
 

 

 

 

 

Molecular Genetic Studies of Inherited Cystic 
Kidney Disease in Oman 

 

 

 

 Intisar Hamed Al Alawi 

 

A Thesis Submitted For the Degree of Doctor of Philosophy  

 

Institute of Genetic Medicine 

Newcastle University 

 

January 2020 





i 
 

Abstract 

Inherited kidney diseases are fundamental causes of chronic kidney disease (CKD) and 

end stage kidney disease (ESKD); accounting for approximately 20% of all CKD cases 

and up to 10% of adults and over 70% of children reaching ESKD.  

Oman is the second largest country in the South East of Arabian Peninsula. Omani 

population is characterized by large family size, presence of tribal and geographical 

settlements and higher rates of consanguineous marriages, which facilitate the study of 

autosomal recessive disorders. Rare genetic disorders create considerable burden on 

healthcare system in Oman and are major causes of congenital abnormalities and perinatal 

deaths in hospitals. The prevalence of inherited kidney disease was estimated to be high, 

but there is a lack for a comprehensive data. Therefore, this study aimed to evaluate the 

magnitude of inherited kidney disease in this population and identify the molecular 

genetic causes of inherited cystic kidney diseases in Omani patients.  First, I performed a 

population-based retrospective analysis of ESKD patients commencing RRT from 2001 

to 2015 using the national renal replacement therapy (RRT) registry and evaluated the 

epidemiological and etiological causes of ESKD with focused attention on inherited 

kidney diseases. Second, I designed a targeted gene panel (49 genes) and used massive 

parallel sequencing technologies for the molecular genetic diagnosis of cystic kidney 

disease in 53 patients. An overall molecular genetic diagnostic yield of 75% was 

achieved; with 46% of detected causative variants were novel genetic findings. Third, I 

evaluated the utility of molecular genetic testing in patients with autosomal recessive 

polycystic kidney disease (ARPKD) and described the clinical and genetic profile of this 

cohort. Finally, whole exome sequencing (WES) was used to determine the genetic 

causes of CKD in 11 unrelated children suspected with recessively inherited kidney 

diseases. Definite genetic diagnosis was achieved in 54.5% of cases, reflecting the 

importance of genomic implications in those with uncertain aetiology causing CKD. This 

study creates a solid basis reflecting the genotype-phenotype of some inherited kidney 

diseases in Omani population and reveals the enormous diagnostic power of genomic 

technologies.  
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Chapter 1. Introduction 

 

1.1 Cilia and Human Diseases 

1.1.1 Cilia structure, classification and functions 

On the apical surface of nearly all human body cells, there are microscopic, membrane-

covered hair-like structures called cilia. Cilia are evolutionary conserved throughout 

species from nematodes to protozoa (Arts and Knoers, 2013, Mitchison and Valente, 

2017). Structurally, cilium contains three principal parts an anchoring structure called 

basal body, a transition zone and a cylindrical backbone projecting from the cell surface 

to the extracellular space called axoneme (Figure 1.1). With such distinctive structural 

complements, cilia are arguably the most complex cellular organelle (Rohatgi and Snell, 

2010).  

The axoneme provides support to the ciliary structure, determines cilia elongation and 

length, acts as pathways for ciliary proteins movement and in some cases facilitates 

ciliary motion. A cross section of the axoneme shows an arrangement of nine sets of 

microtubular doublets forming a ring either surrounding a central microtubule pair (9+2) 

or missing the central pair (9+0). Each doublet consists of a complete microtubule (A-

tubule) connected to incomplete microtubule (B-tubule), which are assembled of α- and 

β- tubulin monomers, respectively (Horani and Ferkol, 2018). The basal body, which is 

located at the base of cilia, originates from the mother centriole serving as microtubule-

organizing centre (MOC). The basal body is constructed from nine sets of short triplet 

microtubules from which the doublet microtubules of axoneme originate. The distal area 

of the basal body where the triplet microtubules emerge to the axonemal doublet 

microtubules defines the transition zone, which serves as a selectivity barrier controlling 

protein trafficking in and out of the cilium (Figure 1.1). Cilia are surrounded by ciliary 

membrane that is continuous to the plasma membrane but has a unique complement of 

proteins and lipids (Rohatgi and Snell, 2010). The ciliary membrane is enriched with 

various receptors essential for detecting extracellular signals.  

Based on their structure and functions, cilia are basically divided into motile and immotile 

(primary) cilia. With the exception of sperm flagella, motile cilia are usually present as 

large groups on a cell surface (called multiciliated cells) and beat in a coordinated ‘back 
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and forth’ manner to facilitate the movement of cells and fluids (Davenport and Yoder, 

2005). For instance, there are approximately 200 motile cilia on the apical surface of each 

cell along the trachea, beating closely to clear mucus and dirt and muds out of the lungs 

(Horani and Ferkol, 2018). Moreover, motile cilia are abundant on the ependymal cells of 

the brain promoting cerebrospinal fluid movement as well as the cells lining fallopian 

tube and epididymis of reproductive tracts facilitating the movement of ovum and sperms. 

The axoneme of motile cilia has a 9+2 configuration (Figure 1.1). The power required for 

axoneme motility is mediated through the axonemal dynein arms that are motor 

complexes attached to microtubule doublets forcing them to orient against each other 

(Heuser et al., 2009). The sliding of microtubules is controlled by an elastic element 

called nexin, which ties the nearby outer doublets together. Furthermore, radial spokes are 

T-shaped axonemal protein complex that bond each set of the outer doublets to the central 

pair and controls dynein arms activity. Together, the central pair, dynein arms and T-

spokes are critical for ciliary motion. Motile cilia vary in their length and beating 

frequencies. For instance, compared to the respiratory cilia, brain ependymal cilia have 

larger size and faster motion level (O'Callaghan et al., 1999). The normal beating rate of 

human airway cilia is between 8 and 14 beats/s and any changes in the surrounding 

environment or the exposure to pollutants may greatly affect ciliary motion (Al-Rawi et 

al., 1998, O'Callaghan et al., 1999). Notwithstanding, some signalling mechanisms, such 

as airway nitric oxide, control beating frequency, complete understanding of the impact of 

the intracellular and intercellular stimuli in regulating cilia motion is not yet achieved 

(Horani and Ferkol, 2018). 

Primary cilia are single, immotile organelles present on the surface of most cell types in 

nearly all organs and tissues of human body (Lancaster and Gleeson, 2009). The axoneme 

of primary cilia illustrates some structural differences from that of motile cilia, where it 

lacks dynein arms and the central microtubule pair, thus has 9+0 microtubule 

arrangement. Primary cilia are implicated in organ development, such as kidney and 

limbs, and in neurosensory roles such as hearing, smelling and sight (Yildiz and Khanna, 

2012). Thus, they are thought to be key sensory antennae enriched with receptors through 

which the cell detects changes in the surrounding environment. Based on the cell type, 

primary cilia act as mechano-, chemo- and photoreceptors. For example, primary cilia on 

the epithelium of renal tubule function as mechanoreceptor sensing urine flow, while on 

retina serve as photoreceptors detecting light stimuli (Hsiao et al., 2012). Thus, primary 
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cilia are involved in activation and transduction of diverse signalling pathways associated 

with cellular proliferation, differentiation and polarity that are principal for tissues 

development and homeostasis, including the Sonic hedgehog (Shh), Wnt, calcium, growth 

factor, receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs) 

pathways (Hsiao et al., 2012, Braun and Hildebrandt, 2017). The reason behind the 

enhancement of receptors and concentration of signalling pathway on the primary cilia is 

not fully clear. Along with their ability to receive sensory signals, primary cilia are found 

to possess bioactive extracellular vesicles (EVs) at their tips and secrete ectosomes and 

exosomes critical for intercellular communication, suggesting a potential role for primary 

cilia in EV biogenesis and reception (Wood et al., 2013).  

The conventional classification of motile (9+2) and immotile cilia (9+0) fails to highlight 

the complexity of these different cilia types. For example, this classification is violated by 

a type of immotile cilia with axonemal configuration of 9+2 presenting on specific 

olfactory sensory neurons (D'Angelo and Franco, 2009). In addition, nodal cilia, which 

present on the embryonic node during gastrulation, are solitary organelle with a 9+0 

microtubule configuration. However, they differ from primary cilia in the possession of 

dynein arms that provide the ability to move in a circular clockwise direction. It is 

postulated that the axonemal central pair is critical for ciliary beating (back-and-forth), 

thus its absence in nodal cilia creates a rotational motion (D'Angelo and Franco, 2009). 

Rotation of cilia at an average of 600 rpm makes the flow of the extra-embryonic fluid to 

move throughout the nodal surface towards the left (Mitchison and Valente, 2017). This 

directional flow is detected by primary cilia around the nodal cilia and elicits asymmetric 

gene expression cascade critical for left-right (LR) axis determination, including the 

major downstream effector gene and key factor in LR-axis development Nodal, which is a 

member of the transforming growth factor-beta (TGF-beta) superfamily (Yoshiba et al., 

2012, Pennekamp et al., 2015, Mitchison and Valente, 2017). Whether the response of 

primary cilia at peripheral site of embryonic node is triggered by mechanical sensing of 

the flow or involved binding of developmental morphogens to ciliary receptors is not 

fully clear (Satir and Christensen, 2008).  
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Figure 1.1 Schematic diagram of cilia Structure. The inner core of cilia is composed a 
cytoskeleton structure of microtubule bundles called axoneme originating from a 
centriole-derived microtubule structure called basal body. At transition zone (TZ) the 
triplet microtubules of the basal body derived into doublet microtubules. TZ is 
important in modulating proteins transportation in and out of the cilium. The axoneme 
is covered with cilia membrane, which originates from plasma membrane but consists 
of distinct constituents such as channels and receptors. Additional cross section 
diagrams of a typical axonemal microtubule structure of the motile cilium (9+2), 
immotile (primary) cilium (9+0) and the nodal cilium (9+0) are shown.    
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1.1.2 Dynamics of ciliogenesis 

The complexity of cilium raises the query of how this organelle was constructed in a 

systematic manner. Cilium is a dynamic organelle that assembles during quiescence in a 

process known as ciliogenesis and disassembles during mitosis (Ishikawa and Marshall, 

2011). Despite there are some structural differences among cilia types, ciliogenesis is 

conserved. Prior entry of G1 phase, basal body originates from the mother centriole or de 

novo, travels to the cell surface and docks onto the cell cortex in proximity to the plasma 

membrane. Later, fusion of basal body to plasma membrane and association with 

membrane vesicles generates ciliary membrane partition. The basal body acts as 

nucleation site for axoneme extending out microtubule bundles protruding from the cell 

surface towards the extracellular space and hence inducing the outgrowth of cilium. Due 

to the absence of protein synthesis machine in cilia, all compartment proteins are 

synthesised in the Golgi apparatus. Consequently, this demanded a selective importing of 

ciliary proteins from the cytoplasm to the base of the cilium through ciliary gate as well 

as protein trafficking along ciliary length through a molecular motor-based process called 

intraflagellar transport (IFT). At the beginning of cell cycle, cilia absorb and the basal 

body travels to the nucleus to organize centrosomes. Ciliary desorption is thought to acts 

as novel checkpoint for G1-S transition and represents intensive procedures including 

disassembly of axonemal microtubules, obstruction of ciliary reformation and elimination 

of ciliary membrane (Hsu et al., 2017).  

Continued growth of cilia needs active transport through a highly preserved process of 

IFT.  IFT was initially recognized in the ciliogenesis of the unicellular green alga 

Chlamydomonas reinhardtii. IFT is a bidirectional process that involves movement of 

ciliary proteins, both structural and signaling components, along the axoneme through 

IFT molecular trains (or motors). Transport of proteins from cytoplasm to ciliary tip is 

called anterograde, while transport in the opposite direction is called retrograde. IFT 

trains are classified into long, narrow trains of about 700nm in length and short, condense 

trains of about 250 nm (Pigino et al., 2009). Anterograde transport occurs through the 

interactions of IFT long trains with members of kinesin-2 family, while IFT short trains 

are associated with cytoplasmic dynein 2 in retrograde transport (Figure 1.2) (Ishikawa 

and Marshall, 2011). Connection of cargo proteins to IFT trains is obtained through an 

association with two IFT protein complexes (A and B). The IFT complex A consists of 6 

subunits and facilitates retrograde transport, whereas the IFT complex B composes of 14 
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subunits proteins and mediates anterograde transport (Bhogaraju et al., 2013). The IFT 

complex B is also important for cilia formation and preservation as loss of any subunits 

leads to shortened or lack of cilia (Ishikawa and Marshall, 2011). The BBSome, a 

complex of Bardet-Biedl syndrome (BBS) proteins, is an additional critical protein 

complex that is involved in transporting ciliary membrane proteins through IFT trains and 

controls the turnaround transport from anterograde to retrograde  (Wingfield et al., 2018). 

Remarkably, IFT-associated proteins are also critical in controlling different constituents 

of the Hedgehog signalling pathway (Goetz and Anderson, 2010). Although a fruitful 

progression has been made in clarifying how ciliary assembly and disassembly is highly 

regulated, a complete understanding of the full molecular mechanisms is still inferior. 

Consequently, there is a demand for integrative models to fill the gaps and illustrate the 

way the ciliary trafficking components and pathways interact together.  

 
Figure 1.2 Intraflagellar transport (IFT) machinery of cilia. Diagram of a cilium 
illustrating the IFT. The IFT complex B, which consists of 14 well-established proteins 
(Ift20, Ift22, Ift25, Ift27, Ift46, Ift52, Ift54, Ift57, Ift70, Ift74/Ift72, Ift80, Ift81, Ift88 and 
Ift172) along with Kinesin-2 mediate anterograde transport (from ciliary base to the tip) 
(Bhogaraju et al., 2013). The IFT complex A, which comprises of 6 known proteins 
(Ift144, Ift140, Ift139, Ift122, Ift121 and Ift43) along with cytoplasmic dynein 2 delivered 
retrograde transport (from ciliary tip to the base) (Bhogaraju et al., 2013).  
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1.1.3 Human ciliopathies: history and pathogenesis 

Although the first observation of flagella or motile cilia was made in the late 17th century 

by Anton van Leeuwenhoek, about a century later the primary immotile cilia were 

observed (Reiter and Leroux, 2017). In 1835, earlier studies of mammalian cilia using 

light microscopy were documented, where considerable attentions were mainly given to 

the mechanism and biochemistry of motile cilia (Bloodgood, 2009). Primary cilia on 

mammalian cells were first described in 1898 by KW Zimmerman, who drew illustrations 

of solitary cilia-like structure and assumed that this organelle possess some sensory 

functions (Hua and Ferland, 2018). However, primary cilia was mostly ignored by 

biologists and considered as evolutionary useless vestige. Later, using the electron 

microscopy, studies were focused on examining the build-up structure of cilia, therefore 

new insights in the inner structure of motile and primary cilia was achieved in 1954 and 

1956, respectively (Satir and Christensen, 2008). Since then, multiple studies continued to 

show the presence of primary cilia in various mammalian cells, nevertheless its 

physiological functions remained mysterious until its pathophysiological significances in 

kidney cells were proposed in 1995 (Satir and Christensen, 2007). The recognition of the 

IFT in C. reinhardtii led to discovering the association between mutations in the gene 

encoding the IFT88 protein and polycystic kidney disease (PKD), thus for the first time 

dysfunction of primary cilia was linked to human disease (Pazour et al., 2000). Further 

attention was giving to this organelle after discovering that the critical developmental 

sonic hedgehog (Shh) pathway depends on the primary cilia and IFT system, fascinating 

scientists from different majors (Huangfu et al., 2003). Following these major 

discoveries, system biologists focused their research on establishing functional models 

that demonstrate the similarity between the genetics of mice, zebrafish and human cells in 

order to understand the molecular mechanism defining cilia role in developmental 

pathologies and human diseases. A multi-species informative database associated with 

cilia and associated disorders are found in Cildb (http://cildb.cgm.cnrs-gif.fr/), which 

serves as a reference for ciliopathy predicted proteins (Arnaiz et al., 2014). Further 

advances in genetic research have defined most of the molecular basis behind the 

dysfunctional mechanisms causing cilia-associated disorders, termed ciliopathies.  

Since the initial used in 1984, the term ciliopathies is commonly used to describe a 

variety of devastating multi-systemic human disorders that are caused by genetic defects 

of the cilia structure, composition or function (Reiter and Leroux, 2017). At the present, 
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about 35 confirmed inherited disorders are classified as ciliopathies and the list continues 

to expand (Reiter and Leroux, 2017).  It includes primary ciliary dyskinesia (PCD)/ 

Kartagener syndrome (KS), polycystic kidney diseases (PKD), nephronophthisis (NPHP), 

Leber congenital amaurosis (LCA), Senior–Loken (SLSN), Alström syndrome (ALMS), 

Joubert (JBTS), Jeune (or asphyxiating thoracic dystrophy, JATD), short rib polydactyly 

(SRPS), Ellis-van Creveld syndrome (EVC), oral‐facial‐digital (OFD) syndromes,  

Bardet–Biedl (BBS), and and Meckel–Gruber (MKS).   

Because both motile and primary cilia share similar core structure and ciliogenesis 

mechanism, defects in cilia structure or disruption of components associated with cilia 

construction can impact both motile and primary cilia distinctly or together, thus 

impairing different physiological functions associated with motility and sensation  

(Ishikawa and Marshall, 2011). Furthermore, due to extensive distribution and 

involvement in numerous cellular functions, impairment of cilia can give rise to a broad 

spectrum of characteristic features ranging from embryonic lethality, through typical 

organ anomalies to severe loss of function causing early manifesting diseases or moderate 

loss of function leading to late-onset diseases. These remarkable features are recognized 

as hallmarks of ciliopathies, affecting main organs such as brain, eyes, respiratory system, 

kidneys, liver, skeleton and reproductive system (Figure 1.3). Kidney, liver and 

pancreatic cyst formation, heart anomalies, retinal degeneration, hearing loss, neural tube 

defects, obesity, mental retardation, skeletal anomalies and defects of the central nervous 

system (CNS) are the common features associated with ciliopathies, which may occur 

isolated or part of distinguishable syndromes (Badano et al., 2006). The phenotypic 

parameters outlining ciliopathies are overlapped nevertheless may aid the diagnosis and 

treatment of some unrecognized diseases or syndromes with novel features. Polycystic 

ovarian syndrome and several subcutaneous cysts were reported recently along with the 

canonical ciliopathies features of kidney failure and liver cirrhosis, which may 

demonstrate a new rare syndrome (Tan et al., 2018).  
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Figure 1.3 Different spectrums of ciliopathy phenotypes in relation to different human 
organs. Clinical phenotypes caused by motile cilia are indicated by black colour, 
while those caused by primary non-motile cilia are indicated by red colour. Clinical 
overlapping features between the two cilia types are associated with laterality defects, 
congenital heart defects and hydrocephalus (blue colour). NPHP, nephronophthisis; 
PKD, polycystic kidney disease. 
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1.1.4 Motile ciliopathies  

The disturbance of ciliary motility caused by defect in the assembly or function of dynein 

arms, dynein regulatory complex or central microtubule pair can entirely lead to motile 

ciliopathies. Primary ciliary dyskinesia (PCD) is a rare inherited disease of the motile 

cilia, which was the first and remains the only known motile ciliopathy (Horani and 

Ferkol, 2018). PCD has an estimated incidence of approximately 1:20,000 live births and 

accounts for 5% of children with chronic respiratory tract infections (Horani and Ferkol, 

2018). Chronic upper and lower respiratory tract disease in the form of sinusitis, 

bronchiectasis and atelectasis, laterality anomalies, frequent ear infections, and infertility 

are the major clinical manifestations of PCD. Approximately 50% of PCD patients 

present with situs inversus totalis (Kartagener’s syndrome), which is an identical-reversal 

image of main internal organs, indicating nodal ciliary function defect throughout 

embryogenesis (Kennedy et al., 2007, Horani and Ferkol, 2018). In rare PCD cases, 

complex laterality anomalies, such as situs ambiguous or heterotaxy, are reported with 

congenital heart abnormalities (Kennedy et al., 2007, Horani and Ferkol, 2018). 

Furthermore, reduced generation of multiple motile cilia (RGMC) is another type of PCD 

presenting with similar phenotypes, except laterality anomalies, but differs in disease 

aetiology since it is caused by abnormalities of multiciliogenesis process (Mitchison and 

Valente, 2017).  Particularly, hydrocephalus is noticeably more common in PCD arises 

from RGMC than in typical PCD patients and the reason is not fully clear (Mitchison and 

Valente, 2017).  PCD often has an autosomal recessive mode of inheritance, although 

some rare cases of autosomal dominant and X-linked mode, with PCD-like clinical 

features, have been described (Reiter and Leroux, 2017, Horani and Ferkol, 2018). Motile 

ciliopathies show a significant genetic heterogeneity, where mutations in up to 37 genes 

have been reported, possibly demonstrating the complexity of the structures demanded for 

ciliary motion (Horani and Ferkol, 2018).  
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1.1.5 Primary ciliopathies 

Although motile cilia show some sensory abilities, dysfunction of the primary cilia can 

give rise to different sensory, physiological and developmental abnormalities causing 

primary ciliopathies. Different potential molecular aetiologies can lead to primary 

ciliopathies including defects of primary cilia assembly, maintenance, signaling 

transduction machinery or protein trafficking components. In contrast to motile 

ciliopathies, primary ciliopathy disorders show a broad range of phenotypic variability; 

this can be attributed to the ubiquity of primary cilia. Moreover, a comprehensive 

overlapping in genetic causes and clinical features is observed across different disorders 

of primary ciliopathies, revealing the complexity of pathomechanisms underlying 

diseases. Currently, primary ciliopathies are clinically classified and diagnosed based on 

the main implicated organ(s).  

In brain, primary cilia are key initiators of the Shh pathway, which plays a major role in 

brain physiology development and implicated in regulating neural stem cells. Therefore, 

defective Shh signaling caused by mutations in associated genes generates serious 

neurological developmental defects, including defective closure of neural tube 

(anencephaly, encephalocele), hydrocephalus, and additional midline abnormalities such 

as occipital encephalocele, anomalies of corpus callosum and holoprosencephaly, which 

is a rare genetic disorder associated with a broad range of brain and cranio-facial 

anomalies (Mitchison and Valente, 2017). Because several components of Shh pathway 

are distinctly present in the primary cilia at various steps of pathway activation, mutations 

in numerous genes have been associated with Shh-associated developmental defects that 

are also part of ciliopathies features. For instance, mutations in different components of 

the IFT complex in mice, such as Ift139 and Ift122, evidenced the impact of cilia-

mediated Shh signals in neural tubes specification and mutations in some basal body 

proteins, such as Mks1, Ofd1, Evc exhibit morphological defects associated with EVC, 

JBTS, MKS and OFD (Ruat et al., 2012). Cilia-associated Shh signals have also been 

implicated in the hippocampal development, which is a complex brain structure mainly 

involved in learning and memorizing, and in expansion of hippocampal progenitors (Ruat 

et al., 2012). Furthermore, in cerebellum, cilia-initiated Shh signals have been implicated 

in different steps of development and are key drivers of proliferation in granule neurons 

precursors (GNPs), thus dysregulation caused by mutations in associated genes may 

explain the development of  cerebellar dysgenesis and hypoplasia observed JBTS and 
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BBS (Ruat et al., 2012, Mitchison and Valente, 2017). Additional cilia-mediated pathway 

that found to be involved in cerebellar development is the canonical Wnt signaling 

pathway, where mutations in its enhancer Jouberin, encoded by the AHI1 gene, cause the 

typical cerebellar vermis hypodysplasia, known as ‘molar tooth sign’ (MTS), a hallmark 

of JBTS (Louie et al., 2010). 

In the outer layer of neural retina, there are highly specialized neurons involved in the 

transmission of visual signals called photoreceptors (PRs), which are covered by retinal 

pigmented epithelium (RPE) a layer of phagocytic cells. There are two types of PRs, rods 

and cones, each consisting of distinct outer segment (OS) and inner segment (IS). The OS 

is connected to the IS through a modified primary (9+0) cilium called PRs-connecting 

cilium that emerges from the basal body in the IS and extends to OS through the 

axoneme. PRs- connecting cilium through its transition zone plays critical role in 

controlling protein trafficking in and out of the OS, mainly the disk proteins rhodopsins, 

through IFT complex.  Considering the complexity of PRs connecting cilium, mutations 

in numerous PRs proteins have been associated with isolated or syndromic retinal 

dystrophies, the most common ocular phenotype of ciliopathies. For instance, mutations 

in ALMS1, involved in rhodopsins and other proteins transport across axoneme, have been 

associated with the most severe type of retinal dystrophies LCA and ALSM (Collin et al., 

2005), while mutations in CC2D2A, modulates the elongation of connecting cilium, was 

documented in cases of retinitis pigmentosa, JBTS and MKS (Bachmann-Gagescu et al., 

2011, Mitchison and Valente, 2017). Notwithstanding, mutations in 120 genes have been 

associated with retinal dystrophies, not all types are ciliopathies and not all retinal 

dystrophies-associated genes are implicated in cilia assembly or functioning (Nash et al., 

2015).  Consistently, some ciliary genes are linked with both isolated and syndromic 

(ciliopathies) forms RDs, as in C21ORF2 and IFT140 genes (Nash et al., 2015, Mitchison 

and Valente, 2017). 

In kidneys of adult, primary cilia serves as key sensors responding to changes in urine 

flow, composition and osmolality through regulating different intracellular signaling 

pathways including, Wnt, G-protein signaling, mTOR and even SHH pathway (Mitchison 

and Valente, 2017).  Ciliary dysfunction in the kidneys usually causes the development of 

cysts, which are fluid-filled sacs of epithelial cells caused by dilation of diverse parts of 

nephrons and collecting ducts. Cysts may develop at any age and can differ in size, 

numbers and locations. Cystic kidney diseases, including the two major groups of PKD 
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and NPHP, were the first group of disorders classified as primary ciliopathies, defining a 

broad spectrum of renal ciliopathies.   

In the liver, primary cilia extend from the epithelium of the biliary ducts, initiating early 

during development. Primary cilia are involved in the development and function of liver, 

serving mechano‐, chemo‐, and osmo-receptor sensing and transducing signals associated 

with biliary luminal flow (Mitchison and Valente, 2017). Thus, dysfunction of primary 

cilia has been associated with the ductal plate malformation (DPM) along with abnormal 

bile ducts that are often enclosed by massive matrix and cystic expansion, leading to 

congenital hepatic fibrosis, a phenotype that manifests in many primary ciliopathies 

including PKD, NPHP, BBS, JBTS, and MKS. The growth and functioning of pancreas is 

another critical role of primary cilia that is maintained through the regulation of different 

developmental pathways. Ciliary dysfunction can cause characteristic anomalies in 

pancreas, including fibrosis, dysplasia and ductal cysts, although less common, possibly 

attributed to the conserved function of exocrine and endocrine. In contrast, pancreatic 

defects in the form of β‐cells defect and diabetes mellitus are typical manifestations of 

ALMS (Mitchison and Valente, 2017). 

Impairment of the IFT components leading to dysregulation of Hedgehog pathways is 

mostly associated with at least 16 diverse skeletal genetic disorders called skeletal-

ciliopathies that are primarily characterized by long narrow chests, short ribs and limbs, 

polydactyly as well as dwarfism. Skeletal ciliopathies can be categorized into four main 

groups: cranioectodermal dysplasia (CED also known as Sensenbrenner syndrome), Ellis‐

van Creveld syndrome (EVC), short-rib thoracic dysplasia (SRTD) and oral-facial-digital 

syndrome (OFDS) (Ishikawa and Marshall, 2011, Zhang et al., 2018) (Table 1.1). The 

SRTD family contains different rare skeletal associated syndrome such as short-rib 

polydactyly syndrome (SRPS), Jeune asphyxiating thoracic dysplasia (JATD), and 

Mainzer-Saldino syndrome (MZSDS) (Oud et al., 2017). The severity of these anomalies 

ranges from the non-lethal phenotypes of EVC and CED, through the more severe JATD, 

to the perinatal lethal SRPS. Each skeletal ciliopathies can also occasionally present with 

anomalies of different organs and tissues including brain, heart, eyes, kidneys, liver, 

pancreas, intestine and genitalia (Ishikawa and Marshall, 2011, Oud et al., 2017) (Table 

1.1). For example, along with skeletal anomalies JATD and MZSDZ patients can also 

manifest with NPHP, blindness, liver fibrosis, as well as intellectual disability in JATD 

and pancreatic anomalies in MZSDS (Oud et al., 2017). Furthermore, congenital heart 
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abnormalities are frequently found in EVC patients (Table 1.1). There are up to 15 

different type of OFD syndrome, but the X-linked OFD type 1 (OFD1) is the most 

recognized type. OFD1 is featured by the typical defects of oral cavity (split-tongue, oral 

frenula and dental anomalies), facial (cleft lip/palate) and digits (syndactyly and 

polydactyly) in combination to PKD, and CNS anomalies (Table 1.1). All types of these 

ciliopathies, except OFD1, have an autosomal recessive mode of inheritance, where 

mutations in at least 23 separate loci have been associated with these disorders (Zhang et 

al., 2018). Along with clinical and genetic heterogeneity, skeletal ciliopathies is 

characterized by genetic overlapping, which is frequently recognized between CED, 

JATD, SRPS and MZSDS (Oud et al., 2017, Reiter and Leroux, 2017). 

Ciliopathy Clinical features 

Cranioectodermal dysplasia 
(CED) (Sensenbrenner 
syndrome) 

Cranioectodermal dysplasia; narrow thorax, dental 
abnormalities, hepatic and kidney  involvement 

Ellis van Creveld syndrome 
(EVC) 

Skeletal dysplasia; congenital heart disease; 
polydactyly; ectodermal dysplasia 

Short rib polydactyly (SRPS) Lethal skeletal dysplasia, polydactyly, several 
congenital anomalies 

short-rib thoracic dysplasia 
(SRTD)  

Skeletal dysplasia; thoracic malformations; 
polydactyly; kidney cysts; retinitis pigmentosa 

Oral-facial-digital syndrome 
type I (OFD1) 

Oral cavity, face, and digit abnormalities; CNS 
abnormalities; cystic kidney disease; X-linked with 
male lethality 

Table 1.1 Clinical characteristics of skeletal ciliopathies. CNS, central nervous system.  
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1.1.6 Association between motile and primary ciliopathies 

A considerable overlapping in clinical features of motile and primary ciliopathies has 

been documented in terms of laterality anomalies, infertility and hydrocephalus 

(Mitchison and Valente, 2017).  The associations are not clear, but detection of sensory 

receptors on motile cilia raises the query of whether sensory functions can be assigned to 

both motile and primary cilia. In fact, the impact of mechanosensory signals on nodal 

cilia along with the mixture of motile and primary cilia at the LR organiser make 

laterality anomalies part of the overlapping spectrum in both motile and primary 

ciliopathies. Clinical studies reported partial and complete situs inversus in cases of 

JBTS, NPHP and skeletal ciliopathies (Jeune syndrome) (Moalem et al., 2013). 

Excitingly, the spectrum of ciliopathy was even broaden following the reporting of PCD 

in a fetus with NPHP and situs inversus caused by a homozygous mutation in the NPHP2 

gene, which usually associated with infantile NPHP (Moalem et al., 2013). Furthermore, 

complex X-linked syndromic types of motile cilia disorders have been reported in 

combination with retinitis pigmentosa caused by mutation in RPGR gene and OFD type1 

syndrome, although the cause of motility dysfunction is not clear (Budny et al., 2006, 

Moalem et al., 2013).  
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1.1.7 Genetic complexity of ciliopathies 

While ciliopathies are mainly caused by defects in ciliary proteins, dysfunction of some 

non-ciliary proteins appears also to have impact on cilia assembly or function, hence 

causes ciliopathies (Reiter and Leroux, 2017). XPNPEP3, for instance, is an enzyme that 

located in the mitochondria of renal tubule cells. Mutations in the XPNPEP3 gene may 

modulate ciliary function by proteolytic cleavage of ciliary proteins and hence involved in 

NPHP-like pathogenesis (O'Toole et al., 2010).  One the other hand, many ciliary proteins 

have been observed at other cellular (extra-ciliary) sites, such as nucleus, Golgi apparatus, 

cytoplasm or even immune synapses of T-cells, and possess non-ciliary function, 

therefore attention is required when allocating biological defects to cilia (Hua and 

Ferland, 2018). Involvement in cell cycle regulation and controlling cytoskeletal and 

protein-trafficking are main extraciliary functions  (Reiter and Leroux, 2017).  

Several genes can be causative for a particular ciliopathy disorder; nonetheless, mutations 

in the same gene may lead to distinct ciliopathy disorders in different individuals. For 

instance, mutations in the MKS1 gene are traditionally believed to cause the severe type 

of MKS, however recent findings of MKS1 mutations in JBTS patients have make the 

borders defining these two syndromes less distinct. Similarly, mutations in CSPP1 gene 

can lead to isolated JBTS or JBTS associated with JATD, at which CSPP1-linked JBTS is 

often associated with mild phenotype and efforts to correlate clinical outcome with 

CSPP1 were ineffective (Hua and Ferland, 2018).  

Through functional studies, remarkable associations have been generated between the 

function and ciliary domain of mutated protein and the related clinical features. Several 

proteins were shown to localized in clusters and complexes involving in specific roles 

within cilium. For instance, the vast majority of skeletal dysplasia-associated ciliopathies 

and BBS linked with mutations in BBS genes are consequences of the dysfunction IFT 

components (Mitchison and Valente, 2017). In addition, mutations of most proteins 

located in the transition zone, which are key regulators of ciliary signaling cascades and 

protein trafficking, are associated with JBTS, MKS and NPHP (Mitchison and Valente, 

2017). 

Some ciliopathy-related genes seem to be very tissue- and organ-specific and 

consequently associated with distinct clinical phenotypes, while others are less selective 

but still reflect some organ preferential.  Some examples are ARL13B gene, which is 



17 
 

purely associated with neurological features and lead to classical JBTS, and IFT80 and 

DYNC2H1, at which mutations are associated merely with isolated short-rib polydactyly 

phenotype (Cantagrel et al., 2008). On the other hand, mutations in TMEM67 are 

consistently implicated with liver manifestations and congenital hepatic fibrosis, whereas 

mutations in C5orf42 were identified in patients with OFD and JBTS more frequently 

associated with polydactyly phenotype  (Brancati et al., 2009, Lopez et al., 2014). At the 

end of spectrum, there are pleiotropic ciliopathy-genes that are mutated in a broad range 

of ciliopathies, such as CEP290, which has been associated with a wide varieties of 

ciliopathy phenotypes related to defects in retina, kidney, liver and CNS, thus has been 

documented in SLSN, NPHP, JBTS, BBS and MKS (Coppieters et al., 2010).  

Most ciliopathies have autosomal recessive mode of inheritance, with exception of 

ADPKD and OFD1 that have dominant and X-linked dominant inheritance, respectively. 

