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Abstract 

This thesis investigated the effects of mineral wastes (MW) on laboratory-scale anaerobic 

reactors treating organic wastes. Different MW resources were used, incineration bottom ash 

(IBA), fly ash (FA) and boiler ash (BA), taken from a municipal solid waste incineration 

(MSWI) plants, as well as a cement-based waste (CBW) from construction demolition wastes. 

The hypothesis was that these MW would provide trace elements (TEs) deficient in the 

organic fraction of municipal solid waste (OFMSW), and offer moderate alkalinity to prevent 

reactor acidification of mesophilic anaerobic digestion of the OFMSW. The control and 

operation of batch biomethane potential (BMP) reactors and continuous stirred tank reactors 

(CSTRs; single-stage and two-stage reactors), was studied under different feeding regimes, 

different organic loading rates and hydraulic/solid retention times, in order to determine 

potential benefits of mineral waste amendments and aqueous trace metal supplements on 

anaerobic digestion efficiency, methane productivity and process stability. 

Co-digestion of different solid MW and organic wastes in single-stage CSTR using a liquid-

recycled feeding method (LRFM) enhanced process stability (pH of 6.8 – 7.2), increased 

methane production by 25 - 45%, and yielded 450 – 520 mL CH4/g VS (near to the theoretical 

maximum) compared to the control. Whereas draw-and-fill feeding method (DFFM) also 

enhanced digestibility but to a lesser degree. Pre-treatment of the OFMSW with the MW at 

37oC improved substrate hydrolysis, and enhanced the performance and stability of the DFFM 

digestion processes further to values similar to those of LRFM reactors. Amending two-stage 

CSTRs with aqueous MW extracts provided the reactors with the necessary trace elements 

deficient in the OFMSW, maintained alkalinity and pH, and hence enhanced 

hydrogen/methane production and processes stability of both acidogenic and methanogenic 

reactors.  

Amendments of IBA, BA and CBW provided trace metals that supported anaerobic digestion 

processes without adverse effects; however, the metals released from FA provided much 

lower enhancement of the digestion processes, as some trace metal concentrations were within 

the toxic range for methanogenic processes. 

To elucidate and compare the effect and importance of commercial TE supplementation and 

substrate co-digestion techniques in improving organic waste anaerobic digestion, especially 

for the single-stage reactors with high organic loading rates, different CSTR feed 

compositions were studied. Different feedstocks were investigated including synthetic organic 

waste (SOW), SOW supplemented with TE, SOW supplemented with wheat straw (WS) and 
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SOW supplemented with WS and TE. Results showed that high methane yields (450 - 550 

mL/g VS), higher microbial numbers and process stability at higher OLRs, were achieved in 

all reactors having TE supplementation compared to the equivalent reactors without TE 

supplementation. 

From analysis of molecular microbial data, the effect that different feeding methods, reaction 

times and WS co-digestion had on reactor performance was found to be associated directly 

with microbial community selection and stability. Different feeding regimes altered the 

microbial communities; Methanoculleus (hydrogenotrophic) and Methanosaeta (acetoclastic) 

were the most abundant methanogenic genera in the LRFM reactors, and the more 

metabolically versatile Methanosarcina genus dominated under DFFM. Interestingly, at 25% 

WS supplementation, the Methanosarcina were found to be acetoclastic (based on indicative 

coenzyme F420 measurements), but with no WS amendment with highest NH3-N levels the 

F420 values indicated a predominantly hydrogenotrophic metabolism. These results suggest 

that, WS co-digestion reduced biological stress on the anaerobic community by reducing the 

net concentration of ammonia in the feedstock. 
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Chapter 1. Introduction 

1.1. Motivation of the research 

The last three decades have witnessed an unprecedented increase in the world population with 

a better life quality for individuals. According to the UN (2007), the world population will 

rise to 9.2 billion by 2050. This population growth and economic development correlate 

highly with the amount of municipal solid waste (MSW) generation. It is predicted that the 

global generation of MSW will reach 3 billion tonnes by the year 2025 (Karthikeyan and 

Visvanathan, 2013). In the European countries, an annual rise of about 2 - 3% in MSW 

production can be estimated (Salhofer et al., 2008). In some developing countries, the organic 

fraction of this municipal solid waste (OFMSW) comprises ~ 80% (Figure 1-1) of that mixed 

waste (Aziz et al., 2011).  

 

Figure 1-1. Percentage for different solid waste component (average weight) of Erbil city- Kurdistan 

Region of Iraq in 2009 (Aziz et al., 2011). 

This study developed and investigated a feasible and an affordable treatment strategy that 

considered treatment scenarios for the high organic component of a municipal solid waste. 

The objective was to develop an integrated approach utilising other waste streams generated 

as a result of population growth and economic development, which ensures sustainable 

treatment of OFMSW, production of renewable energy. 
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Two categories of MSW were investigated in this study: the organic rich fraction i.e. 

OFMSW typically collected from households, restaurants and food markets and a solid waste 

stream from the construction industry known as construction demolition waste (CDW). The 

OFMSW stream can typically be sorted further into a fraction with good combustibility and 

low moisture content that has particle sizes of > 45 mm; this stream could be incinerated for 

energy recovery in municipal solid waste incineration (MSWI) plants, and another putrescible 

organic portion of raw OFMSW materials, which is relatively wet, and has particle sizes < 

45mm; this fraction could be diverted for biological treatments such as anaerobic digestion 

(AD).  

Mineral wastes (MW) produced from the incineration of organic wastes in MSWI plants and 

include incineration bottom (IBA), boiler (BA) and fly (FA) ashes are enriched with minerals 

and nutrients, and as such have a reasonable acid neutralising capacity. These properties make 

MW an interesting material to study in the context of the AD processes.  

Furthermore, another MW, cement-based waste (CBW), the main component of CDW, 

represents a significant component of MSW (because of the increased uses of cement 

materials in construction due to urbanisation, especially in the developing countries). A large 

amount of Portland cement (2.4 Gt/year) is manufactured worldwide (Renforth et al., 2011), 

and most of the produced cement enters the construction industry. Most of the CBW 

eventually produced will be disposed of either in areas outside of cities, or in landfill sites. 

However, the collected CBW could be utilised as another MW material in an integrated MSW 

treatment system that is proposed in this study, due to it being an alkaline/and trace element 

source that could improve biological treatment process in AD treatment facilities. 

1.2. Thesis Overview 

As AD is the key treatment step in the proposed integrated treatment process, this research 

focused on studying the AD process in order to identify the best methods for integrating MW 

from MSW into the AD of OFMSW. These methods included: 

(1) Direct addition of different solid MW to anaerobic reactors digesting OFMSW (co-

digestion of the organic OFMSW and mineral MW). 

(2) Pre-treatment and co-digestion of the organic and MW. 

(3) Using aqueous MW extracts for optimising two-stage AD of the OFMSW. 

In addition, to provide a broader context for the assessment of mineral waste streams and their 

effect on AD, this project also comparatively investigated 
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(4) Regulation of macronutrients (C/N ratio), with and without trace element supplements, 

on AD reactor performance (methane production and yield) and process stability. 

Regulation of C/N typically was achieved by OFMSW co-digestion with wheat straw (WS) 

and standard trace element solutions produced from stock metal solutions simulated the major 

minerals components found in the MW. Moreover, within the context of these four research 

themes, the main phases of the AD process routinely investigated for distribution and 

diversity of microorganisms. 

1.3. Thesis Novelty 

Many studies have been published in the literature regarding the AD of OFMSW, either in its 

raw state or when is has been pre-treated physically, chemically or thermally to make the 

carbon more bioavailable e.g. by hydrolysis. Most of the pre-treatment approaches are energy 

intensive, which ultimately diminishes the net energy recovery efficiency; one of the main 

goals of the AD processes. Moreover, most of the pre-treatment methods suggested in the 

literature might lead to rapid hydrolysis which causes problems for reactor stability via 

acidification. The novel aspect of this study was to investigate the feasibility of establishing 

an integrated treatment system with minimal energy input that utilised MW to stimulate 

bacterial hydrolysis minimising the need to do energy expensive pre-treatments, and increase 

microbial growth and activity in anaerobic digesters. It was proposed that this could be 

achieved through the AD of OFMSW with necessary nutrient supplementation, and better 

operating conditions (balanced alkalinity and pH levels in the reactor) using very low 

economic value, and widely available, waste materials as MW. Consequently, improvements 

to the digestion process were expected to result in higher organic loading rates, and higher 

solids removal and greater renewable energy (as methane) production efficiency. 

Acidification of anaerobic reactors and pH drop exerts tremendous effects on the anaerobic 

processes (Chen et al., 2008), which may lead to the inhibition of bacterial and archaeal 

communities, and consequently causes instability in the AD process, leading to lower biogas 

production, and reduced solids destruction efficiency. In order to stabilise pH at the optimal 

range (pH 6.5 - 7.5) for AD process (Liu et al., 2008)), digesters have often been supplied 

with alkalinity from basic materials like NaOH, KOH, etc. Therefore, the second novel aspect 

in this study was to balance reactor pH at favourable ranges for methanogenic 

microorganisms by adding alkalinity in the form of low cost alkaline waste materials such as 

MW. Moreover, AD enhanced through alkali pre-treatment (alkaline hydrolysis) of the 

feedstock substrates, using the alkaline property of MW. This could provide better conversion 
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of lignocellulosic contents of OFMSW to biogas by disrupting the strong bonds between 

lignin and hemicellulose, resulting in improved solubilisation of the hemicellulose component 

of the feedstock material (Reilly et al., 2015). 

Certainly, MW need sustainable management, but currently there are no sustainable MSW 

management techniques for them. IBA usually contains 15% of materials unchanged by 

combustion like glass, soil minerals and metal. The other 85% of IBA is ash; which usually 

comprises less than 4% w/w organic matter with the remaining mass being enriched with 

mineral elements such as (Al, As, Ba, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, 

Ti, and Zn) (Banks and Lo, 2003). IBA also has moderate alkalinity with pH 10.5 - 12.2 

(Municipal solid waste incinerator residues, 1997). 

Banks and Lo (2003) reported that, according to their mass fractions, the metals found in the 

IBA can be classified as major (Ca, K, Na, Mg, Al, Fe), minor (Cd, Cu, Cr, Ni, Pb, Zn) and 

trace (As, Ba, Cl, Mn, P, S, Si, Ti) elements. However, although most of these elements are 

useful for optimising the biological process in AD, they are toxic to microorganisms above 

specific threshold concentrations (Demirel and Scherer, 2011; Karlsson et al., 2012; Zhang 

and Jahng, 2012; Facchin et al., 2013; Cai et al., 2017). The relative toxicity of heavy metals 

to acidogenic and methanogenic consortiums are Cu > Zn > Cr > Cd > Ni > Pb and Cd > Cu > 

Cr > Zn > Pb > Ni, respectively (Lin, 1993b). However, Banks and Lo (2003) concluded that 

the heavy metal concentrations released by IBA of MSWI are well below inhibitory 

concentrations resulting in operational problems in the AD process. Moreover, previous 

studies have shown that accumulation of volatile fatty acids (VFA) are more likely to occur in 

the AD of food waste without addition of trace metal elements (Banks et al., 2011). 

Therefore, the proposed integrated approach might be expected to provide the necessary trace 

elements required for enhancing the population growth of AD microorganisms and produce 

an optimum pH value that would result in a stable digestion process. In addition, the proposed 

integrated AD process is expected to produce a digestate with a minimum level of heavy 

metals suitable for composting as soil conditioner without dangerous toxicity effects on the 

food chain of humankind; however, this will be need to be validated by full characterisation 

of the digestate composition. 

Similarly, the flux materials out of the construction and demolition industry is a considerable 

waste stream mainly composed of hydrated cement paste containing a high amount of calcium 

and other minerals (see Section 3.3.2). These characteristics make the cement-based waste 
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(CBW) from construction demolition waste (CDW) another mineral waste resource to be 

studied in the context of the reactor systems or digestion conditions studied in this thesis.   

Finally, the suggested integration treatment process between MW and OFMSW has two main 

cost benefits, treatment of OFMSW, and producing renewable energy and a utilisable 

digestate. Moreover, the applied process would manage treatment of MW that might inflict 

environmental damages through leaching of these materials to the soils and waterways if 

disposed without proper treatment. Furthermore, the digestate of the integrated process might 

contain some metals that are the contaminants; therefore future studies need to address the 

quality of the digestate before its use as a compost or a fertiliser for land applications.
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Chapter 2. Research gap  

2.1. Aims 

This research aimed to evaluate and determine the best methods of integrating MW as an 

economically feasible trace element and alkaline amendment for the anaerobic digestion of 

the organic fraction of municipal solid waste (Figure 2-1). 

Mineral wastes
(IBA, CBW, FA, BA)

Metal analysis 
ICP-OES

Preparation
(Cleaning, crushing and sieving)

Co-digestion
 Pretreatment

and
Co-digestion

Mineral waste-
extracts

Anaerobic
 digestion

37 oC
HRT 20 d

Stock trace elements
(Se, Fe, Ni, Co, Mo, AL, B, Cu, Mn, Zn)

OFMSW

Standard trace element solution

Co-digestion

Wheat straw

BiogasDigestate Electricity,
 Heat

Compost,
 Fertilisers

 

Figure 2-1. Identified research areas for the integration of mineral wastes and trace elements into the 

AD of OFMSW. ICP-OES: inductively coupled plasma - optical emission spectrometry, IBA: 

incineration bottom ash, CBW: cement-based waste, FA: fly ash and BA: boiler ash. 
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2.2. Objectives 

 To investigate the elemental composition and chemical properties of MW and to 

measure the soluble components that would arise from them, for comparison with the 

typical range of the values cited in the literature. 

 To investigate the biomethane potential (BMP) of OFMSW after co-digestion / pre-

treatment with MW at a mesophilic temperature of 37oC in batch reactors. 

 To investigate the effects of anaerobic co-digestion of OFMSW and MW on CSTR 

reactor performance (methane production rate and yield), process stability and 

microbial community composition and dynamics at a mesophilic temperature of 37oC. 

 To investigate the effects of pre-treatment of OFMSW with MW at a mesophilic 

temperature of 37oC on CSTR reactor performance (methane production rate and 

yield), process stability and microbial community composition and dynamics. 

 To investigate the effect of mineral waste extracts (MW-extracts) on the performance 

of AD reactors treating OFMSW (methane production rate and yield), process stability 

and microbial community composition and dynamics at a mesophilic temperature of 

37oC. 

 To assess the effect of wheat straw (WS) co-digestion with or without trace element 

concentration on the performance of AD reactors treating OFMSW (methane 

production rate and yield), process stability and microbial community composition 

and dynamics at a mesophilic temperature of 37oC. 

 To carry out microbial community analysis to identify and quantify the microbial 

communities in the digestate samples, and mechanistically understand in addition to 

empirically document, the individual and combined impacts of waste amendments on 

the AD process of OFMSW at a mesophilic temperature of 37oC.  
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Chapter 3. Literature review 

3.1. Anaerobic digestion processes 

Anaerobic digestion (AD) is a series of  linked oxygen-free biological processes producing 

biogas, primarily CH4 and CO2, by the degradation of organic matter catalysed by a large 

group of bacteria and archaea classified as guilds of hydrolysers, acidogens, acetogens and 

methanogens (Rittmann, 2001; Karthikeyan and Visvanathan, 2013). At standard pressure and 

temperature (STP) (0oC and 1 bar), each gram of COD of organic matter is converted to 0.35 

L of CH4 (Rittmann, 2001). 

The population growth of these microorganisms, and their microbial diversity and functions, 

are among the main indicators of a robust AD process. In the AD of OFMSW, the microbial 

communities involved in the hydrolysis and acidogenesis processes comprise fast growing 

microorganisms, therefore for the highly hydrolysable substrates (such as food waste) these 

two stages are considered non-rate limiting stages (Raposo et al., 2012). In contrast, both the 

acetoclastic and hydrogenotropic methanogens, the two main archaeal guilds of the 

methanogenesis phase, are known for their low growth rates that normally makes this stage 

the rate-limiting stage in the AD process for OFMSW treatment (Rozzi and Remigi, 2004). 

Microbial growth in reactors systems is affected greatly by internal reactor parameters such as 

pH, alkalinity, oxidation-reduction potential (ORP), volatile fatty acids (VFA) concentration, 

temperature, physical mixing, presence of toxic materials, and availability of trace elements 

(Mao et al., 2015). Most of these parameters are related to the characteristics of the feedstock 

substrate. Therefore, the feedstock characteristics play a major role in enhancement (high 

solids conversion rate and methane production) of the AD processes (Karthikeyan and 

Visvanathan, 2013). 

The four stages of AD processes are hydrolysis, acidogenesis, acetogenesis and 

methanogenesis (Figure 3-1). In the hydrolysis stage, hydrolytic bacteria convert long chain 

organic components of the substrate such as carbohydrates, proteins and fats to short and 

soluble monomers of glucose, amino acids and fatty acids, respectively. Three main 

hydrolytic enzymes mediate the hydrolysis stage, cellulase, protease and lipase ((Gerardi, 

2003); Figure 3-2). Lignocellulosic substrates are difficult to degrade by hydrolytic bacteria, 

therefore, for lignocellulosic substrates the hydrolysis stage can be the most rate-limiting 

stage of the overall AD process (Li et al., 2018a). The stage following the hydrolysis stage is 

the acidogenesis stage, at this stage; products of the hydrolysis stage are converted to volatile 

fatty acids (VFA) such as acetic acid, butyric acid, valeric acid, and propionic acid, as well as 
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alcohols, CO2 and H2. Depending on the characteristics of the feeding substrate, some trace 

gases such as ammonia and hydrogen sulphide are also produced. The acetogenesis, is the 

process of acetate production from products of the hydrolysis and acidogenesis (such as 

propionate) stages (Zieminski and Frac, 2012). 

 

Figure 3-1. Biological processes for the anaerobic conversion of organic matter to methane  

(Madigan, 2015). 

The final stage of the AD process is methanogenesis (for details see Section 3.1.4), which 

consists in the production of methane principally by two groups of methanogens: the 

acetoclastic and hydrogenotrophic methanogens. In addition, methylotrophic methanogens are 

the third group of methanogens which utilise methylated substrates (Madigan, 2015). 

Acetoclastic methanogens split acetate molecules to methane and CO2, while 

hydrogenotrophic archaea use H2 to reduce CO2 to methane. About 70% of the methane 

which is produced in anaerobic digesters treating organic wastes is from acetate (Zieminski 

and Frac, 2012). 
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Figure 3-2. Cooperation of microorganisms to degrade organic matter (Zieminski and Frac, 2012). 

During the fermentation processes, two different groups of microorganisms need a symbiosis 

to degrade organic matter and conserve energy; this form of metabolic processes is referred to 

as syntrophy. Most of the syntrophic reactions are secondary fermentations, the fermentation 

products produced by a group of anaerobes microorganisms are utilised by the next fermenter 

groups. The interspecies H2 transfer is the common syntrophic reaction between the anaerobic 

species. For instance, fermentation of ethanol to methane and acetate is carried out by the 

ethanol-oxidising syntroph and methanogens. Oxidation of ethanol by an ethanol oxidiser is 

an endergonic reaction i.e. consumes energy, while consumption of H2 by its 

hydrogenotrophic methanogen partner is an exergonic reaction i.e. releases energy (Eqs. 3-1, 

3-2 and 3-3). The overall energy release from the two reactions is exergonic, i.e. both of the 

microorganisms share the free energy released from the two reactions (Madigan, 2015). 

Ethanol Fermentation 

2 CH3CH2OH + 2 H2O               4 H2 + 2 CH3COO + 2 H+  	  = +19.4 KJ/reaction      (3-1)
 

Methanogenesis 

 

 

 

4 H2 + CO2          CH4 + 2 H2O           -130.7 KJ/reaction     (3-2) 
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Coupled reaction: 

2 CH3CH2OH + CO2                 CH4 + 2 CH3COO + 2 H+         = -111.3 KJ/reaction      (3-3) 

CH4
Methanogens

CH3-COOH + H2 + CO2

CH3-COOH + H2

Syntrophobacter

CH3CH2COOH

propionic acid

CH3CH2CH2COOH

butyric acid

CH3(CH2)4COOH

caproic acid

Syntrophomonas

  

Figure 3-3. Syntrophic metabolism of fatty acids (Zieminski and Frac, 2012). 

Another example of a syntrophic reaction is the oxidation of butyrate (Figure 3-3). In this 

reaction, oxidation of butyrate by the fatty-acid-oxidiser i.e. Syntrophomonas is an endergonic 

reaction, while consumption of the free H2 from the reaction by their partner methanogens 

will release excess free energy which can be utilised by both of the microorganisms to drive 

the overall reaction of the fatty acids oxidation to methane (Madigan, 2015).  

3.1.1. Hydrolysis processes 

During the hydrolysis stage, polymeric material, mostly insoluble organic compounds such as 

carbohydrates, proteins, fats are hydrolysed to short and soluble molecules of mono-sugars, 

amino acids and fatty acids well as energy conservation in the form of ATP (Madigan, 2015). 

Different groups of bacteria carry out the hydrolysis process among them anaerobes from the 

Streptococcus and Enterobacterium genera (Zieminski and Frac, 2012), and some genera 

from the Alphaproteobacteria and Firmicutes phyla (Cirne et al., 2007). According to 

(Toerien and Hattingh, 1969) proteolytic, denitrifying, lipolytic, and cellulolytic bacteria are 

common groups during the non-methanogenic stages (hydrolysis, acidogenesis and 

acetogenesis phases) of the AD processes. Bacteria hydrolyse organic matter using 

endoenzymes and exoenzymes. All bacterial groups produce endoenzymes while only a few 
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group of bacteria produce exoenzymes. Moreover, each bacterial group can usually produce a 

specific enzyme to degrade a specific substrate, but not to degrade all types of substrates 

(Gerardi, 2003). Bacteria release exoenzymes outside the cell to hydrolyse insoluble 

substrates attached to the exocellular slime, then the endoenzymes degrade the soluble wastes, 

which is entered the cell (Figure 3-4). The most abundant extracellular enzymes of the 

hydrolysis phase are amylases, proteases and lipases. Figure 3-5 shows the enzymes of the 

hydrolysis phase with their specific substrates and products (Gerardi, 2003). Different 

digestion parameters affect the rate of the hydrolysis process and include: size of particles; 

pH; enzyme production; and interaction between the enzymes and waste particles (diffusion 

and adsorption) (Gerardi, 2003). 

 

Figure 3-4. The process of enzymatic transfer through the bacterial cell wall (Gerardi, 2003). 

Exocellular slime 

Cell wall 

Cell membrane 

Insoluble molecules attached to cell wall 

Exoenzyme 

Endoenzyme 
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Figure 3-5. Exoenzymes of hydrolytic bacteria and their substrates (Gerardi, 2003). 

3.1.1.1. Hydrolysis of carbohydrates 

Plants are the main source of carbohydrates, the general chemical structure of the 

carbohydrates is in the form of Cn(H2O)m. Plant materials mainly comprises cellulose (25% - 

60%), hemicellulose (15% - 30%) and lignin (15% - 20%), as well as some small components 

such as tannins, soluble sugars and ash (Batstone, 2000a). Cellulose and hemicellulose are 

degradable under AD conditions, while lignin is difficult to degrade anaerobically (Batstone, 

2000a). 

Cellulose ((C6H12O6)n) consists of long polymer fibrils of glucose molecules bonded together 

by strong β-1, 4 glucosidic chemical bonds. Cellulose is insoluble in water; therefore, 

microorganisms need to hydrolyse cellulose to soluble glucose monomers before degradation. 

Microorganisms such as Cellulomonas release extracellular enzymes such as the cellulase to 

break down the glucosidic bonds (Figure 3-6) and produce D-glucose molecules, then the 

microorganisms (usually the same microorganism) utilise the hydrolysed products to ferment 

to fatty acids (Batstone, 2000b; Gerardi, 2003). Batstone (2000b) reported that although the 

optimum pH of the cellulases ranges between pH 4 - 6, however, each hydrolysis step has its 

specific optimal pH value. 
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Cellulase enzymes act on three different positions of the cellulose chain: exoglucanase which 

acts on the non-reducing end of the cellulose chain to release cellobiose from cellulose, 

endoglucanase which randomly depolymerise internal units, and cellobiase which hydrolyses 

cellobiose to yield D-glucose units (Zehnder, 1988). Structurally, cellulose can be classified 

into crystalline and amorphous celluloses. The former contains regular and strong hydrogen 

bonds connecting cellulose fibrils which makes this type of cellulose less hydrolysable 

compared to the later which possess irregular and weak hydrogen bonds (Batstone, 2000a). 

 

Figure 3-6. Hydrolysis of glucose to D-glucose by Cellulomonas (Gerardi, 2003). 

Hemicellulose is an amorphous structured component of polysaccharides in plants. Although 

hemicellulose similar to cellulose consists of linear polymers of D-glucose linked β-1, 4, 

however it is not considered cellulose (Zehnder, 1988). Hemicellulose is more hydrolysable 

than cellulose and is easily solubilised in weak alkali and acid conditions to produce products 

include L-arabinose, uronic acid, and hexoses such as D-glucose, D-mannose, and D-
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galactose (Zehnder, 1988). Pectin, which comprises 12 - 30% of the carbohydrate in young 

plants, is sometimes considered a type of hemicellulose. 

Lignin is the second abundant naturally occurring polymer after cellulose. It consists of dense, 

three dimensional, and randomly linked phenylpropane subunits, of aromatic polymers. The 

subunits are linked by variety of carbon-carbon as well as ether bonds. Lignin is less 

degradable by AD microorganisms, however, aerobic bacteria use ligninase, and H2O2 as an 

oxidant, to degrade lignin (Batstone, 2000a). From an AD perspective the problem with lignin 

is not just that it is difficult to degrade without oxygen and peroxidases but that the lignin 

physically protects the cellulose from exoenzymes, for this reason, the steam explosion is 

sometimes used for substrate pre-treatment (Theuretzbacher et al., 2015). 

3.1.1.2. Hydrolysis of proteins 

Proteins are polymers of amino acids, the backbone structure of the proteins. Amino acids are 

joined by peptide bonds to form a polypeptide. Proteins consists of one or more polypeptides 

(Madigan, 2015). The structure of amino acids consists of two carbon atoms and one nitrogen 

atom arranged in three groups: an amino group (-NH2), a carboxyl group (-COOH) and a side 

chain (R) connected to the central carbon atom (α-carbon) (Figure 3-7). The side chain (R) 

ranges from a simple hydrogen atom as in glycine, to aromatic rings as in phenylalanine, 

tyrosine, and tryptophan. The side chains of the amino acids (and ultimately the protein) 

governs the chemical properties such as acidic, basic, hydrophobic and hydrophilic properties 

of the amino acids (Madigan, 2015). 
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Figure 3-7. Common structure of the amino acids. 
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NH3 + CO2			                     Amino acids

Microbial growth

 

Figure 3-8. Degradation of protein and metabolism of nitrogen  (Madigan, 2015). 

Structurally, proteins are either fibrous or globular. The role of fibrous proteins is either 

connective (such as collagen) or protective (such as keratin), while the role of globular 

proteins is chemical functions, such as enzymes, hormones, and transport/storage proteins. 

Globular proteins are more hydrolysable than the fibrous proteins. There are three groups of 

proteases: serine-, metallo- and acid-proteases, the optimal pH of their chemical functions are 

pH (8 - 11), (6 - 8) and (4 - 6), respectively (Batstone, 2000a). 

There are about 20 different amino acids (White, 2007). Hydrolysis of proteins releases the 

amino acids (Figure 3-8) as a substrate for microbial metabolism. Metabolism of the amino 

acids follow an oxidation-reduction reaction which converts the 20 amino acids to seven 

intermediates: pyruvate, acetyl-CoA, acetoacetyl-CoA, α-ketoglutarate, succinyl-CoA, 

fumarate, and oxaloacetate to enter the citric acid cycle (White, 2007). In this study, the 

organic feed substrate for the anaerobic reactors was a synthetic organic waste (SOW); it was 

rich of protein, which likely gave rise of a lot of the ammonia released during degradations. 

3.1.1.3.  Hydrolysis of fats and phospholipids 

Lipids consist of long chains of glycerol and fatty acids connected by ester bonds in 

molecules called triglycerides. In the hydrolysis stage, the ester bonds between the glycerol 

and fatty acid chains are broken down by an extracellular enzyme i.e. the lipase, to produce 

glycerol and long chain fatty acids, which are metabolised by chemoorganotrophic 
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microorganisms such as acetogens (Madigan, 2015). Fatty acids are classified as saturated 

(without double bonds); monounsaturated (one double bond), polyunsaturated (two double 

bonds) and branched fatty acids ((White, 2007); Table 3-1). 

Table 3-1. Structure of some long-chain fatty acids (White, 2007). 

Fatty acids               	Chemical structure        	                                 Number of carbon atoms

Palmitic	                     CH3(CH2)14COOH	                                                        16

Stearic	                       CH3(CH2)16COOH	                                                        18

Oleic	                         CH3(CH2)7CH=CH(CH2)7COOH	                                 18

Linoleic	                    CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH	             18

Lactobacillic	            CH3(CH2)5CH - CH(CH2)9COOH                          	       9

Tuberculostearic	    CH3(CH2)7CH(CH2)8COOH                                  	         19

CH2

CH3
 

  

Figure 3-9. Activity of lipase and phospholipases on the fat and phospholipids respectively. The A, B, 

C and D designations denote the locations that phospholipase attacks the ester bonds (Madigan, 2015). 

 

Figure 3-10. Lipase-catalysed hydrolysis of triglyceride. 

Phospholipids consist of a glycerol molecule connected to phosphate by an ester bond. During 

the hydrolysis of phospholipids, phospholipase attacks the ester bonds at different locations 
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(Figure 3-9 and Figure 3-10). The phospholipase attack on the phospholipid at the A and B 

locations, cleaves the ester bonds between the glycerol and fatty acids. While the 

phospholipase attack on the C and D locations of the ester bonds produces free molecules of 

phospholipids and glycerol as a substrate for metabolism by microorganisms (Gerardi, 2003). 

3.1.2. Acidogenesis processes 

The products of acidogenesis stage are th883e necessary substrates for the metabolism of 

acetogens and methanogens. The metabolic processes of this stage are carried out by some 

groups of the hydrolytic bacteria that can remain active throughout this stage as well as the 

acidogenic bacteria (Manyi-Loh et al., 2013). Facultative anaerobic bacteria, which can 

survive under both aerobic and anaerobic conditions, and the strict anaerobes, are the main 

groups of bacteria in this phase. Facultative species of this stage protect the strict anaerobic 

species by consuming trace O2 molecules that might enter the AD digester through the 

feeding substrate. According to Anderson et al. (2003), the main fermentative genera and 

species of this phase are Clostridium, Bacteroides, Ruminococcus, Butyribacterium, 

Propionibacterium, Eubacterium, Lactobacillus, Streptococcus, Pseudomonas, 

Desulfobacter, Micrococcus, Bacillus and Escherichia. Typical cell concentration of the 

acidogenic species ranges between 106-108 cell/mL (Jiang, 2012). Some of the organic 

compounds are oxidised while some other compounds are reduced. Bacteria use the 

oxidation-reduction process to produce their required energy and produce soluble and 

simplest organic components. The main products of this stage are acetate, alcohol (ethanol), 

butyrate, lactate, mixed acid, mixed acid and butanediol, propionate and succinate, sulphide, 

CO2 and methane (Gerardi, 2003). However, potential products of this stage are highly 

correlated to the feedstock characteristics, bacteria groups involved in the process and 

operational conditions of the AD digester (like pH and temperature). Some products of this 

stage, including formate and acetate, can be converted to methane by methanogens, while 

other products such as butyrate and propionate need to be converted to acetate before being 

used by methanogens (Gerardi, 2003).  

3.1.3. Acetogenesis processes 

The three main products of the acetogenesis stage are acetate, carbon dioxide and hydrogen. 

Quantitatively acetate is the most important precursor of the mesophilic AD and accounts for 

about 60 - 80% of the CH4 produced by methanogens in the methanogenesis stage (Mackie 

and Bryant, 1981). There are two distinct groups of anaerobic species involved in the 

acetogenesis process, the first group known as the obligate hydrogen-producing acetogens 
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(OHPA). This group uses the products of the fermentation processes (hydrolysis and 

acidogenesis stages) including the fatty acid products (mainly propionate and butyrate), 

alcohols and other fatty acid components like valerate, isovalerate stearate, palmitate and etc. 

to produce acetate, CO2 and H2 via the β-oxidation pathway (Eqs. 3-4 and 3-5; (Anderson et 

al., 2003)). The second group known as homoacetogens, utilise hydrogen or another electron 

donor (alcohol) to produce acetate from the reduction of CO2 (Eqs. 3-6 to 3-11), this 

metabolic pathway is also known as Wood-Ljungdahl pathway for acetate production (Jiang, 

2012).  

Acetogenesis via β-oxidation pathway (specific for fatty acids):  

β-oxidation of propionate (Hanaki et al., 1981): 

CH3CH2COO- + 3 H2O                CH3COO- + HCO3
- +  3H+ + 2 H2       = +76.1 kJ/mol     (3-4)

 

β-oxidation of n-Butyrate (Hanaki et al., 1981): 

CH3(CH2)2COO- + 2 H2O                2 CH3COO- +  H+ + 2 H2          = +48.1 kJ/mol        (3-5) 
 

Acetogenesis via Wood-Ljungdahl pathway (specific for CO2; (Jiang, 2012):  

2 CO2 + 4 H2                            CH3COOH + 2 H2O                                                   (3-6)   

4 CO + 2 H2O                           CH3COOH + 2 CO2                                                                   (3-7)     

4 HCOOH                              CH3COOH + 2 H2O                                                     (3-8)    

4 CH3OH + 2 CO2                   3 CH3COOH + 2 H2O                                                (3-9)   

2 CO + 2 H2                              CH3COOH                                                                (3-10)  

2 HCOOH + 2 H2                     CH3COOH + 2 H2O                                                  (3-11)   
 

Continuous production of H2 by OHPA species would potentially increase the H2 

concentration inside the anaerobic digester systems, which ultimately inhibits the growth of 

OHPA followed by the reactor failure and low methane production (Anderson et al., 2003). 

However, the syntrophy of acetogenic bacteria with hydrogenotrophic methanogenic archaea 

(which need H2 to reduce CO2 in order to produce methane at the methanogenesis stage; Eq. 

3-13) maintains the favoured H2 partial pressure (< 10-4 atm ) for optimal syntrophic growth 

rates (Anderson et al., 2003; Gerardi, 2003; Jiang, 2012).  

The OPHA and methanogens relationship is considered a weak relationship, whereby, any 

substantial accumulation of fatty acids will inhibit methanogens, which in turn results in an 

increased H2 partial pressure in the reactor and ultimately the failure of the reactor. However, 

Anderson et al. (2003) reported that most of the methanogenic processes are unlikely to result 
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in hydrogen pressure above 10-4 atm. The most recently isolated acetogenic species are 

Syntrophomonas wolfei and Syntrophobacter wolinii, each gram of mesophilic sludge 

contains about 4.5 x 106 Syntrophomonas wolfei cells (Anderson et al., 2003). 

3.1.3.1. Glycolysis and lactate production 

Glycolysis also known as Embden-Meyerhof-Parnas pathway is the most common metabolic 

pathway for fermentation of organic compounds by anaerobic bacteria to produce energy-rich 

compounds for microorganisms in form of ATP by substrate-level-phosphorylation process. 

Organic compounds such as carbohydrates, especially hexose sugars like glucose, acts as both 

an electron donor and an electron acceptor in the fermentation reactions. The products of the 

glycolytic process are two molecules of pyruvate, as well as energy conservation in the form 

of ATP (Figure 3-11).  
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Figure 3-11. Degradation of glucose through the Embden-Meyerhof pathway (Madigan, 2015). 

The formation of pyruvate is the terminal step for glycolysis. However, the cells need to 

achieve their redox balance; therefore, the fermentation reaction is necessary to continue 

producing further fermentation products such as lactate, butanol, butyrate, Ethanol, 

isopropanol, propionate and acetate. Although lactic acid is the main fermentation product of 

the glycolysis pathway, however after formation of pyruvic acid the fermentation reactions 

continue to produce wide array of fermentation products depending on the metabolic pathway 

adapted by the reductive bacteria to ferment pyruvic acids ((Madigan, 2015); Figure 3-12). 
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Figure 3-12. Fermentations of pyruvic acid through the Embden-Meyerhof pathway. Representative 

bacteria that utilize these pathways are shown in BLUE.  

There are three biochemical reactions for lactate formation from carbohydrates (mainly 

glucose) as well as other sugars such as fructose, galactose, mannose, saccharose, lactose, 

maltose, and pentoses (Eqs. 3-12, 3-13 and 3-14): 

glucose                   2 lactate                                                                                  (3-12)

glucose                   lactate + ethanol + CO2                                                         (3-13)

2 glucose               2 lactate + 3acetate                                                                 (3-14)  

Two groups of bacteria are responsible of lactate formation, Homofermentative and 

Heterofermentative bacteria. The former contains an aldolase enzyme and therefore uses the 

glycolysis pathway while the later lacks aldolase and uses pentose phosphate pathway for 

lactate fermentation. The most common microbial genera for lactate fermentation are 
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Bifidobacterium, Lactobacillus, Leuconostoc, Pediococcus, Sporolactobacillus, and 

Streptococcus. 

Homofermentative bacteria for each molecule of glucose can produce only one fermentation 

product which is two molecules of lactate (Eq. 3-15), while the hetrofermentative bacteria, in 

addition to lactate can produce other fermentation products, mainly ethanol and CO2, (Eq. 3-

16; (Madigan, 2015)). 

Overall fermentation reaction of Homofermentative: 

glucose + 2 ADP + 2 Pi                2 lactate + 2 ATP                                            (3-15)  

Overall fermentation reaction of Heterofermentative: 

glucose + ADP + Pi                ethanol + lactate + CO2 + ATP                          (3-16)
 

The third pathway for lactate formation is the Bifidum pathway. The bacteria pattern of this 

fermentation pathway uses both the pentose phosphate pathway and the homofermentative 

pathway reactions. This pathway ferments two glucoses to two lactates, three acetates and five 

ATPs (Eq. 3-17; (Madigan, 2015). 

Overall fermentation reaction of Bifidum pathway: 

2 glucose + 5 ADP + Pi                3 acetate + 2 lactate + 5 ATP               (3-17) 

3.1.3.2. Acetate formation (acetogenesis) 

As described in Section 3.1.3 most of bacteria produce acetate from H2 and CO2, or from the 

oxidation of other VFA. Acetogens can convert hexose molecules e.g. glucose to pyruvate 

through the glycolysis pathway, by-products of this fermentation reaction are two molecules 

of pyruvate and 4[H]. The Pyruvate molecules are then oxidised to two molecules of acetyl-

CoA, 4[H] and two CO2 molecules by using pyruvate: ferredoxin oxidoreductase enzyme 

(White, 2007; Schuchmann and Müller, 2016). Then from these two molecules of acetyl-CoA 

two molecules of acetate are produced (Figure 3-13). 

The third molecule of acetate of this reaction is produced from the fixation of the two 

molecules of CO2 and four [H] generated from the oxidation of two pyruvates to two acetates, 

and the four [H] generated during glycolysis via the Wood-Ljungdahl pathway (Figure 3-14). 

One of the CO2 molecules is reduced to the methyl group and the other CO2 is reduced to the 

carbonyl group of the third acetate molecule produced in this reaction (Figure 3-14). 
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Figure 3-13. Acetogenesis from pyruvate by Desulfotomaculum thermobenzoicum (White, 2007) . 

 

Figure 3-14. Acetogenesis from CO2 following the Wood–Ljungdahl pathway (Schuchmann and 

Müller, 2016). 
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3.1.3.3. Propionate formation 

Propionate is one of the main products of acidogenesis that must be converted to acetate for 

methane production by methanogens. Accumulation of propionate in the AD digester is an 

indicator of the start-up of the failure of the AD processes (Chen et al., 2008). 

Propionic bacteria (Corynebacteria, Propionibacterium and Bifidobacterium) can either 

produce propionate from glucose via pyruvate fermentation or from the lactate fermentation 

produced from glucose by glycolysis reactions (Eqs. 3-18 and 3-19). Succinate is an 

intermediate product of fermentation, in addition some amount of succinate can be found as 

an end product of propionate fermentation (Gerardi, 2003).  

1.5 glucose                  2 propionate + acetate + CO2                                            (3-18)

3 lactate                       2 propionate + acetate + CO2                                            (3-19)

  

  
 

The acrylate pathway and the succinate-propionate pathway are two common pathways for 

fermentation of lactate to propionate. Each of the two pathways uses 3 molecules of lactate, 

produced from the fermentation of glucose via glycolysis. During the acrylate pathway one 

molecule of lactate is oxidised to pyruvate then to acetyl-CoA and CO2. After that acetyl–

CoA is converted to acetate and ATP via acetyl-P. This oxidation process yields 4[H] which 

must be utilised by an electron acceptor to balance the reaction. The second molecule of 

lactate acquires a CoA from propionyl-CoA to produce lactyl-CoA which is then dehydrated 

to produce the unsaturated molecule of acrylyl-CoA. Acrylyl-CoA is reduced to propionyl-

CoA, using 2[H] of the 4[H] produced from the oxidation of the first lactate molecule. 

Similarly, the third molecule of lactate is oxidised to consume the last 2[H] molecules of the 

first lactate molecules, this balance the fermentation reaction. The transfer of CoA from 

propionyl-CoA to the second and third lactate molecules would produce two molecules of 

propionate. Ultimately, the overall reaction of three moles of lactate by acrylate pathway 

would produce one mole of acetate, two moles of propionate, one mole of CO2 and one mole 

of ATP (Figure 3-15). 



26 

 

 

Figure 3-15. Propionate formation via acrylate pathway (White, 2007). 

 

Figure 3-16. Propionate formation via succinate-propionate pathway (White, 2007). 

One bacterium Clostridium propionicum uses this pathway to yield only one-third of an ATP 

per lactate, this low ATP production per reaction results in low growth yield for these 

organisms. Therefore, in order to produce more ATP per three molecules of lactate, many 

bacteria; among them Propionibacterium, use the succinate-propionate pathway to produce 

propionate as a fermentation product (Figure 3-16). Propionibacterium ferments three 

molecules of lactate, to produce a mixture of propionate, acetate, succinate and CO2 (White, 

2007). 
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3.1.3.4. Butyrate formation 

A heterogeneous group of anaerobic bacteria classified under the genus Clostridium, 

including saccharolytic, proteolytic clostridia can ferment carbohydrates and proteins 

respectively. Other clostridia groups can ferment substrates like ethanol, acetate, and certain 

purines and amino acids. The butyrate formers are strict anaerobes in the Clostridium genera, 

and Butyrivibrio ferment carbohydrates (Eq. 3-20) to butyric acid, H2, CO2 and small amount 

of acetate (Gerardi, 2003). 

Hexose                CH3-CH2-CH2-COOH                                                           (3-20) 

In the AD process, two molecules of acetyl-CoA condense to form acetoacetyl-CoA; which 

reduces to butyryl-CoA. After that, phosphotransacetylase converts butyryl-CoA to butyryl-P. 

Finally, kinase produces butyrate and ATP from butyryl-P. Conversion of one mole of 

glucose through the glycolytic pathway to butyrate produces three moles of ATP (two ATP 

from glycolytic pathway and one ATP from butyryl-P) and one mole of butyrate (White, 

2007). With respect to impacts on AD, the accumulation of butyrate drops pH, the low pH 

conditions (pH < 4.5) push the cells especially Clostridium acetobutylicum to convert the 

butyrate molecules to butanol and acetone. Butanol is highly toxic to bacteria because it 

affects the functions of cellular membrane (Gerardi, 2003). 

3.1.3.5. Lipids and oxidation of fatty acids (β-oxidation) 

Lipids are a heterogeneous group of organic compounds soluble in nonpolar solvents and 

relatively insoluble in water. As described in Section 3.1.1.3 hydrolysis of lipids in AD 

produces long chain fatty acids. The role of fatty acids in the structure of the cells is related to 

the functions of the cell wall. In addition, many bacteria can use fatty acids as a source of 

energy production by oxidation through the β-oxidation pathway (Figure 3-17). For β-

oxidation of fatty acids with even number of carbon atoms, the fatty acid is activated by 

coenzyme-A, then the oxidation reaction cleaves the carbon chain between the α and β carbon 

atoms of the fatty acid chain to produce acetyl-CoA. After that, acetyl-coA is oxidised to 

produce acetic acid, CO2 and H2. If a branched chain or a fatty acid with odd number carbon 

atoms is oxidised, the product of β-oxidation is either propionyl-CoA or branched-chain fatty 

acid-CoA and an acetyl-CoA molecule. Therefore, the final β-oxidation product of the odd 

carbon fatty acids is always propionic acid (White, 2007). 

According to White (2007) acrylyl-CoA pathway (Figure 3-18) and methylcitrate pathway 

(Figure 3-19) are two possible pathways for the conversion of propionyl-CoA to acetyl-CoA. 
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Figure 3-17. β-oxidation of fatty acids (White, 2007). 

 

Figure 3-18. Oxidation of propionyl-CoA to pyruvate via acrylyl-CoA pathway (White, 2007). 
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Figure 3-19. Oxidation of propionyl-CoA to pyruvate via the methylcitrate pathway (White, 2007). 

3.1.4. Methanogenesis 

The final stage of the AD processes is Methanogenesis. As described in Section 3.1 two 

groups of methanogenic archaea can produce methane from carbon dioxide (CO2), hydrogen 

(H2), formate (HCOOH), and carbon monoxide ((CO); Eqs. 3-21, 3-22 and 3-23). 

CO2 + 4 H2                  CH4 + 2 H2O                                                                    (3-21) 

2 HCOOH                   CH4 + CO2                                                                       (3-22) 

4 CO + H2O                CH4 + 3CO2                                                                                            (3-23)  
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Methylotrophic methanogens can produce methane from the substrates carrying methyl group 

rather than using CO2, mong these substrates are acetate, methylamine and methanol (Eqs. 3-

24, 3-25 and 3-26). Practically, acetate, and CO2 and H2 are the only industrially important 

substrates for methane production (Galagan et al., 2002). 

CH3COOH                              CH4 + CO2                                                          (3-24)

4 (CH3)3-N + 6 H2O               9 CH4 + 3 CO2 + 4 NH3                                      (3-25)

3 CH3OH + 3 H2                       3 CH4 + 3 H2O                                                 (3-26)  

Table 3-2. Some of the important reactions related to the acetogenesis and methanogenesis phases of 

AD (Kirsop and Wolfe, 1983). 
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Substrates Products KJ/reaction 

Propionate- + 3 H2O Acetate- + HCO3
- + H+ + 3H2 + 76.1 

Butyrate- + 2 H2O 2 Acetate- + H+ + 2 H2 + 48.1 

Caproate- + 4 H2O 3 Acetate- + 2 H+ + 4 H2 + 96.2 

Lactate- + 2 H2O Acetate- + HCO3
- + H+ + 2H2 - 4.2 

Ethanol- + H2O Acetate- + H+ + 2 H2 +9.6 

Lactate- + SO4
-  2 Acetate- + 2 HCO3

- + 2 H+  -218.8 

2 CO2 + 4 H2 Acetate- + H+ + 2 H2O -95.0 
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4 H2 + H+ + HCO3
-  CH4 + 3 H2O -135.6 

Acetate- + H2O CH4 + HCO3
- -31.0 

4 Methanol 3 CH4 + HCO3
- + H+ + H2O -315.1 

Methanol + H2 CH4 + H2O -112.5 

4 Methanol + Acetate 4 CH4 + 2 HCO3
- + H+ - 471.4 

4 Methylamine + 3 H2O 3 CH4 + HCO3
- + 4 NH4

+ + H+ - 225.4 

2 Dimethylamine + 3 H2O 3 CH4 + HCO3
- + 2 NH4

+ + H+ -220.0 

4 Trimethylamine + 9 H2O 9 CH4 + 3 HCO3
- + 4 NH4

+ + 3 H+ -159.8 

Formate + H+ + 3 H2 CH4 + 2 H2O -134.3 

 

In AD, a high organic loading rate or short retention time will lead to accumulation of fatty 

acids, which puts pressure on the methanogens and decreases their activity to degrade the 

products of acetogenesis stage; therefore, for an organic rich feedstock such as OFMSW, the 

methanogenesis stage is the rate-limiting stage.  

