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Abstract 
 

Meiotic chromosomes are bound in architecturally enforced synapsis during the first meiotic division 

by a proteinaceous megastructure known as the synaptonemal complex (SC). This molecular scaffold is 

built between paired homologues, providing a unique three-dimensional environment in which to form 

genetic crossovers, physical inter-homologue connections critical in ensuring equational segregation at 

metaphase. The SC structure represents the hallmark of meiotic division, with a striking tripartite 

appearance, conserved across evolution, in which chromosomally associated lateral elements are 

connected to a midline central element via transversal filaments. 

Such that the SC installs between correctly identified maternal-paternal pairs, a genome-wide, sequence-

based, homology search is facilitated by rapid chromosomal movements. Cytoskeletal forces power 

these movements, transmitted through the nuclear envelope (NE) to the chromosome’s telomeric ends 

via the LINC (Linker of Nucleoskeleton and Cytoskeleton). Importantly, NE recruitment and tethering 

is mediated by the meiotic telomere complex, consisting of MAJIN, TERB1, and TERB2, without which 

meiotic progression is stalled.  

The works herein reveal the structural basis of synapsis in the human SC and chromosome tethering to 

the nuclear envelope by the meiotic telomere complex. Specifically, I report a complete biophysical 

characterisation of SYCP1, the transversal filament protein of the human SC, and present crystal 

structures which represent mechanisms of its assembly within the SC mediated by sequences at both its 

N-termini (which mediate midline, head-to-head, associations) and C-termini (which undergo pH 

dependent, back-to-back assembly on the chromosome axis). Further, we solved the crystal structure of 

the MAJIN-TERB2 complex and characterised its mode of DNA association providing key insights into 

how NE tethering is achieved. Our findings are discussed within the context of the existing molecular 

understanding of meiotic chromosome dynamics. 
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1.1.1 Meiosis – a myriad of molecularly-mediated motions 

The key to the success of a species lies in its ability to reproduce, generation after generation, in an ever-

changing environment. There are two determinants which dictate the success of a species in this respect. 

1) A species must be able to survive within its environment for long enough to reproduce and 2) a species 

must harbour an efficient mechanism to produce viable offspring. 

Some of the most successful organisms alive are the prokaryotes which multiply by a process of binary 

fission, a conservative process in which division is preceded by cellular growth and genome duplication 

(Figure 1.1.1a) (Whitman et al., 1998; Jensen et al., 2002). An outwardly similar process, mitosis, 

underpins the multiplication of simple eukaryotic organisms, such as Saccharomyces cerevisiae, and 

cellular division during growth of higher organisms (Wieser and Pines, 2015). However, unlike 

prokaryotes, eukaryotes package their genetic material within chromosomes and utilise 

compartmentalisation to organise and segregate intracellular processes. This added complexity 

necessitates additional measures to facilitate and ensure accurate duplication. Thus, mitosis represents 

an intricate series of molecular events including the breakdown of the nuclear envelope, the assembly 

of the mitotic apparatus, alignment of chromosomes on the metaphase plate and their subsequent 

equational segregation forming two genetically identical progeny (Figure 1.1.1b).  

However, multicellular eukaryotic organisms, from plants to mammals, replicate through sexual 

reproduction. Although exceptions exist, such as in the haploid (i.e. containing half the usual 

chromosome complement) males of the Hymenoptera order and in plant species which alternate between 

diploid and haploid generations, the majority of higher-order eukaryotic species are diploid with sexual 

reproduction culminating in the fusion of one male and one female haploid gamete, restoring the full 

chromosome complement within the resultant zygote (Maruyama et al., 2016; Branstetter et al., 2018). 

The zygote, through successive mitotic divisions, ultimately develops into a sexually mature adult which 

can reproduce once more. So long as each organism gives rise to at least one sexually successful 

progeny, on average, the population of a species can persist over generations.  
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Figure 1.1.1| Cellular division for replication, growth, and repair. a) The multiplication of 
prokaryotes occurs through the process of binary fission in which the genome and organelles are 
duplicated in a growing cell and segregated upon division. b) Eukaryotic organisms package their DNA 
within the nucleus as chromosomes. Chromosomes must undergo a phase of DNA compaction and 
duplication whilst the cellular architecture undergoes major reconstruction as the nuclear envelope is 
degraded. Microtubules attach to the kinetochore and exert tension to segregate copied chromosomes 
into dividing cells. 
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The production of haploid gametes requires a specialised form of cellular division, named meiosis, in 

which diploid progenitor cells undergo two rounds of cellular division without an intermediate phase of 

genome duplication to form four haploid cells (Figure 1.1.2). The first meiotic division (meiosis I) is 

preceded, as per mitosis, by interphase during which DNA is replicated in S “synthesis” phase resulting 

in a doubling of the usual chromosome complement. Replicated chromosomes are retained in association 

as sister chromatid pairs by cohesion complexes (Klein et al., 1999; Onn et al., 2008), discussed later. 

In Homo sapiens, 46 chromosomes (of which 23 are maternally inherited and 23 are paternally inherited) 

are duplicated to give 46 pairs of sister chromatids. During the onset of meiosis I, homologous 

chromosomes form maternal-paternal pairs and exchange genetic material through recombinatorial 

processes before segregating into diploid progeny. Without further replication of the genome, a second 

round of division, meiosis II, results in the formation of four, genetically distinct, haploid progeny. Here, 

the generation of genetic variation through exchange of maternal and paternal DNA, alongside 

spontaneous mutagenesis, provides the underlying basis for diversity within a species. An important 

consequence of this process is that genetic modifications which confer a selective advantage by 

improving sexual success are preferably inherited. The theory of evolution of species is founded upon 

this principal of natural selection and, therefore, ensuring the fidelity of equational chromosome 

segregation whilst permitting genetic exchange is key to the success of an organism over millennia.  

The mechanisms by which cells ensure the faithful and accurate segregation of chromosomes into the 

progeny of meiosis I are highly controlled and involve the fine orchestration of numerous cellular 

processes. Both mitosis and meiosis I are defined by a reduction in chromosome number from 2n to n 

(i.e. 92 to 46 chromosomes in humans). However, they differ in that, in mitotically dividing cells, 

division is coupled with the separation of sister chromatids, whereas during meiosis I, chromosomes 

firstly locate and align with their cognate, homologous counterpart (i.e. a maternally-derived sister 

chromatid pair partners with its homologous, paternally-derived, sister chromatid pair) prior to division 

in which it is the homologous chromosome pairs which are separated. Therefore, whilst mitosis is a 

conservative process, the progeny of meiosis I are genetically non-identical, containing a mixture of 

maternally and paternally derived chromosomes. Meiosis I is followed by meiosis II, a mitosis-like 

division in which sister chromatids are separated into haploid progeny.  
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Whilst many features of the mitotic cycle are retained, the described distinction between mitosis and 

meiosis I originates through the execution of a highly specialised, meiosis-specific molecular program 

involving the action of countless meiosis-specific factors and protein assemblies. The successful passage 

through meiosis I is dependent upon the following: 1) The correct pairing of homologous chromosomes, 

2) the exchange of genetic material by chromosomal crossover events and 3) the segregation of 

homologous pairs into the progeny. Each of these are dependent upon specific protein-protein and 

protein-DNA interactions and the formation of key proteinaceous assemblies and it is these which 

provide the basis for the following discussion and subsequent study. The meiotic process of the 

mammalian species will constitute the core of the discussion although comparisons to other organisms 

will be drawn upon throughout. 

1.1.2 The first meiotic division in mammals 

Meiosis I, as per mitosis, is composed of four stages: prophase, metaphase, anaphase and telophase. 

Homologous chromosome pairs are aligned during meiotic prophase I and subsequently localise to the 

cellular midline and bi-orientate through attachment of the mitotic apparatus during metaphase. In 

anaphase, chromosome pairs are separated by tension forces generated by microtubule-associated motor 

proteins with telophase being characterised by the segregation of half of replicated components in each 

of the progeny. Meiotic prophase I can be further divided into the stages known as leptotene, zygotene, 

pachytene, diplotene, and diakinesis, each being defined by distinct cellular and chromosomal 

architectures. Though, as meiosis entails a continuous flow of events and morphological states, rather 

than occurring in a basic step-wise manner, there is no absolute distinction between the sequential phases 

and, hence, cells are frequently referred to as being, for example, “early-leptotene”, “late zygotene”, or 

“mid-pachytene”. The events occurring within the meiotic prophase I are particularly ornate and form 

the basis for the following discussion. An overview of the mammalian meiotic prophase I is outlined 

below and depicted in Figure 1.1.2a. It should be noted that, although overarchingly recognisable across 

evolution, there exist species-specific alterations to the meiotic program of which key and/or interesting 

differences are highlighted in the subsequent detailing of the individual component processes.  

1. Post-genome replication, chromosomes begin to condense, forming thin threads by the leptotene 

stage of meiotic prophase I. During this period, an array of 200-400 double-strand breaks 
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(DSBs) are induced across the genome (Barlow et al., 1997; Lenzi et al., 2005; Oliver-Bonet et 

al., 2005; Baudat and de Massy, 2007).  

2. Zygotene follows in which physical connections between homologous chromosomes are 

established through the formation of inter-homologue DSB-intermediates (Hunter, 2015). DSB-

dependent pairing is facilitated by telomere-led rapid prophase movements driven through the 

connection of chromosome ends to the nuclear envelope and cytoskeleton (Lee et al., 2015) 

culminating in the formation of the characteristic meiotic bouquet, a polarised, horse-shoe 

shaped chromosome structure in which all telomeric ends are spatially clustered (Zickler and 

Kleckner, 1998).  

3. Upon the initial tethering of chromosomes, the synaptonemal complex (SC), a ladder-like 

proteinaceous scaffold begins to assemble between opposing axial elements, now termed lateral 

elements (Page and Hawley, 2004). During pachytene, this tripartite structure enforces a three-

dimensional architecture seemingly required for the processing of double-strand breaks by non-

crossover (NCO) and crossover (CO) recombination. CO maturation is mediated by a number 

of protein complexes and CO frequency and spacing is regulated by CO interference, with as 

few as one to two forming per chromosome in humans (Hunter, 2015). COs physically manifest 

as chiasmata, direct linkages between homologue pairs which persist after SC disassembly 

(Petronczki et al., 2003). The disassembly of the SC marks the end of meiotic prophase I and is 

followed by metaphase in which homologues are separated and segregated to alternate progeny 

during diplotene (Barlow et al., 1997).  
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1.1.3 Nuclear architecture, dynamics and premeiotic DNA replication 

Eukaryotic chromosomes are enclosed within the nucleus, a cellular compartment encapsulated by the 

double-membraned nuclear envelope. The outer-membrane is continuous with the endoplasmic 

reticulum whilst the inner-membrane is associated with the nuclear lamina. The two meet at the sites of 

nuclear pore complexes (NPCs) which facilitate cytoplasmic-nuclear transport and tethering of the 

nuclear lamina to the cytoskeleton (Goldberg and Allen, 1996; Hoelz et al., 2011; Goldberg, 2017). 

Throughout the early stages of meiotic prophase I, the nuclear membrane provides a fluid two-

dimensional plane through which telomeric ends glide under a cytoskeletal driving force (Lee et al., 

2015). In mammalian species, the nucleus protects chromosomes from the microtubule-organising 

centres, the centrosomes - intricate structures with eight-fold symmetry (Fu et al., 2015). This precludes 

precocious spindle association allowing time for the processes of chromosome alignment and synapsis 

to complete. The timely onset of chromosome segregation is thus triggered by the breakdown of the 

nuclear envelop (NEBD). In this, the nucleus is disassembled through tubulation into the endoplasmic 

reticulum (De Magistris and Antonin, 2018) allowing for microtubule attachment to the chromosome 

kinetochores. In other organisms, such as yeast, division occurs fully within the context of the nucleus 

and is dependent upon nuclear expansion and division (Kutay and Hetzer, 2008; Takemoto et al., 2016). 

This species difference is congruent with the localisation of the microtubule-organising centres; human 

centrosomes are cytoplasmic whilst the spindle pole body of Saccharomyces pombe is fixed within the 

nuclear envelope (Ding et al., 1997) whereas in Saccharomyces cerevisiae it is inserted into the nuclear 

envelope prior to metaphase (Jaspersen and Winey, 2004). 

During the premeiotic S-phase, as in mitosis, chromosomes are replicated and remain bound in pairs of 

sister chromatids. Unusually, premeiotic S-phase is extended in comparison to the mitotic S-phase, for 

unknown reasons. However, it is postulated that differences in chromosome dynamics and repair 

procedures between meiosis and mitosis which, respectively, affect and correct errors during the 

replicative process could be responsible (Forsburg, 2002). Accordingly, the replicative phase length 

appears to be governed by key meiosis-specific factors which play independent roles early in meiotic 

progression (Cha et al., 2000). Upon replication, cohesion is quickly established through cohesion 
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Figure 1.1.2| The stages of meiosis. a) During interphase, DNA is in a decondensed state and is 
replicated, concurrent with centrosome (orange dots) duplication, during a pre-meiotic S phase. Prior to 
the onset of the first meiotic division, replicated chromosomes (bound by cohesins as sister-chromatid 
pairs) begin to condense and initiate pre-meiotic pairing (not depicted in this schematic). During 
leptotene, double strand breaks are induced across the genome (indicated by stars) which are processed 
to create single-stranded search probes. During a phase of rapid prophase movements (indicated by 
black, double-headed arrows) homologous chromosomes locate their partners and begin to synapse 
during zygotene. Fully synapsed chromosomes are visible in pachytene, bound by the synaptonemal 
complex within which DSB repair intermediates are processed to create one crossover per chromosome 
arm. Subsequently, the SC disintegrates leaving chromosomes in association through chiasmata. The 
nuclear envelope breaks down allowing attachment of microtubules to the kinetochores, allowing 
chromosome segregation during anaphase, thus concluding meiosis I. b) Meiosis II follows and consists 
of a mitotic-like division in which sister-chromatids are released from their cohesin-mediated binding 
and segregated into haploid progeny. These then further differentiate into either sperm or eggs.  
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complexes (discussed later) and undergo compaction to produce linear arrays of chromatin loops 

through the action of condensing complexes utilising an ATP-dependent “loop extrusion” mechanism 

(Nasmyth, 2001; Goloborodko et al., 2016). However, at this stage there is no discernible distinction 

between bound sister chromatids (image of pre-leptotene chromatid pair presented in Figure 1.1.3a,b) 

(Sumner, 1991). 

 

Figure 1.1.3| Chromosome morphology during cell division. a,b) Upon initial condensation, during 
early prophase (i.e. leptotene in meiosis), no distinction between replicated chromosomes is visible, with 
bound sister chromatids appearing as a single, segmented entity (scale bars represent 5 and 1 µm, 
respectively). c,d) During metaphase, a clear furrow is visible, slightly separating bound sister 
chromatids during mitotic metaphase (scale bars represent 5 and 1 µm, respectively). 

 

1.1.4 Premeiotic/early leptotene homologue pairing 

During the premeiotic S-phase, replicated chromosomes, which cannot be distinguished as two 

individual sister chromatids, already undergo partial condensation, forming fine, elongated fibres by 

early-leptotene (Figure 1.1.2a). At this stage, there is already evidence of early pairing between 

homologous chromosomes driven by numerous DSB-independent mechanisms, both homology-

dependent and homology-independent (Zickler and Kleckner, 2015). It is the exception that these 

mechanisms constitute the sole mechanism of homologue-pairing during the meiotic cycle, with most 

organisms establishing pairing through further double-strand break (DSB)-dependent mechanisms 

which shall be discussed later in this chapter (Zickler and Kleckner, 2015). However, it was these 
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organisms which do not utilise DSB-dependent pairing mechanisms that allowed for early/alternative 

mechanisms of pairing to become apparent. 

The clustering of homologues through homologous sequences, such as those within centromeric and 

telomeric regions, is evidenced in multiple organisms. In Caenorhabditis elegans (Christophorou et al., 

2013) and Zea mays (Zhang et al., 2013), premeiotic and early-leptotene centromeric associations 

facilitate relative positioning of homologues whilst in Arabidopsis thaliana (Armstrong et al., 2001) and 

Mus musculus (Boateng et al., 2013) clustering of telomeres functions to achieve similar results. In mice, 

telomeric clustering is dependent upon the DNA topoisomerase SPO11-β which is responsible for DSB-

induction during leptotene (SPO11-α is expressed post-pachytene), but independent of DNA cleavage, 

as evidenced through retention of premeiotic pairing in knock-in mice expressing a catalytic-dead 

mutant of SPO11-β whilst premeiotic pairing is lost in the homozygous knockout (Bellani et al., 2010; 

Boateng et al., 2013).  

Organisms, including Mus musculus (Krueger et al., 2012) and Saccharomyces cerevisiae (Weiner and 

Kleckner, 1994) exhibit homologous pairing in somatic cells, termed somatic pairing, in which 

homologues remain in association through the premeiotic growth and synthesis phases.  Although 

somatic pairing is not observed within somatic cells of Drosophila melanogaster, the mechanism is 

activated five cycles prior to the meiotic division allowing for pairing establishment (Joyce et al., 2013). 

Alternatively, in Caenorhabditis elegans, homologous pairing initiates at pairing centres, regions 

containing arrays of repetitive DNA sequences, primarily proximal to the telomeres (MacQueen et al., 

2005; Bhalla and Dernburg, 2008). Pairing in this manner appears to be dependent upon the local 

recruitment of a family of zinc-finger containing proteins (Phillips and Dernburg, 2006).   

Interestingly, in Saccharomyces pombe, a meiosis-specific non-coding RNA in coordination with Mei2 

and Mmi1, which associates within specific loci within chromosomes act as nuclei for homologue 

pairing (Ding et al., 2013). In some fungi, the mechanistically-unclear phenomena of repeat-induced 

point mutation (RIP) and methylation-induced premeiotically (MIP) appear to mediate the alignment of 

short repeat sequences between homologous DNA sequences (Selker, 1990; Gladyshev and Kleckner, 

2014). 
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1.1.5 Formation of the axial elements 

During leptotene, the sister chromatids of each replicated chromosome remain tightly bound (Klein et 

al., 1999; Onn et al., 2008) and undergo further organisation and compaction by the formation of axial 

elements (AEs) (Page and Hawley, 2004). These represent a protein core from which emanate evenly 

spaced chromatin loops (a spacing of 20 loops per µm is evolutionarily conserved (Kleckner, 2006)). 

The frequency, however, of meiotic loops is species- and sex-specific, elegantly demonstrated in humans 

in which the chromosomes of male are twice as short as their female counterparts and, correspondingly, 

harbour longer chromatin loops (Tease and Hulten, 2004). This difference appears to not be related to 

the underlying DNA sequence, as demonstrated through the adoption of host loop spacing upon 

placement of heterologous chromosomes within a non-native host cell (Loidl et al., 1995). 

The underlying protein core of the axial element consists of two protein groups: the cohesins (Klein et 

al., 1999) and the axial element proteins, synaptonemal complexes proteins 2 and 3 (SYCP2/3) 

(Kouznetsova et al., 2005). Cohesins are ubiquitously expressed, yet undergo meiosis-specific 

alterations (Watanabe, 2004). Cohesins form trimeric ring-shaped protein complexes consisting of two 

SMC proteins which together constitute a coiled-coil/hinge/coiled-coil, V-shaped heterodimer, with the 

ends being connected by a linking “α-kleisin” molecule. Cohesins are thought to entrap DNA, bind sister 

chromatid pairs, and facilitate chromatin looping (Nasmyth and Haering, 2009). In mitosis, cohesin 

complexes are formed by SMC1, SMC3 and the α-kleisin, SCC1 (Nasmyth and Haering, 2005). During 

mitotic onset, in prophase, most of the cohesion between sisters is lost (Sumara et al., 2002) whilst 

centromeric cohesion persists to maintain sister chromatid association. Centromeric cohesion is 

ultimately removed through proteasome-mediated cleavage of SCC1 in a separase-dependent manner in 

response to APC/C-mediated ubiquitylation upon bivalent biorientation to allow for chromosome 

segregation (Nasmyth and Haering, 2009). However, despite also containing the mitotic SMC1 and 

SMC3 (Eijpe et al., 2000), the cohesins of the meiotic chromosome axis are altered and incorporate 

meiosis-specific components including the α-kleisins REC8 and RAD21L (Ishiguro et al., 2014), 

SMC1β (Watanabe, 2004) and accumulate STAG3 through leptotene (Prieto et al., 2001; Biswas et al., 

2016). Unlike mitotic SCC1, both REC8 and RAD21L avoid depletion during prophase and remain 

associated with the chromosome arms with REC8 overtly preventing sister-chromatid disjunction and 

untimely recruitment of SC proteins (Xu et al., 2005; Agostinho and Hoog, 2016; Agostinho et al., 
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2016). Additionally, like SPO11, meiotic cohesin Rec8 plays an additional role in premeiotic homology 

pairing (Ishiguro et al., 2014). These alternative mechanisms ensure sister-chromatid attachment during 

metaphase, allowing only for the separation of homologous chromosomes. 

The integrity of the axial element is further maintained by both the axial element proteins, SYCP2 and 

SYCP3. SYCP3 was first identified in rat as a meiosis-specific axial element component through 

screening a testis cDNA expression library using antibodies raised against purified synaptonemal 

complexes (Lammers et al., 1994). The SYCP3 core (residues 66-230 of 236 total) constitutes a four-

helical bundle of which the crystal structure was solved revealing an anti-parallel organisation from 

which unstructured N-termini emanate (PDB 4CPC; Figure 1.1.4a) (Syrjanen et al., 2014). The structure 

of murine SYCP3 (PDBs 6DD8 and 6DD9) was also solved demonstrating an equivalent fold as its 

human homologue (West et al., 2019). The N-termini are capable of associating with DNA whilst 

collaborating with the C-termini to mediate end-to-end association, forming striated, fibrous structures 

both in vivo (Yuan et al., 1998) and in vitro (Syrjanen et al., 2014), observable by electron microscopy 

(Figure 1.1.4b). The formation of these structures can be completely abrogated through the deletion of 

6 residues at the extreme C-terminus of SYCP3, implicating these residues in SYCP3 self-assembly 

(Syrjanen et al., 2014).  

SYCP2 was identified during the same screening procedure that identified SYCP3 (Offenberg et al., 

1998). Sequence analysis of SYCP2 (1530 residues in total) reveals the presence of two domains 

separated by a flexible linker (Offenberg et al., 1998). An N-terminal structured domain consists of two 

elements (a super-helical, armadillo-like fold followed by a twisted β-sheet) whilst a C-terminal domain 

(residues 1356-1523) is predicted to be helical (Figure 1.1.4c) (Feng et al., 2017). The C-terminal helical 

region of SYCP2 interacts with the helical domain of SYCP3 (West et al., 2019) with its deletion 

blocking the recruitment of SYCP3 to the chromosome axis (Yang et al., 2006).  

Both components localise along the entire length of the axial elements (Schalk et al., 1998). Single 

molecule DNA experiments have shown that the association of SYCP3 with DNA induces DNA 

compaction, suggesting its role in the shortening of leptotene chromosomes (Syrjanen et al., 2017). 

Correspondingly, the homozygous knockout of SYCP3 results a doubling of chromosome axis length 

and, in keeping with the inverse relationship between chromosome length and loop size, a halving of 



Chapter 1 - Introduction 

14 
 

the loop size (Novak et al., 2008). Despite being essential for meiotic progression and fertility (Yuan et 

al., 2000; Yang et al., 2006), recruitment of  neither of these protein components is essential for the 

formation of a partially functional chromosome axis and the recruitment of DNA repair factors such as 

DMC1 and MSH4 (Pelttari et al., 2001). 

Although the overall chromatin status of homologous chromosomes is known to be dynamic, the 

chromatin status directly proximal to the chromosome axis is unknown (Zickler and Kleckner, 1999). 

Chromatin status describes whether or not, and in what manner, chromosomal DNA is packaged by 

histone complexes known as nucleosomes. During interphase, genetically active regions of the 

chromosome (euchromatin) are loosely packaged, exhibiting a “beads on the string” organisation (in 

which beads are nucleosomes and the string is DNA) whilst genetically inactive regions 

(heterochromatin) are highly condensed and associate with the nuclear lamina, exhibiting a tightly 

wound super-helix in which nucleosomes condense to form a 30 nm fibre (Olins and Olins, 2003; 

Garcia-Saez et al., 2018). During meiotic division, chromosomes are packaged as heterochromatin 

though how the regions which make direct contacts with the synaptonemal complex are packaged is 

unknown. This is relevant when considering the mode by which proteins responsible for forming the 

axial elements are recruited and further in understanding its overall architecture such that we might build 

a molecular model for how axial elements of homologous chromosomes juxtapose and mature through 

meiotic progression.  
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Figure 1.1.4| SYCP2 and SYCP3 are structural components of the mammalian lateral elements. 
a) SYCP3 forms an anti-parallel four-helical bundle measuring 218 Å in length. b) Electron micrograph 
displaying an SYCP3 assembly reminiscent of those formed upon overexpression in vivo and the lateral 
element structures of the SC. The repeat measures 23 Å. c) The crystal structure of the SYCP2 N-
terminal domain with helices of the armadillo-like fold coloured in blue/green/yellow and a globular, 
twisted β-sheet in salmon pink (PDB 5IWZ).  

 

1.1.6 Self-inflicted DSBs and homologous strand invasion reinforce homologue association 

In humans, during leptotene, 200-400 DSBs are induced through the action of SPO11, described 

previously as having, independent of its catalytic activity, a role in homologous chromosome pairing 

(Barlow et al., 1997; Lenzi et al., 2005; Oliver-Bonet et al., 2005; Baudat and de Massy, 2007; Bellani 

et al., 2010). SPO11 is a dimeric evolutionarily conserved type II topoisomerase which cleaves both 

strands of double-stranded DNA through the concerted action of each subunit (Keeney, 2008). It utilises 

a transesterification mechanism dependent upon catalytic tyrosine residues (Y137 and Y138 in SPO11-

α and SPO11-β, respectively) (Klapholz et al., 1985; Keeney et al., 1997; Roeder, 1997; Boateng et al., 

2013). The mechanism of cleavage is detailed in Figure 1.1.5 (Krogh and Shuman, 2000). The sites 

designated for cleavage by SPO11 occur within the looped sequences rather than axis-associated 

sequences and appear, at least in fission yeast, to be determined by underlying DNA sequence (Blat et 
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al., 2002; Ito et al., 2014). Downstream chromosome synapsis, aberrant in the SPO11 knockout, can be 

restored through the exogenous induction of double-strand breaks by cis-platin (Romanienko and 

Camerini-Otero, 2000) or radiation (Carofiglio et al., 2018).  

 

Figure 1.1.5| The catalytic mechanism of Spo11-mediated DNA double-strand break induction. 
SPO11 is responsible for the introduction of hundreds of double-strand breaks across the genome. It 
cleaves DNA through a transesterification mechanism involving a general base and acid and the 
hydroxyl group of a tyrosine residue. The figure above was adapted from (Krogh and Shuman, 2000).  

 

The resultant double-stranded breaks are subsequently processed through 5’-3’ end-resection to create 

long, single-stranded DNA extensions. Assuming similarity with the mitotic machinery which process 

DSBs in preparation for homologous recombination, end-resection is mediated jointly by the MRN 

complex, CtIP, EXO1, BLM helicase, DNA2, and RPA (Nimonkar et al., 2011; Davies et al., 2015). 

The single-stranded extensions subsequently act as search probes which, through strand invasion in 

which one strand of the target double-stranded DNA is displaced to allow base pair-base pair interactions 

between the probe and target to find homologous regions within chromosomes (Figure 1.1.6).  

Mediating the process of strand invasion are the recombinase proteins, RAD51 and its meiosis-specific 

counterpart DMC1, which displaces RPA (in addition to MEIOB/SPATA22 is meiosis) to coat the 

single-stranded DNA extensions to create a nucleoprotein filament. RAD51 presents a helical 
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association of subunits whilst DMC1 organises as stacked rings on a thread (Figure 1.1.7a,b) (Baumann 

and West, 1998; Passy et al., 1999; Luo et al., 2013). The nucleoprotein filament subsequently invades 

the homologous chromosome to create a single-end invasion intermediate, a D-loop structure which 

undergoes downstream processing to eventually be repaired by crossover or non-crossover homologous 

recombination, a process and decision discussed later in this chapter (Figure 1.1.6) (Hunter and 

Kleckner, 2001). RAD51 and DMC1 were found to localise to axial associations between homologous 

chromosomes by immuno-gold localisation electron microscopy suggesting that strand invasion 

mediates close contacts between homologues (Figure 1.1.7c) (Tarsounas et al., 1999). In SPO11 knock-

out mice, in which DSBs are not induced, RAD51 and DMC1 are not recruited, resulting in meiotic 

stallage (Baudat et al., 2000). 

Although RAD51 and DMC1 co-localise, they have not been shown, biochemically, to interact. RAD51 

and DMC1 are both structural and functional homologues of the archaeal recombinase RadA of which 

multiple crystal structures are available, adopting both helical and ring-like assemblies reminiscent of 

the structures coating DNA by electron microscopy (Figure 1.1.7d) (Bishop, 1994). For example, 

Pyrococcus furiosus RadA oligomerises as a heptameric ring (PDB entry 1PZN) whilst Methanococcus 

voltae RadA undergoes recursive self-associations within the crystal lattice to create a helix of indefinite 

length (PDB entry 2F1H). This is despite sharing an almost identical subunit fold, containing an N-

terminal domain and a C-terminal ATPase domain (Figure 1.1.7e). The sequence which mediates its 

oligomerisation is an FxxA/G motif (indicated in red in all presented structures) which is shared by 

RAD51 and DMC1 of sexually reproducing organisms. 

The structure of both filamentous RAD51 (PDB 5NWL) and ring-like DMC1 (PDB 6R3P) are known 

(Figure 1.1.7d)  (Du and Luo, 2013; Brouwer et al., 2018). Both adopt a similar fold to RadA (Figure 

1.1.7e). However, DMC1 forms an octameric ring, whilst RAD51 forms helical filaments (Figure 

1.1.7d). The functional relevance of this distinction is unknown though it appears that RAD51 and 

DMC1 have slightly different functions, with RAD51 being required for the recruitment of DMC1 and 

DMC1 being required for the disassembly of RAD51 (Bishop, 1994). Both RAD51 and DMC1 may be 

mediated by BRCA2, promoting their loading/unloading onto single-stranded DNA. This may be 

achieved through the concerted action of several recombinase-interacting sequences within BRCA2. For 
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example, the BRC repeat sequences (encoded within the BRCA2 exon 11) are known to disrupt the 

oligomerisation of both recombinases by mimicking the self-association motif (Figure 1.1.7f) whilst a 

sequence (encoded within the BRCA2 exon 27) stabilises higher-order RAD51 oligomers (Pellegrini et 

al., 2002; Davies and Pellegrini, 2007; Martinez et al., 2016).   

 

 

Figure 1.1.6| Meiotic recombination. Homologous recombination in mammalian meiosis 
indispensable for homologue pairing. It is initiated through a programmed series of double-strand breaks 
which are subsequently processed to create single-stranded probes which enact a homology search to 
tether the homologue and form a D-loop. These DNA repair intermediates are processed and are directed 
for either crossover or non-crossover repair. 
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Figure 1.1.7| Recombinase-mediated strand invasion. a,b) Nucleoprotein filaments formed by a) 
RAD51 and b) DMC1 on double-stranded DNA and partially duplex ΦX174 virion DNA, respectively. 
c) Electron microscopy visualisation of RAD51 and DMC1 associated axial associations of mouse 
chromosomes formed by strand invasion (Tarsounas et al., 1999). 10 nm particles = DMC1, 5 nm 
particles = RAD51. d) Crystal structure of ring-like RadA (Pyrococcus furiosus), ring-like DMC1 
(Homo sapiens), filamentous RadA (Methanococcus voltae) and filamentous RAD51 (Homo sapiens). 
e) Superimposition of a single subunit from 1PZN, 1V5W, 2F1H and 5NWL demonstrating the 
similarity of the ATPase domain fold. The crystal structure of DMC1 does not contain the N-terminal 
domain f) Crystal structure of DMC1 ATPase domain (PDB 1V5W). f) The crystal structure of the 
RAD51 (red)-BRCA2 BRC repeat 4 (purple) complex in which the FxxA motif (red) is highlighted 
demonstrating the docking of the phenylalanine into a hydrophobic cleft (Pellegrini et al., 2002). 
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1.1.7 Rapid prophase movement of chromosomes facilitates pairing 

To facilitate the process of homology searching by strand invasion, during zygotene, chromosomes 

undergo a period of highly dynamic movements. After the formation of thin, thread-like, axial cores, 

chromosomes undergo further compaction and embark upon potentially the most dynamic phase of the 

entire cycle (Zickler and Kleckner, 1998). In this, the telomeric ends of the chromosomes are tethered 

to the nuclear envelope and, through the transmission of cytoskeletal forces, are quickly moved about 

the nucleus in what are known as rapid prophase movements (RPMs) (Zickler and Kleckner, 2015). 

These are thought to both facilitate homology searching by the single-stranded DNA extensions, 

allowing quick searching of the genome, whilst breaking unwanted inter-chromosomal associations 

(Koszul and Kleckner, 2009). RPMs appear to be a conserved feature of the meiotic cycle, having been 

observed in diverse organisms such as Saccharomyces cerevisiae (Bhalla and Dernburg, 2008), 

Saccharomyces pombe (Chikashige et al., 1994), mice (Lee et al., 2015), and Caenorhabditis elegans 

(Woglar and Jantsch, 2014). Although there are key differences in RPM dynamics between organisms, 

such as in telomere-clustering density and movement in relation to the location of the microtubule-

organising centre, functionally conserved protein complexes drive this process across evolution. These 

complexes include Shelterin (responsible for preventing the DNA damage response at telomeres), the 

LINC complex (which connects the cytoskeleton with the nucleoskeleton), and the meiotic telomere 

complex (which contains newly discovered components and is responsible for recruitment of telomeres 

to the nuclear envelope). These complexes, and research performed as part of this study, shall be 

discussed thoroughly in Chapter 4. 

1.1.8 Formation of the synaptonemal complex in mammals 

Upon proper pairing, the synaptonemal complex forms, a proteinaceous super-structure which 

assembles between paired homologous chromosomes. The SC comprises a tripartite organisation, 

consisting of a central midline element, chromosome-associated lateral elements and transverse 

filaments connecting the two (Figure 1.1.8) (Page and Hawley, 2004). The SC is critical for meiotic 

progression with the knockout of any individual component resulting in infertility, embryonic death due 

to aneuploidy, or recurrent miscarriage (Yuan et al., 2000; Matzuk and Lamb, 2002; de Vries et al., 

2005; Bolcun-Filas et al., 2007; Hamer et al., 2008; Bolcun-Filas et al., 2009; Bolor et al., 2009; 

Kouznetsova et al., 2011; Schramm et al., 2011; Page and Silver, 2016).  
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The length of the SC is chromosome dependent and varies across organisms. Human SCs have a 

maximum length of 24 µm and an average length of 11.7 µm (Solari, 1980). The SCs of females are 

approximately 60 % longer, with 60 % increase in crossover frequency (Jones and Croft, 1989; Wallace 

and Wallace, 2003; Tease and Hulten, 2004). The width of the central region is conserved across 

evolution at approximately 100 nm (Figure 1.1.8) (von Wettstein et al., 1984). However, this is also sex-

dependent with the inter-lateral element (inter-LE) distance (a value measured as being wider than the 

width of the SC) being 210.0 ± 3.7 nm in males and 143.0 ± 2.8 nm in females, with similar observations 

being made in Bombyx mori and insects (Rasmussen, 1979; von Wettstein et al., 1984; Agostinho et al., 

2018). In addition to inter-LE distance, the width of the central element (CE) displays similar disparity 

between the sexes, measuring 24.6 ± 0.5 nm in males and 22.1 ± 0.6 nm in females (Agostinho et al., 

2018). Synaptonemal complexes were first identified in crayfish by Montrose K. Moses in 1956 and 

although these initial structures were not quite as striking as some which have been visualised since, this 

discovery paved the way for a whole new field of biological research focusing upon the role of the SC 

in meiotic division (Moses, 1956). Presented within Figure 1.1.8 are SC structures from multiple 

organisms, from fungi to humans, including model organisms such as Caenorhabditis elegans and 

Drosophila melanogaster demonstrating their overt evolutionary conservation (Solari and Tres, 1970; 

Westergaard and von Wettstein, 1972; von Wettstein et al., 1984; McKim et al., 2002; Schramm et al., 

2011; De Muyt et al., 2014; Schucker et al., 2015; Cahoon et al., 2017). Some of the central element 

structures are lattice-like, such as those of insects, C. elegans, and some plants, though most are 

amorphous (Westergaard and von Wettstein, 1972). Despite having been studied extensively 

cytologically, SCs have up until recently eluded structural characterisation at the protein level.  
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Figure 1.1.8| The evolutionary conservation of the synaptonemal complex. The synaptonemal 
complex demonstrates an overtly similar architecture in all known sexually reproducing organisms 
which utilise an SC.  
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1.1.9 Components of the mammalian SC central region 

The central region of the SC is defined as being the region between, and not including, the lateral 

elements (axial elements become known as lateral elements upon synapsis by the SC). The first 

component of the mammalian SC central region to be identified was SYCP1, the transverse filament 

protein which spans between the lateral elements and the central element (Meuwissen et al., 1992). This 

protein, and its functional homologues of distinct phyla, are discussed thoroughly in Chapter 3. Briefly, 

SYCP1 contains a large central helical domain, predicted to fold as a coiled-coil (Meuwissen et al., 

1992). As demonstrated by immuno-gold localisation of the SYCP1 termini it was found that SYCP1 is 

orientated within the SC such that its C-terminus is anchored within the lateral elements and its N-

termini are situated within the central midline element, bridging the two elements (Liu et al., 1996; 

Schmekel et al., 1996). It is proposed to contain DNA binding sites within its unstructured C-terminal 

tail, a statement which currently lacks experimental evidence. 

 

 

Figure 1.1.9| Protein components of the mammalian SC. a) To scale schematic of the SC proteins of 
the mammalian SC annotated with helical regions, domains with structures solved by crystallography 
and regions characterised through biophysical methods. 
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Many SC proteins have been localised to the central element of the SC including SYCE1, SYCE2, 

SYCE3, TEX12 and SIX6OS1 (Costa et al., 2005; Hamer et al., 2006; Schramm et al., 2011; Gomez et 

al., 2016). In similarity with SYCP1, SYCP2 and SYCP3, all central element proteins contain helical 

domains with predicted propensity to fold as coiled-coils (Figure 1.1.9). On the basis of their individual 

knockouts and the effect of each upon synapsis by SYCP1, the central element proteins have been 

divided into two groups: the initiators and the extensors. Deletion of SYCE1 or SYCE3 results in the 

ablation of central element formation and allows for only short axial associations (Figure 1.1.10) 

(Bolcun-Filas et al., 2009; Schramm et al., 2011). In contrast, deletion of SYCE2 or TEX12 does not 

preclude central element formation but inhibits long-range extension of synapsis (Figure 1.1.10) 

(Bolcun-Filas et al., 2007; Hamer et al., 2008). Critically, the deletion of any SC protein results in 

complete meiotic blockage, demonstrating the absolute requirement for correct assembly of the SC. 

Within the subdivisions of central element proteins, interactions have been identified such as that 

between SYCE1 and SIX6OS1 and that between SYCE2 and TEX12 (Davies et al., 2012; Gomez et al., 

2016). The mechanisms behind the recruitment of these proteins to, and their assembly within, the SC 

has only recently started to be understood from a molecular perspective due to recent structural and 

biochemical analyses. 

 

Figure 1.1.10| Disruption of the mammalian SC central element. Knockout mice demonstrating the 
contribution of central element components SYCE1, SYCE2, SYCE3 and TEX12 to chromosome 
synapsis. 
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1.1.10 The SC central element proteins – building a model for the mammalian SC 

Although immuno-gold electron microscopy, the prevailing technique for the localisation of proteins 

within the SC, proved effect in determining central or lateral localisation, high resolution localisation of 

protein components was only possible upon the advert of super-resolution fluorescence microscopy 

techniques. In the high-resolution study of Schücker et al, photo-switchable Alexa Fluor® dyes were 

utilised in conjugation with F(ab)2 fragments as secondary antibodies to improve resolution (Schucker 

et al., 2015). From bubble-like structures within visualisations of spread chromosomes, which they 

suggested represented lateral views of SC structure, they proposed a bimodal distribution of SYCE1, 

SYCE2, SYCE3 and the SYCP1 N-terminus. A contrasting study published the following year, once 

again utilising immuno-gold localisation, argued against their conclusions suggesting the “bubbles” are 

artefacts of the preparation technique (Hernandez-Hernandez et al., 2016). They also suggested bimodal 

distributions of central element proteins, but for only SYCE3 and the SYCP1 N-terminus. However, 

these suggestions, by inspection of their presented electron micrographs, appear to be based upon 

relatively few gold particles. Therefore, both studies have aspects to be questioned. The study of 

Hernandez-Hernandez did, however, interestingly find that SYCE1 and SYCP1 N-termini are randomly 

localised within the SC central region in TEX12 null mice suggesting the requirement for TEX12 for 

central region organisation (Hernandez-Hernandez et al., 2016). 

From these studies, however, it is eminently clear that the SC is a three-dimensional structure which a 

depth of almost 100 nm as well as being 100 nm wide. It is therefore almost certainly a structure of 

multiple layers. The described studies suggest that the SC central region is bi-layered though exactly 

which components exhibit a bimodal distribution is disputed. Schücker et al found that the lateral 

elements, in association with the SYCP1 C-terminus, demonstrate a monomodal distribution (Schucker 

et al., 2015).  

1.1.11 The SC central element: a molecular understanding 

According to published research and unpublished data of the Davies group (Dr Orla Dunne, Dr Lucy 

Salmon, Dr Owen Davies) (not shown), SYCE3 is the sole and crucial link between SYCP1 and the 

central element (Hernandez-Hernandez et al., 2016). The crystal structure of SYCE3 was solved, 

revealing that it forms a stable dimer in which two interlocking chains fold to form a globular four-
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helical bundle (Lu et al., 2014). The structure was re-refined in a separate study, revealing the 

organisation of the looped sequences (Figure 1.1.11a) (Dunne and Davies, 2019a). This study further 

revealed the propensity of SYCE3 to undergo higher-order oligomerisation, mediated through end-on, 

domain-swapping and lateral associations by surface-exposed aromatic residues (Figure 1.1.11b) 

(Dunne and Davies, 2019a). 

 

Figure 1.1.11| The self-assembly properties of SYCE3. a) The re-refined crystal structure of SYCE3 
(PDB: 6H86) demonstrating a compact, four-helical dimeric fold. Each chain is coloured blue through 
green to yellow from N to C-terminus. A 90˚ rotation reveals the lateral association surface highlighting 
key residues Y11, L15, W41 and Y44. b) Schematic depicting SYCE3 assembly. SYCE3 is a dimer 
which can undergo domain-swap or end-on association to create an elongated SYCE3 tetramer. Further 
oligomerisation is then mediated by lateral associations.  

 

Unlike SYCE3, another initiation factor, SYCE1, does not have propensity for self-assembly and 

although its crystal structure has not been solved, a complete biophysical characterisation revealed that 

it adopts an extended, anti-parallel dimeric coiled-coil fold (Dunne and Davies, 2019b). In this study, 

circular dichroism was utilised to demonstrate the almost total α-helicity of the SYCE1 structural core 

(residues 25-179) and size-exclusion chromatography multi-angle light scattering (SEC-MALS) utilised 

to demonstrate its dimeric state. Small-angle x-ray scattering (SAXS) was used to show that the length 

of the structural core matches that of a theoretical extended coiled-coil (containing an equivalent number 
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of amino acids) with a small folding-back event at one terminus (most likely the N-terminus on the basis 

of sequence analysis). Further, SAXS was used to analyse MBP-fusions of the SYCE1 structural core 

to find that SYCE1 adopts an anti-parallel arrangement of chains within the coiled-coil. This method 

allows for the determination of chain orientation by inspection of the inter-atomic distance distribution 

profile (a plot representing the frequency of each inter-atomic distance within the proteins structure). Its 

anti-parallel arrangement, which imposes symmetry, and lack of self-assembly properties suggests that 

SYCE1 may play a structural role within the SC, perhaps in connecting two layers. 

The extension factors, SYCE2 and TEX12, colocalise within the central element (Hamer et al., 2006; 

Bolcun-Filas et al., 2007). Whether they demonstrate a bimodal or monomodal distribution is debateable 

(Schucker et al., 2015; Hernandez-Hernandez et al., 2016). These proteins form an equimolar complex 

and exhibit drastic self-assembly in solution (Davies et al., 2012). The minimal structural unit of the 

SYCE2-TEX12 complex comprises a 2:2 hetero-tetrameric complex which, through tessellation of the 

SYCE2 chains and association of both the SYCE2 and TEX12 C-termini, forms a 4:4 complex (Figure 

1.1.12a,b). Mutagenesis studies have shown that these C-terminal associations are dependent upon 

coiled-coil forming residues L110, F114, I117, and L121 in the TEX12 C-termini and V149, V153, 

V156, and L160 in the SYCE2 C-termini. Further mutagenesis studies have found that this 4:4 building 

block forms fibrous assemblies through the hydrophobic association of surface-exposed residues F102, 

F109, and V116 of the TEX12 C-termini. These assemblies are visible by electron microscopy 

demonstrating a width similar to that of the amorphous central element of the mammalian SC (Figure 

1.1.12c) (Davies et al., 2012). These findings are based upon unpublished research of myself and Dr 

Lucy Salmon, Davies group. A model for SYCE2-TEX12 fibrous assembly is depicted in Figure 

1.1.12d.  
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Figure 1.1.12| Filamentous assembly of SYCE2-TEX12. a) The crystal structure of the minimal 
structural unit of SYCE2-TEX12 reveals a 2:2 hetero-tetrameric complex in which complexation is 
stabilised in four-helical arrangement at the central tetrameric interface whilst lateral interfaces are 
formed of three-helical associations. This has been cartoonized for simplicity. b) Inclusion of additional 
C-terminal residues flanking the SYCE2-TEX12 structural core allows for the formation of a 4:4 hetero-
octameric complex. SAXS and mutagenesis directed modelling suggests the tessellation of two 2:2 
complexes. A cartoon demonstrating these C-terminal associations and main chain tessellation is 
depicted. c) Electron micrograph of SYCE257-165-TEX1249-123 demonstrating the formation of fibres of 
approximately 40 nm thickness. d) A model for assembly of SYCE2-TEX12 to form extended 
filamentous structures, dependent upon surface-exposed residues F102 F109 V116 within the TEX12 
C-termini which flank a 4:4 hetero-octameric core structure. 

 

  



Chapter 1 - Introduction 

29 
 

1.1.12 Conservation of SC components across phyla 

Despite the striking architectural conservation of the SC, across phyla the components do not bear any 

sequence similarity, bearing at most similarities between the domain structures of functionally related 

components. Sequence conservation of SC components is observable across metazoans down to 

Cnidaria (Fraune et al., 2014). However, the SC components of yeast, C. elegans and Drosophila bear 

no sequence similarity. Despite this, the protein of the transverse filament demonstrates a similar domain 

structure from humans, to yeast, to Drosophila, a feature discussed in Chapter 3. This raises the question 

of whether the SC evolved through divergent evolution or convergent evolution. 

1.1.13 Physical interactions between the transverse filaments and the central element 

SYCE3 was proposed as being the sole SC interactor of SYCP1 on the basis of a recruitment assay in 

an ex vivo setup in which SC proteins are overexpressed in the heterologous system, COS-7 cells 

(Hernandez-Hernandez et al., 2016). Within this system, SYCP1 and SYCP3 both form cytoplasmic 

networks, named polycomplexes, which were thought to represent their ability to self-assemble. The 

findings of Hernandez-Hernandez et al. found that SYCE1, SYCE2 and TEX12 would not themselves 

form cytoplasmic networks, nor be recruited to networks formed of SYCP1 unless co-expressed with 

SYCE3, thus suggesting the role of SYCE3 as being a linker between the transverse filaments and the 

central element (Hernandez-Hernandez et al., 2016). However, these findings are contrary to those 

published upon the discovery of SYCE1 and SYCE2 which found that these proteins would be recruited 

to SYCP1 networks in the absence of SYCE3 (Costa et al., 2005). Direct interactions between SYCP1 

and SYCE1 or SYCE2 have not been observed by yeast-two hybrid (Davies et al., 2012). Unpublished 

findings of the Davies group (Dr Orla Dunne, Dr Lucy Salmon, myself) have confirmed that SYCE3 

constitutes the sole SC protein which associates with SYCP1 and is able to mediate further interactions 

with both SYCE2 and SYCE1.  

1.1.14 A 3-dimensional model of the synaptonemal complex 

Localisation studies and the described molecular findings regarding the structural and assembly 

properties of the SC components can be combined to produce an overall model for the structure of the 

SC. Figure 1.1.13 depicts a model for the SC in which the central region is bi-layered with SYCP1 

dimers connecting the central element to the lateral elements, with a bimodal distribution at the midline 

and converging at the lateral elements. As discussed, the localisations and placement within this model 
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are based on both localisation studies and the structural properties of the proteins derived through 

biophysical experiments. Firstly, SYCP1 is presented as dimeric coiled-coils (ascribed on the basis of 

sequence analysis (Meuwissen et al., 1992)) orientated such that the C-termini are localised within the 

lateral elements in a single plane whilst the N-termini interdigitate at the central element in two spatially 

separated planes (Liu et al., 1996; Schmekel et al., 1996; Schucker et al., 2015). These aspects of SYCP1 

structure and localisation are described in full during the introduction to Chapter 3. From the frontal 

view, SYCE3 can be seen as making the sole link between SYCP1 and central element proteins SYCE2-

TEX12 and SYCE1 (on the basis of unpublished findings of the Davies group: myself, Dr Orla Dunne 

and Dr Lucy Salmon). SYCE3 is also depicted as forming extensive assemblies on the basis of it forming 

large assemblies in vitro (Dunne and Davies, 2019a). SYCE2-TEX12 are shown together as forming an 

extensive fibrillar central element structure, only forming direct associations with SYCE3 (Davies et al., 

2012). Finally, SYCE1 is shown as forming anti-parallel dimeric structures, only interacting with 

SYCE3, which form a vertical strut like structure connecting the vertically separated planes of SYCP1 

N-termini (Dunne and Davies, 2019b). Remembering to consider the 3-dimensional structure of the SC 

is key in modelling how any single component of the SC might assemble within the structure. 

