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Abstract

This dissertation concerns the classical problem of finding a bounded analytic function on
the unit disc D which approximates a given essentially bounded function G on the unit circle
T as well as possible in the L norm.

In the case that GG is a continuous m X n matrix-valued function on T, there is a typically
large set of optimal bounded analytic approximants in the L*° norm, and it is therefore
natural to study bounded analytic approximants ) on D for which G — () is minimised in a
strengthened sense.

One defines, for j > 0,

s7°(G — Q) = ess squ s;(G(z) — Q(z)),
ze
where sg,s1,...,s; are the singular values of a matrix. One then says that a bounded
analytic matrix function Q) is a superoptimal analytic approximant of G if () lexicographically

minimises the sequence
(SSO(G - Q)? S(I)O(G - Q)? o 7)

over all bounded analytic matrix functions.

It is known that every continuous matrix-valued function on T has a unique superoptimal
analytic approximant AG; moreover, for rational GG, there are numerical procedures for the
calculation of AG. Existing algorithms are computationally intensive.

This thesis introduces a new operator-theoretic technique, based on exterior powers of
Hilbert spaces and operators, for the calculation of the superoptimal analytic approximants.
The result is a new algorithm which avoids some of the lengthier and potentially more ill-
conditioned steps in previously described algorithms. In particular, the present algorithm

does not require the spectral factorisation of matrix-valued positive functions on T.
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Chapter 1

Introduction

1.1 Superoptimal analytic approximation

The superoptimal analytic approximation problem entails finding, for a given matrix-valued
function G in L>°(T,C™*"), a bounded analytic matrix-valued function @ in H>°(DD, C"™*")
which simultaneously minimises the essential suprema, taken over all z € T, of all the singular
values of the matrix G(z) — Q(2).

Let us first provide some preliminary definitions and then formulate the problem. Through-
out the dissertation, C"™*" denotes the space of m x n complex matrices with the operator

norm and D, T denote the unit disc and the unit circle respectively.

Definition 1.1.1. H*(ID, C™*") denotes the space of bounded analytic matriz-valued func-

tions on the unit disc with the supremum norm

def def

1@z~ = [|Qlle = SzlelgllQ(Z)llcwn.

L>(T,C™*™) is the space of essentially bounded Lebesgue measurable matriz-valued functions

on the unit circle with the essential supremum norm

| fllLe = ess ‘Sl|1p | £ (2)||cmxn.
z|l=1

Also, C(T,C™*™) is the space of continuous matriz-valued functions from T to C™*™.

Definition 1.1.2. Let F' € L*(T,C™*") and let s;(F(z)) denote the j-th singular value of
the matriz F(z), for z € T. We define

s3°(F) = ess sup s;(F(z))

J
|z[=1

and



1.1. Superoptimal analytic approximation

Problem 1.1.3 (The superoptimal analytic approximation problem). Given a function
G € L®(T,C™™), find a function @ € H>(D,C™ ") such that the sequence s*(G — Q)

15 mainimased with respect to the lexicographic ordering.

In general, the superoptimal analytic approximant might not be unique. However, it
has been proved that if the given function G belongs to H>*(D,C™*") 4+ C(T, C"™*"), then
Problem 1.1.3 has a unique solution. The following theorem, which was obtained by V.V.

Peller and N.J. Young in [24], asserts what we have just noted.

Theorem 1.1.4 ([24], p. 303). Let G € H>*(D,C™*") + C(T,C™*™). Then the minimum
with respect to the lexicographic ordering of s™°(G —Q) over all Q € H* (D, C™*™) is attained
at a unique function Qo. Moreover, the singular values s;(G(z) — Qo(2)) are constant almost

everywhere on T for j =0,1,2,....

The topic of this dissertation is not the existence and uniqueness of the function AG
described in Theorem 1.1.4, but rather the construction of AG. In the proof of the validity
of our construction, we have no compunction in making any use of results proved in [24],
such as the existence of some special matrix functions. For example, to justify our algorithm
we shall prove, using results of [24], that certain operators that we introduce are unitarily
equivalent to block Hankel operators, which fact enables us to make use of general properties
of Schmidt vectors of Hankel operators, without the need to calculate the symbols of those
Hankel operators.

The proof of Theorem 1.1.4 by Peller and Young is based on a process of diagonali-
sation of the error function G — @, for Q € H>(D,C™ ™). They prove the existence of
certain unitary-matrix-valued functions V, W on T such that W(G — Q)V takes a block-
diagonal form in which the singular values of G(z) — Q(2) are exhibited. For any particular
G € H*(D,C™*™) + C(T,C™ ") the matrix functions V' and W can in principle be com-
puted with the aid of Wiener-Masani matrix factorisations, or spectral factorisations, of
positive-semi-definite-matrix-valued functions on the circle. However, our aim is to give an
algorithm for the construction of AG which avoids the calculation of Wiener-Masani fac-
torisations of matricial positive semi-definite functions. A key point of the present work
is that, even though we make extensive use of the ezistence of the matrix functions V, W,
the algorithm does not require us to calculate these matrix functions. This feature of the
construction contrasts with the conceptual algorithm put forward by Peller and Young in
[25], which does not specify a way of computing the Schmidt pairs occurring in the formula
for AG, but describes them in terms of the functions V, W, so that any straightforward way
of finding the Schmidt pairs will almost certainly require the calculation of V and W. We
shall, however, need to calculate the inner and outer factors of some elements of H?*(DD, C").
For this purpose we need to find the spectral factors of positive scalar-valued functions on
T, but this is a simpler and better-conditioned computational task than the corresponding
problem for matricial functions.

The purpose of this dissertation is to derive an alternative algorithm to the one given in

[25], which avoids the Wiener-Masani factorisations of matrix functions and employs exterior

2



1.2. Main results

powers of Hilbert spaces along with some of the ideas obtained in [24] and [25]. We adopt
the known theory of exterior powers of Hilbert spaces with their established operations and
inner product. We also present a notion of pointwise exterior product for mappings that
are defined on D or T with the same operations and inner product mentioned. It is worth
noting that the algorithm we introduce in Section 3.2 produces a similar formula to [25] for
the superoptimal analytic approximant AG of a matrix-valued continuous function G on the

circle, to wit

— Ly
G— AG = Z:; TNER (1.1)
where x;, y; are certain vector-valued functions on the circle which are the Schmidt pairs of a
succession of Hankel-type operators I';, t; = ||Iy]| and h; € H?*[D,C) such that
|hi(2)] = ||zi(2)]|cr almost everywhere on T for ¢ = 0,1,2...,r — 1. The difference be-
tween the two approaches lies in the methods of defining and calculating the vectors z;, y;
and in characterising the function spaces in which they belong. In [24],][25] the spaces are
described by a block-diagonalisation procedure which requires the calculation of a “thematic
completion” of an inner column-matrix function, which can itself be constructed from the
spectral or Wiener-Masani factorisation of a singular positive-valued function on the circle.
In the present approach, the objects z;,y; and the spaces in which they lie are described
with the aid of wedge products of Hilbert spaces and operators. The new approach enables
us to derive the functions z;, y;, and hence to calculate AG from the formula (1.1), without
the spectral factorisation step. The results of this thesis are presented in [4], [5] and in the
extended abstract in [39]. In the algorithm of [25], the pair of vectors (z;,y;) in equation
(1.1) is a Schmidt pair of the operator I'; defined below in Theorem 3.2.54, corresponding
to ||I';]|. In the present algorithm we give a construction of a suitable Schmidt pair (x;,y;)

for I'; corresponding to ||I';|| using exterior powers via the equations

i = (Ien — €& — -+ = &€, Yja = (lem — Totlg — -+ — 7570, JWjs1, (1.2)

where the quantities concerned are generated by the algorithm below, without any need for
Wiener-Masani factorization of positive matricial functions on T. See Lemmas 3.2.55 and
3.2.56 for the proof. Since the singular value ¢; of I'; can perfectly well have high multiplicity,
there is no sort of uniqueness of Schmidt pairs. Therefore we do not assert that the summands
in the right hand side of equation (1.1) are the same in [25] and in the present algorithm,

though of course the sums themselves must be, because AG is uniquely determined.

1.2 Main results

The main outcome of this dissertation is the algorithm for the superoptimal analytic ap-
proximation given in Chapter 3 and presented below. The reader can find an application to
a concrete example in Chapter 4.

In order to present the algorithm, let us first give some preliminary definitions.



1.2. Main results

Definition 1.2.1 ([14]). (i) L*(T,C") is defined to be the space of square-integrable C"-

valued functions on the unit circle with its natural inner product and norm

1 2m 0 1/2
Il = (55 [ e zaas)
(ii) H*(D,C") is defined to be the space of holomorphic C"-valued functions on the unit disc

such that
(1 . 1/2
i (5 [ e dt) < o

(iii) H*(D,C™)* is defined to be the space

HA(D,C")* = {f € LA(T,C") | (f,g)s2 =0, for all g € HX(D,C")}.

Remark 1.2.2. Let 0 <r < 1 and let f € H*(D,C"). By the generalised Fatou’s Theorem
C.2.5, the radial limits

hmf(rew) = f(eia)

r—1 lI-llcn

exist almost everywhere on T and define a function f € L*(T,C") which satisfies
lirr% | f(re®®) — f(€?)]lcn =0 almost everywhere on T.
r—

Moreover, the space H*(D,C") is identified isometrically with a closed subspace of
L2(T,C") by the injection f — f.

Definition 1.2.3. Let f € L*(T,C™) be given by

[e.9]

f(z) = Z a,z" for all z € T.

n=—oo

The projection
P_: L*(T,C™) — H*(D,C™)*
15 given by
e’} -1
P < Z anz"> = Z a,z" for all z € T.

Definition 1.2.4. For any G € L*>(T,C™*™), we define the Hankel operator with symbol
G to be the operator
Hg: H*(D,C") — H*(D,C™)*

given by
HGx = P_(GQT)



1.2. Main results

Definition 1.2.5. Let H, K be Hilbert spaces. We define by L(H, K) the space of bounded

linear operators from H to K.

Definition 1.2.6 ([38], p. 204). Let H, K be Hilbert spaces and let T € L(H, K). For any

non-negative integer k, let
se(T) =inf{||T— R|| : R € L(H, K),rankR < k}.

The numbers
5o(T) > 51(T) > 85(T) > -+ > 0

are called the singular values of T.

Remark 1.2.7. In this dissertation we call an operator U: H — K between Hilbert spaces
H, K a unitary operator if U s both isometric and surjective. Some authors restrict the
name “unitary operator” to the case that H = K. Such authors would use a terminology like

“isometric isomorphism” for our “unitary operator” in the case that H # K.

Remark 1.2.8. Suppose s is a singular value for a compact operator T € L(H,K). Then

s? is a singular value of T*T, and so there is a corresponding eigenvector x € H such that

T*Tx = s’x.
If s # 0, we can let y = s 'Tx € K, and then
Ty = sx.

Definition 1.2.9 ([38], p. 206). Let H, K be Hilbert spaces and let T: H — K be a compact
operator. Suppose that s is a singular value of T. A Schmidt pair for T' corresponding to s

is a pair (z,y) of non-zero vectors x € H and y € K such that

Tx = sy, Ty = sx.

Lemma 1.2.10. Let T € L(H, K) be a compact operator and let x € H, y € K be such that
(x,y) is a Schmidt pair for T corresponding to s = ||T'||. Then = is a mazimizing vector for

T, y is a maximizing vector for T*, and ||z|g = ||y| x-

Proof. Since (z,y) is a Schmidt pair for 7" corresponding to s = |||,

Tx =sy, T'y=sx.
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Then

syl = 1Tllx < Tlllzla = sllzlla = T"yla < 1T yllx = sllyllx-

Thus equality holds throughout, that is,

ITallx = 1Tlle,  1Tylle = 1Tyl Nzl =yl 0

Definition 1.2.11 ([14], bp. 190). The matriz-valued bounded analytic function
© € H>®(D,C™ ™) is called inner if ©(e") is an isometry from C" to C™ for almost ev-
ery et on T.

An analytic m x n-matriz-valued function ® on D is said to be outer if
OH?*(D,C") = {®f : f € H*(D,C")} is a norm-dense subspace of H*(D,C™), and co-outer
if ®TH*(D,C™) = {®Tg: g € H*(D,C™)} is dense in H*(D,C").

Definition 1.2.12. Let E be a Hilbert space and let (&Y, - ||gr g) be the p-fold Hilbert

tensor product. Let S, def Sym{1,---  p} be the symmetric group on {1,--- ,p}.
For o € S,, we define S, : @'FE — QPE on elementary tensors by

Se(T1 @ T2 @+ R Tp) = Ty(1) ® To(2) @+ @ Tu(p),

and we extend S, to Q'E by linearity, that is, foru="> 7 2} Q@ @z’

b, we define

S, (u) = ZSU(:ci ® - @ab).

i=1

A tensor u € @Y F is called antisymmetric if
U= €,59,U

for all o € S,, where €, is the signature of the permutation o. The space of all antisymmetric
tensors in @Y E will be denoted by N\PE.

Definition 1.2.13. Let E be a Hilbert space and let f,g: D — E (f,g: T — E) be E-valued
maps. We define the pointwise wedge product of f and g,

fAg: D — A’E  (fAg: T — A’E)

(fAg)(2) = f(2)ANg(z) forallze D (for almost all z € T).

Recall that, by Theorem 1.1.4, if G € H*(D,C™ ™) + C(T,C™*"), then Problem 1.1.3
has a unique solution. Given that, the endeavour to construct an algorithm that determines

the unique superoptimal analytic approximant is not void.

6



1.2. Main results

Hence we shall devise an algorithm that, given a function
G € H>*(D,C™") + C(T,C™*"),
yields a function AG € H>(ID, C™*™) such that the sequence
s¥(G — AG) = (sg°(G — AG), s7° (G — AG), ...)

is minimised with respect to the lexicographic ordering.
The following is a brief summary of our algorithm. A full account of all the steps, with

definitions and justifications will be given in Section 3.2.

Algorithm: For a given G € H>®(D,C™*") 4+ C(T,C™*™), the superoptimal analytic ap-
proximant AG € H*(D,C™ ") can be constructed as follows.

i) Step 0. Let Ty = Hg be the Hankel operator with symbol G as defined by Definition
1.2.4. Let tg = ||Hg||. If to = 0, then Hg = 0, which implies G € H* (D, C"™*™). In this case,
the algorithm terminates, we define r, which is the least index j > 0 such that T} = 0, to be
zero and the superoptimal approximant AG is given by AG = G.

Suppose that ¢ty # 0. By Hartman’s Theorem 3.1.2, H is a compact operator and so there
exists a Schmidt pair (xg, 7o) corresponding to the singular value ¢y of Hg. By the definition

of a Schmidt pair (xg,yo) for the Hankel operator
Hg: H*(D,C") — H*(D,C™)*,

To € H2(D, (Cn), Yo € HZ(D,Cm)J—

are non-zero vector-valued functions such that
Hgzo = toyo, Heyo = too.
By Lemma 3.1.12, 2o € H*(D,C") and zyy € H*(D, C™) admit the inner-outer factorisations
zo = &oho,  ZYo = Moho (1.3)

for some scalar outer factor hy € H?*(D, C) and column matrix inner functions &, € H* (D, C"),

ny € H*(D,C™). Then,
|zo(2)|lcn = |ho(2)| = ||yo(2)|lcm almost everywhere on T. (1.4)

We write equations (1.3) as o
Lo ~Yo

— — . 1.5

) ho' Tlo ho (1.5)
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By equations (1.4) and (1.5),
I€o(2)|lcn = 1 = ||no(2)]|cm almost everywhere on T. (1.6)

By Theorem D.2.4, every function 1 € H*(D, C"™*") which is at minimal distance from G

satisfies
(G —Q1)xo =toyo, Yo(G — Q1) = toxy. (1.7)

ii) Step 1. Let

def

X, € EAH*(D,C™). (1.8)

By Proposition 3.2.2, X; is a closed subspace of H?(ID, A2C™). Moreover
nAzH?*(D,C™) C zH?*(D, A°C™)

and therefore

noAzH?(D,C™) C zH?(D, A2C™),
that is, if

def
Y, =

o AH?(D,C™)*, (1.9)
then Y is a closed subspace of H?(D, A>’C™)*.

Choose any function @y € H*°(D, C™*") which satisfies equations (1.7). Consider the oper-
ator 11 : X7 — Y; defined by

Ty (&oAr) = Py, (oA(G — Q1)z) for all z € H*(D,C"), (1.10)

where Py, is the projection from L?(T,A?C™) on Y;. By Corollary 3.2.5 and Proposition
3.2.8, T} is well-defined. If T} = 0, then the algorithm terminates, we define r to be 1 and, in

accordance with Theorem 3.2.59, the superoptimal approximant AG is given by the formula

r—1
tiyir;  toyory
G- AG = L — ,
20 TP

and the solution is
toYog

|hol?
Suppose 11 # 0 and let t; = ||T1|| > 0. By Theorem 3.2.10, T} is a compact operator and
so there exist v; € H?(D,C"), w; € H*(D,C™)* such that (§Avy, loAw,) is a Schmidt pair

for T} corresponding to t;. Let h; be the scalar outer factor of {gAv, and let

AG =G —

z1 = (Ien — &EH)v1, y1 = (Iem — Tong )wi, (1.11)

where Icn and Iem are the identity operators in C™ and C™ respectively. Then, by Proposition
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3.2.24,
|z1(2)|lcn = |h1(2)| = ||y1(2)]|cm almost everywhere on T. (1.12)

By Theorem 1.1.4, there exists a function Qo € H*(ID, C™*™) such that both s3°(G — Q)

and s3°(G — ()2) are minimised, that is,
SSO(G_QZ) :to, S?(G-Qg) :tl.
By Proposition 3.2.27, any such @) satisfies

(G — Q)0 =toyo, Y5(G — Q2) = tox;

(1.13)
(G —Q2)x1 = tiyr, (G — Q) =tia].
Define _
€ ZY1
= — = . 1.14
51 h17 U hy ( )

By equations (1.12) and (1.14), ||£1(2)||cr = 1 = ||m(2)]|c» almost everywhere on T.

Definition 1.2.14. We say that a finite collection o, ...,v; of elements of L*(T,C") is
pointwise orthonormal on T if, for almost all z € T with respect to Lebesque measure, the

set {v0(2),...,7j(2)} is orthonormal in C".

iii) Recursive step. Suppose that, for j < min(m,n) — 2, we have constructed

to=>t12-->2t;>0

To,x1,- -+ ,x; € L*(T,C")

Yo, Y1,y € L*(T,C™)

ho, hi, -+ ,hj € H*(D,C) outer

o,&1,++,& € L*(T,C") pointwise orthonormal on T
Mo, 1 € L*(T,C™) pointwise orthonormal on T
Xy = H(D,C"), X, , X,

Yo = H*D,C™)*, Yy, -+, Y;

To,Th,---,T; compact operators.
By Theorem 1.1.4, there exists a function ;41 € H*(D, C™*™) such that
(55°(G = Qjs1), $5°(G = Qjg1), - -+, s°(G — Qj11))
is lexicographically minimised. By Proposition 3.2.47, any such function satisfies
(G —=Qj)vi =tiyi, v (G— Q1) =twy, 1=0,1,---,7. (1.15)

Define
X1 = &AGA - AGAH? (D, C) (1.16)
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Yji1 = MoAmA - A AH?(D, C™)* . (1.17)

Note that, by Proposition 3.2.3, X, is a closed subspace of H?*(ID, A/*2C"), and, by Propo-
sition 3.2.6, Y;;1 is a closed subspace of H*(D, A7T2C™)*.
Choose any function @, € H>(D,C™*") which satisfies equations (1.15). Consider the
operator

Tit1: Xj1 = Yin

given by
Tya(€ohih - AGAD) = Py, (oA - ATAG — Qji)a) (1.18)

for all z € H*(D,C"). By Corollary 3.2.7 and by Proposition 3.2.8, T} is well-defined.
If T;11 = 0, then the algorithm terminates, we define r to be j + 1, and, in accordance with

Theorem 3.2.59, the superoptimal approximant AG is given by the formula

Otherwise, we define t;11 = ||T}4+1|| > 0. By Theorem 3.2.54, T}, is a compact operator and
hence there exist vj11 € H*(D,C"), w;y; € H*(D,C™)* such that

(CoAGIA -+ - A AV 41, TOATHA - - - AT AW 1) (1.19)

is a Schmidt pair for Tj;, corresponding to the singular value ;.
Let hji1 be the scalar outer factor of {AEA -+ - A& Av 41, and let

i1 = (Icn — &6 — - = &) v, Yjm = em —Tong — -+ — Tjm; Jwjs1,  (1.20)
and define o
x< Z .
§iv1 = hj—Ha Mj+1 = IEL%H' (1.21)
j+1 j+1

One can show that [|€;41(2)|lcr = 1 and ||7;41(2)|jcm = 1 almost everywhere on T. This
completes the recursive step. The algorithm terminates after at most min(m,n) steps, so
that, » < min(m,n) and, in accordance with Theorem 3.2.59, the superoptimal approximant

AG is given by the formula

r—1
iyixy
G—AG:;WP. O

Remark 1.2.15. Observe that, in step j of the algorithm, we define an operator 7} in terms
of any function @); € H*(D, C™*") that satisfies the equations

This constitutes a system of linear equations for @); in terms of the computed quantities

10



1.3. Motivation for the development of an algorithm

x;, t; and y; for i = 0,...,7 — 1, and we know, from Proposition 3.2.47, that the system has
a solution for @; in H*>°(ID, C™*"). By Proposition 3.2.8, T} is independent of the choice of
(); that satisfies equations (1.22).

Remark 1.2.16. At each step we need to find ||7}|| and a Schmidt pair
(50A£1/\ cee /\éj_l/\vj, T_]o/\T_h/\ tee Aﬁj_lAWj) (123)

for T corresponding to the singular value ¢;. Then we compute the scalar outer factor h; of
EoA&A - A&j_1Av; € H*(D, NTIC™). These are the only spectral factorisations needed in
the algorithm. Note that if f € H?(ID,C") has the inner-outer factorisation f = hg, with
h € H*(D,C) a scalar outer function and g € H>(D,C") inner, then (f*f)(z) = |h(2)[?
almost everywhere on T, and so the calculation of h requires us to find a spectral factorisation

of the positive scalar-valued function f*f on the circle.

Remark 1.2.17. In a numerical implementation of the algorithm one would need to find a
way to compute the norms and Schmidt vectors of the compact operators 7). For this purpose
it would be natural to choose convenient orthonormal bases of the cokernel X; © ker T; and
the range ran 7}. It is safe to assume that in most applications G will be a rational function,
in which case the cokernel and range will be finite-dimensional. At step 0, Ty is a Hankel
operator, and the calculation of the matrix of T with respect to suitable orthonormal bases

is a known task [36]; we believe that similar methods will work for step j.
We arrive at the following conclusion about the superoptimal approximant AG.

Theorem 3.2.59. Let G € H*(D,C™*") 4+ C(T,C™*"™). Let T;, x;, y;, hi for i > 0 be defined
by the algorithm above. Let r be the least index j > 0 such that T; = 0. Then r < min(m,n)
and the superoptimal approximant AG is given by the formula

r—1

Ly
G—AG:ZO: TR

Wedge products, and in particular pointwise wedge products, along with their properties

are studied in detail in Chapter 2.

1.3 Motivation for the development of an algorithm

Motivation derives from the problem of designing automatic controllers for linear time-
invariant plants with multiple inputs and outputs. Such design problems are often formulated
in the frequency domain, that is, in terms of the Laplace or z—transform of signals. By this
means the problem becomes to construct an analytic matrix-valued function in a disc or
half-plane, subject to various constraints. An important constraint is usually to minimise,

or at least bound, some cost or penalty function. In practical engineering problems a wide

11



1.3. Motivation for the development of an algorithm

variety of constraints and cost functions arise, and the engineer must take account of many
complications, such as the physical limitations of devices and the imprecision of models.
Engineers have developed numerous ways to cope with these complications. One of them,
developed in the 1980s, is H> control theory [9]. It is a wide-ranging theory. It makes
pleasing contact with some problems and results of classical analysis; a seminal role was
played by Nehari’s theorem on the best approximation of a bounded function on the circle
by an analytic function in the disc. Also important in the development of the theory were
a series of deep papers by Adamyan, Arov and Krein [1],[2] which greatly extend Nehari’s
theorem and apply to matrix-valued functions.

In this context the notion of a superoptimal analytic approximation arose very naturally.
Simple diagonal examples of a 2 x 2-matrix-valued function G on T show that the set of best
analytic approximants to G in the L*> norm typically comprises an entire ball of functions,
and so one is driven to ask for a stronger optimality criterion, and preferably one which will
provide a unique optimum. The term “superoptimal” was coined by engineers even before
its existence had been proved in generality. The paper [24] proved that the superoptimal
approximant does indeed exist, and moreover is unique, as long as the approximand G is the
sum of a continuous function and an H* function on the circle. In engineering examples G
is usually rational and so continuous on the circle.

Naturally engineers need to be able to compute the superoptimal approximant of GG. The
existence proof in [24] can in principle be turned into an algorithm, but into a very compu-
tationally intensive one. The construction is recursive, and at each step of the recursion one
must augment a column-matrix function to a unitary matrix-valued function on the circle
with some special properties. Computationally this step requires a spectral factorisation of a
positive semi-definite matrix-valued function on the circle. There are indeed algorithms for
this step, but they involve an iteration which may be slow to converge and badly conditioned,
especially if some function values have eigenvalues on or close to the unit circle.

It is certainly desirable to avoid the matricial spectral factorisation step if it is possible to
do so. Our aim in this project was to devise an algorithm in which the iterative procedures are
as few and as well-conditioned as possible. Iteration cannot be completely avoided; even in
the scalar case, the optimal error is the norm of a certain operator, and the best approximant
is given by a simple formula involving the corresponding Schmidt vectors. Thus one has to
perform a singular value decomposition of matrix-valued functions. In the case that the
approximand G is of type m X n one must expect to solve min(m,n) successive singular
value problems. However, from the point of view of numerical linear algebra, singular value
decomposition is a fast, accurate and well-behaved operation. In this paper we describe
an algorithm that is, in a sense, parallel to the construction of [25] and that requires only
rational arithmetic and singular-value decompositions and the spectral factorisation of scalar
functions.

Several engineers have developed alternative approaches [13],[27] based on state-space

methods. These too are computationally intensive. We believe that our method, which

12



1.4. History and recent work

makes use of exterior powers of Hilbert spaces and operators, provides a more conceptual
approach to the construction of superoptimal approximants. It will be very interesting to

see whether it leads to an efficient numerical method.

1.4 History and recent work

The Nehari problem of approximating an essentially bounded Lebesgue measurable function
on the unit circle T by a bounded analytic function on the unit disc D in the L* norm,
has been attracting the interest of both pure mathematicians and engineers since the second
half of the 20th century. The problem was initially formulated and solved from the scalar-
valued viewpoint, with Adamjan, Arov, Krein and Sarason contributing greatly. In the years
that followed, the operator-valued perspective was also explored, subsequently motivating
research into the superoptimal analytic approximation problem, which we consider in this
dissertation.

The initial inspiration for the study of the Nehari problem in the scalar case was the paper
of Nehari [15]. Given an essentially bounded complex valued function g on T, determine:
its distance from H> with respect to the essential supremum norm, for which elements this
distance is attained and whether this element is uniquely determined. These problems have
been studied in detail by Nehari in [15], Sarason [30] and Adamjan, Arov and Krein in [1]
and [2]. Adamjan, Arov and Krein obtained significant results studying these problems;
they proved that the distance is equal to the norm of the Hankel operator with symbol
g, namely H,. Moreover, if H, has a maximizing vector in H?, then the bounded analytic
complex-valued function ¢ that minimises the essential supremum norm ||g—gq||z~ is uniquely
determined and can be explicitly calculated (see Theorem D.1.24). Furthermore, they proved
that if the essential norm || H||. is less than || H,||, then g also has a unique best approximant.

Pure mathematicians and engineers started seeking operator-valued analogues for these
results. These generalisations are not only mathematically interesting. In engineering, and
especially in control theory, various approximation problems arise for operator-valued func-
tions, which enhances the motivation for the research of generalised Nehari problems in both
scientific fields.

Page in [16] and Treil in [34] gave various operator-valued extensions of the obtained
results by Adamjan, Arov and Krein. Page proved that for operator valued mappings 17" €
L>(T, L(Ey, Ey)), inf{||T — || : & € H*(D, L(E\, Ey)} = ||Hr|. Here Ey, Ey are Hilbert
spaces and L(F1, Ey) denotes the Banach space of bounded linear operators from E; to FEj.
Treil extended the Adamjan, Arov and Krein theorem in [2] to its operator-valued analogue.

On the other hand, in the matrix-valued setting there can be infinitely many functions
that best approximate a given function with respect to the L> norm. This can be illustrated
by considering Example D.2.6. Let G(z) = diag{z,0},z € T. The norm of Hg in this
case is equal to 1, hence all the matrix-valued functions Q € H>(D,C?*?) of the form

Q(z) = diag{0, q(z) }, where ||g||p=~ < 1, clearly minimise the norm ||G' — Q||p.

13



1.4. History and recent work

The question that naturally arises here is whether one can determine the “very best”
among those best approximants. Let us see what can be gained if one considers minimizing
the essential suprema of both singular values of G(z) — Q(z) instead of minimizing only the
largest of them. It may easily be deduced that such a minimisation occurs when ¢(z) is
equal to 0 and the “very best approximant” in this case is the zero 2 x 2 matrix, that is,
Q(z) = Oyys. Consequently, the latter reasoning strengthens the approximation criterion
and one can indeed determine the “very best” amongst the best approximants.

This led to the formulation of a strengthened approximation problem, the superoptimal

analytic approzimation problem. For G € L*(T,C™*") one defines, for j =0,1,2,...,

53°(G) = ess sup s;(G(2))

J
|2=1

and

s7(G) = (s5°(G), s7°(G), - - ),

where s;(G(z)) denotes the j-th singular value of the matrix G(z). In [37] N.J. Young in-
troduced the notion of superoptimal analytic approximation. Given a G as above, find a
function @ € H>(D,C™*") such that the sequence s*°(G — @) is lexicographically min-
imised. This obviously constitutes a strengthening of optimality, as one needs to determine
a function @ € H*°(D,C™*") that not only minimises |G — Q||p=, but minimises the L
norm of all the subsequent singular values of G(z) — Q(z) over T.

The starting point for the superoptimal analytic approximation of matrix functions is

[24]. The problem is to determine, given a (matrix-valued) function
G e H*(D,C™") + C(T,C™™"),

a function @@ € H*°(D,C™*") such that the sequence s*(G — Q) is lexicographically min-
imised. Peller and Young obtained significant results on thematic factorisations, on the
analyticity of the minors of unitary completions of inner matrix-columns and on the com-
pactness of Hankel operators with matrix symbols. These provided the foundation for
their notable result, namely if G belongs to H>*(D,C™*") 4+ C(T,C™"), there exists a
unique ) € H*(D, C™*™) such that the sequence s*(G — @) is lexicographically minimised.
Moreover, the singular values s;(G(z) — Q(z) are constant almost everywhere on T for all
i=0,1,2,... .

Later, in [25] Peller and Young presented a conceptual algorithm for the computa-
tion of the superoptimal approximant. Their algorithm is based on the theory devel-
oped in [24]. Also in [25], the algorithm was applied to a specific matrix-valued G in
H>(D,C*?) 4+ C(T,C?*?) and the superoptimal approximant AG was calculated. It is
worth noting that the thematic completions described in [24] and [25] invoke spectral (or
Wiener-Masani) factorisations of positive matrix functions and the corona theorem.

Furthermore, Peller and Young in [26] studied the superoptimal approximation by mero-
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morphic matrix-valued functions, that is, matrix-valued functions in H*° (D, C™*") that have
at most k poles in the open unit disc. They adjusted the results obtained in [24] and es-
tablished a uniqueness criterion in the case where the given matrix-valued function G is in
H>(D,C™*"™) 4+ C(T,C™ ") and has at most k poles in the open unit disc. In addition, they
provided a different algorithm in order to calculate the superoptimal approximant.

Towards the extension of the results in the operator case, the operator-valued superopti-
mal approximation problem was studied by Peller in [21]. The author generalised the notions
of [24] and proved there exists a unique superoptimal approximant in H>°(5) for functions
that belong to H*(B) + C'(K), where B denotes the space of bounded linear operators and
IC denotes the space of compact operators.

Very badly approximable functions, that is, functions that have the zero function as a
superoptimal approximant, were studied in the years that followed and a considerable amount
of work was published. Peller and Young’s paper [24] provided the motivation for the study of
this problem, where they were able to algebraically characterise the very badly approximable
matrix functions of class H>°(ID, C™*™) + C(T, C™*™). Their results were extended in [22] to
the case of matrix functions G for which the essential norm ||Hg||. is less than the smallest
non-zero superoptimal singular value of G. Very badly approximable matrix functions with
entries in H>* + C' were completely characterised in [23].

Recent work in [3] by Baratchart, Nazarov and Peller explores the analytic approxima-
tion of matrix-valued functions in LP of the unit circle by matrix-valued functions from
H? of the unit disc in the LP norm for 2 < p < oco. They proved that if a given matrix-
valued function ¥ € LP(T,C™ ™) is a ‘respectable’ matrix function, then its distance from
H?(D,C™*™) is equal to ||Hy||, and they obtained a characterisation of that distance also in
the case W is a ‘weird’ matrix-valued function. Furthermore, they established the notion of
p-superoptimal approximation and illustrated that every n x n rational matrix function has
a unique p-superoptimal approximant for 2 < p < oo. However, for p-approximable functions
with p = oo, they provided an example of a function that has two different p-superoptimal
approximants.

In a more recent paper of Condori [6], the author considered the relation between the
sum of the superoptimal singular values of admissible functions in L>°(T,C™*") and the
superoptimal analytic approximation problem in the space L>°(T, S;’%”), where 57" denotes
the space of m x n matrices endowed with the Schatten-von-Neumann norm || - ||gm». Con-
dori illustrated that if ® € L*°(T,C"*") is an admissible matrix function of order k, then
Q € H>(D,C™™) is a best approximant function under the L*°(T, S{"")-norm and the sin-
gular values s;((¢ — @Q)(z)) are constant almost everywhere on T for all 0 < j < k —1 if and
only if () is a superoptimal approximant to ®, esssup,.q s;((® — Q)(2)) = 0 for 7 > k, and

the sum of the superoptimal values of ® is equal to

sup

/Ttrace(‘b(C)‘I’(C)) dm(¢)|,
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where m,n > 1, 1 < k < min(m,n) and the supremum is taken over all ¥ € H} (D, C"™*™)

for which ||W||p1(r,crxmy < 1 and rank¥(¢) < k almost everywhere on T.

1.5 Description of results by sections

In Chapter 2, we recall the long-established notion of the wedge product of Hilbert spaces. We
define an inner product on the p-fold wedge product of Hilbert spaces and study the notion
of pointwise wedge product of operator- or vector-valued functions on D or T. We study
numerous properties of it and we formulate a concise theory specifically for multiplication,
block diagonal and creation operators. Towards the end of the chapter, we examine in detail
the characteristics of the pointwise orthogonal complement and pointwise linear span. Some

of the main results of Chapter 2 are the following.

Proposition 2.2.8. Let E be a Hilbert space and let x;: D — E be analytic E-valued maps
onD foralli=0,...,k. Then

ToA - Azp: D — AFFLE
1s also analytic on D and

(woA -+ Axy) (2) = ap(2) Az (2) A Aag(2) + 2o(2) Al (2) Aza(z) A Aag(z)
+-Faxp(z) Axy(2) A2 (2).

Proposition 2.2.13. Let E be a Hilbert space, let v € H*(D, E) and let y € H*®(D, E).
Then
rAy € H*(D, A’E).

Proposition 2.2.40. Let E be a separable Hilbert space and let £ € H>®(D, E) be an inner
function. Consider the pointwise creation operator

Ce: H*(D, E) — H*(D, \*E),
given by

Cef = EAf, for f € H*(D, E),

and let P,: L*(T,E) — H?*(D,E) be the orthogonal projection operator. Then, for any
he H2(D, E),
CgC%h = P+Oé7

where a = h — £€*h. Moreover
CeCeh = h —Tgenh,

where Tee : H*(D, E) — H*(D, E) is the Toeplitz operator with symbol £€*.

Furthermore, in Chapter 3 we present our main result; the superoptimal analytic approx-

imation algorithm. At first, we describe the algorithm and then we prove its validity. The
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purpose of the algorithm is the determination of the unique superoptimal approximant. Let
us give an overview of the main results obtained in Chapter 3. We first prove the pointwise
orthonormality of the sets {&}_,, {7;}._, almost everywhere on T. Next, we show that the
spaces X;, Y; are closed linear subspaces of H?(ID, A"H1C") and H?(ID, A"T1C™)* respectively.
Hence we prove that the projections Py, are well-defined, and consequently, that the opera-
tors T; are well-defined for all 7 > 0. For the latter, one also has to show that each operator
T; is independent of the choice of Q; € H* (D, C™*™). Moreover, we prove that the operator
T; is compact for i = 0,1,...,7 — 1 and the superoptimal analytic approximant AG is given

by the formula

r—1
tiyiw;
G—AG:XO: hE

where each term in this sum can in principle be calculated.
In Chapter 4 we apply the algorithm obtained in Chapter 3 to calculate the superoptimal

approximant of the matrix-valued functions

G(z) = <2é : 11) € H™(D,C™") + C(T,C™*")

and

V2N V3z+2 -1

The former is a relatively simple example which involves trivial operations and enables the

_2 2_ —
G(z) = L <\/§Z ers ) € H*(D,C*>*?) + C(T,C*>*?).

reader to familiarise themselves with our algorithm, while the latter is a more elaborate one

and its superoptimal approximant is calculated to be

o V2 —y V3+4y
L= \249/8 -7z —(V3+47)(V3+2))

5—+/13

2V/3
Regarding the appendices, in Appendix A we give a well known construction of the

where v = —

algebraic tensor product using the universal property. We then consider the tensor product
of Hilbert spaces and define an inner product. In appendices B and C we review scalar
inner and outer functions and Fatou’s theorem, and in appendices D and E we recall the
established notions of operator valued inner and outer functions, we present the established
generalised Fatou’s theorem in the matricial setting and we describe the Nehari problem

both in the scalar and in the matrix-valued setting.

1.6 Future work

The algorithm introduced in the present dissertation establishes a new approach to the

computation of the superoptimal analytic approximant in the problem of best analytic ap-
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proximation of matrix-valued functions. Let us briefly refer to research topics which could
arise from this project.

Immediate tasks this dissertation could inspire is the construction of similar algorithms
for the meromorphic and operator-valued cases, as these are studied by Peller and Young
[26] and Peller [21] respectively. Wedge products of Hilbert spaces could be implemented in
order to obtain an alternative algorithm in the meromorphic case, since Proposition 2.2.8
asserts the analyticity of the pointwise wedge product. Moreover, wedge products of infinite-
dimensional Hilbert spaces may provide a plausible alternative to Peller’s methods in [21].

In addition, our project could steer one’s interests towards the direction of investigating
the algorithm’s advantages and disadvantages to previous algorithms, especially to the ones
facilitated in control engineering [13], [27]. It would be of great significance to numerically
implement our algorithm and perform a rather deeper comparison with past algorithms in
this respect. Such a project would entail a certain comprehension of numerical methods and,
quite possibly, a collaboration between control engineers and functional analysts.

Furthermore, we trust that consideration of the wedge product of Hilbert spaces could
potentially lead to research in different topics in analysis, one of them being reproducing
kernel Hilbert spaces. Reproducing kernels play a prominent role in the study of Hilbert
spaces of functions, such as Hardy spaces and Dirichlet spaces, as well as in Statistics and
certain physical problems. In particular they can be used to prove some classical interpolation
problems, such as Pick-type theorems, which are theorems giving necessary and sufficient
conditions for the existence of multipliers of norm at most one that satisfy some interpolation
conditions.

The techniques introduced in the subsequent chapters of this dissertation illustrate the
fact that exterior products of Hilbert spaces and operators thereon are naturally well adapted
to the analysis of matriz-valued functions on the circle, disc or line, and therefore to questions
arising from problems in engineering design. Though a long established theory [7], [17], [35],
exterior products of Hilbert spaces and operators deserve in our view to be better exploited
in functional analysis than they have been hitherto. An initial orientation could be given by

a number of concrete questions, as follows.

(1) Give concrete descriptions of the exterior product APH as a reproducing kernel Hilbert
space for various standard Hilbert function spaces H, such as Hardy, Bergman, Dirichlet

and Hardy-Sobolev spaces.
(2) Explore best approximation problems associated with the spaces described in item (1).

(3) Try to prove a “super-Pick Theorem” for bounded analytic matrix-valued functions in
the disc. Given distinct points A1, ..., Any € D, m X n matrices Wy, ..., Wx and positive
numbers ty > --- >t > 0, find a necessary and sufficient condition for the existence of a
bounded analytic matriz-valued function F in D such that F(X\;) =W, forj=1,...,N
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and s5°(F) < t; for j =0,1,...,k, where

s3°(F) & ess sup s;(F(2))

! z€T
and, for any matrix A, s;(A) denotes the jth singular value of A.
(4) Explore natural variants of item (3).

(5) Can one prove a Parrott theorem for s; of completions of a partially specified operator

T by using A*T?
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Chapter 2

Exterior powers of Hilbert spaces and

operators

2.1 Exterior powers

In this section, we first present some results concerning the action of permutation operators
on tensors, then we recall a well-known definition of the antisymmetric tensors and we define
an inner product on the space of all antisymmetric tensors. Basic definitions and properties
of exterior products can be found in a S. Winitzki’s book [35] as well as in [32], [33].

Below E denotes a Hilbert space.

Definition 2.1.1. ®”FE is the algebraic p-fold tensor product of E and is spanned by tensors
of the form x1 @ x3 ® - - @ T, where x; € ', for j=1,...,p.

Definition 2.1.2. We define an inner product on QPE on elementary tensors by

<~T1 RTy X &Q Tp, Y1 ® Y2 Q- Q& yp>®i"E — p!<$17yl>E e <$p7yp>E7
for any x1,...,xp, y1,...,yp € E, and extend (-,-) to Q'E by sesqui-linearity.
Remark 2.1.3. The space (RPE, || - ||), where ||u|| = <u,u>é§)/p2E, is a normed space.

Definition 2.1.4. ®% F is the completion of @ E with respect to the norm

lull = (u, u)els,

foru € QFE.

Definition 2.1.5. Let S, o Sym{1,...,p} be the symmetric group on {1,...,p}, with the

operation of composition. For o € S,, we define S, : Q’E — QPE on elementary tensors by

So(21 @ Ty @+ ®Tp) = To(t) ® Toz) @+ @ Loy,
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and we extend S, to QF by linearity, that is, foru =" 2} @ -+ @', we define

p7
Sy(u) = Z S,(zf @ ® x;)
i=1

Proposition 2.1.6. Let E be a Hilbert space, and let p be a positive integer. Then, for
any o € Sy, S, is a linear operator on the normed space (RPE, || - ||), which extends to an
isometry Sy on (L E,| ).

Proof. To prove linearity, let u = Y2 ® --- ® 2}, € ®E and v = ) YR @ Y, € QPE,
= j=1
then

Sy(Au+ pv) =S, (Z)\:L*’i®~-®a:;+Zuy{@---@y]{)
i=1 j=1

v i i S J J
= Zzzl)\l'a(l) Q.- ®xg(p) ‘I’j;l ,Uyo.(l) X - ®y0'(p)

=1

=\S, <Z)\:U’i®---®x;) + S, <Zuy{®---®y§>
j=1

= AS,(u) + 1S5 (v)

for scalars A\, u € C.
Furthermore, for an elementary tensor w = z; ® 2 ® --- ® x,, we need to prove that

|Sow||2p g = ||w||5p - By the definition of the inner product on @”E, we get
||St7w||%®PE = (Sow, Sow)erE
= (To(1) @ Lo(2) @ -+ @ Lo(p), To(1) @ To(2) @+ @ To(p))orE
= PHTo (1), To (1) B -+ {Top): To(r)) B

= p!Hxa(l)HJQE . ”xo(p)H%

= [Jwlf%-

n
Also, for a tensor w of the form w =} 2] ® --- ® x},, we have
i=1
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and

(Sgw, SULU)@pE ==

I
/\ /\
(]
8
q =
=
&
& :
8
q =
s
(]
8
<
&
&
8
q %
S
\/
®
S
S|

=3 0y Ty e (T Thp) -

So, ||Sew|%ep = |w||Ze 5. Hence S, is also a surjective self-map of @PE.
Thus one can extend S, by continuity to an isometric linear self-map S, of the completion
@4 E of QPE. O

Proposition 2.1.7. S, is a bounded linear operator from Q% E to @4 E. Furthermore, S,

is a unitary operator on QY E.

Proof. Since by Proposition 2.1.6 S, is isometric, its range is complete, hence closed in
®% E. Since the range of S, contains that of S,, ranS, = ®% E. Being both surjective and

isometric, S, is a unitary operator on ®¥% E. O]
Henceforth we shall denote the extended operator S, by S, .

Definition 2.1.8. A tensor u € @4 E is called symmetric if S,(u) = w for all o € S,,.
A tensor u € QY E is called antisymmetric if u = €,5,u for all 0 € S,, where €, is the

signature of o.
Definition 2.1.9. The space of all antisymmetric tensors in Q% E will be denoted by NPE.

Remark 2.1.10. (S,,0) is a group so, for every permutation o € S,, there exists o~ € S,

such that

cooc t=id=0c"too,

where id € S, is the identity map on {1,...,p}. Then,
€gog—1 = €x€x—1 =1,

hence €, = €5-1.