Methanogens are classified under the archaea kingdom, the five phylogenetic orders of the 

methanogens are Methanobacteriales, Methanopyrales, Methanococcales, 

Methanomicrobiales and Methanosarcinales (Bapteste et al., 2005). Methanosarcina is the 

most versatile genus of methanogens that can accomplish three pathways of methanogenesis 

using at least nine different methanogenic substrates including acetate, while the other orders 
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possess only single pathway for methanogenesis using no more than two methanogenic 

substrates (Galagan et al., 2002). 
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Figure 3-20. Hydrogenotrophic pathway of methanogenesis. The boxes show reactions which result in 

energy conservation (Schäfer et al., 1999). 

Hydrogen is the electron donor for the reduction pathway of CO2 to CH4 (Figure 3-20). 

Firstly, methanofuran activates CO2 to reduce to a formyl group. After that, the formyl 

functional group is transferred to co-enzyme containing methanopterin, which reduces it to 

methylene. Then the methyl functional group is transferred to co-enzyme M (CoM) to 

produce methyl-CoM. Finally, methyl-CoM is reduced by methyl reductase to methane with 

the presence of two coenzymes F430 and CoB. The two coenzymes CoM and CoB are 

regenerated by the reduction of CoM-S-S-CoB with H2 (Madigan, 2015). Similarly, Figure 
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3-20 shows the acetoclastic disproportionation of acetate to methane and CO2 by two species 

of methanogens Methanosarcina and Methanosaeta. 
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Figure 3-21. Acetoclastic pathway of methanogens (A) Methanosarcina and (B) 

Methanosaeta (Madigan, 2015). 

3.2. Parameters of anaerobic digestion 

3.2.1. Operational parameters 

3.2.1.1. Temperature 

Variations in temperature affects metabolic and synthetic activities of both 

hydrolytic/fermentative bacteria and methanogenic archaea, therefore the temperature of AD 

can significantly affect the substrate conversion, kinetics, process stability, digestate quality 

and consequently the methane yield (Sanchez et al., 2001). The optimal temperature ranges 

for mesophilic AD is 35 - 37oC,  and that for thermophilic AD is from 55 - 60oC, respectively 

(Rittmann, 2001). Although thermophilic AD results in higher biogas production rates, 

pathogen removal etc. than mesophilic digestion, the thermophilic process is more sensitive to 

environmental change, expensive to build and energy consuming to run (Kim et al., 2002). 

Whereas, compared to the thermophilic reactors, mesophilic reactors are more susceptible to 

inhibitions due to ammonia accumulation, and less tolerant to increases in the organic loading 

rates and decreases in retention time (Gallert and Winter, 1997; Sanchez et al., 2001; Kim et 
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al., 2006). However, in general, conventional anaerobic digestion is often performed at 

mesophilic temperature of 35 – 37oC (Ahn and Forster, 2002; Kim et al., 2006). OFMSW is a 

nitrogen rich substrate (from proteins in food waste) on fermentation forms high NH3-N 

concentration inhibitory to methanogens. Ammonia toxicity increases as temperature 

increases due to the increase in free ammonia concentration (Kayhanian, 1999). Therefore, 

ammonia concentration above  0.7 g N/L limits the temperature tolerance in AD (Angelidaki 

and Ahring, 1994). Zeeman et al. (1985) suggested a 3 g N/ L as a critical threshold 

concentration in thermophilic AD at 50oC. Angelidaki and Ahring (1994) obtained a stable 

conversion of VFA to biogas and better process stability at high ammonia loads by decreasing 

the digestion temperature below 55°C to the range of 37 - 40oC. Moreover, thermophilic 

temperature at high OLR may lead to excessive accumulation of VFA in AD. Xu et al. (2014) 

reported intensive accumulation of VFA at thermophilic degradation of kitchen wastes at 

55oC with the increase in OLR, specifically the build-up in acetic acid concentration, which 

became inhibitory for methanogens at 1.5 – 2.5 g/L. 

Furthermore, changes in temperature have effects on the syntrophic relationships between the 

acid producers (bacteria) and acid consumers (archaea) in AD. Montañés et al. (2015) studied 

the effect of temperature on the degradation of sewage sludge and sugar beet pulp lixiviation 

by Eubacteria and Archaea; they obtained higher volatile solids conversion to methane under 

mesophilic conditions than under thermophilic conditions. 

Temperature increase enhances the release of metals in AD. Anjum et al. (2017) found that 

the release of metals such as Zn and Cu exceeded the toxic thresholds under thermophilic 

anaerobic conditions. In this regard, in this study, the anaerobic experiments were carried out 

at mesophilic temperature (37oC); to ensure that the amount of trace elements and nutrients 

released from the feed substrate and MW; remain within the optimal thresholds for AD. 

Among the changes, studies have also shown the variation in the diversity of microorganisms 

in anaerobic bioreactors with the increase in the digestion temperature. For instance, Levén et 

al. (2007) studied the effects of process temperature at 37°C (mesophilic) and 55°C 

(thermophilic) on the bacterial and archaeal community structure in bioreactors have been 

treating household organic waste for several years at constant conditions. They reported 

higher diversity of mesophilic communities compared to thermophilic communities. They 

also demonstrated that Bacteroidetes (34%) and Chloroflexi (27%) have dominated the 

mesophilic bacterial community, while Thermotogae phyla (61%) dominated the thermophilic 

bacterial community. The archaeon phylum Euryarchaeota (assigned to the genera 

Methanospirillum, Methanoculleus, Methanosarcina and Methanomethylovorans) was the 
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most dominant archaeal phylum in both the mesophilic and thermophilic reactors. The 

archaeal genera Methanospirillum was representing 56% of the mesophilic clones, whereas 

the archaeal genus Methanosarcina was the most dominant sequence with more than 80% of 

the clones in the thermophilic reactors. For these reasons mentioned above and, as one of the 

aims of the proposed integrated digestion system in this study was to optimise a low-energy 

intensive digestion process, therefore,  the author of this thesis preferred the mesophilic 

temperature at 37oC for running reactors in the AD experiments.  

3.2.1.2. pH and buffering capacity 

Concentration of hydrogen ion (pH) in the reactor digestate is an important indicator of the 

performance and process stability of the anaerobic digester (Nayono, 2010). Ye et al. (2007) 

reported inhibition of fermentation at pH 4. Other studies suggested varied fermentation 

activity of acidogens from pH 4 to 8.5 (Yuan et al., 2006; Appels et al., 2008; Maspolim et 

al., 2015). Acidogenic bacteria need a pH of around 5 for optimal enzymatic activity, while 

methane production by methanogenic archaea proceeds optimally at a pH of 6.8 - 7.6 

(Nayono, 2010). The volatile fatty acids produced during the early stages of AD (acidogenesis 

and acetogenesis stages) consume most of the buffering capacity of the feeding substrate. 

Therefore, a stable AD process needs adequate methanogenic growth and activity to avoid 

excessive VFA accumulation, rapid pH drop and, ultimately the failure of the digester, which 

when it occurs needs a long restarting period in the range of weeks to months to recover full 

functionality (Rittmann, 2001). The imbalance in the enrichment between the 

hydrolytic/fermentative bacteria from one side and acetogenic and methanogenic microbes on 

the other side, will cause VFA accumulation and subsequent decrease in biogas production 

(Nguyen et al., 2019a). Although digester failure usually associated with significant economic 

loss, however, only a few previous studies have investigated different recovery strategies (i.e. 

water dilution, bentonite addition, feeding cessation, inoculum addition, pH adjustment, trace 

elements supplement); (Nguyen et al., 2019a). 

Variations in the pH have important effects on the dominance of core microbial populations 

of AD reactors. Ye et al. (2007) demonstrated highest bacterial diversities at pH 7 to 8 

compared to at pH 5 to 4, they also found that the pH 7 - 8 shifted metabolic pathways from 

alcohol to acid production, especially butyric acid. Whereas, both the alcohol and acid 

producers dominated the pH 5 - 6 conditions.  

The AD of an organic waste such as OFMSW which is expected to produce a high 

concentration (> 200 mg/L) of total ammonia nitrogen (TAN), the variations in pH would 
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affect the growth of microorganisms as well as the composition of TAN (Chen et al., 2008). 

The low pH and excessive acidity inhibits the digestion process which ultimately decreases 

the microbial growth (Viessman et al., 1998). Whereas, the high pH (i.e. pH > 8) would 

results in higher concentration of free ammonia (FA) compared to the ionised ammonia 

((NH4
+), and the FA has been suggested as a toxic agent for the anaerobic microorganisms 

(Kayhanian, 1999). Therefore, the pH close to 7 is recommended for the optimal activity of 

the anaerobic microorganisms (Nayono, 2010). 

Lime (Ca(OH)2), sodium bicarbonate (Na2CO3), potassium bicarbonate (KHCO3), sodium 

hydroxide (NaOH) and ammonium bicarbonate (NH4HCO3) are the most common chemicals 

usually used to raise the pH of the anaerobic digesters (Hilkiah Igoni et al., 2008). However, 

the excess use of lime will result in the precipitation of calcium carbonate, therefore other 

studies suggested the use of  Na2CO3 and KHCO3 as they provide bicarbonate alkalinity 

necessary for methanogens as well as being readily soluble and easily controlled chemicals 

having less adverse effects (Nayono, 2010). In the full-scale digesters, the high fluctuation in 

the pH due to the substrate composition and biological reactions make the addition of the 

exact amount of chemicals required to control the pH a difficult to apply process. For these 

reasons, other studies suggested making the pH in the AD reactors a self-stabilizing process 

as the best strategy to control the pH and prevent acidification (Nguyen et al., 2019a). The 

presence of sufficient alkalinity (available at all times) in the feedstock substrate is the best 

strategy for maintaining a well-buffered digestion condition. Therefore, one of the hypothesis 

behind the use of MW in the current study was to control the pH by providing a readily and 

continuously available amount of alkalinity, which could maintain the pH and prevent the 

acidification.  

3.2.1.3. Solids retention time (SRT) and hydraulic retention time (HRT) 

Solid retention time is the period that biomass and substrate resides in the digester, while 

hydraulic retention time is the period that liquids take to pass through a digester completely. 

In AD, the SRT and HRT are either equal (1:1 e.g. continuous stirred tank reactors (CSTR)) 

or decoupled, depending on the requirements and designs of the digester systems. The 

shortest possible SRT is usually defined by the microbes with slowest growth-rate i.e. 

methanogens. Shorter retention time leads to washout of methanogens, whereas longer 

retention times require larger digester volumes and increased cost. Therefore the smallest 

practicable digester volume which prevents microbial washout usually indicates the digester 

volume used in practice (Rittmann, 2001).  
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In the AD of solid waste, characteristics of the substrate, as well as temperature, design and 

stages of the digester, specify the HRT required. For instance, during AD of a highly 

hydrolysable substrate like food waste, methanogenesis stage is the rate limiting step, 

therefore the shortest retention time possible is the period required by methanogenic 

community to provide a stable methanogenesis process. Dry (20 - 40% TS) AD needs a 

longer ( by 3 days ) HRT (typically 14 - 30 days) than wet (<5% TS) AD (Nayono, 2010). 

Usually, a stable methanogenic process requires a minimum HRT of 10 days, and the typical 

HRT for the AD of solid wastes ranges from 15 to 25 days (Rittmann, 2001). Anaerobic 

digestion of wastes under mesophilic conditions requires an average retention time of 15 - 30 

days (Mao et al., 2015). Kim et al. (2006) reported highest methane yields from thermophilic 

(thermophilic methanogens have faster growth rates) reactors (55°C) digesting food waste at 

an HRT of 12 days, while digestion stability decreased when HRT was decreased to 8 days. 

Moreover, longer retention time of 50 - 100 days was also reported for anaerobic digesters 

treating organic wastes rich in protein and fats; such as the  poultry slaughter house waste 

(Salminen and Rintala, 2002).  

3.2.1.4. Mixing 

Mixing is an important operational parameter to distribute and transfer the substrate, biomass 

and chemicals, as well as to reduce sedimentation, flotation and foaming inside the anaerobic 

digester (Lindmark et al., 2014) . Mechanical mixing, digestate recirculation and re-injection 

of the produced biogas are among the methods of digester mixing. The continuous stirred tank 

reactor (CSTR) is a very common full-scale digester design in Europe where the digester 

contents are usually homogenised by mechanical mixing using different types of propellers 

and agitators (Lindmark et al., 2014). However, there are conflicting views on the exact 

design of mixing intensity for the CSTR systems. Hoffmann et al. (2008) reported no 

significant effects of mixing intensity on biogas production from CSTR systems treating 

animal manure at a wide range between 50-1500 rpm. Other studies found that mixing affects 

the balance between hydrolysis/fermentation and methanogenesis during startup, causing an 

accumulation of VFA and pH drop that inhibits the methanogens (Karim et al., 2005). 

Moreover, Vavilin and Angelidaki (2005) studied effects of mixing intensity on the AD 

process of municipal household solid waste. They reported positive effects of low mixing 

intensity over high mixing intensity at high organic loading rates, while mixing intensity had 

no significant effects on the digestion processes at low organic loading rates. The same study 

also demonstrated the effects of mixing on the microbial community, they revealed that the 

low mixing intensity and successful digestion process were associated with the presence of 
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large irregular cocci of methanogens, which survived and spread in the digester. However, at 

high mixing intensity, mainly dead microbial cells were found, therefore low mixing 

intensity; at least at the startup period of the AD was recommended. 

3.2.2. Substrate characteristics 

3.2.2.1. Particle size 

Reduction of particle sizes is one of the pre-treatment methods in AD. Grinding, comminution 

and blending are the common methods to reduce the particle size and increase the 

homogeneity of feedstock in AD. The particle size reduction of a substrate has two main 

effects: 

1- To increase the amount of degradable components of the lignocellulosic substrate 

(high fibre content) available for degradation and ultimately increasing biogas 

production of the substrate. 

2- To increase surface area of the substrate thus increasing the amount of food available 

for bacterial growth which will lead to rapid digestion of the substrate. 

Sharma et al. (1988) found that decreasing the particle size of agricultural and forest residues 

to 0.088 and 0.40 mm increased biogas production effectively. Kim et al. (2000) reported the 

increase in the food waste utilisation rate constant from 0.0015 hr−1 to 0.0033 hr−1 with 

particle size reduction from 2.14 mm to 1.02 mm. 

On the other hand, increasing surface area of a substrate through decreasing the particle size 

of the substrate will accelerate the hydrolysis and acidogenesis processes as well as VFA 

production. The imbalance between VFA production and consumption will lead to VFA 

accumulation and thus digester acidification and pH drop, resulting in inhibition of 

methanogens and decreasing the biogas production rate (Izumi et al., 2010). Therefore, 

accelerating the microbial growth is also necessary to improve the methane yield in the 

anaerobic digestion processes. 

3.2.2.2. C/N ratio 

The nutrient level of a substrate is typically indicated by its C/N ratio. Biological degradation 

of nitrogenous matter such as proteins present in the feeding substrate of the AD reactor gives 

a low C/N ratio, the breakdown of which increases ammonium nitrogen and free ammonia 

concentrations which might lead to ammonia inhibition of methanogens (Wang et al., 2014b). 

The optimal C/N ratio for maximum methane potentials are 25 and 30 at 35°C (mesophilic) 
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and 55°C (thermophilic), respectively (Wang et al., 2014b; Mao et al., 2015). A high C/N 

ratio prevents ammonia inhibition, however, it decreases the required nitrogen concentration 

necessary for microbial growth in the anaerobic digesters, resulting in low biogas production 

due to low utilisation of the carbon content of the feeding substrate (Mao et al., 2015). 

Co-digestion of different wastes is a common approach to balance the carbon and nitrogen of 

AD feedstocks. For instance, co-digestion of low C/N dairy/chicken manure with a high C/N 

wheat straw was found to enhance digestion performance of anaerobic digesters. Wu et al. 

(2010) found that co-digestion of swine manure with wheat straw at a combined C/N ratio of 

20 increased daily biogas production by 6-fold and provided better digestion performance 

with stable pH and low concentrations of total NH3-N and free NH3. Yong et al. (2015) 

suggested 5:1 as an optimal mixing ratio of food wastes with wheat straw which increased 

methane yield by about 39.5% and 149.7% compared to that obtained from individual 

digestion of food waste and wheat straw, respectively. 

3.2.2.3. Ammonia 

AD of the OFMSW produces inorganic ammonia in the form of ammonium ion (NH4
+) and 

free ammonia ((NH3); Eqs. 3.27 to 3.30 ), both forms can directly or indirectly cause 

inhibition /and shifts in metabolic pathways of microbial communities (specifically 

methanogens) in anaerobic systems (Yenigün and Demirel, 2013). 

The reactions of ammonia gas with water to produce ammonium and hydroxide ion depending 

on the hydrogen ion concentration, and the relation of free ammonia concentration to total 

ammonia concentration are given by the following equations:  

NH3 + H2O                     NH4
+ + OH-                                                                                            (3.27)

CO2 + HOH                    H2CO3                  H+ + HCO3                                                      (3.28)

H2CO3 + OH-                     HCO3
- + HOH                                                              (3.29)

                             
            Ka

                   + 1
            [H]

NH3 = 

TAN x 
Ka

[H]

                                                                                 (3.30)

 

Where, NH3 = free ammonia concentration in mg/L, TA = total ammonia nitrogen in mg/L, 

Ka = temperature dependant dissociation concentration, [H] = hydrogen ion concentration 

(Kayhanian, 1999). 
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Figure 3-22. Proposed mechanisms of ammonia inhibition in methanogens (Kayhanian, 1999). 

  

Figure 3-23. Variations in free ammonia concentration of a thermophilic digester at different total 

ammonia concentrations and varying pH (Kayhanian, 1999). 

Only small amounts of ammonia are utilised for cell synthesis and higher levels of ammonia 

are inhibitory to the methanogens present in the anaerobic digesters. There are two proposed 

mechanisms for ammonia inhibition (Figure 3-22): (1) ammonia inhibits the synthesis of the 

enzymes utilised by methanogens in methanogenesis, and (2) the hydrophobic ammonia 
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molecules diffuse passively into the cell, causing proton imbalance and /or potassium 

deficiency. Ultimately, the both mechanisms of ammonia inhibition limit the efficiency 

(activity) of methanogens to degrade organic matter (Kayhanian, 1999). 

 The archaeal community, including both hydrogenotrophic and acetoclastic methanogens, are 

sensitive to ammonia inhibition (Kadam and Boone, 1996; Lay et al., 1998; Kayhanian, 1999; 

Fujishima et al., 2000; Schnurer and Nordberg, 2008; Tian et al., 2018). However, Tian et al. 

(2018) found that hydrogenotrophic methanogens (such as Methanosarcina) were more 

tolerant to ammonia inhibition compared to acetoclastic methanogens (such as 

Methanosaeta). Moreover, these studies indicated that the AD process inhibition by ammonia 

is related to the characteristics and loading rate of the feeding substrate as well as the pH and 

temperature (mesophilic / thermophilic) of the digester. Increasing the digestion temperature 

increases the ammonia toxicity (Weiland, 2010). It can be concluded from equation 3.30  that 

at a given pH and TAN concentration, the free ammonia concentration for a digester at 

thermophilic temperature is six times higher than at a mesophilic temperature (Kayhanian, 

1999). Angelidaki and Ahring (1994) reported positive effects of temperature reduction 

(below 55°C) on the biogas yield and process stability of thermophilic reactors with high 

ammonia concentrations. 

In the literature, the reported inhibitory concentration of total ammonia for methanogens 

ranges between 1.5 g N/L to 4 g N/L (Rajagopal et al., 2013; Yenigün and Demirel, 2013). 

Other studies reported archaeal tolerance of ammonia inhibition between 7.8 - 13 g N/L under 

acclimation conditions (Pechan et al., 1987; Sung and Liu, 2003).  

3.2.2.4. Organic loading rate (OLR) 

Organic loading rate (OLR) is an important parameter in AD; it indicates the amount of 

volatile solids (VS) fed into the digester per day. In AD, to an extent, most of the VS is 

biodegradable and converted to biogas; therefore, the increase in OLR will increase the biogas 

production. However, excess increase in OLR (overloading) can disturb the equilibrium and 

productivity of the anaerobic digester. Extreme high OLR would lead to an imbalance of 

hydrolysis/acidogenesis activity and methanogenesis activity leading to accumulation of 

excessive VFA, which eventually causes the irreversible acidification of the anaerobic 

digester (Mao et al., 2015). By arranging periods without organic loading (intermittent 

feeding), stable digestion process with high methane yields (364 - 489 mL/g VS) and VS 

reduction (83 - 91%) could be achieved from mesophilic single-stage wet (<5% TS) anaerobic 

digestion of food waste with maximum OLR of 10.5 g VS/L. d (Nagao et al., 2012). 
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However, with continuous loading of the feeding substrate, the maximum possible stable 

loading rate for wet AD remained at 1- 4 g VS/L. d (Nagao et al., 2012). Unlike in wet AD, 

semi-dry (10 - 20% TS) and dry (20 - 40% TS) AD provided stable digestion process without 

acidification at OLRs of 7 - 15 g VS/L. d. However, the methane yield (140 - 314 mL/ gVS) 

and VS reduction (31 - 48%) were lower (Vallini et al., 1993; Dong et al., 2010). 

3.2.2.5. Macro-nutrients and trace elements 

The growth and survival of microorganisms needs macronutrients and trace elements. 

Deficiency in macronutrients and trace elements causes significant effects on the AD process. 

Important macronutrients for biological processes include carbon, nitrogen, phosphorus, 

potassium, magnesium and sulphur. In addition, a large number of trace elements (TE) have 

been reported in the literature to be stimulatory for AD processes (Banks et al., 2011; 

Takashima et al., 2011; Facchin et al., 2013; Westerholm et al., 2015b). 

The main element of microbial cell structure is carbon, which is usually supplied through the 

feeding substrate. Nitrogen is required during protein biosynthesis, and sulphur is necessary 

for amino acids. The energy carriers ATP and NADP needs phosphate for energy transfer in 

AD metabolic pathways. The optimal C: N: P ratio for methane yield enhancement is 200:5:1 

(Weiland, 2010; Mao et al., 2015). 

Trace elements like iron, nickel, cobalt, selenium, molybdenum, and tungsten are important 

for the growth rate of microorganisms (Table 3-3). All methanogens need nickel for synthesis 

of cofactor F430 required in methanogenesis. Cobalt-containing corrinoid factor III, needs 

adequate cobalt for optimal cell growth. Addition of Ca and Mg salts were found to support 

methane production and prevent foaming. Tungsten enhances propionate degradation, Se and 

Co enhances processes stability of AD at high ammonia concentration such as digestion of 

food waste (Demirel and Scherer, 2011; Zhang and Jahng, 2012; Zhang et al., 2012; Facchin 

et al., 2013; Zhang et al., 2015b; Cai et al., 2017).  

The necessary concentration of TE generally ranges from 0.05 - 0.06 mg/L, except iron which 

requires a concentration between 1 to 10 mg/L (Weiland, 2010). However, the bioavailability 

of TEs does not always associate with the measured concentration of the TE, the limited 

bioavailable concentration of TEs affects process stability and methane production 

significantly (Oleszkiewicz and Sharma, 1990). Finally, as suggested by Mao et al. (2015), 

“Although supplementation of micronutrients and trace elements could be a simple way to 

achieve AD process stabilization and efficient biogas generation, the economic feasibility of 

trace elements should be dependent on their cost”. Therefore, finding economically feasible 
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sources of TEs able to support efficient AD is one of the key questions to answer in future 

research. 

Table 3-3. Enzymes in anaerobic microorganisms and their related trace elements (Choong et al., 

2016). 

Enzymes or groups Metals Exist form Affected microbial groups 
Methyltransferase Co Corrinoid Methanogenic archaea, Homoacetogenic bacteria 

Methyl-CoM reductase Ni F430 Methanogenic archaea 

Acetyl-CoA synthase Ni 
 

Methanogenic archaea 

Hydrogenase Ni 
 

Methanogenic archaea 

Formylmethanofuran 

dehydrogenase 

W,(Se, 

Fe) 

Tungstopterin Methanogenic archaea 

Mo, (Se, 

Fe) 

Molybdopterin 

Carbon monoxide 

dehydrogenase 

Ni, Fe Fe-Ni-S Methanogenic archaea, Homoacetogenic bacteria, 

Sulfate-reducing bacteria 

Hydrogenase Fe Fe-S Methanogenic archaea, Homoacetogenic bacteria, 

Sulfate-reducing bacteria Fe, Ni, 

Se 

Fe-S-Se 

Formate dehydrogenase W, (Se, 

Fe) 

Tungstopterin Methanogenic archaea, Homoacetogenic bacteria, 

Sulfate-reducing bacteria 

Mo, (Se, 

Fe) 

Molybdopterin 

Cabonic anhydrase Zn 
 

Methanogenic archaea, Homoacetogenic bacteria 

Hydrogenase, 

formatedehydrogenase 

Zn 
 

Methanogenic archaea, Homoacetogenic bacteria 

Nitrogenase Mo 
 

Methanogenic archaea 

Superoxide dismutase Cu, Zn 
 

Methanogenic archaea 

Cytochrome Fe Haem, Fe-S Homoacetogenic bacteria, Sulfate-reducing 

bacteria 

Ferredoxin Fe Fe-S Methanogenic archaea, Homoacetogenic bacteria, 

Sulfate-reducing bacteria 

3.2.2.6. Co-digestion 

Co-substrate is a substrate produced by mixing two or more feedstock with varying 

physicochemical and microbial characteristics, and the AD of the co-substrate is known as co-

digestion. Co-digestion is a method of increasing the digestion performance (methane 

production rate and yield and solids reduction) and process stability in AD. The positive 

effects of using co-substrates on AD include dilution of the toxicants, supplying missing 

nutrients (see Section 3.2.2.2 above) , and maintaining the required moisture percentage of the 

feeding substrate as well as the handling of the co-substrate would be easier (Mata-Alvarez et 

al., 2000a; Salminen and Rintala, 2002). Moreover, changes in the microbial composition in 

the digester depend on the characteristics of the digester medium, such as VFA and ammonia 

concentrations (Sundberg et al., 2013; Mata-Alvarez et al., 2014). Therefore, mixing different 

substrates in a co-substrate means mixing microbial communities from these substrates in the 

digester medium, which is a feasible option to enhance the digestion performance of mono-
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digestion by increasing the robustness of the microbial communities in the anaerobic digester 

to tolerate intermediate digestion products (Zhang et al., 2011b; Sundberg et al., 2013). 

3.2.2.7. Pre-treatment 

Pre-treatment is a method to optimise biological processes and improve the yields in AD. The 

applied pre-treatment method depends on the characteristics of the substrate. The most 

common pre-treatment methods in AD are mechanical, thermal, chemical and biological. 

These pre-treatment methods can be performed either singly or in combination. The main 

purpose of pre-treatment is to resolve the rate-limiting steps in AD. For complex substrates 

and low degradable substrates such as cellulosic wastes, the hydrolysis step is typically the 

rate-limiting linked to the presence of non-degradable components in the substrate (such as 

lignin of the cellulosic substrates), as well as formation of toxic by-products and accumulation 

of non-desirable VFA (Raposo et al., 2011; Raposo et al., 2012; Ariunbaatar et al., 2014b).  

However, methanogenesis is the rate-limiting step for the easily and quickly degradable 

substrates such as food waste (Rozzi and Remigi, 2004). The key factors which govern the 

choice of the best pre-treatment method are the substrate characteristics, technology of the 

digester used, quality and subsequent utilisation of the digestate (Cesaro and Belgiorno, 

2014). For OFMSW, all the potential pre-treatment methods can be applied (Cesaro and 

Belgiorno, 2014); however, the applicability and sustainability of such pre-treatment methods 

at full scale need to be considered (Ariunbaatar et al., 2014a). 

3.2.3. Reactor configuration and operation 

Figure 3-24 shows classification of AD digesters according to the operational conditions and 

digester categories. Depending on the total solids content (TS %) of the feedstock substrate, 

anaerobic digesters are classified as being wet (< 10% TS), semi-dry (15 – 20% TS) and dry 

(22 - 40% TS) digestion. Furthermore, anaerobic digesters can be classified into single-stage, 

two-stage /and multi-stage digesters (Verma, 2002) according to the separation of the 

different biological processes within different reactor compartments or tanks. In single-stage 

reactors all the stages of AD occur in one digester, while in two-stage digesters the acidogenic 

and methogenic stages are performed in two different digesters (Verma, 2002)  Usually the 

total solids content of OFMSW is higher than 15% and therefore can be processed through 

semi-dry or dry digester systems (Li et al., 2011).  
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Figure 3-24. Classification of AD digester designs according to the operational condition and digester 

categories (Rapport et al., 2008). 

Depending on the feeding frequency, anaerobic digesters can be classified as batch or 

continuous systems. A batch digester is fed once until it totally degrades most of the solids in 

the substrate and then stops producing biogas, while continuous reactors need regular feeding 

as short intervals (typically minutes to hours). In continuous reactors, a fixed volume of the 

feeding substrate will replace an equal volume of digestate removed. Due to its relative 

simplicity, minimum maintenance requirements, low parasitic energy loss, and minimum 

capital cost, most of the digesters treating solid waste (i.e. MSW, food waste, and agricultural 

waste with 15 – 40% solids concentrations) for energy production in the EU are operated in 

single-stage and at mesophilic or thermophilic conditions (Li et al., 2011). 

The plug-flow digester is another single-stage anaerobic digester design. Inside the plug-flow 

digesters, the substrate is not completely mixed; it moves in plug-flow through the reactor 

from the feeding port to the digestate disposal port, while the continuous stirred tank reactor 

(CSTR) systems mix the digester content either continuously or periodically. The plug-flow 
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digesters require heavy process equipment to push dry and viscous substrates to move through 

the digester. This type of reactor is only useful for a substrate which can maintain at least 20% 

solids in the reactor, otherwise at lower solids content, the solids settle and produce a layer on 

the bottom of the reactor decreasing the active volume of the reactor (Li et al., 2011). 

 In the CSTR systems to reduce the amount of water/or inoculum needed, the digestate can be 

recycled (either partially or totally) to the digester either directly or after mixing with the new 

feedstock substrate (Li et al., 2011). The digester with a recycled digestate also supports the 

colonisation of bacteria in the digester and prevents the washout of microbial communities as 

well as preserves the useful macro-/micro-nutrients inside the digester (Li et al., 2011). 

Therefore, in this thesis, the use of CSTR with a recycled method of digestate (mostly the 

liquid part of the digestate) was expected to accommodate the integration of MW in the AD of 

OFMSW. 

3.3. Integrating mineral wastes into anaerobic digestion of organic waste 

3.3.1. Mineral wastes of municipal solid waste incineration (MSWI) plants 

3.3.1.1. Introduction of mineral wastes 

Municipal solid waste (MSW) comprises different components coming from various waste 

streams such as household solid waste, industrial solid waste (non-hazardous), agricultural 

solid waste (garden waste) and local market solid waste (commercial waste). In term of 

combustibility, MSW can be divided into combustible and non-combustible components. 

There are two main advantages of incineration of MSW: it provides substantial decrease (~ 

90%) in the waste volume requiring disposal in landfill, and produces energy; as heat or 

electricity (Cheng and Hu, 2010). 

In many countries, incineration is the management method of choice for the combustible 

component of MSW. In England in 2011/2012, incineration accounted for 15.1% treatment of 

the total MSW produced, and the incineration-by-products (MW) was equated to ~ 4 million 

tonnes per annum (DEFRA, 2013). In Denmark, Germany, Sweden and France, incineration 

accounts for 48%, 36%, 55% and 42% by weight of total solid waste arising in these 

countries, respectively (Ecke and Åberg, 2006). In 2009, there were 449 operating 

incineration plants across 20 of the Western and Central European countries, with total 

throughput of 69.4 million tonnes of waste (DEFRA, 2013). In Japan, land for landfill is very 

scarce, therefore, incineration is indispensable for the management of MSW (74% of MSW is 

managed by incineration; (Ecke et al., 2000)). 
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Generally, in an MSWI plant (Figure 3-25), management of MSW takes place in three 

sequential stages: incineration of the waste at 1000oC; energy recovery stage and air pollution 

control (APC) stage (Lam et al., 2010). The incineration process releases heat energy for 

boiler systems and leaves an ash residue on the grate system. The generated heat from 

incineration process is used to produce super-heated and pressurised steam that in turn drives 

a turbine winch generates electricity transferred to the electrical network. The main by-

products of an incineration plants can be categorised into gaseous and solid residues. 

 

Figure 3-25. Schematic diagram of an incineration plant of MSW (SITA Company, Teesside, UK). 

The incineration conditions and composition of the waste governs the composition and 

microstructure of the incineration by-products. After combustion, the solid residue of the 

incinerated waste is screened for recycling ferrous and non-ferrous metals. The solid material 

collected at the bottom of the incineration furnace is known as incineration bottom ash (IBA); 

it makes up to 85 - 90% of the MSWI solid residues. IBA is rich in trace elements and 

contains up to 61 - 94% of the heavy metals produced during incineration (Zhang et al., 

2008). The gaseous products from incineration plants are purified at the APC stage. The solid 

residuals from the APC stage contain particles from the incineration stage, lime used in spray 

absorbers and dust. The gas passes through a series of filters to be cleaned for specific 

standard limits before it is emitted to the ambient environment through high stacks. Collected 



47 

 

solid residues from the APC stage and heat exchange boiler are named as fly ash (FA) and 

boiler ash (BA), respectively. 

3.3.1.2. Applications of the mineral wastes from MSWI plant 

Sustainable use of mineral wastes (MW) from MSWI plants depends on a controlled 

contaminant release strategy (Hjelmar, 1996). Currently, the extension of existing MSWI 

landfill capacities and reduction of disposal costs has motivated many countries to assess the 

potential reuse of MW.  

 

Figure 3-26. Primary applications of solid residues from MSWI plants (Chandler et al., 1997). 

In the Europe, incineration bottom ash is often utilised as substitute material for production of 

aggregate and other construction materials in roads, ramps, noise barriers etc. (Figure 3-26). 

However, emissions to the surroundings caused by leaching of heavy metals from MW 

exposed to the environment, apply some restrictions on the use of MW as building material in 

construction (Chandler et al., 1997). In other countries such as the USA, MW are used with 

daily cover soil at landfill sites with MW: soil ratios between 1:4 and 1:5 (Rhew and Barlaz, 

1995; Banks and Lo, 2003). 

3.3.1.3. The use of mineral wastes from MSWI plants in anaerobic digestion 

Mineral wastes from a MSWI plant contain many of the trace elements essential for AD 

metabolic pathways, and contains some other elements such as K, Ca, Na and Mg that may 

increase the buffering capacity of anaerobic digesters (see Section 4.2 of this thesis). To date, 

few studies have investigated the potential use of MW in AD. Banks and Lo (2003) assessed 
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the use of IBA to optimise mesophilic (37oC) AD of the degradable organic fraction of 

municipal solid waste. They demonstrated the increase in biogas production (two to four 

times higher than the control reactor without IBA amendment), alkalinity and pH, coupled 

with a low concentration of nutrients in the digestate of continuous reactors (CSTRs) 

amended with IBA. del Valle-Zermeño et al. (2015) investigated the use of IBA for upgrading 

biogas from CSTRs. They obtained a sorption capacity of 50 kg CO2/t and 35 kg CO2/t for 

dry fine IBA and weathered IBA, respectively. Zhang et al. (2015a) studied co-digestion of 

food waste with a fresh leachate obtained from a waste storage bunker of a MSWI plant. They 

obtained much better reactor performance and process stability in terms of high CH4 yields 

(375.9 - 506.3 mL/gVS added), high VS reduction (66.9 - 81.7%), and stable pH (7.2 - 7.8) 

from the co-digestion compared to mono digestion of food waste. Consequently, published 

research has shown there to be potential benefits from incorporating MSWI plant wastes into 

AD processes treating OFSMW. For this reason, the current study investigated 

comprehensively the reuse of MW as a feedstock amendment for stabilising and optimising 

AD reactors treating OFMSW. The anaerobic digestion strategies applied during the current 

study for integrating MW into AD of OFMSW were expected to provide a mechanistic 

understanding of how these wastes enhance biogas production, as well as to provide 

information on the supply of trace elements and nutrients necessary for optimising the AD 

processes. Such an information could be used to improve the efficiency of the AD of 

OFSMW, and to improve disposal options for MW fractions of MSW. For instance, the 

combined waste streams (the ash and digestate) after AD can be reworked into normal ash re-

use routes as described in Section 3.3.1.2. 

3.3.2. Mineral wastes from construction demolition waste (CDW) 

The past decade has shown high levels of growth of the construction industry worldwide 

(Renforth et al., 2011). One of the environmental impacts of the construction industry is that 

construction demolition waste (CDW). CDW represents 20 - 30% of the MSW produced each 

year (Gomes et al., 2013). In 2012, about 821 million tons of CDW produced in the EU 

(Eurostat, 2014).  As describe in Section 1.2, low amounts of these waste products are reused 

in the construction industry as aggregates for concrete production, while most of the CDW 

from the construction industry is either used as filling material or illegally dumped on empty 

open areas (Gomes et al., 2013). Moreover, this waste stream of MSW comprises components 

can support buffering capacity of anaerobic digesters. Washbourne et al. (2015) reported that 

the CBW components of CDW could react with dissolved CO2 to change alkalinity and 

precipitate carbon in the form of carbonate mineral as CaCO3.  
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About 35.5 - 67% of CDW is cement-based waste (CBW) which contains a notional CaO 

content of about 10 - 20 % (Renforth et al., 2011), calcium silicate and hydroxide minerals. 

Under weathering conditions, CBW reacts with dissolved CO2 to change the alkalinity and 

precipitate carbon in the form of carbonate minerals such as CaCO3 (Washbourne et al., 

2015). There are three possible carbonation reactions for calcium silicate (Eq.3-31), hydrated 

cement mineral (Eq.3-32) and portlandite (a component of portlant cement) (Eq.3-33) 

(Washbourne et al., 2015). The precipitation of carbonate minerals by calcium silicates scrubs 

CO2 from biogas, this increases the methane concentration of the biogas produced from 

anaerobic reactors. Moreover, the CO2 capture by the CaO content of the wastes diminishes 

CO2 emission from AD systems. Furthermore, precipitation of CaCO3 increases the alkalinity 

in reactors, which prevents inhibition of methanogens due to pH reduction. Therefore, the 

current study aimed to utilise CBW in AD of the OFMSW as an alkaline and a mineral 

resource for optimising the digestion processes. 

 

3.4. Anaerobic co-digestion of the OFMSW with wheat straw 

Wheat straw (WS) is a widely available (especially in the author’s home country), non-

competitive with food applications, easy to obtain, and low in cost agricultural by-product 

biomass obtained from agricultural wheat production (Maas et al., 2008) and, therefore, it is 

of particular interest for co-digestion with OFMSW. About 60% of dry weight of WS is 

carbohydrates (Reilly et al., 2015) in the form of cellulose, hemicellulose and lignin. WS is a 

good substrate for producing each of bioethanol, biohydrogen and biogas, however, the use of 

WS for biogas production is the most energy efficient process (Pohl et al., 2013). 

Carbohydrates are the important source of energy for microorganisms, anaerobic bacteria can 

produce acetate and hydrogen from the fermentation of carbohydrates (Madigan, 2015). 

Methanogens metabolise the fermentation products for energy conservation and growth. The 

increase in the population of methanogens inside digester enhances the conversion of solids 

into bioenergy. Moreover, the un-degraded lignin component remained from WS after AD is a 

useful bulking agent for the later composting process of digestates from the anaerobic 

digesters. Furthermore, in the current study, it was hypothesised that co-digestion of WS with 

the OFMSW then production of acids at the acidogenesis stage will increase the disruption of 
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the strong bonds between lignin and hemicellulose in the WS, hence improves the 

solubilisation of hemicellulose (Reilly et al., 2015). Solubilisation of hemicellulose in 

addition to cellulose will increase the amount of the fermented substrate from WS available 

for methanogens for biogas production. 

Previous studies (Wang et al., 2012) found that optimising the reactor feed (such as OFMSW) 

composition to a C/N ratio between 25 – 30 has improved the reactor performance by 

mitigating the risk of ammonia inhibition of methanogens. Whereas, a low level of nitrogen 

(i.e. high C/N ratio) in the feed substrate decreases the buffering capacity in the reactor which 

causes high VFA concentrations, pH reduction and hence inhibition of methanogens. 

Likewise, low C/N ratio of the feed substrate enhances the buffering capacity in reactors due 

to the hydrolysis of nitrogen to ammonia, however higher ammonia concentration might 

cause inhibition of methanogen (Yenigün and Demirel, 2013). 

As described in Section 3.2.2.5 trace elements are crucial nutrients for the synthesis of 

metalloenzymes involved in the metabolic pathways of AD. In the literature, no previous 

studies have investigated the combined effect of C/N ratio and trace elements on AD. 

Therefore, the effects of these two factors singly/in combination; on AD of the OFMSW was 

studied in detail in the Chapter 9 of this thesis. 

3.5. Conclusions 

In the next few decades, it is likely dissemination of anaerobic biotechnology for renewable 

energy production will become an economically feasible alternative to fossil fuels. The 

success of AD for biogas production depends on minimising the operational and capital costs 

of this technology to produce a usable and an affordable biogas at low cost for the production 

of electricity, heat, and hydrogen or compressed methane as a sustainable fuel for transport 

vehicles. Nowadays, the theory behind the AD processes and the physicochemical parameters 

affecting these processes are well established. The key question for the future are about 

optimisation of the AD processes to increase the biogas production efficiency of the AD 

technology. The OFMSW is a nutrient rich substrate for AD; it is available for biogas 

production at almost every place in the world. However, in most cases OFMSW is deficient in 

some of the crucial trace elements necessary for the activation of the enzymes known to be 

crucial of the AD process. Nowadays, many types of commercial trace element amendments 

are available to anaerobic digesters. However, the economic feasibility and availability of 

these trace element sources are still limited to their use. Therefore, using low cost sources of 

trace elements, such as mineral wastes, which can release most of these trace elements, has 
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the potential to minimise the operational costs of AD. Moreover, the use of mineral wastes as 

a source of trace elements for AD plants is an attractive alternative to commercial trace 

element preparations not only from a cost perspective, but also because it offers a more 

sustainable method for the disposal of this MW material.
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Chapter 4. Materials and Methods 

Chapter contents 

The general material and methods, which are applied in most of the chapter results (Chapter 5 

to Chapter 9), are described in details in this chapter, whereas the specific material and 

methods are described in the related chapters. Moreover, to avoid the repetition, some of the 

results obtained from the physicochemical analysis of the inoculum, feedstock substrate and 

mineral wastes are presented in this chapter. 

4.1. Reactor substrates 

4.1.1. Synthetic organic waste 

The substrate used for AD trials of the current research was a synthetic organic waste (SOW) 

to minimise the impacts of composition variability of the OFMSW on the reproducibility of 

results. The SOW was produced from different organic waste components to simulate typical 

composition of the OFMSW at the author’s home country (Sulemani, Kurdistan region, Iraq). 

The substrate composed of 79% cooked food leftovers (such as rice 13.6%, meat 1.5%, beans 

5.6%, fat 1.4% etc.), 20% of uncooked fruit and vegetable wastes (such as apple 1.3%, orange 

1.7%, banana 2%, lemon 1.2% and pomegranate 1.4%, herbs ~ 6% etc.), and 1% of packing 

cardboard, simulating the OFMSW going to landfill (Table 4-1). The substrate components 

were blended together to particle sizes less than 5 mm using a food blender. The SOW total 

solids (TS) concentration was adjusted within the optimal TS value of 10 - 20% by wet 

weight (Forster-Carneiro et al., 2008) using distilled water, about 30% dilution by volume of 

the blended organic waste was required. After adjustment, the substrate was stored at -20oC 

until use. 

During this research, in order to produce a SOW substrate for the AD trials with less variation 

possible in the physicochemical characteristics, two batches of the SOW were prepared. The 

first batch of the SOW substrate (Table 4-2) was used for the AD trials described in Chapter 5 

and chapter 6, whereas the second SOW batch (Table 4-3) was used as the feedstock substrate 

for the AD trials described in Chapter 7, Chapter 8 and Chapter 9. 
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Table 4-1. Proportions among components used in the simulated OFMSW (SOW), the proportions 

were calculated as the wet weight of each component per total wet weight of the SOW substrate  

Cooked food leftovers Uncooked fruit and vegetable wastes Cardboard 

Component 
Proportion 

(%) 
Component 

Proportion 

(%) 
Component 

Proportion 

(%) 

Rice 13.6 Watermelon 3.9 Cardboard 1 

Bulgur 4.8 Muskmelon 2.5   

Bread 5.3 Orange 1.7 
  

Loaf 2.3 Banana 2 
  

Beans 5.6 Apple 1.3 
  

Eggplant 1.5 Lemon 1.2 
  

Dry apricot 1.6 Pomegranate peels 1.4 
  

FAT 1.4 Herbs, onions and etc. 6 
  

Tomatoes 5.6   
  

Squash 2.3 
    

Parsley 2.1 
    

Swiss chard 1.4 
    

Spinach 4.1 
    

Okra 3.1 
    

Sweet potato 5.4 
    

Garlic 1.2 
    

Yoghurt 1.9 
    

Cheese 1.5 
    

Chicken meat 2.2 
    

Red meat 1.2 
    

Desserts 1.9 
    

Spices and salts 0.7 
    

Onion 2.3 
    

Eggs 0.5 
    

Biscuits 1.2 
    

Tea (lees) 2.3 
    

Others 2     

Total 79% 
 

20% 
 

1% 
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Table 4-2. Characteristics of the feedstock substrate (SOW) used for the AD trials in Chapter 5 and 

Chapter 6 

Parameters Value* Standard deviation 

pH (1:2) ** 4.27 ±0.1 

Total solids (%W/W) 18.6 ±0.035 

Volatile solids (%W/W) 17 ±0.057 

Volatile solids (%TS) 92 - 

C (%) 46.47 ±0.3 

H (%) 6.76 ±0.035 

N (%) 2.21 ±0.02 

O (%) 37.52 ±0.42 

S (%) 0.16 ±0.01 

C/N 22.4 ±0.05 

Al*** 45 ±23 

As 0.61 ±0.3 

B 4.2 ±1.2 

Ba 3.5 ±0.9 

Ca 4958 ±245 

Cd 0.02 ±0.001 

Co 0.03 ±0.001 

Cr 0.85 ±0.23 

Cu 4.3 ±0.67 

Fe 62.5 ±.3.6 

K 7523 ±1220 

Mg 657 ±143 

Mn 11.8 ±2.1 

Mo 0.48 ±0.21 

Na 323 ±82 

Ni 0.73 ±0.17 

Pb 0.28 ±0.05 

Se 0.85 ±0.2 

Si 69 ±3.3 

Ti 0.4 ±0.1 

V 1.1 ±0.07 

Zn 13.8 ±2.5 

* All values in this table represent mean value of three triplicate samples measured. 

