
Superoptimal analytic approximation and exterior

products

Dimitrios Chiotis

Thesis submitted for the degree of

Doctor of Philosophy

Academic Supervisor : Dr Zinaida Lykova

Advisors: Prof. Nicholas Young and Dr. David Kimsey

School of Mathematics, Statistics and Physics

Newcastle University

Newcastle Upon Tyne

United Kingdom

November 2020





Abstract

This dissertation concerns the classical problem of finding a bounded analytic function on

the unit disc D which approximates a given essentially bounded function G on the unit circle

T as well as possible in the L∞ norm.

In the case that G is a continuous m×n matrix-valued function on T, there is a typically

large set of optimal bounded analytic approximants in the L∞ norm, and it is therefore

natural to study bounded analytic approximants Q on D for which G−Q is minimised in a

strengthened sense.

One defines, for j ≥ 0,

s∞j (G−Q) = ess sup
z∈T

sj(G(z)−Q(z)),

where s0, s1, . . . , sj are the singular values of a matrix. One then says that a bounded

analytic matrix function Q is a superoptimal analytic approximant of G if Q lexicographically

minimises the sequence

(s∞0 (G−Q), s∞1 (G−Q), . . . , )

over all bounded analytic matrix functions.

It is known that every continuous matrix-valued function on T has a unique superoptimal

analytic approximant AG; moreover, for rational G, there are numerical procedures for the

calculation of AG. Existing algorithms are computationally intensive.

This thesis introduces a new operator-theoretic technique, based on exterior powers of

Hilbert spaces and operators, for the calculation of the superoptimal analytic approximants.

The result is a new algorithm which avoids some of the lengthier and potentially more ill-

conditioned steps in previously described algorithms. In particular, the present algorithm

does not require the spectral factorisation of matrix-valued positive functions on T.
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Chapter 1

Introduction

1.1 Superoptimal analytic approximation

The superoptimal analytic approximation problem entails finding, for a given matrix-valued

function G in L∞(T,Cm×n), a bounded analytic matrix-valued function Q in H∞(D,Cm×n)

which simultaneously minimises the essential suprema, taken over all z ∈ T, of all the singular

values of the matrix G(z)−Q(z).

Let us first provide some preliminary definitions and then formulate the problem. Through-

out the dissertation, Cm×n denotes the space of m× n complex matrices with the operator

norm and D,T denote the unit disc and the unit circle respectively.

Definition 1.1.1. H∞(D,Cm×n) denotes the space of bounded analytic matrix-valued func-

tions on the unit disc with the supremum norm

‖Q‖H∞
def
= ‖Q‖∞

def
= sup

z∈D
‖Q(z)‖Cm×n .

L∞(T,Cm×n) is the space of essentially bounded Lebesgue measurable matrix-valued functions

on the unit circle with the essential supremum norm

‖f‖L∞ = ess sup
|z|=1

‖f(z)‖Cm×n .

Also, C(T,Cm×n) is the space of continuous matrix-valued functions from T to Cm×n.

Definition 1.1.2. Let F ∈ L∞(T,Cm×n) and let sj(F (z)) denote the j-th singular value of

the matrix F (z), for z ∈ T. We define

s∞j (F ) = ess sup
|z|=1

sj(F (z))

and

s∞(F ) = (s∞0 (F ), s∞1 (F ), s∞2 (F ), . . . ).
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1.1. Superoptimal analytic approximation

Problem 1.1.3 (The superoptimal analytic approximation problem). Given a function

G ∈ L∞(T,Cm×n), find a function Q ∈ H∞(D,Cm×n) such that the sequence s∞(G − Q)

is minimised with respect to the lexicographic ordering.

In general, the superoptimal analytic approximant might not be unique. However, it

has been proved that if the given function G belongs to H∞(D,Cm×n) + C(T,Cm×n), then

Problem 1.1.3 has a unique solution. The following theorem, which was obtained by V.V.

Peller and N.J. Young in [24], asserts what we have just noted.

Theorem 1.1.4 ([24], p. 303). Let G ∈ H∞(D,Cm×n) + C(T,Cm×n). Then the minimum

with respect to the lexicographic ordering of s∞(G−Q) over all Q ∈ H∞(D,Cm×n) is attained

at a unique function Q0. Moreover, the singular values sj(G(z)−Q0(z)) are constant almost

everywhere on T for j = 0, 1, 2, . . . .

The topic of this dissertation is not the existence and uniqueness of the function AG
described in Theorem 1.1.4, but rather the construction of AG. In the proof of the validity

of our construction, we have no compunction in making any use of results proved in [24],

such as the existence of some special matrix functions. For example, to justify our algorithm

we shall prove, using results of [24], that certain operators that we introduce are unitarily

equivalent to block Hankel operators, which fact enables us to make use of general properties

of Schmidt vectors of Hankel operators, without the need to calculate the symbols of those

Hankel operators.

The proof of Theorem 1.1.4 by Peller and Young is based on a process of diagonali-

sation of the error function G − Q, for Q ∈ H∞(D,Cm×n). They prove the existence of

certain unitary-matrix-valued functions V,W on T such that W (G − Q)V takes a block-

diagonal form in which the singular values of G(z)−Q(z) are exhibited. For any particular

G ∈ H∞(D,Cm×n) + C(T,Cm×n) the matrix functions V and W can in principle be com-

puted with the aid of Wiener-Masani matrix factorisations, or spectral factorisations, of

positive-semi-definite-matrix-valued functions on the circle. However, our aim is to give an

algorithm for the construction of AG which avoids the calculation of Wiener-Masani fac-

torisations of matricial positive semi-definite functions. A key point of the present work

is that, even though we make extensive use of the existence of the matrix functions V,W ,

the algorithm does not require us to calculate these matrix functions. This feature of the

construction contrasts with the conceptual algorithm put forward by Peller and Young in

[25], which does not specify a way of computing the Schmidt pairs occurring in the formula

for AG, but describes them in terms of the functions V,W , so that any straightforward way

of finding the Schmidt pairs will almost certainly require the calculation of V and W . We

shall, however, need to calculate the inner and outer factors of some elements of H2(D,Cn).

For this purpose we need to find the spectral factors of positive scalar-valued functions on

T, but this is a simpler and better-conditioned computational task than the corresponding

problem for matricial functions.

The purpose of this dissertation is to derive an alternative algorithm to the one given in

[25], which avoids the Wiener-Masani factorisations of matrix functions and employs exterior

2



1.2. Main results

powers of Hilbert spaces along with some of the ideas obtained in [24] and [25]. We adopt

the known theory of exterior powers of Hilbert spaces with their established operations and

inner product. We also present a notion of pointwise exterior product for mappings that

are defined on D or T with the same operations and inner product mentioned. It is worth

noting that the algorithm we introduce in Section 3.2 produces a similar formula to [25] for

the superoptimal analytic approximant AG of a matrix-valued continuous function G on the

circle, to wit

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
, (1.1)

where xi, yi are certain vector-valued functions on the circle which are the Schmidt pairs of a

succession of Hankel-type operators Γi, ti = ‖Γi‖ and hi ∈ H2(D,C) such that

|hi(z)| = ‖xi(z)‖Cn almost everywhere on T for i = 0, 1, 2 . . . , r − 1. The difference be-

tween the two approaches lies in the methods of defining and calculating the vectors xi, yi

and in characterising the function spaces in which they belong. In [24],[25] the spaces are

described by a block-diagonalisation procedure which requires the calculation of a “thematic

completion” of an inner column-matrix function, which can itself be constructed from the

spectral or Wiener-Masani factorisation of a singular positive-valued function on the circle.

In the present approach, the objects xi, yi and the spaces in which they lie are described

with the aid of wedge products of Hilbert spaces and operators. The new approach enables

us to derive the functions xi, yi, and hence to calculate AG from the formula (1.1), without

the spectral factorisation step. The results of this thesis are presented in [4], [5] and in the

extended abstract in [39]. In the algorithm of [25], the pair of vectors (xj, yj) in equation

(1.1) is a Schmidt pair of the operator Γj defined below in Theorem 3.2.54, corresponding

to ‖Γj‖. In the present algorithm we give a construction of a suitable Schmidt pair (xj, yj)

for Γj corresponding to ‖Γj‖ using exterior powers via the equations

xj+1 = (ICn − ξ0ξ
∗
0 − · · · − ξjξ∗j )vj+1, yj+1 = (ICm − η̄0η

T
0 − · · · − η̄jηTj )wj+1, (1.2)

where the quantities concerned are generated by the algorithm below, without any need for

Wiener-Masani factorization of positive matricial functions on T. See Lemmas 3.2.55 and

3.2.56 for the proof. Since the singular value ti of Γi can perfectly well have high multiplicity,

there is no sort of uniqueness of Schmidt pairs. Therefore we do not assert that the summands

in the right hand side of equation (1.1) are the same in [25] and in the present algorithm,

though of course the sums themselves must be, because AG is uniquely determined.

1.2 Main results

The main outcome of this dissertation is the algorithm for the superoptimal analytic ap-

proximation given in Chapter 3 and presented below. The reader can find an application to

a concrete example in Chapter 4.

In order to present the algorithm, let us first give some preliminary definitions.

3



1.2. Main results

Definition 1.2.1 ([14]). (i) L2(T,Cn) is defined to be the space of square-integrable Cn-

valued functions on the unit circle with its natural inner product and norm

‖f‖L2 =

(
1

2π

∫ 2π

0

‖f(eiθ)‖2
Cndθ

)1/2

.

(ii) H2(D,Cn) is defined to be the space of holomorphic Cn-valued functions on the unit disc

such that

lim
r→1

(
1

2π

∫ π

−π
‖f(reiθ)‖2

Cndθ

)1/2

<∞.

(iii) H2(D,Cn)⊥ is defined to be the space

H2(D,Cn)⊥ = {f ∈ L2(T,Cn) | 〈f, g〉L2 = 0, for all g ∈ H2(D,Cn)}.

Remark 1.2.2. Let 0 < r < 1 and let f ∈ H2(D,Cn). By the generalised Fatou’s Theorem

C.2.5, the radial limits

lim
r→1

f(reiθ) =
‖·‖Cn

f̃(eiθ)

exist almost everywhere on T and define a function f̃ ∈ L2(T,Cn) which satisfies

lim
r→1
‖f(reiθ)− f̃(eiθ)‖Cn = 0 almost everywhere on T.

Moreover, the space H2(D,Cn) is identified isometrically with a closed subspace of

L2(T,Cn) by the injection f 7→ f̃ .

Definition 1.2.3. Let f ∈ L2(T,Cm) be given by

f(z) =
∞∑

n=−∞

anz
n for all z ∈ T.

The projection

P− : L2(T,Cm)→ H2(D,Cm)⊥

is given by

P−

(
∞∑

n=−∞

anz
n

)
=

−1∑
n=−∞

anz
n for all z ∈ T.

Definition 1.2.4. For any G ∈ L∞(T,Cm×n), we define the Hankel operator with symbol

G to be the operator

HG : H2(D,Cn)→ H2(D,Cm)⊥

given by

HGx = P−(Gx).

4



1.2. Main results

Definition 1.2.5. Let H,K be Hilbert spaces. We define by L(H,K) the space of bounded

linear operators from H to K.

Definition 1.2.6 ([38], p. 204). Let H,K be Hilbert spaces and let T ∈ L(H,K). For any

non-negative integer k, let

sk(T ) = inf{‖T −R‖ : R ∈ L(H,K), rankR ≤ k}.

The numbers

s0(T ) ≥ s1(T ) ≥ s2(T ) ≥ · · · ≥ 0

are called the singular values of T.

Remark 1.2.7. In this dissertation we call an operator U : H → K between Hilbert spaces

H,K a unitary operator if U is both isometric and surjective. Some authors restrict the

name “unitary operator” to the case that H = K. Such authors would use a terminology like

“isometric isomorphism” for our “unitary operator” in the case that H 6= K.

Remark 1.2.8. Suppose s is a singular value for a compact operator T ∈ L(H,K). Then

s2 is a singular value of T ∗T, and so there is a corresponding eigenvector x ∈ H such that

T ∗Tx = s2x.

If s 6= 0, we can let y = s−1Tx ∈ K, and then

T ∗y = sx.

Definition 1.2.9 ([38], p. 206). Let H,K be Hilbert spaces and let T : H → K be a compact

operator. Suppose that s is a singular value of T. A Schmidt pair for T corresponding to s

is a pair (x, y) of non-zero vectors x ∈ H and y ∈ K such that

Tx = sy, T ∗y = sx.

Lemma 1.2.10. Let T ∈ L(H,K) be a compact operator and let x ∈ H, y ∈ K be such that

(x, y) is a Schmidt pair for T corresponding to s = ‖T‖. Then x is a maximizing vector for

T, y is a maximizing vector for T ∗, and ‖x‖H = ‖y‖K .

Proof. Since (x, y) is a Schmidt pair for T corresponding to s = ‖T‖,

Tx = sy, T ∗y = sx.

5



1.2. Main results

Then

s‖y‖K = ‖Tx‖K ≤ ‖T‖‖x‖H = s‖x‖H = ‖T ∗y‖H ≤ ‖T ∗‖‖y‖K = s‖y‖K .

Thus equality holds throughout, that is,

‖Tx‖K = ‖T‖‖x‖H , ‖T ∗y‖H = ‖T ∗‖‖y‖K , ‖x‖H = ‖y‖K .

Definition 1.2.11 ([14], p. 190). The matrix-valued bounded analytic function

Θ ∈ H∞(D,Cm×n) is called inner if Θ(eit) is an isometry from Cn to Cm for almost ev-

ery eit on T.

An analytic m × n-matrix-valued function Φ on D is said to be outer if

ΦH2(D,Cn) = {Φf : f ∈ H2(D,Cn)} is a norm-dense subspace of H2(D,Cm), and co-outer

if ΦTH2(D,Cm) = {ΦTg : g ∈ H2(D,Cm)} is dense in H2(D,Cn).

Definition 1.2.12. Let E be a Hilbert space and let (⊗pH , ‖ · ‖⊗pHE) be the p-fold Hilbert

tensor product. Let Sp
def
= Sym{1, · · · , p} be the symmetric group on {1, · · · , p}.

For σ ∈ Sp, we define Sσ : ⊗pE → ⊗pE on elementary tensors by

Sσ(x1 ⊗ x2 ⊗ · · · ⊗ xp) = xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(p),

and we extend Sσ to ⊗pE by linearity, that is, for u =
∑n

i=1 x
i
1 ⊗ · · · ⊗ xip, we define

Sσ(u) =
n∑
i=1

Sσ(xi1 ⊗ · · · ⊗ xip).

A tensor u ∈ ⊗pHE is called antisymmetric if

u = εσSσu

for all σ ∈ Sp, where εσ is the signature of the permutation σ. The space of all antisymmetric

tensors in ⊗pHE will be denoted by ∧pE.

Definition 1.2.13. Let E be a Hilbert space and let f, g : D→ E (f, g : T→ E) be E-valued

maps. We define the pointwise wedge product of f and g,

f ∧̇g : D→ ∧2E (f ∧̇g : T→ ∧2E)

by

(f ∧̇g)(z) = f(z) ∧ g(z) for all z ∈ D (for almost all z ∈ T).

Recall that, by Theorem 1.1.4, if G ∈ H∞(D,Cm×n) + C(T,Cm×n), then Problem 1.1.3

has a unique solution. Given that, the endeavour to construct an algorithm that determines

the unique superoptimal analytic approximant is not void.

6



1.2. Main results

Hence we shall devise an algorithm that, given a function

G ∈ H∞(D,Cm×n) + C(T,Cm×n),

yields a function AG ∈ H∞(D,Cm×n) such that the sequence

s∞(G−AG) = (s∞0 (G−AG), s∞1 (G−AG), . . . )

is minimised with respect to the lexicographic ordering.

The following is a brief summary of our algorithm. A full account of all the steps, with

definitions and justifications will be given in Section 3.2.

Algorithm: For a given G ∈ H∞(D,Cm×n) + C(T,Cm×n), the superoptimal analytic ap-

proximant AG ∈ H∞(D,Cm×n) can be constructed as follows.

i) Step 0. Let T0 = HG be the Hankel operator with symbol G as defined by Definition

1.2.4. Let t0 = ‖HG‖. If t0 = 0, then HG = 0, which implies G ∈ H∞(D,Cm×n). In this case,

the algorithm terminates, we define r, which is the least index j ≥ 0 such that Tj = 0, to be

zero and the superoptimal approximant AG is given by AG = G.

Suppose that t0 6= 0. By Hartman’s Theorem 3.1.2, HG is a compact operator and so there

exists a Schmidt pair (x0, y0) corresponding to the singular value t0 of HG. By the definition

of a Schmidt pair (x0, y0) for the Hankel operator

HG : H2(D,Cn)→ H2(D,Cm)⊥,

x0 ∈ H2(D,Cn), y0 ∈ H2(D,Cm)⊥

are non-zero vector-valued functions such that

HGx0 = t0y0, H∗Gy0 = t0x0.

By Lemma 3.1.12, x0 ∈ H2(D,Cn) and z̄ȳ0 ∈ H2(D,Cm) admit the inner-outer factorisations

x0 = ξ0h0, z̄ȳ0 = η0h0 (1.3)

for some scalar outer factor h0 ∈ H2(D,C) and column matrix inner functions ξ0 ∈ H∞(D,Cn),

η0 ∈ H∞(D,Cm). Then,

‖x0(z)‖Cn = |h0(z)| = ‖y0(z)‖Cm almost everywhere on T. (1.4)

We write equations (1.3) as

ξ0 =
x0

h0

, η0 =
z̄ȳ0

h0

. (1.5)

7



1.2. Main results

By equations (1.4) and (1.5),

‖ξ0(z)‖Cn = 1 = ‖η0(z)‖Cm almost everywhere on T. (1.6)

By Theorem D.2.4, every function Q1 ∈ H∞(D,Cm×n) which is at minimal distance from G

satisfies

(G−Q1)x0 = t0y0, y∗0(G−Q1) = t0x
∗
0. (1.7)

ii) Step 1. Let

X1
def
= ξ0∧̇H2(D,Cn). (1.8)

By Proposition 3.2.2, X1 is a closed subspace of H2(D,∧2Cn). Moreover

η0∧̇zH2(D,Cm) ⊂ zH2(D,∧2Cm)

and therefore

η̄0∧̇zH2(D,Cm) ⊂ z̄H2(D,∧2Cm),

that is, if

Y1
def
= η̄0∧̇H2(D,Cm)⊥, (1.9)

then Y1 is a closed subspace of H2(D,∧2Cm)⊥.

Choose any function Q1 ∈ H∞(D,Cm×n) which satisfies equations (1.7). Consider the oper-

ator T1 : X1 → Y1 defined by

T1(ξ0∧̇x) = PY1(η̄0∧̇(G−Q1)x) for all x ∈ H2(D,Cn), (1.10)

where PY1 is the projection from L2(T,∧2Cm) on Y1. By Corollary 3.2.5 and Proposition

3.2.8, T1 is well-defined. If T1 = 0, then the algorithm terminates, we define r to be 1 and, in

accordance with Theorem 3.2.59, the superoptimal approximant AG is given by the formula

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
=
t0y0x

∗
0

|h0|2
,

and the solution is

AG = G− t0y0x
∗
0

|h0|2
.

Suppose T1 6= 0 and let t1 = ‖T1‖ > 0. By Theorem 3.2.10, T1 is a compact operator and

so there exist v1 ∈ H2(D,Cn), w1 ∈ H2(D,Cm)⊥ such that (ξ0∧̇v1, η̄0∧̇w1) is a Schmidt pair

for T1 corresponding to t1. Let h1 be the scalar outer factor of ξ0∧̇v1 and let

x1 = (ICn − ξ0ξ
∗
0)v1, y1 = (ICm − η̄0η

T
0 )w1, (1.11)

where ICn and ICm are the identity operators in Cn and Cm respectively. Then, by Proposition

8



1.2. Main results

3.2.24,

‖x1(z)‖Cn = |h1(z)| = ‖y1(z)‖Cm almost everywhere on T. (1.12)

By Theorem 1.1.4, there exists a function Q2 ∈ H∞(D,Cm×n) such that both s∞0 (G − Q2)

and s∞1 (G−Q2) are minimised, that is,

s∞0 (G−Q2) = t0, s∞1 (G−Q2) = t1.

By Proposition 3.2.27, any such Q2 satisfies

(G−Q2)x0 = t0y0, y∗0(G−Q2) = t0x
∗
0

(G−Q2)x1 = t1y1, y∗1(G−Q2) = t1x
∗
1.

(1.13)

Define

ξ1 =
x1

h1

, η1 =
z̄ȳ1

h1

. (1.14)

By equations (1.12) and (1.14), ‖ξ1(z)‖Cn = 1 = ‖η1(z)‖Cn almost everywhere on T.

Definition 1.2.14. We say that a finite collection γ0, . . . , γj of elements of L2(T,Cn) is

pointwise orthonormal on T if, for almost all z ∈ T with respect to Lebesgue measure, the

set {γ0(z), . . . , γj(z)} is orthonormal in Cn.

iii) Recursive step. Suppose that, for j ≤ min(m,n)− 2, we have constructed

t0 ≥ t1 ≥ · · · ≥ tj > 0

x0, x1, · · · , xj ∈ L2(T,Cn)

y0, y1, · · · , yj ∈ L2(T,Cm)

h0, h1, · · · , hj ∈ H2(D,C) outer

ξ0, ξ1, · · · , ξj ∈ L2(T,Cn) pointwise orthonormal on T
η0, η1, · · · , ηj ∈ L2(T,Cm) pointwise orthonormal on T
X0 = H2(D,Cn), X1, · · · , Xj

Y0 = H2(D,Cm)⊥, Y1, · · · , Yj
T0, T1, · · · , Tj compact operators.

By Theorem 1.1.4, there exists a function Qj+1 ∈ H∞(D,Cm×n) such that

(
s∞0 (G−Qj+1), s∞1 (G−Qj+1), · · · , s∞j (G−Qj+1)

)
is lexicographically minimised. By Proposition 3.2.47, any such function satisfies

(G−Qj+1)xi = tiyi, y∗i (G−Qj+1) = tix
∗
i , i = 0, 1, · · · , j. (1.15)

Define

Xj+1 = ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇H2(D,Cn) (1.16)

9
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Yj+1 = η̄0∧̇η̄1∧̇ · · · ∧̇η̄j∧̇H2(D,Cm)⊥. (1.17)

Note that, by Proposition 3.2.3, Xj+1 is a closed subspace of H2(D,∧j+2Cn), and, by Propo-

sition 3.2.6, Yj+1 is a closed subspace of H2(D,∧j+2Cm)⊥.

Choose any function Qj+1 ∈ H∞(D,Cm×n) which satisfies equations (1.15). Consider the

operator

Tj+1 : Xj+1 → Yj+1

given by

Tj+1(ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇x) = PYj+1
(η̄0∧̇η̄1∧̇ · · · ∧̇η̄j∧̇(G−Qj+1)x) (1.18)

for all x ∈ H2(D,Cn). By Corollary 3.2.7 and by Proposition 3.2.8, Tj+1 is well-defined.

If Tj+1 = 0, then the algorithm terminates, we define r to be j + 1, and, in accordance with

Theorem 3.2.59, the superoptimal approximant AG is given by the formula

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
=

j∑
i=0

tiyix
∗
i

|hi|2
.

Otherwise, we define tj+1 = ‖Tj+1‖ > 0. By Theorem 3.2.54, Tj+1 is a compact operator and

hence there exist vj+1 ∈ H2(D,Cn), wj+1 ∈ H2(D,Cm)⊥ such that

(ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇vj+1, η̄0∧̇η̄1∧̇ · · · ∧̇η̄j∧̇wj+1) (1.19)

is a Schmidt pair for Tj+1 corresponding to the singular value tj+1.

Let hj+1 be the scalar outer factor of ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇vj+1, and let

xj+1 = (ICn − ξ0ξ
∗
0 − · · · − ξjξ∗j )vj+1, yj+1 = (ICm − η̄0η

T
0 − · · · − η̄jηTj )wj+1, (1.20)

and define

ξj+1 =
xj+1

hj+1

, ηj+1 =
z̄ȳj+1

hj+1

. (1.21)

One can show that ‖ξj+1(z)‖Cn = 1 and ‖ηj+1(z)‖Cm = 1 almost everywhere on T. This

completes the recursive step. The algorithm terminates after at most min(m,n) steps, so

that, r ≤ min(m,n) and, in accordance with Theorem 3.2.59, the superoptimal approximant

AG is given by the formula

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
.

Remark 1.2.15. Observe that, in step j of the algorithm, we define an operator Tj in terms

of any function Qj ∈ H∞(D,Cm×n) that satisfies the equations

(G−Qj)xi = tiyi, y∗i (G−Qj) = tix
∗
i , i = 0, 1, · · · , j − 1. (1.22)

This constitutes a system of linear equations for Qj in terms of the computed quantities

10



1.3. Motivation for the development of an algorithm

xi, ti and yi for i = 0, . . . , j − 1, and we know, from Proposition 3.2.47, that the system has

a solution for Qj in H∞(D,Cm×n). By Proposition 3.2.8, Tj is independent of the choice of

Qj that satisfies equations (1.22).

Remark 1.2.16. At each step we need to find ‖Tj‖ and a Schmidt pair

(ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj, η̄0∧̇η̄1∧̇ · · · ∧̇η̄j−1∧̇wj) (1.23)

for Tj corresponding to the singular value tj. Then we compute the scalar outer factor hj of

ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj ∈ H2(D,∧j+1Cn). These are the only spectral factorisations needed in

the algorithm. Note that if f ∈ H2(D,Cn) has the inner-outer factorisation f = hg, with

h ∈ H2(D,C) a scalar outer function and g ∈ H∞(D,Cn) inner, then (f ∗f)(z) = |h(z)|2

almost everywhere on T, and so the calculation of h requires us to find a spectral factorisation

of the positive scalar-valued function f ∗f on the circle.

Remark 1.2.17. In a numerical implementation of the algorithm one would need to find a

way to compute the norms and Schmidt vectors of the compact operators Tj. For this purpose

it would be natural to choose convenient orthonormal bases of the cokernel Xj 	 kerTj and

the range ranTj. It is safe to assume that in most applications G will be a rational function,

in which case the cokernel and range will be finite-dimensional. At step 0, T0 is a Hankel

operator, and the calculation of the matrix of T0 with respect to suitable orthonormal bases

is a known task [36]; we believe that similar methods will work for step j.

We arrive at the following conclusion about the superoptimal approximant AG.

Theorem 3.2.59. Let G ∈ H∞(D,Cm×n)+C(T,Cm×n). Let Ti, xi, yi, hi for i ≥ 0 be defined

by the algorithm above. Let r be the least index j ≥ 0 such that Tj = 0. Then r ≤ min(m,n)

and the superoptimal approximant AG is given by the formula

G−AG =
r−1∑

0

tiyix
∗
i

|hi|2
.

Wedge products, and in particular pointwise wedge products, along with their properties

are studied in detail in Chapter 2.

1.3 Motivation for the development of an algorithm

Motivation derives from the problem of designing automatic controllers for linear time-

invariant plants with multiple inputs and outputs. Such design problems are often formulated

in the frequency domain, that is, in terms of the Laplace or z−transform of signals. By this

means the problem becomes to construct an analytic matrix-valued function in a disc or

half-plane, subject to various constraints. An important constraint is usually to minimise,

or at least bound, some cost or penalty function. In practical engineering problems a wide

11
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variety of constraints and cost functions arise, and the engineer must take account of many

complications, such as the physical limitations of devices and the imprecision of models.

Engineers have developed numerous ways to cope with these complications. One of them,

developed in the 1980s, is H∞ control theory [9]. It is a wide-ranging theory. It makes

pleasing contact with some problems and results of classical analysis; a seminal role was

played by Nehari’s theorem on the best approximation of a bounded function on the circle

by an analytic function in the disc. Also important in the development of the theory were

a series of deep papers by Adamyan, Arov and Krein [1],[2] which greatly extend Nehari’s

theorem and apply to matrix-valued functions.

In this context the notion of a superoptimal analytic approximation arose very naturally.

Simple diagonal examples of a 2×2-matrix-valued function G on T show that the set of best

analytic approximants to G in the L∞ norm typically comprises an entire ball of functions,

and so one is driven to ask for a stronger optimality criterion, and preferably one which will

provide a unique optimum. The term “superoptimal” was coined by engineers even before

its existence had been proved in generality. The paper [24] proved that the superoptimal

approximant does indeed exist, and moreover is unique, as long as the approximand G is the

sum of a continuous function and an H∞ function on the circle. In engineering examples G

is usually rational and so continuous on the circle.

Naturally engineers need to be able to compute the superoptimal approximant of G. The

existence proof in [24] can in principle be turned into an algorithm, but into a very compu-

tationally intensive one. The construction is recursive, and at each step of the recursion one

must augment a column-matrix function to a unitary matrix-valued function on the circle

with some special properties. Computationally this step requires a spectral factorisation of a

positive semi-definite matrix-valued function on the circle. There are indeed algorithms for

this step, but they involve an iteration which may be slow to converge and badly conditioned,

especially if some function values have eigenvalues on or close to the unit circle.

It is certainly desirable to avoid the matricial spectral factorisation step if it is possible to

do so. Our aim in this project was to devise an algorithm in which the iterative procedures are

as few and as well-conditioned as possible. Iteration cannot be completely avoided; even in

the scalar case, the optimal error is the norm of a certain operator, and the best approximant

is given by a simple formula involving the corresponding Schmidt vectors. Thus one has to

perform a singular value decomposition of matrix-valued functions. In the case that the

approximand G is of type m × n one must expect to solve min(m,n) successive singular

value problems. However, from the point of view of numerical linear algebra, singular value

decomposition is a fast, accurate and well-behaved operation. In this paper we describe

an algorithm that is, in a sense, parallel to the construction of [25] and that requires only

rational arithmetic and singular-value decompositions and the spectral factorisation of scalar

functions.

Several engineers have developed alternative approaches [13],[27] based on state-space

methods. These too are computationally intensive. We believe that our method, which

12
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makes use of exterior powers of Hilbert spaces and operators, provides a more conceptual

approach to the construction of superoptimal approximants. It will be very interesting to

see whether it leads to an efficient numerical method.

1.4 History and recent work

The Nehari problem of approximating an essentially bounded Lebesgue measurable function

on the unit circle T by a bounded analytic function on the unit disc D in the L∞ norm,

has been attracting the interest of both pure mathematicians and engineers since the second

half of the 20th century. The problem was initially formulated and solved from the scalar-

valued viewpoint, with Adamjan, Arov, Krein and Sarason contributing greatly. In the years

that followed, the operator-valued perspective was also explored, subsequently motivating

research into the superoptimal analytic approximation problem, which we consider in this

dissertation.

The initial inspiration for the study of the Nehari problem in the scalar case was the paper

of Nehari [15]. Given an essentially bounded complex valued function g on T, determine:

its distance from H∞ with respect to the essential supremum norm, for which elements this

distance is attained and whether this element is uniquely determined. These problems have

been studied in detail by Nehari in [15], Sarason [30] and Adamjan, Arov and Krein in [1]

and [2]. Adamjan, Arov and Krein obtained significant results studying these problems;

they proved that the distance is equal to the norm of the Hankel operator with symbol

g, namely Hg. Moreover, if Hg has a maximizing vector in H2, then the bounded analytic

complex-valued function q that minimises the essential supremum norm ‖g−q‖L∞ is uniquely

determined and can be explicitly calculated (see Theorem D.1.24). Furthermore, they proved

that if the essential norm ‖Hg‖e is less than ‖Hg‖, then g also has a unique best approximant.

Pure mathematicians and engineers started seeking operator-valued analogues for these

results. These generalisations are not only mathematically interesting. In engineering, and

especially in control theory, various approximation problems arise for operator-valued func-

tions, which enhances the motivation for the research of generalised Nehari problems in both

scientific fields.

Page in [16] and Treil in [34] gave various operator-valued extensions of the obtained

results by Adamjan, Arov and Krein. Page proved that for operator valued mappings T ∈
L∞(T,L(E1, E2)), inf{‖T − Φ‖ : Φ ∈ H∞(D,L(E1, E2)} = ‖HT‖. Here E1, E2 are Hilbert

spaces and L(E1, E2) denotes the Banach space of bounded linear operators from E1 to E2.

Treil extended the Adamjan, Arov and Krein theorem in [2] to its operator-valued analogue.

On the other hand, in the matrix-valued setting there can be infinitely many functions

that best approximate a given function with respect to the L∞ norm. This can be illustrated

by considering Example D.2.6. Let G(z) = diag{z̄, 0}, z ∈ T. The norm of HG in this

case is equal to 1, hence all the matrix-valued functions Q ∈ H∞(D,C2×2) of the form

Q(z) = diag{0, q(z)}, where ‖q‖H∞ ≤ 1, clearly minimise the norm ‖G−Q‖L∞ .
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The question that naturally arises here is whether one can determine the “very best”

among those best approximants. Let us see what can be gained if one considers minimizing

the essential suprema of both singular values of G(z)−Q(z) instead of minimizing only the

largest of them. It may easily be deduced that such a minimisation occurs when q(z) is

equal to 0 and the “very best approximant” in this case is the zero 2 × 2 matrix, that is,

Q(z) = O2×2. Consequently, the latter reasoning strengthens the approximation criterion

and one can indeed determine the “very best” amongst the best approximants.

This led to the formulation of a strengthened approximation problem, the superoptimal

analytic approximation problem. For G ∈ L∞(T,Cm×n) one defines, for j = 0, 1, 2, . . . ,

s∞j (G) = ess sup
|z|=1

sj(G(z))

and

s∞(G) = (s∞0 (G), s∞1 (G), . . . ),

where sj(G(z)) denotes the j-th singular value of the matrix G(z). In [37] N.J. Young in-

troduced the notion of superoptimal analytic approximation. Given a G as above, find a

function Q ∈ H∞(D,Cm×n) such that the sequence s∞(G − Q) is lexicographically min-

imised. This obviously constitutes a strengthening of optimality, as one needs to determine

a function Q ∈ H∞(D,Cm×n) that not only minimises ‖G − Q‖L∞ , but minimises the L∞

norm of all the subsequent singular values of G(z)−Q(z) over T.
The starting point for the superoptimal analytic approximation of matrix functions is

[24]. The problem is to determine, given a (matrix-valued) function

G ∈ H∞(D,Cm×n) + C(T,Cm×n),

a function Q ∈ H∞(D,Cm×n) such that the sequence s∞(G − Q) is lexicographically min-

imised. Peller and Young obtained significant results on thematic factorisations, on the

analyticity of the minors of unitary completions of inner matrix-columns and on the com-

pactness of Hankel operators with matrix symbols. These provided the foundation for

their notable result, namely if G belongs to H∞(D,Cm×n) + C(T,Cm×n), there exists a

unique Q ∈ H∞(D,Cm×n) such that the sequence s∞(G−Q) is lexicographically minimised.

Moreover, the singular values sj(G(z) − Q(z) are constant almost everywhere on T for all

j = 0, 1, 2, . . . .

Later, in [25] Peller and Young presented a conceptual algorithm for the computa-

tion of the superoptimal approximant. Their algorithm is based on the theory devel-

oped in [24]. Also in [25], the algorithm was applied to a specific matrix-valued G in

H∞(D,C2×2) + C(T,C2×2) and the superoptimal approximant AG was calculated. It is

worth noting that the thematic completions described in [24] and [25] invoke spectral (or

Wiener-Masani) factorisations of positive matrix functions and the corona theorem.

Furthermore, Peller and Young in [26] studied the superoptimal approximation by mero-
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morphic matrix-valued functions, that is, matrix-valued functions in H∞(D,Cm×n) that have

at most k poles in the open unit disc. They adjusted the results obtained in [24] and es-

tablished a uniqueness criterion in the case where the given matrix-valued function G is in

H∞(D,Cm×n)+C(T,Cm×n) and has at most k poles in the open unit disc. In addition, they

provided a different algorithm in order to calculate the superoptimal approximant.

Towards the extension of the results in the operator case, the operator-valued superopti-

mal approximation problem was studied by Peller in [21]. The author generalised the notions

of [24] and proved there exists a unique superoptimal approximant in H∞(B) for functions

that belong to H∞(B) + C(K), where B denotes the space of bounded linear operators and

K denotes the space of compact operators.

Very badly approximable functions, that is, functions that have the zero function as a

superoptimal approximant, were studied in the years that followed and a considerable amount

of work was published. Peller and Young’s paper [24] provided the motivation for the study of

this problem, where they were able to algebraically characterise the very badly approximable

matrix functions of class H∞(D,Cm×n) +C(T,Cm×n). Their results were extended in [22] to

the case of matrix functions G for which the essential norm ‖HG‖e is less than the smallest

non-zero superoptimal singular value of G. Very badly approximable matrix functions with

entries in H∞ + C were completely characterised in [23].

Recent work in [3] by Baratchart, Nazarov and Peller explores the analytic approxima-

tion of matrix-valued functions in Lp of the unit circle by matrix-valued functions from

Hp of the unit disc in the Lp norm for 2 ≤ p < ∞. They proved that if a given matrix-

valued function Ψ ∈ Lp(T,Cm×n) is a ‘respectable’ matrix function, then its distance from

Hp(D,Cm×n) is equal to ‖HΨ‖, and they obtained a characterisation of that distance also in

the case Ψ is a ‘weird’ matrix-valued function. Furthermore, they established the notion of

p-superoptimal approximation and illustrated that every n× n rational matrix function has

a unique p-superoptimal approximant for 2 ≤ p <∞. However, for p-approximable functions

with p = ∞, they provided an example of a function that has two different p-superoptimal

approximants.

In a more recent paper of Condori [6], the author considered the relation between the

sum of the superoptimal singular values of admissible functions in L∞(T,Cm×n) and the

superoptimal analytic approximation problem in the space L∞(T, Sm,np ), where Sm,np denotes

the space of m× n matrices endowed with the Schatten-von-Neumann norm ‖ · ‖Sm,np
. Con-

dori illustrated that if Φ ∈ L∞(T,Cn×n) is an admissible matrix function of order k, then

Q ∈ H∞(D,Cn×n) is a best approximant function under the L∞(T, Sn,n1 )-norm and the sin-

gular values sj((φ−Q)(z)) are constant almost everywhere on T for all 0 ≤ j ≤ k− 1 if and

only if Q is a superoptimal approximant to Φ, ess supz∈T sj((Φ−Q)(z)) = 0 for j ≥ k, and

the sum of the superoptimal values of Φ is equal to

sup

∣∣∣∣∫
T

trace(Φ(ζ)Ψ(ζ)) dm(ζ)

∣∣∣∣ ,
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where m,n > 1, 1 ≤ k ≤ min(m,n) and the supremum is taken over all Ψ ∈ H1
0 (D,Cn×m)

for which ‖Ψ‖L1(T,Cn×m) ≤ 1 and rankΨ(ζ) ≤ k almost everywhere on T.

1.5 Description of results by sections

In Chapter 2, we recall the long-established notion of the wedge product of Hilbert spaces. We

define an inner product on the p-fold wedge product of Hilbert spaces and study the notion

of pointwise wedge product of operator- or vector-valued functions on D or T. We study

numerous properties of it and we formulate a concise theory specifically for multiplication,

block diagonal and creation operators. Towards the end of the chapter, we examine in detail

the characteristics of the pointwise orthogonal complement and pointwise linear span. Some

of the main results of Chapter 2 are the following.

Proposition 2.2.8. Let E be a Hilbert space and let xi : D→ E be analytic E-valued maps

on D for all i = 0, . . . , k. Then

x0∧̇ · · · ∧̇xk : D→ ∧k+1E

is also analytic on D and

(x0∧̇ · · · ∧̇xk)′(z) = x′0(z) ∧ x1(z) ∧ · · · ∧ xk(z) + x0(z) ∧ x′1(z) ∧ x2(z) ∧ · · · ∧ xk(z)

+ · · ·+ x0(z) ∧ x1(z) ∧ · · · x′k(z).

Proposition 2.2.13. Let E be a Hilbert space, let x ∈ H2(D, E) and let y ∈ H∞(D, E).

Then

x∧̇y ∈ H2(D,∧2E).

Proposition 2.2.40. Let E be a separable Hilbert space and let ξ ∈ H∞(D, E) be an inner

function. Consider the pointwise creation operator

Cξ : H2(D, E)→ H2(D,∧2E),

given by

Cξf = ξ∧̇f, for f ∈ H2(D, E),

and let P+ : L2(T, E) → H2(D, E) be the orthogonal projection operator. Then, for any

h ∈ H2(D, E),

C∗ξCξh = P+α,

where α = h− ξξ∗h. Moreover

C∗ξCξh = h− Tξξ∗h,

where Tξξ∗ : H2(D, E)→ H2(D, E) is the Toeplitz operator with symbol ξξ∗.

Furthermore, in Chapter 3 we present our main result; the superoptimal analytic approx-

imation algorithm. At first, we describe the algorithm and then we prove its validity. The
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purpose of the algorithm is the determination of the unique superoptimal approximant. Let

us give an overview of the main results obtained in Chapter 3. We first prove the pointwise

orthonormality of the sets {ξi}ji=1, {ηi}
j
i=1 almost everywhere on T. Next, we show that the

spaces Xi, Yi are closed linear subspaces of H2(D,∧i+1Cn) and H2(D,∧i+1Cm)⊥ respectively.

Hence we prove that the projections PYi are well-defined, and consequently, that the opera-

tors Ti are well-defined for all i ≥ 0. For the latter, one also has to show that each operator

Ti is independent of the choice of Qi ∈ H∞(D,Cm×n). Moreover, we prove that the operator

Ti is compact for i = 0, 1, . . . , r− 1 and the superoptimal analytic approximant AG is given

by the formula

G−AG =
r−1∑

0

tiyix
∗
i

|hi|2
,

where each term in this sum can in principle be calculated.

In Chapter 4 we apply the algorithm obtained in Chapter 3 to calculate the superoptimal

approximant of the matrix-valued functions

G(z) =

(
2/z 0

0 1/z

)
∈ H∞(D,Cm×n) + C(T,Cm×n)

and

G(z) =
1√
2

(√
3z̄2 + 2z̄ z̄√
3z̄ + 2 −1

)
∈ H∞(D,C2×2) + C(T,C2×2).

The former is a relatively simple example which involves trivial operations and enables the

reader to familiarise themselves with our algorithm, while the latter is a more elaborate one

and its superoptimal approximant is calculated to be

AG =

√
2

1− γz

(
−γ

√
3 + 4γ

2 + γ
√

3− γz −(
√

3 + 4γ)(
√

3 + z)

)
,

where γ = −5−
√
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2
√

3
.

Regarding the appendices, in Appendix A we give a well known construction of the

algebraic tensor product using the universal property. We then consider the tensor product

of Hilbert spaces and define an inner product. In appendices B and C we review scalar

inner and outer functions and Fatou’s theorem, and in appendices D and E we recall the

established notions of operator valued inner and outer functions, we present the established

generalised Fatou’s theorem in the matricial setting and we describe the Nehari problem

both in the scalar and in the matrix-valued setting.

1.6 Future work

The algorithm introduced in the present dissertation establishes a new approach to the

computation of the superoptimal analytic approximant in the problem of best analytic ap-

17
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proximation of matrix-valued functions. Let us briefly refer to research topics which could

arise from this project.

Immediate tasks this dissertation could inspire is the construction of similar algorithms

for the meromorphic and operator-valued cases, as these are studied by Peller and Young

[26] and Peller [21] respectively. Wedge products of Hilbert spaces could be implemented in

order to obtain an alternative algorithm in the meromorphic case, since Proposition 2.2.8

asserts the analyticity of the pointwise wedge product. Moreover, wedge products of infinite-

dimensional Hilbert spaces may provide a plausible alternative to Peller’s methods in [21].

In addition, our project could steer one’s interests towards the direction of investigating

the algorithm’s advantages and disadvantages to previous algorithms, especially to the ones

facilitated in control engineering [13], [27]. It would be of great significance to numerically

implement our algorithm and perform a rather deeper comparison with past algorithms in

this respect. Such a project would entail a certain comprehension of numerical methods and,

quite possibly, a collaboration between control engineers and functional analysts.

Furthermore, we trust that consideration of the wedge product of Hilbert spaces could

potentially lead to research in different topics in analysis, one of them being reproducing

kernel Hilbert spaces. Reproducing kernels play a prominent role in the study of Hilbert

spaces of functions, such as Hardy spaces and Dirichlet spaces, as well as in Statistics and

certain physical problems. In particular they can be used to prove some classical interpolation

problems, such as Pick-type theorems, which are theorems giving necessary and sufficient

conditions for the existence of multipliers of norm at most one that satisfy some interpolation

conditions.

The techniques introduced in the subsequent chapters of this dissertation illustrate the

fact that exterior products of Hilbert spaces and operators thereon are naturally well adapted

to the analysis of matrix-valued functions on the circle, disc or line, and therefore to questions

arising from problems in engineering design. Though a long established theory [7], [17], [35],

exterior products of Hilbert spaces and operators deserve in our view to be better exploited

in functional analysis than they have been hitherto. An initial orientation could be given by

a number of concrete questions, as follows.

(1) Give concrete descriptions of the exterior product ∧pH as a reproducing kernel Hilbert

space for various standard Hilbert function spaces H, such as Hardy, Bergman, Dirichlet

and Hardy-Sobolev spaces.

(2) Explore best approximation problems associated with the spaces described in item (1).

(3) Try to prove a “super-Pick Theorem” for bounded analytic matrix-valued functions in

the disc. Given distinct points λ1, . . . , λN ∈ D,m× n matrices W1, . . . ,WN and positive

numbers t0 > · · · > tk > 0, find a necessary and sufficient condition for the existence of a

bounded analytic matrix-valued function F in D such that F (λj) = Wj for j = 1, . . . , N

18
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and s∞j (F ) ≤ tj for j = 0, 1, . . . , k, where

s∞j (F )
def
= ess sup

z∈T
sj(F (z))

and, for any matrix A, sj(A) denotes the jth singular value of A.

(4) Explore natural variants of item (3).

(5) Can one prove a Parrott theorem for s1 of completions of a partially specified operator

T by using ∧2T?

19
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Chapter 2

Exterior powers of Hilbert spaces and

operators

2.1 Exterior powers

In this section, we first present some results concerning the action of permutation operators

on tensors, then we recall a well-known definition of the antisymmetric tensors and we define

an inner product on the space of all antisymmetric tensors. Basic definitions and properties

of exterior products can be found in a S. Winitzki’s book [35] as well as in [32], [33].

Below E denotes a Hilbert space.

Definition 2.1.1. ⊗pE is the algebraic p-fold tensor product of E and is spanned by tensors

of the form x1 ⊗ x2 ⊗ · · · ⊗ xp, where xj ∈ E , for j = 1, . . . , p.

Definition 2.1.2. We define an inner product on ⊗pE on elementary tensors by

〈x1 ⊗ x2 ⊗ · · · ⊗ xp, y1 ⊗ y2 ⊗ · · · ⊗ yp〉⊗pE = p!〈x1, y1〉E · · · 〈xp, yp〉E,

for any x1, . . . , xp, y1, . . . , yp ∈ E, and extend 〈·, ·〉 to ⊗pE by sesqui-linearity.

Remark 2.1.3. The space (⊗pE, ‖ · ‖), where ‖u‖ = 〈u, u〉1/2⊗pE, is a normed space.

Definition 2.1.4. ⊗pHE is the completion of ⊗pE with respect to the norm

‖u‖ = 〈u, u〉1/2⊗pE,

for u ∈ ⊗pE.

Definition 2.1.5. Let Sp
def
= Sym{1, . . . , p} be the symmetric group on {1, . . . , p}, with the

operation of composition. For σ ∈ Sp, we define Sσ : ⊗pE → ⊗pE on elementary tensors by

Sσ(x1 ⊗ x2 ⊗ · · · ⊗ xp) = xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(p),
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and we extend Sσ to ⊗pE by linearity, that is, for u =
∑n

i=1 x
i
1 ⊗ · · · ⊗ xip, we define

Sσ(u) =
n∑
i=1

Sσ(xi1 ⊗ · · · ⊗ xip).

Proposition 2.1.6. Let E be a Hilbert space, and let p be a positive integer. Then, for

any σ ∈ Sp, Sσ is a linear operator on the normed space (⊗pE, ‖ · ‖), which extends to an

isometry Sσ on (⊗pHE, ‖ · ‖).

Proof. To prove linearity, let u =
n∑
i=1

xi1 ⊗ · · · ⊗ xip ∈ ⊗pE and v =
n∑
j=1

yj1 ⊗ · · · ⊗ yjp ∈ ⊗pE,

then

Sσ(λu+ µv) = Sσ

(
n∑
i=1

λxi1 ⊗ · · · ⊗ xip +
n∑
j=1

µyj1 ⊗ · · · ⊗ yjp

)

=
n∑
i=1

λxiσ(1) ⊗ · · · ⊗ xiσ(p) +
n∑
j=1

µyjσ(1) ⊗ · · · ⊗ y
j
σ(p)

= λSσ

(
n∑
i=1

λxi1 ⊗ · · · ⊗ xip
)

+ µSσ

(
n∑
j=1

µyj1 ⊗ · · · ⊗ yjp

)

= λSσ(u) + µSσ(v)

for scalars λ, µ ∈ C.
Furthermore, for an elementary tensor w = x1 ⊗ x2 ⊗ · · · ⊗ xp, we need to prove that

‖Sσw‖2
⊗pE = ‖w‖2

⊗pE. By the definition of the inner product on ⊗pE, we get

‖Sσw‖2
⊗pE = 〈Sσw, Sσw〉⊗pE

= 〈xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(p), xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(p)〉⊗pE

= p!〈xσ(1), xσ(1)〉E . . . 〈xσ(p), xσ(p)〉E

= p!‖xσ(1)‖2
E . . . ‖xσ(p)‖2

E

= ‖w‖2
E.

Also, for a tensor ω of the form ω =
n∑
i=1

xi1 ⊗ · · · ⊗ xip, we have

‖ω‖2
⊗pE =

〈
n∑
i=1

xi1 ⊗ · · · ⊗ xip ,
n∑
j=1

xj1 ⊗ · · · ⊗ xjp

〉
⊗pE

= p!
n∑
i=1

n∑
j=1

〈xi1, x
j
1〉E · · · 〈xip, xjp〉E
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and

〈Sσω, Sσω〉⊗pE =

〈
Sσ

(
n∑
i=1

xi1 ⊗ · · · ⊗ xip
)
, Sσ

(
n∑
j=1

xj1 ⊗ · · · ⊗ xjp

)〉
⊗pE

=

〈
n∑
i=1

xiσ(1) ⊗ · · · ⊗ xiσ(p) ,
n∑
j=1

xjσ(1) ⊗ · · · ⊗ x
j
σ(p)

〉
⊗pE

= p!
n∑
i=1

n∑
j=1

〈xiσ(1), x
j
σ(1)〉E · · · 〈xiσ(p), x

j
σ(p)〉E.

So, ‖Sσω‖2
⊗pE = ‖ω‖2

⊗pE. Hence Sσ is also a surjective self-map of ⊗pE.

Thus one can extend Sσ by continuity to an isometric linear self-map Sσ of the completion

⊗pHE of ⊗pE.

Proposition 2.1.7. Sσ is a bounded linear operator from ⊗pHE to ⊗pHE. Furthermore, Sσ

is a unitary operator on ⊗pHE.

Proof. Since by Proposition 2.1.6 Sσ is isometric, its range is complete, hence closed in

⊗pHE. Since the range of Sσ contains that of Sσ, ran Sσ = ⊗pHE. Being both surjective and

isometric, Sσ is a unitary operator on ⊗pHE.

Henceforth we shall denote the extended operator Sσ by Sσ.

Definition 2.1.8. A tensor u ∈ ⊗pHE is called symmetric if Sσ(u) = u for all σ ∈ Sp.

A tensor u ∈ ⊗pHE is called antisymmetric if u = εσSσu for all σ ∈ Sp, where εσ is the

signature of σ.

Definition 2.1.9. The space of all antisymmetric tensors in ⊗pHE will be denoted by ∧pE.

Remark 2.1.10. (Sp, ◦) is a group so, for every permutation σ ∈ Sp, there exists σ−1 ∈ Sp
such that

σ ◦ σ−1 = id = σ−1 ◦ σ,

where id ∈ Sp is the identity map on {1, . . . , p}. Then,

εσ◦σ−1 = εσεσ−1 = 1,

hence εσ = εσ−1 .

Example 2.1.11. Let E be a Hilbert space and let x1, x2 ∈ E. In ⊗2
HE, the elementary

tensor

x1 ⊗ x2 + x2 ⊗ x1

is symmetric, whereas the elementary tensor

x1 ⊗ x2 − x2 ⊗ x1

is antisymmetric.
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Theorem 2.1.12. Let E be a Hilbert space. Then
∧pE is a closed linear subspace of the

Hilbert space ⊗pHE for any p ≥ 2.

Proof. For σ ∈ Sp we define the operator

fσ
def
= (Sσ − εσ · I) : ⊗pHE → ⊗

p
HE,

where I : ⊗pHE → ⊗
p
HE is given by I(u) = u, for u ∈ ⊗pHE.

Since Sσ is a continuous linear operator on ⊗pHE, fσ is a continuous linear operator. The

kernel of the operator fσ is

ker fσ = {u ∈ ⊗pHE : (Sσ − εσ · I)(u) = 0}
= {u ∈ ⊗pHE : Sσ(u) = εσu}
= {u ∈ ⊗pHE : εσSσ(u) = u}.

Since fσ is a continuous linear operator on ⊗pHE, ker fσ is a closed linear subspace of ⊗pHE.
Thus ∧pE is a closed linear subspace of ⊗pHE, since

∧pE =
⋂
σ∈Sp

ker fσ = {u ∈ ⊗pHE : εσSσ(u) = u, for all σ ∈ Sp}.

Theorem 2.1.12 implies that the orthogonal projection onto ∧pE is well-defined on ⊗pHE.

Definition 2.1.13. Let E be a Hilbert space. For x1, . . . , xp ∈ E, define x1 ∧x2 ∧ · · · ∧xp to

be the orthogonal projection of the elementary tensor x1 ⊗ x2 ⊗ · · · ⊗ xp onto ∧pE, that is,

x1 ∧ x2 ∧ · · · ∧ xp = P∧pE(x1 ⊗ · · · ⊗ xp).

Remark 2.1.14. For any tensor of the form

u =
n∑
i=1

λixi1 ⊗ · · · ⊗ xip ∈ ⊗
p
HE,

the orthogonal projection of u onto ∧pE is given by

P∧pE

(
n∑
i=1

λixi1 ⊗ · · · ⊗ xip

)
=

n∑
i=1

λixi1 ∧ · · · ∧ xip,

where λi ∈ C for all i = 1, · · · , n.

Theorem 2.1.15. Let E be a Hilbert space. For all u ∈ ⊗pHE,

P∧pE(u) =
1

p!

∑
σ∈Sp

εσSσ(u).
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Proof. Let u ∈ ⊗pHE. Then, for any σ ∈ Sp, u = εσSσ(u) + (u− εσSσ(u)), and so

p!u =
∑
σ∈Sp

εσSσ(u) +
∑
σ∈Sp

(u− εσSσ(u)).

It suffices to show that
∑
σ∈Sp

εσSσ(u) ∈ ∧pE and

∑
σ∈Sp

(u− εσSσ(u))

is orthogonal to the set of antisymmetric tensors, in other words, if v ∈ ∧pE then〈
v,
∑
σ∈Sp

(u− εσSσ(u))

〉
⊗pHE

= 0.

Let w =
∑
σ∈Sp

εσSσ(u) ∈ ⊗pHE. For every τ ∈ Sp, we have

ετSτ (w) = ετSτ

∑
σ∈Sp

εσSσ(u)


=
∑

τ◦σ∈Sp

ετ◦σSτ◦σ(u)

=
∑
σ′∈Sp

εσ′Sσ′(u)

= w,

where τ ◦ σ = σ′. Hence
∑
σ∈Sp

εσSσ(u) ∈ ∧pE.

Furthermore, for every v ∈ ∧pE, we have v = εσSσv for all σ ∈ Sp, and〈
v,
∑
σ∈Sp

(u− εσSσ(u))

〉
⊗pHE

=
∑
σ∈Sp
〈v, u〉⊗pHE −

∑
σ∈Sp

εσ〈v, Sσ(u)〉⊗pHE

=
∑
σ∈Sp
〈v, u〉⊗pHE −

∑
σ∈Sp

εσ〈Sσ∗v, u〉⊗pHE

=
∑
σ∈Sp
〈v − εσ−1Sσ−1v, u〉⊗pHE

= 〈
∑
σ∈Sp

(v − εσ−1Sσ−1v), u〉⊗pHE

= 0.
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Thus, for all u ∈ ⊗pHE,

P∧pE(p!u) = P∧pE

∑
σ∈Sp

εσSσ(u) +
∑
σ∈Sp

(u− εσSσ(u))

 =
∑
σ∈Sp

εσSσ(u),

and so,

P∧pE(u) =
1

p!

∑
σ∈Sp

εσSσ(u)

as required.

Example 2.1.16. Let E be a Hilbert space. If x1 ⊗ x2 ∈ ⊗2
HE, then

x1 ∧ x2 = P∧2E(x1 ⊗ x2) =
1

2!
(x1 ⊗ x2 − x2 ⊗ x1).

Remark 2.1.17. If p > 1, then Sp contains a transposition, for instance σ = (1 2), and

εσ = −1. If p = 1, then ∧1E = E.

Proposition 2.1.18. Let E be a Hilbert space and let p ≥ 2. The set of antisymmetric

tensors and the set of symmetric tensors are orthogonal in ⊗pHE.

Proof. Suppose that u is a symmetric tensor and v is an antisymmetric tensor, that is,

Sσu = u and Sσv = εσv respectively for all σ ∈ Sp. By Proposition 2.1.7, Sσ is a unitary

operator on ⊗pHE, for all σ ∈ Sp. Thus

〈u, v〉⊗pHE = 〈Sσu, Sσv〉⊗pHE = 〈u, εσv〉⊗pHE, for all σ ∈ Sp.

The equality holds for all σ ∈ Sp, thus it is true for εσ = −1. Then

〈u, v〉⊗pHE = −〈u, v〉⊗pHE,

and so 〈u, v〉⊗pHE = 0.

Proposition 2.1.19. Let E be a Hilbert space. The inner product in ∧pE is given by

〈x1 ∧ · · · ∧ xp, y1 ∧ · · · ∧ yp〉∧pE = det


〈x1, y1〉E . . . 〈x1, yp〉E

...
. . .

...

〈xp, y1〉E . . . 〈xp, yp〉E


for all x1, . . . , xp, y1, . . . , yp ∈ E.

Proof. By Theorem 2.1.15, we have
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〈x1 ∧ · · · ∧ xp, y1 ∧ · · · ∧ yp〉∧pE =

=

〈
1

p!

∑
σ∈Sp

εσSσ(x1 ⊗ x2 ⊗ · · · ⊗ xp),
1

p!

∑
τ∈Sp

ετSτ (y1 ⊗ y2 ⊗ · · · ⊗ yp)

〉
⊗pHE

=
1

p!2

∑
σ,τ∈Sp

〈εσSσ(x1 ⊗ x2 ⊗ · · · ⊗ xp), ετSτ (y1 ⊗ y2 ⊗ · · · ⊗ yp)〉⊗pHE

=
1

p!2

∑
σ,τ∈Sp

εσετ 〈x1 ⊗ x2 ⊗ · · · ⊗ xp, S∗σSτ (y1 ⊗ y2 ⊗ · · · ⊗ yp)〉⊗pHE

=
1

p!2

∑
σ,τ∈Sp

εσ−1ετ 〈x1 ⊗ x2 ⊗ · · · ⊗ xp, Sσ−1Sτ (y1 ⊗ y2 ⊗ · · · ⊗ yp)〉⊗pHE

=
1

p!

∑
σ′∈Sp

εσ′〈x1 ⊗ x2 ⊗ · · · ⊗ xp, Sσ′(y1 ⊗ y2 ⊗ · · · ⊗ yp)〉⊗pHE

=
∑
σ′∈Sp

εσ′

p∏
i=1

〈xi, yσ′(i)〉E

= det


〈x1, y1〉E · · · 〈x1, yp〉E

...
. . .

...

〈xp, y1〉E · · · 〈xp, yp〉E

 .

Corollary 2.1.20. Let E be a Hilbert space and let x1, . . . , xp ∈ E. Then x1 ∧ · · · ∧ xp = 0

if and only if x1, . . . , xp are linearly dependent.

Proof. Note that x1∧· · ·∧xp = 0 if and only if ‖x1∧· · ·∧xp‖2
∧pE = 0, which, by Proposition

2.1.19, holds if and only if

det[〈xi, xj〉]pi,j=1 = 0.

Thus x1 ∧ · · · ∧ xp = 0 if and only if there exist complex numbers λ1, . . . , λp, which are

not all zero, such that 
〈x1, y1〉E . . . 〈x1, yp〉E

...
. . .

...

〈xp, y1〉E . . . 〈xp, yp〉E



λ̄1

...

λ̄p

 = 0.

This holds if and only if there exist complex numbers λ1, . . . , λp, which are not all zero, such

that

〈xi,
p∑
j=1

λjxj〉E = 0 for i = 1, . . . , p.

The latter statement is equivalent to the assertion that there exist complex numbers λ1, . . . , λp,

which are not all zero, such that

〈
p∑
i=1

λixi,

p∑
j=1

λjxj〉E = 0,

which in turn is equivalent to the condition that there exist complex numbers λ1, . . . , λp, not
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all zero, such that
p∑
j=1

λjxj = 0.