Example 2.1.11. Let E be a Hilbert space and let xy,x5 € E. In @4 E, the elementary
tensor
T1 Q Ty + X2 X Ty

18 symmetric, whereas the elementary tensor
T1 Q@ xy — Ty @ Xy

18 antisymmetric.
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Theorem 2.1.12. Let E be a Hilbert space. Then N\'E is a closed linear subspace of the
Hilbert space @4 E for any p > 2.

Proof. For o € S, we define the operator
def P P
fO': (SU_EU'I) ®HE_)®HE’

where [ : @Y E — &4 E is given by I(u) = u, for u € @, F.
Since S, is a continuous linear operator on ®4% E, f, is a continuous linear operator. The

kernel of the operator f, is

ker f, ={ue®%E: (S, —¢ -I)(u) =0}
={ue@YE : S,(u) =e,u}
={u e YE :€,S5,(u) =u}.

Since f, is a continuous linear operator on ®% E, ker f, is a closed linear subspace of @% E.

Thus APE is a closed linear subspace of ®% E, since

NE = ﬂ ker f, = {u € @ E :€,5,(u) =u, forallo € S,}. O

oSy
Theorem 2.1.12 implies that the orthogonal projection onto APE is well-defined on &%, E.

Definition 2.1.13. Let E be a Hilbert space. For x1,...,x, € E, define x1 AxaA--- Az, to

be the orthogonal projection of the elementary tensor v1 ® 9 ® - -+ ® x, onto APE, that is,
Ty ATy N N2y = Pop(t1 @+ @ xp).

Remark 2.1.14. For any tensor of the form

u:Z)\iwi@)...@x;e@%E,
i=1
the orthogonal projection of u onto N\PE is given by

Payve (Z)\i:c’i®-~®x;) :Z/\ixﬁ/b"/\x;,

i=1 =1

where X' € C for alli=1,--- ,n.

Theorem 2.1.15. Let E be a Hilbert space. For all u € @Y F,

Pros(u) = ]% 3 e, (u).

oSy

24



2.1. Exterior powers

Proof. Let u € @4 E. Then, for any o € S, u = €,5,(u) + (u — €,5,(u)), and so

plu = Z €5y (1) + Z (u— €,5,(u)).

o€Sp o€Sp

It suffices to show that > €,S,(u) € APE and

oES)

Z (u— €:55(u))

o€Sp

is orthogonal to the set of antisymmetric tensors, in other words, if v € APE then

<v, D (u-— easg(u))> = 0.
QY E

o€Sp

Let w= ) €,5,(u) € @ E. For every 7 € S, we have
oES)

€5 (w) =€ | Y €8, (u)

c€Sp

= Z ETOUS’TOO’(U’)

TOOES)

= > € Sy(u)

o’'eSp

:w7

where 7 oo = ¢’. Hence Y €,5,(u) € APE.
c€Sp
Furthermore, for every v € APE, we have v = ¢,S,v for all ¢ € S, and

oSy oSy o€Sy

<v, 2, (u—EUSG(U))> = 2 (v uepp = 2 €V, 5(u))enp

=2 <vvu>®’}{E -2 €a<Sa*U7U>®T;IE

oSy oSy

= 0';9 (v — €-18,-10, U)gr
p

- < Z (’U — €51 a’lv)au>®§){E
0€ES)

=0.
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Thus, for all u € @4 E,

Prop(pu) = Prop | Y €aSe(u) + Y (1 —€,5,(w) | = €5, (u),

o€Sp o€Sp o€Sp
and so,
1
Pup(u) == Y €5, (u)
p: o€Sp
as required. 0

Example 2.1.16. Let E be a Hilbert space. If 11 @ 1o € Q4 E, then

T1 ATy = Prp(r) ® 13) = 5@1 ® Ty — To @ 7).

Remark 2.1.17. If p > 1, then S, contains a transposition, for instance o = (1 2), and
€ =—1. Ifp=1, then N'E = E.

Proposition 2.1.18. Let E be a Hilbert space and let p > 2. The set of antisymmetric

tensors and the set of symmetric tensors are orthogonal in &4 E.

Proof. Suppose that u is a symmetric tensor and v is an antisymmetric tensor, that is,
Seu = u and S,v = €,v respectively for all o € S,. By Proposition 2.1.7, S, is a unitary

operator on ®% E, for all o € S,,. Thus
(u,v>®§{E = (S,u, SUU)®§IE = (u, €0U>®1}7{E, for all o € S,,.
The equality holds for all o € S, thus it is true for ¢, = —1. Then
<U, U)@ZE - —<U, U>®I;IE7
and so (u, v)gr p = 0. O
Proposition 2.1.19. Let E be a Hilbert space. The inner product in A\PE is given by

<x17y1>E cee <I17yp>E
(Ty N ANxpyr Ao AYp) pre = det : :

<xp7y1>E <xp7yp>E
forallzy,...,zp, y1,...,yp € E.

Proof. By Theorem 2.1.15, we have
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<$1/\"'/\xpay1/\"'/\yp>/\PE:

1 1
== <_ Z Easa(xl ®x2®®xp),ﬁ Z ETST(yl ®y2®®yp)>
YE

o€Sy T TES)

1
= ? Z <€USU($1 & T2 K& xp) ETST(yl & Y2 - yp>>®I;IE
p: 0,7€SY
1 *
= 5 D (@1 ® 01, SIS (N O @ D Yp))en
p: 0, TES)
1
= W Z 60*1€T<I1 QT2 Q-+ @ Tp, 50*18T<yl QY2 Q- & yp))@ZE
’ o,TESY
1
= 2? Z € (11 @ T ® -+ ® xp, Sor (Y1 ®y2®"'®yp)>®§}E
T o'eSy

p
= Z 60/H<$i,ya/(i)>E

o’eSy =1
<$1,yl>E <x17yp>E
= det : : i O

<5L'p, y1>E T <$pv yp>E

Corollary 2.1.20. Let E be a Hilbert space and let x1,...,2, € E. Then x1 A---Nxp, =0
if and only if x1,...,x, are linearly dependent.

Proof. Note that 1 A--- Az, = 0 if and only if ||z A+ - - Azp||2,z = 0, which, by Proposition
2.1.19, holds if and only if

Thus z; A --- Az, = 0 if and only if there exist complex numbers Aq,. .., \,, which are

not all zero, such that

<:E17y1>E cee <x17yp>E >\1
) ) . o
(Tpy1)E oo (TpUp)E 5‘?
This holds if and only if there exist complex numbers Ay, ..., \,, which are not all zero, such
that
p
<$i,2)\jx]’>E:O forizl,...,p.
j=1
The latter statement is equivalent to the assertion that there exist complex numbers Ay, ..., A,
which are not all zero, such that
p p
<Z )\iil?i, Z )\jxj>E = O,
i=1 j=1
which in turn is equivalent to the condition that there exist complex numbers Ay, ..., A,, not
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all zero, such that
p
Z AjZEj = 0.
j=1

The latter statement is equivalent to the linear dependence of x4, ...z, as required. [

Corollary 2.1.21. Let E be a Hilbert space. Suppose x,y € E, and x,y are orthogonal in
E; that is, (x,y)g = 0. Then

[ A ylree = llzllsllyl e

Since we have already shown that APFE is a closed linear subspace of the Hilbert space
®% E, the space (APE,(-,-) »g) with inner product given by Proposition 2.1.19 is itself a
Hilbert space.

Proof. By Proposition 2.1.19,

(,) e <x,y>E> |

|z Ayllep = (x Ay, o Ay)pep = det
(y,2)e (Y, y)E

If x is orthogonal to y in F, the off-diagonal entries are zero and thus

lz AyliRes = lzlElyllE O

Lemma 2.1.22. Suppose {uy,---,u,} is an orthonormal set in C". Then, for
j=1,....,n—1 and for every x € E,
J
[uy A= Ay A x| joeren = (|2 — Z(%WWHC’I-

i=1

Proof. Let x € C". We may write

J

r=x— Z(w,uJuZ + i(m, Ui ).
i=1

i=1

By Proposition 2.1.19, we get

lur A Aug Azl spien = (@i Ao Aug Az,ug A Aug A T)pivicn
(ur,ur)er (Ui, u2)en - (u1, z)cn
<U2, u1>(C" (UQ, U2>(C" T ce <U2, 90><Cn
= det
(uj,ui)en  (uj,uz)en -+ (uj,uj)en Uy, T)cn
(x,u1)en  (T,u9)cn - e (x,x)cn
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By assumption,

and hence,

0 (ug, T)en
0 1 (ug, T)cn
lur A Auy Az|%500n = det : : :
0 e 1 (uj,z)cn
(x,up)en (T ,u9)cn -+ (T, Z)cn

If, for every k = 1,--- ,j we multiply the k-th column of the determinant by (uy, z)cs and
subtract it from the (j + 1)-th column, we find that

1 0 0
0 1 0
g A Ay A% 5ien = det :
0 1 0
J
(w,up)en (T, u2)en o0 oo {myx)en — D [{mug)en|?
i=1

J
= [lelEe =) o uidenl?
i=1

J

= e =Yz, ws)enui |,

i=1
the latter equality following by Pythagoras theorem. O

Suppose E is a separable Hilbert space with an orthonormal basis. In what follows, we

derive an orthonormal basis for the space APE.

Theorem 2.1.23 ([17], p. 47). Let E be a separable Hilbert space with dim E = m and let
(€)™, be a basis of E. Then the set

B={e;, Neiy, N---Nej, o 1<iy <+ <ip <m}

15 linearly independent in N\PE.

Proposition 2.1.24. Let E be a separable Hilbert space with dim E = m and let (e,)™_, be
an orthonormal basis of E. If x,y € E with x =" x;e; and y = ZT’Zl y;e;, then

Ay = (riy; —zyi)e Ae,

i<j
Tr; Tj
det J
Yi Yy

and
2

|z A y”?\?E = Z

i<j
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m m
Proof. Let x = ) x;e; and y = > y;e;. We know that e; Ae; =0 and e; Ae; = —ej Ae, for
i=1 j=1
1 # 7. Hence

m m
TAY =Y wei N ) yie;
i=1 =1

m

= ;(%?Jj)(ei Aej) + ;(azjyi)(ej Ae;) + ;(ﬂfi%)(ei Ae;)
= ;(sz‘yj — Tyi)ei N e;

and

(ANy,x Ay)per = Qo (iy; — z5y:) (e Aej), D (Tuyr — myr) (en A er)) a2

1<j k<l
=2, Z(inyj - xjyi)(xkyl — 2y) (e A €5, € N\ e n2g-
1<J k<l

Since (e,,)>; is an orthonormal basis of E,

(ei Nej,ep Neyp = det (

<€¢, €k>E <€i,€l>E>

€5, €k>E <eja€l>E

{1 ifi =Fkandj =1,

0 otherwise.

T, Xj
det J
Yi Yy

Corollary 2.1.25. Let E be a separable Hilbert space with dim E = m and let (e,)"_; be an

orthonormal basis of E. Then, the set B ={e; Ne; : 1 <i < j <m} is an orthonormal basis
of N°E.

Thus
2

(T Ny, z ANY)pep = Z|$iyj — a5yl :Z 0

i<j i<j

Proof. By Theorem 2.1.23, the set B is a linearly independent set in A2E. Also, by Propo-
sition 2.1.24, the set B spans A’E and is an orthonormal set. Hence B is an orthonormal
basis of A2E. O

Proposition 2.1.26. If E is an m-dimensional Hilbert space with orthonormal basis {eq,- - , emn},

then, for 0 < p <m, A\PE is an (’;) -dimenstonal Hilbert space with orthonormal basis

B:{eil/\eb/\-~/\eip, 1§21<<2p§m}

Proof. By Theorem 2.1.12, APE is a Hilbert space. Let us first show that the set {e;,--- ,¢;, :
1 <iy <---i, <m} spans APE. Suppose that z; = >, a;,e;. Then

m m m
Ty Nxg N Ny = E ozilei/\g o%ei/\---/\g ), €.
i=1 i=1 i=1
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By multilinearity of the wedge product we have

fL‘l/\fL'Q/\"'/\ZL'p: E ai1,-~~,ip€i1/\eiz/\"'/\eip-

1<y <--<ip<m

Hence the set B spans APE. Since (e;), is an orthonormal basis, for

1 <4 <+ <ip <m we have

<6i176i1>E <ei1vei2>E e <ei1aez’p>E
6. 76. e, 76» .« .. e- ’eA
€, A €iy - A&, |5y = det e .“>E (i 5] (i i)
(€ips € ) B s (e, ei)E
= 1.
Furthermore, for {ji, - ,jp: 1 <ji1 <--- < jp, < m} such that

{2'17... ’ip}m{j17"' 7jp}:@7

we get
(e ei)E (€ ein)e -+ (€, €,)E
lei Ae Nei s Aee Aes hop = det (€ins€ji)m (€ €j)p -+ (€, €5,)m _0
in /N Cig t NGy €y Nt N € ArE = : . : =Y
(ei ) m (e, €50 E

Moreover, by Theorem 2.1.23, the set B is a linearly independent set in APE, thus the set
B is an orthonormal basis for APE. Finally, the cardinality of the basis is equal to (ZL) since
this is the number of possible choices of p elements out of m elements, and so APE is an

(Z)—dimensional Hilbert space. ]

Example 2.1.27.
a2 =cl) = ¢
and

e 2 ().

Next, we study properties of wedge products of bounded linear operators. Detailed

information is included in Appendix A.

Definition 2.1.28. Suppose H,,..., H,, K, ..., K, are Hilbert spaces and T; : H; — K,
1=1,...,p, are bounded linear operators. Then, on algebraic tensor products, we define the
operator

T1®"'®TpIH1®"'®HP—>K1®"'®KP

on elementary tensors by
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(@ @T)(ur® - @uy) =Ti(u) ® - @T,(uy), (2.1)

and we extend Th @ --- T, to H; ® --- ® Hy, by linearity.

Proposition 2.1.29 ([8], Chapitre 1, Section 2). Let (H;, (-,-)n,) and (G;, (-, -)q,) be Hilbert
spaces, and let T; : H; — G; be bounded linear operators fori =1,...,p. Then, the operator

Ty ®---®T, of equation (2.1) has a continuous extension

e T, HHQy - Qu Hy = G, Q- @ Gy
to a bounded linear operator on the completion Hy @y -+ @y Hy of H1 ® -+ ® Hp.
Proposition 2.1.30. Let E, K be Hilbert spaces and let T : E — K be a bounded linear
operator. Let NPT be the restriction of
TR ---QT:%E — Q4K
p—times
to N\PE. Then the image of NPT is in \PK.

Proof. Let X' € C for alli=1,...,n and let

u:ZAixi®~~®x;

=1

be in APE. Then u = €,5,u for all o € S,. Therefore, for o € S,
(T® - T)(u) =T®---T) (eJSUi:znleixZi@---@x;)
=T®---xT) (egiznjl)\ixg(l) ®---®xi,(p))
- é NT(at ) @ - @ T(ai )

=95 ) AT (21) ® - @ T(x})

p
=1

=65 (T® ---7T) (Z Nl @ ®x;)

=1

= 6, 5,(T®--- @ T)(u)).

Thus, for u € APE, (T ® ---® T)(u) is an antisymmetric tensor in ®% K, that is, a member
of NPK. ]

Definition 2.1.31. Let H, K be Hilbert spaces and T': H — K be a bounded linear operator.
We define the operator
NT: NP H — NPK
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to be the restriction of T ® ---® T to N\PH.

Definition 2.1.32. Let (E, || - ||g) be a Hilbert space. The p-fold Cartesian product of E is
defined to be the set
Ex--xE={(xy,...,xp) : x; € E}.

p—times

Moreover, we define a norm on X -+ X E by
—_—

p—times

p
1
(@1, mp)l =D Nz},
i=1
Definition 2.1.33. Let E be a Hilbert space. We define the multilinear operator

A Ex---xE—=SNE
R —

p—times

by
Ay, ...,zp) =21 Ao ANy forall xy,...,x, € E.

Proposition 2.1.34. [Hadamard’s inequality, [12], p. 477] For any matrix

A= (aij) € Cnxn’

n 1/2 n n 1/2
[det(A)] < ] (Z |aij|2) and | det(A)| <[] (Z |aij|2> .
j=1 \i=1 i=1

j=1

Proposition 2.1.35. Let E be a Hilbert space. Then the multilinear mapping

A Ex.--xFE = NPE
————

p—times
1s bounded.

Proof. Let x; € Eforalli=1,...,p. Then A(xy,...,2,) =21 A... ANz, and

1Ay, - ap)lfee = llea A A zplRp

= (TN .. ANZp, T N AN Tp)prE

<$17$1>E <!E17$2>E <I1,$p>E
Lo, T To, T e (To,x

e <2'1>E<2.2>E. @aple | o
(xp, x1)E . coe Axp,xp)E
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Observe that the matrix

<$171‘1>E <$1,I2>E <$1,$p>E
y (T2, 1) (T2, %2)E ... (T2, %p)E
(xp, 1) E oo Axp,xp)E

is Hermitian, and so its determinant is real. By Hadamard’s inequality,
» » 1/2 » » 1/2
a0 < [T (3l ana a0 < T (S leer)
j=1 i=1

i=1 Jj=1

Moreover, by the Cauchy-Schwartz inequality,

» » 1/2
[ det(X)] < ] ] llall (Z H%H%) :
j=1 i=1

Therefore
» » 1/2
1A,z Res < [] N2l (Z ||xi||2E) : (22)
j=1 i=1
Let |[(z1,...,2p)|lg» < 1. Since ||z;]|g < ||(x1,...,2p)| g <1 for each j, we have
1A, ap) e < 1.
Hence the p-linear operator A is bounded. O

Lemma 2.1.36. Let H, K be Hilbert spaces and let S,T: H — K be bounded linear opera-

tors. Then,
(i) NP(ST) = (APS)(APT).
(11) (ANPT)* = AP(T™).
Proof. (i). By Definition 2.1.31, for all x; € H, where i = 1,...,p, we have
NP(S)Y NP (T)(xy A+~ Nxp) = NP(S)( Tz AN--- NTxy)
=STxy N---NSTx,
=ANP(ST)(x1 A+ Nxp).

(ii). By Definition 2.1.31 and by Proposition 2.1.19, for all z; € H and all y; € K, where
1=1,...,p,
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(NPT*)yr A ANyp), (@ A ANap))aer = (T (Y1) Ao AT (yp), @1 A= AZp)prr

(T*(y1),zm - (T*(n),2p)u
— det (T <y2.)ax1>H o (T (y2‘)axp>H
<T*<yp)7$1>H s <T*(yp)axp>H
Wi, T(@i)r - (Y1, (Txp)) i
et <y2,T@1)>K <:t/2,T@p)>K
Yp, T(x1)) i o (Wpy T(p)) &

= <y1 /\.../\yp’</\pT)(x1 /\"'/\xp)>/\PK
= ((NT) (yr A - Agp), (@1 Ao ANTp))awm
— <(/\PT)*(yl A /\yp)’ (3;1 A /\xp)>/\pH'

Hence AP(T™) = (APT)*. O

2.2 Pointwise wedge products

For the purposes of this dissertation, we wish to consider the wedge product of mappings
defined on the unit circle or in the unit disc that take values in Hilbert spaces. To this end,

we introduce the notion of pointwise wedge product and we study various properties of it.

Definition 2.2.1. Let E be a Hilbert space and let f,g: D — E (f,g: T — E) be E-valued
maps. We define the pointwise wedge product of f and g,

fAg: D — A’E  (fAg: T — A’E)

(fAQ)(2) = f(2) Ng(z) forallze€D (for almost all z € T).

Definition 2.2.2. Let E be a Hilbert space and let x,¢: D — E (x,¢: T — E) be E-valued
maps. We call x and v pointwise linearly dependent on D (respectively on T) if there exist

non-zero mappings k,v: D — C (k,v: T — C), which do not simultaneously vanish at any
point of D (of T), such that

for all z € D (for almost all z € T).
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Remark 2.2.3. Corollary 2.1.20 asserts that x1,...,x,: T — E are pointwise linearly de-
pendent on T if and only if

(x1A ... Ax,)(2) =0  for almost all z € T.

Henceforth we consider vector-valued L? spaces as they are presented in [14].

Definition 2.2.4. Let E be a separable Hilbert space and let 1 < p < oo. Define

(i) LP(T, E) to be the normed space of measurable (weakly or strongly, which amounts to the
same thing, in view of the separability of E) E-valued maps f: T — E such that

IR e
1= (52 [ Wreian) < o

(11) HP(D, E) to be the normed space of analytic E-valued maps f: D — E such that

1 o ' 1/p
1£ll, = sup —/|wwwwe < 0.
0<r<1 \ 27 0

(111) L>(T, E) to be the space of essentially bounded measurable E-valued functions on the

unit circle with the essential supremum norm
[ fllzee = ess sup 1f ()l
zZl=

and with functions equal almost everywhere identified.

(iv) H*(D, E) to be the space of bounded analytic E-valued functions on the unit disc with

the supremum norm

[f |l = sup [|f ()] -
zeD

Lemma 2.2.5 ([18], p. 242). [Holder’s inequality] Let f € LP(T) and let g € LI(T), where
p,q > 1 are such that % + % =1. Then

gl < [1Fllze lgllze-

1 1
Proposition 2.2.6. Let E be a separable Hilbert space and let — + — = 1, where
p q
1 <p,q<oco. Suppose that x € LP(T, E), y € LT, E). Then
Ay € LY(T, A’E)
and
||5E/\y|’L1(1r,A2E) < H£E||Lz>(1r,E)Hy“Lq(T,E)- (2.3)
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Proof. By Proposition 2.1.19, for all z € T,

@AY () hep = (@(2) Ay(2), 2(2) Ay(2)) w2
= (x(2), 2(2))p - (y
<| (

|z(2)1 %[y
Thus, for all z € T,
(@A) () rze < llz()lelly(2)lle-

By Definition 2.2.4,

2 21
: 1 o 1 ) .
loAsllnmoen = 5= [ I@An)(E)len a0 < 5= [t elo(c)le s @)
0 0

Now by Hélder’s inequality,

1 1/q

/p 2w
1 i
o [l as | . (29
0

27
1

2m

i i 1 i

o [ I el e do < ( o= [ e ao
0 0

Hence, by inequalities (2.4) and (2.5), xAy € L*(T, A?FE) and the inequality (2.3) holds. [J

Proposition 2.2.7. Let E be a Hilbert space and x,y: D — E be two analytic E-valued

maps on D. Then,
zAy: D — A’E

15 also analytic on D and
(@Ay)'(2) = 2'(2) Ay(2) + 2(2) Ay (2) forall z€D.

Proof. For E-valued maps x,y, being analytic on D means that for every zy € D there exist
2'(29) € FE and y/'(2) € E such that

lim w4 h) —wlz) ' (z)]| =0

h—0 B
and "

lim y(ZO + ) - y(ZO) . y/(ZO) —0.

h—0 E
Note that

(2Ay) (20 + h) = (Ay) (20)
h

One can see that, for h € D such that zp + h € D,

e N’E.
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(zAY) (20 + h) = (xAy)(20)
h

_ (20 +h) Ny(zo + h) — 2(20) Ay(20) + 2(20) Ay(20 + ) — 2(20) Ay(20 + h)
h

(z(20 +h) — 2(20)) ANy(z0 + h) i x(20) A (y(20 + h) — y(20))
h h

y(z0 + 1) = y(20)
h

IO h})l = 20) 5y ) + alz0) A

h30 ' (z0) Ny(z0) + x(20) A Y (20)-
Now,

(2Ay) (20 + h) = (xAy)(z0)
h

_ ||t hf)z — 2(20)) Ay(zo + h) + z(z0) A

— (2'(20) A y(20) + 2(20) A Y (20)) .

(y(20 + 1) — y(20))
h

—(2'(20) Ay(20) + 2(20) Ay (20)) | 2o

(z(z0 + h) = 2(2))
h

(y(20 + 1) — y(20))
h

<

ANy(z0 +h) —2'(20) A y(20) i

+ — x(20) Ay (20)

x(29) A

A2E

Let us consider each term separately.

(z(20 + h) = 2(2))
h

_ (I(Zo + h})h - .’L‘(Zo)) A y(ZO + h) — Qj/(zo) A\ y(Zo + h)

ANy(zo +h) — 2'(20) A y(20)

A2E

+1'(20) Ny(z0 + h) — 2'(20) Ay(20) || xop

— x’(zo)) Ay(zo + h) + 112" (20) A (y(20 + h) — y(20)) | 25 -

A2E

. (x(zo + hf)L — 2(z0)

By Proposition 2.1.19,

(x(zo +h) — ()

. + 112 (20) A (y(20 + ) = y(20)) | 2z

A2E

- :E'(zo)) ANy(zo+ h)

< (x(z0 + h) — 2(20))

N Nly(zo + W[l e + (|2 (20)l| £ - ly(20 + ) — y(20) || 2

E

— 2'(20)

which tends to 0 as h — 0. For the other term we have

o) LEEBZIEN ) /e = oty o (LRI )

A2E

N2E
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By Proposition 2.1.19,

oty (P ERZIE) )| <t | MRSy
which tends to 0 as h — 0.
Thus we get
|{erllot B =R (o) gt + oG A Gol)| 0

as h — 0.

Therefore zAy is analytic on I and, at every point z € DD, the derivative is given by

(@Ay)'(2) = (&'Ay)(2) + (zAY) (). O

Proposition 2.2.8. Let E be a Hilbert space and let x;: D — E be analytic E-valued maps
onD foralli=0,...,k. Then

ToA - Az D — AFFLE
15 also analytic on D and

(woA -+ Axy) (2) = ap(2) Axp(2) A Axg(2) + 2o(2) A (2) Aza(2) A+ A ag(2)
+tao(z) Az (2) A A (2).

Proof. The E-valued maps x; being analytic on ID means that, for every zg € D, there exist

x}(z) € E such that
i xi(z+ h) — z;(x)
h—0

~ al(2)

E

Notice . . . .
(zoA - Azp) (20 + h) — (woA -+ - Azy) (20)

h
is an element of A E. One can see that, for h € D such that zy + h € D, expression (2.6)

X =

(2.6)

yields

X = %(xO(ZO FRY Ao A a2+ h) — 20(z0) A A xk(zo)). 2.7)

If we add and subtract
1
E.To(ZQ) A\ .T]_(ZD -+ h) A 33’2(2’0 + h) Ao A .Tk(Zo + h)
to expression (2.7), we obtain
X = %([1‘0(20 +h) —xz0(20)] ANz1(20 + h) A+ Axp(z0 + h) — xo(20) A+ A 2x(20)

+x0(20) ANx1(20 +h) A= Axg(zo + h))
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2.2. Pointwise wedge products

Adding and subtracting

1
E%(zo) A x1(z0) Aoz + h) A+ Axg(z0 + h)

to the latter expression, we get

X = %([Uﬂo(zo +h) — xo(20)] A w1(z0 + B) A Azgl(zo + h) — zo(20) A+ A ag(20)
+x0(20) A [21(20 + h) — 21(20)] Awa(20 + h) A -+ Axg(20 + h)

+x0(20) A x1(20) A+ A xg(z0 + h))
It becomes evident that, if we continue accordingly, we obtain

X = %([xo(zo +h) —xo(20)] ANx1(20 +h) A Axg(z0 + h)

1 20(20) A [21(z0 + B) — 21(20)] A 2a(z0 + B) A A ai(z0 + )
+ z0(20) A x1(20) A [T2(20 + h) — 22(20)] A -+ A xp(20 + D)

ot ao(zo) An(zo) A A (o 4+ h) — xk(zo)])

=~ lro(z0 + h) — 7o(z0)] Ada(zo + B) - Az + )

Fan(zo) A 3 lea(zo+ B) = 7a(20)] Aol + ) A+ Ao + )

+ 0(20) A 1 (20) A %[@(ZO Fh) — 2a(20)] A+ A (20 + 1)

(2.8)

+ -+ xo(20) Axi(20) A e A %[:{;k(zo + h) — xk(20)].

Let us show that

Fl(@oA ... Axg) (20 + h) — (woA ... Azy)(20)] "0 xy(20) Ax1(20) -+ - A xp(20)
+x0(20) A 2 (20) Axa(20) A+ A xg(20)

+ -+ xo(20) Axi(20) A - A (20).

Thus, by equation (2.8),

h
+x0(20) A2y (2) Awa(z0) A+ Axg(20) + 2o(20) A 21(20) A 2h(20) A+ A g(20)

(flfo/\ - /\$k)(20 + h) _ (iUO/\ . .-A$k)(zo) . (xé(zo) /\$1(Zo) ... /\Ik(Z())

AE+IE

4+ Z'O(ZO) N l’l(Zo) JARERIAN 33;6(20))
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2.2. Pointwise wedge products

is equal to

(woA -+ Axg) (20 + h) — (oA -+ - Axy)(20)
h

+xo(20) A 2} (2) A xa(z0) A+ Ag(z0) + 2o(20) A x1(20) A 2h(20) A -+ A zg(20)

— (:1:6(20) A z1(20) - A xk(20)

4.+ Q;()(ZO) A $1<Zo) VANKIEIVAN :U;g(zo)>

A1 R

= 13 leo(zo + B) — zo(z0)] A1 (z0 + ) A+ Ai(zp + ) (2.9)

1
E[ZL‘l(ZO + h) — 1\ %

+ -+ wo(Z()) N ZEl(Z()) AN

+ xo(20) A )] Axa(zo+h) A+ Axg(zo + h)

(2

o+ h) = 24(zo)]

— xgp(20) A x1(20) - - A xp(20) + 2o(20) A 27 (2) Axa(20) A+ A xp(20)

— = x0(20) A1(20) A Az (20) | ik g

< H%[mo(zo +h) — xo(20)] A1 (20 + h) A+ Aag(z0 + h) — 25(20) Ax1(20) -+ A xg(20) || st

e o) Aa(a) A= A3 [z + B) — mez0)] = wolz0) A (z0) A< A (20l e
(2.10)

Considering, for instance, the first term of the sum (2.10), we have

||%[a:0(zo 1+ h) — 20(20)] A 1(20 4+ h) - Awu(zo &+ h) — 2(20) A 1(20) A - A p(20) ki

= H%[wo(zo + h) — xo(z0)] Ax1(z0 + ) A+ Axg(zo + h) — 25(2) Axi(z0 + h) A+ Azg(zo + h)
- xg( YAz (20 +h) A Aag(zo + ) — x(2) Axy(20) - A xrl20) | v

< H[ [To(20 + 1) — 20(20)] — 26(2)] Aza(20 + ) -+ Awp(z0 + h) | arii

+ |2g(2) A (x1(20 + h) — 21(20)) A -+ Axg(z0 + h) || arr1 g

+ o g (2) Axg(z0) A A (2(20 + h) — 2(20)) | Art1 - (2.11)
Recall,
fing | lauCa -+ ) = ()] - () o

Hence, by Hadamard’s inequality (2.2),

H[%[mo@o + ) = a0(z0)] — 2p(2)] A (0 + h) - Az + 1)k

= ||[ [z0(20 + 1) — wo(20)] — 2o ()| ellz1(z0 + P)l[E - - - k(20 + B 2

1/2
(n[ (wo(z0 + h) — zo(z0)] — 2b(2)I% + 121 (z0 + )%+ -+ + nz0 + h>||z)

tends to 0 as h — 0, and
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2.2. Pointwise wedge products

|20(2) A x1(z0 + h) — x1(20) A -+ Azg(z0 + ) |21
< [lzo(2) el (z0 4+ h) = 21(20) |l - - - [k (20 + 1) ||
(b ()% + llwa(z0 + h) = @1(z0)l[F + - - + 2w (20 + R)[[5)?

tends to 0 as h — 0. Similarly, we infer that the sum (2.11), and consequently, the sum
(2.10) tend to 0 as h — 0. Thus

(370/\' "/\$k)(20 4+ hi)l — (.1'0/\" '/\xk)(Z(J) B <£L‘6(Zo) /\1'1(20) ... /\xk(zo)

+x0(20) A2 (2) Axa(20) A=+ A zp(20) + xo(20) A z1(20) A 2h(20) A -+ A xp(20)

R SEo(ZO) A ;1:1(20) VANCRRIA ZL’;(Zo))

—0
ANE+IE

as h — 0. Hence

ToA - Axp: D — AFFLE
is analytic on D and

(woA -+ Axy) (2) = xg(2) Ay (2) - Aak(2) + @o(2) Ay (2) Axg(2) A+ Aag(2)
+txo(2) Az (2) A (2). O

Proposition 2.2.9. Let E be a separable Hilbert space. Suppose x,y € H*(D, E). Then
zAy € H' (D, A’E).

Proof. By Proposition 2.2.7, Ay is analytic on ID. By Proposition 2.1.19, for 0 < r < 1 and
0 <60 <2m,
I(zAy)(re®) | nzp < [l (re”)l|lly(re”) | 5.

By Proposition 2.1.19 and by Definition 2.2.4,

) 1 [* . .
lzAY| mpa2e) = sup (— / [(zAy)(re”)|| n2p de)
0

0<r<1 2m

1 2m ) )
< sw (5 [ Ietreelytre)e ).

0<r<1

for 0 <r <1and 0 <6 <27 Also, by Holder’s inequality, for 0 <r <1 and 0 < 0 < 27,

2 2 1/2 2 1/2
1 } . 1 . 1 A
—/MMWMWWMM —ﬂWWMw —/mwwwe,
2 2 21
0 0 0
hence ||zAy|| g aze) < || m2m,5)||Y]| H20,E)- Consequently, zAy € HY(D, A’E). O
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2.2. Pointwise wedge products

Remark 2.2.10. Let E be a finite dimensional Hilbert space. For 1 < p < oo, we will regard
x € HP(D, E) as a column-vector valued function on D or T and x* as the row-vector valued
function, x*(z) = x(2)*, for all z € D or T.

Example 2.2.11. If E = C", and f
T
2(2) = (1(2) w2(2) - wa(2)

for all z € T, then
#(2) = (0() - m().

Example 2.2.12. Suppose E = C" and let x € H*(D,C"), y € H>*(D,C"). Then, for all
z € D,

Proposition 2.2.13. Let E be a separable Hilbert space, let v € H?*(D,E) and let
ye H*(D, E). Then
Ay € H*(D, \*E).

Proof. By Proposition 2.2.7, xAy is analytic on . By Proposition 2.1.19, for
0<r<l1, 0<60<2m,

we have
[(@Ay)(re®) e < lla(re®) | slly(re®)| 2.

Thus,

1/2

. 1 [ , .
lzAY|| r2p25) = sup (—/ [(zAy)(re”) |2z d@)
0

0<r<1 \ 27

1 2m 1/2
< 5w (g [ et e as )
0

0<r<1
1/2

1 2 .
< lylloo sup <—/ Hx(rew)HZEdQ) < 0. O
0

0<r<1 \ 27

Proposition 2.2.14. Suppose {&,...,&} € L>®(T,C") is a pointwise orthonormal set.
Then
||§0/\ cee /‘\gj/‘\xH[P(T,/\jJ&C”) < 00

for all x € L*(T,C").
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2.2. Pointwise wedge products

Proof. By Proposition 2.1.19, [[§oA -+ - A§GAZ 122 g yacny 18 equal to

2

(€0(e?), &o(e))c (€o(e?), &1(e"))c (&o(e®), z(e')) ¢
i det <§O(ela)7£1(el9 Cn 51 619)751(619»@" 51 619)71‘(619»@" d@
2
0 (z(e"), &o(€))cn (x(e),&1(e"))cn (@(e),2(e))c
2 1 0 <§0(€i0), z(ew»
ei@ T 619
2 : . .
0 (x(e®),&(e®))en  (x(e®),&1(e®))en ... (@(e?), (")) cn

the last equality following by the pointwise orthonormality of the set {sz(z)}i:o on T. Mul-
tiplying the [-th column by —(& (), z(e?))cn» and adding it to the last column, we get

1 0 0
2
0 1 0
1 : - :
— det o _ _ : - do
2m (@), o(een (@), ea(een o ()R
J . .
’ [ CORACD
k=0
2

/ )12 — Z| ¢), Ex(c®))en? d

2T
1 (2
<o [ el a9
0

< 00. OJ

2.2.1 Multiplication operators

Definition 2.2.15. Let E, F' be Hilbert spaces and let G € L>(T, L(E, F)). For every z € T,
we define

NG(2): N*E — N°F

on elements x Ay by

(NG (2)](x A y) = G(2)x A G(2)y.
Lemma 2.2.16. Let E, F be Hilbert spaces and let G € L>®(T,L(E, F)). Then, for almost

all z € T, N’G(2): N> E — A%F is a bounded linear operator.

Proof. By Proposition 2.1.30, for every z € T, A2G(z): A2 E — A?F is well-defined.

Now, let x Ay, wAv € A2E. Linearity of A?G(z) follows from Proposition A.1.6 and the fact
that A?G(z) is a restriction of G(z) ® G(2) to A*E. Let us show that, for almost all z € T,
A2G(z) is a bounded linear operator. By Proposition 2.1.19, for all z,y € E,
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2.2. Pointwise wedge products

A2 G2) (@ AY)llRep = (G(2)x AG(2)y, G(2)x A G(2)y)rer
= |G(2)z||FIG(2)yllE = (G(2)z, G(2)y)pl* , for all 2,y € E.

Thus
| A2 G(2)(x Ay)llner < [|G(2)z| PG (2)ylle , for all 2,y € E.

By the assumption, G(z) is a bounded linear operator from E to F, hence there exists some
M > 0 such that
IG()z]lr < Mljzlle, [G(2)yllr < Mlylz

for all z,y € E.
Consequently, for each z € T,

NG = sup [ A2G(2)(x Ay)llzr

llzAylly2 p<1

< M2Ha:'||EHyHE , forall z,y € E.

Hence A%2G(2) is a bounded linear operator. O

Corollary 2.2.17. Let E, F be Hilbert spaces and let G € L>®(T, L(E, F)). Then, for almost
all z € T,
NG(2): N*E — A°F

s a continuous linear operator.

Proposition 2.2.18. Let E, F' be Hilbert spaces and let G € L>(T,L(E, F)). Then
(Mgz)(2) = G(2) - x(2) € F

for almost all z € T, and Mgz € L*(T, F) for all x € L*(T, E).

Proof. Since G is a bounded linear operator, by Lemma 2.2.16, there exists an N > 0 such
that
|(Mgz)(2)||lr = |G(2)z(2)||r < N||z(2)||g for almost all z € T.

Furthermore

1 1/2

e = M)

1 1/2

27
< (5 [ et d9) = Nl < 0 0
T Jo

Definition 2.2.19. Let E, F be Hilbert spaces. For the operator G € L>(T,L(E, F)), we
define an operator Mg: L*(T,E) — L*(T, F) by

(Mgx)(2) = G(2) - x(2)
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2.2. Pointwise wedge products

for almost all z € T and for all z € L*(T, E).

Definition 2.2.20. Let E, F be Hilbert spaces and let G € L*(T, L(E, F)). We define an
operator
Mg|wemp: H*(D, E) — L*(T, F)

by
(Me|m2m.py)(2) = G(2)x(2)  for all z € T,z € H*(D, E).

Remark 2.2.21. Let A°G € L®(T,L(A*E, \*F)). The restriction of Mp2q to H*(D, E) is
the operator

Myeclpzm.p): H (D, AN°E) — L*(T, A*F),

given by
(Mpag(xAy))(2) = (N*G)(2) - (x(2) Ay(2))
= (G(2) ANG(2)) - (x(2) Ay(2))
= (G(2) - 2(2)) A (G(2) - y(2))
forall z € T.

2.2.2 Pointwise creation operators, orthogonal complements and

linear spans

Below, let E denote a separable Hilbert space.

Definition 2.2.22. Let £ € H®(D, E). We define the pointwise creation operator

Ce: H*(D, E) — H*(D, A\*E)

Cef = EAS, for f € H*(D, E).

Remark 2.2.23. Let E be a separable Hilbert space. Let & € H®(D,FE) and let
f € H*(D, E). By the generalised Fatou’s Theorem C.2.5, the radial limits

lim &(re®) T £(e), lim f(re) T fe®) (0<r<1)

r—1 r—1

exist almost everywhere on T and define functions E € L>(T,E) and f € L*(T,E) respec-

tively, which satisfy the relations
lim [|(re”) = (e”)|lp = 0, lim || f(re”) — f(e”)|ls =0
r—1 r—1

for almost all € € T.
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Lemma 2.2.24. Let E be a separable Hilbert space. Let & € H*(D,E) and let
f € H*(D, E). Then the radial limits lim,_,;(£(re®) A f(re?)) exist for almost all € € T
and define a function in L*(T, \’E).

Proof. By Proposition 2.1.35, the bilinear operator A: F x E — A%E is a continuous operator
for the norms of F and A?E. By Remark 2.2.23, the functions £ € H®(D, E) and f €
H?(D, E) have radial limit functions & € L®(T, E) and f € L*(T, E) respectively. Also, by
Proposition 2.2.13, EAf € H*(D, A*E). Hence

lin% 1€(re®) A f(re?) — E(e?) A f(e®)||iop =0  almost everywhere on T
r—
and we conclude that

li_rg(é“(rew) A f(re?)) = () A f(e?) almost everywhere on T.

”'H/\QE

This shows that the radial limits

lim(é“(reie) A f(rew))

r—1

exist almost everywhere on T and, by Lemma 2.2.6, define a function in L*(T, A?E). Hence
one can consider (Ce¢f)(z) = (§Af)(2) to be defined for either all z € D or for almost all
zeT. O

Proposition 2.2.25. Let H be a separable Hilbert space. The space H*(D,H) can be iden-
tified with a closed linear subspace of L*(T,H).

Proof. By Remark C.2.3, for any separable Hilbert space H and f € H?(D,H), the map
f — f is an isometric embedding of H?(D,H) in L*(T,H) as a subspace, where f is the
radial limit function

(%) = lim f(re?).

l-ll% m—1

Since H?*(D, H) is complete and the embedding is isometric, the image of the embedding is
complete, and therefore closed in L*(T,H). O

Remark 2.2.26. In future statements we shall to use the same notation for f and f

Definition 2.2.27. Let E be a separable Hilbert space. Let F be a subspace of L*(T, E) and
let X be a subset of L*(T, E). We define the pointwise linear span of X in F to be the set

PLS(X,F)={f € F: f(z) € span{z(z) : © € X} for almost all z € T}.
We define the pointwise orthogonal complement of X in F' to be the set

POC(X,F)={f e F: f(z) L{x(z):x € X} for almost all z € T}.
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Our next aim is to show that POC(X, F) is a closed subspace of F. We are going to need

the following Lemma.

Lemma 2.2.28. Let E be a Hilbert space and let * € L*(T,E). The function
¢: L*(T, E) — C given by

1S continuous.

Proof. Consider gy € L*(T, E). For any € > 0, we are looking for a § > 0 such that

1/2
Iy - golae. = / lofe) ~ (e do | <
implies
|6(9) = ¢(go)| < €.
Note that
6(9) ~ élao)l = |5 [ Iale).ae) |de——/| "))l
~ |r [ (late) ()] = (an(e), ("))l db.

For each e € T, by the reverse triangle inequality, the integrand satisfies
[{g(e”), 2(e)) | — |<90(€w)>$(€w)>E|‘ < [{g(e”?),2(e”))p — (90(e”), 2(e”)) |
= [{(ge”) — go(e”), 2(e”)) gl

hence

6() ~ (00)] < 5~ | I / o), 2(e)) 1o (2.12)

By the Cauchy-Schwarz inequality,

o [ Ho(e) = gn(e), a(e)) ] s

o i s (2.13)

1 )
19 19 0\ (12
< / lote Mo | (o [ e ds

0
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For the given € > 0, let J be equal to ;, and let
[zl z20r,m) + 1

1/2

27

1 i i

o [lae) ~ oo as ) <
0

By equations (2.12) and (2.13),

1/2
6(9) - Ol / l9(e®) — a0(e) 3 @8 | flellixcry
< T ll7llxm) <
—— |7 2 €.
||$||L2(’H‘7E) + 1 L2(T,E)
Hence ¢ is a continuous function. O]

Proposition 2.2.29. Let E be a separable Hilbert space and let ¢ € L*(D, E). Then

(i) The space V = {f € H*D,E) : {f(2),¢(2))g = 0 for almost all z € T} is a closed
subspace of H*(D, E).

(ii) The space V.= {f € L*(T,E) : (f(2),¢(2))g = 0 for almost all = € T} is a closed
subspace of L*(T, E).

Proof. (i). V is a linear subspace of H%(ID, E) since for A\, u € C, ¢,k € V and for almost all
zeT,

Mp(2) + pk(2), 0(2)) 8 = M(2), 9(2)) & + ulk(2), ¢(2)) 8 = 0,
hence A\ + pk € V.

Now, suppose that the sequence of functions (g,)>, in V' converges to a function g. We need
to show that g € V. Since g, € V for all n € N, we have

(gn(2),0(2))g = 0 for almost all z € T. (2.14)

Consider the function ¢: H*(D, E) — C given by

10 do.
27r/| )yl

Then, by equation (2.14), we have

2

0(0n) = 5 [ ton(e) (el do =0,

0
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Note that by Fatou’s theorem, for each function f € H?*(D, E), the radial limit

lim f(re®)

r—1

exists almost everywhere and defines a function in L*(T, E). This way, H*(D, E) can be
identified with a closed subspace of L*(T, E). Hence by Lemma 2.2.28, ¢ is a continuous
function on H?(D, E), thus ¢(g) = lim,,_, ¢(gn), and so

o [ 1ate)ote s |d9—nhm—/\gn ?). p(e")) | 48 = 0

0

for almost all e € T. Thus [(g(e?), p(e?))g| = 0 for almost all ¢ € T, and, hence, g € V.
Thus we have proved that V is a closed subspace of H*(D, E).
(ii). The proof is similar to (i). O

Lemma 2.2.30. Let E be a separable Hilbert space, let F be a subspace of L*(T,E) and let
X be a subset of L*(T, E). The space

POC(X,F)={fe€F : f(z) L{x(2): 2z € X} for almost all z € T}

1s a closed subspace of F.
Proof. The assertion follows from Proposition 2.2.29, since POC(X, F') is an intersection of
closed subspaces

={feF:{f(z),z(z))g =0 for almost all z € T}

over x € F. O

Definition 2.2.31. Let E be a separable Hilbert space. Let f € HP(D, E), for 1 < p < oo.
By the generalised Fatou’s Theorem C.2.5, the radial limit

r—1

lim f(re™) 0 f(e®) (0<r<1)

exists almost everywhere on T and defines a function f € LP(T, E). The set of points on T
at which the above limit does not exist, will be called the singular set of the function f and
will be denoted by Ny.

