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Abstract 

Long term cure is achieved in more than 80% of children with T-cell acute 

lymphoblastic leukaemia (T-ALL), which can be attributed to the refinement of 

intensive, MRD driven, chemotherapy regimens. However, poor response to 

induction therapy is associated with unfavourable outcomes. Vincristine, 

Dexamethasone, Asparaginase and Daunorubicin (VXLD) form the cornerstone of T-

ALL induction therapy. Identifying mechanism of resistance to induction 

chemotherapy could help us improve the efficacy of treatment and outcomes for 

patients with poor response to current therapy. 

This project aimed to develop a preclinical model which allowed the identification of 

pathways underlying drug resistance to T-ALL induction therapy and inform the 

development of a more targeted approach to reduce disease burden in refractory 

disease.  

This thesis describes the optimisation of a 4 drug treatment regimen in Rag2-/- 

gamma c-/- mice that mirrors the clinical induction protocol. This preclinical in vivo 

model has utility both as a model to explore drug resistance as well as a benchmark 

to assess efficacy and toxicity of new compounds or drug combinations. In this work 

the established in vivo model of induction therapy was combined with CRISPR 

screening to identify mechanisms of chemo-resistance. 

The MAGeCKFlute algorithm was used to identify differential representation of 

CRISPR guide RNAs under VXLD treatment pressure, and identified several 

interconnecting pathways in the generation of chemo-resistance. The role of the 

apoptotic regulator BCL-X was further investigated, as gene specific guides were 

depleted (suggestive of drug target). Targeted inhibition of BCL-X has already 

entered the clinical arena, and may provide a means to overcome induction 

resistance. 

The successful development of this preclinical model incorporating VXLD 

chemotherapy has increased our understanding of T-ALL biology and identified 

potential drug resistance mechanisms. Further work will focus on the validation of 

these putative drug targets which may revert induction failure in future therapeutic 

approaches.  
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Abbreviation description 

ALL Acute lymphoblastic leukaemia  

AML Acute myeloid leukaemia 

Asp Asparaginase 

B-ALL B-cell acute lymphoblastic leukaemia  

BLI Bioluminescent imaging  

CI Combination index 

CLL  Chronic lymphocytic leuakemia  

CLP Common lymphoid progenitor 

Cmax maximum concentration  

CRISPR 

Clustered regularly interspaced short palindromic 

repeats 

Dauno Daunborubicin  

Dex Dexamethasone 

DN CD4-CD8- double negative T-cell 

DSB Double stranded break 

GC Glucocorticoid  

GI Growth inhibtion 

GR Glucocorticoid Receptor 

IF Intrafemoral  

indels Insertions and deletions 

IP Intraperitoneal 

IV Intravenous 

IVIS In vivo imaging system  

mRNA Messenger RNA 
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preTCR pre T-cell receptor  

qRT-PCR Quantitative Reverse Transcription PCR 

RNAi RNA interfernce  
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sgRNA single guide RNA 
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Chapter 1. Introduction 

 Acute lymphoblastic leukaemia 

Acute lymphoblastic leukaemia or ALL is a cancer of immature lymphocytes and can 

occur in both adults and paediatric patients. Patients present with bone pain, frequent 

infections, bruising and anaemia with high white blood cell counts. ALL more 

commonly originates from B-cells and this is known as B-ALL. In 10-15% of children 

and 25% of adults ALL is derived from T-cells (Lustosa de Sousa et al., 2015, 

Chiaretti et al., 2014, Vora et al., 2014). ALLs derived from T-cells display 

characteristics of immature T-lymphocytes (which is determined at diagnosis) and 

this type of ALL is known as T-ALL.  

T-ALL and B-ALL have many similarities in presenting symptoms and treatment 

strategies. However, they exhibit differences in their common mutations, median age 

range at presentation and risk of relapse, which is not unexpected considering the 

divergent development of B and T cells. 

 T-cell acute lymphoblastic leukaemia  

T-ALL can originate from any of the stages of T-cell development from common 

lymphoid progenitors (CLPs) through to CD4+CD8+ double positive T-cells.  A basic 

overview of T-cell development is shown in figure 1.1. CLPs derived from 

haematopoietic stem cells in the bone marrow travel to the thymus. In the thymus, 

NOTCH signalling helps drive progenitors towards the T-cell lineage. Lymphoid 

progenitor cells move to the thymus where their development into T-cells continues. 

The immature T-cells undergo rearrangement of their t-cell receptor (TCR) genes. 

The alpha and beta chain loci each consist of variable, diversity, junctional and 

constant gene segments flanked by recombination signal sequences (Krangel, 2009). 

Segments are joined by somatic recombination. Successfully rearranged beta chains 

are expressed alongside a surrogate alpha chain (the preTCRα), and together they 

form the pre-T-cell receptor (preTCR). Expression of preTCR confirms correct 

rearrangement of pre-T-cell receptor beta and provides survival signals to the cell.  

Rearranged alpha and beta chain form a heterodimer known as the αβ T-cell 

receptor (TCR). TCRs and preTCRs are important signalling complexes in 

developing T-cells.  A small number of T-cells have a TCR composed of gamma and 

delta chains and are referred to as gamma delta (γδ) T-cells. The δ locus is found 
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between the V and J segments of the TCR α locus, and rearrangements of α locus 

leads to loss of the δ locus (Krangel, 2009).  

 

 

Figure 1.1 T-cell development.  Initiated in the bone marrow, common lymphoid 
progenitors (CLPs) derived from haematopoietic stem cells (HSCs), migrate to the 
thymus where their development continues. NOTCH signalling pushes cells toward a 
T-cell route of development. The immature T-cells undergo rearrangement of their t-
cell receptor (TCR) genes. Expression of a pre-T-cell receptor (preTCR) confirms 
correct rearrangement of the T-cell receptor beta chain locus. The alpha chain is then 
rearranged before formation of the mature T-cell receptor. In a minority of T-cells 
TCR is formed from γ and δ chains. Both preTCR and TCR are important signalling 
complexes in developing T-cells. The stage of development of a T-cell can also be 
determined by expression of cluster of differentiation genes (Rosewicz et al.).  

 

The rearrangement of T-cell receptor genes can be utilised to study clonality in T-

ALL(Hodges et al., 2003). TCR and pre-TCR status combined with cluster of 

differentiation expression, can be used to identify the differentiation stage of the T-

cell from which T-ALL developed. 