 

Figure 1.1.13| Model for the localisation of SC components within the mammalian SC. a) Frontal 
and b) top-down views of the SC showing the bi-layered organisation of the central region.  
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1.1.15 The SC and the formation of crossovers 

What is the functional role of the SC? The evolutionarily conserved ladder-like structure enforces a rigid 

three dimensional architecture unto meiotic chromosomes and its formation appears to be critical for the 

resolution of DSBs (Colaiacovo et al., 2003). Within the mammalian SC, if components of the SC 

central element are not present crossovers do not form, demonstrating its critical role (Kouznetsova et 

al., 2011). Despite this, factors responsible for the early stages of recombination, such as RAD51, 

DMC1, MSH4/5 are still recruited to form early recombination nodules (de Vries et al., 2005). However, 

their levels persist rather than decline as in wild-type meiosis. Therefore, the structure of the SC might 

be required for the maturation of early recombination nodules to late recombination nodules. An 

example recombination nodule is depicted docked atop the SC of Sordaria macrospora in the final panel 

of Figure 1.1.8 (De Muyt et al., 2014). Whilst the levels of recombinases RAD51and DMC1 peak during 

leptotene, the levels of MSH4 peak during zygotene, the period of rapid prophase movements and the 

establishment of inter-homologue axial associations (Figure 1.1.6a) (Kneitz et al., 2000). Levels 

subsequently decline until late pachytene during which they localise to a couple of discrete foci, 

alongside other factors essential for meiotic recombination such as RNF212 (Holloway et al., 2014). It 

is thought that MSH4 forms a complex with MSH5 to specifically stabilise double-Holliday junctions 

and further associate and cooperate with MLH1 and MLH3 to form crossovers (Santucci-Darmanin et 

al., 2000; Santucci-Darmanin et al., 2002; Snowden et al., 2004). 

It appears that the decision whether a DSB intermediate will be directed towards crossover or non-

crossover repair pathways is made early during the meiotic cycle, prior to or during the formation of 

single-end invasions (Bishop and Zickler, 2004). How this decision is conveyed is unknown, though it 

could be achieved through interplay between RAD51 and DMC1 – RAD51 D-loops are readily 

dissolved whilst DMC1 D-loops are more stable (Bugreev et al., 2011). DMC1 is ubiquitously localised 

across meiotic DSBs suggesting that any effect may be due to recruitment levels or regulation 

(Tarsounas et al., 1999). However, an additional layer of control in regulating the number of crossovers 

exists, named “crossover interference”, an effect most drastic in the chromosomes of Caenorhabditis 

elegans in which each chromosome receives one, and only one, crossover (rarely receiving zero) despite 

a huge disparity in the sizes of each chromosome (Hillers and Villeneuve, 2003). This suggests that a 

feedback mechanism exists such that the formation of one crossover inhibits another on the same 
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chromosome. It is eminently possible, therefore, that the SC might be involved in the transmission of 

signals to prevent further crossover formation. Further, crossovers are not frequently present at the 

kinetochore as observed by electron microscopy of spread chromosomes of Zea mays in which the 

locations of recombination nodules (markers for sites of DSB processing) were analysed (Anderson et 

al., 2003). In mice, the protein PRDM9 appears to be a major determinant of hotspot location 

(chromosomal locations with a propensity for crossover formation) (Baudat et al., 2010). Its binding to 

DNA is dependent upon a zinc finger array at its C-terminus and is proposed to association with histone-

modulating proteins early in prophase though exactly how hotspots are marked by this protein remains 

to be elucidated (Parvanov et al., 2017).  

1.1.16 Defects in SC formation and physiological consequences in humans 

Defective SC formation results in meiotic arrest, resulting, in males, in the inability to produce sperm, 

rendering the individual sterile (Judis et al., 2004). Females defective for SC formation are also infertile, 

often due to embryonic death through aneuploidy, and frequently experience recurrent miscarriage 

(Hassold and Hunt, 2001). SYCP3 appears to be the SC component most commonly implicated with 

fertility issues. Introduction of a premature stop codon within the C-terminal coiled-coil results in 

infertility in males (Miyamoto et al., 2003). In females experiencing miscarriage, mutations 

predominantly affecting the extreme C-terminus of SYCP3 were identified (Bolor et al., 2009).  Both 

of these mutations/truncations likely interfere with fibrillization and the formation of recursive lateral 

element structures during meiosis, precluding meiotic progression.  

1.1.17 Disassembly of the SC 

The mechanisms by which the SC is disassembled involve both modification by phosphorylation of 

central region proteins and proteasomal degradation dependent upon ubiquitylation (Cahoon and 

Hawley, 2016). As SC proteins are constantly renewed within the dynamic SC structure, it could be that 

modifications inhibit self-assembly mechanisms, therefore favouring a decline in protein density and 

resulting in an eventual disintegration of the SC structure. In mammals, two key drivers of SC 

disassembly are PLK1 (in association with Aurora B and INCENP), and CDK1 (in association with 

CyclinB). During pachytene, PLK1, Aurora B and INCENP localise within the central region of the SC 

and are required for the phosphorylation of SYCP1 and TEX12 (Parra et al., 2003; Jordan et al., 2012). 
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Additionally, disruption of CDK1 activation through knockout of HSP70-2, a heat shock protein 

required for CDK1 activation, inhibits SC disassembly, likely through blocking its interaction with 

CyclinB, with meiosis stalling during mid- to late-pachytene (Allen et al., 1996; Dix et al., 1997; Zhu 

et al., 1997). Interestingly an interaction between HEI10 and Cyclin B was identified (Toby et al., 2003). 

HEI10 is an E3 ubiquitin ligase known to negatively regulate levels of pro-mitotic factors, likely doing 

so through mediating their proteasomal degradation (Singh et al., 2007). Mutations of HEI10 result in 

the ablation of crossover formation highlighting its mediating role in their formation (Ward et al., 2007). 

A key role may be in preventing premature meiotic progression through delaying desynapsis at sites 

designated for the formation of crossovers. 

After the SC is disassembled, not all SC components are lost and in fact they are retained at specific 

places. SYCP2 is retained at the centromeres (Schalk et al., 1998). These proteins may play a role in 

kinetochore orientation during metaphase I in which microtubules attach and exert tension to segregation 

homologous chromosome pairs.  

Some strange organisms differ in their utilisation of an SC, or forgo its utilisation at all, removing the 

requirement for similar disassembly pathways (Zickler and Kleckner, 2015). For example, 

Saccharomyces pombe and the fungus Aspergillus nidulans do not form an SC, pairing and recombining 

their DNA in its absence (Egel-Mitani et al., 1982) (Bahler et al., 1993). In Bombyx mori, the SC is not 

disassembled so much as being converted in chromatin state to an elimination chromatin which can be 

visualised prior to separation and retains form during metaphase (Rasmussen, 1977).  

After the SC is disassembled, genetic crossovers physically manifest as chiasmata, additional physical 

linkages between homologues chromosomes. Homologous chromosomes are then segregated during 

metaphase, breaking these bonds, completing the first meiotic division whilst facilitating the exchange 

of genetic information. 
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1.1.18 Aims and objectives 

Despite much headway being made within the past 5 years, an atomistic understanding of the 

proteinaceous structures present during meiosis is still relatively incomplete precluding our ability to 

understand the molecular mechanisms which drive chromosome dynamics and facilitate meiotic 

progression. The following thesis is dedicated towards the biochemical, biophysical and crystallographic 

characterisation of two key protein megastructures essential to meiotic fidelity: the synaptonemal 

complex, with a particular focus on the human transversal filament protein, SYCP1 (Chapter 3); and the 

meiotic telomere complex, responsible for mediating telomeric attachment to the nuclear envelope 

(Chapter 4). These two assemblies cooperate to mediate chromosome dynamics and are indispensable 

for meiotic progression. Our understanding of their function is thus-far largely derived from localisation 

studies with limited functional or structural details. Uncovering their molecular mechanisms through 

structure solution, biophysical, and biochemical characterisation is therefore important for 

understanding how meiosis proceeds through the concerted action of cooperative protein assemblies. 

Within Chapter 3, I worked to characterise the molecular structure and mechanisms of assembly within 

the SC of SYCP1. Full-length SYCP1 is highly insoluble and unstable, a barrier overcome through 

truncation of unstructured tails and the identification and removal of 11 key residues which mediate 

higher-order assembly. This allowed for the discovery that the SYCP1 core is tetrameric, stabilised at 

its N-terminus as a four helical bundle which splays at its C-terminus into two long dimeric coiled-coils. 

Chapter 4 focuses on the crystal structure solution of MAJIN-TERB2, a complex formed between two 

essential components of the meiotic telomere complex. Its symmetrical dimeric architecture and the 

presence of a large basic surface allowed for the orientation of two further basic patches localised within 

unstructured regions of the wider complex to create a seamless continuous DNA binding interface. 

Biophysical characterisation of such a complex, and comparisons between the affinity for DNA of 

various constructs, provided the basis for a model for the mode of DNA binding of the MAJIN-TERB2 

complex in which DNA is looped over the MAJIN dimer. The results presented within these chapters 

represent the underpinning structural knowledge required for building up an atomistic model for the 

assembly of the synaptonemal complex and the dynamic movement of chromosomes during meiosis.
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2.1.1 Protein sequences analysed in this study 

The SYCP1 sequence utilised relates to the canonical human isoform with Uniprot accession code 

Q15431-1. The MAJIN sequence utilised relates to the human MAJIN isoform X1 (254 amino acids; 

accession number XP_024304215.1), selected as it most closely matches the canonical isoforms 

conserved across mammals. TERB1, TERB2 and TRF1 sequences relate to their canonical human 

isoforms (accession codes Q8NA31, Q8NHR7 and P54274, respectively). 

2.1.2 Bioinformatic analyses 

Here I shall describe the bioinformatic strategy applied for SYCP1. The same was applied for proteins 

MAJIN, TERB1, TERB2 and TRF1. An alignment containing 62 SYCP1 sequences compiled by 

ensembl and verified by manual inspection to contain only vertebrate species (including mammals, birds 

and fish) was utilised to predict secondary structure using JPred4 and presented using Jalview in 

Appendix 1 or plotted graphically in Figure 3.1.3 (Waterhouse et al., 2009; Drozdetskiy et al., 2015; 

Zerbino et al., 2018). An alignment containing 343 sequences compiled by ConSurf and manually edited 

to remove low quality and non-SYCP1 sequences was utilised to calculate conservation scores per 

residue (Berezin et al., 2004; Ashkenazy et al., 2016). Coiled-coil propensity was predicted by COILS 

(Parry, 1982; Lupas et al., 1991; Lupas, 1997). The application charge from the EMBOSS suite was 

used to demonstrate the gross distribution of electrochemical potential across the SYCP1 sequence (Rice 

et al., 2000). Using a window size of 5, the application calculates the charge of each residue as an 

average of the following 5 residues (Lys, Arg and His score +1; Glu and Asp score -1; non-charged 

residues score 0). The charge of each residue was then plotted graphically as an average of the 

surrounding 98 residues (10 % the total number of residues).  

2.1.3 Preparation of plasmids for recombinant protein expression 

Integral to this study was the expression of recombinant proteins in Escherichia coli, and occasionally 

in mammalian cells (COS-7). For bacterial expression, constructs encoding protein sequences of interest 

were incorporated into pHAT4 and pMAT11 plasmids (Peranen et al., 1996). In the study of MAJIN 

and TERB2, co-expression was achieved by incorporating the coding sequence for one complex 

component within the pRSF-Duet1 plasmid (Novagen) which could be co-transformed with a pMAT11 

plasmid containing the coding sequence for the second complex component. Coding sequences were 

amplified by PCR catalysed by KOD DNA polymerase (Novagen) (at 2.5 U/μl) in solution containing 
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magnesium chloride (1 mM), dNTPs (0.2 mM), 1x “KOD DNA Polymerase buffer 2” (Novagen), the 

template DNA and primers (0.4 μM). Thermocycling was achieved using a TPersonal Thermocycler 

(Biometra). Primers were purchased from Sigma Aldrich. Amplified products were purified through 

agarose gel electrophoresis and gel extraction (GeneJET Gel Extraction Kit, ThermoScientific). 

Plasmids were linearised using NcoI (NEB). PCR products were incorporated within linearised plasmids 

using one-step sequence- and ligation-independent cloning (SLIC) according to protocol (Li and 

Elledge, 2012). Successful clones were selected by growth on LB agar containing either 100 µg/ml 

ampicillin (for pHAT4 or pMAT11) or 50 µg/ml kanamycin (for pRSF-Duet1), cultured overnight in 5 

ml LB broth, and DNA isolated using the GeneJET Plasmid Miniprep Kit (ThermoScientific). Correct 

insertion and coding sequence were confirmed by Sanger sequencing (Source Bioscience). 

Vector Enzyme Antibiotic resistance µg/ml 

pHAT4 NcoI (NEB) Ampicillin (Melford) 100 

pMAT11 NcoI Ampicillin 100 

pRSF-Duet1 NcoI Kanamycin (Melford) 50 

pEGFP EcoRI (NEB) Kanamycin 50 

pRARE N/A Chloramphenicol (Melford) 34 

Table 2.1| Vectors utilised in this study. The restriction endonuclease enzymes used for linearization 
and the antibiotic resistance they confer to transformed E. coli.  

 

2.1.4 Purification of soluble recombinant proteins 

BL21 (DE3) E. coli harbouring the pRARE plasmid isolated from Rosetta (DE3) E. coli (Novagen), 

henceforth referred to as BL21 (DE3) pRARE E. coli, were transformed using plasmids encoding the 

protein of interest and plated onto LB agar plates containing a suitable antibiotic (as detailed in Table 

2.1) to select for successfully transformed clones. Colonies were cultured in 2xYT media (Formedium) 

at 37 ᵒC, 180 rpm to an optical density at 600 nm of approximately 0.8. Induction of protein expression 

was achieved through the addition of 1M isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final 

concentration of 500 μM. Cultures expressing SYCP1 constructs were incubated for 16 hours at 25 ᵒC, 

180 rpm prior to harvesting by centrifugation at 4200 rpm. Cultures expressing MAJIN-TERB2 

complexes were incubated at 15 ᵒC. The supernatant was discarded, and the bacterial pellets resuspended 
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in lysis buffer containing 20 mM Tris pH 8.0, 500 mM KCl. Cell suspensions were stored at -80 ᵒC prior 

to further processing. Protein purification was initiated with lysis of the cells by sonication prior to 

centrifugation at 40,000 g for 30 minutes to remove cellular debris.  

Although minor modifications exist across protein constructs, described within the text of the results 

sections, all purifications approximately conform to the following protocol. Initial purification was 

achieved via affinity chromatography in which the bacterial lysate was applied to Ni-NTA agarose 

(Qiagen) equilibrated in 20 mM Tris pH 8.0, 500 mM KCl at 1 ml/min. Post-loading, the resin was 

washed with equilibration buffer then 20 mM Tris pH 8.0, 500 mM KCl, 20 mM imidazole pH 8.0. The 

protein was eluted in 20 mM Tris pH 8.0, 500 mM KCl, 200 mM imidazole pH 8.0. The Ni-NTA elution 

of constructs or complexes including a His6-MBP-tag were applied to amylose resin (NEB) equilibrated 

in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT. The resin was washed with equilibration buffer 

before elution with 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT, 30 mM D-Maltose. Non-

degraded material was then separated from products of proteolysis by anion exchange using a HiTrap Q 

column (GE Healthcare) equilibrated in 20 mM Tris pH 8.0, 100 mM KCl, 2 mM DTT, eluted across a 

gradient in which the concentration of KCl was increased from 100 mM to 1 M over 50 ml.  

Affinity-tag cleavage was achieved by incubating the eluate with sfGFP-TEV protease (prepared as per 

(Wu et al., 2009)) at room temperature overnight prior to removing both the protease and the affinity-

tag from solution during a second round of anion exchange chromatography using the HiTrap Q column. 

For constructs with basic patches, mentioned in text, the HiTrap SP column was utilised. Final 

purification by size exclusion chromatography was performed using HiLoad® 16/600 Superdex® 200 

pg (GE Healthcare) equilibrated in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT at 1 ml/min. Protein 

concentration was achieved using Amicon Ultra-4 10 kDa MWCO (Millipore). 

Protein samples were analysed by SDS-PAGE using the Novex Bolt Bis-Tris gel system (Invitrogen) 

and stained using SimplyBlue Safestain (Invitrogen). Sample concentration was determined by UV 

spectroscopy using a Cary 60 UV spectrophotometer (Agilent) with extinction coefficients and 

molecular weights calculated by ProtParam (http://web. expasy.org/protparam/). Samples were flash-

frozen using liquid nitrogen and stored at -80 ᵒC. 
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2.1.5 Expression of seleno-methionine derivative SYCP1676-770 

As a means of gaining phasing information, seleno-methionine incorporated SYCP1676-770 was purified. 

Escherichia coli strain Rosetta DE3 were cultured in 2xYT to an O.D. at 600 nm of approximately 0.6 

at which they were harvested by centrifugation. 10 L of culture were used. The bacterial pellets were 

resuspended in 150 mM NaCl and re-centrifuged. 10 L of M9 minimal media (Formedium) was prepared 

and supplemented with 5 nM FeCl3, 2 μM MgCl2, 5 nM Zn(OAc)2, 0.4 % w/v D-glucose. The bacterial 

pellets were resuspended in 200 ml M9 before being added to the rest of the media. After a 1-hour 

incubation at 25 ᵒC, 250 rpm, metabolite poisoning of methionine biosynthesis was induced by the 

addition of L-amino acids (100 mg/L lysine, 100 mg/L phenylalanine, 100 mg/L threonine, 50 mg/L 

isoleucine, 50 mg/L leucine, 50 mg/L valine). After a further 1-hour incubation, L(+)-seleno-methionine 

(Acros Organics, Fisher Scientific) was added to a final concentration of 50 mg/L. After another 30 

minutes, protein expression was induced by the addition of 0.5 mM IPTG and incubated at 25 ᵒC for 16 

hours before harvesting. 

2.1.6 Expression of seleno-methionine derivative MAJIN1-112-TERB2168-220 

Minor modifications to the protocol utilised for SYCP1676-770 were made, as detailed in the following. 

Transformed BL21 (DE3) E. coli were cultured in 2xYT media (Formedium) and harvested at an O.D.600 

of 0.6, washed in 150 mM NaCl and resuspended in M9 media (Formedium) supplemented with trace 

elements (2.5 mg/L CoCl2.6H2O, 15 mg/L MnCl2.4H2O, 1.5 mg/L CuCl2.2H2O, 3 mg/L H3BO3, 33.8 

mg/L Zn(CH3COO)2.2H2O and 14.10 mg/L TitriplexIII) and 5 μM Zn(OAc)2. After a 1 hour incubation 

at 25ᵒC, 250 rpm, methionine biosynthesis was inhibited by addition of 100 mg/L lysine, 100 mg/L 

phenylalanine, 100 mg/L threonine, 50 mg/L isoleucine, 50 mg/L leucine, 50 mg/L valine. After a 

further 1 hour at 25 °C, 250 rpm, the cultures were supplemented with 50 mg/L seleno-methionine. 

Expression was induced after 30 minutes by 0.5 mM IPTG and incubated overnight at 15 °C, 250 rpm. 

2.1.7 Purification of SYCP11-976 and SYCP11-783 by refolding from inclusion bodies 

BL21 (DE3) pRARE E. coli were transformed using pHAT4-SYCP11-976 or pHAT4-SYCP11-783. 

Transformants were selected by plating on agar containing ampicillin (100 µg/ml) and chloramphenicol 

(34 µg/ml). After 16 hours, bacterial colonies were resuspended in 2x 1 L volumes 2xYT media 

(Formedium) and cultured by shaking at 180 rpm at 37 ˚C. At an O.D.600 of 0.8, IPTG was added to a 

final concentration of 0.5 mM to induce protein expression. Cultures were incubated for 3 hrs at 37 ˚C, 
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shaking at 180 rpm. Bacterial cells were harvested by centrifugation at 4200 rpm for 30 minutes and 

resuspended in 30 ml 20 mM Tris, pH 8.0, 500 mM NaCl, 50 mM EDTA, pH 8.0, 50 mM DTT, 5 mM 

MgCl2 with cOmplete Protease Inhibitor Tablets (Roche) and DNase I at 0.1 mg/ml (Roche) per litre 

culture, frozen, and stored at -20 ˚C.  

Here I outline the optimised protocol for the refolding and purification of His6-SYCP11-976 and His6-

SYCP11-783 from inclusion bodies (Fang and Huang, 2001). Cells were defrosted and lysed by sonication 

on ice. Inclusion bodies and cellular debris were pelleted through centrifugation at 40,000 g for 30 

minutes. The supernatant was discarded, and the pellet washed thoroughly by resuspension to 

homogeneity in buffer containing 20 mM Tris, pH 8.0, 500 mM NaCl, 50 mM EDTA, pH 8.0, 50 mM 

DTT and 1.5 % Triton X-100 (Sigma Aldrich) to solubilise membranes. Inclusion bodies were pelleted 

by centrifugation and washed in 20 mM Tris pH 8.0, 1 M NaCl, 50 mM DTT, 50 mM EDTA pH 8.0, 5 

mM MgCl2, 0.1 mg/ml DNase I followed by a further wash in 20 mM Tris, pH 8.0, 100 mM NaCl, 50 

mM DTT, 50 mM EDTA pH 8.0. Inclusion bodies were then solubilised in deionised 20 mM Tris pH 

8.0, 100 mM NaCl, 50 mM DTT, 50 mM EDTA pH 8.0, 8 M urea and stirred on ice for 30 minutes. 

Urea-containing buffers were deionised by 3 rounds of gravity flow through AG® 501-X8 resin (Bio-

Rad) following the manufacturers “Column Method”. Remaining debris were removed by centrifugation 

at 40,000 g for 30 minutes and the supernatant retained. 

The supernatant was flowed through a HiTrap Q ion exchange column (GE Healthcare) equilibrated in 

deionised 20 mM Tris pH 8.0, 100 mM NaCl, 10 mM DTT, 0.5 mM EDTA pH 8.0, 8 M urea at 2 ml/min 

to bind remaining DNA. The flow-through was then loaded to HiTrap SP HP ion exchange column (GE 

Healthcare) equilibrated in deionised 20 mM Tris pH 8.0, 100 mM NaCl, 10 mM DTT, 0.5 mM EDTA 

pH 8.0, 8 M urea at 2 ml/min and eluted by increasing the concentration of KCl to 1 M over 50 ml. 

Elution fractions containing suitably pure His6-SYCP11-976 (2 ml) were dialysed in 1.5 L 20 mM Tris, 

pH 8.0, 500 mM NaCl, 500 mM L-arginine pH 8.0, 10 mM DTT by stirring overnight at 4 ˚C using a 

10 kDa MWCO Slide-A-Lyzer™ dialysis cassette (Thermo Fisher). The protein-containing cassette was 

then transferred to 1.5 L 20 mM Tris pH 8.0, 500 mM NaCl, 10 mM DTT and stirred for 6 hrs at 4 ˚C. 

The buffer-exchanged sample was centrifuged at 16600 g for 30 minutes to remove precipitates. The 

sample was then concentrated using an Amicon Ultra® 10,000 MWCO centrifugal filter unit (Millipore), 
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flash frozen in liquid nitrogen and stored at -80 ̊ C. Protein purity was assessed by SDS-PAGE visualised 

by Coomassie staining and the protein concentration was determined by UV spectroscopy using a Cary 

60 UV spectrophotometer (Agilent Technologies) with molecular weights and extinction coefficients 

calculated by ProtParam (http://web.expasy.org/protparam/).  

2.1.8 Circular dichroism (CD) spectroscopy 

Far UV circular dichroism was utilised to assess secondary structure content in solution for samples 

between 0.1 and 0.4 mg/ml in 10 mM Na2HPO4/NaH2PO4, pH 7.5, 150 mM NaF using a 0.2 mm path 

length quartz cuvette (Hellma) at 4 ˚C. Data were collected using a Jasco J-180 spectropolarimeter 

(Institute for Cell and Molecular Biosciences, Newcastle University) between 260 and 185 nm at 0.2 

nm intervals with a response time of 4 seconds and a bandwidth of 2 nm. 9 accumulations were averaged 

and converted to mean residue ellipticity ([ϴ]) (x1,000 deg.cm2.dmol-1.residue-1) using equation 1  

𝑀𝑒𝑎𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑖𝑡𝑦 ([𝛳]) =  
௾.ெோௐ

ଵ଴.௉.஼ைே஼
  (1) 

where ϴ is Theta Machine Units, measured in millidegrees, MRW is mean residue weight (calculated 

as protein atomic mass (Da) / residue number), P is pathlength, in centimetres, and CONC is protein 

concentration, in mg/ml.  

Helical content can be estimated directly utilising the [ϴ]208 and [ϴ]222 values, which represent the two 

minima of an α-helical trace, using equations 2 and 3, respectively, below (Greenfield and Fasman, 

1969; Morrisett et al., 1973). [ϴ]222 should provide a more accurate value as it is less affected by the 

signal of random coil or β-sheet.  

𝑓𝐻 =  ([𝛳]ଶ଴଼– 4,000)/(−33,000–  4,000) (2) 

𝑓𝐻 = ([𝛳]ଶଶଶ –  3,000)/(−36,000 –  3,000)   (3) 

where [ϴ]xxx is mean residue ellipticity at the specified wavelength in nanometres. -33,000 and -36,000 

are the theoretical [ϴ] values at 208 and 222 nm, respectively, for 100 % α-helical proteins. These 

equations account for the contribution of random coil to the signal at these wavelengths by subtraction. 

The DiChroweb server (http://dichroweb.cryst.bbk.ac.uk) was used to estimate secondary structure 

composition using the CDSSTR algorithm (Sreerama and Woody, 2000).  
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Thermal denaturation of samples in 20 mM Tris, pH 8.0, 150 mM KCl (unless stated otherwise in the 

figure legend) was measured by CD, tracking the helical signal at 222 nm whilst increasing the 

temperature from 4 to 95 ˚C at 0.5 ˚C intervals every 15 seconds. Data were converted to mean residue 

ellipticity ([ϴ]222) and plotted as percent folded ([ϴ]222.x - [ϴ]222.5)/ ([ϴ]222.95 - [ϴ]222.5) which assumes a 

fully folded molecule at 5 ˚C and complete denaturation at 95 ˚C.  

2.1.9 Size-exclusion chromatography multi-angle light scattering (SEC-MALS) 

SEC-MALS was utilised to determine absolute molecular weights of protein species in solution. For 

small molecules, the scatting of laser light is both perfectly symmetrical and elastic and is referred to as 

Rayleigh scattering. The intensity of Rayleigh scattering is identical in all directions it can thus be 

accurately measured under ideal circumstances. The scattering intensity is directly proportional to 

molecular weight which can therefore be calculated. 

Ideal circumstances assume that the size of the molecule remains beneath a limit of approximately one 

twentieth of the wavelength (wavelength of laser light is generally ~600 nm, so the dimension limit is 

approximately 30 nm, or ~30 kDa)  and that there are no inter-particle effects. Both of these assumptions 

rarely hold true. Proteins are generally not small and therefore scatter light asymmetrically (Figure 

2.1.1a). The only angle at which scattering is not affected by the size or shape of the molecule is at a 

scattering angle of zero which cannot be directly measured (as this is from where the incident beam 

originates). Further, it is impossible to analyse proteins in solution at a concentration of zero and 

therefore there are always inter-particle effects which introduce a non-ideality factor into the calculation 

of molecular weight. To eliminate the complications that the non-ideality factor introduces, estimations 

of scattering at an angle of zero and protein concentration of zero must be made. 

These estimations are arrived at by extrapolation.  By measuring light scattering at multiple angles across 

multiple concentrations, a Zimm plot can be produced (Figure 2.1.1b,c). This allows for the 

determination of the scattering value at an angle of zero degrees and a concentration of zero. Molecular 

weight can then be calculated using the Zimm equation (below, equation 4) (Harding and Jumel, 1998).  

𝐾𝑐/𝛥𝑅(𝜃, 𝑐) =  1/𝑀𝑤 (4) 
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Samples were applied to a Superdex 200 Increase 10/300 GL size exclusion chromatography column 

(GE Healthcare) at 0.5 ml/min using an ÄKTA Pure (GE Healthcare). SYCP1 constructs were analysed 

in 20 mM Tris, pH 8.0, 150 mM KCl, 2 mM DTT whilst MAJIN-TERB2 constructs were analysed in 

20 mM Tris, pH 8.0, 250 mM KCl, 2 mM DTT. The flow path continued through a DAWN HELEOS 

II MALS detector (Wyatt Technology) followed by an Optilab T-rEX differential refractometer (Wyatt 

Technology). The collected light scattering and differential refractive index data were analysed using 

ASTRA 6 software (Wyatt Technology) to calculate molecular weights by Zimm plot extrapolation 

using the dn/dc value 0.1850 ml/g, originally calculated for the gigantic haemoglobin of the earthworm 

(Zhu et al., 1996).  

 

Figure 2.1.1| Multi-angle light scattering. a) Small molecules exhibit Rayleigh scattering whilst larger 
protein molecules demonstrate asymmetric scattering in which only the scattering at an angle of zero 
degrees is independent of the molecules size and shape. b) Inter-particle effects effect the observed 
scattering, affecting most the observed scattering at small angles close to zero. Inter-particle attraction 
or aggregation results in increased scattering at low angles whilst inter-particle repulsion results in 
decreased scattering at low angles. c) A Zimm plot in which observed scattering values are plotted at 
multiple angles across a range of concentrations. The plot allows for the estimation of scattering values 
at a concentration of zero at an angle of zero degrees. The derived y-axis intercept allows for calculation 
of the molecular weight (Mw).  
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2.1.10 Size-exclusion chromatography small-angle x-ray scattering (SEC-SAXS) 

SEC-SAXS is a technique used to characterise the solution state of molecules using the scattering of X-

rays. After separation of different molecular species by size-exclusion chromatography, molecules 

within the solution scatter an incident beam of X-rays of which images are collected (Figure 2.1.2a) and 

radially integrated to produce a scattering curve which plots the intensity of scattered X-rays against the 

scattering angle (Figure 2.1.2b). Scattering is most intense at small angles and decays with an increase 

in scattering angle. The region closest to a scattering angle of zero is referred to as the Guinier region 

and through the Guinier approximation is treated as a region in which scattering intensity varies linearly 

with angle (Guinier, 1956). This region predominantly contains information about the overall shape of 

the molecule (its radius of gyration (Rg)) and its maximum dimension (Dmax). High scattering angles 

contain proportionally more information regarding small inter-atomic distances, therefore higher 

resolution information, though data in this region is the weakest. The scattering curve can be converted 

to a real-space representation (a pairwise distance distribution plot) through a Fourier transform (Figure 

2.1.2c). Figure 2.1.2c shows the distance distribution plot (or P(r) curve) for differently shaped 

molecules of identical maximum inter-atomic distance (Dmax) (Svergun and Koch, 2003). The Dmax is 

taken from this plot as the x-axis intercept (indicated). Of particular relevance to the studies within this 

thesis, elongated rod-shaped molecules demonstrate a positively skewed P(r) curve. These data can 

subsequently be utilised in modelling a three-dimensional envelope which describes the overall shape 

of individual molecules in the solution.  
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Figure 2.1.2| The study of biomolecules using small angle X-ray scattering. a) A cartoon-
representation of a small angle X-ray scattering image and b) represented as a two-dimensional plot 
after radial integration highlighting the highest intensity of scattering at the smallest angles. The Guinier 
region, in which scattering intensity is approximated to vary linearly with angle, is shaded in red with 
the Guinier fit represented by a red line. c) Fourier transform of the scattering intensity plot yields a 
pairwise distance-distribution plot in which the relative frequency of each inter-atomic distance is 
plotted. A characteristic curve for differently shaped molecules is depicted. 
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Data collected were collected at the Diamond Light Source (Oxfordshire, UK) on beamline B21. 

Samples were separated by size exclusion chromatography using a Superdex 200 increase 10/300 GL 

SEC column (GE healthcare) attached to an Agilent 1200 HPLC system equilibrated in 20 mM Tris pH 

8.0, 150 mM KCl. System running at 0.5 ml/min. SYCP1 C-terminal constructs were also analysed in 

50 mM sodium acetate, pH 5.5 or 4.6, 150 mM KCl. Data were recorded at 12.4 keV, in 3.0 s frames, 

with the detector at a distance of 4.014 m. Initial analysis of SAXS data was performed in ScÅtter 3.0 

(http://www.bioisis.net). Buffer subtraction was achieved through the subtraction of frames either side 

of the protein elution peak. Frames of the protein peak were subsequently averaged. Guinier analysis 

was performed in ScÅtter to determine both the radius of gyration (Rg) and radius of gyration of the 

cross-section (Rc). Approximate values for the maximum inter-atomic distance of a sample were 

generated by http://www.bayesapp.org/ with distance distribution profiles (P(r)) subsequently generated 

in PRIMUS (Konarev et al., 2003). Ab initio molecular envelopes were generated by DAMMIF run in 

interactive mode with random chain selected as expected shape. Ten to 20 independent runs were 

performed and averaged by DAMAVER (Petoukhov et al., 2012). Structures and molecular models 

were docked within ab initio SAXS envelopes using SUPCOMB (Kozin and Svergun, 2001). 

Multiphase ab initio  modelling using the scattering data of multiple components of the whole to model 

the overall architecture of a complex was performed using MONSA (Svergun, 1999). Rigid body 

docking and the modelling of linker sequences not present in docked crystal structures / molecular 

models was performed using CORAL, part of the ATSAS package (Petoukhov et al., 2012). To assess 

how well a crystal structure or molecular model explains experimental SAXS data, theoretical scattering 

curves were generated and fitted against experimental data using CRYSOL (Svergun et al., 1995).  

2.1.11 Modelling coiled-coil structures using ROSETTA 

Ab initio  modelling of SYCP1 constructs was performed by Dr Owen Davies using ROSETTA and a 

library of decoys generated by QUARK (Xu and Zhang, 2012). A restraints file was utilised to guide 

structure modelling, such as imposing a maximum interatomic distance (i.e. length), inter-terminal 

residue distance maximum value (to select for chain orientation), and inter-chain maximum distance 

value to inhibit bulges.  
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2.1.12 Transmission Electron microscopy (TEM) 

Electron microscopy was performed using a FEI Philips CM100 transmission electron microscope at 

the Electron Microscopy Research Services, Newcastle University. MBP fusion SYCP1 samples at 10 

μM in 20 mM Tris pH 8.0, 250 mM KCl were incubated with 100 μM (per base pair) plasmid double-

stranded DNA for 10 min. MAJIN-TERB2 samples at 5–10 μM, in 20 mM Tris pH 8.0, 250 mM KCl, 

were incubated with 10 μM (per base pair) plasmid double-stranded DNA for 10 min. Samples were 

then applied to carbon-coated electron microscopy grids prepared prior to use by glow discharge. 

Negative staining was performed using 2 % (w/v) uranyl acetate. 

2.1.13 Electrophoretic mobility shift assay (EMSA)  

DNA binding was assessed by EMSA and the exact protocol used in analysis the DNA binding 

capability of SYCP1 and MAJIN-TERB2 by EMSA differed. SYCP1 samples SYCP11-976, SYCP11-783, 

and MBP-fusions between 0 – 2.5 μM were incubated with 25 μ M (per base pair) 75 bp linear dsDNA 

substrate at the indicated concentrations in 20 mM Tris pH 8.0, 150 mM KCl. SYCP1676-770 was analysed 

by EMSA at concentrations between 0 – 3.2 μM with 32 μM (per base pair) 470 bp linear dsDNA 

substrate in either 20 mM Tris pH 8.0, 150 mM KCl or 50 mM sodium acetate, pH 5.5, 150 mM KCl. 

Mixed samples were incubated on ice for 5 minutes. Glycerol to 3 % was added to samples prior to 

analysis by electrophoresis on a 0.5 % (w/v) agarose gel with running buffer 0.5x TBE (Tris-Borate-

EDTA) pH 8.0 or 25 mM GABA (gamma-Aminobutyric acid) pH 5.5, at 25 V for 4 hours at 4 ˚C. DNA 

was visualised using SYBRsafe™ (ThermoFisher). 

The DNA binding capability of MAJIN-TERB2 complexes was also assessed by EMSA. MAJIN-

TERB2 complexes at the concentrations were incubated with 0.3 μM (per molecule) 75 bp linear random 

sequence dsDNA, in 20 mM Tris pH 8.0, 250 mM KCl for 1 h at 4 °C.  

The sequence of the 75 bp sequence utilised in both studies is below: 

GCGAACACCCTGCATCGTCCGACCGGCTCTACAGGTTCCACCGGTTCTACGGGCTCCGGC
CTGTATTTCTCTTCC 

Glycerol was added at a final concentration of 3 %, and samples were analysed by electrophoresis on a 

0.5 % (w/v) agarose gel in 0.5x TBE pH 8.0 at 20 V for 4 hours at 4 °C. DNA was detected by SYBR™ 

Gold (ThermoFisher).  
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2.1.14 Determination of apparent KD by EMSA  

Similar EMSA experiments with altered experimental parameters were utilised to quantify the strength 

of DNA-binding of the different MAJIN-TERB2 complexes. A fluorescent substrate, 25 nM 6-FAM 

(fluorescein amidite)-labelled 144 bp random sequence dsDNA, was utilised to allow for detection at 

low nucleotide concentrations. Protein concentrations were as indicated in the figures and refer to the 

concentration of the molecular oligomeric species. Fluorescent signal was enhanced by SYBR™ Gold 

(ThermoFisher) staining. Imaging was performed using a TyphoonTM FLA 9500 (GE Healthcare), with 

473 nm laser at excitation wavelength 90 nm and emission wavelength 520 nm, using the LPB filter and 

a PMT voltage of 400 V. Gels were analysed using ImageJ software (https://imagej.nih.gov/ij/). The 

DNA-bound proportion was plotted against molecular protein concentration and fitted to the Hill 

equation (below, equation 5), with apparent KD determined, using Prism8 (GraphPad).  

 % DNA bound =  𝐶௡/(𝐾஽
௡ + 𝐶௡) (5) 

 

The sequence of the 5’ 6-FAM labelled dsDNA sequence is below:  

TCCAGGGTTCCATGGAGATAAAGGTCAATAAATTAGAGTTAGAACTAGAAAGTGCCAAA
CAGAAATTTGGAGAAATCACAGACACCTATCAGAAAGAAATTGAGGACAAAAAGATATC
AGAATAATAACCATGGATATCGAATT 

 

2.1.15 Assay for the determination of zinc content 

10 µl protein samples between 0 – 100 µM were digested by adding 0.3 µl proteinase K at 20 mg/ml 

and incubating for 1 hour at 60 ˚C. A series of standards containing 0 – 100 µM zinc acetate were 

prepared. Subsequently, 10 µl of each standard or sample is mixed with 80 µl PAR (4-(2-

pyridylazo)resorcinol) at 50 µM dissolved in 20 mM Tris pH 8.0, 150 mM KCl (no DTT). After 5 

minutes at room temperature each sample in analysed by UV spectroscopy between 200 – 600 n. Zinc 

in solution is chelated by PAR resulting in an observable spectrophotometric shift from 414 to 494 nm. 
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2.1.16 Oxidation assay using Ellman’s reagent (DTNB) 

A series of standards containing 0 – 1.0 mM reduced glutathione (GSH) were prepared. 25 µl of each 

standard or sample at 0.5 mM were mixed with 250 µl 20 mM Tris pH 8.0, 150 mM KCl (no DTT) and 

5 ul Ellman’s reagent (5,5′-Dithiobis(2-nitrobenzoic acid) or DTNB) at 4 mg/ml and incubated at room 

temperature for 15 minutes. Samples were then analysed by UV spectroscopy between 200 – 600 nm. 

The extinction coefficient at 412 nm for TNB (2-nitro-5-thiobenzoate) is 14150 with a molecular weight 

of 396.34 allowing for calculation of TNB molarity, directly relating to the number of free thiol groups 

within the protein. 

 

Figure 2.1.3| Ellman’s reagent reacts with free thiols to release stoichiometric quantities of 
detectable TNB. Ellman’s reagent (DTNB) readily reacts with free thiols to produce a single TNB-
protein adduct and release a stoichiometric amount of TNB which absorbs maximally at 412 nm. 
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2.1.17 Protein crystallisation, X-ray data collection, and structure solution. 

Proteins were crystallised as summarised in Table 2.2. The initial condition in which crystals grew is 

indicated, citing the name of the commercial screen utilised, in addition to the optimised crystallisation 

condition if applicable. The collection of X-ray diffraction data is detailed in Tables 2.3 and 2.4. Table 

2.3 details the collection of diffraction datasets which did not lead to structure solution (but are integral 

to the following study) whilst Table 2.4 details the collection of datasets which resulted in the solution 

of protein structures. Tables 2.5 and 2.6 detail the processing of datasets, citing the software utilised and 

pertinent information such as resolution limit, spacegroup, unit cell dimensions and the number of 

molecules within the asymmetric unit (ASU) as predicted through calculation of the Matthew’s 

coefficient (Matthews, 1968; Kantardjieff and Rupp, 2003). Crystal structures were solved using the 

methods summarised in Table 2.7. Interesting features of the structure solutions are detailed in Methods 

section 2.1.18. All data processing and crystal structure solution was performed by Dr Owen Davies.  
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Crystallisation conditions 
Protein Initial condition Optimised condition 

SYCP1640-783* 

PACT D7 
0.1 M Tris pH 8.0, 

0.2 M sodium chloride, 
20 % (v/v) PEG6000 

0.2 M sodium chloride, 
0.1 M Tris pH 8.0, 

16.25 % (v/v) PEG6000, 
0.1 M sodium citrate tribasic 

tetrahydrate 

SYCP1676-770 

(native)* 

JCSG+ A5 
0.2 M magnesium formate, 

20 % (v/v) PEG3350 

0.2 M magnesium formate, 
20 % (v/v) PEG3350 

SYCP1676-770 

(Iodide)* 

JCSG+ A5 
0.2 M magnesium formate, 

20 % (v/v) PEG3350 

0.09 M magnesium formate, 
14.4 % (v/v) PEG3350 

SYCP1676-770 

(SeMet)* 

JCSG+ A5 
0.2 M magnesium formate, 

20 % (v/v) PEG3350 

0.15 M magnesium formate, 
12.75 % (v/v) PEG3350, 

0.1 M sodium iodide 

SYCP1101-175 

I222 

JCSG+ D3 
0.2 M sodium chloride 

0.1 M Na/K phosphate pH 6.2 
50 % (v/v) PEG200 

0.14 M sodium chloride, 
0.07 M Na/K phosphate pH 6.2, 

35 % (v/v) PEG200 

SYCP1101-206 

I2 

MPD A3 and F3 
4 ˚C 

0.2 M ammonium fluoride or 
0.1 M MES pH 6.0, 

40 % (v/v) MPD 

N/A 

SYCP1676-770 
I4122 

Structure A12 
0.1 M sodium cacodylate pH 6.5 

1.4 M sodium acetate 
N/A 

SYCP676-770 

C2 
Index C1 

3.5 M sodium formate pH 7.0 
N/A 

MAJIN1-112 

TERB2168-220 

SeMet 

Morpheus D4 
0.12 M alcohols, 

0.1 M Buffer system 1 pH 6.5, 
37.5 % MPD_P1K_P3350 

N/A 

MAJIN1-106 
TERB2168-207 

Morpheus D12 
0.12 M alcohols, 

0.1 M Buffer system 3 pH 8.5, 
37.5 % MPD_P1K_P3350 

0.12 M alcohols, 
9.1 mM bicine pH 5.03 + 

60.9 mM Trizma pH 10.83, 
37.5 % MPD_P1K_P3350 

Table 2.2| Summary of initial and optimised crystallisation conditions for SYCP1 and MAJIN-TERB2. 
Asterisks indicate crystals which did not lead to structure solution. 
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Data Collection for unsolved crystals 
Protein Experiment 

type 
Beamline Wavelength 

(Å) 
No. images Relevant 

datasets 
SYCP1640-783 Native I03 0.9795 2000 SYCP1-05_6, 

SYCP1-05_7 
SYCP676-770 Native I03 0.9795 2000 S1C-20, S1C-

11 
SYCP1676-770 SAD* - 

iodide 
I04 1.9074 2000 S1C-01 

SYCP676-770 SAD - seleno-
methionine 

I03 0.9795 Å 
 

7200 S1C-16, S1C-
26 

Table 2.3| Summary of data collections for SYCP1 constructs which are described in text but did not 
result in structure solution. All data collected at 100 K Pilatus 6 M detector. *SAD = single-wavelength 
anomalous diffraction 

 

2.1.19 X-ray diffraction data collection for solved crystal structures 

Data Collection for solved crystal structures 

Protein 
Experiment 

type 
Beamline 

Wavelength 
(Å) 

No. images, 
osc. and exp. 

Relevant 
datasets 

SYCP1101-175 

I222 
SAD - Iodide I02 1.7712 Å 

7200 
0.1 ˚, 0.05 s 

S1N-5 
dls230515 

SYCP1101-206 

I2 
Native I04-1 0.9282 Å 

3x 2000 
0.1 ˚, 0.05 s 

S1N-7, 12, 19 
dls080517 

SYCP1676-770 
I4122 

Native I02 0.9795 Å 
2000 

0.1 ˚, 0.08 s 
S1C-13; 

dls160416 
SYCP676-770 

C2 
Native I02 0.9795 Å 

2000 
0.1 ˚, 0.08 s 

S1C-14; 
dls220216 

MAJIN1-112 

TERB2168-220 

SeMet 

SAD - seleno-
methionine 

I04-1 0.9159 Å 

3x 3600 
(10˚ kappa 
increments) 
0.1 ˚, 0.05 s 

MEIOB-12 
dls150418 

MAJIN1-106 
TERB2168-207 

Native I03 0.9763 Å 
2000 

0.1 ˚, 0.05 s 
MEIOB-35 
dls030518 

Table 2.4| Summary of data collections for SYCP1 constructs and MAJIN-TERB2 complexes which 
for which the structures were solved. All data collected at 100 K using Pilatus 6 M detector. *SAD = 
single-wavelength anomalous diffraction.  
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2.1.18 Notes of interest in the solution of crystal structures  

SYCP1101-175: To estimate phases, a five iodide sub-structure was solved for the asymmetric unit. Based 

upon anomalous difference maps, the five putative iodide sites were reduced to two sites and the 

structure completed through the placement of a triethylene glycol (PGE) molecule. 

SYCP1101-206: The data from three collections were scaled together in XSCALE prior to merging in 

Aimless (Diederichs et al., 2003; Evans, 2011). The structure was completed by the placement of two 

MPD molecules and two chloride ions.  

SYCP1676-770 (I4122): Upon solution by ARCIMBOLDO_LITE, PHASER succeeded in placing two 

idealised 30-residue polyalanine helices, which were extended by auto-tracing by SHELXE using the 

Arcimboldo mode for coiled-coil structures (Caballero, 2017). A SHELXE Correlation Coefficient of 

40.5 % signified a correct solution. The structure was complete through the addition of one acetate 

ligand. 

SYCP1676-770 (C2): ARCIMBOLDO_SHREDDER utilised the I4122 structure to generate a set of non-

redundant, overlapping, 99-residue models from which partial solutions were obtained, combined, and 

used to solve the phase problem. 

MAJIN1-112-TERB2168-220: Solved by SAD-phasing of MAJIN1-112–TERB2168-220 seleno-methionine 

derivative protein crystals. Eight selenium sites were identified, and PHENIX Autosol used to generate 

a density-modified experimental map utilising the combined unmerged intensity data.  

MAJIN1-106-TERB2168-207: PHASER was used for the molecular replacement of a single MAJIN chain 

of the seleno-methionine derivative SAD structure to solve the structure. 
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2.1.19 Mammalian cell transfection and imaging 

For studies of SYCP1 expression in mammalian cells, COS-7 cells were utilised. COS-7 cells are 

immortalised CV-1 cells (which in origin are kidney fibroblasts of the African green monkey) through 

transformation with a version of the SV40 virus which is replication deficient but produces the large T 

antigen. SYCP1 constructs were cloned into the pEGFP-C3 vector with contains an SV40 promoter 

allowing for their replication by the large T antigen (Ali and DeCaprio, 2001; Aruffo, 2001). I firstly 

replicated the experiments of Ollinger et al. using the human sequence for SYCP1, transfecting eGFP-

SYCP11-976 into COS-7 cells using lipofectamine, as follows (Ollinger et al., 2005). COS-7 cells were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10 % foetal calf serum 

and 2 mM L-Glutamine. Cells were lifted by trypsinisation and cell density determined using a 

Cellometer Auto T4 (Nexcelom) and respective software. For each transfection experiment, 40,000 cells 

were plated (35 mm Cellview culture dish, Greiner) and incubated at 37 ᵒC for 1.5 hours to allow 

adherence to the plate surface and subsequently flooded by the addition of 2 ml DMEM and incubated 

for 24 hours. Post-incubation, the media was discarded and replaced with 1.5 ml reduced serum media, 

Opti-MEM (Gibco, Thermo Fisher Scientific). Cells were incubated for 2 hours. Each transfection 

involved the addition of 500 μl of a lipid-DNA complex suspension in which cationic lipids facilitate 

the delivery of DNA by endocytosis (Chesnoy and Huang, 2000; Hirko et al., 2003). This suspension 

was created by a two-step approach. In the first step, two stocks were created. Quantities indicated are 

per transfection. 1) – DNA+Opti-MEM: 4μg vector at approximately 400 ng/μl was added to Opti-MEM 

to a total volume of 250 μl. 2) – Lipofectamine+Opti-MEM:  7 μl lipofectamine (Life Technologies) 

was added to 243 μl Opti-MEM. These were incubated at room temperature for 10 minutes. In the second 

step, 250 μl DNA+Opti-MEM was added to 250 μl Lipofectamine+Opti-MEM dropwise before gently 

mixing by pipetting up and down. This mixture was incubated at room temperature for 20 minutes. 

Subsequently the full 500 μl DNA+Lipofectamine+Opti-MEM mixture was added to the cell culture 

and incubated at 37 ᵒC. 

After 24 hours, Fluorescence microscopy was utilised to visualise eGFP-SYCP1 polycomplexes 

(excitation 488 nm, emission = 509 nm) using An Inverted System Microscope IX71 (Olympus) 

between a magnification of 60 and 90 times. DNA was visualised by Hoechst 33342 (Sigma Aldrich) 

staining (excitation = 346 nm, emission = 460 nm). Images were acquired using a cooled CCD camera 
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(Micromax-1300Y, Sony) and analysed and pseudo-coloured using Metamorph software (Molecular 

Devices). Digital images were processed using Adobe Photoshop 5 (Adobe, Sane Jose). For analysis, 

100 cells were counted per transfection and the percentage of cells in which SYCP1 polycomplexes 

were formed was calculated. Each experiment was performed in triplicate. 

For experiments in which electron microscopy was subsequently utilised to analyse the ultrastructure of 

resultant SYCP1 polycomplexes, transfection was performed concurrent with the plating of cells, 

forgoing both the 24-hour period in which cells were allowed to adhere to the plate and the starvation 

period. 

2.1.20 Thin slice preparation for Transmission EM (TEM) 

The preparation of thin slices for analysis by transmission electron microscopy was performed by the 

Electron Microscopy Research Services at Newcastle University. Prior to each step, samples in 

Eppendorfs were centrifuged for 5 minutes at 3,000 g and the supernatant discarded without disturbing 

the pelleted sample. In each step, samples were resuspended fully and incubated for the indicated time. 

