Superoptimal analytic approximation and exterior products

Dimitrios Chiotis

Thesis submitted for the degree of Doctor of Philosophy

Newcastle University

Academic Supervisor: Dr Zinaida Lykova

Advisors: Prof. Nicholas Young and Dr. David Kimsey

School of Mathematics, Statistics and Physics
Newcastle University
Newcastle Upon Tyne
United Kingdom

November 2020

Abstract

This dissertation concerns the classical problem of finding a bounded analytic function on the unit disc \mathbb{D} which approximates a given essentially bounded function G on the unit circle \mathbb{T} as well as possible in the L^{∞} norm.

In the case that G is a continuous $m \times n$ matrix-valued function on \mathbb{T}, there is a typically large set of optimal bounded analytic approximants in the L^{∞} norm, and it is therefore natural to study bounded analytic approximants Q on \mathbb{D} for which $G-Q$ is minimised in a strengthened sense.

One defines, for $j \geq 0$, $$
s_{j}^{\infty}(G-Q)=\underset{z \in \mathbb{T}}{\operatorname{ess} \sup _{z}} s_{j}(G(z)-Q(z)),
$$ where $s_{0}, s_{1}, \ldots, s_{j}$ are the singular values of a matrix. One then says that a bounded analytic matrix function Q is a superoptimal analytic approximant of G if Q lexicographically minimises the sequence $$
\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q), \ldots,\right)
$$ over all bounded analytic matrix functions. It is known that every continuous matrix-valued function on \mathbb{T} has a unique superoptimal analytic approximant $\mathcal{A} G$; moreover, for rational G, there are numerical procedures for the calculation of $\mathcal{A} G$. Existing algorithms are computationally intensive.

This thesis introduces a new operator-theoretic technique, based on exterior powers of Hilbert spaces and operators, for the calculation of the superoptimal analytic approximants. The result is a new algorithm which avoids some of the lengthier and potentially more illconditioned steps in previously described algorithms. In particular, the present algorithm does not require the spectral factorisation of matrix-valued positive functions on \mathbb{T}.

Declaration on collaborative work

My thesis contains collaborative work with my supervisors Dr Z. A. Lykova and Professor N. J. Young. We have submitted 2 joint research papers for publication. An extended abstract on the superoptimality is accepted by the MTNS 2021. The main problems and ideas how to approach them were provided to me by Lykova and Young. We have had weekly meetings to discuss mathematics, methods, new ideas and research papers related to my thesis. We have done research together.

The rest of each week I have worked independently on my thesis. I did calculations which were required in each step of the proofs, searched for research material related to our research project and organised all research material in my thesis. I have given several talks on topics of my thesis to Young Functional Analysts' Workshops in the University of Glasgow and in Leeds University, to Pure PhD workshops in Newcastle University and to the functional analysis seminar in King's College London.

Acknowledgements

First and foremost, I would like to thank my supervisor Dr Zinaida Lykova for the time she devoted to meeting with me and proof reading my dissertation, for her incredible patience when I struggled and for advising me on the research topic along with general matters. Our weekly meetings and her constant availability provided an invaluable support for the progress and completion of this dissertation. In addition, I would like to express my appreciation for my supervisor Professor Nicholas Young for his genuine interest in my progress and the numerous occasions on which we were able to discuss crucial points of this project. His comments provided me with an additional motivation for researching the topic in depth. I also wish to thank my supervisor Dr David Kimsey for always being available, for attending my presentations and for urging me to constantly improve. His help has been priceless for me, especially in the beginning of my PhD when he assisted me significantly in comprehending central parts of the background knowledge needed for the topic.

I am thankful to my examiners, Professors David Seifert and Alexander Pushnitski, for reading and assessing my thesis as well as for their exceptional comments. Their diverse viewpoints have been precious and have shed some new light upon underlying concepts and questions that arise naturally from this project.

Most importantly, I am grateful to my family for supporting me since the very beginning of my studies in mathematics. Without their love and encouragement to pursue knowledge, I would not have been able to start my bachelor's degree in 2010 , let alone submit my PhD thesis in Newcastle University. They have always been optimistic and highly appreciative of my work and achievements. Saying farewell every time I have to leave Athens to return to the place I study is becoming more difficult than it was in the beginning. Hence, I wish the completion of my PhD fills them with great joy and pride while it heals some of the melancholy those farewells have caused over the years.

I would like to thank all my colleagues and particularly Matina Trachana, George Sofronis, Nicola Chiodetto, Omar Alsalhi, Hadi Alshammari, Robbie Bickerton, Keaghan Krog and Tao Ding for the mathematical discussions, chats, coffee-lunch breaks, dinners, research trips and many memories we shared together. Each one of them contributed to the exciting experience of being a PhD student in Newcastle University.

Finally, I wish to cordially thank Matina Trachana for her priceless support and companionship, and the imminent impact these have had on my performance, determination and successful completion of my PhD journey. Her presence has been invaluable to me and we will definitely reminisce about our years in Newcastle.

Dedication

I wish to dedicate this dissertation to my late grandmother Vasiliki who sadly passed away a few days after the first submission of this thesis. My academic successes always brought such delight to her. Born in Limnos island in 1937, she had always been an exceptional student and received her degree in Law from the University of Athens. She later married my grandfather Evangelos, who died, alas, in 1993, and gave birth to my mother and my uncle. An inspirational figure, extremely dedicated to her children and grandchildren, loved us with all her heart as we did her. Being raised so close to my grandmother taught me a great deal and I will always remember those years we lived together with joy.

Contents

1 Introduction 1
1.1 Superoptimal analytic approximation 1
1.2 Main results 3
1.3 Motivation for the development of an algorithm 11
1.4 History and recent work 13
1.5 Description of results by sections 16
1.6 Future work 17
2 Exterior powers of Hilbert spaces and operators 21
2.1 Exterior powers 21
2.2 Pointwise wedge products 35
2.2.1 Multiplication operators 44
2.2.2 Pointwise creation operators, orthogonal complements and linear spans 46
3 Superoptimal analytic approximation 59
3.1 Known results 59
3.2 Algorithm for superoptimal analytic approximation 68
3.2.1 The algorithm 68
3.2.2 Pointwise orthonormality of $\left\{\xi_{i}\right\}_{i=1}^{j}$ and $\left\{\bar{\eta}_{i}\right\}_{i=1}^{j}$ almost everywhere on \mathbb{T} 73
3.2.3 The closed subspace X_{j+1} of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$ 79
3.2.4 The closed subspace Y_{j+1} of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}$. 85
3.2.5 T_{j} is a well-defined operator 90
3.2.6 Compactness of the operators T_{1} and T_{2} 97
3.2.7 Compactness of the operator T_{j+1} 144
4 Application of the algorithm 181
A Hilbert tensor product 191
A. 1 Algebraic tensor product 191
A. 2 Hilbert tensor product 193
B Scalar inner and outer functions 199
C Operator-valued functions and Fatou's theorem 203
C. 1 The scalar case 203
C. 2 The operator-valued case 203
D The Nehari Problem 209
D. 1 The Scalar Nehari Problem 209
D. 2 The Matricial Nehari Problem 213
Bibliography 216
Index 220

Chapter 1

Introduction

1.1 Superoptimal analytic approximation

The superoptimal analytic approximation problem entails finding, for a given matrix-valued function G in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, a bounded analytic matrix-valued function Q in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which simultaneously minimises the essential suprema, taken over all $z \in \mathbb{T}$, of all the singular values of the matrix $G(z)-Q(z)$.

Let us first provide some preliminary definitions and then formulate the problem. Throughout the dissertation, $\mathbb{C}^{m \times n}$ denotes the space of $m \times n$ complex matrices with the operator norm and \mathbb{D}, \mathbb{T} denote the unit disc and the unit circle respectively.

Definition 1.1.1. $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ denotes the space of bounded analytic matrix-valued functions on the unit disc with the supremum norm

$$
\|Q\|_{H^{\infty}} \stackrel{\text { def }}{=}\|Q\|_{\infty} \stackrel{\text { def }}{=} \sup _{z \in \mathbb{C}}\|Q(z)\|_{\mathbb{C}^{m \times n}} .
$$

$L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ is the space of essentially bounded Lebesgue measurable matrix-valued functions on the unit circle with the essential supremum norm

$$
\|f\|_{L^{\infty}}=\operatorname{ess} \sup _{\mid z=1}\|f(z)\|_{C^{m \times n}} .
$$

Also, $C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ is the space of continuous matrix-valued functions from \mathbb{T} to $\mathbb{C}^{m \times n}$.
Definition 1.1.2. Let $F \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and let $s_{j}(F(z))$ denote the j-th singular value of the matrix $F(z)$, for $z \in \mathbb{T}$. We define

$$
s_{j}^{\infty}(F)=\underset{|z|=1}{\operatorname{ess} \sup _{|z|} s_{j}(F(z)), ~}
$$

and

$$
s^{\infty}(F)=\left(s_{0}^{\infty}(F), s_{1}^{\infty}(F), s_{2}^{\infty}(F), \ldots\right) .
$$

Problem 1.1.3 (The superoptimal analytic approximation problem). Given a function $G \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, find a function $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that the sequence $s^{\infty}(G-Q)$ is minimised with respect to the lexicographic ordering.

In general, the superoptimal analytic approximant might not be unique. However, it has been proved that if the given function G belongs to $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, then Problem 1.1.3 has a unique solution. The following theorem, which was obtained by V.V. Peller and N.J. Young in [24], asserts what we have just noted.

Theorem 1.1.4 ([24], p. 303). Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. Then the minimum with respect to the lexicographic ordering of $s^{\infty}(G-Q)$ over all $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ is attained at a unique function Q_{0}. Moreover, the singular values $s_{j}\left(G(z)-Q_{0}(z)\right)$ are constant almost everywhere on \mathbb{T} for $j=0,1,2, \ldots$.

The topic of this dissertation is not the existence and uniqueness of the function $\mathcal{A} G$ described in Theorem 1.1.4, but rather the construction of $\mathcal{A} G$. In the proof of the validity of our construction, we have no compunction in making any use of results proved in [24], such as the existence of some special matrix functions. For example, to justify our algorithm we shall prove, using results of [24], that certain operators that we introduce are unitarily equivalent to block Hankel operators, which fact enables us to make use of general properties of Schmidt vectors of Hankel operators, without the need to calculate the symbols of those Hankel operators.

The proof of Theorem 1.1.4 by Peller and Young is based on a process of diagonalisation of the error function $G-Q$, for $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$. They prove the existence of certain unitary-matrix-valued functions V, W on \mathbb{T} such that $W(G-Q) V$ takes a blockdiagonal form in which the singular values of $G(z)-Q(z)$ are exhibited. For any particular $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ the matrix functions V and W can in principle be computed with the aid of Wiener-Masani matrix factorisations, or spectral factorisations, of positive-semi-definite-matrix-valued functions on the circle. However, our aim is to give an algorithm for the construction of $\mathcal{A} G$ which avoids the calculation of Wiener-Masani factorisations of matricial positive semi-definite functions. A key point of the present work is that, even though we make extensive use of the existence of the matrix functions V, W, the algorithm does not require us to calculate these matrix functions. This feature of the construction contrasts with the conceptual algorithm put forward by Peller and Young in [25], which does not specify a way of computing the Schmidt pairs occurring in the formula for $\mathcal{A} G$, but describes them in terms of the functions V, W, so that any straightforward way of finding the Schmidt pairs will almost certainly require the calculation of V and W. We shall, however, need to calculate the inner and outer factors of some elements of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. For this purpose we need to find the spectral factors of positive scalar-valued functions on \mathbb{T}, but this is a simpler and better-conditioned computational task than the corresponding problem for matricial functions.

The purpose of this dissertation is to derive an alternative algorithm to the one given in [25], which avoids the Wiener-Masani factorisations of matrix functions and employs exterior
powers of Hilbert spaces along with some of the ideas obtained in [24] and [25]. We adopt the known theory of exterior powers of Hilbert spaces with their established operations and inner product. We also present a notion of pointwise exterior product for mappings that are defined on \mathbb{D} or \mathbb{T} with the same operations and inner product mentioned. It is worth noting that the algorithm we introduce in Section 3.2 produces a similar formula to [25] for the superoptimal analytic approximant $\mathcal{A} G$ of a matrix-valued continuous function G on the circle, to wit

$$
\begin{equation*}
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}} \tag{1.1}
\end{equation*}
$$

where x_{i}, y_{i} are certain vector-valued functions on the circle which are the Schmidt pairs of a succession of Hankel-type operators $\Gamma_{i}, t_{i}=\left\|\Gamma_{i}\right\|$ and $h_{i} \in H^{2}(\mathbb{D}, \mathbb{C})$ such that $\left|h_{i}(z)\right|=\left\|x_{i}(z)\right\|_{\mathbb{C}^{n}}$ almost everywhere on \mathbb{T} for $i=0,1,2 \ldots, r-1$. The difference between the two approaches lies in the methods of defining and calculating the vectors x_{i}, y_{i} and in characterising the function spaces in which they belong. In $[24],[25]$ the spaces are described by a block-diagonalisation procedure which requires the calculation of a "thematic completion" of an inner column-matrix function, which can itself be constructed from the spectral or Wiener-Masani factorisation of a singular positive-valued function on the circle. In the present approach, the objects x_{i}, y_{i} and the spaces in which they lie are described with the aid of wedge products of Hilbert spaces and operators. The new approach enables us to derive the functions x_{i}, y_{i}, and hence to calculate $\mathcal{A} G$ from the formula (1.1), without the spectral factorisation step. The results of this thesis are presented in [4], [5] and in the extended abstract in [39]. In the algorithm of [25], the pair of vectors $\left(x_{j}, y_{j}\right)$ in equation (1.1) is a Schmidt pair of the operator Γ_{j} defined below in Theorem 3.2.54, corresponding to $\left\|\Gamma_{j}\right\|$. In the present algorithm we give a construction of a suitable $\operatorname{Schmidt}$ pair $\left(x_{j}, y_{j}\right)$ for Γ_{j} corresponding to $\left\|\Gamma_{j}\right\|$ using exterior powers via the equations

$$
\begin{equation*}
x_{j+1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j} \xi_{j}^{*}\right) v_{j+1}, \quad y_{j+1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j} \eta_{j}^{T}\right) w_{j+1}, \tag{1.2}
\end{equation*}
$$

where the quantities concerned are generated by the algorithm below, without any need for Wiener-Masani factorization of positive matricial functions on \mathbb{T}. See Lemmas 3.2.55 and 3.2.56 for the proof. Since the singular value t_{i} of Γ_{i} can perfectly well have high multiplicity, there is no sort of uniqueness of Schmidt pairs. Therefore we do not assert that the summands in the right hand side of equation (1.1) are the same in [25] and in the present algorithm, though of course the sums themselves must be, because $\mathcal{A} G$ is uniquely determined.

1.2 Main results

The main outcome of this dissertation is the algorithm for the superoptimal analytic approximation given in Chapter 3 and presented below. The reader can find an application to a concrete example in Chapter 4.

In order to present the algorithm, let us first give some preliminary definitions.

Definition 1.2.1 ([14]). (i) $L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ is defined to be the space of square-integrable \mathbb{C}^{n} valued functions on the unit circle with its natural inner product and norm

$$
\|f\|_{L^{2}}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|f\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2} d \theta\right)^{1 / 2}
$$

(ii) $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is defined to be the space of holomorphic \mathbb{C}^{n}-valued functions on the unit disc such that

$$
\lim _{r \rightarrow 1}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|f\left(r e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2} d \theta\right)^{1 / 2}<\infty
$$

(iii) $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)^{\perp}$ is defined to be the space

$$
H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)^{\perp}=\left\{f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \mid\langle f, g\rangle_{L^{2}}=0, \text { for all } g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)\right\}
$$

Remark 1.2.2. Let $0<r<1$ and let $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. By the generalised Fatou's Theorem C.2.5, the radial limits

$$
\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)_{\|\cdot\|_{c^{n}}}^{=} \tilde{f}\left(e^{i \theta}\right)
$$

exist almost everywhere on \mathbb{T} and define a function $\tilde{f} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ which satisfies

$$
\lim _{r \rightarrow 1}\left\|f\left(r e^{i \theta}\right)-\tilde{f}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}=0 \quad \text { almost everywhere on } \mathbb{T} .
$$

Moreover, the space $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is identified isometrically with a closed subspace of $L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ by the injection $f \mapsto \tilde{f}$.

Definition 1.2.3. Let $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ be given by

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} \text { for all } z \in \mathbb{T}
$$

The projection

$$
P_{-}: L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right) \rightarrow H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

is given by

$$
P_{-}\left(\sum_{n=-\infty}^{\infty} a_{n} z^{n}\right)=\sum_{n=-\infty}^{-1} a_{n} z^{n} \text { for all } z \in \mathbb{T}
$$

Definition 1.2.4. For any $G \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, we define the Hankel operator with symbol G to be the operator

$$
H_{G}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \rightarrow H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

given by

$$
H_{G} x=P_{-}(G x) .
$$

Definition 1.2.5. Let H, K be Hilbert spaces. We define by $\mathcal{L}(H, K)$ the space of bounded linear operators from H to K.

Definition 1.2.6 ([38], p. 204). Let H, K be Hilbert spaces and let $T \in \mathcal{L}(H, K)$. For any non-negative integer k, let

$$
s_{k}(T)=\inf \{\|T-R\|: R \in \mathcal{L}(H, K), \operatorname{rank} R \leq k\}
$$

The numbers

$$
s_{0}(T) \geq s_{1}(T) \geq s_{2}(T) \geq \cdots \geq 0
$$

are called the singular values of T.

Remark 1.2.7. In this dissertation we call an operator $U: H \rightarrow K$ between Hilbert spaces $H, K a$ unitary operator if U is both isometric and surjective. Some authors restrict the name "unitary operator" to the case that $H=K$. Such authors would use a terminology like "isometric isomorphism" for our "unitary operator" in the case that $H \neq K$.

Remark 1.2.8. Suppose s is a singular value for a compact operator $T \in \mathcal{L}(H, K)$. Then s^{2} is a singular value of $T^{*} T$, and so there is a corresponding eigenvector $x \in H$ such that

$$
T^{*} T x=s^{2} x .
$$

If $s \neq 0$, we can let $y=s^{-1} T x \in K$, and then

$$
T^{*} y=s x .
$$

Definition 1.2.9 ([38], p. 206). Let H, K be Hilbert spaces and let $T: H \rightarrow K$ be a compact operator. Suppose that s is a singular value of T. A Schmidt pair for T corresponding to s is a pair (x, y) of non-zero vectors $x \in H$ and $y \in K$ such that

$$
T x=s y, T^{*} y=s x .
$$

Lemma 1.2.10. Let $T \in \mathcal{L}(H, K)$ be a compact operator and let $x \in H, y \in K$ be such that (x, y) is a Schmidt pair for T corresponding to $s=\|T\|$. Then x is a maximizing vector for T, y is a maximizing vector for T^{*}, and $\|x\|_{H}=\|y\|_{K}$.

Proof. Since (x, y) is a Schmidt pair for T corresponding to $s=\|T\|$,

$$
T x=s y, \quad T^{*} y=s x
$$

Then

$$
s\|y\|_{K}=\|T x\|_{K} \leq\|T\|\|x\|_{H}=s\|x\|_{H}=\left\|T^{*} y\right\|_{H} \leq\left\|T^{*}\right\|\|y\|_{K}=s\|y\|_{K} .
$$

Thus equality holds throughout, that is,

$$
\|T x\|_{K}=\|T\|\|x\|_{H}, \quad\left\|T^{*} y\right\|_{H}=\left\|T^{*}\right\|\|y\|_{K}, \quad\|x\|_{H}=\|y\|_{K} .
$$

Definition 1.2.11 ([14], p. 190). The matrix-valued bounded analytic function $\Theta \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ is called inner if $\Theta\left(e^{i t}\right)$ is an isometry from \mathbb{C}^{n} to \mathbb{C}^{m} for almost every $e^{i t}$ on \mathbb{T}.

An analytic $m \times n$-matrix-valued function Φ on \mathbb{D} is said to be outer if $\Phi H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=\left\{\Phi f: f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)\right\}$ is a norm-dense subspace of $H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, and co-outer if $\Phi^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)=\left\{\Phi^{T} g: g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)\right\}$ is dense in $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$.

Definition 1.2.12. Let E be a Hilbert space and let $\left(\otimes_{H}^{p},\|\cdot\|_{\left.\otimes_{H}^{p} E\right)}\right.$ be the p-fold Hilbert tensor product. Let $S_{p} \stackrel{\text { def }}{=} \operatorname{Sym}\{1, \cdots, p\}$ be the symmetric group on $\{1, \cdots, p\}$.

For $\sigma \in S_{p}$, we define $S_{\sigma}: \otimes^{p} E \rightarrow \otimes^{p} E$ on elementary tensors by

$$
S_{\sigma}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}\right)=x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(p)},
$$

and we extend S_{σ} to $\otimes^{p} E$ by linearity, that is, for $u=\sum_{i=1}^{n} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}$, we define

$$
S_{\sigma}(u)=\sum_{i=1}^{n} S_{\sigma}\left(x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}\right) .
$$

A tensor $u \in \otimes_{H}^{p} E$ is called antisymmetric if

$$
u=\epsilon_{\sigma} S_{\sigma} u
$$

for all $\sigma \in S_{p}$, where ϵ_{σ} is the signature of the permutation σ. The space of all antisymmetric tensors in $\otimes_{H}^{p} E$ will be denoted by $\wedge^{p} E$.

Definition 1.2.13. Let E be a Hilbert space and let $f, g: \mathbb{D} \rightarrow E(f, g: \mathbb{T} \rightarrow E)$ be E-valued maps. We define the pointwise wedge product of f and g,

$$
f \dot{\wedge} g: \mathbb{D} \rightarrow \wedge^{2} E \quad\left(f \dot{\wedge} g: \mathbb{T} \rightarrow \wedge^{2} E\right)
$$

by

$$
(f \dot{\wedge} g)(z)=f(z) \wedge g(z) \quad \text { for all } z \in \mathbb{D} \quad(\text { for almost all } z \in \mathbb{T})
$$

Recall that, by Theorem 1.1.4, if $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, then Problem 1.1.3 has a unique solution. Given that, the endeavour to construct an algorithm that determines the unique superoptimal analytic approximant is not void.

Hence we shall devise an algorithm that, given a function

$$
G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)
$$

yields a function $\mathcal{A} G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that the sequence

$$
s^{\infty}(G-\mathcal{A} G)=\left(s_{0}^{\infty}(G-\mathcal{A} G), s_{1}^{\infty}(G-\mathcal{A} G), \ldots\right)
$$

is minimised with respect to the lexicographic ordering.
The following is a brief summary of our algorithm. A full account of all the steps, with definitions and justifications will be given in Section 3.2.

Algorithm: For a given $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, the superoptimal analytic approximant $\mathcal{A} G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ can be constructed as follows.
i) Step 0. Let $T_{0}=H_{G}$ be the Hankel operator with symbol G as defined by Definition 1.2.4. Let $t_{0}=\left\|H_{G}\right\|$. If $t_{0}=0$, then $H_{G}=0$, which implies $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$. In this case, the algorithm terminates, we define r, which is the least index $j \geq 0$ such that $T_{j}=0$, to be zero and the superoptimal approximant $\mathcal{A} G$ is given by $\mathcal{A} G=G$.
Suppose that $t_{0} \neq 0$. By Hartman's Theorem 3.1.2, H_{G} is a compact operator and so there exists a Schmidt pair $\left(x_{0}, y_{0}\right)$ corresponding to the singular value t_{0} of H_{G}. By the definition of a Schmidt pair $\left(x_{0}, y_{0}\right)$ for the Hankel operator

$$
\begin{gathered}
H_{G}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \rightarrow H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}, \\
x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
\end{gathered}
$$

are non-zero vector-valued functions such that

$$
H_{G} x_{0}=t_{0} y_{0}, \quad H_{G}^{*} y_{0}=t_{0} x_{0} .
$$

By Lemma 3.1.12, $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $\bar{z} \bar{y}_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ admit the inner-outer factorisations

$$
\begin{equation*}
x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0} \tag{1.3}
\end{equation*}
$$

for some scalar outer factor $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$ and column matrix inner functions $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $\eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. Then,

$$
\begin{equation*}
\left\|x_{0}(z)\right\|_{\mathbb{C}^{n}}=\left|h_{0}(z)\right|=\left\|y_{0}(z)\right\|_{\mathbb{C}^{m}} \text { almost everywhere on } \mathbb{T} . \tag{1.4}
\end{equation*}
$$

We write equations (1.3) as

$$
\begin{equation*}
\xi_{0}=\frac{x_{0}}{h_{0}}, \quad \eta_{0}=\frac{\bar{z} \bar{y}_{0}}{h_{0}} . \tag{1.5}
\end{equation*}
$$

By equations (1.4) and (1.5),

$$
\begin{equation*}
\left\|\xi_{0}(z)\right\|_{\mathbb{C}^{n}}=1=\left\|\eta_{0}(z)\right\|_{\mathbb{C}^{m}} \text { almost everywhere on } \mathbb{T} \tag{1.6}
\end{equation*}
$$

By Theorem D.2.4, every function $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which is at minimal distance from G satisfies

$$
\begin{equation*}
\left(G-Q_{1}\right) x_{0}=t_{0} y_{0}, \quad y_{0}^{*}\left(G-Q_{1}\right)=t_{0} x_{0}^{*} . \tag{1.7}
\end{equation*}
$$

ii) Step 1. Let

$$
\begin{equation*}
X_{1} \stackrel{\text { def }}{=} \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \tag{1.8}
\end{equation*}
$$

By Proposition 3.2.2, X_{1} is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Moreover

$$
\eta_{0} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subset z H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)
$$

and therefore

$$
\bar{\eta}_{0} \dot{\wedge} \overline{z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)} \subset \bar{z} \overline{H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)}
$$

that is, if

$$
\begin{equation*}
Y_{1} \stackrel{\text { def }}{=} \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \tag{1.9}
\end{equation*}
$$

then Y_{1} is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)^{\perp}$.
Choose any function $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which satisfies equations (1.7). Consider the operator $T_{1}: X_{1} \rightarrow Y_{1}$ defined by

$$
\begin{equation*}
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right) \text { for all } x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \tag{1.10}
\end{equation*}
$$

where $P_{Y_{1}}$ is the projection from $L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)$ on Y_{1}. By Corollary 3.2.5 and Proposition 3.2.8, T_{1} is well-defined. If $T_{1}=0$, then the algorithm terminates, we define r to be 1 and, in accordance with Theorem 3.2.59, the superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}=\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}},
$$

and the solution is

$$
\mathcal{A} G=G-\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}
$$

Suppose $T_{1} \neq 0$ and let $t_{1}=\left\|T_{1}\right\|>0$. By Theorem 3.2.10, T_{1} is a compact operator and so there exist $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ is a Schmidt pair for T_{1} corresponding to t_{1}. Let h_{1} be the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$ and let

$$
\begin{equation*}
x_{1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) v_{1}, \quad y_{1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1} \tag{1.11}
\end{equation*}
$$

where $\mathrm{I}_{\mathbb{C}^{n}}$ and $\mathrm{I}_{\mathbb{C}^{m}}$ are the identity operators in \mathbb{C}^{n} and \mathbb{C}^{m} respectively. Then, by Proposition
3.2.24,

$$
\begin{equation*}
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left|h_{1}(z)\right|=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}} \text { almost everywhere on } \mathbb{T} \text {. } \tag{1.12}
\end{equation*}
$$

By Theorem 1.1.4, there exists a function $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that both $s_{0}^{\infty}\left(G-Q_{2}\right)$ and $s_{1}^{\infty}\left(G-Q_{2}\right)$ are minimised, that is,

$$
s_{0}^{\infty}\left(G-Q_{2}\right)=t_{0}, \quad s_{1}^{\infty}\left(G-Q_{2}\right)=t_{1} .
$$

By Proposition 3.2.27, any such Q_{2} satisfies

$$
\begin{gather*}
\left(G-Q_{2}\right) x_{0}=t_{0} y_{0}, \quad y_{0}^{*}\left(G-Q_{2}\right)=t_{0} x_{0}^{*} \tag{1.13}\\
\left(G-Q_{2}\right) x_{1}=t_{1} y_{1}, \quad y_{1}^{*}\left(G-Q_{2}\right)=t_{1} x_{1}^{*}
\end{gather*}
$$

Define

$$
\begin{equation*}
\xi_{1}=\frac{x_{1}}{h_{1}}, \quad \eta_{1}=\frac{\bar{z} \bar{y}_{1}}{h_{1}} . \tag{1.14}
\end{equation*}
$$

By equations (1.12) and (1.14), $\left\|\xi_{1}(z)\right\|_{\mathbb{C}^{n}}=1=\left\|\eta_{1}(z)\right\|_{\mathbb{C}^{n}}$ almost everywhere on \mathbb{T}.

Definition 1.2.14. We say that a finite collection $\gamma_{0}, \ldots, \gamma_{j}$ of elements of $L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ is pointwise orthonormal on \mathbb{T} if, for almost all $z \in \mathbb{T}$ with respect to Lebesgue measure, the set $\left\{\gamma_{0}(z), \ldots, \gamma_{j}(z)\right\}$ is orthonormal in \mathbb{C}^{n}.
iii) Recursive step. Suppose that, for $j \leq \min (m, n)-2$, we have constructed

$$
\begin{aligned}
& t_{0} \geq t_{1} \geq \cdots \geq t_{j}>0 \\
& x_{0}, x_{1}, \cdots, x_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \\
& y_{0}, y_{1}, \cdots, y_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right) \\
& h_{0}, h_{1}, \cdots, h_{j} \in H^{2}(\mathbb{D}, \mathbb{C}) \text { outer } \\
& \xi_{0}, \xi_{1}, \cdots, \xi_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \text { pointwise orthonormal on } \mathbb{T} \\
& \eta_{0}, \eta_{1}, \cdots, \eta_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right) \text { pointwise orthonormal on } \mathbb{T} \\
& X_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), X_{1}, \cdots, X_{j} \\
& Y_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}, Y_{1}, \cdots, Y_{j} \\
& T_{0}, T_{1}, \cdots, T_{j} \text { compact operators. }
\end{aligned}
$$

By Theorem 1.1.4, there exists a function $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that

$$
\left(s_{0}^{\infty}\left(G-Q_{j+1}\right), s_{1}^{\infty}\left(G-Q_{j+1}\right), \cdots, s_{j}^{\infty}\left(G-Q_{j+1}\right)\right)
$$

is lexicographically minimised. By Proposition 3.2.47, any such function satisfies

$$
\begin{equation*}
\left(G-Q_{j+1}\right) x_{i}=t_{i} y_{i}, \quad y_{i}^{*}\left(G-Q_{j+1}\right)=t_{i} x_{i}^{*}, \quad i=0,1, \cdots, j . \tag{1.15}
\end{equation*}
$$

Define

$$
\begin{equation*}
X_{j+1}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
Y_{j+1}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} . \tag{1.17}
\end{equation*}
$$

Note that, by Proposition 3.2.3, X_{j+1} is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$, and, by Proposition 3.2.6, Y_{j+1} is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}$.
Choose any function $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which satisfies equations (1.15). Consider the operator

$$
T_{j+1}: X_{j+1} \rightarrow Y_{j+1}
$$

given by

$$
\begin{equation*}
T_{j+1}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x\right)=P_{Y_{j+1}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge}\left(G-Q_{j+1}\right) x\right) \tag{1.18}
\end{equation*}
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. By Corollary 3.2 .7 and by Proposition 3.2.8, T_{j+1} is well-defined.
If $T_{j+1}=0$, then the algorithm terminates, we define r to be $j+1$, and, in accordance with Theorem 3.2.59, the superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}=\sum_{i=0}^{j} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}} .
$$

Otherwise, we define $t_{j+1}=\left\|T_{j+1}\right\|>0$. By Theorem 3.2.54, T_{j+1} is a compact operator and hence there exist $v_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), w_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that

$$
\begin{equation*}
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right) \tag{1.19}
\end{equation*}
$$

is a Schmidt pair for T_{j+1} corresponding to the singular value t_{j+1}.
Let h_{j+1} be the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}$, and let

$$
\begin{equation*}
x_{j+1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j} \xi_{j}^{*}\right) v_{j+1}, \quad y_{j+1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j} \eta_{j}^{T}\right) w_{j+1}, \tag{1.20}
\end{equation*}
$$

and define

$$
\begin{equation*}
\xi_{j+1}=\frac{x_{j+1}}{h_{j+1}}, \quad \eta_{j+1}=\frac{\bar{z} \bar{y}_{j+1}}{h_{j+1}} . \tag{1.21}
\end{equation*}
$$

One can show that $\left\|\xi_{j+1}(z)\right\|_{\mathbb{C}^{n}}=1$ and $\left\|\eta_{j+1}(z)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}. This completes the recursive step. The algorithm terminates after at $\operatorname{most} \min (m, n)$ steps, so that, $r \leq \min (m, n)$ and, in accordance with Theorem 3.2.59, the superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}} .
$$

Remark 1.2.15. Observe that, in step j of the algorithm, we define an operator T_{j} in terms of any function $Q_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ that satisfies the equations

$$
\begin{equation*}
\left(G-Q_{j}\right) x_{i}=t_{i} y_{i}, \quad y_{i}^{*}\left(G-Q_{j}\right)=t_{i} x_{i}^{*}, \quad i=0,1, \cdots, j-1 . \tag{1.22}
\end{equation*}
$$

This constitutes a system of linear equations for Q_{j} in terms of the computed quantities
x_{i}, t_{i} and y_{i} for $i=0, \ldots, j-1$, and we know, from Proposition 3.2.47, that the system has a solution for Q_{j} in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$. By Proposition 3.2.8, T_{j} is independent of the choice of Q_{j} that satisfies equations (1.22).

Remark 1.2.16. At each step we need to find $\left\|T_{j}\right\|$ and a Schmidt pair

$$
\begin{equation*}
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}\right) \tag{1.23}
\end{equation*}
$$

for T_{j} corresponding to the singular value t_{j}. Then we compute the scalar outer factor h_{j} of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j} \in H^{2}\left(\mathbb{D}, \wedge^{j+1} \mathbb{C}^{n}\right)$. These are the only spectral factorisations needed in the algorithm. Note that if $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ has the inner-outer factorisation $f=h g$, with $h \in H^{2}(\mathbb{D}, \mathbb{C})$ a scalar outer function and $g \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ inner, then $\left(f^{*} f\right)(z)=|h(z)|^{2}$ almost everywhere on \mathbb{T}, and so the calculation of h requires us to find a spectral factorisation of the positive scalar-valued function $f^{*} f$ on the circle.

Remark 1.2.17. In a numerical implementation of the algorithm one would need to find a way to compute the norms and Schmidt vectors of the compact operators T_{j}. For this purpose it would be natural to choose convenient orthonormal bases of the cokernel $X_{j} \ominus \operatorname{ker} T_{j}$ and the range $\operatorname{ran} T_{j}$. It is safe to assume that in most applications G will be a rational function, in which case the cokernel and range will be finite-dimensional. At step $0, T_{0}$ is a Hankel operator, and the calculation of the matrix of T_{0} with respect to suitable orthonormal bases is a known task [36]; we believe that similar methods will work for step j.

We arrive at the following conclusion about the superoptimal approximant $\mathcal{A} G$.
Theorem 3.2.59. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. Let $T_{i}, x_{i}, y_{i}, h_{i}$ for $i \geq 0$ be defined by the algorithm above. Let r be the least index $j \geq 0$ such that $T_{j}=0$. Then $r \leq \min (m, n)$ and the superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}
$$

Wedge products, and in particular pointwise wedge products, along with their properties are studied in detail in Chapter 2.

1.3 Motivation for the development of an algorithm

Motivation derives from the problem of designing automatic controllers for linear timeinvariant plants with multiple inputs and outputs. Such design problems are often formulated in the frequency domain, that is, in terms of the Laplace or z-transform of signals. By this means the problem becomes to construct an analytic matrix-valued function in a disc or half-plane, subject to various constraints. An important constraint is usually to minimise, or at least bound, some cost or penalty function. In practical engineering problems a wide
variety of constraints and cost functions arise, and the engineer must take account of many complications, such as the physical limitations of devices and the imprecision of models. Engineers have developed numerous ways to cope with these complications. One of them, developed in the 1980s, is H^{∞} control theory [9]. It is a wide-ranging theory. It makes pleasing contact with some problems and results of classical analysis; a seminal role was played by Nehari's theorem on the best approximation of a bounded function on the circle by an analytic function in the disc. Also important in the development of the theory were a series of deep papers by Adamyan, Arov and Krein [1],[2] which greatly extend Nehari's theorem and apply to matrix-valued functions.

In this context the notion of a superoptimal analytic approximation arose very naturally. Simple diagonal examples of a 2×2-matrix-valued function G on \mathbb{T} show that the set of best analytic approximants to G in the L^{∞} norm typically comprises an entire ball of functions, and so one is driven to ask for a stronger optimality criterion, and preferably one which will provide a unique optimum. The term "superoptimal" was coined by engineers even before its existence had been proved in generality. The paper [24] proved that the superoptimal approximant does indeed exist, and moreover is unique, as long as the approximand G is the sum of a continuous function and an H^{∞} function on the circle. In engineering examples G is usually rational and so continuous on the circle.

Naturally engineers need to be able to compute the superoptimal approximant of G. The existence proof in [24] can in principle be turned into an algorithm, but into a very computationally intensive one. The construction is recursive, and at each step of the recursion one must augment a column-matrix function to a unitary matrix-valued function on the circle with some special properties. Computationally this step requires a spectral factorisation of a positive semi-definite matrix-valued function on the circle. There are indeed algorithms for this step, but they involve an iteration which may be slow to converge and badly conditioned, especially if some function values have eigenvalues on or close to the unit circle.

It is certainly desirable to avoid the matricial spectral factorisation step if it is possible to do so. Our aim in this project was to devise an algorithm in which the iterative procedures are as few and as well-conditioned as possible. Iteration cannot be completely avoided; even in the scalar case, the optimal error is the norm of a certain operator, and the best approximant is given by a simple formula involving the corresponding Schmidt vectors. Thus one has to perform a singular value decomposition of matrix-valued functions. In the case that the approximand G is of type $m \times n$ one must expect to solve $\min (m, n)$ successive singular value problems. However, from the point of view of numerical linear algebra, singular value decomposition is a fast, accurate and well-behaved operation. In this paper we describe an algorithm that is, in a sense, parallel to the construction of [25] and that requires only rational arithmetic and singular-value decompositions and the spectral factorisation of scalar functions.

Several engineers have developed alternative approaches [13],[27] based on state-space methods. These too are computationally intensive. We believe that our method, which
makes use of exterior powers of Hilbert spaces and operators, provides a more conceptual approach to the construction of superoptimal approximants. It will be very interesting to see whether it leads to an efficient numerical method.

1.4 History and recent work

The Nehari problem of approximating an essentially bounded Lebesgue measurable function on the unit circle \mathbb{T} by a bounded analytic function on the unit disc \mathbb{D} in the L^{∞} norm, has been attracting the interest of both pure mathematicians and engineers since the second half of the 20th century. The problem was initially formulated and solved from the scalarvalued viewpoint, with Adamjan, Arov, Krein and Sarason contributing greatly. In the years that followed, the operator-valued perspective was also explored, subsequently motivating research into the superoptimal analytic approximation problem, which we consider in this dissertation.

The initial inspiration for the study of the Nehari problem in the scalar case was the paper of Nehari [15]. Given an essentially bounded complex valued function g on \mathbb{T}, determine: its distance from H^{∞} with respect to the essential supremum norm, for which elements this distance is attained and whether this element is uniquely determined. These problems have been studied in detail by Nehari in [15], Sarason [30] and Adamjan, Arov and Krein in [1] and [2]. Adamjan, Arov and Krein obtained significant results studying these problems; they proved that the distance is equal to the norm of the Hankel operator with symbol g, namely H_{g}. Moreover, if H_{g} has a maximizing vector in H^{2}, then the bounded analytic complex-valued function q that minimises the essential supremum norm $\|g-q\|_{L^{\infty}}$ is uniquely determined and can be explicitly calculated (see Theorem D.1.24). Furthermore, they proved that if the essential norm $\left\|H_{g}\right\|_{e}$ is less than $\left\|H_{g}\right\|$, then g also has a unique best approximant.

Pure mathematicians and engineers started seeking operator-valued analogues for these results. These generalisations are not only mathematically interesting. In engineering, and especially in control theory, various approximation problems arise for operator-valued functions, which enhances the motivation for the research of generalised Nehari problems in both scientific fields.

Page in [16] and Treil in [34] gave various operator-valued extensions of the obtained results by Adamjan, Arov and Krein. Page proved that for operator valued mappings $T \in$ $L^{\infty}\left(\mathbb{T}, \mathcal{L}\left(E_{1}, E_{2}\right)\right), \inf \left\{\|T-\Phi\|: \Phi \in H^{\infty}\left(\mathbb{D}, \mathcal{L}\left(E_{1}, E_{2}\right)\right\}=\left\|H_{T}\right\|\right.$. Here E_{1}, E_{2} are Hilbert spaces and $\mathcal{L}\left(E_{1}, E_{2}\right)$ denotes the Banach space of bounded linear operators from E_{1} to E_{2}. Treil extended the Adamjan, Arov and Krein theorem in [2] to its operator-valued analogue.

On the other hand, in the matrix-valued setting there can be infinitely many functions that best approximate a given function with respect to the L^{∞} norm. This can be illustrated by considering Example D.2.6. Let $G(z)=\operatorname{diag}\{\bar{z}, 0\}, z \in \mathbb{T}$. The norm of H_{G} in this case is equal to 1 , hence all the matrix-valued functions $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)$ of the form $Q(z)=\operatorname{diag}\{0, q(z)\}$, where $\|q\|_{H^{\infty}} \leq 1$, clearly minimise the norm $\|G-Q\|_{L^{\infty}}$.

The question that naturally arises here is whether one can determine the "very best" among those best approximants. Let us see what can be gained if one considers minimizing the essential suprema of both singular values of $G(z)-Q(z)$ instead of minimizing only the largest of them. It may easily be deduced that such a minimisation occurs when $q(z)$ is equal to 0 and the "very best approximant" in this case is the zero 2×2 matrix, that is, $Q(z)=\mathbb{O}_{2 \times 2}$. Consequently, the latter reasoning strengthens the approximation criterion and one can indeed determine the "very best" amongst the best approximants.

This led to the formulation of a strengthened approximation problem, the superoptimal analytic approximation problem. For $G \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ one defines, for $j=0,1,2, \ldots$,

$$
s_{j}^{\infty}(G)=\underset{|z|=1}{\operatorname{ess} \sup _{j}} s_{j}(G(z))
$$

and

$$
s^{\infty}(G)=\left(s_{0}^{\infty}(G), s_{1}^{\infty}(G), \ldots\right)
$$

where $s_{j}(G(z))$ denotes the j-th singular value of the matrix $G(z)$. In [37] N.J. Young introduced the notion of superoptimal analytic approximation. Given a G as above, find a function $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that the sequence $s^{\infty}(G-Q)$ is lexicographically minimised. This obviously constitutes a strengthening of optimality, as one needs to determine a function $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ that not only minimises $\|G-Q\|_{L^{\infty}}$, but minimises the L^{∞} norm of all the subsequent singular values of $G(z)-Q(z)$ over \mathbb{T}.

The starting point for the superoptimal analytic approximation of matrix functions is [24]. The problem is to determine, given a (matrix-valued) function

$$
G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)
$$

a function $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that the sequence $s^{\infty}(G-Q)$ is lexicographically minimised. Peller and Young obtained significant results on thematic factorisations, on the analyticity of the minors of unitary completions of inner matrix-columns and on the compactness of Hankel operators with matrix symbols. These provided the foundation for their notable result, namely if G belongs to $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, there exists a unique $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that the sequence $s^{\infty}(G-Q)$ is lexicographically minimised. Moreover, the singular values $s_{j}(G(z)-Q(z)$ are constant almost everywhere on \mathbb{T} for all $j=0,1,2, \ldots$.

Later, in [25] Peller and Young presented a conceptual algorithm for the computation of the superoptimal approximant. Their algorithm is based on the theory developed in [24]. Also in [25], the algorithm was applied to a specific matrix-valued G in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)+C\left(\mathbb{T}, \mathbb{C}^{2 \times 2}\right)$ and the superoptimal approximant $\mathcal{A} G$ was calculated. It is worth noting that the thematic completions described in [24] and [25] invoke spectral (or Wiener-Masani) factorisations of positive matrix functions and the corona theorem.

Furthermore, Peller and Young in [26] studied the superoptimal approximation by mero-
morphic matrix-valued functions, that is, matrix-valued functions in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ that have at most k poles in the open unit disc. They adjusted the results obtained in [24] and established a uniqueness criterion in the case where the given matrix-valued function G is in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and has at most k poles in the open unit disc. In addition, they provided a different algorithm in order to calculate the superoptimal approximant.

Towards the extension of the results in the operator case, the operator-valued superoptimal approximation problem was studied by Peller in [21]. The author generalised the notions of [24] and proved there exists a unique superoptimal approximant in $H^{\infty}(\mathcal{B})$ for functions that belong to $H^{\infty}(\mathcal{B})+C(\mathcal{K})$, where \mathcal{B} denotes the space of bounded linear operators and \mathcal{K} denotes the space of compact operators.

Very badly approximable functions, that is, functions that have the zero function as a superoptimal approximant, were studied in the years that followed and a considerable amount of work was published. Peller and Young's paper [24] provided the motivation for the study of this problem, where they were able to algebraically characterise the very badly approximable matrix functions of class $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. Their results were extended in [22] to the case of matrix functions G for which the essential norm $\left\|H_{G}\right\|_{e}$ is less than the smallest non-zero superoptimal singular value of G. Very badly approximable matrix functions with entries in $H^{\infty}+C$ were completely characterised in [23].

Recent work in [3] by Baratchart, Nazarov and Peller explores the analytic approximation of matrix-valued functions in L^{p} of the unit circle by matrix-valued functions from H^{p} of the unit disc in the L^{p} norm for $2 \leq p<\infty$. They proved that if a given matrixvalued function $\Psi \in L^{p}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ is a 'respectable' matrix function, then its distance from $H^{p}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ is equal to $\left\|H_{\Psi}\right\|$, and they obtained a characterisation of that distance also in the case Ψ is a 'weird' matrix-valued function. Furthermore, they established the notion of p-superoptimal approximation and illustrated that every $n \times n$ rational matrix function has a unique p-superoptimal approximant for $2 \leq p<\infty$. However, for p-approximable functions with $p=\infty$, they provided an example of a function that has two different p-superoptimal approximants.

In a more recent paper of Condori [6], the author considered the relation between the sum of the superoptimal singular values of admissible functions in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and the superoptimal analytic approximation problem in the space $L^{\infty}\left(\mathbb{T}, S_{p}^{m, n}\right)$, where $S_{p}^{m, n}$ denotes the space of $m \times n$ matrices endowed with the Schatten-von-Neumann norm $\|\cdot\|_{S_{p}^{m, n}}$. Condori illustrated that if $\Phi \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{n \times n}\right)$ is an admissible matrix function of order k, then $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n \times n}\right)$ is a best approximant function under the $L^{\infty}\left(\mathbb{T}, S_{1}^{n, n}\right)$-norm and the singular values $s_{j}((\phi-Q)(z))$ are constant almost everywhere on \mathbb{T} for all $0 \leq j \leq k-1$ if and only if Q is a superoptimal approximant to Φ, $\operatorname{ess}_{\sup }^{z \in \mathbb{T}} s_{j}((\Phi-Q)(z))=0$ for $j \geq k$, and the sum of the superoptimal values of Φ is equal to

$$
\sup \left|\int_{\mathbb{T}} \operatorname{trace}(\Phi(\zeta) \Psi(\zeta)) d m(\zeta)\right|
$$

where $m, n>1,1 \leq k \leq \min (m, n)$ and the supremum is taken over all $\Psi \in H_{0}^{1}\left(\mathbb{D}, \mathbb{C}^{n \times m}\right)$ for which $\|\Psi\|_{L^{1}\left(\mathbb{T}, \mathbb{C}^{n \times m}\right)} \leq 1$ and $\operatorname{rank} \Psi(\zeta) \leq k$ almost everywhere on \mathbb{T}.

1.5 Description of results by sections

In Chapter 2, we recall the long-established notion of the wedge product of Hilbert spaces. We define an inner product on the p-fold wedge product of Hilbert spaces and study the notion of pointwise wedge product of operator- or vector-valued functions on \mathbb{D} or \mathbb{T}. We study numerous properties of it and we formulate a concise theory specifically for multiplication, block diagonal and creation operators. Towards the end of the chapter, we examine in detail the characteristics of the pointwise orthogonal complement and pointwise linear span. Some of the main results of Chapter 2 are the following.

Proposition 2.2.8. Let E be a Hilbert space and let $x_{i}: \mathbb{D} \rightarrow E$ be analytic E-valued maps on \mathbb{D} for all $i=0, \ldots, k$. Then

$$
x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}: \mathbb{D} \rightarrow \wedge^{k+1} E
$$

is also analytic on \mathbb{D} and

$$
\begin{aligned}
\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)^{\prime}(z) & =x_{0}^{\prime}(z) \wedge x_{1}(z) \wedge \cdots \wedge x_{k}(z)+x_{0}(z) \wedge x_{1}^{\prime}(z) \wedge x_{2}(z) \wedge \cdots \wedge x_{k}(z) \\
& +\cdots+x_{0}(z) \wedge x_{1}(z) \wedge \cdots x_{k}^{\prime}(z)
\end{aligned}
$$

Proposition 2.2.13. Let E be a Hilbert space, let $x \in H^{2}(\mathbb{D}, E)$ and let $y \in H^{\infty}(\mathbb{D}, E)$. Then

$$
x \dot{\wedge} y \in H^{2}\left(\mathbb{D}, \wedge^{2} E\right)
$$

Proposition 2.2.40. Let E be a separable Hilbert space and let $\xi \in H^{\infty}(\mathbb{D}, E)$ be an inner function. Consider the pointwise creation operator

$$
C_{\xi}: H^{2}(\mathbb{D}, E) \rightarrow H^{2}\left(\mathbb{D}, \wedge^{2} E\right)
$$

given by

$$
C_{\xi} f=\xi \wedge f, \text { for } f \in H^{2}(\mathbb{D}, E)
$$

and let $P_{+}: L^{2}(\mathbb{T}, E) \rightarrow H^{2}(\mathbb{D}, E)$ be the orthogonal projection operator. Then, for any $h \in H^{2}(\mathbb{D}, E)$,

$$
C_{\xi}^{*} C_{\xi} h=P_{+} \alpha,
$$

where $\alpha=h-\xi \xi^{*} h$. Moreover

$$
C_{\xi}^{*} C_{\xi} h=h-T_{\xi \xi^{*}} h,
$$

where $T_{\xi \xi^{*}}: H^{2}(\mathbb{D}, E) \rightarrow H^{2}(\mathbb{D}, E)$ is the Toeplitz operator with symbol $\xi \xi^{*}$.
Furthermore, in Chapter 3 we present our main result; the superoptimal analytic approximation algorithm. At first, we describe the algorithm and then we prove its validity. The
purpose of the algorithm is the determination of the unique superoptimal approximant. Let us give an overview of the main results obtained in Chapter 3. We first prove the pointwise orthonormality of the sets $\left\{\xi_{i}\right\}_{i=1}^{j},\left\{\bar{\eta}_{i}\right\}_{i=1}^{j}$ almost everywhere on \mathbb{T}. Next, we show that the spaces X_{i}, Y_{i} are closed linear subspaces of $H^{2}\left(\mathbb{D}, \wedge^{i+1} \mathbb{C}^{n}\right)$ and $H^{2}\left(\mathbb{D}, \wedge^{i+1} \mathbb{C}^{m}\right)^{\perp}$ respectively. Hence we prove that the projections $P_{Y_{i}}$ are well-defined, and consequently, that the operators T_{i} are well-defined for all $i \geq 0$. For the latter, one also has to show that each operator T_{i} is independent of the choice of $Q_{i} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$. Moreover, we prove that the operator T_{i} is compact for $i=0,1, \ldots, r-1$ and the superoptimal analytic approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}},
$$

where each term in this sum can in principle be calculated.
In Chapter 4 we apply the algorithm obtained in Chapter 3 to calculate the superoptimal approximant of the matrix-valued functions

$$
G(z)=\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right) \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)
$$

and

$$
G(z)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\sqrt{3} \bar{z}^{2}+2 \bar{z} & \bar{z} \\
\sqrt{3} \bar{z}+2 & -1
\end{array}\right) \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)+C\left(\mathbb{T}, \mathbb{C}^{2 \times 2}\right)
$$

The former is a relatively simple example which involves trivial operations and enables the reader to familiarise themselves with our algorithm, while the latter is a more elaborate one and its superoptimal approximant is calculated to be

$$
\mathcal{A} G=\frac{\sqrt{2}}{1-\gamma z}\left(\begin{array}{cc}
-\gamma & \sqrt{3}+4 \gamma \\
2+\gamma \sqrt{3}-\gamma z & -(\sqrt{3}+4 \gamma)(\sqrt{3}+z)
\end{array}\right)
$$

where $\gamma=-\frac{5-\sqrt{13}}{2 \sqrt{3}}$.
Regarding the appendices, in Appendix A we give a well known construction of the algebraic tensor product using the universal property. We then consider the tensor product of Hilbert spaces and define an inner product. In appendices B and C we review scalar inner and outer functions and Fatou's theorem, and in appendices D and E we recall the established notions of operator valued inner and outer functions, we present the established generalised Fatou's theorem in the matricial setting and we describe the Nehari problem both in the scalar and in the matrix-valued setting.

1.6 Future work

The algorithm introduced in the present dissertation establishes a new approach to the computation of the superoptimal analytic approximant in the problem of best analytic ap-
proximation of matrix-valued functions. Let us briefly refer to research topics which could arise from this project.

Immediate tasks this dissertation could inspire is the construction of similar algorithms for the meromorphic and operator-valued cases, as these are studied by Peller and Young [26] and Peller [21] respectively. Wedge products of Hilbert spaces could be implemented in order to obtain an alternative algorithm in the meromorphic case, since Proposition 2.2.8 asserts the analyticity of the pointwise wedge product. Moreover, wedge products of infinitedimensional Hilbert spaces may provide a plausible alternative to Peller's methods in [21].

In addition, our project could steer one's interests towards the direction of investigating the algorithm's advantages and disadvantages to previous algorithms, especially to the ones facilitated in control engineering [13], [27]. It would be of great significance to numerically implement our algorithm and perform a rather deeper comparison with past algorithms in this respect. Such a project would entail a certain comprehension of numerical methods and, quite possibly, a collaboration between control engineers and functional analysts.

Furthermore, we trust that consideration of the wedge product of Hilbert spaces could potentially lead to research in different topics in analysis, one of them being reproducing kernel Hilbert spaces. Reproducing kernels play a prominent role in the study of Hilbert spaces of functions, such as Hardy spaces and Dirichlet spaces, as well as in Statistics and certain physical problems. In particular they can be used to prove some classical interpolation problems, such as Pick-type theorems, which are theorems giving necessary and sufficient conditions for the existence of multipliers of norm at most one that satisfy some interpolation conditions.

The techniques introduced in the subsequent chapters of this dissertation illustrate the fact that exterior products of Hilbert spaces and operators thereon are naturally well adapted to the analysis of matrix-valued functions on the circle, disc or line, and therefore to questions arising from problems in engineering design. Though a long established theory [7], [17], [35], exterior products of Hilbert spaces and operators deserve in our view to be better exploited in functional analysis than they have been hitherto. An initial orientation could be given by a number of concrete questions, as follows.
(1) Give concrete descriptions of the exterior product $\wedge^{p} H$ as a reproducing kernel Hilbert space for various standard Hilbert function spaces H, such as Hardy, Bergman, Dirichlet and Hardy-Sobolev spaces.
(2) Explore best approximation problems associated with the spaces described in item (1).
(3) Try to prove a "super-Pick Theorem" for bounded analytic matrix-valued functions in the disc. Given distinct points $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{D}, m \times n$ matrices W_{1}, \ldots, W_{N} and positive numbers $t_{0}>\cdots>t_{k}>0$, find a necessary and sufficient condition for the existence of a bounded analytic matrix-valued function F in \mathbb{D} such that $F\left(\lambda_{j}\right)=W_{j}$ for $j=1, \ldots, N$
and $s_{j}^{\infty}(F) \leq t_{j}$ for $j=0,1, \ldots, k$, where

$$
s_{j}^{\infty}(F) \stackrel{\text { def }}{=} \underset{z \in \mathbb{T}}{\operatorname{ess}} \sup _{z} s_{j}(F(z))
$$

and, for any matrix $A, s_{j}(A)$ denotes the j th singular value of A.
(4) Explore natural variants of item (3).
(5) Can one prove a Parrott theorem for s_{1} of completions of a partially specified operator T by using $\wedge^{2} T$?

Chapter 2

Exterior powers of Hilbert spaces and operators

2.1 Exterior powers

In this section, we first present some results concerning the action of permutation operators on tensors, then we recall a well-known definition of the antisymmetric tensors and we define an inner product on the space of all antisymmetric tensors. Basic definitions and properties of exterior products can be found in a S. Winitzki's book [35] as well as in [32], [33].

Below E denotes a Hilbert space.
Definition 2.1.1. $\otimes^{p} E$ is the algebraic p-fold tensor product of E and is spanned by tensors of the form $x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}$, where $x_{j} \in E$, for $j=1, \ldots, p$.

Definition 2.1.2. We define an inner product on $\otimes^{p} E$ on elementary tensors by

$$
\left\langle x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}, y_{1} \otimes y_{2} \otimes \cdots \otimes y_{p}\right\rangle_{\otimes^{p} E}=p!\left\langle x_{1}, y_{1}\right\rangle_{E} \cdots\left\langle x_{p}, y_{p}\right\rangle_{E},
$$

for any $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p} \in E$, and extend $\langle\cdot, \cdot\rangle$ to $\otimes^{p} E$ by sesqui-linearity.
Remark 2.1.3. The space $\left(\otimes^{p} E,\|\cdot\|\right)$, where $\|u\|=\langle u, u\rangle_{\otimes^{p} E}^{1 / 2}$, is a normed space.
Definition 2.1.4. $\otimes_{H}^{p} E$ is the completion of $\otimes^{p} E$ with respect to the norm

$$
\|u\|=\langle u, u\rangle_{\otimes^{p} E}^{1 / 2},
$$

for $u \in \otimes^{p} E$.

Definition 2.1.5. Let $S_{p} \stackrel{\text { def }}{=} \operatorname{Sym}\{1, \ldots, p\}$ be the symmetric group on $\{1, \ldots, p\}$, with the operation of composition. For $\sigma \in S_{p}$, we define $S_{\sigma}: \otimes^{p} E \rightarrow \otimes^{p} E$ on elementary tensors by

$$
S_{\sigma}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}\right)=x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(p)}
$$

and we extend S_{σ} to $\otimes^{p} E$ by linearity, that is, for $u=\sum_{i=1}^{n} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}$, we define

$$
S_{\sigma}(u)=\sum_{i=1}^{n} S_{\sigma}\left(x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}\right) .
$$

Proposition 2.1.6. Let E be a Hilbert space, and let p be a positive integer. Then, for any $\sigma \in S_{p}, S_{\sigma}$ is a linear operator on the normed space $\left(\otimes^{p} E,\|\cdot\|\right)$, which extends to an isometry \mathbf{S}_{σ} on $\left(\otimes_{H}^{p} E,\|\cdot\|\right)$.

Proof. To prove linearity, let $u=\sum_{i=1}^{n} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i} \in \otimes^{p} E$ and $v=\sum_{j=1}^{n} y_{1}^{j} \otimes \cdots \otimes y_{p}^{j} \in \otimes^{p} E$, then

$$
\begin{aligned}
S_{\sigma}(\lambda u+\mu v) & =S_{\sigma}\left(\sum_{i=1}^{n} \lambda x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}+\sum_{j=1}^{n} \mu y_{1}^{j} \otimes \cdots \otimes y_{p}^{j}\right) \\
& =\sum_{i=1}^{n} \lambda x_{\sigma(1)}^{i} \otimes \cdots \otimes x_{\sigma(p)}^{i}+\sum_{j=1}^{n} \mu y_{\sigma(1)}^{j} \otimes \cdots \otimes y_{\sigma(p)}^{j} \\
& =\lambda S_{\sigma}\left(\sum_{i=1}^{n} \lambda x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}\right)+\mu S_{\sigma}\left(\sum_{j=1}^{n} \mu y_{1}^{j} \otimes \cdots \otimes y_{p}^{j}\right) \\
& =\lambda S_{\sigma}(u)+\mu S_{\sigma}(v)
\end{aligned}
$$

for scalars $\lambda, \mu \in \mathbb{C}$.
Furthermore, for an elementary tensor $w=x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}$, we need to prove that $\left\|S_{\sigma} w\right\|_{\otimes^{p} E}^{2}=\|w\|_{\otimes^{p} E}^{2}$. By the definition of the inner product on $\otimes^{p} E$, we get

$$
\begin{aligned}
\left\|S_{\sigma} w\right\|_{\otimes^{p} E}^{2} & =\left\langle S_{\sigma} w, S_{\sigma} w\right\rangle_{\otimes^{p} E} \\
& =\left\langle x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(p)}, x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(p)\rangle}\right\rangle_{\otimes^{p} E} \\
& =p!\left\langle x_{\sigma(1)}, x_{\sigma(1)}\right\rangle_{E} \cdots\left\langle x_{\sigma(p)}, x_{\sigma(p)\rangle}\right\rangle_{E} \\
& =p!\left\|x_{\sigma(1)}\right\|_{E}^{2} \cdots\left\|x_{\sigma(p)}\right\|_{E}^{2} \\
& =\|w\|_{E}^{2} .
\end{aligned}
$$

Also, for a tensor ω of the form $\omega=\sum_{i=1}^{n} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}$, we have

$$
\begin{aligned}
\|\omega\|_{\otimes^{p} E}^{2} & =\left\langle\sum_{i=1}^{n} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}, \sum_{j=1}^{n} x_{1}^{j} \otimes \cdots \otimes x_{p}^{j}\right\rangle_{\otimes^{p} E} \\
& =p!\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle x_{1}^{i}, x_{1}^{j}\right\rangle_{E} \cdots\left\langle x_{p}^{i}, x_{p}^{j}\right\rangle_{E}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle S_{\sigma} \omega, S_{\sigma} \omega\right\rangle_{\otimes^{p} E} & =\left\langle S_{\sigma}\left(\sum_{i=1}^{n} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}\right), S_{\sigma}\left(\sum_{j=1}^{n} x_{1}^{j} \otimes \cdots \otimes x_{p}^{j}\right)\right\rangle_{\otimes^{p} E} \\
& =\left\langle\sum_{i=1}^{n} x_{\sigma(1)}^{i} \otimes \cdots \otimes x_{\sigma(p)}^{i}, \sum_{j=1}^{n} x_{\sigma(1)}^{j} \otimes \cdots \otimes x_{\sigma(p)}^{j}\right\rangle_{\otimes^{p} E} \\
& =p!\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle x_{\sigma(1)}^{i}, x_{\sigma(1)}^{j}\right\rangle_{E} \cdots\left\langle x_{\sigma(p)}^{i}, x_{\sigma(p)}^{j}\right\rangle_{E} .
\end{aligned}
$$

So, $\left\|S_{\sigma} \omega\right\|_{\otimes^{p} E}^{2}=\|\omega\|_{\otimes^{p} E}^{2}$. Hence S_{σ} is also a surjective self-map of $\otimes^{p} E$.
Thus one can extend S_{σ} by continuity to an isometric linear self-map \mathbf{S}_{σ} of the completion $\otimes_{H}^{p} E$ of $\otimes^{p} E$.

Proposition 2.1.7. \mathbf{S}_{σ} is a bounded linear operator from $\otimes_{H}^{p} E$ to $\otimes_{H}^{p} E$. Furthermore, \mathbf{S}_{σ} is a unitary operator on $\otimes_{H}^{p} E$.

Proof. Since by Proposition 2.1.6 \mathbf{S}_{σ} is isometric, its range is complete, hence closed in $\otimes_{H}^{p} E$. Since the range of \mathbf{S}_{σ} contains that of $S_{\sigma}, \operatorname{ran} \mathbf{S}_{\sigma}=\otimes_{H}^{p} E$. Being both surjective and isometric, \mathbf{S}_{σ} is a unitary operator on $\otimes_{H}^{p} E$.

Henceforth we shall denote the extended operator \mathbf{S}_{σ} by S_{σ}.
Definition 2.1.8. A tensor $u \in \otimes_{H}^{p} E$ is called symmetric if $S_{\sigma}(u)=u$ for all $\sigma \in S_{p}$. A tensor $u \in \otimes_{H}^{p} E$ is called antisymmetric if $u=\epsilon_{\sigma} S_{\sigma} u$ for all $\sigma \in S_{p}$, where ϵ_{σ} is the signature of σ.

Definition 2.1.9. The space of all antisymmetric tensors in $\otimes_{H}^{p} E$ will be denoted by $\wedge^{p} E$.
Remark 2.1.10. (S_{p}, \circ) is a group so, for every permutation $\sigma \in S_{p}$, there exists $\sigma^{-1} \in S_{p}$ such that

$$
\sigma \circ \sigma^{-1}=\mathrm{id}=\sigma^{-1} \circ \sigma,
$$

where id $\in S_{p}$ is the identity map on $\{1, \ldots, p\}$. Then,

$$
\epsilon_{\sigma \circ \sigma^{-1}}=\epsilon_{\sigma} \epsilon_{\sigma^{-1}}=1,
$$

hence $\epsilon_{\sigma}=\epsilon_{\sigma^{-1}}$.
Example 2.1.11. Let E be a Hilbert space and let $x_{1}, x_{2} \in E$. In $\otimes_{H}^{2} E$, the elementary tensor

$$
x_{1} \otimes x_{2}+x_{2} \otimes x_{1}
$$

is symmetric, whereas the elementary tensor

$$
x_{1} \otimes x_{2}-x_{2} \otimes x_{1}
$$

is antisymmetric.

Theorem 2.1.12. Let E be a Hilbert space. Then $\bigwedge^{p} E$ is a closed linear subspace of the Hilbert space $\otimes_{H}^{p} E$ for any $p \geq 2$.

Proof. For $\sigma \in S_{p}$ we define the operator

$$
f_{\sigma} \stackrel{\text { def }}{=}\left(S_{\sigma}-\epsilon_{\sigma} \cdot I\right): \otimes_{H}^{p} E \rightarrow \otimes_{H}^{p} E,
$$

where $I: \otimes_{H}^{p} E \rightarrow \otimes_{H}^{p} E$ is given by $I(u)=u$, for $u \in \otimes_{H}^{p} E$.
Since S_{σ} is a continuous linear operator on $\otimes_{H}^{p} E, f_{\sigma}$ is a continuous linear operator. The kernel of the operator f_{σ} is

$$
\begin{aligned}
\operatorname{ker} f_{\sigma} & =\left\{u \in \otimes_{H}^{p} E:\left(S_{\sigma}-\epsilon_{\sigma} \cdot I\right)(u)=0\right\} \\
& =\left\{u \in \otimes_{H}^{p} E: S_{\sigma}(u)=\epsilon_{\sigma} u\right\} \\
& =\left\{u \in \otimes_{H}^{p} E: \epsilon_{\sigma} S_{\sigma}(u)=u\right\} .
\end{aligned}
$$

Since f_{σ} is a continuous linear operator on $\otimes_{H}^{p} E$, $\operatorname{ker} f_{\sigma}$ is a closed linear subspace of $\otimes_{H}^{p} E$. Thus $\wedge^{p} E$ is a closed linear subspace of $\otimes_{H}^{p} E$, since

$$
\wedge^{p} E=\bigcap_{\sigma \in S_{p}} \operatorname{ker} f_{\sigma}=\left\{u \in \otimes_{H}^{p} E: \epsilon_{\sigma} S_{\sigma}(u)=u \text {, for all } \sigma \in S_{p}\right\}
$$

Theorem 2.1.12 implies that the orthogonal projection onto $\wedge^{p} E$ is well-defined on $\otimes_{H}^{p} E$.
Definition 2.1.13. Let E be a Hilbert space. For $x_{1}, \ldots, x_{p} \in E$, define $x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p}$ to be the orthogonal projection of the elementary tensor $x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}$ onto $\wedge^{p} E$, that is,

$$
x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p}=P_{\wedge^{p} E}\left(x_{1} \otimes \cdots \otimes x_{p}\right)
$$

Remark 2.1.14. For any tensor of the form

$$
u=\sum_{i=1}^{n} \lambda^{i} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i} \in \otimes_{H}^{p} E
$$

the orthogonal projection of u onto $\wedge^{p} E$ is given by

$$
\mathrm{P}_{\wedge^{p} E}\left(\sum_{i=1}^{n} \lambda^{i} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}\right)=\sum_{i=1}^{n} \lambda^{i} x_{1}^{i} \wedge \cdots \wedge x_{p}^{i}
$$

where $\lambda^{i} \in \mathbb{C}$ for all $i=1, \cdots, n$.
Theorem 2.1.15. Let E be a Hilbert space. For all $u \in \otimes_{H}^{p} E$,

$$
P_{\wedge^{p} E}(u)=\frac{1}{p!} \sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u) .
$$

Proof. Let $u \in \otimes_{H}^{p} E$. Then, for any $\sigma \in S_{p}, u=\epsilon_{\sigma} S_{\sigma}(u)+\left(u-\epsilon_{\sigma} S_{\sigma}(u)\right)$, and so

$$
p!u=\sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u)+\sum_{\sigma \in S_{p}}\left(u-\epsilon_{\sigma} S_{\sigma}(u)\right) .
$$

It suffices to show that $\sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u) \in \wedge^{p} E$ and

$$
\sum_{\sigma \in S_{p}}\left(u-\epsilon_{\sigma} S_{\sigma}(u)\right)
$$

is orthogonal to the set of antisymmetric tensors, in other words, if $v \in \wedge^{p} E$ then

$$
\left\langle v, \sum_{\sigma \in S_{p}}\left(u-\epsilon_{\sigma} S_{\sigma}(u)\right)\right\rangle_{\otimes_{H}^{p} E}=0 .
$$

Let $w=\sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u) \in \otimes_{H}^{p} E$. For every $\tau \in S_{p}$, we have

$$
\begin{aligned}
\epsilon_{\tau} S_{\tau}(w) & =\epsilon_{\tau} S_{\tau}\left(\sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u)\right) \\
& =\sum_{\tau \circ \sigma \in S_{p}} \epsilon_{\tau \circ \sigma} S_{\tau \circ \sigma}(u) \\
& =\sum_{\sigma^{\prime} \in S_{p}} \epsilon_{\sigma^{\prime}} S_{\sigma^{\prime}}(u) \\
& =w,
\end{aligned}
$$

where $\tau \circ \sigma=\sigma^{\prime}$. Hence $\sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u) \in \wedge^{p} E$.
Furthermore, for every $v \in \wedge^{p} E$, we have $v=\epsilon_{\sigma} S_{\sigma} v$ for all $\sigma \in S_{p}$, and

$$
\begin{aligned}
\left\langle v, \sum_{\sigma \in S_{p}}\left(u-\epsilon_{\sigma} S_{\sigma}(u)\right)\right\rangle_{\otimes_{H}^{p} E} & =\sum_{\sigma \in S_{p}}\langle v, u\rangle_{\otimes_{H}^{p} E}-\sum_{\sigma \in S_{p}} \epsilon_{\sigma}\left\langle v, S_{\sigma}(u)\right\rangle_{\otimes_{H}^{p} E} \\
& =\sum_{\sigma \in S_{p}}\langle v, u\rangle_{\otimes_{H}^{p} E}-\sum_{\sigma \in S_{p}} \epsilon_{\sigma}\left\langle S_{\sigma}{ }^{*} v, u\right\rangle_{\otimes_{H}^{p} E} \\
& =\sum_{\sigma \in S_{p}}\left\langle v-\epsilon_{\sigma^{-1}} S_{\sigma^{-1}} v, u\right\rangle_{\otimes_{H}^{p} E} \\
& =\left\langle\sum_{\sigma \in S_{p}}\left(v-\epsilon_{\sigma^{-1}} S_{\sigma^{-1}} v\right), u\right\rangle_{\otimes_{H}^{p} E} \\
& =0 .
\end{aligned}
$$

Thus, for all $u \in \otimes_{H}^{p} E$,

$$
P_{\wedge^{p} E}(p!u)=P_{\wedge^{p} E}\left(\sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u)+\sum_{\sigma \in S_{p}}\left(u-\epsilon_{\sigma} S_{\sigma}(u)\right)\right)=\sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u),
$$

and so,

$$
P_{\wedge^{p} E}(u)=\frac{1}{p!} \sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}(u)
$$

as required.
Example 2.1.16. Let E be a Hilbert space. If $x_{1} \otimes x_{2} \in \otimes_{H}^{2} E$, then

$$
x_{1} \wedge x_{2}=P_{\wedge^{2} E}\left(x_{1} \otimes x_{2}\right)=\frac{1}{2!}\left(x_{1} \otimes x_{2}-x_{2} \otimes x_{1}\right)
$$

Remark 2.1.17. If $p>1$, then S_{p} contains a transposition, for instance $\sigma=\left(\begin{array}{l}12) \text {, and }\end{array}\right.$ $\epsilon_{\sigma}=-1$. If $p=1$, then $\wedge^{1} E=E$.

Proposition 2.1.18. Let E be a Hilbert space and let $p \geq 2$. The set of antisymmetric tensors and the set of symmetric tensors are orthogonal in $\otimes_{H}^{p} E$.

Proof. Suppose that u is a symmetric tensor and v is an antisymmetric tensor, that is, $S_{\sigma} u=u$ and $S_{\sigma} v=\epsilon_{\sigma} v$ respectively for all $\sigma \in S_{p}$. By Proposition 2.1.7, S_{σ} is a unitary operator on $\otimes_{H}^{p} E$, for all $\sigma \in S_{p}$. Thus

$$
\langle u, v\rangle_{\otimes_{H}^{p} E}=\left\langle S_{\sigma} u, S_{\sigma} v\right\rangle_{\otimes_{H}^{p} E}=\left\langle u, \epsilon_{\sigma} v\right\rangle_{\otimes_{H}^{p} E}, \text { for all } \sigma \in S_{p} .
$$

The equality holds for all $\sigma \in S_{p}$, thus it is true for $\epsilon_{\sigma}=-1$. Then

$$
\langle u, v\rangle_{\otimes_{H}^{p} E}=-\langle u, v\rangle_{\otimes_{H}^{p} E},
$$

and so $\langle u, v\rangle_{\otimes_{H}^{p} E}=0$.

Proposition 2.1.19. Let E be a Hilbert space. The inner product in $\wedge^{p} E$ is given by

$$
\left\langle x_{1} \wedge \cdots \wedge x_{p}, y_{1} \wedge \cdots \wedge y_{p}\right\rangle_{\wedge^{p} E}=\operatorname{det}\left(\begin{array}{ccc}
\left\langle x_{1}, y_{1}\right\rangle_{E} & \ldots & \left\langle x_{1}, y_{p}\right\rangle_{E} \\
\vdots & \ddots & \vdots \\
\left\langle x_{p}, y_{1}\right\rangle_{E} & \ldots & \left\langle x_{p}, y_{p}\right\rangle_{E}
\end{array}\right)
$$

for all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p} \in E$.
Proof. By Theorem 2.1.15, we have

$$
\begin{aligned}
& \left\langle x_{1} \wedge \cdots \wedge x_{p}, y_{1} \wedge \cdots \wedge y_{p}\right\rangle_{\wedge^{p} E}= \\
& =\left\langle\frac{1}{p!} \sum_{\sigma \in S_{p}} \epsilon_{\sigma} S_{\sigma}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}\right), \frac{1}{p!} \sum_{\tau \in S_{p}} \epsilon_{\tau} S_{\tau}\left(y_{1} \otimes y_{2} \otimes \cdots \otimes y_{p}\right)\right\rangle_{\otimes_{H}^{p} E} \\
& =\frac{1}{p!^{2}} \sum_{\sigma, \tau \in S_{p}}\left\langle\epsilon_{\sigma} S_{\sigma}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}\right), \epsilon_{\tau} S_{\tau}\left(y_{1} \otimes y_{2} \otimes \cdots \otimes y_{p}\right)\right\rangle_{\otimes_{H}^{p} E} \\
& =\frac{1}{p!^{2}} \sum_{\sigma, \tau \in S_{p}} \epsilon_{\sigma} \epsilon_{\tau}\left\langle x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}, S_{\sigma}^{*} S_{\tau}\left(y_{1} \otimes y_{2} \otimes \cdots \otimes y_{p}\right)\right\rangle_{\otimes_{H}^{p} E} \\
& =\frac{1}{p!^{2}} \sum_{\sigma, \tau \in S_{p}} \epsilon_{\sigma^{-1}} \epsilon_{\tau}\left\langle x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}, S_{\sigma^{-1}} S_{\tau}\left(y_{1} \otimes y_{2} \otimes \cdots \otimes y_{p}\right)\right\rangle_{\otimes_{H}^{p} E} \\
& =\frac{1}{p!} \sum_{\sigma^{\prime} \in S_{p}} \epsilon_{\sigma^{\prime}}\left\langle x_{1} \otimes x_{2} \otimes \cdots \otimes x_{p}, S_{\sigma^{\prime}}\left(y_{1} \otimes y_{2} \otimes \cdots \otimes y_{p}\right)\right\rangle_{\otimes_{H}^{p} E} \\
& =\sum_{\sigma^{\prime} \in S_{p}} \epsilon_{\sigma^{\prime}} \prod_{i=1}^{p}\left\langle x_{i}, y_{\sigma^{\prime}(i)}\right\rangle_{E} \\
& =\operatorname{det}\left(\begin{array}{ccc}
\left\langle x_{1}, y_{1}\right\rangle_{E} & \cdots & \left\langle x_{1}, y_{p}\right\rangle_{E} \\
\vdots & \ddots & \vdots \\
\left\langle x_{p}, y_{1}\right\rangle_{E} & \cdots & \left\langle x_{p}, y_{p}\right\rangle_{E}
\end{array}\right) .
\end{aligned}
$$

Corollary 2.1.20. Let E be a Hilbert space and let $x_{1}, \ldots, x_{p} \in E$. Then $x_{1} \wedge \cdots \wedge x_{p}=0$ if and only if x_{1}, \ldots, x_{p} are linearly dependent.

Proof. Note that $x_{1} \wedge \cdots \wedge x_{p}=0$ if and only if $\left\|x_{1} \wedge \cdots \wedge x_{p}\right\|_{\wedge^{p} E}^{2}=0$, which, by Proposition 2.1.19, holds if and only if

$$
\operatorname{det}\left[\left\langle x_{i}, x_{j}\right\rangle\right]_{i, j=1}^{p}=0 .
$$

Thus $x_{1} \wedge \cdots \wedge x_{p}=0$ if and only if there exist complex numbers $\lambda_{1}, \ldots, \lambda_{p}$, which are not all zero, such that

$$
\left(\begin{array}{ccc}
\left\langle x_{1}, y_{1}\right\rangle_{E} & \ldots & \left\langle x_{1}, y_{p}\right\rangle_{E} \\
\vdots & \ddots & \vdots \\
\left\langle x_{p}, y_{1}\right\rangle_{E} & \cdots & \left\langle x_{p}, y_{p}\right\rangle_{E}
\end{array}\right)\left(\begin{array}{c}
\bar{\lambda}_{1} \\
\vdots \\
\bar{\lambda}_{p}
\end{array}\right)=0 .
$$

This holds if and only if there exist complex numbers $\lambda_{1}, \ldots, \lambda_{p}$, which are not all zero, such that

$$
\left\langle x_{i}, \sum_{j=1}^{p} \lambda_{j} x_{j}\right\rangle_{E}=0 \quad \text { for } i=1, \ldots, p
$$

The latter statement is equivalent to the assertion that there exist complex numbers $\lambda_{1}, \ldots, \lambda_{p}$, which are not all zero, such that

$$
\left\langle\sum_{i=1}^{p} \lambda_{i} x_{i}, \sum_{j=1}^{p} \lambda_{j} x_{j}\right\rangle_{E}=0,
$$

which in turn is equivalent to the condition that there exist complex numbers $\lambda_{1}, \ldots, \lambda_{p}$, not
all zero, such that

$$
\sum_{j=1}^{p} \lambda_{j} x_{j}=0
$$

The latter statement is equivalent to the linear dependence of x_{1}, \ldots, x_{p} as required.
Corollary 2.1.21. Let E be a Hilbert space. Suppose $x, y \in E$, and x, y are orthogonal in E, that is, $\langle x, y\rangle_{E}=0$. Then

$$
\|x \wedge y\|_{\wedge^{2} E}=\|x\|_{E}\|y\|_{E}
$$

Since we have already shown that $\Lambda^{p} E$ is a closed linear subspace of the Hilbert space $\otimes_{H}^{p} E$, the space $\left(\wedge^{p} E,\langle\cdot, \cdot\rangle_{\wedge^{p} E}\right)$ with inner product given by Proposition 2.1.19 is itself a Hilbert space.