However, the inheritance of BBS in some families has complicated by oligogenic pattern 

in order to modify the penetrance of the disease, at which recessive mutations in a BBS 

gene is combined to third heterozygous mutation in a different allele (Lindstrand et al., 

2016, Mitchison and Valente, 2017). Although true oligogenic inheritance has not been 

documented in other ciliopathy, trans modifier alleles, also termed genetic phenotypic 

modifiers, contributing to differential expressivity have been observed across the 

ciliopathy spectrum (Lindstrand et al., 2016, Mitchison and Valente, 2017). A positive 

correlation has been made between a specific heterozygous mutation in distinct alleles 

and the occurrence of retinal manifestations, such as (p.Ala229Thr) mutation in 

RPGRIP1L was implicated with retinitis pigmentosa in ciliopathies and the AHI1 

(p.Arg830Trp) mutation and the progress of retinal degeneration in patients with 

homozygous NPHP1 deletions (Khanna et al., 2009, Louie et al., 2010). However, as 

these are merely sporadic observations, further confirmation in larger, independent cohort 

is demanded to confirm the true influences of these modifiers.   
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1.2 Renal Ciliopathies   

Renal ciliopathies are human genetic kidney disorders that are characterized by PKD, 

NPHP and renal cystic dysplasia. Essentially, renal ciliopathies are often linked with 

extrarenal clinical manifestations associated with ciliary disruption in other organs mainly 

retina, CNS, liver and bones (Badano et al., 2006). Autosomal dominant and recessive 

polycystic kidney disease (ADPKD and ARPKD, respectively), nephronophthisis (NPHP) 

and the NPHP-related ciliopathies (NPHP-RC) are the most recognized inherited renal 

ciliopathies (Table 1.2). The formation of cystic kidneys is the most prevalent clinical 

feature manifesting in these disorders (Tobin and Beales, 2008). Cystic kidneys 

phenotype is also a common feature in syndromic ciliopathies, such as JBTS, BBS, MKS 

and the OFD1. Together, the overall estimated prevalence of renal ciliopathies is about 

1:2,000 live births (Kagan et al., 2017).   

Some of renal ciliopathies, such as PKD and NPHP, often lead to chronic kidney disease 

(CKD), which is a common condition characterized by irreversible kidney damage that 

constantly progress to end stage kidney disease (ESKD), hence renal replacement 

therapies (RRT), including haemodialysis, peritoneal dialysis (PD) or kidney transplant 

are demanded for survival.  

Cystic kidney lesions are frequently seen by the radiologist in people older than 50 years, 

where the majority of these lesions are benign and simple, even though it is also common 

to found complex and multifocal cystic kidney lesions. Cystic kidney diseases are 

generally assessed using Ultra Sonography (US), computed tomography (CT), and 

magnetic resonance imaging (MRI), with MRI been the best for the characteriztion of 

number and nature of cystic lessions. Cystic kidney diseases consist of a broad spectrum 

of conditions that are categorized based on their pathogenesis into inherited, acquired and 

developmental disease (Katabathina et al., 2010). While inherited conditions are 

associated with different genes implicated in the formation and functioning of the kidney 

primary cilia, non-inherited cystic diseases are developed due to obstructive, stromal-

epithelial interactions and neoplastic mechanisms (Katabathina et al., 2010). Inherited 

cystic kidney diseases include ADPKD or ARPKD, nephronophthisis, tuberous sclerosis 

(TS), von Hippel-Lindau disease, medullary cystic kidney disease (MCKD), BBS, OFD 

syndrome, and MKS syndrome. These diseases will be discussed in more details later on 

this chapter. Different options for treatment of some of the cystic kidney diseases have 
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been developed following detailed knowledge of the molecular mechanisms that underlie 

their pathophysiology.  

Acquired cystic kidney diseases are defined as the occurrence of multiple kidney cysts (≥ 

3 / kidney) in patients with ESKD, especially when commencing dialysis (Katabathina et 

al., 2010). It is estimated that at least 50% of patients received dialysis have acquired 

cystic kidneys, although the percentage differs in agreement with the duration of dialysis 

since it is found in almost 100% of patients following 10 years of dialysis (Katabathina et 

al., 2010). Bleeding cysts, cyst infection, ureteral stones and kidney malignancy are the 

main complications of acquired cystic kidney diseases.  

Developmental cystic kidney diseases include medullary sponge kidneys, multicystic 

dysplastic kidney as well as segmental / localized cystic kidney disease. Medullary 

sponge kidney, which has an estimated prevalence of 1:5000, is a congenital 

developmental abnormality categorized by ectasia and cystic dilatation of the kidney 

medullary collecting ducts (Katabathina et al., 2010). The precise pathogenesis 

mechanism of this condition is not fully clear and the majority of cases are sporadic, 

although familial cases have also been reported (Katabathina et al., 2010). Different 

conditions have been linked with medullary sponge kidney including inborn 

hemihypertrophy, Beckwith-Wiedemann syndrome, Caroli syndrome, Wilm’s tumor as 

well as horseshoe kidney (Katabathina et al., 2010).  Multicystic dysplastic kidney 

disease is caused by abnormal metanephric differentiation of the kidney during 

embryogenesis. The majority of multicystic dysplastic kidney disease cases are sporadic; 

nevertheless familial forms have been reported. Localized kidney cystic disease, which is 

also described as segmental and unilateral kidney cystic disease, is a rare, non-progressive 

condition that is categorized by multiple cysts in only one kidney. Localized kidney cystic 

disease is generally a benign condition that needs frequent follow-up with functional 

imaging evaluations.  
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Autosomal dominant polycystic kidney disease (ADPKD) 

ADPKD is the most common type of PKD affecting over 10 million individuals 

worldwide, with an estimated prevalence of 1:400 to 1:1,000 live births, representing 

significant public health burden (Harris and Torres, 2009, Bergmann et al., 2018). The 

onset of kidney function deterioration is widely variable among ADPKD patients ranging 

from as early as first decade to as late as eighth decade (Cornec-Le Gall et al., 2018). 

Furthermore, disease progression is found to be variable. Approximately 75% of ADPKD 

patients developed ESKD by age of 70 years, thus requiring RRT modalities (Neumann et 

al., 2013). Moreover, 7-15% of the prevalent ESKD population in developed countries 

has ADPKD (Akoh, 2015). The major leading causes of death in ADPKD receiving RRT 

are cardiac diseases and infections (Harris and Torres, 2009, Bergmann et al., 2018).  

Enlarged kidneys with multiple bilateral cysts are the typical characteristic features of 

ADPKD (Table 1.2). Since ADPKD is a multisystem disorder, other clinical symptoms, 

such as congenital hepatic fibrosis, formation of extrarenal cysts in liver, pancreas, 

seminal vesicles and arachnoid membrane as well as cardiovascular-associated anomalies 

including hypertension, hypertrophy or failure of left ventricular, heart valve defects and 

intracranial arterial aneurysms, are often featured (Dillman et al., 2017).  Occasionally, a 

small proportion of ADPKD are reported with severe polycystic liver disease (PLD) 

presenting with a massively enlarged cystic liver, thus necessitating surgical interventions 

(Cornec-Le Gall et al., 2018). Interestingly, the total number of children with early 

manifesting ADPKD might be similar to those with ARPKD, at which ADPKD not 

necessarily associate with severe prognosis (Bergmann et al., 2018, Cornec-Le Gall et al., 

2018). Thus, the overall estimated prevalence of PKD in children is approximately 1 in 

10,000 (Bergmann et al., 2018). 
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Diagnosis  MOI Gene(s) Extrarenal 
manifestations Renal ultrasound 

Median age 
of ESKD 
(years) 

ADPKD AD 

PKD1 
PKD2 
GANAB 
DNAJB11 

intracranial 
aneurysms, 
polycystic liver, 
cysts in pancreas 
and spleen, 
diverticular disease 
and hernias 

Polycystic 
kidneys 

58.1 years 
(PKD1) and 
79.9 years 
(PKD2)  

ARPKD AR PKHD1 
DZIP1L  

 Congenital 
hepatic 
fibrosis 

Polycystic 
kidneys Variable 

NPHP AR 

NPHP 
genes 
(NPHP1-
20), 
XPNPEP3, 
SLC41A1, 
TRAF3IP1, 
AH11 and 
CC2D2A 

Retinal 
degeneration, 
cerebellar vermis 
aplasia, liver 
fibrosis, situs 
inversus and 
skeletal anomalies 

normal‐sized or 
small/ shrunken, 
hyperechogenic 
kidneys, 
corticomedullary 
cysts and poor 
CMD 
(except infantile 
NPHP) 

Usually 
before 30 
years 

Table 1.2 Comparison between Autosomal dominant and recessive polycystic kidney 
disease (ADPKD and ARPKD, respectively) and nephronophthisis (NPHP). AD, 
autosomal dominant; AR, autosomal recessive; CMD, corticomedullary differentiation; 
ESKD, end stage kidney disease; MOI, mode of inheritance.
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ADPKD is genetically a heterogeneous disease mainly caused by mutations in PKD1 

gene (located in 16p13.3) or PKD2 gene (located in 4q22.1), leading to alterations of the 

transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively (Figure 

1.4) (Ma et al., 2017). PKD1 is characterized by a large transcript size consisting of 46 

exons and its position on a complex genomic region that is duplicated six times 

throughout chromosome 16, thus sharing high level of similarity with these pseudogenes 

(PKD1P1-PKD1P6), whereas PKD2 is a shorter gene composing of 15 exons (Harris and 

Torres, 2009). PKD1 mutations are responsible for up to 77% of ADPKD patients, 

whereas mutations in PKD2 account for up to 13% (Audrezet et al., 2012, Heyer et al., 

2016b). Both genes illustrate high level of allelic heterogeneity, where up to 1,273 and 

202 pathogenic variants were reported in PKD1 and PKD2 gene, respectively, in the 

Autosomal Dominant Polycystic Kidney Disease Mutation Database (PKDB) 

(URL:http://pkdb.pkdcure.org).  

Although mutations in PKD1 and PKD2 are the major causes of ADPKD, 5-10% of 

pedigrees remain as either genetically unsolved or harbour rare mutations in other genes 

causing ADPKD-like phenotype, such as α-glucosidase neutral AB (GANAB), DNAJB11 

or hepatocyte nuclear factor 1β (HNF1B) gene (Heyer et al., 2016a, Porath et al., 2016, 

Bergmann et al., 2018). Mutations of the gene GANAB, which is implicated in protein 

folding  and encoding for glucosidase Ila subunit, have been described in some pedigrees 

with mild ADPKD and autosomal dominant polycystic liver disease (ADPLD) (Porath et 

al., 2016). Furthermore, some dominant mutations in genes mostly linked to ADPLD (e.g. 

PRKCSH, SEC63, LRP5, ALG8 and SEC61B) or autosomal dominant tubulointerstitial 

kidney disease (ADTKD) (e.g. MUC1, UMOD, REN or SEC61A) can phenocopy 

ADPKD despite clinical differences (Zaucke et al., 2010, Bergmann et al., 2018, Cornec-

Le Gall et al., 2018). Though distinctions of extrarenal features may be made, hereditary 

angiopathy with nephropathy, aneurysms and muscle cramps (HANAC) syndrome caused 

by mutations in COL4A1 gene may lead to renal cysts that mistaken with ADPKD 

(Bergmann et al., 2018, Cornec-Le Gall et al., 2018). Occasionally, renal presentations in 

some syndromic forms of PKD, such as the X-linked OFD1 and hereditary cancer 

syndromes von Hippel–Lindau syndrome and Tuberous sclerosis complex (TSC) due to 

mutations in TSC1 and TSC2 genes were described indistinguishable from that of 

ADPKD, especially with the lack or mild extrarenal phenotypes (Prattichizzo et al., 2008, 

Cornec-Le Gall et al., 2018). Two possible explanations can be made for patients 
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remained genetically unsolved: (1) undetermined missense, deep intronic splicing, 

promoter, or even mosaic de novo variants in the known genes or (2) additional PKD-

associated genes encoding proteins interfere with biogenesis of PC1 and PC2. Therefore, 

genetic analysis through massive parallel sequencing of a panel of PKD associated genes 

can provide clearer picture of full aetiology and direct diagnosis of ADPKD-like cases.  

Several efforts were performed to correlate disease severity with patients’ genotype and 

stronger indications of an allelic influence were evidence in relation to ADPKD-PKD1. 

PKD1 mutations have been mostly associated with early onset and more severe forms of 

the disease, although perinatal deaths in some rare severely affected PKD2 patients were 

also described (Bergmann et al., 2008). Overall, the severity of ADPKD associated with 

PKD1 can be explained by larger kidneys caused from the development of more number 

of cysts at earlier ages (about 20 years earlier), lower glomerular filtration rate (GFR), 

earlier decline in kidney function and hence earlier onset of ESKD (Harris et al., 2006). 

The median age of developing ESKD is 58.1 years in PKD1 patients compared to 79.9 

years in PKD2 patients (Bergmann et al., 2018). Several studies made useful clinically 

prognostic value for type and position of PKD1 mutations, where protein-truncating 

mutations were associated with severe renal features and impact patient survival (Rossetti 

et al., 2007, Hwang et al., 2016). However, more recent large-population studies have 

reported no clear difference among mutation types in relation to either gene and uncertain 

impact of PKD1 mutation position have been proposed (Heyer et al., 2016a). Less allelic 

influences were correlated with the development of sever PLD and vascular anomalies, 

which have been attributed to mutations in both genes (Harris et al., 2006). Independent 

of mutation or allelic affect, ADPKD is more sever in males, although over 80% of 

patients are females, postulating the strong impact of environmental factors and hormonal 

variations in renal disease outcomes (Heyer et al., 2016a).  

Current studies of human and mice showed that genetic inactivation of both PKD1 or 

PKD2 alleles due to full inactivating mutations is embryonically lethal (Ong and Harris, 

2015, Bergmann et al., 2018). In contrast, patients with biallelic mutations with at least 

one incompletely penetrant (hypomorphic) allele reported to survive, illustrating the 

impact of hypomorphic alleles in reducing the expression and activities of polycystin 

proteins and proposing a threshold or dosage mechanism in cyst formation (Hopp et al., 

2012, Ong and Harris, 2015). The severity of biallelic hypomorphic PKD1 or PKD2 

mutations can range from typical to severe form of ADPKD. For instance, neonatal-onset 
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ADPKD was reported in a patient with incompletely penetrant homozygous PKD2 

mutation caused by uniparental disomy as well as two incompletely penetrant PKD1 

alleles were reported in sever ARPKD-like patients (Rossetti et al., 2009, Vujic et al., 

2010, Losekoot et al., 2012). Furthermore, the coinheritance of inactivating allele in trans 

with a second hypomorphic allele can also result in severe form of ADPKD detected in 

utero (Rossetti et al., 2009, Bergmann et al., 2018). On the other hand, monoallelic 

hypomorphic mutations alone may result in mild cystic kidney disease where patients 

develop fewer numbers of cysts presenting later in adulthood and their kidney functions 

are unlikely to deteriorated (Cornec-Le Gall et al., 2018).  

Although ADPKD is mostly a late-onset disease, rare severe cases manifesting in utero 

with massive cystic kidneys and oligohydramnios leading to fetal death were also 

reported (Rossetti et al., 2009, Vujic et al., 2010). In fact, up to 3% of children with 

mutations in PKD genes show very-early onset and severe unusual fast progressing form 

of ADPKD (Gimpel et al., 2019). This make the total incidence of symptomatic ADPKD 

in children greater than that expected for other serious paediatric kidney diseases, 

including ARPKD, nephrotic syndrome and haemolytic uraemic syndrome (Gimpel et al., 

2019). Different types of genetic alterations have been reported in severely affected 

ADPKD children. Rarely, patients with digenic disease involving bilineal inheritance of 

both PKD1 and PKD2 mutations had been observed with more severe form than that of 

single gene-linked phenotype (Pei et al., 2001). In addition, coinheritance of pathogenic 

allele in other cystogenes, such as HNF1B along with a pathogenic PKD1 or PKD2 

mutation has been connected with very early-onset ADPKD cases (Bergmann et al., 

2011). Deletions of the geomic region of PKD1 and the neighbouring tuberous seclerosis 

complex gene TSC2 was linked with more severe childhood ADPKD often leading to 

kidney failure a combined with clinical symptoms of tuberous seclerosis, also known as a 

contiguous gene syndrome (CGS) (Sampson et al., 1997, Rossetti et al., 2009). Of note, 

milder typical ADPKD renal phenotypes with TSC were also reported in patients with 

mosaic deletions CGS (Sampson et al., 1997, Cornec-Le Gall et al., 2018). 

Clinically, ADPKD is most frequently determined thorough abdominal imaging-based 

diagnosis using the most available inexpensive radiological method ultrasonography (US) 

or the more sensitive magnetic resonance imaging (MRI). There are age-dependent cyst 

number criteria that are widely used in clinics for the diagnosis of suspected or in-risk 

individuals with a positive family history (Gimpel et al., 2019). Although, ADPKD is 
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typically transmitted as dominant trait throughout generations, approximately 10-25% of 

cases occur sporadic without a recognisable family history, reflecting diagnostic 

challenge (Iliuta et al., 2017). Lack of parental medical records, sporadic de novo 

mutations, germline or somatic mosaicism with lower dosage in leukocyte DNA or mild 

disease due to hypomorphic PKD1 or PKD2 alleles are the possible explanations for 

absence of familial history (Iliuta et al., 2017). Moreover, significant clinical variability in 

disease severity among twins, siblings and patients generating inter- and intra-familial 

variability proposed a critical role for other genetic, epigenetic or even environmental 

factors that are still unclear (Fain et al., 2005, Bergmann et al., 2018). 

The PC1 protein is a large (4303 amino acid (aa)) integral membrane protein with a 

receptor-like structure comprising 11 transmembrane domains and an extracellular region 

containing different domains that are critical for cell-to-cell and cell-to-matrix 

interactions (Figure 1.4) (Ma et al., 2017). In contrast, PC2 (968 aa) is a large 

conductance nonselective cation channel that serve calcium transport (Figure 1.4) (Ma et 

al., 2017). Numerous evidences propose that PC1 and PC2 are localized at the plasma 

membrane and the primary cilium mediating fluid flow sensation and may function in the 

same mechanotransduction pathways (Ong and Harris, 2015). The present model 

preferred by researchers is that PC1 acts as a mechanosensor (reacts to alterations in 

mechanical stimuli) or a chemosensor (reacts to chemical signals), and that PC1 

modulates the activity of the PC2 calcium channel based on signaling responses (Ma et 

al., 2017). Both PC1 and PC2 interact with each other via their coiled-coil motifs in their 

cytoplasmic region constructing a heterodimeric polycystin complex (Ong and Harris, 

2015). Different studies showed that the development of clinical phenotypes associated 

with ADPKD, including renal and hepatic cysts as well as the development of 

cardiovascular defects is correlated with the reduced expression (haploinsufficiency) or 

loss of PC proteins function in the related cells as evidenced in haploinsufficient and 

hypomorphic models of ADPKD (Ong and Harris, 2015). Along with PCs dosage effect, 

it is commonly believed that a second hit hypothesis, where further acquired somatic 

mutation is necessary for the initiation of cystogenesis, is critical in the pathogenesis of 

ADPKD (Harris and Torres, 2009).  

The process of cyst growth in ADPKD is gradual causing massive cystic kidneys that are 

characterized by fluid-filled cysts distributing all over the renal parenchyma (Bastos and 

Onuchic, 2011). Cysts differ in their sizes and cyst fluid found to be clear, cloudy or even 
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dark due to bleeding, watery or thick. Although cysts in ADPKD may developed from all 

segments, those emerged from the collecting ducts are larger in sizes and in enormous 

numbers than those derived from other origins (Bastos and Onuchic, 2011). The majority 

of cysts in ADPKD are lined by a particular layer of poorly distinguished epithelial cells, 

despite the minority are lined by a remarkable hyperplastic epithelium (Bastos and 

Onuchic, 2011). In progressive ADPKD kidneys, interstitial fibrosis may result in cyst-

surrounding fibrosis.  

Cellular and molecular studies of DNA samples isolated from the epithelial cells of 

affected kidneys showed that even though ADPKD has dominant mode of inheritance, the 

mechanism of cystogenesis is recessive. The process of cyst formation according to the 

two-hit model involves the germline mutation in PKD genes, which initiates the first hit, 

along with a further somatic mutation in the originally normal allele, which creates the 

second hit. The mechanism of two-hit model, which involves cyst formation in kidneys 

and liver, was supported by a wide range of genetically manipulated orthologous mouse 

models of this disease (Bastos and Onuchic, 2011). However, the initially anticipated 

two-hit model has been further extended following the observation that the biological 

effect of PKD1 genes inactivation on cyst formation depends on the inactivation time, 

where early gene inactivation causes rapid and diffuse formation of the renal cysts 

(Piontek et al., 2007). Such observations highlighted the biological consequences of 

PKD1 inactivation that are regulated by developmental switch defining the completion of 

the kidney maturation process (Piontek et al., 2007). Several studies showed that the 

PKD genes inactivation induced in adult life would not be sufficient to establish the 

necessary cell proliferation for rapid cyst growth (Bastos and Onuchic, 2011). Therefore, 

it has been hypothesized that a third-hit model is demanded along with the inactivation of 

both PKD alleles for significant cyst formation in the mature kidneys (Takakura et al., 

2009). Kidney injuries, such as ischemic or toxic damages, which elicit a repair response, 

may represent a third-hit stimulating a rapid cellular proliferation that may be a 

precondition for the occurrence of rapid cyst growth following somatic mutation or in the 

presence of reduced polycystin expression (Takakura et al., 2009). Thus, a third-hit 

stimuli  may explain the late occurrence of disease long after the original genetic defect 

(Takakura et al., 2009). Recently, Torres et al. (2019) proposed that ischemic or toxic 

renal injuries are rare events in human, and hypothesized that cystogenesis in PKD may 

be enhanced by the frequently happening renal crystal deposition.  
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In ADPKD, high levels of proliferation and apoptosis, abnormalities in cell differentiation 

and planar cell polarity, alterations in salt and fluid transport from reabsorptive to a 

secretory behaviour and extracellular matrix alterations are the main characteristic 

phenotypes of the cyst-surrounding epithelial cells (Bastos and Onuchic, 2011). These 

abnormal cellular features are accompanied by reduction in PC1 and PC2 expression 

(dosage) below critical ranges, highlighting the crucial role of polycystins in regulating 

cell proliferations and in preserving a characteristic phenotype of renal tubular 

epithelium. The molecular basis behind these cellular alterations is not fully clear; 

however some primary clues have been emerged from the detection of altered signaling 

pathways in the disease. The mechanism of polycystins dosage seems to cause 

cystogenesis by disturbing cell homeostasis associated signaling pathways, including  

Ca2+, cAMP, mammalian target for rapamycin (mTOR) and Wnt signalling (Bastos and 

Onuchic, 2011). At cell adherens junctions, PC1 is found to complex with E-cadherin and 

α-, β- and γ-catenins, however, in ADPKD the PC1/E-cadherin complex is interrupted 

since the reduction in Ca2+ maintain PC1 and E-cadherin in the cytoplasm, reflecting the 

role of PC1 in controlling the development of  proper adherens junctions (Bastos and 

Onuchic, 2011). Furthermore, the detected endothelial dysfunction and the decreased in 

nitric oxide formation in ADPKD patients support the expression of PC1 and PC2 in 

endothelium and vascular muscle cells and play a complex function in the vascular 

integrity conservation (Qian et al., 2007).  

The PC1-PC2 complex functions as a sensor in the primary cilium, facilitating signal 

transduction by Ca2+ signaling through PC2, which regulates critical cellular processes 

including cell proliferation, differentiation, apoptosis, and gene expression (Bastos and 

Onuchic, 2011). PC2 is also critical component that contributes in intracellular 

Ca2+ homeostasis in the ER. Therefore, in an absence, reduction or overexpression of 

PC2, as in ADPKD cyst cells, the release of Ca2+ from intracellular and endoplasmic 

reticulum stores is decreased and the ciliary fluid-flow is bent leading to defective 

Ca2+ signaling, which apparently is responsible for intracellular accumulation of cAMP 

(Bastos and Onuchic, 2011). In normal kidney epithelial cells, cAMP inhibits 

proliferation, while in ADPKD cells abnormal cell proliferation occurs in response to 

cAMP accumulation, which is followed by the enrolment and phosphorylation of 

different varieties of proteins and activation of mitogen-activated protein kinase pathway 
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stimulating proliferation and Cl- and fluid secretion contributed on cyst growth (Bastos 

and Onuchic, 2011).  

Cell cycle dysregulation is another important feature of PKD and different studies showed 

a direct association between polycystins and regulation of cell cycle. For instance, PC1 

were found to have a significant inhibitory impact on cell proliferation through activation 

of JAK2 and mediating G0/G1 arrest (Bastos and Onuchic, 2011). In ADPKD, the 

observed changed in the activity of AP-1 transcription factor, which is activated by PC1, 

may contribute to the detected alterations in cell differentiation, proliferation and 

apoptosis (Parnell et al., 2002). Additionally, the interaction of PC1 with the 

tuberin, TSC2 gene product, at the plasma membrane level, stops its phosphorylation thus 

stabilizing the tuberin-hamartin complex, which in turn inhibits the mammalian target for 

rapamycin (mTOR) (Bastos and Onuchic, 2011). However, in ADPKD, the disturbance 

of this mechanism activates mTOR and stimulates cell proliferation (Bastos and Onuchic, 

2011). On the other hand, PC2 can reduce cell proliferation by stimulating pancreatic 

extracellular signal-regulated protein kinase-dependent phosphorylation of the translation 

initiation factor 2 alpha (eIF2α) in the ER (Liang et al., 2008).  

Anomalies of planner cell polarity are an important factor that contributes to ADPKD 

cyst expansion by disturbing the oriented epithelial cell division along the longitudinal 

axis, which is critical for tubule formation and elongation (Bastos and Onuchic, 2011). 

Studies of animal models showed that the disoriented cell division is not the main event 

eliciting or initiate cystogenesis (Bastos and Onuchic, 2011). In fact, it was found that 

together canonical and non-canonical Wnt signaling pathways are associated with cyst 

growth in ADPKD, as the disruption of PKD1 can activate the Wnt/β-catenin signaling 

pathway (Bastos and Onuchic, 2011). 
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Figure 1.4 Schematic representations of the predicted molecular structure of the ADPKD 
proteins polycystin-1 (PC1) and polycystin-2 (PC2) and the ARPKD protein fibrocystin 
(FC). PC1 is an 11-segment integral membrane protein that consists of a long N-terminal 
(NH2) extracellular region, which composed of 16 copies of PKD domain and other 
critical domains, and a short intracellular C-terminus (COOH). PC2 is a large non-
selective cation channel with high permeability for calcium. PC2 consists of six 
transmembrane domains and both terminal ends are intracellular or inside cell organelles. 
Together, PC1 and PC2 facilitate calcium entry into cells. FC consists of a large N- 
terminal extracellular domain containing various glycosylation sites, a single 
transmembrane segment and a short C-terminus with four potential protein kinase A 
phosphorylation sites. Protein motifs and domains found in the schematic structure are 
described below. PC1 contains the following motifs and binding domains: G-protein: G 
protein binding; GPS: G protein–coupled receptor proteolysis site; LDL: low-density 
lipoprotein–like region; LRR: leucine-rich repeat; PKD domains: polycystic kidney 
disease domain repeat; PLAT: PC1-lipoxygenase, alpha (α) toxin; REJ: receptor for egg 
jelly domain; WSC: cell wall integrity and stress-response component. PC2 contains the 
following domains: EF: calcium-binding helix-loop-helix motif comprising of two 
helixes, E and F. ER: ER retention signal. FC contains the following domains: DKFZ: 
DKFZ Homology;TMEM2: Transmembrane protein-2 homology.  
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1.2.1 Autosomal recessive polycystic kidney disease (ARPKD) 

ARPKD is one of the most prevalent inherited PKD in infants and children with an 

estimated incidence of 1:20,000 to 1:40,000 live births, resultant in a carrier frequency of 

approximately 1:70 in non-isolated population (Zerres et al., 1998, Bergmann et al., 

2018). Higher incidence of ARPKD is predicted in isolated or inbred populations with 

more frequencies of consanguineous marriages, such as the described incidence of 

1:8,000 in Finland (Kaariainen, 1987).  

Classically, ARPKD is characterized by bilateral enlarged kidneys with multiple cysts 

mostly developed in distal tubules and collecting ducts, consequently leading to 

impairment of kidney function (Table 1.2). Congenital hepatic fibrosis due to ductal plate 

malformation is another typical feature of ARPKD that lead to serious complications 

including portal hypertension, hypersplenism and oesophageal varices (Bergmann et al., 

2018) (Table 1.2). ARPKD often manifest much earlier than ADPKD, either prenatally 

displaying Potter’s features or postnatally afterbirth, during childhood or at early 

adolescence. However, some rare cases of elderly ARPKD patients occurring with mild 

features were reported (Bergmann et al., 2018). Approximately 50% of ARPKD patients 

manifest with their renal complications as neonates and are already born with two 

massively enlarged kidneys (Capisonda et al., 2003). After birth, respiratory deficiency 

caused by pulmonary hypoplasia is the major cause of death in approximately 30-50% of 

infants, while kidney failure is rarely causing neonatal death (Bergmann et al., 2005). An 

optimistic long-term prognosis is predicted for those surviving the neonatal period, where 

82% suspected to survive for 10 years, and rarely survived beyond the age of 60 years 

(Fonck et al., 2001, Bergmann et al., 2018). Nevertheless, ARPKD is still recognized as a 

severe leading cause of serious renal and liver-associated morbidity in children, which 

sometimes requires a kidney-, liver- or combined kidney and liver transplantation 

(Bergmann et al., 2018).  

ARPKD disease is caused by mutations in polycystic kidney and hepatic disease 1 

(PKHD1) gene (located 6p12.3-p12.2), which is one of the largest human genes 

encompassing at least 86 exons. The longest open reading frame transcript 

(NM_138694.4) consists of 67 exons and predicted to encode a 4074 aa receptor-like 

protein called fibrocystin (FC), also known as polyductin (Harris, 2009). 
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Illustrating a high level of PKHD1 allelic heterogeneity, at least 700 distinct mutations 

were described throughout the gene in ARPKD/PKHD1 database 

(http://www.humgen.rwth-aachen.de/). Despite allelic complexity, different efforts to 

examine genotype-phenotype correlation of this disease were conducted, where the type 

of mutations rather than its location on the PKHD1 determine disease outcome 

(Bergmann et al., 2003, Bergmann et al., 2004a). Two truncating mutations are described 

to be lethal, although few exceptional cases were reported, and the influence of some 

missense mutations is found to be similar to truncating mutations. Major inter- and intra-

familial clinical differences were documented among ARPKD patients, suggesting the 

impact of additional genetic and environmental factors on disease severity (Bergmann et 

al., 2005a).  

Despite been a typical infantile-onset disease, ARPKD may symptom later in life with 

ADPKD-like mild renal features in addition to congenital hepatic fibrosis instead of PLD 

that should orient the diagnosis (Heyer et al., 2016a). Notably, in about 15% of ARPKD 

patients who carry PKHD1 monoallelic mutations hepatorenal findings were reported 

including enlarged kidney echogenicity and the development of many tiny liver cysts 

(phenocoping ADPLD), suggesting the impact of other  genetic and/or environmental 

factors must be demanded to manifest monoalleic cystic phenotype (Gunay-Aygun et al., 

2011).  

In some ARPKD patients with moderate renal phenotype and were not linked to PKHD1, 

mutations in the DZIP1L gene (located chr3q22.3) were detected (Lu et al., 2017). 

DZIP1L encode for DAZ-interacting zinc finger protein 1-like protein (DZIP1L), which 

present in the centrioles and the distal ends of basal bodies (Lu et al., 2017). Since 

DZIP1L interacts with septin2, a transition zone protein that involved in maintenance of 

periciliary diffusion barrier, impairment of diffusion barrier caused by DZIP1L mutation 

compromised the localization of PC1 and PC2 proteins (Lu et al., 2017). A correlation of 

type of DZIP1L mutations in disease severity is not yet defined, which will be enhanced 

by the evaluation of more DZIP1L-associated families.   

Remarkably, ADPKD can mimic the phenotype of ARPKD, where mutations in PKD1 

and PKD2 can show recessive mode of inheritance (Bergmann et al., 2018). To be 

precise, the inheritance of either one inactivating in combination to one hypomorphic or 

two hypomorphic PKD1 and PKD2 were detected in severely affected ADPKD patient 
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with typical ARPKD-like clinical presentation and without obvious family history of 

PKD. The genetic spectrum of ARPKD is further expanded following linking 

phosphomannomutase 2 (PMM2) gene to a combined hyperinsulinemic hypoglycemia 

(HI) and polycystic kidney disease (HIPKD) disorder (Cabezas et al., 2017). Recently, a 

promoter mutations in PMM2 have been detected in patients with ARPKD-like and HI 

clinical features, although this gene was previously associated with congenital disorder of 

glycosylation type 1a (CDG1A), a severe multi-organ disorder characterized by various 

neurological anomalies, highlighting PMM2 pleiotropy (Cabezas et al., 2017). Of note, 

PMM2 enzyme is critical in N-glycosylation and impaired gycosylation has been linked 

with PKD (Cabezas et al., 2017).  

FC is an integral membrane protein consisting of single transmembrane domain, a broad 

extracellular N-terminal domain and a short C-terminal cytoplasmic tail (Figure 1.4). 

Higher levels of expression of FC are found in adults’ kidneys, liver and pancreas 

(Bergmann et al., 2018). Generally, FC is located to apical plasma membrane and the 

primary cilia (mainly basal bodies) in renal tubular and biliary epithelial cells (Zhang et 

al., 2004; Wang et al., 2007). Through a special motif in its C-terminal tail, FC is targeted 

to the cilia membrane. FC is believed to experience Notch-like processing, where it is 

proteolytically cleaved to release cytoplasmic tail, which travels to the nucleus at which it 

assumed to modulates the expression of downstream genes involved in cyst formation 

(Kaimori et al., 2007). FC is found to interact with PC2 in the PC1-PC2 complex, thus FC 

is hypothesized to control renal tubular cysts formation and progression by modifying 

PC2 expression, highlighting a common cystogenesis mechanism modulating the two 

diseases (Zhang et al., 2004, Kim et al., 2008). Recently, FC was also localized to mitotic 

spindles and mitotic impairment caused by loss of function of FC is proposed to underlie 

cyst formation in ARPKD (Zhang et al., 2010). Despite these observations, complete 

understanding of detailed-cystogenesis mechanisms in ARPKD is still lack. 
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1.2.2 Nephronophthisis (NPHP) and related disorders 

Nephronophthisis (NPHP) is an autosomal recessive inherited kidney disease that 

constitutes the most prevalent monogenic causes of ESKD in the first 3 decades of life, 

responsible for 2.4-15% of paediatric patients with ESKD (Hildebrandt et al., 2009, Luo 

and Tao, 2018). In Netherland, an estimated annual incidence of 1 to 5 children with 

NPHP developed ESKD (Stokman et al., 2018). The incidence of NPHP differ worldwide 

ranging between 1:50,000 live-births in Finland and Canada to 1:1,000,000 in the USA 

(Luo and Tao, 2018, Srivastava and Sayer, 2014). 

Literally, the term NPHP is derived from the Greek and means ‘disappearance of the 

kidney’, which related to smaller kidney size with advancing kidney disease. The 

declined ability of kidneys to concentrate urine, chronic tubulointerstitial nephropathy 

and CKD are the major characteristic features of NPHP. The typical renal histological 

changes present with NPHP are similar to that of medullary cystic kidney disease 

(MCKD), including disruption of tubular basement membrane, interstitial fibrosis, tubular 

atrophy and dilated tubules with or without cyst (Hurd and Hildebrandt, 2011). Initially 

ultrasonography of NPHP patients does not show any specific changes, however, later 

with disease progression individuals are characterised by normal or reduced-size 

hyperechogenic kidneys with small corticomedullary cysts (1.5 cm) and poor CMD (Hurd 

and Hildebrandt, 2011, Srivastava and Sayer, 2014).   