All H2O used was deionised. All acetone used was from a desiccator. Samples were: 1) fixed in 2 % 

glutaraldehyde in 0.1 M sodium cacodylate, pH 7.4 (at least 1 hour). 2) Washed with 0.1 M cacodylate, 

pH 7.4 (2x 10 minutes). 3) Fixed in 1 % osmium tetroxide solution in H2O (30 minutes). 4) Rinsed in 

H2O (2x 10 minutes). 5) Dehydrated through serial washes in acetone (25, 50, 75 % in H2O; 15 minutes 

each, 100 %; 2x 20 minutes).  Then, 6) using the TAAB epoxy resin kit, samples were impregnated with 

increasing concentrations of epoxy resin (25, 50, 75 % in acetone; 30 minutes each, 100 %; 3x 1 hour). 

7) Sample-containing Eppendorfs were filled with resin and re-spun (repeated once). 8) The resin was 

polymerised at 60 ˚C for 24 hours with the Eppendorf lids open. Sectioning was then performed by the 

Electron Microscopy Research Service team. 
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INTRODUCTION 
3.1.1 The transverse filament proteins and human SYCP1 

The synaptonemal complex represents the morphological signature of the pachytene stage of meiotic 

prophase I. Holding homologous chromosomes in synapsis along their entire length, this enigmatic 

tripartite structure can be as long as 24 µm and consists of chromosomally-bound lateral elements 

connected to an electron-dense central element by perpendicularly orientated transverse filaments (TFs) 

(Figure 1.1.8) (Page and Hawley, 2004; Vranis et al., 2010). The structure is extraordinarily conserved 

across evolution, with strikingly similar structures observed almost universally across sexually 

reproducing organisms including Saccharomyces cerevisiae, Drosophila melanogaster, and 

Caenorhabditis elegans with only a few notable exceptions such as Saccharomyces pombe and 

Aspergillus nidulans (overviewed in Section 1.1.15) (Zickler and Kleckner, 1999). Astoundingly, 

however, the structural protein components of the respective synaptonemal complex assemblies 

demonstrate little to no sequence homology between organisms of different phyla. This, therefore, likely 

demonstrates a case of convergent evolution in which functionally and morphologically similar 

structures have evolved to enact the same function whilst utilising proteins of distinct origin (Fraune et 

al., 2012). This phenomenon is well demonstrated by the similar domain structure of the TF proteins of 

different organisms (such as those of mammals and Drosophila) despite sequence divergence. The 

presence of a transversal element in the synaptonemal complex is particularly evident in electron 

microscopy images of the SC, with rod-like structures visibly connecting the lateral elements to the 

midline central element (Figure 3.1.1) (Comings and Okada, 1971; Solari and Moses, 1973). The TFs 

of the hamster, in Figure 3.1.1a, were measured as having a width of 16 Å. This chapter proceeds with 

an introduction to the structure and function of TF proteins and their role within the SC. 

3.1.2 Mammalian SYCP1 

SYCP1 of mammals (SYN1 in hamster) form the TF protein of the SC within these organisms. They 

exhibit a high degree of sequence identity - 64 % sequence identity across the SYCP1 molecules of 343 

vertebrate species, including fish, of which a subset is aligned in Appendix 1. The molecule was first 

identified as a 111 kDa protein localised to the synaptonemal complex of rat in 1992 by Meuwissen et 

al. through the screening of a testis cDNA expression library using antibodies  
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Figure 3.1.1| The transverse filaments of the SC. a-c) Spread preparation synaptonemal complexes 
of a) Golden hamster (Mesocricetus auratus) (magnification x150000), b) House cricket (Acheta 
domesticus) (magnification x150000) and c) Japanese quail (Coternix coturnix japonica) (magnification 
x113000) which the central element (CE) and lateral elements (LE) are indicated. Transverse filaments 
(indicated by white arrows) are clearly visible and measured to have a diameter of 16 Å in hamster  
 

which specifically recognise a purported SC protein of a corresponding molecular weight (Meuwissen 

et al., 1992). The protein was later shown to be expressed specifically in the spermatocytes of male and 

oocytes of female (Pousette et al., 1997; de Vries et al., 2005).  Soon after, in 1995, a homologous cDNA 

sequence was identified in mouse, predicting a translated protein of 993 residues (Sage et al., 1995). It 

is now recognised that the coding sequence for rat SYCP1 described by Meuwissen et al. incorrectly 

missed coding sequence corresponding to 51 additional N-terminal residues correctly identified in the 

murine sequence, such that rat SYCP1 is 997 residues in length. cDNA encoding SYCP1 of Homo 

sapiens was identified later in 1997 and demonstrated an identical domain structure to that of rat and 

murine SYCP1 (Figure 3.1.2) (Meuwissen et al., 1997). Human SYCP1 shall form the research focus 

of the following chapter. The TF proteins of budding yeast and Drosophila shall also be discussed as 

the similarities and differences between these proteins provide insights into their molecular functions 

and mechanisms. 



Chapter 3 – SYCP1 

65 
 

 

Figure 3.1.2| Domain structure of the mammalian transverse filaments. a) Schematic representation 
of Homo sapiens SYCP1, Mus musculus SYCP1 and Rattus norvegicus SYCP1 with the unstructured, 
acidic tail in red, α-helical core in beige, and unstructured, basic tail in blue. Residue length is indicated. 
Sequence features detailed in (b) are marked against human SYCP1 – nuclear localisation signals (NLS) 
in black, p34cdc2 and tyrosine kinase target sites in magenta, cAMP/cGMP-dependent protein kinase sites 
in purple, leucine zipper in orange and protein kinase C (PKC) sites as blue dots. b) Table of sequence 
features of SYCP1. Residue boundaries are indicated, and the human sequence is shown with consensus 
residues in bold. Basic residues are in blue, acidic in red and phosphorylated residues in magenta or 
purple. Whether the sequence is conserved between humans and rat/mouse is indicated (Y is conserved).  

 

3.1.3 Bioinformatic analysis of SYCP1 

Human SYCP1 contains a predicted central helical core encompassing amino acids 101-783 as 

determined by JPred4 (Figure 3.1.3) (Drozdetskiy et al., 2015). Secondary structure prediction further 

suggests short stretches of α-helix and β-sheet within an otherwise largely unstructured C-terminus 

(residues 784-976). COILS suggests the likely folding of the SYCP1 helical core as a coiled-coil (Figure 

3.1.3) (Parry, 1982; Lupas et al., 1991; Lupas, 1997). This region of SYCP1 within human, rat and 

mouse shows similarity to myosin, but not beyond the level expected between non-related coiled-coil 

proteins, thus only reflecting the propensity to form coiled-coils. In comparison with rat and mouse, 

human SYCP1 lacks 21 amino acids within the central amphipathic α-helix, corresponding to an in-

frame deletion of three heptad-repeats. 

Using the EMBOSS application, charge, the gross charge distribution across SYCP1 is revealed (Rice 

et al., 2000). The central helical core and unstructured N-terminus, rich in acidic residues, are net 

negatively charged (N-terminal residues 1-100 have a pI of 4.61) whereas the N-terminal tip of the 

helical core and the unstructured C-terminus (residues 784-976; pI 9.80) are net positively charged 
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hinting at potential roles in DNA binding (Figure 3.1.3). A summary of additional sequence features 

within SYCP1 are detailed in Figure 3.1.2, including potential phosphorylation sites, nuclear localisation 

signals, and structural motifs. A full sequence alignment for SYCP1 can be found in Appendix 1.  

 

 

Figure 3.1.3| Bioinformatic analysis of SYCP1. Conservation scores per residue calculated by 
ConSurf using a manually edited alignment of 343 SYCP1 sequences to remove low quality and non-
SYCP1 sequences (Berezin et al., 2004; Ashkenazy et al., 2016). Secondary structure prediction 
calculated by JPred4 using an alignment of 62 sequences compiled by ensembl and verified to contain 
only vertebrate species. α-helix in blue, β-sheet in green and unstructured in grey. A full alignment of 
SYCP1 is presented in Appendix 1 (Waterhouse et al., 2009; Drozdetskiy et al., 2015; Zerbino et al., 
2018). Coiled-coil propensity calculated by COILS demonstrates a predicted central coiled-coil domain 
(Parry, 1982; Lupas et al., 1991; Lupas, 1997). The electrochemical potential distribution of SYCP1 
was calculated by charge of the EMBOSS suite using a window size of 5 residues and subsequently 
averaged across 100 residues to demonstrate overall charge distribution. The central coiled-coil is 
largely acidic with a basic N-terminal tip whilst the unstructured C-terminus is highly basic. 



Chapter 3 – SYCP1 

67 
 

3.1.4 SYCP1 bi-orients within the mammalian SC 

Preliminary immuno-gold electron microscopy studies demonstrated that SYCP1 specifically localises 

to synapsed regions of meiotic chromosomes and hinted that SYCP1 was bi-orientated within the SC, 

with the C-terminus staining proximal to the chromosome axis (Meuwissen et al., 1992). This 

supposition that SCP1 was bi-orientated within the SC, with the C-terminus anchored within the lateral 

elements was confirmed as being correct in two subsequent studies (performed concurrently and 

published back-to-back) (Liu et al., 1996; Schmekel et al., 1996). Both studies utilised antibodies raised 

towards rat SYCP1 though one study analysed the rat SC whilst the other focused on murine SC (I 

assume that the murine cDNA sequence only became available during their studies). The work of 

Schmekel et al. raised antibodies towards large regions of SYCP1, whilst Liu et al. created antibodies 

towards shorter, more specifically terminal regions of SYCP1. These are detailed in Figure 3.1.4a, 

converted to the corresponding sequences in human, and presented against the human SYCP1 sequence. 

As Schmekel et al. utilised the cDNA sequence of rat SYCP1 (which lacked 51 N-terminal residues), 

residue numbers have been corrected for this. Both studies effectively demonstrate that antibodies 

towards the N-terminus stain the central element of the SC whilst antibodies raised against the SYCP1 

C-terminus recognise the lateral element (Figure 3.1.4b) (Liu et al., 1996; Schmekel et al., 1996). In 

fact, even antibodies raised against the entire unstructured C-terminus only stain the lateral elements 

suggesting that these sequences are buried within the lateral elements, making close, perhaps direct, 

contact with the chromosome axis and DNA (Schmekel et al., 1996). As opposed to Liu et al., which 

focused only on spread chromosomes, Schmekel et al. presented data regarding the concomitant 

localisation of the N and C-termini within both spread chromosomes and chromosomes within ultrathin 

sections of testicular tissue, nullifying arguments regarding the effects of chromosome spreading. Bi-

orientation of the SYCP1 homologue in hamster, SYN1, was also demonstrated using a combination of 

immunofluorescence and immuno-gold electron microscopy (Dobson et al., 1994). 

This model was validated in 2014, by Schücker et al., using super-resolution fluorescence microscopy 

(Schucker et al., 2015). Interestingly, whilst the C-termini localise as two single threads at the lateral 

element, the N-termini of SYCP1 demonstrate a bi-layered configuration giving the SC a depth of 

approximately 100 nm (Schucker et al., 2015). This bi-layered organisation has further been proffered 

by Hernandez-Hernandez et al. in 2016, basing this suggestion upon the bimodal co-localisation of the  
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Figure 3.1.4| SYCP1 within the SC. a) Schematic representation of SYCP1 aligned with the regions 
to which antibodies were raised in the indicated studies. Liu et al. raised antibodies against rat SYCP1 
(murine residues 15-127 (N; corresponding to human residues 15-127); and murine residues 922-993 
(C; corresponding to human residues 904-976)). Schmekel et al. raised antibodies against rat SCP1 
(residues 52-442 (N; corresponding to human residues 52-441); residues 466-600 (M; corresponding 
to human residues 465-599); and residues 776-997 (C; corresponding to human residues 754-976)). 
Schücker et al. raised antibodies against rat SYCP1 (residues 1-124 (N; corresponding to human 
residues 1-124); and residues 922-997 (C; corresponding to human residues 900-976)). b) Immuno-
gold electron microscopy analysis of spread meiotic chromosomes by Liu et al. 1996. A1 and A2 
demonstrate central element localisation of the SYCP1 N-terminus whilst B1 and B2 show that the 
SYCP1 C-terminus is embedded within the lateral elements. The lateral elements (LE) and central 
element (CE) are indicated. Scale bar = 100 nm c) Three-dimensional reconstruction of the SC by 
Schücker et al. demonstrated the colocalization of the SYCP1 C-terminus with lateral element 
components SYCP2 and SYCP3 and the bi-layered organisation of the SYCP1 N-termini at the SC 
midline. 
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SYCP1 N-termini and SYCE3 protein in comparison with the monomodal and central distributions of 

SYCE1 and SYCE2 (Hernandez-Hernandez et al., 2016). Schücker et al. disagree as to the localisation 

of SYCE1 and SYCE2, alternatively describing a bimodal distribution of these proteins. It remains to 

be confirmed which hypothesis is true, but given the breadth of studies, it is clear that the SC itself has 

a depth of approximately 100 nm, and as such, a multi-layered organisation is not unlikely. In Figure 

3.1.5, I present the current model for the organisation of SYCP1 molecules within the SC, considering, 

for simplicity, a single layer of molecules. The N-termini of SYCP1 interdigitate at the midline of the 

SC, whilst the C-termini are embedded within the lateral elements, in association with the chromosome 

axis. SYCP1 molecules, given no evidence to the contrary, are represented as dimeric coiled-coils. 

 

Figure 3.1.5| SYCP1 within the SC. SYCP1 is a 976 amino acid protein component of the 
synaptonemal complex with a central helical domain thought to fold as a dimeric coiled-coil. Its C-
terminus is anchored within the lateral elements whilst its N-termini interdigitate at the central element. 
For simplicity, a single layer of SYCP1 molecules is depicted.  
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3.1.5 Unrelated proteins Zip1 and C(3)G localise to the SC, form TFs and share domain 
structure with SYCP1 

Zip1: The corresponding TF protein in budding yeast (Saccharomyces cerevisiae) was identified 

through its ability to complement of a mutant defective in spore viability (Sym et al., 1993). Termed 

Zip1, this protein of 875 residues is overtly similar to SYCP1 in domain structure, with a central α-

helical core with coiled-coil propensity, an acidic, unstructured N-terminus and an unstructured basic 

C-terminus (Figure 3.1.6). As SYCP1, Zip1 is meiosis-specific and localises to the central region of the 

SC, firstly described by Sym et al. 1993 using immunofluorescence localisation experiments (Sym et 

al., 1993). 

C(3)G: Ultrastructural studies of Drosophila asynaptic mutant c(3)G17, found the formation of short 

regions of central element but no further extension or formation of lateral elements (Rasmussen, 1975). 

In 2001, Page and Hawley published findings in which they localised the respective gene product, 

protein C(3)G, to the synaptonemal complex, and, given its contiguous staining along the entire SC, 

classified it as a structural component of the SC (Page and Hawley, 2001). In agreement with this 

classification, the SC does not form upon deletion of C(3)G (Smith and King, 1968). Page and Hawley 

utilised antibodies raised towards a bacterially expressed construct of C(3)G (residues 565-743). The 

antibody was confirmed to recognise a protein of a size matching the expected full-length size of C(3)G 

(744 residues in length) by Western blot of ovaries at 85 kDa. In agreement, no band was recognised for 

a C(3)G null strain, c(3)G68, a background in which a stop codon is introduced, terminating translation 

after residue 77. The antibody was used to localise C(3)G between paired chromosomes, further 

corroborated by identical localisation of a C-terminal eGFP fusion to C(3)G (Page and Hawley, 2001). 

Similar to TF proteins in other organisms, C(3)G contains a central predicted helical domain flanked by 

unstructured termini (Figure 3.1.7).  
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Figure 3.1.6| Bioinformatic analysis of Zip1. a) Zip1 is the 875 amino acid transverse filament protein 
of budding yeast (Saccharomyces cerevisiae). A schematic representation of its domain structure with 
unstructured N and C-termini flanking a central α-helical domain (residues 175-748). Antibodies utilised 
in orientation studies by Dong et al. 2000. Deletion/duplication mutants used to decipher Zip1 function 
and structure within the SC are aligned with the Zip1 sequence and the studies which they were utilised 
indicated. Conservation scores per residue calculated by ConSurf. Secondary structure prediction 
calculated by JPred4. α-helix in blue, β-sheet in green and unstructured in grey. Coiled-coil propensity 
calculated by COILS demonstrates a predicted central coiled-coil domain. The electrochemical potential 
distribution of Zip1 was calculated by charge of the EMBOSS suite using a window size of 5 residues 
and subsequently averaged across 88 residues to demonstrate overall charge distribution. The central 
coiled-coil is largely acidic with a basic N-terminal tip whilst the unstructured C-terminus is highly 
basic.  
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Figure 3.1.7| Bioinformatic analysis of Drosophila melanogaster C(3)G. a) C(3)G is a 744 amino 
acid protein containing a central helical domain predicted to adopt a coiled-coil (CC domain), preceded 
by a short coiled-coil region (CC1). Antibodies utilised to orientate C(3)G within the SC are aligned 
with the C(3)G sequence and deletion mutants utilised within the described experiments are indicated. 
Conservation scores per residue calculated by ConSurf. Secondary structure prediction calculated by 
JPred4. α-helix in blue, β-sheet in green and unstructured in grey. Coiled-coil propensity calculated by 
COILS demonstrates a predicted central coiled-coil domain. The electrochemical potential distribution 
of C(3)G was calculated by charge of the EMBOSS suite using a window size of 5 residues and 
subsequently averaged across 74 residues to demonstrate overall charge distribution. The central coiled-
coil is largely acidic with a basic N-terminal tip whilst the unstructured C-terminus is highly basic. 
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3.1.6 Zip1 and C(3)G orientate as SYCP1 within the SC  

Within the budding yeast SC, Zip1 molecules are organised such that the N-termini are within the central 

element and the C-termini are within the lateral elements, akin to the mammalian situation. This was 

ascertained by immuno-gold electron microscopy experiments, similar to those utilised to investigate 

SYCP1 within the mammalian SC, using antibodies raised towards the regions indicated in Figure 3.1.6 

(Dong and Roeder, 2000).  

C(3)G of Drosophila adopts an identical orientation within the SC as determined by Anderson et al. in 

2004, once again by electron microscopic analysis of immuno-gold stained SCs (Anderson et al., 2005). 

In this, antibodies towards the N-terminus (residues 8-185) localised at the SC central element whilst 

antibodies raised towards both the extreme C-terminus of C(3)G (residues 644-743) and the C-terminal 

end of the central coiled-coil region (residues 565-633) co-localised at the lateral elements. The regions 

to which antibodies were raised are highlighted in Figure 3.1.7.  

3.1.7 The central coiled-coil domain of the TFs defines the inter-chromosomal distance 

Through duplication and triplication of a coiled-coil sequence within Zip1 (residues 243-511; CC in 

Figure 3.1.6) it was shown that Zip1 is the primary determinant of spatial separation between 

chromosomes, corroborated by a further, similar, experiment in a separate study (Sym and Roeder, 1995; 

Tung and Roeder, 1998). In yeast expressing mutant Zip1 in which this coiled-coil segment is 

duplicated, the inter-chromosomal distance increases from 114 to 153 nm and upon triplication a further 

increase to 189 nm. As an increase of ~40 nm corresponds to approximately 270 residues folding as an 

α-helical coiled-coil, matching the length of the duplicated sequence, the observed differences in inter-

chromosomal distance suggest that a single Zip1 molecule (rather than two Zip1 molecules) spans the 

entire inter-chromosomal distance, contrary to their localisation findings. This discrepancy may be 

explained by the effect of dehydration during sample preparation for visualisation, which may result in 

shrinkage and therefore decreasing the observed effect, as has been discussed by Schmekel et al. 

(Schmekel et al., 1996). 
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3.1.8 The role of the C-terminus of TFs in chromosomal recruitment 

In both budding yeast and Drosophila, deletion of regions corresponding to the unstructured C-terminus 

of the TF proteins results in defective chromosomal recruitment. In budding yeast, deletion of C-terminal 

residues 791-824 or 825-875 completely blocks chromosomal recruitment, with a phenotype 

cytologically similar to the Zip1-null mutant (Tung and Roeder, 1998). Residues 791-824 are not basic 

suggesting that they either contribute to chromosomal recruitment through protein-protein interaction 

rather than electrostatic association with DNA or must be modified, such as by phosphorylation, which 

may confer DNA binding capacity.  

In Drosophila, deletion of the C(3)G C-terminus (residues 651-744; ∆C in Figure 3.1.7) also results in 

an inability to be recruited to the chromosome axis (Jeffress et al., 2007). As with the other TFs, the C-

terminus of C(3)G demonstrates an overall net positive charge (Figure 3.1.7). Given the failure to 

localise to the chromosome upon C-terminal deletion, it could be hypothesised that DNA-binding of the 

C-terminus drives chromosomal recruitment. 

The effect of the corresponding C-terminal deletion in mammals is currently unknown. However, given 

its basic charge, initial recruitment to the chromosome axis may also be mediated by electrostatic 

interactions with the DNA backbone. The possibility of being recruited through protein-protein 

interactions should also not be ignored. A yeast-two hybrid interaction between the C-terminus of rat 

SYCP1 (residues 822-997) and the C-terminus of SYCP2 (residues 1376-1505, also found to interact 

with SYCP3) was reported, potentially providing a physical link to the lateral element, but due to the 

lack of negative controls should be considered cautiously (Winkel et al., 2009; West et al., 2019). 

3.1.9 The unknown role of the N-termini of TFs and CE association 

An extensive study of deletion and truncation mutations of the Zip1 protein was performed by Tung and 

Roeder in 1998, characterising the effect of each on chromosome morphology (Tung and Roeder, 1998). 

Here they claim that the N-terminus of Zip1 (residues 21-242) is dispensable for synapsis, as judged by 

pairing chromosomes, localisation of Zip1 to the chromosome axis, and negligible impact upon spore 

viability upon deletion of this region. However, the localisation of Zip1 lacking N-terminal residues, as 

observed by immunofluorescence utilising antibodies raised towards the Zip1 C-terminus (residues 611-

875), is more punctate and is not continuous along the chromosomal axes and, morphologically, 
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homologous chromosomes do not appear to be bound in tight synapsis, as in the wild-type situation 

(Tung and Roeder, 1998). This represents an inability to stabilise N-terminal contacts with the central 

element or in homotypic interactions. Higher-resolution imaging should be utilised to determine whether 

synapsis is truly achieved. As extensive pairing of chromosomes is achieved prior to SC formation and 

is retained in the mutant situation, it can more accurately be argued that the N-terminus of Zip1 is 

dispensable for meiotic progression with minor effects on sporulation and crossover formation. SC-

independent pairing and other mechanisms, potentially only dependent upon the Zip1 C-terminus, likely 

act to ensure meiotic fidelity in budding yeast. 

In contrast, truncation of the unstructured N-terminus of Drosophila C(3)G (∆N; Figure 3.1.7), deletion 

of a short coiled-coil sequence preceding the central coiled-coil (∆CC1) results in a complete failure to 

synapse chromosomes whilst the protein still localises to the chromosome axes, with a similar deletion 

(∆NC) behaving identically (Jeffress et al., 2007).  

Currently, in mammals, the importance of the SYCP1 N-terminus is unknown. A yeast-two hybrid 

interaction suggesting the homotypic association of SYCP1 N-termini had been reported by Liu et al. 

but a lack of negative controls raises the question of whether the finding should be trusted (Liu et al., 

1996). Upon investigation, the constructs used in their study autoactivate, rendering their finding 

inconclusive (Davies, unpublished data).  

3.1.10 A link to the central element 

Ex vivo studies involving the heterologous expression of SYCP1, SYCE3 and SYCE1 have thus far 

provided the highest level of understanding regarding how SYCP1 connects to the central element 

(Hernandez-Hernandez et al., 2016). Upon heterologous expression in mammalian cells, SYCP1 forms 

cytoplasmic filamentous basket-like structures, referred to as polycomplexes (Ollinger et al., 2005) 

(Figure 3.1.9a,b). These structures shall be fully addressed in the following section. However, it was 

found that upon co-expression, SYCE3 is recruited to the SYCP1 polycomplexes and SYCE1 is only 

recruited to polycomplexes in the presence of SYCE3. SYCE3 therefore appears to form the sole link 

between the SYCP1 TFs and the central element. The regions/sequences that mediate these interactions 

remain to be addressed. 
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3.1.11 The TF proteins of the Caenorhabditis elegans SC 

The distance between the central element and the lateral elements in the SC of C. elegans is not bridged 

by a single TF protein but a series of proteins: SYP-1, 2, 3, and 4 (Hawley, 2011; Schild-Prufert et al., 

2011). It would be interesting to find out if this usage of multiple proteins to form the TFs is common 

across other organisms which have a lattice-like central element such as those of the insects.  

3.1.12 Polycomplex formation provides a clue for the assembly mechanism of TFs 

Polycomplexes (PCs) represent large accumulations of TF proteins which, in budding yeast and 

Drosophila, can occur physiologically. They can be identified as heavily staining bodies and at an 

ultrastructural level display a striated appearance reminiscent of SYCP3 self-assemblies in vivo and 

reconstituted in vitro (Figure 3.1.8 and Figure 1.1.4). They more frequently occur in mutant strains of 

budding yeast in which chromosomal recruitment of Zip1 is impaired and are observed to form networks 

or dot-like structures (Sym and Roeder, 1995). The “dot”-like PCs of budding yeast can be visualised 

to constitute a series of electron-dense bands with fainter intermediate bands corresponding to 

associations C-terminus and N-terminus of Zip1, respectively (Dong and Roeder, 2000). Therefore, PCs 

represent SC-like assemblies in which C-termini self-associate, rather than associating with the 

chromosome axis. The coupling of N- and C-terminal associations results in a recursive assembly. An 

interesting polycomplex structure is formed upon deletion of the unstructured C-terminus of C(3)G 

which precludes chromosome association (Jeffress et al., 2007). Here, a single hollow barrel-shaped PC 

is formed within the nucleus, displaying a similar banded appearance (Figure 3.1.8b).   

Similar structures have been observed upon heterologous expression of SYCP1 in mammalian cells 

(Yuan et al., 1996; Ollinger et al., 2005). Upon overexpression of  murine SYCP1 in Swiss-3T3 cells, 

large cytoplasmic aggregates can be visualised using antibodies raised towards the N-terminus, though 

these were not analysed by electron microscopy to ascertain ultrastructural features (Figure 3.1.9a) 

(Yuan et al., 1996). Contrastingly, when overexpressed in COS-7 cells, murine SYCP1 forms 

cytoplasmic filamentous networks which when visualised by electron microscopy reveal the 

characteristic striated ultrastructure with a series of alternating dark and light bands corresponding, as 

in budding yeast, to the C and N-termini of SYCP1, respectively (Figure 3.1.9b) (Ollinger et al., 2005). 

The differing appearance of polycomplexes in these two cell lines could be due to differences in cell 
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origin. As described in Methods section 2.1.19, COS-7 cells originate from a transformed line of Green 

African monkey fibroblasts. Swiss-3T3 cells, however, originate from Swiss albino mouse embryonic 

tissue and were spontaneously immortalised using the “3T3 protocol” in which primary cells are split 

every 3 days (Todaro and Green, 1963). Differences in protein expression, regulatory factors, and basic 

cellular architecture may play a role in what form polycomplexes present. 

As observed for Zip1 in relation to inter-chromosomal distances, upon duplication or deletion of a region 

of coiled-coil sequence within SYCP1 (residues 457-699), distances between sites of C-terminal self-

association increased or decreased correspondingly (Figure 3.1.9A,B,C) (Ollinger et al., 2005). This 

suggests that the coiled-coil region of SYCP1 is similarly the determinant of the inter-chromosomal 

distance (Ollinger et al., 2005). It further raises the likelihood that the TF proteins possess mechanisms 

of self-assembly supported by sites within the N and C-termini which likely contribute to their assembly 

within the SC. 

A model for how I currently believe SYCP1 self-assembles to create polycomplex structures is provided 

in Figure 3.1.9c. SYCP1 N and C-termini recursively self-associate to create a structure resembling 

“mini-SC” structures stacked back-to-back.  
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Figure 3.1.8| Polycomplex formation in Saccharomyces cerevisiae Zip1 and Drosophila 
melanogaster C(3)G. a) Drosophila ovary section analysed by electron microscopy displaying a rare 
example of wild-type C(3)G forming a PC. b) Deletion of the C(3)G C-terminus consistently results in 
the formation of a single, nuclear, hollow barrel-shaped PC. A schematic representation of the structure 
is labelled with dimensions: a= ~200 nm, b= ~200 nm (diameter= 2a+b=600-900 nm), c= ~750 (350-
770) nm. Scale bar = 500 nm. c) Spread Zip1 “dot” PCs of wild-type and a mutant in which a coiled-
coil region (residues 243-511) is triplicated. Large arrows indicate lateral element-like structures whilst 
small arrows indicate central element-like structures. Scale bar = 1 µm. d) Zip1 polycomplexes can form 
in a network-like fashion. Scale bar = 200 nm.  
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Figure 3.1.9| Polycomplex formation upon heterologous mammalian expression. a) Immuno-
fluorescence imaging of Swiss-3T3 and COS-7 cells overexpressing SYCP1 showing the formation of 
large cytoplasmic aggregates and filamentous networks. Scale bar = 10 µm. b) Electron microscopic 
analysis of transfected cells COS-7 reveals ultrastructural details of SYCP1 polycomplexes, indicated 
by arrows. Scale, 1 µm. c-e) Polycomplexes formed within COS-7 cells expressing SYCP1 c) wild-type, 
d) Δ457-699, e) 2x 457-699.  The N- and C-terminal associations of SYCP1 have been indicated with 
small and large arrowheads, respectively. f) A schematic model of SYCP1 assembly within a 
polycomplex. The polycomplex represents a series of back-to-back associated “mini-SC”-like 
assemblies in which N- and C-terminal associations permit recursive assembly. Am updated model 
based on the results presented within Chapter 3 is included on page 202. 
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3.1.13 TF-mediated synapsis is required for proper DNA repair 

In mouse, it was found that, through its ablation, SYCP1 is required for fertility and that a reduced 

complement of SYCP1 results in apoptosis of spermatocytes as they enter the pachytene phase of 

meiosis (de Vries et al., 2005). In the absence of SYCP1, homologous chromosomes still align and form 

axial associations, short-range associations of paired chromosomes at a separation of ~200 nm, a 

distance greater than that in synapsis (Figure 3.1.10) (de Vries et al., 2005). This demonstrates that the 

initiation of double-strand breaks, the formation of homologous pairing, and the formation of axial 

associations, likely through single-end invasion and the formation of early DNA-repair intermediates 

(as shown by wild-type levels of γH2AX staining and RAD51 foci during leptotene) is independent of 

SYCP1-mediated synapsis (de Vries et al., 2005).  

 

 

Figure 3.1.10| SYCP1 is required for synapsis but not homologue pairing. A) Electron microscopic 
analysis of spread and DNase-treated meiotic chromosomes of wild-type mouse demonstrating proper 
synapsis. AE, axial element. CE, central element. B) SYCP1-null mice exhibit homologously-paired 
meiotic chromosomes, bound at axial associations (indicated; AA). Scale bars = 1 µm.  
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However, SYCP1-mediated synapsis appears to be involved in facilitating the maturation of early 

recombination nodules to late recombination nodules, i.e. the removal of RAD51/RPA/MSH4 foci, and 

the formation of MLH1/3 foci. In SYCP1-null mice, RAD51/RPA/MSH4 levels, despite accumulating 

to wild-type levels, persist through late pachytene (de Vries et al., 2005). It is suggested that the SC 

introduces an architecture within which to process DNA repair intermediates, and, given the structural 

role of the TFs within the SC, that SYCP1-null mice cannot provide this architecture. 

In budding yeast, Zip1 contributes to meiotic passage, likely through its involvement in the SC. 

However, it is not essential, with Zip1-null strains undergoing meiotic progression to form viable spores, 

albeit at reduced efficiency (Sym and Roeder, 1995). In this strain, homologous chromosomes still align, 

but do not synapse (Sym et al., 1993). DSB intermediates are still processed, and, perhaps counter-

intuitively, crossovers are formed at much higher levels (Tung and Roeder, 1998). This is likely through 

the ablation of crossover interference whereby the number of repair events by crossover is spatially 

limited such that crossovers are evenly distributed across the genome (Sym and Roeder, 1994).  

The TFs potentially provide a link with the recombination machinery. In Saccharomyces cerevisiae, 

Zip1 was shown to interact with Zip3 and therefore indirectly with Zip2 by immunoprecipitation and 

yeast-two hybrid (though the vector encoding Zip1 appears to autoactivate) (Agarwal and Roeder, 

2000). Zip3 and Zip2 do not localise along synapsed chromosomes in a contiguous manner as Zip1, 

colocalising as multiple discrete foci, colocalising with components of the early recombination nodule 

such as MSH4 (Agarwal and Roeder, 2000). The proposed link may not be direct between Zip1 and 

Zip3, but this finding does suggest a physical connection between synaptonemal complex components 

and the recombination machinery.  

3.1.14 Functions of the TF proteins in centromeric pairing 

In mice, SC components are retained at the centromeres after SC disassembly (Bisig et al., 2012; Qiao 

et al., 2012). Prior to the formation of the SC, centromeric localisation of SC components is not 

observed. This is in contrast with Saccharomyces cerevisiae in which the centromeric regions are paired 

in a Zip1-dependent manner (Tsubouchi and Roeder, 2005). A similar observation was made for C(3)G 

of Drosophila (Christophorou et al., 2013). These roles appear to be fulfilled by cohesin complex 

proteins in mouse and plants (Zhang et al., 2013; Ishiguro et al., 2014). The role of Zip1 at the 
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centromere appears to be to confer structural rigidity, reducing rotational freedom of the paired 

kinetochores with respect to one another, thus facilitating their bi-orientation and faithful segregation at 

metaphase (Gladstone et al., 2009). This was proposed by Gladstone et al. in response to findings 

garnered through studying the disjunction of non-exchange chromosomes (i.e. chromosomes which do 

not form crossovers and therefore lack genetic linkage after the disassembly of the SC). As non-

exchange chromosomes are rare in budding yeast, Gladstone et al. artificially ensured the presence of at 

least one non-exchange chromosome pair by replacing one copy of chromosome V with the 

homeologous copy from Saccharomyces carlsbergensis (Gladstone et al., 2009). The homeologous 

chromosome V pair are able to pair in a homology-independent manner whilst rarely forming inter-

homeologue chiasmata (Maxfield Boumil et al., 2003). It was previously shown that successful 

disjunction is due to centromere pairing (Kemp et al., 2004). Loss of Zip1 results in baseline levels of 

centromere pairing and asymmetric segregation of non-disjunction chromosomes (Gladstone et al., 

2009). 

Whether a similar phenomenon exists in mammals is currently unknown. However, unpublished 

findings (Davies and Hunter) currently suggest that upon complete synapsis, with centromeres regions 

synapsis last of all, SYCP1 displaces centromere component Mis18α. Mis18ɑ is a component of the 

Mis18 complex which localises to the centromere directly after mitotic division to facilitate recruitment 

of CENP-A, a histone-fold variant which may incorporate within nucleosomes, which is required for 

centromere specification (Stellfox et al., 2013). The functional relevance of this is currently unknown 

though it could be postulated to be involved in terminating the recruitment of CENP-A prior to anaphase. 

Alternatively, perhaps remaining SC proteins play a role enforces structure between bound kinetochores 

to facilitate correct orientation of the homologous pairs on the metaphase plate, positioning the 

kinetochores for spindle attachment after the SC is disassembled. 

3.1.15 SYCP1 in cancer 

It is now well established that meiosis-specific proteins are commonly expressed in cancer (Rousseaux 

et al., 2013). SYCP1 was first identified as a cancer/testis antigen in 1998, as, whilst supposedly being 

expressed specifically in sexual organs, many cancerous tissues demonstrate aberrant expression of 

SYCP1 (Tureci et al., 1998). Genes associated with the DNA repair pathway are frequently mis-
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regulated in cancer, contributing to genome instability (Bishop and Schiestl, 2002). The mechanisms by 

which SYCP1 is repurposed in cancer have not been uncovered. Recombination proteins formed an 

attractive target for cancer therapy (Peng and Lin, 2011). Given their meiosis-specific nature SC proteins 

make attractive targets for therapy. 

3.1.16 Uncovering the molecular structure and mechanism of assembly of SYCP1 within the SC 

In summary, we thus far have a decent level of understanding regarding the localisation and orientation 

of SYCP1 molecules within the SC and its role in SC structure and facilitating meiotic progression. 

However, the molecular means by which SYCP1 is recruited to and assembles within SC and its atomic 

structure remain unknown. The work presented in the following chapter focuses on addressing these 

chasms in our knowledge base by elucidating the structure and function of the transverse filament 

protein SYCP1 of the human synaptonemal complex (SC). Despite the assertion that SYCP1 formed 

dimeric coiled-coils, on the basis of sequence prediction, this has never been formally addressed 

(Meuwissen et al., 1992). During rudimentary biochemical attempts to purify Saccharomyces cerevisiae 

Zip1, it was suggested that Zip1 has the capacity to form dimers, tetramers and higher order assemblies 

(Dong and Roeder, 2000). However, this was based upon the size-exclusion profile of refolded material, 

stabilised by lysine cross-linking. 

Although immuno-gold localisation and super-resolution fluorescence microscopy have effectively 

determined the placement of SYCP1 molecules within the SC, the geometry of individual SYCP1 

molecules and their mechanisms of chromosomal recruitment and assembly within the SC remain 

unknown.  (Liu et al., 1996; Schmekel et al., 1996; Schucker et al., 2015). Investigation into the structure 

and function of SYCP1 in vitro has previously been hampered due to the inherent instability and 

aggregation properties of the molecule. For example, upon refolding from solubilised inclusion bodies, 

SYCP1 demonstrates significant degradation and forms a hydrogel-like substance (Owen Davies, 

unpublished findings).  

The work presented within this chapter details the steps taken towards elucidating a molecular 

understanding of SYCP1 geometry by identifying and analysing a non-assembling truncation product 

of SYCP1 and its component domains through biophysical and crystallographic methods. I found that 

that the core structure of SYCP1 is formed of four helical chains which are held together in four-helical 
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association at its N-terminus, forking at both termini into dimeric coiled-coils. The N-terminal coiled-

coils are short and mediate homotypic associations, recapitulating SC midline self-association, whilst 

the C-termini are extended and rod-like, providing sufficient length to span the distance between the SC 

central element and lateral elements.  

3.1.17 Coiled-coil proteins: structure and function relationships 

To achieve this new-found knowledge, it was critical to understand the key features of our target 

structures – the coiled-coil fold.  Coiled-coils are a common fold utilised across nature and serve largely 

structural roles, importantly introducing function-critical separations between domains located at the N 

and C-termini. They are formed by the inter-twining of two α-helices. α-helices are stabilised through 

hydrogen bonds which form between the backbone amine group hydrogen of one residue and the 

backbone carboxyl group oxygen of a residue positioned 3/4 residues later (Pauling et al., 1951). More 

precisely, an α-helix has a 3.6 residues per turn with a pitch of 5.4 Å. The pitch of a coiled-coil, stabilised 

through “knobs-into-holes” hydrophobic interactions, is slightly reduced, at 3.5 residues per turn due to 

the left-handedness of the coiled-coil in comparison to the right-handedness of the α-helix (Crick, 1952). 

These knobs-into-holes associations are formed through hydrophobic docking of sidechains which occur 

within the amino acid sequence in a repetitive pattern. The residues of the “heptad repeat” are denoted 

abcdefg where a and d are generally hydrophobic.  

Coiled-coils are the most prevalent fold across biology and vary as much in length as they do in function 

(Truebestein and Leonard, 2016). For example, bZIP transcription factors, such as GCN4 (the first 

crystallographically characterised coiled-coil), form short dimerization domains, whilst extremely long 

coiled-coils, such as NuMA or Giantin which mediate nuclear dynamics and Golgi-associated vesicle 

transport respectively, also exist (Rose and Meier, 2004). Coiled-coils may serve to provide architectural 

rigidity, such as the intermediate filaments, which assemble to form intracellular networks, enforcing 

shape upon the cellular membrane and positioning intracellular organelles. These proteins often form 

rod-like structures visible by electron microscopy (EM) and commonly self-assemble utilising 

sequences flanking the core fold. Such assemblies often display a paracrystalline appearance by EM 

with characteristic striations indicating parallel arrays of extended coiled-coils stacked end to end 

(Stewart et al., 1989). 
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Pertinent to our research, all thus far identified structural components of the synaptonemal complex (SC) 

contain coiled-coil domains. The SC “zips” meiotic chromosomes along their entire length and its 

“zipper”-like structure displays many features of coiled-coil assembly by EM (Zickler and Kleckner, 

2015). As previously described, many of the components of the SC have demonstrated in vitro their 

capability to self-assembly. This propensity for self-assembly, alongside the inherent flexibility of 

coiled-coil proteins provides a challenge when attempting to characterise these proteins through 

biochemical, biophysical and crystallographic techniques. However, their simplicity and repetitive 

nature also provides opportunity for their study both in solution and for their structural characterisation 

by X-ray crystallography. 

3.1.18 Techniques suited for the study of coiled-coil molecules 

Size and shape determination by small-angle X-ray scattering (SAXS) 

Small-angle X-ray scattering is a powerful technique in the study of coiled-coil proteins as it can be 

used to determine the principal dimensions of a rod-like molecule such as thickness and length. The 

thickness of a coiled-coil relates to the number of chains within the cross-section (for example, a radius 

of 8 Å suggests 2 chains within the cross-section whilst a radius of 10 Å suggests 4 chains within the 

cross-section). The experimentally determined length of a coiled-coil can be compared with the 

theoretical length of the sequence as a canonical dimeric coiled-coil (1.5 Å per residue). Any 

discrepancies may be explained by additional folding events. Throughout this thesis, SAXS has proved 

a key technique in the characterisation of SYCP1. 

X-ray crystallography: Ab initio molecular replacement strategies 

The folding of a coiled-coil is highly predictable and as such the structure of an amino acid sequence 

may be modelled. In a bid to bypass the requirement for experimental phasing information during crystal 

structure solution, these models may be used in molecular replacement. Models must, however, be very 

accurate and as such a serial approach must be adopted. AMPLE is a pipeline which clusters and 

subsequently truncates fragments generated by programs such as QUARK and ROSETTA and submits 

these for serial molecular replacement trial through MrBUMP (Keegan and Winn, 2008; Rigden et al., 

2008; Bibby et al., 2012; Xu and Zhang, 2012). Alternatively, rather than generating models, small 

fragments which may more accurately match a structure on a very local scale might be used to provide 
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phases. ARCIMBOLDO is a program while relies upon the accurate placement of small secondary 

structural elements, derived from distant homologs, to acquire initial phase estimations (Millan et al., 

2015). This approach to structure solution is particularly powerful for alpha-helical proteins, though it 

does rely on high-resolution diffraction data.
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RESULTS 
Part I 

3.2.1 The purification and refolding of full-length SYCP1 from inclusion bodies 

I expressed full-length SYCP1 (976 residues) with an N-terminal His6-tag (His6-SYCP11-976) in E. coli 

and found SYCP1 to be largely insoluble upon induction at both 25 ˚C and 37 ˚C, as determined by its 

presence within the bacterial pellet and absence from the supernatant and 200 mM imidazole elution 

steps (Figure 3.2.1a,b). I therefore proceeded to purify SYCP1 from inclusion bodies.  

 

Figure 3.2.1| Full-length SYCP1 is insoluble in E. coli. a) SDS-PAGE analysis of the expression and 
attempted purification of full-length SYCP1 from BL21 (DE3) pRARE E. coli by Ni-NTA affinity 
chromatography followed by an induction test at 37 ˚C. b) SDS-PAGE analysis of the attempted 
purification of full-length SYCP1 from the soluble fraction of lysed cells induced at 37 ˚C by Ni-NTA 
affinity chromatography. 

 

Inclusion bodies were prepared through washing and denaturation in 8 M Urea, as schematised in Figure 

3.2.2a using the indicated buffers. Insoluble SYCP1 is solubilised in 8 M urea and exhibits heavy 

degradation (Figure 3.2.2b). UV spectroscopy suggested the presence of DNA, with a ratio of 

absorbance at 260 nm to absorbance at 280 nm (A260/280) of 1.07 corresponding to ~5 % DNA content 

by weight (green trace; Figure 3.2.2d) (Mach et al., 2001). Refolding was initiated by sequential dialysis 

to Buffer 3, in which it remained soluble (i; Figure 3.2.2e). The presence of L-arginine, pH 8.0, in Buffer 

3 likely limited protein aggregation by forming clusters around exposed hydrophobic residues during 

the refolding process (Das et al., 2007; Lange and Rudolph, 2009). An A260/280 of 1.09 confirmed the 
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persisting presence of ~5 % DNA (cyan trace; Figure 3.2.2d). Subsequent dialysis to Buffer 1 resulted 

in precipitation which formed a hydrogel upon centrifugation (ii; Figure 3.2.2e). It was noted that 

hydrogel formation could be prevented through prior anion-exchange chromatography in 8 M Urea 

(Figure 3.2.2c,e). A large peak in the elution profile during ion exchange (marked with an asterisk), 

confirmed to contain largely DNA by UV spectroscopy, suggested that protein-DNA electrostatic 

associations had been disrupted in a salt-dependent manner allowing for the differential elution of 

SYCP1 (black trace; Figure 3.2.2d). I therefore hypothesised that a combination of electrostatic 

association with bacterial DNA and hydrophobic association of protein molecules drove the formation 

of the observed hydrogels. Deviation from the baseline in the UV spectrum of refolded SYCP1 between 

wavelengths 320-400 nm is caused by Rayleigh scattering of light, indicative of the presence of 

aggregates in the solution (red trace; Figure 3.2.2d). Although SYCP1 demonstrated overall instability, 

with numerous degradation products, it was interesting to note its distinct double-banded appearance 

during early purification stages (orange box; Figure 3.2.2b). The distinct brown-yellow colour of the 

DNA-SYCP1 hydrogel (Figure 3.2.2e) suggested the presence of metals which have bound non-

specifically, perhaps interacting with exposed cysteines and/or sample oxidation. 

I performed electron microscopy (EM) on SYCP1 in a bid to observe ultrastructural features of SYCP1 

self-assembly (Figure 3.2.3). Initially, samples not subjected to ion exchange chromatography were 

analysed. Soluble sample in 20 mM Tris, pH 8.0, 500 mM NaCl contained predominantly amorphous 

aggregates though I found a few examples of filamentous assemblies (Figure 3.2.3a-c). Ultra-thin 

sections of SYCP1 hydrogel (fixed in glutaraldehyde and embedded in resin as per Methods section 

2.1.20) were imaged but no discernible structural features were readily distinguishable (Figure 3.2.3d-

f). In L-arginine, SYCP1 remained soluble. However, by electron microscopy, large networks were 

observed, in which individual fibres of ~10 nm thickness were frequently separated by approximately 

100 nm (Figure 3.2.3g-h). Secondly, purified SYCP1 (having been subjected to ion exchange 

chromatography) was analysed though only aggregation was observed (Figure 3.2.3i).  
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Figure 3.2.2| Refolding SYCP1 from solubilised inclusion bodies. a) A schematic representation of 
the purification and refolding process for SYCP1 from the insoluble fraction, as detailed in Methods 
section 2.1.7. b) SDS-PAGE analysis summarising the steps taken to prepare inclusion bodies prior to 
solubilisation. c) Chromatogram including the loading, washing and elution phases (as indicated) of ion-
exchange chromatography for His6-SYCP1 in 8 M Urea pH 8.0. SYCP1 containing fractions are 
highlighted and a DNA containing peak is marked with an asterisk. d) Normalised UV spectroscopy 
between 200 and 400 nm for His6-SYCP1 at various stages of purification. Green, unfolded SYCP1 in 
Urea; cyan, refolded SYCP1 in L-arginine; black, DNA separated from SYCP1 by ion exchange; red, 
purified His6-SYCP1; grey, purified MBP for comparison. e) Samples of i refolded SYCP1 in L-
arginine; ii, SYCP1-DNA hydrogel; iii, soluble SYCP1 in the indicated buffers. 
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Figure 3.2.3| Electron microscopy analysis of SYCP1 samples. a-h) Samples not subjected to ion-
exchange chromatography. a-c) EM analysis of the supernatant created by centrifugation of hydrogel-
forming samples revealing the presence of a,b) amorphous aggregates and c) filamentous assemblies. 
d) Photograph of the SYCP1 hydrogel analysed in e-f) Thin slices of fixed hydrogel demonstrating no 
discernible ultrastructural features. g) SYCP1 forms network-like filamentous assemblies in L-arginine. 
h) A zoomed-in section of the indicated region of part g with arrows showing a regular 100 nm spacing 
between filaments. i) Refolded SYCP1 purified by ion exchange prior to dialysis to remove DNA. a-i) 
All scale bars represent 500 nm. 
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3.2.2 Optimised purification of His6-SYCP11-976 

In order to characterise SYCP1 in vitro its purification was optimised (described in detail in Methods 

section 2.1.7). Of note, DNase I was incorporated into the lysis buffer and an additional 1 M NaCl wash 

step utilised during inclusion body preparation (Figure 3.2.4a). As previous, ion exchange 

chromatography using HiTrap Q column was used to remove remaining DNA (of which there was little 

remaining) and an additional subsequent cation exchange step using HiTrap SP incorporated to enrich 

for full-length material (Figure 3.2.4b-e). Interestingly, the double-banded appearance became less 

prominent after cation exchange using a HiTrap SP column, suggesting a minor truncation of the N or 

C-terminus was sufficient to block/reduce binding to a negatively charged substrate, such as the DNA 

backbone (Figure 3.2.4e). Selected fractions were sequentially dialysed overnight to Buffer 3 and 1 for 

refolding. Refolded material was subjected to cation exchange chromatography using HiTrap SP and 

eluted fractions were pooled and concentrated. The purity of the final product was assessed by SDS-

PAGE (Figure 3.2.4f).  
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Figure 3.2.4| Optimised purification of SYCP1. a) SDS-PAGE analysis of samples summarising the 
preparation of inclusion bodies indicating the sequential wash steps. All wash steps incorporated 50 
mM DTT, 50 mM EDTA pH 8.0, and DNase. b) Ion exchange chromatogram showing the loading, 
wash, and elution phases for SYCP1 purified using HiTrap Q. c) SDS-PAGE analysis of load, flow-
through, and elution fractions from b. d) Ion exchange chromatogram using HiTrap SP of SYCP1. e) 
SDS-PAGE analysis of load, flow-through, and elution fractions from d. f) SDS-PAGE analysis of 
purified His6-SYCP1.     
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3.2.3 SYCP1 is helical and forms large assemblies in solution 

To assess the success of the refolding process, a biophysical analysis of SYCP1 was performed. Far-UV 

circular dichroism spectroscopy was used to quantify secondary structure. A characteristic α-helical 

spectrum with minima at 208 and 222 nm allows for the estimation of helical content at 73 % using 

equations 2 and 3 (Methods section 2.1.8) (Figure 3.2.5a) (Greenfield and Fasman, 1969; Morrisett et 

al., 1973). This closely matches the estimation by deconvolution by DichroWeb using the CDSSTR 

algorithm with reference data set 6 at 75 % (Sreerama and Woody, 2000; Whitmore and Wallace, 2004; 

Whitmore and Wallace, 2008). With the 976 amino acids of SYCP1 plus 37 residues of the His6-tag and 

linker sequence, this corresponds to 758 ordered residues in helical arrangement, closely corresponding 

with the 683 residues of the predicted helical core. Further, cooperative unfolding at 38 ˚C was observed 

during thermal denaturation, by tracking the helical signal at 222 nm by CD spectroscopy, suggesting 

proper folding of the SYCP1 molecule (Figure 3.2.5b). The fraying of helical ends, occurring at a 

reduced temperature in comparison with the folded core of SYCP1, is highlighted by the early deviation 

from the sigmoidal curve between 5 and 35 ˚C (Figure 3.2.5b).  