The latter statement is equivalent to the linear dependence of x1, . . . , xp as required.

Corollary 2.1.21. Let E be a Hilbert space. Suppose x, y ∈ E, and x,y are orthogonal in

E, that is, 〈x, y〉E = 0. Then

‖x ∧ y‖∧2E = ‖x‖E‖y‖E.

Since we have already shown that ∧pE is a closed linear subspace of the Hilbert space

⊗pHE, the space (∧pE, 〈·, ·〉∧pE) with inner product given by Proposition 2.1.19 is itself a

Hilbert space.

Proof. By Proposition 2.1.19,

‖x ∧ y‖2
∧2E = 〈x ∧ y, x ∧ y〉∧2E = det

(
〈x, x〉E 〈x, y〉E
〈y, x〉E 〈y, y〉E

)
.

If x is orthogonal to y in E, the off-diagonal entries are zero and thus

‖x ∧ y‖2
∧2E = ‖x‖2

E‖y‖2
E.

Lemma 2.1.22. Suppose {u1, · · · , un} is an orthonormal set in Cn. Then, for

j = 1, . . . , n− 1 and for every x ∈ E,

‖u1 ∧ · · · ∧ uj ∧ x‖∧j+1Cn = ‖x−
j∑
i=1

〈x, ui〉ui‖Cn .

Proof. Let x ∈ Cn. We may write

x = x−
j∑
i=1

〈x, ui〉ui +

j∑
i=1

〈x, ui〉ui.

By Proposition 2.1.19, we get

‖u1 ∧ · · · ∧ uj ∧ x‖2
∧j+1Cn = 〈u1 ∧ · · · ∧ uj ∧ x, u1 ∧ · · · ∧ uj ∧ x〉∧j+1Cn

= det



〈u1, u1〉Cn 〈u1, u2〉Cn · · · · · · 〈u1, x〉Cn
〈u2, u1〉Cn 〈u2, u2〉Cn · · · · · · 〈u2, x〉Cn

... · · · . . . · · · · · ·
〈uj, u1〉Cn 〈uj, u2〉Cn · · · 〈uj, uj〉Cn 〈uj, x〉Cn
〈x, u1〉Cn 〈x, u2〉Cn · · · · · · 〈x, x〉Cn


.
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By assumption,

〈ui, uk〉 =

{
0, i 6= k

1, i = k
,

and hence,

‖u1 ∧ · · · ∧ uj ∧ x‖2
∧j+1Cn = det



1 0 · · · 〈u1, x〉Cn
0 1 · · · 〈u2, x〉Cn
...

. . .
...

0 · · · 1 〈uj, x〉Cn
〈x, u1〉Cn 〈x, u2〉Cn · · · 〈x, x〉Cn


.

If, for every k = 1, · · · , j we multiply the k-th column of the determinant by 〈uk, x〉Cn and

subtract it from the (j + 1)-th column, we find that

‖u1 ∧ · · · ∧ uj ∧ x‖2
∧j+1Cn = det



1 0 · · · 0

0 1 · · · 0
...

. . .
...

0 · · · 1 0

〈x, u1〉Cn 〈x, u2〉Cn · · · · · · 〈x, x〉Cn −
j∑
i=1

|〈x, ui〉Cn |2


= ‖x‖2

Cn −
j∑
i=1

|〈x, ui〉Cn|2

= ‖x−
j∑
i=1

〈x, ui〉Cnui‖2
Cn ,

the latter equality following by Pythagoras theorem.

Suppose E is a separable Hilbert space with an orthonormal basis. In what follows, we

derive an orthonormal basis for the space ∧pE.

Theorem 2.1.23 ([17], p. 47). Let E be a separable Hilbert space with dimE = m and let

(en)mn=1 be a basis of E. Then the set

B = {ei1 ∧ ei2 ∧ · · · ∧ eip : 1 ≤ i1 < · · · < ip ≤ m}

is linearly independent in ∧pE.

Proposition 2.1.24. Let E be a separable Hilbert space with dimE = m and let (en)mn=1 be

an orthonormal basis of E. If x, y ∈ E with x =
∑m

i=1 xiei and y =
∑m

j=1 yjej, then

x ∧ y =
∑
i<j

(xiyj − xjyi)ei ∧ ej

and

‖x ∧ y‖2
∧2E =

∑
i<j

∣∣∣∣∣det

(
xi xj

yi yj

)∣∣∣∣∣
2

.
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2.1. Exterior powers

Proof. Let x =
m∑
i=1

xiei and y =
m∑
j=1

yjej. We know that ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei, for

i 6= j. Hence

x ∧ y =
m∑
i=1

xiei ∧
m∑
j=1

yjej

=
∑
i<j

(xiyj)(ei ∧ ej) +
∑
j<i

(xjyi)(ej ∧ ei) +
m∑
i=1

(xiyi)(ei ∧ ei)

=
∑
i<j

(xiyj − xjyi)ei ∧ ej

and

〈x ∧ y, x ∧ y〉∧2E = 〈
∑
i<j

(xiyj − xjyi)(ei ∧ ej),
∑
k<l

(xkyl − xlyk)(ek ∧ el)〉∧2E

=
∑
i<j

∑
k<l

(xiyj − xjyi)(xkyl − xlyk)〈ei ∧ ej, ek ∧ el〉∧2E.

Since (en)∞n=1 is an orthonormal basis of E,

〈ei ∧ ej, ek ∧ el〉E = det

(
〈ei, ek〉E 〈ei, el〉E
〈ej, ek〉E 〈ej, el〉E

)
=

{
1 if i = k and j = l,

0 otherwise.

Thus

〈x ∧ y, x ∧ y〉∧2E =
∑
i<j

|xiyj − xjyi|2 =
∑
i<j

∣∣∣∣∣det

(
xi xj

yi yj

)∣∣∣∣∣
2

.

Corollary 2.1.25. Let E be a separable Hilbert space with dimE = m and let (en)mn=1 be an

orthonormal basis of E. Then, the set B = {ei ∧ ej : 1 ≤ i < j ≤ m} is an orthonormal basis

of ∧2E.

Proof. By Theorem 2.1.23, the set B is a linearly independent set in ∧2E. Also, by Propo-

sition 2.1.24, the set B spans ∧2E and is an orthonormal set. Hence B is an orthonormal

basis of ∧2E.

Proposition 2.1.26. If E is an m-dimensional Hilbert space with orthonormal basis {e1, · · · , em},
then, for 0 < p ≤ m, ∧pE is an

(
m
p

)
-dimensional Hilbert space with orthonormal basis

B = {ei1 ∧ ei2 ∧ · · · ∧ eip , 1 ≤ i1 < · · · < ip ≤ m}.

Proof. By Theorem 2.1.12, ∧pE is a Hilbert space. Let us first show that the set {ei1 , · · · , eip :

1 ≤ i1 < · · · ip ≤ m} spans ∧pE. Suppose that xj =
∑m

i=1 αijei. Then

x1 ∧ x2 ∧ · · · ∧ xp =
m∑
i=1

αi1ei ∧
m∑
i=1

αi2ei ∧ · · · ∧
m∑
i=1

αipei.
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By multilinearity of the wedge product we have

x1 ∧ x2 ∧ · · · ∧ xp =
∑

1≤i1<···<ip≤m

αi1,··· ,ipei1 ∧ ei2 ∧ · · · ∧ eip .

Hence the set B spans ∧pE. Since (ei)
m
i=1 is an orthonormal basis, for

1 ≤ i1 < · · · < ip ≤ m we have

‖ei1 ∧ ei2 · · · ∧ eip‖2
∧pE = det


〈ei1 , ei1〉E 〈ei1 , ei2〉E · · · 〈ei1 , eip〉E
〈ei2 , ei1〉E 〈ei2 , ei2〉 · · · 〈ei2 , eip〉E

... · · · . . .
...

〈eip , ei1〉E · · · · · · 〈eip , eip〉E


= 1.

Furthermore, for {j1, · · · , jp : 1 ≤ j1 < · · · < jp ≤ m} such that

{i1, · · · , ip} ∩ {j1, · · · , jp} = ∅,

we get

〈ei1 ∧ ei2 · · · ∧ eip , ej1 ∧ · · · ∧ ejp〉∧pE = det


〈ei1 , ej1〉E 〈ei1 , ej2〉E · · · 〈ei1 , ejp〉E
〈ei2 , ej1〉E 〈ei2 , ej2〉E · · · 〈ei2 , ejp〉E

... · · · . . .
...

〈eip , ej1〉E · · · · · · 〈eip , ejp〉E

 = 0.

Moreover, by Theorem 2.1.23, the set B is a linearly independent set in ∧pE, thus the set

B is an orthonormal basis for ∧pE. Finally, the cardinality of the basis is equal to
(
m
p

)
since

this is the number of possible choices of p elements out of m elements, and so ∧pE is an(
m
p

)
-dimensional Hilbert space.

Example 2.1.27.

∧2C2 ∼= C(2
2) = C

and

∧pCn ∼= C(np).

Next, we study properties of wedge products of bounded linear operators. Detailed

information is included in Appendix A.

Definition 2.1.28. Suppose H1, . . . , Hp, K1, . . . , Kp are Hilbert spaces and Ti : Hi → Ki,

i = 1, . . . , p, are bounded linear operators. Then, on algebraic tensor products, we define the

operator

T1 ⊗ · · · ⊗ Tp : H1 ⊗ · · · ⊗Hp → K1 ⊗ · · · ⊗Kp

on elementary tensors by
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(T1 ⊗ · · · ⊗ Tp)(u1 ⊗ · · · ⊗ up) = T1(u1)⊗ · · · ⊗ Tp(up), (2.1)

and we extend T1 ⊗ · · · ⊗ Tp to H1 ⊗ · · · ⊗Hp by linearity.

Proposition 2.1.29 ([8], Chapitre 1, Section 2). Let (Hi, 〈·, ·〉Hi) and (Gi, 〈·, ·〉Gi) be Hilbert

spaces, and let Ti : Hi → Gi be bounded linear operators for i = 1, . . . , p. Then, the operator

T1 ⊗ · · · ⊗ Tp of equation (2.1) has a continuous extension

T1 ⊗ · · · ⊗ Tp : H1 ⊗H · · · ⊗H Hp → G1 ⊗H · · · ⊗H Gp

to a bounded linear operator on the completion H1 ⊗H · · · ⊗H Hp of H1 ⊗ · · · ⊗Hp.

Proposition 2.1.30. Let E,K be Hilbert spaces and let T : E → K be a bounded linear

operator. Let ∧pT be the restriction of

T ⊗ · · · ⊗ T︸ ︷︷ ︸
p−times

: ⊗pHE → ⊗
p
HK

to ∧pE. Then the image of ∧pT is in ∧pK.

Proof. Let λi ∈ C for all i = 1, . . . , n and let

u =
n∑
i=1

λixi1 ⊗ · · · ⊗ xip

be in ∧pE. Then u = εσSσu for all σ ∈ Sp. Therefore, for σ ∈ Sσ,

(T ⊗ · · · ⊗ T )(u) = (T ⊗ · · · ⊗ T )

(
εσSσ

n∑
i=1

λixi1 ⊗ · · · ⊗ xip
)

= (T ⊗ · · · ⊗ T )

(
εσ

n∑
i=1

λixiσ(1) ⊗ · · · ⊗ xiσ(p)

)
= εσ

n∑
i=1

λiT (xiσ(1))⊗ · · · ⊗ T (xiσ(p))

= εσSσ
n∑
i=1

λiT (xi1)⊗ · · · ⊗ T (xip)

= εσSσ(T ⊗ · · · ⊗ T )

(
n∑
i=1

λixi1 ⊗⊗xip
)

= εσSσ((T ⊗ · · · ⊗ T )(u)).

Thus, for u ∈ ∧pE, (T ⊗ · · · ⊗ T )(u) is an antisymmetric tensor in ⊗pHK, that is, a member

of ∧pK.

Definition 2.1.31. Let H,K be Hilbert spaces and T : H → K be a bounded linear operator.

We define the operator

∧pT : ∧p H → ∧pK
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2.1. Exterior powers

to be the restriction of T ⊗ · · · ⊗ T to ∧pH.

Definition 2.1.32. Let (E, ‖ · ‖E) be a Hilbert space. The p-fold Cartesian product of E is

defined to be the set

E × · · · × E︸ ︷︷ ︸
p−times

= {(x1, . . . , xp) : xi ∈ E}.

Moreover, we define a norm on E × · · · × E︸ ︷︷ ︸
p−times

by

‖(x1, . . . , xp)‖ = {
p∑
i=1

‖xi‖2
E}

1
2 .

Definition 2.1.33. Let E be a Hilbert space. We define the multilinear operator

Λ : E × · · · × E︸ ︷︷ ︸
p−times

→ ∧pE

by

Λ(x1, . . . , xp) = x1 ∧ . . . ∧ xp for all x1, . . . , xp ∈ E.

Proposition 2.1.34. [Hadamard’s inequality, [12], p. 477] For any matrix

A = (aij) ∈ Cn×n,

| det(A)| ≤
n∏
j=1

(
n∑
i=1

|aij|2
)1/2

and | det(A)| ≤
n∏
i=1

(
n∑
j=1

|aij|2
)1/2

.

Proposition 2.1.35. Let E be a Hilbert space. Then the multilinear mapping

Λ: E × · · · × E︸ ︷︷ ︸
p−times

→ ∧pE

is bounded.

Proof. Let xi ∈ E for all i = 1, . . . , p. Then Λ(x1, . . . , xp) = x1 ∧ . . . ∧ xp and

‖Λ(x1, . . . , xp)‖2
∧pE = ‖x1 ∧ . . . ∧ xp‖2

∧pE

= 〈x1 ∧ . . . ∧ xp, x1 ∧ . . . ∧ xp〉∧pE

= det


〈x1, x1〉E 〈x1, x2〉E . . . 〈x1, xp〉E
〈x2, x1〉E 〈x2, x2〉E . . . 〈x2, xp〉E

...
...

. . . . . .

〈xp, x1〉E . . . . . . 〈xp, xp〉E

 ≥ 0.
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2.1. Exterior powers

Observe that the matrix

X =


〈x1, x1〉E 〈x1, x2〉E . . . 〈x1, xp〉E
〈x2, x1〉E 〈x2, x2〉E . . . 〈x2, xp〉E

...
...

. . . . . .

〈xp, x1〉E . . . . . . 〈xp, xp〉E


is Hermitian, and so its determinant is real. By Hadamard’s inequality,

| det(X)| ≤
p∏
j=1

(
p∑
i=1

|〈xi, xj〉E|2
)1/2

and | det(X)| ≤
p∏
i=1

(
p∑
j=1

|〈xi, xj〉E|2
)1/2

.

Moreover, by the Cauchy-Schwartz inequality,

| det(X)| ≤
p∏
j=1

‖xj‖E

(
p∑
i=1

‖xi‖2
E

)1/2

.

Therefore

‖Λ(x1, . . . , xp)‖2
∧pE ≤

p∏
j=1

‖xj‖E

(
p∑
i=1

‖xi‖2
E

)1/2

. (2.2)

Let ‖(x1, . . . , xp)‖Ep ≤ 1. Since ‖xj‖E ≤ ‖(x1, . . . , xp)‖Ep ≤ 1 for each j, we have

‖Λ(x1, . . . , xp)‖2
∧pE ≤ 1.

Hence the p-linear operator Λ is bounded.

Lemma 2.1.36. Let H,K be Hilbert spaces and let S, T : H → K be bounded linear opera-

tors. Then,

(i) ∧p(ST ) = (∧pS)(∧pT ).

(ii) (∧pT )∗ = ∧p(T ∗).

Proof. (i). By Definition 2.1.31, for all xi ∈ H, where i = 1, . . . , p, we have

∧p(S) ∧p (T )(x1 ∧ · · · ∧ xp) = ∧p(S)(Tx1 ∧ · · · ∧ Txp)

= STx1 ∧ · · · ∧ STxp

= ∧p(ST )(x1 ∧ · · · ∧ xp).

(ii). By Definition 2.1.31 and by Proposition 2.1.19, for all xi ∈ H and all yi ∈ K, where

i = 1, . . . , p,
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〈(∧pT ∗)(y1 ∧ · · · ∧ yp), (x1 ∧ · · · ∧ xp)〉∧pH = 〈T ∗(y1) ∧ · · · ∧ T ∗(yp), x1 ∧ · · · ∧ xp〉∧pH

= det


〈T ∗(y1), x1〉H . . . 〈T ∗(y1), xp〉H
〈T ∗(y2), x1〉H . . . 〈T ∗(y2), xp〉H

...
. . .

...

〈T ∗(yp), x1〉H . . . 〈T ∗(yp), xp〉H



= det


〈y1, T (x1)〉K . . . 〈y1, (Txp)〉K
〈y2, T (x1)〉K . . . 〈y2, T (xp)〉K

... · · · ...

〈yp, T (x1)〉K . . . 〈yp, T (xp)〉K


= 〈y1 ∧ · · · ∧ yp, (∧pT )(x1 ∧ · · · ∧ xp)〉∧pK

= 〈(∧pT )∗(y1 ∧ · · · ∧ yp), (x1 ∧ · · · ∧ xp)〉∧pH

= 〈(∧pT )∗(y1 ∧ · · · ∧ yp), (x1 ∧ · · · ∧ xp)〉∧pH .

Hence ∧p(T ∗) = (∧pT )∗.

2.2 Pointwise wedge products

For the purposes of this dissertation, we wish to consider the wedge product of mappings

defined on the unit circle or in the unit disc that take values in Hilbert spaces. To this end,

we introduce the notion of pointwise wedge product and we study various properties of it.

Definition 2.2.1. Let E be a Hilbert space and let f, g : D→ E (f, g : T→ E) be E-valued

maps. We define the pointwise wedge product of f and g,

f ∧̇g : D→ ∧2E (f ∧̇g : T→ ∧2E)

by

(f ∧̇g)(z) = f(z) ∧ g(z) for all z ∈ D (for almost all z ∈ T).

Definition 2.2.2. Let E be a Hilbert space and let χ, ψ : D→ E (χ, ψ : T→ E) be E-valued

maps. We call χ and ψ pointwise linearly dependent on D (respectively on T) if there exist

non-zero mappings κ, ν : D → C (κ, ν : T → C), which do not simultaneously vanish at any

point of D (of T), such that

κ(z)χ(z) = ν(z)ψ(z)

for all z ∈ D (for almost all z ∈ T).
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Remark 2.2.3. Corollary 2.1.20 asserts that x1, . . . , xn : T → E are pointwise linearly de-

pendent on T if and only if

(x1∧̇ . . . ∧̇xn)(z) = 0 for almost all z ∈ T.

Henceforth we consider vector-valued Lp spaces as they are presented in [14].

Definition 2.2.4. Let E be a separable Hilbert space and let 1 ≤ p <∞. Define

(i) Lp(T, E) to be the normed space of measurable (weakly or strongly, which amounts to the

same thing, in view of the separability of E) E-valued maps f : T→ E such that

‖f‖p =

(
1

2π

∫ 2π

0

‖f(eiθ)‖pEdθ
)1/p

<∞.

(ii) Hp(D, E) to be the normed space of analytic E-valued maps f : D→ E such that

‖f‖p = sup
0<r<1

(
1

2π

∫ 2π

0

‖f(reiθ)‖pEdθ
)1/p

<∞.

(iii) L∞(T, E) to be the space of essentially bounded measurable E-valued functions on the

unit circle with the essential supremum norm

‖f‖L∞ = ess sup
|z|=1

‖f(z)‖E,

and with functions equal almost everywhere identified.

(iv) H∞(D, E) to be the space of bounded analytic E-valued functions on the unit disc with

the supremum norm

‖f‖H∞ = sup
z∈D
‖f(z)‖E.

Lemma 2.2.5 ([18], p. 242). [Hölder’s inequality] Let f ∈ Lp(T) and let g ∈ Lq(T), where

p, q > 1 are such that 1
p

+ 1
q

= 1. Then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Proposition 2.2.6. Let E be a separable Hilbert space and let
1

p
+

1

q
= 1, where

1 ≤ p, q ≤ ∞. Suppose that x ∈ Lp(T, E), y ∈ Lq(T, E). Then

x∧̇y ∈ L1(T,∧2E)

and

‖x∧̇y‖L1(T,∧2E) ≤ ‖x‖Lp(T,E)‖y‖Lq(T,E). (2.3)
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Proof. By Proposition 2.1.19, for all z ∈ T,

‖(x∧̇y)(z)‖2
∧2E = 〈x(z) ∧ y(z), x(z) ∧ y(z)〉∧2E

= 〈x(z), x(z)〉E · 〈y(z), y(z)〉E − |〈x(z), y(z)〉E|2

≤ ‖x(z)‖2
E‖y(z)‖2

E.

Thus, for all z ∈ T,
‖(x∧̇y)(z)‖∧2E ≤ ‖x(z)‖E‖y(z)‖E.

By Definition 2.2.4,

‖x∧̇y‖L1(T,∧2E) =
1

2π

2π∫
0

‖(x∧̇y)(eiθ)‖∧2E dθ ≤
1

2π

2π∫
0

‖x(eiθ)‖E‖y(eiθ)‖E dθ. (2.4)

Now by Hölder’s inequality,

1

2π

2π∫
0

‖x(eiθ)‖E‖y(eiθ)‖E dθ ≤

 1

2π

2π∫
0

‖x(eiθ)‖pE dθ

1/p 1

2π

2π∫
0

‖y(eiθ)‖qE dθ

1/q

. (2.5)

Hence, by inequalities (2.4) and (2.5), x∧̇y ∈ L1(T,∧2E) and the inequality (2.3) holds.

Proposition 2.2.7. Let E be a Hilbert space and x, y : D → E be two analytic E-valued

maps on D. Then,

x∧̇y : D→ ∧2E

is also analytic on D and

(x∧̇y)′(z) = x′(z) ∧ y(z) + x(z) ∧ y′(z) for all z ∈ D.

Proof. For E-valued maps x, y, being analytic on D means that for every z0 ∈ D there exist

x′(z0) ∈ E and y′(z0) ∈ E such that

lim
h→0

∥∥∥∥x(z0 + h)− x(z0)

h
− x′(z0)

∥∥∥∥
E

= 0

and

lim
h→0

∥∥∥∥y(z0 + h)− y(z0)

h
− y′(z0)

∥∥∥∥
E

= 0.

Note that
(x∧̇y)(z0 + h)− (x∧̇y)(z0)

h
∈ ∧2E.

One can see that, for h ∈ D such that z0 + h ∈ D,
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(x∧̇y)(z0 + h)− (x∧̇y)(z0)

h

=
x(z0 + h) ∧ y(z0 + h)− x(z0) ∧ y(z0) + x(z0) ∧ y(z0 + h)− x(z0) ∧ y(z0 + h)

h

=
(x(z0 + h)− x(z0)) ∧ y(z0 + h)

h
+
x(z0) ∧ (y(z0 + h)− y(z0))

h

=
x(z0 + h)− x(z0)

h
∧ y(z0 + h) + x(z0) ∧ y(z0 + h)− y(z0)

h

h→0→ x′(z0) ∧ y(z0) + x(z0) ∧ y′(z0).

.

Now,∥∥∥∥(x∧̇y)(z0 + h)− (x∧̇y)(z0)

h
− (x′(z0) ∧ y(z0) + x(z0) ∧ y′(z0))

∥∥∥∥
∧2E

=

∥∥∥∥(x(z0 + h)− x(z0))

h
∧ y(z0 + h) + x(z0) ∧ (y(z0 + h)− y(z0))

h

−(x′(z0) ∧ y(z0) + x(z0) ∧ y′(z0))‖∧2E

≤
∥∥∥∥(x(z0 + h)− x(z0))

h
∧ y(z0 + h)− x′(z0) ∧ y(z0)

∥∥∥∥
∧2E

+

∥∥∥∥x(z0) ∧ (y(z0 + h)− y(z0))

h
− x(z0) ∧ y′(z0)

∥∥∥∥
∧2E

.

Let us consider each term separately.∥∥∥∥(x(z0 + h)− x(z0))

h
∧ y(z0 + h)− x′(z0) ∧ y(z0)

∥∥∥∥
∧2E

=

∥∥∥∥(x(z0 + h)− x(z0))

h
∧ y(z0 + h)− x′(z0) ∧ y(z0 + h)

+x′(z0) ∧ y(z0 + h)− x′(z0) ∧ y(z0)‖∧2E

≤
∥∥∥∥(x(z0 + h)− x(z0)

h
− x′(z0)

)
∧ y(z0 + h)

∥∥∥∥
∧2E

+ ‖x′(z0) ∧ (y(z0 + h)− y(z0))‖∧2E .

By Proposition 2.1.19,∥∥∥∥(x(z0 + h)− x(z0)

h
− x′(z0)

)
∧ y(z0 + h)

∥∥∥∥
∧2E

+ ‖x′(z0) ∧ (y(z0 + h)− y(z0))‖∧2E

≤
∥∥∥∥(x(z0 + h)− x(z0))

h
− x′(z0)

∥∥∥∥
E

· ‖y(z0 + h)‖E + ‖x′(z0)‖E · ‖y(z0 + h)− y(z0)‖E

which tends to 0 as h→ 0. For the other term we have∥∥∥∥x(z0) ∧ (y(z0 + h)− y(z0))

h
− x(z0) ∧ y′(z0)

∥∥∥∥
∧2E

=

∥∥∥∥x(z0) ∧
(
y(z0 + h)− y(z0)

h
− y′(z0)

)∥∥∥∥
∧2E

.
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By Proposition 2.1.19,∥∥∥∥x(z0) ∧
(
y(z0 + h)− y(z0)

h
− y′(z0)

)∥∥∥∥
∧2E

≤ ‖x(z0)‖E ·
∥∥∥∥y(z0 + h)− y(z0)

h
− y′(z0)

∥∥∥∥
E

which tends to 0 as h→ 0.

Thus we get∥∥∥∥(x∧̇y)(z0 + h)− (x∧̇y)(z0)

h
− (x′(z0) ∧ y(z0) + x(z0) ∧ y′(z0))

∥∥∥∥
∧2E

→ 0

as h→ 0.

Therefore x∧̇y is analytic on D and, at every point z ∈ D, the derivative is given by

(x∧̇y)′(z) = (x′∧̇y)(z) + (x∧̇y′)(z).

Proposition 2.2.8. Let E be a Hilbert space and let xi : D→ E be analytic E-valued maps

on D for all i = 0, . . . , k. Then

x0∧̇ · · · ∧̇xk : D→ ∧k+1E

is also analytic on D and

(x0∧̇ · · · ∧̇xk)′(z) = x′0(z) ∧ x1(z) ∧ · · · ∧ xk(z) + x0(z) ∧ x′1(z) ∧ x2(z) ∧ · · · ∧ xk(z)

+ · · ·+ x0(z) ∧ x1(z) ∧ · · · ∧ x′k(z).

Proof. The E-valued maps xi being analytic on D means that, for every z0 ∈ D, there exist

x′i(z) ∈ E such that

lim
h→0

∥∥∥∥xi(z + h)− xi(x)

h
− x′i(z)

∥∥∥∥
E

= 0.

Notice

X =
(x0∧̇ · · · ∧̇xk)(z0 + h)− (x0∧̇ · · · ∧̇xk)(z0)

h
(2.6)

is an element of ∧k+1E. One can see that, for h ∈ D such that z0 + h ∈ D, expression (2.6)

yields

X =
1

h

(
x0(z0 + h) ∧ · · · ∧ xk(z0 + h)− x0(z0) ∧ · · · ∧ xk(z0)

)
. (2.7)

If we add and subtract

1

h
x0(z0) ∧ x1(z0 + h) ∧ x2(z0 + h) ∧ · · · ∧ xk(z0 + h)

to expression (2.7), we obtain

X = 1
h

(
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)− x0(z0) ∧ · · · ∧ xk(z0)

+x0(z0) ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)

)
.
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Adding and subtracting

1

h
x0(z0) ∧ x1(z0) ∧ x2(z0 + h) ∧ · · · ∧ xk(z0 + h)

to the latter expression, we get

X = 1
h

(
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)− x0(z0) ∧ · · · ∧ xk(z0)

+x0(z0) ∧ [x1(z0 + h)− x1(z0)] ∧ x2(z0 + h) ∧ · · · ∧ xk(z0 + h)

+x0(z0) ∧ x1(z0) ∧ · · · ∧ xk(z0 + h)

)
.

It becomes evident that, if we continue accordingly, we obtain

X =
1

h

(
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)

+ x0(z0) ∧ [x1(z0 + h)− x1(z0)] ∧ x2(z0 + h) ∧ · · · ∧ xk(z0 + h)

+ x0(z0) ∧ x1(z0) ∧ [x2(z0 + h)− x2(z0)] ∧ · · · ∧ xk(z0 + h)

+ · · ·+ x0(z0) ∧ x1(z0) ∧ · · · ∧ [xk(z0 + h)− xk(z0)]

)
=

1

h
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) · · · ∧ xk(z0 + h)

+ x0(z0) ∧ 1

h
[x1(z0 + h)− x1(z0)] ∧ x2(z0 + h) ∧ · · · ∧ xk(z0 + h)

+ x0(z0) ∧ x1(z0) ∧ 1

h
[x2(z0 + h)− x2(z0)] ∧ · · · ∧ xk(z0 + h)

+ · · ·+ x0(z0) ∧ x1(z0) ∧ · · · ∧ 1

h
[xk(z0 + h)− xk(z0)]. (2.8)

Let us show that

1
h
[(x0∧̇ . . . ∧̇xk)(z0 + h)− (x0∧̇ . . . ∧̇xk)(z0)]

h→0→ x′0(z0) ∧ x1(z0) · · · ∧ xk(z0)

+x0(z0) ∧ x′1(z0) ∧ x2(z0) ∧ · · · ∧ xk(z0)

+ · · ·+ x0(z0) ∧ x1(z0) ∧ · · · ∧ x′k(z0).

Thus, by equation (2.8),∥∥∥∥(x0∧̇ · · · ∧̇xk)(z0 + h)− (x0∧̇ · · · ∧̇xk)(z0)

h
−
(
x′0(z0) ∧ x1(z0) · · · ∧ xk(z0)

+x0(z0) ∧ x′1(z) ∧ x2(z0) ∧ · · · ∧ xk(z0) + x0(z0) ∧ x1(z0) ∧ x′2(z0) ∧ · · · ∧ xk(z0)

+ · · ·+ x0(z0) ∧ x1(z0) ∧ · · · ∧ x′k(z0)

)∥∥∥∥
∧k+1E
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is equal to∥∥∥∥(x0∧̇ · · · ∧̇xk)(z0 + h)− (x0∧̇ · · · ∧̇xk)(z0)

h
−
(
x′0(z0) ∧ x1(z0) · · · ∧ xk(z0)

+x0(z0) ∧ x′1(z) ∧ x2(z0) ∧ · · · ∧ xk(z0) + x0(z0) ∧ x1(z0) ∧ x′2(z0) ∧ · · · ∧ xk(z0)

+ · · ·+ x0(z0) ∧ x1(z0) ∧ · · · ∧ x′k(z0)

)∥∥∥∥
∧k+1E

= ‖1

h
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h) (2.9)

+ x0(z0) ∧ 1

h
[x1(z0 + h)− x1(z0)] ∧ x2(z0 + h) ∧ · · · ∧ xk(z0 + h)

+ · · ·+ x0(z0) ∧ x1(z0) ∧ · · · 1
h

[xk(z0 + h)− xk(z0)]

− x′0(z0) ∧ x1(z0) · · · ∧ xk(z0) + x0(z0) ∧ x′1(z) ∧ x2(z0) ∧ · · · ∧ xk(z0)

− · · · − x0(z0) ∧ x1(z0) ∧ · · · ∧ x′k(z0)‖∧k+1E

≤ ‖1

h
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)− x′0(z0) ∧ x1(z0) · · · ∧ xk(z0)‖∧k+1E

+ · · ·+ ‖x0(z0) ∧ x1(z0) ∧ · · · ∧ 1

h
[xk(z0 + h)− xk(z0)]− x0(z0) ∧ x1(z0) ∧ · · · ∧ x′k(z0)‖∧k+1E.

(2.10)

Considering, for instance, the first term of the sum (2.10), we have

‖1

h
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) · · · ∧ xk(z0 + h)− x′0(z0) ∧ x1(z0) ∧ · · · ∧ xk(z0)‖∧k+1E

= ‖1

h
[x0(z0 + h)− x0(z0)] ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)− x′0(z) ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)

+ x′0(z) ∧ x1(z0 + h) ∧ · · · ∧ xk(z0 + h)− x′0(z) ∧ x1(z0) · · · ∧ xk(z0)‖∧k+1E

≤ ‖[ 1

h
[x0(z0 + h)− x0(z0)]− x′0(z)] ∧ x1(z0 + h) · · · ∧ xk(z0 + h)‖∧k+1E

+ ‖x′0(z) ∧ (x1(z0 + h)− x1(z0)) ∧ · · · ∧ xk(z0 + h)‖∧k+1E

+ · · ·+ ‖x′0(z) ∧ x1(z0) ∧ . . . ∧ (xk(z0 + h)− xk(z0))‖∧k+1E. (2.11)

Recall,

lim
h→0

∥∥∥∥1

h
[x0(z0 + h)− x0(z0)]− x′0(z)

∥∥∥∥
E

= 0.

Hence, by Hadamard’s inequality (2.2),

‖[ 1

h
[x0(z0 + h)− x0(z0)]− x′0(z)] ∧ x1(z0 + h) · · · ∧ xk(z0 + h)‖2

∧k+1E

≤ ‖[ 1

h
[x0(z0 + h)− x0(z0)]− x′0(z)]‖E‖x1(z0 + h)‖E · · · ‖xk(z0 + h)‖E(

‖[ 1

h
[x0(z0 + h)− x0(z0)]− x′0(z)]‖2

E + ‖x1(z0 + h)‖2
E + · · ·+ ‖xk(z0 + h)‖2

E

)1/2

tends to 0 as h→ 0, and
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‖x′0(z) ∧ x1(z0 + h)− x1(z0) ∧ · · · ∧ xk(z0 + h)‖2
∧k+1E

≤ ‖x′0(z)‖E‖x1(z0 + h)− x1(z0)‖E · · · ‖xk(z0 + h)‖E
(‖x′0(z)‖2

E + ‖x1(z0 + h)− x1(z0)‖2
E + · · ·+ ‖xk(z0 + h)‖2

E)1/2

tends to 0 as h → 0. Similarly, we infer that the sum (2.11), and consequently, the sum

(2.10) tend to 0 as h→ 0. Thus

∥∥∥∥(x0∧̇ · · · ∧̇xk)(z0 + h)− (x0∧̇ · · · ∧̇xk)(z0)

h
−
(
x′0(z0) ∧ x1(z0) · · · ∧ xk(z0)

+x0(z0) ∧ x′1(z) ∧ x2(z0) ∧ · · · ∧ xk(z0) + x0(z0) ∧ x1(z0) ∧ x′2(z0) ∧ · · · ∧ xk(z0)

+ · · ·+ x0(z0) ∧ x1(z0) ∧ · · · ∧ x′k(z0)

)∥∥∥∥
∧k+1E

→ 0

as h→ 0. Hence

x0∧̇ · · · ∧̇xk : D→ ∧k+1E

is analytic on D and

(x0∧̇ · · · ∧̇xk)′(z) = x′0(z) ∧ x1(z) · · · ∧ xk(z) + x0(z) ∧ x′1(z) ∧ x2(z) ∧ · · · ∧ xk(z)

+ · · ·+ x0(z) ∧ x1(z) ∧ · · · x′k(z).

Proposition 2.2.9. Let E be a separable Hilbert space. Suppose x, y ∈ H2(D, E). Then

x∧̇y ∈ H1(D,∧2E).

Proof. By Proposition 2.2.7, x∧̇y is analytic on D. By Proposition 2.1.19, for 0 < r < 1 and

0 ≤ θ ≤ 2π,

‖(x∧̇y)(reiθ)‖∧2E ≤ ‖x(reiθ)‖E‖y(reiθ)‖E.

By Proposition 2.1.19 and by Definition 2.2.4,

‖x∧̇y‖H1(D,∧2E) = sup
0<r<1

(
1

2π

∫ 2π

0

‖(x∧̇y)(reiθ)‖∧2E dθ

)

≤ sup
0<r<1

(
1

2π

∫ 2π

0

‖x(reiθ)‖E‖y(reiθ)‖E dθ
)
,

for 0 < r < 1 and 0 ≤ θ ≤ 2π. Also, by Hölder’s inequality, for 0 < r < 1 and 0 ≤ θ ≤ 2π,

1

2π

2π∫
0

‖x(reiθ)‖E‖y(reiθ)‖E dθ ≤

 1

2π

2π∫
0

‖x(reiθ)‖2
E dθ

1/2 1

2π

2π∫
0

‖y(reiθ)‖2
E dθ

1/2

,

hence ‖x∧̇y‖H1(D,∧2E) ≤ ‖x‖H2(D,E)‖y‖H2(D,E). Consequently, x∧̇y ∈ H1(D,∧2E).
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Remark 2.2.10. Let E be a finite dimensional Hilbert space. For 1 ≤ p ≤ ∞, we will regard

x ∈ Hp(D, E) as a column-vector valued function on D or T and x∗ as the row-vector valued

function, x∗(z) = x(z)∗, for all z ∈ D or T.

Example 2.2.11. If E = Cn, and if

x(z) =
(
x1(z) x2(z) . . . xn(z)

)T
for all z ∈ T, then

x∗(z) =
(
x1(z) · · · xn(z)

)
.

Example 2.2.12. Suppose E = Cn and let x ∈ H2(D,Cn), y ∈ H∞(D,Cn). Then, for all

z ∈ D,

〈x(z), y(z)〉Cn =
n∑
i=1

xi(z)yi(z) =
(
y1(z) · · · yn(z)

)

x1(z)

x2(z)
...

xn(z)


Proposition 2.2.13. Let E be a separable Hilbert space, let x ∈ H2(D, E) and let

y ∈ H∞(D, E). Then

x∧̇y ∈ H2(D,∧2E).

Proof. By Proposition 2.2.7, x∧̇y is analytic on D. By Proposition 2.1.19, for

0 < r < 1, 0 ≤ θ ≤ 2π,

we have

‖(x∧̇y)(reiθ)‖∧2E ≤ ‖x(reiθ)‖E‖y(reiθ)‖E.

Thus,

‖x∧̇y‖H2(D,∧2E) = sup
0<r<1

(
1

2π

∫ 2π

0

‖(x∧̇y)(reiθ)‖2
∧2E dθ

)1/2

≤ sup
0<r<1

(
1

2π

∫ 2π

0

‖x(reiθ)‖2
E‖y(reiθ)‖2

Edθ

)1/2

≤ ‖y‖∞ sup
0<r<1

(
1

2π

∫ 2π

0

‖x(reiθ)‖2
Edθ

)1/2

<∞.

Proposition 2.2.14. Suppose {ξ0, . . . , ξj} ⊂ L∞(T,Cn) is a pointwise orthonormal set.

Then

‖ξ0∧̇ · · · ∧̇ξj∧̇x‖L2(T,∧j+2Cn) <∞

for all x ∈ L2(T,Cn).
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Proof. By Proposition 2.1.19, ‖ξ0∧̇ · · · ∧̇ξj∧̇x‖2
L2(T,∧j+2Cn) is equal to

1

2π

2π∫
0

det


〈ξ0(eiθ), ξ0(eiθ)〉Cn 〈ξ0(eiθ), ξ1(eiθ)〉Cn . . . 〈ξ0(eiθ), x(eiθ)〉Cn

〈ξ0(eiθ), ξ1(eiθ)〉Cn 〈ξ1(eiθ), ξ1(eiθ)〉Cn . . . 〈ξ1(eiθ), x(eiθ)〉Cn

...
. . .

...

〈x(eiθ), ξ0(eiθ)〉Cn 〈x(eiθ), ξ1(eiθ)〉Cn . . . 〈x(eiθ), x(eiθ)〉Cn

 dθ

=
1

2π

2π∫
0

det


1 0 . . . 〈ξ0(eiθ), x(eiθ)〉
0 1 . . . 〈ξ1(eiθ), x(eiθ)〉
...

. . .
...

〈x(eiθ), ξ0(eiθ)〉Cn 〈x(eiθ), ξ1(eiθ)〉Cn . . . 〈x(eiθ), x(eiθ)〉Cn

 dθ,

the last equality following by the pointwise orthonormality of the set {ξk(z)}jk=0 on T. Mul-

tiplying the l-th column by −〈ξl(eiθ), x(eiθ)〉Cn and adding it to the last column, we get

1

2π

2π∫
0

det



1 0 . . . 0

0 1 . . . 0
...

. . .
...

〈x(eiθ), ξ0(eiθ)〉Cn 〈x(eiθ), ξ1(eiθ)〉Cn . . . ‖x(eiθ)‖2Cn

−
j∑

k=0

|〈x(eiθ), ξk(eiθ)〉Cn |2

 dθ

=
1

2π

2π∫
0

‖x(eiθ)‖2
Cn −

j∑
k=0

|〈x(eiθ), ξk(e
iθ)〉Cn|2 dθ

≤ 1

2π

2π∫
0

‖x(eiθ)‖2
Cn dθ

<∞.

2.2.1 Multiplication operators

Definition 2.2.15. Let E,F be Hilbert spaces and let G ∈ L∞(T,L(E,F )). For every z ∈ T,

we define

∧2G(z) : ∧2 E → ∧2F

on elements x ∧ y by

[∧2G(z)](x ∧ y) = G(z)x ∧G(z)y.

Lemma 2.2.16. Let E,F be Hilbert spaces and let G ∈ L∞(T,L(E,F )). Then, for almost

all z ∈ T, ∧2G(z) : ∧2 E → ∧2F is a bounded linear operator.

Proof. By Proposition 2.1.30, for every z ∈ T, ∧2G(z) : ∧2 E → ∧2F is well-defined.

Now, let x∧y, w∧v ∈ ∧2E. Linearity of ∧2G(z) follows from Proposition A.1.6 and the fact

that ∧2G(z) is a restriction of G(z)⊗G(z) to ∧2E. Let us show that, for almost all z ∈ T,
∧2G(z) is a bounded linear operator. By Proposition 2.1.19, for all x, y ∈ E,
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‖ ∧2 G(z)(x ∧ y)‖2
∧2F = 〈G(z)x ∧G(z)y,G(z)x ∧G(z)y〉∧2F

= ‖G(z)x‖2
F‖G(z)y‖2

F − |〈G(z)x,G(z)y〉F |2 , for all x, y ∈ E.

Thus

‖ ∧2 G(z)(x ∧ y)‖∧2F ≤ ‖G(z)x‖F‖G(z)y‖F , for all x, y ∈ E.

By the assumption, G(z) is a bounded linear operator from E to F, hence there exists some

M > 0 such that

‖G(z)x‖F ≤M‖x‖E , ‖G(z)y‖F ≤M‖y‖E

for all x, y ∈ E.
Consequently, for each z ∈ T,

‖ ∧2 G(z)‖ = sup
‖x∧y‖∧2E≤1

‖ ∧2 G(z)(x ∧ y)‖∧2F

≤M2‖x‖E‖y‖E , for all x, y ∈ E.

Hence ∧2G(z) is a bounded linear operator.

Corollary 2.2.17. Let E,F be Hilbert spaces and let G ∈ L∞(T,L(E,F )). Then, for almost

all z ∈ T,
∧2G(z) : ∧2 E → ∧2F

is a continuous linear operator.

Proposition 2.2.18. Let E,F be Hilbert spaces and let G ∈ L∞(T,L(E,F )). Then

(MGx)(z) = G(z) · x(z) ∈ F

for almost all z ∈ T, and MGx ∈ L2(T, F ) for all x ∈ L2(T, E).

Proof. Since G is a bounded linear operator, by Lemma 2.2.16, there exists an N > 0 such

that

‖(MGx)(z)‖F = ‖G(z)x(z)‖F ≤ N‖x(z)‖E for almost all z ∈ T.

Furthermore

‖MGx‖L2 =

(
1

2π

∫ 2π

0

‖(MGx)(eiθ)‖2
F dθ

)1/2

≤
(

1

2π

∫ 2π

0

(N‖x(eiθ)‖E)2 dθ

)1/2

= N‖x‖L2 <∞.

Definition 2.2.19. Let E,F be Hilbert spaces. For the operator G ∈ L∞(T,L(E,F )), we

define an operator MG : L2(T, E)→ L2(T, F ) by

(MGx)(z) = G(z) · x(z)
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for almost all z ∈ T and for all x ∈ L2(T, E).

Definition 2.2.20. Let E,F be Hilbert spaces and let G ∈ L∞(T,L(E,F )). We define an

operator

MG|H2(D,E) : H2(D, E)→ L2(T, F )

by

(MG|H2(D,E)x)(z) = G(z)x(z) for all z ∈ T, x ∈ H2(D, E).

Remark 2.2.21. Let ∧2G ∈ L∞(T,L(∧2E,∧2F )). The restriction of M∧2G to H2(D, E) is

the operator

M∧2G|H2(D,E) : H2(D,∧2E)→ L2(T,∧2F ),

given by

(M∧2G(x∧̇y))(z) = (∧2G)(z) · (x(z) ∧ y(z))

= (G(z) ∧G(z)) · (x(z) ∧ y(z))

= (G(z) · x(z)) ∧ (G(z) · y(z))

for all z ∈ T.

2.2.2 Pointwise creation operators, orthogonal complements and

linear spans

Below, let E denote a separable Hilbert space.

Definition 2.2.22. Let ξ ∈ H∞(D, E). We define the pointwise creation operator

Cξ : H2(D, E)→ H2(D,∧2E)

by

Cξf = ξ∧̇f, for f ∈ H2(D, E).

Remark 2.2.23. Let E be a separable Hilbert space. Let ξ ∈ H∞(D, E) and let

f ∈ H2(D, E). By the generalised Fatou’s Theorem C.2.5, the radial limits

lim
r→1

ξ(reiθ) =
‖·‖E

ξ̃(eiθ), lim
r→1

f(reiθ) =
‖·‖E

f̃(eiθ) (0 < r < 1)

exist almost everywhere on T and define functions ξ̃ ∈ L∞(T, E) and f̃ ∈ L2(T, E) respec-

tively, which satisfy the relations

lim
r→1
‖ξ(reiθ)− ξ̃(eiθ)‖E = 0, lim

r→1
‖f(reiθ)− f̃(eiθ)‖E = 0

for almost all eiθ ∈ T.
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Lemma 2.2.24. Let E be a separable Hilbert space. Let ξ ∈ H∞(D, E) and let

f ∈ H2(D, E). Then the radial limits limr→1(ξ(reiθ) ∧ f(reiθ)) exist for almost all eiθ ∈ T
and define a function in L2(T,∧2E).

Proof. By Proposition 2.1.35, the bilinear operator Λ: E×E → ∧2E is a continuous operator

for the norms of E and ∧2E. By Remark 2.2.23, the functions ξ ∈ H∞(D, E) and f ∈
H2(D, E) have radial limit functions ξ̃ ∈ L∞(T, E) and f̃ ∈ L2(T, E) respectively. Also, by

Proposition 2.2.13, ξ∧̇f ∈ H2(D,∧2E). Hence

lim
r→1
‖ξ(reiθ) ∧ f(reiθ)− ξ̃(eiθ) ∧ f̃(eiθ)‖∧2E = 0 almost everywhere on T

and we conclude that

lim
r→1

(ξ(reiθ) ∧ f(reiθ)) =
‖·‖∧2E

ξ̃(eiθ) ∧ f̃(eiθ) almost everywhere on T.

This shows that the radial limits

lim
r→1

(ξ(reiθ) ∧ f(reiθ))

exist almost everywhere on T and, by Lemma 2.2.6, define a function in L2(T,∧2E). Hence

one can consider (Cξf)(z) = (ξ∧̇f)(z) to be defined for either all z ∈ D or for almost all

z ∈ T.

Proposition 2.2.25. Let H be a separable Hilbert space. The space H2(D,H) can be iden-

tified with a closed linear subspace of L2(T,H).

Proof. By Remark C.2.3, for any separable Hilbert space H and f ∈ H2(D,H), the map

f 7→ f̃ is an isometric embedding of H2(D,H) in L2(T,H) as a subspace, where f̃ is the

radial limit function

f̃(eiθ) =
‖·‖H

lim
r→1

f(reiθ).

Since H2(D,H) is complete and the embedding is isometric, the image of the embedding is

complete, and therefore closed in L2(T,H).

Remark 2.2.26. In future statements we shall to use the same notation for f and f̃ .

Definition 2.2.27. Let E be a separable Hilbert space. Let F be a subspace of L2(T, E) and

let X be a subset of L2(T, E). We define the pointwise linear span of X in F to be the set

PLS(X,F ) = {f ∈ F : f(z) ∈ span{x(z) : x ∈ X} for almost all z ∈ T}.

We define the pointwise orthogonal complement of X in F to be the set

POC(X,F ) = {f ∈ F : f(z) ⊥ {x(z) : x ∈ X} for almost all z ∈ T}.
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Our next aim is to show that POC(X,F ) is a closed subspace of F. We are going to need

the following Lemma.

Lemma 2.2.28. Let E be a Hilbert space and let x ∈ L2(T, E). The function

φ : L2(T, E)→ C given by

φ(g) =
1

2π

2π∫
0

|〈g(eiθ), x(eiθ)〉E| dθ

is continuous.

Proof. Consider g0 ∈ L2(T, E). For any ε > 0, we are looking for a δ > 0 such that

‖g − g0‖L2(T,E) =

 1

2π

2π∫
0

‖g(eiθ)− g0(eiθ)‖2
E dθ

1/2

< δ

implies

|φ(g)− φ(g0)| < ε.

Note that

|φ(g)− φ(g0)| =

∣∣∣∣∣∣ 1

2π

2π∫
0

|〈g(eiθ), x(eiθ)〉E|dθ −
1

2π

2π∫
0

|〈g0(eiθ), x(eiθ)〉E|dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

2π

2π∫
0

(
|〈g(eiθ), x(eiθ)〉E| − |〈g0(eiθ), x(eiθ)〉E|

)
dθ

∣∣∣∣∣∣ .
For each eiθ ∈ T, by the reverse triangle inequality, the integrand satisfies∣∣∣∣|〈g(eiθ), x(eiθ)〉E| − |〈g0(eiθ), x(eiθ)〉E|

∣∣∣∣ ≤ |〈g(eiθ), x(eiθ)〉E − 〈g0(eiθ), x(eiθ)〉E|

= |〈(geiθ)− g0(eiθ), x(eiθ)〉E|,

hence

|φ(g)− φ(g0)| ≤ 1

2π

2π∫
0

|〈g(eiθ)− g0(eiθ), x(eiθ)〉E|dθ. (2.12)

By the Cauchy-Schwarz inequality,

1

2π

2π∫
0

|〈g(eiθ)− g0(eiθ), x(eiθ)〉E| dθ

≤

 1

2π

2π∫
0

‖g(eiθ)− g0(eiθ)‖2
E dθ

1/2 1

2π

2π∫
0

‖x(eiθ)‖2
E dθ

1/2

.

(2.13)
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For the given ε > 0, let δ be equal to
ε

‖x‖L2(T,E) + 1
, and let

 1

2π

2π∫
0

‖g(eiθ)− g0(eiθ)‖2
E dθ

1/2

< δ.

By equations (2.12) and (2.13),

|φ(g)− φ(g0)| ≤

 1

2π

2π∫
0

‖g(eiθ)− g0(eiθ)‖2
E dθ

1/2

‖x‖L2(T,E)

<
ε

‖x‖L2(T,E) + 1
‖x‖L2(T,E) < ε.

Hence φ is a continuous function.

Proposition 2.2.29. Let E be a separable Hilbert space and let ϕ ∈ L2(D, E). Then

(i) The space V = {f ∈ H2(D, E) : 〈f(z), ϕ(z)〉E = 0 for almost all z ∈ T} is a closed

subspace of H2(D, E).

(ii) The space V = {f ∈ L2(T, E) : 〈f(z), φ(z)〉E = 0 for almost all z ∈ T} is a closed

subspace of L2(T, E).

Proof. (i). V is a linear subspace of H2(D, E) since for λ, µ ∈ C, ψ, k ∈ V and for almost all

z ∈ T,
〈λψ(z) + µk(z), ϕ(z)〉E = λ〈ψ(z), ϕ(z)〉E + µ〈k(z), ϕ(z)〉E = 0,

hence λψ + µk ∈ V.
Now, suppose that the sequence of functions (gn)∞n=1 in V converges to a function g. We need

to show that g ∈ V. Since gn ∈ V for all n ∈ N, we have

〈gn(z), ϕ(z)〉E = 0 for almost all z ∈ T. (2.14)

Consider the function φ : H2(D, E)→ C given by

φ(f) =
1

2π

2π∫
0

|〈f(eiθ), ϕ(eiθ)〉E| dθ.

Then, by equation (2.14), we have

φ(gn) =
1

2π

2π∫
0

|〈gn(eiθ), ϕ(eiθ)〉E| dθ = 0.
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Note that by Fatou’s theorem, for each function f ∈ H2(D, E), the radial limit

lim
r→1

f(reiθ)

exists almost everywhere and defines a function in L2(T, E). This way, H2(D, E) can be

identified with a closed subspace of L2(T, E). Hence by Lemma 2.2.28, φ is a continuous

function on H2(D, E), thus φ(g) = limn→∞ φ(gn), and so

1

2π

2π∫
0

|〈g(eiθ), ϕ(eiθ)〉E| dθ = lim
n→∞

1

2π

2π∫
0

|〈gn(eiθ), ϕ(eiθ)〉E| dθ = 0

for almost all eiθ ∈ T. Thus |〈g(eiθ), ϕ(eiθ)〉E| = 0 for almost all eiθ ∈ T, and, hence, g ∈ V.
Thus we have proved that V is a closed subspace of H2(D, E).

(ii). The proof is similar to (i).

Lemma 2.2.30. Let E be a separable Hilbert space, let F be a subspace of L2(T, E) and let

X be a subset of L2(T, E). The space

POC(X,F ) = {f ∈ F : f(z) ⊥ {x(z) : x ∈ X} for almost all z ∈ T}

is a closed subspace of F.

Proof. The assertion follows from Proposition 2.2.29, since POC(X,F ) is an intersection of

closed subspaces

Vx = {f ∈ F : 〈f(z), x(z)〉E = 0 for almost all z ∈ T}

over x ∈ F.

Definition 2.2.31. Let E be a separable Hilbert space. Let f ∈ Hp(D, E), for 1 ≤ p ≤ ∞.
By the generalised Fatou’s Theorem C.2.5, the radial limit

lim
r→1

f(reiθ) =
‖·‖E

f̃(eiθ) (0 < r < 1)

exists almost everywhere on T and defines a function f̃ ∈ Lp(T, E). The set of points on T
at which the above limit does not exist, will be called the singular set of the function f and

will be denoted by Nf .

Note that the singular sets of functions in Hp(D, E) for 1 ≤ p ≤ ∞ are null sets with

respect to Lebesgue measure.

Lemma 2.2.32. Let E be a separable Hilbert space. Let ξ ∈ H∞(D, E). For every

f ∈ H∞(D, E) and g ∈ H2(D, E), the function

f ∧̇g : D→ ∧2E
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defined by

(f ∧̇g)(z) = f(z) ∧ g(z) for all z ∈ D

belongs to H2(D,∧2E), and moreover the operator

C∗ξ : H2(D,∧2E)→ H2(D, E)

is given by the formula

C∗ξ (f ∧̇g) = P+α,

where α ∈ L2(T, E) is defined by

α(eiθ) = 〈f(eiθ), ξ(eiθ)〉Eg(eiθ)− 〈g(eiθ), ξ(eiθ)〉Ef(eiθ)

for all eiθ ∈ T \ (Nf ∪Nξ ∪Ng), and P+ is the orthogonal projection

P+ : L2(T, E)→ H2(D, E).

Here Nf , Ng, Nξ are the singular sets of the functions f, g and ξ respectively.

Proof. By Proposition 2.2.13, f ∧̇g ∈ H2(D,∧2E). Now, for all f ∈ H∞(D, E), all

g, h ∈ H2(D, E) and all eiθ ∈ T \ (Nξ ∪Ng ∪Nf ), we have

〈C∗ξ (f ∧̇g), h〉H2(D,E) = 〈f ∧̇g, Cξh〉H2(D,∧2E)

= 〈f ∧̇g, ξ∧̇h〉L2(T,∧2E)

=
1

2π

∫ 2π

0

〈f(eiθ) ∧ g(eiθ), ξ(eiθ) ∧ h(eiθ)〉∧2E dθ,

which, by Proposition 2.1.19, is equal to

1

2π

∫ 2π

0

det

(
〈f(eiθ), ξ(eiθ)〉E 〈f(eiθ), h(eiθ)〉E
〈g(eiθ), ξ(eiθ)〉E 〈g(eiθ), h(eiθ)〉E

)
dθ.

The latter in turn is equal to

1

2π

∫ 2π

0

(
〈f(eiθ), ξ(eiθ)〉E〈g(eiθ), h(eiθ)〉E − 〈f(eiθ), h(eiθ)〉E〈g(eiθ), ξ(eiθ)〉E

)
dθ,

which equals

1

2π

∫ 2π

0

〈
〈f(eiθ), ξ(eiθ)〉Eg(eiθ)− 〈g(eiθ), ξ(eiθ)〉Ef(eiθ), h(eiθ)

〉
E
dθ,

and so

〈C∗ξ (f ∧̇g), h〉H2(D,E) =
1

2π

∫ 2π

0

〈α(eiθ), h(eiθ)〉E dθ = 〈α, h〉L2(T,E) = 〈P+(α), h〉H2(D,E),
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where

α(eiθ) = 〈f(eiθ), ξ(eiθ)〉Eg(eiθ)− 〈g(eiθ), ξ(eiθ)〉Ef(eiθ)

for all eiθ ∈ T \ (Nξ ∪Nf ∪Ng). Hence C∗ξ (f ∧̇g) = P+α as required.

Proposition 2.2.33. Let E be a separable Hilbert space. For ξ ∈ H∞(D, E),

kerCξ ⊂ PLS({ξ}, H2(D, E)).

Proof. We have

kerCξ = {f ∈ H2(D, E) : (ξ∧̇f)(z) = 0 for all z ∈ D}
= {f ∈ H2(D, E) : ξ(z) ∧ f(z) = 0 for all z ∈ D}
= {f ∈ H2(D, E) : ξ(z), f(z) are pointwise linearly dependent for all z ∈ D}.

By Remark 2.2.23, the functions ξ ∈ H∞(D, E) and f ∈ H2(D, E) have radial limit functions

ξ ∈ L∞(T, E) and f ∈ L2(T, E) respectively, hence the radial limit functions will be linearly

dependent almost everywhere on T. Thus

kerCξ ⊂ {f ∈ H2(D, E) : ξ(z), f(z) are pointwise linearly dependent for almost all z ∈ T}

= PLS({ξ}, H2(D, E)).

Example 2.2.34. Let E = C2. We can find functions f, g ∈ H2(D, E) such that

f ∈ POC({g}, H2(D, E)) but it is false that 〈f(z), g(z)〉E = 0 for all z ∈ D. Choose

g(z) =

(
z

z2

)
, f(z) =

(
f1(z)

f2(z)

)
for z ∈ D.

Then

f ∈ POC({g}, H2(D, E))

is equivalent to

〈f̃(z), g̃(z)〉E = 0 for almost all z ∈ T.

The later is equivalent to〈(
z

z2

)
,

(
f̃1(z)

f̃2(z)

)〉
E

= 0 for almost all z ∈ T,

which holds if and only if

z̄f̃1(z) + z̄2f̃2(z) = 0 for almost all z ∈ T.

Equivalently

f̃1(z) = −z̄f̃2(z) for almost all z ∈ T,
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which in turn is equivalent to

f(z) =

(
f̃1(z)

−zf̃1(z).

)
for almost all z ∈ T.

Now for z ∈ D,

〈f(z), g(z)〉E =

〈(
f1(z)

−zf1(z)

)
,

(
z

z2

)〉
E

= z̄f1(z)− z̄|z|2f1(z)

= z̄(1− |z|2)f1(z).

So if we take f1(z) = 1, f(z) =

(
1

−z

)
for all z ∈ D, then f ∈ POC({g}, H2(D, E)) but

〈f(z), g(z)〉E 6= 0 for all z ∈ D \ {0}.
Thus it is not true in general that POC({g}, H2(D, E)) ⊂ {g}⊥.

Lemma 2.2.35. Let E be a separable Hilbert space. For ξ ∈ H∞(D, E),

POC({ξ}, H2(D, E)) ⊂ H2(D, E)	 PLS({ξ}, H2(D, E)).

Proof. Let f ∈ POC({ξ}, H2(D, E)). This is equivalent to f ∈ H2(D, E) and

f̃(z) ⊥ ξ̃(z) for all z ∈ T \ (Nf ∪Nξ),

whereNf , Nξ are the singular sets for the functions f, ξ respectively. This in turn is equivalent

to f ∈ H2(D, E) and

〈f̃(z), ξ̃(z)〉E = 0 for all z ∈ T \ (Nf ∪Nξ).

The latter implies the condition

f ∈ H2(D, E) and 〈f̃(z), g̃(z)〉E = 0 for almost all z ∈ T and all g ∈ PLS({ξ}, H2(D, E)).

Thus

f ∈ H2(D, E)	 PLS({ξ}, H2(D, E)).