Polyuria, polydispsia and secondary enuresis caused by impairment of distal tubular 

function are the typical clinical features of NPHP. Urine analysis of NPHP patients 

generally does not illustrate any characteristic anomalies, thus proteinuria and haematuria 

often found at later stages, where proteinuria may advance into glomerulorsclerosis (Luo 

and Tao, 2018). Arterial hypertension, severe anaemia and growth retardation are usually 

present later after kidney failure (Wolf, 2015).  Such mild and non-specific symptoms 

may delay the diagnosis of the disease by an average of 3.5 years (Soliman et al., 2012). 

NPHP is generally associated with progressive deterioration of kidney function leading to 

ESKD before the age 30 years. Thus, on the basis of the median age of ESKD 

development, NPHP is clinically distinguished into three subgroups: infantile, juvenile 

and adolescent (Table 1.3) (Hildebrandt et al., 2009). The classical and most common 

form, juvenile NPHP, which was initially introduced in 1951 by Fanconi et al, is 

characterized by ESKD at a mean age of 13 years and symptoms manifesting within first 
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decade of life (Hildebrandt et al., 2009). Infantile NPHP is a very rare type with sever 

phenotypes at which the ESKD usually developed during first years of age, while the 

third type adolescent NPHP has a median age of ESKD of 19 years (Wolf, 2015). Beside 

this historical classification, different reports of late-onset NPHP have been described, 

where patients developed ESKD beyond third decade of life (23 and 56 years), extending 

the age of ESKD from birth to 60 years and highlighting the important of considering 

NPHP diagnosis in adults with ESKD with unclear causes(Georges et al., 2000, Wang et 

al., 2019).  

  Infantile NPHP Juvenile NPHP Adolescent 
NPHP 

Median age 
of 
ESKD (years) 

1 year 13 years 19 years 

Clinical 
features 

 Antenatal 
oligohydramnios 
sequence and severe 
hypertension 

Polyuria, polydipsia, 
secondary enuresis, CKD, 
severe anemia, growth 
retardation, proteinuria 
(later stages), normal 
blood pressure 

Similar to 
juvenile NPHP 

Radiological 
features 

Large kidneys with 
large cortical 
microcysts 

Normal‐sized or 
shrunken, hyperechogenic 
kidneys with 
corticomedullary cysts 
and poor CMD 

Similar to 
juvenile NPHP 

Extrarenal 
associations 

 Liver fibrosis, cardiac 
anomalies (situs 
inversus and ventricular 
septal defects), frequent 
respiratory tract 
infections 

Retinitis pigmentosa, 
cerebellar vermis 
aplasia/hypoplasia, liver 
fibrosis and skeletal 
anomalies 

Similar to 
juvenile NPHP 

Genes Typically: INVS and 
NPHP3.                  
NEK8, TTC21B, 
ZNF423, CEP83 

All genes except INVS NPHP3, NPHP4, 
NEK8 

Table 1.3 Clinical, histological and genetic characteristics of nephronophthisis (NPHP) 
subtypes. CKD, chronic kidney disease; CMD, corticomedullary differentiation; ESKD, 
end stage kidney disease.  
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NPHP may present as an isolated disorder limiting the phenotypes to the kidneys or as a 

part of multisystem disease associated with extrarenal organ involvements, such as retina, 

CNS, liver and bones, presenting in up to 20% of NPHP cases (Luo and Tao, 2018). 

Therefore, NPHP is a main clinical feature found in several well described complex 

syndromes, so called NPHP-related ciliopathies (NPHP-RC), such as SLSN, JBTS, MKS 

and Jeune syndrome. The syndromic association of NPHP with retinopathy is very 

common presenting in approximately 10-15% of cases and showing broad pathological 

spectrum (Table 1.4) (Srivastava and Sayer, 2014). Moreover, NPHP can be accompanied 

by neurological anomalies, such as cerebellar vermis hypoplasia, encephalocele and 

hypopituitarism, by hepatic fibrosis, as well various skeletal defects, such as short ribs , 

cone-shaped epiphysis and postaxial polydactyly (Table 1.4) (Braun and Hildebrandt, 

2017). In rare cases, additional manifestations including laterality defects, congenital 

heart disease, ulcerative colitis and potential lung involvement are associated with NPHP 

(Table 1.4) (Wolf, 2015, Braun and Hildebrandt, 2017). The severity and overlapping of 

clinical presentations with other ciliopathies may complicate an earlier diagnosis of 

NPHP-RC, though clinical diagnosis may be confimed by genetic testing.  

NPHP illustrates excessive phenotypic and genetic heterogeneity with at least 25 different 

recessive genes have been linked with the disease (Luo and Tao, 2018). These are 

NPHP1, NPHP2/INVS, NPHP3, NPHP4, NPHP5/IQCB1, NPHP6/CEP290, 

NPHP7/GLIS2, NPHP8/RPGRIP1L/MKS5, NPHP9/NEK8, NPHP10/SDCCAG8/SLSN7, 

NPHP11/TMEM67/MKS3, NPHP12/TTC21B/JBTS11, NPHP13/WDR19, NPHP14 

/ZNF423, NPHP15/CEP164, NPHP16/ANKS6, NPHP17/IFT172, NPHP18/CEP83, 

NPHP19/DCDC2, NPHP20/MAPKBP1, NPHP1L/XPNPEP3, NPHP2L/SLC41A1, 

TRAF3IP1, AH11/JBTS3 and CC2D2A/MKS6 (Luo and Tao, 2018). Mutations in NPHP 

genes can explain only up to one-third of cases and around 60% of cases remain 

genetically unsolved, proposing further genes have yet to be revealed (Konig et al., 2017, 

Luo and Tao, 2018). The most common genetic cause of NPHP is mutations in NPHP1 

gene explaining up 20% of cases, while mutations in each of the remaining genes 

possibly contribute up to 1% of cases (Srivastava and Sayer, 2014, Luo and Tao, 2018). A 

large homozygous deletion of the whole NPHP1 gene (290 kb, chromosome 2q13) was 

the first genetically identified cause of NPHP and the most frequent NPHP1 defect 

causally associated with isolated-NPHP (Srivastava et al., 2017). Recent study showed 

that homozygous deletion of the same genomic region was not only associated with 
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typical kidney presentations, but also was able to present extrarenal manifestations, such 

as retinal degeneration associated with SLS and neurologic phenotype associated with 

JBTS (Konig et al., 2017). Remarkably, mutations and copy number variants (CNVs) of 

NPHP1 have also been reported with BBS, suggesting rare principal cause of this 

disorder (Lindstrand et al., 2016). 

The genotype-phenotype correlation in NPHP-RC appears to be affected by gene and 

variants heterogeneity as well as modifier genes (Chaki et al., 2011). Mutations in a 

particular gene may result in an enormous spectrum of clinical phenotypes ranging from 

isolated NPHP, NPHP-RC to a potentially severe neonatal disease associated with MKS 

(Srivastava et al., 2017).  For instance, mutations in CEP290 can lead to NPHP, SLNS, 

JBS or MKS and mutations in AHI1 can lead to NPHP or JBTS (Luo and Tao, 2018). 

Genotype-phenotype correlation studies have indicated some association between the 

type of mutations in some genes and the severity of the disease, where truncating 

mutations in CC2D2A and TMEM67 have been implicated with potentially severe clinical 

presentations compared to missense mutations (Mougou-Zerelli et al., 2009, Srivastava et 

al., 2017).  Despite that, difference in phenotypic heterogeneity in NPHP may 

inefficiently be clarified by single locus allelism and only digenic inheritance and 

triallism may provide some clarifications (Luo and Tao, 2018).  For example, NPHP 

accompanied by severe neurological symptoms by the inheritance of a 

heterozygous mutation in NPHP6 or AHI1 (p.Arg830Trp) in combination to biallelic 

NPHP1 mutations (Tory et al., 2007). Additionally, oligogenic inheritance have been 

documented in some patients with mutations in several NPHP genes, including NPHP1, 

NPHP5, NPHP6, NPHP8, NPHP9, NPHP11 and TTC21B, suggesting a possibility of an 

epistatic interaction of NPHP mutations and modifier impacts of other causative 

variants (Penchev et al., 2017, Luo and Tao, 2018).  

Almost all NPHP genes encode nephrocystins that localize to transition zone (NPHP1, 

NPHP4, CEP290, RPGRIP1L, TMEM67 and CC2D2A), inversin compartment (INVS, 

NEK8, ANKS6) components of IFT complexes (TTC21B, WDR19, IFT172), or other 

locations within primary cilia (Srivastava et al., 2017, Luo and Tao, 2018). However, 

NPHP-like genes such as XPNPEP3 and SLC41A1 with protein products located to 

mitochondria and GLIS2 gene with protein product located to nucleus have also been 

implicated with NPHP, highlighting that NPHP-associated genes might not entirely be 

ciliary (O'Toole et al., 2010). Recently, on the basis of their location and functions, 



37 
 

protein interaction studies grouped the NPHP proteins into four different nephrocystin 

modules: the NPHP1-4-8 (NPHP1, NPHP4, and RPGRIP1L) module, NPHP2-3-9-

ANKS6 (INVS, NPHP3, NEK8 and ANKS6) module, NPHP5-6 (IQCB1 and CEP290) 

module and the MKS module (MKS1, CC2D2A, and TCTN2). These modules are 

associated with different ciliary signaling pathways including Hedgehog, Wnt, cAMP 

signaling pathways as well as mTOR pathway. Additionally, some NPHP proteins (such 

as NEK8, CEP164, ZNF423, SDCCAG8 and CEP290) have been associated with the 

nuclear DNA damage response (DDR) signaling pathways that is believed to be critical in 

the origination and development of NPHP disease (Slaats and Giles, 2015). 
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Extraarenal 
manifestations  

Syndrome 

Retinitis pigmentosa 
(RP) 

Senior-Løken syndrome (SLSN) 
Arima syndrome (cerebro-oculo-hepato-renal syndrome) 
Alström (RP, obesity, DM type 2, hearing impairment) 
RHYNS (RP, hypopituitarism, skeletal dysplasia) 

Oculomotor apraxia Cogan syndrome 
Nystagmus Joubert syndrome/Joubert syndrome related disorders 
Coloboma  Joubert syndrome/Joubert syndrome related disorders 
Encephalocele  Meckel-Gruber syndrome (occipital encephalocele, 

NPHP) 
Vermis aplasia  Joubert syndrome/Joubert syndrome related disorders 

COACH 
Hypopituitarism  RHYNS (RP, hypopituitarism, NPHP, skeletal dysplasia) 
Liver fibrosis  Boichis syndrome 

Meckel-Gruber syndrome (occipital encephaolocele, 
NPHP) 
Arima syndrome (cerebro-oculo-hepato-renal syndrome) 
Joubert syndrome/Joubert syndrome related disorders 

Postaxial polydactyly  Joubert syndrome/Joubert syndrome related disorders 
Bardet-Biedl syndrome (NPHP, RP, obesity, deafness) 
Ellis van Creveld 

Skeletal abnormalities  Jeune syndrome/asphyxiating thoracic dystrophy 
Mainzer-Saldino syndrome 
Sensenbrenner syndrome/cranioectodermal dysplasia 
Ellis van Creveld 

Situs inversus, cardiac 
anomalies, 
bronchiectasis   

infantile NPHP 

Table 1.4 Extrarenal characteristics of nephronophthisis (NPHP) and the associated 
syndromes. RP, retinitis pigmentosa. 
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1.2.3 Syndromic ciliopathies 

JBTS is an autosomal recessive disease with an estimated prevalence of 1:80,000 and 

1:100,000 (Parisi, 2019). It is characterized by neurological anomalies of cerebellar 

vermis and brainstem defects on cranial views by MRI known as the “molar tooth sign”. 

Typical clinical features of JBS include episodic breathing abnormalities, hypotonia that 

developed into ataxia, and developmental delay or cognitive impairment. Some JBTS 

patients exhibit neuropathological features exclusively, while other present with 

multisystem organ features including liver and kidney fibrosis, retinal pigmentosa, 

occipital encephalocele, and polydactyly (Vilboux et al., 2017). Amongst 23–32% of 

patients with JS have renal disease either as NPHP or cystic kidney disease resembling 

ARPKD, and kidney failure is the leading cause of death in those over 5 years of age 

(Parisi, 2019).  By now, 35 causative genes have been associated with JBTS , most of 

which can explain less than 10% of cases while some of them contribute to only one or 

counted cases (Parisi, 2019). These include CEP104, NPHP1, TMEM237, ARMC9, 

PDE6D, ARL13B, CC2D2A, CPLANE1, CEP120, AHI1, CEP41, CSPP1, TMEM67, 

INPP5E, TCTN3, SUFU, ARL3, TMEM138, TMEM216, CEP290, POC1B, TCTN1, 

TCTN2, PIBF1, KIAA0586, KIF7, KATNIP, ZNF423, RPGRIP1L, TMEM231, 

TMEM107, B9D1, MKS1, B9D2 and OFD1. 

BBS is a rare complex multisystem syndromic ciliopathy characterised by multiple 

clinical manifestations including mental retardation, behavioural anomalies and obesity, 

retinitis pigmentosa, cystic kidney disease, polydactyly and gonadal anomalies. Premature 

death occurs frequently on individuals with BBS due to kidney failure (Tobin and Beales, 

2009). The worldwide prevalence of BBS differs significantly from 1:160,000 newborns 

in northern European populations to 1:13,500 in the Bedouins of Kuwait and 1:17,500 in 

Newfoundland where the communities are isolated and characterized by higher levels of 

consanguinity (Forsythe and Beales, 2013). Typically, BBS has an autosomal recessive 

mode of inheritance, although oligogenic hereditary has also been described sporadically 

(Lindstrand et al., 2016). To date, mutations in 20 monogenic genes (BBS1 to BBS20) 

have been associated with BBS, displaying extensive genetic heterogeneity (Braun and 

Hildebrandt, 2017, Priya et al., 2016).   

At the end of ciliopathy spectrum MKS represents the most severe clinical features of 

human ciliopathies involving all organ systems. It is an autosomal recessive congenital 
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developmental disease characterized by high phenotypic pleiotropy and extreme genetic 

heterogeneity, (Hildebrandt et al., 2011). The global incidence of MKS varies between 

1:13,250 and 1:140,000 live births (Hartill et al., 2017). Classical symptoms of this 

syndrome are the malformations of the CNS that seem to have diverse presentation, 

including Dandy–Walker malformation (hydrocephalus, microcephalus and most lethal 

complete anencephaly) and occipital encephalocele (Hildebrandt et al., 2011, Hartill et 

al., 2017). Affected patients frequently feature cystic-dysplastic kidney disease, liver 

association, congenital heart anomalies, pulmonary hypoplasia, dysmorphic features and 

skeletal anomalies mainly postaxial polydactyly, occipital encephalocele, and frequently 

congenital liver fibrosis (Braun and Hildebrandt, 2017). Because of the potentially severe 

developmental malformations, embryonic or perinatal death is constantly reported in 

MKS patients (Braun and Hildebrandt, 2017). The pathogenesis of MKS has been 

associated with at least 14 different genes(MKS1, TMEM216, TMEM67, CEP290, 

RPGRIP1L, CC2D2A, NPHP3, TCTN2, B9D1, B9D2, TMEM231, C5orf42, CSPP1, 

KIF14, TMEM107, TXNDC15 and CEP55), most of which are mutated in NPHP, JBTS 

and BBS (Braun and Hildebrandt, 2017, Hartill et al., 2017). Mutations in these genes 

contribute to 50-60% of MKS cases and genotype-phenotype correlations suggested 

association between type of mutation and severity of developmental phenotypes (Braun 

and Hildebrandt, 2017, Hartill et al., 2017). Hypomorphic mutations are predicted to have 

degenerative impact with  limited organ specific disease compared to truncating 

mutations that predispose to severe developmental disease (Braun and Hildebrandt, 

2017). 
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1.3 Epidemiology of Kidney Disease in Oman  

1.3.1 Demographics of Oman 

Oman is the second largest country in the South East of Arabian Peninsula with surface 

area of 309,500 square kilometres (National Centre for Statistics and Information, 2017) 

(Figure 1.5). It is bounded by the Arabian Sea and the Gulf of Oman on the east, the 

Arabian Gulf (Persian Gulf) on the northwest and the desert of Rub’ al Khali (Empty 

Quarter) of Saudi Arabia on the west (Figure 1.5). Oman is neighbour by the United Arab 

Emirates (UAE) on the north, Saudi Arabia on the west and Yemen on the southwest 

(Figure 1.5). The total population is estimated to be 4,414,051, of which 56% are Omani 

natives and 44% are non-Omani (National Centre for Statistics and Information, 2017). 

Oman has a relatively young population, where about 36.1% of the population is under 15 

years of age, while only 5.9% are in the sixth decade and over (Ministry of Health Annual 

Health Report, 2016). The rate of annual population growth in Oman is considered high 

with approximately 33.7 per 1,000 total population (Ministry of Health Annual Health 

Report, 2016), compared to the UK, for example, which has 11.1 live births per 1,000 

total population (66.4 million) in 2018 (Office for National Statistics (ONS), 2019). 

Omani population had gender ratio of 102 males for every 100 females and the life 

expectancy at birth has increased by 19.1 years since 1980 (57.8 years) to currently stand 

at 76.9 years (Ministry of Health Annual Health Report, 2016).  

In Oman, family size is often large with an average of eight offspring per family 

(National Centre for Statistics and Information, 2017). Omani population has a unique 

structure consisting of varieties of tribal communities occupying a definite territory that is 

still conserved over generations despite modernization. Similar to other Muslim and Arab 

communities, the custom of consanguineous marriages is extremely conserved in Omani 

community, due to social, cultural, geographic and economic factors (Rajab et al., 2013). 

The percentage of consanguineous marriages is estimated to be high (56.3%) (Tadmouri 

et al., 2009), where first cousins marriages are the most favoured (16.8%), followed by 

second cousins (11.8%), double first cousins (4.8%) and first cousins once removed 

(2.6%) (Rajab and Patton, 2000). Furthermore, the tradition of within-tribe (endogamous) 

marriages is still favoured and preserved in this community, accounting for 20.4% of total 

marriages (Rajab and Patton, 2000). 
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Figure 1.5 The geographical location of Oman. Maps adapted with modification from the 
d-maps.com (https://d-maps.com/carte.php?num_car=5160&lang=en). 
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1.3.2 Genetic disorders in Oman 

Genetic data of Omani population has been published in different studies and can also be 

obtained through the Ministry of Health (MOH) information system (Al-Gazali et al., 

2006, Rajab et al., 2013). Over 600 genetic diseases have been detected in Oman, of 

which recessive diseases are the most common category causing childhood mortality and 

morbidity (Rajab et al., 2013). Based on the MOH report in 2008, 39% of perinatal deaths 

in hospitals are associated with congenital malformations and genetic disorders, 

constituting a serious healthcare burden (Rajab et al., 2013). According to the WHO data, 

17-43% of infants deaths in Europe recorded between 2005 and 2009 was assigned to 

congenital anomalies, with the highest rates were reported in Malta (43%) and Ireland 

(42%), while in the UK it accounts for 23% of infants deaths (Boyle et al., 2018).  

The database of the Catalogue for Transmission Genetics in Arabs (CTGA) has shown 

that the number of disorders following autosomal recessive mode of inheritance in Arab 

countries, including Oman, is greater than that of autosomal dominant (Al-Gazali et al., 

2006). The extended family and tribal structures tend to create exceptional patterns of 

genetic diseases, making rare disorders more frequent in Omani community (Tadmouri et 

al., 2009). Moreover, consanguineous and endogamous marriages are known to increase 

the risk of birth defects, congenital abnormalities, mental retardation and diverse 

recessive disorders. Higher frequencies of parental consanguinity (73%) were detected 

among Omani new-borns with major congenital malformations (Sawardekar, 2005).  

The geography of Oman, its settlement and the preservation of unique population 

structure have produced a useful and advantageous population for the investigation of 

genetic diseases. The rapid growth rate of the population, large families and close family 

ties facilitate the study of large families with autosomal dominant diseases and provide 

significant statistical advantages. The presence of genetic isolates in the form of tribes 

and geographical settlement and the higher rate of consanguineous marriages facilitate the 

investigation of autosomal recessive diseases, where diseases can be linked with the tribes 

(Rajab et al., 2013). Therefore, different recessive clinical phenotypes and gene mapping 

had been described from Omani families, such as Robinow syndrome (Afzal et al., 2000) 

and Escobar syndrome (Rajab et al., 2005). Genetic studies of Omani families with 

different recessive diseases had led to detection of novel mutations in this population 

(Rajab et al., 2015). 
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1.3.3 Chronic kidney disease (CKD) in Oman 

In Oman, CKD is a major health concern causing years of life lost (YLLs) due to 

premature mortality (Al Alawi et al., 2017b). The prevalence of ESKD patients receiving 

RRT in Oman at the end of 2013 was 655.8 per million population (PMP), with an 

incidence of 120 PMP (United States Renal Data System, 2014). Figure 1.6 illustrates the 

annual increase in the prevalence and incidence of ESKD in Omani from 2008 to 2013. 

The epidemiology of CKD in Oman remains unexamined for a long period except from 

several single centre studies describing the clinical information of patients (Al-Lawati, 

2013; Rajab et al., 2005). Only, recently, Al Ismaili et al., (2017) examined the 

epidemiological data of ESKD population (1983-2013) and illustrated that diabetic 

nephropathy (46%) was the major cause of kidney failure. Furthermore, Al Riyami et al., 

(2019) studied the epidemiology of CKD in Omani children (<14 years of age) of CKD 

stage (II-V) and showed that congenital anomalies of the kidney and urinary tract 

(CAKUT) (52.9%), hereditary kidney diseases (39%) and chronic glomerulonephritis 

(8.2%) are the leading causes of CKD. ARPKD (12%), primary hyperoxaluria (7%), 

familial focal segmental glomerular sclerosis (5%), congenital nephrotic syndrome (4%) 

and juvenile NPHP (3.4%) are the main inherited kidney disease observed the study 

cohort (Al Riyami et al., 2019).   

 

 
Figure 1.6 Prevalence and incidence of end stage kidney disease (ESKD) in Omani 
population from 2008 to 2013. PMP, per million population. 
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Some of hereditary kidney diseases are found to be more prevalent in Oman compared to 

worldwide figures, presumably due to high rates of consanguinity. An example, 

cystinuria, which is a rare genetic disease causing kidney stones, has prevalence of 4% 

compared to the worldwide prevalence of 1% (Al-Marhoon et al., 2015). In a hospital-

based study evaluating the observed birth incidence of recessive genetic disorders from 

1993 to 2002, autosomal recessive polycystic kidney disease (ARPKD) was the third 

most frequent disease with an incidence of 1 in 12,000 births, which is higher than the 

estimated prevalence for non-isolated population (Rajab et al., 2005).  

A number of novel OMIM genes associated with inherited kidney disease and different 

mutations have been mapped for the first time in families from Oman (Rajab et al., 2015). 

For example, MKS3 gene causing MKS was mapped for the first time in families from 

Oman and Pakistan (Khaddour et al., 2007). Furthermore, using autozygosity mapping of 

a large Omani BBS consanguineous family, White et al. (2007) confirmed that FLJ23560 

is the BBS10 gene located at 12q21.2 and these families tend to have more severe clinical 

phenotypes compared to previously described features on the literature (White et al., 

2007). Although inherited kidney diseases are major health concern in Oman, there is a 

limitation in the published studies covering the genetic molecular spectrum of these 

disorders.  
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1.4 Molecular Diagnosis of Inherited Cystic Kidney Disease 

1.4.1 Sequencing technologies  

From a diagnostic perspective, determination of causal genetic defect in individuals and 

families with inherited disease is crucial in order to consider accurate clinical diagnosis as 

well as to enhance medical treatment and supportive strategies. In addition, identifying 

causal mutation is important from genetic counselling view in terms of assessing the 

recurrence risk, screening at-risk individuals and recommending reproductive possibilities 

such as pre-implantation and prenatal diagnosis.  

Following the completion of Human Genome Project (HGP) in 2003, the standard 

technique for causative mutation searching involved the amplification of the protein 

coding segments in the suspected causative genes by polymerase chain reaction (PCR) 

followed by Sanger sequencing (Steyaert et al., 2018). However, since its first emergence 

a decade ago, high throughput sequencing technologies, which also known as next 

generation sequencing (NGS), have revolutionized medical genetics research, increased 

sequencing reliabilities in routine genetic diagnosis and speed up the discovery of novel 

disease-causative genes. This is because NGS is by far quicker, demand less DNA 

amount, more accurate, much cheaper and less time consuming compared to Sanger 

sequencing. NGS provides massive genomic sequencing data through rapid parallel 

sequencing of selected disease-associated genes, all protein-coding regions (whole-

exomes) or even entire human genome. 

Generally, all NGS technologies follow a similar principle, but differ in the 

methodologies used to generate genomic templates and the way to read these sequences 

(Rizzo and Buck, 2012). The experimental process consists of two basic steps:  (1) 

preparation of sequencing libraries and (2) massive parallel sequencing. Following DNA 

extraction, libraries preparation is the first step in NGS approach, which comprises the 

ligation of DNA fragments to certain oligonucleotide adapters specific for the NGS 

platform used and then clonally amplified these fragments.  

Different types of NGS platforms have been developed, but the Ion Torrent sequencers 

(Life Technologies) and the Illumina sequencers (Illumina) are the most frequently 

utilized benchtop instruments in the biomedical laboratories for diagnostic purposes. Ion 

Torrent is based on emulsion PCR, where fragment amplification is performed on a 

mixture of oil-aqueous emulsion, whereas amplification in Illumina platforms is 
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performed on isothermal bridge amplification through the channels of the flow cells 

( Quail et al., 2012). For reading the bases in a nucleotide sequence, Illumina is based on 

the Solexa sequencing by synthesis chemistry, fluorescent detection of incorporated 

nucleotides, while Ion Torrent is based on the native dNTP chemistry, depending on pH 

measurement caused by hydrogen ions during base integration (Merriman and Rothberg, 

2012; Quail et al., 2012). Despite differences of these two platforms, their effect on the 

genomics, transcriptomics and epigenomics is impressive due to the numerous amount of 

sequence data produced within an effective time and cost manner.  

Targeted gene panel is a term used to describe the targeted sequencing of a subset of 

genes or certain genomic regions for evaluating the pathogenesis of specific group of 

diseases, at which some commercial disease-specific gene panels might be found or a 

customized panel with certain genes of interest might be designed. Targeted gene panel is 

a good starting diagnostic strategy for inherited disorders providing low costs, rational 

resources and manageable sequencing data for analysis (Sikkema-Raddatz et al., 2013). 

For the inclusion of genes to a clinical panel, the guidelines and recommendations of the 

American College of Medical Genetics and Genomics (ACMG) suggested the inclusion 

of only genes with enough scientific evidence for role in disease (Rehm et al., 2013). In 

targeted NGS approach, sequencing reads are distributed at a particular genomic areas 

facilitating higher sequencing representation and depth of coverage, and hence enabling 

precise variants identification. Prior sequencing, targeted DNA regions of interest are 

enriched using capture strategies such as hybridization and PCR amplification.  

Whole exome sequencing (WES) is a technique that was developed to particularly capture 

and sequence the coding regions, or exons, of all known protein-coding genes, which 

collectively constitutes about 2% of the human genome (Clamp et al., 2007). The use of 

WES is based on the hypothesis that 85 % of the disease-associated alterations are 

confined in exons (Majewski et al., 2011).  The early clinical application of WES was in 

examining rare Mendelian diseases, where the knowledge of responsible genes is not 

priori required and hence leading to discovery of novel genes. To overcome the limitation 

of interpretation an extensive list of genetic variants, researchers combined homozygosity 

mapping with WES to obtain an efficient and non-invasive technique for accurate 

diagnosis of renal cystic disease (Gee et al., 2014).   
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1.4.2 Variant annotation and prioritization  

Sequencing platforms create millions of raw unmapped sequence reads and to address 

causal mutation detection, a comprehensive workflow can be applied to analyse the 

generated data. Compared to early days of NGS, substantial progress is made with respect 

to sequencing technology platforms, software and analysis pipelines. However, these data 

can still composed of potential errors caused by technological and biological biases as 

well as mechanical errors that can significantly affect downstream analyses (Taub et al., 

2010). Errors can be generated from biases in target capture, base-calling sequence faults, 

doubts in read alignments, platform-specific technical errors and artificial chimeric reads 

(Taub et al., 2010). Therefore, establishing standards and guidelines for prioritizing the 

potential causality of genetic variant in human disease is a critical demand for clinical 

diagnostic setup (Richards et al., 2015). 

After a proper quality evaluation, which mainly involved assessing FASTQ data, 

trimming of low quality reads and removal of adaptors and marking PCR duplicates, 

analysis starts by aligning sequence reads to a reference genome sequence in a process 

called read mapping. Subsequently, a variant calling algorithm is applied to detect 

differences between the sequencing reads and a reference genome, at which genomic 

variants in the form of single nucleotide variants (SNVs) or insertion/deletion (indel) can 

be detected. Raw variants are attained as Variant Call Format (VCF) and are ready for 

downstream analysis, which involved variants annotation, interpretation, filtration and 

prioritization. This process involves exclusion of enormous number of variants in order to 

conclude with one or limited candidate variants clarifying the phenotype of study patient.  

Several functional annotation tools are used for variant annotation step that mainly 

involved adding important supplementary metadata and knowledge in order to improve 

evaluation of variants likely to influence function. The annotation process includes (1) 

citing the fundamental genomic locations such as affected gene(s), transcript(s) and other 

essential features such as exons, introns, and splice sites, (2) association with known 

human diseases and phenotypes (Online Mendelian Inheritance in Men (OMIM), 

ClinVar, Human Genome Mutation Database (HGMD), UniProt), (3) comparison to 

variants already established in variant population databases to determine known allele 

frequencies and (4) evaluating the effect on protein sequence and conservation.  
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In variant filtration, thresholds for quality metrics such as genotype quality (GQ) and 

depth of reads are applied for filtrating variants with erroneous variant call (Carson et al., 

2014). Coverage of reads is generally used as an indicator of the accuracy of NGS 

experiment and is defined as the number of unique reads that contain a particular 

nucleotide. Read coverage is influenced by the accuracy of alignment algorithm used and 

mapping of the raw reads to the reference, which in turn affects variant calling accuracy 

(Steyaert et al., 2018). Notably, GQ score is calculated for each of the detected alteration 

stating the likelihood of the observed allele, which can also be used as a useful parameter 

for filtering those variants generated by technical errors (Steyaert et al., 2018). 

Once a set of variants is selected after quality threshold filtering, further filtering based on 

an inheritance pattern and patient’s clinical phenotype can be performed and used as 

strong genetic support for allocating likely pathogenicity to new gene variants detected by 

WES or WGS (MacArthur et al., 2014). The pattern in disorders with an autosomal 

dominant mode of inheritance is that candidate-variants are heterozygous in all affected 

patient within a family, while non-affected are homozygous for the reference allele. In 

contrast, in an autosomal recessive mode of inheritance, candidate-variants are usually 

inherited as two different compound heterozygous or less common one pathogenic 

homozygous in case of consanguineous parents, while non-affected siblings within a 

family are heterozygous or homozygous for the reference allele and un affected parents  

are heterozygous for one of the candidate variants. In routine clinical genetic diagnostics 

of presumed monogenic-disease cases, focus is made first on variants of gene previously 

implicated in similar human phenotypes, also known as Mendeliome, at which 3209 

distinctive genes are linked to 4550 monogenic rare disorders (Steyaert et al., 2018). 

However, variants in other potential new genes can be suspected as causative in certain 

circumstances, at which a comprehensive experimental support is required including both 

functional and bioinformatics studies. Moreover, gathering several families with defects 

in the same gene and similar clinical presentation is fundamental to confirm confidently 

the effect of new candidate gene on phenotype (MacArthur et al., 2014). Notably, the 

scenario of spontaneous or de novo, where the candidate-allele in the affected patient is 

not found in either parent, should always be taken into consideration, where the accuracy 

depends on the availability of samples of unaffected family members (Jalali Sefid Dashti 

and Gamieldien, 2017). Furthermore, late onset, incomplete penetrance, and/or 

differential expressivity of the clinical phenotype are fundamental scenarios that should 
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be taken into consideration in case of no clear causative candidates remain after filtering 

prior to terminate the effort of searching for causal variants (Jalali Sefid Dashti and 

Gamieldien, 2017). 

Additional filtration can be performed using the genomic location interpretations and 

variant type, where potential missense, nonsense, stop-loss, frameshift and splicing 

variants are predicted to have potential effect on protein function. Nonsense, splicing and 

frameshift variants are theoretically of high cellular and systemic impact since causing 

loss or unstable protein function, compared to missense variants that produce non- or 

incompletely functional protein (Jalali Sefid Dashti and Gamieldien, 2017). Notably, 

further consideration, such as high frequencies of false positives caused by sequencing 

error, is demanded prior processing these as causal candidate for further assessment, 

although some level of confidence may achieved by the occurrence of the same variant in 

multiple samples (MacArthur et al., 2012).    

Since rarity is one of the key criteria used in predicting the likely functional effect of 

candidates on the encoded protein, rare nonsense and missense variants are anticipated to 

have much higher functional effect than commonly occurring one (Jalali Sefid Dashti and 

Gamieldien, 2017). A minor allele frequency (MAF) ≥1% is frequently used as a first 

point for filtering out and decrease the list of possible candidate variants in disease studies 

(Jalali Sefid Dashti and Gamieldien, 2017). The population frequency databases (e.g. 

single nucleotide sequence polymorphism (dbSNP), 1000 Genomes Project, Exome 

Aggregation Consortium (ExAC), Genome Aggregation Database (gnomAD)) provide 

allele frequencies in different ethnicity groups. Nonetheless, keeping into consideration 

the possibility of incomplete penetrance of some disease variants and/or different 

expression levels of the clinical phenotype, there is a substantial possibility that carriers 

are labelled as healthy controls in population data sets (Lazarin et al., 2013). In his large-

scale study of individuals for routine recessive disease carrier screening of large ethnicity 

samples (total of 23,453 individuals), Lazarin et al. (2013) showed that 24% of 5700 

asymptomatic screened individuals were recognized as carriers for at least one of severe 

disease while 5.2% were carriers for several severe disorders with carrier frequencies 

ranging from 0.006% to 7.6%. 

Furthermore, the true missense variants (SNVs) can be further annotated and filtered 

using the functional impact prediction scores in conjugation with evolutionary 
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conservation scores provided by the following tools: Sorting Intolerent from Tolerant 

(SIFT) (Ng and Henikoff, 2003), Polymorphism Phenotyping v2 (PolyPhen-2) (Adzhubei 

et al., 2010), MutationTaster (Schwarz et al., 2010), Likelihood Ratio Test (LRT) (Chun 

and Fay, 2009), Genomic Evolutionary Rate Profiling (GERP++) (Davydov et al., 2010), 

phylogenetic p-values (phyloP)(Pollard et al., 2010), Combined Annotation Dependent 

Depletion (CADD)  (Rentzsch et al., 2019).  A combination of several functional-impact 

prediction algorithms are recommended to be used together in filtering pipeline to avoid 

removing candidates because of false negatives (Jalali Sefid Dashti and Gamieldien, 

2017). Automatic removal of variants that are outside the ranges of conservation 

threshold is not recommended, keeping in consideration the phenomenon of compensated 

pathogenic deviation, where a substantial proportion of disease causing pathogenic 

variants in human are fixed and neutrals in other species genomes (Jordan et al., 2015). 