The polydispersity of purified SYCP1 and its oligomeric status was determined using multi-angle light 

scattering coupled with size-exclusion chromatography. I found that SYCP1 elutes soon after the void 

volume of the column, at 8.3 ml compared with 7.5 ml for the void (as determined by the elution volume 

of blue dextran which has a molecular weight of ~2 MDa), and ranges in molecular weight from 1.5 – 

23 MDa, suggesting aggregation or, as we might predict from its role within the synaptonemal complex, 

some form of specific higher-order assembly (Figure 3.2.5c). A polydispersity of 1.27 highlights the 

presence of a heterogenous mixture of multimeric states.  

3.2.4 Purification and characterisation of SYCP11-783 

The double-banded appearance of SYCP1 during the early stages of its preparation could possibly be 

explained by a short C-terminal truncation. I reasoned that His6-SYCP11-954 might be purifiable from E. 

coli in a soluble manner (Figure 3.2.7a). However, despite its presence within the Ni-NTA eluate, low 

expression levels and the double-banded appearance were both retained suggesting that residues 954-

976 are not solely responsible the visible degradation which is likely to be more significant than just 22 

residues (dashed box; Figure 3.2.7a). I therefore opted to remove the entire unstructured C-terminus and 
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tested the expression and purification of SYCP11-783. Expression levels were much improved for both 

His6- and His6-MBP- fusions, with soluble SYCP1 clearly visible in the bacterial supernatant (Figure 

3.2.6b-e). However, the majority of material did not bind the respective affinity resin suggesting 

occlusion of the N-terminal affinity tag (Figures 3.2.6b-e). I postulated that this may be due to N-

terminal associations of the SYCP1 molecules, resulting in the formation of soluble aggregates which 

might represent in vitro assemblies which recapitulate self-assembly mechanisms utilised in vivo. I 

therefore attempted to chemically disrupt these associations by lysing cells in buffers containing either 

10 % glycerol, 500 mM L-arginine pH 8.0, or 1.5 % Triton X-100 (Figure 3.2.6e). The addition of Triton 

X-100 resulted in a better yield of His6-SYCP11-783, with protein visible in the Ni-NTA elution (gel 3, 

lane 7, Figure 3.2.6e). However, a larger quantity of protein, better enriched for non-degraded material, 

was achieved by utilising the previously described refolding procedure (Figure 3.2.6f). Circular 

dichroism analysis determined His6-SYCP11-783 contained a proportionally greater percentage of α-helix 

when compared with SYCP11-976, at 83 %, corresponding to 679 helical residues of 820 total, perfectly 

matching the predicted 683 residues of the helical core, confirming the largely disordered nature of the 

SYCP1 N and C-termini (Figure 3.2.5a). Unfolding at 41 ˚C indicated it contained the same core fold 

as the full molecule (Figure 3.2.5b). SEC-MALS revealed megadalton assemblies, though noticeably 

smaller than observed for SYCP11-976, ranging from 0.6 – 8 MDa, the molecule retained propensity to 

aggregate, or assemble, in solution (Figure 3.2.5d). 

Given this partial success, I postulated that the removal of the unstructured N-terminus (residues 1-100) 

might further improve expression in E. coli and subsequent purification. I therefore decided to purify 

residues 101-783 which encompass the predicted central helical domain (Figure 3.2.10a). 
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3.2.5 The unstructured C-terminus of SYCP1 binds DNA 

The unstructured C-terminus of SYCP1 (residues 784-976) is highly basic and has previously been cited 

as having a DNA-binding function without providing experimental evidence (Schmekel et al., 1996). I 

found, using electrophoretic mobility shift assays (EMSA), that SYCP1 binds double-stranded DNA, 

with 2.5 µM protein saturating 25 µM per base pair dsDNA (equating to 53.2 nM 470 bp linear dsDNA 

molecules) (Figure 3.2.5f). I therefore approximate a 10 bp footprint per SYCP1 monomer. I tested 

whether, as suggested, DNA binding was mediated by the unstructured C-terminus of SYCP1 which 

contains basic patches which may form obligate DNA binding modules. SYCP11-783, lacking residues 

784-976, possessed negligible DNA binding capacity, highlighting the importance of the C-terminal tail 

for DNA association (Figure 3.2.5g). The intensity of free DNA observably decreases with an increase 

in SYCP1 concentration to 2.5 µM. This residual DNA binding may be mediated by the basic patch at 

the N-terminus of the SYCP1 helical core. Overall, these findings suggest that the SYCP1 C-terminus 

contains the key elements by which SYCP1 associates with DNA and may drive in its chromosomal 

assembly in vivo.   
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Figure 3.2.5| His6-SYCP1 forms helical assemblies and binds DNA via its C-terminus. a) Schematic 
representation of SYCP1. The helical core is displayed as a segmented rectangle (demarcated on the 
basis of findings described throughout Chapter 3). Constructs analysed within this figure are aligned. A 
similar schematic shall be utilised throughout the figures of this chapter. b) Circular dichroism far-UV 
spectra were deconvoluted to estimate helical content (as indicated) of His6-SYCP1 and SYCP11-783, 
with data fitted at normalised rmsd values of 0.005 and 0.006, respectively. c) Thermal denaturation of 
His6-SYCP1 and SYCP11-783 displayed as % unfolded, calculated using the helical signal at 222 nm, 
revealed melting temperatures of 38 and 41 ˚C, respectively. d,e) SEC-MALS analysis of His6-SYCP1 
and SYCP11-783, demonstrating the formation of megadalton assemblies. Light scattering (LS) and 
differential refractive index (dRI) are plotted as solid and dashed lines, respectively, with molecular 
weights (Mw) shown as diamonds across elution peaks. f,g) EMSA analysis of SYCP1 and SYCP11-783. 
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Figure 3.2.6| Purification of SYCP11-783. a) SDS-PAGE analysis of Ni-NTA purification of His6-
SYCP11-954. The double-banded appearance is retained (dashed box). b) SDS-PAGE analysis of the 
attempted purification of His6-SYCP11-783 by Ni-NTA affinity chromatography c) SDS-PAGE analysis 
of the attempted purification of His6-MBP-SYCP11-783 by Ni-NTA affinity chromatography. d) SDS-
PAGE analysis of the attempted purification of His6-MBP-SYCP11-783 by amylose affinity 
chromatography. e) Ni-NTA affinity chromatography of His6- SYCP11-783 lysed in the presence of + 10 
% glycerol, 500 mM L-arginine pH 8.0, or 1.5 % Triton X-100. f) SDS-PAGE analysis of refolded His6-
SYCP11-783 

 

3.2.6 Human SYCP1 also forms polycomplexes upon heterologous expression 

It has been previously reported that upon heterologous expression of SYCP1 in COS-7 cells, large 

filamentous networks of SYCP1 assemble, named polycomplexes (PCs). The formation of PCs by rat 

SYCP1 is ablated upon deletion of the entire C-terminus (corresponding to a truncation of the human 

protein to residue 798) whilst a shorter truncation (corresponding to residue 891 in the human sequence) 

does not  (Ollinger et al., 2005). I found that human SYCP1 similarly forms PCs upon expression in 

COS-7 cells, visible by fluorescence as filamentous cytoplasmic networks (Figure 3.2.7a,). Many nest-

like networks were observed without nuclei suggesting that filamentous assemblies remained stable after 
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cellular apoptosis, confirmed by visualisation on brightfield; no intact cell membrane could be 

discerned, and cellular debris was visible (Figure 3.2.7b). Filamentous-network formation was graded 

from 1-5 (1; filamentous networks, 2-3; networks of a less extended appearance, 4; amorphous 

aggregation, 5; diffuse eGFP signal). The example images in Figure 3.2.7a have scores for each cell 

indicated in white. The efficiency of filamentous-network assembly was calculated for full-length 

SYCP1 at 44 ± 7 % (1-3 constitute assembly and 4-5 are classed as “no assembly”) (Figure 3.2.8a). EM 

analysis reveals the familiar ultrastructure, with PCs resembling a back-to-back arrangement of SCs 

(Figure 3.2.7c,d). PCs were mostly frequently observed in close proximity to the nuclear membrane 

(indicated N).  

  

 

 

Figure 3.2.7| SYCP1 forms polycomplexes when 
heterologously expressed in COS-7 cells. a) 
Fluorescence imaging demonstrating that eGFP-
SYCP1 (human sequence) form cytoplasmic 
filamentous networks upon heterologous expression 
in COS-7 cells. DNA is stained using Hoechst 33342. 
b) Cells in which filamentous assemblies have formed 
are presented above their corresponding brightfield 
view. c) Electron microscopic analysis of wild-type 
human SYCP1 showing the characteristic 
ultrastructural features and demonstrating the 
frequent localisation of polycomplexes in proximity 
to the nuclear envelope (N). Scale bars – 500 nm. d) Polycomplex ultrastructural order is not always 
completely regimented with many polycomplexes merging and sliced at many orientations. Scale 
bars – 500 nm. The nuclear envelope is indicated by an arrow.  
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Figure 3.2.8| Blocking filamentous assembly of SYCP1 by C-terminal truncation. a) The efficiency 
of filamentous assembly is plotted as the percentage of transfected cells demonstrating filamentous 
assembly (green) and those displaying amorphous aggregates or diffuse GFP signals (grey). Each 
experiment was performed in triplicate with each experiment involving the counting and assignment of 
at least 100 cells. b) The same data presented in a but splitting assembly into its three component scores 
of 1-green, 2-blue, 3-yellow and splitting non-assembly into 4-purple and 5-grey. c-h) COS-7 cells 
expressing truncated constructs of SYCP1. The deletion is indicated in white text. i) Electron micrograph 
of sliced COS-7 cell expressing SYCP11-954 showing the formation of polycomplex structure.  
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Figure 3.2.9| Blocking filamentous assembly of SYCP1 by mutation of T859. a) The efficiency of 
filamentous assembly in point mutations T859A and T859E within the context of GFP-SYCP11-976. 
Efficiency is plotted as the percentage of transfected cells demonstrating filamentous assembly (green) 
and those displaying amorphous aggregates or diffuse GFP signals (grey). Each experiment was 
performed in triplicate with each experiment involving the counting and assignment of at least 100 cells. 
b) The same data presented in a but splitting assembly into its three component scores of 1-green, 2-
blue, 3-yellow and splitting non-assembly into 4-purple and 5-grey. c) Alignment of human SYCP1 
sequence, residues 852-867. T859 is indicated. d-g) COS-7 cells expressing mutated constructs of 
SYCP1. The mutation is indicated in white text. h,i) Electron microscopic analysis of polycomplexes 
formed by COS-7 cells expressing GFP-SYCP1 T859E and T859A, respectively. An inclusion body 
(IB) is indicated  
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3.2.7 Truncation or mutation of the SYCP1 C-terminus blocks filamentous network formation 

I then assessed a series of SYCP1 C-terminal truncations on their effect on filamentous-network 

formation. Network formation was unaffected by a 7-residue truncation (Δ970-976) which resulted in a 

non-significant decrease to 39 ± 10 % in network formation, whereas further truncation to SYCP11-954 

(Δ954-976) almost fully ablated network formation with 3.5 ± 3.5 % assembly efficiency (Figure 

3.2.8a). I was still able to identify polycomplex structure, however, in these cells (Figure 3.2.8i) Any 

further truncation (Δ916-976, Δ869-976) resulted in no assembly (Figure 3.2.8a). This indicates a key 

role for the unstructured C-terminal tail of SYCP1 in network formation though no EM analysis was 

performed.  

Similarly, network formation was almost fully abolished through the mutation of residue T859 to either 

alanine or glutamate (10 ± 1 % and 6 ± 3 % respectively, Figure 3.2.9a). This residue is part of a TP 

motif, a potential CDK phosphorylation site, possibly implicating the phosphorylation of this residue in 

PC formation. Though network formation was ablated, analysis by electron microscopy readily 

identified polycomplex structures within the cytoplasm (Figure 3.2.9h,i). It is worth noting that in simply 

comparing network assembly efficiency, an interesting phenomenon is missed. In transfecting empty 

eGFP vector, a diffuse cytoplasmic fluorescence is observed. However, in the cases of the non-

assembling truncations of SYCP1, 53 – 70 % of cells rather display punctate SYCP1 aggregates within 

the cytoplasm (Figure 3.2.8b; score 4). These aggregates are similar to those ovular-shaped cytoplasmic 

aggregates observed by Yuan et al. upon expression of SYCP1 in Swiss-3T3 cells (Figure 3.1.9a) and 

somewhat resemble the polycomplexes I have observed by electron microscopy in both size and shape 

(Figure 3.2.7c, Figure 3.2.8c-h, Figure 3.2.9c-f). This is particularly evident in Figures 3.2.8e and 3.2.9f.  

An ultrastructural analysis of the cytoplasmic aggregates formed by truncated SYCP1 has never been 

performed. I tentatively suggest that SYCP1 assembly into polycomplex structures, observable by 

electron microscopy, is not disrupted by C-terminal truncation of SYCP1 or the mutation of T859. I 

suggest that filamentous network formation represents some other phenomenon, potentially recruitment 

of SYCP1 to an intermediate filament network, such as keratin.  
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3.2.8 The SYCP1 helical core possesses intrinsic self-assembly capacity 

I expressed SYCP1101-783 as an MBP-fusion encoded by a pMAT11 vector in BL21 (DE3) to  promote 

solubility (Peranen et al., 1996). Amylose affinity was utilised to perform the initial purification step 

(Figure 3.2.10a). To provide a sufficient yield, the lysate of at least 10 litres of bacterial culture were 

processed and the flow rate was reduced to 0.5 ml/min to allow binding. I imagine that the long length 

of the molecule acts somewhat like a parachute, creating a large surface area to catch the flow, resulting 

in stronger drag reducing binding efficiency. Attempted purification by Ni-NTA affinity resulted in the 

preferential purification of predominantly heavily degraded species and a faster flow rate resulted in 

significantly reduced yields (data not shown). Further purification through anion exchange 

chromatography using HiTrap Q was performed which successfully resolved non-degraded His6-MBP-

SYCP1101-783 from free His6-MBP (Figure 3.2.10b). Removal of the affinity tag was performed using 

enzymatic cleavage using TEV protease, which recognises the linker sequence between the His6-MBP-

tag and the initiating methionine (GSMSENLYFQGSM) resulting in a three-amino-acid extension to 

the N-terminus of the cleaved protein (GSM). Cleavage was enhanced through overnight incubation, 

gently rocking at 25 ˚C. A second anion exchange chromatography step was used to separate SYCP1101-

783 from the His6-MBP-tag and TEV protease followed by size-exclusion chromatography (Figure 

3.2.10c,d). An overview of the purification is given in Figure 3.2.10e. 

SEC-MALS analysis of SYCP1101-783 revealed the formation of heterogenous, megadalton assemblies, 

ranging from 1.2 – 20 MDa, demonstrating that, in solution, deletion of the unstructured N and C-termini 

does not ablate higher-order assembly (Figure 3.2.10f).  
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Figure 3.2.10| Purification and biophysical characterisation of SYCP101-783. a) SDS-PAGE analysis 
of His6-MBP-SYCP1101-783 amylose affinity purification. b) SDS-PAGE analysis of ion exchange 
chromatography of His6-MBP- SYCP1101-783 elution fractions. c) SDS-PAGE analysis of ion exchange 
chromatography of cleaved SYCP1101-783 elution fractions. d) SDS-PAGE analysis of size exclusion 
chromatography of SYCP1101-783 elution fractions. e) SDS-PAGE analysis of samples summarising the 
purification of SYCP101-783. f) SEC-MALS analysis of SYCP1101-783 demonstrating the formation of 
megadalton assemblies. Light scattering (LS) and differential refractive index (dRI) are plotted as solid 
and dashed lines, respectively, with molecular weights (Mw) shown as diamonds across elution peaks. 
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3.2.9 Deletion of the SYCP1 αN-tip permits biophysical characterisation of obligate SYCP1 

Deletion of 11 N-terminal residues (residues 101-111), termed the αN-tip, fully disrupts the assembly 

observed for SYCP1101-783, with SYCP1112-783 forming a stable, monodispersed, tetrameric species 

(Figure 3.2.11e). The purification for SYCP1112-783 was performed as for SYCP1101-783 (Figure 3.2.11a,b). 

Analysis by circular dichroism far-UV spectroscopy and deconvolution using DichroWeb reveals that 

of SYCP1112-783 is almost fully α-helical (92 %, corresponding to 621 residues) with a melting 

temperature of 52 ˚C, determined through thermal denaturation tracking the helical signal at 222 nm by 

circular dichroism (Figure 3.2.11c,d) (Whitmore and Wallace, 2004). I suggest that this represents an 

obligate form of the SYCP1 molecule which lacks the ability to undergo higher-order self-assembly, 

dependent upon the presence of the SYCP1 αN-tip. 
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Figure 3.2.11| Purification and biophysical characterisation of SYCP1112-783. a) SDS-PAGE analysis 
of samples summarising the purification of SYCP1112-783. b) UV spectra for purified SYCP1112-783. c) 
Circular dichroism far-UV spectra were deconvoluted to estimate helical content (as indicated) of 
SYCP1112-783, with data fitted at a normalised rmsd value of 0.005. d) Thermal denaturation of SYCP1112-

783 displayed as % unfolded, calculated using the helical signal at 222 nm, revealed a melting temperature 
of 52 ˚C. e) SEC-MALS analysis of SYCP1112-783 revealing the formation of a 305 kDa tetramer 
(theoretical tetramer – 320 kDa).  Light scattering (LS) and differential refractive index (dRI) are plotted 
as solid and dashed lines, respectively, with molecular weights (Mw) shown as diamonds across elution 
peaks. 
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3.2.10 Size and shape determination of the SYCP1 structured core by X-ray scattering 

We performed size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis to 

determine size and shape parameters (length and width) for obligate SYCP1. SEC-SAXS is particularly 

robust in the topological characterisation of asymmetric, elongated (rod-like) molecules, such as coiled-

coils, and provided invaluable insights into the geometry of SYCP1 over the course of this study (Dunne 

and Davies, 2019b). 

The steep gradient within the low q region (low scattering angle; low resolution) of the X-ray scattering 

profile hinted at a highly elongated shape (Figure 3.2.12a). Transformation of the data to real-space 

reveals the relative distribution of interatomic distances within a pairwise distance distribution profile, 

or P(r) curve (Sedlak et al., 2017). The observed positive skew is typical for rod-like molecules, whilst 

the x-axis intercept indicates the maximum interatomic distance, or Dmax, which equates to the 

molecule’s length. The P(r) profile reveals a length of 900 Å, closely matching its theoretical length as 

an extended α-helical coiled-coil (1008 Å) (Figure 3.2.12b). This length would be sufficient to span over 

half the inter-chromosomal distance, in agreement with previous studies demonstrating the bi-

orientation of SYCP1 with the SC (Liu et al., 1996; Schmekel et al., 1996; Schucker et al., 2015).  

 

Figure 3.2.12| SYCP1112-783 is elongated. a) Averaged small-angle X-ray scattering profile of 
SYCP1112-783 with the fit used for P(r) distribution shown as a black line. b) SEC-SAXS P(r) distribution 
of SYCP1112-783, maximum dimension (Dmax) and radius of gyration (Rg) are indicated. Rg was calculated 
from real-space P(r) distribution rather than from Guinier analysis as the Guinier region was too narrow. 
SEC-SAXS analysis by Dr Orla Dunne. 
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3.2.11 A stable parallel coiled-coil caps the C-terminus of the SYCP1 helical core 

Having defined the obligate form of SYCP1 as an elongated tetramer we sought to dissect its structure 

to learn the details of its molecular architecture. Previous work by Lucy J. Salmon identified a construct 

encompassing residues 640-783 which caps the C-terminus of the SYCP1 helical core and proved to 

express highly and solubly in E. coli.  

SYCP1640-783 was purified as summarised in Figure 3.2.13a. Circular dichroism far-UV spectroscopic 

analysis of SYCP1640-783 demonstrated a typical helical spectrum, with negative peaks at 208 and 222 

nm. Deconvolution of CD data using the CDSSTR algorithm and reference dataset 6 by DichroWeb 

provided an estimation of helical content at 85 %, corresponding to 125 out of 147 residues (Whitmore 

and Wallace, 2004).  

The presence of three histidine residues and one cysteine within the sequence of SYCP1640-783 prompted 

assaying for metal binding. I tested for the presence of bound zinc, as the presence of other metals would 

have been suggested by spectrophotometric features by UV spectroscopy which were not observed. I 

utilised a PAR assay in which divalent metal ions released from protein through proteolytic digestion 

are chelated by 4-(2-Pyridylazo)resorcinol (PAR) changing its spectrophotometric properties, from 

absorbing maximally at 414 nm to 494 nm. No metal binding was observed (Figure 3.2.13f). 
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Figure 3.2.13| SYCP1640-783 forms stable, helical domain capping the SYCP1 helical core. a) SDS-
PAGE analysis of sample summarising the purification of SYCP1640-783. b) Circular dichroism far-UV 
spectra, indicating percentage helix estimated by deconvolution, with data fitted at a normalised rmsd 
value of 0.003. c) Thermal denaturation demonstrating a biphasic unfolding pattern. The melting 
temperature of each unfolding event was estimated by manual extrapolation of the component curves at 
24 and 58 ˚C. Data are plotted as % unfolded based on the helical signal at 222 nm. d) SEC-MALS 
analysis of SYCP1640-783 revealing it forms a 34.4 kDa dimer (theoretical dimer – 34.6 kDa). Light 
scattering (LS) and differential refractive index (dRI) are plotted as solid and dashed lines, respectively, 
with molecular weights (Mw) shown as diamonds across elution peaks. e) PAR assay used to 
demonstrate the absence of zinc bound by SYCP1640-783 (blue). Zn standards (0-100 µM) are shown in 
grey.  
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SEC-MALS determined the molecular weight to be 34.4 kDa, corresponding to a dimeric species (the 

theoretical dimeric molecular weight is 34 kDa) (Figure 3.2.13d). To unambiguously define the principal 

dimensions of SYCP1640-783, we performed SEC-SAXS analysis (Figure 3.2.14). Given a pitch of 1 nm 

per heptad repeat (140 Å per residue), SYCP1640-783 should demonstrate a length of 202 Å if it were to 

fold as a simple elongated coiled-coil (Truebestein and Leonard, 2016). A more elaborate fold, such as 

folding back on itself to create a four-helical bundle would demonstrate a reduced observed length and 

a larger cross-sectional radius (schematic; Figure 3.2.14d). As observed for SYCP1112-783, the P(r) curve 

was positively skewed, indicating that it adopts an elongated conformation (Figure 3.2.14d). 

Determination of the cross-sectional radius of gyration (Rc) reveals the thickness of elongated molecules 

and thereby indicates the number of helices within a coiled-coil. SAXS data for SYCP1640-783 revealed a 

Rc value of 9.3 Å suggesting the presence of between 2 and 4 helical chains within the cross-sectional 

radius (Figure 3.2.14c). The P(r) distribution indicates the maximum dimension of the molecule, which 

may be directly interpreted as its length for coiled-coils (Figure 3.2.14d). The P(r) maximum dimension 

of 196 Å closely matches its theoretical length of 202 Å as an extended coiled-coil. Thus, I conclude 

that SYCP1640-783 folds as a simple, extended coiled-coil. 
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Figure 3.2.14| SEC-SAXS analysis of SYCP1640-783. a) Averaged small-angle X-ray scattering profile 
of SYCP1640-783 with the fit used for P(r) distribution shown as a red line. b) SEC-SAXS Guinier analysis 
to determine the radius of gyration (Rg) of SYCP1640-783. The linear fit is in red and data points utilised 
highlighted in solid black. The Q.Rc value was < 1.3 with the Rg calculated at 50 Å. c) SEC-SAXS 
Guinier analysis to determine the radius of gyration of the cross-section (Rc) of SYCP1640-783. The linear 
fit is in red and data points utilised highlighted in solid black. The Q.Rc value was < 1.3 with the Rc 
calculated as 9.3 Å. d) Inter-atomic distance distribution profile (P(r)) for SYCP1640-783 demonstrating 
positive skew with the Dmax indicated. Inset schematic of possible helical folds for SYCP1640-783 
indicating theoretical lengths (Dmax). e) Schematic representing different configurations an extended, 
MBP-tagged, coiled-coil could adopt with arrows indicating the inter-MBP distance. f) Inter-atomic 
distance distribution profiles (P(r)) for MBP-SYCP1640-783 (black) and double-MBP fusion, MBP- 
SYCP1640-783-MBP (grey). The locations of intra-, and parallel/anti-parallel inter-MBP peaks are 
indicated. SEC-SAXS analysis by Dr Orla Dunne. 
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3.2.12 Determining the orientation of helices within SYCP1640-783 

To determine the orientation of helices within the SYCP1640-783 dimer, a SAXS method, previously 

utilised to determine the relative orientation of helices within SYCE1 (Dunne and Davies, 2019b), was 

employed in which a series of maltose-binding protein (MBP)-fused constructs were analysed, utilising 

the dominant features of the globular MBP-tags within inter-atomic distance distribution profiles to 

determine their relative positioning. Short ~70-Å inter-MBP distances would indicate a parallel 

orientation of helices, whilst additional long inter-MBP distances approximating the Dmax would indicate 

an anti-parallel orientation (Figure 3.2.14e). Solely short inter-MBP distances observed for the N-

terminal MBP-fusion of SYCP1640-783 indicate a parallel orientation of helices (Figure 3.2.14f). 

Accordingly, a long inter-MBP distance was observed for MBP- SYCP1640-783 -MBP (Figure 3.2.14e,f).  

3.2.13 Modelling the SYCP1640-783 coiled-coil structure in silico 

Modelling the SYCP1640-783 as a parallel, extended, coiled-coil using ROSETTA in combination with 

SAXS-derived distance restraints, predicted heptad repeat residues adopt classic coiled-coil interactions 

(modelling performed by Dr Owen Davies; Figure 3.2.15a-c). The residues of the heptad repeat are 

denoted abcdefg where a and d are generally hydrophobic. The model confines the chains in close 

association, forming canonical N- and C-terminal coiled-coils. Residues 640 to residue 664 for the N-

terminal coiled-coil, with positions a being occupied by V643, L650, F657 and Y664 and d positions 

occupied by L646, A653 and I660 (Figure 3.2.15b). Residues 749-781 form the C-terminal coiled-coil, 

with L753, L760, L767, and A781 occupying the a positions and L749, L756, V763 and L777 occupying 

the d positions (non-canonical E770 and K774 are in heptad positions d and a, respectively) (Figure 

3.2.15c).   

The structure could not be modelled as a single continuous coiled-coil, with the intermediate sequence 

forming interspersed hydrophobic associations. The modelled structure does not fit the SAXS data; the 

fit of the calculated scattering curve of the modelled structure to the experimental scattering data is poor 

with a χ2 value of 24.525 (Figure 3.2.15d). Docking of the modelled structure into ab initio generated 

molecular envelope demonstrates that the intermediate sequence likely splays apart (Figure 3.2.15e). 

This matches sequences prediction which suggests that coiled-coil sequence is only adopted by the N- 

and C-terminal sequences (Figure 3.2.15f).  
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Correspondingly, the thermal denaturation profile of SYCP1640-783 suggests a two-step unfolding 

process, with melting temperatures estimated at 24 and 58 ˚C, indicative of the unfolding of two 

stabilising sequences within the construct (Figure 3.2.13c). The independent unfolding of the individual 

coiled-coil sequences likely explains the bimodal thermal denaturation profile with the unfolding of the 

C-terminal coiled-coil likely represented by the second transition as it contributes a greater number of 

interacting residues. 

  



Chapter 3 – SYCP1 

115 
 

 

 

Figure 3.2.15| Modelling the SYCP1640-783 extended, parallel, coiled-coil. a) ROSETTA modelling of 
SYCP1640-783 using SAXS-derived distance restraints. Coiled-coil sequences are bounded by dashed 
boxes. b) Heptad residues within coiled-coil 1 are shown. c) Heptad residues within coiled-coil 2 are 
shown. d) Experimental scattering data for SYCP1640-783 (black) and calculated scattering data of the 
ROSETTA model (red). The calculated data fits the experimental with a χ2 value of 24.525. e) 
SUPCOMB docking of modelled SYCP1640-783 into an ab initio molecular envelope. 23 envelopes were 
calculated by DAMMIF and averaged by DAMAVER. f) COILS analysis of the SYCP1640-783 

demonstrating strong coiled-coil prediction at both the N- and C-terminal ends and weak prediction 
within the intermediate sequence. Modelling by Dr Owen Davies. 
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3.2.14 Dissecting the core structure of SYCP1 

The finding that the C-terminus of the SYCP1 helical core forms a stable dimeric coiled-coil is 

immediately striking given the tetrameric state of SYCP1112-783. I sought to determine the minimum 

sequence required to stabilise the tetrameric form of SYCP1. 

A series of SYCP1 constructs were designed, cloned and purified and are summarised in Figure 3.2.16a. 

Extension of the C-terminal boundary further than amino acid 783 resulted in instability but had no 

effect on the dimeric oligomeric status (Figure 3.2.16a and Appendix 2). Extension of the N-terminal 

boundary to residue 206 resulted in the formation of a stable tetramer whilst extension to 358, 589 and 

632 did not alter the dimeric status indicating that the sequence mediating tetramerization was within 

boundaries 206-358 (Figure 3.2.16a and 3.2.17b). SYCP1358-783 proved particularly stable, as purified in 

Figure 3.2.17a. SEC-MALS data for SYCP1358-783 are presented in Figure 3.2.18b, demonstrating the 

dimeric oligomeric status with a molecular weight of 96 kDa (theoretical molecular weight is 101 kDa).  

Upon analysis by Matthew Ratcliff, we found that the N-terminus of the SYCP1 core (residues 112-

362) retained a tetrameric oligomeric state (Figure 3.2.18c). SYCP1112-362 demonstrated a single 

degradation product (marked with an asterisk) suggesting the presence of a stable core within (Figure 

3.2.17b). Truncation of the N-terminal boundary to 206 resulted in a protein which migrated by SDS-

PAGE the same as the degradation product of SYCP1112-362 (Figure 3.2.17c,d). SYCP1206-362 retained the 

tetrameric oligomeric status, with a molecular weight of 67 kDa (theoretical molecular weight is 76 

kDa) (Figure 3.2.18d). Together, SYCP1206-362 and SYCP1358-783 fulfil the key oligomeric units within 

the SYCP1 core and were furthered for biophysical characterisation. 

3.2.15 Biophysical characterisation of the SYCP1206-362 and SYCP1358-783 

Circular dichroism far-UV spectroscopy reveals that, as expected, both constructs are almost entirely α-

helical, with deconvolutions suggesting 93 and 90 % helicity for SYCP1206-362 and SYCP1358-783, 

respectively (Figure 3.2.18e). Their individual thermostabilities are less than that of SYCP1112-783, with 

melting temperatures for SYCP1206-362 at 38 ˚C and for SYCP1358-783 at 37 ˚C in comparison to 52 ˚C for 

SYCP1112-783 (Figure 3.2.18f). SEC-SAXS analysis revealed that both constructs exist as elongated, rod-

like, molecules in solution, with lengths and cross-sectional radii of gyration (Rc) matching their 

theoretical parameters as coiled-coils (Figure 3.2.18g-j). SYCP1206-362 has a Dmax of 260 Å (theoretical 
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length as a coiled-coil is 236 Å) and Rc of 10.3 Å, suggesting its folding as a four-helical bundle. In 

contrast, SYCP1358-783 has a Dmax of 645 Å (theoretical length as a coiled-coil is 639 Å) and Rc of 8.9 Å, 

indicating its folding as a dimeric coiled-coil. Interestingly, the Rc of SYCP1358-783 (8.9 Å) indicates a 

diameter of  17.8 Å, closely matching the 16 Å measured thickness of the individual transverse filaments 

observed within the hamster SC by electron microscopy  (Solari and Moses, 1973). 

 

Figure 3.2.16| Dissecting the SYCP1 core. a) SYCP1 constructs analysed in the identification of 
SYCP1206-362 and SYCP1358-783. Amino acid boundaries, stability and oligomeric status as determined by 
SEC-MALS are indicated. Constructs originally purified and analysed by Matthew Ratcliff are indicated 
by an asterisk. Constructs in green are summarised in Appendix 2. 
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Figure 3.2.17 (above)| Purification of SYCP1358-783, SYCP1112-362, and SYCP1206-362. a-d) SDS-PAGE 
analysis of samples summarising the purification of a) SYCP1358-783, b) SYCP1112-362, c) SYCP1206-362. 

The degradation product of SYCP1112-362 is marked with an asterisk. d) Final purified samples of 
SYCP1112-362 and SYCP1206-362 showing the alignment of SYCP1206-362 with the degradation product of 
SYCP1112-362. 

Figure 3.2.18 (right)| Biophysical characterisation of SYCP1358-783, SYCP1112-362, and SYCP1206-362. 
a) Schematic of SYCP1 displaying analysed constructs. b-d) SEC-MALS analysis of a) SYCP1358-783 

(theoretical dimer – 101 kDa), b) SYCP1112-362 (theoretical tetramer – 121 kDa), c) SYCP1206-362 

(theoretical tetramer – 76 kDa). e) Circular dichroism far-UV spectra for SYCP1358-783 (red), SYCP1112-

362 (dashed blue), SYCP1206-362 (blue). Data were deconvoluted to estimate percentage helix and fitted 
with a normalised rmsd values of 0.003, 0.003 and 0.009, respectively. f) Thermal denaturation of 
SYCP1358-783 (red), SYCP1112-362 (dashed blue), SYCP1206-362 (blue) based on the helical signal at 222 nm 
was plotted as % unfolded revealing melting temperatures of 37, 38, and 38 ̊ C. g) Averaged small-angle 
X-ray scattering profile of SYCP1112-783 (green), SYCP1358-783 (red) and SYCP1206-362 (blue) with the fits 
used for P(r) distribution shown as black lines. h) Guinier analysis to determine the radius of gyration 
(Rg) of SYCP1206-362 with data points within the linear region used for analysis shown in black. Q.Rg 
value was < 1.3. The Guinier region for SYCP1358-783 was too narrow for analysis so was calculated 
using the real-space P(r) distance distribution. i) Guinier analysis to determine the radius of the cross-
section (Rc) for SYCP1358-783 (red) and SYCP1206-362 (blue). Data points within the linear region used for 
calculation are highlighted in black. j) Inter-atomic distance distribution profiles (P(r)) for SYCP1112-783 

(green), SYCP1358-783 (red) and SYCP1206-362 (blue) indicating the maximum dimension (Dmax). SEC-
SAXS analysis by Dr Orla Dunne. 
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3.2.16 Determining the orientation of helices within SYCP1 reveals its overall geometry 

To understand the orientation of helices within SYCP1 is critical to learning the overall geometry of the 

SYCP1 fold. To this end, I employed numerous techniques as the conclusions drawn from such 

experiments would dictate how we envisaged SC structure and absolute certainty was required. Firstly, 

the previously described SEC-SAXS method was utilised, in which the dominant features of globular 

MBP-tags within the distance-distribution profiles of MBP-fusion proteins are utilised to determine the 

inter-MBP distance within an oligomer. For coiled-coil proteins, this can be used to infer the orientation 

of helices within the structural unit as short inter-MBP distances would indicate a parallel arrangement 

whereas long inter-MBP distances would indicate an anti-parallel arrangement.  

I purified a series of N-terminal MBP-fusions of SYCP1112-783, SYCP1358-783 and SYCP1206-362 by 

sequential amylose affinity chromatography, anion exchange chromatography and size-exclusion 

chromatography (Figure 3.2.19b). SEC-MALS was used to confirm that the MBP-tag did not disrupt 

the expected oligomer formation (Figure 3.2.19c,d). SEC-SAXS analysis revealed that they all 

demonstrate a parallel arrangement, with strong inter-MBP peaks present at short inter-atomic distances 

(~70 Å) (Figure 3.2.19e-h). These findings are corroborated by the similar analysis of GST-fusions of 

SYCP1206-362 and SYCP1358-783, demonstrating inter-GST peaks at short inter-atomic distances for 

SYCP1206-362 and no inter-GST peaks for SYCP1358-783 as inter- and intra-GST distances conflate due to 

the constitutively dimeric state of GST (Figure 3.2.20d).  
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Figure 3.2.19| Determining helical orientation through SEC-SAXS analysis of MBP-fusions. a) 
Schematic of SYCP1 displaying analysed constructs. b) SDS-PAGE analysis of  MBP-SYCP1112-783, 
MBP-SYCP1358-783, MBP-SYCP1206-362, and MBP samples. c-d) SEC-MALS analysis of c) MBP-
SYCP1112-783 (theoretical tetramer – 499 kDa), MBP-SYCP1358-783 (theoretical dimer – 191 kDa), d) 
MBP-SYCP1206-362 (theoretical tetramer – 255 kDa), MBP (theoretical monomer – 45 kDa). Light 
scattering (LS) and differential refractive index (dRI) are plotted as solid and dashed lines, respectively, 
with molecular weights (Mw) shown as diamonds across elution peaks. e) Averaged small-angle X-ray 
scattering profile of MBP-SYCP1112-783 (green), MBP-SYCP1358-783 (red) and MBP-SYCP1206-362 (blue) 
with the fits used for P(r) distribution shown as black lines. f-g) Guinier analysis to determine the radius 
of gyration (Rg) of f) MBP-SYCP1112-783 (green), MBP-SYCP1358-783 (red), MBP-SYCP1206-362 (blue), 
and g) MBP (grey) with data points within the linear region used for analysis shown in black. Q.Rg 
value was < 1.3. h) Inter-atomic distance distribution profiles (P(r)) for MBP-SYCP1112-783 (green), 
MBP-SYCP1358-783 (red) and MBP-SYCP1206-362 (blue) with intra- and inter-MBP distances indicated. 
Inset; schematised MBP-coiled-coil with arrow indicating short inter-MBP distance. SEC-SAXS 
analysis by Dr Orla Dunne. 
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The successful purification of coiled-coils fused at one terminus to constitutive oligomers is indicative 

of a parallel arrangement.  The N-terminal fusion of the constitutive dimer GST to SYCP1358-783 suggests 

parallel orientation of helices, in agreement with our previous findings that residues 640-783 adopt a 

parallel configuration (Figure 3.2.20a,e,f). To test the parallel orientation of all four chains within 

SYCP1206-362, it was important to select a tetrameric unit which would be compatible with its sequence 

continuation as a parallel four-helical bundle. Therefore, the C-termini of the selected protein should 

emanate from the structure in close proximity to one another as to not disrupt oligomer formation. 

Through searching the Protein Data Bank, E. coli RecE (amino acid boundaries 606-866) was selected 

as its four C-termini are in close spatial proximity, separated by 18.1 – 25.6 Å (PDB 3H4R; Figure 

3.2.20h). I cloned RecE606-866 and RecE606-866-SYCP1206-362 connected by a 3 amino acid TGS-linker 

sequence into a pHAT4 vector for expression as N-terminal His6-tagged proteins. Its successful 

purification, and tetrameric oligomeric status as confirmed by SEC-MALS is indicative of the parallel 

orientation of its four helical chains (Figure 3.2.20a,e,g). 
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Figure 3.2.20| Orienting helices within SYCP1. a) SDS-PAGE analysis of analysed samples; GST-
SYCP1358-783, GST-SYCP1206-362, GST, RecE-SYCP1206-362 and RecE. b) Averaged small-angle X-ray 
scattering profile of GST-SYCP1358-783 (red) and GST-SYCP1206-362 (blue) with the fits used for P(r) 
distribution shown as black lines. c) Guinier analysis to determine the radius of gyration (Rg) of GST-
SYCP1358-783 (red) and GST-SYCP1206-362 (blue) with data points within the linear region used for 
analysis shown in black. Q.Rg value was < 1.3. d) Inter-atomic distance distribution profiles (P(r)) for 
GST-SYCP1358-783 (red) and GST-SYCP1206-362 (blue) with intra- and inter-GST distances indicated. e) 
SEC-MALS analysis of GST-SYCP1358-783 (theoretical dimer – 160 kDa) and RecE-SYCP1206-362 

(theoretical tetramer - 214 kDa). f) SEC-MALS analysis of GST-SYCP1206-362 (theoretical tetramer – 
195 kDa) alongside previously displayed GST-SYCP1358-783 and GST (theoretical dimer – 59 kDa). g) 
SEC-MALS analysis of previously displayed RecE-SYCP1206-362 alongside RecE (theoretical tetramer – 
136 kDa). Light scattering (LS) and differential refractive index (dRI) are plotted as solid and dashed 
lines, respectively, with molecular weights (Mw) shown as diamonds across elution peaks. SEC-SAXS 
analysis by Dr Orla Dunne. h) The structure of the RecE tetramer (PDB 3H4R) indicating the distance 
between C-termini. 
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Thus, we may conclude that SYCP1 contains a tetrameric core, comprising four parallel α-helical chains. 

These stabilise SYCP1 in four-helical association at its N-terminus, forking into two long coiled-coil 

dimers which are capped at their C-terminus by a stable coiled-coil sequence from which unstructured 

C-termini emanate which possess DNA-binding capability (Figure 3.2.21a). I suggest that this comprises 

the obligate structure of SYCP1 and represents a building block from which SYCP1 assemblies might 

be built. 

 

 

Figure 3.2.21| The molecular structure of obligate SYCP1. Schematic of the SYCP1 with key regions 
demarcated and residue boundaries indicated aligned with a molecular model for obligate SYCP1 which 
is stabilised as a parallel tetramer at its N-terminus which bifurcates as two long dimeric coiled-coils 
terminating with unstructured sequence capable of binding DNA. Schematic by Dr Owen Davies.  
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3.2.17 Initial recruitment of SYCP1 to the chromosome axis 

I cloned, expressed and purified a series of N-terminal truncations of SYCP1 to assess the contribution 

of the SYCP1 oligomeric state to DNA binding. I initiated investigations through the attempted 

purification of residues 640-976 with an N-terminal His6-tag. However, the construct exhibited major 

degradation with two distinct degradation products representing the removal of the majority of the 

unstructured C-terminus (Figure 3.2.22). I therefore opted for a rapid purification process to enrich for 

non-degraded material, utilising MBP-fusions and foregoing removal of the affinity tag, reasoning that 

it should not interfere with DNA binding.  

SYCP1 residues 640-976 and 784-976 were cloned into pMAT11 vector for expression in E. coli. 

Purification was performed through subsequent amylose affinity chromatography and cation exchange 

chromatography using a HiTrap SP HP column (Figure 3.2.23a-c). Fractions were selected to enrich for 

non-degraded MBP-SYCP1. A summary of the purification for SYCP1640-976 and MBP-SYCP1784-976 and 

the purified samples for residues 101-976 and 358-976 are presented in Figure 3.2.23b-d. In keeping 

with our analysis of SYCP1 constructs lacking the unstructured C-terminus, SEC-MALS confirmed that 

MBP-SYCP1101-976 forms megadalton assemblies, MBP-SYCP1358-976 is dimeric (with an experimental 

molecular weight 206 kDa and theoretical dimeric molecular weight 234 kDa), and MBP-SYCP1640-976 

is dimeric (measured molecular weight = 144 kDa, theoretical dimeric molecular weight = 168 kDa) 

(Figure 3.2.23e-g). MBP-SYCP1784-976 is monomeric in solution with a measured molecular weight 

matching its theoretical monomer (78 kDa and 67 kDa, respectively) (Figure 3.2.23h). The discrepancy 

in molecular weight is likely due to poor sample quality, i.e. a low analyte concentration resulting in a 

low signal to noise ratio, further compounded by aggregation levels. Cumulatively, these data 

demonstrate that the unstructured C-terminus does not contribute to the oligomeric state of SYCP1 and 

does not mediate higher-order assembly in solution. 
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Figure 3.2.22| The unstructured C-terminus of SYCP1 is highly unstable. a-f) SDS-PAGE analysis 
of samples as follows. Arrows are used to indicate the expected migration distance of His6-SYCP1640-

976. a) Uninduced and IPTG induced E. coli cultures, the latter expressing His6-SYCP1640-976. b) Ni-NTA 
affinity chromatography. c) Ion exchange chromatography using HiTrap SP column. d) Attempted TEV 
cleavage and attempted purification by repeated Ni-NTA affinity demonstrating the inefficient cleavage 
of the affinity tag. e) The 200 mM imidazole elution from the previous step was re-purified through 
cation exchange chromatography using a HiTrap SP column and cleaved once again with an increased 
amount of TEV, resulting in an increased cleavage efficiency. TEV was removed from solution through 
repeated Ni-NTA affinity. The cleaved material eluted with 20 mM imidazole and was subsequently 
concentrated. f) SDS-PAGE analysis of samples summarising the purification of SYCP1640-976.  
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Figure 3.2.23| Purification and oligomeric state determination of MBP-SYCP1 constructs 
containing the unstructured C-terminus. a) Schematic of SYCP1 displaying analysed constructs. b,c) 
SDS-PAGE analysis of samples showing the purification of MBP-SYCP1640-976 and MBP-SYCP1784-976 

by sequential amylose affinity and cation exchange chromatography. Arrows are used to indicate the 
expected migration distance of His6-MBP-SYCP1 constructs. d) SDS-PAGE analysis of purified 
samples of MBP-SYCP1 constructs: 640-976, 101-976, 358-976, 784-976 and free MBP. e-h) SEC-
MALS analysis with Light scattering (LS) and differential refractive index (dRI) are plotted as solid and 
dashed lines, respectively, with molecular weights (Mw) shown as diamonds across elution peaks. e) 
MBP-SYCP1640-976 (theoretical dimer – 168 kDa). f) MBP-SYCP1101-976. g) MBP-SYCP1358-976 

(theoretical dimer – 235 kDa). h) MBP-SYCP1784-976 (theoretical monomer – 67 kDa). 
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I performed EMSA analysis of the purified samples to determine the contribution of the SYCP1 

oligomeric state to DNA binding mode and affinity. I found that removal of the unstructured SYCP1 N-

terminus did not overtly affect DNA binding, with MBP-SYCP101-976, MBP-SYCP358-976, and MBP-

SYCP640-976 all forming stable protein-DNA complexes at 2 – 2.5 µM protein with 25 µM dsDNA per 

base pair, implying a footprint of ~10 base pairs (Figure 3.2.25a), similar to that of full-length SYCP1. 

However, deletion of oligomer stabilising sequence of the wider molecule diminishes DNA binding, 

with MBP-SYCP1784-976 demonstrating less stable DNA association (Figure 3.2.25a). Slightly enhanced 

DNA binding of MBP-SYCP1101-976 and MBP-SYCP1358-976 is observed over MBP-SYCP1640-976 

suggesting that the wider molecule may play some role in stabilising C-terminally mediated associations 

(Figure 3.2.25a). In agreement with previous findings, deletion of the SYCP1 unstructured C-terminus 

ablates DNA binding, with SYCP101-783, SYCP1358-783, and SYCP1640-783 not interacting with DNA 

(Figure 3.2.25b,c) These results demonstrate that the SYCP1 unstructured C-terminus contains obligate 

DNA binding sequences, the binding of which is enhanced by the wider SYCP1 structure, likely 

reinforcing associations in a cooperative manner. This could provide the means by which the SYCP1 C-

terminus is initially recruited to the chromosome axis (Figure 3.2.25f). Interestingly, electron 

microscopy reveals that MBP-SYCP1640-976 forms smooth fibres with a thickness of approximately 10 

nm when in complex with plasmid DNA. However, MBP-SYCP1358-976 exhibits a more branched 

appearance possibly rod-like SYCP1 molecules protruding from a protein-DNA, lateral element-like, 

core structure (Figure 3.2.25d).  

During the formation of the mammalian SC, the chromosome axis is initially organised and compacted 

by the recruitment of lateral element proteins SYCP2 and SYCP3 (Schalk et al., 1998; West et al., 2019). 

SYCP3 forms recursive striated structures in vivo and in vitro (Yuan et al., 1998; Syrjanen et al., 2014). 

These structures appear compatible with DNA binding and their intrinsic assembly required for the 

compaction of DNA (Syrjanen et al., 2017). I wondered whether, by EM, I might be able to observe 

direct binding of SYCP1 molecules to SYCP3-DNA complexes. Interestingly, the SYCP3-DNA 

structures observed in the presence of SYCP1 do develop a wider appearance with what appear to be 

proteinaceous surface plaques (Figure 3.2.25e). However, I could not discern individual transverse 
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filaments and antibody staining against SYCP1 would be required to confirm its recruitment. SYCP3 

was purified as demonstrated in Figure 3.2.24.  

 

Figure 3.2.24| Purification of SYCP3. a) SDS-PAGE analysis of samples summarising the purification 
of SYCP3. b) UV spectrum for SYCP3. 

 

From these findings, I suggest a model for the initial recruitment of SYCP1 to the chromosome through 

direct DNA binding interactions (Figure 3.2.25f). I next sought to characterise how SYCP1 molecules 

might assemble within the SC. Our first course of action was to investigate further the role of the SYCP1 

αN-tip (the 11 amino acids which proved essential in the formation of large assemblies in vitro). Given 

the high conservation of this region, and its central localisation within the SC, it is possible that this 

region might mediate either homo- or heterotypic interactions to either connect bi-orientated SYCP1 

molecules or to connect them, via their N-termini, to the central element, respectively.   
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Figure 3.2.25| A model for the chromosomal recruitment and assembly of SYCP1. a) Schematic of 
SYCP1 displaying analysed constructs and EMSA analysis of indicated MBP-SYCP1 constructs. b,c) 
EMSA analysis of the corresponding SYCP1 constructs without the unstructured basic constructs. d,e) 
Electron microscopy analysis of d) linear dsDNA incubated with MBP-SYCP1640-976, MBP-SYCP1358-

976 or alone, and e) SYCP3 incubated with linear dsDNA in the presence and absence of MBP-SYCP1101-

976 and MBP-SYCP1358-976. Scale bars = 50 nm f) A model for the chromosomal recruitment of SYCP1 
via obligate DNA binding sequences within the unstructured basic C-terminus.  
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Part II 

SYCP1 architecture and N-terminal self-association 
provide the basis for SC midline assembly 

 

3.3.1 SYCP1 N-terminal self-assembly is mediated by the αN-tip 

The self-assembly of the SYCP1 to form megadalton species in vitro was dependent upon the αN-tip 

(residues 101-111) which caps of the N-terminus of the SYCP1 helical core (Figures 3.2.10, 3.2.11). 

