% and 100% ethanol solutions, washed in Histoclear and 

mounted with Histomount. 

As the cells of interest were CMs, a triple stain was optimised for SA-β-Gal, troponin 

C and wheat germ agglutinin (WGA). After SA-β-Gal staining, as above, the slides 

were fixed in 4% PFA for 20 minutes, membrane permeabilised with 0.5% Triton-X for 

20 minutes and incubated with 1°Ab for troponin C (1:400, goat, ab30807, Abcam) and 

WGA (1:500, 574nm, Invitrogen) in 0.1% FCS/PBS overnight. Slides were washed and 

then incubated for 2 hours with 2° Ab (1:200, donkey anti-goat, 488nm, A11055 Life 

Technologies) and then mounted in Vectashield Antifade Mounting Medium with DAPI 

(H-1500, VectorLab). 

 

2.5.4 Telomere-associated DNA damage foci staining 

Telomere-Associated DNA Damage Foci were detected by performing Immuno-FISH, 

as previously described (Passos et al., 2007), on cryo-embedded heart sections.  

Sections that were cryo-embedded were fixed in 4% PFA, washed in PBS, treated with 

70% EtOH, blocked in 8% bovine serum albumin (BSA) in PSB-TT (0.5% Tween-20, 

0.1% Triton X-100), washed in PBS-TT, and incubated in 1°Ab at 4°C overnight. The 

1°Ab used was rabbit monoclonal anti-γH2Ax (1:200, 9718, Cell Signalling).  

Slides were subsequently washed in PBS-TT before the 2° Ab was added for 1 hour 

at RT. The 2° Ab used was goat anti-rabbit IgG Biotinylated (1:200, PK-6101, 

VectorLab). PBS washes were then followed by a 20 minute incubation with DSC-

Fluorescein (1:500, A-2001, VectorLab) and three PBS washes. The sample was then 

cross-linked using 4% PFA for 20 minutes, washed, dehydrated in ice cold 70%, 90% 

and 100% EtOH before air-drying. Next, 10 µl of probe hybridisation mix (Table 2.6) 

was applied to the slides and left in a dark, humidified chamber overnight. Afterwards, 

the samples underwent a series of washes; 20 minutes in 70% formamide/2x saline-

sodium citrate buffer (SSC), twice in 2xSSC for 10 minutes each, and 10 minutes PBS. 

Samples were stained with WGA (1:500, 674nm, W32466, Invitrogen) for 1 hour prior 
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to mounting coverslips with prolong Gold Antifade Mountant with DAPI (P36935, 

ThermoFisher Scientific). 

Table 2.6 Probe hybridisation mix reagent volumes. 

Volume  Reagent 

175µl Formamide deionized 

33.6µl ddH2O 

21.4µl MgCl Buffer 

2.5µl 1M Tris pH7.2  

12.5µl 1x Roche Blocking Buffer made up in Malic acid pH 7.5 

5µl PNA probe (25µg/ml Cy3-labelled telomere-specific (CCCTAA) 

peptide nuclei acid probe (F1002, Panagene)) 

 

2.5.5 Masson’s Trichrome staining 

Masson’s trichrome staining was performed to visualise the infarct (collagen stain) 

produced following MI and reperfusion (Bogatyryov et al., 2013). Hearts were 

sectioned to give up to 5 sets of slides, 10 slides per set. The first slide from each set 

were stained for this analysis and a minimum of 4 sections per slide were analysed. 

Cryo-sections were fixed for 1 hour in 4% PFA followed by overnight incubation in 

Bouin’s solution (HT10132, Sigma), both at RT. The next day, slides were washed in 

running tap water, and nuclei were stained for 5 minutes in Weigert’s Haematoxylin 

solution consisting of equal parts Haematoxylin Solution A and Solution B (HT1079, 

Sigma). Following a further wash in running tap water, cytoplasm staining was 

achieved by 5 minutes in Beibrich Scarlet-Acid Fuchsin Solution (HT151, Sigma). 

Slides were washed in ddH2O and to allow uptake of the stain, slides were incubated 

in phosphotungstic/phosphomolybdic acid solution with ddH2O in a 1:1:2 solution 

retrospectively. Slides were incubated in Aniline Blue Solution (b8563, Sigma) for 5 

minutes, washed in ddH2O and placed in 1% glacial acetic acid for 1-2 minutes. This 

solution fades the stain allowing the colours to be more distinguishable. Slides were 

washed with ddH2O and dehydrated via an EtOH gradient from 70% to 100% EtOH, 
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washed in Histoclear (HS-202, National Diagnostics) and mounted using Histomount 

(HS-103, National Diagnostics). 

 

2.5.6 Wheat Germ Agglutinin staining 

Cryo-sections were stained with WGA (1:500, 594nm, W11262, Invitrogen) and DAPI 

(1:500, MBD0015, Sigma) for 1 hour at RT after 20 minutes fixation in 4% PFA and 

PBS washes. Slides were mounted in Dako Fluorescence Mounting Medium (Agilent, 

S3023). 

 

2.5.7 5-Ethynyl-2-deoxyuridine staining 

Staining for EdU to assess proliferation was achieved using the Invitrogen Click-iT EdU 

Alexa Fluor 594 Imaging Kit (C10339). Sections (cryo-embedded) were stained for 

troponin C, as above, or for the endothelial marker ERG (rabbit anti-ERG, 1:1000, 

Ab92513, Abcam, counter stained with donkey anti-rabbit, 1:200, R37118, Life 

technologies). Following troponin C/ERG staining, sections were washed in 3% BSA 

and then treated with 0.5ml of 1X Click-iT reaction cocktail, prepared according to 

manufacturer’s protocol (Invitrogen, 2011) for 30 minutes in the dark. Afterwards, the 

reaction cocktail was removed and slides washed again in 3% BSA followed by PBS. 

Sections were also stained for WGA (1:400, 647nm, W32466, Invitrogen) for a 30 

minutes incubation period. Sections were labelled with DAPI (1:500, MBD0015, 

Sigma), washed in PBS and mounted in Dako Fluorescence Mounting Medium 

(Agilent, S3023).  

 

2.5.8 RNAscope 

RNAscope was performed to verify the results obtained from p16Ink4a staining in 

Section 2.5.2 according to the manufacturer’s protocol (RNAscope® Multiplex 

Fluorescent Kit v2 User Manual, 323100-USM, ACD) (Diagnostics, 2018). Cryo-

sections were initially fixed in 4% PFA for 15 minutes at 4°C followed by an EtOH 

dehydration gradient (5 minutes each at RT in 50%, 70% and two 100% washes). 

Sections were left to air dry, a hydrophobic barrier was created around the sections 

and then covered in RNAscope hydrogen peroxide (PN322381, ACD) and incubated 
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in the HybEZ humid tray for 10 minutes, at RT. Next, slides were washed five times for 

2 minutes each in PBS, the excess liquid was removed and one drop/section of 

Protease IV (PN322381, ACD) added for a 30 minute incubation in the HybEZ tray at 

RT. Slides were then washed again in several changes of PBS. Then one drop/section 

of p16Ink4a probe (Mm-Cdkn2a-tv2, 447491, ACD, C1 probe) was applied and sections 

placed in the HybEZ oven set at 40°C for 2 hours. Following two washes in 1X wash 

buffer (PN310091, ACD), slides could be stored overnight at RT in 5X SSC.  

The next day, sections were washed twice in 1X wash buffer and then incubated at 

40°C with one drop/section of the following reagents: RNAscope Multiplex Flv2Amp1 

for 30 minutes; RNAscope Multiplex Flv2Amp2 for 30 minutes; RNAscope Multiplex 

FlvAmp3 for 15 minutes; RNAScope Multiplex Flv2 HRP-C1 for 15 minutes; 100µl of 

TSA Plus Cy3 (1:750 in TSA buffer (322809, ACD), 594nm, NEL744001KT, 

PerkinElmer) for 30 minutes; and finally RNAscope Multiplex Flv2 HRP blocker for 15 

minutes (PN323110, ACD). Between each incubation slides were washed twice in 1X 

wash buffer. Afterwards, slides underwent counterstaining for troponin C (anti-troponin 

C, 1:800, ab30870, Abcam) for 1 hour at RT, washes in PBS, incubation with the 2° 

Ab donkey anti-goat (1:500 at 488nm against troponin C, A11055, Life Technologies) 

with DAPI (1:500, MBD0015, Sigma) for 1 hour at RT, final washes in PBS and sections 

mounted in Dako Fluorescent Mounting Medium (S3023, Agilent).  

 

2.5.9 4-Hydroxynonenal staining 

To assess OS levels, staining with the marker 4-hyrdoxynonenal (4-HNE) was carried 

out. This work was performed by a collaborator’s lab, Dr Jeanne Mialet-Perez’s. Tiled 

images of 4-HNE stained heart sections were analysed by measuring the fluorescence 

intensity and normalising the intensity to myocardial area.  

 

2.5.10 TUNEL staining 

For the detection of DNA fragmentation during cellular apoptosis, TUNEL staining was 

performed (In situ Cell Death Detection Kit, TMR Red, 12156792910, Roche). In brief, 

wax sections underwent de-paraffination, rehydration and antigen retrieval as 

described above (2.5), prior to blocking in 5% BSA for 30 minutes and then a 1 hour 

incubation in TUNEL Reaction mixture. After labelling, slides were washed in PBS and 
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stained for the CM marker, troponin C (1:800, ab30870, Abcam) for 1 hour at RT. 

Slides were again washed in PBS and then incubated in the 2°Ab donkey anti-goat 

(1:500 at 488nm against troponin C, A11055, Life Technologies) with DAPI (1:500, 

MBD0015, Sigma) for 45 minutes at RT. Slides were then washed in PBS and mounted 

in Dako Fluorescence Mounting Media (Agilent, S3023). 

 

2.6 Microscopy and image analysis  

All images were taken on a AxioImager with apotome microscope (Zeiss) and analysed 

using ZEN 2.3 (Zeiss). 

Slides that underwent staining for TAF were imaged using a DM5500 microscope 

(Leica), z-stacks taken at x63 magnification, and analysed using Fiji (ImageJ).  

Slides stained with SA-β-Gal were imaged at x10 to generate a titled image of the 

whole transverse heart section. 

The area of interest imaged for each senescence marker was the border zone (BZ); 

this is defined as the region proximal to the infarct. All images were taken of CMs in 

this region, within the LV (Figure 2.4.A, red region), and images of controls with no 

LAD ligation were taken throughout the LV. Other areas that have been imaged were 

the right ventricle (RV) and distal septum termed remote zone (RZ) (Figure 2.4.A, blue 

region). If healthy controls were not available, the RZ was used as a comparison to the 

BZ in some cases. The RZ was accepted as being unaffected as it was too distant to 

the infarct region. 

A minimum of 20 images/mouse at x63 were analysed with 10 images/section over 5 

sections being imaged.  

For Masson’s Trichrome, the first slide of each sister set of 10 slides was stained and 

4 sections analysed per slide at x10. Slides were scanned and analysed using the 

Leica Digital Image Hub. The LV area was calculated by measuring the epicardial area 

and subtracting the endocardial area. The infarct area was then measured and the 

percentage of LV that is infarct calculated to analyse scar size (Figure 2.4.B). 

For WGA staining to assess CM hypertrophy, again 10 images/section were taken 

within the BZ but at x20 across 4 sections. All CMs surrounded by three capillaries 
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were presumed to be in the same orientation, and the area of these CMs in a similar 

orientation were measured for this analysis (Walaszczyk et al., 2019). 

Quantification for markers (eg p21Cip, p16Ink4a, RNA-scope p16Ink4a, Ki67, TUNEL) is 

expressed at the percentage of CMs that are positive for that marker (ie number of 

CMs positive for the marker divided by the total number of CMs and multiplying by 

100), unless otherwise stated. For TAF there were two types of analyses performed: 

the first was “Mean TAF number in CMs” which was calculated by averaging the TAF 

counts per CM; and “Percentage of CMs positive for TAF” which was calculated by 

diving the number of CMs that contained 5 or more TAF by the total number of CMs. 

In each image taken, between 10-50 CMs were visible and quantified, therefore 

between 200 and 2500 CMs were analysed per mouse for each marker investigated. 

On average over 800 CMs were counted per mouse for each analysis. For analysis of 

in vitro experiments between 80 and 200 cells were included. 

   

 

2.7 Characterisation of a cardiomyoblast senescence-associated secretory 

phenotype in vitro 

To model CMs, an established cardiomyoblast H9C2 cell line was utilised (Branco et 

al., 2015). The H9C2 line was originally derived from embryonic BD1X rat heart tissue 

in 1976 (Kimes and Brandt, 1976), and have since been used regularly for in vitro 

studies given their embryonic CM-like morphology (Zordoky and El-Kadi, 2007; Tan et 

al., 2010; Watkins et al., 2011; Branco et al., 2015; Kuznetsov et al., 2015; Witek et al., 

Figure 2.4 Images of a transverse heart section.  

A) The BZ is outlined in red, surrounding the infarct (blue stained region in LV), 
and the RZ shown in blue covering the distal septum and RV.  

B) Masson’s Trichrome stained transverse section outlining them epicardium 
(pink), endocardium (yellow) and infarct border (blue).  

A B 
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2016). All in vitro experiments performed in this study using H9C2 cardiomyoblasts 

were incubated in normoxic conditions at 37°C and 5%CO2.  

 

2.7.1 Cell culture of H9C2 cells 

H9C2s were cultured in cultured in DMEM (Dulbecco’s Modified Eagle Medium, 

13345364, Gibco, Life Technologies) supplemented to contain 12.5% foetal bovine 

serum (FBS) (10500056, Gibco, Life Technologies), 2mM L-glutamine (25030024, 

Gibco, Life Technologies) and 1% Penicillin-Streptomyocin (P/S) (15070063, Gibco, 

Life Technologies). Cells were grown in 7ml of supplemented DMEM in treated T75 

flasks and either split at 70-80% confluence or for experiments grown to confluence.  

 

2.7.2 Irradiation of H9C2 cells 

Once cells had reached confluence, they underwent irradiation for 2 minutes at 10Gy. 

Immediately after irradiation, media was replaced and changed every 3-4 days. Cells 

were left for 10 days for senescence to become fully established (Hewitt et al., 2012) 

(Basisty et al., 2020). To confirm irradiated cultures had become senescent, cells were 

stained with SA-β-Gal (#9860, Cell Signaling Technology) as per the manufacturer’s 

instructions (Cell Signaling Technology, 2016). For conditioned media experiments, 48 

hours prior to collection cells were serum starved in media containing no FBS, and at 

day 10 this conditioned media was collected and H9C2 cells trypsinised and added to 

Trizol.  

 

2.7.3 H9C2 cells treatment with navitoclax  

To assess cell viability and senescence expression after treatment with navitoclax, 

H9C2s were cultured as previously described (Anderson et al., 2019) to reach 

confluence and underwent irradiation. Ten days post-irradiation, experimental cultures 

were treated with navitoclax prepared in 0.1% dimethyl sulfoxide (DMSO) in PBS at 

0.5µM, 1.0µM and 1.5µM concentrations for 2 days.  

On day 12, cells were either fixed in 2% PFA for staining to analyse expression of SA-

β-Gal, or collected for viability analysis (Figure 2.5). To assess viability, H9C2s were 

trypsinised and resuspended in 100µl of 1X prepared Annexin binding buffer (5X stock, 
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V13246, Life Technologies) and 25µl loaded onto a Tali cellular analysis slide (T10795, 

Invitrogen). Slides were analysed using a Tali image-based cytometer (Invitrogen) with 

images taken from 20 fields and set to quantify cells expressing propidium iodide.  

 

 

2.8  Characterisation of fibroblast senescence in vitro 

As the heart is a heterogeneous organ, it was of interest to investigate the impact of 

other cell types within the heart after they undergo senescence. To investigate the 

impact of a fibroblast senescence and the SASP they produce, fibroblast cell lines and 

primary fibroblasts were cultured in vitro for assessment. All in vitro experiments were 

incubated in normoxic conditions at 37°C and 5%CO2. 

 

2.8.1 Cell culture of MRC5 cells 

An established human foetal lung-derived fibroblast cell line, the MRC5 line, was 

utilised to establish methodology and used as a positive control. This line was derived 

from lung tissue taken from a 14 week male foetus by Jacobs, J. P and colleagues 

(Jacobs et al., 1970), and has been used for over the last 50 years as a fibroblast 

model (Friedman and Koropchak, 1978; McSharry et al., 2001; Farah et al., 2013). 

Figure 2.5 Experimental timeline of navitoclax study on H9C2s in vitro. 

H9C2s were cultured to confluence in T75 flasks and irradiated to induce 
senescence. Ten days post-irradiation navitoclax at varying concentrations 
(0.5µM, 1.0µM and 1.5µM) was added to cultures and at day 14 cells assessed for 
viability and senescence, by expression of the marker SA-β-Gal. 
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Cells were cultured in non-treated T75 flasks in DMEM (Dulbecco’s Modified Eagle 

Medium, 41966029, Gibco, Life Technologies) containing 10% FBS (10500056, Gibco, 

Life Technologies), 2mM L-glutamine (25030024, Gibco, Life Technologies) and 1% 

P/S (15070063, Gibco, Life Technologies). Cultures were split sub-confluent (70-80%).  

 

2.8.2 MRC5 cell treatment with navitoclax 

To determine the effect of Navitoclax on the clearance of senescent fibroblasts, 

MRC5s were cultured as above until confluent, irradiated and left for 10 days to 

become senescent. Then cultures were treated with navitoclax prepared in 0.1% 

DMSO in PBS at 1.5µM and 5µM concentrations for 48 hours. After treatment, cells 

were again fixed and stained for SA-β-Gal or counted for viability analysis, as 

described in 2.9.3 and Figure 2.5. 

 

2.8.3 Isolation of primary adult mouse cardiac fibroblasts 

Trials to isolate primary cardiac fibroblasts (CFs) from adult mice were also performed. 

Hearts from culled mice were excised, finely minced with a blade and placed within a 

media solution (DMEM + 0.5mg/ml BSA, 1% P/S) containing collagenase II (300U/ml) 

and incubated at 37°C for 1 hour. The collagenase solution was then transferred, 

carefully to avoid tissue debris, and fresh solution added to remaining tissue. This 

process was repeated three times and supernatant was centrifuged at 400G for 6 

minutes to collect a cell pellet. The pellet was then washed and finally resuspended in 

10ml of media (DMEM + 10% FBS, 1% P/S) and seeded into T25 flasks or chamber 

slides. After 4 hours, the media was removed containing CMs and other cell types, 

leaving only fibroblasts adhered to the culture-ware, and fresh media applied.  

Cells were allowed to reach confluence and slides were fixed in 2% PFA prior to 

staining. Staining was performed to verify the cell types isolated to ensure whether it 

was a pure population of primary fibroblasts or also contained CMs and other cell 

types. Slides were stained for cellular markers, according to protocols outlined above 

in 2.5 for cryosections. Primary antibodies used included: anti-vimentin (1:500, mouse, 

ab8978, Abcam) and anti-α-smooth muscle actin (1:1000, mouse, conjugated 488nm, 

ab184675, Abcam) as markers of fibroblasts, anti-troponin C (1:800, goat, ab30807, 
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Abcam) as a marker of CMs and anti-ERG (1:1000, goat, ab92513, Abcam) as a 

marker of endothelial cells.  

 

2.8.4 Irradiation of MRC5 and primary adult mouse cardiac fibroblast cells to 

obtain conditioned media 

Once confluent, MRC5s and CFs were irradiated at 20Gy to induce senescence. Media 

was changed immediately after irradiation and replaced every 3-4 days. At day 8 media 

was replaced for serum free media (DMEM containing no FBS) for 48 hours prior to 

sample collection on day 10. Conditioned media was aspirated off and centrifuged to 

remove debris before storage at -80°C. Cells were trypsinised and resuspended in 1ml 

of Trizol before storage at -80°C. 

Conditioned media from senescent fibroblast cell lines was then added to cultures of 

healthy cells to assess whether the SASP released from the irradiated fibroblasts acts 

in a paracrine fashion to stimulate senescence of a healthy cell population (Figure 2.6). 
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2.8.5 Endothelial cell culture 

Conditioned media experiments using an endothelial cell line, mouse coronary 

microvascular endothelial cells (MMVEC-Cs, Lonza), was performed by an mRes 

student, L. Donastorg Sosa, and cells were supplied by and experiments conducted in 

Dr. David Grieve’s lab of Queen’s University Belfast. Cultures of MMVEC-Cs were 

seeded in 12-well plates at a density of 5x104 per well.  

 

2.8.6 Isolation of primary embryonic mouse cardiomyocytes 

Primary embryonic murine CMs were utilised as a CM model. Embryos were dissected 

at E16.5-17.5 and hearts placed into ice-cold cardiomyocyte balanced salt buffer 

Figure 2.6 Experimental timeline of irradiating the fibroblast cell lines MRC5 
and primary cardiac fibroblasts to investigate a fibrotic senescence-
associated secretory phenotype. 

A) MRC5 cells were cultured and irradiated at 20Gy. On day 8, 48 hours prior to 
collection, media was replaced for serum free media. Cells and conditioned 
media was collected on day 10, and conditioned media transferred to healthy 
cell cultures. This was tested on other cell types including primary CMs and the 
endothelial cell line MMVEC-Cs. 

B) CFs were isolated from adult mouse hearts, also irradiated at 20Gy and 
cultured and samples collected the same as (A) for MRC5s.  

A 

B 
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(CBSB) (Table 2.7). Each heart was cut into 3-4 segments and all fragments 

transferred to enzyme solution without trypsin (Table 2.7) and incubated for 5 minutes 

in a water bath at 37°C. After 37°C incubations, the supernatant was transferred to a 

new collection tube, centrifuged at 700G for 15 minutes, supernatant discarded and 

cell pellet resuspended in 2ml of FBS and stored at 4°C between centrifugations. Once 

the supernatant from the tube containing heart fragments had been removed, fresh 

enzyme solution containing trypsin (Table 2.7) was added and fragments incubated for 

30 minutes at 37°C.  

Fragments were continuously incubated in enzyme solution with regular supernatant 

collections to isolate dissociated cells until the fragments had completely disintegrated. 

After the last centrifugation to collect cells, the pellet was resuspended in 7ml of 

cardiomyocyte growth media (CM-GM) (Table 2.7) and transferred to a T75. Cells were 

pre-plated for 1-2 hours and kept in a 37°C incubator set to 5% oxygen to allow any 

fibroblasts to adhere to the flask. Media containing CMs (not adhered to T75 flask) was 

removed, cells counted using a haemocytometer and resuspended in the appropriate 

volume of CM-GM for plating onto pre-treated collagen coated culture vessels 

containing coverslips (Table 2.7). For a 12-well plate, 1x106 CMs and cardiac derived 

cells were plated per well. 
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Table 2.7 Solutions for isolation of primary embryonic cardiomyocytes. 

Solution Protocol 

Cardiomyocyte 

Balanced Salt 

Buffer (CBSB)  

For 1L:  

 6.8g Sodium Chloride (NaCl) 

 20ml HEPES 1M 

 120mg Sodium Dihydorgen Phosphate (NaH2PO4) 

 400mg Potassium Chloride (KCl) 

 100mg Magnesium Sulfate (MgSO4) 

 pH to 7.4 with Sodium Hydroxide (NaOH) 

 Make up to 1L with dH2O 

 Autoclave and store at 4°C 

Enzyme Solution 

For 600ml: 

 150ml CBSB 

 1.62ml Glucose 1M 

 100mg Collagenase II (240U/mg) 

 Filter with a 0.2µm filter 

 Place 25ml of filtered solution into 50ml falcon and make 
up to 50ml with CBSB 

 Store at 4°C, heated to 37°C in water bath before use, 
add 2.5% Trypisn (100X) when needed (ie add 500µl 
Trypsin per 50ml Enzyme solution) 

Cardiomyocyte 

Growth Media 

(CM-GM) 

Makes 202ml: 

 136ml DMEM 

 34ml Medium 199 

 10ml FBS 

 20ml Horse serum 

 2ml P/S 

 Stored at 4°C, heated to 37°C in water bath before use 

Collagen coated 

culture vessels 

 

 Collagen (1mg/ml) dilute 1:10 in sterile water 

 Add: 500µl/well to a 12-well plate with coverslips; 3ml to 
a T25; or 5ml to a T75  

 Incubate culture vessel for several hours at RT or 
overnight at 4°C 

 Remove excess fluid and allow to dry overnight at 4°C 

 Rinse with CBSB before introducing cells in CM-GM 

 



 

71 

 

2.8.7 Analysis of irradiated primary fibroblast senescence-associated secretory 

phenotype 

Isolated embryonic CMs were left for 24 hours to adhere to the wells and proliferate. 

At 24 hours after seeding, conditioned media from proliferative and irradiated MRC5 

and CFs cultures was filtered using a 0.2µm filter and diluted 1:1 in CM-GM before 

being added to CMs cultures. Cells were assessed every 24 hours, and after 72 hours 

in conditioned media the CMs were fixed for 10 minutes in 2% PFA and stored at 4°C 

in PBS until stained. 

Cultures of MMVEC-C cells were also cultured for 72 hours in conditioned media from 

proliferative and irradiated MRC5s that had been filtered and diluted 1:1 in high glucose 

DMEM supplemented with 1% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) and 5% FCS. At the end of the experiment cells were fixed for 10 minutes in 

4% PFA and again stored at 4°C in PBS until staining. 

Coverslips with CMs were stained for either Ki67 (1:500, rabbit, ab15580, Abcam) with 

troponin C to assess impact of conditioned medias on proliferation, or with SA-β-Gal 

to investigate whether the conditioned media contained components from a fibrotic 

SASP that could induce senescence in the CMs.  

Coverslips with MMVEC-Cs were also stained for the proliferation marker Ki67 (1:500, 

rabbit, ab15580, Abcam) or for dihydroethidium (DHE, 10µM, D7008, Sigma) which is 

a superoxide probe that detects the presence of ROS, and once oxidised will emit a 

signal detectable at 594nm (Sigma Aldrich, 2019). For DHE, unfixed cells are 

incubated for 30 minutes at 37°C in a humidified dark chamber and imaged  

For all stains the protocols used can be found in section 2.5 and 10 images taken per 

coverslip at x10 magnification.  

 

2.9 Gene expression analysis  

To evaluate the levels of gene expression from cell and tissue samples stored in Trizol, 

samples underwent RNA isolation, followed by cDNA synthesis and then samples 

analysed by qRT-PCR. 
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2.9.1 RNA isolation  

RNA was extracted from cell pellets stored at -80°C using Qiagen RNeasy Mini Kit 

(74106, Qiagen) according to the manufacturer’s protocol (Qiagen, 2012). First 350μl 

of Buffer RLT was used to suspend the cells. The lysate was homogenised by placing 

it on a QIA shredder spin column and centrifuged at 14,000 RPM for 2 minutes. 350μl 

of 70% EtOH was added to the lysate and the sample transferred to an RNeasy spin 

column and spun at 10,000 RPM for 15 seconds. The flow through was discarded, 

700μl of Buffer RWI applied to spin column, column spun at 10,000 RPM again for 15 

seconds. Flow through was again discarded and 500μl of Buffer RPE was added to 

the spin column. The column was spun for 2 minutes at 10,000 RPM to ensure it was 

dry and RNA was eluted from the column by adding 15μl of RNase-free H2O and 

centrifuging at 10,000 RPM for 1 minute. The H2O containing RNA was passed through 

the column twice to ensure maximal RNA elution.  

RNA was also extracted from tissue. Upper ventricles and atria stored in Trizol were 

made up to 1.5ml of Trizol before being homogenised at a low power. To fresh 

eppendorfs, 800µl of homogenised tissue in Trizol was added to 200µl of chloroform, 

inverted vigorously for 15 seconds, left to settle for 3 minutes and the centrifuged for 

15 minutes at 12,000G (all centrifuges carried out at 12,000G). The aqueous phase 

was carefully removed, ensuring that the interphase was not disturbed, and added to 

a fresh Eppendorf with 500µl of isopropanol and mixed gently with a P1000 pipette 

before a 10 minute incubation at RT. To RNeasy spin columns, 700µl were added and 

spun for 30 seconds and repeated for remaining sample, discarding all flow through. 

Once all the sample was added to the spin column, 50µl of DNase was added to the 

column and left for 15 minutes at RT. Next 700µl of Buffer RW1 was applied to the 

column, column spun for 30 seconds, then 500µl of Buffer RPE was added, the column 

spun for 30 seconds and then an additional 500µl of RPE added and the column spun 

for 2 minutes. The column was dried by centrifuging for 1min before the column was 

placed in a collection tube and 50µl of RNase-free H20 added to the column. The H20 

containing RNA was passed through the column a second time to maximise RNA 

elution.  

To measure RNA content, 1μl of elute was run on a nanodrop. Concentrations were 

accepted if there was a 260/280 ratio of 1.8-2.1 and a regular plot on an absorbance 
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spectrum, as this indicated high purity of the RNA. Samples were stored at -80°C until 

further use. 

 

2.9.2 cDNA synthesis  

cDNA was synthesised using the RevertAid First Strand cDNA synthesis kit (K1622, 

ThermoFisher Scientific). The volume required to contain 2µg of RNA was added to 

1µl of Random Hexamer Primers and made up to a total volume of 12µl with ddH2O. 

To this 12µl mix, the following reagents were added in order: 4µl of 5X reaction buffer; 

1µl of RiboLock RNase Inhibitor; 2µl of 10mM dNTP mix; and 1µl of RevertAid Reverse 

Transcriptase. Samples were run on a PCR programme with the following stages: 5 

minutes at 25°C; 45 minutes at 50°C, 15 minutes at 70°C; then kept at 4°C.  

 

2.9.3 Quantitative reverse transcriptase polymerase chain reaction 

qRT-PCR was performed for markers of interest: p16Ink4a and p21Cip. Housekeeping 

genes used were glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

hypoxanthine phosphoribosyltransferase (HPRT), with data presented normalised to 

GAPDH. A master mix is prepared to contain 0.5μl of TaqMan primers (containing F 

and R, Table 2.8), 5μl of TaqMan Universal mix and 3.5μl of ddH2O. To this 9μl reaction 

mix, 1μl of cDNA diluted 1:40 is added onto and 384well plate and run on QuantStudio 

7 Flex System for a standard Comparative CT run. 

Gene  Taqman probe Probe spans exons 

GAPDH Mm99999915_g1 2-3 

p21Cip (Rasa3) Mm00436272_m1 5-6 

p16Ink4a (Cdkn2a) Mm00494449_m1 2-3 

 

2.10 Protein expression analysis 

For the assessment of protein expression from blood and tissue samples, samples 

were processed for analysis by cytokine/chemokine array, by Eve Technologies. 

Table 2.8 TaqMan probes, ThermoFisher Cat. Number 4331182. 
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2.10.1 Serum isolation from whole blood 

To isolate serum from whole blood obtained from cardiac puncture, 250µl-500µl blood 

was left in an eppendorf to clot at RT for at least 30 minutes before centrifugation for 

10 minutes at 1,000G at 4°C. The upper aqueous phase composing of serum was 

transferred to a fresh Eppendorf and stored at -20°C.  

Additional blood (≤600µl) was processed using a BD Microtainer SST serum separator 

tube (BD 365979, Becton Dickerson). The tube containing blood was inverted 5 times, 

left for 30 minutes, spun at 14,000G for 1.5 minutes and serum aspirated off and stored 

at -20°C until analysis.  

 

2.10.2 Protein isolation from tissue 

Portions of heart (superior to suture, affected RV and affected LV) were placed in 1ml 

of RIPA buffer (R0278, Sigma) prepared to contain protease inhibitors (58927091001, 

cOmplete ULTRA Tablets, 1 tablet dissolved in 10ml RIPA buffer) and left on ice for at 

least 20 minutes. Tissue was then homogenised and centrifuged for 20 minutes at 

12,000 G at 4°C. Supernatant was transferred to a fresh Eppendorf and stored at -

20°C. 

To normalise protein content, a bicinchoninic acid (BCA) assay was performed 

according to manufacturer’s instructions (Thermo Scientific, 2019). Samples were 

diluted 1:10 and 1:100 in RIPA buffer, and 25µl in duplicate loaded onto a flat-bottomed 

96-well plate, alongside 25µl of BSA protein for the standard curve (concentrations at 

2000ng/µl, 1500ng/µl, 1000ng/µl, 750ng/µl, 500ng/µl, 250ng/µl, 125ng/µl and 25ng/µl). 

To all duplicate samples, 200µl of working reagent (50 parts BCA Reagent A with 1 

part BCA Reagent B) was added and the plate incubated for 30 minute at 37°C in the 

dark. Once cooled to RT, the plate was loaded into the plate reader, the plate was 

shaken for 5 seconds at 500rpm, and then the absorbance of samples analysed at 

562nm. Concentrations were determined according to the standard curve generated 

from the BSA samples.  
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2.10.3 Cytokine/Chemokine array 

For analysis by Eve technologies on a Mouse Cytokine Array/Chemokine Array 44-

Plex (MD44) and TGFbeta 3-Plex Array (TGFb1-3), protein samples were normalised 

to contain 2mg/µl. Serum for analysis by these Arrays was diluted 1:1 in PBS. All 

samples were run in duplicate for both assays. 

Heat maps showing expression levels were generated on 

www.heatmapper.ca/expression and results displayed with Average Linkage 

Clustering method with Pearson Distance Measurement method.  

 

2.11 Statistical analysis 

Data analysis was carried out using the flow chart in Figure 2.7. Initially data analysis 

was performed using a T-Test of ANOVA. These statistical tools assume that residuals 

(defined as actual – fitted) are normally distributed with mean 0 and a constant 

variance. Normality of the residuals was assessed via visual inspection of QQ plots 

and by carrying out a Shapiro Wilk test on the residuals. A QQ Plot arranges the data 

collected (y-axis) against the theoretical values for a normally distributed population (x-

axis). The straight line across the graph represents a perfect fit to the normal 

distribution (Figure 2.8.A) (Pleil, 2016). In cases where QQ plots exhibited non-linearity 

(Figure 2.8.B), a nonparametric test such as a Mann Whitney or Kruskal-Wallis was 

carried out as per Figure 2.7.  

http://www.heatmapper.ca/expression
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Figure 2.7 Flow chart to determine appropriate statistical test to perform 
according to the outcome from a Shapiro-Wilk test. 

If the data set residuals from the fitted model passed normality, then a parametric 
test was performed: Unpaired/Paired T-Test for two groups; or One-way ANOVA 
for ≥three groups. If the data sets didn’t pass normality, then a non-parametric test 
was carried out: Mann Whitney for two groups; or Kruskal-Wallis for ≥three groups.  