Although rare, in-frame insertion and deletions (indel) may be deleterious and should be 

annotated with caution, where rarity in the general population as well as segregation with 

affected individuals should be taken into account. SIFT-indel tool (http://sift.bii.a-

star.edu.sg/www/SIFT_indels2.html) may be used to evaluate functional effect of in-

frame indel. Moreover, InterProScan (www.ebi.ac.uk/interpro/search/sequence-search) 

can be used to define the impact of a candidate variant on the translated protein and its 

critical domain. 

Although non-coding variants, which present in introns, up- or downstream of coding 

regions (3′ and 5′ UTRs) and intergenic regions, constitute the majority of variants in the 

human genome, their potential interpretation is challenging. The functional impact of 

non-coding variants on the structure and regulatory properties of a protein can be 

evaluated using several algorithms such as CADD, FATHMM-MKL 

(http://fathmm.biocompute.org.uk/) and Genome Wide Annotation of Variants 

(GWAVA) (www.sanger.ac.uk/sanger/StatGen_Gwava).  

Additional knowledge about the effect of genetic variant on gene expression is a 

fundamental factor that should be considered in decision making for prioritizing potential 

disease-causative variant. There are different tools that can help evaluating the expression 

of a gene in the tissue or organ of interest, such as Gene Expression Omnibus profiles 

(www.ncbi.nlm.nih.gov/geoprofiles), the Expression Atlas (www.ebi.ac.uk/gxa), and The 

Genotype-Tissue Expression (GTEx) project. The association of gene product pathway 
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with the disease of interest is another important factor to consider in variant prioritization, 

where online KEGG pathways (www.genome.jp/kegg/) or REACTOME pathways 

(www.reactome.org/) may serve this function.  Moreover, knowledge about the effect of 

mutation or animal knockout of the gene on the disease or the characteristic feature of the 

disease using Mouse Genome Informatics database 

(www.informatics.jax.org/humanDisease.shtml) is also important in evaluating and 

prioritizing causative-variants and disease-associated genes. Human Phenotype Ontology 

(HPO) project  (http://human-phenotype-ontology.org) can also be utilized for genotype 

to phenotype mapping for wide areas of disorders. It is important to considered that 

independent confirmation using Sanger sequencing is advised even if candidate-variant 

proceeded downstream prioritization (Jalali Sefid Dashti and Gamieldien, 2017). 

1.4.3 Technical limitations 

Although NGS technologies have led to huge improvement in the current knowledge of 

genetic basis of inherited diseases, and regardless of the continuous improvement in the 

performance of these technologies to solve earlier technical limitations, there are a 

number of technical issues continue to be unsolved. First, the computational power 

demand for storage and interpretation of massive quantities of genomic data is still an 

open obstacle. Second, there is a limitation in obtaining sufficient coverage for all targets, 

where up to 20% of targets in WES and WGS are inadequately covered (Dewey et al., 

2014, Steyaert et al., 2018). There are complex genomic regions containing pseudogenes, 

high guanine-cytosine (GC) content, repetitive sequences and homologous regions. These 

regions are found difficult to capture, sequence and thereafter mapped to reference 

genome, thus significantly affect variant calling accuracy and in turn variant annotation 

accuracy.  

Another limitation of these technologies is their failure to precisely determine 

heterozygous insertions or deletions (indel) ranging from 1 to 4 exons (Steyaert et al., 

2018). Numerous NGS-based methods have been proposed to detect structural variations 

(SVs), which are large-scale genomic alterations of size more than fifty nucleotides 

causing deletions, insertions, duplications, inversions or translocations, making use of 

NGS low cost and capability of unbiased detection through base pair resolution (Guan 

and Sung, 2016). However, because these methods relay on different SVs features and 

library features, sensitivity and specificity of SVs callers remains a challenge and 
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different caller produces different inconsistent predictions (Guan and Sung, 2016). 

Additionally, the specificity of SVs detection was obstructed by the presence of the noise 

in the data generated by platform-technical errors or false chimeric reads which 

potentially increase the rate of false positive and false negative (Guan and Sung, 2016).   

Although the majority of inherited diseases caused by genetic defects of protein-coding 

regions, which constitute only up to 2% of the human genome, it is considered as a 

limitation to sequence only this smaller proportion of the genome (Steyaert et al., 2018).  

Moreover, incomplete representation and coverage of all protein-coding regions caused 

by the existence of certain human genomic regions that are not completely annotated yet 

and the absence of potential non-coding elements, such as untranslated regions (UTRs), 

enhancers, and long-noncoding RNAs, are other limitations of these technologies. These 

limitations are expected to be resolve with the use of third-generation sequencing 

technologies, which are not yet arranged for clinical diagnostics usage (Steyaert et al., 

2018). 

It is important to consider that in a large-scale genomic examination through WES or 

WGS there is a potential for detection of secondary and incidental findings (Steyaert et 

al., 2018). While secondary findings involved variants that are dynamically hunted for but 

their occurrence is not directly associated with disease of interest, incidental findings 

involve accidental discoveries of non-matching paternity or variants in non-curable 

disease. There is a list of 59 medically actionable genes linked to highly penetrant genetic 

diseases prepared by the ACMG and recommended to be reviewed for pathogenic or 

likely pathogenic variants unless the patient decided not to obtain secondary findings 

results (Green et al., 2013). These recommendations aimed to decrease morbidity and 

mortality without demanding further test (Green et al., 2013). Because these secondary 

findings have some medical values and social implications to the patient and biologically 

related members, it is critical to report only those very likely pathogenic variants to 

prevent unnecessary discomfort and costs for patients without any medical advantages 

(Steyaert et al., 2018). 
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1.5 Project Aim and Objectives 

There are many known and unknown genes causing the pathogenesis of inherited cystic 

kidney disease and renal ciliopathies. Genetic study of patients and families from Oman, 

where the population is characterised by high level of consanguinity as well as genetic 

and geographic isolates, is postulated to identify novel genetic causes of these diseases. 

This study aimed to evaluate the magnitude of inherited kidney disease in this population 

and identify the molecular genetic causes of inherited cystic kidney diseases in Omani 

patients.  

The objectives of this project are: 

1. Epidemiological review of kidney disease in Oman through: 

a. Retrospective review of  Renal Replacement Therapy register in Oman 

b. Comparison with other countries/registries 

2. Set up target NGS panel for diagnostics of inherited cystic kidney ciliopathies 

a. In silico design of customized targeted kidney panel (49 genes) 

b. Testing and validation of panel 

c. Use of panel for renal diagnostics 

3. Description of the clinical and genetic profile of ARPKD cohort from Oman. 

4. Diagnose novel forms of inherited renal ciliopathies for patients who are not 

solved by the targeted-NGS panel by WES technologies. 
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Chapter 2. Materials and Methods 
 

2.1 Ethical Approvals 

This study was approved by the Research and Ethical Review and Approval Committee of 

the Ministry of Health (MOH) in Oman (MH/DGP/R&S/PROPOSAL_APPROVED/18/ 

2014) and the Ethics Committee of the College of Medicine and Health Sciences in the 

Sultan Qaboos University, Oman (MREC #1096). All study participants provided written 

informed consent according to the Declaration of the MOH.  

2.2 Retrospective Analysis of End Stage Kidney Disease (ESKD) data   

Data from newly registered Omani patients with ESKD commencing RRT from 2001 to 

2015 was analyzed using the national renal replacement therapy register in Oman. The 

registry contains baseline characteristics of patients at initiation of RRT and updates until 

patient death. The baseline characteristic information included is gender, comorbid 

conditions (including diabetes mellitus, hypertension, ischemic heart disease, cerebrovascular 

disease, and respiratory disease), family history of disease, initial hypertension medications, 

and initial pre-RRT BMI, serum albumin, and creatinine. Haemodialysis data, peritoneal 

dialysis data, and renal transplantation data were also included in the registry. This data is 

completed by nephrologists in all renal dialysis units throughout the country once the patient 

reached ESKD using a standardized form and sent to the main renal dialysis unit in Muscat, 

where the RRT registry is maintained in a comprehensive database (Al Ismaili et al., 2017). 

The registry has been established and standardized to enable significant comparisons to other 

countries registries. The collected dataset is similar to that of the United States Renal Data 

System (USRDS; form 2728) (Al Ismaili et al., 2017). 

All potentially congenital, genetic, or hereditary causes of kidney diseases were extracted 

from the registry within the study period according to the coding system of this registry. 

Cases registered and classified under the code Hereditary Familial Renal Disease were 

reviewed, which include the majority of inherited kidney diseases including ADPKD, 

ARPKD, Alport syndrome, primary hyperoxaluria, cystic dysplastic kidney, 



56 
 

nephronophthisis, Bartter syndrome, and inherited renal tubular acidosis. The proportion of 

inherited kidney disease among those commencing RRT was calculated. 

2.3 DNA Extraction 

DNA isolation was performed in the Molecular Genetics Laboratory in the National Genetic 

Centre (Oman). Genomic DNA (gDNA) was extracted manually from the peripheral blood 

samples collected in EDTA (Ethylenediaminetetraacetic acid) tubes and uncultured amniotic 

fluid collected in sterile containers using a DNAeasy Blood & Tissue kit (Qiagen, Germany) 

according to manufacturer’s instructions. Initially, some preparations were performed for the 

amniotic fluid sample before carrying extraction, which include (1) centrifugation at 5000xg 

for 5 min and removing supernatant, (2) washing the pellet with 500ul of phosphate buffered 

saline (PBS) and centrifugation at 5000xg for 5 min and (3) removing supernatant and re-

suspending in 200 μl PBS.  

First of all, proteinase K (50 μl) and lysis buffer AL (500 μl) were added to 500 μl of blood 

and 200 μl of amniotic fluid cells, followed by vortex (5–10 sec) and incubation at 56°C for 

10 min. For DNA binding, 200 μl of 100% ethanol was added and the lysate of each sample 

was transferred into the mini spin column allocated in a 2 ml collection tube. Samples were 

centrifuged at 6000xg (8000 rpm) for 1 min allowing the DNA to selectively bind to the 

silica membrane and contaminants to pass through to collection tubes. Two wash steps were 

performed that involved the addition of Buffer AW1 (500 μl) and centrifugation at 20,000xg 

(14,000 rpm) for 3 min followed by Buffer AW2 (500 μl) and centrifugation at 20,000xg 

(14,000 rpm) for 3 min. Finally, DNA is eluted in water or TE buffer (Tris-EDTA; 10mM 

Tris base, 0.1mM EDTA).  

Initial gDNA concentration (ng / µL) and absorption ratio (260 nm / 280 nm) were measured 

using a full-spectrum Nanodrop 2000 spectrophotometer (Thermo Scientific™). From each 

extracted sample, an adequate amount of DNA (≥ 10 µg) with high quality (A260 / A280: 

1.8-2.0) was achieved. DNA samples were stored at 4 ᵒC for further studies. 
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2.4 Targeted Next Generation Sequencing (NGS) Panel 

All target-NGS procedures were performed in the Molecular Genetics Laboratory in the 

National Genetic Centre in Oman. Figure 2.1 presents an overall workflow of the targeted 

NGS panel protocol performed in this study. 

2.4.1 Patient Recruitment and Inclusion Criteria  

The cohort comprised of 53 prospective samples from patients with presumed inherited 

cystic kidney disease from paediatric and adult nephrology services. All patients are Omani 

from different regions across the country. Patients were classified according to their age 

group into prenatal, paediatric (birth -13 years of age) and teenage / adult (>13 years of age). 

Inclusion criteria were renal US scan findings of: increased kidney echogenicity or loss of 

corticomedullary differentiation or abnormal kidney size or presence of kidney cysts and a 

possible family history of kidney disease. Family pedigrees were drawn using invitae online 

tool (https://familyhistory.invitae.com). 

2.4.2 Target-capture Panel Design 

A customized target sequence gene panel associated with inherited cystic kidney disease was 

designed using 49 genes to create a capture library (Table 2.1). Genes were chosen based on 

their known association with cystic kidney disease phenotypes and their known or predicted 

frequency with an emphasis on autosomal recessive causes of cystic kidney disease, given 

the high rates of consanguinity. The number of genes was limited due to number of exons / 

amplicons required per gene and the overall target capture size. Using online Agilent 

SureDesign Tool (https://earray.chem.agilent.com/suredesign), capture probes were designed 

to capture target gene-set regions of 243165 bp in size by generating a total of 11712 

amplicons (Agilent Technologies, Santa Clara, California, USA). The February 2009 human 

reference sequence (GRCh37/Hg19) was used to generate set of probes for capturing the 

targeted regions. More details of the designed panel and the expected genomic coverage of 

probes are shown in Appendix A1. 
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Figure 2.1 Schematic presentation of an overall target NGS workflow. Sample preparation 
stage consists of DNA samples collection from affected patients and their families (as 
possible), collection of pedigrees and family history data, DNA extraction of blood samples, 
quality control (QC) assessment of DNA quality and quantity. Library preparation step 
consists of DNA samples digestion (12 samples per run), hybridization, capture of target 
regions, purification using magnetic beads, ligation and PCR amplification of enriched 
libraries. NGS sequencing on Illumina MiSeq platform involves cluster densities generation 
on flow cells. DNASTAR lasergene software was used for raw data analysis and depth of 
coverage of target genes in each sample was checked for QC assurance. Based on the type of 
detected causative variants, validation was obtained through Sanger sequencing and 
comparative genomic array. bp, base pair; PCR, polymerase chain reaction; QC, quality 
control.                                            
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Diseases MOI Gene  

Autosomal dominant polycystic 
kidney disease (ADPKD) AD PKD1, PKD2 

Autosomal recessive polycystic 
kidney disease (ARPKD)  AR PKHD1 

Autosomal dominant tubulo 
interstitial kidney disease (ADTKD) AD HNF1B,  REN, UMOD  

Nephronophthisis (NPHP) AR 

NPHP1, INVS, NPHP3, NPHP4, 
GLIS2, NEK8, TMEM67, TTC21B, 
WDR19, ZNF423, CEP164, ANKS6, 
CEP83, DCDC2, SDCCAG8 & 
CEP290 

Medullary cystic kidney disease AD UMOD, MUC1 

Meckel-Gruber syndrome (MKS) AR MKS1, TMEM67, CEP260, NPHP3 & 
RPGRIP1L 

Bardet-Biedl syndrome (BBS)  AR 

BBS1, BBS2, ARL6, BBS4, BBS5, 
MKKS, BBS7, TTC8, BBS9, BBS10, 
TRIM32, BBS12, MKS1, CEP290, 
WDPCP, SDCCAG8, LZTFL1, 
BBIP1, IFT27 

Autosomal dominant Polycystic 
liver disease (ADPLD) AD PRKCSH, SEC63 

Joubert syndrome (JBTS) AR AHI1, NPHP1, CEP290, TMEM67, 
RPGRIP1L & TTC21B 

Renal cysts and diabetes syndrome AD HNF1B 

Renal dysplasia, cystic susceptibility AD BICC1 

Table 2.1 Disease categories and genes selected for targeted NGS panel for cystic kidney 
disease. MOI: mode of inheritance. AD: autosomal dominant. AR: autosomal recessive. 
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2.4.3 DNA Libraries Construction 

Prior to library preparation, DNA qualification and quantitation were verified using the 

following:  

(1) 1.0 % of agarose gel (Thermo Fisher Scientific), as per standard electrophoresis 

techniques (Figure 2.2) to eliminate DNA degradation or contamination.  

(2) a fluorometry-based DNA quantitation technique using Qubit® 3.0 Fluorometer 

(Thermo Fisher Scientific), was used to verify DNA quality and obtain the required 

concentration (1.8 ng / µl) using Qubit® DNA Assay Kit, according to the 

manufacturer guidelines.   

 

 
Figure 2.2 Agarose gel (1%) electrophoresis to allow genomic DNA qualification. A size 
distribution of 2.5 kilo base pair (kbp) without smearing is an indicator of high quality DNA 
without any degradation. M: marker DNA ladder with molecular sizes of 1 Kbp and 100 bp 
indicated. Lanes 1-11 are different DNA samples.   
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The DNA libraries were constructed using the HaloPlex HS Target Enrichment System® for 

Illumina sequencing kit (Agilent Technologies, Inc.), according to the manufacturer’s 

protocol. This kit provides in-solution capture-based target enrichment of customized 

amplicons through labeling each DNA sample with a unique molecular barcode. The 

workflow consists of four main phases: 1) digestion, 2) hybridization, 3) ligation and 

capturing, 4) PCR amplification (Figure 2.2). A batch size of 12-samples was performed, 

which composed of 11 different DNA samples along with one Enrichment Control DNA 

(ECD) provided in the kit.  

Firstly, gDNA (50 ng) of each sample was digested using a total of 16 diverse restriction 

enzymes divided between eight double-reactions (A to H) and heating up on the thermal 

cycler at 37 °C for 30 minutes. DNA fragments obtained from the digestion were validated 

by microfluidic electrophoretic analysis of the eight-reactions of ECD using Agilent 2100 

Bioanalyzer Electrophoresis system (Agilent Technologies, Inc.). The validation was 

performed by the use of High Sensitivity DNA Kit (Agilent Technologies, Inc.), where gel-

dye mix (9µl), ladder (1µl) and samples (1µl) were prepared and loaded on the chip 

according to the reagent kit guide.  Later, the chip was run on the Bioanalyzer 

Electrophoresis system and samples were quantified by the equipped 2100 Expert Software 

(version B.02.07). 

Secondly, the digested fragments were hybridized to the customized Haloplex probes, which 

are designed to hybridize to the target genomic regions and manage circularization of the 

fragments, using reagents and thermal cycler conditions stated in Table 2.2. For each sample 

to be multiplexed, a unique molecular barcodes and Illumina sequencing indexes were 

integrated through proper HaloPlex HS Indexing Primer solutions. A mixture of 

Hybridization Stop Solution and consistent suspension of AMPure XP bead (Beckman Coulter 

Genomics) were used to stop hybridization reaction followed by using 70% ethanol to remove 

the hybridization buffer.  

Thirdly, the circularized hybridized fragments were ligated using DNA ligation reagents in 

Table 2.2. These fragments, which contain biotin from previous step, were captured using 

Dynabeads MyOne Streptavidin T1 magnetic beads (Thermo Fisher Scientific).  
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Finally, the captured libraries were amplified by multiplex PCR using reagents and 

conditions reported in Table 2.2 and 2.3, respectively. After that, Agencourt AMPure XP 

beads were utilized to cleanse the amplified libraries along with two times 70% ethanol 

washes.  

Before pooling targeted libraries, the 2100 Bioanalyzer was used to validate enrichment and 

determine the size of enriched DNA libraries (Figure 2.3). The amplified products varied in 

their fragment size distribution; therefore, by incorporating electropherogram peak between 

175 and 625 bp, the concentration was identified, which determines the volume to be pooled 

from each library. The DNA concentration was converted from ng / µl to nM via the 

following formula. Thereafter, the differentially indexed libraries with similar concentration 

(10pM) were pooled together into a single tube and were purified using Agencourt AMPure 

XP beads (Beckman Coulter Genomics).   
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Figure 2.3 Validation of digestion reaction using 2100 Bioanalyzer system analysis. Lane 1: 
50-bp DNA ladder, Lanes 2-9: ECD digestions (8 different digests AH), Lane 10: 
Undigested ECD. The ECD sample comprises of a mixture of gDNA and 800-bp PCR 
product enclosing restriction sites for the digested enzymes utilized. During validation, the 
undigested ECD (lane 10) contains bands at >2.5 kb and 800 bp corresponds to gDNA and 
PCR product, respectively. A smear of gDNA restriction fragments appeared in all of the 
eight digested ECD samples, with three main bands at approximately 125, 225 and 450 bp, 
which correspond to the 800-bp PCR product digested fragments.  
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Reagent  Volume (µl) 

Hybridization:   

Hybridization Solution  442 

HaloPlex HS Probe 65 

Total 507 

Ligation:   

HS Ligation Solution  130 

1 mM rATP 7.8 

Nuclease-free water  512.2 

Total 650 

PCR amplification:   

Nuclease-free water  691.6 

Herculase II Reaction Buffer  390 

dNTPs (100 mM, 25 mM for each dNTP)  10.4 

Primer 1  52 

Primer 2  104 

Herculase II Fusion DNA Polymerase  52 

Total  1300 
Table 2.2 Master mixes used in hybridization, ligation and PCR amplification reactions.  
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  Steps Number of Cycles  Tem. (°C) Time  

Digestion 1 1 37 30 min 

2 1 4 Hold 

Hybridization 1 1 95 5 min 

2 1 58 2 hrs 

PCR amplification 

1 1 98 2 min 

2 24 

98 30 sec 

60 30 sec 

72 1 min 

3 1 72 10 min 

4 1 8 Hold 
Table 2.3 Thermal cycler program used throughout different phases of libraries preparation. 
hrs, hours; min, minutes; sec, seconds; Tem, temperature.  
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Figure 2.4 Validation and quantification of the HaloPlex HS enrichment libraries by 2100 
Bioanalyzer system analysis. (A) Bioanalyzer electrophoresis results; Lane 1: 50-bp DNA 
ladder, Lanes 2-12: enriched library samples. The majorities of amplified products have size 
range between approximately 225 to 540 bp. (B) Sample of electropherogram for enriched 
library. To quantify enriched target DNA concentration, a constant size range of 175 to 625 
bp was used. Due to the design, a peak at about 140 bp size is noted, which is a sign of an 
adapter-dimer product, thus additional round of AMPure purification is suggested following 
sample pooling. bp, base pair; FU, fluorescence unit. 
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2.4.4 High Throughput Parallel Sequencing 

The final multiplexed library was denatured using 0.2 N NaOH and then diluted to proper 

loading concentration indicated by the MiSeq reagent kit (12.5pM) using prechilled HT1 

hybridization buffer (Illumina, Inc). The denatured diluted library was combined with a 5% 

denatured and diluted positive control sequencing library (Illumnia PhiX control, 12.5pM), 

according to Illumina instructions. A total of 600 µl of the combined library is loaded into 

MiSeq Reagent V2 (500 cycles) kit cartridge.  

A paired-end sequencing of 2 × 250 bp was performed using Illumina MiSeq® sequencer 

(Illumina Inc, San Diego, CA),  at which the flow cell and reagents were loaded. After that, a 

custom sample sheet was prepared according to the manufacturer's guidelines using the 

Illumina Experiment Manager (IEM) software. For the purpose of this customized panel, the 

HaloPlex HS indexes used for every sample were manually modified. Read files (FASTQ) 

were only requested in the application option of IEM, according to manufacturer’s patented 

software. The progress and quality of the run were examined throughout the run from the 

MiSeq sequencing screen, including cluster density, clusters passing filters, quality score 

measurement and estimated yield (Mb).  

2.4.5 Bioinformatics and variants filtration 

The FASTQ files containing raw sequencing data generated by Illumina MiSeq platform 

were utilized for alignment, mapping and data analysis using a commercially available 

software package “DNAStar Lasergene 15 Genomics Suite” (DNAstar, Madison, WI). This 

suite consists of four main applications: (1) SeqMan NGen, which is used to assemble and 

align patients genomic data to the human reference genome (hg19/ GRCh37), (2) SeqMan 

Pro, which is used to evaluate coverage, obtain enrichment report and downstream analysis 

to identify SNPs, small indels, large insertions and deletions, (3) Genomic visualization 

application, which is used to visualize genomic sequencing results and visually compare 

coverage across exons and genes, (4) ArrayStar, which is used for variant analysis using 

multiple variant annotation databases and algorithms such as dbSNP, ExAC, the Exome 

sequencing project (ESP), gnomAD, 1000 genomes project, ClinVar, SIFT, PolyPhen-2, 

MutationTaster and LR predictions.  
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In the first step following completion of data preprocessing using SeqMan NGen (Figure 

2.5), a target coverage and enrichment report of each sample was checked for quality 

assessment using SeqMan Pro. The quality threshold for all variants included in the analysis 

was as following: read depth (RD) ≥ 20, genome quality (GQ) ≥ 20, mapping quality (MQ) ≥ 

20 and base quality (BQ) ≥ 20 (Figure 2.5). The VCF data of each sample was annotated in 

ArrayStar and variants were filtered and prioritized using the following steps: (1) variants 

with allele frequency greater than expected for disease (>2% for autosomal dominant and 

>1% for autosomal recessive) were filtered out as likely does not affect function, (2) 

synonymous variants predicted not to effect splicing and not in conserved region and 

reported as likely neutral in databases were filtered out as likely does not affect function, (3) 

known variants reported in databases as likely neutral and multiple in silico analysis predict 

no effect on gene function were filtered out as likely does not affect function, (4) nonsense, 

frameshift, canonical +/- splice site, initiation-codon, single or multiple exon deletion that 

identified in patients with classical disease related phenotypes are maintained and classified 

as variants effecting function, (5) missense variants that are absent from allele frequency 

databases, predicted pathogenic by multiple in silico tools, segregate within family and found 

in patients with classical disease phenotype are maintained and classified as likely effect 

function, and finally (6) in-frame deletions/insertions that are not reported in any allele 

frequency databases, with multiple in silico analysis predicted pathogenic, protein length 

changes as a consequence of in-frame deletion/insertion and present in patients with classic 

disease phenotypes are maintained and classified as likely effect function. 

For the assessment of potential splicing effects of the missense variants, the Human Splicing 

Finder software was used. For evaluating the evolutionary conservation of substituted 

residue, ConSurf web server along with GERP score and the phyloP conservation score were 

used. I- Mutant 3.0 server was used for assessing the effect of genetic alteration in the 

stability of the protein structure. 

A series of databases associated with cystic kidney disease were interrogated for evaluating 

the obtained variants and identifying novel ones, including PKDB Mutation Database 

(http://pkdb.mayo.edu/), ARPKD/PKHD1 Mutation Database, Leiden Open Variation 

Database (LOVD), HGMD and the previously published articles reporting  PKD1, PKHD1, 
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HNF1B, WDR19, SDCCAG8 and NPHPs, mutations. The pathogenicity of novel variants 

was ascertained according to the revised criteria of the American College of Medical 

Genetics (Richards et al., 2015). 

 

 
Figure 2.5 Workflow of raw data pre-processing and variants filtering strategy. Data pre-
processing strategy involves multiple steps; including aligning the raw sequence to the 
reference genome (mapping), removing of PCR duplicate reads, variant calling and finally 
variant filtering. Different parameters are used in variant filtering and prioritizing; including 
quality threshold, allele frequency, potential impact on protein functioning, and disease-
related phenotypes. 1000G, 1000 Genomes project; ACMG, American College of Medical 
Genetics and Genomics; BQ, base quality; ESP, exome sequencing project; ExAC, Exome 
Aggregation Consortium; GQ, genotype quality; HGMD, Human Genome Mutation 
Database; HPO, Human Phenotype Ontology project; LOVD, Leiden Open Variation 
Database; MQ, mapping quality, OMIM, Online Mendelian Inheritance in Men; RD, read 
depth; VUS, variant of uncertain significance.  
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2.4.6 Validation by Sanger Sequencing  

All putative disease causing variants detected by NGS were validated by bi-directional 

fluorescent Sanger sequencing of PCR amplicons and their segregation with the disease was 

confirmed. Target regions were amplified using AmpliTaq Gold 360 Master Mix kit 

(Applied Biosystems) and Oligonucleotide PCR primers, which were designed using Primer3 

program (http://primer3.ut.ee/). Primers were designed to cover the whole exon sequence at 

which variant is located, but for large exons, a set of overlapping fragments were amplified 

using multiple primers. The primer sequences are reported in Table 2.4. The annealing 

temperature for all primers was close to 60ᵒC to confirm that similar PCR conditions can be 

applied for the amplification of all fragments.  

The PCR was carried out using reagents and conditions stated in Table 2.5 and 2.6, 

respectively. The PCR products were verified on 1.5% agarose gel electrophoresis (120 

V/cm, 30 min) and compared with appropriated marker of molecular weight. Subsequently, 

the PCR products were purified using ExoSAP-IT reagent (Applied Biosystems) and 

sequenced using BigDye Terminator V3.1 Cycle Sequencing kit (Applied Biosystems) using 

reagents and condition reported in Table 2.5 and 2.7, respectively. The PCR products were 

purified using ethanol and afterward loaded on ABI 3130 sequencer (4 or 16 capillaries). All 

sequences were assembled, aligned and analyzed by comparison against a reference sequence 

using the SequencePilot 4.2.2 software (JSI Medical Systems GmbH), at which a diagnostic 

report for each sample was generated. 

The previously described protocol was applied to all genes, except the PKD1 gene. In 

particular, the suspected PKD1 SNVs, deletions and insertions were confirmed by long-

rang PCR (LR-PCR) using the GeneAmp High Fidelity PCR System (Applied Biosystems), 

the sets of primers and PCR protocol published previously by (Tan et al., 2012). The LR-

PCR products were then verified, purified and sequenced using the same protocol described 

above.  
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Primer Name Gene - Exon Sequence 5'--> 3' 

PKHD1_3F PKHD1 Exon 3 CTGAGGCAGGTTAAATATTGCTT 
PKHD1_3R PKHD1 Exon 3 GTCTGTTCGTCTCCCTTCAGG 
PKHD1_6F PKHD1 Exon 6 GTGCCTCCTGTGTTTGTGAA 
PKHD1_6R PKHD1 Exon 6 TCCAGTCTCCAACATCAACTCA 
PKHD1_32AF PKHD1 Exon 32 AACACATGCCCTACCTTCCA 
PKHD1_32AR PKHD1 Exon 32 AACATCACAGTTCAGGTTCCC 
PKHD1_32BF PKHD1 Exon 32 GAAGTAACCTCTCCAACTCAGTC 
PKHD1_32BR PKHD1 Exon 32 CCACAAATACCATCGGCTCAT 
PKHD1_32CF PKHD1 Exon 32 TCTCTGACCACTGTGCTGAT 
PKHD1_32CR PKHD1 Exon 32 TGAAACACTTGGGGCATAATGT 
PKHD1_32DF PKHD1 Exon 32 TGATTAGGGGTCAGAGGTTAGC 
PKHD1_32DR PKHD1 Exon 32 CCACTGCAAAGGTTAAGATGTCA 
PKHD1_32EF PKHD1 Exon 32 AGGTAGATGGACTTTGGTATCACA 
PKHD1_32ER PKHD1 Exon 32 TTTCCAGAAGTGAAAGGAGCTAC 
PKHD1_58AF PKHD1 Exon 58 TCAGCCTTTTGTGGGGAAGA 
PKHD1_58AR PKHD1 Exon 58 TGAAAGCCAAGAAGCCAGAG 
PKHD1_58BF PKHD1 Exon 58 GCCTTCATCTCTATAAGGAAAGTGG 
PKHD1_58BR PKHD1 Exon 58 TGCATGGATGTATGAAATGGCA 
NPHP3_18F NPHP3 Exon 18 TGTCCTGGACTTTCTTGACCT 
NPHP3_18R NPHP3 Exon 18 AAAGCCACGGGAGTTCATC 
NPHP3_24F NPHP3 Exon 24 TAGGGGTCAGGATTCCAAACTC 
NPHP3_24R NPHP3 Exon 24 ACCTGTCCCTCATAAAGACAAATT 
NPHP4_6F NPHP4 Exon 6 AAGGTTGCGGCTGTACCAT 
NPHP4_6R NPHP4 Exon 6 CAGGGTGAAGAATAAGTCATCCA 
NPHP4_27F NPHP4 Exon 27 CCCTTGTTGGCCTCTCGT 
NPHP4_27R NPHP4 Exon 27 CTGGAGGCGCTGGAAAAG 
SDCCAG8_12F SDCCAG8 Exon 12 ATCCCTGGTGTTGCTTCTGA 
SDCCAG8_12R SDCCAG8 Exon 12 TGCTGTTGTATTCTCACCATTCA 
WDR19_22&23F WDR19 Exon 22&23 TTAGTGTTTGCCTTGTGATTGCA 
WDR19_22&23R WDR19 Exon 22&23 CCAGAGGCACATTCATTTCCAAT 
WDR19_32F WDR19 Exon 32 GGCCATCATCAAGGAGTTGT 
WDR19_32F WDR19 Exon 32 GGGTGAGAGCTCTGGTCAGT 
HNF1B_2F HNF1B Exon 2 CCTAACCATCTGCTTGTCTGTCT 
HNF1B_2F HNF1B Exon 2 AGAGGGCAAAGGTCACTTCA 

Table 2.4 Oligonucleotide primer sequences and amplified exons. 
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  Reagent  Volume (µl) 

PCR 
amplification 

AmpliTaq Gold 360 Master Mix 6.25 
primer F (10µM) 1 
primer R (10µM) 1 
DNA sample (50-100ng/µl) 1 
Dnase free water up to 13.5 
Total 13.5 

Sequencing 

HPLC- water 5.5 
5X sequencing Buffer 2 

BigDye Terminator v3.1 Ready 
Reaction Mix 0.5 

volume  8 
Primer F or R (3.3 µM) 1 
PCR Product 1 

Total 10 
Table 2.5 PCR and sequencing mixes for each sample. HPLC, High-performance liquid 
chromatography. 
 

Steps No. Cycles  Temperature (°C) Time  
1. Initialisation  1 95 15 min 

2. Denaturation  13 
94 30 sec 
62 30 sec 
72 30 sec 

3. Annealing  8 
94 30 sec 

46.5 30 sec 
72 30 sec 

4. Elongation  16 

94 30 sec 

54.5 30 sec 

72 30 sec 
5. Final elongation 1 72 5 min 
6. Termination  Hold 4 ∞ 

Table 2.6 Thermal cycler program used for PCR reactions. hrs, hours; min, minutes; sec, 
seconds; Tem, temperature. 
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Steps Number of Cycles  Temperature (°C) Time  
1 1 96 1 min 

2 25 
96 10 sec 
50 5 sec 
60 4 min 

3 Hold 4 ∞ 
Table 2.7 Thermal cycler condition used for sequencing samples. hrs, hours; min, minutes; 
sec, seconds; Tem, temperature. 
 

2.4.7 Copy Number Variants (CNVs) Detection and Validation 

CNVs, mainly deletions, were detected by depth analysis of NGS data using Lasergene 

software, where the read depth per gene / exon was compared with that of the same capture 

targets on the same NGS run. Later, array comparative genomic hybridization (array-CGH) 

was used to confirm CNVs, at which Affymetrix CytoScan HD array kit (Agilent 

Technologies, USA), which composed of approximately 2.6 million markers distributed 

throughout all chromosomes, was used. The protocol was performed by the array-CGH 

department in National Genetic Center in Oman as instructed by the manufacturer. 

Chromosome Analysis Suite (ChAS) v3.1 Software (Affymetrix, USA) was utilized for 

genomic annotation. 

 

2.5 Sanger Screening of Hot-spot PKHD1 mutations 

Sanger sequencing screening of the PKHD1 exons 3, 6, 32 and 58 was performed for another 

23 patients from 15 different families with clinically suspected ARPKD, as well as the 

available samples of parents (n=10) and unaffected siblings (n=3). This was performed in the 

molecular laboratories in the National Genetic Centre in Oman using the same primers and 

procedure described in previous section (2.4).  
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2.6 Whole Exome Sequencing (WES)  

2.6.1 Patients Inclusion and Clinical Evaluation 

The first batch of WES samples includes five patients who were unsolved by the target NGS 

panel, while the second batch includes six genetically untested patients. All patients have 

clinical features strongly suggestive of ciliopathies. A consent form was attained from each 

patient and any family member involved in this study, as per the declaration of the MOH. 