** One volume of each sample dissolved in two volume of distilled water mixed with magnetic stirrer for one hour then 

measured for pH. 

*** All concentrations of trace elements are in mg/kg TS. 

%W/W = percentage of the dry weight of total or volatile solids per wet weight of the feedstock substrate. 
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Table 4-3. Characteristics of the feedstock substrate (SOW) used for the AD trials in Chapter 7, 

Chapter 8 and Chapter 9 

Parameters Value* Standard deviation 

pH (1:2) ** 4.3 2 ±0.15 

Total solids (%W/W) 12.8 ±0.1 

Volatile solids (%W/W) 11.3 ±0.1 

Volatile solids (%TS) 88 - 

C (%) 44.8 ±0.2 

H (%) NM - 

N (%) 3.3 ±0.03 

O (%) NM - 

S (%) 0.3 ±0.01 

C/N 13.8 ±0.06 

Al*** 340 ±12 

As BD - 

B 11.3 ±0.8 

Ba 6.6 ±0.7 

Ca 2329 ±205 

Cd 0.05 ±0.001 

Co 0.2 ±0.001 

Cr 1.4 ±0.18 

Cu 12.4 ±0.47 

Fe 366 ±.2.8 

K 412 ±53 

Mg 142.5 ±25 

Mn 10.3 ±1.1 

Mo 0.9 ±0.20 

Na 167 ±25 

Ni 1.3 ±0.15 

Pb 8.3 ±0.4 

Se BD - 

Si 85.8 ±2.5 

Ti 7.6 ±0.18 

V 1.8 ±0.1 

Zn 29.7 ±1.8 

* All values in this table represent mean value of three triplicate samples measured. 

** One volume of each sample dissolved in two volume of distilled water mixed with magnetic stirrer for one hour then 

measured for pH. 

*** All concentrations are in mg/kg TS. 

%W/W = percentage of the dry weight of solids per wet weight of the feedstock substrate. 

NM = not measured. 

BD = below the detection limits. 
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4.1.2. Inoculum 

The AD inoculum was obtained from a mesophilic (37oC) AD plant treating cattle slurry and 

food waste or farm silage (Cockle Park Farm, Newcastle University, UK).  

Table 4-4. Characteristics of the inoculum used to start up the AD systems 

Parameter Value* Standard deviation 

pH  8.2 ± 0.31 

TS (%W/W)** 1.28 ± 0.005 

VS (%W/W)** 0.65 ± 0.06 

VS (%TS) 51.7 - 

TKN (mg/L) 2848 ± 170.8 

NH3-N (mg/L) 2654 ± 6.3 

FAN (mg/L) 449 ± 1 

Total alkalinity (mg/L) 9792 ± 157 

Total VFA (mg/L) 3700 ± 518 

Total COD (mg/L) 8100 ± 225 

C (%) 40.9 ± 3 

N (%) 4.1 ± 0.3 

S (%) 0.15 ± 0.04 

C/N 10 - 

Al *** 973 ± 21 

B 51 ± 2.5 

Ba 28 ± 0.5 

Ca 19465 ± 183 

Cd 0.29 ± 0.1 

Co 1.2 ± 0.2 

Cr 6 ± 0.8 

Cu 103 ± 1.5 

Fe 1818 ± 9.8 

K 6304 ±19.0 

Mg 2181 ± 5.4 

Mn 163 ± 3.0 

Mo 10 ± 0.5 

Na 637 ±11.0 

Ni 12.5 ± 0.5 

Pb 29.6 ± 0.7 

Si 304 ± 3.0 

Ti 38.8 ± 0.4 

V 8 ± 0.1 

Zn 389 ± 2.7 

*All values in this table represent mean value of three triplicate samples measured. 

** %W/W = percentage of the dry weight of solids per wet weight of the inoculum. 

*** All concentrations are total concentration of metals in µg per g TS. 
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The inoculum (seed) was passed through a 5 mm sieve to remove large particles of undigested 

organic matter then stored at 5oC until use. At the beginning of each study, the amount of 

inoculum required for starting up reactors was activated for 7 days according to the VDI 

method (VDI, 2006a) at 37oC, then acclimated to the feeding substrate and reactor 

environments for a period of 10 - 20 days. The activity of the inoculum (compared to the 

original seed) was checked by measuring the methane content of the biogas produced from 

the inoculum on day 20 of the acclimation period, and the inoculum was considered suitable 

for co-digestion experiments when the methane content of the biogas produced by the 

inoculum was > 50%. 

4.1.3. Mineral wastes 

Three of the MW (Table 4-5) were incineration bottom ash (IBA), fly ash (FA) and boiler ash 

(BA) obtained from a domestic Waste-to-Energy incineration power plant, Teesside, UK. In 

this plant, household food and garden wastes are dried and burned at ≈ 1000oC; steam 

turbines then convert the produced heat to energy. For the homogenisation, within a period of 

3 week different samples of the MSWI solid residues (particle size of IBA was 14 - 40 mm) 

were collected from two production lines at the incineration plant. The fourth MW was from 

CDW produced from two CBW samples (with nominal particle sizes of 10 mm and 1 mm) 

collected from a CDW recycling site in Newcastle upon Tyne, UK. All the MW samples 

(IBA, FA, BA, and CBW) were dried overnight (104oC) and visible metals, glass and plastic 

materials removed. Prior to being used in the trials, all MW were ground by a mill (Vibratory 

Disc Mills, SIEBTECHNIK-TS, Germany), sieved to less than 212 µm (BS410 standard 

sieves 212 µm diameter) and stored at room temperature in airtight containers until use. 

Table 4-5. Main characteristics of the mineral wastes* 

Parameter Incineration 

bottom ash (IBA) 

Cement based 

waste (CBW) 

Fly ash (FA) Boiler ash (BA) 

pH (1:2)** 10.37 11.07 10.3 11.84 

Total solids(%WW) 99.15 97.1 97.1 99.5 

Volatile solids (%WW) 2.86 2.44 2.9 1.2 

Volatile solids (%TS) 2.88 3 3 1 

C (%) 1.84 2.77 2.92 1.37 

N (%) 0.04 0.02 0.02 0.01 

S (%) 0.41 0.13 1.97 2.32 

C/N 46 139 146 137 

*All values in this table represent mean value with standard deviation (not shown) of three triplicate samples measured. 

**20 g of each mineral waste was dissolved in 40 mL of distilled water and mixed with magnetic stirrer for one hour then 

measured for pH. 
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4.1.4. Synthetic trace element solutions 

The synthetic (pure) TE solution used in this research (Chapter 9) was composed of multiple 

stock solutions (1000 mg/L) of each TE. The stock TE solutions were prepared with high 

purity element metals (Sigma Aldrich) in 2% HNO3 solution. The acidified (pH ~ 5) stock 

solutions were stored at 5oC until use. On start-up of experiments, reactors receiving TE 

supplementation were given appropriate volumes of these stock solutions to achieve the 

designed concentration of each TE in the reactor. The concentration of the TEs in the TE 

solution were chosen according recipes suggested by previous studies (Zhang et al., 2012) as 

well as to simulate approximately the expected concentration of TEs released from mineral 

wastes of MSWI plant and construction demolition waste when supplemented to AD of 

OFMSW (Chapter 6). 

Table 4-6. Concentration of standard trace elements used in this research (Chapter 9) 

Component Elements 

Element concentration in 

individual stock solution 

of elements (mg/L) 

Designated element 

concentration in reactor 

(mg/L) 

Na2SeO·5H2O Se 1000 as Se 0.3 

FeCl2·4H2O Fe 1000 as Fe 120 

NiCl2·6H2O Ni 1000 as Ni 1.3 

CoCl2·6H2O Co 1000 as Co 1 

(NH4)6Mo7O24·4H2O Mo 1000 as Mo 0.33 

AlCl3·6H2O Al 1000 as Al 0.1 

H3BO3 B 1000 as B 0.1 

CuCl2·2H2O Cu 1000 as Cu 0.1 

MnCl2·4H2O Mn 1000 as Mn 1 

ZnCl2 Zn 1000 as Zn 0.2 

4.2. Metals analysis 

Total concentration of metals in raw SOW, MW and dried reactor digestate samples, as well 

as soluble (dissolved) concentration of metals in reactor digestate samples were performed 

according to the EPA method 3010A (EPA, 1992) (see Section 4.2.1, 4.2.2 and 4.2.3). 

4.2.1. Total metals analysis 

For total metals concentration analysis, representative mass (2 g) of dried (at 50 - 70°C) and 

crushed samples were measured then transferred to long digestion glass tubes prior to acidic 

digestion with concentrated HNO3 (2.5 mL/2 g TS) and HCl (7.5 mL/ 2 g TS) at room 

temperature for 16 hours, and then boiled on a heating block for another one hour at 100°C. 
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After cooling, the acid digested samples were filtered through acid resistant filter papers 

(Whatman ash-less filter papers) then diluted using 0.5 M HNO3. The diluted samples were 

analysed for total metal concentrations using inductively coupled plasma optical emission 

spectroscopy (ICP- OES) (Vista MPX simultaneous ICP-OES, USA). Table 4-7 shows total 

concentration of metals in the mineral wastes (See Table 4-2 and Table 4-3 for total 

concentration of elements in the SOW). 

Table 4-7. Total concentration of the acid-extracted (aqua regia) elements in the mineral wastes.  

 Total metal concentration (mg/kg MW as TS ) 

Elements IBA CBW FA BA 

Al 28483 ± 1515 9653 ± 1320 15067 ± 518 35153 ± 2420 

As 8 ± 0.5 3.7 ± 0.7 58 ± 0.8 49 ± 1.5 

B 73.7 ± 3 90 ± 2.1 67 ± 4.3 128 ± 1.6 

Ba 208.15 ± 49.1 122.32 ± 1.6 102.82 ± 48.3 70.61 ± 2.3 

Ca 71199 ± 9745 136465 ± 2079 222346 ± 7198 197962 ± 1808 

Cd 5.66 ± 1.1 0.51 ± 0.1 120.45 ± 2 51.42 ± 5.1 

Co 40.39 ± 4 5.24 ± 0.4 10.78 ± 0.3 21.23 ± 0.2 

Cr 97 ± 6.8 31.7 ± 1.7 41 ± 0.6 100 ± 3.9 

Cu 2579 ± 102.4 17.4 ± 04 534.3 ± 40.7 283 ± 35 

Fe 83655 ± 7521 19328 ± 491 6858 ± 111 12920.5 ± 374 

K 3161 ± 96 1490 ± 79 38024 ± 725 21506 ± 18.3 

Mg 6716 ± 684 10813 ± 661 5758 ± 492 13272 ± 652 

Mn 1177 ± 118 348.6 ± 9.5 389 ± 2.9 1176 ± 104 

Mo 6.73 ± 0.3 1.37 ± 0.01 13.85 ± 0.4 19.80 ± 0.7 

Na 184 ± 3.2 22.6 ± 6.4 1553 ± 604 311 ± 55 

Ni 114 ± 10 12.52 ± 0.6 85.6 ± 0.7 132.6 ± 4 

Pb 1174 ± 120 15 ± 0.6 2109 ± 47 920 ± 54.5 

Se 12.15 ± 1.6 5.40 ± 3.3 16.43 ± 0.6 24.68 ± 0.2 

Si 70.2 ± 1.2 110.2 ± 38.7 180.2 ± 58 85.8 ± 2.9 

Ti 1675.1 ± 147 687.6 ± 82 1594.7 ± 175 213 ± 20.6 

V 212.8 ± 11 30.5 ± 1.1 472.4 ± 22.6 615.2 ± 34.8 

Zn 3290 ± 102 51 ± 4.8 11114 ± 235 8699 ± 200 

4.2.2. Soluble metal analysis 

The concentration of water-leached (soluble) metals (Table 4-8) from MW under neutral pH 

ranges (6.4 - 7.5) of AD were measured according to the EPA method 3010A (EPA, 1992). 

This was carried out at the aqueous solutions obtained after adding 10 g of each MW in 500 

mL distilled water. The MW-distilled water solutions were incubated in a reciprocating shaker 
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at 150 rpm for 100 h at 37oC. After that, the samples were filtered (Whatman ash-less filter 

papers), acidified (1-2 drops of concentrated HNO3 per sample) and measured with ICP-OES 

(see Section 4.2.3 below). 

Similarly, soluble (dissolved) metal concentrations in the inoculum (Table 4-4) and anaerobic 

digestate samples (Chapter 5, Chapter 6, Chapter 7 and Chapter 9) were measured from 

supernatant solutions discarded from digestate samples centrifuged for 30 min at 3392 g 

(Sigma centrifuge,  UK). The samples were acidified with concentrated HNO3 (1 - 2 drops per 

sample) then diluted with 0.5 M HNO3 and stored at 5oC until analysed by ICP-OES (see 

Section 4.2.3 below). 

Table 4-8. Soluble concentration of the water-extracted elements in the mineral wastes.  

 Metal concentration (mg/L) 

Elements IBA CBW FA BA 

Al 4874.13 ± 824 161.75 ± 15 10.00 ± 1.1 2.50 ± 0.24 

As 0.92 ± 0.56 0.45 ± 0.29 0.30 ± 0.13 0.90 ± 013 

B 14.11 ± 7.5 14.07 ± 7.6 21.00 ± 1.8 2.80 ± 0.4 

Ba 5.98 ± 1.27 5.61 ± 0.68 22.50 ± 2.3 7.00 ± 0.7 

Ca 6333 ± 1074 5586 ± 920 77538 ± 1220 52633 ± 1725 

Cd 0.01 ± 0.001 0.01 ± 0.002 0.13 ± 0.04 0.13 ± 0.11 

Co 0.06 ± 0.03 <0.01 0.07 ± 0.01 <0.01 

Cr 2.31 ± 0.3 0.53 ± 0.19 2.00 ± 0.11 9.60 ± 1.5 

Cu 4.11 ± 0.7 0.36 ± 0.13 0.73 ± 0.2 0.60 ± 0.2 

Fe 16.44 ± 1.2 4.68 ± 0.13 1.25 ± 0.05 1.15 ± 0.21 

K 757.4 ± 195 404 ± 87 10200 ± 1200 6745 ± 789 

Mg 4.15 ± 0.65 1.90 ± 0.4 16 ± 1.8 42 ± 0.95 

Mn 0.25 ± 0.07 0.06 ± 0.01 0.09 ± 0.003 0.04 ± 0.01 

Mo 1.23 ± 0.1 0.28 ± 0.06 6.80 ± 0.87 8.60 ± 1.4 

Na 112.3 ± 22 10.00 ± 2 727.50 ± 112 124.00 ± 21 

Ni 0.94 ± 0.3 0.09 ± 0.01 0.08 ± 0.01 0.03 ± 0.001 

Pb 0.55 ± 0.05 <0.25 2.55 ± 023 0.20 ± 0.03 

Se <0.02 <0.02 <0.02 <0.02 

Si 3.000 ± .1 23.00 ± 1.2 36.00 ± 0.86 21.00 ± 2.17 

Ti 0.10 ± 0.01 0.13 ± 0.02 0.370 ± 0.12 0.26 ± 0.07 

V 0.84 ± 0.14 0.21 ± 0.03 0.98 ± 0.15 3.44 ± 0.23 

Zn 2.01 ± 0.2 1.04 ± 0.16 5.35 ± 1.35 2.40 ± 0.2 
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4.2.3. Elemental analysis by ICP-OES 

Total and soluble concentrations of the elements in samples prepared according to the Section 

4.2.1 4.2.2 were quantified by ICP-OES (Vista MPX simultaneous ICP-OES, USA), which 

uses emission spectra of a sample to identify the elements and measure their concentrations. A 

main calibration standard solution (Standard-1; Table 4-9) was prepared from stock solutions 

(concentration of each element in its stock solution was1000 ppm) of the measured elements. 

Then another two calibration standard solutions were prepared by diluting the main 

calibration standard solution (dilution factors were 1/10 and 1/100) to construct multipoint 

standard curves covering the range of element concentrations anticipated in the samples. The 

0.5 M HNO3 solution used for diluting the acid digested samples (Section 4.2.1 4.2.2) was 

used as a matrix solution for preparing the calibration standard solutions. 

Table 4-9. Concentration of elements in the standard solutions used for constructing calibration curves 

of the ICP-OES machine. 

Designated element concentration in the standard solution (mg/L) 

Elements Standard-1 Standard-2 Standard-3 

Ca  150 15 1.5 

Mg  15 1.5 0.15 

Na  15 1.5 0.15 

K  150 15 1.5 

Fe  50 5 0.5 

Mn 50 5 0.5 

Al  150 15 1.5 

Si  50 5 0.5 

Cd  5 0.5 0.05 

Cr  10 1 0.1 

Co  1 0.1 0.01 

Cu  10 1 0.1 

Ni  5 0.5 0.05 

Pb  25 2.5 0.25 

Ti  50 5 0.5 

V  3 0.3 0.03 

As  2 0.2 0.02 

B  2 0.2 0.02 

Ba 50 5 0.5 

Se  2 0.2 0.02 

Mo 5 0.5 0.05 

Zn 5 0.5 0.05 
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4.2.4. Quality control 

In order to ensure the absence of sample contamination, blank and standard samples were 

prepared following the same sample-preparation and analytical processes. Three samples were 

processed, and the accuracy of the ICP-OES machine was determined by running the blank 

and standard samples (Table 4-9) after every 10 samples analysed. 

4.2.5. Alkalinity of mineral wastes 

The alkaline capacity of MW were determined using 1N HNO3 according to the method 

described by Banks and Lo (Banks and Lo, 2003; Lo, 2005). The alkaline capacity tests were 

conducted in 250 mL laboratory glass beakers. For these tests, sixty samples of MW solutions 

(2.5 g of a MW+100 mL distilled water) were prepared, and each of the beakers were 

acidified with a volume (ranged between 0 - 20 mL) of 1N HNO3 solution. The acidified MW 

solutions were then stirred for 1h using magnetic stirrers at room temperature (25oC) prior 

measuring pH. Alkalinity at each pH value was calculated using Equation 4-1, then acid 

titration curves were produced (Figure 4-1) for each MW solution as a function between 

measured pH values and amounts of acid added; calculated as mM H+/g MW. Partial 

alkalinity (PA) and total alkalinity (TA) at pH 7.5 and pH 4.4 respectively were also 

calculated using Equation 4-1 (Table). 

Alk = VpH × N × Ew / Vs          (4-1) 

      

Where Alk = alkalinity of a solution (mg CaCO3/L), VpH = amount of acid amended (mL) to 

reach a pH value, N = normality of acid amended (eq/L), Ew = 50,000 (mg CaCO3/eq), and Vs 

= solution volume (mL). 

Table 4-10. Partial alkalinity (PA) and total alkalinity (TA) of the MW samples before using in the 

AD trials. 

Mineral wastes 
Partial alkalinity (PA) 

(meq/g CaCO3) 

Total alkalinity (TA) 

(meq/g CaCO3) 
PA/TA ratio pH 

Incineration bottom ash 1.2 ± 0.03 2.6 ± 0.04 43% 10.4 ± 0.5 

Cement based waste 1.3 ± 0.1 6.7 ± 0.06 18% 10.3 ± 0.39 

Fly ash 0.8 ± 0.1 5.3 ± 0.04 15% 11.8 ± 0.24 

Boiler ash 2.6 ± 0.1 6.0 ± 0.2 43% 11.0 ± 0.7 
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Figure 4-1. Titration curves of MW solutions (2.5 g MW/100mL distilled water) with nitric acid at 

room temperature 20oC. The values are mean values of triplicate samples with standard deviation (not 

shown). 

4.2.6. Elemental composition analysis and theoretical methane yield 

The homogenised MW samples were dried at 50 - 70oC then analysed for elemental 

compositions to determine the percentage of C, N, and S in these samples (Table 4-5). 

Elemental composition analysis was performed using an organic element analyser (Elementar 

Vario MAX CNS, Germany) according to the manufacturer’s instructions and the standard 

method (SCA, 1986). 

Another elemental composition analysis was carried out at an external lab (Elemental 

Microanalysis Ltd, UK) to measure the C, N, S, H and O elements of the SOW feedstock. The 

molecular formula of the substrate (SOW) was estimated via C, H, N, O and S microanalysis 

(Table 4-2 and Table 4-3).  

4.2.7. Estimation of theoretical methane potential 

Using the elemental composition (C, H, N, O, and S) analysis of the substrate ((SOW), Table 

2), the estimated molecular formula of the substrate was C3.87 H6.76 O2.35 N0.16 S0.005. 

Theoretical methane potential from the SOW based on VS conversion was calculated using 

the stoichiometric equation (Eq. 4-2) and Eq. 4-3A (Nielfa et al., 2015). Similarly, theoretical 

methane potential of the substrate based on COD conversion was calculated from the 

stoichiometric oxidation equation of the substrate (Eq. 4-3B). The values are for the saturated 

gas under the standard temperature and pressure conditions (STP; 0oC and 1 bar). 
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A- Theoretical biomethane potential based on the compositional analysis (Buswell 

equation) at standard temperature and pressure (STP, 0oC and 1 bar). 
 

C3.87 H6.76 O2.35 N0.16 + 1.125 H2O    2.1325 CH4 + 1.7375 CO2 + 0.16 NH3     (4-3A) 

93.04 + 20.25   34.12 + 76.45 + 2.72 

113.29  113.29 

1.12 g TS + 0.237 g H2O  0.41 g CH4 + 0.92 g CO2 + 0.032 g NH3 

1.03 g VS + 0.218 g H2O    0.3773 g CH4 + 0.846 g CO2 + 0.0294 g NH3 

  0.528 L CH4 + 0.43 L CO2 + 0.0387 L NH3 

1 g VS + 0.211 g H2O  0.5126 L CH4 + 0.417 L CO2 + 0.0375 L NH3 

  53% CH4 + 43.11%CO2 + 3.8% NH3 

Theoretical methane potential ~ 513 mL/ g VS  

Density of CH4 =  0.77 g/L  

Density of CO2 =  2.14 g/L  

Density of NH3 =  0.83 g/L  

 

B- Theoretical biomethane potential based on the on COD conversion (at STP). 
 

C3.87 H6.76 O2.35 N0.16 + 4.195 O2  3.8 CO2 + 3.14 H2O + 0.16 NH3               (4-3B) 

COD/VS  4.195 * 32/93.04 

  1.443 g COD/g VS of the substrate 

1 g COD is converted to 350 mL 

of CH4 (Filer et al., 2019)) 

 1.443* 350 

Theoretical methane potential ~ 504 mL/ g 

VS 

 

 

4.3. Reactor configuration 

4.3.1. Biomethane potential (BMP) reactors 

Biomethane potential (BMP) assays were conducted in in 0.5 litre glass bottles (Duran®, 

Germany) incubated at 37oC, in accordance with German standard method (VDI, 2006a). 

Prior to the incubation, in order to simulate anaerobic conditions, the BMP assays were 

purged with nitrogen gas (99.9%) for 5 minutes, then they were closed with rubber bungs 

with an opening for connection with gasbags (0.6 or 1 litre Tedlar gasbags, VWR) for biogas 

collection. All gasbags were disconnected daily, the volume of biogas and methane 

concentration (section 4.4.7 below) were measured then the gasbags reconnected to the BMP 

assays. The biogas and methane volumes were corrected for water-vapour content of saturated 

gas at standard temperature and pressure (STP, 0oC and 1bar) using Eq. 4-4. Mixing of BMP 

assays was performed manually by shaking the bottles two times per day for 1 - 2 minutes. 
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The BMP assays were ended after 30 days or when daily methane production was less than 

1% of the accumulated methane (VDI, 2006a; Nielfa et al., 2015). 

Blank BMP assays with the inoculum only and inoculum plus MW (Chapter 5, Chapter 6 and 

Chapter 7) were prepared to correct (Eqs. 4-5) the rates from the interference of the methane 

formed from the organics of the inoculum and the effect of the methane generated from the 

MW when in contact the inoculum only. Moreover, the capacity and the performance of the 

inoculum was assessed in BMP assays (reference assay) contained inoculum and pure 

cellulose. 

𝑉𝑆𝑇𝑃 = 𝑃𝑔𝑎𝑠 / 𝑃𝑆𝑇𝑃 * (𝑇𝑆𝑇𝑃 / 𝑇𝑔𝑎𝑠) 𝑉𝑔𝑎𝑠       (4-4) 

Where, VSTP is the biogas volume adjusted to standard temperature and pressure, Pgas is the 

pressure of the measured biogas, Tgas is the temperature of the measured gas in Kelvin (K), 

TSTP is the standard temperature in K and Vgas is the measured gas volume from gasbags. 

Ym Experimental = (𝑉𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 − 𝑉𝑏𝑙𝑎𝑛𝑘 * (VSis / VSi𝑏)) / VS𝑠    (4-5) 

Where, BMP is the biomethane potential of the substrate, Vsubstrate is the accumulated methane 

volume from substrate, Vblank is the accumulated methane volume from the inoculum, VS is 

the mass of volatile solids of inoculum in substrate bottle, VSib is the mass of volatile solids of 

inoculum in blank bottle, VSs is the mass of volatile solids of the substrate in substrate bottle. 

4.3.1.1. First-order and modified Gompertz models 

Mathematical models are mathematically derived equations have been applied for predicting 

methane production from the AD substrates without undertaking extensive and costly 

experiments (Kafle and Chen, 2016). Moreover, the mathematical models which have been 

developed from mechanistic studies, are considered a simple method to validate the results of 

empirical methods, and to enhance the design and optimisation of AD processes (Yu et al., 

2013; Ware and Power, 2017). In this thesis, methane production of the BMP assays was 

modelled by fitting the experimental methane production data with first-order (FO) (Eq.4-6) 

and Modified Gompertz (GM) (Eq. 4-7) models (Nielfa et al., 2015) in MATLAB software 

(The MathWorks, 2015) with 95% confidence bounds. In addition to the kinetics of methane 

production rates (K), the kinetic parameters of microbial growth rates (µ) and lag phase time 

(λ) were determined from the first-order and Gompertz models, respectively. These 

parameters provided further insight into the results obtained from BMP assays; in particular, 

biodegradation patterns of the feed substrate (SOW) when co-digested with the MW. 
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𝑌 = 𝑌𝑚[1 − 𝑒𝑥𝑝(−µ𝑡)]         (4-6) 

𝑌 = 𝑌𝑚 × 𝑒𝑥𝑝 {− 𝑒𝑥𝑝 [
𝐾 × 𝑒

𝑌𝑚
(𝜆 − 𝑡) + 1]}       (4-7) 

Where Y is the cumulative methane production at time (t), Ym is the maximum methane 

potential (mL CH4/g VS) at an infinite digestion time (t), μ is the specific microorganisms 

growing rate (d−1). K is the methane production rate (mL CH4/g VS. d), “e” is a mathematical 

constant (2.718) and λ is the lag phase time constant (d). 

 Moreover, the accumulated methane volume achieved from the experimental BMP assays 

(Ym Experimental) was then compared (D = difference between experimental and theoretical 

methane yield values (Eq. 4-8)) with the (1) maximum methane production (Ym Theoretical) 

obtained by applying the two models at different operation times of the experiments, and (2) 

theoretical methane yield estimated from the elemental composition analysis (Nielfa et al., 

2015) as described in Section 4.2.4.  

D (%) = (Ym Experimental - Ym Theoretical) / Ym Experimental * 100          (4-8) 

4.3.2. Continuous stirred tank reactors (CSTRs) 

The continuous AD experiments were conducted in continuous stirred tank reactor (CSTR) 

systems with working volume of 5 L or 1 L. Each reactor was a borosilicate glass (Duran®, 

Germany) quick fit flask 100 mm diameter, with three ports for feeding, sampling and 

mixing. Mixing of CSTRs was by overhead stirrer motors rotating a 5 cm x 2 cm flat paddle 

mixer at 180 - 200 rpm fitted through a water seal port into the central reactor opening. The 

temperature of reactors was maintained at 37oC ±1 automatically by a temperature and mixing 

controlled water bath; which maintained the temperature in reactors at 37oC ±0.5. Biogas 

produced from each reactor was collected in 5 L or 10 L gasbags (Tedlar, VWR) and checked 

for methane volume and composition (Section 4.4.7) daily/every two days, emptied then 

reconnected to reactors. Daily volumetric methane production was calculated using Eq. 4-9. 

Volumetric CH4 production (L CH4/L reactor/d) = V biogas x CH4%/V reactor  (4-9) 

Usually, before starting the continuous AD experiments, each of the CSTR systems was 

thoroughly filled (5 L) with inoculum to get acclimated to the feedstock substrate (i.e. the 

SOW) and reactor environment for 20 days. During acclimation, the reactors were fed every 2 

- 3 days with a SOW and distilled water mixture containing 1 g SOW volatile solids and the 

biogas produced by the CSTR systems were collected in gasbags and checked for methane 
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volume and composition (Section 4.4.7 below) to ensure the microorganisms were active. On 

day 20, a methane content of > 50% was observed in all the reactors, indicating that they were 

ready for operation in the continuous AD experiments. 

4.4. Analytical methods 

4.4.1. pH 

pH was measured according to APHA standard method 4500-H (APHA, 2005) using a pH 

meter (Jenway- 3310, UK). Prior to use, the pH meter was calibrated with pH 4 and pH 7 

standard solutions (VWR, UK). The pH of the feedstock and MW was measured by mixing 

(magnetic stirrer for one hour) one volume of each sample with two volumes of distilled water 

then measured for pH. While, pH of digestate samples was measured directly after they 

withdrawn from reactors. 

4.4.2. Total solids and volatile solids 

Total solids (TS) and volatile solids (VS) were measured in duplicate using crucibles (30 mL) 

according to APHA standard methods 2540D and 2500E, respectively (APHA, 2005). For 

solid samples (feedstock or MW) two-third of crucibles were filled with each sample, whereas 

for liquid samples (digestate) crucibles were filled with 20 mL of samples. Total solids (TS) 

were calculated as the mass of solids remaining after oven-drying (Gallenkamp, Hotbox Oven 

Size 2) samples overnight (105oC) then volatile solids (VS) mass was calculated after oven-

drying in the Muffle furnace (S. H. Scientific, Carbolite) at 550oC for 30 minutes. 

4.4.3. Alkalinity and volatile fatty acids 

On weekly basis digestate samples from reactors were centrifuged (3392 x g, 30 min), after 

centrifugation the supernatant of samples were discarded and used for physicochemical 

analysis. Total alkalinity (total ALK) and total volatile fatty acids (total VFA) of digestate 

samples were measured by titration according to the Lossie and Pütz method (Lossie and 

Pütz, 2008). The titrant was 0.1 N H2SO4 and the sample volume (supernatant) was 20 mL. 

Total ALK referred to as TAC and intermediate alkalinity referred to as FOS; which equals to 

total VFA in samples, were calculated using Eqs. 4-10 and 4-11. The alkalinity ratio known as 

FOS/TAC ratio was calculated using the Eq. 4-12 to determine process stability in reactors, 

with values < 0.3 indicating a stable process (Lossie and Pütz, 2008). 

TAC = H2SO4-Volume added from start to pH 5 in mL * 250    (4-10) 
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FOS = (H2SO4-Volume added from pH 5 to pH 4.4 in mL * 1.66 – 0.15) * 500  (4-11) 

Alkalinity ratio = FOS / TAC         (4-12) 

Concentration of individual VFA; including acetic acids, propionic acid, isobutyric acid, 

butyric acid, isovaleric acid, and valeric acid was measured by Ion Chromatography (ICS) 

(Dionex ICS-1000), which was calibrated with standard VFA solutions of 2 ppm to 500 ppm 

concentration. The samples used for the VFA analysis were prepared by mixing 0.4 mL of 

different filtered supernatant samples (0.22 µm polyethylene syringe filter; (VWR 

international, UK)) with 0.4 mL of 0.1N Octane sulfonic acid (OSA reagent; 

Thermoscientific, UK), and sonicated (50/60 Hz, Decon Ultrasonics Ltd,UK) for 40 minutes 

to drive off carbonate. 

4.4.4. Total Kjeldahl nitrogen and total ammonia nitrogen 

The supernatant samples (Section 4.4.3) obtained from digestate samples were used for total 

ammonia nitrogen and total Kjeldahl nitrogen (TKN) analyses. Total ammonia nitrogen was 

measured using Vapodest steam distillation unit (Gerhardt, Vapodest 30 S) according to 

APHA standard method 4500-NH3 B and 4500-NH3 C. Whereas for TKN analysis, the 

supernatant samples were acid digested with a Turbotherm digestion unit (Gerhardt, UK) 

followed by Vapodest steam distillation. 

4.4.5. Soluble chemical oxygen demand (sCOD) 

For the anaerobic experiments described in chapter 5 and chapter 6 of this thesis, sCOD 

concentration of the supernatant samples was measured according to APHA closed reflux 

titrimetric method 5220C (APHA 2005) in triplicate. While for the results demonstrated in 

Chapter 7, Chapter 8 and Chapter 9 concentration of sCOD was measured using COD kits 

(Merck, VWR) according to the manufacturer’s instruction. The accuracy of analysis was 

checked by measuring blank samples following the same sample preparation and 

measurement methods. 

4.4.6. F420 analysis 

The relative florescence intensity (RFI) of coenzyme F420 in reactor digestate was determined 

according to the method described in (Dolfing and Mulder, 1985; Kida et al., 2001). Digestate 

samples (10 mL) were autoclaved (120oC, 30 min) followed by two times centrifugation 

(3392 x g, 30 min). Prior to the first centrifugation the autoclaved samples were mixed with 



69 

 

equal volume (10 mL) of 2-propanol. The supernatant obtained from centrifugation discarded, 

its pH adjusted to pH >13 with KOH, and the RFI of F420 determined by Spectro-fluorescence 

(Spectra Max M3) according to the manufacturer’s instruction. The samples (200 µL per 

sample in triplicate) were loaded into the spectrometer machine in 96-well microplates, and 

the spectrometer was set up to shake the plates once before measuring the excitation at 425 

nm and absorbance at 460 nm. 

4.4.7. Biogas measurement and analysis 

Biogas production from reactors was measured daily/every two days using a 500 mL 

graduated glass syringe (Trajan Jumbo Syringe, VWR, UK) from the volume of biogas 

collected in gasbags (Section 4.3.2). Methane and carbon dioxide compositions of biogas 

were measured by gas chromatography (GC) (Carlo Erba HRGC S160 GC with MFC 500 

detector, Germany), the carrier gas of the GC was hydrogen (250 mL/min) with an oven 

temperature held isothermally at 35°C. Prior to analysis, the GC was calibrated with a 

standard gas of ~ 80.2% methane. Injection of gas (biogas/standard gas) was by a 100 µL lock 

tight gas syringe (SGE, Australia) in triplicate (50 µL gas per each injection). Measurements 

of methane percentage of biogas for each reactor were performed in triplicate. Volumes of 

biogas and methane were reported according to conditions of saturated gas under standard 

pressure and temperature (STP; 0oC and 1bar) according Eq. 4-4 shown in Section 4.3.1. 

4.5. Microbial analysis 

4.5.1. DNA extraction 

Total genomic DNA of biomass samples (obtained after centrifugation (5 min, 15.000 x g) of 

1 mL of each digestate sample) were extracted according to the method described in 

(Griffiths et al., 2000). The absence / or presence of PCR inhibitors in the DNA was 

evaluated using a Nanodrop (Thermo Fisher, UK). The acceptable range between 1.8 and 2.2 

was ensured for the DNA quality ratios of 260:280 and 230:260. For quality control, with 

each batch of DNA extraction, blank DNA samples were prepared following the same 

sample-preparation and DNA extraction methods. The blank samples were analysed with 

each batch of Real-time PCR and Illumina sequencing analyses. 

4.5.2. Real-time PCR (qPCR) analysis 

4.5.2.1. qPCR standards 

The mcrA gene was targeted to measure the abundance of methanogens in the digestate 
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samples. Methanosarcina barkeri pure cultures were used to prepare the mcrA gene standard 

for qPCR analysis. The DNA extraction was carried out using an MP-bio ‘for soil DNA’ 

extraction kit (UK) based on the manufacturer's directions. The amplification of the mcrA 

gene was carried out using the mlas-F primer (Steinberg and Regan, 2009). The generated 

PCR products were employed for the mutation of Escherichia coli cells as per the 

manufacturer of the kit used (TA cloning kit; Invitrogen, UK). The clones that were found 

mutated (positives) were then incubated at 37°C using LB broth as growth medium (spiked 

with ampicillin). The generated plasmids were then extracted and cleaned (purification) 

using a purification kit for plasmids (ROCHE, UK). The yields were then quantified using 

Quant-It (Invitrogen, UK). Quantification enabled dilution (using PCR-grade distilled water) 

of the plasmid DNA from each clone to generate serial dilutions with known populations 

(ranged between 102 to 108 gene copies/µL). These populations were used for the qPCR 

standards. 

The 16S rRNA gene was targeted for measuring bacteria abundance. To prepare the 16S 

rRNA standard for qPCR analysis, the complete 16S rRNA gene was amplified from E. coli 

using the PA/PH primers (pA and pH primers (Edwards et al., 1989); Table 4-11)). PCR 

reaction was conducted using Phusion Flash High-fidelity PCR master mix (ThermoFisher), 

using the following thermocycle program: (i) 10 sec denaturation (98°C), (ii) 35 cycles of 1 

sec denaturation (98°C), (iii) 5 sec annealing (98°C), (iv) 15 sec elongation (72°C), and (v) 1 

min elongation (72°C). The products were separated on 1.5% agarose gel electrophoresis 

containing SYBR® safe DNA gel stain (Sigma) and visualized using GelDoc (Biorad). The 

generated PCR products were then purified using the GenElute PCR clean-up kit (Sigma-

Aldrich) as per the manufacturer’s instructions. The TOPO pCR4 vector (Invitrogen) kit was 

used for the cloning of the purified products. The fresh cloned plasmids were re-purified 

with the PureYield Plasmid Miniprep System (Promega). The Quant-iT Picogreen dsDNA 

Assay kit (Invitrogen, Life Technologies, Inc.) with the SpectraMax® M3. The plasmid was 

used for the quantification of the DNA concentration. The absolute number of the gene 

copies of the genes used for the standards was calculated based on the plasmid size and 

insert length (3,973 and 1,515 bp respectively) assuming a mass of 660 Da/bp (molecule). 

The reference DNA solution contained 109 gene copies/µL.  

4.5.2.2. qPCR analysis 

For the quantification of the methanogenic and bacterial population in the bioreactor 

(digester) Real-time PCR analysis (qPCR) was used. The methanogenic population was 

quantified followed the protocol described above (Section 4.5.2.1) as well as the protocol 
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provided by Steinberg et al. (Steinberg and Regan, 2009). For the qPCR a CFX96 real–time 

PCR system (Biorad, UK) was used. The conditions set for the reaction (mcrA gene) 

included: (i) 3 min initial denaturation at 98°C, (ii) 39 cycles of denaturation at 95°C for 5 

sec, (iii) annealing at 66°Cfor 10 sec, (iv) extension at 65°C for 5 sec with a 0.5°C 

increment, and (v) final extension step at 95°C for 0.5 min as per the manufacturer’s 

protocol (BIORAD, UK for Ssofast Evergreen® Supermix). The reaction solution contained 

1 µL sterile de-ionized water, 3 µL of sample DNA template, 0.5 µL each of the forward 

and reverse primers (the primers were diluted to concentration of 10 pmol/µL) and 5 µL of 

Ssofast EvaGreen Supermix solution (Biorad, UK). The analysis was carried out based on a 

5-point calibration curve using the mcrA gene standards that were prepared followed the 

protocols described above (Section 4.5.2.1). For the dilutions filter sterile de-ionized water 

was used. All qPCR reactions were performed in triplicates; the reaction efficiency was 

estimated based on the curve generated by the standards. This was automatically assessed by 

the instrument’s software. 

Total bacteria was quantified using a SYBR green-based method assay (forward (1055F) 

and reverse (1392R) primers (Harms et al., 2003); (Table 4-11)). SYBR-green reactions 

were conducted using SsoAdvanced™ Universal SYBR® Green Supermix (BioRad) as 

reagent. The reaction followed a thermocycle program with: (i) 2 min of initial denaturation 

(98°C), (ii) 40 cycles of 5 sec denaturation (98°C), and (iii) 5 sec annealing/extension 

(60°C). All assays were carried out in triplicates using a BioRad CFX C1000 System 

(BioRad, Hercules, CA USA). To avoid inhibition phenomena during the amplification the 

DNA samples were diluted to a working solution of 5 ng/µL. An internal control DNA was 

also employed in the SYBR-green reactions to assure there is no errors in the quantification 

process related to contamination. A standard curve with known copy numbers (103 and 108) 

was incorporated using plasmid clones of target sequences (Section 4.5.2.1). The reactions 

were all carried out in triplicates. For enumeration of the 16S rRNA gene via qPCR the 

following mixture was prepared: 3 µL template DNA, 5 µL Ssofast EvaGreen Supermix 

(Bio-Rad, UK), 0.5 µL of forward (1055F) and reverse (1392R) primers (Harms et al., 

2003) ; (Table 4-11), and 1 µL sterile de-ionized water (total volume was 10 µL). 
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Table 4-11. Primer design of the qPCR analysis targeting 16S rRNA gene  

Target Primer 
Sequence 

(5’ – 3’) 

Product size 

(bp) 
Tm Reference 

16S 

rRNA 

pA AGAGTTTGATCCTGGCTCAG 
1515 55 

(Edwards et al., 

1989) pH AAGGAGGTGATCCAGCCGCA 

16S 

rRNA 

1055F ATGGCTGTOGTCAGCT 
337 60 

(Harms et al., 

2003) 1392R ACGGGCGGTGTGTAC 

4.5.3. Illumina sequencing of 16S rRNA gene 

The sequencing data was obtained from a 16S rRNA library (Illumina HiSeq (16S V4)) 

prepared by Earlham Institute (Norwich, UK) after sample quantification (Qubit dsDNA 

HS Assay Kit (Thermo Fisher Scientific Q33231)) and purification. The purity was 

inspected using the Drop Sense 96 (Perkin Elmer). Prior PCR amplification the DNA 

samples were diluted to reach a mass of 10 ng. The amplification (PCR) was carried out 

using 2 µL of the forward and reverse primers (each) (Kozich et al., 2013) at a 

concentration of 2.5 µM; 0.1 µL of Kapa 2G Robust polymerase (Kapa Bio systems 

KK5005), 0.5 µL 10 mM dNTPs were also added. Finally, Qiagen nuclease free water 

(Qiagen 129114) was added to make a volume of 25 µL. The amplification program had 

(i) 3 min of initial denaturation at 94°C, and 25 cycles of (ii) denaturation at 94°C for 45 

sec, 55°C for 15 sec, and 72°C for 30 sec, then (iii) final extension for 3 min at 72°C, and 

(iv) holding for 3 min at 4°C. All amplified DNA samples were then purified using the 

Agencourt AMPure XP bead clean-up kit (Beckman Coulter A63882) using the 

manufacturer’s protocol modified by two 80% EtOH washes and re-suspension of the 

samples in 25 µL of elution buffer (10 mM Tris). The generated libraries were quantified 

(Qubit dsDNA HS Assay Kit) and sized via PerkinElmer GX using a highly sensitive 

DNA chip (PerkinElmer CLS760672). Afterwards, all libraries were equimolar-pooled; 

the pool was quantified via qPCR using a Kapa Library Quantification Kit (Kapa 

Biosystems KK4828). 

4.5.3.1. Sequenced data processing  

Raw sequence data (FastQ) files obtained from Illumina HiSeq sequencing were de-

multiplexed and quality filtered and reads were binned into amplicon sequence variant (ASV) 

using DADA2 (Callahan et al., 2016) default parameters in the Quantitative Insights into 

Microbial Ecology (QIIME2) pipeline (Caporaso et al., 2010). The taxonomical assignment 

was then accomplished using the SILVA119 database (Quast et al., 2012). Canonical 

https://www.thermofisher.com/order/catalog/product/Q33231
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Correspondence Analysis (CCA) was performed in R (R, 2013) using the “vegan” package 

(Oksanen et al., 2010) to determine the correlations between the abundance of bacterial and 

archaeal communities and measured physicochemical parameters such as TAN, total VFA, 

soluble COD etc. In addition, representative sequences of selected, predominant, ASVs were 

compared (BLAST) to the NCBI nucleotide database to identify cultured and environmental 

closely related sequences. Representative 16S rRNA sequence fragments and close relatives 

were aligned using MUSCLE in MEGA7 to construct a neighbour-joining phylogenetic tree 

supported by bootstrap analysis (Kumar et al., 2016). Evolutionary histories were inferred 

using the Neighbour-Joining method (Saitou and Nei, 1987). Evolutionary distances were 

computed using the Maximum Composite Likelihood method (Tamura et al., 2011) and the 

percentage of replicate trees in which the associated taxa clustered together was determined 

by bootstrap analysis of 1000 replicates (Westerlund and Edgerton, 2007). 

For representative visualization of the ASV data and to highlight the differences in the 

structure of microbial community further analysis was carried out. Plots of principle 

component analysis (PCA) of bacterial and archaeal communities were generated using 

STAMP software  (Parks et al., 2014) and phyloseq R package (McMurdie and Holmes, 

2013a).  

The significant difference analysis between groups and within groups (treatment conditions) 

for archaeal and bacterial gene abundances was conducted using the Analysis of Similarity 

(ANOSIM) (Clarke, 1993) with Bray-Curtis indices. The package “vegan” in R platform 

(Oksanen et al., 2010) was used for the dissimilarity matrix constructions and figure 

visualisations. 

Alpha diversity (richness and Shannon index) were calculated then visualised using the global 

function in microbiome R package (Leo Lahti, 2017). In addition, beta diversity analysis, and 

Spearman correlation coefficients between reactor variables (physico-chemical parameters 

and reactor performances) and microbiome composition at family and genus levels were 

calculated and visualised using the microbiome R package (Leo Lahti, 2017). 

4.6. Statistical analysis 

The one-way analysis of variance (One-way ANOVA) in SPSS (IBM-SPSS, 2017) / R (R, 

2013) were applied to determine whether there were any statistically significant differences 

between the means of the measured physicochemical parameters under different digestion 

conditions.  The three assumptions of the ANOVA analysis were 1) no significant outliers in 

data; 2) the data of dependent variables were approximately normally distributed for each 

category of the independent variable; and 3) the homogeneity of variances. These three 
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assumptions were checked in SPSS before the ANOVA analysis. The one-way ANOVA 

analysis was followed up with a post hoc test (we assumed equal variance and used Tukey test 

with significance level of 0.05) to determine the statistically significant differences between 

different groups (for instance different digestion conditions or different feeding methods etc.). 

Moreover, Pearson bivariate correlation analysis was also conducted in SPSS/ R to 

understand the correlations between 1) digestion conditions and measured physicochemical 

parameters and biological parameters such as the enumerations of bacteria and archaea or 

relative abundances of different bacteria and archaea species (see Chapter 6)), 2) different 

digestion conditions and measured parameters (such as methane yield, methane production 

rate, COD, F420, VFA, concentrations of metals and etc.) and abundances of bacteria and 

archaea, fermentation and methanogenesis activities etc. (see Chapter 7)). The significant of 

correlations were measured at 0.05 and 0.01 levels (2-tailed). The assumptions made for the 

Pearson correlation analysis were 1) the two variables were continuous such as the operating 

time or changes in organic loading rates of reactors; 2) there was a linear relationship between 

the two variables (checked by creating a scatter plot for the two variables); 3) there was no 

significant outliers in the data if found removed; and 4) the data of variables was 

approximately normally distributed. 