P values obtained from each test are represented as follows: not significant/ns = 
>0.05, * = ≤0.05, ** = ≤0.01, *** = ≤0.001, **** = ≤0.0001.  

 

Figure 2.8 Example of a QQ Plot showing the distribution of the data 
residuals against a theoretical normally distributed population. 

A) Data has passed Shapiro-Wilk test. 

B) Data has not passed Shapiro-Wilk test. 

A B 
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For MRI analysis, if analysing data collected from the same mouse at different time-

points and a parametric test was appropriate, then a paired T-test was used. For all 

other analyses, an unpaired T-test was utilised if performing a parametric test to 

compare two groups.  

A One-Way ANOVA or Kruskal-Wallis with multiple comparisons was performed 

comparing only the mean of the “Non-LAD” control group against the mean of the 

“IRI” and “IRI + Nav” groups at the 3 week and 5 week time-points separately. 

Differences between the IRI untreated and IRI Navitoclax treated groups, either 

against each other or comparing the data between time-points, was assessed using 

a T-Test as appropriate, outlined above.  
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Chapter 3. Cardiomyocyte senescence post-myocardial infarction 

and subsequent reperfusion in a mouse model of ischaemia-

reperfusion injury 

 

3.1  Introduction 

Myocardial infarction is the leading cause of death and disability in developed countries 

(Roger, 2007). The gold-standard intervention is timely reperfusion via PPCI 

(Terkelsen et al., 2009; National Clinical Guideline Centre (UK). 2013), which can limit 

acute MI injury by salvaging viable myocardium, and the introduction of PPCI has led 

to dramatic improvements in patient survival rates from MI. Paradoxically, reperfusion 

itself can cause damage to the myocardium due to the phenomenon termed IRI 

(Lønborg, 2015; Doost Hosseiny et al., 2016), which encompasses numerous events 

including ECM remodelling and stimulation of an inflammatory response (Ibarrola et 

al., 2019). Together these processes all contribute to adverse myocardial remodelling 

of the LV accelerating progression to heart failure (Joost et al., 2016; Westman et al., 

2016; Ibarrola et al., 2019).  

Ischaemia-reperfusion injury is associated with multiple forms of genotoxic stress, 

including OS, which is known to be central to many adverse processes occurring as a 

result of IRI (Kalogeris et al., 2012; Hausenloy and Yellon, 2013). Mild OS can 

accelerate telomere shortening rates (von Zglinicki, 2002) whereas high OS can lead 

to senescence independently of telomere length (Dumont et al., 2000). More recently 

it has been shown that OS induces DNA damage at telomeric regions, resulting in 

activation of a persistent DNA damage response (Hewitt et al., 2012). Senescence is 

thought to contribute to ageing in multiple organ systems (Kirkland and Tchkonia, 

2017; de Magalhães and Passos, 2018) including the heart (Anderson et al., 2019; 

Lewis-McDougall et al., 2019; Walaszczyk et al., 2019) and is also associated with 

age-related disorders (Childs et al., 2015). There is now growing evidence linking 

senescence with CVDs including atherosclerosis, pressure overload-induced cardiac 

hypertrophy and heart failure (Meyer et al., 2016; Childs et al., 2018; Anderson et al., 

2019; Shimizu and Minamino, 2019). Senescent cells are thought to contribute to 

ageing via release of ROS that can cause damage to surrounding cells (Nelson et al., 

2012), the secretion of a SASP (Coppé et al., 2008), which is pro-inflammatory, pro-
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fibrotic and can also promote senescence in surrounding cells (Acosta et al., 2013), 

along with limiting stem cell function and altering the ECM (Coppé et al., 2008; van 

Deursen, 2014; McHugh and Gil, 2018). 

While the heart has a limited regenerative potential, the majority of CMs are considered 

to be post-mitotic cells and were traditionally believed to be incapable of becoming 

senescent (Sapieha and Mallette, 2018). Recently it has been demonstrated that with 

age, an accumulation of OS drives telomere dysfunction and senescence in CMs 

irrespective of telomere length (Anderson et al., 2019). Damage in telomere regions 

has been shown to induce a persistent DNA damage response (Hewitt et al., 2012). 

Mechanistically, it is thought that shelterin components such as TRF2 inhibit non-

homologous end joining (NHEJ) impairing repair (Fumagalli et al., 2012). Telomere 

associated DNA damage foci have been shown to accumulate in multiple tissues 

during aging (Hewitt et al., 2012; Birch et al., 2015; Anderson et al., 2019; Victorelli et 

al., 2019) and increased in mouse models of increased OS (Anderson et al., 2019). 

Formation of TAF has been shown to contribute to a senescent-like phenotype in CMs, 

portraying a hypertrophic phenotype, expression of cyclin-dependent kinases p21Cip, 

p16Ink4a and p15Ink4b and generating an atypical SASP, which does not involve pro-

inflammatory cytokines and chemokines such as Il-6 and Cxcl1 (Anderson et al., 2019). 

This atypical SASP is believed to initiate remodelling events, as in vitro taking 

conditioned media from aged CMs for culture on healthy fibroblasts and neonatal CMs 

demonstrated increases in myofibroblast differentiation and CM hypertrophy which are 

both prominent characteristics of adverse remodelling (Anderson et al., 2019). In a 

model of mitochondrial dysfunction (MAO-A mouse) where the enzyme monoamine 

oxidase A, which is a promoter of OS, was specifically upregulated in the CM 

population resulted in increased OS and markers of senescence including TAF 

compared to age-matched controls. Treatment with the antioxidant NAC recovered 

TAF and senescence levels in the transgenic MAO-A mouse. Additionally, alternative 

mouse models deficient in antioxidant enzymes catalase and manganese superoxide 

dismutase showed increased TAF in CMs compared to age-matched controls. These 

models implied that OS directly causes senescence and telomere dysfunction of CMs 

(Anderson et al., 2019).  

A senescent environment generated from the SASP has been shown to attenuate 

regeneration (Lewis-McDougall et al., 2019) and contributes to the pathophysiology of 
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adverse remodelling by promoting fibrosis and hypertrophy (Anderson et al., 2019; 

Walaszczyk et al., 2019). To date, it is unknown whether IRI post-MI instigates cardiac 

and CM senescence and if, as in aged hearts, senescence contributes to myocardial 

remodelling via the SASP.  

It was hypothesized that the genotoxic stress associated with IRI will induce cellular 

senescence (Figure 3.1). To investigate this hypothesis, I used the LAD ligation with 

reperfusion model of IRI and characterised senescence using the markers TAF, SA-β-

Gal and expression of the CDK inhibitors p21Cip and p16Ink4a (Carnero, 2013). 

 

 

3.2 Experimental model 

To establish whether MI with IRI induced CM senescence, a murine model in which 

the LAD is surgically occluded for 1 hour and then allowed to reperfuse (Figure 2.1) 

was utilised. Male C57BL/6 mice at 3-months old were used for all experiments. Male 

mice were used as other studies have reported differences between male and female 

mice in the progression of myocardial repair and remodelling after MI (Redgrave et al., 

Figure 3.1 Graphical hypothesis.  

The healthy heart (left) has a limited but measurable potential for CM regeneration, 
a process that involves both CM proliferation as well as contribution from 
progenitor cells, which has the potential to contribute to a restricted recovery 
following MI. Following MI with reperfusion (right), IRI and the subsequent increase 
in OS drives DNA damage and senescence in the CM population via persistent 
activation of the DDR.  
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2016). These differences are due to variations in the inflammatory and fibrotic 

responses resulting in female mice demonstrating lessened remodelling (Cavasin et 

al., 2004; Gao et al., 2005; Fang et al., 2007; Wang et al., 2007; Redgrave et al., 2016). 

Also studies using male subjects may be of more relevance as the proportion of 

patients in a clinical setting that have an MI that are male is higher than the incidence 

of MI in females (Dunlay and Roger, 2012; Bhatnagar et al., 2015). 

Hearts were then excised, collected and processed at 24 hours, 72 hours, 1 week and 

4 weeks (Figure 3.2) after IRI and embedded either in wax or OCT to allow histological 

analysis for a range of markers for OS, telomere dysfunction and senescence.  

 

 

3.3 Detection of senescence in a model of ischaemia-reperfusion injury  

3.3.1 Oxidative stress markers are increased post-ischaemia-reperfusion injury  

In this model it was first confirmed whether OS levels were increased as a result of 

LAD ligation and IRI. Within 24 hours after IRI, levels of the OS marker 4-HNE 

(Pradeep et al., 2013) significantly increased (p=0.0043). At baseline in healthy, non-

ligated mice, the intensity of 4-HNE fluorescence normalised to myocardial area was 

measured at 4.73AU ± 0.68, and by 24 hours post-LAD ligation, levels were raised to 

8.01AU ± 0.70. By 72 hours, 4-HNE levels had lowered to 6.78AU ± 0.08 but this 

elevated level of OS was maintained by 1 week after infarct with detected levels of 

6.71AU ± 0.99 (Figure 3.3). Fluorescence of 4-HNE at 24 hours was particularly 

elevated within the region of the LV predicted to be affected and generate an infarct. 

The corresponding region in hearts analysed 1 week after IRI demonstrated a loss of 

the myocardium in the medial LV wall which is likely infarct. (Figure 3.4). 

Figure 3.2 Experimental timeline. 

After 1 hour ligation of the LAD the LAD was allowed to be reperfused and hearts 
collected at numerous time-points (24 hours, 72 hours, 1 week and 4 weeks, N=3-
5 for each time-point) post-surgery for senescence analysis.  
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Figure 3.3 Fluorescence intensity of 4-hydroxynonenal as a marker of 
oxidative stress increases at 24 hours after surgery and elevated levels are 
maintained up to a week. 
A) Images of 4-HNE (left column), DAPI (middle column) and merged (right 

column) channels in a non-LAD ligated heart (first row), and IRI hearts at 24 
hours (second row), 72 hours (third row) and 1 week post-IRI (fourth row). 
Fluorescence intensity is greatest in the heart at 24 hours. 

B) Graph shows there is a significant increase in 4-HNE intensity at 24 hours 
(p=0.0043) and these elevated levels reduced slightly by 72 hours (0.0068) and 
are sustained by 1 week (0.0466). 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T Test and One-way ANOVA. 

B 
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Figure 3.4 At 24 hours after ischaemia-reperfusion injury , 4-hydroxynonenal 
intensity was elevated in the region of the left ventricle predicted to become 
infarct. 

Images of 4-HNE, DAPI and merged channels from hearts at 24 hours and 1 week 
after IRI. In the heart at 24 hours the intensity of 4-HNE fluorescence in greater 
within the LV myocardium (arrow). This region is the area predicted to be affected 
by MI and would become infarct. Zoomed image at 1 week shows that the 
equivalent region (arrow) has an infarct. 
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3.3.2 Presence of telomere-associated DNA damage is elevated after 

ischaemia-reperfusion injury  

It is commonly accepted that OS triggers genomic DNA damage leading to activation 

of the DDR (Correia-Melo et al., 2014). Our previous studies have shown that during 

ageing, mitochondrial dysfunction and increased OS leads to DNA damage at telomere 

regions. This TAF accumulation is persistent and has been suggested to contribute 

directly to myocardial remodelling (Anderson et al., 2019). On the basis of the 

aforementioned findings, I hypothesised that the OS associated with IRI induced TAF.  

To assess levels of TAF, immuno-FISH was carried out on hearts taken from mice at 

1 week post-operation. At this time-point, levels of the OS marker had been elevated 

over the 7 days (Figure 3.3) and corresponds to when senescence would be starting 

to become fully established (Correia-Melo et al., 2014). TAFs were identified by the co-

localisation of γH2Ax foci (green) and telomere C domain probe-foci (red) within a 

nucleus (blue). The region of infarct was located using WGA, which also stained the 

membranes of the CMs (cyan) (Figure 3.5.A-F). The WGA was also used to 

discriminate the CM nuclei from other cell types, based on cell size and morphology 

for analysis. In each image, the total number of CMs, the number of CMs positive for 

TAFs, and the number of TAFs per nuclei were quantified. The TAFs were counted by 

moving through the z-stack and recording the number of overlapping foci in the green 

and red channel within each nucleus. Figure 3.5.B-F is an example of a TAF positive 

nuclei.  

In the BZ surrounding the infarct at 1 week, CMs demonstrated a significantly higher 

(p=0.0095) number of total TAF (6.86 ± 1.84) compared to the RZ (3.70 ± 1.18). Levels 

in the BZ was also significantly higher than in healthy non-ligated controls (1.98 ± 0.48, 

p=0.0006) (Figure 3.5.G). At this time-point, the percentage of CMs containing a TAF 

was significantly higher after IRI (p=<0.0001), with the percentage of TAF positive CMs 

increasing from 16.33% ± 5.79 pre-IRI to 67.88% ± 0.83 in the BZ (Figure 3.5.H).  

TAF analysis was also performed at 4 weeks post-LAD ligation to assess residual 

senescence still present after CM death. At this time-point mean TAF number and 

percentage of CMs positive for TAF had reduced in comparison to the 1 week time-

point to 4.35 ± 0.70 and 35.52% ± 7.95 respectively (Figure 3.5.G-H).  
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An additional point to consider when analysing TAF is the organ-specific TAF threshold 

for initiating senescence. In hepatocytes, it has been demonstrated that considering 3 

or more TAF is a robust marker of senescence induction (Jurk et al., 2014; Ogrodnik 

et al., 2017), but suggested that this threshold may vary between tissue types and be 

higher in the heart (Anderson, 2016). If this data was analysed to calculate the 

percentage of CMs positive for 5 or more (≥5) TAF, then only 1.53% ± 0.45 of healthy 

CMs contained ≥5 TAF, which was significantly increased (p=0.0001) to 54.00% ± 

20.52 by 1 week post-IRI and levels were lower by 4 weeks at 17.71% ± 7.67 

(p=0.0402, Figure 3.5.H). 
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Figure 3.5 Proximal to the infarct cardiomyocyte nuclei are positive for 
telomere-associated DNA damage foci. 
A) Representative image taken from the BZ in a heart collected 1 week post-LAD 

ligation. CMs with TAF positive nuclei are highlighted with white arrows.  
B) Individual channel for γH2Ax.  
C) Individual channel for Telo-c probe. 
D) Individual channel for DAPI.  
E) Example of γH2Ax and Telo-c channels merged, to allow for identification of 

TAF, which are highlighted with white arrows. 
F) Merged channels including DAPI showing TAF localise within the nuclei. 
G) Graph showing mean TAF number in CMs in no-LAD ligation control, the RZ in 

LAD ligated samples at 1 week and the BZ in LAD ligated samples at 1 and 4 
weeks. There were significantly more TAFs in all IRI groups compared to no-
LAD ligated control. In the BZ, the mean TAF number was higher at 1 week 
than at 4 weeks. 

H) Graph showing the percentage of CMs positive for total and more than 5 TAF 
without LAD and at 1 and 4 weeks. There were significantly more CMs positive 
for TAF in the IRI groups compared to no-LAD ligated control. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T Test and One-way ANOVA. 
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3.3.3 Cardiomyocytes are positive for senescence-associated β-galactosidase 

activity 1 week post-ischaemia-reperfusion injury 

Having observed elevated levels of OS (Figure 3.3) and this correlating with an 

accumulation of TAF within the CM population (Figure 3.5) additional markers of 

senescence were tested. SA-β-Gal staining was used for these initial studies as it is 

an established marker of senescence (Dimri et al., 1995; Itahana et al., 2013).  

In the uninjured control hearts, no SA-β-Gal was detected. Conversely, SA-β-Gal 

activity was observed in all hearts subjected to LAD ligation and at all time-points SA-

β-Gal staining was restricted to the LV (Figure 3.6).  

At 24 hours post-IRI numerous SA-β-Gal positive cells were found throughout the 

myocardium in the region which I hypothesised would be affected. These observed 

positive cells were small and located within the interstitial cells of the myocardium. At 

this time-point no cells with a CM morphology were found to be stained for SA-β-Gal 

(Figure 3.6.B.i).  

By 72 hours, the infarct was more readily defined (Figure 3.6.C.iI). Positive staining for 

SA-β-Gal was observed throughout this region as well as within interstitial cells of the 

myocardium adjacent to the infarct in a region subsequently referred to as the infarct 

BZ (Figure 3.6.C.i). This region of positive staining correlated to the same region 

observed in Figure 3.4 that had elevated expression of the OS marker, 4-HNE. 

At 1 week the SA-β-Gal staining remained similar to the 72 hour time-point, located in 

the infarct and interstitial cells of the BZ, although the staining appeared more intense 

(Figure 3.6.D.ii). In addition, throughout the BZ of the hearts at 1 week post-operation, 

cells positive for SA-β-Gal with a CM morphology where identified (Figure 3.6.D.i). 

These cells were always observed peri to the infarct and were not observed in the 

myocardium remote to the infarct. It should also be noted that this staining was also 

performed on sections collected 4 weeks after LAD ligation, however, little to no 

positive staining could be detected (Figure 3.6.E). 
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Figure 3.6 Senescence-associated β-galactosidase expression is observed within the infarct and cardiomyocyte 
population post-ischaemia-reperfusion injury. 

Upper row Ai, Bi, Ci, Di and Ei) High power images of the BZ at each time-point. Di) SA- β-Gal positive cells with CM 
morphology (red arrows).  

Lower row Aii, Bii, Cii Dii and Eii) Tiled images of a whole heart section with the distribution and intensity of positive SA-β-Gal 
staining throughout the heart. BZ = CMs proximal to the infarct. N=3 for each time-point. 
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My next aim was to validate that SA-β-Gal staining was in the CM population by using 

two established markers of CMs: autofluorescence at 488nm; and via expression of 

the CM specific protein troponin C. Cardiomyocytes are autofluorescent at 488nm 

allowing their discrimination from other cardiac cell lineages (Chorvat et al., 2005). In 

the BZ, SA-β-Gal positive cells which demonstrated a high degree of auto-fluorescence 

at 488nm were observed. The presence of sarcomere-like structures further indicated 

that these cells were CMs (Figure 3.7.A-B). Troponin C is a protein that is a component 

of the troponin complex expressed in CMs, and functions to sense and bind to calcium 

triggering CM contraction (Li and Hwang, 2015). Cells stained with both troponin C and 

SA-β-Gal were again identified in the BZ at 1 week post-IRI indicating that CMs peri to 

the infarct may be induced to senescence as a result of IRI (Figure 3.7.C-D).  

 

 

Figure 3.7 A sub-population of cardiomyocytes are positive for senescence-
associated β-galactosidase 1 week after ischaemia-reperfusion injury. 

A and B) Images showing the same cells to be positive staining for SA-β-Gal (A) 
and autofluorescence in the 488nm channel (B). These cells also appeared 
striated, another characteristic of CMs. This hypothesis could only be 
confirmed by developing a dual stain using a CM marker.  

C and D) Images showing the same cell to be positively stained for SA-β-Gal (C) 
and the CM specific sarcomeric protein, troponin C (D). Image A and C are 
bright field images showing SA-β-Gal labelled cells (blue). Images B and D are 
immunofluorescence images: troponin C (in green, wavelength 488nm), WGA 
(in red, wavelength 594nm), and DAPI (in blue, wavelength 461nm). The cells 
outlined are CMs that are positive for SA-β-Gal and troponin C. 

B 

C D 
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As detailed above there is no universal marker for cellular senescence. While SA-β-

Gal is an established senescence marker, as an indicator of the increased lysosomal 

activity at pH 6.0 (Lee et al., 2006), utilising multiple markers leads to a more robust 

analysis (Biran et al., 2017), and these markers were further investigated at the 4 week 

post-LAD ligation time-point. 

 

3.3.4 RNA levels for p21Cip and p16Ink4a are also increased following ischaemia-

reperfusion injury  

To further test the hypothesis that senescence was induced by IRI and to establish if 

senescence was persistent up to 4 weeks post-IRI the transcript expression of p21Cip 

and p16Ink4a, additional biomarkers of cellular senescence, were quantified using qRT-

PCR. At 4 weeks post-infarct hearts were removed (n>4) and each LV was dissected 

into two regions: 1) the region posterior to the ligation containing the infarct and BZ; 

and 2) the region superior to the ligation containing only myocardium remote to the 

infarct. The same regions were collected from control uninjured hearts. Following 

collection, mRNA was isolated and expression of p21Cip and p16Ink4a was quantified 

using TAQman probes (Table 2.6). qRT-PCR revealed there was a significant 2-fold 

increase in p21Cip expression at 4 week post-LAD ligation compared to uninjured 

control (2.04 ± 0.56 vs 1.00 ± 0.34, p=0.0291, Figure 3.8.A) and over a 4-fold increase 

in p16Ink4a expression in IRI hearts vs control (4.61 ± 1.74 vs 1.00 ± 0.30, p=0.0033, 

Figure 3.8.B).  

This data showing the expression of p16Ink4a and p21Cip in the BZ was compared to the 

expression in the remote myocardium at 4 weeks post-IRI. By doing so this identified 

if senescence was restricted to the infarct area and also provided a control to 

demonstrate that increased senescence was indeed due to IRI and not simply a result 

of the surgery. Contrary to the LV containing infarct, no significant difference was 

observed in the mRNA isolated from tissue collected superior to the ligation for either 

p21Cip (1.00 ± 0.11 without LAD ligation and 1.26 ± 0.41 post-LAD, Figure 3.8.C) or 

p16Ink4a expression (1.00 ± 0.40 to 1.719 ± 0.66, Figure 3.8.D). This result supports my 

hypothesis that the affected myocardial region is restricted to the BZ and suggests that 

IRI directly contributes to senescence induction. 
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3.3.5 In the border zone proximal to the infarct, cardiomyocytes remain positive 

for p21Cip and p16Ink4a 

A vital CDK inhibitor that lies downstream of p53 to evoke the SASP and cell cycle 

arrest is p21Cip (Lieberman et al., 2017). Sections from hearts collected at 4 weeks 

post-IRI were dual stained by immunofluorescence for p21Cip and troponin C. Troponin 

C expressing CMs which were also positive for p21Cip were identified in the BZ at this 
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Figure 3.8 mRNA expression of p21Cip and p16Ink4a from tissue samples 
collected from regions proximal and distal to the infarct. 
A) Expression of p21Cip was significantly increased in mRNA samples collected 

from the LV of LAD ligated hearts posterior to the suture of LAD ligated hearts. 
B) Expression of p16Ink4a was significantly increased in mRNA samples collected 

from the LV of LAD ligated hearts posterior to the suture of LAD ligated hearts. 
C) Expression of p21Cip shows no significant change in mRNA samples collected 

from the LV and atria superior to the suture of LAD ligated hearts. 
D) Expression of p16Ink4a shows no significant change in mRNA samples collected 

from the LV and atria superior to the suture of LAD ligated hearts. 

N=3-5. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 using Two-Tailed T 
Test. 
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time-point. Expression of p21Cip was observed as a typical punctate staining located 

specifically in the nuclei (Figure 3.9.B). Quantitative analysis revealed a statistically 

significantly (p=0.0003) increase in the number of p21Cip positive troponin C expressing 

CMs in the BZ of LAD-ligated hearts compared to the same region of myocardium of 

age-matched uninjured controls (18.47% ± 2.62 vs 0.46% ± 0.56 respectively, Figure 

3.9.D).  

At 4 weeks the remote myocardium remained absent of p21Cip expression further 

suggesting that CM senescence was a result of proximity with the infarct. Additionally, 

at this time-point the cells within the infarct did not express p21Cip. There were 

interstitial cells present that were autofluorescent at both 488nm and 594nm, which 

were postulated to be erythrocytes as they are autofluorescent at both wavelengths 

following PFA fixation (Davis et al., 2014). However, none of the interstitial cells were 

positive for p21Cip at 594nm.  
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 Figure 3.9 Cardiomyocytes express p21Cip post-ischaemia-reperfusion injury. 
A) Immunofluorescence staining in control, non-LAD ligated hearts. Slides stained 

with CM marker troponin C (in green, wavelength 488nm), senescence marker 
p21Cip (in red, wavelength 594nm) and nuclei (in blue with DAPI, wavelength 
461nm). All images for this analysis were taken in the BZ. CMs positive for 
p21Cip are highlighted with a white arrow. 

B) Immunofluorescence staining in hearts post-IRI. Slides stained with CM marker 
troponin C (in green, wavelength 488nm), senescence marker p21Cip (in red, 
wavelength 594nm) and nuclei (in blue with DAPI, wavelength 461nm). All 
images for this analysis were taken in the BZ. CMs positive for p21Cip are 
highlighted with a white arrow. 

C) Negative control for both 1°Abs, slides were incubated in PBS instead. Cells 
autofluorescent are postulated to be erythrocytes as they are autofluorescent in 
both 488nm and 594nm channels following PFA fixation (Davis et al., 2014).  

D) Quantification of CMs expressing p21Cip in no-LAD ligation ctrl vs IRI hearts. 
The percentage of p21Cip positive CMs was significantly increased. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T Test. 
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Senescent cells are maintained in G1 arrest by expression of p16Ink4a which inhibits 

the phosphorylation of Rb (Gil and Peters, 2006). It is also proposed that p16Ink4a 

expression acts as a safety mechanism to maintain cellular arrest in the event of Rb 

being phosphorylated, as in this scenario DNA synthesis is restarted but p16Ink4a 

expression blocks cytokinesis and cell proliferation (Takahashi et al., 2007). 

Consequently, p16Ink4a is essential for both the initiation and maintenance of 

senescence and therefore a marker of both of these processes. 

At 4 weeks post-IRI p16Ink4a expression was observed in a pattern similar to p21Cip. 

Expression of p16Ink4a was by troponin C positive CMs in the BZ while being absent 

from the remote myocardium. There were approximately three times more troponin C 

expressing CMs co-expressing p16Ink4a within the BZ of the infarct post-LAD (Figure 

3.10.B) than the same region of LV in uninjured control (Figure 3.10.A), (6.61% ± 2.16 

to 23.91% ± 1.75, p=0.0002, Figure 3.10.D). In contrast to p21Cip, interstitial cells in the 

BZ and within the infarct that expressed p16Ink4a were also observed.  

Together this data for p21Cip and p16Ink4a expression supports the qRT-PCR data for 

both CDKs, confirming elevated expression of these senescent markers within cells 

proximal to the infarct (Figure 3.8.A-B).  
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Figure 3.10 Cardiomyocytes express p16Ink4a post-ischaemia-reperfusion 
injury. 
A) Immunofluorescence staining in control, non-LAD ligated hearts. Slides stained 

with CM marker troponin C (in green, wavelength 488nm), senescence marker 
p16Ink4a (in red, wavelength 594nm) and nuclei (in blue with DAPI, wavelength 
461nm). All images for this analysis were taken in the BZ. CMs positive for 
p16Ink4a are highlighted with a white arrow. 

B) Immunofluorescence staining in hearts post-IRI. Slides stained with CM marker 
troponin C (in green, wavelength 488nm), senescence marker p16Ink4a (in red, 
wavelength 594nm) and nuclei (in blue with DAPI, wavelength 461nm). All 
images for this analysis were taken in the BZ. CMs positive for p16Ink4a are 
highlighted with a white arrow. 

C) Negative control for both 1°Abs, slides were incubated in PBS instead.  
D) Quantification of CMs expressing p16Ink4a in no-LAD ligation ctrl vs IRI hearts. 

The percentage of p16Ink4a positive CMs was significantly increased.  

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T Test. 
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3.4 Discussion 

In this study it was hypothesised that OS from IRI would induce genotoxic stress in the 

form of TAF, triggering senescence within the CMs proximal to the infarct after LAD 

ligation with reperfusion. My data shows that post-IRI there is an increase in OS which 

is associated with an increased number of TAF and senescence markers. While I do 

not show a direct causality between OS inducing TAF or TAF inducing senescence in 

the current study, it has been previously demonstrated that in the MAO-A, manganese 

superoxide dismutase, and catalase knockout transgenic models, which have elevated 

CM OS, induce TAF independently of age (Anderson et al., 2019). Similarly, it was 

demonstrated that TAF independent of other senescent stimuli is able to trigger cellular 

senescence (Anderson et al., 2019). Moreover TAF have been shown to induce 

senescence in multiple cell types (Jurk et al., 2014; Ogrodnik et al., 2019b) and are an 

established marker of senescence (Hewitt et al., 2012; Ogrodnik et al., 2019a). On the 

basis of my findings elevated OS in the myocardium induces senescence in multiple 

cell populations including CMs following IRI in young male mice which is consistent 

with the hypothesis.  

The formation of TAF and expression of senescence markers is a dynamic process 

and after LAD ligation their levels are augmented and then reduced in both the infarct 

and surrounding CMs in the border zone. I observed a considerable generation of TAFs 

within CMs in the BZ by 1 week post-LAD ligation which was significantly decreased 

by 4 weeks. DNA damage not only stimulates senescence induction but if extensive 

enough, it can lead to either programmed cell death via apoptosis or even necrosis 

(d'Adda di Fagagna, 2008). Following MI the heart undergoes a dynamic repair 

process which occurs for several weeks after injury (Blankesteijn et al., 2001). The 

process of wound repair can be divided into four phases, the first of which includes 

death by apoptosis and necrosis (Blankesteijn et al., 2001). In rabbits following LAD 

ligation with reperfusion, TUNEL staining identified extensive CM apoptosis from 2 

days post-LAD, but levels were much lower level by 2 and 4 weeks after surgery 

(Takemura et al., 1998). From my data, the peak in TAF at 1 week post-LAD ligation 

and then reduction by 4 weeks may be in part due to apoptosis and necrosis of these 

CMs containing TAF. Senescent cells are also known to recruit immune cells via the 

SASP paracrine signalling in order to stimulate immune clearance (Vicente et al., 2016; 
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Prata et al., 2019). As such, it is also possible that the reduction in CMs containing 

TAF is due to clearance of this population by immune cells. 

Also a decline in TAF number may be due to them being repaired. Double-stranded 

breaks, can be repaired via NHEJ (Lieber, 2010; Davis and Chen, 2013). Once a DSB 

is identified, a complex formed of NHEJ components forms to stabilise the break and 

provide a scaffold for recruited DNA end processing enzymes. These enzymes, 

including the nuclease Artemis, process the ligated end of the DNA in preparation for 

ligation by DNA Ligase IV (Davis and Chen, 2013). However, after senescence 

induction, senescence-associated heterochromatin foci can form making TAFs less 

accessible by the NHEJ reparative machinery and results in TAF being persistent 

(Adams, 2007; Mao et al., 2016). An alternative mechanism that can result in TAF 

repair via homologous recombination has been proposed. Homologous recombination, 

however, is activated during S and G2 stages (Davis and Chen, 2013) and therefore 

can only occur during cell proliferation. Although most CMs are post-mitotic, 

regeneration does occur at a low level (Kikuchi and Poss, 2012) and as such it is 

possible that TAF may be repaired by homologous recombination in this rare 

population of proliferating CMs, leading to reduction in total TAF over time. 

As well as CM proliferation contributing to regeneration, stem cells have also been 

shown to play a role (Beltrami et al., 2003; Ellison et al., 2013). As such, TAF reduction 

may result from a dilution of TAF positive CMs due to formation of new CMs from 

resident stem cell populations. While at homeostasis the levels of CM renewal from 

stem or progenitor cells is low this increases considerably following injuries including 

MI (Hsieh et al., 2007; Malliaras et al., 2013). It has been shown that in the border zone 

post-MI between 0.7% and 4% CMs may be replaced (Hsieh et al., 2007; Loffredo et 

al., 2011; Malliaras et al., 2013).  

Senescence associated-β-galactosidases activity was observed throughout the 

myocardium at 24 hours post-IRI within the region consistent with the infarct area. 

During skin wound healing, senescent fibroblasts and SASP signalling trigger 

myofibroblast differentiation that migrate to the infarct and play a role during wound 

repair and later modulate fibrosis (Jun and Lau, 2010b; Demaria et al., 2015). Studies 

focused on the heart have shown that CMs can recruit fibroblasts via expression of 

fibronectin (Ulrich et al., 1997; Blankesteijn et al., 2001), and by 48 hours post-MI 

populations of senescent myofibroblasts have been observed in the injured region 
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(Baum and Duffy, 2011). Therefore, the SA-β-Gal positive cells observed at 24 hours 

in my study may well be this myofibroblast population. 

By 72 hours post-IRI there is a clearly defined region of SA-β-Gal staining restricted to 

the infarct. The infarct at this time-point is composed of granulation tissue containing 

myofibroblasts, inflammatory cells and blood vessels (Ulrich et al., 1997; Blankesteijn 

et al., 2001). At 72 hours post-infarct, the secondary inflammation phase of wound 

repair is starting to diminish as the third phase marked by proliferation and granulation 

formation starts to peak around day 5 post-injury (Midwood et al., 2004; Jun and Lau, 

2010b).  

At 1 week post-IRI this infarct region is more prominently stained with SA-β-Gal 

suggesting a high number of senescent cells are present throughout the infarct. 

However, by 4 weeks little to no SA- β -Gal staining was evident. A study on cutaneous 

wound repair observed that senescent cells, identified by SA-β-Gal staining, contained 

within the granulation tissue at 7 days post-injury were virtually undetectable by 12 

days (Jun and Lau, 2010b). Additionally, in a rat model of MI, it was demonstrated that 

by 4 weeks post-surgery most of the viable cells in the infarct had been cleared. Only 

9% of the scar was composed of myofibroblasts whereas 80% of the infarct was 

composed of collagen (Bogatyryov et al., 2013). These studies together with my data 

suggest that the absence of SA-β-Gal staining at 4 weeks may be due to a reduction 

in β-galactosidase activity by this time-point, or simply resulting from a reduction in the 

total number of viable cell in the infarct.  

Additionally, at 1 week post-IRI I observed the presence of SA-β-Gal positive CMs. 

Previous studies have reported on the ability of CMs to become senescent (Maejima 

et al., 2008; Cai et al., 2012; Anderson et al., 2018; Cui et al., 2018; Alam et al., 2019b; 

Anderson et al., 2019). For example, in a model of doxorubicin induced 

cardiomyopathy, it resulted in premature activation of senescence in CMs which may 

play a role in cardiac dysfunction (Maejima et al., 2008). However, to date no other 

studies have demonstrated that IRI can potentially induce senescence in the CM 

population. 

The above data clearly demonstrates that post-MI the process of senescence 

accumulation is a dynamic process during infarct formation and wound repair. This 

potentially raises two important considerations: 1) the levels of senescence that occurs 
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at early time-points may not reflect persistent senescence following injury; and 2) this 

also may suggest that any detrimental effects of senescence occur during this early 

phase of repair.  