Note that the singular sets of functions in HP(D, E) for 1 < p < oo are null sets with

respect to Lebesgue measure.

Lemma 2.2.32. Let E be a separable Hilbert space. Let & € H™(D,E). For every
fe H®(D,E) and g € H*(D, E), the function

fAg: D — A’E
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defined by
(fAg)(2) = f(z) Ag(z) forall z€D

belongs to H*(D, A’E), and moreover the operator
C¢: H*(D,A’E) — H*(D, E)
s given by the formula
Cg(f/\g) = P+Oé,

where a € L*(T, E) is defined by
a(e”) = (f(e”), &(e”))pg(e”) — (g(e”). £(e”)) p.f(e”)
for all e® € T\ (N;UN¢UN,), and P, is the orthogonal projection
P,: L*(T,E) - H*(D, E).

Here Ng, Ny, N¢ are the singular sets of the functions f, g and & respectively.
Proof. By Proposition 2.2.13, fAg € H?*(D,A%E). Now, for all f € H>(D,E), all
g,h € H*(D, E) and all ¢? € T\ (Ng UN, U N;), we have

<C§(f/\9)a h)H?(D,E) = <f/\97 C§h>H2(D,/\2E)

= (fAg, EAR) L2(v n2E)

1 2

:% ;

(f(ew) A g(ew), £(ei9) A h(eie))/\zE do,

which, by Proposition 2.1.19, is equal to

The latter in turn is equal to
L[ ((F(e™), &™) elg(e”), h(e”)) e — (f(e7), h(e?))ug(e?), £(”)p) db,

27 Jo

which equals

a0 e Neg(e) — (o) (), (e ) .
and so
<C§(f/\9)a h>H2(]D),E) - % ; W(a(eie), h(@le»E df = <a7h>L2(’]I‘,E) = <P+(a)7h>H2(]D),E)7
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2.2. Pointwise wedge products

where
a(e”) = (f(e), &) rg(e”) = (g(e”), ()£ f (")
for all € € T\ (N¢ U Ny U N,). Hence C¢(fAg) = Pra as required. O

Proposition 2.2.33. Let E be a separable Hilbert space. For & € H*(D, E),
ker C¢ C PLS({¢}, H*(D, E)).
Proof. We have

kerCe ={f € H*(D,E): (EAf)(z) =0 for all z € D}
={f € H3(D,E) : £&(2) A f(2) = 0 for all z € D}
={f € H*D,E) : £(2), f(z) are pointwise linearly dependent for all z € D}.

By Remark 2.2.23, the functions ¢ € H*(D, F) and f € H*(D, E) have radial limit functions
£ € L®(T,E) and f € L*(T, E) respectively, hence the radial limit functions will be linearly

dependent almost everywhere on T. Thus

ker O C {f € H*(D, E) : £(2), f(2) are pointwise linearly dependent for almost all z € T}
— PLS({¢}, H¥(D, ). a

Example 2.2.34. Let £ = C2 We can find functions f,g € H?*D,E) such that
f € POC({g}, H*(D, E)) but it is false that (f(z),g(z))g = 0 for all z € D. Choose

g(z) = (;) . fz)= (;:EZ) for 2z e D.

f € POC({g}, H*(D, E))

Then

is equivalent to
(f(2),3(z))g =0 for almost all =z e T.

The later is equivalent to

< <Z> ’ (Jfl(Z))> =0 for almost all z¢& T,
22 L)) ],

which holds if and only if
Zfi(2) + Z2fo(2) =0 for almost all z € T.

Equivalently

fi(z) = —Zf5(z) for almost all z e T,
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2.2. Pointwise wedge products

which in turn is equivalent to
—zf1(2).

o _ fi(z) 8
(f(2),9(2)E <<—Zf1(2)> ’ (22) >E

= Zfi(2) = Z|2|* f1(2)
=z2(1 - |2]) fu(2).

f(z) = < f1~(z) ) for almost all z € T.

Now for z € D,

1
So if we take fi(z) = 1, f(z) = for all z € D, then f € POC({g}, H*(D, E)) but

—z

(f(2),9(2))g #0 for all z € D\ {0}.
Thus it is not true in general that POC({g}, H*(D, E)) C {g}*.

Lemma 2.2.35. Let E be a separable Hilbert space. For & € H*(D, F),
POC({¢}, H*(D, E)) C H*(D, E) © PLS({¢}, H*(D, E)).
Proof. Let f € POC({¢}, H*(D, F)). This is equivalent to f € H*(D, E) and
f(2) LE(z) forall z € T\ (Ny U N),

where Ny, N¢ are the singular sets for the functions f,  respectively. This in turn is equivalent
to f € H*(D, E) and

(f(2),€(2))g =0forall z € T\ (N;U N).
The latter implies the condition
f e H*D,E) and (f(2),§(2))s = 0 for almost all z € T and all g € PLS({¢}, H*(D, E)).

Thus
f € H*D, E) o PLS({¢}, H*(D, E)). O

Lemma 2.2.36. Let E and F be separable Hilbert spaces, and let G € L>*(T, B(F, E)). For
every x € L*(T, E), the function Gz, defined almost everywhere on T by

(Gz)(2) = G(2)(x(2)),

belongs to L*(T, E).
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2.2. Pointwise wedge products

Proof. For almost all z € T,

(Gz)(2)]|e = G(2)2(2) |l < NGl Lo (rsemm)ll2(2)]F-

Thus

1 2 ;
IGallscrey = 57 | Gl a9

IN

1 2m ;
3= | IGE~msrmylle(e) I dt

”GH%OO(’]T,B(F,E))||x||%2(T,F) < 0. [

IN

Definition 2.2.37. Let E and F be separable Hilbert spaces. Let P, : L*(T, E) — H*(D, E)
be the orthogonal projection operator. Corresponding to any G € L>®(T, B(F, E)) we define
the Toeplitz operator with symbol G to be the operator

Te: H*(D, F) — H*(D, E)

given by
Tgr = P, (Gx) for any x € H*(D,F).

Definition 2.2.38 ([24]). For a separable Hilbert space E, a function & € H*(D, E) will be

called inner if for almost every z € T,

1€ = 1.

Definition 2.2.39. Let E be a separable Hilbert space and let &,n € L>®(T, E). We define
Ent € L2(T, B(E, E)) by

(En*)(2)x = (z,n(2))&(2) for all x € E and for almost every z on T.

Proposition 2.2.40. Let E be a separable Hilbert space. Let & € H>®(D, E) be an inner
function. Then, for any h € H*(D, E),

C¢Ceh = Pya,
where o = h — £€*h and Py : L*(T,E) — H?*(D, E) is the orthogonal projection. Moreover
CiCeh = h — Teexh,
where Teew: H*(D, E) — H*(D, E) is the Toeplitz operator with symbol £*.
Proof. For all g,h € H*(D, E) and for N¢, Nj,, N, singular sets of &, h, g respectively,
((CECoR, g)r2,p) = (Ceh, Ceg) m2p2p) = (EAR EAG) L2102 B,
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2.2. Pointwise wedge products

and, by Proposition 2.1.19, we get

(h(e”?),6(e”))p (h(e?),9(e”))p

Since ¢ is inner, ||£(e?)||g = 1 almost everywhere on T, and so,

(€A Ehg)arom) = 5 [ et (W L) s (€, g(e >>E> .

(CeCogmon = 5= [ (HE) g e = (Ee)aleeh(e®) ()
= % : W<h(ei6) — (h(e"),£(e?)) g€ (), g(e)) g db
= i 2W<a(ei9) <6i9)> do
27 J, 9 E

= <04, 9>L2(1‘,E)
= (Pya, 9) 2, B)

where a(e) = h(e?) — (h(e?),£(e?))p€(e?) for all ¢ € T\ (N: U N, U N,). Thus
C¢C¢h = Pya, where a = h — £€"h. Hence

CiCch = Py(h — €€°h) = h — Teeeh,

where Teeh = Py (£€°h) is a Toeplitz operator. O

Example 2.2.41. In this example we show that there exists an inner function & € H*(D, C?)
such that, for some h € H*(D,C?), C¢Ceh is not in the pointwise orthogonal complement of
&in E.

Let £ € H*®(D,C?) be an inner function and let h € H*(D,C?). Let &, h be given by

1 (1 1
£(z) = 7 (z) . h(z) = (1> for all z € D.

By Proposition 2.2.40,

where, for all z € T,

Calculations yield, for all z € T,

N\ 1. 1 [1 1\ 1/ 14z 337
TR
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2.2. Pointwise wedge products

and so
1(1—-2
alz) = = .
) 2(1_2)

1

1—=z2

Thus

1

(Pra)(z) = 5 ( > forall ze T\ (Ne UN,).

The latter expression is not in the pointwise orthogonal complement of & in C?, since for all

z €T,

1 1 1 (1 1 B 1 z
<§<1—z)’ﬁ(75>>@2 :m(l Z> (1—2) 2\/_( +Z_|Z|) ﬁ#o

The next lemma shows that C¢ is an isometry on POC{&y, H*(D, E)}.

Lemma 2.2.42. Let E be a separable Hilbert space. For every inner function & € H*(D, E),
{r € H*D, B) : |Cealln2n2p) = |2l 2m,m)} = POC({€}, H*(D, E)).

Proof. By Proposition 2.2.25, for every x € H*(D, E), ||z||g2m,p) = ||| 12(r,5)- Hence
{z € H*D,E) : || Cex|/%2 (D,A2E) — ||95HH2(]D> E)} ={r e H*D,E) : HC@H%?(T,/\?E) = HxH%?(’]l‘,E)}'

By Proposition 2.1.19, the latter set is equal to

) o1 /2“ (<s<ei9>,5<ew>>E <s<eiﬂ>,x<ei9>>E) 1 /2” 0y }
{xGH(D7E)27T 0 det <x(ei0)’€(ei9)>E <:C(ei9),x(ei9)>E d027r 0 ||:L‘(6 )”E do ¢

Since £ is inner, ||£(e?)||z = 1 almost everywhere on T, hence the latter set is equal to

{oemm.ys - [Tl - e a0 = o [ ot a0}

~{eem@my o [l ol el i - o}

= {z € H*D,E) : £(¢") L #(e”) almost everywhere on T}

={x € H*(D,E) : x € POC({¢}, H*(D, E))}

= POC({¢}, H*(D, E)). =

Example 2.2.43. This example shows that CiCe¢ fails to be a projection for some inner

1
function £ € H*(D, C?). Let us calculate CiCe, for &(z) = \/Lﬁ ( ) , z € D. By Proposition
2z

2.2.40, for h € H*(D,C?)
CgC%h - P_;,_O[7

where, for all z € T, a(z) is given by

=h(z) — (h(z Z Z:hl(z)_i zzzil
alz) = h(z) = (h(2), £(2)) £(2) ( ()> 75 M(2) + zha ))\/5<)-
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MY () 4 sho(e)) L (1) _ (hl(z) - %(hl(z)Jrzhg(z)))
<h2(2)> vai(@) +2ha(2) 75 | ho(2) — (2 (=) + ho(2)
. (hl(z) - zh2(2)> |
2 \ ha(2) — zhi(2)

1( h—S*h,
P_;’_Oé — = 5
2 \=Shy + hy

where S, S* denote the shift and the backward shift operators on H*(D, C) respectively. Hence

1 —s
(_S . > (2.15)

Thus

CiCe =

DN | —

Now, for h(z) = <1> , z €D,

(ei))o=(0)

1
which is not the projection of <1> onto the pointwise orthogonal complement of £(z) in E,

()0 e, =)o ()

Alternatively, from equation (2.15),
1(1 =5
CiCe = = :

1 (1455 —25*
C*C 2:_ —
(CeCe) 4( —29 SS*+1>

1 -5
CrC,
(—S 1—§P0>7£ e

o7

SO

W=
|
N N
@)
N
[N
fav e
N—

and thus

1
* 2 __ —
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since SS* =1 — Py, where Py (3~ 5 an2™) = ao.
Consequently C¢Cg is not a projection and hence C¢ is not a partial isometry on H?*(D,C?).
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Chapter 3
Superoptimal analytic approximation

In this chapter we present the main result of the dissertation, which is the superoptimal ana-
lytic approximation algorithm. In Section 3.1, we recall certain known results and Peller and
Young’s algorithm (Theorem 3.1.19). In Section 3.2, we construct the alternative algorithm
for the superoptimal approximant based on exterior powers of Hilbert spaces. The proof of
the validity of the new algorithm relies on the cited work given in Section 3.1.

Basic definitions, which we use in this chapter, are given in Chapter 1 and in Appendix
D.

3.1 Known results

In this section we present certain established results that we later use to define the steps of

the new algorithm and prove their validity.
Definition 3.1.1. Let E, F be Hilbert spaces. We define by K(E, F') the Banach space of
compact operators from E to F with the operator norm.
Theorem 3.1.2 (Hartman’s Theorem, [19], p. 74). Let E, F be separable Hilbert spaces and
let ® € L>(T,L(E,F)). The following statements are equivalent

(i) The Hankel operator Hg is compact on H*(D, E).

(ii)) ® € H*(D,L(E,F))+ C(T,K(E, F)).

(iii) there exists a function U € C(T,K(E, F)) such that ®(n) = ¥(n) for n < 0.

Definition 3.1.3 ([24], p. 306). The class of quasi-continuous functions is defined by

QC = (H®(D,C™™) + C(T,C™")) N (H=(D, C™<m) + C(T, C™)).

In other words this class consists of functions on the circle which belong to H* + C' and are

such that their complex conjugates belong to H* + C' as well.
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Definition 3.1.4. Consider a function f € L'(T,C) and an arc I on T. Put

o 1
s /[fdm

where m is the Lebesgue measure on T. Thus, f; is the mean of f over I. The function f is

said to have vanishing mean oscillation if

1
lim —/|f—f1|dm:0.
I

m(1)—0 m([)
The space of functions of vanishing mean oscillation on T is denoted by VMO.

VMO is also related to the compactness of Hankel operators, as the following theorem

asserts.

Theorem 3.1.5 ([19], Theorem 5.8). Let ¢ € L*(T,C). Then Hy is compact if and only if
P_6 € VMO.

It is therefore not surprising that the spaces QC and VMO are closely related. The

following theorem illustrates such a connection.

Theorem 3.1.6 ([19], p. 729).
QC=VMONL™.

Theorem 3.1.6 follows from another characterisation of VMO, which was obtained by
Sarason in [31], to wit
VMO ={f+g:f.g€C(T,C)},

where ¢ denotes the harmonic conjugate of g.

Remark 3.1.7. Let G € H>®(D,C™™) + C(T,C™™). We will say that every function
Q € H>®(D, C™™) which minimises the norm |G — Q||L=, is a function at minimal distance
from G. By Nehari’s Theorem, all such functions Q satisfy |G — Q||L~ = ||He]l.

Next we describe some properties that a space X of equivalence classes of functions
on the unit circle might posses, which were explored in [24]. It should be mentioned that
the uniqueness result in Theorem 1.1.4 allows one to define a non-linear operator A of

superoptimal analytic approximation on H* + C' as follows.

Definition 3.1.8 ([24], p. 329). Define A = A™™ on the space of m x n functions G €
H>®(D, C™")+C(T,C™*™) by saying that A™™G is the unique superoptimal approvimation
in H*(D,C™™) to G.

Definition 3.1.9. We say that a space X C L*>(T,C) is hereditary for A if, for every
scalar function g € X, the best analytic approrimation Ag of g belongs to X. For a matrix
function G € H*®(T,C™ ™) we write G € X if each entry of G is in X.
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We consider spaces X of scalar functions on the circle which satisfy the following axioms.
(al) X contains trigonometric polynomial functions and X € VMO;
(a2) X is hereditary for A;
(a3) if f € X then z2f € X and P, f € X;
(ad) if f,g € X N L™ then fg € X N L>;
(ab) if f € XN H? and h € H® then T;f € X N H%.

The relevance of these properties is contained in the following statements. Recall that,
according to [20], a function f € L™ is said to be badly approximable if the best analytic
approximant to f is the zero function. In view of Nehari’s Theorem, f is badly approximable
if and only if ||~ = | Hll.

Theorem 3.1.10 ([24], p. 308). Let ¢ be an n X 1 inner matriz function. There exists an
inner, co-outer function . € H®(D, C"™*"=Y) such that

®= (90 @c)

15 unitary-valued on T and all minors of ® on the first column are in H*.

Lemma 3.1.11 ([24], p. 332). Let X satisfy (al)-(ab) and let ¢ be ann x 1 inner function.
Let ¢. be an nx (n—1) function in H* such that ((;5 &C) is unitary-valued almost everywhere
and has all its minors on the first column belonging to H*>. Then each entry of ¢. belongs
to X.

Lemma 3.1.12 ([24], p. 315-316). Let m,n > 1, let G € H>*(D,C™*") + C(T,C"™") and
to = ||[He|| # 0. Suppose that v is a mazimizing vector of Hg and let

Heav = tyw. (3.1)
Then v, zw € H*(D,C") have the factorisations
v =voh, Zw = pwoh (3.2)

for some scalar outer function h, some scalar inner ¢, and column-matriz inner functions
Vg, wo. Moreover there exist unitary-valued functions V., W of types n xn, m xm respectively,
of the form

V= <v0 a), W = (wo B), (3.3)

where «, 5 are inner, co-outer, quasi-continuous functions of types n x (n—1), m x (m —1)

respectively, and all minors on the first columns of V,W7T are in H>.
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3.1. Known results

Furthermore every @ € H> (D, C™*™) which is at minimal distance from G satisfies

toUQ 0
WG —-Q)V = 3.4
@-Q) ( 0 F) 8.4
for some F € H®(D, Ctm=D*0=D) 1 O(T, Cm=D*=) gnd some quasi-continuous function
ug given by

with |ug(2)| = 1 almost everywhere on T.

Proof. First we construct V and W with the properties (3.1) to (3.4). By Theorem D.2.4 and
by equation (3.1), ||v(2)|| = ||w(z)|| almost everywhere, and so the column-vector functions
v,z € H? have the same (scalar) outer factor h. This property yields the inner-outer
factorisations (3.2) for some column inner functions vy, wy. By Theorem 3.1.10, there exists

def

an inner co-outer function « of type n x (n — 1) such that V = (vo 07) is unitary-valued

almost everywhere on T and all minors on the first column of V are in H*. Likewise

there exists an inner co-outer function 3 of type m x (m — 1) such that W o (wo ﬂ_)T is

unitary-valued almost everywhere on T and all minors on the first column of W7 are in H*.
Next we show that uy given by equation (3.5) is quasi-continuous. Let

Q € H*(D,C™ ") be at minimal distance from G. Then

|G = Qllee = [Hall = to-

By Theorem D.2.4,
(G —Q)v = tyw

and by the factorisations (3.2) we have
(G — Q)voh = tozohwy

and by equations (3.3) and (3.5)

G-QV (10 - o)Tzw*(touO 0 .. o)T.
Thus
WG - Q)Y = (tg j;)

for some f € L®(T,C>("1), F € L*(T,Clm-Vx(-D),

Because tg = ||Hg]||, it follows that |ug| = 1 almost everywhere, and from Nehari’s Theorem
IW(G = Q)Vllw =G = Qll = [ Hell = to,
and we get that f = 0. So, W(G — Q)V is in the form (3.4). Now, ||Hy, | < ||uo]lc =1 and
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| Huob|| = ||Z0h|| = ||k, which implies that ug is badly approximable. Hence
[Huoll = 1 = o] co-

The (1,1) entries of equation (3.4) are
wi (G — Q)vy = toup.

Since v9 € H>*(D,C"), wy € H>*[D,C") and H*(D,C) + C(T,C) is an algebra,
uy € H>® + C. By a result in [20, Section 3.1], if ug € H* + C and wuy is badly approx-
imable then ug € H*> + C. Thus ug is quasi-continuous.
Next we show that vy, wy € QC. It follows from Nehari’s Theorem (see Theorem D.2.4)
that
(G —Q)w = tyv.

Indeed, since Hiw = tov and Hf, = Py Mg_qg)- |H2l, we have (assuming, as we may, that v

and w are unit vectors),

to = [[Hewll = [|P(G = Q) w
< (G = Q) w| <G = Qllze<[w]] = to.

It follows that the inequalities hold with equality, and so

PG = Q)" wl = [[(G — Q) wl,

whence
PG - Q)'w= (G- Q)w,
and so
(G —Q)'w= Hjw = tyv,
as claimed.

Taking complex conjugates in the last equation we have
(G — Q)"0 = tyo.

Thus, by equation (3.2),
(G — Q)" zgwoh = tohiy

for some outer function h and scalar inner ¢. Therefore

(G — Q)T zpwoh
toh ‘

Vg =
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Recall that ug = Z¢h/h, and so
_ 1 T
Vg = %(G - Q) UpWop-

Since ug € QC, G —Q € H®* + C, wyg € H* and H*® + (' is an algebra, it follows that
vy € H* 4 C. Since also vy € H*, we have vy € QC. In an analogous way, one can show
that wy € QC.

To complete the proof, all that remains is to show that «, /3 are quasi-continuous and
F e H* + C. This will follow from Lemma 3.1.11 above.

The space VMO satisfies conditions (al) to (ab), and we have vy € QC C VMO. Hence
we may apply Lemma 3.1.11 with ¢ = vy to deduce that « € VMO. Since also o« € L, it
follows from Theorem 3.1.6 that o € QC. Likewise, 5 € QC.

To show that F' € H®(D, C(m=Dx(=) 1 (T, Cm=x=D) for 1 <i<m, 1 <j<n

consider the 2 x 2 minor of equation (3.4) with indices 13,15 :

Z Whins(G — Q) st Via1; = touoFi—1,j-1. (3.6)

r<s, k<l

By the analytic minors property of W, V|
Vi Wies € H.

Since (G — Q) € H®(D,C™") 4+ C(T,C™™), all the terms on the left-hand side of
equation (36) are in H* 4 C' and hence U,OF c HOO(]D),C(m_l)X(”—l)) + C(T, C(m—l)x(n—l))‘
Thus

F= EO(UOF) c H°°<D7 C(mfl)x(nfl)) + C(T, C(mfl)x(n—l)). 0

Definition 3.1.13. We say that a unitary-matriz-valued function V is a thematic comple-
tion of a column-matriz inner function vy € H>*(D,C"), if V = (vo 07) for some co-outer
function a € H*®(D, C™* =) such that V() is unitary-valued almost everywhere on T and

all minors on the first column of V' are analytic.

Remark 3.1.14. By Theorem 3.1.10, every column-matriz inner function has a thematic
completion. Thematic completions are not unique, for if V = (vo d) 15 a thematic comple-
tion of vy, then so is (UO @U) for any constant (n — 1)—square unitary matriz U. However,
by Corollary 1.6 of [24], the thematic completion of vy is unique up to multiplication on the
right by a constant unitary matriz of the form diag{1,U} for some constant (n —1)— square
matriz U, and so it is permissible to speak of “the thematic completion of vy ”.
Furthermore, by Theorem 1.2 of [24], thematic completions have constant determinants
almost everywhere on T, and hence «, 8 are inner matrix functions. Observe that, as we
showed above, if the column vy belongs to VMO, then the thematic completion of vy is quasi-

continuous. Similarly, if the column wy belongs to VMO, then the thematic completion of
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wo 1S quasi-continuous. Thus «, B are inner, co-outer, quasi-continuous functions of types

n X (n—1) and m x (m — 1) respectively.

Lemma 3.1.15 ([24], p. 316). Let m,n > 1, let G € H*(D,C™*") 4+ C(T,C™*"), let
|He|| = to and let Qy € H>®(D,C™ ™) be at minimal distance from G, so that in the

notation of Lemma 3.1.12,
toUo 0
W(G — V=
(G — Q1) ( 0 F)

for some F € H>*(D,C™~ =1 4 C(T,C™"~1). Let
& ={G-Q:Qe H*D,C™"),[|G - Qlloc = to}-

Then
toUo 0

WE&EV =
0 F + Hoo(ﬂ)j@mflxnfl)

) N B(to),

where B(tg) is the closed ball of radius ty in L>(T,C™*™).

Lemma 3.1.16 ([25], p. 16). Let G € H*>®(D,C™") + C(T,C™*") and let (xo,y0) be a
Schmidt pair for the Hankel operator Hg corresponding to the singular value to = ||Hg||. Let
xo = &ho be the inner-outer factorisation of xo, where & € H™(D,C") is the inner and

ho € H*(D,C) is the scalar outer factor of ¥y € H*(D,C"), and let
Vo= (50 5éo>

be a unitary-valued function on T, where ag € H*®(D, C™* "=V is inner, co-outer and quasi-

continuous. Then .

Vo(o mm,c))
is the orthogonal projection of H*(ID,C") onto the pointwise orthogonal complement of xq in
L*(T,C"). Similarly

‘/0* (0 HZ(]D)’Cnfl)J_)
is the orthogonal projection of H*(D,C")* onto the pointwise orthogonal complement of x
in L*(T,C").

Lemma 3.1.17 ([25], p. 16). Let G, o,y be defined as in Lemma 3.1.16 and let K, L be the
projections of H?(D,C"), H*(D,C™)t onto the pointwise orthogonal complements of xg, yo
in L*(T,C"), L*(T,C™) respectively. Let Qo € H*®(D,C™ ™) be at minimal distance from
G, let F be the (2,2) block of Wo(G — Qo)Vo, as in Lemma 3.1.12, that is,

Vo= (fo 560) , Wy = (770 50>T (3.7)

are unitary-valued functions on T, g, By are inner, co-outer, quasi-continuous functions of

sizen x (n—1),m x (m — 1) respectively and all minors on the first columns of Vo, W are

65



3.1. Known results

in H®. Let Q € H*(D, C™*") satisfy

(G — Q)zo = [[Hellyo,  4(G — Q) = [[Hellag.

Then Hp is a unitary multiple of the operator

I < P:Mg_qlK, (3.8)
where Mg_q: L*(T,C") — L*(T,C™) is the operator of multiplication by G — Q. More
explicitly, if Uy: H?*(D,C" ') = K, Uy: H*(D,C™ 1L — L are defined by

0 0
U = Ve ( ) U= W <w> forall x € HX(D,C*™), ¢ € H*(D,C™),
X

then Uy, Uy are unitaries and

Hp = U;TU,.

Lemma 3.1.18 ([24], p. 337). Let « € QC of type m x n, where m > n, be inner and
co-outer. There exists A € H*(D,C"™) such that Ao = I,,. Here I,, denotes the n X n

identity matriz.

Theorem 3.1.19 gives the algorithm for the superoptimal analytic approximant con-
structed in [25].

Theorem 3.1.19 ([25], p. 17). Let G € H®(D,C™ ") + C(T,C™*™). The superoptimal
approzimant AG to G is given by the following formula.
If Hg = 0, then AG = G. Otherwise define spaces K; C L*(T,C"), N; C L*(T,C™), vectors
X; € Kj, ¥; € Nj, H*® functions (), operators I'; and positive \; as follows.
Let

Ky = H*(D,C"), No=H*D,C™)*, Qy=0.

Let
[y = Py, Mg—q,|k;: K = Ny, Ay = [T,

where Py, is the orthogonal projection onto Nj. If \; = 0 set r = j and terminate the
construction. Otherwise let x;,1; be a Schmidt pair for I'; corresponding to the singular value
Aj. Let Kjqq be the range of the orthogonal projection of K; onto the pointwise orthogonal
complement of xo,- -+, x;j in L*(T,C"). Let N1 be the projection of N; onto the pointwise
orthogonal complement of g, -+ ,; in L*(T,C™). Let Q;+1 € H®(D,C™ ™) be chosen to
satisfy, for 0 < k <7,

Qjri Xk = Gxk — t¥r,  VQj11 = VG — tiX;-

Then each I'j is a compact operator, Q); with the above properties does exist, the construction

terminates with r < min(m,n) and
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3.1. Known results

r—1
NjiX;
G- AG = E T
j=0 JAI

We shall derive a similar formula for the superoptimal analytic approximant AG, by making

use of exterior products of Hilbert spaces.
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3.2. Algorithm for superoptimal analytic approximation

3.2 Algorithm for superoptimal analytic approxima-
tion

In this section we consider the superoptimal analytic approximation problem 1.1.3 for a
matrix-valued function which lies in H*(D, C™*")+C(T, C™*"). In particular, in Subsection
3.2.1 we state the algorithm for calculating the superoptimal approximant in that instance,
and moreover, in the subsections that follow, we prove the validity of all the claims which
are being made. Throughout we make use of the main result of Peller and Young from [24],
which asserts that Problem 1.1.3 is solvable (see Theorem 1.1.4).

3.2.1 The algorithm

Let G € H*(D, C™*"™)+C(T, C™*™). In this subsection we shall give a fuller and more precise
statement of the algorithm for AG outlined in Section 1.2, in preparation for a subsequent
formal proof of Theorem 3.2.59, which asserts that if entities 7, t;, z;, y;, h; fort =0,... , r—1,

are generated by the algorithm, then the superoptimal approximant is given by equation

r—1
tiyix;
AG:G—; TR

The proof will be by induction on r, which is the least index 7 > 0 such that
T; = 0, where Ty = Hg,Th,Ts, ... is a sequence of operators recursively generated by the

algorithm.

Algorithm: For the given G € H>(D,C™*") + C(T,C™*™), the superoptimal analytic
approximant AG € H* (D, C™*"™) can be constructed as follows.

i) Step 0. Let Ty = Hg be the Hankel operator with symbol G as defined by Definition
1.2.4. Let ty = ||Hg||. If to = 0, then Hg = 0, which implies G € H>°(ID, C™*™). In this case,
the algorithm terminates, we define r to be zero and the superoptimal approximant AG is
given by AG = G.

Suppose tg # 0. By Hartman’s Theorem 3.1.2, H¢ is a compact operator and so there exists
a Schmidt pair (xg,yo) corresponding to the singular value t, of Hg. By the definition of a

Schmidt pair (x¢,yo) for the Hankel operator
Hg: H*(D,C") — H*(D,C™)*,

Ty € HQ(D,CTL), Yo € HZ(D,Cm)J_

are non-zero vector-valued functions such that

Hegxo = toyo, Heyo = toxo.
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3.2. Algorithm for superoptimal analytic approximation

By Lemma 3.1.12, zo € H*(D,C") and zjy € H*(D,C™) admit the inner-outer factorisations

xo = &oho,  ZYo = noho (3.9)

for some scalar outer factor hy € H?(ID, C) and column matrix inner functions &, € H*(D,C"),
no € H>*(D,C™). Then

lzo(2)[lcr = |ho(2)] = ||yo(2)||cm almost everywhere on T. (3.10)

We write equations (3.9) as -
Lo <Yo
=2 = 277 3.11

By equations (3.10) and (3.11),
I€o(2)|lcn = 1 = ||no(2)]|cm almost everywhere on T.

By Theorem D.2.4, every function Q1 € H* (D, C"™*") which is at minimal distance from G

satisfies
(G = Q1)ro = toyo, Yp(G — Q1) = toxy. (3.12)

ii) Step 1. Let

def

X, = EAHA (D, C). (3.13)

By Proposition 3.2.3, X} is a closed subspace of H?(ID, A>C").
Moreover
nAzH?*(D,C™) C zH?*(D, A>°C™)

and therefore

oAzH?(D,C™) C ZH?(D, A\2C™),

that is, if

Y, ¥ AH? (D, C™)* (3.14)

then Y] is a closed subspace of H?(D, A2C™)*. Choose any function Q; € H*>(D,C™*")
which satisfies equation (3.12). Consider the operator T7: X; — Y; defined by

Ti(oAr) = Py, (MoA(G — Q1)) for all z € H*(D,C"), (3.15)

where Py, is the projection from L*(T,A*C™) on Y;. By Corollary 3.2.5 and Proposition
3.2.8, T} is well-defined. If T} = 0, then the algorithm terminates, we define r to be 1 and, in

accordance with Theorem 3.2.59, the superoptimal approximant AG is given by the formula

r—1
tiyir;  Toyory
G- AG = L= ,
2P " Thp

69



3.2. Algorithm for superoptimal analytic approximation

and the solution is
toYoxy

|hol?

Suppose T; # 0 and let ¢; = ||71]| > 0. By Theorem 3.2.10, 7} is a compact operator and
so there exist v; € H*(D,C"), w; € H*(D,C™)+ such that (§Avy, foAw,) is a Schmidt pair
for T} corresponding to t;. By Proposition 3.2.2, {Avy € H?(D, A2C™). Let hy be the scalar

outer factor of {Av, and let

AG =G —

z1 = (Ien — &E5)v1, y1 = (Iem — Tong )wi, (3.16)

where Icn and Iem are the identity operators in C™* and C™ respectively. Then, by Proposition
3.2.24,
|z1(2)|lcn = |h1(2)| = ||y1(2)]|cm almost everywhere on T. (3.17)

By Theorem 1.1.4, there exists a function @, € H>*(D,C™*") such that both

sP(G — Q2) and s5°(G — Q)2) are minimised and
S?(G — Qg) = tl.
By Proposition 3.2.27, any such (), satisfies

(G — Q2)xo = toyo, Y5(G — Q2) = tox;

(3.18)
(G = Q)1 =tiyr, Yi(G—Q2) =tia].
Define o
x 2Y1
_ 1 =27 Nl
&1 I m I (3.19)

By equations (3.17) and (3.19), ||&1(2)||cn = 1 = ||m1(2)]|c» almost everywhere on T.
iii) Step 2. Define

X, ¥ HAGAHA(D,CM)

Y, ¥ AmAH2(D,Cm)L,

Note that, by Proposition 3.2.3, X, is a closed linear subspace of H?(D, A3C"), and, by
Proposition 3.2.6, Y5 is a closed linear subspace of H?*(ID, A3C™)L. Choose any function
Q2 € H>*(D,C™*™) which satisfies equations (3.18). Consider the operator To: Xy — Y5
given by

Ty (EoAé1AT) = Py, (o AA(G — Q9)1), (3.20)

where Py, is the projection from L*(T,C™) on Yj.
By Corollary 3.2.7 and by Proposition 3.2.8, T; is well-defined, that is, it does not depend on
the choice of @y € H*(D, C"™*") satisfying equations (3.18). If 75 = 0, then the algorithm

terminates, we define r to be 2 and, in accordance with Theorem 3.2.59, the superoptimal
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3.2. Algorithm for superoptimal analytic approximation

approximant AG is given by the formula

r—1
tiyir;  toyory i)
G- AG = L — .
2P T T P

If Ty # 0, then let ¢ty = ||T3||. By Theorem 3.2.37, T5 is a compact operator and hence there
exist v, € H2(D,C"), wy € H*(D, C™)* such that

(EoA&1 AV, ToAT Aws)
is a Schmidt pair for T, corresponding to ||T3|| = t2. Define xo, yo by

Ty = (Icn — &€ — 6167 )va, Yo = (Iom — Tomg — iy )ws.

By Proposition 3.2.40, (A8 Ave € H2(D, A3C™). Let hy € H*(D, C) be the outer factor of
EoAE Avy. By Proposition 3.2.40,

lz2(2)llen = [h2(2)] = [l2(2)llcm

almost everywhere on T. Define

Ty _ 2y
h27 772

§o = _h_g‘

It is easy to see that ||£2(2)||cn = 1 and ||92(2)||cm = 1 almost everywhere on T.

iv) Recursive step. Suppose that, for j < min(m,n) — 2, we have constructed

to>t > >t >0

To, 1, -+ ,x; € L*(T,C")

Yo, Yr. ooy € LA(T,C™)

ho, hy, - -+, h; € H*(D,C) outer

0,81, ,& € L*(T,C") pointwise orthonormal on T (3.21)
Mo, M1, ,m; € L*(T,C™) pointwise orthonormal on T
Xo=H*D,C"), X1, , X

Yo = H*D,C")", Yy, Y]

Ty, Ty, - ,T; compact operators.
By Theorem 1.1.4, there exists a function Q;+; € H* (D, C™*™) such that
(SSO(G — Qj+1), s7°(G = Qjt1), -+, 5751(G — Qj+1>)
is lexicographically minimised. By Proposition 3.2.47, any such function ();;, satisfies
(G —Qjr)v =tiyi, v (G— Q1) =twy, 1=0,1,---,7. (3.22)
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3.2. Algorithm for superoptimal analytic approximation

Define
def

X1 = &GAGA - AGAH? (D, C") (3.23)
Vi1 & ioAmA -+ A AH? (D, C™)*. (3.24)

Note that, by Proposition 3.2.3, X, is a closed subspace of H?(ID, A7*2C™), and, by Proposi-
tion 3.2.6, Yj;; is a closed subspace of H?*(D,At2C™)t. Choose any function
Qj+1 € H*(D, C™*™) which satisfies equations (3.22). Consider the operator

Tj1: Xj1 = Yin

given by
Tin1(QAGA -+ AgAT) = Py, (MATRA -+ AlA(G — Q1)) (3.25)

for all z € H*(D,C"). By Corollary 3.2.7 and by Proposition 3.2.8, T}, is well-defined. If
T;+1 = 0, then the algorithm terminates, we define r to be j + 1, and, in accordance with

Theorem 3.2.59, the superoptimal approximant AG is given by the formula

r—1 7
B Liyie; Liyiry
CoAG= 2 T T X e

Otherwise, we define ¢;1 = ||Tj4+1]| > 0. By Theorem 3.2.54, T}, is a compact operator and
hence there exist v;,; € H*(D,C"), w;+; € H*(D,C™)* such that

(fo/\fl/\ cee /\§j/\vj+1, 770/\771/\ cee /\ﬁj/\ij) (326)

is a Schmidt pair for T}, corresponding to the singular value ¢;,;.
By Proposition 3.2.2,
50/\51/\ <. /\fj/\Uj.;,.l S HQ(]D, /\j+2C”).

Let h;1 be the scalar outer factor of AL A -« - ALjAv 41, and let
Tigr = (Ior — &6 — - = §E 41, Yjer = em —Tomg — -+ — ) Jwjsr. (3.27)
By Proposition 3.2.57,

12541 (2)llen = 1hja(2)] = [[g541(2)llcm

almost everywhere on T. Define

L g = (3.28)
j+1

Eiy1 =
hj+1

It is easy to see that ||€;11(2)]|cn = 1 and ||nj41(2)|[cm = 1 almost everywhere on T. This

completes the recursive step. The algorithm terminates after at most min(m,n) steps, so
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3.2. Algorithm for superoptimal analytic approximation

that, » < min(m,n) and, in accordance with Theorem 3.2.59, the superoptimal approximant

AG is given by the formula

[y

T *

Liyix;
e I O

3.2.2 Pointwise orthonormality of {(; g:l and {7; g:l almost every-

where on T

Proposition 3.2.1. Let m,n be positive integers with min(m,n) > 2, let
G € H>®(D,C™"™) + C(T,C™*") and let 0 < j < min(m,n) — 2. Suppose we have ap-
plied steps 0, ..., 7 of the superoptimal analytic approximation algorithm from Section 3.2.1
to G and we have obtained x;,y; as in equations (3.27), and &, n; as in equations (3.28) for
alli=0,---,45. Then

(i) &Avr = GAz, A A Ay = GA- A ATy, Awr = oAy,
and ’f]o/\ te /\ﬁj_l/\wj = 770/\ te /\ﬁj_l/\yj;
(i1) for alli=0,--- 4, |x:i(2)|lcn = |yi(2)||cm = |hi(2)| almost everywhere on T;

(iii) the sets {&(2)Y_, and {7;(2)}_, are orthonormal in C" and C™ respectively for almost

every z € T.

Proof. We will prove statements (ii) in Propositions 3.2.24 and 3.2.40. Statement (i) is
proven below in equations (3.32), (3.35), (3.38). Let us prove assertion (iii).

Since the function G belongs to H* (D, C™*") 4 C(T,C™*"), by Hartman’s theorem, the
Hankel operator with symbol G, denoted by Hg, is a compact operator, and so there exist

functions
Ty € Hz(]D), Cn), Yo € H2(D,Cm)J—

such that (zg,yo) is a Schmidt pair corresponding to the singular value tq = ||Hg|| # 0. By

Lemma 3.1.12, xq, 2§y admit the inner-outer factorisations
zo = &oho,  ZYo = Moho

for column matrix inner functions & € H*(ID, C"), ny € H>*(D,C™) and some scalar outer
factor hy € H*(D,C). By Theorem D.2.4,

|zo(2)|lcn = |ho(2)| = ||yo(2)]|cm almost everywhere on T. (3.29)

Thus
|€0(2)|lcn = 1 almost everywhere on T. (3.30)

Hence (iii) of Proposition 3.2.1 holds for {&;(2)}/_, in the case that j = 0.
Let T} be given by equation (3.15). By the hypothesis (3.21), T} is a compact operator, and
if Ty # 0, then there exist v; € H%(D,C") and w; € H*(ID,C™)* such that (§Avy, joAw,)

73



3.2. Algorithm for superoptimal analytic approximation

is a Schmidt pair corresponding to ||T}| = t;. By Proposition 2.2.13, &Avy € H? (D, A2C™).
Let hy be the scalar outer factor of {Av;. We define

r1 = (Ien — &&g)v1 (3.31)
and
& = ]f—l
Then, for z € D, . )
§i(z) = F(z)vl(z) - mfo(z)fo(z)*vl(z)

Note that by equation (3.30),
§5(2)&(2) = (€0(2),&(2))cn =1 almost everywhere on T,

hence

(€1(2): &o(2))er = &5(2)61(2) = %(z)go(z)*m(z) - %(Z)

almost everywhere on T. Note that, by equation (3.31), for almost every z € T,

50(2)*50(2)&)(2)*1}1 (z) =0

§o(2) Avi(2) = &o(2) A (21(2) + &o(2)60(2) 01(2))
= &o(2) Ax1(2) + &o(2) A &o(2)60(2) v1(2))
= &o(2) A 21(2), (3.32)

the last equality following from the pointwise linear dependence of the vectors & and
2+ &o(2)(v1(2),&(2))cn almost everywhere on T.
By Proposition 2.2.13, {,Av; € H?(D, A2C™). Let hy be the scalar outer factor of &yAv;.

Then, for almost every z € T, we have

h(2)] = [160(2) A vi(2)[lazen = [1€0(2) A 21(2) || r2cn,

By Lemma 2.1.22,

1€0(2) A 21 (2)][nzen = [|21(2) = (21(2), €o(2))eno(2)llen = [[21(2)len

almost everywhere on T. Hence, for almost every z € T,
h(2)] = llz1(2)len (3.33)

and thus
i (2)len

||§1<Z)||(C" - |h1(2’>|

Consequently, {£o(2),&1(2)} is an orthonormal set in C™ for almost every z € T. Hence (iii)

=1 almost everywhere on T.
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of Proposition 3.2.1 holds for {&(2)}/_, in the case that j = 1.

Recursive step: Suppose the entities in equations (3.21) have been constructed and
have the stated properties, for i = 0,...,5 — 1, and that {fl(z)}f;é is an orthonormal set
almost everywhere on T. Since by the inductive hypothesis 7} is a compact operator, there

exist
v; € H*(D,C"), w; € H*(D,C™)*

such that
(EoAGLA - - - A& Avy, g AT A - - - ATy Awy)

is a Schmidt pair for T; corresponding to || 7}|| = ¢;. Let us first prove that AL A -+ - A& 1A,
is an element of H?(ID, AT'C"). By hypothesis,

X

;= (I —&& — - —&&_ ) and & = W

fori=0,...,7 — 1. Then, for all z € D,

(EoAELA -+ A&j_1Av;) (2) = (gOAﬂA . Axﬂ'—lmj) (2)
hl hj,1

— (_ . 50/\3;'1/\“'/\.%]'1/\@]') (Z)

hy j—1
We obtain
. . . 1 1 . . .
(fo/\fl/\ s /\fj,l/\vj)(z) = h_ cee A 50/\1}1/\ cee /\’Ujfl/\’Uj (Z), for all z € D,
1 j—1

due to pointwise linear dependence of {;, and £x& on D, for all £ = 0,...,7. By Proposition
2.2.8,

L L hnA A

—_— . e e U DY U s U

hl hj_l 0 1 j—1 J
is analytic on ID. Moreover, by Proposition 2.2.14, since &y, &1, . .., §;—1 are pointwise orthog-
onal on T,

[0AGIA -+« A1 A || L2 pi+rcmy < 00

Therefore

50/\51/\ B /\Ej_l/\vj S HQ(]D), /\j—i-l(:n)‘

Let h; be the scalar outer factor of {A&A -+ Ag;—1Av;. We define

zj = (Ien — &5 — - — &85 1)V, (3.34)
and
x .
&=,
J hj
We will show that {£(2),- - ,&-1(2),&;(#)} is an orthonormal set in C" almost everywhere
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on T. We have ) ) .
&= h—jvj — h—jﬁofékvj — = h—jfj—lf}k_Wj,
and so, forall e =0,...,7 — 1,
€ (2)05(2) — —— €1 (o2 (2)n (2)
f(2)vi(2) — ——&(2)&0(2)E (2)vi(2) — - - -
i J hj(Z)Z 0 0 1
1

hj(z)

almost everywhere on T. Note that by the inductive hypothesis, for all ¢,k =0,1,--- ;5 — 1

<§j(z)7 gz(z»(cn =

h;(2)

& (2)€-1(2)&5_1(2)v1(2)

and for almost all z € T,

y 0, fori#k
§i(2)6(2) = { 1, fori=k
Thus, for all7=0,...,57 — 1,
* 1 * *
(6(2). 60 = 6 ) — s REEIE () =0
almost everywhere on T, and hence, by induction on j and for all integers 7 =0,...,r — 1,

{&(2), -+ ,&-1(2),&;(2)} is an orthogonal set in C” for almost all z € T.
Let us show that

So(2) A ANEa(2) Awi(2) = &o(2) Ao AEaa(z) A xy(2)

almost everywhere on T.
Equation (3.34) yields

So(2) A ANEg-1(2) Aj(z) = &o(2) A=+ Agaa(2) A ((2) + &o(2)65(2)v;(2)
+ o+ &m1(2)6 1 (2)v(2))
=&o(2) A+ NEa(2) A (@5(2) + &o(2){v;(2), &o(2))en + -
+ -+ &m1(2)(v5(2), €-1(2))en)

almost everywhere on T. Notice that, for all ¢ = 0,---,5 — 1, the vectors & and
2 = &(2)(vj(2),&(2))cn are pointwise linearly dependent almost everywhere on T. Thus

foralli=0,---,5—1,

So(2) A AEia(2) A&i(2)(viga(2), 6i(2))en = 0

almost everywhere on T.