4.7. Microbial specific activity 

The cell specific methanogenic and fermentation activities (Chapter 6, Chapter 7 and Chapter 

9) in reactors was estimated from the daily methane production and total COD/or total VFA 

concentration (total COD/or total VFA concentration equals to the sum of the soluble COD 

(sCOD)/or VFA concentrations in the digestate plus the methane production expressed as 

COD/or VFA). The average number of the methanogenic and bacterial populations was 

estimated from the qPCR analysis. For total bacteria enumeration, the 16S RNA gene 

abundances were divided by 4 and for total methanogens the mcrA gene abundances were 

divided by 2 (Klappenbach et al., 2001). The formulas (Eqs. 4-13 and 4-14) provided by 

Petropoulos et al. (2017) were employed for the estimation of the two specific activities: 

Cell specific methanogenesis =
𝑀𝑒𝑡ℎ𝑎𝑛𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑚𝑙)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑔𝑒𝑛 𝑐𝑒𝑙𝑙𝑠
      (4-13) 

Cell specific hydrolysis = 
𝑇𝑜𝑡𝑎𝑙 𝐶𝑂𝐷 𝑜𝑟 𝑇𝑉𝐹𝐴 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑐𝑒𝑙𝑙𝑠
      (4-14) 
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4.8. Definitions of diversity and diversity indices 

Measurement of diversity of species is a useful tools for characterisation of communities in 

reactors operated under different digestion conditions (Tuomisto, 2010; Li, 2013). As 

described in Section 4.6, the ASV data table, which obtained from the QIIME2 pipeline of the 

16S rRNA sequenced data; was used for the alpha diversity and beta diversity analyses 

(Chapters 6 – 9).  

Alpha diversity shows the richness and evenness of species within a habitat (Whittaker, 

1977). In this thesis, richness indicates the number of species / evenness of species in 

digestate samples of reactors at specific time or HRT period or under different digestion 

conditions. While beta diversity compares the richness and evenness of species among 

different habitats (Whittaker, 1977), for example different reactor performances or different 

digestion conditions. The widely used diversity indices Cho1 (a nonparametric estimate of 

species richness), Shannon and Simpson (Chapters 6 – 9) were calculated for alpha diversity 

analyses.  Both Cho1 and Shannon indices are known to confirm the richness component of 

diversity, while the Simpson index is confirming the evenness component of diversity 

(Nagendra, 2002). The Simpson index values range between 0 – 1, indicating whether the two 

communities are completely homogenous (Simpson index = 0) or completely heterogeneous 

(Simpson index = 1) (Simpson, 1949; Li, 2013). 

 Beta diversity shows the distance or dissimilarity between the digestate samples, this was 

estimated using Bray-Curtis and Unifrac methods and local contribution of beta diversity 

(LCBD) coefficients.  Bray-Curtis is a non-phylogenic method, which depends on the 

abundance of species in the samples to produce the distance matrix of beta diversity, while the 

Unifrac method of beta diversity depends on the phlyogenic trees to generate a distance 

matrix of the species present in the samples (Li, 2013). The LCBD coefficients are 

comparative indicators of the ecological uniqueness of different samples in terms of 

community composition (Legendre and De Cáceres, 2013). For example, a digestate sample 

with higher LCBD value means it contains higher unique species than other digestate samples 

and vice versa. Moreover, the analysis of similarity (ANOSIM) was also performed to assess 

the statistical significance of differences of similarity within and among groups (reactors or 

digestion conditions) (McCord et al., 2014).
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Chapter 5. Predicting the effects of integrating mineral wastes in 

anaerobic digestion of OFMSW using first order and modified Gompertz 

model from BMP assays 

 

Abstract 

Previous studies found mineral wastes (MW) are promising resource for the macro-

/micronutrients necessary for anaerobic digestion (AD) processes. The current study used 

both BMP assays and mathematical models to investigate the effects (buffering capacity, 

release of trace elements and kinetic parameters of methane production) of integrating MW 

into the AD of OFMSW at 37oC. The Gompertz model results showed that most of the 

examined MW enhanced methane production rate from OFMSW (44 - 73% higher than 

control) without significant adverse effects on the hydrolysis and acetogenesis processes. The 

relative positive effects of MW on methane production rates were in the order: incineration 

bottom ash (IBA) > boiler ash (BA) > cement-based waste (CBW) > Fly ash (FA) > control. 

Results of the first order model showed ~ 37% increase in the specific growth rate of 

microorganisms (μ) in the MW- supplemented BMP compared to the control. The values 

obtained from the modified Gompertz model applied to the methane production rates showed 

no significant effect of co-digestion of OFMSW with MW on the length of the lag phase (λ) 

in BMP assays (average λ of 1.89 ± 0.07 days for IBA, CBW and BA amended assays 

compared to 1.5 ± 0.01 days for the control). Chemical analysis showed that the MW 

provided both alkalinity to increase BMP buffering capacity assays, and released several trace 

elements at concentrations within the optimal ranges for anaerobic bacteria.

5.1. Introduction 

Mineral wastes (MW) have a reasonable acid neutralising capacity and they are enriched with 

minerals and nutrients with different concentrations (Section 4.2) either stimulatory or 

inhibitory to microorganisms; which carry out the AD processes (Section 3.3). The objective 

of the current chapter of this study was to evaluate the stability and productivity of co-

digestion of organic and mineral wastes in batch BMP reactors to inform operators in 

optimising methane yields by integrating MW in their full-scale digesters. Experimental 

methane production data obtained from batch BMP assays fed with mineral and organic 

wastes were modelled with first order and modified Gompertz models then compared with 1) 

the theoretical values obtained from compositional analysis of the organic waste, 2) the 
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published values in the literature. Moreover, these results were then used to compare with 

data from CSTRs in later chapters. 

5.2. Materials and methods 

5.2.1. Feedstock and seed inoculum 

The feedstock substrate used for the BMP assays was taken from the first batch of the SOW 

as described in Synthetic organic waste (Section 4.1.1). The SOW substrate was diluted (30% 

dilution) with distilled water to achieve a feedstock substrate with total solids (TS) and 

volatile solids (VS) values of 18.7% and 16.6%, respectively, and the characteristics of the 

feedstock substrate are shown in Table 4-2. The inoculum used for seeding the BMP assays 

was the mesophilic inoculum as described in (Section 4.1.2), and the characteristics of the 

inoculum are shown in Table 4-4. Prior to use, the inoculum was activated at 37oC for 7 days 

(VDI, 2006a) then acclimated to the feed (SOW) by incubating for another 20 days (Section 

4.1.2) at 37oC ±1oC with a single addition of one gram VSSOW per litter of the inoculum. 

During the acclimation period, biogas produced from the acclimated inoculum was measured 

for methane content; on day 20, a methane content of > 50% was observed indicating that the 

inoculum was ready for the co-digestion experiments. 

5.2.2.  Sources and preparation of MW samples 

The four MW (IBA, CBW, FA and BA) described in Section 4.1.3 were used for codigestion 

with the SOW substrate in the BMP assays. Preparation and characterisation of the MW are 

described in Section 4.1.3 and Section 4.2, respectively.   

5.2.3. Setup of BMP assays 

The co-digestion experiments were BMP assays performed (feedstock substrate was 1g VS of 

SOW + 1 g TS of MW) to evaluate the effect of MW addition on methane yield from the 

digestion of SOW. The BMP assays were prepared in triplicates as described in Section 4.1.3. 

The working volume of each BMP assay was 400 mL and the mass ratio of the VS in the feed 

(SOW) to that in the inoculum was 1:2. Gasbags of 0.6-litre (Tedlar, VWR) were used for 

biogas collection from the BMP assays.  
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5.2.4. First-order and modified Gompertz models 

Methane production of the BMP assays was modelled by fitting the experimental methane 

production data with first-order (FO) and Modified Gompertz (GM) models as described in 

First-order and modified Gompertz models description (Section 4.3.1.1). 

5.2.5.  Analytical methods 

General analytical procedures are as described in Section 4.2.5, Section 4.2.6 and Section 4.4. 

5.3. Results and discussion 

5.3.1. Substrate and inoculum analyses 

The  macro-parameters including total and volatile solids (TS and VS) showed that, the TS of 

the substrate (SOW) was 18.6% of wet weight, the VS accounted for 92% of TS (Table 4-2),  

similar to the typical food waste composition found in OFMSW (Dai et al., 2013). The C/N 

ratio of the SOW (Table 4-2) was found to be 22.4 and therefore slightly below the optimal 

C/N ratio of 25 - 30 suggested for mesophilic AD  (37oC) (Wang et al., 2014b). The 

molecular formula of the substrate (SOW) was estimated via C, H, N, O, S microanalysis 

(Table 4-2). The estimated molecular formula of the SOW was C3.87 H6.76 O2.35 N0.16 S0.005, and 

the calculated theoretical methane yield (Ym Theoretical; 4.2.6section 4.2.6) was 514 mL CH4/g 

VS. This values was representative for this type of waste containing fractions of 

carbohydrates, proteins and lipids (Angelidaki and Sanders, 2004). The concentrations of Ni, 

Co, Mo, Se and Fe in the SOW (Table 4-2) were below the TE concentration required for the 

metabolism of bacteria /and archaea as per (Hinken et al., 2008; Facchin et al., 2013). 

The NH3-N concentration and the pH of the inoculum used were 2654 mg/L and 8.2, 

respectively (Table 4-4) associated with the presence of cattle slurry present in the inoculum 

(sourced from a digester, Cockle Park Farm, Newcastle University, UK). The inoculum 

showed lower levels of TS and VS (1.28 and 0.65% W/W respectively; Table 4-4) compared 

to the SOW (18.6 and 17.0% W/W respectively; Table 4-2). The inoculum contained a 

relatively high concentration of TE (Table 4-4). Therefore, the final mixture of the inoculum-

substrate employed for the BMP provided with sufficient alkalinity (to neutralise pH) and 

macro and micronutrients for microbial growth. However, a previous study (Hinken et al., 

2008) suggested that the nutrients and TE concentrations necessary for anaerobic bacteria 

depends on the operating time of AD reactors, and the substrate composition and type.  
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The raw MW components were rich in TE and nutrients (Table 4-7); which could offset the 

nutrients deficient (Table 4-2) in the SOW.  Table 5-1 shows the concentration of trace 

elements required by archaea (adapted from (Hinken et al., 2008; Facchin et al., 2013)) 

compared to the concentration of TE in the SOW and MW. The values shown in Table 5-1 

indicate that the MW metals were always at higher concentrations than the TE requirements 

of archaea but the degree of exceedance differed for different MW. Clearly, the CBW, IBA 

and BA showed lower metal content compared to FA (the solid residues from air pollution 

control (APC)) process. Excess supplementation of TE and/or metals has been shown to limit 

methane production (Oleszkiewicz and Sharma, 1990). However, in anaerobic processes, it is 

the free form of these metals that are the most bioavailable (Banks and Lo, 2003). Moreover, 

the bioavailability of metals as nutrient or toxicants in the BMP assays will also be affected 

by other environmental conditions such as pH, redox potential, the kinetics of precipitation, 

and complexation (Oleszkiewicz and Sharma, 1990; Aquino and Stuckey, 2007). 

Titration curves (Figure 4-1) of MW samples with 1N HNO3 showed that the partial alkalinity 

(PA; Table 4-5) of mineral wastes was found to be in the order as BA>CBW>IBA>FA; with 

values of 2.56 ±0.09, 1.24 ±0.14, 1.12 ±0.03 and 0.8 ±0.12 meq CaCO3/g MW, respectively. 

Therefore, it can be concluded that the MW additives (specifically IBA, CBW and BA) could 

provide digesters with moderate levels of alkalinity to maintain a favourable pH and support 

methanogen growth.  
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Table 5-1. Trace element requirement for archaea in comparison to measured trace elements in the substrate (SOW) and mineral (MW) wastes. 

   TE in MW (mg/kg TS) 

Element 
*TE in archaea 

 (mg/kg TS) 

TE in substrate (SOW) 

 ( mg/kg TS) 

Incineration bottom 

ash 

(IBA) 

Cement based 

waste 

(CBW) 

Fly ash 

(FA) 

Boiler ash 

(BA) 

Ca 456 4958 71199 136465 222346 197962 

Cu 1 4.36 2579 534 534 283 

Ni 11 0.73 114 12.5 86 133 

Co 9 0.03 40.4 5.2 10.8 21.2 

Mo 7 0.48 6.7 1.4 14 20 

Se 1.5 0.85 12.2 5.4 16.4 24.7 

Mn 2 11.8 1177 349 389 1176 

K 1140 7523 3161 1491 38024 21506 

Fe 205 62.5 83655 19328 6858 12920 

Mg 342 657 6716 10813 5758 13272 

Zn 7 13.8 3290 51 11114 8699 

*(Hinken et al., 2008; Facchin et al., 2013). 

TE = trace elements.
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5.3.2. Experimental methane production of BMP assays 

The main objective of the BMP assays was to determine a) the biomass activity and 

degradability of the substrate (SOW) in presence or absence of MW supplementation, and to 

b) ascertain the beneficial use of the MW as an alternative to nutrients that could offset 

potential deficiency from the SOW nullifying the likelihood for inhibition.  

Figure 5-1 shows the cumulative methane yields (Ym) for the SOW (OFMSW) from the BMP 

assays.  By the end of the BMP tests (day 30), approximately similar Ym values for the SOW 

(394.0 ±12.0 mL CH4/g VS) were obtained from all the BMP experiments. 

The Ym obtained from the IBA, CBW, FA, BA and control BMP tests were 411.0 ± 5.2, 403.0 

± 5.6, 389.0 ± 4.8, 384.0 ± 3.3 and 384.0 ± 2.5 mL CH4/g VS, respectively. These values 

represent 80, 78.5, 76, 75 and 75% of the theoretical methane yield (~ 514 mL CH4/g VS) 

calculated from the elemental composition analysis method (Section 4.2.6) as described in 

(Angelidaki and Sanders, 2004; Nielfa et al., 2015). The difference between the theoretical 

and experimental value is due the fact that the theoretical Ym does not account for substrate 

biodegradability and the fraction of organic matter that can be used for synthesis of cellular 

material (Labatut et al., 2011). 
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Figure 5-1. Cumulative methane production curves of control BMP assay (SOW only), mineral-

amended (incineration bottom ash (IBA), cement-based waste (CBW), fly ash (FA) and boiler ash 

(BA)) BMP assays at mesophilic temperature 37oC (a) from experimental data and (b) from Gompertz 

model data The values are mean values of triplicate BMP assays with standard deviation (not shown). 

 

Figure 5-2. Bar-plot of maximum methane production rates (K) of the BMP assays calculated from 

Gompertz model. Control BMP assay fed with SOW only, and mineral-amended (Incineration bottom 

ash (IBA), cement-based waste (CBW), fly ash (FA) and boiler ash (BA)) BMP assays at mesophilic 

temperature 37oC. The values are mean values of triplicate BMP assays with error bars of standard 

deviation. 
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The maximum methane production rates (K) which were calculated from the Gompertz model 

applied to the data of BMP assays for each BMP condition (Figure 5-2) were different. The 

MW-amended BMP assays showed higher K values than the control. The IBA, CBW, FA and 

BA BMP conditions obtained the highest K values (45 - 54 mL CH4/g VS. d), or 44 - 73% 

higher than the control (SOW only, ~ 31 mL CH4/g VS. d). 

These results show that MW can improve biogas production, and that the MW amended into 

the BMP assays contained beneficial levels of trace elements (Table 4-7 and Table 4-8) that 

were bioavailable. Microorganisms uses metalloenzymes (Formate dehydrogenase, 

Hydrogenase, Formyl-methanofuran dehydrogenase, Methyl-H4MPT: HS-CoM 

methyltransferase, Heterodisulfide reductase, and Methyl-CoM reductase) in the 

hydrogenotrophic methanogenesis pathway to reduce CO2 to methane. The trace elements, 

known to be involved in these metalloenzymes, are Se, Mo, W, Fe, and Ni (Banks and Zhang, 

2010c). 

Hydrolysis of  protein rich substrates increases ammonia, which may then inhibit 

methanogenesis (Kayhanian, 1999; Fujishima et al., 2000). This issue is relevant to the BMP 

tests in the current study because the inoculum was rich in ammonia (Table 4-4). However, 

Selenium (Se) and Cobalt (Co) are known as the key TE elements essential for the 

biodegradation of organic matter under high ammonia concentrations (Banks and Zhang, 

2010a; Banks et al., 2012; Facchin et al., 2013). These authors have shown that at organic 

loading rates below 3 g VS/L. d; the minimum concentrations of Se and Co of 0.16 and 0.22 

mg/kg food waste (wet weight), respectively, are required to achieve the efficient VFA 

conversion under high ammonia concentrations. Although the relationship between ammonia 

inhibition and MW amendment could not be directly confirmed in this BMP based study, it 

was evident that the SOW methanogenesis as well as the metabolic capability of the 

methanogens (in the MSWI and CBW amended assays) were considerably higher compared 

to the control despite the potentially inhibitory levels of FAN (Table 5-4). This presumably 

results from the positive effects of the TE released by MW.  

5.3.3. Results of Gompertz and first order models 

The mathematical models (Section 4.3.1.1) which can be developed from mechanistic studies 

are considered an easy method to validate the results of empirical methods, and to enhance the 

design and optimisation of AD processes (Yu et al., 2013).  For this reason, at different time 

intervals (3, 7, 13 and 18 days), the cumulative methane production (Ym Experimental) obtained 

from the BMP assays were modelled using the first-order (FO) and Gompertz (GM) models 



84 

 

(Section 4.3.1.1), the results are shown in (Table 5-2). It can be noted that among the four 

time intervals modelled, ‘day 18’ was the best day to fit both models (R2
 = 95 - 99%) with 

lowest D (percentage of difference between experimental values and modelled values) values 

of 10.2% ± 6.0 and 6.4% ± 3.4 for FO and GM, respectively. However, FA supplemented 

assays showed higher D values compared to the other MW amended assays on day 18 (D 

values were 19% and 11% for FO and GM, respectively; Table 5-2).  

Table 5-3 shows that on day 18 the specific growth rate of microorganisms (μ) was ~ 0.22 d-1 

in the IBA, CBW and BA amended BMP assays, about 57% higher than the control, while for 

the FA assay the μ value (0.15 d-1) was approximately equal to that of the control (0.14 d-1). 

Similarly, the value of the maximum methane production rates (K) of the MW-amended 

assays IBA, CBW and BA were ~ 43% higher than the control as shown in Table 5-3 and 

Figure 5-3. These results indicate the positive effect that MW have on methanogenesis, by 

increasing the specific growth rate of microorganisms (Table 5-3, Figure 5-3 and Figure 5-4). 

Future studies need to be conducted to determine whether the higher methanogenesis 

observed in the MW supplemented reactors was due to population growth only, or due to 

methanogenic activity (the capacity of methanogens to produce methane), or both.
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Table 5-2. Parameters from modelling analysis using first order (FO) and Gompertz (GM) models. 

Reactor & Time (d) Ym (mL/gVS added) D (%) R2 Kinetic parameters  

 FO GM FO GM FO GM FO GM 

           µ (d-1 ) K (mL/g VS. d) λ (d) 

Ym Experimental: Control 384  mL/gVS added        

3 94 76.6 -76 -80 0.94 0.99 0.56 28.78 0.48 

7 998.0 428.3 160 12 0.95 0.99 0.08 34.2 1.56 

13 381.0 339.4 -1 -12 0.92 0.99 0.17 33.2 1.33 

18 439 418.6 14 9 0.95 0.94 0.14 36.8 1.5 

Ym Experimental: IBA 411  mL/gVS added        

3 151.0 109.2 -63 -73 0.94 0.99 0.43 33.7 0.47 

7 1340.7 573.3 226 39 0.94 0.99 0.08 47 1.7 

13 497.7 453.6 21 10 0.95 0.99 0.18 45 1.74 

18 434.1 425.8 6 4 0.96 0.95 0.22 52.8 1.84 

Ym Experimental: CBW 403  mL/gVS added               

3 114.8 90.9 -72 -77 0.93 0.99 0.52 32.95 0.53 

7 1184.4 513.5 194 27 0.94 0.99 0.08 42.4 1.68 

13 511.0 554.4 27 38 0.95 0.99 0.169 47.08 1.85 

18 429.3 420 7 4 0.96 0.94 0.21 49.91 1.98 

Ym Experimental: FA 389  mL/gVS added               

3 97.8 64.4 -75 -83 0.94 0.99 0.36 18 0.53 

7 694.7 296.2 79 -24 0.94 0.99 0.08 24.1 1.69 

13 1346.5 713 246 83 0.92 0.99 0.058 41.6 3.73 

18 462.2 432.1 19 11 0.93 0.95 0.15 41.7 3.4 

Ym Experimental: BA 384 mL/gVS added 
       

3 178.2 116.2 -54 -70 0.94 0.99 0.35 32.4 0.56 

7 1146.8 527 199 37 0.94 0.99 0.08 46 1.68 

13 453.1 420.6 18 10 0.94 0.99 0.2 49.7 1.74 

18 404.7 398.1 5 4 0.94 0.96 0.23 52.4 1.86 
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Table 5-3. Kinetic parameters of mean CH4 production from BMP assays from modelling and biodegradability equations. 

  

 

Modified Gompertz model First-order model 

 

BMP 

Experimental 

methane yield 

 

Maximum 

methane 

production rate 

 

Lag time 

 

Modelled 

methane yield 

 
R

2
 

Specific 

microbial 

growth rate 

 

R
2
 

Biodegradability 

 

 
Ym Experimental K  λ YGM  µ  Ym Experimental / Yth* 

 (mL/g VS added) (mL/g VS. d) (d) ( mL/g VS added )  (d−1)  (%) 

Control (SOW only) 384 ± 3.1 31.2 1.27  395 0.99 0.14 0.94 75 

Incineration bottom ash (IBA) 411 ± 5.2 54.4 1.92 416 0.99 0.22 0.96 80 

Cement based waste (CBW) 403 ± 5.6 51.7 2.1 409 0.99 0.21 0.96 78.5 

Fly ash (FA) 389 ± 4.8 45.3 3.66  399 0.99 0.15 0.93 76 

Boiler ash (BA) 384 ± 3.3 54.0 1.94  390 0.99 0.23 0.95 75 

* Yth = theoretical methane yield estimated from elemental composition analysis = 514 mL CH4/g VS, as described in Section 4.2.6.   
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Figure 5-3. Variations in maximum methane production rates (K) calculated from Gompertz model in 

control and MW-amended BMP assays at 37oC. 

 

Figure 5-4. Variations in specific microbial growth rate (µ) calculated from 1st order model in control 

and MW-amended BMP assays at 37oC. Bars plots show mean value of (µ) calculated for each 

digestion condition in triplicates, and error bars are standard deviation of the mean values.  
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Table 5-4. Characteristics of the digestate from BMP assays co-digested synthetic OFMSW (SOW) 

with MW. 

Parameter Control 
Incineration 

bottom ash 

Cement- 

based 

waste 

Fly ash Boiler ash 

pH 7.82 ± 0.01 8.05 ± 0.8 8.11 ± 0.12 8.02 ± 0.08 8.0 ± 0.1 

Total soluble COD (mg/L) 4200 ± 250 3242 ± 51 3000 ± 250 3025 ± 225 2800 ± 50 

Total Kjeldahl nitrogen (mg/L) 2217.6 ± 11 2226 ± 33 2206 ± 3 2243 ± 20 2215 ± 14 

NH3-N (mg/L) 1750 ± 23 1880 ± 37 1750 ± 28 1848 ± 22 1862 ± 18 

Free NH3 (mg/L) 187 339 362 311 344 

NH3-N/TKN (%) 79% 84% 79% 82% 84% 

Total solids (g/L) 7.67 ± 0.3 9.2 ± 2.4 8.89 ± 1 10.67 ± 0.1 8.7 ± 1.3 

Volatile solids (g/L) 2.67 ± 0.8 4.2 ± 0.7 3.17 ± 0.5 3.33 ± 1.3 4.3 ± 1 

Volatile solids (%TS) 35% 48% 40% 33% 45% 

FOS/TAC* 0.12 0.09 0.09 0.06 0.10 

Total VFA (mg/L)**  1028 ± 89 751 ± 282 779 ± 249 530 ± 27 862 ± 223 

Total alkalinity (mg/L) 8850 ± 135 8667 ± 125 8800 ± 100 8400 ± 118 8550 ± 156 

*FOS/TAC = Total VFA / Total alkalinity. 

 ** Calculated as acetate. 

 TKN = Total Kjeldahl nitrogen. 

The lag time (λ) of the control reactor on day 18 was about 1.51 ± 0.1 day; while λ was 1.84 ± 

0.2, 1.98 ± 0.3, 3.4 ± 0.3 and 1.86 ± 0.1 days for BMP assays amended with the IBA, CBW, 

and FA and BA, respectively (i.e. λ was ~ 22%, 31%, 125% and 19.2% longer, respectively, 

than the control reactor) (Table 5-3). Therefore, the lag times observed in the current study 

were only slightly increased for MW-amended reactors. Possibly, additional time was 

required by the microorganisms for acclimation in the altered environment of the MW 

reactors. After the lag phase, acclimation and bioavailability of beneficial trace elements took 

place, and the positive effects of the MW addition on the biogas production was evident in 

MW-amended reactors (Figure 5-1). In summary, it can be concluded that the preliminary lag 

phase that occurred in the MW-amended assays was indicative of a classic inhibition followed 

by adaptation; therefore, this inhibition would not be an issue in a continuous reactor system 

because microorganisms can get adaptation after a short period of reactor operation and this 

adaptation would be maintained in the CSTR. Moreover, in full scale digesters, the 

microorganisms adapted to MW can be more resistant to these toxicants, because the work of 

Lin (1993a) has shown that microorganisms in a seed sludge acclimated to heavy metals were 

more resistant to the toxicity of heavy metals than microorganisms in an un-acclimated seed 

sludge. 



89 

 

5.3.4. Characteristics of BMP digestates: hydrolysis, acetogenesis and methanogenesis 

activity  

Table 5-4 shows the characteristics of digestate taken from BMP assays at the end of the 

experiment. It can be noted that total COD (tCOD) and total volatile fatty acids (tVFA) in the 

digestate of the control assay were 4200 ± 250 and 1028 ± 89 mg/L, respectively, expressed 

as acetate. These values were ~39 and ~ 41% higher than the mean total soluble COD and 

total VFA concentrations (3017 ± 189, 731 ± 142) of MW-amended assays. This suggests that 

although residual amounts of VFA substrates were available for methanogenesis in the control 

reactor, methanogens were unable to convert all the accumulated VFA to methane. 

Table 5-5 shows that in the control BMP assay, the concentration of elements (required by 

archaea) was relatively lower than element concentrations in the MW amended assays. This 

could have contributed to lower methanogenic activity of the control. 

Table 5-5. Concentration of elements in BMP assay digestates on the final day. 

Element concentration in  digestates (mg/L) 

Element Control IBA CBW FA BA 

Ca 88 ± 0.2 187 ± 2.4 185 ± 2.4 524 ± 3 205 ± 3 

Cu 0.08 ± 0.006 0.18 ± 0.001 0.081 ± 0.003 0.018 ± 0.006 0.016 ± 0.003 

Ni 0.007 ± 0 0.04 ± 0.002 0.019 ± 0.002 0.048 ± 0 0.062 ± 0.001 

Co 0.001 ± 0.001 0.025 ± 0.001 0.004 ± 0 0.003 ± 0 0.003 ± 0 

Mo 0.002 ± 0 0.004 ± 0.003 0.004 ± 0.001 0.005 ± 0.003 0.011 ± 0.002 

Se ND ND ND ND ND 

Mn 0.1 ± 0 0.9 ± 0.008 0.41 ± 0.003 0.154 ± 0 0.22 ± 0 

K 467.0 ± 0.9 551.0 ± 0.4 489.0 ±1.0 1098 ± 10 766 ± 7 

Fe 0.22 ± 0.001 8.7 ± 0.04 1.6 ± 0.006 0.641 ± 0.003 1.1 ± 0.007 

Mg 22.7 ± 0.126 48.7 ± 0.14 32.2 ±0.15 81.284 ± 0.96 143 ± 3 

Zn 0.3 ± 0.005 0.4 ± 0.01 0.12 ± 0.003 0.465 ± 0.022 0.26 ± 0.01 

ND = not detected 

Moreover, an imbalance in the syntrophic relationship between fermentation bacteria and 

methanogens can be hypothesised from the accumulation of fermentation products (VFA). 

Table 5-6 shows that the SOW hydrolysis and fermentation rates in the control assays were 

higher for the MW amended reactors (as estimated from the methane, expressed as COD 

equivalent, and the measured COD remaining in the digestate at the end of BMP tests). Whilst 

methanogenesis rates in the amended reactors were higher than the control.  Furthermore, all 

the BMP assays maintained the mean alkalinity concentration and pH of 8653 ± 184 mg/L and 

8.0 ± 0.1, respectively (Table 5-4) (i.e. there was no inhibition in the BMP assays due to 
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acidification). These results further support the previous observation (Section 5.3.2) that a 

larger microbial population (as can be noted from calculated µ values in Table 5-3) or higher 

methanogenic activity (as can be noted from calculated K values in Table 5-3) or both can be 

maintained presumably due to the TE released by the MW. 

Table 5-6. Performance characteristics of anaerobic treatment of SOW in the control reactor and 

reactors supplemented with mineral wastes. 

BMP 

condition 
Methane yield 

Total 

COD 
Total VFA 

Hydrolysis 

rate 

Acetogenesis 

rate 

Methanogenesis 

rate 

 

mL CH4/g VS 

added mg/L (mg/L acetate) 

mg COD/g 

VS. d 

mg acetate/g 

VS. d mL CH4/g VS. d 

Control 384 4200 1028 154 23 24 

IBA 411 3242 751 137 17 40 

CBD 403 3000 779 131 17 37 

FA 389 3025 530 129 12 30 

BA 384 2800 862 123 19 39 

 

The soluble concentrations of measured elements (Table 5-5) in the digestate on the final day 

of BMP assays were found to be lower relative to the total concentrations of measured 

elements in the raw MW (Table 4-7) initially added. For instance, total Ni and Se 

concentrations in the IBA were 114.0 and 12.2 mg/kg TS respectively, while on final day of 

BMP assays, Ni concentration was 0.038 mg/L and Se concentration was below the limit of 

detection 0.01 mg/L. This suggests that only partial leaching of elements from MW occurred 

in  the BMP assays and/ or soluble elements may have precipitated or adsorbed onto the 

anaerobic bacteria as has been observed by others (Facchin et al., 2013). 

5.4. Conclusions  

Mineral waste (MW) originating from MSWI and CDW can be integrated into the digestion 

of OFMSW to promote biogas production and methane yield. MW can release soluble 

micronutrients (trace elements) essential for the growth and activity of methanogenic 

populations. The addition of MW enhanced methanogenesis of OFMSW despite potentially 

inhibitory levels of free ammonia. During the experiments, no leaching of heavy metals 

inhibitory to microorganisms was found from the MW materials originating from MSWI and 

CDW. In the presence of such amendments, the pH was also maintained at optimal levels (6.2 

- 7.5) suitable for the anaerobic conversion of mixed organic waste streams to methane.
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Chapter 6. Co-digestion of organic and mineral wastes for enhanced 

biogas production: Reactor performance and evolution of microbial 

community and function 

 

Graphical abstract 

 

 

 

 

Feeding 
substrate 

R
ecycled

 d
igestate

 

79%

20%

1%

Composition of OFMSW (SOW)

Cooked
food
leftovers

Uncooked
fruit and
vegetable
wastes

Cardboard

 Reactor 1 (LCO): OFMSW 
only 

 Reactor 2 (LIBA): OFMSW + 
Incineration bottom ash 
(IBA) 

 Reactor 3 (LFA): OFMSW + 
Fly ash (FA)  

 Reactor 4 (LBA): OFMSW + 
Boiler ash (BA) 

 Reactor 5 (LCBW): OFMSW 
+ Cement based waste 
(CBW) 

All digestate 

CSTR 

(37
o
C, HRT 20 

d) 

Biogas 

Sieving 

Blending 

Solid 
digestate 

Liquid 
recycled 
digestate 

1- Liquid-recycled feeding method (LRFM) 

5mm 
sieve 

212 µm 
sieve 

Digestate 

 Reactor 6 (DIBA): OFMSW + 
Incineration bottom ash 

CSTR 

 (37
o
C, HRT 20 d) 

Blending 

2- Draw- and- fill feeding method (DFFM) 

Biogas 



92 

 

Abstract 

Mineral wastes (MW) from municipal solid waste incineration plants and construction 

demolition sites are rich in minerals, heavy metals and have acid neutralising capacity. This 

renders such MW a promising source of bulk and trace elements to enhance and stabilize 

biogas production in anaerobic processes. However, finding a MW with typical heavy metal 

concentrations, which promotes anaerobic digestion (AD) without adverse effects on the 

microbial community of the reactor is of major importance. To investigate the impact of 

several MW additives (1. incineration bottom ash; 2. fly ash; 3. boiler ash; 4. cement-based 

waste) as AD co-substrates, six 5 L single stage mesophilic, continuously stirred tank reactors 

(CSTR) were setup. Two different feeding regimes were employed including: a) a liquid-

recycled feeding method (LRFM); b) a draw-and-fill feeding method (DFFM). Under the 

LRFM regime, 1 g MW/gram organic waste enhanced process stability (pH), increased 

methane production (25 - 45% increase), and yielded (450 – 520 mL CH4/g VS); DFFM 

enhanced digestibility to a lesser degree. Illumina HiSeq 16S rRNA community sequencing of 

reactors showed that the microbial community compositions were unaffected by the presence 

of MW additives in comparison to unamended controls, but MW amendment accelerated 

bacterial growth (determined by qPCR). In contrast, different feeding regimes altered the 

microbial communities; Methanoculleus (hydrogenotrophic) and Methanosaeta (acetoclastic) 

were the most abundant methanogenic genera in the LRFM reactors, and the more 

metabolically versatile Methanosarcina genus dominated under DFFM. 

6.1. Introduction 

The potential reuse of mineral wastes such as incineration ash can effectively lower disposal 

costs of MSW and provide valuable materials to countries where natural resources are either 

expensive and/or unavailable (Liu et al., 2015a). The analysis and BMP assays conducted in 

Chapter 5 of this thesis showed that the MW are rich in nutrients (TE), have acid neutralising 

capacity and have associated heavy metals. The presence of nutrients and pH buffering 

capacity are properties that render such MW a resource that may have a promising impact on 

AD in CSTR systems. However, in AD, the heavy metals present in such MW might be 

stimulatory, inhibitory or toxic depending upon their concentration (Hickey et al., 1989; Lin, 

1993b; Mudhoo and Kumar, 2013; Franke-Whittle et al., 2014). Microorganisms can utilise 

metals at certain trace concentrations for activation and/or function of enzymes and co-

enzymes (Zandvoort et al., 2006; Abdel-Shafy and Mansour, 2014). However, metal 

concentration above certain thresholds may cause inhibition co-depending on other 
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physicochemical characteristics in AD digesters (VS/TS, humic substances, pH, VFA, 

alkalinity and ammonia (Dong et al., 2013)). The key parameter controlling the potential 

toxicity of metals is the concentration of the solids (VS or TS) (Hickey et al., 1989; Mudhoo 

and Kumar, 2013). Moreover, (Gu and Wong, 2004) identified impacts of VFA concentration 

(acetic and propionic acid) on metal solubilisation during bioleaching of sewage sludge. The 

authors of this study found that the presence of 10.8 mM acetic acid and 9.88 mM propionic 

acid delayed solubilisation of Cu and Cr by 6 and 7 days respectively compared to a one-day 

lag period in the control with low organic acid concentration. 

The aim of the experiments conducted in this chapter was to investigate the impact of 

integrating the MW in AD of the OFMSW (i.e. the SOW, Table 4-2) using CSTR systems. 

The hypothesis was that the release of alkalinity, necessary macronutrients (Ca, Na, K and 

Mg) and trace metals (Fe, Zn, Mn, B, Co, Ni, Cu, Mo, Se, Al, W and V) would benefit the 

process and promote digestibility as assessed by biogas production and stability with 

additional insights into mechanistic effects of additives provided by microbial community 

abundances and dynamics. 

In this chapter, the co-digestion of the MW (Section 4.1.3) and SOW substrate (Section 4.1.1) 

was conducted in CSTR systems (Section 4.3.2) using a liquid-recycled feeding method 

(LRFM) based on the hypothesis that recycling the liquor part of digestate could affect AD 

through retaining metals considered either stimulatory or inhibitory (toxic) to the digestion 

processes (Gu and Wong, 2004; Mudhoo and Kumar, 2013). In addition, for the purpose of 

comparison, one of the reactors was fed using the conventional draw-and-fill feeding method 

(DFFM). With this feeding regime, the substrate was IBA co-digested with the SOW 

substrate. 

6.2. Materials and methods 

6.2.1. Inoculum, substrate and mineral wastes 

The preparation and characteristics of the inoculum, feedstock substrate (SOW) and MW are 

described in Section 4.1.2, Table 4-4, Section 4.1.1, Table 4-2 and Section 4.1.3, Table 4-7, 

respectively.   

6.2.2. Reactors 

Six anaerobic, lab-scale continuous stirred tank reactors (CSTR, Section 4.3.2) were setup. 

The working volume of each of the six reactors was 5 L. The reactors identified as LFA, 
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LCO, DIBA, LCBW, LBA and LIBA, respectively, reflecting their respective feeds (Table 

6-1) operated at mesophilic temperature (37oC) with HRT/SRT of 20 days (Viswanath et al., 

1992; El-Mashad and Zhang, 2010). Initially, each of the six reactors was thoroughly filled (5 

L) with inoculum to get acclimated to the substrate and environment for 20 days (Section 

4.3.2). The codigestion experiments (CSTR systems) were run for 75 days to ensure pseudo-

steady state conditions had been achieved (> 3 HRT, (Dai et al., 2013)) with two organic 

loading rates (OLRs): 0.5 g VS/L. d for days 0 - 40 and 1 g VS/L. d for days 41 - 75 

successively with or without additions of MW to give MW(TS)/SOW(VS) at a mass ratio of 1:1. 

6.2.3. Feeding 

The current study of the co-digestion of mineral and organic wastes was conducted under a 

reactor-feeding method named as ‘liquid-recycled feeding method’ or LRFM. This is based 

on the hypothesis that recycling the liquid fraction of the digestate could reduce losses of 

metals that are considered either stimulatory or inhibitory (toxic) to the digestion processes 

(Gu and Wong, 2004; Mudhoo and Kumar, 2013) by returning them to the reactor in each 

feeding cycle. For comparison, the two feeding methods, conventional draw-and-fill feeding 

method (DFFM) and the LRFM were used in the reactor fed with SOW feed and 

supplemented with IBA to determine the effect of feeding regime on MW supplementation in 

AD of organic waste (SOW). 

Table 6-1. Experimental design of the CSTR systems 

Reactor ID Feeding method Mineral waste added 

LFA LRFM* Fly ash (FA) 

LCO LRFM Control reactor (no MW added) 

DIBA DFFM** Incineration bottom ash (IBA) 

LCBW LRFM Cement-based waste (CBW) 

LBA LRFM Boiler ash (BA) 

LIBA LRFM Incineration bottom ash (IBA) 

*LRFM = liquid-recycled feeding method. 

**DFFM = draw-and-fill feeding method. 

The liquid-recycled feeding method (LRFM) was applied for the LFA, LCO, LCBW, LBA 

and LIBA reactors ((Table 6-1), the first letter of the reactor name refers to the feeding 

method used whereas the following letters refers to individual MW additions). For this 

feeding method, instead of using distilled water for preparing the required volume of the daily 

feed (a 250 mL mixture), the liquid fraction of the discharged digestate from each reactor 

(sieved with a 212 µm sieve) was used (the solid fraction of the digestate was discarded). The 
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draw-and-fill feeding method (DFFM) was applied for the DIBA reactor whereby the volume 

was maintained at 5 L by withdrawing digestate and feeding equal volumes of feed prepared 

with DW instead of the liquid fraction of the digestate. 

6.2.4. Analytical methods 

Five-litre gasbags (Tedlar, VWR) were used for biogas collection from the reactors. Each day, 

the gasbags were disconnected, biogas volume measured, emptied with samples of biogas 

from each analysed for methane and carbon dioxide composition by gas chromatography then 

the gasbags were reconnected to the reactors (Section 4.4.7). Contamination of the reactor 

headspace with lab air was prevented during the feeding and sampling processes because the 

sampling port extended below the liquid surface level of the reactor.  

Digestate pH was measured daily (Section 4.4.1). Samples of digestate were also taken on a 

weekly basis and centrifuged (3392 g, 30 min) and the supernatant was used for determining: 

chemical oxygen demand (COD, Section 4.4.5),  ammonia-nitrogen (NH3-N) and total 

Kjeldahl nitrogen (TKN) (Section 4.4.4), total volatile fatty acids (total VFA) and total 

alkalinity (total ALK) (Section 4.4.3). Total solids (TS) and volatile solids (VS) of reactor 

digestates were calculated as described in Section 4.4.2. 

Metal analysis for the raw SOW and MW, and digestate samples on day 75 were performed as 

described in Metals analysis (Section 4.2).  

Statistical analysis (Section 4.6) was conducted between various physiochemical parameters 

including the concentrations of metal elements in the digestate together with the reactor 

performances on day 75. 

6.2.5. Molecular analysis 

Microbial community analyses were performed for a sample of inoculum on day 0 (before the 

acclimation period) and in digestate samples collected on day 20 and day 75. Genomic DNA 

was extracted (Section 4.5.1), then real time quantitative PCR (qPCR) (Section 4.5.2) and 16S 

rRNA gene sequencing analyses (Section 4.5.3) were performed. 

6.2.5.1. Sequenced data processing and statistical analysis 

Raw sequencing data (FastQ files) obtained from the Illumina sequencing platform were de-

multiplexed and quality filtered using dada2 (Callahan et al., 2016) within the QIIME2 

analysis pipeline (Caporaso et al., 2010) as described in Section 4.5.3.1. Further analysis was 

conducted on these data to generate figures and check microbial diversity using the phyloseq 
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(McMurdie and Holmes, 2013a) and STAMP v2 (Parks et al., 2014) software packages. 

Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 7.0 

(Kumar et al., 2016) (Section 4.5.3.1). The cell specific methanogenic and fermentation 

activities on day 75 was estimated from the daily methane production and total COD 

concentration, and the bacterial and archaeal gene copies (Section 4.7). 

6.3. Results and discussion 

6.3.1. Performance characteristics of the AD reactors 

The experimental BMP value of the SOW was 480 ± 50 mL CH4/g VS. This methane yield 

value was close to the calculated (theoretical) value (514 mL CH4/g VS) estimated from the 

elemental composition analysis according to the method described in Section (4.2.6), and  was 

within the typical range of BMP values reported for food wastes ((435 - 489 mL CH4/g VS ); 

(Zhu et al., 2008; Banks et al., 2011; Nielfa et al., 2015)). This outcome indicates that the 

substrate used in this study was suitable for the digestion studies conducted. 

Table 6-2 and Figure 6-1 show the performance profiles and physicochemical parameters of 

the six reactors operated in this study. On day 20, in the six reactors, the average methane 

yield was 499 ± 38 mL CH4/g VS, with close to equal values of pH (6.9 ± 0.16) and NH3-N 

(533 ± 49 mg/L), indicating similar and stable reactor conditions. According to (Koster and 

Lettinga, 1984; Ward et al., 2008; Franke-Whittle et al., 2014) AD occurs optimally at pH 

values of 6.8 - 7.2 and total ammonia nitrogen concentrations below 1700 mg/L. Presumably, 

the inoculum used in the CSTR set-ups contained enough alkalinity (to balance pH) and 

nutrients (Table 4-4) for the digestion processes to be stable until day 20, therefore between 

days 0 - 20 all the reactors showed approximately similar digestion conditions. Thereafter, 

and with continuous daily feeding and gradual dilution of the set-up inoculum and substrate 

inside the reactors, the parameters inside the reactors represented the conditions induced by 

the daily feeds which now diverged (SOW or SOW and MW). 
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Figure 6-1. Profiles of methane accumulation, methane yield, total alkalinity and total volatile fatty 

acids during the single-stage co-digestion of synthetic organic waste and mineral wastes from MSWI 

plants and cement-based waste (IBA=incineration bottom ash, FA=fly ash, BA=boiler ash, 

CBW=cement-based waste) in comparison to mineral free control. L and D indicate the reactors 

feeding method liquid-recycled feeding method and draw-and-fill feeding method respectively. The 

values for total alkalinity and total VFA are mean values of triplicate samples with standard deviations 

(not shown). 
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Table 6-2. Summary of reactor parameters on day 20 and day 75*. 

 

 
Reactors 

Methane 

Yield 1 

Hydrolysis 

activity 2 

** 

Methanoge

nesis 

activity 3 

Mixed 

liquor 

soluble 

COD 4 

*** 

pH 

Mixed 

liquor NH3-

N 5 

D
ay

 2
0
 

 LCO 484 - - 2831 ± 516 6.99 ± 0.1 538 ± 59 

LFA 476 - 
- 4502 ± 

1284 
6.7 ± 0.1 521 ± 23 

DIBA 476 - - 4014 ± 687 6.7 ± 0.1 447 ± 50 

LCBW 558 - - 4194 ± 788 6.9 ± 0.1 539 ± 36 

LBA 464 - - 4647 ± 534 6.9 ± 0.1 559 ± 36 

LIBA 536  - 5272 ± 758 7.1 ± 0.05 595 ± 38 

D
ay

 7
5
 

LCO 219 0.068 0.015 
3619 ± 

1020 
5.8 ± 0.3 378 ± 14 

LFA 454 0.081 0.049 4250 ± 742 6.4 ± 0.03 410 ± 8 

DIBA 286 0.106 0.363 
3630 ± 

1270 
5.7 ± 0.2 33 ± 27 

LCBW 536 0.033 0.016 2625 ± 625 6.9 ± 0.03 399 ± 11 

LBA 480 0.087 0.017 3940 ± 860 6.8 ± 0.02 402 ± 14 

LIBA 522 0.028 0.014 2850 ± 450 7.0 ± 0.01 477 ± 1 

*All values are mean values for triplicate samples with standard deviation. 

** Methanogenesis and hydrolysis activities were calculated for the whole operation time of the reactors i.e. 75 days. 

***Errors show standard deviation of triplicate measurements from the same reactor. 

Units are 1 (mL/gVS added), 2 (pgram COD/cell. d), 3(pmol CH4/cell. d), 4 (mg/L) and 5 (mg/L). 

In the LRFM, the contribution of the MW in the LBA, LCBW and LIBA reactors toward the 

alkalinity balance was detectable; these reactors showed 1000 - 1500 mg/L more alkalinity 

than that in the control reactor, however, in the DIBA reactor (fed with DFFM) the buffering 

capacity of the IBA was limited with a noticeable decrease in the alkalinity. A similar 

decrease in the alkalinity was observed in the control (LCO) reactor, specifically from day 40 

and onwards when organic loading rates were increased from 0.5 g VS/L. d to 1.0 g VS/L. d. 

The alkalinity in the LCO and DIBA reactors declined from an average concentrations of 

2500 mg/L on day 40 to about 1000 - 15000 mg/L by day 75 (Figure 6-1), resulting in a pH 

drop from 6.9 ± 0.1 on day 40 to ~ pH 5.8 on day 75. Among the reactors amended with the 

MW and fed with LRFM only the LFA reactor showed a lower alkalinity (~ 1250 mg/L) with 

a pH (6.4) on day 75. 