T-ALL can be divided into subgroups based on aberrant transcription factor 

expression, which is often generated by chromosomal rearrangements. The most 

common chromosomal re-arrangements are translocation of a transcription factor to 

a t-cell receptor (TCR) gene locus. Nearly 80% of T-ALL patients have oncogenic 

rearrangements, but aberrant transcription factor expression can also be attributed to 

duplication, amplification, or generation of novel enhancers via mutations (van der 

Zwet et al., 2019). Commonly altered transcription factors in T-ALL are: T-Cell Acute 

Lymphocytic Leukemia Protein 1 (TAL1), T Cell Leukemia Homeobox 1 (TLX1), T 

Cell Leukemia Homeobox 1 (TLX3), MYB, LIM domain only 2 (LMO2), Homeobox 
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cluster A (HOXA) and NK2 homeobox 1/ NK2 homeobox 2 (NKX2.1/NKX2.2). Their 

relative frequencies are shown in figure 1.2. Ectopic transcription factor expression 

can be an initiating event in T-ALL development or contribute to self-renewal 

properties and differentiation arrest prior to the acquisition of required additional 

mutations to lead to leukaemia (Dadi et al., 2012, Gerby et al., 2014, De 

Keersmaecker et al., 2010).  

 

 

Figure 1.2 Transcription factor aberrations in T-ALL. T-ALL can be grouped 
according to altered expression of transcription factors due to translocations. Shown 
are the most common translocations and their relative percentages (Chen et al., 
2018, Downing et al., 2012, Girardi et al., 2017, Neumann et al., 2015)  

 

Genome-wide expression analysis has helped broaden our understanding of ectopic 

transcription factor expression in T-ALL and helped categorise the T-ALL into 

subgroups. Ectopic expression of LYL1 was identified through such studies as T-ALL 

patients with LYL1 expression do not have rearrangements of LYL1 (Ferrando et al., 

2002). 

TAL1, 30

TLX1, 8

TLX3, 19

MYB, 7

LMO2, 13

HOXA, 5

NKX2.1/NKX2.2, 8

other, 10

TRANSCRIPTION FACTOR FUSIONS   
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Recent studies categorise T-ALL into 4 main subgroups: immature, TLX, proliferative 

and TALLMO (van der Zwet et al., 2019). The immature group also referred to as 

early T-cell precursor (ETP) is associated with high expression of self-renewal genes 

found in haematopoietic stem cells. This group is characterised by high BCL2, LYL1, 

LMO2, HHEX and MEF2C expression (Homminga et al., 2011, McCormack et al., 

2010). 

The second key subgroup is the TLX group. Most patients in the TLX group have a 

chromosomal rearrangement involving TLX3. The most common fusion partner for 

TLX3 is BCL11B- which is involved in the commitment of T cell progenitors to the αβ 

lineage. TLX3 is placed near the BCL11B enhancer, both driving TLX3 expression 

and inactivating one copy of BCL11B. TLX3-BCL11B rearrangements may impair αβ 

lineage development and therefore drive a γδ lineage, which is consistent with the 

finding that patients with this fusion normally either express γδ TCR or lack TCR 

surface expression. This group also contains patients with events that activate HOXA 

such as: SET-NUP214, PCALM-MLLT10 and MLL fusions.  

Although researchers have previously grouped TLX3 rearrangements with TLX1 

rearrangements, TLX1 rearranged patients have a distinct expression patterns to 

TLX3 rearranged patients and are now considered a separate subtype -referred to as 

the proliferative type (Dadi et al., 2012, van der Zwet et al., 2019). A proliferative 

gene signature also encompasses patients with NKX2-1 translocations.  

The last and largest subtype is the TALLMO. TAL1 and TAL2 form transcription 

complexes with E2A/HEB, RUNX1, GATA3 and MYB co-factors in normal erythroid 

precursors. In T-ALL these cofactors bridged by LMO1 or LMO2 drive expression of 

cell cycle genes (such as CDK6), cell survival genes (such as TRIB2) and genes 

associated with transcriptional control (such as ETS family members) (Tan et al., 

2019).  In addition to recurrent translocations to TAL1, small insertion deletion 

mutations have been seen upstream of TAL1, LMO1 and LMO2 creating a MYB 

binding site and resulting in the assembly of a super enhancer complex (Mansour et 

al., 2014). 

In addition, to the aberrations and mutations driving the gene expression changes 

which separate T-ALL subgroups there are a number of other common mutations 

found in T-ALL patients , a list of the most common are given in table 1.1 (Liu et al., 

2017).    
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Table 1.1 Common gene mutations in T-ALL. Mutations found in T-ALL their 
frequencies, and the pathways affected are listed.  

Mutation  

 

Frequency % 

(Liu et al., 2017) 

Pathway  

NOTCH1 Translocation- rare less 

than 1%  

Mutation- 75% 

T-cell lineage commitment  

FBXW7 24% 

 

NOTCH signalling  

PHF6 19% Transcriptional regulation 

USP7 12% Regulation of P53 

DNM2 11% Vesicle formation and 

endocytosis 

BCL11B 10% Transcription factor, T-cell 

differentiation and survival 

NRAS 8% Cell division and differentiation 

JAK3  18% in adults Type 1 cytokine receptor 

signalling 

IL7R 7% T-cell development and 

homeostasis  

CDKN2A 70-80%  Cell cycle regulation 

P53 5% Cell cycle and apoptosis 

PTEN 14% Regulator of PI3K-AKT 

pathway  
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Although frequencies differ between age groups and specific studies, there are 

always two frequently identified mutations, namely in NOTCH1 and CDKN2A (Liu et 

al., 2017, Girardi et al., 2017, Marks et al., 2009).  