Family pedigrees were drawn using invitae online tool (https://familyhistory.invitae.com). 

2.6.2 DNA Isolation, Library Preparation and Exome Sequencing  

gDNA was isolated from whole blood of patients and the available family members using a 

DNAeasy Blood & Tissue kit (Qiagen), as described in section 2.3. DNA extraction was 

performed in the National Genetic Centre in Oman.  

DNA library construction and WES of the first batch samples were outsourced to EuroFins 

GATC Biotech (Germany), at which SureSelect Human All Exon V6 Enrichment Kit 

(Agilent Technologies, CA, USA) and Illumina HiSeq platform (Illumina, San Diego, CA, 

USA) were used.  Analysis of raw data (FASTQ format) were performed by the outsourcer, 

including sequence reads mapping to the human reference genome hg19 using BWA (Li and 

Durbin, 2009), removal of PCR duplicates using Picard (http://picard.sourceforge.net), 

alignment refinement using GATK, coverage analysis and SNP and indel calling using 

GATK’s Haplotype Caller (McKenna et al., 2010) (Appendix A2).  

For the second batch WES samples, DNA library preparation and WES were outsourced to 

Novogene Co., Ltd (China), where SureSelect Human All Exon V6 Enrichment Kit (Agilent 

Technologies, CA, USA) and Illumina platform (Illumina, San Diego, CA, USA) were used. 

Similarly, analysis of raw sequencing reads was carried out by the outsourcer, where 

mapping, alignment, refinement and variant calling were performed. Statistics of mapping, 

coverage and depth of this batch samples are given in Appendix A2.  
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2.6.3 Variants Detection and Annotation 

SNPs and INDELs VCF files were obtained from the outsourcer and were loaded into Qiagen 

Variant Ingenuity tool for variants filtration and annotation. The following filtering algorithm 

was applied to verify putative disease-causing variants:  

(1) Confidence filter is used to filter low quality variants on the basis of variant call quality, 

read depth and allele fraction. (2) Common variant filter is used to conveniently exclude 

common variants observed in normal populations. Algorithm was set to exclude variants that 

are present with MAF of at least 3%of any of population databases (1000 Genomes project, 

ExAC, gnomAD, NHLBI ESP), unless this is a well-known pathogenic common variant. (3) 

Predicted Deleterious filter is used to rapidly categorize variants on the basis of (a) variants 

experimentally evidenced in the literature to be associated with disease-phenotype, (b) 

predicted or observed evidence to disturb gene function or expression.  

2.6.4 Variants Validation by Sanger Sequencing 

Sanger sequencing was utilized to confirm suspected disease causing variants and their 

segregation with the disease. Primer3 was utilized to design primer sequences 

(http://primer3.ut.ee/), which are shown in Table 2.8. PCR amplification was performed in 

the Institute of Genetic Medicine in Newcastle University using Taq PCR master mix 

(Qiagen) kit, as per the manufacturer instructions. Briefly, 30 μl PCR reaction was prepared 

containing 1 μl of gDNA (50-100 ng), 1 μl of forward and reverse primers (10 pmol), 15 μl 

Taq PCR Master Mix and 12 μl water. A touch-down PCR with the cycling conditions 

summarized in Table 2.9 were followed.  

 The amplified amplicons were verified on 1% gel and purified using ExoSAP-IT PCR 

cleanup reagent (Applied Biosystems). Sanger sequencing was outsourced to EuroFins 

GATC Biotech (Germany), at which bi-directional fluorescent sequencing on an ABI 3730 

XL sequencer using BigDye Terminator V3.1 Cycle Sequencing kit (Applied 

Biosystems) was carried out. The obtained sequences were assembled and aligned compared 

to a reference sequence using the SequencePilot 4.2.2 software (JSI Medical Systems 

GmbH). 
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Gene / Exon Primer Name Primer Sequence, 5'->3' 

TMEM138 / exon 5 TMEM138_EX5F CCTGAGGCTTCTCTTCTGCT 
TMEM138_EX5R CCTGCAAAGCAGCAAATGT 

TMEM231 / exon 5 TMEM231_EX5F TCAAACAGCCATCGTGGTTA 
TMEM231_EX5R TTATAGGCAGGAGCCACCAC 

COL4A5 / Exon 39 COL4A5_Ex39F GTTGGAAATTGGAAAACTGGGTG 
COL4A5_Ex39R AGGGGAAAGTGTGTGGTAGC 

BBS9 / Exon 17 BBS9_Ex17F TGTGTTCATTTTGCCTTCTGG 
BBS9_Ex17R AGTATCCTCTGTGATGTGGTATC 

WDR19 / Exon 32 WDR19_Ex32F GAACAAAGCATGAATTGGGGC 
WDR19_Ex32R CATGGGTGAGAGCTCTGGTC 

NUP93 / Exon 12 NUP93_Ex12F GTGGCTCAGGGTGTCATTTG 

NUP93_Ex12R GAAGGGAAAGGTGGTTATGTCC 
Table 2.8 Forward and reverse primer sequences used for WES variants verification.  

 

Steps No. Cycles  Temperature (°C) Time  Comments 

1 1 95 10 min   

2 13 
94 30 sec   
72 30 sec decrease by 0.70°C each time 
72 1 min   

3 20 
94 30 sec   
50 30 sec   
72 1 min   

4 1 72 5 min   
5 Hold 4 ∞   

Table 2.9 Touch-down PCR conditions used for WES variants verification. 

 

2.7 Statistical Analyses 

Statistical analysis was performed using IBM SPSS Statistics 20 with the results expressed as 

frequencies and percentages for categorical variables and as median ±SD for contentious 

variables, as appropriate.  
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Chapter 3. Retrospective Analysis of Renal Replacement Therapy 

(RRT) Register in Oman1 
 

3.1 Introduction and aims 

Chronic kidney disease (CKD) is a common condition characterized by permanent kidney 

damage and reduced glomerular filtration rates leading to end stage kidney disease 

(ESKD), where renal replacement therapy (RRT) is necessary for long term survival. 

Globally, ESKD is a huge burden on health care systems. The number of patients 

receiving RRT worldwide in 2010 was estimated to be 2.6 million, whereas the estimated 

number of actual patients demanding RRT was 4.9 million (Liyanage et al., 2015). This 

RRT gap is one of the global challenges presented with the growing rate of ESKD. 

Inherited kidney diseases are important causes of morbidity and may lead to both 

progressive CKD and ESKD. Inherited kidney disease accounts for approximately 20% of 

all CKD cases and is an important cause of ESKD (Hildebrandt, 2010). Renal registry 

studies suggest that at least 10% of ESKD in adults is related to inherited renal disease, 

with autosomal dominant polycystic kidney disease (ADPKD) making a large proportion 

of these cases (Australian and New Zealand Dialysis and Transplant Registry 

(ANZDATA), 2012). In the United States (US) and Europe, congenital anomalies of the 

kidney and urinary tract (CAKUT) and inherited nephropathies are the major causes of 

CKD among youngest ESKD groups (Harambat et al., 2012). The situation in the Middle 

East countries was revealed to be the same, but the prevalence of inherited kidney disease 

is reported to be much higher (up to 30%) compared to Europe due to high rates of 

consanguinity (Harambat et al., 2012). 

In Oman, there has been a progressive increase in the ESKD incidence and prevalence 

over the last three decades (Al Ismaili et al., 2017). The incidence rate of ESKD patients 

receiving RRT in Oman at the end of 1998 was 21 per million population (PMP), whereas 

the calculated incidence in 2013 was 120 PMP (Al Ismaili et al., 2017). Along with the 

increasing rate of ESKD, a gradual increase in morbidity caused by CKD had been 

observed (Al Alawi et al., 2017b). 

______________________________________________________________________________________ 
1adapted from Al Alawi et al. (2017a) 
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Hereditary disorders are massive burden on healthcare system in Oman, which are 

considered as the major causes of congenital malformations and perinatal deaths in 

hospitals (Rajab et al., 2013).  The prevalence of some rare inherited kidney disease was 

reported to be higher compared to the worldwide prevalence due to high consanguinity 

(Rajab et al., 2005). However, there is no comprehensive data estimating the magnitude 

of inherited kidney disease in patients in Oman.  

The main objectives of this study were to perform a comprehensive epidemiological and 

etiological report of ESKD patients commencing RRT in Oman with an emphasis on 

genetic causes and inherited kidney disease and compare our results with other countries. 

All newly registered Omani patients with ESKD commencing RRT over a fifteen-year 

period (2001- 2015) (n = 2,922) were analysed using the RRT register in Oman. All 

potentially genetic or inherited causes of ESKD were reviewed and the proportion and 

clinical characteristics of this cohort were reported. For more details of the RRT register, 

collected data and retrospective analyses performed please see Chapter 2 (Methods). The 

results of this study were published in Al Alawi et al. (2017a) 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480059/#B17).  

3.2 Characteristics of ESKD Patients Commencing RRT 

From 2001 to 2015, a total of 2,922 new patients commenced RRT due to different 

causes. Males contributed 57.1% (n = 1668) of the patients and females contributed 

42.9% (n = 1254). The mean age of RRT commencement was 50.14 ± SD 17.5 years, 

while the median age was 53 years. Overall, 1321 (47.1%) cases of ESKD occurred 

among patients who were 45–64 years, whereas 884 (31.5%) occurred among patients 

who were ≤44 years and 599 (21.2%) in patients who were 65 years and over (Figure 

3.1B).  

Diabetic nephropathy was the most prevalent cause of ESKD (46%), followed by 

hypertensive nephropathy (HTN) (19%) and chronic glomerulonephritis (15%) (Figure 

3.2). Inherited kidney disease contributed just 5% of the total RRT population. Other 

aetiologies, such as urological, tubulointerstitial kidney disease and vascular causes, 

comprised 11% of RRT population. However, a dramatically different picture was 

revealed when the primary diagnosis is given by age groups (Tables 3.1 and 3.2). In 

patients less than 20 years of age, inherited kidney disease was the most common primary 

cause of kidney disease (Table 3.1) accounting for 42% of ESKD in 0–12 years' age 
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group and 27% of ESKD in the 13–19 years' age group (Table 3.2). Therefore, in patients 

less than 20 years of age inherited kidney disease accounted for 65 of 200 cases (32.5%) 

of ESKD.  

 
Figure 3.1 Age distribution of the ESKD population compared to the total Omani 
population. (A) Percentage age distribution of Omani population (National Center for 
Statistics and Information, 2015). (B) Percentage age distribution of ESKD population at 
initiation of renal replacement therapy (RRT). ESKD: end stage kidney disease.  
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Figure 3.2 Aetiology of end stage kidney disease (ESKD) in Oman.  
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  Primary causes of end stage kidney disease     

Age 
Group 
(years) 

Diabetic 
nephropathy 

Hypertensive 
nephropathy 

Glomerulo-
nephritis 

Inherited 
kidney disease Other Uncertain 

aetiology Total 

N % N % N % N % N % N % N % 

0-12 2 0.071 0 0 16 0.571 30 1.07 15 0.535 8 0.285 71 2.5 

13-19 0 0 4 0.143 45 1.605 35 1.248 33 1.177 12 0.428 129 4.6 

20-44 173 6.17 125 4.458 187 6.669 33 1.177 119 4.244 47 1.676 684 24.4 

45-64 769 27.43 253 9.023 139 4.957 36 1.284 77 2.746 47 1.676 1321 47.1 

65-74 259 9.237 110 3.923 27 0.963 1 0.036 36 1.284 7 0.25 440 15.7 

≥75 73 2.603 49 1.748 10 0.357 4 0.143 19 0.678 4 0.143 159 5.7 

Total 1276 45.51 541 19.29 424 15.12 139 4.957 299 10.66 125 4.458 2804 100 
Table 3.1 Distribution of primary kidney diagnosis by age in end stage kidney disease (ESKD) patients (2001-2015).  
Percentages calculated after excluding patients without primary diagnosis data. N: number. %: percentage.  
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Age Group (years) 
Inherited kidney disease 

N % 
0-12 30 42.3 
13-19 35 27.1 
20-44 33 4.8 
45-64 36 2.7 
65-74 1 0.2 
≥75 4 2.5 

Total 139 5 
Table 3.2 Distribution of inherited kidney disease by age in ESKD patients (2001-2015).  
N: number. %: percentage.  
 

3.3 Characteristics of Inherited Kidney Disease Patients on ESKD 

The distribution of males with inherited kidney disease was found to be higher (n = 79; 

56.8%) than females (n = 60; 43.2%). Patients with inherited kidney disease started RRT at a 

younger age with a mean of 29.4 ± SD 20.1 and median age of 21 years (Figure 3.3).  

 
Figure 3.3 Comparison of patients with hereditary kidney disease (HKD) and non-hereditary 
kidney disease (non-HKD) across age groups.  
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A positive family history of disease was present in 36.7% of inherited kidney disease cases. 

Dialysis was the initial RRT modality in all inherited kidney disease patients (n = 115) 

except 24 patients, who received preemptive transplant in the form of living-related donor 

(n = 6) and living nonrelated donor (n = 18) (Table 3.3). Currently, in the cohort of inherited 

kidney disease patients, 37% have a functioning transplant, 38% are receiving haemodialysis, 

and 3.6% are receiving peritoneal dialysis (Table 3.3). A total of 25 patients (18%) have died 

during the study period with cardiac disease being the leading cause of death. Hypertension 

was the most common comorbidity in inherited kidney disease patients at initiation of RRT 

(54.7%), compared to diabetes (2.2%), ischemic heart disease (3.6%), cerebrovascular 

diseases (1.4%), and respiratory diseases (1.4%) (Table 3.3).   

ADPKD was the most common inherited kidney disease diagnosis, accounting for 40.3% of 

inherited cases, followed by CAKUT (11.5%), Alport syndrome (9.4%), and ARPKD (7.2%) 

(Table 3.4).  
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ADPKD 

Other 
inherited 
kidney 
disease 

Total inherited kidney 
disease population 

N % N % N % 
Positive family history of 
disease 23 41.1 28 33.7 51 36.7 

Comorbidity             
Diabetes mellitus 2 3.6 1 1.2 3 2.2 
Hypertension 34 60.7 42 50.6 76 54.7 
Ischemic heart disease  5 8.9 0 0.0 5 3.6 
Cerebrovascular disease 1 1.8 1 1.2 2 1.4 
Respiratory disease 1 1.8 1 1.2 2 1.4 
Other 6 10.7 17 20.5 23 16.5 
First RRT modality             
Haemodialysis 42 75.0 63 75.9 105 75.5 
Peritoneal dialysis 1 1.8 9 10.8 10 7.2 
Preemptive transplant, 
living related donor 1 1.8 5 6.0 6 4.3 

Preemptive transplant, 
living nonrelated donor 12 21.4 6 7.2 18 12.9 

Current status             
Haemodialysis 18 32.1 35 40.7 53 38.1 
Peritoneal dialysis 1 1.8 4 4.7 5 3.6 
Transplant 22 39.3 30 34.9 52 37.4 
Lost to follow-up 2 3.6 1 1.2 3 2.2 
Deceased 13 23.2 12 14.0 25 18.0 
Cause of death             
Cardiac disease 5 38.5 3 25.0 8 32 
Cerebrovascular disease 2 15.4 1 8.3 3 12 
Infection 3 23.1 2 16.7 5 20 
Other 1 7.7 4 33.3 5 20 
Uncertain 2 15.4 2 16.7 4 16 

Table 3.3 Comparison between Autosomal dominant polycystic kidney disease (ADPKD) 
and other causes of inherited kidney disease. N: number. %: percentage.  
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Inherited kidney disease N 

Proportion 
of 

inherited 
kidney 
disease 

(%) 

Proportion 
of ESKD 

in this 
cohort (%) 

Age group (N) 

0-
12  

13-
19 

20-
44 ≥45 

Autosomal dominant polycystic 
kidney disease (ADPKD) 56 40.3 2 1 1 17 37 

Congenital anomalies of 
Kidney and Urinary Tract 
(CAKUT) 

16 11.5 0.6 8 6 2 0 

Alport syndrome 13 9.4 0.5 0 7 6 0 
Autosomal recessive polycystic 
kidney disease (ARPKD) 

10 7.2 0.4 3 6 0 1 

Dysplastic cystic kidney 7 5 0.2 1 3 2 1 

Steroid resistant nephrotic 
syndrome (congenital & 
childhood) 

5 3.6 0.2 4 1 0 0 

Primary hyperoxaluria 5 3.6 0.2 2 2 1 0 

Prune-belly syndrome 5 3.6 0.2 2 2 1 0 
Familial focal segmental 
glomerulosclerosis 5 3.6 0.2 1 2 2 0 

Medullary cystic kidney 4 2.9 0.1 3 0 1 0 
Familial interstitial 
nephropathy 2 1.4 0.1 1 1 0 0 

Haemolytic uremic syndrome 2 1.4 0.1 2 0 0 0 
Mesangioproliferative 
glomerulosclerosis 2 1.4 0.1 0 1 1 0 

Membranoproliferative 
glomerulosclerosis 2 1.4 0.1 0 0 0 2 

Nephronophthisis 1 0.7 0.0 1 0 0 0 

Barter syndrome 1 0.7 0.0 0 1 0 0 

Lowe's syndrome 1 0.7 0.0 0 1 0 0 

Renal tubular acidosis (Type 1) 1 0.7 0.0 0 1 0 0 

Undetermined familial disease 1 0.7 0.0 1 0 0 0 

Total 139 100 5 30 35 33 41 
Table 3.4 Inherited kidney diseases in end stage kidney disease (ESKD) population (2001-
2015). N: number. %: percentage.  
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3.4 Discussion 

This study represents a comprehensive, up-to-date population-based epidemiological and 

etiological report of Omani patients reaching ESKD and commencing RRT. It reveals that 

ESKD is more prevalent in males, with a ratio of 1.3, which is consistent with data reported 

from other countries (Hecking et al., 2014). The median age of incident ESKD patients 

starting RRT was 53 years and is in agreement with that reported in other Middle East 

countries with almost similar demographics and socioeconomic features, including Saudi 

Arabia (Al-Sayyari and Shaheen, 2011) and Jordan (Batieha et al., 2007), but substantially 

lower than that reported in European countries, including the United Kingdom (UK) (UK 

Renal Registry, 2013) , Croatia, Georgia and Cyprus (European Renal Association - 

European Dialysis and Transplant Association (ERA-EDTA) Registry, 2015) and the USA 

(USRDS, 2013). The data we present here from Oman shows that there is a sharp increase in 

the prevalence of ESKD with increasing age. We anticipate that as the population ages in 

Oman, the ESKD prevalence will increase. This trend is consistent with that reported from 

Saudi Arabia, which is comparable to the situation in the developed countries where the rate 

of elderly is recently decreased or stabilized (Al-Sayyari and Shaheen, 2011). 

Diabetic nephropathy was the commonest underlying cause of ESKD and was more 

prevalent among older patients of 45 years and over. Eighteen years ago, the prevalence of 

diabetic nephropathy among RRT patients in Oman was reported to be 14.5% (Al-Marhuby, 

1998), whereas in our study it accounted for 45.5% of ESKD population. The observed 

incidence of diabetic nephropathy leading to ESKD places Oman among the highest 

countries in the world. Table 3.5 allows a comparison in the percentage of incident ESKD 

patients due to diabetes mellitus in Oman and other countries.  

In this study, we described for the first time the prevalence of inherited kidney disease 

causing ESKD in Oman. Inherited kidney disease comprises 5% of all causes of ESKD but 

was highly prevalent in paediatric ESKD patients. The detected prevalence of inherited 

kidney disease in our study is considerably lower than that reported in other countries 

including Libya (12%) (Alashek et al., 2013) and Australia (10%) (Mallett et al., 2014); 

however, it is consistent with the summarized estimate of the countries of the Gulf 

Cooperation Council (GCC) of 4.43% (Hassanien et al., 2012). Nonetheless, inherited and 
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congenital kidney disease is thought to be an important aetiology of ESKD in Omani 

population in which the consanguinity rate is relatively high (56.3%) (Tadmouri et al., 2009). 

The detected low frequencies of inherited kidney disease are expected to be due to high 

mortality rate among newborns with recessively inherited kidney disorders. CKD in 

paediatric patients is a devastating illness and the mortality rate for those with ESKD 

receiving RRT is expected to be 30–150 times higher when compared to a general paediatric 

population (McDonald and Craig, 2004). Moreover, since what is seen from ESKD is only 

the “tip of the iceberg” of CKD we expect inherited kidney disease patients with earlier 

stages of CKD are probably exceeding those reaching ESKD. Recently,  Al Riyami et al. 

(2019) in their study comprising Omani children with different CKD stages (I-V) revealed 

that the overall incidence of CKD in Oman is higher than that of other countries and inherited 

kidney disease account for 32% of CKD aetiology. At diagnosis only 41.3% of patients are 

on CKD stage 5, while the remaining (58.6%) are at CKD stage 2-4. 

Country Diabetic HTN GN UA ADPKD Reference 

Jordan 29.2 14.2 12.3 12.4 -  (Batieha et al., 
2007) 

United 
Kingdom 15.9 6.1 19 16 9.9 (UK Renal 

Registry, 2013) 

Libya 26.5 14.6 21.2 10.2 6.3 (Alashek et al., 
2013)  

India 20.5 4.5 34.5 19 5 (Sakhuja and 
Sud, 2003)  

Pakistan 10 12 37 19 3 (Sakhuja and 
Sud, 2003)  

Turkey 29.9 25.9 7.9 15.7 3.8 (Connor et al., 
2013)  

Oman 45.5 19.3 15.1 4.5 2 This study 
Table 3.5 Primary causes of end stage kidney disease (ESKD) in Oman and other countries. 
HTN: Hypertensive nephropathy; GN: Glomerulonephritis; UA: uncertain aetiology; 
ADPKD: autosomal dominant polycystic kidney disease.   
 

A comparison of Omani registry data from comparator countries shows a much smaller 

burden of ADPKD than Western countries and lowers than the summarized estimate of 

ADPKD in GCC countries (4.8%) (Hassanien et al., 2012) (Table 3.3). The reasons for this 

probably reflect the relative young population in Oman. An age comparison of the total 
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population of Omani versus age of ESKD population confirms this, where the population can 

be divided into youth group (0-14 years) that account for 21.6%, working age group (15-64 

years) accounting for 57.3% and an elderly group (≥65 years) accounting for 4.3% (National 

Center for Statistics and Information, 2015) (Figures 3.1 (A) and (B)). Published data from 

Australia and New Zealand describe an increase in the contribution of ADPKD to ESKD 

over the last 5 decades (Fernando et al., 2017) and reflect an overall increase in age of the 

ESKD population. Similar observations have been made in other countries including 

Denmark (Orskov et al., 2010) and the USA (USRDS, 2013). Thus, over the next few 

decades the relative contribution of ADPKD to ESKD in Oman will likely increase towards 

5–10%. 

Estimating the prevalence and incidence of ESKD accurately is very important to evolve 

strategies to decrease the total burden of ESKD and support the preparation of a 

comprehensive health service delivery. The approach of using RRT registries may 

underestimate the accurate burden of ESKD, because of the uncertainty in the total of 

undiagnosed cases and missing of ESKD individuals who are not commencing RRT (Li et 

al., 2018). Data capture-recapture approach is now used in epidemiology to determine the 

accurate estimation and to essentially notify the gap in RRT facilities, at which various 

administrative data sources are utilized to reduce the effect of misclassification (Li et al., 

2018). 

In summary, this study represents a population-based etiological report of Omani ESKD 

commencing RRT from 2001 to 2015. It clearly shows that Oman is facing major factors that 

globally are fundamentally responsible for the growing incidence of ESKD in adults, namely, 

an aging population and a high burden of diabetes mellitus. Therefore, health care providers 

must concentrate on strategic actions that highlight primary prevention, early detection, and 

dynamic management of CKD population. For the first time, the prevalence of inherited 

kidney disease causing ESKD in Oman has been accurately described and this data 

emphasizes need to measure the frequencies of inherited kidney disease patients in earlier 

stages of CKD and assess their rate of progression to ESKD. 
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Chapter 4. Targeted Next Generation Sequencing of Omani Patients 
2stic Kidney Diseasewith Inherited Cy 

4.1 Introduction and aims 

Chronic kidney disease (CKD) is defined as anomalies in the structure or function of the 
kidney that are present for more than 3 months and have implications for health. Inherited 
kidney diseases are a major cause of CKD and often lead to progressive CKD resulting in 
end-stage kidney disease (ESKD). Cystic kidney diseases are common inherited causes of 
ESKD in both children and adults, accounting for 6%–12% of cases (Harambat et al., 
2012, Torres and Harris, 2019).  

Inherited forms of cystic kidney have been associated with dysfunction of the primary 
cilia (Braun and Hildebrandt, 2017). These diseases are frequently called renal 
ciliopathies and are part of an increasing number of inherited diseases that include 
autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic 
kidney disease (ARPKD)(Bergmann, 2019), tuberous sclerosis complex (TSC) (Bissler 
and Christopher Kingswood, 2018), autosomal dominant tubulointerstitial kidney disease 
(ADTKD) (Zaucke et al., 2010), nephronophthisis-related ciliopathies (NPHP-RC) 
(Srivastava et al., 2017), Bardet-Biedl syndrome, Senior-Löken syndrome, Meckel 
Gruber syndrome, Joubert syndrome, and others (Mitchison and Valente, 2017).  

Molecular genetic analysis of individuals and families with cystic kidney disease is 
crucial in order to determine accurate diagnosis, prognosis, genetic counselling, and 
medical and educational management (Mallett et al., 2016, Alkanderi et al., 2017, Mallett 
et al., 2017). However, genetic testing requires time and cost-effective approaches that 
will not overburden healthcare systems. Next generation sequencing (NGS, also called 
massively parallel sequencing) technologies are dramatically increasing sequencing 
capacity in routine clinical diagnosis, and speeding up genetic mutation identification. 
Gene panel approaches through parallel sequencing of targeted subsets of disease-
associated genes as well as whole-exome and whole-genome sequencing are increasingly 
becoming part of routine clinical service for the investigation of inherited kidney disease 
(Al-Hamed et al., 2016, Mallawaarachchi et al., 2016, Groopman et al., 2019). Specific to 
cystic kidney disease, various studies have applied NGS to deliver a disease-specific 
molecular diagnosis. Targeted NGS panels have been used extensively for analysis of 
ADPKD (Rossetti et al., 2012, Lanktree et al., 2019), ARPKD (Bergmann, 2017), and 
NPHP-RC (Chaki et al., 2012).  

________________________________________________________________________ 
2Adapted from Al Alawi et al. (2019) (URL: https://www.kireports.org/article/S2468-0249(19)31468-
8/fulltext) 
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In Oman, inherited kidney diseases are relatively common, leading to a significant 
healthcare burden (Rajab et al., 2013). Congenital malformations and genetic disorders 
are associated with 39% of perinatal deaths in hospitals (Rajab et al., 2013).  However, to 
date, access to molecular genetic diagnostics is limited in Oman. We sought to establish 
an NGS platform for the molecular genetic diagnosis of cystic kidney disease in Oman 
that would allow for the first time a picture of the underlying molecular genetic causes of 
cystic kidney disease. In this pilot study of 53 patients with cystic kidney disease, we 
applied a diagnostic panel targeting 49 genes and achieved an overall molecular genetic 
diagnosis rate of 75%. The results were published in Al Alawi et al (2019) 
(URL:https://www.kireports.org/article/S2468-0249(19)31468-8/fulltext) 

4.2 Panel Performance 

The NGS panel (Tables 2.1 and A1.1) showed a good capture yield and high sequencing 

quality with mean coverage depth of 875.3 ± 541 SD (Table 4.1). An average of 2.6 

million filtered reads were generated per sample, with 2.0 million of these aligned 

uniquely to the target region, leading to 76.5% average reads enrichment (65% to 83%) 

and hence indicating high sensitivity of the capture method used. On average, this panel 

provided 98.6%, 97.8%, 95.7%, and 89.3% base reads on target, with base coverage of 

20×, 30×, 50×, and 100×, respectively (Table 4.1). Sufficient coverage of all PKD1 exons 

was obtained through designing capture primers and enrichment technique (Table 4.2).  

4.3 Patients Characteristics  

The 53 patients included in this study were from different regions throughout Oman 

(Figure 4.1) and included one prenatal (2%), 30 pediatric (from birth to 13 years; 57%), 

and 22 teenage/adult (>13 years; 42%) cases. The median age was 10 years (range: 0–63 

years), and 28 (53%) were female. At the time of referral, 39 (74%) had a known family 

history of kidney disease. 
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Performance Metrics Mean 
(Average) 

Standard Error 
of the Mean 

(SEx̄) 

Standard 
Deviation (SD) 

Total Length of targeted 
reference 

244088 0 0 

Total aligned reads 2607397.1 231596.2 1553594.3 

Targeted aligned reads 2006310.1 182732.0 1225803.4 
Read enrichment % 76.5 0.6 4.1 
Total aligned bases 391703116 35675192.3 239316465.0 
Targeted aligned bases 311088772.2 29061958.1 194953541.5 
Base enrichment % 79.0 0.6 3.8 
Mean region coverage depth 875.3 80.7 541.3 
Uniformity of coverage (Pct > 
0.2*mean) 

95.464 0.2 1.4 

Target coverage at    1X 99.5 0.03 0.2 
Target coverage at   10X 99.1 0.1 0.7 
Target coverage at   20X 98.6 0.2 1.5 
Target coverage at   30X 97.8 0.4 3.0 
Target coverage at   50X 95.7 1.1 7.3 
Target coverage at  100X 89.3 2.9 19.7 
Insert size median 302.4 6.9 46.2 
Insert size 25th percentile 270.7 6.2 41.3 
Insert size 75th percentile 350.6 8.0 53.7 
Captured Variants 807.8 29.4 197.3 
Variants (Percent found in 
dbSNP) 

44.4 1.1 7.6 

Variant Ts/Tv ratio 1.0 0.03 0.2 
Variant Het/Hom ratio 7.7 0.4 2.5 

Table 4.1 NGS panel performance metrics. Read enrichment: Number of targeted reads / 
total number of aligned reads (expressed as a percentage). Base enrichment: Number of 
targeted aligned bases / total aligned bases (expressed as a percentage). Uniformity of 
coverage (Pct > 0.2*mean): Percentage of targeted regions with average coverage > 20% 
of the mean region coverage depth. Variant Ts/Tv ratio: Number of nucleotide 
substitutions that are transitions / number of substitutions that are transversions. 
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 Genomic 
Coordinate 

Length Exons 
Captured 

Mean 
Coverage 

Depth 

Mean% 
Covered 

Mean 
Read 
Count Start End 

2185425 2185740 316 1 109 53% 685 
2169257 2169429 173 2 1074 100% 1932 
2169064 2169236 173 3 523 100% 1833 
2168626 2168896 271 4 873 100% 2039 
2167741 2168513 773 5 363 100% 2337 
2167439 2167723 285 6 335 100% 1152 
2166783 2167104 322 7 506 100% 1800 
2166479 2166695 217 8 738 100% 2230 
2165942 2166169 228 9 587 100% 1640 
2165328 2165676 349 10 491 100% 1395 
2164120 2164976 857 11 637 100% 6984 
2163111 2163343 233 12 269 90% 627 
2162738 2163014 277 13 1078 100% 3121 
2162290 2162524 235 14 323 100% 1243 
2158202 2161922 3721 15 601 100% 16207 
2157833 2158083 251 16 538 100% 2531 
2156755 2156999 245 17 654 100% 1798 
2155815 2156728 914 18-20 450 100% 3051 
2155272 2155525 254 21 502 100% 908 
2154448 2154693 246 22 512 100% 1343 
2153216 2153946 731 23 835 100% 4347 
2152764 2153021 258 24 946 100% 2882 
2152331 2152684 354 25 595 100% 2024 
2152011 2152307 297 26 569 100% 1811 
2149594 2150617 1024 27-30 583 100% 4227 
2147678 2148035 358 31-32 1040 100% 3880 
2147098 2147554 457 33-34 548 100% 3010 
2143494 2144261 768 35-37 457 100% 3947 
2142904 2143144 241 38 1032 100% 2832 
2142430 2142643 214 39 1047 100% 1890 
2141997 2142239 243 40 310 100% 863 
2141731 2141957 227 41 946 100% 2271 
2141373 2141648 276 42 145 59% 578 
2139677 2141225 1549 43-46 388 100% 4337 

Table 4.2 Depth of coverage of the captured regions of PKD1 gene using NGS panel. 
Eleven multiplexed samples were sequenced using the designed NGS panel and run on 
the MiSeq System. PCR duplicates and highest and lowest performers were removed 
from analysis. Performance was calculated from average coverage for each exon by depth 
and percent and average of the number of reads in each exon. 
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Figure 4.1 Geographical distribution of patients with cystic kidney disease patients 
included in this study. ADPKD, autosomal dominant polycystic kidney disease; ARPKD, 
autosomal recessive polycystic kidney disease; NPHP-RC, nephronophthisis-related 
ciliopathy. 
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4.4 Molecular Genetic Diagnosis and Correlation with Clinical Phenotype  

The clinical diagnosis of the patients included ADPKD (n = 16; 30%), ARPKD (n = 16; 

30%), NPHP-RC (n = 12; 23%), ciliopathy syndromes (n = 5; 10%), and unspecified 

cystic kidney disease (n = 4; 7.5%). Clinical features and key family history details are 

shown in Table 4.3. Molecular genetic investigations identified disease-causing variants 

in 40 of 53 (75%) patients (Figure 4.2A). Disease-causing variants were detected 

in PKD1, PKHD1, NPHP1, NPHP3, NPHP4, SDCCAG8, HNF1B, and WDR19 (Figure 4

.2B).  

Upon evaluation, molecular genetic testing confirmed the clinical diagnosis of 33 (62%), 

changed the diagnosis in 3 (6%), and revealed a diagnosis in 3 patients (6%) with 

unspecified cystic kidney disease (Figure 4.3). Overall, 12 (55%) variants were 

previously reported as disease causing, and 10 (46%) were novel (Table 4.4). Causative 

variants include 13 different single nucleotide variants (SNVs; 10 missense and 3 

nonsense), 7 small insertions/deletions (INDELs; 5 deletions [≤20 base pairs] and 2 

insertions), one large INDEL, and one whole-gene deletion (Table 4.4). According to the 

American College of Medical Genetics and Genomics (ACMG), 17 variants were 

classified as pathogenic, 4 as likely pathogenic, and one as a variant of uncertain 

significance (Table 4.4) (Richards et al., 2015). 

Figure 4.2 Molecular genetic diagnosis rate and genotype of studied patients. (A) 
Percentage of patients with an identified molecular genetic etiology of underlying cystic 
kidney disease. (B) Distribution of causative cystic kidney disease genes.  
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Figure 4.3 Comparison between suspected clinical diagnosis and molecular genetic 
diagnosis. ADPKD, autosomal dominant polycystic kidney disease; ARPKD, autosomal 
recessive polycystic kidney disease; NPHP-RC, nephronophthisis-related ciliopathies. 

 

The majority of patients referred for ADPKD were teenagers/adults (88%; 14 of 16). 