Hence

Eo(2) N NE1(2) ANvj(2) = Eo(2) A -+ ANEj—1(2) Axj(2)  almost everywhere on T. (3.35)
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Next, we shall show that [|£;(2)|lcr = 1 for almost all z € T. Recall that h; is the scalar
outer factor of & AGLA -+ - A _1Av;, and therefore

[25(2)] = 60(2) A -+ A&a(2) Aoy (2)[[asmren = (1€ (2) A== Aia(2) A (2) [

almost everywhere on T.
By the inductive hypothesis, {{(2), -+ ,&—1(2)} is an orthonormal set in C" for almost all
z € T, hence, by Lemma 2.1.22,

hy()] = 1€(2) A+ A &5a(2) Azg(lasmee

= [l25(2) = D _(w;(2), &i(2)&(2) e
i=0

= ||z;(2)||cn almost everywhere on T. (3.36)

o Iz,
Ti\Z Cnr
16 () len = A =1
’ |7 (2)]

almost everywhere on T, and hence, by induction on j and for all integers j =0,...,r — 1,
{&(2), -+ ,&-1(2),&(2)} is an orthonormal set in C™ for almost all z € T.

Next, we will prove that the set {7;(z)}/_,, defined in equations (3.28), is orthonormal.
For i = 0, by equation (3.29), we have

170(2)|lcm = 1 almost everywhere on T. (3.37)

Hence (iii) of Proposition 3.2.1 holds for {7;})_, in the case j = 0. Let T} be given by
equation (3.15). T is assumed to be a compact operator, and if T} # 0, v; € H*(D, C") and
wy € H*(D, C™)* are such that (§,Avy, foAw; ) is a Schmidt pair corresponding to ||73]| = ;.

Suppose h; is the scalar outer factor of &yAv,. Let
y1 = (Iem — omg Jwi = w1 — Tjony Wi

and let

m(z) = almost everywhere on T.

Then

7(z) = 2yo(z) _ 2w (2)  2io(2)ng (2)wi(2)

1
— == almost everywhere on T.
h(z)  Tu(z) h(2) Y

By equation (3.37), ||70(2)||cm = 1 almost everywhere on T. Hence

77



3.2. Algorithm for superoptimal analytic approximation

— ) —
hl(z) h1<2)
@) () ) (e (2)
hi(z) hi(z)
zng (DJwi(z)  2ng (2)wi(2)
(

=0 almost everywhere on T.

Recall that hy is the scalar outer factor of {yAvy. By equation (3.33) and Proposition 3.2.24,

1 (2)

e = lga()llem = Iha(2)

almost everywhere on T, thus

_ Nz @)llem

171 (2)|lem = —= =1 almost everywhere on T.
|h(2)]

Consequently, {7(z),71(2)} is an orthonormal set in C™ for almost every z € T. Hence (iii)
of Proposition 3.2.1 holds for {7;})_, in the case j = 1.

Recursive step: Suppose the entities in equations (3.21) have been constructed and
have the stated properties, for i = 0,...,7 — 1, and that {ﬁi(z)}g;é is an orthonormal set
almost everywhere on T. Since by the inductive hypothesis 7 is a compact operator, there

exist

v; € H*(D,C"), w; € H*(D,C™)*
such that
(G A&A -+ - AL 1 Avj, o AA - - - A1 Aw)
is a Schmidt pair for 7} corresponding to ||T;|| = t;. By Proposition 3.2.2,

EoA - A1 Avy; € HA(D, NVTIC).

Let h; be the scalar outer factor of AGA - -+ A1 Av;. We define

yj = (Iem — Tong — - — Mj—1m) 1 )w;
and
T
J h] .
Let us show that {7y(2),...,n;(2)} is an orthonormal set in C™ almost everywhere on T.
We have I
AW e
7; l_lj Bj
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3.2. Algorithm for superoptimal analytic approximation

and so, fort=0,...,7 — 1,

almost everywhere on T.

Notice that, by the inductive hypothesis, for all 7,k =0,...,7 — 1 and for almost all z € T,

0, fori#k
1, fori==Fk

m; (2)7w(2) = {

Hence, for allt=0,...,7 — 1,

_ oz (Rwi(z)  and (Dw;(2)

(13 (2), mi(2))em = — = =0
’ h;(z) hj(z)
almost everywhere on T. Thus by induction on j and for all integers 7 = 0,...,r — 1,
{M0(2),...,m;(2)} is an orthogonal set in C™ almost everywhere on T.

To complete the proof, we have to prove that ||7;(z)|[cm = 1 for almost all z € T. Recall
that h; is the scalar outer factor of {EAEA -+ - AE;—1Av;. By Proposition 3.2.57,

7 ()] = llz;()llen = [ly; () llem

almost everywhere on T, thus

_ 2y;(2)
1) ew = 132 e
almost everywhere on T, and hence, by induction on j and for all integers j =0,--- ,r — 1.
{M0(2),...,7;(2)} is an orthonormal set in C™ almost everywhere on T.
Note that, for j=1,...,7r—1,
oA -+ - Afj—1Ay; = oA - - A1 A(lem — Tjomg — -+ — ’f_ljfijq)wj
j—1
= oA+ Al Aw; =Y ToA -+ A1 A w;
k=0
= 770/\ s /\ﬁj,l/\wj (338)

on account of the pointwise linear dependence of 7 and z — 7;(2){w;(2), Mk(2))cm almost

everywhere on T. O]

3.2.3 The closed subspace X;,; of H*(D, N/*2C")

Notice that, although z, € H*(D,C") and & is inner, z; and & might not be in H*(D,C")

in general for i = 1,--- ,min(m,n) — 2. However, for every z € H*(ID,C"), the pointwise
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3.2. Algorithm for superoptimal analytic approximation

wedge product
Eoh - AE AT

is an element of H?(ID, AVT2C") as the following proposition asserts.

Proposition 3.2.2. Let G € H*(D,C™*") +C(T,C™"), and let j < n—2. Let the vector-
valued functions &, &1, -+ ,&; be constructed after applying steps 0,...,7 of the algorithm
above and be given by equations (3.28). Then

EoA ... AGGAH? (D, C™)
is a subset of H*(D, NT2C").

Proof. For j =0, since G € H>*(D, C™*™)+C(T,C™*™), the Hankel operator H¢ is compact.
There exist 7o € H?(D,C"),yo € H*(D,C™)* such that (zg,yo) is a Schmidt pair for the
Hankel operator Hg corresponding to the singular value ||Hg|. By Lemma 3.1.12, zo, yo

admit the inner-outer factorisations

o = &oho,  ZYo = Moho

for some inner &, € H*(D, C"),ny € H>*(D,C™) and some scalar outer hy € H*(D, C).
Then, by Proposition 2.2.13, {sAH?(D, C) € H*(D, A2C™).

Let us now consider the case where j = 1. By definition,
X; = &AHA(D,CY), Y, = AH*(D,C™)*

and, by the inductive hypothesis, T7: X; — Y given by equation (3.15) is a compact op-
erator. Suppose [|T1|| # 0 and let ({yAvy, loAw;) be a Schmidt pair corresponding to |71,
where v; € H*(D,C") and w; € H*(D, C™)*. We define

xy = (Icn — §0&5)vr-

Note that, by Proposition 2.2.13, {Avy € H?(D, A*’C™). Let hy € H?*(D,C) be the scalar
outer factor of {sAv; € H?*(D, A°C™). Then we define

X1
& =

7h_1'

Note that & and {y&jv, are pointwise linearly dependent on D, since {jv; is a mapping from
D to C. Thus, for all x € H*(D,C") and z € D, we have

x1(2)
hi(z)

(EoAEIAT)(2) = &o(2) N &1(2) Aa(2) = &o(2) A Az (z),

and by substituting the value of z, we get
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3.2. Algorithm for superoptimal analytic approximation

3 5(2) A (01(2) = &o(2)6(2) 01(2)) A a(2)

%) Av(z) Aa(z) - §0(2) A &o(2)€0(2) v1(2) A 2(2)

S
hl (2)

Note that v; € H*(D,C"), & € H®(D,C") and h; € H*(D,C) is the scalar outer factor of
&oAvi. By Proposition 2.2.8, for every x € H?(D,C"),

1 . .
—&o AN\
hlfo 1
is analytic on ID. By Proposition 2.2.14, since &, and &; are pointwise orthogonal on T,

|’§0/\§1/\9€||L2(T,/\3<cn) < 00.

Hence .
SAGAT € —&AUAH?(D,C") C HA(D, A°C").
1

Recursive step: suppose we have constructed vector-valued functions &, ...,§;-1,
Mo, - - -,Mj—1, spaces X;,Y; and a compact operator T;: X; — Y; after applying steps 0, ...,
of the algorithm from Section 3.2.1 satisfying

&]A - A§j—1/\H2(]D),<C”) C HQ(]D), /\j+1(C")_ (3.39)

Since T is a compact operator, there exist vector-valued functions v; € H?*(D,C"),
w; € H*(D, C™)* such that

(50/\ Tt /'\fjfl/'\?)j, ﬁo/\ e /\ﬁj—l/\wj>
is a Schmidt pair for 7} corresponding to ||Tj]|. Define
zj = (In — €& — -+ = §1&5-1) ;- (3.40)

By assumption, A -+ A_1Av; lies in H*(D, N TIC™). Let h; € H?*(D,C) be the scalar
outer factor of {A -+ Ag_1Av;. Define §; = 2. Note that & and z — &(2)(v;(2),&(2))cn
are pointwise linearly dependent almost everyvjvhere on T for i =0,...,5 — 1. Thus, for all
r € H*(D,C") and all z € D,
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3.2. Algorithm for superoptimal analytic approximation

:@(zm--m_mzm@(m ) — &2 ()uy(z) — - -

Cga()E 1<z>v]<z>) Aa(2)
L
hj(z)

N h.l Z&)(’Z) N NEa(2) ANG(2)E (2)v(2) A a(z)

vi(2) A (z)

1. . .
= (h—ﬁo/\"'/\ﬁj—l/\vj/\fl?> (2). (3.41)
J
Recall that, for i = 0,...,5 — 1, by the algorithm from Section 3.2.1,

Ty = (In - €0€(>)k - gi—l&;—l)vi

and

By equation (3.41), for all z € D,

J

Substituting 7 for & in the latter equation, where x; are given by equation (3.40) for all
1=1,...,7 — 1, we obtain

11

(60/\ s /\5],1/\6]/\37)(2> = (h_lh_2 s h_£0Ale /\Ujl/\Uj/\l') (Z), zeD
J

on account of the pointwise linear dependence of & and z — & (2)(vk(2),&(2))cr almost

everywhere on T for k = 0, ...,i. By Proposition 2.2.8, for every x € H?(D,C"),

11 .
—— o —&AVA - Avj AT
hihy  hy i, 7
is analytic on ID. By Proposition 2.2.14, since o, &1, . . ., are pointwise orthogonal on T,

160AGLA - - A§iAZ| L2 (T piv2eny < 00
Thus, for every x € H?(D,C"),
foAEiA -+ AgAe € HE(D, A2

and the claim has been proved. O]
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3.2. Algorithm for superoptimal analytic approximation

Proposition 3.2.3. In the notation of Proposition 3.2.2,
EA ... AGAH? (D, C)
is a closed subspace of H?*(D, NN T2C™).

Proof. Let us first show that {AH?(D, C) is a closed subspace of H%(ID, A2C™). Observe
that, by Proposition 2.2.13, {AH?(D, C*) € H*(D, A2C™). Let

o= {f € H*(D,C") : (f(2),&(2))cn =0 almost everywhere on T}.
Consider a vector-valued function w € H*(ID,C"). For all z € DD, we may write w as

w(z) = w(z) — (w(2),&(2))cnéo(z) + (w(2), &o(2))cnéo(2)-
Then, for all w € H*(D,C") and for all z € D,

(EoAw)(2) = &o(2) A (w(2) — (w(z), &o(2))enéo(2) + (w(2), &o(2))cnéo(2))
= &o(2) A (w(z) — (w(2),&(2))créo(2))

due to the pointwise linear dependence of &, and z — (w(z), &y (2))cn&o(2) almost everywhere
on T. Note that

w(z) = (w(z), &(2))enbo(2) € Zo,

thus
SAH?A(D,C") C &HAS,.

By Corollary 2.2.29, = is a closed subspace of H?*(ID, C"), hence
SAH?(D,C") D &AZ,,

and so,
SAH?(D,C") = &HAS,.

Consider the mapping
0502 EO — fO/\EO

given by
Ceow = EoAw

for all w € =y. Notice that, by Proposition 3.2.1, ||€y(e?)||2. = 1 for almost every e € T.

Therefore, for any w € =, we have
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3.2. Algorithm for superoptimal analytic approximation

. 1
||§0/\w||%2(11‘,/\2©") = 2—/ &M\w fo/\w )d‘g
0

1 i i i i
=5 / (€0 (™) IEn () IEn — Hw(e™), &(e”))]?) do
0
= HwHQL?('ﬂ‘,C”)’
since w is pointwise orthogonal to &, almost everywhere on T. Thus the mapping
C&) : E() — fO/\EO

is an isometry. Furthermore, Cg : Eg — §oAZy is a surjective mapping, thus Zy and &A=,
are isometrically isomorphic. Since Zj is a closed subspace of H%(ID,C"), hence complete,
the space §,AZ, is complete. Therefore £gAZ is a closed subspace of H?(ID, A2C"), and thus
& AH?(D,C") is a closed subspace of H*(D, A2C™).

To prove that A ... AGAH?*(D, C™) is a closed subspace of H?(D, AVT2C"), let us con-

sider
B ={f € H*(D,C") : (f(2),&(2))cn =0, fori=0,---,j}

which is the pointwise orthogonal complement of &, . .., ¢; in H*(D,C"). Let ¢ € H*(D,C").

We may write ¢ as
J J
)= S, &)+ S (), £ enbal)
1=0 =0
Then, for all ¢ € H*(D,C") and for almost all z € T,
J

—0

(oA -+ AGAY)(2) = Eo(2) A+ A <¢(2) - W(Z),&(Z))cnfi(z))

due to the pointwise linear dependence of & and z — &;(2)(¢(2), £k (2))cn almost everywhere
in

on T. Notice that (gb(z) — z:0<¢(z),fz(z))cnfl(z)> lies in Z;, thus
foh - AGAH(D,C) C €k -+ AGAZ,.
The reverse inclusion holds by the definition of =;, hence

Eoh - AGAHHD, C™) = &A - - - AGAZ,.

Consequently, in order to prove the proposition it suffices to show that §A - - - AAZ; is a
closed subspace of H?(ID, AV*2C™). By Corollary 2.2.29, Z; is a closed subspace of H*(D, C"),

being a finite intersection of closed subspaces. For any f € &,
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3.2. Algorithm for superoptimal analytic approximation

1€0AELA - - - AEAFII T2 pi+acny

ool ), S e
27 61’9 OeiH n 1€i0 2n
L g [ 6N T "
(FE). (e - 7)1

Note that f and &; are pointwise orthogonal almost everywhere on T, and, by Proposition

3.2.1, {&0(2),...,&(2)} is an orthonormal set for almost every z € T. Hence

0 0
. o 1 [ 0 1 0
”50/\51/\"'/\gj/\fHL?(’J]‘,/\H'?(C”) :%/0 det : . do
0 0 1 ()12

= 112 cny-

Thus
60/\51/\ <o /\5]/\ Ej — 50/\51/\ . /\5]/\5]

is an isometry. Furthermore
(CAELA - AEA): By 5 EoAEIA - - AGAE,

is a surjective mapping, thus =; and §A - - - A;AZ; are isometrically isomorphic. Therefore,
since =, is a closed subspace of H*(D, C"), the space &A - -- A;AZ; is a closed subspace of
H?*(D, N T2C™). Hence

Soh- - AGAH(D, C")

is a closed subspace of H?(D, A7*2C"). O

3.2.4 The closed subspace Y;;; of H*(D, NJ*2C™)+

Proposition 3.2.4. Given 1y = %) as constructed in the algorithm in Section 3.2.1, the
space o AH?(D,C™)* is a closed subspace of H?(D, A2C™)L.

Proof. As in Proposition 3.2.2, one can show that
nAzH?*(D,C™) C zH?*(D, A°C™)

and therefore

mAzH?(D,C™) C zH?*(D, A2C™).

Hence
wAH*(D,C™)* C H*(D, A°C™)".
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3.2. Algorithm for superoptimal analytic approximation

By virtue of the fact that complex conjugation is a unitary operator on L*(T,C™), an
equivalent statement to Proposition 3.2.4 is that nyAzH?*(D,C™) is a closed subspace of
zH?(D, A2C™).
Let

V ={f€zH*D,C™) : (f(2),m0(2))cm =0 for almost all z € T}

be the pointwise orthogonal complement of 7y in zH%(ID, C™).
Consider g € zH?*(D,C™). We may write g as

9(z) = 9(2) = (9(2),m0(2))cm - no(2) + (9(2), m0(2))em - 10 (2)

for every z € D. Then, for all g € zH?(D,C™) and for all z € D,

(mAg)(2) = m0(2) A [9(2) — (9(2),m0(2))cmo(2)]

on account of the pointwise linear dependence of 7y and (g, 7o) g2(,cm)no on D.
Note that g(z) — (g(2),n0(2))cmno(2) € V, thus

noAzH?*(D,C™) C noAV.
The reverse inclusion is obvious, hence
noAzH*(D,C™) = noAV.
To prove the proposition, it suffices to show that
oAV

is a closed subspace of

zH?*(D, A*C™).
Consider the mapping

0770 V= T](]/\V

defined by
Cpov = moAv

for all v € V. Notice that, by Proposition 3.2.1, ||no(e?)||%. = 1 for almost every ¢ € T.

Then, for any v € V., we have

2w

. 1 .
Al pocmy = 5= [ (Ao, mAo)(e)ds,
0

which is in turn equal to
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3.2. Algorithm for superoptimal analytic approximation

2
%/(I|no(€w)|l(2cm||v(€ En = 1), mo(e)?) db = [vllFeer.cmy,
0

since v is pointwise orthogonal to 79 almost everywhere on T. Thus the mapping
Cpy: V= oAV is an isometry.
Note that by Corollary 2.2.29, V' is a closed subspace of zH?(ID, C™). Furthermore,

Cpy: V= oAV

is a surjective mapping, thus V' and nyAV are isometrically isomorphic. Since V' is a closed
subspace of zH?(D,C™), the space oAV is complete and therefore a closed subspace of
2zH?*(D, A2 C™). Hence foAH?(D,C™)* is a closed subspace of H?*(ID, A2C™)*. O

Corollary 3.2.5. The orthogonal projection Py, from L*(T,\>C™) onto oAH?(D,C™)* is
well-defined.

Proof. By Proposition 2.2.25, H?*(ID, A*C™) can be identified with a closed subspace of
L*(T, A>C™), thus we have

H*(D, A*C™)* = L*(T, A’ C™) © H*(D, A°C™).
Now the assertion follows immediately from Proposition 3.2.4. [

Proposition 3.2.6. Let 0 < j < m —2. Let the functions 7; be given by equations (3.28) in
the algorithm from Section 3.2.1, that is, n; = % for allt=0,--- 4. Then, the space

HoAMA - - - An;AH?(D, C™)*
is a closed linear subspace of H?(D, N'T2C™)L.
Proof. First let us show that, for every x € H?(D, C™),
mAmMA - AnjAzz € zH*(D, NV T2C™).

Recall that

yj = (I — Tomy — -+ — 773‘7177?—1)1”1
and
j—1
T]()/\ ce /\T]j_lj\zgj = T]o/\ ce /\T]j_lj\(zwj - Z 7]1'7]:511_)]') = T]Q/\ ce /\T]j_lj\zwj (342)
=0

because of the pointwise linear dependence of n; and n;n; zw;,; on D.
By Proposition 3.2.57,

hi(2)] = llgi(2)lem
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3.2. Algorithm for superoptimal analytic approximation

almost everywhere on T.
Substituting n; = Eh—% foralli=0,...,j5 — 1 in equation (3.42), we obtain
11 1

o — N AZWA - - - AZaD; .

MoA -+ Anj—1AZy; = i
J

Observe that, by Proposition 2.2.8, for every x € H?(ID,C™),

11 1 . . . .

— e — 1 AZWNN - - - ANZW;N\zZT

hohy hy y
is analytic on D. By Proposition 2.2.14, for all z € H*(D, C™), since n, - - - , 7; are pointwise
orthogonal on T,

[noAmA - - A77j/.\2$||L2(1r,m+2<cm) < Q.
Hence, for every x € H*(D,C™),

. . 11 1 . . . .
MoAMN - - ANjAZx = Z2=——— "+ —NoNZW A\ - - - NZw;\x
ho hq h;

is in zH*(D, AVT2C™).
Taking complex conjugates, we infer that

Vi1 & noA - A1 A AHA(D, C™E ¢ HX(D, N F2C™)*.

Let us prove that Yj,; is a closed linear subspace of H?(D, A7"2C™)+. Since complex

conjugation is a unitary operator on L*(T, C™), an equivalent statement to the above is that
mAmA - AnAzH*(D, C™)

is a closed linear subspace of zH?*(ID, AT2C™).
Let
‘/j = {90 € ZH2<D7Cm) : <90(Z)7771(Z)>(Cm = 07 for i = 07 T 7]}

be the pointwise orthogonal complement of 7g,---,n; in zH*D,C™). Consider
f € zH?*(D,C™). We may write [ as
J J
f(2) = f(z) =Y (FEmm(z) + > (Fz),m(2)mi(2).

=0 =0

Then, for all f € zH?(D,C™) and for almost all z € T,

(moAmA -+ AniAf)(2) = mo(2) Amu(z) A=+ Ani(2) A (f(Z) - (f(2), m(Z)m(Z')) :

=0
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Notice that (f(z) — i(f(z),m(z)}n,(z)) € Vj, thus

i=0
770/\771/\ s /\T]j/\ZH2(D, (Cm) C 770/\771/\ cee /\T]]/\‘/J
The reverse inclusion holds by the definition of V;, hence
nAmA - AnjAzH*(D,C™) = noAmA - - - An;AV;.

Consequently, in order to prove the proposition it suffices to show that noAnA -« An;AV;
is a closed subspace of zH?*(D, A7*2C™). By Corollary 2.2.29, V; is a closed subspace of
zH?*(D,C™), being an intersection of closed subspaces. For any f € V;, we get

[noAmA - - /\77j/\f||%2(1y,/\j+2cm)

lI70(e”) [ a (mo(e”), f(e?))cm
1 2 e), o (€)Y em )12,
1o ()2 "
2m Jo :
(f(e?),m0(e”))cm = £ (%) I
Note that f and 7,; are pointwise orthogonal almost everywhere on T and, by Proposition
3.2.1{no(2),...,m;(2)} is an orthonormal set for almost every z € T. Hence
0
L . 1 [ o1 ---
[moAmA - A Af z20p pivecm) = %/ det | . do
0 o :
00 I1f (€)1
= 1 lZ2wcm-
Thus

770/\771/\- ../\nj/\-: Vi — 770/\771/\. /\nj/\v;

is an isometry. Furthermore
(o AmA -+ AmiA-): Vi = moAmA -+ An;AV;

is a surjective mapping, thus V; and noA - - - An;AV; are isometrically isomorphic. Therefore,
since V; is a closed subspace of zH?*(ID, C™), the space moA -+ An;AV; is a closed subspace
of zH?*(D, N"T2C™). Hence

oA - A AH*(D, C™)*

is a closed subspace of H2(ID, AVT2C™)L. O
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3.2. Algorithm for superoptimal analytic approximation

Corollary 3.2.7. Let 0 < j < m — 2. The orthogonal projection
Py, : L*(T, NT?C™) = Y

is well-defined.

Proof. By Proposition 2.2.25, H?(ID, A7*2C™) can be identified with a closed subspace of
L*(T, A*2C™), thus we have

H*(D, NN T2C™)*+ = LA(T, MV T2C™) © H*(D, NN T2C™).
Now the assertion follows immediately from Proposition 3.2.6. m

3.2.5 1Tj is a well-defined operator

Proposition 3.2.8. Let G € H*(D,C"™*") 4+ C(T,C™*™) and let 0 < j < min(m,n) — 2.
Let the functions &, n; be defined by equations (3.28), that is,

A 2771

fori=0,--- .7 and let
X; = EAEA - AGAH?(D,C™) € H*(D, AN"TIC™), i=0,---,7,
Y = oA A -+ A1 AH? (D, C™)- € H*(D, AT'C™), =0, , 4.
Let Q; € H>®(D,C™ ™) satisfy
(G = Qi)wp =teyr, (G — Qi)"Y = ley (3.44)

forallk=0,...,9—1.
Then, the operators T;: X; — Y;, 1 =0,--- 4, given by

are well-defined and are independent of the choice of Q; € H® (D, C™*™) satisfying equations
(3.44).

Proof. By Corollary 3.2.7, the projections Py, are well-defined for all ¢ = 0,--- , 7. Hence it
suffices to show that, for all + = 0,1,--- , 4, T; maps a zero from its domain to a zero in its
range and that 7; does not depend on the choice of @Q);, which satisfies equations (3.44).

For i = 0, the operator Ty is the Hankel operator Hg. If fo = 0, then Hgfo = 0 and,
moreover, He is independent of the choice of any Q € H*(D,C™*") as Hg_qg = Hg. Thus,
Ty is well-defined.
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For ¢ = 1, let (zo,y0) be a Schmidt pair for the compact operator Hg corresponding to
to = ||Hg||, where 2y € H*(D,C") and yo € H?(D,C™)+. By Lemma 3.1.12, g, Zfjp admit the
inner-outer factorisations xg = {oho,  Z¥o = NMoho, where & € H*(D,C"), no € H*(D,C™)

are inner vector-valued functions and hy € H?(D,C) is scalar outer. The spaces X; and Y;

are given by the formulas
X, = &AHA(D,C"), Y = qoAH*(D,C™)*.
The operator T : X; — Y] is given by

T1(&Ar) = Py, (MA(G — Q1))

for all x € H*(D,C"), where Q; € H>®(D, C™*") satisfies equations (3.44).

Lemma 3.2.9. Let {Au = EAv for some u,v € H2(D,C"). Then

T_]()/\(G — Ql)u = T_]()/\(G — Ql)v.

Proof. Suppose that {gAu = EAv for some u, v € H*(D,C"). Let x = u — v, then Az = 0,

and so x and &, are pointwise linearly dependent in C" on ID. Therefore there exist maps

B, A: D — C, having no common zero in I, such that

B(2)é0(2) = M2)x(2) in C",

(3.46)

for all z € D. By assumption, @; € H>(ID, C™*") satisfies equations (3.44). Thus, for all

zeD,
toyo(z) = (G — Q1)(2)zo(2).

By equations (3.43) and (3.46),

B(2)zo(2) = B(2)ho(2)&0(2) = ho(2)A(2)x(2)

for all z € D. By equations (3.47) and (3.48), for all z € D,

folz) = (G - Qu)(2)anl2),
B = (G- Q)N

Therefore, by equations (3.43), for all z € D,

tof(2)0(2) = (G — Q1)(2)z(2)pu(z) n C™,

where

zho(2)A(2)

w(z) = B()(z)

, for all z € D.
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Hence, by Definition 2.2.2, 7y and (G — (1) are pointwise linearly dependent in C™ on D,

and so
ﬁg/\(G - Ql)l‘ =0.

Consequently,
770/\(G — Q1>U = 770/\(G - Ql)U. ]

Therefore the formula (3.45) (with ¢ = 1) does uniquely define Tiu € Y;. Next, we show
that the operator T} is independent of the choice of 1 € H>(ID, C™*"), which satisfies
equations (3.44).

By Theorem D.2.4, there exist Q1, Q2 € H*(ID, C™*") which satisfy

(G - Q1)9Uo = toYo , yS(G - Q1) = tox, (3-49)
and

(G — Qg).fo = toyo y yS(G — QQ) = tQLE‘S (350)

Then, we would like to prove that, for all z € H*(D,C"),
Py, (A (G — Q1)z) = Py (M0A(G — Q2)),
that is,
Py, (oA (@1 — Q2)x) = 0.
The latter is equivalent to the property that 7yA(Qs — Q1)z is orthogonal to fjpAp for all
x € H*(D,C") and for all o € H*(D, C™)*. As a matter of convenience, set
Az = (QQ — Ql)ZE, x € HQ(D,(Cn)
We have to prove that
<770/\AIE, /’70/\Q>L2(’]1‘7/\2(Cm) =0

for all z € H*(D,C") and all o € H*(C™)*. Note that

2

/ (o€ AA)x(c), 7o) Aa(c®)) s db,

1

(oA Az, 770/\Q>%2(T,A2<Cm) T on

which by Proposition 2.1.19 yields
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17 (o), 7o () ) em (o), 0(€))em
— [ de ) ) . ) . ) do
) <<A<ew>x<ew>, (e®)en (A2 (), g(e’e»cm)

0
1 2T
— 57 [ 1) A2, ol en a8
0
27

1

~ g [ A e e (e, ol e e db.

By Proposition 3.2.1, ||7p(€”)||cm = 1 for almost every e € T. Since Az € H*(D,C™) and
0 € H*(D,C™)*,

27
o (A 0(e®), o()ondh = {Av, 0)s2r.cm = 0.
0

Thus

27

_ _ 1 i 0\ — 1 if _ . ip i
<770/\A9C>770/\Q>L2(T,A2<cm) :% (A(e”)z(e™), mo(e”))em (Mo (e), 0(e”))cmdb
0
1 2
= 5 [ WA (), e

0

Recall that by equation (3.9), 7y(z) = zﬁyo_((z))’ z € T, so that
ol\%
oy ePyo(e®)\* e~y (el
o (e') = (—0—(9>) = #

ho(e®) ho(e®)

Therefore
1 27 ” ( ‘0)
. _ . e yy(e’ i 0N\ /= (i i
(o AAZ, o) L2(T p20m) = %/T%A(e M) (i (e”), 0(e”))em )do.
0

Recall our initial assumption was that @, Qs satisfy equations (3.49) and (3.50), conse-
quently,
yi (G — Q;) = toxh, fori=1,2.

Hence, for z € T,
Yo (2)A(2)z(2) = yg(2)(G — Q1) (2)z(z) — y5(2)(G — Q2)(2)z(2)
= (toxir — toxjr)(2)

=0.
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We deduce that

- / 7 (€M) A 2(e) o), (7)) e )0 = 0.

To conclude, we have proved that, if Q1,Q2 € H>®(D,C™* ™) satisfy equations (3.49) and
(3.50), then

Py, (oA(G = Q1)z) = Py, (oA(G — Q2)),

that is, T7 is independent of the choice of 1. Thus T is a well-defined operator.

Recursive step: suppose that functions z;_, € L*(T,C"), y;_, € L*(T,C™), outer func-
tions h;_; € H*(D,C), positive numbers ¢;, matrix-valued functions Q; € H>(D, C™ "),
spaces X;,Y; and compact operators T;: X; — Y; are constructed inductively by the algo-
rithm for all t =0,..., 7.

Let us prove that T;: X; — Y}, given by equation (3.25), is well-defined for all
0 < j <min(m,n) — 2. Note, by Corollary 3.2.7, the projection Py, is well-defined. We will
prove that T; maps zeros from its domain to zeros to its range and 7j is independent of the
choice of ); that satisfies equations (3.44).

Suppose &AGA - Aj_1Az = 0. Then xz(z) is pointwise linearly dependent on
€0(2),&(2), -+ ,&—1(2) in C™ for almost all z € T. This means there exist maps

Ayv:T—=C,Li=0--,j—1

which are non-zero almost everywhere on T and are such that

v(a(z) = 3 NIEC)

By Theorem 1.1.4, there exists a function @); € H>(D,C™*") that lexicographically min-
imises

(SSO(G - Q)v STO(G - Q)v s 78](?0(G - Q))
over all Q € H>*(D, C™*"). By Proposition 3.2.47, any such function @); necessarily satisfies

By equations (3.43),
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Then, for almost all z € T,

(G = Qj)(2)zi(z) = tiyi(2)
(G- QN = M)
(= QN — i) 1
(G- QNN = M) )
(G- Q)E LN =D ()l

G- QR =3 m(Ei)
where
1
ti)\i(Z)Zhi(Z) = pi(2).

Therefore for all z € H*(ID, C"), y(2), - -+ ,7;_1(2) and ((G —Q;)x)(2) are pointwise linearly

dependent in C™ almost everywhere on T. Hence
?70/\ e /\77]71/\(G — Q]>$ = 0

Consequently, T; maps a zero from its domain to a zero in its range.
For the operator Tj to be well-defined, it remains to prove 7 is independent of the choice
of Q; € H™(D, C™™) which satisfies equations (3.51). Let Q;, Q; € H®(ID, C™") satisfy

(G —Qj)ri=twyi, (G—Qpai=ty;, y;(G—Q;)=ta}, yi(G—Q;) =ta; (3.52)

fori=0,---,5— 1.
We would like to prove that, for all x € H*(D,C"),

Py, (oA -+ A1 A(G — Q))x) = Py, (oA - - A1 A(G — Q))x).

The latter equality holds if and only if, for all x € H?*(D,C"),

~ ~

Py, (oA - - A1 AN(Qj — Qj)z) =0

~ ~

which is equivalent to the assertion that fjoA - - - A7j;_1 A(Q;—Q;)x is orthogonal to oA - - - Afjj_1Aq
for all z € H*(D,C") and for all ¢ € H*(D,C™)*.
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Equivalently
(oA - - - /\ﬁj—l/\(Qj - Qj)% oA -+ Afj_1AQ) 2(r pi+1cmy = 0

for all z € H?(D,C") and for all ¢ € H?(C™)*. Set Az = (Q; — Q,)x, = € H*(D,C").
By Proposition 2.1.19,

(oA -+ A1 A Q) — Q). oA - -+ Aj1AQ) L2 (p pitiem)

is equal to
o (o(e), (")) em -+ (fio(e”), j-1(e"))cm (Mo(e"), q(e"))cm
= [ det - o do.
2m (Ti—1(e),70(e))em oo (T—1(e),7-1(e))em (7-1(e), q(e))cm
<A(€w)$(€w),ﬁo(ew»w/ (A(ew)x(ew)aﬁjfl(eia»cm <A(€i0)$(€w),Q(€w)>CM
Notice that Az and ¢ are orthogonal in L?(T,C™) and, by Proposition 3.2.1, {7;(2) f;& is an
orthonormal set in C™ almost everywhere on T. Also, for all i = 0,--- ,j — 1, by equations
(3.52),
(A(e”)x(e?),7;(e))em = 0] () A(e”)z(e”)
e yr(€”) o ioy i
6_7;9 * (10 S *( 160 A
= oz (0 (G = Q) — i (G - Q) () (2))
- (@) (tizix — tixix)
=0

Thus

(oA - - - /\ﬁj/\(Qj — Qj)SC’ oA - - - ATT;AQ) L2 (1 pi+icm)

(U0 e gl e
; 01 - 7o (%), q(€))cm
_ L dot (2(e"), q(e))c "
2 : :
0 ,
00 - (A(e®)x(e),q(e?))cm

= (Az,q)2(rcm) = 0.

Consequently

Py, (7oA -+ - Aji_1 A(G — Q;)z) = Py, (ifoA -+ - Aijj 1 A(G — Q)z),

and so T} is independent of the choice of @); that satisfies equations (3.51). Thus we have
proven that the operator Tj is well-defined. O]
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3.2.6 Compactness of the operators 7} and 715

In this section, we use notations from the algorithm from Section 3.2.1 to prove the com-
pactness of the operators 71,75 given by equations (3.15) and (3.20) respectively. To this
end, several auxiliary results are required.

Recall that since G € H>*(D, C"™*") 4+ C(T,C™*™), by Hartman’s theorem, the operator
Ty = Hg is compact and hence there exist zy € H*(D,C") and y, € H*(D,C™)* such that
(20, Yo) is a Schmidt pair for Hg corresponding to the singular value ||Hgl|| = .

By Lemma 3.1.12, xg, Zyp admit the inner-outer factorisations

xo = &oho,  ZYo = noho, (3.53)

where & € H>®(D,C"), ngy € H>®(D,C™) are vector-valued inner functions and hg €
H?(D,C) is a scalar outer function. Moreover there exist unitary-valued functions of types

n X n,m x m respectively, of the form

Vo = <fo 070)7 Wo = <770 50>T7 (3.54)

where oy, 5y are inner, co-outer, quasi-continuous functions of types n x (n—1), m x (m—1)
respectively and all minors on the first columns of Vo, W are in H*. Furthermore every
Q1 € H>®(D,C™ ™) which is at minimal distance from G satisfies

Wo(G —Q1)Vy = (togbo ]21>

for some

F, € HOO(]D), C(mfl)x(nfl)) + C(T, C(mfl)x(nfl))

and some quasi-continuous function uy with |ug(z)| = 1 almost everywhere on T.
Recall that
Xy = 50/\H2(D7 Cn)a Y= ﬁOAH2<D7 Cm)J_

and T7: X7 — Y; is given by

Tl(fo/\l') = Pyl [ﬁo/\(G - Ql)l’] for all x € HQ(]D), (Cn)

Our first endeavour in this subsection is to prove the following theorem.

Theorem 3.2.10. Let

0 def 0
K, v R 7 : 3.55
1 0 (HQ(D,(C”_I)> 1 0 (HZ(]D),(Cm_l)J‘> ( )

and let the maps
Up: H*(D,C" ) — Ky,

Uy: H*(D,C™ Yt = £,
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0 0
U1SE:V0<>7 Uzy:W5<>
T y

for all x € H*(D,C"'), y € H*(D,C™ ). Consider the operator T'y = Pz, Ma_q, |k, -
Then

be given by

(i) The maps Uy, Us are unitaries.
(ii) The maps (&A-): Ky — H*(D, A*’C™) and (foA): L1 — H*(D,C™)* are unitaries.
(i1i) The following diagram is commutative:

;e o O g ARD, O = X,

lHFl lrl lTl (3.56)

mD,cm N By g B AHY(D, O = Y.

(iv) Ty is a compact operator.

(v) (1T} =Tl = 1.

Proof. Statement (i) follows from Lemma 3.1.17. Statement (ii) follows from Proposi-
tions 3.2.17 and 3.2.21, which are consequences of Beurling’s theorem and the lemmas that

follow.

Theorem 3.2.11 (Beurling’s Theorem, [38], p. 99). Let S be a non-zero closed subspace
of H*(D,C). Then S is invariant under multiplication by z if and only if S = 0H*(D,C),

where 6 is an inner function.

Lemma 3.2.12. In the notation of Theorem 3.2.10, the Hankel operator Hg has a mazimiz-

ing vector xy of unit norm such that &y, which is defined by & = 2—8, is a co-outer function.

Proof. Choose any maximizing vector zy. By Lemma 3.1.12, x4 has the inner-outer factorisa-
tion zo = &hg, where hy is a scalar outer factor. Then, the closure of £ H?(ID,C"), denoted
by clos(¢FH?(D,C™)), is a closed shift-invariant subspace of H?(D,C), so, by Beurling’s
theorem,

clos(¢ H*(D,C™)) = ¢H*(D, C)

for some scalar inner function ¢. Hence
¢& H*(D,C") C H*(D,C).
Thus, if €' = (&1, -+, &on), We have ¢&y; € H®(D,C) for j =1,--- ,n, and so,

o0& € H*(D,C").
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Hence
ox0 = ¢&oho € H*(D,C™).

Let @ be a best H* approximation to G. Since g is a maximizing vector for Hg, by Theorem
D.2.4,
(G —Q)xo € H*(D,C™)*

and

G = @)(2)zo(2)llem = [[Hellllzo(2)]lcn

for almost all z € T. Thus
(G — Q)oxo € H*(D,C™)*+

and

I(G = @)dmo(2)llem = [1Hell|zo(2)llex

for almost all z € T.

Hence ¢zo € H?(D,C") is a maximizing vector for Hg, and ¢z is co-outer. Then ‘m’” is a

co-outer maximizing vector of unit norm for Hg. O

Remark 3.2.13. Lemma 3.2.12 asserts that in the scalar case one can always choose an

outer eigenvector corresponding to the largest eigenvalue of the Hankel operator.

Lemma 3.2.14. Let xy be a co-outer maximizing vector of unit norm for Heg, and let xq =

&oho be the inner-outer factorisation of xo. Then
(i) &o is a quasi-continuous function and

(ii) there exists a function A € H>®(D,C") such that

AT¢) = 1.

Proof. Let us first show that

& € (H®(D,C") + C(T,C")) N H=(D,C") + C(T, Cr).

Let @ be a best H* approximation to G. Then, by Theorem D.2.4, the function () satisfies

the equation
(G = Q)"yo = too.

Taking complex conjugates in equations (3.53), we get
(G = Q)"0 = toTo.

Hence, for z € T,
(G — Q)" zhono = toholo,
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and therefore -
(G - Q) zhony  —
toho

Recall that, by equation (3.5) (with ¢ = 1), ug = % By Lemma 3.1.12, ug € QC, hence
g € H* 4+ C. Note ug = %, and hence

& = (G — Q)Tu_ono‘
to

Since H*® + C'is an algebra and (G — Q)”, ny € H* + C, it follows that & € H> + C, thus

& € (H®(D,C") + C(T,C™) N H=(D,C") + C(T,Cn).

The conclusion that there exists a function A € H>®(D, C") such that AT& = 1 now follows
directly from Lemma 3.1.18. O]

Lemma 3.2.15. In the notation of Theorem 3.2.10, let &, € H>®(ID, C™) be a vector-valued

inner, co-outer, quasi-continuous function and let

Vo = (fo 560)

be a thematic completion of & as described in Lemma 3.1.12, where g is an inner, co-outer,
quasi-continuous function of order n x (n — 1) and all minors on the first column of Vi are
analytic. Then,

ag H*(D,C") = H*(D,C™™1).
Proof. By Lemma 3.1.18, for the given ayg, there exists Ay € H>(D,C"~V*") such that
Ay = I,,_;. Equivalently, ol AT = 1,,_;.

Let ¢ € H?(D,C"'). Then g = (af A)g € o ATH?*(D,C" '), which implies that
g € ol H*(D,C"). Hence H*(D,C"') C of H*(D,C").

For the reverse inclusion, mnote that since o is in H>®(D,C"*" V) we have
ol H*(D,C") C H*(D,C"'). Thus

af H*(D,C") = H*(D,C" ). O

Proposition 3.2.16. Let &, ay and Vy be as in Lemma 3.2.15. Then
v PoC({e L2 ey =, ).
L3(T,C" 1)

Proof. Let g € Vi POC({&}, L*(T,C")). Equivalently, g can be written as g = Vi f for some
f € L3(T,C") such that f(z) L &(z) for almost all z € T. This in turn is equivalent to the
assertion that g = Vi f for some f € L*(T,C") such that (V5 f)(2) L (V5&)(2) for almost

all z € T, since Vy(z) is unitary for almost all z € T.
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Note that, by the fact that V4 is unitary-valued almost everywhere on T, we get

))> almost everywhere on T, (3.57)

e _ (S0 ), _ 1
so- (3)e-(, ).

where 0(,—1)x1 denotes the zero vector in cr 1.

and so

Hence g = Vi f with (V" f)(z) orthogonal to (Vi&y)(2) for almost every z € T, is equivalent
to the statement g € L*(T,C") and

0
for almost all z € T, or equivalently, g € . O
! "o (L?(M”-l))

Proposition 3.2.17. Under the assumptions of Theorem 3.2.10, where xqy is a co-outer
mazximizing vector of unit norm for Hg, & € H™®(D,C") is a vector-valued inner function

given by & = i—g, Vo = (50 d0> s a thematic completion of & and Ky is defined by

0
K=V, C L*(T,C"),
(o) 2T

we have
EAK = AH? (D, C™)

and the operator
(&oA): Ky = &AH?(D,C")

18 unitary.