1.2.1 NOTCH signalling 

NOTCH1 is a class 1 transmembrane glycoprotein that binds to the delta-like and 

serrate family of ligands on neighbouring cells. NOTCH1 has an N-terminal 

extracellular domain with epidermal like growth factor repeats, which is where ligands 

bind (figure 1.3) (Steinbuck and Winandy, 2018). NOTCH1 has two cleavage sites, 

one in the homology domain where cleavage is by extracellular metalloproteinases 

such as integrin and metalloproteinase domain-containing proteins 10 and 17 

(ADAM10 and ADAM17) (Brou et al., 2000). The second site is at the membrane, 

cleaved by γ-secretase complex to release NOTCH1 from the membrane (De 

Strooper et al., 1999, Tosello and Ferrando, 2013). The cleaved intracellular 

NOTCH1 can translocate to the nucleus, where via binding with signalling 

complexes; it regulates transcription of target genes. The NOTCH1 protein contains a 

PEST domain which limits NOTCH signalling by targeting the receptor for 

proteasome mediated degradation via F-box/WD repeat-containing protein 7 

(FBXW7) mediated ubiquitination (Wu et al., 2001, Thompson et al., 2007, O'Neil et 

al., 2007, Akhoondi et al., 2007). 
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Figure 1.3 NOTCH1 signalling.   NOTCH1 consists of a domain with EGF-like 
repeats where ligands such as delta like 1,3 and 4 or Jagged 1 and 2, a 
heterodimerization domain (HD), 3 LIN-12/NOTCH repeats (LNR), a RAM domain 
(RAM), ankyrin repeats (ankyrin), transactivation domain (Saigusa et al.) and PEST 
domain (PEST). Interaction of NOTCH1 with ligand triggers a conformational change 
exposing a cleavage site for metalloproteinases. The cleavage by metalloproteinase 
leaves a truncated protein with a short extracellular domain. Subsequently a second 
cleavage by γ secretase releases the intracellular part of NOTCH1. NOTCH1 (ICN1) 
can then translocate to the nucleus where it interacts with co-activators to activate 
expression of target genes (Tosello and Ferrando, 2013).    
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NOTCH1 is an important driver in T-ALL. Constitutive activation of NOTCH1 was first 

observed due to a translocation that juxtaposed NOTCH1 (without the extracellular 

domains) next to the T-cell receptor beta gene (TCRB) (Ellisen et al., 1991). 

NOTCH1 translocation has since been found to be a relatively rare occurrence in T-

ALL (1%), however activating mutations in NOTCH1 are very common (75%) and 

occur most frequently in the heterodimerisation and PEST domains (Weng et al., 

2004a).  NOTCH1 controls the transcription of many different genes contributing to a 

vast range of effects, ultimately leading to increased survival, growth and proliferation 

(figure 1.4) (Leong and Karsan, 2006, Ferrando, 2009).  

 

 

Figure 1.4 Common pathways associated with NOTCH1 signalling. Some of the 
key pathway associated with downstream signalling of NOTCH1 are summarised 
(Ferrando, 2009, Leong and Karsan, 2006, Tosello and Ferrando, 2013)   
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1.2.2 CDKN2A 

Like NOTCH1, CDKN2A is commonly mutated in T-ALL. Located at 9p21.3, copy 

number alterations are frequently found in this region in many cancer types. CDKN2A 

encodes P16INK4A also known as P16 (Genescà et al., 2018) and P14ARF. P16 

discovered in 1993 as an interactor with CDK4, it is now one of the most highly 

studied genes due to its role in cancer (Serrano et al., 1993, Kamb et al., 1994). P16 

inhibits cyclin dependant kinases (CDK) 4 and 6, preventing the phosphorylation of 

retinoblastoma protein (RB) causing a halt in cell cycle progression (Shapiro et al., 

1995, Li et al., 2011(Topacio et al., 2019). P16 also acts to inhibit the 

phosphorylation of the carboxy-terminal domain of RNA polymerase II via its 

interaction with the TFIIH (Transcription factor II Human) complex (involved in 

transcription of protein coding genes and nucleotide excision repair) (Nishiwaki et al., 

2000, Serizawa, 1998). Lastly, P16 has also been reported to suppress the kinase 

activity of c-jun N-terminal kinases (JNK) 1 and 3 (Choi et al., 2005). P14 is also 

involved in cell cycle regulation and inhibits Mouse double minute 2 homolog 

(MDM2), which consequently increases the action of P53 (Xirodimas et al., 2002). 

P14 is also found in the nucleolus. It was originally thought its function there was 

sequestering MDM2 but it is now thought that it has a role in ribosome biogenesis 

(Rizos et al., 2006). Despite the importance of P16 and P14, adult patients with 

CDKN2A copy number aberrations have actually been shown to respond better to 

induction therapy than those without (Genescà et al., 2018). 

 T-ALL treatment and treatment resistance 

Standard treatment for ALL is based around the Berlin-Frankfurt-Münster (BFM) 

backbone; it includes induction, consolidation, interim maintenance, delayed 

intensification and maintenance periods with each stage comprising different 

chemotherapeutics and doses (figure 1.5).  
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Figure 1.5 Treatment phases for paediatric ALL. Treatment starts with an 
induction phase, followed by consolidation, interim maintenance, delayed 
intensification and concludes with a maintenance treatment. Approximate timescales 
for each phase are given.  

 

The core chemotherapeutic agents have remained relatively unchanged, with a focus 

on better stratification of patients and improved dosing schedules providing the 

greatest improvement in outcome (Cooper and Brown, 2015). Historically, T-ALL had 

a worse prognosis than B-ALL, although this is no longer the case; a T-cell 

immunophenotype alone puts patients into an intermediate risk group with more 

intensive chemotherapy than is used for good risk B-ALL (Seibel et al., 2008). Table 

1.2 summarises the most recent UK-based clinical trials that T-ALL patients were 

treated on. These trials all have similarities in the chemotherapy backbone and share 

most of the same core chemotherapeutics, with additional agents being added to an 

existing regimen including in relapse trail ALLR3.  
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Table 1.2 Recent trials recruiting T-ALL patients in the UK. For each trial the 
eligibility, key treatment and outcome are summarised and where data is available 
that outcome is also given.   

Trial Eligibility Treatment trailed Outcome References 

UKALL2003 Children/ 

young adults 

with ALL 

Treatment modification 

according to risk status to 

assign to  regimen A,B or C 

which have increasing 

intensities 

Reduction is feasible 

for ALL with low risk of 

relapse and rapid 

clearance of MRD 

Patients with end of 

induction MRD of  

0·01% or more can 

benefit  from 

augmented therapy 

(Goulden et al., 

2017) 

(Vora et al., 

2013) 

UKALL2011 Children 

/young 

adults with 

ALL, NHL or 

LBL 

14-day high dose 

dexamethasone v. 28 day 

lower dose in induction. 