Lemma 2.2.36. Let E and F be separable Hilbert spaces, and let G ∈ L∞(T,B(F,E)). For

every x ∈ L2(T, E), the function Gx, defined almost everywhere on T by

(Gx)(z) = G(z)(x(z)),

belongs to L2(T, E).
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Proof. For almost all z ∈ T,

‖(Gx)(z)‖E = ‖G(z)x(z)‖E ≤ ‖G‖L∞(T,B(F,E))‖x(z)‖F .

Thus

‖Gx‖2
L2(T,E) =

1

2π

∫ 2π

0

‖Gx(eiθ)‖2
E dθ

≤ 1

2π

∫ 2π

0

‖G‖2
L∞(T,B(F,E))‖x(eiθ)‖2

F dθ

≤ ‖G‖2
L∞(T,B(F,E))‖x‖2

L2(T,F ) <∞.

Definition 2.2.37. Let E and F be separable Hilbert spaces. Let P+ : L2(T, E)→ H2(D, E)

be the orthogonal projection operator. Corresponding to any G ∈ L∞(T,B(F,E)) we define

the Toeplitz operator with symbol G to be the operator

TG : H2(D, F )→ H2(D, E)

given by

TGx = P+(Gx) for any x ∈ H2(D, F ).

Definition 2.2.38 ([24]). For a separable Hilbert space E, a function ξ ∈ H∞(D, E) will be

called inner if for almost every z ∈ T,

‖ξ(z)‖E = 1.

Definition 2.2.39. Let E be a separable Hilbert space and let ξ, η ∈ L∞(T, E). We define

ξη∗ ∈ L∞(T,B(E,E)) by

(ξη∗)(z)x = 〈x, η(z)〉ξ(z) for all x ∈ E and for almost every z on T.

Proposition 2.2.40. Let E be a separable Hilbert space. Let ξ ∈ H∞(D, E) be an inner

function. Then, for any h ∈ H2(D, E),

C∗ξCξh = P+α,

where α = h− ξξ∗h and P+ : L2(T, E)→ H2(D, E) is the orthogonal projection. Moreover

C∗ξCξh = h− Tξξ∗h,

where Tξξ∗ : H2(D, E)→ H2(D, E) is the Toeplitz operator with symbol ξξ∗.

Proof. For all g, h ∈ H2(D, E) and for Nξ, Nh, Ng singular sets of ξ, h, g respectively,

〈(C∗ξCξ)h, g〉H2(D,E) = 〈Cξh,Cξg〉H2(D,∧2E) = 〈ξ∧̇h, ξ∧̇g〉L2(T,∧2E),
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and, by Proposition 2.1.19, we get

〈ξ∧̇h, ξ∧̇g〉L2(T,∧2E) =
1

2π

∫ 2π

0

det

(
〈ξ(eiθ), ξ(eiθ)〉E 〈ξ(eiθ), g(eiθ)〉E
〈h(eiθ), ξ(eiθ)〉E 〈h(eiθ), g(eiθ)〉E

)
dθ.

Since ξ is inner, ‖ξ(eiθ)‖E = 1 almost everywhere on T, and so,

〈(C∗ξCξ)h, g〉H2(D,E) =
1

2π

∫ 2π

0

〈h(eiθ), g(eiθ)〉E − 〈ξ(eiθ), g(eiθ)〉E〈h(eiθ), ξ(eiθ)〉E dθ

=
1

2π

∫ 2π

0

〈h(eiθ)− 〈h(eiθ), ξ(eiθ)〉Eξ(eiθ), g(eiθ)〉E dθ

=
1

2π

∫ 2π

0

〈α(eiθ), g(eiθ)〉E dθ

= 〈α, g〉L2(T,E)

= 〈P+α, g〉H2(D,E),

where α(eiθ) = h(eiθ) − 〈h(eiθ), ξ(eiθ)〉Eξ(eiθ) for all eiθ ∈ T \ (Nξ ∪ Nh ∪ Ng). Thus

C∗ξCξh = P+α, where α = h− ξξ∗h. Hence

C∗ξCξh = P+(h− ξξ∗h) = h− Tξξ∗h,

where Tξξ∗h = P+(ξξ∗h) is a Toeplitz operator.

Example 2.2.41. In this example we show that there exists an inner function ξ ∈ H∞(D,C2)

such that, for some h ∈ H2(D,C2), C∗ξCξh is not in the pointwise orthogonal complement of

ξ in E.

Let ξ ∈ H∞(D,C2) be an inner function and let h ∈ H2(D,C2). Let ξ, h be given by

ξ(z) =
1√
2

(
1

z

)
, h(z) =

(
1

1

)
for all z ∈ D.

By Proposition 2.2.40,

C∗ξCξh = P+α,

where, for all z ∈ T,

α(z) =

(
1

1

)
−

〈(
1

1

)
,

1√
2

(
1

z

)〉
C2

1√
2

(
1

z

)
.

Calculations yield, for all z ∈ T,

α(z) =

(
1

1

)
− 1√

2
(1 + z̄)

1√
2

(
1

z

)
=

(
1

1

)
− 1

2

(
1 + z̄

z(1 + z̄)

)
=

(
1
2
− 1

2
z̄

1− 1
2
z − 1

2
|z|2

)
,

55



2.2. Pointwise wedge products

and so

α(z) =
1

2

(
1− z̄
1− z

)
.

Thus

(P+α)(z) =
1

2

(
1

1− z

)
for all z ∈ T \ (Nξ ∪Ng).

The latter expression is not in the pointwise orthogonal complement of ξ in C2, since for all

z ∈ T,〈
1

2

(
1

1− z

)
,

1√
2

(
1

z

)〉
C2

=
1

2
√

2

(
1 z̄

)( 1

1− z

)
=

1

2
√

2
(1 + z̄ − |z|2) =

z̄

2
√

2
6= 0.

The next lemma shows that Cξ is an isometry on POC{ξ0, H
2(D, E)}.

Lemma 2.2.42. Let E be a separable Hilbert space. For every inner function ξ ∈ H∞(D, E),

{x ∈ H2(D, E) : ‖Cξx‖H2(D,∧2E) = ‖x‖H2(D,E)} = POC({ξ}, H2(D, E)).

Proof. By Proposition 2.2.25, for every x ∈ H2(D, E), ‖x‖H2(D,E) = ‖x‖L2(T,E). Hence

{x ∈ H2(D, E) : ‖Cξx‖2
H2(D,∧2E) = ‖x‖2

H2(D,E)} = {x ∈ H2(D, E) : ‖Cξx‖2
L2(T,∧2E) = ‖x‖2

L2(T,E)}.

By Proposition 2.1.19, the latter set is equal to{
x ∈ H2(D, E) :

1

2π

∫ 2π

0

det

(
〈ξ(eiθ), ξ(eiθ)〉E 〈ξ(eiθ), x(eiθ)〉E
〈x(eiθ), ξ(eiθ)〉E 〈x(eiθ), x(eiθ)〉E

)
dθ

1

2π

∫ 2π

0

‖x(eiθ)‖2
E dθ

}
.

Since ξ is inner, ‖ξ(eiθ)‖E = 1 almost everywhere on T, hence the latter set is equal to{
x ∈ H2(D, E) :

1

2π

∫ 2π

0

(‖x(eiθ)‖2
E − |〈ξ(eiθ), x(eiθ)〉E|2) dθ =

1

2π

∫ 2π

0

‖x(eiθ)‖2
E dθ

}
=

{
x ∈ H2(D, E) :

1

2π

∫ 2π

0

|〈ξ(eiθ), x(eiθ)〉E|2 dθ = 0

}
= {x ∈ H2(D, E) : ξ̃(eiθ) ⊥ x̃(eiθ) almost everywhere on T}

= {x ∈ H2(D, E) : x ∈ POC({ξ}, H2(D, E))}

= POC({ξ}, H2(D, E)).

Example 2.2.43. This example shows that C∗ξCξ fails to be a projection for some inner

function ξ ∈ H∞(D,C2). Let us calculate C∗ξCξ, for ξ(z) = 1√
2

(
1

z

)
, z ∈ D. By Proposition

2.2.40, for h ∈ H2(D,C2)

C∗ξCξh = P+α,

where, for all z ∈ T, α(z) is given by

α(z) = h(z)− 〈h(z), ξ(z)〉E ξ(z) =

(
h1(z)

h2(z)

)
− 1√

2
(h1(z) + z̄h2(z))

1√
2

(
1

z

)
.
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We have (
h1(z)

h2(z)

)
− 1√

2
(h1(z) + z̄h2(z)) 1√

2

(
1

z

)
=

(
h1(z)− 1

2
(h1(z) + z̄h2(z))

h2(z)− 1
2
(zh1(z) + h2(z)

)

= 1
2

(
h1(z)− z̄h2(z)

h2(z)− zh1(z)

)
.

Thus

P+α =
1

2

(
h1 − S∗h2

−Sh1 + h2

)
,

where S, S∗ denote the shift and the backward shift operators on H2(D,C) respectively. Hence

C∗ξCξ =
1

2

(
1 −S∗

−S 1

)
. (2.15)

Now, for h(z) =

(
1

1

)
, z ∈ D,

(
C∗ξCξ

(
1

1

))
(z) =

1

2

(
1

1− z

)

which is not the projection of

(
1

1

)
onto the pointwise orthogonal complement of ξ(z) in E,

since (
1

1

)
−

〈(
1

1

)
, ξ(z)

〉
E

ξ(z) =

(
1

1

)
− 1√

2
(1 + z̄)

1√
2

(
1

z

)

=

(
1− 1

2
(1 + z̄)

1− 1
2
(1 + z)

)

=
1

2

(
1− z̄
1− z

)
6= 0.

Alternatively, from equation (2.15),

C∗ξCξ =
1

2

(
1 −S∗

−S 1

)
,

so

(C∗ξCξ)
2 =

1

4

(
1 + S∗S −2S∗

−2S SS∗ + 1

)
=

1

4

(
2 −2S∗

−2S 2− P0

)
,

and thus

(C∗ξCξ)
2 ==

1

2

(
1 −S∗

−S 1− 1
2
P0

)
6= C∗ξCξ,
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since SS∗ = 1− P0, where P0 (
∑∞

n=0 anz
n) = a0.

Consequently C∗ξCξ is not a projection and hence Cξ is not a partial isometry on H2(D,C2).

58



Chapter 3

Superoptimal analytic approximation

In this chapter we present the main result of the dissertation, which is the superoptimal ana-

lytic approximation algorithm. In Section 3.1, we recall certain known results and Peller and

Young’s algorithm (Theorem 3.1.19). In Section 3.2, we construct the alternative algorithm

for the superoptimal approximant based on exterior powers of Hilbert spaces. The proof of

the validity of the new algorithm relies on the cited work given in Section 3.1.

Basic definitions, which we use in this chapter, are given in Chapter 1 and in Appendix

D.

3.1 Known results

In this section we present certain established results that we later use to define the steps of

the new algorithm and prove their validity.

Definition 3.1.1. Let E,F be Hilbert spaces. We define by K(E,F ) the Banach space of

compact operators from E to F with the operator norm.

Theorem 3.1.2 (Hartman’s Theorem, [19], p. 74). Let E,F be separable Hilbert spaces and

let Φ ∈ L∞(T,L(E,F )). The following statements are equivalent

(i) The Hankel operator HΦ is compact on H2(D, E).

(ii) Φ ∈ H∞(D,L(E,F )) + C(T,K(E,F )).

(iii) there exists a function Ψ ∈ C(T,K(E,F )) such that Φ̂(n) = Ψ̂(n) for n < 0.

Definition 3.1.3 ([24], p. 306). The class of quasi-continuous functions is defined by

QC = (H∞(D,Cm×n) + C(T,Cm×n)) ∩ (H∞(D,Cm×n) + C(T,Cm×n)).

In other words this class consists of functions on the circle which belong to H∞+C and are

such that their complex conjugates belong to H∞ + C as well.

59



3.1. Known results

Definition 3.1.4. Consider a function f ∈ L1(T,C) and an arc I on T. Put

fI
def
=

1

m(I)

∫
I

fdm

where m is the Lebesgue measure on T. Thus, fI is the mean of f over I. The function f is

said to have vanishing mean oscillation if

lim
m(I)→0

1

m(I)

∫
I

|f − fI |dm = 0.

The space of functions of vanishing mean oscillation on T is denoted by VMO.

VMO is also related to the compactness of Hankel operators, as the following theorem

asserts.

Theorem 3.1.5 ([19], Theorem 5.8). Let φ ∈ L2(T,C). Then Hφ is compact if and only if

P−φ ∈ VMO.

It is therefore not surprising that the spaces QC and VMO are closely related. The

following theorem illustrates such a connection.

Theorem 3.1.6 ([19], p. 729).

QC = VMO ∩ L∞.

Theorem 3.1.6 follows from another characterisation of VMO, which was obtained by

Sarason in [31], to wit

VMO = {f + g̃ : f, g ∈ C(T,C)},

where g̃ denotes the harmonic conjugate of g.

Remark 3.1.7. Let G ∈ H∞(D,Cm×n) + C(T,Cm×n). We will say that every function

Q ∈ H∞(D,Cm×n) which minimises the norm ‖G−Q‖L∞ , is a function at minimal distance

from G. By Nehari’s Theorem, all such functions Q satisfy ‖G−Q‖L∞ = ‖HG‖.

Next we describe some properties that a space X of equivalence classes of functions

on the unit circle might posses, which were explored in [24]. It should be mentioned that

the uniqueness result in Theorem 1.1.4 allows one to define a non-linear operator A of

superoptimal analytic approximation on H∞ + C as follows.

Definition 3.1.8 ([24], p. 329). Define A = A(m,n) on the space of m × n functions G ∈
H∞(D,Cm×n)+C(T,Cm×n) by saying that A(m,n)G is the unique superoptimal approximation

in H∞(D,Cm×n) to G.

Definition 3.1.9. We say that a space X ⊆ L∞(T,C) is hereditary for A if, for every

scalar function g ∈ X, the best analytic approximation Ag of g belongs to X. For a matrix

function G ∈ H∞(T,Cm×n) we write G ∈ X if each entry of G is in X.
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3.1. Known results

We consider spaces X of scalar functions on the circle which satisfy the following axioms.

(α1) X contains trigonometric polynomial functions and X ⊂ VMO;

(α2) X is hereditary for A;

(α3) if f ∈ X then z̄f̄ ∈ X and P+f ∈ X;

(α4) if f, g ∈ X ∩ L∞ then fg ∈ X ∩ L∞;

(α5) if f ∈ X ∩H2 and h ∈ H∞ then Th̄f ∈ X ∩H2.

The relevance of these properties is contained in the following statements. Recall that,

according to [20], a function f ∈ L∞ is said to be badly approximable if the best analytic

approximant to f is the zero function. In view of Nehari’s Theorem, f is badly approximable

if and only if ‖f‖L∞ = ‖Hf‖.

Theorem 3.1.10 ([24], p. 308). Let ϕ be an n× 1 inner matrix function. There exists an

inner, co-outer function ϕc ∈ H∞(D,Cn×(n−1)) such that

Φ =
(
ϕ ϕ̄c

)
is unitary-valued on T and all minors of Φ on the first column are in H∞.

Lemma 3.1.11 ([24], p. 332). Let X satisfy (α1)-(α5) and let φ be an n×1 inner function.

Let φc be an n×(n−1) function in H∞ such that
(
φ φ̄c

)
is unitary-valued almost everywhere

and has all its minors on the first column belonging to H∞. Then each entry of φc belongs

to X.

Lemma 3.1.12 ([24], p. 315-316). Let m,n > 1, let G ∈ H∞(D,Cm×n) + C(T,Cm×n) and

t0 = ‖HG‖ 6= 0. Suppose that v is a maximizing vector of HG and let

HGv = t0w. (3.1)

Then v, z̄w̄ ∈ H2(D,Cn) have the factorisations

v = v0h, z̄w̄ = φw0h (3.2)

for some scalar outer function h, some scalar inner φ, and column-matrix inner functions

v0, w0. Moreover there exist unitary-valued functions V,W of types n×n, m×m respectively,

of the form

V =
(
v0 ᾱ

)
, W T =

(
w0 β̄

)
, (3.3)

where α, β are inner, co-outer, quasi-continuous functions of types n× (n− 1), m× (m− 1)

respectively, and all minors on the first columns of V,W T are in H∞.
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3.1. Known results

Furthermore every Q ∈ H∞(D,Cm×n) which is at minimal distance from G satisfies

W (G−Q)V =

(
t0u0 0

0 F

)
(3.4)

for some F ∈ H∞(D,C(m−1)×(n−1))+C(T,C(m−1)×(n−1)) and some quasi-continuous function

u0 given by

u0 =
z̄φ̄h̄

h
(3.5)

with |u0(z)| = 1 almost everywhere on T.

Proof. First we construct V and W with the properties (3.1) to (3.4). By Theorem D.2.4 and

by equation (3.1), ‖v(z)‖ = ‖w(z)‖ almost everywhere, and so the column-vector functions

v, z̄w̄ ∈ H2 have the same (scalar) outer factor h. This property yields the inner-outer

factorisations (3.2) for some column inner functions v0, w0. By Theorem 3.1.10, there exists

an inner co-outer function α of type n × (n − 1) such that V
def
=
(
v0 ᾱ

)
is unitary-valued

almost everywhere on T and all minors on the first column of V are in H∞. Likewise

there exists an inner co-outer function β of type m × (m − 1) such that W
def
=
(
w0 β̄

)T
is

unitary-valued almost everywhere on T and all minors on the first column of W T are in H∞.

Next we show that u0 given by equation (3.5) is quasi-continuous. Let

Q ∈ H∞(D,Cm×n) be at minimal distance from G. Then

‖G−Q‖∞ = ‖HG‖ = t0.

By Theorem D.2.4,

(G−Q)v = t0w

and by the factorisations (3.2) we have

(G−Q)v0h = t0z̄φ̄h̄w̄0

and by equations (3.3) and (3.5)

(G−Q)V
(

1 0 · · · 0
)T

= W ∗
(
t0u0 0 · · · 0

)T
.

Thus

W (G−Q)V =

(
t0u0 f

0 F

)
for some f ∈ L∞(T,C1×(n−1)), F ∈ L∞(T,C(m−1)×(n−1)).

Because t0 = ‖HG‖, it follows that |u0| = 1 almost everywhere, and from Nehari’s Theorem

‖W (G−Q)V ‖∞ = ‖G−Q‖ = ‖HG‖ = t0,

and we get that f = 0. So, W (G−Q)V is in the form (3.4). Now, ‖Hu0‖ ≤ ‖u0‖∞ = 1 and
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3.1. Known results

‖Hu0h‖ = ‖z̄φ̄h̄‖ = ‖h‖, which implies that u0 is badly approximable. Hence

‖Hu0‖ = 1 = ‖u0‖∞.

The (1, 1) entries of equation (3.4) are

wT0 (G−Q)v0 = t0u0.

Since v0 ∈ H∞(D,Cn), w0 ∈ H∞(D,Cm) and H∞(D,C) + C(T,C) is an algebra,

u0 ∈ H∞ + C. By a result in [20, Section 3.1], if u0 ∈ H∞ + C and u0 is badly approx-

imable then ū0 ∈ H∞ + C. Thus u0 is quasi-continuous.

Next we show that v0, w0 ∈ QC. It follows from Nehari’s Theorem (see Theorem D.2.4)

that

(G−Q)∗w = t0v.

Indeed, since H∗Gw = t0v and H∗G = P+M(G−Q)∗ |H2⊥ , we have (assuming, as we may, that v

and w are unit vectors),

t0 = ‖H∗Gw‖ = ‖P+(G−Q)∗w‖
≤ ‖(G−Q)∗w‖ ≤ ‖G−Q‖L∞‖w‖ = t0.

It follows that the inequalities hold with equality, and so

‖P+(G−Q)∗w‖ = ‖(G−Q)∗w‖,

whence

P+(G−Q)∗w = (G−Q)∗w,

and so

(G−Q)∗w = H∗Gw = t0v,

as claimed.

Taking complex conjugates in the last equation we have

(G−Q)T w̄ = t0v̄.

Thus, by equation (3.2),

(G−Q)T zφw0h = t0h̄v̄0

for some outer function h and scalar inner φ. Therefore

v̄0 =
(G−Q)T zφw0h

t0h̄
.
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3.1. Known results

Recall that u0 = z̄φ̄h̄/h, and so

v̄0 =
1

t0
(G−Q)T ū0w0.

Since u0 ∈ QC, G − Q ∈ H∞ + C, w0 ∈ H∞ and H∞ + C is an algebra, it follows that

v̄0 ∈ H∞ + C. Since also v0 ∈ H∞, we have v0 ∈ QC. In an analogous way, one can show

that w0 ∈ QC.

To complete the proof, all that remains is to show that α, β are quasi-continuous and

F ∈ H∞ + C. This will follow from Lemma 3.1.11 above.

The space VMO satisfies conditions (α1) to (α5), and we have v0 ∈ QC ⊂ VMO. Hence

we may apply Lemma 3.1.11 with φ = v0 to deduce that α ∈ VMO. Since also α ∈ L∞, it

follows from Theorem 3.1.6 that α ∈ QC. Likewise, β ∈ QC.

To show that F ∈ H∞(D,C(m−1)×(n−1)) + C(T,C(m−1)×(n−1)), for 1 < i ≤ m, 1 < j ≤ n

consider the 2× 2 minor of equation (3.4) with indices 1i, 1j :∑
r<s, k<l

W1i,rs(G−Q)rs,klVkl,1j = t0u0Fi−1,j−1. (3.6)

By the analytic minors property of W,V,

Vkl,1j,W1i,rs ∈ H∞.

Since (G − Q) ∈ H∞(D,Cm×n) + C(T,Cm×n), all the terms on the left-hand side of

equation (3.6) are in H∞ + C and hence u0F ∈ H∞(D,C(m−1)×(n−1)) + C(T,C(m−1)×(n−1)).

Thus

F = ū0(u0F ) ∈ H∞(D,C(m−1)×(n−1)) + C(T,C(m−1)×(n−1)).

Definition 3.1.13. We say that a unitary-matrix-valued function V is a thematic comple-

tion of a column-matrix inner function v0 ∈ H∞(D,Cn), if V =
(
v0 ᾱ

)
for some co-outer

function α ∈ H∞(D,Cn×(n−1)) such that V (z) is unitary-valued almost everywhere on T and

all minors on the first column of V are analytic.

Remark 3.1.14. By Theorem 3.1.10, every column-matrix inner function has a thematic

completion. Thematic completions are not unique, for if V =
(
v0 ᾱ

)
is a thematic comple-

tion of v0, then so is
(
v0 ᾱU

)
for any constant (n− 1)−square unitary matrix U. However,

by Corollary 1.6 of [24], the thematic completion of v0 is unique up to multiplication on the

right by a constant unitary matrix of the form diag{1, U} for some constant (n−1)− square

matrix U, and so it is permissible to speak of “the thematic completion of v0”.

Furthermore, by Theorem 1.2 of [24], thematic completions have constant determinants

almost everywhere on T, and hence α, β are inner matrix functions. Observe that, as we

showed above, if the column v0 belongs to VMO, then the thematic completion of v0 is quasi-

continuous. Similarly, if the column w0 belongs to VMO, then the thematic completion of
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3.1. Known results

w0 is quasi-continuous. Thus α, β are inner, co-outer, quasi-continuous functions of types

n× (n− 1) and m× (m− 1) respectively.

Lemma 3.1.15 ([24], p. 316). Let m,n > 1, let G ∈ H∞(D,Cm×n) + C(T,Cm×n), let

‖HG‖ = t0 and let Q1 ∈ H∞(D,Cm×n) be at minimal distance from G, so that in the

notation of Lemma 3.1.12,

W (G−Q1)V =

(
t0u0 0

0 F

)
for some F ∈ H∞(D,Cm−1×n−1) + C(T,Cm−1×n−1). Let

E0 = {G−Q : Q ∈ H∞(D,Cm×n), ‖G−Q‖∞ = t0}.

Then

WE0V =

(
t0u0 0

0 F +H∞(D,Cm−1×n−1)

)
∩B(t0),

where B(t0) is the closed ball of radius t0 in L∞(T,Cm×n).

Lemma 3.1.16 ([25], p. 16). Let G ∈ H∞(D,Cm×n) + C(T,Cm×n) and let (x0, y0) be a

Schmidt pair for the Hankel operator HG corresponding to the singular value t0 = ‖HG‖. Let

x0 = ξ0h0 be the inner-outer factorisation of x0, where ξ0 ∈ H∞(D,Cn) is the inner and

h0 ∈ H2(D,C) is the scalar outer factor of x0 ∈ H2(D,Cn), and let

V0 =
(
ξ0 ᾱ0

)
be a unitary-valued function on T, where α0 ∈ H∞(D,Cn×(n−1)) is inner, co-outer and quasi-

continuous. Then

V0

(
0 H2(D,Cn−1)

)T
is the orthogonal projection of H2(D,Cn) onto the pointwise orthogonal complement of x0 in

L2(T,Cn). Similarly

V ∗0

(
0 H2(D,Cn−1)⊥

)
is the orthogonal projection of H2(D,Cn)⊥ onto the pointwise orthogonal complement of x0

in L2(T,Cn).

Lemma 3.1.17 ([25], p. 16). Let G, x0, y0 be defined as in Lemma 3.1.16 and let K,L be the

projections of H2(D,Cn), H2(D,Cm)⊥ onto the pointwise orthogonal complements of x0, y0

in L2(T,Cn), L2(T,Cm) respectively. Let Q0 ∈ H∞(D,Cm×n) be at minimal distance from

G, let F be the (2, 2) block of W0(G−Q0)V0, as in Lemma 3.1.12, that is,

V0 =
(
ξ0 ᾱ0

)
, W0 =

(
η0 β̄0

)T
(3.7)

are unitary-valued functions on T, α0, β0 are inner, co-outer, quasi-continuous functions of

size n× (n− 1),m× (m− 1) respectively and all minors on the first columns of V0,W
T
0 are
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in H∞. Let Q ∈ H∞(D,Cm×n) satisfy

(G−Q)x0 = ‖HG‖y0, y∗0(G−Q) = ‖HG‖x∗0.

Then HF is a unitary multiple of the operator

Γ
def
= PLMG−Q|K, (3.8)

where MG−Q : L2(T,Cn) → L2(T,Cm) is the operator of multiplication by G − Q. More

explicitly, if U1 : H2(D,Cn−1)→ K, U2 : H2(D,Cm−1)⊥ → L are defined by

U1χ = V0

(
0

χ

)
, U2ψ = W ∗

0

(
0

ψ

)
for all χ ∈ H2(D,Cn−1), ψ ∈ H2(D,Cm−1),

then U1, U2 are unitaries and

HF = U∗2 ΓU1.

Lemma 3.1.18 ([24], p. 337). Let α ∈ QC of type m × n, where m ≥ n, be inner and

co-outer. There exists A ∈ H∞(D,Cn×m) such that Aα = In. Here In denotes the n × n

identity matrix.

Theorem 3.1.19 gives the algorithm for the superoptimal analytic approximant con-

structed in [25].

Theorem 3.1.19 ([25], p. 17). Let G ∈ H∞(D,Cm×n) + C(T,Cm×n). The superoptimal

approximant AG to G is given by the following formula.

If HG = 0, then AG = G. Otherwise define spaces Kj ⊂ L2(T,Cn), Nj ⊂ L2(T,Cm), vectors

χj ∈ Kj, ψj ∈ Nj, H
∞ functions Qj, operators Γj and positive λj as follows.

Let

K0 = H2(D,Cn), N0 = H2(D,Cm)⊥, Q0 = 0.

Let

Γj = PNjMG−Qj |Kj : Kj → Nj, λj = ‖Γj‖,

where PNj is the orthogonal projection onto Nj. If λj = 0 set r = j and terminate the

construction. Otherwise let χj, ψj be a Schmidt pair for Γj corresponding to the singular value

λj. Let Kj+1 be the range of the orthogonal projection of Kj onto the pointwise orthogonal

complement of χ0, · · · , χj in L2(T,Cn). Let Nj+1 be the projection of Nj onto the pointwise

orthogonal complement of ψ0, · · · , ψj in L2(T,Cm). Let Qj+1 ∈ H∞(D,Cm×n) be chosen to

satisfy, for 0 ≤ k ≤ j,

Qj+1χk = Gχk − tkψk, ψ∗kQj+1 = ψ∗kG− tkχ∗k.

Then each Γj is a compact operator, Qj with the above properties does exist, the construction

terminates with r ≤ min(m,n) and
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3.1. Known results

G−AG =
r−1∑
j=0

λjψjχ
∗
j

χ∗jχj
.

We shall derive a similar formula for the superoptimal analytic approximant AG, by making

use of exterior products of Hilbert spaces.
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3.2. Algorithm for superoptimal analytic approximation

3.2 Algorithm for superoptimal analytic approxima-

tion

In this section we consider the superoptimal analytic approximation problem 1.1.3 for a

matrix-valued function which lies in H∞(D,Cm×n)+C(T,Cm×n). In particular, in Subsection

3.2.1 we state the algorithm for calculating the superoptimal approximant in that instance,

and moreover, in the subsections that follow, we prove the validity of all the claims which

are being made. Throughout we make use of the main result of Peller and Young from [24],

which asserts that Problem 1.1.3 is solvable (see Theorem 1.1.4).

3.2.1 The algorithm

Let G ∈ H∞(D,Cm×n)+C(T,Cm×n). In this subsection we shall give a fuller and more precise

statement of the algorithm for AG outlined in Section 1.2, in preparation for a subsequent

formal proof of Theorem 3.2.59, which asserts that if entities r, ti, xi, yi, hi for i = 0, . . . , r−1,

are generated by the algorithm, then the superoptimal approximant is given by equation

AG = G−
r−1∑
i=0

tiyix
∗
i

|hi|2
.

The proof will be by induction on r, which is the least index j ≥ 0 such that

Tj = 0, where T0 = HG, T1, T2, . . . is a sequence of operators recursively generated by the

algorithm.

Algorithm: For the given G ∈ H∞(D,Cm×n) + C(T,Cm×n), the superoptimal analytic

approximant AG ∈ H∞(D,Cm×n) can be constructed as follows.

i) Step 0. Let T0 = HG be the Hankel operator with symbol G as defined by Definition

1.2.4. Let t0 = ‖HG‖. If t0 = 0, then HG = 0, which implies G ∈ H∞(D,Cm×n). In this case,

the algorithm terminates, we define r to be zero and the superoptimal approximant AG is

given by AG = G.

Suppose t0 6= 0. By Hartman’s Theorem 3.1.2, HG is a compact operator and so there exists

a Schmidt pair (x0, y0) corresponding to the singular value t0 of HG. By the definition of a

Schmidt pair (x0, y0) for the Hankel operator

HG : H2(D,Cn)→ H2(D,Cm)⊥,

x0 ∈ H2(D,Cn), y0 ∈ H2(D,Cm)⊥

are non-zero vector-valued functions such that

HGx0 = t0y0, H∗Gy0 = t0x0.
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3.2. Algorithm for superoptimal analytic approximation

By Lemma 3.1.12, x0 ∈ H2(D,Cn) and z̄ȳ0 ∈ H2(D,Cm) admit the inner-outer factorisations

x0 = ξ0h0, z̄ȳ0 = η0h0 (3.9)

for some scalar outer factor h0 ∈ H2(D,C) and column matrix inner functions ξ0 ∈ H∞(D,Cn),

η0 ∈ H∞(D,Cm). Then

‖x0(z)‖Cn = |h0(z)| = ‖y0(z)‖Cm almost everywhere on T. (3.10)

We write equations (3.9) as

ξ0 =
x0

h0

, η0 =
z̄ȳ0

h0

. (3.11)

By equations (3.10) and (3.11),

‖ξ0(z)‖Cn = 1 = ‖η0(z)‖Cm almost everywhere on T.

By Theorem D.2.4, every function Q1 ∈ H∞(D,Cm×n) which is at minimal distance from G

satisfies

(G−Q1)x0 = t0y0, y∗0(G−Q1) = t0x
∗
0. (3.12)

ii) Step 1. Let

X1
def
= ξ0∧̇H2(D,Cn). (3.13)

By Proposition 3.2.3, X1 is a closed subspace of H2(D,∧2Cn).

Moreover

η0∧̇zH2(D,Cm) ⊂ zH2(D,∧2Cm)

and therefore

η̄0∧̇zH2(D,Cm) ⊂ z̄H2(D,∧2Cm),

that is, if

Y1
def
= η̄0∧̇H2(D,Cm)⊥, (3.14)

then Y1 is a closed subspace of H2(D,∧2Cm)⊥. Choose any function Q1 ∈ H∞(D,Cm×n)

which satisfies equation (3.12). Consider the operator T1 : X1 → Y1 defined by

T1(ξ0∧̇x) = PY1(η̄0∧̇(G−Q1)x) for all x ∈ H2(D,Cn), (3.15)

where PY1 is the projection from L2(T,∧2Cm) on Y1. By Corollary 3.2.5 and Proposition

3.2.8, T1 is well-defined. If T1 = 0, then the algorithm terminates, we define r to be 1 and, in

accordance with Theorem 3.2.59, the superoptimal approximant AG is given by the formula

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
=
t0y0x

∗
0

|h0|2
,
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and the solution is

AG = G− t0y0x
∗
0

|h0|2
.

Suppose T1 6= 0 and let t1 = ‖T1‖ > 0. By Theorem 3.2.10, T1 is a compact operator and

so there exist v1 ∈ H2(D,Cn), w1 ∈ H2(D,Cm)⊥ such that (ξ0∧̇v1, η̄0∧̇w1) is a Schmidt pair

for T1 corresponding to t1. By Proposition 3.2.2, ξ0∧̇v1 ∈ H2(D,∧2Cn). Let h1 be the scalar

outer factor of ξ0∧̇v1 and let

x1 = (ICn − ξ0ξ
∗
0)v1, y1 = (ICm − η̄0η

T
0 )w1, (3.16)

where ICn and ICm are the identity operators in Cn and Cm respectively. Then, by Proposition

3.2.24,

‖x1(z)‖Cn = |h1(z)| = ‖y1(z)‖Cm almost everywhere on T. (3.17)

By Theorem 1.1.4, there exists a function Q2 ∈ H∞(D,Cm×n) such that both

s∞0 (G−Q2) and s∞1 (G−Q2) are minimised and

s∞1 (G−Q2) = t1.

By Proposition 3.2.27, any such Q2 satisfies

(G−Q2)x0 = t0y0, y∗0(G−Q2) = t0x
∗
0

(G−Q2)x1 = t1y1, y∗1(G−Q2) = t1x
∗
1.

(3.18)

Define

ξ1 =
x1

h1

, η1 =
z̄ȳ1

h1

. (3.19)

By equations (3.17) and (3.19), ‖ξ1(z)‖Cn = 1 = ‖η1(z)‖Cn almost everywhere on T.
iii) Step 2. Define

X2
def
= ξ0∧̇ξ1∧̇H2(D,Cn)

Y2
def
= η̄0∧̇η̄1∧̇H2(D,Cm)⊥.

Note that, by Proposition 3.2.3, X2 is a closed linear subspace of H2(D,∧3Cn), and, by

Proposition 3.2.6, Y2 is a closed linear subspace of H2(D,∧3Cm)⊥. Choose any function

Q2 ∈ H∞(D,Cm×n) which satisfies equations (3.18). Consider the operator T2 : X2 → Y2

given by

T2(ξ0∧̇ξ1∧̇x) = PY2(η̄0∧̇η̄1∧̇(G−Q2)x), (3.20)

where PY2 is the projection from L2(T,Cm) on Y2.

By Corollary 3.2.7 and by Proposition 3.2.8, T2 is well-defined, that is, it does not depend on

the choice of Q2 ∈ H∞(D,Cm×n) satisfying equations (3.18). If T2 = 0, then the algorithm

terminates, we define r to be 2 and, in accordance with Theorem 3.2.59, the superoptimal
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approximant AG is given by the formula

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
=
t0y0x

∗
0

|h0|2
+
t1y1x

∗
1

|h1|2
.

If T2 6= 0, then let t2 = ‖T2‖. By Theorem 3.2.37, T2 is a compact operator and hence there

exist v2 ∈ H2(D,Cn), w2 ∈ H2(D,Cm)⊥ such that

(ξ0∧̇ξ1∧̇v2, η̄0∧̇η̄1∧̇w2)

is a Schmidt pair for T2 corresponding to ‖T2‖ = t2. Define x2, y2 by

x2 = (ICn − ξ0ξ
∗
0 − ξ1ξ

∗
1)v2, y2 = (ICm − η̄0η

T
0 − η̄1η

T
1 )w2.

By Proposition 3.2.40, ξ0∧̇ξ1∧̇v2 ∈ H2(D,∧3Cn). Let h2 ∈ H2(D,C) be the outer factor of

ξ0∧̇ξ1∧̇v2. By Proposition 3.2.40,

‖x2(z)‖Cn = |h2(z)| = ‖y2(z)‖Cm

almost everywhere on T. Define

ξ2 =
x2

h2

, η2 =
z̄ȳ2

h2

.

It is easy to see that ‖ξ2(z)‖Cn = 1 and ‖η2(z)‖Cm = 1 almost everywhere on T.
iv) Recursive step. Suppose that, for j ≤ min(m,n)− 2, we have constructed

t0 ≥ t1 ≥ · · · ≥ tj > 0

x0, x1, · · · , xj ∈ L2(T,Cn)

y0, y1, · · · , yj ∈ L2(T,Cm)

h0, h1, · · · , hj ∈ H2(D,C) outer

ξ0, ξ1, · · · , ξj ∈ L2(T,Cn) pointwise orthonormal on T

η0, η1, · · · , ηj ∈ L2(T,Cm) pointwise orthonormal on T

X0 = H2(D,Cn), X1, · · · , Xj

Y0 = H2(D,Cm)⊥, Y1, · · · , Yj
T0, T1, · · · , Tj compact operators.

(3.21)

By Theorem 1.1.4, there exists a function Qj+1 ∈ H∞(D,Cm×n) such that

(
s∞0 (G−Qj+1), s∞1 (G−Qj+1), · · · , s∞j+1(G−Qj+1)

)
is lexicographically minimised. By Proposition 3.2.47, any such function Qj+1 satisfies

(G−Qj+1)xi = tiyi, y∗i (G−Qj+1) = tix
∗
i , i = 0, 1, · · · , j. (3.22)
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Define

Xj+1
def
= ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇H2(D,Cn) (3.23)

Yj+1
def
= η̄0∧̇η̄1∧̇ · · · ∧̇η̄j∧̇H2(D,Cm)⊥. (3.24)

Note that, by Proposition 3.2.3, Xj+1 is a closed subspace of H2(D,∧j+2Cn), and, by Proposi-

tion 3.2.6, Yj+1 is a closed subspace of H2(D,∧j+2Cm)⊥. Choose any function

Qj+1 ∈ H∞(D,Cm×n) which satisfies equations (3.22). Consider the operator

Tj+1 : Xj+1 → Yj+1

given by

Tj+1(ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇x) = PYj+1
(η̄0∧̇η̄1∧̇ · · · ∧̇η̄j∧̇(G−Qj+1)x) (3.25)

for all x ∈ H2(D,Cn). By Corollary 3.2.7 and by Proposition 3.2.8, Tj+1 is well-defined. If

Tj+1 = 0, then the algorithm terminates, we define r to be j + 1, and, in accordance with

Theorem 3.2.59, the superoptimal approximant AG is given by the formula

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
=

j∑
i=0

tiyix
∗
i

|hi|2
.

Otherwise, we define tj+1 = ‖Tj+1‖ > 0. By Theorem 3.2.54, Tj+1 is a compact operator and

hence there exist vj+1 ∈ H2(D,Cn), wj+1 ∈ H2(D,Cm)⊥ such that

(ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇vj+1, η̄0∧̇η̄1∧̇ · · · ∧̇η̄j∧̇wj+1) (3.26)

is a Schmidt pair for Tj+1 corresponding to the singular value tj+1.

By Proposition 3.2.2,

ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇vj+1 ∈ H2(D,∧j+2Cn).

Let hj+1 be the scalar outer factor of ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇vj+1, and let

xj+1 = (ICn − ξ0ξ
∗
0 − · · · − ξjξ∗j )vj+1, yj+1 = (ICm − η̄0η

T
0 − · · · − η̄jηTj )wj+1. (3.27)

By Proposition 3.2.57,

‖xj+1(z)‖Cn = |hj+1(z)| = ‖yj+1(z)‖Cm

almost everywhere on T. Define

ξj+1 =
xj+1

hj+1

, ηj+1 =
z̄ȳj+1

hj+1

. (3.28)

It is easy to see that ‖ξj+1(z)‖Cn = 1 and ‖ηj+1(z)‖Cm = 1 almost everywhere on T. This

completes the recursive step. The algorithm terminates after at most min(m,n) steps, so
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that, r ≤ min(m,n) and, in accordance with Theorem 3.2.59, the superoptimal approximant

AG is given by the formula

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2
.

3.2.2 Pointwise orthonormality of {ξi}ji=1 and {η̄i}ji=1 almost every-

where on T

Proposition 3.2.1. Let m,n be positive integers with min(m,n) ≥ 2, let

G ∈ H∞(D,Cm×n) + C(T,Cm×n) and let 0 ≤ j ≤ min(m,n) − 2. Suppose we have ap-

plied steps 0, . . . , j of the superoptimal analytic approximation algorithm from Section 3.2.1

to G and we have obtained xi, yi as in equations (3.27), and ξi, ηi as in equations (3.28) for

all i = 0, · · · , j. Then

(i) ξ0∧̇v1 = ξ0∧̇x1, ξ0∧̇ · · · ∧̇ξj−1∧̇vj = ξ0∧̇ · · · ∧̇ξj−1∧̇xj, η̄0∧̇w1 = η̄0∧̇y1,

and η̄0∧̇ · · · ∧̇η̄j−1∧̇wj = η̄0∧̇ · · · ∧̇η̄j−1∧̇yj;

(ii) for all i = 0, · · · , j, ‖xi(z)‖Cn = ‖yi(z)‖Cm = |hi(z)| almost everywhere on T;

(iii) the sets {ξi(z)}ji=0 and {η̄i(z)}ji=0 are orthonormal in Cn and Cm respectively for almost

every z ∈ T.

Proof. We will prove statements (ii) in Propositions 3.2.24 and 3.2.40. Statement (i) is

proven below in equations (3.32), (3.35), (3.38). Let us prove assertion (iii).

Since the function G belongs to H∞(D,Cm×n)+C(T,Cm×n), by Hartman’s theorem, the

Hankel operator with symbol G, denoted by HG, is a compact operator, and so there exist

functions

x0 ∈ H2(D,Cn), y0 ∈ H2(D,Cm)⊥

such that (x0, y0) is a Schmidt pair corresponding to the singular value t0 = ‖HG‖ 6= 0. By

Lemma 3.1.12, x0, z̄ȳ0 admit the inner-outer factorisations

x0 = ξ0h0, z̄ȳ0 = η0h0

for column matrix inner functions ξ0 ∈ H∞(D,Cn), η0 ∈ H∞(D,Cm) and some scalar outer

factor h0 ∈ H2(D,C). By Theorem D.2.4,

‖x0(z)‖Cn = |h0(z)| = ‖y0(z)‖Cm almost everywhere on T. (3.29)

Thus

‖ξ0(z)‖Cn = 1 almost everywhere on T. (3.30)

Hence (iii) of Proposition 3.2.1 holds for {ξi(z)}ji=0 in the case that j = 0.

Let T1 be given by equation (3.15). By the hypothesis (3.21), T1 is a compact operator, and

if T1 6= 0, then there exist v1 ∈ H2(D,Cn) and w1 ∈ H2(D,Cm)⊥ such that (ξ0∧̇v1, η̄0∧̇w1)
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is a Schmidt pair corresponding to ‖T1‖ = t1. By Proposition 2.2.13, ξ0∧̇v1 ∈ H2(D,∧2Cn).

Let h1 be the scalar outer factor of ξ0∧̇v1. We define

x1 = (ICn − ξ0ξ
∗
0)v1 (3.31)

and

ξ1 =
x1

h1

.

Then, for z ∈ D,
ξ1(z) =

1

h1(z)
v1(z)− 1

h1(z)
ξ0(z)ξ0(z)∗v1(z).

Note that by equation (3.30),

ξ∗0(z)ξ0(z) = 〈ξ0(z), ξ0(z)〉Cn = 1 almost everywhere on T,

hence

〈ξ1(z), ξ0(z)〉Cn = ξ∗0(z)ξ1(z) =
1

h1(z)
ξ0(z)∗v1(z)− 1

h1(z)
ξ0(z)∗ξ0(z)ξ0(z)∗v1(z) = 0

almost everywhere on T. Note that, by equation (3.31), for almost every z ∈ T,

ξ0(z) ∧ v1(z) = ξ0(z) ∧ (x1(z) + ξ0(z)ξ0(z)∗v1(z))

= ξ0(z) ∧ x1(z) + ξ0(z) ∧ ξ0(z)ξ0(z)∗v1(z))

= ξ0(z) ∧ x1(z), (3.32)

the last equality following from the pointwise linear dependence of the vectors ξ0 and

z 7→ ξ0(z)〈v1(z), ξ0(z)〉Cn almost everywhere on T.
By Proposition 2.2.13, ξ0∧̇v1 ∈ H2(D,∧2Cn). Let h1 be the scalar outer factor of ξ0∧̇v1.

Then, for almost every z ∈ T, we have

|h1(z)| = ‖ξ0(z) ∧ v1(z)‖∧2Cn = ‖ξ0(z) ∧ x1(z)‖∧2Cn ,

By Lemma 2.1.22,

‖ξ0(z) ∧ x1(z)‖∧2Cn = ‖x1(z)− 〈x1(z), ξ0(z)〉Cnξ0(z)‖Cn = ‖x1(z)‖Cn

almost everywhere on T. Hence, for almost every z ∈ T,

|h1(z)| = ‖x1(z)‖Cn (3.33)

and thus

‖ξ1(z)‖Cn =
‖x1(z)‖Cn
|h1(z)|

= 1 almost everywhere on T.

Consequently, {ξ0(z), ξ1(z)} is an orthonormal set in Cn for almost every z ∈ T. Hence (iii)
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of Proposition 3.2.1 holds for {ξi(z)}ji=0 in the case that j = 1.

Recursive step: Suppose the entities in equations (3.21) have been constructed and

have the stated properties, for i = 0, . . . , j − 1, and that {ξi(z)}j−1
i=0 is an orthonormal set

almost everywhere on T. Since by the inductive hypothesis Tj is a compact operator, there

exist

vj ∈ H2(D,Cn), wj ∈ H2(D,Cm)⊥

such that

(ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj, η0∧̇η1∧̇ · · · ∧̇ηj−1∧̇wj)

is a Schmidt pair for Tj corresponding to ‖Tj‖ = tj. Let us first prove that ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj
is an element of H2(D,∧j+1Cn). By hypothesis,

xi = (In − ξ0ξ
∗
0 − · · · − ξi−1ξ

∗
i−1)vi and ξi =

xi
hi

for i = 0, . . . , j − 1. Then, for all z ∈ D,

(ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj) (z) =

(
ξ0∧̇

x1

h1

∧̇ · · · ∧̇xj−1

hj−1

∧̇vj
)

(z)

=

(
1

h1

· · · 1

hj−1

ξ0∧̇x1∧̇ · · · ∧̇xj−1∧̇vj
)

(z).

We obtain

(ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj)(z) =

(
1

h1

· · · 1

hj−1

ξ0∧̇v1∧̇ · · · ∧̇vj−1∧̇vj
)

(z), for all z ∈ D,

due to pointwise linear dependence of ξk and ξkξ
∗
i on D, for all k = 0, . . . , i. By Proposition

2.2.8,
1

h1

· · · 1

hj−1

ξ0∧̇v1∧̇ · · · ∧̇vj−1∧̇vj

is analytic on D. Moreover, by Proposition 2.2.14, since ξ0, ξ1, . . . , ξj−1 are pointwise orthog-

onal on T,
‖ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj‖L2(T,∧j+1Cn) <∞.

Therefore

ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj ∈ H2(D,∧j+1Cn).

Let hj be the scalar outer factor of ξ1∧̇ξ2∧̇ · · · ∧̇ξj−1∧̇vj. We define

xj = (ICn − ξ0ξ
∗
0 − · · · − ξj−1ξ

∗
j−1)vj (3.34)

and

ξj =
xj
hj
.

We will show that {ξ0(z), · · · , ξj−1(z), ξj(z)} is an orthonormal set in Cn almost everywhere
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on T. We have

ξj =
1

hj
vj −

1

hj
ξ0ξ
∗
0vj − · · · −

1

hj
ξj−1ξ

∗
j−1vj,

and so, for all i = 0, . . . , j − 1,

〈ξj(z), ξi(z)〉Cn =
1

hj(z)
ξ∗i (z)vj(z)− 1

hj(z)
ξ∗i (z)ξ0(z)ξ∗0(z)v1(z)− · · ·

− 1

hj(z)
ξ∗i (z)ξj−1(z)ξ∗j−1(z)v1(z)

almost everywhere on T. Note that by the inductive hypothesis, for all i, k = 0, 1, · · · , j − 1

and for almost all z ∈ T,

ξ∗i (z)ξk(z) =

{
0, for i 6= k

1, for i = k
.

Thus, for all i = 0, . . . , j − 1,

〈ξj(z), ξi(z)〉Cn =
1

hj(z)
ξ∗i (z)vj(z)− 1

hj(z)
ξ∗i (z)ξi(z)ξ∗i vj(z) = 0

almost everywhere on T, and hence, by induction on j and for all integers j = 0, . . . , r − 1,

{ξ0(z), · · · , ξj−1(z), ξj(z)} is an orthogonal set in Cn for almost all z ∈ T.
Let us show that

ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ vj(z) = ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ xj(z)

almost everywhere on T.
Equation (3.34) yields

ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ vj(z) = ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ (xj(z) + ξ0(z)ξ∗0(z)vj(z)

+ · · ·+ ξj−1(z)ξ∗j−1(z)vj(z))

= ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ (xj(z) + ξ0(z)〈vj(z), ξ0(z)〉Cn + · · ·

+ · · ·+ ξj−1(z)〈vj(z), ξj−1(z)〉Cn)

almost everywhere on T. Notice that, for all i = 0, · · · , j − 1, the vectors ξi and

z 7→ ξi(z)〈vj(z), ξi(z)〉Cn are pointwise linearly dependent almost everywhere on T. Thus

for all i = 0, · · · , j − 1,

ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ ξi(z)〈vi+1(z), ξi(z)〉Cn = 0

almost everywhere on T.
Hence

ξ0(z)∧ · · · ∧ ξj−1(z)∧ vj(z) = ξ0(z)∧ · · · ∧ ξj−1(z)∧ xj(z) almost everywhere on T. (3.35)
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Next, we shall show that ‖ξj(z)‖Cn = 1 for almost all z ∈ T. Recall that hj is the scalar

outer factor of ξ1∧̇ξ2∧̇ · · · ∧̇ξj−1∧̇vj, and therefore

|hj(z)| = ‖ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ vj(z)‖∧j+1Cn = ‖ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ xj(z)‖∧j+1Cn

almost everywhere on T.
By the inductive hypothesis, {ξ0(z), · · · , ξj−1(z)} is an orthonormal set in Cn for almost all

z ∈ T, hence, by Lemma 2.1.22,

|hj(z)| = ‖ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ xj(z)‖∧j+1Cn

= ‖xj(z)−
j−1∑
i=0

〈xj(z), ξi(z)〉ξi(z)‖Cn

= ‖xj(z)‖Cn almost everywhere on T. (3.36)

Thus

‖ξj(z)‖Cn =
‖xj(z)‖Cn
|hj(z)|

= 1

almost everywhere on T, and hence, by induction on j and for all integers j = 0, . . . , r − 1,

{ξ0(z), · · · , ξj−1(z), ξj(z)} is an orthonormal set in Cn for almost all z ∈ T.
Next, we will prove that the set {η̄i(z)}ji=0, defined in equations (3.28), is orthonormal.

For i = 0, by equation (3.29), we have

‖η̄0(z)‖Cm = 1 almost everywhere on T. (3.37)

Hence (iii) of Proposition 3.2.1 holds for {η̄i}ji=0 in the case j = 0. Let T1 be given by

equation (3.15). T1 is assumed to be a compact operator, and if T1 6= 0, v1 ∈ H2(D,Cn) and

w1 ∈ H2(D,Cm)⊥ are such that (ξ0∧̇v1, η̄0∧̇w1) is a Schmidt pair corresponding to ‖T1‖ = t1.

Suppose h1 is the scalar outer factor of ξ0∧̇v1. Let

y1 = (ICm − η̄0η
T
0 )w1 = w1 − η̄0η

T
0 w1

and let

η1(z) =
z̄ȳ1(z)

h1(z)
almost everywhere on T.

Then

η̄1(z) =
zy0(z)

h̄1(z)
=
zw1(z)

h̄1(z)
− zη̄0(z)ηT0 (z)w1(z)

h̄1(z)
almost everywhere on T.

By equation (3.37), ‖η̄0(z)‖Cm = 1 almost everywhere on T. Hence
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〈η̄1(z), η̄0(z)〉Cm = ηT0 (z)η̄1(z)

=
zηT0 (z)w1(z)

h̄1(z)
− zηT0 (z)η̄0(z)ηT0 (z)w1(z)

h̄1(z)

=
zηT0 (z)w1(z)

h̄1(z)
− z〈η̄0(z), η̄0(z)〉CmηT0 (z)w1(z)

h̄1(z)

=
zηT0 (z)w1(z)

h̄1(z)
− zηT0 (z)w1(z)

h̄1(z)

= 0 almost everywhere on T.

Recall that h1 is the scalar outer factor of ξ0∧̇v1. By equation (3.33) and Proposition 3.2.24,

‖x1(z)‖Cn = ‖y1(z)‖Cm = |h1(z)|

almost everywhere on T, thus

‖η̄1(z)‖Cm =
‖zy1(z)‖Cm
|h̄1(z)|

= 1 almost everywhere on T.

Consequently, {η̄0(z), η̄1(z)} is an orthonormal set in Cm for almost every z ∈ T. Hence (iii)

of Proposition 3.2.1 holds for {η̄i}ji=0 in the case j = 1.

Recursive step: Suppose the entities in equations (3.21) have been constructed and

have the stated properties, for i = 0, . . . , j − 1, and that {η̄i(z)}j−1
i=0 is an orthonormal set

almost everywhere on T. Since by the inductive hypothesis Tj is a compact operator, there

exist

vj ∈ H2(D,Cn), wj ∈ H2(D,Cm)⊥

such that

(ξ1∧̇ξ2∧̇ · · · ∧̇ξj−1∧̇vj, η̄0∧̇η̄1∧̇ · · · ∧̇η̄j−1∧̇wj)

is a Schmidt pair for Tj corresponding to ‖Tj‖ = tj. By Proposition 3.2.2,

ξ0∧̇ · · · ∧̇ξj−1∧̇vj ∈ H2(D,∧j+1Cn).

Let hj be the scalar outer factor of ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj. We define

yj = (ICm − η̄0η
T
0 − · · · − η̄j−1η

T
j−1)wj

and

η̄j =
zyj
h̄j
.

Let us show that {η̄0(z), . . . , η̄j(z)} is an orthonormal set in Cm almost everywhere on T.
We have

η̄j =
zwj
h̄j
− · · · −

zη̄j−1η
T
j−1wj

h̄j
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and so, for i = 0, . . . , j − 1,

〈η̄j(z), η̄i(z)〉Cm = ηTi (z)η̄j(z)

=
zηTi (z)wj(z)

h̄j(z)
− · · · −

zηTi (z)η̄j(z)ηTj (z)wj(z)

h̄j(z)

almost everywhere on T.
Notice that, by the inductive hypothesis, for all i, k = 0, . . . , j − 1 and for almost all z ∈ T,

ηTi (z)η̄k(z) =

{
0, for i 6= k

1, for i = k
.

Hence, for all i = 0, . . . , j − 1,

〈η̄j(z), η̄i(z)〉Cm =
zηTi (z)wj(z)

h̄j(z)
− zηTi (z)wj(z)

h̄j(z)
= 0

almost everywhere on T. Thus by induction on j and for all integers j = 0, . . . , r − 1,

{η̄0(z), . . . , η̄j(z)} is an orthogonal set in Cm almost everywhere on T.
To complete the proof, we have to prove that ‖η̄j(z)‖Cm = 1 for almost all z ∈ T. Recall

that hj is the scalar outer factor of ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇vj. By Proposition 3.2.57,

|hj(z)| = ‖xj(z)‖Cn = ‖yj(z)‖Cm

almost everywhere on T, thus

‖η̄j(z)‖Cm = ‖zyj(z)

h̄j(z)
‖Cm = 1

almost everywhere on T, and hence, by induction on j and for all integers j = 0, · · · , r − 1.

{η̄0(z), . . . , η̄j(z)} is an orthonormal set in Cm almost everywhere on T.
Note that, for j = 1, . . . , r − 1,

η̄0∧̇ · · · ∧̇η̄j−1∧̇yj = η̄0∧̇ · · · ∧̇η̄j−1∧̇(ICm − η̄0η
T
0 − · · · − η̄j−1η

T
j−1)wj

= η̄0∧̇ · · · ∧̇η̄j−1∧̇wj −
j−1∑
k=0

η̄0∧̇ · · · ∧̇η̄j−1∧̇η̄kηTk wj

= η̄0∧̇ · · · ∧̇η̄j−1∧̇wj (3.38)

on account of the pointwise linear dependence of η̄k and z 7→ η̄k(z)〈wj(z), η̄k(z)〉Cm almost

everywhere on T.

3.2.3 The closed subspace Xj+1 of H2(D,∧j+2Cn)

Notice that, although x0 ∈ H2(D,Cn) and ξ0 is inner, xi and ξi might not be in H2(D,Cn)

in general for i = 1, · · · ,min(m,n) − 2. However, for every x ∈ H2(D,Cn), the pointwise
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wedge product

ξ0∧̇ · · · ∧̇ξj∧̇x

is an element of H2(D,∧j+2Cn) as the following proposition asserts.

Proposition 3.2.2. Let G ∈ H∞(D,Cm×n) +C(T,Cm×n), and let j ≤ n−2. Let the vector-

valued functions ξ0, ξ1, · · · , ξj be constructed after applying steps 0, . . . , j of the algorithm

above and be given by equations (3.28). Then

ξ0∧̇ . . . ∧̇ξj∧̇H2(D,Cn)

is a subset of H2(D,∧j+2Cn).

Proof. For j = 0, since G ∈ H∞(D,Cm×n)+C(T,Cm×n), the Hankel operator HG is compact.

There exist x0 ∈ H2(D,Cn), y0 ∈ H2(D,Cm)⊥ such that (x0, y0) is a Schmidt pair for the

Hankel operator HG corresponding to the singular value ‖HG‖. By Lemma 3.1.12, x0, y0

admit the inner-outer factorisations

x0 = ξ0h0, z̄ȳ0 = η0h0

for some inner ξ0 ∈ H∞(D,Cn), η0 ∈ H∞(D,Cm) and some scalar outer h0 ∈ H2(D,C).

Then, by Proposition 2.2.13, ξ0∧̇H2(D,Cn) ⊂ H2(D,∧2Cn).

Let us now consider the case where j = 1. By definition,

X1 = ξ0∧̇H2(D,Cn), Y1 = η̄0∧̇H2(D,Cm)⊥

and, by the inductive hypothesis, T1 : X1 → Y1 given by equation (3.15) is a compact op-

erator. Suppose ‖T1‖ 6= 0 and let (ξ0∧̇v1, η̄0∧̇w1) be a Schmidt pair corresponding to ‖T1‖,
where v1 ∈ H2(D,Cn) and w1 ∈ H2(D,Cm)⊥. We define

x1 = (ICn − ξ0ξ
∗
0)v1.

Note that, by Proposition 2.2.13, ξ0∧̇v1 ∈ H2(D,∧2Cn). Let h1 ∈ H2(D,C) be the scalar

outer factor of ξ0∧̇v1 ∈ H2(D,∧2Cn). Then we define

ξ1 =
x1

h1

.

Note that ξ0 and ξ0ξ
∗
0v1 are pointwise linearly dependent on D, since ξ∗0v1 is a mapping from

D to C. Thus, for all x ∈ H2(D,Cn) and z ∈ D, we have

(ξ0∧̇ξ1∧̇x)(z) = ξ0(z) ∧ ξ1(z) ∧ x(z) = ξ0(z) ∧ x1(z)

h1(z)
∧ x(z),

and by substituting the value of x1, we get
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ξ0(z) ∧ x1(z)

h1(z)
∧ x(z) =

1

h1(z)
ξ0(z) ∧ (v1(z)− ξ0(z)ξ0(z)∗v1(z)) ∧ x(z)

=
1

h1(z)
ξ0(z) ∧ v1(z) ∧ x(z)− 1

h1(z)
ξ0(z) ∧ ξ0(z)ξ0(z)∗v1(z) ∧ x(z)

=

(
1

h1

ξ0∧̇v1∧̇x
)

(z).

Note that v1 ∈ H2(D,Cn), ξ0 ∈ H∞(D,Cn) and h1 ∈ H2(D,C) is the scalar outer factor of

ξ0∧̇v1. By Proposition 2.2.8, for every x ∈ H2(D,Cn),

1

h1

ξ0∧̇v1∧̇x

is analytic on D. By Proposition 2.2.14, since ξ0 and ξ1 are pointwise orthogonal on T,

‖ξ0∧̇ξ1∧̇x‖L2(T,∧3Cn) <∞.

Hence

ξ0∧̇ξ1∧̇x ∈
1

h1

ξ0∧̇v1∧̇H2(D,Cn) ⊂ H2(D,∧3Cn).