Proof. By Proposition 2.1.19,

$$
\|x \wedge y\|_{\wedge^{2} E}^{2}=\langle x \wedge y, x \wedge y\rangle_{\wedge^{2} E}=\operatorname{det}\left(\begin{array}{cc}
\langle x, x\rangle_{E} & \langle x, y\rangle_{E} \\
\langle y, x\rangle_{E} & \langle y, y\rangle_{E}
\end{array}\right) .
$$

If x is orthogonal to y in E, the off-diagonal entries are zero and thus

$$
\|x \wedge y\|_{\wedge^{2} E}^{2}=\|x\|_{E}^{2}\|y\|_{E}^{2}
$$

Lemma 2.1.22. Suppose $\left\{u_{1}, \cdots, u_{n}\right\}$ is an orthonormal set in \mathbb{C}^{n}. Then, for $j=1, \ldots, n-1$ and for every $x \in E$,

$$
\left\|u_{1} \wedge \cdots \wedge u_{j} \wedge x\right\|_{\wedge^{j+1} \mathbb{C}^{n}}=\left\|x-\sum_{i=1}^{j}\left\langle x, u_{i}\right\rangle u_{i}\right\|_{\mathbb{C}^{n}}
$$

Proof. Let $x \in \mathbb{C}^{n}$. We may write

$$
x=x-\sum_{i=1}^{j}\left\langle x, u_{i}\right\rangle u_{i}+\sum_{i=1}^{j}\left\langle x, u_{i}\right\rangle u_{i} .
$$

By Proposition 2.1.19, we get

$$
\begin{aligned}
\left\|u_{1} \wedge \cdots \wedge u_{j} \wedge x\right\|_{\wedge^{j+1} \mathbb{C}^{n}}^{2} & =\left\langle u_{1} \wedge \cdots \wedge u_{j} \wedge x, u_{1} \wedge \cdots \wedge u_{j} \wedge x\right\rangle_{\wedge^{j+1} \mathbb{C}^{n}} \\
& =\operatorname{det}\left(\begin{array}{ccccc}
\left\langle u_{1}, u_{1}\right\rangle_{\mathbb{C}^{n}} & \left\langle u_{1}, u_{2}\right\rangle_{\mathbb{C}^{n}} & \cdots & \cdots & \left\langle u_{1}, x\right\rangle_{\mathbb{C}^{n}} \\
\left\langle u_{2}, u_{1}\right\rangle_{\mathbb{C}^{n}} & \left\langle u_{2}, u_{2}\right\rangle_{\mathbb{C}^{n}} & \cdots & \cdots & \left\langle u_{2}, x\right\rangle_{\mathbb{C}^{n}} \\
\vdots & \cdots & \ddots & \cdots & \cdots \\
\left\langle u_{j}, u_{1}\right\rangle_{\mathbb{C}^{n}} & \left\langle u_{j}, u_{2}\right\rangle_{\mathbb{C}^{n}} & \cdots & \left\langle u_{j}, u_{j}\right\rangle_{\mathbb{C}^{n}} & \left\langle u_{j}, x\right\rangle_{\mathbb{C}^{n}} \\
\left\langle x, u_{1}\right\rangle_{\mathbb{C}^{n}} & \left\langle x, u_{2}\right\rangle_{\mathbb{C}^{n}} & \cdots & \cdots & \langle x, x\rangle_{\mathbb{C}^{n}}
\end{array}\right) .
\end{aligned}
$$

By assumption,

$$
\left\langle u_{i}, u_{k}\right\rangle= \begin{cases}0, & i \neq k \\ 1, & i=k\end{cases}
$$

and hence,

$$
\left\|u_{1} \wedge \cdots \wedge u_{j} \wedge x\right\|_{\wedge^{j+1} \mathbb{C}^{n}}^{2}=\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & & \cdots & \left\langle u_{1}, x\right\rangle_{\mathbb{C}^{n}} \\
0 & 1 & \cdots & \left\langle u_{2}, x\right\rangle_{\mathbb{C}^{n}} \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & & 1 & \left\langle u_{j}, x\right\rangle_{\mathbb{C}^{n}} \\
\left\langle x, u_{1}\right\rangle_{\mathbb{C}^{n}} & \left\langle x, u_{2}\right\rangle_{\mathbb{C}^{n}} & \cdots & \langle x, x\rangle_{\mathbb{C}^{n}}
\end{array}\right)
$$

If, for every $k=1, \cdots, j$ we multiply the k-th column of the determinant by $\left\langle u_{k}, x\right\rangle_{\mathbb{C}^{n}}$ and subtract it from the $(j+1)$-th column, we find that

$$
\begin{aligned}
\left\|u_{1} \wedge \cdots \wedge u_{j} \wedge x\right\|_{\wedge^{j+1} \mathbb{C}^{n}}^{2} & =\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & 1 & & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & & \cdots & 1 & 0 \\
\left\langle x, u_{1}\right\rangle_{\mathbb{C}^{n}} & \left\langle x, u_{2}\right\rangle_{\mathbb{C}^{n}} & \cdots & \cdots & \langle x, x\rangle_{\mathbb{C}^{n}}-\sum_{i=1}^{j}\left|\left\langle x, u_{i}\right\rangle_{\mathbb{C}^{n}}\right|^{2}
\end{array}\right) \\
& =\|x\|_{\mathbb{C}^{n}}^{2}-\sum_{i=1}^{j}\left|\left\langle x, u_{i}\right\rangle_{\mathbb{C}^{n}}\right|^{2} \\
& =\left\|x-\sum_{i=1}^{j}\left\langle x, u_{i}\right\rangle_{\mathbb{C}^{n}} u_{i}\right\|_{\mathbb{C}^{n}}^{2},
\end{aligned}
$$

the latter equality following by Pythagoras theorem.
Suppose E is a separable Hilbert space with an orthonormal basis. In what follows, we derive an orthonormal basis for the space $\wedge^{p} E$.

Theorem 2.1.23 ([17], p. 47). Let E be a separable Hilbert space with $\operatorname{dim} E=m$ and let $\left(e_{n}\right)_{n=1}^{m}$ be a basis of E. Then the set

$$
B=\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}}: 1 \leq i_{1}<\cdots<i_{p} \leq m\right\}
$$

is linearly independent in $\wedge^{p} E$.
Proposition 2.1.24. Let E be a separable Hilbert space with $\operatorname{dim} E=m$ and let $\left(e_{n}\right)_{n=1}^{m}$ be an orthonormal basis of E. If $x, y \in E$ with $x=\sum_{i=1}^{m} x_{i} e_{i}$ and $y=\sum_{j=1}^{m} y_{j} e_{j}$, then

$$
x \wedge y=\sum_{i<j}\left(x_{i} y_{j}-x_{j} y_{i}\right) e_{i} \wedge e_{j}
$$

and

$$
\|x \wedge y\|_{\wedge^{2} E}^{2}=\sum_{i<j}\left|\operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right)\right|^{2}
$$

Proof. Let $x=\sum_{i=1}^{m} x_{i} e_{i}$ and $y=\sum_{j=1}^{m} y_{j} e_{j}$. We know that $e_{i} \wedge e_{i}=0$ and $e_{i} \wedge e_{j}=-e_{j} \wedge e_{i}$, for $i \neq j$. Hence

$$
\begin{aligned}
x \wedge y & =\sum_{i=1}^{m} x_{i} e_{i} \wedge \sum_{j=1}^{m} y_{j} e_{j} \\
& =\sum_{i<j}\left(x_{i} y_{j}\right)\left(e_{i} \wedge e_{j}\right)+\sum_{j<i}\left(x_{j} y_{i}\right)\left(e_{j} \wedge e_{i}\right)+\sum_{i=1}^{m}\left(x_{i} y_{i}\right)\left(e_{i} \wedge e_{i}\right) \\
& =\sum_{i<j}\left(x_{i} y_{j}-x_{j} y_{i}\right) e_{i} \wedge e_{j}
\end{aligned}
$$

and

$$
\begin{aligned}
\langle x \wedge y, x \wedge y\rangle_{\wedge^{2} E} & =\left\langle\sum_{i<j}\left(x_{i} y_{j}-x_{j} y_{i}\right)\left(e_{i} \wedge e_{j}\right), \sum_{k<l}\left(x_{k} y_{l}-x_{l} y_{k}\right)\left(e_{k} \wedge e_{l}\right)\right\rangle_{\wedge^{2} E} \\
& =\sum_{i<j} \sum_{k<l}\left(x_{i} y_{j}-x_{j} y_{i}\right) \overline{\left(x_{k} y_{l}-x_{l} y_{k}\right)}\left\langle e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right\rangle_{\wedge^{2} E} .
\end{aligned}
$$

Since $\left(e_{n}\right)_{n=1}^{\infty}$ is an orthonormal basis of E,

$$
\left\langle e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right\rangle_{E}=\operatorname{det}\left(\begin{array}{ll}
\left\langle e_{i}, e_{k}\right\rangle_{E} & \left\langle e_{i}, e_{l}\right\rangle_{E} \\
\left\langle e_{j}, e_{k}\right\rangle_{E} & \left\langle e_{j}, e_{l}\right\rangle_{E}
\end{array}\right)= \begin{cases}1 & \text { if } i=k \text { and } j=l, \\
0 & \text { otherwise }\end{cases}
$$

Thus

$$
\langle x \wedge y, x \wedge y\rangle_{\wedge^{2} E}=\sum_{i<j}\left|x_{i} y_{j}-x_{j} y_{i}\right|^{2}=\sum_{i<j}\left|\operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right)\right|^{2}
$$

Corollary 2.1.25. Let E be a separable Hilbert space with $\operatorname{dim} E=m$ and let $\left(e_{n}\right)_{n=1}^{m}$ be an orthonormal basis of E. Then, the set $\mathcal{B}=\left\{e_{i} \wedge e_{j}: 1 \leq i<j \leq m\right\}$ is an orthonormal basis of $\wedge^{2} E$.

Proof. By Theorem 2.1.23, the set \mathcal{B} is a linearly independent set in $\wedge^{2} E$. Also, by Proposition 2.1.24, the set \mathcal{B} spans $\wedge^{2} E$ and is an orthonormal set. Hence \mathcal{B} is an orthonormal basis of $\wedge^{2} E$.

Proposition 2.1.26. If E is an m-dimensional Hilbert space with orthonormal basis $\left\{e_{1}, \cdots, e_{m}\right\}$, then, for $0<p \leq m, \wedge^{p} E$ is an $\binom{m}{p}$-dimensional Hilbert space with orthonormal basis

$$
B=\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}}, 1 \leq i_{1}<\cdots<i_{p} \leq m\right\} .
$$

Proof. By Theorem 2.1.12, $\wedge^{p} E$ is a Hilbert space. Let us first show that the set $\left\{e_{i_{1}}, \cdots, e_{i_{p}}\right.$: $\left.1 \leq i_{1}<\cdots i_{p} \leq m\right\}$ spans $\wedge^{p} E$. Suppose that $x_{j}=\sum_{i=1}^{m} \alpha_{i_{j}} e_{i}$. Then

$$
x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p}=\sum_{i=1}^{m} \alpha_{i_{1}} e_{i} \wedge \sum_{i=1}^{m} \alpha_{i_{2}} e_{i} \wedge \cdots \wedge \sum_{i=1}^{m} \alpha_{i_{p}} e_{i} .
$$

By multilinearity of the wedge product we have

$$
x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p}=\sum_{1 \leq i_{1}<\cdots<i_{p} \leq m} \alpha_{i_{1}, \cdots, i_{p}} e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}}
$$

Hence the set B spans $\wedge^{p} E$. Since $\left(e_{i}\right)_{i=1}^{m}$ is an orthonormal basis, for $1 \leq i_{1}<\cdots<i_{p} \leq m$ we have

$$
\begin{aligned}
\left\|e_{i_{1}} \wedge e_{i_{2}} \cdots \wedge e_{i_{p}}\right\|_{\wedge^{p} E}^{2} & =\operatorname{det}\left(\begin{array}{cccc}
\left\langle e_{i_{1}}, e_{i_{1}}\right\rangle_{E} & \left\langle e_{i_{1}}, e_{i_{2}}\right\rangle_{E} & \cdots & \left\langle e_{i_{1}}, e_{i_{p}}\right\rangle_{E} \\
\left\langle e_{i_{2}}, e_{i_{1}}\right\rangle_{E} & \left\langle e_{i_{2}}, e_{i_{2}}\right\rangle & \cdots & \left\langle e_{i_{2}}, e_{i_{p}}\right\rangle_{E} \\
\vdots & \cdots & \ddots & \vdots \\
\left\langle e_{i_{p}}, e_{i_{1}}\right\rangle_{E} & \cdots & \cdots & \left\langle e_{i_{p}}, e_{i_{p}}\right\rangle_{E}
\end{array}\right) \\
& =1
\end{aligned}
$$

Furthermore, for $\left\{j_{1}, \cdots, j_{p}: 1 \leq j_{1}<\cdots<j_{p} \leq m\right\}$ such that

$$
\left\{i_{1}, \cdots, i_{p}\right\} \cap\left\{j_{1}, \cdots, j_{p}\right\}=\emptyset
$$

we get

$$
\left\langle e_{i_{1}} \wedge e_{i_{2}} \cdots \wedge e_{i_{p}}, e_{j_{1}} \wedge \cdots \wedge e_{j_{p}}\right\rangle_{\wedge p E}=\operatorname{det}\left(\begin{array}{cccc}
\left\langle e_{i_{1}}, e_{j_{1}}\right\rangle_{E} & \left\langle e_{i_{1}}, e_{j_{2}}\right\rangle_{E} & \cdots & \left\langle e_{i_{1}}, e_{j_{p}}\right\rangle_{E} \\
\left\langle e_{i_{2}}, e_{j_{1}}\right\rangle_{E} & \left\langle e_{i_{2}}, e_{j_{2}}\right\rangle_{E} & \cdots & \left\langle e_{i_{2}}, e_{j_{p}}\right\rangle_{E} \\
\vdots & \cdots & \ddots & \vdots \\
\left\langle e_{i_{p}}, e_{j_{1}}\right\rangle_{E} & \cdots & \cdots & \left\langle e_{i_{p}}, e_{j_{p}}\right\rangle_{E}
\end{array}\right)=0
$$

Moreover, by Theorem 2.1.23, the set B is a linearly independent set in $\wedge^{p} E$, thus the set B is an orthonormal basis for $\wedge^{p} E$. Finally, the cardinality of the basis is equal to $\binom{m}{p}$ since this is the number of possible choices of p elements out of m elements, and so $\wedge^{p} E$ is an $\binom{m}{p}$-dimensional Hilbert space.

Example 2.1.27.

$$
\wedge^{2} \mathbb{C}^{2} \cong \mathbb{C}^{\binom{2}{2}}=\mathbb{C}
$$

and

$$
\wedge^{p} \mathbb{C}^{n} \cong \mathbb{C}^{\binom{n}{p}}
$$

Next, we study properties of wedge products of bounded linear operators. Detailed information is included in Appendix A.

Definition 2.1.28. Suppose $H_{1}, \ldots, H_{p}, K_{1}, \ldots, K_{p}$ are Hilbert spaces and $T_{i}: H_{i} \rightarrow K_{i}$, $i=1, \ldots, p$, are bounded linear operators. Then, on algebraic tensor products, we define the operator

$$
T_{1} \otimes \cdots \otimes T_{p}: H_{1} \otimes \cdots \otimes H_{p} \rightarrow K_{1} \otimes \cdots \otimes K_{p}
$$

on elementary tensors by

$$
\begin{equation*}
\left(T_{1} \otimes \cdots \otimes T_{p}\right)\left(u_{1} \otimes \cdots \otimes u_{p}\right)=T_{1}\left(u_{1}\right) \otimes \cdots \otimes T_{p}\left(u_{p}\right), \tag{2.1}
\end{equation*}
$$

and we extend $T_{1} \otimes \cdots \otimes T_{p}$ to $H_{1} \otimes \cdots \otimes H_{p}$ by linearity.
Proposition 2.1.29 ([8], Chapitre 1, Section 2). Let $\left(H_{i},\langle\cdot, \cdot\rangle_{H_{i}}\right)$ and $\left(G_{i},\langle\cdot, \cdot\rangle_{G_{i}}\right)$ be Hilbert spaces, and let $T_{i}: H_{i} \rightarrow G_{i}$ be bounded linear operators for $i=1, \ldots, p$. Then, the operator $T_{1} \otimes \cdots \otimes T_{p}$ of equation (2.1) has a continuous extension

$$
T_{1} \otimes \cdots \otimes T_{p}: H_{1} \otimes_{H} \cdots \otimes_{H} H_{p} \rightarrow G_{1} \otimes_{H} \cdots \otimes_{H} G_{p}
$$

to a bounded linear operator on the completion $H_{1} \otimes_{H} \cdots \otimes_{H} H_{p}$ of $H_{1} \otimes \cdots \otimes H_{p}$.
Proposition 2.1.30. Let E, K be Hilbert spaces and let $T: E \rightarrow K$ be a bounded linear operator. Let $\wedge^{p} T$ be the restriction of

$$
\underbrace{T \otimes \cdots \otimes T}_{p-\text { times }}: \otimes_{H}^{p} E \rightarrow \otimes_{H}^{p} K
$$

to $\wedge^{p} E$. Then the image of $\wedge^{p} T$ is in $\wedge^{p} K$.
Proof. Let $\lambda^{i} \in \mathbb{C}$ for all $i=1, \ldots, n$ and let

$$
u=\sum_{i=1}^{n} \lambda^{i} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}
$$

be in $\wedge^{p} E$. Then $u=\epsilon_{\sigma} S_{\sigma} u$ for all $\sigma \in S_{p}$. Therefore, for $\sigma \in S_{\sigma}$,

$$
\begin{aligned}
(T \otimes \cdots \otimes T)(u) & =(T \otimes \cdots \otimes T)\left(\epsilon_{\sigma} S_{\sigma} \sum_{i=1}^{n} \lambda^{i} x_{1}^{i} \otimes \cdots \otimes x_{p}^{i}\right) \\
& =(T \otimes \cdots \otimes T)\left(\epsilon_{\sigma} \sum_{i=1}^{n} \lambda^{i} x_{\sigma(1)}^{i} \otimes \cdots \otimes x_{\sigma(p)}^{i}\right) \\
& =\epsilon_{\sigma} \sum_{i=1}^{n} \lambda^{i} T\left(x_{\sigma(1)}^{i}\right) \otimes \cdots \otimes T\left(x_{\sigma(p)}^{i}\right) \\
& =\epsilon_{\sigma} S_{\sigma} \sum_{i=1}^{n} \lambda^{i} T\left(x_{1}^{i}\right) \otimes \cdots \otimes T\left(x_{p}^{i}\right) \\
& =\epsilon_{\sigma} S_{\sigma}(T \otimes \cdots \otimes T)\left(\sum_{i=1}^{n} \lambda^{i} x_{1}^{i} \otimes \otimes x_{p}^{i}\right) \\
& =\epsilon_{\sigma} S_{\sigma}((T \otimes \cdots \otimes T)(u)) .
\end{aligned}
$$

Thus, for $u \in \wedge^{p} E,(T \otimes \cdots \otimes T)(u)$ is an antisymmetric tensor in $\otimes_{H}^{p} K$, that is, a member of $\wedge^{p} K$.

Definition 2.1.31. Let H, K be Hilbert spaces and $T: H \rightarrow K$ be a bounded linear operator. We define the operator

$$
\wedge^{p} T: \wedge^{p} H \rightarrow \wedge^{p} K
$$

to be the restriction of $T \otimes \cdots \otimes T$ to $\wedge^{p} H$.

Definition 2.1.32. Let $\left(E,\|\cdot\|_{E}\right)$ be a Hilbert space. The p-fold Cartesian product of E is defined to be the set

$$
\underbrace{E \times \cdots \times E}_{p-\text { times }}=\left\{\left(x_{1}, \ldots, x_{p}\right): x_{i} \in E\right\} .
$$

Moreover, we define a norm on $\underbrace{E \times \cdots \times E}_{p-\text { times }}$ by

$$
\left\|\left(x_{1}, \ldots, x_{p}\right)\right\|=\left\{\sum_{i=1}^{p}\left\|x_{i}\right\|_{E}^{2}\right\}^{\frac{1}{2}}
$$

Definition 2.1.33. Let E be a Hilbert space. We define the multilinear operator

$$
\Lambda: \underbrace{E \times \cdots \times E}_{p-\text { times }} \rightarrow \wedge^{p} E
$$

by

$$
\Lambda\left(x_{1}, \ldots, x_{p}\right)=x_{1} \wedge \ldots \wedge x_{p} \quad \text { for all } \quad x_{1}, \ldots, x_{p} \in E
$$

Proposition 2.1.34. [Hadamard's inequality, [12], p. 477] For any matrix

$$
\begin{gathered}
A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n} \\
|\operatorname{det}(A)| \leq \prod_{j=1}^{n}\left(\sum_{i=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2} \text { and }|\operatorname{det}(A)| \leq \prod_{i=1}^{n}\left(\sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
\end{gathered}
$$

Proposition 2.1.35. Let E be a Hilbert space. Then the multilinear mapping

$$
\Lambda: \underbrace{E \times \cdots \times E}_{p-\text { times }} \rightarrow \wedge^{p} E
$$

is bounded.
Proof. Let $x_{i} \in E$ for all $i=1, \ldots, p$. Then $\Lambda\left(x_{1}, \ldots, x_{p}\right)=x_{1} \wedge \ldots \wedge x_{p}$ and

$$
\begin{aligned}
\left\|\Lambda\left(x_{1}, \ldots, x_{p}\right)\right\|_{\wedge^{p} E}^{2} & =\left\|x_{1} \wedge \ldots \wedge x_{p}\right\|_{\wedge^{p} E}^{2} \\
& =\left\langle x_{1} \wedge \ldots \wedge x_{p}, x_{1} \wedge \ldots \wedge x_{p}\right\rangle_{\wedge^{p} E} \\
& =\operatorname{det}\left(\begin{array}{cccc}
\left\langle x_{1}, x_{1}\right\rangle_{E} & \left\langle x_{1}, x_{2}\right\rangle_{E} & \ldots & \left\langle x_{1}, x_{p}\right\rangle_{E} \\
\left\langle x_{2}, x_{1}\right\rangle_{E} & \left\langle x_{2}, x_{2}\right\rangle_{E} & \ldots & \left\langle x_{2}, x_{p}\right\rangle_{E} \\
\vdots & \vdots & \ddots & \ldots \\
\left\langle x_{p}, x_{1}\right\rangle_{E} & \ldots & \ldots & \left\langle x_{p}, x_{p}\right\rangle_{E}
\end{array}\right) \geq 0 .
\end{aligned}
$$

Observe that the matrix

$$
X=\left(\begin{array}{cccc}
\left\langle x_{1}, x_{1}\right\rangle_{E} & \left\langle x_{1}, x_{2}\right\rangle_{E} & \ldots & \left\langle x_{1}, x_{p}\right\rangle_{E} \\
\left\langle x_{2}, x_{1}\right\rangle_{E} & \left\langle x_{2}, x_{2}\right\rangle_{E} & \ldots & \left\langle x_{2}, x_{p}\right\rangle_{E} \\
\vdots & \vdots & \ddots & \ldots \\
\left\langle x_{p}, x_{1}\right\rangle_{E} & \ldots & \ldots & \left\langle x_{p}, x_{p}\right\rangle_{E}
\end{array}\right)
$$

is Hermitian, and so its determinant is real. By Hadamard's inequality,

$$
|\operatorname{det}(X)| \leq \prod_{j=1}^{p}\left(\sum_{i=1}^{p}\left|\left\langle x_{i}, x_{j}\right\rangle_{E}\right|^{2}\right)^{1 / 2} \quad \text { and } \quad|\operatorname{det}(X)| \leq \prod_{i=1}^{p}\left(\sum_{j=1}^{p}\left|\left\langle x_{i}, x_{j}\right\rangle_{E}\right|^{2}\right)^{1 / 2}
$$

Moreover, by the Cauchy-Schwartz inequality,

$$
|\operatorname{det}(X)| \leq \prod_{j=1}^{p}\left\|x_{j}\right\|_{E}\left(\sum_{i=1}^{p}\left\|x_{i}\right\|_{E}^{2}\right)^{1 / 2}
$$

Therefore

$$
\begin{equation*}
\left\|\Lambda\left(x_{1}, \ldots, x_{p}\right)\right\|_{\wedge^{p} E}^{2} \leq \prod_{j=1}^{p}\left\|x_{j}\right\|_{E}\left(\sum_{i=1}^{p}\left\|x_{i}\right\|_{E}^{2}\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

Let $\left\|\left(x_{1}, \ldots, x_{p}\right)\right\|_{E^{p}} \leq 1$. Since $\left\|x_{j}\right\|_{E} \leq\left\|\left(x_{1}, \ldots, x_{p}\right)\right\|_{E^{p}} \leq 1$ for each j, we have

$$
\left\|\Lambda\left(x_{1}, \ldots, x_{p}\right)\right\|_{\wedge^{p} E}^{2} \leq 1
$$

Hence the p-linear operator Λ is bounded.
Lemma 2.1.36. Let H, K be Hilbert spaces and let $S, T: H \rightarrow K$ be bounded linear operators. Then,
(i) $\wedge^{p}(S T)=\left(\wedge^{p} S\right)\left(\wedge^{p} T\right)$.
(ii) $\left(\wedge^{p} T\right)^{*}=\wedge^{p}\left(T^{*}\right)$.

Proof. (i). By Definition 2.1.31, for all $x_{i} \in H$, where $i=1, \ldots, p$, we have

$$
\begin{aligned}
\wedge^{p}(S) \wedge^{p}(T)\left(x_{1} \wedge \cdots \wedge x_{p}\right) & =\wedge^{p}(S)\left(T x_{1} \wedge \cdots \wedge T x_{p}\right) \\
& =S T x_{1} \wedge \cdots \wedge S T x_{p} \\
& =\wedge^{p}(S T)\left(x_{1} \wedge \cdots \wedge x_{p}\right) .
\end{aligned}
$$

(ii). By Definition 2.1.31 and by Proposition 2.1.19, for all $x_{i} \in H$ and all $y_{i} \in K$, where $i=1, \ldots, p$,

$$
\begin{aligned}
\left\langle\left(\wedge^{p} T^{*}\right)\left(y_{1} \wedge \cdots \wedge y_{p}\right),\left(x_{1} \wedge \cdots \wedge x_{p}\right)\right\rangle_{\wedge^{p} H} & =\left\langle T^{*}\left(y_{1}\right) \wedge \cdots \wedge T^{*}\left(y_{p}\right), x_{1} \wedge \cdots \wedge x_{p}\right\rangle_{\wedge^{p} H} \\
& =\operatorname{det}\left(\begin{array}{ccc}
\left\langle T^{*}\left(y_{1}\right), x_{1}\right\rangle_{H} & \cdots & \left\langle T^{*}\left(y_{1}\right), x_{p}\right\rangle_{H} \\
\left\langle T^{*}\left(y_{2}\right), x_{1}\right\rangle_{H} & \cdots & \left\langle T^{*}\left(y_{2}\right), x_{p}\right\rangle_{H} \\
\vdots & \ddots & \vdots \\
\left\langle T^{*}\left(y_{p}\right), x_{1}\right\rangle_{H} & \cdots & \left\langle T^{*}\left(y_{p}\right), x_{p}\right\rangle_{H}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
\left\langle y_{1}, T\left(x_{1}\right)\right\rangle_{K} & \cdots & \left\langle y_{1},\left(T x_{p}\right)\right\rangle_{K} \\
\left\langle y_{2}, T\left(x_{1}\right)\right\rangle_{K} & \cdots & \left\langle y_{2}, T\left(x_{p}\right)\right\rangle_{K} \\
\vdots & \cdots & \vdots \\
\left\langle y_{p}, T\left(x_{1}\right)\right\rangle_{K} & \cdots & \left\langle y_{p}, T\left(x_{p}\right)\right\rangle_{K}
\end{array}\right) \\
& =\left\langle y_{1} \wedge \cdots \wedge y_{p},\left(\wedge^{p} T\right)\left(x_{1} \wedge \cdots \wedge x_{p}\right)\right\rangle_{\wedge^{p} K} \\
& =\left\langle\left(\wedge^{p} T\right)^{*}\left(y_{1} \wedge \cdots \wedge y_{p}\right),\left(x_{1} \wedge \cdots \wedge x_{p}\right)\right\rangle_{\wedge^{p} H} \\
& =\left\langle\left(\wedge^{p} T\right)^{*}\left(y_{1} \wedge \cdots \wedge y_{p}\right),\left(x_{1} \wedge \cdots \wedge x_{p}\right)\right\rangle_{\wedge^{p} H} .
\end{aligned}
$$

Hence $\wedge^{p}\left(T^{*}\right)=\left(\wedge^{p} T\right)^{*}$.

2.2 Pointwise wedge products

For the purposes of this dissertation, we wish to consider the wedge product of mappings defined on the unit circle or in the unit disc that take values in Hilbert spaces. To this end, we introduce the notion of pointwise wedge product and we study various properties of it.

Definition 2.2.1. Let E be a Hilbert space and let $f, g: \mathbb{D} \rightarrow E(f, g: \mathbb{T} \rightarrow E)$ be E-valued maps. We define the pointwise wedge product of f and g,

$$
f \dot{\wedge} g: \mathbb{D} \rightarrow \wedge^{2} E \quad\left(f \dot{\wedge} g: \mathbb{T} \rightarrow \wedge^{2} E\right)
$$

by

$$
(f \dot{\wedge})(z)=f(z) \wedge g(z) \quad \text { for all } z \in \mathbb{D} \quad(\text { for almost all } z \in \mathbb{T})
$$

Definition 2.2.2. Let E be a Hilbert space and let $\chi, \psi: \mathbb{D} \rightarrow E(\chi, \psi: \mathbb{T} \rightarrow E)$ be E-valued maps. We call χ and ψ pointwise linearly dependent on $\mathbb{D}($ respectively on $\mathbb{T})$ if there exist non-zero mappings $\kappa, \nu: \mathbb{D} \rightarrow \mathbb{C}(\kappa, \nu: \mathbb{T} \rightarrow \mathbb{C})$, which do not simultaneously vanish at any point of $\mathbb{D}($ of $\mathbb{T})$, such that

$$
\kappa(z) \chi(z)=\nu(z) \psi(z)
$$

for all $z \in \mathbb{D}($ for almost all $z \in \mathbb{T})$.

Remark 2.2.3. Corollary 2.1.20 asserts that $x_{1}, \ldots, x_{n}: \mathbb{T} \rightarrow E$ are pointwise linearly dependent on \mathbb{T} if and only if

$$
\left(x_{1} \dot{\wedge} \ldots \dot{\wedge} x_{n}\right)(z)=0 \quad \text { for almost all } z \in \mathbb{T}
$$

Henceforth we consider vector-valued L^{p} spaces as they are presented in [14].
Definition 2.2.4. Let E be a separable Hilbert space and let $1 \leq p<\infty$. Define
(i) $L^{p}(\mathbb{T}, E)$ to be the normed space of measurable (weakly or strongly, which amounts to the same thing, in view of the separability of E) E-valued maps $f: \mathbb{T} \rightarrow E$ such that

$$
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|f\left(e^{i \theta}\right)\right\|_{E}^{p} d \theta\right)^{1 / p}<\infty
$$

(ii) $H^{p}(\mathbb{D}, E)$ to be the normed space of analytic E-valued maps $f: \mathbb{D} \rightarrow E$ such that

$$
\|f\|_{p}=\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|f\left(r e^{i \theta}\right)\right\|_{E}^{p} d \theta\right)^{1 / p}<\infty
$$

(iii) $L^{\infty}(\mathbb{T}, E)$ to be the space of essentially bounded measurable E-valued functions on the unit circle with the essential supremum norm

$$
\|f\|_{L^{\infty}}=\underset{|z|=1}{\operatorname{ess} \sup _{1}}\|f(z)\|_{E}
$$

and with functions equal almost everywhere identified.
(iv) $H^{\infty}(\mathbb{D}, E)$ to be the space of bounded analytic E-valued functions on the unit disc with the supremum norm

$$
\|f\|_{H^{\infty}}=\sup _{z \in \mathbb{D}}\|f(z)\|_{E}
$$

Lemma 2.2.5 ([18], p. 242). [Hölder's inequality] Let $f \in L^{p}(\mathbb{T})$ and let $g \in L^{q}(\mathbb{T})$, where $p, q>1$ are such that $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\|f g\|_{L^{1}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}} .
$$

Proposition 2.2.6. Let E be a separable Hilbert space and let $\frac{1}{p}+\frac{1}{q}=1$, where $1 \leq p, q \leq \infty$. Suppose that $x \in L^{p}(\mathbb{T}, E), y \in L^{q}(\mathbb{T}, E)$. Then

$$
x \dot{\wedge} y \in L^{1}\left(\mathbb{T}, \wedge^{2} E\right)
$$

and

$$
\begin{equation*}
\|x \dot{\wedge} y\|_{L^{1}\left(\mathbb{T}, \wedge^{2} E\right)} \leq\|x\|_{L^{p}(\mathbb{T}, E)}\|y\|_{L^{q}(\mathbb{T}, E)} \tag{2.3}
\end{equation*}
$$

Proof. By Proposition 2.1.19, for all $z \in \mathbb{T}$,

$$
\begin{aligned}
\|(x \dot{\wedge} y)(z)\|_{\wedge^{2} E}^{2} & =\langle x(z) \wedge y(z), x(z) \wedge y(z)\rangle_{\wedge^{2} E} \\
& =\langle x(z), x(z)\rangle_{E} \cdot\langle y(z), y(z)\rangle_{E}-\left|\langle x(z), y(z)\rangle_{E}\right|^{2} \\
& \leq\|x(z)\|_{E}^{2}\|y(z)\|_{E}^{2} .
\end{aligned}
$$

Thus, for all $z \in \mathbb{T}$,

$$
\|(x \dot{\wedge} y)(z)\|_{\wedge^{2} E} \leq\|x(z)\|_{E}\|y(z)\|_{E}
$$

By Definition 2.2.4,

$$
\begin{equation*}
\|x \dot{\wedge} y\|_{L^{1}\left(\mathbb{T}, \wedge^{\wedge} E\right)}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|(x \dot{\wedge} y)\left(e^{i \theta}\right)\right\|_{\wedge^{2} E} d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{E}\left\|y\left(e^{i \theta}\right)\right\|_{E} d \theta \tag{2.4}
\end{equation*}
$$

Now by Hölder's inequality,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{E}\left\|y\left(e^{i \theta}\right)\right\|_{E} d \theta \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{E}^{p} d \theta\right)^{1 / p}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|y\left(e^{i \theta}\right)\right\|_{E}^{q} d \theta\right)^{1 / q} \tag{2.5}
\end{equation*}
$$

Hence, by inequalities (2.4) and (2.5), $x \dot{\wedge} y \in L^{1}\left(\mathbb{T}, \wedge^{2} E\right)$ and the inequality (2.3) holds.

Proposition 2.2.7. Let E be a Hilbert space and $x, y: \mathbb{D} \rightarrow E$ be two analytic E-valued maps on \mathbb{D}. Then,

$$
x \dot{\wedge} y: \mathbb{D} \rightarrow \wedge^{2} E
$$

is also analytic on \mathbb{D} and

$$
(x \dot{\wedge} y)^{\prime}(z)=x^{\prime}(z) \wedge y(z)+x(z) \wedge y^{\prime}(z) \quad \text { for all } \quad z \in \mathbb{D}
$$

Proof. For E-valued maps x, y, being analytic on \mathbb{D} means that for every $z_{0} \in \mathbb{D}$ there exist $x^{\prime}\left(z_{0}\right) \in E$ and $y^{\prime}\left(z_{0}\right) \in E$ such that

$$
\lim _{h \rightarrow 0}\left\|\frac{x\left(z_{0}+h\right)-x\left(z_{0}\right)}{h}-x^{\prime}\left(z_{0}\right)\right\|_{E}=0
$$

and

$$
\lim _{h \rightarrow 0}\left\|\frac{y\left(z_{0}+h\right)-y\left(z_{0}\right)}{h}-y^{\prime}\left(z_{0}\right)\right\|_{E}=0 .
$$

Note that

$$
\frac{(x \dot{\wedge} y)\left(z_{0}+h\right)-(x \dot{\wedge} y)\left(z_{0}\right)}{h} \in \wedge^{2} E .
$$

One can see that, for $h \in \mathbb{D}$ such that $z_{0}+h \in \mathbb{D}$,

$$
\begin{aligned}
& \frac{(x \dot{\wedge} y)\left(z_{0}+h\right)-(x \dot{\wedge} y)\left(z_{0}\right)}{h} \\
& =\frac{x\left(z_{0}+h\right) \wedge y\left(z_{0}+h\right)-x\left(z_{0}\right) \wedge y\left(z_{0}\right)+x\left(z_{0}\right) \wedge y\left(z_{0}+h\right)-x\left(z_{0}\right) \wedge y\left(z_{0}+h\right)}{h} \\
& =\frac{\left(x\left(z_{0}+h\right)-x\left(z_{0}\right)\right) \wedge y\left(z_{0}+h\right)}{h}+\frac{x\left(z_{0}\right) \wedge\left(y\left(z_{0}+h\right)-y\left(z_{0}\right)\right)}{h} \\
& =\frac{x\left(z_{0}+h\right)-x\left(z_{0}\right)}{h} \wedge y\left(z_{0}+h\right)+x\left(z_{0}\right) \wedge \frac{y\left(z_{0}+h\right)-y\left(z_{0}\right)}{h} \\
& \stackrel{h \rightarrow 0}{\rightarrow} x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}\right)+x\left(z_{0}\right) \wedge y^{\prime}\left(z_{0}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left\|\frac{(x \dot{\wedge} y)\left(z_{0}+h\right)-(x \dot{\wedge} y)\left(z_{0}\right)}{h}-\left(x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}\right)+x\left(z_{0}\right) \wedge y^{\prime}\left(z_{0}\right)\right)\right\|_{\wedge^{2} E} \\
& =\| \frac{\left(x\left(z_{0}+h\right)-x\left(z_{0}\right)\right)}{h} \wedge y\left(z_{0}+h\right)+x\left(z_{0}\right) \wedge \frac{\left(y\left(z_{0}+h\right)-y\left(z_{0}\right)\right)}{h} \\
& -\quad-\left(x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}\right)+x\left(z_{0}\right) \wedge y^{\prime}\left(z_{0}\right)\right) \|_{\wedge^{2} E} \\
& \leq\left\|\frac{\left(x\left(z_{0}+h\right)-x\left(z_{0}\right)\right)}{h} \wedge y\left(z_{0}+h\right)-x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}\right)\right\|_{\wedge^{2} E} \\
& +\left\|x\left(z_{0}\right) \wedge \frac{\left(y\left(z_{0}+h\right)-y\left(z_{0}\right)\right)}{h}-x\left(z_{0}\right) \wedge y^{\prime}\left(z_{0}\right)\right\|_{\wedge^{2} E} .
\end{aligned}
$$

Let us consider each term separately.

$$
\begin{aligned}
& \left\|\frac{\left(x\left(z_{0}+h\right)-x\left(z_{0}\right)\right)}{h} \wedge y\left(z_{0}+h\right)-x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}\right)\right\|_{\wedge^{2} E} \\
& =\| \frac{\left(x\left(z_{0}+h\right)-x\left(z_{0}\right)\right)}{h} \wedge y\left(z_{0}+h\right)-x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}+h\right) \\
& \quad+x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}+h\right)-x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}\right) \|_{\wedge^{2} E} \\
& \leq\left\|\left(\frac{x\left(z_{0}+h\right)-x\left(z_{0}\right)}{h}-x^{\prime}\left(z_{0}\right)\right) \wedge y\left(z_{0}+h\right)\right\|_{\wedge^{2} E}+\left\|x^{\prime}\left(z_{0}\right) \wedge\left(y\left(z_{0}+h\right)-y\left(z_{0}\right)\right)\right\|_{\wedge^{2} E} .
\end{aligned}
$$

By Proposition 2.1.19,

$$
\begin{aligned}
& \left\|\left(\frac{x\left(z_{0}+h\right)-x\left(z_{0}\right)}{h}-x^{\prime}\left(z_{0}\right)\right) \wedge y\left(z_{0}+h\right)\right\|_{\wedge^{2} E}+\left\|x^{\prime}\left(z_{0}\right) \wedge\left(y\left(z_{0}+h\right)-y\left(z_{0}\right)\right)\right\|_{\wedge^{2} E} \\
& \leq\left\|\frac{\left(x\left(z_{0}+h\right)-x\left(z_{0}\right)\right)}{h}-x^{\prime}\left(z_{0}\right)\right\|_{E} \cdot\left\|y\left(z_{0}+h\right)\right\|_{E}+\left\|x^{\prime}\left(z_{0}\right)\right\|_{E} \cdot\left\|y\left(z_{0}+h\right)-y\left(z_{0}\right)\right\|_{E}
\end{aligned}
$$

which tends to 0 as $h \rightarrow 0$. For the other term we have

$$
\left\|x\left(z_{0}\right) \wedge \frac{\left(y\left(z_{0}+h\right)-y\left(z_{0}\right)\right)}{h}-x\left(z_{0}\right) \wedge y^{\prime}\left(z_{0}\right)\right\|_{\wedge^{2} E}=\left\|x\left(z_{0}\right) \wedge\left(\frac{y\left(z_{0}+h\right)-y\left(z_{0}\right)}{h}-y^{\prime}\left(z_{0}\right)\right)\right\|_{\wedge^{2} E} .
$$

By Proposition 2.1.19,

$$
\left\|x\left(z_{0}\right) \wedge\left(\frac{y\left(z_{0}+h\right)-y\left(z_{0}\right)}{h}-y^{\prime}\left(z_{0}\right)\right)\right\|_{\wedge^{2} E} \leq\left\|x\left(z_{0}\right)\right\|_{E} \cdot\left\|\frac{y\left(z_{0}+h\right)-y\left(z_{0}\right)}{h}-y^{\prime}\left(z_{0}\right)\right\|_{E}
$$

which tends to 0 as $h \rightarrow 0$.
Thus we get

$$
\left\|\frac{(x \dot{\wedge} y)\left(z_{0}+h\right)-(x \dot{\wedge} y)\left(z_{0}\right)}{h}-\left(x^{\prime}\left(z_{0}\right) \wedge y\left(z_{0}\right)+x\left(z_{0}\right) \wedge y^{\prime}\left(z_{0}\right)\right)\right\|_{\wedge^{2} E} \rightarrow 0
$$

as $h \rightarrow 0$.
Therefore $x \dot{\wedge} y$ is analytic on \mathbb{D} and, at every point $z \in \mathbb{D}$, the derivative is given by

$$
(x \dot{\wedge} y)^{\prime}(z)=\left(x^{\prime} \dot{\wedge} y\right)(z)+\left(x \dot{\wedge} y^{\prime}\right)(z) .
$$

Proposition 2.2.8. Let E be a Hilbert space and let $x_{i}: \mathbb{D} \rightarrow E$ be analytic E-valued maps on \mathbb{D} for all $i=0, \ldots, k$. Then

$$
x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}: \mathbb{D} \rightarrow \wedge^{k+1} E
$$

is also analytic on \mathbb{D} and

$$
\begin{aligned}
\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)^{\prime}(z) & =x_{0}^{\prime}(z) \wedge x_{1}(z) \wedge \cdots \wedge x_{k}(z)+x_{0}(z) \wedge x_{1}^{\prime}(z) \wedge x_{2}(z) \wedge \cdots \wedge x_{k}(z) \\
& +\cdots+x_{0}(z) \wedge x_{1}(z) \wedge \cdots \wedge x_{k}^{\prime}(z)
\end{aligned}
$$

Proof. The E-valued maps x_{i} being analytic on \mathbb{D} means that, for every $z_{0} \in \mathbb{D}$, there exist $x_{i}^{\prime}(z) \in E$ such that

$$
\lim _{h \rightarrow 0}\left\|\frac{x_{i}(z+h)-x_{i}(x)}{h}-x_{i}^{\prime}(z)\right\|_{E}=0 .
$$

Notice

$$
\begin{equation*}
X=\frac{\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}+h\right)-\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}\right)}{h} \tag{2.6}
\end{equation*}
$$

is an element of $\wedge^{k+1} E$. One can see that, for $h \in \mathbb{D}$ such that $z_{0}+h \in \mathbb{D}$, expression (2.6) yields

$$
\begin{equation*}
X=\frac{1}{h}\left(x_{0}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right)\right) . \tag{2.7}
\end{equation*}
$$

If we add and subtract

$$
\frac{1}{h} x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}+h\right) \wedge x_{2}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)
$$

to expression (2.7), we obtain

$$
\begin{aligned}
X & =\frac{1}{h}\left(\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right)\right. \\
& \left.+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)\right)
\end{aligned}
$$

Adding and subtracting

$$
\frac{1}{h} x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge x_{2}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)
$$

to the latter expression, we get

$$
\begin{aligned}
X & =\frac{1}{h}\left(\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right)\right. \\
& +x_{0}\left(z_{0}\right) \wedge\left[x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right)\right] \wedge x_{2}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& \left.+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)\right) .
\end{aligned}
$$

It becomes evident that, if we continue accordingly, we obtain

$$
\begin{align*}
X & =\frac{1}{h}\left(\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)\right. \\
& +x_{0}\left(z_{0}\right) \wedge\left[x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right)\right] \wedge x_{2}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& +x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge\left[x_{2}\left(z_{0}+h\right)-x_{2}\left(z_{0}\right)\right] \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& \left.+\cdots+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge\left[x_{k}\left(z_{0}+h\right)-x_{k}\left(z_{0}\right)\right]\right) \\
& =\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& +x_{0}\left(z_{0}\right) \wedge \frac{1}{h}\left[x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right)\right] \wedge x_{2}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& +x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \frac{1}{h}\left[x_{2}\left(z_{0}+h\right)-x_{2}\left(z_{0}\right)\right] \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& +\cdots+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge \frac{1}{h}\left[x_{k}\left(z_{0}+h\right)-x_{k}\left(z_{0}\right)\right] . \tag{2.8}
\end{align*}
$$

Let us show that

$$
\begin{aligned}
\frac{1}{h}\left[\left(x_{0} \dot{\wedge} \ldots \dot{\wedge} x_{k}\right)\left(z_{0}+h\right)-\left(x_{0} \dot{\wedge} \ldots \dot{\wedge} x_{k}\right)\left(z_{0}\right)\right] & \xrightarrow{h \rightarrow 0} x_{0}^{\prime}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \cdots \wedge x_{k}\left(z_{0}\right) \\
& +x_{0}\left(z_{0}\right) \wedge x_{1}^{\prime}\left(z_{0}\right) \wedge x_{2}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right) \\
& +\cdots+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}^{\prime}\left(z_{0}\right) .
\end{aligned}
$$

Thus, by equation (2.8),

$$
\begin{aligned}
& \| \frac{\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}+h\right)-\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}\right)}{h}-\left(x_{0}^{\prime}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \cdots \wedge x_{k}\left(z_{0}\right)\right. \\
& +x_{0}\left(z_{0}\right) \wedge x_{1}^{\prime}(z) \wedge x_{2}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right)+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge x_{2}^{\prime}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right) \\
& \left.+\cdots+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}^{\prime}\left(z_{0}\right)\right) \|_{\wedge^{k+1} E}
\end{aligned}
$$

is equal to

$$
\begin{align*}
& \| \frac{\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}+h\right)-\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}\right)}{h}-\left(x_{0}^{\prime}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \cdots \wedge x_{k}\left(z_{0}\right)\right. \\
& +x_{0}\left(z_{0}\right) \wedge x_{1}^{\prime}(z) \wedge x_{2}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right)+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge x_{2}^{\prime}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right) \\
& \left.+\cdots+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}^{\prime}\left(z_{0}\right)\right) \|_{\wedge^{k+1} E} \\
& =\| \frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \tag{2.9}\\
& +x_{0}\left(z_{0}\right) \wedge \frac{1}{h}\left[x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right)\right] \wedge x_{2}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& +\cdots+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \frac{1}{h}\left[x_{k}\left(z_{0}+h\right)-x_{k}\left(z_{0}\right)\right] \\
& -x_{0}^{\prime}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \cdots \wedge x_{k}\left(z_{0}\right)+x_{0}\left(z_{0}\right) \wedge x_{1}^{\prime}(z) \wedge x_{2}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right) \\
& -\cdots-x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}^{\prime}\left(z_{0}\right) \|_{\wedge^{k+1} E} \\
& \leq\left\|\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)-x_{0}^{\prime}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \cdots \wedge x_{k}\left(z_{0}\right)\right\|_{\wedge^{k+1} E} \\
& +\cdots+\left\|x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge \frac{1}{h}\left[x_{k}\left(z_{0}+h\right)-x_{k}\left(z_{0}\right)\right]-x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}^{\prime}\left(z_{0}\right)\right\|_{\wedge^{k+1} E} \tag{2.10}
\end{align*}
$$

Considering, for instance, the first term of the sum (2.10), we have

$$
\begin{align*}
& \left\|\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \cdots \wedge x_{k}\left(z_{0}+h\right)-x_{0}^{\prime}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right)\right\|_{\wedge^{k+1} E} \\
& =\| \frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right] \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)-x_{0}^{\prime}(z) \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right) \\
& +x_{0}^{\prime}(z) \wedge x_{1}\left(z_{0}+h\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)-x_{0}^{\prime}(z) \wedge x_{1}\left(z_{0}\right) \cdots \wedge x_{k}\left(z_{0}\right) \|_{\wedge^{k+1} E} \\
& \leq\left\|\left[\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right]-x_{0}^{\prime}(z)\right] \wedge x_{1}\left(z_{0}+h\right) \cdots \wedge x_{k}\left(z_{0}+h\right)\right\|_{\wedge^{k+1} E} \\
& +\left\|x_{0}^{\prime}(z) \wedge\left(x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right)\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)\right\|_{\wedge^{k+1} E} \\
& +\cdots+\left\|x_{0}^{\prime}(z) \wedge x_{1}\left(z_{0}\right) \wedge \ldots \wedge\left(x_{k}\left(z_{0}+h\right)-x_{k}\left(z_{0}\right)\right)\right\|_{\wedge^{k+1} E} . \tag{2.11}
\end{align*}
$$

Recall,

$$
\lim _{h \rightarrow 0}\left\|\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right]-x_{0}^{\prime}(z)\right\|_{E}=0 .
$$

Hence, by Hadamard's inequality (2.2),

$$
\begin{aligned}
& \left\|\left[\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right]-x_{0}^{\prime}(z)\right] \wedge x_{1}\left(z_{0}+h\right) \cdots \wedge x_{k}\left(z_{0}+h\right)\right\|_{\wedge^{k+1} E}^{2} \\
& \leq\left\|\left[\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right]-x_{0}^{\prime}(z)\right]\right\|_{E}\left\|x_{1}\left(z_{0}+h\right)\right\|_{E} \cdots\left\|x_{k}\left(z_{0}+h\right)\right\|_{E} \\
& \left(\left\|\left[\frac{1}{h}\left[x_{0}\left(z_{0}+h\right)-x_{0}\left(z_{0}\right)\right]-x_{0}^{\prime}(z)\right]\right\|_{E}^{2}+\left\|x_{1}\left(z_{0}+h\right)\right\|_{E}^{2}+\cdots+\left\|x_{k}\left(z_{0}+h\right)\right\|_{E}^{2}\right)^{1 / 2}
\end{aligned}
$$

tends to 0 as $h \rightarrow 0$, and

$$
\begin{aligned}
& \left\|x_{0}^{\prime}(z) \wedge x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}+h\right)\right\|_{\wedge^{k+1} E}^{2} \\
& \leq\left\|x_{0}^{\prime}(z)\right\|_{E}\left\|x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right)\right\|_{E} \cdots\left\|x_{k}\left(z_{0}+h\right)\right\|_{E} \\
& \left(\left\|x_{0}^{\prime}(z)\right\|_{E}^{2}+\left\|x_{1}\left(z_{0}+h\right)-x_{1}\left(z_{0}\right)\right\|_{E}^{2}+\cdots+\left\|x_{k}\left(z_{0}+h\right)\right\|_{E}^{2}\right)^{1 / 2}
\end{aligned}
$$

tends to 0 as $h \rightarrow 0$. Similarly, we infer that the sum (2.11), and consequently, the sum (2.10) tend to 0 as $h \rightarrow 0$. Thus

$$
\begin{aligned}
& \| \frac{\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}+h\right)-\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)\left(z_{0}\right)}{h}-\left(x_{0}^{\prime}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \cdots \wedge x_{k}\left(z_{0}\right)\right. \\
& +x_{0}\left(z_{0}\right) \wedge x_{1}^{\prime}(z) \wedge x_{2}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right)+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge x_{2}^{\prime}\left(z_{0}\right) \wedge \cdots \wedge x_{k}\left(z_{0}\right) \\
& \left.+\cdots+x_{0}\left(z_{0}\right) \wedge x_{1}\left(z_{0}\right) \wedge \cdots \wedge x_{k}^{\prime}\left(z_{0}\right)\right) \|_{\wedge^{k+1} E} \rightarrow 0
\end{aligned}
$$

as $h \rightarrow 0$. Hence

$$
x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}: \mathbb{D} \rightarrow \wedge^{k+1} E
$$

is analytic on \mathbb{D} and

$$
\begin{aligned}
\left(x_{0} \dot{\wedge} \cdots \dot{\wedge} x_{k}\right)^{\prime}(z) & =x_{0}^{\prime}(z) \wedge x_{1}(z) \cdots \wedge x_{k}(z)+x_{0}(z) \wedge x_{1}^{\prime}(z) \wedge x_{2}(z) \wedge \cdots \wedge x_{k}(z) \\
& +\cdots+x_{0}(z) \wedge x_{1}(z) \wedge \cdots x_{k}^{\prime}(z)
\end{aligned}
$$

Proposition 2.2.9. Let E be a separable Hilbert space. Suppose $x, y \in H^{2}(\mathbb{D}, E)$. Then

$$
x \dot{\wedge} y \in H^{1}\left(\mathbb{D}, \wedge^{2} E\right)
$$

Proof. By Proposition 2.2.7, $x \wedge$ y is analytic on \mathbb{D}. By Proposition 2.1.19, for $0<r<1$ and $0 \leq \theta \leq 2 \pi$,

$$
\left\|(x \dot{\wedge} y)\left(r e^{i \theta}\right)\right\|_{\wedge^{2} E} \leq\left\|x\left(r e^{i \theta}\right)\right\|_{E}\left\|y\left(r e^{i \theta}\right)\right\|_{E}
$$

By Proposition 2.1.19 and by Definition 2.2.4,

$$
\begin{aligned}
\|x \dot{\wedge} y\|_{H^{1}\left(\mathbb{D}, \wedge^{2} E\right)} & =\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|(x \dot{\wedge} y)\left(r e^{i \theta}\right)\right\|_{\wedge^{2} E} d \theta\right) \\
& \leq \sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(r e^{i \theta}\right)\right\|_{E}\left\|y\left(r e^{i \theta}\right)\right\|_{E} d \theta\right)
\end{aligned}
$$

for $0<r<1$ and $0 \leq \theta \leq 2 \pi$. Also, by Hölder's inequality, for $0<r<1$ and $0 \leq \theta \leq 2 \pi$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(r e^{i \theta}\right)\right\|_{E}\left\|y\left(r e^{i \theta}\right)\right\|_{E} d \theta \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(r e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|y\left(r e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2}
$$

hence $\|x \dot{\wedge} y\|_{H^{1}\left(\mathbb{D}, \wedge^{2} E\right)} \leq\|x\|_{H^{2}(\mathbb{D}, E)}\|y\|_{H^{2}(\mathbb{D}, E)}$. Consequently, $x \dot{\wedge} y \in H^{1}\left(\mathbb{D}, \wedge^{2} E\right)$.

Remark 2.2.10. Let E be a finite dimensional Hilbert space. For $1 \leq p \leq \infty$, we will regard $x \in H^{p}(\mathbb{D}, E)$ as a column-vector valued function on \mathbb{D} or \mathbb{T} and x^{*} as the row-vector valued function, $x^{*}(z)=x(z)^{*}$, for all $z \in \mathbb{D}$ or \mathbb{T}.

Example 2.2.11. If $E=\mathbb{C}^{n}$, and if

$$
x(z)=\left(\begin{array}{llll}
x_{1}(z) & x_{2}(z) & \ldots & x_{n}(z)
\end{array}\right)^{T}
$$

for all $z \in \mathbb{T}$, then

$$
x^{*}(z)=\left(\begin{array}{lll}
\overline{x_{1}(z)} & \cdots & \overline{x_{n}(z)}
\end{array}\right)
$$

Example 2.2.12. Suppose $E=\mathbb{C}^{n}$ and let $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $y \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Then, for all $z \in \mathbb{D}$,

$$
\langle x(z), y(z)\rangle_{\mathbb{C}^{n}}=\sum_{i=1}^{n} x_{i}(z) \overline{y_{i}(z)}=\left(\begin{array}{lll}
\overline{y_{1}(z)} & \cdots & \overline{y_{n}(z)}
\end{array}\right)\left(\begin{array}{c}
x_{1}(z) \\
x_{2}(z) \\
\vdots \\
x_{n}(z)
\end{array}\right)
$$

Proposition 2.2.13. Let E be a separable Hilbert space, let $x \in H^{2}(\mathbb{D}, E)$ and let $y \in H^{\infty}(\mathbb{D}, E)$. Then

$$
x \dot{\wedge} y \in H^{2}\left(\mathbb{D}, \wedge^{2} E\right)
$$

Proof. By Proposition 2.2.7, $x \dot{\wedge} y$ is analytic on \mathbb{D}. By Proposition 2.1.19, for

$$
0<r<1, \quad 0 \leq \theta \leq 2 \pi
$$

we have

$$
\left\|(x \dot{\wedge} y)\left(r e^{i \theta}\right)\right\|_{\wedge^{2} E} \leq\left\|x\left(r e^{i \theta}\right)\right\|_{E}\left\|y\left(r e^{i \theta}\right)\right\|_{E} .
$$

Thus,

$$
\begin{aligned}
\|x \dot{\wedge} y\|_{H^{2}\left(\mathbb{D}, \wedge^{2} E\right)} & =\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|(x \dot{\wedge} y)\left(r e^{i \theta}\right)\right\|_{\wedge^{2} E}^{2} d \theta\right)^{1 / 2} \\
& \leq \sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(r e^{i \theta}\right)\right\|_{E}^{2}\left\|y\left(r e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2} \\
& \leq\|y\|_{\infty} \sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(r e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2}<\infty .
\end{aligned}
$$

Proposition 2.2.14. Suppose $\left\{\xi_{0}, \ldots, \xi_{j}\right\} \subset L^{\infty}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ is a pointwise orthonormal set. Then

$$
\left\|\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{n}\right)}<\infty
$$

for all $x \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$.

Proof. By Proposition 2.1.19, $\left\|\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{n}\right)}^{2}$ is equal to

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccccc}
\left\langle\xi_{0}\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle\xi_{0}\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & & \ldots & \left\langle\xi_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\left\langle\xi_{0}\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle\xi_{1}\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & & \ldots & \left\langle\xi_{1}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\vdots & & \ddots & & \vdots \\
\left\langle x\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle x\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & & \ldots & \left\langle x\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & & \cdots & \left\langle\xi_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle \\
0 & 1 & & \cdots & \left\langle\xi_{1}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle \\
\vdots & & \ddots & & \vdots \\
\left\langle x\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle x\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \ldots & \left\langle x\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta,
\end{aligned}
$$

the last equality following by the pointwise orthonormality of the set $\left\{\xi_{k}(z)\right\}_{k=0}^{j}$ on \mathbb{T}. Multiplying the l-th column by $-\left\langle\xi_{l}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}$ and adding it to the last column, we get

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
\left\langle x\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle x\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \cdots & \left\|x\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2} \\
=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2}-\sum_{k=0}^{j}\left|\left\langle x\left(e^{i \theta}\right), \xi_{k}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}\right|^{2} d \theta \\
& & \\
<\sum_{k=0}^{j}\left|\left\langle x\left(e^{i \theta}\right), \xi_{k}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}\right|^{2}
\end{array}\right) d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2} d \theta \\
& <\infty
\end{aligned}
$$

2.2.1 Multiplication operators

Definition 2.2.15. Let E, F be Hilbert spaces and let $G \in L^{\infty}(\mathbb{T}, \mathcal{L}(E, F))$. For every $z \in \mathbb{T}$, we define

$$
\wedge^{2} G(z): \wedge^{2} E \rightarrow \wedge^{2} F
$$

on elements $x \wedge y$ by

$$
\left[\wedge^{2} G(z)\right](x \wedge y)=G(z) x \wedge G(z) y
$$

Lemma 2.2.16. Let E, F be Hilbert spaces and let $G \in L^{\infty}(\mathbb{T}, \mathcal{L}(E, F))$. Then, for almost all $z \in \mathbb{T}, \wedge^{2} G(z): \wedge^{2} E \rightarrow \wedge^{2} F$ is a bounded linear operator.

Proof. By Proposition 2.1.30, for every $z \in \mathbb{T}, \wedge^{2} G(z): \wedge^{2} E \rightarrow \wedge^{2} F$ is well-defined.
Now, let $x \wedge y, w \wedge v \in \wedge^{2} E$. Linearity of $\wedge^{2} G(z)$ follows from Proposition A.1.6 and the fact that $\wedge^{2} G(z)$ is a restriction of $G(z) \otimes G(z)$ to $\wedge^{2} E$. Let us show that, for almost all $z \in \mathbb{T}$, $\wedge^{2} G(z)$ is a bounded linear operator. By Proposition 2.1.19, for all $x, y \in E$,

$$
\begin{aligned}
\left\|\wedge^{2} G(z)(x \wedge y)\right\|_{\wedge^{2} F}^{2} & =\langle G(z) x \wedge G(z) y, G(z) x \wedge G(z) y\rangle_{\wedge^{2} F} \\
& =\|G(z) x\|_{F}^{2}\|G(z) y\|_{F}^{2}-\left|\langle G(z) x, G(z) y\rangle_{F}\right|^{2}, \text { for all } x, y \in E .
\end{aligned}
$$

Thus

$$
\left\|\wedge^{2} G(z)(x \wedge y)\right\|_{\wedge^{2} F} \leq\|G(z) x\|_{F}\|G(z) y\|_{F}, \text { for all } x, y \in E .
$$

By the assumption, $G(z)$ is a bounded linear operator from E to F, hence there exists some $M>0$ such that

$$
\|G(z) x\|_{F} \leq M\|x\|_{E},\|G(z) y\|_{F} \leq M\|y\|_{E}
$$

for all $x, y \in E$.
Consequently, for each $z \in \mathbb{T}$,

$$
\begin{aligned}
\left\|\wedge^{2} G(z)\right\| & =\sup _{\|x \wedge y\|_{\wedge^{2} E} \leq 1}\left\|\wedge^{2} G(z)(x \wedge y)\right\|_{\wedge^{2} F} \\
& \leq M^{2}\|x\|_{E}\|y\|_{E}, \text { for all } x, y \in E .
\end{aligned}
$$

Hence $\wedge^{2} G(z)$ is a bounded linear operator.
Corollary 2.2.17. Let E, F be Hilbert spaces and let $G \in L^{\infty}(\mathbb{T}, \mathcal{L}(E, F))$. Then, for almost all $z \in \mathbb{T}$,

$$
\wedge^{2} G(z): \wedge^{2} E \rightarrow \wedge^{2} F
$$

is a continuous linear operator.
Proposition 2.2.18. Let E, F be Hilbert spaces and let $G \in L^{\infty}(\mathbb{T}, \mathcal{L}(E, F))$. Then

$$
\left(M_{G} x\right)(z)=G(z) \cdot x(z) \in F
$$

for almost all $z \in \mathbb{T}$, and $M_{G} x \in L^{2}(\mathbb{T}, F)$ for all $x \in L^{2}(\mathbb{T}, E)$.
Proof. Since G is a bounded linear operator, by Lemma 2.2.16, there exists an $N>0$ such that

$$
\left\|\left(M_{G} x\right)(z)\right\|_{F}=\|G(z) x(z)\|_{F} \leq N\|x(z)\|_{E} \quad \text { for almost all } z \in \mathbb{T}
$$

Furthermore

$$
\begin{aligned}
\left\|M_{G} x\right\|_{L^{2}} & =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|\left(M_{G} x\right)\left(e^{i \theta}\right)\right\|_{F}^{2} d \theta\right)^{1 / 2} \\
& \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(N\left\|x\left(e^{i \theta}\right)\right\|_{E}\right)^{2} d \theta\right)^{1 / 2}=N\|x\|_{L^{2}}<\infty .
\end{aligned}
$$

Definition 2.2.19. Let E, F be Hilbert spaces. For the operator $G \in L^{\infty}(\mathbb{T}, \mathcal{L}(E, F))$, we define an operator $M_{G}: L^{2}(\mathbb{T}, E) \rightarrow L^{2}(\mathbb{T}, F)$ by

$$
\left(M_{G} x\right)(z)=G(z) \cdot x(z)
$$

for almost all $z \in \mathbb{T}$ and for all $x \in L^{2}(\mathbb{T}, E)$.
Definition 2.2.20. Let E, F be Hilbert spaces and let $G \in L^{\infty}(\mathbb{T}, \mathcal{L}(E, F))$. We define an operator

$$
\left.M_{G}\right|_{H^{2}(\mathbb{D}, E)}: H^{2}(\mathbb{D}, E) \rightarrow L^{2}(\mathbb{T}, F)
$$

by

$$
\left(\left.M_{G}\right|_{H^{2}(\mathbb{D}, E)} x\right)(z)=G(z) x(z) \quad \text { for all } \quad z \in \mathbb{T}, x \in H^{2}(\mathbb{D}, E) .
$$

Remark 2.2.21. Let $\wedge^{2} G \in L^{\infty}\left(\mathbb{T}, \mathcal{L}\left(\wedge^{2} E, \wedge^{2} F\right)\right)$. The restriction of $M_{\wedge^{2} G}$ to $H^{2}(\mathbb{D}, E)$ is the operator

$$
\left.M_{\wedge^{2} G}\right|_{H^{2}(\mathbb{D}, E)}: H^{2}\left(\mathbb{D}, \wedge^{2} E\right) \rightarrow L^{2}\left(\mathbb{T}, \wedge^{2} F\right)
$$

given by

$$
\begin{aligned}
\left(M_{\wedge^{2} G}(x \dot{\wedge} y)\right)(z) & =\left(\wedge^{2} G\right)(z) \cdot(x(z) \wedge y(z)) \\
& =(G(z) \wedge G(z)) \cdot(x(z) \wedge y(z)) \\
& =(G(z) \cdot x(z)) \wedge(G(z) \cdot y(z))
\end{aligned}
$$

for all $z \in \mathbb{T}$.

2.2.2 Pointwise creation operators, orthogonal complements and linear spans

Below, let E denote a separable Hilbert space.
Definition 2.2.22. Let $\xi \in H^{\infty}(\mathbb{D}, E)$. We define the pointwise creation operator

$$
C_{\xi}: H^{2}(\mathbb{D}, E) \rightarrow H^{2}\left(\mathbb{D}, \wedge^{2} E\right)
$$

by

$$
C_{\xi} f=\xi \dot{\wedge}, \text { for } f \in H^{2}(\mathbb{D}, E)
$$

Remark 2.2.23. Let E be a separable Hilbert space. Let $\xi \in H^{\infty}(\mathbb{D}, E)$ and let $f \in H^{2}(\mathbb{D}, E)$. By the generalised Fatou's Theorem C.2.5, the radial limits

$$
\lim _{r \rightarrow 1} \xi\left(r e^{i \theta}\right){ }_{\|\cdot\|_{E}}^{=} \tilde{\xi}\left(e^{i \theta}\right), \quad \lim _{r \rightarrow 1} f\left(r e^{i \theta}\right) \underset{\|\cdot\|_{E}}{=} \tilde{f}\left(e^{i \theta}\right) \quad(0<r<1)
$$

exist almost everywhere on \mathbb{T} and define functions $\tilde{\xi} \in L^{\infty}(\mathbb{T}, E)$ and $\tilde{f} \in L^{2}(\mathbb{T}, E)$ respectively, which satisfy the relations

$$
\lim _{r \rightarrow 1}\left\|\xi\left(r e^{i \theta}\right)-\tilde{\xi}\left(e^{i \theta}\right)\right\|_{E}=0, \quad \lim _{r \rightarrow 1}\left\|f\left(r e^{i \theta}\right)-\tilde{f}\left(e^{i \theta}\right)\right\|_{E}=0
$$

for almost all $e^{i \theta} \in \mathbb{T}$.

Lemma 2.2.24. Let E be a separable Hilbert space. Let $\xi \in H^{\infty}(\mathbb{D}, E)$ and let $f \in H^{2}(\mathbb{D}, E)$. Then the radial limits $\lim _{r \rightarrow 1}\left(\xi\left(r e^{i \theta}\right) \wedge f\left(r e^{i \theta}\right)\right)$ exist for almost all $e^{i \theta} \in \mathbb{T}$ and define a function in $L^{2}\left(\mathbb{T}, \wedge^{2} E\right)$.

Proof. By Proposition 2.1.35, the bilinear operator $\Lambda: E \times E \rightarrow \wedge^{2} E$ is a continuous operator for the norms of E and $\wedge^{2} E$. By Remark 2.2.23, the functions $\xi \in H^{\infty}(\mathbb{D}, E)$ and $f \in$ $H^{2}(\mathbb{D}, E)$ have radial limit functions $\tilde{\xi} \in L^{\infty}(\mathbb{T}, E)$ and $\tilde{f} \in L^{2}(\mathbb{T}, E)$ respectively. Also, by Proposition 2.2.13, $\xi \wedge f \in H^{2}\left(\mathbb{D}, \wedge^{2} E\right)$. Hence

$$
\lim _{r \rightarrow 1}\left\|\xi\left(r e^{i \theta}\right) \wedge f\left(r e^{i \theta}\right)-\tilde{\xi}\left(e^{i \theta}\right) \wedge \tilde{f}\left(e^{i \theta}\right)\right\|_{\wedge^{2} E}=0 \quad \text { almost everywhere on } \quad \mathbb{T}
$$

and we conclude that

$$
\lim _{r \rightarrow 1}\left(\xi\left(r e^{i \theta}\right) \wedge f\left(r e^{i \theta}\right)\right) \underset{\|\cdot\|_{\wedge^{2} E}}{=} \tilde{\xi}\left(e^{i \theta}\right) \wedge \tilde{f}\left(e^{i \theta}\right) \text { almost everywhere on } \mathbb{T} \text {. }
$$

This shows that the radial limits

$$
\lim _{r \rightarrow 1}\left(\xi\left(r e^{i \theta}\right) \wedge f\left(r e^{i \theta}\right)\right)
$$

exist almost everywhere on \mathbb{T} and, by Lemma 2.2.6, define a function in $L^{2}\left(\mathbb{T}, \wedge^{2} E\right)$. Hence one can consider $\left(C_{\xi} f\right)(z)=(\xi \wedge f)(z)$ to be defined for either all $z \in \mathbb{D}$ or for almost all $z \in \mathbb{T}$.

Proposition 2.2.25. Let \mathcal{H} be a separable Hilbert space. The space $H^{2}(\mathbb{D}, \mathcal{H})$ can be identified with a closed linear subspace of $L^{2}(\mathbb{T}, \mathcal{H})$.

Proof. By Remark C.2.3, for any separable Hilbert space \mathcal{H} and $f \in H^{2}(\mathbb{D}, \mathcal{H})$, the map $f \mapsto \tilde{f}$ is an isometric embedding of $H^{2}(\mathbb{D}, \mathcal{H})$ in $L^{2}(\mathbb{T}, \mathcal{H})$ as a subspace, where \tilde{f} is the radial limit function

$$
\tilde{f}\left(e^{i \theta}\right)=\lim _{\|\cdot\|_{\mathcal{H}}} f\left(r e^{i \theta}\right)
$$

Since $H^{2}(\mathbb{D}, \mathcal{H})$ is complete and the embedding is isometric, the image of the embedding is complete, and therefore closed in $L^{2}(\mathbb{T}, \mathcal{H})$.

Remark 2.2.26. In future statements we shall to use the same notation for f and \tilde{f}.
Definition 2.2.27. Let E be a separable Hilbert space. Let F be a subspace of $L^{2}(\mathbb{T}, E)$ and let X be a subset of $L^{2}(\mathbb{T}, E)$. We define the pointwise linear span of X in F to be the set

$$
\operatorname{PLS}(X, F)=\{f \in F: f(z) \in \operatorname{span}\{x(z): x \in X\} \text { for almost all } z \in \mathbb{T}\}
$$

We define the pointwise orthogonal complement of X in F to be the set

$$
\operatorname{POC}(X, F)=\{f \in F: f(z) \perp\{x(z): x \in X\} \text { for almost all } z \in \mathbb{T}\}
$$

Our next aim is to show that $\operatorname{POC}(X, F)$ is a closed subspace of F. We are going to need the following Lemma.

Lemma 2.2.28. Let E be a Hilbert space and let $x \in L^{2}(\mathbb{T}, E)$. The function $\phi: L^{2}(\mathbb{T}, E) \rightarrow \mathbb{C}$ given by

$$
\phi(g)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle g\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right| d \theta
$$

is continuous.
Proof. Consider $g_{0} \in L^{2}(\mathbb{T}, E)$. For any $\epsilon>0$, we are looking for a $\delta>0$ such that

$$
\left\|g-g_{0}\right\|_{L^{2}(\mathbb{T}, E)}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|g\left(e^{i \theta}\right)-g_{0}\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2}<\delta
$$

implies

$$
\left|\phi(g)-\phi\left(g_{0}\right)\right|<\epsilon .
$$

Note that

$$
\begin{aligned}
\left|\phi(g)-\phi\left(g_{0}\right)\right| & =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi}\right|\left\langle g\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\left|d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi}\right|\left\langle g_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}|d \theta| \\
& =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|\left\langle g\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right|-\left|\left\langle g_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right|\right) d \theta\right|
\end{aligned}
$$

For each $e^{i \theta} \in \mathbb{T}$, by the reverse triangle inequality, the integrand satisfies

$$
\begin{aligned}
\left|\left|\left\langle g\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right|-\left|\left\langle g_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right|\right| & \leq\left|\left\langle g\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}-\left\langle g_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right| \\
& =\left|\left\langle\left(g e^{i \theta}\right)-g_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right|,
\end{aligned}
$$

hence

$$
\begin{equation*}
\left|\phi(g)-\phi\left(g_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle g\left(e^{i \theta}\right)-g_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right| d \theta \tag{2.12}
\end{equation*}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle g\left(e^{i \theta}\right)-g_{0}\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right| d \theta \\
& \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|g\left(e^{i \theta}\right)-g_{0}\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2} . \tag{2.13}
\end{align*}
$$

For the given $\epsilon>0$, let δ be equal to $\frac{\epsilon}{\|x\|_{L^{2}(\mathbb{T}, E)}+1}$, and let

$$
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|g\left(e^{i \theta}\right)-g_{0}\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2}<\delta
$$

By equations (2.12) and (2.13),

$$
\begin{aligned}
\left|\phi(g)-\phi\left(g_{0}\right)\right| & \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|g\left(e^{i \theta}\right)-g_{0}\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta\right)^{1 / 2}\|x\|_{L^{2}(\mathbb{T}, E)} \\
& <\frac{\epsilon}{\|x\|_{L^{2}(\mathbb{T}, E)}+1}\|x\|_{L^{2}(\mathbb{T}, E)}<\epsilon
\end{aligned}
$$

Hence ϕ is a continuous function.
Proposition 2.2.29. Let E be a separable Hilbert space and let $\varphi \in L^{2}(\mathbb{D}, E)$. Then
(i) The space $V=\left\{f \in H^{2}(\mathbb{D}, E):\langle f(z), \varphi(z)\rangle_{E}=0\right.$ for almost all $\left.z \in \mathbb{T}\right\}$ is a closed subspace of $H^{2}(\mathbb{D}, E)$.
(ii) The space $V=\left\{f \in L^{2}(\mathbb{T}, E):\langle f(z), \phi(z)\rangle_{E}=0\right.$ for almost all $\left.z \in \mathbb{T}\right\}$ is a closed subspace of $L^{2}(\mathbb{T}, E)$.

Proof. (i). V is a linear subspace of $H^{2}(\mathbb{D}, E)$ since for $\lambda, \mu \in \mathbb{C}, \psi, k \in V$ and for almost all $z \in \mathbb{T}$,

$$
\langle\lambda \psi(z)+\mu k(z), \varphi(z)\rangle_{E}=\lambda\langle\psi(z), \varphi(z)\rangle_{E}+\mu\langle k(z), \varphi(z)\rangle_{E}=0,
$$

hence $\lambda \psi+\mu k \in V$.
Now, suppose that the sequence of functions $\left(g_{n}\right)_{n=1}^{\infty}$ in V converges to a function g. We need to show that $g \in V$. Since $g_{n} \in V$ for all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\left\langle g_{n}(z), \varphi(z)\right\rangle_{E}=0 \text { for almost all } z \in \mathbb{T} \text {. } \tag{2.14}
\end{equation*}
$$

Consider the function $\phi: H^{2}(\mathbb{D}, E) \rightarrow \mathbb{C}$ given by

$$
\phi(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle f\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{E}\right| d \theta
$$

Then, by equation (2.14), we have

$$
\phi\left(g_{n}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle g_{n}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{E}\right| d \theta=0 .
$$

Note that by Fatou's theorem, for each function $f \in H^{2}(\mathbb{D}, E)$, the radial limit

$$
\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)
$$

exists almost everywhere and defines a function in $L^{2}(\mathbb{T}, E)$. This way, $H^{2}(\mathbb{D}, E)$ can be identified with a closed subspace of $L^{2}(\mathbb{T}, E)$. Hence by Lemma 2.2.28, ϕ is a continuous function on $H^{2}(\mathbb{D}, E)$, thus $\phi(g)=\lim _{n \rightarrow \infty} \phi\left(g_{n}\right)$, and so

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle g\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{E}\right| d \theta=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle g_{n}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{E}\right| d \theta=0
$$

for almost all $e^{i \theta} \in \mathbb{T}$. Thus $\left|\left\langle g\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{E}\right|=0$ for almost all $e^{i \theta} \in \mathbb{T}$, and, hence, $g \in V$. Thus we have proved that V is a closed subspace of $H^{2}(\mathbb{D}, E)$.
(ii). The proof is similar to (i).

Lemma 2.2.30. Let E be a separable Hilbert space, let F be a subspace of $L^{2}(\mathbb{T}, E)$ and let X be a subset of $L^{2}(\mathbb{T}, E)$. The space

$$
\operatorname{POC}(X, F)=\{f \in F: f(z) \perp\{x(z): x \in X\} \text { for almost all } z \in \mathbb{T}\}
$$

is a closed subspace of F.
Proof. The assertion follows from Proposition 2.2.29, since $\operatorname{POC}(X, F)$ is an intersection of closed subspaces

$$
V_{x}=\left\{f \in F:\langle f(z), x(z)\rangle_{E}=0 \text { for almost all } z \in \mathbb{T}\right\}
$$

over $x \in F$.

Definition 2.2.31. Let E be a separable Hilbert space. Let $f \in H^{p}(\mathbb{D}, E)$, for $1 \leq p \leq \infty$. By the generalised Fatou's Theorem C.2.5, the radial limit

$$
\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right) \underset{\|\cdot\|_{E}}{=} \tilde{f}\left(e^{i \theta}\right) \quad(0<r<1)
$$

exists almost everywhere on \mathbb{T} and defines a function $\tilde{f} \in L^{p}(\mathbb{T}, E)$. The set of points on \mathbb{T} at which the above limit does not exist, will be called the singular set of the function f and will be denoted by N_{f}.

Note that the singular sets of functions in $H^{p}(\mathbb{D}, E)$ for $1 \leq p \leq \infty$ are null sets with respect to Lebesgue measure.

Lemma 2.2.32. Let E be a separable Hilbert space. Let $\xi \in H^{\infty}(\mathbb{D}, E)$. For every $f \in H^{\infty}(\mathbb{D}, E)$ and $g \in H^{2}(\mathbb{D}, E)$, the function

$$
f \dot{\wedge} g: \mathbb{D} \rightarrow \wedge^{2} E
$$

defined by

$$
(f \dot{\wedge} g)(z)=f(z) \wedge g(z) \quad \text { for all } \quad z \in \mathbb{D}
$$

belongs to $H^{2}\left(\mathbb{D}, \wedge^{2} E\right)$, and moreover the operator

$$
C_{\xi}^{*}: H^{2}\left(\mathbb{D}, \wedge^{2} E\right) \rightarrow H^{2}(\mathbb{D}, E)
$$

is given by the formula

$$
C_{\xi}^{*}(f \dot{\wedge} g)=P_{+} \alpha
$$

where $\alpha \in L^{2}(\mathbb{T}, E)$ is defined by

$$
\alpha\left(e^{i \theta}\right)=\left\langle f\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} g\left(e^{i \theta}\right)-\left\langle g\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} f\left(e^{i \theta}\right)
$$

for all $e^{i \theta} \in \mathbb{T} \backslash\left(N_{f} \cup N_{\xi} \cup N_{g}\right)$, and P_{+}is the orthogonal projection

$$
P_{+}: L^{2}(\mathbb{T}, E) \rightarrow H^{2}(\mathbb{D}, E)
$$

Here N_{f}, N_{g}, N_{ξ} are the singular sets of the functions f, g and ξ respectively.
Proof. By Proposition 2.2.13, $f \dot{\wedge} g \in H^{2}\left(\mathbb{D}, \wedge^{2} E\right)$. Now, for all $f \in H^{\infty}(\mathbb{D}, E)$, all $g, h \in H^{2}(\mathbb{D}, E)$ and all $e^{i \theta} \in \mathbb{T} \backslash\left(N_{\xi} \cup N_{g} \cup N_{f}\right)$, we have

$$
\begin{aligned}
\left\langle C_{\xi}^{*}(f \dot{\wedge} g), h\right\rangle_{H^{2}(\mathbb{D}, E)} & =\left\langle f \dot{\wedge} g, C_{\xi} h\right\rangle_{H^{2}\left(\mathbb{D}, \wedge^{2} E\right)} \\
& =\langle f \dot{\wedge} g, \xi \dot{\wedge} h\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} E\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle f\left(e^{i \theta}\right) \wedge g\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right) \wedge h\left(e^{i \theta}\right)\right\rangle_{\wedge^{2} E} d \theta
\end{aligned}
$$

which, by Proposition 2.1.19, is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ll}
\left\langle f\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} & \left\langle f\left(e^{i \theta}\right), h\left(e^{i \theta}\right)\right\rangle_{E} \\
\left\langle g\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} & \left\langle g\left(e^{i \theta}\right), h\left(e^{i \theta}\right)\right\rangle_{E}
\end{array}\right) d \theta .
$$

The latter in turn is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left\langle f\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E}\left\langle g\left(e^{i \theta}\right), h\left(e^{i \theta}\right)\right\rangle_{E}-\left\langle f\left(e^{i \theta}\right), h\left(e^{i \theta}\right)\right\rangle_{E}\left\langle g\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E}\right) d \theta
$$

which equals

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\left\langle f\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} g\left(e^{i \theta}\right)-\left\langle g\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} f\left(e^{i \theta}\right), h\left(e^{i \theta}\right)\right\rangle_{E} d \theta
$$

and so

$$
\left\langle C_{\xi}^{*}(f \dot{\wedge} g), h\right\rangle_{H^{2}(\mathbb{D}, E)}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\alpha\left(e^{i \theta}\right), h\left(e^{i \theta}\right)\right\rangle_{E} d \theta=\langle\alpha, h\rangle_{L^{2}(\mathbb{T}, E)}=\left\langle P_{+}(\alpha), h\right\rangle_{H^{2}(\mathbb{D}, E)},
$$

where

$$
\alpha\left(e^{i \theta}\right)=\left\langle f\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} g\left(e^{i \theta}\right)-\left\langle g\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} f\left(e^{i \theta}\right)
$$

for all $e^{i \theta} \in \mathbb{T} \backslash\left(N_{\xi} \cup N_{f} \cup N_{g}\right)$. Hence $C_{\xi}^{*}(f \dot{\wedge} g)=P_{+} \alpha$ as required.