Under the LRFM feeding regimen, co-digestion of the SOW and mineral wastes (IBA, FA, 

BA and CBW) resulted in higher methane yields and stable digestion process compared with 

the control (LCO) (Figure 6-1). The highest daily methane production was from LCBW, 
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LIBA, LBA and LFA reactors with 528, 513, 468 and 446 mL/L/d respectively. Daily 

methane production in the DIBA reactor (operated with DFFM) was 376 mL/L/d, which was 

about 30% lower than the mean daily methane production of the reactors operated with 

LRFM. Correspondingly, on day 75, the accumulated methane volume produced by the LFA, 

LCBW, LBA and LIBA reactors were 27, 45, 28 and 44% higher than the LCO (control) 

reactor, respectively. For the DFFM, the accumulated methane volume of the DIBA reactor 

(amended with IBA) was 24% higher than the control but about 25% lower than that of the 

LCBW and LIBA reactors. 

6.3.2. The influence of reactor amendments and feeding regimens on microbial 

abundances  

The overall performance of the reactors i.e. higher stable biogas production and stable pH and 

VFA levels with MW supplements compared to when MW is absent suggests that these 

materials primarily promote the growth and survival of the microbes present in the reactors 

increasing the volumetric rate of hydrolysis and fermentation. This growth leads to the 

increased formation of intermediate substrates for methanogens but equivalent increase in 

consumption of these products by the methanogens (Hude Moreshwar and Yadav Ganapati, 

2014) (following a Monod and Michaelis-Menten approach respectively). To test this 

hypothesis, microbial abundances were determined in these reactor systems and cell specific 

activities calculated. 

6.3.2.1. Methanogenic populations  

The mcrA gene abundances representing methanogenic populations in the control and MW 

amended reactors showed an increase in numbers between days 0 to day 75. On day 75, the 

methanogen abundances in the control and MW amended reactors were 80 (4.44 x 109 

genes/mL) and 90 - 118 - fold (4.94 x 109 - 6.50 x 109 genes/mL) higher than the inoculum 

(5.52 x 107 genes/mL) on day 0 respectively (Figure 6-2). In the LFA and DIBA reactors, the 

methanogen abundances were lower than in the control by day 75. Methanogenic populations 

in the DIBA reactor by day 75 (1.08 x 108 genes/mL) had only increased two-fold compared 

to the inoculum was the lowest population size observed among all the reactors (Figure 6-2). 
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Figure 6-2. Microbial gene abundances for bacteria and methanogens in the inoculum on day 0 and 

digestates on day 20 and 75 calculated from qPCR analyses. Error bars represent standard deviations 

of microbial gene abundances calculated for triplicate samples from qPCR analyses. 

6.3.2.2.  Bacterial populations  

On day 75, the 16S gene abundances representing bacterial populations in the LCBW and 

LIBA reactors were 11- and 14-fold (1.4 x 1012 and 1.8 x 1012 genes/mL) higher respectively 

than that in the inoculum (1.2 x 1011 genes/mL) on day 0. While in the LCO (7.2 x 1011 

genes/mL), LBA (5.8 x 1011 genes/mL) and LFA (7.3 x 1011 genes/mL) reactors the 16S gene 

abundances were 4 - 5-fold higher than that in the inoculum on day 0. The lowest 16S gene 

abundance increase was in the DIBA reactor (2.7 x 1011 genes/mL) which was only one-fold 

higher that than in the inoculum on day 0 (Figure 6-2). There was no notable difference in the 

bacterial population between the LFA reactor (7.3 x 1011 genes/mL) and the control (LCO) 

) 
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reactor on day 75; however, bacterial gene abundances in the LCBW and LIBA reactors were 

about 2.0 - 2.6-fold higher respectively than the control. 

The cell specific hydrolysis and methanogenesis activities for the reactors were estimated ( 

Section 4.7) from measured COD, biogas production and the relative abundances of the 

bacteria and methanogens from the qPCR analysis on day 75 (Table 6-2). In the LRFM 

reactors, the LFA reactor showed the highest cell specific methanogenic and hydrolytic 

activities at 0.049 pmol CH4/cell. d and 0.081 pgram COD/cell. d, respectively. That is to say 

in this reactor, which actually sustained the lowest LRFM with MW biogas production, the 

growth/maintenance of individual cells apparently required higher rates of substrate turnover 

especially with respect to the methanogen population. The control reactor (LCO) had a 

moderately high cell specific hydrolysis activity of 0.069 pgram COD/cell. d and relatively 

similar methanogenic activity (0.015 pmol CH4/cell. d) compared to reactors amended with 

MW amended reactors operated with LRFM (except for LFA). The LIBA reactor had cell 

specific hydrolytic and methanogenic activities of 0.028 pgram COD/cell. d and 0.024 pmol 

CH4/cell. d, respectively. Whilst, the DIBA reactor (which had the same MW added as the 

LIBA reactor) showed the highest cell specific hydrolytic and methanogenic activities (0.106 

pgram COD/cell. d and 0.363 pmol CH4/cell. d, respectively). 

In the AD, hydrolysis and the primary and secondary fermentation process are mainly linked 

to bacteria (Liebetrau et al., 2017). However, in methanogenic syntrophic partnerships it is 

well understood that the activity of the fermentative bacteria can be limited by the inhibition 

(failure) of the methanogens, because such inhibition results in the accumulation of both 

sCOD and total VFA (as summation of acetate, propionate, butyrate, isobutyrate, valerate, 

isovalerate) in the reactor which will eventually stop fermentation (Berlanga Herranz, 2008). 

It is also well understood that the success of such syntrophic partnerships is principally 

controlled by thermodynamic trade-offs between the partners and the efficient transfer of 

substrate intermediates between them whereby the energy yield for each participant in the 

partnership is maximal (Hamilton et al., 2015). The accumulation of VFA as a control of 

bacterial hydrolysis and fermentation was certainly evident in the control reactor (LCO) on 

day 75 (~ 4 g/L) (Figure 6-1). Suggesting that the methanogen population was limiting VFA 

conversion to methane, while in the reactors amended with the MW (LFA, LCBW, LBA and 

LIBA) and operated with LRFM the VFA concentration on day 75 remained less than 0.5 g/L. 

Presumably, the MW in particular stimulated methanogenesis (as is obvious in LFA), which 

in turn stimulated bacterial growth (as it is obvious in LBA and LCBW) whereby the removal 
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of the fermentation products increased the energy yield for fermentation (Berlanga Herranz, 

2008). 

Optimising reactor performance by additions of MW may allow not only the reduction of the 

applied HRT, but also a capital and maintenance cost minimization as a direct consequence. 

Since biodegradation is an intrinsic property linked to biomass growth kinetics, an increase of 

the cell concentration within a reactor, combined with an increase in the activity of each cell 

gives process intensification, and the possibility of using smaller reactors (Akay et al., 2005). 

Importantly, the readily available source of the MW supplements, combined with its minimal 

processing requirement, makes it a promising material for AD optimization in regions where 

commercial trace element additive solutions are either expensive and/or unavailable. 

Moreover, MW supplementation may have benefits in other sectors, for example where 

hydrolysis/fermentation is carried out at low temperatures and metabolic reaction rates are 

consequently reduced (Petropoulos et al., 2017). Furthermore, the use of MW from MSWI 

plants in AD  decrease the amount of MW need to be sent to  landfills as a daily cover 

material (Banks and Lo, 2003). The use of MW as a daily cover material of landfill will 

enhance biological degradation of wastes and increase the landfill capacity to receive an 

increasing quantity of the daily wastes. Indeed, the landfills with a daily cover of mineral 

wastes could themselves be converted to an AD bioreactor for biogas production (the leachate 

produced from the landfill can be recycled again to the landfill like the LRFM applied in this 

study) giving an economic value to the MW. 

6.3.3. The contributions of metals from MW to AD digestates and correlation of 

physiochemical parameters with reactor performances 

Additions of trace elements like Ni, Co, Fe, Mn, Zn Mo etc. either singly or, in combination, 

to anaerobic reactors are known to be sometimes necessary for the activity of the enzymes 

improving methanogenesis (Oleszkiewicz and Sharma, 1990; Feng et al., 2010; Pobeheim et 

al., 2010; Takashima et al., 2011; Zhang et al., 2011a; Zhang et al., 2012; Facchin et al., 

2013; Westerholm et al., 2015a; Westerholm et al., 2016; Wu et al., 2016). 

Accordingly, the positive effects of MW amendments on the microbial populations involved 

in the reactors described above may be due to the increased supply of such required nutrients 

in addition to the provision of alkalinity to keep pH values within optimum range. Certainly, 

the analysis of metals in the MW revealed that the concentration of metals (major elements, 

minor elements and trace elements, (Table 4-7) in the MW was many orders of magnitude 

higher than that of the SOW substrate (Table 4-2). This high concentration of metals was 
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reflected in the compositions of the digestate solids (Figure 6-3), whereby the control reactor 

(unamended with MW) had lower levels of most metals in comparison to the MW-amended 

reactors. Furthermore, this variation in the concentration of  the minor elements and trace 

elements was clearly observed in the LRFM reactors, which showed increased concentrations 

of B, Ba, Cd, Co, Cr, Mn, Mo, Ni and Pb (Figure 6-3). 

Pearson correlation analysis (Table 6-3) between various physiochemical parameters 

including the concentrations of metal elements in the digestate together with the reactor 

performances on day 75 were studied. For instance, in reactors that were fed by the LRFM 

regimen and amended with the MW (LFA, LBA, LCBW and LIBA) which showed higher 

and stable biogas production compared to the control, significant correlations (Pearson 

correlation = 0.945, p < 0.05) was found between methane yields and dissolved Mn 

concentration (Table 6-3). The data from the DIBA reactor fed using such a different feeding 

regimen were not included in this correlation analysis and the possible inhibitory impact of 

Mn in this reactor is discussed in the next section.  

In addition, an apparent positive correlation (albeit not significant; p > 0.05) between the 

methane yield and single element concentrations like Ni, Mo, Zn, Mg, Co, B and Ba with 

Pearson correlations of 0.49, 0.33, 0.26, 0.315, 0.4, 0.33 and 0.24 were also detected (Table 

6-3). On one hand, significant correlations (Pearson correlations of 0.923 and 0.964, p < 0.05) 

between Co concentrations and both VFA and NH3-N concentrations were observed. 

Furthermore, significant correlations (Pearson correlation = 0.967, p < 0.05) between NH3-N 

concentrations and VFA concentrations, and a positive correlations (Pearson correlation = 

0.67 and 0.64, p > 0.05) between NH3-N and alkalinity and NH3-N and pH in the reactors 

operated on the LRFM were also detected (Table 6-3). These results refer to the dual positive 

effects of the MW on the microbial activity and alkalinity in the AD reactors. Specifically, 

some trace elements like Fe, Cu, Zn, Mn, Co, Ni etc. are previously reported to have 

important roles in the synthesis of coenzymes involved in the metabolic pathways of 

methanogenesis (Jiang et al.; Pobeheim et al., 2010; Demirel and Scherer, 2011; Ünal et al., 

2012; Zhang et al., 2015b; Westerholm et al., 2016; Cai et al., 2018). 
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Figure 6-3.Total and dissolved metal concentrations in the reactor digestates on day 75. ‘Total’ is total 

metal concentrations, ‘Dissolved’ is dissolved (soluble) metal concentrations. 
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Table 6-3. Correlation analysis of physiochemical parameters in digestates on day 75. 

Parameters Methane yield pH Alkalinity total VFA NH3-N 

pH .405     

Alkalinity .670 .944*    

total VFA .022 .447 .416   

NH3-N .187 .647 .632 .967**  

Al .198 .324 .390 -.116 .042 

As .161 .214 .268 -.378 -.217 

B .331 .108 .263 -.238 -.103 

Ba .246 -.741 -.480 -.284 -.384 

Ca .148 -.844 -.623 -.459 -.578 

Cd .169 -.726 -.494 -.512 -.571 

Co .400 .603 .664 .923* .964** 

Cr .122 .153 .219 -.302 -.165 

Cu -.079 .708 .517 .655 .695 

Fe .539 .644 .745 .850 .924* 

K -.008 -.833 -.645 -.541 -.637 

Mg .315 .033 .193 -.324 -.197 

Mn .945* .399 .633 .193 .314 

Mo .330 .340 .422 -.343 -.149 

Na -.239 -.865 -.746 -.536 -.653 

Ni .488 -.013 .182 -.580 -.429 

Pb .418 -.178 .064 -.279 -.204 

Si .299 .363 .305 -.110 -.038 

Ti -.064 .127 .132 -.293 -.177 

V .009 -.910* -.730 -.462 -.610 

Zn .261 -.206 -.021 -.430 -.350 

Ni+Co+Mn .969** .403 .650 .160 .293 

Ni+Co .679 .221 .453 -.261 -.085 

* Correlation is significant at the 0.05 level (2-tailed). 

** Correlation is significant at the 0.01 level (2-tailed). 

Positive and negative correlations with significant are highlighted in dark green and dark red respectively. 

Lower and lowest positive and negative correlations are highlighted in lighter and lightest green and red respectively. 

6.3.4. Assessment of inhibitory and toxicity effects of mineral wastes during anaerobic 

digestion 

Biogas production is an obvious key indicator of the performance and stability of an AD 

process (Masebinu et al., 2018). Accordingly, the high biogas yields from the SOW in 

reactors amended with MW, specifically the reactors fed with LRFM which were expected to 

contain higher concentrations of metals (Table 4-7); suggests that there was no obvious 

inhibitory/toxicity effects from the metals released by the MW on the microbial activities and 
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hence the biogas production in the reactors (Figure 6-1) or the relative growth of both 

bacterial and methanogenic populations in relation to the unamended controls (Figure 6-2). 

Dissolved concentration of Cd, Cr, Cu, Ni, Pb, and Zn in the digestates after 75 days of rector 

operations are shown (Figure 6-3). These concentrations were well below the inhibitory 

thresholds for AD processes (Jiang et al.; Hickey et al., 1987; Hickey et al., 1989; 

Oleszkiewicz and Sharma, 1990; Lin, 1992; Lin, 1993a; Lin, 1993b; Banks and Lo, 2003; 

Chen et al., 2008; Banks and Zhang, 2010b; Banks et al., 2011). The inhibition of AD is 

expected when the total weight (meq) of the heavy metals Zn, Ni, Pb, Cd and Cu per kg of dry 

solids in the digesting sludge is ≥ 400 meq/kg (Facchin et al., 2013; Mudhoo and Kumar, 

2013; Abdel-Shafy and Mansour, 2014). However, in all the reactors of current study lower 

magnitudes were detected (1.2, 0.6, 0.6, 0.8, 1.7 and 0.85 meq/kg for LFA, LCO, DIBA, 

LCBW, LBA, and LIBA respectively). Moreover, the results of this study were in line with 

other research (Lo et al., 2009) which reported that heavy metals released from co-disposal of 

fly ash with MSW exerted no instability and toxicity effects on the digestion processes. 

Focusing specifically on manganese, although Cai et al. (2018) observed a 48.9% increase in 

the methane yield from rice straw at a Mn concentration of 1.0 mg/L, they found that acetic 

acid was accumulated when excessive Mn concentrations were added. This study suggested 

Mn concentrations were at half-maximal inhibitory concentration (IC50) at 773.9 mg/L. It 

should be noted here that the dissolved concentration of Mn (5.2 mg/L) was found to be 

considerably higher in the poorer performing DIBA reactor compared to the LRFM reactors 

(0.66 ± 0.12 mg/L) and the control reactor (0.07 mg/L) which might suggest inhibition by this 

metal. On balance, a Mn induced reason for the poor performance of the DIBA reactor seems 

unlikely as levels observed were considerably closer to the stimulatory rather than inhibitory 

levels determined by (Cai et al., 2018). 

An alternative indicator of possible negative effects of the mineral wastes is an assessment of 

their impacts on microbial diversity. This assessment assumes that the toxicity of metals may 

reduce diversity and select for specific communities tolerant to the imposed conditions. Such 

effects have been observed in numerous studies of microbial communities (Huang et al., 

2003; Nettmann et al., 2008; Nelson et al., 2011; Ünal et al., 2012; Xia et al., 2012; Koch et 

al., 2013; Wang et al., 2014a; Westerholm et al., 2015a). In a general sense, the dominant 

bacterial and archaeal communities in all the reactor communities, regardless of time or 

treatment were consistent with those that might be expected to proliferate in anaerobic 

digesters treating food waste for methane production. Evidence for this is provided in the 

phylogenetic trees shown in Figure 6-6 and Figure 6-7 which include close relatives randomly 
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selected from BLAST searches of the Genbank database and in particular their source 

environments which are dominated by conventional anaerobic digester studies without reports 

of toxic stress.  

Furthermore, although the diversity of the microbial communities clearly decreased in the 

reactors as might be expected from toxicity (Figure 6-4 and Figure 6-5), it was actually 

operation time and feeding mechanism (i.e. LRFM or DFFM) rather the presence or absence 

of MW which were the factors that controlled the dynamics and compositions of the microbial 

communities. This operational driver for community change was also clear from a principal 

component analysis of sequence libraries (Figure 6-4 and Figure 6-5) where the community 

compositions (both bacterial and archaeal) in all the reactors was principally influenced by 

time of operation and not specific amendments. In the inoculum and at 20 days all the 

communities were dominated by taxa assignable to the candidatus genus Cloacamonas 

(Cloacimonadaceae); genus Thermovirga (Synergistaceae); family Syntrophomonadaceae; 

family Rikenellaceae; and (data not shown) family Bacteroidetes vadinHA17 (see below for a 

discussion of specific taxa functions). However, by 75 days all the LRFM reactors including 

the control were dominated by taxa assignable to the Cloacimonadaceae W5 group; some 

Synergistaceae (not so closely related to the genus Thermovirga) and; the genus 

Proteiniphilum (Dysgonomonadaceae). Likewise, in all the LRFM reactors including the 

control, the archaea underwent substantial changes with a shift from the domination of the 

genera Methanosphaera, Candidatus Methanoplasma and Methanobrevibacter by 20 days to 

a general increase in the proportion of archaea and domination of the genera Methanoculleus 

and Methanosaeta at day 75. In contrast, by day 75 the DIBA reactor (which was also 

amended with IBA similar to LIBA but was fed with DFFM) was dominated by bacterial taxa 

assignable to the family Dysgonomonadaceae (but unrelated to the genus Proteiniphilum) and 

to a taxa related to the genus Georgenia (Bogoriellaceae). The archaeal taxa were dominated 

by the genus Methanosarcina with only a minor presence of Methanosaeta and only moderate 

increase in Methanoculleus (Figure 6-6 and Figure 6-7). 
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Figure 6-4. Principle component analysis of bacterial (A) and archaeal (B) communities of digestate 

samples collected from anaerobic reactors on days 0, 20 and 75. 

 

 

Figure 6-5. Alpha diversity metrics of microbial communities of digestate samples collected from 

different anaerobic reactors on days 0, 20 and 75  
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LT624543 Uncultured Thermovirga sp. isolate OTU_572 anaerobic digestion Belgium

MH154461 clone AD287 anaerobic digester with high food waste and cardboard France

FN994067 clone MS14378-B092 long-term biogas production from completely stirred tank reactor Germany

KT050432 clone 12679 anaerobic digester USA

KT067566 clone 29813 anaerobic digester USA

754642460d63391230a82675d3573df6

NR_074606 Thermovirga lienii strain DSM 17291 Production water from an oil well Norway

NR_113196 Moorella thermoacetica strain JCM 9319 Japan

MH154189 clone AD15 Anaerobic reactor treating high-solids food waste and cardboard France

KF298220 clone c-4-4 household waste inside a landfill China

AB700401 clone: 150X9 strong aromatic liquors pit China

HQ183815 Natronoanaerobium sp. clone De269 leachate sediment China

60b103f8c84a141033ff79400de01625

NR_044616 Synergistes jonesii strain 78-1 rumen degrading toxic pyridinediols USA

MF185666 Synergistaceae bacterium DZ-S4 municipal anaerobic sewage sludge digester France

60aa83c930417880929af785b44f1ec1

MG854342 clone Otu02240 rice straw anaerobic digester UK

MH098302 16S(V3+V4)-2246 soil undergoing bioremediation China

LT624210 Uncultured Synergistaceae isolate OTU_222 Anaerobic digestion Belgium

HQ453305 clone C1-21 silk refining system China

MF347941 Georgenia deserti strain SYSU D8004 Desert sand China

NR_112996 Miniimonas arenae strain YM18-15 isolated from sea sand Japan

d2ad001d5c1387497aa74cbfe8f39258

MH149991 clone dryAD3572 Dry anaerobic digester France

GQ304273 DGGE gel band DB19 anaerobic EGSB bioreactor Ireland

AB195906 cloneN09 anearobic sludge South Korea

Candidatus Cloacamonas acidaminovorans str.

JF460983 clone 4LB07 drinking water USA

KT067559 clone 29806 anaerobic digester USA

JX023226 clone UAD280 anaerobic digester sludge with sewage sludge and food waste South Korea

KC961929 clone BH83 mesophilic acetate-fed anaerobic reactors USA

AB997452 clone: CloningB4C08 Sludge from full scale anaerobic digester Japan

d2bd395ce8952085a14c34930aae80e3

AB998073 clone: CloningB8H12 sludge from full scale anaerobic digester Japan

LT624287 isolate OTU_300 Anaerobic digestion Belgium

AB997655 clone: CloningB5+B07 Sludge from full scale anaerobic digester Japan

JN998200 clone SAO1 B136 anaerobic lab scale digester Sweden

FN563246 clone HAW-RM37-2-B-1017d-I mesophilic biogas digester beet silage served as substrate

EF686999 clone ATB-KS-1955 biogas-producing laboratory CSTR with maize silage and bovine manure

151927c5bafe7c052bd0eb431440d067

LT624093 Uncultured Bacteroidetes isolate OTU_101 Anaerobic digestion Belgium

7a462d3d180e5e907f7257eeb1edd2be

MF612694 clone OTU502 acidogenic reactor France

MH154315 clone AD141 Anaerobic reactor France

EU481693 Cultured B3C1-6 environmental coal formation water sample Australia

NR_125463 Bacteroides luti strain UasXn-3 anaerobic granular sludge of UASB reactor treating sewage Japan

EU887978 Uncultured Bacteroidetes clone S38 anaerobic hydrolysis of grass silage for methane production

75efff7d69d295a390090c410f439858

KX633558 clone OTU607 Dark fermentation continuous reactor fed with glycerol France

MG803868 clone 3b_18722 Sewage sludge China

NR_148808 Petrimonas mucosa strain ING2-E5A mesophilic lab CSTR with maize silage pig and cattle manure

LT624748 Uncultured Porphyromonadaceae isolate OTU_793 Anaerobic digestion Belgium

KT067311 clone 29558 anaerobic digester USA

AB997294 clone: CloningB3B02 Sludge from full scale anaerobic digester Japan
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Figure 6-6. Phylogenetic distance tree (Neighbour-Joining) of key AD reactor bacterial taxa and close relatives (left) and plots of the fractional abundances of these 

taxa in individual reactor sequence libraries (right). The tree is based on comparative analysis of selected partial 16S rRNA sequences recovered from the anaerobic 

reactors at day 20 and 75 and indicated by individual codes assigned during pipeline analysis. The percentage of replicate trees in which the associated taxa clustered 

together in bootstrap analysis (1000 replicates) are shown next to the branches. The analysis involved 252 nucleotide positions.  
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KT008252 clone AJh-9 a coastal gold mining river sediment China

JQ249583 clone 75-LX041831-122-053-C10-unis air filter sample Germany

LT546394 clone 030-F12-JB 29745 biogas reactor Germany

LT624886 Uncultured Methanosphaera sp. isolate OTU_167 Anaerobic digestion Belgium

41221401b72243aef79ef07ce68696cd

NR_104874 Methanosphaera cuniculi strain 1R7 intestinal tract of rabbit Italy

NR_042785 Methanobrevibacter millerae strain ZA-10 Ovine Rumen

MG852224 clone Otu00052 rice straw and manure anaerobic digester UK

KX787736 Uncultured Methanobrevibacter sp. clone MT1_3 cow Rumen India

LT546363 clone 023-A10-IB27527 biogas reactor Germany

AB906158 clone: F-47 rumen fluid of water buffalo China

42c662543a08f6a737a812b72e1f56a9

NR_028242 Methanosaeta concilii strain Opfikon sludge of an anaerobic Digester France

bc59ed6844a2ac0e8b1e8a76e1a9c695

KR013290 clone arcOTU_3 sludge from a mesophilic anaerobic reactor Luxemburg

AB997116 clone: CloningA7B11 Sludge from full scale anaerobic digester Japan

KF551965 clone ar4.19o_B4 lab-scale anaerobic digester Germany

KC961777 clone A21D2 mesophilic acetate-fed anaerobic reactors USA

AB850016 clone: ARCM1andL120_F03 Sludge from CSTR treating chicken manure Japan

LC036197 Uncultured Methanoculleus sp. clone: LNG20 Luzhou-flavor Pit Mud China

3aca9dbbd8cbefd189dc0a0c484de939

LT626051 Uncultured Methanosarcina sp. isolate OTU 73 anaerobic digestion Belgium

KY977968 clone AOTU_271 altered rocks collected from the Mariana subduction zone

NR_109423 Methanosarcina soligelidi strain SMA-21 active layer of permafrost

MG852176 clone Otu00002 Rice straw and dairy manure anaerobic codigestion UK

KY802308 clone LMP12_16S_OTU_0124 wetland ecosystem soil USA

MH154049 clone dryAD46 Dry anaerobic digester of food waste and cardboard France

NR_148337 Methanosarcina spelaei strain DSM 26047 biofilm of the subsurface lake Romania

ac9290b34cdfdd242c154d85b6c29322

KU589022 clone zqA018 UASB reactor China

903ff04a44cfe66cda3ba2ffe287d138

LT546336 Uncultured archaeon clone 017-A5-JB 26969 biogas reactor Germany

LT624828 Uncultured Methanoculleus sp. isolate OTU_28 Anaerobic  digestion Belgium

MF784834 clone OTU15 anaerobic digester France

JF980392 clone ADP10 dairy manure inoculated digester Canada

7063666586ad070af2edb3c78e80a15f

DQ262578 clone H9T20L44 biogas plant India

AB854355 Uncultured Methanosarcina sp. clone: CA03 iron corrossion-inducing microbial community Japan

LC192899 clone: MAP-d120-A-23 a mesophilic anaerobic digester treating of submerged macrophyte Japan

KP702949 Methanoculleus chikugoensis paddy field soil in Chikugo Fukuoka Japan

CP010070 Candidatus Methanoplasma termitum strain MpT

LT624895 Uncultured Thermoplasmatales isolate OTU_210 Anaerobic digestion Belgium

KJ806552 clone XGA121 anaerobic digester sludge China

JQ268000 Archaeon PY-6 soil China

HQ678092 clone 4H7 Low Temperature Plug-Flow Type Bioreactor Treating Swine Manure Canada

ab1700709831b5be090b5f6e9805d567

LT624940 Uncultured Thermoprotei isolate OTU_433 Anaerobic digestion Belgium

AB997182 clone: CloningA7H06 Sludge from full scale anaerobic digester Japan

JN052754 Uncultured crenarchaeote clone ACD80 anaerobic digestion USA
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Figure 6-7. Phylogenetic distance tree (Neighbour-Joining) of key AD reactor archaeal taxa and close relatives (left) and, plots of the fractional abundances of these 

taxa in individual reactor sequence libraries (right). The tree is based on comparative analysis of selected partial 16S rRNA sequences recovered from the anaerobic 

reactors at day 20 and 75 and indicated by individual codes assigned during pipeline analysis. The percentage of replicate trees in which the associated taxa clustered 

together in bootstrap analysis (1000 replicates) are shown next to the branches. The analysis involved 252 nucleotide positions.  
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6.3.5. Inferred functions, syntrophic relationships and community selection pressures 

under different operating conditions 

The recent study by Lee et al. (2018) has pointed out that taxa such as Rikenellaceae, 

Proteiniphilum, Candidatus Cloacimonas, Cloacimonadaceae W5, Bacteroidetes vadinHA17 

which were enriched in anaerobic digesters treating food wastewater or sewage sludge is 

‘known (or suspected) to be’ anaerobic mesophilic acetogens. In the case of Candidatus 

Cloacimonas this genus has been implicated in syntrophic partnerships and hydrogen 

generation from the fermentation of carbohydrates and proteins (Pelletier et al., 2008). 

Accordingly, the transient (20 days) or ultimate (75 days) enrichment of these groups in the 

LRFM reactors, coincident with the transient or ultimate enrichment of hydrogenotrophic 

(Methanoculleus) and acetoclastic (Methanosaeta) methanogens is entirely consistent with 

biogas production from the SOW. What is less clear is the reason for the succession between 

the 20 and 75-day communities with, for instance, the transient dominance of putative 

methanol reducing and hydrogen oxidising methanogens (Methanosphaera, Candidatus 

Methanoplasma) indicating that at 20 days of reactor operation methanol was a major 

intermediate product of mixed fermentation. Bio-methanol has been observed during the 

anaerobic co-digestion of animal and agriculture wastes (Anitha et al., 2015). Furthermore, in 

this study methanol was an early stage product. It has been suggested (Chandra et al., 2012) 

that products such as methanol are formed in the early phases of continuous or semi-

continuous anaerobic digestion because the build-up of acidic products of hydrolysis. 

By 75 day, the relative dominance of Methanoculleus methanogens over Methanosaeta 

suggested the dominance of hydrogenotrophic over acetoclastic methanogenesis indicating the 

likely occurrence of syntrophic acetate oxidation in the LRFM reactors. Methanoculleus spp. 

have certainly been found in mesophilic syntrophic acetate oxidising digesters (Schnürer et 

al., 1999; Franke-Whittle et al., 2014; Westerholm et al., 2016), predominating over other 

hydrogenotrophic methanogens at extreme environmental conditions (i.e. high salt, ammonia 

and VFA concentrations). In contrast, however, the growth of Methanosaeta is known to be 

sensitive to changes of operational conditions such as VFA and NH3-N concentrations 

(Demirel and Scherer, 2008; Franke-Whittle et al., 2014). That being said a significant 

positive correlations was found (not shown) between NH3-N concentrations and both 

Methanosaeta and Methnoculleous at day 75 and, furthermore, NH3-N concentrations in the 

LRFM reactors were below likely inhibitory levels (Westerholm et al., 2015a) especially after 

their substantial decline from the levels measured at 20 days. It can be concluded that the 
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sufficient concentration of NH3-N in the LRFM reactors supported the growth of 

microorganisms (Kayhanian, 1999) rather than exerting inhibitory effects. 

In this study and as discussed above, the control reactor (LCO) had an approximately similar 

microbial community composition and dynamics to that of the MW amended reactors 

operated on the same feeding mechanism (LRFM) (Figure 6-6 and Figure 6-7). However, 

methane production in the LCO reactor decreased gradually and total VFA concentration 

increased rapidly from 340 mg/L on day 46 to about 4073 mg/L on day 73 (Figure 6-1) this 

led to pH drop and a drastic decrease in methane yield. Based on the high degree of similarity 

in community composition, the low methane production efficiency of the LCO reactor was 

probably related to two main reasons. Firstly, a lower relative population growth of 

acetoclastic methanogens (especially Methanosaeta; Figure 6-2 and Figure 6-7) in this reactor 

compared to the MW amended reactors (specifically LCBW, LBA and LIBA). Secondly, low 

trace element concentrations in the LCO reactor affected methanogenic activity in this reactor 

especially when the OLR was increased to 1 g VS/L. d. The deficiency of the required trace 

elements in the SOW substrate caused an alteration in methanogenic pathways and a decline 

in digestion performance (Westerholm et al., 2015a), since this decrease in methanogenesis 

was not observed in the other reactors that were operated on LRFM and amended with the 

MW (i.e. LFA, LCBW, LBA, and LIBA). In contrast, in the DIBA reactor a low NH3-N 

concentration was existed, therefore presumably the growth of Methanosarcina (which is 

known for its high growth rates and dominance when high levels of VFA present (Franke-

Whittle et al., 2014)) was limited due to the lack of enough N nutrient needed for the 

population growth. 

The dominance by day 75 of very different bacterial and archaeal taxa in the DIBA reactor 

fed by DFFM feeding regimen was likely dictated by the prevailing conditions within this 

reactor. With respect to the bacterial sequences enriched, a taxa closely related to the genus 

Georgenia (family Bogoriellaceae) is notable as isolates of this genus range from aerobic, 

microaerophilic to facultative anaerobic metabolisms (Ward and Bora, 2009) and this genus 

does not appear to be a commonly associated with anaerobic digestion. However, a close 

relative has identified as a dominant component of the granular sludge of a low temperature 

glucose fed anaerobic digester (O’Reilly et al., 2010) in a reactor where the dominant 

methanogen was the putative hyrdrogenotroph Methanocorpusculum. However, in contrast, in 

the present study this substantial enrichment of the Georgenia taxon along with a taxa from 

the family Dysgonomonadaceae in the DIBA reactor was associated with enrichment of the 

methanogenic genus Methanosarcina which is also known to be metabolically more versatile 
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and robust with shorter doubling times and tolerance to environmental stress such as low pH 

(Calli et al., 2005; Conklin et al., 2006; Thauer et al., 2008). Several previous studies have 

linked Methanosarcinaceae-related populations to high residual acetate concentrations often 

associated with poor COD removal (Hulshoff Pol et al., 2004). However, high COD, VFA 

and low pH was actually a property of the LCO reactor which sustained a similar microbial 

community to all other reactors which included the presence of Methanosaeta typically 

considered less tolerant to such stresses. The most obvious distinguishing feature of the DIBA 

reactor in comparison to all the other reactors was the relatively low NH3-N concentrations 

which is of interest because it is another selection factor for Methanosarcina , since previous 

studies have reported the predominance of Methanosarcina at high ammonia concentrations 

(Calli et al., 2005; Tian et al., 2018). 

6.4. Conclusions 

1- The MW from MSWI plants and CDW can be utilised as trace element supplements for 

optimising (high biogas production and stable digestion process) the AD of organic 

materials. 

2- The metals released from the MW enhanced the buffering capacity and 

metabolic/catabolic activities in the AD reactors without inhibitory/toxicity effects. 

3- The LRFM feeding method can be considered as a proper feeding method for anaerobic 

co-digestion of OFMSW with MW from MSWI plants and CDW. 

Feeding methods and time were the key factors affecting microbial diversity in AD reactors 

supplemented with or without the MW. 
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Chapter 7. Low temperature pre-treatment of organic feedstocks with 

selected mineral wastes sustains anaerobic digestion stability through trace 

metal release rather than enhanced hydrolysis 
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Abstract 

Anaerobic co-digestion of mineral (MW) and organic wastes can improve the performance of 

mesophilic (37oC) anaerobic digestion (AD) of organic wastes via a liquid-recycling feeding 

method (LRFM). However, a limited improvement was achieved with a conventional draw-

and-fill feeding method (DFFM) due to low retention / and concentration of trace elements / 

and heavy metals released from MW. In order to overcome the low concentrations of metals 

and alkalinity released from MW in reactors amended with these MW with a DFFM as 

described in chapter 6, the current chapter investigated pre-treatment of the organic waste 

with MW at mesophilic temperature ((37oC); TP-MW) before their co-digestion at 37C. The 

use of low temperature (37oC) for pre-treatment was to avoid excessive use of energy for the 

pre-treatment and avoid high release of heavy metals which might inhibit the digestion 

processes. Digestion experiments were carried out using biomethane potential (BMP) and 

continuous (CSTR) trials. BMP of substrates prepared with TP-MW (Organic 

waste(VS)/MW(TS) mass ratio of 1:2.5 and 110 hour of pre-treatment) showed limited inhibition 

effects on biogas production rate and methane yield of organic waste compared to a control 

BMP fed with a substrate prepared by pre-treatment (TP) only (without MW additives). The 

biodegradation efficiency of BMPs fed with TP-MW substrates was close to ~ 90% of that 

obtained by thermochemical pre-treatment using 0.6% NaOH (TP-Alk). The continuous AD 

reactors (CSTR) fed with substrates prepared with TP-MW showed stable digestion process 

with higher methane production compared to TP and control reactors. 

Methanogenesis/fermentation activity (determined by qPCR) in CSTRs fed with TP-MW 

substrates was (3 - 4)-fold higher than that in the control and TP reactors. Illumina HiSeq 16S 

rRNA analysis showed that concentration of trace elements in the CSTRs fed with the TP-

MW substrate was the key factor shaped the final diversity of microbial populations in these 

reactors. In the CSTRs fed with TP-MW substrate microbial community structure either 

shifted to a mixed community of acetoclastic (Methanosaeta) and hydrogenotrophic 

(Methanobacterium) methanogens, or totally shifted to hydrogenotrophic methanogens 

dominated by Methanosarcina, Methanobacterium and Methanocuelleous. While the 

acetoclastic methanogens (Methanosaeta) dominated the control and TP reactors. There was 

no evidence of enhanced hydrolysis of organic waste due to pre-treatment with the selected 

MW. 
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7.1. Introduction 

Anaerobic digestion (AD) of organic wastes generates biogas with a high methane content, 

carbon dioxide, ammonia and trace gases (Hilkiah Igoni et al., 2008). AD processes consist of 

three main stages: hydrolysis, fermentation and methanogenesis (Nguyen et al., 2019b). In 

hydrolysis, long chain organic materials are converted to short chain monomers, for instance, 

proteins are hydrolysed to amino acids, and sugars and carbohydrates are hydrolysed to 

glucose (Gavala et al., 2003). Acetogens use hydrolysis products to produce organic acids 

(VFA), CO2 and H2, and these intermediates are utilized by methanogens for biogas 

production (Mata-Alvarez et al., 2000b). Hydrolysis is often the rate-limiting step for 

complex organic wastes (Fdez.-Güelfo et al., 2011; Ariunbaatar et al., 2014a), therefore pre-

treatment are often considered as a mean to increase solubilisation of organic matter to simple 

monomers to improve the bioconversion (fermentation and methanogenesis) steps. Whilst 

methanogenesis is the rate-limiting step for easily degradable organic waste (Ariunbaatar et 

al., 2014a), energy exchange relationships between fermentative and methanogenic 

communities (Hamilton et al., 2015) through syntrophic relationships is considered a key 

factor for stable performance and productive AD processes (Schnurer and Nordberg, 2008; 

Amani et al., 2011; Li et al., 2012; Westerholm et al., 2016). Sufficient growth and activity of 

specific microbial populations is required for successful and accelerated syntrophic 

interactions between the cells participating at the fermentation and the methanogenesis stages 

in AD (Zhang et al., 2019). 

Changes in AD temperature (psychrophilic, mesophilic and thermophilic) and organic 

composition of the feed substrate (total and volatile solids) can affect the biodegradation 

efficiency, microbial growth and diversity significantly (Yi et al., 2014; Gaby et al., 2017; 

Petropoulos et al., 2017). Additionally,  sufficient nutrients, such as trace elements within 

specific concentrations considered crucial for balanced metabolic pathways towards methane 

production (Demirel and Scherer, 2011; Takashima et al., 2011; Facchin et al., 2013; Cai et 

al., 2017).  

Positive effects of commercially available trace elements such as Se, Co, Ni, Mo, Zn, Cu, Mn, 

Mg etc. on AD have been studied widely in the literature (Demirel and Scherer, 2011; Zhang 

et al., 2011a; Banks et al., 2012; Facchin et al., 2013; Zhang et al., 2015b). Mineral wastes 

(MW) from municipal solid waste incineration (MSWI) plants and construction demolition 

waste (CDW) from recycling sites are also rich in trace and heavy metals, and have moderate 

alkaline content. This renders MW a potentially attractive TE resource for AD reactors, and a 
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possible alternative to commercial TE solutions (Chapter 5 and Chapter 6). The results 

obtained from experiments in Chapter 6 showed that direct amendments of MW from MSWI 

and CDW produced positive effects on AD of organic waste using a liquid-recycled-feeding 

method (LRFM), whereas limited effects were observed when conventional draw-and-fill 

feeding method (DFFM) was adopted. 

The objective of the current study was to determine a method for increasing the concentration 

of trace elements released from MW in order to improve the performance and productivity of 

anaerobic reactors fed with organic wastes using the conventional DFFM. To the best of 

authors’ knowledge so far, no previous research has been conducted using MW to pre-treat 

organic wastes for the enhancement of AD fed with OFMSW. The current study incorporated 

MW as additives during pre-treatment (TP) of organic wastes at 37o (named as TP-MW) to 

produce a substrate for BMP assays and subsequent continuous experiments. The hypothesis 

was that the TP-MW would enhance the hydrolysis of organic waste, whilst simultaneously 

increase the concentration of TEs released from MW, and improve digestion efficiency and 

methane yields. As described in chapter 6, physicochemical characteristics in digesters such 

as the concentration of the solids (VS or TS), humic substances, ammonia pH, alkalinity and 

VFA are key parameters controlling the bioavailability and potential toxicity of metals is the 

AD systems (Hickey et al., 1989; Gu and Wong, 2004; Dong et al., 2013; Mudhoo and 

Kumar, 2013). Moreover, the ability to generate increased concentrations of TEs from TP-

MW could help offset the potentially negative effects of hydrolysis i.e. more rapid 

accumulation of VFA , and compensate gradual decreases in the concentration of TEs seen in 

full-scale digesters due to regular substrate feeding and digestate discharge (Zhang et al., 

2019). 

 Three MW were used from a MSWI plant, namely, incineration bottom ash (TP-IBA), fly ash 

(TP-FA) and boiler ash (TP-BA), and a fourth MW, cement-based waste (TP-CBW), was 

obtained from CDW. Preliminary batch anaerobic assays (BMP) were conducted on a 

substrate comprising the simulated organic waste (SOW) and SOW incorporated into the TP-

MW during preparation as indicated above. The potential hydrolysis and inhibition effects 

(sCOD concentration and CH4 production) of BMP assays with TP-MW were evaluated by 

comparing outcomes with BMP assays fed with the same organic substrate (SOW) but pre-

treated (at 37oC) with alkali pre-treatment (TP-Alk) using a 0.6% NaOH solution. Moreover, 

in order to account for any possible loss in nutrients of the feedstock substrate during pre-

treatment with or without MW, control BMP assays were run which fed with the same 
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feedstock substrate which was either frozen at -20oC then thawed (FrTh) before digestion, or 

pre-treated at 37oC without MW (TP). 

 Depending on the results obtained from the BMP assays, expected adequate pre-treatment 

time (12 hours and 1 hour) with TP-MW of organic waste (SOW) was applied to produce 

substrates for CSTRs fed with the DFFM method. Microbial analyses using qPCR and 

Illumina HiSeq analyses were conducted to determine the alterations in microbial population 

activity and composition in the CSTRs due to TP-MW method of the tested organic and MW. 

7.2. Methodology 

7.2.1. Organic waste and inoculum 

The substrate used for this study was the SOW, its characteristics are shown Table 4-3. The 

final TS and VS concentrations of the SOW were within optimal ranges for AD (10 - 20%; 

(Forster-Carneiro et al., 2008)) of 18.2% and 16.6%; respectively. The inoculum was a 

digestate from a full-scale mesophilic reactor digested cattle slurry and farm silage (Cockle 

Park Farm, Newcastle University, UK) (Table 4-4). The inoculum was reactivated for two 

weeks at 37oC before starting the BMP and CSTR experiments. 

7.2.2. Mineral wastes 

The four MW (IBA, CBW, FA and BA) were used for the experiments in this chapter. The 

preparation and characteristics of the Mineral wastes are described in (Section 4.1.3, Table 4 

7), respectively. 

7.2.3. Experimental design of BMP assays 

7.2.3.1. Substrate pre-treatment for BMP assays 

Pre-treatment assays focused on soluble COD (sCOD) and pH levels. Seven pre-treated 

samples (in triplicate) of SOW were prepared. Pre-treatment of the substrate (SOW) was 

carried out for 110 hours using the following methods 1) freezing SOW at -20oC then thawing 

(FrTh); 2) pre-treatment of SOW at 37oC (TP); 3) pretreatment of SOW with MW at 37oC 

(TP-MW). For (TP-MW) four MW were used individually as additives for pre-treatment of 

SOW; they named as TP-IBA, TP-CBW, TP-FA and TP-BA reflecting the name of the MW 

used; and 4) alkali pre-treatment (using 0.6% NaOH) of SOW at 37oC (TP-Alk). The pre-

treatment assays (except FrTh) were conducted in 250 mL open-capped plastic containers 

with 100 mL working volume incubated at 37oC. The pre-treatment processes included 
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mixing the samples in reciprocating speed of 150 rpm. The control and TP assays comprised 

1g by VS of the SOW made up 100 mL with distilled water. The SOW(VS) to MW(TS) mass 

ratio of each of the TP-MW assays was 1:2.5 made up 100 mL with distilled water. The TP-

Alk of 1 g by VS of the SOW was conducted according to the method described by Lin et al. 

(2009). Sampling during the pre-treatment period took place at three time intervals (after 0 

hour, 0.5 hour and 110 hour) where, the pH and sCOD of the seven TP assays were measured. 

The developments in alkalinity due to the MW and their effects on the hydrolysis of organic 

matter (the SOW) was evaluated by comparing the pH and sCOD obtained from the TP-MW 

assays with the pH and sCOD values obtained from the control, FrTh, TP, and TP-Alk assays. 

Whereas, effects of the pre-treatment method on the bioavailability and toxicity of metals 

released were assessed by digesting the whole pre-treated feedstock samples (i.e. the whole 

solid and liquid products) in BMP batch reactors. 

7.2.3.2. BMP assays 

BMP assays for the pre-treated and control feedstock samples (Section 7.2.3.1) were carried 

out in 500 mL glass bottles (Duran bottles, VWR) as described in Section 4.3.1. The working 

volume of BMP assays was 400 mL (200 mL inoculum, 100 mL pre-treated or control SOW 

sample (see Section 7.2.3.1) and 100 mL distilled water) and the headspace was 190 mL. The 

inoculum to substrate (SOW) mass ratio of each BMP assay was 2:1 on VS basis.  

7.2.4. Experimental design of anaerobic CSTR experiments 

7.2.4.1. Substrate pre-treatment for CSTRs 

Due to limited resources of current study, only six CSTR systems were operated at the 

continuous experiments. The pre-treatment methods were the TP and TP-MW (TP-IBA, TP-

CBW, TP-FA and TP-BA) methods, and the whole substrate of TP-MW (i.e. the whole solid 

and liquid products of the SOW and MW) was added to reactors. The SOW feedstock used 

(Table 4-3) for the control reactor and pre-treatment methods (TP and TP-MW) was stored in 

a cold room at 5oC during CSTR experiments, on daily basis, required amount of this 

feedstock was separated for pre-treatment (to feed TP and TP-MW reactors) and feeding the 

control reactor. Then the rest of the substrate was returned to the cold room. Depending on the 

results obtained from the BMP assays, lower SOW(VS)/MW(TS) mass ratio and shorter substrate 

pre-treatment time were chosen for the TP and TP-MW for the CSTRs operation. The 

SOW(VS)/MW(TS) mass ratio decreased to 1:1 and the pre-treatment time decreased to 12 hours 

(overnight) for day 1- 60 (HRT-1, HRT-2 and HRT-3) then to one hour for day 61- 80 (HRT-
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4). Pre-treatment of the substrates before digestion was carried out using an orbital incubator 

(Stuart S1500, UK) with a heater power of 250 W. The estimated energy required for pre-

treatment (assuming an energy consumption of 0.25 KWh and a loading capacity of 3 kg of 

the substrate i.e. 1.5 kg of MW plus 1.5 kg of SOW) of the substrate for 1, 12 and 110 hours 

was 0.06, 0.72 and 6 MJ/kg of the organic waste (SOW), respectively. 