Recursive step: suppose we have constructed vector-valued functions ξ0, . . . , ξj−1,

η0, . . . , ηj−1, spaces Xj, Yj and a compact operator Tj : Xj → Yj after applying steps 0, . . . , j

of the algorithm from Section 3.2.1 satisfying

ξ0∧̇ · · · ∧̇ξj−1∧̇H2(D,Cn) ⊂ H2(D,∧j+1Cn). (3.39)

Since Tj is a compact operator, there exist vector-valued functions vj ∈ H2(D,Cn),

wj ∈ H2(D,Cm)⊥ such that

(ξ0∧̇ · · · ∧̇ξj−1∧̇vj, η0∧̇ . . . ∧̇ηj−1∧̇wj)

is a Schmidt pair for Tj corresponding to ‖Tj‖. Define

xj = (In − ξ0ξ
∗
0 − · · · − ξj−1ξ

∗
j−1)vj. (3.40)

By assumption, ξ0∧̇ · · · ∧̇ξj−1∧̇vj lies in H2(D,∧j+1Cn). Let hj ∈ H2(D,C) be the scalar

outer factor of ξ0∧̇ · · · ∧̇ξj−1∧̇vj. Define ξj =
xj
hj
. Note that ξi and z 7→ ξi(z)〈vj(z), ξi(z)〉Cn

are pointwise linearly dependent almost everywhere on T for i = 0, . . . , j − 1. Thus, for all

x ∈ H2(D,Cn) and all z ∈ D,
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(ξ0∧̇ · · · ∧̇ξj−1∧̇ξj∧̇x)(z) = (ξ0∧̇ · · · ∧̇ξj−1∧̇
xj
hj
∧̇x)(z)

= ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ 1

hj(z)

(
vj(z)− ξ0(z)ξ∗0(z)vj(z)− · · ·

− ξj−1(z)ξ∗j−1(z)vj(z)

)
∧ x(z)

= ξ0(z) ∧ · · · ∧ ξj−1(z) ∧ 1

hj(z)
vj(z) ∧ x(z)

− 1

hj(z)

j−1∑
i=0

ξ0(z) ∧ . . . ∧ ξj−1(z) ∧ ξi(z)ξ∗i (z)vj(z) ∧ x(z)

=

(
1

hj
ξ0∧̇ · · · ∧̇ξj−1∧̇vj∧̇x

)
(z). (3.41)

Recall that, for i = 0, . . . , j − 1, by the algorithm from Section 3.2.1,

xi = (In − ξ0ξ
∗
0 − · · · − ξi−1ξ

∗
i−1)vi

and

ξi =
xi
hi
.

By equation (3.41), for all z ∈ D,

(ξ0∧̇ · · · ∧̇ξj−1∧̇ξj∧̇x)(z) =

(
1

hj
ξ0∧̇ · · · ∧̇ξj−1∧̇vj∧̇x

)
(z).

Substituting xi
hi

for ξi in the latter equation, where xi are given by equation (3.40) for all

i = 1, . . . , j − 1, we obtain

(ξ0∧̇ · · · ∧̇ξj−1∧̇ξj∧̇x)(z) =

(
1

h1

1

h2

· · · 1

hj
ξ0∧̇v1∧̇ · · · ∧̇vj−1∧̇vj∧̇x

)
(z), z ∈ D

on account of the pointwise linear dependence of ξk and z 7→ ξk(z)〈vk(z), ξi(z)〉Cn almost

everywhere on T for k = 0, . . . , i. By Proposition 2.2.8, for every x ∈ H2(D,Cn),

1

h1

1

h2

· · · 1

hj
ξ0∧̇v1∧̇ · · · ∧̇vj∧̇x

is analytic on D. By Proposition 2.2.14, since ξ0, ξ1, . . . , ξj are pointwise orthogonal on T,

‖ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇x‖L2(T,∧j+2Cn) <∞.

Thus, for every x ∈ H2(D,Cn),

ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇x ∈ H2(D,∧j+2Cn)

and the claim has been proved.
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Proposition 3.2.3. In the notation of Proposition 3.2.2,

ξ0∧̇ . . . ∧̇ξj∧̇H2(D,Cn)

is a closed subspace of H2(D,∧j+2Cn).

Proof. Let us first show that ξ0∧̇H2(D,Cn) is a closed subspace of H2(D,∧2Cn). Observe

that, by Proposition 2.2.13, ξ0∧̇H2(D,Cn) ⊂ H2(D,∧2Cn). Let

Ξ0 = {f ∈ H2(D,Cn) : 〈f(z), ξ0(z)〉Cn = 0 almost everywhere on T}.

Consider a vector-valued function w ∈ H2(D,Cn). For all z ∈ D, we may write w as

w(z) = w(z)− 〈w(z), ξ0(z)〉Cnξ0(z) + 〈w(z), ξ0(z)〉Cnξ0(z).

Then, for all w ∈ H2(D,Cn) and for all z ∈ D,

(ξ0∧̇w)(z) = ξ0(z) ∧
(
w(z)− 〈w(z), ξ0(z)〉Cnξ0(z) + 〈w(z), ξ0(z)〉Cnξ0(z)

)
= ξ0(z) ∧

(
w(z)− 〈w(z), ξ0(z)〉Cnξ0(z)

)
due to the pointwise linear dependence of ξ0 and z 7→ 〈w(z), ξ0(z)〉Cnξ0(z) almost everywhere

on T. Note that

w(z)− 〈w(z), ξ0(z)〉Cnξ0(z) ∈ Ξ0,

thus

ξ0∧̇H2(D,Cn) ⊂ ξ0∧̇Ξ0.

By Corollary 2.2.29, Ξ0 is a closed subspace of H2(D,Cn), hence

ξ0∧̇H2(D,Cn) ⊃ ξ0∧̇Ξ0,

and so,

ξ0∧̇H2(D,Cn) = ξ0∧̇Ξ0.

Consider the mapping

Cξ0 : Ξ0 → ξ0∧̇Ξ0

given by

Cξ0w = ξ0∧̇w

for all w ∈ Ξ0. Notice that, by Proposition 3.2.1, ‖ξ0(eiθ)‖2
Cn = 1 for almost every eiθ ∈ T.

Therefore, for any w ∈ Ξ0, we have
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‖ξ0∧̇w‖2
L2(T,∧2Cn) =

1

2π

2π∫
0

〈ξ0∧̇w, ξ0∧̇w〉(eiθ)dθ

=
1

2π

2π∫
0

(
‖ξ0(eiθ)‖2

Cn‖w(eiθ)‖2
Cn − |〈w(eiθ), ξ0(eiθ)〉|2

)
dθ

= ‖w‖2
L2(T,Cn),

since w is pointwise orthogonal to ξ0 almost everywhere on T. Thus the mapping

Cξ0 : Ξ0 → ξ0∧̇Ξ0

is an isometry. Furthermore, Cξ0 : Ξ0 → ξ0∧̇Ξ0 is a surjective mapping, thus Ξ0 and ξ0∧̇Ξ0

are isometrically isomorphic. Since Ξ0 is a closed subspace of H2(D,Cn), hence complete,

the space ξ0∧̇Ξ0 is complete. Therefore ξ0∧̇Ξ0 is a closed subspace of H2(D,∧2Cn), and thus

ξ0∧̇H2(D,Cn) is a closed subspace of H2(D,∧2Cn).

To prove that ξ0∧̇ . . . ∧̇ξj∧̇H2(D,Cn) is a closed subspace of H2(D,∧j+2Cn), let us con-

sider

Ξj = {f ∈ H2(D,Cn) : 〈f(z), ξi(z)〉Cn = 0, for i = 0, · · · , j}

which is the pointwise orthogonal complement of ξ0, . . . , ξj in H2(D,Cn). Let ψ ∈ H2(D,Cn).

We may write ψ as

ψ(z) = ψ(z)−
j∑
i=0

〈ψ(z), ξi(z)〉Cnξi(z) +

j∑
i=0

〈ψ(z), ξi(z)〉Cnξi(z).

Then, for all ψ ∈ H2(D,Cn) and for almost all z ∈ T,

(ξ0∧̇ · · · ∧̇ξj∧̇ψ)(z) = ξ0(z) ∧ · · · ∧

(
ψ(z)−

j∑
i=0

〈ψ(z), ξi(z)〉Cnξi(z)

)
due to the pointwise linear dependence of ξk and z 7→ ξk(z)〈ψ(z), ξk(z)〉Cn almost everywhere

on T. Notice that
(
ψ(z)−

∑j
i=0〈ψ(z), ξi(z)〉Cnξi(z)

)
lies in Ξj, thus

ξ0∧̇ · · · ∧̇ξj∧̇H2(D,Cn) ⊆ ξ0∧̇ · · · ∧̇ξj∧̇Ξj.

The reverse inclusion holds by the definition of Ξj, hence

ξ0∧̇ · · · ∧̇ξj∧̇H2(D,Cn) = ξ0∧̇ · · · ∧̇ξj∧̇Ξj.

Consequently, in order to prove the proposition it suffices to show that ξ0∧̇ · · · ∧̇ξj∧̇Ξj is a

closed subspace of H2(D,∧j+2Cn). By Corollary 2.2.29, Ξj is a closed subspace of H2(D,Cn),

being a finite intersection of closed subspaces. For any f ∈ Ξj,
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‖ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇f‖2
L2(T,∧j+2Cn)

=
1

2π

∫ 2π

0

det


‖ξ0(eiθ)‖2

Cn · · · 〈ξ0(eiθ), f(eiθ)〉Cn
〈ξ1(eiθ), ξ0(eiθ)〉Cn ‖ξ1(eiθ)‖2

Cn · · ·
...

. . .

〈f(eiθ), ξ0(eiθ)〉Cn · · · ‖f(eiθ)‖2
Cn

 dθ.

Note that f and ξi are pointwise orthogonal almost everywhere on T, and, by Proposition

3.2.1, {ξ0(z), . . . , ξj(z)} is an orthonormal set for almost every z ∈ T. Hence

‖ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇f‖2
L2(T,∧j+2Cn) =

1

2π

∫ 2π

0

det


1 0 0

0 1 0
...

. . .

0 0 ‖f(eiθ)‖2
Cn

 dθ

= ‖f‖2
L2(T,Cn).

Thus

ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇· : Ξj → ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇Ξj

is an isometry. Furthermore

(ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇·) : Ξj → ξ0∧̇ξ1∧̇ · · · ∧̇ξj∧̇Ξj

is a surjective mapping, thus Ξj and ξ0∧̇ · · · ∧̇ξj∧̇Ξj are isometrically isomorphic. Therefore,

since Ξj is a closed subspace of H2(D,Cn), the space ξ0∧̇ · · · ∧̇ξj∧̇Ξj is a closed subspace of

H2(D,∧j+2Cn). Hence

ξ0∧̇ · · · ∧̇ξj∧̇H2(D,Cn)

is a closed subspace of H2(D,∧j+2Cn).

3.2.4 The closed subspace Yj+1 of H2(D,∧j+2Cm)⊥.

Proposition 3.2.4. Given η̄0 = zy0

h0
as constructed in the algorithm in Section 3.2.1, the

space η̄0∧̇H2(D,Cm)⊥ is a closed subspace of H2(D,∧2Cm)⊥.

Proof. As in Proposition 3.2.2, one can show that

η0∧̇zH2(D,Cm) ⊂ zH2(D,∧2Cm)

and therefore

η̄0∧̇z̄H2(D,Cm) ⊂ z̄H2(D,∧2Cm).

Hence

η̄0∧̇H2(D,Cm)⊥ ⊂ H2(D,∧2Cm)⊥.
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By virtue of the fact that complex conjugation is a unitary operator on L2(T,Cm), an

equivalent statement to Proposition 3.2.4 is that η0∧̇zH2(D,Cm) is a closed subspace of

zH2(D,∧2Cm).

Let

V = {f ∈ zH2(D,Cm) : 〈f(z), η0(z)〉Cm = 0 for almost all z ∈ T}

be the pointwise orthogonal complement of η0 in zH2(D,Cm).

Consider g ∈ zH2(D,Cm). We may write g as

g(z) = g(z)− 〈g(z), η0(z)〉Cm · η0(z) + 〈g(z), η0(z)〉Cm · η0(z)

for every z ∈ D. Then, for all g ∈ zH2(D,Cm) and for all z ∈ D,

(η0∧̇g)(z) = η0(z) ∧ [g(z)− 〈g(z), η0(z)〉Cmη0(z)]

on account of the pointwise linear dependence of η0 and 〈g, η0〉H2(D,Cm)η0 on D.
Note that g(z)− 〈g(z), η0(z)〉Cmη0(z) ∈ V, thus

η0∧̇zH2(D,Cm) ⊂ η0∧̇V.

The reverse inclusion is obvious, hence

η0∧̇zH2(D,Cm) = η0∧̇V.

To prove the proposition, it suffices to show that

η0∧̇V

is a closed subspace of

zH2(D,∧2Cm).

Consider the mapping

Cη0 : V → η0∧̇V

defined by

Cη0ν = η0∧̇ν

for all ν ∈ V. Notice that, by Proposition 3.2.1, ‖η0(eiθ)‖2
Cm = 1 for almost every eiθ ∈ T.

Then, for any υ ∈ V, we have

‖η0∧̇υ‖2
L2(T,∧2Cm) =

1

2π

2π∫
0

〈η0∧̇υ, η0∧̇υ〉(eiθ)dθ,

which is in turn equal to
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1

2π

2π∫
0

(
‖η0(eiθ)‖2

Cm‖υ(eiθ)‖2
Cm − |〈υ(eiθ), η0(eiθ)〉|2

)
dθ = ‖υ‖2

L2(T,Cm),

since υ is pointwise orthogonal to η0 almost everywhere on T. Thus the mapping

Cη0 : V → η0∧̇V is an isometry.

Note that by Corollary 2.2.29, V is a closed subspace of zH2(D,Cm). Furthermore,

Cη0 : V → η0∧̇V

is a surjective mapping, thus V and η0∧̇V are isometrically isomorphic. Since V is a closed

subspace of zH2(D,Cm), the space η0∧̇V is complete and therefore a closed subspace of

zH2(D,∧2Cm). Hence η̄0∧̇H2(D,Cm)⊥ is a closed subspace of H2(D,∧2Cm)⊥.

Corollary 3.2.5. The orthogonal projection PY1 from L2(T,∧2Cm) onto η̄0∧̇H2(D,Cm)⊥ is

well-defined.

Proof. By Proposition 2.2.25, H2(D,∧2Cm) can be identified with a closed subspace of

L2(T,∧2Cm), thus we have

H2(D,∧2Cm)⊥ = L2(T,∧2Cm)	H2(D,∧2Cm).

Now the assertion follows immediately from Proposition 3.2.4.

Proposition 3.2.6. Let 0 ≤ j ≤ m− 2. Let the functions η̄i be given by equations (3.28) in

the algorithm from Section 3.2.1, that is, η̄i =
zyi

hi
for all i = 0, · · · , j. Then, the space

η̄0∧̇η̄1∧̇ · · · ∧̇η̄j∧̇H2(D,Cm)⊥

is a closed linear subspace of H2(D,∧j+2Cm)⊥.

Proof. First let us show that, for every x ∈ H2(D,Cm),

η0∧̇η1∧̇ · · · ∧̇ηj∧̇zx ∈ zH2(D,∧j+2Cm).

Recall that

yj = (Im − η̄0η
T
0 − · · · − η̄j−1η

T
j−1)wj

and

η0∧̇ · · · ∧̇ηj−1∧̇z̄ȳj = η0∧̇ · · · ∧̇ηj−1∧̇(z̄w̄j −
j−1∑
i=0

ηiη
∗
i z̄w̄j) = η0∧̇ · · · ∧̇ηj−1∧̇z̄w̄j (3.42)

because of the pointwise linear dependence of ηi and ηiη
∗
i z̄w̄j+1 on D.

By Proposition 3.2.57,

|hi(z)| = ‖yi(z)‖Cm
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almost everywhere on T.
Substituting ηi = z̄ȳi

hi
for all i = 0, . . . , j − 1 in equation (3.42), we obtain

η0∧̇ · · · ∧̇ηj−1∧̇z̄ȳj =
1

h0

1

h1

· · · 1

hj
η0∧̇z̄w̄1∧̇ · · · ∧̇z̄w̄j.

Observe that, by Proposition 2.2.8, for every x ∈ H2(D,Cm),

1

h0

1

h1

· · · 1

hj
η0∧̇z̄w̄1∧̇ · · · ∧̇z̄w̄j∧̇zx

is analytic on D. By Proposition 2.2.14, for all x ∈ H2(D,Cm), since η0, · · · , ηj are pointwise

orthogonal on T,
‖η0∧̇η1∧̇ · · · ∧̇ηj∧̇zx‖L2(T,∧j+2Cm) <∞.

Hence, for every x ∈ H2(D,Cm),

η0∧̇η1∧̇ · · · ∧̇ηj∧̇zx = z
1

h0

1

h1

· · · 1

hj
η0∧̇z̄w̄1∧̇ · · · ∧̇z̄w̄j∧̇x

is in zH2(D,∧j+2Cm).

Taking complex conjugates, we infer that

Yj+1
def
= η̄0∧̇ · · · ∧̇η̄j−1∧̇η̄j∧̇H2(D,Cm)⊥ ⊂ H2(D,∧j+2Cm)⊥.

Let us prove that Yj+1 is a closed linear subspace of H2(D,∧j+2Cm)⊥. Since complex

conjugation is a unitary operator on L2(T,Cm), an equivalent statement to the above is that

η0∧̇η1∧̇ · · · ∧̇ηj∧̇zH2(D,Cm)

is a closed linear subspace of zH2(D,∧j+2Cm).

Let

Vj = {ϕ ∈ zH2(D,Cm) : 〈ϕ(z), ηi(z)〉Cm = 0, for i = 0, · · · , j}

be the pointwise orthogonal complement of η0, · · · , ηj in zH2(D,Cm). Consider

f ∈ zH2(D,Cm). We may write f as

f(z) = f(z)−
j∑
i=0

〈f(z), ηi(z)〉ηi(z) +

j∑
i=0

〈f(z), ηi(z)〉ηi(z).

Then, for all f ∈ zH2(D,Cm) and for almost all z ∈ T,

(η0∧̇η1∧̇ · · · ∧̇ηj∧̇f)(z) = η0(z) ∧ η1(z) ∧ · · · ∧ ηj(z) ∧

(
f(z)−

j∑
i=0

〈f(z), ηi(z)〉ηi(z)

)
.
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Notice that

(
f(z)−

j∑
i=0

〈f(z), ηi(z)〉ηi(z)

)
∈ Vj, thus

η0∧̇η1∧̇ · · · ∧̇ηj∧̇zH2(D,Cm) ⊂ η0∧̇η1∧̇ · · · ∧̇ηj∧̇Vj.

The reverse inclusion holds by the definition of Vj, hence

η0∧̇η1∧̇ · · · ∧̇ηj∧̇zH2(D,Cm) = η0∧̇η1∧̇ · · · ∧̇ηj∧̇Vj.

Consequently, in order to prove the proposition it suffices to show that η0∧̇η1∧̇ · · · ∧̇ηj∧̇Vj
is a closed subspace of zH2(D,∧j+2Cm). By Corollary 2.2.29, Vj is a closed subspace of

zH2(D,Cm), being an intersection of closed subspaces. For any f ∈ Vj, we get

‖η0∧̇η1∧̇ · · · ∧̇ηj∧̇f‖2
L2(T,∧j+2Cm)

=
1

2π

∫ 2π

0

det


‖η0(eiθ)‖2

Cm · · · 〈η0(eiθ), f(eiθ)〉Cm
〈η1(eiθ), η0(eiθ)〉Cm ‖η1(eiθ)‖2

Cm · · ·
...

. . .

〈f(eiθ), η0(eiθ)〉Cm · · · ‖f(eiθ)‖2
Cm

 dθ.

Note that f and ηi are pointwise orthogonal almost everywhere on T and, by Proposition

3.2.1,{η0(z), . . . , ηj(z)} is an orthonormal set for almost every z ∈ T. Hence

‖η0∧̇η1∧̇ · · · ∧̇ηj∧̇f‖2
L2(T,∧j+2Cm) =

1

2π

∫ 2π

0

det


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · ‖f(eiθ)‖2
Cm

 dθ

= ‖f‖2
L2(T,Cm).

Thus

η0∧̇η1∧̇ · · · ∧̇ηj∧̇· : Vj → η0∧̇η1∧̇ · · · ∧̇ηj∧̇Vj

is an isometry. Furthermore

(η0∧̇η1∧̇ · · · ∧̇ηj∧̇·) : Vj → η0∧̇η1∧̇ · · · ∧̇ηj∧̇Vj

is a surjective mapping, thus Vj and η0∧̇ · · · ∧̇ηj∧̇Vj are isometrically isomorphic. Therefore,

since Vj is a closed subspace of zH2(D,Cm), the space η0∧̇ · · · ∧̇ηj∧̇Vj is a closed subspace

of zH2(D,∧j+2Cm). Hence

η̄0∧̇ · · · ∧̇η̄j∧̇H2(D,Cm)⊥

is a closed subspace of H2(D,∧j+2Cm)⊥.
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Corollary 3.2.7. Let 0 ≤ j ≤ m− 2. The orthogonal projection

PYj : L2(T,∧j+2Cm)→ Yj

is well-defined.

Proof. By Proposition 2.2.25, H2(D,∧j+2Cm) can be identified with a closed subspace of

L2(T,∧j+2Cm), thus we have

H2(D,∧j+2Cm)⊥ = L2(T,∧j+2Cm)	H2(D,∧j+2Cm).

Now the assertion follows immediately from Proposition 3.2.6.

3.2.5 Tj is a well-defined operator

Proposition 3.2.8. Let G ∈ H∞(D,Cm×n) + C(T,Cm×n) and let 0 ≤ j ≤ min(m,n) − 2.

Let the functions ξi, ηi be defined by equations (3.28), that is,

ξi =
xi
hi
, ηi =

z̄η̄i
hi

(3.43)

for i = 0, · · · , j and let

Xi = ξ0∧̇ξ1∧̇ · · · ∧̇ξi−1∧̇H2(D,Cn) ⊂ H2(D,∧i+1Cn), i = 0, · · · , j,

Yi = η̄0∧̇η̄1∧̇ · · · ∧̇η̄i−1∧̇H2(D,Cm)⊥ ⊂ H2(D,∧i+1Cm)⊥, i = 0, · · · , j.

Let Qi ∈ H∞(D,Cm×n) satisfy

(G−Qi)xk = tkyk, (G−Qi)
∗yk = tkxk (3.44)

for all k = 0, . . . , i− 1.

Then, the operators Ti : Xi → Yi, i = 0, · · · , j, given by

Ti(ξ0∧̇ξ1∧̇ · · · ∧̇ξi−1∧̇x) = PYi (η̄0∧̇η̄1∧̇ · · · ∧̇η̄i−1∧̇(G−Qi)x) (3.45)

are well-defined and are independent of the choice of Qi ∈ H∞(D,Cm×n) satisfying equations

(3.44).

Proof. By Corollary 3.2.7, the projections PYi are well-defined for all i = 0, · · · , j. Hence it

suffices to show that, for all i = 0, 1, · · · , j, Ti maps a zero from its domain to a zero in its

range and that Ti does not depend on the choice of Qi, which satisfies equations (3.44).

For i = 0, the operator T0 is the Hankel operator HG. If f0 ≡ 0, then HGf0 = 0 and,

moreover, HG is independent of the choice of any Q ∈ H∞(D,Cm×n) as HG−Q = HG. Thus,

T0 is well-defined.
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For i = 1, let (x0, y0) be a Schmidt pair for the compact operator HG corresponding to

t0 = ‖HG‖, where x0 ∈ H2(D,Cn) and y0 ∈ H2(D,Cm)⊥. By Lemma 3.1.12, x0, z̄ȳ0 admit the

inner-outer factorisations x0 = ξ0h0, z̄ȳ0 = η0h0, where ξ0 ∈ H∞(D,Cn), η0 ∈ H∞(D,Cm)

are inner vector-valued functions and h0 ∈ H2(D,C) is scalar outer. The spaces X1 and Y1

are given by the formulas

X1 = ξ0∧̇H2(D,Cn), Y1 = η̄0∧̇H2(D,Cm)⊥.

The operator T1 : X1 → Y1 is given by

T1(ξ0∧̇x) = PY1(η̄0∧̇(G−Q1)x)

for all x ∈ H2(D,Cn), where Q1 ∈ H∞(D,Cm×n) satisfies equations (3.44).

Lemma 3.2.9. Let ξ0∧̇u = ξ0∧̇v for some u, v ∈ H2(D,Cn). Then

η̄0∧̇(G−Q1)u = η̄0∧̇(G−Q1)v.

Proof. Suppose that ξ0∧̇u = ξ0∧̇v for some u, v ∈ H2(D,Cn). Let x = u− v, then ξ0∧̇x = 0,

and so x and ξ0 are pointwise linearly dependent in Cn on D. Therefore there exist maps

β, λ : D→ C, having no common zero in D, such that

β(z)ξ0(z) = λ(z)x(z) in Cn, (3.46)

for all z ∈ D. By assumption, Q1 ∈ H∞(D,Cm×n) satisfies equations (3.44). Thus, for all

z ∈ D,
t0y0(z) = (G−Q1)(z)x0(z). (3.47)

By equations (3.43) and (3.46),

β(z)x0(z) = β(z)h0(z)ξ0(z) = h0(z)λ(z)x(z) (3.48)

for all z ∈ D. By equations (3.47) and (3.48), for all z ∈ D,

t0y0(z) = (G−Q1)(z)x0(z),

β(z)t0z
y0(z)

h̄0(z)
= (G−Q1)(z)h0(z)λ(z)x(z)

z

h̄0(z)
.

Therefore, by equations (3.43), for all z ∈ D,

t0β(z)η̄0(z) = (G−Q1)(z)x(z)µ(z) in Cm,

where

µ(z) =
zh0(z)λ(z)

h̄0(z)
, for all z ∈ D.

91



3.2. Algorithm for superoptimal analytic approximation

Hence, by Definition 2.2.2, η̄0 and (G−Q1)x are pointwise linearly dependent in Cm on D,
and so

η̄0∧̇(G−Q1)x = 0.

Consequently,

η̄0∧̇(G−Q1)u = η̄0∧̇(G−Q1)v.

Therefore the formula (3.45) (with i = 1) does uniquely define T1u ∈ Y1. Next, we show

that the operator T1 is independent of the choice of Q1 ∈ H∞(D,Cm×n), which satisfies

equations (3.44).

By Theorem D.2.4, there exist Q1, Q2 ∈ H∞(D,Cm×n) which satisfy

(G−Q1)x0 = t0y0 , y
∗
0(G−Q1) = t0x

∗
0 (3.49)

and

(G−Q2)x0 = t0y0 , y
∗
0(G−Q2) = t0x

∗
0. (3.50)

Then, we would like to prove that, for all x ∈ H2(D,Cn),

PY1(η̄0∧̇(G−Q1)x) = PY1(η̄0∧̇(G−Q2)x),

that is,

PY1(η̄0∧̇(Q1 −Q2)x) = 0.

The latter is equivalent to the property that η̄0∧̇(Q2 − Q1)x is orthogonal to η̄0∧̇% for all

x ∈ H2(D,Cn) and for all % ∈ H2(D,Cm)⊥. As a matter of convenience, set

Ax = (Q2 −Q1)x, x ∈ H2(D,Cn).

We have to prove that

〈η̄0∧̇Ax, η̄0∧̇%〉L2(T,∧2Cm) = 0

for all x ∈ H2(D,Cn) and all % ∈ H2(Cm)⊥. Note that

〈η̄0∧̇Ax, η̄0∧̇%〉2L2(T,∧2Cm) =
1

2π

2π∫
0

〈η̄0(eiθ)∧̇A(eiθ)x(eiθ), η̄0(eiθ)∧̇%(eiθ)〉∧2Cm dθ,

which by Proposition 2.1.19 yields
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1

2π

2π∫
0

det

(
〈η̄0(eiθ), η̄0(eiθ)〉Cm 〈η̄0(eiθ), %(eiθ)〉Cm

〈A(eiθ)x(eiθ), η̄0(eiθ)〉Cm 〈A(eiθ)x(eiθ), %(eiθ)〉Cm

)
dθ

=
1

2π

2π∫
0

‖η̄0(eiθ)‖2
Cm〈A(eiθ)x(eiθ), %(eiθ)〉Cm dθ

− 1

2π

2π∫
0

〈A(eiθ)x(eiθ), η̄0(eiθ)〉Cm〈η̄0(eiθ), %(eiθ)〉Cm dθ.

By Proposition 3.2.1, ‖η̄0(eiθ)‖Cm = 1 for almost every eiθ ∈ T. Since Ax ∈ H2(D,Cm) and

% ∈ H2(D,Cm)⊥,

1

2π

2π∫
0

〈A(eiθ)x(eiθ), %(eiθ〉Cmdθ = 〈Ax, %〉L2(T,Cm) = 0.

Thus

〈η̄0∧̇Ax, η̄0∧̇%〉L2(T,∧2Cm) =
1

2π

2π∫
0

〈A(eiθ)x(eiθ), η̄0(eiθ)〉Cm〈η̄0(eiθ), %(eiθ)〉Cmdθ

=
1

2π

2π∫
0

η̄∗0(eiθ)A(eiθ)x(eiθ)〈η̄0(eiθ), %(eiθ)〉Cmdθ.

Recall that by equation (3.9), η̄0(z) =
zy0(z)

h̄0(z)
, z ∈ T, so that

η̄∗0(eiθ) =

(
eiθy0(eiθ)

h̄0(eiθ)

)∗
=
e−iθy∗0(eiθ)

h0(eiθ)
.

Therefore

〈η̄0∧̇Ax, η̄0∧̇%〉L2(T,∧2Cm) =
1

2π

2π∫
0

e−iθy∗0(eiθ)

h0(eiθ)
A(eiθ)x(eiθ)〈η̄0(eiθ), %(eiθ)〉Cm)dθ.

Recall our initial assumption was that Q1, Q2 satisfy equations (3.49) and (3.50), conse-

quently,

y∗0(G−Qi) = t0x
∗
0, for i = 1, 2.

Hence, for z ∈ T,

y∗0(z)A(z)x(z) = y∗0(z)(G−Q1)(z)x(z)− y∗0(z)(G−Q2)(z)x(z)

= (t0x
∗
0x− t0x∗0x)(z)

= 0.
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We deduce that

1

2π

2π∫
0

η̄∗0(eiθ)A(eiθ)x(eiθ)〈η̄0(eiθ), %(eiθ)〉Cm)dθ = 0.

To conclude, we have proved that, if Q1, Q2 ∈ H∞(D,Cm×n) satisfy equations (3.49) and

(3.50), then

PY1(η̄0∧̇(G−Q1)x) = PY1(η̄0∧̇(G−Q2)x),

that is, T1 is independent of the choice of Q1. Thus T1 is a well-defined operator.

Recursive step: suppose that functions xi−1 ∈ L2(T,Cn), yi−1 ∈ L2(T,Cm), outer func-

tions hi−1 ∈ H2(D,C), positive numbers ti, matrix-valued functions Qi ∈ H∞(D,Cm×n),

spaces Xi, Yi and compact operators Ti : Xi → Yi are constructed inductively by the algo-

rithm for all i = 0, . . . , j.

Let us prove that Tj : Xj → Yj, given by equation (3.25), is well-defined for all

0 ≤ j ≤ min(m,n)− 2. Note, by Corollary 3.2.7, the projection PYj is well-defined. We will

prove that Tj maps zeros from its domain to zeros to its range and Tj is independent of the

choice of Qj that satisfies equations (3.44).

Suppose ξ0∧̇ξ1∧̇ · · · ∧̇ξj−1∧̇x = 0. Then x(z) is pointwise linearly dependent on

ξ0(z), ξ1(z), · · · , ξj−1(z) in Cn for almost all z ∈ T. This means there exist maps

λi, ν : T→ C , i = 0, · · · , j − 1

which are non-zero almost everywhere on T and are such that

ν(z)x(z) =

j−1∑
i=0

λi(z)ξi(z).

By Theorem 1.1.4, there exists a function Qj ∈ H∞(D,Cm×n) that lexicographically min-

imises

(s∞0 (G−Q), s∞1 (G−Q), . . . , s∞j (G−Q))

over all Q ∈ H∞(D,Cm×n). By Proposition 3.2.47, any such function Qj necessarily satisfies

(G−Qj)xi = tiyi, y∗i (G−Qj) = tixi, for all i = 0, · · · , j − 1. (3.51)

By equations (3.43),

ξi =
xi
hi
, ηi =

z̄ȳi
hi
, i = 0 · · · , j − 1.

94



3.2. Algorithm for superoptimal analytic approximation

Then, for almost all z ∈ T,

(G−Qj)(z)xi(z) = tiyi(z)

(G−Qj)(z)λi(z)xi(z)
1

hi(z)
= tiλi(z)

1

hi(z)
yi(z)

(G−Qj)(z)λi(z)xi(z)
1

hi(z)
= tiλi(z)

1

hi(z)
yi(z)

z

z

h̄i(z)

h̄i(z)

(G−Qj)(z)λi(z)xi(z)
1

hi(z)
= tiλi(z)

1

zhi(z)
η̄i(z)

(G−Qj)(z)

j−1∑
i=1

λi(z)ξi(z) =

j−1∑
i=1

tiλi(z)
1

zhi(z)
η̄i(z)

(G−Qj)(z)ν(z)x(z) =

j−1∑
i=1

µi(z)η̄i(z)

where

tiλi(z)
1

zhi(z)
= µi(z).

Therefore for all x ∈ H2(D,Cn), η0(z), · · · , ηj−1(z) and ((G−Qj)x)(z) are pointwise linearly

dependent in Cm almost everywhere on T. Hence

η̄0∧̇ · · · ∧̇η̄j−1∧̇(G−Qj)x = 0.

Consequently, Tj maps a zero from its domain to a zero in its range.

For the operator Tj to be well-defined, it remains to prove Tj is independent of the choice

of Qj ∈ H∞(D,Cm×n) which satisfies equations (3.51). Let Q̃j, Q̂j ∈ H∞(D,Cm×n) satisfy

(G− Q̃j)xi = tiyi, (G− Q̂j)xi = tiyi, y∗i (G− Q̃j) = tix
∗
i , y∗i (G− Q̂j) = tix

∗
i (3.52)

for i = 0, · · · , j − 1.

We would like to prove that, for all x ∈ H2(D,Cn),

PYj(η̄0∧̇ · · · ∧̇η̄j−1∧̇(G− Q̃j)x) = PYj(η̄0∧̇ · · · ∧̇η̄j−1∧̇(G− Q̂j)x).

The latter equality holds if and only if, for all x ∈ H2(D,Cn),

PYj(η̄0∧̇ · · · ∧̇η̄j−1∧̇(Q̂j − Q̃j)x) = 0

which is equivalent to the assertion that η̄0∧̇ · · · ∧̇η̄j−1∧̇(Q̂j−Q̃j)x is orthogonal to η̄0∧̇ · · · ∧̇η̄j−1∧̇q
for all x ∈ H2(D,Cn) and for all q ∈ H2(D,Cm)⊥.
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Equivalently

〈η̄0∧̇ · · · ∧̇η̄j−1∧̇(Q̂j − Q̃j)x, η̄0∧̇ · · · ∧̇η̄j−1∧̇q〉L2(T,∧j+1Cm) = 0

for all x ∈ H2(D,Cn) and for all q ∈ H2(Cm)⊥. Set Ax = (Q̂j − Q̃j)x, x ∈ H2(D,Cn).

By Proposition 2.1.19,

〈η̄0∧̇ · · · ∧̇η̄j−1∧̇(Q̂j − Q̃j)x, η̄0∧̇ · · · ∧̇η̄j−1∧̇q〉L2(T,∧j+1Cm)

is equal to

1

2π

2π∫
0

det


〈η̄0(eiθ), η̄0(eiθ)〉Cm · · · 〈η̄0(eiθ), η̄j−1(eiθ)〉Cm 〈η̄0(eiθ), q(eiθ)〉Cm

...
. . .

...
...

〈η̄j−1(eiθ), η̄0(eiθ)〉Cm · · · 〈η̄j−1(eiθ), η̄j−1(eiθ)〉Cm 〈η̄j−1(eiθ), q(eiθ)〉Cm

〈A(eiθ)x(eiθ), η̄0(eiθ)〉Cm · · · 〈A(eiθ)x(eiθ), η̄j−1(eiθ)〉Cm 〈A(eiθ)x(eiθ), q(eiθ)〉Cm

 dθ.

Notice that Ax and q are orthogonal in L2(T,Cm) and, by Proposition 3.2.1, {η̄i(z)}j−1
i=0 is an

orthonormal set in Cm almost everywhere on T. Also, for all i = 0, · · · , j − 1, by equations

(3.52),

〈A(eiθ)x(eiθ), ηi(e
iθ)〉〉Cm = ηTi (eiθ)A(eiθ)x(eiθ)

=
e−iθy∗i (e

iθ)

hi(eiθ)
A(eiθ)x(eiθ)

=
e−iθ

hi(eiθ)

(
y∗i (e

iθ)(G− Q̃j)(z)x(z)− y∗i (eiθ)(G− Q̂j)(z)x(z)
)

=
e−iθ

hi(eiθ)
(tix

∗
ix− tix∗ix)

= 0.

Thus

〈η̄0∧̇ · · · ∧̇η̄j∧̇(Q̂j − Q̃j)x, η̄0∧̇ · · · ∧̇η̄j∧̇q〉L2(T,∧j+1Cm)

=
1

2π

2π∫
0

det


1 0 · · · 〈η̄0(eiθ), q(eiθ)〉Cm
0 1 · · · 〈η̄2(eiθ), q(eiθ)〉Cm
...

. . .
...

0 0 · · · 〈A(eiθ)x(eiθ), q(eiθ)〉Cm

 dθ

= 〈Ax, q〉L2(T,Cm) = 0.

Consequently

PYj(η̄0∧̇ · · · ∧̇η̄j−1∧̇(G− Q̃j)x) = PYj(η̄0∧̇ · · · ∧̇η̄j−1∧̇(G− Q̂j)x),

and so Tj is independent of the choice of Qj that satisfies equations (3.51). Thus we have

proven that the operator Tj is well-defined.
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3.2.6 Compactness of the operators T1 and T2

In this section, we use notations from the algorithm from Section 3.2.1 to prove the com-

pactness of the operators T1, T2 given by equations (3.15) and (3.20) respectively. To this

end, several auxiliary results are required.

Recall that since G ∈ H∞(D,Cm×n) +C(T,Cm×n), by Hartman’s theorem, the operator

T0 = HG is compact and hence there exist x0 ∈ H2(D,Cn) and y0 ∈ H2(D,Cm)⊥ such that

(x0, y0) is a Schmidt pair for HG corresponding to the singular value ‖HG‖ = t0.

By Lemma 3.1.12, x0, z̄ȳ0 admit the inner-outer factorisations

x0 = ξ0h0, z̄ȳ0 = η0h0, (3.53)

where ξ0 ∈ H∞(D,Cn), η0 ∈ H∞(D,Cm) are vector-valued inner functions and h0 ∈
H2(D,C) is a scalar outer function. Moreover there exist unitary-valued functions of types

n× n,m×m respectively, of the form

V0 =
(
ξ0 ᾱ0

)
, W0 =

(
η0 β̄0

)T
, (3.54)

where α0, β0 are inner, co-outer, quasi-continuous functions of types n× (n−1), m× (m−1)

respectively and all minors on the first columns of V0,W
T
0 are in H∞. Furthermore every

Q1 ∈ H∞(D,Cm×n) which is at minimal distance from G satisfies

W0(G−Q1)V0 =

(
t0u0 0

0 F1

)
for some

F1 ∈ H∞(D,C(m−1)×(n−1)) + C(T,C(m−1)×(n−1))

and some quasi-continuous function u0 with |u0(z)| = 1 almost everywhere on T.
Recall that

X1 = ξ0∧̇H2(D,Cn), Y1 = η̄0∧̇H2(D,Cm)⊥

and T1 : X1 → Y1 is given by

T1(ξ0∧̇x) = PY1 [η̄0∧̇(G−Q1)x] for all x ∈ H2(D,Cn).

Our first endeavour in this subsection is to prove the following theorem.

Theorem 3.2.10. Let

K1
def
= V0

(
0

H2(D,Cn−1)

)
, L1

def
= W ∗

0

(
0

H2(D,Cm−1)⊥

)
, (3.55)

and let the maps

U1 : H2(D,Cn−1)→ K1,

U2 : H2(D,Cm−1)⊥ → L1
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be given by

U1x = V0

(
0

x

)
, U2y = W ∗

0

(
0

y

)
for all x ∈ H2(D,Cn−1), y ∈ H2(D,Cm−1)⊥. Consider the operator Γ1 = PL1MG−Q1|K1 .

Then

(i) The maps U1, U2 are unitaries.

(ii) The maps (ξ0∧̇·) : K1 → H2(D,∧2Cn) and (η̄0∧̇·) : L1 → H2(D,Cm)⊥ are unitaries.

(iii) The following diagram is commutative:

H2(D,Cn−1)
U1−→ K1

ξ0∧̇·−−→ ξ0∧̇H2(D,Cn) = X1yHF1

yΓ1

yT1

H2(D,Cm−1)⊥
U2−→ L1

η̄0∧̇·−−→ η̄0∧̇H2(D,Cm)⊥ = Y1.

(3.56)

(iv) T1 is a compact operator.

(v) ‖T1‖ = ‖Γ1‖ = t1.

Proof. Statement (i) follows from Lemma 3.1.17. Statement (ii) follows from Proposi-

tions 3.2.17 and 3.2.21, which are consequences of Beurling’s theorem and the lemmas that

follow.

Theorem 3.2.11 (Beurling’s Theorem, [38], p. 99). Let S be a non-zero closed subspace

of H2(D,C). Then S is invariant under multiplication by z if and only if S = θH2(D,C),

where θ is an inner function.

Lemma 3.2.12. In the notation of Theorem 3.2.10, the Hankel operator HG has a maximiz-

ing vector x0 of unit norm such that ξ0, which is defined by ξ0 = x0

h0
, is a co-outer function.

Proof. Choose any maximizing vector x0. By Lemma 3.1.12, x0 has the inner-outer factorisa-

tion x0 = ξ0h0, where h0 is a scalar outer factor. Then, the closure of ξT0 H
2(D,Cn), denoted

by clos(ξT0 H
2(D,Cn)), is a closed shift-invariant subspace of H2(D,C), so, by Beurling’s

theorem,

clos(ξT0 H
2(D,Cn)) = φH2(D,C)

for some scalar inner function φ. Hence

φ̄ξT0 H
2(D,Cn) ⊂ H2(D,C).

Thus, if ξT0 = (ξ01, · · · , ξ0n), we have φ̄ξ0j ∈ H∞(D,C) for j = 1, · · · , n, and so,

φξ0 ∈ H∞(D,Cn).
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Hence

φx0 = φξ0h0 ∈ H2(D,Cn).

Let Q be a best H∞ approximation to G. Since x0 is a maximizing vector for HG, by Theorem

D.2.4,

(G−Q)x0 ∈ H2(D,Cm)⊥

and

‖(G−Q)(z)x0(z)‖Cm = ‖HG‖‖x0(z)‖Cn

for almost all z ∈ T. Thus

(G−Q)φx0 ∈ H2(D,Cm)⊥

and

‖(G−Q)φx0(z)‖Cm = ‖HG‖‖φx0(z)‖Cn

for almost all z ∈ T.
Hence φx0 ∈ H2(D,Cn) is a maximizing vector for HG, and φx0 is co-outer. Then φ̄x0

‖x0‖ is a

co-outer maximizing vector of unit norm for HG.

Remark 3.2.13. Lemma 3.2.12 asserts that in the scalar case one can always choose an

outer eigenvector corresponding to the largest eigenvalue of the Hankel operator.

Lemma 3.2.14. Let x0 be a co-outer maximizing vector of unit norm for HG, and let x0 =

ξ0h0 be the inner-outer factorisation of x0. Then

(i) ξ0 is a quasi-continuous function and

(ii) there exists a function A ∈ H∞(D,Cn) such that

AT ξ0 = 1.

Proof. Let us first show that

ξ0 ∈ (H∞(D,Cn) + C(T,Cn)) ∩H∞(D,Cn) + C(T,Cn).

Let Q be a best H∞ approximation to G. Then, by Theorem D.2.4, the function Q satisfies

the equation

(G−Q)∗y0 = t0x0.

Taking complex conjugates in equations (3.53), we get

(G−Q)T ȳ0 = t0x0.

Hence, for z ∈ T,
(G−Q)T zh0η0 = t0h0ξ0,
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and therefore
(G−Q)T zh0η0

t0h0

= ξ0.

Recall that, by equation (3.5) (with φ = 1), u0 = z̄h̄0

h0
. By Lemma 3.1.12, u0 ∈ QC, hence

u0 ∈ H∞ + C. Note u0 = zh0

h0
, and hence

ξ0 =
(G−Q)Tu0η0

t0
.

Since H∞ +C is an algebra and (G−Q)T , η0 ∈ H∞ +C, it follows that ξ0 ∈ H∞ +C, thus

ξ0 ∈ (H∞(D,Cn) + C(T,Cn)) ∩H∞(D,Cn) + C(T,Cn).

The conclusion that there exists a function A ∈ H∞(D,Cn) such that AT ξ0 = 1 now follows

directly from Lemma 3.1.18.

Lemma 3.2.15. In the notation of Theorem 3.2.10, let ξ0 ∈ H∞(D,Cn) be a vector-valued

inner, co-outer, quasi-continuous function and let

V0 =
(
ξ0 ᾱ0

)
be a thematic completion of ξ0 as described in Lemma 3.1.12, where α0 is an inner, co-outer,

quasi-continuous function of order n× (n− 1) and all minors on the first column of V0 are

analytic. Then,

αT0H
2(D,Cn) = H2(D,Cn−1).

Proof. By Lemma 3.1.18, for the given α0, there exists A0 ∈ H∞(D,C(n−1)×n) such that

A0α0 = In−1. Equivalently, αT0A
T
0 = In−1.

Let g ∈ H2(D,Cn−1). Then g = (αT0A
T
0 )g ∈ αT0A

T
0H

2(D,Cn−1), which implies that

g ∈ αT0H2(D,Cn). Hence H2(D,Cn−1) ⊆ αT0H
2(D,Cn).

For the reverse inclusion, note that since α0 is in H∞(D,Cn×(n−1)), we have

αT0H
2(D,Cn) ⊆ H2(D,Cn−1). Thus

αT0H
2(D,Cn) = H2(D,Cn−1).

Proposition 3.2.16. Let ξ0, α0 and V0 be as in Lemma 3.2.15. Then

V ∗0 POC({ξ0}, L2(T,Cn)) =

(
0

L2(T,Cn−1)

)
.

Proof. Let g ∈ V ∗0 POC({ξ0}, L2(T,Cn)). Equivalently, g can be written as g = V ∗0 f for some

f ∈ L2(T,Cn) such that f(z) ⊥ ξ0(z) for almost all z ∈ T. This in turn is equivalent to the

assertion that g = V ∗0 f for some f ∈ L2(T,Cn) such that (V ∗0 f)(z) ⊥ (V ∗0 ξ0)(z) for almost

all z ∈ T, since V0(z) is unitary for almost all z ∈ T.
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Note that, by the fact that V0 is unitary-valued almost everywhere on T, we get

In = V ∗0 (z)V0(z)

=

(
ξ∗0(z)

αT0 (z)

)(
ξ0(z) ᾱ0(z)

)
=

(
ξ∗0(z)ξ0(z) ξ∗0(z)ᾱ0(z)

αT0 (z)ξ0(z) αT0 (z)ᾱ0(z)

)
almost everywhere on T, (3.57)

and so

V ∗0 ξ0 =

(
ξ∗0

αT0

)
ξ0 =

(
1

0(n−1)×1

)
,

where 0(n−1)×1 denotes the zero vector in Cn−1.

Hence g = V ∗0 f with (V ∗0 f)(z) orthogonal to (V ∗0 ξ0)(z) for almost every z ∈ T, is equivalent

to the statement g ∈ L2(T,Cn) and

g(z) ⊥

(
1

0(n−1)×1

)

for almost all z ∈ T, or equivalently, g ∈

(
0

L2(T,Cn−1)

)
.

Proposition 3.2.17. Under the assumptions of Theorem 3.2.10, where x0 is a co-outer

maximizing vector of unit norm for HG, ξ0 ∈ H∞(D,Cn) is a vector-valued inner function

given by ξ0 = x0

h0
, V0 =

(
ξ0 ᾱ0

)
is a thematic completion of ξ0 and K1 is defined by

K1 = V0

(
0

H2(D,Cn−1)

)
⊆ L2(T,Cn),

we have

ξ0∧̇K1 = ξ0∧̇H2(D,Cn)

and the operator

(ξ0∧̇·) : K1 → ξ0∧̇H2(D,Cn)

is unitary.

Proof. Let us first prove ξ0∧̇H2(D,Cn) ⊂ ξ0∧̇K1. Let ξ0∧̇ϕ ∈ ξ0∧̇H2(D,Cn), for some ϕ ∈
H2(D,Cn). Since V0 is unitary-valued, we get

ξ0ξ
∗
0 + ᾱ0α

T
0 = In.
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Thus
ξ0∧̇ϕ = ξ0∧̇(ξ0ξ

∗
0ϕ+ ᾱ0α

T
0 ϕ)

= ξ0∧̇ξ0(ξ∗0ϕ) + ξ0∧̇ᾱ0(αT0 ϕ)

= 0 + ξ0∧̇ᾱ0(αT0 ϕ)

on account of the pointwise linear dependence of ξ0 and ξ0ξ
∗
0ϕ on D. Recall that, by Lemma

3.2.15, αT0 ϕ ∈ H2(D,Cn−1) and, by the definition of K1,

K1 = ᾱ0H
2(D,Cn−1).

Hence, for ϕ ∈ H2(D,Cn),

ξ0∧̇ϕ = ξ0∧̇ᾱ0α
T
0 ϕ ∈ ξ0∧̇ᾱ0H

2(D,Cn−1),

and thus

ξ0∧̇H2(D,Cn) ⊆ ξ0∧̇K1. (3.58)

Let us now show that ξ0∧̇K1 ⊆ ξ0∧̇H2(D,Cn). Since K1 = ᾱ0H
2(D,Cn−1), an arbitrary

element u ∈ ξ0∧̇K1 is of the form

u = ξ0∧̇ᾱ0g,

for some g ∈ H2(D,Cn−1).Note that, by Lemma 3.2.15, there exists a function f ∈ H2(D,Cn)

such that g = αT0 f. Hence u = ξ0∧̇ᾱ0α
T
0 f. By equation (3.57), ξ0ξ

∗
0 + ᾱ0α

T
0 = In. Thus

u = ξ0∧̇(ICn − ξ0ξ
∗
0)f = ξ0∧̇f − ξ0∧̇ξ0ξ

∗
0f = ξ0∧̇f ∈ ξ0∧̇H2(D,Cn),

and so, ξ0∧̇K1 ⊆ ξ0∧̇H2(D,Cn). Combining the latter inclusion with relation (3.58), we have

ξ0∧̇K1 = ξ0∧̇H2(D,Cn).

Now, let us show that the operator (ξ0∧̇·) : K1 → ξ0∧̇H2(D,Cn) is unitary. As we have

shown above, the operator is surjective. We will show it is also an isometry.

Let f ∈ K1. Then,

‖ξ0∧̇f‖2
L2(T,∧2Cn) = 〈ξ0∧̇f, ξ0∧̇f〉L2(T,∧2Cn)

=
1

2π

∫ 2π

0

〈ξ0(eiθ)∧̇f(eiθ), ξ0(eiθ)∧̇f(eiθ)〉∧2Cndθ

.

By Proposition 2.1.19, the latter integral is equal to

1

2π

∫ 2π

0

det

(
〈ξ0(eiθ), ξ0(eiθ)〉Cn 〈ξ0(eiθ), f(eiθ)〉Cn
〈f(eiθ), ξ0(eiθ)〉Cn 〈f(eiθ), f(eiθ)〉Cn

)
dθ,
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which equals

1

2π

∫ 2π

0

‖ξ0(eiθ)‖2
Cn〈f(eiθ), f(eiθ)〉Cn − |〈ξ0(eiθ), f(eiθ)〉Cn|2 dθ.

Note that, by Proposition 3.2.1, ‖ξ0(eiθ)‖Cn = 1 for almost all eiθ on T. Moreover, since

K1 = ᾱ0H
2(D,Cn−1),

f = ᾱ0g for some g ∈ H2(D,Cn−1). Hence

〈ξ0(eiθ), f(eiθ)〉Cn = 〈ξ0(eiθ), ᾱ0(eiθ)g(eiθ)〉Cn = 〈αT0 (eiθ)ξ0(eiθ), g(eiθ)〉Cn−1 = 0

almost everywhere on T, since V0 =
(
ξ0 ᾱ0

)
is unitary-valued. Thus

‖ξ0∧̇f‖2
L2(T,∧2Cn) = ‖f‖2

L2(T,Cn),

that is, the operator (ξ0∧̇·) : K1 → ξ0∧̇H2(D,Cn) is an isometry. Therefore, by Theorem

A.2.4, the operator (ξ0∧̇·) is unitary.

Lemma 3.2.18. Let u ∈ L2(T,Cm) and let η0 ∈ H∞(D,Cm) be a vector-valued inner

function. Then

〈η̄0∧̇u, η̄0∧̇z̄f̄〉L2(T,∧2Cm) = 0 for all f ∈ H2(D,Cm) (3.59)

if and only if the function

z 7→ u(z)− 〈u(z), η̄0(z)〉Cm η̄0(z)

belongs to H2(D,Cm).

Proof. The statement that η̄0∧̇u is orthogonal to η̄0∧̇z̄f̄ in L2(T,∧2Cm) is equivalent to the

equation I = 0, where

I =
1

2π

∫ 2π

0

〈η̄0(eiθ)∧̇u(eiθ), η̄0(eiθ)∧̇e−iθf̄(eiθ)〉∧2Cm dθ.

By Proposition 2.1.19,

I =
1

2π

∫ 2π

0

det

(
〈η̄0(eiθ), η̄0(eiθ)〉Cm 〈η̄0(eiθ), e−iθf̄(eiθ)〉Cm
〈u(eiθ), η0(eiθ)〉Cm 〈u(eiθ), e−iθf̄(eiθ)〉Cm

)
dθ.

Notice that, since η0 is an inner function, ‖η̄0(eiθ)‖Cm = 1 almost everywhere on T, and

hence

I =
1

2π

∫ 2π

0

det

(
1 〈η̄0(eiθ), e−iθf̄(eiθ)〉Cm

〈u(eiθ), η0(eiθ)〉Cm 〈u(eiθ), e−iθf̄(eiθ)〉Cm

)
dθ.
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Calculations yield

I =
1

2π

∫ 2π

0

〈u(eiθ), e−iθf̄(eiθ)〉Cm

−〈η̄0(eiθ), e−iθf̄(eiθ)〉Cm〈u(eiθ), η̄0(eiθ)〉Cmdθ

=
1

2π

∫ 2π

0

〈u(eiθ), e−iθf̄(eiθ)〉Cm

−
〈
〈u(eiθ), η̄0(eiθ)〉Cm η̄0(eiθ), e−iθf̄(eiθ)

〉
Cm dθ

=
1

2π

∫ 2π

0

〈
u(eiθ)− 〈u(eiθ), η̄0(eiθ)〉Cm η̄0(eiθ), e−iθf̄(eiθ)

〉
Cm dθ.

Thus condition (3.59) holds if and only if

1

2π

∫ 2π

0

〈η̄0(eiθ)∧̇u(eiθ), η̄0(eiθ)∧̇e−iθf̄(eiθ)〉∧2Cm dθ = 0 for all f ∈ H2(D,Cm)

if and only if

1

2π

∫ 2π

0

〈
u(eiθ)− 〈u(eiθ), η̄0(eiθ)〉Cm η̄0(eiθ), e−iθf̄(eiθ)

〉
Cm dθ = 0

for all f ∈ H2(D,Cm), and the latter equation holds if and only if

u(eiθ)− 〈u(eiθ), η̄0(eiθ)〉Cm η̄0(eiθ)

belongs to H2(D,Cm).

Lemma 3.2.19. In the notation of Theorem 3.2.10,

L⊥1 = {f ∈ L2(T,Cm) : β∗0f ∈ H2(D,Cm−1)}.

Proof. It is easy to see that L1 = β0H
2(D,Cm−1)⊥. A typical element of L1 is β0z̄ḡ, for some

g ∈ H2(D,Cm−1). A function f ∈ L2(T,Cm) lies in L⊥1 if and only if

〈f, β0z̄ḡ〉L2(T,Cm) = 0 for all g ∈ H2(D,Cm−1).

Equivalently, f ∈ L⊥1 if and only if

1

2π

∫ 2π

0

〈f(eiθ), β0(eiθ)e−iθg(eiθ)〉Cmdθ = 0 for all g ∈ H2(D,Cm−1)

if and only if

1

2π

∫ 2π

0

〈β0(eiθ)∗f(eiθ), e−iθg(eiθ)〉Cm−1dθ = 0 for all g ∈ H2(D,Cm−1).

The latter statement is equivalent to the assertion that β∗0f is orthogonal to H2(D,Cm−1)⊥
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in L2(T,Cm−1), which holds if and only if β∗0f belongs to H2(D,Cm−1).

Hence

L⊥1 = {f ∈ L2(T,Cm) : β∗0f ∈ H2(D,Cm−1)}

as required.

Proposition 3.2.20. Under the assumptions of Theorem 3.2.10, let η0 be defined by equation

(3.53) and let W T
0 =

(
η0 β̄0

)
be a thematic completion of η0, where β0 is an inner, co-outer,

quasi-continuous function of type m× (m− 1). Then,

β∗0H
2(D,Cm)⊥ = H2(D,Cm−1)⊥.

Proof. By virtue of the fact that complex conjugation is a unitary operator on L2(T,Cm),

an equivalent statement is that βT0 zH
2(D,Cm) = zH2(D,Cm−1). By Lemma 3.1.18, since β0

is an inner, co-outer and quasi-continuous function, there exists a matrix-valued function

B0 ∈ H∞(D,C(m−1)×m) such that

B0β0 = Im−1

or, equivalently,

βT0 B
T
0 = Im−1.

Let g ∈ zH2(D,Cm−1). Then,

g = (βT0 B
T
0 )g ∈ βT0 BT

0 zH
2(D,Cm−1) ⊆ βT0 zH

2(D,Cm).

Hence

zH2(D,Cm−1) ⊆ βT0 zH
2(D,Cm).

Note that, since β0 ∈ H∞(D,Cm×(m−1)), βT0 zH
2(D,Cm−1) ⊆ zH2(D,Cm−1), and so,

zH2(D,Cm−1) ⊆ βT0 zH
2(D,Cm) ⊆ zH2(D,Cm−1).

Thus

βT0 zH
2(D,Cm) = zH2(D,Cm−1).

Proposition 3.2.21. In the notation of Theorem 3.2.10, let η0 ∈ H∞(D,Cm) be a vector-

valued inner function given by equation (3.53), let W T
0 =

(
η0 β̄0

)
be a thematic completion

of η0 given by equation (3.54), and let

L1 = W ∗
0

(
0

H2(D,Cm−1)⊥

)
.

Then,

η̄0∧̇L1 = η̄0∧̇H2(D,Cm)⊥
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and the operator

(η̄0∧̇·) : L1 → η̄0∧̇H2(D,Cm)⊥

is unitary.

Proof. Let us first prove that η̄0∧̇H2(D,Cm)⊥ ⊆ η̄0∧̇L1. Consider an element

η̄0∧̇f ∈ η̄0∧̇H2(D,Cm)⊥,

where f ∈ H2(D,Cm)⊥. Note that, since W T
0 is unitary valued, we have

η̄0η
T
0 + β0β

∗
0 = Im. (3.60)

Thus
η̄0∧̇f = η̄0∧̇(η̄0η

T
0 + β0β

∗
0)f

= η̄0∧̇η̄0η
T
0 f + η̄0∧̇β0β

∗
0f

= 0 + η̄0∧̇β0β
∗
0f,

the last equality following by the pointwise linear dependence of η̄0 and η̄0(ηT0 f) on D. By

Proposition 3.2.20,

β∗0H
2(D,Cm)⊥ = H2(D,Cm−1)⊥,

and, by the definition of L1, we have

L1 = β0H
2(D,Cm−1)⊥.

Hence, for f ∈ H2(D,Cm)⊥,

η̄0∧̇f = η̄0∧̇β0β
∗
0f ∈ η̄0∧̇β0H

2(D,Cm−1)⊥,

and thus

η̄0∧̇H2(D,Cm)⊥ ⊆ η̄0∧̇L1.

Let us show

η̄0∧̇L1 ⊆ η̄0∧̇H2(D,Cm)⊥.

A typical element in η̄0∧̇L1 is of the form

η̄0∧̇β0g,

for some g ∈ H2(D,Cm−1)⊥. By Proposition 3.2.20, there exists a φ ∈ H2(D,Cm)⊥ such that

β∗0φ = g. Then

η̄0∧̇β0g = η̄0∧̇β0β
∗
0φ.
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By equation (3.60), we get

η̄0∧̇β0g = η̄0∧̇(ICm − η̄0η
T
0 )φ = η̄0∧̇φ,

the last equality following by pointwise linear dependence of η̄0 and η̄0(ηT0 φ) on D. Thus

η̄0∧̇β0g ∈ η̄0∧̇H2(D,Cm)⊥,

and so η̄0∧̇L1 ⊆ η̄0∧̇H2(D,Cm)⊥. Consequently

η̄0∧̇L1 = η̄0∧̇H2(D,Cm)⊥.