Genetic testing identified 8 different PKD1 pathogenic variants, including 1 novel 

missense, 1 novel nonsense alteration, 2 small deletions, 2 novel small insertions, and 1 

large INDEL (Table 4.4 and Figure 4.4). 

A molecular genetic etiology of ARPKD was obtained in a total of 18 unrelated patients, 

in which 4 PKHD1 different missense variants were detected. These variants were 

c.107C>T, p.(Thr36Met); c.406A>G, p.(Thr136Ala); c.4870C>T, p.(Arg1624Trp), and 

c.9370C>T, p.(His3124Tyr) (Table 4.4). The c.107C>T, p.(Thr36Met) PKHD1 variant 

was identified homozygously in 10 patients and compound heterozygously in 4 other 

patients (Table 4.4). The p.(Thr136Ala) allele (Figure 4.5) has not been reported 

previously or described in any databases. However, mutation evaluation algorithms 

considered this variation pathogenic. 
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Patient 
ID 

Age at 
referral 

 Gender  Clinical 
diagnosis  

Additional clinical 
features 

Family history Specific tests findings Region in 
Oman 

P1 47 Y F ADPKD Hypertension. ESKD 47 
Y. 

Brother: ADPKD 
(CKD stage 4). Sister: 
ADPKD (ESKD). 

Renal USS: bilateral polycystic kidneys 
with several hepatic cysts. 

Buraimi 

P2 26 Y F ARPKD CKD stage 4. Brother: ARPKD Renal USS: small kidneys with loss of 
CMD and multiple tiny cysts 

Saham 

P3 4 M M ARPKD Hypertension, 
respiratory distress and 
ESKD from birth. Early 
death. 

  Antenatal USS showed bilateral 
enlarged 
kidneys. 

Shinas 

P4 37 Y F ADPKD Hypertension. ESKD 33 
Y. 

ADPKD in multiple 
family members. 

Abdo USS: multiple kidney cysts, 
simple hepatic cysts and two pancreatic 
cysts. 

Sinaw 

P5 12 Y F ARPKD Portal hypertension. 
CKD 
stage 1. 

History of sibling 
death 
(aged 4 Y). 

Renal USS: large echogenic kidneys, 
hepatosplenomegaly. 

Ibri 

P6 2 Y M ARPKD Hypertension and iron 
deficiency anaemia. 
CKD stage 3A. 

Sibling died of ESKD. 
3 paternal cousins with 
ARPKD. Parents are 
consanguineous. 

Abdo USS: cystic kidneys and 
hepatomegaly. 

Sohar 

P7 3 D M MKS Dysmorphic features, 
occipital encephalocele 
and polydactyl. CKD 
stage 1.  

2 sibling deaths: 
encephalocoele (aged 1 
Y); hydrocephalus 
(aged 7 Y). Parents are 
consanguineous.  

Antenatal USS: occipital encephalocele 
and 
bilateral ventriculomegaly.  

Nizwa 

P8 5 M F ARPKD Hypertension and 
recurrent respiratory 

Sibling death: 
respiratory distress.  

Antenatal USS: oligohydramnios. 
Postnatal USS: hepatomegaly and 

Ibri 
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infection. CKD stage 2.  enlarged cystic kidneys. 

P9 16 Y M ARPKD Chronic bronchial 
asthma, 
hyperparathyroidism, 
short stature, ESKD 
from birth. 

Parents are 
consanguineous.  

Abdo USS: both kidneys enlarged with 
multiple cysts. Liver biopsy: congenital 
hepatic fibrosis. 

Khabura 

P10 3 Y F NPHP Recurrent UTI, infantile 
cystic kidney disease, 
CKD stage 1. 

2 affected siblings; one 
died with ESKD. 

Abdo USS: small kidneys with cysts and 
congenital liver fibrosis.  

Salalah 

P11 19 Y F ARPKD Portal hypertension and 
oedema, ESKD 14 Y. 

Sibling with ARPKD. 
Parents are 
consanguineous. 

Abdo USS: cystic kidneys with hepatic 
fibrosis and hypersplenisim.  

Buraimi 

P12 3 M F MKS Dysmorphic features, 
occipital encephalocele, 
polydactyl, 
diaphragmatic hernia. 
ESKD 1 Y. 

Sibling died perinataly 
with encephalocele. 
Parents are 
consanguineous. 

Abdo USS: large cystic kidneys.  Quriyat 

P13 2 Y M JBTS Global developmental 
delay, hypotonia, 
polycystic kidneys, poor 
visual fixation. 

  Brain MRI: molar tooth sign, small 
vermis. Renal USS: polycystic kidneys. 

Sur 

P14 1 Y F NPHP Failure to thrive, 
chronic anaemia, ESKD 
1 Y. 

  Renal biopsy: cystic dilation of tubules, 
glomerulosclerosis and advanced 
interstitial 
scarring. Liver biopsy: bile duct 
proliferation, and hepatic fibrosis. Renal 
USS: increased echogenicity with loss of 
CMD and cortical cysts noted in left 
kidney. 

Liwa 
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P15 2 Y F NPHP Hypertension, ESKD 1 
Y. 

2 affected siblings; one 
died due to ESKD.  

Abdo USS: small kidneys with cysts and 
congenital liver fibrosis. 

Salalah 

P16 2 M F ARPKD CKD stage 4, 
hypertension. 

4 siblings with 
perinatal deaths with 
ARPKD. Parents are 
consanguineous. 

Renal USS: large kidneys with multiple 
cysts. 

Ibri 

P17 2 D F Antenatal 
cystic 
kidney 
disease 

Antenatal severe 
enlarged kidneys and 
lung hypoplasia. 
Perinatal death.  

  Antenatal scan showed enlarged kidneys 
and 
lungs hypoplasia. 

Sohar 

P18 41 Y M ADPKD Hypertension and 
diabetes, ESKD 39 Y. 

Mother and brother 
with 
ADPKD. 

Imaging (CT, US): bilateral polycystic 
kidney, few calcification in the wall of 
cysts. Several hepatic and pancreatic 
cysts. 

Sohar 

P19 6 Y M BBS Polydactyly hands and 
feet, obesity, 
developmental delay, 
retinitis pigmentosa, 
CKD stage 1. 

  Imaging (US) showed no renal cyst yet.  Nizwa 

P20 43 Y F ADPKD Hypertension and 
recurrent UTI, CKD 
stage3. 

Mother, 2 brothers and 
3 sisters with ADPKD. 

Abdo MRI: kidneys enlarged with 
several cysts. Some of cysts are 
haemorrhagic. Multiple liver cysts. 

Muscat 

P21 fetus U/A Antenatal 
cystic 
kidney 
disease 

   Family history of 3 
fetal deaths. 

Antenatal USS: kidneys enlarged with 
no 
CMD. Lung 
hypoplasia. 

Suwaiq 

P22 3 Y M ARPKD Hypertension, CKD 
stage 3A. 

1 affected sibling. 
Parents are 
consanguineous. 

Abdo USS: kidneys enlarged, echogenic 
parenchymal mild hydronephrosis. 
Hepatic 
fibrosis. 

Rustaq 
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P23 12 Y M NPHP Short stature and 
delayed bone age. 
Dyslipidaemia. CKD 
stage 3A. 

Parents are 
consanguineous. 

Renal USS: echogenic kidneys. Liwa 

P24 8 Y F NPHP Chronic, recurrent 
respiratory infections, 
retinal degeneration, 
ESKD 8 Y. 

Sister: ESKD. Renal USS: increased echogenicity of 
both 
kidneys with poor CMD with cortical 
scars. 

Sumail 

P25 2 M F ARPKD Hypertension and 
hypoaldosteronism, lung 
hypoplasia, perinatal 
death. 

History of older sibling 
death (2 days) with 
similar features.  

US imaging showed bilateral enlarged 
kidneys with multiple cysts and liver 
haemangioma. 

Khabura 

P26 17 Y F ARPKD Hypertension, anaemia, 
ESKD 13 Y. 

3 siblings with 
ARPKD: 2 died.  

Renal USS: enlarged kidneys with 
multiple small cysts and loss of CMD. 
Liver fibrosis. 

Mudhaibi 

P27 20 Y M ARPKD Abdomen pain and 
urinary tract infection. 
CKD stage 3. 

3 brothers with 
ARPKD. 

Abdo USS: liver fibrosis, splenomegaly 
and both kidneys increased 
echogenicity, loss of CMD and small 
cysts. 

Rustaq 

P28 28 Y F ARPKD  ESKD 11 Y. Father and sister with 
ARPKD. 

Abdo USS: hepatomegaly and 
echogenicity due to hepatic fibrosis. 
Bilateral enlarged kidneys. 

Shinas 

P29 1 Y F ARPKD     Renal USS: enlarged kidneys with 
increased 
echogenicity and nephrocalcinosis. 

Muscat 

P30 3 Y F NPHP Developmental delay, 
hyperparathyroidism, 
right hip dysplasia and 
failure to thrive, ESKD 
4 Y. 

Parents are 
consanguineous. 

Renal USS: echogenic kidneys and poor 
CMD, no focal lesion or hydronephrosis. 

Dhank 
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P31 5 Y F NPHP Retinitis pigmentosa, 
bilateral conductive 
hearing loss, ESKD 6 Y. 

  Renal USS: both kidneys small in size, 
with bilateral cysts. 

Muscat 

P32 40 Y M ADPKD Hypertension, 
hyperuricaemia and 
hyperlipidaemia, ESKD 
39 Y. 

Maternal uncle: 
ADPKD. 

Abdo CT: multiple cystic lesions on 
both kidneys, multiple small renal stones 
in left kidney. 

Nizwa 

P33 31 Y  M ADPKD Renal calculi. Father and brother 
with ADPKD. 

Renal USS: bilateral enlarged kidneys 
with multiple cysts and stones. 

Rustaq 

P34 55 Y F ADPKD Hypertension and 
diabetes, ESKD 37 Y.  

Brother and 2 sons 
with ADPKD. 

Renal USS: bilateral cysts. Sohar 

P35 48 Y M ADPKD Hypertension, ESKD 50 
Y. 

Sister with ADPKD. Abdo USS: fatty liver, bilateral 
increased renal cortical echogenicity, 
bilateral renal cortical cysts. 

Jaalan 
bani 
buHassan 

P36 29 Y F ADPKD Hypertension, ESKD 31 
Y. 

Father and paternal 
uncle: ADPKD. 

Renal USS: bilateral cysts. Jaalan 
bani 
buHassan 

P37 53 Y M ADPKD Hypertension, ESKD 48 
Y. 

Mother and maternal 
uncle: ADPKD. 

Renal USS: bilateral enlarged kidneys 
with 
multiple cysts. 

Buraimi 

P38 2 Y F ARPKD Hypertension, CKD stage 3A. Abdo USS: enlarged kidneys with 
multiple small cysts and loss of CMD 
and liver fibrosis.  

Suwaiq 

P39 13 Y F NPHP CKD stage 2.   Abdo USS: kidneys increased cortical 
echogenicity with loss of CMD and 
cortical cysts. 

Muscat 

P40 12 Y M NPHP ESKD age 10. 2 siblings with ESKD 
and 1 with CKD stage 
4. 

Abdo USS: kidneys increased 
echogenicity and loss of CMD. 

Sumail 
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P41 10 Y M MKS Occipital encephalocele, 
dysmorphism, failure to 
thrive, and visual loss. 
CKD stage 3B. 

  Renal USS: large kidneys with loss of 
CMD and presence of multiple cysts.  

Jaalan 
bani buAli 

P42 7 Y F ADPKD Abdominal pain.   Renal USS: large kidneys with multiple 
cysts. 

Muscat 

P43 47 Y M ADPKD Hypertension, 
abdominal 
pain. CKD stage 4. 

Father and paternal 
uncle: ADPKD. 

Renal USS: large kidneys with multiple 
cysts. 

Musana 

P44 5 M M ARPKD Hypertension, 
oligohydramnios, 
ESKD. 

  Renal USS: enlarged kidneys with 
increased 
echogenicity with loss of CMD and 
small cysts. 

Ibri 

P45 44 Y M ADPKD Hypertension and 
haematuria. 
ESKD 45 Y. 

2 paternal aunts and 2 
paternal uncles with 
ADPKD. 3 Brothers 
and 1 daughter with 
ADPKD. 

Renal USS: enlarged cystic kidneys. Bahla 

P46 10 Y F NPHP Abdominal pain, 
developmental delay, 
delayed speech. CKD 
stage 4. 

Brother with ESKD 
and developmental 
delay. 

Renal USS: hypoplastic dysplastic 
kidneys. 

Salalah 

P47 63 Y M ADPKD Hypertension, CKD 
stage 3B. 

  Renal USS: cortical renal cysts. Rustaq 

P48 13 Y M Unexplaine
d 
kidney 
failure 

ESKD 12 Y. Sister with CKD stage 
3. 

Renal USS: echogenic kidneys with loss 
of CMD and multiple cysts. 

Salalah 

P49 2 M F NPHP Hypertension, liver 
fibrosis, nystagmus, 
developmental delay, 
ESKD from birth. 

Consanguineous 
parents. One sibling 
with liver fibrosis, died 
aged 3 Y. 

Abdo USS: hepatic fibrosis, mild 
splenomegaly, kidneys with increased 
echogenicity and loss of CMD.  

Muscat 
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P50 11 Y F NPHP CKD stage 3. Mild 
hearing 
loss. 

  Renal USS: large kidneys with increased 
in 
echogenicity. 

Salalah 

P51 8 Y M ADPKD CKD stage 2.   Renal USS: echogenic kidneys, loss of 
CMD. 

Nizwa 

P52 2 D M UCKD Dysmorphic with severe 
oligohydramnios. 

Parents are 
consanguineous. 

Antenatal USS: enlarged cystic kidneys 
with 
severe oligohydramnios. 

Sohar 

P53 23 Y M ADPKD ESKD 13 Y.     Rustaq 

Table 4.3 Clinical phenotype and evidence of family history of renal disease. Abdo, Abdominal; ADPKD, autosomal dominant kidney disease; 
ARPKD, autosomal recessive kidney disease; BBS, Bardet Biedl syndrome; CKD, chronic kidney disease; CMD, corticomedullary 
differentiation; CT, computed tomography; D, day; ESKD, end stage kidney disease; F, female; JBTS, Joubert syndrome; M, male; M, month; 
MKS, Meckel Gruber syndrome; NPHP, nephronophthisis; U/A, unavailable; UCKD, unspecific cystic kidney disease; USS, ultrasound scan; 
UTI, urinary tract infection; Y, year.
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Patient Initial 
diagnosis  

Gene  Transcript c. change aa. change Type ACMG 
Classifi. 

dbSNP 
ID 

F/ 
seg. 

Reference 

P1 ADPKD PKD1 NM_001009944.2 c.7428C>G  p.Cys2476Trp SNV likely 
pathogenic 

NA Yes Novel 

P2 ARPKD PKHD1 NM_138694.3 c.9370C>T  p.His3124Tyr SNV pathogenic    Yes Furu et al. 
(2003) 

 c.4870C>T p.Arg1624Trp SNV pathogenic  rs2003
91019 

Onuchic et 
al. (2002) 

P3 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

Yes Ward et al. 
(2002) 

P5 ARPKD PKHD1  
NM_138694.3  

 c.4870C>T p.Arg1624Trp SNV pathogenic  rs2003
91019 

No Onuchic et 
al. (2002) 

c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

Ward et al. 
(2002) 

P6 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

No Ward et al. 
(2002) 

P7 MKS WDR19 NM_025132.3 c.2608G>A  p.Asp870Asn SNV uncertain 
significane 

 rs2019
63605 

Yes No citation 

P8 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

Yes Ward et al. 
(2002) 

c.406A>G  p.Thr136Ala SNV pathogenic    Novel 
P9 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378

52944 
No Ward et al. 

(2002) 
P11 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378

52944 
No Ward et al. 

(2002) 
P14 NPHP NPHP3 NM_153240.4 c.3448C>T  p.Gln1150X SNV pathogenic    Yes Novel 
P16 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378

52944 
No Ward et al. 

(2002) 
P18 ADPKD PKD1 NM_001009944.2 c.12604_12631d

elGGCCGGCT
GGGGACAAG
GTGTGAGCC
TG  

p.Gly4202fs*146 Indel pathogenic   Yes Rossetti et 
al. (2012) 

P20 ADPKD PKD1 NM_001009944.2 c.5014_5015del
AG 

p.Arg1672fs*97 Indel pathogenic   Yes Rossetti et 
al. (2012) 
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P21 UCKD NPHP3 NM_153240.4  c.2529delA  p.Tyr844Thrfs*5 Indel pathogenic    Yes Novel 
P22 ARPKD PKHD1 NM_138694.3 c.406A>G  p.Thr136Ala SNV pathogenic    Yes Novel 
P23 NPHP NPHP4 NM_015102.3 c.3784A>T  p.Arg1262X SNV pathogenic    No Novel 
P24 NPHP SDCCAG8 NM_006642.3 c.1420delG  p.Glu474fs Indel pathogenic  rs3975

15335 
Yes  Otto et al. 

(2010) 
P25 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378

52944 
Yes Ward et al. 

(2002) 
P26 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378

52944 
Yes Ward et al. 

(2002) 
P27 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378

52944 
Yes Ward et al. 

(2002) 
c.406A>G  p.Thr136Ala SNV pathogenic    Novel 

P28 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

Yes Ward et al. 
(2002) 

 c.4870C>T p.Arg1624Trp SNV pathogenic  rs2003
91019 

Onuchic et 
al. (2002) 

P29 ARPKD PKHD1 NM_138694.3  c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

Yes Ward et al. 
(2002)  

 c.4870C>T p.Arg1624Trp SNV pathogenic  rs2003
91019 

Onuchic et 
al. (2002) 

P32 ADPKD PKD1 NM_001009944.2 c.6264dupG  p.Arg2089Alafs*19 Indel pathogenic    Yes Novel 
P33 ADPKD PKD1 NM_001009944. c.12301delC  p.Leu4101Trpfs*97 Indel pathogenic    Yes Novel 
P34 ADPKD PKD1 NM_001009944.2 c.12604_12631d

elGGCCGGCT
GGGGACAAG
GTGTGAGCC
TG  

p.Gly4202fs*146 Indel pathogenic   Yes Rossetti et 
al. (2012) 

P37 ADPKD PKD1 NM_001009944.2 c.9340C>T  p.Gln3114X SNV pathogenic    Yes Novel 
P38 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378

52944 
No Ward et al. 

(2002) 
P39 NPHP HNF1B NM_000458.2 c.443C>T p.Ser148Leu SNV likely 

pathogenic  
rs1219
18674 

No Edghill et al. 
(2006) 

P40 NPHP NPHP4 NM_015102.3  c.673G>T  p.Gly225Cys SNV likely 
pathogenic  

rs5404
02276 

No No citation 

P42 ADPKD PKD1 NM_001009944.2 c.7421dupG  p.Ser2475Leufs*26 Indel pathogenic    No Novel 
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P43 ADPKD PKD1 NM_001009944.2 c.2711_2712del

AG  
p.Glu904Glyfs*196 Indel pathogenic    Yes Novel 

P44 ARPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

Yes Ward et al. 
(2002) 

c.406A>G  p.Thr136Ala SNV pathogenic    Novel 
P45 ADPKD PKD1 NM_138694.3 c.6264dupG p.Arg2089Alafs*19 Indel pathogenic    Yes Novel 
P46 NPHP NPHP1 NM_001009944.2 NPHP1 deletion  WGD pathogenic    No Hildebrandt 

et al. (1997) 
P48 UCKD NPHP1 NM_025132.3 NPHP1 deletion WGD pathogenic    No Hildebrandt 

et al. (1997) 
P49 NPHP WDR19 NM_000458.2  c.3533G>A   p.Arg1178Gln SNV likely 

pathogenic  
rs7943
6363 

No Halbritter et 
al. (2013) 

P50 NPHP NPHP1 NM_138694.3 NPHP1 deletion WGD pathogenic    No Hildebrandt 
et al. (1997) 

P51 ADPKD HNF1B NM_138694.3  c.494G>A  p.Arg165His  SNV pathogenic  rs1219
18675 

Yes  Bellanne-
Chantelot et 
al. (2004) 

P52 UCKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

Yes Ward et al. 
(2002) 

P53 ADPKD PKHD1 NM_138694.3 c.107C>T  p.Thr36Met SNV pathogenic  rs1378
52944 

No Ward et al. 
(2002) 

NM_138694.3 c.406A>G  p.Thr136Ala SNV pathogenic    Novel 

Table 4.4 Molecular genetic findings of target kidney gene panel. aa. Change, amino acid change; ACMG Classifi., American College of Medical 
Genetics and Genomics classification; ADPKD, autosomal dominant kidney disease; ARPKD, autosomal recessive kidney disease; BBS, Bardet 
Biedl syndrome; c. change, nucleotide change; dbSNP, single-nucleotide polymorphism database; F/seg, family segregation; Indel, 
insertion/deletion; JBTS, Joubert syndrome; MKS, Meckel Gruber syndrome; MOI, mode of inheritance; NA, not applicable; NPHP, 
nephronophthisis; SNV, single-nucleotide variant; U/A, unavailable; UCKD, unspecific cystic kidney disease; WGD, whole-gene deletion. 
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Figure 4.4 Pathogenic PKD1 variants detected in Omani autosomal dominant polycystic 
kidney disease (ADPKD) patients. A) Pedigree diagrams showing family structure of patients 
(P) P1, P18/P34, P20 and P32/P45. Chromatograms showing PKD1 pathogenic variants that 
were detected and Sanger sequence confirmed in those patients. Squares specify males; 
circles specify females. Arrow points to proband; filled squares and circles specify affected 
individuals in the family. 
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Figure 4.4 (Cont.).  B) Pedigree diagrams showing family structure of patients (P) P33, P37, 
P42 and P43. The chromatograms present PKD1 pathogenic variants that were detected and 
validated. Squares specify males; circles specify females. Arrow points to proband; filled 
squares and circles specify affected individuals in the family. 
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Figure 4.5 Pathogenic PKHD1 variants detected in Omani autosomal recessive polycystic 
kidney disease patients. (A) Family pedigree of patients (P) P22 and Sanger sequencing 
chromatogram showing novel PKHD1 pathogenic homozygous missense variant c.406A>G 
p.(T136A). (B) Family pedigree of patients P8, P27, P44 and P53 and Sanger sequencing in 
which variant c.406A>G p.(T136A) was detected in compound heterozygous with c.107C>T, 
p.(T36M). Squares indicate males; circles indicate females. Arrows point to the proband; 
filled squares and circles indicate affected individuals in the family. 
 

A total of 9 patients were found to carry causative variants associated with NPHP-RC 

in NPHP1, NPHP3, NPHP4, SDCCAG8, and WDR19 (Table 4.4). Copy number variations 

were detected in 3 of the patients (P46, P48, and P50), in which a homozygous deletion of 

∼862 kb in size that contains 16 genes, including 3 OMIM genes: NPHP1 (OMIM: 

607100), RGPD6 (OMIM: 612709), and MALL (OMIM: 602022), was validated by 

comparative genomic hybridization array (Figure 4.6). 

Two novel pathogenic variants were detected in the NPHP3 gene. A homozygous nonsense 

variant p.(Gln1150*) was identified in a 1-year-old female (P14) who presented with 

hypertension, cystic kidney disease, liver fibrosis, splenomegaly, and ESKD (Table 4.4; 

Figure 4.7). In a second consanguineous family (P21), we identified a homozygous 1-bp 

deletion in c.2529delA in exon 18 of the NPHP3 gene in a fetal sample, resulting in 

frameshift and premature termination of p.(Tyr844Thrfs*5) (Figure 4.7). This family has a 

history of 2 fetal deaths with features of oligohydramnios, and antenatal scan showed 
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bilateral enlarged kidneys with loss of corticomedullary differentiation and lung hypoplasia 

(Table 4.3; Figure 4.7). 

A homozygous missense p.(Gly225Cys) and nonsense p.(Arg1262*) variant were detected 

in NPHP4 in probands P40 and P23, respectively, both with a clinical diagnosis of NPHP 

(Table 4.3; Figure 4.8). The p.(Gly225Cys) variant (rs540402276) is reported in the ExAC 

database only once in an African population in its heterozygous state with a very low minor 

allele frequency, whereas p.(Arg1262*) is a novel nonsense variant. 

A homozygous frameshift deletion p.(Glu474fs*20) in the SDCCAG8 gene was identified in 

P24 with a clinical diagnosis of NPHP, reaching ESKD at the age of 8 years and extra renal 

features of retinitis pigmentosa (Table 4.3; Figure 4.8). A 2-month-old patient (P49) with 

renal impairment, dilated bile ducts, and bilateral echogenic kidneys was found to carry a 

known homozygous missense variant p.(Arg1178Gln) located in exon 31 of the WDR19 gene 

(rs79436363; Table 4.4; Figure 4.8) that had previously been reported in a patient with 

Senior-Loken syndrome-8 (Halbritter et al., 2013).  
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Figure 4.6 Detection of NPHP1 deletion using target NGS panel and confirmation by CGH-array. A. Representation of the depth of 
coverage of NPHP1 gene in 7 samples of the same run. In P46, there is no coverage of any of the NPHP1 exons (demonstrated by the 
lack of green peaks) indicating a homozygous deletion. Green peaks indicate the depth of coverage of the sequenced exons. B. 
Representative results of the array-CGH data of patient P46. The red bar in the left side of chromosome 2 (outlined in blue) indicates 
copy number loss where a homozygous deletion of 862 kb in size was detected that contains 16 genes, including NPHP1 (OMIM: 
607100), RGPD6 (OMIM: 612709) and MALL (OMIM: 602022).  
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Figure 4.7 Next-generation sequencing identifies two novel truncating variants in the 
Nephrocystin 3 (NPHP3). Pedigrees and Sanger sequence chromatograms showing familial 
segregation of the detected NPHP3 pathogenic variants. (A) Segregation analysis of a 
homozygous nonsense variant Gln1150X identified exon 24 of the NPHP3 in patient P14. 
(B) Pedigree and chromatograms showing the inheritance pattern of a lethal homozygous 1-
bp deletion (2529delA) in exon 18 of the NPHP3 gene in fetus sample (P21) leading to 
frameshift and premature termination (Tyr844Thrfs*5). Squares indicate males; circles 
indicate females. Arrows point to the proband; filled squares and circles indicate affected 
individuals in the family. 

 

The NGS panel was able to provide a new molecular diagnosis for some patients with a de 

novo mode of inheritance. For example, in a 10-year-old male (P51) with CKD secondary to 

bilateral echogenic kidneys mimicking ADPKD but without a family history of disease, a 

heterozygous pathogenic SNV p.(Arg165His) was identified in HNF1B (Table 4.4; Figure 

4.8). Segregation analysis of parents and unaffected siblings revealed this to be a likely de 

novo mutation. Another assumed de novo HNF1B missense variant p.(Ser148Leu) was 

identified in a 13-year-old female (P39) who had antenatal polycystic kidneys and no family 

history of disease (Table 4.4; Figure 4.8). A molecular genetic diagnosis was found in one 

patient (P7) with a multisystem ciliopathy suggestive of Meckel Gruber syndrome, including 

dysmorphic features, encephalocele, and polydactyl. In this patient, a homozygous missense 
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variant p.(Asp870Asn) (rs201963605) in the WDR19 gene was detected that co-segregated 

with the other affected sibling with a similar phenotype (Figure 4.8). 

The gene panel failed to identify a molecular genetic diagnosis in 13 patients, including 4 

patients with an ADPKD-like phenotype (P4, P35, P36, and P47), 5 patients with an NPHP-

like phenotype (P10, P15, P17, P30, and P31), and 4 with a more complex multisystem 

ciliopathy phenotype including Meckel Gruber syndrome (P12 and P41), Joubert syndrome 

(P13), and Bardet-Biedl syndrome (P19). Bearing in mind that P12, P13, P15, P30 and P31 

were further genetically evaluated using WES later, as described in chapter 6. 

 
Figure 4.8. Seven different unrelated pedigrees involved in this study and disease-causing 
variants identified by Next-generation sequencing. (A) and (B) A homozygous missense and 
nonsense variants (Gly225Cys and Arg1262X) identified and confirmed by Sanger traces in 
NPHP4 in patients P40 and P23, respectively. (C) A deceased two month old patient (P49) 
confirmed to carry a known homozygous missense variant Arg1178Gln located in exon 31 of 
the WDR19 gene associated with Senior-Loken syndrome-8. (D) (E) In NPHP patient (P24) 
with ESKD and retinal degeneration, a homozygous frameshift deletion (Glu474fs*20) in 
SDCCAG8 gene was detected and familial segregation was confirmed in other affected 
sibling (IV1) and cousin (IV4). (F) and (G) Pedigrees showing de novo occurrence of the 
known HNF1B Ser148Leu and Arg165His in P39 and P51, respectively. In P51, de novo 
inheritance was confirmed by Sanger sequencing of all family members. Squares indicate 
males; circles indicate females. Arrows point to the proband; filled squares and circles 
indicate affected individuals in the family. 
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4.5 Discussion 

Employing NGS diagnostic panels for the high-throughput detection of disease-causative 

variants through interrogation of multiple genes simultaneously has become a common 

approach in the genetic testing of inherited kidney disease. The present study represents the 

first comprehensive genetic analysis of inherited cystic kidney diseases and renal ciliopathies 

in patients from Oman using a customized NGS panel. Our results demonstrate the efficiency 

of the design and application of this targeted panel for genetic diagnosis of patients with 

different phenotypes. 

Generally speaking, the diagnostic yield of NGS panels greatly depends on the patient 

population selected and the variant calling threshold. We have shown that an NGS panel 

consisting of 49 cystic kidney disease–associated genes applied to 53 proband patients was 

capable of resolving 75%, consistent with the reported diagnostic yield of other targeted NGS 

studies (Bullich et al., 2018). Our high rate of detection may be explained by clear 

phenotypic characterization of patients and detailed family history. As a result, the clinical 

diagnosis was confirmed by molecular testing in 33 (62%) patients. The molecular diagnostic 

results enabled a change in clinical diagnosis in 3 patients (resolving the overlapping clinical 

phenotypes of NPHP/ARPKD and ADPKD/renal cysts and diabetes syndrome) and a precise 

diagnosis in 3 patients who had an unclear or atypical cystic kidney disease phenotype 

(Table 4.4). 

Defining the genetic etiology of disease is fundamental in terms of medical intervention, 

disease management, and future family planning. Overall, a genetic etiology was obtained in 

73% of pediatric patients, in which ARPKD (37%) and NPHP-RC (27%) were the most 

prevalent disease. In contrast, genetic diagnosis was achieved in 77% of adults, most of 

whom had either ADPKD (41%) or ARPKD (32%). Similar to other studies, no significant 

difference was evident among pediatric and adult patients, in terms of genetic diagnostic rate 

(Mallett et al., 2017). 

Among the 49 panel genes, only 8 contributed to our diagnostic yield. These 

were PKHD1 (45%), PKD1 (25%), NPHP1 (8%), NPHP3 (5%), NPHP4 (5%), WDR19 (5%)

, HNF1B (5%), and SDCCAG8 (2%). In total, 22 different disease-causative variants were 
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identified in 40 patients, which include 10 missense, 3 nonsense, 5 small deletion, 3 small 

insertions, one large INDEL, and a whole-gene deletion affecting NPHP1 (Figure 4.6). Of 

those, 10 (46%) variants were novel findings in the genes PKD1 (n = 6), PKHD1 (n = 

1), NPHP3 (n = 2), and NPHP4 (n = 1). Homozygous variants/deletions were detected in 

more than half our patients (23 of 40), in keeping with the known consanguinity. The custom 

of consanguineous marriages is strongly adhered to in the Omani community, with the rate 

estimated to be 56% (Tadmouri et al., 2009), owing to social, cultural, geographic, and 

economic factors(Al Alawi et al., 2017a).  

In terms of molecular testing, the PKD1 gene is considered to be complex due to its large 

size (46 exons), the presence of 6 PKD1 pseudogenes, and its high allelic heterogeneity. 

Nonetheless, recent studies using capture-based methodology had successively covered all 

exonic regions of this gene (Trujillano et al., 2014). Our results confirm that we were capable 

of sequencing, using long-range polymerase chain reaction, all exons of the PKD1 gene and 

detecting different types of genomic variants, thus providing accurate genotyping data of 

ADPKD patients. Eight pathogenic variants of PKD1 were identified in 10 suspected 

ADPKD patients (from 8 different families). We failed to solve 4 cases in which the clinical 

diagnosis of ADPKD was suspected. The coverage of PKD1 exons 1, 12, and 42 (Table 4.2) 

was lower than the remaining exons but acceptable. These cases now need to be examined 

for copy number and structural variants in PKD1 as well as alternative genetic causes, 

including DNAJB11 (Cornec-Le Gall et al., 2016) and GANAB (Porath et al., 2016), which 

were not included on our panel. 

ARPKD is a severe, early-onset type of cystic kidney disease caused by biallelic mutations in 

the PKHD1 gene, which consists of 67 exons that encode a 4074 amino acid type I 

transmembrane protein called fibrocystin/polyductin(Braun and Hildebrandt, 2017). Almost 

748 PKHD1 variants have been reported to date in the ARPKD mutation database 

(www.humgen.rwth-aachen.de) scattered along the entire length of the gene with no 

mutational hot spots (Bergmann et al., 2004a). Missense variation is a common mechanism 

of disease in the PKHD1 gene, where half of the reported variants are missense. Most of 

the PKHD1 mutations are private, and most PKHD1 patients may have compound 

heterozygous mutations. ARPKD is one of the most common genetic disorders in Oman, 
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with an estimated birth incidence of 1 in 12,000 births (Rajab et al., 2013). In this study, only 

4 different pathogenic missense variants were identified in PKHD1. The four variants, 

p.(Thr36Met), p.(Thr136Ala), p.(Arg1624Trp), and p.(His3124Tyr), involve substitutions of 

highly conserved amino acids and were all reported previously, except p.(Thr136Ala). The 

high frequency of these missense mutations suggests founder mutations in PKHD1 in Omani 

patients. 

NPHP disease-causative variants were detected in 10 of 15 patients suspected clinically to 

have NPHP. Among Omani NPHP patients, NPHP1 gene deletion was identified in 3 

unrelated patients from the same geographic region. NPHP3 mutations were responsible for 

infantile and juvenile NPHP in consanguineous families, where a novel deletion c.2529delA 

was associated with neonatal death and novel nonsense associated with cystic kidneys, 

hepatic fibrosis, and splenomegaly leading to ESKD before 1 year of age. 