Proposition 2.2.33. Let E be a separable Hilbert space. For $\xi \in H^{\infty}(\mathbb{D}, E)$,

$$
\operatorname{ker} C_{\xi} \subset \operatorname{PLS}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right)
$$

Proof. We have

$$
\begin{aligned}
\operatorname{ker} C_{\xi} & =\left\{f \in H^{2}(\mathbb{D}, E):(\xi \wedge f)(z)=0 \text { for all } z \in \mathbb{D}\right\} \\
& =\left\{f \in H^{2}(\mathbb{D}, E): \xi(z) \wedge f(z)=0 \text { for all } z \in \mathbb{D}\right\} \\
& =\left\{f \in H^{2}(\mathbb{D}, E): \xi(z), f(z) \text { are pointwise linearly dependent for all } z \in \mathbb{D}\right\} .
\end{aligned}
$$

By Remark 2.2.23, the functions $\xi \in H^{\infty}(\mathbb{D}, E)$ and $f \in H^{2}(\mathbb{D}, E)$ have radial limit functions $\xi \in L^{\infty}(\mathbb{T}, E)$ and $f \in L^{2}(\mathbb{T}, E)$ respectively, hence the radial limit functions will be linearly dependent almost everywhere on \mathbb{T}. Thus
$\operatorname{ker} C_{\xi} \subset\left\{f \in H^{2}(\mathbb{D}, E): \xi(z), f(z)\right.$ are pointwise linearly dependent for almost all $\left.z \in \mathbb{T}\right\}$

$$
=\operatorname{PLS}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right)
$$

Example 2.2.34. Let $E=\mathbb{C}^{2}$. We can find functions $f, g \in H^{2}(\mathbb{D}, E)$ such that $f \in \operatorname{POC}\left(\{g\}, H^{2}(\mathbb{D}, E)\right)$ but it is false that $\langle f(z), g(z)\rangle_{E}=0$ for all $z \in \mathbb{D}$. Choose

$$
g(z)=\binom{z}{z^{2}}, \quad f(z)=\binom{f_{1}(z)}{f_{2}(z)} \quad \text { for } \quad z \in \mathbb{D}
$$

Then

$$
f \in \operatorname{POC}\left(\{g\}, H^{2}(\mathbb{D}, E)\right)
$$

is equivalent to

$$
\langle\tilde{f}(z), \tilde{g}(z)\rangle_{E}=0 \quad \text { for almost all } \quad z \in \mathbb{T} .
$$

The later is equivalent to

$$
\left\langle\binom{ z}{z^{2}},\binom{\tilde{f}_{1}(z)}{\tilde{f}_{2}(z)}\right\rangle_{E}=0 \quad \text { for almost all } \quad z \in \mathbb{T},
$$

which holds if and only if

$$
\bar{z} \tilde{f}_{1}(z)+\bar{z}^{2} \tilde{f}_{2}(z)=0 \quad \text { for almost all } \quad z \in \mathbb{T}
$$

Equivalently

$$
\tilde{f}_{1}(z)=-\bar{z} \tilde{f}_{2}(z) \quad \text { for almost all } \quad z \in \mathbb{T},
$$

which in turn is equivalent to

$$
f(z)=\binom{\tilde{f}_{1}(z)}{-z \tilde{f}_{1}(z) .} \quad \text { for almost all } \quad z \in \mathbb{T}
$$

Now for $z \in \mathbb{D}$,

$$
\begin{aligned}
\langle f(z), g(z)\rangle_{E} & =\left\langle\binom{ f_{1}(z)}{-z f_{1}(z)},\binom{z}{z^{2}}\right\rangle_{E} \\
& =\bar{z} f_{1}(z)-\bar{z}|z|^{2} f_{1}(z) \\
& =\bar{z}\left(1-|z|^{2}\right) f_{1}(z) .
\end{aligned}
$$

So if we take $f_{1}(z)=1, f(z)=\binom{1}{-z}$ for all $z \in \mathbb{D}$, then $f \in \operatorname{POC}\left(\{g\}, H^{2}(\mathbb{D}, E)\right)$ but $\langle f(z), g(z)\rangle_{E} \neq 0$ for all $z \in \mathbb{D} \backslash\{0\}$.

Thus it is not true in general that $\operatorname{POC}\left(\{g\}, H^{2}(\mathbb{D}, E)\right) \subset\{g\}^{\perp}$.
Lemma 2.2.35. Let E be a separable Hilbert space. For $\xi \in H^{\infty}(\mathbb{D}, E)$,

$$
\operatorname{POC}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right) \subset H^{2}(\mathbb{D}, E) \ominus \operatorname{PLS}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right) .
$$

Proof. Let $f \in \operatorname{POC}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right)$. This is equivalent to $f \in H^{2}(\mathbb{D}, E)$ and

$$
\tilde{f}(z) \perp \tilde{\xi}(z) \text { for all } z \in \mathbb{T} \backslash\left(N_{f} \cup N_{\xi}\right)
$$

where N_{f}, N_{ξ} are the singular sets for the functions f, ξ respectively. This in turn is equivalent to $f \in H^{2}(\mathbb{D}, E)$ and

$$
\langle\tilde{f}(z), \tilde{\xi}(z)\rangle_{E}=0 \text { for all } z \in \mathbb{T} \backslash\left(N_{f} \cup N_{\xi}\right) .
$$

The latter implies the condition

$$
f \in H^{2}(\mathbb{D}, E) \text { and }\langle\tilde{f}(z), \tilde{g}(z)\rangle_{E}=0 \text { for almost all } z \in \mathbb{T} \text { and all } g \in \operatorname{PLS}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right) .
$$

Thus

$$
f \in H^{2}(\mathbb{D}, E) \ominus \operatorname{PLS}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right) .
$$

Lemma 2.2.36. Let E and F be separable Hilbert spaces, and let $G \in L^{\infty}(\mathbb{T}, \mathcal{B}(F, E))$. For every $x \in L^{2}(\mathbb{T}, E)$, the function $G x$, defined almost everywhere on \mathbb{T} by

$$
(G x)(z)=G(z)(x(z)),
$$

belongs to $L^{2}(\mathbb{T}, E)$.

Proof. For almost all $z \in \mathbb{T}$,

$$
\|(G x)(z)\|_{E}=\|G(z) x(z)\|_{E} \leq\|G\|_{L^{\infty}(\mathbb{T}, \mathcal{B}(F, E))}\|x(z)\|_{F}
$$

Thus

$$
\begin{aligned}
\|G x\|_{L^{2}(\mathbb{T}, E)}^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|G x\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\|G\|_{L^{\infty}(\mathbb{T}, \mathcal{B}(F, E))}^{2}\left\|x\left(e^{i \theta}\right)\right\|_{F}^{2} d \theta \\
& \leq\|G\|_{L^{\infty}(\mathbb{T}, \mathcal{B}(F, E))}^{2}\|x\|_{L^{2}(\mathbb{T}, F)}^{2}<\infty .
\end{aligned}
$$

Definition 2.2.37. Let E and F be separable Hilbert spaces. Let $P_{+}: L^{2}(\mathbb{T}, E) \rightarrow H^{2}(\mathbb{D}, E)$ be the orthogonal projection operator. Corresponding to any $G \in L^{\infty}(\mathbb{T}, \mathcal{B}(F, E))$ we define the Toeplitz operator with symbol G to be the operator

$$
T_{G}: H^{2}(\mathbb{D}, F) \rightarrow H^{2}(\mathbb{D}, E)
$$

given by

$$
T_{G} x=P_{+}(G x) \quad \text { for any } \quad x \in H^{2}(\mathbb{D}, F) .
$$

Definition 2.2.38 ([24]). For a separable Hilbert space E, a function $\xi \in H^{\infty}(\mathbb{D}, E)$ will be called inner if for almost every $z \in \mathbb{T}$,

$$
\|\xi(z)\|_{E}=1
$$

Definition 2.2.39. Let E be a separable Hilbert space and let $\xi, \eta \in L^{\infty}(\mathbb{T}, E)$. We define $\xi \eta^{*} \in L^{\infty}(\mathbb{T}, \mathcal{B}(E, E))$ by

$$
\left(\xi \eta^{*}\right)(z) x=\langle x, \eta(z)\rangle \xi(z) \text { for all } x \in E \text { and for almost every } z \text { on } \mathbb{T} .
$$

Proposition 2.2.40. Let E be a separable Hilbert space. Let $\xi \in H^{\infty}(\mathbb{D}, E)$ be an inner function. Then, for any $h \in H^{2}(\mathbb{D}, E)$,

$$
C_{\xi}^{*} C_{\xi} h=P_{+} \alpha,
$$

where $\alpha=h-\xi \xi^{*} h$ and $P_{+}: L^{2}(\mathbb{T}, E) \rightarrow H^{2}(\mathbb{D}, E)$ is the orthogonal projection. Moreover

$$
C_{\xi}^{*} C_{\xi} h=h-T_{\xi \xi^{*}} h,
$$

where $T_{\xi \xi^{*}}: H^{2}(\mathbb{D}, E) \rightarrow H^{2}(\mathbb{D}, E)$ is the Toeplitz operator with symbol $\xi \xi^{*}$.
Proof. For all $g, h \in H^{2}(\mathbb{D}, E)$ and for N_{ξ}, N_{h}, N_{g} singular sets of ξ, h, g respectively,

$$
\left\langle\left(C_{\xi}^{*} C_{\xi}\right) h, g\right\rangle_{H^{2}(\mathbb{D}, E)}=\left\langle C_{\xi} h, C_{\xi} g\right\rangle_{H^{2}\left(\mathbb{D}, \wedge^{2} E\right)}=\langle\xi \wedge h, \xi \dot{\wedge} g\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} E\right)},
$$

and, by Proposition 2.1.19, we get

$$
\langle\xi \wedge h, \xi \dot{\wedge} g\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} E\right)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cc}
\left\langle\xi\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} & \left\langle\xi\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{E} \\
\left\langle h\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} & \left\langle h\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{E}
\end{array}\right) d \theta .
$$

Since ξ is inner, $\left\|\xi\left(e^{i \theta}\right)\right\|_{E}=1$ almost everywhere on \mathbb{T}, and so,

$$
\begin{aligned}
\left\langle\left(C_{\xi}^{*} C_{\xi}\right) h, g\right\rangle_{H^{2}(\mathbb{D}, E)} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle h\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{E}-\left\langle\xi\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{E}\left\langle h\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle h\left(e^{i \theta}\right)-\left\langle h\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} \xi\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{E} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\alpha\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{E} d \theta \\
& =\langle\alpha, g\rangle_{L^{2}(\mathbb{T}, E)} \\
& =\left\langle P_{+} \alpha, g\right\rangle_{H^{2}(\mathbb{D}, E)}
\end{aligned}
$$

where $\alpha\left(e^{i \theta}\right)=h\left(e^{i \theta}\right)-\left\langle h\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} \xi\left(e^{i \theta}\right)$ for all $e^{i \theta} \in \mathbb{T} \backslash\left(N_{\xi} \cup N_{h} \cup N_{g}\right)$. Thus $C_{\xi}^{*} C_{\xi} h=P_{+} \alpha$, where $\alpha=h-\xi \xi^{*} h$. Hence

$$
C_{\xi}^{*} C_{\xi} h=P_{+}\left(h-\xi \xi^{*} h\right)=h-T_{\xi \xi^{*}} h,
$$

where $T_{\xi \xi^{*}} h=P_{+}\left(\xi \xi^{*} h\right)$ is a Toeplitz operator.
Example 2.2.41. In this example we show that there exists an inner function $\xi \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ such that, for some $h \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right), C_{\xi}^{*} C_{\xi} h$ is not in the pointwise orthogonal complement of ξ in E.
Let $\xi \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ be an inner function and let $h \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$. Let ξ, h be given by

$$
\xi(z)=\frac{1}{\sqrt{2}}\binom{1}{z}, \quad h(z)=\binom{1}{1} \text { for all } z \in \mathbb{D} .
$$

By Proposition 2.2.40,

$$
C_{\xi}^{*} C_{\xi} h=P_{+} \alpha,
$$

where, for all $z \in \mathbb{T}$,

$$
\alpha(z)=\binom{1}{1}-\left\langle\binom{ 1}{1}, \frac{1}{\sqrt{2}}\binom{1}{z}\right\rangle_{\mathbb{C}^{2}} \frac{1}{\sqrt{2}}\binom{1}{z} .
$$

Calculations yield, for all $z \in \mathbb{T}$,

$$
\alpha(z)=\binom{1}{1}-\frac{1}{\sqrt{2}}(1+\bar{z}) \frac{1}{\sqrt{2}}\binom{1}{z}=\binom{1}{1}-\frac{1}{2}\binom{1+\bar{z}}{z(1+\bar{z})}=\binom{\frac{1}{2}-\frac{1}{2} \bar{z}}{1-\frac{1}{2} z-\frac{1}{2}|z|^{2}},
$$

and so

$$
\alpha(z)=\frac{1}{2}\binom{1-\bar{z}}{1-z} .
$$

Thus

$$
\left(P_{+} \alpha\right)(z)=\frac{1}{2}\binom{1}{1-z} \quad \text { for all } \quad z \in \mathbb{T} \backslash\left(N_{\xi} \cup N_{g}\right) .
$$

The latter expression is not in the pointwise orthogonal complement of ξ in \mathbb{C}^{2}, since for all $z \in \mathbb{T}$,

$$
\left\langle\frac{1}{2}\binom{1}{1-z}, \frac{1}{\sqrt{2}}\binom{1}{z}\right\rangle_{\mathbb{C}^{2}}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
1 & \bar{z}
\end{array}\right)\binom{1}{1-z}=\frac{1}{2 \sqrt{2}}\left(1+\bar{z}-|z|^{2}\right)=\frac{\bar{z}}{2 \sqrt{2}} \neq 0 .
$$

The next lemma shows that C_{ξ} is an isometry on $\operatorname{POC}\left\{\xi_{0}, H^{2}(\mathbb{D}, E)\right\}$.
Lemma 2.2.42. Let E be a separable Hilbert space. For every inner function $\xi \in H^{\infty}(\mathbb{D}, E)$,

$$
\left\{x \in H^{2}(\mathbb{D}, E):\left\|C_{\xi} x\right\|_{H^{2}\left(\mathbb{D}, \wedge^{2} E\right)}=\|x\|_{H^{2}(\mathbb{D}, E)}\right\}=\operatorname{POC}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right) .
$$

Proof. By Proposition 2.2.25, for every $x \in H^{2}(\mathbb{D}, E),\|x\|_{H^{2}(\mathbb{D}, E)}=\|x\|_{L^{2}(\mathbb{T}, E)}$. Hence $\left\{x \in H^{2}(\mathbb{D}, E):\left\|C_{\xi} x\right\|_{H^{2}\left(\mathbb{D}, \wedge^{2} E\right)}^{2}=\|x\|_{H^{2}(\mathbb{D}, E)}^{2}\right\}=\left\{x \in H^{2}(\mathbb{D}, E):\left\|C_{\xi} x\right\|_{L^{2}\left(\mathbb{T}, \wedge^{2} E\right)}^{2}=\|x\|_{L^{2}(\mathbb{T}, E)}^{2}\right\}$. By Proposition 2.1.19, the latter set is equal to

$$
\left\{x \in H^{2}(\mathbb{D}, E): \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ll}
\left\langle\xi\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} & \left\langle\xi\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E} \\
\left\langle x\left(e^{i \theta}\right), \xi\left(e^{i \theta}\right)\right\rangle_{E} & \left\langle x\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}
\end{array}\right) d \theta \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta\right\} .
$$

Since ξ is inner, $\left\|\xi\left(e^{i \theta}\right)\right\|_{E}=1$ almost everywhere on \mathbb{T}, hence the latter set is equal to

$$
\begin{aligned}
& \left\{x \in H^{2}(\mathbb{D}, E): \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left\|x\left(e^{i \theta}\right)\right\|_{E}^{2}-\left|\left\langle\xi\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right|^{2}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x\left(e^{i \theta}\right)\right\|_{E}^{2} d \theta\right\} \\
& =\left\{x \in H^{2}(\mathbb{D}, E): \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left\langle\xi\left(e^{i \theta}\right), x\left(e^{i \theta}\right)\right\rangle_{E}\right|^{2} d \theta=0\right\} \\
& =\left\{x \in H^{2}(\mathbb{D}, E): \tilde{\xi}\left(e^{i \theta}\right) \perp \tilde{x}\left(e^{i \theta}\right) \text { almost everywhere on } \mathbb{T}\right\} \\
& =\left\{x \in H^{2}(\mathbb{D}, E): x \in \operatorname{POC}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right)\right\} \\
& =\operatorname{POC}\left(\{\xi\}, H^{2}(\mathbb{D}, E)\right) .
\end{aligned}
$$

Example 2.2.43. This example shows that $C_{\xi}^{*} C_{\xi}$ fails to be a projection for some inner function $\xi \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2}\right)$. Let us calculate $C_{\xi}^{*} C_{\xi}$, for $\xi(z)=\frac{1}{\sqrt{2}}\binom{1}{z}$, $z \in \mathbb{D}$. By Proposition 2.2.40, for $h \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$

$$
C_{\xi}^{*} C_{\xi} h=P_{+} \alpha,
$$

where, for all $z \in \mathbb{T}, \alpha(z)$ is given by

$$
\alpha(z)=h(z)-\langle h(z), \xi(z)\rangle_{E} \xi(z)=\binom{h_{1}(z)}{h_{2}(z)}-\frac{1}{\sqrt{2}}\left(h_{1}(z)+\bar{z} h_{2}(z)\right) \frac{1}{\sqrt{2}}\binom{1}{z} .
$$

We have

$$
\begin{aligned}
\binom{h_{1}(z)}{h_{2}(z)}-\frac{1}{\sqrt{2}}\left(h_{1}(z)+\bar{z} h_{2}(z)\right) \frac{1}{\sqrt{2}}\binom{1}{z} & =\binom{h_{1}(z)-\frac{1}{2}\left(h_{1}(z)+\bar{z} h_{2}(z)\right)}{h_{2}(z)-\frac{1}{2}\left(z h_{1}(z)+h_{2}(z)\right.} \\
& =\frac{1}{2}\binom{h_{1}(z)-\bar{z} h_{2}(z)}{h_{2}(z)-z h_{1}(z)} .
\end{aligned}
$$

Thus

$$
P_{+} \alpha=\frac{1}{2}\binom{h_{1}-S^{*} h_{2}}{-S h_{1}+h_{2}},
$$

where S, S^{*} denote the shift and the backward shift operators on $H^{2}(\mathbb{D}, \mathbb{C})$ respectively. Hence

$$
C_{\xi}^{*} C_{\xi}=\frac{1}{2}\left(\begin{array}{cc}
1 & -S^{*} \tag{2.15}\\
-S & 1
\end{array}\right) .
$$

Now, for $h(z)=\binom{1}{1}, z \in \mathbb{D}$,

$$
\left(C_{\xi}^{*} C_{\xi}\binom{1}{1}\right)(z)=\frac{1}{2}\binom{1}{1-z}
$$

which is not the projection of $\binom{1}{1}$ onto the pointwise orthogonal complement of $\xi(z)$ in E, since

$$
\begin{aligned}
\binom{1}{1}-\left\langle\binom{ 1}{1}, \xi(z)\right\rangle_{E} \xi(z) & =\binom{1}{1}-\frac{1}{\sqrt{2}}(1+\bar{z}) \frac{1}{\sqrt{2}}\binom{1}{z} \\
& =\binom{1-\frac{1}{2}(1+\bar{z})}{1-\frac{1}{2}(1+z)} \\
& =\frac{1}{2}\binom{1-\bar{z}}{1-z} \neq 0 .
\end{aligned}
$$

Alternatively, from equation (2.15),

$$
C_{\xi}^{*} C_{\xi}=\frac{1}{2}\left(\begin{array}{cc}
1 & -S^{*} \\
-S & 1
\end{array}\right)
$$

so

$$
\left(C_{\xi}^{*} C_{\xi}\right)^{2}=\frac{1}{4}\left(\begin{array}{cc}
1+S^{*} S & -2 S^{*} \\
-2 S & S S^{*}+1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cc}
2 & -2 S^{*} \\
-2 S & 2-P_{0}
\end{array}\right),
$$

and thus

$$
\left(C_{\xi}^{*} C_{\xi}\right)^{2}==\frac{1}{2}\left(\begin{array}{cc}
1 & -S^{*} \\
-S & 1-\frac{1}{2} P_{0}
\end{array}\right) \neq C_{\xi}^{*} C_{\xi},
$$

since $S S^{*}=1-P_{0}$, where $P_{0}\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)=a_{0}$.
Consequently $C_{\xi}^{*} C_{\xi}$ is not a projection and hence C_{ξ} is not a partial isometry on $H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$.

Chapter 3

Superoptimal analytic approximation

In this chapter we present the main result of the dissertation, which is the superoptimal analytic approximation algorithm. In Section 3.1, we recall certain known results and Peller and Young's algorithm (Theorem 3.1.19). In Section 3.2, we construct the alternative algorithm for the superoptimal approximant based on exterior powers of Hilbert spaces. The proof of the validity of the new algorithm relies on the cited work given in Section 3.1.

Basic definitions, which we use in this chapter, are given in Chapter 1 and in Appendix D.

3.1 Known results

In this section we present certain established results that we later use to define the steps of the new algorithm and prove their validity.

Definition 3.1.1. Let E, F be Hilbert spaces. We define by $\mathcal{K}(E, F)$ the Banach space of compact operators from E to F with the operator norm.

Theorem 3.1.2 (Hartman's Theorem, [19], p. 74). Let E,F be separable Hilbert spaces and let $\Phi \in L^{\infty}(\mathbb{T}, \mathcal{L}(E, F))$. The following statements are equivalent
(i) The Hankel operator H_{Φ} is compact on $H^{2}(\mathbb{D}, E)$.
(ii) $\Phi \in H^{\infty}(\mathbb{D}, \mathcal{L}(E, F))+C(\mathbb{T}, \mathcal{K}(E, F))$.
(iii) there exists a function $\Psi \in C(\mathbb{T}, \mathcal{K}(E, F))$ such that $\hat{\Phi}(n)=\hat{\Psi}(n)$ for $n<0$.

Definition 3.1.3 ([24], p. 306). The class of quasi-continuous functions is defined by

$$
Q C=\left(H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)\right) \cap \overline{\left(H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)\right)} .
$$

In other words this class consists of functions on the circle which belong to $H^{\infty}+C$ and are such that their complex conjugates belong to $H^{\infty}+C$ as well.

Definition 3.1.4. Consider a function $f \in L^{1}(\mathbb{T}, \mathbb{C})$ and an arc I on \mathbb{T}. Put

$$
f_{I} \stackrel{\text { def }}{=} \frac{1}{m(I)} \int_{I} f d m
$$

where m is the Lebesgue measure on \mathbb{T}. Thus, f_{I} is the mean of f over I. The function f is said to have vanishing mean oscillation if

$$
\lim _{m(I) \rightarrow 0} \frac{1}{m(I)} \int_{I}\left|f-f_{I}\right| d m=0
$$

The space of functions of vanishing mean oscillation on \mathbb{T} is denoted by VMO.
VMO is also related to the compactness of Hankel operators, as the following theorem asserts.

Theorem 3.1.5 ([19], Theorem 5.8). Let $\phi \in L^{2}(\mathbb{T}, \mathbb{C})$. Then H_{ϕ} is compact if and only if $P_{-} \phi \in \mathrm{VMO}$.

It is therefore not surprising that the spaces $Q C$ and $V M O$ are closely related. The following theorem illustrates such a connection.

Theorem 3.1.6 ([19], p. 729).

$$
Q C=V M O \cap L^{\infty}
$$

Theorem 3.1.6 follows from another characterisation of $V M O$, which was obtained by Sarason in [31], to wit

$$
V M O=\{f+\tilde{g}: f, g \in C(\mathbb{T}, \mathbb{C})\}
$$

where \tilde{g} denotes the harmonic conjugate of g.
Remark 3.1.7. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. We will say that every function $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which minimises the norm $\|G-Q\|_{L^{\infty}}$, is a function at minimal distance from G. By Nehari's Theorem, all such functions Q satisfy $\|G-Q\|_{L^{\infty}}=\left\|H_{G}\right\|$.

Next we describe some properties that a space X of equivalence classes of functions on the unit circle might posses, which were explored in [24]. It should be mentioned that the uniqueness result in Theorem 1.1.4 allows one to define a non-linear operator \mathcal{A} of superoptimal analytic approximation on $H^{\infty}+C$ as follows.

Definition 3.1.8 ([24], p. 329). Define $\mathcal{A}=\mathcal{A}^{(m, n)}$ on the space of $m \times n$ functions $G \in$ $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ by saying that $\mathcal{A}^{(m, n)} G$ is the unique superoptimal approximation in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ to G.

Definition 3.1.9. We say that a space $X \subseteq L^{\infty}(\mathbb{T}, \mathbb{C})$ is hereditary for \mathcal{A} if, for every scalar function $g \in X$, the best analytic approximation $\mathcal{A} g$ of g belongs to X. For a matrix function $G \in H^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ we write $G \in X$ if each entry of G is in X.

We consider spaces X of scalar functions on the circle which satisfy the following axioms.
($\alpha 1$) X contains trigonometric polynomial functions and $X \subset V M O$;
($\alpha 2$) X is hereditary for \mathcal{A};
($\alpha 3$) if $f \in X$ then $\bar{z} \bar{f} \in X$ and $P_{+} f \in X$;
($\alpha 4$) if $f, g \in X \cap L^{\infty}$ then $f g \in X \cap L^{\infty}$;
($\alpha 5$) if $f \in X \cap H^{2}$ and $h \in H^{\infty}$ then $T_{\bar{h}} f \in X \cap H^{2}$.
The relevance of these properties is contained in the following statements. Recall that, according to [20], a function $f \in L^{\infty}$ is said to be badly approximable if the best analytic approximant to f is the zero function. In view of Nehari's Theorem, f is badly approximable if and only if $\|f\|_{L^{\infty}}=\left\|H_{f}\right\|$.

Theorem 3.1.10 ([24], p. 308). Let φ be an $n \times 1$ inner matrix function. There exists an inner, co-outer function $\varphi_{c} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n \times(n-1)}\right)$ such that

$$
\Phi=\left(\begin{array}{ll}
\varphi & \bar{\varphi}_{c}
\end{array}\right)
$$

is unitary-valued on \mathbb{T} and all minors of Φ on the first column are in H^{∞}.
Lemma 3.1.11 ([24], p. 332). Let X satisfy ($\alpha 1$)-($\alpha 5$) and let ϕ be an $n \times 1$ inner function. Let ϕ_{c} be an $n \times(n-1)$ function in H^{∞} such that $\left(\phi \bar{\phi}_{c}\right)$ is unitary-valued almost everywhere and has all its minors on the first column belonging to H^{∞}. Then each entry of ϕ_{c} belongs to X.

Lemma 3.1.12 ([24], p. 315-316). Let $m, n>1$, let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and $t_{0}=\left\|H_{G}\right\| \neq 0$. Suppose that v is a maximizing vector of H_{G} and let

$$
\begin{equation*}
H_{G} v=t_{0} w . \tag{3.1}
\end{equation*}
$$

Then $v, \bar{z} \bar{w} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ have the factorisations

$$
\begin{equation*}
v=v_{0} h, \quad \bar{z} \bar{w}=\phi w_{0} h \tag{3.2}
\end{equation*}
$$

for some scalar outer function h, some scalar inner ϕ, and column-matrix inner functions v_{0}, w_{0}. Moreover there exist unitary-valued functions V, W of types $n \times n, m \times m$ respectively, of the form

$$
V=\left(\begin{array}{ll}
v_{0} & \bar{\alpha}
\end{array}\right), W^{T}=\left(\begin{array}{ll}
w_{0} & \bar{\beta} \tag{3.3}
\end{array}\right),
$$

where α, β are inner, co-outer, quasi-continuous functions of types $n \times(n-1), m \times(m-1)$ respectively, and all minors on the first columns of V, W^{T} are in H^{∞}.

Furthermore every $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which is at minimal distance from G satisfies

$$
W(G-Q) V=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \tag{3.4}\\
0 & F
\end{array}\right)
$$

for some $F \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right)$ and some quasi-continuous function u_{0} given by

$$
\begin{equation*}
u_{0}=\frac{\bar{z} \bar{\phi} \bar{h}}{h} \tag{3.5}
\end{equation*}
$$

with $\left|u_{0}(z)\right|=1$ almost everywhere on \mathbb{T}.
Proof. First we construct V and W with the properties (3.1) to (3.4). By Theorem D.2.4 and by equation (3.1), $\|v(z)\|=\|w(z)\|$ almost everywhere, and so the column-vector functions $v, \bar{z} \bar{w} \in H^{2}$ have the same (scalar) outer factor h. This property yields the inner-outer factorisations (3.2) for some column inner functions v_{0}, w_{0}. By Theorem 3.1.10, there exists an inner co-outer function α of type $n \times(n-1)$ such that $V \stackrel{\text { def }}{=}\left(v_{0} \bar{\alpha}\right)$ is unitary-valued almost everywhere on \mathbb{T} and all minors on the first column of V are in H^{∞}. Likewise there exists an inner co-outer function β of type $m \times(m-1)$ such that $W \stackrel{\text { def }}{=}\left(w_{0} \quad \bar{\beta}\right)^{T}$ is unitary-valued almost everywhere on \mathbb{T} and all minors on the first column of W^{T} are in H^{∞}.

Next we show that u_{0} given by equation (3.5) is quasi-continuous. Let $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ be at minimal distance from G. Then

$$
\|G-Q\|_{\infty}=\left\|H_{G}\right\|=t_{0} .
$$

By Theorem D.2.4,

$$
(G-Q) v=t_{0} w
$$

and by the factorisations (3.2) we have

$$
(G-Q) v_{0} h=t_{0} \bar{z} \bar{\phi} \bar{h} \bar{w}_{0}
$$

and by equations (3.3) and (3.5)

$$
(G-Q) V\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right)^{T}=W^{*}\left(\begin{array}{llll}
t_{0} u_{0} & 0 & \cdots & 0
\end{array}\right)^{T}
$$

Thus

$$
W(G-Q) V=\left(\begin{array}{cc}
t_{0} u_{0} & f \\
0 & F
\end{array}\right)
$$

for some $f \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{1 \times(n-1)}\right), F \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right)$.
Because $t_{0}=\left\|H_{G}\right\|$, it follows that $\left|u_{0}\right|=1$ almost everywhere, and from Nehari's Theorem

$$
\|W(G-Q) V\|_{\infty}=\|G-Q\|=\left\|H_{G}\right\|=t_{0},
$$

and we get that $f=0$. So, $W(G-Q) V$ is in the form (3.4). Now, $\left\|H_{u_{0}}\right\| \leq\left\|u_{0}\right\|_{\infty}=1$ and
$\left\|H_{u_{0}} h\right\|=\|\bar{z} \bar{\phi} \bar{h}\|=\|h\|$, which implies that u_{0} is badly approximable. Hence

$$
\left\|H_{u_{0}}\right\|=1=\left\|u_{0}\right\|_{\infty} .
$$

The (1,1) entries of equation (3.4) are

$$
w_{0}^{T}(G-Q) v_{0}=t_{0} u_{0}
$$

Since $v_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $w_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ and $H^{\infty}(\mathbb{D}, \mathbb{C})+C(\mathbb{T}, \mathbb{C})$ is an algebra, $u_{0} \in H^{\infty}+C$. By a result in [20, Section 3.1], if $u_{0} \in H^{\infty}+C$ and u_{0} is badly approximable then $\overline{u_{0}} \in H^{\infty}+C$. Thus u_{0} is quasi-continuous.

Next we show that $v_{0}, w_{0} \in$ QC. It follows from Nehari's Theorem (see Theorem D.2.4) that

$$
(G-Q)^{*} w=t_{0} v .
$$

Indeed, since $H_{G}^{*} w=t_{0} v$ and $H_{G}^{*}=P_{+} M_{(G-Q)^{*}} \mid H^{2^{\perp}}$, we have (assuming, as we may, that v and w are unit vectors),

$$
\begin{aligned}
t_{0}=\left\|H_{G}^{*} w\right\| & =\left\|P_{+}(G-Q)^{*} w\right\| \\
& \leq\left\|(G-Q)^{*} w\right\| \leq\|G-Q\|_{L^{\infty}}\|w\|=t_{0} .
\end{aligned}
$$

It follows that the inequalities hold with equality, and so

$$
\left\|P_{+}(G-Q)^{*} w\right\|=\left\|(G-Q)^{*} w\right\|
$$

whence

$$
P_{+}(G-Q)^{*} w=(G-Q)^{*} w
$$

and so

$$
(G-Q)^{*} w=H_{G}^{*} w=t_{0} v
$$

as claimed.
Taking complex conjugates in the last equation we have

$$
(G-Q)^{T} \bar{w}=t_{0} \bar{v}
$$

Thus, by equation (3.2),

$$
(G-Q)^{T} z \phi w_{0} h=t_{0} \bar{h} \bar{v}_{0}
$$

for some outer function h and scalar inner ϕ. Therefore

$$
\bar{v}_{0}=\frac{(G-Q)^{T} z \phi w_{0} h}{t_{0} \bar{h}} .
$$

Recall that $u_{0}=\bar{z} \bar{\phi} \bar{h} / h$, and so

$$
\bar{v}_{0}=\frac{1}{t_{0}}(G-Q)^{T} \bar{u}_{0} w_{0} .
$$

Since $u_{0} \in \mathrm{QC}, G-Q \in H^{\infty}+C, w_{0} \in H^{\infty}$ and $H^{\infty}+C$ is an algebra, it follows that $\bar{v}_{0} \in H^{\infty}+C$. Since also $v_{0} \in H^{\infty}$, we have $v_{0} \in$ QC. In an analogous way, one can show that $w_{0} \in \mathrm{QC}$.

To complete the proof, all that remains is to show that α, β are quasi-continuous and $F \in H^{\infty}+C$. This will follow from Lemma 3.1.11 above.

The space VMO satisfies conditions $(\alpha 1)$ to $(\alpha 5)$, and we have $v_{0} \in \mathrm{QC} \subset$ VMO. Hence we may apply Lemma 3.1 .11 with $\phi=v_{0}$ to deduce that $\alpha \in \mathrm{VMO}$. Since also $\alpha \in L^{\infty}$, it follows from Theorem 3.1.6 that $\alpha \in \mathrm{QC}$. Likewise, $\beta \in \mathrm{QC}$.

To show that $F \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right)$, for $1<i \leq m, 1<j \leq n$ consider the 2×2 minor of equation (3.4) with indices $1 i, 1 j$:

$$
\begin{equation*}
\sum_{r<s, k<l} W_{1 i, r s}(G-Q)_{r s, k l} V_{k l, 1 j}=t_{0} u_{0} F_{i-1, j-1} . \tag{3.6}
\end{equation*}
$$

By the analytic minors property of W, V,

$$
V_{k l, 1 j}, W_{1 i, r s} \in H^{\infty} .
$$

Since $(G-Q) \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, all the terms on the left-hand side of equation (3.6) are in $H^{\infty}+C$ and hence $u_{0} F \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right)$. Thus

$$
F=\bar{u}_{0}\left(u_{0} F\right) \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right) .
$$

Definition 3.1.13. We say that a unitary-matrix-valued function V is a thematic completion of a column-matrix inner function $v_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, if $V=\left(\begin{array}{ll}v_{0} & \bar{\alpha}\end{array}\right)$ for some co-outer function $\alpha \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n \times(n-1)}\right)$ such that $V(z)$ is unitary-valued almost everywhere on \mathbb{T} and all minors on the first column of V are analytic.

Remark 3.1.14. By Theorem 3.1.10, every column-matrix inner function has a thematic completion. Thematic completions are not unique, for if $V=\left(\begin{array}{ll}v_{0} & \bar{\alpha}\end{array}\right)$ is a thematic completion of v_{0}, then so is $\left(v_{0} \quad \bar{\alpha} U\right)$ for any constant $(n-1)$-square unitary matrix U. However, by Corollary 1.6 of [24], the thematic completion of v_{0} is unique up to multiplication on the right by a constant unitary matrix of the form diag $\{1, U\}$ for some constant $(n-1)-$ square matrix U, and so it is permissible to speak of "the thematic completion of v_{0} ".

Furthermore, by Theorem 1.2 of [24], thematic completions have constant determinants almost everywhere on \mathbb{T}, and hence α, β are inner matrix functions. Observe that, as we showed above, if the column v_{0} belongs to VMO , then the thematic completion of v_{0} is quasicontinuous. Similarly, if the column w_{0} belongs to VMO, then the thematic completion of
w_{0} is quasi-continuous. Thus α, β are inner, co-outer, quasi-continuous functions of types $n \times(n-1)$ and $m \times(m-1)$ respectively.

Lemma 3.1.15 ([24], p. 316). Let $m, n>1$, let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, let $\left\|H_{G}\right\|=t_{0}$ and let $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ be at minimal distance from G, so that in the notation of Lemma 3.1.12,

$$
W\left(G-Q_{1}\right) V=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & F
\end{array}\right)
$$

for some $F \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m-1 \times n-1}\right)+C\left(\mathbb{T}, \mathbb{C}^{m-1 \times n-1}\right)$. Let

$$
\mathcal{E}_{0}=\left\{G-Q: Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right),\|G-Q\|_{\infty}=t_{0}\right\}
$$

Then

$$
W \mathcal{E}_{0} V=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & F+H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m-1 \times n-1}\right)
\end{array}\right) \cap B\left(t_{0}\right),
$$

where $B\left(t_{0}\right)$ is the closed ball of radius t_{0} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$.
Lemma 3.1.16 ([25], p. 16). Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and let $\left(x_{0}, y_{0}\right)$ be a Schmidt pair for the Hankel operator H_{G} corresponding to the singular value $t_{0}=\left\|H_{G}\right\|$. Let $x_{0}=\xi_{0} h_{0}$ be the inner-outer factorisation of x_{0}, where $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is the inner and $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$ is the scalar outer factor of $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, and let

$$
V_{0}=\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right)
$$

be a unitary-valued function on \mathbb{T}, where $\alpha_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n \times(n-1)}\right)$ is inner, co-outer and quasicontinuous. Then

$$
V_{0}\left(0 \quad H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)\right)^{T}
$$

is the orthogonal projection of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ onto the pointwise orthogonal complement of x_{0} in $L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$. Similarly

$$
V_{0}^{*}\left(\begin{array}{ll}
0 & \left.H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)^{\perp}\right)
\end{array}\right.
$$

is the orthogonal projection of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)^{\perp}$ onto the pointwise orthogonal complement of x_{0} in $L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$.

Lemma 3.1.17 ([25], p. 16). Let G, x_{0}, y_{0} be defined as in Lemma 3.1.16 and let \mathcal{K}, \mathcal{L} be the projections of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ onto the pointwise orthogonal complements of x_{0}, y_{0} in $L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right), L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ respectively. Let $Q_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ be at minimal distance from G, let F be the $(2,2)$ block of $W_{0}\left(G-Q_{0}\right) V_{0}$, as in Lemma 3.1.12, that is,

$$
V_{0}=\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right), \quad W_{0}=\left(\begin{array}{ll}
\eta_{0} & \bar{\beta}_{0} \tag{3.7}
\end{array}\right)^{T}
$$

are unitary-valued functions on $\mathbb{T}, \alpha_{0}, \beta_{0}$ are inner, co-outer, quasi-continuous functions of size $n \times(n-1), m \times(m-1)$ respectively and all minors on the first columns of V_{0}, W_{0}^{T} are
in H^{∞}. Let $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfy

$$
(G-Q) x_{0}=\left\|H_{G}\right\| y_{0}, \quad y_{0}^{*}(G-Q)=\left\|H_{G}\right\| x_{0}^{*} .
$$

Then H_{F} is a unitary multiple of the operator

$$
\begin{equation*}
\Gamma \stackrel{\text { def }}{=} P_{\mathcal{L}} M_{G-Q} \mid \mathcal{K}, \tag{3.8}
\end{equation*}
$$

where $M_{G-Q}: L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \rightarrow L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ is the operator of multiplication by $G-Q$. More explicitly, if $U_{1}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right) \rightarrow \mathcal{K}, U_{2}: H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp} \rightarrow \mathcal{L}$ are defined by

$$
U_{1} \chi=V_{0}\binom{0}{\chi}, \quad U_{2} \psi=W_{0}^{*}\binom{0}{\psi} \quad \text { for all } \quad \chi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right), \psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

then U_{1}, U_{2} are unitaries and

$$
H_{F}=U_{2}^{*} \Gamma U_{1} .
$$

Lemma 3.1.18 ([24], p. 337). Let $\alpha \in \mathrm{QC}$ of type $m \times n$, where $m \geq n$, be inner and co-outer. There exists $A \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n \times m}\right)$ such that $A \alpha=I_{n}$. Here I_{n} denotes the $n \times n$ identity matrix.

Theorem 3.1.19 gives the algorithm for the superoptimal analytic approximant constructed in [25].

Theorem 3.1.19 ([25], p. 17). Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. The superoptimal approximant $\mathcal{A} G$ to G is given by the following formula.
If $H_{G}=0$, then $\mathcal{A} G=G$. Otherwise define spaces $K_{j} \subset L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right), N_{j} \subset L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$, vectors $\chi_{j} \in K_{j}, \psi_{j} \in N_{j}, H^{\infty}$ functions Q_{j}, operators Γ_{j} and positive λ_{j} as follows.
Let

$$
K_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad N_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}, \quad Q_{0}=0
$$

Let

$$
\Gamma_{j}=\left.P_{N_{j}} M_{G-Q_{j}}\right|_{K_{j}}: K_{j} \rightarrow N_{j}, \quad \lambda_{j}=\left\|\Gamma_{j}\right\|,
$$

where $P_{N_{j}}$ is the orthogonal projection onto N_{j}. If $\lambda_{j}=0$ set $r=j$ and terminate the construction. Otherwise let χ_{j}, ψ_{j} be a Schmidt pair for Γ_{j} corresponding to the singular value λ_{j}. Let K_{j+1} be the range of the orthogonal projection of K_{j} onto the pointwise orthogonal complement of $\chi_{0}, \cdots, \chi_{j}$ in $L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$. Let N_{j+1} be the projection of N_{j} onto the pointwise orthogonal complement of $\psi_{0}, \cdots, \psi_{j}$ in $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$. Let $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ be chosen to satisfy, for $0 \leq k \leq j$,

$$
Q_{j+1} \chi_{k}=G \chi_{k}-t_{k} \psi_{k}, \quad \psi_{k}^{*} Q_{j+1}=\psi_{k}^{*} G-t_{k} \chi_{k}^{*} .
$$

Then each Γ_{j} is a compact operator, Q_{j} with the above properties does exist, the construction terminates with $r \leq \min (m, n)$ and

$$
G-\mathcal{A} G=\sum_{j=0}^{r-1} \frac{\lambda_{j} \psi_{j} \chi_{j}^{*}}{\chi_{j}^{*} \chi_{j}} .
$$

We shall derive a similar formula for the superoptimal analytic approximant $\mathcal{A} G$, by making use of exterior products of Hilbert spaces.

3.2 Algorithm for superoptimal analytic approximation

In this section we consider the superoptimal analytic approximation problem 1.1.3 for a matrix-valued function which lies in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. In particular, in Subsection 3.2.1 we state the algorithm for calculating the superoptimal approximant in that instance, and moreover, in the subsections that follow, we prove the validity of all the claims which are being made. Throughout we make use of the main result of Peller and Young from [24], which asserts that Problem 1.1.3 is solvable (see Theorem 1.1.4).

3.2.1 The algorithm

Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. In this subsection we shall give a fuller and more precise statement of the algorithm for $\mathcal{A} G$ outlined in Section 1.2, in preparation for a subsequent formal proof of Theorem 3.2.59, which asserts that if entities $r, t_{i}, x_{i}, y_{i}, h_{i}$ for $i=0, \ldots, r-1$, are generated by the algorithm, then the superoptimal approximant is given by equation

$$
\mathcal{A} G=G-\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}
$$

The proof will be by induction on r, which is the least index $j \geq 0$ such that $T_{j}=0$, where $T_{0}=H_{G}, T_{1}, T_{2}, \ldots$ is a sequence of operators recursively generated by the algorithm.

Algorithm: For the given $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, the superoptimal analytic approximant $\mathcal{A} G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ can be constructed as follows.
i) Step 0. Let $T_{0}=H_{G}$ be the Hankel operator with symbol G as defined by Definition 1.2.4. Let $t_{0}=\left\|H_{G}\right\|$. If $t_{0}=0$, then $H_{G}=0$, which implies $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$. In this case, the algorithm terminates, we define r to be zero and the superoptimal approximant $\mathcal{A} G$ is given by $\mathcal{A} G=G$.
Suppose $t_{0} \neq 0$. By Hartman's Theorem 3.1.2, H_{G} is a compact operator and so there exists a Schmidt pair $\left(x_{0}, y_{0}\right)$ corresponding to the singular value t_{0} of H_{G}. By the definition of a Schmidt pair $\left(x_{0}, y_{0}\right)$ for the Hankel operator

$$
\begin{gathered}
H_{G}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \rightarrow H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}, \\
x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
\end{gathered}
$$

are non-zero vector-valued functions such that

$$
H_{G} x_{0}=t_{0} y_{0}, \quad H_{G}^{*} y_{0}=t_{0} x_{0}
$$

By Lemma 3.1.12, $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $\bar{z} \bar{y}_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ admit the inner-outer factorisations

$$
\begin{equation*}
x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0} \tag{3.9}
\end{equation*}
$$

for some scalar outer factor $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$ and column matrix inner functions $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $\eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. Then

$$
\begin{equation*}
\left\|x_{0}(z)\right\|_{\mathbb{C}^{n}}=\left|h_{0}(z)\right|=\left\|y_{0}(z)\right\|_{\mathbb{C}^{m}} \text { almost everywhere on } \mathbb{T} . \tag{3.10}
\end{equation*}
$$

We write equations (3.9) as

$$
\begin{equation*}
\xi_{0}=\frac{x_{0}}{h_{0}}, \eta_{0}=\frac{\bar{z} \bar{y}_{0}}{h_{0}} . \tag{3.11}
\end{equation*}
$$

By equations (3.10) and (3.11),

$$
\left\|\xi_{0}(z)\right\|_{\mathbb{C}^{n}}=1=\left\|\eta_{0}(z)\right\|_{\mathbb{C}^{m}} \text { almost everywhere on } \mathbb{T} .
$$

By Theorem D.2.4, every function $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which is at minimal distance from G satisfies

$$
\begin{equation*}
\left(G-Q_{1}\right) x_{0}=t_{0} y_{0}, \quad y_{0}^{*}\left(G-Q_{1}\right)=t_{0} x_{0}^{*} \tag{3.12}
\end{equation*}
$$

ii) Step 1. Let

$$
\begin{equation*}
X_{1} \stackrel{\text { def }}{=} \xi_{0} \wedge H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \tag{3.13}
\end{equation*}
$$

By Proposition 3.2.3, X_{1} is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$.
Moreover

$$
\eta_{0} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subset z H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)
$$

and therefore

$$
\bar{\eta}_{0} \dot{\wedge} \overline{z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)} \subset \bar{z} \overline{H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)}
$$

that is, if

$$
\begin{equation*}
Y_{1} \stackrel{\text { def }}{=} \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}, \tag{3.14}
\end{equation*}
$$

then Y_{1} is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)^{\perp}$. Choose any function $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which satisfies equation (3.12). Consider the operator $T_{1}: X_{1} \rightarrow Y_{1}$ defined by

$$
\begin{equation*}
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right) \text { for all } x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \tag{3.15}
\end{equation*}
$$

where $P_{Y_{1}}$ is the projection from $L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)$ on Y_{1}. By Corollary 3.2.5 and Proposition 3.2.8, T_{1} is well-defined. If $T_{1}=0$, then the algorithm terminates, we define r to be 1 and, in accordance with Theorem 3.2.59, the superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}=\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}
$$

and the solution is

$$
\mathcal{A} G=G-\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}
$$

Suppose $T_{1} \neq 0$ and let $t_{1}=\left\|T_{1}\right\|>0$. By Theorem 3.2.10, T_{1} is a compact operator and so there exist $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ is a Schmidt pair for T_{1} corresponding to t_{1}. By Proposition 3.2.2, $\xi_{0} \dot{\wedge} v_{1} \in H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Let h_{1} be the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$ and let

$$
\begin{equation*}
x_{1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) v_{1}, \quad y_{1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1}, \tag{3.16}
\end{equation*}
$$

where $\mathrm{I}_{\mathbb{C}^{n}}$ and $\mathrm{I}_{\mathbb{C}^{m}}$ are the identity operators in \mathbb{C}^{n} and \mathbb{C}^{m} respectively. Then, by Proposition 3.2.24,

$$
\begin{equation*}
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left|h_{1}(z)\right|=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}} \text { almost everywhere on } \mathbb{T} \text {. } \tag{3.17}
\end{equation*}
$$

By Theorem 1.1.4, there exists a function $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that both $s_{0}^{\infty}\left(G-Q_{2}\right)$ and $s_{1}^{\infty}\left(G-Q_{2}\right)$ are minimised and

$$
s_{1}^{\infty}\left(G-Q_{2}\right)=t_{1} .
$$

By Proposition 3.2.27, any such Q_{2} satisfies

$$
\begin{array}{cc}
\left(G-Q_{2}\right) x_{0}=t_{0} y_{0}, & y_{0}^{*}\left(G-Q_{2}\right)=t_{0} x_{0}^{*} \\
\left(G-Q_{2}\right) x_{1}=t_{1} y_{1}, & y_{1}^{*}\left(G-Q_{2}\right)=t_{1} x_{1}^{*} . \tag{3.18}
\end{array}
$$

Define

$$
\begin{equation*}
\xi_{1}=\frac{x_{1}}{h_{1}}, \quad \eta_{1}=\frac{\bar{z} \bar{y}_{1}}{h_{1}} . \tag{3.19}
\end{equation*}
$$

By equations (3.17) and (3.19), $\left\|\xi_{1}(z)\right\|_{\mathbb{C}^{n}}=1=\left\|\eta_{1}(z)\right\|_{\mathbb{C}^{n}}$ almost everywhere on \mathbb{T}.
iii) Step 2. Define

$$
\begin{aligned}
& X_{2} \stackrel{\text { def }}{=} \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \\
& Y_{2} \stackrel{\text { def }}{=} \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} .
\end{aligned}
$$

Note that, by Proposition 3.2.3, X_{2} is a closed linear subspace of $H^{2}\left(\mathbb{D}, \wedge^{3} \mathbb{C}^{n}\right)$, and, by Proposition 3.2.6, Y_{2} is a closed linear subspace of $H^{2}\left(\mathbb{D}, \wedge^{3} \mathbb{C}^{m}\right)^{\perp}$. Choose any function $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which satisfies equations (3.18). Consider the operator $T_{2}: X_{2} \rightarrow Y_{2}$ given by

$$
\begin{equation*}
T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x\right)=P_{Y_{2}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge}\left(G-Q_{2}\right) x\right) \tag{3.20}
\end{equation*}
$$

where $P_{Y_{2}}$ is the projection from $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ on Y_{2}.
By Corollary 3.2.7 and by Proposition 3.2.8, T_{2} is well-defined, that is, it does not depend on the choice of $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfying equations (3.18). If $T_{2}=0$, then the algorithm terminates, we define r to be 2 and, in accordance with Theorem 3.2.59, the superoptimal
approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}=\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}+\frac{t_{1} y_{1} x_{1}^{*}}{\left|h_{1}\right|^{2}} .
$$

If $T_{2} \neq 0$, then let $t_{2}=\left\|T_{2}\right\|$. By Theorem 3.2.37, T_{2} is a compact operator and hence there exist $v_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), w_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that

$$
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)
$$

is a Schmidt pair for T_{2} corresponding to $\left\|T_{2}\right\|=t_{2}$. Define x_{2}, y_{2} by

$$
x_{2}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}\right) v_{2}, \quad y_{2}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) w_{2} .
$$

By Proposition 3.2.40, $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2} \in H^{2}\left(\mathbb{D}, \wedge^{3} \mathbb{C}^{n}\right)$. Let $h_{2} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}$. By Proposition 3.2.40,

$$
\left\|x_{2}(z)\right\|_{\mathbb{C}^{n}}=\left|h_{2}(z)\right|=\left\|y_{2}(z)\right\|_{\mathbb{C}^{m}}
$$

almost everywhere on \mathbb{T}. Define

$$
\xi_{2}=\frac{x_{2}}{h_{2}}, \quad \eta_{2}=\frac{\bar{z} \bar{y}_{2}}{h_{2}} .
$$

It is easy to see that $\left\|\xi_{2}(z)\right\|_{\mathbb{C}^{n}}=1$ and $\left\|\eta_{2}(z)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}.
iv) Recursive step. Suppose that, for $j \leq \min (m, n)-2$, we have constructed

$$
\begin{align*}
& t_{0} \geq t_{1} \geq \cdots \geq t_{j}>0 \\
& x_{0}, x_{1}, \cdots, x_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \\
& y_{0}, y_{1}, \cdots, y_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right) \\
& h_{0}, h_{1}, \cdots, h_{j} \in H^{2}(\mathbb{D}, \mathbb{C}) \text { outer } \\
& \xi_{0}, \xi_{1}, \cdots, \xi_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \text { pointwise orthonormal on } \mathbb{T} \tag{3.21}\\
& \eta_{0}, \eta_{1}, \cdots, \eta_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right) \text { pointwise orthonormal on } \mathbb{T} \\
& X_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), X_{1}, \cdots, X_{j} \\
& Y_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}, Y_{1}, \cdots, Y_{j} \\
& T_{0}, T_{1}, \cdots, T_{j} \text { compact operators. }
\end{align*}
$$

By Theorem 1.1.4, there exists a function $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that

$$
\left(s_{0}^{\infty}\left(G-Q_{j+1}\right), s_{1}^{\infty}\left(G-Q_{j+1}\right), \cdots, s_{j+1}^{\infty}\left(G-Q_{j+1}\right)\right)
$$

is lexicographically minimised. By Proposition 3.2.47, any such function Q_{j+1} satisfies

$$
\begin{equation*}
\left(G-Q_{j+1}\right) x_{i}=t_{i} y_{i}, \quad y_{i}^{*}\left(G-Q_{j+1}\right)=t_{i} x_{i}^{*}, \quad i=0,1, \cdots, j . \tag{3.22}
\end{equation*}
$$

Define

$$
\begin{gather*}
X_{j+1} \stackrel{\text { def }}{=} \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \tag{3.23}\\
Y_{j+1} \stackrel{\text { def }}{=} \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} . \tag{3.24}
\end{gather*}
$$

Note that, by Proposition 3.2.3, X_{j+1} is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$, and, by Proposition 3.2.6, $\quad Y_{j+1}$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}$. Choose any function $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which satisfies equations (3.22). Consider the operator

$$
T_{j+1}: X_{j+1} \rightarrow Y_{j+1}
$$

given by

$$
\begin{equation*}
T_{j+1}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x\right)=P_{Y_{j+1}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge}\left(G-Q_{j+1}\right) x\right) \tag{3.25}
\end{equation*}
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. By Corollary 3.2 .7 and by Proposition 3.2.8, T_{j+1} is well-defined. If $T_{j+1}=0$, then the algorithm terminates, we define r to be $j+1$, and, in accordance with Theorem 3.2.59, the superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}=\sum_{i=0}^{j} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}} .
$$

Otherwise, we define $t_{j+1}=\left\|T_{j+1}\right\|>0$. By Theorem 3.2.54, T_{j+1} is a compact operator and hence there exist $v_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $w_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that

$$
\begin{equation*}
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right) \tag{3.26}
\end{equation*}
$$

is a Schmidt pair for T_{j+1} corresponding to the singular value t_{j+1}.
By Proposition 3.2.2,

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1} \in H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)
$$

Let h_{j+1} be the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}$, and let

$$
\begin{equation*}
x_{j+1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j} \xi_{j}^{*}\right) v_{j+1}, \quad y_{j+1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j} \eta_{j}^{T}\right) w_{j+1} . \tag{3.27}
\end{equation*}
$$

By Proposition 3.2.57,

$$
\left\|x_{j+1}(z)\right\|_{\mathbb{C}^{n}}=\left|h_{j+1}(z)\right|=\left\|y_{j+1}(z)\right\|_{\mathbb{C}^{m}}
$$

almost everywhere on \mathbb{T}. Define

$$
\begin{equation*}
\xi_{j+1}=\frac{x_{j+1}}{h_{j+1}}, \quad \eta_{j+1}=\frac{\bar{z} \bar{y}_{j+1}}{h_{j+1}} \tag{3.28}
\end{equation*}
$$

It is easy to see that $\left\|\xi_{j+1}(z)\right\|_{\mathbb{C}^{n}}=1$ and $\left\|\eta_{j+1}(z)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}. This completes the recursive step. The algorithm terminates after at $\operatorname{most} \min (m, n)$ steps, so
that, $r \leq \min (m, n)$ and, in accordance with Theorem 3.2.59, the superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}
$$

3.2.2 Pointwise orthonormality of $\left\{\xi_{i}\right\}_{i=1}^{j}$ and $\left\{\bar{\eta}_{i}\right\}_{i=1}^{j}$ almost everywhere on \mathbb{T}

Proposition 3.2.1. Let m, n be positive integers with $\min (m, n) \geq 2$, let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and let $0 \leq j \leq \min (m, n)-2$. Suppose we have applied steps $0, \ldots, j$ of the superoptimal analytic approximation algorithm from Section 3.2.1 to G and we have obtained x_{i}, y_{i} as in equations (3.27), and ξ_{i}, η_{i} as in equations (3.28) for all $i=0, \cdots, j$. Then
(i) $\xi_{0} \dot{\wedge} v_{1}=\xi_{0} \dot{\wedge} x_{1}, \quad \xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}=\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} x_{j}, \quad \bar{\eta}_{0} \dot{\wedge} w_{1}=\bar{\eta}_{0} \dot{\wedge} y_{1}$, and $\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}=\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} y_{j} ;$
(ii) for all $i=0, \cdots, j,\left\|x_{i}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{i}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{i}(z)\right|$ almost everywhere on \mathbb{T};
(iii) the sets $\left\{\xi_{i}(z)\right\}_{i=0}^{j}$ and $\left\{\bar{\eta}_{i}(z)\right\}_{i=0}^{j}$ are orthonormal in \mathbb{C}^{n} and \mathbb{C}^{m} respectively for almost every $z \in \mathbb{T}$.

Proof. We will prove statements (ii) in Propositions 3.2.24 and 3.2.40. Statement (i) is proven below in equations (3.32), (3.35), (3.38). Let us prove assertion (iii).

Since the function G belongs to $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, by Hartman's theorem, the Hankel operator with symbol G, denoted by H_{G}, is a compact operator, and so there exist functions

$$
x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

such that $\left(x_{0}, y_{0}\right)$ is a Schmidt pair corresponding to the singular value $t_{0}=\left\|H_{G}\right\| \neq 0$. By Lemma 3.1.12, $x_{0}, \bar{z} \bar{y}_{0}$ admit the inner-outer factorisations

$$
x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0}
$$

for column matrix inner functions $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right), \eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ and some scalar outer factor $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$. By Theorem D.2.4,

$$
\begin{equation*}
\left\|x_{0}(z)\right\|_{\mathbb{C}^{n}}=\left|h_{0}(z)\right|=\left\|y_{0}(z)\right\|_{\mathbb{C}^{m}} \text { almost everywhere on } \mathbb{T} . \tag{3.29}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\|\xi_{0}(z)\right\|_{\mathbb{C}^{n}}=1 \text { almost everywhere on } \mathbb{T} \text {. } \tag{3.30}
\end{equation*}
$$

Hence (iii) of Proposition 3.2.1 holds for $\left\{\xi_{i}(z)\right\}_{i=0}^{j}$ in the case that $j=0$.
Let T_{1} be given by equation (3.15). By the hypothesis (3.21), T_{1} is a compact operator, and if $T_{1} \neq 0$, then there exist $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$
is a Schmidt pair corresponding to $\left\|T_{1}\right\|=t_{1}$. By Proposition 2.2.13, $\xi_{0} \dot{\wedge} v_{1} \in H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Let h_{1} be the scalar outer factor of $\xi_{0} \dot{\lambda} v_{1}$. We define

$$
\begin{equation*}
x_{1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) v_{1} \tag{3.31}
\end{equation*}
$$

and

$$
\xi_{1}=\frac{x_{1}}{h_{1}} .
$$

Then, for $z \in \mathbb{D}$,

$$
\xi_{1}(z)=\frac{1}{h_{1}(z)} v_{1}(z)-\frac{1}{h_{1}(z)} \xi_{0}(z) \xi_{0}(z)^{*} v_{1}(z)
$$

Note that by equation (3.30),

$$
\xi_{0}^{*}(z) \xi_{0}(z)=\left\langle\xi_{0}(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}}=1 \quad \text { almost everywhere on } \mathbb{T},
$$

hence

$$
\left\langle\xi_{1}(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}}=\xi_{0}^{*}(z) \xi_{1}(z)=\frac{1}{h_{1}(z)} \xi_{0}(z)^{*} v_{1}(z)-\frac{1}{h_{1}(z)} \xi_{0}(z)^{*} \xi_{0}(z) \xi_{0}(z)^{*} v_{1}(z)=0
$$

almost everywhere on \mathbb{T}. Note that, by equation (3.31), for almost every $z \in \mathbb{T}$,

$$
\begin{align*}
\xi_{0}(z) \wedge v_{1}(z) & =\xi_{0}(z) \wedge\left(x_{1}(z)+\xi_{0}(z) \xi_{0}(z)^{*} v_{1}(z)\right) \\
& \left.=\xi_{0}(z) \wedge x_{1}(z)+\xi_{0}(z) \wedge \xi_{0}(z) \xi_{0}(z)^{*} v_{1}(z)\right) \\
& =\xi_{0}(z) \wedge x_{1}(z) \tag{3.32}
\end{align*}
$$

the last equality following from the pointwise linear dependence of the vectors ξ_{0} and $z \mapsto \xi_{0}(z)\left\langle v_{1}(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}}$ almost everywhere on \mathbb{T}.

By Proposition 2.2.13, $\xi_{0} \dot{\wedge}_{1} \in H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Let h_{1} be the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$. Then, for almost every $z \in \mathbb{T}$, we have

$$
\left|h_{1}(z)\right|=\left\|\xi_{0}(z) \wedge v_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left\|\xi_{0}(z) \wedge x_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}
$$

By Lemma 2.1.22,

$$
\left\|\xi_{0}(z) \wedge x_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left\|x_{1}(z)-\left\langle x_{1}(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z)\right\|_{\mathbb{C}^{n}}=\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}
$$

almost everywhere on \mathbb{T}. Hence, for almost every $z \in \mathbb{T}$,

$$
\begin{equation*}
\left|h_{1}(z)\right|=\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}} \tag{3.33}
\end{equation*}
$$

and thus

$$
\left\|\xi_{1}(z)\right\|_{\mathbb{C}^{n}}=\frac{\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}}{\left|h_{1}(z)\right|}=1 \quad \text { almost everywhere on } \mathbb{T}
$$

Consequently, $\left\{\xi_{0}(z), \xi_{1}(z)\right\}$ is an orthonormal set in \mathbb{C}^{n} for almost every $z \in \mathbb{T}$. Hence (iii)
of Proposition 3.2.1 holds for $\left\{\xi_{i}(z)\right\}_{i=0}^{j}$ in the case that $j=1$.
Recursive step: Suppose the entities in equations (3.21) have been constructed and have the stated properties, for $i=0, \ldots, j-1$, and that $\left\{\xi_{i}(z)\right\}_{i=0}^{j-1}$ is an orthonormal set almost everywhere on \mathbb{T}. Since by the inductive hypothesis T_{j} is a compact operator, there exist

$$
v_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad w_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

such that

$$
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}\right)
$$

is a Schmidt pair for T_{j} corresponding to $\left\|T_{j}\right\|=t_{j}$. Let us first prove that $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$ is an element of $H^{2}\left(\mathbb{D}, \wedge^{j+1} \mathbb{C}^{n}\right)$. By hypothesis,

$$
x_{i}=\left(I_{n}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{i-1} \xi_{i-1}^{*}\right) v_{i} \quad \text { and } \quad \xi_{i}=\frac{x_{i}}{h_{i}}
$$

for $i=0, \ldots, j-1$. Then, for all $z \in \mathbb{D}$,

$$
\begin{aligned}
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}\right)(z) & =\left(\xi_{0} \dot{\wedge} \frac{x_{1}}{h_{1}} \dot{\wedge} \cdots \dot{\wedge} \frac{x_{j-1}}{h_{j-1}} \dot{\wedge} v_{j}\right)(z) \\
& =\left(\frac{1}{h_{1}} \cdots \frac{1}{h_{j-1}} \xi_{0} \dot{\wedge} x_{1} \dot{\wedge} \cdots \dot{\wedge} x_{j-1} \dot{\wedge} v_{j}\right)(z)
\end{aligned}
$$

We obtain

$$
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}\right)(z)=\left(\frac{1}{h_{1}} \cdots \frac{1}{h_{j-1}} \xi_{0} \dot{\wedge} v_{1} \dot{\wedge} \cdots \dot{\wedge} v_{j-1} \dot{\wedge} v_{j}\right)(z), \text { for all } z \in \mathbb{D}
$$

due to pointwise linear dependence of ξ_{k} and $\xi_{k} \xi_{i}^{*}$ on \mathbb{D}, for all $k=0, \ldots, i$. By Proposition 2.2.8,

$$
\frac{1}{h_{1}} \cdots \frac{1}{h_{j-1}} \xi_{0} \dot{\wedge} v_{1} \dot{\wedge} \cdots \dot{\wedge} v_{j-1} \dot{\wedge} v_{j}
$$

is analytic on \mathbb{D}. Moreover, by Proposition 2.2.14, since $\xi_{0}, \xi_{1}, \ldots, \xi_{j-1}$ are pointwise orthogonal on \mathbb{T},

$$
\left\|\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}\right\|_{L^{2}\left(\mathbb{T}, \wedge \wedge^{j+1} \mathbb{C}^{n}\right)}<\infty
$$

Therefore

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j} \in H^{2}\left(\mathbb{D}, \wedge^{j+1} \mathbb{C}^{n}\right)
$$

Let h_{j} be the scalar outer factor of $\xi_{1} \dot{\wedge} \xi_{2} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$. We define

$$
\begin{equation*}
x_{j}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j-1} \xi_{j-1}^{*}\right) v_{j} \tag{3.34}
\end{equation*}
$$

and

$$
\xi_{j}=\frac{x_{j}}{h_{j}} .
$$

We will show that $\left\{\xi_{0}(z), \cdots, \xi_{j-1}(z), \xi_{j}(z)\right\}$ is an orthonormal set in \mathbb{C}^{n} almost everywhere
on \mathbb{T}. We have

$$
\xi_{j}=\frac{1}{h_{j}} v_{j}-\frac{1}{h_{j}} \xi_{0} \xi_{0}^{*} v_{j}-\cdots-\frac{1}{h_{j}} \xi_{j-1} \xi_{j-1}^{*} v_{j},
$$

and so, for all $i=0, \ldots, j-1$,

$$
\begin{aligned}
\left\langle\xi_{j}(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}}=\frac{1}{h_{j}(z)} \xi_{i}^{*}(z) v_{j}(z)- & \frac{1}{h_{j}(z)} \xi_{i}^{*}(z) \xi_{0}(z) \xi_{0}^{*}(z) v_{1}(z)-\cdots \\
& -\frac{1}{h_{j}(z)} \xi_{i}^{*}(z) \xi_{j-1}(z) \xi_{j-1}^{*}(z) v_{1}(z)
\end{aligned}
$$

almost everywhere on \mathbb{T}. Note that by the inductive hypothesis, for all $i, k=0,1, \cdots, j-1$ and for almost all $z \in \mathbb{T}$,

$$
\xi_{i}^{*}(z) \xi_{k}(z)= \begin{cases}0, & \text { for } i \neq k \\ 1, & \text { for } i=k\end{cases}
$$

Thus, for all $i=0, \ldots, j-1$,

$$
\left\langle\xi_{j}(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}}=\frac{1}{h_{j}(z)} \xi_{i}^{*}(z) v_{j}(z)-\frac{1}{h_{j}(z)} \xi_{i}^{*}(z) \xi_{i}(z) \xi_{i}^{*} v_{j}(z)=0
$$

almost everywhere on \mathbb{T}, and hence, by induction on j and for all integers $j=0, \ldots, r-1$, $\left\{\xi_{0}(z), \cdots, \xi_{j-1}(z), \xi_{j}(z)\right\}$ is an orthogonal set in \mathbb{C}^{n} for almost all $z \in \mathbb{T}$.

Let us show that

$$
\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge v_{j}(z)=\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge x_{j}(z)
$$

almost everywhere on \mathbb{T}.
Equation (3.34) yields

$$
\begin{aligned}
\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge v_{j}(z)=\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge\left(x_{j}(z)\right. & +\xi_{0}(z) \xi_{0}^{*}(z) v_{j}(z) \\
& \left.+\cdots+\xi_{j-1}(z) \xi_{j-1}^{*}(z) v_{j}(z)\right) \\
=\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge\left(x_{j}(z)\right. & +\xi_{0}(z)\left\langle v_{j}(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}}+\cdots \\
& \left.+\cdots+\xi_{j-1}(z)\left\langle v_{j}(z), \xi_{j-1}(z)\right\rangle_{\mathbb{C}^{n}}\right)
\end{aligned}
$$

almost everywhere on \mathbb{T}. Notice that, for all $i=0, \cdots, j-1$, the vectors ξ_{i} and $z \mapsto \xi_{i}(z)\left\langle v_{j}(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}}$ are pointwise linearly dependent almost everywhere on \mathbb{T}. Thus for all $i=0, \cdots, j-1$,

$$
\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge \xi_{i}(z)\left\langle v_{i+1}(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}}=0
$$

almost everywhere on \mathbb{T}.
Hence
$\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge v_{j}(z)=\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge x_{j}(z) \quad$ almost everywhere on \mathbb{T}. (3.35)

Next, we shall show that $\left\|\xi_{j}(z)\right\|_{\mathbb{C}^{n}}=1$ for almost all $z \in \mathbb{T}$. Recall that h_{j} is the scalar outer factor of $\xi_{1} \dot{\wedge} \xi_{2} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$, and therefore

$$
\left|h_{j}(z)\right|=\left\|\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge v_{j}(z)\right\|_{\wedge^{j+1} \mathbb{C}^{n}}=\left\|\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge x_{j}(z)\right\|_{\wedge^{j+1} \mathbb{C}^{n}}
$$

almost everywhere on \mathbb{T}.
By the inductive hypothesis, $\left\{\xi_{0}(z), \cdots, \xi_{j-1}(z)\right\}$ is an orthonormal set in \mathbb{C}^{n} for almost all $z \in \mathbb{T}$, hence, by Lemma 2.1.22,

$$
\begin{align*}
\left|h_{j}(z)\right| & =\left\|\xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge x_{j}(z)\right\|_{\wedge^{j+1} \mathbb{C}^{n}} \\
& =\left\|x_{j}(z)-\sum_{i=0}^{j-1}\left\langle x_{j}(z), \xi_{i}(z)\right\rangle \xi_{i}(z)\right\|_{\mathbb{C}^{n}} \\
& =\left\|x_{j}(z)\right\|_{\mathbb{C}^{n}} \text { almost everywhere on } \mathbb{T} . \tag{3.36}
\end{align*}
$$

Thus

$$
\left\|\xi_{j}(z)\right\|_{\mathbb{C}^{n}}=\frac{\left\|x_{j}(z)\right\|_{\mathbb{C}^{n}}}{\left|h_{j}(z)\right|}=1
$$

almost everywhere on \mathbb{T}, and hence, by induction on j and for all integers $j=0, \ldots, r-1$, $\left\{\xi_{0}(z), \cdots, \xi_{j-1}(z), \xi_{j}(z)\right\}$ is an orthonormal set in \mathbb{C}^{n} for almost all $z \in \mathbb{T}$.

Next, we will prove that the set $\left\{\bar{\eta}_{i}(z)\right\}_{i=0}^{j}$, defined in equations (3.28), is orthonormal. For $i=0$, by equation (3.29), we have

$$
\begin{equation*}
\left\|\bar{\eta}_{0}(z)\right\|_{\mathbb{C}^{m}}=1 \text { almost everywhere on } \mathbb{T} \text {. } \tag{3.37}
\end{equation*}
$$

Hence (iii) of Proposition 3.2.1 holds for $\left\{\bar{\eta}_{i}\right\}_{i=0}^{j}$ in the case $j=0$. Let T_{1} be given by equation (3.15). T_{1} is assumed to be a compact operator, and if $T_{1} \neq 0, v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ are such that $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ is a Schmidt pair corresponding to $\left\|T_{1}\right\|=t_{1}$. Suppose h_{1} is the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$. Let

$$
y_{1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1}=w_{1}-\bar{\eta}_{0} \eta_{0}^{T} w_{1}
$$

and let

$$
\eta_{1}(z)=\frac{\bar{z} \bar{y}_{1}(z)}{h_{1}(z)} \quad \text { almost everywhere on } \mathbb{T} .
$$

Then

$$
\bar{\eta}_{1}(z)=\frac{z y_{0}(z)}{\bar{h}_{1}(z)}=\frac{z w_{1}(z)}{\bar{h}_{1}(z)}-\frac{z \bar{\eta}_{0}(z) \eta_{0}^{T}(z) w_{1}(z)}{\bar{h}_{1}(z)} \quad \text { almost everywhere on } \mathbb{T} \text {. }
$$

By equation (3.37), $\left\|\bar{\eta}_{0}(z)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}. Hence

$$
\begin{aligned}
\left\langle\bar{\eta}_{1}(z), \bar{\eta}_{0}(z)\right\rangle_{\mathbb{C}^{m}} & =\eta_{0}^{T}(z) \bar{\eta}_{1}(z) \\
& =\frac{z \eta_{0}^{T}(z) w_{1}(z)}{\bar{h}_{1}(z)}-\frac{z \eta_{0}^{T}(z) \bar{\eta}_{0}(z) \eta_{0}^{T}(z) w_{1}(z)}{\bar{h}_{1}(z)} \\
& =\frac{z \eta_{0}^{T}(z) w_{1}(z)}{\bar{h}_{1}(z)}-\frac{z\left\langle\bar{\eta}_{0}(z), \bar{\eta}_{0}(z)\right\rangle_{\mathbb{C}^{m}} \eta_{0}^{T}(z) w_{1}(z)}{\bar{h}_{1}(z)} \\
& =\frac{z \eta_{0}^{T}(z) w_{1}(z)}{\bar{h}_{1}(z)}-\frac{z \eta_{0}^{T}(z) w_{1}(z)}{\bar{h}_{1}(z)} \\
& =0 \quad \text { almost everywhere on } \mathbb{T} .
\end{aligned}
$$

Recall that h_{1} is the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$. By equation (3.33) and Proposition 3.2.24,

$$
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{1}(z)\right|
$$

almost everywhere on \mathbb{T}, thus

$$
\left\|\bar{\eta}_{1}(z)\right\|_{\mathbb{C}^{m}}=\frac{\left\|z y_{1}(z)\right\|_{\mathbb{C}^{m}}}{\left|\bar{h}_{1}(z)\right|}=1 \quad \text { almost everywhere on } \mathbb{T} \text {. }
$$

Consequently, $\left\{\bar{\eta}_{0}(z), \bar{\eta}_{1}(z)\right\}$ is an orthonormal set in \mathbb{C}^{m} for almost every $z \in \mathbb{T}$. Hence (iii) of Proposition 3.2.1 holds for $\left\{\bar{\eta}_{i}\right\}_{i=0}^{j}$ in the case $j=1$.

Recursive step: Suppose the entities in equations (3.21) have been constructed and have the stated properties, for $i=0, \ldots, j-1$, and that $\left\{\bar{\eta}_{i}(z)\right\}_{i=0}^{j-1}$ is an orthonormal set almost everywhere on \mathbb{T}. Since by the inductive hypothesis T_{j} is a compact operator, there exist

$$
v_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad w_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

such that

$$
\left(\xi_{1} \dot{\wedge} \xi_{2} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}\right)
$$

is a Schmidt pair for T_{j} corresponding to $\left\|T_{j}\right\|=t_{j}$. By Proposition 3.2.2,

$$
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j} \in H^{2}\left(\mathbb{D}, \wedge^{j+1} \mathbb{C}^{n}\right)
$$

Let h_{j} be the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$. We define

$$
y_{j}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j-1} \eta_{j-1}^{T}\right) w_{j}
$$

and

$$
\bar{\eta}_{j}=\frac{z y_{j}}{\bar{h}_{j}}
$$

Let us show that $\left\{\bar{\eta}_{0}(z), \ldots, \bar{\eta}_{j}(z)\right\}$ is an orthonormal set in \mathbb{C}^{m} almost everywhere on \mathbb{T}. We have

$$
\bar{\eta}_{j}=\frac{z w_{j}}{\bar{h}_{j}}-\cdots-\frac{z \bar{\eta}_{j-1} \eta_{j-1}^{T} w_{j}}{\bar{h}_{j}}
$$

and so, for $i=0, \ldots, j-1$,

$$
\begin{aligned}
\left\langle\bar{\eta}_{j}(z), \bar{\eta}_{i}(z)\right\rangle_{\mathbb{C}^{m}} & =\eta_{i}^{T}(z) \bar{\eta}_{j}(z) \\
& =\frac{z \eta_{i}^{T}(z) w_{j}(z)}{\bar{h}_{j}(z)}-\cdots-\frac{z \eta_{i}^{T}(z) \bar{\eta}_{j}(z) \eta_{j}^{T}(z) w_{j}(z)}{\bar{h}_{j}(z)}
\end{aligned}
$$

almost everywhere on \mathbb{T}.
Notice that, by the inductive hypothesis, for all $i, k=0, \ldots, j-1$ and for almost all $z \in \mathbb{T}$,

$$
\eta_{i}^{T}(z) \bar{\eta}_{k}(z)=\left\{\begin{array}{ll}
0, & \text { for } i \neq k \\
1, & \text { for } i=k
\end{array} .\right.
$$

Hence, for all $i=0, \ldots, j-1$,

$$
\left\langle\bar{\eta}_{j}(z), \bar{\eta}_{i}(z)\right\rangle_{\mathbb{C}^{m}}=\frac{z \eta_{i}^{T}(z) w_{j}(z)}{\bar{h}_{j}(z)}-\frac{z \eta_{i}^{T}(z) w_{j}(z)}{\bar{h}_{j}(z)}=0
$$

almost everywhere on \mathbb{T}. Thus by induction on j and for all integers $j=0, \ldots, r-1$, $\left\{\bar{\eta}_{0}(z), \ldots, \bar{\eta}_{j}(z)\right\}$ is an orthogonal set in \mathbb{C}^{m} almost everywhere on \mathbb{T}.
To complete the proof, we have to prove that $\left\|\bar{\eta}_{j}(z)\right\|_{\mathbb{C}^{m}}=1$ for almost all $z \in \mathbb{T}$. Recall that h_{j} is the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$. By Proposition 3.2.57,

$$
\left|h_{j}(z)\right|=\left\|x_{j}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{j}(z)\right\|_{\mathbb{C}^{m}}
$$

almost everywhere on \mathbb{T}, thus

$$
\left\|\bar{\eta}_{j}(z)\right\|_{\mathbb{C}^{m}}=\left\|\frac{z y_{j}(z)}{\bar{h}_{j}(z)}\right\|_{\mathbb{C}^{m}}=1
$$

almost everywhere on \mathbb{T}, and hence, by induction on j and for all integers $j=0, \cdots, r-1$. $\left\{\bar{\eta}_{0}(z), \ldots, \bar{\eta}_{j}(z)\right\}$ is an orthonormal set in \mathbb{C}^{m} almost everywhere on \mathbb{T}.

Note that, for $j=1, \ldots, r-1$,

$$
\begin{align*}
\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} y_{j} & =\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j-1} \eta_{j-1}^{T}\right) w_{j} \\
& =\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}-\sum_{k=0}^{j-1} \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} \bar{\eta}_{k} \eta_{k}^{T} w_{j} \\
& =\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j} \tag{3.38}
\end{align*}
$$

on account of the pointwise linear dependence of $\bar{\eta}_{k}$ and $z \mapsto \bar{\eta}_{k}(z)\left\langle w_{j}(z), \bar{\eta}_{k}(z)\right\rangle_{\mathbb{C}^{m}}$ almost everywhere on \mathbb{T}.

3.2.3 The closed subspace X_{j+1} of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$

Notice that, although $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and ξ_{0} is inner, x_{i} and ξ_{i} might not be in $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ in general for $i=1, \cdots, \min (m, n)-2$. However, for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, the pointwise
wedge product

$$
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x
$$

is an element of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$ as the following proposition asserts.
Proposition 3.2.2. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, and let $j \leq n-2$. Let the vectorvalued functions $\xi_{0}, \xi_{1}, \cdots, \xi_{j}$ be constructed after applying steps $0, \ldots, j$ of the algorithm above and be given by equations (3.28). Then

$$
\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

is a subset of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$.
Proof. For $j=0$, since $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, the Hankel operator H_{G} is compact. There exist $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\left(x_{0}, y_{0}\right)$ is a Schmidt pair for the Hankel operator H_{G} corresponding to the singular value $\left\|H_{G}\right\|$. By Lemma 3.1.12, x_{0}, y_{0} admit the inner-outer factorisations

$$
x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0}
$$

for some inner $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right), \eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ and some scalar outer $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$. Then, by Proposition 2.2.13, $\xi_{0} \wedge H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$.