To prove the operator

(η̄0∧̇·) : L1 → η̄0∧̇H2(D,Cm)⊥

is unitary, it suffices to show that it is an isometry, since the preceding discussion asserts it

is surjective. To this end, let s ∈ L1. Then,

‖η̄0∧̇s‖2
L2(T,∧2Cm) = 〈η̄0∧̇s, η̄0∧̇s〉L2(T,∧2Cm)

=
1

2π

∫ 2π

0

〈η̄0(eiθ)∧̇s(eiθ), η̄0(eiθ)∧̇s(eiθ)〉∧2Cm dθ

=
1

2π

∫ 2π

0

det

(
〈η̄0(eiθ), η̄0(eiθ)〉Cm 〈η̄0(eiθ), s(eiθ)〉Cm
〈s(eiθ), η̄0(eiθ)〉Cm 〈s(eiθ), s(eiθ)〉Cm

)
dθ.

By Proposition 3.2.1, ‖η̄0(z)‖Cm = 1 almost everywhere on T. Moreover, since s ∈ L1, there

exists a function ψ ∈ H2(D,Cm−1)⊥ such that s = β0ψ. Then

〈η̄0(eiθ), s(eiθ)〉Cm = 〈η̄0(eiθ), β0(eiθ)ψ(eiθ)〉Cm = 〈β∗0(eiθ)η̄0(eiθ), ψ(eiθ)〉Cm = 0

almost everywhere on T, which follows by the fact that W0 is unitary-valued, and so

(W0W
∗
0 )(z) =

(
ηT0 (z)

β∗0(z)

)(
η̄0(z) β0(z)

)
=

(
ηT0 (z)η̄0(z) ηT0 (z)βT0 (z)

β∗0(z)η̄0(z) β∗0(z)β0(z)

)
= Im

almost everywhere on T.
Thus, for all s ∈ L1,

‖η̄0∧̇s‖2
L2(T,∧2Cm) = ‖s‖2

L2(T,Cm),

which shows that the operator

(η̄0∧̇·) : L1 → η̄0∧̇H2(D,Cm)⊥

is an isometry. We have proved it is also surjective, hence, by Theorem A.2.4, the operator

is unitary.
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Continuation of the proof of Theorem 3.2.10.

(iii). We have to prove that diagram (3.56) commutes. Recall that, by Lemma 3.1.17, the

left hand square commutes, so it suffices to show that that the right hand square, namely

K1
ξ0∧̇·−−→ ξ0∧̇H2(D,Cn) = X1yΓ1

yT1

L1
η̄0∧̇·−−→ η̄0∧̇H2(D,Cm)⊥ = Y1,

(3.61)

also commutes. That is, we would like to prove that, for all x ∈ K1,

T1(ξ0∧̇x) = η̄0∧̇Γ1(x),

where Γ1(x) = PL1((G−Q1)x) for any function Q1 ∈ H∞(D,Cm×n) that satisfies the follow-

ing equations

(G−Q1)x0 = t0y0, y∗0(G−Q1) = t0x
∗
0.

By Proposition 3.2.17,

ξ0∧̇K1 = ξ0∧̇H2(D,Cn),

and so, for every x ∈ K1, there exists x̃ ∈ H2(D,Cn) such that

ξ0∧̇x = ξ0∧̇x̃.

Thus, for x ∈ K1,

T1(ξ0∧̇x) = T1(ξ0∧̇x̃) = PY1(η̄0∧̇(G−Q1)x̃),

and

η̄0∧̇Γ1(x) = η̄0∧̇PL1(G−Q1)x.

Hence to prove the commutativity of diagram (3.61), it suffices to show that, for all x ∈ K1,

PY1 [η̄0∧̇(G−Q1)x̃)] = η̄0∧̇PL1(G−Q1)x

in Y1, where ξ0∧̇(x− x̃) = 0. By Proposition 3.2.21,

η̄0∧̇L1 = η̄0∧̇H2(D,Cm)⊥ = Y1,

and so, for all x ∈ K1, η̄0∧̇PL1(G−Q1)x ∈ Y1. Let us show that, for x ∈ K1,

η̄0∧̇(G−Q1)x̃− η̄0∧̇PL1(G−Q1)x

is orthogonal to Y1 in L2(T,∧2Cm), or equivalently, that for every f ∈ H2(D,Cm),

〈
η̄0∧̇[(G−Q1)x̃− PL1(G−Q1)x], η̄0∧̇z̄f̄

〉
L2(T,∧2Cm)

= 0 (3.62)
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for x ∈ K1 and for any x̃ ∈ H2(D,Cn) such that ξ0∧̇x̃ = ξ0∧̇x. By Lemma 3.2.9,

η̄0∧̇(G−Q1)x = η̄0∧̇(G−Q1)x̃.

Then equation (3.62) is equivalent to the equation

〈η̄0∧̇PL⊥1 (G−Q1)x, η̄0∧̇z̄f̄〉L2(T,∧2Cm) = 0 (3.63)

for any x ∈ K1. By Lemma 3.2.18, equation (3.63) holds if and only if the function

z 7→ [PL⊥1 (G−Q1)x](z)− 〈[PL⊥1 (G−Q1)x](z), η̄0(z)〉Cm η̄0(z) (3.64)

belongs to H2(D,Cm). By Lemma 3.2.19, there exists a function ψ ∈ L2(T,Cm) such that

PL⊥1 (G−Q1)x = ψ, (3.65)

β∗0ψ ∈ H2(D,Cm−1).

Equation (3.65) implies

(G−Q1)x− ψ ∈ L1 = β0H
2(D,Cm−1)⊥.

Hence, to prove that the function defined by equation (3.64) belongs to H2(D,Cm), we have

to show that

ψ − (ηT0 ψ)η̄0 ∈ H2(D,Cm).

Since W0 =
(
η0 β0

)T
is a unitary-valued function,

η̄0(z)ηT0 (z) + β0(z)β∗0(z) = Im

almost everywhere on T. Since ηT0 ψ is a scalar-valued function,

ψ − ηT0 ψη̄0 = (Im − η̄0η
T
0 )ψ

= β0β
∗
0ψ ∈ β0H

2(D,Cm−1) ⊂ H2(D,Cm).

Recall that β∗0ψ ∈ H2(D,Cm−1), and so β0β
∗
0ψ ∈ H2(D,Cm). Thus diagram (3.61) commutes.

(iv). By Lemma 3.1.12,

F1 ∈ H∞(D,C(m−1)×(n−1)) + C(T,C(m−1)×(n−1)).

Then, by Hartman’s Theorem 3.1.2, the Hankel operator HF1 is compact, and by (iii),

(η̄0∧̇·) ◦ (U2HF1U
∗
1 ) ◦ (ξ0∧̇·)∗ = T1.
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By (i) and (ii), the operators U1, U2, (ξ0∧̇·) and (η̄0∧̇·) are unitary. Hence T1 is a compact

operator.

(v). Since diagram (3.56) is commutative and U1, U2, (ξ0∧̇·) and (η0∧̇·) are unitaries,

‖T1‖ = ‖Γ1‖ = ‖HF1‖.

In what follows, we will prove an analogous statement to Theorem 3.2.10 for T2. To this end,

we need the following results.

Lemma 3.2.22. In the notation of Theorem 3.2.10, v1 ∈ H2(D,Cn) and w1 ∈ H2(D,Cm)⊥

are such that (ξ0∧̇v1, η̄0∧̇w1) is a Schmidt pair for the operator T1 corresponding to ‖T1‖.
Then (i) there exist x1 ∈ K1 and y1 ∈ L1 such that (x1, y1) is a Schmidt pair for the operator

Γ1; (ii) for any x1 ∈ K1 and y1 ∈ L1 such that

ξ0∧̇x1 = ξ0∧̇v1, η̄0∧̇y1 = η̄0∧̇w1,

the pair (x1, y1) is a Schmidt pair for Γ1 corresponding to ‖Γ1‖.

Proof. (i). By Theorem 3.2.10, the diagram (3.56) commutes, (ξ0∧̇·) is unitary from K1 to

X1, and (η̄0∧̇·) is unitary from L1 to Y1. Thus ‖Γ1‖ = ‖T1‖ = t1. Moreover, by Lemma

3.1.17, the operator Γ1 : K1 → L1 is compact, hence there exist x1 ∈ K1, y1 ∈ L1 such that

(x1, y1) is a Schmidt pair for Γ1 corresponding to ‖Γ1‖ = t1.

(ii). Suppose that x1 ∈ K1, y1 ∈ L1 satisfy

ξ0∧̇x1 = ξ0∧̇v1, (3.66)

η̄0∧̇y1 = η̄0∧̇w1. (3.67)

Let us show that (x1, y1) is a Schmidt pair for Γ1 corresponding to t1, that is,

Γ1x1 = t1y1, Γ∗1y1 = t1x1.

Since diagram (3.61) commutes,

T1 ◦ (ξ0∧̇·) = (η̄0∧̇·) ◦ Γ1, (ξ0∧̇·)∗ ◦ T ∗1 = Γ∗1 ◦ (η̄0∧̇·)∗. (3.68)

By hypothesis,

T1(ξ0∧̇v1) = t1(η̄0∧̇w1), T ∗1 (η̄0∧̇w1) = t1(ξ0∧̇v1). (3.69)

Thus, by equations (3.67), (3.68) and (3.69),

Γ1x1 = (η̄0∧̇·)∗T1(ξ0∧̇v1)

= (η̄0∧̇·)∗t1(η̄0∧̇w1)

= t1(η̄0∧̇·)∗(η̄0∧̇y1).

110



3.2. Algorithm for superoptimal analytic approximation

Hence

Γ1x1 = t1(η̄0∧̇·)∗(η̄0∧̇·)y1 = t1y1.

By equation (3.66),

x1 = (ξ0∧̇·)∗(ξ0∧̇v1),

and, by equation (3.67),

(η̄0∧̇·)∗(η̄0∧̇w1) = y1.

Thus
Γ∗1y1 = Γ∗1(η̄0∧̇·)∗(η̄0∧̇w1)

= (ξ0∧̇·)∗T ∗1 (η̄0∧̇w1),

the last equality following by the second equation of (3.68). By equations (3.66) and (3.69),

we get

T ∗1 (η̄0∧̇w1) = t1(ξ0∧̇v1) = t1(ξ0∧̇x1),

and so,

Γ∗1y1 = t1x1.

Therefore (x1, y1) is a Schmidt pair for Γ1 corresponding to ‖Γ1‖ = ‖T1‖ = t1.

Lemma 3.2.23. Suppose (ξ0∧̇v1, η̄0∧̇w1) is a Schmidt pair for T1 corresponding to t1. Let

x1 = (In − ξ0ξ
∗
0)v1, y1 = (Im − η̄0η

T
0 )w1,

and let

x̂1 = αT0 x1, ŷ1 = β∗0y1.

Then

(i)

x1 = ᾱ0α
T
0 x1, y1 = β0β

∗
0y1. (3.70)

(ii) The pair (x̂1, ŷ1) is a Schmidt pair for HF1 corresponding to ‖HF1‖ = t1.

Proof. (i). Since V0 =
(
ξ0 ᾱ0

)
is unitary-valued, In − ξ0ξ

∗
0 = ᾱ0α

T
0 , and so

ᾱ0α
T
0 x1 = (In − ξ0ξ

∗
0)(In − ξ0ξ

∗
0)v1

= (In − 2ξ0ξ
∗
0 + ξ0ξ

∗
0ξ0ξ

∗
0)v1

= (In − ξ0ξ
∗
0)v1 = x1. (3.71)

Similarly, since W T
0 =

(
η0 β̄0

)
is unitary valued, Im − η̄0η

T
0 = β0β

∗
0 , and so

β0β
∗
0y1 = (Im − η̄0η

T
0 )(Im − η̄0η

T
0 )w1

= (Im − 2η̄0η
T
0 + η̄0η

T
0 η̄0η

T
0 )w1

= (Im − η̄0η
T
0 )w1 = y1. (3.72)

111



3.2. Algorithm for superoptimal analytic approximation

(ii) Recall that, by Lemma 3.1.17, the maps

U1 : H2(D,Cn−1)→ K1, U2 : H2(D,Cm−1)⊥ → L1,

defined by

U1χ = V0

(
0

χ

)
= ᾱ0χ, U2ψ = W ∗

0

(
0

ψ

)
= β0ψ

for all χ ∈ H2(D,Cn−1) and all ψ ∈ H2(D,Cm−1)⊥, are unitaries. By the commutativity of

the diagram (3.56),

HF1 = U∗2 Γ1U1. (3.73)

By Part (i), x1 ∈ K1 and y1 ∈ L1 and, by Proposition 3.2.1,

ξ0∧̇x1 = ξ0∧̇v1, η̄0∧̇y1 = η̄0∧̇w1.

Thus, by Lemma 3.2.22, (x1, y1) is a Schmidt pair for the operator Γ1 corresponding to

t1 = ‖Γ1‖, that is,

Γ1x1 = t1y1, Γ∗1y1 = t1x1. (3.74)

To prove that the pair (x̂1, ŷ1) is a Schmidt pair for HF1 corresponding to ‖HF1‖ = t1,

we need to show that

HF1x̂1 = t1ŷ1, H∗F1
ŷ1 = t1x̂1.

By equations (3.73) and (3.70), we have

HF1x̂1 = HF1α
T
0 x̂1

= U∗2 Γ1U1α
T
0 x1 = U∗2 Γ1ᾱ0α

T
0 x1

= U∗2 Γ1x1 = t1β
∗
0y1 = t1ŷ1. (3.75)

Let us show that H∗F1
ŷ1 = t1x̂1. By equations (3.73) and (3.70), we have

H∗F1
ŷ1 = H∗F1

β∗0y1

= U∗1 Γ∗1U2β
∗
0y1 = U∗1 Γ∗1β0β

∗
0y1

= U∗1 Γ∗1y1 = t1U
∗
1x1 = t1α

T
0 x1 = t1x̂1. (3.76)

Therefore (x̂1, ŷ1) is a Schmidt pair for HF1 corresponding to ‖HF1‖ = t1.

Proposition 3.2.24. Let (ξ0∧̇v1, η̄0∧̇w1) be a Schmidt pair for T1 corresponding to t1 for

some v1 ∈ H2(D,Cn), w1 ∈ H2(D,Cm)⊥, let h1 ∈ H2(D,C) be the scalar outer factor of

ξ0∧̇v1, let

x1 = (In − ξ0ξ
∗
0)v1, y1 = (Im − η̄0η

T
0 )w1,

and let

x̂1 = αT0 x1, ŷ1 = β∗0y1.
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Then

‖x̂1(z)‖Cn−1 = ‖ŷ1(z)‖Cm−1 = |h1(z)|,

‖x1(z)‖Cn = ‖y1(z)‖Cm = |h1(z)|

and

‖ξ0(z) ∧ v1(z)‖∧2Cn = ‖η̄0(z) ∧ w1(z)‖∧2Cm = |h1(z)|

almost everywhere on T.

Proof. By Lemma 3.2.23, (x̂1, ŷ1) is a Schmidt pair for HF1 corresponding to ‖HF1‖ = t1.

Hence

HF1x̂1 = t1ŷ1 and H∗F1
ŷi = t1x̂1.

By Theorem D.2.4, for the Hankel operator HF1 and the Schmidt pair (x̂1, ŷ1), we have

‖ŷ1(z)‖Cm−1 = ‖x̂1(z)‖Cn−1 (3.77)

almost everywhere on T.
By equations (3.70),

x1 = ᾱ0α
T
0 x1 = ᾱ0x̂1, y1 = β0β

∗
0y1 = β0ŷ1.

Since ᾱ0(z) and β0(z) are isometric for almost every z ∈ T,

‖x1(z)‖Cn = ‖x̂1(z)‖Cn−1 and ‖y1(z)‖Cm = ‖ŷ1(z)‖Cm−1

almost everywhere on T. By equations (3.77), we deduce

‖x1(z)‖Cn = ‖y1(z)‖Cm (3.78)

almost everywhere on T.
By Theorem 3.2.10, (ξ0∧̇·) is an isometry from K1 to X1, and (η̄0∧̇·) is an isometry from

L1 to Y1. By Proposition 3.2.1,

ξ0∧̇x1 = ξ0∧̇v1, η̄0∧̇y1 = η̄0∧̇w1.

Hence

‖ξ0(z) ∧ v1(z)‖∧2Cn = ‖ξ0(z) ∧ x1(z)‖∧2Cn = ‖x1(z)‖Cn

almost everywhere on T. Also

‖η̄0(z) ∧ w1(z)‖∧2Cm = ‖η̄0(z) ∧ y1(z)‖∧2Cm = ‖y1(z)‖Cm

almost everywhere on T. Thus, by equation (3.78),

‖ξ0(z) ∧ v1(z)‖∧2Cn = ‖η̄0(z) ∧ w1(z)‖∧2Cm almost everywhere on T.
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Recall that h1 is the scalar outer factor of ξ0∧̇v1. Hence

‖ξ0(z) ∧ v1(z)‖∧2Cn = ‖η̄0(z) ∧ w1(z)‖∧2Cm = |h1(z)|,

‖x1(z)‖Cn = ‖y1(z)‖Cm = |h1(z)|

and

‖x̂1(z)‖Cn−1 = ‖ŷ1(z)‖Cm−1 = |h1(z)|

almost everywhere on T.

Definition 3.2.25. Given G ∈ H∞(D,Cm×n) + C(T,Cm×n) and 0 ≤ j ≤ min(m,n), define

Ωj to be the set of level j superoptimal analytic approximants to G, that is, the set of

Q ∈ H∞(D,Cm×n) which minimise the tuple

(
s∞0 (G−Q), s∞1 (G−Q), . . . , s∞j (G−Q)

)
with respect to the lexicographic ordering over Q ∈ H∞(D,Cm×n). For Q ∈ Ωj we call G−Q
a level j superoptimal error function, and we denote by Ej the set of all level j superoptimal

error functions, that is

Ej = {G−Q : Q ∈ Ωj}.

Proposition 3.2.26. Let m,n be positive integers such that min(m,n) ≥ 2. Let

G ∈ H∞(D,Cm×n) + C(T,Cm×n). In line with the algorithm from Section 3.2.1, let

Q1 ∈ H∞(D,Cm×n) satisfy

(G−Q1)x0 = t0y0, (G−Q1)∗y0 = t0x0.

Let the spaces X1, Y1 be given by

X1 = ξ0∧̇H2(D,Cn) ⊂ H2(D,∧2Cn), Y1 = η̄0∧̇H2(D,Cm)⊥ ⊂ H2(D,∧2Cm)⊥,

and consider the compact operator T1 : X1 → Y1 given by

T1(ξ0∧̇x) = PY1(η̄0∧̇(G−Q1)x)

for all x ∈ H2(D,Cn). Let (ξ0∧̇v1, η̄0∧̇w1) be a Schmidt pair for the operator T1 corresponding

to t1 = ‖T1‖, let h1 ∈ H2(D,C) be the scalar outer factor of ξ0∧̇v1, let

x1 = (ICn − ξ0ξ
∗
0)v1, y1 = (ICm − η̄0η

T
0 )w1

and let

ξ1 =
x1

h1

, η1 =
z̄ȳ1

h1

.

Then, there exist unitary-valued functions Ṽ1, W̃1 of types (n − 1) × (n − 1),
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(m− 1)× (m− 1) respectively of the form

Ṽ1
def
=
(
αT0 ξ1 α1

)
(3.79)

and

W̃ T
1

def
=
(
βT0 η1 β1

)
, (3.80)

where α1, β1 are inner, co-outer, quasi-continuous functions of types (n − 1) × (n − 2),

(m− 1)× (m− 2) respectively, and all minors on the first columns of Ṽ1, W̃
T
1 are in H∞.

Furthermore, the set of all level 1 superoptimal error functions E1 satisfies

E1 = W ∗
0

(
1 0

0 W̃ ∗
1

)t0u0 0 0

0 t1u1 0

0 0 F2 +H∞(D,C(m−2)×(n−2)) ∩B(t1)

(1 0

0 Ṽ ∗1

)
V ∗0 , (3.81)

where F2 ∈ H∞(D,C(m−2)×(n−2)) + C(T,C(m−2)×(n−2)), u1 = z̄h̄1

h1
is a quasi-continuous uni-

modular function and V0,W
T
0 are as in Theorem 3.2.10, and B(t1) is the closed ball of radius

t1 in L∞(T,C(m−2)×(n−2)).

Proof. By Theorem 3.2.10, the following diagram commutes

H2(D,Cn−1)
U1−→ K1

ξ0∧̇·−−→ ξ0∧̇H2(D,Cn) = X1yHF1

yΓ1

yT1

H2(D,Cm−1)⊥
U2−→ L1

η̄0∧̇·−−→ η̄0∧̇H2(D,Cm)⊥ = Y1.

(3.82)

Let x̂1 = αT0 x1, ŷ1 = β∗0y1. By Lemma 3.2.23, (x̂1, ŷ1) is a Schmidt pair for HF1 corre-

sponding to t1. By equations (3.70),

x1 = ᾱ0α
T
0 x1 = ᾱ0x̂1 and y1 = β0β

∗
0y1 = β0ŷ1.

We want to apply Lemma 3.1.12 to HF1 and the Schmidt pair (x̂1, ŷ1) to find unitary-

valued functions Ṽ1, W̃1 such that, for any function Q̃1 ∈ H∞(D,C(m−1)×(n−1)) which is at

minimal distance from F1, the following equation holds

F1 − Q̃1 = W̃ ∗
1

(
t1u1 0

0 F2

)
Ṽ ∗1 ,

for some F2 ∈ H∞(D,C(m−2)×(n−2))+C(T,C(m−2)×(n−2)). For this purpose we find the inner-

outer factorisations x̂1 and z̄ ¯̂y1. By Proposition 3.2.24,

‖x̂1(z)‖Cn−1 = ‖x1(z)‖Cn = ‖ξ0(z)∧̇v1(z)‖∧2Cn = |h1(z)|

and ‖ŷ1(z)‖Cm−1 = ‖y1(z)‖Cm = ‖η̄0(z)∧̇w1(z)‖∧2Cm = |h1(z)|
(3.83)

almost everywhere on T. Equations (3.83) imply that h1 ∈ H2(D,C) is the scalar outer factor
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of both x̂1 and z̄ ¯̂y1. By Lemma 3.1.12, x̂1, z̄ ¯̂y1 admit the inner-outer factorisations

x̂1 = ξ̂1h1, z̄ ¯̂y1 = η̂1h1,

for some inner vector-valued ξ̂1 ∈ H∞(D,Cn−1) and η̂1 ∈ H∞(D,Cm−1). Recall that

x̂1 = αT0 x1 = αT0 ξ1h1, z̄ ¯̂y1 = z̄βT0 ȳ1 = βT0 η1h1,

which imply

ξ̂1 = αT0 ξ1 and η̂1 = βT0 η1.

Let us show that αT0 ξ1, β
T
0 η1 are inner in order to apply Lemma 3.1.12.

Recall that, since V0,W
T
0 are unitary-valued, we have

In − ξ0ξ
∗
0 = ᾱ0α

T
0 , Im − η̄0η

T
0 = β0β

∗
0 .

Therefore

x1 = (ICn − ξ0ξ
∗
0)v1 = ᾱ0α

T
0 v1, y1 = (ICm − η̄0η

T
0 )w1 = β0β

∗
0w1.

Then,

αT0 x1 = αT0 v1, βT0 ȳ1 = βT0 w̄1, (3.84)

and since

ξ1 =
x1

h1

, η1 =
z̄ȳ1

h1

,

we find that the functions

αT0 ξ1 =
αT0 v1

h1

, βT0 η1 =
βT0 z̄w̄1

h1

are analytic. Furthermore, by Proposition 3.2.24,

‖x1(z)‖Cn = ‖y1(z)‖Cm = |h1(z)| = ‖x̂1(z)‖Cn−1 = ‖ŷ1(z)‖Cm−1

almost everywhere on T. Thus

‖αT0 (z)x1(z)‖Cn−1 = ‖αT0 (z)v1(z)‖Cn−1 = |h1(z)|

and

‖βT0 (z)z̄ȳ1(z)‖Cm−1 = ‖βT0 (z)z̄w̄1(z)‖Cm−1 = |h1(z)|

almost everywhere on T. Hence

‖αT0 (z)ξ1(z)‖Cn−1 = 1, ‖βT0 (z)η1(z)‖Cm−1 = 1
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almost everywhere on T. Therefore αT0 ξ1, βT0 η1 are inner functions. By Lemma 3.1.12,

there exist inner, co-outer, quasi-continuous functions α1, β1 of types (n− 1)× (n− 2) and

(m− 1)× (m− 2) respectively such that

Ṽ1 =
(
αT0 ξ1 α1

)
, W̃ T

1 =
(
βT0 η1 β1

)
are unitary-valued and all minors on the first columns are in H∞. Furthermore, by Lemma

3.1.12, every Q̂1 ∈ H∞(D,C(m−1)×(n−1)) which is at minimal distance from F1 satisfies

F1 − Q̂1 = W̃ ∗
1

(
t1u1 0

0 F2

)
Ṽ ∗1 ,

for some F2 ∈ H∞(D,C(m−2)×(n−2))+C(T,C(m−2)×(n−2)) and u1 quasi-continuous unimodular

function given by u1 = z̄h̄1

h1
.

By Lemma 3.1.15, the set

Ẽ0 = {F1 − Q̂ : Q̂ ∈ H∞(D,C(m−1)×(n−1)), ‖F1 − Q̂‖L∞ = t1}

satisfies

Ẽ0 = W̃ ∗
1

(
t1u1 0

0 (F2 +H∞(D,C(m−2)×(n−2))) ∩B(t1)

)
V ∗1 ,

for some F2 as described above and for the closed ball of radius t1 in L∞(T,C(m−2)×(n−2))

denoted by B(t1). Thus, by Lemma 3.1.15, E1 admits the factorisation (3.81) as claimed.

Proposition 3.2.27. Suppose the function Q2 ∈ H∞(D,Cm×n) minimises

(s∞0 (G−Q), s∞1 (G−Q)).

Then Q2 satisfies

(G−Q2)x0 = t0y0, (G−Q2)∗y0 = t0x0

and

(G−Q2)x1 = t1y1, (G−Q2)∗y1 = t1x1,

where x0, x1, y0, y1, t0, t1 are as in Theorem 3.2.10.

Proof. Let (x0, y0) be a Schmidt pair for the Hankel operator HG corresponding to

‖HG‖ = t0. Then, by Theorem D.2.4, every Q2 ∈ H∞(D,Cm×n) which is at minimal distance

from G satisfies

(G−Q2)x0 = t0y0, (G−Q2)∗y0 = t0x0,

and, by Lemma 3.1.12,

W0(G−Q2)V0 =

(
t0u0 0

0 F1

)
,

where F1 ∈ H∞(D,C(m−1)×(n−1)) + C(T,C(m−1)×(n−1)).
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Moreover, by Lemma 3.1.15, the set E0 = {G − Q : Q ∈ Ω0} of all level 0 superoptimal

error functions satisfies

W0E0V0 =

(
t0u0 0

0 F1 +H∞(D,Cm−1×n−1)

)
∩B(t0). (3.85)

Suppose Q2 ∈ Ω0. Then

W0(G−Q2)V0 =

(
ηT0

β∗0

)
(G−Q2)

(
ξ0 ᾱ0

)
=

(
ηT0 (G−Q2)ξ0 ηT0 (G−Q2)ᾱ0

β∗0(G−Q2)ᾱ0 β∗0(G−Q2)ᾱ0

)
.

By equation (3.85), for Q̃1 ∈ H∞(D,C(m−1)×(n−1)) at minimal distance from F1,(
ηT0 (G−Q2)ξ0 ηT0 (G−Q2)ᾱ0

β∗0(G−Q2)ᾱ0 β∗0(G−Q2)ᾱ0

)
=

(
t0u0 0

0 F1 − Q̃1

)
(3.86)

Note that, by Theorem D.2.3,

‖F1 − Q̃1‖∞ = ‖HF1‖,

and, by Theorem 3.2.10 (part (v)), ‖HF1‖ = t1.

Consideration of the (2, 2) entries of equation (3.86) yields

F1 − Q̃1 = β∗0(G−Q2)ᾱ0. (3.87)

Note that, if (x̂1, ŷ1) is a Schmidt pair for HF1 corresponding to t1 = ‖HF1‖, then, by

Theorem D.2.4,

(F1 − Q̃1)x̂1 = t1ŷ1, (F − Q̂1)∗ŷ1 = t1x̂1.

In view of equation (3.87), the latter equations imply

β∗0(G−Q2)ᾱ0x̂1 = t1ŷ1, (3.88)

and

αT0 (G−Q2)∗β0ŷ1 = t1x̂1. (3.89)

By Lemma 3.2.23, we may choose the Schmidt pair for HF1 corresponding to ‖HF1‖ to be

x̂1 = αT0 x1, ŷ1 = β∗0y1. (3.90)

Recall that, by equations (3.70),

x1 = ᾱ0α
T
0 x1 (3.91)

and

y1 = β0β
∗
0y1. (3.92)
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In view of equations (3.88) and (3.90), we obtain

β∗0(G−Q2)ᾱ0α
T
0 x1 = t1β

∗
0y1.

Multiplying both sides of the latter equation by β0, we get

β0β
∗
0(G−Q2)ᾱ0α

T
0 x1 = t1β0β

∗
0y1,

which, by equation (3.91), implies

β0β
∗
0(G−Q2)x1 = t1β0β

∗
0y1,

or equivalently,

β0β
∗
0

(
(G−Q2)x1 − t1y1

)
= 0.

Since, by Theorem 3.2.10, U∗2 = Mβ0β∗0
is unitary, the latter equation yields

(G−Q2)x1 = t1y1.

Moreover, by equations (3.89) and (3.90), we obtain

αT0 (G−Q2)∗β0β
∗
0y1 = t1α

T
0 x1.

Multiplying both sides of the latter equation by ᾱ0, we get

ᾱ0α
T
0 (G−Q2)∗β0β

∗
0y1 = t1ᾱ0α

T
0 x1.

In view of equation (3.92), the latter expression is equivalent to the equation

ᾱ0α
T
0 (G−Q2)∗y1 = t1ᾱ0α

T
0 x1,

or equivalently,

ᾱ0α
T
0

(
(G−Q2)∗y1 − t1x1

)
= 0.

Since, by Theorem 3.2.10, U∗1 = Mᾱ0αT0
is unitary, the latter equation yields

(G−Q2)∗y1 = t1x1.

Therefore Q2 satisfies the required equations.

The next few propositions are in preparation for Theorem 3.2.37 on the compactness of

T2.

Proposition 3.2.28. For a thematic completion of the inner matrix-valued function βT0 η1

of the form W̃ T
1 =

(
βT0 η1 β̄1

)
, where β1 is an inner, co-outer, quasi-continuous function of

119



3.2. Algorithm for superoptimal analytic approximation

type (m− 1)× (m− 2), the following equation holds

β∗1H
2(D,Cm−1)⊥ = H2(D,Cm−2)⊥.

Proof. By virtue of the fact that complex conjugation is a unitary operator on L2(T,Cm),

an equivalent statement to Proposition 3.2.28 is that βT1 zH
2(D,Cm−1) = zH2(D,Cm−2). By

Lemma 3.1.18, there exists a matrix-valued function B1 ∈ H∞(D,C(m−2)×(m−1)) such that

B1β1 = Im−2

or, equivalently,

βT1 B
T
1 = Im−2.

Let f ∈ zH2(D,Cm−2). Then,

f = (βT1 B
T
1 )f ∈ βT1 BT

1 zH
2(D,Cm−2) = βT1 zH

2(D,Cm−1).

Hence

zH2(D,Cm−2) ⊆ βT1 zH
2(D,Cm−1).

Note that, since β1 ∈ H∞(D,C(m−1)×(m−2)), we have

βT1 zH
2(D,Cm−1) ⊆ zH2(D,Cm−2).

Thus

βT1 zH
2(D,Cm−1) = zH2(D,Cm−2).

Lemma 3.2.29. For a thematic completion of the inner matrix-valued function αT0 ξ1 of the

form Ṽ1 =
(
αT0 ξ1 ᾱ1

)
, where α1 is an inner, co-outer, quasi-continuous function of type

(n− 1)× (n− 2), the following equation holds

αT1H
2(D,Cn−1) = H2(D,Cn−2).

Proof. By Lemma 3.1.18, for the given α1, there exists A1 ∈ H∞(D,C(n−2)×(n−1)) such that

A1α1 = In−2. Equivalently, αT1A
T
1 = In−2.

Let g ∈ H2(D,Cn−2). Then g = (αT1A
T
1 )g ∈ αT1A

T
1H

2(D,Cn−2), which implies that

g ∈ αT1H2(D,Cn−1). Hence H2(D,Cn−2) ⊆ αT1H
2(D,Cn−1).

For the reverse inclusion, note that since α1 ∈ H∞(D,C(n−1)×(n−2)),

αT1H
2(D,Cn−1) ⊆ H2(D,Cn−2)

Thus

αT1H
2(D,Cn−1) = H2(D,Cn−2).
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Proposition 3.2.30. With the notation of Proposition 3.2.26, let unitary completions of ξ0

and αT0 ξ1 be given by

V0 =
(
ξ0 ᾱ0

)
, Ṽ1 =

(
αT0 ξ1 ᾱ1

)
,

where α0, α1 are inner, co-outer, quasi-continuous matrix-valued functions of types

n× (n− 1) and (n− 1)× (n− 2) respectively. Let

V1 =

(
1 0

0 Ṽ1

)

and let

K2 = V0V1

(
02×1

H2(D,Cn−2)

)
.

Then

ξ0∧̇ξ1∧̇H2(D,Cn) = ξ0∧̇ξ1∧̇K2

and the operator (ξ0∧̇ξ1∧̇·) : K2 → ξ0∧̇ξ1∧̇H2(D,Cn) is unitary.

Proof. Let us first show that

ξ0∧̇ξ1∧̇H2(D,Cn) ⊆ ξ0∧̇ξ1∧̇K2.

Notice that, since V0, V1 are unitary-valued functions, V0V1 is unitary-valued, that is,

V0V1V
∗

1 V
∗

0 = In,

which is equivalent to the equation

ξ0ξ
∗
0 + ᾱ0α

T
0 ξ1ξ

∗
1ᾱ0α

T
0 + ᾱ0ᾱ1α

T
1 α

T
0 = In. (3.93)

Let ω ∈ ξ0∧̇ξ1∧̇H2(D,Cn) be given by ω = ξ0∧̇ξ1∧̇f, for some f ∈ H2(D,Cn). Then, by

equation (3.93),

ω = ξ0∧̇ξ1∧̇Inf

= ξ0∧̇ξ1∧̇(ξ0ξ
∗
0 + ᾱ0α

T
0 ξ1ξ

∗
1ᾱ0α

T
0 + ᾱ0ᾱ1α

T
1 α

T
0 )f

= ξ0∧̇ξ1∧̇ξ0ξ
∗
0 + ξ0∧̇ξ1∧̇ᾱ0α

T
0 ξ1ξ

∗
1ᾱ0α

T
0 f + ξ0∧̇ξ1∧̇ᾱ0ᾱ1α

T
1 α

T
0 f

= 0 + ξ0∧̇ξ1∧̇ᾱ0α
T
0 ξ1ξ

∗
1ᾱ0α

T
0 f + ξ0∧̇ξ1∧̇ᾱ0ᾱ1α

T
1 α

T
0 f.

Note that since V0 is unitary-valued, ξ0ξ
∗
0 + ᾱ0α

T
0 = In. Moreover, ξk and each column of

ξkξ
∗
k are pointwise linearly dependent on D for k = 0, 1, and hence,

ω = ξ0∧̇ξ1∧̇(ICn − ξ0ξ
∗
0)ξ1ξ

∗
1ᾱ0α

T
0 f + ξ0∧̇ξ1∧̇ᾱ0ᾱ1α

T
1 α

T
0 f

= ξ0∧̇ξ1∧̇ξ1ξ
∗
1ᾱ0α

T
0 f − ξ0∧̇ξ1∧̇ξ0ξ

∗
0ξ1ξ

∗
1ᾱ0α

T
0 f + ξ0∧̇ξ1∧̇ᾱ0ᾱ1α

T
1 α

T
0 f,
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thus

ω = ξ0∧̇ξ1∧̇ᾱ0ᾱ1α
T
1 α

T
0 f.

By Lemma 3.2.15,

αT0H
2(D,Cn) = H2(D,Cn−1),

and, by Lemma 3.2.29,

αT1H
2(D,Cn−1) = H2(D,Cn−2).

Observe that, by definition, K2 = ᾱ0ᾱ1H
2(D,Cn−2). Thus ω ∈ ξ0∧̇ξ1∧̇K2, and so,

ξ0∧̇ξ1∧̇H2(D,Cn) ⊆ ξ0∧̇ξ1∧̇K2.

For the reverse inclusion, note that a typical element of ξ0∧̇ξ1∧̇K2 is of the form ξ0∧̇ξ1∧̇ᾱ0ᾱ1g,

for some g ∈ H2(D,Cn−2). By Lemma 3.2.29, there exists a vector-valued function q ∈
H2(D,Cn−1) such that αT1 q = g. Then,

ξ0∧̇ξ1∧̇ᾱ0ᾱ1g = ξ0∧̇ξ1∧̇ᾱ0ᾱ1α
T
1 q.

Since Ṽ1 =
(
αT0 ξ1 ᾱ1

)
is unitary-valued, αT0 ξ1ξ

∗
1ᾱ0 + ᾱ1α

T
1 = In−1. Hence

ξ0∧̇ξ1∧̇ᾱ0ᾱ1α
T
1 q = ξ0∧̇ξ1∧̇ᾱ0(In−1 − αT0 ξ1ξ

∗
1ᾱ0)q = ξ0∧̇ξ1∧̇ᾱ0q − ξ0∧̇ξ1∧̇ᾱ0α

T
0 ξ1ξ

∗
1ᾱ0q.

Furthermore, since V0 is unitary-valued, ξ0ξ
∗
0 + ᾱ0α

T
0 = In. Thus

ξ0∧̇ξ1∧̇ᾱ0q − ξ0∧̇ξ1∧̇(ICn − ξ0ξ
∗
0)ξ1ξ

∗
1ᾱ0q

= ξ0∧̇ξ1∧̇ᾱ0q − ξ0∧̇ξ1∧̇ξ1ξ
∗
1ᾱ0q + ξ0∧̇ξ1∧̇ξ0ξ

∗
0ξ1ξ

∗
1ᾱ0q

= ξ0∧̇ξ1∧̇ᾱ0q + 0

because of pointwise linear dependence.

By Lemma 3.2.15, there exists ρ ∈ H2(D,Cn) such that αT0 ρ = q. Hence

ξ0∧̇ξ1∧̇ᾱ0q = ξ0∧̇ξ1∧̇ᾱ0α
T
0 ρ

= ξ0∧̇ξ1∧̇(ICn − ξ0ξ
∗
0)ρ

= ξ0∧̇ξ1∧̇ρ+ 0

on account of the pointwise linear dependence. Clearly,

ξ0∧̇ξ1∧̇ρ ∈ ξ0∧̇ξ1∧̇H2(D,Cn).

Consequently,

ξ0∧̇ξ1∧̇K2 ⊆ ξ0∧̇ξ1∧̇H2(D,Cn),
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and thus

ξ0∧̇ξ1∧̇K2 = ξ0∧̇ξ1∧̇H2(D,Cn).

Let us show that the operator (ξ0∧̇ξ1∧̇·) : K2 → ξ0∧̇ξ1∧̇H2(D,Cn) is unitary. The fore-

going paragraph asserts that the operator is surjective. It remains to be shown that it is an

isometry. To this end, let f ∈ K2. Then

‖ξ0∧̇ξ1∧̇f‖2
L2(T,∧3Cn) = 〈ξ0∧̇ξ1∧̇f, ξ0∧̇ξ1∧̇f〉L2(T,∧3Cn)

=
1

2π

∫ 2π

0

〈ξ0(eiθ)∧̇ξ1(eiθ)∧̇f(eiθ), ξ0(eiθ)∧̇ξ1(eiθ)∧̇f(eiθ)〉∧3Cn dθ.

By Proposition 2.1.19, the latter integral is equal to

1

2π

∫ 2π

0

det

〈ξ0(eiθ), ξ0(eiθ)〉Cn 〈ξ0(eiθ), ξ1(eiθ)〉Cn 〈ξ0(eiθ), f(eiθ)〉Cn
〈ξ1(eiθ), ξ0(eiθ)〉Cn 〈ξ1(eiθ), ξ1(eiθ)〉Cn 〈ξ1(eiθ), f(eiθ)〉Cn
〈f(eiθ), ξ0(eiθ)〉Cn 〈f(eiθ), ξ1(eiθ)〉Cn 〈f(eiθ), f(eiθ)〉Cn

 dθ.

Note that, by Proposition 3.2.1, {ξ0(eiθ), ξ1(eiθ)} is an orthonormal set for almost all eiθ on

T. Moreover, since K2 = ᾱ0ᾱ1H
2(D,Cn−2), then f = ᾱ0ᾱ1ϕ for some ϕ ∈ H2(D,Cn−2).

Hence
〈ξ0(eiθ), f(eiθ)〉Cn = 〈ξ0(eiθ), ᾱ0(eiθ)ᾱ1(eiθ)ϕ(eiθ)〉Cn

= 〈αT0 (eiθ)ξ0(eiθ), ᾱ1(eiθ)ϕ(eiθ)〉Cn−1 = 0

almost everywhere on T, since V0 is unitary-valued. Similarly, since Ṽ1 is unitary valued, we

deduce that

〈ξ1(eiθ), f(eiθ)〉Cn = 〈αT1 (eiθ)αT0 (eiθ)ξ1(eiθ), ϕ(eiθ)〉Cn−2 = 0

almost everywhere on T. Therefore

‖ξ0∧̇ξ1∧̇f‖2
L2(T,∧3Cn) =

1

2π

∫ 2π

0

det

1 0 0

0 1 0

0 0 ‖f(eiθ)‖2
Cn

 dθ = ‖f‖2
L2(T,Cn),

that is, (ξ0∧̇ξ1∧̇·) : K2 → ξ0∧̇ξ1∧̇H2(D,Cn) is an isometric operator. Thus, by Theorem

A.2.4, the operator (ξ0∧̇ξ1∧̇·) : K2 → ξ0∧̇ξ1∧̇H2(D,Cn) is unitary.

Remark 3.2.31. Let V0 and Ṽ1 be given by equations (3.7) and (3.79) respectively and let

V1 =

(
1 0

0 Ṽ1

)
. Since V0, Ṽ1 and V1 are unitary-valued, we have

In = V0V
∗

0 = ξ0ξ
∗
0 + ᾱ0α

T
0 , (3.94)

In−1 = Ṽ1Ṽ
∗

1 = αT0 ξ1ξ
∗
1ᾱ0 + ᾱ1α

T
1 . (3.95)
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Lemma 3.2.32. Let V0 and Ṽ1 be given by equations (3.7) and (3.79) respectively. Then

In − ξ0ξ
∗
0 − ξ1ξ

∗
1 = ᾱ0ᾱ1α

T
1 α

T
0 (3.96)

almost everywhere on T.

Proof. By equation (3.95)

ᾱ1α
T
1 = In−1 − αT0 ξ1ξ

∗
1ᾱ0,

thus

ᾱ0ᾱ1α
T
1 α

T
0 = ᾱ0(In−1 − αT0 ξ1ξ

∗
1ᾱ0)αT0 .

By equation (3.94),

ᾱ0α
T
0 = In − ξ0ξ

∗
0 .

Hence

ᾱ0ᾱ1α
T
1 α

T
0 = (In − ξ0ξ

∗
0)− (In − ξ0ξ

∗
0)ξ1ξ

∗
1(In − ξ0ξ

∗
0).

Since, by Proposition 3.2.1, the set {ξ0(z), ξ1(z)} is orthonormal in Cm for almost every

z ∈ T,

ᾱ0ᾱ1α
T
1 α

T
0 = In − ξ0ξ

∗
0 − ξ1ξ

∗
1

almost everywhere on T.

Let us state certain identities that are useful for the next statements.

Remark 3.2.33. Let W0 and W̃1 be given by equations (3.7) and (3.80) respectively and let

W1 =

(
1 0

0 W̃1

)
. Since W0, W̃1 and W1 are unitary-valued almost everywhere on T, we have

Im = W ∗
0W0 = η̄0η

T
0 + β0β

∗
0 , (3.97)

Im−1 = W̃ ∗
1 W̃1 = β∗0 η̄1η

T
1 β0 + β1β

∗
1 , (3.98)

and

W ∗
0

(
1 0

0 W̃ ∗
1

)(
1 0

0 W̃1

)
W0 =

(
η̄0 β0

)(1 0

0
(
β∗0 η̄1 β1

))
1 0

0

(
ηT1 β0

β∗1

)(ηT0
β∗0

)

=
(
η̄0 β0β

∗
0 η̄1 β0β1

) ηT0

ηT1 β0β
∗
0

β∗1β
∗
0


= η̄0η

T
0 + β0β

∗
0 η̄1η

T
1 β0β

∗
0 + β0β1β

∗
1β
∗
0 .

Also, by equations (3.97) and (3.98),

η̄0η
T
0 + β0β

∗
0 η̄1η

T
1 β0β

∗
0 + β0β1β

∗
1β
∗
0 = η̄0η

T
0 + β0(Im−1 − β1β

∗
1 + β1β

∗
1)β∗0 = Im. (3.99)
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Lemma 3.2.34. Let W0 and W̃1 be given by equations (3.7) and (3.80) respectively. Then

Im − η̄0η
T
0 − η̄1η

T
1 = β0β1β

∗
1β
∗
0 (3.100)

almost everywhere on T.

Proof. By equation (3.98)

β1β
∗
1 = Im−1 − β∗0 η̄1η

T
1 β0,

thus

β0β1β
∗
1β
∗
0 = β0(Im−1 − β∗0 η̄1η

T
1 β0)β∗0 .

By equation (3.97),

β0β
∗
0 = Im − η̄0η

T
0 .

Hence

β0β1β
∗
1β
∗
0 = (Im − η̄0η

T
0 )− (Im − η̄0η

T
0 )η̄1η

T
1 (Im − η̄0η

T
0 ).

Since, by Proposition 3.2.1, the set {η̄0(z), η̄1(z)} is orthonormal in Cm for almost every

z ∈ T,

β0β1β
∗
1β
∗
0 = Im − η̄0η

T
0 − η̄1η

T
1

almost everywhere on T.

Proposition 3.2.35. Let η0, η1 be defined by equations (3.9) and (3.19) respectively, and let

β0, β1 be inner, co-outer, quasi-continuous functions of types m×(m−1) and (m−1)×(m−2)

respectively, such that the functions

W T
0 =

(
η0 β̄0

)
, W̃ T

1 =
(
βT0 η1 β̄1

)
are unitary-valued. Let

W T
1 =

(
1 0

0 W̃ T
1

)
and let

L2 = W ∗
0W

∗
1

(
02×1

H2(D,Cm−2)⊥

)
.

Then

η̄0∧̇η̄1∧̇L2 = η̄0∧̇η̄1∧̇H2(D,Cm)⊥ (3.101)

and the operator (η̄0∧̇η̄1∧̇·) : L2 → η̄0∧̇η̄1∧̇H2(D,Cm)⊥ is unitary.

Proof. Observe that L2 = β0β0H
2(D,Cm−2)⊥. By virtue of the fact that complex conjugation

is a unitary operator on L2(T,Cm), an equivalent statement to (3.101) is that

η0∧̇η1∧̇β̄0β̄1zH
2(D,Cm−2) = η0∧̇η1∧̇zH2(D,Cm).

Let us first show that η0∧̇η1∧̇zH2(D,Cm) ⊆ η1∧̇β̄0β̄1zH
2(D,Cm−2).
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Let f ∈ zH2(D,Cm). Taking complex conjugates in equation (3.99), we have

Im = η0η
∗
0 + β̄0β

T
0 η1η

∗
1β̄0β

T
0 + β̄0β̄1β

T
1 β

T
0 ,

and so,

η0∧̇η1∧̇f = η0∧̇η1∧̇(η0η
∗
0 + β̄0β

T
0 η1η

∗
1β̄0β

T
0 + β̄0β̄1β

T
1 β

T
0 )f

= η0∧̇η1∧̇η0η
∗
0f + η0∧̇η1∧̇β̄0β

T
0 η1η

∗
1β̄0β

T
0 f + η0∧̇η1∧̇β̄0β̄1β

T
1 β

T
0 f

= η0∧̇η1∧̇β̄0β
T
0 η1η

∗
1β̄0β

T
0 f + η0∧̇η1∧̇β̄0β̄1β

T
1 β

T
0 f, (3.102)

the last equality following by the pointwise linear dependence of η0 and η0η
∗
0f on D. Taking

complex conjugates in equation (3.97), we have β̄0β
T
0 = ICm − η0η

∗
0. Hence equation (3.102)

yields

η0∧̇η1∧̇f = η0∧̇η1∧̇(ICm − η0η
∗
0)η1η

∗
1β̄0β

T
0 f + η0∧̇η1∧̇β̄0β̄1β

T
1 β

T
0 f

= η0∧̇η1∧̇η1η
∗
1β̄0β

T
0 f − η0∧̇η1∧̇η0η

∗
0η1η

∗
1β̄0β

T
0 f + η0∧̇η1∧̇β̄0β̄1β

T
1 β

T
0 f

= η0∧̇η1∧̇β̄0β̄1β
T
1 β

T
0 f

on account of the pointwise linear dependence.

By Proposition 3.2.20, there exists a vector-valued function g ∈ H2(D,Cm−1) such that

βT0 f = g. By Proposition 3.2.28, there exists a vector-valued function ω ∈ zH2(D,Cm−2)

such that βT1 g = ω. Thus

η0∧̇η1∧̇β̄0β̄1ω ∈ η0∧̇η1∧̇β̄0β̄1zH
2(D,Cm−2),

and hence

η0∧̇η1∧̇zH2(D,Cm) ⊆ η0∧̇η1∧̇β̄0β̄1zH
2(D,Cm−2).

For the reverse inclusion, let

u = η0∧̇η1∧̇β̄0β̄1q ∈ η0∧̇η1∧̇β̄0β̄1zH
2(D,Cm−2)

for a vector-valued function q ∈ zH2(D,Cm−2). By Proposition 3.2.28, there exists a vector-

valued function φ ∈ H2(D,Cm−1) such that q = βT1 zφ. Then,

u = η0∧̇η1∧̇β̄0β̄1β
T
1 zφ.

Taking complex conjugates in equations (3.97) and (3.98), we get

β̄0β
T
0 = ICm − η0η

∗
0 and β̄1β

T
1 = Im−1 − βT0 η1η

∗
1β̄0.
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Hence

u = η0∧̇η1∧̇β̄0(Im−1 − βT0 η1η
∗
1β̄0)zφ = η0∧̇η1∧̇β̄0zφ− η0∧̇η1∧̇β̄0β

T
0 η1η

∗
1β̄0zφ.

By equation (3.97), β̄0β
T
0 = ICm − η0η

∗
0, thus

η0∧̇η1∧̇β̄0β
T
0 η1η

∗
1β̄0zφ = η0∧̇η1∧̇(ICm − η0η

∗
0)η1η

∗
1β̄0zφ

= η0∧̇η1∧̇η1η
∗
1β̄0zφ+ η0∧̇η1∧̇η0η

∗
0η1η

∗
1β̄0zφ = 0,

because of pointwise linear dependence, and hence

u = η0∧̇η1∧̇β̄0zφ.

By Proposition 3.2.20, there exists a vector-valued function ψ ∈ H2(D,Cm) such that φ =

βT0 zψ. Hence

η0∧̇η1∧̇β̄0zφ = η0∧̇η1∧̇β̄0β
T
0 zψ

= η0∧̇η1∧̇(ICm − η0η
∗
0)zψ

= η0∧̇η1∧̇zψ

by pointwise linear dependence. Therefore,

η0∧̇η1∧̇β̄0β̄1zH
2(D,Cm−2) ⊆ η0∧̇η1∧̇zH2(D,Cm),

and thus

η0∧̇η1∧̇zH2(D,Cm) = η0∧̇η1∧̇β̄0β̄1zH
2(D,Cm−2).

To complete the proof, let us show that the operator

(η̄0∧̇η̄1∧̇·) : L2 → η̄0∧̇η̄1∧̇H2(D,Cm)⊥

is unitary. Observe that the foregoing paragraph asserts the operator is surjective. Hence it

suffices to prove that it is an isometry. To this end, let υ ∈ L2. Then

‖η̄0∧̇η̄1∧̇υ‖2
L2(T,∧3Cm) = 〈η̄0∧̇η̄1∧̇υ, η̄0∧̇η̄1∧̇υ〉L2(T,∧3Cm),

and, by Proposition 2.1.19,

〈η̄0∧̇η̄1∧̇υ, η̄0∧̇η̄1∧̇υ〉L2(T,∧3Cm)

=
1

2π

∫ 2π

0

det

〈η̄0(eiθ), η̄0(eiθ)〉Cm 〈η̄0(eiθ), η̄1(eiθ)〉Cm 〈η̄0(eiθ), υ(eiθ)〉Cm
〈η̄1(eiθ), η̄0(eiθ)〉Cm 〈η̄1(eiθ), η̄1(eiθ)〉Cm 〈η̄1(eiθ), υ(eiθ)〉Cm
〈υ(eiθ), η̄0(eiθ)〉Cm 〈υ(eiθ), η̄1(eiθ)〉Cm 〈υ(eiθ), υ(eiθ)〉Cm

 dθ.
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Notice that, by Proposition 3.2.1, {η̄0(eiθ), η̄1(eiθ)} is an orthonormal set almost everywhere

on T. Further, since L2 = β0β1H
2(D,Cm−2)⊥, υ = β0β1ϕ for some ϕ ∈ H2(D,Cm−2)⊥. Hence

〈η̄0(eiθ), v(eiθ)〉Cm = 〈η̄0(eiθ), β0(eiθ)β1(eiθ)ϕ(eiθ)〉Cm

= 〈β∗0(eiθ)η̄0(eiθ), β1(eiθ)ϕ(eiθ)〉Cm−1 = 0,

since W T
0 is unitary-valued almost everywhere on T. Similarly, since, by Proposition 3.2.26,

W̃ T
1 is unitary-valued almost everywhere on T, we obtain

〈η̄1(eiθ), υ(eiθ)〉Cm = 〈β∗1(eiθ)β∗0(eiθ)η̄1(eiθ), ϕ(eiθ)〉Cm−2 = 0.

Therefore

‖η̄0∧̇η̄1∧̇υ‖2
L2(T,∧3Cm) =

1

2π

∫ 2π

0

det

1 0 0

0 1 0

0 0 ‖υ(eiθ)‖2
Cm

 dθ = ‖υ‖2
L2(T,Cm),

that is, the operator (η̄0∧̇η̄1∧̇·) : L2 → η̄0∧̇η̄1∧̇H2(D,Cm)⊥ is an isometry. Thus, by Theorem

A.2.4, the operator is unitary.

Proposition 3.2.36. Let η0, η1 be defined by equations (3.9) and (3.19) respectively and let

β0, β1 be inner, co-outer, quasi-continuous functions of types m×(m−1) and (m−1)×(m−2)

respectively, such that the functions

W T
0 =

(
η0 β̄0

)
, W̃ T

1 =
(
βT0 η1 β̄1

)
are unitary-valued. Let

L2 = W ∗
0

(
1 0

0 W̃ ∗
1

)(
02×1

H2(D,Cm−2)⊥

)
.

Then

L⊥2 = {f ∈ L2(T,Cm) : β∗1β
∗
0f ∈ H2(D,Cm−2)}.

Proof. Clearly L2 = β0β1H
2(D,Cm−2)⊥. The general element of β0β1H

2(D,Cm−2)⊥ is β0β1z̄ḡ

for g ∈ H2(D,Cm−2). A function f ∈ L2(T,Cm) belongs to L⊥2 if and only if

〈f, β0β1z̄ḡ〉L2(T,Cm) = 0 for all g ∈ H2(D,Cm−2)

if and only if

1

2π

∫ 2π

0

〈f(eiθ), β0(eiθ)β1(eiθ)e−iθḡ(eiθ)〉Cmdθ = 0 for all g ∈ H2(D,Cm−2)
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if and only if

1

2π

∫ 2π

0

〈β∗1(eiθ)β∗0(eiθ)f(eiθ), e−iθḡ(eiθ)〉Cm−2dθ = 0 for all g ∈ H2(D,Cm−2),

which in turn is equivalent to the assertion that β∗1β
∗
0f is orthogonal to H2(D,Cm−2)⊥ in

L2(T,Cm−2), which holds if and only if β∗1β
∗
0f belongs to H2(D,Cm−2). Thus

L⊥2 = {f ∈ L2(T,Cm) : β∗1β
∗
0f ∈ H2(D,Cm−2)}

as required.

Theorem 3.2.37. Let m,n be positive integers such that min(m,n) ≥ 2. Let G be in

H∞(D,Cm×n) + C(T,Cm×n). Let (ξ0∧̇v1, η̄0∧̇w1) be a Schmidt pair for the operator T1, as

given in equation (3.15), corresponding to t1 = ‖T1‖ 6= 0, let h1 ∈ H2(D,C) be the scalar

outer factor of ξ0∧̇v1, let

x1 = (ICn − ξ0ξ
∗
0)v1, y1 = (Im − η̄0η

T
0 )w1,

and let

ξ1 =
x1

h1

, η̄1 =
zy1

h̄1

.

Let

V0 =
(
ξ0 ᾱ0

)
, W T

0 =
(
η0 β̄0

)
be given by equations (3.7), and let

Ṽ1 =
(
αT0 ξ1 ᾱ1

)
, W̃ T

1 =
(
βT0 η1 β̄1

)
be given by equations (3.79) and (3.80) respectively. Let

X2 = ξ0∧̇ξ1∧̇H2(D,Cn), Y2 = η̄0∧̇η̄1∧̇H2(D,Cm)⊥,

let

K2 = V0

(
1 0

0 Ṽ1

)(
02×1

H2(D,Cn−2)

)
, L2 = W ∗

0

(
1 0

0 W̃ ∗
1

)(
02×1

H2(D,Cm−2)⊥

)
. (3.103)

Consider the operator T2 : X2 → Y2 given by

T2(ξ0∧̇ξ1∧̇x) = PY2(η̄0∧̇η̄1∧̇(G−Q2)x), (3.104)

where Q2 ∈ H∞(D,Cm×n) satisfies

(G−Q2)xi = tiyi, (G−Q2)∗yi = tixi for i = 0, 1. (3.105)
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Let the operator Γ2 : K2 → L2 be given by Γ2 = PL2MG−Q2|K2 . Then

(i) The maps Mᾱ0ᾱ1 , Mβ0β1 are unitaries.

(ii) The maps (ξ0∧̇ξ1∧̇·) : K2 → X2, (η̄0∧̇η̄1∧̇·) : L2 → Y2 are unitaries.

(iii) The following diagram commutes

H2(D,Cn−2)
Mᾱ0ᾱ1−−−−→ K2

ξ0∧̇ξ1∧̇·−−−−→ ξ0∧̇ξ1∧̇H2(D,Cn) = X2yHF2

yΓ2

yT2

H2(D,Cm−2)⊥
Mβ0β1−−−→ L2

η̄0∧̇η̄1∧̇·−−−−→ η̄0∧̇η̄1∧̇H2(D,Cm)⊥ = Y2,

(3.106)

where F2 ∈ H∞(D,C(m−2)×(n−2)) +C(T,C(m−2)×(n−2)) is the function defined in Proposition

3.2.26. (iv) T2 is a compact operator. (v) ‖T2‖ = ‖Γ2‖ = ‖HF2‖ = t2, where t2 = ‖T2‖.

Proof. (i) follows from Lemma 3.1.16.

(ii) follows from Propositions 3.2.30 and 3.2.35.

(iii). By Proposition 3.2.8, T2 is well-defined and is independent of the choice of

Q2 ∈ H∞(D,Cm×n) satisfying equations (3.105). We can choose Q2 which minimises

(s∞0 (G − Q), s∞1 (G − Q)), and therefore satisfies equations (3.105). By Lemma 3.1.17 and

Theorem D.2.4, the left hand side of diagram (3.106) commutes. Let us show the right hand

side also commutes. A typical element of K2 is of the form ᾱ0ᾱ1x where x ∈ H2(D,Cn−2).

Then, by equation (3.104),

T2(ξ0∧̇ξ1∧̇ᾱ0ᾱ1x) = PY2 (η̄0∧̇η̄1∧̇(G−Q2)ᾱ0ᾱ1x) .

By Proposition (3.2.26), every Q2 ∈ H∞(D,Cm×n) which minimises (s∞0 (G−Q), s∞1 (G−Q))

satisfies the following equation (see equation (3.81)),

(G−Q2)V0

(
1 0

0 Ṽ1

)0

0

x

 = W ∗
0

(
1 0

0 W̃ ∗
1

) 0

0

F2x

 , (3.107)

for some F2 ∈ H∞(D,C(m−2)×(n−2)) + C(T,C(m−2)×(n−2)). This implies that

(G−Q2)ᾱ0ᾱ1x = β0β1F2x, (3.108)

for x ∈ H2(D,Cn−2). Hence

T2(ξ0∧̇ξ1∧̇ᾱ0ᾱ1x) = PY2(η̄0∧̇η̄1∧̇β0β1F2x). (3.109)

Furthermore,

(η̄0∧̇η̄1∧̇·)Γ2(ᾱ0ᾱ1x) = η̄0∧̇η̄1∧̇PL2 [(G−Q2)ᾱ0ᾱ1x].