The sequence is part of a highly conserved N-terminal region (residues 101-206) which directly precedes 

the unit which stabilised tetramerization (residues 206-362). I sought to understand the way in which 

these residues mediate higher order assembly of SYCP1 molecules in vitro, with a particular focus on 

the role of the αN-tip. A significant portion of the work in this chapter stems from investigations 

performed by Matthew Ratcliff and any of the data he generated presented herein will be acknowledged 

in the respective figure legends.  

I expressed and purified three sequences corresponding to the highly conserved N-terminal region: 

residues 101-206, 101-175 and 1-175 (Figure 3.3.1a-d). The high pI of these sequences meant that they 

could be purified effectively through cation exchange chromatography using the HiTrap SP column. By 

SDS-PAGE, a faint gel dimer is visible for SYCP1101-175 and SYCP1101-206 and a more intense gel dimer 

for SYCP11-175. SYCP1101-206 and SYCP11-175 each have 2 cysteines within their sequences raising the 

possibility that these may represent minor oxidation products. However, SYCP1101-175 has no cysteines, 

suggesting that these constructs may have capacity to form a dimer. By SEC-MALS, however, the 

constructs are found to be monomeric (Figure 3.3.1g).  Further, analysis by circular dichroism reveals 

that these sequences are relatively unstructured and fold in a non-cooperative manner (Figure 3.2.1e,f). 

SYCP1101-175 and SYCP1101-206 are approximately 50 % unfolded, whilst SYCP11-175, which contains the 

full N-terminal tail sequence, which is predicted to be unstructured, is 75 % unstructured (Figure 3.2.1e). 

Despite this, I opted to attempt crystallisation. 
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Figure 3.3.1| The N terminus of SYCP1 is helical 
and monomeric in solution. a) Schematic of 
SYCP1 displaying analysed constructs. b-d) SDS-
PAGE analysis of samples summarising the 
purification of b) SYCP1101-206, c) SYCP11-175, d) 
SYCP1101-175. e) Circular dichroism far-UV spectra 
for SYCP11-175 (black dashed); SYCP1101-206 (black 
solid); and SYCP1101-175 (grey solid). Data were 
deconvoluted to estimate the percentage helix with 
data fitted at normalised rmsd values of 0.021, 0.010 
and 0.005, respectively. f) Thermal denaturation of 
SYCP1101-206 and SYCP1101-175 were recorded as percentage unfolded based on the helical signal at 222 
nm. Non-cooperative unfolding was observed with melting temperatures estimated at 24 and 23 ˚C, 
respectively. g) SEC-MALS analysis of SYCP1-175, SYCP1101-206 and SYCP1101-175 reveals monomeric 
states in solution (theoretical monomers – 20, 13, 9 kDa, respectively). Light scattering (LS) and 
differential refractive index (dRI) are plotted as solid and dashed lines, respectively, with molecular 
weights (Mw) shown as diamonds across elution peaks. SYCP1101-175 and SYCP11-175 purification and 
analysis by Matthew Ratcliff. 
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3.3.2 Crystallisation and data collection of SYCP1101-206 and SYCP1101-175 

No crystals were obtained for SYCP1101-206 at room temperature, though it crystallised in multiple MPD-

containing conditions at 4 ˚C including 1) 200 mM ammonium fluoride, 40 % (v/v) MPD and 2) 100 

mM MES pH 6.0, 40 % (v/v) MPD (Figure 3.3.2a, Table 2.2.). 40 % (v/v) MPD proved sufficient to act 

as a cryo-protectant during cryo-cooling in liquid nitrogen. X-ray diffraction data were collected to 2 Å 

(Figure 3.2.2b). The determined unit cell had dimensions of a = 65.67 Å, b = 37.31 Å, c = 108.52 Å, α 

= 90°, β = 106.66°, γ = 90° and possessed I2 symmetry. Calculation of the Matthew’s coefficient 

predicted the presence of two chains of SYCP1101-206 in the asymmetric unit.  

Matthew Ratcliff performed crystallisation screening for SYCP1101-175 and obtained crystals in 140 mM 

NaCl, 70 mM Na/K phosphate pH 6.2, 35 % (v/v) PEG200 at 20 ˚C (Figure 3.2.2c). Dr Owen Davies 

had found that, in his experience with SYCP3 crystals, that crystals soaked in a solution containing 

sodium iodide actually diffracted better than native crystals for some unbeknownst reason (possibly 

relating to reduced B-factors of sidechains interacting with iodide ions, or minor dehydration effects 

during the handling process) so we tried that. SYCP1101-175 crystals were soaked in crystallisation 

solution containing 40 % PEG200 and 100 mM NaI prior to cryo-cooling. X-ray diffraction data were 

collected at the longer wavelength of 1.9074 Å in order to observe anomalous scattering by iodide. The 

utilised wavelength is not at the absorption edge for iodine, but high energy remote, with a significant 

difference between f’ and f’’ and so should still yield observable anomalous scattering. A dataset at 1.91 

Å was collected and processed by Dr Owen Davies as described in the Methods section 2.1.17. The 

crystals possessed I222 symmetry with unit cell dimensions a = 28.64 Å, b = 39.38 Å, c = 165.77 Å, α 

= 90°, β = 90°, γ = 90°. For these crystals, the asymmetric unit contained a single SYCP1101-175 chain.  
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Figure 3.3.2| Crystallisation and X-ray diffraction data collection for SYCP1101-206 and SYCP1101-

175. a) SYCP1101-206 protein crystals grown in 200 mM ammonium fluoride, 40 % (v/v) MPD. b) X-ray 
diffraction image for SYCP1101-206. The circle indicates the 2.1 Å resolution cut-off. c) SYCP1101-175 

protein crystal grown in 140 mM NaCl, 70 mM Na/K phosphate pH 6.2, 35 % (v/v) PEG200 by Matthew 
Ratcliff. d) X-ray diffraction image for SYCP1101-175. The circle indicates the 2.1 Å resolution cut-off. 
SYCP1101-175 crystallised by Matthew Ratcliff. 

 

3.3.3 Solution of SYCP1101-175 crystal structure 

SYCP1101-175 was the first of the two constructs to be crystallised. The structure was solved by Dr Owen 

Davies; the method he used to solve the structure is described in full in the Methods section 2.1.17-18. 

Briefly, anomalous signal from bound iodide was used in single wavelength anomalous diffraction 

(SAD) experiments to solve a five “supposed”-iodide sub-structure within the asymmetric unit.  The 

resulting phase estimates were used and improved through cycling rounds of model building and 

refinement to produce a complete model of the structure. The crystal structure, refined against a dataset 

at 1.91 Å, revealed that SYCP1101-175 formed a single, continuous helix with residues 101-173 visible 

within the electron density map (Figure 3.3.3a; crystallographic statistics can be found in Table 3.1).  

Based upon anomalous difference maps, iodide was found to be bound at two sites, one at the N-terminal 

tip of the construct and another buried next to R145. Additionally, bound proximal to the N-terminus is 

a single PEG (triethylene glycol, in this case) molecule. Imposition of symmetry finds that two 
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SYCP1101-175 chains wrap around each other in coiled-coil association, with an identifiable heptad repeat 

from L102 to N169 (Figure 3.3.3b). A stammer disrupts the heptad repeat continuity between residues 

119-130. Whilst the central region provides close association of 7 heptad repeats, the N- and C-terminal 

ends of the coiled-coil do not remain in coiled-coil association, splaying apart with an increase in inter-

α-carbon (inter-Cα) distance between heptad residues from 6.3 Å at residue I148 (approximating the 

average inter-Cα distance for GCN4 (6.0 Å), a classic leucine-zipper coiled-coil, to over 10 Å at each 

termini (Figure 3.3.3b,c). A major increase in inter-Cα is introduced by a wedge-like structure formed 

by I116 and W119 which act to force apart the coiled-coils (Figure 3.3.3d). The presence of glutamine 

at position 144 is stabilised through homotypic inter-chain salt bridges, formed as these residues occupy 

this place in two rotamer positions with 50 % occupancy each (Figure 3.3.4a). K130 is also stabilised 

by an inter-chain salt bridge, electrostatically interacting with the hydroxyl group of E131 (Figure 

3.3.4b). 

Data collection for SYCP1101-175 (merged datasets: S1N-5) 
Space group I 2 2 2   
Cell dimensions    
    a, b, c (Å) 28.64, 39.38, 165.77   
    α, β, γ ()  90.00, 90.00, 90.00   

 Overall Outer Shell 
Low resolution limit (Å) 41.44 1.91 
High resolution limit (Å) 1.95 1.91 
Rmerge (all I+ & I-) 0.028 0.678 
Rpim (all I+ & I-) 0.017 0.541 
I / σI 27.9 1.8 
CC1/2 1.000 0.839 
Completeness (%) 99.3 92.1 
Multiplicity 5.9 3.7 
Refinement 
Resolution (Å) 41.44 – 1.91  
UCLA anisotropy (Å) 1.9, 2.0, 2.1  
Number of reflections 6754  
Rwork / Rfree 0.2272 / 0.2392  
Number of atoms 677  
Protein 633  
Ligand/ion 12  
Water 32  
B-factors 58.37  
Protein 57.72  
Ligand/ion 83.91  
Water 61.74  
R.m.s deviations   
Bond lengths (Å) 0.009  
Bond angles () 1.020  

Table 3.1| X-ray crystallographic statistics for SYCP1101-175. Data processed by  
Dr Owen Davies 
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Figure 3.3.3| The crystal structure of SYCP1101-175. a) The asymmetric unit contains a single chain of 
SYCP1101-175. It is entirely helical. Two iodides and a PEG molecule are indicated. b) A two-fold 
symmetry operator creates a parallel coiled-coil in which 7 heptad repeats stabilise the fold through 
holes in knobs hydrophobic associations. The N- and C-terminal ends splay apart such that terminal 
residues are not in direct contact. c) Graph plotting inter-Cα distances between heptad residues across 
the crystal structure. Positions of I116 and W119 are indicated. Horizontal line at 6.0 Å represents 
average inter-Cα distance for GCN4 (6 Å; PDB 2ZTA). d) I116/W116 form a wedge, forcing the coiled-
coil chains apart. e) The crystal lattice is formed of recursive head-to-head and tail-to-tail associations 
of parallel coiled-coils, indicated by dashed boxes. These associations explain and stabilise the splaying 
at the termini of the coiled-coils.  
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Figure 3.3.4| Coiled-coil stabilising associations between SYCP1101-175 chains. a,b) Salt bridges 
between residues within heptad repeat positions allow their position within the coiled-coil interaction: 
a) Two conformations of Q144 at heptad position d (50 % occupancy) allows it to hydrogen bond with 
itself (distance, 2.7 Å) and b) K130 fulfils position d within heptad repeat and rather than forming 
hydrophobic associations it electrostatically interacts with E131 (distance, 2.8 Å).  

 

3.3.4 Differentiating physiologically relevant interactions and crystallographic artefacts within 
the crystal lattice 

The N- and C-terminal splaying of the coiled-coil is enforced by symmetry-related copies of the coiled-

coil by forming head-to-head and tail-to-tail self-associations, creating a continuous rope-like structure 

(Figure 3.3.3e). The N-terminal head-to-head association was immediately striking as it is mediated by 

the association of bi-orientated parallel coiled-coils via the 11 residues of the αN-tip, implicated in the 

assembly of SYCP1 molecules. This interface forms a four-helical bundle stabilised with a hydrophobic 

core of V105 and L109, assisted by midline and lateral interfaces (Figure 3.3.5a-c). Heptad residues 

V105 and E112 contribute to the midline interface whilst L102 and L109 stabilise the lateral interface. 

Flanking aromatic stacking associations of tyrosine residues Y106 and Y110 contribute to the lateral 

interface (Figure 3.3.5b,c).  

Within the crystal lattice, each dimeric coiled-coil creates both N- and C-terminal, interlocking, head-

to-head/tail-to-tail contacts (Figure 3.3.3e). The N-terminal contacts are mediated by the 11 amino acids 

of the αN-tip and provided a potential way in which SYCP1 molecules might self-associate within the 

SC midline.  

The N-terminal head-to-head association is mediated by the residues of the αN-tip (residues 101-111) 

which were shown to be critical in mediating megadalton assembly of SYCP1101-783. Within the interface 

heptad residues L102, V105, L109, and E112 contribute alternately to lateral and midline interfaces 
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between anti-parallel chains with the lateral interface further stabilised by the aromatic stacking of Y106 

and Y110 (Figure 3.3.5a-c). Residues V105 and L109 further contribute by forming a hydrophobic core 

(Figure 3.3.5a). Given their importance in the assembly of SYCP1101-783, we sought to test whether this 

crystallographic interface is responsible for in vitro assembly.  

Purification of SYCP1101-362 (which includes both SYCP1206-362 (tetrameric) and the crystallised 

construct, SYCP1101-175 (shown to undergo head-to-head associations)) and its analysis by SEC-MALS 

reveals the reconstitution of higher-order self-assembly as previously observed for the SYCP1101-783 

(Figure 3.3.6a-c). This propensity for assembly is retained, though slightly diminished, in the presence 

of the unstructured N-terminus (SYCP11-362; Figure 3.3.6d). As previously shown, the assembly of 

SYCP1112-362 is blocked by removal of the αN-tip. Similarly, mutation of hydrophobic core residues 

V105 and L109 to glutamate blocks assembly suggesting that the association formed within the crystal 

structure also mediates assembly of SYCP1101-362 in solution (Figure 3.3.6c).  

 

Figure 3.3.5| N-terminal contacts within the SYCP1101-175 crystal lattice. a) N-terminal head-to-head 
interface constitutes a four-helical bundle stabilised with a hydrophobic core of V105 and L109 and 
midline and lateral interfaces. b) The midline interface is stabilised through V105 and E112. c) Residues 
L102 and L109 contribute to the lateral interface whilst aromatic stacking of flanking Y106 and Y110 
stabilises the interface.  
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Figure 3.3.6| SYCP1206-362 scaffolds head-
to-head N-terminal associations to drive 
assembly. a) Schematic of SYCP1 
displaying analysed constructs. b) SDS-
PAGE analysis of purified samples: 
SYCP11-362; SYCP1101-362; SYCP1101-362 

V106E L09E. c) SEC-MALS analysis of 
SYCP1101-362 (green left) showing the 
formation of megadalton assemblies. Light 
scattering (LS) is in solid green with dRI in 
pale green. Also, SEC-MALS analysis of 
SYCP1112-362 (theoretical tetramer – 121 
kDa) and SYCP1101-362 V106E L09E (grey; 

theoretical tetramer – 126 kDa). d) SEC-MALS analysis of SYCP11-362 (black) showing the 
formation of megadalton assemblies, similar to SYCP1101-362 (green). Light scattering (LS) 
and differential refractive index (dRI) are plotted as solid and dashed lines, respectively, 
with molecular weights (Mw) shown as diamonds across elution peaks. e) Circular dichroism 
far-UV spectra for SYCP1101-362 and SYCP11-362. Data were deconvoluted to estimate the 
percentage helix with data fitted at normalised rmsd values of 0.007 and 0.012, respectively. 
f) Thermal denaturation of SYCP1101-362 and SYCP11-362 were recorded as percentage 
unfolded based on the helical signal at 222 nm. Melting temperatures were estimated at 41 
˚C.  
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3.3.5 The C-terminal tail-to-tail contact appears to be induced by the crystal lattice 

Unlike the N-terminal association, the C-terminal “tail-to-tail” association was difficult to incorporate 

into a model for midline assembly of SYCP1. The association is stabilised through the formation of a 

hydrophobic core containing residues V158 and L162, lateral associations of I166, L162 and I173, and 

midline associations of K157 and K161 with E168 and E164, respectively, by forming salt bridges 

(Figure 3.3.7a-c). We considered the possibility that this association might be an artefact of 

crystallisation and thus employed a similar mutagenesis approach as had been applied for the N-terminal 

contact. Matthew Ratcliff performed mutagenesis experiments. He mutated residues K157 and K161 to 

glutamate and found no effect on the assembly of SYCP1101-362 (data not shown). Further to this, I aimed 

to solve the crystal structure of SYCP1101-206; if the additional residues of this construct adopt a similar 

tail-to-tail association, their relevance should be further considered. If they do not, the association is 

more likely to be an artefact of crystallisation. 

 

 

Figure 3.3.7| C-terminal contacts within the SYCP1101-175 crystal lattice. a) C-terminal contacts of 
SYCP1101-175 coiled-coils are mediated through the formation of a “tail-to-tail” tetrameric assembly in 
which V158 and L162 form a hydrophobic core, stabilised by further midline and lateral associations 
between anti-parallel chains. b) The midline interface is stabilised by salt bridges between K157 and 
E168 (distance, 3.6 Å) and K161 and E164 (distance, 2.8 Å). c) The lateral interface is stabilised by 
anti-parallel coiled-coil association of hydrophobic residues L162, I166 and I173. 
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3.3.6 Solution of the SYCP1101-206 crystal structure 

The crystal structure of SYCP1101-206 was solved by Dr Owen Davies. A full description of the methods 

he utilised in the structure solution are described in Methods section 2.1.17. Briefly, the data from three 

crystals were merged. AMPLE pipeline on CCP4 online was utilised to generate a series of model 

fragments utilising ab initio QUARK decoys and, through serial molecular replacement attempts using 

Mr Bump, solved the structure which was subsequently built to completion and refined (Table 3.2). The 

structure revealed a parallel dimeric coiled-coil in which heptad residues I116 to I148 forming similar 

coiled-coil associations. In contrast, however, residues C-terminal to I148 continue in close coiled-coil 

association, not reciprocating the tail-to-tail association within the crystal structure of SYCP1101-175 

(Figure 3.3.8a,b). We therefore dismissed the tail-to-tail association as being an artefact of 

crystallisation.   

The N-termini of SYCP1101-206 are, in similarity with the structure of SYCP1101-175, splayed apart, forced 

open by the I116/W119 wedge-like structure (Figure 3.3.8c). This allows for the formation of a similar 

head-to-head association mediated by the residues of the αN-tip (Figure 3.3.8d).  

Data collection for SYCP1101-206 (merged datasets: S1N-7, 12, 19) 
Space group I 2    
Cell dimensions    
    a, b, c (Å) 65.67, 37.31, 108.52   
    α, β, γ ()  90.00, 106.66, 90.00   

 Overall Outer Shell 
Low resolution limit (Å) 34.87 2.12 
High resolution limit (Å) 2.06 2.06 
Rmerge (all I+ & I-) 0.071 0.919 
Rpim (all I+ & I-) 0.023 0.286 
I / σI 15.0 1.8 
CC1/2 0.999 0.969 
Completeness (%) 99.9 100.0 
Multiplicity 11.0 11.4 
Refinement 
Resolution (Å) 27.23 – 2.07  
UCLA anisotropy (Å) 2.1, 2.1, 2.6  
Number of reflections 12467  
Rwork / Rfree 0.2264 / 0.2441  
Number of atoms 1866  
Protein 1744  
Ligand/ion 18  
Water 104  
B-factors 42.79  
Protein 42.51  
Ligand/ion 62.91  
Water 44.02  
R.m.s deviations   
Bond lengths (Å) 0.002  
Bond angles () 0.334  

Table 3.2| X-ray crystallographic statistics for SYCP1101-206. Data processed by Dr  
Owen Davies 
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Figure 3.3.8| The crystal structure of SYCP1101-206. a) The asymmetric unit contains two chains of 
SYCP1101-206. It is entirely helical and formed a parallel dimeric coiled-coil. 2 bound MPD molecules 
and heptad repeat residues are indicated. b) Graph plotting inter-Cα distances between heptad residues 
across the crystal structure. Positions of I116 and W119 are indicated. Horizontal line at 6.0 Å represents 
average inter-Cα distance for GCN4 (6 Å; PDB 2ZTA). c) I116/W116 form a wedge, forcing the coiled-
coil chains apart. d) The crystal lattice contains a head-to-head association of SYCP1101-206 coiled-coils, 
mediated by the αN-tip yet lacks the C-terminal association observed in the crystal structure of 
SYCP1101-175.  
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The head-to-head association of SYCP1101-206 displays an asymmetric, open conformation, contrasting 

with the symmetric, closed, conformation of SYCP1101-175 (Figure 3.3.9a). The association maintains one 

of the midline contacts of the closed conformation, mediated by V105 and E112 and both lateral contacts 

mediated by L102 and L109, with flanking aromatic stacking of Y106 and Y110 (Figure 3.3.9a-c). The 

switch from a closed to an open conformation appears to be mediated by a rotamer flip of Y106 which 

switches from a flanking location in the closed conformation to being within the cleft of the open 

conformation. The open cleft is stabilised by the presence of two MPD molecules which sit within. 

Perhaps these molecules mimic the manner in which an interacting protein might association with this 

highly conserved region of the protein? If not, the possibility for dynamic switching between the closed 

and open conformations might allow greater torsional flexibility at the head-to-head interface within the 

SC midline in vivo.  

 

 

Figure 3.3.9| N-terminal contacts within the SYCP1101-206 crystal lattice. a) N-terminal contacts of 
SYCP1101-206 coiled-coils are mediated through the formation of a “head-to-head” association of αN-tip 
residues in which V105, Y106 and L109 form a hydrophobic core, stabilised by further midline and 
lateral associations between anti-parallel chains. b) The midline interface is stabilised by V105 and E112 
c) The lateral interface is stabilised by L102, L109 and aromatic stacking of Y106 and Y110. c) Lateral 
interfaces are mediated through aromatic stacking of tyrosine residues 106 and 110.  
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3.3.7 Midline assembly of SYCP1 through homotypic association of the αN-tip 

The structures presented here contradict the in solution studies of both SYCP1101-175 and SYCP1101-206 

which demonstrate high levels of disorder, with approximately 50 % of residues calculated as being 

disordered (Figure 3.3.1e,f). However, as demonstrated by our mutagenesis studies, the associations 

appear to be mediating the assembly of SYCP1101-362 (Figure 3.3.6c). Therefore, I propose that the 

tetrameric core of SYCP1 can scaffold the 101-206 sequence such that it is poised to engage in head-to-

head contact, and this might occur in a dynamic fashion, with head-to-head contacts cycling between 

associated and disassociated states (Figure 3.3.10a). Upon association, the coiled-coil sequence is 

stabilised with this this process occurring in a recursive manner to allow for potentially limitless 

assembly (Figure 3.3.10b).  

The dynamic nature of this association provides a model for the remodelling of initial SYCP1-mediated 

contacts between meiotic homologues. Initial contacts are likely to be often erroneous or non-

productive. By breaking erroneous contacts and allowing the cooperative extension of correct 

associations, the self-assembly of a continuous lattice which tracks the entire length of a homologous 

chromosome pair would be facilitated (Figure 3.3.11a).  

It might be advantageous at certain stages of the meiotic cycle, such as during pachytene during which 

the SC is fully assembled, to be able to induce stability into the structure. I noted the presence of two 

cysteine residues occupying heptad positions 183 and 190 (Figure 3.3.11b). In solution, oxidation results 

in the formation of a ladder-like spread of oligomers visualised by SDS-PAGE (Figure 3.3.11c). It would 

be interesting to speculate whether cysteine oxidation can play an in vivo role in the stabilisation of 

proteinaceous assemblies. 
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Figure 3.3.10| N-terminal head-to-head contacts drive lattice-like assembly of SYCP1 molecules. 
a) SYCP1101-206 is approximately 50 % disordered in solution but adopts an entirely α-helical structure 
within a crystal lattice. In solution, this likely occurs at high concentrations and might be stabilised in a 
cooperative manner upon recruitment to the SC in vivo. I therefore propose a dynamic switching between 
a disordered monomeric state and ordered, interacting, state. b) A model for the incorporation of SYCP1 
molecules within a growing SYCP1 lattice. The tetrameric architecture of SYCP1 stabilises the helical 
state of the 101-206 sequence, promoting head-to-head association. Head-to-head association can then 
occur in a recursive manner to allow for the continuous growth of the SYCP1 lattice. 
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Figure 3.3.11| Remodelling of the SC midline through dynamic and cooperative self-association. 
a) Individually weak SYCP1 associations likely rely upon cooperativity to allow uninterrupted synapsis 
allowing for initial erroneous associations to be broken and remodelled. b) The location and distance 
between two cysteine residue pairs which occupy heptad positions within the C-terminus of the 
SYCP1101-206 structure. c) Oxidation of two cysteine residues within the SYCP1101-206 structure may 
contribute to stabilisation of associations once formed. In vitro, oxidation by hydrogen peroxide results 
in the formation of discrete multimeric species. Chromosome schematic in panel a by Dr Owen Davies. 
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3.3.8 The SYCP1 N-termini stabilise long range extension of synapsis 

I sought to assess the role of the SYCP1 N-terminus within the formation of polycomplex structures as 

a model system for chromosome synapsis in vivo. I found that filamentous networks still formed even 

when only expressing the C-terminal end of the SYCP1 central coiled-coil and the extended C-terminus 

(residues 640-976). As this construct does not demonstrate any ability to self-assemble in solution I 

again considered the probability that cytoplasmic networks are not representative of SYCP1 assembly 

and in fact represent some form of recruitment to an intermediate filament network such as keratin 

(Figure 3.3.12a). Analysis by electron microscopy is therefore a better determinant of the effect of 

mutations and/or truncations in these types of experiments. Upon deletion of the SYCP1 N-terminus 

(Δ1-198; residues 199-976), I found that polycomplex-like structures still form, with a predominant 

localisation around the nucleus (Figure 3.3.12b). However, the polycomplex structures I observed 

appeared to be more disorganised and central element-like bands within these were either short or 

discontinuous (Figure 3.3.12b). It therefore appears that N-terminal associations of SYCP1 are not 

absolutely essential for polycomplex formation but play a role in the long-range extension of assembly. 

 

Figure 3.3.12| The N-terminus of SYCP1 stabilises long range assembly. a) Filamentous networks 
formed upon the overexpression of eGFP-SYCP1640-976 in COS-7 cells. b) Electron micrographs 
showing polycomplex structures formed upon the overexpression of eGFP-SYCP1199-976 in COS-7 cells. 
Scale bars = 500nm. 
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Part III 

Chromosomal self-assembly of SYCP1 

 
3.4.1 Role of the stable, extended, dimeric coiled-coil SYCP1640-783 
Given the domain’s high conservation and localisation proximal to the chromosome axis, I wondered 

whether the previously characterised sequence capping the C-terminus of the SYCP1 helical core 

(residues 640-783) could mediate a similar, yet distinct, mechanism of self-association to the SYCP1 

N-terminus. I predicted that given its localisation proximal to the meiotic chromosome axis, it might 

play some role in chromosomal association. I therefore sought to solve the crystal structure of this 

domain. 

3.4.2 Attempts to solve the SYCP1640-783 crystal structure 

Upon initial sparse matrix screening for chemical conditions in which SYCP1640-783 crystallises, many 

crystals were obtained (Figure 3.4.1a). However, these crystals suffered from anisotropic crystal growth, 

resulting in one-dimension being significantly thinner than the other two, with crystals appearing 

somewhat two-dimensional. Further, crystals frequently appeared to contain multiple lattices, a defect 

not significantly improved upon optimisation of the crystallisation conditions. Additive screening 

yielded larger crystals displaying a single lattice (Figure 3.4.1b). The best diffracting crystals grew in 

0.1 M Tris pH 8.0, 0.2 M NaCl, 16.25 % PEG6000 with 0.1 M sodium citrate tribasic tetrahydrate 

(Figure 3.4.1c).  

Two X-ray diffraction datasets (SYCP1-05_6, and SYCP1-05_7; dls100515) were collected at beamline 

I03, Diamond Light Source, Oxfordshire, UK. Initial processing involved indexing and integration in 

XDS (Kabsch, 2010b; Kabsch, 2010a) and scaling in xscale (Diederichs et al., 2003). The two datasets 

were merged in Aimless and truncated to a maximum resolution of 3.7 Å with an I/σI of 1.2 and CC½ 

of 0.529 in the outer shell (Table 3.3) (Evans and Murshudov, 2013). The crystal belonged to a P1 space-

group with unit cell dimensions a= 44.23, b= 86.86, c= 101.75, α= 101.54, β= 101.77, γ= 97.62. The 

data were highly anisotropic, as assessed by Staraniso (Strong et al., 2006) with suggested anisotropic 
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resolution limits at 5.98 Å, 5.45 Å, and 3.34 Å at an I/σI of 1.5. Anisotropy is likely a consequence of 

both the crystal morphology and the internal organisation of the crystal lattice in which it is likely that 

coiled-coil molecules form lateral contacts along their lengths, and end-on contacts in a rope-like manner 

(Figure 3.4.1d). Calculation of the Matthew’s coefficient by MATTPROB was used to estimate the 

number of molecules in the asymmetric unit at between 6 to 10 with a solvent content of 42-54 % (i.e. 

3 to 5 dimers) (Matthews, 1968; Kantardjieff and Rupp, 2003). Low resolution, high anisotropy and a 

large asymmetric unit lead us to attempt the optimisation of the construct’s amino acid boundaries. 

However, it must be stated that these crystals were isomorphic and grew to a such a size that multiple 

data sets could have been collected using the same crystal and subsequently merged to improve the data 

quality. 

 

Figure 3.4.1| Crystallographic trials of SYCP1640-783. a) Example SYCP1640-783 crystals demonstrating 
two-dimensionality and the regular formation of multiple lattices. b) Large SYCP1640-783 crystal with a 
single lattice. c) X-ray diffraction image for the crystal in b with resolution at 3.7 Å circled. A close-up 
is displayed bounded by a red dashed box. d) A possible crystal lattice for a coiled-coil protein, shown 
as coloured rectangles with N and C-termini indicated. The lattice is mediated by end-on and lateral 
contacts. 
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Native data collection for SYCP1640-783 (dataset SYCP1C-05) 
Space group P1   
Cell dimensions    
    a, b, c (Å) 44.23, 86.86, 101.75   
    α, β, γ ()  101.54, 101.54, 97.62   

 Overall Inner Shell Outer Shell 
Low resolution limit (Å) 46.95 46.95 4.05 
High resolution limit (Å) 3.70 9.06 3.70 
Rmeas (all I+ & I-) 0.316 0.054 1.438 
Rpim (all I+ & I-) 0.163 0.028 0.757 
Total number of observations 55387 3769 12587 
Total number unique 15041 1017 3606 
Mean (I/σI) 3.5 16.7 1.2 
CC (1/2) 0.993 0.998 0.529 
Completeness (%) 98.7 97.8 98.9 
Multiplicity 3.7 3.7 3.5 

Table 3.3| X-ray crystallographic statistics for SYCP1640-783. Data processed by Dr  
Owen Davies 

 

3.4.3 Construct optimisation identifies SYCP1676-770 as a new crystal target 

To identify a construct which produces better diffracting crystals, a series of N- and C-terminal 

truncations (and a single N- terminal extension) of SYCP1640-783 were constructed (Figure 3.4.2a). These 

were then expressed and purified for the purposes of comparing protein yield and purity by SDS-PAGE, 

stability by circular dichroism thermal denaturation and oligomeric state by SEC-MALS (Figure 3.4.2b-

e). Purified samples visualised in Figure 3.4.2b were not subject to prior size-exclusion chromatography, 

hence the major degradation product of SYCP1640-783 not present in the final sample presented in Figure 

3.2.13 is visible. The presence of this degradation product did however suggest that truncation of one or 

both terminus/termini of this domain may improve the quality of the preparation and, hopefully, improve 

chances of structure solution. 

N-terminal truncation to residue 676 improved final yield resulting in a 1.3-fold increase (Figure 3.4.2e). 

Degradation for construct 676-783 was visualised as a smear beneath the band representing the majority 

species by SDS-PAGE (Figure 3.4.3b). The simultaneous truncation of both the N and C-terminus, to 

676-770, drastically improved the expression of the construct, resulting in a yield of 22 mg/l which was 

further purified by size-exclusion chromatography to homogeneity (Figure 3.4.2e and Figure 3.4.3a). A 

slight N-terminal extension to residue 632 had deleterious effects, with a reduced final yield for construct 

632-770 of 2.8 mg/l, with SDS-PAGE analysis highlighting the presence of multiple, potentially 

bacterial, contaminants and degradation products (Figure 3.4.2b). SEC-MALS analysis of these 

constructs revealed that dimeric oligo status is retained (Figure 3.4.2e). However, C-terminally truncated 
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constructs 640-752 and 676-752 formed monomers in solution and demonstrated decreased yields, with 

4.5 and 6 mg/l, respectively (Figure 3.4.2e). Far-UV circular dichroism spectroscopy revealed that 

construct 676-770 contained 89 % α-helix and thermal denaturation demonstrated a single unfolding 

event at 35 ˚C, likely representing the unfolding of the coiled-coil sequence between residues 749-770 

(Figure 3.4.2c,d). These analyses indicate that the sequence of residues 752-770 are necessary for dimer 

formation, likely through coiled-coil type interactions, whilst the predicted coiled-coil sequence between 

residues 640-664 on its own is not sufficient to stabilise dimer formation.  

Taking these findings into consideration, construct 676-770 was selected for crystallisation trials. A 

summary of its purification is presented in Figure 3.4.3a. In keeping with our previous findings on 

SYCP1640-783, SYCP1676-770 demonstrates helical content of 89 %, corresponding to 87 residues (Figure 

3.4.2c). Size and shape determination using SEC-SAXS methods reveal an elongated conformation, 

with a length of 143 Å and Rc of 7.8 Å, suggesting it’s folding as a dimeric coiled-coil (Figure 3.4.3c-f). 

Similarly to SYCP640-783, MBP-fusions of SYCP1676-770 demonstrated only short inter-MBP distances by 

SEC-SAXS, suggesting their parallel orientation (Figure 3.4.4a-e). The theoretical X-ray scattering of a 

ROSETTA generated model of SYCP1676-770 (generated by Dr Owen Davies) as an extended dimeric 

coiled-coil matches well the experimental scattering data with a χ2 value of 1.455 (Figure 3.4.4d,e) 

Parallel orientation of the two α-helical chains was confirmed through the purification of an N-terminal 

GST fusion. SEC-MALS analysis confirmed the formation of a stable dimer and SEC-SAXS 

demonstrated an inter-GST peak at ~30 Å, consistent with GST alone (Figure 3.4.5a-f). Unlike with 

MBP-fusions, intra- and inter-GST peaks conflate due to the constitutively dimeric state of GST (Figure 

3.4.5f). 
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Figure 3.4.2| Identification of SYCP676-770. a) 
Schematic of SYCP1 displaying analysed constructs. 
b) SDS-PAGE analysis of the final purified sample of 
SYCP1 constructs with residue boundaries: 640-783; 
632-770; 640-752; 676-783; 676-770; 676-752. c) 
Circular dichroism far-UV spectra for SYCP1676-770 

(black solid) and SYCP1676-783 (black dashed) alongside 
SYCP640-783 for comparison (grey). Data were 
deconvoluted to estimate the percentage helix with data 
fitted at normalised rmsd values of 0.004. d) Thermal 

denaturation of SYCP1676-770 and SYCP1676-783 were recorded as percentage unfolded based on the helical 
signal at 222 nm. Melting temperatures were estimated at 35 and 46 ˚C, respectively. The biphasic 
denaturation profile for SYCP1640-783 is shown alongside for comparison (grey). e) Table summarising 
the yield (mg/L), monomeric molecular weight (Mw), experimental molecular weight as determined by 
SEC-MALS (data in Appendix 3), and the determined oligomer.  
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Figure 3.4.3| Biophysical characterisation of 
SYCP1676-770. a) SDS-PAGE analysis summarising the 
purification of SYCP1676-770. b) SEC-MALS analysis of 
SYCP1676-770 with theoretical monomer weight and 
measured molecular weight indicated. Light scattering 
(LS) and differential refractive index (dRI) are plotted 
as solid and dashed lines, respectively, with molecular 
weights (Mw) shown as diamonds across the elution 
peak. c) Averaged X-ray scattering profile for 
SYCP1676-770 with fit used for P(r) calculation shown as 
a black line. d) Guinier analysis for SYCP1676-770 to 

calculate the radius of gyration (Rg) (indicated) with points within the linear region used for calculation 
highlighted in black. e) Guinier analysis to calculate the radius of gyration of the cross-section (Rc) 
(indicated) with points within the linear region used for calculation highlighted in black. f) Inter-atomic 
distance distribution profile for SYCP1676-770 with the maximum interatomic distance (Dmax) indicated.  
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Figure 3.4.4| The SYCP1676-770 dimeric coiled-coil is parallel. a) SDS-PAGE analysis of purified 
MBP-fusions of SYCP1676-770. b) SEC-MALS analysis of SYCP1676-770 MBP-fusions confirming 
dimeric state. Theoretical dimeric molecular weights: MBP-676-770-MBP, 194 kDa; MBP-676-770, 
112 kDa; 676-770-MBP, 104 kDa. c) Inter-atomic distance distribution profile for MBP-fusions of 
SYCP1676-770 with intra-MBP and inter-MBP (parallel and anti-parallel) peaks indicated. d) SUPCOMB 
docked ROSETTA model of SYCP1676-770 into an ab initio generated molecular envelope by DAMMIF 
and DAMAVER. e) The theoretical X-ray scattering profile of the SYCP1676-770 ROSETTA model (red) 
closely matches the experimental data (black) with a χ2 value of 1.455. SEC-SAXS analysis by Dr Orla 
Dunne. 
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Figure 3.4.5| Purification and characterisation of GST-fused SYCP1676-770. a) SDS-PAGE analysis 
of samples summarising the purification of GST-SYCP676-770. b) Purified sample of GST-SYCP1676-770 

and GST. c) SEC-MALS analysis of GST-SYCP1676-770 and GST (theoretical dimer weights – 82 and 59 
kDa, respectively). Light scattering (LS) and differential refractive index (dRI) are plotted as solid and 
dashed lines, respectively, with molecular weights (Mw) shown as diamonds across elution peaks. d) 
Averaged small-angle X-ray scattering profile of GST-SYCP1676-770 with the fit used for P(r) distribution 
shown as a black line. e) Guinier analysis to determine the radius of gyration (Rg) of GST-SYCP1676-770 

(indicated). f) Inter-atomic distance distribution profiles (P(r)) for GST-SYCP1676-770 and GST 
indicating the maximum dimension (Dmax). SEC-SAXS analysis by Dr Orla Dunne  
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3.4.4 SYCP1676-770 crystals have pathologies which inhibit structure solution 

Initial crystals were grown in 200 nl drops in sitting drop format in 0.2 M magnesium formate 20 % 

PEG3350 (Table 2.2). Optimised SYCP1676-770 protein crystals were grown in 20 % PEG3350, 200 mM 

magnesium formate by vapour diffusion in hanging drops (Figure 3.4.6a). Native data (dataset S1C-20; 

dls070316) were collected at Diamond Light Source, Oxfordshire, UK, as described in the Methods 

section 2.1.17, and subsequently indexed, using XDS, revealing unit cell dimensions a= 87.80, b= 47.04, 

c= 138.12, α= 90, β= 94.78, γ= 90 and processed to 2.52 Å with an I/σI of 1.0 and a CC1/2 of 0.501 in 

the outer resolution shell (Table 3.4). Scaling was executed in xscale and data were merged using 

Aimless. The crystal belonged to a P21 spacegroup. The data were highly anisotropic with anisotropic 

resolution limits of 3.20 Å, 3.00 Å and 2.30 Å at an I/σI of 1.5. It was noted that many reflections are 

not accounted for by the assigned unit cell dimensions and spacegroup (Figure 3.4.6c). This may suggest 

the presence of multiple lattices; however, the reflections may also belong to the same lattice and appear 

on multiple images due to anisotropic mosaicity. Calculation of the Matthew’s coefficient suggests that 

there were between 4 and 6 dimers in the asymmetric unit with a solvent content between 40-60 %.  

 

Native data collection for SYCP1676-770 (dataset S1C-20) 
Space group P21   
Cell dimensions    
    a, b, c (Å) 87.80, 47.04, 138.12   
    α, β, γ ()  90, 94.78, 90   

 Overall Inner Shell Outer Shell 
Low resolution limit (Å) 47.02 47.02 2.62 
High resolution limit (Å) 2.52 9.09 2.52 
Rmeas (all I+ & I-) 0.109 0.023 2.078 
Rpim (all I+ & I-) 0.056 0.013 1.070 
Total number of observations 142582 2847 15716 
Total number unique 38472 887 4326 
Mean (I/σI) 8.8 32.8 1.0 
CC (1/2) 0.999 0.999 0.501 
Completeness (%) 99.6 98.3 99.7 
Multiplicity 3.7 3.2 3.6 

Table 3.4| X-ray crystallographic statistics for SYCP1676-770. Data processed by Dr  
Owen Davies 

 

 

 



Chapter 3 – SYCP1 

160 
 

 

 

Figure 3.4.6| Initial crystallisation of SYCP676-770. a) SYCP1676-770 crystals grown in 200 mM 
magnesium formate, 20 % PEG3350. b) X-ray diffraction data for SYCP1676-770 processed to 2.52 Å. 
The crystals belonged to a P21 space group with unit cell dimensions a= 87.75, b= 47.02, c=138.05, α= 
90, β= 94.75, γ= 90. Below a close up of the low-resolution reflection demonstrating large voids 
indicating translational non-crystallographic symmetry. c) White circles highlight the predicted 
coordinates of predicted. Additional reflections to those predicted are visible. The white area 
corresponds with an untrusted region in which data were not used in indexing and downstream 
processing. This zone aligns with the beam stop. 
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3.4.5 Patterson Function reveals translational symmetry 

The Patterson map for native SYCP1676-770 (dataset S1C-20) was calculated by Peakmax (Figure 3.4.7a-

e). The map reveals a large Patterson peak at each lattice point of the unit cell as expected. However, 

emanating from these peaks in a linear spread are Patterson peaks of decreasing intensity separated by 

approximately 5 Å relating to the pitch of an alpha helix, indicating the helices within the unit cell are 

organised in a parallel arrangement (Figure 3.4.7e). A pseudo-centring vector is present such that the 

Patterson map closely resembles that of C2 spacegroup. A higher symmetry spacegroup would greatly 

reduce the volume of the asymmetric unit (ASU) and aid in structure solution; however, this peak is 

only 17 % of the intensity of the peaks located at lattice points. This peak is likely the result of 

translational or pseudo- non-crystallographic symmetry which impacts heavily upon intensity statistics 

during molecular replacement and anomalous difference maps in experimental phasing, hindering 

structure solution. 

 

Figure 3.4.7| Native Patterson map generated for SYCP1676-770. a-c) 2-dimensional perspectives of 
the Patterson map. d) 3-dimensional view of the Patterson map. e) Patterson peaks in a linear spread, 
separated by an inter-peak distance of approximately 5 Å. 
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3.4.6 Experimental phasing strategies 

I experienced no success in solving the structure using ab initio approaches. Therefore, in order to 

overcome the phase problem, single-wavelength anomalous diffraction (SAD) experiments were 

performed. Sections 3.4.6-8 describe these attempts. For success through alternative means, see section 

3.4.9. In these SAD experiments, heavy elements are introduced into the protein crystal, which scatter 

X-rays anomalously, the result being that the centro-symmetry of the diffraction pattern is broken. This 

is identified as measurable differences in the amplitudes of Friedel mates (reflections related by 180˚) 

and Bijvoet pairs (symmetry-related reflections). These differences are maximised by using X-rays at a 

specific wavelength, dependent upon the heavy atom type, termed the absorption edge. By measuring 

these differences in intensity, the locations of the heavy atoms can be determined, providing initial phase 

estimations. Subsequent building into the electron density map calculated using these phase estimations 

allows for further improvements in phase estimation. Iterative building and refinement cycles thereafter 

improve the phase estimations until the atomic model explains the diffraction data as closely as possible 

such that the phase estimations can be considered correct, though they will never be perfect. 

3.4.7 Iodide soaking 

To incorporate heavy atoms into our crystals, I adopted two approaches concurrently. The first involved 

soaking native crystals in mother liquor containing a heavy atom. The success of this method depends 

upon the heavy atom diffusing through the crystal and associating with the protein at the same location/s 

in every asymmetric unit of each unit cell of the crystal lattice. I soaked crystals with 100 mM sodium 

iodide and collected diffraction data using X-rays at the high energy remote wavelength of 1.9074 Å 

(S1C-01 dataset; dls160416) (Figure 3.4.8a-c and Figure 3.4.9a,b). This wavelength, although not at the 

absorption edge for iodine, the difference between f’ and f’’ should mean that any iodide atoms bound 

at the same location in the asymmetric unit would result in detectable anomalous scattering (Figure 

3.4.9a). The data were processed using AutoPROC, scaled in Xscale and merged in aimless (Table 3.5). 

S1C-01 had unit cell dimensions a= 87.58, b= 46.91, c= 138.71, α= 90, β= 94.90, γ= 90 and belonged 

to spacegroup P21. The I/σI value was 1.2 in the outer shell, with data to 2.90 Å. Phenix Xtriage detects 

measurable anomalous signal to approximately 4.0 Å. Deviation from a linear plot and a non-spherical 

dispersion of points in the two graphs indicates the presence of detectable anomalous scattering (Figure 

3.4.9b). Dr Owen Davies attempted to locate iodide sites using Phenix Autosol, SHELX, hkl2map, and 
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CRANK2 (Pape and Schneider, 2004; Terwilliger et al., 2009; Sheldrick, 2010; Pannu et al., 2011). 

However, identified sites correlated with the 5 Å repeat of the Patterson peaks and boasted unrealistic 

occupancies (in excess of 1) and the phases these provided did not yield sensible electron density maps 

in which to build.  

 

Figure 3.4.8| Soaking SYCP1676-770 crystals in sodium iodide solution to gain phasing information. 
a) Native SYCP1676-770 crystal grown in 14.4 % PEG3350, 90 mM magnesium formate and subsequently 
soaked in the same solution plus 100 mM sodium iodide and b) Crystal positioning within the X-ray 
beam. c) X-ray diffraction image with data to 2.90 Å circled and a close up of low-resolution reflections 
within a bounding box. 
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Native data collection for iodide-SYCP1676-770 (dataset S1C-01) 
Space group P21   
Cell dimensions    
    a, b, c (Å) 87.58, 46.91, 138.71   
    α, β, γ ()  90, 94.90, 90   

 Overall Inner Shell Outer Shell 
Low resolution limit (Å) 46.07 46.07 3.08 
High resolution limit (Å) 2.90 8.70 2.90 
Rmeas (within I+/I-) 0.173 0.034 1.932 
Rpim (within I+/I-) 0.107 0.021 1.174 
Total number of observations 110674 4122 18005 
Total number unique 24564 992 3838 
Mean (I/σI) 8.1 32.9 1.2 
CC (1/2) 0.996 0.998 0.421 
Completeness (%) 96.9 97.5 95.2 
Multiplicity 4.5 4.2 4.7 
Anomalous completeness 92.0 96.3 91.1 
Anomalous multiplicity 2.2 2.5 2.4 
DelAnom correlation between 
half-sets 

0.401 0.553 0.222 

Mid-slope of Anom Normal 
Probability 

1.303 - - 

Table 3.5| X-ray crystallographic statistics for iodide derivative SYCP1676-770. Data  
processed by Dr Owen Davies 
 

 

Figure 3.4.9| Anomalous data collection for SYCP1676-770 iodide derivative. a) Absorption spectra 
for iodine. The wavelength at which anomalous data were collected is indicated by a vertical line. b) 
Left plot - ΔI/σΔI plot displaying deviance from the normal probability indicating the presence of 
anomalous scattering. Right plot - A scatter plot correlating two half datasets. A spherical clustering is 
expected for native data. A lateral spread is indicative of anomalous signal. These graphs were 
generated by Aimless using S1C-01 data. Data processing performed by Dr Owen Davies. 
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3.4.8 Seleno-methionine incorporation 

Secondly, we incorporated the heavy atom selenium by expressing and purifying a seleno-methionine 

(SeMet) derivative of SYCP1676-770 as described in Methods section 2.1.17. The SeMet derivative 

crystallised in 12.75 % PEG3350, 150 mM magnesium formate, 100 mM sodium iodide (Figure 3.4.10). 

SAD data were collected at the selenium absorption edge (0.9795 Å; dataset S1C-26, dls031015). S1C-

26 had unit cell dimensions a = 89.28, b = 47.65, c = 139.15, α = 90, β = 96.00, γ = 90 and also belonged 

to the spacegroup P21. An example diffraction image is displayed in Figure 3.4.10c. Statistics for S1C-

26 data collection and scaling statistics using an upper resolution limit of 2.80 Å are detailed in Table 

3.6. Phenix Xtriage optimistically detects anomalous signal to 3.8 Å (Figure 3.4.10d,e). MAD data were 

also collected but were unusable as the individual datasets were collected at non-isomorphous points of 

the same crystal and resultant data sets could also not be processed.  

Native data collection for SeMet-SYCP1676-770 (dataset S1C-26) 
Space group P21   
Cell dimensions    
    a, b, c (Å) 89.28, 47.65, 139.15   
    α, β, γ ()  90, 96.00, 90   

 Overall Inner Shell Outer Shell 
Low resolution limit (Å) 46.13 46.13 2.95 
High resolution limit (Å) 2.80 8.85 2.80 
Rmeas (within I+/I-) 0.184 0.039 1.963 
Rpim (within I+/I-) 0.099 0.021 1.066 
Total number of observations 187542 5613 26437 
Total number unique 29178 990 4189 
Mean (I/σI) 8.1 36.1 1.4 
CC (1/2) 0.998 0.999 0.717 
Completeness (%) 99.6 98.1 99.6 
Multiplicity 6.4 5.7 6.3 
Anomalous completeness 98.7 96.3 98.8 
Anomalous multiplicity 3.3 3.2 3.2 
DelAnom correlation between 
half-sets 

0.404 0.552 0.038 

Mid-slope of Anom Normal 
Probability 

1.175 - - 

        Table 3.6| X-ray crystallographic statistics for seleno-methionine SYCP1676-770. Data  
        processed by Dr Owen Davies 
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Figure 3.4.10| Seleno-methionine derivate SYCP1676-770 crystals. a) SDS-PAGE analysis of samples 
summarising the purification of seleno-methionine SYCP1676-770. b) SeMet-SYCP1676-770 crystals grown 
in 12.75 % PEG3350, 150 mM magnesium formate, 0.1 M sodium iodide and 12.5 % PEG3350, 150 
mM magnesium formate with their respective mountings at the beamline. c) X-ray diffraction image for 
SeMet-SYCP1676-770 with data to 2.80 Å circled and a close up of low-resolution reflections in bounding 
box. d) Absorption spectra for selenium. X-ray diffraction data were collected at 0.9795 Å, indicated by 
a vertical dashed black line. e) Left plot - ΔI/σΔI plot displaying deviance from the normal probability 
indicating the presence of anomalous scattering. Right plot - A scatter plot correlating two half datasets. 
A spherical clustering is expected for native data. A lateral spread is indicative of anomalous signal. 
These graphs were generated by Aimless using S1C-26 data input. 
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3.4.9 SYCP1676-770 crystallisation 

Reinspection of the initial crystallisation screens for SYCP1676-770 after 2 months revealed previously 

absent crystal hits in Structure A12 (0.1 M sodium cacodylate pH 6.5, 1.4 M sodium acetate) and Index 

C1 (3.5 M sodium formate pH 7.0) (Figure 3.4.11a,b). Crystals from INDEX C1 and Structure A12 

conditions were transferred to 6 M sodium formate pH 7.0 and 0.1 M sodium cacodylate pH 6.5, 1.4 M 

sodium acetate, 20 % PEG400, respectively, and cryo-cooled in liquid nitrogen. X-ray diffraction data 

were collected at Diamond Light Source, Oxfordshire, UK. 