Given that senescence is dynamic I concentrated my subsequent analysis of 

senescent markers at the 4 weeks post-LAD ligation, which comprise persistently 

senescent cells. Considering the novelty of the above observations of senescent CMs, 

I continued my analysis of additional senescent markers p21Cip and p16Ink4a with a 

focus on the CMs population. Cardiomyocyte senescence was persistent at 4 weeks 

after LAD ligation and levels of p21Cip and p16Ink4a were comparable to the levels of 

TAF, supporting my use of ≥5 TAF as a marker of CM senescence, both within healthy 

hearts and ligated hearts at 4 weeks post-IRI.  

An observation from these analyses was that interstitial cells appeared to not be 

positive for the marker p21Cip at 4 weeks yet some were positive for p16Ink4a. One 

explanation could be non-specific binding of the primary antibody against p16Ink4a 

leading to false positive results. However, the antibody was applied in a blocking 

solution and levels of p16Ink4a in the CMs were comparable to levels of p21Cip in CMs. 

Also the antibody was verified on p16Ink4a knockout tissue (chapter 5). Moreover, this 

histological data which suggests that more cell types express p16Ink4a than p21Cip is 

consistent with the qRT-PCR data demonstrating a larger increase in p16Ink4a mRNA 

expression than p21Cip following IRI.  

Another explanation as to why the interstitial cells were only positive for p16Ink4a may 

be that after several weeks after the initial insult, only those myofibroblasts that are 

under activation of p16Ink4a-induced senescence are persistently present. Senescent 

myofibroblasts have been described to act in a self-limiting effect during wound repair 

(Demaria et al., 2014). In the heart myofibroblasts have been shown to be resistant to 

apoptosis (Richardson et al., 2015b) and can be identified in infarcts decades after MI 

(Blankesteijn et al., 2001). It has also been reported that cells initially exiting the cell 

cycle is due to p21Cip expression, leading to a temporary state of senescence for DNA 

damage to be repaired, but if the damage persists, p16Ink4a expression will result in 

sustained cell cycle arrest and permanent senescence (Childs et al., 2014). It may well 

be that these apoptotic-resistant myofibroblasts are in a persistent senescent state via 

p16Ink4a activation rather than p21Cip.  
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Alternatively as it has been shown that senescence can occur due to activation of either 

the p16Ink4a or p21Cip pathways independently (Mirzayans et al., 2012) and fibroblasts 

have been shown to be capable of obtaining the senescent phenotype in the absence 

of p21Cip (Serrano 1999). Furthermore, different stimuli activate the different pathways. 

For example the p53/p21Cip pathway is considered a genotoxic stress activated 

pathway, whereas the p16Ink4a/Rb pathway stimulation predominantly occurs due to 

other cellular stressors, including those resulting from SASP (Zhu et al., 2013). The 

difference in p21Cip and p16Ink4a expression in interstitial cells and CMs may reflect 

which pathways are responsible for driving senescence in each cell type as well as the 

stimuli acting on them. To confirm this hypothesis, additional studies are required to 

sequentially characterise senescence markers expression across all cardiac cell types 

specifically. Determination of this would benefit knowledge of cardiac repair 

mechanisms and how to modulate scar formation. This information would ensure that 

cardiac rupture is avoided yet the scar doesn’t progress so far as to reduce cardiac 

function to the point of heart failure.  

Regardless, this data provides strong evidence that following MI with IRI multiple cell 

populations, including CMs, obtain a senescent phenotype. Given the documented 

detrimental influence that senescent cells have on the function of other tissue systems, 

targeting these CMs for clearance may be of therapeutic benefit post-MI with IRI and 

requires further investigation. Therefore, clearing senescent cells after MI with IRI and 

measuring cardiac function would help ascertain if senescence is detrimental to 

recovery in the heart. If clearance is of benefit, then understanding which mechanisms 

are responsible for cardiac recovery would help identify potential therapeutic targets 

for IRI.  
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Chapter 4.  Pharmacological clearance of senescence modulates 

ischaemia-reperfusion injury and cardiac remodelling 

 

4.1 Introduction 

Senescence accumulation and the associated SASP has been demonstrated to be 

detrimental to tissue function in a number of age related diseases of multiple organs 

including in the heart (Childs et al., 2015; Anderson et al., 2019). However, genetic and 

pharmacological clearance of senescent cells was shown to be highly favourable to 

recover cardiac function and mitigate remodelling in models of cardiac ageing with 

associated heart failure, atherosclerosis and MI (Zhu et al., 2015; Childs et al., 2018; 

Anderson et al., 2019; Walaszczyk et al., 2019). Additionally, pharmacological 

clearance of senescent cells using the senolytic navitoclax in aged mice reduced 

components of the SASP, attenuated remodelling and resulted in improving cardiac 

function as well as survival and recovery to myocardial infarct (Walaszczyk et al., 

2019). Senolytics exploit senescent cells overexpressing BCL-2 proteins, which serves 

as a protective, anti-apoptotic mechanism, but as such make senescent cells primed 

for apoptosis (Childs et al., 2014). 

Navitoclax is a small molecule inhibitor that targets the BCL-2 family of proteins. As a 

BH3 mimetic, navitoclax preferentially binds to BCL-2, BCL-XL or BCL-W, releasing 

BH3, pro-apoptotic proteins. These proteins are then able to bind to and activate 

oligomerisation of BAX and BAK forming a pore within the outer mitochondrial 

membrane making it permeable and cytochrome c relocates into the cytoplasm. In the 

cytoplasm they create an apoptosome via binding to APAF-1 and caspase-9 triggering 

the caspase cascade and apoptosis, and senescent cells are removed in a targeted 

fashion (Kipps et al., 2015; Montero and Letai, 2018). The drug navitoclax is orally-

bioavailable and currently in Phase I and II clinical trials for the treatment of a range of 

cancers including acute lymphoblastic leukaemia, small-cell lung cancer and other 

solid tumours (Tse et al., 2008; Wilson et al., 2010).  

Studies using navitoclax have been performed in models of ageing and disease not 

relating to cancer. These studies demonstrated navitoclax acts in a senolytic fashion 

on numerous BCL-2 family proteins, in both human and mouse models, across many 
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cell types in vitro and in vivo (Chang et al., 2016; Zhu et al., 2016; Walaszczyk et al., 

2019). Navitoclax induced apoptosis was confirmed in a cell line of human umbilical 

vein endothelial cells (HUVECs), human lung fibroblasts (IMR90s), mouse embryonic 

fibroblasts (MEFs) that had been induced to senescence (Zhu et al., 2016), as well as 

human renal epithelial cells (Chang et al., 2016) and in vivo senescent cells were 

cleared via apoptosis from the lungs, skeletal muscle, brain, liver and heart of the p16-

3MR mouse (Chang et al., 2016). In a model of aged mice, navitoclax significantly 

reduced markers of senescence and hypertrophy, and when given pre-emptively 

before permanent MI, EF was increased and survival rates were improved to that of a 

young mouse (Walaszczyk et al., 2019). 

Having demonstrated that IRI results in an accumulation of senescence post-IRI in 

chapter 3, and given the documented contribution of senescence and the SASP to 

dysfunction including the induction of myocardial remodelling (Shimizu and Minamino, 

2019; Walaszczyk et al., 2019) I hypothesised that the accumulation of senescence 

post-IRI contributes to ongoing myocardial remodelling, including CM hypertrophy and 

fibrosis, and ultimately impacts on cardiac function. As such targeting senescence may 

be a therapeutic strategy for patients post-MI with IRI who often progress to heart 

failure (Minicucci et al., 2011; Torabi et al., 2014). Therefore, I aimed to establish in 

this chapter if navitoclax treatment would reduce senescence post-IRI and investigate 

if this had any influence on recovery in terms of myocardial remodelling and cardiac 

function. (Figure 4.1).  
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4.2 Navitoclax treatment reduces viability of senescent but not proliferative 

cardiomyoblasts in vitro 

Having demonstrated that following MI with IRI senescence was induced in the CM 

population, I first aimed to establish if navitoclax induced apoptosis in an established 

CM in vitro cell mode, the H9C2 rat cardiomyoblast line (Branco et al., 2015).  

Rat myoblasts (H9C2 line) were treated with 10Gy x-ray irradiation to induce 

senescence or were sham irradiated as a proliferative control. At 10 days post-

irradiation, proliferative and irradiated cell cultures (n=3 for each experimental group) 

were then treated with increasing concentrations of navitoclax (0 µM, 0.5µM, 1.0 µM 

and 1.5µM) for 2 days.  

Senescence was confirmed in a cohort of cells by staining with SA-β-Gal (Figure 

4.2.A), and only irradiated H9C2s stained positively for SA-β-Gal (Figure 4.2.A.lower 

panels). Viability was assessed using the Tali Image‐Based Cytometer to count viable 

cell numbers. Senescent H9C2 cardiomyoblasts demonstrated a dose dependent 

Figure 4.1 Graphical hypothesis. 

Myocardial infarction and subsequent IRI initiate senescence in the heart, in 
particular CMs. Treatment with the senolytic navitoclax will clear senescent CMs 
and other cardiac cells to reduce CM hypertrophy, dysfunction, SASP generation 
and fibrosis all leading to attenuated remodelling and improved cardiac function. 
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decrease in viability, however, the viability of the proliferative H9C2 cultures remained 

unchanged (p=0.0001, <0.0001 and <0.0001 respectively, Figure 4.2.B). This datum 

suggests that navitoclax selectively promotes apoptosis in senescent CM-like-cells and 

has no detrimental effect on healthy, proliferative cells, and has been now published 

in Anderson, R. et al (Anderson et al., 2019). 
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Figure 4.2 Treatment with navitoclax specifically reduces the viability of 
senescent (irradiated) H9C2 cultures that are positive for senescence-
associated β-galactosidase. Navitoclax has no effect on the viability of 
healthy, proliferative (non-irradiated) H9C2s. 

A) SA-β-Gal staining. Top row shows no positive staining or change in cell density 
in proliferative culture, both untreated and 1.5µM navitoclax treated. Bottom 
row shows positive staining in senescent culture and reduced cell density in 

culture treated with 1.5µM navitoclax. Scale bar equal to 50µm. 

B) Percentage of proliferative and senescent MRC5s positive for SA-β-Gal.  

C) H9C2 percentage viability is stable in proliferative group with all doses of 
navitoclax. Senescent H9C2 cultures show a dose dependent reduction in cell 
viability. 

N=3 for each experimental condition. To control for ongoing proliferation and cell 
death as a result of irradiation, viability for each condition (proliferative or 
irradiated) was calculated relative to the number of cells in the untreated culture for 
that condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 using One-
Way ANOVA. Data from Anderson, R et al. (Anderson et al., 2019). 

A B 
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4.3 In vivo model to investigate the effect of navitoclax on recovery post-

ischaemia-reperfusion injury 

It has previously been demonstrated that in the aged heart an accumulation of 

senescent CMs contributes to age related myocardial remodelling, possibly as a result 

of SASP inducing fibrosis and hypertrophy. In addition, treatment of aged mice with 

navitoclax reduced the number of senescent CMs, attenuated characteristics of age 

related remodelling and improved function and survival to permanent MI (Anderson et 

al., 2019; Walaszczyk et al., 2019).  

Ischaemia-reperfusion injury can promote adverse myocardial remodelling (Kurian et 

al., 2016), an accumulation of senescence has been shown to occur in multiple cell 

populations (Burton, 2009) and senescent cells are sensitive to navitoclax (Anderson 

et al., 2019). I therefore aimed to establish if reactive navitoclax treatment would 

eliminate senescence post-IRI and to establish the effect of senescence elimination on 

recovery. Young, male C57BL/6 mice underwent LAD ligation, as outlined in 2.1, and 

then were allowed 72 hours to recover from surgery to initiate vital wound repair 

responses in the myocardium (Gough, 2015). On day 4 post-IRI mice were randomised 

and provided with either navitoclax (at 50mg/kg BW per day) or lipid only control (2.2) 

via oral gavage for 7 days. To allow retrospective analysis of DNA synthesis as an 

indication of cell turnover, mice were also provided with a 7 day dosing regimen of EdU 

(at 100µg/mg BW per day) starting at day 4. After this treatment period, mice were 

transferred and left for a further week to recover before MRI scanning began. The 

preliminary scan was performed at 3 weeks post-LAD ligation and a subsequent MRI 

scan 2 weeks after this, at week 5 post-surgery. Following the 5 week MRI scan, hearts 

were collected and processed accordingly for analysis (2.4, Figure 4.3).
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4.4 Navitoclax treatment reduces senescence markers expression in 

cardiomyocytes 

To ascertain if navitoclax treatment eliminated senescent cells following IRI in vivo I 

quantified several senescence markers in sections of vehicle control and navitoclax 

treated hearts by immunohistochemistry at 5 weeks post-IRI (4 weeks post-navitoclax 

treatment).  

Initially I investigated whether the TAF positive CM population was lessened as a result 

of navitoclax dosing. After IRI, 14.22% ± 2.34 CMs were positive for ≥5 TAF, and 

navitoclax treatment significantly reduced levels to 6.41% ± 1.63 (p=0.003, Figure 

4.4.C). The datum for the IRI cohort was slightly reduced in comparison to the IRI 

cohort in Figure 3.5 (17.71% ± 7.67), but not significantly so (p=0.3596). When 

assessing TAF number within CM nuclei, the mean number of TAF was significantly 

lowered (p=0.0124) from 4.18 ± 0.30 after IRI to 3.47 ± 0.40 following navitoclax 

treatment (Figure 4.4.D). 

Figure 4.3 Experimental timeline. 

The LAD was ligated for 1 hour and then the heart allowed to reperfuse. To ensure 
tissue repair mechanisms were initiated, mice were left to recover for 3 days and 
then on day 4 a 7 day daily dosing regimen of navitoclax (50mg/kg BW per day) 
and EdU (100µg/mg BW per day) was started. Mice were then transferred to the 
Keith Unit for MRIs at weeks 3 and 5 post-surgery. 
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Figure 4.4 Navitoclax reduces the percentage of cardiomyocytes positive for 
telomere-associated DNA damage foci and mean foci number. 
A) Immunofluorescence staining in heart post-IRI without navitoclax treatment. 

Slides stained with γH2Ax (in green, wavelength 488nm), telomere-c probe (in 
red, wavelength 594nm), nuclei (in blue with DAPI, wavelength 461nm) and 
WGA (in teal, wavelength 647nm). All images for this analysis were taken in 
the BZ. Cardiomyocytes positive for TAF are highlighted with a white arrow. 

B) Immunofluorescence staining in LAD ligated heart with navitoclax treatment. 
Slides stained with γH2Ax (in green, wavelength 488nm), telomere-c probe (in 
red, wavelength 594nm), nuclei (in blue with DAPI, wavelength 461nm) and 
WGA (in teal, wavelength 647nm). All images for this analysis were taken in 
the BZ. Cardiomyocytes positive for TAF are highlighted with a white arrow. 

C) Quantification of CMs expressing ≥5 TAF in IRI hearts vs IRI and navitoclax. 
Navitoclax treatment significantly reduced the percentage of CMs positive for 
TAF post-IRI. 

D) Quantification of mean TAF number in CMs post-IRI and navitoclax. Navitoclax 
treatment significantly reduced the CM mean TAF number.  

N=3 and 4 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using Two-Tailed T-Test. 

A B 
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Overall senescence analysis based on SA-β-Gal staining demonstrated that although 

CMs positive for SA-β-Gal were observed within the BZ of hearts taken from the 

untreated cohort, these were not observed in navitoclax treated hearts (Figure 4.5). 

Staining for SA-β-Gal was observed in the interstitial cells and cells in the infarct in 

both experimental groups. Staining for SA-β-Gal was diffuse and variable in intensity 

throughout individual hearts making quantification difficult. Furthermore, it is difficult to 

use staining protocols such as SA-β-Gal for the accurate discrimination between 

different cell types. Therefore, a more detailed and quantified analysis using alternative 

markers of senescence and CMs was executed.

 

 

4.4.1 Both p21Cip and p16Ink4a are significantly reduced following treatment with 

navitoclax 

As described in chapter 3, multiple markers of senescence should be used to gain an 

accurate understanding of senescence activity. Based on previous data from aged 

mice that showed navitoclax eliminated senescence CMs (Walaszczyk et al., 2019) 

and the observations that navitoclax specifically eliminated cardiomyoblasts in vitro 

(Anderson et al., 2019), I quantified the relative numbers of cells expressing the CDK 

Figure 4.5 Senescence-associated β-galactosidase staining in the ischaemia-
reperfusion injury model with and without navitoclax treatment. 

SA-β-Gal activity could still be detected in areas within the infarct in both the 
untreated (IRI + Veh) and treated (IRI + Nav). Some CMs within the BZ were 
observed to be SA-β-Gal positive in the untreated cohort, however, the intensity of 
staining was highly reduced compared to sections stained at 1 week post-IRI 
(Figure 3.6).  
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inhibitors p21Cip and p16Ink4a, with a focus on the CM population in the three 

experimental groups.  

As observed in the chapter 3, IRI resulted in increased expression of p21Cip within the 

troponin C expressing CM population. With the percentage of troponin C expressing 

CMs increasing from 0.46% ± 0.56 in non-LAD ligated controls (data shown in Figure 

3.9) to 20.00% ± 1.57 at 5 weeks following IRI (p=<0.0001, Figure 4.6.A-D), this 

frequency was consistent with the data presented in chapter 3 (Figure 4.6, 18.47% ± 

2.62 of CMs).  

Following navitoclax treatment, the percentage of troponin C CMs positive for p21Cip 

significantly decreased when compared to the IRI group to 7.12% ± 0.94 (p=<0.0001, 

Figure 4.6.B/D) indicating an approximately 3-fold reduction in p21Cip expressing CMs.  

Quantification of p16Ink4a expression revealed similar changes after navitoclax 

treatment to those observed for p21Cip. Ischaemia-reperfusion injury as a result of LAD 

ligation significantly increased the percentage of p16Ink4a expressing, troponin C 

positive CMs (24.56% ± 2.46, Figure 4.7.D) compared to non-LAD ligated controls 

(6.61% ±2.16, p=<0.0001), again consistent to the p16Ink4a data obtained in chapter 3. 

Treatment with navitoclax after IRI significantly reduced the percentage of CMs that 

were expressing p16Ink4a, with a reduction to 12.95% ± 1.28 (p=0.0002, Figure 4.7.D) 

representing a 1.90-fold decrease in p16Ink4a expressing CMs. Taken together these 

data suggest that navitoclax following MI with IRI can eliminate senescent CMs, 

presumably as a result of the induction of apoptosis.  
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Figure 4.6 Navitoclax reduces percentage of cardiomyocytes positive for 
p21Cip after ischaemia-reperfusion injury. 
A) Immunofluorescence staining in hearts post-IRI without navitoclax treatment. 

Slides stained with CM marker troponin C (in green, wavelength 488nm), 
senescence marker p21Cip (in red, wavelength 594nm) and nuclei (in blue with 
DAPI, wavelength 461nm). All images for this analysis were taken in the BZ. 
Cardiomyocytes positive for p21Cip are highlighted with a white arrow. 
Interstitial cells positive for p21Cip are highlighted with a yellow arrow. 

B) Immunofluorescence staining in LAD ligated hearts with navitoclax treatment. 
Slides stained with CM marker troponin C (in green, wavelength 488nm), 
senescence marker p21Cip (in red, wavelength 594nm) and nuclei (in blue with 
DAPI, wavelength 461nm). All images for this analysis were taken in the BZ. 
Cardiomyocytes positive for p21Cip are highlighted with a white arrow. 
Interstitial cells positive for p21Cip are highlighted with a yellow arrow. 

C) Negative control for both 1°Abs, slides were incubated in PBS instead. 
D) Quantification of CMs expressing p21Cip in no-LAD ctrl vs IRI hearts vs IRI and 

navitoclax. There was a significantly higher percentage of CMs positive for 
p21Cip post-IRI than no-LAD ligated controls, however, navitoclax treatment 
significantly reduced the percentage of CMs positive for p21Cip post-IRI.  

N=3 and 4 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-way ANOVA. 
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Figure 4.7 Cardiomyocytes positive for p16Ink4a after ischaemia-reperfusion 
injury is reduced by navitoclax. 
A) Immunofluorescence staining in hearts post-IRI without navitoclax treatment. 

Slides stained with CM marker troponin C (in green, wavelength 488nm), 
senescence marker p16Ink4a (in red, wavelength 594nm) and nuclei (in blue with 
DAPI, wavelength 461nm). All images for this analysis were taken in the BZ. 
Cardiomyocytes positive for p16Ink4a are highlighted with a white arrow. 
Interstitial cells positive for p16Ink4a are highlighted with a yellow arrow. 

B) Immunofluorescence staining in hearts post-IRI with navitoclax treatment. 
Slides stained with CM marker troponin C (in green, wavelength 488nm), 
senescence marker p16Ink4a (in red, wavelength 594nm) and nuclei (in blue with 
DAPI, wavelength 461nm). All images for this analysis were taken in the BZ. 
Cardiomyocytes positive for p16Ink4a are highlighted with a white arrow. 
Interstitial cells positive for p16Ink4a are highlighted with a yellow arrow. 

C) Negative control for both 1°Abs, slides were incubated in PBS instead. 
D) Quantification of CMs expressing p16Ink4a in no-LAD ctrl vs IRI hearts vs IRI 

and navitoclax. There was a significantly higher percentage of CMs positive for 
p16Ink4a post-IRI than no-LAD ligated controls, however, navitoclax treatment 
significantly reduced the percentage of CMs positive for p16Ink4a post-IRI.  

N=3 and 4 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-way ANOVA. 
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4.5 Treatment with navitoclax improves functional outcome 

To assess cardiac function, mice underwent MRIs at 3 and 5 weeks post-LAD, in a 

longitudinal study, allowing analysis of progressive changes in cardiac function and to 

investigate any effect of navitoclax treatment on multiple parameters of cardiac 

function. Specifically, LV mass, CO, EDV, ESV, SV and EF were analysed. These data 

were calculated from measuring the LV epicardial and endocardial areas of slices 

taken throughout the heart at diastole and systole (examples in Figure 4.8).  

 

Cohort data was compared to results obtained from an aged-matched group of controls 

who did not undergo LAD ligation.  

 

Figure 4.8 Example of measurements taken for each magnetic resonance 
imaging slice at diastole and systole from ischaemia-reperfusion injury (lipid 
control) and navitoclax treated mice. 

Pink line denotes the epicardial area measured and the yellow line indicates the 
endocardial area of the LV measured for analysis. 
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4.5.1 Left ventricular mass is unchanged following ischaemia-reperfusion 

injury and is unaffected by navitoclax treatment 

Initially LV mass was investigated. Increases in LV mass can be indicative of CM 

hypertrophy, myofibroblast proliferation and increased interstitial fibrosis which are 

characteristics of adverse remodelling of the LV (Konstam et al., 2011). Adverse LV 

remodelling is observed in numerous patients following MI with reperfusion via PPCI 

and is a prognostic marker of declining clinical outcomes and onset of heart failure 

(Bulluck et al., 2017). 

Left ventricular mass was not significantly different in any experimental groups at either 

time-point including the no LAD control group (p=0.9918, Figure 4.9.A). The mean LV 

mass of the no LAD controls was 112.4mg ± 7.75 In the IRI cohort at 3 weeks and 5 

weeks the LV mass was 114.5mg ± 16.61 and 111.6mg ± 19.46 respectively. In the 

navitoclax treated cohort LV mass was 111.4mg ± 21.91 and 110.9mg ± 15.79 at 3 

and 5 weeks respectively.  

To see if there was any change in LV mass in each individual heart I calculated the 

delta change in LV mass between 3 and 5 weeks. Similarly, no significant change in 

LV mass was observed in this paired analysis. (p=0.7442 and 0.7014, Figure 4.9.B). 

In summary, this data demonstrated in this model of IRI in young mice, myocardial 

mass is not altered post-LAD ligation and navitoclax has no effect on mass. 
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Figure 4.9 Left ventricular mass remains unchanged after ischaemia-
reperfusion injury and navitoclax treatment. 
A) Data shows non-significant change in LV mass was observed between healthy 

non-LAD ligated mice, IRI mice and IRI mice with navitoclax treatment. This 
indicated that in this cohort LV mass was not affected by IRI or navitoclax 
dosing. 

B) Quantification of the change in LV mass between week 3 and 5 for both the IRI 
and navitoclax groups. Non-significant differences were observed between the 
two cohorts and between the mice within each cohort across the two time-
points. 

N=6, 13 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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4.5.2 Navitoclax treatment improves systolic but not diastolic function post-

myocardial infarction  

Increased EDV is used as a clinical indicator of LV remodelling post-STEMI. Patients 

demonstrating a ≥20% increase in EDV, when compared to baseline, are diagnosed 

as having LV remodelling and are predicted to have a poorer prognosis, in terms of 

increased incidences of CV-related death or congestive heart failure (Sutton et al., 

1997; Bolognese et al., 2002; Bulluck et al., 2017; Rodriguez-Palomares et al., 2019). 

Congestive heart failure is defined as a syndrome arising from any event that 

compromises the ventricles from filling or ejecting blood (Figueroa and Peters, 2006). 

End systolic function is also used to forecast survival and outcome post-MI, with an 

increase in ESV indicating an inability of the myocardium to contract efficiently and as 

such is also associated with a poorer prognosis (White et al., 1987; Wu et al., 2008; 

McManus et al., 2009). Increases in EDV and ESV, resulting in congestive heart failure, 

can indicate enlargement of the LV cavity as well as cardiac remodelling (Redgrave et 

al., 2016).  

Following LAD ligation EDV was increased significantly from 61.29µl ± 7.74 in control 

animals, to 82.83µl ± 21.98 at 3 weeks post-IRI (p=0.0341) and remained increased at 

85.01µl ± 21.41 at 5 weeks post-IRI (p=0.0186, Figure 4.10.A). These data also show 

that EDV does not progressively change between the MRIs at the times I investigated 

(Figure 4.10.B). Although marginally lower, navitoclax does not appear to have any 

impact on EDV as differences between the IRI groups were not significant. Similar to 

vehicle controls, no difference in mean EDV was observed between the week 3 

(71.35µl ± 22.77) and week 5 (72.11µl ± 21.02) in the navitoclax treated animals 

(Figure 4.10). Calculation and analyses of the delta changes in EDV in individual mice 

between the experimental groups demonstrated there was no difference in change 

from 3 to 5 weeks between the experimental groups. Furthermore, from the data of 

individual mice in each cohort, neither experimental group showed a significant change 

in EDV between 3 and 5 week (Figure 4.10.B).  
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Figure 4.10 End diastolic volume increases after ischaemia-reperfusion 
injury but remains unchanged following navitoclax treatment. 
A) Data showing EDV was significantly increased following IRI compared to 

heathy controls. However, non-significant changes were observed between 
healthy non-LAD ligated mice or IRI mice against IRI mice treated with 
navitoclax.  

B) Quantification of the change in EDV between week 3 and 5 for both the IRI and 
navitoclax groups. Non-significant differences were observed between the two 
cohorts or between the mice across the two time-points, indicating that at the 
time-points investigated EDV remains stable and is unaffected by navitoclax 
treatment. 

N=6, 13 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 

 

End systolic volume was significantly increased from 12.84µl ± 4.33 in control mice at 

both 3 weeks post-LAD and 5 weeks post-LAD (47.43µl ± 23.64 and 55.92µl ± 20.47 

respectively, p=0.0041 and 0.0002). Navitoclax treated animals had a significantly 

larger ESV than uninjured controls at week 3 (40.57µl ± 16.94 at 3 week, p=0.0302, 

and 36.32µl ± 17.38 at 5 weeks, p=0.0931), but navitoclax treated mice had a 

significantly smaller ESV than the LAD-ligated vehicle treated mice at 5 weeks 

(p=0.0126, Figure 4.11.A). In addition, there was a significant difference in the delta 

change in ESV from 3 to 5 weeks between the experimental groups. These significant 

changes were a function of both a significant increase in ESV in the vehicle animals 

(17.44% ± 18.59, p=0.0040) and a significant decrease in ESV (-19.74% ± 30.92, 

p=0.0186) over the 2 week period between MRI scans, as demonstrated by a paired 

analysis of the delta change in ESV of the individual mice of each group (Figure 

4.11.B). 

End Diastolic Volume
IRI vs Navitoclax treated

E
n

d
 D

ia
s

to
li

c
 V

o
lu

m
e

 (
l)

No LAD IRI
3wk 

IRI + Nav
3wk 

IRI
5wk 

IRI + Nav
5wk 

0

50

100

150 ns*
*  EDV from 3wks to 5wks

P
e

rc
e

n
ta

g
e


 E
D

V
 (

%
)

IRI IRI + Nav
-60

-40

-20

0

20

40 ns

A B 



 

120 

 

 

Figure 4.11 End systolic volume increases after ischaemia-reperfusion injury 
and continually increases from weeks 3 to 5. Navitoclax treatment is able to 
stabilise or reduce end systolic volume over this time frame. 
A) Data showing ESV was significantly increased following IRI compared to 

heathy controls. ESV was also increased post-IRI with navitoclax dosing 
compared to the no LAD controls at the initial time-point analysed (3 weeks). 
Non-significant differences were observed between the IRI group data and 
against the navitoclax cohort at week 3. At week 5 there was a significant 
difference between the two groups. 

B) Quantification of the change in ESV between week 3 and 5 for both the IRI and 
navitoclax groups revealed that the ESV was increasing in the IRI group with 
time. Significantly, the navitoclax cohort demonstrated a conflicting trend, 
where most mice either maintained or significantly reduced their ESV over the 
2 weeks between MRIs.  

N=6, 13 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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4.5.3 Navitoclax significantly increased stroke volume. 

Another variable assessed was SV. This is closely related to EDV and ESV, as it 

denotes the volume of blood ejected from the heart with each contraction, as calculated 

by EDV minus ESV (Redgrave et al., 2016).  

All groups that were subjected to IRI had a significantly reduced SV in comparison to 

the non-ligated control cohort at 48.45µl ± 3.83 (p=0.0063). This is consistent with the 

clinical situation where patients display a lowered SV as a result of less efficient 

contractions, which has been shown to be a result of scar formation and increased 

myocardial stiffness (Richardson et al., 2015b). 

A significant difference in the mean stroke volume was observed between the vehicle 

treated (35.39µl ± 6.15 to 29.09µl ±6.83, p=0.0210) but not the navitoclax treated 

animals (p=0.2369, Figure 4.12.A). In the navitoclax group there was a trend towards 

an increase in SV between the 3 and 5 week time-point (30.78µl ± 10.96 to 35.79µl ± 

10.93, p=0.0704, Figure 4.12.A). Consistent with the reduction in ESV between 3 and 

5 weeks post-IRI in the navitoclax treated animals, comparisons of the delta change in 

SV also demonstrated a significant difference between the experimental groups (-

15.77% ± 22.47 in the vehicle vs 16.17% ± 38.75 following navitoclax, p=0.0080, 

Figure 4.12.B). These data were again a function of both a significant decrease in SV 

in the vehicle group (p=0.0216) and the significant increase in SV in the navitoclax 

animals (p=0.0090, Figure 4.12.B). 
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Figure 4.12 Stroke volume continuously declines after ischaemia-reperfusion 
injury, however, navitoclax treatment is able to partially recover stroke 
volume. 
A) Data showing SV was significantly reduced following IRI compared to heathy 

controls, and continued to significantly decline between weeks 3 and 5. 
Navitoclax treatment had no significant effect on raw SV values. 

B) Quantification of the significant change in SV between week 3 and 5 for both 
the IRI and navitoclax groups. On average the IRI cohort showed a significant 
trend for a decreasing SV, whereas navitoclax treatment improved the SV of 
the cohort.  

N=6, 13 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 

Stroke Volume
IRI vs Navitoclax treated

S
tr

o
k

e
 V

o
lu

m
e

 (


l)

No LAD IRI
3wk 

IRI + Nav
3wk 

IRI
5wk 

IRI + Nav
5wk 

0

20

40

60 *
**

***
***

**

 SV from 3wks to 5wks

P
e

rc
e

n
ta

g
e


 S
V

 (
%

)

IRI IRI + Nav
-100

-50

0

50

100 **

*
**

A B 



 

123 

 

4.5.4 Navitoclax treatment after ischaemia-reperfusion injury significantly 

increased cardiac output  

In direct relation to SV is CO that demonstrated a similar profile, and describes the 

volume of blood ejected by the LV per minute (Borzage et al., 2017).  

Cardiac output was significantly reduced in all groups following IRI, and was 

significantly higher in the navitoclax mice than vehicle controls at 5 but not 3 weeks 

(p= 0.0226, Figure 4.13.A). As CO is calculated from multiplying SV and heart rate, 

this difference in CO at 5 weeks may be due to differences in heart rate. The heart 

rates were not significantly changed between the healthy control cohort at 467.00bpm 

± 31.62 and all mice after IRI, both with and without navitoclax and at both time-points. 

In the IRI only group, the average heart rates were 432.10bpm ± 70.78 at week 3 and 

slightly lower at 417.10bpm ± 112.10 at week 5. In the navitoclax group at week 3 the 

average heart rate was 445.00bpm ± 70.79 which was marginally faster at week 5 with 

an average heart rate of 470.30bpm ± 108.6 (Figure 4.13.C). Although non-significant, 

these marginal changes could have considerable effects on CO overall.  

Analysis of the change in CO between 3 and 5 weeks post-IRI also showed similar 

results to the SV data with a significant difference in the mean change in CO being 

observed between the experimental groups (p=0.0356). However, this appeared to be 

primarily as a result of a decrease in CO in the vehicle cohort (p=0.0015) as no 

significant change in CO was observed in the navitoclax treated animals (p=0.1766, 

Figure 4.13.B). Overall, IRI had a highly detrimental impact on CO which progressively 

declined even over 2 weeks, whereas navitoclax prevented the decline in CO due to 

IRI from continually progressing.
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Figure 4.13 Cardiac output continuously declines after ischaemia-
reperfusion injury, however, navitoclax treatment is able to maintain cardiac 
output and prevent this observed continuous decline. 
A) Data showing CO was significantly reduced following IRI compared to heathy 

controls, and continued to significantly decline between weeks 3 and 5. 
Navitoclax treatment significantly rescued CO by 5 weeks post-IRI. 

B) Quantification of the significant change in CO between week 3 and 5 for both 
the IRI and navitoclax groups. On average the IRI cohort showed a significant 
trend for a decreasing CO, whereas navitoclax treatment maintained a steady 
CO.  