Changes to maintenance 

therapy to improve CNS 

prophylactic treatment 

No statistically 

significant difference in 

steroid related toxicity, 

MRD response or 

relapse free survival 

between arms 

(Jackson et al., 

2019) 

Interfant-06 365 days or 

younger with 

ALL 

Consolidation with myeloid-

style v lymphoid-style 

chemotherapy, on the 

backbone of Interfant 

chemotherapy 

Post-induction myeloid-

type chemotherapy 

courses did not 

significantly improve 

outcome for infant ALL 

(Pieters et al., 

2019) 

UKALL14 Adults with 

ALL 

Nelarabine or no nelarabine 

with induction (for T-ALL) 

 (NIH, 2019) 

ALLR3 Children with 

refractory or 

relapsed ALL 

Idarubicin or mitoxantrone 

alongside the usual 

chemotherapy drugs in 

induction for  relapsed ALL 

Mitoxantrone  

better than idarubicin 

(OS 3 years )  

69% mitoxantrone  

45.2% Idarubicin) 

(Parker et al., 

2010) 

EsPhALL Children 

/adolescents 

with 

Philadelphia 

positive ALL 

Post induction imatinib 

treatment 

4 year disease free 

survival good risk ALL 

with imatinib:72.9% 

Without imatinib : 

61.7% 

(Biondi et al., 

2012) 



12 
 

Current treatment protocols achieve overall survival rates in children of over 80% and 

around 50% in adults (Patrick et al., 2014, Winter et al., 2018, Marks et al., 2009, 

Vora et al., 2014). Relapsed and refractory ALL on the other hand offers a very poor 

prognosis (Raetz et al., 2008, Bartram et al., 2019). Considering all the stages of 

chemotherapy, response to induction (as measured by MRD) is the most predictive of 

outcome (Gaynon et al., 1997, Goldberg et al., 2003, Schrappe et al., 2012, Ratei et 

al., 2008 (Bartram et al., 2019).  

1.3.1 Induction therapy in ALL 

Prior to commencement of therapy, children are stratified by their risk categorisation 

to different treatment regimens. Risk is determined by factors such as age, white 

blood cell count, immunophenotype and cytogenetic abnormalities. There are 3 main 

treatment regimens: A, B and C which have increasing intensity. Risk stratification 

was introduced in the ALL97/99 trial and has since become more refined (Mitchell et 

al., 2009, Goulden et al., 2017). Most T-ALL patients are allocated to regimen B.  The 

first stage in the treatment of childhood ALL is induction therapy. Part of the 

treatment schedule for a patient on regimen B from UKALL2003 is shown in figure 

1.6 below. Regimen B follows a 4-drug induction protocol with the addition of 

daunorubicin to the 3-drug induction found in regimen A (which consists of 

dexamethasone, vincristine and asparaginase).   
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Figure 1.6 UKALL2003 regimen B induction. The first 5 weeks of therapy on 
regimen B are shown on a day by day basis. Key chemotherapeutics and the days 
they are given, and where additional medications such as Co-trimaxazole to treat 
infection and Allopurinol for high uric acid levels are also given. Multiple bone marrow 
tests were performed as indicated by the black triangles to measure minimal residual 
disease.  

 

Response to induction therapy (as measured by minimal residual disease (MRD)) is 

a predictor of outcome, therefore resistance to induction therapy drugs- vincristine, 

dexamethasone, asparaginase and daunorubicin (VXLD) is of significant interest 

(Gaynon et al., 1997, Goldberg et al., 2003, Schrappe et al., 2012, Ratei et al., 2008). 

1.3.2 Vincristine  

Vincristine is a vinca alkaloid, a family of compounds comprised of 2 multi-ringed 

units. Vinca alkaloids tumour killing properties were identified in 1959 and vinca 

alkaloids have been used in the clinic since the 1960s (Bohannon et al., 1963, 

Johnson et al., 1963). The dose-limiting side effect of vincristine is neurotoxicity; 

other side effects include bone pain and constipation (Sandler et al., 1969, Rosenthal 

and Kaufman, 1974, Legha, 1986, Gidding et al., 1999).The mechanism of action of 

vinca alkaloids is primarily through inhibition of tubulin polymerisation by binding to 

beta tubulin (figure 1.7). Without tubulin polymerisation, the cell cannot separate the 

chromosomes during metaphase, and this ultimately leads to apoptosis.  

Date: 
 

DD / MMM / YYYY DD / MMM / YYYY DD / MMM / YYYY DD / MMM / YYYY DD / MMM / YYYY 

Week:  1       2       3       4       5       

Day: 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

Bone Marrow 
Test  ▼       ▼                     ▼       

IT Methotrexate  ▼       ▼                     ▼       

Pegaspargase 
 

   ▼              ▼                  

Daunorubicin   ▼       ▼       ▼       ▼             

Vincristine   ▼       ▼       ▼       ▼       ▼      

Dexamethasone (IMP) 6 mg/m2 
 

      

Mercaptopurine 
 

                            60 mg/m2 

Count dependent 

Co-trimoxazole 
 

 
(2 consecutive days) 

 
(2 consecutive days) 

 
(2 consecutive days) 

 
(2 consecutive days) 

 
(2 consecutive days) 

Allopurinol (100mg/m2) 
 
. 

Should be started 24 hours before 
chemotherapy and continue for 5 days                    
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Figure 1.7 Mechanism of action of vincristine. Vincristine binds to tubulin dimers 
preventing microtubule assembly. At higher concentrations aggregates are formed 
causing depolymerisation of microtubules. Adapted from (Martino et al., 2018) 

 

Cells can become resistant to vincristine by various methods, some of which are 

specific to vincristine and some are shared mechanisms of resistance with other 

chemotherapeutics. ABC (ATP-binding cassette) transporters and multidrug 

resistance associated proteins are prime candidates for resistance to various 

chemotherapeutic and vincristine is no exception, with p-glycoprotein and multi drug 

resistance associated protein 1 (MRP1) shown to offer protection from vincristine-

induced toxicity (Chien and Moasser, 2008, Zhang et al., 2017, Van Tellingen et al., 

2003). Two other common drug resistance mechanisms thought to contribute to 

various different chemotherapeutics are changes in apoptotic response and 

regulation of response to oxidative stress: both of these may play a role in resistance 

to vincristine (Simonian et al., 1997). In particular, the expression and activity of aldo-

keto reductase enzymes (ARK) which form part of the signalling pathway that helps 

to protect cells from oxidative stress, have been shown to be upregulated by use of 

chemotherapeutics in T-ALL (Bortolozzi et al., 2018). Modulation of ARK1C1-3 

expression could sensitise cells to vincristine (Bortolozzi et al., 2018). Increased 

tubulin isoform expression, stabilisation by microtubule associated proteins and 
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changes in mitotic checkpoint signalling are other mechanisms of resistance for 

tubulin-targeted drugs like vincristine (Zhang et al., 2017, Wang et al., 2003).  