Proof. Let us first prove {EAH? (D, C) C EAKL. Let &Ap € EAH? (D, C), for some ¢ €
H?*(D,C"). Since Vj is unitary-valued, we get

§O§S + 0_6004(7; = In.
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Thus
Solhp = EA (L& e + avad )

= A& (&) + LoAao(ag )

= 0+ &Aag(af @)
on account of the pointwise linear dependence of §, and {y{;j¢ on D. Recall that, by Lemma
3.2.15, al o € H?*(D,C"1) and, by the definition of Ky,

K1 = agH*(D,C" ).
Hence, for ¢ € H*(D,C"),
Sohp = &Adpag ¢ € &AagH?(D,C™ 1),

and thus
EAH?*(D,C™) C &HAK. (3.58)

Let us now show that §AK; C EAH?(D, C"). Since Ky = agH?*(D,C" 1), an arbitrary
element u € AL is of the form
U = 50/'\0_5097

for some g € H*(D,C"!). Note that, by Lemma 3.2.15, there exists a function f € H*(D,C")
such that g = of f. Hence u = &Aapad f. By equation (3.57), &&5 + apad = I,,. Thus

u=E&A(Icn — E&5) [ = &Af — &A&ES f = &oAf € &AH?(D,C™),
and so, {AK, C EAH?(D, C™). Combining the latter inclusion with relation (3.58), we have
SAKL = EAH2(D, C),

Now, let us show that the operator (§A-): Ky — &AH? (D, C™) is unitary. As we have

shown above, the operator is surjective. We will show it is also an isometry.
Let f € Ky. Then,

1€oAf I 2w pzeny = (CoAS EAS) L2(r n2cm)
- L / ENAF(E), E(E)AS (7)) pacndd

By Proposition 2.1.19, the latter integral is equal to

% det (We ") o) <50(€Z:),f(e;;)>m) "
T <f(€ ),&)(6 )>(C" <f<6 )Mf(e )>(C"
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which equals

i [ e ), HEen — &), £ o
Note that, by Proposition 3.2.1, || (e?)||c» = 1 for almost all ¢ on T. Moreover, since
K1 = agH?*(D,C" 1),
f = apg for some g € H*(D,C"'). Hence

<§0(€i9)a f(ew»cn = <§0(€w)aao(eig)g(ew»cn = <%T(6w>§o(€w),9(62‘6»@”*1 =0

almost everywhere on T, since Vj = (fo d()) is unitary-valued. Thus

€A S T2z p2em) = N IIZ2(r .oy,
that is, the operator (§A-): Ky — EAH?*(D,C") is an isometry. Therefore, by Theorem
A.2.4, the operator ({yA-) is unitary. O

Lemma 3.2.18. Let u € L*(T,C™) and let no € H>*(D,C™) be a vector-valued inner

function. Then
(oAu, IoAZf) 2t p2cmy =0 for all  f € H*(D,C™) (3.59)
if and only if the function

z = u(z) = (u(z),70(2))cmo(2)
belongs to H*(D,C™).

Proof. The statement that oA is orthogonal to joAZf in L?(T, A2C™) is equivalent to the
equation I = 0, where
1 2w

I = o (o (e”) Au(e™), o(e”)Ae™ F(€)) nagm dO.
0

By Proposition 2.1.19,

(u(e),m(e?))em  (u(e?), e f(e”))cm

Notice that, since 7y is an inner function, [|7jo(¢?)||cm» = 1 almost everywhere on T, and

hence
27

; ! <mw%e%ﬂwnm>w_

= — det . . , R
27 Jo ((tL(ew),%(ew))(cm (u(e?), e f(e”))em
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Calculations yield

Fge [ e e e
(), e F( ) (), (e
1 21

=5 | W) T e
= ((u(e”), o(e”)) emiio (), €7 f(e)) . A0
1 2m

:%O

<u(€i9) - <U(€i9)a770(619)><Cm770(6w)> 671’91;(61'0»@% do.

Thus condition (3.59) holds if and only if

1 2 L . L

o | (o(e”)Au(e”), o(e) e F(e)) pocm dB = 0 for all - f € H*(D,C™)
™ Jo

if and only if

L (@) — ule®), (@) enio(@), (%)) o, dB = 0

27 Jo

for all f € H*(D,C™), and the latter equation holds if and only if
u(e) = (u(e?), o (e”)) emio(e”)

belongs to H*(D, C™). O

Lemma 3.2.19. In the notation of Theorem 3.2.10,
Ly ={fe€L*T,C" :B;feHDC" "}

Proof. Tt is easy to see that £; = B H?*(ID, C™~1)L. A typical element of £, is 8yzg, for some
g € H*(D,C™1). A function f € L*(T,C™) lies in £ if and only if

(f.B0zg) 2(r.cmy = 0 forall g e H*(D,C™1).

Equivalently, f € £1 if and only if
1 [ o
oo [ ), o) g )cndd =0 forall g € HAD,CmY)
m™Jo
if and only if
1 2

o (Bo(e®) f(e?), e G(e))em1df =0 for all g€ H*(D,C™Y).
T Jo

The latter statement is equivalent to the assertion that 3; f is orthogonal to H?(ID, C™ 1)+
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in L?(T,C™ '), which holds if and only if 3 f belongs to H*(ID,C™™1).
Hence
L ={feL*T,C") : B f € H (D,C" ")}

as required. 0

Proposition 3.2.20. Under the assumptions of Theorem 3.2.10, let ng be defined by equation
(3.53) and let Wl = <7]0 BO> be a thematic completion of ny, where By is an inner, co-outer,

quasi-continuous function of type m x (m — 1). Then,
GH*(D,C™)*t = H*(D,C™ 1)

Proof. By virtue of the fact that complex conjugation is a unitary operator on L?(T,C™),
an equivalent statement is that 31 2 H*(D,C™) = zH?*(D, C™'). By Lemma 3.1.18, since Sy
is an inner, co-outer and quasi-continuous function, there exists a matrix-valued function
By € H>®(D, C"=V>m) such that

BoBo = In—1

or, equivalently,

6ng = dm-1-
Let g € zH?*(D,C™1). Then,
9= (8 By)g € By By zH*(D,C"™") C By 2H*(D,C™).

Hence
zH*(D,C™ 1Y) C B3 zH*(D,C™).

Note that, since 3y € H>®(D, C™*(m=1) gT>H*(D,C™ ') C zH?*(D,C™ 1), and so,
zH*(D,C™ 1) C pIzH*(D,C™) C zH*(D,C™ ).

Thus
8L zH*(D,C™) = zH*(D,C™ ). O

Proposition 3.2.21. In the notation of Theorem 3.2.10, let ny € H*(D,C™) be a vector-
valued inner function given by equation (3.53), let Wl = (770 Bo) be a thematic completion

of no given by equation (3.54), and let

. 0
£1 - WO <H2<D Cm—l)L) ’

WALy = o AH?* (D, C™)*

Then,
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and the operator
(MoA-): L1 = QoAH*(D,C™)*

18 unitary.

Proof. Let us first prove that fjpAH?(D, C™)* C fjyAL;. Consider an element
oA f € MAH?(D,C™)*,

where f € H?(D,C™)*. Note that, since W is unitary valued, we have

fony + Boly = I (3.60)

Thus _ .
oAf = ToA(Tong + BobBs) f

= oAfond f + oABoBy f
=0 + ﬁO/\BOﬁSfa

the last equality following by the pointwise linear dependence of 7y and #jo(nd f) on D. By
Proposition 3.2.20,
E;HZ(D, Cm)J_ —_ H2<D, Cmfl)J_’

and, by the definition of £, we have
L = foH*(D,C™ )+,
Hence, for f € H*(D,C™)*,
oA S = MoABoBs f € MoABoH? (D, C™ 1)+,

and thus
oAH*(D,C™)*" C ifoALy.

Let us show
ALy C foAH?(D,C™)*.

A typical element in AL, is of the form
M0ABog;

for some g € H?(D,C™~1)1. By Proposition 3.2.20, there exists a ¢ € H*(ID, C™)* such that
Bio = g. Then
oABog = MoABoBy¢-
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By equation (3.60), we get
oABog = ToA(Icm — Tomg )¢ = oA,
the last equality following by pointwise linear dependence of 7jo and 7y(n¢ ¢) on D. Thus
oABog € ToAH*(D,C™)*,
and so AL C pAH?(D,C™)+. Consequently
ALy = o AH? (D, C™)*.

To prove the operator
(ToA-): L1 — QoAH*(D,C™)*

is unitary, it suffices to show that it is an isometry, since the preceding discussion asserts it

is surjective. To this end, let s € £;. Then,

||770/\8||%2(T,A2Cm) = <770/\S7770/\3>L2(T,A2Cm)

1 (2 o o
=5 <ﬁ0(e’0)/\s(629), 7_]0(6’9)/\3(@29)>/\2Cm db
0

=L e <<no<ei9>,no<ef9>>cm <770(€i9)a3(6w)><cw) 0

(s(e”), mo(e”))em  (s(e”), 5(e”))em

By Proposition 3.2.1, ||7jo(2)|/cm = 1 almost everywhere on T. Moreover, since s € £y, there
exists a function ¢ € H2(D, C™ 1)L such that s = By1. Then

(To(e”), 5(e”))cm = (T(e"™), Bo(e”)t(e”))em = (B3 (e”)ho(e), 10 (")) cm = 0

almost everywhere on T, which follows by the fact that W, is unitary-valued, and so

i (FEY ¢, OO HOLHD
(Wol¥5)(2) = ( 65@) (=) A=) = ( * : )) ~ I

almost everywhere on T.
Thus, for all s € L4,

”ﬁo/\SH%Q(T,/@Cm) = ||3H%2(1r,<cw)>

which shows that the operator
(770/\) : El — ﬁo/\HQ(D, Cm)L

is an isometry. We have proved it is also surjective, hence, by Theorem A.2.4, the operator

is unitary. 0
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Continuation of the proof of Theorem 3.2.10.

(iii). We have to prove that diagram (3.56) commutes. Recall that, by Lemma 3.1.17, the

left hand square commutes, so it suffices to show that that the right hand square, namely

K 9N A D, CM = X,
lrl lTl (3.61)

L 2y G AHYD,Cm)t =Y,
also commutes. That is, we would like to prove that, for all z € Ky,
Tl(fo/\flf) = ﬁo/\rl(ﬁ),

where I'y(z) = P, ((G — Q1)) for any function ¢y € H*(D, C™*") that satisfies the follow-
ing equations
(G = Q1)xo = toyo, Yo(G — Q1) = toxy.

By Proposition 3.2.17,
SAK = &AH? (D, C),

and so, for every x € Ky, there exists 7 € H*(ID,C") such that
50/\.77 = &)/\f

Thus, for x € Ky,
T1(§oAx) = T1(§AT) = Py, (A(G — Q1)7),

and
oAl (x) = APz, (G — Q1).

Hence to prove the commutativity of diagram (3.61), it suffices to show that, for all x € Ky,
Py [0AG = Qu)F)] = APz, (G — Q)
in Y1, where {A(z — Z) = 0. By Proposition 3.2.21,
ALy = pAH?(D,C™)* =Y,
and so, for all x € Ky, APz, (G — Qq)z € Y. Let us show that, for z € Ky,
A (G — Q1)T — AP, (G — Q1)x

is orthogonal to Y7 in L*(T, A*C™), or equivalently, that for every f € H*(D,C™),

(MAIG — Q)T — Pr, (G — Qu)a],0AZS ) (g ooy = 0 (3.62)
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for z € Ky and for any ¥ € H?*(D,C") such that §,A7 = Az, By Lemma 3.2.9,
AG — Qi)z = oA (G — Q1)7.

Then equation (3.62) is equivalent to the equation

(MAPL (G — Q1)x, MoAZ[) 2T p20m) = 0 (3.63)
for any = € K. By Lemma 3.2.18, equation (3.63) holds if and only if the function
20 [Pep (G = Qu)](2) = ([P (G = Qu)x](2),70(2)) emilo(2) (3.64)
belongs to H*(ID,C™). By Lemma 3.2.19, there exists a function ¢ € L?(T,C™) such that
Pri(G = Qu)z =1, (3.65)
Bip € H*(D,C™1).
Equation (3.65) implies
(G —Q))x — 1 € Ly = BoH*(D,C™ 1)+

Hence, to prove that the function defined by equation (3.64) belongs to H*(ID, C™), we have
to show that

¥ — (ng )i € H*(D,C™).
_\T
Since Wy = (7)0 ﬁo) is a unitary-valued function,
o (2)15 (2) + Bo(2)55(2) = Im
almost everywhere on T. Since 1l ¢ is a scalar-valued function,
=g ¥io = (In — fiong )¢
= BB € ByH?*(D,C™ 1) C H?(D,C™).

Recall that 35y € H?(D, C™™1), and so By 851 € H*(D, C™). Thus diagram (3.61) commutes.
(iv). By Lemma 3.1.12,

Fl c HOO(]D)’ (C(mfl)x(nfl)> + C(T, C(mfl)x(nfl)).
Then, by Hartman’s Theorem 3.1.2, the Hankel operator Hp, is compact, and by (iii),

(MoA-) o (UsHp, UY) o (§oA)* = Th.
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By (i) and (ii), the operators Uy, Uy, (§A-) and (oA-) are unitary. Hence T is a compact
operator.

(v). Since diagram (3.56) is commutative and Uy, Us, (§oA) and (nA-) are unitaries,
[Tl = 1Tl = [ ] O

In what follows, we will prove an analogous statement to Theorem 3.2.10 for 75. To this end,

we need the following results.

Lemma 3.2.22. In the notation of Theorem 3.2.10, v; € H*(D,C") and w, € H*(D,C™)*
are such that (§yAvy, oAwr) is a Schmidt pair for the operator Ty corresponding to ||Ti]|.
Then (i) there exist x1 € Ky and y; € Ly such that (z1,y1) is a Schmidt pair for the operator
['y; (i) for any x1 € Ky and yy € Ly such that

CoAxy = Avr,  ToAyr = ToAw,

the pair (x1,y1) is a Schmidt pair for 'y corresponding to ||T'y|.

Proof. (i). By Theorem 3.2.10, the diagram (3.56) commutes, (A-) is unitary from K; to
X1, and (7pA+) is unitary from £; to Yi. Thus ||y = ||T1]] = ¢1. Moreover, by Lemma
3.1.17, the operator I';: K1 — L1 is compact, hence there exist 1 € Ky, y; € L£; such that
(x1,41) is a Schmidt pair for Ty corresponding to ||| = ¢;.

(ii). Suppose that 21 € K1,y € Ly satisfy

SoAry = oAy, (3.66)
oAy = foAwy. (3.67)
Let us show that (z1,y;) is a Schmidt pair for I'; corresponding to ¢, that is,
Dyzy =tiyr, Ty =t
Since diagram (3.61) commutes,
Ty o (§oA:) = (oA) o Ty, (§oA)* o Ty =T o (7pA-)*. (3.68)

By hypothesis,
T1(&oAv1) = ti(oAwr), Ty (ToAwr) = t1(EoAvy). (3.69)

Thus, by equations (3.67), (3.68) and (3.69),
Tiryr = (oA) Ti(§oAvr)
= (MoA-)*t1 (o Awr)
= t1(1oA) (oAY1)-
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Hence
Tyzy =t (QoA) (oA )y1 = tiys.

By equation (3.66),
z1 = (§A)" (§oAvr),
and, by equation (3.67),
(MoA-)" (oAwr) = y1.
Thus
[iyr = (A )" (oAwr)
= (&A)*TT (MoAwr),

the last equality following by the second equation of (3.68). By equations (3.66) and (3.69),

we get
Tl* (770/.\71)1) =1 (fo/\vl) =1 (50/\$1)7
and so,
[y = tixy.
Therefore (x1,y;) is a Schmidt pair for I'; corresponding to ||| = || T3] = ¢1. ]

Lemma 3.2.23. Suppose (&yAvy, oAw,y) is a Schmidt pair for Ty corresponding to ty. Let

v1 = (I — &&)vi, 31 = (L — Tlo7g Jwn,
and let
T = OéoTl‘l, = BS?/L
Then
(1)
x1 = dagxy, 1= BB (3.70)
(ii) The pair (Z1,91) is a Schmidt pair for Hp, corresponding to |Hpg, | = ti.

Proof. (i). Since Vj = (50 070) is unitary-valued, I,, — &€t = @pad, and so

apag 1 = (I, — &) (In — L&) v
= (I — 2&0&5 + &0&0é0é0) 01
= (In — 5058)1)1 = T. (371)

Similarly, since W{ = (ny ) is unitary valued, I, — 7on¢ = Bof3;, and so

BoBiyr = (L — foma ) (L — Toma Jw1
= (L — 20015 + Tomg Moy )W
= (Ln — fomp ) w1 = Y. (3.72)
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(ii) Recall that, by Lemma 3.1.17, the maps

Uli HQ(]DaCn_l) - ICla UQ: HQ(D7 Cm—l)L - £1’

Ux =W <0> =apx, Uyp =W <0> = Bo
X (0

for all x € H?(D,C" 1) and all ¢» € H*(D, C™ 1)1, are unitaries. By the commutativity of
the diagram (3.56),

defined by

Hp, = U;T1U;. (3.73)

By Part (i), ; € Ky and y; € £, and, by Proposition 3.2.1,
SoAry = EAvr, oAy = MoAw.

Thus, by Lemma 3.2.22, (x1,y;) is a Schmidt pair for the operator I'y corresponding to
t1 = ||F1||, that iS,
lel = tlyl; Fiyl = tlxl. (374)

To prove that the pair (Z1,9:) is a Schmidt pair for Hg, corresponding to |[Hp || = t1,
we need to show that

. X . .
Hpty =tiy, Hpyp =t

By equations (3.73) and (3.70), we have

~ T A
Hlel = leOéol'l
T ~ T
= U;l—‘lUlon Ty = U;l—‘laoao T

= Uyl = tiByyn = . (3.75)
Let us show that Hf g1 = t121. By equations (3.73) and (3.70), we have

Hp g = Hy, By
= UM U851 = U T BoBoyn
= Ul*FTyl = tlUfﬂll = tl@gxl = tlé%l. (376)

Therefore (Z1,9;) is a Schmidt pair for Hp, corresponding to ||Hp, || = t;. O

Proposition 3.2.24. Let (§oAvy, joAwy) be a Schmidt pair for Ty corresponding to ty for
some v; € H*(D,C"),w; € H*(D,C™)*, let hy € H*(D,C) be the scalar outer factor of
SoAvy, let

21 = (In — &&)vr, Y1 = (L — oy )i,
and let

A T A~ *
Ty =agry, = Boyr.

112



3.2. Algorithm for superoptimal analytic approximation

Then
121(2)lcn-1 = [|§1(2) lem—1 = [ha(2)],

lz1(2)llen = Ny (2)llem = [ha(2)]

and
1€0(2) Avi(2)l|azen = [[70(2) A wi(2)[[azem = [ha(2)]

almost everywhere on T.

Proof. By Lemma 3.2.23, (Z1,9;) is a Schmidt pair for Hp, corresponding to ||Hp || = t;.
Hence

HFli'l = tl?)l and H;1gl = tli'l.

By Theorem D.2.4, for the Hankel operator Hp, and the Schmidt pair (#,9;), we have

192(2) lem—1 = [[21.(2) [[cnt (3.77)

almost everywhere on T.

By equations (3.70),
Ty = Goag 1 = Aoy, Y1 = BBy = Bod-
Since ap(z) and Sy(z) are isometric for almost every z € T,
21(2)llen = l|21(2)]lcn-r and [[g1(2)[lem = [[91(2)]lcm—
almost everywhere on T. By equations (3.77), we deduce
lz1(2)llen = Ny (z)llem (3.78)

almost everywhere on T.
By Theorem 3.2.10, (§,A-) is an isometry from K; to X1, and (oA-) is an isometry from
L1 to Y. By Proposition 3.2.1,

EoAxy = EoAvy,  ToAyr = ToAw.

Hence
[€0(2) A vi(2) [ nzen = [[€0(2) A 21 (2)[|a2en = [|21(2)]en

almost everywhere on T. Also
1750(2) A wi(2)][nzem = l170(2) A y1(2)l[nzem = llya(2)llcm

almost everywhere on T. Thus, by equation (3.78),

1€0(2) A v1(2)||a2en = ||70(2) A wi(2)||s2cm almost everywhere on T.
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Recall that h; is the scalar outer factor of {,Av;. Hence
1€0(2) A vi(2)llreen = [170(2) A wi(2)[|n2em = [ha(2)],

[z1(2)llc = llya(2)[lem = [ha(2)]
and

[Z1(2)len—1 = Nl71.(2)lem-1 = [ha(2)]

almost everywhere on T. O]

Definition 3.2.25. Given G € H>*(D,C™*"™) + C(T,C™") and 0 < j < min(m,n), define
2; to be the set of level j superoptimal analytic approximants to G, that is, the set of
Q € H>®(D,C™ ™) which minimise the tuple

(S(C))O(G - Q)vSCfO(G - Q)v s 73?0(G - Q))

with respect to the lexicographic ordering over Q) € H>®(D, C™ ™). For @) € Q; we call G —Q
a level j superoptimal error function, and we denote by E; the set of all level j superoptimal

error functions, that is

£={G-Q : Qe

Proposition 3.2.26. Let m,n be positive integers such that min(m,n) > 2. Let
G € H>D,C™") + C(T,C™™). In line with the algorithm from Section 3.2.1, let
Q1 € H>*(D,C™ ™) satisfy

(G — Q1)zo = toyo, (G — Q1) yo = toxo.

Let the spaces X1,Y, be given by
X, = EAHA(D,CM) € HA(D, A°C™),  Y) = g AH?*(D,C™)* ¢ H*(D, A°C™)*,
and consider the compact operator Ty : X1 — Y] given by
T1(§Az) = Py (MA(G — Q1))

for allz € H*(D,C"). Let (§oAvy, loAwy) be a Schmidt pair for the operator Ty corresponding
to t; = ||T1]|, let hy € H*(D,C) be the scalar outer factor of &Avy, let

z1 = (Icn — &&5)v1, 1 = (Iem — Tong )wy
and let o
no

flzh—1, m = hl-

Then, there exist unitary-valued functions Vi,Wy of types (n—1) x (n — 1),

114



3.2. Algorithm for superoptimal analytic approximation

(m — 1) x (m — 1) respectively of the form
n (ofe @) (3.79)

and

Wi (5im B). (3.80)

where aq, 81 are inner, co-outer, quasi-continuous functions of types (n — 1) x (n — 2),

(m — 1) x (m — 2) respectively, and all minors on the first columns of Vi, W are in H*.

Furthermore, the set of all level 1 superoptimal error functions & satisfies

t 0 0
(1 o0 [ 1 0.,
51 :WO ~ 0 t1uy 0 ~ Vb, (381)
0 Wy 0 v

0 0 F+H®D,Cm2x0=2)n0 B(t)

where Fy € H®(D, Cm=2>x(=2)) 1 (T, Cm=2x(=2)) "y = Zhill is a quasi-continuous umi-
modular function and Vo, W are as in Theorem 3.2.10, and B(t,) is the closed ball of radius
t in L°(T, Cm=2x(n=2)),

Proof. By Theorem 3.2.10, the following diagram commutes

H*(D,C" 1) 2 K LN SAH?(D,CM) = X,

lHFl lrl lTl (3.82)

D, cm 0t By g PN G AHR(D,CME = Y.

Let 21 = alxy, §1 = Byi. By Lemma 3.2.23, (%1,9;) is a Schmidt pair for Hp, corre-
sponding to t;. By equations (3.70),

T = @oOégTilfl = a2y and y1 = BoByyr = Boh-

We want to apply Lemma 3.1.12 to Hp, and the Schmidt pair (#1,9;) to find unitary-
valued functions Vi, Wy such that, for any function Q; € H>(ID, C™~ D=1 which is at

minimal distance from F}, the following equation holds

~ ~ t1u1 0 ~
F — — |/]/* V*,
1 Ql 1 ( 0 F2> 1

for some Fy € H>*(D, CO"=2*("=2)) 1 (T, C™~2*(»=2))For this purpose we find the inner-

outer factorisations #; and zg;,. By Proposition 3.2.24,

121(2)llen-r = [lz1(2)len = &0 (2)Avi (2) |2en = [P (2)]

) (3.83)
and [|91(2)llem-1 = [[y1(2)llem = 170 (2) Awi (2) [ a2cm = [ha(2))]

almost everywhere on T. Equations (3.83) imply that h; € H?*(ID, C) is the scalar outer factor
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of both Z; and Zj;. By Lemma 3.1.12, &1, Z0; admit the inner-outer factorisations
B =&k, Z =i,
for some inner vector-valued & € H®(ID,C"!) and 7; € H™(D,C™ ). Recall that
& =gz = o &hy,  Zh = 26801 = B miha,

which imply
él = Oéonl and 7 = 5(?771-

Let us show that ol &, BIn; are inner in order to apply Lemma 3.1.12.

Recall that, since Vg, W{ are unitary-valued, we have

L, — &&= 540040T, I, — T_]oﬁg = Boby-

Therefore
z1 = (Icn — &&)v1 = @padvr,  y1 = (Icm — ong Jwr = BoByw:.
Then,
ag$1 = onTvl, ngl = ﬁgwl, (384)
and since _
PR )
1 h17 m hl )
we find that the functions
T T -
al v By Zwn
agfl = 0 ) ﬁgnl - 0
h1 hq

are analytic. Furthermore, by Proposition 3.2.24,
lz1(2)ller = llyn(2)llem = 1ha(2)] = [|21(2)llcnr = 191 (2) [l cm-r
almost everywhere on T. Thus
lag (2)z1(2)[len-1 = llag (2)vr(2)len-1 = |ha(2)]

and
180 (2)Z1(2)lem—1 = (185 (2) 201 (2) lem—1 = [ha (2))]

almost everywhere on T. Hence

lad ()& () len = 1, 18E(2)m (=) lemr =1
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almost everywhere on T. Therefore ol &y, Slm are inner functions. By Lemma 3.1.12,
there exist inner, co-outer, quasi-continuous functions ay, 8 of types (n — 1) x (n — 2) and

(m — 1) x (m — 2) respectively such that
Vi = (OéoT& a1) . W= (/30T7]1 31>

are unitary-valued and all minors on the first columns are in H*°. Furthermore, by Lemma
3.1.12, every Q1 € H(D, Ct»=Dx("=1)) which is at minimal distance from F} satisfies

A ~ t1u1 0 ~
Fr—Q=W; A
1 Ql 1 ( 0 F2> 1

for some Fy € H>*(D, C("=2*(=2)) L O(T, Cm=2*("=2)) and u; quasi-continuous unimodular
Zh

h_11'

By Lemma 3.1.15, the set

function given by u; =

Eo={FR-Q:QeH*D,Cm V") |F - Qllp~ =t}
satisfies

~ " tlul 0 *
& =Wy o0 (m—2)x(n—2) Vi
0 (F+ H>D,C )) N B(t1)

for some F as described above and for the closed ball of radius ¢; in L(T, C(m=2)x(n=2))

denoted by B(t;). Thus, by Lemma 3.1.15, £, admits the factorisation (3.81) as claimed. [J

Proposition 3.2.27. Suppose the function Qq € H* (D, C™*™) minimises

(s07(G—Q),s7°(G —Q)).
Then Qo satisfies
(G = Qa2)zo = toyo, (G —Q2)"yo = toxo

and
(G —Q2)x1 =tiyh, (G —Q2)"y1 = tiaq,

where xq, 1, Yo, Y1, to, t1 are as in Theorem 3.2.10.

Proof. Let (xo,y0) be a Schmidt pair for the Hankel operator Hg corresponding to
|He|| = to. Then, by Theorem D.2.4, every Q2 € H*>°(ID, C™*") which is at minimal distance

from @ satisfies
(G — Q2)xo = toyo, (G — Q2)"yo = toxo,

and, by Lemma 3.1.12,

toUO 0
Wo(G — Vo = ,
am=( )

where F; € HOO(]D)’ C(mfl)x(nfl)) + C’(T’ C(mfl)x(n—l)).
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Moreover, by Lemma 3.1.15, the set & = {G — Q : Q € Qp} of all level 0 superoptimal

error functions satisfies

toUo 0

WoEoVo =
0coVvVo < 0 Fl—I—HOO(]D,(Cm_lxn_l)

) N B(to). (3.85)

Suppose Q2 € Q. Then

o= (M) - Y _ (G - Q)& (G = Q2)ao
Wo(G — Q2)Vs (5;) (G=Q) (& ao) (58@_ B 65(@—@)%)‘

By equation (3.85), for Q1 € H>®(D, Cm=Dx"=1) at minimal distance from ],

no (G —Q2)& 15 (G — Q2) _ [ touo 0 (3.86)
B5(G — Qa2)ag  By(G — Q2)an 0 F—0Q .

Note that, by Theorem D.2.3,
[F1 = Qilloc = [[HR]],

and, by Theorem 3.2.10 (part (v)), ||Hg,|| = t1.
Consideration of the (2,2) entries of equation (3.86) yields

F—Q = By (G — Q2) . (3.87)

Note that, if (#1,91) is a Schmidt pair for Hp corresponding to t; = ||Hpg,||, then, by
Theorem D.2.4,

(Fy — Ql)@ =tith, (F— Ql)*?h =112;.

In view of equation (3.87), the latter equations imply
By (G — Q) = tiin, (3.88)

and
ag (G — Q2)" Botn =t (3.89)

By Lemma 3.2.23, we may choose the Schmidt pair for Hg, corresponding to ||Hp || to be

=gz, =By (3.90)
Recall that, by equations (3.70),
Ty = G0y 21 (3.91)
and
y1 = BoBoya- (3.92)
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In view of equations (3.88) and (3.90), we obtain
By (G = Q2)anag 1 = t155u1.

Multiplying both sides of the latter equation by 5, we get

BoBi(G — Qo)apad v1 = t180B5y1,

which, by equation (3.91), implies

BBy (G — Q2)x1 = t180Byu1,

or equivalently,
05 ((G = Qs — tan ) =0
Since, by Theorem 3.2.10, Uy = Mpg,p; is unitary, the latter equation yields

(G = Q2)r1 = tiys.
Moreover, by equations (3.89) and (3.90), we obtain
af (G = Q2) BB = tiag a1
Multiplying both sides of the latter equation by ag, we get
oy (G — Q2)* Bobyyr = tiapa 1.
In view of equation (3.92), the latter expression is equivalent to the equation
C_YOOZOT(G —Q2)'y1 = t10_éoOéoT$1,

or equivalently,
ao&g((G — Q2)*y1 — tll'l) = O

Since, by Theorem 3.2.10, Uy = Mg, r is unitary, the latter equation yields

(G — Q2)"y1 = ty21.

Therefore (), satisfies the required equations. O

The next few propositions are in preparation for Theorem 3.2.37 on the compactness of
T5.

Proposition 3.2.28. For a thematic completion of the inner matriz-valued function BLmn

of the form WlT = (50T771 Bl), where [y is an inner, co-outer, quasi-continuous function of
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type (m — 1) x (m — 2), the following equation holds
BTHZ(]D)’ Cm—l)L — H2(D, (Cm—Q)L‘

Proof. By virtue of the fact that complex conjugation is a unitary operator on L?(T,C™),
an equivalent statement to Proposition 3.2.28 is that ] zH?(D, C™~1) = zH?*(D,C™?). By
Lemma 3.1.18, there exists a matrix-valued function B, € H>®(D, C™=2x(m=1) gyuch that

Blﬁl = Im—2

or, equivalently,

/B?Bf - ]m—2-

Let f € zH?*(D,C™ ?2). Then,
f=(BTB)f € BT BT zH?*(D,C™?) = B zH*(D,C™ ).

Hence

zH*(D,C™?) C B2H*(D,C™ ).

Note that, since 3, € H>(D, Cm~V*(m=2)) e have
B zH*(D,C™ ) C zH*(D,C™?).

Thus
BLzH*(D,C™ ) = zH?*(D,C™ ). O

Lemma 3.2.29. For a thematic completion of the inner matriz-valued function o€, of the
form \71 = (04(7;51 dl), where oy is an inner, co-outer, quasi-continuous function of type

(n—1) x (n—2), the following equation holds
ol H*(D,C" ') = H*(D,C"?).

Proof. By Lemma 3.1.18, for the given ay, there exists A; € H>®(ID, C"=2*"=1) guch that

Aoy = I, 5. Equivalently, ol AT = I,, .

Let ¢ € H?*(D,C"?). Then g = (af AT)g € of ATH?*(D,C"2), which implies that
g € ol H?(D,C"* 1), Hence H*(D,C"2) C of H?(D,C"1).

For the reverse inclusion, note that since a; € H>® (D, C"=D*(=2)),
af H*(D,C" ') € H*(D,C"?)
Thus

of H*(D,C" 1) = H*(D,C"?). O
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Proposition 3.2.30. With the notation of Proposition 3.2.26, let unitary completions of &
and ol & be given by

Vo = (fo 070> , Vi= (%Tfl O71> )
where «qg,aq are inner, co-outer, quasi-continuous matriz-valued functions of types

nx (n—1) and (n — 1) x (n — 2) respectively. Let

1 0
Vi= -
0 W

02><1
ICo = VoV .
i °1@mmwﬂg

and let

Then
SAGAH?(D,C") = EAGAK,

and the operator (gA&ELAY): Ko — EgASLAH? (D, C") is unitary.
Proof. Let us first show that
EAGAH?(D,C") C &AEAL,.
Notice that, since Vj, Vi are unitary-valued functions, VyV; is unitary-valued, that is,
VVAVIVE = Lo,
which is equivalent to the equation
£0&s + ooy &€ ey + dpdrag ag = . (3.93)

Let w € §AEGAH?(D,C") be given by w = §AEAS, for some f € H?*(D,C"). Then, by
equation (3.93),

w =E&AGALS
= LAGA(&ES + avag 18 dvag + dvara] o) f
= SAEIAEES + SohGAda &€ dvayg |+ EoAGiAdparad of f
=0+ SOAélA@ganglgikdgaon + fo/\fl/\dodloz{oonf.

Note that since Vj is unitary-valued, && + apad = I,,. Moreover, &, and each column of

&r€), are pointwise linearly dependent on D for £ = 0, 1, and hence,

w = &AGAIen — &&5)61&  doayg |+ EoAGiAdpanad of f
= SAGAGE doad, | — QNG AGE 6 doas |+ EoAdiAGuanal of f,
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thus

w = &AG Aaparal ol f.

By Lemma 3.2.15,
af H*(D,C") = H*(D,C" ),

and, by Lemma 3.2.29,
ol H*(D,C" 1) = H*(D,C"?).

Observe that, by definition, Ky = agay H?(D, C"2). Thus w € &AL AK,, and so,

EAEAH? (D, C™") C &AL AK,.

For the reverse inclusion, note that a typical element of (g A& AK s is of the form EgAé Aagan g,
for some g € H?*(D,C"?). By Lemma 3.2.29, there exists a vector-valued function ¢ €
H?(D,C" ') such that af'q = g. Then,

SoAE1 Ay g = EAG Aaparad q.
Since V; = (aOT& 071) is unitary-valued, of & & ag + aral =1, ;. Hence
Soh&r Ao al q = EoAé1 Ay (In—1 — ag &1€5a0)q = LoAé1Adng — EoAE1Adpag £1€] aog.
Furthermore, since V; is unitary-valued, &¢&; + apad = I,,. Thus
SoAE1 A0 — SoAGA(Ten — §0&5)E1€T ang
= &oA&Aa0g — SAGAEGET ang + EoAEIAEE 1€ g
= §oA&Adpg + 0

because of pointwise linear dependence.
By Lemma 3.2.15, there exists p € H?(D,C") such that ol p = ¢. Hence

SoAGiAdng = A& AGyg p
= &AGATen — &&)p

= &A&Ap+0

on account of the pointwise linear dependence. Clearly,
&ﬂ\&/\p S £0A£1/\H2(D, Cn)
Consequently,

€OA§1AIC2 g 50/\51/'\]—]2(]1)7 (Cn)a
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and thus
EAGAK, = EAGAH?(D,C).

Let us show that the operator (§gAEIAY): Ky — A& AH?(D, C") is unitary. The fore-
going paragraph asserts that the operator is surjective. It remains to be shown that it is an
isometry. To this end, let f € 5. Then

Hg()/.\gl/\fuiqm/\scn) = <§0/\fl/\f7 go/\fl/\f>L2(’]I‘,/\3(CN)
2
= /0 (o) AEL (VA F(E), Eo(e) A& (€7)AF (™)) o db.

By Proposition 2.1.19, the latter integral is equal to

our <§0(€i9)7 fo(eia»cn (fo(eie)a 51(61'9))@1 <§0(6i9)7
det [ (&i(e”), &o(e”))en (&a(€”),&1(€?))en (&a(e”),
(f(e?),&(e®))en (f(e?),&(e))en  (f(e?),

27 Jo

Note that, by Proposition 3.2.1, {&(€),&1(e?)} is an orthonormal set for almost all ¢ on
T. Moreover, since Ky = apa; H?(D,C""?), then f = qpap for some ¢ € H?*(D,C"2).

Hence

(€o(e”), f(e))en = (o(€”), an(e”)an(e”)p(e”))cn

= (o (e™)&o(e”), an(e”)p(e”))cn-1 = 0

almost everywhere on T, since Vj is unitary-valued. Similarly, since V; is unitary valued, we
deduce that

(€1(e”), f(e)en = (o (e”)ag (€”)é1(e”), p(e”))cn-2 = 0

almost everywhere on T. Therefore

10 0
o I
oA IEaqrpocn = 5= [ et 001 0| dd=flen,
0 .
00 72

that is, (A&A): Ky — EAGAH?(D,C") is an isometric operator. Thus, by Theorem
A.2.4, the operator (§AEA): Ky — EAEGAH?(D, C") is unitary. O

Remark 3.2.31. Let Vi and V; be given by equations (3.7) and (3.79) respectively and let

1 0 ~
Vi = (O V) . Since Vo, Vi and Vi are unitary-valued, we have
1

I, = VoVy = && + apad (3.94)

Iy = ‘71‘71’k = Olonlfikao + 071&?- (3.95)
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Lemma 3.2.32. Let Vjy and Vi be given by equations (3.7) and (3.79) respectively. Then
I — &5 — &7 = apmay og (3.96)

almost everywhere on T.

Proof. By equation (3.95)

dla{ - ]n—l - ag€1€Td07
thus
do@lO[?O[g = dO(In—l — onT&G‘do)oon.
By equation (3.94),
0_5005,(1; - In - 5058
Hence

Ao oy = (I — &&5) — (In — &0&6)6161 (In — &0&5).-

Since, by Proposition 3.2.1, the set {&y(z),£1(2)} is orthonormal in C™ for almost every
z €T,

apaaf af = I, — &8 — &16]
almost everywhere on T. O
Let us state certain identities that are useful for the next statements.
Remark 3.2.33. Let Wy and W1 be given by equations (3.7) and (3.80) respectively and let

1 0 .
Wy = ( W ) . Since Wy, W1 and Wi are unitary-valued almost everywhere on T, we have
1

0
L, = WiWo = ijong + Bol5, (3.97)
Ly = WiWy = Bgmn{ Bo + BuB;, (3.98)
and
1 0
.(1 O 1 0 (- 1 0 - ng
Wy (0 Wf) (O W1> W —(770 ﬁ0> (0 (ﬁgﬁl ﬁ1)> 0 <771*50> (5)
1
o
= (70 BB fuB) | nlBos
BiBs

= fjona + BoBymnt BoBy + BoB1BiBs-

Also, by equations (3.97) and (3.98),

oy + BoBsmni Boly + BobrBiBs = oy + Bo(Ln—r — BiBY + B161) By = L. (3.99)

124



3.2. Algorithm for superoptimal analytic approximation

Lemma 3.2.34. Let Wy and Wy be given by equations (3.7) and (3.80) respectively. Then

Ly — lomg — Ty = BoB1 33 55 (3.100)

almost everywhere on T.
Proof. By equation (3.98)
BB = Lm—y — Bymany Bo,
thus
BBy B = Bo(Im-1 — Biini Bo)Bs-
By equation (3.97),
Bols = Im — TioTlg -
Hence
BoBrB1Bs = (I — 7o ) — (T — oy ) a0 (I — 700 )-
Since, by Proposition 3.2.1, the set {7o(2),71(2)} is orthonormal in C™ for almost every
zeT,

BoBrBiBy = Lm — Tomg — Ty
almost everywhere on T. O]

Proposition 3.2.35. Let g, be defined by equations (3.9) and (3.19) respectively, and let
Bo, B1 be inner, co-outer, quasi-continuous functions of types mx (m—1) and (m—1)x (m—2)

respectively, such that the functions

WoT: (770 50)7 Wsz (50T771 51)

1 0
wl = )
! <0 WlT)

O2x1
Lo=WSW; .
e <H2(]D>, Cm2)¢>

are unitary-valued. Let

and let

Then
oA ALy = GoAqi AH? (D, C™)*+ (3.101)
and the operator (oA A-): Lo — foAuAH?(D, C™)L is unitary.

Proof. Observe that Lo = By8yH?(ID, C™~2)L. By virtue of the fact that complex conjugation

is a unitary operator on L*(T,C™), an equivalent statement to (3.101) is that
7]0/\7]1/\,8_05—12}[2(]1), (Cm72) = 7]0/\7]1/\ZH2(D, Cm)
Let us first show that noAm AzH?(ID, C™) C mABoBizH?(D,C™—2).
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Let f € zH?*(D,C™). Taking complex conjugates in equation (3.99), we have
Ly = 015 + BolBs mni oo + Bobrfi B
and so,
. . . . . % > »T 3 T 2 2 RT AT
noAMAS = noAmA(mons + BoBo mniBoBy + BobiBy By ) f

= noAmAneng f + noAmABoﬁonnikBoﬂgf + 770/\771/\30315,1F5()Tf
= ﬁoAﬁlAgoﬂgﬁlﬁfgoﬁon + 770/\771/\50615{55][, (3-102)

the last equality following by the pointwise linear dependence of 7y and nyn; f on D. Taking
complex conjugates in equation (3.97), we have 3,81 = Icm — non;. Hence equation (3.102)

yields
mAMAS = noAmALem — nong)mntBoBs £+ noAmABoSL BT 57 f
= noAmAm; Bos f — noAmAnonsmn; BolBs |+ moAmABoSi BT B3 f
= 770A771A505151‘Fﬁgf

on account of the pointwise linear dependence.

By Proposition 3.2.20, there exists a vector-valued function ¢ € H?*(ID,C™ ') such that
BYf = g. By Proposition 3.2.28, there exists a vector-valued function w € zH?*(D, C"™?)
such that 87 g = w. Thus

noAmABoiw € noAmABoSrzH? (D, C™?),

and hence
7]0/\7]1/\2]‘[2 (ID), Cm) - 770/\771AE0312H2 (]D), (Cm_2).

For the reverse inclusion, let
u = 1oAmABobrq € mAmALLr1zH*(D,C™?)

for a vector-valued function ¢ € zH*(ID, C™~2). By Proposition 3.2.28, there exists a vector-
valued function ¢ € H?(D,C™ ') such that ¢ = 37 2¢. Then,

u = noAmABobL BT 2¢.
Taking complex conjugates in equations (3.97) and (3.98), we get

BoBy = Icm —momy and 3187 = Ln_1 — B mn; Bo-
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Hence
u = 770/\771/\50(Im—1 - BOTUWTBO)ZQZ) = 7}0/.\7]1/.\502@ZS - noMmBoﬁoTanBozcb-
By equation (3.97), 3oL = Icm — nong, thus
noAmABoBE mn; Bozd = moAmA(Iem — nong)mmn; Bozd
= noAm Amn; Bozé + noAm Anonsmni Bozé = 0,
because of pointwise linear dependence, and hence
u = 770/\771/\302¢-

By Proposition 3.2.20, there exists a vector-valued function 1 € H?*(ID, C™) such that ¢ =
BT z1). Hence

770/\771/\5_02925 = 770/\771/\5_05321/1
= noAmA(Iem — nomg) 21

= 770/\771/\Z¢

by pointwise linear dependence. Therefore,
noAmAByBLzH (D, C™2) C nyAnAzH?* (D, C™),

and thus
noAmAzH?*(D,C™) = noAm ABoBrzH?*(D, C™2).

To complete the proof, let us show that the operator
(’f]()/\’f]l/\) : CQ — 77}0/.\77]1/.\]']2(]]), Cm)L

is unitary. Observe that the foregoing paragraph asserts the operator is surjective. Hence it

suffices to prove that it is an isometry. To this end, let v € L. Then
[T0AT AV Z2(p psemy = (T0ATLAD, T ATLAV) [2(1 p30m),
and, by Proposition 2.1.19,

<77]0 /\77]1 /\U, 770 /\771 /\U) L2(T,A3C™)
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Notice that, by Proposition 3.2.1, {7jo(e?), 7, (€?)} is an orthonormal set almost everywhere
on T. Further, since Ly = By H*(D, C™2)+, v = By S for some ¢ € H?(D, C™~2)L. Hence

(Mo(e™), v(e?))em = (io(e”), Bo(e”)Br(e”)p(e”)) cm
= (B5(e”)m0(e”), Bu(e”)p(e”))em-1 =0,

since W{ is unitary-valued almost everywhere on T. Similarly, since, by Proposition 3.2.26,

WlT is unitary-valued almost everywhere on T, we obtain
(M (e”), v(e?))em = (Bi(e”) B3 (e”)im(e”), p(e”))em-2 = 0.

Therefore

1 0 0
L 1 [
||770/\771/\U||%2(T,/\3(Cm) = 2_/ det [0 1 0 df = ”UH%Q(T,C’”)’
T Jo i0\](2
0 0 [u(e?)|zm

that is, the operator (oA A-): Lo — oA AH?(D, C™)+ is an isometry. Thus, by Theorem
A.2.4, the operator is unitary. [

Proposition 3.2.36. Let 1y, be defined by equations (3.9) and (3.19) respectively and let
Bo, B1 be inner, co-outer, quasi-continuous functions of types mx (m—1) and (m—1)x (m—2)

respectively, such that the functions
WOT: (770 5_0>, W1T: (50T771 Bl)

are unitary-valued. Let

10 O2x1
Lo=wg| .
o0 (0 Wf‘) (HQ(]D,@”—?)L)

Ly ={f € L*T,C™): BiB:f € H*(D,C™?)}.