7.2.4.2. Reactors 

The continuous experiments were conducted in six 5 L working volume CSTR systems 

operated at mesophilic temperature (37oC) (Section 4.3.2). Four of the reactors fed with a 

substrate pre-treated with the TP-MW method (i.e. the SOW was mixed with one of the MW 

then pre-treated at 37oC), and the reactors were identified as TP-IBA, TP-CBW, TP-FA and 

TP-BA reactors reflecting the name of the MW (IBA, CBW, FA and BA; respectively) used 

in pre-treatment of the SOW at 37oC. The other two reactors were a control reactor (named as 

Control) which was fed with SOW without pre-treatment and MW additives, and a second 

reactor which was named as TP fed with a substrate (SOW) pre-treated at 37oC but without 

MW additives. The reactors were operated for 80 days with HRT of 20 days. Choice of the 20 

days HRT was based on the results from the previous study (Chapter 6) which studied 

anaerobic co-digestion of the same substrate (SOW) and MW and found that this HRT is 

optimal. The organic loading rates (OLRs) were 1 g VS/L. d for day 1- 40 and 2 g VS/L. d for 

day 41- 80 successively. The feeding method was the draw-and–fill feeding method (DFFM). 

For this feeding method, working volume of each reactor was maintained at 5 L by 

withdrawing 250 mL/d of digestate and feeding with equal volume of feed. The biogas was 

collected in 5L (for day 1- 40) or 10 L (for day 21-80) gasbags (Tedlar, VWR). 

7.2.5. Analyses and analytical methods 

Methods for measuring physicochemical parameters, as well as metal and microbial analyses 

are described in Materials and Methods (Chapter 4). Biogas and pH analysis were conducted 

daily. Digestate sample were analysed for TS, VS, sCOD, total ALK, total VFA and 

individual VFA concentrations every 10 days. Moreover, after each HRT (20 days), digestate 

samples of the CSTR systems were collected for the soluble metal concentrations and 

microbial analyses. 

7.2.6. Statistical Analysis 

Statistical analysis was conducted as described in Section 4.6. 



121 

 

7.2.7. Calculations of fermentation and methanogenesis activities 

 In the current study, a novel parameter named as methanogenesis to fermentation ratio (M/F 

ratio) was defined to derive the processes stability or failure in continuous reactors (Eqs. 7.1, 

7.2 and 7.3). Moreover, the cell specific fermentation (CSF) and cell specific methanogenesis 

(CSM) activities during each HRT for each reactor were calculated (Eqs. 7.4 and 7.5). 

F (g COD) = total VFA in reactor (g COD) + total VFA to CH4 (g COD)  (7.1) 

M = total VFA to CH4 (g COD) = VMP (mL) /350 (mL/ g COD)   (7.2) 

M/F ratio = M/F          (7.3) 

CSF activity (pg COD Cell-1 d-1) = (F/bacteria cell numbers) ×1012  (7.4) 

CSM activity (pg COD Cell-1 d-1) = (M/methanogen cell numbers) ×1012  (7.5) 

Where F is the total fermentation by the reactor, total VFA in reactor are the total mass of VFA 

in the reactor, total VFA to CH4 are the total mass of VFA converted to methane, M is the total 

methanogenesis, and VMP is the volume of methane produced. 

7.3. Results and discussion 

7.3.1. Results of BMP assays 

7.3.1.1. Influence of pre-treatment on pH and sCOD concentration 

The influence of pre-treatment (FrTh, TP, TP-MW and TP-Alk) on pH and SCOD 

concentration of SOW was determined and compared with the same values obtained from the 

control and TP (Figure 7-1). At startup (0 hour), TP-MW increased the pH of SOW to 10 - 11 

compared to pH = 12 and pH = 6.5 in the TP-Alk and control assays respectively. Indicating 

that the MW could provide an alkaline condition and increase alkalinity associated with high 

concentration of some metals such as Ca as calcium oxide which can form Ca(OH)2 in 

aqueous solution (Yin et al., 2018). With the progress in pre-treatment time, the pH decreased 

in all pre-treatment assays, with high decrease in the control assays (pH <= 3), moderate 

decrease (pH 6.5 - 9) in the TP-MW assays and low decrease (pH ~12) in the TP-Alk assays. 

As can be seen from Figure 7-1 a, after 110 hours of pre-treatment, TP-BA showed the 

highest pH value of ~ 8.5 among the four MW. 

Effects of TP-MW on SCOD concentration were different (Figure 7-1 b), after 110 hours of 

pre-treatment, among the TP-MW assays, the highest SCOD concentration was in the TP-
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CBW and TP-FA assays (5 - 6 g COD/L) while SCOD concentration in the TP-IBA and TP-

BA assays were close to the SCOD of the control and FrTh assays. An apparent effect of TP-

MW on the SCOD concentration was observed. Specifically, the SCOD concentration in the 

TP-CBW and TP-FA assays were about 80 - 90% of the SCOD concentration in the TP-Alk 

assay. This is considered a promising result for a readily available substrate as MW for the 

pre-treatment of organic wastes applications at a pre-treatment temperature of 37oC. 

 The use of MW for solid waste pre-treatment can ensure environmental sustainability through 

promoted bioconversion and reduce the investment for pre-treatment giving value to the MW 

(which tended to be disposed to landfills). The reason behind the lower sCOD concentration 

at the TP-IBA and TP-BA batch BMP assays compared to sCOD concentration in the TP-

CBW and TP-FA batch BMP assays was not clear; possibly, the abiotic / biotic reactions in 

the TP-IBA and TP-BA assays resulted in some losses of biodegradable material/nutrients in 

these assays. Moreover, it was found that dissolution kinetics of ashes differs from that of 

alkali/alkaline chemicals (e.g. Ca(OH)2) (Yin et al., 2018). In the current study, the pre-

treatment effect of the liquid NaOH solution was very instant (0.5 hours) whereas solid phase 

MW gave a slower change in sCOD and could not sustain the higher pH during this 

hydrolysis. The slow alkaline effect of the MW on the hydrolysis can be considered useful for 

conditions where the high hydrolysis rate (such as OFMSW) might be a rate limiting which 

cause rapid accumulation of VFA and acidification followed by the inhibition of 

methanogenesis (Guerrero et al., 1999; Munk et al., 2010; Lerm et al., 2012). 
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Figure 7-1. Variations in pH and SCOD concentration in pre-treatment assays of organic waste. TP-

Alk = pre-treatment with 0.6 % NaOH solution. Control = raw organic waste prior to start the 

experiments (i.e. without pre-treatment and mineral waste addition). TP = organic waste pre-treated at 

37oC but without MW addition. TP-IBA, TP-CBW, TP-FA and TP-BA refer to the MW used in the 

pre-treatment (TP-MW) assays. The values are mean values of triplicate measurements with standard 

error. 
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7.3.1.2. Influence of pre-treatment on methane production rate and yield 

The BMP assays (BMPs) were conducted to assess the influence of TP-MW on 

biodegradation of the SOW and to investigate for any possibility of methanogenic inhibition. 

Previous studies (Banks and Lo, 2003) and Chapter 5 in this thesis demonstrated the 

possibility of extraction of water-soluble trace and heavy metals from MW within 96 - 110 

hours at 20 - 37oC. Therefore to investigate any potential biological inhibition due to TP-MW 

the longest pre-treatment time (110 hour) and relatively high MW(g TS) / SOW (g VS) mass ratio 

2.5:1 (Yin et al., 2018) were chosen for the TP-MW for the BMP assays. 

It can be seen from Figure 7-2 that pre-treatment (TP, TP-MW, TP-Alk) of the SOW at 37oC 

decreased the maximum methane production rate (K) compared to the control and FrTh pre-

treatment. Mean K value of the BMPs digested substrates with pre-treatment (TP, TP-MW 

and TP-Alk) was 27 ± 6.4 mL/g VS/d, this K was about 96% lower than the K of the control 

and FrTh assays. Consequently, accumulated methane production (Yexp) of the control and 

FrTh assays (Figure 7-2 a and b) were higher (388 ± 3 mL/g VS) compared to the other BMPs 

(322 ± 28 mL/g VS). This difference was more likely due to losses of some nutrients during 

the pre-treatment (as discussed in Section 7.3.1) and inhibition of methanogenesis in these 

reactors which can be noted from the lag phase time (λ) values. The lag phase time was one-

fold (2.1 ± 0.2 d) and two-fold (3.1 ± 0.1 d) higher in the TP-MW and TP-Alk reactors 

compared to the control, FrTh and TP reactors (1.3 ± 0.26 d) Table 7-1. A study conducted by 

Yin et al. (2018) found that the IBA dosage of 1.5 g IBA /g TS of activated sludge resulted in 

the greatest sludge hydrolysis and VFA production but inhibited methanogenesis. This same 

study found that 0.9 g IBA/ g dry activated sludge was the optimal dosage increased the 

methane production by 26.6%, shortened the lag phase time by 32.4% and increased the 

maximum methane production rate by 36.0%. Moreover, in the current study, the high lag 

phase time (3.1 ± 0.1 d) in TP-Alk assays was likely to be related to the high pH (pH > 12; 

Figure 7-1 a) at the beginning of the experiments (lag phase time) then it decreased to 8.1 in 

the reactor digestate on final day of the experiments (Table 7-2). 

The BMP of TP-FA showed lowest K and Yexp values (16.2 mL/g VS. d and 282 mL/g VS 

respectively), whilst the mean K and Yexp values for the TP-IBA, TP-CBW and TP-BA assays 

were 26.8 ± 3.2 mL/g VS. d and 316 ± 19 mL/g VS, respectively. These values were about 

83% and 91% of the K and Yexp values obtained from the TP assay, which fed with pre-

treated SOW but without MW addition. The slight decrease in the K and Yexp of the BMPs 

with TP-MW compared to the TP (Figure 7-2 and Table 7-1) was likely to be related to a 

slight inhibition (microbial adaptation time required) of methanogens to the digestion 
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environments produced by MW (as discussed above). Therefore, it was expected that this 

effect would be negligible/ or disappear in continuous AD (CSTR) experiments. 
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Figure 7-2. Performance of mesophilic BMP assays of organic waste pre-treated with mineral wastes. 

(a) and (b) methane accumulation obtained from experimental data and Gompertz model respectively, 

and (c) maximum methane production rate (K) calculated from Gompertz model. TP-Alk= pre-

treatment with 0.6 % NaOH solution. Control = raw organic waste prior to experiments (i.e. without 

pre-treatment and mineral waste addition). TP = organic waste pre-treated at 37oC but without MW. 

TP-IBA, TP-CBW, TP-FA and TP-BA refer to the MW used in the TP-MW pre-treatment assays. The 

values are mean values of triplicate measurements with standard error. 

Table 7-1 Parameters of BMP assays from modelling of methane accumulation 

   Modified Gompertz model First-order model   

BMP  Yexp 
Lag 

time (λ) 
YGM K R2 µ R2 

Biodegra

dability1 

 (mL/g 

VSin) 
(d) 

(mL/g 

VSin) 

(mL/g 

VS/d) 
 (1/d)  (%) 

Control 386 1.47 378 53.3 0.996 0.18 0.96 75% 

FrTh 390 1.04 383 52.7 0.997 0.19 0.96 76% 

TP 346 1.5 353 32.2 0.984 0.087 0.99 67% 

TP-IBA 329 2.27 350 24.5 0.983 0.05 0.99 64% 

TP-CBW 325 1.8 331 30.5 0.998 0.09 0.96 63% 

TP-FA 283 2.2 315 16.2 0.990 0.04 0.98 55% 

TP-BA 295 2.14 306 25.5 0.993 0.06 0.99 57% 

TP-Alk 352 3.1 362 33.5 0.995 0.06 0.96 68% 

1 Biodegradability calculated as a ratio of experimental methane yield (Yexp) to theoretical methane yield of SOW (514 mL/g 

VS; as described in Section 4.2.6. 

 K= maximum methane production rate calculated from Gompertz model. 

YGM accumulated methane yield calculated from Gompertz model. 

µ = coefficient of microbial growth rate calculated from first order model. 

R-squared (R2) is the goodness-of-fit of models. 
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In term of alkaline pre-treatment effects from the MW and NaOH solution in this study, it can 

be seen from Table 7-1 that the K and Yexp values obtained from the TP-Alk assays were very 

close (K = 33.5 mL/g VS. d and Yexp = 352 mL/g VS) to those values obtained from the TP-

IBA, TP-CBW and TP-BA assays which had the average K and Yexp values of 26.8 ± 3.2 

mL/g VS. d and 316 ± 19 mL/g VS, respectively. This renders MW a promising substitute for 

a wide range of chemicals (for instance NaOH) used in the alkali thermochemical pre-

treatment of organic wastes, specifically in places where these MW are already available and 

need to be managed or useful for integration in AD before their disposal in landfills or other 

management routes of MW as described in Section 3.3.1.2.  

7.3.2. Effect of the MW pre-treatment on biodegradation in CSTR 

7.3.2.1. Effect of the MW pre-treatment on methane yield and performance  

The continuous (CSTR) experiments to investigate the effect of pre-treatment of the substrate 

(SOW) with mineral wastes (collectively named as TP-MW) at 37oC lasted for 80 days (four 

HRT of 20 days) (Figure 7-3). During the steady state (day 11 - 20) period of HRT-1 the 

methane yields of the six reactors were all similar (527 ± 20 mL/ g VS) and these results 

suggest that there was no chemical alteration (hydrolysis) of the organic feed as a result of 

interaction with the mineral wastes during pre-treatment. However, after day 20, methane 

yield profiles diverged. For the TP-FA reactor (pre-treatment with FA), methane yields 

decreased sharply between day 20 and 40 until this reactor stopped producing biogas on day 

40 (see discussion of putative toxicity effects of the FA treatment below) and the continuous 

feeding of the reactor was stopped. In contrast, although, the two control reactors (i.e. without 

any pre-treatment or without any MW amendment to the pre-treatment) showed a notable but 

gradual decrease in methane yield after day 20, a sharp decline in the methane did not occur 

until day 60 when OLR in these reactors was increased to 2 g VS/L. d (Figure 7-3, Table 7-2). 

Intriguingly a better performance (before day 60) of the TP-only reactor compared to the 

control highlighted the positive effect of even this mild pre-treatment on the AD of the SOW 

(Figure 7-3). Suggesting that the organic compounds of the feedstock such as proteins and 

carbohydrates were solubilized or exposed to some extent during the pre-treatment perhaps 

through the physical agitation and slightly elevated temperature.   

All the other CSTR reactors were still producing high levels of methane at the end of the 80 

days operation, however, the TP-BA and TP-CBW reactors (pre-treatment conditions with 

BA or CBW) showed highly fluctuating methane yields from day 40 onwards which only 

stabilized (to the range of methane yields in the TP-IBA) when the pre-treatment time was 
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decreased to one hour between day 60 and 80. Decreasing pre-treatment times from 12 hours 

(day 1 - 60) to one hour (day 60 - 80) had no obvious effect on methane yields in the TP-IBA 

(with pre-treatment and IBA amendment). Regardless, this reactor sustained the most 

consistent yields of methane during the experimental period and so clearly benefitted without 

any negative impacts but from the addition of MW regardless of pre-treatment times. 

From an energetic point of view, the amount of energy which is needed for pre-treating the 

substrates (MJ/kg of substrate Section 7.2.4.1) for the TP-MW reactors was very low (below 

0.3%  and 3.4% for one hour and 12 hours pre-treatment times, respectively (Table A-7-2.)) in 

comparison to the output energy as methane from these reactors (assuming 40 MJ/M3  as the 

calorific value of methane (Table A-7-2.)). This output energy estimation was excluded the 

TP-FA reactor, as this reactor failed as biogas-producing reactor after day 40 (Figure 7-3). 

During the steady state of HRT-4 (days 60 – 80 and before the control and TP reactors 

stopped producing biogas), the estimated output energy obtained from the TP-IBA, TP-CBW 

and TP-BA rectors were 23% (± 9%)  and 60% (± 12%) higher than that obtained from the 

control and TP reactors, respectively. In full-scale digester conditions, increasing the 

temperature of the pre-treated substrate to 37oC would substantially decrease the amount of 

energy required for heating the substrate in the methanogenic digester (i.e.  37oC) and 

therefore, would compensate most of the energy which was required for pre-treatment. 

Moreover, shorter pre-treatment times (less than one hour) should be assessed in future 

studies.  
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Figure 7-3. Profile performance of single-stage mesophilic AD (CSTR systems) of organic waste pre-

treated with mineral wastes at 37oC (TP-IBA, TP-CBW, TP-FA and TP-BA) compared to 1) a control 

reactor (Control) without mineral waste amendment and without pre-treatment, 2) a control reactor 

(TP) without mineral waste amendment but with pre-treatment, and 3) a reactor (NP-IBA) from a 

previous study (DIBA reactor in Chapter 6) amended with IBA but without pre-treatment. The OLR 

for NP-IBA reactor was 0.5 and 1 g VS L-1 d-1 for days 0 – 40 and 40 – 80, respectively. These OLR 

values shown are for the Control, TP, TP-IBA, TP-CBW, TP-FA and TP-BA reactors in the current 

study. The vertical lines show HRT periods. 
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Figure 7-4. Variation in measured parameters of single-stage mesophilic AD (CSTR systems) of 

organic waste. The description of legends is similar to that described in Figure 7.2 above. The values 

are mean value of triplicate samples with standard deviation not shown. 
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Figure 7-5. Variations in VFA concentrations in digestate samples of single-stage mesophilic AD 

(CSTR systems) of organic waste pre-treated with/without mineral wastes. The labels are as described 

in previous figures.  
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Figure 7-6. Soluble concentration of metals (mg/L) in CSTRs on day 40. The concentration of 

elements that were not detected during metal analyses are denoted as blank in the figure. The 

concentration of metals on the other days were measured (not shown here) and used for the correlation 

analysis with the microbial taxa relative abundances (see the last figure in this chapter). 

As the TP-IBA reactor was the best biogas-producing reactor, therefore, the effect of IBA pre-

treatment on the digestion performance and process stability of this reactor was assessed by 

comparing with that of the DIBA reactor in Chapter 6. The DIBA reactor was also operated 

with the DFFM but the IBA waste was added to this reactor (DIBA reactor in Chapter 6 here 

it labelled as NP-IBA reactor in Figure 7-3 and Figure 7-4) directly without pre-treatment. It 
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can be seen from Figure 7-3 that , although the OLR of the NP-IBA reactor was lower (0.5 

and 1 g VS/L. d for days 0 - 40 and 40 – 80, respectively; (Chapter 6)) compared to that of the 

TP-IBA reactor (1 and 2 g VS/L. d for days 0 - 40 and 40 – 80, respectively) however, the 

NP-IBA reactor showed a lower performance and process stability (low methane yield and 

VFA accumulation) compared to the TP-IBA reactor (Figure 7-3 ). This low performance of 

the NP-IBA reactor (Chapter 6) was found to be related to the inhibition of methanogens 

caused by VFA accumulation which led to a decrease in alkalinity (Figure 7-4) and drop in 

pH (Xu et al., 2014). However, the performance of the TP-IBA reactor was stable until the 

end of experiments as discussed below. 

In current study, the reason for differences in process stability is apparent on examination of 

the similarities and differences in measured parameters in the CSTR digestates (Figure 7-4, 

Figure 7-5 and Figure 7-6). For instance, for the first 40 days there was a universal decline in 

buffering capacity (measured as total alkalinity, total ALK) in all reactors reflecting the high 

alkalinity (9.8 g/L CaCO3) of the start-up inoculum (Table 4-4) and its progressive dilution 

during CSTR operation.  However, after 20 days, the reactors diverged and alkalinity was 

variably controlled by three factors i.e. further dilution of the inoculum, a greater proportional 

contribution of alkalinity from the TP-MW treatments and the accumulation of alkalinity 

consuming VFA. In the case of the control and TP-only reactors, alkalinity change progressed 

by inoculum dilution, however, after 60 days alkalinity consuming VFA concentrations 

increased dramatically coincident with an increase in the OLR (Xu et al., 2014) (Figure 7-4 

and Figure 7-5). The fall in alkalinity below 2 g/L resulted in a pH drop below the optimal 

values (pH 6.8 - 7.2; (Franke-Whittle et al., 2014)) required for sustaining methane 

production. In contrast, the limited methane yields of the TP-FA reactor after 20 days 

(ultimately leading to reactor failure) as well as the fluctuating performances of the TP-BA 

and, to a lesser extent, the TP-CBW reactors (from day 30 onwards) cannot be ascribed to 

alkalinity loss through dilution or VFA based consumption. For these reactors, as for the best 

performing reactor TP-IBA, alkalinity remained stably above 2 g/L. Neither can ammonia 

inhibition be invoked to explain instability since total ammonium nitrogen (TAN) 

concentrations in all the reactors were very similar regardless of performance and were below 

the inhibition limits thought to apply for AD (2 - 2.5 g TAN/L; (Lay et al., 1998; Latif et al., 

2017). These results suggest that the poor stability (low biogas production and associated 

accumulations of VFA) of the TP-FA reactor and the fluctuating performance of the TP-BA 

and TP-CBW reactors were most likely related to inhibition caused by metals leached from 

the respective MW (Figure 7-6). This suggestion is supported by soluble metal concentrations 
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in the digestate samples measured on day 40 (Figure 7-6), the point with the highest 

concentrations of most of the metals found in the failed TP-FA reactor compared to the 

concentrations in the other MW amended reactors. For instance, As, Ba and Cr had high 

concentrations in the TP-FA and TP-BA reactors, the presence of these heavy metals in the 

anaerobic digester above certain thresholds (depending on the characteristics of the substrate 

in the digester) has been found to decrease the efficiency of the anaerobic digestion processes 

(Ahring et al., 1995; Sierra-Alvarez et al., 2004; Abdel-Shafy and Mansour, 2014). In support 

of this metal inhibition hypothesis it was interesting to note that when pre-treatment times 

were decreased to 1 hour (day 60 - 80) a notable increase in methane yields and process 

stability was observed in the TP-BA and TP-CBW reactors (Figure 7-3 and Table 7-2). 

It is worth mentioning that the TP-IBA reactor which showed consistently the highest 

methane yield and process stability contained high concentrations (dissolved) of Zn, Mo (~ 

0.06 mg/L and 0.1 mg/L respectively) and moderate concentration of other elements such as 

V ~ 0.01 mg/L, Ni ~ 0.02 mg/L, Na ~25 mg/L, Mn ~ 0.25 mg/L, Mg ~ 100 mg/L, Fe ~ 0.25 

mg/L) (Figure 7-6). These elements are known as important trace elements in AD. Uemura 

(2010) demonstrated a restoration in methane yield of mesophilic AD of organic waste after 

the addition of Ni, Co and Fe. Zhang et al. (2012) reported the decline in the performance of 

semi-continuous single stage mesophilic reactors of food waste due to the decrease in 

concentration of trace elements such as Co, Mo, Ni and Fe. In the current study, using the 

concentration of TEs in the TP-IBA reactor as an indicator for higher methane production 

from the TP-IBA reactor compared to the control and TP reactors, it could be concluded that 

the eventual the failure of the control and TP reactors was more likely related to the 

deficiency /and low concertation of the metals Zn, V, Mo, Ni, Mn and Mg (Figure 7-6).
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Table 7-2. Summary performance data for mesophilic continuous reactors without or with mineral waste pre-treatment at 37oC 

  
Control TP TP-IBA TP-CBW TP-FA TP-BA 

D
ay

 0
 -

 2
0
 

OLR (g VS/L. d) 1 1 1 1 1 1 

Pre-treatment time (h) 12 12 12 12 12 12 

HRT (d) 20 20 20 20 20 20 

Yield (mL CH4/g VS added) 553 ± 151 526 ± 164 529 ± 138 545 ± 147 506 ± 141 503 ± 173 

pH 7.4 ± 0.09 7.4 ± 0.09 7.4 ± 0.08 7.4 ± 0.08 7.3 ± 0.1 7.3 ± 0.07 

Methane percentage (%) 65 ± 5 64 ±6 68 ±4 68 ± 5 64 ±5 66 ± 6 

D
ay

 2
1

 -
 4

0
 OLR (g VS/L. d) 1 1 1 1 1 1 

Pre-treatment time (h) 12 12 12 12 12 12 

HRT(d) 20 20 20 20 20 20 

Yield (mL CH4/g VS added) 492 ± 34 503 ± 35 508 ± 39 481 ± 81 408 ± 183 391 ± 76 

pH 7.1 ± 0.1 7 .1 ± 0.08 7.2 ± 0.1 7.2 ± 0.06 6.8 ± 0.2 7.1 ± 0.09 

Methane percentage (%) 64 ± 2 66 ± 2 66 ± 2 67 ± 2 51 ± 22 62 ± 2 

D
ay

 4
1

 -
 6

0
 OLR (g VS/L. d) 2 2 2 2 2 2 

Pre-treatment time (h) 12 12 12 12 12 12 

HRT (d) 20 20 20 20 20 20 

Yield (mL CH4/g VS added) 466 ± 20 467 ± 22 462 ± 51 428 ± 103 174 ±30 308 ± 146 

pH 6.9 ± 0.04 7.0 ± 0.07 7.0 ± 0.05 7.0 ± 0.13 6.5 ± 0.1 6.7 ± 0.24 

Methane percentage (%) 64 ± 1 64 ± 2 66 ± 1 64 ± 4 N/A 59 ± 6 

D
ay

 6
1
 -

 8
0
 OLR (g VS/L. d) 2 2 2 2 2 2 

Pre-treatment time (h) 1 1 1 1 1 1 

HRT (d) 20 20 20 20 20 20 

Yield (mL CH4/g VS added) 368 ± 97 284 ± 167 457 ± 33 487 ± 44 145±25  420 ± 58 

pH 6.6 ± 0.2 6.4 ± 0.5 7.0 ± 0.03 7.1 ± 0.04 6.6 ± 0.1 6.8 ± 0.04 

Methane percentage (%) 59 ± 5 59 ± 5 67 ± 1 67 ± 1 N/A 63 ± 2 

HRT =hydraulic retention time. 

OLR = organic loading rate. 

Control = SOW without pre-treatment and without MW, TP = SOW + pre-treatment only, TP-IBA = SOW + pre-treatment+ incineration bottom ash, TP-CBW = SOW + pre-treatment+ cement-

based waste, TP-FA = SOW+ pre-treatment + fly ash, TP-BA = SOW + pre-treatment+ boiler ash. 

N/A = not available i.e. the reactor has stopped producing biogas. 
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7.3.2.2. Effects of mineral waste pre-treatment on microbial growth and activity 

The abundance of mcrA and 16S rRNA genes determined by qPCR analysis (Figure 7-7) 

were used to estimate the numbers of archaeal and bacterial cells in the reactors and a number 

of general features are revealed by examining these abundance trends with time and in 

relation to reactor operation. For instance, in most of the reactors the abundances of both 

bacteria and archaea increased with time consistent with growth during the start-up phase and 

in response to an increase in the OLR. However, in all the reactors there was a consistent and 

considerable numerical dominance of bacteria over the methanogenic archaea. These bacterial 

and archaeal numbers were then used in combination with measured VFA and methane values 

for calculation of total fermentation (F), total methanogenesis (M), cell specific fermentation 

activity (CSF) and cell specific methanogenesis activity (CSM) activities in the CSTRs 

(Figure 7-8 and Table 7-3). 

One-way ANOVA analysis conducted on the overall data (i.e., gene abundances from qPCR 

analysis) obtained throughout the current study showed that there was no significant 

difference (p > 0.05) in the abundance of either bacteria or archaea between the six reactors.  

However, bacterial abundance in the TP-MW reactors (TP-IBA, TP-CBW, TP-FA and TP-

BA) was significantly (p = 0.07) different from that in the control and TP reactors (Figure 

7-7). Interrelationships between acetogenic bacteria and methanogenic archaea in AD to 

degrade VFA is considered an essential factor for the stability of the digestion process (Amani 

et al., 2011; Xu et al., 2014). The differences in archaeal abundance between TP-MW reactors 

and the control and TP- only reactors were not significant (p > 0.05) ((Figure 7-7). On day 80 

(at the end of the experiments), the archaeal abundance in the TP-only reactor was the highest 

(> 5 x 108 gene sequences/mL), while in the other reactors which had pre-treatment with MW 

(TP-IBA, TP-CBW, TP-FA and TP-BA reactors) archaeal gene abundances were ~ 2.5 x 108 

gene. These results suggested that variations in methane yield between reactors were most 

likely related to consortia directly related to the final steps in methanogenesis either due to the 

inhibition of methanogens and/or due to low specific methanogenic activity, i.e. the reactors 

had equal or very similar numbers of cells but with different methane production activities. 

Table 7-3 and Figure 7-8 show that in current study the variation in the methanogenesis to 

fermentation ratio (M/F) was consistent with the performance (methane yield and process 

stability) of the CSTRs. For instance, during the stable performance period of the control and 

TP-only reactors (day 1 - 60), the M/F increased from 0.53 ± 0.02 from day 1 to 20 (HRT-1) 

to 0.83 ± 0.04 from day 21 to 40 (HRT-2) and then remained constant from day 41 to 60 
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(HRT-3; 0.87 ± 0.04). While, the M/F of the control and TP reactors decreased to 0.41 ± 

0.01when methanogenesis started to decline between day 61 - 80 (Figure 7-3, Table 7-2 and 

Figure 7-8). A subsequent decrease in the cell specific methanogenic activity compared to 

fermentation activity (M/F =0.41 ± 0.01) in the control and TP reactors between day 61 - 80 

(Figure 7-3, Table 7-2 and Figure 7-8) reflected the accumulation of VFA (most obvious after 

day 60) and the pH drop observed. As discussed in Section 7.3.2.1, these changes in reactor 

performance after day 60 were most likely due to the deficiency in TEs, however, on the basis 

of theses accompanying low cell specific methanogenic activities in the control and TP 

reactors after 60 days, it can be concluded that this metal deficiency principally affected the 

methanogenic archaea, and the relative abundance of archaeal communities were positive 

correlated with the concentration of measured metal elements in reactors (Figure 7-12). 

During HRT-2 (day 21 - 40) the TP-FA reactor showed the lowest M/F observed among all 

CSTRs (Figure 7-8); which is consistent with the likely failure of this reactor due to an 

accumulation of VFA (Figure 7-4 and Figure 7-5). In this reactor the low cell specific 

methanogenic activity in the TP-FA reactor is more likely related to the inhibition of 

methanogens due to high metal concentrations rather than deficiency as seen in the controls 

(as discussed in Section 7.3.2.1). 

In contrasts the M/F activity of the TP-IBA and TP-CBW reactors remained higher compared 

to other reactors (Figure 7-8 and Table 7-3) supporting a conclusion that the successful 

performance of these two reactors was due to sufficient methanogenesis activity sustained by 

sufficient metal supply resulting in a balanced syntrophic relationship between acetogens and 

methanogens. As discussed in Section 7.3.2.1 the TP-IBA reactor contained most of TEs 

(Figure 7-6) important for AD (Zhang et al., 2012) and it is supposed that these TEs were 

bioavailable in the moderate concentrations suitable for microbial metabolism. 

Interestingly, two novel findings could be revealed from the calculations of fermentation and 

methanogenesis activities in this study. Firstly, an M/F of > 0.4 was necessary to avoid the 

instability (as it was in the TP-CBW and TP-BA reactors) or failure (as it was in the TP-FA 

reactor) of the continuous reactors of the OFMSW. Secondly, the optimum M/F for anaerobic 

digestion of the OFMSW ranged from 0.6 to 0.8, with this optimal M/F the methane 

production was maximum and the digestion process was stable (as in the TP-IBA) (Figure 7-8 

and Table 7-3). 
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Figure 7-7. Variations in microbial community population ((A) mcrA = archaea, (B) 16S rRNA = 

bacteria) of single-stage mesophilic AD (CSTR systems) of organic waste pretreated with/without 

mineral wastes at 37oC. 

(A) 

(B) 
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Table 7-3. Microbial population growth and activity in the CSTRs during four HRT of 20 days, the values are mean values (in triplicate) with standard 

deviation (not shown) 

  

Reactors 
Average total 

VFA 

Total 

fermentation  
Bacteria cells 

Cell specific 

fermentation 

activity 

Archaea cells 

Cell specific 

methanogenesis 

activity 

*M/F **B/A 

 
 (mg/L) (g COD) (Cell/ mL) (pg COD/Cell. d) ( Cell/mL) (pg COD/Cell. d)   

HRT-1 

 

 

 

 

 

Control 1523 15.5 4.97 x 1010 0.063 1.73 x 107 91 0.51 2864 

TP 1896 21 4.09  x 1010 0.102 9.99 x 106 230 0.55 4095 

TP-IBA 1378 17.8 2.86  x 1010 0.125 2.09  x 107 105 0.61 1371 

TP-CBW 1585 19.1 3.62  x 1010 0.106 2.21  x 107 101 0.59 1634 

TP-FA 1913 20.6 5.21  x 1010 0.079 7.37  x 107 30 0.54 706 

TP-BA 2145 21.3 8.49  x 1010 0.050 4.98  x 107 43 0.50 1704 

HRT-2 

 

 

 

 

 

Control 451 12 3.75  x 1010 0.064 3.68  x 107 53 0.81 1020 

TP 506 17.5 4.45  x 1010 0.079 3.87  x 107 77 0.86 1149 

TP-IBA 478 17.3 1.30 x 1011 0.027 4.96  x 107 60 0.86 2628 

TP-CBW 672 17.2 1.68  x 1011 0.020 1.60  x 107 173 0.80 10522 

TP-FA 2802 23.5 2.06  x 1011 0.023 1.52  x 108 13 0.40 1360 

TP-BA 1585 20 2.87  x 1011 0.014 8.96  x 107 27 0.60 3201 

HRT-3 

 

 

 

 

 

Control 478 15.2 7.50  x 1010 0.040 8.24  x 107 31 0.84 910 

TP 644 23.2 2.27  x 1011 0.020 3.24  x 108 12 0.86 703 

TP-IBA 506 21.7 2.17  x 1011 0.020 7.13  x 107 54 0.88 3038 

TP-CBW 1945 27.8 4.05  x 1011 0.014 1.49  x 108 24 0.65 2718 

TP-FA 5790 32.5 2.36  x 1011 0.027 1.18  x 108 6 0.11 2001 

TP-BA 4587 36.8 3.19  x 1011 0.023 1.25  x 108 22 0.38 2556 

HRT-4 

 

 

 

 

 

Control 2540 21.6 1.16  x 1011 0.037 9.84  x 107 18 0.41 1178 

TP 3162 26.9 9.38  x 1010 0.057 4.15  x 108 5 0.41 226 

TP-IBA 485 18.9 5.63  x 1011 0.007 8.54  x 107 39 0.87 6585 

TP-CBW 568 20 4.19  x 1011 0.010 1.59  x 108 21 0.86 2631 

TP-FA 2415 15.7 3.44  x 1011 0.009 1.24  x 108 6 0.23 2769 

TP-BA 1627 24 3.40  x 1011 0.014 1.89  x 108 17 0.66 1801 

* Methanogenesis to fermentation ratio. 

**Total bacteria to total archaea cells ratio.
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Figure 7-8. Variations in microbial growth (counts) and performance of single-stage mesophilic 

CSTRs of organic waste pre-treated with/without mineral wastes at 37oC. The values are mean values 

with standard deviation not shown. 

7.3.3. Developments in microbial community compositions and function due to the pre-

treatment of organic and mineral waste mixtures 

In AD, the availability of substrates, nutrients and catabolic inhibitory products drives the 

diversity of the microbial populations. For instance, the presence of inhibitors such as 

accumulations of VFA, ammonium and toxic metals etc. has been found to shift the archaeal 

methanogenic community from acetoclastic to hydrogenotrophic taxa (Banks et al., 2012; 

Williams et al., 2013; Town et al., 2014; Westerholm et al., 2015b). Williams et al. (2013) 

noted a 69% decrease in Methanosaeta due to the accumulation of VFA in a full-scale 

anaerobic digester fed with food waste; the same study also observed that the addition of trace 
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elements and alkalinity stimulated the growth of acetogens which supported propionate 

degradation. In the current study, the average number of reads in individual 16S rRNA 

sequence libraries after quality filtering was 4,927,452 ranging from 161,113 sequences in the 

smallest library to 277,982 sequences in the largest. However, individual libraries were 

rarefied for comparative analysis. An ASV table which showed the number of features per the 

digestate samples was produced, it comprised 540 taxa (> 96% of sequences) belonging to the 

bacterial domain and 19 taxa (about 3.5 - 4% of sequences) belonging to archaeal domain. 

The effects of TP-MW on microbial community composition and dynamics are shown in 

Figure 7-9, Figure 7-10 and Figure 7-11. In general, the overall diversity in reactors decreased 

with time and increases in organic loading rates (OLR). Moreover, the concentration of metal 

elements was correlated with the abundance of archaeal communities (Figure 7-12), and these 

metals were the key factor shaped the archaeal community composition in reactors. 

7.3.3.1. Bacterial diversity 

The bacterial community of the reactors at the genus level showed a high number of 

unassigned bacterial genera, therefore, differences in bacterial diversity between the CSTRs 

are broadly discussed at family level with reference to lower taxonomic assignments where 

appropriate and possible. The most frequently observed bacterial family in all digestate 

samples was the Dysgnonomonadaceae (≤ 30% of bacterial sequences), followed by 

Cloacimonadaceae, Synergistaceae and Ruminococcaceae with each family contributing ~ 5 - 

10% of the sequences in the libraries (Figure 7-9). The presence of these bacterial families is 

not surprising given that they are common constituents of AD communities including those 

we have previously documented degrading the same synthetic organic waste (Chapter 6). 

These organisms are known to work collaboratively to degrade organic matter to precursors 

for methanogenesis through several metabolic activities including hydrolysis, fermentation, 

acetogenesis and even syntrophic hydrogen-production (Guo et al., 2014). To be more 

specific and illustrative bacterial communities belonging to phylum Bacteroidetes i.e. the 

Dysgnonomonadaceae are known to be responsible for degradation of proteins or complex 

sugar polymers and in particular the Dysgnonomonadaceae sequences identified were mostly 

dominated by sequences related to the genera Proteiniphilum and Fermentimonas which have 

been isolated from anaerobic digesters and are considered strictly anaerobic proteolytic or 

sacchrolytic bacteria generating acetic acid and NH3 (Chen and Dong, 2005; Hahnke et al., 

2016). Interestingly, previous studies (Westerholm and Schnürer, 2019) have even indicated 

that some pre-treatments such as ultrasonic, microwave, and electrokinetic methods have 

increaseed the relative abundance of the Cloacimonadaceae ,Synergistaceae and 
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Ruminococcaceae families (which all belong to the phylum Firmicutes) while decreasing the 

relative abundance of Proteobacteria. In the current study, sequences affiliated with the 

Proteobacteria only made a minor contribution to the sequence libraries and, indeed, 

particularly were even a minor component of the control reactors. Despite these generic 

bacterial components in all the reactors a multi-dimensional scaling (MDS) Unifrac distance 

analysis (Figure 7-11) clearly identified a time based progression and divergence of the 

bacterial communities, most clearly observable in the separation of the best performing (TP-

IBA and TP-CBW) stable reactors from the failed reactor TP-FA. This separation is largely 

explained by the progressive enrichment of the families Kosmotogaceae and Anaerolineaceae 

in TP-IBA and TP-CBW reactors and to a lesser extent in the other ultimately stable reactor 

TP-BA. Interestingly, and of relevance to the discussion below about the dynamics of the 

methanogenic archaea in the different CSTRs, the Kosmotogaceae sequences were all from 

the genus Mesotoga which have been previously implicated in syntrophic acetate oxidation to 

hydrogen in a methanogenic bioreactor degrading terephthalate (Nobu et al., 2015). It has 

subsequently been speculated that syntrophic acetate oxidation by this organism only occurs 

however under low acetate concentrations (Nesbo et al., 2018). Of related interest, the 

anaerolineacea sequence type similarly enriched (Figure 7-9) was found to be most closely 

related (100% sequence homology) to anaerolineacea species identified in other 

methanogenic AD systems e.g. a methanogenic full scale bioreactor treating food waste 

(Bengelsdorf et al., 2013). Furthermore, an identical sequence type was found to be present in 

a methanogenic CSTR reactor fed only with acetate and supplemented with Ni and Co but run 

at a low dilution rate (Shigematsu et al., 2003). In this reactor it was concluded, based on a 

slight dominance of bacterial over archaeal sequences in the clone libraries and the selection 

for hydrogenotrophic methanogens that syntrophic acetate oxidation was favoured 

(Shigematsu et al., 2003). 

7.3.3.2. Archaeal diversity 

In AD, the biodegradation of organic matter to volatile fatty acids is an important step 

followed by degradation to form acetate, H2 and CO2, a process collectively known as 

acidogenesis. Then there is the potential for syntrophic acetate oxidation (to hydrogen and 

CO2) or acetogenesis (CO2 reduction to acetate in the presence of a reductant i.e. H2 or 

formate). Acidogenesis, syntrophic acetate oxidation, and acetogenesis are largely carried out 

by the bacterial taxa as described in the previous section. In the final AD step principally but 

not exclusively, acetoclastic methanogens, mainly Methanosaeta and, or, Methanosarcina, 

utilise the acetate to produce CH4 and CO2 (Fukuzaki et al., 1990) and hydrogenotrophic 
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methanogens e.g. Methanobacterium or Methanoculleus typically produce CH4 from H2 and 

CO2. Critically, a failure to convert acetate or hydrogen to methane regardless of the pathway 

leads to a build-up in VFA and reactor instability (Xu et al., 2014).  

Some environmental factors may contribute to changes in the relative contribution of different 

methanogenic pathways and the organisms that mediate. For instance, the growth of the 

obligatory acetoclastic Methanosaeta is known to be sensitive to VFA and NH3-N 

concentrations (Demirel and Scherer, 2008; Franke-Whittle et al., 2014). In contrast, Zhang et 

al. (2019) has reported for an anaerobic digester that a deficiency of essential TEs such as Fe, 

 Co, Mo, and  Ni in food waste limited the methanogenesis ultimately leads to the build-up of 

propionate which then causes further inhibition of methanogens. The same study of Zhang et 

al. (2019) showed that TE addition eliminated this methanogenesis imbalance by stimulating 

the growth of Methanosarcina which can utilise acetate to produce methane, reduce carbon 

dioxide with hydrogen and use methyl compounds (not formate) to produce methane (Zhang 

et al., 2019). 

These contrasting impacts on the selection of archaeal methanogens are of interest and 

relevance to the current study, because the archaeal communities in the six reactors receiving 

different substrates developed into distinct methanogenic diversity compositions. The 

methanogenic diversity compositions were ranging from dominantly acetoclastic through to 

dominantly hydrogenotrophic methanogenesis as illustrated in the stacked bar charts provided 

in Figure 7-9 and in the multi-dimensional scaling (MDS) Unifrac distance analysis shown in 

Figure 7-11. For instance, in the control and TP reactor libraries (Figure 7-9) throughout the 

experimental period there was a dominance of the obligatory acetoclastic Methanosaeta ( 40 

- 60% of archaeal sequences), to a lesser extent the obligatory hydrogenotrophic genera 

Methanobacterium and Methanoculleus (<10 - 25%), and members of the methylotrophic 

methanogen family Methanomethylophilaceae and the genus Methanoplasma (<10 - 25%). 

The occurrence of the methylotrophic methanogens suggests that methanol was a major 

catabolic product of fermentation in these reactors especially in control reactor from day 60 

onwards. This is interesting because it has been suggested (Chandra et al., 2012) that products 

such as methanol are formed in continuous or semi-continuous anaerobic digestion because of 

the build-up of acidic products of hydrolysis. Given the stable performance of the controls 

during the first three HRT periods before 60 days it can be concluded that these methanogen 

community compositions were capable of consuming the acetate, methanol and hydrogen 

products of fermentation in these reactors, however, with an increase in OLR after 60 days 

this was not the case. One obvious explanation for this restriction was that the deficiency of 
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TE in the substrate limited the growth and metabolism of the hydrogenotrophic methanogens 

as previously observed by Zhang et al. (2019) which lead to a considerable build up in VFA 

in both control reactors.  

In contrast to the controls, the methanogenic diversity in the most stable TP-IBA reactor was 

equally dominated by obligatory acetoclastic and hydrogenotrophic methanogens with only a 

minor presence of Methanomethylophilaceae. Between days 40 and 80, about 75% of 

archaeal population in the TP-IBA reactor divided fairly equally between Methanosaeta and 

Methanobacterium. However, it is interesting to note that during this time there was a gradual 

increase in the proportion of hydrogenotrophic methanogens coincident with the enrichment 

of the putative bacterial syntrophic acetate oxidizers (Kosmotogaceae and Anaerolineaceae) 

highlighted above and as discussed above putatively driven by the required supply of trace 

metals. In addition, there was an enrichment of a sequence related to the recently proposed 

candidatus genus Methanofastidiosum (Nobu et al., 2015). This organism is considered 

nutritionally fastidious, as the name suggests whereby methanogenesis is achieved through 

methylated thiol reduction linked to hydrogen oxidation. As such, these organisms likely 

compete with hydrogenotrophic methanogenesis and, due to favourable thermodynamics, may 

maintain and thrive under the low H2 partial pressures which favours efficient syntrophic 

acetate oxidation and fermentation (Nobu et al., 2015). The greater presence of this 

methanogen was in the TP-IBA reactor; which sustained the highest most stable biogas 

production throughout the 80 days experiment, therefore, may be a useful barometer of 

digester health. Likewise, for the consistent but balanced presence of Methanosaeta since it 

has been widely recognised that this genus is sensitive to stress i.e. low pH and high VFA, 

ammonia and heavy metals ((Franke-Whittle et al., 2014) and Chapter 6 of this thesis). In 

contrast, the archaeal diversity in the, TP-FA, TP-BA, and to a lesser extent the TP-CBW 

reactors progressed to very different community compositions reflecting the more negative 

impacts of the specific MW pre-treatments. On day 80, about 80 - 95 % of archaeal diversity 

in the TP-CBW, TP-FA and TP-BA reactors was dominated by Methanosarcina, 

Methanobacterium, Methanomethylophilaceae, Methanocuellous and Methanoplasma with 

hardly any of the more stress sensitive Methanosaeta. Of particular note, was the 

metabolically flexible Methanosarcina which represented, by the end of the experiment, 

almost 70% of archaeal composition in these reactors. Methanosarcina is known to resist 

VFA inhibition (Vavilin et al., 2008) and found to survive at harsh environmental conditions 

e.g. extreme pH, high ammonium, salt (Na+), and acetate concentrations (De Vrieze et al., 

2012). However, an added burden (Mudhoo and Kumar, 2013) in these reactors and 
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documented in Figure 7-6 was the presence of higher levels of putatively toxic elements 

released during pre-treatments and in particular from the BA and FA wastes. On balance, it 

appears from both the process stability and archaeal community dynamics that there was a 

gradient in the magnitude of the negative impacts on these reactors in the order TP-FA>TP-

BA>TP-CBW. In the TP-FA reactor which had failed as a biogas-producing reactor prior to 

day 60, it was noticeable that in addition to the dominance of the stress tolerant 

Methanosarcina there was a decline in sequences from the Methanobacterium but retention of 

Methanoculleus. Methanoculleus spp. have certainly been found in mesophilic digesters 

(Schnürer et al., 1999; Franke-Whittle et al., 2014; Westerholm et al., 2016), predominating 

over other hydrogenotrophic methanogens at extreme environmental conditions (i.e. high salt, 

ammonia and VFA concentrations). With respect to the TP-CBW and TP-BA reactors which 

did not fail, they both retained Methanobacterium. Moreover, similar to the TP-IBA reactor, 

the TP-CBW reactor also retained Methanofastidiosum on day 80 (Figure 7-9), as discussed 

above suggesting efficient syntrophic acetate oxidation and fermentation, which supported the 

stability of digestion process in this reactor. Furthermore, the presence of metals as well as the 

level of their concentrations was the key drive for shaping ecological functions of 

methanogens in the reactors of the current study. Metal concentrations in the digestate of 

reactors throughout 80 days of operation time (one digestate sample at the end of each HRT) 

were measured. Some significant correlations (p < 0.05) were detected between concentration 

of some metal elements and relative abundance of archaeal communities from sequencing 

data (Figure 7-6 and Figure 7-12). 
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Figure 7-9. Taxonomic composition of archaeal genera (all genus taxa) and bacterial families (top 20 

families taxa) in the CSTRs. LCBD = local contribution of beta diversity. 
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Figure 7-10. Alpha diversity for (A) All taxa (B) Bacterial taxa and (C) Archaeal taxa in CSTRs. The 

values are from the sequenced data of digestate samples were collected on the days shown on the x-

axis. 