1.3.3 Dexamethasone 

Dexamethasone is the steroid of choice in the UK for treatment of ALL due to its 

greater efficacy over prednisolone (Teuffel et al., 2011). A synthetic glucocorticoid, 

dexamethasone binds to the glucocorticoid receptor (GR), which is encoded by 

NR3C1. Upon glucocorticoid binding, the GR translocates to the nucleus, where it 

acts upon transcriptional target genes, which have a pleiotropic mode of action, but in 

the context of ALL, ultimately results in cell death (figure 1.8).   
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Figure 1.8 Glucocorticoid (GC) mechanism of action. GCs enter the cell and bind 
to glucocorticoid receptors (GR). The GRs are bound by heat shock proteins such as 
HSP90 and HSP70 and immunophillins like FKBP5 and its co-chaperone p23. The 
GC bound GR translocate to the nucleus where it acts (singularly or as dimers) to 
activate and repress transcription by binding at glucocorticoid response elements 
(Bernard et al.) (Bernard et al., Oakley and Cidlowski, 2013).   
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In vitro assays show relapsed ALL to be more resistant to steroids, and far higher 

levels of resistance was seen to steroids, than to other induction regimen drugs 

(Klumper et al., 1995). There are many proposed methods to generation of 

resistance to dexamethasone occurs. Mutations in the nuclear receptor subfamily 3, 

group C, member 1( NR3C1) gene  are found in steroid resistant ALL cell lines and 

have also been identified in relapsed ALL patients, and this provides one explanation 

for resistance to dexamethasone (Schmidt et al., 2006, Hillmann et al., 2000, Hogan 

et al., 2011). Others question the role of NR3C1 mutations due to the low frequency 

identified in ALL patients ( 0 out of 57 ALL samples analysed , and 1 out of 50 

relapsed ALL analysed)(Tissing et al., 2005, Irving et al., 2005). Glucocorticoid 

resistance may occur further downstream, and not at the level of glucocorticoid 

receptor (GR) binding (Bachmann et al., 2005, Beesley et al., 2009). One example of 

this is through caspase 1 (and it activator cryopyrin) which are upregulated in steroid 

resistant B-ALL, and overexpression of caspase 1 resulted in GR cleavage and 

subsequently reduction of GR associated signalling in a B-ALL cell line (Paugh et al., 

2015). In T-ALL, activation of AKT has been shown to provide resistance to 

glucocorticoids via phosphorylation of NR3C1, preventing its nuclear translocation 

(Piovan et al., 2013).  

Upregulation of anti-apoptotic proteins can contribute to resistance, for instance 

upregulation of B-cell lymphoma 2 (BCL2) contributed to both decreased 

dexamethasone-induced apoptosis and increased autophagy leading to greater 

survival in lymphoma lines (Swerdlow et al., 2008). This again highlights the 

importance of apoptotic regulation in response to chemotherapeutics. Lastly, 

dexamethasone is a known P-glycoprotein substrate (Ueda et al., 1992). Removal of 

dexamethasone by p-glycoprotein or via detoxification by glutathione-S-transferases 

may contribute to resistance. Glutathione S-transferases catalyse the conjugation of 

reduced glutathione to xenobiotic substrates like dexamethasone increasing water 

solubility and making them easier to eliminate (Townsend and Tew, 2003).  

1.3.4 Asparaginase 

Asparaginase is an enzyme that breaks down asparagine into aspartic acid and 

ammonia. Asparagine is a non-essential amino acid and can be synthesised in 

normal cells from oxaloacetate, via transamination using the ammonium groups from 

glutamate. Leukaemia cells depend upon large amounts of asparagine and rely on 

extracellular sources of asparagine for survival (Broome, 1968). Asparaginase 
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deprives the leukaemic cells of their asparagine source and leads to cell death (as 

summarised in figure 1.9 below) (Ueno et al., 1997, Haskell and Canellos, 

1969)(Takahashi et al., 2017). Asparaginase also influences glutamine, which is also 

required for leukemic cell survival; the glutaminase activity is thought to be of more 

importance in cells expressing asparagine synthetase (ASNS), the enzyme required 

for asparagine synthesis (Chan et al., 2019).  
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Figure 1.9 Mechanism of action of asparaginase. Normal cells can produce 
asparagine from aspartate using asparaginase synthetase enzyme (ASNS). 
Leukaemic cells cannot produce sufficient asparagine from aspartate and require 
asparagine from the environment. When asparaginase breaks down available 
asparagine into aspartic acid and ammonia leukaemic cells can no longer meet 
asparagine requirement and undergo apoptosis. Adapted from (Fung and Chan, 
2017)  
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Historically upregulation of ASNS in response to low amino acid availability was 

thought to be the main means by which cells became asparaginase resistant (Hutson 

et al., 1997, Aslanian et al., 2001). Whilst some groups data still support a link 

between ASNS and asparaginase resistance, contradictory data suggests there to be 

no relationship between ASNS upregulation and response to asparaginase (Su et al., 

2008, Krejci et al., 2004, Stams et al., 2005, Appel et al., 2006, Hermanova et al., 

2012). This has led to the search for other mechanisms of resistance. Changes in 

apoptotic response due to nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) signalling has been shown to be connected with asparaginase 

response (Chien et al., 2015). RNAi screening identified a reduction in calpain-1-Bid-

caspase-3/12 pathway via loss of huntingtin associated protein 1 (HAP1) as a 

mechanism of asparaginase resistance (Lee et al., 2019). Calpain inhibition 

increases autophagy, and with calpain mediated cleavage of autophagy related gene 

5 (Atg5) being shown to switch cells from autophagy to apoptosis, the role of 

autophagy in chemo-resistance is of interest (Yousefi et al., 2006). It has been 

demonstrated that induction of autophagy in response to amino acid depletion helps 

cells survive asparaginase treatment (Takahashi et al., 2017).  