Let us now consider the case where $j=1$. By definition,

$$
X_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad Y_{1}=\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and, by the inductive hypothesis, $T_{1}: X_{1} \rightarrow Y_{1}$ given by equation (3.15) is a compact operator. Suppose $\left\|T_{1}\right\| \neq 0$ and let $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ be a Schmidt pair corresponding to $\left\|T_{1}\right\|$, where $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. We define

$$
x_{1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) v_{1} .
$$

Note that, by Proposition 2.2.13, $\xi_{0} \dot{\wedge} v_{1} \in H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Let $h_{1} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1} \in H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Then we define

$$
\xi_{1}=\frac{x_{1}}{h_{1}} .
$$

Note that ξ_{0} and $\xi_{0} \xi_{0}^{*} v_{1}$ are pointwise linearly dependent on \mathbb{D}, since $\xi_{0}^{*} v_{1}$ is a mapping from \mathbb{D} to \mathbb{C}. Thus, for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $z \in \mathbb{D}$, we have

$$
\left(\xi_{0} \wedge \xi_{1} \dot{\wedge} x\right)(z)=\xi_{0}(z) \wedge \xi_{1}(z) \wedge x(z)=\xi_{0}(z) \wedge \frac{x_{1}(z)}{h_{1}(z)} \wedge x(z)
$$

and by substituting the value of x_{1}, we get

$$
\begin{aligned}
\xi_{0}(z) \wedge \frac{x_{1}(z)}{h_{1}(z)} \wedge x(z) & =\frac{1}{h_{1}(z)} \xi_{0}(z) \wedge\left(v_{1}(z)-\xi_{0}(z) \xi_{0}(z)^{*} v_{1}(z)\right) \wedge x(z) \\
& =\frac{1}{h_{1}(z)} \xi_{0}(z) \wedge v_{1}(z) \wedge x(z)-\frac{1}{h_{1}(z)} \xi_{0}(z) \wedge \xi_{0}(z) \xi_{0}(z)^{*} v_{1}(z) \wedge x(z) \\
& =\left(\frac{1}{h_{1}} \xi_{0} \dot{\wedge} v_{1} \dot{\wedge}\right)(z)
\end{aligned}
$$

Note that $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $h_{1} \in H^{2}(\mathbb{D}, \mathbb{C})$ is the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$. By Proposition 2.2.8, for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$,

$$
\frac{1}{h_{1}} \xi_{0} \dot{\wedge} v_{1} \dot{\wedge} x
$$

is analytic on \mathbb{D}. By Proposition 2.2 .14 , since ξ_{0} and ξ_{1} are pointwise orthogonal on \mathbb{T},

$$
\left\|\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x\right\|_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{n}\right)}<\infty
$$

Hence

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x \in \frac{1}{h_{1}} \xi_{0} \dot{\wedge} v_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}\left(\mathbb{D}, \wedge^{3} \mathbb{C}^{n}\right)
$$

Recursive step: suppose we have constructed vector-valued functions $\xi_{0}, \ldots, \xi_{j-1}$, $\eta_{0}, \ldots, \eta_{j-1}$, spaces X_{j}, Y_{j} and a compact operator $T_{j}: X_{j} \rightarrow Y_{j}$ after applying steps $0, \ldots, j$ of the algorithm from Section 3.2.1 satisfying

$$
\begin{equation*}
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}\left(\mathbb{D}, \wedge^{j+1} \mathbb{C}^{n}\right) \tag{3.39}
\end{equation*}
$$

Since T_{j} is a compact operator, there exist vector-valued functions $v_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $w_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that

$$
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}, \bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}\right)
$$

is a Schmidt pair for T_{j} corresponding to $\left\|T_{j}\right\|$. Define

$$
\begin{equation*}
x_{j}=\left(I_{n}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j-1} \xi_{j-1}^{*}\right) v_{j} . \tag{3.40}
\end{equation*}
$$

By assumption, $\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$ lies in $H^{2}\left(\mathbb{D}, \wedge^{j+1} \mathbb{C}^{n}\right)$. Let $h_{j} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$. Define $\xi_{j}=\frac{x_{j}}{h_{j}}$. Note that ξ_{i} and $z \mapsto \xi_{i}(z)\left\langle v_{j}(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}}$ are pointwise linearly dependent almost everywhere on \mathbb{T} for $i=0, \ldots, j-1$. Thus, for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and all $z \in \mathbb{D}$,

$$
\begin{align*}
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} \xi_{j} \dot{\wedge} x\right)(z)= & \left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} \frac{x_{j}}{h_{j}} \dot{\wedge} x\right)(z) \\
= & \xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge \frac{1}{h_{j}(z)}\left(v_{j}(z)-\xi_{0}(z) \xi_{0}^{*}(z) v_{j}(z)-\cdots\right. \\
& \left.\quad-\xi_{j-1}(z) \xi_{j-1}^{*}(z) v_{j}(z)\right) \wedge x(z) \\
= & \xi_{0}(z) \wedge \cdots \wedge \xi_{j-1}(z) \wedge \frac{1}{h_{j}(z)} v_{j}(z) \wedge x(z) \\
& -\frac{1}{h_{j}(z)} \sum_{i=0}^{j-1} \xi_{0}(z) \wedge \ldots \wedge \xi_{j-1}(z) \wedge \xi_{i}(z) \xi_{i}^{*}(z) v_{j}(z) \wedge x(z) \\
= & \left(\frac{1}{h_{j}} \xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j} \dot{\wedge} x\right)(z) . \tag{3.41}
\end{align*}
$$

Recall that, for $i=0, \ldots, j-1$, by the algorithm from Section 3.2.1,

$$
x_{i}=\left(I_{n}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{i-1} \xi_{i-1}^{*}\right) v_{i}
$$

and

$$
\xi_{i}=\frac{x_{i}}{h_{i}} .
$$

By equation (3.41), for all $z \in \mathbb{D}$,

$$
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} \xi_{j} \dot{\wedge} x\right)(z)=\left(\frac{1}{h_{j}} \xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j} \dot{\wedge} x\right)(z) .
$$

Substituting $\frac{x_{i}}{h_{i}}$ for ξ_{i} in the latter equation, where x_{i} are given by equation (3.40) for all $i=1, \ldots, j-1$, we obtain

$$
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} \xi_{j} \dot{\wedge} x\right)(z)=\left(\frac{1}{h_{1}} \frac{1}{h_{2}} \cdots \frac{1}{h_{j}} \xi_{0} \dot{\wedge} v_{1} \dot{\wedge} \cdots \dot{\wedge} v_{j-1} \dot{\wedge} v_{j} \dot{\wedge} x\right)(z), z \in \mathbb{D}
$$

on account of the pointwise linear dependence of ξ_{k} and $z \mapsto \xi_{k}(z)\left\langle v_{k}(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}}$ almost everywhere on \mathbb{T} for $k=0, \ldots, i$. By Proposition 2.2 .8 , for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$,

$$
\frac{1}{h_{1}} \frac{1}{h_{2}} \cdots \frac{1}{h_{j}} \xi_{0} \dot{\wedge} v_{1} \dot{\wedge} \cdots \dot{\wedge} v_{j} \dot{\wedge} x
$$

is analytic on \mathbb{D}. By Proposition 2.2.14, since $\xi_{0}, \xi_{1}, \ldots, \xi_{j}$ are pointwise orthogonal on \mathbb{T},

$$
\left\|\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{n}\right)}<\infty .
$$

Thus, for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$,

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x \in H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)
$$

and the claim has been proved.

Proposition 3.2.3. In the notation of Proposition 3.2.2,

$$
\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$.
Proof. Let us first show that $\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Observe that, by Proposition 2.2.13, $\xi_{0} \wedge H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$. Let

$$
\Xi_{0}=\left\{f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right):\left\langle f(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}}=0 \quad \text { almost everywhere on } \mathbb{T}\right\}
$$

Consider a vector-valued function $w \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. For all $z \in \mathbb{D}$, we may write w as

$$
w(z)=w(z)-\left\langle w(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z)+\left\langle w(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z)
$$

Then, for all $w \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and for all $z \in \mathbb{D}$,

$$
\begin{aligned}
\left(\xi_{0} \dot{\wedge} w\right)(z) & =\xi_{0}(z) \wedge\left(w(z)-\left\langle w(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z)+\left\langle w(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z)\right) \\
& =\xi_{0}(z) \wedge\left(w(z)-\left\langle w(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z)\right)
\end{aligned}
$$

due to the pointwise linear dependence of ξ_{0} and $z \mapsto\left\langle w(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z)$ almost everywhere on \mathbb{T}. Note that

$$
w(z)-\left\langle w(z), \xi_{0}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{0}(z) \in \Xi_{0}
$$

thus

$$
\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset \xi_{0} \dot{\wedge}_{0}
$$

By Corollary 2.2.29, Ξ_{0} is a closed subspace of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, hence

$$
\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \supset \xi_{0} \dot{\wedge} \Xi_{0}
$$

and so,

$$
\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=\xi_{0} \dot{\wedge} \Xi_{0}
$$

Consider the mapping

$$
C_{\xi_{0}}: \Xi_{0} \rightarrow \xi_{0} \dot{\wedge} \Xi_{0}
$$

given by

$$
C_{\xi_{0}} w=\xi_{0} \dot{\wedge} w
$$

for all $w \in \Xi_{0}$. Notice that, by Proposition 3.2.1, $\left\|\xi_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2}=1$ for almost every $e^{i \theta} \in \mathbb{T}$. Therefore, for any $w \in \Xi_{0}$, we have

$$
\begin{aligned}
\left\|\xi_{0} \dot{\wedge} w\right\|_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{n}\right)}^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\xi_{0} \dot{\wedge} w, \xi_{0} \dot{\wedge} w\right\rangle\left(e^{i \theta}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left\|\xi_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2}\left\|w\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2}-\left|\left\langle w\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle\right|^{2}\right) d \theta \\
& =\|w\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)}^{2}
\end{aligned}
$$

since w is pointwise orthogonal to ξ_{0} almost everywhere on \mathbb{T}. Thus the mapping

$$
C_{\xi_{0}}: \Xi_{0} \rightarrow \xi_{0} \dot{\wedge} \Xi_{0}
$$

is an isometry. Furthermore, $C_{\xi_{0}}: \Xi_{0} \rightarrow \xi_{0} \dot{\wedge} \Xi_{0}$ is a surjective mapping, thus Ξ_{0} and $\xi_{0} \dot{\wedge} \Xi_{0}$ are isometrically isomorphic. Since Ξ_{0} is a closed subspace of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, hence complete, the space $\xi_{0} \dot{\wedge} \Xi_{0}$ is complete. Therefore $\xi_{0} \dot{\wedge} \Xi_{0}$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$, and thus $\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$.

To prove that $\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$, let us consider

$$
\Xi_{j}=\left\{f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right):\left\langle f(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}}=0, \text { for } i=0, \cdots, j\right\}
$$

which is the pointwise orthogonal complement of ξ_{0}, \ldots, ξ_{j} in $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Let $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. We may write ψ as

$$
\psi(z)=\psi(z)-\sum_{i=0}^{j}\left\langle\psi(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{i}(z)+\sum_{i=0}^{j}\left\langle\psi(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{i}(z) .
$$

Then, for all $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and for almost all $z \in \mathbb{T}$,

$$
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \psi\right)(z)=\xi_{0}(z) \wedge \cdots \wedge\left(\psi(z)-\sum_{i=0}^{j}\left\langle\psi(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{i}(z)\right)
$$

due to the pointwise linear dependence of ξ_{k} and $z \mapsto \xi_{k}(z)\left\langle\psi(z), \xi_{k}(z)\right\rangle_{\mathbb{C}^{n}}$ almost everywhere on \mathbb{T}. Notice that $\left(\psi(z)-\sum_{i=0}^{j}\left\langle\psi(z), \xi_{i}(z)\right\rangle_{\mathbb{C}^{n}} \xi_{i}(z)\right)$ lies in Ξ_{j}, thus

$$
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subseteq \xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \Xi_{j}
$$

The reverse inclusion holds by the definition of Ξ_{j}, hence

$$
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \Xi_{j} .
$$

Consequently, in order to prove the proposition it suffices to show that $\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \Xi_{j}$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$. By Corollary $2.2 .29, \Xi_{j}$ is a closed subspace of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, being a finite intersection of closed subspaces. For any $f \in \Xi_{j}$,

$$
\begin{aligned}
& \left\|\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} f\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{n}\right)}^{2} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccc}
\left\|\xi_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2} & \cdots & \left\langle\xi_{0}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\left\langle\xi_{1}\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\|\xi_{1}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2} & \cdots \\
\vdots & & \ddots \\
\left\langle f\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \cdots & \\
\hline
\end{array}\right) d \theta .
\end{aligned}
$$

Note that f and ξ_{i} are pointwise orthogonal almost everywhere on \mathbb{T}, and, by Proposition 3.2.1, $\left\{\xi_{0}(z), \ldots, \xi_{j}(z)\right\}$ is an orthonormal set for almost every $z \in \mathbb{T}$. Hence

$$
\begin{aligned}
\left.\left\|\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} f\right\|_{L^{2}(\mathbb{T}, \wedge}^{2}+2 \mathbb{C}^{n}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & & 0 \\
0 & 1 & & 0 \\
\vdots & & \ddots & \\
0 & 0 & & \left\|f\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2}
\end{array}\right) d \theta \\
& =\|f\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)}^{2} .
\end{aligned}
$$

Thus

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot: \Xi_{j} \rightarrow \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \Xi_{j}
$$

is an isometry. Furthermore

$$
\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right): \Xi_{j} \rightarrow \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \Xi_{j}
$$

is a surjective mapping, thus Ξ_{j} and $\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \Xi_{j}$ are isometrically isomorphic. Therefore, since Ξ_{j} is a closed subspace of $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, the space $\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \Xi_{j}$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$. Hence

$$
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)$.

3.2.4 The closed subspace Y_{j+1} of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}$.

Proposition 3.2.4. Given $\bar{\eta}_{0}=\frac{z y_{0}}{h_{0}}$ as constructed in the algorithm in Section 3.2.1, the space $\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)^{\perp}$.

Proof. As in Proposition 3.2.2, one can show that

$$
\eta_{0} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subset z H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)
$$

and therefore

$$
\bar{\eta}_{0} \dot{\wedge} \bar{z} \overline{H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)} \subset \bar{z} \overline{H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)} .
$$

Hence

$$
\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subset H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)^{\perp}
$$

By virtue of the fact that complex conjugation is a unitary operator on $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$, an equivalent statement to Proposition 3.2.4 is that $\eta_{0} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ is a closed subspace of $z H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)$.
Let

$$
V=\left\{f \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right):\left\langle f(z), \eta_{0}(z)\right\rangle_{\mathbb{C}^{m}}=0 \quad \text { for almost all } z \in \mathbb{T}\right\}
$$

be the pointwise orthogonal complement of η_{0} in $z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$.
Consider $g \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. We may write g as

$$
g(z)=g(z)-\left\langle g(z), \eta_{0}(z)\right\rangle_{\mathbb{C}^{m}} \cdot \eta_{0}(z)+\left\langle g(z), \eta_{0}(z)\right\rangle_{\mathbb{C}^{m}} \cdot \eta_{0}(z)
$$

for every $z \in \mathbb{D}$. Then, for all $g \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ and for all $z \in \mathbb{D}$,

$$
\left(\eta_{0} \dot{\wedge} g\right)(z)=\eta_{0}(z) \wedge\left[g(z)-\left\langle g(z), \eta_{0}(z)\right\rangle_{\mathbb{C}^{m}} \eta_{0}(z)\right]
$$

on account of the pointwise linear dependence of η_{0} and $\left\langle g, \eta_{0}\right\rangle_{H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)} \eta_{0}$ on \mathbb{D}.
Note that $g(z)-\left\langle g(z), \eta_{0}(z)\right\rangle_{\mathbb{C}^{m}} \eta_{0}(z) \in V$, thus

$$
\eta_{0} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subset \eta_{0} \dot{\wedge} V
$$

The reverse inclusion is obvious, hence

$$
\eta_{0} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)=\eta_{0} \dot{\wedge} V
$$

To prove the proposition, it suffices to show that

$$
\eta_{0} \dot{\wedge} V
$$

is a closed subspace of

$$
z H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)
$$

Consider the mapping

$$
C_{\eta_{0}}: V \rightarrow \eta_{0} \dot{\wedge} V
$$

defined by

$$
C_{\eta_{0}} \nu=\eta_{0} \dot{\wedge} \nu
$$

for all $\nu \in V$. Notice that, by Proposition 3.2.1, $\left\|\eta_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2}=1$ for almost every $e^{i \theta} \in \mathbb{T}$. Then, for any $v \in V$, we have

$$
\left\|\eta_{0} \dot{\wedge} v\right\|_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\eta_{0} \dot{\wedge} v, \eta_{0} \dot{\wedge} v\right\rangle\left(e^{i \theta}\right) d \theta
$$

which is in turn equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left\|\eta_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2}\left\|v\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2}-\left|\left\langle v\left(e^{i \theta}\right), \eta_{0}\left(e^{i \theta}\right)\right\rangle\right|^{2}\right) d \theta=\|v\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}^{2}
$$

since v is pointwise orthogonal to η_{0} almost everywhere on \mathbb{T}. Thus the mapping $C_{\eta_{0}}: V \rightarrow \eta_{0} \dot{\wedge} V$ is an isometry.
Note that by Corollary $2.2 .29, V$ is a closed subspace of $z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. Furthermore,

$$
C_{\eta_{0}}: V \rightarrow \eta_{0} \dot{\wedge} V
$$

is a surjective mapping, thus V and $\eta_{0} \dot{\lambda} V$ are isometrically isomorphic. Since V is a closed subspace of $z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, the space $\eta_{0} \dot{\wedge} V$ is complete and therefore a closed subspace of $z H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)$. Hence $\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)^{\perp}$.

Corollary 3.2.5. The orthogonal projection $P_{Y_{1}}$ from $L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)$ onto $\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is well-defined.

Proof. By Proposition 2.2.25, $H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)$ can be identified with a closed subspace of $L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)$, thus we have

$$
H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)^{\perp}=L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right) \ominus H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)
$$

Now the assertion follows immediately from Proposition 3.2.4.
Proposition 3.2.6. Let $0 \leq j \leq m-2$. Let the functions $\bar{\eta}_{i}$ be given by equations (3.28) in the algorithm from Section 3.2.1, that is, $\bar{\eta}_{i}=\frac{z y_{i}}{\bar{h}_{i}}$ for all $i=0, \cdots, j$. Then, the space

$$
\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

is a closed linear subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}$.
Proof. First let us show that, for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$,

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} z x \in z H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)
$$

Recall that

$$
y_{j}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j-1} \eta_{j-1}^{T}\right) w_{j}
$$

and

$$
\begin{equation*}
\eta_{0} \dot{\wedge} \cdots \dot{\wedge} \eta_{j-1} \dot{\wedge} \bar{z} \bar{y}_{j}=\eta_{0} \dot{\wedge} \cdots \dot{\wedge} \eta_{j-1} \dot{\wedge}\left(\bar{z} \bar{w}_{j}-\sum_{i=0}^{j-1} \eta_{i} \eta_{i}^{*} \bar{z} \bar{w}_{j}\right)=\eta_{0} \dot{\wedge} \cdots \dot{\wedge} \eta_{j-1} \dot{\wedge} \bar{z} \bar{w}_{j} \tag{3.42}
\end{equation*}
$$

because of the pointwise linear dependence of η_{i} and $\eta_{i} \eta_{i}^{*} \bar{z} \bar{w}_{j+1}$ on \mathbb{D}.
By Proposition 3.2.57,

$$
\left|h_{i}(z)\right|=\left\|y_{i}(z)\right\|_{\mathbb{C}^{m}}
$$

almost everywhere on \mathbb{T}.
Substituting $\eta_{i}=\frac{\overline{y_{\bar{j}}^{i}}}{h_{i}}$ for all $i=0, \ldots, j-1$ in equation (3.42), we obtain

$$
\eta_{0} \dot{\wedge} \cdots \dot{\wedge} \eta_{j-1} \dot{\wedge} \bar{z} \bar{y}_{j}=\frac{1}{h_{0}} \frac{1}{h_{1}} \cdots \frac{1}{h_{j}} \eta_{0} \dot{\wedge} \bar{z} \bar{w}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{z} \bar{w}_{j} .
$$

Observe that, by Proposition 2.2.8, for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$,

$$
\frac{1}{h_{0}} \frac{1}{h_{1}} \cdots \frac{1}{h_{j}} \eta_{0} \dot{\wedge} \bar{z} \bar{w}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{z} \bar{w}_{j} \dot{\wedge} z x
$$

is analytic on \mathbb{D}. By Proposition 2.2 .14 , for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, since $\eta_{0}, \cdots, \eta_{j}$ are pointwise orthogonal on \mathbb{T},

$$
\left\|\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} z x\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}<\infty
$$

Hence, for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$,

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} z x=z \frac{1}{h_{0}} \frac{1}{h_{1}} \cdots \frac{1}{h_{j}} \eta_{0} \dot{\wedge} \bar{z} \bar{w}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{z} \bar{w}_{j} \dot{\wedge} x
$$

is in $z H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)$.
Taking complex conjugates, we infer that

$$
Y_{j+1} \stackrel{\text { def }}{=} \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subset H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}
$$

Let us prove that Y_{j+1} is a closed linear subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}$. Since complex conjugation is a unitary operator on $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$, an equivalent statement to the above is that

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

is a closed linear subspace of $z H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)$.
Let

$$
V_{j}=\left\{\varphi \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right):\left\langle\varphi(z), \eta_{i}(z)\right\rangle_{\mathbb{C}^{m}}=0, \text { for } i=0, \cdots, j\right\}
$$

be the pointwise orthogonal complement of $\eta_{0}, \cdots, \eta_{j}$ in $z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. Consider $f \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. We may write f as

$$
f(z)=f(z)-\sum_{i=0}^{j}\left\langle f(z), \eta_{i}(z)\right\rangle \eta_{i}(z)+\sum_{i=0}^{j}\left\langle f(z), \eta_{i}(z)\right\rangle \eta_{i}(z) .
$$

Then, for all $f \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ and for almost all $z \in \mathbb{T}$,

$$
\left(\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} f\right)(z)=\eta_{0}(z) \wedge \eta_{1}(z) \wedge \cdots \wedge \eta_{j}(z) \wedge\left(f(z)-\sum_{i=0}^{j}\left\langle f(z), \eta_{i}(z)\right\rangle \eta_{i}(z)\right) .
$$

Notice that $\left(f(z)-\sum_{i=0}^{j}\left\langle f(z), \eta_{i}(z)\right\rangle \eta_{i}(z)\right) \in V_{j}$, thus

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subset \eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} V_{j} .
$$

The reverse inclusion holds by the definition of V_{j}, hence

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)=\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} V_{j} .
$$

Consequently, in order to prove the proposition it suffices to show that $\eta_{0} \dot{\wedge} \eta_{1} \dot{\lambda} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} V_{j}$ is a closed subspace of $z H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)$. By Corollary 2.2.29, V_{j} is a closed subspace of $z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, being an intersection of closed subspaces. For any $f \in V_{j}$, we get

$$
\begin{aligned}
& \left\|\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} f\right\|_{L^{2}\left(\mathbb{T}, \wedge j+2 \mathbb{C}^{m}\right)}^{2} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
\left\|\eta_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2} & \cdots & \left\langle\eta_{0}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle\eta_{1}\left(e^{i \theta}\right), \eta_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\|\eta_{1}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2} & \cdots \\
\vdots & & \ddots & \\
\left\langle f\left(e^{i \theta}\right), \eta_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \cdots & & \left\|f\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2}
\end{array}\right) d \theta .
\end{aligned}
$$

Note that f and η_{i} are pointwise orthogonal almost everywhere on \mathbb{T} and, by Proposition 3.2.1, $\left\{\eta_{0}(z), \ldots, \eta_{j}(z)\right\}$ is an orthonormal set for almost every $z \in \mathbb{T}$. Hence

$$
\begin{aligned}
\left\|\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge}\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left\|f\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2}
\end{array}\right) d \theta \\
& =\|f\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}^{2} .
\end{aligned}
$$

Thus

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} \cdot: V_{j} \rightarrow \eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} V_{j}
$$

is an isometry. Furthermore

$$
\left(\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} \cdot\right): V_{j} \rightarrow \eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} V_{j}
$$

is a surjective mapping, thus V_{j} and $\eta_{0} \dot{\wedge} \cdots \dot{\wedge} \eta_{j} \dot{\wedge} V_{j}$ are isometrically isomorphic. Therefore, since V_{j} is a closed subspace of $z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, the space $\eta_{0} \dot{\lambda} \cdots \dot{\lambda} \eta_{j} \dot{\wedge} V_{j}$ is a closed subspace of $z H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)$. Hence

$$
\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

is a closed subspace of $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}$.

Corollary 3.2.7. Let $0 \leq j \leq m-2$. The orthogonal projection

$$
P_{Y_{j}}: L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right) \rightarrow Y_{j}
$$

is well-defined.
Proof. By Proposition 2.2.25, $H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)$ can be identified with a closed subspace of $L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)$, thus we have

$$
H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}=L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right) \ominus H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)
$$

Now the assertion follows immediately from Proposition 3.2.6.

3.2.5 T_{j} is a well-defined operator

Proposition 3.2.8. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and let $0 \leq j \leq \min (m, n)-2$. Let the functions ξ_{i}, η_{i} be defined by equations (3.28), that is,

$$
\begin{equation*}
\xi_{i}=\frac{x_{i}}{h_{i}}, \quad \eta_{i}=\frac{\bar{z} \bar{\eta}_{i}}{h_{i}} \tag{3.43}
\end{equation*}
$$

for $i=0, \cdots, j$ and let

$$
\begin{gathered}
X_{i}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot \dot{\wedge} \xi_{i-1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}\left(\mathbb{D}, \wedge^{i+1} \mathbb{C}^{n}\right), \quad i=0, \cdots, j, \\
Y_{i}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{i-1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subset H^{2}\left(\mathbb{D}, \wedge^{i+1} \mathbb{C}^{m}\right)^{\perp}, \quad i=0, \cdots, j
\end{gathered}
$$

Let $Q_{i} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfy

$$
\begin{equation*}
\left(G-Q_{i}\right) x_{k}=t_{k} y_{k}, \quad\left(G-Q_{i}\right)^{*} y_{k}=t_{k} x_{k} \tag{3.44}
\end{equation*}
$$

for all $k=0, \ldots, i-1$.
Then, the operators $T_{i}: X_{i} \rightarrow Y_{i}, i=0, \cdots, j$, given by

$$
\begin{equation*}
T_{i}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{i-1} \dot{\wedge} x\right)=P_{Y_{i}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{i-1} \dot{\wedge}\left(G-Q_{i}\right) x\right) \tag{3.45}
\end{equation*}
$$

are well-defined and are independent of the choice of $Q_{i} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfying equations (3.44).

Proof. By Corollary 3.2.7, the projections $P_{Y_{i}}$ are well-defined for all $i=0, \cdots, j$. Hence it suffices to show that, for all $i=0,1, \cdots, j, T_{i}$ maps a zero from its domain to a zero in its range and that T_{i} does not depend on the choice of Q_{i}, which satisfies equations (3.44).

For $i=0$, the operator T_{0} is the Hankel operator H_{G}. If $f_{0} \equiv 0$, then $H_{G} f_{0}=0$ and, moreover, H_{G} is independent of the choice of any $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ as $H_{G-Q}=H_{G}$. Thus, T_{0} is well-defined.

For $i=1$, let $\left(x_{0}, y_{0}\right)$ be a Schmidt pair for the compact operator H_{G} corresponding to $t_{0}=\left\|H_{G}\right\|$, where $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. By Lemma 3.1.12, $x_{0}, \bar{z} \bar{y}_{0}$ admit the inner-outer factorisations $x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0}$, where $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right), \eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ are inner vector-valued functions and $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$ is scalar outer. The spaces X_{1} and Y_{1} are given by the formulas

$$
X_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad Y_{1}=\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

The operator $T_{1}: X_{1} \rightarrow Y_{1}$ is given by

$$
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right)
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, where $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfies equations (3.44).
Lemma 3.2.9. Let $\xi_{0} \dot{\wedge} u=\xi_{0} \dot{\wedge} v$ for some $u, v \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Then

$$
\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) u=\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) v .
$$

Proof. Suppose that $\xi_{0} \dot{\wedge} u=\xi_{0} \dot{\wedge} v$ for some $u, v \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Let $x=u-v$, then $\xi_{0} \dot{\wedge} x=0$, and so x and ξ_{0} are pointwise linearly dependent in \mathbb{C}^{n} on \mathbb{D}. Therefore there exist maps $\beta, \lambda: \mathbb{D} \rightarrow \mathbb{C}$, having no common zero in \mathbb{D}, such that

$$
\begin{equation*}
\beta(z) \xi_{0}(z)=\lambda(z) x(z) \text { in } \mathbb{C}^{n}, \tag{3.46}
\end{equation*}
$$

for all $z \in \mathbb{D}$. By assumption, $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfies equations (3.44). Thus, for all $z \in \mathbb{D}$,

$$
\begin{equation*}
t_{0} y_{0}(z)=\left(G-Q_{1}\right)(z) x_{0}(z) . \tag{3.47}
\end{equation*}
$$

By equations (3.43) and (3.46),

$$
\begin{equation*}
\beta(z) x_{0}(z)=\beta(z) h_{0}(z) \xi_{0}(z)=h_{0}(z) \lambda(z) x(z) \tag{3.48}
\end{equation*}
$$

for all $z \in \mathbb{D}$. By equations (3.47) and (3.48), for all $z \in \mathbb{D}$,

$$
\begin{aligned}
t_{0} y_{0}(z) & =\left(G-Q_{1}\right)(z) x_{0}(z), \\
\beta(z) t_{0} z \overline{y_{0}(z)} & =\left(G-Q_{1}\right)(z) h_{0}(z) \lambda(z) x(z) \frac{z}{\bar{h}_{0}(z)}
\end{aligned}
$$

Therefore, by equations (3.43), for all $z \in \mathbb{D}$,

$$
t_{0} \beta(z) \bar{\eta}_{0}(z)=\left(G-Q_{1}\right)(z) x(z) \mu(z) \text { in } \mathbb{C}^{m}
$$

where

$$
\mu(z)=\frac{z h_{0}(z) \lambda(z)}{\bar{h}_{0}(z)} \text {, for all } z \in \mathbb{D} \text {. }
$$

Hence, by Definition 2.2.2, $\bar{\eta}_{0}$ and $\left(G-Q_{1}\right) x$ are pointwise linearly dependent in \mathbb{C}^{m} on \mathbb{D}, and so

$$
\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x=0 .
$$

Consequently,

$$
\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) u=\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) v .
$$

Therefore the formula (3.45) (with $i=1$) does uniquely define $T_{1} u \in Y_{1}$. Next, we show that the operator T_{1} is independent of the choice of $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$, which satisfies equations (3.44).
By Theorem D.2.4, there exist $Q_{1}, Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which satisfy

$$
\begin{equation*}
\left(G-Q_{1}\right) x_{0}=t_{0} y_{0}, y_{0}^{*}\left(G-Q_{1}\right)=t_{0} x_{0}^{*} \tag{3.49}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(G-Q_{2}\right) x_{0}=t_{0} y_{0}, y_{0}^{*}\left(G-Q_{2}\right)=t_{0} x_{0}^{*} . \tag{3.50}
\end{equation*}
$$

Then, we would like to prove that, for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$,

$$
P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{2}\right) x\right),
$$

that is,

$$
P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(Q_{1}-Q_{2}\right) x\right)=0 .
$$

The latter is equivalent to the property that $\bar{\eta}_{0} \dot{\wedge}\left(Q_{2}-Q_{1}\right) x$ is orthogonal to $\bar{\eta}_{0} \dot{\wedge} \varrho$ for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and for all $\varrho \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. As a matter of convenience, set

$$
A x=\left(Q_{2}-Q_{1}\right) x, \quad x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

We have to prove that
for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and all $\varrho \in H^{2}\left(\mathbb{C}^{m}\right)^{\perp}$. Note that

$$
\left\langle\bar{\eta}_{0} \dot{\wedge} A x, \bar{\eta}_{0} \dot{\wedge} \varrho\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\wedge} A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\wedge} \varrho\left(e^{i \theta}\right)\right\rangle_{\wedge^{2} \mathbb{C}^{m}} d \theta
$$

which by Proposition 2.1.19 yields

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cc}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|\bar{\eta}_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2}\left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta \\
& \quad-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta
\end{aligned}
$$

By Proposition 3.2.1, $\left\|\bar{\eta}_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}=1$ for almost every $e^{i \theta} \in \mathbb{T}$. Since $A x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ and $\varrho \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right\rangle_{\mathbb{C}^{m}} d \theta=\langle A x, \varrho\rangle_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}=0\right.
$$

Thus

$$
\begin{aligned}
\left\langle\bar{\eta}_{0} \dot{\wedge} A x, \bar{\eta}_{0} \dot{\wedge} \varrho\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{\eta}_{0}^{*}\left(e^{i \theta}\right) A\left(e^{i \theta}\right) x\left(e^{i \theta}\right)\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta
\end{aligned}
$$

Recall that by equation $(3.9), \bar{\eta}_{0}(z)=\frac{z y_{0}(z)}{\bar{h}_{0}(z)}, z \in \mathbb{T}$, so that

$$
\bar{\eta}_{0}^{*}\left(e^{i \theta}\right)=\left(\frac{e^{i \theta} y_{0}\left(e^{i \theta}\right)}{\bar{h}_{0}\left(e^{i \theta}\right)}\right)^{*}=\frac{e^{-i \theta} y_{0}^{*}\left(e^{i \theta}\right)}{h_{0}\left(e^{i \theta}\right)} .
$$

Therefore

$$
\left.\left\langle\bar{\eta}_{0} \dot{\wedge} A x, \bar{\eta}_{0} \dot{\wedge} \varrho\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-i \theta} y_{0}^{*}\left(e^{i \theta}\right)}{h_{0}\left(e^{i \theta}\right)} A\left(e^{i \theta}\right) x\left(e^{i \theta}\right)\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}\right) d \theta .
$$

Recall our initial assumption was that Q_{1}, Q_{2} satisfy equations (3.49) and (3.50), consequently,

$$
y_{0}^{*}\left(G-Q_{i}\right)=t_{0} x_{0}^{*}, \text { for } i=1,2 .
$$

Hence, for $z \in \mathbb{T}$,

$$
\begin{aligned}
y_{0}^{*}(z) A(z) x(z) & =y_{0}^{*}(z)\left(G-Q_{1}\right)(z) x(z)-y_{0}^{*}(z)\left(G-Q_{2}\right)(z) x(z) \\
& =\left(t_{0} x_{0}^{*} x-t_{0} x_{0}^{*} x\right)(z) \\
& =0 .
\end{aligned}
$$

We deduce that

$$
\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{\eta}_{0}^{*}\left(e^{i \theta}\right) A\left(e^{i \theta}\right) x\left(e^{i \theta}\right)\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varrho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}\right) d \theta=0
$$

To conclude, we have proved that, if $Q_{1}, Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfy equations (3.49) and (3.50), then

$$
P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{2}\right) x\right),
$$

that is, T_{1} is independent of the choice of Q_{1}. Thus T_{1} is a well-defined operator.
Recursive step: suppose that functions $x_{i-1} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$, $y_{i-1} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$, outer functions $h_{i-1} \in H^{2}(\mathbb{D}, \mathbb{C})$, positive numbers t_{i}, matrix-valued functions $Q_{i} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$, spaces X_{i}, Y_{i} and compact operators $T_{i}: X_{i} \rightarrow Y_{i}$ are constructed inductively by the algorithm for all $i=0, \ldots, j$.

Let us prove that $T_{j}: X_{j} \rightarrow Y_{j}$, given by equation (3.25), is well-defined for all $0 \leq j \leq \min (m, n)-2$. Note, by Corollary 3.2.7, the projection $P_{Y_{j}}$ is well-defined. We will prove that T_{j} maps zeros from its domain to zeros to its range and T_{j} is independent of the choice of Q_{j} that satisfies equations (3.44).
Suppose $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdots \dot{\wedge} \xi_{j-1} \dot{\wedge} x=0$. Then $x(z)$ is pointwise linearly dependent on $\xi_{0}(z), \xi_{1}(z), \cdots, \xi_{j-1}(z)$ in \mathbb{C}^{n} for almost all $z \in \mathbb{T}$. This means there exist maps

$$
\lambda_{i}, \nu: \mathbb{T} \rightarrow \mathbb{C}, i=0, \cdots, j-1
$$

which are non-zero almost everywhere on \mathbb{T} and are such that

$$
\nu(z) x(z)=\sum_{i=0}^{j-1} \lambda_{i}(z) \xi_{i}(z) .
$$

By Theorem 1.1.4, there exists a function $Q_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ that lexicographically minimises

$$
\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q), \ldots, s_{j}^{\infty}(G-Q)\right)
$$

over all $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$. By Proposition 3.2.47, any such function Q_{j} necessarily satisfies

$$
\begin{equation*}
\left(G-Q_{j}\right) x_{i}=t_{i} y_{i}, \quad y_{i}^{*}\left(G-Q_{j}\right)=t_{i} x_{i}, \quad \text { for all } i=0, \cdots, j-1 \tag{3.51}
\end{equation*}
$$

By equations (3.43),

$$
\xi_{i}=\frac{x_{i}}{h_{i}}, \quad \eta_{i}=\frac{\bar{z} \bar{y}_{i}}{h_{i}}, i=0 \cdots, j-1 .
$$

Then, for almost all $z \in \mathbb{T}$,

$$
\begin{aligned}
\left(G-Q_{j}\right)(z) x_{i}(z) & =t_{i} y_{i}(z) \\
\left(G-Q_{j}\right)(z) \lambda_{i}(z) x_{i}(z) \frac{1}{h_{i}(z)} & =t_{i} \lambda_{i}(z) \frac{1}{h_{i}(z)} y_{i}(z) \\
\left(G-Q_{j}\right)(z) \lambda_{i}(z) x_{i}(z) \frac{1}{h_{i}(z)} & =t_{i} \lambda_{i}(z) \frac{1}{h_{i}(z)} y_{i}(z) \frac{z}{z} \frac{\bar{h}_{i}(z)}{\overline{h_{i}(z)}} \\
\left(G-Q_{j}\right)(z) \lambda_{i}(z) x_{i}(z) \frac{1}{h_{i}(z)} & =t_{i} \lambda_{i}(z) \frac{1}{z h_{i}(z)} \bar{\eta}_{i}(z) \\
\left(G-Q_{j}\right)(z) \sum_{i=1}^{j-1} \lambda_{i}(z) \xi_{i}(z) & =\sum_{i=1}^{j-1} t_{i} \lambda_{i}(z) \frac{1}{z h_{i}(z)} \bar{\eta}_{i}(z) \\
\left(G-Q_{j}\right)(z) \nu(z) x(z) & =\sum_{i=1}^{j-1} \mu_{i}(z) \bar{\eta}_{i}(z)
\end{aligned}
$$

where

$$
t_{i} \lambda_{i}(z) \frac{1}{z h_{i}(z)}=\mu_{i}(z) .
$$

Therefore for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \bar{\eta}_{0}(z), \cdots, \bar{\eta}_{j-1}(z)$ and $\left(\left(G-Q_{j}\right) x\right)(z)$ are pointwise linearly dependent in \mathbb{C}^{m} almost everywhere on \mathbb{T}. Hence

$$
\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(G-Q_{j}\right) x=0
$$

Consequently, T_{j} maps a zero from its domain to a zero in its range.
For the operator T_{j} to be well-defined, it remains to prove T_{j} is independent of the choice of $Q_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which satisfies equations (3.51). Let $\tilde{Q}_{j}, \hat{Q}_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfy

$$
\begin{equation*}
\left(G-\tilde{Q}_{j}\right) x_{i}=t_{i} y_{i}, \quad\left(G-\hat{Q}_{j}\right) x_{i}=t_{i} y_{i}, \quad y_{i}^{*}\left(G-\tilde{Q}_{j}\right)=t_{i} x_{i}^{*}, \quad y_{i}^{*}\left(G-\hat{Q}_{j}\right)=t_{i} x_{i}^{*} \tag{3.52}
\end{equation*}
$$

for $i=0, \cdots, j-1$.
We would like to prove that, for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$,

$$
P_{Y_{j}}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(G-\tilde{Q}_{j}\right) x\right)=P_{Y_{j}}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(G-\hat{Q}_{j}\right) x\right) .
$$

The latter equality holds if and only if, for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$,

$$
P_{Y_{j}}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(\hat{Q}_{j}-\tilde{Q}_{j}\right) x\right)=0
$$

which is equivalent to the assertion that $\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(\hat{Q}_{j}-\tilde{Q}_{j}\right) x$ is orthogonal to $\bar{\eta}_{0} \dot{\lambda} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} q$ for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and for all $q \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$.

Equivalently
for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and for all $q \in H^{2}\left(\mathbb{C}^{m}\right)^{\perp}$. Set $A x=\left(\hat{Q}_{j}-\tilde{Q}_{j}\right) x, x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. By Proposition 2.1.19,

$$
\left\langle\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(\hat{Q}_{j}-\tilde{Q}_{j}\right) x, \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} q\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+1} \mathbb{C}^{m}\right)}
$$

is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \cdots & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{j-1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), q\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\vdots & \ddots & \vdots & \vdots \\
\left\langle\bar{\eta}_{j-1}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \cdots & \left\langle\bar{\eta}_{j-1}\left(e^{i \theta}\right), \bar{\eta}_{j-1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{j-1}\left(e^{i \theta}\right), q\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \cdots & \left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \bar{\eta}_{j-1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), q\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta .
$$

Notice that $A x$ and q are orthogonal in $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ and, by Proposition 3.2.1, $\left\{\bar{\eta}_{i}(z)\right\}_{i=0}^{j-1}$ is an orthonormal set in \mathbb{C}^{m} almost everywhere on \mathbb{T}. Also, for all $i=0, \cdots, j-1$, by equations (3.52),

$$
\begin{aligned}
\left.\left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), \bar{\eta}_{i}\left(e^{i \theta}\right)\right\rangle\right\rangle_{\mathbb{C}^{m}} & =\eta_{i}^{T}\left(e^{i \theta}\right) A\left(e^{i \theta}\right) x\left(e^{i \theta}\right) \\
& =\frac{e^{-i \theta} y_{i}^{*}\left(e^{i \theta}\right)}{h_{i}\left(e^{i \theta}\right)} A\left(e^{i \theta}\right) x\left(e^{i \theta}\right) \\
& =\frac{e^{-i \theta}}{h_{i}\left(e^{i \theta}\right)}\left(y_{i}^{*}\left(e^{i \theta}\right)\left(G-\tilde{Q}_{j}\right)(z) x(z)-y_{i}^{*}\left(e^{i \theta}\right)\left(G-\hat{Q}_{j}\right)(z) x(z)\right) \\
& =\frac{e^{-i \theta}}{h_{i}\left(e^{i \theta}\right)}\left(t_{i} x_{i}^{*} x-t_{i} x_{i}^{*} x\right) \\
& =0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left\langle\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge}\left(\hat{Q}_{j}-\tilde{Q}_{j}\right) x, \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} q\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+1} \mathbb{C}^{m}\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \cdots & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), q\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
0 & 1 & \cdots & \left\langle\bar{\eta}_{2}\left(e^{i \theta}\right), q\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \left\langle A\left(e^{i \theta}\right) x\left(e^{i \theta}\right), q\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta \\
& =\langle A x, q\rangle_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}=0 .
\end{aligned}
$$

Consequently

$$
P_{Y_{j}}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(G-\tilde{Q}_{j}\right) x\right)=P_{Y_{j}}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(G-\hat{Q}_{j}\right) x\right),
$$

and so T_{j} is independent of the choice of Q_{j} that satisfies equations (3.51). Thus we have proven that the operator T_{j} is well-defined.

3.2.6 Compactness of the operators T_{1} and T_{2}

In this section, we use notations from the algorithm from Section 3.2.1 to prove the compactness of the operators T_{1}, T_{2} given by equations (3.15) and (3.20) respectively. To this end, several auxiliary results are required.

Recall that since $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, by Hartman's theorem, the operator $T_{0}=H_{G}$ is compact and hence there exist $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\left(x_{0}, y_{0}\right)$ is a Schmidt pair for H_{G} corresponding to the singular value $\left\|H_{G}\right\|=t_{0}$.

By Lemma 3.1.12, $x_{0}, \bar{z} \bar{y}_{0}$ admit the inner-outer factorisations

$$
\begin{equation*}
x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0}, \tag{3.53}
\end{equation*}
$$

where $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right), \eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ are vector-valued inner functions and $h_{0} \in$ $H^{2}(\mathbb{D}, \mathbb{C})$ is a scalar outer function. Moreover there exist unitary-valued functions of types $n \times n, m \times m$ respectively, of the form

$$
V_{0}=\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right), \quad W_{0}=\left(\begin{array}{ll}
\eta_{0} & \bar{\beta}_{0} \tag{3.54}
\end{array}\right)^{T},
$$

where α_{0}, β_{0} are inner, co-outer, quasi-continuous functions of types $n \times(n-1), m \times(m-1)$ respectively and all minors on the first columns of V_{0}, W_{0}^{T} are in H^{∞}. Furthermore every $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which is at minimal distance from G satisfies

$$
W_{0}\left(G-Q_{1}\right) V_{0}=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & F_{1}
\end{array}\right)
$$

for some

$$
F_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right)
$$

and some quasi-continuous function u_{0} with $\left|u_{0}(z)\right|=1$ almost everywhere on \mathbb{T}.
Recall that

$$
X_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad Y_{1}=\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and $T_{1}: X_{1} \rightarrow Y_{1}$ is given by

$$
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=P_{Y_{1}}\left[\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right] \quad \text { for all } x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

Our first endeavour in this subsection is to prove the following theorem.
Theorem 3.2.10. Let

$$
\begin{equation*}
\mathcal{K}_{1} \stackrel{\text { def }}{=} V_{0}\binom{0}{H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)}, \quad \mathcal{L}_{1} \stackrel{\text { def }}{=} W_{0}^{*}\binom{0}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}}, \tag{3.55}
\end{equation*}
$$

and let the maps

$$
\begin{gathered}
U_{1}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right) \rightarrow \mathcal{K}_{1}, \\
U_{2}: H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp} \rightarrow \mathcal{L}_{1}
\end{gathered}
$$

be given by

$$
U_{1} x=V_{0}\binom{0}{x}, \quad U_{2} y=W_{0}^{*}\binom{0}{y}
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right), y \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}$. Consider the operator $\Gamma_{1}=P_{\mathcal{L}_{1}} M_{G-Q_{1}} \mid \mathcal{K}_{1}$. Then
(i) The maps U_{1}, U_{2} are unitaries.
(ii) The maps $\left(\xi_{0} \dot{\wedge} \cdot\right): \mathcal{K}_{1} \rightarrow H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right)$ and $\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right): \mathcal{L}_{1} \rightarrow H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ are unitaries.
(iii) The following diagram is commutative:

(iv) T_{1} is a compact operator.
(v) $\left\|T_{1}\right\|=\left\|\Gamma_{1}\right\|=t_{1}$.

Proof. Statement (i) follows from Lemma 3.1.17. Statement (ii) follows from Propositions 3.2.17 and 3.2.21, which are consequences of Beurling's theorem and the lemmas that follow.

Theorem 3.2.11 (Beurling's Theorem, [38], p. 99). Let S be a non-zero closed subspace of $H^{2}(\mathbb{D}, \mathbb{C})$. Then S is invariant under multiplication by z if and only if $S=\theta H^{2}(\mathbb{D}, \mathbb{C})$, where θ is an inner function.

Lemma 3.2.12. In the notation of Theorem 3.2.10, the Hankel operator H_{G} has a maximizing vector x_{0} of unit norm such that ξ_{0}, which is defined by $\xi_{0}=\frac{x_{0}}{h_{0}}$, is a co-outer function.

Proof. Choose any maximizing vector x_{0}. By Lemma 3.1.12, x_{0} has the inner-outer factorisation $x_{0}=\xi_{0} h_{0}$, where h_{0} is a scalar outer factor. Then, the closure of $\xi_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, denoted by $\operatorname{clos}\left(\xi_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)\right)$, is a closed shift-invariant subspace of $H^{2}(\mathbb{D}, \mathbb{C})$, so, by Beurling's theorem,

$$
\operatorname{clos}\left(\xi_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)\right)=\phi H^{2}(\mathbb{D}, \mathbb{C})
$$

for some scalar inner function ϕ. Hence

$$
\bar{\phi} \xi_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}(\mathbb{D}, \mathbb{C})
$$

Thus, if $\xi_{0}^{T}=\left(\xi_{01}, \cdots, \xi_{0 n}\right)$, we have $\bar{\phi} \xi_{0 j} \in H^{\infty}(\mathbb{D}, \mathbb{C})$ for $j=1, \cdots, n$, and so,

$$
\bar{\phi} \xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

Hence

$$
\bar{\phi} x_{0}=\bar{\phi} \xi_{0} h_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

Let Q be a best H^{∞} approximation to G. Since x_{0} is a maximizing vector for H_{G}, by Theorem D.2.4,

$$
(G-Q) x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and

$$
\left\|(G-Q)(z) x_{0}(z)\right\|_{\mathbb{C}^{m}}=\left\|H_{G}\right\|\left\|x_{0}(z)\right\|_{\mathbb{C}^{n}}
$$

for almost all $z \in \mathbb{T}$. Thus

$$
(G-Q) \bar{\phi} x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and

$$
\left\|(G-Q) \bar{\phi} x_{0}(z)\right\|_{\mathbb{C}^{m}}=\left\|H_{G}\right\|\left\|\bar{\phi} x_{0}(z)\right\|_{\mathbb{C}^{n}}
$$

for almost all $z \in \mathbb{T}$.
Hence $\bar{\phi} x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is a maximizing vector for H_{G}, and $\bar{\phi} x_{0}$ is co-outer. Then $\frac{\bar{\phi} x_{0}}{\left\|x_{0}\right\|}$ is a co-outer maximizing vector of unit norm for H_{G}.

Remark 3.2.13. Lemma 3.2.12 asserts that in the scalar case one can always choose an outer eigenvector corresponding to the largest eigenvalue of the Hankel operator.

Lemma 3.2.14. Let x_{0} be a co-outer maximizing vector of unit norm for H_{G}, and let $x_{0}=$ $\xi_{0} h_{0}$ be the inner-outer factorisation of x_{0}. Then
(i) ξ_{0} is a quasi-continuous function and
(ii) there exists a function $A \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ such that

$$
A^{T} \xi_{0}=1
$$

Proof. Let us first show that

$$
\xi_{0} \in\left(H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)+C\left(\mathbb{T}, \mathbb{C}^{n}\right)\right) \cap \overline{H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)+C\left(\mathbb{T}, \mathbb{C}^{n}\right)}
$$

Let Q be a best H^{∞} approximation to G. Then, by Theorem D.2.4, the function Q satisfies the equation

$$
(G-Q)^{*} y_{0}=t_{0} x_{0} .
$$

Taking complex conjugates in equations (3.53), we get

$$
(G-Q)^{T} \bar{y}_{0}=t_{0} \overline{x_{0}} .
$$

Hence, for $z \in \mathbb{T}$,

$$
(G-Q)^{T} z h_{0} \eta_{0}=t_{0} \overline{h_{0} \xi_{0}},
$$

and therefore

$$
\frac{(G-Q)^{T} z h_{0} \eta_{0}}{t_{0} \overline{h_{0}}}=\overline{\xi_{0}} .
$$

Recall that, by equation (3.5) (with $\phi=1$), $u_{0}=\frac{z \overline{h_{0}}}{h_{0}}$. By Lemma 3.1.12, $u_{0} \in Q C$, hence $\overline{u_{0}} \in H^{\infty}+C$. Note $\overline{u_{0}}=\frac{z h_{0}}{h_{0}}$, and hence

$$
\overline{\xi_{0}}=\frac{(G-Q)^{T} \overline{u_{0}} \eta_{0}}{t_{0}}
$$

Since $H^{\infty}+C$ is an algebra and $(G-Q)^{T}, \eta_{0} \in H^{\infty}+C$, it follows that $\overline{\xi_{0}} \in H^{\infty}+C$, thus

$$
\xi_{0} \in\left(H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)+C\left(\mathbb{T}, \mathbb{C}^{n}\right)\right) \cap \overline{H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)+C\left(\mathbb{T}, \mathbb{C}^{n}\right)}
$$

The conclusion that there exists a function $A \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ such that $A^{T} \xi_{0}=1$ now follows directly from Lemma 3.1.18.

Lemma 3.2.15. In the notation of Theorem 3.2.10, let $\xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ be a vector-valued inner, co-outer, quasi-continuous function and let

$$
V_{0}=\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right)
$$

be a thematic completion of ξ_{0} as described in Lemma 3.1.12, where α_{0} is an inner, co-outer, quasi-continuous function of order $n \times(n-1)$ and all minors on the first column of V_{0} are analytic. Then,

$$
\alpha_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)
$$

Proof. By Lemma 3.1.18, for the given α_{0}, there exists $A_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(n-1) \times n}\right)$ such that $A_{0} \alpha_{0}=I_{n-1}$. Equivalently, $\alpha_{0}^{T} A_{0}^{T}=I_{n-1}$.

Let $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$. Then $g=\left(\alpha_{0}^{T} A_{0}^{T}\right) g \in \alpha_{0}^{T} A_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$, which implies that $g \in \alpha_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Hence $H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right) \subseteq \alpha_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$.

For the reverse inclusion, note that since α_{0} is in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n \times(n-1)}\right)$, we have $\alpha_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subseteq H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$. Thus

$$
\alpha_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)
$$

Proposition 3.2.16. Let ξ_{0}, α_{0} and V_{0} be as in Lemma 3.2.15. Then

$$
V_{0}^{*} \operatorname{POC}\left(\left\{\xi_{0}\right\}, L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)\right)=\binom{0}{L^{2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right)} .
$$

Proof. Let $g \in V_{0}^{*} \operatorname{POC}\left(\left\{\xi_{0}\right\}, L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)\right)$. Equivalently, g can be written as $g=V_{0}^{*} f$ for some $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ such that $f(z) \perp \xi_{0}(z)$ for almost all $z \in \mathbb{T}$. This in turn is equivalent to the assertion that $g=V_{0}^{*} f$ for some $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ such that $\left(V_{0}^{*} f\right)(z) \perp\left(V_{0}^{*} \xi_{0}\right)(z)$ for almost all $z \in \mathbb{T}$, since $V_{0}(z)$ is unitary for almost all $z \in \mathbb{T}$.

Note that, by the fact that V_{0} is unitary-valued almost everywhere on \mathbb{T}, we get

$$
\begin{align*}
I_{n} & =V_{0}^{*}(z) V_{0}(z) \\
& =\binom{\xi_{0}^{*}(z)}{\alpha_{0}^{T}(z)}\left(\begin{array}{ll}
\xi_{0}(z) & \bar{\alpha}_{0}(z)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\xi_{0}^{*}(z) \xi_{0}(z) & \xi_{0}^{*}(z) \bar{\alpha}_{0}(z) \\
\alpha_{0}^{T}(z) \xi_{0}(z) & \alpha_{0}^{T}(z) \bar{\alpha}_{0}(z)
\end{array}\right) \quad \text { almost everywhere on } \mathbb{T}, \tag{3.57}
\end{align*}
$$

and so

$$
V_{0}^{*} \xi_{0}=\binom{\xi_{0}^{*}}{\alpha_{0}^{T}} \xi_{0}=\binom{1}{0_{(n-1) \times 1}},
$$

where $0_{(n-1) \times 1}$ denotes the zero vector in \mathbb{C}^{n-1}.
Hence $g=V_{0}^{*} f$ with $\left(V_{0}^{*} f\right)(z)$ orthogonal to $\left(V_{0}^{*} \xi_{0}\right)(z)$ for almost every $z \in \mathbb{T}$, is equivalent to the statement $g \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ and

$$
g(z) \perp\binom{1}{0_{(n-1) \times 1}}
$$

for almost all $z \in \mathbb{T}$, or equivalently, $g \in\binom{0}{L^{2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right)}$.

Proposition 3.2.17. Under the assumptions of Theorem 3.2.10, where x_{0} is a co-outer maximizing vector of unit norm for $H_{G}, \xi_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is a vector-valued inner function given by $\xi_{0}=\frac{x_{0}}{h_{0}}, V_{0}=\left(\begin{array}{ll}\xi_{0} & \bar{\alpha}_{0}\end{array}\right)$ is a thematic completion of ξ_{0} and \mathcal{K}_{1} is defined by

$$
\mathcal{K}_{1}=V_{0}\binom{0}{H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)} \subseteq L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right),
$$

we have

$$
\xi_{0} \dot{\wedge} \mathcal{K}_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

and the operator

$$
\left(\xi_{0} \dot{\wedge} \cdot\right): \mathcal{K}_{1} \rightarrow \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

is unitary.
Proof. Let us first prove $\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset \xi_{0} \dot{\wedge} \mathcal{K}_{1}$. Let $\xi_{0} \dot{\wedge} \varphi \in \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, for some $\varphi \in$ $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Since V_{0} is unitary-valued, we get

$$
\xi_{0} \xi_{0}^{*}+\bar{\alpha}_{0} \alpha_{0}^{T}=I_{n} .
$$

Thus

$$
\begin{aligned}
\xi_{0} \dot{\wedge} \varphi & =\xi_{0} \dot{\wedge}\left(\xi_{0} \xi_{0}^{*} \varphi+\bar{\alpha}_{0} \alpha_{0}^{T} \varphi\right) \\
& =\xi_{0} \dot{\wedge} \xi_{0}\left(\xi_{0}^{*} \varphi\right)+\xi_{0} \dot{\wedge} \bar{\alpha}_{0}\left(\alpha_{0}^{T} \varphi\right) \\
& =0+\xi_{0} \dot{\wedge} \bar{\alpha}_{0}\left(\alpha_{0}^{T} \varphi\right)
\end{aligned}
$$

on account of the pointwise linear dependence of ξ_{0} and $\xi_{0} \xi_{0}^{*} \varphi$ on \mathbb{D}. Recall that, by Lemma $3.2 .15, \alpha_{0}^{T} \varphi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$ and, by the definition of \mathcal{K}_{1},

$$
\mathcal{K}_{1}=\bar{\alpha}_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)
$$

Hence, for $\varphi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$,

$$
\xi_{0} \dot{\wedge} \varphi=\xi_{0} \dot{\wedge} \bar{\alpha}_{0} \alpha_{0}^{T} \varphi \in \xi_{0} \dot{\wedge} \bar{\alpha}_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)
$$

and thus

$$
\begin{equation*}
\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subseteq \xi_{0} \wedge \mathcal{K}_{1} \tag{3.58}
\end{equation*}
$$

Let us now show that $\xi_{0} \dot{\wedge} \mathcal{K}_{1} \subseteq \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Since $\mathcal{K}_{1}=\bar{\alpha}_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$, an arbitrary element $u \in \xi_{0} \wedge \mathcal{K}_{1}$ is of the form

$$
u=\xi_{0} \dot{\wedge} \bar{\alpha}_{0} g
$$

for some $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$. Note that, by Lemma 3.2.15, there exists a function $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ such that $g=\alpha_{0}^{T} f$. Hence $u=\xi_{0} \dot{\wedge} \bar{\alpha}_{0} \alpha_{0}^{T} f$. By equation (3.57), $\xi_{0} \xi_{0}^{*}+\bar{\alpha}_{0} \alpha_{0}^{T}=I_{n}$. Thus

$$
u=\xi_{0} \dot{\wedge}\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) f=\xi_{0} \dot{\wedge} f-\xi_{0} \dot{\wedge} \xi_{0} \xi_{0}^{*} f=\xi_{0} \dot{\wedge} f \in \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

and so, $\xi_{0} \dot{\wedge} \mathcal{K}_{1} \subseteq \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Combining the latter inclusion with relation (3.58), we have

$$
\xi_{0} \dot{\wedge} \mathcal{K}_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

Now, let us show that the operator $\left(\xi_{0} \dot{\wedge} \cdot\right): \mathcal{K}_{1} \rightarrow \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is unitary. As we have shown above, the operator is surjective. We will show it is also an isometry.
Let $f \in \mathcal{K}_{1}$. Then,

$$
\begin{aligned}
\left\|\xi_{0} \dot{\wedge} f\right\|_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{n}\right)}^{2} & =\left\langle\xi_{0} \dot{\wedge} f, \xi_{0} \dot{\wedge} f\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{n}\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\xi_{0}\left(e^{i \theta}\right) \dot{\wedge} f\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right) \dot{\wedge} f\left(e^{i \theta}\right)\right\rangle_{\wedge^{2} \mathbb{C}^{n}} d \theta
\end{aligned}
$$

By Proposition 2.1.19, the latter integral is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ll}
\left\langle\xi_{0}\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle\xi_{0}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\left\langle f\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle f\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta
$$

which equals

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|\xi_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2}\left\langle f\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}-\left|\left\langle\xi_{0}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}\right|^{2} d \theta
$$

Note that, by Proposition 3.2.1, $\left\|\xi_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}=1$ for almost all $e^{i \theta}$ on \mathbb{T}. Moreover, since

$$
\mathcal{K}_{1}=\bar{\alpha}_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right),
$$

$f=\bar{\alpha}_{0} g$ for some $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$. Hence

$$
\left\langle\xi_{0}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}=\left\langle\xi_{0}\left(e^{i \theta}\right), \bar{\alpha}_{0}\left(e^{i \theta}\right) g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}=\left\langle\alpha_{0}^{T}\left(e^{i \theta}\right) \xi_{0}\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n-1}}=0
$$

almost everywhere on \mathbb{T}, since $V_{0}=\left(\begin{array}{ll}\xi_{0} & \bar{\alpha}_{0}\end{array}\right)$ is unitary-valued. Thus

$$
\left\|\xi_{0} \dot{\wedge} f\right\|_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{n}\right)}^{2}=\|f\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)}^{2}
$$

that is, the operator $\left(\xi_{0} \dot{\wedge} \cdot\right): \mathcal{K}_{1} \rightarrow \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is an isometry. Therefore, by Theorem A.2.4, the operator ($\left.\xi_{0} \dot{\wedge} \cdot\right)$ is unitary.

Lemma 3.2.18. Let $u \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ and let $\eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ be a vector-valued inner function. Then

$$
\begin{equation*}
\left\langle\bar{\eta}_{0} \dot{\wedge} u, \bar{\eta}_{0} \dot{\wedge} \bar{f} \bar{f}\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}=0 \quad \text { for all } \quad f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \tag{3.59}
\end{equation*}
$$

if and only if the function

$$
z \mapsto u(z)-\left\langle u(z), \bar{\eta}_{0}(z)\right\rangle_{\mathbb{C}^{m}} \bar{\eta}_{0}(z)
$$

belongs to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$.
Proof. The statement that $\bar{\eta}_{0} \dot{\wedge} u$ is orthogonal to $\bar{\eta}_{0} \dot{\wedge} \bar{z} \bar{f}$ in $L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)$ is equivalent to the equation $I=0$, where

$$
I=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\wedge} u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\lambda} e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\wedge^{2} \mathbb{C}^{m}} d \theta .
$$

By Proposition 2.1.19,

$$
I=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cc}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle u\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta .
$$

Notice that, since η_{0} is an inner function, $\left\|\bar{\eta}_{0}\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}, and hence

$$
I=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cc}
1 & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle u\left(e^{i \theta}\right), \overline{\eta_{0}}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle u\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta .
$$

Calculations yield

$$
\begin{aligned}
& I= \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle u\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
& \quad \quad\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}\left\langle u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m} d} d \theta \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle u\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
& \quad-\left\langle\left\langle u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \bar{\eta}_{0}\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle u\left(e^{i \theta}\right)-\left\langle u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \bar{\eta}_{0}\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta .
\end{aligned}
$$

Thus condition (3.59) holds if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\wedge} u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\wedge} e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\wedge^{2} \mathbb{C}^{m}} d \theta=0 \quad \text { for all } \quad f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle u\left(e^{i \theta}\right)-\left\langle u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \bar{\eta}_{0}\left(e^{i \theta}\right), e^{-i \theta} \bar{f}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta=0
$$

for all $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, and the latter equation holds if and only if

$$
u\left(e^{i \theta}\right)-\left\langle u\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \bar{\eta}_{0}\left(e^{i \theta}\right)
$$

belongs to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$.
Lemma 3.2.19. In the notation of Theorem 3.2.10,

$$
\mathcal{L}_{1}^{\perp}=\left\{f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right): \beta_{0}^{*} f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)\right\}
$$

Proof. It is easy to see that $\mathcal{L}_{1}=\beta_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}$. A typical element of \mathcal{L}_{1} is $\beta_{0} \bar{z} \bar{g}$, for some $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$. A function $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ lies in \mathcal{L}_{1}^{\perp} if and only if

$$
\left\langle f, \beta_{0} \bar{z} \bar{g}\right\rangle_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

Equivalently, $f \in \mathcal{L}_{1}^{\perp}$ if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle f\left(e^{i \theta}\right), \beta_{0}\left(e^{i \theta}\right) e^{-i \theta} \bar{g}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\beta_{0}\left(e^{i \theta}\right)^{*} f\left(e^{i \theta}\right), e^{-i \theta} \bar{g}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m-1}} d \theta=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

The latter statement is equivalent to the assertion that $\beta_{0}^{*} f$ is orthogonal to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}$
in $L^{2}\left(\mathbb{T}, \mathbb{C}^{m-1}\right)$, which holds if and only if $\beta_{0}^{*} f$ belongs to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$.
Hence

$$
\mathcal{L}_{1}^{\perp}=\left\{f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right): \beta_{0}^{*} f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)\right\}
$$

as required.
Proposition 3.2.20. Under the assumptions of Theorem 3.2.10, let η_{0} be defined by equation (3.53) and let $W_{0}^{T}=\left(\begin{array}{ll}\eta_{0} & \bar{\beta}_{0}\end{array}\right)$ be a thematic completion of η_{0}, where β_{0} is an inner, co-outer, quasi-continuous function of type $m \times(m-1)$. Then,

$$
\beta_{0}^{*} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}
$$

Proof. By virtue of the fact that complex conjugation is a unitary operator on $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$, an equivalent statement is that $\beta_{0}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)=z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$. By Lemma 3.1.18, since β_{0} is an inner, co-outer and quasi-continuous function, there exists a matrix-valued function $B_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times m}\right)$ such that

$$
B_{0} \beta_{0}=I_{m-1}
$$

or, equivalently,

$$
\beta_{0}^{T} B_{0}^{T}=I_{m-1}
$$

Let $g \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$. Then,

$$
g=\left(\beta_{0}^{T} B_{0}^{T}\right) g \in \beta_{0}^{T} B_{0}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right) \subseteq \beta_{0}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

Hence

$$
z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right) \subseteq \beta_{0}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

Note that, since $\beta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times(m-1)}\right), \beta_{0}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right) \subseteq z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$, and so,

$$
z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right) \subseteq \beta_{0}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subseteq z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

Thus

$$
\beta_{0}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)=z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

Proposition 3.2.21. In the notation of Theorem 3.2.10, let $\eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ be a vectorvalued inner function given by equation (3.53), let $W_{0}^{T}=\left(\begin{array}{ll}\eta_{0} & \bar{\beta}_{0}\end{array}\right)$ be a thematic completion of η_{0} given by equation (3.54), and let

$$
\mathcal{L}_{1}=W_{0}^{*}\binom{0}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}}
$$

Then,

$$
\bar{\eta}_{0} \dot{\wedge} \mathcal{L}_{1}=\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and the operator

$$
\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right): \mathcal{L}_{1} \rightarrow \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

is unitary.
Proof. Let us first prove that $\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subseteq \bar{\eta}_{0} \dot{\wedge} \mathcal{L}_{1}$. Consider an element

$$
\bar{\eta}_{0} \dot{\wedge} f \in \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

where $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Note that, since W_{0}^{T} is unitary valued, we have

$$
\begin{equation*}
\bar{\eta}_{0} \eta_{0}^{T}+\beta_{0} \beta_{0}^{*}=I_{m} \tag{3.60}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\bar{\eta}_{0} \dot{\wedge} f & =\bar{\eta}_{0} \dot{\wedge}\left(\bar{\eta}_{0} \eta_{0}^{T}+\beta_{0} \beta_{0}^{*}\right) f \\
& =\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{0} \eta_{0}^{T} f+\bar{\eta}_{0} \dot{\wedge} \beta_{0} \beta_{0}^{*} f \\
& =0+\bar{\eta}_{0} \dot{\wedge} \beta_{0} \beta_{0}^{*} f
\end{aligned}
$$

the last equality following by the pointwise linear dependence of $\bar{\eta}_{0}$ and $\bar{\eta}_{0}\left(\eta_{0}^{T} f\right)$ on \mathbb{D}. By Proposition 3.2.20,

$$
\beta_{0}^{*} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}
$$

and, by the definition of \mathcal{L}_{1}, we have

$$
\mathcal{L}_{1}=\beta_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}
$$

Hence, for $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$,

$$
\bar{\eta}_{0} \dot{\wedge} f=\bar{\eta}_{0} \dot{\wedge} \beta_{0} \beta_{0}^{*} f \in \bar{\eta}_{0} \dot{\wedge} \beta_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}
$$

and thus

$$
\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subseteq \bar{\eta}_{0} \dot{\wedge} \mathcal{L}_{1}
$$

Let us show

$$
\bar{\eta}_{0} \dot{\wedge} \mathcal{L}_{1} \subseteq \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

A typical element in $\bar{\eta}_{0} \dot{\wedge} \mathcal{L}_{1}$ is of the form

$$
\bar{\eta}_{0} \dot{\wedge} \beta_{0} g
$$

for some $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}$. By Proposition 3.2.20, there exists a $\phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\beta_{0}^{*} \phi=g$. Then

$$
\bar{\eta}_{0} \dot{\wedge} \beta_{0} g=\bar{\eta}_{0} \dot{\wedge} \beta_{0} \beta_{0}^{*} \phi
$$

By equation (3.60), we get

$$
\bar{\eta}_{0} \dot{\wedge} \beta_{0} g=\bar{\eta}_{0} \dot{\wedge}\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}\right) \phi=\bar{\eta}_{0} \dot{\wedge} \phi,
$$

the last equality following by pointwise linear dependence of $\bar{\eta}_{0}$ and $\bar{\eta}_{0}\left(\eta_{0}^{T} \phi\right)$ on \mathbb{D}. Thus

$$
\bar{\eta}_{0} \dot{\wedge} \beta_{0} g \in \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and so $\bar{\eta}_{0} \dot{\wedge} \mathcal{L}_{1} \subseteq \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Consequently

To prove the operator

$$
\left(\bar{\eta}_{0} \dot{\lambda} \cdot\right): \mathcal{L}_{1} \rightarrow \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

is unitary, it suffices to show that it is an isometry, since the preceding discussion asserts it is surjective. To this end, let $s \in \mathcal{L}_{1}$. Then,

$$
\begin{aligned}
\left\|\bar{\eta}_{0} \dot{\wedge} s\right\|_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}^{2} & =\left\langle\bar{\eta}_{0} \dot{\wedge} s, \bar{\eta}_{0} \dot{\wedge} s\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\wedge} s\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right) \dot{\wedge} s\left(e^{i \theta}\right)\right\rangle_{\wedge^{2} \mathbb{C}^{m}} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cc}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), s\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle s\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle s\left(e^{i \theta}\right), s\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta .
\end{aligned}
$$

By Proposition 3.2.1, $\left\|\bar{\eta}_{0}(z)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}. Moreover, since $s \in \mathcal{L}_{1}$, there exists a function $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}$ such that $s=\beta_{0} \psi$. Then

$$
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), s\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \beta_{0}\left(e^{i \theta}\right) \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=\left\langle\beta_{0}^{*}\left(e^{i \theta}\right) \bar{\eta}_{0}\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=0
$$

almost everywhere on \mathbb{T}, which follows by the fact that W_{0} is unitary-valued, and so

$$
\left(W_{0} W_{0}^{*}\right)(z)=\binom{\eta_{0}^{T}(z)}{\beta_{0}^{*}(z)}\left(\begin{array}{ll}
\bar{\eta}_{0}(z) & \beta_{0}(z)
\end{array}\right)=\left(\begin{array}{cc}
\eta_{0}^{T}(z) \bar{\eta}_{0}(z) & \eta_{0}^{T}(z) \beta_{0}^{T}(z) \\
\beta_{0}^{*}(z) \bar{\eta}_{0}(z) & \beta_{0}^{*}(z) \beta_{0}(z)
\end{array}\right)=I_{m}
$$

almost everywhere on \mathbb{T}.
Thus, for all $s \in \mathcal{L}_{1}$,

$$
\left\|\bar{\eta}_{0} \dot{\wedge} s\right\|_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}^{2}=\|s\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}^{2}
$$

which shows that the operator

$$
\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right): \mathcal{L}_{1} \rightarrow \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

is an isometry. We have proved it is also surjective, hence, by Theorem A.2.4, the operator is unitary.

Continuation of the proof of Theorem 3.2.10.
(iii). We have to prove that diagram (3.56) commutes. Recall that, by Lemma 3.1.17, the left hand square commutes, so it suffices to show that that the right hand square, namely

$$
\begin{array}{cc}
\mathcal{K}_{1} \xrightarrow{\xi_{0} \lambda_{j}} & \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=X_{1} \tag{3.61}\\
\downarrow^{\Gamma_{1}} & \downarrow T_{1} \\
\mathcal{L}_{1} \xrightarrow{\bar{\eta}_{0} \lambda_{;}} & \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=Y_{1},
\end{array}
$$

also commutes. That is, we would like to prove that, for all $x \in \mathcal{K}_{1}$,

$$
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=\bar{\eta}_{0} \dot{\wedge} \Gamma_{1}(x),
$$

where $\Gamma_{1}(x)=P_{\mathcal{L}_{1}}\left(\left(G-Q_{1}\right) x\right)$ for any function $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ that satisfies the following equations

$$
\left(G-Q_{1}\right) x_{0}=t_{0} y_{0}, \quad y_{0}^{*}\left(G-Q_{1}\right)=t_{0} x_{0}^{*} .
$$

By Proposition 3.2.17,

$$
\xi_{0} \dot{\wedge} \mathcal{K}_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

and so, for every $x \in \mathcal{K}_{1}$, there exists $\tilde{x} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ such that

$$
\xi_{0} \dot{\wedge} x=\xi_{0} \dot{\wedge} \tilde{x}
$$

Thus, for $x \in \mathcal{K}_{1}$,

$$
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=T_{1}\left(\xi_{0} \dot{\wedge} \tilde{x}\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) \tilde{x}\right),
$$

and

$$
\bar{\eta}_{0} \dot{\wedge} \Gamma_{1}(x)=\bar{\eta}_{0} \dot{\wedge} P_{\mathcal{L}_{1}}\left(G-Q_{1}\right) x .
$$

Hence to prove the commutativity of diagram (3.61), it suffices to show that, for all $x \in \mathcal{K}_{1}$,

$$
\left.P_{Y_{1}}\left[\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) \tilde{x}\right)\right]=\bar{\eta}_{0} \dot{\wedge} P_{\mathcal{L}_{1}}\left(G-Q_{1}\right) x
$$

in Y_{1}, where $\xi_{0} \dot{\wedge}(x-\tilde{x})=0$. By Proposition 3.2.21,

$$
\bar{\eta}_{0} \dot{\wedge} \mathcal{L}_{1}=\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=Y_{1}
$$

and so, for all $x \in \mathcal{K}_{1}, \bar{\eta}_{0} \dot{\wedge} P_{\mathcal{L}_{1}}\left(G-Q_{1}\right) x \in Y_{1}$. Let us show that, for $x \in \mathcal{K}_{1}$,

$$
\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) \tilde{x}-\bar{\eta}_{0} \dot{\wedge} P_{\mathcal{L}_{1}}\left(G-Q_{1}\right) x
$$

is orthogonal to Y_{1} in $L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)$, or equivalently, that for every $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$,

$$
\begin{equation*}
\left\langle\bar{\eta}_{0} \dot{\wedge}\left[\left(G-Q_{1}\right) \tilde{x}-P_{\mathcal{L}_{1}}\left(G-Q_{1}\right) x\right], \bar{\eta}_{0} \dot{\wedge} \bar{z} \bar{f}\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}=0 \tag{3.62}
\end{equation*}
$$

for $x \in \mathcal{K}_{1}$ and for any $\tilde{x} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ such that $\xi_{0} \dot{\wedge} \tilde{x}=\xi_{0} \dot{\wedge} x$. By Lemma 3.2.9,

$$
\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x=\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) \tilde{x} .
$$

Then equation (3.62) is equivalent to the equation

$$
\begin{equation*}
\left\langle\bar{\eta}_{0} \dot{\wedge} P_{\mathcal{L}_{1}^{\perp}}\left(G-Q_{1}\right) x, \bar{\eta}_{0} \dot{\wedge} \bar{z} \bar{f}\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{2} \mathbb{C}^{m}\right)}=0 \tag{3.63}
\end{equation*}
$$

for any $x \in \mathcal{K}_{1}$. By Lemma 3.2.18, equation (3.63) holds if and only if the function

$$
\begin{equation*}
z \mapsto\left[P_{\mathcal{L}_{1}^{\perp}}\left(G-Q_{1}\right) x\right](z)-\left\langle\left[P_{\mathcal{L}_{1}^{\perp}}\left(G-Q_{1}\right) x\right](z), \bar{\eta}_{0}(z)\right\rangle_{\mathbb{C}^{m}} \bar{\eta}_{0}(z) \tag{3.64}
\end{equation*}
$$

belongs to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. By Lemma 3.2.19, there exists a function $\psi \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ such that

$$
\begin{align*}
& P_{\mathcal{L}_{1}^{\perp}}\left(G-Q_{1}\right) x=\psi, \tag{3.65}\\
& \beta_{0}^{*} \psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right) .
\end{align*}
$$

Equation (3.65) implies

$$
\left(G-Q_{1}\right) x-\psi \in \mathcal{L}_{1}=\beta_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}
$$

Hence, to prove that the function defined by equation (3.64) belongs to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, we have to show that

$$
\psi-\left(\eta_{0}^{T} \psi\right) \bar{\eta}_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

Since $W_{0}=\left(\begin{array}{ll}\eta_{0} & \overline{\beta_{0}}\end{array}\right)^{T}$ is a unitary-valued function,

$$
\bar{\eta}_{0}(z) \eta_{0}^{T}(z)+\beta_{0}(z) \beta_{0}^{*}(z)=I_{m}
$$

almost everywhere on \mathbb{T}. Since $\eta_{0}^{T} \psi$ is a scalar-valued function,

$$
\begin{aligned}
\psi-\eta_{0}^{T} \psi \bar{\eta}_{0} & =\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) \psi \\
& =\beta_{0} \beta_{0}^{*} \psi \in \beta_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right) \subset H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
\end{aligned}
$$

Recall that $\beta_{0}^{*} \psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$, and so $\beta_{0} \beta_{0}^{*} \psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. Thus diagram (3.61) commutes. (iv). By Lemma 3.1.12,

$$
F_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right)
$$

Then, by Hartman's Theorem 3.1.2, the Hankel operator $H_{F_{1}}$ is compact, and by (iii),

$$
\left(\bar{\eta}_{0} \dot{\lambda} \cdot\right) \circ\left(U_{2} H_{F_{1}} U_{1}^{*}\right) \circ\left(\xi_{0} \dot{\lambda} \cdot\right)^{*}=T_{1}
$$

By (i) and (ii), the operators $U_{1}, U_{2},\left(\xi_{0} \dot{\wedge} \cdot\right)$ and $\left(\bar{\eta}_{0} \dot{\lambda} \cdot\right)$ are unitary. Hence T_{1} is a compact operator.
(v). Since diagram (3.56) is commutative and $U_{1}, U_{2},\left(\xi_{0} \dot{\lambda} \cdot\right)$ and $\left(\eta_{0} \dot{\lambda} \cdot\right)$ are unitaries,

$$
\left\|T_{1}\right\|=\left\|\Gamma_{1}\right\|=\left\|H_{F_{1}}\right\| .
$$

In what follows, we will prove an analogous statement to Theorem 3.2.10 for T_{2}. To this end, we need the following results.

Lemma 3.2.22. In the notation of Theorem 3.2.10, $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ are such that $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ is a Schmidt pair for the operator T_{1} corresponding to $\left\|T_{1}\right\|$. Then (i) there exist $x_{1} \in \mathcal{K}_{1}$ and $y_{1} \in \mathcal{L}_{1}$ such that $\left(x_{1}, y_{1}\right)$ is a Schmidt pair for the operator Γ_{1}; (ii) for any $x_{1} \in \mathcal{K}_{1}$ and $y_{1} \in \mathcal{L}_{1}$ such that

$$
\xi_{0} \dot{\wedge} x_{1}=\xi_{0} \dot{\wedge} v_{1}, \quad \bar{\eta}_{0} \dot{\wedge} y_{1}=\bar{\eta}_{0} \dot{\wedge} w_{1}
$$

the pair $\left(x_{1}, y_{1}\right)$ is a Schmidt pair for Γ_{1} corresponding to $\left\|\Gamma_{1}\right\|$.
Proof. (i). By Theorem 3.2.10, the diagram (3.56) commutes, $\left(\xi_{0} \dot{\wedge} \cdot\right)$ is unitary from \mathcal{K}_{1} to X_{1}, and ($\bar{\eta}_{0} \dot{\lambda} \cdot$) is unitary from \mathcal{L}_{1} to Y_{1}. Thus $\left\|\Gamma_{1}\right\|=\left\|T_{1}\right\|=t_{1}$. Moreover, by Lemma 3.1.17, the operator $\Gamma_{1}: \mathcal{K}_{1} \rightarrow \mathcal{L}_{1}$ is compact, hence there exist $x_{1} \in \mathcal{K}_{1}, y_{1} \in \mathcal{L}_{1}$ such that $\left(x_{1}, y_{1}\right)$ is a Schmidt pair for Γ_{1} corresponding to $\left\|\Gamma_{1}\right\|=t_{1}$.
(ii). Suppose that $x_{1} \in \mathcal{K}_{1}, y_{1} \in \mathcal{L}_{1}$ satisfy

$$
\begin{align*}
& \xi_{0} \dot{\wedge} x_{1}=\xi_{0} \dot{\wedge} v_{1} \tag{3.66}\\
& \bar{\eta}_{0} \dot{\wedge} y_{1}=\bar{\eta}_{0} \dot{\wedge} w_{1} \tag{3.67}
\end{align*}
$$

Let us show that $\left(x_{1}, y_{1}\right)$ is a Schmidt pair for Γ_{1} corresponding to t_{1}, that is,

$$
\Gamma_{1} x_{1}=t_{1} y_{1}, \quad \Gamma_{1}^{*} y_{1}=t_{1} x_{1}
$$

Since diagram (3.61) commutes,

$$
\begin{equation*}
T_{1} \circ\left(\xi_{0} \dot{\lambda} \cdot\right)=\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right) \circ \Gamma_{1}, \quad\left(\xi_{0} \dot{\lambda} \cdot\right)^{*} \circ T_{1}^{*}=\Gamma_{1}^{*} \circ\left(\bar{\eta}_{0} \dot{\lambda} \cdot\right)^{*} \tag{3.68}
\end{equation*}
$$

By hypothesis,

$$
\begin{equation*}
T_{1}\left(\xi_{0} \dot{\wedge} v_{1}\right)=t_{1}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right), \quad T_{1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right)=t_{1}\left(\xi_{0} \dot{\wedge} v_{1}\right) . \tag{3.69}
\end{equation*}
$$

Thus, by equations (3.67), (3.68) and (3.69),

$$
\begin{aligned}
\Gamma_{1} x_{1} & =\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right)^{*} T_{1}\left(\xi_{0} \dot{\wedge} v_{1}\right) \\
& =\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right)^{*} t_{1}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right) \\
& =t_{1}\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} y_{1}\right) .
\end{aligned}
$$

Hence

$$
\Gamma_{1} x_{1}=t_{1}\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right) y_{1}=t_{1} y_{1}
$$

By equation (3.66),

$$
x_{1}=\left(\xi_{0} \dot{\wedge} \cdot\right)^{*}\left(\xi_{0} \dot{\wedge} v_{1}\right),
$$

and, by equation (3.67),

$$
\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right)=y_{1} .
$$

Thus

$$
\begin{aligned}
\Gamma_{1}^{*} y_{1} & =\Gamma_{1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right) \\
& =\left(\xi_{0} \dot{\wedge} \cdot\right)^{*} T_{1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right),
\end{aligned}
$$

the last equality following by the second equation of (3.68). By equations (3.66) and (3.69), we get

$$
T_{1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right)=t_{1}\left(\xi_{0} \dot{\wedge} v_{1}\right)=t_{1}\left(\xi_{0} \dot{\wedge} x_{1}\right),
$$

and so,

$$
\Gamma_{1}^{*} y_{1}=t_{1} x_{1} .
$$

Therefore $\left(x_{1}, y_{1}\right)$ is a Schmidt pair for Γ_{1} corresponding to $\left\|\Gamma_{1}\right\|=\left\|T_{1}\right\|=t_{1}$.
Lemma 3.2.23. Suppose $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ is a Schmidt pair for T_{1} corresponding to t_{1}. Let

$$
x_{1}=\left(I_{n}-\xi_{0} \xi_{0}^{*}\right) v_{1}, \quad y_{1}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1},
$$

and let

$$
\hat{x}_{1}=\alpha_{0}^{T} x_{1}, \quad \hat{y}_{1}=\beta_{0}^{*} y_{1} .
$$

Then
(i)

$$
\begin{equation*}
x_{1}=\bar{\alpha}_{0} \alpha_{0}^{T} x_{1}, \quad y_{1}=\beta_{0} \beta_{0}^{*} y_{1} . \tag{3.70}
\end{equation*}
$$

(ii) The pair $\left(\hat{x}_{1}, \hat{y}_{1}\right)$ is a Schmidt pair for $H_{F_{1}}$ corresponding to $\left\|H_{F_{1}}\right\|=t_{1}$.