 

Figure 3.4.11| Crystallisation and X-ray diffraction collection for SYCP1676-770. a) SYCP1676-770 
crystals grown in Index C1 - 3.5 M sodium formate pH 7.0. b) SYCP1676-770 crystals grown in Structure 
A12 - 0.1 M sodium cacodylate pH 6.5, 1.4M sodium acetate. c) X-ray diffraction image for SYCP1676-

770 crystal from Index C1. d) X-ray diffraction image for SYCP1676-770 crystal from Structure A12.  
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3.4.10 Structure solution of SYCP1676-770 in spacegroup I4122 

SYCP1676-770 crystals of condition Structure A12 (0.1 M sodium cacodylate pH 6.5, 1.4 M sodium 

acetate) diffracted to 2.49 Å and were found to contain a lattice of unit cells with dimensions a = 43.38 

Å, b = 43.38 Å, c = 292.18 Å, α = 90°, β = 90°, γ = 90° and belonged to the tetragonal spacegroup I4122 

(data were processed by Dr Owen Davies as described in the Methods section 2.1.17. Calculation of the 

Matthew’s coefficient revealed that the asymmetric unit contained a single SYCP1 chain per asymmetric 

unit. The structure was solved by Dr Isabel Usón using ARCIMBOLDO_LITE and subsequently built 

and refined by Dr Owen Davies. (S1C-13; dls160416; Table 3.7) (Rodriguez et al., 2009).  

In contrast to our biophysical analysis of SYCP1676-770 in solution, which demonstrated an elongated 

coiled-coil conformation, within the X-ray crystal structure of SYCP676-770, two parallel coiled-coil 

dimers assemble back-to-back to form an anti-parallel four α-helical bundle (Figure 3.4.12a). I propose 

that this distinct conformation represents an assembled form of SYCP1676-770 which underpins a 

mechanism by which the C-terminus of SYCP1 may assemble at the chromosome axis.  

Data collection for SYCP1676-770 (dataset S1C-13) 
Space group I4122     
Cell dimensions    
    a, b, c (Å) 43.38, 43.38, 292.18   
    α, β, γ ()  90.00, 90.00, 90.00   

 Overall Outer Shell 
Low resolution limit (Å) 42.91 2.48 
High resolution limit (Å) 2.58 2.48 
Rmerge (all I+ & I-) 0.080 2.567 
Rpim (all I+ & I-) 0.023 0.727 
I / σI 14.8 1.5 
CC1/2 1.000 0.935 
Completeness (%) 99.8 99.7 
Multiplicity 13.2 13.2 
Refinement 
Resolution (Å) 39.62 – 2.49  
UCLA anisotropy (Å) 2.9, 2.9, 2.5  
Number of reflections 4138  
Rwork / Rfree 0.2251 / 0.2517  
Number of atoms 806  
Protein 786  
Ligand/ion 4  
Water 16  
B-factors 60.86  
Protein 60.80  
Ligand/ion 81.59  
Water 58.92  
R.m.s deviations   
Bond lengths (Å) 0.004  
Bond angles () 0.575  

        Table 3.7| X-ray crystallographic statistics for SYCP1676-770 (I4122). Data processed 
        by Dr Owen Davies 
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Figure 3.4.12| The SYCP1676-770 crystal structure (I4122) reveals an anti-parallel association of 
parallel chains. a) Crystal structure of SYCP1676-770, revealing an anti-parallel association of two 
parallel dimers coloured in blue (N-termini in deep teal to the C-termini in pale cyan) and purple (N-
termini in deep purple and the C-termini in light pink). b) Alternative colouring scheme, with N-termini 
in green and C-termini in red, to highlight the anti-parallel tetrameric organisation of the chains within 
the structure, emphasising the presence of a central tetrameric interface (in blue). The structure measures 
142 Å in length. The central tetrameric interface with flanking C703 pinch points (partially oxidised) 
and two lateral interfaces. 

 

 

3.4.11 The SYCP1676-770 I4122 crystal lattice 

The I4122 crystal lattice is formed through the symmetric, lateral, anti-parallel association of α-helical 

chains of biological tetramers angled at 90˚ to one another (Figure 3.4.13a). The interface is mediated 

by two symmetry related sets of interactions comprising two salt bridges (formed between Q740 and 

S748 (2.4 Å) and E752 and K736 (3.4 Å)) and the coordination of an acetate molecule by residues E759 

and D729, each (Figure 3.4.13b,c).   
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Figure 3.4.13| The details of the SYCP1676-770 I4122 crystal lattice. a) A single four-chain biological 
assembly of SYCP1676-770 coloured yellow to green, with four symmetry related tetramers making 
identical anti-parallel associations between laterally orientated chains, displayed in a series of 45˚ 
rotations. b) The region bounded in a is shown with two symmetry related sets of side chains forming 
salt bridge crystal contacts and acetate mediated crystal contact. A single set is bounded by a dashed 
box. c) Crystal contacts are mediated by a salt bridge between residues Q740 to S748, K736 to E752 
whilst an acetate ion is coordinated by D729 and E759. 

  



Chapter 3 – SYCP1 

171 
 

3.4.12 Structure solution of SYCP1676-770 in spacegroup C2 

SYCP1676-770 crystals of condition Index C1 (3.5 M sodium formate pH 7.0) diffracted to 2.15 Å and 

were found to contain a lattice of unit cells with dimensions a = 233.42 Å, b = 42.85 Å, c = 43.69 Å, α 

= 90°, β = 93.61°, γ = 90° and belonged to the monoclinic spacegroup C2 (S1C-14; dls220216; Table 

3.8). Calculation of the Matthew’s coefficient estimated the presence of four SYCP1 chains per 

asymmetric unit (Matthews, 1968; Kantardjieff and Rupp, 2003). Dr Isabel Usón utilised 

ARCIMBOLDO_SHREDDER and the I4122 structure to generate fragments, and subsequently models, 

which were used to solve the structure by molecular replacement (solution strategy described in full in 

Methods section 2.1.17-18 (Figure 3.4.14a) (Millán, 2017).  

Data collection for SYCP1676-770 (dataset S1C-14) 
Space group C2    
Cell dimensions    
    a, b, c (Å) 233.42, 42.85, 43.69   
    α, β, γ ()  90.00, 93.61, 90.00   

 Overall Outer Shell 
Low resolution limit (Å) 116.48 2.15 
High resolution limit (Å) 2.27 2.15 
Rmerge (all I+ & I-) 0.052 0.695 
Rpim (all I+ & I-) 0.032 0.429 
I / σI 12.4 1.9 
CC1/2 0.998 0.872 
Completeness (%) 97.4 88.0 
Multiplicity 3.6 3.5 
Refinement 
Resolution (Å) 58.26 – 2.15  
UCLA anisotropy (Å) 2.2, 2.3, 2.2  
Number of reflections 21416  
Rwork / Rfree 0.2186 / 0.2526  
Number of atoms 3318  
Protein 3143  
Ligand/ion 0  
Water 175  
B-factors 46.97  
Protein 47.30  
Ligand/ion N/A  
Water 41.20  
R.m.s deviations   
Bond lengths (Å) 0.004  
Bond angles () 0.511  

        Table 3.8| X-ray crystallographic statistics for SYCP1676-770 (C2). Data processed 
        by Dr Owen Davies 
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Figure 3.4.14| The almost identical structure of SYCP1676-770 in spacegroup C2. a) Crystal structure 
of SYCP1676-770 in spacegroup C2, revealing an anti-parallel association of parallel dimers with a length 
142 Å, with N-termini in green and C-termini in red. Similar to the I4122 structure, the structure can be 
divided into a central tetrameric interface with flanking C703 pinch points and two lateral interfaces. 
However, in contrast to the I4122 structure, one C703 pinch point is oxidised, and the other is reduced.  
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3.4.13 An analysis of the SYCP1676-770 crystal structures 

The C2 crystal lattice, having four chains per asymmetric unit, is stabilised by many more discrete 

associations than the I4122 structure, but is largely mediated through salt bridges between laterally 

orientated chains. The following structural analysis is based up the higher resolution, lower symmetry, 

C2 structure, though specific elements will be compared between the structures throughout. The 

structure is stabilised at two key regions: a central tetrameric interface and flanking lateral interfaces, 

adjoined through intermediate sequence (Figure 3.4.14a). Following the sequence from N to C-terminus, 

two parallelly orientated chains stabilised as part of an anti-parallel four-helical association at the lateral 

interface, described shortly, converge at a pinch point centred at C703. In the C2 spacegroup, these form 

disulphide and non-disulphide bonds at rigid and loose ends of the structure, respectively, whereas in 

the I4122 structure, symmetry related pinch points display partial disulphide bonds (compared in Figure 

3.4.16). Parallel chains emanating from the central interface diverge, splaying to a maximal spatial 

separation of ~30 Å to flank the C703 pinch points, which exist in either oxidised or reduced states. 

Within the I4122, pinch sites are partially oxidised and whilst in the C2 structure one pinch site is 

oxidised and exhibits a smooth chain angulation and decreased-factors, whilst the other is reduced and 

exhibits a sharp angulation about E731 with comparatively increased B-factors (Figure 3.4.15a,b and 

Figure 3.4.16a-e). This difference in angulation is particularly pronounced in Figure 3.4.16b and is 

indicated with an arrow. 
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Figure 3.4.15| Oxidation of C703 decreases chain flexibility. a) The C2 structure of SYCP1676-770 
coloured by B-factor (Blue= low B-factor, Red/orange= high B-factor). The C2 structure demonstrates 
the lowest B-factors at the tetrameric interface and on the smoothly angulated, oxidised end of the 
structure (left side). b) Electron density map with the docked model of the C2 structure. Residues C703 
forming a disulphide linkage are presented. c) Electron density map with the docked model of the C2 
structure. Reduced residues C703 not forming a disulphide linkage are presented.  d) The I4122 structure 
(coloured by B-factor) demonstrates the lowest B-factors at the tetrameric interface with relative 
flexibility at partially oxidised C703 pinch points, when compared to the oxidised end of the C2 
structure. e) Electron density map with the docked model of the I4122 structure. Residues C703 forming 
a partial disulphide linkage are shown. 
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Figure 3.4.16| Comparison of SYCP1676-770 in spacegroups I4122 and C2. a) Superimposition of 
forms 1 (red) and 2 (blue) highlighting overall similarity with rmsd 1.39 Å. b) Superimposition of chains 
A, B, C, D to chains D, C, B, A of the C2 (form 1) structure, representing a 180˚ rotation with an rmsd 
of 3.44 Å, demonstrating internal asymmetry largely due to backbone differences between the smooth 
oxidised end and angulated reduced end of the structure. c) Superimposition of chains A, B, C, D of 
form 1 (C2) structure with the sole chain of the I4122 form 2 structure with rmsd values indicated. d) 
Chain vs chain rmsd values for superimposition of unique SYCP1676-770 chains of the I4122 and C2 
structures e) The angulation of chains A, B, C and D about E731 are detailed, stating the oxidation state 
of the flanking C703 residues. The chain is more angulated when flanked by reduced C703 residues 
(chains A and C). 
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3.4.14 The SYCP1676-770 tetrameric interface 

After the C703 pinch points, the sequence continues into a tetrameric interface mediated by a highly 

conserved hydrophobic core of H717 and Y721 (Figure 3.4.17a). In this, aromatic stacking between 

H717 imidazole groups (Figure 3.4.17b; 3.3 - 3.4 Å) and a hydrogen bonding network (detailed in Figure 

3.4.17c-e) collaborate to stabilise the fold. Briefly, the hydroxyl group of Y721 hydrogen bonds with 

the amine group (Nδ1) of H717 which in turn, through its second amine group (Nε2) hydrogen bonds 

with the hydroxyl group of Q720. The hydroxyl groups of Y721 further coordinate a centrally located 

water molecule (Figure 3.4.17a,c,d). Within the C2 structure, this water molecule is coordinated by four 

tyrosine hydroxyl groups through two short and two long hydrogen bonds (Figure 3.4.17c). The short 

hydrogen bonds are likely formed between the hydrogen of the two tyrosine hydroxyl groups and a lone 

pair of electrons of the water molecule’s oxygen whilst the longer hydrogen bonds are likely formed 

between the two hydrogens of the water and a lone pair of electrons of the other two tyrosine hydroxyl 

oxygens. Within the I4122 structure, however, the water molecule would be placed at a special position 

and so, crystallographically, should not exist. Re-processing in a low symmetry spacegroup might reveal 

whether it is present or not. Assuming its presence, the four tyrosine side chains are positioned 

equidistant from the water’s oxygen. Regardless, the hydrogen bonding network should be satisfied in 

the presence or absence of this water molecule. 
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Figure 3.4.17| A hydrogen bonding network and aromatic stacking stabilised the tetrameric 
interface. a) The central tetrameric interface is formed of two stacked layers containing residues H717 
and Y721 which in coordination with distal Q720 form two discrete hydrogen bonding networks. The 
layers are related through aromatic stacking of H717 and potential coordination of a single water 
molecule shared between four tyrosine residues. b) H717 residues stack through π-π stacking. c-e) 
Details of the hydrogen bond network within the tetrameric interface. Hydrogen bonds are assigned  
donor and acceptor atoms within 2.6 – 3.3 Å. c) Four tyrosine residues coordinate a single water 
molecule. Y721 from chains C and D associate through short hydrogen bonds whilst Y721 of chains A 
and B associate through long hydrogen bonds. d) Cartoon diagram of a single hydrogen-bond network 
forming layer of Q720, H717 and Y721 with atomistic details. Hydrogen bonds are represented by 
dashed lines. e) The distances between donor and acceptor atoms involved in each hydrogen bond are 
detailed.  
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3.4.15 The SYCP1676-770 lateral interfaces 

The two chains subsequently re-converge at four-helical lateral interfaces stabilised by hydrophobic 

cores coupled with anti-parallel coiled-coil interactions (Figure 3.4.18a-c). The heptad repeat residues 

predicted to stabilise the C-terminal end of the coiled-coil dimer through formation of a leucine zipper 

(L760, V763, L767) form similar interactions in this structure, with further contribution from residues 

L749, L753, L756 and N-terminal residues L678, V682, A685, A689, A692 which do not fall into a 

traditional heptad repeat sequence. Notably, residues L679 and I688, which do not appear to be involved 

in dimer stabilisation, appear to mediate associations between anti-parallel chains so may be specific to 

tetramer stabilisation. 

 

Figure 3.4.18| The lateral interface of the SYCP1676-770 tetramer is stabilised by coiled-coil type 
interactions. a) The lateral interface forms a hydrophobic core of residues which further contribute to 
the anti-parallel association of helical chains. L679 and I688 are highlighted in blue as being the sole 
residues which mediate only contacts between anti-parallel chains. b) The type 1 interface is formed 
through the anti-parallel coiled-coil association of L679, V682 and K686, L753, K757, L760 and K764. 
c) The type 2 interface is mediated by the anti-parallel association of heptad residues L678, E681, A685, 
I688 and A692, L745, L749, E752, L756 and E759. 
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3.4.16 Identification of the solution conditions required for assembly 

The structure of SYCP1676-770 immediately suggested that it may represent an assembled form of the 

elongated, dimeric form previously observed in solution and might provide the structural basis of a 

mechanism by which SYCP1 can assemble via its C-terminus at the chromosome axis. I sought to 

determine the conditions in solution which can trigger this assembly. 

3.4.17 The SYCP1676-770 undergoes dynamic remodelling in response to pH changes 

Due to the integral role of histidine residue H717 within the tetrameric core of the SYCP1676-770 structure, 

I predicted its protonation might be required to trigger assembly in solution. Therefore, I reduced the 

pH of samples by their dilution in 100 mM sodium acetate pH 4.6 or 5.5, 150 mM or 1 M KCl. SYCP1676-

770 precipitated at pH 4.6 and therefore a screen was performed, diluting SYCP1676-770 in buffers with a 

series of pH values (from 4.6 to 5.5) and found it remained in solution at pH 5.5 (Figure 3.4.20a). 

SYCP1676-783 and SYCP1640-783 remained soluble at pH 4.6. SEC-MALS revealed a dimer to tetramer 

oligomeric shift for SYCP1676-770 at pH 5.5 also observed for SYCP1676-783 and SYCP1640-783 (to a lesser 

extent) at pH 4.6 (Figures 3.4.20c-e). SYCP1676-783 was ~50 % tetrameric at pH 5.2 (Figure 3.4.20d). 

SYCP1676-783 and SYCP1640-783 contain additional coiled-coil sequence which is glutamate-rich which 

may both act as a buffer and stabilise the dimeric form through additional coiled-coil interactions, 

accounting for the requirement of a lower pH. Interestingly, tetramerization was inhibited by the 

oxidation of the sample prior to dilution (Figure 3.4.27e). We performed further SEC-SAXS on 

SYCP1676-770 at pH 5.5, revealing a length of 161 Å (compared to 143 Å at pH 8.0) and cross-sectional 

radii of 10.1 Å (compared to 7.8 Å at pH 8.0) in keeping with a dimer to tetramer transition (Figure 

3.4.21a-d). Whilst the dimensions of the solution dimer closely match those of a dimeric coiled-coil, 

those of the solution tetramer closely match those of the crystal structure. The crystal structure was 

docked into an ab initio molecular envelope using SUPCOMB (Figure 3.4.21e,f). SEC-SAXS analysis 

of SYCP1676-783 at pH 8.0 and 4.6 confirmed that assembly of the extended molecule occurs in the same 

manner (Figure 3.4.22a-f).  
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Figure 3.4.19| A reduction in pH triggers 
SYCP1 assembly. a) SDS-PAGE analysis of 
samples of SYCP1676-770 at various pH values, 
subjected to centrifugation to separate insoluble 
material (pellet) and soluble material (SN). 
SYCP1676-770 is largely insoluble at pH values 
from 4.6 to 5.25 yet remains soluble at pH 5.5. 
b,c,e) SEC-MALS analysis of b) SYCP1676-770 

(theoretical dimer weight – 23 kDa, theoretical 
tetramer weight – 46 kDa.) , c) SYCP1676-783 

(theoretical dimer weight – 26 kDa, 
theoretical tetramer weight – 52 kDa.), e) 
SYCP1640-783 (theoretical dimer weight – 34 
kDa, theoretical tetramer weight – 68 kDa.)  
at pH 8.0 (blue) and pH 5.5 or 4.6 (red) Light 
scattering (LS) and differential refractive index 

(dRI) are plotted as solid and dashed lines, respectively, with molecular weights (Mw) shown as 
diamonds across elution peaks. d) The percentage by mass of SYCP1676-783 molecules in a tetrameric 
oligomeric state as determined by SEC-MALS analysis across a range of pH values. 
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Figure 3.4.20| A reduction in pH triggers SYCP1676-770 assembly. a) Averaged small-angle X-ray 
scattering profiles of SYCP1676-770 at pH 8.0 (blue) and pH 5.5 (red) with the fits used for P(r) 
distributions shown as black lines. b) Guinier analysis to determine the radius of the cross-section (Rc) 
of SYCP1676-770 at pH 8.0 and 5.5. The data within the linear region utilised for calculation are 
highlighted in black and bounded by dashed lines. c) Guinier analysis to determine the radius of gyration 
(Rg) of SYCP1676-770 at pH 8.0 and 5.5. The data within the linear region utilised for calculation are 
highlighted in red (pH 5.5) and blue (pH 8.0).  d) Inter-atomic distance distribution profile for SYCP1676-

770 at pH 8.0 (blue) and pH 5.5 (red) with maximum dimensions (Dmax) and radius of the cross-section 
(Rc) indicated. e,f) SUPCOMB docking of the SYCP1676-770 crystal structure and a model coiled-coil 
docked into the calculated ab initio molecular envelopes at pH 5.5 and 8.0, respectively. SEC-SAXS 
data analysis by Dr Orla Dunne. 
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Figure 3.4.21| A reduction in pH triggers SYCP1676-783 assembly. a) Averaged small-angle X-ray 
scattering profiles of SYCP1676-783 at pH 8.0 (blue) and pH 4.6 (red) with the fits used for P(r) 
distributions shown as black lines. b) Guinier analysis to determine the radius of the cross-section (Rc) 
of SYCP1676-783 at pH 8.0 and 4.6. The data within the linear region utilised for calculation are 
highlighted in black and bounded by dashed lines. c) Guinier analysis to determine the radius of gyration 
(Rg) of SYCP1676-783 at pH 8.0 and 4.6. The data within the linear region utilised for calculation are 
highlighted in red (pH 4.6) and blue (pH 8.0). d) Inter-atomic distance distribution profile for SYCP1676-

783 at pH 8.0 (blue) and pH 5.5 (red) with maximum dimensions (Dmax) and radius of the cross-section 
(Rc) indicated.  e,f) SUPCOMB docking of the SYCP1676-770 crystal structure and a model coiled-coil 
docked into the calculated ab initio molecular envelopes at pH 4.6 and 8.0, respectively. SEC-SAXS 
data analysis by Dr Orla Dunne. 
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Tetramerization driven by the reduced pH resulted in stabilisation as assessed by thermal denaturation, 

with SYCP1676-770 melting at 35 and 38 ˚C and SYCP1676-783 melting at 46 and 60 ˚C, at pH 8.0 and 

5.5/4.6, respectively (Figure 3.4.23c,d). Interestingly, the presence of 1M KCl increased stability of 

SYCP1676-770 (the melting temperature is increased from 38 to 62 ˚C) and further elicited the formation 

of an octameric species showing propensity for further assembly (Figure 3.4.23c and Figure 3.4.24a). It 

is possible that SYCP1676-770 undergoes further domain-swap self-associations to drive the dimerization 

of tetrameric units (modelled in Figure 3.4.24b,c). This may occur in a recursive manner to drive a 

lattice-like assembly of SYCP1676-770 molecules. 

 

Figure 3.4.22| The dimer-tetramer shifts results in increased stability. a) Circular dichroism far-UV 
spectra for SYCP1676-770 at pH 7.5 (black solid), 5.5 (black dashed) or 5.5 at 1 M KCl (grey solid) 
demonstrating equivalent helicity. b) Circular dichroism far-UV spectra for SYCP1676-783 at pH 7.5 
(black solid) and 4.6 (black dashed) demonstrating equivalent helicity. c) Thermal denaturation of 
SYCP1676-770 at pH 8.0, 5.5 and pH 5.5 in the presence of 1 M KCl demonstrating increased stability at 
pH 5.5 (with melting temperatures of 35 and 38 ˚C) and a further increase in stability in 1 M KCl with 
a melting temperature of 62 ˚C. d) Thermal denaturation of SYCP1676-783 at pH 8.0 and 4.6, 
demonstrating an increase in melting temperature from 46 to 60 ˚C with a reduction in pH.  
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Figure 3.4.23| A high salt concentration elicits higher oligomer formation. a) SEC-MALS analysis 
of SYCP1676-783 at pH 4.6 in the presence of 1 M KCl, demonstrating tetrameric assembly with the further 
formation of an octameric-higher order assembling species. b) Molecular model of an octamer through 
the domain swap of helical chains to create an interlaced assembly. c) End-on views display ends of the 
structure in which chains are non-swapped and swapped. The assembly can occur in a recursive manner 
to generate a lattice of SYCP1676-770 molecules.  

I wanted to confirm that the tetramer represents an assembled form of two parallel dimers in anti-parallel 

association. I purified a tethered dimer of two consecutive SYCP1676-770 sequences connected by a 

flexible GQTNPGTNPTG linker. The formation of a monomer of a length approximating that of the 

SYCP1676-770 dimer at pH 8.0 would suggest the capability to adopt an anti-parallel conformation whilst 

the formation of dimer of tethered dimers, as observed by SEC-MALS, indicates a parallel orientation 

of helical chains (Figure 3.2.24a-c). The massively shifted elution volume of the dimer of tethered 

dimers (12.5 ml compared to 14.5 ml of the SYCP1676-770 dimer) suggests a highly elongated, end-to-

end, arrangement of two parallel dimers, as confirmed by SEC-SAXS which reveals a Dmax of 241 Å 

and cross-sectional radius of 8.8 Å (Figure 3.4.24d-f). At pH 5.5, the construct retains its dimer of dimers 

oligomeric status, yet, as illustrated by its elution volume of 14.5 ml (matching that of SYCP1676-770 at 

pH 5.5), length of 156 Å, and cross-sectional radius of 10.7 Å, it adopts a compact conformation with 

dimensions matching those of the anti-parallel tetramer, representing the folding of the dimer of tethered 

dimers on itself (Figure 3.4.24c-f).  
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Figure 3.4.24| Analysis of a tethered SYCP1676-770 construct confirms tetrameric assembly. a) SDS-
PAGE analysis of the purification of SYCP1676-770 tethered dimer, size-exclusion chromatography 
elution fractions and the final purified sample. b) Schematic representation of the tethered dimer with 
linker sequence as a dashed line followed by a model of the predicted structures for a parallel orientation 
at pH 8.0 and 5.5 and a model for an anti-parallel coiled-coil at pH 8.0. c) SEC-MALS analysis of an 
SYCP1676-770 tethered dimer at pH 8.0 (black left; theoretical dimer of dimers – 47 kDa), demonstrating 
a shifted elution volume, and at pH 5.5 (black right) which shows an elution volume similar to SYCP1676-

770 at pH 5.5 (grey). d) Inter-atomic distance distribution profile for SYCP1676-770 tethered dimer at pH 
8.0 (grey) and pH 5.5 (black) with maximum dimensions (Dmax) and radius of the cross-section (Rc) 
indicated. e) Guinier analysis to determine the radius of gyration (Rg) of SYCP1676-770 tethered dimer at 
pH 8.0 and 5.5. The data within the linear region utilised for calculation are highlighted in black. f) 
Guinier analysis to determine the radius of the cross-section (Rc) of SYCP1676-770 tethered dimer at pH 
8.0 and 5.5. The data within the linear region utilised for calculation are highlighted in black. SEC-
SAXS data analysis by Dr Orla Dunne. 
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Finally, MBP-tagged SYCP1676-770 tetramerised at pH 5.5 and upon analysis by SEC-SAXS 

demonstrated maxima within the interatomic distance-distribution profile representing interatomic 

distances between MBP molecules at either end of the molecule (Figure 3.4.25a-e). I therefore conclude 

that the pH-dependent assembly observed in solution constitutes the anti-parallel association of parallel 

SYCP1676-770 coiled-coil dimers. 

 

Figure 3.4.25| SEC-SAXS analysis of MBP-SYCP1676-770 confirms anti-parallel helical assembly. a) 
SEC-MALS analysis of MBP-SYCP1676-770 at pH 5.5 demonstrating tetramer formation (theoretical 
tetramer – 224 kDa). b) Averaged small-angle X-ray scattering profiles of MBP-SYCP1676-770 at pH 5.5 
with the fit used for P(r) distribution shown as a black line. c) Guinier analysis to determine the radius 
of gyration (Rg) of MBP-SYCP1676-770 at pH 5.5. The data within the linear region utilised for calculation 
are highlighted in black. d) Inter-atomic distance distribution profile for MBP-SYCP1676-770 at pH 8.0 
(blue) and pH 5.5 (red) with intra-, and inter-MBP peaks indicated. e) Schematic model of MBP-
SYCP1676-770 at pH 5.5 with short and long inter-MBP distances indicated. SEC-SAXS data analysis by 
Dr Orla Dunne.  
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3.4.18 Mutagenesis of SYCP1676-770 central tetrameric interface 

The residues stabilising the tetramer hydrophobic core display absolute conservation across mammalian 

species (Figure 3.4.26a,b). I performed mutagenesis experiments with SYCP1676-783, as the additional 

sequence accentuated the difference in the elution volumes of the dimeric and tetrameric forms. A 

summary of tested mutants can be found in Table 3.9. Most remarkably, I was able to stabilise the 

tetrameric form of SYCP1676-783 through the double mutation H717W Y721F (Figure 3.4.26c,d). The 

success of this mutation is due to the tryptophan replicating the hydrogen bond to glutamine 720 through 

its Nε1 whilst undergoing similar aromatic stacking interactions of H717 and contributing to a 

hydrophobic core (Figure 3.4.26d). Tetramer formation could be disrupted by mutation of H717 to 

glutamate whilst substitutions to phenylalanine or tryptophan were tolerated. Surprisingly, mutation of 

Y721 to either alanine or glutamate had no effect on tetramer formation at pH 4.6.  

Tetramer formation could also be disrupted though mutation of L679 and I688 to alanine (Figure 

3.4.26c,e). As these residues are specific to interactions between anti-parallel chains of the tetramer in 

the lateral interface, dimer formation remains unaffected. At pH 4.6, it still formed a tetramer but at a 

dramatically reduced efficiency, demonstrating 22 % tetramer formation, 78 % dimer formation (Figure 

3.4.26c). 

I reasoned that the three histidine residues of the structure might act as pH sensors. As histidine has a 

side chain pKa of 6.0, it can oscillate between a protonated/deprotonated state at pH values below and 

above this value, respectively. Having established that H717 protonation is not essential for 

tetramerization (as tetramer formation is unaffected by the mutation H717F) I tested for the effect of 

mutating H705 and H719 which are both solvent exposed within the tetrameric crystal structure and 

dimeric ab initio model, not apparently stabilising interactions in either structure. H719, which is 

situated proximal to the tetrameric interface, does not appear to contribute to tetramerization as when 

mutated to alanine, lysine, leucine or phenylalanine, it still forms a tetramer at pH 4.6. Further, the 

mutation of H719 to D or E within the context of H717W Y721F does not stabilise or destabilise tetramer 

formation at pH 8.0.  
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Figure 3.4.26| Mutational analysis of SYCP676-783. a) An alignment of the human SYCP1 between 
residues 676 and 770 aligned with a conservation plot. Key residues are indicated by asterisks. b) The 
crystal structure of SYCP1676-770 coloured by conservation with conserved residues in red and those non-
conserved in blue. c) SEC-MALS analysis of SYCP1676-783 mutants H717W/Y721F and L679A/I688A. 
Theoretical tetramer molecular weight – 52 kDa. Light scattering (LS) and differential refractive index 
(dRI) are plotted as solid and dashed lines, respectively, with molecular weights (Mw) shown as 
diamonds across elution peaks. d) Model of the tetrameric interface incorporating mutated residues 
H717W and Y721F. The hydrophobic core is conserved whilst maintaining hydrogen bonding to Q720 
through the nitrile group of tryptophan. e) The residues I688 and L679 are highlighted in red as being 
the sole residues which mediate specific contact between anti-parallel chains. 

Given its location, it is perplexing that mutation of H705 to A or E almost completely ablates tetramer 

formation at pH 4.6. Triple mutation H705A H717A H719A did not enhance this effect whilst their 

mutation to glutamate blocked tetramer formation totally, though this is likely due to the dominant effect 

of H717E. Given the localisation of H705 at the pinch points within the tetramer, it could be that H705 

protonation triggers a conformational remodelling of the dimer, which is transmitted along the coiled-

coil, opening up the structure and allowing parallel chains to associate in an anti-parallel manner. 
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However, the mechanism is not completely protonation dependent given the partial refolding of a mutant 

devoid of histidine residues.  

3.4.19 What is the role of the C703 pinch points? 

As disulphide bonds are present in the crystal structure, I wondered whether they play a role in tetramer 

formation or stabilisation. I initially assayed for the presence of disulphide bonds within the purified 

material using Ellman’s reagent assay and UV spectrophotometry. Ellman’s reagent (DTNB) reacts with 

free thiol groups, releasing a stoichiometric amount of TNB which can be detected by its absorption of 

UV light at 412 nm (see Methods section 2.1.16). Purified SYCP1676-770 reacted readily with DTNB, 

observed as a maxima at 412 nm, whilst the oxidised form, subjected to 0.5 % hydrogen peroxide at 

room temperature overnight, did not, confirming the non-oxidised state of purified SYCP1676-770 and the 

reactivity of C703 as the role cysteine residue (Figure 3.4.27a).  

I assayed for the effect of oxidation on oligomeric state by incubating samples with increasing 

concentrations of hydrogen peroxide, incubating for 2 hours at room temperature and analysing by SDS-

PAGE (Figure 3.4.27b). 0.5 % hydrogen peroxide results in maximal oxidation of SYCP1676-770 with the 

majority of protein migrating as a disulphide-stabilised gel dimer (Figure 3.4.27b). Circular dichroism 

reveals that whilst SYCP1676-770 in both reduced and oxidised states demonstrates equal helicity, thermal 

denaturation revealed that oxidation stabilised the dimer, resulting in an increase in melting temperature 

from 35 to 51 ˚C (Figure 3.4.27c,d).  

I finally tested the effect of mutating C703 to alanine or serine to check whether the structural 

contribution of the cysteine was important for tetramer formation upon a reduction in pH. SEC-MALS 

revealed that this was not the case with both mutants forming stable tetramers at pH 4.6 (Figure 3.4.27f 

and Table 3.9).   
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Mutations of SYCP1676-783 
Mutation Oligomer at pH 8.0 Oligomer at pH 4.6 

H717L Dimer Untested 
H717F Dimer Untested 
H717W Dimer Partial disruption 
H719A Dimer Precipitates 
H719K Dimer Partial disruption 
H719L Dimer Tetramer 
H719F Dimer Tetramer 
Y721A Dimer Tetramer 
Y721E Dimer Tetramer 
Y721L Dimer Untested 
Y721F Dimer Untested 
H717A 
H719K 

Dimer Precipitates 

H717A 
Y721A 

Dimer Tetramer 

H717W 
Y721F 

Tetramer Tetramer 

L679A 
I688A 

Dimer Dimer/tetramer 

L679E 
E681K 
D690K 
L761K 

Dimer Untested 

H705A Dimer Partial disruption 
H705 A 
H717A 
H719A 

Dimer Dimer/tetramer 

H705E 
H717E 
H719E 

Dimer Dimer 

H717W 
H719D 
Y721F 

Tetramer Untested 

H717W 
H719E 
Y721F 

Tetramer Untested 

C703A Untested Tetramer 
C703s Untested Tetramer 

Table 3.9| Summary of SEC-MALS analysis for SYCP1676-783 mutants 
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Figure 3.4.27| Oxidation within SYCP676-770. a) Assay for oxidation as described in Methods section 
2.1.16. Glutathione (GSH) standards from 0 – 1.0 mM in the presence of DTNB, shown in grey, show 
an increasing absorbance at 412 nm. In the presence of oxidised SYCP1676-770 (blue), no TNB is released 
into solution whilst maximal signal at 412 nm is achieved with 0.5 mM reduced SYCP1676-770 (red). b) 
SDS-PAGE analysis demonstrating the formation of a gel dimer in the presence of increasing 
concentrations of hydrogen peroxide for SYCP1676-770 c) Circular dichroism far-UV spectra of SYCP1676-

770 in the reduced and oxidised states. d) Thermal denaturation of SYCP1676-770 in the reduced and 
oxidised states were recorded as percentage unfolded based on the helical signal at 222 nm. Melting 
temperatures were estimated at 35 and 51 ˚C, respectively. e) SEC-MALS of oxidised SYCP1676-783 at 
pH 4.6 demonstrating partial inhibition of tetramerization. f) SEC-MALS of SYCP1640-783 C703S at pH 
4.6 showing that mutation of the pinch point C703 has no effect upon tetramerization.  
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3.4.20 DNA binding of SYCP1676-770 and chromosomal assembly 

I noted the presence of a series of basic surfaces on the surface of the SYCP1676-770 structure, separated 

by approximately ~30 Å, suggesting the possibility that the assembled form of SYCP1676-770 may mediate 

further interactions with the DNA backbone. I observed by EMSA that SYCP1676-770 interacts with DNA 

at pH 5.5, but not at pH 8.0 (Figure 3.4.28a,b). As both surfaces of the tetramer display basic patches, it 

is possible that the structure mediates recursive DNA interactions, resulting in large protein-DNA 

assemblies and likely accounting for the range of species observed by EMSA.  

I predicted that SYCP1676-770 assembly might contribute to SYCP1 assembly at the chromosomal axis. 

Histidine protonation could occur within close proximity to the chromosomal axis where the local proton 

concentration results in an acidic microenvironment, with a pH value two orders of magnitude below 

that of the bulk solvent (Hanlon et al., 1997). Being a dynamic remodelling event, this would provide 

an elegant mechanism to prevent the erroneous assembly of SYCP1 molecules outside of the SC. 

However, a mechanism for chromosomal recruitment would be required to correctly localise the 

SYCP1676-770.  

I propose a model in which SYCP1 is initially recruited to the chromosome axis through putative DNA-

binding sites within the unstructured and basic C-terminus. In proximity to the chromosome axis, the 

domain corresponding to SYCP1676-770 undergoes back-to-back assembly in a protonation dependent 

manner, allowing for its association with chromosomal DNA (Figure 3.4.28c). This would strengthen 

SYCP1 association with the axis and provide a level of regulation, preventing the erroneous assembly 

of SYCP1 molecules via the C-termini in the absence of the chromosome. 
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Figure 3.4.28| The tetrameric form of SYCP1676-770 at 
pH 5.5 binds DNA. a) The electrostatic surface of the 
SYCP1676-770 structure demonstrates the presence of 
basic patches (indicated by arrows) separated by 
approximately 30 Å. b) Electrophoretic mobility shift 
assays for SYCP1676-770 at pH 8.0 and 5.5, showing that 
at pH 5.5 DNA is retarded by increasing concentrations 
of SYCP676-770. c) Schematic for the recruitment of 
SYCP1 to the chromosome axis, subsequently stabilised 
through the protonation-dependent, back-to-back 
assembly of SYCP1 molecules. 
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3.4.21 Back-to-back assembly might play a role in polycomplex formation  

DNA-binding of back-to-back assemblies of the SYCP1 central core provided an attractive mechanism 

by which initial chromosome association through putative DNA-binding sites within the unstructured 

C-terminus could be stabilised. I wondered whether this mechanism could provide the basis for C-

terminal associations within polycomplex structures (which form within the cytoplasm upon 

heterologous overexpression) in the absence of a chromosome axis. To test these I analysed two SYCP1 

mutants: 1) an internal deletion in which residues 635-784 are removed and 2) a mutant which 

destabilises the second coiled-coil region of SYCP1640-783. This mutant was L756P in which a leucine 

residue within a heptad position was converted to a proline. The purified protein retained a dimeric state 

but was significantly reduced in helicity (Figure 3.4.29a-c). In agreement with our suggestion that the 

second transition within the biphasic melting curve for SYCP1640-783 represents the unfolding of the 

second, longer, coiled-coil sequence, the second melting transition for SYCP1640-783 L756P is reduced, 

from 58 to 41 ˚C (Figure 3.4.29b).  

I found that upon overexpression in COS-7 cells, SYCP1 Δ634-784 readily formed cytoplasmic 

networks at an efficiency double that of wild-type (Figure 3.4.30a-c). Upon destabilisation of the coiled-

coil sequence by L756P, the formation of networks was almost completely blocked, though they could 

still form (Figure 3.4.30a-c). These observations fit with our current thinking that filamentous networks 

might represent the C-terminal recruitment of SYCP1 to an intermediate filament network. Upon 

deletion of residues 635-784, back-to-back assembly, which might drive polycomplex formation, would 

be completely blocked and therefore favour the formation of cytoplasmic networks. Mutation L756P 

likely disrupts the second stabilising coiled-coil sequence within SYCP1640-783. This region is stabilised 

by a salt bridge between E770 and K774 and is otherwise glutamate rich. In vivo, this region may need 

to be neutralised in order to disrupt the salt bridge and weaken the dimeric state to allow for the opening 

of the chains and back-to-back tetramerization. If this were to be true, it would be expected that 

SYCP1640-783 L756P form a tetramer at a less acidic pH than wild-type, though this has not been tested. 

Destabilization may have removed this requirement and thus facilitate polycomplex formation, hence 

the increased propensity of cytoplasmic aggregates which I hypothesise may be polycomplex structures, 

though this has not been formally addressed.  
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Contradicting a requirement for this region for polycomplex formation, however, is the observation that 

upon expression of SYCP1 Δ635-784 in COS-7 cells, polycomplex structures are still visible by electron 

microscopy (Figure 3.4.30). It therefore remains unclear as to how polycomplexes form within the 

cytoplasm. These findings do suggest a role for SYCP1640-783 back-to-back assembly within 

polycomplexes but it remains unclear as to exactly what that role entails. 

 

 

 

 

 

 

 

 

Figure 3.4.29| Mutation L756P 
destabilises the second coiled-coil 
sequence of SYCP1640-783. a) Circular 
dichroism far-UV spectra for SYCP1640-

783 (grey) and L756P (black) showing 
decreased helicity for the mutant protein. 
b) Thermal denaturation demonstrating a 
biphasic unfolding pattern for both 
SYCP1640-783 and L756P with a reduced 
melting temperature in the second 
transition. c) SEC-MALS analysis of 
SYCP1640-783 L756P revealing it forms a 
32.9 kDa dimer (theoretical dimer – 34.6 
kDa). Light scattering (LS) and 
differential refractive index (dRI) are 
plotted as solid and dashed lines, 
respectively, with molecular weights 
(Mw) shown as diamonds across elution 
peaks. 
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Figure 3.4.30| Polycomplex formation upon C-terminal disruption. a) The efficiency of filamentous 
assembly is plotted as the percentage of transfected cells demonstrating filamentous assembly (green) 
and those displaying amorphous aggregates or diffuse GFP signals (grey). Each experiment was 
performed in triplicate with each experiment involving the counting and assignment of at least 100 cells. 
b) The same data presented in a but splitting assembly into its three component scores of 1-green, 2-
blue, 3-yellow and splitting non- assembly into 4-purple and 5-grey. c) COS-7 cells expressing deletion 
mutant Δ635-784 and point mutant L756P GFP-SYCP1. The deletion is indicated in white text. d) 
Electron microscopic analysis of polycomplexes formed by GFP-SYCP1 Δ635-784. 
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DISCUSSION 
 

3.5.1 The structure of SYCP1 and its role in SC formation 

Through a combination of biophysical characterisation and crystal structure solution of two key domains 

within SYCP1, I have developed a molecular understanding of its obligate structure and the mechanisms 

by which it may assemble within the synaptonemal complex. SYCP1 adopts a tetrameric conformation, 

stabilised at its N-terminus as a four-helical bundle which forks at its C-terminus into two, long, coiled-

coils. These are flanked by unstructured sequences: An N-terminal unstructured sequence of no known 

function and a C-terminal unstructured sequence that contains obligate DNA binding sites (Figure 

3.5.1). Our model matches the currently known parameters of the SC. For example, the experimentally 

determined diameter of SYCP1358-783 is 17.8 Å, closely matching the measured width of transverse 

filaments of the hamster SC (16 Å) (Solari and Moses, 1973). The length of the SYCP1 structured core 

(900 Å) is sufficient to span more than half of the central region which measures approximately 1000 Å 

by electron microscopy. This commonly cited width may in fact be an underestimation due to 

dehydration steps utilised within sample preparations (Schmekel et al., 1996). 

 

 

 

Figure 3.5.1| A model for the obligate structure of SYCP1. a) A schematic of SYCP1 with key 
domains annotated and demarcated aligned with a molecular model for non-assembled SYCP1. SYCP1 
is stabilised as a tetramer by an elongated four-helical bundle structure which splays apart at its N and 
C-terminus into parallel coiled-coils flanked by sequences capable of mediating self-associations. The 
N and C-termini are unstructured with the latter containing obligate DNA binding sequences. Schematic 
by Dr Owen Davies. 
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Figure 3.5.2| A model for SYCP1-mediated synapsis of meiotic chromosomes. a) The sequences 
flanking the helical core of SYCP1 can undergo similar, yet distinct, mechanisms of self-assembly. The 
N-termini recursively associate through staggered head-to-head interactions of bioriented SYCP1 
molecules in a dynamic and cooperative manner allowing for structural plasticity and remodelling. The 
C-termini are recruited to the chromosome axis through obligate DNA binding sequences within the 
unstructured C-terminus with chromosomal association being strengthened through the protonation-
dependent, back-to-back assembly. In combination, these self-assembly mechanisms allow for the 
formation of a continuous lattice-like array of SYCP1 molecules along the entire chromosome length. 
 
 

Through solution of their crystal structures, I identified two similar, yet distinct, mechanisms of SYCP1 

self-assembly which may mediate higher-order assembly of SYCP1. The so-called αN-tip of SYCP1 

(residues 101-111) is absolutely critical for the self-assembly of SYCP1 molecules in vitro, mediating 

head-to-head associations between bi-orientated SYCP1 molecules whilst C-terminal sequences 

(residues 676-770) undergo protonation-dependent back-to-back assembly to mediate chromosomal axis 

association. Scaffolded by the SYCP1 architecture, these mechanisms of self-assembly allow for the 

recursive assembly of SYCP1 molecules within the SC (Figure 3.5.2).  
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3.5.2 Self-assembly is a recurrent feature of SC proteins 

These findings were published, joining a nascent list of articles which mark the foundations for the 

structural investigations into the structural of mammalian SC proteins and the molecular basis for their 

incorporation within the SC (Dunce et al., 2018a). It is becoming increasingly clear that self-assembly 

plays an intrinsic role within SC formation with this self-assembly being mediated by short amino acid 

sequences which flank structural cores of the constituent proteins. For example, SYCP3 assembly, 

which presents striking striated ultrastructural features by electron microscopy, can be totally blocked 

by a truncation of 6 C-terminal amino acids (Syrjanen et al., 2014). Similarly, the assembly of fibrous 

SYCE2-TEX12 assemblies, also visible by electron microscopy, can also be eradicated by a 10 amino 

acid truncation at the C-terminus of TEX12 (unpublished findings, Davies lab: Dr Lucy Salmon) (Davies 

et al., 2012). Recent studies have revealed many mechanisms by which SYCE3 undergoes stepwise 

oligomerisation in solution, involving domain-swapping in which an SYCE3 dimer unfolds and mediate 

reconstitutive coiled-coil associations with two further SYCE3 chains to create an elongated SYCE3 

tetramer. This, coupled with lateral associations mediated by surface aromatics, allows for limitless 

assembly of SYCE3 molecules. This observation, coupled with its association with SYCP1 (which 

initially disrupts SYCP1 lattice structure (unpublished findings, Davies group)) provides a model by 

which SYCE3 is incorporated within the SC, dependent upon its ability to self-assemble (Figure 3.5.3b). 

 

Figure 3.5.3| SYCE3 dynamically remodels the SYCP1 lattice. SYCE3 interacts with the SYCP1 N-
terminal tetramer, remodelling it to form a 2:1 SYCP1-SYCE3 complex. SYCE3 within these complexes 
can subsequently recruit further SYCE3 molecules to reform a continuous synapsis between bound 
chromosomes.  
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3.5.3 The sexually dimorphic structure of the SC – length and width.  

Many aspects of the meiotic cycle demonstrate sexual dimorphism. The structure of the SC is no 

exception; female chromosomes in synapsis are approximately 60 % longer than those of male (Jones 

and Croft, 1989; Wallace and Wallace, 2003; Tease and Hulten, 2004) with similar observations for 

width (Agostinho et al., 2018). This difference could be accounted for by geometric alterations within 

the structure of SYCP1; a greater angulation of the N-terminal contacts and SYCP1358-783 coiled-coils 

would reduce SC width (Figure 3.5.4). SYCP1 therefore may act as a concertina to dynamically allow 

variation in inter-chromosomal distance. If this model is correct, we would expect the same chromosome 

to be coated by the same number of SYCP1 molecules in male and female, but for the recruitment 

density to be lower in the longer chromosomes of female. How could this difference arise? The 

difference appears to be due to a difference in the compaction of DNA at the lateral elements as the 

meiotic loops of females are twice as short as those of males. This could be due to expression levels of 

axis proteins or their stability at the axis. A greater axis density, resulting in shorter loops and longer 

synapsed chromosomes, might be important in females promote stability over years, as more cohesin 

molecules will associate to bind sister chromatids. 

 

Figure 3.5.4| SYCP1 geometry facilitates changes in SC width. The angulation of the N-terminal 
contacts and SYCP1358-783 coiled-coils of SYCP1 may change to allow for changes in inter-chromosomal 
distance. Schematic by Dr Owen Davies. 
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3.5.3 Long-range synapsis is dependent upon other SC proteins  

Although SYCP1 can be recruited to chromosomes through DNA binding of its C-terminus, it was 

shown that SYCP1 alone is not sufficient to complete chromosome synapsis with SC central element 

component knockout mice demonstrating only short stretches of synapsis and SYCP1 null mice showing 

a complete lack of synapsis (de Vries et al., 2005; Hamer et al., 2006; Bolcun-Filas et al., 2007; Hamer 

et al., 2008; Bolcun-Filas et al., 2009). As I have shown, SYCP1 assembly in solution is mediated 

through the homotypic association of the αN-tip which undergoes head-to-head association, bi-

orientating opposed molecules. This, I believe, is what mediates initial synapsis events during the 

installation of the SC. However, in vivo, it appears that SYCP1 assembly requires stabilisation through 

association of SYCE1 and SYCE3 and elongation factors SYCE2 and TEX12 for long range synapsis. 

How these factors associate has yet to be formalised though it has become biochemically evidenced that 

SYCE3 is the sole central element interactor of SYCP1, in agreement with a previous suggestion based 

up the observation that SYCE3 is required for SYCE1 recruitment to SYCP1 “polycomplexes”, i.e. 

cytoplasmic filamentous networks (Hernandez-Hernandez et al., 2016). This highlights the variable 

nature of the SC suggesting both temporal and spatial differences in SC structure and composition exist 

throughout meiosis and along its length. 

3.5.2 Are the structure of SYCP1 and its mechanisms of self-assembly conserved across phyla? 

The oligomeric state of other transverse filaments from other organisms has not been definitely shown. 