Then

Proof. Clearly Ly = By H?*(D, C™~2)L. The general element of o3, H2(D,C™~2)L is 393,27
for g € H?(D,C™?). A function f € L*(T,C™) belongs to £y if and only if

(f, BoBrZg) 12rcmy =0 forall g€ H*(D,C™?)

if and only if

1 2

p (f(e®), Bo(e®)B1(e®)eG(e"))emdd =0 for all g€ H*(D,C™?)
0
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if and only if

1 2

o | (BrENB () f(e), e g(e))em-2df = 0 forall g€ HY(D,C"?),
T Jo

which in turn is equivalent to the assertion that 8;3;f is orthogonal to H?*(D,C™~2)% in
L*(T,C™2), which holds if and only if 353 f belongs to H*(D,C™2). Thus

Ly ={f € L*T.C™): BB, f € H*(D,C"?)}

as required. O

Theorem 3.2.37. Let m,n be positive integers such that min(m,n) > 2. Let G be in
H>(D,C™*™) 4+ C(T,C™ ™). Let (EAvy, oAwy) be a Schmidt pair for the operator Ty, as
given in equation (3.15), corresponding to t; = ||Ty|| # 0, let hy € H*(D,C) be the scalar
outer factor of EgAvy, let

z1 = (Icn — &&)v1, v = (L — Tomg Jwi,

and let
nooL
1 I

Let
Vo=(% @), Wy =(n Bo)

be given by equations (3.7), and let
Vi = (%T& 071), WlT = (5(?771 51)
be given by equations (3.79) and (3.80) respectively. Let
Xy = EAGAH?(D,CY), Yy = foAAH?*(D, C™)*+

let

1 O O X 1 O O X
Ky =Vy N 2l L Ly=W . 2xt . (3.103)
0 W) \H*D,Cr2) 0 W) \H2(D,Ccm2)t

Consider the operator Ty: Xo — Yy given by

Tg(go/\gl/\l') = PY2 (77]0/\77]1/\(G — Qg)l'), (3104)
where Qy € H>®(D, C"™*") satisfies
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Let the operator I'y: Ko — Lo be given by I's = Pr,Ma_q,|x,- Then
(i) The maps Ma,a,, Mg, are unitaries.

(ii) The maps (EgAEIAY): Ko — Xo, (oAmA-): Lo — Yo are unitaries.
(11i) The following diagram commutes

HAD,Cr2) 2ty g, BRR e Re AHE(D, CY) = X,

lHFQ lm lTQ (3.106)

M An AT A- . .
H(D,Cm-2)+ =20, ) WOMA A AHA(D,C™)E = Y,

where Fy € H®(D, Ctm=2x(=2)) 1 C(T, Cm=2*("=2)) s the function defined in Proposition
3.2.26. () Ty is a compact operator. (v) || Tz|| = ||| = ||Hg,|| = ta, where to = || T3||.

Proof. (i) follows from Lemma 3.1.16.

(ii) follows from Propositions 3.2.30 and 3.2.35.

(iii). By Proposition 3.2.8, Ty is well-defined and is independent of the choice of
Qs € H®(D,C™*") satisfying equations (3.105). We can choose )2 which minimises
(s3°(G — Q), s°(G — Q)), and therefore satisfies equations (3.105). By Lemma 3.1.17 and
Theorem D.2.4, the left hand side of diagram (3.106) commutes. Let us show the right hand
side also commutes. A typical element of K is of the form aga;z where x € H*(D, C"2).
Then, by equation (3.104),

Ty (§oA&Aaparx) = Py, (oA A(G — Q2)apan) .

By Proposition (3.2.26), every @2 € H®(D, C"™*") which minimises (s3°(G' —Q), s7°(G —Q))

satisfies the following equation (see equation (3.81)),
1 0 U 1 0 0
G — 1% - 0| =W - 0 |. 3.107
( QM(O m) 0<0 Wf) (3.107)
z Frx
for some Fy € H®(D, Cm=2>x(=2)) 4 C(T,Cm=2*("=2))_ This implies that
(G — Q2)apar = By Far, (3.108)
for x € H*(D, C"~2). Hence
To(§oA§1AG a1 ) = Py, (ToAT1ABo 1 F). (3.109)

Furthermore,
(oAMA)Ta(aotnz) = QoATLAPL[(G — Q2)dpdx].
Hence, by equation (3.108),
(77]0/\77]1/\)1—‘2 (do@ll') = ﬁoAﬁlAPLQ(ﬂoﬁngl‘). (3110)
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To show commutativity of the right hand square in the diagram (3.106), we need to prove
that, for every z € H*(D,C"?),

Ty (§oAsiAdpax) = (oATHA-)To(apdsx). (3.111)
By equations (3.109) and (3.110), it is equivalent to show that
Py, (oA ABoB1 Fow) = Mo A APr, (Bo 1 Fa). (3.112)
Therefore, we need to show that
oAMAPL, (BofrFar) € Yz

and that
o AT ABo 1 Fox — To AT APz, (BoS1 Fax)

is orthogonal to Y5. By Proposition 3.2.35, oA APz, (Bof1 Fox) is indeed an element of Y5.

Furthermore,

= 770/\771/\P5%(5051F2x).

Let us show that 7oA AP, (Bof1Fx) is orthogonal to Ya.
It is so if and only if

<770/\771/\P£¢(5051F2x), 770/\771/\9>L sy 0 for every g € H*(D,C™)*. (3.113)
2 2 LA3C™
Let © = P, (Bof1F2z) € L*(T,C™). By Proposition 3.2.36,

BiB® € H*(D,C™72). (3.114)

Then, by Proposition 2.1.19, assertion (3.113) is equivalent to the following assertion

2 )
- / det 771

for every g € H*(D,C™)*, which in turn, by Proposition 3.2.1, is equivalent to the assertion

)77( Nem (Mo(e?), m(e?))em  (Mo(e”), g(e”))em
) o)) e (M(e), m(e?))en  (m1(e?), g(e”))em | 6 =0
e?), mo(e”))em  (R(e?),Mm(e?))em  (D(e), g(e”))cm

o 1 0 (7o(€”), g(e”))em
det 0 1 1€), g(e))em | dd =0
(@(e”), o(e”))em (D(e”), (e?))cm  (D(e7), g(e”))cm

—
IS

o

for every g € H*(D,C™)+. The latter statement is equivalent to the assertion
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L @), geen —(@(), () en (i), g en

—(@(e"), 7o (e”))cm (7o (), g(e”))cm df = 0

for every g € H?(D,C™)+, which in turn is equivalent to the statement that

27 Jo

1 o * (1 % *( 10\~ i i i
o ) 9 (€)@(e?) —g*(e”)iiong (€)@ (e”)(e”)
—g(e?)in(e” ) ()@ (e”) df = 0
for every g € H?(D,C™)*. Equivalently

1

27 Jo

T e (1= Tl €) = (e () ) () a8 0
for every g € H?(D,C™)* if and only if
(1= Tl ) = e () ) ()
is orthogonal to H?(D, C™)*, which occurs if and only if
(L — 7lomg — i ) @ € H*(D,C™).

By Lemma 3.2.34,
(Im — oy — 77177{) S = [y 51515, ®.
Recall that, by assertions (3.114), 8;8;® € H*(D,C™~?), and so

BoB181 By ® € HQ(]D)7 c™).

Thus the right hand square in the diagram (3.106) commutes, and so the diagram (3.106)
commutes.
(iv). By Proposition 3.2.26,

F2 c HOO<]D), (C(m—2)><(n—2)) + C(T, C(m—2)><(n—2))‘
Thus, by Hartman’s Theorem, the Hankel operator Hp, is compact. By (iii),
(MoATA-) o (Mo, Hp, Moz o) © (S0AGA)" = Th.

By (i) and (ii), the operators Ma a,, Mpyp,, (SoA&1A-) and (gAiA-) are unitaries. Hence
T5 is a compact operator.

(v). Since diagram (3.106) commutes and the operators Ms,a,, Mgs,p, (§oA&1A:) and
(oAmiA-) are unitaries, ||Ty|| = ||T2|| = || Hg,|| = ta- O
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Lemma 3.2.38. In the notation of Theorem 3.2.37, let vy, € H?(D,C") and w, € H*(D, C™)*+
be such that (§gA&1Avy, oA Aws) is a Schmidt pair for the operator Ty corresponding to
| T2||. Then

(i) There exist xo € Ky and yo € Lo such that (za,ys) is a Schmidt pair for the operator T's.
(i) For any xo € Ky and yy € Ly such that

EoA&1ATy = EoAEI AV, ToATAYs = ToATh Aws,

the pair (xq,y2) is a Schmidt pair for T'y corresponding to ||Ts|.

Proof. (i). By Theorem 3.2.37, the diagram (3.106) commutes, (§oA&;A-) is unitary from
Ko to Xa, (oAfiA-) is unitary from Ly to Yz and [|[Ty]] = ||Tz|| = t2. Moreover, by the
commutativity of diagram (3.106), the operator I'y: Ky — L5 is compact, hence there exist
x9 € Ka, yo € Ly such that (x9,1,) is a Schmidt pair for I'y corresponding to ||I's|| = to.
(ii). Suppose that xo € Ko,y € Lo satisfy

§oAE1 AT = §oAE1AY, (3.115)

and
oA Aya = Mo Af Aws. (3.116)

Let us show that (xs,y9) is a Schmidt pair for I's, that is,
Dowy = taya, Iy = tats.
Since diagram (3.106) commutes,
Tyo (GAGA) = (hmA)oTo,  (@AGA) 0T = Tyo (AmA).  (3.117)
By hypothesis,
Ty (EgAE1 Avg) = to(oATiAws), Ty (oA Aws) = ta(EgAEL Avs). (3.118)
Thus, by equations (3.115), (3.116) and (3.118),
Tozy = (ATA) To(§o A& Ava)
= (oA A-)*ta(To AT Aws)
= (M AMA) (oA AY2).
Hence
Loy = ta(oATA) (T AIA)y2 = tays.

By equation (3.115),
x2 = (A&GA) (A& AL:),
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and, by equation (3.116),
(o ATLA-) (AT Aws) = 4.
Thus
I3ya = T3 (noAmA)* (oA Aws)

= (EOAGA ) T3 (oA Aws),

last equality following by the second equation of (3.117). By equations (3.115) and (3.118),

we get
T;(ﬁo/\ﬁl/\'UJQ) = t2(€0/\§1/\v2) = tz(ﬁo/\fl/\xg),

and so,

ISys = taws.

Therefore (z2,y2) is a Schmidt pair for I'y corresponding to |||

]

Lemma 3.2.39. Suppose (EgA&1Ava, oA Aws) is a Schmidt pair for Ty corresponding to

ty. Let
Ty = (Ien — && — &1&)v2,  yo = (Iom — 7oy — Ty w2,
and let
Ty = ajagme, G2 = BBy

Then the pair (Z2,Ys) is a Schmidt pair for Hp, corresponding to ||Hp,|| = ta.

Proof. Let us first show that #, € H*(D,C"?) and x5 € K,. Recall that Vo = (¢ @) and

Vi = (al&, @) are unitary-valued, that is, ol & = 0, afalé, = 0,
I, — 5058 = 0_5005%17

and

In,1 - @gélgréo = 6[10[?.

Then

Ty = al al z,

— oTal (Ien — &L — €161,

= alTagvg — alTagfofa‘vQ — alTagﬁlﬁfvz

_ . r.T

(3.119)

(3.120)

(3.121)

which, by Propositions 3.2.15 and 3.2.29, implies that #, € H?*(D,C" ). Moreover, by

Lemma 3.2.32, we obtain
0740071{12‘2 = @Odl&?@gvg
= (In — §0&5 — §1&7)va = @3,
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Hence

Ty = dodlg?agvg = do@lfiQ, (3122)

and thus x4 € ICs.
Next, we shall show that g, € H?(D,C* %)L and y, € L,. Notice that since

Wil = (BEm B1) and W = (g ) are unitary-valued, 3570 = 0, 7857 = 0,
(L1 — Bymni Bo) = BBy (3.123)
and
(L = 7i0m ) = Bol35. (3.124)
We have
Y2 = B1 B2
= B1B5(Iem — lomg — T Jwo
= B Byws — By Biions wa — B Beinn; wo
= B} Biws, (3.125)

which, by Propositions 3.2.20 and 3.2.28, implies that ¢, € H?(D, C™ 2)L. By Lemma 3.2.34,

we have

Bobrle = 50515T5§w2
= (I — Tlomg — T )wz = Yo

Hence

Y2 = Bob181 Bywz = Bobrye, (3.126)

and therefore y, € L,.
By Theorem 3.2.37, the maps

Mapa,: H*(D,C"?) — Ko, Mgy, : H*(D,C™ )" — Lo,

are unitaries and
HF2 — ME{)& o FQ o] M@O@r (3127)

We need to show that

. X . - .
Hp,Zo = toy2, Hp, Y2 = tals.

By equations (3.121) and (3.122),
To = 5[05&10&{&51)’52. (3128)

Hence equation (3.127) yields
HFQig = 6’{651“2640@192'2 = BTBSF2$2 (3129)

135



3.2. Algorithm for superoptimal analytic approximation

By Proposition 3.2.1(ii),
EoAE1ATy = EAE AV, To AT AY2 = o AT Aws.

Thus, by Lemma 3.2.38, (x2,y2) is a Schmidt pair for the operator I'y corresponding to
tg = HFQH, that iS,
FQ?L’Q = tgyg, F;yg = tgl’g. (3130)

Thus equation (3.129) yields
Hp,29 = By BiTaze = B Bytayz = Loy
as required. Let us show that HF, 3, = t2@5. By equations (3.125) and (3.126),
Y2 = Bob1B1 Byye- (3.131)

Hence, by equations (3.127) and (3.131),

Hp, B B5ys = aq ag Lsy, (3.132)
and, by equations (3.130) and (3.132),

Hi, g0 = oleonTF;yQ = oleonTtng = 1929.

Therefore (23, 92) is a Schmidt pair for Hp, corresponding to ||Hp,|| = to. O

Proposition 3.2.40. Let (E,A& Avg, oATjoAws) be a Schmidt pair for Ty corresponding to
ty for some vy € H*(D,C"), wy € H*(D,C™)*, let hy € H*(D,C) be the scalar outer factor
of EoAE1A,, let

Ty = (I, — && — &€ )ve,  yo = (I, — 77077(? - ﬁmf)wQ,

and let
Ty =0afatxy and Gy = BBy (3.133)
Then
[22(2)len-2 = [192(2)[lcm—2 = [ha(2)],
[z2(2)llcr = lly2(2)llem = |ha(2)]
and

1€0(2) A &1(2) Ava(2)[lnscn = lI710(2) A 1 (2) A wa(2)]|asem = [ha(2)]

almost everywhere on T.

Proof. By Lemma 3.2.39, (Z2,%2) is a Schmidt pair for Hp, corresponding to ||Hp,|| = t2
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(see Theorem 3.2.37 (v)). Hence
HFQ.Z%Q = tggg and H;bgg = tgi’g.

Then, by Theorem D.2.4,

192(2)llcm—2 = l|#2(2) [l cn-2

almost everywhere on T. Notice that, by equations (3.133),
Ty = Q0 T,
and since ap(z), a1 (z) are isometric for almost every z € T, we obtain
[z2(2)llen = [1Z2(2)]lcn2

Furthermore, by equations (3.133),
Y2 = BoS172;

and since [y(2), 51(z) are isometries almost everywhere on T, we get
192(2)llcm = [[92(2)]|cm-2
almost everywhere on T. By equation (3.134), we deduce that
[22(2)[lcr = [[#2(2)[|cn—2 = [|§2(2)[lcm—2 = [|y2(2)]|cm

almost everywhere on T.

By Proposition 3.2.1,

Co NE AV = & NE1ATe, Tl AT Awa = To AT A Ya.

(3.134)

(3.135)

By Theorem 3.2.37, (§A&1A-) is an isometry from Ko to X5, and (oA A-) is an isometry

from L5 to Y5. Hence

1€0(2) A &1(2)Ava(2) [ rsen = [160(2) A &1 (2) A a(2) [l asen = [la(2)llen

almost everywhere on T. Furthermore

170(2) A 71(2) A wa(2) || sem = 170(2) AT (2) A ga(2) [ nsem = [1g2(2)llcm

almost everywhere on T. Thus, by equation (3.135),

1€0(2) A &1(2) Ava(2)[lasen = [I710(2) A 111 (2) A wa(2)]| asem

almost everywhere on T.
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Recall that hy is the scalar outer factor of £yA&; Avy. Hence
[Z2(2)lcn-2 = [|92(2) lem-2 = |ha(2)],

[22(2)len = lly2(2)lem = [ha(2)]

and
1€0(2) A &1(2) Ava(2)|[azen = [[T0(2) AT (2) Awa(z) || psem = [ha(2)]

almost everywhere on T. O]

Proposition 3.2.41. Let m,n be positive integers such that min(m,n) > 2. Let
G € H>D,C™") + C(T,C™™). In line with the algorithm from Section 3.2.1, let
Qo € H>®(D,C™™) satisfy

(G —Q2)xo =toyo, (G —Q2)*yo = toxo,

(3.136)
(G—Qo)r1 =tiy, (G—Q2)'y =t

Let the spaces X5, Yy be given by
Xy = EAGAH?(D,C"),  Ya = fio A AH*(D,C™)*,
and consider the compact operator Ts: Xo — Yy given by
To(§oA&iAT) = Py (MAMA(G — @2))

for all x € H*(D,C"). Let (& A& Avy, oA Aw,) be a Schmidt pair for the operator Ty
corresponding to ty = ||Ts]|, let hy € H*(D,C) be the scalar outer factor of EgA&1Avy, let

Ty = (Icn — &€ — E165 ) va, Yo = (Icm — Tomg — Ty w2

and let o
oo,

2 hQ’ 2 h,Q .
Then there exist unitary-valued functions Vy, Wy of types (n—2)x (n—2) and (m—2)x (m—2)

respectively of the form
Vo= (ofodes @), Wi=(818n B).

where ag, By are inner, co-outer, quasi-continuous and all minors on the first columns of
Va, V~V2T are i H*®. Furthermore, the set & of all level 2 superoptimal error functions for G

satisfies
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t()UO 0 0 0
I, 0 0 t 0 0 I, 0
&=Wiwi | . S
0 Ws 0 0 tou 0 0 Vs

0 0 0 (F+H®NB(1)

for some Fy € H>®(D, Cm=3)x(=3)) L C(T, C"=3*(=3)) "where us = % is a quasi-continuous

unimodular function and B(ty) is the closed ball of radius ty in L(T,Cm=3)x(n=3)),

Proof. By Theorem 3.2.37, the following diagram commutes

H?*(D,C"?) LN L SAGAT?(D,C") = X,

lHFQ lrz lTQ (3.137)

M Ao AT A- . .
HX(D,Cm-2)L 2oy p, WA AAH2(D,C™)L = Ys.

Recall that the operators Mgoa,, Mays,, (SoA&1A) and (oAl A+) are unitaries.

By Proposition 3.2.8, T, is well-defined and is independent of the choice of
Q2 € H*(D,C™ ") satisfying conditions (3.136). Hence we may choose ()2 to minimise
(s (G — Q), s7°(G — @Q)), and then, by Proposition 3.2.27, the conditions (3.136) hold.

By Lemma 3.2.38, (z2, y2) defined above is a Schmidt pair for I'y corresponding to 5. By

Lemma 3.2.39, (Z2,92) is a Schmidt pair for Hg, corresponding to t5, where
&y = afagms, 2= BBy

We would like to apply Lemma 3.1.12 to Hg, and the Schmidt pair (&9, 72) to find unitary-
valued functions Vi, Wy such that, for every Q, € H®(ID, C™~2*("=2)) which is at minimal

distance from F3, a factorisation of the form

~ ~ t2u2 0 ~
F— O, = W* Vo
5 — Qs 2 < 0 F3> 2

is obtained, for some Fy € H>®(D, Cm=2x(=2)) 1 O(T,Cm=2*("=2)) For this purpose we

find the inner-outer factorisations of &5 and Z,. By Lemma 3.2.40
[22(2)[|cn—2 = [h2(2)] and [[g2(2)[[cm—2 = |h2(2)] (3.138)

almost everywhere on T. Equations (3.138) imply that hy € H?(D,C) is the scalar outer

factor of both @, and Zg,. By Lemma 3.1.12, 25, Z0» admit the inner outer factorisations
By =&ha,  Za = T,
for some inner & € H® (D, C"2), 7, € H®(ID, C™2). Then
By = Eohy = afad s,  Zhy = fhs = ZB{ B4 a2,
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from which we obtain
§=ajagbs, M= By
We would like to show that af ol &, BT BIn, are inner in order to apply Lemma 3.1.12 and

obtain Vi and Ws. Recall that, by Lemma 3.2.39,

Ty = (Ien — &o&g — &1&1)v2 = 540541041TOZOTU27 Yo = (Igm — ﬁoﬁg - 771771T)w2 = Bob1 51 Biws.

Then,
T T T T T AT ~ T AT —
a0 T = oy Qg U2, By By Y2 = B By W2,
and since o
=22 n=22
9 = — 9 = ——
hy' hy’
we deduce that the functions
T,.,T T T = —
T T, _ ¥ %UV2 BT BTy — i By Zw2
ajagéy = ———, VBome = ——F——
ho ho

are analytic. Furthermore, ||€2(2)||cr = 1 and [|72(2)||cm = 1 almost everywhere on T, and,
by equations (3.138),

lo (2)ag (2)a2(2) en-2 = [l (2)ag (2)va(2) en-2 = |ha(2))]

and
187 (2)85 (2)52(2) [em—2 = 181 (2) B (2)a(2) lem—2 = |ha(2)]

almost everywhere on T. Hence

o (2)ag (2)&(2)||cn2 =1, [|B] ()85 (2)m2(2) |lem—2 = 1

almost everywhere on T. Thus of af &, 87 B{n, are inner functions.
By Lemma 3.1.12, there exist inner, co-outer, quasi-continuous functions as, 85 of types
(n—2) x (n—3),(m—2) x (m— 3) respectively such that the functions
Vo = (Oéripoégﬁz 562) , W= (5?5(?772 Bz)

are unitary-valued with all minors on the first columns in H°.
Furthermore, by Lemma 3.1.12, every Qs € H>®(D, Cm=2>*("=2)) which is at minimal dis-

tance from F5 satisfies
A ~ t2u2 0 ~
Fy — =Wy Vo,
2 Q2 2 < 0 F3> 2

for some Fy € H>(D, Cm=3)*(=3)) 1 O(T,Cm=3*("=3)) "and for the quasi-continuous uni-

modular function wusy given by us = % By Lemma 3.1.15, the set
&y ={F,—Q: Q€ H*(D,C" X2 ||Fy — Q| p= = ta}
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satisfies
~ ~ t 0
52 - VV2>|< 22 VY2*7
0 (F3+ H®)NB(L)

where B(t,) is the closed ball of radius ¢, in L=(T,C™=3>*("=3)) Thus, by Proposition
3.2.26, & admits the factorisation claimed. O

Proposition 3.2.42. Fvery Q3 € H>*(D, C™*"™) which minimises

(SSO(G - Q)7 S?O(G - Q)> SSO(G - Q))

satisfies

(G — Qg)xz = tly“ (G - Qi’))*yz = tll’, for 1= 0, 17 2.
Proof. By Proposition 3.2.27, every Q3 € H>°(ID,C™*") that minimises
(s07(G = Q),s7°(G = Q))

satisfies

(G —Q3)z; =tiyi, (G—Q3)y; =tix; for 1=0,1.

Hence it suffices to show that ()3 satisfies

(G = Q3)re = taye, (G — Q3) Y2 = taxs.

By Theorem 3.2.37, the following diagram commutes

Mayay
—_—

H2(D, C2) Ko 2N e AGAH(D,CM) = X,

[ |~ |

HA(D,Cm2)t S0, R g A AR (D,CMY = s,

where the operator T's: Ky — Ly is given by Iy = P, Mg g,lk, and
Fy € H®(D, Cm=2x(n=2)) 1 C(T, Cm=2x("=2)) i5 constructed as follows.

By Lemma 3.1.12 and Proposition 3.2.26, there exist unitary-valued functions
Vi=(ag& @), Wi=0@m A,

where a1, f1 are inner, co-outer, quasi-continuous functions of types (n — 1) x (n — 2) and
(m — 1) x (m — 2) respectively, and all minors on the first columns of V;, W are in H®.

Furthermore, the set of all level 1 superoptimal functions & = {G — @ : Q € Q;} satisfies

toUO 0 0
(1 0 1 0\, .,
& =W (0 W*) 0 tiw 0 (O ‘7*) Vo
! 0 0 (Fy+H>D,Cm2x(=2))n B(t) !

(3.139)
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for some I, € H®(D, Ctm=2*x(=2)) + O(T, Cm=2*"=2)) for the quasi-continuous unimod-
ular function u; = %, where B(t,) is the closed ball of radius #; in L=(T, C(m=2)*(=2)),

Consider some @3 € €1y, so that, according to equation (3.139),

toUO 0 0
Lo Wo(G — Q3)V Lo 0 t 0
~ — ~ == u ,
0 W1 0 3)V0 0 ‘/1 11 .
0 0 F—Q

for some Qy € H®(ID, Cm=2x(=2)) "that is,

1 0 T ] 0 0 toug 0 0
0 <771Tﬁo> (6(;) (G = Qs)(& a) (0 oI, al) =10 tw 0
e 0 0 Fr—0Q
(3.140)
Observe
0 _ toUo 0
( 3) (@-@)l6 a0) = ( 0BG - Qg)%) |
hence
1 0
. totig 0 10 0
0 (771 B °> < 0BG Qg)%) (o ole, al)
e
is equal to
touo 0 0
0 ni Bof5(G — Qs)avag &1 1 fobs(G — Qs)aodn |
0 BiB(G—Qs)aagé  BiBi(G — Q3)d
and so equation (3.140) yields
toug 0 0 toug 0 0
0 1 Bofs(G — Qs)avag €y ni Bofs(G— Qs)apan | = | 0ty 0 ;
0 BiB(G—Qs)aag&s  BiB(G — Qs)ana 0 0 F—Q

which is equivalent to the following equations

it BoBy(G — Q3)anad & = tyuy,

i BBy (G — Qs)aan = 0,

B165(G = Qs3)dag &1 = 0,
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and
Bi65(G — Qs)apas = Fy — Q. (3.141)

By Theorem D.2.4 applied to Hg,, if (%2, 92) is a Schmidt pair for Hg, corresponding to

to = ||Hp,||, then, for any Q> which is at minimal distance from Fj, we have
(Fy — Q2)£2 =tol)p, (Fo— Qz)*ﬂz = tods. (3.142)
By equations (3.141) and (3.142),
BB (G — Qs)aotu iy = tae (3.143)

and
af ag (G = Q3)" Bobrga = toiy. (3.144)

Recall that, by equations (3.122) and (3.126),
Qpie =22 and Yo = B]BYa. (3.145)
Hence, by equation (3.143), we obtain
BB (G — Qs)za = 287 B3y,

or equivalently,
BibBo ((G — Q3)7s — 7523/2) = 0.

Since, by Theorem 3.2.37, Mg s, is unitary, the latter equation yields
(G = Qs)x2 = tays.
Moreover, in view of equations (3.141), (3.142) and (3.145), equation (3.144) implies
af af (G — Q3)"ys = taa] ag xs,
which in turn is equivalent to the equation
oleoz0T<(G —Q3) Yy — t2x2> = 0.
By Theorem 3.2.37, Ms,4, is unitary, hence the latter equation yields
(G = Q3)"y2 = tamy

and therefore the assertion has been proved. O
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3.2.7 Compactness of the operator 7}

At this point, the reader is able to distinguish the method of proving the compactness of the
operators 17 and 1. Suppose we have applied steps 0, ..., 7 of the superoptimal analytic

approximation algorithm from Section 3.2.1 to GG, we have constructed

o>t >2-->t;>0

To, a1, ,x; € L*(T,C")

Yorts - 1y € L2(T,C)

ho, h1,- -+ ,h; € H*(D,C) outer

0,61, -+, & € L*(T,C") pointwise orthonormal on T
Nosm, - ,n; € L*(T,C™) pointwise orthonormal on T
Xo = H*(D,C"), Xy, -~ , X

Yo = H*D,C™)*, Ya, -+ .Y

To,Th,- -+ ,T; compact operators,

and all the claimed properties hold. We shall apply a similar method to show that the

operator Tj1; as given in equation (3.25) is compact.

Proposition 3.2.43. Let m,n be positive integers such that min(m,n) > 2. Let
G € H>D,C™") 4+ C(T,C™™). In line with the algorithm from Section 3.2.1, let
Q; € H*(D,C™™) satisfy

(G—Q)zx; =ty, (G—Q;)y=tx; for i=0,1,....5—1 (3.146)
Let the spaces X;,Y; be given by
Xj = &AGA . AGLAHA(D,C"), Y = oAmA ... Al AH?(D,C™),
and consider the compact operator T;: X; — Y} given by
T;(&oAGIA ... A& 1Ax) = Py, (oAmA ... Anj 1 A(G — Q;)x)
for all z € H*(D,C"). Let (§A&A ... A&_1Av;, oATLA ... Aljj—1Aw;) be a Schmidt pair for

the operator T} corresponding to t; = ||Tj||, let h; € H*(D,C) be the scalar outer factor of
&)/'\51/.\ e /\fj_l/\vj, let

vy = (Ien — & -+ — §1&51)vj, Y5 = (Iom — Tomy — - — ﬁj—ln};l)wj
and let o
x; Zy;
=22, n="L (3.147)

Let, fori=0,1,...,5 —1,

Vi= (ol af& a), W= (87,80 5) (3.148)
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be unitary-valued functions, as described in Lemma 3.1.12 (see also Proposition 3.2.41 for

Va and W), u; = 2 are quasi-continuous unimodular functions, and

hi
I; i
= 0) w0 )
0V 0 W

There exist unitary-valued functions ‘7]-, Wj of the form
V= (04}11 g 54]') . W= ( e By BJ) , (3.149)

where o, ..., 01 and Py, ..., B—1 are of typesn x (n—1),....,(n—j—1) x (n —j —2)
and mx (m—1),...,(m —j—1) x (m — j — 2) respectively, and are inner, co-outer and
quasi-continuous.

Furthermore, the set of all level j superoptimal error functions &; satisfies

toug 0 e 0 le(n,jfl)
0 tiuq e 0 O1x(n—j—1)
& =WoWi - Wy : z RO : Vi g
0 0 s tiug 0
Opm—j—1)x1 Ogn—j—iyx1 --- .. (Fjp1 + H®) N B(ty)

(3.150)
for some Fj,, € H*(D, Ctm=i=Vx(n=i=1)) 4 O(T, Cm=i=Dx(=i=1)) " for the quasi-continuous
unimodular functions u; = E}Z", for alli =0,...,j, for the closed ball B(t;) of radius t; in

L>® (Ta C(m—j—l)x(n—j—l))} and

I, O I, O
‘/j: ’ ~ 5 Wj: ! ~
0V 0 W,

are unitary valued functions.

Proof. Suppose we have applied steps 0, ..., j of the algorithm from Section 3.2.1 and the

following diagram commutes

§G-nh

. Mag...a; .
H*(D,C*7) ——2% K ¢i-nyAH*(D,CM) = X;
JHFJ. lrj lTj (3.151)
, Mg,..5._, oA )
H*(D,Cm—7)+ fo L; UEELIAN M-y AH*(D,C™)* =Y

7

where the maps
M@O"'@j—l : H2<D, Cnij) — ICjZ X = Qg--- O_éj,11’7

MBO"’B]’—l : H2<]D>, Cm_j>L — £j: Y= 60 s 6j—1y7

(f(j—l)/\'): le — Xj and (ﬁ(]—l)/\) ,Cj — }/j
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are unitaries.
Let (&j—1)Av;, fj—1)Aw;) be a Schmidt pair for the compact operator 7. Then
z; € K;, y; € L; are such that (z;,y;) is a Schmidt pair for I'; corresponding to t; = ||T';]|,

and (Z;,7;) is a Schmidt pair for Hg, corresponding to t; = || Hp, ||, where
T; = Oz]T_l e ag:rj, Ui = Bi_1- Boyj- (3.152)

We would like to apply Lemma 3.1.12 to Hp, and the Schmidt pair (;,9;) to find unitary-
valued functions f/j, Wj such that, for every Qj € H>°(D, Cm=9)*("=1) which is at minimal

distance from Fj, a factorisation of the form

~ (w0 -,
Fj_Qj:Wj(O F‘+1)Vj
J

is obtained, for some Fj; € H®(D, Cm=2x(=2)) 4 (T, Cm=2*("=2))_ For this purpose we
find the inner-outer factorisations of #; and zg;.

By the inductive hypothesis (see Lemma 3.2.40 for j = 2), we have

|25(2)] = [160(2) Ao A Ea(2) Avs(2) [ namien = [1T0(2) Ao ATia(2) Aw;i(2) || rasagm,
12;()len = 19;(2) lem—s = |h;(2)], and
lz;(2)llen = llyi(2)llem = [h;(2)],

(3.153)
almost everywhere on T. Equations (3.153) imply that h; € H*(D,C) is the scalar outer
factor of both #; and zg;.

By Lemma 3.1.12, 2, Zﬁj admit the inner-outer factorisations
.ﬁi’j - fjhj, 2]53' - ﬁjhj7 (3154)

where éj € H*(D,C" V) and 7; € H>*(D,C™7) are vector-valued inner functions.
By equations (3.152) and (3.154), we deduce that

~

T T . T T
5]‘:%‘—1“‘%5]‘7 nj = j—1"'5077j-

We would like to show that ol ---af&;, 8], --- 3 n; are inner in order to apply Lemma

3.1.12 and obtain f/] and VT/} as required. We have

N T T
Tj = Qg Qo

=al o (Ion = && — = &)y

= O[;Fil o Oég/U] — Oé_:]rfl . e aggoggvj — e e — Oéj’rfl e agwfj—lg;flv‘]

Recall that, by the inductive hypothesis, for i =0,...,7 — 1, each
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V= (04;{1“'04%’& 5@')

is unitary-valued, and so o/ ol | ---al& = 0. Hence, if 0 <4 < j — 1, we have

T T T Te
QOG0 ea & =0.
Thus
A _ T T, _ T T
Tj=0Qj 17 Qo = Qj_1° Qg Uy,

that is, #; € H*(D,C"7) and

1 1
Ozjr—l .. Oéong = Eaf_l .. Oég:gj = ;a’f_l .. 'Oég'uj
J J
is analytic. Moreover, by equations (3.153),
lagj_1 (2) - - o ()5 (2)llen-s = llaj_1(2) - - g (2)(2) lcn-s = |By(2)]
almost everywhere on T, and hence
loj_1(2) - o (2)&5(2)len-s = 1
almost everywhere on T. Therefore o] ;- - af¢; is inner.
Furthermore
Z)‘] —= %71 “ e ﬁgy]
= Biye e By — i} =+ = iy
= Biy - Bowy — Biy - Bytiong wy — - = Bi_y -+ Bynj-an]_w;.

Notice that, by the inductive hypothesis, for ¢ =0,...,5 — 1, each

Wz'T = ( ?71"'5(?7)1‘ Bz)
is unitary-valued, and so g - - - Bin; = 0. Hence, if 0 <7 < j — 1, we have

Bia- BiaBi - Boni = 0.
Thus
v = 5;':1 - Boy; = 5;71 - Bywy,
that is, g; € H*(D,C™ )+ and

1
h;

Jl...ﬁozyj—_ ...502/(1)],

T T, _
j_1"'5077j— h. i1
j
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is analytic. Further, by equations (3.153),
187-1(2) - - By (2)27(2) lom-3 = 1B]_1(2) -+ By (2)20;(2)[lem—5 = [R;(2)]

almost everywhere on T, and therefore

18T (2) - BL (2)n;(2) lem =1

almost everywhere on T, that is, 3] --- G n; is inner.
We apply Lemma 3.1.12 to the Hankel operator Hp, and the Schmidt pair (2, ;) to de-
duce that there exist inner, co-outer, quasi-continuous functions «j, 3; of types

(n—j)x(n—j7—=1), (m—j)x (m—j—1) respectively such that
b (ol ). W= (o 5)

are unitary-valued and all minors on the first columns of V;, W; are in H*°. Moreover, every

function Q; € H>®(ID, C"=)*(=1)) which is at minimal distance from F}, satisfies

A S 71 U N
Fj_Qj:Wj<O F‘+1>Vj’
J

for some Fj,; € H®(D, Cm=i—Dx(=i=D) 4 O(T, Cm=7=D*("=i=1) and for the quasi-continuous
zh;

%

By Lemma 3.1.15, the set

unimodular function u; =

& ={F; - Q: Qe H*([D,C ), |IF; = Qllp = t;)
satisfies
~ [ tiu, 0 -
;=W 7 N v
0 (Fjp+ H®)NB(t)

where B(t;) is the closed ball of radius t; in L>(T,Cm=i=Dx(n=j-1)),

By the inductive hypothesis, the set of all level j superoptimal error functions &; satisfies

toug 0 0 le(n—j)
0 tiu 0 le(n—j)
Ejmr = WoWi--- Wi, : : : : Vieg-- Vg,
0 0 s tiquj 0
Om—s)x1 Om—j)x1 --- (F; + H®)N B(tj-1)

(3.155)
for some F; € H>=(D,Cm=)x(n=i)) 4+ C(T,Cm=*x(=0) 4, = Z,Zi are quasi-continuous
unimodular functions for all ¢ = 0,...,j — 1, and for the closed ball B(t;_1) of radius t;_;
in L>(T, Cm=)xn=i)),

Thus, by equation (3.155), £; admits the factorisation (3.150) as claimed. O
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Remark 3.2.44. Let, fori=0,1,...,7,

Vi=(ofy ol a), WI= (8L, 8l A) (3.156)

be unitary-valued functions, as described in Lemma 3.1.12. Let

L 0 I 0
V= W=7 - .
0V 0 W,

Let Aj = Qo071 ...0Q4, A—l = [n, Bj = 5061 .. 'Bj and B_1 = [m

Note
1 0 i nd
W1W() = 0 m ﬁo ( 0*> = m B()B>|<
0 B " By
and
T
L 0 0t Tgo -
W2W1W0 == 0 b Bl un B()B>|< - 0
0 B3 B Up) BlB*
2 1 B}
Similarly one obtains
T
o
U,iFBOBS
WW;_y--- Wy = : : (3.157)
U BJ 1B] 1
Bj
Therefore
WWi e W = (770 BB ... ByaBii, Bj> .
Thus
J
o * * * o * =T * *
Im — WO Wl Ce W] VVJ ce W1WO = Z Bilei—lnini Bilei—l -+ BJBJ (3158)
i=0
Furthermore
1 0 0 _
VoVi = (& ao) ~ (& 4fe A)
oV1 So Qo (O ol 071> o Ap&t A
and

I, 0 0

WwhiVa = AgATE A
- (o age ) (50 0

)I (50 AoAgﬁl A1A1T§2 /_12>.
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One can show that
Voo V= (fo AgATE A1ATE .0 AjL AT g AJ) ' (3.159)
Therefore,
L= Vo ViV Vi = &€+ Ao A a6 AgAG +. .. Ay 1 AT §E A AT+ A;AT. (3.160)

Lemma 3.2.45. Let
Vi= <04in1 g 07z') (3.161)

be unitary-valued functions, for i = 0,1,...,75, as described in Lemma 3.1.12 Let, for i =
0,1,....7, A; =apay...a; and A_y = 1,. Then, fori=20,1,...,7,

AT =1, =) a& (3.162)
k=0
almost everywhere on T.
Proof. By equation (3.160), for k =0,...,j,
k
LAY =1, =Y A AT GG A AT (3.163)
i=0
Thus to prove condition (3.162) it suffices to show that, for £ =0,...,,

A1 AL GEn A ALy = G5

For k =0,
A AT & A AT ) = 68,

and so, equation (3.163) yields

For k =1,
A A& AgAG = (I — &0&)6n&S (I — £0&5)

By Proposition 3.2.1, & and & are pointwise orthogonal almost everywhere on T, hence
AATEE Ao Ay = &7,
and in view of equation (3.163), we get

AIA{ - In - 5058 - glé;
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Suppose
Aﬁ—lAZ—lfffzﬁé—lAeTﬂ = &SZ

(3.164)

holds for every ¢ < k, where 0 < k < j. By equations (3.163) and (3.164), this implies

k

=0

Let us show that
AkAZ€k+1€Z+1AkAg = fk+1§Z+1-

Note that
k k

AkAgkafZHAkAz = (In — Z 5i§:)§k+152+1(1n - Zfzfj)

i=0 =0

By Proposition 3.2.1, the set {£(2)}:y is pointwise orthogonal almost everywhere on T,

and therefore
AkAZ€k+1§Z+1AkAZ = Er1&11-

Thus, by equation (3.163),
k+1

A ALy =1, =) &8,
i=0
and the assertion has been proved.

Lemma 3.2.46. Let
Wz‘T = ( iT_1"'BOT7h Bz)

be unitary-valued functions, for i = 0,1,...,7, as described in Lemma 3.1.12.

1=0,1,...,4, B;=0of1...05; and B_1 = I,,. Then, fork=0,1,...,7,

k
BB =TI, — Y i}
=0

almost everywhere on T.
Proof. By equation (3.158), for k =0,...,,
k
ByB; = I, — Y _Bi1B} nm Bii B} ;.

=0

Thus to prove condition (3.166) it suffices to show that, for £k =0,..., 7,
By By_ iy, Be-1Bji_y = My -

For k =0,
B_\B* ijont B_.1B* | = Luijong Im = Tomt
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and so, equation (3.167) yields
BB = Ly — o, -

For k =1,
BoBiim BoBg = (I — o )iy (I — 7oy )-
By Proposition 3.2.1, n; and 7y are pointwise orthogonal almost everywhere on T, hence
By By BoBgy = iy
and in view of equation (3.167), we get
BB} = Ly — Tiofly — i -
Suppose

By Bi_yieng BeaBiy = iy (3.168)

holds for every ¢ < k, where 0 < k < j. By equations (3.167) and (3.168), this implies

k
BB} =1, — > mm;.
=0

Let us show that

BkBZﬁHmeBkBZ = 771@+1771?+1-
Note that

k k
BkBZ"—?ankTHBkBZ = (In — Z ﬁiﬁ?)ﬁkﬂngﬂ([m - Z 17 )-
i=0 i=0

By Proposition 3.2.1, the set {7;(2)}i4 is pointwise orthogonal almost everywhere on T,

and therefore
By Byiili10 1 Be By = Mooy 1-
Thus, by equation (3.167),
k1
Biw1Biyy = In— Y o
i=0

and the assertion has been proved. [

The following statement asserts that any function Q)41 € §2; necessarily satisfies equa-
tions (3.22).

Proposition 3.2.47. Every Q;.1 € H®(D, C™*™) which minimises

(507(G = @),s7°(G = Q),...,s7°(G = Q))

satisfies
(G = Qj1)ri = tiyi, (G — Qjy1)"ys = tiwi,  fori=0,1,...,7].
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Proof. By the recursive step of the algorithm from Section 3.2.1, every ;41 € H*(D, C™*")

that minimises
(55°(G = Q),...,s7,(G—Q))

satisfies
(G — QjJrl)Ii = tzy“ (G — Qj+1)*yi = tzl‘l fOI' 1= 0, 1, R ,j — 1.

Hence it suffices to show that ;4 satisfies
(G = Qjia)r; = ty;, (G = Qjn)"y; = ;.

Notice that, by the inductive step, the following diagram commutes

Mag.a;_q EG—A

H2(D, C) K; £, yAH(D,C") = X;
lHFj lrj JTj (3.169)
, Mpy.p,_, - .
H2<]D)7 Cm_]>L s K’j T](j—l)/\HzaDv Cm)J_ - Yj?

nG—nA-

where the maps Msg..q,_,, Mayp,_,» (§G-nA-): Kj — X; and (75-nA-): L; — Y are
unitaries, and F; € H>(D, Ctm=)*(=1)) 4 O(T, Cm=)*(n=3),

By equation (3.155), the set of all level j — 1 superoptimal error functions

Sj—l == {G—Q : Q S Qj—l}

satisfies
totg 0 0 Ot ()
0 tiug . 0 O1x(n—y)
5j71=W§Wf'“Wffl : : : : V;'tl”"/()*7
0 0 s iU 0
Om—s)x1 Opm—j)jx1 - . (F; + H*)N B(t;_1)
(3.170)
for some F; € H®(D, Cm=9)x(=3)) 4 C(T, Cm=D* =0 where u; = 2}? are quasi-continuous
unimodular functions for ¢ = 0,...,7 — 1, and B(¢;_1) is the closed ball of radius t;_; in

L>(T, Ctm=9)x(=3)) Consider some @, € ;_1, so that, according to equation (3.170),

touo 0 0
7 0 7 0 0 t1uq 0
j—1 n—j—1 . .
~ W (G = O Vo ~ = . .. : ,
(3w ) (5 ) | s
j—1Uj—1
0 Fj—Qj

(3.171)
where Q; € H>(D, C"=)*("=7) is at minimal distance from Fj. Let B; = B, --- ; and let
A; =ap---a;. By equations (3.148), we have
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toug 0 0
0 e 77] 1B] QBJ 2(G Q]+1) j— QA] 25_] 1 T];f 1Bj QB; 2( Q )
0 _1(G—=Qj11)A;— QAJ 2&j-1 (G~ Qy+1) -1

which, combined with equation (3.171), yields
F (G = Qi)Aj1 = Fj— Q. (3.172)
Since Qj is at minimal distance from Fj,
1F5 = Qsllee = I|Hr, Il = t;.
Note that, if (Z;,7;) is a Schmidt pair for H, corresponding to t;, then, by Theorem D.2.4,
(Fj = Q)35 = t555,  (Fj — Q)5 = t;2.
In view of equation (3.172), the latter equations imply

(G Qy+1) j— lxj = tjij A (G Qg+1> j— lyj =t JJ]

By equation (3.152),

O — T . YP— * .
Tj = Aj_lzvj, Y = Bj_1y;

Thus
(G = Q1) A; 135 = B (G = Q1) = t;B] 1y,

or equivalently,
B ((G = Q1) — tyy;) = 0,
and since, by the inductive hypothesis, Mp._, is a unitary map, we have
(G = Qjt1)z; = tjy;.
Furthermore

AT (G = Q1) Bjay; = A?fl(G — Q1)Y= AT 1%5,

or equivalently,

AT ((G = Qjs1)"y; — tjay) = 0.
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. is a unitary map, hence

By the inductive hypothesis, My, _
(G = Qj1)"y; = tzy,

and therefore ()1 satisfies the required equations. m

Lemma 3.2.48. Let

be unitary-valued functions, as described in Lemma 3.1.12. Then
o H*(D,C"") = H*(D,C"')
and
B (HA(D,C™ ')t = H*(D,C™ ),
foralll=0,...,7.