The formation of antibodies against asparaginase, has been reported in some 

patients, this leads to a more rapid clearance of asparaginase, and may also 

contribute to resistance (Panosyan et al., 2004). Other cells within the leukamic niche 

such as the mesenchymal stromal cells can synthesise asparagine, asparagine 

secretion from the niche may provide some protection from the effects os 

asparaginase treatment on the leukaemic cells (Iwamoto et al., 2007, Laranjeira et 

al., 2011). 

The protective effect of the bone marrow niche is not restricted to asparaginase. The 

niche can provide resistance to various chemotherapeutics including vincristine, 

dexamethasone and daunorubicin for instance via cytokine release (Chen et al., 

2019, Polak et al., 2014, Li et al., 2004).  

1.3.5 Daunorubicin  

Daunorubicin belongs within a class of drugs known as anthracyclines which also 

includes doxorubicin, epirubicin and idarubicin. There are several proposed 

mechanisms of actions of anthracyclines including: inhibition of topoisomerase II, 
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production of reactive oxygen species (ROS), inhibition of synthesis of 

macromolecules , DNA cross-link formation and histone eviction (Gewirtz, 1999, 

Marinello et al., 2018, Al-Aamri et al., 2019, Pang et al., 2013). The most widely 

accepted mechanism of action at clinical concentrations is through inhibition of 

topoisomerase II, whilst generation of ROS is the main mechanism of action thought 

to be responsible for cardiotoxic side effects (Gewirtz, 1999, Marinello et al., 2018). 

The action of topoisomerase II is given in figure 1.10. Daunorubicin is a vesicant 

(blister causing) drug and is given intravenously to avoid damage to muscles and 

skin. Its effect on the cardiac tissue is dose limiting, and can lead to cardiomyopathy 

during, or many years after, treatment (Rahman et al., 2007, McGowan et al., 2017).    
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Figure 1.10 Action of topoisomerase II (topo II). Topo II allows for unwinding for 
DNA helices by generating double stranded breaks. It works by a two gate 
mechanism, one strand of DNA coloured orange is bound by a binding gate in topo II. 
A second strand of DNA shown in yellow is captured by an ATPase domain. 
Hydrolysis of ATP provides the energy to cut the first strand of DNA generating a 
double stranded break. The other strand can then pass through, the break in the first 
strand is repaired. Daunorubicin causes topo II to remain bound to DNA after 
cleavage and prevents re-joining of the break (Nitiss, 2009).   
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The main mechanism of resistance is thought to be through the ABC transporters: in 

particular ABCB1 (ATP-binding cassette sub-family B member 1), also known as P-

glycoprotein (Kosztyu et al., 2014). Other mechanisms of resistance include 

alleviation of oxidative stress via change in signalling/ support from other cell types, 

and modulation of topoisomerase activity via post-translational modification (Sheng 

et al., 2016, Heasman et al., 2011, Ganapathi and Ganapathi, 2013).  

 DNA (cytosine-5)-methyltransferase 3A (DNMT3A) mutations found in T-ALL and l., 

are associated with reduced probability of achieving remission and reduced survival 

(Aref et al., 2016). In acute myeloid leukaemia (AML) DNMT3A mutations are 

associated with daunorubicin resistance DNMT3A mutations may also confer chemo 

resistance in T-ALL leading to poor outcome in these patients (Guryanova et al., 

2016).    

1.3.6 `Summary of mechanisms of resistance to chemotherapeutics  

Resistance can occur to a single chemotherapeutic or to multiple, through numerous 

mechanisms. Resistance to individual agents can arise through alterations of 

pathways relating to the drugs mechanism of action, through increased expression, 

acquisitions or selection for specific mutations, chromatin remodelling and via cell to 

cell interactions. Resistance can also occur via changes to drug efflux like in the case 

of the multidrug transporters. Changes in apoptotic signalling pathways is another 

common mechanism of drug resistance, by upregulation of anti-apoptotic proteins the 

cells escape drug-induced apoptosis  

 The study of relapsed and refractory T-ALL.  

Unlike T-ALL at first diagnosis that has overall survival rates in paediatrics at 80%, 

relapsed T-ALL (occurring in 15-20% of children), has an overall survival closer to 

50% (Tallen et a2010, Parker et al., 2010, Bertaina et al., 2017, Bhojwani and Pui, 

2013). Similarly, after induction failure (approximately 10% of paediatric T-ALL) 

outcome is poor with less than 50% event free survival at 5 years (O'Connor et al., 

2017). 

Treatment choices for relapsed ALL or after induction failure are limited and will 

include high dose chemotherapy and/or allogenic stem cell transplantation (Balduzzi 

et al., 2005, Gaynon et al., 2006). Presently there is only a single approved drug 
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specifically for treatment of relapsed T-ALL- nelarabine (Cohen et al., 2006). 

Approved for use when patients have relapsed or not responded to two 

chemotherapy regimens, it is a soluble pro-drug of Ara-G a nucleoside analogue that 

works by inhibition of DNA synthesis (Gandhi et al., 2006). With a response rate of 

around 40% there are still many patients in need of alternative options and a better 

understanding of resistance to induction regimen drugs. (Zwaan et al., 2017, 

DeAngelo et al., 2007) 

With poor response to induction chemotherapeutics leading to poorer outcome, along 

with the increased chemo-resistance found in relapse understanding the 

mechanisms behind chemo-resistance is imperative to improving outcomes for T-ALL 

(Styczynski et al., 2007a, Styczynski et al., 2002, Klumper et al., 1995, Schrappe et 

al., 2012).  

1.4.1 Chemo-resistance in T-ALL: 

There are currently limited studies specific to the development of chemoresistance in 

T-ALL. Most of our current understanding comes from a publication by Li et al. Li et al 

performed targeted exome sequencing and whole genome sequencing on T-ALL 

patients. They then correlated mutation data with clinical data to identify that 

mutations in JAK1 and KRAS are associated with steroid resistance and poor 

outcome. Further analysis demonstrated a link between Il7R pathway mutations and 

in vitro steroid sensitivity. Introduction of selected mutants into T-ALL cell lines 

SUPT1 and P12 Ichikawa and subsequent steroid sensitivity assessment confirmed 

a role for a cysteine mutant of the IL7R -IL7RRFCPH and  JAK1 mutants (JAK1R724H 

and JAK1T901A ) in steroid responsiveness, and further identified a role for both NRAS 

(NRASG12D and wild-type NRAS) and wild-type AKT.(Li et al., 2016) 

Another study also highlighted a role for IL7 receptor signalling in steroid 

responsiveness and identify subsets of patients that have Il7 dependent steroid 

resistance (Delgado-Martin et al., 2017). Steroid induced cell death could be reduced 

by the modulation of cytokine IL7 levels, and with JAK1/2 inhibitor Ruxolitnib 

(Delgado-Martin et al., 2017).  