Tentative data regarding Zip1 proposed that the molecules oligomerise as homo-tetramers which may 

consist of a dimeric coiled-coil building block (Dong and Roeder, 2000). However these studies utilised 

bacterially expressed constructs expressed in the insoluble fraction, denatured in 8 M urea and 

subsequently renatured and stabilised by lysine crosslinking (Dong and Roeder, 2000). Electron 

microscopic analysis of Zip11-700, which lacks the unstructured C-terminus, revealed a length of 51 nm 

(matching the theoretical length of the coiled-coil region). Therefore, it appears that the overall 

architecture of Zip1 might be something similar to SYCP1. Whether this structure is reciprocated by 

C(3)G of Drosophila currently remains unknown. 
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How about the mechanisms of self-assembly which allow SYCP1 to create a lattice-like array between 

synapsed chromosomes – are they conserved across phyla? Within metazoans, the domain structure and 

sequence of SC proteins are quite conserved. In species as evolutionarily distant as the Medaka fish and 

Hydra species, significant sequence similarity exists. SYCP1 (and SYCP3) of these species contain 

highly similar domain organisation, with a central helical domain flanked by unstructured N and C-

termini (Iwai et al., 2006). Overall, 20 % sequence identity and 45 % sequence similarity exists between 

the rat sequence of SCP1 and that of medaka fish (Fraune et al., 2012). With rat SCP1 again, the 

corresponding sequence of Hydra vulgaris, shares 18 % identity and 46 % similarity within the central 

helical domain, 10 % identity and 26 % similarity within the unstructured N-terminus, and the 

unstructured C-terminus shares 13 % identity and 34 % similarity. These levels of conservation are not 

particularly interesting, however, what is most interesting, is that the sequences I identified as having 

self-assembly capabilities are the most conserved regions across the entire sequence. Hydra residues 

corresponding to rat sequence 106-188 (residues 105-187 in humans) encompass the region I attributed 

to N-terminal self-assembly and show 41 % identity and 67 % similarity. Hydra residues corresponding 

to rat sequence 724-754 (residues 702-732) are embedded within the region I attributed to chromosomal 

assembly and show 32 % identity and 65 % similarity (Fraune et al., 2012). These values indicate that 

these regions of the protein are not only important across vertebrates, but also across phyla within 

metazoans including those as distant as Cnidaria. Similar results are presented for SYCP3, showing 

highly conserved regions flanking the coiled-coil domain which were shown to be involved in its 

polymerisation and formation of recursive structures in vivo and in vitro. 

It remains to be shown whether functionally similar, yet sequence divergent, sequences within divergent 

transverse filaments, such as ZIP1 and C(3)G exist. In ZIP1, an interesting mutant of exists in which 4 

leucine residues (643, 650, 657, 664) are mutated to alanine. These residues are within the C-terminal 

end of the Zip1 coiled-coil domain and their mutation results in meiotic blockage during pachytene, with 

a fully assembled SC (Mitra and Roeder, 2007). It remains unclear as to how these mutations might have 

such an effect.  
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3.5.2 The unknown function of the SYCP1 N-terminal unstructured region 

A direct role for the unstructured N-terminus of SYCP1 has not been identified. Higher-order assembly 

of SYCP1 molecules via the αN-tip is independent of unstructured residues 1-100. However, given the 

range and smaller size of molecular species revealed upon analysis of SYCP11-362 (in comparison with 

SYCP1101-362) by SEC-MALS, it is possible that these residues partially inhibit assembly. By their 

modification, they might enact a regulatory mechanism which stabilises or destabilises midline 

assembly. It has been shown that the N-terminus of ZIP1 is similarly not required for synapsis (Tung 

and Roeder, 1998).  

I noted the presence of a 4 amino acid sequence, FVPP, at the extreme N-terminus of SYCP1 (residues 

10-13). This sequence, also present within BRCA2, and other regulators of recombinases, has been 

shown to mediate interactions with DMC1 (Thorslund et al., 2007; Dunlop et al., 2011). Although I did 

not detect an interaction between the N-terminus of SYCP1 and DMC1 biochemically, I have found that 

similar interactions are generally quite unstable and therefore the possibility may not be excluded. 

Could the N-terminus of SYCP1 be involved in the recombination process? Bioinformatic analysis of 

SYCP1 revealed that the N-terminal tip of the central helical domain is highly basic. The basic residues 

which confer this charge are within the αN-tip sequence and create a highly basic solvent exposed patch 

(Figure 3.5.5). Could this sequence, localised within the midline of the assembled SC, play a role in the 

stabilisation of DNA repair intermediates during the process of recombination. Perhaps the SYCP1 N-

terminus specifically recognises and stabilises the double Holliday Junction to facilitate its processing? 

A similar basic patch exists within the sequence of ZIP1, suggesting a potentially evolutionary 

conserved mechanism. 

 

Figure 3.5.5| Electrostatic surface of SYCP1101-175. The αN-tip sequence stabilises head-to-head 
contacts between bi-orientated SYCP1 coiled-coils. Surface exposed basic residues cluster at the head-
to-head interface to create a highly charged basic patch. Blue represented basic residues, red is acidic. 
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3.5.2 DNA-binding constitutes the only known link to the chromosome axis 

I have shown that the C-terminus of SYCP1 is required for association with DNA. The supposition that 

SYCP1 is a DNA binding protein was first raised upon its discovery by Meuwissen et al. in 1992 in 

which they describe a basic unstructured C-terminus with SP/TP-XX sites characteristic of DNA-

binding proteins (Meuwissen et al., 1992). Using EMSA, I provided the first biochemical evidence that 

SYCP1 associates with DNA, and tentatively suggest a footprint of around 10 bases of DNA per SYCP1 

molecule. The interaction is mediated by the C-terminal unstructured amino acids a feature consistent 

across transverse filaments of diverse evolutionary history. For example, C(3)G of Drosophila 

melanogaster also contains a basic C-terminus.  Upon its deletion, C(3)G is no longer recruited to the 

lateral elements of chromosomes, and otherwise forms interesting, barrel-shaped polycomplexes 

demonstrating a striated ultrastructure by electron microscopy (Anderson et al., 2005). This suggests 

that self-assembly of the transverse filament protein is not precluded by removal of the unstructured C-

terminus but is essential for chromosomal recruitment. Similarly, the C-terminus of ZIP1 is essential for 

its chromosomal recruitment in Saccharomyces cerevisiae (Tung and Roeder, 1998). Similar 

experiments have not been performed in mammals. To test the importance of the SYCP1 C-terminus, I 

analysed the effect of its removal on polycomplex formation, on the (now realised to be flawed) 

understanding that cytoplasmic networks, referred to as polycomplexes, represented self-assembled 

structures consisting of SYCP1 molecules. I found that its removal blocked the formation of these 

networks, resulting alternatively in the formation of large cytoplasmic aggregates, observed in a 

previous study by Yuan et al. (Yuan et al., 1996). I question, as discussed below, the true identity of 

cytoplasmic networks and therefore published findings concerning the effect of mutations and 

truncations upon the ability of SYCP1 to self-assemble. 

3.4.5 SYCP1 polycomplexes represent misunderstood entities 

The finding that cytoplasmic networks still formed upon the overexpression of SYCP1640-976 in COS-7 

cells was the critical finding in realising that these networks cannot be the self-assembled recursive 

structures observed by electron microscopy, as previously described (Ollinger et al., 2005). The 

cytoplasmic aggregates which I have observed by fluorescence often have an ovular appearance, much 

like the polycomplexes which I observed by electron microscopy for wild-type SYCP1. The suggestion 

that these aggregates constitute the structures observed by electron microscopy is supported by the 
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finding that despite not regularly observing filamentous assemblies for SYCP11-954, SYCP1 T859A and 

SYCP1 T859E, striated polycomplex structures were still identified.  

I therefore propose that the cytoplasmic networks are in fact a network of an intermediate filament 

protein, such as keratin, to which SYCP1 has been recruited in a manner dependent upon its basic C-

terminus (Figure 3.5.6a) (Portet et al., 2015). This is feasible given the net acidic charge of the coiled-

coil domain of keratin (Figure 3.5.6b). The effect of all mutations and truncations upon polycomplex 

formation by SYCP1 would therefore need to be reassessed to draw reasonable conclusions from their 

formation. This would have to be done by electron microscopy as analysis by fluorescence runs the risk 

of conflating other cytoplasmic aggregate-like structures which may be formed by SYCP1 such as 

collagenous fibres, inclusion bodies (Figure 3.5.6e for comparison (Sakuragawa, 1976)), and granules 

(Figure 3.5.6d-f). Whether SYCP1 constitutes these features would need to be confirmed by immune-

gold antibody staining.  

The idea that an intermediate filament could form a basis for synaptonemal complex assembly is a truly 

exciting possibility. Intermediate filament proteins might constitute a component of the axial elements 

and provide a mechanism (possibly in addition to DNA binding) for recruitment of SYCP1 to axial 

elements. 

Further, if true polycomplexes were formed by SYCP11-783, for example, this might be used as a model 

for studying SYCP1 assembly in COS-7 cells, negating the issue of SYCP1 recruitment to filamentous 

networks. This would allow for further studies, such as answering the question of what else constitutes 

a polycomplex? Polycomplexes have been purported to contain other components such as DNA and 

RNA (Goldstein, 1987). It is unknown whether they contain other SC proteins which might be minimally 

expressed in COS-7 cells, despite dividing mitotically. In Drosophila it was found that polycomplex 

formation is upregulated upon mutation of an E3 ligase, Sina (Hughes et al., 2019). To these 

polycomplexes, another SC component, Corolla, is recruited. Perhaps other SC proteins of humans are 

essential for the formation of SYCP1 polycomplexes? This can be addressed through antibody staining 

of polycomplexes with antibodies raised towards further components. 
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Figure 3.5.6| Uncertainty surrounding the nature of SYCP1 polycomplexes. a) An example keratin 
network in hepatocellular carcinoma-derived PLC cell from Portet et al. 2015. Scale bar – 10 µm. b) 
Charge distribution and coiled-coil propensity of the keratin sequence as determined by charge of the 
EMBOSS suite and COILS. c) An inclusion body within a glial cell of an albino rat after injection of 
the hypocholesteremic agent, trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride. 
d) Electron microscopy of a collagenous structure within COS-7 cells and a close-up. Scale bars – 500 
nm. e) An inclusion body of COS-7 cells upon over-expression of GFP-SYCP11-976. Scale bar – 500 nm. 
f) A granule of COS-7 cells upon over-expression of GFP-SYCP11-976. Scale bar – 100 nm. 

 

3.4.5 What is the structure of an SYCP1 polycomplex? 

Images of polycomplexes presented thus far have shown a frontal view in which polycomplexes appear 

as a series of alternating light and dark bands, identified as constituting sites of N- and C-terminal self-

assembly (Ollinger et al., 2005). These could be mediated by the sequences identified as possessing self-

assembly properties (Figure 3.5.7b). These light and dark bands are visible in multiple species, such as 

in Ascaris suum (Figure 3.5.7a) (Goldstein, 1987). However, the N-termini have not definitively been 
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shown to be localised to the lighter bands – only antibody localisation of the C-termini was performed. 

In fact, in top-down views of the polycomplex, such as that presented in Figure 3.5.7c, these lighter 

bands are not visible. The array of dense dots likely represents vertical pillars (LE-like structures) 

through which a slice has been made to visualise the consistent adoption of a trigonal arrangement. 

Could it be that the lighter bands visible in the frontal view are in fact also LE-like assemblies but in a 

different plane and in fact do not represent central element-like assemblies?  

 

Figure 3.5.7| Polycomplex formation in Ascaris suum and a 2-dimensional model for polycomplex 
structure. a) An ovular-shaped polycomplex within the cytoplasm of Ascaris suum. Lateral and central 
element-like structures can be seen in this “frontal” view indicated by large and small arrows, 
respectively. Scale bar = 0.2 µm b) A 2-dimensional model for the structure of a polycomplex in which 
N-terminal self-associations form midline like assemblies whilst C-terminal self-assembly sites. c) A 
polycomplex of Ascaris suum presumed to represent a slice through the polycomplex structure such that 
dense lateral element-like bands appear as dots. Nuclear pore complexes embedded within the nuclear 
envelope are indicated NP. Scale bar = 0.1 µm.  
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To answer this question, I performed a rudimentary geometric analysis of a polycomplex using a top-

down view (Figure 3.5.8). By drawing lines across the planes of LE-like pillars, an array of tessellating 

triangles is identified (Figure 3.5.8a,b). The constituent triangles can then be separated and sequentially 

aligned then averaged to create the “average triangle” which can be re-tessellated to create an idealised 

polycomplex devoid of deviations due to changes in structure across the complex (Figure 3.5.8c). This 

ideal polycomplex lattice closely matches the original (Figure 3.5.8d). Assuming N-terminal self-

assembly of the transverse filament protein does contribute to polycomplex formation, there are two 

possible locations for N-terminal self-associations – on the axes between LE-like dots or central to the 

“triangles” (Figure 3.5.8e). The inter-LE-like dot is not affected by either possibility, but a longer LE-

like to central element-like dot is increased from 50 nm to 58 nm.  

 

Figure 3.5.8| Geometric analysis of the polycomplex structure. a) Electron micrograph showing a 
top-down view of an Ascaris suum polycomplex. Planes connecting the LE-like pillars are indicated, 
dissecting the structure into rhomboid units. b) Each rhomboid may be halved to create triangles. c) 
Averaging of these triangles creates an equilateral triangle which may be tessellated. d) The resulting 
tessellation closely approximates the lattice observed by EM. e) The location of N-terminal contacts 
with respect to C-terminal contacts is unknown. These might be situated along the inter-LE planes or 
central to the constituent triangles. The location affects the distance between LE-like pillars and sites of 
N-terminal association.  
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3.5.6 Controlling chromosomal recruitment and stability of SYCP1 

Initial recruitment to the chromosome axis is mediated through direct DNA association of sites within 

the unstructured C-terminus of SYCP1. C-terminal self-assembly in which two dimeric coiled-coils 

undergo protonation-dependent back-to-back assembly results in the formation of a tetrameric assembly 

which possesses DNA binding capability. The formation of this structure specifically in the proximity 

of the chromosome axis provides an elegant mechanism to prevent precocious self-assembly in the 

absence of the chromosome. Its binding might support initial contacts to create a robust chromosomal 

attachment. Further, on the basis of the observation that SYCP1676-783 forms of an octamer and higher-

order assemblies at pH 4.6 in 1 M KCl, I tentatively propose a mechanism by which these tetrameric 

assemblies might undergo domain-swap associations to create planar lattices of molecules in which all 

basic patches are aligned creating an extensive DNA interacting surface (Figure 3.5.9a). This 

requirement for a high salt concentration might be a reasonable requirement within the context of the 

micro-environment proximal to the chromosome in which high anion concentrations exist in an “ion 

atmosphere” around DNA molecules (Jacobson and Saleh, 2017). 

The chromatin status of DNA at the chromosomal axis is unknown. However, supposing DNA is 

packaged within nucleosomes, there is a potential that the separation between the basic patches of the 

SYCP1 tetrameric self-assembly (~30 Å) is such that association of both DNA duplexes, which wrap 

the nucleosome core, is facilitated (Figure 3.5.9b).   

In addition to protein-DNA associations, chromosomal association may be stabilised through protein-

protein associations, though no interactions of the SYCP1 C-terminus have conclusively been 

demonstrated. Weak yeast 2-hybrid data suggests that SYCP2 interacts with the C-terminus of SYCP1 

but the published data are lacking negative controls (Feng et al., 2017). However, this finding was not 

reproduced in further yeast 2-hybrid experiments (Owen Davies, unpublished). 

How could chromosomal disassembly be achieved? Phosphorylation of SYCP1 (potentially by PLK1 

and CDK1) appears to be important for the disassembly of the synaptonemal complex (Parra et al., 2003; 

Jordan et al., 2012). The unstructured C-terminus of SYCP1 contains many potential phosphorylation 

sites. Of note, T859 is highly conserved and could be part of a consensus S/TPXX motif, commonly 

associated with DNA binding property of gene regulatory proteins (Suzuki, 1989) or a site for 
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phosphorylation by cyclin-dependent kinases (Nash et al., 2001). I found that mutation of T859 results 

in the ablation of filamentous network assembly in COS-7 cells, which might, according to our theories 

regarding the identity of such networks, represent a blocked ability to associate with electro-positive 

molecules. In Saccharomyces cerevisiae, deletion of residues 791-824 in Zip1 results in a complete 

block of chromosomal assembly. This region encodes the following sequence: 

VDHISKSRINSSKETSKFNDEFDLSSSSNDDLEL. This serine rich series of amino acids is not 

particularly basic so likely doesn’t contribute directly to DNA binding in an unmodified state but is a 

probable target for phosphorylation. Perhaps the negative charge conferred upon phosphorylation of 

these regions are required to facilitate DNA association? If true, could this mechanism of control also 

exist in humans? If so, which sites within the SYCP1 are phosphorylated? 

 

Figure 3.5.9| Chromosomal association through SYCP1676-770 assembly. a) The electrostatic surface 
of the modelled SYCP1676-770 octamer presented in Figure 3.4.23 shows the alignment of basic patches. 
b) The structure of the nucleosome (PDB 3AFA (Tachiwana et al., 2010)) showing the winding of the 
DNA double-helix around the octameric histone core, with a separation of approximately 30 Å between 
the two strands. 
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3.5.7 Another structure of the SYCP1676-770 region 

Interestingly, during the period within which we were writing an article based upon the discussed 

findings, another group published a similar structure (PDB 4YTO) (Seo et al., 2016). However, the 

group failed to recognise the true biological unit, opting to report an anti-parallel dimer in the absence 

of sufficient supporting biochemical or biophysical data whilst ignoring the published literature 

concerning the orientation of SYCP1 molecules within the SC. However, the structure they solved is 

largely similar to both the I4122 and C2 structures. The main difference is found upon superimposition 

of their structure with our C2 structure (Figure 3.5.10a). The C-termini of 4YTO parallel chains splay 

apart, maintaining only associations between anti-parallel chains. Further, the sequences between the 

lateral and central interfaces exhibit reduced B-factors in the 4YTO structure in comparison with the 

I4122 structure and the non-disulphide end of the C2 structure (Figure 3.5.10b). This is likely a 

consequence of crystal packing as, in contrast the I4122 and C2 crystal lattices which were stabilised by 

lateral helical associations, the crystal lattice of the 4YTO structure is formed through angled 

perpendicular associations mediated through solvent exposed residues within the intermediate sequence, 

bounded by dashed boxes (Figure 3.5.10c,d).  

3.5.8 SYCP1 as the basis for the synapsis of meiotic chromosomes 

SYCP1 is the primary component of the mammalian synaptonemal complex, capable of being recruited 

to meiotic chromosomes in the absence of any other SC component and being absolutely essential in 

initiating the process of synapsis (de Vries et al., 2005). Here we have determined the underlying 

geometry of the SYCP1 molecule and elucidated two distinct mechanisms of its self-assembly which 

utilise sequences flanking its structural core. Its tetrameric forking structure scaffolds these sites, 

positioning N-termini for recursive head-to-head associations to drive midline assembly whilst C-

terminal sites assemble back-to-back to reinforce chromosomal associations. Short stretches of SYCP1 

mediated synapsis must then be reinforced and remodelled by other SC components and it will be 

interesting to learn how this is achieved within the highly dynamic structure of the SC. Within the next 

chapter, I discuss and present findings regarding the structure and function of the meiotic telomere 

complex, an assembly required for the transmission of cytoskeletal forces to the chromosomes ends such 

that rapid prophase movements may facilitate the synapsis of meiotic chromosomes.  
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Figure 3.5.10| Comparison of the SYCP1676-770 to the concurrently solved 4YTO structure. a) 
Superimposition of crystal form 1 (brick red) with PDB 4YTO (blue) showing overall backbone 
similarity with deviation at the C- terminus. b) The 4YTO structure demonstrates B-factors at the 
sequences between the central and lateral interfaces. c-d) Crystal packing of the 4YTO structure 
demonstrates perpendicular contacts with angulated tetramers mediated by sequences within the 
intermediate sequence between the central and lateral interfaces. c) Frontal view. d) Angled 
perspective.  
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INTRODUCTION 
 

4.1.1 Homologue pairing is facilitated by rapid prophase movements of chromosomes 

The process of forming complete chromosome synapsis is facilitated by a process of rapid chromosomal 

movements in which cytoskeletal forces are transmitted to chromosomes via their telomeric ends 

anchored within the nuclear envelope. These so-called rapid prophase movements are conserved across 

evolution and appear to function in disentangling interlocked chromosomes and facilitating homology 

searching. This chapter focuses on the molecular movers in this scheme, with particular attention paid 

to the recently discovered meiotic telomere complex which plays a role in recruiting, and maintaining 

attachment of, the telomeric ends of chromosomes to the nuclear envelope.  

Rapid prophase movement (RPM) of meiotic chromosomes occurs during zygotene (Zickler and 

Kleckner, 1998). Cytologically, RPMs are visible as dramatic chromatin movements in which 

chromosomes undergo dynamic special organisation, culminating in the formation of the “meiotic 

bouquet”, a polarised chromosome organisation in which chromosome telomeres are clustered at one 

nuclear envelope location with chromatin looping into the nucleoplasm (Figure 4.1.1a). Although the 

product of RPMs is evolutionarily conserved, the mode and direction of RPMs, differs across species. 

In mammals, in which the nuclear envelope eventually breaks down during metaphase to allow 

microtubular attachment to the kinetochore during division, the nucleus remains spherical and rotates 

whilst chromosomes move within the nuclear envelope, led by nuclear envelope associated telomeres 

(Lee et al., 2015). In contrast, in yeast, in which the nuclear envelope remains intact throughout division, 

telomere-led movements drag chromosomes back and forth between the poles of an elongated nucleus 

(Chikashige et al., 1994).  

How do rapid prophase movements facilitate chromosome synapsis? It was originally suggested that 

RPMs help to align chromosomes for the formation of synapsis. However, as global alignment has 

already been achieved during leptotene and RPMs occur in zygotene this suggestion has been 

abandoned. Although not formally confirmed, it is now proposed that rapid prophase movements are 

required in order to resolve issues which arise during chromosome pairing. Firstly, during the initial 

stages of homologous recombination, strand invasion may occur between homologous regions on non-
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homologous chromosomes and these erroneous connections must be broken. Secondly, chromosome 

interlocks, the result of chromosome axes encircling another chromosome and forming short stretches 

of synapsis either side of a trapped chromosome, must be resolved (Koszul and Kleckner, 2009). It had 

been suggested that DNA topoisomerase II might be used to release interlocks by allowing for passage 

of one chromosome through another (von Wettstein et al., 1984). However, the presence of highly 

proteinaceous chromosome axes makes this unlikely. It is now proposed that the physical action of rapid 

chromosome movements might be enough to disentangle interlocks and erroneous contacts between 

non-homologous chromosomes (Zickler and Kleckner, 2015).  

 

Figure 4.1.1| The meiotic bouquet. a,b) The meiotic bouquet structure in a) mouse spermatocytes 
and b) salamander during late zygotene in which telomeric chromosome ends are localised to one 
nuclear pole with synapsed chromosomes looping into the nucleoplasm.  

 

4.1.2 The generation of rapid prophase movements 

Despite differences in the movement of chromosomes within the nucleus, the major commonality 

between RPMs of different species is the role of cytoplasmic microtubules, destabilisation of which 

results in disruption of RPMs (Paluh et al., 2004; Lee et al., 2015). This raises the question of how are 

RPMs powered? As cytoskeletal forces appear to drive the movement of meiotic chromosomes, 

cytoplasmic motor proteins are implicated. Through inhibition studies, it was found that in mammalian 

cells, dynein in complex with dynactin, the sole positive-negative motor protein in the cytoplasm (in 

comparison to the numerous and diverse negative-positive kinesin molecules) generates the required 

force (Lee et al., 2015; Reck-Peterson et al., 2018). Dynein-dynactin bind to microtubules and move 
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from the plus end to the minus end of the polymer. Therefore, there must be a physical linkage between 

dynein-dynactin and the telomeres of meiotic chromosomes. In fact, such a structure is visible by 

electron microscopy with lateral elements thickening as the SC abuts the nuclear envelope (Figure 

4.1.2a,b). This chapter shall focus on the structural basis for the transmission of this dynein movement 

along microtubules to the telomeric ends. This is achieved through a concert of inter-connected protein 

assemblies including: 1) The Linker of Nucleoskeleton and of Cytoskeleton (LINC) complex, 2) The 

meiotic telomere complex and 3) the Shelterin complex. The following discussion shall aim to cover the 

molecular mechanisms and structures employed by these three complexes to facilitate RPM. 

 

Figure 4.1.2| The telomeric attachment plate. a) Electron micrograph of the synaptonemal complex 
of mouse fused with the nuclear envelope. The lateral and central elements and the nuclear envelope are 
indicated (LE, CE and NE, respectively). At the attachment plate, the lateral elements thicken. b) 
Imaging of multiple planes through a membrane bound synaptonemal complex by electron microscopy 
allows for 3-dimensional rendering of the structure. This reveals electron dense tubular structures 
running tangentially to the nuclear envelope towards which fibrillar structures emanate from the nuclear 
envelope. These are postulated to be microtubules and KASH proteins, respectively.  

 

4.1.3 Transmission of cytoskeletal forces through the nuclear envelope by the LINC complex 

RPMs are dependent upon the SUN and KASH proteins (Lee et al., 2015). LINC complexes represent 

a distinct group of complexes consisting of a Sad1/UNC-84 (SUN) -domain containing protein and a 

Klarsicht/ANC-1/Syne/homology (KASH) -domain containing nesprin. LINC complexes localise 

specifically to the nuclear envelope and are ubiquitously expressed, functioning to mediate nuclear 

positioning (Zhang et al., 2009).  

The N-terminus of SUN1 is nucleoplasmic, forming direct interactions via its extended N-terminus with 

the nuclear lamina, a 400 – 600 Å thick proteinaceous meshwork associated with the inner nuclear 
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membrane (Haque et al., 2006; Lu et al., 2008). This tight association with the nuclear lamina allows 

for cytoskeletal forces to drive nuclear rotations and movement (Wu and Kengaku, 2018). However, 

this association would be recalcitrant for chromosome end motility. It has been suggested that to this 

end, that phosphorylation of SUN1 at 3 sites in its nucleoplasmic domain weakens lamin association, 

allowing for fluid movement within the plane of the nuclear envelope (Patel et al., 2014).  

The same study in which the lamin interaction was identified also found through selective 

permeabilization of the nuclear membranes that the SUN1 C-terminal domain is located within the 

perinuclear space (Figure 4.1.4). This domain, termed the SUN domain, is conserved across SUN 

proteins 1-5 in mammals, and across phyla with a similar domain located within Mps1 of Saccharomyces 

cerevisiae and SUN-1 of Caenorhabditis elegans (Conrad et al., 2007; Woglar and Jantsch, 2014). 

Within the perinuclear space, KASH molecules, via their C-terminus interact with the SUN domain 

(Kim et al., 2015). The structures of SUN2-KASH1 and SUN2-KASH2 have been solved (Figure 

4.1.3a,b). Each subunit consists of a globular SUN1 β-sandwich fold at the end of an α-helical stalk. On 

the basis of these structures and the gel filtration elution profile of SUN1 (from which authors suggest 

stability as both trimers and monomers), the authors declared that the complex is trimeric, with a trimeric 

SUN2 interacting with 3 KASH peptides (Sosa et al., 2012; Zhou et al., 2012). However, lack of 

biophysical characterisation meant that a head-to-head association of SUN-KASH trimeric complexes 

present within the crystal lattice was dismissed (Figure 4.1.3c). A similar crystal lattice contact exists 

between SUN1-KASH1/4/5 complexes with biophysical evidence, including SEC-MALS and SAXS, 

demonstrating that this interaction is present in solution and is tight (Manickam and Davies, unpublished 

findings). This has implications upon how we perceive SUN-KASH architecture within the nuclear 

envelope. KASH proteins also contain a transmembrane helix, N-terminal to their SUN-interacting 

KASH domain, which spans the outer nuclear membrane (Starr, 2011). The role of the LINC complex 

in connecting the inner and outer nuclear membranes is concomitant with the finding that disruption of 

the LINC complex results in increases in perinuclear space in some cell types (Cain and Starr, 2015). In 

fact, LINC complexes are the only other known connections between the inner and outer nuclear 

membranes in addition to the nuclear pore complex (Crisp et al., 2006). The extended N-terminal 

sequence of the KASH molecule, which is highly divergent between molecules KASH1-5 of mammals, 
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is therefore localised within the cytoplasm and found to associate with an array of cytoskeleton-

associated motor proteins (Starr, 2011).  

KASH5 was identified as being a meiosis-specific KASH protein (Morimoto et al., 2012). It was found 

to interact with SUN1 and localises to the telomeric ends of chromosomes anchored at the nuclear 

envelope and interestingly, in many cells, it was noted that KASH5 preferentially localises to the nuclear 

pole proximal to the spindle pole body (Horn et al., 2013). An interaction between dynein and dynactin 

was identified through immunoprecipitation from mouse testis extract, similarly to how KASH1 and 

KASH2 interact with kinesin (Zhang et al., 2009; Morimoto et al., 2012).  

However, there is a final missing link. As LINC complexes are constitutively expressed, and the fact 

that chromosome ends are not by nature fused with the nuclear envelope indicates that the telomeres of 

meiotic chromosomes must be modified, with additional components required to associate telomeres 

with NE-confined LINC complexes (Shibuya and Watanabe, 2014). This is where the meiotic telomere 

complex plays a role. Figure 4.1.4 summarises the knowledge thus far described for how cytoskeletal 

forces are transmitted across the nuclear membrane to the telomeres of meiotic chromosomes. 
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Figure 4.1.3| The structure of the SUN-KASH complex. a) The monomer structure of SUN2-KASH2 
(PDB 4DXS), coloured by secondary structural elements with the KASH2 peptide in red. SUN2 forms 
a β-sandwich fold at the end of an α-helical stalk. b) Alignment of SUN2-KASH2 with SUN2-KASH1 
(PDB 4DXR) showing the adoption of an identical structure (all-atom rmsd = 0.273). c) Trimeric SUN2-
KASH2 structure from both side and head-on views. d) Symmetry-related trimeric complexes form a 
head-to-head contact.   
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Figure 4.1.4| Cytoskeletal forces drive rapid prophase movements of meiotic chromosomes. A 
schematic showing the protein-protein interactions involved in connecting cytoskeletal forces, powered 
by a dynein-dynactin motor, to the telomeres of meiotic chromosomes through the LINC complex. To 
allow for the movement of telomeres, association of SUN proteins with the nuclear lamina must be 
disrupted. It is known that the meiotic telomere complex (composed of MAJIN, TERB1, and TERB2) 
is important in nuclear tethering of telomeres though its structure, assembly, and mechanism are 
unknown. 

 

4.1.4 Connecting telomeres with the LINC complex 

Such that forces transmitted through the nuclear envelope may be exerted upon the telomeres, telomeres 

must be physically associated with the LINC complex. The mechanism was first well characterised in 

fission yeast, Saccharomyces pombe, in which an interaction network was identified, indirectly linking 

the orthologous LINC complex (formed by Sad1-Kms1, which localise to the spindle pole body within 

the nuclear envelope) with the telomere-associated Shelterin complex (Chikashige et al., 2007). Both 

Bqt1 and Bqt2 are required for the attachment of telomeres to Sad1 with telomeric attachment being 

mediated by an interaction (dependent upon both Bqt1 and Bqt2) with Shelterin component Rap1 

(Chikashige et al., 2006). Rap1 is associated with telomeres through an interaction with Taz1 which 

directly binds to telomeric repeat DNA (Kanoh and Ishikawa, 2001). This interaction network is 

summarised in Figure 4.1.5. 
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Figure 4.1.5| Cytoskeletal force transmission in fission yeast. Bqt1 and Bqt2 form a link between the 
LINC complex of S. pombe and the telomeric ends by binding Shelterin component Rap1. LINC 
components Sad1 and Kms1 are components of the spindle pole body which is embedded within the 
nuclear envelope. Dynein-driven microtubular movements then drive telomere movement back and 
forth between opposing pole of the nucleus in rapid prophase movements.   

 

In mammals, TERB1 provides this link between the telomeres and the LINC complex (Daniel et al., 

2014; Shibuya et al., 2014). Through screening for proteins upregulated in meiosis, two independent 

studies identified TERB1, demonstrated its colocalization with TRF1 (a mammalian orthologue of Taz1) 

and SUN1. Through yeast two-hybrid assays, it was identified that TERB1 interacts with the SUN1 N-

terminus via its N-terminus whilst interacting with the TRF1 dimerization domain via its C-terminus 

(Figure 4.1.10). Interestingly, TERB1 did not demonstrate interaction with TRF2 which is structurally 

similar (Fairall et al., 2001; Shibuya et al., 2014). TRF1 (439 amino acids in humans) consists of a 

largely α-helical dimerization domain (TRFH; residues 62-265) of which the crystal structure was solved 

(Figure 4.1.6; PDB 1H6O) (Fairall et al., 2001). Its C-terminus, which is largely non-conserved, is 

terminated by a conserved Myb-domain (residues 375-432). The crystal structure of the Myb-domain 

was solved demonstrating a direct recognition of the DNA major groove through the insertion of a single 

α-helix. Interestingly, the authors who solved the structure, as well as that of the highly similar TRF2 

Myb-domain, classify the fold as that of a homeodomain, rather than a Myb motif, due to the presence 

of an N-terminal “arm” which specifically recognises the minor groove (Figure 4.1.6c,d). The three-

helical structure, of which the two latter constitute a helix-turn-helix motif, is stabilised by a 
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hydrophobic core whilst sequence specificity is conferred by residues K421, D422, and R425 which 

recognise the major groove and R378 which inserts into the minor groove (Figure 4.1.6d). 

Unlike its interaction with SUN1, a molecular understanding of the interaction of TERB1 with TRF1 is 

more advanced having solved the structure of a short sequence of TERB1 binding TRF1 within the cleft 

formed between the two subunits of the dimer (Long et al., 2017; Pendlebury et al., 2017).  

 

 

  

Figure 4.1.6| Bioinformatic analysis of TRF1. a) 
Aligned schematic representation of TRF1 with key 
domains annotated, conservation plots, secondary 
structure prediction and charge distribution plots. b) The 
crystal structure of the dimerization domain of TRF1 
(residues 62-265; PDB 1H6O). c) The crystal structure 
of the TRF1 Myb domain in complex with human 
telomeric repeat DNA (PDB 1W0T). d) Amino acid 
side-chain contributions to major and minor groove 
recognition (yellow) and the Myb-domain hydrophobic 
core (purple). 
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The crystal structure of TERB1-bound TRF1, solved through soaking TRF1 crystals with a TERB1 

peptide sequence, revealed a binding mode reminiscent of TRF1 binding to TIN2, another Shelterin 

component (Figure 4.1.7a,b) (Chen et al., 2008). Within the structure, the interaction is stabilised by a 

short anti-parallel β-sheet. Further, two leucine residues, L646 and L647, hydrophobically dock within 

the TRF1 cleft and two hydrogen bonds (one between TERB1 R652 and the backbone oxygen of TRF1 

L138 and another between TERB1 R650 and TRF1 Q141) provide additional support. The interaction 

is complete by hydrophobic stacking association between TERB1 P649 and TRF1 F142. T648, which 

has been implicated in CDK2-mediated phosphorylation and resultant interaction disruption, is solvent 

exposed (Shibuya et al., 2015; Viera et al., 2015). The crystal structure suggests a possible 2:2 

stoichiometry, counter to our observations and those made for TRF1-TIN2 within Shelterin in which a 

2:1 stoichiometry is demonstrated, where a single TERB1 molecule binds to a TRF1 dimer (Lim et al., 

2017; Dunce et al., 2018b). This is likely due to steric constraints not present when studying a short 

peptide sequence in the absence of other complex components. The association appears to be 

physiologically critical with disruptive mutants of TERB1 (L647A, T648E, P649A) diminishing TRF1 

association and causing infertility, though curiously only in males (Long et al., 2017). This is in contrast 

to knockout mice of which both sexes are infertile (Shibuya et al., 2014).  

 

Figure 4.1.7| The TRF1-TERB1 association. a) The crystal structure of TRF1 bound to two TERB1 
peptide sequences (PDB 1WIR). b) The interaction between TRF1 and TERB1 is stabilised through the 
formation of a short anti-parallel β-sheet, hydrophobic associations and hydrogen bonds. 
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4.1.5 The meiotic telomere complex: MAJIN and TERB2 

Further to TERB1, two additional proteins have been identified, through immunoprecipitation from 

mouse testis extract by TERB1, which play key roles in telomere recruitment to the nuclear envelope: 

MAJIN and TERB2 (Shibuya et al., 2015). As with TERB1, these proteins localise to nuclear 

membrane-bound telomeres and their homozygous knockout results in meiotic failure and infertility. 

More specifically, cells arrest during the zygotene stage as telomeres fail to associate with SUN-KASH 

complexes disallowing rapid prophase movements and synapsis. As both TERB1 and TERB2 localise 

to telomeres in the context of MAJIN null spermatocytes, MAJIN appears to fulfil a role in nuclear 

envelope attachment – likely mediated by its putative C-terminal transmembrane helix (Figure 4.1.9a). 

Further, without MAJIN, the telomeric attachment plate still forms but is distant from the nuclear 

envelope (Figure 4.1.6a). Contrastingly, TERB1 null mice display a diffuse localisation of MAJIN and 

TERB2 on the nuclear envelope implicating it in telomeric recruitment of MAJIN and TERB2 (Shibuya 

et al., 2015). This is in keeping with its proposed interaction with the N-terminus of SUN1 (Shibuya et 

al., 2014). The finding that TERB2 displays differential localisation in either MAJIN or TERB1 null 

backgrounds possibly suggests a physical association exists between TERB2 and both proteins. Electron 

microscopic analysis of telomeric ends of TERB1 and TERB2 null mice show no formation of the 

telomeric attachment plate, suggesting integral architectural roles for both proteins (Figure 4.1.8). 

The homozygous knockout of SUN1, which has no impact upon telomeric attachment to the nuclear 

envelope, indicates that the meiotic telomere complex is sufficient for nuclear envelope recruitment but 

cannot mediate connection with the cytoskeletal motor proteins (Shibuya et al., 2015). Therefore, we 

may conclude that meiotic telomere complex and LINC complex fulfil distinct yet complementary and 

essential roles in mammalian meiosis. However, SUN1 and SUN2 may be functionally redundant in 

telomeric recruitment to the nuclear envelope as SUN2 was found to localise to the telomeric attachment 

plate (Schmitt et al., 2007).   
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Figure 4.1.8| The telomeric attachment plate structure in mouse knockouts of the meiotic telomere 
complex components. In wild-type mice, synapsed chromosomes are visualised fused with the inner 
nuclear membrane. Structurally, the knockout of SUN1 has no effect, forming an intact telomeric 
attachment plate. The telomeric ends of meiotic chromosomes in MAJIN null mice appear to be capped 
by a proteinaceous sheath but do not attach to the nuclear envelope. Telomeres of TERB2 and TERB1 
null mice show no distinct structure and do not attach to the nuclear envelope. Arrows point to the 
telomeres. 

 

4.1.6 Bioinformatic and structural analysis of meiotic telomere complex components 

MAJIN is a 254 amino acid protein with a conserved N-terminal structured core, predicted to consist of 

a mixture of α-helix and β-sheet (Core; residues 1-112) and a non-conserved unstructured C-terminus 

with a conserved transmembrane helix (TM; 230-248) at its extreme C-terminal end (Figure 4.1.9a). 

The sole interacting partner of MAJIN within the meiotic telomere complex, TERB2, contains 220 

amino acids and is largely unstructured, with highly conserved N- and C-terminal domains which 

interact with TERB1 (N; residues 1-107) and MAJIN (C; residues 168-207), respectively (Figure 

4.1.9b). TERB1 interacts with TERB2 through a C-terminal sequence (T2B; residues 585-642) flanked 

by TRF1-binding sequences (TRFB; residues 561-658) which precedes a telomeric DNA binding 

domain, the Myb domain (residues 666-719). TERB1 contains a large N-terminal domain, predicted to 

fold predominantly as armadillo-repeat domain, potentially capped at its C-terminus by a short coiled-

coil (Figure 4.1.9c). The extreme C-terminus of TERB1 encodes a Myb domain, similar to that of TRF1, 

which is also essential for rapid prophase movements (Zhang et al., 2017). Additionally, an unstructured 

region of high pI of MAJIN (indicated “Basic patches” in Figure 4.1.9a) was found to be essential for 

DNA binding by electrophoretic mobility shift assay (Shibuya et al., 2015).  
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Figure 4.1.9| Bioinformatic analysis of meiotic telomere complex components. a-c) Aligned 
schematic representation with key domains annotated, conservation plots, secondary structure prediction 
and charge distribution plots for a) MAJIN, b) TERB2, and c) TERB1. T2B= TERB2-binding site. 
TRFB= TRF1-binding sites. 
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4.1.7 Connecting components: a meiotic collaboration 

As discussed previously, TERB1 is recruited directly to the telomeres through its interaction with TRF1 

through a short peptide sequence (residues 642-658) and is proposed to associate with SUN1 through 

its N-terminal armadillo-repeat domain (Shibuya et al., 2014; Long et al., 2017; Pendlebury et al., 2017).  

Further interactions between the components of the meiotic telomere complex were mapped by yeast 

two-hybrid and are summarised in Figure 4.1.10 (Shibuya et al., 2015). The presented interacting 

regions have been optimised through truncation analysis performed by both myself, Master’s student 

Lee Thung Sen, and PhD student Amy Milburn. Briefly, MAJIN interacts with the TERB2 C-terminus 

(residues 168-207) through its conserved N-terminal domain (residues 1-112). TERB2 then mediates 

TERB1 (residues 585-642) association through its N-terminal domain (residues 1-107) for which the 

structure was solved demonstrating the formation of an α-helical globular domain (Figure 4.1.11a) 

(Wang et al., 2019). We identified a second sequence which stabilises TRF1 association directly N-

terminal to the TRF1 binding region (residues 561-585).  

 

Figure 4.1.10| Mapping the interactions between meiotic telomere complex components. The inter-
molecular interactions between protein components of the meiotic telomere complex (MAJIN, TERB1, 
and TERB2) and the Shelterin complex component, TRF1, mapped in previous studies (Shibuya et al., 
2015; Long et al., 2017; Pendlebury et al., 2017; Zhang et al., 2017) and refined by a previous masters 
student, Lee Thung Sen through biochemical screening. Amino acid conservation is plotted against 
linearly presented protein sequences. The height of the black plots is representative of conservation 
score. The amino acid boundaries and residue length of interacting regions and proteins have been 
annotated.  
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Figure 4.1.11| Structure of the human TERB1590-649-TERB24-110 complex. a) Cartoon representation 
of TERB1 and TERB2 interacting to form a globular α-helical domain (PDB 6J07). TERB1 forms two 
α-helices separate by a short turn and flanked by short sequences without secondary structure. The N-
terminal sequence coordinates a zinc ion, as depicted in b. b) TERB1 residues C592, C595, C618 and 
H621 coordinate a zinc ion.  

 

4.1.8 Interplay between the meiotic telomere complex and the Shelterin complex 

It was interestingly noted that TRF1 appears to not perfectly colocalise with TERB1 upon telomeric 

association with the nuclear envelope, with TRF1 appearing to be offset, forming a ring like structure 

around a TERB1 focus (Pendlebury et al., 2017). This phenomenon was shown to hold true also for 

MAJIN and TERB2 and was coined as, controversially, “telomere cap exchange”, suggesting that upon 

binding to the meiotic telomere complex, TRF1 (in association with other Shelterin components) is fully 

displaced from the telomeres (Figure 4.1.12) (Shibuya et al., 2015). As Shelterin components remain in 

association with the telomere, it more appears as if TRF1 is displaced to the telomeric periphery rather 

than a true exchange of caps. If the Shelterin complex were to be no longer “capping” telomeric ends, 

would this not have important consequences for the suppression of the DNA damage response and for 

obscuring the true end of the DNA sequence (de Lange, 2009)? It remains to be shown whether TRF1 

and the other Shelterin complex components remain in association with telomeric DNA.  
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Figure 4.1.12| Displacement of TRF1 during the zygotene to pachytene transition. a) Fluorescence 
imaging during a) zygotene and b) pachytene demonstrating the initial colocalization of MAJIN, 
TERB1 and TERB2 with TRF1 and the subsequent displacement of TRF1 to the telomeric periphery.  

 

4.1.9 Uncovering the structural basis for telomere tethering to the nuclear envelope by the 
meiotic telomere complex  

In the present study, we focussed our efforts towards the structural characterisation of the meiotic 

telomere complex. Assembly of the meiotic telomere complex and the contribution to telomere tethering 

to the nuclear envelope is a critical step in meiosis with ablation of any components resulting in complete 

meiotic blockage. We thus far lack any structural understanding of how this complex assembles, 

achieves telomeric binding, or how it mediates recruitment to the nuclear envelope. Initial progress was 

made during a project initiated by former Masters student Lee Thung Sen who made significant progress 

in biochemically reconstituting the interactions reported by H. Shibuya and Y. Watanabe (Shibuya et 

al., 2015). Fellow PhD student, Gurusaran Manickam, and I, furthered his work and solved the crystal 

structure of the MAJIN-TERB2 core and, in combination with another PhD student, Amy Milburn, we 

achieved a near-full biophysical characterisation of the meiotic telomere complex (Dunce et al., 2018b). 

In this chapter, I shall briefly describe the work of Lee Thung Sen and our efforts which lead to the 

solution of the crystal structure of the MAJIN-TERB2 core complex and our subsequent work in 

characterising the wider MAJIN-TERB2 complex and its role in telomere association. Throughout I 

shall clearly cite collaborative work in which Gurusaran Manickam was involved by acknowledging 

data he collected within figure legend text.  
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RESULTS 
 

4.2.1 Initial purification and crystallisation of the MAJIN-TERB2 complex 

Lee found that bacterial expression of the individual meiotic telomere complex components yielded 

insoluble protein, indicating misfolding and the requirement for a constitutive binding partner. Through 

co-expression of interacting protein fragments identified by previous studies (Shibuya et al., 2015; Long 

et al., 2017; Pendlebury et al., 2017; Zhang et al., 2017), highly stable and soluble protein complexes 

could be purified. In Figure 4.2.1a, the purification of the MAJIN1-147 TERB2147-220 complex is 

summarised in which the MAJIN N-terminus was expressed as an N-terminal His6-fusion with the 

TERB2 C-terminus as a His6-MBP-fusion. Purification was achieved through sequential Ni-NTA and 

amylose affinity chromatography, further purified by anion exchange chromatography using a HiTrap 

Q column, prior to removal of the affinity tags through enzymatic cleavage by TEV protease. The 

purification was completed by cation exchange chromatography using a HiTrap SP column and size-

exclusion chromatography. SEC-MALS analysis revealed a molecular weight of 42 kDa, closely 

corresponding to a stoichiometry of 2 MAJIN molecules to 1 TERB2 (Figure 4.2.1b). The 

asymmetrically shaped elution peak, the divergence of the light scattering and differential refractive 

index in the second half of the peak, and the sloping molecular weight fit, suggest a dissociation between 

the two components. Lee found that this effect was exaggerated by decreasing salt concentration below 

250 mM KCl, yet not further improved by increasing beyond 250 mM KCl. All SEC-MALS data 

presented henceforth utilises a buffer containing 250 mM KCl. This calls into question of whether the 

2:1 oligomeric state suggested on the basis of these data was accurate.  
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Figure 4.2.1| Initial purification and crystallisation of a MAJIN-TERB2 complex. a) Schematic 
representation of MAJIN and TERB2 indicating the amino acid boundaries of constructs analysed in the 
presented figure. SDS-PAGE analysis summarising the purification of MAJIN1-147 TERB2147-220. b) 
SEC-MALS analysis of MAJIN1-147 TERB2147-220 demonstrating the formation of a 42 kDa species 
(theoretical molecular weight of a 2:1 complex= 43 kDa, 2:2 complex= 52 kDa). c) MAJIN1-147 
TERB2147-220 protein crystals which grew in 150 mM KSCN, 18 % PEG3350 over 3 months and d) 
diffraction images. The dotted line demarcates data to 4.08 Å. The data and crystals presented in this 
figure are a result of the work of Lee Thung Sen.  
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Figure 4.2.2| SEC-SAXS data analysis of MAJIN1-147 TERB2147-220. a) Averaged small-angle X-ray 
scattering profile of MAJIN1-147 TERB2147-220 with the fit used for P(r) distribution shown as a red line. 
b) SEC-SAXS P(r) distribution of MAJIN1-147 TERB2147-220; maximum dimension (Dmax) is indicated. 
c) SEC-SAXS Guinier analysis to determine the radius of gyration (Rg) of MAJIN1-147 TERB2147-220. 
The linear fit is plotted in red and the linear region highlighted and demarcated by dotted lines. The 
Q.Rc value was < 1.3 with the Rg calculated at 36.6 Å. d) Normalised Kratky plot for MAJIN1-147 
TERB2147-220. The near-Gaussian distribution demonstrated an overall globular shape whilst the tailing 
indicates the presence of unstructured residues. The data presented in this figure are a result of the work 
of Lee Thung Sen. SEC-SAXS analysis by Dr Owen Davies. 

 

Lee was able to crystallise the complex, attaining multiple crystal hits in initial sparse-matrix screening 

and, through optimisation of a single condition containing sodium thiocyanate and PEG3350 produced 

crystals which diffracted to 4.08 Å (Figure 4.2.1c,d). However, these crystals took at least 3 months to 

grow and upon SDS-PAGE analysis of the protein crystals themselves found them to be formed of a 

MAJIN-TERB2 complex in which both components were heavily truncated (data not shown).  
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4.2.2 Unstructured termini of MAJIN and TERB2 inhibit crystal growth 

Solution studies of the MAJIN1-147 TERB2147-220 complex by SEC-SAXS revealed an interatomic 

distance distribution profile with a predominantly Gaussian distribution-like shape, with an elongated 

tail to an x-axis intercept (indicative of the molecules maximum interatomic distance (Dmax)) of 123 Å 

(Figure 4.2.2b). Together with the Kratky profile, which tails to indicate the presence of flexible 

extensions, our data suggested that this construct on which Lee was working contained long-flexible 

termini (Figure 4.2.2d). We hypothesised that these unstructured termini would inhibit protein crystal 

growth, and that the thus-far produced crystals only grew after spontaneous proteolytic truncation of 

these termini over time. 

4.2.3 Construct boundary optimisation 

To improve crystal growth, we opted to truncate both MAJIN and TERB2 sequences. Gurusaran 

Manickam purified and attempted the crystallisation of MAJIN1-147 TERB2157-220 and I proceeded to 

clone and purify a range of MAJIN and TERB2 constructs. MAJIN-TERB2 complex formation and 

stability was retained upon the simultaneous truncation of MAJIN to residues 1-112, removing a 

sequence of predicted unstructured residues, and TERB2 to residues 147-207, removing the 13 C-

terminal residues of which 5 of the final 7 residues are basic (Figure 4.2.3a, lane 1).  