Hence, by equation (3.108),

(η̄0∧̇η̄1∧̇·)Γ2 (ᾱ0ᾱ1x) = η̄0∧̇η̄1∧̇PL2(β0β1F2x). (3.110)
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To show commutativity of the right hand square in the diagram (3.106), we need to prove

that, for every x ∈ H2(D,Cn−2),

T2(ξ0∧̇ξ1∧̇ᾱ0ᾱ1x) = (η̄0∧̇η̄1∧̇·)Γ2(ᾱ0ᾱ1x). (3.111)

By equations (3.109) and (3.110), it is equivalent to show that

PY2(η̄0∧̇η̄1∧̇β0β1F2x) = η̄0∧̇η̄1∧̇PL2(β0β1F2x). (3.112)

Therefore, we need to show that

η̄0∧̇η̄1∧̇PL2(β0β1F2x) ∈ Y2

and that

η̄0∧̇η̄1∧̇β0β1F2x− η̄0∧̇η̄1∧̇PL2(β0β1F2x)

is orthogonal to Y2. By Proposition 3.2.35, η̄0∧̇η̄1∧̇PL2(β0β1F2x) is indeed an element of Y2.

Furthermore,

η̄0∧̇η̄1∧̇β0β1F2x− η̄0∧̇η̄1∧̇PL2(β0β1F2x) = η̄0∧̇η̄1∧̇[β0β1F2x− PL2(β0β1F2x)]

= η̄0∧̇η̄1∧̇PL⊥2 (β0β1F2x).

Let us show that η̄0∧̇η̄1∧̇PL⊥2 (β0β1F2x) is orthogonal to Y2.

It is so if and only if〈
η̄0∧̇η̄1∧̇PL⊥2 (β0β1F2x), η̄0∧̇η̄1∧̇g

〉
L2(T,∧3Cm)

= 0 for every g ∈ H2(D,Cm)⊥. (3.113)

Let Φ = PL⊥2 (β0β1F2x) ∈ L2(T,Cm). By Proposition 3.2.36,

β∗1β
∗
0Φ ∈ H2(D,Cm−2). (3.114)

Then, by Proposition 2.1.19, assertion (3.113) is equivalent to the following assertion

1

2π

∫ 2π

0

det

〈η̄0(eiθ), η̄0(eiθ)〉Cm 〈η̄0(eiθ), η̄1(eiθ)〉Cm 〈η̄0(eiθ), g(eiθ)〉Cm
η̄1(eiθ), η̄0(eiθ)〉Cm 〈η̄1(eiθ), η̄1(eiθ)〉Cm 〈η̄1(eiθ), g(eiθ)〉Cm
〈Φ(eiθ), η̄0(eiθ)〉Cm 〈Φ(eiθ), η̄1(eiθ)〉Cm 〈Φ(eiθ), g(eiθ)〉Cm

 dθ = 0

for every g ∈ H2(D,Cm)⊥, which in turn, by Proposition 3.2.1, is equivalent to the assertion

1

2π

∫ 2π

0

det

 1 0 〈η̄0(eiθ), g(eiθ)〉Cm
0 1 〈η̄1(eiθ), g(eiθ)〉Cm

〈Φ(eiθ), η̄0(eiθ)〉Cm 〈Φ(eiθ), η̄1(eiθ)〉Cm 〈Φ(eiθ), g(eiθ)〉Cm

 dθ = 0

for every g ∈ H2(D,Cm)⊥. The latter statement is equivalent to the assertion
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1

2π

∫ 2π

0

〈Φ(eiθ), g(eiθ)〉Cm −〈Φ(eiθ), η̄1(eiθ)〉Cm〈η̄1(eiθ), g(eiθ)〉Cm

−〈Φ(eiθ), η̄0(eiθ)〉Cm〈η̄0(eiθ), g(eiθ)〉Cm dθ = 0

for every g ∈ H2(D,Cm)⊥, which in turn is equivalent to the statement that

1

2π

∫ 2π

0

g∗(eiθ)Φ(eiθ) −g∗(eiθ)η̄0η
T
0 (eiθ)Φ(eiθ)(eiθ)

−g∗(eiθ)η̄1(eiθ)ηT1 (eiθ)Φ(eiθ) dθ = 0

for every g ∈ H2(D,Cm)⊥. Equivalently

1

2π

∫ 2π

0

g∗(eiθ)

(
Im − η̄0(eiθ)ηT0 (eiθ)− η̄1(eiθ)ηT1 (eiθ)

)
Φ(eiθ) dθ = 0

for every g ∈ H2(D,Cm)⊥ if and only if(
Im − η̄0(eiθ)ηT0 (eiθ)− η̄1(eiθ)ηT1 (eiθ)

)
Φ(eiθ)

is orthogonal to H2(D,Cm)⊥, which occurs if and only if

(
Im − η̄0η

T
0 − η̄1η

T
1

)
Φ ∈ H2(D,Cm).

By Lemma 3.2.34, (
Im − η̄0η

T
0 − η̄1η

T
1

)
Φ = β0β1β

∗
1β
∗
0Φ.

Recall that, by assertions (3.114), β∗1β
∗
0Φ ∈ H2(D,Cm−2), and so

β0β1β
∗
1β
∗
0Φ ∈ H2(D,Cm).

Thus the right hand square in the diagram (3.106) commutes, and so the diagram (3.106)

commutes.

(iv). By Proposition 3.2.26,

F2 ∈ H∞(D,C(m−2)×(n−2)) + C(T,C(m−2)×(n−2)).

Thus, by Hartman’s Theorem, the Hankel operator HF2 is compact. By (iii),

(η̄0∧̇η̄1∧̇·) ◦ (Mβ0β1HF2MαT0 α
T
1
) ◦ (ξ0∧̇ξ1∧̇·)∗ = T2.

By (i) and (ii), the operators Mᾱ0ᾱ1 , Mβ0β1 , (ξ0∧̇ξ1∧̇·) and (η̄0∧̇η̄1∧̇·) are unitaries. Hence

T2 is a compact operator.

(v). Since diagram (3.106) commutes and the operators Mᾱ0ᾱ1 , Mβ0β1 , (ξ0∧̇ξ1∧̇·) and

(η̄0∧̇η̄1∧̇·) are unitaries, ‖T2‖ = ‖Γ2‖ = ‖HF2‖ = t2.
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Lemma 3.2.38. In the notation of Theorem 3.2.37, let v2 ∈ H2(D,Cn) and w2 ∈ H2(D,Cm)⊥

be such that (ξ0∧̇ξ1∧̇v2, η̄0∧̇η̄1∧̇w2) is a Schmidt pair for the operator T2 corresponding to

‖T2‖. Then

(i) There exist x2 ∈ K2 and y2 ∈ L2 such that (x2, y2) is a Schmidt pair for the operator Γ2.

(ii) For any x2 ∈ K2 and y2 ∈ L2 such that

ξ0∧̇ξ1∧̇x2 = ξ0∧̇ξ1∧̇v2, η̄0∧̇η̄1∧̇y2 = η̄0∧̇η̄1∧̇w2,

the pair (x2, y2) is a Schmidt pair for Γ2 corresponding to ‖Γ2‖.

Proof. (i). By Theorem 3.2.37, the diagram (3.106) commutes, (ξ0∧̇ξ1∧̇·) is unitary from

K2 to X2, (η̄0∧̇η̄1∧̇·) is unitary from L2 to Y2 and ‖Γ2‖ = ‖T2‖ = t2. Moreover, by the

commutativity of diagram (3.106), the operator Γ2 : K2 → L2 is compact, hence there exist

x2 ∈ K2, y2 ∈ L2 such that (x2, y2) is a Schmidt pair for Γ2 corresponding to ‖Γ2‖ = t2.

(ii). Suppose that x2 ∈ K2, y2 ∈ L2 satisfy

ξ0∧̇ξ1∧̇x2 = ξ0∧̇ξ1∧̇v2 (3.115)

and

η̄0∧̇η̄1∧̇y2 = η̄0∧̇η̄1∧̇w2. (3.116)

Let us show that (x2, y2) is a Schmidt pair for Γ2, that is,

Γ2x2 = t2y2, Γ∗2y2 = t2x2.

Since diagram (3.106) commutes,

T2 ◦ (ξ0∧̇ξ1∧̇·) = (η̄0∧̇η̄1∧̇·) ◦ Γ2, (ξ0∧̇ξ1∧̇·)∗ ◦ T ∗2 = Γ∗2 ◦ (η̄0∧̇η̄1∧̇·)∗. (3.117)

By hypothesis,

T2(ξ0∧̇ξ1∧̇v2) = t2(η̄0∧̇η̄1∧̇w2), T ∗2 (η̄0∧̇η̄1∧̇w2) = t2(ξ0∧̇ξ1∧̇v2). (3.118)

Thus, by equations (3.115), (3.116) and (3.118),

Γ2x2 = (η̄0∧̇η̄1∧̇·)∗T2(ξ0∧̇ξ1∧̇v2)

= (η̄0∧̇η̄1∧̇·)∗t2(η̄0∧̇η̄1∧̇w2)

= t2(η̄0∧̇η̄1∧̇·)∗(η̄0∧̇η̄1∧̇y2).

Hence

Γ2x2 = t2(η̄0∧̇η̄1∧̇·)∗(η̄0∧̇η̄1∧̇·)y2 = t2y2.

By equation (3.115),

x2 = (ξ0∧̇ξ1∧̇·)∗(ξ0∧̇ξ1∧̇v2),
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and, by equation (3.116),

(η̄0∧̇η̄1∧̇·)∗(η̄0∧̇η̄1∧̇w2) = y2.

Thus
Γ∗2y2 = Γ∗2(η̄0∧̇η̄1∧̇·)∗(η̄0∧̇η̄1∧̇w2)

= (ξ0∧̇ξ1∧̇·)∗T ∗2 (η̄0∧̇η̄1∧̇w2),

last equality following by the second equation of (3.117). By equations (3.115) and (3.118),

we get

T ∗2 (η̄0∧̇η̄1∧̇w2) = t2(ξ0∧̇ξ1∧̇v2) = t2(ξ0∧̇ξ1∧̇x2),

and so,

Γ∗2y2 = t2x2.

Therefore (x2, y2) is a Schmidt pair for Γ2 corresponding to ‖Γ2‖.

Lemma 3.2.39. Suppose (ξ0∧̇ξ1∧̇v2, η̄0∧̇η̄1∧̇w2) is a Schmidt pair for T2 corresponding to

t2. Let

x2 = (ICn − ξ0ξ
∗
0 − ξ1ξ

∗
1)v2, y2 = (ICm − η̄0η

T
0 − η̄1η

T
1 )w2,

and let

x̂2 = αT1 α
T
0 x2, ŷ2 = β∗1β

∗
0y2.

Then the pair (x̂2, ŷ2) is a Schmidt pair for HF2 corresponding to ‖HF2‖ = t2.

Proof. Let us first show that x̂2 ∈ H2(D,Cn−2) and x2 ∈ K2. Recall that V0 =
(
ξ0 ᾱ0

)
and

Ṽ1 =
(
αT0 ξ1 ᾱ1

)
are unitary-valued, that is, αT0 ξ0 = 0, αT1 α

T
0 ξ1 = 0,

In − ξ0ξ
∗
0 = ᾱ0α

T
0 , (3.119)

and

In−1 − αT0 ξ1ξ
∗
1ᾱ0 = ᾱ1α

T
1 . (3.120)

Then

x̂2 = αT1 α
T
0 x2

= αT1 α
T
0 (ICn − ξ0ξ

∗
0 − ξ1ξ

∗
1)v2

= αT1 α
T
0 v2 − αT1 αT0 ξ0ξ

∗
0v2 − αT1 αT0 ξ1ξ

∗
1v2

= αT1 α
T
0 v2, (3.121)

which, by Propositions 3.2.15 and 3.2.29, implies that x̂2 ∈ H2(D,Cn−2). Moreover, by

Lemma 3.2.32, we obtain

ᾱ0ᾱ1x̂2 = ᾱ0ᾱ1α
T
1 α

T
0 v2

= (In − ξ0ξ
∗
0 − ξ1ξ

∗
1)v2 = x2.
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Hence

x2 = ᾱ0ᾱ1α
T
1 α

T
0 v2 = ᾱ0ᾱ1x̂2, (3.122)

and thus x2 ∈ K2.

Next, we shall show that ŷ2 ∈ H2(D,Cn−2)⊥ and y2 ∈ L2. Notice that since

W̃ T
1 =

(
βT0 η1 β̄1

)
and W T

0 =
(
η0 β̄0

)
are unitary-valued, β∗0 η̄0 = 0, β∗1β

∗
0 η̄1 = 0,

(
Im−1 − β∗0 η̄1η

T
1 β0

)
= β1β

∗
1 (3.123)

and (
Im − η̄0η

T
0

)
= β0β

∗
0 . (3.124)

We have

ŷ2 = β∗1β
∗
0y2

= β∗1β
∗
0(ICm − η̄0η

T
0 − η̄1η

T
1 )w2

= β∗1β
∗
0w2 − β∗1β∗0 η̄0η

T
0 w2 − β∗1β∗0 η̄1η

T
1 w2

= β∗1β
∗
0w2, (3.125)

which, by Propositions 3.2.20 and 3.2.28, implies that ŷ2 ∈ H2(D,Cm−2)⊥. By Lemma 3.2.34,

we have
β0β1ŷ2 = β0β1β

∗
1β
∗
0w2

= (Im − η̄0η
T
0 − η̄1η

T
1 )w2 = y2.

Hence

y2 = β0β1β
∗
1β
∗
0w2 = β0β1ŷ2, (3.126)

and therefore y2 ∈ L2.

By Theorem 3.2.37, the maps

Mᾱ0ᾱ1 : H2(D,Cn−2)→ K2, Mβ0β1 : H2(D,Cm−2)⊥ → L2,

are unitaries and

HF2 = M∗
β0β1
◦ Γ2 ◦Mᾱ0ᾱ1 . (3.127)

We need to show that

HF2x̂2 = t2ŷ2, H∗F2
ŷ2 = t2x̂2.

By equations (3.121) and (3.122),

x2 = ᾱ0ᾱ1α
T
1 α

T
0 x2. (3.128)

Hence equation (3.127) yields

HF2x̂2 = β∗1β
∗
0Γ2ᾱ0ᾱ1x̂2 = β∗1β

∗
0Γ2x2. (3.129)
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By Proposition 3.2.1(ii),

ξ0∧̇ξ1∧̇x2 = ξ0∧̇ξ1∧̇v2, η̄0∧̇η̄1∧̇y2 = η̄0∧̇η̄1∧̇w2.

Thus, by Lemma 3.2.38, (x2, y2) is a Schmidt pair for the operator Γ2 corresponding to

t2 = ‖Γ2‖, that is,

Γ2x2 = t2y2, Γ∗2y2 = t2x2. (3.130)

Thus equation (3.129) yields

HF2x̂2 = β∗1β
∗
0Γ2x2 = β∗1β

∗
0t2y2 = t2ŷ2

as required. Let us show that H∗F2
ŷ2 = t2x̂2. By equations (3.125) and (3.126),

y2 = β0β1β
∗
1β
∗
0y2. (3.131)

Hence, by equations (3.127) and (3.131),

H∗F2
β∗1β

∗
0y2 = αT1 α

T
0 Γ∗2y2, (3.132)

and, by equations (3.130) and (3.132),

H∗F2
ŷ2 = αT1 α

T
0 Γ∗2y2 = αT1 α

T
0 t2x2 = t2x̂2.

Therefore (x̂2, ŷ2) is a Schmidt pair for HF2 corresponding to ‖HF2‖ = t2.

Proposition 3.2.40. Let (ξ0∧̇ξ1∧̇v2, η̄0∧̇η̄0∧̇w2) be a Schmidt pair for T2 corresponding to

t2 for some v2 ∈ H2(D,Cn), w2 ∈ H2(D,Cm)⊥, let h2 ∈ H2(D,C) be the scalar outer factor

of ξ0∧̇ξ1∧̇v2, let

x2 = (In − ξ0ξ
∗
0 − ξ1ξ

∗
1)v2, y2 = (Im − η̄0η

T
0 − η̄1η

T
1 )w2,

and let

x̂2 = αT1 α
T
0 x2 and ŷ2 = β∗1β

∗
0y2. (3.133)

Then

‖x̂2(z)‖Cn−2 = ‖ŷ2(z)‖Cm−2 = |h2(z)|,

‖x2(z)‖Cn = ‖y2(z)‖Cm = |h2(z)|

and

‖ξ0(z) ∧ ξ1(z) ∧ v2(z)‖∧3Cn = ‖η̄0(z) ∧ η̄1(z) ∧ w2(z)‖∧3Cm = |h2(z)|

almost everywhere on T.

Proof. By Lemma 3.2.39, (x̂2, ŷ2) is a Schmidt pair for HF2 corresponding to ‖HF2‖ = t2
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(see Theorem 3.2.37 (v)). Hence

HF2x̂2 = t2ŷ2 and H∗F2
ŷ2 = t2x̂2.

Then, by Theorem D.2.4,

‖ŷ2(z)‖Cm−2 = ‖x̂2(z)‖Cn−2 (3.134)

almost everywhere on T. Notice that, by equations (3.133),

x2 = ᾱ0ᾱ1x̂2,

and since ᾱ0(z), ᾱ1(z) are isometric for almost every z ∈ T, we obtain

‖x2(z)‖Cn = ‖x̂2(z)‖Cn−2 .

Furthermore, by equations (3.133),

y2 = β0β1ŷ2,

and since β0(z), β1(z) are isometries almost everywhere on T, we get

‖y2(z)‖Cm = ‖ŷ2(z)‖Cm−2

almost everywhere on T. By equation (3.134), we deduce that

‖x2(z)‖Cn = ‖x̂2(z)‖Cn−2 = ‖ŷ2(z)‖Cm−2 = ‖y2(z)‖Cm (3.135)

almost everywhere on T.
By Proposition 3.2.1,

ξ0 ∧ ξ1∧̇v2 = ξ0 ∧ ξ1∧̇x2, η̄0 ∧ η̄1 ∧ w2 = η̄0 ∧ η̄1 ∧ y2.

By Theorem 3.2.37, (ξ0∧̇ξ1∧̇·) is an isometry from K2 to X2, and (η̄0∧̇η̄1∧̇·) is an isometry

from L2 to Y2. Hence

‖ξ0(z) ∧ ξ1(z)∧̇v2(z)‖∧3Cn = ‖ξ0(z) ∧ ξ1(z) ∧ x2(z)‖∧3Cn = ‖x2(z)‖Cn

almost everywhere on T. Furthermore

‖η̄0(z) ∧ η̄1(z) ∧ w2(z)‖∧3Cm = ‖η̄0(z) ∧ η̄1(z) ∧ y2(z)‖∧3Cm = ‖y2(z)‖Cm

almost everywhere on T. Thus, by equation (3.135),

‖ξ0(z) ∧ ξ1(z) ∧ v2(z)‖∧3Cn = ‖η̄0(z) ∧ η̄1(z) ∧ w2(z)‖∧3Cm

almost everywhere on T.
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Recall that h2 is the scalar outer factor of ξ0∧̇ξ1∧̇v2. Hence

‖x̂2(z)‖Cn−2 = ‖ŷ2(z)‖Cm−2 = |h2(z)|,

‖x2(z)‖Cn = ‖y2(z)‖Cm = |h2(z)|

and

‖ξ0(z) ∧ ξ1(z) ∧ v2(z)‖∧3Cn = ‖η̄0(z) ∧ η̄1(z) ∧ w2(z)‖∧3Cm = |h2(z)|

almost everywhere on T.

Proposition 3.2.41. Let m,n be positive integers such that min(m,n) ≥ 2. Let

G ∈ H∞(D,Cm×n) + C(T,Cm×n). In line with the algorithm from Section 3.2.1, let

Q2 ∈ H∞(D,Cm×n) satisfy

(G−Q2)x0 = t0y0, (G−Q2)∗y0 = t0x0,

(G−Q2)x1 = t1y1, (G−Q2)∗y1 = t1x1.
(3.136)

Let the spaces X2, Y2 be given by

X2 = ξ0∧̇ξ1∧̇H2(D,Cn), Y2 = η̄0∧̇η̄1∧̇H2(D,Cm)⊥,

and consider the compact operator T2 : X2 → Y2 given by

T2(ξ0∧̇ξ1∧̇x) = PY2(η̄0∧̇η̄1∧̇(G−Q2)x)

for all x ∈ H2(D,Cn). Let (ξ0∧̇ξ1∧̇v2, η̄0∧̇η̄1∧̇w2) be a Schmidt pair for the operator T2

corresponding to t2 = ‖T2‖, let h2 ∈ H2(D,C) be the scalar outer factor of ξ0∧̇ξ1∧̇v2, let

x2 = (ICn − ξ0ξ
∗
0 − ξ1ξ

∗
1)v2, y2 = (ICm − η̄0η

T
0 − η̄1η

T
1 )w2

and let

ξ2 =
x2

h2

, η2 =
z̄ȳ2

h2

.

Then there exist unitary-valued functions Ṽ2, W̃2 of types (n−2)×(n−2) and (m−2)×(m−2)

respectively of the form

Ṽ2 =
(
αT1 α

T
0 ξ2 ᾱ2

)
, W̃ T

2 =
(
βT1 β

T
0 η2 β̄2

)
,

where α2, β2 are inner, co-outer, quasi-continuous and all minors on the first columns of

Ṽ2, W̃
T
2 are in H∞. Furthermore, the set E2 of all level 2 superoptimal error functions for G

satisfies
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E2 = W ∗
0W

∗
1

(
I2 0

0 W̃ ∗
2

)
t0u0 0 0 0

0 t1u1 0 0

0 0 t2u2 0

0 0 0 (F3 +H∞) ∩B(t2)


(
I2 0

0 Ṽ ∗2

)
V ∗1 V

∗
0 ,

for some F3 ∈ H∞(D,C(m−3)×(n−3))+C(T,C(m−3)×(n−3)), where u3 = z̄h̄3

h3
is a quasi-continuous

unimodular function and B(t2) is the closed ball of radius t2 in L∞(T,C(m−3)×(n−3)).

Proof. By Theorem 3.2.37, the following diagram commutes

H2(D,Cn−2)
Mᾱ0ᾱ1−−−−→ K2

ξ0∧̇ξ1∧̇·−−−−→ ξ0∧̇ξ1∧̇H2(D,Cn) = X2yHF2

yΓ2

yT2

H2(D,Cm−2)⊥
Mβ0β1−−−→ L2

η̄0∧̇η̄1∧̇·−−−−→ η̄0∧̇η̄1∧̇H2(D,Cm)⊥ = Y2.

(3.137)

Recall that the operators Mᾱ0ᾱ1 , Mβ0β1 , (ξ0∧̇ξ1∧̇·) and (η̄0∧̇η̄1∧̇·) are unitaries.

By Proposition 3.2.8, T2 is well-defined and is independent of the choice of

Q2 ∈ H∞(D,Cm×n) satisfying conditions (3.136). Hence we may choose Q2 to minimise

(s∞0 (G−Q), s∞1 (G−Q)), and then, by Proposition 3.2.27, the conditions (3.136) hold.

By Lemma 3.2.38, (x2, y2) defined above is a Schmidt pair for Γ2 corresponding to t2. By

Lemma 3.2.39, (x̂2, ŷ2) is a Schmidt pair for HF2 corresponding to t2, where

x̂2 = αT1 α
T
0 x2, ŷ2 = β∗1β

∗
0y2.

We would like to apply Lemma 3.1.12 to HF2 and the Schmidt pair (x̂2, ŷ2) to find unitary-

valued functions Ṽ2, W̃2 such that, for every Q̃2 ∈ H∞(D,C(m−2)×(n−2)) which is at minimal

distance from F2, a factorisation of the form

F2 − Q̃2 = W̃ ∗
2

(
t2u2 0

0 F3

)
Ṽ ∗2

is obtained, for some F3 ∈ H∞(D,C(m−2)×(n−2)) + C(T,C(m−2)×(n−2)). For this purpose we

find the inner-outer factorisations of x̂2 and z̄ ¯̂y2. By Lemma 3.2.40

‖x̂2(z)‖Cn−2 = |h2(z)| and ‖ŷ2(z)‖Cm−2 = |h2(z)| (3.138)

almost everywhere on T. Equations (3.138) imply that h2 ∈ H2(D,C) is the scalar outer

factor of both x̂2 and z̄ ¯̂y2. By Lemma 3.1.12, x̂2, z̄ ¯̂y2 admit the inner outer factorisations

x̂2 = ξ̂2h2, z̄ȳ2 = η̂2h2,

for some inner ξ̂2 ∈ H∞(D,Cn−2), η̂2 ∈ H∞(D,Cm−2). Then

x̂2 = ξ̂2h2 = αT1 α
T
0 x2, z̄ ¯̂y2 = η̂2h2 = z̄βT1 β

T
0 ȳ2,
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from which we obtain

ξ̂2 = αT1 α
T
0 ξ2, η̂2 = βT1 β

T
0 η2.

We would like to show that αT1 α
T
0 ξ2, β

T
1 β

T
0 η2 are inner in order to apply Lemma 3.1.12 and

obtain Ṽ2 and W̃2. Recall that, by Lemma 3.2.39,

x2 = (ICn − ξ0ξ
∗
0 − ξ1ξ

∗
1)v2 = ᾱ0ᾱ1α

T
1 α

T
0 v2, y2 = (ICm − η̄0η

T
0 − η̄1η

T
1 )w2 = β0β1β

∗
1β
∗
0w2.

Then,

αT1 α
T
0 x2 = αT1 α

T
0 v2, βT1 β

T
0 ȳ2 = βT1 β

T
0 w̄2,

and since

ξ2 =
x2

h2

, η2 =
z̄ȳ2

h2

,

we deduce that the functions

αT1 α
T
0 ξ2 =

αT1 α
T
0 v2

h2

, βT1 β
T
0 η2 =

βT1 β
T
0 z̄w̄2

h2

are analytic. Furthermore, ‖ξ2(z)‖Cn = 1 and ‖η2(z)‖Cm = 1 almost everywhere on T, and,

by equations (3.138),

‖αT1 (z)αT0 (z)x2(z)‖Cn−2 = ‖αT1 (z)αT0 (z)v2(z)‖Cn−2 = |h2(z)|

and

‖βT1 (z)βT0 (z)ȳ2(z)‖Cm−2 = ‖βT1 (z)βT0 (z)w̄2(z)‖Cm−2 = |h2(z)|

almost everywhere on T. Hence

‖αT1 (z)αT0 (z)ξ2(z)‖Cn−2 = 1, ‖βT1 (z)βT0 (z)η2(z)‖Cm−2 = 1

almost everywhere on T. Thus αT1 α
T
0 ξ2, β

T
1 β

T
0 η2 are inner functions.

By Lemma 3.1.12, there exist inner, co-outer, quasi-continuous functions α2, β2 of types

(n− 2)× (n− 3), (m− 2)× (m− 3) respectively such that the functions

Ṽ2 =
(
αT1 α

T
0 ξ2 ᾱ2

)
, W̃ T

2 =
(
βT1 β

T
0 η2 β̄2

)
are unitary-valued with all minors on the first columns in H∞.

Furthermore, by Lemma 3.1.12, every Q̂2 ∈ H∞(D,C(m−2)×(n−2)) which is at minimal dis-

tance from F2 satisfies

F2 − Q̂2 = W̃ ∗
2

(
t2u2 0

0 F3

)
Ṽ ∗2 ,

for some F3 ∈ H∞(D,C(m−3)×(n−3)) + C(T,C(m−3)×(n−3)), and for the quasi-continuous uni-

modular function u2 given by u2 = z̄h̄2

h2
. By Lemma 3.1.15, the set

Ẽ2 = {F2 − Q̂ : Q̂ ∈ H∞(D,C(m−2)×(n−2)), ‖F2 − Q̂‖L∞ = t2}
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satisfies

Ẽ2 = W̃ ∗
2

(
t2u2 0

0 (F3 +H∞) ∩B(t2)

)
V ∗2 ,

where B(t2) is the closed ball of radius t2 in L∞(T,C(m−3)×(n−3)). Thus, by Proposition

3.2.26, E2 admits the factorisation claimed.

Proposition 3.2.42. Every Q3 ∈ H∞(D,Cm×n) which minimises

(s∞0 (G−Q), s∞1 (G−Q), s∞2 (G−Q))

satisfies

(G−Q3)xi = tiyi, (G−Q3)∗yi = tixi for i = 0, 1, 2.

Proof. By Proposition 3.2.27, every Q3 ∈ H∞(D,Cm×n) that minimises

(s∞0 (G−Q), s∞1 (G−Q))

satisfies

(G−Q3)xi = tiyi, (G−Q3)∗yi = tixi for i = 0, 1.

Hence it suffices to show that Q3 satisfies

(G−Q3)x2 = t2y2, (G−Q3)∗y2 = t2x2.

By Theorem 3.2.37, the following diagram commutes

H2(D,Cn−2)
Mᾱ0ᾱ1−−−−→ K2

ξ0∧̇ξ1∧̇·−−−−→ ξ0∧̇ξ1∧̇H2(D,Cn) = X2yHF2

yΓ2

yT2

H2(D,Cm−2)⊥
Mβ0β1−−−→ L2

η̄0∧̇η̄1∧̇·−−−−→ η̄0∧̇η̄1∧̇H2(D,Cm)⊥ = Y2,

where the operator Γ2 : K2 → L2 is given by Γ2 = PL2MG−Q2 |K2 and

F2 ∈ H∞(D,C(m−2)×(n−2)) + C(T,C(m−2)×(n−2)) is constructed as follows.

By Lemma 3.1.12 and Proposition 3.2.26, there exist unitary-valued functions

Ṽ1 =
(
αT0 ξ1 ᾱ1

)
, W̃ T

1 =
(
βT0 η1 β̄1

)
,

where α1, β1 are inner, co-outer, quasi-continuous functions of types (n − 1) × (n − 2) and

(m − 1) × (m − 2) respectively, and all minors on the first columns of Ṽ1, W̃
T
1 are in H∞.

Furthermore, the set of all level 1 superoptimal functions E1 = {G−Q : Q ∈ Ω1} satisfies

E1 = W ∗
0

(
1 0

0 W̃ ∗
1

)t0u0 0 0

0 t1u1 0

0 0 (F2 +H∞(D,C(m−2)×(n−2))) ∩B(t1)

(1 0

0 Ṽ ∗1

)
V ∗0 ,

(3.139)
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for some F2 ∈ H∞(D,C(m−2)×(n−2)) + C(T,C(m−2)×(n−2)), for the quasi-continuous unimod-

ular function u1 = z̄h̄1

h1
, where B(t1) is the closed ball of radius t1 in L∞(T,C(m−2)×(n−2)).

Consider some Q3 ∈ Ω1, so that, according to equation (3.139),

(
1 0

0 W̃1

)
W0(G−Q3)V0

(
1 0

0 Ṽ1

)
=

t0u0 0 0

0 t1u1 0

0 0 F2 − Q̃2

 ,

for some Q̃2 ∈ H∞(D,C(m−2)×(n−2)), that is,1 0

0

(
ηT1 β0

β∗1

)(ηT0
β∗0

)
(G−Q3)

(
ξ0 ᾱ0

)(1 0 0

0 αT0 ξ1 ᾱ1

)
=

t0u0 0 0

0 t1u1 0

0 0 F2 − Q̃2

 .

(3.140)

Observe (
ηT0

β∗0

)
(G−Q3)

(
ξ0 ᾱ0

)
=

(
t0u0 0

0 β∗0(G−Q3)ᾱ0

)
,

hence 1 0

0

(
ηT1 β0

β∗1

)(t0u0 0

0 β∗0(G−Q3)ᾱ0

)(
1 0 0

0 αT0 ξ1 ᾱ1

)

is equal to t0u0 0 0

0 ηT1 β0β
∗
0(G−Q3)ᾱ0α

T
0 ξ1 ηT1 β0β

∗
0(G−Q3)ᾱ0ᾱ1

0 β∗1β
∗
0(G−Q3)ᾱ0α

T
0 ξ1 β∗1β

∗
0(G−Q3)ᾱ0ᾱ1

 ,

and so equation (3.140) yields

t0u0 0 0

0 ηT1 β0β
∗
0(G−Q3)ᾱ0α

T
0 ξ1 ηT1 β0β

∗
0(G−Q3)ᾱ0ᾱ1

0 β∗1β
∗
0(G−Q3)ᾱ0α

T
0 ξ1 β∗1β

∗
0(G−Q3)ᾱ0ᾱ1

 =

t0u0 0 0

0 t1u1 0

0 0 F2 − Q̃2

 ,

which is equivalent to the following equations

ηT1 β0β
∗
0(G−Q3)ᾱ0α

T
0 ξ1 = t1u1,

ηT1 β0β
∗
0(G−Q3)ᾱ0ᾱ1 = 0,

β∗1β
∗
0(G−Q3)ᾱ0α

T
0 ξ1 = 0,
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and

β∗1β
∗
0(G−Q3)ᾱ0ᾱ1 = F2 − Q̃2. (3.141)

By Theorem D.2.4 applied to HF2 , if (x̂2, ŷ2) is a Schmidt pair for HF2 corresponding to

t2 = ‖HF2‖, then, for any Q̃2 which is at minimal distance from F2, we have

(F2 − Q̃2)x̂2 = t2ŷ2, (F2 − Q̃2)∗ŷ2 = t2x̂2. (3.142)

By equations (3.141) and (3.142),

β∗1β
∗
0(G−Q3)ᾱ0ᾱ1x̂2 = t2ŷ2 (3.143)

and

αT1 α
T
0 (G−Q3)∗β0β1ŷ2 = t2x̂2. (3.144)

Recall that, by equations (3.122) and (3.126),

ᾱ0ᾱ1x̂2 = x2 and ŷ2 = β∗1β
∗
0y2. (3.145)

Hence, by equation (3.143), we obtain

β∗1β
∗
0(G−Q3)x2 = t2β

∗
1β
∗
0y2,

or equivalently,

β∗1β
∗
0

(
(G−Q3)x2 − t2y2

)
= 0.

Since, by Theorem 3.2.37, Mβ0β1 is unitary, the latter equation yields

(G−Q3)x2 = t2y2.

Moreover, in view of equations (3.141), (3.142) and (3.145), equation (3.144) implies

αT1 α
T
0 (G−Q3)∗y2 = t2α

T
1 α

T
0 x2,

which in turn is equivalent to the equation

αT1 α
T
0

(
(G−Q3)∗y2 − t2x2

)
= 0.

By Theorem 3.2.37, Mᾱ0ᾱ1 is unitary, hence the latter equation yields

(G−Q3)∗y2 = t2x2

and therefore the assertion has been proved.
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3.2.7 Compactness of the operator Tj+1

At this point, the reader is able to distinguish the method of proving the compactness of the

operators T1 and T2. Suppose we have applied steps 0, . . . , j of the superoptimal analytic

approximation algorithm from Section 3.2.1 to G, we have constructed

t0 ≥ t1 ≥ · · · ≥ tj > 0

x0, x1, · · · , xj ∈ L2(T,Cn)

y0, y1, · · · , yj ∈ L2(T,Cm)

h0, h1, · · · , hj ∈ H2(D,C) outer

ξ0, ξ1, · · · , ξj ∈ L2(T,Cn) pointwise orthonormal on T
η0, η1, · · · , ηj ∈ L2(T,Cm) pointwise orthonormal on T
X0 = H2(D,Cn), X1, · · · , Xj

Y0 = H2(D,Cm)⊥, Y1, · · · , Yj
T0, T1, · · · , Tj compact operators,

and all the claimed properties hold. We shall apply a similar method to show that the

operator Tj+1 as given in equation (3.25) is compact.

Proposition 3.2.43. Let m,n be positive integers such that min(m,n) ≥ 2. Let

G ∈ H∞(D,Cm×n) + C(T,Cm×n). In line with the algorithm from Section 3.2.1, let

Qj ∈ H∞(D,Cm×n) satisfy

(G−Qj)xi = tiyi, (G−Qj)
∗yi = tixi for i = 0, 1, . . . , j − 1. (3.146)

Let the spaces Xj, Yj be given by

Xj = ξ0∧̇ξ1∧̇ . . . ∧̇ξj−1∧̇H2(D,Cn), Yj = η̄0∧̇η̄1∧̇ . . . ∧̇η̄j−1∧̇H2(D,Cm)⊥,

and consider the compact operator Tj : Xj → Yj given by

Tj(ξ0∧̇ξ1∧̇ . . . ∧̇ξj−1∧̇x) = PYj(η̄0∧̇η̄1∧̇ . . . ∧̇η̄j−1∧̇(G−Qj)x)

for all x ∈ H2(D,Cn). Let (ξ0∧̇ξ1∧̇ . . . ∧̇ξj−1∧̇vj, η̄0∧̇η̄1∧̇ . . . ∧̇η̄j−1∧̇wj) be a Schmidt pair for

the operator Tj corresponding to tj = ‖Tj‖, let hj ∈ H2(D,C) be the scalar outer factor of

ξ0∧̇ξ1∧̇ . . . ∧̇ξj−1∧̇vj, let

xj = (ICn − ξ0ξ
∗
0 · · · − ξj−1ξ

∗
j−1)vj, yj = (ICm − η̄0η

T
0 − · · · − η̄j−1η

T
j−1)wj

and let

ξj =
xj
hj
, ηj =

z̄ȳj
hj
. (3.147)

Let, for i = 0, 1, . . . , j − 1,

Ṽi =
(
αTi−1 · · ·αT0 ξi ᾱi

)
, W̃ T

i =
(
βTi−1 · · · βT0 ηi β̄i

)
(3.148)
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be unitary-valued functions, as described in Lemma 3.1.12 (see also Proposition 3.2.41 for

Ṽ2 and W̃ T
2 ), ui = z̄h̄i

hi
are quasi-continuous unimodular functions, and

Vi =

(
Ii 0

0 Ṽi

)
, Wi =

(
Ii 0

0 W̃i

)
.

There exist unitary-valued functions Ṽj, W̃j of the form

Ṽj =
(
αTj−1 · · ·αT0 ξj ᾱj

)
, W̃ T

j =
(
βTj−1 · · · βT0 ηj β̄j

)
, (3.149)

where α0, . . . , αj−1 and β0, . . . , βj−1 are of types n × (n − 1), . . . , (n − j − 1) × (n − j − 2)

and m × (m − 1), . . . , (m − j − 1) × (m − j − 2) respectively, and are inner, co-outer and

quasi-continuous.

Furthermore, the set of all level j superoptimal error functions Ej satisfies

Ej = W ∗
0W

∗
1 · · ·W ∗

j



t0u0 0 · · · 0 01×(n−j−1)

0 t1u1 . . . 0 01×(n−j−1)

...
...

. . .
...

...

0 0 · · · tjuj 0

0(m−j−1)×1 0(m−j−1)×1 . . . . . . (Fj+1 +H∞) ∩B(tj)


V ∗j · · ·V ∗0 ,

(3.150)

for some Fj+1 ∈ H∞(D,C(m−j−1)×(n−j−1))+C(T,C(m−j−1)×(n−j−1)), for the quasi-continuous

unimodular functions ui = z̄h̄i
hi

, for all i = 0, . . . , j, for the closed ball B(tj) of radius tj in

L∞(T,C(m−j−1)×(n−j−1)), and

Vj =

(
Ij 0

0 Ṽj

)
, Wj =

(
Ij 0

0 W̃j

)

are unitary valued functions.

Proof. Suppose we have applied steps 0, . . . , j of the algorithm from Section 3.2.1 and the

following diagram commutes

H2(D,Cn−j)
Mᾱ0···ᾱj−1−−−−−−→ Kj

ξ(j−1)∧̇·−−−−→ ξ(j−1)∧̇H2(D,Cn) = XjyHFj yΓj

yTj
H2(D,Cm−j)⊥

Mβ0···βj−1−−−−−−→ Lj
η̄(j−1)∧̇·−−−−→ η̄(j−1)∧̇H2(D,Cm)⊥ = Yj,

(3.151)

where the maps

Mᾱ0···ᾱj−1
: H2(D,Cn−j)→ Kj : x 7→ ᾱ0 · · · ᾱj−1x,

Mβ0···βj−1
: H2(D,Cm−j)⊥ → Lj : y 7→ β0 · · · βj−1y,

(ξ(j−1)∧̇·) : Kj → Xj and (η̄(j−1)∧̇·) : Lj → Yj
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are unitaries.

Let (ξ(j−1)∧̇vj, η̄(j−1)∧̇wj) be a Schmidt pair for the compact operator Tj. Then

xj ∈ Kj, yj ∈ Lj are such that (xj, yj) is a Schmidt pair for Γj corresponding to tj = ‖Γj‖,
and (x̂j, ŷj) is a Schmidt pair for HFj corresponding to tj = ‖HFj‖, where

x̂j = αTj−1 · · ·αT0 xj, ŷj = β∗j−1 · · · β∗0yj. (3.152)

We would like to apply Lemma 3.1.12 to HFj and the Schmidt pair (x̂j, ŷj) to find unitary-

valued functions Ṽj, W̃j such that, for every Q̃j ∈ H∞(D,C(m−j)×(n−j)) which is at minimal

distance from Fj, a factorisation of the form

Fj − Q̃j = W̃ ∗
j

(
tjuj 0

0 Fj+1

)
Ṽ ∗j

is obtained, for some Fj+1 ∈ H∞(D,C(m−2)×(n−2)) +C(T,C(m−2)×(n−2)). For this purpose we

find the inner-outer factorisations of x̂j and z̄ ¯̂yj.

By the inductive hypothesis (see Lemma 3.2.40 for j = 2), we have

|hj(z)| = ‖ξ0(z) ∧ . . . ∧ ξj−1(z) ∧ vj(z)‖∧j+1Cn = ‖η̄0(z) ∧ . . . ∧ η̄j−1(z) ∧ wj(z)‖∧j+1Cm ,

‖x̂j(z)‖Cn−j = ‖ŷj(z)‖Cm−j = |hj(z)|, and

‖xj(z)‖Cn = ‖yj(z)‖Cm = |hj(z)|,
(3.153)

almost everywhere on T. Equations (3.153) imply that hj ∈ H2(D,C) is the scalar outer

factor of both x̂j and z̄ ¯̂yj.

By Lemma 3.1.12, x̂j, z̄ ¯̂yj admit the inner-outer factorisations

x̂j = ξ̂jhj, z̄ ¯̂yj = η̂jhj, (3.154)

where ξ̂j ∈ H∞(D,Cn−j) and η̂j ∈ H∞(D,Cm−j) are vector-valued inner functions.

By equations (3.152) and (3.154), we deduce that

ξ̂j = αTj−1 · · ·αT0 ξj, η̂j = βTj−1 · · · βT0 ηj.

We would like to show that αTj−1 · · ·αT0 ξj, βTj−1 · · · βT0 ηj are inner in order to apply Lemma

3.1.12 and obtain Ṽj and W̃j as required. We have

x̂j = αTj−1 · · ·αT0 xj

= αTj−1 · · ·αT0 (ICn − ξ0ξ
∗
0 − · · · − ξj−1ξ

∗
j−1)vj

= αTj−1 · · ·αT0 vj − αTj−1 · · ·αT0 ξ0ξ
∗
0vj − · · · − αTj−1 · · ·αT0 ξj−1ξ

∗
j−1vj.

Recall that, by the inductive hypothesis, for i = 0, . . . , j − 1, each
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Ṽi =
(
αTi−1 · · ·αT0 ξi ᾱi

)
is unitary-valued, and so αTi α

T
i−1 · · ·αT0 ξi = 0. Hence, if 0 ≤ i ≤ j − 1, we have

αTj−1 · · ·αTi+1α
T
i · · ·αT0 ξi = 0.

Thus

x̂j = αTj−1 · · ·αT0 xj = αTj−1 · · ·αT0 vj,

that is, x̂j ∈ H2(D,Cn−j) and

αTj−1 · · ·αT0 ξj =
1

hj
αTj−1 · · ·αT0 xj =

1

hj
αTj−1 · · ·αT0 vj

is analytic. Moreover, by equations (3.153),

‖αTj−1(z) · · ·αT0 (z)xj(z)‖Cn−j = ‖αTj−1(z) · · ·αT0 (z)vj(z)‖Cn−j = |hj(z)|

almost everywhere on T, and hence

‖αTj−1(z) · · ·αT0 (z)ξj(z)‖Cn−j = 1

almost everywhere on T. Therefore αTj−1 · · ·αT0 ξj is inner.

Furthermore

ŷj = β∗j−1 · · · β∗0yj

= β∗j−1 · · · β∗0(ICm − η̄0η
T
0 − · · · − η̄j−1η

T
j−1)wj

= β∗j−1 · · · β∗0wj − β∗j−1 · · · β∗0 η̄0η
T
0 wj − · · · − β∗j−1 · · · β∗0 η̄j−1η

T
j−1wj.

Notice that, by the inductive hypothesis, for i = 0, . . . , j − 1, each

W̃ T
i =

(
βTi−1 · · · βT0 ηi β̄i

)
is unitary-valued, and so β∗i · · · β∗0 η̄i = 0. Hence, if 0 ≤ i ≤ j − 1, we have

β∗j−1 · · · β∗i+1β
∗
i · · · β∗0 η̄i = 0.

Thus

ŷj = β∗j−1 · · · β∗0yj = β∗j−1 · · · β∗0wj,

that is, ŷj ∈ H2(D,Cm−j)⊥ and

βTj−1 · · · βT0 ηj =
1

hj
βTj−1 · · · βT0 z̄ȳj =

1

hj
βTj−1 · · · βT0 z̄w̄j
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is analytic. Further, by equations (3.153),

‖βTj−1(z) · · · βT0 (z)z̄ȳj(z)‖Cm−j = ‖βTj−1(z) · · · βT0 (z)z̄w̄j(z)‖Cm−j = |hj(z)|

almost everywhere on T, and therefore

‖βTj−1(z) · · · βT0 (z)ηj(z)‖Cm = 1

almost everywhere on T, that is, βTj−1 · · · βT0 ηj is inner.

We apply Lemma 3.1.12 to the Hankel operator HFj and the Schmidt pair (x̂j, ŷj) to de-

duce that there exist inner, co-outer, quasi-continuous functions αj, βj of types

(n− j)× (n− j − 1), (m− j)× (m− j − 1) respectively such that

Ṽj =
(
αTj−1 · · ·αT0 ξj ᾱj

)
, W̃ T

j =
(
βTj−1 · · · βT0 ηj β̄j

)
are unitary-valued and all minors on the first columns of Ṽj, W̃j are in H∞. Moreover, every

function Q̂j ∈ H∞(D,C(m−j)×(n−j)), which is at minimal distance from Fj, satisfies

Fj − Q̂j = W̃ ∗
j

(
tjuj 0

0 Fj+1

)
Ṽ ∗j ,

for some Fj+1 ∈ H∞(D,C(m−j−1)×(n−j−1))+C(T,C(m−j−1)×(n−j−1)) and for the quasi-continuous

unimodular function uj =
z̄h̄j
hj
.

By Lemma 3.1.15, the set

Ẽj = {Fj − Q̂ : Q̂ ∈ H∞(D,C(m−j)×(n−j)), ‖Fj − Q̂‖L∞ = tj}

satisfies

Ẽj = W̃ ∗
j

(
tjuj 0

0 (Fj+1 +H∞) ∩B(tj)

)
Ṽ ∗j ,

where B(tj) is the closed ball of radius tj in L∞(T,C(m−j−1)×(n−j−1)).

By the inductive hypothesis, the set of all level j superoptimal error functions Ej satisfies

Ej−1 = W ∗
0W

∗
1 · · ·W ∗

j−1



t0u0 0 · · · 0 01×(n−j)

0 t1u1 . . . 0 01×(n−j)
...

...
. . .

...
...

0 0 · · · tj−1uj−1 0

0(m−j)×1 0(m−j)×1 . . . . . . (Fj +H∞) ∩B(tj−1)


V ∗j−1 · · ·V ∗0 ,

(3.155)

for some Fj ∈ H∞(D,C(m−j)×(n−j)) + C(T,C(m−j)×(n−j)), ui = z̄h̄i
hi

are quasi-continuous

unimodular functions for all i = 0, . . . , j − 1, and for the closed ball B(tj−1) of radius tj−1

in L∞(T,C(m−j)×(n−j)).

Thus, by equation (3.155), Ej admits the factorisation (3.150) as claimed.
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Remark 3.2.44. Let, for i = 0, 1, . . . , j,

Ṽi =
(
αTi−1 · · ·αT0 ξi ᾱi

)
, W̃ T

i =
(
βTi−1 · · · βT0 ηi β̄i

)
(3.156)

be unitary-valued functions, as described in Lemma 3.1.12. Let

Vj =

(
Ij 0

0 Ṽj

)
, Wj =

(
Ij 0

0 W̃j

)
.

Let Aj = α0α1 . . . αj, A−1 = In, Bj = β0β1 . . . βj and B−1 = Im.

Note

W1W0 =

1 0

0 ηT1 β0

0 β∗1

(ηT0
β∗0

)
=

 ηT0

ηT1 B0B
∗
0

B∗1


and

W2W1W0 =

I2 0

0 ηT2 B1

0 β∗2


 ηT0

ηT1 B0B
∗
0

B∗1

 =


ηT0

ηT1 B0B
∗
0

ηT2 B1B
∗
1

B∗2

 .

Similarly one obtains

WjWj−1 · · ·W0 =



ηT0

ηT1 B0B
∗
0

...

ηTj Bj−1B
∗
j−1

B∗j


. (3.157)

Therefore

W ∗
0W

∗
1 · · ·W ∗

j =
(
η̄0 B0B

∗
0 η̄1 . . . Bj−1B

∗
j−1η̄j Bj

)
.

Thus

Im = W ∗
0W

∗
1 · · ·W ∗

jWj · · ·W1W0 =

j∑
i=0

Bi−1B
∗
i−1η̄iη

T
i Bi−1B

∗
i−1 +BjB

∗
j . (3.158)

Furthermore

V0V1 =
(
ξ0 ᾱ0

)(1 0 0

0 αT0 ξ1 ᾱ1

)
=
(
ξ0 AT0 ξ1 Ā1

)
and

V0V1V2 =
(
ξ0 Ā0A

T
0 ξ1 Ā1

)(I2 0 0

0 AT1 ξ2 ᾱ2

)
=
(
ξ0 Ā0A

T
0 ξ1 Ā1A

T
1 ξ2 Ā2

)
.
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One can show that

V0 · · ·Vj =
(
ξ0 Ā0A

T
0 ξ1 Ā1A

T
1 ξ2 . . . Āj−1A

T
j−1ξj Āj

)
. (3.159)

Therefore,

In = V0 · · ·VjV ∗j · · ·V ∗0 = ξ0ξ
∗
0+Ā0A

T
0 ξ1ξ

∗
1Ā0A

T
0 +. . . Āj−1A

T
j−1ξjξ

∗
j Āj−1A

T
j−1+ĀjA

T
j . (3.160)

Lemma 3.2.45. Let

Ṽi =
(
αTi−1 · · ·αT0 ξi ᾱi

)
(3.161)

be unitary-valued functions, for i = 0, 1, . . . , j, as described in Lemma 3.1.12 Let, for i =

0, 1, . . . , j, Ai = α0α1 . . . αi and A−1 = In. Then, for i = 0, 1, . . . , j,

ĀiA
T
i = In −

i∑
k=0

ξkξ
∗
k (3.162)

almost everywhere on T.

Proof. By equation (3.160), for k = 0, . . . , j,

ĀkA
T
k = In −

k∑
i=0

Āi−1A
T
i−1ξiξ

∗
i Āi−1A

T
i−1. (3.163)

Thus to prove condition (3.162) it suffices to show that, for k = 0, . . . , j,

Āk−1A
T
k−1ξkξ

∗
kĀk−1A

T
k−1 = ξkξ

∗
k.

For k = 0,

Ā−1A
T
−1ξ0ξ

∗
0Ā−1A

T
−1 = ξ0ξ

∗
0 ,

and so, equation (3.163) yields

Ā0A
T
0 = In − ξ0ξ

∗
0 .

For k = 1,

Ā0A
T
0 ξ1ξ

∗
1Ā0A

T
0 = (In − ξ0ξ

∗
0)ξ1ξ

∗
1(In − ξ0ξ

∗
0)

By Proposition 3.2.1, ξ1 and ξ0 are pointwise orthogonal almost everywhere on T, hence

Ā0A
T
0 ξ1ξ

∗
1Ā0A

T
0 = ξ1ξ

∗
1 ,

and in view of equation (3.163), we get

Ā1A
T
1 = In − ξ0ξ

∗
0 − ξ1ξ

∗
1 .
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Suppose

Ā`−1A
T
`−1ξ`ξ

∗
` Ā`−1A

T
`−1 = ξ`ξ

∗
` (3.164)

holds for every ` ≤ k, where 0 ≤ k ≤ j. By equations (3.163) and (3.164), this implies

ĀkA
T
k = In −

k∑
i=0

ξiξ
∗
i .

Let us show that

ĀkA
T
k ξk+1ξ

∗
k+1ĀkA

T
k = ξk+1ξ

∗
k+1.

Note that

ĀkA
T
k ξk+1ξ

∗
k+1ĀkA

T
k = (In −

k∑
i=0

ξiξ
∗
i )ξk+1ξ

∗
k+1(In −

k∑
i=0

ξiξ
∗
i ).

By Proposition 3.2.1, the set {ξi(z)}k+1
i=0 is pointwise orthogonal almost everywhere on T,

and therefore

ĀkA
T
k ξk+1ξ

∗
k+1ĀkA

T
k = ξk+1ξ

∗
k+1.

Thus, by equation (3.163),

Āk+1A
T
k+1 = In −

k+1∑
i=0

ξiξ
∗
i ,

and the assertion has been proved.

Lemma 3.2.46. Let

W̃ T
i =

(
βTi−1 · · · βT0 ηi β̄i

)
(3.165)

be unitary-valued functions, for i = 0, 1, . . . , j, as described in Lemma 3.1.12. Let, for

i = 0, 1, . . . , j, Bi = β0β1 . . . βi and B−1 = Im. Then, for k = 0, 1, . . . , j,

BkB
∗
k = Im −

k∑
i=0

η̄iη
T
i (3.166)

almost everywhere on T.

Proof. By equation (3.158), for k = 0, . . . , j,

BkB
∗
k = Im −

k∑
i=0

Bi−1B
∗
i−1η̄iη

T
i Bi−1B

∗
i−1. (3.167)

Thus to prove condition (3.166) it suffices to show that, for k = 0, . . . , j,

Bk−1B
∗
k−1η̄kη

T
kBk−1B

∗
k−1 = η̄kη

T
k .

For k = 0,

B−1B
∗
−1η̄0η

T
0 B−1B

∗
−1 = Imη̄0η

T
0 Im = η̄0η

T
0 ,
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and so, equation (3.167) yields

B0B
∗
0 = Im − η̄0η

T
0 .

For k = 1,

B0B
∗
0 η̄1η

T
1 B0B

∗
0 = (Im − η̄0η

T
0 )η̄1η

T
1 (Im − η̄0η

T
0 ).

By Proposition 3.2.1, η1 and η0 are pointwise orthogonal almost everywhere on T, hence

B0B
∗
0 η̄1η

T
1 B0B

∗
0 = η̄1η

T
1 ,

and in view of equation (3.167), we get

B1B
∗
1 = Im − η̄0η

T
0 − η̄1η

T
1 .

Suppose

B`−1B
∗
`−1η̄`η

T
` B`−1B

∗
`−1 = η̄`η

T
` (3.168)

holds for every ` ≤ k, where 0 ≤ k ≤ j. By equations (3.167) and (3.168), this implies

BkB
∗
k = Im −

k∑
i=0

η̄iη
T
i .

Let us show that

BkB
∗
k η̄k+1η

T
k+1BkB

∗
k = η̄k+1η

T
k+1.

Note that

BkB
∗
k η̄k+1η

T
k+1BkB

∗
k = (Im −

k∑
i=0

η̄iη
T
i )η̄k+1η

T
k+1(Im −

k∑
i=0

η̄iη
T
i ).

By Proposition 3.2.1, the set {η̄i(z)}k+1
i=0 is pointwise orthogonal almost everywhere on T,

and therefore

BkB
∗
k η̄k+1η

T
k+1BkB

∗
k = η̄k+1η

T
k+1.

Thus, by equation (3.167),

Bk+1B
∗
k+1 = Im −

k+1∑
i=0

η̄iη
T
i

and the assertion has been proved.

The following statement asserts that any function Qj+1 ∈ Ωj necessarily satisfies equa-

tions (3.22).

Proposition 3.2.47. Every Qj+1 ∈ H∞(D,Cm×n) which minimises

(s∞0 (G−Q), s∞1 (G−Q), . . . , s∞j (G−Q))

satisfies

(G−Qj+1)xi = tiyi, (G−Qj+1)∗yi = tixi, for i = 0, 1, . . . , j.
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Proof. By the recursive step of the algorithm from Section 3.2.1, every Qj+1 ∈ H∞(D,Cm×n)

that minimises

(s∞0 (G−Q), . . . , s∞j−1(G−Q))

satisfies

(G−Qj+1)xi = tiyi, (G−Qj+1)∗yi = tixi for i = 0, 1, . . . , j − 1.

Hence it suffices to show that Qj+1 satisfies

(G−Qj+1)xj = tjyj, (G−Qj+1)∗yj = tjxj.

Notice that, by the inductive step, the following diagram commutes

H2(D,Cn−j)
Mᾱ0···ᾱj−1−−−−−−→ Kj

ξ(j−1)∧̇·−−−−→ ξ(j−1)∧̇H2(D,Cn) = XjyHFj yΓj

yTj
H2(D,Cm−j)⊥

Mβ0···βj−1−−−−−−→ Lj
η̄(j−1)∧̇·−−−−→ η̄(j−1)∧̇H2(D,Cm)⊥ = Yj,

(3.169)

where the maps Mᾱ0···ᾱj−1
, Mβ0···βj−1

, (ξ(j−1)∧̇·) : Kj → Xj and (η̄(j−1)∧̇·) : Lj → Yj are

unitaries, and Fj ∈ H∞(D,C(m−j)×(n−j)) + C(T,C(m−j)×(n−j)).

By equation (3.155), the set of all level j − 1 superoptimal error functions

Ej−1 = {G−Q : Q ∈ Ωj−1}

satisfies

Ej−1 = W ∗
0W

∗
1 · · ·W ∗

j−1



t0u0 0 · · · 0 01×(n−j)

0 t1u1 . . . 0 01×(n−j)
...

...
. . .

...
...

0 0 · · · tj−1uj−1 0

0(m−j)×1 0(m−j)×1 . . . . . . (Fj +H∞) ∩B(tj−1)


V ∗j−1 · · ·V ∗0 ,

(3.170)

for some Fj ∈ H∞(D,C(m−j)×(n−j))+C(T,C(m−j)×(n−j)), where ui = z̄h̄i
hi

are quasi-continuous

unimodular functions for i = 0, . . . , j − 1, and B(tj−1) is the closed ball of radius tj−1 in

L∞(T,C(m−j)×(n−j)). Consider some Qj+1 ∈ Ωj−1, so that, according to equation (3.170),

(
Ij−1 0

0 W̃j−1

)
· · ·W0(G−Qj+1)V0 · · ·

(
In−j−1 0

0 Ṽj−1

)
=


t0u0 0 . . . 0

0 t1u1 . . . 0

...
. . .

...

0 · · · tj−1uj−1 0

0 . . . . . . Fj − Q̃j

,
(3.171)

where Q̃j ∈ H∞(D,C(m−j)×(n−j)) is at minimal distance from Fj. Let Bj = β0 · · · βj and let

Aj = α0 · · ·αj. By equations (3.148), we have
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(
Ij−1 0

0 W̃j−1

)
· · ·W0(G−Qj+1)V0 · · ·

(
In−j−1 0

0 Ṽj−1

)

=


t0u0 0 . . . 0

...
. . . . . .

...

0 . . . ηTj−1Bj−2B
∗
j−2(G−Qj+1)Āj−2A

T
j−2ξj−1 ηTj−1Bj−2B

∗
j−2(G−Qj+1)Āj−1

0 . . . B∗j−1(G−Qj+1)Āj−2A
T
j−2ξj−1 B∗j−1(G−Qj+1)Āj−1

,
which, combined with equation (3.171), yields

B∗j−1(G−Qj+1)Āj−1 = Fj − Q̃j. (3.172)

Since Q̃j is at minimal distance from Fj,

‖Fj − Q̃j‖∞ = ‖HFj‖ = tj.

Note that, if (x̂j, ŷj) is a Schmidt pair for HFj corresponding to tj, then, by Theorem D.2.4,

(Fj − Q̃j)x̂j = tj ŷj, (Fj − Q̃j)
∗ŷj = tjx̂j.

In view of equation (3.172), the latter equations imply

B∗j−1(G−Qj+1)Āj−1x̂j = tj ŷj, ATj−1(G−Qj+1)∗Bj−1ŷj = tjx̂j.

By equation (3.152),

x̂j = ATj−1xj, ŷj = B∗j−1yj

Thus

B∗j−1(G−Qj+1)Āj−1x̂j = B∗j−1(G−Qj+1)xj = tjB
∗
j−1yj,

or equivalently,

B∗j−1

(
(G−Qj+1)xj − tjyj

)
= 0,

and since, by the inductive hypothesis, MBj−1
is a unitary map, we have

(G−Qj+1)xj = tjyj.