The studies discussed above focused primarily on steroid resistance. Resistance to 

other commonly used therapeutics such as asparaginase, daunorubicin and 

vincristine was also assessed during an investigation into the expression of AKR1C 

enzymes in T-ALL, an idea inspired by work in solid tumours (Bortolozzi et al., 2018). 
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The authors identify that T-ALL patients who are resistant to therapy express 

increased levels of ARK1C enzymes and demonstrate modulation of these enzymes 

can increase sensitivity of T-ALL cell lines to vincristine. However, the increase in 

sensitivity to vincristine wasn’t replicated with other chemotherapeutic agents tested 

(including daunorubicin and asparaginase).  

The ABC family of membrane transporters including multi-drug resistance protein 1 

(MDR1) also known as P-glycoprotein, are involved in the efflux of substances 

including drugs from cells, and have long been implicated in development of 

multidrug resistance in many conditions (Chen and Tiwari, 2011, Sui et al., 2012). T-

ALL is no different with drug efflux and transporters such as MDR1 being associated 

with both chemoresistance and poor outcome (Hoofd et al., 2016, Del Principe et al., 

2003). 

1.4.2 Genetics of relapsed T-ALL  

The study of relapsed disease can help us understand the genetics responsible for 

relapse and help identify ways in which leukaemic cells escape therapy. By 

comparison of copy number aberrations, mutation frequencies, gene expression, 

epigenetic changes or a combination of these between diagnostic and relapsed 

samples, we can enhance our understanding of how relapse occurs and what the 

drivers of relapse are. This approach has been relatively successful in B-ALL and 

many genes have been identified as associated with relapsed disease from 

transcription factors such as EBF1 to metabolic genes such as TYMS (Bhojwani and 

Pui, 2013). A study published by Mullighan et al, on copy number aberrations in 

matched diagnosis and relapse samples highlights one of the issues in this approach 

to T-ALL. Where in B-ALL copy number aberration could be used to identify the 

clonal origins of relapse in T-ALL this approach was hampered by the low frequency 

of copy number aberrations (Mullighan et al., 2008). Whilst Kunz et al also note the 

low frequency of copy number alterations, they did observe increased mutational 

load at relapse and suggest this could be due to use of chemotherapeutics and 

highlight cytarabine use as the most likely (Kunz et al., 2015). One of the genes 

found mutated at relapse was NT5C2, which has similarly been seen by Tzoneva to 

be mutated in relapsed ALL and induce resistance to 6-mercaptopurine and 6-

thioguanine (Kunz et al., 2015, Tzoneva et al., 2013). 
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These approaches have provided some insight into the mechanism of relapse, 

however T-ALL still lags behind B-ALL and the only reliable predictor of relapse 

currently in MRD (O'Connor et al., 2017) The other limitation of this approach is the 

requirement for large numbers of patient samples, which can be particularly difficult 

to obtain in T-ALL due to the lower incidence, especially in a relapsed setting. A 

different approach in the identification of genes important in ALL has been through 

RNAi based screening.  

 Screening approaches to identify drug targets  

Screens can be used to identify genes that are important in the progression of 

disease as well as the treatment response when combined with therapeutics. Prior to 

the availability of clustered regularly interspaced short palindromic repeats (CRISPR) 

-based libraries, loss of function screening was predominantly carried out using RNA 

interference (RNAi). The main limitation of an RNAi approach was the incomplete 

depletion of gene products and off target effects (Qiu et al., 2005, Moore et al., 

2010). For editing at a gene level to achieve knockout, zinc finger like exonucleases 

(ZFNs) and transcription activator like effector nucleases (TALENs) can be used, but 

these were not easily amenable to screening due to the large amount of cloning 

involved. CRISPR technology has allowed for editing at a gene level and is also 

scalable for large screens.  

1.5.1 CRISPR technology and CRISPR screens  

Part of the prokaryotic adaptive immune system, CRISPR provide protection from 

viruses and foreign plasmid DNA by cleaving the DNA sequence as directed by small 

CRISPR RNA (crRNA) sequences, which are derived from the bacterial genome 

(Jansen et al., 2002).  Sequences from the bacterial genome are integrated into the 

CRISPR locus separated by short repeat sequences (protospacers). The bacterial 

sequences are transcribed as a longer pre-crRNA transcript before cleavage at 

protospacers to form mature crRNA that can be loaded into Cas enzymes (Bolotin et 

al., 2005). There are 3 types of CRISPR-Cas systems each with different Cas 

proteins (Haft et al., 2005). It is the type 2 system which uses Cas9 which has been 

repurposed for use in genome editing. The lentiCRISPR system uses Streptococcus 

pyrogene Cas9 and a short guide RNA (sgRNA) sequence on a single plasmid 

(Shalem et al., 2014). Along with the Cas9 and sgRNA, promoter sequences and 
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lentiviral packaging elements allow CRISPR to be introduced into mammalian cells 

by lentiviral transduction.  

 

Figure 1.11 The mechanism of action of CRISPR-cas9. The Cas 9 nuclease and 
guide RNA act to generate double stranded breaks (DSB) in DNA. The guide RNA 
contains a sequence to direct the site of cleavage. The guide RNA binds to a 
complementary target site in DNA that is upstream of a protospacer adjacent motif 
(PAM). For the Streptococcus pyrogenes derived Cas9 this is 3’NGG. Repair of the 
double stranded breaks by the non-homologous end joining pathway (NHEJ) 
generates insertions and deletions (indels) which can lead to premature stop codons, 
frameshifts and nonsense mediated decay of the transcript.   
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CRISPR knockout screening relies upon the generation of double stranded breaks 

and repair by non-homologous end joining, and the generation of insertions and 

deletions which can cause frameshifts and premature stop codon formation, leading 

to nonsense mediated decay of the transcript (figure 1.11). 