 

 

Figure 4.2.3| Optimised the MAJIN-TERB2 construct amino acid boundaries. a,b) SDS-PAGE 
analysis of Ni-NTA and amylose affinity purified MBP-fused TERB2 constructs co-expressed with 
His6-tagged MAJIN constructs with residue boundaries indicated. 
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N-terminal truncation of the TERB2 sequence, to residue 168, results in a drastically improved protein 

yield (Figure 4.2.3a, lane 2). Further truncation of the MAJIN sequence to residue 106 is tolerated in 

complex with TERB2 residues 168-220 but results in fantastic protein yields when co-expressed with 

MAJIN residues 1-106 (lane 5). Truncation of the MAJIN sequence to residue 1-91 results in drastic 

protein instability, observed as a greatly reduced protein yield. Dissection of the TERB2 sequence into 

its two halves (residues 168-196 and 195-207/220) reveals that the N- terminal half is sufficient for 

interaction (Figure 4.2.3b).  

 

 

 

Figure 4.2.4| Purification and crystallisation of MAJIN-TERB2 complexes. a,b) SDS-PAGE 
analysis summarising the purification of a) MAJIN1-112 TERB2168-220 and b) MAJIN1-106 TERB2168-207. 
c) SEC-MALS analysis of MAJIN1-112 TERB2168-220 (black; theoretical 2:2 complex= 40 kDa) and 
MAJIN1-106 TERB2168-207 (grey; theoretical 2:2 complex= 35 kDa). d-e) Protein crystals for d) MAJIN1-

112 TERB2168-220 and e) MAJIN1-106 TERB2168-207 optimised from the indicated initial sparse matrix 
screening conditions.  
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4.2.4 Crystallisation of the MAJIN-TERB2 complex 

Complexes of MAJIN1-112 TERB2168-220 and MAJIN1-106 TERB2168-207 were selected for crystallisation 

trials. Both complexes were purified to homogeneity through the purification procedure described for 

MAJIN1-147 TERB2147-220 (Figure 4.2.4a,b). SEC-MALS analysis of MAJIN1-112 TERB2168-220 and 

MAJIN1-106 TERB2168-207 revealed molecular weights perfectly matching the theoretical values of a 2:2 

stoichiometry (Figure 4.2.4c). The familiar elution profile characteristics of the MAJIN-TERB2 

complex (i.e. asymmetry and deviation between light scattering and differential refractive index) are 

retained by MAJIN1-112 TERB2168-220 yet absent for the shorter MAJIN1-106 TERB2168-207 complex 

implicating unstructured sequences in the presence of this phenomenon (Figure 4.2.4c). Crystals were 

readily obtained for both constructs with the best crystals for MAJIN1-112 TERB2168-220 growing in 100 

mM imidazole pH 8.0, 10 % PEG8000 and the best for MAJIN1-106 TERB2168-207 growing in 0.12 M 1,6 

hexanediol; 0.12 M 1-butanol; 0.12 M 1,2-propanediol (racemic); 0.12 M 2-propanol; 0.12 M 1,4-

butanediol; 0.12 M 1,3-propanediol, 39.1 mM bicine pH 5.03, 60.9 mM Trizma pH 10.83; 12.5 % w/v 

PEG 1000; 12.5 % w/v PEG3350; 12.5 % v/v MPD (Figure 4.2.4d,e). Both crystals contained a 2:2 

heterotetramer in the asymmetric unit though crystals of MAJIN1-112 TERB2168-220 belonged to 

spacegroup C3221 with unit cell dimensions a = 59.88 Å, b = 59.88 Å, c = 159.93 Å, α = 90°, β = 90°, 

γ = 120° whilst crystals of MAJIN1-106 TERB2168-207 belonged to spacegroup C2221 with unit cell 

dimensions a = 59.97 Å, b = 88.39 Å, c = 111.67 Å, α = 90°, β = 90°, γ = 90°.  

4.2.5 Crystal structure solution of the MAJIN-TERB2 complex 

In order to solve the structure, Gurusaran Manickam purified and crystallised a seleno-methionine 

derivative of MAJIN1-112 TERB2168-220, allowing Dr Owen Davies to utilise the anomalous signal to solve 

an 8-selenium atom sub-structure, providing initial phase estimates to allow the placement of a single 

α-helix, which, through both automated and manual building was converted into a near-complete build 

at 2.90 Å. A 1.85 Å structure of the MAJIN-TERB2 complex in spacegroup C2221 was subsequently 

solved through molecular replacement of the SAD-structure (Table 4.1). This process is described in 

full in the Methods section 2.1.17-18. The following analysis is based upon the high-resolution C2221 

structure. 
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4.2.6 Analysis of the MAJIN-TERB2 crystal structure 

MAJIN-TERB2 constitutes a heterotetrameric complex in which a dimeric MAJIN core, is encapsulated 

by two TERB2 chains (Figure 4.2.5a,b). MAJIN adopts a β-grasp fold in which a central amphipathic 

α-helix is grasped by a 4-stranded β-sheet, in a β(2)-α(2)-β(3) configuration (Figure 4.2.5c,d). The 

TERB2 N-terminus is situated at the interface between the two MAJIN protomers, contributing to the 

hydrophobic interface through the sidechain of Y176. The TERB2 chain meanders around the MAJIN 

molecular surface, completing the closure of the central α-helix of MAJIN, forming anti-parallel β -

sheet associations with β1 and β5 of MAJIN (Figure 4.2.5b-e).  

The MAJIN β-grasp is formed through hydrophobic associations between one face of the central 

amphipathic α-helix and the inner face of the grasping β-sheet (Figure 4.2.6a,b). TERB2 contributes by 

hydrophobically packing against the bottom-end of the central α-helix through F185 and L189 whilst 

the solvent-exposed upper portion comprises largely charged or polar residues (Figure 4.2.6a). 

Interestingly, I identified a single water-mediated association in which a water molecule bridges the 

highly conserved MAJIN residues D60 and K76 (Figure 4.2.6c).  

The TERB2 chain wraps around MAJIN and is stabilised through the insertion of hydrophobic residues 

into hydrophobic pockets on the MAJIN molecular surface (Figure 4.2.7a,b). Further, the MAJIN-

TERB2 interface is stabilised through salt bridges between MAJIN R14 and TERB2 D191 and MAJIN 

D50 (on the surface of the central α-helix) and TERB2 K184 (Figure 4.2.7c). Finally, H17 Nδ1 hydrogen 

bonds with the hydroxyl oxygen of Y199 (Figure 4.2.7d). 

 

__________________________________________________________________________________ 

Figure 4.2.5| The MAJIN-TERB2 structure. a,b) The crystal structure of the MAJIN1-106 TERB2168-

207 2:2 heterotetramer in a) cartoon and b) molecular surface representation of MAJIN with cartoon 
TERB2 chains. MAJIN forms a symmetrical bilobed, globular structure, around which TERB2 chains 
wrap. c) Cartoon representation of the MAJIN-TERB2 protomer. MAJIN folds as a β-grasp in which a 
central α-helical chain is enclosed by grasping MAJIN β-sheets and the TERB2 chain. d) Topology 
diagram of the MAJIN-TERB2 protomer demonstrating a β(2)-α(2)-β(3) configuration, with β5 and β6 
forming a β-sheet appendage inserted between β4 and β7. TERB2 wraps around the MAJIN surface and 
contains a short 310 helix. TEBR2 β1’ strand forms a β-sheet with MAJIN β1 and TERB2 β2’ forms a 
β-sheet with the MAJIN β5/6-appendage. The MAJIN-TERB2 crystal structure was solved by molecular 
replacement of 6GNX, which was solved through SAD-phasing of a seleno-methionine derivative, 
purified and crystallised by Gurusaran Manickam. Structure solved by Dr Owen Davies. 
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 MAJIN1-112 / TERB2168-220 

Seleno-methionine 
derivative (6GNX) 

MAJIN1-106 / TERB2168-207 

(PDB 6GNY) 

Data collection   
Space group P3221 C2221 
Cell dimensions 59.88, 59.88, 159.93 59.97, 88.39, 111.67 
 90.00, 90.00, 90.00 90.00, 90.00, 90.00 
Wavelength (Å) 0.9159 0.9763 
Resolution (Å) 49.23 – 2.90 (3.08 – 2.90)  45.35 – 1.85 (1.89 – 1.85) 
Rmeas (all I+ & I-) 0.136 (3.015) 0.039 (1.374) 
Rpim (all I+ & I-) 0.024 (0.553) 0.014 (0.504) 
I / σI 28.2 (2.3) 23.1 (1.5) 
CC1/2 1.000 (0.885) 0.999 (0.744) 
Completeness (%) 100.0 (100.0) 100.0 (100.0) 
Multiplicity 56.6 (55.1) 7.3 (7.3) 
Refinement 
Resolution (Å) 49.33 – 2.90 45.35 – 1.85 
Number of reflections 7865 35690 
Rwork / Rfree 0.2542 / 0.3039 0.1883 / 0.2072 
Number of atoms 2197 2413 
Protein 2197 2286 
Ligand/ion 0 8 
Water 0 119 
B-factors 130.46 64.58 
Protein 130.46 64.72 
Ligand/ion N/A 130.48 
Water N/A 57.49 
R.m.s deviations   
Bond lengths (Å) 0.003 0.003 
Bond angles () 0.539 0.627 

Table 4.1| X-ray crystallographic statistics for MAJIN-TERB2 structures. X-ray  
diffraction data processed and crystal structures solved by Dr Owen Davies 
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Figure 4.2.6| Side-chain contribution to the MAJIN-TERB2 β-grasp structure. a) The central α2 
forms an amphipathic helix with β-sheet facing residues (I44, L48, V52, V54, V55 and L56) being 
hydrophobic and solvent exposed residues (E47, Q46, E49, D50, R53, and N58) being charged or polar. 
b) Top-down view down the barrel of the α2-helix demonstrating the hydrophobic associations 
stabilising the β-grasp. L16 (β1); Y23, F25, I27, Y29 (β2); F65 (β3); F70, V72 (β4); F101, L103, V105 
(β8) of the MAJIN β-sheet collaborate with TERB2 residues I179, F185 and L189 to hydrophobically 
associate the central α2-helix. c) A water-mediated association exists between D60 and K76 of MAJIN 
with hydrogen bonds lengths indicated, with an angle of 107˚. The interacting atoms of the sidechains 
are otherwise separated by 4.8 Å. The water molecule of interest is represented as a red sphere with 
others represented as small red crosses. The bond was identified using HCBS software (Gurusaran et 
al., 2016) 
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Figure 4.2.7| TERB2 side-chain contributions to the MAJIN-TERB2 interface. a,b) TERB2 side-
chains dock into hydrophobic pockets of the MAJIN molecular surface. c) Salt bridges exist between 
MAJIN R14 and D50 and TERB2 D191 and K184, respectively with distances, and errors, indicated. 
Errors were assigned using SBPS software (Gurusaran et al., 2014). d) A hydrogen bond between 
MAJIN H17 and TERB2 Y199 contributes to the fold. Bond identified and error assigned using HBCS 
software (Gurusaran et al., 2016). A hydrogen bond is defined as a donor-acceptor pair with a separation 
of 2.6-3.3 Å.  

 

4.2.7 Comparison of the high-resolution native, seleno-methionine and a competitor’s structure 

Soon after publication of the MAJIN-TERB2 structure (Dunce et al., 2018b), another group published 

a SeMet-derivative structure of the same complex at a resolution of 2.9 Å, similar to that of our SeMet-

derivative (Wang et al., 2019). The SeMet-derivative structures are almost identical with an all-atom 

rmsd value of 0.82, exhibiting greater similarity between each other than with the native, higher 

resolution structure (Figure 4.2.8a). This discrepancy is most likely due to the presence of an ordered 

loop region between β2 and α2, not resolved in either SeMet-structure. The overall fold is overtly similar 

and symmetrical with no real differences observed between MAJIN-TERB2 protomers (Figure 4.2.8b).  
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Figure 4.2.8| Structure comparison. a) Superimposition and respective all-atom rmsd values of the 
1.85 Å MAJIN-TERB2 structure (6GNY), the seleno-methionine derivative structure (6GNX) and a 
structure which was solved concurrently and published 2 months after the release of our publication 
(6J08) (Dunce et al., 2018b; Wang et al., 2019). b) Superimposition of the two MAJIN-TERB2 
protomers from the 6GNY, 6GNX and 6J08 structures and the respective all-atom rmsd values.  
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4.2.8 The solution structure of the MAJIN-TERB2 core complex 

SEC-SAXS analysis revealed that the MAJIN1-106 TERB2168-207 solution structure closed matched the 

crystal structure, producing an average X-ray scattering profile closely matching the theoretical 

scattering curve of the crystal structure with a χ2 value of 1.62 (Figure 4.2.9a). In contrast, the 

experimental scattering data for MAJIN1-112 TERB2168-220 did not match the theoretical scattering of the 

crystal structure, demonstrating a χ2 value of 17.96, likely due to the presence of 6 additional MAJIN 

residues and 13 additional TERB2 residues (Figure 4.2.9a). This is represented within the interatomic 

distance-distribution profiles of both constructs in which the shorter MAJIN1-106 TERB2168-207 presents a 

more compact form with a Dmax of 80 Å in comparison to 120 Å of MAJIN1-112 TERB2168-220 (Figure 

4.2.9b). The MAJIN1-112 TERB2168-220 solution structure appears more elongated, indicated through 

asymmetry of the distance-distribution profile (near-Gaussian in the case of MAJIN1-106 TERB2168-207) 

and an increased radius of gyration (Rg) value (30 Å in comparison to 24 Å of MAJIN1-106 TERB2168-

207; Figure 4.2.9c,d). Interestingly, analysis by circular dichroism far-UV spectroscopy and thermal 

denaturation suggests an increased secondary structure content and increased thermostability of the 

extended MAJIN1-112 TERB2168-220 complex, potentially due to stabilising or structural contributions of 

the extreme C-terminus of TERB2 (Figure 4.2.9e,f). Ab initio molecular envelopes match the crystal 

structure of the compact MAJIN1-106 TERB2168-207 complex and reveals additional electron density 

positioned laterally the MAJIN-TERB2 core structure, for which we do not currently have a 

substantiated explanation but is likely explained by the additional residues of the longer construct 

(Figure 4.2.10a,b). 
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Figure 4.2.9| The solution structure of MAJIN-TERB2. a) Averaged small-angle X-ray scattering 
profile of MAJIN1-106 TERB2168-207 and MAJIN1-112 TERB2168-220 overlaid with the theoretical scattering 
profile of the MAJIN1-106 TERB2168-207 crystal structure with indicated χ2 values. b) SEC-SAXS P(r) 
distribution of MAJIN1-106 TERB2168-207 (solid) and MAJIN1-112 TERB2168-220 (dashed) demonstrating 
Dmax values of 80 and 120 Å, respectively. c-d) SEC-SAXS Guinier analysis to determine the radius of 
gyration (Rg) of c) MAJIN1-112 TERB2168-220 and d) MAJIN1-106 TERB2168-207. The linear fit is plotted in 
red and the linear region highlighted and demarcated by dotted lines. The Q.Rc value was < 1.3 with the 
Rg calculated at 30 and 24 Å, respectively. e) Circular dichroism far-UV spectra for MAJIN1-112 
TERB2168-220 (black) and MAJIN1-106 TERB2168-207 (grey), indicating percentage α-helix and β-sheet 
estimated by deconvolution, with data fitted at a normalised rmsd values of 0.061 and 0.055, 
respectively. f) Thermal denaturation of MAJIN1-112 TERB2168-220 (black) and MAJIN1-106 TERB2168-207 

(grey), demonstrating melting temperatures of 66 and 59 ˚C, respectively. SEC-SAXS analysis by Dr 
Owen Davies. 
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Figure 4.2.10| SAXS-derived molecular envelopes for MAJIN-TERB2. a,b) SUPCOMB docking of 
the MAJIN-TERB2 crystal structure into an ab initio molecular envelope for a) MAJIN1-106 TERB2168-

207 and b) MAJIN1-112 TERB2168-220. SEC-SAXS analysis by Dr Owen Davies. 

__________________________________________________________________________________ 

4.2.9 The MAJIN C-terminus is unstructured and extended  

In order to characterise the structure of the MAJIN C-terminus and uncover how the MAJIN core is 

connected to the membrane-embedded C-terminal transmembrane helix, I cloned and purified MAJIN-

TERB2 complexes including unstructured MAJIN residues 106-147 or 106-233 and lacking TERB2 

residues 208-220 to negate their contribution to observed flexibility during SEC-SAXS experiments. 

Purification was achieved through sequential Ni-NTA and amylose affinity chromatography (both 

proteins were His6-MBP-tagged) followed by cation exchange chromatography using HiTrap SP column 

to exploit the highly basic charge of the unstructured C-terminal tail of MAJIN. Affinity tags were 

removed by TEV-cleavage and the purification completed by further cation exchange and size-exclusion 

chromatography. SDS-PAGE analysis of samples to summarise the purification of MAJIN1-147 

TERB2168-207 and the final purified sample of MAJIN1-233 TERB2168-207 are displayed in Figure 4.2.11a.  
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SEC-MALS analysis of both complexes yielded unexpected results with molecular weights far below 

their theoretical 2:2 heterotetrameric states (Figure 4.2.11b). MAJIN1-233 TERB2168-207 and MAJIN1-147 

TERB2168-207 were fit to molecular weights of 44 and 37 kDa, respectively, only slightly above the 

molecular weight of 35 kDa for MAJIN1-106 TERB2168-207. We think that MALS does not accurately 

determine the molecular weight of proteins incorporating large regions of flexibility with dominant 

scattering centres accounting for the majority of light scattering and skewing the calculation of 

molecular weight. 

Somewhat bizarrely, the additional 31 unstructured residues of MAJIN1-147 do not contribute as greatly 

to an increase in maximum interatomic distance as do the 13 C-terminal residues of TERB2 (Figure 

4.2.11c). As expected, a significant increase in Dmax  is observed for MAJIN1-233 TERB2168-207. The 

presence of additional scattering atoms is reflected by Rg values for both constructs and the suggestion 

that they are largely unstructured is supported by circular dichroism far-UV spectroscopy which 

demonstrates a spectrum characteristic of random coil (Figure 4.2.11d-f).  

The averaged experimental X-ray scattering profiles of both constructs do not match the theoretical 

scattering profile of the MAJIN1-106 TERB2168-207 crystal structure, unsurprisingly. Modelling of the 

unstructured C-terminal tails of MAJIN (performed by Dr Owen Davies using CORAL which utilises 

scattering information to build missing loop sequences) predicts their extended conformation, spanning 

up to 90 Å in the case of MAJIN1-233 TERB2168-207  (Petoukhov et al., 2012) (Figure 4.2.11g-i). The 

theoretical scattering of such modelled structures closely matches the experimental scattering of both 

MAJIN1-233 TERB2168-207 and MAJIN1-147 TERB2168-207, with χ2 values of 1.95 and 1.34, respectively.  

These findings combine to suggest that the MAJIN-TERB2 core structure is linked to the nuclear 

membrane through long, flexible linker sequences which led to transmembrane helices embedded in the 

inner nuclear membrane (Figure 4.2.11i). 
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Figure 4.2.11| The MAJIN C-terminus is unstructured and extended. a) SDS-PAGE analysis 
summarising the purification of MAJIN1-147 TERB2168-207 and the final purified sample of MAJIN1-233 

TERB2168-207 which was purified by the same method. b) SEC-MALS analysis of MAJIN1-233 TERB2168-

207 (left; theoretical molecular weight of a 2:2 heterotetramer= 63 kDa) and MAJIN1-147 TERB2168-207 

(right; theoretical molecular weight of a 2:2 heterotetramer= 49 kDa). c) SEC-SAXS P(r) distribution 
of MAJIN1-233 TERB2168-207 (grey, solid) and MAJIN1-147 TERB2168-207 (grey, dashed). The P(r) 
distributions for MAJIN1-106 TERB2168-207 and MAJIN1-112 TERB2168-220 are displayed in grey for 
comparison. d-e) SEC-SAXS Guinier analysis to determine the radius of gyration (Rg) of d) MAJIN1-

233 TERB2168-207 and e) MAJIN1-147 TERB2168-207. The linear fit is plotted in red and the linear region 
highlighted and demarcated by dotted lines. The Q.Rc value was < 1.3 with the Rg calculated at 37 and 
28 Å, respectively. f) Circular dichroism far-UV spectra for MAJIN1-233 TERB2168-220 (black) and 
MAJIN1-112 TERB2168-220 (grey) for comparison. g) Averaged small-angle X-ray scattering profile for 
MAJIN1-233 TERB2168-207 and MAJIN1-147 TERB2168-207 overlaid with the theoretical scattering profile of 
the MAJIN-TERB2 crystal structure with (blue) and without (red) CORAL modelled C-termini 
(residues 107-233 and 107-147) with indicated χ2 values. h-i) Cartoon representation of the MAJIN-
TERB2 crystal structure with CORAL modelled unstructured MAJIN C-termini, h) residues 107-147 
and i) residues 107-233. The unstructured termini lead to transmembrane helices embedded within the 
inner nuclear membrane. SEC-SAXS analysis by Dr Owen Davies. 
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Figure 4.2.12| Mutational disruption of the MAJIN-TERB2 dimer interface. a) A frontal and top-
down view of the MAJIN dimer interface. A hydrophobic core is formed of MAJIN residues P64, F73, 
Y75 and Y104 and TERB2 Y176. b) Cartoon representation of the MAJIN-TERB2 structure 
highlighting in red residues F73 and Y75, selected for mutation to glutamate to disrupt the dimer 
interface. c) SEC-MALS analysis of wild-type and mutant F73E Y75E MAJIN1-112 TERB2168-220 

demonstrating a shifted elution volume and a halved molecular weight (theoretical molecular weight of 
a 1:1 heterodimer is 20 kDa). d) Circular dichroism far-UV spectra for MAJIN1-112 TERB2168-220 F73E 
Y75E (black) and MAJIN1-112 TERB2168-220 (grey) for comparison, indicating percentage α-helix and β-
sheet estimated by deconvolution, with data fitted at a normalised rmsd values of 0.063 and 0.061, 
respectively. e) Thermal melts MAJIN1-112 TERB2168-220 F73E Y75E (grey) and MAJIN1-112 TERB2168-

220 (black) demonstrating melting temperatures of 59 and 66 ˚C. 
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4.2.10 Disruption of the dimerization interface between MAJIN-TERB2 protomers 

The MAJIN-TERB2 dimeric interface is mediated by a hydrophobic core comprising MAJIN residues 

P64, F73, Y75 and TERB2 Y176 (Figure 4.2.12a). We selected MAJIN residues F73 and Y75 for 

mutation to glutamate to disrupt the interface (Figure 4.2.12b). I cloned a MAJIN1-112 construct 

containing mutations F73E Y75E which was subsequently purified in complex with TERB2168-220 by 

Gurusaran Manickam using the method described previously for wild-type. SEC-MALS analysis 

revealed that the mutation successfully disrupted the dimerization interface, demonstrating the 

formation of a stable 1:1 complex with a molecular weight of 21 kDa (theoretical molecular weight= 20 

kDa) in comparison to the 2:2 heterotetrameric molecular weight of 43 kDa (Figure 4.2.12c). Circular 

dichroism far-UV spectroscopy confirmed that the fold contained a near identical percentage of 

secondary structural elements whilst thermal denaturation, tracked by measuring the α-helical content 

at 222 nm, demonstrating slightly reduced stability of the 1:1 complex (Figure 4.2.12d,e).  

4.2.11 The MAJIN-TERB2 complex binds dsDNA and does so in a cooperative manner 

Each MAJIN-TERB2 protomer of the hetero-tetrameric structure displays a large basic surface which 

are orientated bi-directionally. The presence of such a surface and highly basic unstructured TERB2 C- 

termini suggested a potential role in DNA-binding, as might be expected for a telomere associated 

protein (Figure 4.2.13a). We analysed the ability of the MAJIN1-112 TERB2168-220 complex to bind 

dsDNA using electrophoretic mobility shift assays which clearly demonstrated strong affinity for DNA 

which was lost with deletion of the basic C-termini of TERB2 (Figure 4.2.13b). Disruption of the 

dimeric interface between MAJIN-TERB2 protomers through the mutation F73E Y75E resulted in an 

overt decrease in affinity of DNA, only resulted in the formation of unstable protein-DNA complexes 

as indicated by the formation of a smear between free DNA and protein-DNA complex (Figure 4.2.13b). 

By electron microscopy, MAJIN-TERB2 complexes with plasmid dsDNA to form amorphous plaques 

and ring-like protein-DNA structures connected by dsDNA strands (Figure 4.2.13c). These interesting 

inter-connected ring-like structures are present in the absence of DNA and suggest an underlying 

mechanism for the self-assembly of MAJIN-TERB2 complexes (Figure 4.2.13c).  Although plaque-like 

assemblies are retained in the dimerization mutant, ring-like structures are not observed demonstrating 

a dependency on dimerization for higher-order oligomerisation (Figure 4.2.13c).   
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Figure 4.2.13| The MAJIN-TERB2 core binds DNA. a) Electrostatic surface representation of the 
MAJIN-TERB2 structure. Basic residues are coloured blue, whilst acidic residues are coloured in red. 
b) Electrophoretic mobility shift assays demonstrating the ability of MAJIN–TERB2 constructs (as 
indicated) to interact with 0.3 µM (per molecule) linear double-stranded DNA (dsDNA). c) Electron 
microscopy imaging of MAJIN1-112 TERB2168-220, MAJIN1-112 TERB2168-220 F73E Y75E, with and 
without dsDNA. Scale bars= 100 nm.  
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4.2.12 Method for measuring the affinity of MAJIN-TERB2 for dsDNA 

We modified our protocol for electrophoretic mobility shift assays and developed a system by which we 

could measure the affinity for dsDNA by the various MAJIN-TERB2 complexes. In this, we performed 

EMSA in triplicate using 5’-FAM-labelled dsDNA at 25 nM, below the expected KD value for the 

MAJIN-TERB2 complex with DNA.  ImageJ software (Schneider et al., 2012) was utilised  to quantify 

the proportion of dsDNA remaining unbound and converted to percentage bound. The percentage bound 

was subsequently plotted against MAJIN-TERB2 concentration and fitted to the Hill Equation from 

which the KD was calculated (Figure 4.2.14).  

4.2.13 Quantification of DNA-binding affinities 

Using the above method, the KD for MAJIN1-112 TERB2168-220 was calculated at 0.55 µM, similar to the 

previously reported affinity of TRF1 Myb-domain for dsDNA at 0.2 µM (Figure 4.2.15a) (Hanaoka et 

al., 2005). Accordingly, we measured the affinity of full-length, dimeric, TRF1 at 0.1 µM suggesting a 

cooperative enhancement to binding; data not shown). In a similar manner, cooperative enhancement 

for DNA binding is demonstrated by MAJIN-TERB2 as the dimerization mutant F73E Y75E displays 

a three-fold reduced apparent affinity of 1.81 µM (Figure 4.2.15a). Deletion of the basic C-terminus 

TERB2, however, completely ablates the ability to bind DNA, demonstrating its crucial role in the 

interaction (Figure 4.2.15a).  

4.2.14 The basic surface of MAJIN is essential for DNA binding  

The residues which form the basic surface of MAJIN are highly conserved and include K24, K26, R28, 

R34, K31 and R81 (Figure 19a). In order to remove this interaction surface, we designed mutations 

utilising the ROSIE Rosetta Sequence Tolerance Server (Smith and Kortemme, 2011) (Figure 4.2.17). 

The server employs an algorithm in which selected mutation sites are screening for tolerant mutations 

which are predicted to not negatively impact upon backbone geometry and folding. The more frequently 

a residue appears in its simulations, the more likely the mutation is to be tolerated by the structure. On 

this basis, we introduced the mutations K24M, K26E, R28E, R34D, K31E and R81D (Figure 4.2.16a,b). 

We found that introduction of the basic surface mutations results in the complete disruption of DNA-

binding (Figure 4.2.16c,d). 
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Figure 4.2.14| Method to quantify 
MAJIN-TERB2-dsDNA binding 
affinities. EMSA analysis of MAJIN-
TERB2 construct was utilised to analyse 
binding of 5’-FAM labelled dsDNA (25 
nM per molecule). Densitometry was 
performed to quantify the percentage of 
dsDNA unbound and subsequently 
plotted and fitted to the Hill equation to 
determine KD values (Methods section 
2.1.14).  
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Figure 4.2.15| Quantification of MAJIN-TERB2 core DNA-binding. Quantification of DNA-binding 
by MAJIN–TERB2 constructs (MAJIN1-112 TERB2168-220, black; MAJIN1-12 TERB2168-220 F73E Y75E, 
blue; MAJIN1-112 TERB2168-207, red) with KD values indicated. Error bars indicate standard error, n = 3 
EMSAs. *Apparent KD was estimated graphically from the concentration at 50 % DNA-binding as 
binding saturation was not achieved 

__________________________________________________________________________________ 

 

4.2.15 The unstructured MAJIN C-termini enhance DNA-binding 

The unstructured and extended C-termini of MAJIN contain two distinct basic patches, just C-terminal 

to the structured core, creating a continuous DNA-associating interface spanning the TERB2 C-termini, 

the MAJIN basic surfaces and the unstructured C-termini (Figure 4.2.18a). Inclusion of these sequences 

in MAJIN1-233 TERB2168-220 enhances DNA-binding with an increased affinity of 0.12 µM in comparison 

to 0.55 µM of the structured core (Figure 4.2.18b,c). Further, their inclusion rescues DNA-binding in 

the absence of the TERB2 C-termini, exhibiting an apparent affinity of 0.2 µM (Figure 4.2.18b,c).  

Together, our DNA-binding studies suggest that DNA-binding my the MAJIN-TERB2 complex is 

facilitated through the cooperative DNA association of the TERB2 C-termini, the two MAJIN basic 

surfaces, and the unstructured MAJIN C-termini. 
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Figure 4.2.16| The basic surface of the MAJIN core is essential for DNA binding. a) The MAJIN-
TERB2 protomer is displayed in cartoon format with basic residues which together form the basic 
surface of MAJIN are shown in blue. b) Electrostatic surface representation of MAJIN-TERB2 Basic 
surface mutant incorporating mutations K24M K26E R28E K31D R34E R81D which were predicted to 
be tolerated within the MAJIN-TERB2 fold by the ROSIE Rosetta Sequence Tolerance Server (Smith 
and Kortemme, 2011). c) EMSA analysis of MAJIN1-112 TERB2168-220 basic surface mutant and wild-
type (for comparison) to visualise the effect of the basic surface mutations to interact with 0.3 µM (per 
molecule) linear double-stranded DNA (dsDNA). d) Quantification of DNA-binding by MAJIN–
TERB2 constructs (MAJIN1-112 TERB2168-220, black; MAJIN1-112 TERB2168-220 basic surface mutant, 
grey) with KD values indicated. Error bars indicate standard error, n = 3 EMSAs. 
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   mutations     K31D  R34E  R81D 
 

 
 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

Figure 4.2.17| Design of the basic surface 
mutant. The ROSIE Rosetta Sequence 
Tolerance Server was utilised to determine 
mutations which would be tolerated within the 
MAJIN structure. Box plots representing the 
tolerance profile of each amino acid. Residue 
mutations with the highest frequency represent 
those which are likely most tolerated within the 
protein fold. The tolerated mutations of each 
residue are ranked with selected mutations 
detailed. 
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Figure 4.2.18| The unstructured C-terminus of MAJIN binds DNA. a) Electrostatic surface 
representation of the MAJIN-TERB2 core with CORAL-modelled unstructured MAJIN C-termini with 
basic residues highlighted as blue spheres. b) EMSA analysis of MAJIN1-233 TERB2168-220 and MAJIN1-

233 TERB2168-207. c) Quantification of DNA-binding by MAJIN–TERB2 constructs (MAJIN1-233 
TERB2168-220, yellow; MAJIN1-233 TERB2168-207, green) with KD values indicated. Error bars indicate 
standard error, n = 3 EMSAs. 
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DISCUSSION 
 

4.3.1 MAJIN-TERB2 structure confers 2-fold symmetry to the wider meiotic telomere complex 

Here I have described the structure solution of the MAJIN-TERB2 hetero-tetrameric complex in which 

a globular MAJIN dimer is encircled by two TERB2 molecules. MAJIN adopts a β-grasp fold in which 

a 4-stranded β-sheet encloses around a central α-helix, stabilised through hydrophobic association, with 

closure completed on the opposite side by hydrophobically docked TERB2 sidechains. The structure 

represents a symmetrical dimer presenting flanking 3-stranded β-sheet appendages to each side. This 

symmetrical core likely acts as an organising centre for the wider meiotic telomere complex.  

Our further studies, and those of another group, identified that the C-terminus of TERB1 forms a 

complex with the TERB2 N-terminus with a 1:1 stoichiometry with the crystal structure demonstrating 

a small globular fold in agreement with our characterisation by SAXS (Dunce et al., 2018b; Wang et 

al., 2019). In keeping with this finding, the MAJIN-TERB2 provides the architectural basis for a 2:2:2 

complex between MAJIN-TERB2-TERB1 (Dunce et al., 2018b). In keeping with the 1:1 stoichiometry 

of the TERB2-TERB1 complex and the 2:1 interaction between TRF1 and TERB1, TRF1-TERB1-

TERB2 forms a 2:1:1 complex and MAJIN-TERB2-TERB1-TRF1 forms a 2:2:2:4 complex (Long et 

al., 2017; Pendlebury et al., 2017; Dunce et al., 2018b). These combined findings allow for the 

generation for a molecular model of the complete meiotic telomere complex, schematised in Figure 

4.3.1. These findings are reminiscent of the overall architecture provided by the Shelterin complex in 

which the components POT1, TPP1, TIN2, TRF1, and RAP1 form a 1:1:1:2:2 complex in which TRF1 

interacts with a single TIN2 molecule (TIN2 associates with TRF1 in a manner similar to TERB1) (Lim 

et al., 2017).  
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Figure 4.3.1| Model for molecular architecture of the Meiotic telomere complex. The nuclear-
membrane embedded MAJIN dimer interacts with two TERB2 molecules which each interact with a 
further TERB1 molecule via their N-termini. Each TERB1 molecule recruits a TRF1 dimer resulting in 
the formation of a 2:2:2:4 MAJIN-TERB2-TERB1-TRF1 complex.  

 

4.3.2 What is the functional significance of a long unstructured MAJIN C-terminus? 

Our model for the MAJIN-TERB2 complex predicts an extensive distance between the MAJIN-TERB2 

core and its nuclear envelope embedded C-terminal transmembrane helices, theoretically upwards of 

400 Å. The length of the MAJIN unstructured sequences confers spatial freedom to the MAJIN-TERB2 

core with respect to the transmembrane helices. This may facilitate the assembly of the complex during 

meiosis at the nuclear membrane which is coated on its nucleoplasmic surface by the nuclear lamina. 

Their length, which may be as long as 400 Å, might be long enough to span through the nuclear lamina 

which is between 400 – 600 Å in thickness in mitotic cells (Fawcett, 1966; Gerace and Huber, 2012). 

During mitotic division, SUN1 anchors telomeres within the nuclear membrane through interaction with 

type-A lamin such that they are immobile (Haque et al., 2006). Rapid prophase movements may be 

facilitated in two ways. Firstly, the interaction is disrupted through the phosphorylation of the SUN1 C-

terminus (Haque et al., 2006). Secondly, the composition of the nuclear lamina is altered during meiosis. 

During meiosis, a specific type-A lamin isoform, lamin C2, is expressed (Link et al., 2013). Despite not 

being required for telomeric attachment, the knockout of lamin C2 delays formation of the telomeric 

bouquet suggesting it plays a role in the allowing telomeric motility (Link et al., 2013).  Lamin C2 

therefore appears to play a key role in allowing telomeric movements, possibly through altered dynamics 

within the nuclear membrane, such as altered fluidity and thickness. 
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4.3.3 DNA binding by MAJIN-TERB2 and its incorporation within the attachment plate? 

The MAJIN dimer presents large basic surfaces on its front and back. Emanating from the C-termini of 

the MAJIN core, localised at the top of the MAJIN dimeric interface, are two long unstructured 

sequences (residues 106-233 of 254) containing highly basic sequences directly proximal to the MAJIN 

core whilst from the TERB2 C-termini, localised at the bottom of the flanking β-sheet appendages are 

short  and highly basic (207-220). Solution of the crystal led to the realisation that these two basic 

interfaces may be connected through the surface basic patch to form a continuous DNA interacting 

surface with the symmetry of the structure allowing for a model in which DNA is looped over the 

MAJIN dimer (Figure 4.3.2a).  

Fluorescence imaging reveals that telomeric DNA is looped up out of the SC, localising distal to the 

SYCP3-stained lateral elements and TERB2-stained meiotic telomere complex (Figure 4.3.2b). This 

localisation is concomitant with our model in which we expect DNA to track the unstructured MAJIN 

C-termini which extend towards the nuclear membrane. Telomeric DNA may therefore form an integral 

part of the telomeric attachment plate. We demonstrated in vitro that the DNA binding sequences with 

the MAJIN C-termini confer an enhancement to DNA binding with their importance in vivo 

demonstrated through the finding that MAJIN harbouring mutated basic patches does not fully rescue 

meiotic defects in MAJIN null mice (Shibuya et al., 2015). 
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Figure 4.3.2| Model for the DNA binding mode of the MAJIN-TERB2 complex. C-terminal 
transmembrane helices embedded within the inner nuclear membrane anchor unstructured C-termini of 
MAJIN. Each protomer of the MAJIN dimer presents a basic surface (blue) which face in opposite 
directions. In addition, basic patches within the MAJIN unstructured C-termini and basic patches at the 
C-termini of the TERB2 (red) molecules (blue circles) create a continuous DNA interacting surface 
allowing DNA to loop over the top of the molecule. b) Late pachytene chromosomes of spread mouse 
spermatocytes stained with anti-TERB2 (magenta) in combination with telomere fluorescence in situ 
hybridisation (cyan; TeloFISH). Scale bars, 0.3 µm and 0.5 µm. A normalised intensity-distance plot is 
shown representing an average of multiple images (n = 25 telomeres). Work presented in this panel was 
performed by Irene da Cruz of the Ricardo Benavente group, University of Würzburg, Germany. 

 

4.3.4 The dynamics of DNA binding at the meiotic telomere complex 

Telomeric DNA is ordinarily protected from the DNA damage response by the Shelterin complex, of 

which TRF1 is a key component (de Lange, 2009). DNA binding is mediated through the Myb-domains 

of TRF1 which are specific for telomeric DNA (Hanaoka et al., 2005). TERB1 further possesses Myb 

domain, thus combining with its affinity for TRF1 to mediate its telomeric recruitment (Long et al., 

2017; Pendlebury et al., 2017; Zhang et al., 2017). In further studies we found that TRF1 binds DNA 

with an apparent affinity of 0.1 µM (Dunce et al., 2018b). 

Through quantifying the relative affinities for DNA of MAJIN-TERB2 complexes harbouring various 

truncations and mutations, the essentiality and relative contribution of basic patches within its structure 

were determined. We found that both the C-terminus of TERB2 and the basic surface of MAJIN are 

essential for DNA binding in contrast to a contributory role of the MAJIN unstructured C-termini (these 

enhance the apparent affinity from 0.55 to 0.12 µM). Further studies found that the TERB2 interacting 

sequence of TERB1 does not contribute majorly to DNA binding with an apparent affinity of 0.46 µM 
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(Dunce et al., 2018b). In contrast to our finding, another study found that the basic patches within the 

unstructured C-termini are essential for DNA binding (Shibuya et al., 2015). However, their experiments 

were performed with MAJIN purified in the absence of TERB2 and demonstrated an elution volume by 

size exclusion chromatography indicative of aggregation. This suggests that the MAJIN protein they 

analysed by electrophoretic mobility shift assay was misfolded and likely did not harbour the basic 

surface present within our crystal structure. Therefore, the basic patches within the unstructured termini 

represented the sole sequences capable of binding DNA. This is in keeping with our finding that MAJIN 

is largely insoluble in the absence of TERB2, indicating that their complexation is likely constitutive.  

We therefore have two complexes capable of mediating association with telomeric DNA. It appears that 

DNA binding by both complexes is not mutually exclusive with TRF1-association resulting in the super-

shift of MAJIN-TERB2-TERB2:DNA complexes by electrophoretic mobility shift assay (Dunce et al., 

2018b). However, the mode of DNA binding which mediate telomeric association may alter upon 

nuclear envelope recruitment.  

4.3.5 The spatial displacement of Shelterin – a consequence of structural rearrangement? 

It was demonstrated that TRF1 in association with the other Shelterin complex components undergoes 

spatial displacement during the zygotene to pachytene transition (Shibuya et al., 2015) (Figure 4.1.12). 

During zygotene, TRF1 colocalises with MAJIN, TERB2 and TERB1 whilst localising as a ring about 

MAJIN during pachytene. This was proposed to represent a mechanism of exchange in which TRF1 is 

dislodged from telomeric DNA and replaced by the meiotic telomere complex. It was found that the 

association between TRF1 and TERB1 is weakened by a phosphorylation event dependent upon CDK1 

(Shibuya et al., 2015; Dunce et al., 2018b). This could suggest that upon nuclear envelope recruitment, 

cell-cycle controlled phosphorylation events drive the dissociation of TRF1 from the meiotic telomere 

complex resulting in its displacement. However, from microscopic observations, it appears more likely 

that TRF1 is merely spatially shifted and is in fact retained in association with telomeric DNA. The 

observation could therefore be explained by the combined effects of dissociating TRF1 upon 

phosphorylation and steric effects upon DNA binding of the meiotic telomere complex upon nuclear 

envelope recruitment of the telomeres. We therefore postulate a change in the mode of DNA binding 

during the zygotene to pachytene transition, as depicted in Figure 4.3.3,4. During zygotene, DNA 
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binding is mediated by the Myb-domains of TRF1 and TERB1 (Figure 4.3.3). During late pachytene, 

upon CDK1-dependent phosphorylation which results in disruption of the interaction between the 

meiotic telomere complex and TRF1, DNA is looped over the meiotic telomere complex and TRF1 is 

displaced to peripheral telomeric with which it remains associated (Figure 4.3.4). 

 

 

Figure 4.3.3| The telomere bound structure of the meiotic telomere complex during zygotene. DNA 
association is mediated through the Myb-domains of TRF1 and TERB1 during zygotene. The telomeric 
ends are recruited to the meiotic telomere complex through interactions of TERB1 with TRF1.  
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Figure 4.3.4| The meiotic telomere complex during pachytene. The TRF1-TERB1 interact is 
disrupted during late-pachytene which allows for its displacement to the telomeric periphery. Telomeric 
DNA is further associated by the MAJIN-TERB2 complex in a looping fashion, facilitating its inclusion 
into the nuclear lamina.  

 

Interestingly, the ring-like organisation of Shelterin is similar to the pachytene localisation of TERB2 

which also encircles the telomeric MAJIN focus (Figure 4.3.5a,b) (Dunce et al., 2018b). This could 

suggest a wide-scale rearrangement of telomere associated proteins. A major difference between 

zygotene and pachytene is the speed of chromosome movements with rapid prophase movements 

peaking during zygotene and being minimal during pachytene (Lee et al., 2015). During such 

movements, tension is likely exerted upon the unstructured linker sequences, such as the C-terminal 

ends of MAJIN and the sequence connecting the N and C-termini of TERB2. As such, complexes would 

be linearly stretched in plane with the direction of telomere movement (Figure 4.3.5c). In pachytene, 

without such strain, complexes could compact and more closely associate with the inner nuclear 

membrane, potentially causing meiotic telomere components to spread out from the MAJIN central 
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focus (Figure 4.3.5d). If this phenomenon were to exist, we might expect to see a linear distribution of 

meiotic telomere complex components at the telomere during zygotene. However, the effect would only 

be visible in live cells as tension would be lost during nuclei preparation. It would be interesting to know 

how the effects of tension by RPMs and the steric constraints of nuclear membrane adhesion effect the 

structure of the meiotic telomere complex and how the previous described mechanisms such as TRF1 

dissociation and DNA binding contribute. A major challenge for microscopic studies of structural 

features by fluorescence is found in determining what are real structural changes, taking into account 

preparation artefacts and the contribution of antibody size and orientation.  

 
 

Figure 4.3.5| Super-resolution fluorescence imaging of telomeric ends to visualise MAJIN-TERB2 
localisation. a-b) Antibodies towards SYCP3 (green), TERB2 (cyan) and MAJIN (magenta) were 
utilised to stain a) chromosomes of spread mouse zygotene spermatocytes and b) chromosomes of 
spread mouse pachytene spermatocytes. Scale bars, 0.3 µm. Normalised intensity-distance plots are 
shown. The frontal plot represents an average of multiple images (n = 26 telomeres). The lateral-top plot 
represents an individual image. Work presented in this figure was performed by Irene da Cruz of the 
Ricardo Benavente group, University of Würzburg, Germany. c) Schematic to show meiotic telomere 
complex during zygotene rapid prophase movements. Tensile forces, which cause stretching of 
unstructured linker sequences, are indicated by double-headed arrows. d) During pachytene, rapid 
prophase movements are minimal allowing linker sequences to adopt unstretched conformations. This 
may result in spatial displacement of telomeric components about a MAJIN focus which may occur in 
tandem with TRF1 dissociation (grey arrow).  
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4.3.6 Higher order assembly to create the telomere attachment plate 

In pachytene, nuclear envelope attachment of the synaptonemal complex appears as an electron dense 

assembly in which the SC fuses with the inner nuclear membrane (Holm and Rasmussen, 1977). This 

structure is referred to as the telomeric attachment plate. We noted by electron microscopy that MAJIN-

TERB2 forms ring-like structures, connected by fine threads, upon incubation with DNA (Figure 

4.2.13c) with similar results for the wider MAJIN-TERB2-TERB1 core complex (Dunce et al., 2018b). 

These may represent forms of higher order assembly which are abolished upon disruption of the MAJIN 

dimer through mutation of the hydrophobic interface (Figure 4.2.12-13). For recursive assembly, there 

must be two modes of lateral association between MAJIN-TERB2 complexes. A possible interaction is 

present within the P3221 MAJIN-TERB2 crystal lattice in which Y202 and K86 contribute to a 

hydrophobic interface between anti-parallel β-appendages of TERB2 (Figure 4.3.6). This interaction 

and the MAJIN dimeric interface may provide the molecular basis for recursive assembly of MAJIN-

TERB2 molecules on the inner nuclear membrane and provide a plane of DNA associative molecules 

about which telomeric DNA may be looped and embedded. The cumulative strength of these 

associations would make for a robust attachment of telomeric DNA to the nuclear envelope, possibly of 

great importance given the speed at which telomeres are moved about the nuclear envelope (100 nm/s) 

(Lee et al., 2015). Given our finding that MAJIN-TERB2 is stable as a 1:1 complex (upon disruption of 

the dimeric interface), a dimeric architecture must be functionally important and the above provides a 

possible function. 

4.3.7 MAJIN-TERB2: the structural basis for meiotic telomere attachment 

We have found that the MAJIN-TERB2 core structure provides an architectural basis for the formation 

of the wider meiotic telomere complex, coordinating, through TERB1, the TRF1 component of the 

Shelterin complex to mediate telomere recruitment. Further studies to those presented here demonstrated 

that flexible linkers attach the MAJIN-TERB2 core structure to globular TERB1-TERB2 domains which 

are mobile with respect to the core. The precise arrangement of the components within the cell, and 

during different phases of the meiotic cycle, might be determinable through a combination of high-

resolution mapping of the complex components, potentially by cryo-electron microscopy and correlative 

light and electron microscopy. How the proteinaceous complex interfaces with a matrix of looped 

telomeric DNA is further key to our understanding of how the telomere attachment plate forms a robust 
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attachment to the nuclear envelope. The mechanisms behind the dynamics of this complex through the 

zygotene to pachytene transition are still poorly understood, as is how this complex integrates with the 

LINC complex to transmit cytoskeletal force to the telomeric ends. Understanding of the latter will come 

from further experiments into characterising the SUN1-TERB1 interaction. More key questions within 

the same vein of scientific interest remain unanswered, such as how does KASH5 associate with 

cytoskeleton-associated dynein-dynactin complex? The molecular mechanisms of each of these aspects, 

and many more, are key to developing a complete understanding of how the molecular movers of the 

meiotic cycle drive chromosome dynamics and facilitate meiotic progression. 

 

Figure 4.3.6| Recursive assembly of MAJIN-TERB2 at the nuclear envelope. a) The P3221 lattice 
of MAJIN1-112-TERB2168-220 crystals is mediated laterally through anti-parallel associations of the β-
appendage in which residues Y202 and K86 contribute to a hydrophobic interface. b) The dimeric 
architecture of the MAJIN-TERB2 complex in association with the anti-parallel associations of the β-
appendages allows for a planar assembly on the inner nuclear membrane. Figure created by Dr Owen 
Davies. 
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Concluding remarks: Towards a molecular understanding of mammalian meiosis 

Prior to the past five years, details regarding the mechanisms of synaptonemal complex structure and 

dynamics lacked atomistic details. Since, much progress has been made with newfound understanding 

regarding the initial steps in the synapsis of meiotic chromosomes by SYCP1 and the molecular basis 

for the recruitment of telomeres to the nuclear envelope by the meiotic telomere complex, ensuring 

robust attachments are in place prior to rapid prophase movements. The essentiality of both of these 

complexes underpins their importance within the meiotic division. The fact that evolution has moulded 

such an elaborate, highly orchestrated and finely tuned series of events to achieve reductional cell 

division, whilst introducing genetic diversity, in a manner which is largely conserved across almost all 

sexually reproducing organisms, truly suggests that the meiotic cycle, as we visualise it today, is close 

to, if not already, the most effective and efficient mechanism for doing so possible. This makes the 

pursuit of studying the machines and their components which drive this process, and the regulators 

which control them, of great interest. Although we do not understand all the hows and whys, and never 

will, it is humbling to know that we are studying something that is truly optimised and could not likely 

be improved through human intervention. 
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Appendix 1 – SYCP1 amino acid sequence alignment 
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Alignment of SYCP1 sequences. The amino acid sequences of human, mouse, rat, sheep, bovine, pig, 
zebra fish, and hydra vulgaris SYCP1 are aligned. Colour intensity is representative of conservation 
with white being non-conserved. Key residue numbers for this study are indicated. Lupas predictions 
for coiled-coil regions are shown above secondary structural predictions of JNet.   
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Appendix 2 – Purification and analysis of C-terminal SYCP1 constructs 
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Purification and characterisation of SYCP1 C-terminal constructs. a-g) SDS-PAGE analysis 
showing the purification of His6-SYCP1 constructs by Ni-NTA affinity chromatography and anion 
exchange chromatography using the HiTrap Q. Constructs 640-805,640-869, and 640-917 had to be 
diluted to 50 mM KCl in order to bind the HiTrap Q column. h-n) SEC-MALS analysis of the 
corresponding SYCP1 constructs with the measured molecular weight indicated. All constructs were 
dimeric apart from SYCP1206-783 which was tetramer. Light scattering (LS) and differential refractive 
index (dRI) are plotted as solid and dashed lines, respectively, with molecular weights (Mw) shown as 
diamonds across elution peaks. 
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Appendix 3 – SEC-MALS analysis of SYCP1 C-terminal constructs 

 

 

Optimisation of the construct SYCP1640-783. SEC-MALS analysis of C-terminal constructs displaying 
the measured molecular weight and the determined oligomeric status of each construct. 