(A) 

(B) 

(C) 
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Figure 7-11. Multidimensional scaling analysis (MDS) on Unifrac distance for (A) All taxa, (B) 

Bacterial taxa (C) Archaeal taxa from 16S rRNA sequencing data of the startup inoculum (Ino.) and 

digestate samples from the CSTRs on days 20, 40, 60 and 80.  

(A) 

(B) 

(C) 
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Figure 7-12. Pearson correlations between the archaeal community relative abundance and parameters 

measured in CSTRs. MP = methane production, M = total methanogenesis activity, F = total 

fermentation activity and M.F = methanogenesis to fermentation ratio (M/F). Bacteria and archaea cell 

numbers were estimated from their abundances from the qPCR analysis. The metal concentrations are 

the soluble metal concentrations in the digestate of reactors throughout this study. 

7.4. Consideration for full-scale application of MW 

Results of the microbial diversity suggested that the stable biodegradation performance of the 

TP-IBA reactor was most likely related to the presence of both acetoclastic and 

hydrogenotrophic pathways in this reactor. While in the reactors with lower methanogenic 

performance compared to TP-IBA reactor the metabolic pathways were mostly dominated by 

 



150 

 

one of the main metabolic pathways acetoclastic or hydrogenotrophic. The metabolic pathway 

in the control and TP reactors was mainly acetoclastic with low concentrations of metals 

present, but shifted to hydrogenotrophic in TP-MW reactors with high metal and VFA 

concentrations present (TP-CBW, TP-FA and TP-BA). Therefore, it is suggested that in full-

scale digesters, to achieve a stable AD process, the environmental and operational parameters 

need to be adjusted to assure the presence of both acetoclastic and hydrogenotrophic 

microbial communities. 

In current study, although a decrease in the pre-treatment time from 12 hours to one hour 

during only 20 days (between days 60 to 80) was not adequate to affect the microbial 

diversity, it revealed its positive effect on methanogenesis for all TP-MW reactors with draw-

and-fill feeding method (DFFM). Therefore, in full scale digesters with TP-MW the startup 

period with a longer pre-treatment time (12 hours) followed by a shorter pre-treatment time 

(one hour) is recommended to avoid plausible overloading accumulation of metals released 

from MW. The integration method of MW in the AD of OFMSW in this study could resolve 

the limited effect (low methane production and yield) of MW when used with DFFM. 

7.5. Conclusions 

Thermal pre-treatment of organic waste with mineral wastes as TEs supplements at 

mesophilic temperature compensates for the trace element’s deficiency of the OFMSW. 

Starting-up CSTRs with TP-MW found to be sufficient for adequate provision of the required 

TEs for robust AD. Among the four MW used in the current study (IBA, CBW, FA and BA) 

IBA was the most beneficial for AD, CBW was the second best followed by BA; FA was 

found the least suitable for pre-treatment of OFMSW. The microbial ecology and function of 

methanogenic populations developed at different TE compositions and concentrations showed 

that at low TE concentrations acetoclastic methanogenesis is the predominant pathway to 

methane. At moderate TE-concentration, a balance between acetoclastic and 

hydrogenotrophic metabolic pathways was observed whilst at high TE-concentration the 

metabolic pathway shifted towards to hydrogenotrophic pathway. No significant differences 

in methane production performance and process stability were observed between the TP and 

control reactors with and without pre-treatment at 37oC. The results which obtained from the 

TP-MW reactors suggested that the stability of digestion processes in theses reactors were 

mainly related to the release of trace elements useful for methanogenesis rather than enhanced 

hydrolysis due to pre-treatment with these MW amendments.
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Chapter 8. Use of dissolved extracts from municipal solid waste 

incineration ash in two-stage anaerobic reactors treating the organic 
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Abstract 

Previous experiments in Chapter 6 and Chapter 7 of this thesis showed positive effects of 

amending MW of MSWI plants in anaerobic digestion of the OFMSW, when they were 

amended directly to CSTR systems or they were used in the pre-treatment of the feedstock 

substrate before co-digestion in reactors. In this chapter, we investigated the effects of mineral 

waste extracts (MWE) on laboratory-scale two-stage anaerobic digesters treating synthetic 

organic waste. MWE was prepared as aqueous extracts from different ash samples, 

incineration bottom ash (IBA), fly ash (FA) and boiler ash (BA), taken from a municipal solid 

waste incineration plant. At 20 days hydraulic retention time, all three MWE stimulated 

hydrogen production in their respective acidogenic reactor by around 35% (c.f. control 

acidogenic reactor), whilst no difference was seen in the methane productivity of the linked 

methanogenic reactors (average 527 ± 45 mL CH4/g VS, including control methanogenic 

reactor). Following a step reduction in hydraulic retention time from 20 to 10 days and 

doubling of organic loading rate from 2.5 g to 5 g VS/L. d, no significant change was seen in 

hydrogen production (p > 0.05) in acidogenic reactor amended with MWE from IBA and BA, 

or the control acidogenic reactor, however, acidogenic reactor receiving MWE from FA had 

45% lower hydrogen productivity. The step change in hydraulic retention time and organic 

loading rates led to the failure of most methanogenic reactors (≤ 100 mL CH4/g VS), 

however, the methanogenic reactor receiving feed containing MWE from IBA showed stable 

performance without signs of failure, and had higher volumetric methane productivity, albeit 

at lower methane yields (370 ± 20 mL CH4/g VS). 16S rRNA analysis using the Illumina 

sequencing platform revealed acidogenesis by Lactobacillaceae in the acidogenic reactor and 

syntrophic acetate oxidation by Synergistaceae linked to enrichment of the candidatus genus 

Methanofastidiosum, in the stable methanogenic reactor receiving MWE from IBA.  

8.1. Introduction 

Capital costs of anaerobic digestion can be minimised through improvements in reactor 

performance such as high and continuous organic loading rate and maximum methane 

production if they lead to a decrease in reactor volume (short hydraulic retention time; HRT) 

and better process energy balance (Cecchi et al., 1991; Ward et al., 2008). Previous studies 

have applied different methods for increasing the efficiency of single-stage anaerobic reactors 

(Lo et al., 2009; Banks et al., 2012; Serna-Maza et al., 2015). However, low organic loading 

rates (OLR; 1– 4 g VS/L. d) are still one of the limitations of single-stage anaerobic reactors 

in wet AD (< 5% TS) (Nagao et al., 2012). For semi-dry (10 – 20% TS) and dry (20 – 40% 
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TS) anaerobic digestion despite higher OLRs of 7 – 15 g VS/L. d it is low levels of VS 

reduction (31– 48%) and methane yields (140 - 314 mL/g VS) which are the main limitations 

(Dong et al., 2010; Nagao et al., 2012). 

In simpler single stage AD reactors, volatile fatty acid (VFA) produced from the fermentation 

stage accumulates quickly therefore methanogens need a longer HRT to convert the 

accumulated VFA  to biogas (Aslanzadeh et al., 2014). Moreover, methanogenic archaea are 

more sensitive to VFA accumulation and a consequent pH drop than hydrolytic/acidogenic 

bacteria, which might usually lead to irreversible acidification, which causes inhibition of 

methanogens and the failure of anaerobic digesters. For this reason, in full-scale digesters, 

some none-feeding periods (intermittent feeding) are arranged to allow methanogens to 

consume the accumulated VFA before the irreversible acidification of digesters occurs 

(Nagao et al., 2012).  

In contrast to the acidification problems encountered for single stage digestion during AD of 

easily hydrolysable feedstocks like food waste with two-stage anaerobic reactors , separation 

of the acidogenic stage from the methogenic stage is reported to improve the stability of AD 

(Ward et al., 2008). Two-stage anaerobic reactors provide separate favourable environments 

(pH and  nutrients) for acidogenic bacteria and methanogenic archaea (Aslanzadeh et al., 

2014). Further advantages of separating the acidogenic stage from methanogenic stage 

include the easy selection and enrichment of different bacteria/archaea in each stage, 

increasing process stability, and the possibility of operation at a higher OLR with shorter 

HRT (Jung et al., 2000; Demirer and Chen, 2005; Wang et al., 2014a). Due to the possibility 

of AD at shorter HRT in two-stage reactors compared to the single-stage reactors, a smaller 

rector volume is required. FOR instance, Aslanzadeh et al. (2014) obtained 65% decrease in 

the reactor volume for digesting the OFMSW when they used two-stage reactors instead of 

single-stage reactors. 

Previous studies have investigated the optimization of two-phase anaerobic processes for 

hydrogen and methane production. Reject water as well as sludge recirculation are common 

methods which have been applied for optimizing the acidogenic stage of two-stage anaerobic 

reactors. For instance, Cavinato et al. (2011) and Kobayashi et al. (2012) obtained a better 

optimization of two-stage pilot scale reactors by reject water and sludge recirculation to buffer 

the system and keep the pH around 5.5 optimal for the acidogenic reactor, this method, 

consequently increased the hydrogen production rate and methane yield. 
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Previous experiments in Chapter 6 and Chapter 7 of this thesis showed positive effects of 

amending MW of MSWI plants in anaerobic digestion of the OFMSW. The amendment of 

MW in AD was through their addition directly with the feeding substrate to reactors and 

through their use in the pretreatment of the feedstock substrate before AD. The current study 

in this chapter, investigated the use of water-extracted minerals from MW (MWEs) to 

optimize the digestion processes of two-stage AD reactors of OFMSW. For this, the water 

MWE obtained from MW (Section 4.1.3) of MSWI plant (incineration bottom ash (IBA), fly 

ash (FA) and boiler ash (BA)) were used to prepare feeding substrates of acidogenic reactors, 

digestates obtained from these acidogenic reactors were then used as the feeding substrates for 

subsequent methanogenic reactors. The hypothesis was that the moderate alkalinity  provided 

by the MW (Chapters 4-6) would support the buffering capacity in the acidogenic reactors to 

maintain optimal pH (4.5 – 6) required for acidogenic bacteria (Yu et al., 2002; Cavinato et 

al., 2011). Subsequently, the dissolved metals provided in the MWE are still present in the 

digestate of acidogenic reactor and the principle benefit of the dissolved elements will be 

carried over and be of most benefit in the methanogenic reactor and will increase the methane 

production rate and process stability of the methanogenic reactors. 

The novel aspect of this study was to investigate the feasibility of using very low economic 

value, and widely available, waste materials such as MW to stimulate bacterial hydrolysis and 

increase microbial growth and activity in anaerobic digesters, with the ultimate aim of 

increasing the OLR whilst maintaining the methane production efficiency of anaerobic 

reactors. The hypothesis was that the moderate alkalinity provided by the MW would support 

the buffering capacity in the acidogenic reactors to maintain optimal pH (4.5 – 6) required for 

acidogenic bacteria (Yu et al., 2002; Cavinato et al., 2011). Subsequently, the dissolved 

metals provided in the MWE and still present in the acidogenic digestate and carried over to 

the methanogenic reactor will sustain methane production and process stability. 

8.2. Materials and methods 

8.2.1. Substrate and inoculum 

The feedstock substrate was the synthetic organic waste (SOW) described previously (Section 

4.1.1), and the feedstock characteristics are shown in Table 4-3. The inoculum was obtained 

from a mesophilic (37oC) digester (Table 4-4). Before starting the continuous experiments 

(CSTR) and in order to kill the maximum possible number of methanogen species, the 

inoculum used for the acidogenic reactors (Act) was boiled at 100oC (Rogers, 1986; Valdez-

Vazquez et al., 2005) for one hour, left to cool down to room temperature, and then had its pH 
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adjusted to pH 6 ± 0.5 using 1N HCl solution. The methanogenic (Mth) reactors were filled 

with 1 L of the inoculum (Table 4-4) without boiling. Before staring the experiments, the 

inoculum in the reactors (acidogenic and thermophilic reactors) were reactivated and 

acclimated to the digestion environments and the feedstock substrate (SOW) for 20 days as 

described in Section 4.1.2. 

8.2.2. Preparation of the feeding substrate 

The MW used in this chapter were only the incineration ash (i.e. IBA, FA, and BA) however, 

the CBW (i.e. the MW which was from CDW) was not used in this chapter due to the limited 

resources available for this study, and it was difficult to operate and manually feed more than 

8 continuous reactors (CSTRs) in a single experimental. The same orbital incubator, which 

was used pre-treating the substrates in Chapter 7 (Section 7.2.4.1), it was also used for metals 

extraction in this chapter. The metals were extracted from the MW by reciprocal shaking (100 

rpm, 100 hours and 37oC) of 20 g of each MW in 500 mL of distilled water, left to settle for 

one hour then the supernatant discarded, hereafter it named as mineral waste extracts 

(MWEs). From each run of the metals extraction, about 3 L of MWEs were produced (which 

was enough for preparing 300 g VS of the SOW). The feeding substrates of the MW amended 

Act reactors (referred to hereafter as the Act_IBA, Act_FA and Act_BA reactors) were 

prepared by using these MWEs and it referred hereafter as the SOW-MWE feeding substrate. 

Distilled water was used for preparing the feeding substrate of the control Act reactor 

(referred hereafter as the Act_control reactor), and the control substrate was referred to as 

SOW-DW feeding substrate. Each batch of the feeding substrate for each reactor was 

composed of 50 g VS of the SOW made up of 500 mL with MWE /or DW to give a mixture 

of a feeding substrate with solid contents of 5 g VS/50 mL. The substrates were mixed 

thoroughly then stored at 5oC until use. 

8.2.3. Reactor setup and operation 

The continuous AD experiments were carried in four sets of one-litre CSTRs (Section 4.3.2). 

Each CSTR set consisted of a one Act reactor and a one Mth reactor and each reactor was fed 

every two days. After reactivation and acclimation of the inoculum inside reactors (Section 

4.3.2), the CSTR were operated for 90 days in three stages. During the first stage (day 1 - 40), 

the OLR of CSTR was of 2.5 g VS/L. d with an HRT of 20 days,  requiring the draining of 50 

mL/d of digestate from the Act reactors and replacing with an equal volume of the feedstock 

substrate (SOW-MWE/ or SOW-DW); Section 8.2.2). Simultaneously, 50 mL/d of digestate 

was drained from each Mth reactor then replaced (fed) with the digestate (50 mL/d) which 
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was drawn from the Act reactors. The same feeding method was applied for the second stage 

(day 40 – 60), during this stage, the organic load was maintained at 2.5 g VS/L. d; however, 

the HRT was decreased to 10 days.  

Table 8-1. Feeding design of CSTR systems 
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DW =distilled water. 

MWE= mineral waste extracts. 

SOW-MWE = feed prepared with mineral waste extracts. 

SOW-DW = feed prepared with distilled water. 

Digestate-rem = digestate removed. 

Digestate-add = digestate added. 

 

During this second stage, 100 mL/d of digestate was drawn from the Act reactors and then fed 

to the Mth reactors after draining 100 mL of the Mth digestate, the Act reactor was fed with 

50 ml of the SOW-MWE/ or SOW-DW substrate and 50 ml of either MWE (for the MW 

amended Act reactors) or DW (for the control reactor). For the operation period between days 

60 - 90, the HRT was maintained at 10 days while the OLR was increased to 5 g VS/L. d. 

During this stage, 100 mL of digestate from the Act reactors was drained and replaced with 

100 mL of the feeding substrate. The 100 mL of digestate, which was drained from the Act 

reactors was fed to the Mth reactors after draining 100 mL of the Mth digestate (Table 8-1). 
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8.2.4. Analytical methods 

Analytical methods were performed as described previously (Section 4.4). The biogas 

produced from the Act and Mth reactors was collected in 5 L gasbags (Tedlar, VWR), the Act 

gasbags were disconnected once per HRT, while the Mth gasbags were disconnected every 

two days  to measure the biogas volumes and compositions (methane and hydrogen contents) 

by a gas chromatograph (GC)(Section 4.4.7).  On day 90 for all experiments, samples of 

digestates were collected from the Act and Mth reactors to be used for the microbial analysis 

as described in Microbial analysis (Section 4.5). 

8.3. Results and discussion 

8.3.1. Performance of acidogenic reactors 

The pH of the start-up inoculum of the Act reactors was initially pH 6 ± 0.3 but decreased to 

pH 5 ± 0.3 within 10 days remained approximately constant up to day 25 (Figure 8.1), then 

the pH decreased gradually to pH 4 ± 0.5 on day 60. Indicating that the alkalinity in the Act 

reactors was not sufficient to buffer the acids (VFA) produced (VFA not measured in the Act 

reactors but could be inferred from the sCOD and drop in pH). However, when the OLR was 

increased to 5 g/L i.e. after day 60, the pH recovered (pH 4.5 ± 0.5) in the Act reactors. In 

two-stage anaerobic reactors ammonia is a major contributor to the alkalinity (Qin et al., 

2018), therefore this increase in the pH of the Act reactors was likely linked to the NH3-N 

released by the hydrolysis of the feedstock substrate (SOW). The low C/N ratio (13.8; Table 

4-2) of the organic substrate (SOW) was principally due to the high levels of protein present 

which is degraded to ammonia during AD (Kayhanian, 1994). 

The performance summary of the Act and Mth reactors are shown in Table 8-2 and figures 

Figure 8.1 to Figure 8-5. Hydrolysis of the SOW and production of sCOD were not 

significantly different (p > 0.05) in the Act reactors (Figure 8-5), and the concentration of 

soluble COD (sCOD) in the Act reactors was very similar and maintained at 23 ± 6 g/L. 

Higher accumulation of hydrogen compared to methane in acidogenic reactors is a sign of 

rapid fermentation of the feeding substrate (Parawira et al., 2008). Up to day 60 (HRT of 20 

days and OLR of 2.5 gVS/L. d) the accumulation of hydrogen and methane in the gasbag of 

the control reactor was similar to that in the reactors amended with MWE, except the Act_BA 

rector which gave up to 50% higher hydrogen and methane accumulation (Table 8-2). 

Indicating that that fermentation in the Act_BA was higher than other reactors. The H2% and 

CH4% of biogas for the Act_control reactor were generally similar to that of the Act reactors 

with MWE, on day 60, the H2% of the Act_control was 25 ± 8% whereas the average H2% of 
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the Act reactors amended with MWE was 24 ± 3%. An obvious increase in the H2% of biogas 

was observed in the Act_IBA and Act_BA reactors Table 8-2. The lowest H2% was in the 

Act_FA reactor, the minerals released by the FA were inhibitory/ or were less stimulatory to 

the acidogenic bacteria (Figure 8-4). This was evident from the metal analysis data shown in 

(Table 4-8) which shows higher concentrations of dissolved metals such B, Na, Pb, Zn etc. in 

the FA extracts compared to the IBA and BA extracts. 

8.3.2. Performance of methanogenic reactors 

The pH of the Mth reactors were also not significantly different (pH 7.1 ± 0.2; p > 0.05) with 

reactor operation at an HRT of 20 days (days 1- 40) or 10 days (days 40 - 60) and an OLR of 

2.5 g VS/L. d. However, increasing the OLR to 5 g VS/L. d at the HRT of 10 days (days 60-

90), led to the pH drop linked to accumulation of VFA which consumed most of the 

alkalinities available in all the Mth reactors except in the Mth_IBA reactor (Figure 8.1 and 

Figure 8-5). It worth noting that the CH4% of biogas on day 60 (OLR = 2.5 g VS/L. d and 

HRT of 10 days) remained ~ 70% in all the Mth reactors, this was comparably higher than the 

CH4% values obtained from the CSTRs in the previous chapters (60 - 65% of CH4) of this 

thesis. Indicating, beneficial effects of using two-stage reactors over one-stage reactors in the 

AD of OFMSW. Two-stage AD allow the selection and enrichment of different 

microorganisms in each stage due to different operational parameters such as pH in each stage 

(De La Rubia et al., 2009). Moreover, degradation of the protein component of the substrate 

to ammonia in the acidogenic stage may act as metabolic buffer preventing sudden pH drop in 

the methanogenic stage (Solera et al., 2002; De La Rubia et al., 2009). 

Despite a decrease in the HRT to 10 days (2.5 gVS/L. d) from day 40, the methanogenic 

reactors showed a gradual increase in methane production up to day 50, then methane 

production stabilised between days 50 to 60. During the pseudo steady state period (day 50-

60) similar  CH4% (~ 70%) and methane yields were obtained from both the methanogenic 

reactors amended with MWE (527 ± 45 mL CH4/g VS) and the control reactor (523 ± 47 mL 

CH4/g VS), and differences in methane yield between the Mth reactors never exceeded 10% 

(Figure 8-3). However, increasing OLR to 5 g VS/L. d at HRT to 10 days after day 60, led to 

a rapid drop of pH in the Mth_control, Mth_FA and Mth_BA reactors, consequently the 

methanogenesis process deteriorated in these reactors due to acidification and hence inhibition 

of methanogenic activity. This acidification and likely inhibition of methanogenic activity 

lead to the failure of these reactors (Figure 8.1, Table 8-2, Figure 8-3, Figure 8-4 and Figure 

8-5). 
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Figure 8-1. Profile of pH in the acidogenic and methanogenic reactors. 
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Table 8-2. Profile performance of two-stage anaerobic reactors. 

Time Day 60 Day 90 
Methanogenic 

 reactors 

Mth_ 

control 

Mth_ 

IBA 

Mth_ 

FA 

Mth_ 

BA 

Mth_ 

control 

Mth_ 

IBA 

Mth_ 

FA 

Mth_ 

BA 

OLR (g VS/L. d) 2.5 2.5 2.5 2.5 5 5 5 5 

HRT (d) 10 10 10 10 10 10 10 10 

pH 7.04 7.15 6.72 7.03 5.16 7.35 4.7 5.29 

sCOD (mg/L) 1515 1305 1545 1245 5805 345 17415 9255 

Total VFA (mg/L) 589 465 1170 589 4490 838 6565 4324 

Total ALK (mg/L) 2575 3000 2250 2975 625 4250 300 400 

MPR (L/L. d) 1201 1319 1053 1249 40 2300 30 170 

Y (mL/g VS) 423 572 482 526 4 370 5.2 90 

CH4% (%) 67.5 70 64 64 17 70 22 40 

Total CH4 (L) 46.5 48 44 43 64 91 50 56 

RFI 5118 4422 1281 3699 2445 8161 1293 1875 

Acidogenic 

reactors 

Act_ 

control 

Act_ 

IBA 

Act_ 

FA 

Act_ 

BA 

Act_ 

control 

Act_ 

IBA 

Act_ 

FA 

Act_ 

BA 

pH 4.76 4.81 3.7 4.0 4.5 4.5 4.4 4.6 

H2% (%) 23 33 26 36 23 32.6 13 36 

CH4% (%) 5 5 25.6 5 5 5.1 13.5 5.1 

Total H2 (mL) 1529 1175 1349 2216 3284 2897 1695 3175 

sCOD (mg/L) 20940 21810 24210 20250 23490 26520 28170 27420 

RFI 684 1117 801 806 724 1168 1446 955 

sCOD = soluble COD. 

total VFA = total volatile fatty acids. 

total ALK = total alkalinity. 

MPR =methane production rate. 

Y= methane yield. 

RFI= relative fluorescence intensity of F420. 

H2% of biogas collected in gasbags attached to Act reactors. 

 

 

Interestingly, among all the Mth reactors, the Mth_IBA reactor showed a stable 

methanogenesis process despite of doubling the OLR (5 g VS/L. d) and decreasing HRT to 

half (10 days). After day 60, digestion of the Mth_ IBA reactor gave up to a three-folds higher 

methane yield (370 ± 20 mL CH4/g VS) than the control (≤ 100 mL CH4/g VS) (Figure 8-3). 

Inhibitory and toxic effects of heavy metals on the acid-phase of two‐phase anaerobic 

digestion processes have been investigated in the literature (Demirel and Yenigün, 2002). 

However, in the current study, the successful methanogenic activity of the Mth_IBA reactor 

was likely associated with the mineral composition of this MW which were mostly within the 

stimulating ranges for AD (Chapter 6). Moreover, in general, the acidogenic and 

methanogenic processes of both of the Act_FA and Mth_FA reactors were lower than the 
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other MW amended reactors. This behaviour of the FA amended reactors in the current 

chapter of this study was similar to that observed from FA in the co-digestion and pre-

treatment chapters in this thesis (chapter 5, 6 and 7). Indicating that, the FA as a MW was a 

detrimental MW for integrating in the AD of OFMSW due to the high concentration of metals 

leached from FA and appeared toxic to anaerobic microorganisms. For instance, the dissolved 

concentrations of Cr, Mg and V (9.6, 42.0 and  3.44 mg/kg TS respectively) in the FA extract 

was higher compared to their concentrations in the IBA and BA extracts and appeared toxic to 

anaerobic microorganisms (Chapters 5, 6 and 7). 
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Figure 8-2. Profile of methane accumulation (throughout 80 days of the operation time) and methane 

production rate from methanogenic reactors in parallel to the variations in the pH of the acidogenic 

and methanogenic reactors. 
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Figure 8-3. Variations in the methane yield from methanogenic reactors. The values are average of 10 

days over time intervals and the error bars are showing the standard deviation of the average values.  
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Figure 8-4. Variations in the hydrogen and methane percentage of biogas (by volume) from gasbags 

were connected to the acidogenic and methanogenic reactors. 
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Figure 8-5. Physicochemical parameters from digestate of acidogenic and methanogenic rectors. 

8.3.3. Microbial population characterisation 

Microbial analysis was conducted on digestate samples collected from the four Act and four 

Mth reactors on day 90. The total number of reads in 16S rRNA sequence libraries after 

quality filtering was 639,199 ranging from 43,432 sequences in the smallest library to 

109,999 sequences in the largest. However, individual libraries were rarefied for comparative 

analysis. Pipeline analysis of the 16S rRNA amplicon sequences from these samples 

identified a total of 1347 taxa, ~ 97.8 % (1318 taxa) of which were bacterial and ~ 2.2%  (29 

taxa) of which were archaeal. Bacterial proportion represented ~ 99.95% of the reads in the 

Act reactors, while in the Mth reactors the proportion of bacteria reads: archaea reads were 

95% : 5%, 80% : 20%, 96% : 4% and 95% : 5%;  in the  Mth_control, and Mth_IBA, Mth_FA 

and Mth_BA reactors respectively. Indicating higher relative proportion of archaea reads in 
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the Mth_IBA reactor compared to the other Mth reactors. This high proportion of archaea in 

the Mth_IBA reactor coincided with the high relative florescence intensity (RFI) of co-

enzyme F420 in this reactor (Table 8-2). For instance on day 90, the average RFI in the 

Mth_control, Mth_FA and Mth_BA was 1871 ± 576 nm compared to 8161 nm in the 

Mth_IBA reactor (i.e. RFI in the Mth_IBA reactor was about 3.36 folds higher than  the 

average RFI in the other reactors). 

Figure 8-6 shows the alpha diversity measures of Chao1, Shannon, Simpson for each reactor. 

For both bacteria and archaea, the richness in the Mth reactors was higher than that in the Act 

reactors. Interestingly, the Mth_IBA reactor, which showed higher performance among all the 

methanogenic reactors, had lowest bacterial and archaeal richness compared to the other 

reactors. The possible reason for this is that the Mth_IBA reactor was the only reactor which 

was performing by day 90. Such a behaviour was similar to that observed in the other chapters 

of this thesis (Chapter 6, Chapter 7 and Chapter 9) where the rectors with high process 

stability and methane productivity showed gradual decrease in alpha diversity with time. The 

high alpha diversity in other reactors (Mth_control, Mth_FA and Mth_BA) which showed a 

decline in performance after day 60 and failed on day 90 this might have increased alpha 

diversity in these reactors as there was no strong selection pressure. 

In AD, such a decrease in the alpha diversity is usually associated with a decrease in relative 

abundance of archaeal community rather than the bacterial community. Yi et al. (2014) 

studied the performance of anaerobic reactors digesting food waste based on differences in 

total solids in the reactor feed; they demonstrated that an increase in reactor performance was 

associated with increases in the relative abundance of archaeal community in sequence 

libraries. For instance, the richness of Methanosarcina related sequences showed an increase 

with the increases in the total solid contents. However, the changes in the relative abundance 

of bacterial taxa were not consistent and showed a fluctuating trend in response to increases or 

decreases in the performance of these reactors. 
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Figure 8-6. Alpha diversity of microbial community bacteria (A) and archaea (B) in relation with 

reactor stages and feeding substrate (Act = acidogenic reactor, Mth = methanogenic reactor, IBA = 

incineration bottom ash, FA = fly ash and BA = boiler ash) in eight AD reactors digested a synthetic 

organic waste as mono substrate or prepared with a mineral waste extracts. 

8.3.3.1. Composition of bacterial community 

 Based on the operational data presented in Figure 8-1 and Table 8-2, namely, elevated sCOD 

concentrations at a low pH, it can be predicted that the Act reactor bacterial sequence libraries 

are dominated by taxa with a principally hydrolytic and acidogenic function. On this basis, the 

three major bacterial families observed (Figure 8-7), namely, the Ruminococcaceae, 

Clostridiaceae and Lactobacillaceae can be confidently linked to this role. Collaboratively, 

the bacterial family Ruminococcaceae are known fermenters and their role in AD (including 

the genera Fastidiosipila and Ercela present) is widely documented and linked to the 
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cellulolytic digestion of plant fibres (Ziganshin et al., 2013), specifically, the degradation of 

hemicellulose (van Gelder et al., 2014; Pandit et al., 2016; Cai et al., 2018). With respect to 

the high abundance of Lactobacillaceae, their presence suggests that the reactors were able to 

efficiently convert lactic acid produced by these bacteria to acetate in subsequent AD steps. It 

is postulated (Detman et al., 2018) that lactate oxidation to acetate as a substrate for 

methanogens is the most energetically attractive process in comparison to butyrate, 

propionate, or ethanol oxidation. 

Obviously, the bacterial taxa selected in the Act reactors are then physically transferred to the 

linked Mth reactors and to varying extents can be observed in these reactors (Figure 8-7).  

However, it can also be seen from Figure 8-7 that the bacterial communities in these reactors 

were not simply a reflection of those carried over from the Act reactors. Therefore, the roles 

of these subsequently selected bacterial families are potentially attributable to the next steps in 

the AD process, namely, acetogenesis and syntrophic acetate oxidation. Such an insight into 

the functions of different bacterial taxa is an interesting outcome of studying two-stage reactor 

systems rather than single stage ones. For instance, the bacterial family Synergistaceae was 

the most abundant (~ 30%) bacterial family in the Mth_IBA reactor but was largely absent in 

the preceding Act reactor. This family is a common AD constituent (Riviere et al., 2009b) and 

has been associated with acidogenesis, the degradation of amino acids (Riviere et al., 2009b), 

and carbohydrates (Godon et al., 2005). However, in the context of this study, Westerholm 

and Schnürer (2019) have previously suggested that the Synergistaceae contain bacteria 

capable of performing a syntrophic metabolism in association with hydrogenotrophic 

methanogens. Moreover, Ito et al. (2011) identified a novel syntrophic acetate-oxidizing 

bacterium candidate belonging to Synergistes group 4 in an anaerobic digester of sludge. The 

bacterial family Spirochaetaceae was also dominant in some of the Mth reactors; their role in 

anaerobic digesters is known to be linked to the acetogenesis from the reduction of CO2 by H2 

(Leadbetter et al., 1999). On the basis of the putatively different functions of the 

Synergistaceae and the Spirochaetaceae it is interesting to note that the Mth_IBA reactor had 

the lowest dominance of the Spirochaetaceae and the highest dominance of the family 

Synergistaceae (Figure 8-7) which is consistent with the likely dominance of syntrophic 

acetate oxidizers as evidenced by the greater dominance of hydrogenotrophic methanogens in 

this reactor (see below). 



169 

 

 

Figure 8-7.  Relative abundance of the most dominant 15 bacterial families identified in reactors on 

day 90. LCBD is local contribution of beta diversity in the digestate samples. The Act_BA and 

Mth_IBA samples were with high LCBD values which means that these two reactors had higher 

unique species compared to the other reactors. There was a clear enrichment of Lactobacillaceae in 

the Act reactors. The Mth_IBA reactor had higher relative abundance of Synergistaceae compared to 

the other Mth reactors. 

8.3.3.2. Composition of archaeal community 

 It can be seen from Figure 8-8  that about 90% of the archaeal sequences in the Mth reactors 

were dominated by hydrogenotrophic (Methanospirillum and Methanobacterium), 

acetoclastic (Methanosaeta) methanogens and the metabolically more flexible methanogens 

(i.e. Methanosarcina, which use either acetate or H2/CO2 to produce methane). In addition to 

those well described methanogens which are common constituents of anaerobic digestion 

systems, there was an enrichment of a sequence in the Mth-IBA reactor related to the recently 

proposed as the Candidatus genus Methanofastidiosum (Nobu et al., 2015). This organism 

considered nutritionally fastidious whereby methanogenesis is achieved through methylated 

thiol reduction linked to hydrogen oxidation likely competes with hydrogenotrophic 

methanogens and may maintain and thrive under lower H2 partial pressures favouring 

efficient syntrophic acetate oxidation and fermentation (Nobu et al., 2015). 
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Figure 8-8 Relative abundance of highest 10 archaeal genera in the CSTRs on day 90. LCBD is local 

contribution of beta diversity in the digestate samples as described in Figure 8.7. There was an 

enrichment of the Candidatus genus Methanofastidiosum in the Mth-IBA reactor which showed stable 

digestion processes. 

The dominance of the hydrogenotrophic methanogens Methanospirillum and especially 

Methanofastidiosum in the Mth_IBA reactor, which showed greater process stability and 

higher methane production at an OLR of 5 g VS/L. d with an HRT of 10 days, is of particular 

interest. This hydrogenotrophic dominance and likely maintenance of low hydrogen partial 

pressures is coincident and consistent with the presence and dominance of the Synergistaceae 

bacteria as putative syntrophic acetate oxidizers as discussed above. While the parameters 

measured in this study were not sufficient to conclude clearly, why the Mth_IBA reactor 

maintained a stable and efficient digestion process compared to the Mth_control, Mth_FA and 

Mth_BA reactors which ultimately failed under a OLR and short HRT it seems likely that the 

formation of stable syntrophic bacterial/archaeal partnerships supported by beneficial 

concentrations of trace elements available from the IBA (Table 4-8) played an important role. 

While, inefficient conversion of VFA to acetate and, or, oxidation of acetate to CO2 and H2 

(either linked to high concentrations of trace and heavy metals released from the FA and BA 

MW or their absence in the control) resulted in the accumulation of VFA, pH drop, and 

consequent inhibition of methanogenesis in the other reactors. 
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8.4. Practical application and future work 

The biogas produced from the Act and Mth reactors can be used separately as renewable 

energy or can be mixed together to obtain a hydrogen-methane blend known as biohythane 

fuel, which usually comprise 10% H2, 30% CO2 and 60% of CH4 v/v (Cavinato et al., 2011). 

From energetic point of view, as can be seen from Table 8-3, with 100 h metals extraction 

time, the net energy output from the Mth_IBA reactor was negative with the incubator, which 

was used for metals extractions in this chapter. However, both the 1h and 12 h metals 

extraction times gave positive net energy output from the Mth_IBA rector. For this reason, 

future works should investigate the shortest metals extraction time required for each MW to 

provide sufficient amount of metals for achieving stable digestion processes of Mth_reactors. 

Moreover, the effect of using mineral wastes (in solid phase) in the acidogenic reactors should 

be assessed  instead of using the liquid MW extracts to enhance the hydrolysis and increase 

the alkalinity and concentration of trace elements necessary for the next stage methanogenic 

reactors. 

Table 8-3. Estimated net energy output from Mth_IBA reactor under different metals extraction times. 

The values between parentheses show the energy required for the specific pre-treatment time. 

   Net energy output (MJ/kg of SOW) 

Day 

Methane 

production 

(m3/kg) 

Total energy 

output as 

methane (MJ/kg) 

1 h 

pre-treatment 

(0.3 MJ/kg) 

12 h 

pre-treatment 

(3.6 MJ/kg) 

100 h 

pre-treatment (30 

MJ/kg) 

60 0.527 21.08 20.78 17.48 -8.92 

90 0.46 18.4 18.1 14.8 -11.6 

8.5. Conclusions 

This chapter investigated the effects of MW extracts on the AD of the OFMSW. In contrast to 

MWE from FA, the MWE from IBA and BA clearly enhanced hydrogen production in the 

acidogenic reactors. The MWE from IBA was also found to enhance greatly the performance 

of the methanogenic reactor stage, providing nutritionally important trace elements deficient 

in the OFMSW feedstock, and also provided additional levels of alkalinity that helped 

regulate pH, support methane productivity, and provide process stability. Moreover, following 

a sudden step decrease in HRT (from 20 to 10 days), which reduced biogas production in 

most reactors, the MR-IBA showed no signs of failure i.e. it maintained key syntrophic 

partnerships in the microbial community, allowing higher volumetric methane productivity, 

albeit at a reduced specific methane yield.  
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The study in this chapter has demonstrated that MW extracts can act as a highly effective 

nutritional supplement that supports the growth of important members of the microbial 

community in AD systems, and can be used to substitute standard trace element nutrient 

solutions during the AD of OFMW. Furthermore, the low economic value and widespread 

availability of MW means the preparation and use of MW extract amendments offers an 

affordable approach to integrating mineral wastes into organic waste disposal through 

anaerobic digestion. 
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Chapter 9. Enhancing reactor stability and biogas production for food 

waste AD: trace element addition has more impact than wheat straw co-

digestion 
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Abstract 

Trace element (TE) supplementation and substrate co-digestion are techniques to improve 

organic waste anaerobic digestion (AD), especially for single-stage reactors with high organic 

loading rates (OLR). To compare these techniques, different AD reactor feed compositions 

were studied in parallel, including synthetic organic waste (SOW); SOW supplemented with 

TE; SOW supplemented with wheat straw (WS); SOW supplemented with WS and TE. Feeds 

were digested in 20 days HRT mesophilic continuously stirred tank reactors (CSTRs) with 

successively greater organic loads (1, 2 and 4 g VS/L. d). High methane yields (450 - 550 

mL/g VS), microbial numbers and process stability at higher OLRs were only maintained 

with TE supplementation, regardless of co-digestion. The principal effect of WS co-digestion 

was on microbial community selection and stability. Although bacterial communities were all 

similar at day 40, communities in stable reactors with TE subsequently diverged, most 

notably with selection of Cloacimonadaceaea in the absence of WS. WS co-digestion had 

more effect, however, on the more sensitive methanogenic archaea. 50%WS co-digestion + 

TE selected for a stable community comprising the stress intolerant acetoclastic 

Methanosaeta, however, TE amended reactors with less (25%) or no WS comprised the 

metabolically more flexible Methansarcina selected as a result of ammonia stress. 

Interestingly, at 25% WS the Methanosarcina were acetoclastic (based on indicative 

coenzyme F420 measurements); with no WS and highest ammonia levels they were 

hydrogenotrophic. These results imply TE amendment was hierarchically more important than 

co-digestion but co-digestion was beneficial in reducing biological stress linked to lower 

ammonia. 

9.1. Introduction 

Anaerobic digestion has been widely used for the management of the organic fraction of 

municipal solid waste (OFMSW) whilst recovering energy by methane production (Liebetrau 

et al., 2017). The advantages of single-stage anaerobic reactors over multi-stage anaerobic 

reactors due to low installation and operation costs are well recognised, but, multi-stage 

reactors enhance biogas production by separating the acidogenic and methanogenic phases 

(Hernández and Edyvean, 2011; Schievano et al., 2012). As a consequence, although in the 

EU about 90% of full scale anaerobic plants are single-stage systems (Zhang et al., 2011a) 

there are concerns related to their failure (Rincón et al., 2008) due to low acid buffering 

capacities at high organic loading rates (OLR) specifically when using a highly hydrolysable 

substrates like OFMSW. Regardless of reactor design, trace element (TE) deficiency is 
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considered a common cause for the failure of both single and multi-stage reactor systems 

(Chen et al., 2008; Gu et al., 2014). These operational problems require new strategies to be 

developed which can improve reactor performance, such as optimising reactor feed 

composition for long-term and high OLR applications. 

 Each year, worldwide, CO2 fixation by photosynthesis is responsible for the production of 

~1011 tons of dry plant matter comprised of cellulose (> 50%) (Leschine, 1995). For instance, 

wheat straw (WS) is a lignocellulosic plant material in which celluloses and hemicelluloses 

comprise 50 - 70% of the composition with 10 - 20% as lignin (Xi et al., 2014). Therefore, at 

least 50% of WS can theoretically be degraded anaerobically for biogas production despite 

lignin’s resistance to AD (Xi et al., 2014). Cellulose contains glucose monomers but is 

nitrogen deficient which places limits on degradation because the nutrient requiring microbial 

biomass yield from glucose by methanogenesis can be >20% (Kalyuzhnyi, 1997). Therefore, 

co-digestion of organic wastes (with high nitrogen content) with WS (high carbon content) 

can be a favourable strategy for optimising feeding composition by balancing C and N. 

Importantly, two readily available low cost substrates (OFMSW and WS) contain 

complementary C and N contents making them ideal co-substrates for AD and renewable 

energy production (Romero-Güiza et al., 2016). The main benefits of co-digestion of 

OFMSW with WS are:  

a) lignin in wheat straw, and presumably the cellulose it occludes, is slowly degraded (Noike 

et al., 1985), so the risk of rapid hydrolysis and acidification in AD reactors is reduced for 

mixtures of OFMSW and WS;  

b) the non-degradable components of WS (lignin) can work as a biofilm carrier in the reactor 

(Pohl et al., 2013) decreasing the risk of biomass washout; 

c) improved biodegradation efficiency arises from communities growing on mixed wastes 

(Wang et al., 2012). Theoretically, two or more distinct microbial communities, i.e. microbes 

that grow on OFMSW and those that grow on WS, are expected to utilize substrates more 

efficiently than individual communities (Wang et al., 2012; Sierocinski et al., 2017).  

d) a balanced C:N ratio i.e. between 20 to 30, is achieved by mixing N-rich (e.g.  OFMSW) 

and N-deficient (e.g. WS) feedstocks, preventing the onset of ammonia inhibition (Yao et al., 

2018).  

Another method to optimize the nutrient balance of OFMSW for AD feedstocks is via 

supplementation of trace elements (TEs). The deficiency of TEs like Se, Fe, Ni, Co, Mo, AL, 
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B etc. in food waste (food waste represents the largest component fraction of OFMSW) has 

been reported (Banks et al., 2012, Zhang et al., 2015). The absence/low concentration of TEs 

is often considered the main reason for limited performance of anaerobic digesters (Zhang et 

al., 2015, Demirel and Scherer, 2011). The positive effect of TE supplementation during the 

mono-digestion of OFMSW and its crucial role in the synthesis of enzymes and co-enzymes 

(like F420) necessary for methanogenesis, are widely reported in the literature (Dolfing and 

Mulder, 1985; Takashima and Speece, 1989; Pobeheim et al., 2010; Banks et al., 2011; 

Takashima et al., 2011; Ünal et al., 2012; Facchin et al., 2013; Westerholm et al., 2015a).          

Recent studies have identified the risk of failure for AD reactors fed with wheat straw and 

organic waste co-substrates due to the accumulation of volatile fatty acids and pH drop (Cai et 

al., 2017). However, in addition Liu et al. (2015b) has shown a 22 - 56% higher solids 

bioconversion of Corn-Stover (a lignocellulosic material) by adding 1.0, 0.4, and 0.4 mg/L. d 

of Fe, Co, and Ni, respectively. The current study explicitly assumed that:  

a) Co-digestion of WS with OFMSW enhances the hydrolysis and fermentation of the 

cellulose and hemicellulose fractions of WS. 

 b) The release of carbon from WS (glucose) increases the substrates required for microbial 

growth in the mixed liquor. 

 c) TE supplementation enhances enzymatic activity to promote methanogenesis, and that the 

combined effect of TE supplementation and WS/OFMSW co-digestion results in a balanced 

fermentation-methanogenesis synergy and thus increased methane production and the long-

term stability of AD. 

The aim of the study in current chapter was for to directly compare the relative individual and 

combined effects of TE supplementation and WS/OFMSW co-digestion on process stability 

(as measured by pH and alkalinity status), performance (biogas production) and specific 

methanogenic activity (relative fluorescence intensity of coenzyme F420 in digestate). The 

novelty and strength of the current study was the simultaneous comparison of six mesophilic 

reactors fed with a synthetic organic waste as a mono substrate (only OFMSW), or as a co-

substrate with WS (25% and 50% WS), with and without TE addition. In all these reactors, 

16S rRNA gene abundances were measured and microbial community compositions analysed 

for correlation with the measured physicochemical parameters. 
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9.2. Materials and methods 

9.2.1.  Inoculum and feedstock materials 

The feedstock of reactors was the synthetic organic waste (SOW) substrate described in 

Synthetic organic waste (Section 4.1.1) and its characteristics are shown in (Table 4-3).  The 

total (TS) and volatile (VS) solids concentrations of the SOW feed were adjusted to 12.8% 

and 11.3% respectively by adding distilled water (~ 35% dilution of the organic waste was 

required).  

The wheat straw (WS) was collected from Cockle Park Farm, Newcastle University. The WS 

dried at 50 - 60oC, ground with a dry food grinder, sieved to pass a 1mm sieve, and stored in 

airtight bags at room temperature until use. The inoculum for reactor start-up was obtained 

from a mesophilic (37oC) digester treating cattle slurry and farm silage (Cockle Park Farm, 

Newcastle University, UK) as described in Inoculum (Section 4.1.2) and physicochemical 

characteristics of the inoculum of reactors are shown in Table 4-4 . Table 9-1 shows the 

physicochemical properties of the SOW, WS and inoculum used in the current study. 
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Table 9-1. Physicochemical characteristics of the wheat straw used in the feedstock substrate of 

CSTR. 

Parameters 1 Wheat Straw 

pH (1:2) 6.3 2 

TS (%W/W) 92.2 

VS (%W/W) 81.4 

VS (%TS) 88.0 

C (%) 45.5 

N (%) 0.56 

S (%) 0.0 

C/N 81.3 

Al  153.80 

B 7.00 

Ba 38.0 

Ca 2255.0 

Cd 0.08 

Co 0.22 

Cr 4.90 

Cu 4.40 

Fe 443.0 

K 1532.0 

Mg 498.0 

Mn 24.50 

Mo 0.24 

Na 60.60 

Ni 2.60 

Pb 2.40 

Si 51.40 

Ti 6.10 

V 0.84 

Zn 20.40 

1 All metal concentrations are total concentration of metals in µg per g TS, and all values in this table represent mean value of 

triplicate samples measured with standard deviation not shown. 
2 One volume of wheat straw was added to 1.5 volume of distilled water mixed with magnetic stirrer for one hour then 

measured for pH. 