C) Graph showing the heart rate between no LAD and IRI with and without 
navitoclax at weeks 3 and 5 is unchanged, although is slightly higher in the 
navitoclax cohort at 5 weeks compared to IRI alone.  

N=6, 13 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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4.5.5 Navitoclax treatment following ischaemia-reperfusion injury improves 

ejection fraction. 

The final variable assessed by MRI was EF which is used clinically to classify systolic 

dysfunction (Ponikowski et al., 2016).  

In all groups subjected to LAD ligation EF was significantly reduced (p=0.0001, Figure 

4.14.A), similar to SV and CO (Figure 4.12-Figure 4.13). In the uninjured control cohort, 

the mean EF was 79.52% ± 4.86. At 3 weeks post-IRI there was a non-significant 

difference in the EF of the vehicle control (44.87%±14.16) and navitoclax (42.67% ± 

11.75) groups suggesting there were no differences in the initial infarct in the two 

experimental groups. However, the mean EF of the navitoclax cohort was significantly 

higher than vehicle controls at 5 weeks (53.47% ± 12.53 vs 37.15% ± 9.27; p=0.0013, 

Figure 4.14.A).  

I next calculated the delta change in EF in the individual mice and identified a difference 

in the mean delta change from 3 to 5 weeks between the experimental groups. This 

difference was as a result of a significant increase in EF in the navitoclax group (mean 

change in EF 18.30% ± 19.41, p=0.0026) and a significant reduction in EF in the 

vehicle control animals (mean change in EF -20.34% ± 24.63, p=0.0047). Specifically, 

in the IRI group, only three mice were able to demonstrate an improvement in their EF, 

with the greatest recovery being 10.21%. Conversely in the navitoclax group, only two 

mice demonstrated a reduction in their EF, one at 17.94% and the other at 1.19% 

(Figure 4.14.B). 
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Figure 4.14 Ejection fraction continuously declines after ischaemia-
reperfusion injury, however, ejection fraction is stabilised or improved 
following navitoclax treatment. 
A) Data showing EF was significantly reduced following IRI compared to heathy 

controls. Navitoclax treatment significantly rescued EF by 5 weeks post-IRI 
both compared to the week 3 data and to IRI cohort at 5 weeks. 

B) Quantification of the significant change in EF between week 3 and 5 for both 
the IRI and navitoclax groups. On average the IRI cohort showed a significant 
trend for a decreasing EF, whereas navitoclax treatment significantly increased 
EF.  

N=6, 13 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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4.6 Navitoclax treatment post-ischaemia-reperfusion injury reduces infarct 

size but has no effect on cardiomyocyte hypertrophy  

In aged mice navitoclax has been previously shown to improve age-related cardiac 

dysfunction by attenuating remodelling, specifically via attenuating CM hypertrophy 

and reducing fibrosis (Walaszczyk et al., 2019). To ascertain if the improved systolic 

function following IRI was also due to attenuated remodelling, next infarct size and 

hypertrophy were analysed using histological techniques. An infarct results from 

detrimental alterations to the myocardium and excessive CM death. As such a larger 

infarct directly reduces cardiac function and the degree of scarring is the strongest 

predictor of function including EF subsequent to MI (Orn et al., 2007). 

To assess infarct size, heart sections were stained as per the Masson’s Trichrome 

protocol (Takagawa et al., 2007) outlined in 2.5.5 and infarct region was defined as the 

area of collagen staining as a percentage of total LV area. As expected no region of 

collagen staining was observed in the non-LAD ligated controls. In the navitoclax 

treated cohort scar size was significantly smaller (p=0.0003) than that of the vehicle 

controls, as a reduction from 18.50% ± 2.72 to 12.47% ± 1.68, suggesting that 

clearance of senescent cardiac cells is beneficial to attenuate fibrosis and adverse 

remodelling (Figure 4.15).  

Cardiomyocyte hypertrophy is characteristic of the adaptive and ultimately maladaptive 

remodelling and occurs when the workload on the heart is increased. After MI, changes 

to CM area are due to strains on the heart from elevated pressure or volume and are 

as such termed “pathological” hypertrophy (Kehat and Molkentin, 2010; Grossman and 

Paulus, 2013; Shimizu and Minamino, 2016). 

To establish if, as in an aged heart, elimination of senescent CMs post-IRI resulted in 

attenuated hypertrophy, hearts were labelled with WGA and CM cross sectional area 

measured as previously described (Walaszczyk et al., 2019). In healthy controls, the 

mean area of CMs was 305.6µm2 ± 33.43. After IRI this was significantly increased to 

412.6µm2 ± 24.29 (p=0.0034), and was marginally but not significantly reduced to 

394.9µm2 ± 39.52 following navitoclax treatment (p=0.7358, Figure 4.16). 
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Figure 4.15 Navitoclax significantly reduces scar size within the left 
ventricle. 
A) Tiles of transverse sections of hearts from healthy non-ligated control, LAD-

ligated untreated and LAD-ligated navitoclax treated mice stained by Masson’s 
Trichrome. The pink line highlights the LV epicardium and the yellow line 
highlights the LV endocardium. From these two measurements the LV area 
could be calculated. The blue line denotes the area of fibrosis in the LV as 
identified by the blue staining. From this, the percentage area of the LV 
composed of scar could be calculated. The non-LAD controls had no fibrosis 
detected, whereas all mice that had undergone LAD ligation (IRI and IRI + Nav) 
presented with an infarct. 

B) Scar size as a percentage of the LV was calculated and found to be 
significantly decreased in the navitoclax treated cohort. 

N=7 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Unpaired T-Test. 
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Figure 4.16 Ischaemia-reperfusion injury leads to significant changes in 
hypertrophy of the cardiomyocytes. Navitoclax slightly reduces hypertrophy, 
but insignificantly, compared to the ischaemia-reperfusion injury cohort. 
A) WGA staining (red, 594nm) in heart after IRI, zoom figure shows 

measurements taken around CMs surrounded with 3+ capillaries so CMs in 
same orientation. 

B) WGA staining (red, 594nm) in heart after IRI with navitoclax, zoom figure 
shows measurements taken around CMs surrounded with 3+ capillaries so 
CMs in same orientation. 

C) WGA staining (red, 594nm) in heart with no LAD, zoom figure shows 
measurements taken around CMs surrounded with 3+ capillaries so CMs in 
same orientation. 

D) Graph shows CM hypertrophy occurs due to IRI as CM area significantly 
increases. In the navitoclax cohort, the mean CM area is lowered slightly but is 
insignificant.  

N=4 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using One-Way ANOVA. 

No LAD IRI IRI + Nav

250

300

350

400

450

500

Cardiomyocyte area measurements
showing changes in hypertrophy

C
M

 A
re

a
 (


m
2
)

**
*

A B 

D C 



 

130 

 

4.7 Discussion 

Mortality events after MI have reduced over the last few decades, yet MI still remains 

a major public health problem as IRI can result in heart failure (Lønborg, 2015). Indeed 

the number of patients suffering from heart failure has increased over the last 5 years 

(Conrad et al., 2018). As such, there is considerable effect directed toward managing 

this problem.  

In chapter 3 I demonstrated that IRI induces senescence, and given the documented 

association between senescence and tissue dysfunction including cardiomyopathy 

(Valiente-Alandi et al., 2015), this raises the possibility that senescence may be a 

therapeutic target post-IRI. Previous studies from my lab have consistently shown that 

navitoclax in a range of in vivo and in vitro models clears senescence (Anderson et al., 

2019; Walaszczyk et al., 2019), and therefore I used it for this study. Initially I confirmed 

that several senescence markers, including TAF, SA-β-Gal, p21Cip and p16Ink4a were 

reduced in the heart following navitoclax treatment.  

For a treatment for IRI to be effective it is important that it has a positive impact on 

cardiac function, and so therefore I first looked to investigate whether navitoclax post-

IRI would improve cardiac function. In depth analysis of the functional capacity of mice 

after IRI and IRI with navitoclax dosing led to some interesting and promising 

conclusions. Cardiovascular MRI is used clinically as an accurate and reproducible 

method for assessing LV measurements to determine cardiac function, LV remodelling 

and predict patient outcome (Bulluck et al., 2017). 

Ejection fraction is a clinically relevant variable when assessing cardiac function and 

is used to characterise systolic heart failure. In healthy humans, EF is reported 

between 50-70% (Rahmayani et al., 2018; Kosaraju and Makaryus, 2019) and patients 

are diagnosed as having heart failure if their EF falls below 40%. Current European 

Society of Cardiology guidelines (Ponikowski et al., 2016) state an EF of less than 40% 

is defined as systolic heart failure with reduced EF, and an EF equal to or greater than 

50% is considered as normal and within healthy range and referred to as heart failure 

with preserved EF. An EF of 40-49% has traditionally been a “grey area” where patients 

are not considered as being in heart failure but at increased risk of many co-

morbidities, and are now termed as heart failure mid-range EF (Ponikowski et al., 

2016).  
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In this study EF was considerably lowered after IRI in both the treated and untreated 

groups and at 3 weeks navitoclax had a marginal impact on EF compared to vehicle. 

Mice that received IRI with no treatment had a diminishing EF measurements between 

weeks 3 and 5. This indicates a detrimental shift towards worsening heart failure. 

Conversely, navitoclax treated animals showed a significantly improved EF over the 

same period. If this trend for a rescued EF continued or was sustained after 5 weeks, 

it potentially could prevent patients after MI progressing into heart failure and 

drastically improve morbidity and mortality post-MI. 

In terms of developing murine models of heart failure with reduced EF, many models 

including the model used in this study are accepted as recapitulating the human 

disease, but there are many associated limitations. For example the baseline EF of 

young mice is around 66-80% (Stegger et al., 2009; Schiattarella et al., 2019), which 

is considerably higher than a healthy human. This discrepancy limits the comparison 

that can be made between raw values of cardiac function of mice and humans. 

Although the progression of disease and trends make this LAD ligation model suitable 

as a model of MI (Salto-Tellez et al., 2004). 

The improvement in EF observed in the navitoclax treated mice could be as a result of 

either recovered EDV, ESV or a combination of both. In other MI studies conducted 

with mice, EDV and ESV were increased post-MI (Shioura et al., 2008; Redgrave et 

al., 2016), with ESV reported as a strong marker to forecast adverse remodelling in 

mice (reflected in a progressively larger EDV (Redgrave et al., 2016)) and survival after 

STEMI in patients (White et al., 1987; Hassell et al., 2017). In patients with heart failure, 

symptoms and mortality events were moderated correlating to interventions that 

reduced ESV (Cleland et al., 2005). 

Analysis of both EDV and ESV following IRI in both navitoclax treated and untreated 

animals led to an increase in EDV corresponding to dilation of the LV lumen and an 

increase in ESV due to an impairment of contractile ability. Examination of EDV 

showed no changes between 3 and 5 weeks in both cohorts whereas ESV significantly 

increased between 3 and 5 weeks in untreated mice indicating a progressive decline 

in systolic function. These trends in patients are associated with poorer outcomes 

including increased risk of heart failure and mortality (McManus et al., 2009). In 

contrast, navitoclax treated mice demonstrated a significant reduction in ESV 

indicating an improved systolic function. It would be of interest to investigate the 



 

132 

 

progression of ESV over an extended longitudinal study to confirm whether or not ESV 

continually increases after IRI and if navitoclax can attenuate this to be of functional 

benefit. Together this data shows that the overall improvement in EF was in the most 

part due to navitoclax treatment rescuing systolic function.  

The ability of navitoclax to reverse this trend for progressive systolic dysfunction 

advocates its use to improve or preserve cardiac function. Evidence supporting the 

use of navitoclax as a pharmacological intervention to improve cardiac function post-

IRI was also the improvements observed in SV. This result was expected, as it 

quantifies the volume of blood ejected between EDV and ESV. As EDV was sustained 

in this cohort and ESV was lowered after navitoclax, it would result in a larger SV. 

Besides ESV, SV is also directly related to CO. As HR was unchanged between the 

IRI and navitoclax groups, the trends in CO mirrored those in SV. This supports the 

findings of the study by Janssen et al that showed a lowered CO in mice 4 weeks after 

MI was due to alterations in SV rather than HR changing (Janssen et al., 2002). 

Progressive declines in CO have been connected to heart failure (McManus et al., 

2009; Jain and Borlaug, 2019), which was observed in the untreated IRI cohort. 

However, unlike ESV and SV, CO with navitoclax treatment was not significantly 

changed, but instead treatment stabilised CO and at the time-points tested here, 

prevented CO from worsening after IRI.  

I demonstrated that IRI caused cardiac dysfunction, however, this was not associated 

with changes in LV mass. In patients following MI, LV mass is used as a prognostic 

indicator of disease progression (Bulluck et al., 2017). The absence of a change in LV 

mass in mice may reflect their differences to humans in the way they respond to 

myocardial injury. A previous study using aged mice and a permanent ligation model 

(without reperfusion) did not show alternations in LV mass (Walaszczyk et al., 2019), 

which supports my finding. It is possible that net LV mass is unchanged due to both an 

increase in hypertrophy in combination with LV wall thinning of infarcted area (Visser, 

2003; Feygin et al., 2008). 

In support of this suggestion, hypertrophy and remodelling was investigated at a 

cellular level and I did detect an increase in CM hypertrophy after IRI. Despite the 

increase in CM hypertrophy, the LV wall dimensions were unchanged. Therefore, CMs 

are undergoing remodelling yet this does not affect the overall LV mass. Regardless, 
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as no change in hypertrophy was observed following navitoclax treatment, it is unlikely 

that attenuation of hypertrophy contributed to improve cardiac function in this cohort.  

Another remodelling process after MI is the formation of scar tissue in the region of the 

infarct (Azevedo et al., 2016) and I observed a significant reduction in infarct size 

following navitoclax treatment. Clinically the size of the infarct correlates directly with 

cardiac function with smaller infarcts being associated with improved functional 

outcome and decreased mortality risk. In patients, an infarct greater than 12% of the 

LV was associated with a mortality rate of 7% within 2 years of the MI event, whereas 

the rate was negligible if infarct was smaller than 12% (McAlindon et al., 2015). 

Modulating infarct size represents a potential mechanism to improve patient outcome. 

The decrease in infarct size in the navitoclax treated cohort therefore likely contributed 

directly to improved function and highlights its potential as a therapeutic option.  

A number of alternative therapeutic strategies that aim to reduce infarct size and 

improve function have been investigated, however, to date these strategies have failed 

to translate to the clinic (Bulluck et al., 2016; Paradies et al., 2018). Conditioning events 

have been trialled with the aim to initiate cardio-protective mechanisms. These include 

intermittent reperfusion, termed ischaemic postconditioning, or inducing short periods 

of ischaemia followed by reperfusion in distal regions of the arm or leg, termed remote 

ischaemic conditioning (Zhao et al., 2003; Staat et al., 2005; Sörensson et al., 2010; 

Hahn et al., 2013). However, there is conflicting data regarding the effectiveness of 

these treatments. Ischaemic postconditioning has been reported to reduce infarct size 

(Zhao et al., 2003; Staat et al., 2005), yet the outcomes from these studies have been 

challenged (Sörensson et al., 2010; Hahn et al., 2013). In preclinical models remote 

ischaemic conditioning yielded encouraging results (Bulluck et al., 2016) and recently 

the COND12/ERIC-PPCI trial from centres across Denmark, Spain, Serbia and the UK 

investigating ischaemic conditioning in STEMI patients that underwent PPCI was 

completed (March 2019, (NIH U.S National Library of Medicine, 2019)). Although 

currently the outcomes of this study have not been published.  

Alternative strategies also include the use of pharmaceuticals. Cyclosporin-A, an 

immunosuppressant to inhibit opening of the mPTP, was trialled in STEMI patients and 

drastically reduced scar size by up to a 40% (Piot et al., 2008). This drug progressed 

to a Phase III clinical trial, however, did not demonstrate the same effects as mortality 

and LV remodelling were unchanged (Cung et al., 2015). Furthermore, treatment with 
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exenatide, an anti-diabetic therapy, also limited infarct size in patients (Lønborg et al., 

2012), but subsequent follow-up studies observed no beneficial effects (Roos et al., 

2016b). It is important that treatment strategies consider what an appropriate clinical 

outcome is. For example, adenosine diphosphate, which is a cardio-protective agent, 

reduced infarct size in a porcine model of MI, however, the treatment had no effect on 

cardiac function (Bune et al., 2013). A follow on clinical trial also did not observe any 

functional improvements (Nazir et al., 2016).  

These studies highlight the need for novel treatment strategies but also raise potential 

problems in clinically translating findings from preclinical models. In order for a 

treatment to be successful clinically it must have the potential to improve function not 

just morphology. It has also been suggested that stratifying patients and therapies to 

target interventions to those patients with the greatest potential for benefit may have 

more positive outcomes. Alternatively, using a combination of agents or techniques 

may exert favourable effects that are reproducible across a heterogeneous population 

rather than a single intervention alone (Bulluck et al., 2016).  

Combining senolytic agents has also been trialled to improve the efficacy for senescent 

cell clearance. In one study by Zhu, Y. et al (Zhu et al., 2015) 46 compounds were 

tested in vitro on senescent preadipocytes and HUVECs, and dastinib and quercetin 

(D&Q) in combination yielded the best results. When tested in an aged in vivo murine 

model (24 months), EF and fractional shortening were both substantially improved, but 

vascular endothelial function was not changed. This study concluded that clearance of 

senescence was postulated to be a potential therapeutic avenue to treat age-related 

declines in cardiovascular function, however, reported that D&Q was not specific for 

senescent cells as they observed that healthy cells were also induced to apoptose 

(Zhu et al., 2015; van Willigenburg et al., 2018).  

Navitoclax has previously been shown to act in a senolytic fashion in vitro and in vivo 

(Chang et al., 2016) and it was concluded that Bcl-2 family inhibitors act on a wider 

range of cell types (Zhu et al., 2016). My data, along with previously published data 

(Anderson et al., 2019; Walaszczyk et al., 2019), support the hypothesis that cardiac-

linage cells are removed by navitoclax and targeting senescence can therapeutically 

benefit cardiac function. However, as discussed above, promising results in the lab 

don’t always translate well into the clinic. Therefore, additional studies are necessary 
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to test navitoclax on senescent human cardiac cells and in human subjects, and maybe 

trialling navitoclax in combination with other agents may be more effective.  

As discussed above, it is important to consider that data from mouse models does 

not always translate well into the clinic. However, the data included in this chapter is 

encouraging and based on a number of parameters of cardiac function indicate that 

senolytic treatment in the form of navitoclax may represent a potential therapy to 

improve outcome after IRI. Additionally, I have demonstrated that navitoclax 

eliminates senescent CMs, which was associated with improved function and limiting 

adverse remodelling as shown by scar size. As the functional unit of the heart, CM 

dysfunction directly influences cardiac function (Paradis et al., 2014). Due to this 

study’s findings along with previous data showing reduced senescence markers in 

CMs (Anderson et al., 2019; Walaszczyk et al., 2019), it was hypothesised that 

clearance of senescent and dysfunctional CMs may be the underlying mechanism 

behind the improvements in cardiac function. For this reason, a novel CM-specific 

knockout model was generated to stop expression of the protein p16Ink4a. The aim of 

this model was to explore whether inhibition of CM senescence could recapitulate the 

beneficial outcome observed in this chapter after navitoclax therapy. If so, more 

targeted senolytic agents towards senescent CMs could be constructed to optimise 

clearance and improve function. 
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Chapter 5. Characterisation of a novel p16Ink4a cardiomyocyte 

specific transgenic knockout model to investigate outcome to 

ischaemia-reperfusion injury 

 

5.1 Introduction 

Senescence has been shown to play a role in the heart, however, it is still unclear 

which cell populations display senescent markers. I have shown that subsequent to 60 

minute LAD ligation with reperfusion there is an increase in markers of cellular 

senescence in different cell populations, including CMs. Additionally, I have shown that 

treatment with the senolytic navitoclax post-LAD ligation resulted in an improved 

cardiac function which was associated with a diminishing scar size and reduction in 

the number of senescent CMs. 

During mouse ageing it was previously demonstrated that markers of senescence 

accumulate in the CM population and this was not observed in other cell types 

(Anderson et al., 2019). These senescent CMs expressed an atypical SASP including 

the factors Tgf-β2, End3 and Gdf15. These SASP factors induced characteristics of 

myocardial remodelling both in combination and, to a certain extent, individually. With 

navitoclax treatment, aged mice had a reduction in senescent CMs which correlated 

with improved cardiac function and attenuated remodelling, in terms of increased CM 

regeneration and reduced fibrosis and hypertrophy. Therefore, it was concluded that 

the observed reduction in remodelling was due to the removal of senescent, 

hypertrophic CMs and their associated SASP that would escalate hypertrophy and 

fibrosis via the by-stander effect (Anderson et al., 2019).  

Additionally, it has been reported in multiple models that senescence in the fibroblast 

population actually limits fibrosis (Zhu et al., 2013; Meyer et al., 2016; Childs et al., 

2018; Meng et al., 2019). In the TAC surgical model performed on transgenic 

p53/p16Ink4a knockout mice, senescence markers in fibroblasts were reduced, 

however, the degree of fibrosis was higher than compared to wild type mice (Meyer et 

al., 2016). This observation that inhibiting senescence improves expression of markers 

and inflammation but that there is excessive fibrosis was also confirmed in a model of 

MI on p53 knockout mice (Zhu et al., 2013).  
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Taking these observations together, I hypothesised that following IRI, CM senescence 

is detrimental to recovery because of CM SASP-induced myocardial remodelling. To 

test this hypothesis, I aimed to establish a mouse model that allowed specific inhibition 

of senescence within the CM population.  

p16Ink4a is a dominant regulator of senescence by controlling the G1-S phase 

checkpoint. Expression of p16Ink4a is a useful marker of senescence and was shown to 

increase after injury in multiple organs such as skin and liver (Krizhanovsky et al., 2008; 

Jun and Lau, 2010a; Demaria et al., 2014; Liu et al., 2019). A number of studies have 

directly demonstrated that p16Ink4a expressing cells are causal to ageing (Liu et al., 

2011; LaPak and Burd, 2014). By establishing the INK-ATTAC transgenic mouse, 

which allows for the selective but systemic killing of p16Ink4a expressing cells, Baker, 

D.J. et al. demonstrated that genetic elimination of p16Ink4a cells extended life-span 

and alleviated or delayed the onset of numerous age-related diseases (Baker et al., 

2011; Baker et al., 2016). Using the same INK-ATTAC model, it was also shown that 

elimination of p16Ink4a cells from aged mice reduced the number of senescent CMs, 

attenuated hypertrophy and reduced fibrosis. These results mirrored the effects of 

navitoclax treatment on the outcomes of aged mice (Anderson et al., 2019).  

Moreover, navitoclax has been studied using the p16-3MR transgenic mouse (Chang 

et al., 2016). Transgenic p16-3MR mice contain a trimodality reporter fusion protein 

which includes renilla luciferase, a red fluorescent protein (mRFP), and truncated 

herpes simplex virus 1 thymidine kinase (HSV-TK) all driven by the p16Ink4a promotor. 

The luciferase allows the detection of senescent cells by luminescence, mRFP permits 

cell sorting and identification of senescent cells (which is important as there are 

questions over the validity of antibodies for p16Ink4a expression), and HSV-TK allows 

specific killing of senescent cells by ganciclovir. Following a non-lethal dose of 

irradiation, which induced a systemic increase in senescence, a comparison was made 

between the treatment with the suicide drug (ganciclovir) and treatment with navitoclax. 

Both treatments yielded similar results in terms of killing senescent cells (Chang et al., 

2016) demonstrating a relationship between the cellular target of navitoclax and 

p16Ink4a expression. 

These studies concluded the following: 1) p16Ink4a activated senescence played a role 

in establishing CM senescence in aged mice; 2) p16Ink4a expressing CMs contributed 

to myocardial remodelling during ageing; and 3) navitoclax treatment resulted in the 
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elimination of p16Ink4a expressing cells in multiple tissue systems including the heart. 

Based on these observations and the data presented in chapter 4 showing a reduction 

in p16Ink4a expressing CMs in IRI mice treated with navitoclax, to investigate the 

contribution of senescent CMs to remodelling and recovery post-IRI I targeted the 

p16Ink4a expressing CM population (Figure 5.1).  

To date, there is no model available to specifically remove individual cell lineages 

expressing p16Ink4a. To inhibit senescence in the CM population I instead took the 

approach of establishing a transgenic model in which p16Ink4a expression was knocked 

out in the CM population. The p16Ink4a floxed mouse line (Cdkn2atm2.1Nesh line 

(p16ink4af/f) (Monahan et al., 2010)) was crossed with an inducible Cre line under 

activation of a CM specific promoter (Myh6‐cre/Esr1 (αMHC-MerCreMer)). The αMHC-

MerCreMer mice carry a fusion transgene of Cre recombinase flanked by Mer, a 

mutated oestrogen receptor ligand-binding domain, driven by the cardiac α‐myosin 

heavy chain promoter (encoded by Myh6). The p16ink4af/f line carries loxP elements 

∼3.5 kb upstream of 5′ to exon 1α and immediately downstream of 3′ to the p16Ink4a 

exon 1α. Once αMHC-MerCreMer :: p16ink4af/f mice were established, Cre activation 

led to the excision of the loxP sites which resulted in selective p16Ink4a exon 1α 

excision permanently and specifically in the CM population. I crossed MerCreMer+/- :: 

p16+/f males with MerCreMer-/- :: p16+/f females to create αMHC-MerCreMer+/- :: p16f/f 

(Containing both transgenes and referred to from here as MerCreMer :: p16f/f) and 

littermates MerCreMer-/- :: p16f/f as controls (expressing the p16f/f transgene but lacking 

αMHC-MerCreMer and referred to as WT :: p16f/f).
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5.2 Experimental Design and Model Validation. 

I established a novel MerCreMer-/- :: p16f/f transgenic model which allowed for a 

temporally controlled, CM-specific knockout of p16Ink4a to determine if an accumulation 

of CM senescence was primarily driving adverse cardiac remodelling and impacting 

on functional recovery post-IRI. Additionally, it would conclude whether elimination of 

this population was pivotal to the benefits observed following navitoclax treatment. 

MerCreMer-/- :: p16f/f and littermate WT :: 16 f/f mice were genotyped and treated with 

tamoxifen for 2 weeks (0.5mg/ml/d 4-OHT) from the age of 3 months of age to allow 

translocation of Cre to the nucleus and the recombination of the loxP sites. Following 

4-OHT treatment mice were rested for 2 weeks to allow full and efficient recombination 

to occur. Mice then underwent LAD ligation as previously described (2.1) and were 

transferred to the Keith Unit at the Campus for Ageing and Vitality for MRI scanning 

which were performed at weeks 3 and 5 post-LAD ligation. On the day of the 5 week 

MRI mice were humanely killed and hearts were collected for analysis and processed 

accordingly (Figure 5.2). 

Figure 5.1 Graphical hypothesis. 

p16Ink4a is a major regulator of senescence, and previously demonstrated to play a 
role in numerous age-associated disorders. I hypothesised that CM-specific 
knockout of p16Ink4a would attenuate CM senescence and thereby reduce 
myocardial remodelling and improve cardiac function post-IRI. 
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Figure 5.2 Experimental timeline. 

Mice were dosed with 4-OHT for 2 weeks to activate Cre recombinase and flox out 
exon 1α of p16Ink4a, and therefore CMs no longer expressed p16Ink4a at a protein 
level. Then they had surgery where the LAD was ligated for 1 hour and then the 
heart allowed to reperfuse. Mice were then transferred to the Keith Unit for MRIs at 
weeks 3 and 5 post-surgery. 

 

5.3 Validation of exon 1α excision from p16Ink4a in cardiomyocytes 

Although mice had already been genotyped prior to experiment, a second genotyping 

was undertaken post-tissue collection to confirm the correct genotype. DNA was 

isolated from the atria of both MerCreMer :: p16f/f and WT :: p16f/f mice and PCRs were 

performed for Cre and the p16Ink4a transgene (2.3.1), which confirmed that both 

MerCreMer :: p16f/f and WT :: p16f/f mice were homozygous for the p16ink4af/f allele 

and only MerCreMer :: p16f/f mice expressed the Cre allele (product sizes 261bp (data 

not shown) and 280bp respectively, Figure 5.3.A). Next I confirmed that excision of 

p16Ink4a exon 1α had occurred at a genetic level in the MerCreMer :: p16f/f mice 

subjected to 4-OHT treatment. To confirm excision of exon 1α, p16LCred primers were 

used that are designed to anneal to DNA at regions flanking the loxP sites. As such, if 

exon 1α had been excised, then a product of 270bp would be amplified (Monahan et 

al., 2010). All 15 MerCreMer :: p16f/f mice which had been treated with 4-OHT and 

expressed Cre had a band present from the p16LCred at the expected molecular 

weight (Figure 5.3.B). Having demonstrated the excision of p16Ink4a, these mice are 

subsequently referred to as p16-/-. The 8 WT :: p16f/f mice that were negative for Cre 

were also negative for the p16LCred product. Having confirmed the genotype of these 

mice, they are subsequently referred to as p16f/f.  
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Figure 5.3 Genotyping polymerase chain reactions to confirm the presence 
of Cre and that it had been activated to flox p16Ink4a exon 1α. 
A) PCR for Cre. A white band at 280bp confirmed the presence of Cre within the 

genome of the mouse. On the top row all 15 experimental mice (p16-/-) had a 
positive result. On the bottom row none of the 8 control mice (p16f/f) generated 
a product and were negative for expression of Cre. Samples were tested 
against a sample previously confirmed to be Cre positive (+ve) and a ddH2O 
negative control (-ve). 

B) PCR to confirm Cre was activated and had successfully floxed p16Ink4a exon 
1α. A positive result of a band present at 270bp was observed in the same 15 
mice (top row) with a positive result from the Cre PCR. On the lower row there 
was no product formed in the 8 experimental mice, which correlated with no 
Cre present in A. Samples were run against WT mice with no Cre of floxed 
p16Ink4a (-ve WT).  

 

5.3.1 p16Ink4a and p21Cip are significantly reduced in the mouse cohort with 

cardiomyocytes not expressing p16Ink4a 

Next I aimed to confirm that p16Ink4a knockout resulted in reduced p16Ink4a protein 

expression. Post-ischaemia-reperfusion injury expression of p16Ink4a in the CMs from 

the p16f/f cohort was 20.09% ± 2.29, which was similar to levels observed in wild type 

mice at the same time-point post-IRI (4-5 weeks). However, p16Ink4a expression was 

significantly reduced (p=<0.0001) in the p16-/- cohort with 6.51% ± 2.29 CMs being 

positive for p16Ink4a staining. This reduction corresponds to 67.60% fewer p16Ink4a 

positive, troponin C expressing CMs being present in the p16-/- hearts compared to the 

p16f/f heart (Figure 5.4). This result is consistent to previous studies which have 

demonstrated a 70-80% efficiency in loxP recombination when using the MerCreMer 

transgenic mouse (Sohal et al., 2001).

A B 



 

143 

 

 

Figure 5.4 Cardiomyocytes have reduced expression of p16Ink4a following 
floxing of p16Ink4a after ischaemia-reperfusion injury. 
A) Immunofluorescence staining in p16f/f hearts post-IRI. Slides stained with CM 

marker troponin C (in green, wavelength 488nm), senescence marker p16Ink4a 
(in red, wavelength 594nm) and nuclei (in blue with DAPI, wavelength 461nm). 
All images for this analysis were taken in the BZ. Cardiomyocytes positive for 
p16Ink4a are highlighted with a white arrow. Interstitial cells positive for p16Ink4a 
are highlighted with a yellow arrow. 

B) Immunofluorescence staining in p16-/- hearts post-IRI. Slides stained with CM 
marker troponin C (in green, wavelength 488nm), senescence marker p16Ink4a 
(in red, wavelength 594nm) and nuclei (in blue with DAPI, wavelength 461nm). 
All images for this analysis were taken in the BZ. Cardiomyocytes positive for 
p16Ink4a are highlighted with a white arrow. Interstitial cells positive for p16Ink4a 
are highlighted with a yellow arrow. 

C) Negative control for both 1°Abs, slides were incubated in PBS instead. 
D) Quantification of CMs expressing p16Ink4a in p16f/f IRI hearts vs p16-/- IRI hearts. 

Floxing of p16 Ink4a from CMs significantly reduces the percentage of CMs 
positive for p16Ink4a post-IRI.  

N=4 and 5 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using Unpaired T-Test. 

Percentage of CMs positive for p16 Ink4a

p
1

6
In

k
4

a
 p

o
s

it
iv

e
 C

M
s

 (
%

)

IRI 
p16 f/f

IRI
p16 -/-

0

5

10

15

20

25
****

A B 

D C 



 

144 

 

To validate the antibody, sections were also stained via RNAscope which is a method 

of in situ hybridisation. Following normalisation to the negative control, RNAscope 

analysis revealed that in the p16f/f mice hearts the percentage of troponin C positive 

CMs co-expressing p16Ink4a transcript RNA (33.11% ± 2.48) was higher than those 

expressing p16Ink4a protein. Importantly, the percentage of troponin C positive CMs 

expressing p16Ink4a was reduced in the p16-/- cohort to 5.54% ± 3.80 (p=0.005, Figure 

5.5). These findings added further evidence that p16Ink4a expression was reduced in 

the CMs of the p16-/- mice.  

Having confirmed that knockout of p16Ink4a resulted in decreases of both p16Ink4a 

transcript and protein expression, next I established if absence of p16Ink4a results in a 

decrease in CM senescence. Alternative senescent markers were then quantified in 

the CM population, with heart sections stained with the p21Cip antibody. At 5 weeks 

post-IRI the percentage of troponin C positive CMs co-expressing p21Cip in the p16f/f 

mice was 20.17% ± 1.53, comparable with wild type animals in chapter 3 and chapter 

4 (18.47% ± 2.62 and 20.00% ± 1.57). p16Ink4a knockout in the p16-/- mice led to a 

significant decrease in CM p21Cip expression to 13.55% ± 0.45 (Figure 5.6), however, 

not to the same degree as observed following navitoclax treatment in chapter 4 (7.12% 

± 0.94).  

I also performed staining for TAF to investigate whether DNA damage was affected in 

this mouse model. However, neither the percentage of CMs positive for TAF 

(p=0.2487) or mean TAF number in CM nuclei (p=0.0733) were significantly changed 

after floxing of p16Ink4a exon 1α (Figure 5.7). 
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Figure 5.5 p16Ink4a expression by RNAscope is significantly decreased in 
knockout mice, and levels are comparable to those quantified by 
immunofluorescence when normalised to the negative control. 
A) RNAscope staining in p16f/f hearts post-IRI. Slides were stained with the probe 

for p16Ink4a RNA (in red, wavelength 594nm) and counter stained for the CM 
marker troponin C (in green, wavelength 488nm) and nuclei (in blue with DAPI, 
wavelength 461nm). All images for this analysis were taken in the BZ. 
Cardiomyocytes positive for p16Ink4a are highlighted with a white arrow. 