The lack of identification of causative variants in 13 (25%) patients, including 5 with 

suspected NPHP and 4 with multisystem ciliopathies, supports the genetic heterogeneity of 

renal ciliopathies, for which the spectrum of associated genes is continually expanding and 

the gene panel failed to include the latest known causes. For such patients, NGS panels 

containing additional known NPHP and renal ciliopathy genes, or whole-exome 

sequencing/whole-genome sequencing approaches, need to be applied. In addition, deletion-

duplication analysis using multiplex ligation-dependent probe amplification in candidate 

genes and chromosomal microarray analysis are other future approaches for our unsolved 

cases. There is a growing argument to move to whole-exome sequencing and whole-genome 

sequencing approaches for molecular genetic diagnostics, given the constant need to update 

gene panels, the ability of whole-genome sequencing to provide information on structural 

variant and gene copy number, and the falling costs of these unselected methods. However, 

data analysis and interpretation continue to be challenges for such approaches and have 

slowed their implementation into molecular genetic diagnostic services. 
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4.6 Conclusion 

In conclusion, we have demonstrated that for inherited cystic kidney disease, a targeted NGS 
panel is a comprehensive, noninvasive, and efficient tool for genetic diagnosis of patients. 
With this approach, a diagnostic yield of 75% was obtained in Omani patients with inherited 
cystic kidney disease. In addition, NGS panel sequencing allows large disease genes, such 
as PKD1, to be sequenced. This study represents a comprehensive molecular genetic 
overview of Omani patients with inherited cystic kidney disease and their associated clinical 
phenotypes and contributes to the knowledge of causative mutations in renal ciliopathy 
genes. 
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Autosomal Recessive Chapter 5. Clinical and Genetic Characteristics of 
in OmanPolycystic Kidney Disease  

 

5.1 Introduction 

Autosomal recessive polycystic kidney disease (ARPKD) is one of the most frequent cystic 

kidney diseases in infants and children primarily causing kidney and liver associated 

mortality and morbidity. Classically, ARPKD manifests prenatally as enlarged echogenic 

kidneys with Potter’s syndrome or postnatally during childhood or adolescence. It is 

characterized by bilateral echogenic cystic kidneys caused by dilatation of the renal tubular 

collecting ducts and congenital hepatic fibrosis secondary to malformation of the liver biliary 

ducts. ARPKD is also associated with systemic and portal hypertension. Current therapies 

focus on treating ARPKD symptoms (Guay-Woodford et al., 2014).  

ARPKD is caused by mutations in the PKHD1 gene, which is located on chromosome 6 

(p12.3-p12.2). Consistent with disease phenotype, high expression of PKHD1 is found in 

foetal and adult kidney, with low levels detected in the liver, pancreas and arterial walls 

(Bergmann, 2017). The longest open reading frame transcript (NM_138694.4) consists of 67 

exons encoding the integral membrane protein fibrocystin / polyductin (FC/PD). It was 

shown that the severity of ARPKD is determined by the type of mutations rather than the 

location on the PKHD1 gene (Denamur et al., 2010). There are over 700 different mutations 

associated with an ARPKD phenotype (Ebner et al., 2017). The size of PKHD1 and its 

heterogeneous mutational spectrum has previously been an obstacle to molecular diagnosis. 

However, recent advances in massive parallel sequencing / next generation sequencing 

(NGS) facilitate large scale screening for pathogenic mutations in PKHD1. 

The importance of early diagnosis and management of ARPKD through genetic testing is 

widely recognized. Precise diagnosis can improve the clinical management of patients, 

avoiding the exposure to unnecessary and invasive assays and enhance early detection of 

kidney and extra-kidney complications.  

Inherited kidney disease is a leading cause of end stage kidney disease (ESKD) in children in 

Oman (Al Alawi et al., 2017a). In a hospital-based study, the observed birth incidence of 
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ARPKD was evaluated to be 1 in 12,000 births (Rajab et al., 2005). However, there are no 

population-based studies evaluating the incidence of ARPKD in the Omani population as a 

whole. A recent study showed that hereditary kidney disease accounts for 32% of etiologies 

causing chronic kidney disease (CKD) in children and ARPKD is the leading cause, 

accounting for of 12% of CKD (Al Riyami et al., 2019).  The objective of this study was to 

demonstrate the utility of molecular genetic testing in patients suspected with ARPKD in an 

Omani population. In addition, we describe the clinical and genetic profile of this cohort of 

ARPKD patients.  

 
5.2 Patients Selection 

A group of 75 samples, from 33 unrelated families were referred to the National Genetic 

Centre in Oman between January 2015 and December 2018 for the genetic study of inherited 

kidney disease. The kidney pathology results as well as clinical information, including age at 

clinical diagnosis, neonatal ventilation, CKD, liver disease, splenomegaly, hypertension, 

urinary concentration defect, urinary tract infection (UTI), pulmonary hypoplasia, 

oesophageal varices and renal replacement modalities were available for analysis. Additional 

demographic information including familial history of ARPKD, parental consanguinity and 

geographical distribution were also obtained. Family pedigrees described in this study are 

illustrated in Figure 5.1 and 5.2. Initially, for 18 unrelated patients, molecular study was 

performed through next generation sequencing (NGS) using targeted gene panel as 

previously described in chapter 4 (Figure 5.1). Based on the NGS results, Sanger sequencing 

of the PKHD1 exons 3, 6, 32 and 58 was performed for another 15 different families with 

suspected ARPKD (Figure 5.2). 



119 
 

Figure 5.1 Pedigrees of the ARPKD families analysed by targeted NGS approach. Squares 
represent males, circles represent females. Filled symbols indicate the affected status. 
Double-horizontal bars illustrate parental consanguinity. F: Family. All families (F1-F18) 
were genetically solved by this approach. 
 

5.3 Clinical Characteristics of Patients 

In total, 75 samples (40 (53.3%) males and 35 (46.7%) females) from apparently 33 

unrelated families were enrolled. The cohort includes clinically suspected ARPKD patients 

(n=41; n=20 males and n=21 females), their parents (n=24) and siblings or relatives (n=10) 

(Table 1).  

Molecular genetic diagnosis of biallelic PKHD1 mutations was confirmed in 30 families, 

giving a detection rate of 91%, through targeted gene panel (n=18 families) and Sanger 

sequence (n=12 families). Twenty-four families (72.7%) reported a family history of kidney 

disease with an autosomal recessive inheritance pattern, while none of the molecularly 

unsolved families reported a family history of kidney or liver disease. Parental consanguinity 

was known in 22 families (66.7%).  
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The initial clinical diagnosis was made prenatally in eight patients (19.5 %), during infancy 

(0-1 year) in 21 patients (51.2%), during early childhood (2-8 years) in 9 patients (22.0%), 

and in later years (9-13 years) in 3 patients (7.3%) (Table 5.1). The main clinical features 

included hypertension (73.2%), congenital hepatic fibrosis (CHF) (73.2%), CKD (61%) with 

median age of onset 3 years, splenomegaly (46.3%), pulmonary hypoplasia (17%) and 

perinatal death (14.6%) (Table 5.1). Twelve patients (26.8%) developed ESKD at mean age 

of 13 years.  

 
  N % 

ARPKD patients 41 100 

Males 20 49 

Females 21 51 

Age at diagnosis: 

Prenatal 8 19.5 

Birth-1st Month 6 14.6 

2-12 Months 15 36.6 

1-8 Years 9 22.0 

> 8 Years 3 7.3 

Clinical Features: 

Hypertension  30 73.2 

Congenital  Hepatic fibrosis (CHF) 30 73.2 

Splenomegaly 19 46.3 

Pulmonary hypoplasia 7 17.1 

Perinatal deaths (< 28 days) 4 9.8 

Postneonatal deaths (28 days - 1 Year) 2 4.9 

Chronic Kidney Disease (CKD) 25 61.0 

End Stage Kidney Disease (ESKD) 12 30.0 
Table 5.1 Clinical characteristics of suspected ARPKD patients from Oman. ARPKD: 
autosomal recessive polycystic kidney disease; N: number; %: percentage. 
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Figure 5.2 Pedigrees of the ARPKD families analysed by Sanger sequencing screening of 
target PKHD1 alleles. Squares represent males, circles represent females. Filled symbols 
indicate the affected status. Double-horizontal bars illustrate parental consanguinity. F: 
Family. Families F19-F30 were genetically solved, while F31-F33 (red) were unsolved by 
this technique.   
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5.4 Genetics of Omani ARPKD Patients 

In total only 4 PKHD1 missense pathogenic mutations were identified: c.107C>T, p.(T36M); 

c.406A>G, p.(T136A); c.4870C>T, p.(R1624W) and c.9370C>T, p.(H3124Y) located in 

exons 3, 6, 32 and 58, respectively. Twenty-one families (63.6%) carried homozygous 

alleles, while only 9 (27.3%) carried compound heterozygous alleles. The most commonly 

detected mutation was p.(T36M), where 16 families (48.5%) carried it in homozygous state, 

while 8 families (24.2%) were compound heterozygous for this allele and the  p.(T136A) 

allele (5 families) or the p.(R1624W) allele (3 families). Four families carried the 

homozygous mutation p.(R1624W), whilst one family carried the homozygous mutation 

p.(T136A). One family had compound heterozygous mutations p.(R1624W) and 

p.(H3124Y). The clinical presentations and genotypes are summarized in Table 5.2. Sanger 

sequencing chromatograms of the four different mutations in the PKHD1 gene are shown in 

Figure 5.3A. 

The p.(T136A) missense mutation is located in a highly conserved nucleotide (phyloP, 3.199; 

PhastCons, 1) and predicted to be pathogenic (SIFT, Polyphen2 and MutationTaster). To 

date, it has not been reported in the Exome Aggregation Consortium (ExAc), the Genome 

Aggregation Database (gnomAD) or the 1000 Genome Browser (Table 5.3).  

 



123 
 

Family 
No. Sex Age 

Peri-/ 
neonatal 

death 
PP PH HTN CKD 

ESKD 
with 
RTX 

ESKD 
with 

CAPD 
/ HD 

Congenital 
hepatic 
fibrosis 

Splenomegaly  EV UTI CHF 
Genotype 

(aa change) 

1 F 4 y       ● ●     ● ● ●     R1624W; H3124Y 

2 M p ● ●   ● ●             ● T36M; T36M 

3 F 3 y       ●       ● ● ●     T36M; R1624W 

4 M 1 y       ● ●     ● ●       T36M; T36M 

5 F 5 m       ●       ●         T36M; T136A 

6 M 8 y       ● ●   ● ● ●   ●   T36M; T36M 

7 F         ● ●   ● ● ●       T36M; T36M 

8 F 2 m       ● ●   ● ● ● ●     T36M; T36M 

9 
M 1 m       ●       ●         

T136A; T136A 
M p       ●       ●         

10 F p  ● ● ● ● ●     ●         T36M; T36M 

11 
F 2 y       ● ● ●   ●         

T36M; T36M 
F 2 y         ● ●   ●         

12 
M 7 m       ● ●   ● ● ●     ● 

T36M; T136A 
M At birth       ●       ● ●     ● 

13 

F 12 m         ● ●             

T36M; R1624W F 5 m       ●       ● ●       

F 5 m         ● ●   ● ●   ●   

14 F 6 m     ●         ●         T36M; R1624W 

15 F 2 y       ●       ●         T36M; T36M 

16 M p       ● ●     ●     ●   T36M; T136A 

17 M p ● ● ●   ●         ●     T36M; T36M 

Table 5.2 Summary of genotype-phenotype outcomes of ARPKD patients with PKHD1 mutations. Age refers to the age at initial 
clinical diagnosis.  F, females; M, males; PP, Potter’s phenotype;  PH, pulmonary hypoplasia; HTN, hypertension; CKD, chronic 
kidney disease; ESKD, end stage kidney disease; RTX, renal transplantation; CAPD, continuous ambulatory peritoneal dialysis; 
HD, hemodialysis; EV, esophageal varices; UTI, urinary tract infections, CHF, congestive heart failure; aa, amino acid; m: month, 
y: years; p, prenatal. 
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Family 
No. Gender Age 

Peri-/ 
neonatal 

death 
PP P

H HTN CKD 
ESKD 
with 
RTX 

ESKD 
with 

CAPD / 
HD 

Congenital 
hepatic 
fibrosis 

Splenomegaly  EV UTI CHF 
Genotype 

(aa change) 

18 M 13 y       ● ●   ●           T36M; 
T136A 

19 F 1 m       ●       ● ●   ●   T36M; 
T36M 

20 
F 10 m       ● ●   ● ● ●       T36M; 

T36M F At 
birth     ● ● ●   ● ● ●   ●   

21 M At 
birth       ● ●     ● ●       T36M; 

T36M 

22 F At 
birth ● ●   ● ●             ● T36M; 

T36M 

23 F p ● ● ● ● ●               T36M; 
T36M 

24 F 6 m         ●   ● ● ●       T36M; 
T36M 

25 F p     ● ● ●     ● ●   ●   T36M; 
T136A 

26 M At 
birth       ●       ●         R1624W; 

R1624W 

27 
M 5 m       ● ●     ● ●       R1624W; 

R1624W M 9 m       ●                 

28 
M 11 y               ● ●       R1624W; 

R1624W M 1 y       ● ●     ●         

29 F 4 y               ●         R1624W; 
R1624W 

30 M p ●   ●                   T36M; 
T36M 

Table 5.2 (cont.). 
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Figure 5.3 Representation of the missense variants of the PKHD1 gene detected in ARPKD 
patients in relation to the gene exon structure and protein domains. A. Chromatograms of the 
identified mutations in the PKHD1 gene. Heterozygous sequence variants are arrowed with 
the nucleotide changes indicated (reference sequence NM_138694.4) B. Simplified structure 
of the PKHD1 transcript (longest open reading frame) (NM_138694.4) consisting of 67 
exons that encode for a 4074 amino acid. Mutations are identified by red arrows. 
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Location Exon 3 Exon 6 Exon 32 Exon 58 
Nucleotide variation c.107C>T c.406A>G c.4870C>T c.9370C>T 
Amino acid variation p.T36M p.T136A p.R1624W p.H3124Y 
dbSNP ID rs137852944 NA rs200391019 rs1554218666 

MAF ExAC 0.0005193 
(63/121312) 

not found 0.0001812 
(22/121394) 

not found 

  1000 Genomes 
Project  

0.000199 
(1/5008) 

not found not found not found 

  gnomAD (total) 0.0005094 
(144/282706) 

not found 0.0001379 
(39/282816) 

not found 

  ESP (Exome 
Variant Server) 

0.00031 
(4/13006) 

not found 0.00015 
(2/13006) 

not found 

  ClinVar (global 
MAF) 

0.0002 not found NA NA 

  UK 10K 0.00054 (4/7428) not found 0.00013 
(1/7428) 

not found 

Genomics England, 
100,000G project 

16× not found 6× not found 

PKHD1 mutation 
database 

86× not found 15× 4× 

Origin   Germany, 
Caucasian-
American, UK, 
Spain, Czech 
Republic, 
Finland, 
Netherlands, 
Australia 

  Saudi-Arabia, 
Caucasian-
American, 
Israel, 
Netherlands, 
Czech Republic, 
Finland-Greece 

Italy, Turkey 

References Ward et al (2002); 
Rossetti et al 
(2003); Bergmann 
et al (2004); 
Sharp et al 
(2005); Losekoot 
et al (2005); 
Gunay-Aygun et 
al (2009).  

  Onuchic et al 
(2002); Gunay-
Aygun et al 
(2009). 

Furu et al 
(2003); 
Bergmann et 
al (2004a); 
Bergmann et 
al (2005). 

Table 5.3 Allele frequencies and worldwide distribution of the four PKHD1 mutations 
detected in Omani ARPKD patients. dbSNP, single-nucleotide polymorphism database; 
ExAC, Exome Aggregation Consortium,; ESP, NHLBI Exome Sequencing Project (Exome 
Variant Server); gnomAD, The Genome Aggregation Database; MAF, minor allele 
frequency; NA, not available; UK 10K, The 10,000 genome project, United Kingdom.   
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5.5 Geographic Distribution of PKHD1 Mutations in Oman 

The p.(T36M) allele was detected in patients from all governorates of the country except, 

Musandam, Al Wusta and Dhofar (Figure 1). The missense p.(T136A) allele was detected in 

its homozygous state in one family from Al Batinah South and in heterozygous state in 

families from Ad Dakhiliyah (n=1), Al Dhahirah (n=2), Al Batinah south (n=2) (Figure 5.4). 

We postulate that this mutation may be a founder allele in this population. 

 
Figure 5.4 Geographical distribution of the 4 missense PKHD1 mutations in ARPKD patients 
from Oman. Each family is presented by plot. Each different mutation is indicated by a 
different colour. 
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5.6 Discussion  

Inherited kidney diseases, including ARPKD are leading causes of CKD and ESKD in 

children in Oman, leading to significant morbidity and mortality. Previous studies from 

Oman have provided ARPKD-associated morbidity data but lacked molecular genetic data 

(Al-Lawati, 2013, Al Riyami et al., 2019). In this study we have provided a clinical and 

molecular genetic analysis of PKHD1 in a cohort of 41 patients.   

Most study patients had early onset ARPKD disease reflected by age at initial diagnosis.  

Eight were diagnosed prenatally, 21 before their first year of life, 11 during childhood and 

only 1 patient during adolescence. These early-onset phenotypes are in agreement with that 

reported from other studies (Bergmann et al., 2005b). Clinical analysis of our ARPKD 

patients showed that the frequently associated morbidities were also common in our patients 

including systemic hypertension (79%), congenital hepatic fibrosis (78.4%), splenomegaly 

(48.6%), pulmonary hypoplasia (21.2%), CKD (7.6%) and neonatal death (15%). It is 

estimated that 30-50% of ARPKD patients die shortly after birth due to respiratory failure, 

whereas kidney failure is a rare cause of neonatal death (Bergmann et al., 2005b). With the 

advancement in renal replacement therapy modalities, the survival rate of neonates and 

children with ARPKD is improved. In our patients, twelve (24.4%) developed ESKD by 

mean age of 13 years and hence required either renal replacement therapy (n=8) or kidney 

transplantation (n=4). It has been reported that ARPKD patients with corticomedullary 

kidney pathology are expected to develop respiratory distress at birth and rapid deterioration 

of glomerular function, while the glomerular function is maintained for longer time in those 

with only medullary disease (Gunay-Aygun et al., 2010). 

As the PKHD1 is a large gene and in order to identify the causative mutations in our ARPKD 

patients, we initially applied targeted NGS gene panel for 18 unrelated patients. Four 

missense mutations were identified as genetic causes of ARPKD in this cohort, within exon 

3, 6, 32 and 58. Therefore, we proceeded with Sanger sequencing of these exons alone for the 

molecular diagnosis of other ARPKD patients (n=23) from 15 different families. In total, 30 

out of 33 families were solved, achieving a diagnostic rate of 91%, hence providing cost 

effective targeted PCR analysis of these specific alleles as a convenient diagnostic tool. 

Failure to detect mutations in three unrelated probands using the Sanger sequence approach 
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may be explained by the heterogeneity of ARPKD disease where mutations in other recessive 

cystogenes that phenocopy ARPKD might occur. It is also worth mentioning that none of 

these patients have family history of disease, which may be due to mutation in autosomal 

recessive genes that lead to ARPKD-like phenotypes such as the DZIP1L (Lu et al., 2017) or 

even in dominant cystic kidney disease genes such as HNF1B, PKD1 and PKD2 that often 

occur de novo or even in an autosomal recessive manner (Bergmann, 2019). Although all of 

these genes were included in the NGS target panel except DZIP1L, the 3 unsolved cases were 

merely processed by Sanger sequencing. Thus, target NGS panel or whole exome sequence 

are the suggested option for the 3 unsolved patients. With the current improvements of high 

throughput sequencing of different renal ciliopathy genes, many patients with cystic kidney 

disease phenotypes can receive a precise diagnosis.  

To date, 748 unique PKHD1 variants have been recorded in the 

Human ARPKD/PKHD1 Mutation Database. Approximately 45% of these variants are 

missense alterations resulting in substitution of conserved amino acids, which usually leads 

to partial or complete dysfunction of FC/PD. All of the PKHD1 variants detected in this 

study, as well, are missense alterations of highly conserved amino acids. Although three of 

these variants are reported in the ARPKD/PKHD1 Mutation Database, p. (T36M) is the most 

persistent mutation found in PKHD1 in ARPKD patients to date. Structurally, FC/PD is an 

integral membrane protein consisting of a large amino terminal extracellular domain (about 

3,860 aa) containing various glycosylation sites, a single transmembrane (TM) segment and a 

short cytoplasmic C-terminal tail (about 195 aa) comprising four potential protein kinase A 

phosphorylation sites (Bergmann, 2017) (Figure 1.4, page 24). The localization of FC/PC to 

cilia and its integral structure predicted a sensory role at which FC/PD acts as receptor 

transducing the extracellular information into the cell through stimulation of signal cascades, 

thus controlling cell-cell adhesion and proliferation (Bergmann, 2017). The 4 missense 

variants identified in this study are located in exons encoding the extracellular domain 

(Figure 5.3B) and are either very rare or not observed in the reference databases (Table 5.3).  

The PKHD1 sequencing results of our patients did not find two previously described 

truncating mutations, corresponding with perinatal lethal phenotypes (Bergmann et al., 

2004b, Bergmann et al., 2005b). The most frequent change identified in Omani families was 
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p.(T36M) located in exon 3, detected homozygously in 16 families (48.5%) and 

heterozygously in 8 families (24.2%), accounting for almost 73% of the families. Patients 

with homozygous change in PKDH1 (n=18) had an earlier age of onset and an increased 

severity of disease (6 had a severe perinatal presentation and died at peri-/neonatal age, while 

the remaining had either infantile or early childhood presentation leading to ESKD) (Table 

5.2). Consistent with observations made by Bergman et al. (2004), the p.(T36M) variant 

often leads to intra-familial and inter-familial phenotypic variability in the age of onset and 

severity. Additionally, p.(T36M) in combination with the missense changes p.(T136A) and 

p.(R1624W) in some cases caused a relatively severe form of ARPKD, which is in agreement 

with previous reported studies (Bergmann et al., 2003, Furu et al., 2003, Obeidova et al., 

2015). 

The pathogenic PKHD1 allele p.(T36M) has been described in many populations and 

ethnicities. Whether this allele is a highly conserved ancestral change that is frequent in some 

populations such as the Central European population (Bergmann et al., 2003, Rossetti et al., 

2003), or caused by recurrent mutational events is uncertain (Bergmann et al., 2005b). The 

p.(T36M) allele appears to be common in European genomes, with an expected carrier 

frequency of 1:412 (Ward et al., 2011). However, detections of this change in patients from 

different ethnicities and origins are suggestive that p.(T36M) is a PKHD1 ‘hotspot’ mutation 

caused by the frequent methylation events of cytosine to thymine in the CpG sites (Bergmann 

et al., 2003, Sharp et al., 2005). It is also assumed that the substitution of the amino acid 

Threonine to Methionine creates potential alternative translation start codon that may be even 

stronger than the original start codon (Furu et al., 2003). The protein product initiating from 

position c.107 would be predicted to lead to complete loss of protein function due to 

improper protein folding (Furu et al., 2003).  

The missense change, p.(R1624W), was previously reported in patients from different 

ethnicities, including Caucasian Americans (Sharp et al., 2005, Gunay-Aygun, 2009), Dutch 

(Losekoot et al., 2005), Czech Republicans (Obeidova et al., 2015), Slovenians (Smolović et 

al., 2018), Saudi Arabians (Sharp et al., 2005, Al-Hamed et al., 2016, Edrees et al., 2016) and 

Kuwaitis (Vivante et al., 2017). The p.(R1624W) mutation has been described with late onset 

or older ARPKD presentations when present homozygously (Sharp et al., 2005, Al-Hamed et 
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al., 2016) and heterozygously in trans with other truncating or missense change (Sharp et al., 

2005, Smolović et al., 2018). In contrast, 6 of our patients with the p.(R1624W) mutation 

developed clinical features of ARPKD in infancy, 5 presented during childhood period and 1 

at 11 years of age. The p.(H3124Y) combined with p.(R1624W) was found in a 26 year old 

patient with stage 4 CKD, who was initially diagnosed with polycystic kidney disease in 

early childhood (Table 5.2). These findings are in contrast to those made by Bergmann et al. 

(2004a) and Gunay-Aygun (2009) that correlated p.(H3124Y) with a severe perinatal-fatal 

phenotype.  

These results therefore demonstrate that establishing genotype-phenotype correlations in 

ARPKD is challenging. Any correlation is complicated by the large number of missense 

variants distributed over the entire length of the coding exons of PKDH1 and its complex 

splicing pattern (Bergmann, 2017). It was believed that two truncating mutations are 

associated with severe perinatal lethality and at least the presence of one missense is required 

for survival beyond the neonatal period. However, evidence is accumulating on the increased 

pathogenicity of some missense mutations that may cause complete loss of function effects 

(Bergmann et al., 2005b). Recently, a two year old child with two truncating mutations in 

PKDH1 was reported to survive the neonatal period without ESKD, highlighting the 

significance of functional studies of germline mutations and interrogating the previously 

claimed genotype-phenotype correlations (Ebner et al., 2017).  The wide variability in 

ARPKD severity among patients may be explained by differences in PKHD1 mutations, 

influences of modifiers genes and environmental factors (Bergmann, 2019).  

ARPKD is generally a severe form of paediatric ciliopathy with recognized phenotypic 

variability. While a significant number of ARPKD patients surviving the neonatal period 

reaches adulthood, some patients have an adulthood presentation and their kidney function 

differs between normal to moderate kidney insufficiency to ESKD (Buscher et al., 2014). 

Although bilateral kidney enlargement with multiple cysts is the major clinical characteristic, 

liver manifestations remain essential symptomatic disease complications in ARPKD patients. 

Liver disease seems to manifest later than kidney disease usually with progressive hepatic 

fibrosis and portal hypertension (Buscher et al., 2014). Hypersplenism, portal hypertension, 

and variceal bleeding are major liver involvements that may develop as a result of 
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progressive liver fibrosis. In rare cases, both kidney and liver disease may present in late 

adolescence or in adulthood (Fonck et al., 2001). The low prevalence, limited clinical 

information and atypical sonographic pattern of adult ARPKD patients can challenge the 

clinical diagnosis and management, hence genetic testing may be demanded for the 

establishment of definite diagnosis (Burgmaier et al., 2019). In this study, the absence of late 

presenting ARPKD in our cohort may be due to restricted patients recruiting criteria to 

mainly cystic kidney disease phenotypes.  

The Omani population is characterized by a unique structure of tribal communities occupying 

definite geographical regions. This structure is conserved over many generations and has 

created genetic isolates (Rajab et al., 2013). The custom of consanguineous marriages as well 

as within-tribe (endogamous) marriages are extremely conserved in Oman, accounting for 

56.3% (Tadmouri et al., 2009) and 20.4% of total marriages, respectively (Rajab and Patton, 

2000). Over 300 genetic diseases have been identified in the Omani population (Rajab et al., 

2015). The high frequency of recessive disorders in this population is probably related to a 

combination of genetic drift, consanguinity, and geographical isolation. The detection of only 

4 pathogenic variants in different geographical regions of the country may be explained by 

the presence of PKHD1 founder alleles and reveals a high degree of homogeneity in this 

population. Similarly, genetic studies of population isolates such as Finnish, French, 

Ashkenazi Jews and Africans represent a powerful method of finding founder mutations in 

PKHD1, which can be utilized for efficient diagnostic testing of at-risk individuals and 

pregnancies in these populations (Table 5.4) (Bergmann et al., 2003, Michel-Calemard et al., 

2009, Quint et al., 2016, Lambie et al., 2015).  

Currently there is no clinical cure for ARPKD other than managing the clinical complications 

(Buscher et al., 2014). Together translational research and clinical trials in patients may 

facilitate successful drug development in coming future. With the absence of clinical 

biomarkers and lack of comprehensive assessment of the available therapeutic options for 

ARPKD patients on one hand and great morbidity and mortality of disease on the other hand, 

there is a serious need for prospective and retrospective population studies and construction 

of an international clinical database. Such effort can elaborate the current understanding of 

ARPKD and deliver more information on extrarenal manifestations and treatment options.  
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Recently, the German Society for Pediatric Nephrology (GPN) and the European Study 

Consortium for Chronic Kidney Disorders Affecting Pediatric Patients (ESCAPE) 

collaborated to initiate an international multicenter registry of ARPKD (ARegPKD) (Ebner 

et al., 2015). The continued identification of PKHD1 variants and their associated 

phenotypes is to be encouraged and inclusion of cohorts from different ethnicities is valuable 

and should be encouraged.  

Origin Nucleotide 
change 

Amino acid 
change Exon Mutation 

Type References 

Finnish 
c.1486C>T p.R496* 16 Nonsense  Bergmann  

et al., 2003 c.10412T>G p.V3471G 61 Missense 

French c.7350+653A>G p.G2451fs*18 IVS46 
Intronic / 
Pseudo exon 
activation  

Michel-
Calemard et 
al., 2009 

Ashkenazi c.3761_3762del 
CCinsG p.A1254Gfs*49 32 

Frameshift / 
Indel or 
Duplication 

Quint et al., 
2016 

Afrikaner c.1880 T>A p.M627K 20 Missense Lambie et 
al., 2015 

Table 5.4 Different PKHD1 founder mutations associated with different ethnicities.   

 

5.7 Conclusions  

In conclusion, this study shows that NGS identification of PKHD1 mutations and subsequent 

screening of only 4 exons of the PKHD1 gene was sufficient to identify the expected 

causative alleles in 91% of the studied patients and was suggestive of founder effects in this 

gene. There are many advantages for identifying high frequency limited disease associated 

mutations in a population, including simplifying the diagnostic testing, providing genetic 

counselling for individuals at risk and allowing rapid detection of mutations in other family 

members. 
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Chapter 6. Use of Whole Exome Sequencing in diagnosis of Omani 
Patients with Inherited Kidney Diseases 

6.1 Introduction 

Without doubt, the potential use of NGS technologies in basic research of inherited 

kidney diseases has contributed in the detection of novel causative genes and mutations, 

which provides accurate diagnosis and enhances the current knowledge of genotype-

phenotype correlations in these disorders (Gee et al., 2014).  Therefore, nowadays, with 

the advent of the ever-reducing costs, NGS technologies has gradually shifted to precision 

medicine to be implemented in clinics as a routine diagnostic tool (Mann et al., 2019). 

However, there is a debate on which format of NGS approaches to be used for diagnosis 

of patients. Although WGS provides genetic information on all genome level, including 

intronic, intergenic and regulatory regions, the sequencing cost and difficulties of massive 

data interpretation and storage remain critical issues keeping this approach not preferred 

as first diagnostic level. Focusing only on protein-coding regions through WES decreases 

the sequencing costs and produces manageable genetic data for interpretation, which 

enhances its extensive usage in diagnosis leading to the discovery of previously 

unrecognized renal disease genes and disorders (Braun and Hildebrandt, 2017, Groopman 

et al., 2019). However, in terms of costs and data interpretations and storage, targeted 

gene panels serve as the best first tier diagnostic format for many renal diseases, keeping 

in mind the advantages of enriching problematic genomic regions such as PKD1 gene 

(Al-Hamed et al., 2016). Targeted gene panels, provide they are updated, are useful in the 

diagnosis of patients with clinical evidence of renal ciliopathies, whereas WES and WGS 

are best implemented in patients with a more non-specific clinical diagnosis or where 

gene panels have failed to provide a diagnosis. 

Nowadays WES is becoming part of routine clinical and diagnostic practice (Groopman 

et al., 2019).  In the case of heterogeneous renal ciliopathies, WES has been extensively 

applied in research studies as well as for diagnostic utility to detect various novel genes 

and variants (Otto et al., 2010, Mann et al., 2019).  In this chapter, WES was used to 

determine the genetic causes of chronic kidney disease (CKD) in children suspected with 

recessively inherited kidney disease in a group of 11 unrelated patients. The first batch of 

WES experiments included five patients unsolved by the target NGS panel, which are P12 

(re-identified as M46), P13 (re-identified as M48), P15 (re-identified as M44), P30 (re-
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identified as M43) and P31 (re-identified as M47). Clinical features of these samples are 

highly suggestive of recessive pattern of renal ciliopathies and can be found in chapter 4 

(Table 4.3). The second batch of WES experiments included six genetically untested 

patients, mostly with unspecific cystic kidney disease causing ESKD and their clinical 

presentations are described in Table 6.1.  

Patient 
ID  Gender  Age Suspected 

diagnosis  Clinical presentations Family 
history 

Parental 
consang. 

P3 M 3 Y UCKD 
Enlarged cystic kidneys 
with unknown 
aetiology. 

No No 

P9 F 4 Y UCKD 
Hypertension and iron 
deficiency anaemia. 
ESKD on PD. 

Yes No 

P12 F 9 Y UCKD 
Hypertension and iron 
deficiency anaemia. 
CKD stage 4. 

Yes Yes 

P15 M 12 Y 
CKD of 
uknown 
aetiology 

Hypertension, hearing 
loss on hearing aid. 
CKD stage 3. 

Yes No 

P18 M 6 Y UCKD 

Hypertension, iron 
deficiency anaemia, 
DD, 
hyperparathyroidism, 
and retinal dystrophy. 
ESKD on PD. 

Yes Yes 

N36 F  1 Y BBS Polydactyly present in 
all limbs.  Yes U/A 

Table 6.1 Characteristics of inherited kidney disease patients undergoing WES. BBS, 
Bardet Biedl syndrome; CKD, chronic kidney disease; consang., consanguinity; DD, 
Developmental delay; ESKD, end stage kidney disease; F, female; M, month; M, male; 
PD, peritoneal dialysis; U/A, unavailable; UCKD: unspecific cystic kidney disease; Y, 
year.  
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6.2 Patients Characteristics 

WES was carried out for 11 apparently unrelated paediatric patients (Female: 7; Male: 4) 

with a clinical suspicion of different inherited kidney diseases, including unspecific cystic 

kidney disease (UCKD; n = 5), NPHP (n = 2), CKD of uknown aetiology (n = 1), BBS (n 

= 1), JBTS (n = 1) and MKS (n=1). Nine out of 11 (82%) had a positive family history of 

disease and seven had extrarenal manifestations (Table 6.1).  

6.3 Exome Sequencing Data  

Quality control of WES revealed that on average 95.2% of the reads were properly 

mapped to the reference genome and details of the depth, coverage and target covered of 

all samples can be found in the appendix A2. The average coverage depth was 187.9× for 

the first batch of WES samples (M43-M48) and 103.9× for the second batch of samples 

(P3-N36). Comparable coverage of target coding regions was achieved among the 11 

cases with an average of 96.4% of the exome being covered at least 20-fold (Figure 6.1). 

In the analysis of these cases, the filter was set at ≥ 20-fold for both homozygous and 

heterozygous variants.  

 
Figure 6.1 Coverage of coding regions across the studied patients. 
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6.4 Molecular Genetic Findings  

Different filters were used for sorting detected variants, given primary interest to rare 

homozygous variants causing potential protein effects, keeping in mind high level of 

parental consanguinity (54.5%) in the studied patients. To detect homozygosity stretches 

of the genomes, WES genotype data were used to create homozygosity mapping using the 

online homozygosity mapper tool (http://www.homozygositymapper.org/). Family 

pedigrees the of children with positive results of WES are illustrated in Figure 6.2. 

Using ACMG criteria, definite genetic diagnosis was obtained in 6 out of the 11 patients, 

leading to an overall diagnostic yield of 54.5% (Table 6.2). A total of six different single 

nucleotide variants (SNVs) were detected in six distinct known nephropathy genes 

(TMEM231, TMEM138, NUP93, COL4A5, WDR19 and BBS9) and were confirmed by 

Sanger sequencing. Segregation of pathogenic causative allele with family members was 

confirmed for NUP93, COL4A5 and WDR19. 

Based on the distribution, missense variants were the most frequent (4/6), followed by 

nonsense (1/6) and splice site loss (1/6) (Table 6.2). Across the causative variants, the 

presumed pattern of inheritance was autosomal recessive in 83.3% (5/6), at which 

homozygous causative variants were detected, and X-linked in 16.7% (1/6) of cases 

(Table 6.2).  