Furthermore

ATj−1(G−Qj+1)∗Bj−1ŷj = ATj−1(G−Qj+1)∗yj = tjA
T
j−1xj,

or equivalently,

ATj−1

(
(G−Qj+1)∗yj − tjxj

)
= 0.
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By the inductive hypothesis, MĀj−1
is a unitary map, hence

(G−Qj+1)∗yj = tjxj,

and therefore Qj+1 satisfies the required equations.

Lemma 3.2.48. Let

Ṽi =
(
αTi−1 · · ·αT0 ξi ᾱi

)
, W̃ T

i =
(
βTi−1 · · · βT0 ηi β̄i

)
, i = 0, 1, . . . , j, (3.173)

be unitary-valued functions, as described in Lemma 3.1.12. Then

αTl H
2(D,Cn−l) = H2(D,Cn−l−1)

and

β∗l (H
2(D,Cm−l)⊥ = H2(D,Cm−l−1)⊥,

for all l = 0, . . . , j.

Proof. Recall that, by Lemma 3.1.18, for all l = 0, . . . , j, the inner, co-outer, quasi-continuous

functions αl, βl of types (n− l)× (n− l− 1) and (m− l)× (m− l− 1) respectively, are left

invertible. The rest of the proof is similar to Lemmas 3.2.15 and 3.2.20.

As a preparation for proof of the main inductive step we prove several propositions.

Lemma 3.2.49. Let Ṽi be unitary-valued functions as given in equations (3.149), for i =

0, 1, . . . , j. Let Ai = α0 · · ·αi, for i = 0, 1, . . . , j and A−1 = In. Let

Vi =

(
Ii 0

0 Ṽi

)
, for i = 0, 1, . . . , j

and let

Kj+1 = V0 · · ·Vj

(
0(j+1)×1

H2(D,Cn−j−1)

)
. (3.174)

Let ξ(j) = ξ0∧̇ . . . ∧̇ξj. Then, for all 0 ≤ j ≤ min(m,n)− 2 and every f ∈ L2(T,Cn),

ξ(j)∧̇Āj−1A
T
j−1ξjξ

∗
j f = 0.

Proof. For j = 0, 1, 2, by Propositions 3.2.17 and 3.2.30, the assertion has been proved.

Suppose the assertion holds for all j = 0, . . . , `. Then the entities constructed by the recursion

step of the algorithm from Section 3.2.1 satisfy

ξ(`−1)∧̇Ā`−2A
T
`−2ξ`−1ξ

∗
`−1f = 0 for all `,

where

A`−2 = α0 · · ·α`−2
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and α0, . . . , α`−2 are inner, co-outer, quasi-continuous functions of types n × (n − 1), . . . ,

(n− `+ 1)× (n− `+ 2) respectively.

We will show the assertion holds for j = 0, . . . , ` + 1. Since T` is a compact operator,

there exist functions v` ∈ H2(D,Cn), w` ∈ H2(D,Cm)⊥ such that (ξ(`−1)∧̇v`, η̄(`−1)∧̇w`) is a

Schmidt pair for operator T` corresponding to t` = ‖T`‖. By Proposition 3.2.2, ξ(`−1)∧̇v` is an

element of H2(D,∧`+1Cn). Let h` ∈ H2(D,C) be the scalar outer factor of ξ(`−1)∧̇v`. Define

x` = (ICn − ξ0ξ
∗
0 · · · − ξ`−1ξ

∗
`−1)v`

and

ξ` =
x`
h`
.

Then
αT`−1 · · ·αT0 x` = AT`−1(ICn − ξ0ξ

∗
0 − · · · − ξ`−1ξ

∗
`−1)v`

= AT`−1 · · · v` − AT`−1ξ0ξ
∗
0v` − · · · − AT`−1ξ`−1ξ

∗
`−1v`.

Recall that, by the inductive hypothesis, for j = 0, . . . , `−1, each Vi is unitary-valued, hence

αTi−1 · · ·αT0 ξi = 0. Thus

αT`−1 · · ·αT0 x` = αT`−1 · · ·αT0 v`,

that is,

αT`−1 · · ·αT0 ξ` =
1

h`
αT`−1 · · ·αT0 x`

is analytic. Moreover, since αj(z) are isometries for all j = 0, · · · , `− 1,

‖αT`−1(z) · · ·αT0 (z)(z)x`(z)‖Cn−` = ‖αT`−1(z) · · ·αT0 (z)(z)v`(z)‖Cn−`‖ = |h`(z)|

almost everywhere on T, and hence

‖αT`−1(z) · · ·αT0 (z)ξ`(z)‖Cn−` = 1

almost everywhere on T. Therefore αT`−1 · · ·αT0 ξ` is inner.

Then, by Theorem 3.1.10, there exists an inner, co-outer, quasi-continuous α` of size (n −
`)× (n− `+ 1) such that

Ṽ` =
(
AT`−1ξ` ᾱ`

)
is unitary-valued and all minors on the first column of Ṽ` are in H∞. Let V` =

(
I` 0

0 Ṽ`

)
.

Recall that

V0 · · ·V`−1V
∗
`−1 · · ·V0 = In,

which is equivalent to the equation

`−1∑
j=0

Āj−1A
T
j−1ξjξ

∗
j Āj−1A

T
j−1 + Ā`−1A

T
`−1 = In. (3.175)
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We have that, for every f ∈ L2(T,Cn),

ξ(`)∧̇Ā`−1A
T
`−1ξ`ξ

∗
` f = ξ(`)∧̇(In −

`−1∑
j=0

Āj−1A
T
j−1ξjξ

∗
j Āj−1A

T
j−1)ξ`ξ

∗
` f

= ξ(`)∧̇ξ`ξ∗` f − ξ(`)∧̇
`−1∑
j=0

Āj−1A
T
j−1ξjξ

∗
j Āj−1A

T
j−1ξ`ξ

∗
` f

= 0− ξ(`)∧̇
`−1∑
j=0

Āj−1A
T
j−1ξjξ

∗
j Āj−1A

T
j−1ξ`ξ

∗
` f

because of pointwise linear dependence. We set Āj−1A
T
j−1ξ`ξ

∗
` f = g ∈ L2(T,Cn). By the

inductive hypothesis, we get that, for every g ∈ L2(T,Cn),

ξ(`−1)∧̇ξ`∧̇
`−1∑
j=0

Āj−1A
T
`−1ξjξ

∗
j g = 0.

Thus we have proved that for every 0 ≤ j ≤ min(m,n)− 2 and every f ∈ L2(T,Cn),

ξ(j)∧̇Āj−1A
T
j−1ξjξ

∗
j f = 0.

Proposition 3.2.50. Let Ṽi be unitary-valued functions as given in equations (3.149), for

i = 0, 1, . . . , j. Let Ai = α0 · · ·αi, for i = 0, 1, . . . , j and A−1 = In. Let

Vi =

(
Ii 0

0 Ṽi

)
, for i = 0, 1, . . . , j

and let

Kj+1 = V0 · · ·Vj

(
0(j+1)×1

H2(D,Cn−j−1)

)
. (3.176)

Let ξ(j) = ξ0∧̇ . . . ∧̇ξj. Then, for every j,

ξ(j)∧̇Kj+1 = ξ(j)∧̇H2(D,Cn)

and the operator (ξ(j)∧̇·) : Kj+1 → ξ(j)∧̇H2(D,Cn) is unitary.

Proof. Let us first prove the inclusion

ξ(j)∧̇Kj+1 ⊆ ξ(j)∧̇H2(D,Cn).

A typical element ρ ∈ ξ(j)∧̇Kj+1 is of the form ρ = ξ(j)∧̇Āj−1ψ for ψ ∈ H2(D,Cn−j−1). By

Lemma 3.2.48, there exists a function ϕ ∈ H2(D,Cn−j−2) such that

αTj−1φ = ψ.

Then
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ρ = ξ(j)∧̇Āj−1α
T
j−1φ = ξ(j)∧̇Āj−2ᾱj−1α

T
j−1φ.

Since Ṽj−1 is unitary-valued,

ATj−2ξj−1ξ
∗
j−1Āj−2 + ᾱj−1α

T
j−1 = In−j+1.

Hence
ρ = ξ(j)∧̇Āj−2ᾱj−1α

T
j−1φ

= ξ(j)∧̇Āj−2(In−j+1 − ATj−2ξj−1ξ
∗
j−1Āj−2)φ

= ξ(j)∧̇Āj−2φ− ξ(j)∧̇Āj−2A
T
j−2ξj−1ξ

∗
j−1Āj−2φ

= ξ(j)∧̇Āj−2φ

,

last equality being obtained by Lemma 3.2.49. It is evident that, by continuing in a similar

way, we get

ρ = ξ(j)∧̇ϕ

for ϕ ∈ H2(D,Cn), and so,

ρ ∈ ξ(j)∧̇H2(D,Cn).

Hence

ξ(l)∧̇Kl+1 ⊆ ξ(l)∧̇H2(D,Cn). (3.177)

Let us show that ξ(j)∧̇Kj+1 ⊇ ξ(j)∧̇H2(D,Cn). Let f ∈ H2(D,Cn). Since V0, . . . , Vj are

unitary-valued, we have

ξ(j)∧̇f = ξ(j)∧̇Inf

= ξ(j)∧̇
(

j∑
k=0

Āk−1A
T
k−1ξkξ

∗
kĀk−1A

T
k−1 + ĀjA

T
j

)
f

= ξ(j)∧̇
j∑

k=0

Āk−1A
T
k−1ξkξ

∗
kĀk−1A

T
k−1f + ξ(j)∧̇ĀjATj f.

By Lemma 3.2.49,

ξ(j)∧̇f = ξ(j)∧̇
j∑

k=0

Āk−1A
T
k−1ξkξ

∗
kĀk−1A

T
k−1f + ξ(j)∧̇ĀjATj f = ξ(j)∧̇ĀjATj f.

By Lemma 3.2.48, ATj H
2(D,Cn−j) = H2(D,Cn−j−1), thus

ξ(j)∧̇f ∈ ξ(j)∧̇ĀjH2(D,Cn−j−1) = ξ(j)∧̇Kj+1,

proving that

ξ(j)∧̇H2(D,Cn) ⊆ ξ(j)∧̇Kj+1.
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Combining the latter inclusion with inclusion (3.177), we deduce that

ξ(j)∧̇Kj+1 = ξ(j)∧̇H2(D,Cn).

To show that the operator (ξ(j)∧̇·) : Kj+1 → ξ(j)∧̇H2(D,Cn) is unitary, it suffices to prove

that, for every ϑ ∈ Kj+1,

‖ξ(j)∧̇ϑ‖L2(T,∧j+2Cn) = ‖ϑ‖L2(T,Cn).

Let ϑ ∈ Kj+1. Then, by Proposition 2.1.19, we get

‖ξ(j)∧̇ϑ‖2
L2(T,∧j+2Cn) = 〈ξ(j)∧̇ϑ, ξ(j)∧̇ϑ〉L2(T,∧j+2Cn)

=
1

2π

∫ 2π

0

〈ξ(j)(e
iθ)∧̇ϑ(eiθ), ξ(j)(e

iθ)∧̇ϑ(eiθ)〉∧j+2Cndθ

=
1

2π

∫ 2π

0

det


〈ξ0(eiθ), ξ0(eiθ)〉Cn . . . 〈ξ0(eiθ), ϑ(eiθ)〉Cn
〈ξ1(eiθ), ξ0(eiθ)〉Cn . . . 〈ξ1(eiθ), ϑ(eiθ)〉Cn

...
. . .

...

〈ϑ(eiθ), ξ0(eiθ)〉Cn . . . 〈ϑ(eiθ), ϑ(eiθ)〉Cn

 dθ.

By Proposition 3.2.1, {ξi(z)}ji=0 is an orthonormal set in Cn for almost every z ∈ T. Thus

the latter integral is equal to

1

2π

∫ 2π

0

det


1 0 . . . 〈ξ0(eiθ), ϑ(eiθ)〉Cn
0 1 . . . 〈ξ1(eiθ), ϑ(eiθ)〉Cn
...

. . .
...

〈ϑ(eiθ), ξ0(eiθ)〉Cn . . . 〈ϑ(eiθ), ϑ(eiθ)〉Cn

 dθ.

Note that since ϑ ∈ Kj+1, then ϑ = Ājψ for some ψ ∈ H2(D,Cn−j−1). Also, since each Ṽk is

unitary valued for all k = 0, . . . , j, then, for almost every eiθ ∈ T,

〈ξk(eiθ), ϑ(eiθ)〉Cn = 〈ξk(eiθ), Āj(eiθ)ψ(eiθ)〉Cn = 0.

Hence

1

2π

∫ 2π

0

det


1 0 . . . 〈ξ0(eiθ), ϑ(eiθ)〉Cn

0 1 . . . 〈ξ1(eiθ), ϑ(eiθ)〉Cn

...
. . .

...

〈ϑ(eiθ), ξ0(eiθ)〉Cn . . . 〈ϑ(eiθ), ϑ(eiθ)〉Cn

 dθ

is equal to

1

2π

∫ 2π

0

det


1 0 . . . 0

0 1 . . . 0
...

. . .
...

0 . . . 〈ϑ(eiθ), ϑ(eiθ)〉Cn

 dθ,
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which yields

1

2π

∫ 2π

0

‖ϑ(eiθ)‖2
Cndθ = ‖ϑ‖2

L2(T,Cn).

Therefore, by Theorem A.2.4, the operator (ξ(j)∧̇·) : Kj+1 → ξ(j)∧̇H2(D,Cn) is unitary.

Lemma 3.2.51. Let W̃ T
j be given by equations (3.149), let W T

j =

(
Ij 0

0 W̃ T
j

)
, let

Lj+1 = W ∗
0 · · ·W ∗

j

(
0(j+1)×1

H2(D,Cm−j−1)⊥

)
,

and let η̄(j) = η̄0∧̇ . . . ∧̇η̄j. Let Bj = β0 · · · βj.
Then, for every u ∈ H2(D,Cm)⊥ and all 0 ≤ j ≤ min(m,n)− 2,

η̄(j)∧̇Bj−1B
∗
j−1η̄jη

T
j Bj−1u = 0.

Proof. Note that by Propositions 3.2.21 and 3.2.35, the assertion holds for j = 0, 1, 2. Sup-

pose it holds for j = 0, · · · , l − 1 and for every u ∈ H2(D,Cm)⊥. This means that, for all

l,

η̄(l−1)∧̇Bl−2B
∗
l−2η̄l−1η

T
l−1Bl−2B

∗
l−2f = 0 for all f ∈ L2(T,Cm), (3.178)

where β0, . . . , βl−2 are inner, co-outer, quasi-continuous functions of types

m× (m− 1), . . . , (m− l + 2)× (m− l + 1) respectively.

We will show that assertion (3.178) holds for j = 0, . . . , l. By the inductive hypothesis,

Tl is a compact operator, so there exist functions vl ∈ H2(D,Cn), wl ∈ H2(D,Cm)⊥ such

that (ξ(l−1)∧̇vl, η̄(l−1)∧̇wl) is a Schmidt pair for operator Tl corresponding to tl = ‖Tl‖. By

Proposition 3.2.2, ξ(l−1)∧̇vl is an element of H2(D,∧l+1Cn). Let hl ∈ H2(D,C) be the scalar

outer factor of ξ(l−1)∧̇vl. Define

yl = (Im − η̄0η
T
0 − · · · − η̄l−1η

T
l−1)wl

and

ηl =
z̄ȳl
hl
.

We have
β∗l−1 · · · β∗0yl = B∗l−1(Im − η̄0η

T
0 − · · · − η̄l−1η

T
l−1)wl

= B∗l−1wl −B∗l−1η̄0η
T
0 wl − · · · −B∗l−1η̄l−1η

T
l−1wl.

Notice that, by the inductive hypothesis, for i = 0, . . . , l − 1, each Wi is unitary-valued,

hence β∗i−1 · · · β∗0 η̄i−1 = 0. Thus

B∗l−1yl = B∗l−1wl

160



3.2. Algorithm for superoptimal analytic approximation

that is,

BT
l−1ηl =

1

hl
BT
l−1z̄ȳl =

1

hl
BT
l−1z̄w̄l

is analytic. Further, since βi(z) are isometries for all i = 0, . . . , l − 1,

‖BT
l−1(z)z̄ȳl(z)‖Cm−l = ‖BT

l−1(z)z̄w̄l(z)‖Cm−l = |hl(z)|

almost everywhere on T, and therefore

‖BT
l−1(z)ηl(z)‖Cm = 1

almost everywhere on T, that is, BT
l−1ηl is inner.

By Theorem 3.1.10, there exists an inner, co-outer, quasi-continuous function βl of size

(m− l)× (m− l − 1) such that

W̃ T
l =

(
BT
l−1ηl β̄l

)
is a thematic completion of BT

l−1ηl. Then

βlβ
∗
l +B∗l−1η̄lη

T
l Bl−1 = Im−l. (3.179)

Let W T
l =

(
Il 0

0 W̃ T
l

)
and let

Ll+1 = W ∗
0 · · ·W ∗

l

(
0(l+1)×1

H2(D,Cm−l−1)⊥

)
.

Since W0, · · · ,Wl−1 are unitary-valued, W ∗
0 · · ·W ∗

l−1Wl−1 · · ·W0 = Im, or equivalently,

Bl−1B
∗
l−1 +

l−1∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBk−1B

∗
k−1 = Im.

Then, for any u ∈ H2(D,Cm−l−2)⊥,

η̄(l)∧̇Bl−1B
∗
l−1η̄lη

T
l Bl−1u = η̄(l)∧̇

(
Im −

l−1∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBk−1B

∗
k−1

)
η̄lη

T
l Bl−1u,

which is equal to

η̄(l)∧̇η̄lηTl Bl−1u− η̄(l)∧̇
l−1∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBk−1B

∗
k−1η̄lη

T
l Bl−1u.

Hence

η̄(l)∧̇Bl−1B
∗
l−1η̄lη

T
l Bl−1u = −η̄(l)∧̇

l−1∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBl−1B

∗
l−1η̄lη

T
l Bl−1u,
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last equality following by the pointwise linear dependence of η̄l and η̄lη
T
l Bl−1u on D. If we

set B∗l−1η̄lη
T
l Blu = f ∈ L2(T,Cm−l−2), then, by the inductive hypothesis (3.178),

η̄(l)∧̇
l−1∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBk−1b

∗
k−1f = 0.

Hence, for all f ∈ L2(T,Cm−j−2) and all j,

η̄(j)∧̇Bj−1B
∗
j−1η̄jη

T
j Bj−1f = 0 (3.180)

and the assertion has been proved.

Proposition 3.2.52. Let W̃ T
j be given by equations (3.149), let W T

j =

(
Ij 0

0 W̃ T
j

)
, let

Lj+1 = W ∗
0 · · ·W ∗

j

(
0(j+1)×1

H2(D,Cm−j−1)⊥

)
, (3.181)

and let η̄(j) = η̄0∧̇ . . . ∧̇η̄j. Then,

η̄(j)∧̇Lj+1 = η̄(j)∧̇H2(D,Cm)⊥

and the operator (η̄(j)∧̇·) : Lj+1 → η̄(j)∧̇H2(D,Cm)⊥ is unitary.

Proof. Let us first show η̄(j)∧̇Lj+1 ⊆ η̄(j)∧̇H2(D,Cm)⊥ A typical element q ∈ η̄(j)∧̇Lj+1 is of

the form

q = η̄(j)∧̇Bjυ

for some υ ∈ H2(D,Cm−l−1)⊥. By Lemma 3.2.48, there exists a vector-valued function u ∈
H2(D,Cm−j)⊥ such that β∗ju = υ. Then, q = η̄(j)∧̇Bjβ

∗
ju, and by equation (3.179),

q = η̄(j)∧̇Bjβ
∗
ju

= η̄(j)∧̇Bj−1βjβ
∗
ju

= η̄(j)∧̇Bj−1(Im−j −B∗j−1η̄jη
T
j Bj−1)u

= η̄(j)∧̇Bj−1u− η̄(j)∧̇Bj−1B
∗
j−1η̄jη

T
j Bj−1u

= η̄(j)∧̇Bj−1u

last equality following by Lemma 3.2.51. It is obvious that continuing in a similar way, we

obtain q = η̄(j)∧̇ψ for ψ ∈ H2(D,Cm)⊥. Thus

η̄(j)∧̇Lj+1 ⊆ η̄(j)∧̇H2(D,Cm)⊥. (3.182)

Let us now prove η̄(j)∧̇Lj+1 ⊇ η̄(j)∧̇H2(D,Cm)⊥. Let ρ = η̄(j)∧̇τ ∈ H2(D,Cm)⊥ for some
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τ ∈ H2(D,Cm)⊥. Note that, since W0, . . . ,Wj are unitary-valued, we get

W ∗
0 · · ·W ∗

jWj · · ·W0 = Im,

which is equivalent to the equation

BjB
∗
j +

j∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBkB

∗
k = Im.

We, then, obtain

η̄(j)∧̇τ = η̄(j)∧̇Imτ

= η̄(j)∧̇
(
BjB

∗
j +

j∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBk−1B

∗
k−1

)
τ

= η̄(j)∧̇BjB
∗
j τ + η̄(j)∧̇

j∑
k=0

Bk−1B
∗
k−1η̄kη

T
kBk−1B

∗
k−1τ.

By Lemma 3.2.51,

η̄(j)∧̇
j∑

k=0

Bk−1B
∗
k−1η̄kη

T
kBk−1B

∗
k−1τ = 0,

hence

η̄(j)∧̇τ = η̄(j)∧̇BjB
∗
j τ.

By Lemma 3.2.48, B∗jH
2(D,Cm)⊥ = H2(D,Cm−j+1)⊥, thus

η̄(j)∧̇τ ∈ η̄(j)∧̇BjH
2(D,Cm−j+1)⊥ = η̄(j)∧̇Lj+1,

and so

η̄(j)∧̇H2(D,Cm)⊥ ⊆ η̄(j)∧̇Lj+1.

Combining the latter inclusion with inclusion (3.182), we deduce that

η̄(j)∧̇Lj+1 = η̄(j)∧̇H2(D,Cm)⊥.

To show that the operator (η̄(j)∧̇·) : Lj+1 → η̄(j)∧̇H2(D,Cm)⊥ is unitary, it suffices to

prove that, for every ϕ ∈ Lj+1, ‖η̄(j)∧̇ϕ‖L2(T,∧j+2Cm) = ‖ϕ‖L2(T,Cm). By Proposition 2.1.19,

we get

‖η̄(j)∧̇ϕ‖2
L2(T,∧j+2Cm) = 〈η̄(j)∧̇ϕ, η̄(j)∧̇ϕ〉L2(T,∧j+2Cm)

=
1

2π

∫ 2π

0

det


〈η̄0(eiθ), η̄0(eiθ)〉Cm . . . 〈η̄0(eiθ), ϕ(eiθ)〉Cm
〈η̄1(eiθ), η̄0(eiθ)〉Cm . . . 〈η̄1(eiθ), ϕ(eiθ)〉Cm

...
. . .

...

〈ϕ(eiθ), η̄0(eiθ)〉Cm . . . 〈ϕ(eiθ), ϕ(eiθ)〉Cm

 dθ.
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Recall that, by Proposition 3.2.1, the set {η̄i(z)}ji=0 is orthonormal in Cn for almost every

z ∈ T. Then the latter integral is equal to

1

2π

∫ 2π

0

det


1 0 . . . 〈η̄0(eiθ), ϕ(eiθ)〉Cm
0 1 . . . 〈η̄1(eiθ), ϕ(eiθ)〉Cm
...

. . .
...

〈ϕ(eiθ), η̄0(eiθ)〉Cm . . . . . . 〈ϕ(eiθ), ϕ(eiθ)〉Cm

 dθ.

Observe that since ϕ ∈ Lj+1, there exists a ρ ∈ H2(D,Cm−j−1)⊥ such that ϕ = Bjρ. Also,

since each W̃k is unitary valued for all k = 0, . . . , j, then, for almost every eiθ ∈ T,

〈η̄k(eiθ), ϕ(eiθ)〉Cm = 〈η̄k(eiθ), β0(eiθ) · · · βj(eiθ)ρ(eiθ)〉Cm = 0.

Thus the latter integral equals

1

2π

∫ 2π

0

det


1 0 . . . 0

0 1 . . . 0
...

. . .
...

0 . . . . . . 〈ϕ(eiθ), ϕ(eiθ)〉Cm

 dθ

=
1

2π

∫ 2π

0

〈ϕ(eiθ), ϕ(eiθ)〉Cmdθ = ‖ϕ‖2
L2(T,Cm).

Hence by Theorem A.2.4, the operator (η̄(j)∧̇·) : Lj+1 → η̄(j)∧̇H2(D,Cm)⊥ is unitary.

Proposition 3.2.53. With the notation of Proposition 3.2.52

L⊥j+1 = {f ∈ L2(T,Cm) : β∗j · · · β∗0f ∈ H2(D,Cm−j−1)}.

Proof. Clearly Lj+1 = β0 · · · βjH2(D,Cm−j−1). A function f ∈ L2(T,Cm) belongs to L⊥j+1 if

and only if

〈f, β0 · · · βje−iθḡ〉L2(T,Cm) = 0 for all g ∈ H2(D,Cm−j−1).

Equivalently,

1

2π

∫ 2π

0

〈f(eiθ), β0(eiθ) · · · βj(eiθ)e−iθḡ(eiθ)〉Cmdθ = 0 for all g ∈ H2(D,Cm−j−1)

if and only if

1

2π

∫ 2π

0

〈β∗j (eiθ) · · · β∗0(eiθ)f(eiθ), e−iθḡ(eiθ)〉Cm−2dθ = 0 for all g ∈ H2(D,Cm−j−1).

The latter statement is equivalent to the assertion that β∗j · · · β∗0f is orthogonal to

H2(D,Cm−j−1)⊥ in L2(T,Cm−j−1), which holds if and only if

β∗j · · · β∗0f ∈ H2(D,Cm−j−1).
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Thus

L⊥j+1 = {f ∈ L2(T,Cm) : β∗j · · · β∗0f ∈ H2(D,Cm−j−1)}

as required.

Let us proceed to the main theorem of this section.

Theorem 3.2.54. Let m,n be positive integers such that min(m,n) ≥ 2. Let G be in

H∞(D,Cm×n) + C(T,Cm×n). In the notation of the algorithm from Section 3.2.1, let

(ξ0∧̇ . . . ∧̇ξj−1∧̇vj, η̄0∧̇ . . . ∧̇η̄j−1∧̇wj)

be a Schmidt pair for Tj corresponding to tj = ‖Tj‖ 6= 0. Let hj ∈ H2(D,C) be the scalar

outer factor of

ξ0∧̇ . . . ∧̇ξj−1∧̇vj.

Let

xj = (In − ξ0ξ
∗
0 − · · · − ξj−1ξ

∗
j−1)vj,

yj = (Im − η̄0η
T
0 − · · · − η̄j−1η

T
j−1)wj

and

ξj =
xj
hj
, η̄j =

zyj
h̄j
.

For i = 0, 1, . . . , j, let

Ṽi =
(
αTi−1 · · ·αT0 ξi ᾱi

)
, W̃ T

i =
(
βTi−1 · · · βT0 ηi β̄i

)
(3.183)

be unitary-valued functions, as described in Lemma 3.1.12. Let

Vj =

(
Ij 0

0 Ṽj

)
, Wj =

(
Ij 0

0 W̃j

)
.

Let Aj = α0α1 . . . αj, A−1 = In, Bj = β0β1 . . . βj and B−1 = Im. Let

Xj+1 = ξ0∧̇ . . . ∧̇ξj∧̇H2(D,Cn) ⊂ H2(D,∧j+2Cn),

and let

Yj+1 = η̄0∧̇ . . . ∧̇η̄j∧̇H2(D,Cm)⊥ ⊂ H2(D,∧j+2Cm)⊥.

Let

Tj+1(ξ0∧̇ . . . ∧̇ξj∧̇x) = PYj+1
(η̄0∧̇ . . . ∧̇η̄j∧̇(G−Qj+1)x)

for all x ∈ H2(D,Cn), where Qj+1 satisfies

(G−Qj+1)xi = tiyi, and (G−Qj+1)∗yi = tixi, for i = 0, 1, . . . , j. (3.184)
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Let

Kj+1 = V0 · · ·Vj

(
0(j+1)×1

H2(D,Cn−j−1)

)
, Lj+1 = W ∗

0 · · ·W ∗
j

(
0(j+1)×1

H2(D,Cm−j−1)⊥

)
. (3.185)

Let the operator Γj+1 : Kj+1 → Lj+1 be given by

Γj+1 = PLj+1
MG−Qj+1

|Kj+1
.

Then (i) The maps

MĀj : H2(D,Cn−j−1)→ Kj+1 : x 7→ Ājx, and MBj : H2(D,Cm−j−1)⊥ → Lj+1 : y 7→ Bjy

are unitaries.

(ii) The maps (ξ0∧̇ . . . ∧̇ξj∧̇·) : Kj+1 → Xj+1, (η̄0∧̇ . . . ∧̇η̄j∧̇·) : Lj+1 → Yj+1 are unitaries.

(iii) The following diagram commutes

H2(D,Cn−j)
Mᾱ0···ᾱj−−−−−→ Kj+1

ξ(j)∧̇·−−−→ ξ(j)∧̇H2(D,Cn) = Xj+1yHFj+1

yΓj+1

yTj+1

H2(D,Cm−j)⊥
Mβ0···βj−−−−→ Lj+1

η̄(j)∧̇·−−−→ η̄(j)∧̇H2(D,Cm)⊥ = Yj+1,

(3.186)

where Fj+1 ∈ H∞(D,C(m−j−1)×(n−j−1)) + C(T,C(m−j−1)×(n−j−1)) is the function defined in

Proposition 3.2.43.

(iv) Γj+1 and Tj+1 are compact operators.

(v) ‖Tj+1‖ = ‖Γj+1‖ = ‖HFj+1
‖ = tj+1.

Proof. (i). It follows from Lemma 3.1.16.

(ii). Follows from Propositions 3.2.50 and 3.2.52.

(iii). By Theorem 1.1.4, there exists a function Qj+1 ∈ H∞(D,Cm×n) such that the sequence

(
s∞0 (G−Qj+1), s∞1 (G−Qj+1), . . . , s∞j+1(G−Qj+1)

)
is lexicographically minimised. By Proposition 3.2.47, any such Qj+1 satisfies

(G−Qj+1)xi = tiyi, (G−Qj+1)∗yi = tixi, for i = 0, 1, . . . , j. (3.187)

By Proposition 3.2.8, Tj+1 is well-defined and is independent of the choice of

Qj+1 ∈ H∞(D,Cm×n) satisfying equations (3.187). We can choose Qj+1 which minimises(
s∞0 (G−Qj+1), s∞1 (G−Qj+1), . . . , s∞j+1(G−Qj+1)

)
, and therefore satisfies equations (3.187).

Consider the following diagram.

Kj+1
ξ0∧̇···∧̇ξj∧̇·−−−−−−→ ξ0∧̇ · · · ∧̇ξj∧̇H2(D,Cn) = Xj+1yΓj+1

yTj+1

Lj+1
η̄0∧̇···∧̇η̄j∧̇·−−−−−−→ η̄0∧̇ · · · ∧̇η̄j∧̇H2(D,Cm)⊥ = Yj+1.

(3.188)
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Let us prove first that diagram (3.188) commutes. By Theorem 1.1.4, there exists a

function Qj+1 ∈ H∞(D,Cm×n) such that the sequence

(
s∞0 (G−Qj+1), s∞1 (G−Qj+1), . . . , s∞j+1(G−Qj+1)

)
is lexicographically minimised. By Proposition 3.2.47, such Qj+1 satisfies

(G−Qj+1)xi = tiyi, (G−Qj+1)∗yi = tixi, for i = 0, 1, . . . , j. (3.189)

By Proposition 3.2.8, Tj+1 is well-defined and is independent of the choice of

Qj+1 ∈ H∞(D,Cm×n) satisfying equations (3.189). We can choose Qj+1 which minimises(
s∞0 (G−Qj+1), s∞1 (G−Qj+1), . . . , s∞j+1(G−Qj+1)

)
, and therefore satisfies equations (3.189).

Consider the following diagram.

Kj+1
ξ0∧̇···∧̇ξj∧̇·−−−−−−→ ξ0∧̇ · · · ∧̇ξj∧̇H2(D,Cn) = Xj+1yΓj+1

yTj+1

Lj+1
η̄0∧̇···∧̇η̄j+1∧̇·−−−−−−−−→ η̄0∧̇ · · · ∧̇η̄j∧̇H2(D,Cm)⊥ = Yj+1.

(3.190)

Let us prove first that diagram (3.190) commutes.

By Proposition 3.2.43, every Qj+1 ∈ H∞(D,Cm×n), which minimises

(
s∞0 (G−Qj+1), s∞1 (G−Qj+1), . . . , s∞j+1(G−Qj+1)

)
,

satisfies the following equation (see equation (3.150)).

G−Qj+1 = W ∗
0W

∗
1 · · ·W ∗

j



t0u0 0 · · · 0 01×(n−j−1)

0 t1u1 . . . 0 01×(n−j−1)

...
...

. . .
...

...

0 0 · · · tjuj 0

0(m−j−1)×1 0(m−j−1)×1 . . . . . . (Fj+1 +H∞) ∩B(tj)


V ∗j · · ·V ∗0 ,

(3.191)

Thus, for every χ ∈ H2(D,Cn−j−1),

(G−Qj+1)V0 · · ·Vj

(
0(j+1)×1

H2(D,Cm−j−1)⊥

)

= W ∗
0W

∗
1 · · ·W ∗

j


t0u0 0 · · · 0 01×(n−j−1)

0 t1u1 . . . 0 01×(n−j−1)
...

...
. . .

...
...

0 0 · · · tjuj 0

0(m−j−1)×1 0(m−j−1)×1 . . . . . . (Fj+1 +H∞) ∩B(tj)


(

0(j+1)×1

H2(D,Cm−j−1)⊥

)
,

(3.192)

for some Fj+1 ∈ H∞(D,C(m−j−1)×(n−j−1)) +C(T,C(m−j−1)×(n−j−1)), for the quasi-continuous
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unimodular functions ui = z̄h̄i
hi

, for all i = 0, . . . , j, for the closed ball B(tj) of radius tj in

L∞(T,C(m−j−1)×(n−j−1)). By equation (3.157),

W ∗
0W

∗
1 · · ·W ∗

j =
(
η̄0 B0B

∗
0 η̄1 . . . Bj−1B

∗
j−1η̄j Bj

)
.

By equation (3.159),

V0 · · ·Vj =
(
ξ0 Ā0A

T
0 ξ1 Ā1A

T
1 ξ2 . . . Āj−1A

T
j−1ξj−1 Āj

)
. (3.193)

Therefore, by equation (3.192), for every χ ∈ H2(D,Cn−j−1),

(G−Qj+1)Ājχ = BjFj+1χ. (3.194)

A typical element x ∈ Kj+1 is of the form x = Ājχ, for some χ ∈ H2(D,Cn−j+1). Then, by

Proposition 3.2.50,

(ξ0∧̇ . . . ∧̇ξj∧̇·)Ājχ = ξ0∧̇ . . . ∧̇ξj∧̇Ājχ ∈ Xj+1.

Therefore, by the definition of Tj+1 and by equation (3.194),

Tj+1(ξ0∧̇ . . . ∧̇ξj∧̇Ājχ) = PYj+1
(η̄0∧̇ · · · ∧̇η̄j∧̇(G−Qj+1)Ājχ)

= PYj+1
(η̄0∧̇ · · · ∧̇η̄j∧̇BjFj+1χ).

Furthermore, by the definition of Γj+1 and by equation (3.194),

(η̄0∧̇ · · · ∧̇η̄j∧̇·)Γj+1(Ājχ) = η̄0∧̇ · · · ∧̇η̄j∧̇PLj+1
BjFj+1χ.

In order to prove the commutativity of diagram (3.190), we need to show that

η̄0∧̇ · · · ∧̇η̄j∧̇BjFj+1χ ∈ Yj+1

and that

η̄0∧̇ · · · ∧̇η̄j∧̇
(
BjFj+1χ− PLj+1

BjFj+1χ
)

= η̄0∧̇ · · · ∧̇η̄j∧̇PL⊥j+1
BjFj+1χ

is orthogonal to Yj+1, for any χ ∈ H2(D,Cn−j). Observe that, by Proposition 3.2.52,

η̄0∧̇ · · · ∧̇η̄j∧̇BjFj+1χ is indeed an element of Yj+1. To prove the latter assertion, first no-

tice that, by Proposition 3.2.53, there exists a Φ ∈ L2(T,Cm) such that

Φ = PL⊥j+1
BjFj+1χ and B∗jΦ ∈ H2(D,Cm−j−1).

Let

η̄(j) = η̄0∧̇ · · · ∧̇η̄j.
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It suffices to prove that

〈η̄(j)∧̇Φ, η̄(j)∧̇ψ〉L2(T,∧j+2Cm) = 0

for all ψ ∈ H2(D,Cm)⊥. By Proposition 2.1.19,

〈η̄(j)∧̇Φ, η̄(j)∧̇ψ〉L2(T,∧j+2Cm) =
1

2π

∫ 2π

0

det


〈η̄0(eiθ), η̄0(eiθ)〉Cm . . . 〈η̄0(eiθ), ψ(eiθ)〉Cm

〈η̄1(eiθ), η̄0(eiθ)〉Cm . . . 〈η̄1(eiθ), ψ(eiθ)〉Cm

...
. . .

...

〈Φ(eiθ), η̄0(eiθ)〉Cm . . . 〈Φ(eiθ), ψ(eiθ)〉Cm

dθ

for all ψ ∈ H2(D,Cm)⊥. Recall that, by Proposition 3.2.1, the set {ηi}ji=0 is an orthonormal

set in Cm almost everywhere on T. Hence

〈η̄(j)∧̇Φ, η̄(j)∧̇ψ〉L2(T,∧j+2Cm) =
1

2π

∫ 2π

0

det


1 0 . . . 〈η̄0(eiθ), ψ(eiθ)〉Cm

0 1 . . . 〈η̄1(eiθ), ψ(eiθ)〉Cm

...
. . .

...

〈Φ(eiθ), η̄0(eiθ)〉Cm . . . 〈Φ(eiθ), ψ(eiθ)〉Cm

dθ.
Multiplying the k-th column with 〈η̄k(eiθ), ψ(eiθ)〉Cm and adding it to the last column of the

determinant above, we obtain

1

2π

∫ 2π

0

det


1 0 . . . 0

0 1 . . . 0

...
. . .

...

〈Φ(eiθ), η̄0(eiθ)〉Cm . . . 〈Φ(eiθ), ψ(eiθ)〉Cm

−
∑j
i=0〈Φ(eiθ), η̄i(e

iθ)〉Cm 〈η̄i(eiθ), ψ(eiθ)〉Cm

dθ,
which is equal to

1

2π

∫ 2π

0

ψ∗(eiθ)Φ(eiθ)−
j∑
i=0

ψ∗(eiθ)η̄i(e
iθ)ηTi (eiθ)Φ(eiθ)dθ

=
1

2π

∫ 2π

0

ψ∗(eiθ)

(
Im −

j∑
i=0

η̄i(e
iθ)ηTi (eiθ)

)
Φ(eiθ)dθ.

Then

〈η̄(j)∧̇Φ, η̄(j)∧̇ψ〉L2(T,∧j+2Cm) = 0

for all ψ ∈ H2(D,Cm)⊥ if and only if

1

2π

∫ 2π

0

〈(
Im −

j∑
i=0

η̄i(e
iθ)ηTi (eiθ)

)
Φ(eiθ), ψ(eiθ)

〉
Cm

= 0

for all ψ ∈ H2(D,Cm)⊥, which holds if and only if

(
Im −

j∑
i=0

η̄iη
T
i

)
Φ ∈ H2(D,Cm).
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Notice that W0, · · · ,Wj being unitary-valued, implies W ∗
0 · · ·W ∗

jWj · · ·W0 = Im, or equiva-

lently,

BjB
∗
j +

j∑
i=0

Bi−1B
∗
i−1η̄iη

T
i Bi−1B

∗
i−1 = Im,

which, by Lemma 3.2.46, is equivalent to the following equation

BjB
∗
j = Im −

j∑
i=0

η̄iη
T
i .

Thus

〈η̄(j)∧̇Φ, η̄(j)∧̇ψ〉L2(T,∧j+2Cm) = 0

for all ψ ∈ H2(D,Cm)⊥ if and only if

1

2π

∫ 2π

0

〈Bj(e
iθ)B∗j (e

iθ)Φ(eiθ), ψ(eiθ)〉Cm = 0,

which holds if and only if BjB
∗
jΦ ∈ H2(D,Cm), which is true by Proposition 3.2.53. Hence

diagram (3.190) commutes.

Our quest now is to associate the operator Γj+1 with a compact operator in order to

reach the conclusion that Tj+1 is also compact. Recall that, by Lemma 3.1.17, the following

diagram also commutes

H2(D,Cn−j−1)
MĀj−−→ Kj+1yHFj+1

yΓj+1

H2(D,Cm−j−1)⊥
MBj−−→ Lj+1.

(3.195)

(iv). Since Fj+1 ∈ H∞(D,C(n−j−1)×(m−j−1)) + C(T,C(n−j−1)×(m−j−1)), by Hartman’s The-

orem, the Hankel operator HFj+1
is compact, hence the operator Γj+1 is compact. Since

diagram (3.195) commutes and the operators MĀj and MBj are unitaries, Γj+1 is compact.

By (iii),

(η̄0∧̇ . . . ∧̇η̄j∧̇·) ◦ (MBj ◦HFj+1
◦M∗

Āj
) ◦ (ξ0∧̇ . . . ∧̇ξj∧̇·)∗ = Tj+1.

By (i) and (ii), the operators MĀj , MBj , (ξ0∧̇ . . . ∧̇ξj∧̇·) and (η̄0∧̇ . . . ∧̇η̄j∧̇·) are unitaries,

Hence Tj+1 is a compact operator.

(v). Since diagram (3.186) commutes and the operators MĀj , MBj , (ξ0∧̇ . . . ∧̇ξj∧̇·) and

(η̄0∧̇ . . . ∧̇η̄j∧̇·) are unitaries,

‖Tj+1‖ = ‖Γj+1‖ = ‖HFj+1
‖ = tj+1.

Lemma 3.2.55. Let vj+1 ∈ H2(D,Cn) and wj+1 ∈ H2(D,Cm)⊥ be such that

(ξ0∧̇ · · · ∧̇ξj∧̇vj+1, η̄0∧̇ · · · ∧̇η̄j∧̇wj+1)
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is a Schmidt pair for the operator Tj+1 corresponding to ‖Tj+1‖. Then

(i) there exist xj+1 ∈ Kj+1 and yj+1 ∈ Lj+1 such that (xj+1, yj+1) is a Schmidt pair for the

operator Γj+1.

(ii). For any xj+1 ∈ Kj+1 and yj+1 ∈ Lj+1 such that

ξ0∧̇ · · · ∧̇ξj∧̇xj+1 = ξ0∧̇ · · · ∧̇ξj∧̇vj+1, η̄0∧̇ · · · ∧̇η̄j∧̇yj+1 = η̄0∧̇ · · · ∧̇η̄j∧̇wj+1,

the pair (xj+1, yj+1) is a Schmidt pair for Γj+1 corresponding to ‖Γj+1‖.

Proof. (i). By Theorem 3.2.54, the diagram (3.190) commutes, (ξ0∧̇ · · · ∧̇ξj∧̇·) is unitary

from Kj+1 to Xj+1, and (η̄0∧̇ · · · ∧̇η̄j∧̇·) is unitary from Lj+1 to Yj+1. Thus

‖Γj+1‖ = ‖Tj+1‖ = tj+1.

Moreover, the operator Γj+1 : Kj+1 → Lj+1 is compact, hence there exist xj+1 ∈ Kj+1,

yj+1 ∈ Lj+1 such that (xj+1, yj+1) is a Schmidt pair for Γj+1 corresponding to ‖Γj+1‖ = tj+1.

(ii). Suppose that xj+1 ∈ Kj+1, yj+1 ∈ Lj+1 satisfy

ξ0∧̇ · · · ∧̇ξj∧̇xj+1 = ξ0∧̇ · · · ∧̇ξj∧̇vj+1, (3.196)

η̄0∧̇ · · · ∧̇η̄j∧̇yj+1 = η̄0∧̇ · · · ∧̇η̄j∧̇wj+1. (3.197)

Let us show that (xj+1, yj+1) is a Schmidt pair for Γj+1, that is,

Γj+1xj+1 = tj+1yj+1, Γ∗j+1yj+1 = tj+1xj+1.

Since diagram (3.190) commutes,

Tj+1 ◦ (ξ0∧̇ · · · ∧̇ξj∧̇·) = (η̄0∧̇ · · · ∧̇η̄j∧̇·) ◦ Γj+1 (3.198)

and

(ξ0∧̇ · · · ∧̇ξj∧̇·)∗ ◦ T ∗j+1 = Γ∗j+1 ◦ (η̄0∧̇ · · · ∧̇η̄j∧̇·)∗. (3.199)

By hypothesis,

Tj+1(ξ0∧̇ · · · ∧̇ξj∧̇vj+1) = tj+1(η̄0∧̇ · · · ∧̇η̄j∧̇wj+1) (3.200)

and

T ∗j+1(η̄0∧̇ · · · ∧̇η̄j∧̇wj+1) = tj+1(ξ0∧̇ · · · ∧̇ξj∧̇vj+1). (3.201)

Thus, by equations (3.196), (3.197) and (3.200),

Γj+1xj+1 = (η̄0∧̇ · · · ∧̇η̄j∧̇·)∗Tj+1(ξ0∧̇ · · · ∧̇ξj∧̇vj+1)

= (η̄0∧̇ · · · ∧̇η̄j∧̇·)∗ ◦ tj+1(η̄0∧̇ · · · ∧̇η̄j∧̇wj+1)

= tj+1(η̄0∧̇ · · · ∧̇η̄j∧̇·)∗ ◦ (η̄0∧̇ · · · ∧̇η̄j∧̇yj+1).
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Hence

Γj+1xj+1 = tj+1(η̄0∧̇ · · · ∧̇η̄j∧̇·)∗(η̄0∧̇ · · · ∧̇η̄j∧̇·)yj+1 = tj+1yj+1.

By equation (3.196),

xj+1 = (ξ0∧̇ · · · ∧̇ξj∧̇·)∗(ξ0∧̇ · · · ∧̇ξj∧̇vj+1),

and, by equation (3.197),

(η̄0∧̇ · · · ∧̇η̄j∧̇·)∗(η̄0∧̇ · · · ∧̇η̄j∧̇wj+1) = yj+1.

Thus
Γ∗j+1yj+1 = Γ∗j+1 ◦ (η̄0∧̇ · · · ∧̇η̄j∧̇·)∗(η̄0∧̇ · · · ∧̇η̄j∧̇wj+1)

= (ξ0∧̇ · · · ∧̇ξj·)∗ ◦ T ∗j+1(η̄0∧̇ · · · ∧̇η̄j∧̇wj+1),

last equality following by equation (3.199). By equations (3.196) and (3.200), we get

T ∗j+1(η̄0∧̇ · · · ∧̇η̄j∧̇wj+1) = tj+1(ξ0∧̇ · · · ∧̇ξj∧̇vj+1) = tj+1(ξ0∧̇ · · · ∧̇ξj∧̇xj+1),

and so,

Γ∗j+1yj+1 = tj+1xj+1.

Therefore (xj+1, yj+1) is a Schmidt pair for Γj+1 corresponding to ‖Γj+1‖ = tj+1.

Lemma 3.2.56. Suppose that

(ξ0∧̇ · · · ∧̇ξj∧̇vj+1, η̄0∧̇ · · · ∧̇η̄j∧̇wj+1)

is a Schmidt pair for the operator Tj+1 corresponding to ‖Tj+1‖ = tj+1. Let

xj+1 = (ICn − ξ0ξ
∗
0 − · · · − ξjξ∗j )vj+1,

yj+1 = (ICm − η̄0η
T
0 − · · · − η̄jηTj )wj+1,

and let

x̂j+1 = ATj xj+1, ŷj+1 = B∗j yj+1.

Then the pair (x̂j+1, ŷj+1) is a Schmidt pair for HFj+1
corresponding to ‖HFj+1

‖ = tj+1.

Proof. Let us first show that x̂j+1 ∈ H2(D,Cn−j−1) and xj+1 ∈ Kj+1. Recall that, for

i = 0, · · · , j, V0 and Ṽi are unitary-valued, that is αT0 ξ0 = 0 and ATi ξi = 0. Hence we

have

x̂j+1 = ATj xj+1

= ATj (In − ξ0ξ
∗
0 − · · · − ξjξ∗j )vj+1

= ATj vj+1 − ATj ξ0ξ
∗
0vj+1 − · · · − ATj ξjξ∗j vj+1

= ATj vj+1, (3.202)
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which implies that x̂2 ∈ H2(D,Cn−2). By Lemma 3.2.45,

Ājx̂j+1 = ĀjA
T
j vj+1 = xj+1, (3.203)

and thus xj+1 ∈ Kj+1.

Next, we shall show that and ŷj+1 ∈ H2(D,Cn−j−1)⊥ and yj+1 ∈ Lj+1. Notice that, for

all i = 1, · · · , j, W0 and W̃i are unitary valued, that is β∗0 η̄0 = 0 and B∗i η̄i = 0. Then we have

ŷj+1 = B∗j yj+1

= B∗j (Im − η̄0η
T
0 − · · · − η̄jηTj )wj+1

= B∗jwj+1 −B∗j η̄0η
T
0 wj+1 − · · · −B∗j η̄jηTj wj+1

= B∗jwj+1, (3.204)

which implies that ŷj+1 ∈ H2(D,Cm−j−1)⊥.

By Lemma 3.2.46,

Bj ŷj+1 = BjB
∗
jwj+1 = yj+1, (3.205)

and hence yj+1 ∈ Lj+1.

Recall that, by Theorem 3.2.54, the maps

MĀj : H2(D,Cn−j−1)→ Kj+1, MBj : H2(D,Cm−j−1)⊥ → Lj+1,

are unitaries and

HFj+1
= M∗

Bj
◦ Γj+1 ◦MĀj . (3.206)

Furthermore, by Proposition 3.2.55,

Γj+1xj+1 = tj+1yj+1, Γ∗j+1yj+1 = tj+1xj+1. (3.207)

We need to show that

HFj+1
x̂j+1 = tj+1ŷj+1, H∗Fj+1

ŷj+1 = tj+1x̂j+1.

By equation (3.206), we have

HFj+1
x̂j+1 = HFj+1

ATj xj+1

= B∗jΓj+1ĀjA
T
j xj+1 (3.208)

Notice that, by equations (3.202) and (3.203),

xj+1 = ĀjA
T
j xj+1. (3.209)

Hence, by equations (3.207) and (3.208), we obtain
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HFj+1
x̂j+1 = B∗jΓj+1xj+1 = tj+1B

∗
j yj+1 = tj+1ŷj+1.

Let us show that H∗Fj+1
ŷj+1 = tj+1x̂j+1. For ŷj+1 = B∗j yj+1 and by equation (3.207), we

get

H∗Fj+1
ŷj+1 = H∗Fj+1

B∗j yj+1

= ATj+1Γ∗j+1BjB
∗
j yj+1 (3.210)

Observe that, in view of equations (3.204) and (3.205), we have

yj+1 = BjB
∗
j yj+1. (3.211)

Hence, by equations (3.207) and (3.210), we obtain

H∗Fj+1
ŷj+1 = ATj+1Γ∗j+1yj+1 = tj+1A

T
j+1xj+1 = tj+1x̂j+1.

Therefore (x̂j+1, ŷj+1) is a Schmidt pair for the Hankel operator HFj+1
corresponding to

‖HFj+1
‖ = tj+1.

Proposition 3.2.57. Let

(ξ0∧̇ · · · ∧̇ξj∧̇vj+1, η̄0∧̇ · · · ∧̇η̄j∧̇wj+1)

be a Schmidt pair for Tj+1 corresponding to tj+1 for some vj+1 ∈ H2(D,Cn),

wj+1 ∈ H2(D,Cm)⊥. Let

xj+1 = (In − ξ0ξ
∗
0 − · · · − ξjξ∗j )vj+1, yj+1 = (Im − η̄0η

T
0 − · · · − η̄jηTj )wj+1,

and let

x̂j+1 = ATj xj+1 and ŷj+1 = B∗j yj+1. (3.212)

Then

‖ξ0(z) ∧ . . . ∧ ξj(z) ∧ vj+1(z)‖∧j+2Cn = ‖η̄0(z) ∧ . . . ∧ η̄j(z) ∧ wj+1(z)‖∧j+2Cm = |hj+i(z)|,
‖x̂j+1(z)‖Cn−j−1 = ‖ŷj+1(z)‖Cm−j−1 = |hj+1(z)|, and

‖xj+1(z)‖Cn = ‖yj+1(z)‖Cm = |hj+1(z)|,
(3.213)

almost everywhere on T.

Proof. By Lemma 3.2.56, (x̂j+1, ŷj+1) is a Schmidt pair for HFj+1
corresponding to

‖HFj+1
‖ = tj+1. Hence

HFj+1
x̂j+1 = tj+1ŷj+1 and H∗Fj+1

ŷj+1 = tj+1x̂j+1.
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3.2. Algorithm for superoptimal analytic approximation

By Theorem D.2.4,

tj+1‖ŷj+1(z)‖Cm−j−1 = ‖HFj+1
‖‖x̂j+1(z)‖Cn−j−1

almost everywhere on T. Thus

‖ŷj+1(z)‖Cm−j−1 = ‖x̂j+1(z)‖Cn−j−1 (3.214)

almost everywhere on T.
Notice that, Āj(z) are isometric for almost every z ∈ T, and therefore, by equations

(3.212), we obtain

‖xj+1(z)‖Cn = ‖x̂j+1(z)‖Cn−j−1 .

Moreover, since Bj(z) are isometries almost everywhere on T, by equations (3.212), we

get

‖yj+1(z)‖Cm = ‖ŷj+1(z)‖Cm−j−1

almost everywhere on T. By equations (3.214), we deduce

‖xj+1(z)‖Cn = ‖yj+1(z)‖Cm (3.215)

almost everywhere on T.
By Proposition 3.2.1,

ξ0∧̇ · · · ∧̇ξj∧̇xj+1 = ξ0∧̇ · · · ∧̇ξj∧̇vj+1 (3.216)

and

η̄0∧̇ · · · ∧̇η̄j∧̇yj+1 = η̄0∧̇ · · · ∧̇η̄j∧̇wj+1. (3.217)

Hence, by Proposition 2.1.22,

‖ξ0(z) ∧ · · · ∧ ξj(z) ∧ vj+1(z)‖∧j+2Cn

= ‖ξ0(z) ∧ · · · ∧ ξj(z) ∧ xj+1(z)‖∧j+2Cn ,

= ‖xj+1(z)−
j∑
i=0

〈xj+1(z), ξi(z)〉ξi(z)‖Cn = ‖xj+1(z)‖Cn ,

almost everywhere on T. Furthermore

‖η̄0(z) ∧ · · · ∧ η̄j(z) ∧ wj+1(z)‖∧j+2Cm = ‖η̄0(z) ∧ · · · ∧ η̄j(z) ∧ yj+1(z)‖∧j+2Cm

= ‖yj+1(z)−
j∑
i=0

〈yj+1(z), η̄i(z)〉η̄i(z)‖Cm = ‖yj+1(z)‖Cm

almost everywhere on T. Thus, by equation (3.215),

‖η̄0(z) ∧ · · · ∧ η̄j(z) ∧ wj+1(z)‖∧j+2Cm = ‖ξ0(z) ∧ · · · ∧ ξj(z) ∧ vj+1(z)‖∧j+2Cn
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almost everywhere on T.
Recall that hj+1 is the scalar outer factor of ξ0 ∧ · · · ∧ ξj ∧ vj+1. Hence

‖x̂j+1(z)‖Cn−j−1 = ‖ŷj+1(z)‖Cm−j−1 = |hj+1(z)|,

‖xj+1(z)‖Cn = ‖yj+1(z)‖Cm = |hj+1(z)|,

and

‖ξ0(z) ∧ · · · ∧ ξj(z) ∧ vj+1(z)‖∧j+2Cn = ‖η̄0(z) ∧ · · · ∧ η̄j(z) ∧ wj+1(z)‖∧j+2Cm‖ = |hj+1(z)|,

almost everywhere on T.

Proposition 3.2.58. In the notation of Theorem 3.2.54, there exist unitary-valued functions

Ṽj+1, W̃j+1 of types (n− j − 1)× (n− j − 2) and (m− j − 1)× (m− j − 2) respectively of

the form

Ṽj+1 =
(
Ajξj+1 ᾱj+1

)
, W̃ T

j+1 =
(
BT
j ηj+1 β̄j+1

)
,

where αj+1, βj+1 are inner, co-outer, quasi-continuous and all minors on the first columns

of Ṽj+1, W̃
T
j+1 are in H∞. Furthermore, the set Ej+1 of all level j + 1 superoptimal error

functions for G is equal to the following set

W ∗
0 · · ·

(
Ij+1 0

0 W̃ ∗j+1

)
t0u0 0 0 0

0 t1u1 0 0

...
. . .

...

0 0 tj+1uj+1 0

0 0 0 (Fj+2 +H∞) ∩B(tj+1)

(Ij+1 0

0 Ṽ ∗j+1

)
· · ·V ∗0 ,

where Fj+2 ∈ H∞(D,C(m−j−2)×(n−j−2)) + C(T,C(m−j−2)×(n−j−2)), uj+1 =
z̄h̄j+1

hj+1
is a quasi-

continuous unimodular function and B(tj+1) is the closed ball of radius tj+1 in

L∞(T,C(m−j−2)×(n−j−2)).

Proof. Recall that, in diagrams (3.190) and (3.195), the operators MĀj , MBj , (ξ0∧̇ · · · ∧̇ξj·)
and (η̄0∧̇ · · · ∧̇η̄j∧̇·) are unitaries. Since both diagrams commute and (xj+1, yj+1) defined

above is a Schmidt pair for Γj+1 corresponding to tj+1, by Lemma 3.2.56, (x̂j+1, ŷj+1) is a

Schmidt pair for HFj+1
corresponding to tj+1, where

x̂j+1 = Ajxj+1, ŷj+1 = B∗j yj+1.

We would like to apply Lemma 3.1.12 to HFj+1
and the Schmidt pair (x̂j+1, ŷj+1) to find

unitary-valued functions Ṽj+1, W̃j+1 such that, for every Q̃j+1 ∈ H∞(D,C(m−j−1)×(n−j−1))

which is at minimal distance from Fj+1, we obtain a factorisation of the form

Fj+1 − Q̃j+1 = W̃ ∗
j+1

(
tj+1uj+1 0

0 Fj+2

)
Ṽ ∗j+1,
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3.2. Algorithm for superoptimal analytic approximation

for some Fj+2 ∈ H∞(D,C(m−j−2)×(n−j−2)) +C(T,C(m−j−2)×(n−j−2)). For this purpose we find

the inner-outer factorisations of x̂j+1 and z̄ ¯̂yj+1.

By Proposition 3.2.57,

‖x̂j+1(z)‖Cn−j−1 = |hj+1(z)| (3.218)

and

‖ŷj+1(z)‖Cm−j−1 = |hj+1(z)| (3.219)

almost everywhere on T. Equations (3.218) and (3.219) imply that hj+1 ∈ H2(D,C) is the

scalar outer factor of both x̂j+1 and z̄ ¯̂yj+1.

Hence, by Lemma 3.1.12, x̂j+1, z̄ ¯̂yj+1 admit the inner outer factorisations

x̂j+1 = ξ̂j+1hj+1, z̄ȳj+1 = η̂j+1hj+1,

for some inner ξ̂j+1 ∈ H∞(D,Cn−j−1), η̂j+1 ∈ H∞(D,Cm−j−1). Then

x̂j+1 = ξ̂j+1hj+1 = ATj xj+1, z̄ ¯̂yj+1 = η̂j+1hj+1 = z̄BT
j ȳj+1,

from which we obtain

ξ̂j+1 = ATj ξj+1, η̂j+1 = BT
j ηj+1.

We would like to show that ATj ξj+1, B
T
j ηj+1 are inner functions in order to apply Lemma

3.1.12 and obtain Ṽj+1 and W̃j+1. Observe that, by equations (3.203), (3.205), (3.209) and

(3.211),

xj+1 = ĀjA
T
j vj+1, yj+1 = BjB

∗
jwj+1.

Then

ATj xj+1 = ATj vj+1, BT
j ȳj+1 = BT

j w̄j+1,

and since

ξj+1 =
xj+1

hj+1

, ηj+1 =
z̄ȳj+1

hj+1

,

we get that the functions

ATj ξj+1 =
ATj vj+1

hj+1

, BT
j ηj+1 =

B∗jwj+1

h2

are analytic. Furthermore, by Proposition 3.2.1 ‖ξj+1(z)‖Cn = 1 and ‖ηj+1(z)‖Cm = 1 almost

everywhere on T, and, by equations (3.218),

‖ATj (z)ξj+1(z)‖Cn−j−1 = 1, ‖BT
j (z)ηj+1(z)‖Cm−j−1 = 1

almost everywhere on T. Thus ATj ξj+1, B
T
j ηj+1 are inner functions.
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By Lemma 3.1.12, there exist inner, co-outer, quasi-continuous functions αj+1, βj+1 of

types (n− j− 1)× (n− j− 2), (m− j− 1)× (m− j− 2) respectively such that the functions

Ṽj+1 =
(
ATj ξj+1 ᾱj+1

)
, W̃ T

j+1 =
(
BT
j ηj+1 β̄j+1

)
are unitary-valued with all minors on the first columns in H∞.