B) RNAscope staining in p16-/- hearts post-IRI. Slides were stained with the probe 
for p16Ink4a RNA (in red, wavelength 594nm) and counter stained for the CM 
marker troponin C (in green, wavelength 488nm) and nuclei (in blue with DAPI, 
wavelength 461nm). All images for this analysis were taken in the BZ. 
Cardiomyocytes positive for p16Ink4a are highlighted with a white arrow. 

C) Negative control for the RNAscope probe. Background staining in the CMs are 
highlighted with a white arrow. 

D) Graph showing the percentage of troponin C expressing CMs positive for the 
probe against p16Ink4a normalised against the negative control in p16f/f and p16-/- 
mice. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Unpaired T-Test. 
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Figure 5.6 Floxing p16Ink4a from cardiomyocytes reduces the percentage of 
cardiomyocytes positive for p21Cip after ischaemia-reperfusion injury. 
E) Immunofluorescence staining in p16f/f hearts post-IRI. Slides stained with CM 

marker troponin C (in green, wavelength 488nm), senescence marker p21Cip (in 
red, wavelength 594nm) and nuclei (in blue with DAPI, wavelength 461nm). All 
images for this analysis were taken in the BZ. Cardiomyocytes positive for 
p21Cip are highlighted with a white arrow. Interstitial cells positive for p21Cip are 
highlighted with a yellow arrow. 

F) Immunofluorescence staining in LAD ligated p16-/- hearts. Slides stained with 
CM marker troponin C (in green, wavelength 488nm), senescence marker 
p21Cip (in red, wavelength 594nm) and nuclei (in blue with DAPI, wavelength 
461nm). All images for this analysis were taken in the BZ. Cardiomyocytes 
positive for p21Cip are highlighted with a white arrow. Interstitial cells positive for 
p21Cip are highlighted with a yellow arrow. 

G) Negative control for both 1°Abs, slides were incubated in PBS instead. 
H) Quantification of CMs expressing p21Cip in p16f/f IRI hearts vs p16-/- IRI hearts. 

In mice with floxed p16Ink4a from CMs p21Cip is significantly reduced in CMs 
post-IRI.  

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Unpaired T-Test. 
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Figure 5.7 Floxing of p16Ink4a has no effect on telomere-associated DNA 
damage foci in cardiomyocytes. 
A) Immunofluorescence staining in p16f/f heart post-IRI. Slides stained with γH2Ax 

(in green, wavelength 488nm), telomere-c probe (in red, wavelength 594nm), 
nuclei (in blue with DAPI, wavelength 461nm) and WGA (in teal, wavelength 
647nm). All images for this analysis were taken in the BZ.  Cardiomyocytes 
positive for TAF are highlighted with a white arrow. 

B) Immunofluorescence staining in p16-/- heart post-IRI. Slides stained with γH2Ax 
(in green, wavelength 488nm), telomere-c probe (in red, wavelength 594nm), 
nuclei (in blue with DAPI, wavelength 461nm) and WGA (in teal, wavelength 
647nm). All images for this analysis were taken in the BZ. Cardiomyocytes 
positive for TAF are highlighted with a white arrow. 

C) Quantification of CMs expressing ≥5 TAF in p16f/f and p16-/- IRI hearts. 
Removal of p16Ink4a had no effect on the percentage of CMs positive for TAF. 

D) Quantification of mean TAF number in CMs post-IRI in p16f/f and p16-/- hearts.  
Removal of p16Ink4a had no effect on the CM mean TAF number.  

N=3 and 4 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using Two-Tailed T-Test. 
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5.4 Cardiac function remains unchanged in this model 

To assess cardiac function, mice underwent an MRI to investigate their LV mass, EDV, 

ESV, SV, CO and EF. Mice had an initial MRI at 3 weeks after surgery to establish a 

baseline function post-IRI and then a follow-up MRI 2 weeks later to evaluate any 

developments in these variables. As in section 4.5, these variables were calculated 

from measurements of the epicardial and endocardial areas of each MRI slice at 

diastole and systole. An example of these measurements can be found in Figure 5.8.

 

 

5.4.1 Left ventricular mass is unaltered with the removal of p16Ink4a expression 

from cardiomyocytes 

As described in 4.5.1, the variable LV mass can be used to identify signs of hypertrophy 

and fibrosis that drive adverse remodelling (Konstam et al., 2011).  

Across all groups post-IRI, LV mass was not significantly altered (p=0.3223). At week 

3 LV mass was 125.4mg ± 10.71 in the p16f/f mice and 122.7mg ± 13.45 for the p16-/- 

Figure 5.8 Example of measurements taken for each magnetic resonance 
imaging slice at diastole and systole after ischaemia-reperfusion injury. 

Pink line denotes the epicardial area measured and the yellow line indicates the 
endocardial area measured for analysis. 
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mice, and at 5 weeks the p16f/f cohort had a mean LV mass of 122.0mg ± 12.89 and 

this was 123.4mg ± 22.20 in the p16-/- mice (Figure 5.9.A). 

The delta change in LV mass was assessed in addition to the raw values for LV mass. 

The percentage change in LV from weeks 3 to 5 was marginally larger in the p16f/f 

cohort at -3.09% ± 6.68 than the p16-/- cohort at -0.78% ± 10.06. The change for each 

individual mouse within both cohorts was not significantly different either within each 

group or between the groups (p=0.1315, Figure 5.9.B). 

These data reflect the results from section 4.5.1 that show the mean LV mass is largely 

unaffected in this model of IRI, but also demonstrates that inhibiting CMs from 

activating p16Ink4a has no effect on LV mass post-LAD ligation.  
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Figure 5.9 Left ventricular mass is unchanged after ischaemia-reperfusion 
injury in both cohorts. 
A) Data showed no significant changes when comparing all groups, indicating that 

LV mass was not affected by floxing p16Ink4a from the CM population. 
B) Quantification of the change in LV mass between week 3 and 5 for both the IRI 

p16f/f and p16-/- groups. No significant differences were observed either 
between the two cohorts or between the mice within each cohort across the 
two time-points. 

N=7 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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5.4.2 End diastolic volume and end systolic volume are not affected by floxing 

out p16Ink4a from cardiomyocytes  

Another set of variables that can elude to LV remodelling and predict outcome following 

MI are EDV and ESV (McManus et al., 2009; Redgrave et al., 2016; Bulluck et al., 

2017). 

Ischaemia-reperfusion injury via LAD ligation led to significant increases in EDV. At 3 

weeks the EDV of the p16f/f group was 98.61µl ± 17.73 and 94.80µl ± 30.35 for the 

p16-/- group. At the 5 week MRI the mean EDV had marginally changed, with both IRI 

groups slightly decreased to 88.87µl ± 18.28 (p=0.3829) and 90.80µl ± 34.90 

respectively (p=0.2649, Figure 5.10.A).  

Although the mean EDV decreases were not significant when the raw values were 

compared, the changes in EDV was significant in the p16f/f cohort (p=0.0006). All mice 

demonstrated a reduction in their EDV (Figure 5.10.B), with an average reduction of    

-11.55% ± 5.80 in the p16f/f. However, the reduction of -6.73% ± 15.82 in the p16-/- 

cohort was not significant (p=0.0790) and across the group mice showed increases 

and decreases in their EDV. The p16-/- group reflects what would be expected to occur 

after IRI, and inhibiting p16Ink4a in the CMs has not prevented the progression of EDV.  

Similar to EDV, ESV also showed no significant differences between the IRI cohorts. 

At 3 weeks there was no significant difference between the p16f/f and p16-/- groups with 

ESVs of 68.23µl ± 19.23 and 61.34µl ± 31.91 (p=0.6078). Similarly, at week 5 there 

was no difference in the ESVs (65.05µl ± 25.19 and 64.58µl ± 32.60 respectively, 

p=0.7952, Figure 5.11.A).  

Looking at the changes in ESV between the MRIs also showed no significant changes 

within or between the groups. In the p16f/f group the mean percentage change in ESV 

was -10.57% ± 32.62 (p=0.3664) and the p16-/- had a stable ESV with a mean change 

of -2.07% ± 50.72 (p=0.8226, Figure 5.11.B). This result demonstrates that removal of 

p16Ink4a expression has no effect on ESV, as all mice in both groups did not show a 

trend in their ESV. 
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Figure 5.10 End diastolic volume increases after ischaemia-reperfusion 
injury but is not affected by p16Ink4a expression in cardiomyocytes. 
A) Data showing no significant change in EDV was observed between IRI p16f/f 

and p16-/- mice.  
B) Quantification of the change in EDV between week 3 and 5 for both the p16f/f 

and p16-/- groups. In the p16f/f group all mice showed a decline in their EDV, 
and this change was significant between weeks 3 and 5. However, the p16-/- 
showed a general trend for a smaller EDV at week 5, but individual responses 
varied and this reduction was not significant. 

N=7 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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Figure 5.11 End systolic volume increases after ischaemia-reperfusion injury 
but is also not affected by p16Ink4a expression in cardiomyocytes. 
A) Data showing no significant change in ESV was observed between IRI p16f/f 

and p16-/- mice.  
B) Quantification of the change in ESV between week 3 and 5 for both the p16f/f 

and p16-/- groups. No significant difference between the progressions of the 
groups was observed and neither group had a significant change in their ESV 
from week 3 to 5. 

N=7 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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5.4.3 Inhibition of p16Ink4a expression in cardiomyocytes does not lead to any 

improvements in stroke volume 

There were no significant differences between the SV of the p16f/f and p16-/- groups, 

although for both cohorts the SV was reduced between weeks 3 and 5. The p16f/f had 

an SV of 30.38µl ± 9.28 which fell to 23.82µl ± 12.80 (p=0.2934), and the p16-/- SV 

changed from 33.46µl ± 12.16 to 26.22µl ±9.86 (p=0.0849, Figure 5.12.A). These 

reductions are due to the EDV for both cohorts reducing over time, and maintaining a 

relatively steady ESV, so as the LV capacity at diastole was reduced, the volume of 

blood ejected with each contraction was therefore consequently lessened.  

As the trends in changes in EDV and ESV were very similar across both the p16f/f and 

p16-/-, the percentage changes in SV were also not significantly different. Both groups 

demonstrated roughly a 60% decline in their SV (67.93% ± 95.71 in the p16f/f group, 

p=0.3664, and 55.81% ± 92.59 in the p16-/- group, p=0.8226, Figure 5.12.B).  

When evaluating the individuals in each cohort, the spread of change was highly 

variable in both groups, so this result is not attributed to single individuals, but due to 

variations within both. Therefore, SV is significantly worsened following IRI (48.45µl ± 

3.93 SV pre-IRI, p=0.0002, Figure 4.12) and is not improved by preventing CMs from 

expressing p16Ink4a.  
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Figure 5.12 Ischaemia-reperfusion injury causes a reduction in stroke 
volume, however, altered p16Ink4a expression in cardiomyocytes has no 
effect. 
A) Data showing no significant change in SV was observed between IRI p16f/f and 

p16-/- mice.  
B) Quantification of the change in SV between week 3 and 5 for both the p16f/f and 

p16-/- groups. No significant difference between the progressions of the groups 
was observed and neither group had a significant change in their SV from week 
3 to 5. 

N=7 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 

5.4.5 Preventing cardiomyocytes from expressing p16Ink4a is insufficient to 

rescue ejection fraction post-myocardial infarction 

The final variable assessed in these cohorts was EF. As previously described, EF is 

an important variable clinically, and an EF of <40% is defined as heart failure 

(Ponikowski et al., 2016).  

There was no significant difference in EF between the p16f/f or p16-/- mice at either 

time-points. At 3 weeks, the mean EF of the IRI p16f/f cohort was 31.64% ± 11.28 and 

in the p16-/- the mean EF was 37.78% ± 17.27 (p=0.4068). These data show that the 

IRI in these mice post-MI was very severe within 3 weeks of the MI. By 5 week, the 

mean EF for both cohorts had further declined to 28.30% ± 15.27 and 30.58% ± 13.06 

respectively (p=0.6502 and 0.3761, Figure 5.13.A).  

As per previous variables discussed above, the percentage change in EF was 

calculated. Both p16f/f and p16-/- on average had a reduced EF with time, and this was 
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significantly reduced in the p16-/- cohort at -44.03% ± 80.95 (p=0.0474). The 

percentage change in the p16f/f was even greater at -52.35% ± 91.58, though it was 

not significant (p=0.1492, Figure 5.13.B). With many variables, the data was often not 

closely grouped. This reflects either the variability in responses following IRI and that 

p16Ink4a floxed from CMs has no impact on reversing or reducing this variability, or 

raises concerns over the quality of the MRIs in this study. The responses at 5 weeks 

were unchanged for all variables and therefore assumed that the responses reported 

were biologically accurate.  

 

 

Overall, all variables remained unchanged with floxing p16Ink4a from CMs. In 

conclusion, p16Ink4a is either insufficient to inhibit CM senescence, or preventing CMs 

from becoming senescent is of no benefit functionally. 
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Figure 5.13 Ischaemia-reperfusion injury significantly reduces ejection 
fraction. Preventing p16Ink4a expression to reduce senescence has no effect 
on ejection fraction. 
A) Data showing no significant change in EF was observed between IRI p16f/f and 

p16-/- mice.  
B) Quantification of the change in SV between week 3 and 5 for both the p16f/f and 

p16-/- groups. No significant difference between the progressions of the groups 
was observed and neither group had a significant change in their SV from week 
3 to 5. 

N=7 and 14 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-Way ANOVA, Unpaired and Paired T-Test. 
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5.5 Transgenic model does not result in attenuated remodelling despite 

reduction of senescence markers 

After investigating the cardiac function of these transgenic mice, I aimed to see if 

remodelling had been affected by floxing out p16Ink4a from CMs. 

Samples were stained for Masson’s Trichrome to assess the percentage of LV 

composed of infarct. In the IRI group, the infarct size was 15.83% ± 2.58 of the LV and 

was similar to the previous cohort from chapter 4 which had an average scar size of 

18.50% ± 2.72. In the floxed mice, however, the region of infarct was 12.96% ± 5.79 

which was not significantly different (p=0.4318) to the control IRI group (Figure 5.14.B). 

This confirms that floxing p16Ink4a is insufficient to emulate the benefits of navitoclax at 

attenuating remodelling as I have demonstrated in chapter 4.  

As an additional marker of remodelling, hypertrophy of the CMs was assessed (Kehat 

and Molkentin, 2010; Grossman and Paulus, 2013; Walaszczyk et al., 2019). In healthy 

controls (Figure 4.16) CM area was 305.6µm2 ± 33.43 and after IRI, CMs were 

hypertrophic. In this study the p16f/f cohort had a mean area of 404.7µm2 ± 42.21 

(Figure 5.15). This measurement was comparable to the IRI cohort from Figure 4.16, 

which had a CM area of 412.6µm2 ± 24.29. After p16Ink4a removal from the CMs, the 

mean CM area of the p16-/- mice was slightly smaller at 389.5µm2 ± 44.50 but this was 

not significantly smaller than the p16f/f group (p=0.5936, Figure 5.15). As both infarct 

size and hypertrophy measurements are unchanged after floxing p16Ink4a from the 

CMs, it indicates that this transgenic line is unable to attenuate remodelling alone.
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Figure 5.14 Scar size is unchanged after removal of p16Ink4a from 
cardiomyocytes. 
A) Tiles of transverse sections of hearts from p16f/f and p16-/- mice post-LAD 

ligation stained by Masson’s Trichrome. The pink line highlights the LV 
epicardium and the yellow line highlights the LV endocardium. From these two 
measurements the LV area could be calculated. The blue line denotes the area 
of fibrosis in the LV as identified by the blue staining. From these 
measurements the percentage area of the LV composed of scar could be 
calculated. 

B) Calculated scar size as a percentage of the LV found to be not significantly 
different between cohorts. One p16-/- data point excluded according to a ROUT 
test for outliers. 

N=5 and 7 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using Unpaired T-Test. 
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Figure 5.15 Cardiomyocyte area after inhibition of p16Ink4a activity in the 
cardiomyocytes is not altered. 
A) WGA staining (in red, wavelength 594nm) in p16f/f heart after IRI, zoom figure 

shows measurements taken around CMs surrounded with 3+ capillaries so 
CMs in same orientation. 

B) WGA staining (in red, wavelength 594nm) in p16-/- heart after IRI, zoom figure 
shows measurements taken around CMs surrounded with 3+ capillaries so 
CMs in same orientation. 

C) Preventing p16Ink4a expression in the CM population (p16-/-) does not change 
the CM area or reduce hypertrophy. 

N=5 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Unpaired T-Test.  
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5.6 Alternative hypothesis: persistent senescence signalling from fibroblasts 

may be responsible for a decline in heart function 

Systemic clearance of all senescent cells pharmacologically using navitoclax improved 

heart function and structure (chapter 4). Yet specifically deleting p16Ink4a expression 

from CMs did not replicate any of these beneficial outcomes. This led me to 

hypothesise that other cell types within the heart play a greater role in adverse 

remodelling and it was clearance of these cell types by navitoclax that yielded benefits 

in terms of cardiac function and attenuation of remodelling.  

By conducting SA-β-Gal staining, it appeared that there was less positive staining both 

within the infarct and in the CM population. Loss of these SA-β-Gal positive cells in the 

infarct may have an attenuated SASP which may be responsible for the observed lack 

of positive CMs (Figure 5.16). 

 

 

Figure 5.16 Senescence-associated β-galactosidase expression is lost in 
knockout mice. 

At 5 weeks after IRI there is a small amount of residual SA-β-Gal staining 
observed in p16f/f mice, which is mostly within the region of infarct but some cells 
with a CM morphology in the BZ appeared positive. In mice without p16Ink4a 
expression, there is very little to no positive staining detected. 
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5.6.1 p16Ink4a expression in non-cardiomyocytes is affected by preventing 

p16Ink4a expression in cardiomyocytes 

As already reported (3.3.5), expression of p16Ink4a was observed within the interstitial 

cells. Many of these cells were also positive for the marker vimentin, also referred to 

as the fibroblast intermediate filament. However, vimentin is not considered to be cell-

type specific and can be used as a maker for cell types other than fibroblasts including 

endothelial cells, macrophages, and lymphocytes amongst others (Robinson-Bennett 

and Han, 2006). Moreover, ischaemia can induce proliferation of cardiac endogenous 

mesenchymal stem cells to also express vimentin (Klopsch et al., 2018). 

Immunofluorescence staining with p16Ink4a as carried out in 4.4.1 and 5.5.3 with the 

additional marker vimentin allowed for the quantification of vimentin positive cardiac 

cells also expressing p16Ink4a. Vimentin was used as a fibroblast marker, but the 

possibility of cells included in the analysis being endothelial cells was considered.  

From the immunofluorescence staining, the percentage of cardiac interstitial cells 

positive for p16Ink4a was significantly higher in the p16f/f group compared to p16-/- group. 

The p16f/f mice had a mean percentage of p16Ink4a positive interstitial cells of 34.48% 

± 5.28. Expression of in p16Ink4a from cells co-expressing vimentin in the p16-/- mice 

significantly reduced (p=0.0078) to 24.29% ± 1.54 compared to the p16f/f mice (Figure 

5.17). This reduction in p16Ink4a positive interstitial cells due to floxing of p16Ink4a from 

the CMs implies that the CMs may have a SASP that does impact other cell types. 

However, the data from above suggest that it is not strong enough to be principally 

inducing the negative effects of senescence on the cardiac histology and function. 
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Therefore, a CM SASP could be important in propagating or maintaining cardiac 

senescence, but tests into the effects of a fibrotic SASP on CMs and other cardiac cell 

linages should be investigated. The results of these studies would be important 

clinically, as determining the cell type chiefly responsible for the detrimental impacts of 

senescence and progression of adverse remodelling could allow for more targeted 

therapies to be developed, avoiding adverse and systemic effects of senolytics (van 

Deursen, 2019).  
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Figure 5.17 Preventing p16Ink4a expression in the cardiomyocytes leads to 
significantly fewer interstitial cells also expressing p16Ink4a. 

After IRI there are significantly more interstitial cells positive for p16Ink4a (data from 
staining in Figure 5.4). Floxing of p16Ink4a from CMs (p16-/-) had the effect of 
significantly reducing p16Ink4a expression in the interstitial cells compared to the IRI 
cohort (p16f/f), however, unlike navitoclax in Figure 4.7 levels were not restored to 
healthy baseline and remained significantly higher than the no LAD controls. 

N=4 and 5 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using Unpaired T-Test. 
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5.7 Discussion 

In an attempt to understand the contribution of CM senescence to the pathophysiology 

of myocardial remodelling post-IRI I established a transgenic mouse model that lacked 

the expression of p16Ink4a, but not p19Arf, specifically in the CM population. Studies 

have shown that Cre inheritance from the maternal line can lead to a mosaic-pattern 

of recombination (Hayashi et al., 2002; Heffner et al., 2012). This can occur as in 

maternally-derived germline cells, the zygotes, Cre protein can accumulate and if fused 

with a sperm containing a floxed allele, recombination can aberrantly and prematurely 

occur from embryogenesis regardless of whether the zygote contains the Cre 

transgene (Hayashi et al., 2002; Vincent and Robertson, 2003; Heffner et al., 2012). 

To avoid this, only male Cre mice were used for breeding.  

To validate the model and provide evidence that in this transgenic line p16Ink4a 

expression was absent from the CM population my initial analysis of senescence 

markers focused on the expression of p16Ink4a. In p16f/f mice, which have the p16Ink4a 

floxed allele, but lacked Cre expression, the expression of p16Ink4a was at a similar 

level to the post-IRI wild type mice. In the p16-/- cohort, p16Ink4a levels were 

considerably lower. Specifically, in the CMs, p16Ink4a expression was reduced by 67% 

in the p16-/- animals compared with p16f/f littermate controls. This reduction in 

expression is consistent with the efficiency of the MerCreMer, as reported in the 

literature (Sohal et al., 2001; Malliaras et al., 2013).  

Having demonstrated that p16Ink4a was reduced in the CM population I evaluated the 

effect this had on recovery to IRI. Overall, preventing the transcription of p16Ink4a within 

the CMs specifically led to no differences in any of the variables of cardiac function that 

were investigated.  

Ejection fraction correlates to cardiac function and diagnosis of heart failure. A reduced 

EF is linked to a worse long-term outcome for patients, and as mortality rates post-MI 

5 years after MI is approaching 50%, methods to improve EF are essential (Jones et 

al., 2019). The response to navitoclax treatment was promising, however, the p16-/- 

mice did not demonstrate the same improvement in EF as navitoclax treated mice. 

Instead the p16-/- mice demonstrated a substantial decrease in EF between the time-

points investigated and as such responded to IRI in a similar manner to both p16f/f mice 
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and wild type controls. Furthermore, no difference was observed in the EF of either 

p16f/f or p16-/- mice at either the 3 or 5 week time-point. 

As with the navitoclax treatment, the p16-/- mice showed no considerable change in 

EDV post-LAD between the cohorts, as well as no differences in ESV or SV at either 

time-point. So overall, p16Ink4a expression in CMs does not affect systolic volume or 

function. 

Although I observed no change in function in the p16Ink4a knockout mice, it is possible 

that in this model cellular changes occur in the transgenic mice hearts but are 

insufficient to improve function. However, in my studies of myocardial remodelling, I 

found no differences between p16-/- and p16f/f mice in terms of infarct size and CM 

hypertrophy. In addition, the infarct which formed post-LAD ligation was of a 

comparable size to wild type mice following IRI. As infarct size was not smaller after 

p16Ink4a was floxed from CMs, this may explain why there were no functional 

improvements. If the level of fibrosis was not reduced then the heart would likely have 

reduced elasticity, affecting its systolic function and recovery to contraction, in turn 

affecting CO and EF (Maekawa et al., 2004). This result also opposes the hypothesis 

that post-IRI CM drives fibrosis via production of the SASP but rather suggests that 

fibrosis occurs independently of CM senescence and SASP. 

Hypertrophy was also unchanged with the removal of p16Ink4a from CMs. These data 

are particularly interesting as previous studies observed in aged mice that the CMs 

containing TAF are the most hypertrophic (Anderson et al., 2019) and studies have 

also demonstrated that clearance of senescent cells from aged mice reduces 

hypertrophy (Childs et al., 2018; Anderson et al., 2019; Walaszczyk et al., 2019). It is 

possible that senescence itself does not drive hypertrophy but rather may simply be 

associated with hypertrophy. As such, in this model the lack of p16Ink4a has no influence 

on this aspect of remodelling. However, as I also saw no change in hypertrophy in my 

study with navitoclax, another explanation is that different mechanisms contribute to 

hypertrophy in the different settings, with senescence contributing to hypertrophy 

during ageing but not in response to injury. Therefore, other markers of senescence 

were investigated to ensure that p16Ink4a expression was reduced and that CMs weren’t 

activating a compensatory senescence pathway.  
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A marker used for senescence detection and quantification are TAFs (Hewitt et al., 

2012). From this cohort, TAF levels and percentage of CMs positive for TAFs were 

unchanged between the groups. This is likely because DNA damage, including TAFs, 

lie upstream of p16Ink4a and p21Cip activation (Childs et al., 2015), and therefore floxing 

p16Ink4a would not affect the induction of TAF. This result suggests that in this model, 

TAF generation results from stressors such as OS, and stimulate senescence as 

opposed to being a consequence of senescence. 

Take together these data suggest that lack of p16Ink4a expression in the CM population 

has no effect on the functional outcomes to IRI. In addition, these data may also 

suggest that in the navitoclax study the clearance of p16Ink4a expressing senescent 

CMs may not play a major role in the observed improved function. However, there are 

alternative explanations for this. 

It is possible that absence of p16Ink4a alone may not be sufficient to inhibit CM 

senescence. My data showed that in the p16-/- mice, the levels of p21Cip were also 

reduced in comparison to the p16f/f mice. This reduction indicated that absence of 

p16Ink4a in the CM population attenuates both the p16Ink4a and p21Cip/p53 arms of the 

senescence pathway. However, the number of cells expressing p21Cip remained higher 

than the number of p16Ink4a expressing cells in the p16Ink4a knockout mice with nearly 

15% of CMs still expressing p21Cip. Previously, it has been demonstrated when using 

the same Cdkn2atm2.1Nesh line as used in my study, both knockout of p16Ink4a and 

p53 were required to induce tumour formation in skin (Sharpless et al., 2002). While 

these data illustrate that senescence is a multifactorial process that has a degree of 

redundancy, this is not indicative of senescence. It is well established that senescence 

can be initiated independently through either the p21Cip and p16Ink4a pathway (Prieur 

et al., 2011). It is also possible that after genotoxic stress resulting from IRI, the p21Cip 

pathway is more involved in the activation of senescence in the CMs than p16Ink4a. 

Moreover, it has been shown that the p16Ink4a and p53 pathways feedback on one-

another (Leong et al., 2009). In p53-knock down mouse fibroblasts, p16Ink4a expression 

was up-regulated, and infecting cells with wild type p53 restored p16Ink4a levels. 

However, in p16Ink4a deficient cells, the effect on p53 levels was much smaller, 

suggesting that these pathways interact to limit cell proliferation (Leong et al., 2009). 

Re-introducing p16Ink4a in my p16-/- mice after IRI to see if there was an effect on p21Cip 

expression would be interesting to further dissect whether there was a feedback 



 

165 

 

mechanism between these two pathways. Regardless, with p21Cip being activated in 

p16-/- mice, this could highlight a flaw of this novel transgenic model. If senescence is 

being induced via the p21Cip pathway in CMs directly, although attenuated by the lack 

of p16Ink4a, then the model is not fully preventing CM senescence and their potential 

SASP to the degree expected.  

Further complicating my findings is the possibility that a SASP from neighbouring 

senescent non-CMs was exerting detrimental effects, such as hypertrophy, on CMs 

irrespective of whether CMs could activate the p16Ink4a pathway themselves.  

To confirm the result from the p16Ink4a immunofluorescence staining and validate both 

the antibody for p16Ink4a and efficiency of this transgenic line, RNAscope was 

performed for p16Ink4a. Once levels had been normalised to the negative control 

background, RNA p16Ink4a levels were 1.65-fold higher than protein levels. This 

discrepancy between mRNA and protein levels may result from regulatory post-

transcriptional mechanisms including modifications and degradation (Cho et al., 2016; 

Chan et al., 2018). The ratio between mRNA and protein content varies between tissue 

types (Chan et al., 2018), and should be further analysed for cardiac tissue. 

Additionally, the Cdkn2a gene on chromosome 9p21 contains two reading frames that 

encode for two tumour suppressor genes, the first being p16Ink4a that is transcribed 

from exons 1α, 2 and 3, and the second being p19Arf (p14ARF in humans) that uses 

exon 1β, which is located 20kb upstream of exon 1α, and shares exon 2 with p16Ink4a 

(Rayess et al., 2012). The probe used for this analysis predominantly binds to regions 

within exon 1α, however, could also bind to part of exon 2 and therefore potentially 

detect both transcripts. The resulting increased levels of mRNA could be in part be due 

to the detection of p19Arf as well as p16Ink4a. Regardless, as the fluorescent probe 

requires two target Z probes bound to the target region, RNAscope has been described 

as a specific and robust technique (Bingham et al., 2017). Therefore, these data 

validate the specificity of the p16Ink4a antibody and confirms that the floxed transgenic 

mouse did reduce p16Ink4a in CMs.  

The p16Ink4a knockout also resulted in a small but substantial reduction in the 

expression of p16Ink4a in the interstitial cell population. This response suggests that the 

CMs may have a small SASP that induces cell senescence in this population, although 

at a level that is insufficient to attenuate scar formation.  
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Also I was unable to include functional analysis of naive or sham p16-/- and p16f/f mice. 

Unfortunately, this was a result of time restraints and technical problems with the MRI 

equipment. Initially, establishment of the double transgenic lines took considerable 

time as the Myh6-MerCreMer line appears to breed slower and have smaller litters 

than wild type mice (Werfel et al., 2014). While I did breed mice for MRI analysis of 

baseline cardiac function as the final experiments to complete my project, the MRI 

scanner quenched in July and remains out of service. The repair is scheduled to take 

place at the beginning of next year. If my studies had demonstrated differences in any 

variables of function or remodelling in the p16Ink4a knockout, additional tamoxifen 

controls should have been performed. To ensure that the tamoxifen had no effects on 

function or histology, p16f/fCre+ mice would have had an IRI without tamoxifen 

treatment. However, as both p16-/- and p16f/f cohorts received tamoxifen this in part 

controls for the effects of tamoxifen and no difference was observed between the either 

experimental group in this study. In keeping with the 3Rs (Sneddon et al., 2017), I saw 

no reason to subject additional mice to IRI as these data would add little to my findings. 

If my studies were to continue there are possibly alternative approaches that could be 

used to reduce the time needed to perform similar studies. A group has published data 

on utilising an adeno-associated viral vector of serotype 9 that contains the loxP gene 

and can be directly inserted after injection intravenously and only requires one dose to 

induce recombination (Werfel et al., 2014). Although when using a cardiac specific 

promoter there was a high efficiency of recombination in CMs, this technique did result 

in off-target effects, with recombination detected in the liver, lung and blood vessels 

(Werfel et al., 2014).  

So by addressing the issue of timing, this study highlighted a second general problem 

with Cre lines: off-target effects (Heffner et al., 2012). However, the Myh6-MerCreMer 

line has been extensively tested in both embryos and adult hearts and showed that in 

the embryo, recombination as detected by β-galactosidase staining was restricted to 

the heart, and in adult tissues expression was only observed in the heart and not the 

aorta or pulmonary artery (Yan et al., 2015). Crossing this Cre line with a reporter line 

also resulted in recombination only in cells co-expressing troponin T, an alternative CM 

marker, and not α-SMA positive, marker for smooth muscle, or PECAM, also known 

as CD31 an endothelial marker, positive cells. Additionally, in hearts expressing Cre 

that hadn’t be dosed with tamoxifen showed a very low expression level of β-
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galactosidase confirming that this line has negligible “Cre leakiness” (Yan et al., 2015). 

Overall, these studies provide evidence that off-target effects do not represent a 

problem when using the Myh6-MerCreMer transgenic line.  

It would also be possible to create a Cre knockout which may circumvent issues 

surrounding the efficiency of tamoxifen-inducible models. By using a Cre expressed in 

a specific cell population during embryogenesis this would result in the gene of interest 

not being expressed throughout life. For example, Nkx2.5 or troponin T Cre lines could 

be used to knockout a gene permanently in the CM population (Iannello et al., 1991; 

Moses et al., 2001; Zhou et al., 2013; Ranjbarvaziri et al., 2017). However, as 

senescence has been shown to be important for development in a number of organs 

including the brain, neural tube, gut endoderm as well as digit formation (Muñoz-Espín 

et al., 2013; Munoz-Espin and Serrano, 2014; Da Silva-Álvarez et al., 2019), it is 

possible that senescence also plays a role in myocardial development. As such this 

type of developmental knockout could be associated with embryonic lethality or severe 

abnormalities depending on the gene targeted (Hong et al., 2006; Feil et al., 2009). 

Although, this in itself may be of interest scientifically. 

Based on the data obtained in this chapter I hypothesised that clearance of senescent 

cardiac fibroblasts may be the primary mechanism by which navitoclax improves 

recovery post-IRI. This could contribute to attenuated fibrosis and a reduction in a pro-

fibrotic SASP ultimately resulting in a smaller scar and improved cardiac function that 

was observed in the previous chapter. Therefore, the contributions of a fibrotic SASP 

to IRI pathogenesis should be further investigated. 
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Chapter 6. Interstitial cell senescence is postulated to exert a 

greater effect on the heart post-ischaemia-reperfusion injury 

 

6.1 Introduction 

My data thus far demonstrates that MI with IRI leads to an environment of OS, which 

induces DNA damage leading to a state of senescence in the myocardium. Clearance 

of senescent cells by navitoclax resulted in restored cardiac function and reduced 

infarct size, however, targeting only senescent CMs did not reproduce this 

pharmacologically-generated improvement.  