Three of the identified causative variants were not previously reported in any databases; 

including the missense c.710A>G; p.Y237C in TMEM231 and c.1319T>C; p.F440S in 

NUP93 as well as the nonsense c.3475C>T; p.Q1159* in COL4A5 (Table 6.2). All tested 

samples were examined for mutations in ACMG actionable genes but none was found.  
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Patient ID M46 M48 P9 P15 P18 N36 

Molecular 
diagnosis  

Meckel syndrome 
11 
(OMIM:615397) 

Joubert 
syndrome 16 
(OMIM:614465) 

Nephrotic 
syndrome, type 12 
(OMIM:616892) 

Alport syndrome 
1, X-linked 
(OMIM:301050) 

Senior-Loken 
syndrome 8 
(OMIM:616307) 

Bardet-Biedl 
syndrome 9 
(OMIM:615986) 

Gene  TMEM231 TMEM138 NUP93 COL4A5 WDR19 BBS9 
Sequence variant NM_001077416: 

c.710A>G; 
p.Y237C 

NM_016464: 
c.389A>G; 
p.Y130C 

NM_014669.5: 
c.1319T>C; 
p.F440S 

NM_033380: 
c.3475C>T; 
p.Q1159* 

NM_025132: 
c.3533G>A; 
p.R1178Q 

NM_198428.3: 
c.1789+1G>A 

Zygosity AR (hom) AR (hom) AR (hom) X-linked (hemi) AR (hom) AR (hom) 
Interpretation Missense Missense Missense Nonsense/Stop 

gain 
Missense Splice-site loss 

ACMG 
Classification 

Uncertain 
significance 

Likely 
pathogenic 

Uncertain 
significance  

Pathogenic   Likely 
pathogenic 

Pathogenic 

dbSNP ID NA rs387907135   NA NA rs79436363 rs201938124 

MAF Variant was 
neither found in 
ExAC, gnomAD 
nor 1000G. 

3.98×10-6 

(gnomAD) 
Variant was 
neither found in 
ExAC, gnomAD 
nor 1000G. 

Variant was 
neither found in 
ExAC, gnomAD 
nor 1000G. 

6.35×10-5 

(gnomAD) 
7.96×10-6 (T) 
(gnomAD) 

SIFT Pred. Damaging Deleterious Damaging   Tolerated   
PolyPhen-2 Pred. Possibly 

Damaging 
Probably 
damaging 

Possibly Damaging   Probably 
Damaging 

  

Mutation Taster Disease causing Disease causing Disease causing disease causing disease causing   
CADD Score 22.7 25.7 33 35 24.6 25 
References Novel Lee et al (2012) Novel Novel Halbritter et al. 

(2013) 
Nishimura et al. 
(2005)  

Table 6.2 Molecular genetic findings of Omani children detected by WES. ACMG, American College of Medical Genetics and Genomics; 
CADD, Combined Annotation Dependent Depletion; dbSNP, single-nucleotide polymorphism database; ExAC, Exome Aggregation 
Consortium database; gnomAD, The Genome Aggregation Database; NA, not applicable; Pred. prediction; 1000G, 1000 Genomes Project.  
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Figure 6.2 Pedigrees and electropherograms generated by Sanger sequencing confirming the 
disease causative variants detected by WES. A. Pedigree of patient M46 and the 
chromatogram showing the homozygous missense p.Y237C variant in TMEM231 gene. B. 
Pedigree of patient M48 with clinical diagnosis of JBTS that was confirmed by the detection 
of pathogenic missense variant in TMEM138 gene. C. Extended pedigree of P9, who has 
genotype confirming steroid resistance nephrotic syndrome caused by missense mutation 
(p.F440S) in NUP93 gene, which was also confirmed on her affected cousin. D. Pedigree of 
patient (P15) with clinical presentation of Alport syndrome, confirming X-linked inheritance 
by the detection of the COL4A5 nonsense (p.Q1159*) variant. E. Extended pedigree of P18 
and the chromatopherogram confirming genotype of Senior-Loken syndrome by the 
detection of pathogenic missense variant (R1178Q) in WDR19 gene. F. Pedigree of 
consanguineous family genetically confirmed to harbour a known splice site variant 
(c.1789+1G>A) in BBS9 gene. 
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6.5  Clinical Significances of WES  

WES findings have valuable impact on both early clinical diagnoses and management of 

studied children as well as genetic counselling. In four out of the 11 examined children 

(M46, M48, P15 and N36) the genetic findings confirmed the clinical diagnosis. This 

information is valuable since it clarifies the accurate mode of inheritance and facilitating 

proper counselling of family members as well as guide the setting kidney transplant and 

selection of living related kidney donors. In patient P15, for instance, WES results 

differentiate between X-linked and autosomal recessive form of Alport syndrome and allows 

proper (auditory and ophthalmology) screening and counselling of family members (Table 

6.2; Figure 6.2). The detection of causative variants in NUP93 gene in P9 can spare the 

patient and the affected cousin unnecessary exposure to immunosuppressive therapy and 

patients may refer for kidney transplant (Table 6.2; Figure 6.2). Management of diabetes, 

hypertension and weight in the case of patient N36 (with BBS) and other affected family 

members is critical to avoid the damage of important organs, such as eye and kidney (Table 

6.2; Figure 6.2). The recognition of the accurate genetic diagnosis in the two families of 

patients M46 and M48 can potentially provide accurate genetic advice about their increased 

reproductive choice and the possibility of preimplantation genetic diagnosis (PGD).  

6.6 Discussion 

In paediatric population, CKD is a major contributor to health-care burden leading to severe 

morbidity and mortality. At least 17% of those with ESKD are considered as CKD with 

unknown aetiology, where the primary kidney disease is not clear  (de Haan et al., 2019). In 

addition, the primary clinical diagnosis of CKD patients is most often inaccurate (de Haan et 

al., 2019). Thus, in the developing era of precision medicine, WES is used as an essential 

tool that provides novel diagnostic perspectives for the detection of the causes of CKD. 

Knowledge of genetic causes has valuable clinical implications in therapeutic intervention, 

improving prognosis, guide family counselling or managing settings of kidney 

transplantation (Ayme et al., 2017). Despite been rare, inherited kidney diseases represent 

one of the most common causes of CKD and ESKD, accounting for up to 10% of adults and 

almost all children commencing renal replacement therapy (Devuyst et al., 2014). The 

possibility of monogenic causes in those with unknown aetiology of CKD or with atypical 
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clinical presentation is assumed to be high (de Haan et al., 2019). At least 500 different 

genetic causes have been associated with childhood CKD (Connaughton et al., 2019). 

In this pilot study, we examined the utility of WES in the diagnosis of 11 different Omani 

children with childhood onset CKD clinically suspected with inherited kidney disease. A 

conclusive genetic diagnosis was achieved in over half (6/11) of the cases, corresponding to 

an overall diagnostic rate of 54.5%. This result is within the reported diagnostic yield of 

WES. The high diagnostic yield achieved is probably a consequence of studying a cohort 

with high consanguineous and familial cases. A wide-range of genetic studies have been 

performed in childhood CKD population and different diagnostic yields were achieved due to 

differences in the inclusion criteria or patients and the study design. In his study of families 

with inherited kidney disease, Mallett et al. (2017) reported high diagnostic yield of 46%, 

reflecting the significant ability of WES in underlying the potential genetic causes of most 

renal phenotypes. In another recent study, Groopman et al. (2019) reported higher diagnostic 

yield in patients with congenital and cystic kidney disease (23.9%). Furthermore, regardless 

of the primary kidney diagnosis, higher diagnostic yield was associated with a positive 

family history of CKD, history of parental consanguinity and presentations of extrarenal 

features (Groopman et al., 2019, Mann et al., 2019). Thus using a combination of 

homozygosity mapping along with WES genotype data is always recommended as a 

powerful linkage approach for consanguineous families to identify rare genetic causes 

(Belkadi et al., 2016).  

Although WES provides massive amount of data, 5 patients still remained unsolved in this 

study. Interpretation of a high prevalence of novel and extremely rare variants is still 

restricted by the incomplete knowledge of the total human protein-coding genes as well as 

the incorrect obligations of variants pathogenicity and incorrect association of genes with the 

disease in the literature. At present, up to 70% of protein-coding genes have no recognized 

human disease phenotype (Lek et al., 2016).  False gene-disease associations are familiar in 

the literature and clinically valuable databases of variants pathogenicity, such as HGMD, 

comprise various errors causing benign variants being falsely selected out of the data and 

allocated as plausible diagnosis (Ghouse et al., 2017). This situation is predicted to improve 

as further genomes are sequenced, however the significance of large data collections 
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containing populations of both healthy individuals and patients with rare diseases cannot be 

ignored. In addition, studying more families with similar clinical phenotypes from the same 

population may facilitate linking novel undiscovered genes to the disease phenotype in those 

unsolved patients.  

In fact, for certain inherited kidney disease, it is often a challenge to differentiate between 

them and misdiagnosis may happen, because the majority are genetically very heterogeneous 

and are associated with a broad range of clinical features. However, genetic testing using 

NGS approaches provides more accurate characterization of overlapping renal diseases, 

where most of kidney diseases with unknown primary aetiology were identified and some 

were reclassified (de Haan et al., 2019). In this study, WES confirmed the clinical diagnosis 

in 4 (66.7%) and recognized a first-time diagnosis in 2 children referred with ESKD of 

unknown aetiology (33.3%). In a similar study of large consanguineous or familial cohort (n 

= 79) of children clinically diagnosed with NPHP, genetic diagnostic yield of 63% was 

reported, at which the clinical diagnosis was confirmed in 64% and changed to different 

molecular diagnosis in the remaining 36% (Braun et al., 2016). Other studies have also 

documented the impact of WES in reclassification of the diagnosis of overlapping kidney 

disease such as mesangial proliferative glomerulonephritis (MPGN), focal segmental 

glomerulosclerosis (FSGS) and autosomal recessive and dominant Alport syndrome, where 

patients with Alport syndrome often misdiagnoses as MPGN or FSGS (Lata et al., 2018). In 

his study, Lata et al. (2018) also demonstrate the impact of WES in providing accurate 

diagnosis and prompting the medical management of CKD patients with unknown aetiology, 

although the study was limited by small, selected size of studied cohort.  

This study has some limitation, including small sample size that does not give a generalized 

image of broader childhood renal ciliopathy population from Oman. However, an enhanced 

assessment of the utility of WES in the clinical diagnostic practice of these disorders may be 

given through systematic WES analysis of a larger, unselected cohort. Moreover, the 

diagnostic gap in this study may be caused by the common technical limitation of WES, 

including the detection of structural variant breakpoints, sequencing difficult regions with 

repetitive elements or GC-rich regions, discriminating highly homologous genomic regions 

with pseudogenes. These limitations are attributed to the short-read lengths that are utilized 
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to generate high genomic coverage and depth (Mantere et al., 2019). These limitations are 

assumed to be resolved through using long-reads sequencing platforms that compromise 

these technical challenges and improve the detection of genetic variants  (Mantere et al., 

2019). Thus the emerging future of long-read sequencing based WGS could enhance the 

diagnostic yield of patients with inherited kidney disease or unknown aetiology of CKD and 

provide more conclusive primary kidney disease diagnosis. This can be supported by recent 

reports of WGS obtaining higher molecular diagnostic yield compared with WES, where 20-

40% of those unsolved by WES were genetically conclusive by WGS (Ellingford et al., 

2016). 

Recent advancements in medical genetics through the use of massively 

parallel sequencing have not only advents the discovery of novel causative variants, genes 

and phenotypes, but also revolutionized our vision about genetic kidney diseases where novel 

disorders were identified as well as previous disease were redefined (Stokman et al., 2016). 

However, all types of NGS-based testing (Target panel, WES and WGS) have some shared 

limitations, including the inability to obtain enough coverage of genomic regions with highly 

repetitive GC-content sequence, such as that in MUC1 gene. In his study of six unrelated 

families with medullary cystic kidney disease type 1 (MCKD1), Kirby et al. (2013) 

highlighted the challenges of these technologies in detecting the causative monogenic causes 

of some Mendelian disorders, such as MCKD1, where only long-range polymerase chain 

reaction and molecular cloning successfully performed the task.  Moreover, in many patients 

with acquired diseases, NGS- testing is of limited importance and transformation of genetic 

results into clinical setup may be challenging (Stokman et al., 2016). In the field of kidney 

disease, the majority of genetic testing studies are narrowed to a research setting, thus until 

now the knowledge of its diagnostic efficacy in clinical practice is still limited (de Haan et 

al., 2019). In addition, managing the medical ethics raised by these technologies, including 

uncertain variants and incidental findings, in addition to the social concerns is still 

challenging (Clarke, 2014). 
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6.7 Conclusion 

WES of patients with different inherited kidney disease show promising consequences as 

diagnostic tool for children in the CKD population. It has the potential to resolve those cases 

with clear suspicion of renal ciliopathies, as well as those with uncertain aetiology causing 

CKD. The clinical impacts of positive WES results in therapeutic choice, genetic counselling 

and guidance of kidney transplant are critical. However, genetic counselling on the 

prospective effects of a positive test result is crucial, bearing in mind the possibility of 

incidental findings. Although further studies from the Omani population are required, we 

predict an expanding impact of NGS-based diagnosis, both gene panels and WES in clinical 

practice in the very near future.  
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6.8 Future Scope of This Study 

 

The future scope of this study is to construct the foundation for a comprehensive 

nephrongenetic services in Oman, thus certain agenda are to be followed up after this 

research in order to continue progress in genomics of kidney disease. These include the 

followings: (1) CKD statistical visions: by remain make-up of systematic data of CKD 

epidemiology and related statistics with precise disease diagnosis. (2) Biobank and 

biosamples: to create a sort of first kidney disease specific patients’ registry and 

biorepository with DNA/RNA samples to be archived at the National Genetic Centre in 

Muscat. (3) Local genetic database: to continue generating kidney gene mutation and DNA 

variants database to be shared with the international scientific community. (4) Genotype-

phenotype correlation: to enhance assessment of patients’ diagnosis and prognosis of a 

disease. (5) Founder phenomena: to continue detection of founder mutations that may 

segregate in large families from different regions of Oman and that will simplify molecular 

diagnosis. (6) Segregation assessment of variants pathogenicity with uncertain clinical 

significance that are thought to be potential cause of a disease. 

 

This study has generally been very successful and has brought potential genetic diagnostics 

for over two-third of studied patients, however, there are different aspects that would be 

taken into consideration if this study is to be repeated.  With respect to tackling the burden of 

inherited kidney disease throughout the country, multi-resources are to be used for collecting 

defined data of patients with kidney disease including different health-system surveillance or 

registries, such as the intensive care units, out-patients clinics and private-hospitals data. For 

molecular genetics and as post-genome sequencing step, interpretation and functional 

validation of genomic variants would be given enough space of the research by using model 

systems in more specific functional assays. For examples, to evaluate the impact of  intronic, 

missense and synonymous variants of uncertain clinical significance (VUS) in a 

physiologically relevant manner patient-specific cellular models, such as human urine-

derived renal epithelial cells (hUREC) would be used, which has been shown as an extremely 

powerful in vitro model of kidney disease (Molinari et al., 2018).  Furthermore, to verify 

variants predicted to induce potential transcription or splicing impairment, such as splice-site 
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or even missense variants, functional studies would be done to proof pathogenicity using 

either whole-blood RNA or patient-specific hUREC to isolate tissue-specific RNA and then 

cDNA is made by using reverse transcriptase (RT-PCR). Finally, for the WES unsolved 

cases, I would use recently developed tools and pipelines designed specifically for the 

detection and reporting of structural variants using short read NGS data.  
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Chapter 7 Concluding Discussion 

There are over 750 million people worldwide affected with kidney disease, thus the burden is 

much higher than those liveing with diabetes, cancer or even AIDS/HIV (Crews et al., 2019). 

Inherited kidney diseases are one of the major contributors to CKD burden, where up to 10% 

of adults and over 70% of children reaching ESKD are expected to harbour genetic causes 

(Groopman et al., 2019). However, studying such rare diseases has considerable challenges, 

where the patient populations are limited and the progress of treatments is delayed by small 

patient cohorts and lack of commercial feasibility. Collaborative research and progress of 

new technologies and methodologies are strategic to overcoming these challenges. 

Currently, the focus of nephrogenetics in Oman is primarily made on establishing accurate 

genetic diagnoses to explain clinical phenotypes using the significantly improved diagnostic 

power of genomic technologies. In this pilot study of Omani patients suspected with renal 

ciliopathies, the diagnostic yield achieved by genomic sequencing is 73.4%; including a 

targeted kidney gene panel, mutation specific screening and WES experiments. On the other 

hand, the remaining ~25% of unsolved families are potentially valuable cohort for the 

detection of novel genes causing renal ciliopathies, where much remains to be discovered. 

Furthermore, for the common PKHD1 mutations detected in the study patients, further 

investigations are required to verify founder affects in Omani population as well as other 

Arabs populations.  

This study establishes a solid background to understand the genotype-phenotype of some 

inherited kidney diseases in Omani population. Thus, our results are anticipated to have 

wider applications across different types of renal ciliopathies, which are usually severe, 

lifelong and sometimes life-limiting conditions. However, appropriate investment in 

professional clinical assessment is crucial to ensure that the diagnosis proposed by genomic 

analysis is clinically comprehensive. The biological complexity of these diseases in term of 

clinical manifestations and inheritance highlights the importance of accurate documentation 

of clinical genotype-phenotype associations. It is also important to evaluate the clinical utility 

and factors impacting genomic diagnosis consistency and defining the amount and type of 

phenotypic information demanded to provide safe practice of genomic medicine. Success of 
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this is often attained through multidisciplinary settings of clinicians, scientists and 

bioinformaticians.     

Accurate genetic diagnosis that correlates the clinical features of the patients with the 

molecular cause is the foundation for safe medical practice of these conditions. The rapid 

emergence of genomics and the better understanding of the molecular background of renal 

diseases have already started to change the quality of care that can be provided nowadays. 

The future is anticipated to bring improved strategies that will deliver comprehensive clinical 

applications and lead to new therapeutic options. However, optimizing the application of 

genome diagnostics is challenging since every single parameter of the analytical pipeline 

currently used is still developing. To be precise, clinicians are still getting to know when to 

request genetic testing; sequencing companies are still emerging long-read technologies; 

bioinformaticians are progressing algorithms to identify and prioritize distinct types of 

variants; population databases are emerging in terms of depth and illustration of different 

ethnicities; rapid gene discoveries continue in gene-disease associations and in identifying 

pleiotropy; variant databases and the literature are developing though intensely polluted with 

false-pathogenicity contents. Thus, to improve accurate diagnosis and reduce the risk of 

misdiagnosis or overdiagnosis, the fundamental objective will be to advance variant detection 

and filtration that can be achieved by concentrating attention on patient ascertainment, 

phenotyping, comprehensive discovery of disease-associated genes and variants and proper 

expertise. Therefore, a multidisciplinary team consisting of bioinformaticians, clinical 

scientists and specialist clinicians has critical role in maintaining safe and efficient practice 

of genome diagnostics of different inherited kidney diseases.  

The advent of NGS technologies have made the major impact in revolutionizing the fields of 

transcriptomics, epigenomics, peptidomics, proteomics and metabolomics leading to a rapid 

growth in the experimental data of disease-altered molecules, therapeutic targets and 

biomarkers (Rhee, 2018). Moreover, in the practice of nephrology, omics technologies have 

been utilized to improve the diagnostic and prognostic value of urinalysis, including the 

extensive use of proteomics in the discovery of urinary biomarkers in CKD, acquired kidney 

injuries and ADPKD that may facilitate clinical therapeutic benefits (Rhee, 2018). The future 

of effective therapeutic development require a comprehensive understanding of the molecular 
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background of disease, that can be accelerated through integrating genomics with multi-

omics data along with deep phenotyping or standard imaging and biochemical assays. 

Indeed, the use of genomics, which are the only omics implemented into routine clinical 

diagnostic practice, with multi-omics data is anticipated to improve the clinical diagnostic 

ability by investigating the functional significance of genetic variation on particular tissues. 

Furthermore, stratifying each patient according to their molecular genetic basis in 

NURTuRE, the National Unified Renal Translational Research Enterprise (UK) is a 

promising project that is intended to enable more demanding clinical trials and evaluate new 

therapies for patients with CKD and nephrotic syndrome (Ding et al., 2019).  
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A1. Target-capture Panel Design 

Design  Information 

Design Name Genotypic_EA977_PolyCystic_Capture_Array 

Design ID 03787-1459331610 

Design Category HaloPlex High Sensitivity 

Species 
Homo. sapiens (hg19, GRCh37, February 

2009) 

 Platform Illumina 

Read Length 250 bp 

Target Summary   

Target Region Size  243.165 kbp 

Amplicon Summary   

Total Amplicons:  11712 

Total Target Bases Analyzable 242.446 kbp 

Total Sequenceable Design Size 557.073 kbp 

Target Coverage 99.70% 

Recommended Minimum Sequencing 

per Sample 
111.414 Mbp 

Table A1.1 Summary of design from cystic kidney disease Targeted NGS panel. bp, base 
pair; GRCh37, Genome Reference Consortium Human Build 37; hg19, human reference 
genome version; kbp, kilo base pair; Mbp, mega base pair.  
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Target ID  Interval  Regions  Size 

(bp) 

Coverage  High 

Cov. 

 Low 

Cov. 

AHI1  chr6:135606714-135813425  30 6849 99.88 30 0 

ANKS6  chr9:101494736-101558823 16 4269 100 16 0 

ARL6  chr3:97486902-97516943  7 1261 100 7 0 

BBIP1  chr10:112660068-112677965  5 962 100 5 0 

BBS1  chr11:66278081-66299558  18 3620 100 18 0 

BBS10  chr12:76739543-76742188 2 2372 100 2 0 

BBS12  chr4:123662998-123665230  1 2233 100 1 0 

BBS2  chr16:56518623-56553824  17 3955 100 17 0 

BBS4  chr15:72978519-73029978  17 3796 100 17 0 

BBS5  chr2:170336014-170382256 17 3437 100 17 0 

BBS7  chr4:122746965-122791518  19 4053 100 19 0 

BBS9 chr7:33185815-33644888  24 5303 100 24 0 

BICC1  chr10:60272854-60588701  21 5135 100 21 0 

CEP164  chr11:117209253-117282934  30 7482 100 30 0 

CEP290  chr12:88442911-88535134 52 12925 99.69 51 1 

CEP83  chr12:94702539-94806316  15 3606 100 15 0 

DCDC2  chr6:24174908-24358028  11 2727 99.6 11 0 

GLIS2  chr16:4382232-4387575 4 2138 100 4 0 

HNF1B  chr17:36047233-36104925  9 2666 100 9 0 

IFT27  chr22:37154305-37171801  9 1581 100 9 0 

INVS  chr9:102866754-103063006  17 5095 100 17 0 

IQCB1  chr3:121489142-121547857  13 3097 100 13 0 

LZTFL1  chr3:45867756-45957160  12 2527 100 12 0 

MKKS  chr20:10385845-10401435  5 2405 100 5 0 

MKS1  chr17:56282862-56296922  19 4196 100 19 0 

MUC1  chr1:155158561-155162684 8 2523 100 8 0 

NEK8  chr17:27055782-27069055  11 3607 100 11 0 

NPHP1  chr2:110881318-110962595  22 4643 100 22 0 

NPHP3  chr3:132400704-132441249 29 7003 99.13 28 1 
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NPHP4  chr1:5923275-6046399 31 7542 100 31 0 

PKD1  chr16:2139678-2185740  34 17303 100 34 0 

PKD2  chr4:88928836-88996896 15 4407 100 15 0 

PKHD1  chr6:51483829-51949781 67 18960 100 67 0 

PRKCSH  chr19:11546889-11560277 11 3246 100 11 0 

REN  chr1:204124094-204135471  10 2221 100 10 0 

RPGRIP1L  chr16:53635938-53734685 27 6868 99.58 27 0 

SDCCAG8  chr1:243419426-243663137  21 4486 99.87 21 0 

SEC63  chr6:108192858-108279263  22 4602 100 22 0 

TMEM67  chr8:94767093-94828730 29 6527 99.02 28 1 

TRIM32  chr9:119459972-119462033 1 2062 100 1 0 

TSC1  chr9:135771572-135804309  20 5644 100 20 0 

TSC2  chr16:2098221-2138661  41 9998 98.06 40 1 

TTC21B  chr2:166731215-166810265  28 6842 99.99 28 0 

TTC8  chr14:89291002-89343804  18 3640 98.13 17 1 

UMOD chr16:20344586-20364105 12 3432 100 12 0 

WDPCP  chr2:63349091-63815455  21 4474 99.26 20 0 

WDR19  chr4:39184128-39280320  34 7597 100 34 0 

XPNPEP3  chr22:41253136-41322489  14 3167 98.26 13 1 

ZNF423  chr16:49525136-49856646  8 4681 100 8 0 

Table A1.2 Coverage and size (bp) of targeted genes included in the NGS panel and the 

number of target regions in each gene. Target ID: gene entered in the Targets list. Interval: the genomic 

interval of the target. Regions: the number of regions within this target.  Size: the total size (in base pairs) of the 

regions. Cov: Coverage. High Coverage: Number of regions where analyzable amplicon overlap >= 90%. Low 

Coverage: Number of regions where analyzable amplicon overlap < 90%. 
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A2. Whole Exome Sequencing  

A. First WES batch (unsolved samples by targeted-NGS)3 

1. Sequence Quality Metrics: 

Sample  Total Reads  LQ Reads  Single Reads HQ Reads 

M43  80,971,872 1,454,930 (1.8%)  1,359,802 (1.7%)  78,157,140 (96.5%) 
M44  77,972,988 1,404,860 (1.8%)  1,303,958 (1.7%)  75,264,170 (96.5%) 

M46  96,659,592 1,950,556 (2.0%)  1,820,194 (1.9%)  92,888,842 (96.1%) 

M47  87,945,344 1,615,636 (1.8%)  1,499,358 (1.7%)  84,830,350 (96.5%) 
M48  91,446,344 1,868,251 (2.0%)  1,747,261 (1.9%)  87,830,832 (96.0%) 

Table A2.1 Sequence quality metrics per sample.  
Total Reads: Total number of sequence reads analysed for each sample. LQ Reads: Number (percentage) of 

low quality reads. Single Reads: High quality reads without mates (2nd read). These are not included for 

further analysis. HQ Reads: Number (percentage) of high quality reads used for further analysis. 

 

2. Alignment Metrics: 

Mapping to the reference sequence (hg19) was performed by BWA with default 

parameters. 

Sample  HQ Reads  Mapped Reads 

M43  78,157,140  78,049,206 (99.86%) 

M44  75,264,170 75,169,466 (99.87%) 

M46 92,888,842 92,756,897 (99.86%) 

M47  84,830,350 84,731,342 (99.88%) 

M48  87,830,832 87,717,524 (99.87%) 
Table A2.2. Mapped read metrics observed per sample.  

 

 

 

 

 

 

 
3Adapted from the data analysis report provided by EuroFins GATC Biotech GmbH, Germany. 
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3. Alignment Classification: 

The alignment classification table includes the following read categories:  

•Mapped: Reads mapped to reference.  

• Unique: Reads mapped to exactly one site on the reference.  

• Non-unique: Reads mapped to more than one site on the reference.  

• Singletons: Mapped reads without mates (read not paired).  

• Cross-Contig: Read pairs with the mate mapped to a different contig.  

• On target: Reads mapped to target +/- 100 bp extension.  

Percentage of reads in Non-unique, Unique, Singletons, Cross-Contig were calculated 

based on the number of reads mapping to entire reference, while percentage of reads in 

On target was calculated based on the number of reads mapped uniquely.  

 

Read category  M43 M44  M46  

Mapped 78,049,206 75,169,466 92,756,897 

Unique 75,039,729 (96.14%) 72,231,364 (96.09%)  89,101,891 (96.06%)  

Non-unique  3,009,477 (3.86%)  2,938,102 (3.91%)  3,655,006 (3.94%)  

Singletons  6,958 (0.01%)  6,003 (0.01%)  8,957 (0.01%)  

Cross-Contig 297,274 (0.38%) 259,995 (0.35%) 299,031 (0.32%) 
On target  66,947,146 (89.58%)  65,767,266 (91.39%)  79,422,475 (89.45%)  

 Table A2.3a Read metrics for M43, M44 and M46. M43 and M44 are patient 
identification code. 

 

Read category M47  M48 
Mapped 84,731,342 87,717,524 
Unique 81,424,207 (96.10%)  84,298,411 (96.10%) 
Non-unique 3,307,135 (3.90%)  3,419,113 (3.90%) 
Singletons 6,305 (0.01%)  9,145 (0.01%) 
Cross-Contig 232,288 (0.27%)  235,797 (0.27%) 
On target 73,829,169 (90.94%) 76,546,637 (91.07%) 

Table A2.3b Read metrics for M47 and M48. M47and M48 are patient identification 
code. 
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4. Alignment Refinement Metrics 

This includes removal of PCR duplicates to remove the artificial coverage and local 

realignment to transform regions with misalignments caused by indels. The number of 

high-quality reads after read mapping, alignment and refinement is shown in table A2.4. 

Sample Input Reads  Duplicate Reads  HQ Reads 

M43  66,947,146 16,275,396 (24.31%)  50,671,750 (75.69%) 

M44  65,767,266 14,337,336 (21.80%)  51,429,930 (78.20%) 

M46  79,422,475 20,256,398 (25.50%)  59,166,077 (74.50%) 

M47  73,829,169 18,310,924 (24.80%)  55,518,245 (75.20%) 

M48  76,546,637 18,663,744 (24.38%)  57,882,893 (75.62%) 
 Table A2.4 High quality aligned reads per sample. M43, M44, M46, M47 and M48 are 
patient identification code. 

Coverage Report 

  Target coverage  % of target covered with at least 

Sample  total bases  average (×)  2×  5×  10×  20× 30×  60×  90× 120× 

M43   5.82 GB  95.98 98.0 97.7 97.2 95.6 92.8 73.2 46.2 26.0 

M44   5.90 GB  97.34 98.0 97.6 97.2 95.6 92.9 74.0 47.5 27.0 

M46  6.80 GB  112.1 98.0 97.8 97.4 96.2 94.3 80.7 57.9 36.6 

M47   6.36 GB  104.82 98.0 97.7 97.3 95.9 93.7 78.3 53.6 32.0 

M48  6.63 GB  109.36 98.2 97.9 97.5 96.2 94.2 79.7 56.3 35.0 
Table A2.5 Depth of coverage summary (excluding duplicated fragments). M43, M44, 
M46, M47 and M48 are patient identification code. 
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B. Second WES batch4 

Statistics of mapping, coverage and depth  

Sample P3 P9 P12 P15 P18 N36 

Total 105446718 
(100%) 

113694722 
(100%) 

102511730 
(100%) 

99820918 
(100%) 

98648972 
(100%) 

120677790 
(100%) 

Duplicate 28459785 
(27.04%) 

31805531 
(28.01%) 

28073552 
(27.43%) 

27212435 
(27.31%) 

25078322 
(25.48%) 

35075039 
(29.11%) 

Mapped 105257887 
(99.82%) 

113557088 
(99.88%) 

102341805 
(99.83%) 

99633728 
(99.81%) 

98419137 
(99.77%) 

120486346 
(99.84%) 

Properly 
mapped 

104620704 
(99.22%) 

112838156 
(99.25%) 

101674642 
(99.18%) 

98976862 
(99.15%) 

97754512 
(99.09%) 

119710820 
(99.20%) 

PE mapped 105138560 
(99.71%) 

113453748 
(99.79%) 

102220014 
(99.72%) 

99496788 
(99.68%) 

98274904 
(99.62%) 

120355286 
(99.73%) 

SE mapped 238654 
(0.23%) 

206680 
(0.18%) 

243582 
(0.24%) 

273880 
(0.27%) 

288466 
(0.29%) 

262120 
(0.22%) 

With mate 
mapped to a 
different chr 

448322 
(0.43%) 

545446 
(0.48%) 

479348 
(0.47%) 

454330 
(0.46%) 

455642 
(0.46%) 

562714 
(0.47%) 

With mate 
mapped to a 
different chr 
((mapQ>=5)) 

378453 
(0.36%) 

471436 
(0.41%) 

412262 
(0.40%) 

386017 
(0.39%) 

389179 
(0.39%) 

482870 
(0.40%) 

Initial bases 
on target 60303837 60303837 60303837 60303837 60303837 60303837 

Initial bases 
on/near 
target 

135790180 135790180 135790180 135790180 135790180 135790180 

Total 
effective 
yield (Mb) 

15717.79 16958.4 15282.31 14874.43 14691.38 17990.72 

Effective 
yield on 
target (Mb) 

11125.93 12154.8 10843.73 10532.24 10427.19 12896.32 

Fraction of 
effective 
bases on 
target 

70.80% 71.70% 71.00% 70.80% 71.00% 71.70% 

Fraction of 
effective 
bases on/or 
near target 

90.40% 90.80% 90.60% 89.80% 89.90% 90.60% 

Table A2.6 Statistics of mapping in each sample. P3, P9, P12, P15, P18 and N36 are 
patient identification code. 
_______________________________________________________________ 
4Adapted from the data analysis report provided by Novogene Co., Ltd (China).
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  Target Coverage Fraction of target covered with at least 

Sample Average 
depth 

Bases 
covered 

% 
Coverage 100x 50x 20x 10x 4x 

P3 184.5 60113201 99.70% 68.60% 88.70% 96.90% 98.70% 99.40% 

P9 201.56 59972507 99.50% 72.50% 90.00% 97.00% 98.50% 99.20% 

P12 179.82 59967343 99.40% 69.50% 89.00% 96.80% 98.50% 99.20% 

P15 174.65 60100677 99.70% 68.00% 88.40% 96.80% 98.60% 99.40% 

P18 172.91 60104970 99.70% 65.60% 87.30% 96.60% 98.50% 99.40% 

N36 213.86 59970468 99.40% 74.90% 90.90% 97.20% 98.60% 99.20% 

Table A2. 7 Statistics of coverage and depth in each sample. P3, P9, P12, P15, P18 and 
N36 are patient identification code. 
 

Note:  

Total: The total number of clean reads. Duplicate: The number of duplicated reads 

(percentage: duplicated reads/clean reads). Mapped: The number of reads that mapped to 

the reference genome (percentage). Properly mapped: The number of reads that mapped 

to the reference genome and within the expected insert size (percentage). PE mapped: The 

number of pair-end reads that mapped to the reference genome (percentage). SE mapped: 

The number of single-end reads that mapped to the reference genome (percentage). With 

mate mapped to a different chr: The number of reads with mate reads mapped to diverse 

chromosomes (percentage). With mate mapped to a different chr (mapQ >= 5): The 

number of reads with mate reads mapped to diverse chromosomes and the MAQ > 5. 

Initial bases on target: The number of bases in the target region. Initial bases on/ near 

target: The number of bases in the target region or flanking region of the target. Total 

effective yield (Mb): The data size of the effective reads mapped to the reference genome 

(MB as a unit). Effective yield on target (Mb): The data size of the reads mapped to the 

target region. Fraction of effective bases on target: The percentage of bases mapped to the 

target region in all bases mapped to the reference genome. (Effective sequences on 

target/Total effective yield). Fraction of effective bases on/ near target: The percentage of 

bases mapped to the target or flanking region in all bases mapped to the reference 
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genome. Average sequencing depth on target: The average sequencing depth in the target 

region (Effective sequences on target * 1 million/Initial bases on target). Bases covered 

on target: The number of the bases covered in the target region. Coverage of target 

region: The coverage percentage of target regions (Base covered on target/Initial bases on 

target). 
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