Proof. (i). Since $V_{0}=\left(\begin{array}{ll}\xi_{0} & \bar{\alpha}_{0}\end{array}\right)$ is unitary-valued, $I_{n}-\xi_{0} \xi_{0}^{*}=\bar{\alpha}_{0} \alpha_{0}^{T}$, and so

$$
\begin{align*}
\bar{\alpha}_{0} \alpha_{0}^{T} x_{1} & =\left(I_{n}-\xi_{0} \xi_{0}^{*}\right)\left(I_{n}-\xi_{0} \xi_{0}^{*}\right) v_{1} \\
& =\left(I_{n}-2 \xi_{0} \xi_{0}^{*}+\xi_{0} \xi_{0}^{*} \xi_{0} \xi_{0}^{*}\right) v_{1} \\
& =\left(I_{n}-\xi_{0} \xi_{0}^{*}\right) v_{1}=x_{1} . \tag{3.71}
\end{align*}
$$

Similarly, since $W_{0}^{T}=\left(\begin{array}{ll}\eta_{0} & \bar{\beta}_{0}\end{array}\right)$ is unitary valued, $I_{m}-\bar{\eta}_{0} \eta_{0}^{T}=\beta_{0} \beta_{0}^{*}$, and so

$$
\begin{align*}
\beta_{0} \beta_{0}^{*} y_{1} & =\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right)\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1} \\
& =\left(I_{m}-2 \bar{\eta}_{0} \eta_{0}^{T}+\bar{\eta}_{0} \eta_{0}^{T} \bar{\eta}_{0} \eta_{0}^{T}\right) w_{1} \\
& =\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1}=y_{1} . \tag{3.72}
\end{align*}
$$

(ii) Recall that, by Lemma 3.1.17, the maps

$$
U_{1}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right) \rightarrow \mathcal{K}_{1}, \quad U_{2}: H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp} \rightarrow \mathcal{L}_{1}
$$

defined by

$$
U_{1} \chi=V_{0}\binom{0}{\chi}=\bar{\alpha}_{0} \chi, \quad U_{2} \psi=W_{0}^{*}\binom{0}{\psi}=\beta_{0} \psi
$$

for all $\chi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$ and all $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}$, are unitaries. By the commutativity of the diagram (3.56),

$$
\begin{equation*}
H_{F_{1}}=U_{2}^{*} \Gamma_{1} U_{1} . \tag{3.73}
\end{equation*}
$$

By Part (i), $x_{1} \in \mathcal{K}_{1}$ and $y_{1} \in \mathcal{L}_{1}$ and, by Proposition 3.2.1,

$$
\xi_{0} \dot{\wedge} x_{1}=\xi_{0} \dot{\wedge} v_{1}, \quad \bar{\eta}_{0} \dot{\wedge} y_{1}=\bar{\eta}_{0} \dot{\wedge} w_{1}
$$

Thus, by Lemma 3.2.22, $\left(x_{1}, y_{1}\right)$ is a Schmidt pair for the operator Γ_{1} corresponding to $t_{1}=\left\|\Gamma_{1}\right\|$, that is,

$$
\begin{equation*}
\Gamma_{1} x_{1}=t_{1} y_{1}, \quad \Gamma_{1}^{*} y_{1}=t_{1} x_{1} . \tag{3.74}
\end{equation*}
$$

To prove that the pair $\left(\hat{x}_{1}, \hat{y}_{1}\right)$ is a Schmidt pair for $H_{F_{1}}$ corresponding to $\left\|H_{F_{1}}\right\|=t_{1}$, we need to show that

$$
H_{F_{1}} \hat{x}_{1}=t_{1} \hat{y}_{1}, \quad H_{F_{1}}^{*} \hat{y}_{1}=t_{1} \hat{x}_{1} .
$$

By equations (3.73) and (3.70), we have

$$
\begin{align*}
H_{F_{1}} \hat{x}_{1} & =H_{F_{1}} \alpha_{0}^{T} \hat{x}_{1} \\
& =U_{2}^{*} \Gamma_{1} U_{1} \alpha_{0}^{T} x_{1}=U_{2}^{*} \Gamma_{1} \bar{\alpha}_{0} \alpha_{0}^{T} x_{1} \\
& =U_{2}^{*} \Gamma_{1} x_{1}=t_{1} \beta_{0}^{*} y_{1}=t_{1} \hat{y}_{1} . \tag{3.75}
\end{align*}
$$

Let us show that $H_{F_{1}}^{*} \hat{y}_{1}=t_{1} \hat{x}_{1}$. By equations (3.73) and (3.70), we have

$$
\begin{align*}
H_{F_{1}}^{*} \hat{y}_{1} & =H_{F_{1}}^{*} \beta_{0}^{*} y_{1} \\
& =U_{1}^{*} \Gamma_{1}^{*} U_{2} \beta_{0}^{*} y_{1}=U_{1}^{*} \Gamma_{1}^{*} \beta_{0} \beta_{0}^{*} y_{1} \\
& =U_{1}^{*} \Gamma_{1}^{*} y_{1}=t_{1} U_{1}^{*} x_{1}=t_{1} \alpha_{0}^{T} x_{1}=t_{1} \hat{x}_{1} . \tag{3.76}
\end{align*}
$$

Therefore $\left(\hat{x}_{1}, \hat{y}_{1}\right)$ is a Schmidt pair for $H_{F_{1}}$ corresponding to $\left\|H_{F_{1}}\right\|=t_{1}$.
Proposition 3.2.24. Let $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ be a Schmidt pair for T_{1} corresponding to t_{1} for some $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$, let $h_{1} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$, let

$$
x_{1}=\left(I_{n}-\xi_{0} \xi_{0}^{*}\right) v_{1}, \quad y_{1}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1},
$$

and let

$$
\hat{x}_{1}=\alpha_{0}^{T} x_{1}, \quad \hat{y}_{1}=\beta_{0}^{*} y_{1} .
$$

Then

$$
\begin{gathered}
\left\|\hat{x}_{1}(z)\right\|_{\mathbb{C}^{n-1}}=\left\|\hat{y}_{1}(z)\right\|_{\mathbb{C}^{m-1}}=\left|h_{1}(z)\right| \\
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{1}(z)\right|
\end{gathered}
$$

and

$$
\left\|\xi_{0}(z) \wedge v_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge w_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{m}}=\left|h_{1}(z)\right|
$$

almost everywhere on \mathbb{T}.
Proof. By Lemma 3.2.23, $\left(\hat{x}_{1}, \hat{y}_{1}\right)$ is a Schmidt pair for $H_{F_{1}}$ corresponding to $\left\|H_{F_{1}}\right\|=t_{1}$. Hence

$$
H_{F_{1}} \hat{x}_{1}=t_{1} \hat{y}_{1} \quad \text { and } \quad H_{F_{1}}^{*} \hat{y}_{i}=t_{1} \hat{x}_{1} .
$$

By Theorem D.2.4, for the Hankel operator $H_{F_{1}}$ and the Schmidt pair (\hat{x}_{1}, \hat{y}_{1}), we have

$$
\begin{equation*}
\left\|\hat{y}_{1}(z)\right\|_{\mathbb{C}^{m-1}}=\left\|\hat{x}_{1}(z)\right\|_{\mathbb{C}^{n-1}} \tag{3.77}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
By equations (3.70),

$$
x_{1}=\bar{\alpha}_{0} \alpha_{0}^{T} x_{1}=\bar{\alpha}_{0} \hat{x}_{1}, \quad y_{1}=\beta_{0} \beta_{0}^{*} y_{1}=\beta_{0} \hat{y}_{1} .
$$

Since $\bar{\alpha}_{0}(z)$ and $\beta_{0}(z)$ are isometric for almost every $z \in \mathbb{T}$,

$$
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left\|\hat{x}_{1}(z)\right\|_{\mathbb{C}^{n-1}} \text { and }\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}}=\left\|\hat{y}_{1}(z)\right\|_{\mathbb{C}^{m-1}}
$$

almost everywhere on \mathbb{T}. By equations (3.77), we deduce

$$
\begin{equation*}
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}} \tag{3.78}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
By Theorem 3.2.10, $\left(\xi_{0} \dot{\wedge} \cdot\right)$ is an isometry from \mathcal{K}_{1} to X_{1}, and $\left(\bar{\eta}_{0} \dot{\wedge} \cdot\right)$ is an isometry from \mathcal{L}_{1} to Y_{1}. By Proposition 3.2.1,

$$
\xi_{0} \dot{\wedge} x_{1}=\xi_{0} \dot{\wedge} v_{1}, \quad \bar{\eta}_{0} \dot{\wedge} y_{1}=\bar{\eta}_{0} \dot{\wedge} w_{1} .
$$

Hence

$$
\left\|\xi_{0}(z) \wedge v_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left\|\xi_{0}(z) \wedge x_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}
$$

almost everywhere on \mathbb{T}. Also

$$
\left\|\bar{\eta}_{0}(z) \wedge w_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{m}}=\left\|\bar{\eta}_{0}(z) \wedge y_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{m}}=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}}
$$

almost everywhere on \mathbb{T}. Thus, by equation (3.78),

$$
\left\|\xi_{0}(z) \wedge v_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge w_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{m}} \quad \text { almost everywhere on } \mathbb{T} .
$$

Recall that h_{1} is the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$. Hence

$$
\begin{gathered}
\left\|\xi_{0}(z) \wedge v_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge w_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{m}}=\left|h_{1}(z)\right|, \\
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{1}(z)\right|
\end{gathered}
$$

and

$$
\left\|\hat{x}_{1}(z)\right\|_{\mathbb{C}^{n-1}}=\left\|\hat{y}_{1}(z)\right\|_{\mathbb{C}^{m-1}}=\left|h_{1}(z)\right|
$$

almost everywhere on \mathbb{T}.

Definition 3.2.25. Given $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ and $0 \leq j \leq \min (m, n)$, define Ω_{j} to be the set of level j superoptimal analytic approximants to G, that is, the set of $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which minimise the tuple

$$
\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q), \ldots, s_{j}^{\infty}(G-Q)\right)
$$

with respect to the lexicographic ordering over $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$. For $Q \in \Omega_{j}$ we call $G-Q$ a level j superoptimal error function, and we denote by \mathcal{E}_{j} the set of all level j superoptimal error functions, that is

$$
\mathcal{E}_{j}=\left\{G-Q: Q \in \Omega_{j}\right\} .
$$

Proposition 3.2.26. Let m, n be positive integers such that $\min (m, n) \geq 2$. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. In line with the algorithm from Section 3.2.1, let $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfy

$$
\left(G-Q_{1}\right) x_{0}=t_{0} y_{0}, \quad\left(G-Q_{1}\right)^{*} y_{0}=t_{0} x_{0} .
$$

Let the spaces X_{1}, Y_{1} be given by

$$
X_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{n}\right), \quad Y_{1}=\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subset H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{m}\right)^{\perp}
$$

and consider the compact operator $T_{1}: X_{1} \rightarrow Y_{1}$ given by

$$
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right)
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Let $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ be a Schmidt pair for the operator T_{1} corresponding to $t_{1}=\left\|T_{1}\right\|$, let $h_{1} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$, let

$$
x_{1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) v_{1}, \quad y_{1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1}
$$

and let

$$
\xi_{1}=\frac{x_{1}}{h_{1}}, \quad \eta_{1}=\frac{\bar{z} \bar{y}_{1}}{h_{1}} .
$$

Then, there exist unitary-valued functions $\tilde{V}_{1}, \tilde{W}_{1}$ of types $(n-1) \times(n-1)$,
$(m-1) \times(m-1)$ respectively of the form

$$
\tilde{V}_{1} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
\alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1} \tag{3.79}
\end{array}\right)
$$

and

$$
\tilde{W}_{1}^{T} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1} \tag{3.80}
\end{array}\right),
$$

where α_{1}, β_{1} are inner, co-outer, quasi-continuous functions of types $(n-1) \times(n-2)$, $(m-1) \times(m-2)$ respectively, and all minors on the first columns of $\tilde{V}_{1}, \tilde{W}_{1}^{T}$ are in H^{∞}.

Furthermore, the set of all level 1 superoptimal error functions \mathcal{E}_{1} satisfies

$$
\mathcal{E}_{1}=W_{0}^{*}\left(\begin{array}{cc}
1 & 0 \tag{3.81}\\
0 & \tilde{W}_{1}^{*}
\end{array}\right)\left(\begin{array}{ccc}
t_{0} u_{0} & 0 & 0 \\
0 & t_{1} u_{1} & 0 \\
0 & 0 & F_{2}+H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right) \cap B\left(t_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{V}_{1}^{*}
\end{array}\right) V_{0}^{*},
$$

where $F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$, $u_{1}=\frac{\bar{z} \bar{h}_{1}}{h_{1}}$ is a quasi-continuous unimodular function and V_{0}, W_{0}^{T} are as in Theorem 3.2.10, and $B\left(t_{1}\right)$ is the closed ball of radius t_{1} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$.

Proof. By Theorem 3.2.10, the following diagram commutes

Let $\hat{x}_{1}=\alpha_{0}^{T} x_{1}, \hat{y}_{1}=\beta_{0}^{*} y_{1}$. By Lemma 3.2.23, $\left(\hat{x}_{1}, \hat{y}_{1}\right)$ is a Schmidt pair for $H_{F_{1}}$ corresponding to t_{1}. By equations (3.70),

$$
x_{1}=\bar{\alpha}_{0} \alpha_{0}^{T} x_{1}=\bar{\alpha}_{0} \hat{x}_{1} \text { and } y_{1}=\beta_{0} \beta_{0}^{*} y_{1}=\beta_{0} \hat{y}_{1} .
$$

We want to apply Lemma 3.1.12 to $H_{F_{1}}$ and the Schmidt pair (\hat{x}_{1}, \hat{y}_{1}) to find unitaryvalued functions $\tilde{V}_{1}, \tilde{W}_{1}$ such that, for any function $\tilde{Q}_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)$ which is at minimal distance from F_{1}, the following equation holds

$$
F_{1}-\tilde{Q}_{1}=\tilde{W}_{1}^{*}\left(\begin{array}{cc}
t_{1} u_{1} & 0 \\
0 & F_{2}
\end{array}\right) \tilde{V}_{1}^{*}
$$

for some $F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$. For this purpose we find the innerouter factorisations \hat{x}_{1} and $\bar{z} \overline{\hat{y}}_{1}$. By Proposition 3.2.24,

$$
\begin{align*}
& \left\|\hat{x}_{1}(z)\right\|_{\mathbb{C}^{n-1}}=\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left\|\xi_{0}(z) \dot{\wedge} v_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{n}}=\left|h_{1}(z)\right| \tag{3.83}\\
& \text { and }\left\|\hat{y}_{1}(z)\right\|_{\mathbb{C}^{m-1}}=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}}=\left\|\bar{\eta}_{0}(z) \dot{\wedge} w_{1}(z)\right\|_{\wedge^{2} \mathbb{C}^{m}}=\left|h_{1}(z)\right|
\end{align*}
$$

almost everywhere on \mathbb{T}. Equations (3.83) imply that $h_{1} \in H^{2}(\mathbb{D}, \mathbb{C})$ is the scalar outer factor
of both \hat{x}_{1} and $\bar{z} \overline{\hat{y}}_{1}$. By Lemma 3.1.12, $\hat{x}_{1}, \bar{z} \overline{\hat{y}}_{1}$ admit the inner-outer factorisations

$$
\hat{x}_{1}=\hat{\xi}_{1} h_{1}, \quad \bar{z} \overline{\hat{y}}_{1}=\hat{\eta}_{1} h_{1},
$$

for some inner vector-valued $\hat{\xi}_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$ and $\hat{\eta}_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$. Recall that

$$
\hat{x}_{1}=\alpha_{0}^{T} x_{1}=\alpha_{0}^{T} \xi_{1} h_{1}, \quad \bar{z} \overline{\hat{y}}_{1}=\bar{z} \beta_{0}^{T} \bar{y}_{1}=\beta_{0}^{T} \eta_{1} h_{1}
$$

which imply

$$
\hat{\xi}_{1}=\alpha_{0}^{T} \xi_{1} \quad \text { and } \quad \hat{\eta}_{1}=\beta_{0}^{T} \eta_{1} .
$$

Let us show that $\alpha_{0}^{T} \xi_{1}, \beta_{0}^{T} \eta_{1}$ are inner in order to apply Lemma 3.1.12.
Recall that, since V_{0}, W_{0}^{T} are unitary-valued, we have

$$
I_{n}-\xi_{0} \xi_{0}^{*}=\bar{\alpha}_{0} \alpha_{0}^{T}, \quad I_{m}-\bar{\eta}_{0} \eta_{0}^{T}=\beta_{0} \beta_{0}^{*}
$$

Therefore

$$
x_{1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) v_{1}=\bar{\alpha}_{0} \alpha_{0}^{T} v_{1}, \quad y_{1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1}=\beta_{0} \beta_{0}^{*} w_{1} .
$$

Then,

$$
\begin{equation*}
\alpha_{0}^{T} x_{1}=\alpha_{0}^{T} v_{1}, \quad \beta_{0}^{T} \bar{y}_{1}=\beta_{0}^{T} \bar{w}_{1}, \tag{3.84}
\end{equation*}
$$

and since

$$
\xi_{1}=\frac{x_{1}}{h_{1}}, \quad \eta_{1}=\frac{\bar{z} \bar{y}_{1}}{h_{1}},
$$

we find that the functions

$$
\alpha_{0}^{T} \xi_{1}=\frac{\alpha_{0}^{T} v_{1}}{h_{1}}, \quad \beta_{0}^{T} \eta_{1}=\frac{\beta_{0}^{T} \bar{z} \bar{w}_{1}}{h_{1}}
$$

are analytic. Furthermore, by Proposition 3.2.24,

$$
\left\|x_{1}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{1}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{1}(z)\right|=\left\|\hat{x}_{1}(z)\right\|_{\mathbb{C}^{n-1}}=\left\|\hat{y}_{1}(z)\right\|_{\mathbb{C}^{m-1}}
$$

almost everywhere on \mathbb{T}. Thus

$$
\left\|\alpha_{0}^{T}(z) x_{1}(z)\right\|_{\mathbb{C}^{n-1}}=\left\|\alpha_{0}^{T}(z) v_{1}(z)\right\|_{\mathbb{C}^{n-1}}=\left|h_{1}(z)\right|
$$

and

$$
\left\|\beta_{0}^{T}(z) \bar{z} \bar{y}_{1}(z)\right\|_{\mathbb{C}^{m-1}}=\left\|\beta_{0}^{T}(z) \bar{z} \bar{w}_{1}(z)\right\|_{\mathbb{C}^{m-1}}=\left|h_{1}(z)\right|
$$

almost everywhere on \mathbb{T}. Hence

$$
\left\|\alpha_{0}^{T}(z) \xi_{1}(z)\right\|_{\mathbb{C}^{n-1}}=1, \quad\left\|\beta_{0}^{T}(z) \eta_{1}(z)\right\|_{\mathbb{C}^{m-1}}=1
$$

almost everywhere on \mathbb{T}. Therefore $\alpha_{0}^{T} \xi_{1}, \beta_{0}^{T} \eta_{1}$ are inner functions. By Lemma 3.1.12, there exist inner, co-outer, quasi-continuous functions α_{1}, β_{1} of types $(n-1) \times(n-2)$ and $(m-1) \times(m-2)$ respectively such that

$$
\tilde{V}_{1}=\left(\begin{array}{ll}
\alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}
\end{array}\right), \quad \tilde{W}_{1}^{T}=\left(\begin{array}{ll}
\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1}
\end{array}\right)
$$

are unitary-valued and all minors on the first columns are in H^{∞}. Furthermore, by Lemma 3.1.12, every $\hat{Q}_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)$ which is at minimal distance from F_{1} satisfies

$$
F_{1}-\hat{Q}_{1}=\tilde{W}_{1}^{*}\left(\begin{array}{cc}
t_{1} u_{1} & 0 \\
0 & F_{2}
\end{array}\right) \tilde{V}_{1}^{*}
$$

for some $F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$ and u_{1} quasi-continuous unimodular function given by $u_{1}=\frac{\overline{h_{1}}}{h_{1}}$.

By Lemma 3.1.15, the set

$$
\tilde{\mathcal{E}}_{0}=\left\{F_{1}-\hat{Q}: \hat{Q} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right),\left\|F_{1}-\hat{Q}\right\|_{L^{\infty}}=t_{1}\right\}
$$

satisfies

$$
\tilde{\mathcal{E}}_{0}=\tilde{W}_{1}^{*}\left(\begin{array}{cc}
t_{1} u_{1} & 0 \\
0 & \left(F_{2}+H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)\right) \cap B\left(t_{1}\right)
\end{array}\right) V_{1}^{*}
$$

for some F_{2} as described above and for the closed ball of radius t_{1} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$ denoted by $B\left(t_{1}\right)$. Thus, by Lemma 3.1.15, \mathcal{E}_{1} admits the factorisation (3.81) as claimed.

Proposition 3.2.27. Suppose the function $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ minimises

$$
\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q)\right) .
$$

Then Q_{2} satisfies

$$
\left(G-Q_{2}\right) x_{0}=t_{0} y_{0}, \quad\left(G-Q_{2}\right)^{*} y_{0}=t_{0} x_{0}
$$

and

$$
\left(G-Q_{2}\right) x_{1}=t_{1} y_{1}, \quad\left(G-Q_{2}\right)^{*} y_{1}=t_{1} x_{1},
$$

where $x_{0}, x_{1}, y_{0}, y_{1}, t_{0}, t_{1}$ are as in Theorem 3.2.10.
Proof. Let $\left(x_{0}, y_{0}\right)$ be a Schmidt pair for the Hankel operator H_{G} corresponding to $\left\|H_{G}\right\|=t_{0}$. Then, by Theorem D.2.4, every $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which is at minimal distance from G satisfies

$$
\left(G-Q_{2}\right) x_{0}=t_{0} y_{0}, \quad\left(G-Q_{2}\right)^{*} y_{0}=t_{0} x_{0},
$$

and, by Lemma 3.1.12,

$$
W_{0}\left(G-Q_{2}\right) V_{0}=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & F_{1}
\end{array}\right),
$$

where $F_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-1) \times(n-1)}\right)$.

Moreover, by Lemma 3.1.15, the set $\mathcal{E}_{0}=\left\{G-Q: Q \in \Omega_{0}\right\}$ of all level 0 superoptimal error functions satisfies

$$
W_{0} \mathcal{E}_{0} V_{0}=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \tag{3.85}\\
0 & F_{1}+H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m-1 \times n-1}\right)
\end{array}\right) \cap B\left(t_{0}\right) .
$$

Suppose $Q_{2} \in \Omega_{0}$. Then

$$
W_{0}\left(G-Q_{2}\right) V_{0}=\binom{\eta_{0}^{T}}{\beta_{0}^{*}}\left(G-Q_{2}\right)\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right)=\left(\begin{array}{cc}
\eta_{0}^{T}\left(G-Q_{2}\right) \xi_{0} & \eta_{0}^{T}\left(G-Q_{2}\right) \bar{\alpha}_{0} \\
\beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0} & \beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0}
\end{array}\right) .
$$

By equation (3.85), for $\tilde{Q}_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)$ at minimal distance from F_{1},

$$
\left(\begin{array}{cc}
\eta_{0}^{T}\left(G-Q_{2}\right) \xi_{0} & \eta_{0}^{T}\left(G-Q_{2}\right) \bar{\alpha}_{0} \tag{3.86}\\
\beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0} & \beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0}
\end{array}\right)=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & F_{1}-\tilde{Q}_{1}
\end{array}\right)
$$

Note that, by Theorem D.2.3,

$$
\left\|F_{1}-\tilde{Q}_{1}\right\|_{\infty}=\left\|H_{F_{1}}\right\|,
$$

and, by Theorem 3.2.10 (part (v)), $\left\|H_{F_{1}}\right\|=t_{1}$.
Consideration of the $(2,2)$ entries of equation (3.86) yields

$$
\begin{equation*}
F_{1}-\tilde{Q}_{1}=\beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0} . \tag{3.87}
\end{equation*}
$$

Note that, if (\hat{x}_{1}, \hat{y}_{1}) is a Schmidt pair for $H_{F_{1}}$ corresponding to $t_{1}=\left\|H_{F_{1}}\right\|$, then, by Theorem D.2.4,

$$
\left(F_{1}-\tilde{Q}_{1}\right) \hat{x}_{1}=t_{1} \hat{y}_{1}, \quad\left(F-\hat{Q}_{1}\right)^{*} \hat{y}_{1}=t_{1} \hat{x}_{1} .
$$

In view of equation (3.87), the latter equations imply

$$
\begin{equation*}
\beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0} \hat{x}_{1}=t_{1} \hat{y}_{1}, \tag{3.88}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{0}^{T}\left(G-Q_{2}\right)^{*} \beta_{0} \hat{y}_{1}=t_{1} \hat{x}_{1} . \tag{3.89}
\end{equation*}
$$

By Lemma 3.2.23, we may choose the Schmidt pair for $H_{F_{1}}$ corresponding to $\left\|H_{F_{1}}\right\|$ to be

$$
\begin{equation*}
\hat{x}_{1}=\alpha_{0}^{T} x_{1}, \quad \hat{y}_{1}=\beta_{0}^{*} y_{1} . \tag{3.90}
\end{equation*}
$$

Recall that, by equations (3.70),

$$
\begin{equation*}
x_{1}=\bar{\alpha}_{0} \alpha_{0}^{T} x_{1} \tag{3.91}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{1}=\beta_{0} \beta_{0}^{*} y_{1} . \tag{3.92}
\end{equation*}
$$

In view of equations (3.88) and (3.90), we obtain

$$
\beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0} \alpha_{0}^{T} x_{1}=t_{1} \beta_{0}^{*} y_{1} .
$$

Multiplying both sides of the latter equation by β_{0}, we get

$$
\beta_{0} \beta_{0}^{*}\left(G-Q_{2}\right) \bar{\alpha}_{0} \alpha_{0}^{T} x_{1}=t_{1} \beta_{0} \beta_{0}^{*} y_{1},
$$

which, by equation (3.91), implies

$$
\beta_{0} \beta_{0}^{*}\left(G-Q_{2}\right) x_{1}=t_{1} \beta_{0} \beta_{0}^{*} y_{1},
$$

or equivalently,

$$
\beta_{0} \beta_{0}^{*}\left(\left(G-Q_{2}\right) x_{1}-t_{1} y_{1}\right)=0 .
$$

Since, by Theorem 3.2.10, $U_{2}^{*}=M_{\beta_{0} \beta_{0}^{*}}$ is unitary, the latter equation yields

$$
\left(G-Q_{2}\right) x_{1}=t_{1} y_{1} .
$$

Moreover, by equations (3.89) and (3.90), we obtain

$$
\alpha_{0}^{T}\left(G-Q_{2}\right)^{*} \beta_{0} \beta_{0}^{*} y_{1}=t_{1} \alpha_{0}^{T} x_{1} .
$$

Multiplying both sides of the latter equation by $\bar{\alpha}_{0}$, we get

$$
\bar{\alpha}_{0} \alpha_{0}^{T}\left(G-Q_{2}\right)^{*} \beta_{0} \beta_{0}^{*} y_{1}=t_{1} \bar{\alpha}_{0} \alpha_{0}^{T} x_{1} .
$$

In view of equation (3.92), the latter expression is equivalent to the equation

$$
\bar{\alpha}_{0} \alpha_{0}^{T}\left(G-Q_{2}\right)^{*} y_{1}=t_{1} \bar{\alpha}_{0} \alpha_{0}^{T} x_{1},
$$

or equivalently,

$$
\bar{\alpha}_{0} \alpha_{0}^{T}\left(\left(G-Q_{2}\right)^{*} y_{1}-t_{1} x_{1}\right)=0
$$

Since, by Theorem 3.2.10, $U_{1}^{*}=M_{\bar{\alpha}_{0} \alpha_{0}^{T}}$ is unitary, the latter equation yields

$$
\left(G-Q_{2}\right)^{*} y_{1}=t_{1} x_{1} .
$$

Therefore Q_{2} satisfies the required equations.
The next few propositions are in preparation for Theorem 3.2.37 on the compactness of T_{2}.

Proposition 3.2.28. For a thematic completion of the inner matrix-valued function $\beta_{0}^{T} \eta_{1}$ of the form $\tilde{W}_{1}^{T}=\left(\begin{array}{ll}\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1}\end{array}\right)$, where β_{1} is an inner, co-outer, quasi-continuous function of
type $(m-1) \times(m-2)$, the following equation holds

$$
\beta_{1}^{*} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)^{\perp}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}
$$

Proof. By virtue of the fact that complex conjugation is a unitary operator on $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$, an equivalent statement to Proposition 3.2.28 is that $\beta_{1}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)=z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$. By Lemma 3.1.18, there exists a matrix-valued function $B_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(m-1)}\right)$ such that

$$
B_{1} \beta_{1}=I_{m-2}
$$

or, equivalently,

$$
\beta_{1}^{T} B_{1}^{T}=I_{m-2}
$$

Let $f \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$. Then,

$$
f=\left(\beta_{1}^{T} B_{1}^{T}\right) f \in \beta_{1}^{T} B_{1}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)=\beta_{1}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

Hence

$$
z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right) \subseteq \beta_{1}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)
$$

Note that, since $\beta_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(m-2)}\right)$, we have

$$
\beta_{1}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right) \subseteq z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

Thus

$$
\beta_{1}^{T} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)=z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

Lemma 3.2.29. For a thematic completion of the inner matrix-valued function $\alpha_{0}^{T} \xi_{1}$ of the form $\tilde{V}_{1}=\left(\begin{array}{ll}\alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}\end{array}\right)$, where α_{1} is an inner, co-outer, quasi-continuous function of type $(n-1) \times(n-2)$, the following equation holds

$$
\alpha_{1}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)
$$

Proof. By Lemma 3.1.18, for the given α_{1}, there exists $A_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(n-2) \times(n-1)}\right)$ such that $A_{1} \alpha_{1}=I_{n-2}$. Equivalently, $\alpha_{1}^{T} A_{1}^{T}=I_{n-2}$.

Let $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. Then $g=\left(\alpha_{1}^{T} A_{1}^{T}\right) g \in \alpha_{1}^{T} A_{1}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$, which implies that $g \in \alpha_{1}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$. Hence $H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right) \subseteq \alpha_{1}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$.
For the reverse inclusion, note that since $\alpha_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(n-1) \times(n-2)}\right)$,

$$
\alpha_{1}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right) \subseteq H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)
$$

Thus

$$
\alpha_{1}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)
$$

Proposition 3.2.30. With the notation of Proposition 3.2.26, let unitary completions of ξ_{0} and $\alpha_{0}^{T} \xi_{1}$ be given by

$$
V_{0}=\left(\begin{array}{ll}
\xi_{0} & \overline{\alpha_{0}}
\end{array}\right), \quad \tilde{V}_{1}=\left(\begin{array}{ll}
\alpha_{0}^{T} \xi_{1} & \overline{\alpha_{1}}
\end{array}\right),
$$

where α_{0}, α_{1} are inner, co-outer, quasi-continuous matrix-valued functions of types $n \times(n-1)$ and $(n-1) \times(n-2)$ respectively. Let

$$
V_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{V}_{1}
\end{array}\right)
$$

and let

$$
\mathcal{K}_{2}=V_{0} V_{1}\binom{0_{2 \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)} .
$$

Then

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \mathcal{K}_{2}
$$

and the operator $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right): \mathcal{K}_{2} \rightarrow \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is unitary.
Proof. Let us first show that

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subseteq \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \mathcal{K}_{2} .
$$

Notice that, since V_{0}, V_{1} are unitary-valued functions, $V_{0} V_{1}$ is unitary-valued, that is,

$$
V_{0} V_{1} V_{1}^{*} V_{0}^{*}=I_{n}
$$

which is equivalent to the equation

$$
\begin{equation*}
\xi_{0} \xi_{0}^{*}+\bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \overline{\alpha_{0}} \alpha_{0}^{T}+\overline{\alpha_{0}} \overline{\alpha_{1}} \alpha_{1}^{T} \alpha_{0}^{T}=I_{n} \tag{3.93}
\end{equation*}
$$

Let $\omega \in \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ be given by $\omega=\xi_{0} \dot{\wedge} \xi_{1} \wedge f$, for some $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Then, by equation (3.93),

$$
\begin{aligned}
\omega & =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} I_{n} f \\
& =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge}\left(\xi_{0} \xi_{0}^{*}+\bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \overline{\alpha_{0}} \alpha_{0}^{T}+\overline{\alpha_{0}} \overline{\alpha_{1}} \alpha_{1}^{T} \alpha_{0}^{T}\right) f \\
& =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \xi_{0} \xi_{0}^{*}+\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \overline{\alpha_{0}} \alpha_{0}^{T} f+\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \overline{\alpha_{0}} \overline{\alpha_{1}} \alpha_{1}^{T} \alpha_{0}^{T} f \\
& =0+\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \overline{\alpha_{0}} \alpha_{0}^{T} f+\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \overline{\alpha_{0}} \overline{\alpha_{1}} \alpha_{1}^{T} \alpha_{0}^{T} f .
\end{aligned}
$$

Note that since V_{0} is unitary-valued, $\xi_{0} \xi_{0}^{*}+\bar{\alpha}_{0} \alpha_{0}^{T}=I_{n}$. Moreover, ξ_{k} and each column of $\xi_{k} \xi_{k}^{*}$ are pointwise linearly dependent on \mathbb{D} for $k=0,1$, and hence,

$$
\begin{aligned}
\omega & =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge}\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0} \alpha_{0}^{T} f+\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \overline{\alpha_{1}} \alpha_{1}^{T} \alpha_{0}^{T} f \\
& =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0} \alpha_{0}^{T} f-\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \xi_{0} \xi_{0}^{*} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0} \alpha_{0}^{T} f+\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \overline{\alpha_{0}} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T} f,
\end{aligned}
$$

thus

$$
\omega=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \overline{\alpha_{0}} \overline{\alpha_{1}} \alpha_{1}^{T} \alpha_{0}^{T} f
$$

By Lemma 3.2.15,

$$
\alpha_{0}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right),
$$

and, by Lemma 3.2.29,

$$
\alpha_{1}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)
$$

Observe that, by definition, $\mathcal{K}_{2}=\bar{\alpha}_{0} \bar{\alpha}_{1} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. Thus $\omega \in \xi_{0} \dot{\wedge} \xi_{1} \wedge \mathcal{K}_{2}$, and so,

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subseteq \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \mathcal{K}_{2}
$$

For the reverse inclusion, note that a typical element of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \mathcal{K}_{2}$ is of the form $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \overline{\alpha_{1}} g$, for some $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. By Lemma 3.2.29, there exists a vector-valued function $q \in$ $H^{2}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$ such that $\alpha_{1}^{T} q=g$. Then,

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \bar{\alpha}_{1} g=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} q
$$

Since $\tilde{V}_{1}=\left(\begin{array}{ll}\alpha_{0}^{T} \xi_{1} & \overline{\alpha_{1}}\end{array}\right)$ is unitary-valued, $\alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0}+\overline{\alpha_{1}} \alpha_{1}^{T}=I_{n-1}$. Hence

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} q=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0}\left(I_{n-1}-\alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0}\right) q=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} q-\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0} q
$$

Furthermore, since V_{0} is unitary-valued, $\xi_{0} \xi_{0}^{*}+\bar{\alpha}_{0} \alpha_{0}^{T}=I_{n}$. Thus

$$
\begin{aligned}
& \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} q-\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge}\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0} q \\
& =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} q-\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0} q+\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \xi_{0} \xi_{0}^{*} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0} q \\
& =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} q+0
\end{aligned}
$$

because of pointwise linear dependence.
By Lemma 3.2.15, there exists $\rho \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ such that $\alpha_{0}^{T} \rho=q$. Hence

$$
\begin{aligned}
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} q & =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \alpha_{0}^{T} \rho \\
& =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge}\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) \rho \\
& =\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \rho+0
\end{aligned}
$$

on account of the pointwise linear dependence. Clearly,

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \rho \in \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

Consequently,

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \mathcal{K}_{2} \subseteq \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

and thus

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \mathcal{K}_{2}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

Let us show that the operator $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right): \mathcal{K}_{2} \rightarrow \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is unitary. The foregoing paragraph asserts that the operator is surjective. It remains to be shown that it is an isometry. To this end, let $f \in \mathcal{K}_{2}$. Then

$$
\begin{aligned}
\left\|\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} f\right\|_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{n}\right)} & =\left\langle\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} f, \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} f\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{n}\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\xi_{0}\left(e^{i \theta}\right) \dot{\wedge} \xi_{1}\left(e^{i \theta}\right) \dot{\wedge} f\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right) \dot{\wedge} \xi_{1}\left(e^{i \theta}\right) \dot{\wedge} f\left(e^{i \theta}\right)\right\rangle_{\wedge^{3} \mathbb{C}^{n}} d \theta .
\end{aligned}
$$

By Proposition 2.1.19, the latter integral is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{lll}
\left\langle\xi_{0}\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle\xi_{0}\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle\xi_{0}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\left\langle\xi_{1}\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle\xi_{1}\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle\xi_{1}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\left\langle f\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle f\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \left\langle f\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta
$$

Note that, by Proposition 3.2.1, $\left\{\xi_{0}\left(e^{i \theta}\right), \xi_{1}\left(e^{i \theta}\right)\right\}$ is an orthonormal set for almost all $e^{i \theta}$ on \mathbb{T}. Moreover, since $\mathcal{K}_{2}=\bar{\alpha}_{0} \bar{\alpha}_{1} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$, then $f=\bar{\alpha}_{0} \bar{\alpha}_{1} \varphi$ for some $\varphi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. Hence

$$
\begin{aligned}
\left\langle\xi_{0}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & =\left\langle\xi_{0}\left(e^{i \theta}\right), \bar{\alpha}_{0}\left(e^{i \theta}\right) \bar{\alpha}_{1}\left(e^{i \theta}\right) \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
& =\left\langle\alpha_{0}^{T}\left(e^{i \theta}\right) \xi_{0}\left(e^{i \theta}\right), \bar{\alpha}_{1}\left(e^{i \theta}\right) \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n-1}}=0
\end{aligned}
$$

almost everywhere on \mathbb{T}, since V_{0} is unitary-valued. Similarly, since \tilde{V}_{1} is unitary valued, we deduce that

$$
\left\langle\xi_{1}\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}=\left\langle\alpha_{1}^{T}\left(e^{i \theta}\right) \alpha_{0}^{T}\left(e^{i \theta}\right) \xi_{1}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n-2}}=0
$$

almost everywhere on \mathbb{T}. Therefore

$$
\left\|\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge}\right\|_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{n}\right)}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \left\|f\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2}
\end{array}\right) d \theta=\|f\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)}^{2}
$$

that is, $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right): \mathcal{K}_{2} \rightarrow \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is an isometric operator. Thus, by Theorem A.2.4, the operator $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\Lambda} \cdot\right): \mathcal{K}_{2} \rightarrow \xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is unitary.

Remark 3.2.31. Let V_{0} and \tilde{V}_{1} be given by equations (3.7) and (3.79) respectively and let $V_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & \tilde{V}_{1}\end{array}\right)$. Since V_{0}, \tilde{V}_{1} and V_{1} are unitary-valued, we have

$$
\begin{gather*}
I_{n}=V_{0} V_{0}^{*}=\xi_{0} \xi_{0}^{*}+\bar{\alpha}_{0} \alpha_{0}^{T}, \tag{3.94}\\
I_{n-1}=\tilde{V}_{1} \tilde{V}_{1}^{*}=\alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0}+\bar{\alpha}_{1} \alpha_{1}^{T} . \tag{3.95}
\end{gather*}
$$

Lemma 3.2.32. Let V_{0} and \tilde{V}_{1} be given by equations (3.7) and (3.79) respectively. Then

$$
\begin{equation*}
I_{n}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}=\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T} \tag{3.96}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
Proof. By equation (3.95)

$$
\bar{\alpha}_{1} \alpha_{1}^{T}=I_{n-1}-\alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0},
$$

thus

$$
\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T}=\bar{\alpha}_{0}\left(I_{n-1}-\alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0}\right) \alpha_{0}^{T} .
$$

By equation (3.94),

$$
\bar{\alpha}_{0} \alpha_{0}^{T}=I_{n}-\xi_{0} \xi_{0}^{*} .
$$

Hence

$$
\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T}=\left(I_{n}-\xi_{0} \xi_{0}^{*}\right)-\left(I_{n}-\xi_{0} \xi_{0}^{*}\right) \xi_{1} \xi_{1}^{*}\left(I_{n}-\xi_{0} \xi_{0}^{*}\right) .
$$

Since, by Proposition 3.2.1, the set $\left\{\xi_{0}(z), \xi_{1}(z)\right\}$ is orthonormal in \mathbb{C}^{m} for almost every $z \in \mathbb{T}$,

$$
\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T}=I_{n}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}
$$

almost everywhere on \mathbb{T}.
Let us state certain identities that are useful for the next statements.
Remark 3.2.33. Let W_{0} and \tilde{W}_{1} be given by equations (3.7) and (3.80) respectively and let $W_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & \tilde{W}_{1}\end{array}\right)$. Since W_{0}, \tilde{W}_{1} and W_{1} are unitary-valued almost everywhere on \mathbb{T}, we have

$$
\begin{gather*}
I_{m}=W_{0}^{*} W_{0}=\bar{\eta}_{0} \eta_{0}^{T}+\beta_{0} \beta_{0}^{*}, \tag{3.97}\\
I_{m-1}=\tilde{W}_{1}^{*} \tilde{W}_{1}=\beta_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} \beta_{0}+\beta_{1} \beta_{1}^{*}, \tag{3.98}
\end{gather*}
$$

and

$$
\begin{aligned}
W_{0}^{*}\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{W}_{1}^{*}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{W}_{1}
\end{array}\right) W_{0} & =\left(\begin{array}{cc}
\bar{\eta}_{0} & \beta_{0}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & \\
0 & \left(\begin{array}{cc}
\beta_{0}^{*} \bar{\eta}_{1} & \beta_{1}
\end{array}\right)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \binom{\eta_{1}^{T} \beta_{0}}{\beta_{1}^{*}}
\end{array}\right)\binom{\eta_{0}^{T}}{\beta_{0}^{*}} \\
& =\left(\begin{array}{ccc}
\bar{\eta}_{0} & \beta_{0} \beta_{0}^{*} \bar{\eta}_{1} & \beta_{0} \beta_{1}
\end{array}\right)\left(\begin{array}{c}
\eta_{0}^{T} \\
\eta_{1}^{T} \beta_{0} \beta_{0}^{*} \\
\beta_{1}^{*} \beta_{0}^{*}
\end{array}\right) \\
& =\bar{\eta}_{0} \eta_{0}^{T}+\beta_{0} \beta_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} \beta_{0} \beta_{0}^{*}+\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} .
\end{aligned}
$$

Also, by equations (3.97) and (3.98),

$$
\begin{equation*}
\bar{\eta}_{0} \eta_{0}^{T}+\beta_{0} \beta_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} \beta_{0} \beta_{0}^{*}+\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*}=\bar{\eta}_{0} \eta_{0}^{T}+\beta_{0}\left(I_{m-1}-\beta_{1} \beta_{1}^{*}+\beta_{1} \beta_{1}^{*}\right) \beta_{0}^{*}=I_{m} . \tag{3.99}
\end{equation*}
$$

Lemma 3.2.34. Let W_{0} and \tilde{W}_{1} be given by equations (3.7) and (3.80) respectively. Then

$$
\begin{equation*}
I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}=\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} \tag{3.100}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
Proof. By equation (3.98)

$$
\beta_{1} \beta_{1}^{*}=I_{m-1}-\beta_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} \beta_{0},
$$

thus

$$
\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*}=\beta_{0}\left(I_{m-1}-\beta_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} \beta_{0}\right) \beta_{0}^{*} .
$$

By equation (3.97),

$$
\beta_{0} \beta_{0}^{*}=I_{m}-\bar{\eta}_{0} \eta_{0}^{T} .
$$

Hence

$$
\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right)-\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) \bar{\eta}_{1} \eta_{1}^{T}\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) .
$$

Since, by Proposition 3.2.1, the set $\left\{\bar{\eta}_{0}(z), \bar{\eta}_{1}(z)\right\}$ is orthonormal in \mathbb{C}^{m} for almost every $z \in \mathbb{T}$,

$$
\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*}=I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}
$$

almost everywhere on \mathbb{T}.
Proposition 3.2.35. Let η_{0}, η_{1} be defined by equations (3.9) and (3.19) respectively, and let β_{0}, β_{1} be inner, co-outer, quasi-continuous functions of types $m \times(m-1)$ and $(m-1) \times(m-2)$ respectively, such that the functions

$$
W_{0}^{T}=\left(\begin{array}{ll}
\eta_{0} & \bar{\beta}_{0}
\end{array}\right), \quad \tilde{W}_{1}^{T}=\left(\begin{array}{ll}
\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1}
\end{array}\right)
$$

are unitary-valued. Let

$$
W_{1}^{T}=\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{W}_{1}^{T}
\end{array}\right)
$$

and let

$$
\mathcal{L}_{2}=W_{0}^{*} W_{1}^{*}\binom{0_{2 \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}}
$$

Then

$$
\begin{equation*}
\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \mathcal{L}_{2}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \tag{3.101}
\end{equation*}
$$

and the operator $\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right): \mathcal{L}_{2} \rightarrow \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is unitary.
Proof. Observe that $\mathcal{L}_{2}=\beta_{0} \beta_{0} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}$. By virtue of the fact that complex conjugation is a unitary operator on $L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$, an equivalent statement to (3.101) is that

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)=\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) .
$$

Let us first show that $\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subseteq \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$.

Let $f \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$. Taking complex conjugates in equation (3.99), we have

$$
I_{m}=\eta_{0} \eta_{0}^{*}+\bar{\beta}_{0} \beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} \beta_{0}^{T}+\bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} \beta_{0}^{T},
$$

and so,

$$
\begin{align*}
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} f & =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge}\left(\eta_{0} \eta_{0}^{*}+\bar{\beta}_{0} \beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} \beta_{0}^{T}+\bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} \beta_{0}^{T}\right) f \\
& =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \eta_{0} \eta_{0}^{*} f+\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} \beta_{0}^{T} f+\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} \beta_{0}^{T} f \\
& =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} \beta_{0}^{T} f+\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} \beta_{0}^{T} f, \tag{3.102}
\end{align*}
$$

the last equality following by the pointwise linear dependence of η_{0} and $\eta_{0} \eta_{0}^{*} f$ on \mathbb{D}. Taking complex conjugates in equation (3.97), we have $\bar{\beta}_{0} \beta_{0}^{T}=I_{\mathbb{C}^{m}}-\eta_{0} \eta_{0}^{*}$. Hence equation (3.102) yields

$$
\begin{aligned}
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} f & =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge}\left(I_{\mathbb{C}^{m}}-\eta_{0} \eta_{0}^{*}\right) \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} \beta_{0}^{T} f+\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} \beta_{0}^{T} f \\
& =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} \beta_{0}^{T} f-\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \eta_{0} \eta_{0}^{*} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} \beta_{0}^{T} f+\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} \beta_{0}^{T} f \\
& =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} \beta_{0}^{T} f
\end{aligned}
$$

on account of the pointwise linear dependence.
By Proposition 3.2.20, there exists a vector-valued function $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$ such that $\beta_{0}^{T} f=g$. By Proposition 3.2.28, there exists a vector-valued function $\omega \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$ such that $\beta_{1}^{T} g=\omega$. Thus

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} \omega \in \eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

and hence

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right) \subseteq \eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

For the reverse inclusion, let

$$
u=\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} q \in \eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

for a vector-valued function $q \in z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$. By Proposition 3.2.28, there exists a vectorvalued function $\phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-1}\right)$ such that $q=\beta_{1}^{T} z \phi$. Then,

$$
u=\eta_{0} \dot{\wedge} \eta_{1} \dot{\lambda} \bar{\beta}_{0} \bar{\beta}_{1} \beta_{1}^{T} z \phi
$$

Taking complex conjugates in equations (3.97) and (3.98), we get

$$
\bar{\beta}_{0} \beta_{0}^{T}=I_{\mathbb{C}^{m}}-\eta_{0} \eta_{0}^{*} \quad \text { and } \quad \bar{\beta}_{1} \beta_{1}^{T}=I_{m-1}-\beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0}
$$

Hence

$$
u=\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0}\left(I_{m-1}-\beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0}\right) z \phi=\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} z \phi-\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} z \phi
$$

By equation (3.97), $\bar{\beta}_{0} \beta_{0}^{T}=I_{\mathbb{C}^{m}}-\eta_{0} \eta_{0}^{*}$, thus

$$
\begin{aligned}
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \beta_{0}^{T} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} z \phi & =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge}\left(I_{\mathbb{C}^{m}}-\eta_{0} \eta_{0}^{*}\right) \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} z \phi \\
& =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} z \phi+\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \eta_{0} \eta_{0}^{*} \eta_{1} \eta_{1}^{*} \bar{\beta}_{0} z \phi=0,
\end{aligned}
$$

because of pointwise linear dependence, and hence

$$
u=\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} z \phi
$$

By Proposition 3.2.20, there exists a vector-valued function $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$ such that $\phi=$ $\beta_{0}^{T} z \psi$. Hence

$$
\begin{aligned}
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} z \phi & =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \beta_{0}^{T} z \psi \\
& =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge}\left(I_{\mathbb{C}^{m}}-\eta_{0} \eta_{0}^{*}\right) z \psi \\
& =\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} z \psi
\end{aligned}
$$

by pointwise linear dependence. Therefore,

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right) \subseteq \eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

and thus

$$
\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)=\eta_{0} \dot{\wedge} \eta_{1} \dot{\wedge} \bar{\beta}_{0} \bar{\beta}_{1} z H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

To complete the proof, let us show that the operator

$$
\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right): \mathcal{L}_{2} \rightarrow \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

is unitary. Observe that the foregoing paragraph asserts the operator is surjective. Hence it suffices to prove that it is an isometry. To this end, let $v \in \mathcal{L}_{2}$. Then

$$
\left\|\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} v\right\|_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{m}\right)}^{2}=\left\langle\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} v, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} v\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{m}\right)},
$$

and, by Proposition 2.1.19,

$$
\begin{aligned}
& \left\langle\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} v, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} v\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{m}\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{lll}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), v\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), v\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle v\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle v\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle v\left(e^{i \theta}\right), v\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta .
\end{aligned}
$$

Notice that, by Proposition 3.2.1, $\left\{\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\}$ is an orthonormal set almost everywhere on \mathbb{T}. Further, since $\mathcal{L}_{2}=\beta_{0} \beta_{1} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}, v=\beta_{0} \beta_{1} \varphi$ for some $\varphi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}$. Hence

$$
\begin{aligned}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), v\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & =\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \beta_{0}\left(e^{i \theta}\right) \beta_{1}\left(e^{i \theta}\right) \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
& =\left\langle\beta_{0}^{*}\left(e^{i \theta}\right) \bar{\eta}_{0}\left(e^{i \theta}\right), \beta_{1}\left(e^{i \theta}\right) \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m-1}}=0,
\end{aligned}
$$

since W_{0}^{T} is unitary-valued almost everywhere on \mathbb{T}. Similarly, since, by Proposition 3.2.26, \tilde{W}_{1}^{T} is unitary-valued almost everywhere on \mathbb{T}, we obtain

$$
\left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), v\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=\left\langle\beta_{1}^{*}\left(e^{i \theta}\right) \beta_{0}^{*}\left(e^{i \theta}\right) \bar{\eta}_{1}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m-2}}=0 .
$$

Therefore

$$
\left\|\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} v\right\|_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{m}\right)}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \left\|v\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{m}}^{2}
\end{array}\right) d \theta=\|v\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}^{2},
$$

that is, the operator $\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge}\right): \mathcal{L}_{2} \rightarrow \bar{\eta}_{0} \dot{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is an isometry. Thus, by Theorem A.2.4, the operator is unitary.

Proposition 3.2.36. Let η_{0}, η_{1} be defined by equations (3.9) and (3.19) respectively and let β_{0}, β_{1} be inner, co-outer, quasi-continuous functions of types $m \times(m-1)$ and $(m-1) \times(m-2)$ respectively, such that the functions

$$
W_{0}^{T}=\left(\begin{array}{ll}
\eta_{0} & \bar{\beta}_{0}
\end{array}\right), \quad \tilde{W}_{1}^{T}=\left(\begin{array}{ll}
\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1}
\end{array}\right)
$$

are unitary-valued. Let

$$
\mathcal{L}_{2}=W_{0}^{*}\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{W}_{1}^{*}
\end{array}\right)\binom{0_{2 \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}}
$$

Then

$$
\mathcal{L}_{2}^{\perp}=\left\{f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right): \beta_{1}^{*} \beta_{0}^{*} f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)\right\}
$$

Proof. Clearly $\mathcal{L}_{2}=\beta_{0} \beta_{1} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}$. The general element of $\beta_{0} \beta_{1} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}$ is $\beta_{0} \beta_{1} \bar{z} \bar{g}$ for $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$. A function $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ belongs to \mathcal{L}_{2}^{\perp} if and only if

$$
\left\langle f, \beta_{0} \beta_{1} \bar{z} \bar{g}\right\rangle_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle f\left(e^{i \theta}\right), \beta_{0}\left(e^{i \theta}\right) \beta_{1}\left(e^{i \theta}\right) e^{-i \theta} \bar{g}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\beta_{1}^{*}\left(e^{i \theta}\right) \beta_{0}^{*}\left(e^{i \theta}\right) f\left(e^{i \theta}\right), e^{-i \theta} \bar{g}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m-2}} d \theta=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)
$$

which in turn is equivalent to the assertion that $\beta_{1}^{*} \beta_{0}^{*} f$ is orthogonal to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}$ in $L^{2}\left(\mathbb{T}, \mathbb{C}^{m-2}\right)$, which holds if and only if $\beta_{1}^{*} \beta_{0}^{*} f$ belongs to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$. Thus

$$
\mathcal{L}_{2}^{\perp}=\left\{f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right): \beta_{1}^{*} \beta_{0}^{*} f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)\right\}
$$

as required.

Theorem 3.2.37. Let m, n be positive integers such that $\min (m, n) \geq 2$. Let G be in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. Let $\left(\xi_{0} \dot{\wedge} v_{1}, \bar{\eta}_{0} \dot{\wedge} w_{1}\right)$ be a Schmidt pair for the operator T_{1}, as given in equation (3.15), corresponding to $t_{1}=\left\|T_{1}\right\| \neq 0$, let $h_{1} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$, let

$$
x_{1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}\right) v_{1}, \quad y_{1}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) w_{1},
$$

and let

$$
\xi_{1}=\frac{x_{1}}{h_{1}}, \quad \bar{\eta}_{1}=\frac{z y_{1}}{\bar{h}_{1}} .
$$

Let

$$
V_{0}=\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right), \quad W_{0}^{T}=\left(\begin{array}{ll}
\eta_{0} & \bar{\beta}_{0}
\end{array}\right)
$$

be given by equations (3.7), and let

$$
\tilde{V}_{1}=\left(\begin{array}{ll}
\alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}
\end{array}\right), \quad \tilde{W}_{1}^{T}=\left(\begin{array}{ll}
\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1}
\end{array}\right)
$$

be given by equations (3.79) and (3.80) respectively. Let

$$
X_{2}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad Y_{2}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

let

$$
\mathcal{K}_{2}=V_{0}\left(\begin{array}{cc}
1 & 0 \tag{3.103}\\
0 & \tilde{V}_{1}
\end{array}\right)\binom{0_{2 \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)}, \quad \mathcal{L}_{2}=W_{0}^{*}\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{W}_{1}^{*}
\end{array}\right)\binom{0_{2 \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}} .
$$

Consider the operator $T_{2}: X_{2} \rightarrow Y_{2}$ given by

$$
\begin{equation*}
T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x\right)=P_{Y_{2}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge}\left(G-Q_{2}\right) x\right), \tag{3.104}
\end{equation*}
$$

where $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfies

$$
\begin{equation*}
\left(G-Q_{2}\right) x_{i}=t_{i} y_{i}, \quad\left(G-Q_{2}\right)^{*} y_{i}=t_{i} x_{i} \quad \text { for } i=0,1 . \tag{3.105}
\end{equation*}
$$

Let the operator $\Gamma_{2}: \mathcal{K}_{2} \rightarrow \mathcal{L}_{2}$ be given by $\Gamma_{2}=P_{\mathcal{L}_{2}} M_{G-Q_{2}} \mid \mathcal{K}_{2}$. Then
(i) The maps $M_{\bar{\alpha}_{0} \bar{\alpha}_{1}}, M_{\beta_{0} \beta_{1}}$ are unitaries.
(ii) The maps $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right): \mathcal{K}_{2} \rightarrow X_{2},\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right): \mathcal{L}_{2} \rightarrow Y_{2}$ are unitaries.
(iii) The following diagram commutes

where $F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$ is the function defined in Proposition 3.2.26. (iv) T_{2} is a compact operator. (v) $\left\|T_{2}\right\|=\left\|\Gamma_{2}\right\|=\left\|H_{F_{2}}\right\|=t_{2}$, where $t_{2}=\left\|T_{2}\right\|$.

Proof. (i) follows from Lemma 3.1.16.
(ii) follows from Propositions 3.2.30 and 3.2.35.
(iii). By Proposition 3.2.8, T_{2} is well-defined and is independent of the choice of $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfying equations (3.105). We can choose Q_{2} which minimises $\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q)\right)$, and therefore satisfies equations (3.105). By Lemma 3.1.17 and Theorem D.2.4, the left hand side of diagram (3.106) commutes. Let us show the right hand side also commutes. A typical element of \mathcal{K}_{2} is of the form $\bar{\alpha}_{0} \bar{\alpha}_{1} x$ where $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. Then, by equation (3.104),

$$
T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \bar{\alpha}_{1} x\right)=P_{Y_{2}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge}\left(G-Q_{2}\right) \bar{\alpha}_{0} \bar{\alpha}_{1} x\right)
$$

By Proposition (3.2.26), every $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which minimises $\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q)\right)$ satisfies the following equation (see equation (3.81)),

$$
\left(G-Q_{2}\right) V_{0}\left(\begin{array}{cc}
1 & 0 \tag{3.107}\\
0 & \tilde{V}_{1}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
x
\end{array}\right)=W_{0}^{*}\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{W}_{1}^{*}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
F_{2} x
\end{array}\right)
$$

for some $F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$. This implies that

$$
\begin{equation*}
\left(G-Q_{2}\right) \bar{\alpha}_{0} \bar{\alpha}_{1} x=\beta_{0} \beta_{1} F_{2} x, \tag{3.108}
\end{equation*}
$$

for $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. Hence

$$
\begin{equation*}
T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \bar{\alpha}_{1} x\right)=P_{Y_{2}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \beta_{0} \beta_{1} F_{2} x\right) \tag{3.109}
\end{equation*}
$$

Furthermore,

$$
\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right) \Gamma_{2}\left(\bar{\alpha}_{0} \bar{\alpha}_{1} x\right)=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}}\left[\left(G-Q_{2}\right) \bar{\alpha}_{0} \bar{\alpha}_{1} x\right] .
$$

Hence, by equation (3.108),

$$
\begin{equation*}
\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right) \Gamma_{2}\left(\bar{\alpha}_{0} \bar{\alpha}_{1} x\right)=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}}\left(\beta_{0} \beta_{1} F_{2} x\right) \tag{3.110}
\end{equation*}
$$

To show commutativity of the right hand square in the diagram (3.106), we need to prove that, for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$,

$$
\begin{equation*}
T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \bar{\alpha}_{0} \bar{\alpha}_{1} x\right)=\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\Lambda} \cdot\right) \Gamma_{2}\left(\bar{\alpha}_{0} \bar{\alpha}_{1} x\right) . \tag{3.111}
\end{equation*}
$$

By equations (3.109) and (3.110), it is equivalent to show that

$$
\begin{equation*}
P_{Y_{2}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \beta_{0} \beta_{1} F_{2} x\right)=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}}\left(\beta_{0} \beta_{1} F_{2} x\right) . \tag{3.112}
\end{equation*}
$$

Therefore, we need to show that

$$
\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}}\left(\beta_{0} \beta_{1} F_{2} x\right) \in Y_{2}
$$

and that

$$
\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \beta_{0} \beta_{1} F_{2} x-\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}}\left(\beta_{0} \beta_{1} F_{2} x\right)
$$

is orthogonal to Y_{2}. By Proposition 3.2.35, $\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}}\left(\beta_{0} \beta_{1} F_{2} x\right)$ is indeed an element of Y_{2}. Furthermore,

$$
\begin{aligned}
\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \beta_{0} \beta_{1} F_{2} x-\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}}\left(\beta_{0} \beta_{1} F_{2} x\right) & =\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge}\left[\beta_{0} \beta_{1} F_{2} x-P_{\mathcal{L}_{2}}\left(\beta_{0} \beta_{1} F_{2} x\right)\right] \\
& =\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}^{\perp}}\left(\beta_{0} \beta_{1} F_{2} x\right) .
\end{aligned}
$$

Let us show that $\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{\frac{\perp}{2}}}\left(\beta_{0} \beta_{1} F_{2} x\right)$ is orthogonal to Y_{2}.
It is so if and only if

$$
\begin{equation*}
\left\langle\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} P_{\mathcal{L}_{2}^{\perp}}\left(\beta_{0} \beta_{1} F_{2} x\right), \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge}\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{3} \mathbb{C}^{m}\right)}=0 \quad \text { for every } g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \tag{3.113}
\end{equation*}
$$

Let $\Phi=P_{\mathcal{L}_{2}^{\perp}}\left(\beta_{0} \beta_{1} F_{2} x\right) \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$. By Proposition 3.2.36,

$$
\begin{equation*}
\beta_{1}^{*} \beta_{0}^{*} \Phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right) . \tag{3.114}
\end{equation*}
$$

Then, by Proposition 2.1.19, assertion (3.113) is equivalent to the following assertion

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{lll}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left.\bar{\eta}_{1}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\Phi\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta=0
$$

for every $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$, which in turn, by Proposition 3.2.1, is equivalent to the assertion

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccc}
1 & 0 & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
0 & 1 & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \left\langle\Phi\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta=0
$$

for every $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. The latter statement is equivalent to the assertion

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Phi\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & -\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{1}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}\left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
& -\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta=0
\end{aligned}
$$

for every $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$, which in turn is equivalent to the statement that

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} g^{*}\left(e^{i \theta}\right) \Phi\left(e^{i \theta}\right) & -g^{*}\left(e^{i \theta}\right) \bar{\eta}_{0} \eta_{0}^{T}\left(e^{i \theta}\right) \Phi\left(e^{i \theta}\right)\left(e^{i \theta}\right) \\
& -g^{*}\left(e^{i \theta}\right) \bar{\eta}_{1}\left(e^{i \theta}\right) \eta_{1}^{T}\left(e^{i \theta}\right) \Phi\left(e^{i \theta}\right) d \theta=0
\end{aligned}
$$

for every $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Equivalently

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g^{*}\left(e^{i \theta}\right)\left(I_{m}-\bar{\eta}_{0}\left(e^{i \theta}\right) \eta_{0}^{T}\left(e^{i \theta}\right)-\bar{\eta}_{1}\left(e^{i \theta}\right) \eta_{1}^{T}\left(e^{i \theta}\right)\right) \Phi\left(e^{i \theta}\right) d \theta=0
$$

for every $g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ if and only if

$$
\left(I_{m}-\bar{\eta}_{0}\left(e^{i \theta}\right) \eta_{0}^{T}\left(e^{i \theta}\right)-\bar{\eta}_{1}\left(e^{i \theta}\right) \eta_{1}^{T}\left(e^{i \theta}\right)\right) \Phi\left(e^{i \theta}\right)
$$

is orthogonal to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$, which occurs if and only if

$$
\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) \Phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

By Lemma 3.2.34,

$$
\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) \Phi=\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} \Phi .
$$

Recall that, by assertions (3.114), $\beta_{1}^{*} \beta_{0}^{*} \Phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$, and so

$$
\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} \Phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

Thus the right hand square in the diagram (3.106) commutes, and so the diagram (3.106) commutes.
(iv). By Proposition 3.2.26,

$$
F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)
$$

Thus, by Hartman's Theorem, the Hankel operator $H_{F_{2}}$ is compact. By (iii),

$$
\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right) \circ\left(M_{\beta_{0} \beta_{1}} H_{F_{2}} M_{\alpha_{0}^{T} \alpha_{1}^{T}}\right) \circ\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)^{*}=T_{2} .
$$

By (i) and (ii), the operators $M_{\bar{\alpha}_{0} \bar{\alpha}_{1}}, M_{\beta_{0} \beta_{1}},\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)$ and ($\left.\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)$ are unitaries. Hence T_{2} is a compact operator.
(v). Since diagram (3.106) commutes and the operators $M_{\bar{\alpha}_{0} \bar{\alpha}_{1}}, M_{\beta_{0} \beta_{1}},\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)$ and $\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)$ are unitaries, $\left\|T_{2}\right\|=\left\|\Gamma_{2}\right\|=\left\|H_{F_{2}}\right\|=t_{2}$.

Lemma 3.2.38. In the notation of Theorem 3.2.37, let $v_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $w_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ be such that $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)$ is a Schmidt pair for the operator T_{2} corresponding to $\left\|T_{2}\right\|$. Then
(i) There exist $x_{2} \in \mathcal{K}_{2}$ and $y_{2} \in \mathcal{L}_{2}$ such that $\left(x_{2}, y_{2}\right)$ is a Schmidt pair for the operator Γ_{2}.
(ii) For any $x_{2} \in \mathcal{K}_{2}$ and $y_{2} \in \mathcal{L}_{2}$ such that

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x_{2}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}, \quad \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} y_{2}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}
$$

the pair $\left(x_{2}, y_{2}\right)$ is a Schmidt pair for Γ_{2} corresponding to $\left\|\Gamma_{2}\right\|$.
Proof. (i). By Theorem 3.2.37, the diagram (3.106) commutes, $\left(\xi_{0} \wedge \xi_{1} \dot{\wedge} \cdot\right)$ is unitary from \mathcal{K}_{2} to $X_{2},\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)$ is unitary from \mathcal{L}_{2} to Y_{2} and $\left\|\Gamma_{2}\right\|=\left\|T_{2}\right\|=t_{2}$. Moreover, by the commutativity of diagram (3.106), the operator $\Gamma_{2}: \mathcal{K}_{2} \rightarrow \mathcal{L}_{2}$ is compact, hence there exist $x_{2} \in \mathcal{K}_{2}, y_{2} \in \mathcal{L}_{2}$ such that $\left(x_{2}, y_{2}\right)$ is a Schmidt pair for Γ_{2} corresponding to $\left\|\Gamma_{2}\right\|=t_{2}$.
(ii). Suppose that $x_{2} \in \mathcal{K}_{2}, y_{2} \in \mathcal{L}_{2}$ satisfy

$$
\begin{equation*}
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x_{2}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2} \tag{3.115}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} y_{2}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2} \tag{3.116}
\end{equation*}
$$

Let us show that $\left(x_{2}, y_{2}\right)$ is a Schmidt pair for Γ_{2}, that is,

$$
\Gamma_{2} x_{2}=t_{2} y_{2}, \quad \Gamma_{2}^{*} y_{2}=t_{2} x_{2}
$$

Since diagram (3.106) commutes,

$$
\begin{equation*}
T_{2} \circ\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)=\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right) \circ \Gamma_{2}, \quad\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\Lambda} \cdot\right)^{*} \circ T_{2}^{*}=\Gamma_{2}^{*} \circ\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)^{*} \tag{3.117}
\end{equation*}
$$

By hypothesis,

$$
\begin{equation*}
T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}\right)=t_{2}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right), \quad T_{2}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)=t_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}\right) . \tag{3.118}
\end{equation*}
$$

Thus, by equations (3.115), (3.116) and (3.118),

$$
\begin{aligned}
\Gamma_{2} x_{2} & =\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)^{*} T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}\right) \\
& =\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)^{*} t_{2}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right) \\
& =t_{2}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} y_{2}\right) .
\end{aligned}
$$

Hence

$$
\Gamma_{2} x_{2}=t_{2}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right) y_{2}=t_{2} y_{2}
$$

By equation (3.115),

$$
x_{2}=\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)^{*}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}\right)
$$

and, by equation (3.116),

$$
\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)=y_{2} .
$$

Thus

$$
\begin{aligned}
\Gamma_{2}^{*} y_{2} & =\Gamma_{2}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right) \\
& =\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)^{*} T_{2}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)
\end{aligned}
$$

last equality following by the second equation of (3.117). By equations (3.115) and (3.118), we get

$$
T_{2}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)=t_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}\right)=t_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x_{2}\right)
$$

and so,

$$
\Gamma_{2}^{*} y_{2}=t_{2} x_{2}
$$

Therefore $\left(x_{2}, y_{2}\right)$ is a Schmidt pair for Γ_{2} corresponding to $\left\|\Gamma_{2}\right\|$.
Lemma 3.2.39. Suppose $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)$ is a Schmidt pair for T_{2} corresponding to t_{2}. Let

$$
x_{2}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}\right) v_{2}, \quad y_{2}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) w_{2},
$$

and let

$$
\hat{x}_{2}=\alpha_{1}^{T} \alpha_{0}^{T} x_{2}, \quad \hat{y}_{2}=\beta_{1}^{*} \beta_{0}^{*} y_{2} .
$$

Then the pair $\left(\hat{x}_{2}, \hat{y}_{2}\right)$ is a Schmidt pair for $H_{F_{2}}$ corresponding to $\left\|H_{F_{2}}\right\|=t_{2}$.
Proof. Let us first show that $\hat{x}_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$ and $x_{2} \in \mathcal{K}_{2}$. Recall that $V_{0}=\left(\begin{array}{ll}\xi_{0} & \bar{\alpha}_{0}\end{array}\right)$ and $\tilde{V}_{1}=\left(\begin{array}{ll}\alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}\end{array}\right)$ are unitary-valued, that is, $\alpha_{0}^{T} \xi_{0}=0, \alpha_{1}^{T} \alpha_{0}^{T} \xi_{1}=0$,

$$
\begin{equation*}
I_{n}-\xi_{0} \xi_{0}^{*}=\bar{\alpha}_{0} \alpha_{0}^{T} \tag{3.119}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{n-1}-\alpha_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{\alpha}_{0}=\bar{\alpha}_{1} \alpha_{1}^{T} \tag{3.120}
\end{equation*}
$$

Then

$$
\begin{align*}
\hat{x}_{2} & =\alpha_{1}^{T} \alpha_{0}^{T} x_{2} \\
& =\alpha_{1}^{T} \alpha_{0}^{T}\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}\right) v_{2} \\
& =\alpha_{1}^{T} \alpha_{0}^{T} v_{2}-\alpha_{1}^{T} \alpha_{0}^{T} \xi_{0} \xi_{0}^{*} v_{2}-\alpha_{1}^{T} \alpha_{0}^{T} \xi_{1} \xi_{1}^{*} v_{2} \\
& =\alpha_{1}^{T} \alpha_{0}^{T} v_{2}, \tag{3.121}
\end{align*}
$$

which, by Propositions 3.2.15 and 3.2.29, implies that $\hat{x}_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. Moreover, by Lemma 3.2.32, we obtain

$$
\begin{aligned}
\bar{\alpha}_{0} \bar{\alpha}_{1} \hat{x}_{2} & =\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T} v_{2} \\
& =\left(I_{n}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}\right) v_{2}=x_{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
x_{2}=\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T} v_{2}=\bar{\alpha}_{0} \bar{\alpha}_{1} \hat{x}_{2}, \tag{3.122}
\end{equation*}
$$

and thus $x_{2} \in \mathcal{K}_{2}$.
Next, we shall show that $\hat{y}_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)^{\perp}$ and $y_{2} \in \mathcal{L}_{2}$. Notice that since $\tilde{W}_{1}^{T}=\left(\begin{array}{ll}\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1}\end{array}\right)$ and $W_{0}^{T}=\left(\begin{array}{ll}\eta_{0} & \bar{\beta}_{0}\end{array}\right)$ are unitary-valued, $\beta_{0}^{*} \bar{\eta}_{0}=0, \beta_{1}^{*} \beta_{0}^{*} \bar{\eta}_{1}=0$,

$$
\begin{equation*}
\left(I_{m-1}-\beta_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} \beta_{0}\right)=\beta_{1} \beta_{1}^{*} \tag{3.123}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right)=\beta_{0} \beta_{0}^{*} . \tag{3.124}
\end{equation*}
$$

We have

$$
\begin{align*}
\hat{y}_{2} & =\beta_{1}^{*} \beta_{0}^{*} y_{2} \\
& =\beta_{1}^{*} \beta_{0}^{*}\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) w_{2} \\
& =\beta_{1}^{*} \beta_{0}^{*} w_{2}-\beta_{1}^{*} \beta_{0}^{*} \bar{\eta}_{0} \eta_{0}^{T} w_{2}-\beta_{1}^{*} \beta_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} w_{2} \\
& =\beta_{1}^{*} \beta_{0}^{*} w_{2}, \tag{3.125}
\end{align*}
$$

which, by Propositions 3.2.20 and 3.2.28, implies that $\hat{y}_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp}$. By Lemma 3.2.34, we have

$$
\begin{aligned}
\beta_{0} \beta_{1} \hat{y}_{2} & =\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} w_{2} \\
& =\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) w_{2}=y_{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
y_{2}=\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} w_{2}=\beta_{0} \beta_{1} \hat{y}_{2}, \tag{3.126}
\end{equation*}
$$

and therefore $y_{2} \in \mathcal{L}_{2}$.
By Theorem 3.2.37, the maps

$$
M_{\bar{\alpha}_{0} \bar{\alpha}_{1}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right) \rightarrow \mathcal{K}_{2}, \quad M_{\beta_{0} \beta_{1}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)^{\perp} \rightarrow \mathcal{L}_{2},
$$

are unitaries and

$$
\begin{equation*}
H_{F_{2}}=M_{\beta_{0} \beta_{1}}^{*} \circ \Gamma_{2} \circ M_{\bar{\alpha}_{0} \bar{\alpha}_{1}} . \tag{3.127}
\end{equation*}
$$

We need to show that

$$
H_{F_{2}} \hat{x}_{2}=t_{2} \hat{y}_{2}, \quad H_{F_{2}}^{*} \hat{y}_{2}=t_{2} \hat{x}_{2} .
$$

By equations (3.121) and (3.122),

$$
\begin{equation*}
x_{2}=\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T} x_{2} . \tag{3.128}
\end{equation*}
$$

Hence equation (3.127) yields

$$
\begin{equation*}
H_{F_{2}} \hat{x}_{2}=\beta_{1}^{*} \beta_{0}^{*} \Gamma_{2} \bar{\alpha}_{0} \bar{\alpha}_{1} \hat{x}_{2}=\beta_{1}^{*} \beta_{0}^{*} \Gamma_{2} x_{2} . \tag{3.129}
\end{equation*}
$$

By Proposition 3.2.1(ii),

$$
\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x_{2}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}, \quad \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} y_{2}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2} .
$$

Thus, by Lemma 3.2.38, $\left(x_{2}, y_{2}\right)$ is a Schmidt pair for the operator Γ_{2} corresponding to $t_{2}=\left\|\Gamma_{2}\right\|$, that is,

$$
\begin{equation*}
\Gamma_{2} x_{2}=t_{2} y_{2}, \quad \Gamma_{2}^{*} y_{2}=t_{2} x_{2} \tag{3.130}
\end{equation*}
$$

Thus equation (3.129) yields

$$
H_{F_{2}} \hat{x}_{2}=\beta_{1}^{*} \beta_{0}^{*} \Gamma_{2} x_{2}=\beta_{1}^{*} \beta_{0}^{*} t_{2} y_{2}=t_{2} \hat{y}_{2}
$$

as required. Let us show that $H_{F_{2}}^{*} \hat{y}_{2}=t_{2} \hat{x}_{2}$. By equations (3.125) and (3.126),

$$
\begin{equation*}
y_{2}=\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} y_{2} . \tag{3.131}
\end{equation*}
$$

Hence, by equations (3.127) and (3.131),

$$
\begin{equation*}
H_{F_{2}}^{*} \beta_{1}^{*} \beta_{0}^{*} y_{2}=\alpha_{1}^{T} \alpha_{0}^{T} \Gamma_{2}^{*} y_{2}, \tag{3.132}
\end{equation*}
$$

and, by equations (3.130) and (3.132),

$$
H_{F_{2}}^{*} \hat{y}_{2}=\alpha_{1}^{T} \alpha_{0}^{T} \Gamma_{2}^{*} y_{2}=\alpha_{1}^{T} \alpha_{0}^{T} t_{2} x_{2}=t_{2} \hat{x}_{2} .
$$

Therefore $\left(\hat{x}_{2}, \hat{y}_{2}\right)$ is a Schmidt pair for $H_{F_{2}}$ corresponding to $\left\|H_{F_{2}}\right\|=t_{2}$.
Proposition 3.2.40. Let $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{0} \dot{\wedge} w_{2}\right)$ be a Schmidt pair for T_{2} corresponding to t_{2} for some $v_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $w_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$, let $h_{2} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}$, let

$$
x_{2}=\left(I_{n}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}\right) v_{2}, \quad y_{2}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) w_{2},
$$

and let

$$
\begin{equation*}
\hat{x}_{2}=\alpha_{1}^{T} \alpha_{0}^{T} x_{2} \quad \text { and } \quad \hat{y}_{2}=\beta_{1}^{*} \beta_{0}^{*} y_{2} . \tag{3.133}
\end{equation*}
$$

Then

$$
\begin{gathered}
\left\|\hat{x}_{2}(z)\right\|_{\mathbb{C}^{n-2}}=\left\|\hat{y}_{2}(z)\right\|_{\mathbb{C}^{m-2}}=\left|h_{2}(z)\right| \\
\left\|x_{2}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{2}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{2}(z)\right|
\end{gathered}
$$

and

$$
\left\|\xi_{0}(z) \wedge \xi_{1}(z) \wedge v_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge \bar{\eta}_{1}(z) \wedge w_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{m}}=\left|h_{2}(z)\right|
$$

almost everywhere on \mathbb{T}.
Proof. By Lemma 3.2.39, $\left(\hat{x}_{2}, \hat{y}_{2}\right)$ is a Schmidt pair for $H_{F_{2}}$ corresponding to $\left\|H_{F_{2}}\right\|=t_{2}$
(see Theorem 3.2.37 (v)). Hence

$$
H_{F_{2}} \hat{x}_{2}=t_{2} \hat{y}_{2} \quad \text { and } \quad H_{F_{2}}^{*} \hat{y}_{2}=t_{2} \hat{x}_{2} .
$$

Then, by Theorem D.2.4,

$$
\begin{equation*}
\left\|\hat{y}_{2}(z)\right\|_{\mathbb{C}^{m-2}}=\left\|\hat{x}_{2}(z)\right\|_{\mathbb{C}^{n-2}} \tag{3.134}
\end{equation*}
$$

almost everywhere on \mathbb{T}. Notice that, by equations (3.133),

$$
x_{2}=\bar{\alpha}_{0} \bar{\alpha}_{1} \hat{x}_{2},
$$

and since $\bar{\alpha}_{0}(z), \bar{\alpha}_{1}(z)$ are isometric for almost every $z \in \mathbb{T}$, we obtain

$$
\left\|x_{2}(z)\right\|_{\mathbb{C}^{n}}=\left\|\hat{x}_{2}(z)\right\|_{\mathbb{C}^{n-2}} .
$$

Furthermore, by equations (3.133),

$$
y_{2}=\beta_{0} \beta_{1} \hat{y}_{2},
$$

and since $\beta_{0}(z), \beta_{1}(z)$ are isometries almost everywhere on \mathbb{T}, we get

$$
\left\|y_{2}(z)\right\|_{\mathbb{C}^{m}}=\left\|\hat{y}_{2}(z)\right\|_{\mathbb{C}^{m-2}}
$$

almost everywhere on \mathbb{T}. By equation (3.134), we deduce that

$$
\begin{equation*}
\left\|x_{2}(z)\right\|_{\mathbb{C}^{n}}=\left\|\hat{x}_{2}(z)\right\|_{\mathbb{C}^{n-2}}=\left\|\hat{y}_{2}(z)\right\|_{\mathbb{C}^{m-2}}=\left\|y_{2}(z)\right\|_{\mathbb{C}^{m}} \tag{3.135}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
By Proposition 3.2.1,

$$
\xi_{0} \wedge \xi_{1} \wedge v_{2}=\xi_{0} \wedge \xi_{1} \dot{\wedge} x_{2}, \quad \bar{\eta}_{0} \wedge \bar{\eta}_{1} \wedge w_{2}=\bar{\eta}_{0} \wedge \bar{\eta}_{1} \wedge y_{2}
$$

By Theorem 3.2.37, $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)$ is an isometry from \mathcal{K}_{2} to X_{2}, and ($\left.\bar{\eta}_{0} \dot{\lambda}_{1} \dot{\wedge} \cdot\right)$ is an isometry from \mathcal{L}_{2} to Y_{2}. Hence

$$
\left\|\xi_{0}(z) \wedge \xi_{1}(z) \dot{\wedge} v_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{n}}=\left\|\xi_{0}(z) \wedge \xi_{1}(z) \wedge x_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{n}}=\left\|x_{2}(z)\right\|_{\mathbb{C}^{n}}
$$

almost everywhere on \mathbb{T}. Furthermore

$$
\left\|\bar{\eta}_{0}(z) \wedge \bar{\eta}_{1}(z) \wedge w_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{m}}=\left\|\bar{\eta}_{0}(z) \wedge \bar{\eta}_{1}(z) \wedge y_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{m}}=\left\|y_{2}(z)\right\|_{\mathbb{C}^{m}}
$$

almost everywhere on \mathbb{T}. Thus, by equation (3.135),

$$
\left\|\xi_{0}(z) \wedge \xi_{1}(z) \wedge v_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge \bar{\eta}_{1}(z) \wedge w_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{m}}
$$

almost everywhere on \mathbb{T}.