In the heart, the majority of the mass is comprised of CMs, although they only account 

for roughly 30% of total cardiac cells. The composition of non-CM cardiac cells includes 

fibroblasts, endothelial cells and haematopoietic cells (Camelliti et al., 2005; 

Nagalingam et al., 2016; Pinto et al., 2016). After injury including MI, fibroblasts are 

essential to deposit collagen and generate a scar to avoid cardiac rupture (Rouillard 

and Holmes, 2012; Chen and Frangogiannis, 2013). My findings support data from 

other researchers such as Zhu, F. et al. that have reported in the infarct the senescent 

cells primarily consist of fibroblasts (Zhu et al., 2013). It has also been demonstrated 

that this OS induced fibroblast senescence acts to self-limit fibrosis and excessive 

collagen generation. This was suggested to be in part due to activation of the 

p21Cip/p53 pathway leading to fibroblasts exiting from the cell cycle limiting proliferation 

and collagen disposition, as p53-deficient mice demonstrated to have larger infarcts 

post-MI (Zhu et al., 2013). These data are consistent with studies that have 

demonstrated in young healthy mice senescence is required for optimal wound healing 

to injury to the skin and liver (Krizhanovsky et al., 2008; Jun and Lau, 2010b; Demaria 

et al., 2014). In terms of cutaneous injury, preventing senescence via the p16Ink4a 

pathway or both p16Ink4a/p21Cip in mice delayed wound repair. This was due to 

myofibroblast numbers being depleted as fibroblasts were unable to secrete a SASP, 

including the SASP factor platelet derived growth factor (Pdgf) -AA, to activate 

myofibroblast differentiation which would lead to granulation and closure of the wound 

(Demaria et al., 2014). In the heart, the study by Zhu, F. et al. also highlighted the 

importance of a fibrotic SASP activated via the p21Cip/p53 pathway in regulating 

efficient fibrosis and inflammatory signalling after infarct (Zhu et al., 2013). These data 
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suggest that long-term activation of the senescence pathways within the fibroblast 

population and increased SASP expression could promote chronic inflammation that 

contributes to the ongoing collagen deposition and fibrosis formation after MI. 

In chapter 4 the study by design aimed to use navitoclax to clear senescent cells from 

the heart from a time-point after senescence had been established. Together with the 

fact that navitoclax should only cause apoptosis in senescent cells, have no impact on 

the development of senescence, the CM specific p16Ink4a knockout model in chapter 5 

lacked a phenotype, and the observed reduction in infarct size post-treatment led to 

following hypothesis. The observed beneficial effects of navitoclax were due to the 

elimination of the senescent fibroblasts and myofibroblasts in the infarct and thereby a 

reduction in inflammation via attenuation of the SASP.  

In this chapter, I aimed to investigate the effect of navitoclax on the fibroblast 

population, to ascertain if elimination of senescent cells post-MI with IRI affected SASP 

expression in vivo and to establish if the fibroblast SASP could be detrimental to 

recovery following MI with IRI (Figure 6.1).
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6.2 In vitro irradiated fibroblasts are senescent and clearance by navitoclax is 

targeted to senescent cells 

I next performed a similar experiment to 4.2 using the MRC5 fibroblast line. As 

previously described, MRC5 fibroblasts were induced to senescence using 10Gy X-

ray irradiation, which was validated with SA-β-Gal staining at 12 days post-treatment. 

Sham irradiated MRC5s were used as a proliferative control. Given the previously 

published dose effects for navitoclax on an alternative fibroblast cell line, the IMR90 

line (Zhu et al., 2016), I limited the treatment of MRC5s to 3 difference doses of 

navitoclax (0 µm, 1.5µm, 5.0µm). As with H9C2 cardiomyoblasts, and previously 

published data by others using alternative fibroblast lines, navitoclax selectively 

reduced the viability of senescent and not proliferative MRC5s (p=0.0026 for 1.5µM 

and 0.0011 for 5µM, Figure 6.2) (Zhu et al., 2016; Anderson et al., 2019). 

Figure 6.1 Graphical hypothesis. 

Cardiac senescence post-MI with IRI is affecting the fibroblast population. 
Fibroblast senescence is important for wound repair, but chronic senescence 
activation and SASP production increases the level of cardiac fibrosis, induces 
senescence in the CM population and increases inflammation to limit 
angiogenesis.  



 

172 

 

 

Figure 6.2 Treatment with navitoclax specifically reduces the viability of 
senescent (irradiated) MRC5 cultures that are positive for senescence-
associated β-galactosidase. Navitoclax has no effect on the viability of 
healthy, proliferative (non-irradiated) MRC5s. 

A) SA-β-Gal staining. Top row shows no positive staining or change in cell density 
in proliferative culture, both untreated and 5µM navitoclax treated. Bottom row 
shows positive staining in senescent culture and reduced cell density in culture 

treated with 5µM navitoclax.  Scale bar equal to 50µm. 

B) Percentage of proliferative and senescent MRC5s positive for SA-β-Gal.  

C) MRC5 percentage viability is stable in proliferative group with all doses of 
navitoclax. Senescent MRC5 cultures show a dose dependent reduction in cell 
viability. 

N=3 for each experimental condition. To control for ongoing proliferation and cell 
death as a result of irradiation, viability for each condition (proliferative or 
irradiated) was calculated relative to the number of cells in the untreated culture for 
that condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 using Two-
Way ANOVA. 

A B 

C 
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6.3 A fibroblast senescence-associated secretory phenotype influences the 

biology of different cardiac lineages in vitro 

To investigate if the fibroblast SASP could impact the biology of other cell lineages in 

the myocardium in a detrimental manner post-IRI, conditioned media culture 

experiments were performed. Conditioned media was obtained as outlined in 2.10.4 

from irradiated MRC5s and isolated primary murine CFs. This media was then 

transferred onto healthy, proliferative cultures of the endothelial cell line, MMVEC-Cs, 

or isolated primary murine embryonic CMs as described in Figure 2.6. 

 

6.3.1 Conditioned media from senescent MRC5 fibroblasts inhibits endothelial 

cell proliferation and leads to senescence marker expression 

Senescent cells and the SASP have been shown to attenuate proliferation and induce 

senescence in surrounding cells through the by-stander effect (Ritschka et al., 2017; 

McHugh and Gil, 2018). To study the influence of the fibroblast SASP on endothelial 

cell function, I first quantified the proliferation of MMVEC-C cells cultured in media from 

either proliferating or senescence MRC5 fibroblasts. Ki67 protein is only expressed 

during proliferation, specifically the G1, S, G2 and M phases of the cell cycle and is not 

detectable during cell cycle arrest, and therefore is a widely used marker of proliferation 

(Li et al., 2015; Juríková et al., 2016). Following 3 days of culture the percentage of 

MMVEC-Cs positive for Ki67 in the proliferative conditioned media was 65.58% ± 

14.52. This was significantly lower (p=0.0143) when MMVEC-Cs were cultured with 

media from senescent fibroblasts for the same duration, with Ki67 expression reduced 

to 23.21% ± 10.10 total cells (Figure 6.3.A-C).  

As equal numbers of MMVEC-Cs were seeded (5x102/mm2), the total number of cells 

following 5 days of culture in media from proliferative or senescent fibroblasts were 

quantified to also assess cell proliferation. Significantly more endothelial cells were 

produced from the proliferative fibroblast media cultures compared to those cultured in 

media from senescent cells (4.07 x103 cells/1mm2 ± 0.37 vs 1.14 x103 cells/1mm2 ± 

0.41, p=0.0008, Figure 6.3.D), supporting the trend observed with Ki67 expression in 

these cultures. 
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Figure 6.3 Proliferation of MMVEC-Cs is significantly reduced when exposed 
to irradiated MRC5 conditioned media. 
A) Image shows Ki67 expression in proliferative MMVEC-Cs treated with 

conditioned media from proliferative MRC5s.  
B) Image shows Ki67 expression in proliferative MMVEC-Cs treated with 

conditioned media from senescent MRC5s.  
C) Graph quantifying Ki67 expression in MMVEC-Cs. The percentage of MMVEC-

Cs positive for Ki67 is significantly decreased following culture in irradiated 
MRC5 media. 

D) Graph shows the MMVEC-C cell density counts. MMVEC-C cells in 
proliferative MRC5 conditioned media proliferated at a significantly higher rate 
compared to cultures with irradiated MRC5 conditioned media. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T-Test. 

  

A B 

C D 
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Next to see if the reductions in proliferation was due to increased senescence I studied 

the expression of both p16Ink4a and p21Cip. The relative expression of p16Ink4a was 

unchanged between the MMVEC-Cs treated with proliferative and senescent 

conditioned media from MRC5 fibroblasts (1.00 ± 0.11 in proliferative media compared 

to 1.04 ± 0.19 in senescent media, p=0.7878, Figure 6.4.A). However, there was a 

significant increase (p=0.0006) in p21Cip relative expression from MMVEC-Cs following 

culture in senescent conditioned media (3.80 ± 0.48, Figure 6.4.B) compared to 

proliferative media (1.01 ± 0.13, Figure 6.4.B). Therefore, the SASP from fibroblasts 

reduces endothelial cell proliferation and is associated with an upregulation of the 

senescent marker p21Cip.  

 

 

Figure 6.4 Expression of the senescence marker p21Cip was significantly 
upregulated in MMVEC-C cells following exposure to conditioned media 
from irradiated senescent MRC5s. 
A) Graph shows the relative expression of p16Ink4a was unchanged between the 

conditioned media from proliferative MRC5s and senescent MRC5s containing 
a SASP. 

B) Graph shows the relative expression of p21Cip was significantly higher after 
culture in conditioned media from senescent MRC5s containing a SASP. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T-Test. 

A B 
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Endothelial dysfunction has been associated with ageing, thrombosis, inflammation 

and heart failure amongst many other systemic disorders, and OS is frequently 

attributed to premature endothelial senescence the pathophysiology of endothelial 

dysfunction (Félétou and Vanhoutte, 2006; Bhayadia et al., 2015; Khan et al., 2017). 

Moreover, endothelial dysfunction has also been shown to be associated with 

increased ROS, superoxide production and increased OS (Hasdan et al., 2002; Incalza 

et al., 2018). 

To assess if the fibrotic SASP that attenuated proliferation and increased senescence 

was associated with increased superoxide production, MMVEC-Cs after 5 days of 

culture in the conditioned media were stained with DHE. Dihydroethidium is a 

superoxide probe that generates a fluorescent product when oxidised by superoxides 

(Zhao et al., 2005; Peshavariya et al., 2007; Zhong et al., 2010; Fernandes et al., 

2017). An example of DHE staining on MMVEC-Cs is shown in Figure 6.5.A-B. 

Quantification of the intensity of the fluorescence demonstrated a significantly higher 

level in the MMVEC-Cs treated with the media from irradiated MRC5s in comparison 

to the proliferative MRC5 media. The mean fluorescence intensity from the proliferative 

MRC5s was 15.12AU ± 0.24 but was more than doubled to 37.06AU ± 8.294 from 

irradiated MRC5 media (p=0.0102, Figure 6.5.C). This result demonstrated that a 

senescent fibroblast SASP induces superoxide formation from endothelial cells in a 

paracrine fashion.  
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Figure 6.5 Irradiation of MRC5 cells significantly increases generation of the 
oxidative stress marker dihydroethidium in a paracrine fashion in MMVEC-C 
cell cultures. 
A) Representative image from proliferative MMVEC-Cs treated with conditioned 

media from proliferative MRC5s. Red fluorescence equates to OS levels by 
superoxide. 

B) Representative image from proliferative MMVEC-Cs treated with conditioned 
media from senescent MRC5s. Red fluorescence indicates OS elevated. 

C) Graph quantifying fluorescence intensity normalised to cell density. Intensity is 
significantly increased in the culture with irradiated MRC5 media. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T-Test. Scale bar equal to 75µm. 

A B 

C 
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6.3.2 Both irradiated MRC5 and primary cardiac fibroblast conditioned media 

constrains embryonic cardiomyocyte proliferation and triggers cardiomyocyte 

senescence 

Having demonstrated that culture in conditioned media from irradiated MRC5 

fibroblasts negatively reduced the proliferation of endothelial cells in vitro and was 

associated with an upregulation of the senescence marker p21Cip and the superoxide 

marker DHE, conditioned media experiments were repeated to assess the effects of a 

fibrotic SASP on CMs.  

It has been previously demonstrated that post-MI the heart can initiate a limited 

regenerative response including CM proliferation (Malliaras et al., 2013), however, this 

mechanism is insufficient to fully repair the heart (Foglia and Poss, 2016). Previously 

it has been reported that the SASP generated from aged CMs inhibited the proliferation 

of neonatal fibroblasts and resulted in elevated expression of SA-β-Gal (Anderson et 

al., 2019). Moreover, the regenerative potential of CMs declines with age (Bergmann 

et al., 2015) and data from aged mice show that clearance of senescent cells, either 

using the Ink-ATTAC mouse or by navitoclax dosing, attenuated the SASP and 

promoted cardiac regeneration (Anderson et al., 2019). Therefore, after MI with IRI a 

fibrotic SASP may negatively influence CM proliferation.  

To ascertain if the fibroblast SASP could influence CM proliferation, primary CMs were 

isolated from mouse embryo hearts and cultured with conditioned media from 

proliferative or irradiated fibroblasts. For these experiments, two different fibroblast 

types were used: MRC5 fibroblasts as above; but also primary cardiac fibroblasts 

isolated from adult mouse hearts.   

Ki67 was utilised to assess proliferation of the embryonic CMs. The conditioned media 

from both fibroblast types significantly reduced (p=0.0053) CM proliferation. Following 

5 days of culture in the conditioned media from proliferative MRC5s, 20.82% ± 2.79 of 

troponin C expressing CMs were positive for Ki67. At the same time-point proliferation 

of the CM cultures was significantly decreased to 11.58% ± 0.80 when CM were treated 

with media from the senescent MRC5s.  

When cultured in media from proliferative and irradiated primary adult CFs, the 

expression of Ki67 demonstrated similar trends (28.50% ± 7.82 vs 11.66% ± 0.97, 

p=0.0207, Figure 6.6) to the MRC5 media conditions, where there was a higher 
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percentage of CMs Ki67 positive following culture in the proliferative media from non-

irradiated CFs.  

 

  

Figure 6.6 The senescence-associated secretory phenotype generated from 
cardiac fibroblasts is comparable to MRC5 fibroblasts, as both significantly 
reduce proliferation of isolated embryonic cardiomyocytes. 
A) Image shows Ki67 expression in proliferative embryonic CMs treated with 

conditioned media from proliferative CFs (white arrows).  
B) Image shows Ki67 expression in proliferative embryonic CMs treated with 

conditioned media from senescent CFs (white arrows).  
C) Graph quantifying Ki67 expression in CMs. On the left is the data from 

proliferative and irradiated MRC5 cultures, and on the right from proliferative 
and irradiated CF cultures. The percentage of MMVEC-Cs positive for Ki67 is 
significantly decreased following culture with irradiated MRC5 and irradiated 
CF media. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T-Test. 
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To see if the fibroblast SASP reduced CM proliferation was due to induced 

senescence, embryonic CMs were also stained with SA-β-Gal. Again, similar trends 

between both conditions for the MRC5 and CF conditioned media were observed. In 

proliferative conditioned media, SA-β-Gal expression in CMs was 15.42% ± 3.07 from 

MRC5s and 12.70% ± 0.58 from CFs. Positive staining was increased to 47.24% ± 

10.15 in senescent MRC5 media and senescent CF media increased levels to 39.23% 

± 3.03 (Figure 6.7). However, due to one technical repeat failing, statistics could not 

be performed, and repeating the experiment with a greater sample size would 

determine whether the increase in this senescence markers following exposure to a 

fibrotic SASP was significant.  
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Figure 6.7 Levels of the senescence marker senescence-associated β-
galactosidase were raised in cardiomyocytes cultured with irradiated media. 

A) Image shows expression of SA-β-Gal in embryonic CMs treated with 
conditioned media from proliferative CFs. 

B) Image shows expression of SA-β-Gal in embryonic CMs treated with 
conditioned media from irradiated CFs. 

C) SA-β-Gal expression was increased following culture in irradiated conditioned 
media from either MRC5s or CFs compared to proliferative conditioned media. 

N=2 and 3 for each experiment condition.  
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6.4 Navitoclax treatment following ischaemia-reperfusion injury significantly 

reduced the number of p16Ink4a and p21Cip expressing myocardial 

interstitial cells 

Having demonstrated that navitoclax can selectively kill fibroblasts and other cell types 

in vitro (Figure 4.2, Figure 6.2) I investigated the possibility that navitoclax treatment 

eliminated senescent fibroblasts located in the interstitial myocardium post-IRI. As 

such, the total number of cells expressing the senescence markers p16Ink4a and p21Cip 

were quantified in vimentin, a marker of fibroblasts, expressing cells in the interstitial 

regions of vehicle and navitoclax treated hearts, studied in chapter 3 at the 5 week 

post-LAD ligation time-point. 

In all mice subjected to LAD ligation a significant increase in p16Ink4a expression was 

observed in the vimentin expressing population (yellow arrows Figure 4.6.A-B). In vitro 

data demonstrated that navitoclax selectively cleared senescent fibroblasts, and in 

mouse hearts after IRI there was a considerable reduction in the percentage of 

vimentin expressing interstitial cells expressing p16Ink4a observed in the navitoclax 

treated hearts. In summary, in the non-LAD ligated hearts 9.80% ± 0.82 vimentin 

expressing interstitial cells expressed p16Ink4a. Expression of p16Ink4a in vimentin 

positive cells increased to 19.76% ± 1.82 post-IRI (p=0.0014) in the vehicle control and 

was reduced to 8.90% ± 2.66 following navitoclax treatment (p=0.0005, Figure 6.8).  

From Figure 5.17, levels of p16Ink4a in the interstitial cells was larger after IRI in the 

p16f/f mice compared to the IRI cohort in Figure 6.8. This difference could be due to 

either differences in responses to the surgeries in this study compared to the previous 

study, or as a result of 4-OHT dosing or the presence of Cre recombinase in the p16f/f 

mice. 
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Figure 6.8 Navitoclax reduces the percentage of cardiac interstitial cells 
positive for p16Ink4a after ischaemia-reperfusion injury to baseline levels. 
A) Immunofluorescence staining in hearts post-IRI without navitoclax treatment. 

Slides stained with CM marker troponin C (in green, wavelength 488nm), 
senescence marker p16Ink4a (in red, wavelength 594nm), fibroblast and 
endothelial cell marker vimentin (in pink, wavelength 647nm) and nuclei (in 
blue with DAPI, wavelength 461nm). All images for this analysis were taken in 
the BZ. Interstitial cells positive for p16Ink4a are highlighted with a white arrow.  

B) Immunofluorescence staining in LAD ligated hearts with navitoclax treatment. 
Slides stained with CM marker troponin C (in green, wavelength 488nm), 
senescence marker p16Ink4a (in red, wavelength 594nm), fibroblast and 
endothelial marker vimentin (in pink, wavelength 647nm) and nuclei (in blue 
with DAPI, wavelength 461nm). All images for this analysis were taken in the 
BZ. Interstitial cells positive for p16Ink4a are highlighted with a white arrow.  

C) Negative control for both 1°Abs, slides were incubated in PBS instead. 
D) Data show values of p16Ink4a expression within interstitial cells as a percentage 

of total cardiac cells. It should be noted that one value (=9.37%) was omitted 
from the IRI cohort according to a ROUT outlier test.  

N=3 and 4 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using One-way ANOVA. 
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Additionally, expression of p21Cip in this population of vimentin expressing interstitial 

cells was significantly increased post-LAD ligation in the vehicle control mice (from 

2.39% ± 1.23 to 15.87% ± 0.86, p=<0.0001). Treatment with navitoclax (Figure 4.3) 

significantly reduced the levels of expression of this senescence marker in the 

interstitial cells to 8.65% ± 1.06 (p=0.0004, Figure 6.9).  

 

Figure 6.9 Navitoclax reduces the percentage of cardiac interstitial cells 
positive for p21Cip post-ischaemia-reperfusion injury to baseline levels. 

Data show values of p21Cip expression within interstitial cells as a percentage of 
total cardiac cells.  

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using One-way ANOVA. 

 

6.5 Investigation of the short term effects of navitoclax post-ischaemia-

reperfusion injury 

The data above suggest that navitoclax reduces senescent fibroblast viability in vitro 

(Figure 6.2) and eliminates senescent cells expressing a fibroblast marker in vivo 

(Figure 6.8-Figure 6.9), together demonstrating that a fibroblast SASP negatively 

affects the biology of two cardiovascular cell lineages and a possible explanation as to 

why there was a lack of phenotype in the p16Ink4a knockout mouse model in chapter 5. 

Overall these data support the hypothesis that clearance of non-CMs, in particular the 

fibroblast population, may contribute to the beneficial effects of navitoclax. This may 

occur via two distinct mechanisms: 1) clearance of senescent cells from the infarct and 

interstitial regions may contribute to a reduction in fibrosis and the observed decrease 

in infarct size observed at 5 weeks post-IRI in the navitoclax treated mice; and 2) 
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clearance of senescent fibroblasts may reduce the expression of typical SASP 

proteins, which may contribute to a reduced progression of fibrosis and allow for better 

recovery by reducing the anti-proliferative/pro-senescent influence of the SASP. 

Therefore, I aimed to further investigate these possible mechanisms underlying the 

beneficial outcomes of navitoclax treatment.  

One disadvantage of the longitudinal study in Chapter 4 that aimed to assess cardiac 

function following navitoclax treatment, was that any events occurring at the time of 

dosing that may contribute to beneficial effects could be completed by the point of 

tissue collection. As such, the navitoclax study was repeated with a smaller cohort and 

hearts collected after 4 days of navitoclax dosing, equivalent to the middle of the 

original dosing regimen (Figure 6.10). It was hypothesised that this experimental 

design would allow for the capture of biological and molecular changes elicited to the 

myocardium by navitoclax treatment. 

 

6.5.1 Total p21Cip expression is significantly decreased following four days of 

navitoclax treatment 

First, I ascertained whether this shorter navitoclax dosing regimen was able to 

significantly eliminate senescent cells. Therefore, I quantified the total percentage of 

p21Cip expressing cells in the LV myocardium of vehicle and navitoclax treated mice at 

this 1 week post-LAD ligation time-point. After LAD ligation p21Cip was significantly 

increased from 2.73% ± 1.39 to 9.73% ± 1.93 (p=0.0020). A significant reduction in 

p21Cip expression was observed after 4 doses of navitoclax, which equated to a 2-fold 

reduction in p21Cip expressing cells (4.77% ± 0.33, p=0.0111, Figure 6.11). 

Figure 6.10 Experimental timeline. 

Mice undergo LAD ligation surgery as outlined in Figure 3.2 and Figure 4.3. At day 
4 post-surgery daily dosing with navitoclax (50mg/kg BW per day). On day 7 mid-
treatment regime mice are sacrificed and hearts excised and other samples 
collected for analysis to determine cells directly cleared by navitoclax.  
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6.5.2 TUNEL staining reveals navitoclax treatment increases apoptosis post-

myocardial infarction, which primarily occurs in the interstitial cell population  

The suggested mechanism of action of navitoclax is to trigger apoptosis in senescent 

cells that are primed for apoptosis (Zhu et al., 2016). However, to date it has not been 

demonstrated in this cohort that the elimination of senescent cells in navitoclax treated 

hearts is associated with increased apoptosis. The TUNEL assay, which allows the 

detection of the DNA fragmentation that occurs during apoptosis (Kyrylkova et al., 

2012) was therefore performed to identify if at this time-point during navitoclax dosing 

whether apoptosis was increased.  

Post-myocardial infarction, TUNEL positive cells were observed throughout the 

myocardium in the BZ of hearts from both vehicle and navitoclax treated mice. There 

was a higher percentage of TUNEL positive cells in the infarct BZ of LAD-ligated 

navitoclax treated mice (19.66% ± 12.03), suggesting navitoclax does initiate 

apoptosis, compared to LAD-ligated vehicle treated control mice (8.12% ± 3.82) but 

this was not significantly different (p=0.1882, Figure 6.12.A). Next I investigated which 

cell populations were undergoing the majority of apoptosis post-navitoclax by 

quantifying the proportion of TUNEL staining within the CM or interstitial cell 
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Figure 6.11 Expression of p21Cip is significantly reduced following navitoclax 
after ischaemia-reperfusion injury. 

Data demonstrate p21Cip expression within cardiac cells is significantly reduced by 
day 7 after LAD ligation with navitoclax treatment. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using One-Way ANOVA. 
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populations. Analysis revealed that after navitoclax 10.74% ± 2.61 of the total TUNEL 

positive cells were troponin C expressing CMs and 89.26% ± 2.61 were interstitial cells 

(p=<0.0001, Figure 6.12.B-C). This ratio of TUNEL positive CMs to interstitial cells was 

similar in the vehicle controls (11.20% ± 4.63 vs 88.80% ± 4.63, p=<0.0001, Figure 

6.12.B).Therefore, after IRI the majority of cells that are undergoing apoptosis are 

interstitial cells, with only a tenth of all cells undergoing apoptosis being CMs (Figure 

6.12.C).



 

188 

 

 

 

IRI IRI + Nav

0

10

20

30

40

Tunel positive cells in myocardium
P

e
rc

e
n

ta
g

e
 T

u
n

e
l

p
o

s
it

iv
e

 c
e

ll
s

 (
%

)

ns

IRI
CMs

IRI
Interstitial

IRI + Nav
CMs

IRI + Nav
Interstitial

0

20

40

60

80

100

Percentage of Tunel positive cells
 that are CMs and interstitial cells

P
e

rc
e

n
ta

g
e

 T
u

n
e

l

p
o

s
it

iv
e

 c
e

ll
s

 (
%

)

**** ****

Proportion of Tunel+ cells
after IRI + Nav

(10.74%  2.61)CM Tunel+

Interstitial Tunel+ (89.26%  2.61)

Figure 6.12 After ischaemia-reperfusion injury cells are TUNEL positive, with 
the majority of cells being interstitial cells.  
A) Graph shows total percentage of cells in the myocardium positive for TUNEL 

and undergoing apoptosis. The average total TUNEL percentage is increased 
2.4-fold after navitoclax but is not significant. 

B) Graph shows the proportion of TUNEL positive cells that are CMs and 
interstitial cells following IRI and navitoclax. Treatment has no effect on the 
proportion of cells undergoing apoptosis after IRI. 

C) Chart shows that 89.26% of cells positive for TUNEL staining are interstitial 
cells, with the remaining 10.74% of cells being CMs. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using Two-Tailed T-Test. 
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6.5.3 Cytokine array demonstrates effects on a variety of cytokines within the 

protein samples from left ventricle but minimal effects observed on cytokines 

circulating in the serum 

At 5 weeks post-LAD ligation navitoclax treatment reduces the levels of myocardial 

senescence, which is associated with smaller infarct size and improved cardiac 

recovery (chapter 4). Quantifications of p21Cip expression and TUNEL staining suggest 

that at 1 week post-LAD (4 days into the dosing regimen) navitoclax had actively 

eliminated senescent cells via inhibition of the anti-apoptotic proteins allowing 

apoptosis to proceed. Furthermore, apoptosis occurred primarily in the non-CM 

population. Therefore, I investigated if the beneficial effects of navitoclax involved a 

reduction of a typical SASP. 

Hearts from vehicle control and navitoclax treated mice were again collected at the 1 

week time-point (Figure 6.10), then the affected LV posterior to the suture was 

dissected from the heart and the total protein isolated from this region of LV. Serum 

was also isolated from the blood collected via cardiac puncture from the same animals.  

A study has demonstrated that senescent CMs do not express a typical SASP 

(Anderson et al., 2019), therefore to focus these investigations onto the clearance of 

the interstitial population I used cytokine array technology to quantify changes in typical 

SASP proteins (Freund et al., 2010). Protein and serum samples were sent for analysis 

by Eve Technologies and run on their Discovery Assays ®: the Mouse Cytokine 

Array/Chemokine Array 44-Plex (MD44); and the TGF-β Cytokine Array (TGFB1-3). 

All samples were run on a Millipore assay kit and quantified using a lyophilised 

standard for each target recombinant target analyte of known concentrations. A 

standard curve was produced for each individual analyte and the concentration of the 

samples interpolated using those curves and a heatmap was created with data 

presented using an Average Linkage Clustering method with Pearson Distance 

Measurement (protein samples in Figure 6.13).  

Adding further evidence that senescence and increased SASP are characteristics of 

IRI, from the MD44 array of protein samples 14 cytokines or chemokines demonstrated 

a significant increase (p<0.05) or strong trend towards an increase in expression post-

LAD (vehicle treated hearts). Demonstrating that senescent cells were at least in part 

responsible for the expression of these cytokines and showing that elimination of 

senescent cells by navitoclax attenuated the SASP, these 14 cytokines and 
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chemokines also displayed a significant decrease (p<0.05) or strong trend in reduction 

after navitoclax treatment (Figure 6.14). Although some of the individual changes in 

expression are non-significant I hypothesise that taken together these data provide a 

strong indication that multiple SASP proteins are attenuated following senescence 

clearance. As such, I have included the data from the 14 selected individual SASP 

proteins that demonstrated changes between the experimental groups, which had the 

smallest p values, in Figure 6.14 and discussed these changes in more detail below. 

A full list of protein changes and statistical data can be found in appendix A. 

Levels of Il-16 expression trended towards an increase following IRI (p=0.0589). This 

was from 251.1ρg/ml ± 71.11 in uninjured hearts to 382.7ρg/ml ± 53.75 in the vehicle 

control (p=0.587). Levels were significantly reduced, following navitoclax to 216.3ρg/ml 

± 32.86 (p=0.0231, Figure 6.14.A).  

In this cohort, baseline levels of fractalkine before injury were 71.21ρg/ml ± 2.53. After 

IRI, expression was significantly increased (p=0.0022) to 90.27ρg/ml ± 4.56 and 

treatment significantly reduced (p=0.0014) fractalkine levels to 67.98ρg/ml ±4.49 

(Figure 6.14.B). Il-11 showed the same trends as fractalkine with levels significantly 

upregulated (p=0.0485) due to IRI and diminished significantly (p=0.0279) after 

treatment (0.83ρg/ml ± 0.97 to 2.76ρg/ml ± 0.76 and down to 0.55ρg/ml ± 0.48, Figure 

6.14.C). 

Post-myocardial infarction, Ip-10 levels were significantly increased (0.0404) from 

5.31ρg/ml ± 0.69 to 48.28ρg/ml ± 28.02. Levels were reduced (p=0.0559) subsequent 

to navitoclax treatment to 8.80ρg/ml ± 2.15 (Figure 6.14.D). Tissue inhibitor of 

metalloproteinases (Timp) -1, thymus and activation-regulated chemokine (Tarc) and 

Il-6 showed the same trends. Timp-1 had a significant 40-fold increase (p=0.0164) 

associated with IRI from 31.68ρg/ml ± 0.707 to 1298ρg/ml ± 443.6 and trend toward a 

significant (p=0.0547) reduction to 476.2ρg/ml ± 234.1 in the navitoclax treated group 

(Figure 6.14.E). Tarc levels were altered significantly (p=0.0163) from 0.72ρg/ml ± 0.39 

to 4.88ρg/ml ± 1.90 and after navitoclax expression was decreased, but not statistically 

significantly (p=0.1474) by approx. 2-fold to 2.60ρg/ml ± 1.01, (Figure 6.14.F). Levels 

of Il-6 were also significantly higher (p=0.0347) post-IRI at 2.73ρg/ml ± 0.64 than before 

IRI at 1.21ρg/ml ± 0.04. Navitoclax lowered expression, but not significantly 

(p=0.0841), to 1.53ρg/ml ± 0.71 (Figure 6.14.G). 
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Levels of the inflammatory marker Mip-3β were 31.22ρg/ml ± 12.74 in healthy mice, 

and IRI significantly raised (p=0.0005) these levels to 134.2ρg/ml ± 16.86. Expression 

was significantly reduced (p=0.0119) with navitoclax to 79.63ρg/ml ± 16.55, however, 

these levels remained significantly higher (p=0.0204) than in the healthy baseline 

cohort (Figure 6.14.H). The dynamics of macrophage-derived chemokine (Mdc, also 

known as Ccl22) showed the same trends as Mip-3β: levels significantly increased 

(p=<0.0001) from 0.99ρg/ml ± 0.23 before LAD to 5.03ρg/ml ± 0.49 post-LAD and 

significantly lessened (p=0.0014) to 2.86ρg/ml ± 0.44 in the navitoclax treated group 

(Figure 6.14.I). After IRI in this study, eotaxin levels were also significantly increased 

(p=0.0270). In healthy controls expression was 6.74ρg/ml ± 2.67 and coronary 

ischaemia from LAD ligation increased levels significantly to 16.10ρg/ml ± 4.28. 

Navitoclax lowered (p=0.0728) expression to 8.87ρg/ml ± 2.29 (Figure 6.14.J).  

In contrast to these cytokine expression patterns, interferon-β1 (Ifn-β1) was not 

increased following LAD ligation (p=0.9130), but treatment with navitoclax significantly 

lowered expression (60.25ρg/ml ± 2.88) in comparison to both the healthy controls 

(66.52 ρg/ml ± 1.96, p=0.0243) and IRI groups (67.22ρg/ml ± 1.05, p=0.0153, Figure 

6.14.K).  

The data from the TGFB1-3 array demonstrated that all three Tgf-β protein isoforms 

expression increased significantly as a result of IRI (Figure 6.14.L-N). The expression 

of Tgf-β1 was highly variable amongst the healthy group and as such wasn’t 

significantly changed post-IRI, from 62.12ρg/ml ± 60.71 to 87.47ρg/ml ± 10.29 

(p=0.6765). Navitoclax treatment significantly reduced expression of Tgf-β1 to 

16.47ρg/ml ± 4.25 (p=0.0004, Figure 6.14.L). In comparison, both Tgf-β2 and 3 were 

significantly upregulated post-IRI: Tgf-β2 increased from 8.89ρg/ml ± 3.76 in healthy 

mice to 65.62ρg/ml ± 28.09 (p=0.0214, Figure 6.14.M); and Tgf-β3 expression was 

even more dramatically increased from 1.88ρg/ml ± 0.43 to 19.13ρg/ml ± 5.97 

(p=0.0046, Figure 6.14.N). Following navitoclax treatment, levels of both were 

reduced, to 26.01ρg/ml ± 14.47 for Tgf-β2 and 6.37ρg/ml ± 3.56 for Tgf-β3, but this 

was only significant for Tgf-β3 (p=0.0854 for Tgf-β2, p=0.0190 for Tgf-β3, Figure 

6.14.M-N). 
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Figure 6.13 Heat map showing changes in expression of cytokines and chemokines from left ventricle protein samples 
run on the MD44 and TGFB1-3 arrays. 