9.2.2. Trace elements solution 

The composition of TE solution was prepared according to the recipe reported by (Zhang et 

al., 2012) as described in Synthetic trace element solutions (Section 4.1.4). The reactor 

concentration of the TEs (see Table 4-6) was chosen to simulate the approximate 

concentrations of measured TEs released from the mineral wastes such as incineration ash and 
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construction demolition waste that were recently supplemented to the AD of OFMSW 

(Chapter 4 and Chapter 6). On experimental start-up, reactors receiving TE supplements were 

given appropriate volumes of these stock solutions to achieve the designed concentration of 

each TE in the reactor (Table 4-6).  Although reactors were fed daily with organic feedstocks, 

the TE concentration was maintained every 5 days by adding an appropriate amount of each 

stock solution to match the volume of feed added, and digestate removed, over that period. 

The reactors receiving TEs received the same amount of the TE solution on each addition. 

9.2.3. Reactor start-up and operation 

9.2.3.1. Biomethane potential tests 

Biomethane potential (BMP) tests for each of the SOW and the WS substrates were carried 

out separately with the same inoculum used for the continuous trials (CSTRs) to find the 

individual potential methane yields from the substrates. The potential methane yields of the 

SOW and WS combinations (25% or 50% WS/SOW co-digestion) was then inferred 

mathematically. The BMP tests conducted according to a standard method (VDI, 2006b) as 

described in Biomethane potential (BMP) reactors (Section 4.3.1). The inoculum to substrate 

(SOW or WS) volatile solid (VS) mass ratio was 2:1. 

9.2.3.2. Continuous digestion trials 

Six continuously stirred anaerobic reactors (CSTRs) of 1L working volume were employed 

for continuous digestion trials. The CSTRs were operated at a mesophilic temperature (37oC) 

over a period of 100 days (five HRTs of 20 days). An HRT of 20 days was chosen based on 

results of previous studies (Chapter 6) which studied the AD of a similar substrate. The 

startup of CSTR and inoculum was similar to that described in Continuous stirred tank 

reactors (CSTRs) of Section 4.3.2. The CSTR were fed with three successive OLRs 1, 2 and 4 

g VS/L. d. The six reactors were designated: SOW (fed with SOW only (C/N = 13.6)); SOW-

TE (fed with SOW and supplemented with TEs (C/N = 13.6)); SOW-25WS (fed with 75% 

SOW and 25%WS (C/N = 30.5)); SOW-25WS-TE (fed with 75% SOW, 25%WS and TEs 

(C/N = 30.5)); SOW-50WS (fed with 50% SOW and 50%WS (C/N = 47.5)) and; SOW-

50WS-TE (fed with 50% SOW, 50%WS and TEs (C/N = 47.5)). 

9.2.4.  Analytical methods 

Biogas produced from each reactor was collected in a five-litre gasbag (Tedlar, VWR). Each 

day gasbags were disconnected, biogas volume measured, emptied with samples of biogas 
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from each reactor analysed for biogas composition (CH4 and CO2) by gas chromatography 

(GC). All analytical methods were similar to those described in Chapter 4. 

9.2.5.  Microbial community analysis 

Microbial community analyses were performed for the inoculum (before the acclimation 

period) and digestates; samples for the later were collected from the reactors on days 20, 40, 

50, 60, 80 and 100. DNA extraction, Real time quantitative PCR (qPCR) and 16S rRNA gene 

sequencing analyses are described in Microbial analysis (Section 4.5). 

9.2.6. Statistical analysis 

Coefficients of Pearson’s bivariate correlations for measured reactor parameters and 

performances (replicate values per HRT per reactor were obtained for methane yields, 

methane production, COD, F420, and VFA etc.) were conducted in SPSS (version 23.0). One-

way ANOVA analysis was conducted in R (R, 2013) to compare the abundance of bacteria 

and archaea (from qPCR and Illumina analyses) between reactors (SOW, SOW-TE, SOW-

25WS, SOW-25WS-TE, SOW-50WS, SOW-50WS-TE) . All figures were produced in R (R, 

2013). Figures of microbial composition (Beta diversity) and Local Contributions of Beta 

Diversity ((LCBD); is a comparative indicator of the degree of the uniqueness of digestate 

samples in terms of community composition)) were produced using MicrobiomSeq package 

in R (Ssekagiri et al., 2017). Alpha diversity (the variation in species composition among the 

reactors) indices (Chao1, Shannon and Simpson) were calculated then visualised using 

phyloseq package (McMurdie and Holmes, 2013b) in R. 

9.2.7.  Determination of the relative fluorescence intensity of F420 

The relative florescence intensity (RFI) of coenzyme F420 in digestates was determined 

according to F420 analysis (Section 4.4.6). For each reactor three separate samples of digestate 

at different periods of HRT were analysed (~ 15 samples per rector during 100 days). 

9.3. Results and discussion 

9.3.1. The relative effects of trace element supplementation and co-digestion on the 

performance characteristics of CSTRs  

Three distinct periods of CSTR performance were observed during the current study (Figure 

9-1). During the first period (day 1- 20) all reactors operated satisfactorily. During the second 

period (day 21- 60) all reactors without TE showed progressively declining performance and 
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failure (between day 41- 60), while TE supplemented reactors continued with stable methane 

yields.  During the third period (day 60 - 100) TE supplemented reactors showed stable 

methane production and yields, even when the OLR was increased to 4 g VS/L. d between 

day 80 - 100. An overall conclusion that can be drawn from these results is that under an 

equivalent set of AD operating conditions, TE supplementation was effective as a single AD 

enhancement strategy, while co-digestion with wheat straw was not. 

A more forensic analysis of the reactor characteristics mechanistically explains the positive 

impact of TE addition. Between day 1 to 20 (OLR of 1 g VS/L. d) the reactors showed similar 

performances in terms of biogas production, methane yield, pH and F420 content. During this 

period, the average methane yields were 80 - 100% of those achieved in BMP tests (Figure 

9-2). However, between day 20 and 40 (OLR = 1 g VS/L. d) the methane production 

performance of the reactors started to diverge, with volatile fatty acids (VFA) gradually 

accumulating in the SOW and SOW-50WS reactors (Figure 9-3). For instance, acetate and 

propionate showed sharp increases in these control reactors which did not receive TE; the 

varied timing of these increases coincided with reactor declines in methane production 

(Figure 9-1). This VFA accumulation (~ 1700 mg/L on day 40) consumed most of the 

alkalinity in the SOW and SOW-50WS reactors and pH decreased from 7.2 ± 0.1 on day 30 to 

less than 5 ± 0.2 on day 43 (Figure 9-1), resulting in inhibition of methane production and 

failure of SOW and SOW-50WS reactors by day 43 (Figure 9-1). The SOW-25WS reactor, 

which also operated without TEs, showed a better performance up to day 60. However, when 

the OLR was increased to 2 g VS/L. d on day 60, methane production from this reactor also 

declined rapidly and the VFA concentration increased to 2360 mg/L, with a pH drop to ~ 5.8 

(Figure 9-3 and Figure 9-1). 

In contrast to the control reactors no decline in methane production was observed in the 

reactors supplemented with TEs (SOW-TE, SOW-25WS-TE and SOW-50WS-TE), and, 

furthermore, methane production rates increased consistent with increases in OLRs (Figure 

9-1). Methane yields obtained from SOW-TE, SOW-25WS-TE and SOW-50WS-TE were 

close to methane yields obtained in the BMP trials (Figure 9-2). Throughout the 100 days of 

reactor operation, these three reactors showed stable digestion with  methane yields of 450 - 

550 mL/g VS consistent with optimal methane yield values reported for OFMSW and/food 

waste (Angelidaki and Ellegaard, 2003; Angelidaki et al., 2006; Banks et al., 2011; Fdez.-

Güelfo et al., 2011; Elbeshbishy et al., 2012). Moreover, concentrations of the coenzyme F420, 

which is an essential cofactor only found in methanogens in anaerobic environments (Xu et 

al., 2014; Madigan, 2015) and thus considered a reliable measure of methanogenic 
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populations and activities (Reuter et al., 1986; Greening et al., 2016), increased 

commensurately with increases in methane production rates (Figure 9-1) in all the TE 

supplemented reactors. Statistical analysis showed that F420 fluorescence correlated very well 

with methanogenic activity (Table 9-2), confirming its suitability as parameter to gauge 

methanogenic activity (Dolfing & Mulder 1985). 

The satisfactory performance of all reactors during the start-up implied that sufficient levels 

of nutrients (micronutrients such as Fe, Co, Ni and Mo and macronutrients such as Na, K, Ca 

and Mg) and alkalinity were likely present in the start-up inoculum (Table 9-1). The 

subsequent decrease in the performance of SOW, SOW-25WS and SOW-50WS (all without 

TE addition) on day 20 and onwards was obvious was therefore presumably related to the 

dilution of the TEs in these reactors due to the daily discharge of digestate and feed addition. 

Focusing specifically on alkalinity, its origins and relationship to TE, Figure 9-3 shows that 

despite increasing the OLR to 2 g VS/L. d (day 40 - 60) and 4 g VS/L. d (day 80 – 100), 

alkalinity tended to increases in TE amended reactors (SOW-TE, SOW-25WS-TE and SOW-

50WS-TE). However, the highest alkalinity and NH3-N concentrations were in the SOW-TE 

amended reactor (3 - 5 g/L and 1.25 g/L respectively on day 100), while lower alkalinity and 

corresponding lower NH3-N concentrations were observed in the SOW-25WS-TE and SOW-

50WS-TE reactors. This pattern suggests that increases in alkalinity in TE supplemented 

reactors was most likely related to microbially enhanced NH3-N release from the SOW 

substrate, and that this enhanced release is linked to bacterial growth and activity. Certainly, 

the total number of bacteria (estimated from 16S rRNA gene abundances; Figure 9-4) in 

reactors with TE supplementation increased with increases in the OLR and there was a highly 

significant (p < 0.01) strong (R = - 0.78) negative correlation between reactor NH3-N 

concentrations and the C/N ratio of the substrate feed. However, it is worth noting here that 

despite observed differences in NH3-N, with higher levels associated with decreasing inputs 

of WS, these levels never exceeded the 2 g/L considered inhibitory for AD (Chen et al., 

2016). Non-inhibitory levels of NH3-N were supported by the observed maximal biogas 

production in all these TE amended reactors, however, differences in NH3-N may have 

affected archaeal community selection, stability and dominant methanogenic pathways (see 

below). 

Alkalinity and NH3-N and their relationship to process stability and TE supplementation are 

however only two of a number of possible impacts of TE. For instance, in AD to ensure a 

stable digestion processes, most of the VFA produced by acidogenic and acetogenic bacteria 

at the fermentation stage need to be consumed by acetogenic bacteria in syntrophy with 



183 

 

methanogenic archaea (Zheng et al., 2015). Previous studies have highlighted the importance 

of TE for VFA degradation (Jiang et al.; Karlsson et al., 2012) and considered TE deficiency 

as the main cause of failure (Chen et al., 2008; Gu et al., 2014). In the current study, the total 

number of bacteria (estimated from 16S rRNA gene copies; Figure 9-4) in reactors with TE 

supplementation demonstrably increased with increases in the OLR, however, intriguingly 

increases in the total number of methanogenic archaea occurred essentially only between day 

0 - 40. Thereafter archaeal numbers in the TE reactors remained approximately constant 

which suggests that later increases in methane production with higher OLRs were actually 

linked to higher archaeal metabolic activities of individual cells sustained by TE rather than as 

a result of TE supported growth. Corroborative evidence of different individual archaeal cell 

activities is provided by the initial low OLR feeding regimen. Here no accumulation of VFA 

occurred in the TE supplemented reactors but did in the TE free reactors (Figure 9-3), despite 

an equal number of archaeal methanogen cells and, indeed, similar RFI values.



184 

 

Table 9-2. Pearson correlation analysis of measured parameters and reactor performances for the data obtained from the six CSTRs at 37oC. 

 HRT OLR C/N Y MP F420 
16S 

rRNA 
mcrA pH 

total 

VFA 
COD CH4% TE TAN 

Y -.089 .102 -.569
**

 1           

MP .698
**

 .867
**

 -.189 .438
*
 1          

F420 .509
*
 .587

**
 -.312 .573

**
 .761

**
 1         

16S rRNA .550
**

 .732
**

 .308 .102 .670
**

 .386 1        

mcrA .678
**

 .738
**

 .250 .102 .650
**

 .214 .759
**

 1       

pH -.474
*
 -.259 -.102 .588

**
 .167 .145 .146 .030 1      

total VFA -.347 -.280 -.098 -.345 -.450
*
 -.353 -.478

*
 -.570

**
 -.405 1     

COD -.196 -.039 .066 -.241 -.144 -.299 -.324 -.248 -.318 .750
**

 1    

CH4% -.174 -.057 -.097 .567
**

 .339 .221 .200 .214 .726
**

 -.625
**

 -.370 1   

TE 0.000 0.000 0.000 .616
**

 .485
*
 .431 .471

*
 .531

*
 .399 -.800

**
 -.494

*
 .524

*
 1  

TAN -.147 .076 -.777
**

 .687
**

 .312 .488
*
 -.155 -.247 .310 .188 .125 .150 .068 1 

TS .466
*
 .710

**
 .396 .013 .619

**
 .215 .896

**
 .728

**
 .041 -.301 -.015 .213 .362 -.194 

VS .596
**

 .751
**

 .411 -.089 .619
**

 .198 .879
**

 .773
**

 -.093 -.345 -.060 .167 .339 -.308 

*Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). Positive and negative correlations with significant are highlighted in dark-green and dark-

red respectively. Lower and lowest positive and negative correlations are highlighted in lighter and lightest green and red respectively. MP = methane production rates, Y = Methane yield and TE = trace 

elements.
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Figure 9-1. Performance profile of six CSTR systems at mesophilic 37oC and three organic loading 

rates (OLR) of 1, 2 and 4 gVS/L. d. (A) daily methane production, (B) methane yield, (C) pH, (D) 

relative florescence intensity of F420 in digestates. The values for pH and relative fluorescence 

intensity are mean values of triplicate samples with standard deviations (not shown). 
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Figure 9-2. Measured methane yields from the 6 CSTR systems in comparison with theoretical 

methane yields calculated from the individual biomethane potential (BMP) tests carried out separately 

on the individual SOW and WS substrates. The BMP x-axes therefore refer to BMP values (mL CH4/ 

g VS) obtained from the batch reactor BMP tests, whereas the bars on days 20, 40, 60, 80 and 100 

show mean biomethane potential values per 20 day periods of CSTRs operation. The error bars 

represent standard deviations of the mean values.
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Figure 9-3. Variations in total VFA, total alkalinity, total ammonia nitrogen, acetate and propionate 

with time in six CSTR systems fed with six different substrate compositions at mesophilic temperature 

37oC. The values are mean values of duplicate digestate samples with standard deviations (not shown).  
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9.3.2. Microbial community diversity analysis based on 16S rRNA sequence libraries 

The average number of reads in individual 16S rRNA sequence libraries after quality filtering 

was 7,074,589 ranging from 96,867 sequences in the smallest library to 265,689 sequences in 

the largest. However, individual libraries were rarefied for comparative analysis. Sequences 

have been deposited in the Mendeley Data repository and can be accessed at 

http://dx.doi.org/10.17632/6wnfvkz6gb.1. Pipeline analysis of sequence libraries identified a 

total of 609 bacterial taxa (accounting for ~ 96% of sequence reads) and 24 archaeal taxa (~ 

4% of sequences reads) which is broadly consistent with the numerical dominance of bacteria 

over methanogenic archaea identified by qPCR assays. A high number of bacterial sequences 

were not taxonomically assignable below family level and therefore taxonomic based 

bacterial composition analysis (as opposed to ASV clustering metrics) are presented in this 

manuscript at the family level with finer taxonomic resolutions indicated where appropriate. 

In contrast, archaeal sequences were all assignable to the genus level. 

A comprehensive sampling strategy was adopted in this study to assess impacts on microbial 

communities as a function of time and generic reactor operation as well as individual reactor 

conditions. For instance, diversity represented by Chao1 richness (Chao1), Shannon-Weaver 

(Shannon), and Simpson diversity indices showed a marked and progressive reduction for 

both bacterial and archaeal domains as a function of time irrespective of reactor feed (Figure 

9-5). This general diversity decline was in all cases clearly the result of the selection, after 

startup, of a small number of taxa commonly observed in anaerobic digesters (see below). 

This selective enrichment is entirely consistent with other AD studies which have investigated 

start-up (e.g. (Alcántara-Hernández et al., 2017)) and long term reactor operation (e.g. (Jia et 

al., 2016)). The specific bacterial and archaeal compositional changes observed and the insights 

drawn from them are described and discussed in the following two sections. 

9.3.2.1. Bacterial community composition and dynamics 

Sequence types related to seven different families variably dominated the bacterial 

communities of the reactors: Ruminococcaceae, Spirochaetaceae, Synergistaceae, 

Cloacimonadaceae, Dysgonomonadaceae, Rikenellaceae and Kosmotogaceae (Figure 9-6 and 

Figure 9-7). These bacterial families are, as mentioned above, common constituents of 

anaerobic digesters and their selection is consistent with the complexity of the food waste 

based reactor feed as indicated by the environmental source and function of the cultured and 

uncultured close relatives (Figure 9-8). For instance, the family Ruminococcaceae are known 

fermenters. Despite their eponymous title, their role in AD (including the genera 
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Fastidiosipila and Ercela present in the reactors, see Figure 9-7 and Figure 9-8) is widely 

documented and linked to the cellulolytic digestion of plant fibres (Ziganshin et al., 2013), 

specifically, the degradation of hemicellulose (van Gelder et al., 2014; Pandit et al., 2016; Cai 

et al., 2018). Likewise, the Spirochaetaceae are ubiquitous in anaerobic digestion systems 

where they participate in methanogenic-syntrophic partnerships e.g. taxa related to the genera 

Treponema (Poirier et al., 2016) and Spirochaetes (Lee et al., 2018) both of which were 

present in the reactors. This family is sometimes associated with lignocellulose hydrolysis 

(Pandit et al., 2016).  Synergistaceae as common AD constituents (Riviere et al. (2009a) are 

associated with acidogenesis, the degradation of amino acids (Riviere et al., 2009a), and 

carbohydrates (Godon et al., 2005). Likewise, Cloacimonadaceae are also ‘known (or 

suspected) to be’ anaerobic mesophilic acetogens. Constituent genera such as Candidatus 

Cloacimonas (present in the reactors) are known to be involved in syntrophic partnerships via 

hydrogen generation from the fermentation of carbohydrates and proteins in mineral rich 

anaerobic reactors (Riviere et al., 2009a). Moreover, Cloacimonadaceae are known as 

homoacetogens (Lee et al., 2018). Dysgonomonadaceae (Fermentimonas) and Rikenellaceae 

(DMER64) (see Figure 9-7) have both been previously documented in food waste AD 

digesters (Lee et al., 2018). Dysgonomonadaceae are known as a degraders of various 

polysaccharides (Murakami et al., 2018) and can be associated with the enrichment of the 

methanogenic genus Methanosarcina which is known to be a metabolically more versatile 

and robust archaeal genus in AD (see below). The co-enrichment of Dysgonomonadaceae and 

Methanosarcina was supported in this study based on a significant (p = 0.013, albeit weak 

(R= 0.427) correlation of these two groups in the reactors. Finally, the family Kosmotogaceae 

(specifically, the genus Mesotoga, see Figure 9-8 and Figure 9-9) has been implicated in the 

oxidation of sugars including cellobiose and xylose produced from the hydrolysis of cellulosic 

biomass during the anaerobic digestion of cow-grass (Lee et al., 2018). 

At day 40, the dominance of these different bacterial groups in the three reactors with or 

without TE addition were remarkably similar to each other, but clearly different to the original 

inoculum, suggesting their selective enrichment during AD without any influence from 

variations in TE supply or WS co-digestion. Some of these enriched taxa were consistently 

present and retained in all the reactors for the duration i.e. the Dysgonomonadaceae, however, 

the abundance and long term stability of others were tentatively attributable to differences in 

WS%. For instance, at 40 days the dominance of Spirochaetaceae apparently increased with 

the presence and increasing amount of WS. In contrast, the relative abundance of the enriched 

Cloacimonadaceae was comparatively lower. Furthermore, by days 80 and 100 the SOW-TE 
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and SOW-25WS-TE reactors were dominated by ~ 55% Cloacimonadaceae supporting the 

selection of this family at lower WS%. Conversely, the Synergistaceae were still a dominant 

(~ 40%) component of the bacterial communities in the SOW-50WS-TE reactor along with 

the families Rikenellaceae and Kosmotogaceae (Figure 9-6, Figure 9-7, Figure 9-8 and Figure 

9-9). 
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Figure 9-4. Variations in archaeal mcrA gene (A) and bacterial 16s RNA (B) abundances derived 

copies from qPCR analysis. Days after SOW, SOW-25WS and SOW-50WS reactor failure were not 

analysed. 

(B)  

(A)  
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Figure 9-5. Alpha diversity of microbial community (both bacteria and archaea) in relation with feed 

composition and time (the numbers on the x-axis denote days and Ino. = inoculum) in six AD reactors 

digested a synthetic organic waste as mono substrate or co-digested with wheat straw with/without 

trace element supplementations. 
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 Figure 9-6. Beta diversity of microbial community taxa in relation with feed composition and time on 

day 0 (Ino. = inoculum), day 40, day 80 and day 100 in six AD reactors which digested a synthetic 

organic waste as mono substrate or co-digested with wheat straw with/without trace element 

supplementations. The acetoclastic methanogen Methanosaeta was the most abundant genus in the 

reactor with trace elements added and 50% wheat straw codigestion, while in the reactor without 

wheat straw codigestion and 25% wheat straw co-digestion the hydrogenotrophic methanogens were 

the most abundant archaeal genera. ((A) bacteria represented by the15 most abundant families and (B) 

archaea represented by the 13 most abundant genera). Families and genera with lower abundances are 

combined in “Others”.  

(A) 

(B) 
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Figure 9-7. Beta diversity of microbial community taxa in relation with feed composition and time 

(the numbers with x axis texts denotes days and Ino. = inoculum) in six AD reactors digested a 

synthetic organic waste as mono substrate or co-digested with wheat straw with/without trace element 

supplementations (bacteria highest 16 families and archaea highest 13 genera). The bacterial families 

and archaea genera below these limits and with lower abundances are combined in “other”. 
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Synergistaceae 9b8f3b664ad5089bd42eb98bfe250255

LT624783 isolate OTU_830 Anaerobic digestion

EU834077 clone 16Sb18 anaerobic swine waste treatment lagoon

NR_113331 Aminivibrio pyruvatiphilus strain 4F6E

GU211165 clone ZodOTU53-D05 Anaerobic reactor

NR_117755 Mesotoga prima MesG1.Ag.4.2 strain mesG1.Ag.4.2 Harbour sediment

Kosmotogaceae (Mesotoga) ce3ed47787b64770351bdb502776d1ed

MH154212  clone AD38 methanogenesis of high-solids food waste

LN849546 clone BKA085 mesophilic lab-scale biogas reactor

LT625359 Uncultured Fastidiosipila sp. isolate OTU 459 Anaerobic digestion

Ruminococcaceae (Fastidiosipila) 3cbec4a2a4f3ba6b272b992a4d2a7994

HG003577 Ercella succinigenes ZWBT clone 10 (T) biogas desulfurization bioreactor

Ruminococcaceae (Ercella) 158b345c649e8146714925da689a3d3b

MH892688 Uncultured Ruminococcaceae clone ZOTU1387 wastewater

Spirochaetaceae (Treponema) b0982e719143ac15bd50f218d9a60b99

LT624717 Uncultured Treponema sp. isolate OTU_760 Anaerobic Digestion

NR_104849 Treponema pectinovorum strain VPI D-36-DR-2

AY800103 Spirochaeta sp. MET-E  oil field

LN850395 isolate PSb022 biogas reactors

Spirochaetaceae (Sphaerochaetae) 7ce305006d54df691adc5a7ff7c43e8

KX826987 Spirochaetaceae bacterium strain MSP8-1-8b mesophilic laboratory-scale CSTR

Cloacimonadaceae (W5) D3c03d5fa163bf37a07fe2ea79aa86961

FN563246 clone HAW-RM37-2-B-1017d-I mesophilic biogas digester

KM586267 clone ATB7-6 sludge exposed to phenol

KJ535434 Cloacimonetes bacterium JGI 0000059-L07 methanogenic bioreactor

Rikenellaceae (DMER64) b6f6a9ba28685f95d066a7c4b023aeaf

LT624762 Uncultured Bacteroidetes bacterium isolate OTU_808 Anaerobic digestion

KX815441 strain BB9 pharmaceutical effluent

MG854243 Uncultured prokaryote clone Otu02135 rice straw and dairy manure anaerobic co-digestion

LT624042 Uncultured Porphyromonadaceae bacterium isolate OTU_48 Anaerobic digestion

Dysgonomonadaceae (Fermentimonas) 56ee84a962f5661d03965af4bed96cc9

NR_148809 Fermentimonas caenicola strain ING2-E5B mesophilic lab-scale biogas reactors
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(A) Bacteria

MH734864 Uncultured bacterium clone ALM-360-143 alginate degradation in AD

Methanoculleus 604b841bcd99f78712d361f013e35b7a

NR_028253 Methanoculleus palmolei strain DSM 4273 anaerobic digester treating wastewater of a palm oil plant

LT624828 Uncultured Methanoculleus sp. isolate OTU_28 anaerobic digestion

NR_042786 Methanoculleus bourgensis MS2

NR_074177 Methanospirillum hungatei JF-1

Methanospirillum 09493dd2b29a6447da14cf6cba23de50

KP065489 clone 335 food waste anaerobic digestion

FN547108 clone HAW-RM37-2-A-1209d-K mesophilic biogas reactor

Methanosarcina ebbd63728bfd1072c616fff65878eb45

NR_118371 Methanosarcina barkeri strain MS

NR_148758 Methanosarcina flavescens strain E03.2

LT624912 Uncultured Methanosarcina sp.  isolate OTU_291 Anaerobic digestion

KY123355 Uncultured Methanobacterium sp. clone 14 biogas in the bioreactor

KR013295 clone arcOTU_8 anaerobic digester

Methanobacterium 761f74401493f4968db630e9211538e9

NR_113045 Methanobacterium ferruginis strain Mic6c05

NR_028242 Methanothrix soehngenii strain Opfikon

KM408635 Methanosaeta concilii strain X16932 anaerobic granules

Methanosaeta 532f639f6994693c59de284671178eed

LT546320 clone 013-A2-IB25475 biogas reactor

KF198649 Uncultured Methanosarcinales clone QECF1ZE091 anaerobic sludge digester
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 Figure 9-8. Phylogenetic distance tree (Neighbour-Joining) of key AD reactor bacterial / and archaeal 

taxa and close relatives (left) and, plots of the fractional abundances of these taxa in individual reactor 

sequence libraries (right). The tree is based on comparative analysis of selected partial 16S rRNA 

sequences recovered from the anaerobic reactors at day 0, 40 and 100 and indicated by individual 

codes assigned during pipeline analysis. The percentage of replicate trees in which the associated taxa 

clustered together in bootstrap analysis (1000 replicates) are shown next to the branches. The analysis 

involved 252 nucleotide positions. 
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Figure 9-9. Relative abundance of key AD reactor archaeal (A) and bacterial (B) taxa in individual 

reactor sequence libraries. Substrate compositions changed the archaeal and bacterial compositions 

and their abundances with time. The figures are based on 16S rRNA sequences recovered from the 

anaerobic reactors at day 0 (Ino.), 40 and 100. The x-axes show reactors and sampling days. Ino. = the 

inoculum which was used to start up the 6 reactors.

(A) (B) 
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9.3.2.2. Archaeal community composition and dynamics  

In AD, microbial communities develop in response to the availability of nutrients including 

trace metals (Wintsche et al., 2016; Li et al., 2018; Koo et al., 2019; Mao et al., 2019) and the 

presence of inhibitors such as high concentrations of VFA (Karlsson et al., 2012), heavy 

metals (Chapter 6) and ammonia (Principi et al., 2009). The methanogenic archaea are often 

considered particularly sensitive to such parameters (Demirel, 2014) which is supported in the 

current study, whereby, in comparison to the bacteria, more indicative and interpretable 

changes in community composition occurred (Figure 9-6). Archaeal communities of the 

inoculum and the six reactors sampled at different time points were mainly dominated by 

sequence types related to just five archaeal genera: Methanosarcina, Methanospirillum, 

Methanosaeta, Methanobacterium and Methanoculleus consistent with the core archaeal 

microbiome of anaerobic digestion (Riviere et al., 2009a). In the start-up inoculum the 

archaeal acetoclastic methanogenic genus Methanosaeta dominated (~ 40% of sequences) 

along with, to a lesser extent, the hydrogenotrophic Methanoculleus, Methanobacterium and 

Methanoplasma but by day 40, the six reactors had changed. 

A key feature of this community shift was the universal enrichment of the metabolically more 

flexible methanogen Methanosarcina. However, while Methanosarcina was dominantly 

maintained in the 0 and 25%WS + TE amended reactors with successively higher loading 

rates; the Methanosaeta recovered and remained remarkably stable in the reactor with 50% 

WS + TE. These results suggest, given that Methanosaeta had a significantly positive (p < 

0.05) correlation with the C/N ratios in the reactor feeds, that co-digestion with WS% was 

responsible for Methanosaeta stability and retention. Such selection with respect to feeding 

regimen has been reported previously. For instance, Conklin et al. (2006) found that 

infrequent (daily) and hence overload feeding of a mesophilic AD reactor increased the 

dominance of Methanosarcina while hourly feeding enriched for Methanosaeta. These 

authors concluded that selection for Methanosarcina resulted from their ability to cope with 

periodic increases in acetate. However, high concentrations of acetate and VFA in general 

were apparently not important in the current study as these were all maintained at similarly 

low levels in the three sturdy TE reactors. As described above, one consistent measured 

difference between the more stable Methanosaeta dominated 50%WS + TE reactor and the 

other two reactors was the level and variation in NH3-N concentrations (Figure 9-3) and their 

likely impact on community or pathway selection. Of particular relevance is the recent study 

of Chen et al. (2016) on the effects of ammonia on the semi-continuous anaerobic digestion of 

food waste which found that added ammonia inhibited methanogenesis but minimally affected 
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bacterial hydrolysis and acidification. Critically, in this study levels of NH3-N at 2 g/L 

gradually led to reactor failure but also shifted the dominance of Methanosaeta and 

acetoclastic methanogenesis towards a dominance of hydrogenotrophic methanogens 

(Methanobacterium and Methanospirillum). This selection for hydrogenotrophic 

methanogenesis at higher ammonia concentrations in mesophilic reactors is well documented 

(e.g. (Schnurer and Nordberg, 2008)). In the current study, none of the three long term 

reactors had ammonia levels as high as those imposed by Chen et al. (2016) and all three 

maintained maximal reactor performance as a result of TE addition. However, there was a 

clear dominance of the facultatively hydrogenotrophic Methanosarcina and the obligately 

hydrogenotrophic Methanospirillum in the SOW only + TE and 25WS% + TE reactors in 

which NH3-N levels were typically higher suggesting a community selection effect even at 

these NH3-N levels. Methanospirillum (Ferry et al., 1974) are commonly found in anaerobic 

bioreactors treating organic wastes (e.g. (Padmasiri et al., 2007; Krakat et al., 2010)). 

9.3.3. The metabolic flexibility of Methanosarcina (inferred from RFI measurements) as a 

function of WS co-digestion  

In the more stable 50% WS + TE amended reactor the overall contribution of putatively 

acetoclastic (Methanosaeta) and hydrogenotrophic (Methanospirillum) methanogens to 

biogas production was in balance for the period of reactor operation at successively higher 

loading rates. This balance cannot, however, be assumed in the other reactors given the 

common dominance of Methanosarcina which, in addition to a documented greater tolerance 

for environmental parameters such as high VFA, pH or ammonia (De Vrieze et al., 2012), can 

be both acetoclastic, hydrogenotrophic and even methylotrophic. To help resolve potential 

differences in methanogenic activities in the reactors we examined in more detail variations in 

coenzyme F420 levels based on fluorescence at 420 nm (RFI) which is typically considered 

indicative of overall methanogenic activity (Figure 9-10). A critical ecophysiological 

characteristic of coenzyme F420 in methanogens is that its level is higher in hydrogenotrophic 

than in acetoclastic methanogens (Dolfing and Mulder, 1985; Reynolds and Colleran, 1987; 

Poorter, 2005) because acetoclastic methanogenesis is mediated by different enzymes 

(Greening et al., 2016). In this context, we analysed the individual relationship between 

fluorescence (RFI) and methane production rates in each of the three long term stable (TE 

amended) reactors (Figure 9-10). Intriguingly, slopes for the 25%WS +TE and 50%WS + TE 

reactors were essentially the same and higher than found for the TE only reactor, indicating 

that hydrogenotrophic methanogenesis was dominant in the latter (more F420 was needed for 

the same rate of methanogenesis) while acetoclastic methanogenesis was more important in 
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the two co-digesting reactors. This data independently supports the conclusion drawn from 

community analysis through the dominance of Methanosaeta, that acetoclastic methanogens 

made up a significant part of the methanogenic community in the 50%WS + TE reactor. 

Interestingly, however, these observations also allow us to speculate that in the 25%WS + TE 

reactor, the Methanosarcina, functioned as acetoclastic methanogens. In contrast, when 

Methanosarcina dominated in the TE only reactor they likely functioned as hydrogenotrophs, 

a shift in activity which is indicative of the subtle effects that WS co-digestion had on these 

AD reactors. 

 

Figure 9-10. Relationship of co-enzyme F420 levels in reactor digestates with methane production in 

reactors with trace elements added. The labels (numbers) next to the scatter points are the collection 

days of samples from reactors. The reactors without co-digestion and low wheat straw co-digestion 

(25%WS) which had highest hydrogenotrophic methanogen abundances showed highest relative 

florescence intensity of co-enzyme F420 compared to the reactor with 50% wheat straw co-digestion 

which had a highest acetoclastic methanogen abundance. 
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9.4. Conclusions 

Co-digestion and trace element supplementation are strategies known to affect reactor 

performance of easily digestible organic material such as the organic fraction of municipal 

solid waste. In the present study, involving a parallel, long term operation of reactors with and 

without trace element supplementation and addition of wheat straw as co-substrate we have 

been able establish the relative merit of these two strategies, and evaluate their link to 

community composition and operational stability. 

Interestingly, and significantly, trace element addition was an absolute requirement for the 

long-term operational stability of the reactors, both with and without addition of wheat straw 

as co-substrate. Without trace element addition reactors failed after about two months: pH 

dropped and methane production stopped, indicating that trace element limitation first and 

foremost affected the methane producers. In the reactors that had been supplemented with 

trace elements as well as wheat straw loading rates of up to at least 4 kg volatile solids 

/m3.day were consistently digested to methane for well over three months. The microbial 

population in these reactors was affected by the ratio between OFMSW and wheat straw. 

More wheat straw not only increased methane production but also resulted in a more diverse 

community and a shift in the physiology of the Methanosarcina population from 

hydrogenotrophic to acetoclastic methanogenesis. The findings of this study are valuable for 

the development of anaerobic digestion as a sound technology for the stabilisation of the 

organic fraction of municipal solid waste. For this technology to be viable, it needs to be 

robust and cheap. We show that this technology is robust as long as trace elements are 

provided, and that the process can be run cheaply in that the whole digestion process can be 

run in one single reactor with energy recovery from biogas as an additional “plus”. The 

current intense discussions about global warming emphasizes the need for production of 

renewable energy; biogas from the organic fraction of municipal solid waste fits in this 

paradigm.
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Chapter 10. Conclusions and recommended future work 

10.1. Conclusions 

This thesis studied the effects of integrating four MW (IBA, CBW, FA and BA) from MSWI 

plants, and a CDW into the AD of OFMSW to enhance process stability and increase the 

methane productivity of anaerobic digesters. Amendment of MW at 1 g MW/g VS provided 

the optimum AD performance, producing biogas with 60 - 70% methane volume percentages 

in the produced biogas and increasing the total methane production by 25 - 45%. Analysis of 

VFA and COD, as well as kinetics analysis, showed that MW amendments had substantial 

effects on hydrolysis and acidogenesis without inhibitory effects on methanogenesis. 

The feasibility of using such MW as additives to promote the AD of OFMSW was 

investigated by determining the physicochemical characteristics of the MW, the inoculum for 

reactor startup, and the synthetic organic waste (SOW) feedstock, after which AD 

experiments were performed using both batch reactors for biomethane potential (BMP) 

experiments, and CSTR systems for continuous experiments.  

The BMP experiments (Chapter 5 and Chapter 7) showed that MW could be integrated into 

the AD of OFMSW to provide moderate alkalinity, maintain pH at optimal levels (6.2 - 7.5), 

enhance the hydrolysis of organic matter, and consequently promote biogas production and 

methane yield. Moreover, the BMP experiments showed that despite the presence of relatively 

high concentrations of trace and heavy metals in the raw MW, under mesophilic AD 

conditions, the leaching of heavy metals from most of the MW was very low and not 

inhibitory to microorganisms. Three of the four MW used in this study (IBA, CBW and BA), 

had positive effects on the methane production kinetics and the specific growth rates of 

microorganisms. However, FA had only a minor effect on the kinetics of methane production 

and microbial growth rate, which was linked to the presence of high concentrations of heavy 

metals in FA compared to the other three MW (i.e. IBA, CBW and BA).  

Three CSTR experiments were performed that used co-digestion of the OFMSW and mineral 

wastes using both liquid-recycled (LRFM) and draw-and-fill (DFFM) feeding methods 

(Chapter 6); pre-treatment of the OFMSW and mineral wastes at 37oC then AD at mesophilic 

temperature (37oC) (Chapter 7); and integration of MW-extracts into two-stage mesophilic 

AD of the OFMSW (Chapter 8), to assess how the reactor performance (methane production 

rate and yield, and process stability) and microbial ecology and function changed under 

different integration methods for combining the MW and OFMSW. All three CSTR studies 
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showed that the metals released from MW enhanced buffering capacity and microbial 

activities (metabolic/catabolic activities) in the AD reactors without producing 

inhibitory/toxicity effects. Moreover, LRFM was found to be the best feeding method for 

anaerobic co-digestion of OFMSW with MW. Results in Chapter 7 showed that pre-treatment 

of the OFMSW with MW at 37oC can enhance the limited positive effects of MW under 

DFFM. However, similar to the results obtained from the BMP experiments, any benefits 

observed with FA under all the CSTR treatment conditions were very limited compared to 

IBA, CBW and BA mineral wastes linked to high concentrations of some of the metals 

leached from the FA waste. The results obtained from integrating MW-extracts into a two-

stage CSTR experiments showed that the shock decrease in HRT from 20 days to 10 days 

affected methanogenic performance in the second stage (methanogenic) reactors, however, 

the methanogenic reactor which was amended with IBA mineral extracts, tolerated the high 

OLR and short HRT without any signs of failure, albeit with a lower methane yield at the10 

day HRT. The good performance of reactors amended with IBA was a general feature in this 

thesis linked to the metals present in this MW and the bioavailability of metals (within 

optimum levels for AD) under mesophilic conditions. All three studies showed that both 

feeding method and operation time had significant effects on the microbial diversity in the 

CSTR amended with or without the MW.  Moreover, at low TE concentrations, metabolic 

pathways were dominated by acetoclastic methanogenesis represented by Methanosaeta; at 

moderate TE-concentration, a balance between acetoclastic (Methanosaeta) and 

hydrogenotrophic (Methanobacterium and Methanospirillum) metabolic pathways was 

observed, whilst at high TE concentration the metabolic pathway shifted towards the 

hydrogenotrophic pathway with a predominance of Methanosarcina /and Methanoculleus. 

The fourth CSTR experiment was conducted with amendments of a pure (standard) TE 

solution and wheat straw as a co-digestion feedstock with the OFMSW. The results indicated 

that high reactor performance and microbial numbers, and good process stability at higher 

OLRs could only be maintained with TE supplementation, regardless of co-digestion with 

wheat straw. However, co-digestion was beneficial in reducing biological stress linked to 

lower ammonia; this condition was clearly observed from the dominance of both acetoclastic 

(represented by Methanosaeta) and hydrogenotrophic methanogens (such as 

Methanospirillum) in the co-digestion reactors.  Moreover, in this experiment the F420 levels 

in the digestate of reactors showed that Methanosarcina was metabolically the more versatile 

archaeal methanogen since it could follow both an acetoclastic pathway with 25% wheat 

straw, and a hydrogenotrophic pathway with no WS and highly elevated NH3 levels. 
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In summary, the broad conclusion from this thesis is that the integration of MW into the AD 

of OFMSW has two main cost benefits of commercial significance, better treatment of the 

OFMSW, and greater production renewable energy. These resulted from an improved 

performance of the microbial communities in the digesters caused by several factors, the main 

one being the release of TE from MW that improved the growth and activity of the 

methanogenic community. However, it was also shown that the different MW integration 

methods applied in this study could have further positive effects on methanogen community 

composition and stability, and hence enhance further the productivity and process stability of 

anaerobic reactors fed with the OFMSW. 

10.2. Future work 

Mineral wastes are readily available resources rich in trace and heavy metals that can be 

recovered for integration in AD systems. Further studies are possible and necessary to identify 

practically applicable technologies for integrating MW in full-scale AD systems. Most 

importantly, identifying novel systems for preparing MW, extracting minerals and nutrients, 

as well as developing technologies for amending the MW in digesters are essential. The 

effective sorting of the MSW at the source is the best way to achieve a high-quality feedstock 

for the AD of OFMSW according to the integration systems proposed in this thesis, thereby 

minimising the risk of excessive concentrations of contaminants in the digestate so that it 

could be used for land application as fertiliser or soil conditioner. Another method for 

obtaining optimal quality of the digestate requires other studies to be undertaken for 

controlling the quality and composition of the minerals which can be extracted from MW 

before their amendment into the AD reactor systems.  

The experiments in the current study were only conducted under mesophilic conditions, so it 

would be important for future studies to be conducted under thermophilic conditions and at 

varied HRT/SRT and mixing conditions to elucidate the changes in the concentration and 

composition of the minerals that can be released from or recovered from MW as the stability 

and especially the solubility of the metals from the wastes are likely to be very different. 

Depending on these results mathematical models could be developed to predict the 

relationship between the composition and concentration of minerals leached from MW under 

different feedstock characteristics (such as organic contents, pH, particles size and etc.) and 

reactor operation parameters (such as temperature, pH, mixing, reactor-stages and etc.) to 

ensure optimal reactor performance and process stability.  Moreover, the effects of MW 

amendments on the CO2 sequestration in anaerobic digesters could be studied as this must be 



204 

 

affected by the alkalinity provided by MW.  Furthermore, improved molecular biological 

analysis techniques could be conducted to monitor the methanogenic populations more 

quantitatively under different MW amendments and reactor operation parameters.  
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Appendix 

Table A-7-1. Measured parameters of digestate from anaerobic BMP assays 

Characteristics of digestate  

BMP  pH sCOD  TS  VS  VS/TS  FOS/TAC Total VFA  
Total 

alkalinity  

  (g/L) (g/L) (g/L) (%)  
(g/L) as 

acetate 
(g CaCO3/L) 

Control 7.5 2.9 10.1 7.3 72% 0.12 0.75 6.3 

FrTh 7.7 3.1 10.0 7.0 70% 0.11 0.68 6.2 

TP 7.8 2.7 10.5 7.3 69% 0.13 0.85 6.3 

TP-IBA 7.8 1.8 13.3 7.3 55% 0.11 0.76 6.7 

TP-CBW 7.9 2.4 13.7 7.0 51% 0.14 1.0 7.3 

TP-FA 7.6 2.6 14.3 7.0 49% 0.14 0.85 6.3 

TP-BA 7.8 2.4 14.5 7.3 50% 0.11 0.68 6.3 

TP-Alk 8.1 3.4 12.0 7.3 60% 0.13 1.0 7.8 

 

Table A-7-2. Estimated energy consumption for pre-treatment conditions. 

Pre-treatment time 

Incubator 

Energy (kwh)  

Incubator 

capacity (Kg) 

Energy 

consumpti

on (MJ/kg     

one hour pre-treatment 0.025 3 0.06     

12 hours pre-treatment 0.3 3 0.72     

110 hours pre-treatment 2.75 3 6     

  Methane Yield (M3/kg) 

HRT 

Pre-treatment 

time Control TP TP-IBA TP-CBW TP-FA TP-BA 

1 12 0.53 0.53 0.53 0.54 0.51 0.5 

2 12 0.49 0.50 0.51 0.48 0.41 0.4 

3 1 0.46 0.47 0.46 0.43 0.17 0.3 

4 1 0.37 0.28 0.46 0.49 0.15 0.4 

  Total  energy of OFMSW as methane (MJ/kg)   (*assume  CV CH4 = 40 MJ/M3) 

HRT 

Pre-treatment 

time Control TP TP-IBA TP-CBW TP-FA TP-BA 

1 12 21.3 21.0 21.2 21.8 20.2 20.1 

2 12 19.7 20.1 20.3 19.2 16.3 15.6 

3 1 18.6 18.7 18.5 17.1 7.0 12.3 

4 1 14.7 11.4 18.3 19.5 5.8 16.8 

  Net (MJ/kg)  (*assume  CV CH4 = 40 MJ/M3) 

HRT 

Pre-treatment 

time Control TP TP-IBA TP-CBW TP-FA TP-BA 

1 12 21.3 20.3 20.4 21.1 19.5 19.4 

2 12 19.7 19.4 19.6 18.5 15.6 14.9 

3 1 18.6 18.6 18.4 17.1 6.9 12.3 

4 1 14.7 11.3 18.2 19.4 5.7 16.7 

  % control   122% 130% 37% 112% 

  %TP   163% 174% 49% 149% 
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Figure A-7.1. Box-plot showing different parameters measured in CSTRs throughout 80 days (four 

measurements for each reactor i.e. one measurement per each HRT). P-values show one-way ANOVA 

analysis for the significance difference in the mean value of parameters between reactors.  
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Figure A-7.2. Box-plot and p-value of the difference in means using one-way ANOVA of the 

abundance of bacteria and archaea from qPCR in CSTRs throughout this study (A) between reactors; 

(B) between control, TP and TP-MW reactors and (C) between reactors with different pre-treatment 

times of the feedstock. PT_type = pre-treatment type of the feedstock (SOW) i.e. “Control” without 

pre-treatment. “TP” only pre-treatment without MW addition and “TP-MW” pre-treatment using MW 

addition.  PT_time = the pre-treatment time i.e. “Control” without pre-treatment, “12-Hour” = pre-

treatment for 12 hours and “1-Hour” = pre-treatment for one hour.

(A)  (B) 

(C) 

P = 0.069  P = 0.33  

P = 0.019  
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Figure A-7.3. Box-plot of mean values and p-values using one-way ANOVA for variations in the 

microbial growth and activity in CSTRs. The values are for the whole period throughout this study.  
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Figure A-7.4. Box-plot for mean alpha diversity (four digestate samples from each reactor i.e. one 

sample per each HRT) values Richness and Shannon and p-values for significant difference in the 

values between reactors measured using one- way ANOVA (A) All taxa (B) Bacterial taxa (C) 

Archaeal taxa in CSTRs throughout 80 days. 

  

(A) 

(B) 

(C) 
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Figure A-7.5. Separation of microbial community using MDS in (A) All taxa; (B) Bacterial taxa and 

(C) Archaeal taxa abundances from 16S rRNA sequencing data of digestate samples from CSTRs 

according to their substrates (reactor names) with/without pre-treatments (TP) and with/without MW 

amendments (IBA, CBW, FA and BA). Calculated from four digestate samples per reactor collected at 

four HRTs.  

(A) 

(B) 

(C) 
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Figure A-7.6. Analysis of similarity ANOSIM for (A) All taxa; (B) Bacterial taxa and (C) Archaeal 

taxa abundances in CSTRs. Calculated from four digestate samples per reactor one sample of digestate 

per each HRT. 
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