Recall that h_{2} is the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}$. Hence

$$
\begin{aligned}
&\left\|\hat{x}_{2}(z)\right\|_{\mathbb{C}^{n-2}}=\left\|\hat{y}_{2}(z)\right\|_{\mathbb{C}^{m-2}}=\left|h_{2}(z)\right|, \\
&\left\|x_{2}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{2}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{2}(z)\right|
\end{aligned}
$$

and

$$
\left\|\xi_{0}(z) \wedge \xi_{1}(z) \wedge v_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge \bar{\eta}_{1}(z) \wedge w_{2}(z)\right\|_{\wedge^{3} \mathbb{C}^{m}}=\left|h_{2}(z)\right|
$$

almost everywhere on \mathbb{T}.
Proposition 3.2.41. Let m, n be positive integers such that $\min (m, n) \geq 2$. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. In line with the algorithm from Section 3.2.1, let $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfy

$$
\begin{align*}
\left(G-Q_{2}\right) x_{0} & =t_{0} y_{0}, \quad\left(G-Q_{2}\right)^{*} y_{0}=t_{0} x_{0}, \tag{3.136}\\
\left(G-Q_{2}\right) x_{1} & =t_{1} y_{1}, \\
\left(G-Q_{2}\right)^{*} y_{1} & =t_{1} x_{1} .
\end{align*}
$$

Let the spaces X_{2}, Y_{2} be given by

$$
X_{2}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad Y_{2}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and consider the compact operator $T_{2}: X_{2} \rightarrow Y_{2}$ given by

$$
T_{2}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} x\right)=P_{Y_{2}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge}\left(G-Q_{2}\right) x\right)
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Let $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} w_{2}\right)$ be a Schmidt pair for the operator T_{2} corresponding to $t_{2}=\left\|T_{2}\right\|$, let $h_{2} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} v_{2}$, let

$$
x_{2}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}\right) v_{2}, \quad y_{2}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) w_{2}
$$

and let

$$
\xi_{2}=\frac{x_{2}}{h_{2}}, \quad \eta_{2}=\frac{\bar{z} \bar{y}_{2}}{h_{2}} .
$$

Then there exist unitary-valued functions $\tilde{V}_{2}, \tilde{W}_{2}$ of types $(n-2) \times(n-2)$ and $(m-2) \times(m-2)$ respectively of the form

$$
\tilde{V}_{2}=\left(\begin{array}{ll}
\alpha_{1}^{T} \alpha_{0}^{T} \xi_{2} & \bar{\alpha}_{2}
\end{array}\right), \quad \tilde{W}_{2}^{T}=\left(\begin{array}{ll}
\beta_{1}^{T} \beta_{0}^{T} \eta_{2} & \bar{\beta}_{2}
\end{array}\right)
$$

where α_{2}, β_{2} are inner, co-outer, quasi-continuous and all minors on the first columns of $\tilde{V}_{2}, \tilde{W}_{2}^{T}$ are in H^{∞}. Furthermore, the set \mathcal{E}_{2} of all level 2 superoptimal error functions for G satisfies

$$
\mathcal{E}_{2}=W_{0}^{*} W_{1}^{*}\left(\begin{array}{cc}
I_{2} & 0 \\
0 & \tilde{W}_{2}^{*}
\end{array}\right)\left(\begin{array}{cccc}
t_{0} u_{0} & 0 & 0 & 0 \\
0 & t_{1} u_{1} & 0 & 0 \\
0 & 0 & t_{2} u_{2} & 0 \\
0 & 0 & 0 & \left(F_{3}+H^{\infty}\right) \cap B\left(t_{2}\right)
\end{array}\right)\left(\begin{array}{cc}
I_{2} & 0 \\
0 & \tilde{V}_{2}^{*}
\end{array}\right) V_{1}^{*} V_{0}^{*},
$$

for some $F_{3} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-3) \times(n-3)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-3) \times(n-3)}\right)$, where $u_{3}=\frac{\bar{z} \bar{h}_{3}}{h_{3}}$ is a quasi-continuous unimodular function and $B\left(t_{2}\right)$ is the closed ball of radius t_{2} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-3) \times(n-3)}\right)$.

Proof. By Theorem 3.2.37, the following diagram commutes

Recall that the operators $M_{\bar{\alpha}_{0} \bar{\alpha}_{1}}, M_{\beta_{0} \beta_{1}},\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \cdot\right)$ and $\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \cdot\right)$ are unitaries.
By Proposition 3.2.8, T_{2} is well-defined and is independent of the choice of $Q_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfying conditions (3.136). Hence we may choose Q_{2} to minimise $\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q)\right)$, and then, by Proposition 3.2.27, the conditions (3.136) hold.

By Lemma 3.2.38, (x_{2}, y_{2}) defined above is a Schmidt pair for Γ_{2} corresponding to t_{2}. By Lemma 3.2.39, $\left(\hat{x}_{2}, \hat{y}_{2}\right)$ is a Schmidt pair for $H_{F_{2}}$ corresponding to t_{2}, where

$$
\hat{x}_{2}=\alpha_{1}^{T} \alpha_{0}^{T} x_{2}, \quad \hat{y}_{2}=\beta_{1}^{*} \beta_{0}^{*} y_{2} .
$$

We would like to apply Lemma 3.1.12 to $H_{F_{2}}$ and the Schmidt pair (\hat{x}_{2}, \hat{y}_{2}) to find unitaryvalued functions $\tilde{V}_{2}, \tilde{W}_{2}$ such that, for every $\tilde{Q}_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)$ which is at minimal distance from F_{2}, a factorisation of the form

$$
F_{2}-\tilde{Q}_{2}=\tilde{W}_{2}^{*}\left(\begin{array}{cc}
t_{2} u_{2} & 0 \\
0 & F_{3}
\end{array}\right) \tilde{V}_{2}^{*}
$$

is obtained, for some $F_{3} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$. For this purpose we find the inner-outer factorisations of \hat{x}_{2} and $\bar{z} \overline{\hat{y}}_{2}$. By Lemma 3.2.40

$$
\begin{equation*}
\left\|\hat{x}_{2}(z)\right\|_{\mathbb{C}^{n-2}}=\left|h_{2}(z)\right| \text { and }\left\|\hat{y}_{2}(z)\right\|_{\mathbb{C}^{m-2}}=\left|h_{2}(z)\right| \tag{3.138}
\end{equation*}
$$

almost everywhere on \mathbb{T}. Equations (3.138) imply that $h_{2} \in H^{2}(\mathbb{D}, \mathbb{C})$ is the scalar outer factor of both \hat{x}_{2} and $\bar{z} \overline{\hat{y}}_{2}$. By Lemma 3.1.12, $\hat{x}_{2}, \bar{z} \overline{\hat{y}}_{2}$ admit the inner outer factorisations

$$
\hat{x}_{2}=\hat{\xi}_{2} h_{2}, \quad \bar{z} \bar{y}_{2}=\hat{\eta}_{2} h_{2},
$$

for some inner $\hat{\xi}_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n-2}\right), \hat{\eta}_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m-2}\right)$. Then

$$
\hat{x}_{2}=\hat{\xi}_{2} h_{2}=\alpha_{1}^{T} \alpha_{0}^{T} x_{2}, \quad \bar{z} \overline{\hat{y}}_{2}=\hat{\eta}_{2} h_{2}=\bar{z} \beta_{1}^{T} \beta_{0}^{T} \bar{y}_{2},
$$

from which we obtain

$$
\hat{\xi}_{2}=\alpha_{1}^{T} \alpha_{0}^{T} \xi_{2}, \quad \hat{\eta}_{2}=\beta_{1}^{T} \beta_{0}^{T} \eta_{2}
$$

We would like to show that $\alpha_{1}^{T} \alpha_{0}^{T} \xi_{2}, \beta_{1}^{T} \beta_{0}^{T} \eta_{2}$ are inner in order to apply Lemma 3.1.12 and obtain \tilde{V}_{2} and \tilde{W}_{2}. Recall that, by Lemma 3.2.39,

$$
x_{2}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}\right) v_{2}=\bar{\alpha}_{0} \bar{\alpha}_{1} \alpha_{1}^{T} \alpha_{0}^{T} v_{2}, \quad y_{2}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T}\right) w_{2}=\beta_{0} \beta_{1} \beta_{1}^{*} \beta_{0}^{*} w_{2}
$$

Then,

$$
\alpha_{1}^{T} \alpha_{0}^{T} x_{2}=\alpha_{1}^{T} \alpha_{0}^{T} v_{2}, \quad \beta_{1}^{T} \beta_{0}^{T} \bar{y}_{2}=\beta_{1}^{T} \beta_{0}^{T} \bar{w}_{2}
$$

and since

$$
\xi_{2}=\frac{x_{2}}{h_{2}}, \quad \eta_{2}=\frac{\bar{z} \bar{y}_{2}}{h_{2}}
$$

we deduce that the functions

$$
\alpha_{1}^{T} \alpha_{0}^{T} \xi_{2}=\frac{\alpha_{1}^{T} \alpha_{0}^{T} v_{2}}{h_{2}}, \quad \beta_{1}^{T} \beta_{0}^{T} \eta_{2}=\frac{\beta_{1}^{T} \beta_{0}^{T} \bar{z} \bar{w}_{2}}{h_{2}}
$$

are analytic. Furthermore, $\left\|\xi_{2}(z)\right\|_{\mathbb{C}^{n}}=1$ and $\left\|\eta_{2}(z)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}, and, by equations (3.138),

$$
\left\|\alpha_{1}^{T}(z) \alpha_{0}^{T}(z) x_{2}(z)\right\|_{\mathbb{C}^{n-2}}=\left\|\alpha_{1}^{T}(z) \alpha_{0}^{T}(z) v_{2}(z)\right\|_{\mathbb{C}^{n-2}}=\left|h_{2}(z)\right|
$$

and

$$
\left\|\beta_{1}^{T}(z) \beta_{0}^{T}(z) \bar{y}_{2}(z)\right\|_{\mathbb{C}^{m-2}}=\left\|\beta_{1}^{T}(z) \beta_{0}^{T}(z) \bar{w}_{2}(z)\right\|_{\mathbb{C}^{m-2}}=\left|h_{2}(z)\right|
$$

almost everywhere on \mathbb{T}. Hence

$$
\left\|\alpha_{1}^{T}(z) \alpha_{0}^{T}(z) \xi_{2}(z)\right\|_{\mathbb{C}^{n-2}}=1, \quad\left\|\beta_{1}^{T}(z) \beta_{0}^{T}(z) \eta_{2}(z)\right\|_{\mathbb{C}^{m-2}}=1
$$

almost everywhere on \mathbb{T}. Thus $\alpha_{1}^{T} \alpha_{0}^{T} \xi_{2}, \beta_{1}^{T} \beta_{0}^{T} \eta_{2}$ are inner functions.
By Lemma 3.1.12, there exist inner, co-outer, quasi-continuous functions α_{2}, β_{2} of types $(n-2) \times(n-3),(m-2) \times(m-3)$ respectively such that the functions

$$
\tilde{V}_{2}=\left(\begin{array}{ll}
\alpha_{1}^{T} \alpha_{0}^{T} \xi_{2} & \bar{\alpha}_{2}
\end{array}\right), \quad \tilde{W}_{2}^{T}=\left(\begin{array}{ll}
\beta_{1}^{T} \beta_{0}^{T} \eta_{2} & \bar{\beta}_{2}
\end{array}\right)
$$

are unitary-valued with all minors on the first columns in H^{∞}.
Furthermore, by Lemma 3.1.12, every $\hat{Q}_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)$ which is at minimal distance from F_{2} satisfies

$$
F_{2}-\hat{Q}_{2}=\tilde{W}_{2}^{*}\left(\begin{array}{cc}
t_{2} u_{2} & 0 \\
0 & F_{3}
\end{array}\right) \tilde{V}_{2}^{*}
$$

for some $F_{3} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-3) \times(n-3)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-3) \times(n-3)}\right)$, and for the quasi-continuous unimodular function u_{2} given by $u_{2}=\frac{\bar{z} \bar{h}_{2}}{h_{2}}$. By Lemma 3.1.15, the set

$$
\tilde{\mathcal{E}}_{2}=\left\{F_{2}-\hat{Q}: \hat{Q} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right),\left\|F_{2}-\hat{Q}\right\|_{L^{\infty}}=t_{2}\right\}
$$

satisfies

$$
\tilde{\mathcal{E}}_{2}=\tilde{W}_{2}^{*}\left(\begin{array}{cc}
t_{2} u_{2} & 0 \\
0 & \left(F_{3}+H^{\infty}\right) \cap B\left(t_{2}\right)
\end{array}\right) V_{2}^{*}
$$

where $B\left(t_{2}\right)$ is the closed ball of radius t_{2} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-3) \times(n-3)}\right)$. Thus, by Proposition $3.2 .26, \mathcal{E}_{2}$ admits the factorisation claimed.

Proposition 3.2.42. Every $Q_{3} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which minimises

$$
\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q), s_{2}^{\infty}(G-Q)\right)
$$

satisfies

$$
\left(G-Q_{3}\right) x_{i}=t_{i} y_{i}, \quad\left(G-Q_{3}\right)^{*} y_{i}=t_{i} x_{i} \quad \text { for } \quad i=0,1,2 .
$$

Proof. By Proposition 3.2.27, every $Q_{3} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ that minimises

$$
\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q)\right)
$$

satisfies

$$
\left(G-Q_{3}\right) x_{i}=t_{i} y_{i}, \quad\left(G-Q_{3}\right)^{*} y_{i}=t_{i} x_{i} \quad \text { for } \quad i=0,1 .
$$

Hence it suffices to show that Q_{3} satisfies

$$
\left(G-Q_{3}\right) x_{2}=t_{2} y_{2}, \quad\left(G-Q_{3}\right)^{*} y_{2}=t_{2} x_{2} .
$$

By Theorem 3.2.37, the following diagram commutes

where the operator $\Gamma_{2}: \mathcal{K}_{2} \rightarrow \mathcal{L}_{2}$ is given by $\Gamma_{2}=\left.P_{\mathcal{L}_{2}} M_{G-Q_{2}}\right|_{\mathcal{K}_{2}}$ and $F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$ is constructed as follows.
By Lemma 3.1.12 and Proposition 3.2.26, there exist unitary-valued functions

$$
\tilde{V}_{1}=\left(\begin{array}{ll}
\alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}
\end{array}\right), \quad \tilde{W}_{1}^{T}=\left(\begin{array}{ll}
\beta_{0}^{T} \eta_{1} & \bar{\beta}_{1}
\end{array}\right),
$$

where α_{1}, β_{1} are inner, co-outer, quasi-continuous functions of types $(n-1) \times(n-2)$ and $(m-1) \times(m-2)$ respectively, and all minors on the first columns of $\tilde{V}_{1}, \tilde{W}_{1}^{T}$ are in H^{∞}. Furthermore, the set of all level 1 superoptimal functions $\mathcal{E}_{1}=\left\{G-Q: Q \in \Omega_{1}\right\}$ satisfies

$$
\mathcal{E}_{1}=W_{0}^{*}\left(\begin{array}{cc}
1 & 0 \tag{3.139}\\
0 & \tilde{W}_{1}^{*}
\end{array}\right)\left(\begin{array}{ccc}
t_{0} u_{0} & 0 & 0 \\
0 & t_{1} u_{1} & 0 \\
0 & 0 & \left(F_{2}+H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)\right) \cap B\left(t_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{V}_{1}^{*}
\end{array}\right) V_{0}^{*},
$$

for some $F_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$, for the quasi-continuous unimodular function $u_{1}=\frac{z \bar{h}_{1}}{h_{1}}$, where $B\left(t_{1}\right)$ is the closed ball of radius t_{1} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$.

Consider some $Q_{3} \in \Omega_{1}$, so that, according to equation (3.139),

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{W}_{1}
\end{array}\right) W_{0}\left(G-Q_{3}\right) V_{0}\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{V}_{1}
\end{array}\right)=\left(\begin{array}{ccc}
t_{0} u_{0} & 0 & 0 \\
0 & t_{1} u_{1} & 0 \\
0 & 0 & F_{2}-\tilde{Q}_{2}
\end{array}\right)
$$

for some $\tilde{Q}_{2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)$, that is,

$$
\left(\begin{array}{cc}
1 & 0 \tag{3.140}\\
0 & \binom{\eta_{1}^{T} \beta_{0}}{\beta_{1}^{*}}
\end{array}\right)\binom{\eta_{0}^{T}}{\beta_{0}^{*}}\left(G-Q_{3}\right)\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}
\end{array}\right)=\left(\begin{array}{ccc}
t_{0} u_{0} & 0 & 0 \\
0 & t_{1} u_{1} & 0 \\
0 & 0 & F_{2}-\tilde{Q}_{2}
\end{array}\right)
$$

Observe

$$
\binom{\eta_{0}^{T}}{\beta_{0}^{*}}\left(G-Q_{3}\right)\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right)=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0}
\end{array}\right)
$$

hence

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \binom{\eta_{1}^{T} \beta_{0}}{\beta_{1}^{*}}
\end{array}\right)\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}
\end{array}\right)
$$

is equal to

$$
\left(\begin{array}{ccc}
t_{0} u_{0} & 0 & 0 \\
0 & \eta_{1}^{T} \beta_{0} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} & \eta_{1}^{T} \beta_{0} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \bar{\alpha}_{1} \\
0 & \beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} & \beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \bar{\alpha}_{1}
\end{array}\right),
$$

and so equation (3.140) yields

$$
\left(\begin{array}{ccc}
t_{0} u_{0} & 0 & 0 \\
0 & \eta_{1}^{T} \beta_{0} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} & \eta_{1}^{T} \beta_{0} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \bar{\alpha}_{1} \\
0 & \beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1} & \beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \bar{\alpha}_{1}
\end{array}\right)=\left(\begin{array}{ccc}
t_{0} u_{0} & 0 & 0 \\
0 & t_{1} u_{1} & 0 \\
0 & 0 & F_{2}-\tilde{Q}_{2}
\end{array}\right)
$$

which is equivalent to the following equations

$$
\begin{gathered}
\eta_{1}^{T} \beta_{0} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1}=t_{1} u_{1} \\
\eta_{1}^{T} \beta_{0} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \bar{\alpha}_{1}=0 \\
\beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \alpha_{0}^{T} \xi_{1}=0
\end{gathered}
$$

and

$$
\begin{equation*}
\beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \bar{\alpha}_{1}=F_{2}-\tilde{Q}_{2} . \tag{3.141}
\end{equation*}
$$

By Theorem D.2.4 applied to $H_{F_{2}}$, if $\left(\hat{x}_{2}, \hat{y}_{2}\right)$ is a Schmidt pair for $H_{F_{2}}$ corresponding to $t_{2}=\left\|H_{F_{2}}\right\|$, then, for any \tilde{Q}_{2} which is at minimal distance from F_{2}, we have

$$
\begin{equation*}
\left(F_{2}-\tilde{Q}_{2}\right) \hat{x}_{2}=t_{2} \hat{y}_{2}, \quad\left(F_{2}-\tilde{Q}_{2}\right)^{*} \hat{y}_{2}=t_{2} \hat{x}_{2} . \tag{3.142}
\end{equation*}
$$

By equations (3.141) and (3.142),

$$
\begin{equation*}
\beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) \bar{\alpha}_{0} \bar{\alpha}_{1} \hat{x}_{2}=t_{2} \hat{y}_{2} \tag{3.143}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{1}^{T} \alpha_{0}^{T}\left(G-Q_{3}\right)^{*} \beta_{0} \beta_{1} \hat{y}_{2}=t_{2} \hat{x}_{2} . \tag{3.144}
\end{equation*}
$$

Recall that, by equations (3.122) and (3.126),

$$
\begin{equation*}
\bar{\alpha}_{0} \bar{\alpha}_{1} \hat{x}_{2}=x_{2} \quad \text { and } \quad \hat{y}_{2}=\beta_{1}^{*} \beta_{0}^{*} y_{2} . \tag{3.145}
\end{equation*}
$$

Hence, by equation (3.143), we obtain

$$
\beta_{1}^{*} \beta_{0}^{*}\left(G-Q_{3}\right) x_{2}=t_{2} \beta_{1}^{*} \beta_{0}^{*} y_{2},
$$

or equivalently,

$$
\beta_{1}^{*} \beta_{0}^{*}\left(\left(G-Q_{3}\right) x_{2}-t_{2} y_{2}\right)=0 .
$$

Since, by Theorem 3.2.37, $M_{\beta_{0} \beta_{1}}$ is unitary, the latter equation yields

$$
\left(G-Q_{3}\right) x_{2}=t_{2} y_{2} .
$$

Moreover, in view of equations (3.141), (3.142) and (3.145), equation (3.144) implies

$$
\alpha_{1}^{T} \alpha_{0}^{T}\left(G-Q_{3}\right)^{*} y_{2}=t_{2} \alpha_{1}^{T} \alpha_{0}^{T} x_{2},
$$

which in turn is equivalent to the equation

$$
\alpha_{1}^{T} \alpha_{0}^{T}\left(\left(G-Q_{3}\right)^{*} y_{2}-t_{2} x_{2}\right)=0
$$

By Theorem 3.2.37, $M_{\bar{\alpha}_{0} \bar{\alpha}_{1}}$ is unitary, hence the latter equation yields

$$
\left(G-Q_{3}\right)^{*} y_{2}=t_{2} x_{2}
$$

and therefore the assertion has been proved.

3.2.7 Compactness of the operator T_{j+1}

At this point, the reader is able to distinguish the method of proving the compactness of the operators T_{1} and T_{2}. Suppose we have applied steps $0, \ldots, j$ of the superoptimal analytic approximation algorithm from Section 3.2.1 to G, we have constructed

$$
\begin{aligned}
& t_{0} \geq t_{1} \geq \cdots \geq t_{j}>0 \\
& x_{0}, x_{1}, \cdots, x_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \\
& y_{0}, y_{1}, \cdots, y_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right) \\
& h_{0}, h_{1}, \cdots, h_{j} \in H^{2}(\mathbb{D}, \mathbb{C}) \text { outer } \\
& \xi_{0}, \xi_{1}, \cdots, \xi_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right) \text { pointwise orthonormal on } \mathbb{T} \\
& \eta_{0}, \eta_{1}, \cdots, \eta_{j} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right) \text { pointwise orthonormal on } \mathbb{T} \\
& X_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), X_{1}, \cdots, X_{j} \\
& Y_{0}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}, Y_{1}, \cdots, Y_{j} \\
& T_{0}, T_{1}, \cdots, T_{j} \text { compact operators, }
\end{aligned}
$$

and all the claimed properties hold. We shall apply a similar method to show that the operator T_{j+1} as given in equation (3.25) is compact.

Proposition 3.2.43. Let m, n be positive integers such that $\min (m, n) \geq 2$. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. In line with the algorithm from Section 3.2.1, let $Q_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfy

$$
\begin{equation*}
\left(G-Q_{j}\right) x_{i}=t_{i} y_{i}, \quad\left(G-Q_{j}\right)^{*} y_{i}=t_{i} x_{i} \quad \text { for } \quad i=0,1, \ldots, j-1 \tag{3.146}
\end{equation*}
$$

Let the spaces X_{j}, Y_{j} be given by

$$
X_{j}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \ldots \dot{\wedge} \xi_{j-1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), \quad Y_{j}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and consider the compact operator $T_{j}: X_{j} \rightarrow Y_{j}$ given by

$$
T_{j}\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \ldots \dot{\wedge} \xi_{j-1} \dot{\wedge} x\right)=P_{Y_{j}}\left(\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge}\left(G-Q_{j}\right) x\right)
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Let $\left(\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \ldots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}, \bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}\right)$ be a Schmidt pair for the operator T_{j} corresponding to $t_{j}=\left\|T_{j}\right\|$, let $h_{j} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} \ldots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}$, let

$$
x_{j}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*} \cdots-\xi_{j-1} \xi_{j-1}^{*}\right) v_{j}, \quad y_{j}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j-1} \eta_{j-1}^{T}\right) w_{j}
$$

and let

$$
\begin{equation*}
\xi_{j}=\frac{x_{j}}{h_{j}}, \quad \eta_{j}=\frac{\bar{z} \bar{y}_{j}}{h_{j}} . \tag{3.147}
\end{equation*}
$$

Let, for $i=0,1, \ldots, j-1$,

$$
\tilde{V}_{i}=\left(\begin{array}{ll}
\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i} & \bar{\alpha}_{i}
\end{array}\right), \quad \tilde{W}_{i}^{T}=\left(\begin{array}{ll}
\beta_{i-1}^{T} \cdots \beta_{0}^{T} \eta_{i} & \bar{\beta}_{i} \tag{3.148}
\end{array}\right)
$$

be unitary-valued functions, as described in Lemma 3.1.12 (see also Proposition 3.2.41 for \tilde{V}_{2} and $\left.\tilde{W}_{2}^{T}\right), u_{i}=\frac{\bar{z} \bar{h}_{i}}{h_{i}}$ are quasi-continuous unimodular functions, and

$$
V_{i}=\left(\begin{array}{cc}
I_{i} & 0 \\
0 & \tilde{V}_{i}
\end{array}\right), \quad W_{i}=\left(\begin{array}{cc}
I_{i} & 0 \\
0 & \tilde{W}_{i}
\end{array}\right) .
$$

There exist unitary-valued functions $\tilde{V}_{j}, \tilde{W}_{j}$ of the form

$$
\tilde{V}_{j}=\left(\begin{array}{ll}
\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{j} & \bar{\alpha}_{j}
\end{array}\right), \quad \tilde{W}_{j}^{T}=\left(\begin{array}{ll}
\beta_{j-1}^{T} \cdots \beta_{0}^{T} \eta_{j} & \bar{\beta}_{j} \tag{3.149}
\end{array}\right),
$$

where $\alpha_{0}, \ldots, \alpha_{j-1}$ and $\beta_{0}, \ldots, \beta_{j-1}$ are of types $n \times(n-1), \ldots,(n-j-1) \times(n-j-2)$ and $m \times(m-1), \ldots,(m-j-1) \times(m-j-2)$ respectively, and are inner, co-outer and quasi-continuous.

Furthermore, the set of all level j superoptimal error functions \mathcal{E}_{j} satisfies

$$
\mathcal{E}_{j}=W_{0}^{*} W_{1}^{*} \cdots W_{j}^{*}\left(\begin{array}{ccccc}
t_{0} u_{0} & 0 & \cdots & 0 & 0_{1 \times(n-j-1)} \tag{3.150}\\
0 & t_{1} u_{1} & \cdots & 0 & 0_{1 \times(n-j-1)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t_{j} u_{j} & 0 \\
0_{(m-j-1) \times 1} & 0_{(m-j-1) \times 1} & \cdots & \cdots & \left(F_{j+1}+H^{\infty}\right) \cap B\left(t_{j}\right)
\end{array}\right) V_{j}^{*} \cdots V_{0}^{*}
$$

for some $F_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$, for the quasi-continuous unimodular functions $u_{i}=\frac{\bar{z} \bar{h}_{i}}{h_{i}}$, for all $i=0, \ldots, j$, for the closed ball $B\left(t_{j}\right)$ of radius t_{j} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$, and

$$
V_{j}=\left(\begin{array}{cc}
I_{j} & 0 \\
0 & \tilde{V}_{j}
\end{array}\right), \quad W_{j}=\left(\begin{array}{cc}
I_{j} & 0 \\
0 & \tilde{W}_{j}
\end{array}\right)
$$

are unitary valued functions.

Proof. Suppose we have applied steps $0, \ldots, j$ of the algorithm from Section 3.2.1 and the following diagram commutes

$$
\begin{array}{rllc}
H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j}\right) & \xrightarrow{M_{\bar{\alpha}_{0} \cdots \bar{\alpha}_{j-1}}} & \mathcal{K}_{j} \xrightarrow{\xi_{(j-1)} \dot{\lambda}} & \xi_{(j-1)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=X_{j} \tag{3.151}\\
\downarrow & \downarrow^{\Gamma_{j}} & \downarrow_{j} \\
H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j}\right)^{\perp} & \xrightarrow{M_{\beta_{j}} \cdots \beta_{j-1}} & \mathcal{L}_{j} \xrightarrow{\bar{\eta}_{(j-1)} \dot{ }} & \bar{\eta}_{(j-1)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=Y_{j},
\end{array}
$$

where the maps

$$
\begin{gathered}
M_{\bar{\alpha}_{0} \cdots \bar{\alpha}_{j-1}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j}\right) \rightarrow \mathcal{K}_{j}: x \mapsto \bar{\alpha}_{0} \cdots \bar{\alpha}_{j-1} x, \\
M_{\beta_{0} \cdots \beta_{j-1}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j}\right)^{\perp} \rightarrow \mathcal{L}_{j}: y \mapsto \beta_{0} \cdots \beta_{j-1} y \\
\left(\xi_{(j-1)} \dot{\wedge} \cdot\right): \mathcal{K}_{j} \rightarrow X_{j} \text { and }\left(\bar{\eta}_{(j-1)} \dot{\wedge} \cdot\right): \mathcal{L}_{j} \rightarrow Y_{j}
\end{gathered}
$$

are unitaries.
Let $\left(\xi_{(j-1)} \dot{\wedge} v_{j}, \bar{\eta}_{(j-1)} \dot{\wedge} w_{j}\right)$ be a Schmidt pair for the compact operator T_{j}. Then $x_{j} \in \mathcal{K}_{j}, y_{j} \in \mathcal{L}_{j}$ are such that $\left(x_{j}, y_{j}\right)$ is a Schmidt pair for Γ_{j} corresponding to $t_{j}=\left\|\Gamma_{j}\right\|$, and $\left(\hat{x}_{j}, \hat{y}_{j}\right)$ is a Schmidt pair for $H_{F_{j}}$ corresponding to $t_{j}=\left\|H_{F_{j}}\right\|$, where

$$
\begin{equation*}
\hat{x}_{j}=\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} x_{j}, \quad \hat{y}_{j}=\beta_{j-1}^{*} \cdots \beta_{0}^{*} y_{j} . \tag{3.152}
\end{equation*}
$$

We would like to apply Lemma 3.1.12 to $H_{F_{j}}$ and the $\operatorname{Schmidt}$ pair (\hat{x}_{j}, \hat{y}_{j}) to find unitaryvalued functions $\tilde{V}_{j}, \tilde{W}_{j}$ such that, for every $\tilde{Q}_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right)$ which is at minimal distance from F_{j}, a factorisation of the form

$$
F_{j}-\tilde{Q}_{j}=\tilde{W}_{j}^{*}\left(\begin{array}{cc}
t_{j} u_{j} & 0 \\
0 & F_{j+1}
\end{array}\right) \tilde{V}_{j}^{*}
$$

is obtained, for some $F_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-2) \times(n-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-2) \times(n-2)}\right)$. For this purpose we find the inner-outer factorisations of \hat{x}_{j} and $\bar{z} \overline{\hat{y}}_{j}$.

By the inductive hypothesis (see Lemma 3.2.40 for $j=2$), we have

$$
\begin{array}{ll}
\left|h_{j}(z)\right| & =\left\|\xi_{0}(z) \wedge \ldots \wedge \xi_{j-1}(z) \wedge v_{j}(z)\right\|_{\wedge^{j+1} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge \ldots \wedge \bar{\eta}_{j-1}(z) \wedge w_{j}(z)\right\|_{\wedge^{j+1} \mathbb{C}^{m}}, \\
\left\|\hat{x}_{j}(z)\right\|_{\mathbb{C}^{n-j}} & =\left\|\hat{y}_{j}(z)\right\|_{\mathbb{C}^{m-j}}=\left|h_{j}(z)\right|, \text { and } \\
\left\|x_{j}(z)\right\|_{\mathbb{C}^{n}} & =\left\|y_{j}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{j}(z)\right| \tag{3.153}
\end{array}
$$

almost everywhere on \mathbb{T}. Equations (3.153) imply that $h_{j} \in H^{2}(\mathbb{D}, \mathbb{C})$ is the scalar outer factor of both \hat{x}_{j} and $\bar{z} \overline{\hat{y}}_{j}$.

By Lemma 3.1.12, $\hat{x}_{j}, \bar{z} \overline{\hat{y}}_{j}$ admit the inner-outer factorisations

$$
\begin{equation*}
\hat{x}_{j}=\hat{\xi}_{j} h_{j}, \quad \bar{z} \overline{\hat{y}}_{j}=\hat{\eta}_{j} h_{j}, \tag{3.154}
\end{equation*}
$$

where $\hat{\xi}_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n-j}\right)$ and $\hat{\eta}_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m-j}\right)$ are vector-valued inner functions.
By equations (3.152) and (3.154), we deduce that

$$
\hat{\xi}_{j}=\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{j}, \quad \hat{\eta}_{j}=\beta_{j-1}^{T} \cdots \beta_{0}^{T} \eta_{j} .
$$

We would like to show that $\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{j}, \beta_{j-1}^{T} \cdots \beta_{0}^{T} \eta_{j}$ are inner in order to apply Lemma 3.1.12 and obtain \tilde{V}_{j} and \tilde{W}_{j} as required. We have

$$
\begin{aligned}
\hat{x}_{j} & =\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} x_{j} \\
& =\alpha_{j-1}^{T} \cdots \alpha_{0}^{T}\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j-1} \xi_{j-1}^{*}\right) v_{j} \\
& =\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} v_{j}-\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{0} \xi_{0}^{*} v_{j}-\cdots-\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{j-1} \xi_{j-1}^{*} v_{j} .
\end{aligned}
$$

Recall that, by the inductive hypothesis, for $i=0, \ldots, j-1$, each

$$
\tilde{V}_{i}=\left(\begin{array}{cc}
\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i} & \bar{\alpha}_{i}
\end{array}\right)
$$

is unitary-valued, and so $\alpha_{i}^{T} \alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i}=0$. Hence, if $0 \leq i \leq j-1$, we have

$$
\alpha_{j-1}^{T} \cdots \alpha_{i+1}^{T} \alpha_{i}^{T} \cdots \alpha_{0}^{T} \xi_{i}=0
$$

Thus

$$
\hat{x}_{j}=\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} x_{j}=\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} v_{j}
$$

that is, $\hat{x}_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j}\right)$ and

$$
\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{j}=\frac{1}{h_{j}} \alpha_{j-1}^{T} \cdots \alpha_{0}^{T} x_{j}=\frac{1}{h_{j}} \alpha_{j-1}^{T} \cdots \alpha_{0}^{T} v_{j}
$$

is analytic. Moreover, by equations (3.153),

$$
\left\|\alpha_{j-1}^{T}(z) \cdots \alpha_{0}^{T}(z) x_{j}(z)\right\|_{\mathbb{C}^{n-j}}=\left\|\alpha_{j-1}^{T}(z) \cdots \alpha_{0}^{T}(z) v_{j}(z)\right\|_{\mathbb{C}^{n-j}}=\left|h_{j}(z)\right|
$$

almost everywhere on \mathbb{T}, and hence

$$
\left\|\alpha_{j-1}^{T}(z) \cdots \alpha_{0}^{T}(z) \xi_{j}(z)\right\|_{\mathbb{C}^{n-j}}=1
$$

almost everywhere on \mathbb{T}. Therefore $\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{j}$ is inner.
Furthermore

$$
\begin{aligned}
\hat{y}_{j} & =\beta_{j-1}^{*} \cdots \beta_{0}^{*} y_{j} \\
& =\beta_{j-1}^{*} \cdots \beta_{0}^{*}\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j-1} \eta_{j-1}^{T}\right) w_{j} \\
& =\beta_{j-1}^{*} \cdots \beta_{0}^{*} w_{j}-\beta_{j-1}^{*} \cdots \beta_{0}^{*} \bar{\eta}_{0} \eta_{0}^{T} w_{j}-\cdots-\beta_{j-1}^{*} \cdots \beta_{0}^{*} \bar{\eta}_{j-1} \eta_{j-1}^{T} w_{j} .
\end{aligned}
$$

Notice that, by the inductive hypothesis, for $i=0, \ldots, j-1$, each

$$
\tilde{W}_{i}^{T}=\left(\begin{array}{cc}
\beta_{i-1}^{T} \cdots \beta_{0}^{T} \eta_{i} & \bar{\beta}_{i}
\end{array}\right)
$$

is unitary-valued, and so $\beta_{i}^{*} \cdots \beta_{0}^{*} \bar{\eta}_{i}=0$. Hence, if $0 \leq i \leq j-1$, we have

$$
\beta_{j-1}^{*} \cdots \beta_{i+1}^{*} \beta_{i}^{*} \cdots \beta_{0}^{*} \bar{\eta}_{i}=0
$$

Thus

$$
\hat{y}_{j}=\beta_{j-1}^{*} \cdots \beta_{0}^{*} y_{j}=\beta_{j-1}^{*} \cdots \beta_{0}^{*} w_{j}
$$

that is, $\hat{y}_{j} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j}\right)^{\perp}$ and

$$
\beta_{j-1}^{T} \cdots \beta_{0}^{T} \eta_{j}=\frac{1}{h_{j}} \beta_{j-1}^{T} \cdots \beta_{0}^{T} \bar{z} \bar{y}_{j}=\frac{1}{h_{j}} \beta_{j-1}^{T} \cdots \beta_{0}^{T} \bar{z} \bar{w}_{j}
$$

is analytic. Further, by equations (3.153),

$$
\left\|\beta_{j-1}^{T}(z) \cdots \beta_{0}^{T}(z) \bar{z} \bar{y}_{j}(z)\right\|_{\mathbb{C}^{m-j}}=\left\|\beta_{j-1}^{T}(z) \cdots \beta_{0}^{T}(z) \bar{z} \bar{w}_{j}(z)\right\|_{\mathbb{C}^{m-j}}=\left|h_{j}(z)\right|
$$

almost everywhere on \mathbb{T}, and therefore

$$
\left\|\beta_{j-1}^{T}(z) \cdots \beta_{0}^{T}(z) \eta_{j}(z)\right\|_{\mathbb{C}^{m}}=1
$$

almost everywhere on \mathbb{T}, that is, $\beta_{j-1}^{T} \cdots \beta_{0}^{T} \eta_{j}$ is inner.
We apply Lemma 3.1.12 to the Hankel operator $H_{F_{j}}$ and the Schmidt pair $\left(\hat{x}_{j}, \hat{y}_{j}\right)$ to deduce that there exist inner, co-outer, quasi-continuous functions α_{j}, β_{j} of types $(n-j) \times(n-j-1),(m-j) \times(m-j-1)$ respectively such that

$$
\tilde{V}_{j}=\left(\begin{array}{cc}
\alpha_{j-1}^{T} \cdots \alpha_{0}^{T} \xi_{j} & \bar{\alpha}_{j}
\end{array}\right), \quad \tilde{W}_{j}^{T}=\left(\begin{array}{cc}
\beta_{j-1}^{T} \cdots \beta_{0}^{T} \eta_{j} & \bar{\beta}_{j}
\end{array}\right)
$$

are unitary-valued and all minors on the first columns of $\tilde{V}_{j}, \tilde{W}_{j}$ are in H^{∞}. Moreover, every function $\hat{Q}_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right)$, which is at minimal distance from F_{j}, satisfies

$$
F_{j}-\hat{Q}_{j}=\tilde{W}_{j}^{*}\left(\begin{array}{cc}
t_{j} u_{j} & 0 \\
0 & F_{j+1}
\end{array}\right) \tilde{V}_{j}^{*}
$$

for some $F_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$ and for the quasi-continuous unimodular function $u_{j}=\frac{\bar{z} \bar{h}_{j}}{h_{j}}$.

By Lemma 3.1.15, the set

$$
\tilde{\mathcal{E}}_{j}=\left\{F_{j}-\hat{Q}: \hat{Q} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right),\left\|F_{j}-\hat{Q}\right\|_{L^{\infty}}=t_{j}\right\}
$$

satisfies

$$
\tilde{\mathcal{E}}_{j}=\tilde{W}_{j}^{*}\left(\begin{array}{cc}
t_{j} u_{j} & 0 \\
0 & \left(F_{j+1}+H^{\infty}\right) \cap B\left(t_{j}\right)
\end{array}\right) \tilde{V}_{j}^{*}
$$

where $B\left(t_{j}\right)$ is the closed ball of radius t_{j} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$.
By the inductive hypothesis, the set of all level j superoptimal error functions \mathcal{E}_{j} satisfies
$\mathcal{E}_{j-1}=W_{0}^{*} W_{1}^{*} \cdots W_{j-1}^{*}\left(\begin{array}{ccccc}t_{0} u_{0} & 0 & \cdots & 0 & 0_{1 \times(n-j)} \\ 0 & t_{1} u_{1} & \cdots & 0 & 0_{1 \times(n-j)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & t_{j-1} u_{j-1} & 0 \\ 0_{(m-j) \times 1} & 0_{(m-j) \times 1} & \cdots & \cdots & \left(F_{j}+H^{\infty}\right) \cap B\left(t_{j-1}\right)\end{array}\right) V_{j-1}^{*} \cdots V_{0}^{*}$,
for some $F_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j) \times(n-j)}\right)$, $u_{i}=\frac{z \bar{h}_{i}}{h_{i}}$ are quasi-continuous unimodular functions for all $i=0, \ldots, j-1$, and for the closed ball $B\left(t_{j-1}\right)$ of radius t_{j-1} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-j) \times(n-j)}\right)$.

Thus, by equation (3.155), \mathcal{E}_{j} admits the factorisation (3.150) as claimed.

Remark 3.2.44. Let, for $i=0,1, \ldots, j$,

$$
\tilde{V}_{i}=\left(\begin{array}{ll}
\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i} & \bar{\alpha}_{i}
\end{array}\right), \quad \tilde{W}_{i}^{T}=\left(\begin{array}{ll}
\beta_{i-1}^{T} \cdots \beta_{0}^{T} \eta_{i} & \bar{\beta}_{i} \tag{3.156}
\end{array}\right)
$$

be unitary-valued functions, as described in Lemma 3.1.12. Let

$$
V_{j}=\left(\begin{array}{cc}
I_{j} & 0 \\
0 & \tilde{V}_{j}
\end{array}\right), \quad W_{j}=\left(\begin{array}{cc}
I_{j} & 0 \\
0 & \tilde{W}_{j}
\end{array}\right) .
$$

Let $A_{j}=\alpha_{0} \alpha_{1} \ldots \alpha_{j}, A_{-1}=I_{n}, B_{j}=\beta_{0} \beta_{1} \ldots \beta_{j}$ and $B_{-1}=I_{m}$.
Note

$$
W_{1} W_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \eta_{1}^{T} \beta_{0} \\
0 & \beta_{1}^{*}
\end{array}\right)\binom{\eta_{0}^{T}}{\beta_{0}^{*}}=\left(\begin{array}{c}
\eta_{0}^{T} \\
\eta_{1}^{T} B_{0} B_{0}^{*} \\
B_{1}^{*}
\end{array}\right)
$$

and

$$
W_{2} W_{1} W_{0}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & \eta_{2}^{T} B_{1} \\
0 & \beta_{2}^{*}
\end{array}\right)\left(\begin{array}{c}
\eta_{0}^{T} \\
\eta_{1}^{T} B_{0} B_{0}^{*} \\
B_{1}^{*}
\end{array}\right)=\left(\begin{array}{c}
\eta_{0}^{T} \\
\eta_{1}^{T} B_{0} B_{0}^{*} \\
\eta_{2}^{T} B_{1} B_{1}^{*} \\
B_{2}^{*}
\end{array}\right) .
$$

Similarly one obtains

$$
W_{j} W_{j-1} \cdots W_{0}=\left(\begin{array}{c}
\eta_{0}^{T} \tag{3.157}\\
\eta_{1}^{T} B_{0} B_{0}^{*} \\
\vdots \\
\eta_{j}^{T} B_{j-1} B_{j-1}^{*} \\
B_{j}^{*}
\end{array}\right)
$$

Therefore

$$
W_{0}^{*} W_{1}^{*} \cdots W_{j}^{*}=\left(\begin{array}{lllll}
\bar{\eta}_{0} & B_{0} B_{0}^{*} \bar{\eta}_{1} & \ldots & B_{j-1} B_{j-1}^{*} \bar{\eta}_{j} & B_{j}
\end{array}\right) .
$$

Thus

$$
\begin{equation*}
I_{m}=W_{0}^{*} W_{1}^{*} \cdots W_{j}^{*} W_{j} \cdots W_{1} W_{0}=\sum_{i=0}^{j} B_{i-1} B_{i-1}^{*} \bar{\eta}_{i} \eta_{i}^{T} B_{i-1} B_{i-1}^{*}+B_{j} B_{j}^{*} \tag{3.158}
\end{equation*}
$$

Furthermore

$$
V_{0} V_{1}=\left(\begin{array}{ll}
\xi_{0} & \bar{\alpha}_{0}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha_{0}^{T} \xi_{1} & \bar{\alpha}_{1}
\end{array}\right)=\left(\begin{array}{lll}
\xi_{0} & A_{0}^{T} \xi_{1} & \bar{A}_{1}
\end{array}\right)
$$

and

$$
V_{0} V_{1} V_{2}=\left(\begin{array}{lll}
\xi_{0} & \bar{A}_{0} A_{0}^{T} \xi_{1} & \bar{A}_{1}
\end{array}\right)\left(\begin{array}{ccc}
I_{2} & 0 & 0 \\
0 & A_{1}^{T} \xi_{2} & \bar{\alpha}_{2}
\end{array}\right)=\left(\begin{array}{llll}
\xi_{0} & \bar{A}_{0} A_{0}^{T} \xi_{1} & \bar{A}_{1} A_{1}^{T} \xi_{2} & \bar{A}_{2}
\end{array}\right) .
$$

One can show that

$$
V_{0} \cdots V_{j}=\left(\begin{array}{llllll}
\xi_{0} & \bar{A}_{0} A_{0}^{T} \xi_{1} & \bar{A}_{1} A_{1}^{T} \xi_{2} & \ldots & \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} & \bar{A}_{j} \tag{3.159}
\end{array}\right)
$$

Therefore,

$$
\begin{equation*}
I_{n}=V_{0} \cdots V_{j} V_{j}^{*} \cdots V_{0}^{*}=\xi_{0} \xi_{0}^{*}+\bar{A}_{0} A_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{A}_{0} A_{0}^{T}+\ldots \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} \xi_{j}^{*} \bar{A}_{j-1} A_{j-1}^{T}+\bar{A}_{j} A_{j}^{T} \tag{3.160}
\end{equation*}
$$

Lemma 3.2.45. Let

$$
\tilde{V}_{i}=\left(\begin{array}{cc}
\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i} & \bar{\alpha}_{i} \tag{3.161}
\end{array}\right)
$$

be unitary-valued functions, for $i=0,1, \ldots, j$, as described in Lemma 3.1.12 Let, for $i=$ $0,1, \ldots, j, A_{i}=\alpha_{0} \alpha_{1} \ldots \alpha_{i}$ and $A_{-1}=I_{n}$. Then, for $i=0,1, \ldots, j$,

$$
\begin{equation*}
\bar{A}_{i} A_{i}^{T}=I_{n}-\sum_{k=0}^{i} \xi_{k} \xi_{k}^{*} \tag{3.162}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
Proof. By equation (3.160), for $k=0, \ldots, j$,

$$
\begin{equation*}
\bar{A}_{k} A_{k}^{T}=I_{n}-\sum_{i=0}^{k} \bar{A}_{i-1} A_{i-1}^{T} \xi_{i} \xi_{i}^{*} \bar{A}_{i-1} A_{i-1}^{T} \tag{3.163}
\end{equation*}
$$

Thus to prove condition (3.162) it suffices to show that, for $k=0, \ldots, j$,

$$
\bar{A}_{k-1} A_{k-1}^{T} \xi_{k} \xi_{k}^{*} \bar{A}_{k-1} A_{k-1}^{T}=\xi_{k} \xi_{k}^{*}
$$

For $k=0$,

$$
\bar{A}_{-1} A_{-1}^{T} \xi_{0} \xi_{0}^{*} \bar{A}_{-1} A_{-1}^{T}=\xi_{0} \xi_{0}^{*}
$$

and so, equation (3.163) yields

$$
\bar{A}_{0} A_{0}^{T}=I_{n}-\xi_{0} \xi_{0}^{*}
$$

For $k=1$,

$$
\bar{A}_{0} A_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{A}_{0} A_{0}^{T}=\left(I_{n}-\xi_{0} \xi_{0}^{*}\right) \xi_{1} \xi_{1}^{*}\left(I_{n}-\xi_{0} \xi_{0}^{*}\right)
$$

By Proposition 3.2.1, ξ_{1} and ξ_{0} are pointwise orthogonal almost everywhere on \mathbb{T}, hence

$$
\bar{A}_{0} A_{0}^{T} \xi_{1} \xi_{1}^{*} \bar{A}_{0} A_{0}^{T}=\xi_{1} \xi_{1}^{*}
$$

and in view of equation (3.163), we get

$$
\bar{A}_{1} A_{1}^{T}=I_{n}-\xi_{0} \xi_{0}^{*}-\xi_{1} \xi_{1}^{*}
$$

Suppose

$$
\begin{equation*}
\bar{A}_{\ell-1} A_{\ell-1}^{T} \xi_{\ell} \xi_{\ell}^{*} \bar{A}_{\ell-1} A_{\ell-1}^{T}=\xi_{\ell} \xi_{\ell}^{*} \tag{3.164}
\end{equation*}
$$

holds for every $\ell \leq k$, where $0 \leq k \leq j$. By equations (3.163) and (3.164), this implies

$$
\bar{A}_{k} A_{k}^{T}=I_{n}-\sum_{i=0}^{k} \xi_{i} \xi_{i}^{*}
$$

Let us show that

$$
\bar{A}_{k} A_{k}^{T} \xi_{k+1} \xi_{k+1}^{*} \bar{A}_{k} A_{k}^{T}=\xi_{k+1} \xi_{k+1}^{*}
$$

Note that

$$
\bar{A}_{k} A_{k}^{T} \xi_{k+1} \xi_{k+1}^{*} \bar{A}_{k} A_{k}^{T}=\left(I_{n}-\sum_{i=0}^{k} \xi_{i} \xi_{i}^{*}\right) \xi_{k+1} \xi_{k+1}^{*}\left(I_{n}-\sum_{i=0}^{k} \xi_{i} \xi_{i}^{*}\right)
$$

By Proposition 3.2.1, the set $\left\{\xi_{i}(z)\right\}_{i=0}^{k+1}$ is pointwise orthogonal almost everywhere on \mathbb{T}, and therefore

$$
\bar{A}_{k} A_{k}^{T} \xi_{k+1} \xi_{k+1}^{*} \bar{A}_{k} A_{k}^{T}=\xi_{k+1} \xi_{k+1}^{*}
$$

Thus, by equation (3.163),

$$
\bar{A}_{k+1} A_{k+1}^{T}=I_{n}-\sum_{i=0}^{k+1} \xi_{i} \xi_{i}^{*},
$$

and the assertion has been proved.
Lemma 3.2.46. Let

$$
\tilde{W}_{i}^{T}=\left(\begin{array}{ll}
\beta_{i-1}^{T} \cdots \beta_{0}^{T} \eta_{i} & \bar{\beta}_{i} \tag{3.165}
\end{array}\right)
$$

be unitary-valued functions, for $i=0,1, \ldots, j$, as described in Lemma 3.1.12. Let, for $i=0,1, \ldots, j, B_{i}=\beta_{0} \beta_{1} \ldots \beta_{i}$ and $B_{-1}=I_{m}$. Then, for $k=0,1, \ldots, j$,

$$
\begin{equation*}
B_{k} B_{k}^{*}=I_{m}-\sum_{i=0}^{k} \bar{\eta}_{i} \eta_{i}^{T} \tag{3.166}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
Proof. By equation (3.158), for $k=0, \ldots, j$,

$$
\begin{equation*}
B_{k} B_{k}^{*}=I_{m}-\sum_{i=0}^{k} B_{i-1} B_{i-1}^{*} \bar{\eta}_{i} \eta_{i}^{T} B_{i-1} B_{i-1}^{*} \tag{3.167}
\end{equation*}
$$

Thus to prove condition (3.166) it suffices to show that, for $k=0, \ldots, j$,

$$
B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} B_{k-1}^{*}=\bar{\eta}_{k} \eta_{k}^{T} .
$$

For $k=0$,

$$
B_{-1} B_{-1}^{*} \bar{\eta}_{0} \eta_{0}^{T} B_{-1} B_{-1}^{*}=I_{m} \bar{\eta}_{0} \eta_{0}^{T} I_{m}=\bar{\eta}_{0} \eta_{0}^{T},
$$

and so, equation (3.167) yields

$$
B_{0} B_{0}^{*}=I_{m}-\bar{\eta}_{0} \eta_{0}^{T} .
$$

For $k=1$,

$$
B_{0} B_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} B_{0} B_{0}^{*}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right) \bar{\eta}_{1} \eta_{1}^{T}\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}\right)
$$

By Proposition 3.2.1, η_{1} and η_{0} are pointwise orthogonal almost everywhere on \mathbb{T}, hence

$$
B_{0} B_{0}^{*} \bar{\eta}_{1} \eta_{1}^{T} B_{0} B_{0}^{*}=\bar{\eta}_{1} \eta_{1}^{T}
$$

and in view of equation (3.167), we get

$$
B_{1} B_{1}^{*}=I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\bar{\eta}_{1} \eta_{1}^{T} .
$$

Suppose

$$
\begin{equation*}
B_{\ell-1} B_{\ell-1}^{*} \bar{\eta}_{\ell} \eta_{\ell}^{T} B_{\ell-1} B_{\ell-1}^{*}=\bar{\eta}_{\ell} \eta_{\ell}^{T} \tag{3.168}
\end{equation*}
$$

holds for every $\ell \leq k$, where $0 \leq k \leq j$. By equations (3.167) and (3.168), this implies

$$
B_{k} B_{k}^{*}=I_{m}-\sum_{i=0}^{k} \bar{\eta}_{i} \eta_{i}^{T}
$$

Let us show that

$$
B_{k} B_{k}^{*} \bar{\eta}_{k+1} \eta_{k+1}^{T} B_{k} B_{k}^{*}=\bar{\eta}_{k+1} \eta_{k+1}^{T} .
$$

Note that

$$
B_{k} B_{k}^{*} \bar{\eta}_{k+1} \eta_{k+1}^{T} B_{k} B_{k}^{*}=\left(I_{m}-\sum_{i=0}^{k} \bar{\eta}_{i} \eta_{i}^{T}\right) \bar{\eta}_{k+1} \eta_{k+1}^{T}\left(I_{m}-\sum_{i=0}^{k} \bar{\eta}_{i} \eta_{i}^{T}\right) .
$$

By Proposition 3.2.1, the set $\left\{\bar{\eta}_{i}(z)\right\}_{i=0}^{k+1}$ is pointwise orthogonal almost everywhere on \mathbb{T}, and therefore

$$
B_{k} B_{k}^{*} \bar{\eta}_{k+1} \eta_{k+1}^{T} B_{k} B_{k}^{*}=\bar{\eta}_{k+1} \eta_{k+1}^{T} .
$$

Thus, by equation (3.167),

$$
B_{k+1} B_{k+1}^{*}=I_{m}-\sum_{i=0}^{k+1} \bar{\eta}_{i} \eta_{i}^{T}
$$

and the assertion has been proved.
The following statement asserts that any function $Q_{j+1} \in \Omega_{j}$ necessarily satisfies equations (3.22).

Proposition 3.2.47. Every $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ which minimises

$$
\left(s_{0}^{\infty}(G-Q), s_{1}^{\infty}(G-Q), \ldots, s_{j}^{\infty}(G-Q)\right)
$$

satisfies

$$
\left(G-Q_{j+1}\right) x_{i}=t_{i} y_{i},\left(G-Q_{j+1}\right)^{*} y_{i}=t_{i} x_{i}, \quad \text { for } i=0,1, \ldots, j .
$$

Proof. By the recursive step of the algorithm from Section 3.2.1, every $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ that minimises

$$
\left(s_{0}^{\infty}(G-Q), \ldots, s_{j-1}^{\infty}(G-Q)\right)
$$

satisfies

$$
\left(G-Q_{j+1}\right) x_{i}=t_{i} y_{i}, \quad\left(G-Q_{j+1}\right)^{*} y_{i}=t_{i} x_{i} \quad \text { for } \quad i=0,1, \ldots, j-1
$$

Hence it suffices to show that Q_{j+1} satisfies

$$
\left(G-Q_{j+1}\right) x_{j}=t_{j} y_{j},\left(G-Q_{j+1}\right)^{*} y_{j}=t_{j} x_{j}
$$

Notice that, by the inductive step, the following diagram commutes

$$
\begin{array}{clll}
H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j}\right) & \xrightarrow{M_{\bar{\alpha}_{0} \cdots \bar{\alpha}_{j-1}}} & \mathcal{K}_{j} \xrightarrow{\xi_{(j-1)} \dot{\lambda}} & \xi_{(j-1)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=X_{j} \tag{3.169}\\
\downarrow & \downarrow^{\Gamma_{j}} & \downarrow_{j} \\
H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j}\right)^{\perp} & \xrightarrow{M_{\beta_{0} \cdots \beta_{j-1}}} & \mathcal{L}_{j} \xrightarrow{\bar{\eta}_{(j-1)} \lambda \cdot} & \bar{\eta}_{(j-1)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=Y_{j},
\end{array}
$$

where the maps $M_{\bar{\alpha}_{0} \cdots \bar{\alpha}_{j-1}}, M_{\beta_{0} \cdots \beta_{j-1}},\left(\xi_{(j-1)} \dot{\wedge} \cdot\right): \mathcal{K}_{j} \rightarrow X_{j}$ and $\left(\bar{\eta}_{(j-1)} \dot{\wedge} \cdot\right): \mathcal{L}_{j} \rightarrow Y_{j}$ are unitaries, and $F_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j) \times(n-j)}\right)$.

By equation (3.155), the set of all level $j-1$ superoptimal error functions

$$
\mathcal{E}_{j-1}=\left\{G-Q: Q \in \Omega_{j-1}\right\}
$$

satisfies

$$
\mathcal{E}_{j-1}=W_{0}^{*} W_{1}^{*} \cdots W_{j-1}^{*}\left(\begin{array}{ccccc}
t_{0} u_{0} & 0 & \cdots & 0 & 0_{1 \times(n-j)} \tag{3.170}\\
0 & t_{1} u_{1} & \cdots & 0 & 0_{1 \times(n-j)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t_{j-1} u_{j-1} & 0 \\
0_{(m-j) \times 1} & 0_{(m-j) \times 1} & \cdots & \cdots & \left(F_{j}+H^{\infty}\right) \cap B\left(t_{j-1}\right)
\end{array}\right) V_{j-1}^{*} \cdots V_{0}^{*},
$$

for some $F_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j) \times(n-j)}\right)$, where $u_{i}=\frac{z \bar{z}_{i}}{h_{i}}$ are quasi-continuous unimodular functions for $i=0, \ldots, j-1$, and $B\left(t_{j-1}\right)$ is the closed ball of radius t_{j-1} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-j) \times(n-j)}\right)$. Consider some $Q_{j+1} \in \Omega_{j-1}$, so that, according to equation (3.170),

$$
\left(\begin{array}{cc}
I_{j-1} & 0 \tag{3.171}\\
0 & \tilde{W}_{j-1}
\end{array}\right) \cdots W_{0}\left(G-Q_{j+1}\right) V_{0} \cdots\left(\begin{array}{cc}
I_{n-j-1} & 0 \\
0 & \tilde{V}_{j-1}
\end{array}\right)=\left(\begin{array}{ccccc}
t_{0} u_{0} & 0 & & \cdots & 0 \\
0 & t_{1} u_{1} & & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & & t_{j-1} u_{j-1} & 0 \\
0 & \cdots & & \cdots & F_{j}-\tilde{Q}_{j}
\end{array}\right)
$$

where $\tilde{Q}_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right)$ is at minimal distance from F_{j}. Let $B_{j}=\beta_{0} \cdots \beta_{j}$ and let $A_{j}=\alpha_{0} \cdots \alpha_{j}$. By equations (3.148), we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
I_{j-1} & 0 \\
0 & \tilde{W}_{j-1}
\end{array}\right) \cdots W_{0}\left(G-Q_{j+1}\right) V_{0} \cdots\left(\begin{array}{cc}
I_{n-j-1} & 0 \\
0 & \tilde{V}_{j-1}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
t_{0} u_{0} & 0 & \cdots & 0 \\
\vdots & \ddots & \cdots & \vdots \\
0 & \cdots & \eta_{j-1}^{T} B_{j-2} B_{j-2}^{*}\left(G-Q_{j+1}\right) \bar{A}_{j-2} A_{j-2}^{T} \xi_{j-1} & \eta_{j-1}^{T} B_{j-2} B_{j-2}^{*}\left(G-Q_{j+1}\right) \bar{A}_{j-1} \\
0 & \cdots & B_{j-1}^{*}\left(G-Q_{j+1}\right) \bar{A}_{j-2} A_{j-2}^{T} \xi_{j-1} & B_{j-1}^{*}\left(G-Q_{j+1}\right) \bar{A}_{j-1}
\end{array}\right),
\end{aligned}
$$

which, combined with equation (3.171), yields

$$
\begin{equation*}
B_{j-1}^{*}\left(G-Q_{j+1}\right) \bar{A}_{j-1}=F_{j}-\tilde{Q}_{j} . \tag{3.172}
\end{equation*}
$$

Since \tilde{Q}_{j} is at minimal distance from F_{j},

$$
\left\|F_{j}-\tilde{Q}_{j}\right\|_{\infty}=\left\|H_{F_{j}}\right\|=t_{j} .
$$

Note that, if $\left(\hat{x}_{j}, \hat{y}_{j}\right)$ is a Schmidt pair for $H_{F_{j}}$ corresponding to t_{j}, then, by Theorem D.2.4,

$$
\left(F_{j}-\tilde{Q}_{j}\right) \hat{x}_{j}=t_{j} \hat{y}_{j}, \quad\left(F_{j}-\tilde{Q}_{j}\right)^{*} \hat{y}_{j}=t_{j} \hat{x}_{j} .
$$

In view of equation (3.172), the latter equations imply

$$
B_{j-1}^{*}\left(G-Q_{j+1}\right) \bar{A}_{j-1} \hat{x}_{j}=t_{j} \hat{y}_{j}, \quad A_{j-1}^{T}\left(G-Q_{j+1}\right)^{*} B_{j-1} \hat{y}_{j}=t_{j} \hat{x}_{j} .
$$

By equation (3.152),

$$
\hat{x}_{j}=A_{j-1}^{T} x_{j}, \quad \hat{y}_{j}=B_{j-1}^{*} y_{j}
$$

Thus

$$
B_{j-1}^{*}\left(G-Q_{j+1}\right) \bar{A}_{j-1} \hat{x}_{j}=B_{j-1}^{*}\left(G-Q_{j+1}\right) x_{j}=t_{j} B_{j-1}^{*} y_{j},
$$

or equivalently,

$$
B_{j-1}^{*}\left(\left(G-Q_{j+1}\right) x_{j}-t_{j} y_{j}\right)=0,
$$

and since, by the inductive hypothesis, $M_{B_{j-1}}$ is a unitary map, we have

$$
\left(G-Q_{j+1}\right) x_{j}=t_{j} y_{j}
$$

Furthermore

$$
A_{j-1}^{T}\left(G-Q_{j+1}\right)^{*} B_{j-1} \hat{y}_{j}=A_{j-1}^{T}\left(G-Q_{j+1}\right)^{*} y_{j}=t_{j} A_{j-1}^{T} x_{j},
$$

or equivalently,

$$
A_{j-1}^{T}\left(\left(G-Q_{j+1}\right)^{*} y_{j}-t_{j} x_{j}\right)=0
$$

By the inductive hypothesis, $M_{\bar{A}_{j-1}}$ is a unitary map, hence

$$
\left(G-Q_{j+1}\right)^{*} y_{j}=t_{j} x_{j},
$$

and therefore Q_{j+1} satisfies the required equations.
Lemma 3.2.48. Let

$$
\tilde{V}_{i}=\left(\begin{array}{ll}
\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i} & \bar{\alpha}_{i} \tag{3.173}
\end{array}\right), \quad \tilde{W}_{i}^{T}=\left(\beta_{i-1}^{T} \cdots \beta_{0}^{T} \eta_{i} \quad \bar{\beta}_{i}\right), \quad i=0,1, \ldots, j,
$$

be unitary-valued functions, as described in Lemma 3.1.12. Then

$$
\alpha_{l}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-l}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-l-1}\right)
$$

and

$$
\beta_{l}^{*}\left(H^{2}\left(\mathbb{D}, \mathbb{C}^{m-l}\right)^{\perp}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m-l-1}\right)^{\perp}\right.
$$

for all $l=0, \ldots, j$.
Proof. Recall that, by Lemma 3.1.18, for all $l=0, \ldots, j$, the inner, co-outer, quasi-continuous functions α_{l}, β_{l} of types $(n-l) \times(n-l-1)$ and $(m-l) \times(m-l-1)$ respectively, are left invertible. The rest of the proof is similar to Lemmas 3.2.15 and 3.2.20.

As a preparation for proof of the main inductive step we prove several propositions.
Lemma 3.2.49. Let \tilde{V}_{i} be unitary-valued functions as given in equations (3.149), for $i=$ $0,1, \ldots, j$. Let $A_{i}=\alpha_{0} \cdots \alpha_{i}$, for $i=0,1, \ldots, j$ and $A_{-1}=I_{n}$. Let

$$
V_{i}=\left(\begin{array}{cc}
I_{i} & 0 \\
0 & \tilde{V}_{i}
\end{array}\right), \quad \text { for } i=0,1, \ldots, j
$$

and let

$$
\begin{equation*}
\mathcal{K}_{j+1}=V_{0} \cdots V_{j}\binom{0_{(j+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)} . \tag{3.174}
\end{equation*}
$$

Let $\xi_{(j)}=\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j}$. Then, for all $0 \leq j \leq \min (m, n)-2$ and every $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$,

$$
\xi_{(j)} \dot{\wedge} \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} \xi_{j}^{*} f=0
$$

Proof. For $j=0,1,2$, by Propositions 3.2.17 and 3.2.30, the assertion has been proved. Suppose the assertion holds for all $j=0, \ldots, \ell$. Then the entities constructed by the recursion step of the algorithm from Section 3.2.1 satisfy

$$
\xi_{(\ell-1)} \dot{\wedge} \bar{A}_{\ell-2} A_{\ell-2}^{T} \xi_{\ell-1} \xi_{\ell-1}^{*} f=0 \quad \text { for all } \ell
$$

where

$$
A_{\ell-2}=\alpha_{0} \cdots \alpha_{\ell-2}
$$

and $\alpha_{0}, \ldots, \alpha_{\ell-2}$ are inner, co-outer, quasi-continuous functions of types $n \times(n-1), \ldots$, $(n-\ell+1) \times(n-\ell+2)$ respectively.

We will show the assertion holds for $j=0, \ldots, \ell+1$. Since T_{ℓ} is a compact operator, there exist functions $v_{\ell} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), w_{\ell} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\left(\xi_{(\ell-1)} \dot{\wedge} v_{\ell}, \bar{\eta}_{(\ell-1)} \dot{\wedge} w_{\ell}\right)$ is a Schmidt pair for operator T_{ℓ} corresponding to $t_{\ell}=\left\|T_{\ell}\right\|$. By Proposition 3.2.2, $\xi_{(\ell-1)} \dot{\wedge} v_{\ell}$ is an element of $H^{2}\left(\mathbb{D}, \wedge^{\ell+1} \mathbb{C}^{n}\right)$. Let $h_{\ell} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{(\ell-1)} \dot{\wedge} v_{\ell}$. Define

$$
x_{\ell}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*} \cdots-\xi_{\ell-1} \xi_{\ell-1}^{*}\right) v_{\ell}
$$

and

$$
\xi_{\ell}=\frac{x_{\ell}}{h_{\ell}} .
$$

Then

$$
\begin{aligned}
\alpha_{\ell-1}^{T} \cdots \alpha_{0}^{T} x_{\ell} & =A_{\ell-1}^{T}\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{\ell-1} \xi_{\ell-1}^{*}\right) v_{\ell} \\
& =A_{\ell-1}^{T} \cdots v_{\ell}-A_{\ell-1}^{T} \xi_{0} \xi_{0}^{*} v_{\ell}-\cdots-A_{\ell-1}^{T} \xi_{\ell-1} \xi_{\ell-1}^{*} v_{\ell}
\end{aligned}
$$

Recall that, by the inductive hypothesis, for $j=0, \ldots, \ell-1$, each V_{i} is unitary-valued, hence $\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i}=0$. Thus

$$
\alpha_{\ell-1}^{T} \cdots \alpha_{0}^{T} x_{\ell}=\alpha_{\ell-1}^{T} \cdots \alpha_{0}^{T} v_{\ell},
$$

that is,

$$
\alpha_{\ell-1}^{T} \cdots \alpha_{0}^{T} \xi_{\ell}=\frac{1}{h_{\ell}} \alpha_{\ell-1}^{T} \cdots \alpha_{0}^{T} x_{\ell}
$$

is analytic. Moreover, since $\alpha_{j}(z)$ are isometries for all $j=0, \cdots, \ell-1$,

$$
\left\|\alpha_{\ell-1}^{T}(z) \cdots \alpha_{0}^{T}(z)(z) x_{\ell}(z)\right\|_{\mathbb{C}^{n-\ell}}=\left\|\alpha_{\ell-1}^{T}(z) \cdots \alpha_{0}^{T}(z)(z) v_{\ell}(z)\right\|_{\mathbb{C}^{n-\ell}} \|=\left|h_{\ell}(z)\right|
$$

almost everywhere on \mathbb{T}, and hence

$$
\left\|\alpha_{\ell-1}^{T}(z) \cdots \alpha_{0}^{T}(z) \xi_{\ell}(z)\right\|_{\mathbb{C}^{n-\ell}}=1
$$

almost everywhere on \mathbb{T}. Therefore $\alpha_{\ell-1}^{T} \cdots \alpha_{0}^{T} \xi_{\ell}$ is inner.
Then, by Theorem 3.1.10, there exists an inner, co-outer, quasi-continuous α_{ℓ} of size ($n-$ $\ell) \times(n-\ell+1)$ such that

$$
\tilde{V}_{\ell}=\left(\begin{array}{ll}
A_{\ell-1}^{T} \xi_{\ell} & \bar{\alpha}_{\ell}
\end{array}\right)
$$

is unitary-valued and all minors on the first column of \tilde{V}_{ℓ} are in H^{∞}. Let $V_{\ell}=\left(\begin{array}{cc}I_{\ell} & 0 \\ 0 & \tilde{V}_{\ell}\end{array}\right)$.
Recall that

$$
V_{0} \cdots V_{\ell-1} V_{\ell-1}^{*} \cdots V_{0}=I_{n}
$$

which is equivalent to the equation

$$
\begin{equation*}
\sum_{j=0}^{\ell-1} \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} \xi_{j}^{*} \bar{A}_{j-1} A_{j-1}^{T}+\bar{A}_{\ell-1} A_{\ell-1}^{T}=I_{n} \tag{3.175}
\end{equation*}
$$

We have that, for every $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$,

$$
\begin{aligned}
\xi_{(\ell)} \dot{\wedge} \bar{A}_{\ell-1} A_{\ell-1}^{T} \xi_{\ell} \xi_{\ell}^{*} f & =\xi_{(\ell)} \dot{\wedge}\left(I_{n}-\sum_{j=0}^{\ell-1} \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} \xi_{j}^{*} \bar{A}_{j-1} A_{j-1}^{T}\right) \xi_{\ell} \xi_{\ell}^{*} f \\
& =\xi_{(\ell)} \dot{\wedge} \xi_{\ell} \xi_{\ell}^{*} f-\xi_{(\ell)} \wedge \sum_{j=0}^{\ell-1} \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} \xi_{j}^{*} \bar{A}_{j-1} A_{j-1}^{T} \xi_{\ell} \xi_{\ell}^{*} f \\
& =0-\xi_{(\ell)} \dot{\wedge} \sum_{j=0}^{\ell-1} \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} \xi_{j}^{*} \bar{A}_{j-1} A_{j-1}^{T} \xi_{\ell} \xi_{\ell}^{*} f
\end{aligned}
$$

because of pointwise linear dependence. We set $\bar{A}_{j-1} A_{j-1}^{T} \xi_{\ell} \xi_{\ell}^{*} f=g \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$. By the inductive hypothesis, we get that, for every $g \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$,

$$
\xi_{(\ell-1)} \dot{\wedge} \xi_{\ell} \dot{\wedge} \sum_{j=0}^{\ell-1} \bar{A}_{j-1} A_{\ell-1}^{T} \xi_{j} \xi_{j}^{*} g=0
$$

Thus we have proved that for every $0 \leq j \leq \min (m, n)-2$ and every $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)$,

$$
\xi_{(j)} \dot{\wedge} \bar{A}_{j-1} A_{j-1}^{T} \xi_{j} \xi_{j}^{*} f=0 .
$$

Proposition 3.2.50. Let \tilde{V}_{i} be unitary-valued functions as given in equations (3.149), for $i=0,1, \ldots, j$. Let $A_{i}=\alpha_{0} \cdots \alpha_{i}$, for $i=0,1, \ldots, j$ and $A_{-1}=I_{n}$. Let

$$
V_{i}=\left(\begin{array}{cc}
I_{i} & 0 \\
0 & \tilde{V}_{i}
\end{array}\right), \quad \text { for } i=0,1, \ldots, j
$$

and let

$$
\begin{equation*}
\mathcal{K}_{j+1}=V_{0} \cdots V_{j}\binom{0_{(j+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)} . \tag{3.176}
\end{equation*}
$$

Let $\xi_{(j)}=\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j}$. Then, for every j,

$$
\xi_{(j)} \dot{\wedge} \mathcal{K}_{j+1}=\xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

and the operator $\left(\xi_{(j)} \dot{\lambda}\right): \mathcal{K}_{j+1} \rightarrow \xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is unitary.
Proof. Let us first prove the inclusion

$$
\xi_{(j)} \dot{\wedge} \mathcal{K}_{j+1} \subseteq \xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)
$$

A typical element $\rho \in \xi_{(j)} \dot{\wedge} \mathcal{K}_{j+1}$ is of the form $\rho=\xi_{(j)} \dot{\wedge} \bar{A}_{j-1} \psi$ for $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)$. By Lemma 3.2.48, there exists a function $\varphi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-2}\right)$ such that

$$
\alpha_{j-1}^{T} \phi=\psi
$$

Then

$$
\rho=\xi_{(j)} \dot{\wedge} \bar{A}_{j-1} \alpha_{j-1}^{T} \phi=\xi_{(j)} \dot{\wedge} \bar{A}_{j-2} \bar{\alpha}_{j-1} \alpha_{j-1}^{T} \phi .
$$

Since \tilde{V}_{j-1} is unitary-valued,

$$
A_{j-2}^{T} \xi_{j-1} \xi_{j-1}^{*} \bar{A}_{j-2}+\bar{\alpha}_{j-1} \alpha_{j-1}^{T}=I_{n-j+1}
$$

Hence

$$
\begin{aligned}
\rho & =\xi_{(j)} \dot{\wedge} \bar{A}_{j-2} \bar{\alpha}_{j-1} \alpha_{j-1}^{T} \phi \\
& =\xi_{(j)} \dot{\wedge} \bar{A}_{j-2}\left(I_{n-j+1}-A_{j-2}^{T} \xi_{j-1} \xi_{j-1}^{*} \bar{A}_{j-2}\right) \phi \\
& =\xi_{(j)} \dot{\wedge} \bar{A}_{j-2} \phi-\xi_{(j)} \dot{\wedge} \bar{A}_{j-2} A_{j-2}^{T} \xi_{j-1} \xi_{j-1}^{*} \bar{A}_{j-2} \phi \\
& =\xi_{(j)} \dot{\wedge} \bar{A}_{j-2} \phi
\end{aligned},
$$

last equality being obtained by Lemma 3.2.49. It is evident that, by continuing in a similar way, we get

$$
\rho=\xi_{(j)} \dot{\wedge} \varphi
$$

for $\varphi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, and so,

$$
\rho \in \xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) .
$$

Hence

$$
\begin{equation*}
\xi_{(l)} \dot{\wedge} \mathcal{K}_{l+1} \subseteq \xi_{(l)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \tag{3.177}
\end{equation*}
$$

Let us show that $\xi_{(j)} \dot{\wedge} \mathcal{K}_{j+1} \supseteq \xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Let $f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Since V_{0}, \ldots, V_{j} are unitary-valued, we have

$$
\begin{aligned}
\xi_{(j)} \dot{\wedge} f & =\xi_{(j)} \dot{\wedge} I_{n} f \\
& =\xi_{(j)} \dot{\wedge}\left(\sum_{k=0}^{j} \bar{A}_{k-1} A_{k-1}^{T} \xi_{k} \xi_{k}^{*} \bar{A}_{k-1} A_{k-1}^{T}+\bar{A}_{j} A_{j}^{T}\right) f \\
& =\xi_{(j)} \dot{\wedge} \sum_{k=0}^{j} \bar{A}_{k-1} A_{k-1}^{T} \xi_{k} \xi_{k}^{*} \bar{A}_{k-1} A_{k-1}^{T} f+\xi_{(j)} \dot{\wedge} \bar{A}_{j} A_{j}^{T} f .
\end{aligned}
$$

By Lemma 3.2.49,

$$
\xi_{(j)} \dot{\wedge} f=\xi_{(j)} \dot{\wedge} \sum_{k=0}^{j} \bar{A}_{k-1} A_{k-1}^{T} \xi_{k} \xi_{k}^{*} \bar{A}_{k-1} A_{k-1}^{T} f+\xi_{(j)} \dot{\wedge} \bar{A}_{j} A_{j}^{T} f=\xi_{(j)} \dot{\wedge} \bar{A}_{j} A_{j}^{T} f .
$$

By Lemma 3.2.48, $A_{j}^{T} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j}\right)=H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)$, thus

$$
\xi_{(j)} \dot{\wedge} f \in \xi_{(j)} \dot{\wedge} \bar{A}_{j} H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)=\xi_{(j)} \dot{\wedge} \mathcal{K}_{j+1},
$$

proving that

$$
\xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subseteq \xi_{(j)} \dot{\wedge} \mathcal{K}_{j+1}
$$

Combining the latter inclusion with inclusion (3.177), we deduce that

$$
\xi_{(j)} \dot{\wedge} \mathcal{K}_{j+1}=\xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) .
$$

To show that the operator $\left(\xi_{(j)} \dot{\wedge} \cdot\right): \mathcal{K}_{j+1} \rightarrow \xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is unitary, it suffices to prove that, for every $\vartheta \in \mathcal{K}_{j+1}$,

$$
\left\|\xi_{(j)} \dot{\wedge} \vartheta\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{n}\right)}=\|\vartheta\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)} .
$$

Let $\vartheta \in \mathcal{K}_{j+1}$. Then, by Proposition 2.1.19, we get

$$
\begin{aligned}
\left\|\xi_{(j)} \dot{\wedge} \vartheta\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{n}\right)}^{2} & =\left\langle\xi_{(j)} \dot{\wedge} \vartheta, \xi_{(j)} \dot{\wedge} \vartheta\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{n}\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\xi_{(j)}\left(e^{i \theta}\right) \dot{\wedge} \vartheta\left(e^{i \theta}\right), \xi_{(j)}\left(e^{i \theta}\right) \dot{\wedge} \vartheta\left(e^{i \theta}\right)\right\rangle_{\wedge^{j+2} \mathbb{C}^{n}} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccc}
\left\langle\xi_{0}\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \ldots & \left\langle\xi_{0}\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\left\langle\xi_{1}\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \ldots & \left\langle\xi_{1}\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\vdots & \ddots & \vdots \\
\left\langle\vartheta\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \ldots & \left\langle\vartheta\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta .
\end{aligned}
$$

By Proposition 3.2.1, $\left\{\xi_{i}(z)\right\}_{i=0}^{j}$ is an orthonormal set in \mathbb{C}^{n} for almost every $z \in \mathbb{T}$. Thus the latter integral is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \ldots & \left\langle\xi_{0}\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
0 & 1 & \ldots & \left\langle\xi_{1}\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\vdots & & \ddots & \vdots \\
\left\langle\vartheta\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \ldots & \left\langle\vartheta\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta
$$

Note that since $\vartheta \in \mathcal{K}_{j+1}$, then $\vartheta=\bar{A}_{j} \psi$ for some $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)$. Also, since each \tilde{V}_{k} is unitary valued for all $k=0, \ldots, j$, then, for almost every $e^{i \theta} \in \mathbb{T}$,

$$
\left\langle\xi_{k}\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}=\left\langle\xi_{k}\left(e^{i \theta}\right), \bar{A}_{j}\left(e^{i \theta}\right) \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}=0
$$

Hence

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \ldots & \left\langle\xi_{0}\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
0 & 1 & \ldots & \left\langle\xi_{1}\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} \\
\vdots & & \ddots & \vdots \\
\left\langle\vartheta\left(e^{i \theta}\right), \xi_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}} & \ldots & \left\langle\vartheta\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta
$$

is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & & \ldots & \left\langle\vartheta\left(e^{i \theta}\right), \vartheta\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{n}}
\end{array}\right) d \theta
$$

which yields

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|\vartheta\left(e^{i \theta}\right)\right\|_{\mathbb{C}^{n}}^{2} d \theta=\|\vartheta\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right)}^{2}
$$

Therefore, by Theorem A.2.4, the operator $\left(\xi_{(j)} \dot{\wedge} \cdot\right): \mathcal{K}_{j+1} \rightarrow \xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is unitary.
Lemma 3.2.51. Let \tilde{W}_{j}^{T} be given by equations (3.149), let $W_{j}^{T}=\left(\begin{array}{cc}I_{j} & 0 \\ 0 & \tilde{W}_{j}^{T}\end{array}\right)$, let

$$
\mathcal{L}_{j+1}=W_{0}^{*} \cdots W_{j}^{*}\binom{0_{(j+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp}}
$$

and let $\bar{\eta}_{(j)}=\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j}$. Let $B_{j}=\beta_{0} \cdots \beta_{j}$.
Then, for every $u \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ and all $0 \leq j \leq \min (m, n)-2$,

$$
\bar{\eta}_{(j)} \dot{\wedge} B_{j-1} B_{j-1}^{*} \bar{\eta}_{j} \eta_{j}^{T} B_{j-1} u=0 .
$$

Proof. Note that by Propositions 3.2.21 and 3.2.35, the assertion holds for $j=0,1,2$. Suppose it holds for $j=0, \cdots, l-1$ and for every $u \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. This means that, for all l,

$$
\begin{equation*}
\bar{\eta}_{(l-1)} \dot{\wedge} B_{l-2} B_{l-2}^{*} \bar{\eta}_{l-1} \eta_{l-1}^{T} B_{l-2} B_{l-2}^{*} f=0 \quad \text { for all } f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right), \tag{3.178}
\end{equation*}
$$

where $\beta_{0}, \ldots, \beta_{l-2}$ are inner, co-outer, quasi-continuous functions of types $m \times(m-1), \ldots,(m-l+2) \times(m-l+1)$ respectively.