Cytokines and chemokines show varying responses within groups and between treatments. Those with significant changes in 
expression can be found in Figure 6.14. 
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Figure 6.14 Graphs showing trends in the expression of left ventricle protein cytokines and chemokines relating to 
fibrosis and cardiovascular disease following ischaemia-reperfusion injury with and without navitoclax treatment. 
A) Il-16: Levels increase post-IRI but not significantly (p=0.0587), and are significantly decreased following navitoclax treatment. 
B) Fractalkine: Levels significantly increase post-IRI and are significantly decreased following navitoclax treatment. 
C) Il-11: Levels significantly increase post-IRI and are significantly decreased following navitoclax treatment. 
D) Ip-10: Levels significantly increase post-IRI and decrease following navitoclax treatment but not significantly. 
E) Timp-1: Levels significantly increase post-IRI and decrease following navitoclax treatment but not significantly. 
F) Tarc: Levels significantly increase post-IRI and decrease following navitoclax treatment but not significantly. 
G) Il-6: Levels significantly increase post-IRI and decrease following navitoclax treatment but not significantly. 
H) Mip-3b: Levels significantly increase post-IRI and are significantly decreased following navitoclax treatment, but are still 

significantly higher than no LAD controls.  
I) Macrophage-Derived Cytokine (MDC): Levels significantly increase post-IRI and are significantly decreased following 

navitoclax treatment, but are still significantly higher than no LAD controls. 
J) Eotaxin: Levels significantly increase post-IRI and decrease following navitoclax treatment but not significantly. 
K) Ifn-β1: Levels do not change following IRI, however, are significantly decreased following navitoclax. 
L) Tgfβ1: Levels do not change following IRI, however, are significantly decreased following navitoclax. 
M) Tgfβ2: Levels significantly increase post-IRI and decrease following navitoclax treatment but not significantly. 
N) Tgfβ3: Levels significantly increase post-IRI and are significantly decreased following navitoclax treatment. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 using One-Way ANOVA/Kruskal-
Wallis Test. 
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In order to see if IRI post-MI induced systemic changes to inflammation and SASP 

expression, the cytokine array was also used to test levels of cytokine and chemokines 

in serum samples isolated from the systemic circulation. In contrast to the array data 

for the protein samples, fewer trends were observed for the serum array (Figure 6.15). 

Variations within each group was much greater with only a few cytokines showing 

similar expression levels. Those cytokines that had detectable, substantial trends are 

outlined in Figure 6.16. Of the 47 cytokines tested, only 5 showed significant changes 

in expression, including Tarc, Il-6, eotaxin, Tgf-β1 and Tgf-β2.  

The pattern of circulating Tarc expression in the serum differed greatly to the protein 

data in Figure 6.14.F. In the serum, levels in the healthy group were 95.77ρg/ml ± 6.72, 

and was unchanged following IRI (111.1ρg/ml ± 5.77, p=0.1328). However, navitoclax 

significantly lowered Tarc levels in comparison to both the uninjured and injured groups 

to 62.91ρg/ml ± 11.10 (p=0.0009, Figure 6.16.A). For Il-6, the changes in expression 

in serum samples reflected the observations from LV protein samples (Figure 6.14.G). 

At baseline Il-6 was 2.48ρg/ml ± 0.84 and this significantly increased (p=0.0424) to 

48.19ρg/ml ± 24.41 post-IRI. The reduction in Il-6 levels due to navitoclax dosing was 

marginal (p=0.9811), to 45.53ρg/ml ± 17.89 (Figure 6.16.B). Compared to the results 

of eotaxin expression in Figure 6.14.J, where expression was significantly increased 

post-IRI and non-significantly reduced in the navitoclax cohort, from the serum data in 

Figure 6.16.C eotaxin was slightly but insignificantly raised (p=0.4040) from 

497.0ρg/ml ± 63.90 to 558.2ρg/ml ± 46.24 post-LAD ligation. However, levels were 

significantly downregulated to 418.3 ρg/ml ± 50.05 as a result of treatment with 

navitoclax (p=0.0438, Figure 6.16.C). 

In the serum samples only Tgf-β1 and 2 demonstrated any changes in circulating 

levels. Circulating Tgf-β1 levels were very high at baseline at 50838 ρg/ml ± 7732, and 

were slightly elevated due to IRI at 64029ρg/ml ± 7389. Although IRI had a non-

significant effect on Tgf-β1 (p=0.1203), navitoclax significantly lowered levels to 

32737ρg/ml ± 4989 (p=0.0033). Similar trends were detected for Tgf-β2. Before IRI, 

expression was 1844ρg/ml ± 143.9 which was slightly but insignificantly higher post-

IRI at 2165ρg/ml ± 152.7 (p=0.0767). Again levels were significantly reduced to 

1220ρg/ml ± 135.7 after navitoclax dosing (p=0.0005, Figure 6.16.D-E).  
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Figure 6.15 Heat map showing changes in expression of cytokines and chemokines from serum samples run on the 
MD44 and TGFB1-3 arrays. 

Cytokines and chemokines show varying responses within groups and between treatments. Those with significant changes in 
expression can be found in Figure 6.16. 
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Figure 6.16 Circulating serum cytokines relating to fibrosis and cardiovascular disease following ischaemia-reperfusion 
injury with and without navitoclax treatment. 
A) Tarc: Levels do not change following IRI, however, are significantly decreased following navitoclax. 
B) Il-6: Levels significantly increase post-IRI and not affected following navitoclax. 
C) Eotaxin: Levels do not change following IRI, however, are significantly decreased following navitoclax. 
D) Tgf-β1: Levels do not change following IRI, however, are significantly decreased following navitoclax. 
E) Tgf-β2: Levels do not change following IRI, however, are significantly decreased following navitoclax. 

N=3 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 using One-Way ANOVA/Kruskal-Wallis 
Test. 
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6.5.4 Proliferation of cardiomyocytes is not upregulated following navitoclax 

therapy, but total proliferation and proliferation in the endothelial cell 

population is increased 

The above data demonstrate that a SASP is anti-proliferative to CMs and endothelial 

cells in vitro (Figure 6.3-Figure 6.7). As such I next aimed to test the hypothesis that 

subsequent to MI with IRI an increased SASP inhibits proliferation in vivo and thereby 

improved CM regeneration and angiogenesis, as well as reduced infarct size, 

contributing to the improved functional recovery in the navitoclax treated animals.  

As previously, mice were subjected to 60 minutes LAD ligation followed by reperfusion; 

4 days post-reperfusion mice were treated with either drug vehicle only or navitoclax 

(50 mg/kg BW per day) and also EdU (100mg/kg BW per day) for 7 consecutive days 

(Figure 4.3) and hearts were again collected at 5 weeks post-LAD ligation. Providing 

EdU allowed a retrospective analysis of cell proliferation during the treatment period.  

It has been reported that CM regeneration is triggered in response to MI (Hsieh et al., 

2007; Ellison et al., 2013; Malliaras et al., 2013) and that the heart’s capacity for 

regeneration declines with age (Bergmann et al., 2015) as a result of cardiac stem cell 

dysfunction (Lewis-McDougall et al., 2019) and impaired CM proliferation (Oldershaw 

et al., 2019). To investigate de novo CM regeneration following navitoclax treatment I 

quantified EdU‐positive cells in combination with CM markers troponin C and cell 

membrane marker WGA. Navitoclax did not impact on EdU incorporation in the CM 

population specifically (Figure 6.17.A). After IRI the mean EdU incorporation in CMs 

was 0.72cells/FOV ± 0.14 which was unchanged (p=0.2896) in the navitoclax cohort 

at 0.91cells/FOV ± 0.30. These EdU data suggest that CM regeneration is not the 

mechanism driving the improved cardiac function after IRI with navitoclax observed in 

4.5. 

When the total proliferation in this region was evaluated, there was a significantly 

higher number of the total cell population which had incorporated EdU in the navitoclax 

treated cohort (p=0.0235). The number of total cells positive for EdU was 23.30 

cells/FOV ± 5.97 after IRI and this increased to 33.10 cells/FOV ± 4.26 if treated with 

navitoclax (Figure 6.17.B). The number of endothelial cells only accounted for roughly 

23% of the total EdU positive cells indicating that the majority of proliferative cardiac 

cells in the BZ are not relating to angiogenesis. A study that mapped out proliferative 
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cardiac cells after MI with reperfusion showed that there was a very low, non-significant 

level of CM regeneration and that the majority of proliferative cells were endothelial, 

haematopoietic or fibroblast cells (Kretzschmar et al., 2018). Therefore, the remaining 

proliferative cells observed in this cohort after IRI both with and without navitoclax are 

postulated to be composed of haematopoietic cells and fibroblasts.  

Expression of EdU in cells expressing CD31, a widely utilised marker for endothelial 

cells and also the process of angiogenesis (Liu and Shi, 2012), was performed to 

investigate this hypothesis. Analysis revealed that there were significantly more 

(p=0.0113) EdU positive CD31 expressing cells in the animals treated with navitoclax 

compared to IRI with vehicle. After IRI, 4.11cells/FOV ± 1.34 were positive for both 

CD31 and EdU, but after navitoclax this was elevated to 7.62cells/FOV ± 1.67 (Figure 

6.17.C) demonstrating an approximately 2-fold increase (1.85-fold) in endothelial cell 

proliferation. These data indicate that following MI and IRI in young animals, senescent 

cell clearance is accompanied by a significant increase in angiogenesis but not CM 

proliferation.  
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Figure 6.17 Navitoclax treatment increased proliferation of endothelial cells 
but not cardiomyocytes after ischaemia-reperfusion injury. 
A) Percentage of EdU positive CMs in the LV are not significantly different 

between IRI and IRI treated with navitoclax cohorts. 
B) Percentage of EdU positive total cardiac cells in the LV are significantly 

different between IRI and IRI treated with navitoclax cohorts. 
C) Percentage of EdU positive endothelial cells in the LV are significantly different 

between IRI and IRI treated with navitoclax cohorts. 
D) EdU (red, 594nm) co-staining with endothelial marker CD31 (green, 488nm) 

and nuclear marker DAPI (blue, 461nm) after IRI. Arrows indicate CD31 and 
EdU positive cells. 

E) EdU (red, 594nm) co-staining with endothelial marker CD31 (green, 488nm) 
and nuclear marker DAPI (blue, 461nm) after IRI and navitoclax.  

F) Tiles of immunofluorescence staining for EdU post-LAD ligation proximal to the 
infarct. Slides stained for CM marker troponin C (green 488nm), proliferation 
marker EdU (red, 594nm), nuclear marker DAPI (blue, 461nm) and membrane 
marker WGA (turquoise, 647nm). White arrows indicate troponin C EdU 
positive cells and yellow arrows WGA EdU positive cells. [next page]  

N=4-5 for each experimental condition. NS≥0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 using One-Way ANOVA. 
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6.6 Discussion 

The heart is made up of a heterogeneous population of cells. Although the CMs are 

the contractile functional unit of the heart, other cardiac cell lineages exert effects to 

influence the overall function of the heart (Roth et al., 2014). In the interstitium, 

fibroblasts are essential for secretion of ECM factors during repair after injury to 

maintain structural integrity, however, can lead to pathological remodelling if the 

fibrosis interferes with conduction of contractile signals or stiffens the ventricles 

reducing heart function (Furtado et al., 2016). Senescence has been demonstrated to 

be vital to recruit fibroblasts to the site of injury, differentiation into myofibroblasts, 

deposition of ECM to close the wound and also to regulate the extent of fibrosis (Meyer 

et al., 2016). Despite the acute beneficial effects of fibroblast senescence, in organs 

such as the lungs, liver and kidneys if these senescent cells are not cleared efficiently 

then these can be detrimental to tissue function by creating an unfavourable 

environment via the SASP. This SASP can promote cellular dysfunction in other cell 

types and in fact contribute to progressive fibrosis as a result of the pro-fibrotic effects 

of many SASP proteins (Braun et al., 2012; Ogrodnik et al., 2017; Schafer et al., 2017). 

Although in the heart preventing fibroblast senescence resulted in elevated fibrosis 

(Meyer et al., 2016), the chronic effects of persistent fibroblast senescence on fibrosis 

and function are still unclear, but targeting senescent fibroblasts has been suggested 

to be potentially beneficial (Schafer et al., 2018). 

Short-term navitoclax treatment showed preferential induction of apoptosis in the 

interstitial population compared to CMs suggesting that elimination of senescence in 

this population may contribute to the reduction in scar formation and the rescue in 

cardiac function observed in the navitoclax treated mice. These observations and data 

suggesting that CM p16Ink4a knockout have no effect on outcome led me to investigate 

if a SASP from interstitial cell populations could have a negative impact on other 

cardiac cell types. Given that fibroblasts make up a major component of the interstitial 

cells and contribute to scar formation (Frangogiannis, 2016), for these proof of principle 

experiments I chose to investigate the fibroblast SASP. While there may be differences 

in fibroblast populations between various tissue sources, I performed these 

experiments on the established human embryonic lung fibroblast cell line, MRC5, as 

well as fibroblasts isolated from adult murine hearts. There were difficulties using adult 

cardiac fibroblasts including: only being able to isolate and expand limited numbers of 

these cells; and I also observed that these cells very quickly changed morphology to 
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take on a more myofibroblast phenotype in culture making these experiments difficult 

to control. The data from these experiments suggest a common feature of fibroblast 

senescence is the production of a SASP as the conditioned media from both cardiac 

fibroblasts and MRC5s was able to reduce proliferation in healthy primary embryonic 

CMs. Furthermore, the media from MRC5s promoted senescence and reduced 

proliferation of cardiac endothelial cells. These data suggest that clearance of 

senescent interstitial cells possibly including senescent fibroblasts may improve 

recovery in part by attenuating a detrimental SASP. By reducing a fibrotic SASP, it may 

promote proliferation and limit senescence activation in surrounding cells, potentially 

altering several processes required for effective recovery post-MI, such as 

angiogenesis and CM regeneration. Regeneration may involve CM proliferation and 

functional stem cells, both of which may be attenuated in a senescent heart (Anderson 

et al., 2019; Lewis-McDougall et al., 2019). Therefore, the impact of fibroblast 

senescence and SASP should be considered in future studies and more thoroughly 

investigated as a potential target to alleviate disease. Traditionally fibroblasts have 

been believed to account for the largest proportion of non-myocyte cardiac cells 

(Camelliti et al., 2005; Porter and Turner, 2009; Nagalingam et al., 2016), however, 

recent profiling studies reported that the fibroblast population is smaller than the 

endothelial cell population (Pinto et al., 2016; Kretzschmar et al., 2018). So therefore 

other interstitial cell populations should also be considered in this disease pathology, 

with further analysis determining the specific contributions of each cell type. 

Having demonstrated in vitro that the SASP may be detrimental to processes 

considered as reparative post-IRI, I next aimed to ascertain if elimination of senescent 

cells correlated with a diminished SASP. Components of the SASP were quantified 

using a cytokine array. While my data does not indicate which senescence cell 

populations are responsible for the SASP, it does indicate that many factors that have 

been previously associated with the SASP were significantly altered after IRI. Many of 

these proteins decreased in line with senescence elimination as a result of navitoclax 

treatment. These data also provided evidence that these proteins were directly 

associated with cellular senescence and not simply a result of general inflammation 

from LAD ligation surgery. Based on the current literature, these proteins could 

contribute to remodelling in a number of ways.  
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Interleukin-16 (IL-16) is linked to many inflammatory diseases and has been reported 

to directly drive inflammation within the myocardium of a model of hypertension 

induced heart failure. This resulted in increased cardiac fibrosis contributing to the 

pathophysiology of heart failure (Tamaki et al., 2013).  

Fractalkine, also referred to as CX3CL1, is a unique chemokine in that it can present 

either in a soluble or membrane-bound form depending on the role required; the 

soluble form is a chemoattractant whereas the bound form is an adhesion molecule 

(Umehara et al., 2004). This chemokine is known to play a role in CVDs including 

atherosclerosis and cardiac injury due to MI, and its expression correlates with poorer 

functional outcome and increased mortality in MI patients that undergo PPCI and have 

IRI (Boag et al., 2015). In mice, neutralisation of fractalkine improved survival and 

cardiac functions after MI (Gu et al., 2015). 

Another interleukin, IL-11, is also specific to fibroblasts (Schafer et al., 2017; Ng et al., 

2019). It acts in a pro-fibrotic fashion inducing differentiation of fibroblasts to 

myofibroblasts, increasing contractility, stimulation mobility and invasion towards sites 

of inflammation in a mouse model of MI. Additionally, administering recombinant IL-11 

protein induced fibroblast activation and a further worsened cardiac function (Schafer 

et al., 2017).  

Interferon γ-induced protein-10 (IP-10), also known as CXCL10, is released upon 

stimulation by IFN-γ to stimulate the migration of a range of immune cells to sites of 

inflammation. In CVDs, IP-10 can directly and indirectly drive and manipulate the 

progression of CVDs including atherosclerotic plaque destabilisation (Safa et al., 

2016).  

Remodelling of the LV involves production and removal of the cardiac ECM, which is 

dependent on a balanced expression of MMPs and their inhibitors, TIMPs. The 

cytokine TIMP-1 has been linked to increased risk of CVDs including atherosclerosis 

and also to cardiac structural and functional parameters associated with adverse 

remodelling such as increased LV thickness, end systolic diameter and end diastolic 

diameter (Sundström et al., 2004).  

Two additional cytokines that were considerably upregulated following LAD ligation 

were Tarc, also known as CC chemokine ligand 17 (Ccl17), and Il-6. Like TIMP-1, 

TARC expression is associated with atherosclerosis via the increased recruitment of T 
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cells resulting in the promotion of inflammation (Weber et al., 2011). Interleukin-6 is a 

known secreted factor from senescent cardiac fibroblasts in response to MI, and is 

directly regulated by the activation of the p53 pathway (Zhu et al., 2013). Therefore, 

the result in Figure 6.14.G suggests that in this cohort the SASP factors upregulated 

may relate to cardiac fibroblasts and induction of senescence.  

Macrophage inflammatory protein-3β, or CCL19, is a cytokine that has been linked to 

atherosclerosis and detected in the ruptured plaques in MI patients (Damas et al., 

2007; Erbel et al., 2007; Akhavanpoor et al., 2014; Halvorsen et al., 2014). As such, it 

has been suggested as a potential therapeutic target to modulate the immune 

response and reducing levels may prevent plaque rupture by stabilising these lesions 

(Akhavanpoor et al., 2014).  

Like IP-10, MDC also drives inflammation in ischaemic heart disease (IHD) patients 

with a history of MI, impacts the progression of atherosclerosis and may be a reliable 

risk biomarker for IHD (Safa et al., 2016). In support of these data my results show that 

levels of MDC are increased post-ischaemia, and reduced expression of MDC is 

associated with improved outcome which is observed in this navitoclax cohort that had 

attenuated remodelling and rescued cardiac function.  

There is conflicting data as to whether eotaxin, or CCL11 levels are related to 

atherosclerosis or other cardiac diseases like coronary artery disease (CAD). Eotaxin 

expression was first shown to correlate with CAD and IHD in a study which showed 

levels were raised in CAD patients compared to asymptomatic controls (Economou et 

al., 2001). However, more recently Mosedale, D. et al. observed no such correlation 

for eotaxin expression and atherosclerosis or MI in a cohort of 446 patients (Mosedale 

et al., 2005). These discrepancies have been postulated to result from studies being 

underpowered and fundamental differences between study designs. Further studies 

have been conducted to provide clarification, and it has since been suggested that 

eotaxin may have alternative roles other than an eosinophil chemoattractant. In 

atherosclerosis, eotaxin was demonstrated to upregulate vascular inflammation via 

vascular smooth muscles cells in plaques secreting eotaxin and driving endothelial cell 

migration (Emanuele et al., 2006; Niccoli et al., 2010). Eotaxin expression has also 

been shown to be substantially higher after ischaemia, with ischaemic stroke patients 

having elevated eotaxin levels correlating to poorer outcomes both acutely and 
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chronically (Roy-O’Reilly et al., 2017). After IRI in this study, eotaxin levels were also 

considerably increased.  

Interferon-β1 has been demonstrated to induce the expression of p21CIP, and is 

described as having roles in both stimulating and prohibiting proliferation (Limborg et 

al., 2007). Expression of IFN-β1 has also been investigated in patients with rheumatoid 

arthritis. Due to reports that IFN-β1 has anti-inflammatory properties, a group 

postulated that increased expression may reflect activation of anti-inflammatory 

mechanisms, but these were insufficient to prevent rheumatoid arthritis development 

(van Holten et al., 2005). However, this study also suggested that Ifn-β1 may act to 

sustain inflammation, as previously it was demonstrated that this cytokine can prevent 

T cell apoptosis (Pilling et al., 1999). Other studies showed that IFN-β1 acted in an 

anti-inflammatory manner and therefore elevated levels may be of benefit to limit 

inflammation (Triantaphyllopoulos et al., 1999; Tak, 2004; van Holten et al., 2005).  

Very few studies have evaluated the roles of type 1 IFNs, including IFN-β1, in IHD and 

MI. A murine study of permanent MI demonstrated that MI resulted in elevated levels 

of Ifn-β1 and Cxcl10 (Ip-10) mRNA and increased protein levels of Cxcl10 and 

interferon stimulated genes, but protein levels of Ifn-β1 itself were not reported. When 

mice were allowed to reperfuse post-MI, the data suggested that ischaemic cardiac 

cells released DNA to activate phagocytes to induce a cGas and Ifn response. Taken 

together, the influence of Ifn-β1 and other type 1 Ifns are important after MI to activate 

cardiac macrophages to reduce inflammation and improve function to increase survival 

(King et al., 2017). Although Ifn-β has also been reported to be predominantly secreted 

by fibroblasts (Hoyer and Nahrendorf, 2019). In this study, however, I did not observe 

an increase in Ifn-β1 after MI, so investigations into other type 1 Ifns would be of 

interest. This observation that Ifn-β1 isn’t up-regulated to exert an anti-inflammatory 

effect post-IRI can only be validated with further studies. But considerations should be 

made that the systemic clearance of senescent cells and the SASP for therapeutic 

benefit may be detrimental if removing cytokines known to exert protective effects after 

injury or disease. Therefore, more targeted approaches could result in more effective 

therapeutic outcomes. 

The data from the TGFB1-3 array demonstrated that all three Tgf-β protein isoforms 

were increased as a result of IRI. In CVD, the TGF-β family play multiple roles in 

regulating differentiation, migration, ECM production, tissue homeostasis as well as 
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other events. In the cardiovascular system, TGF-β1 is a highly important member of 

the TGF-β family, contributing to the progression of numerous CVDs including 

atherosclerosis, hypertrophy and heart failure, and can act in both a deleterious and 

beneficial way (Ruiz-Ortega et al., 2007). Following MI TGF-β1 has been described as 

having paradoxical roles (Frangogiannis, 2017). In atherosclerosis it acts as both an 

anti-inflammatory and anti-fibrotic and as such is beneficial to stabilise the plaque and 

stimulate tissue repair (Grainger, 2004; Redondo et al., 2012). However, as the 

disease progresses and expression of different TGF-β receptor composition changes, 

TGF-β1 switches to exerting detrimental effects via ECM formation, destabilising 

plaques and leading to excessive remodelling (Ruiz-Ortega et al., 2007; Redondo et 

al., 2012). In terms of cardiac fibrosis, TGF-β1 is a vital regulator of stimulating 

fibroblasts to secrete collagen and other ECM components. Due to the importance of 

fibrosis post-MI, targeting TGF-β1 has shown great promise in trials to limit fibrosis 

(Khan and Sheppard, 2006; Yue et al., 2017). From this study, navitoclax considerably 

reduced Tgf-β1, which may be one mechanism that navitoclax acts via to reduced 

overall infarct size that was observed in the longer-term, original navitoclax study 

(chapter 4). 

In summary, clearance of senescent cells with navitoclax reduced the expression of 

several cytokines and chemokines with known associations with senescence cells. 

These other studies discussed above have demonstrated these factors have roles in 

driving processes that would be detrimental to recovery post-IRI including inhibiting 

proliferation, promoting myocardial remodelling and reducing cardiac function. My data 

therefore supported the hypothesis that mechanistically, navitoclax reduces the SASP 

and this may attenuate some of the detrimental processes associated with the SASP 

proteins.    

From the serum array, there were some changes in circulating SASP protein levels, 

suggesting that these cytokines are indeed secreted and circulated systemically. 

Therefore, they may affect the heart as a whole or even stimulate systemic effects 

including inflammation. After an MI, patients with additional health conditions at the 

time of their MI are at a greater risk of a significantly reduced life span according to the 

severity of their multi-morbidities (Hall et al., 2018). Predicting disease progression 

raises another clinical application for the data included in this thesis, as levels of SASP 

proteins may provide circulating biomarkers to predict those patients that have higher 



 

208 

 

levels of senescence, and thereby experiencing more remodelling and potentially 

poorer outcome post-MI. This is useful to stratify senescence-targeting therapies to 

those patients with the greatest potential for benefit and subsequently monitor whether 

the therapies worked to predict patient long-term outcomes and disease progression. 

Tarc, eotaxin, Tgf-β1 and Tgf-β2 are markers associated with inflammation in a cardiac 

disease setting (Emanuele et al., 2006; Niccoli et al., 2010; Weber et al., 2011; 

Frangogiannis, 2017), and the substantial reduction in their levels after navitoclax 

potentially signifies that treatment has reduced systemic inflammation signalling. 

Therefore, the beneficial effects from navitoclax dosing may not result from effects 

locally in the heart but rather from clearing dysfunctional immune cells contributing to 

immunosenescence. Immunosenescence is defined as the loss of immune system 

function with age (Aw et al., 2007) and accumulation of pro-inflammatory cytokines has 

been linked to both ageing and the pathogenesis of inflammatory age-related diseases 

(De Martinis et al., 2005; Licastro et al., 2005). However, from my data none of these 

cytokines were considerably increased following IRI from the serum array, questioning 

whether they are suitable biomarkers clinically if increases in their levels can only be 

detected locally to the injury. Conversely Il-6, another SASP factor associated with 

inflammation (Zhu et al., 2013), was greatly upregulated after IRI but not affected with 

navitoclax treatment. Although, unlike Tarc, Eotaxin and Tgf-β2, the pattern of Il-6 

expression was the same from the serum sample and LV protein sample, making it a 

potentially more useful biomarker as serum levels reflects what is occurring locally at 

the site of injury. 

Currently the Heart Failure Association affiliated with the European Society of 

Cardiology guidelines outline many biomarkers that may be useful clinically to 

diagnose and monitor patients with heart failure (Heart Failure Association, 2010). 

Natriuretic peptides, including B-type natriuretic peptide, have been comprehensively 

studied and shown that their levels correlated to heart failure severity (Di Angelantonio 

et al., 2009; Lin et al., 2014; Nadar and Shaikh, 2019). Although used to diagnose 

heart failure, it has been suggested to use this biomarker in conjunction with additional 

biomarkers and there are additional cardiac and non-cardiac causes that can result in 

elevated natriuretic peptides (Kim and Januzzi, 2011). The interleukin ST2 (Rehman 

et al., 2008), galectin-3 (Amin et al., 2017) and pro-adrenomedullin (Nishikimi and 

Nakagawa, 2018) are other biomarkers reported to increase with heart failure, 
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however, are also associated with other disorders making them not specific for heart 

failure (Nadar and Shaikh, 2019). These biomarkers are also used to track the 

prognosis of heart failure, and although useful, issues regarding disease specificity, 

reproducibility across studies and some biomarkers having short half-lives (Nadar and 

Shaikh, 2019) result in studies recommending using a panel of biomarkers (Gaggin et 

al., 2017) and the European Society of Cardiology reporting but not recommending the 

use of any one biomarker in a clinical setting (Ponikowski et al., 2016).  

Overall, identifying SASP factors that correlate with the pathogenesis of IRI post-MI 

may be very useful to diagnose and monitor patients for associated co-morbidities or 

assign therapies to patients in a personalised fashion. From my data, however, 

information regarding SASP components relating to IRI, clearance of senescence and 

improvements in cardiac function is limited by many factors. Firstly, this study was 

performed in a very small sample size. Secondly, while these data do not provide any 

novel biomarkers of cardiac function the lack of differences in the circulating SASP 

supports the idea that it is local clearance of senescence and reduced inflammation 

that improves cardiac function and not a systemic reduction in inflammation or changes 

to the immune system that is important. Additional none targeted approaches, such as 

proteomic analysis, could identify novel SASP proteins that may be more useful as 

prognostic biomarkers or even identify new therapeutic targets to block the SASP and 

its effects. 

My in vitro studies demonstrated that conditioned media from senescent fibroblasts 

directly reduced the proliferation of cardiac endothelial cells and CMs via paracrine 

signalling, likely via SASP factors. Having observed changes in many SASP factors in 

vivo, assessment of the proliferation of endothelial cells and CMs was then 

investigated to determine whether the observations in vitro were occurring in the heart 

post-IRI. Quantification of EdU incorporation into CMs 4 weeks after navitoclax dosing 

showed that treatment had no major effect on inducing CM proliferation, although 

levels were raised. From this analysis, the majority of EdU positive cells throughout the 

LV proximal to the infarct were interstitial cells, and navitoclax was observed to 

significantly increase the number of proliferating endothelial cells, identified by the 

endothelial marker CD31 (Liu and Shi, 2012). However, despite being widely 

considered as an endothelial cell marker, CD31 has also been demonstrated to be 

expressed by all leukocytes, including T and B lymphocytes, dendritic cells, natural 
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killer cells, macrophages, granulocytes as well as platelets. As such, expression of 

CD31 may also indicate activation of the immune system (Marelli-Berg et al., 2013). 

Nevertheless, my data align with those previously published which demonstrated that 

a cardiac fibrotic SASP reduced endothelial cell proliferation (Hernandez-Lopez et al., 

2017). In venous thrombosis disease, premature senescence induction via OS greatly 

reduced endothelial proliferation, which in turn predisposed the patient to endothelial 

dysfunction and detrimentally contributed to the pathogenesis of disease (Hernandez-

Lopez et al., 2017). This may well be the case in terms of MI with IRI, with an 

accumulative effect from OS and a fibrotic SASP leading to endothelial dysfunction 

and attenuated angiogenesis.  

Overall, after IRI cardiac interstitial cells become senescent. Treatment with navitoclax 

reduced levels of senescence markers, both during treatment and 4 weeks after, by 

preferential clearance of interstitial cells via apoptosis. Proof of principal studies 

confirmed that senescent fibroblasts exerted paracrine effects on non-fibroblast 

cardiac cells, and that after IRI there are elevated levels of cytokines that have 

previously been associated with the SASP. Additionally, in vivo removal of senescent  

cells, both CMs and interstitial populations, resulted in a reduction in several SASP 

proteins and was associated with a substantial increase in endothelial cell proliferation, 

which is indicative of improved angiogenesis (Cochain et al., 2013).  
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Chapter 7. Discussion 

 

Cardiovascular diseases account for the largest proportion of morbidity and mortality 

events globally (Hausenloy and Yellon, 2013; World Health Organisation, 2014), but 

thanks to advances in interventional procedures, survival rates after MI have 

considerably improved since the introduction of PPCI (Lønborg, 2015; Doost Hosseiny 

et al., 2016). However, IRI and adverse remodelling post-MI accelerating patient’s 

progression to heart failure is a serious clinical issue (Hausenloy and Yellon, 2013; 

Muhlestein, 2014; Lønborg, 2015). Unfortunately, to date, most efforts to target MI with 

IRI to repair the myocardium or rescue cardiac function have failed to successfully 

translate into the clinic (Baehr et al., 2019).  

Cellular senescence has been linked to or demonstrated to have a direct role in the 

progression of ageing and multiple age-related disorders (McHugh and Gil, 2018). 

These disorders include diseases associated with the respiratory, digestive, nervous, 

muscular, renal as well as cardiovascular system (Passos et al., 2010; Jurk et al., 2014; 

Birch et al., 2015; Ogrodnik et al., 2017; Anderson et al., 2019). Pre-clinical trials have 

provided positive results relating to the modulation or clearance of senescent cells 

(Baker et al., 2011; Baker et al., 2016) and a new class of drugs called senolytics have 

attracted a lot of attention. These drugs specifically target senescent cells systemically 

to alleviate adverse symptoms (Zhu et al., 2015; Kirkland and Tchkonia, 2017; Short 

et al., 2019). In the ageing heart, senescence has been associated with a decline in 

cardiac function. Treatment with the senolytic navitoclax reduced CM senescence in 

aged mice which correlated with improved function and response to permanent MI 

(Walaszczyk et al., 2019). Additionally, research has identified senescence within the 

cardiac stem and progenitor cell population as a potential mechanism obstructing 

efficient CM differentiation during repair. The adverse environment generated from 

senescence and the SASP may in part explain why regeneration therapies, both 

stimulating endogenous regeneration and transplantation approaches, have failed to 

efficiently translate from the lab to the clinic (Lewis-McDougall et al., 2019; Oldershaw 

et al., 2019).  

The data presented from this study provide further evidence that the heart, including 

both CMs and interstitial cells, can become senescent when exposed to stressors such 
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as OS. This further challenges the traditional view that as the majority of CMs are post-

mitotic and do not experiencing telomere attrition during DNA replication they are 

unable to senesce (Vicencio et al., 2008). Regions in the LV proximal to the infarct 

after LAD ligation surgery showed an elevated intensity of the OS marker 4-HNE. 

Within this region CMs contained increased numbers of TAF and were positive for a 

range of senescence markers including SA-β-Gal, p21Cip and p16Ink4a. From the SA-β-

Gal staining the interstitial cells, particularly in the infarct zone, were observed to be 

positive for this senescence marker from 72 hours post-ligation, whereas CMs were 

only identified after 1 week. Analysis of TAF in the CMs was very high at 1 week and 

was reduced by 4 weeks, suggesting that CMs containing high levels of genomic 

damage were cleared. The proportion of CMs containing TAF at 4 weeks post-ligation 

correlated to the percentage of CMs positive for both p21Cip and p16Ink4a. Markers of 

senescence weren’t investigated after this time-point as senescence is reported to be 

permanent once established as cells have an upregulation of anti-apoptotic proteins to 

evade clearance. However, confirmation that these levels are persistent at time-points 

past 4 weeks would be of interest to fully understand the progression of senescence 

after IRI and whether levels increase via propagation of senescence to accelerate 

injury and adverse remodelling. If so, tracking senescence biomarkers may be useful 

to diagnose and predict patients most at risk of heart failure or stratify regeneration 

therapies to patients with the lowest senescence levels and are therefore most likely 

to have successful results (Althubiti et al., 2014). 