Proof. Recall that, by Lemma 3.1.18, forall [ = 0, ..., j, the inner, co-outer, quasi-continuous
functions «y, B; of types (n — 1) x (n — 1 —1) and (m — 1) x (m — | — 1) respectively, are left
invertible. The rest of the proof is similar to Lemmas 3.2.15 and 3.2.20. O]

As a preparation for proof of the main inductive step we prove several propositions.

Lemma 3.2.49. Let V; be unitary-valued functions as given in equations (5.149), fori =
0,1,...,7. Let A, =ap---ay, fori=0,1,...,5 and A_y = I,,. Let

I; 0
V= -, fori=0,1,...,7

0(j-&-1)><1
Kjpn=Vo---V, (HQ(ID) o1y ) (3.174)

and let

Let &5y = &A ... A&;. Then, for all 0 < j < min(m,n) — 2 and every f € L*(T,C"),
EnAAj1 AT 1§85 f = 0.

Proof. For j = 0,1,2, by Propositions 3.2.17 and 3.2.30, the assertion has been proved.
Suppose the assertion holds for all 7 = 0,...,£. Then the entities constructed by the recursion

step of the algorithm from Section 3.2.1 satisfy
§(£—1)/\Ae—2A{_2&_1€Z_1f =0 forall/,

where

Apg =ap---aps
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and o, ..., o are inner, co-outer, quasi-continuous functions of types n x (n — 1),...,
(n—0+1) x (n — £+ 2) respectively.
We will show the assertion holds for j = 0,...,¢ + 1. Since T, is a compact operator,

there exist functions v, € H*(D,C"), w, € H*(D,C™)* such that (§—1)Ave, fe—1)Awy) is a
Schmidt pair for operator T; corresponding to ¢, = ||T;||. By Proposition 3.2.2, {,_1)Av, is an
element of H?(D, A“"*C"). Let hy € H*(D, C) be the scalar outer factor of £_1)Avy. Define

we = (Icn — &€y -+ — §e1&71)ve

and
Ty
S = %
Then
of g ofwy = A (Ier — &85 — -+ — &1&f_q)ve
= Ay v — AL &0 — - — AL &€ ve

Recall that, by the inductive hypothesis, for 7 =0,...,¢—1, each Vj; is unitary-valued, hence

al |- al& =0. Thus

T T T T
0{671 .. .aoxé pr— 0{671 .. .aovg,
that is,
1
T T T T
Qpq 08 = T 10y Ty
hy
is analytic. Moreover, since a;(z2) are isometries for all j =0,--- , ¢ —1,

log=1(2) - ag (2) (2)ae(2)len-e = llog_1(2) - g (2)(2)ve(2)llen—e [l = |Re(2))]

almost everywhere on T, and hence

log =1 (2) - ag (2)€e(2)len-e = 1

almost everywhere on T. Therefore af ;- --al'¢, is inner.
Then, by Theorem 3.1.10, there exists an inner, co-outer, quasi-continuous «y of size (n —
l) x (n — £+ 1) such that

V= (A?_l& @ﬁ)

. I, 0
is unitary-valued and all minors on the first column of V, are in H*>. Let V, = ((f f/) .
¢
Recall that
‘/0...‘/471‘/[*71...‘/0:[”7
which is equivalent to the equation
-1
S AAT GEA AT+ A A =1, (3.175)
3=0
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We have that, for every f € L*(T,C"),
_ . =1 _ _
5(4)/\1467114?_15@527 = {NI, — Z:OAjflA?_lgjf;AjflA?_l)€€£Zf
J:
. . -1 - -
= &Nl f — SN ;}Aj—lAgllgjngj—lA;{léé&f
]:

-1 B
=0—=¢§@A ZOAj—lA?_lfjg;Aj—lA?_lgﬁggf
j:

because of pointwise linear dependence. We set flj_lAf_l&Sj f =g € L*(T,C"). By the
inductive hypothesis, we get that, for every g € L?(T,C"),

/-1

EenyAGA Y Ay AL &6 g = 0.
=0
Thus we have proved that for every 0 < j < min(m,n) — 2 and every f € L*(T,C"),

EAA AT &6 f =0. ]

Proposition 3.2.50. Let V; be unitary-valued functions as given in equations (3.149), for
1=0,1,...,5. Let Ay =ag---a, fori=0,1,...,5 and A_y = 1I,. Let

I, 0O
Vi= |, fori=0,1,...,5

0(j+1)><1
Kipn=Vo---V, (HQ(ID) . (3.176)

and let

Let &y = & ... AE;. Then, for every j,

EnAK i1 = §AH* (D, C")
and the operator (§A-): Kjz1 — §AH?*(D,C") is unitary.
Proof. Let us first prove the inclusion

EnACjp1 C f(j)/\HQ(ID), C™).

A typical element p € £;)AK; 41 is of the form p = £;)AA;_1¢ for ¢ € H*(D,C"971). By
Lemma 3.2.48, there exists a function ¢ € H*(D, C*72) such that

Then
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p=EpAAdjma) 10 = §AA a0 .
Since f/j_l is unitary-valued,
Agﬂngj,lf;LlAj,Q + 6[]',1@?71 = Infj+1-

Hence -
p =E{nAAjpa1a] ¢

= g(j)/\Aj—Q(In—j+1 - A?_ggj_1f;_1/_1j_2)¢
= EAA 20 — EHAA; AT HE 165 1 Aj 20

= §()AAj—20
last equality being obtained by Lemma 3.2.49. It is evident that, by continuing in a similar
way, we get
p=Eihe
for ¢ € H?(D,C"), and so,
p € §(HAH (D, C").

Hence

§oAKi1 C §oAH?(D,C™). (3.177)

Let us show that ;A1 2 §;)AH?*(D,C"). Let f € H*(D,C"). Since Vj,...,V; are

unitary-valued, we have
EgN = EpNnf

(dL - _ _
= E{G)A (kZO A Ap L §& Ar Ay + Aﬁlf) f
CdL - _ o
RSO /;0 AkflAg—ﬁkfiﬁAk—lAg_lf + f(j)/\AjAij.

By Lemma 3.2.49,

i
EDAN = EDAD | At AL GG A AL f + EALAT | = E)AAAT |
k=0
By Lemma 3.2.48, AT H*(ID,C"7) = H*(D,C"7~1), thus
EpAS € EpAAH (D, C 7Y = £y AKC 1,

proving that
EAH* (D, C") € €A1
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Combining the latter inclusion with inclusion (3.177), we deduce that
§pAK 11 = o AH* (D, C).

To show that the operator (§;A+): Kjp1 — {)AH?(D, C") is unitary, it suffices to prove
that, for every ¥ € Kj41,

1€ AD || L2er pit2cny = 1|9 L2(r,cmy-

Let ¥ € K;41. Then, by Proposition 2.1.19, we get

|‘£(j)/\19‘|%2(T7Aj+2<C”) = <£(j)/\19a f(j)/\19>L2(’J1‘,/\j+2Cn)
1 2m

— [ (€ (e®)AD(e?), &) () AD(e?)) pagndd

:270

(W0(e), &(e")en . (9(e?), D(e”))en

By Proposition 3.2.1, {&(2)}_, is an orthonormal set in C" for almost every z € T. Thus
the latter integral is equal to

1 0 ... (&(e?),9(e"?))cn
o eia 61’9 "

% det 0 1 (& )7?9( ))c "
(0(e?), &o(e))en .o (9(e?),0(e”))en

Note that since ¥ € K;,1, then 9 = A;¢ for some ¢ € H*(D,C" 7). Also, since each Vi is

unitary valued for all £ =0,..., 7, then, for almost every ¢ € T,

(€r(e”), 9(e”))en = (G(e”), A;(e”)¥(e”))en = 0.

Hence .
1 0 .. (&(e?),9(e))cn
o 0 1 ... 0 719 16 n
i/ ot . (&i(e ).(6 )e "
27T 0 X .
(), Eole®)en oo (9(e®),9(e))en
is equal to
0 ...
1 2 0 1 ... 0
1 / det o),
0 (), 9(e?))en
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which yields

1 2w ;
3 | 19 et = 191 o
Therefore, by Theorem A.2.4, the operator ({;A-): Kji1 — £ AH?*(D, C") is unitary. O

- I, 0
T ~ : T _ [
Lemma 3.2.51. Let W be given by equations (3.149), let W = (O ~]-T) , let

— T * 0(j+1)X1
£j+1 - WO e VI/] <H2(D, Cm—j—l)i. ’

and let 77(]) = ﬁo/\ ce /\ﬁ] Let Bj = 60 cet ﬁj'
Then, for every u € H*(D,C™)* and all 0 < j < min(m,n) — 2,

M) ABj-1By_10;n; Bj—yu = 0.

Proof. Note that by Propositions 3.2.21 and 3.2.35, the assertion holds for j = 0,1, 2. Sup-
pose it holds for 5 = 0,--- ;1 — 1 and for every u € H?(D,C™)+. This means that, for all
L,

M- ABi—oBi_omi-1n_1Bi_2B;_of =0 for all f € L*(T,C™), (3.178)

where  (y,...,0_2 are inner, co-outer, quasi-continuous functions of types
mx (m—1),...,(m—10142) x (m—1+ 1) respectively.

We will show that assertion (3.178) holds for j = 0,...,[. By the inductive hypothesis,
T, is a compact operator, so there exist functions v; € H*(D,C"),w; € H?*(D,C™)* such
that ({g_1)Avi, Tu—1yAw;) is a Schmidt pair for operator 7; corresponding to ¢; = ||T;||. By
Proposition 3.2.2, £;_1)Av; is an element of H?(ID, A C™). Let hy € H*(D, C) be the scalar

outer factor of £;_1)Av;. Define

Y= (LI, — Tong — *++ — 171 )Wy
and o
m = =
hy
We have
By Boy = Biy(Im — fomg — + -+ — M—mf_1)wi
= B yw — Bl*—177077(i)le - Bl*—lﬁlflnljllwl'

Notice that, by the inductive hypothesis, for ¢ = 0,...,l — 1, each W; is unitary-valued,
hence 57, - -+ 5§71 = 0. Thus

* *
By = B jw
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that is,
1 - 1 __
BzT_mz = EBZT;1Z?/I = EBlT_lzwl
is analytic. Further, since (3;(z) are isometries for all i = 0,...,1 — 1,
1B (2)25u(2) [em-t = | By (2)2@1(2)lem-1 = [hu(2)]

almost everywhere on T, and therefore

1B (2)m(2)llem =1

almost everywhere on T, that is, Bl ;n; is inner.
By Theorem 3.1.10, there exists an inner, co-outer, quasi-continuous function J; of size
(m —1) x (m —1—1) such that

VVlT = (B£1nl Bl)
is a thematic completion of B} ;n;. Then

BiBy + Bi_yin Biy = L. (3.179)
L 0
Let W = (Ol WT> and let
l

Or1)x1
Lo =W W .
I+1 0 ! (HQ(]chmll)J_

Since Wy, - -+, Wj_y are unitary-valued, W§--- W ,W,_y --- Wy = I,,,, or equivalently,

-1

BiaBiyi+ ) BiaBi_yiwi BiaBioy = L.
k=0

Then, for any u € H*(D,Cm™~1=2)+,
-1

oy ABi-1 By Bi—yu = gy A (Im - Bk-lBZ_manBk_lBZ_1> i By,
k=0

which is equal to

-1

noAnl Biw — A Y Bro1 By yTeni Be-a Bi_yiim) Bi-yu.
k=0

Hence

-1

iy ABi- Byl Bivu = =AY Be-1 Bi_yieni, Bioa By Bi-xu,
k=0
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3.2. Algorithm for superoptimal analytic approximation

last equality following by the pointwise linear dependence of 7; and ﬁmlTBl,lu on D. If we
set By i Bju = f € L*(T,C™'=2), then, by the inductive hypothesis (3.178),
-1
AA Y Bio1 By yiikit Br-1by 1 f = 0.

k=0
Hence, for all f € L*(T,C™72) and all j,
1G)yABj-1Bj_yin; Bj1f =0 (3.180)
and the assertion has been proved. [
o 0 T T . . T [] O
Proposition 3.2.52. Let W} be given by equations (3.149), let Wi = o ) let
J
Lo =We- W U1y (3.181)
J+1 = "o J H2<]D>, Cm—j—l)L ! ’
and let 77(]) = 770/\ e /\77] Then,
TG)ALjp1 = NgyAH? (D, C™)*
and the operator (fjA-): Lit1 — G AH?(D, C™)* is unitary.

Proof. Let us first show 7jyAL;j11 C iy AH?(D, C™)*+ A typical element g € 7jjyAL;j11 is of
the form

q = n;)ABjv

for some v € H*(D,C™~!"1)L. By Lemma 3.2.48, there exists a vector-valued function u €
H?(D, C™ )+ such that Bju = v. Then, ¢ = 7;)AB;;u, and by equation (3.179),

M) ABjBiu

B
I

Ny ABj-18;85u

M)\ ABj-1(I;m—j — B} _7;m) Bj_1)u

I
=

(WABj-1u — iy ABj1 Bj_yin; Bj-1u

Ny ABj-1u

last equality following by Lemma 3.2.51. It is obvious that continuing in a similar way, we
obtain ¢ = 7j;)Ay for ¢ € H*(D, C™)*. Thus

T ALiw1 S gy A (D, C™) (3.182)
Let us now prove 7 ALjy1 2 ) AH*(D,C™)*. Let p = qjyAr € H*(D,C™)* for some
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T € H?(D,C™)*. Note that, since Wy, ..., W, are unitary-valued, we get
We - WIW, - Wy = Ly,

which is equivalent to the equation
J
B;B; + Y Bi1Bi it BiBy = L.
k=0

We, then, obtain

NHAT = G AmT

_ j
niHA (BjBf + > Bk—le—lnknl{Bk—lBZ—l) T
k=0

A 5, A / * = *
NHAB;B; T + ;) A kZ Bi—1 B}yl Be-1Bji_iT.
=0

By Lemma 3.2.51,

j
M)A Y Bro1 B yiikit Bio1 By =0,
k=0

hence

NAT = N AB;B;T.
By Lemma 3.2.48, ByH*(D,C™)* = H*(D,C™/*!)*, thus
THAT € T ABH? (D, C™ 74N = [y ALy,

and so
T AH? (D, C™)*" C 7y AL

Combining the latter inclusion with inclusion (3.182), we deduce that
i ALjw1 = g AH* (D, C™)*.

To show that the operator (fjA-): L1 — 7 AH?(D, C™)* is unitary, it suffices to
prove that, for every ¢ € L; i1, ||[ij)Ael 2 ri+2cmy = |l¢llL2(rcmy. By Proposition 2.1.19,

we get

1Al T2 pis2emy = (TG)AP TGAP) L2(T, A +20m)

fio(e”), 7o (e)) cm (M0(e”), o(e”))cm
N N L R S
(p(e”), 0 (e))cm (p(e”), () cm
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Recall that, by Proposition 3.2.1, the set {7;(2)}/_, is orthonormal in C" for almost every
z € T. Then the latter integral is equal to

I 0 ), e(e)er
1 [ 0 1 ... (m(e?), p(e?))em
ES det (Mm(e), p(e”))c 0.
2m Jo : :
(o(e?),m0(e®))em o oo {ple?), p(e?))em
Observe that since p € £;,1, there exists a p € H?(D,C™71)L such that ¢ = B;p. Also,
since each W is unitary valued for all K =0,..., 7, then, for almost every ¢ € T,

(7€), o(e?))em = (Mu(e”), Bo(e?) -+ B;(e?)p(e”))cm = 0.

Thus the latter integral equals

1 0 ... 0
1 [ o 1 ... 0
— det db
0 ... ... {(p(e?),o(e?))cm
I 0 2
“o ) (p(e”), p(e™))emdl = [l 72z cm)-

Hence by Theorem A.2.4, the operator (7j;A-): Ljt1 — G AH?(D, C™)* is unitary. O

Proposition 3.2.53. With the notation of Proposition 3.2.52
Ej_+1 = {f € L2(']I‘,(Cm) . 5]* .. ﬁgf c H2(]D)7(Cm_j—1)}‘

Proof. Clearly L1 = fy---;H*(D,C™ /"), A function f € L*(T,C™) belongs to L, if
and only if
(f,Bo-- ‘Bje_ieg>L2(’]I‘,(Cm) =0 forall gec H*(D,C™ 7).

Equivalently,

1 2

(f(e”), Bo(e”) -+ Bi(e”)e " g(e”))cmdf =0 for all g€ H*(D,C™71)

21 Jo
if and only if

1 2 . . ) ) ) '
(B5(e”) - B3 () f(€), e “g(e”))em—2df =0 forall ge H*D,C™ /1)

9 J
21 J,

*

The latter statement is equivalent to the assertion that [

s Bgf is orthogonal to
H?*(D,Cm™==Y)+ in L2(T,C™~1), which holds if and only if

Bj -+ By f € HY(D,C™ 7).
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Thus

Ejﬂl = {f - LQ("]I"Cm) . 5]* .. Bf]kf c H2(]D),(Cm_j_1)}
as required. .
Let us proceed to the main theorem of this section.

Theorem 3.2.54. Let m,n be positive integers such that min(m,n) > 2. Let G be in
H>(D,C™™) 4+ C(T,C™*™). In the notation of the algorithm from Section 3.2.1, let
(&)/\ R /\fj,l/\vj, 770/\ . /'\?7]',1/‘\11)]')

be a Schmidt pair for T; corresponding to t; = ||Tj|| # 0. Let h; € H*(D,C) be the scalar
outer factor of
fo/\ . /‘\fjfl/‘\'l)j.

Let
Tj = (In —&&o — - — ’ijlgj—l)vj:
;i = (I — Tomy — -+ — ﬁjflnjj'll)wj
and
T
Foriv=0,1,...,7, let
Vi= (o afe @), W= (87,5l B) (3.183)

be unitary-valued functions, as described in Lemma 3.1.12. Let

I; 0 I, 0
Vi = " ;o W= T .
0V 0 W;

Let Aj = Qo071 ...0Q4, A_1 = [n, Bj = 5051 .. 'Bj and B_1 = Im Let
Xj+1 - 50/\ e /\gj/\HQ(]D), (Cn> C H2<]D>, /\jHC"),

and let

Yii1 = moA ... AjAH?(D,C™)* C H*(D, N T2C™)*.
Let

Tiv1(SoA - .- AgAZ) = Py, (oA .. AQA(G — Qj11))

for all x € H*(D,C"), where Q;41 satisfies
(G - QjJrl)xi = tlyz, and (G — QjJrl)*yi = ti.ilfi, fOT’i = O, 1, e ,j. (3184)
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3.2. Algorithm for superoptimal analytic approximation

Let

_ Ogi+1)x1 - . Oi+1)x1
Kiy1=Vo---V; (HQ(ID),C”‘J"l) , L =W W, H(D.Crei ) ) (3.185)

Let the operator I'j11: Kji1 — L1 be given by
Pinn = Pr; i Mo,k -
Then (i) The maps
My, : H*(D,C" 77" = Kjy1: x> Ajz, and Mp,: H*(D,C™ ™+ — L1y~ Bjy

are unitaries.
(ii) The maps (oA ... AGA): Kijr1 — Xjpa, (oA ... ATA): L1 — Y41 are unitaries.

(i1i) The following diagram commutes

M@O”.@j €<])/\

H2(D, Cnij) IC]‘+1 —_— 5(])/\H2<D, (Cn) = Xj+1
lHFm lrm lTjH (3.186)
, Mg, ... Fo A i
H(D,Cm) 2 £y MO G AHA(D,CMY = Vi,

where Fjyy € H®(D, Cm—i=Uxm=i=1) + O(T,Cn=i=Ux=i=DY 45 the function defined in
Proposition 3.2.43.

(tv) U'j11 and Tj4q are compact operators.

(0) (Tl = T4l = 1 Hey | = 541

Proof. (i). It follows from Lemma 3.1.16.

(ii). Follows from Propositions 3.2.50 and 3.2.52.
(iii). By Theorem 1.1.4, there exists a function ;41 € H*(ID, C™*") such that the sequence

(SSO(G - Qj-i-l)’ STO(G - Qj+1)7 SRR Sﬁl(G - Qj-H))

is lexicographically minimised. By Proposition 3.2.47, any such );;+ satisfies

(G — Qj—&-l)xi = tzyz, (G — Qj+l)*yi = tiZL'Z', fOI 7= 07 1, e ,j. (3187)

By Proposition 3.2.8, Tj;; is well-defined and is independent of the choice of
Q41 € H>*(D,C™") satistying equations (3.187). We can choose ()41 which minimises
(55°(G = Qj31),5°(G — Qj41), - - -, 5351 (G — Qj41)), and therefore satisfies equations (3.187).
Consider the following diagram.
K 290 oA AGAHA(D,C") = Xj4

lrm lTM (3.188)

ToA—ATA- . .
£j+1 i Ll T](]/\ cee /\’f]j/\HQ(]D, Cm)J' = }/j—i-l'
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Let us prove first that diagram (3.188) commutes. By Theorem 1.1.4, there exists a
function Q41 € H*(D,C™ ™) such that the sequence

(s6°(G = Qj11), s7°(G = Qji1), - -+, 5551 (G — Qj11))
is lexicographically minimised. By Proposition 3.2.47, such @);1; satisfies
(G — Qj—i—l)xi = tly“ (G — Qj—i—l)*yi = til’i, fOI‘ 1= 0, ]., . ,j. (3189)

By Proposition 3.2.8, Tj;; is well-defined and is independent of the choice of
Qj+1 € H®(D,C™ ") satisfying equations (3.189). We can choose ();41 which minimises

(55°(G = Qj41), 57°(G = Qj11), - -, 8551 (G — Qj41)), and therefore satisfies equations (3.189).

Consider the following diagram.
EoA-ALjA- C .
ICj+1 O—> f()/\ s /\ngH2(]D), C ) = Xj+1

lrjﬂ lTHl (3.190)

Livi LLAAUESINN oA - A AH2(D, C™)*: = Y.

Let us prove first that diagram (3.190) commutes.
By Proposition 3.2.43, every Q;11 € H>®(ID, C™*"), which minimises

(55°(G = Qj11),sT°(G = Qj11)s -+, 5551 (G = Qi)

satisfies the following equation (see equation (3.150)).

toug 0 e 0 01 (n—j—-1)
0 ti1uq - 0 le(n—j—l)
G_QjHZWJWl*...VVj* : : : : Vj*
0 0 oty 0
Om—j—1)x1 Opm—j—iyx1 --+ - (Fjp1 + H®)N B(t;)
(3.191)
Thus, for every x € H*(D,C*771),
(G- Q)VaV; ( Yo )
H2(D,Cm—i-1)t
toug 0 0 O1x(n—j-1)
0 tiuq 0 01%(n—j—1) 0
—wwrewr| L z ( Hg(DfJgﬁxfl)L),
0 0 et 0
Om—j—1x1 Opm—j—vyx1 -+ -+ (Fjp1+H®)NB(L)

(3.192)

for some Fj; € H®(D, Ctm=i=Dx(m=i=1) 4 O(T, Cm—3=x("=i=) for the quasi-continuous
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unimodular functions u; = 2}?1, for all ¢ = 0,...,7, for the closed ball B(t;) of radius ¢; in

L®(T, Ctm=i=1x(=5=1)) " By equation (3.157),

WWi - W = (770 BB ... ByaBig, B]) .
By equation (3.159),
Voo Vi = (& MAley MATe .. ALAT &, 4)). (3.193)
Therefore, by equation (3.192), for every y € H*(D, C*7~1),

(G = Qj+1)Ajx = BiFjnx. (3.194)

A typical element = € KC;1; is of the form x = A, for some y € H*(D,C*7+1). Then, by
Proposition 3.2.50,

(EoA ... AGA)Ajx = &A ... AGAA X € X1
Therefore, by the definition of 7Tj1; and by equation (3.194),
Ti1(&oA ... AAA X) = Py, (oA -+~ A A(G — Qj41) A;x)
= Py, (oA - AjjAB; FiX).-
Furthermore, by the definition of I';; and by equation (3.194),
(7oA -+ AA )T 1 (Ayx) = TioA - - - AijAPE, BiFyx.
In order to prove the commutativity of diagram (3.190), we need to show that
oA -+ AfjAB; Fy1x € Vi
and that
oA -+ AjA (Bj FynX = Pryoy BiFjax) = oA -+ AjyAPzL BiFjx

is orthogonal to Yj,i, for any y € H?*(D,C"7). Observe that, by Proposition 3.2.52,
oA -+ Aij;AB;Fj11x is indeed an element of Yji1. To prove the latter assertion, first no-
tice that, by Proposition 3.2.53, there exists a ® € L*(T,C™) such that

© =P BiFjax and Bj® € H*(D,C™ 71,
Let

Gy = oA - - - Aj.
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It suffices to prove that
(NHAL, NGYAY) 21 piv2em) = 0
for all p € H?(D,C™)*. By Proposition 2.1.19,

(o(€™), (™)) e {Tio(e"), 9 (e))cm
) ) 1 21 = 0 ’— 0 . = 0 ’w 0 m
(1) A, Gy A 2z pavacm) = 5 / det | D R P
0 . .
(@), o(e)em - (B(e"),9(e))em

for all 1 € H?*(D, C™)+. Recall that, by Proposition 3.2.1, the set {m}{zo is an orthonormal

set in C™ almost everywhere on T. Hence

1 0 (Tio(e”), 9 (e))em

U 1 [ 0 Lo (m(e?), g(e))em
(G) AR, TG)AY) L2 (e piaem) = 5 / det : N 2

(®(e), 0 (e"))erm o (@), d(e))em

Multiplying the k-th column with (77:(e), v (e”))cm and adding it to the last column of the

determinant above, we obtain

1 0o ... 0
1 o 0 1 ... 0
T . . . .
0 (®(ei®), 7io (€i®))cm . (®(ei0), (e™®))em

=30 (@(e), 7 (e19))em (7 (€i), (e )om

which is equal to

%/0 " ¢*(6i9)@(6i0) B Z¢*(€i0)77i(ew)mT(ew)@(ew)de

o [Teen (- S (e ) ) o(e)ip

Then
() AP, 7y A) 21 pir2emy = 0
for all v» € H*(D,C™)* if and only if

= 02ﬂ<(Im—gﬁi(ew)??f(eig))@(@w),w(ei9)> _o

Ccm

for all v € H?(D,C™)*, which holds if and only if
J
<]m - Zﬁmf)@ e H*(D,C™).
i=0
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Notice that Wy, - -, W being unitary-valued, implies W - -- WS W; - -- Wy = I,,, or equiva-
lently,
J
B; B} + Z Bi\Bj_yiim! Bi_1Bi_| = I,
i=0

which, by Lemma 3.2.46, is equivalent to the following equation

J
BB} =1, — Y _nim} -
i=0

Thus
() AR, () AY) L2, nsagm) = 0
for all » € H?(D,C™)* if and only if
1 2

(Bj(e"”) B (e”)®(e"), ¥(e”))em = 0,

27 Jo

which holds if and only if B;B;® € H?(D,C™), which is true by Proposition 3.2.53. Hence
diagram (3.190) commutes.

Our quest now is to associate the operator I';;; with a compact operator in order to
reach the conclusion that 7}, is also compact. Recall that, by Lemma 3.1.17, the following

diagram also commutes

. Mz,
H*(D,C"77 Y —5 K

lHFHl lrw (3.195)

. Mp.
H2(]D),Cm7]71)J' i) ‘Cj-f—l'

(iv). Since Fj;; € H®(D,Cn=i—Dxtm=5=1)) 4 (T, Cn=i=Dx(m=5=1)) " by Hartman’s The-
orem, the Hankel operator Hp,,, is compact, hence the operator I';; is compact. Since

diagram (3.195) commutes and the operators M4, and Mg, are unitaries, I';;; is compact.
By (ii),

(77()/\ Ce /\77]/\) o (MBj O HFj+1 o) M:%J) o) (fg/\ e /\gj/\)* = 7}4_1.
By (i) and (ii), the operators Mz, Mp,, (§A ... A§A) and (7oA ... Af;A-) are unitaries,
Hence T;,, is a compact operator.
(v). Since diagram (3.186) commutes and the operators Mz, Mp,, (§A ... AA-) and
(oA ... ATjjA+) are unitaries,

[Tl = Il = 1 H s ] = i1 O
Lemma 3.2.55. Let v;y, € H?*(D,C") and wjy; € H*(D,C™)* be such that

(GoA -+ A&GAV 1, oA - -+ AljjAwj1.1)
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is a Schmidt pair for the operator Tjq corresponding to ||Tji1||. Then
(1) there exist xj41 € Kji1 and yj1 € Ljs1 such that (xj11,yj4+1) is a Schmidt pair for the
operator I'j4 1.

(11). For any xj41 € Kjp1 and yj11 € L1 such that
SoA -+ AGiAT 1 = EoA - A§Av 1, oA -+ AjAY 11 = oA -+ - AjjAW; 1,
the pair (xj11,yj+1) s a Schmidt pair for I';11 corresponding to ||T'j44]|.

Proof. (i). By Theorem 3.2.54, the diagram (3.190) commutes, (A -« A& A-) is unitary
from le+1 to Xj+1, and (770/\ s /\773/\) is unitary from £j+1 to Y}+1. Thus

1Tl = 1T ll = -

Moreover, the operator I'j;1: Kj11 — L1 is compact, hence there exist x4 € Kjiq,
Yj+1 € L1 such that (x41,y;4+1) is a Schmidt pair for I'; 4 corresponding to ||Tj41] = t;41-

(ii). Suppose that x4 € K1, Y541 € L4 satisfy
EoA -+  AGAT 1 = oA AGj AV 41, (3.196)
oA -+ AjAY 41 = ToA -+ Ay AW 1. (3.197)
Let us show that (x;11,y;+1) is a Schmidt pair for I'; 4, that is,
Uiz =ty DY = Gz

Since diagram (3.190) commutes,

Tjr10 (oA -+ AGA) = (oA - -+ AfjA-) o Ty (3.198)
and
(GoA - AGA) o Ty =Ty o (oA -+ AmjA-)". (3.199)
By hypothesis,
Tj1(&oA -+ AGAv 1) = tia (oA - - - AljjAwj 1) (3.200)
and
T2 2 (b - AyAwy1) = i (Eoh - A& Avya). (3.201)

Thus, by equations (3.196), (3.197) and (3.200),
Uiz = (oA AgA ) Ty (§oA -+ AgiAvsg)
= (oA -+ AijA)" 0 i1 (oA - - A Awj 1)
= oA ATAY o (o~ Ay,
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Hence
Pjazjon =t (oA - A A (ToA - - A A )y41 = L1y
By equation (3.196),
Tt = (G- AGA) (G- AG A1),

and, by equation (3.197),
(7oA -+ - AR A (oA - - - AfjjAw; 1) = yjpa-
Thus
Dipyien =i o (oA - AjiA) (i A -+ AijAwji1)
= (oA -+ A& )" o T 1 (oA - - AfjjAW; 1),
last equality following by equation (3.199). By equations (3.196) and (3.200), we get
T7y (oA -+ - AfjAw;1) =t (§oA - AgjAV 1) = tipa (oA -+ - A&iAT 41),
and so,
[y = tixi.
Therefore (2,41, y;4+1) is a Schmidt pair for I';; corresponding to ||T'j41|| = ¢j41. O

Lemma 3.2.56. Suppose that

(oA -+ - AG AV 11, oA - - AfjjAw; 1)

is a Schmidt pair for the operator Ty corresponding to ||Tji1|| = tj11. Let
Tjr1 = (lon — &g — = &€ )vjr1,
Yirr = (Iom = only — =+ — 51 ) W1,

and let

Bjpr = ATz, P = By,
Then the pair (Zj11,7j41) is a Schmidt pair for Hg,,, corresponding to |Hp,, | = t;;1.

Proof. Let us first show that #;,; € H*D,C" 7 !) and z;;; € Kji1. Recall that, for
1 = 0,---,7, Vo and V, are unitary-valued, that is agfo = 0 and AZTSZ = (. Hence we

have

A T
Tjp1 = Ajrjn

= AT (I, — && — -+ = §E)vjm
= AT v — AT & v — -+ — AT € v
= Al vj1, (3.202)
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which implies that 2, € H*(D,C"?). By Lemma 3.2.45,
Ajijn = AjAj v = i,

and thus x4 € Kj41.

(3.203)

Next, we shall show that and §;., € H*(D,C"7~1)* and y;4; € L;11. Notice that, for
alle=1,---,7, Wy and W, are unitary valued, that is 8579 = 0 and B;7; = 0. Then we have

~ _ *
Yj+1 = Bj Yj+1

U= o = --- ty
= Bjwji1 — Bjfong i1 — - — B}, win
= B;wj—i—h

which implies that g, € H*(D,C™=1)+,
By Lemma 3.2.46,

A~ *
By = Bijij = Yj+1;

and hence y; 1 € L.
Recall that, by Theorem 3.2.54, the maps

Mg, : H*(D,C" 7Y = Ky, Mg, H*(D,C™" 971" — L,

are unitaries and
_ * _
HFJ,+1 = MBj oljii0 MAj.

Furthermore, by Proposition 3.2.55,
Pinzjon =ty Diayin = Gz,
We need to show that
Hpy &40 = G, Hp 0501 =t
By equation (3.206), we have

- _ T
Hp,  %j1 = Hpy Aj o0

= B;Fj+1/_le?l'j+1
Notice that, by equations (3.202) and (3.203),
Tjr1 = AjA?$j+1.

Hence, by equations (3.207) and (3.208), we obtain
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3.2. Algorithm for superoptimal analytic approximation

O B . B R
Hp %y = Biljxj01 = 601 Biyj = il

Let us show that Hf, 11 = tj412541. For §j11 = Bjy;+1 and by equation (3.207), we

get

* ~ _ * *
HFijjJrl = HFHIB]' Yj+1

- AyTHF;HBjB;yjH (3.210)
Observe that, in view of equations (3.204) and (3.205), we have
Yj+1 = BBy (3.211)
Hence, by equations (3.207) and (3.210), we obtain

* ~ o T * 4. T ) 4. A
Hp Ui+ = Aj Uiy = G Aj 2 = Gy,

Therefore (#;11,7;41) is a Schmidt pair for the Hankel operator Hp,,, corresponding to
[Hp, || =t O

Proposition 3.2.57. Let
(oA -+ - A AV 41,0 - - - A Aw; 1)

be a Schmidt pair for Tji1 corresponding to tj.1 for some vy € H*(D,C"),
Wj41 € H2(D’(Cm)L_ Let

Tip1 = (In — &8y — -+ — fjfj)Uij Yir1 = (Im — ﬁoﬁg - ﬁjn;'r)wj—&-la
and let
:i'j—f—l = A?l’j_,_l and gj+1 = B;yj-f—l‘ (3212)
Then
1€0(2) Ao AEi(2) Avja(2)lpiteen = IIT0(2) Ao ADi(2) Awjpa(2) || aiteem = hir(2)],
12541 (2) [len-s- = [|9j+1(2)lem-i-1 = |hj11(2)], and
[2j41(2)[lcn = |lyj+1(2)llcm = hjra(2)],

(3.213)

almost everywhere on T.

Proof. By Lemma 3.2.56, (Zj41,7;41) is a Schmidt pair for Hp,,, corresponding to

|Hp,,,|| = tj+1. Hence
A . ~ * ~ _ A
Hp  Tjor =ty and Hp 05400 = taZ4.
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3.2. Algorithm for superoptimal analytic approximation

By Theorem D.2.4,

tiri 10412 [em—s—1 = | HEy o || 251(2) | gn—sr

almost everywhere on T. Thus

[9541(2)lem-i-1 = [[2j41(2) [[en-i1 (3.214)

almost everywhere on T.
Notice that, flj(z) are isometric for almost every z € T, and therefore, by equations
(3.212), we obtain

12541 ()l = 12541 (2)llon-

Moreover, since B;(z) are isometries almost everywhere on T, by equations (3.212), we
get

H3/j+1(z)H<Cm = H?Jj+1(Z)H<Cm—j—1

almost everywhere on T. By equations (3.214), we deduce

[2j41(2)ler = llyj1(2)lem (3.215)
almost everywhere on T.
By Proposition 3.2.1,
50/\ cee /\5j/\l’j+1 = §0A ce /\fj/\Uj.H (3216)
and
ﬁo/\ cee /\ﬁj/\yj+1 = ﬁo/\ s /\ﬁj/\ij. (3217)

Hence, by Proposition 2.1.22,

1€0(2) A -+ A &;(2) Avjga (2)] aszen

= [160(2) A= A&(2) Azja(2)] msvacn,
j

= [lzji1(2) = D (2551(2), &(2))&(2) len = [z (2)len,

1=0

almost everywhere on T. Furthermore

170(2) A= A1 (2) Awja (2| wovzem = [170(2) A== AT (2) A g (2) [ asezem
= [1g541(2) = Z(yﬁl(Z)’ﬁi(2)>ﬁi(2)ll<cm = [[g501(2)llem

almost everywhere on T. Thus, by equation (3.215),

170 (2) A -+ ATji(2) Awja (2) [ aaveem = [160(2) A== A&i(2) A vja(2)[[asvacen
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3.2. Algorithm for superoptimal analytic approximation

almost everywhere on T.

Recall that hj;; is the scalar outer factor of {o A -+ A& A vj41. Hence

12541 () len-s1 = 1§41 (2)llem—s-1 = [hj12(2)];
[zj41(2)llen = g1 (2)llem = [hja(2)];

and

1€0(2) A== A&i(2) Avja(2) [ pavecn = (|Ti0(2) A - A1 (2) Awja ()| asvzem || = [hj4a(2)];
almost everywhere on T. O

Proposition 3.2.58. In the notation of Theorem 3.2.54, there exist unitary-valued functions
Vi, Wit of types (n—j — 1) x (n—j —2) and (m — j — 1) x (m — j — 2) respectively of
the form

. B - _
Vit = (Ajfjﬂ Oéj+1> ) VVj+1 = (B]Tnj-l—l 5j+1> 5

where ajy1, Bip1 are inner, co-outer, quasi-continuous and all minors on the first columns
of ‘N/jﬂ,ﬁfﬁl are in H*®. Furthermore, the set ;41 of all level j + 1 superoptimal error

functions for G is equal to the following set

touo 0 0 0
0 tiuy 0 0
It 0 i1 0 *
0 * *
0 Wj+1 0 Vj+1 0>
0 it 141 0
0 0 0 (Fyaat H®)NBltj1)

where Fjig € H®(D,Cm=i=2x(n=i=2)) 4 O(T,Cn==2x(n=3=2)) ;) = a1 o g quasi-

hjt1
continuous unimodular function and B(tj11) is the closed ball of radius tj1, in

LOO<T, C(m—j—Z)X(n—j—?))'

Proof. Recall that, in diagrams (3.190) and (3.195), the operators Mz, Mp,, (§o/A--- A;-)
and (7oA -+ - Afj;A+) are unitaries. Since both diagrams commute and (z;41,y;41) defined
above is a Schmidt pair for I'j4; corresponding to t;;, by Lemma 3.2.56, (£;41,7j11) is a

Schmidt pair for H,, corresponding to ¢;1;, where
A _ ~ _ Dx*
Tjp1 = Ajzie, Y = Biyjna.

We would like to apply Lemma 3.1.12 to Hp,,, and the Schmidt pair (Z;11,7;41) to find
unitary-valued functions Vj,,, Wy, such that, for every Q;,, € H>®(D,Clm—i—1x(n—j-1))
which is at minimal distance from F};, we obtain a factorisation of the form

~ FIn Ljt1Ujt1 0 (s
Fj+1 - Qj+1 = Wj+1 < ! !
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3.2. Algorithm for superoptimal analytic approximation

for some Fjp € H®(D, Cm=i=2x(=3=2)) 4 C(T, Cm=I=2*(n=i=2)) For this purpose we find
the inner-outer factorisations of Z;,; and zg; ;.
By Proposition 3.2.57,

[2j41(2) len-i-1 = |hjza(2)] (3.218)

and

[941(2)[lcm-i-1 = [hj41(2)] (3.219)

almost everywhere on T. Equations (3.218) and (3.219) imply that h;.; € H*(D,C) is the
scalar outer factor of both #;,; and 27, ;.

Hence, by Lemma 3.1.12, £, Z§;41 admit the inner outer factorisations
Tit1 = &rhjen, 20501 = Njtahjg,

for some inner &, € H®(D,C" 1), 7., € H*(D,C™ 1), Then

A £ AT _= oA = pT-
Ti1 = &ihj = Ajxin, 251 = Nl = 2B; G,
from which we obtain
E T .~ _ pT
§jr1 = Aj §i+1, Mj+1 = Bj Mj+1-

We would like to show that AT¢; 1, B n;41 are inner functions in order to apply Lemma
3.1.12 and obtain Vj,, and W, ;. Observe that, by equations (3.203), (3.205), (3.209) and
(3.211),

_ A AT _ *
Tj1 = AjA v, Yo = BiBjwjn.

Then
T T T- T -
Aj Tjr1 = Aj Vj+1, Bj Yj+1 = Bj Wijt1,
and since -
_ T+ _ RYjit
§j+1 — h_’ Nj+1 = h ’
j+1 j+1
we get that the functions
T
T Ajvj T Biwj
Aj §jr1 = 2 ) Bj Nj+1 = !
hjia h

are analytic. Furthermore, by Proposition 3.2.1 ||£;11(2)||cr = 1 and ||741(2)||cm = 1 almost

everywhere on T, and, by equations (3.218),

HAf(Z)fjH(Z)H(c"fjfl =1, HBf(Z)nj*Fl(Z)HCm*j*l =1

almost everywhere on T. Thus AJ¢;41, B} 7,41 are inner functions.
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3.2. Algorithm for superoptimal analytic approximation

By Lemma 3.1.12, there exist inner, co-outer, quasi-continuous functions o1, 341 of

types (n—j—1)x(n—j—2),(m—j—1) x (m—j—2) respectively such that the functions
Vig1 = (A?€j+l 07j+1> , Wl = (B]Tnj-i-l Bj—i—l)

are unitary-valued with all minors on the first columns in H°.

Furthermore, by Lemma 3.1.12, every Qj+1 € H>®(D, Ctm=i=Dx(=3=1)) which is at minimal

distance from Fj; satisfies

e [ 00
Fiii— Qi =Wy Vit
J < 0 F}'+2 J
for some Fj o € H®(D, Cm=i=2x(=1=2)) 1 O(T, C(m=7-2*("=3=2)) and u;,, a quasi-continuous
unimodular function given by ;41 = Z,Z 7:.
By Lemma 3.1.15, the set

Ei1 = {Fj1 —Q: Q€ H¥(D,Cm ===y 1Py — Q= = tj1}

satisfies

t. 0
(c: W* J+1 7+1 V* 7
Jj+1 — J+1 < 0 (ij+2 + Hoo) N B(t]+1)> J+1

where B(t;11) is the closed ball of radius ¢, in L>(T,Cm=i=2>("=3=2)) Thus, by Propo-

sition 3.2.43, £;41 admits the factorisation claimed. m

Theorem 3.2.59. Let G € H>(D,C™*™) 4+ C(T,C™*™), where m,n are positive integers
with min(m,n) > 2. Let T;, t;, x;,y;, hi, for i > 0, be defined by the algorithm from Section
3.2.1. Let r be the least index j > 0 such that T; = 0. Then the superoptimal analytic
approzimant AG € H> (D, C"™*™) is equal to

’Lyl
AG =G — Z|h|2. (3.220)

Proof. First observe that, if Ty = Hg = 0, then this implies G € H*(D, C"™*"), and so
AG =G.
Otherwise, let ty = ||Hg|| > 0. If T} = 0, by Theorem 3.2.10, Hp, = 0, that is,
Fy € H®(D, Cm=1x(n=1),

Then, by Lemma 3.1.15, we get

toU() 0
Wo(G — AGYVy = )
ol Vo (0 o)
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3.2. Algorithm for superoptimal analytic approximation

Equivalently

t
G~ AG :WJ(OUO 0>V0*
0 0

CRICRE

= <770touo 0> (ji)

0

_ 210 Zho T

Tloto 050 0 I ho I
_ toyoxy
|hol?

Let j be a non-negative integer such that 7; = 0 and 7; # 0 for 1 <17 < j. By the commuta-
tivity of the diagrams (3.190) and (3.195), Hp, = 0, and therefore F; € H*(ID, C(m=*(n=3),
By Proposition 3.2.58, the superoptimal analytic approximant AG satisfies equation (3.150),
that is,

touo 0 0
0 tiug 0
G—AG =WgWy .- W7, : ViV, (3.221)
ti—quj—1 O
0

where, fort=0,1,...,5 — 1,

im (o ofs &), W= (3, g 5)

z Bl
h;

are unitary-valued functions, as described in Proposition 3.149, u; = are quasi-continuous

unimodular functions, and

Vi = ), owi= - .

Recall that, by equations (3.28), for i =0,...,5 — 1,

(3.222)
By Proposition 3.2.57, fort =0,...,5 — 1,

[hi(2)] = llzi(2)llen = llyi(2)

cm almost everywhere on T.
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3.2. Algorithm for superoptimal analytic approximation

Multiplication of matrices in (3.221) gives the following formula

toyoxs 1
G — AG == 0Y0%o + tl 5058y1$>{d00%1 +...