Furthermore, by Lemma 3.1.12, every Q̂j+1 ∈ H∞(D,C(m−j−1)×(n−j−1)) which is at minimal

distance from Fj+1 satisfies

Fj+1 − Q̂j+1 = W̃ ∗
j+1

(
tj+1uj+1 0

0 Fj+2

)
Ṽ ∗j+1,

for some Fj+2 ∈ H∞(D,C(m−j−2)×(n−j−2))+C(T,C(m−j−2)×(n−j−2)) and uj+1 a quasi-continuous

unimodular function given by uj+1 =
z̄h̄j+1

hj+1
.

By Lemma 3.1.15, the set

Ẽj+1 = {Fj+1 − Q̂ : Q̂ ∈ H∞(D,C(m−j−1)×(n−j−1)), ‖Fj+1 − Q̂‖L∞ = tj+1}

satisfies

Ẽj+1 = W̃ ∗
j+1

(
t
j+1
u
j+1

0

0 (Fj+2 +H∞) ∩B(tj+1)

)
V ∗j+1,

where B(tj+1) is the closed ball of radius tj+1 in L∞(T,C(m−j−2)×(n−j−2)). Thus, by Propo-

sition 3.2.43, Ej+1 admits the factorisation claimed.

Theorem 3.2.59. Let G ∈ H∞(D,Cm×n) + C(T,Cm×n), where m,n are positive integers

with min(m,n) ≥ 2. Let Ti, ti, xi, yi, hi, for i ≥ 0, be defined by the algorithm from Section

3.2.1. Let r be the least index j ≥ 0 such that Tj = 0. Then the superoptimal analytic

approximant AG ∈ H∞(D,Cm×n) is equal to

AG = G−
r−1∑
i=0

tiyix
∗
i

|hi|2
. (3.220)

Proof. First observe that, if T0 = HG = 0, then this implies G ∈ H∞(D,Cm×n), and so

AG = G.

Otherwise, let t0 = ‖HG‖ > 0. If T1 = 0, by Theorem 3.2.10, HF1 = 0, that is,

F1 ∈ H∞(D,C(m−1)×(n−1)).

Then, by Lemma 3.1.15, we get

W0(G−AG)V0 =

(
t0u0 0

0 0

)
.

178



3.2. Algorithm for superoptimal analytic approximation

Equivalently

G−AG = W ∗
0

(
t0u0 0

0 0

)
V ∗0

=
(
η̄0 β0

)(t0u0 0

0 0

)(
ξ∗0

αT0

)

=
(
η̄0t0u0 0

)( ξ∗0
αT0

)

= η̄0t0u0ξ
∗
0 = t0

zy0

h̄0

z̄h̄0

h0

x∗0
h̄0

=
t0y0x

∗
0

|h0|2
.

Let j be a non-negative integer such that Tj = 0 and Ti 6= 0 for 1 ≤ i < j. By the commuta-

tivity of the diagrams (3.190) and (3.195), HFj = 0, and therefore Fj ∈ H∞(D,C(m−j)×(n−j)).

By Proposition 3.2.58, the superoptimal analytic approximant AG satisfies equation (3.150),

that is,

G−AG = W ∗
0W

∗
1 · · ·W ∗

j−1



t0u0 0 . . . 0

0 t1u1 . . . 0
...

. . .
...

0 · · · tj−1uj−1 0

0 . . . . . . 0


V ∗j−1 · · ·V ∗1 V ∗0 , (3.221)

where, for i = 0, 1, . . . , j − 1,

Ṽi =
(
αTi−1 · · ·αT0 ξi ᾱi

)
, W̃ T

i =
(
βTi−1 · · · βT0 ηi β̄i

)
are unitary-valued functions, as described in Proposition 3.149, ui = z̄h̄i

hi
are quasi-continuous

unimodular functions, and

Vi =

(
Ii 0

0 Ṽi

)
, Wi =

(
Ii 0

0 W̃i

)
.

Recall that, by equations (3.28), for i = 0, . . . , j − 1,

ξi =
xi
hi
, ηi =

z̄ȳi
hi
. (3.222)

By Proposition 3.2.57, for i = 0, . . . , j − 1,

|hi(z)| = ‖xi(z)‖Cn = ‖yi(z)‖Cm almost everywhere on T.
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Multiplication of matrices in (3.221) gives the following formula

G−AG =
t0y0x

∗
0

|h0|2
+ t1

1

|h1|2
β0β

∗
0y1x

∗
1ᾱ0α

T
0 + . . .

+ tj−1
1

|hj−1|2
β0β1 . . . βj−1β

∗
j−1 . . . β

∗
1β
∗
0yj−1x

∗
j−1ᾱ0ᾱ1 . . . ᾱj−1α

T
j−1 . . . α

T
1 α

T
0 .

(3.223)

By equations (3.209) and (3.211), for i = 0, . . . , j − 1,

xi = ᾱ0ᾱ1 . . . ᾱi−1α
T
i−1 . . . α

T
0 xi and yi = β0β1 . . . βi−1β

∗
i−1 . . . β

∗
1β
∗
0yi.

Thus

G−AG =
r−1∑
i=0

tiyix
∗
i

|hi|2

and the assertion has been proved.
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Chapter 4

Application of the algorithm

In this chapter we present the application of the algorithm from Section 3.2.1 to two concrete

examples. The first is a trivial example and has been briefly explained in Chapter 1, however

its simplicity provides the reader with the opportunity to understand how the steps we

describe in Section 3.2.1 work. For our second example we choose the matrix-function that

appeared in [25]. The solution we provide gives to a substantial illustration of the similarities

and differences to the method used in [25].

Problem 4.0.1. Find the superoptimal analytic approximant of

G(z) =

(
2/z 0

0 1/z

)
, z ∈ T.

Solution: Step 0. First, we find the Hankel operator with symbol G. This is

HG : H2(D,C2)→ H2(D,C2)⊥

and its matrix representation with respect to the orthonormal bases of H2(D,C2) and

H2(D,C2)⊥, namely {(
1

0

)
,

(
0

1

)
,

(
z

0

)
,

(
0

z

)
, . . .

}
and {(

z

0

)
,

(
0

z

)
,

(
z2

0

)
,

(
0

z2

)
, . . .

}
respectively, is

HG =


2 0 0 0 · · ·
0 1 0 · · · · · ·
...

...
...

...
...

 ,

all other entries being zero.
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Thus

t0 = ‖HG‖ =

∥∥∥∥∥
(

2 0

0 1

)∥∥∥∥∥ = 2.

The maximizing vectors x0 ∈ H2(D,C2) for HG are those which satisfy

x0 6= 0 and ‖HGx0‖H2(D,C2)⊥ = 2‖x0‖H2(D,C2).

Thus, a maximizing vector is x0(z) =

(
1

0

)
, z ∈ D. Following that, we can find a vector

y0 ∈ H2(D,C2)⊥ such that (x0, y0) is a Schmidt pair for HG corresponding to the singular

value ‖HG‖ = 2, by solving the equations

HGx0 = 2y0 and H∗Gy0 = 2x0. (4.1)

Then,

HGx0 = P−(Gx0)

= P−

(
2/z 0

0 1/z

)(
1

0

)

= P−

(
2/z

0

)
,

hence

y0(z) =

(
1/z

0

)
for all z ∈ T.

We can see that for these x0, y0 the other condition of (4.1) is also satisfied since

H∗Gy0 = P+G
∗y0 = P+

((
2
z̄

0

0 1
z̄

)(
1
z

0

))
= 2

(
1

0

)
= 2x0.

Also,

‖x0(z)‖C2 = ‖y0(z)‖C2 = 1 almost everywhere on T.

By Lemma 3.1.12, x0 and y0 admit the inner-outer factorisations

x0 = ξ0h0, z̄ȳ0 = η0h0, (4.2)

for some inner ξ0, η0 ∈ H∞(D,C2) and some scalar outer h0 ∈ H2(D,C). Clearly, for almost

all z ∈ T

x0(z) =

(
1

0

)
= ξ0(z)h0(z) and z̄ȳ0(z) = z̄

(
z

0

)
=

(
1

0

)
= η0(z)h0(z),
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where

h0(z) = 1, ξ0(z) =

(
1

0

)
, η0(z) =

(
1

0

)
.

Let us find a function Q0 ∈ H∞(D,C2×2) at minimal distance from G. Such a function, by

Theorem D.2.4, necessarily satisfies

(G−Q0)x0 = 2y0 (4.3)

and

y∗0(G−Q0) = 2x∗0. (4.4)

Let us work each equation separately. Let

Q0 =

(
q11 q12

q21 q22

)
∈ H∞(D,C2×2).

Equation (4.3) is equivalent to

Q0x0 = Gx0 − 2y0.

Substituting from above, we get, for all z ∈ D,

Q0

(
1

0

)
=

(
2/z 0

0 1/z

)(
1

0

)
− 2

(
1/z

0

)
=

(
0

0

)
,

which gives us

q11(z) = q21(z) = 0,

for all z ∈ D. By equation (4.4), we get

y∗0Q0 = y∗0G− 2x∗0.

Substituting from above,

(
z 0

)
Q0 =

(
z 0

)(2/z 0

0 1/z

)
− 2

(
1 0

)
=
(

0 0
)
,

for all z ∈ D. This yields q12(z) = 0. Thus Q0 is of the form

Q0 =

(
0 0

0 q22

)
, for some q22 ∈ H∞(D,C).

For any such Q0,

(G−Q0)(z) =

(
2z̄ 0

0 z̄ − q22(z)

)
for all z ∈ T,

where z̄ − q22(z) must satisfy ‖z̄ − q22‖L∞ ≤ 2, for Q0 to be at minimal distance from G. It
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suffices to choose q22 = 1, since

‖G−Q0‖L∞ =

∥∥∥∥∥
(

2/z 0

0 1−z
z

)∥∥∥∥∥
L∞

= max

{
2, ess sup

z∈T

∣∣∣∣1− zz
∣∣∣∣} = 2.

Thus we take

Q0 =

(
0 0

0 1

)
∈ H∞(D,C2×2).

Step 1. Let

X1
def
= ξ0∧̇H2(D,C2), Y1

def
= η̄0∧̇H2(D,C2)⊥,

where ξ0, η0 are introduced in equation (4.2) and

ξ0(z) =

(
1

0

)
= η0(z) for all z ∈ D.

Define T1 : X1 → Y1 by

T1

((
1

0

)
∧̇x

)
= PY1

((
1

0

)
∧̇(G−Q0)x

)
, (4.5)

for all x =

(
x1

x2

)
∈ H2(D,C2). We have

T1

((
1

0

)
∧̇x

)
= PY1

((
1

0

)
∧̇(G−Q0)x

)

= PY1

((
1

0

)
∧̇

(
2
z

0

0 1
z
− q22

)(
x1

x2

))

= PY1

((
1

0

)
∧̇

(
2z̄x1

(z̄ − q22)x2

))
.

Note that

X1 =

{(
1

0

)
∧̇

(
f1

f2

)
: f1, f2 ∈ H2(D,C)

}
∼= {f2 : f2 ∈ H2(D,C)}

= H2(D,C),

Y1 =

{(
1

0

)
∧̇

(
φ1

φ2

)
: φ1, φ2 ∈ H2(D,C)⊥

}
∼= {φ2 : φ2 ∈ H2(D,C)⊥}

= H2(D,C)⊥,
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where the isomorphisms are following from Proposition 2.1.26. Thus

X1
∼= H2(D,C), Y1

∼= H2(D,C)⊥.

Hence T1 : H2(D,C)→ H2(D,C)⊥ is defined by

T1(x) = PH2(D,C)⊥

(
1

z
− q22

)
x = PH2(D,C)⊥

(
1

z
− 1

)
x.

Therefore

T0(x) = Hgx for all x ∈ H2(D,C),

where Hg : H2(D,C)→ H2(D,C)⊥ is the Hankel operator with symbol g(z) = 1
z
− 1.

If T1 = 0, then Hgx = 0 for all x ∈ H2(D,C). Note that Hgx = 0 means

H 1
z
−1x = H 1

z
x = 0 for all x ∈ H2(D,C).

This a contradiction, since 1/z /∈ H∞(D,C). Thus T1 6= 0.

Let us now calculate ‖T1‖. By equation (3.15), for all x ∈ H2(D,C),

‖T1(x)‖ = ‖H1/zx‖,

and

‖H1/z‖ = dist(1/z,H∞) = 1.

If we take x(z) = 1 for all z ∈ D, then H1/zx = 1/z and

‖H1/zx‖ = 1.

Thus ‖T1‖ = 1. Since g ∈ H∞(D,C) +C(T,C), Hg is a compact operator, as a result, T0 is a

compact operator. This means that there exist functions v ∈ H2(D,C2), w ∈ L2(T,C2), say

v =

(
v1

v2

)
, w =

(
w1

w2

)

such that (ξ0∧̇v, η̄0∧̇w) is a Schmidt pair corresponding to ‖T1‖, or equivalently, the following

equations hold

T1(ξ0∧̇v) = ‖T1‖(η̄0∧̇w) (4.6)

and

T ∗1 (η̄0∧̇w) = ‖T1‖(ξ0∧̇v). (4.7)

Let us find v and w. Equation (4.6) yields

T1(v2) = H1/zv2 = w2.

185



Also, equation (4.7) yields

T ∗1 (w2) = v2.

The adjoint operator T ∗1 will be H∗1
z

: H2(D,C)⊥ → H2(D,C). By equation (4.7),

H∗1/zw2 = v2.

If we take v2(z) = 1 for all z ∈ D, we get w2(z) = 1/z for all z ∈ T. Thus we may choose

v =

(
0

1

)
∈ H2(D,C2), w =

(
0

1/z

)
∈ L2(T,C2).

Next, let

x1(z) = (IC2 − ξ0(z)ξ∗0(z))v(z), y1(z) = (IC2 − η0(z)ηT0 (z))w(z),

for all z ∈ D. We have

x1(z) =

(
0

1

)
, y1(z) =

(
0

1/z

)
for all z ∈ T.

Set

ξ1 =
x1

h1

, η1 =
zy1

h̄1

.

Clearly, for all z ∈ D

h1(z) = 1, ξ1(z) =

(
0

1

)
, η1(z) =

(
0

1

)
.

Let us find a function Q1 ∈ H∞(D,C2×2) which satisfies the equations

(G−Q1)x0 = ‖T0‖y0, y∗0(G−Q1) = ‖T0‖x∗0,

(G−Q1)x1 = ‖T1‖y1, y∗1(G−Q1) = ‖T1‖x∗1.

Those equations yield

Q1 =

(
0 0

0 q̃22

)
, for some q̃22 ∈ H∞(D,C)

and

Gx1 − y1 = Q1x1 and y∗1G− x∗1 = y∗1Q1.

Substituting from above we have(
2/z 0

0 1/z

)(
0

1

)
−

(
0

1/z

)
=

(
0 0

0 q̃22

)(
0

1

)
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and (
0 1

z̄

)(2/z 0

0 1/z

)
−
(

0 1
)

=
(

0 1
z̄

)(0 0

0 q̃22

)
.

The first equality gives

q̃22 = 0.

For Q1 to satisfy the above equations, it suffices to choose

Q1 = OC2×2 ∈ H∞(D,C2×2).

Step 2. Let

X2 = ξ0∧̇ξ1∧̇H2(D,C2), Y2 = η̄0∧̇η̄1∧̇H2(D,C2)⊥.

Note that for all z ∈ D and for every x ∈ H2(D,C2), x(z) will be in span{ξ0(z), ξ1(z)}. Also,

for all z ∈ D and for every y ∈ H2(D,C2)⊥, y(z) will be in span{η̄0(z), η̄1(z)}. Therefore

X2 = Y2 = {0}, and so T2 = 0. Thus the algorithm terminates. The solution is given by

G−AG =
1∑
i=0

tixiy
∗
i

|hi|2

=
t0y0x

∗
0

|h0|2
+
t1y1x

∗
1

|h1|2

= 2

(
1/z

0

)(
1 0

)
· 1 + 1 ·

(
0

1

)(
0

1/z

)(
1 0

)
· 1

=

(
2/z 0

0 1/z

)
= G.

Thus,

AG = G−G = OC2×2 .

Therefore G is a very badly approximable function.

Let us now consider the example Peller and Young studied in [25].

Problem 4.0.2. Let G = B−1A ∈ L∞(D,C2×2) where

A(z) =

(√
3 + 2z 0

0 1

)
, B(z) =

1√
2

(
z2 z

z − 1

)
, for all z ∈ T.

Find the superoptimal singular values of G and its superoptimal approximant AG ∈ H∞,
that is, the unique AG such that the sequence

s∞(G−AG) = (s∞0 (G−AG), s∞1 (G−AG))

is lexicographically minimised.
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We will illustrate how the algorithm from Section 3.2.1 is used to determine the superop-

timal analytic approximant AG of the G that was studied in [25]. It should be emphasised

that, in line with Theorem 1.1.4, we obtain exactly the same AG as Peller and Young in

[25].

Solution: On T it is

G(z) =
1√
2

(√
3z̄2 + 2z̄ z̄√
3z̄ + 2 −1

)
.

The operator H∗GHG with respect to the orthonormal basis

B =

{(
1

0

)
,

(
z

0

)
,

(
0

1

)
,

(
0

z

)}

of (z2H2)⊥, has matrix representation

H∗GHG ∼
1√
2


10 2

√
3 2 0

2
√

3 3
√

3 0

2
√

3 1 0

0 0 0 0

 .

Step 0: In this case t0 = ‖HG‖ =
√

6 and a non-zero vector x0 ∈ H2(D,C2) such that

‖HGx0‖H2(D,C2)⊥ = ‖HG‖‖x0‖H2(D,C2)

is

x0(z) =

(
4 +
√

3z

1

)
.

For (x0, y0) to be a Schmidt pair for HG corresponding to ‖HG‖, the vector

y0 ∈ H2(D,C2)⊥ can be calculated by

y0(z) =
HGx0(z)

‖HG‖
= 2z̄

(
z̄ +
√

3

1

)
∈ H2(D,C2)⊥.

Next, we perform the inner-outer factorisations

x0 = ξ0h0, z̄ȳ0 = η0h0

for some inner ξ0, η0 ∈ H∞(D,C2) and some scalar outer h0 ∈ H2(D,C). In this example

ξ0(z) =
x0

h0

=
a

4
√

3(1− γz)

(
4 +
√

3z

1

)
,
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η̄0(z) =
zy0

h̄0

=
2a

4
√

3(1− γz̄)

(
z̄ +
√

3

1

)
,

where

h0(z) =
4
√

3

a
(1− γz),

a =
√

10− 2
√

13 and γ = − a2

4
√

3
.

A function Q1 ∈ H∞(D,C2×2) that satisfies

(G−Q1)x0 = t0y0, (G−Q1)∗y0 = t0x0

is

Q1(z) =

(
0

√
6

2
√

2 −
√

6(z +
√

3)

)
.

Step 1: Let X1 = ξ0∧̇H2(D,C2) and Y1 = η̄0∧̇H2(D,C2)⊥.

Let the compact operator T1 : X1 → Y1 be given by

T1(ξ0∧̇x) = PY1(η̄0∧̇(G−Q1)x)

for all x ∈ H2(D,C2).

Note that

X1 =

{
ξ0∧̇

(
f1

f2

)
: fi ∈ H2(D,C)

}

=

{
a

4
√

3

(4 +
√

3z)f2 − f1

1− γz
: fi ∈ H2(D,C)

}
.

If we choose

f1 = −4
√

3

a
(1− γz)g and f2 = 0

for some g ∈ H2(D,C), we obtain X1 = H2(D,C).

In a similar way, we have

Y1 =

{
η̄0∧̇

(
z̄φ̄1

z̄φ̄2

)
: φi ∈ H2(D,C)

}

=

{
az̄

2
√

3

(z̄ +
√

3)φ̄2 − φ̄1

1− γz̄
: φi ∈ H2(D,C)

}
.

If we choose

φ1 = −2
√

3

a
(1− γz)ψ, and φ2 = 0

for some ψ ∈ H2(D,C), we obtain Y1 = H2(D,C)⊥.

We have
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T1

(
ξ0∧̇

(
f1

f2

))
= T1

(
ξ0∧̇

(
−4
√

3
a

(1− γz)g

0

))
=

u(γ)

z − γ

where

u(γ) =
√

2(1− γ2)(2
√

3γ + 1)g(γ).

Then t1 = ‖T1‖ =
√

2(4−
√

13). Since T1 is a compact operator, there exist v1 ∈ H2(D,C2),

w1 ∈ H2(D,C2)⊥ such that

T1(ξ0∧̇v1) = t1(η̄0∧̇w1), T ∗1 (η̄0∧̇w1) = t1(ξ0∧̇v1).

Here we can choose

v1(z) =
4
√

3

a

(
−1

0

)
, w1(z) =

2
√

3

a
z̄

(
1

0

)
.

Perform the inner-outer factorisation of ξ0∧̇v1 ∈ H2(D,∧2C2). The function h1(z) = 1
1−γz is

the scalar outer factor of ξ0∧̇v1.

Let

x1(z) = (I − ξ0(z)ξ∗0(z))v1(z), y1(z) = (I − η̄0(z)ηT0 (z))w1(z).

Then

x1 =
γ

α

1

(1− γz)(1− γz̄)

(
−4
√

3
γ

(1− γz)(1− γz̄)− 19− 4
√

3(z + z̄)

−4−
√

3z̄

)
and

y1 =
2γz̄

α

1

(1− γz)(1− γz̄)

(√
3
γ

(1− γz)(1− γz̄) + 4 +
√

3(z + z̄)

z +
√

3

)
.

Calculations yield

x1 =
γ

α

1

(1− γz)(1− γz̄)

(
1

−4−
√

3z̄

)
, y1 =

2γz̄

α

1

(1− γz)(1− γz̄)

(
−1

z +
√

3

)
.

Observe that the algorithm stops after at most min(m,n) steps, hence in this case after 2

steps. Then, by Theorem 3.2.54, the unique analytic superoptimal approximant AG is given

by the formula

AG = G− t0y0x
∗
0

|h0|2
− t1y1x

∗
1

|h1|2
.

Now, all terms can be calculated and

AG =

√
2

1− γz

(
−γ

√
3 + 4γ

2 + γ
√

3− γz −(
√

3 + 4γ)(
√

3 + z)

)
,

which is the unique superoptimal analytic approximant for the given G.
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Appendix A

Hilbert tensor product

A.1 Algebraic tensor product

We will consider complex linear spaces. Let E1, E2 be linear spaces over C. We present a

well-known construction of the algebraic tensor product E1⊗E2, which can be found in [10].

Definition A.1.1. [10, Definition II.1.1.] Let E1, E2 be linear spaces. We say that the pair

(Θ, θ), where Θ is a linear space and θ : E1×E2 → Θ is a bilinear operator, has the universal

property in the category of linear spaces and linear operators if for any linear space G and

for any bilinear operator R : E1×E2 → G, there is a unique linear operator R : Θ→ G such

that the following diagram is commutative

E1 × E2
R−→ Gyθ ↗ R

Θ

, (A.1)

that is, R ◦ θ = R.

Definition A.1.2. Let E1, E2 be linear spaces. The pair (Θ, θ), where Θ is a linear space

and θ : E1 × E2 → Θ is a bilinear operator, is called the algebraic tensor product of E1 and

E2 if it has the universal property in the category of linear spaces and linear operators.

Let us construct the algebraic tensor product. Let E1 ◦ E2 denote the space of formal

linear combinations with complex coefficients of the elements of E1×E2. We use the notation

x◦y, instead of (x, y) for the elements of E1◦E2 and consider the set M ⊂ E1◦E2 of elements

in any of the following forms:

(x1 + x2) ◦ y − x1 ◦ y − x2 ◦ y;

x ◦ (y1 + y2)− x ◦ y1 − x ◦ y2;

λ(x ◦ y)− (λx) ◦ y;

x ◦ (λy)− λ(x ◦ y);
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A.1. Algebraic tensor product

where x, x1, x2 ∈ E1, y, y1, y2 ∈ E2 and λ ∈ C.

Let span(M) be the linear span of the set M . We define E1⊗E2 to be the quotient space

E1 ◦ E2/ span(M), x⊗ y to be the coset x ◦ y + span(M) and ϑ to be the bilinear operator

ϑ : E1 × E2 → E1 ⊗ E2 , given by ϑ(x, y) = x⊗ y.

Theorem A.1.3. [10, Theorem II.1.4] The pair (E1⊗E2, ϑ) is the algebraic tensor product

of the spaces E1 and E2.

Proof. Let R : E1 × E2 → G be a bilinear operator. Then the operator R◦ : E1 ◦ E2 → G is

uniquely defined by R◦(x◦y) = R(x, y) and maps all the elements of M , and hence span(M),

to zero. Consequently R◦ generates an operator R : E1 ⊗ E2 → G such that diagram from

Definition A.1.1 with E1⊗E2 instead of Θ and ϑ instead of θ is commutative. Furthermore,

since E1 ⊗ E2 = span(Imϑ), R is uniquely defined.

Proposition A.1.4. [10][II.1.5] Let E1, E2 be linear spaces over C. Every u ∈ E1 ⊗ E2,

u 6= 0 can be written as

u =
n∑
k=1

xk ⊗ yk,

where the vectors xk ∈ E1 are linearly independent and y1 6= 0.

Definition A.1.5 ([10]). Suppose Ek, Fk, k = 1, 2, are linear spaces and consider the oper-

ators T1 : E1 → F1, T2 : E2 → F2. The operator

T1 ⊗ T2 : E1 ⊗ E2 → F1 ⊗ F2

given by

(T1 ⊗ T2)(x⊗ y) = T1(x)⊗ T2(y), for x ∈ E1, y ∈ E2,

is called the tensor product of the operators T1 and T2.

Proposition A.1.6. Let E1, E2, F1, F2 be linear spaces and let

T1 : E1 → F1, T2 : E2 → F2

be linear operators. Then, T1 ⊗ T2 : E1 ⊗ E2 → F1 ⊗ F2 is a linear operator.

Proof. By the universal property from Definition A.1.1, for every bilinear operator T1 ×
T2 : E1 × E2 → F1 ⊗ F2 there exists a unique linear operator T1 ⊗ T2 such that

(T1 ⊗ T2)(x1 ⊗ x2) = T1(x1)⊗ T2(x2).

192



A.2. Hilbert tensor product

It suffices to show that T1 × T2 is a bilinear operator. Let u, u1, u2 ∈ E1, v, v1, v2 ∈ E2 and

λ, µ ∈ C. Then,

(T1 × T2)(λu1 + µu2, v) = T1(λu1 + µu2)⊗ T2(v) = (λT1(u1) + µT2(u2))⊗ T2(u2)

and

(T1 × T2)(u, λv1 + µv2) = T1(u)⊗ T2(λv1 + µv2) = T1(u)⊗ (λT2(v1) + µT2(v2)).

A.2 Hilbert tensor product

Let (H1, 〈·, ·〉H1), (H2, 〈·, ·〉H2) be Hilbert spaces and let ‖x‖H1 = 〈x, x〉 1
2 , ‖y‖H2 = 〈y, y〉 1

2

for x ∈ H1 , y ∈ H2. Information on Hilbert tensor product can be found in [8].

One can consider an inner product space (H1 ⊗ H2, 〈·, ·〉), where the inner product is

defined by

〈u, v〉 =
n∑
k=1

m∑
p=1

〈ak, cp〉〈bk, dp〉,

for

u =
n∑
k=1

ak ⊗ bk , v =
m∑
p=1

cp ⊗ dp.

Definition A.2.1. The completion of (H1 ⊗H2, 〈·, ·〉) with respect to ‖ · ‖ = 〈·, ·〉 1
2 is called

the Hilbert tensor product of H1 and H2 and is denoted by H1 ⊗H H2.

Definition A.2.2. Let (E, ‖ · ‖E), (F, ‖ · ‖F ) be Hilbert spaces and let T ∈ L(E,F ). The

linear operator T ∗ : F ∗ → E∗ which satisfies

〈Ta, b〉F = 〈a, T ∗b〉E,

for all a ∈ E, b ∈ F, is called the adjoint operator of T.

Definition A.2.3 ([38], p. 38). A linear operator T : E → F , where E, F are Hilbert spaces

is a unitary operator if it is bijective and preserves inner products, that is, it satisfies

〈Tx, Ty〉 = 〈x, y〉, for all x, y ∈ E.

Theorem A.2.4 ([38], p. 38). Let E,F be Hilbert spaces and T : E → F be a linear and

surjective mapping. Then T is unitary if and only if

‖Tx‖ = ‖x‖, for all x ∈ E.

Definition A.2.5. Let E,F be Hilbert spaces and let W : H → K be a bounded linear

operator. W will be called a partial isometry if W is isometric on the orthogonal complement
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A.2. Hilbert tensor product

of its kernel. Then, M = (kerW )⊥ is called the initial space and N = WM the final space

of W.

Theorem A.2.6. Let E,F be Hilbert spaces. A bounded linear operator W : E → F is a

partial isometry if and only if W ∗W is a projection operator. In this case, W ∗W is the

projection of E on the initial space of W.

Remark A.2.7 ([8]). Let E1, E2, F1, F2 be Hilbert spaces and let

T1 : E1 → F1, T2 : E2 → F2

be bounded linear operators. Then

T1 ⊗ T2 : (E1 ⊗ E2, ‖ · ‖)→ (F1 ⊗ F2, ‖ · ‖)

is bounded. Hence T1 ⊗ T2 can be extended to the tensor product E1 ⊗H E2 as follows: we

set

u = lim
n→∞

mn∑
k=1

ank ⊗ bnk

and

(T1 ⊗ T2)(u) = lim
n→∞

(T1 ⊗ T2)(
mn∑
k=1

ank ⊗ bnk).

Proposition A.2.8 ([8]). Let (H1, 〈·, ·〉H1), (H2〈·, ·〉H2), (G1, 〈·, ·〉G1), (G2, 〈·, ·〉G2), be Hilbert

spaces and T1 : H1 → G1 , T2 : H2 → G2 be bounded linear operators. Then,

T1 ⊗ T2 : H1 ⊗H H2 → G1 ⊗H G2

is a bounded linear operator, and ‖T1 ⊗ T2‖ = ‖T1‖ · ‖T2‖.

Lemma A.2.9. Let E1, E2, F1, F2 be Hilbert spaces and let

T1 : E1 → F1, T2 : E2 → F2

be bounded linear operators. Then (T1 ⊗ T2)∗ = T ∗1 ⊗ T ∗2 : F1 ⊗H F2 → E1 ⊗H E2.

Definition A.2.10 ([24], p. 301). Cm×n is the space of m × n complex matrices. Every

A ∈ Cm×n is a linear operator from Cn to Cm, where Cn, Cm are Hilbert spaces with their

standard inner products. Also,

‖A‖ = sup
‖x‖Cn≤1

‖Ax‖Cm .

Remark A.2.11. Let X1, X2, Y1, Y2 be Hilbert spaces of dimensions n,m, n′,m′ with m ≥ n,

and m′ ≥ n′. Let A : X1 → Y1 and let B : X2 → Y2 be linear transformations. Let (ei)
n
i=1,
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A.2. Hilbert tensor product

(fj)
m
j=1, (e′i)

n′
i=1, (f

′
j)
m′
j=1 be orthonormal bases of X1, Y1, X2 and Y2 respectively. Then {ei⊗e′l :

1 ≤ i ≤ n, 1 ≤ l ≤ n′} is a basis of X1 ⊗ X2 and {fi ⊗ f ′l : 1 ≤ i ≤ m, 1 ≤ l ≤ m′} is a

basis of Y1 ⊗ Y2.

Suppose that

Aei = λifi, 1 ≤ i ≤ n

and

Be′i = µif
′
i , 1 ≤ i ≤ n′.

One can write

Ax =
n∑
i=1

λi〈x, ei〉X1fi for x ∈ X1

and

Bx′ =
n′∑
k=1

µk〈x′, e′k〉X2f
′
k for x′ ∈ X2.

Then A⊗B : X1⊗X2 → Y1⊗ Y2 can be presented by the following formula, for x ∈ X1 and

x′ ∈ X2,

(A⊗B)(x⊗ x′) = Ax⊗Bx′

=

(
n∑
i=1

λi〈x, ei〉X1fi

)
⊗

(
n′∑
k=1

µk〈x′, e′k〉X2f
′
k

)

=

n,n′∑
i,k=1

λiµk〈x⊗ x′, ei ⊗ e′k〉X1⊗X2fi ⊗ f ′k

=

n,n′∑
i,k=1

λiµk〈x, ei〉X1〈x′, e′k〉X2fi ⊗ f ′k

=
n,n′∑
i,k=1

λiµk〈x, ei〉X1〈x′, e′k〉X2fi ⊗ f ′k.

Moreover

(A⊗B)(ei ⊗ e′l) =

n,n′∑
j,k=1

λjµk〈ei ⊗ e′l, ej ⊗ e′k〉X1⊗X2fj ⊗ f ′k

=

n,n′∑
j,k=1

λjµkδijδlkfj ⊗ f ′k

= λiµlfi ⊗ f ′l .
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A.2. Hilbert tensor product

Notation A.2.12. A matrix of the form

A =


λ1

λ2

. . .

λn


denotes the matrix A = (aij) where aij = 0 for all i 6= j and aii = λi.

Lemma A.2.13. Let A = (aij)
n
i,j=1, B = (bij)

n
i,j=1 and let

A∗A = U∗


λ1

λ2

. . .

λn

U, B∗B = V ∗


µ1

µ2

. . .

µn

V,

for some unitary operators U, V . Then,

A∗A⊗B∗B = (U ⊗ V )∗



λ1µ1

λ1µ2

. . .

λ1µn
. . .

λnµ1

. . .

λnµn


(U ⊗ V ).

Lemma A.2.14. Suppose m ≥ n. Given A,B ∈ Cm×n, with

A = U1



s1 · · · 0

0
. . .

... sn

...
...

...

0 0 0


V1, B = U2



t1 · · · 0

0
. . .

... tn

...
...

...

0 0 0


V2,

for unitary matrices U1, U2 ∈ Cm×m and for unitary matrices V1, V2 ∈ Cn×n. Then
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A.2. Hilbert tensor product

A⊗B = (U1 ⊗ U2)



s1t1

s1t2
. . .

s1tn
. . .

snt1
. . .

sntn

0 · · · 0
...

...

0 0



(U2 ⊗ V2).
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Appendix B

Scalar inner and outer functions

Definition B.0.1 ([11], p. 62). An inner function is an analytic function g in the unit

disc D such that |g(z)| ≤ 1 and |g(eiθ)| = 1 almost everywhere on the unit circle T. A

non-constant inner function without zeros which is positive at the origin is called a singular

inner function.

Definition B.0.2 ([11], p. 62). An outer function is an analytic function F in the unit disc

of the form

F (z) = λ exp

[
1

2π

∫ π

−π

eiθ + z

eiθ − z
k(θ)dθ

]
(B.1)

where k is a real-valued integrable function on the circle and λ is a complex number of

modulus 1.

Remark B.0.3 ([11], p. 63). Such an outer function F is in H1(D,C) if and only if ek is

also integrable; when F is an outer function in H1(D,C) we have necessarily

k(θ) = log |F (eiθ)| almost everywhere.

Indeed, applying the logarithmic function to equation (B.1), we get

log |F (eiθ)| = exp

[
1

2π

∫ π

−π
Pr(θ − t)k(θ)dθ

]
and taking the limit as r goes to 1, we have the result we need. Here Pr(θ) is the Poisson’s

kernel defined in equation (C.3).

Theorem B.0.4 ([11],p. 63). Let F be a non zero function in H1(D,C). The following are

equivalent:

(i) F is an outer function.

(ii) If f is any function in H1(D,C) such that |f | = |F | almost everywhere on T, then

|F (z)| ≥ |f(z)| for all z ∈ T.
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(iii) log |F (0)| = 1

2π

π∫
−π

log |F (eiθ)|dθ.

Proof. (i)⇒ (ii). Let f be a non-zero function in H1(D,C). Then, by Fatou’s Theorem, f

has radial limits

f(eiθ) = lim
z→eiθ

f(z)

almost everywhere on T, and f is given by the Poisson integral

f(reiθ) =
1

2π

∫ π

−π
f(eit)Pr(θ − t) dt.

Since f(0) 6= 0, by a result in [11, p. 51], log |f(eit)| is Lebesgue integrable. Let

F ∈ H1(D,C) be an outer function given by

F (z) = λ exp

[
1

2π

∫ π

−π

eiθ + z

eiθ − z
log |f(eiθ)|dθ

]
and without loss of generality assume |λ| = 1. Notice that |F | = eu, where u is the Poisson

integral of log |f |. Hence

1

2π

∫ π

−π
|F (reiθ)| dθ ≤ 1

2π

∫ π

−π
|f(eiθ)| dθ.

Therefore |F | = |f | almost everywhere on T. Since F is an outer function and |F | = eu, F

has no zeros in D and

log |F (reiθ)| = 1

2π

∫ π

−π
log |f(eit)|Pr(θ − t)dt.

By Jensen’s inequality with dm = 1
2π
Pr(θ − t), we get

log |f(reiθ)| ≤ 1

2π

∫ 2π

0

log |f(eit)|Pr(θ − t)dt = log |F (reiθ)|,

and we infer that |F (z)| ≥ |f(z)| for all z ∈ D.
(ii)⇒(iii). Suppose (ii) holds and let G be an outer function,

G(z) = exp

[
1

2π

∫ π

−π

eiθ + z

eiθ − z
log |F (eiθ)|dθ

]
.

Then |F (z)| ≤ |G(z)| ≤ |F (z)| on D. Thus F/G is analytic of absolute value 1. So, F = λG

with |λ| = 1 and F is outer.

(iii) ⇒ (i). Suppose (iii) holds and define G as previously. Then F/G is bounded by 1 on

D and has absolute value 1 at z = 0. Thus F/G = λ with |λ| = 1.
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Theorem B.0.5 ([11],p. 63). Let f be a non-zero function in H1(D,C). Then one can write

f = gF

where g is an inner function and F is an outer function in H1(D,C). The factorisation is

unique up to a unimodular constant.

Proof. By Theorem B.0.4, if

F (z) = exp

[
1

2π

∫ π

−π

eiθ + z

eiθ − z
log |f(eiθ)|dθ

]
,

then F is an outer function in H1(D,C) and f/F = g is an inner function. If F1 is another

outer function in H1(D,C) and g1 another inner function, we have f = g1F1 and |F | = |F1|
on T. Then, F = λF1 for some λ with λ = 1. Thus λg1F1 = g1G1 and g1 = λg.

Remark B.0.6. The preceding results also hold for 1 < p ≤ ∞, as a more detailed view

presented in [11] asserts.

Definition B.0.7 ([11], p. 11). Let H be an inner-product space and N be any collection of

vectors in H. N is called an orthogonal set if any two distinct vectors in N are orthogonal. An

orthonormal set is an orthogonal set, each vector of which has norm 1. If N = {n1, · · · , nk}
is a countable orthonormal set in H, then N will be called a complete orthonormal set if the

only vector orthogonal to every ni is the zero vector.

Remark B.0.8 ([11], p. 28). Suppose that f is analytic in D and let f(z) =
∑∞

n=0 anz
n. Let

fr(θ) = f(reiθ). Note that if we restrict the function f to the circle of radius r, we obtain

a continuous function on that circle which we can also interpret as a function on the unit

circle. Now,

fr(θ) =
∞∑
n=0

anr
neinθ

which means that the n-th Fourier coefficient of fr is anr
n for n ≥ 0 and is zero for n < 0.

If f is analytic in D̄, the boundary value function f1 has the Fourier coefficients an.

Theorem B.0.9. [28, Theorem 11.20] Every f ∈ H∞(D,C) can be extended to a function

f ∗ ∈ L∞(T,C) defined almost everywhere by

f ∗(eit) = lim
r→1

f(reit) (B.2)

Also, ‖f‖∞ = ‖f ∗‖L∞ . For all z ∈ D the Cauchy formula

f(z) =
1

2πi

∫
γ

f ∗(ξ)

ξ − z
dξ (B.3)

holds, where γ is the positively orientated unit circle, γ(t) = eit, 0 ≤ t ≤ 2π.

The functions f ∗ ∈ L∞(T) which are obtained in this manner are those which satisfy

1

2π

∫ π

−π
f ∗(eit)e−intdt = 0 (n = −1,−2, . . . ). (B.4)
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Appendix C

Operator-valued functions and

Fatou’s theorem

C.1 The scalar case

Definition C.1.1. [11] A complex valued function u on D is harmonic if it satisfies Laplace’s

equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

Proposition C.1.2. [28, p. 232] Every harmonic function u on D which satisfies

sup
0≤r<1

∫ π

−π
|u(reiθ)|dθ <∞,

has radial limits at almost all points of T.

Theorem C.1.3 (Fatou’s Theorem, [38, Theorem 13.10]). Let f ∈ H2(D,C). For almost

all z ∈ T, the radial limits

lim
r→1

f(rz)

exist almost everywhere on T and define a function in L2(T,C).

C.2 The operator-valued case

The following material is from [14]. For any separable Hilbert space E we denote by L2(T, E)

the class of functions v : T→ E which are measurable and satisfy

‖v‖2 =
1

2π

2π∫
0

‖v(eit)‖2
Edt <∞.
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C.2. The operator-valued case

Two functions will be considered equal if they coincide almost everywhere with respect to

Lebesgue measure.

Suppose that vn(eit)n∈N is a sequence converging to v(eit) in L2(T, E), that is,

1

2π

2π∫
0

‖vn(eit)− v(eit)‖2
Edt→ 0

as n tends to ∞.
Then we can choose a subsequence vnk(e

it), k = 1, 2, · · · , such that

∞∑
k=1

2π∫
0

‖vnk(eit)− v(eit)‖2
Edt <∞.

By the theorem of Beppo Levi we have

∞∑
k=1

‖vnk(eit)− v(eit)‖2
E <∞

almost everywhere and so

‖vnk(eit)− v(eit)‖ → 0

almost everywhere as k →∞.
For any k ∈ Z, denote by Fk the subspace of L2(T, E) which contains the all the functions

of the form eikta, with a ∈ E. Then Fk ⊥ Fj for k 6= j and

L2(T, E) = ⊕∞−∞Fk.

Indeed, let v ∈ L2(T, A) be orthogonal to all Fk, that is,

1

2π

2π∫
0

e−ikt〈v(eit), a〉Edt = 0, a ∈ E, k ∈ Z.

Then, 〈v(eit), a〉E = 0 everywhere, except possibly the points t of a set Ea depending on a

and of zero measure. Letting a run over a countable, dense subset of E and taking the union

of the corresponding sets Ea we obtain a set E of zero measure and v(eit) = 0 ∀t /∈ E, so

v = 0 as an element of L2(T, E).

Furthermore

‖eikta‖L2(T,E) = ‖a‖E.

As a result, there exists a one to one correspondence between the elements v of L2(T, E)

and the sequences ak, ak ∈ E with
∑
k

‖ak‖2
E < ∞, in such a way that for corresponding v
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C.2. The operator-valued case

and ak we have

v(eit) =
∞∑
−∞

eiktak (C.1)

and

‖v‖2 =
∑
‖ak‖2

E. (C.2)

Relation (C.2) follows from the fact that

1

2π

2π∫
0

‖v(eit)−
n∑
−m

eiktak‖2
Edt→ 0

as m,n→∞.
From relation (C.1)

ak =
1

2π

2π∫
0

e−iktv(eit)dt, k ∈ Z,

and so (C.1) is the Fourier series of v.

Definition C.2.1 ([14], p. 184). We will denote by L2
+(T, E) the subspace of L2(T, E)

consisting of those functions for which ak = 0 for k < 0.

Now, we associate any function

v(eit) =
∞∑
0

eiktak ∈ L2
+(T, E)

with the function

u(z) =
∞∑
0

zkak

of the complex variable z, defined and holomorphic on D since

‖
n∑
m

zkak‖E ≤
n∑
m

|z|k‖ak‖E ≤ (1− |z|2)−1/2

(
n∑
m

(‖ak‖2
E

)1/2

→ 0

for n > m→∞, for |z| < 1, uniformly for |z| ≤ r0 < 1.

One can retrieve v(eit) from u(z) as a radial limit in L2(T, E)

1

2π

2π∫
0

‖v(eit)− u(reit)‖2
Edt =

1

2π

2π∫
0

‖
∞∑
0

(1− rk)eiktak‖2
Edt =

∞∑
0

(1− rk)2‖ak‖2
E → 0
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as r → 1. Also, for 0 ≤ r < 1, we have

1

2π

2π∫
0

‖u(reit)‖2
E =

∞∑
0

r2k‖ak‖2
E ≤

∞∑
0

‖ak‖2
E <∞.

Definition C.2.2 ([14], p. 185). The class of functions

u(z) =
∞∑
0

zkak

with values in E, holomorphic on D and such that

1

2π

2π∫
0

‖u(reit)‖2
Edt 0 ≤ r < 1

has a bound independent of r, will be denoted by H2(D, E).

Remark C.2.3. Note that

1

2π

2π∫
0

‖u(reit)‖2
E =

∞∑
0

‖ak‖2
E,

so the condition mentioned in Definition C.2.2 is equivalent to the condition

∞∑
0

‖ak‖2
E <∞.

Hence we see that every function u(z) ∈ H2(D, E) can be retrieved from a function v ∈
L2

+(T, E), indeed from v(eit) =
∑∞

0 eiktak. As v(z) and v(t) determine each other, we can

identify the classes H2(D, E) and L2
+(T, E). If we provide H2(D, E) with the Hilbert space

structure of L2
+(T, E), we can then embed H2(D, E) in L2(T, E) as a subspace.

Remark C.2.4. We can retrieve u(z) from v(t) using the Poisson formula

u(reit) =
1

2π

∫ 2π

o

Pr(t− s)v(s)ds 0 ≤ r < 1

where

Pr(t) =
1− r2

1− 2r cos t+ r2
. (C.3)

Theorem C.2.5 (Generalised Fatou’s Theorem, [14, p. 186]). Let E be a separable Hilbert

space. Suppose u ∈ H2(D, E) is given by

u(z) =
∞∑
0

zkak for all z ∈ D
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and suppose v ∈ L2(T, E) is given by

v(eit) =
∞∑
0

eiktak for all eit ∈ T.

Then u(z) tends to v(t) with respect to ‖ · ‖E as z tends to eit along any path that is not

tangent to the unit circle, and at every point t such that

1

2s

∫ t+s

t−s
v(eiτ ) dτ → v(eiτ ) strongly (s→ 0),

thus almost everywhere.

Now, consider a function Θ(z) whose values are bounded operators from a separable

Hilbert space E to a separable Hilbert space F, and suppose that the function has a power

series representation

Θ(z) =
∞∑
k=0

zkΘk (C.4)

with Θk being bounded operators from E to F. Suppose also that the series is convergent in

D. If, also,

‖Θ(z)‖ ≤M on D,

we will call such a function a bounded analytic function on D.
For a bounded analytic function we have

1

2π

2π∫
0

‖Θ(reit)a‖2
Fdt ≤M2‖a‖2

F (0 ≤ r < 1)

and

∞∑
k=0

‖Θka‖2
F ≤M2‖a‖2

E

for all a ∈ E.
As in the scalar case, the limit

Θ(eit) = lim
z→eit

Θ(z)

exists almost everywhere as a strong limit of operators. Moreover,

Θ(eit) = lim
r→1

Θ(reit)

and Θ(reit)a converges in L2(F ) to Θ(eit)a as r → 1 and this limit has the Fourier expansion

Θ(eit)a =
∞∑
k=0

eiktΘka.
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C.2. The operator-valued case

Now, with every bounded analytic function Θ(z) we associate the operator

Θ: L2(E)→ L2(F ),

defined by

(Θv)(t) = Θ(eit)v(t), v ∈ L2(E)

and the operator

Θ+ : H2(E)→ H2(F )

defined by

(Θ+u)(z) = Θ(z)u(z), u ∈ H2(E).

Definition C.2.6 ([14], p. 190). The analytic operator-valued function Θ(z) will be called

i) inner if Θ(eit) is an isometry from E to F for almost every t.

ii) outer if Θ+H
2(D, E) is dense in H2(D, F ).
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Appendix D

The Nehari Problem

D.1 The Scalar Nehari Problem

Definition D.1.1 ([38], p. 157). We denote by L∞(T,C) the Banach space of essentially

bounded Lebesgue measurable C-valued functions on the unit circle T with pointwise algebraic

operations and essential supremum norm:

‖f‖L∞ = ess sup
|z|=1

|f(z)|.

A function is said to be essentially bounded if it is bounded on the complement of a

set of measure zero. In Lp-spaces two functions are identified if they take the same values

everywhere except for a set of measure zero. So, a number M > 0 is an essential upper bound

for a function f : T→ R if the set

{z ∈ T : |f(z)| > M}

is a set of measure zero. Then we can define

ess sup |f(z)| = inf{M > 0 : M is an essential upper bound for |f(z)| on T}.

Definition D.1.2 ([38], p. 159). H∞(D,C) denotes the space of bounded analytic functions

on the unit disc D with the supremum norm

‖Q‖H∞
def
= ‖Q‖L∞

def
= sup

z∈D
‖Q(z)‖.

Definition D.1.3 ([11], p. 13). We define by L2(T,C) the space of square integrable func-

tions on the unit circle with the inner product

〈f, g〉2 =
1

2π

∫ π

−π
f(eiθ)g(eiθ)dθ.
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D.1. The Scalar Nehari Problem

Also, we define by H2(D,C) the space of holomorphic functions f on the open unit disc such

that

lim
r→1

(
1

2π

∫ π

−π
|f(reiθ)|2dθ

)1/2

<∞.

Remark D.1.4. Let 0 < r < 1. Suppose f ∈ H2(D,C). By Fatou’s Theorem C.1.3, the

radial limits

lim
r→1

f(reiθ)

exist almost everywhere on T.

Definition D.1.5 ([11], p. 13). Consider the complete orthonormal set φn(θ) = einθ,

n = 1, 2, · · · , in L2(T,C). If f ∈ L2(T,C), the numbers

cn = 〈f, φn〉2 =
1

2π

∫ π

−π
f(eiθ)e−inθdθ

are the Fourier coefficients of f. The series

∞∑
n=−∞

cne
inθ

is the Fourier series for f.

Definition D.1.6 ([11], p. 13). Suppose that f(z) =
∑∞
−∞ anz

n , z ∈ T, is the Fourier

expansion of a function f. We denote by f̂(n) the n-th Fourier coefficient an of f.

Definition D.1.7 ([38], p. 39). The orthogonal complement of a subset E of a Hilbert space

H is the set

{x ∈ H : 〈x, y〉 = 0, for all y ∈ E}.

It is denoted by H 	 E or by E⊥.

Theorem D.1.8 ([11]). Let E be a closed linear subspace of a Hilbert space H. Then H =

E ⊕ E⊥, that is, every vector x in H is uniquely expressible in the form x = y + z where

y ∈ E and z ∈ E⊥.

Definition D.1.9 ([38], p. 188). Let M be a closed linear subspace of a Hilbert space H.

The orthogonal projection from H to M is the operator P : H →M defined by

Px = y, if x = y + z,where y ∈M, z ∈M⊥.

Definition D.1.10 ([38], p. 190). For f ∈ L2(T,C) given by

f(z) =
∞∑

n=−∞

anz
n, z ∈ T
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D.1. The Scalar Nehari Problem

we define the orthogonal projection P− : L2(T,C)→ L2(T,C)	H2(D,C) by

P−

(
∞∑
−∞

anz
n

)
=
−1∑
−∞

anz
n.

Remark D.1.11. By Fatou’s Theorem, H2(D,C) can be identified with a closed subspace of

L2(T,C). This implies that the above projection is well-defined.

Definition D.1.12 ([38], p. 190). Suppose that φ ∈ L∞(T,C). The Hankel operator Hφ is

the operator

P− ◦Mφ|H2(D,C) : H2(D,C)→ L2(T,C)	H2(D,C),

where Mφ is the operator of multiplication by φ on L2(T,C).

Definition D.1.13. We can write L2(T,C)	H2(D,C) as H2(D,C)⊥, where

H2(D,C)⊥
def
= {f ∈ L2(T,C) : 〈f, g〉L2 = 0 , for all g ∈ H2(D,C)}.

Definition D.1.14. Given two Hilbert spaces H1 and H2, denote by L(H1, H2) the set of all

bounded linear operators T : H1 → H2.

Definition D.1.15. Let H1 and H2 be Hilbert spaces and let T ∈ L(H1, H2). A maximizing

vector for T is a non-zero vector x ∈ H1 at which T attains its norm, that is, such that

‖Tx‖ = ‖T‖‖x‖.

In general, a maximizing vector need not exist for a bounded linear operator.

Definition D.1.16 ([29], p. 103). Let (E, ‖ · ‖E), (F, ‖ · ‖F ) be Banach spaces, let

U = {x ∈ E : ‖x‖E ≤ 1} be the unit ball in E and let T : E → F be a linear operator.

T is a compact operator if the closure of T (U) is a compact set in (F, ‖ · ‖F ).

Definition D.1.17 ([19], p. 25). Let E,F be Hilbert spaces and T : E → F. The essential

norm of the operator T is defined by

‖T‖e = inf{‖T −K‖ : K is compact }.

Theorem D.1.18 (Hartman’s theorem, [19], p. 27). Let φ ∈ L∞(T,C). Then

Hφ is compact if and only if φ ∈ H∞(D,C) + C(T,C).

Definition D.1.19 ([19]). Consider the space L2(T,C). The bilateral shift operator is de-

fined to be the multiplication by z on L2(T,C). Its restriction to H2(D,C) is called the

unilateral shift.
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Theorem D.1.20 ([19], p. 26). Let φ ∈ L∞(T,C). Then, the essential norm of the Hankel

operator Hφ : H2(D,C)→ H2(D,C)⊥ satisfies

‖Hφ‖e = distL∞(φ,H∞(D,C) + C(T,C)).

Lemma D.1.21 ([19], p. 26). Let K : H2(D,C)→ H2(D,C)⊥ be a compact operator. Then

lim
n→∞

‖KSn‖ = 0,

for the shift operator S on H2(D,C).

Problem D.1.22 (The Nehari Problem). [38, Problem 15.6] Given φ ∈ L∞(T,C), find

g ∈ H∞(D,C) such that

‖φ− g‖L∞

is minimised.

Theorem D.1.23 (Nehari’s Theorem). [38, Theorem 15.14] Suppose that φ ∈ L∞(T,C).

Then

‖Hφ‖ = dist(φ,H∞(D,C)).

Moreover there exists ψ ∈ L∞(T,C) such that the Hankel operators Hφ, Hψ satisfy

Hφ = Hψ

and

‖ψ‖∞ = ‖Hφ‖.

Any function Q ∈ H∞ at which the infimum inf
Q∈H∞

‖φ−Q‖L∞ is attained will be called

a solution of the Nehari Problem for φ. For φ ∈ L∞ there may be a unique solution or

infinitely many solutions.

Theorem D.1.24 ([38],p. 196). Let φ ∈ L∞(T,C) and suppose that the Hankel operator Hφ

has a maximizing vector v ∈ H2(D,C). Then there exists a solution of the Nehari problem

and every solution Q satisfies

(φ−Q)v = Hφv

and so,

Q(z) = φ(z)− Hφv(z)

v(z)
(D.1)

almost everywhere on T.

Remark D.1.25. Since v ∈ H2(D), and v is not identically zero on D, then v is non-zero

almost everywhere on T.
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Remark D.1.26. It follows from Theorem D.1.24 that if Hφ has a maximizing vector, then

the Nehari problem for φ has a unique solution Q given by equation (D.1).

D.2 The Matricial Nehari Problem

In this section we present an established generalisation of the results obtained in Appendix

B.1 to the matrix-valued setting.

Definition D.2.1. For any G ∈ L∞(T,Cm×n), we define the Hankel operator with symbol

G to be the operator

HG : H2(Cn)→ H2(Cm)⊥

given by HGx = P−(Gx), where

P− : L2(Cm)→ H2(Cm)⊥
def
= L2(Cm)	H2(Cm)

is the orthogonal projection operator.

The following is the Nehari Problem for matrix-valued functions.

Problem D.2.2. Given φ ∈ L∞(T,Cm×n), find all Q ∈ H∞(D,Cm×n) such that

‖φ−Q‖L∞ is minimised.

Theorem D.2.3 ([16]). For any matrix-valued φ ∈ L∞(T,Cm×n),

inf
Q∈H∞(D,Cm×n)

‖φ−Q‖∞ = ‖Hφ‖

and the infimum is attained.

Theorem D.2.4. [24, Theorem 0.2] Let φ ∈ L∞(T,Cm×n) be such that Hφ has a Schmidt

pair (v, w) corresponding to the singular value t = ‖Hφ‖. Let Q be a function in

H∞(D,Cm×n) at minimal distance from φ. Then

(φ−Q)v = tw and (φ−Q)∗w = tv.

Moreover

‖w(z)‖Cm = ‖v(z)‖Cn almost everywhere on T

and

‖φ(z)−Q(z)‖ = t almost everywhere on T.
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Proof. By Nehari’s Theorem, ‖φ−Q‖L∞ = t and, by hypothesis,

Hφv = tw, H∗φw = tv.

If t = 0 then φ ∈ H∞(D,Cm×n), so that φ = Q and the statement of the theorem is trivially

true. We may therefore assume t > 0. Thus H∗φHφv = t2v, and so v is a maximising vector

for Hφ. We can assume that v is a unit vector in H2(D,Cn), and then w is a unit vector in

H2(D,Cm)⊥ and is a maximising vector for H∗φ. We have

t = ‖Hφv‖ = ‖Hφ−Qv‖ = ‖P−(φ−Q)v‖ ≤ ‖(φ−Q)v‖ ≤ ‖φ−Q‖L∞ = t.

The inequalities must hold with equality throughout, and therefore

‖P−(φ−Q)v‖ = ‖(φ−Q)v‖,

which implies that (φ−Q)v ⊥ H2 and so

Hφv = P−(φ−Q)v = (φ−Q)v.

Furthermore ‖(φ−Q)v‖ = ‖(φ−Q)‖L∞‖v‖ and since v(z) is therefore a maximizing vector

for φ(z)−Q(z) for almost all z, we have ‖φ(z)−Q(z)‖ = ‖Hφ‖.
Likewise,

t = ‖H∗φ‖ = ‖H∗φ−Q‖ = ‖H∗φ−Qw‖ = ‖P+(φ−Q)∗w‖L2 ≤ ‖(φ−Q)∗w‖L2

≤ ‖(φ−Q)∗‖L∞‖w‖L2 = ‖(φ−Q)∗‖L∞ = t.

Again, the inequalities hold with equality throughout, and in particular

‖P+(φ−Q)∗w‖L2 = ‖(φ−Q)∗w‖L2 ,

so that (φ−Q)∗w ∈ H2 and

(φ−Q)∗w = H∗φw = tv.

Theorem D.2.5. [12, Theorem 7.3.5] If A ∈ Cm×n has rank k, then A can be written as

A = UWV,

for some matrix W ∈ Cm×n with non-negative diagonal entries and for some unitary ma-

trices U ∈ Cm×m, V ∈ Cn×n. The matrix W = (sij) ∈ Cm×n has sij = 0 for i 6= j,

i = 0, 1, · · · ,m− 1, j = 0, 1, · · · , n− 1, and for i = j,

s0 ≥ s1 ≥ · · · ≥ sk ≥ s(k+1) = · · · = sq = 0

with q = min{m,n}. The numbers si are the non-negative square roots of the eigenvalues of
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AA∗ and are also known as the singular values of the matrix A.

The following example encapsulates the necessity of considering the superoptimal analytic

approximation in order to obtain a unique best approximant.

Example D.2.6. Let

G(z) =

(
z̄ 0

0 0

)
∈ L∞(T,C2×2).

Find a function Q ∈ H∞(D,C2×2) such that ‖G−Q‖L∞(T,C2×2) is minimised.

Solution. Firstly,

‖HG‖ = distL∞(z̄, H∞) = 1.

Consider an arbitrary Q ∈ H∞(D,C(2×2)) of the form

Q(z) =

(
q11(z) q12(z)

q21(z) q22(z)

)
.

The unique q11 ∈ H∞(D,C) such that ‖q11 − z̄‖L∞ ≤ 1 is q11 = 0.

Hence Q ∈ H∞(D,C2×2) is a best approximant of G if and only if Q is of the form

Q =

(
0 0

0 q22

)
,

where

1 = ‖G−Q‖L∞(T,C2×2) =

∥∥∥∥∥
(
z̄ 0

0 −q22

)∥∥∥∥∥
L∞(T,C2×2)

= max{1, ‖q22‖H∞},

i.e. ‖q22‖H∞ ≤ 1.

Thus the set of best analytic approximants of G is{(
0 0

0 q22

)
: ‖q22‖H∞ ≤ 1

}
.

At this point, we encounter a difficulty. The set of all optimal solutions is typically large,

and we would like to be able to determine the “very best” among these best approximants.

For this reason, we need to impose some additional constraints other than the minimisation

of the L∞ norm of the largest singular value, namely to regard minimizing the L∞ norm of

all the subsequent singular values.

Observe that, in this case, s∞0 (G−Q) = 1 and that

s∞1 (G−Q) = ess sup
z∈T

s1

(
0 0

0 −q22(z)

)
= ess sup

z∈T
|q22(z)| = ‖q22‖H∞ .

Hence the unique best analytic approximant ofG for which both s∞0 (G−Q) and s∞1 (G−Q)
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are minimised occurs when q22 = 0, that is,

Q =

(
0 0

0 0

)
.
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