As well as this, after LAD ligation mice had extensive scars in their LV. To ensure that 

all mice had been reperfused properly, the morphology of their infarcts were checked. 

Any mice with transmural scars were assumed to have been insufficiently reperfused, 

and therefore had a permanent MI and not IRI so were excluded from further analyses. 

After treatment with navitoclax, the percentage of the LV composed of scar had 

substantially decreased. This reduction of the scar indicated that clearance of 

senescent cells reduced adverse remodelling in terms of structural changes including 

fibrosis. However, structural improvements are only beneficial if they can positively 

affect cardiac function. 

From the cardiac function data, higher levels of senescence markers were associated 

with a reduction in functional variables that are currently used to diagnose heart failure 

in patients (Bolognese et al., 2002; Ponikowski et al., 2016; Redgrave et al., 2016; 
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Borzage et al., 2017; Bulluck et al., 2017; Rodriguez-Palomares et al., 2019). As MRI 

analysis is performed manually, incorrect inferences of the MRI variables can occur 

due to potential operator biases since the position of each measurement can be very 

subjective. To minimise errors and to improve the accuracy of the analysis, MRI 

analysis was performed by three individuals including myself and all analysis was 

performed in a blinded manner. Before un-blinding, any scans with a ≥5% difference 

in EF were reanalysed (by a fourth individual when possible). Additionally, all 

measurements were only included if the LV mass measurements taken at end diastole 

and end systole was within ±4% as LV mass would be unchanged during contraction. 

From my data, navitoclax treatment also attenuated remodelling as functional variables 

were considerably improved. Most importantly EF was either maintained or improved 

reversing the trend for a progressive loss in cardiac function post-MI with IRI 

considering the importance senescence plays in wound repair to stimulate and self-

limit fibrosis (Jun and Lau, 2010a). Navitoclax dosing was selected to begin 96 hours 

after surgery as there were concerns that prior to this time-point elimination of 

senescence within the infarct may result in incomplete wound healing and cardiac 

rupture. At the 72 hour time-point senescence, indicated by SA-β-Gal, was observed 

within the infarct region that was predicted to include myofibroblasts, and consequently 

dosing commenced after this time-point. Therefore, navitoclax dosing began after 

interstitial cell senescence initiation, implying wound repair mechanisms had begun, 

but prior to senescence becoming chronically expressed at 7 days. It was important to 

carefully monitor animals during and after treatment for any adverse outcomes, 

however, no mice displayed any harmful symptoms. In particular, no mice died after 

surgery and treatment as a result of cardiac rupture, so the timing of navitoclax dosing 

allowed for sufficient fibrosis to repair and strengthen the injured myocardium, but also 

minimised fibrosis to result in a smaller infarct, more elastic LV and overall improved 

cardiac function. It may be of interest to see if earlier treatment could improve 

outcomes even more, however, given that the outcomes from this study were highly 

favourable I would suggest that these studies should be performed on a small cohort 

of mice as improvements may be unlikely. It is also possible that the effects of 

navitoclax are beneficial in the short term but have consequences later in life. Again, 

this is something I am very aware of and studies should be performed to see what the 

long-term effects of navitoclax are, particularly as I have demonstrated treatment leads 
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to CM apoptosis, which may not have the same regenerative reserve as some other 

cell populations.  

These beneficial outcomes following navitoclax treatment are encouraging and warrant 

further studies. However, there are concerns that senolytics may in fact be detrimental 

post-IRI as they exert their effects systemically (Ponikowski et al., 2016; Kirkland and 

Tchkonia, 2017). An associated adverse side effect of navitoclax is thrombocytopenia, 

as the drug can act on the BCL-2 homologs including BCL-XL. This protein along with 

other BCL-2 pro-survival proteins are expressed by platelets, and inhibition by 

senolytics including navitoclax can trigger apoptosis and a reduced platelet population. 

However, in several studies that reported thrombocytopenia, no clinically relevant 

bleeding events were described, thrombocytopenia was fully reversed upon cessation 

of drug use and no markers indicating platelet aggregation were detected (Zhang et 

al., 2007; Rudin et al., 2012). Additionally, many of the patients in these clinical trials 

were either relapsed or refractory cancer patients, and their bone marrow platelet 

population may already be compromised if tumour cells are present and proliferating 

in the bone marrow. In this case, progressing injury models using navitoclax should 

continue with these toxicities being regularly monitored (Kaefer et al., 2014), although 

thrombocytopenia was not confirmed in the cohort of mice I used in this study.  

To circumvent thrombocytopenia and avoid having to reduce navitoclax drug levels 

which may lessen its efficacy, a novel BCL-2 inhibitor was generated to be selective 

for BCL-2 and not bind BCL-XL. To achieve this selectivity for BCL-2 navitoclax was 

re-designed to target a co-crystal structure only identified on BCL-2 molecules. 

Navitoclax and pro-apoptotic proteins bind to BCL-2 within the BH3 domain via two 

interfaces. By altering these two regions it was discovered that removal of a thiophenyl 

ring subunit caused a structural alteration to one binding point and together with the 

addition of an azaindole to strengthen the second binding point, this new compound 

bound strongly and specifically to BCL-2 (Figure 7.1). The new drug was called 

ABT199, also known as venetoclax, and in a small study on chronic lymphocytic 

leukaemia patients demonstrated a retained efficacy for clearing cells over-expressing 

BCL-2 whilst minimally affecting the platelet population. The ability of venetoclax to 

bind to BCL-XL was over 3-fold lower compared to navitoclax, yet could still evoke a 

rapid apoptotic response after a single dose that was stronger than a corresponding 

dose of navitoclax (Souers et al., 2013).  
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As aforementioned, navitoclax acts systemically (Short et al., 2019). Although 

concerns regarding off-target events having detrimental outcomes in terms of repair 

mechanisms, another issue with analysing navitoclax treatment is dissecting the direct 

and indirect effects. To try and discern whether navitoclax was improving the cardiac 

function directly and not just improving the overall health of the mice, possibly by 

reducing inflammation systemically or improving vascular health, I performed two 

additional studies. The first was generating a novel CM-specific p16Ink4a knockout 

mouse. This model provided evidence whether it was the CM population or interstitial 

cells that predominantly contributed to functional outcome. The second study was 

Figure 7.1 Chemical structure of navitoclax and venetoclax.  

Navitoclax was modified with the addition of the thiophenyl ring and azaindole to 
produce venetoclax. Venetoclax in comparison has an improved efficacy for BCL-2 
and reduced binding to BCL-XL so addresses the issues surrounding toxicity of 
navitoclax. Adapted from (Souers et al., 2013). 
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repeating navitoclax treatment to investigate the events occurring during dosing, 

mainly to ensure the drug was activating apoptosis in the heart. However, this study 

did not confirm whether apoptosis was also occurring in additional organs.  

From the knockout model, there was a considerable reduction in senescence markers 

p16Ink4a and p21Cip. To initiate recombination via Cre, 4-OHT was administered instead 

of tamoxifen, as tamoxifen needs to be metabolised in the liver into the active 4-OHT, 

which takes time and also may not be the most efficient process (Felker et al., 2016) 

Although p16Ink4a expression within the CMs was lower, there was a residual level of 

p16Ink4a. This expression was attributed to the inducible Cre line utilised not being 

100% efficient at floxing exon 1α as previously reported (Sohal et al., 2001), and so 

p16Ink4a could be transcribed and translated. One way to counteract this inefficient 

floxing would be to use a non-inducible conditional Cre line to excise p16Ink4a. However, 

preventing p16Ink4a expression in the CMs from embryogenesis may interfere with 

development, as senescence is also an important regulatory mechanism during 

development and preventing senescence pathways may result in defects (Muñoz-

Espín et al., 2013; Storer et al., 2013). Another way to increase excision by the 

inducible Cre used would be to optimise dosing concentrations and regimes. Also, as 

well as p16Ink4a expression not being completely inhibited, this model didn’t target 

p21Cip dependent senescence. Both the p16Ink4a and p53/p21Cip pathways have been 

demonstrated to feedback on each other (Leong et al., 2009), however, in the knockout 

model generated for this study, p21Cip was not upregulated in a compensatory manner. 

Reductions in p21Cip suggests that this pathway is affected by p16Ink4a, however, 

knocking out p21Cip as well as p16Ink4a would generate a better model of inhibiting CM 

senescence.  

Regardless, even though senescence wasn’t prevented completely, levels were 

comparable to those observed in young, healthy, wild type mice CMs after navitoclax 

treatment. Results from this experiment suggest that reducing CM senescence is not 

the primary mechanism by which navitoclax attenuated remodelling to improve cardiac 

function. Therefore, future interventions should be focused on the interstitial cells as 

opposed to the CMs. Although fibrinolytic drugs have been trialled and shown to be 

unsuccessful in patients (National Clinical Guideline Centre (UK). 2013), targeting the 

chronically senescent myofibroblasts could possibly result in a successful anti-fibrotic 

treatment. Conversely, if treatments only target a specific cell lineage within an organ 
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and there are senescent cells elsewhere within the organ or in alternative tissues, via 

paracrine signalling from the SASP may lead to newly formed senescent cells in new 

areas. Overall, it could be debated that systemic treatments targeting all senescent cell 

types are more beneficial to increase treatment efficiency and improve total health 

(Kirkland and Tchkonia, 2017).  

A limitation of the knockout mouse study is that the model was not fully characterised 

at baseline in terms of p16-/- cardiac structure and function prior to LAD ligation. 

Although there were no unusual observations in both the p16f/f and p16-/- mice 

regarding their histology and function post-IRI, this information would confirm that the 

mouse resembled a wild type mouse and did not have a phenotype exacerbating their 

outcome to LAD ligation. As well as the baseline measurements, including a Cre 

control would also strengthen this analysis. By crossing the αMHC-MerCreMer onto a 

wild type, non-floxed line would also confirm whether the Cre itself had any effect on 

cardiac remodelling. These controls were lacking from this study due to issues with 

breeding sufficient numbers for experimentation and technical issues with the MRI. For 

future publications, these controls are being collected.  

The short-term navitoclax in vivo study was also performed to identify the cell 

populations being cleared from the treatment. From the TUNEL assay, approximately 

90% of the cells undergoing apoptosis were interstitial cells, with CMs making up the 

remaining 10%. Additionally, the proliferation of CMs was not increased, and therefore, 

unlike in the aged mice (Anderson et al., 2019; Lewis-McDougall et al., 2019), 

clearance of senescent CMs and other cells did not stimulate a regenerative response 

in the CMs. These data may also provide further evidence that CMs are not the most 

important senescent cell type to target for therapies to improve remodelling and 

function post-IRI. Additionally, the cytokine array demonstrated a range of known 

factors previously associated with the SASP increase after LAD ligation and are 

reduced following navitoclax treatment. Although these cytokines cannot be directly 

linked to a specific cell type from this analysis, many have been associated with 

inflammation and fibrosis, but attributing the expression of these factors to fibroblasts 

is purely speculative and requires thorough investigation and characterisation.  

Regardless, the array shows that some components of the SASP are upregulated in 

response to MI and IRI, and navitoclax reverses these trends. This array provides 

additional data demonstrating that senescence occurs in this model of MI with IRI and 
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treatment with a senolytic reduces senescence and can be correlated to beneficial 

functional outcomes.  

As MI mostly occurs in individuals at 65 years or older (Boyer et al., 2012; Roger et al., 

2012) it would be beneficial to repeat this study using aged mice. Young mice were 

utilised as we have previously demonstrated that senescence accumulates in the heart 

with age (Anderson et al., 2019; Walaszczyk et al., 2019). Therefore, distinguishing 

the contribution of IRI from ageing in terms of senescence induction could be 

problematic. Nevertheless, an aged mouse IRI model would be more clinically relevant, 

and interesting to see if the positive outcomes in the young mice were reproduced. 

One concern may be that with age there is a higher residual level of senescence, and 

so after IRI navitoclax may induce apoptosis in a larger proportion of cells. Taking this 

factor into account along with the fact that regeneration of CMs declines with age both 

from stem cell dysfunction (Lewis-McDougall et al., 2019) and limited CM proliferation 

(Richardson et al., 2015a), if too many cardiac cells are cleared and not replaced 

cardiac function may deteriorate further causing a worsening outcome. However, when 

aged mice (24 months) were treated with navitoclax and had a permanent LAD ligation 

(MI without IRI), survival rates were dramatically improved to that of a younger mouse 

accompanied with better cardiac function and remodelling (Walaszczyk et al., 2019), 

suggesting that elimination of senescent CMs and cardiac cells is a potentially very 

beneficial therapeutic strategy that should be investigated for MI with IRI.  

The preliminary in vitro studies aimed to validate whether senescent fibroblasts could 

affect the proliferation and senescence status of other cardiac cell lineages via a SASP. 

Fibroblasts were selected as the interstitial cells positive for senescence markers were 

identified using the fibroblast marker vimentin. However, this marker is not exclusive 

to fibroblasts and can include other mesenchymal cell types (Goodpaster et al., 2008). 

Including an additional marker for CFs, such as discoidin domain receptor 2 (DDR2) 

(Souders et al., 2009), would considerably strengthen this analysis.  

After culture in the conditioned media from proliferative and senescent fibroblasts, both 

endothelial cells and CMs demonstrated attenuated proliferation and induction of 

senescence markers. Initially, the MRC5 fibroblast cell line was utilised based on the 

literature reporting that they express a SASP (Passos et al., 2010; Hewitt et al., 2012; 

Menicacci et al., 2017), however, repeating these experiments on the MMVEC-Cs 

using CFs would be required to verify that a CF SASP yielded the same results. This 
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verification is required due of the complex nature of the SASP and variations between 

factors expressed depending on the cell type and tissue of origin (Coppé et al., 2010). 

Because of this, time was spent optimising the isolation of primary adult CFs. 

Experiments using these primary fibroblasts were comparable to the MRC5 media, 

however, the primary fibroblasts require further characterisation to identify CF SASP 

factors. The CFs were stained with vimentin to check they were positive for this marker 

(Figure 7.2). As discussed above, verifying the cell identity with additional and more 

specific CF markers would strengthen this analysis that the observations in vitro could 

be occurring in the heart.  

 

 

Experiments to validate whether the fibroblasts are the senescent interstitial cells 

responsible for the results obtained from this study could include fibroblast knockout 

mouse lines. It would be preferable to generate supplementary conditional p16Ink4a 

models that used Cre-driven knockouts in specific interstitial cell types and repeat 

these studies. However, the navitoclax treatment did not inhibit senescence but rather 

removed senescent cells, which may explain the difference between my navitoclax 

studies and a previous study that used conditional knockout models for senescence 

genes in CFs. This study demonstrated that these conditional knockouts resulted in 

larger infarcts and poorer response to injury (Zhu et al., 2013). The CM knockout model 

generated for this project could be retested and include an experimental group that 

Figure 7.2 Isolated primary adult mouse cardiac fibroblasts are positive for 
the fibroblast marker vimentin. 
A) Immunofluorescence staining of isolated cells for vimentin (red, wavelength 

594nm) and DAPI (blue, wavelength 461nm). 

B) Negative control for vimentin 1°Ab, slide was incubated in PBS instead. 

A B 
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received subsequent treatment targeted towards fibroblasts. For example, p16-/- mice 

could receive navitoclax treatment to see whether it would replicate the favourable 

phenotype from the initial navitoclax study. Or mice could be treated with anti-fibrotics, 

however, fibrinolytics as discussed previously have not been successful in clinics 

(National Clinical Guideline Centre (UK). 2013). Trials testing therapies that have been 

beneficial in pre-clinical trials but not in clinical trials could be tested in combination 

with a low dose or short-term regime of senolytics. These failed therapies may be more 

successful if combined with a senolytic to diminish the adverse environment from the 

SASP (Kirkland and Tchkonia, 2017).  

In conclusion, MI and IRI in a young mouse surgical model induced senescence in 

both CM and non-CM cell lineages throughout the heart and were verified using a 

combination of different senescence markers (Figure 7.3, top row). A short-term 

treatment regime with the senolytic drug navitoclax reduced levels of senescence in 

multiple cell types and attenuated remodelling as demonstrated by the reduction in 

infarct size, elevated proliferation of endothelial cells and rescue of cardiac function 

(Figure 7.3, bottom row). However, not all components of remodelling were reversed 

with navitoclax, as proliferation of CMs was unchanged and hypertrophy of CMs was 

also unaffected.  

Overall, the improvements from navitoclax warrant further testing and similar 

investigations into the SASP and senescence in the heart post-IRI should be tested in 

human samples. Identifying novel markers of cardiac senescence to correlate to 

function would be valuable to improve patient diagnosis and prognosis post-MI. If 

senolytics or other therapies targeting senescence were successfully translated into 

humans, this would have considerable ramifications globally to reduce the incidence 

of heart failure and associated morbidities to improve patient’s recovery after MI and 

ultimately give them an extended, improved quality of life. 
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Figure 7.3 Graphical summary. 

Myocardial infarction followed by IRI induces a state of OS that is associated with 
induction of senescence in multiple cardiac cell types including CMs and 
fibroblasts. Adverse remodelling events result in a larger infarct and severely 
reduced cardiac function (top row). However, treatment with navitoclax after MI 
with IRI was associated with reduced senescence and attenuated remodelling. A 
smaller infarct and endothelial cell regeneration, suggesting stimulation of 
angiogenesis, ultimately resulted in improved cardiac function (bottom row). 
Retaining or rescuing as much cardiac function as possible after an MI is essential 
to prevent or delay the onset of heart failure. 
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Appendix A 

 

Raw values from MD-44 and TGFB1-3 Arrays from Eve Technologies 

Cytokine 

Concentration (ρg/ml ± SD) p Value 

No LAD IRI + Veh IRI + Nav 

No LAD 

 vs  

IRI + Veh 

No LAD 

 vs  

IRI + Nav 

IRI + Veh 

 vs  

IRI + Nav 

Eotaxin 6.74 ± 2.67 16.10 ± 4.28 8.87 ± 2.29 0.0270 (*) 0.7081 0.0728 

EPO - - - - - - 

Fractalkine 71.21 ± 2.53 90.27 ± 4.56 67.98 ± 4.49 0.0022 (**) 0.3579 0.0014 (**) 

G-CSF 0.78 ± 0.17 1.17 ± 0.38 0.56 ± 0.07 0.1981 0.5537 0.0499 (*) 

GM-CSF - - - - - - 

IFNB-1 66.52 ± 1.94 67.22 ± 1.05 60.25 ± 2.88 0.9130 0.0243 (*) 0.0153 (*) 

IFNγ 0.95 ± 0.79 2.09 ± 0.13 0.62 ± 0.72 0.2532 0.8323 0.1373 

IL-1a 51.00 ± 6.92 17.17 ± 5.02 14.14 ± 2.21 0.0005 (***) 0.0003 (***) 0.7571 

IL-1b 7.20 ± 0.77 6.65 ± 1.10 5.28 ± 0.36 0.6952 0.0560 0.1619 

IL-2 25.73 ± 0.52 19.78 ± 2.93 17.75 ± 1.41 0.0200 (*) 0.0051 (**) 0.4403 

IL-3 0.94 ± 0.12 0.84 ± 0.10 0.67 ± 0.16 0.6607 0.0969 0.3003 

IL-4 0.19 ± 0.01 0.15 ± 0.01 0.12 ± 0.05 0.2437 0.1013 >0.9999 

IL-5 0.01 ± 0.00 0.05 ± 0.00 0.01 ± 0.00 - - - 

IL-6 1.21 ± 0.04 2.73 ± 0.64 1.53 ± 0.72 0.0347 (*) 0.7631 0.0841 

IL-7 3.57 ± 0.46 2.93 ± 1.02 1.74 ± 0.42 0.5349 0.0403 (*) 0.1659 

IL-9 229.7 ± 6.34 185.2 ± 5.28 191.8 ± 6.98 0.0003 (***) 0.0007 (***) 0.4525 

IL-10 12.72 ± 0.60 9.56 ± 2.14 8.57 ± 0.80 0.0669 0.0229 (*) 0.6663 

IL-11 0.83 ± 0.97 2.76 ± 0.76 0.55 ± 0.48 0.0422 (*) 0.6621 0.0357 (*) 

IL-12/p40 4.94 ± 1.17 3.77 ± 1.87 4.04 ± 1.11 0.6013 0.7295 0.9722 

IL-12/p70 3.34 ± 0.59 3.54 ± 1.84 3.16 ± 0.98 0.9798 0.9831 0.9286 

Table A.1 Values from MD-44 and TGFB1-3 for protein samples. 
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IL-13 - - - - - - 

IL-15 33.18 ± 2.24 27.81 ± 4.00 19.19 ± 2.23 0.1437 0.0027 (**) 0.0268 (*) 

IL-16 251.1 ± 71.11 382.7 ± 53.75 216.3 ± 32.86 0.0587 0.7297 0.0231 (*) 

IL-17 0.13 ± 0.10 0.14 ± 0.12 0.03 ± 0.01 0.9989 0.3746 0.3554 

IL-20 - - - - - - 

IP-10 5.31 ± 0.69 48.28 ± 28.02 8.80 ± 2.15 0.0404 (*) 0.9626 0.0559 

KC 7.32 ± 2.72 13.73 ± 10.69 3.94 ± 1.01 0.4756 0.7970 0.2207 

LIF 0.66 ± 0.18 1.58 ± 0.54 0.77 ± 0.09 0.0760 >0.9999 0.2209 

LIX 268.7 ± 27.41 229.2 ± 19.23 208.8 ± 36.03 0.6097 0.1840 >0.9999 

MCP-1 3.81 ± 0.86 11.39 ± 9.57 1.49 ± 1.14 0.4260 0.9107 0.2105 

MCP-5 23.72 ± 7.91 224.4 ± 148.2 48.53 ± 16.07 0.0655 0.9345 0.1022 

M-CSF 0.84 ± 0.20 0.85 ± 0.69 0.52 ± 0.10 0.9996 0.7363 0.7230 

MDC 0.99 ± 0.23 5.03 ± 0.49 2.86 ± 0.44 <0.0001 (****) 0.0031 (**) 0.0014 (**) 

MIG 36.13 ± 15.11 155.8 ± 100.7 52.99 ± 25.51 0.1134 0.9387 0.1751 

MIP-1a 52.55 ± 9.31 36.41 ± 7.62 34.19 ± 7.56 0.1219 0.0800 0.9421 

MIP-1b - - - - - - 

MIP-2 273.1 ± 31.23 244.4 ± 10.57 214.0 ± 11.89 0.2675 0.0272 (*) 0.2366 

MIP-3a 1.47 ± 0.06 1.05 ± 0.19 0.95 ± 0.02 0.0089 (**) 0.0030 (**) 0.5380 

MIP-3b 31.22 ± 12.74 134.2 ± 16.86 79.63 ± 16.55 0.0005 (***) 0.0204 (*) 0.0119 (*) 

RANTES 2.41 ± 0.48 1.73 ± 0.12 1.34 ± 0.66 0.2614 0.0743 0.6069 

TARC 0.72 ± 0.39 4.88 ± 1.90 2.60 ± 1.01 0.0163 (*) 0.2433 0.1474 

TIMP-1 31.68 ± 0.71 1298 ± 443.6 476.2 ± 234.1 0.0164 (*) 0.3527 0.0547 

TNFα - - - - - - 

VEGF 6.04 ± 1.69 12.49 ± 3.63 9.09 ± 2.62 0.0648 0.4203 0.3528 

6Ckin/Exodus 850.3 ± 210.8 955.1 ± 64.56 642.0 ± 101.7 >0.9999 0.5391 0.2209 

TGF-β1 62.12 ± 60.71 87.47 ± 10.29 16.47 ± 4.25 0.6765 0.3278 0.0004 (***) 

TGF-β2 8.89 ± 3.76 65.62 ± 28.09 26.01 ± 14.47 0.0214 (*) 0.5262 0.0854 

TGF-β3 1.88 ± 0.43 19.13 ± 5.97 6.37 ± 3.56 0.0046 (**) 0.4130 0.0190 (*) 



 

Cytokine 

Concentration (ρg/ml ± SD) p Value 

No LAD IRI + Veh IRI + Nav 

No LAD 

 vs  

IRI + Veh 

No LAD 

 vs  

IRI + Nav 

IRI + Veh 

 vs  

IRI + Nav 

Eotaxin 497.0 ± 63.90 558.2 ± 46.24 418.3 ± 50.05 0.4040 0.2513 0.0438 (*) 

EPO 74.87 ± 57.14 116.9 ± 53.29 96.09 ± 35.14 0.5805 0.8621 0.8667 

Fractalkine 172.2 ± 51.72 187.5 ± 17.04 170.5 ± 18.94 0.8437 0.9977 0.8108 

G-CSF 197.9 ± 30.21 308.3 ± 185.2 342.2 ± 109.7 0.5606 0.3951 0.9422 

GM-CSF 6.52 ± 1.83 - 4.77 ± 0.00 - - - 

IFNB-1 186.0 ± 157.6 112.0 ± 22.27 107.5 ± 17.30 0.6146 0.5817 0.9981 

IFNγ 0.51 ± 0.00 1.52 ± 1.12 0.42 ± 0.18 0.5901 >0.9999 0.3415 

IL-1a 112.3 ± 80.94 154.8 ± 80.65 32.84 ± 17.70 0.7280 0.3732 0.1426 

IL-1b 0.34 ± 0.26 0.60 ± 0.50 0.44 ± 0.14 >0.9999 >0.9999 >0.9999 

IL-2 1.90 ± 0.72 1.57 ± 0.32 1.62 ± 0.44 0.7339 0.7984 0.9924 

IL-3 1.32 ± 0.46 1.01 ± 0.37 0.99 ± 0.43 0.6618 0.6235 0.9975 

IL-4 0.31 ± 0.06 0.26 ± 0.02 0.31 ± 0.11 0.6511 0.8403 >0.9999 

IL-5 7.77 ± 1.93 6.23 ± 4.18 8.07 ± 2.98 0.8278 0.9926 0.7662 

IL-6 2.48 ± 0.84 48.19 ± 24.41 45.53 ± 17.89 0.0424 (*) 0.0533 0.9811 

IL-7 2.90 ± 0.12 143.3 ± 241.7 2.74 ± 0.37 >0.9999 >0.9999 0.6991 

IL-9 43.62 ± 8.89 36.99 ± 20.24 19.48 ± 9.75 0.8344 0.1659 0.3403 

IL-10 9.08 ± 3.01 10.80 ± 1.44 9.09 ± 3.97 0.7692 >0.9999 0.7707 

IL-11 30.62 ± 0.00 265.2 ± 0.00 - - - - 

IL-12/p40 8.26 ± 0.00 8.60 ± 3.46 7.16 ± 4.51 0.9910 0.9131 0.8564 

IL-12/p70 11.90 ± 6.95 10.43 ± 1.59 10.42 ± 0.00 >0.9999 >0.9999 >0.9999 

IL-13 75.58 ± 32.48 40.92 ± 16.69 50.16 ± 15.28 0.2308 0.4158 0.8763 

IL-15 33.38 ± 13.81 3496 ± 5940 21.80 ± 6.26 0.6097 0.8841 0.0610 

IL-16 736.0 ± 399.8 1029 ± 122.6 982.0 ± 289.9 0.4852 0.2892 0.9795 

IL-17 0.22 ± 0.12 0.51 ± 0.11 0.45 ± 0.15 0.0668 0.1408 0.8322 

IL-20 80.55 ± 0.00 205.0 ± 30.61 213.8 ± 85.29 0.3171 0.2800 0.9845 

Table A.2 Values from MD-44 and TGFB1-3 for serum samples. 
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IP-10 60.88 ± 16.87 103.5 ± 38.65 81.26 ± 19.86 0.2079 0.6444 0.5960 

KC 112.5 ± 37.32 165.4 ± 11.71 162.5 ± 72.46 0.4152 0.4502 0.9970 

LIF 0.67 ± 0.13 1.19 ± 0.64 0.92 ± 0.14 0.2895 0.7081 0.6841 

LIX 1818 ± 610.1 2553 ± 482.9 1353 ± 487.9 0.2812 0.5623 0.0724 

MCP-1 1.86 ± 0.41 24.24 ± 37.55 3.17 ± 2.40 0.3032 0.8902 >0.9999 

MCP-5 28.16 ± 13.29 84.78 ± 53.03 55.36 ± 23.82 0.1896 0.6218 0.5776 

M-CSF 3.20 ± 1.47 3.36 ± 2.79 3.61 ± 2.11 0.9954 0.9720 0.9899 

MDC 116.4 ± 22.44 122.4 ± 43.09 97.45 ± 31.98 0.9736 0.7781 0.6542 

MIG 42.59 ± 29.85 105.4 ± 85.67 57.94 ± 28.99 0.3995 0.9383 0.5723 

MIP-1a 49.17 ± 31.80 34.70 ± 21.03 34.25 ± 13.17 0.7386 0.7252 0.9997 

MIP-1b 50.47 ± 4.86 59.63 ± 4.14 53.18 ± 11.37 0.2834 0.8934 0.5601 

MIP-2 43.95 ± 15.07 36.86 ± 2.62 17.73 ± 15.03 0.7716 0.0906 0.2210 

MIP-3a 31.05 ± 13.34 36.89 ± 30.92 27.00 ± 16.04 >0.9999 >0.9999 >0.9999 

MIP-3b 36.89 ± 27.45 81.00 ± 33.14 62.05 ± 30.67 0.2569 0.5980 0.7387 

RANTES 21.81 ± 4.48 21.64 ± 3.64 18.41 ± 9.05 0.9994 0.7878 0.8050 

TARC 95.77 ± 6.72 111.1 ± 5.77 62.91 ± 11.10 0.1328 0.0064 (**) 0.0009 (***) 

TIMP-1 984.1 ± 339.1 3160 ± 976.6 3442 ± 1758 0.1381 0.0950 0.9541 

TNFα 2.96 ± 1.92 4.19 ± 1.96 2.32 ± 1.15 0.6756 0.8914 0.4292 

VEGF 0.83 ± 0.47 0.51 ± 0.19 0.83 ± 0.35 0.5285 >0.9999 0.5285 

6Ckin/Exodus 2343 ± 1435 1929 ± 581.1 1820 ± 891.6 0.8778 0.8140 0.9907 

TGF-β1 50838 ± 7732 64029 ± 7389 32737 ± 4984 0.1203 0.0398 (*) 0.0033 (**) 

TGF-β2 1844 ± 143.9 2165 ± 152.7 1220 ± 135.7 0.0767 0.0044 (**) 0.0005 (***) 

TGF-β3 81.14 ± 40.87 57.44 ± 17.94 59.02 ± 23.70 0.6064 0.6437 0.9976 



 

227 

 

Appendix B 

 

Conferences and travel awards: 

10th Annual Alliance for Healthy Aging Conference Oct 2019 

Selected for poster presentation 

Awarded “Outstanding Abstract”  

Slaley Hall, Hexham, Northumberland, UK 

 

Senescence Symposium May 2019 

Selected for oral presentation 

MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK 

 

9th Annual Alliance for Healthy Aging Conference Oct 2018 

Selected for oral and poster presentation 

Awarded travel grant (£2,500) by conference sponsors Kogod Center of Aging 

Mayo Clinic, Rochester, MN, USA 

 

CVRC Trainees Meeting June 2018 

Selected for oral and poster presentation 

Newcastle University, Newcastle-upon-Tyne, UK 

 

BAS/BSCR 2018 Spring Meeting June 2018 

Selected for poster presentation 

Manchester Central, Manchester, UK 

 

Weinstein 2018 May 2018 

Selected for poster presentation 

Awarded travel grants (£2,000) from The Genetics Society (2.1 Junior Scientist Conference 

Grant), Newcastle University (Postgraduate Travel Fund), and NUIA (Student Travel 

Bursary) 

IRAKA, Nara, Japan 

 

26th Northern Cardiovascular Research Group Meeting April 2018 

Selected for poster presentation 

Discovery Museum, Newcastle-upon-Tyne, UK 
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CVRC Trainees Meeting June 2017 

Selected for poster presentation 

Baltic Centre, Newcastle-upon-Tyne, UK  

 

Publications: 

Walaszczyk A, Dookun E, Redgrave R, Tual-Chalot S, Victorelli S, Spyridopoulos I, Owens 

WA, Arthur HM, Passos JF, Richardson GD. Pharmacological clearance of senescent cells 

improves survival and recovery in aged mice following acute myocardial infarction. Aging 

Cell, 2019 doi:10.1111/acel.12945. (Impact factor 7.6).  

Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, Birch J, 

Salmonowicz H, Ogrodnik M, Jurk D, Proctor C, Correia-Melo C, Victorelli S, Fielder E, 

Berlinguer-Palmini R, Owens WA, Greaves L, Kolsky K, Parini A, Douin-Echinard V, 

LeBrasseur N, Arthur H, Tual-Chalot S, Schafer M, Roos C, Miller J, Robertson N, Mann N, 

Adams P, Tchkonia T, Kirkland J, Mialet-Perez J, Richardson GD, Passos J. Length-

independent telomere damage drives cardiomyocyte senescence. EMBO J, Jan 2019, 

doi:10.15252/embj.2018100492 (Impact factor 10.6).  

Jones R, Krishnan A, Zeybel GL, Dookun E, Pearson JP, Simpson, J, Griffin SM, Ward C, 

Forrest IA. Reflux in idiopathic pulmonary fibrosis: treatment informed by an integrated 

approach. ERJ Open Res, Oct 2018, doi:10.1183/23120541.00051-2018 (Impact factor 

12.2). 

Dookun E, Walaszczyk A, Redgrave R, Tual-Chalot S, Yausep O, Spyridopoulos I, Owens 

A, Arthur H, Passos J, Richardson GD. Accumulation of cardiomyocyte senescence following 

ischaemia-reperfusion injury (IRI); a potential therapeutic target? Heart 104 (Suppl 6), A103-

A103, 2018. (Impact factor 5.420). [Conference abstract]. 

Walaszczyk A, Dookun E, Redgrave R, Tual-Chalot S, Anderson R, Spyridopoulos I, Owens 

A, Arthur H, Passos J, Richardson GD. Senescence as a therapeutic target for myocardial 

ageing. Heart 104 (Suppl 6), A84-A84, 2018. (Impact factor 5.420). [Conference abstract]. 

Richardson G, Sage A, Bennaceur K, Al Zhrany N, Coelho-Lima J, Dookun E, Draganova L, 

Saretzki G, Breault DT, Mallat Z, Spyridopoulos I. Telomerase Mediates Lymphocyte 

Proliferation but Not the Atherosclerosis-Suppressive Potential of Regulatory T-Cells. 

Arterioscler Thromb Vasc Biol. 2018 Mar 29. pii: ATVBAHA.117.309940. (Impact factor 
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