We will show that assertion (3.178) holds for $j=0, \ldots, l$. By the inductive hypothesis, T_{l} is a compact operator, so there exist functions $v_{l} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), w_{l} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ such that $\left(\xi_{(l-1)} \dot{\wedge} v_{l}, \bar{\eta}_{(l-1)} \dot{\wedge} w_{l}\right)$ is a Schmidt pair for operator T_{l} corresponding to $t_{l}=\left\|T_{l}\right\|$. By Proposition 3.2.2, $\xi_{(l-1)} \dot{\wedge} v_{l}$ is an element of $H^{2}\left(\mathbb{D}, \wedge^{l+1} \mathbb{C}^{n}\right)$. Let $h_{l} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of $\xi_{(l-1)} \dot{\wedge} v_{l}$. Define

$$
y_{l}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{l-1} \eta_{l-1}^{T}\right) w_{l}
$$

and

$$
\eta_{l}=\frac{\bar{z} \bar{y}_{l}}{h_{l}} .
$$

We have

$$
\begin{aligned}
\beta_{l-1}^{*} \cdots \beta_{0}^{*} y_{l} & =B_{l-1}^{*}\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{l-1} \eta_{l-1}^{T}\right) w_{l} \\
& =B_{l-1}^{*} w_{l}-B_{l-1}^{*} \bar{\eta}_{0} \eta_{0}^{T} w_{l}-\cdots-B_{l-1}^{*} \bar{\eta}_{l-1} \eta_{l-1}^{T} w_{l} .
\end{aligned}
$$

Notice that, by the inductive hypothesis, for $i=0, \ldots, l-1$, each W_{i} is unitary-valued, hence $\beta_{i-1}^{*} \cdots \beta_{0}^{*} \bar{\eta}_{i-1}=0$. Thus

$$
B_{l-1}^{*} y_{l}=B_{l-1}^{*} w_{l}
$$

that is,

$$
B_{l-1}^{T} \eta_{l}=\frac{1}{h_{l}} B_{l-1}^{T} \bar{z} \bar{z}_{l}=\frac{1}{h_{l}} B_{l-1}^{T} \bar{z} \bar{w}_{l}
$$

is analytic. Further, since $\beta_{i}(z)$ are isometries for all $i=0, \ldots, l-1$,

$$
\left\|B_{l-1}^{T}(z) \bar{z} \bar{y}_{l}(z)\right\|_{\mathbb{C}^{m-l}}=\left\|B_{l-1}^{T}(z) \bar{z} \bar{w}_{l}(z)\right\|_{\mathbb{C}^{m-l}}=\left|h_{l}(z)\right|
$$

almost everywhere on \mathbb{T}, and therefore

$$
\left\|B_{l-1}^{T}(z) \eta_{l}(z)\right\|_{\mathbb{C}^{m}}=1
$$

almost everywhere on \mathbb{T}, that is, $B_{l-1}^{T} \eta_{l}$ is inner.
By Theorem 3.1.10, there exists an inner, co-outer, quasi-continuous function β_{l} of size $(m-l) \times(m-l-1)$ such that

$$
\tilde{W}_{l}^{T}=\left(\begin{array}{ll}
B_{l-1}^{T} \eta_{l} & \bar{\beta}_{l}
\end{array}\right)
$$

is a thematic completion of $B_{l-1}^{T} \eta_{l}$. Then

$$
\begin{equation*}
\beta_{l} \beta_{l}^{*}+B_{l-1}^{*} \bar{\eta}_{l} \eta_{l}^{T} B_{l-1}=I_{m-l} . \tag{3.179}
\end{equation*}
$$

Let $W_{l}^{T}=\left(\begin{array}{cc}I_{l} & 0 \\ 0 & \tilde{W}_{l}^{T}\end{array}\right)$ and let

$$
\mathcal{L}_{l+1}=W_{0}^{*} \cdots W_{l}^{*}\binom{0_{(l+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-l-1}\right)^{\perp}} .
$$

Since W_{0}, \cdots, W_{l-1} are unitary-valued, $W_{0}^{*} \cdots W_{l-1}^{*} W_{l-1} \cdots W_{0}=I_{m}$, or equivalently,

$$
B_{l-1} B_{l-1}^{*}+\sum_{k=0}^{l-1} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} B_{k-1}^{*}=I_{m} .
$$

Then, for any $u \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-l-2}\right)^{\perp}$,

$$
\bar{\eta}_{(l)} \dot{\wedge} B_{l-1} B_{l-1}^{*} \bar{\eta}_{l} \eta_{l}^{T} B_{l-1} u=\bar{\eta}_{(l)} \dot{\wedge}\left(I_{m}-\sum_{k=0}^{l-1} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} B_{k-1}^{*}\right) \bar{\eta}_{l} \eta_{l}^{T} B_{l-1} u,
$$

which is equal to

$$
\bar{\eta}_{(l)} \dot{\wedge} \bar{\eta}_{l} \eta_{l}^{T} B_{l-1} u-\bar{\eta}_{(l)} \wedge \sum_{k=0}^{l-1} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} B_{k-1}^{*} \bar{\eta}_{l} \eta_{l}^{T} B_{l-1} u .
$$

Hence

$$
\bar{\eta}_{(l)} \dot{\wedge} B_{l-1} B_{l-1}^{*} \bar{\eta}_{l} \eta_{l}^{T} B_{l-1} u=-\bar{\eta}_{(l)} \dot{ } \dot{\sum_{k=0}^{l-1} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{l-1} B_{l-1}^{*} \bar{\eta}_{l} \eta_{l}^{T} B_{l-1} u, ~}
$$

last equality following by the pointwise linear dependence of $\bar{\eta}_{l}$ and $\bar{\eta}_{l} \eta_{l}^{T} B_{l-1} u$ on \mathbb{D}. If we set $B_{l-1}^{*} \bar{\eta}_{l} \eta_{l}^{T} B_{l} u=f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m-l-2}\right)$, then, by the inductive hypothesis (3.178),

$$
\bar{\eta}_{(l)} \dot{\wedge} \sum_{k=0}^{l-1} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} b_{k-1}^{*} f=0 .
$$

Hence, for all $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m-j-2}\right)$ and all j,

$$
\begin{equation*}
\bar{\eta}_{(j)} \dot{\wedge} B_{j-1} B_{j-1}^{*} \bar{\eta}_{j} \eta_{j}^{T} B_{j-1} f=0 \tag{3.180}
\end{equation*}
$$

and the assertion has been proved.
Proposition 3.2.52. Let \tilde{W}_{j}^{T} be given by equations (3.149), let $W_{j}^{T}=\left(\begin{array}{cc}I_{j} & 0 \\ 0 & \tilde{W}_{j}^{T}\end{array}\right)$, let

$$
\begin{equation*}
\mathcal{L}_{j+1}=W_{0}^{*} \cdots W_{j}^{*}\binom{0_{(j+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp}} \tag{3.181}
\end{equation*}
$$

and let $\bar{\eta}_{(j)}=\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j}$. Then,

$$
\bar{\eta}_{(j)} \dot{\wedge} \mathcal{L}_{j+1}=\bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}
$$

and the operator $\left(\bar{\eta}_{(j)} \dot{\wedge} \cdot\right): \mathcal{L}_{j+1} \rightarrow \bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is unitary.
Proof. Let us first show $\bar{\eta}_{(j)} \dot{\wedge} \mathcal{L}_{j+1} \subseteq \bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ A typical element $q \in \bar{\eta}_{(j)} \dot{\wedge} \mathcal{L}_{j+1}$ is of the form

$$
q=\bar{\eta}_{(j)} \dot{\wedge} B_{j} v
$$

for some $v \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-l-1}\right)^{\perp}$. By Lemma 3.2.48, there exists a vector-valued function $u \in$ $H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j}\right)^{\perp}$ such that $\beta_{j}^{*} u=v$. Then, $q=\bar{\eta}_{(j)} \dot{\wedge} B_{j} \beta_{j}^{*} u$, and by equation (3.179),

$$
\begin{aligned}
q & =\bar{\eta}_{(j)} \dot{\wedge} B_{j} \beta_{j}^{*} u \\
& =\bar{\eta}_{(j)} \dot{\wedge} B_{j-1} \beta_{j} \beta_{j}^{*} u \\
& =\bar{\eta}_{(j)} \dot{\wedge} B_{j-1}\left(I_{m-j}-B_{j-1}^{*} \bar{\eta}_{j} \eta_{j}^{T} B_{j-1}\right) u \\
& =\bar{\eta}_{(j)} \dot{\wedge} B_{j-1} u-\bar{\eta}_{(j)} \dot{\wedge} B_{j-1} B_{j-1}^{*} \bar{\eta}_{j} \eta_{j}^{T} B_{j-1} u \\
& =\bar{\eta}_{(j)} \dot{\wedge} B_{j-1} u
\end{aligned}
$$

last equality following by Lemma 3.2.51. It is obvious that continuing in a similar way, we obtain $q=\bar{\eta}_{(j)} \dot{\wedge} \psi$ for $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Thus

$$
\begin{equation*}
\bar{\eta}_{(j)} \dot{\wedge} \mathcal{L}_{j+1} \subseteq \bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \tag{3.182}
\end{equation*}
$$

Let us now prove $\bar{\eta}_{(j)} \dot{\wedge} \mathcal{L}_{j+1} \supseteq \bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Let $\rho=\bar{\eta}_{(j)} \dot{\wedge} \tau \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ for some
$\tau \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Note that, since W_{0}, \ldots, W_{j} are unitary-valued, we get

$$
W_{0}^{*} \cdots W_{j}^{*} W_{j} \cdots W_{0}=I_{m}
$$

which is equivalent to the equation

$$
B_{j} B_{j}^{*}+\sum_{k=0}^{j} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k} B_{k}^{*}=I_{m}
$$

We, then, obtain

$$
\begin{aligned}
\bar{\eta}_{(j)} \dot{\wedge} \tau & =\bar{\eta}_{(j)} \dot{\wedge} I_{m} \tau \\
& =\bar{\eta}_{(j)} \dot{\wedge}\left(B_{j} B_{j}^{*}+\sum_{k=0}^{j} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} B_{k-1}^{*}\right) \tau \\
& =\bar{\eta}_{(j)} \dot{\wedge} B_{j} B_{j}^{*} \tau+\bar{\eta}_{(j)} \dot{\wedge} \sum_{k=0}^{j} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} B_{k-1}^{*} \tau .
\end{aligned}
$$

By Lemma 3.2.51,

$$
\bar{\eta}_{(j)} \dot{ } \dot{\sum_{k=0}^{j} B_{k-1} B_{k-1}^{*} \bar{\eta}_{k} \eta_{k}^{T} B_{k-1} B_{k-1}^{*} \tau=0, ~, ~, ~}
$$

hence

$$
\bar{\eta}_{(j)} \dot{\wedge} \tau=\bar{\eta}_{(j)} \dot{\wedge} B_{j} B_{j}^{*} \tau .
$$

By Lemma 3.2.48, $B_{j}^{*} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j+1}\right)^{\perp}$, thus

$$
\bar{\eta}_{(j)} \dot{\wedge} \tau \in \bar{\eta}_{(j)} \dot{\wedge} B_{j} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j+1}\right)^{\perp}=\bar{\eta}_{(j)} \dot{\wedge} \mathcal{L}_{j+1},
$$

and so

$$
\bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subseteq \bar{\eta}_{(j)} \dot{\hat{L}} \mathcal{L}_{j+1} .
$$

Combining the latter inclusion with inclusion (3.182), we deduce that

$$
\bar{\eta}_{(j)} \dot{\wedge} \mathcal{L}_{j+1}=\bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} .
$$

To show that the operator $\left(\bar{\eta}_{(j)} \dot{\lambda} \cdot\right): \mathcal{L}_{j+1} \rightarrow \bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is unitary, it suffices to prove that, for every $\varphi \in \mathcal{L}_{j+1},\left\|\bar{\eta}_{(j)} \dot{\wedge} \varphi\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}=\|\varphi\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}$. By Proposition 2.1.19, we get

$$
\begin{aligned}
\left\|\bar{\eta}_{(j)} \dot{\wedge} \varphi\right\|_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}^{2} & =\left\langle\bar{\eta}_{(j)} \dot{\wedge} \varphi, \bar{\eta}_{(j)} \dot{\wedge} \varphi\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccc}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\vdots & \ddots & \vdots \\
\left\langle\varphi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \left\langle\varphi\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta .
\end{aligned}
$$

Recall that, by Proposition 3.2.1, the set $\left\{\bar{\eta}_{i}(z)\right\}_{i=0}^{j}$ is orthonormal in \mathbb{C}^{n} for almost every $z \in \mathbb{T}$. Then the latter integral is equal to

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \ldots & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
0 & 1 & \ldots & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\vdots & & \ddots & \vdots \\
\left\langle\varphi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \ldots & \left\langle\varphi\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta
$$

Observe that since $\varphi \in \mathcal{L}_{j+1}$, there exists a $\rho \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp}$ such that $\varphi=B_{j} \rho$. Also, since each \tilde{W}_{k} is unitary valued for all $k=0, \ldots, j$, then, for almost every $e^{i \theta} \in \mathbb{T}$,

$$
\left\langle\bar{\eta}_{k}\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=\left\langle\bar{\eta}_{k}\left(e^{i \theta}\right), \beta_{0}\left(e^{i \theta}\right) \cdots \beta_{j}\left(e^{i \theta}\right) \rho\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=0 .
$$

Thus the latter integral equals

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \left\langle\varphi\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\varphi\left(e^{i \theta}\right), \varphi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta=\|\varphi\|_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}^{2} .
\end{aligned}
$$

Hence by Theorem A.2.4, the operator $\left(\bar{\eta}_{(j)} \dot{\wedge} \cdot\right): \mathcal{L}_{j+1} \rightarrow \bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ is unitary.
Proposition 3.2.53. With the notation of Proposition 3.2.52

$$
\mathcal{L}_{j+1}^{\perp}=\left\{f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right): \beta_{j}^{*} \cdots \beta_{0}^{*} f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)\right\}
$$

Proof. Clearly $\mathcal{L}_{j+1}=\beta_{0} \cdots \beta_{j} H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)$. A function $f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ belongs to $\mathcal{L}_{j+1}^{\perp}$ if and only if

$$
\left\langle f, \beta_{0} \cdots \beta_{j} e^{-i \theta} \bar{g}\right\rangle_{L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)}=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)
$$

Equivalently,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle f\left(e^{i \theta}\right), \beta_{0}\left(e^{i \theta}\right) \cdots \beta_{j}\left(e^{i \theta}\right) e^{-i \theta} \bar{g}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} d \theta=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)
$$

if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\beta_{j}^{*}\left(e^{i \theta}\right) \cdots \beta_{0}^{*}\left(e^{i \theta}\right) f\left(e^{i \theta}\right), e^{-i \theta} \bar{g}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m-2}} d \theta=0 \quad \text { for all } \quad g \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)
$$

The latter statement is equivalent to the assertion that $\beta_{j}^{*} \cdots \beta_{0}^{*} f$ is orthogonal to $H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp}$ in $L^{2}\left(\mathbb{T}, \mathbb{C}^{m-j-1}\right)$, which holds if and only if

$$
\beta_{j}^{*} \cdots \beta_{0}^{*} f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)
$$

Thus

$$
\mathcal{L}_{j+1}^{\perp}=\left\{f \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right): \beta_{j}^{*} \cdots \beta_{0}^{*} f \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)\right\}
$$

as required.
Let us proceed to the main theorem of this section.
Theorem 3.2.54. Let m, n be positive integers such that $\min (m, n) \geq 2$. Let G be in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$. In the notation of the algorithm from Section 3.2.1, let

$$
\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}, \bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j-1} \dot{\wedge} w_{j}\right)
$$

be a Schmidt pair for T_{j} corresponding to $t_{j}=\left\|T_{j}\right\| \neq 0$. Let $h_{j} \in H^{2}(\mathbb{D}, \mathbb{C})$ be the scalar outer factor of

$$
\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j-1} \dot{\wedge} v_{j}
$$

Let

$$
\begin{gathered}
x_{j}=\left(I_{n}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j-1} \xi_{j-1}^{*}\right) v_{j}, \\
y_{j}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j-1} \eta_{j-1}^{T}\right) w_{j}
\end{gathered}
$$

and

$$
\xi_{j}=\frac{x_{j}}{h_{j}}, \quad \bar{\eta}_{j}=\frac{z y_{j}}{\bar{h}_{j}} .
$$

For $i=0,1, \ldots, j$, let

$$
\tilde{V}_{i}=\left(\begin{array}{ll}
\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i} & \bar{\alpha}_{i}
\end{array}\right), \quad \tilde{W}_{i}^{T}=\left(\begin{array}{ll}
\beta_{i-1}^{T} \cdots \beta_{0}^{T} \eta_{i} & \bar{\beta}_{i} \tag{3.183}
\end{array}\right)
$$

be unitary-valued functions, as described in Lemma 3.1.12. Let

$$
V_{j}=\left(\begin{array}{cc}
I_{j} & 0 \\
0 & \tilde{V}_{j}
\end{array}\right), \quad W_{j}=\left(\begin{array}{cc}
I_{j} & 0 \\
0 & \tilde{W}_{j}
\end{array}\right) .
$$

Let $A_{j}=\alpha_{0} \alpha_{1} \ldots \alpha_{j}, A_{-1}=I_{n}, B_{j}=\beta_{0} \beta_{1} \ldots \beta_{j}$ and $B_{-1}=I_{m}$. Let

$$
X_{j+1}=\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \subset H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{n}\right)
$$

and let

$$
Y_{j+1}=\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp} \subset H^{2}\left(\mathbb{D}, \wedge^{j+2} \mathbb{C}^{m}\right)^{\perp}
$$

Let

$$
T_{j+1}\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} x\right)=P_{Y_{j+1}}\left(\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge}\left(G-Q_{j+1}\right) x\right)
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, where Q_{j+1} satisfies

$$
\begin{equation*}
\left(G-Q_{j+1}\right) x_{i}=t_{i} y_{i}, \text { and }\left(G-Q_{j+1}\right)^{*} y_{i}=t_{i} x_{i}, \quad \text { for } i=0,1, \ldots, j . \tag{3.184}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathcal{K}_{j+1}=V_{0} \cdots V_{j}\binom{0_{(j+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)}, \quad \mathcal{L}_{j+1}=W_{0}^{*} \cdots W_{j}^{*}\binom{0_{(j+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp}} . \tag{3.185}
\end{equation*}
$$

Let the operator $\Gamma_{j+1}: \mathcal{K}_{j+1} \rightarrow \mathcal{L}_{j+1}$ be given by

$$
\Gamma_{j+1}=\left.P_{\mathcal{L}_{j+1}} M_{G-Q_{j+1}}\right|_{\mathcal{K}_{j+1}} .
$$

Then (i) The maps

$$
M_{\bar{A}_{j}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right) \rightarrow \mathcal{K}_{j+1}: x \mapsto \bar{A}_{j} x, \text { and } M_{B_{j}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp} \rightarrow \mathcal{L}_{j+1}: y \mapsto B_{j} y
$$

are unitaries.
(ii) The maps $\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right): \mathcal{K}_{j+1} \rightarrow X_{j+1},\left(\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right): \mathcal{L}_{j+1} \rightarrow Y_{j+1}$ are unitaries.
(iii) The following diagram commutes

$$
\begin{array}{rlll}
H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j}\right) & \xrightarrow{M_{\bar{\alpha}_{0} \cdots \bar{\alpha}_{j}}} & \mathcal{K}_{j+1} \xrightarrow{\xi_{(j)} \dot{ } \dot{\prime}} & \xi_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=X_{j+1} \tag{3.186}\\
\downarrow_{F_{j+1}} & & \int_{j+1} & \downarrow_{j+1} \\
H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j}\right)^{\perp} & \xrightarrow{M_{\beta_{0} \cdots \beta_{j}}} & \mathcal{L}_{j+1} \xrightarrow{\bar{\eta}_{(j)} \dot{ } \dot{ }} & \bar{\eta}_{(j)} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=Y_{j+1},
\end{array}
$$

where $F_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$ is the function defined in Proposition 3.2.43.
(iv) Γ_{j+1} and T_{j+1} are compact operators.
(v) $\left\|T_{j+1}\right\|=\left\|\Gamma_{j+1}\right\|=\left\|H_{F_{j+1}}\right\|=t_{j+1}$.

Proof. (i). It follows from Lemma 3.1.16.
(ii). Follows from Propositions 3.2.50 and 3.2.52.
(iii). By Theorem 1.1.4, there exists a function $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that the sequence

$$
\left(s_{0}^{\infty}\left(G-Q_{j+1}\right), s_{1}^{\infty}\left(G-Q_{j+1}\right), \ldots, s_{j+1}^{\infty}\left(G-Q_{j+1}\right)\right)
$$

is lexicographically minimised. By Proposition 3.2.47, any such Q_{j+1} satisfies

$$
\begin{equation*}
\left(G-Q_{j+1}\right) x_{i}=t_{i} y_{i},\left(G-Q_{j+1}\right)^{*} y_{i}=t_{i} x_{i}, \quad \text { for } i=0,1, \ldots, j \tag{3.187}
\end{equation*}
$$

By Proposition 3.2.8, T_{j+1} is well-defined and is independent of the choice of $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfying equations (3.187). We can choose Q_{j+1} which minimises $\left(s_{0}^{\infty}\left(G-Q_{j+1}\right), s_{1}^{\infty}\left(G-Q_{j+1}\right), \ldots, s_{j+1}^{\infty}\left(G-Q_{j+1}\right)\right)$, and therefore satisfies equations (3.187).
Consider the following diagram.

$$
\begin{align*}
& \begin{array}{cc}
\mathcal{K}_{j+1} \xrightarrow{\xi_{0} \dot{\lambda} \cdots \dot{\wedge} \xi_{j} \dot{\lambda}}{ }_{\downarrow} \xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=X_{j+1} \\
\downarrow{ }^{\Gamma_{j+1}}
\end{array} \tag{3.188}\\
& \mathcal{L}_{j+1} \xrightarrow{\bar{\eta}_{0} \dot{\lambda} \cdots \bar{\lambda}_{j} \dot{\lambda}_{j}} \bar{\eta}_{0} \dot{\lambda} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}=Y_{j+1} .
\end{align*}
$$

Let us prove first that diagram (3.188) commutes. By Theorem 1.1.4, there exists a function $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that the sequence

$$
\left(s_{0}^{\infty}\left(G-Q_{j+1}\right), s_{1}^{\infty}\left(G-Q_{j+1}\right), \ldots, s_{j+1}^{\infty}\left(G-Q_{j+1}\right)\right)
$$

is lexicographically minimised. By Proposition 3.2.47, such Q_{j+1} satisfies

$$
\begin{equation*}
\left(G-Q_{j+1}\right) x_{i}=t_{i} y_{i},\left(G-Q_{j+1}\right)^{*} y_{i}=t_{i} x_{i}, \quad \text { for } i=0,1, \ldots, j . \tag{3.189}
\end{equation*}
$$

By Proposition 3.2.8, T_{j+1} is well-defined and is independent of the choice of $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ satisfying equations (3.189). We can choose Q_{j+1} which minimises $\left(s_{0}^{\infty}\left(G-Q_{j+1}\right), s_{1}^{\infty}\left(G-Q_{j+1}\right), \ldots, s_{j+1}^{\infty}\left(G-Q_{j+1}\right)\right)$, and therefore satisfies equations (3.189). Consider the following diagram.

$$
\begin{array}{lll}
\mathcal{K}_{j+1} \xrightarrow{\xi_{0} \dot{\lambda} \cdots \xi_{j} \dot{\lambda}} & \xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)=X_{j+1} \tag{3.190}\\
{ }^{\Gamma_{j+1}} & & \\
T_{j+1}
\end{array}
$$

Let us prove first that diagram (3.190) commutes.
By Proposition 3.2.43, every $Q_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$, which minimises

$$
\left(s_{0}^{\infty}\left(G-Q_{j+1}\right), s_{1}^{\infty}\left(G-Q_{j+1}\right), \ldots, s_{j+1}^{\infty}\left(G-Q_{j+1}\right)\right),
$$

satisfies the following equation (see equation (3.150)).
$G-Q_{j+1}=W_{0}^{*} W_{1}^{*} \cdots W_{j}^{*}\left(\begin{array}{ccccc}t_{0} u_{0} & 0 & \cdots & 0 & 0_{1 \times(n-j-1)} \\ 0 & t_{1} u_{1} & \cdots & 0 & 0_{1 \times(n-j-1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & t_{j} u_{j} & 0 \\ 0_{(m-j-1) \times 1} & 0_{(m-j-1) \times 1} & \cdots & \cdots & \left(F_{j+1}+H^{\infty}\right) \cap B\left(t_{j}\right)\end{array}\right) V_{j}^{*} \cdots V_{0}^{*}$,
Thus, for every $\chi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)$,

$$
\begin{align*}
& \left(G-Q_{j+1}\right) V_{0} \cdots V_{j}\binom{0_{(j+1) \times 1}}{H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp}} \\
& =W_{0}^{*} W_{1}^{*} \cdots W_{j}^{*}\left(\begin{array}{ccccc}
t_{0} u_{0} & 0 & \cdots & 0 & 0_{1 \times(n-j-1)} \\
0 & t_{1} u_{1} & \cdots & 0 & 0_{1 \times(n-j-1)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t_{j} u_{j} & 0 \\
0_{(m-j-1) \times 1} & 0_{(m-j-1) \times 1} & \cdots & \cdots & \left(F_{j+1}+H^{\infty}\right) \cap B\left(t_{j}\right)
\end{array}\right) \tag{3.192}
\end{align*}
$$

for some $F_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$, for the quasi-continuous
unimodular functions $u_{i}=\frac{\bar{z} \bar{h}_{i}}{h_{i}}$, for all $i=0, \ldots, j$, for the closed ball $B\left(t_{j}\right)$ of radius t_{j} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$. By equation (3.157),

$$
W_{0}^{*} W_{1}^{*} \cdots W_{j}^{*}=\left(\begin{array}{lllll}
\bar{\eta}_{0} & B_{0} B_{0}^{*} \bar{\eta}_{1} & \ldots & B_{j-1} B_{j-1}^{*} \bar{\eta}_{j} & B_{j}
\end{array}\right) .
$$

By equation (3.159),

$$
V_{0} \cdots V_{j}=\left(\begin{array}{llllll}
\xi_{0} & \bar{A}_{0} A_{0}^{T} \xi_{1} & \bar{A}_{1} A_{1}^{T} \xi_{2} & \ldots & \bar{A}_{j-1} A_{j-1}^{T} \xi_{j-1} & \bar{A}_{j} \tag{3.193}
\end{array}\right) .
$$

Therefore, by equation (3.192), for every $\chi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)$,

$$
\begin{equation*}
\left(G-Q_{j+1}\right) \bar{A}_{j} \chi=B_{j} F_{j+1} \chi . \tag{3.194}
\end{equation*}
$$

A typical element $x \in \mathcal{K}_{j+1}$ is of the form $x=\bar{A}_{j} \chi$, for some $\chi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j+1}\right)$. Then, by Proposition 3.2.50,

$$
\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right) \bar{A}_{j} \chi=\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} \bar{A}_{j} \chi \in X_{j+1}
$$

Therefore, by the definition of T_{j+1} and by equation (3.194),

$$
\begin{aligned}
T_{j+1}\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} \bar{A}_{j} \chi\right) & =P_{Y_{j+1}}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge}\left(G-Q_{j+1}\right) \bar{A}_{j} \chi\right) \\
& =P_{Y_{j+1}}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} B_{j} F_{j+1} \chi\right)
\end{aligned}
$$

Furthermore, by the definition of Γ_{j+1} and by equation (3.194),

$$
\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right) \Gamma_{j+1}\left(\bar{A}_{j} \chi\right)=\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} P_{\mathcal{L}_{j+1}} B_{j} F_{j+1} \chi .
$$

In order to prove the commutativity of diagram (3.190), we need to show that

$$
\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} B_{j} F_{j+1} \chi \in Y_{j+1}
$$

and that

$$
\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge}\left(B_{j} F_{j+1} \chi-P_{\mathcal{L}_{j+1}} B_{j} F_{j+1} \chi\right)=\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} P_{\mathcal{L}_{j+1}^{\perp}} B_{j} F_{j+1} \chi
$$

is orthogonal to Y_{j+1}, for any $\chi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j}\right)$. Observe that, by Proposition 3.2.52, $\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} B_{j} F_{j+1} \chi$ is indeed an element of Y_{j+1}. To prove the latter assertion, first notice that, by Proposition 3.2.53, there exists a $\Phi \in L^{2}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ such that

$$
\Phi=P_{\mathcal{L}_{j+1}^{\perp}} B_{j} F_{j+1} \chi \quad \text { and } \quad B_{j}^{*} \Phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)
$$

Let

$$
\bar{\eta}_{(j)}=\bar{\eta}_{0} \dot{\lambda} \cdots \dot{\wedge} \bar{\eta}_{j} .
$$

It suffices to prove that

$$
\left\langle\bar{\eta}_{(j)} \dot{\wedge} \Phi, \bar{\eta}_{(j)} \dot{\wedge} \psi\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}=0
$$

for all $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. By Proposition 2.1.19,

$$
\left\langle\bar{\eta}_{(j)} \dot{\wedge} \dot{ }, \bar{\eta}_{(j)} \dot{\wedge} \psi\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{ccc}
\left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\vdots & \ddots & \vdots \\
\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \left\langle\Phi\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta
$$

for all $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Recall that, by Proposition 3.2.1, the set $\left\{\eta_{i}\right\}_{i=0}^{j}$ is an orthonormal set in \mathbb{C}^{m} almost everywhere on \mathbb{T}. Hence

$$
\left\langle\bar{\eta}_{(j)} \dot{\wedge} \Phi, \bar{\eta}_{(j)} \dot{\wedge} \psi\right\rangle_{L^{2}\left(\mathbb{T}, \wedge j+2 \mathbb{C}^{m}\right)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \ldots & \left\langle\bar{\eta}_{0}\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
0 & 1 & \ldots & \left\langle\bar{\eta}_{1}\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} \\
\vdots & & \ddots & \vdots \\
\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}} & \ldots & \left\langle\Phi\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta .
$$

Multiplying the k-th column with $\left\langle\bar{\eta}_{k}\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}$ and adding it to the last column of the determinant above, we obtain

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{0}\left(e^{i \theta}\right)\right\rangle_{C^{m}} & \cdots & \left\langle\Phi\left(e^{i \theta}\right), \psi\left(\sum_{i \theta}^{i \theta}\right)\right\rangle_{c^{m}}^{j} \\
& & -\sum_{i=0}^{j}\left\langle\Phi\left(e^{i \theta}\right), \bar{\eta}_{i}\left(e^{i \theta}\right)\right\rangle_{C^{m}}\left\langle\bar{\eta}_{i}\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}
\end{array}\right) d \theta
$$

which is equal to

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi^{*}\left(e^{i \theta}\right) \Phi\left(e^{i \theta}\right)-\sum_{i=0}^{j} \psi^{*}\left(e^{i \theta}\right) \bar{\eta}_{i}\left(e^{i \theta}\right) \eta_{i}^{T}\left(e^{i \theta}\right) \Phi\left(e^{i \theta}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \psi^{*}\left(e^{i \theta}\right)\left(I_{m}-\sum_{i=0}^{j} \bar{\eta}_{i}\left(e^{i \theta}\right) \eta_{i}^{T}\left(e^{i \theta}\right)\right) \Phi\left(e^{i \theta}\right) d \theta
\end{aligned}
$$

Then

$$
\left\langle\bar{\eta}_{(j)} \dot{\wedge} \Phi, \bar{\eta}_{(j)} \dot{\wedge} \psi\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}=0
$$

for all $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\left(I_{m}-\sum_{i=0}^{j} \bar{\eta}_{i}\left(e^{i \theta}\right) \eta_{i}^{T}\left(e^{i \theta}\right)\right) \Phi\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=0
$$

for all $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$, which holds if and only if

$$
\left(I_{m}-\sum_{i=0}^{j} \bar{\eta}_{i} \eta_{i}^{T}\right) \Phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)
$$

Notice that W_{0}, \cdots, W_{j} being unitary-valued, implies $W_{0}^{*} \cdots W_{j}^{*} W_{j} \cdots W_{0}=I_{m}$, or equivalently,

$$
B_{j} B_{j}^{*}+\sum_{i=0}^{j} B_{i-1} B_{i-1}^{*} \bar{\eta}_{i} \eta_{i}^{T} B_{i-1} B_{i-1}^{*}=I_{m}
$$

which, by Lemma 3.2.46, is equivalent to the following equation

$$
B_{j} B_{j}^{*}=I_{m}-\sum_{i=0}^{j} \bar{\eta}_{i} \eta_{i}^{T} .
$$

Thus

$$
\left\langle\bar{\eta}_{(j)} \dot{\wedge} \Phi, \bar{\eta}_{(j)} \dot{\wedge} \psi\right\rangle_{L^{2}\left(\mathbb{T}, \wedge^{j+2} \mathbb{C}^{m}\right)}=0
$$

for all $\psi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ if and only if

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle B_{j}\left(e^{i \theta}\right) B_{j}^{*}\left(e^{i \theta}\right) \Phi\left(e^{i \theta}\right), \psi\left(e^{i \theta}\right)\right\rangle_{\mathbb{C}^{m}}=0,
$$

which holds if and only if $B_{j} B_{j}^{*} \Phi \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)$, which is true by Proposition 3.2.53. Hence diagram (3.190) commutes.

Our quest now is to associate the operator Γ_{j+1} with a compact operator in order to reach the conclusion that T_{j+1} is also compact. Recall that, by Lemma 3.1.17, the following diagram also commutes

$$
\begin{array}{lll}
H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right) & \xrightarrow{M_{\bar{A}_{j}}} & \mathcal{K}_{j+1} \tag{3.195}\\
\downarrow^{H_{F_{j+1}}} & & \left.\right|_{\Gamma_{j+1}} \\
H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp} & \xrightarrow{M_{B_{j}}} & \mathcal{L}_{j+1} .
\end{array}
$$

(iv). Since $F_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(n-j-1) \times(m-j-1)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(n-j-1) \times(m-j-1)}\right)$, by Hartman's Theorem, the Hankel operator $H_{F_{j+1}}$ is compact, hence the operator Γ_{j+1} is compact. Since diagram (3.195) commutes and the operators $M_{\bar{A}_{j}}$ and $M_{B_{j}}$ are unitaries, Γ_{j+1} is compact. By (iii),

$$
\left(\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right) \circ\left(M_{B_{j}} \circ H_{F_{j+1}} \circ M_{\bar{A}_{j}}^{*}\right) \circ\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right)^{*}=T_{j+1} .
$$

By (i) and (ii), the operators $M_{\bar{A}_{j}}, M_{B_{j}},\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right)$ and $\left(\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)$ are unitaries, Hence T_{j+1} is a compact operator.
(v). Since diagram (3.186) commutes and the operators $M_{\bar{A}_{j}}, M_{B_{j}},\left(\xi_{0} \dot{\wedge} \ldots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right)$ and $\left(\bar{\eta}_{0} \dot{\wedge} \ldots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)$ are unitaries,

$$
\left\|T_{j+1}\right\|=\left\|\Gamma_{j+1}\right\|=\left\|H_{F_{j+1}}\right\|=t_{j+1} .
$$

Lemma 3.2.55. Let $v_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ and $w_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ be such that

$$
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}, \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right)
$$

is a Schmidt pair for the operator T_{j+1} corresponding to $\left\|T_{j+1}\right\|$. Then
(i) there exist $x_{j+1} \in \mathcal{K}_{j+1}$ and $y_{j+1} \in \mathcal{L}_{j+1}$ such that $\left(x_{j+1}, y_{j+1}\right)$ is a Schmidt pair for the operator Γ_{j+1}.
(ii). For any $x_{j+1} \in \mathcal{K}_{j+1}$ and $y_{j+1} \in \mathcal{L}_{j+1}$ such that

$$
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x_{j+1}=\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}, \quad \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} y_{j+1}=\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1},
$$

the pair $\left(x_{j+1}, y_{j+1}\right)$ is a Schmidt pair for Γ_{j+1} corresponding to $\left\|\Gamma_{j+1}\right\|$.
Proof. (i). By Theorem 3.2.54, the diagram (3.190) commutes, $\left(\xi_{0} \dot{\lambda} \cdots \dot{\wedge} \xi_{j} \dot{\lambda} \cdot\right)$ is unitary from \mathcal{K}_{j+1} to X_{j+1}, and ($\left.\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)$ is unitary from \mathcal{L}_{j+1} to Y_{j+1}. Thus

$$
\left\|\Gamma_{j+1}\right\|=\left\|T_{j+1}\right\|=t_{j+1}
$$

Moreover, the operator $\Gamma_{j+1}: \mathcal{K}_{j+1} \rightarrow \mathcal{L}_{j+1}$ is compact, hence there exist $x_{j+1} \in \mathcal{K}_{j+1}$, $y_{j+1} \in \mathcal{L}_{j+1}$ such that $\left(x_{j+1}, y_{j+1}\right)$ is a Schmidt pair for Γ_{j+1} corresponding to $\left\|\Gamma_{j+1}\right\|=t_{j+1}$. (ii). Suppose that $x_{j+1} \in \mathcal{K}_{j+1}, y_{j+1} \in \mathcal{L}_{j+1}$ satisfy

$$
\begin{align*}
& \xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x_{j+1}=\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1} \tag{3.196}\\
& \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} y_{j+1}=\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1} \tag{3.197}
\end{align*}
$$

Let us show that $\left(x_{j+1}, y_{j+1}\right)$ is a Schmidt pair for Γ_{j+1}, that is,

$$
\Gamma_{j+1} x_{j+1}=t_{j+1} y_{j+1}, \quad \Gamma_{j+1}^{*} y_{j+1}=t_{j+1} x_{j+1} .
$$

Since diagram (3.190) commutes,

$$
\begin{equation*}
T_{j+1} \circ\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right)=\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right) \circ \Gamma_{j+1} \tag{3.198}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right)^{*} \circ T_{j+1}^{*}=\Gamma_{j+1}^{*} \circ\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)^{*} . \tag{3.199}
\end{equation*}
$$

By hypothesis,

$$
\begin{equation*}
T_{j+1}\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}\right)=t_{j+1}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right) \tag{3.200}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{j+1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right)=t_{j+1}\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}\right) . \tag{3.201}
\end{equation*}
$$

Thus, by equations (3.196), (3.197) and (3.200),

$$
\begin{aligned}
\Gamma_{j+1} x_{j+1} & =\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)^{*} T_{j+1}\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}\right) \\
& =\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)^{*} \circ t_{j+1}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right) \\
& =t_{j+1}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\lambda} \cdot\right)^{*} \circ\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} y_{j+1}\right) .
\end{aligned}
$$

Hence

$$
\Gamma_{j+1} x_{j+1}=t_{j+1}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right) y_{j+1}=t_{j+1} y_{j+1}
$$

By equation (3.196),

$$
x_{j+1}=\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} \cdot\right)^{*}\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}\right),
$$

and, by equation (3.197),

$$
\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right)=y_{j+1} .
$$

Thus

$$
\begin{aligned}
\Gamma_{j+1}^{*} y_{j+1} & =\Gamma_{j+1}^{*} \circ\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right) \\
& =\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \cdot\right)^{*} \circ T_{j+1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right),
\end{aligned}
$$

last equality following by equation (3.199). By equations (3.196) and (3.200), we get

$$
T_{j+1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right)=t_{j+1}\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}\right)=t_{j+1}\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x_{j+1}\right),
$$

and so,

$$
\Gamma_{j+1}^{*} y_{j+1}=t_{j+1} x_{j+1} .
$$

Therefore $\left(x_{j+1}, y_{j+1}\right)$ is a Schmidt pair for Γ_{j+1} corresponding to $\left\|\Gamma_{j+1}\right\|=t_{j+1}$.
Lemma 3.2.56. Suppose that

$$
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}, \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right)
$$

is a Schmidt pair for the operator T_{j+1} corresponding to $\left\|T_{j+1}\right\|=t_{j+1}$. Let

$$
\begin{gathered}
x_{j+1}=\left(I_{\mathbb{C}^{n}}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j} \xi_{j}^{*}\right) v_{j+1}, \\
y_{j+1}=\left(I_{\mathbb{C}^{m}}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j} \eta_{j}^{T}\right) w_{j+1},
\end{gathered}
$$

and let

$$
\hat{x}_{j+1}=A_{j}^{T} x_{j+1}, \quad \hat{y}_{j+1}=B_{j}^{*} y_{j+1} .
$$

Then the pair $\left(\hat{x}_{j+1}, \hat{y}_{j+1}\right)$ is a Schmidt pair for $H_{F_{j+1}}$ corresponding to $\left\|H_{F_{j+1}}\right\|=t_{j+1}$.
Proof. Let us first show that $\hat{x}_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)$ and $x_{j+1} \in \mathcal{K}_{j+1}$. Recall that, for $i=0, \cdots, j, V_{0}$ and \tilde{V}_{i} are unitary-valued, that is $\alpha_{0}^{T} \xi_{0}=0$ and $A_{i}^{T} \xi_{i}=0$. Hence we have

$$
\begin{align*}
\hat{x}_{j+1} & =A_{j}^{T} x_{j+1} \\
& =A_{j}^{T}\left(I_{n}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j} \xi_{j}^{*}\right) v_{j+1} \\
& =A_{j}^{T} v_{j+1}-A_{j}^{T} \xi_{0} \xi_{0}^{*} v_{j+1}-\cdots-A_{j}^{T} \xi_{j} \xi_{j}^{*} v_{j+1} \\
& =A_{j}^{T} v_{j+1}, \tag{3.202}
\end{align*}
$$

which implies that $\hat{x}_{2} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-2}\right)$. By Lemma 3.2.45,

$$
\begin{equation*}
\bar{A}_{j} \hat{x}_{j+1}=\bar{A}_{j} A_{j}^{T} v_{j+1}=x_{j+1}, \tag{3.203}
\end{equation*}
$$

and thus $x_{j+1} \in \mathcal{K}_{j+1}$.
Next, we shall show that and $\hat{y}_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right)^{\perp}$ and $y_{j+1} \in \mathcal{L}_{j+1}$. Notice that, for all $i=1, \cdots, j, W_{0}$ and \tilde{W}_{i} are unitary valued, that is $\beta_{0}^{*} \bar{\eta}_{0}=0$ and $B_{i}^{*} \bar{\eta}_{i}=0$. Then we have

$$
\begin{align*}
\hat{y}_{j+1} & =B_{j}^{*} y_{j+1} \\
& =B_{j}^{*}\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j} \eta_{j}^{T}\right) w_{j+1} \\
& =B_{j}^{*} w_{j+1}-B_{j}^{*} \bar{\eta}_{0} \eta_{0}^{T} w_{j+1}-\cdots-B_{j}^{*} \bar{\eta}_{j} \eta_{j}^{T} w_{j+1} \\
& =B_{j}^{*} w_{j+1}, \tag{3.204}
\end{align*}
$$

which implies that $\hat{y}_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp}$.
By Lemma 3.2.46,

$$
\begin{equation*}
B_{j} \hat{y}_{j+1}=B_{j} B_{j}^{*} w_{j+1}=y_{j+1}, \tag{3.205}
\end{equation*}
$$

and hence $y_{j+1} \in \mathcal{L}_{j+1}$.
Recall that, by Theorem 3.2.54, the maps

$$
M_{\bar{A}_{j}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right) \rightarrow \mathcal{K}_{j+1}, \quad M_{B_{j}}: H^{2}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)^{\perp} \rightarrow \mathcal{L}_{j+1},
$$

are unitaries and

$$
\begin{equation*}
H_{F_{j+1}}=M_{B_{j}}^{*} \circ \Gamma_{j+1} \circ M_{\bar{A}_{j}} . \tag{3.206}
\end{equation*}
$$

Furthermore, by Proposition 3.2.55,

$$
\begin{equation*}
\Gamma_{j+1} x_{j+1}=t_{j+1} y_{j+1}, \quad \Gamma_{j+1}^{*} y_{j+1}=t_{j+1} x_{j+1} . \tag{3.207}
\end{equation*}
$$

We need to show that

$$
H_{F_{j+1}} \hat{x}_{j+1}=t_{j+1} \hat{y}_{j+1}, \quad H_{F_{j+1}}^{*} \hat{y}_{j+1}=t_{j+1} \hat{x}_{j+1} .
$$

By equation (3.206), we have

$$
\begin{align*}
H_{F_{j+1}} \hat{x}_{j+1} & =H_{F_{j+1}} A_{j}^{T} x_{j+1} \\
& =B_{j}^{*} \Gamma_{j+1} \bar{A}_{j} A_{j}^{T} x_{j+1} \tag{3.208}
\end{align*}
$$

Notice that, by equations (3.202) and (3.203),

$$
\begin{equation*}
x_{j+1}=\bar{A}_{j} A_{j}^{T} x_{j+1} . \tag{3.209}
\end{equation*}
$$

Hence, by equations (3.207) and (3.208), we obtain

$$
H_{F_{j+1}} \hat{x}_{j+1}=B_{j}^{*} \Gamma_{j+1} x_{j+1}=t_{j+1} B_{j}^{*} y_{j+1}=t_{j+1} \hat{y}_{j+1} .
$$

Let us show that $H_{F_{j+1}}^{*} \hat{y}_{j+1}=t_{j+1} \hat{x}_{j+1}$. For $\hat{y}_{j+1}=B_{j}^{*} y_{j+1}$ and by equation (3.207), we get

$$
\begin{align*}
H_{F_{j+1}}^{*} \hat{y}_{j+1} & =H_{F_{j+1}}^{*} B_{j}^{*} y_{j+1} \\
& =A_{j+1}^{T} \Gamma_{j+1}^{*} B_{j} B_{j}^{*} y_{j+1} \tag{3.210}
\end{align*}
$$

Observe that, in view of equations (3.204) and (3.205), we have

$$
\begin{equation*}
y_{j+1}=B_{j} B_{j}^{*} y_{j+1} . \tag{3.211}
\end{equation*}
$$

Hence, by equations (3.207) and (3.210), we obtain

$$
H_{F_{j+1}}^{*} \hat{y}_{j+1}=A_{j+1}^{T} \Gamma_{j+1}^{*} y_{j+1}=t_{j+1} A_{j+1}^{T} x_{j+1}=t_{j+1} \hat{x}_{j+1}
$$

Therefore $\left(\hat{x}_{j+1}, \hat{y}_{j+1}\right)$ is a Schmidt pair for the Hankel operator $H_{F_{j+1}}$ corresponding to $\left\|H_{F_{j+1}}\right\|=t_{j+1}$.

Proposition 3.2.57. Let

$$
\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1}, \bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1}\right)
$$

be a Schmidt pair for T_{j+1} corresponding to t_{j+1} for some $v_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $w_{j+1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$. Let

$$
x_{j+1}=\left(I_{n}-\xi_{0} \xi_{0}^{*}-\cdots-\xi_{j} \xi_{j}^{*}\right) v_{j+1}, \quad y_{j+1}=\left(I_{m}-\bar{\eta}_{0} \eta_{0}^{T}-\cdots-\bar{\eta}_{j} \eta_{j}^{T}\right) w_{j+1},
$$

and let

$$
\begin{equation*}
\hat{x}_{j+1}=A_{j}^{T} x_{j+1} \quad \text { and } \quad \hat{y}_{j+1}=B_{j}^{*} y_{j+1} . \tag{3.212}
\end{equation*}
$$

Then

$$
\begin{array}{ll}
\left\|\xi_{0}(z) \wedge \ldots \wedge \xi_{j}(z) \wedge v_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{n}} & =\left\|\bar{\eta}_{0}(z) \wedge \ldots \wedge \bar{\eta}_{j}(z) \wedge w_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{m}}=\left|h_{j+i}(z)\right|, \\
\left\|\hat{x}_{j+1}(z)\right\|_{\mathbb{C}^{n-j-1}} & =\left\|\hat{y}_{j+1}(z)\right\|_{\mathbb{C}^{m-j-1}}=\left|h_{j+1}(z)\right|, \text { and } \\
\left\|x_{j+1}(z)\right\|_{\mathbb{C}^{n}} & =\left\|y_{j+1}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{j+1}(z)\right|, \tag{3.213}
\end{array}
$$

almost everywhere on \mathbb{T}.
Proof. By Lemma 3.2.56, $\left(\hat{x}_{j+1}, \hat{y}_{j+1}\right)$ is a Schmidt pair for $H_{F_{j+1}}$ corresponding to $\left\|H_{F_{j+1}}\right\|=t_{j+1}$. Hence

$$
H_{F_{j+1}} \hat{x}_{j+1}=t_{j+1} \hat{y}_{j+1} \quad \text { and } \quad H_{F_{j+1}}^{*} \hat{y}_{j+1}=t_{j+1} \hat{x}_{j+1} .
$$

By Theorem D.2.4,

$$
t_{j+1}\left\|\hat{y}_{j+1}(z)\right\|_{\mathbb{C}^{m-j-1}}=\left\|H_{F_{j+1}}\right\|\left\|\hat{x}_{j+1}(z)\right\|_{\mathbb{C}^{n-j-1}}
$$

almost everywhere on \mathbb{T}. Thus

$$
\begin{equation*}
\left\|\hat{y}_{j+1}(z)\right\|_{\mathbb{C}^{m-j-1}}=\left\|\hat{x}_{j+1}(z)\right\|_{\mathbb{C}^{n-j-1}} \tag{3.214}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
Notice that, $\bar{A}_{j}(z)$ are isometric for almost every $z \in \mathbb{T}$, and therefore, by equations (3.212), we obtain

$$
\left\|x_{j+1}(z)\right\|_{\mathbb{C}^{n}}=\left\|\hat{x}_{j+1}(z)\right\|_{\mathbb{C}^{n-j-1}}
$$

Moreover, since $B_{j}(z)$ are isometries almost everywhere on \mathbb{T}, by equations (3.212), we get

$$
\left\|y_{j+1}(z)\right\|_{\mathbb{C}^{m}}=\left\|\hat{y}_{j+1}(z)\right\|_{\mathbb{C}^{m-j-1}}
$$

almost everywhere on \mathbb{T}. By equations (3.214), we deduce

$$
\begin{equation*}
\left\|x_{j+1}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{j+1}(z)\right\|_{\mathbb{C}^{m}} \tag{3.215}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
By Proposition 3.2.1,

$$
\begin{equation*}
\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} x_{j+1}=\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \dot{\wedge} v_{j+1} \tag{3.216}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} y_{j+1}=\bar{\eta}_{0} \dot{\wedge} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} w_{j+1} . \tag{3.217}
\end{equation*}
$$

Hence, by Proposition 2.1.22,

$$
\begin{aligned}
& \left\|\xi_{0}(z) \wedge \cdots \wedge \xi_{j}(z) \wedge v_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{n}} \\
& =\left\|\xi_{0}(z) \wedge \cdots \wedge \xi_{j}(z) \wedge x_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{n}} \\
& =\left\|x_{j+1}(z)-\sum_{i=0}^{j}\left\langle x_{j+1}(z), \xi_{i}(z)\right\rangle \xi_{i}(z)\right\|_{\mathbb{C}^{n}}=\left\|x_{j+1}(z)\right\|_{\mathbb{C}^{n}}
\end{aligned}
$$

almost everywhere on \mathbb{T}. Furthermore

$$
\begin{aligned}
\left\|\bar{\eta}_{0}(z) \wedge \cdots \wedge \bar{\eta}_{j}(z) \wedge w_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{m}} & =\left\|\bar{\eta}_{0}(z) \wedge \cdots \wedge \bar{\eta}_{j}(z) \wedge y_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{m}} \\
& =\left\|y_{j+1}(z)-\sum_{i=0}^{j}\left\langle y_{j+1}(z), \bar{\eta}_{i}(z)\right\rangle \bar{\eta}_{i}(z)\right\|_{\mathbb{C}^{m}}=\left\|y_{j+1}(z)\right\|_{\mathbb{C}^{m}}
\end{aligned}
$$

almost everywhere on \mathbb{T}. Thus, by equation (3.215),

$$
\left\|\bar{\eta}_{0}(z) \wedge \cdots \wedge \bar{\eta}_{j}(z) \wedge w_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{m}}=\left\|\xi_{0}(z) \wedge \cdots \wedge \xi_{j}(z) \wedge v_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{n}}
$$

almost everywhere on \mathbb{T}.
Recall that h_{j+1} is the scalar outer factor of $\xi_{0} \wedge \cdots \wedge \xi_{j} \wedge v_{j+1}$. Hence

$$
\begin{aligned}
\left\|\hat{x}_{j+1}(z)\right\|_{\mathbb{C}^{n-j-1}} & =\left\|\hat{y}_{j+1}(z)\right\|_{\mathbb{C}^{m-j-1}}=\left|h_{j+1}(z)\right|, \\
\left\|x_{j+1}(z)\right\|_{\mathbb{C}^{n}} & =\left\|y_{j+1}(z)\right\|_{\mathbb{C}^{m}}=\left|h_{j+1}(z)\right|,
\end{aligned}
$$

and

$$
\left\|\xi_{0}(z) \wedge \cdots \wedge \xi_{j}(z) \wedge v_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{n}}=\left\|\bar{\eta}_{0}(z) \wedge \cdots \wedge \bar{\eta}_{j}(z) \wedge w_{j+1}(z)\right\|_{\wedge^{j+2} \mathbb{C}^{m}} \|=\left|h_{j+1}(z)\right|
$$

almost everywhere on \mathbb{T}.
Proposition 3.2.58. In the notation of Theorem 3.2.54, there exist unitary-valued functions $\tilde{V}_{j+1}, \tilde{W}_{j+1}$ of types $(n-j-1) \times(n-j-2)$ and $(m-j-1) \times(m-j-2)$ respectively of the form

$$
\tilde{V}_{j+1}=\left(\begin{array}{ll}
A_{j} \xi_{j+1} & \bar{\alpha}_{j+1}
\end{array}\right), \quad \tilde{W}_{j+1}^{T}=\left(\begin{array}{ll}
B_{j}^{T} \eta_{j+1} & \bar{\beta}_{j+1}
\end{array}\right),
$$

where $\alpha_{j+1}, \beta_{j+1}$ are inner, co-outer, quasi-continuous and all minors on the first columns of $\tilde{V}_{j+1}, \tilde{W}_{j+1}^{T}$ are in H^{∞}. Furthermore, the set \mathcal{E}_{j+1} of all level $j+1$ superoptimal error functions for G is equal to the following set

$$
W_{0}^{*} \cdots\left(\begin{array}{cc}
I_{j+1} & 0 \\
0 & \tilde{W}_{j+1}^{*}
\end{array}\right)\left(\begin{array}{cccc}
t_{0} u_{0} & 0 & 0 & 0 \\
0 & t_{1} u_{1} & 0 & 0 \\
\vdots & & \ddots & \\
0 & 0 & & \vdots \\
0 & 0 & t_{j+1} u_{j+1} & 0 \\
0 & 0 & \left(F_{j+2}+H^{\infty}\right) \cap B\left(t_{j+1}\right)
\end{array}\right)\left(\begin{array}{cc}
I_{j+1} & 0 \\
0 & \tilde{V}_{j+1}^{*}
\end{array}\right) \cdots V_{0}^{*},
$$

where $F_{j+2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)$, $u_{j+1}=\frac{z \bar{h}_{j+1}}{h_{j+1}}$ is a quasicontinuous unimodular function and $B\left(t_{j+1}\right)$ is the closed ball of radius t_{j+1} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)$.

Proof. Recall that, in diagrams (3.190) and (3.195), the operators $M_{\bar{A}_{j}}, M_{B_{j}},\left(\xi_{0} \dot{\wedge} \cdots \dot{\wedge} \xi_{j} \cdot\right)$ and $\left(\bar{\eta}_{0} \dot{\lambda} \cdots \dot{\wedge} \bar{\eta}_{j} \dot{\wedge} \cdot\right)$ are unitaries. Since both diagrams commute and (x_{j+1}, y_{j+1}) defined above is a Schmidt pair for Γ_{j+1} corresponding to t_{j+1}, by Lemma 3.2.56, $\left(\hat{x}_{j+1}, \hat{y}_{j+1}\right)$ is a Schmidt pair for $H_{F_{j+1}}$ corresponding to t_{j+1}, where

$$
\hat{x}_{j+1}=A_{j} x_{j+1}, \quad \hat{y}_{j+1}=B_{j}^{*} y_{j+1} .
$$

We would like to apply Lemma 3.1.12 to $H_{F_{j+1}}$ and the Schmidt pair ($\hat{x}_{j+1}, \hat{y}_{j+1}$) to find unitary-valued functions $\tilde{V}_{j+1}, \tilde{W}_{j+1}$ such that, for every $\tilde{Q}_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$ which is at minimal distance from F_{j+1}, we obtain a factorisation of the form

$$
F_{j+1}-\tilde{Q}_{j+1}=\tilde{W}_{j+1}^{*}\left(\begin{array}{cc}
t_{j+1} u_{j+1} & 0 \\
0 & F_{j+2}
\end{array}\right) \tilde{V}_{j+1}^{*}
$$

for some $F_{j+2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)$. For this purpose we find the inner-outer factorisations of \hat{x}_{j+1} and $\bar{z} \overline{\hat{y}}_{j+1}$.

By Proposition 3.2.57,

$$
\begin{equation*}
\left\|\hat{x}_{j+1}(z)\right\|_{\mathbb{C}^{n-j-1}}=\left|h_{j+1}(z)\right| \tag{3.218}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\hat{y}_{j+1}(z)\right\|_{\mathbb{C}^{m-j-1}}=\left|h_{j+1}(z)\right| \tag{3.219}
\end{equation*}
$$

almost everywhere on \mathbb{T}. Equations (3.218) and (3.219) imply that $h_{j+1} \in H^{2}(\mathbb{D}, \mathbb{C})$ is the scalar outer factor of both \hat{x}_{j+1} and $\bar{z} \overline{\hat{y}}_{j+1}$.

Hence, by Lemma 3.1.12, $\hat{x}_{j+1}, \bar{z} \overline{\hat{y}}_{j+1}$ admit the inner outer factorisations

$$
\hat{x}_{j+1}=\hat{\xi}_{j+1} h_{j+1}, \quad \bar{z} \bar{y}_{j+1}=\hat{\eta}_{j+1} h_{j+1},
$$

for some inner $\hat{\xi}_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{n-j-1}\right), \hat{\eta}_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m-j-1}\right)$. Then

$$
\hat{x}_{j+1}=\hat{\xi}_{j+1} h_{j+1}=A_{j}^{T} x_{j+1}, \quad \bar{z} \overline{\hat{y}}_{j+1}=\hat{\eta}_{j+1} h_{j+1}=\bar{z} B_{j}^{T} \bar{y}_{j+1},
$$

from which we obtain

$$
\hat{\xi}_{j+1}=A_{j}^{T} \xi_{j+1}, \quad \hat{\eta}_{j+1}=B_{j}^{T} \eta_{j+1}
$$

We would like to show that $A_{j}^{T} \xi_{j+1}, B_{j}^{T} \eta_{j+1}$ are inner functions in order to apply Lemma 3.1.12 and obtain \tilde{V}_{j+1} and \tilde{W}_{j+1}. Observe that, by equations (3.203), (3.205), (3.209) and (3.211),

$$
x_{j+1}=\bar{A}_{j} A_{j}^{T} v_{j+1}, \quad y_{j+1}=B_{j} B_{j}^{*} w_{j+1} .
$$

Then

$$
A_{j}^{T} x_{j+1}=A_{j}^{T} v_{j+1}, \quad B_{j}^{T} \bar{y}_{j+1}=B_{j}^{T} \bar{w}_{j+1},
$$

and since

$$
\xi_{j+1}=\frac{x_{j+1}}{h_{j+1}}, \quad \eta_{j+1}=\frac{\bar{z} \bar{y}_{j+1}}{h_{j+1}},
$$

we get that the functions

$$
A_{j}^{T} \xi_{j+1}=\frac{A_{j}^{T} v_{j+1}}{h_{j+1}}, \quad B_{j}^{T} \eta_{j+1}=\frac{B_{j}^{*} w_{j+1}}{h_{2}}
$$

are analytic. Furthermore, by Proposition 3.2.1 $\left\|\xi_{j+1}(z)\right\|_{\mathbb{C}^{n}}=1$ and $\left\|\eta_{j+1}(z)\right\|_{\mathbb{C}^{m}}=1$ almost everywhere on \mathbb{T}, and, by equations (3.218),

$$
\left\|A_{j}^{T}(z) \xi_{j+1}(z)\right\|_{\mathbb{C}^{n-j-1}}=1, \quad\left\|B_{j}^{T}(z) \eta_{j+1}(z)\right\|_{\mathbb{C}^{m-j-1}}=1
$$

almost everywhere on \mathbb{T}. Thus $A_{j}^{T} \xi_{j+1}, B_{j}^{T} \eta_{j+1}$ are inner functions.

By Lemma 3.1.12, there exist inner, co-outer, quasi-continuous functions $\alpha_{j+1}, \beta_{j+1}$ of types $(n-j-1) \times(n-j-2),(m-j-1) \times(m-j-2)$ respectively such that the functions

$$
\tilde{V}_{j+1}=\left(\begin{array}{ll}
A_{j}^{T} \xi_{j+1} & \bar{\alpha}_{j+1}
\end{array}\right), \quad \tilde{W}_{j+1}^{T}=\left(\begin{array}{ll}
B_{j}^{T} \eta_{j+1} & \bar{\beta}_{j+1}
\end{array}\right)
$$

are unitary-valued with all minors on the first columns in H^{∞}.
Furthermore, by Lemma 3.1.12, every $\hat{Q}_{j+1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right)$ which is at minimal distance from F_{j+1} satisfies

$$
F_{j+1}-\hat{Q}_{j+1}=\tilde{W}_{j+1}^{*}\left(\begin{array}{cc}
t_{j+1} u_{j+1} & 0 \\
0 & F_{j+2}
\end{array}\right) \tilde{V}_{j+1}^{*}
$$

for some $F_{j+2} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)+C\left(\mathbb{T}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)$ and u_{j+1} a quasi-continuous unimodular function given by $u_{j+1}=\frac{z \bar{h}_{j+1}}{h_{j+1}}$.

By Lemma 3.1.15, the set

$$
\tilde{\mathcal{E}}_{j+1}=\left\{F_{j+1}-\hat{Q}: \hat{Q} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j-1) \times(n-j-1)}\right),\left\|F_{j+1}-\hat{Q}\right\|_{L^{\infty}}=t_{j+1}\right\}
$$

satisfies

$$
\tilde{\mathcal{E}}_{j+1}=\tilde{W}_{j+1}^{*}\left(\begin{array}{cc}
t_{j+1} u_{j+1} & 0 \\
0 & \left(F_{j+2}+H^{\infty}\right) \cap B\left(t_{j+1}\right)
\end{array}\right) V_{j+1}^{*}
$$

where $B\left(t_{j+1}\right)$ is the closed ball of radius t_{j+1} in $L^{\infty}\left(\mathbb{T}, \mathbb{C}^{(m-j-2) \times(n-j-2)}\right)$. Thus, by Proposition 3.2.43, \mathcal{E}_{j+1} admits the factorisation claimed.

Theorem 3.2.59. Let $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)+C\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, where m, n are positive integers with $\min (m, n) \geq 2$. Let $T_{i}, t_{i}, x_{i}, y_{i}, h_{i}$, for $i \geq 0$, be defined by the algorithm from Section 3.2.1. Let r be the least index $j \geq 0$ such that $T_{j}=0$. Then the superoptimal analytic approximant $\mathcal{A} G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ is equal to

$$
\begin{equation*}
\mathcal{A} G=G-\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}} \tag{3.220}
\end{equation*}
$$

Proof. First observe that, if $T_{0}=H_{G}=0$, then this implies $G \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$, and so

$$
\mathcal{A} G=G .
$$

Otherwise, let $t_{0}=\left\|H_{G}\right\|>0$. If $T_{1}=0$, by Theorem 3.2.10, $H_{F_{1}}=0$, that is,

$$
F_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-1) \times(n-1)}\right)
$$

Then, by Lemma 3.1.15, we get

$$
W_{0}(G-\mathcal{A} G) V_{0}=\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & 0
\end{array}\right)
$$

Equivalently

$$
\begin{aligned}
G-\mathcal{A} G & =W_{0}^{*}\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & 0
\end{array}\right) V_{0}^{*} \\
& =\left(\begin{array}{ll}
\bar{\eta}_{0} & \beta_{0}
\end{array}\right)\left(\begin{array}{cc}
t_{0} u_{0} & 0 \\
0 & 0
\end{array}\right)\binom{\xi_{0}^{*}}{\alpha_{0}^{T}} \\
& =\left(\begin{array}{ll}
\bar{\eta}_{0} t_{0} u_{0} & 0
\end{array}\right)\binom{\xi_{0}^{*}}{\alpha_{0}^{T}} \\
& =\bar{\eta}_{0} t_{0} u_{0} \xi_{0}^{*}=t_{0} \frac{z y_{0}}{\overline{h_{0}}} \frac{\bar{z}}{\overline{h_{0}}} \frac{x_{0}^{*}}{x_{0}} \\
& =\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}
\end{aligned}
$$

Let j be a non-negative integer such that $T_{j}=0$ and $T_{i} \neq 0$ for $1 \leq i<j$. By the commutativity of the diagrams (3.190) and (3.195), $H_{F_{j}}=0$, and therefore $F_{j} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(m-j) \times(n-j)}\right)$. By Proposition 3.2.58, the superoptimal analytic approximant $\mathcal{A} G$ satisfies equation (3.150), that is,

$$
G-\mathcal{A} G=W_{0}^{*} W_{1}^{*} \cdots W_{j-1}^{*}\left(\begin{array}{ccccc}
t_{0} u_{0} & 0 & & \cdots & 0 \tag{3.221}\\
0 & t_{1} u_{1} & & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & & t_{j-1} u_{j-1} & 0 \\
0 & \cdots & & \cdots & 0
\end{array}\right) V_{j-1}^{*} \cdots V_{1}^{*} V_{0}^{*}
$$

where, for $i=0,1, \ldots, j-1$,

$$
\tilde{V}_{i}=\left(\alpha_{i-1}^{T} \cdots \alpha_{0}^{T} \xi_{i} \quad \bar{\alpha}_{i}\right), \quad \tilde{W}_{i}^{T}=\left(\beta_{i-1}^{T} \cdots \beta_{0}^{T} \eta_{i} \quad \bar{\beta}_{i}\right)
$$

are unitary-valued functions, as described in Proposition 3.149, $u_{i}=\frac{\bar{z} \bar{h}_{i}}{h_{i}}$ are quasi-continuous unimodular functions, and

$$
V_{i}=\left(\begin{array}{cc}
I_{i} & 0 \\
0 & \tilde{V}_{i}
\end{array}\right), \quad W_{i}=\left(\begin{array}{cc}
I_{i} & 0 \\
0 & \tilde{W}_{i}
\end{array}\right) .
$$

Recall that, by equations (3.28), for $i=0, \ldots, j-1$,

$$
\begin{equation*}
\xi_{i}=\frac{x_{i}}{h_{i}}, \quad \eta_{i}=\frac{\bar{z} \bar{y}_{i}}{h_{i}} . \tag{3.222}
\end{equation*}
$$

By Proposition 3.2.57, for $i=0, \ldots, j-1$,

$$
\left|h_{i}(z)\right|=\left\|x_{i}(z)\right\|_{\mathbb{C}^{n}}=\left\|y_{i}(z)\right\|_{\mathbb{C}^{m}} \quad \text { almost everywhere on } \mathbb{T} .
$$

Multiplication of matrices in (3.221) gives the following formula

$$
\begin{align*}
G-\mathcal{A} G= & \frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}+t_{1} \frac{1}{\left|h_{1}\right|^{2}} \beta_{0} \beta_{0}^{*} y_{1} x_{1}^{*} \bar{\alpha}_{0} \alpha_{0}^{T}+\ldots \\
& \quad+t_{j-1} \frac{1}{\left|h_{j-1}\right|^{2}} \beta_{0} \beta_{1} \ldots \beta_{j-1} \beta_{j-1}^{*} \ldots \beta_{1}^{*} \beta_{0}^{*} y_{j-1} x_{j-1}^{*} \bar{\alpha}_{0} \bar{\alpha}_{1} \ldots \bar{\alpha}_{j-1} \alpha_{j-1}^{T} \ldots \alpha_{1}^{T} \alpha_{0}^{T} . \tag{3.223}
\end{align*}
$$

By equations (3.209) and (3.211), for $i=0, \ldots, j-1$,

$$
x_{i}=\bar{\alpha}_{0} \bar{\alpha}_{1} \ldots \bar{\alpha}_{i-1} \alpha_{i-1}^{T} \ldots \alpha_{0}^{T} x_{i} \text { and } y_{i}=\beta_{0} \beta_{1} \ldots \beta_{i-1} \beta_{i-1}^{*} \ldots \beta_{1}^{*} \beta_{0}^{*} y_{i}
$$

Thus

$$
G-\mathcal{A} G=\sum_{i=0}^{r-1} \frac{t_{i} y_{i} x_{i}^{*}}{\left|h_{i}\right|^{2}}
$$

and the assertion has been proved.

Chapter 4

Application of the algorithm

In this chapter we present the application of the algorithm from Section 3.2.1 to two concrete examples. The first is a trivial example and has been briefly explained in Chapter 1, however its simplicity provides the reader with the opportunity to understand how the steps we describe in Section 3.2.1 work. For our second example we choose the matrix-function that appeared in [25]. The solution we provide gives to a substantial illustration of the similarities and differences to the method used in [25].

Problem 4.0.1. Find the superoptimal analytic approximant of

$$
G(z)=\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right), \quad z \in \mathbb{T} .
$$

Solution: Step 0. First, we find the Hankel operator with symbol G. This is

$$
H_{G}: H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right) \rightarrow H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}
$$

and its matrix representation with respect to the orthonormal bases of $H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ and $H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}$, namely

$$
\left\{\binom{1}{0},\binom{0}{1},\binom{z}{0},\binom{0}{z}, \ldots\right\}
$$

and

$$
\left\{\binom{\bar{z}}{0},\binom{0}{\bar{z}},\binom{\bar{z}^{2}}{0},\binom{0}{\bar{z}^{2}}, \ldots\right\}
$$

respectively, is

$$
H_{G}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

all other entries being zero.

Thus

$$
t_{0}=\left\|H_{G}\right\|=\left\|\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\right\|=2
$$

The maximizing vectors $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ for H_{G} are those which satisfy

$$
x_{0} \neq 0 \quad \text { and } \quad\left\|H_{G} x_{0}\right\|_{H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}}=2\left\|x_{0}\right\|_{H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)} .
$$

Thus, a maximizing vector is $x_{0}(z)=\binom{1}{0}, z \in \mathbb{D}$. Following that, we can find a vector $y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}$ such that $\left(x_{0}, y_{0}\right)$ is a Schmidt pair for H_{G} corresponding to the singular value $\left\|H_{G}\right\|=2$, by solving the equations

$$
\begin{equation*}
H_{G} x_{0}=2 y_{0} \quad \text { and } \quad H_{G}^{*} y_{0}=2 x_{0} . \tag{4.1}
\end{equation*}
$$

Then,

$$
\begin{aligned}
H_{G} x_{0} & =P_{-}\left(G x_{0}\right) \\
& =P_{-}\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right)\binom{1}{0} \\
& =P_{-}\binom{2 / z}{0},
\end{aligned}
$$

hence

$$
y_{0}(z)=\binom{1 / z}{0} \quad \text { for all } \quad z \in \mathbb{T}
$$

We can see that for these x_{0}, y_{0} the other condition of (4.1) is also satisfied since

$$
H_{G}^{*} y_{0}=P_{+} G^{*} y_{0}=P_{+}\left(\left(\begin{array}{cc}
\frac{2}{\bar{z}} & 0 \\
0 & \frac{1}{\bar{z}}
\end{array}\right)\binom{\frac{1}{z}}{0}\right)=2\binom{1}{0}=2 x_{0} .
$$

Also,

$$
\left\|x_{0}(z)\right\|_{\mathbb{C}^{2}}=\left\|y_{0}(z)\right\|_{\mathbb{C}^{2}}=1 \quad \text { almost everywhere on } \quad \mathbb{T}
$$

By Lemma 3.1.12, x_{0} and y_{0} admit the inner-outer factorisations

$$
\begin{equation*}
x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0}, \tag{4.2}
\end{equation*}
$$

for some inner $\xi_{0}, \eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ and some scalar outer $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$. Clearly, for almost all $z \in \mathbb{T}$

$$
x_{0}(z)=\binom{1}{0}=\xi_{0}(z) h_{0}(z) \quad \text { and } \quad \bar{z} \bar{y}_{0}(z)=\bar{z}\binom{z}{0}=\binom{1}{0}=\eta_{0}(z) h_{0}(z),
$$

where

$$
h_{0}(z)=1, \quad \xi_{0}(z)=\binom{1}{0}, \quad \eta_{0}(z)=\binom{1}{0} .
$$

Let us find a function $Q_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)$ at minimal distance from G. Such a function, by Theorem D.2.4, necessarily satisfies

$$
\begin{equation*}
\left(G-Q_{0}\right) x_{0}=2 y_{0} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{0}^{*}\left(G-Q_{0}\right)=2 x_{0}^{*} \tag{4.4}
\end{equation*}
$$

Let us work each equation separately. Let

$$
Q_{0}=\left(\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right) \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)
$$

Equation (4.3) is equivalent to

$$
Q_{0} x_{0}=G x_{0}-2 y_{0} .
$$

Substituting from above, we get, for all $z \in \mathbb{D}$,

$$
Q_{0}\binom{1}{0}=\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right)\binom{1}{0}-2\binom{1 / z}{0}=\binom{0}{0}
$$

which gives us

$$
q_{11}(z)=q_{21}(z)=0,
$$

for all $z \in \mathbb{D}$. By equation (4.4), we get

$$
y_{0}^{*} Q_{0}=y_{0}^{*} G-2 x_{0}^{*} .
$$

Substituting from above,

$$
\left(\begin{array}{ll}
z & 0
\end{array}\right) Q_{0}=\left(\begin{array}{ll}
z & 0
\end{array}\right)\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right)-2\left(\begin{array}{cc}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0
\end{array}\right)
$$

for all $z \in \mathbb{D}$. This yields $q_{12}(z)=0$. Thus Q_{0} is of the form

$$
Q_{0}=\left(\begin{array}{cc}
0 & 0 \\
0 & q_{22}
\end{array}\right), \quad \text { for some } q_{22} \in H^{\infty}(\mathbb{D}, \mathbb{C})
$$

For any such Q_{0},

$$
\left(G-Q_{0}\right)(z)=\left(\begin{array}{cc}
2 \bar{z} & 0 \\
0 & \bar{z}-q_{22}(z)
\end{array}\right) \quad \text { for all } z \in \mathbb{T}
$$

where $\bar{z}-q_{22}(z)$ must satisfy $\left\|\bar{z}-q_{22}\right\|_{L^{\infty}} \leq 2$, for Q_{0} to be at minimal distance from G. It
suffices to choose $q_{22}=1$, since

$$
\left\|G-Q_{0}\right\|_{L^{\infty}}=\left\|\left(\begin{array}{cc}
2 / z & 0 \\
0 & \frac{1-z}{z}
\end{array}\right)\right\|_{L^{\infty}}=\max \left\{2, \operatorname{ess} \sup _{z \in \mathbb{T}}\left|\frac{1-z}{z}\right|\right\}=2 .
$$

Thus we take

$$
Q_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)
$$

Step 1. Let

$$
X_{1} \stackrel{\text { def }}{=} \xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right), \quad Y_{1} \stackrel{\text { def }}{=} \bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}
$$

where ξ_{0}, η_{0} are introduced in equation (4.2) and

$$
\xi_{0}(z)=\binom{1}{0}=\eta_{0}(z) \quad \text { for all } z \in \mathbb{D}
$$

Define $T_{1}: X_{1} \rightarrow Y_{1}$ by

$$
\begin{equation*}
T_{1}\left(\binom{1}{0} \dot{\wedge x}\right)=P_{Y_{1}}\left(\binom{1}{0} \dot{\wedge}\left(G-Q_{0}\right) x\right) \tag{4.5}
\end{equation*}
$$

for all $x=\binom{x_{1}}{x_{2}} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$. We have

$$
\begin{aligned}
T_{1}\left(\binom{1}{0} \dot{\wedge} x\right) & =P_{Y_{1}}\left(\binom{1}{0} \dot{\wedge}\left(G-Q_{0}\right) x\right) \\
& =P_{Y_{1}}\left(\binom{1}{0} \dot{\wedge}\left(\begin{array}{cc}
\frac{2}{z} & 0 \\
0 & \frac{1}{z}-q_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}\right) \\
& =P_{Y_{1}}\left(\binom{1}{0} \dot{\wedge}\binom{2 \bar{z} x_{1}}{\left(\bar{z}-q_{22}\right) x_{2}}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
X_{1} & =\left\{\binom{1}{0} \dot{(}\binom{f_{1}}{f_{2}}: f_{1}, f_{2} \in H^{2}(\mathbb{D}, \mathbb{C})\right\} \\
& \cong\left\{f_{2}: f_{2} \in H^{2}(\mathbb{D}, \mathbb{C})\right\} \\
& =H^{2}(\mathbb{D}, \mathbb{C}) \\
Y_{1} & =\left\{\binom{1}{0} \dot{\wedge}\binom{\phi_{1}}{\phi_{2}}: \phi_{1}, \phi_{2} \in H^{2}(\mathbb{D}, \mathbb{C})^{\perp}\right\} \\
& \cong\left\{\phi_{2}: \phi_{2} \in H^{2}(\mathbb{D}, \mathbb{C})^{\perp}\right\} \\
& =H^{2}(\mathbb{D}, \mathbb{C})^{\perp},
\end{aligned}
$$

where the isomorphisms are following from Proposition 2.1.26. Thus

$$
X_{1} \cong H^{2}(\mathbb{D}, \mathbb{C}), \quad Y_{1} \cong H^{2}(\mathbb{D}, \mathbb{C})^{\perp}
$$

Hence $T_{1}: H^{2}(\mathbb{D}, \mathbb{C}) \rightarrow H^{2}(\mathbb{D}, \mathbb{C})^{\perp}$ is defined by

$$
T_{1}(x)=P_{H^{2}(\mathbb{D}, \mathbb{C})^{\perp}}\left(\frac{1}{z}-q_{22}\right) x=P_{H^{2}(\mathbb{D}, \mathbb{C})^{\perp}}\left(\frac{1}{z}-1\right) x .
$$

Therefore

$$
T_{0}(x)=H_{g} x \quad \text { for all } \quad x \in H^{2}(\mathbb{D}, \mathbb{C}),
$$

where $H_{g}: H^{2}(\mathbb{D}, \mathbb{C}) \rightarrow H^{2}(\mathbb{D}, \mathbb{C})^{\perp}$ is the Hankel operator with symbol $g(z)=\frac{1}{z}-1$. If $T_{1}=0$, then $H_{g} x=0$ for all $x \in H^{2}(\mathbb{D}, \mathbb{C})$. Note that $H_{g} x=0$ means

$$
H_{\frac{1}{z}-1} x=H_{\frac{1}{z}} x=0 \text { for all } x \in H^{2}(\mathbb{D}, \mathbb{C})
$$

This a contradiction, since $1 / z \notin H^{\infty}(\mathbb{D}, \mathbb{C})$. Thus $T_{1} \neq 0$.
Let us now calculate $\left\|T_{1}\right\|$. By equation (3.15), for all $x \in H^{2}(\mathbb{D}, \mathbb{C})$,

$$
\left\|T_{1}(x)\right\|=\left\|H_{1 / z} x\right\|,
$$

and

$$
\left\|H_{1 / z}\right\|=\operatorname{dist}\left(1 / z, H^{\infty}\right)=1 .
$$

If we take $x(z)=1$ for all $z \in \mathbb{D}$, then $H_{1 / z} x=1 / z$ and

$$
\left\|H_{1 / z} x\right\|=1
$$

Thus $\left\|T_{1}\right\|=1$. Since $g \in H^{\infty}(\mathbb{D}, \mathbb{C})+C(\mathbb{T}, \mathbb{C}), H_{g}$ is a compact operator, as a result, T_{0} is a compact operator. This means that there exist functions $v \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right), w \in L^{2}\left(\mathbb{T}, \mathbb{C}^{2}\right)$, say

$$
v=\binom{v_{1}}{v_{2}}, \quad w=\binom{w_{1}}{w_{2}}
$$

such that $\left(\xi_{0} \dot{\wedge} v, \bar{\eta}_{0} \dot{\wedge} w\right)$ is a Schmidt pair corresponding to $\left\|T_{1}\right\|$, or equivalently, the following equations hold

$$
\begin{equation*}
T_{1}\left(\xi_{0} \dot{\wedge} v\right)=\left\|T_{1}\right\|\left(\bar{\eta}_{0} \dot{\wedge} w\right) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} w\right)=\left\|T_{1}\right\|\left(\xi_{0} \dot{\wedge} v\right) . \tag{4.7}
\end{equation*}
$$

Let us find v and w. Equation (4.6) yields

$$
T_{1}\left(v_{2}\right)=H_{1 / z} v_{2}=w_{2}
$$

Also, equation (4.7) yields

$$
T_{1}^{*}\left(w_{2}\right)=v_{2} .
$$

The adjoint operator T_{1}^{*} will be $H_{\frac{1}{z}}^{*}: H^{2}(\mathbb{D}, \mathbb{C})^{\perp} \rightarrow H^{2}(\mathbb{D}, \mathbb{C})$. By equation (4.7),

$$
H_{1 / z}^{*} w_{2}=v_{2} .
$$

If we take $v_{2}(z)=1$ for all $z \in \mathbb{D}$, we get $w_{2}(z)=1 / z$ for all $z \in \mathbb{T}$. Thus we may choose

$$
v=\binom{0}{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right), \quad w=\binom{0}{1 / z} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{2}\right)
$$

Next, let

$$
x_{1}(z)=\left(I_{\mathbb{C}^{2}}-\xi_{0}(z) \xi_{0}^{*}(z)\right) v(z), \quad y_{1}(z)=\left(I_{\mathbb{C}^{2}}-\overline{\eta_{0}(z)} \eta_{0}^{T}(z)\right) w(z),
$$

for all $z \in \mathbb{D}$. We have

$$
x_{1}(z)=\binom{0}{1}, \quad y_{1}(z)=\binom{0}{1 / z} \text { for all } z \in \mathbb{T}
$$

Set

$$
\xi_{1}=\frac{x_{1}}{h_{1}}, \quad \eta_{1}=\frac{z y_{1}}{\bar{h}_{1}} .
$$

Clearly, for all $z \in \mathbb{D}$

$$
h_{1}(z)=1, \xi_{1}(z)=\binom{0}{1}, \eta_{1}(z)=\binom{0}{1} .
$$

Let us find a function $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)$ which satisfies the equations

$$
\begin{aligned}
& \left(G-Q_{1}\right) x_{0}=\left\|T_{0}\right\| y_{0}, \quad y_{0}^{*}\left(G-Q_{1}\right)=\left\|T_{0}\right\| x_{0}^{*} \\
& \left(G-Q_{1}\right) x_{1}=\left\|T_{1}\right\| y_{1}, \quad y_{1}^{*}\left(G-Q_{1}\right)=\left\|T_{1}\right\| x_{1}^{*} .
\end{aligned}
$$

Those equations yield

$$
Q_{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{q}_{22}
\end{array}\right), \quad \text { for some } \tilde{q}_{22} \in H^{\infty}(\mathbb{D}, \mathbb{C})
$$

and

$$
G x_{1}-y_{1}=Q_{1} x_{1} \quad \text { and } \quad y_{1}^{*} G-x_{1}^{*}=y_{1}^{*} Q_{1} .
$$

Substituting from above we have

$$
\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right)\binom{0}{1}-\binom{0}{1 / z}=\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{q_{22}}
\end{array}\right)\binom{0}{1}
$$

and

$$
\left(\begin{array}{ll}
0 & \frac{1}{\bar{z}}
\end{array}\right)\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right)-\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & \frac{1}{\bar{z}}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{q_{22}}
\end{array}\right) .
$$

The first equality gives

$$
\tilde{q}_{22}=0 .
$$

For Q_{1} to satisfy the above equations, it suffices to choose

$$
Q_{1}=\mathbb{D}_{\mathbb{C}^{2 \times 2}} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right) .
$$

Step 2. Let

$$
X_{2}=\xi_{0} \dot{\wedge} \xi_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right), \quad Y_{2}=\bar{\eta}_{0} \dot{\wedge} \bar{\eta}_{1} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp} .
$$

Note that for all $z \in \mathbb{D}$ and for every $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right), x(z)$ will be in $\operatorname{span}\left\{\xi_{0}(z), \xi_{1}(z)\right\}$. Also, for all $z \in \mathbb{D}$ and for every $y \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}, y(z)$ will be in $\operatorname{span}\left\{\bar{\eta}_{0}(z), \bar{\eta}_{1}(z)\right\}$. Therefore $X_{2}=Y_{2}=\{0\}$, and so $T_{2}=0$. Thus the algorithm terminates. The solution is given by

$$
\begin{aligned}
G-\mathcal{A} G & =\sum_{i=0}^{1} \frac{t_{i} x_{i} y_{i}^{*}}{\left|h_{i}\right|^{2}} \\
& =\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}+\frac{t_{1} y_{1} x_{1}^{*}}{\left|h_{1}\right|^{2}} \\
& =2\binom{1 / z}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot 1+1 \cdot\binom{0}{1}\binom{0}{1 / z}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot 1 \\
& =\left(\begin{array}{cc}
2 / z & 0 \\
0 & 1 / z
\end{array}\right)=G .
\end{aligned}
$$

Thus,

$$
\mathcal{A} G=G-G=\mathbb{O}_{\mathbb{C}^{2 \times 2}} .
$$

Therefore G is a very badly approximable function.
Let us now consider the example Peller and Young studied in [25].
Problem 4.0.2. Let $G=B^{-1} A \in L^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)$ where

$$
A(z)=\left(\begin{array}{cc}
\sqrt{3}+2 z & 0 \\
0 & 1
\end{array}\right), \quad B(z)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
z^{2} & z \\
z & -1
\end{array}\right), \quad \text { for all } z \in \mathbb{T}
$$

Find the superoptimal singular values of G and its superoptimal approximant $\mathcal{A} G \in H^{\infty}$, that is, the unique $\mathcal{A} G$ such that the sequence

$$
s^{\infty}(G-\mathcal{A} G)=\left(s_{0}^{\infty}(G-\mathcal{A} G), s_{1}^{\infty}(G-\mathcal{A} G)\right)
$$

is lexicographically minimised.