~ Jhol? |ha[?
1 * * Q% * J— —
+ tj_lwﬁoﬁl Ce ﬁj_lﬁj—l Ce ﬁlﬁoyj_lxj_lozoal Ce aj_la;fp_l Ce OK’{O{g.
e
(3.223)
By equations (3.209) and (3.211), for i =0,...,5 — 1,
T; = QpQq ... di_laiT_l c. ngi and Y, = 5051 e /Bi—lﬁék_l Ce ﬂikﬂakyl
Thus 1
— tzylm*
G- AG = !
2P
and the assertion has been proved. O]
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Chapter 4
Application of the algorithm

In this chapter we present the application of the algorithm from Section 3.2.1 to two concrete
examples. The first is a trivial example and has been briefly explained in Chapter 1, however
its simplicity provides the reader with the opportunity to understand how the steps we
describe in Section 3.2.1 work. For our second example we choose the matrix-function that
appeared in [25]. The solution we provide gives to a substantial illustration of the similarities
and differences to the method used in [25].

Problem 4.0.1. Find the superoptimal analytic approrimant of

G(z) = <2éz 1;) , z€T.

Solution: Step 0. First, we find the Hankel operator with symbol GG. This is
Hg: H*(D,C?) — H*(D,C*)*

and its matrix representation with respect to the orthonormal bases of H?*(D,C?) and

0600
()6 ()-¢))

and

respectively, is

all other entries being zero.
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Thus

to = || Hell = ‘

b9l

The maximizing vectors zo € H*(D,C?) for Hg are those which satisfy

i 75 0 and |’HGI‘0||H2(D’([:2)J_ = 2’|xOHH2(D,C2)~

Thus, a maximizing vector is zg(z) = (0 , z € D. Following that, we can find a vector

yo € H*(D,C?)* such that (zo,yo) is a Schmidt pair for Hg corresponding to the singular
value ||Hg|| = 2, by solving the equations

Hgxrg =2y and  Hyy = 2. (4.1)
Then,
Hgilj‘g = p_(Gﬂfo)
_p (2 0 (1
0 1/z 0
_p (2/2) |
0
hence

1
yo(2) = ( éz) forall zeT.

We can see that for these zg, yo the other condition of (4.1) is also satisfied since

))-)-=

lzo(2)]lc2 = ||yo(2)||cz =1 almost everywhere on  T.

Héyo = PyGiyo = Py ((0

IR ]
wi= O
N——
VN

Also,

By Lemma 3.1.12, gy and yo admit the inner-outer factorisations

xo = &oho,  ZYo = Moho, (4.2)

for some inner &y, 19 € H*(D, C?) and some scalar outer hy € H?*(D,C). Clearly, for almost
all z €T

1 e I AN 1 B
xo(2) = <0) =& (2)ho(z) and zZyo(z) =2 (0> = (0) = no(2)ho(2),
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where

ho(2) =1, &(2) = (é) , mo(z) = (é) .

Let us find a function Qy € H*(D, C**?) at minimal distance from G. Such a function, by

Theorem D.2.4, necessarily satisfies

(G — Qo)zo = 2yo (4.3)

and
Yo (G — Qo) = 2. (4.4)

Let us work each equation separately. Let

Q=" ) e gD, C22).
21 (g22

Equation (4.3) is equivalent to

Qoxo = Gxo — 2.

Substituting from above, we get, for all z € D,
1 2/z 0 1 1/z 0
QU = / -2 / = )
0 0 1/z)\0 0 0

(J11(2) = Q21(2) =0,

which gives us

for all z € D. By equation (4.4), we get

YoQo = yo G — 2x5.

Substituting from above,

(= 0)@o=(= o) <2éz 1;]2)—2(1 0) = (0 o),

for all z € D. This yields ¢12(2) = 0. Thus @y is of the form

0 O
Qo = , for some g, € H*(DD, C).
0 go

For any such @,
2z 0
0 z— QQ2(2>

(G = Qo)(2) = ( > for all 2 € T,

where Z — goo(2) must satisfy ||Z — goz||z~ < 2, for Qo to be at minimal distance from G. It
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suffices to choose g9 = 1, since

2/z 0
0 1;2 ;

Qo = (8 ?) € H®(D,C>?).

IG = Qo= = |

1
= max § 2, esssup
o z€T

b2

Thus we take

Step 1. Let

def

d
X1 de) def _

SAH?(D, CZ) Y = HOAHZ(Da(CQ)l,

where &g, 1o are introduced in equation (4.2) and

§o(2) = (é) =1no(z) forall z € D.

Define T7: X7 — Y] by

(1 .
= A
0 0 % — Q22 T3
1 . 221’1
A .
(0 <<2 - mm))
X1 {() ( f1,f2€H2DC)}

{ fQGHQ(D,(C

e}

Note that
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where the isomorphisms are following from Proposition 2.1.26. Thus
X, 2 H*(D,C), Y= H*D,C)*.

Hence Ty : H*(D,C) — H*(D,C)t is defined by

1 1
Ti(z) = Pp2p,cyr (; - 6122) x = Py oyt (; - 1) z.

Therefore
To(xr) = Hyx  for all z € H*(D,C),

where Hy: H*(D,C) — H*(D,C)* is the Hankel operator with symbol g(z) = + — 1.
If Ty =0, then Hyz = 0 for all z € H*(D, C). Note that H,x = 0 means

H: o= Hix=0forallz € H*D,C).

This a contradiction, since 1/2 ¢ H*(ID,C). Thus T3 # 0.
Let us now calculate ||T1]|. By equation (3.15), for all x € H?*(D, C),

T3 ()] = | Hayl),

and
| Hy.|| = dist(1/2, H*) = 1.

If we take 2(z) = 1 for all z € D, then Hy,.x = 1/2z and
[z = 1.

Thus ||73]| = 1. Since g € H*(D,C)+C(T,C), H, is a compact operator, as a result, Tp is a
compact operator. This means that there exist functions v € H*(ID, C?),w € L*(T,C?), say

() -

such that (§yAv, jpAw) is a Schmidt pair corresponding to ||T} ||, or equivalently, the following
equations hold
T1(§oAv) = [|Th]|(oAw) (4.6)

and
Ty (noAw) = [|Th][(§oAv). (4.7)

Let us find v and w. Equation (4.6) yields

Tl(UQ) = Hl/Z'UQ = Wsy.
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Also, equation (4.7) yields

Tl*(UJQ) = V2.

The adjoint operator T} will be H%: H*(D,C)* — H?*(D,C). By equation (4.7),
Hik/zwg = V2.

If we take vo(2) =1 for all z € D, we get wy(z) = 1/z for all z € T. Thus we may choose

0 2 2 _ 0 2 2
v = (1> € H*(D,C%), w= (1/2) e L*(T,C?).

w1(2) = (Ie2 — &(2)&(2))v(2),  yi(2) = (Te2 — mo(2)mg (2))w(z),

for all z € D. We have

0 0
x1(2) = (1) . yi(z) = (1/2) for all z € T.

o
e N Ry

hi(z) =1, &(z) = (?) » m(z) = (2) :

Let us find a function Q; € H>(D, C**?) which satisfies the equations

Next, let

Set
& =

Clearly, for all z € D

(G —Q1)zo = |Tollve, y5(G — Q1) = ||To||xg,

(G —=Qu)zy = |T1]|y1, wi(G— Q1) = ||T1]2].

Those equations yield

0 0
Q= R , for some Gay € H*(D,C)
0 g2

and

Gry—yp = Qixy and y|G — 2] = y; Q1.

Substituting from above we have
2/z 0 0 0} (0 0 0
0 1/z) \1 1/z 0 g2/ \1
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and

=
Y=

(o o)

(0

The first equality gives

(3 0) 6o

G2z = 0.
For (), to satisfy the above equations, it suffices to choose
Ql = @(C2><2 c HOOGD), (C2X2).
Step 2. Let
Xz = HAGAH?(D,C?),  Ys = A AH?(D, C?)*.

Note that for all z € D and for every x € H*(D, C?), x(z) will be in span{&(z), &1(2)}. Also,
for all z € D and for every y € H?(D,C*)*, y(z) will be in span{io(z),7:(2)}. Therefore
Xy =Y5 ={0}, and so T, = 0. Thus the algorithm terminates. The solution is given by

1
Lixyy
G- AG = ; e

_ toyory | t1y1r]
|hol? | |?

:2(1(/)2) (1 0)-1+1- (?) <1(/)Z) (10)1
B (2(/)2 13z> =G

AG = G — G = Ogsre.

Thus,

Therefore G is a very badly approximable function. O
Let us now consider the example Peller and Young studied in [25].

Problem 4.0.2. Let G = B™'A € L>(D, C**?) where

V3+22 0 1 22z
A(z)z( 0 1), B(Z):ﬁ<z _1>, forallz e T.

Find the superoptimal singular values of G and its superoptimal approzimant AG € H™,

that is, the unique AG such that the sequence
s2(G — AG) = (sg°(G — AG), sT° (G — AG))

15 lexicographically minimised.
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We will illustrate how the algorithm from Section 3.2.1 is used to determine the superop-
timal analytic approximant AG of the G that was studied in [25]. It should be emphasised
that, in line with Theorem 1.1.4, we obtain exactly the same AG as Peller and Young in

[25].
Solution: On T it is
oo L (Vs )
V2 \ V3242 —1

The operator Hf Hg with respect to the orthonormal basis

#16)6)-0)-0))

of (22H?)*, has matrix representation

2
B~ | 2V V3
NG V3

0
0
2 1 0
0 0 0 0

Step 0: In this case ty = ||[Hg|| = v/6 and a non-zero vector zo € H?(ID, C?) such that

| Hexoll m2m,c2)r = [Hellllzollm2m,c2)
1S
4 + \/§z
zo(z) = 1 :

For (xg,y0) to be a Schmidt pair for Hg corresponding to |[Hgl||, the vector
Yo € H*(D,C?)* can be calculated by

_HLO(Z)_ 3 Z+/3 2 2L
Yo(z) = el —2< X )eH(D,@).

Next, we perform the inner-outer factorisations

xo = §oho,  ZYo = Moho

for some inner &y, ny € H*(D,C?) and some scalar outer hy € H*(D, C). In this example

xy a 4++/3z

188



ho  4V3(1 —72) 1
where /3
ho(2) = 221~ 72),

10—2\/ﬁand7——v

A function Q; € H*(D, C?*?) that satisfies

(G — Q1)zo = toyo, (G — Q1) yo = toxo
18

(0 V6
@)= (m —\/6(z+\/§))'

Step 1: Let X; = §AH?(D,C?) and V) = g AH?(D, C?)*.
Let the compact operator T7: X; — Y; be given by

Ti(§Ar) = Py, (MA(G — Q1))

for all x € H*(D, C?).

Note that
X, = {go/\ <f1> . fi € H?(D,(C)}
fa

B a (4+\/§z)f2—f1
) 4v3 1—nz

: fz S HQ(D,C>}

If we choose

fi= —%(1 —vz)g and fo=0

for some g € H?*(D, C), we obtain X; = H*(D, C).

In a similar way, we have

Y {no/\< Zl> L eH?(]D,(C)}

_ { az (Z+V3)ps

23 1—~vz - ¢i€H2(D>C>}~

If we choose \/_
2
¢ = ——(1 —yz)y, and ¢y =0

for some ¢ € H*(D, C), we obtain Y; = H?(D,C)*.
We have
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() [ —RE(1-92)g\ | | u(y)
Ti <fo/\<f2)>—T1 (§0A( 0 )>_Z_7

u(y) = V2(1 = ) (2V3y + 1)g(7).

Then ¢, = ||T1|| = v/2(4 — V/13). Since T} is a compact operator, there exist v; € H?(ID, C?),
wy € H*(D, C?)* such that

where

Tl(foj\vl) = tl (770/\’(1]1), Tf(ﬁo/\wl) = tl (fo/\’l)l).

Here we can choose

43 (-1 23 _ (1
Ul(z)—7<0>, wi(z) = " z(0>

Perform the inner-outer factorisation of §Avy € H?(D, A*C?). The function hy(z) = 1= is

the scalar outer factor of &yAv;.

Let
21(2) = (I = &(2)& (2))vi(2),  w1(2) = (I = io(2)mg (2))wi (2).
Then
b 1 V3 (1 — y2)(1 = y2) — 19 — 4V/3(z + 2)
a1 —y2)(1=197) —4 — /3%
and
29z 1 (1= y2)(1 = v2) + 4+ V3(z + 2)
N e T2 243 |

Calculations yield

T _ 1 1 _ 2yz 1 —1
A -r) \a—vaz) T e Um0 -3 \24v3)

Observe that the algorithm stops after at most min(m,n) steps, hence in this case after 2
steps. Then, by Theorem 3.2.54, the unique analytic superoptimal approximant AG is given

by the formula
AG =G toYoxy  titha]

B |ha |

Now, all terms can be calculated and

o V2 — V3 +dy
1=72 \24+9V/3 -7z —(V3+47)(V3+2)
which is the unique superoptimal analytic approximant for the given G. O]
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Appendix A

Hilbert tensor product

A.1 Algebraic tensor product

We will consider complex linear spaces. Let E5, F5 be linear spaces over C. We present a

well-known construction of the algebraic tensor product £y ® Es, which can be found in [10].

Definition A.1.1. [10, Definition I1.1.1.] Let Ey, Es be linear spaces. We say that the pair
(0,0), where © is a linear space and 0: Fy X Ey — © is a bilinear operator, has the universal
property in the category of linear spaces and linear operators if for any linear space G and
for any bilinear operator R: E1 X Ey — G, there is a unique linear operator R: © — G such

that the following diagram is commutative

E1 X E2 E) G
le SR (A1)
©
that is, Ro 6 ="R.

Definition A.1.2. Let Fy, Ey be linear spaces. The pair (©,0), where © is a linear space
and 0: E; X Ey — © 1s a bilinear operator, is called the algebraic tensor product of Ey and

Es if it has the universal property in the category of linear spaces and linear operators.

Let us construct the algebraic tensor product. Let F; o F5 denote the space of formal
linear combinations with complex coefficients of the elements of E; X F». We use the notation
xoy, instead of (x,y) for the elements of Fo Es and consider the set M C E)o FEs of elements

in any of the following forms:
(x1+x2) 0y —T10Y —T20Y;

ro(y1+y2) —T oYL — T 0 Yy
Mz oy) — (Ax) o y;

z o (Ay) — Az oy);
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A.1. Algebraic tensor product

where x, 1,25 € By, y,y1,y2 € Ey and A € C.
Let span(M) be the linear span of the set M. We define F; ® E5 to be the quotient space
Ey o Ey/span(M), x @ y to be the coset x oy + span(M) and 9 to be the bilinear operator

V: Ey X By —» B, ® By, given by ¥(z,y) =z ®y.

Theorem A.1.3. [10, Theorem I1.1.4] The pair (B, ® E», ) is the algebraic tensor product
of the spaces Ey and Es.

Proof. Let R: E; X Fy — G be a bilinear operator. Then the operator R°: F; o Ey — G is
uniquely defined by R°(zxoy) = R(x,y) and maps all the elements of M, and hence span(M),
to zero. Consequently R° generates an operator R: Fy ® Fy — G such that diagram from
Definition A.1.1 with F; ® F, instead of © and 1 instead of # is commutative. Furthermore,
since By ® FEy = span(Im ), R is uniquely defined.

O

Proposition A.1.4. [10][II.1.5] Let Ey, Ey be linear spaces over C. Every u € E; @ FEs,

u # 0 can be written as

u=) 1 ® Y,
k=1

where the vectors x;, € Ey are linearly independent and 1y, # 0.

Definition A.1.5 ([10]). Suppose Ey, Fy, k = 1,2, are linear spaces and consider the oper-
ators Tv: By — Fy, Ty: E5 — F5. The operator

T1®T2:E1®E2—>F1®FQ

given by
(M @T)(r®y) ="T(r) @ Ta(y), forz € B,y € By,

15 called the tensor product of the operators Ty and Tb.
Proposition A.1.6. Let E, Es, Fi, F5 be linear spaces and let
Tli El — F17 TQ: E2 — FQ

be linear operators. Then, T1 @ Ty: E1 ® Fy — F1 ® F5 is a linear operator.

Proof. By the universal property from Definition A.1.1, for every bilinear operator T; X

Ty: E1 X Ey — F} ® F, there exists a unique linear operator 77 ® 15 such that

(Tl ® Tg)(l’l ® 1'2) = Tl(ilfl) ® TQ(ZL'Q).
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A.2. Hilbert tensor product

It suffices to show that 77 x Ty is a bilinear operator. Let u,ui,us € E1, v,v1,v9 € Fy and
A, € C. Then,

(Ty x T5)(Aug + pug, v) = Ty (Aug + pug) @ To(v) = (N1 (ur) + pTo(ug)) @ To(uz)
and

(Th x Ty)(u, Aoy + pvg) = Th(u) @ To(Avy + pvg) = T (u) @ (ATa(v1) + pTa(ve)). O

A.2 Hilbert tensor product

Let (Hy, (-, ), (Ha, (- )u,) be Hilbert spaces and let |[]|n, = (x,2)2 , |yllu, = (v, 9)*
for x € H, , y € Hy. Information on Hilbert tensor product can be found in [8].

One can consider an inner product space (H; ® Hs, (-,-)), where the inner product is
defined by

n m

<U,U> - Z(akvcp><bk7dp>a

k=1 p=1

for

u=Zak®bk , U:Zcp®dp.
k=1 p=1

Definition A.2.1. The completion of (H, ® Ha, (-,-)) with respect to || - || = (-,-)2 is called
the Hilbert tensor product of Hy and Hy and is denoted by Hy @y H.

Definition A.2.2. Let (E,| - ||g), (F,| - ||r) be Hilbert spaces and let T € L(E,F). The
linear operator T : F* — E* which satisfies

<Ta’7b>F - <a7T*b>E7

foralla € E, b€ F, is called the adjoint operator of T.

Definition A.2.3 ([38], p. 38). A linear operator T': E — F, where E, F are Hilbert spaces

1 a unitary operator if it is bijective and preserves inner products, that is, it satisfies

(Tx, Ty) = (x,y), for allz,y € E.

Theorem A.2.4 ([38], p. 38). Let E, F be Hilbert spaces and T: E — F be a linear and

surjective mapping. Then T is unitary if and only if
|Tz|| = ||x||, for allx € E.

Definition A.2.5. Let E,F be Hilbert spaces and let W: H — K be a bounded linear

operator. W will be called a partial isometry if W is isometric on the orthogonal complement
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A.2. Hilbert tensor product

of its kernel. Then, M = (ker W)= is called the initial space and N = WM the final space
of W.

Theorem A.2.6. Let E, F be Hilbert spaces. A bounded linear operator W: E — F is a
partial isometry if and only if W*W s a projection operator. In this case, W*W is the
projection of E on the initial space of W.

Remark A.2.7 ([8]). Let Ey, Ey, Iy, F> be Hilbert spaces and let
Ty: By — Fy, Ty: By — Fy
be bounded linear operators. Then
T'@Ty: (By® B |- |]) = (FA® Fy, |- )

1s bounded. Hence Ty ® Ty can be extended to the tensor product 1 @y FEs as follows: we

set
n—o0

Mn
1 n n
u = lim E ay, @ by,
k=1

and .
(Ty @ Ty)(u) = lim (T @ T3)(Y_ aff @ bf).

k=1

Proposition A.2.8 ([SD Let (H17 <'7 '>H1>7 (H2<'7 '>H2)7 (Gl7 <'7 '>G1); <G27 <'7 '>G2)7 be Hilbert
spaces and T1: Hy — Gy , Ty: Hy — G5 be bounded linear operators. Then,

T1®T22 H1 ®HH2 — Gl ®HG2
is a bounded linear operator, and |1y @ To|| = ||T1|| - [|T2]]-

Lemma A.2.9. Let 1, Es, Fi, F5 be Hilbert spaces and let
T: EFy — Fl, To5: Ey — Fy

be bounded linear operators. Then (Th @ To)* =Ty @ Ty : F1 @y Fy — Ey ®p Es.

Definition A.2.10 ([24], p. 301). C™*" is the space of m x n complex matrices. Every
A € C™" js a linear operator from C™ to C™, where C", C™ are Hilbert spaces with their

standard inner products. Also,

[All = sup [|Azcm.

l[zflcn <1

Remark A.2.11. Let X, X5,Y1,Ys be Hilbert spaces of dimensions n, m,n',m’ with m > n,
and m' > n'. Let A: X1 — Y, and let B: Xy — Y be linear transformations. Let (e;)?,
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A.2. Hilbert tensor product

(f3)71, CALE (fj’);”:'1 be orthonormal bases of X1,Y1, Xo and Yy respectively. Then {e;®e]
1<i<n, 1<i<n}isabasisof X1 Xy and {fi @ f{:1<i<m, 1 <I<m'}isa
basis of Y1 ® Ys.

Suppose that

and
Be, = pfl, 1<i<n

One can write .
Az = Z Nz e)x, fi forx € Xy
i=1

and

!

Bz’ = Zuk(x’, e xo fr forx' € Xo.
k=1

Then A® B : X1 ® Xo = Y1 ® Y5 can be presented by the following formula, for v € Xy and
'T, € X27

(A® B)(z®12') = Az ® Bx'

= (Z )\i<5€,€i>X1fi) ® (Z ,uk(x’,e;)ng,;>

k=1
= Z Aitte{r @ @' e; @ €) x,ex,.fi ® fi
ik=1

= > iwlw e x (2, €)%, fi © £
i,k=1

/

= > il e)x, (7', ) x, fi @ fi.

i,k=1

Moreover

n,n’

(A@B)(ei®e) = Y Nulei® e, e; ® €l x,ox,f; ® fi
k=1

’

= Z Ajtk0iiom f5 @ fi,

Jk=1

= N fi @ ff.
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A.2. Hilbert tensor product

Notation A.2.12. A matriz of the form

denotes the matriz A = (a;;) where a;; =0 for all i # j and a; = \;.
Lemma A.2.13. Let A = (a;j)} =1, B = (bij); =, and let
/\1 M1
A
A A=T" . U B'B=V" . £
A Fn,

for some unitary operators U,V . Then,

A
A1 fho
* * * >\1,un
A*A® B'B=(U®YV) , (UaV).
Anﬂl
An b,
Lemma A.2.14. Suppose m > n. Given A, B € C"™*", with
S1 0 tl 0
0 0
A=U | : s, | Vi, B=Us | : to | Voo
0O 0 0 0 0 0

for unitary matrices Uy, Uy € C™*™ and for unitary matrices Vi, Vo € C**". Then
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A.2. Hilbert tensor product

Sltl
Sltg
Sltn
A®B=(U;®U) Snl1 (U @ Va).
Sntn
0 0
0 0
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Appendix B

Scalar inner and outer functions

Definition B.0.1 ([11], p. 62). An inner function is an analytic function g in the unit
disc D such that |g(2)| < 1 and |g(e”)| = 1 almost everywhere on the unit circle T. A
non-constant inner function without zeros which is positive at the origin is called a singular

inner function.

Definition B.0.2 ([11], p. 62). An outer function is an analytic function F in the unit disc
of the form

F(2) = Aexp {i /ﬂ e+ zk(&)d@] (B.1)

where k is a real-valued integrable function on the circle and X\ is a compler number of

modulus 1.

Remark B.0.3 ([11], p. 63). Such an outer function F is in H'(D,C) if and only if € is

also integrable; when F is an outer function in H*(D,C) we have necessarily
k() = log |F(e")| almost everywhere.

Indeed, applying the logarithmic function to equation (B.1), we get

log | F(c)] = exp {% / Po(6 — t)k(0)d0

—T

and taking the limit as r goes to 1, we have the result we need. Here P,(6) is the Poisson’s
kernel defined in equation (C.3).

Theorem B.0.4 ([11],p. 63). Let F' be a non zero function in H'(D,C). The following are
equivalent:

(i) F is an outer function.

(ii) If f is any function in H'(D,C) such that |f| = |F| almost everywhere on T, then

|F(2)| > |f(2)] for all z € T.
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1/ |
(i) 1og | F(0)| = / log | F(c?)[d6.
T

—T

Proof. (i)= (ii). Let f be a non-zero function in H'(D,C). Then, by Fatou’s Theorem, f

has radial limits

f(e) = lim f(2)

z—et?

almost everywhere on T, and f is given by the Poisson integral

Flrei?) = % /_ L HE PO — 1) d.

Since f(0) # 0, by a result in [11, p. 51}, log|f(e™)| is Lebesgue integrable. Let
F € H'(D,C) be an outer function given by

F(z) = Aexp {i / R |f<ei9>\d9]

2 J_ e — 2

and without loss of generality assume |A| = 1. Notice that |F'| = e*, where u is the Poisson

integral of log |f|. Hence

L7 prei®)| do < i/ﬂ £ ()] db.

o o 2m

—T

Therefore |F| = |f| almost everywhere on T. Since F' is an outer function and |F| = e*, F

has no zeros in D and

. 1 i )
log | F(re?)| = P / log | f(e")| P-(0 — t)dt.

By Jensen’s inequality with dm = %PT(H —t), we get

) 1 2 A ‘
log |f(re")| < 5 [ 1oglF(IP6 — 1yt = log [ F(re)
T Jo

and we infer that |F'(z)| > |f(z)| for all z € D.
(11)=(iii). Suppose (ii) holds and let G be an outer function,

1 w00 )
G(2) = exp {% /_ ] ;9 f z log | F(e)]d6)] .
Then |F(2)] <|G(2)| < |F(2)| on D. Thus F'/G is analytic of absolute value 1. So, F' = A\G
with |A| =1 and F' is outer.

(111) = (i). Suppose (iii) holds and define G as previously. Then F/G is bounded by 1 on
D and has absolute value 1 at z = 0. Thus F/G = X\ with |A\| = 1. O
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Theorem B.0.5 ([11],p. 63). Let f be a non-zero function in H* (D, C). Then one can write
f=gF

where g is an inner function and F is an outer function in H'(D,C). The factorisation is

unique up to a unimodular constant.

Proof. By Theorem B.0.4, if

1 [™ef 42
F(z) = — ~ log | f(e")[d6
@ = |- [ G oulse)
then F is an outer function in H'(D,C) and f/F = g is an inner function. If F} is another
outer function in H*(D,C) and g; another inner function, we have f = g Fy and |F| = |F}|
on T. Then, F' = \Fj for some A with A = 1. Thus Ag; F1 = ¢1G; and ¢g; = Ag. O

Remark B.0.6. The preceding results also hold for 1 < p < oo, as a more detailed view

presented in [11] asserts.

Definition B.0.7 ([11], p. 11). Let H be an inner-product space and N be any collection of
vectors in H. N is called an orthogonal set if any two distinct vectors in N are orthogonal. An
orthonormal set is an orthogonal set, each vector of which has norm 1. If N = {ny,--- ,ng}
15 a countable orthonormal set in H, then N will be called a complete orthonormal set if the

only vector orthogonal to every n; is the zero vector.

Remark B.0.8 ([11], p. 28). Suppose that f is analytic in D and let f(z) = - an,z". Let
1-(0) = f(re®). Note that if we restrict the function f to the circle of radius r, we obtain
a continuous function on that circle which we can also interpret as a function on the unit

circle. Now,
o

fr(e) — Zanrnemﬁ

n=0
which means that the n-th Fourier coefficient of f,. is a,r™ for n > 0 and is zero for n < 0.

If f is analytic in D, the boundary value function fi has the Fourier coefficients a,,.

Theorem B.0.9. [28, Theorem 11.20] Every f € H>*(D,C) can be extended to a function
f* e L°(T,C) defined almost everywhere by

(") = lim f(re®) (B.2)
r—1
Also, || flleo = | f*|lee. For all z € D the Cauchy formula

) = %/Vg%(idé (B.3)

holds, where « is the positively orientated unit circle, y(t) = e, 0 <t < 2.

The functions f* € L*°(T) which are obtained in this manner are those which satisfy

/ f ’Lt 7mtdt_0 (n: _17_27) (B4)
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Appendix C

Operator-valued functions and

Fatou’s theorem

C.1 The scalar case

Definition C.1.1. [11] A complex valued function u on D is harmonic if it satisfies Laplace’s

equation

0*u  0%u B

Proposition C.1.2. [28, p. 232] Every harmonic function u on DD which satisfies

sup / lu(re®)|df < oo,

0<r<1J_—-x
has radial limits at almost all points of T.
Theorem C.1.3 (Fatou’s Theorem, [38, Theorem 13.10]). Let f € H*(D,C). For almost

all z € T, the radial limits
lim f(rz)

r—1

exist almost everywhere on T and define a function in L*(T,C).

C.2 The operator-valued case

The following material is from [14]. For any separable Hilbert space E we denote by L*(T, E)

the class of functions v: T — F which are measurable and satisfy

27
1 )
ol = 5= [ (et < .
0
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C.2. The operator-valued case

Two functions will be considered equal if they coincide almost everywhere with respect to
Lebesgue measure.

Suppose that v, (e), . is a sequence converging to v(e”) in L*(T, E), that is,

27

1 i i

or [ (e = ot =0
0

as n tends to oco.

Then we can choose a subsequence vy, (e), k =1,2,--- , such that
o 2w
S [ llone) = ofe) [t < .
k=17

By the theorem of Beppo Levi we have
D Mon () = v(e®)[|E < oo
k=1

almost everywhere and so

v, (") = v(e™)| = 0

almost everywhere as k — oo.
For any k € Z, denote by Fy the subspace of L*(T, ) which contains the all the functions
of the form e**'a, with a € E. Then F}, L F; for k # j and

L*(T,E) = &>_F.

Indeed, let v € L*(T, A) be orthogonal to all Fj, that is,

2w
/eikt@(eit),@];dt =0,a€FE, kel

0

1
21

Then, (v(e"),a)r = 0 everywhere, except possibly the points ¢ of a set £, depending on a
and of zero measure. Letting a run over a countable, dense subset of E and taking the union
of the corresponding sets E, we obtain a set E of zero measure and v(e™) = 0 Vt ¢ E, so
v =0 as an element of L*(T, E).

Furthermore

le*all 2cr,p) = llalle.

As a result, there exists a one to one correspondence between the elements v of L*(T, E)

and the sequences ag, ar, € E with Y ||ag||% < oo, in such a way that for corresponding v
k
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C.2. The operator-valued case

and a; we have
oo

v(e™) = Z e*ay, (C.1)

and
ol = [laxll3- (C.2)

Relation (C.2) follows from the fact that

R A
—W/Hv(e”) =) M| Bdt — 0
0 —m

as m,n — oo.
From relation (C.1)

1
:—/ “Mu(e)dt, k € Z,
2
0

and so (C.1) is the Fourier series of v.

Definition C.2.1 ([14], p. 184). We will denote by L% (T,E) the subspace of L*(T,E)

consisting of those functions for which ay, =0 for k <.

Now, we associate any function

v(e) = Zeiktak € L’ (T,E)
0

with the function

o0
= E zkak
0

of the complex variable z, defined and holomorphic on ID since

n 1/2
IIZZ allp < ZIZI lalle < (1 =127 (Z(II%IIQE) —0

m

for n > m — oo, for |z| < 1, uniformly for |z| <rg < 1.

One can retrieve v(e") from u(z) as a radial limit in L*(T, E)

27 27

1 ‘ . 1 b . b

> / [o(e™) — u(re™)||3dt = o / I Z(l —r*)e™ay||3dt = Z(l — ") |lax|E — 0
0 0 0 0
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C.2. The operator-valued case

as r — 1. Also, for 0 < r < 1, we have

2T
g/HU(Te Ne =D r#lanls < D llaelh < o
9 0 0
Definition C.2.2 ([14], p. 185). The class of functions

u(z) = Z “Fay

with values in E, holomorphic on D and such that

2
1 )
2—/||u(re”)||2Edt 0<r<1
7r
0

has a bound independent of r, will be denoted by H*(D, E).

Remark C.2.3. Note that

27
1 ; -
o [ utre) = > el
2 0
so the condition mentioned in Definition C.2.2 is equivalent to the condition

[o.¢]
> lagll3 < oo
0

Hence we see that every function u(z) € H*(D, E) can be retrieved from a function v €
L2 (T, E), indeed from v(e™) = > " e*ay. As v(z) and v(t) determine each other, we can
identify the classes H*(D, E) and L% (T, E). If we provide H*(D, E) with the Hilbert space
structure of L2(T, E), we can then embed H*(D, E) in L*(T, E) as a subspace.

Remark C.2.4. We can retrieve u(z) from v(t) using the Poisson formula

) 1 2m
u(re’) = 2—/ P.(t—s)v(s)ds 0<r<1
™ o
where .
P(t) — (C.3)

- 1 —2rcost+r?

Theorem C.2.5 (Generalised Fatou’s Theorem, [14, p. 186]). Let E be a separable Hilbert
space. Suppose u € H*(D, E) is given by

o0

u(z) = szak for allz €D
0
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C.2. 'The operator-valued case

and suppose v € L*(T, E) is given by
v(e") = Z e*ay, for alle™ € T.
0

Then u(z) tends to v(t) with respect to || - || as z tends to € along any path that is not
tangent to the unit circle, and at every point t such that
1 t+s

% v(e') dr — v(e') strongly (s —0),
S Jt—s

thus almost everywhere.

Now, consider a function ©O(z) whose values are bounded operators from a separable
Hilbert space E to a separable Hilbert space F, and suppose that the function has a power

series representation

O(z) = sz@k (C4)

with Oy being bounded operators from E to F. Suppose also that the series is convergent in
D. If, also,
19(2)|| < M on D,

we will call such a function a bounded analytic function on .

For a bounded analytic function we have
27
1 i
3 [ 18etallpdt < M allp 0 << 1)
0

and

oo
> llOwalf < M3l

k=0
for all a € E.

As in the scalar case, the limit

O(e") = lim O(z)

z—ett

exists almost everywhere as a strong limit of operators. Moreover,

O(e") = lim O(re™)

r—1

and ©(re')a converges in L2(F) to O(e")a as r — 1 and this limit has the Fourier expansion
O(e"a = Z "0 a.
k=0
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C.2. The operator-valued case

Now, with every bounded analytic function ©(z) we associate the operator
0: L*(E) — L*(F),

defined by
(©v)(t) = O(e™)u(t), v e L*(E)

and the operator
O,: H*(E) - H*(F)

defined by
(O4u)(2) = O(2)u(z), u € H*(E).

Definition C.2.6 ([14], p. 190). The analytic operator-valued function ©(z) will be called
i) inner if ©(e™) is an isometry from E to F for almost every t.

i) outer if ©, H*(D, E) is dense in H*(D, F).
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Appendix D

The Nehari Problem

D.1 The Scalar Nehari Problem

Definition D.1.1 ([38], p. 157). We denote by L>*(T,C) the Banach space of essentially
bounded Lebesque measurable C-valued functions on the unit circle T with pointwise algebraic
operations and essential supremum mnorm.:

[ fllzoe = ess sup [F(2)]-

A function is said to be essentially bounded if it is bounded on the complement of a
set of measure zero. In LP-spaces two functions are identified if they take the same values
everywhere except for a set of measure zero. So, a number M > 0 is an essential upper bound
for a function f: T — R if the set

{zeT:|f(2)] > M}

is a set of measure zero. Then we can define

esssup | f(z)| = inf{M > 0: M is an essential upper bound for |f(z)| on T}.

Definition D.1.2 ([38], p. 159). H>°(D, C) denotes the space of bounded analytic functions

on the unit disc D with the supremum norm

def def

1@l = QI = SlégHQ(Z)II'

Definition D.1.3 ([11], p. 13). We define by L*(T,C) the space of square integrable func-

tions on the unit circle with the inner product
L (" T
(o) = 5= [ ()l
™ —T
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D.1. The Scalar Nehari Problem

Also, we define by H*(D,C) the space of holomorphic functions f on the open unit disc such

that
1 /7 A 1/2
lim (—/ |f(7“e“9)|2d0) < 0.
r—1 \ 271

—Tr

Remark D.1.4. Let 0 < r < 1. Suppose f € H*(D,C). By Fatou’s Theorem C.1.3, the
radial limits
lim f(re®)

r—1
exist almost everywhere on T.
Definition D.1.5 ([11], p. 13). Consider the complete orthonormal set ¢,(0) = €™,
n=1,2---,in L*(T,C). If f € L*(T,C), the numbers

R

are the Fourier coefficients of f. The series

1s the Fourier series for f.

Definition D.1.6 ([11], p. 13). Suppose that f(z) = > _an,z" , z € T, is the Fourier
expansion of a function f. We denote by f(n) the n-th Fourier coefficient a,, of f.

Definition D.1.7 ([38], p. 39). The orthogonal complement of a subset E of a Hilbert space
H is the set
{r € H: (z,y) =0, forally € E}.

It is denoted by H © E or by E+.

Theorem D.1.8 ([11]). Let E be a closed linear subspace of a Hilbert space H. Then H =
E @ E+, that is, every vector x in H is uniquely expressible in the form x = y + z where
yE€FE and z € B+,

Definition D.1.9 ([38], p. 188). Let M be a closed linear subspace of a Hilbert space H.
The orthogonal projection from H to M 1is the operator P: H — M defined by

Pr=vy, if t =y+ 2, wherey € M,z € M~*.

Definition D.1.10 ([38], p. 190). For f € L*(T,C) given by
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we define the orthogonal projection P_: L*(T,C) — L*(T,C) & H*(D,C) by
o0 -1
P (Z anz"> = Z an2".

Remark D.1.11. By Fatou’s Theorem, H*(D,C) can be identified with a closed subspace of
L3(T,C). This implies that the above projection is well-defined.

Definition D.1.12 ([38], p. 190). Suppose that ¢ € L>(T,C). The Hankel operator Hy is
the operator

P_o Mylm2mc): H(D,C) — L*(T,C) & H*(D,C),

where My is the operator of multiplication by ¢ on L*(T,C).

Definition D.1.13. We can write L*(T,C) © H*(D,C) as H*(D,C)*, where
H(D,C)" € {f € LX(T,C) : {f.g)2 =0, for allg € H*(D,C)}.

Definition D.1.14. Given two Hilbert spaces Hy and Hs, denote by L(Hy, Hy) the set of all
bounded linear operators T: Hy — Hs.

Definition D.1.15. Let Hy and Hy be Hilbert spaces and let T € L(Hy, Hy). A mazimizing

vector for T is a non-zero vector x € Hy at which T attains its norm, that is, such that
[Tz|| = |T]||]-

In general, a maximizing vector need not exist for a bounded linear operator.

Definition D.1.16 ([29], p. 103). Let (E.| - ||lg),(F,|| - |[r) be Banach spaces, let
U= {x € E:|z|]lg < 1} be the unit ball in E and let T: E — F be a linear operator.

T is a compact operator if the closure of T(U) is a compact set in (F,|| - | r).

Definition D.1.17 ([19], p. 25). Let E, F be Hilbert spaces and T: E — F. The essential
norm of the operator T is defined by

IT||e = inf{||T — K|| : K is compact }.

Theorem D.1.18 (Hartman’s theorem, [19], p. 27). Let ¢ € L>°(T,C). Then
Hy is compact if and only if ¢ € H*(D,C) + C(T,C).

Definition D.1.19 ([19]). Consider the space L*(T,C). The bilateral shift operator is de-
fined to be the multiplication by z on L*(T,C). Its restriction to H*(D,C) is called the

unilateral shift.
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Theorem D.1.20 ([19], p. 26). Let ¢ € L>(T,C). Then, the essential norm of the Hankel
operator Hy: H*(D,C) — H*(D,C)* satisfies

[Hylle = distr (¢, H*(D, C) + C(T, C)).
Lemma D.1.21 ([19], p. 26). Let K: H*(D,C) — H?(D,C)* be a compact operator. Then
lim ||KS™|| =0,
n—0o0
for the shift operator S on H*(D,C).

Problem D.1.22 (The Nehari Problem). [38, Problem 15.6] Given ¢ € L*(T,C), find
g € H*(D,C) such that
1§ — gl

18 minimised.

Theorem D.1.23 (Nehari’s Theorem). [38, Theorem 15.14] Suppose that ¢ € L>*(T,C).
Then
| Hy|| = dist(¢, H*(D, C)).

Moreover there exists 1 € L>*(T,C) such that the Hankel operators Hy, H,, satisfy
H,=H,

and

[Pl = [1H]]

Any function Q € H* at which the infimum Qir}}“ o — Q|| is attained will be called
E o0

a solution of the Nehari Problem for ¢. For ¢ € L there may be a unique solution or

infinitely many solutions.

Theorem D.1.24 ([38],p. 196). Let ¢ € L>°(T,C) and suppose that the Hankel operator Hy,
has a mazimizing vector v € H*(D,C). Then there exists a solution of the Nehari problem
and every solution () satisfies
(¢ — Qv = Hyv
and so,
Hyv(z)

(D.1)
almost everywhere on T.

Remark D.1.25. Since v € H*(D), and v is not identically zero on D, then v is non-zero

almost everywhere on T.
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Remark D.1.26. It follows from Theorem D.1.24 that if Hyg has a mazimizing vector, then
the Nehari problem for ¢ has a unique solution Q) given by equation (D.1).

D.2 The Matricial Nehari Problem

In this section we present an established generalisation of the results obtained in Appendix

B.1 to the matrix-valued setting.

Definition D.2.1. For any G € L*(T,C™*"), we define the Hankel operator with symbol
G to be the operator

Hg: H*(C") — H*(C™)*
given by Hgx = P_(Gzx), where
P_: LX(C™) = HX(C™)* ¥ 12(C™) & H(C™)
15 the orthogonal projection operator.

The following is the Nehari Problem for matrix-valued functions.

Problem D.2.2. Given ¢ € L>®(T,C™"), find all Q@ € H>®(D,C™*") such that

|l — Qllr~ is minimised.

Theorem D.2.3 ([16]). For any matriz-valued ¢ € L*°(T,C™*™),

inf ¢ = Qllc = [|1Hs

QEH™>(D,Cmxn)

and the infimum is attained.

Theorem D.2.4. [24, Theorem 0.2| Let ¢ € L>®°(T,C™*™) be such that H, has a Schmidt
pair (v,w) corresponding to the singular value t = |Hy|. Let Q be a function in
H>(D,C™™) at minimal distance from ¢. Then

(6 — Qv =tw and (¢ — Q)*w = tv.

Moreover

|w(z)||cm = ||v(2)|lc» almost everywhere on T

and
lp(2) — Q(2)|| =t almost everywhere on T.
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Proof. By Nehari’s Theorem, ||¢ — Q||.~ = t and, by hypothesis,
Hyv = tw, Hiw = tv.

If t = 0 then ¢ € H>®(D,C™*™), so that ¢ = @ and the statement of the theorem is trivially
true. We may therefore assume ¢ > 0. Thus HiHyv = t2v, and so v is a maximising vector
for H,. We can assume that v is a unit vector in H*(D, C"), and then w is a unit vector in

H*(D,C™)* and is a maximising vector for H}. We have
t = Hyv| = [[Hp—qull = [|P-(¢ — Q)v] < [[(¢ — Q)v]| < [|¢ — Q[ = 1.
The inequalities must hold with equality throughout, and therefore
1P—(¢ = Q)v[l = ll(¢ — Q)vll;
which implies that (¢ — Q)v L H? and so

Hyo = P_(6— Qv = (6— Q)v.

Furthermore ||(¢ — Q)v|| = [[(¢ — Q)||L<]||v|| and since v(z) is therefore a maximizing vector
for ¢(2) — Q(z) for almost all z, we have ||¢(z) — Q(z)|| = || Hy||-
Likewise,

t=Hgll = [ Hg-oll = [ Hgqull = [[P+(é — Q) w2 < [[(¢ — Q) w]| 2
<@ = Q)= llwllzz = [[(¢ = Q)| = 2.

Again, the inequalities hold with equality throughout, and in particular
[1P(¢ — Q) wlL2 = [[(¢ — @) wl| 2,

so that (¢ — Q)*w € H? and
(¢ —Q)'w= Hjw = tv. O

Theorem D.2.5. [12, Theorem 7.3.5] If A € C™*™ has rank k, then A can be written as
A=UWYV,

for some matrix W € C™*" with non-negative diagonal entries and for some unitary ma-

trices U € C™™ V. e C™". The matric W = (s;;) € C™" has s;; = 0 for i # j,

1=0,1,--- . m—1,7=0,1,--- ,n—1, and for i = j,

SO > S1 > > 8 > Sy = =8,=0

with ¢ = min{m, n}. The numbers s; are the non-negative square roots of the eigenvalues of
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AA* and are also known as the singular values of the matriz A.

The following example encapsulates the necessity of considering the superoptimal analytic

approximation in order to obtain a unique best approximant.

Example D.2.6. Let

G(z) = (g 8) € 1T, C22).

Find a function Q@ € H>®(D,C**?) such that |G — Q|| pe(1,c2x2) is minimised.

Solution. Firstly,
|Hg|| = distr~(z, H*®) = 1.

Consider an arbitrary @ € H>*(D, C?*?) of the form

Q(z) _ (QH(Z) Q12(2)> .

C_I21(Z) 6122(2)

The unique ¢1; € H*(ID, C) such that ||g;; — Z||z~ < 11is ¢11 = 0.
Hence Q € H°(D,C**?) is a best approximant of G if and only if @ is of the form

0 O
Q_<0 Q22>’

z 0
0 —g2
i.e. ||q22||Hoo S 1.

Thus the set of best analytic approximants of G is

0 0
CMgozllge <15
0 g2

At this point, we encounter a difficulty. The set of all optimal solutions is typically large,

where

= max{l, [|gel/m=},
LOO(TUCQXQ)

1= ||G - Q”LOO(’]I‘7C2><2) = '

and we would like to be able to determine the “very best” among these best approximants.
For this reason, we need to impose some additional constraints other than the minimisation
of the L*> norm of the largest singular value, namely to regard minimizing the L* norm of
all the subsequent singular values.

Observe that, in this case, s3°(G — @) = 1 and that

0 0
sT°(G — Q) = esssup s; ( ) = esssup |gaa(2)| = ||ga2]| g
zeT —QQQ(Z) z€T

Hence the unique best analytic approximant of G for which both s§°(G—Q) and s7°(G—Q)
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are minimised occurs when ¢o9 = 0, that is,

00
QZ(O 0)' -
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