We will illustrate how the algorithm from Section 3.2.1 is used to determine the superoptimal analytic approximant $\mathcal{A} G$ of the G that was studied in [25]. It should be emphasised that, in line with Theorem 1.1.4, we obtain exactly the same $\mathcal{A} G$ as Peller and Young in [25].

Solution: On \mathbb{T} it is

$$
G(z)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\sqrt{3} \bar{z}^{2}+2 \bar{z} & \bar{z} \\
\sqrt{3} \bar{z}+2 & -1
\end{array}\right)
$$

The operator $H_{G}^{*} H_{G}$ with respect to the orthonormal basis

$$
B=\left\{\binom{1}{0},\binom{z}{0},\binom{0}{1},\binom{0}{z}\right\}
$$

of $\left(z^{2} H^{2}\right)^{\perp}$, has matrix representation

$$
H_{G}^{*} H_{G} \sim \frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
10 & 2 \sqrt{3} & 2 & 0 \\
2 \sqrt{3} & 3 & \sqrt{3} & 0 \\
2 & \sqrt{3} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Step 0: In this case $t_{0}=\left\|H_{G}\right\|=\sqrt{6}$ and a non-zero vector $x_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ such that

$$
\left\|H_{G} x_{0}\right\|_{H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}}=\left\|H_{G}\right\|\left\|x_{0}\right\|_{H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)}
$$

is

$$
x_{0}(z)=\binom{4+\sqrt{3} z}{1}
$$

For $\left(x_{0}, y_{0}\right)$ to be a Schmidt pair for H_{G} corresponding to $\left\|H_{G}\right\|$, the vector $y_{0} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}$ can be calculated by

$$
y_{0}(z)=\frac{H_{G} x_{0}(z)}{\left\|H_{G}\right\|}=2 \bar{z}\binom{\bar{z}+\sqrt{3}}{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}
$$

Next, we perform the inner-outer factorisations

$$
x_{0}=\xi_{0} h_{0}, \quad \bar{z} \bar{y}_{0}=\eta_{0} h_{0}
$$

for some inner $\xi_{0}, \eta_{0} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ and some scalar outer $h_{0} \in H^{2}(\mathbb{D}, \mathbb{C})$. In this example

$$
\xi_{0}(z)=\frac{x_{0}}{h_{0}}=\frac{a}{4 \sqrt{3}(1-\gamma z)}\binom{4+\sqrt{3} z}{1}
$$

$$
\bar{\eta}_{0}(z)=\frac{z y_{0}}{\bar{h}_{0}}=\frac{2 a}{4 \sqrt{3}(1-\gamma \bar{z})}\binom{\bar{z}+\sqrt{3}}{1}
$$

where

$$
h_{0}(z)=\frac{4 \sqrt{3}}{a}(1-\gamma z),
$$

$a=\sqrt{10-2 \sqrt{13}}$ and $\gamma=-\frac{a^{2}}{4 \sqrt{3}}$.
A function $Q_{1} \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)$ that satisfies

$$
\left(G-Q_{1}\right) x_{0}=t_{0} y_{0}, \quad\left(G-Q_{1}\right)^{*} y_{0}=t_{0} x_{0}
$$

is

$$
Q_{1}(z)=\left(\begin{array}{cc}
0 & \sqrt{6} \\
2 \sqrt{2} & -\sqrt{6}(z+\sqrt{3})
\end{array}\right) .
$$

Step 1: Let $X_{1}=\xi_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$ and $Y_{1}=\bar{\eta}_{0} \dot{\wedge} H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}$.
Let the compact operator $T_{1}: X_{1} \rightarrow Y_{1}$ be given by

$$
T_{1}\left(\xi_{0} \dot{\wedge} x\right)=P_{Y_{1}}\left(\bar{\eta}_{0} \dot{\wedge}\left(G-Q_{1}\right) x\right)
$$

for all $x \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$.
Note that

$$
\begin{aligned}
X_{1} & =\left\{\xi_{0} \dot{\wedge}\binom{f_{1}}{f_{2}}: f_{i} \in H^{2}(\mathbb{D}, \mathbb{C})\right\} \\
& =\left\{\frac{a}{4 \sqrt{3}} \frac{(4+\sqrt{3} z) f_{2}-f_{1}}{1-\gamma z}: f_{i} \in H^{2}(\mathbb{D}, \mathbb{C})\right\} .
\end{aligned}
$$

If we choose

$$
f_{1}=-\frac{4 \sqrt{3}}{a}(1-\gamma z) g \quad \text { and } \quad f_{2}=0
$$

for some $g \in H^{2}(\mathbb{D}, \mathbb{C})$, we obtain $X_{1}=H^{2}(\mathbb{D}, \mathbb{C})$.
In a similar way, we have

$$
\begin{aligned}
Y_{1} & =\left\{\bar{\eta}_{0} \dot{\wedge}\binom{\bar{z} \bar{\phi}_{1}}{\bar{z} \bar{\phi}_{2}}: \phi_{i} \in H^{2}(\mathbb{D}, \mathbb{C})\right\} \\
& =\left\{\frac{a \bar{z}}{2 \sqrt{3}} \frac{(\bar{z}+\sqrt{3}) \bar{\phi}_{2}-\bar{\phi}_{1}}{1-\gamma \bar{z}}: \phi_{i} \in H^{2}(\mathbb{D}, \mathbb{C})\right\} .
\end{aligned}
$$

If we choose

$$
\phi_{1}=-\frac{2 \sqrt{3}}{a}(1-\gamma z) \psi, \quad \text { and } \quad \phi_{2}=0
$$

for some $\psi \in H^{2}(\mathbb{D}, \mathbb{C})$, we obtain $Y_{1}=H^{2}(\mathbb{D}, \mathbb{C})^{\perp}$.
We have

$$
T_{1}\left(\xi_{0} \dot{\wedge}\binom{f_{1}}{f_{2}}\right)=T_{1}\left(\xi_{0} \dot{\wedge}\binom{-\frac{4 \sqrt{3}}{a}(1-\gamma z) g}{0}\right)=\frac{u(\gamma)}{z-\gamma}
$$

where

$$
u(\gamma)=\sqrt{2}\left(1-\gamma^{2}\right)(2 \sqrt{3} \gamma+1) g(\gamma) .
$$

Then $t_{1}=\left\|T_{1}\right\|=\sqrt{2}(4-\sqrt{13})$. Since T_{1} is a compact operator, there exist $v_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)$, $w_{1} \in H^{2}\left(\mathbb{D}, \mathbb{C}^{2}\right)^{\perp}$ such that

$$
T_{1}\left(\xi_{0} \dot{\wedge} v_{1}\right)=t_{1}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right), \quad T_{1}^{*}\left(\bar{\eta}_{0} \dot{\wedge} w_{1}\right)=t_{1}\left(\xi_{0} \dot{\wedge} v_{1}\right) .
$$

Here we can choose

$$
v_{1}(z)=\frac{4 \sqrt{3}}{a}\binom{-1}{0}, \quad w_{1}(z)=\frac{2 \sqrt{3}}{a} \bar{z}\binom{1}{0} .
$$

Perform the inner-outer factorisation of $\xi_{0} \dot{\wedge} v_{1} \in H^{2}\left(\mathbb{D}, \wedge^{2} \mathbb{C}^{2}\right)$. The function $h_{1}(z)=\frac{1}{1-\gamma z}$ is the scalar outer factor of $\xi_{0} \dot{\wedge} v_{1}$.
Let

$$
x_{1}(z)=\left(I-\xi_{0}(z) \xi_{0}^{*}(z)\right) v_{1}(z), \quad y_{1}(z)=\left(I-\bar{\eta}_{0}(z) \eta_{0}^{T}(z)\right) w_{1}(z)
$$

Then

$$
x_{1}=\frac{\gamma}{\alpha} \frac{1}{(1-\gamma z)(1-\gamma \bar{z})}\binom{\frac{-4 \sqrt{3}}{\gamma}(1-\gamma z)(1-\gamma \bar{z})-19-4 \sqrt{3}(z+\bar{z})}{-4-\sqrt{3} \bar{z}}
$$

and

$$
y_{1}=\frac{2 \gamma \bar{z}}{\alpha} \frac{1}{(1-\gamma z)(1-\gamma \bar{z})}\binom{\frac{\sqrt{3}}{\gamma}(1-\gamma z)(1-\gamma \bar{z})+4+\sqrt{3}(z+\bar{z})}{z+\sqrt{3}}
$$

Calculations yield

$$
x_{1}=\frac{\gamma}{\alpha} \frac{1}{(1-\gamma z)(1-\gamma \bar{z})}\binom{1}{-4-\sqrt{3} \bar{z}}, \quad y_{1}=\frac{2 \gamma \bar{z}}{\alpha} \frac{1}{(1-\gamma z)(1-\gamma \bar{z})}\binom{-1}{z+\sqrt{3}} .
$$

Observe that the algorithm stops after at $\operatorname{most} \min (m, n)$ steps, hence in this case after 2 steps. Then, by Theorem 3.2.54, the unique analytic superoptimal approximant $\mathcal{A} G$ is given by the formula

$$
\mathcal{A} G=G-\frac{t_{0} y_{0} x_{0}^{*}}{\left|h_{0}\right|^{2}}-\frac{t_{1} y_{1} x_{1}^{*}}{\left|h_{1}\right|^{2}}
$$

Now, all terms can be calculated and

$$
\mathcal{A} G=\frac{\sqrt{2}}{1-\gamma z}\left(\begin{array}{cc}
-\gamma & \sqrt{3}+4 \gamma \\
2+\gamma \sqrt{3}-\gamma z & -(\sqrt{3}+4 \gamma)(\sqrt{3}+z)
\end{array}\right)
$$

which is the unique superoptimal analytic approximant for the given G.

Appendix A

Hilbert tensor product

A. 1 Algebraic tensor product

We will consider complex linear spaces. Let E_{1}, E_{2} be linear spaces over \mathbb{C}. We present a well-known construction of the algebraic tensor product $E_{1} \otimes E_{2}$, which can be found in [10].

Definition A.1.1. [10, Definition II.1.1.] Let E_{1}, E_{2} be linear spaces. We say that the pair (Θ, θ), where Θ is a linear space and $\theta: E_{1} \times E_{2} \rightarrow \Theta$ is a bilinear operator, has the universal property in the category of linear spaces and linear operators if for any linear space G and for any bilinear operator $\mathcal{R}: E_{1} \times E_{2} \rightarrow G$, there is a unique linear operator $R: \Theta \rightarrow G$ such that the following diagram is commutative

$$
\begin{array}{cc}
E_{1} \times E_{2} & \xrightarrow{\mathcal{R}} \quad G \tag{A.1}\\
{\underset{\theta}{\theta}} & \nearrow_{R} \\
\Theta &
\end{array}
$$

that is, $R \circ \theta=\mathcal{R}$.
Definition A.1.2. Let E_{1}, E_{2} be linear spaces. The pair (Θ, θ), where Θ is a linear space and $\theta: E_{1} \times E_{2} \rightarrow \Theta$ is a bilinear operator, is called the algebraic tensor product of E_{1} and E_{2} if it has the universal property in the category of linear spaces and linear operators.

Let us construct the algebraic tensor product. Let $E_{1} \circ E_{2}$ denote the space of formal linear combinations with complex coefficients of the elements of $E_{1} \times E_{2}$. We use the notation $x \circ y$, instead of (x, y) for the elements of $E_{1} \circ E_{2}$ and consider the set $M \subset E_{1} \circ E_{2}$ of elements in any of the following forms:

$$
\begin{gathered}
\left(x_{1}+x_{2}\right) \circ y-x_{1} \circ y-x_{2} \circ y ; \\
x \circ\left(y_{1}+y_{2}\right)-x \circ y_{1}-x \circ y_{2} ; \\
\lambda(x \circ y)-(\lambda x) \circ y ; \\
x \circ(\lambda y)-\lambda(x \circ y) ;
\end{gathered}
$$

where $x, x_{1}, x_{2} \in E_{1}, \quad y, y_{1}, y_{2} \in E_{2}$ and $\lambda \in \mathbb{C}$.
Let $\operatorname{span}(M)$ be the linear span of the set M. We define $E_{1} \otimes E_{2}$ to be the quotient space $E_{1} \circ E_{2} / \operatorname{span}(M), x \otimes y$ to be the coset $x \circ y+\operatorname{span}(M)$ and ϑ to be the bilinear operator

$$
\vartheta: E_{1} \times E_{2} \rightarrow E_{1} \otimes E_{2}, \text { given by } \vartheta(x, y)=x \otimes y .
$$

Theorem A.1.3. [10, Theorem II.1.4] The pair $\left(E_{1} \otimes E_{2}, \vartheta\right)$ is the algebraic tensor product of the spaces E_{1} and E_{2}.

Proof. Let $\mathcal{R}: E_{1} \times E_{2} \rightarrow G$ be a bilinear operator. Then the operator $R^{\circ}: E_{1} \circ E_{2} \rightarrow G$ is uniquely defined by $R^{\circ}(x \circ y)=\mathcal{R}(x, y)$ and maps all the elements of M, and hence $\operatorname{span}(M)$, to zero. Consequently R° generates an operator $R: E_{1} \otimes E_{2} \rightarrow G$ such that diagram from Definition A.1.1 with $E_{1} \otimes E_{2}$ instead of Θ and ϑ instead of θ is commutative. Furthermore, since $E_{1} \otimes E_{2}=\operatorname{span}(\operatorname{Im} \vartheta), R$ is uniquely defined.

Proposition A.1.4. [10][II.1.5] Let E_{1}, E_{2} be linear spaces over \mathbb{C}. Every $u \in E_{1} \otimes E_{2}$, $u \neq 0$ can be written as

$$
u=\sum_{k=1}^{n} x_{k} \otimes y_{k}
$$

where the vectors $x_{k} \in E_{1}$ are linearly independent and $y_{1} \neq 0$.

Definition A.1.5 ([10]). Suppose $E_{k}, F_{k}, k=1,2$, are linear spaces and consider the operators $T_{1}: E_{1} \rightarrow F_{1}, T_{2}: E_{2} \rightarrow F_{2}$. The operator

$$
T_{1} \otimes T_{2}: E_{1} \otimes E_{2} \rightarrow F_{1} \otimes F_{2}
$$

given by

$$
\left(T_{1} \otimes T_{2}\right)(x \otimes y)=T_{1}(x) \otimes T_{2}(y), \text { for } x \in E_{1}, y \in E_{2},
$$

is called the tensor product of the operators T_{1} and T_{2}.
Proposition A.1.6. Let $E_{1}, E_{2}, F_{1}, F_{2}$ be linear spaces and let

$$
T_{1}: E_{1} \rightarrow F_{1}, \quad T_{2}: E_{2} \rightarrow F_{2}
$$

be linear operators. Then, $T_{1} \otimes T_{2}: E_{1} \otimes E_{2} \rightarrow F_{1} \otimes F_{2}$ is a linear operator.
Proof. By the universal property from Definition A.1.1, for every bilinear operator $T_{1} \times$ $T_{2}: E_{1} \times E_{2} \rightarrow F_{1} \otimes F_{2}$ there exists a unique linear operator $T_{1} \otimes T_{2}$ such that

$$
\left(T_{1} \otimes T_{2}\right)\left(x_{1} \otimes x_{2}\right)=T_{1}\left(x_{1}\right) \otimes T_{2}\left(x_{2}\right) .
$$

It suffices to show that $T_{1} \times T_{2}$ is a bilinear operator. Let $u, u_{1}, u_{2} \in E_{1}, v, v_{1}, v_{2} \in E_{2}$ and $\lambda, \mu \in \mathbb{C}$. Then,

$$
\left(T_{1} \times T_{2}\right)\left(\lambda u_{1}+\mu u_{2}, v\right)=T_{1}\left(\lambda u_{1}+\mu u_{2}\right) \otimes T_{2}(v)=\left(\lambda T_{1}\left(u_{1}\right)+\mu T_{2}\left(u_{2}\right)\right) \otimes T_{2}\left(u_{2}\right)
$$

and

$$
\left(T_{1} \times T_{2}\right)\left(u, \lambda v_{1}+\mu v_{2}\right)=T_{1}(u) \otimes T_{2}\left(\lambda v_{1}+\mu v_{2}\right)=T_{1}(u) \otimes\left(\lambda T_{2}\left(v_{1}\right)+\mu T_{2}\left(v_{2}\right)\right)
$$

A. 2 Hilbert tensor product

Let $\left(H_{1},\langle\cdot, \cdot\rangle_{H_{1}}\right),\left(H_{2},\langle\cdot, \cdot\rangle_{H_{2}}\right)$ be Hilbert spaces and let $\|x\|_{H_{1}}=\langle x, x\rangle^{\frac{1}{2}},\|y\|_{H_{2}}=\langle y, y\rangle^{\frac{1}{2}}$ for $x \in H_{1}, y \in H_{2}$. Information on Hilbert tensor product can be found in [8].

One can consider an inner product space ($\left.H_{1} \otimes H_{2},\langle\cdot, \cdot\rangle\right)$, where the inner product is defined by

$$
\langle u, v\rangle=\sum_{k=1}^{n} \sum_{p=1}^{m}\left\langle a_{k}, c_{p}\right\rangle\left\langle b_{k}, d_{p}\right\rangle,
$$

for

$$
u=\sum_{k=1}^{n} a_{k} \otimes b_{k}, v=\sum_{p=1}^{m} c_{p} \otimes d_{p} .
$$

Definition A.2.1. The completion of $\left(H_{1} \otimes H_{2},\langle\cdot, \cdot\rangle\right)$ with respect to $\|\cdot\|=\langle\cdot, \cdot\rangle^{\frac{1}{2}}$ is called the Hilbert tensor product of H_{1} and H_{2} and is denoted by $H_{1} \otimes_{H} H_{2}$.

Definition A.2.2. Let $\left(E,\|\cdot\|_{E}\right),\left(F,\|\cdot\|_{F}\right)$ be Hilbert spaces and let $T \in \mathcal{L}(E, F)$. The linear operator $T^{*}: F^{*} \rightarrow E^{*}$ which satisfies

$$
\langle T a, b\rangle_{F}=\left\langle a, T^{*} b\right\rangle_{E},
$$

for all $a \in E, b \in F$, is called the adjoint operator of T.
Definition A. 2.3 ([38], p. 38). A linear operator $T: E \rightarrow F$, where E, F are Hilbert spaces is a unitary operator if it is bijective and preserves inner products, that is, it satisfies

$$
\langle T x, T y\rangle=\langle x, y\rangle, \text { for all } x, y \in E .
$$

Theorem A. 2.4 ([38], p. 38). Let E, F be Hilbert spaces and $T: E \rightarrow F$ be a linear and surjective mapping. Then T is unitary if and only if

$$
\|T x\|=\|x\|, \text { for all } x \in E .
$$

Definition A.2.5. Let E, F be Hilbert spaces and let $W: H \rightarrow K$ be a bounded linear operator. W will be called a partial isometry if W is isometric on the orthogonal complement
of its kernel. Then, $M=(\operatorname{ker} W)^{\perp}$ is called the initial space and $N=W M$ the final space of W.

Theorem A.2.6. Let E, F be Hilbert spaces. A bounded linear operator $W: E \rightarrow F$ is a partial isometry if and only if $W^{*} W$ is a projection operator. In this case, $W^{*} W$ is the projection of E on the initial space of W.

Remark A.2.7 ([8]). Let $E_{1}, E_{2}, F_{1}, F_{2}$ be Hilbert spaces and let

$$
T_{1}: E_{1} \rightarrow F_{1}, \quad T_{2}: E_{2} \rightarrow F_{2}
$$

be bounded linear operators. Then

$$
T_{1} \otimes T_{2}:\left(E_{1} \otimes E_{2},\|\cdot\|\right) \rightarrow\left(F_{1} \otimes F_{2},\|\cdot\|\right)
$$

is bounded. Hence $T_{1} \otimes T_{2}$ can be extended to the tensor product $E_{1} \otimes_{H} E_{2}$ as follows: we set

$$
u=\lim _{n \rightarrow \infty} \sum_{k=1}^{m_{n}} a_{k}^{n} \otimes b_{k}^{n}
$$

and

$$
\left(T_{1} \otimes T_{2}\right)(u)=\lim _{n \rightarrow \infty}\left(T_{1} \otimes T_{2}\right)\left(\sum_{k=1}^{m_{n}} a_{k}^{n} \otimes b_{k}^{n}\right)
$$

Proposition A. $2.8([8]) . \operatorname{Let}\left(H_{1},\langle\cdot, \cdot\rangle_{H_{1}}\right),\left(H_{2}\langle\cdot, \cdot\rangle_{H_{2}}\right),\left(G_{1},\langle\cdot, \cdot\rangle_{G_{1}}\right),\left(G_{2},\langle\cdot, \cdot\rangle_{G_{2}}\right)$, be Hilbert spaces and $T_{1}: H_{1} \rightarrow G_{1}, T_{2}: H_{2} \rightarrow G_{2}$ be bounded linear operators. Then,

$$
T_{1} \otimes T_{2}: H_{1} \otimes_{H} H_{2} \rightarrow G_{1} \otimes_{H} G_{2}
$$

is a bounded linear operator, and $\left\|T_{1} \otimes T_{2}\right\|=\left\|T_{1}\right\| \cdot\left\|T_{2}\right\|$.
Lemma A.2.9. Let $E_{1}, E_{2}, F_{1}, F_{2}$ be Hilbert spaces and let

$$
T_{1}: E_{1} \rightarrow F_{1}, \quad T_{2}: E_{2} \rightarrow F_{2}
$$

be bounded linear operators. Then $\left(T_{1} \otimes T_{2}\right)^{*}=T_{1}^{*} \otimes T_{2}^{*}: F_{1} \otimes_{H} F_{2} \rightarrow E_{1} \otimes_{H} E_{2}$.
Definition A. 2.10 ([24], p. 301). $\mathbb{C}^{m \times n}$ is the space of $m \times n$ complex matrices. Every $A \in \mathbb{C}^{m \times n}$ is a linear operator from \mathbb{C}^{n} to \mathbb{C}^{m}, where $\mathbb{C}^{n}, \mathbb{C}^{m}$ are Hilbert spaces with their standard inner products. Also,

$$
\|A\|=\sup _{\|x\|_{\mathbb{C}^{n} \leq 1}}\|A x\|_{\mathbb{C}^{m}}
$$

Remark A.2.11. Let $X_{1}, X_{2}, Y_{1}, Y_{2}$ be Hilbert spaces of dimensions $n, m, n^{\prime}, m^{\prime}$ with $m \geq n$, and $m^{\prime} \geq n^{\prime}$. Let $A: X_{1} \rightarrow Y_{1}$ and let $B: X_{2} \rightarrow Y_{2}$ be linear transformations. Let $\left(e_{i}\right)_{i=1}^{n}$,
$\left(f_{j}\right)_{j=1}^{m},\left(e_{i}^{\prime}\right)_{i=1}^{n^{\prime}},\left(f_{j}^{\prime}\right)_{j=1}^{m^{\prime}}$ be orthonormal bases of X_{1}, Y_{1}, X_{2} and Y_{2} respectively. Then $\left\{e_{i} \otimes e_{l}^{\prime}\right.$: $\left.1 \leq i \leq n, 1 \leq l \leq n^{\prime}\right\}$ is a basis of $X_{1} \otimes X_{2}$ and $\left\{f_{i} \otimes f_{l}^{\prime}: 1 \leq i \leq m, 1 \leq l \leq m^{\prime}\right\}$ is a basis of $Y_{1} \otimes Y_{2}$.

Suppose that

$$
A e_{i}=\lambda_{i} f_{i}, \quad 1 \leq i \leq n
$$

and

$$
B e_{i}^{\prime}=\mu_{i} f_{i}^{\prime}, \quad 1 \leq i \leq n^{\prime} .
$$

One can write

$$
A x=\sum_{i=1}^{n} \lambda_{i}\left\langle x, e_{i}\right\rangle_{X_{1}} f_{i} \quad \text { for } x \in X_{1}
$$

and

$$
B x^{\prime}=\sum_{k=1}^{n^{\prime}} \mu_{k}\left\langle x^{\prime}, e_{k}^{\prime}\right\rangle_{X_{2}} f_{k}^{\prime} \quad \text { for } x^{\prime} \in X_{2} .
$$

Then $A \otimes B: X_{1} \otimes X_{2} \rightarrow Y_{1} \otimes Y_{2}$ can be presented by the following formula, for $x \in X_{1}$ and $x^{\prime} \in X_{2}$,
$(A \otimes B)\left(x \otimes x^{\prime}\right)=A x \otimes B x^{\prime}$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{n} \lambda_{i}\left\langle x, e_{i}\right\rangle_{X_{1}} f_{i}\right) \otimes\left(\sum_{k=1}^{n^{\prime}} \mu_{k}\left\langle x^{\prime}, e_{k}^{\prime}\right\rangle_{X_{2}} f_{k}^{\prime}\right) \\
& =\sum_{i, k=1}^{n, n^{\prime}} \lambda_{i} \mu_{k}\left\langle x \otimes x^{\prime}, e_{i} \otimes e_{k}^{\prime}\right\rangle_{X_{1} \otimes X_{2}} f_{i} \otimes f_{k}^{\prime} \\
& =\sum_{i, k=1}^{n, n^{\prime}} \lambda_{i} \mu_{k}\left\langle x, e_{i}\right\rangle_{X_{1}}\left\langle x^{\prime}, e_{k}^{\prime}\right\rangle_{X_{2}} f_{i} \otimes f_{k}^{\prime} \\
& =\sum_{i, k=1}^{n, n^{\prime}} \lambda_{i} \mu_{k}\left\langle x, e_{i}\right\rangle_{X_{1}}\left\langle x^{\prime}, e_{k}^{\prime}\right\rangle_{X_{2}} f_{i} \otimes f_{k}^{\prime} .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
(A \otimes B)\left(e_{i} \otimes e_{l}^{\prime}\right) & =\sum_{j, k=1}^{n, n^{\prime}} \lambda_{j} \mu_{k}\left\langle e_{i} \otimes e_{l}^{\prime}, e_{j} \otimes e_{k}^{\prime}\right\rangle_{X_{1} \otimes X_{2}} f_{j} \otimes f_{k}^{\prime} \\
& =\sum_{j, k=1}^{n, n^{\prime}} \lambda_{j} \mu_{k} \delta_{i j} \delta_{l k} f_{j} \otimes f_{k}^{\prime} \\
& =\lambda_{i} \mu_{l} f_{i} \otimes f_{l}^{\prime} .
\end{aligned}
$$

Notation A.2.12. A matrix of the form

$$
A=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right)
$$

denotes the matrix $A=\left(a_{i j}\right)$ where $a_{i j}=0$ for all $i \neq j$ and $a_{i i}=\lambda_{i}$.
Lemma A.2.13. Let $A=\left(a_{i j}\right)_{i, j=1}^{n}, B=\left(b_{i j}\right)_{i, j=1}^{n}$ and let

$$
A^{*} A=U^{*}\left(\begin{array}{cccc}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right) U, \quad B^{*} B=V^{*}\left(\begin{array}{cccc}
\mu_{1} & & & \\
& \mu_{2} & & \\
& & \ddots & \\
& & & \mu_{n}
\end{array}\right) V
$$

for some unitary operators U, V. Then,

Lemma A.2.14. Suppose $m \geq n$. Given $A, B \in \mathbb{C}^{m \times n}$, with

$$
A=U_{1}\left(\begin{array}{ccc}
s_{1} & \cdots & 0 \\
0 & \ddots & \\
\vdots & & s_{n} \\
\vdots & \vdots & \vdots \\
0 & 0 & 0
\end{array}\right) V_{1}, B=U_{2}\left(\begin{array}{ccc}
t_{1} & \cdots & 0 \\
0 & \ddots & \\
\vdots & & t_{n} \\
\vdots & \vdots & \vdots \\
0 & 0 & 0
\end{array}\right) V_{2}
$$

for unitary matrices $U_{1}, U_{2} \in \mathbb{C}^{m \times m}$ and for unitary matrices $V_{1}, V_{2} \in \mathbb{C}^{n \times n}$. Then

Appendix B

Scalar inner and outer functions

Definition B.0.1 ([11], p. 62). An inner function is an analytic function g in the unit disc \mathbb{D} such that $|g(z)| \leq 1$ and $\left|g\left(e^{i \theta}\right)\right|=1$ almost everywhere on the unit circle \mathbb{T}. A non-constant inner function without zeros which is positive at the origin is called a singular inner function.

Definition B.0.2 ([11], p. 62). An outer function is an analytic function F in the unit disc of the form

$$
\begin{equation*}
F(z)=\lambda \exp \left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} k(\theta) d \theta\right] \tag{B.1}
\end{equation*}
$$

where k is a real-valued integrable function on the circle and λ is a complex number of modulus 1 .

Remark B.0.3 ([11], p. 63). Such an outer function F is in $H^{1}(\mathbb{D}, \mathbb{C})$ if and only if e^{k} is also integrable; when F is an outer function in $H^{1}(\mathbb{D}, \mathbb{C})$ we have necessarily

$$
k(\theta)=\log \left|F\left(e^{i \theta}\right)\right| \text { almost everywhere. }
$$

Indeed, applying the logarithmic function to equation (B.1), we get

$$
\log \left|F\left(e^{i \theta}\right)\right|=\exp \left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(\theta-t) k(\theta) d \theta\right]
$$

and taking the limit as r goes to 1, we have the result we need. Here $P_{r}(\theta)$ is the Poisson's kernel defined in equation (C.3).

Theorem B.0.4 ([11],p. 63). Let F be a non zero function in $H^{1}(\mathbb{D}, \mathbb{C})$. The following are equivalent:
(i) F is an outer function.
(ii) If f is any function in $H^{1}(\mathbb{D}, \mathbb{C})$ such that $|f|=|F|$ almost everywhere on \mathbb{T}, then

$$
|F(z)| \geq|f(z)| \text { for all } z \in \mathbb{T}
$$

(iii) $\log |F(0)|=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|F\left(e^{i \theta}\right)\right| d \theta$.

Proof. $(i) \Rightarrow$ (ii). Let f be a non-zero function in $H^{1}(\mathbb{D}, \mathbb{C})$. Then, by Fatou's Theorem, f has radial limits

$$
f\left(e^{i \theta}\right)=\lim _{z \rightarrow e^{i \theta}} f(z)
$$

almost everywhere on \mathbb{T}, and f is given by the Poisson integral

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i t}\right) P_{r}(\theta-t) d t
$$

Since $f(0) \neq 0$, by a result in [11, p. 51], $\log \left|f\left(e^{i t}\right)\right|$ is Lebesgue integrable. Let $F \in H^{1}(\mathbb{D}, \mathbb{C})$ be an outer function given by

$$
F(z)=\lambda \exp \left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right]
$$

and without loss of generality assume $|\lambda|=1$. Notice that $|F|=e^{u}$, where u is the Poisson integral of $\log |f|$. Hence

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F\left(r e^{i \theta}\right)\right| d \theta \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(e^{i \theta}\right)\right| d \theta
$$

Therefore $|F|=|f|$ almost everywhere on \mathbb{T}. Since F is an outer function and $|F|=e^{u}, F$ has no zeros in \mathbb{D} and

$$
\log \left|F\left(r e^{i \theta}\right)\right|=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|f\left(e^{i t}\right)\right| P_{r}(\theta-t) d t
$$

By Jensen's inequality with $d m=\frac{1}{2 \pi} P_{r}(\theta-t)$, we get

$$
\log \left|f\left(r e^{i \theta}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i t}\right)\right| P_{r}(\theta-t) d t=\log \left|F\left(r e^{i \theta}\right)\right|
$$

and we infer that $|F(z)| \geq|f(z)|$ for all $z \in \mathbb{D}$.
$(i i) \Rightarrow$ (iii). Suppose (ii) holds and let G be an outer function,

$$
G(z)=\exp \left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|F\left(e^{i \theta}\right)\right| d \theta\right] .
$$

Then $|F(z)| \leq|G(z)| \leq|F(z)|$ on \mathbb{D}. Thus F / G is analytic of absolute value 1 . So, $F=\lambda G$ with $|\lambda|=1$ and F is outer.
(iii) \Rightarrow (i). Suppose (iii) holds and define G as previously. Then F / G is bounded by 1 on \mathbb{D} and has absolute value 1 at $z=0$. Thus $F / G=\lambda$ with $|\lambda|=1$.

Theorem B.0.5 ([11],p. 63). Let f be a non-zero function in $H^{1}(\mathbb{D}, \mathbb{C})$. Then one can write

$$
f=g F
$$

where g is an inner function and F is an outer function in $H^{1}(\mathbb{D}, \mathbb{C})$. The factorisation is unique up to a unimodular constant.

Proof. By Theorem B.0.4, if

$$
F(z)=\exp \left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right]
$$

then F is an outer function in $H^{1}(\mathbb{D}, \mathbb{C})$ and $f / F=g$ is an inner function. If F_{1} is another outer function in $H^{1}(\mathbb{D}, \mathbb{C})$ and g_{1} another inner function, we have $f=g_{1} F_{1}$ and $|F|=\left|F_{1}\right|$ on \mathbb{T}. Then, $F=\lambda F_{1}$ for some λ with $\lambda=1$. Thus $\lambda g_{1} F_{1}=g_{1} G_{1}$ and $g_{1}=\lambda g$.

Remark B.0.6. The preceding results also hold for $1<p \leq \infty$, as a more detailed view presented in [11] asserts.

Definition B.0.7 ([11], p. 11). Let H be an inner-product space and N be any collection of vectors in $H . N$ is called an orthogonal set if any two distinct vectors in N are orthogonal. An orthonormal set is an orthogonal set, each vector of which has norm 1. If $N=\left\{n_{1}, \cdots, n_{k}\right\}$ is a countable orthonormal set in H, then N will be called a complete orthonormal set if the only vector orthogonal to every n_{i} is the zero vector.

Remark B.0.8 ([11], p. 28). Suppose that f is analytic in \mathbb{D} and let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Let $f_{r}(\theta)=f\left(r e^{i \theta}\right)$. Note that if we restrict the function f to the circle of radius r, we obtain a continuous function on that circle which we can also interpret as a function on the unit circle. Now,

$$
f_{r}(\theta)=\sum_{n=0}^{\infty} a_{n} r^{n} e^{i n \theta}
$$

which means that the n-th Fourier coefficient of f_{r} is $a_{n} r^{n}$ for $n \geq 0$ and is zero for $n<0$. If f is analytic in $\overline{\mathbb{D}}$, the boundary value function f_{1} has the Fourier coefficients a_{n}.

Theorem B.0.9. [28, Theorem 11.20] Every $f \in H^{\infty}(\mathbb{D}, \mathbb{C})$ can be extended to a function $f^{*} \in L^{\infty}(\mathbb{T}, \mathbb{C})$ defined almost everywhere by

$$
\begin{equation*}
f^{*}\left(e^{i t}\right)=\lim _{r \rightarrow 1} f\left(r e^{i t}\right) \tag{B.2}
\end{equation*}
$$

Also, $\|f\|_{\infty}=\left\|f^{*}\right\|_{L^{\infty}}$. For all $z \in \mathbb{D}$ the Cauchy formula

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{*}(\xi)}{\xi-z} d \xi \tag{B.3}
\end{equation*}
$$

holds, where γ is the positively orientated unit circle, $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$.
The functions $f^{*} \in L^{\infty}(\mathbb{T})$ which are obtained in this manner are those which satisfy

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{*}\left(e^{i t}\right) e^{-i n t} d t=0 \quad(n=-1,-2, \ldots) \tag{B.4}
\end{equation*}
$$

Appendix C

Operator-valued functions and Fatou's theorem

C. 1 The scalar case

Definition C.1.1. [11] A complex valued function u on \mathbb{D} is harmonic if it satisfies Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Proposition C.1.2. [28, p. 232] Every harmonic function u on \mathbb{D} which satisfies

$$
\sup _{0 \leq r<1} \int_{-\pi}^{\pi}\left|u\left(r e^{i \theta}\right)\right| d \theta<\infty,
$$

has radial limits at almost all points of \mathbb{T}.

Theorem C.1.3 (Fatou's Theorem, [38, Theorem 13.10]). Let $f \in H^{2}(\mathbb{D}, \mathbb{C})$. For almost all $z \in \mathbb{T}$, the radial limits

$$
\lim _{r \rightarrow 1} f(r z)
$$

exist almost everywhere on \mathbb{T} and define a function in $L^{2}(\mathbb{T}, \mathbb{C})$.

C. 2 The operator-valued case

The following material is from [14]. For any separable Hilbert space E we denote by $L^{2}(\mathbb{T}, E)$ the class of functions $v: \mathbb{T} \rightarrow E$ which are measurable and satisfy

$$
\|v\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|v\left(e^{i t}\right)\right\|_{E}^{2} d t<\infty .
$$

Two functions will be considered equal if they coincide almost everywhere with respect to Lebesgue measure.
Suppose that $v_{n}\left(e^{i t}\right)_{n \in \mathbb{N}}$ is a sequence converging to $v\left(e^{i t}\right)$ in $L^{2}(\mathbb{T}, E)$, that is,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|v_{n}\left(e^{i t}\right)-v\left(e^{i t}\right)\right\|_{E}^{2} d t \rightarrow 0
$$

as n tends to ∞.
Then we can choose a subsequence $v_{n_{k}}\left(e^{i t}\right), k=1,2, \cdots$, such that

$$
\sum_{k=1}^{\infty} \int_{0}^{2 \pi}\left\|v_{n_{k}}\left(e^{i t}\right)-v\left(e^{i t}\right)\right\|_{E}^{2} d t<\infty
$$

By the theorem of Beppo Levi we have

$$
\sum_{k=1}^{\infty}\left\|v_{n_{k}}\left(e^{i t}\right)-v\left(e^{i t}\right)\right\|_{E}^{2}<\infty
$$

almost everywhere and so

$$
\left\|v_{n_{k}}\left(e^{i t}\right)-v\left(e^{i t}\right)\right\| \rightarrow 0
$$

almost everywhere as $k \rightarrow \infty$.
For any $k \in \mathbb{Z}$, denote by F_{k} the subspace of $L^{2}(\mathbb{T}, E)$ which contains the all the functions of the form $e^{i k t} a$, with $a \in E$. Then $F_{k} \perp F_{j}$ for $k \neq j$ and

$$
L^{2}(\mathbb{T}, E)=\oplus_{-\infty}^{\infty} F_{k}
$$

Indeed, let $v \in L^{2}(\mathbb{T}, A)$ be orthogonal to all F_{k}, that is,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k t}\left\langle v\left(e^{i t}\right), a\right\rangle_{E} d t=0, a \in E, k \in \mathbb{Z}
$$

Then, $\left\langle v\left(e^{i t}\right), a\right\rangle_{E}=0$ everywhere, except possibly the points t of a set E_{a} depending on a and of zero measure. Letting a run over a countable, dense subset of E and taking the union of the corresponding sets E_{a} we obtain a set E of zero measure and $v\left(e^{i t}\right)=0 \forall t \notin E$, so $v=0$ as an element of $L^{2}(\mathbb{T}, E)$.
Furthermore

$$
\left\|e^{i k t} a\right\|_{L^{2}(\mathbb{T}, E)}=\|a\|_{E}
$$

As a result, there exists a one to one correspondence between the elements v of $L^{2}(\mathbb{T}, E)$ and the sequences $a_{k}, a_{k} \in E$ with $\sum_{k}\left\|a_{k}\right\|_{E}^{2}<\infty$, in such a way that for corresponding v
and a_{k} we have

$$
\begin{equation*}
v\left(e^{i t}\right)=\sum_{-\infty}^{\infty} e^{i k t} a_{k} \tag{C.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|v\|^{2}=\sum\left\|a_{k}\right\|_{E}^{2} \tag{C.2}
\end{equation*}
$$

Relation (C.2) follows from the fact that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|v\left(e^{i t}\right)-\sum_{-m}^{n} e^{i k t} a_{k}\right\|_{E}^{2} d t \rightarrow 0
$$

as $m, n \rightarrow \infty$.
From relation (C.1)

$$
a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k t} v\left(e^{i t}\right) d t, k \in \mathbb{Z}
$$

and so (C.1) is the Fourier series of v.
Definition C. 2.1 ([14], p. 184). We will denote by $L_{+}^{2}(\mathbb{T}, E)$ the subspace of $L^{2}(\mathbb{T}, E)$ consisting of those functions for which $a_{k}=0$ for $k<0$.

Now, we associate any function

$$
v\left(e^{i t}\right)=\sum_{0}^{\infty} e^{i k t} a_{k} \in L_{+}^{2}(\mathbb{T}, E)
$$

with the function

$$
u(z)=\sum_{0}^{\infty} z^{k} a_{k}
$$

of the complex variable z, defined and holomorphic on \mathbb{D} since

$$
\left\|\sum_{m}^{n} z^{k} a_{k}\right\|_{E} \leq \sum_{m}^{n}|z|^{k}\left\|a_{k}\right\|_{E} \leq\left(1-|z|^{2}\right)^{-1 / 2}\left(\sum_{m}^{n}\left(\left\|a_{k}\right\|_{E}^{2}\right)^{1 / 2} \rightarrow 0\right.
$$

for $n>m \rightarrow \infty$, for $|z|<1$, uniformly for $|z| \leq r_{0}<1$.
One can retrieve $v\left(e^{i t}\right)$ from $u(z)$ as a radial limit in $L^{2}(\mathbb{T}, E)$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|v\left(e^{i t}\right)-u\left(r e^{i t}\right)\right\|_{E}^{2} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|\sum_{0}^{\infty}\left(1-r^{k}\right) e^{i k t} a_{k}\right\|_{E}^{2} d t=\sum_{0}^{\infty}\left(1-r^{k}\right)^{2}\left\|a_{k}\right\|_{E}^{2} \rightarrow 0
$$

as $r \rightarrow 1$. Also, for $0 \leq r<1$, we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|u\left(r e^{i t}\right)\right\|_{E}^{2}=\sum_{0}^{\infty} r^{2 k}\left\|a_{k}\right\|_{E}^{2} \leq \sum_{0}^{\infty}\left\|a_{k}\right\|_{E}^{2}<\infty
$$

Definition C.2.2 ([14], p. 185). The class of functions

$$
u(z)=\sum_{0}^{\infty} z^{k} a_{k}
$$

with values in E, holomorphic on \mathbb{D} and such that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|u\left(r e^{i t}\right)\right\|_{E}^{2} d t \quad 0 \leq r<1
$$

has a bound independent of r, will be denoted by $H^{2}(\mathbb{D}, E)$.
Remark C.2.3. Note that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|u\left(r e^{i t}\right)\right\|_{E}^{2}=\sum_{0}^{\infty}\left\|a_{k}\right\|_{E}^{2}
$$

so the condition mentioned in Definition C.2.2 is equivalent to the condition

$$
\sum_{0}^{\infty}\left\|a_{k}\right\|_{E}^{2}<\infty
$$

Hence we see that every function $u(z) \in H^{2}(\mathbb{D}, E)$ can be retrieved from a function $v \in$ $L_{+}^{2}(\mathbb{T}, E)$, indeed from $v\left(e^{i t}\right)=\sum_{0}^{\infty} e^{i k t} a_{k}$. As $v(z)$ and $v(t)$ determine each other, we can identify the classes $H^{2}(\mathbb{D}, E)$ and $L_{+}^{2}(\mathbb{T}, E)$. If we provide $H^{2}(\mathbb{D}, E)$ with the Hilbert space structure of $L_{+}^{2}(\mathbb{T}, E)$, we can then embed $H^{2}(\mathbb{D}, E)$ in $L^{2}(\mathbb{T}, E)$ as a subspace.

Remark C.2.4. We can retrieve $u(z)$ from $v(t)$ using the Poisson formula

$$
u\left(r e^{i t}\right)=\frac{1}{2 \pi} \int_{o}^{2 \pi} P_{r}(t-s) v(s) d s \quad 0 \leq r<1
$$

where

$$
\begin{equation*}
P_{r}(t)=\frac{1-r^{2}}{1-2 r \cos t+r^{2}} \tag{C.3}
\end{equation*}
$$

Theorem C.2.5 (Generalised Fatou's Theorem, [14, p. 186]). Let E be a separable Hilbert space. Suppose $u \in H^{2}(\mathbb{D}, E)$ is given by

$$
u(z)=\sum_{0}^{\infty} z^{k} a_{k} \text { for all } z \in \mathbb{D}
$$

and suppose $v \in L^{2}(\mathbb{T}, E)$ is given by

$$
v\left(e^{i t}\right)=\sum_{0}^{\infty} e^{i k t} a_{k} \text { for all } e^{i t} \in \mathbb{T}
$$

Then $u(z)$ tends to $v(t)$ with respect to $\|\cdot\|_{E}$ as z tends to $e^{i t}$ along any path that is not tangent to the unit circle, and at every point t such that

$$
\frac{1}{2 s} \int_{t-s}^{t+s} v\left(e^{i \tau}\right) d \tau \rightarrow v\left(e^{i \tau}\right) \quad \text { strongly } \quad(s \rightarrow 0)
$$

thus almost everywhere.
Now, consider a function $\Theta(z)$ whose values are bounded operators from a separable Hilbert space E to a separable Hilbert space F, and suppose that the function has a power series representation

$$
\begin{equation*}
\Theta(z)=\sum_{k=0}^{\infty} z^{k} \Theta_{k} \tag{C.4}
\end{equation*}
$$

with Θ_{k} being bounded operators from E to F. Suppose also that the series is convergent in \mathbb{D}. If, also,

$$
\|\Theta(z)\| \leq M \text { on } \mathbb{D}
$$

we will call such a function a bounded analytic function on \mathbb{D}.
For a bounded analytic function we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|\Theta\left(r e^{i t}\right) a\right\|_{F}^{2} d t \leq M^{2}\|a\|_{F}^{2}(0 \leq r<1)
$$

and

$$
\sum_{k=0}^{\infty}\left\|\Theta_{k} a\right\|_{F}^{2} \leq M^{2}\|a\|_{E}^{2}
$$

for all $a \in E$.
As in the scalar case, the limit

$$
\Theta\left(e^{i t}\right)=\lim _{z \rightarrow e^{i t}} \Theta(z)
$$

exists almost everywhere as a strong limit of operators. Moreover,

$$
\Theta\left(e^{i t}\right)=\lim _{r \rightarrow 1} \Theta\left(r e^{i t}\right)
$$

and $\Theta\left(r e^{i t}\right) a$ converges in $L^{2}(F)$ to $\Theta\left(e^{i t}\right) a$ as $r \rightarrow 1$ and this limit has the Fourier expansion

$$
\Theta\left(e^{i t}\right) a=\sum_{k=0}^{\infty} e^{i k t} \Theta_{k} a
$$

Now, with every bounded analytic function $\Theta(z)$ we associate the operator

$$
\Theta: L^{2}(E) \rightarrow L^{2}(F),
$$

defined by

$$
(\Theta v)(t)=\Theta\left(e^{i t}\right) v(t), v \in L^{2}(E)
$$

and the operator

$$
\Theta_{+}: H^{2}(E) \rightarrow H^{2}(F)
$$

defined by

$$
\left(\Theta_{+} u\right)(z)=\Theta(z) u(z), u \in H^{2}(E) .
$$

Definition C.2.6 ([14], p. 190). The analytic operator-valued function $\Theta(z)$ will be called
i) inner if $\Theta\left(e^{i t}\right)$ is an isometry from E to F for almost every t.
ii) outer if $\Theta_{+} H^{2}(\mathbb{D}, E)$ is dense in $H^{2}(\mathbb{D}, F)$.

Appendix D

The Nehari Problem

D. 1 The Scalar Nehari Problem

Definition D.1.1 ([38], p. 157). We denote by $L^{\infty}(\mathbb{T}, \mathbb{C})$ the Banach space of essentially bounded Lebesgue measurable \mathbb{C}-valued functions on the unit circle \mathbb{T} with pointwise algebraic operations and essential supremum norm:

$$
\|f\|_{L^{\infty}}=\operatorname{ess} \sup _{|z|=1}|f(z)| .
$$

A function is said to be essentially bounded if it is bounded on the complement of a set of measure zero. In L^{p}-spaces two functions are identified if they take the same values everywhere except for a set of measure zero. So, a number $M>0$ is an essential upper bound for a function $f: \mathbb{T} \rightarrow \mathbb{R}$ if the set

$$
\{z \in \mathbb{T}:|f(z)|>M\}
$$

is a set of measure zero. Then we can define
ess sup $|f(z)|=\inf \{M>0: M$ is an essential upper bound for $|f(z)|$ on $\mathbb{T}\}$.

Definition D.1.2 ([38], p. 159). $H^{\infty}(\mathbb{D}, \mathbb{C})$ denotes the space of bounded analytic functions on the unit disc \mathbb{D} with the supremum norm

$$
\|Q\|_{H^{\infty}} \stackrel{\text { def }}{=}\|Q\|_{L^{\infty}} \stackrel{\text { def }}{=} \underset{z \in \mathbb{\mathbb { D }}}{ }\|Q(z)\| \text {. }
$$

Definition D.1.3 ([11], p. 13). We define by $L^{2}(\mathbb{T}, \mathbb{C})$ the space of square integrable functions on the unit circle with the inner product

$$
\langle f, g\rangle_{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \theta
$$

Also, we define by $H^{2}(\mathbb{D}, \mathbb{C})$ the space of holomorphic functions f on the open unit disc such that

$$
\lim _{r \rightarrow 1}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta\right)^{1 / 2}<\infty
$$

Remark D.1.4. Let $0<r<1$. Suppose $f \in H^{2}(\mathbb{D}, \mathbb{C})$. By Fatou's Theorem C.1.3, the radial limits

$$
\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)
$$

exist almost everywhere on \mathbb{T}.
Definition D.1.5 ([11], p. 13). Consider the complete orthonormal set $\phi_{n}(\theta)=e^{i n \theta}$, $n=1,2, \cdots$, in $L^{2}(\mathbb{T}, \mathbb{C})$. If $f \in L^{2}(\mathbb{T}, \mathbb{C})$, the numbers

$$
c_{n}=\left\langle f, \phi_{n}\right\rangle_{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) e^{-i n \theta} d \theta
$$

are the Fourier coefficients of f. The series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta}
$$

is the Fourier series for f.

Definition D.1.6 ([11], p. 13). Suppose that $f(z)=\sum_{-\infty}^{\infty} a_{n} z^{n}, z \in \mathbb{T}$, is the Fourier expansion of a function f. We denote by $\hat{f}(n)$ the n-th Fourier coefficient a_{n} of f.

Definition D.1.7 ([38], p. 39). The orthogonal complement of a subset E of a Hilbert space H is the set

$$
\{x \in H:\langle x, y\rangle=0, \text { for all } y \in E\} .
$$

It is denoted by $H \ominus E$ or by E^{\perp}.
Theorem D.1.8 ([11]). Let E be a closed linear subspace of a Hilbert space H. Then $H=$ $E \oplus E^{\perp}$, that is, every vector x in H is uniquely expressible in the form $x=y+z$ where $y \in E$ and $z \in E^{\perp}$.

Definition D.1.9 ([38], p. 188). Let M be a closed linear subspace of a Hilbert space H. The orthogonal projection from H to M is the operator $P: H \rightarrow M$ defined by

$$
P x=y, \text { if } x=y+z, \text { where } y \in M, z \in M^{\perp} .
$$

Definition D.1.10 ([38], p. 190). For $f \in L^{2}(\mathbb{T}, \mathbb{C})$ given by

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}, z \in \mathbb{T}
$$

we define the orthogonal projection $P_{-}: L^{2}(\mathbb{T}, \mathbb{C}) \rightarrow L^{2}(\mathbb{T}, \mathbb{C}) \ominus H^{2}(\mathbb{D}, \mathbb{C})$ by

$$
P_{-}\left(\sum_{-\infty}^{\infty} a_{n} z^{n}\right)=\sum_{-\infty}^{-1} a_{n} z^{n} .
$$

Remark D.1.11. By Fatou's Theorem, $H^{2}(\mathbb{D}, \mathbb{C})$ can be identified with a closed subspace of $L^{2}(\mathbb{T}, \mathbb{C})$. This implies that the above projection is well-defined.

Definition D.1.12 ([38], p. 190). Suppose that $\phi \in L^{\infty}(\mathbb{T}, \mathbb{C})$. The Hankel operator H_{ϕ} is the operator

$$
\left.P_{-} \circ M_{\phi}\right|_{H^{2}(\mathbb{D}, \mathbb{C})}: H^{2}(\mathbb{D}, \mathbb{C}) \rightarrow L^{2}(\mathbb{T}, \mathbb{C}) \ominus H^{2}(\mathbb{D}, \mathbb{C})
$$

where M_{ϕ} is the operator of multiplication by ϕ on $L^{2}(\mathbb{T}, \mathbb{C})$.

Definition D.1.13. We can write $L^{2}(\mathbb{T}, \mathbb{C}) \ominus H^{2}(\mathbb{D}, \mathbb{C})$ as $H^{2}(\mathbb{D}, \mathbb{C})^{\perp}$, where

$$
H^{2}(\mathbb{D}, \mathbb{C})^{\perp} \stackrel{\text { def }}{=}\left\{f \in L^{2}(\mathbb{T}, \mathbb{C}):\langle f, g\rangle_{L^{2}}=0, \text { for all } g \in H^{2}(\mathbb{D}, \mathbb{C})\right\}
$$

Definition D.1.14. Given two Hilbert spaces H_{1} and H_{2}, denote by $\mathcal{L}\left(H_{1}, H_{2}\right)$ the set of all bounded linear operators $T: H_{1} \rightarrow H_{2}$.

Definition D.1.15. Let H_{1} and H_{2} be Hilbert spaces and let $T \in \mathcal{L}\left(H_{1}, H_{2}\right)$. A maximizing vector for T is a non-zero vector $x \in H_{1}$ at which T attains its norm, that is, such that

$$
\|T x\|=\|T\|\|x\|
$$

In general, a maximizing vector need not exist for a bounded linear operator.

Definition D.1.16 ([29], p. 103). Let $\left(E,\|\cdot\|_{E}\right),\left(F,\|\cdot\|_{F}\right)$ be Banach spaces, let $U=\left\{x \in E:\|x\|_{E} \leq 1\right\}$ be the unit ball in E and let $T: E \rightarrow F$ be a linear operator. T is a compact operator if the closure of $T(U)$ is a compact set in $\left(F,\|\cdot\|_{F}\right)$.

Definition D.1.17 ([19], p. 25). Let E, F be Hilbert spaces and $T: E \rightarrow F$. The essential norm of the operator T is defined by

$$
\|T\|_{e}=\inf \{\|T-K\|: K \text { is compact }\} .
$$

Theorem D.1.18 (Hartman's theorem, [19], p. 27). Let $\phi \in L^{\infty}(\mathbb{T}, \mathbb{C})$. Then

$$
H_{\phi} \text { is compact if and only if } \phi \in H^{\infty}(\mathbb{D}, \mathbb{C})+C(\mathbb{T}, \mathbb{C}) .
$$

Definition D.1.19 ([19]). Consider the space $L^{2}(\mathbb{T}, \mathbb{C})$. The bilateral shift operator is defined to be the multiplication by z on $L^{2}(\mathbb{T}, \mathbb{C})$. Its restriction to $H^{2}(\mathbb{D}, \mathbb{C})$ is called the unilateral shift.

Theorem D.1.20 ([19], p. 26). Let $\phi \in L^{\infty}(\mathbb{T}, \mathbb{C})$. Then, the essential norm of the Hankel operator $H_{\phi}: H^{2}(\mathbb{D}, \mathbb{C}) \rightarrow H^{2}(\mathbb{D}, \mathbb{C})^{\perp}$ satisfies

$$
\left\|H_{\phi}\right\|_{e}=\operatorname{dist}_{L^{\infty}}\left(\phi, H^{\infty}(\mathbb{D}, \mathbb{C})+C(\mathbb{T}, \mathbb{C})\right) .
$$

Lemma D.1.21 ([19], p. 26). Let $K: H^{2}(\mathbb{D}, \mathbb{C}) \rightarrow H^{2}(\mathbb{D}, \mathbb{C})^{\perp}$ be a compact operator. Then

$$
\lim _{n \rightarrow \infty}\left\|K S^{n}\right\|=0
$$

for the shift operator S on $H^{2}(\mathbb{D}, \mathbb{C})$.
Problem D.1.22 (The Nehari Problem). [38, Problem 15.6] Given $\phi \in L^{\infty}(\mathbb{T}, \mathbb{C})$, find $g \in H^{\infty}(\mathbb{D}, \mathbb{C})$ such that

$$
\|\phi-g\|_{L^{\infty}}
$$

is minimised.

Theorem D.1.23 (Nehari's Theorem). [38, Theorem 15.14] Suppose that $\phi \in L^{\infty}(\mathbb{T}, \mathbb{C})$. Then

$$
\left\|H_{\phi}\right\|=\operatorname{dist}\left(\phi, H^{\infty}(\mathbb{D}, \mathbb{C})\right)
$$

Moreover there exists $\psi \in L^{\infty}(\mathbb{T}, \mathbb{C})$ such that the Hankel operators H_{ϕ}, H_{ψ} satisfy

$$
H_{\phi}=H_{\psi}
$$

and

$$
\|\psi\|_{\infty}=\left\|H_{\phi}\right\| .
$$

Any function $Q \in H^{\infty}$ at which the infimum $\inf _{Q \in H^{\infty}}\|\phi-Q\|_{L^{\infty}}$ is attained will be called a solution of the Nehari Problem for ϕ. For $\phi \in L^{\infty}$ there may be a unique solution or infinitely many solutions.

Theorem D.1.24 ([38],p. 196). Let $\phi \in L^{\infty}(\mathbb{T}, \mathbb{C})$ and suppose that the Hankel operator H_{ϕ} has a maximizing vector $v \in H^{2}(\mathbb{D}, \mathbb{C})$. Then there exists a solution of the Nehari problem and every solution Q satisfies

$$
(\phi-Q) v=H_{\phi} v
$$

and so,

$$
\begin{equation*}
Q(z)=\phi(z)-\frac{H_{\phi} v(z)}{v(z)} \tag{D.1}
\end{equation*}
$$

almost everywhere on \mathbb{T}.
Remark D.1.25. Since $v \in H^{2}(\mathbb{D})$, and v is not identically zero on \mathbb{D}, then v is non-zero almost everywhere on \mathbb{T}.

Remark D.1.26. It follows from Theorem D.1.24 that if H_{ϕ} has a maximizing vector, then the Nehari problem for ϕ has a unique solution Q given by equation (D.1).

D. 2 The Matricial Nehari Problem

In this section we present an established generalisation of the results obtained in Appendix $B .1$ to the matrix-valued setting.

Definition D.2.1. For any $G \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, we define the Hankel operator with symbol G to be the operator

$$
H_{G}: H^{2}\left(\mathbb{C}^{n}\right) \rightarrow H^{2}\left(\mathbb{C}^{m}\right)^{\perp}
$$

given by $H_{G} x=P_{-}(G x)$, where

$$
P_{-}: L^{2}\left(\mathbb{C}^{m}\right) \rightarrow H^{2}\left(\mathbb{C}^{m}\right)^{\perp} \stackrel{\text { def }}{=} L^{2}\left(\mathbb{C}^{m}\right) \ominus H^{2}\left(\mathbb{C}^{m}\right)
$$

is the orthogonal projection operator.
The following is the Nehari Problem for matrix-valued functions.
Problem D.2.2. Given $\phi \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$, find all $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ such that $\|\phi-Q\|_{L^{\infty}}$ is minimised.

Theorem D.2.3 ([16]). For any matrix-valued $\phi \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$,

$$
\inf _{Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)}\|\phi-Q\|_{\infty}=\left\|H_{\phi}\right\|
$$

and the infimum is attained.

Theorem D.2.4. [24, Theorem 0.2] Let $\phi \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right)$ be such that H_{ϕ} has a Schmidt pair (v, w) corresponding to the singular value $t=\left\|H_{\phi}\right\|$. Let Q be a function in $H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$ at minimal distance from ϕ. Then

$$
(\phi-Q) v=t w \quad \text { and }(\phi-Q)^{*} w=t v .
$$

Moreover

$$
\|w(z)\|_{\mathbb{C}^{m}}=\|v(z)\|_{\mathbb{C}^{n}} \text { almost everywhere on } \mathbb{T}
$$

and

$$
\|\phi(z)-Q(z)\|=t \text { almost everywhere on } \mathbb{T} .
$$

Proof. By Nehari's Theorem, $\|\phi-Q\|_{L^{\infty}}=t$ and, by hypothesis,

$$
H_{\phi} v=t w, \quad H_{\phi}^{*} w=t v
$$

If $t=0$ then $\phi \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right)$, so that $\phi=Q$ and the statement of the theorem is trivially true. We may therefore assume $t>0$. Thus $H_{\phi}^{*} H_{\phi} v=t^{2} v$, and so v is a maximising vector for H_{ϕ}. We can assume that v is a unit vector in $H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, and then w is a unit vector in $H^{2}\left(\mathbb{D}, \mathbb{C}^{m}\right)^{\perp}$ and is a maximising vector for H_{ϕ}^{*}. We have

$$
t=\left\|H_{\phi} v\right\|=\left\|H_{\phi-Q} v\right\|=\left\|P_{-}(\phi-Q) v\right\| \leq\|(\phi-Q) v\| \leq\|\phi-Q\|_{L^{\infty}}=t .
$$

The inequalities must hold with equality throughout, and therefore

$$
\left\|P_{-}(\phi-Q) v\right\|=\|(\phi-Q) v\|,
$$

which implies that $(\phi-Q) v \perp H^{2}$ and so

$$
H_{\phi} v=P_{-}(\phi-Q) v=(\phi-Q) v
$$

Furthermore $\|(\phi-Q) v\|=\|(\phi-Q)\|_{L^{\infty}}\|v\|$ and since $v(z)$ is therefore a maximizing vector for $\phi(z)-Q(z)$ for almost all z, we have $\|\phi(z)-Q(z)\|=\left\|H_{\phi}\right\|$.

Likewise,

$$
\begin{aligned}
t=\left\|H_{\phi}^{*}\right\|=\left\|H_{\phi-Q}^{*}\right\| & =\left\|H_{\phi-Q}^{*} w\right\|=\left\|P_{+}(\phi-Q)^{*} w\right\|_{L^{2}} \leq\left\|(\phi-Q)^{*} w\right\|_{L^{2}} \\
& \leq\left\|(\phi-Q)^{*}\right\|_{L^{\infty}}\|w\|_{L^{2}}=\left\|(\phi-Q)^{*}\right\|_{L^{\infty}}=t .
\end{aligned}
$$

Again, the inequalities hold with equality throughout, and in particular

$$
\left\|P_{+}(\phi-Q)^{*} w\right\|_{L^{2}}=\left\|(\phi-Q)^{*} w\right\|_{L^{2}}
$$

so that $(\phi-Q)^{*} w \in H^{2}$ and

$$
(\phi-Q)^{*} w=H_{\phi}^{*} w=t v .
$$

Theorem D.2.5. [12, Theorem 7.3.5] If $A \in \mathbb{C}^{m \times n}$ has rank k, then A can be written as

$$
A=U W V
$$

for some matrix $W \in \mathbb{C}^{m \times n}$ with non-negative diagonal entries and for some unitary matrices $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$. The matrix $W=\left(s_{i j}\right) \in \mathbb{C}^{m \times n}$ has $s_{i j}=0$ for $i \neq j$, $i=0,1, \cdots, m-1, j=0,1, \cdots, n-1$, and for $i=j$,

$$
s_{0} \geq s_{1} \geq \cdots \geq s_{k} \geq s_{(k+1)}=\cdots=s_{q}=0
$$

with $q=\min \{m, n\}$. The numbers s_{i} are the non-negative square roots of the eigenvalues of
$A A^{*}$ and are also known as the singular values of the matrix A.
The following example encapsulates the necessity of considering the superoptimal analytic approximation in order to obtain a unique best approximant.

Example D.2.6. Let

$$
G(z)=\left(\begin{array}{ll}
\bar{z} & 0 \\
0 & 0
\end{array}\right) \in L^{\infty}\left(\mathbb{T}, \mathbb{C}^{2 \times 2}\right)
$$

Find a function $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)$ such that $\|G-Q\|_{L^{\infty}\left(\mathbb{T}, \mathbb{C}^{2 \times 2}\right)}$ is minimised.

Solution. Firstly,

$$
\left\|H_{G}\right\|=\operatorname{dist}_{L^{\infty}}\left(\bar{z}, H^{\infty}\right)=1
$$

Consider an arbitrary $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{(2 \times 2)}\right)$ of the form

$$
Q(z)=\left(\begin{array}{ll}
q_{11}(z) & q_{12}(z) \\
q_{21}(z) & q_{22}(z)
\end{array}\right)
$$

The unique $q_{11} \in H^{\infty}(\mathbb{D}, \mathbb{C})$ such that $\left\|q_{11}-\bar{z}\right\|_{L^{\infty}} \leq 1$ is $q_{11}=0$.
Hence $Q \in H^{\infty}\left(\mathbb{D}, \mathbb{C}^{2 \times 2}\right)$ is a best approximant of G if and only if Q is of the form

$$
Q=\left(\begin{array}{cc}
0 & 0 \\
0 & q_{22}
\end{array}\right)
$$

where

$$
1=\|G-Q\|_{L^{\infty}\left(\mathbb{T}, \mathbb{C}^{2} \times 2\right)}=\left\|\left(\begin{array}{cc}
\bar{z} & 0 \\
0 & -q_{22}
\end{array}\right)\right\|_{L^{\infty}\left(\mathbb{T}, \mathbb{C}^{2} \times 2\right.}=\max \left\{1,\left\|q_{22}\right\|_{H^{\infty}}\right\},
$$

i.e. $\left\|q_{22}\right\|_{H^{\infty}} \leq 1$.

Thus the set of best analytic approximants of G is

$$
\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & q_{22}
\end{array}\right):\left\|q_{22}\right\|_{H^{\infty}} \leq 1\right\}
$$

At this point, we encounter a difficulty. The set of all optimal solutions is typically large, and we would like to be able to determine the "very best" among these best approximants. For this reason, we need to impose some additional constraints other than the minimisation of the L^{∞} norm of the largest singular value, namely to regard minimizing the L^{∞} norm of all the subsequent singular values.

Observe that, in this case, $s_{0}^{\infty}(G-Q)=1$ and that

$$
s_{1}^{\infty}(G-Q)=\operatorname{ess} \sup _{z \in \mathbb{T}} s_{1}\left(\begin{array}{cc}
0 & 0 \\
0 & -q_{22}(z)
\end{array}\right)=\operatorname{ess} \sup _{z \in \mathbb{T}}\left|q_{22}(z)\right|=\left\|q_{22}\right\|_{H^{\infty}}
$$

Hence the unique best analytic approximant of G for which both $s_{0}^{\infty}(G-Q)$ and $s_{1}^{\infty}(G-Q)$
are minimised occurs when $q_{22}=0$, that is,

$$
Q=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Bibliography

[1] V.M. Adamyan, D.Z. Arov and M.G Krein. Infinite Hankel matrices and generalized Carathéodory-Fejér and Riesz problems, Funct. Anal. Appl. (2) (1968), 1 - 19.
[2] V.M. Adamyan, D.Z. Arov and M.G Krein. Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems (Russian), Funkcional. Anal. i Prilozhen. 2 (1968), no. 4, 1-17.
[3] L. Baratchart, F.L. Nazarov and V.V. Peller, Analytic approximation of matrix functions in Lp, J. Approx. Theory 158 (2009), no. 2, 242-278.
[4] D. Chiotis, Z.A. Lykova and N.J. Young, Exterior products of operators and superoptimal analytic approximation, arXiv: 2004.06415 [math.FA], 14 May 2020, 117 pages.
[5] D. Chiotis, Z.A. Lykova and N.J. Young, Exterior powers and pointwise creation operators, arXiv:2004.11993 [math.CV], 24 April 2020, 24 pages.
[6] A. A. Condori, On the sum of superoptimal singular values, J. Funct. Anal. 257 (2009), no. 3, 659-682.
[7] J. De Pillis, Grassmann algebras as Hilbert space, J. Algebra, 10, 485-500.
[8] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann) (French) [Operator algebras in Hilbert space (von Neumann algebras)], Reprint of the second (1969) edition, Èditions Jacques Gabay, Paris, 1996.
[9] G. Dullerud and F. Paganini, A Course in Robust Control Theory : A Convex Approach, Springer Print. Texts in Applied Mathematics, Springer Science + Business Media, Inc., vol. 36, New York, 2000.
[10] A. Ya. Helemskii, The Homology of Banach and Topological Algebras. Translated from the Russian by Alan West. Mathematics and its Applications (Soviet series), vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989.
[11] K. Hoffman. Banach Spaces of Analytic Functions, Prentice-Hall Series in Modern Analysis Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
[12] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[13] D.J.N. Limebeer, G.D. Halikias and K. Glover, State-space algorithms for the computation of superoptimal matrix interpolating functions, Internat. J. Control 50 (1989), no. 6, 2431-2436.
[14] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert space. Translated from the French and revised. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970.
[15] Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153-162.
[16] L.B. Page, Bounded and compact vectorial Hankel operators, Trans. Amer. Math. Soc. 150 (1970), 529-539.
[17] V. Pavan, Exterior Algebras. Elementary tribute to Grassmann's ideas. STE Press, London; Elsevier, Inc., Oxford, 2017.
[18] G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, Springer-Verlag New York, 1989.
[19] V. V. Peller, Hankel Operators and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, New York, Inc., 2003.
[20] V.V. Peller and S.V. Khrushchëv, Hankel operators, best approximations, and stationary Gaussian processes (Russian), Uspekhi Mat. Nauk 37223 (1982), no. 1, 53-124, 176.
[21] V.V. Peller, Approximation by analytic operator-valued functions, Harmonic analysis and operator theory (Caracas, 1994), 431-448, Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995.
[22] V.V. Peller and S.R. Treil, Approximation by analytic matrix functions. The four block problem, J. Funct. Anal. 148 (1997), 191-228.
[23] V.V. Peller and S. R. Treil, Very badly approximable matrix functions, Sel. math., New ser. 11 (2005), no. 1, p. 127-154.
[24] V.V. Peller and N.J. Young, Superoptimal analytic approximations of matrix functions, J. Funct. Anal. 120 (1994), no. 2, 300-343.
[25] V.V. Peller and N.J. Young, Construction of superoptimal approximants, Mathem. Control Signals Systems 8 (1995), no. 2, 118-137.
[26] V.V. Peller and N.J. Young, Superoptimal approximation by meromorphic functions, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 3, 497-511.
[27] I. Postlethwaite, M.C. Tsai and D.W. Gu, A state-space approach to discrete-time superoptimal H^{∞} control problems, Internat. J. Control 49 (1989), 247-268.
[28] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.
[29] W. Rudin, Functional analysis. McGraw-Hill Series in Higher Mathematics. McGrawHill Book Co., New York-Düsseldorf-Johannesburg, 1973.
[30] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967), 179-203.
[31] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
[32] B. Simon, Trace ideals and their applications, Second edition. Mathematical Surveys and Monographs, 120. American Mathematical Society, Providence, RI, 2005.
[33] B. Simon, Real Analysis. A Comprehensive Course in Analysis, Part 1. American Mathematical Society, Providence, RI, 2015.
[34] S.R. Treil, A vector version of the Adamyan-Arov-Krein theorem (Russian), Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 85-86.
[35] S. Winitzki, Linear Algebra via Exterior Products, Published by lulu.com, ISBN 9781409294962, 2010.
[36] N.J. Young, The singular-value decomposition of an infinite Hankel matrix, Linear Algebra Appl., 50 (1983) 639-656.
[37] N.J. Young, The Nevanlinna-Pick problem for matrix-valued functions, J. Operator Theory 15 (1986), no. 2, 239-265.
[38] N. Young, An Introduction to Hilbert Space, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1998.
[39] N. J. Young, D. Chiotis and Z.A. Lykova, Superoptimal analytic approximation and exterior products of Hankel operators, Proceedings of the 24th International Symposium on Mathematical Theory of Networks and Systems, 23-27 August, 2021, Cambridge, UK. 4 pages (to appear).

Index

$(x \dot{\wedge} y)^{\prime}(z), 37$
$0_{(n-1) \times 1}, 101$
$A_{j}, 153$
$B_{j}, 153$
$C_{\xi}, 46$
$C_{\xi}^{*}, 50$
$H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right), 4$
$H^{p}(\mathbb{D}, E), 36$
$H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)^{\perp}, 4$
$H^{\infty}(\mathbb{D}, \mathbb{C}), 209$
$H^{\infty}\left(\mathbb{D}, \mathbb{C}^{m \times n}\right), 1$
$I_{n}, 66$
$L^{2}\left(\mathbb{T}, \mathbb{C}^{n}\right), 4$
$L^{p}(\mathbb{T}, E), 36$
$L^{\infty}\left(\mathbb{T}, \mathbb{C}^{m \times n}\right), 1$
$L^{\infty}(\mathbb{T}, \mathbb{C}), 209$
$M_{G}, 46$
$\left.M_{\wedge^{2} G}\right|_{H^{2}(\mathbb{D}, E)}, 46$
$N_{f}, 50$
$P_{+}, 50$
$P_{-}, 4,5$
$S^{*}, 193$
$S_{\sigma}, 6,21$
$S_{p}, 21$
$T^{*}, 193$
$T_{j}, 72$
$X_{j}, 72$
$Y_{j}, 72$
$\mathbb{C}^{m \times n}, 1$
$\mathbb{C}^{\binom{m}{p}}, 30$
$\mathbb{C}^{m \times n}, 194$
$\mathbb{D}, 1$
$\operatorname{PLS}(X, F), 47$
$\operatorname{POC}(X, F), 47$
$\Theta^{T}, 6$
$\mathbb{T}, 1$
$\bar{\eta}_{(j)}, 162$
$\hat{f}(n), 210$
$\operatorname{ker} C_{\xi}, 52$
$\langle\cdot, \cdot\rangle_{\wedge^{p} E}, 26$
$\langle\cdot\rangle_{\otimes^{p} E}, 21$
$\langle\cdot, \cdot\rangle_{\mathbb{C}^{n}}, 43$
$\mathcal{A}, 60$
$\mathcal{E}_{0}, 65$
$\mathcal{E}_{2}, 129$
$\mathcal{E}_{j}, 114,144,145,148$
$\mathcal{K}(E, F), 59$
$\mathcal{L}(H, K), 5$
$\mathcal{L}\left(H_{1}, H_{2}\right), 211$
$\otimes^{p} E, 21$
$\tilde{V}_{2}, 129$
$\tilde{V}_{j}, 145$
$\tilde{W}_{2}, 129$
$\tilde{W}_{j}, 145$
$\tilde{f}, 46$
$\wedge^{p} \mathbb{C}^{m}, 30$
$\wedge^{p} T, 33$
$\wedge^{p} E, 6,23$
$\xi_{(i)}, 157$
$s^{\infty}(F), 1$
$s_{j}^{\infty}(F), 1$
$x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p}, 24$
$x_{j}, 72$
$y_{j}, 72$
pointwise wedge product on $\mathbb{D}, 6,35$
pointwise wedge product on $\mathbb{T}, 6,35$
adjoint operator, 193
algebraic tensor product, 191
analyticity of wedge product, 16
antisymmetric tensor, 6, 23
badly approximable, 61
Beurling's Theorem, 98
bilateral shift, 211
bounded analytic function, 207
compact Hankel operator, 59
compact operator, 211
complete orthonormal set, 201
completely hereditary, 60
derivative of wedge product, 16
elementary tensor, 24
essential norm, 211
essentially bounded, 209
Fatou's Theorem, 203
Fourier coefficients, 210
Fourier series, 210
function at minimal distance from $G, 60$
Generalised Fatou's Theorem, 206
Hölder's inequality, 36
Hankel operator, 5, 211, 213
harmonic function, 203
Hartman's Theorem
operator-valued case, 59
scalar case, 211
hereditary, 60
Hilbert tensor product, 193
identity operator, 8,70
initial space, 194
inner product in $\mathbb{C}^{n}, 43$
inner product in $\otimes^{p} E, 21$
inner product in $\wedge^{p} E, 26$
inner-outer factorisation, 200
level j-superoptimal error function, 114
matrix-valued function
outer, 6
co-outer, 6
inner, 6
maximizing vector, 211
Nehari Problem, 212
Nehari's Theorem, 212
orthogonal set, 201
orthonormal basis for $\wedge^{p} E, 30$
orthonormal set, 201
partial isometry, 194
pointwise
creation operator, 46
linear span, 47
linearly dependent, 35
orthogonal complement, 47
orthonormal on \mathbb{T}, 9
wedge product, 6,35
QC, 59
quasi-continuous function, 59
restriction of $M_{\wedge^{2} G}, 46$
s-number of a matrix, 215
scalar
inner function, 199
outer function, 199
singular inner function, 199
Schmidt pair, 5
shift operator, 211
singular set, 50
singular values
of a matrix, 215
of an operator, 5
solution of the Nehari Problem, 212
symmetric group, 21
symmetric tensor, 23
tensor product, 192
tensor product of operators, 192
thematic completion, 64
Toeplitz operator, 54
unilateral shift, 211
unitary operator, 5, 193
universal property, 191
vanishing mean oscillation, 60
VMO, 60