The first large commercially available CRISPR library was the GeCKO library a 

genome wide knock-out library, it is constructed from a single vector containing both 

cas9 and guide RNA sequence (Shalem et al., 2014). Since the release of this library 

many other libraries have been generated both knock out and silencing and 

activation based (Sanjana et al., 2014, Hart et al., 2015, Konermann et al., 2015, 

Sanson et al., 2018). CRISPR screens have been successfully employed in a 

number of settings, screening of protein domains, screening of primary immune cells, 

and in mouse models of cancer (Shi et al., 2015, Parnas et al., 2015, Chen et al., 

2015). 

 Screens in T-ALL 

At the time of designing the project there were no publications on CRISPR screens in 

T-ALL. Since that time a number of T-ALL cell lines were screened with a CRISPR 

library as part of the cancer dependencies project known as project Achilles (Cowley 

et al., 2014). Recently the results of a CRISPR screen in a T-ALL cell line treated 

with asparaginase were published (Hinze et al., 2019). Through this screen they 

identified Wnt pathway activation to be required for asparaginase sensitivity.  

RNAi-based screens have been performed in T-ALL. A screen for genes 

phenocopying the oncogenic role of microRNA (miR) 19 was performed in a Notch-

driven murine model of T-ALL; this identified Bcl2L11 (also known as Bim), Prkaa1, 

Pten and Ppp2r5e to be enriched (Mavrakis et al., 2010). A screen specifically 

looking at miRs capable of promoting T-ALL development was performed by the 

same group a year later (Mavrakis et al., 2011). This time a two-step screen was 

employed to first identify miRs that allowed cells to resist c-MYC driven apoptosis, 

then a second stage for miRs capable of allowing cytokine independent growth of 

lymphocytes. They identified 5 miRs that had cooperative effects with known tumour 

suppressors which included BIM and PTEN but also IKZF1, PHF6, NF1 and FBXW7 

(Mavrakis et al., 2011). Other groups focus on kinases, with both siRNA screen in T-

ALL patient cells and shRNA screens in T-ALL cell lines together identifying tyrosine 
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kinase TYK2 and a T-ALL dependence on a TYK2-STAT1-BCL2 pathway (Sanda et 

al., 2013). 

T-ALL screening was also combined with drug treatment in a shRNA screen of 

chromatin regulators. Screening was performed in DND41 cells persisting after 

gamma secretase treatment. Bromodomain-containing protein 4 (BRD4) was 

identified, and they suggest the use of epigenetically targeted drugs such as JQ1 

(which acts on BRD4) to overcome resistance (Knoechel et al., 2014).  

When it comes to performing the screen, the technology used for screening is 

important but so is the model of choice. The different screens model T-ALL in 

different ways; from in vitro cell line culture, to ex vivo patient material, to murine 

models.  

 Models of T-ALL  

In order to screen for targets to treat T-ALL, an appropriate model of T-ALL is 

required. There are both in vitro and in vivo models of T-ALL. In vitro models include 

T-ALL cell lines and patient-derived cells. T-ALL cell lines are immortalised cells 

derived from patients with T-ALL. These are human cells with human relevant 

genetics but there is debate over how well these accurately reflect patient disease 

(Gillet et al., 2013). T-ALL blasts isolated directly from patients or after propagation in 

mice can be cultured ex vivo. However, these cells often do not actively proliferate 

and die in continuous culture making long terming screening more complex. A feeder 

layer can be used to help support the survival and proliferation of these cells (Holmes 

and Zuniga-Pflucker, 2009, Chiu et al., 2010).  

In addition to in vitro and ex vivo models, in vivo models are also available for T-ALL. 

The most used animal to model T-ALL is mice, but zebrafish models also exist 

(Langenau et al., 2003, Langenau et al., 2005). Murine models of T-ALLs include 

Notch driven, IKAROS and PTEN-deleted and T-ALL associated transcription factor 

driven models such as TAL1 (Kastner and Chan, 2011, Hagenbeek et al., 2004, Pear 

et al., 1996, Jacoby et al., 2014). An alternative to transgenic models is the use of 

xenografts. Xenografts have the human relevant mutations which are not always 

reflected in transgenic murine models. T-ALL cell lines or primary cells from patients 

can proliferate in immune compromised mice (Agliano et al., 2008). One group even 

modelled relapse using a xenograft model and the chemotherapeutic treatment used 

in T-ALL induction therapy (Samuels et al., 2014b).  
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 Selecting appropriate drug concentrations for in vitro an in vivo studies  

When selecting drug concentrations, it is important to consider clinically relevant 

concentrations. As pointed out by Smith and Houghton, there is often a disconnect 

between in vitro testing concentrations and clinically achievable concentrations 

leading to claims of efficacy of drugs from in vitro studies that do not hold up in the 

clinic (Smith and Houghton, 2013). This point was again emphasised by Liston and 

Davis in the review of clinically relevant concentrations of anticancer drugs (Liston 

and Davis, 2017). Since vincristine, dexamethasone, asparaginase and daunorubicin 

have been used for many years in the clinic, pharmacokinetic data is available for 

patients who receive these drugs. Pharmacokinetic parameters for each of the 4 

drugs are summarised in the relevant sections below. 

1.8.1 Vincristine 

Vincristine is given intravenously as a bolus dose, in the most recent UK ALL trials 

(UKALL2003 and UKALL2011) a dose of 1.5mg/m2 is used.  The median 

pharmacokinetic parameters for children receiving cancer treatment including an 

average vincristine dose of 1.5mg/m2 were as follows: maximum plasma 

concentration of 3.5µg/L, area under the curve of 49.7µg/L/hour and a clearance of 

482mL/min/m2. This data is mostly consistent with similar studies, but area under the 

curve values reported are slightly lower than the 4.4mg/L/min reported by 

Lonnerholm et al which use a dose of 2mg/m2 (Moore et al., 2011a, Lonnerholm et 

al., 2008).  Vincristine is metabolised in the liver by cytochrome P450 enzyme 

CYP3A5 (Dennison et al., 2007).  

1.8.2 Dexamethasone 

Dexamethasone is given orally due to its good bioavailability (90%)(Queckenberg et 

al., 2011). The following pharmacokinetic parameters have been determined for 

children treated for ALL: maximum plasma concentration of around 80ng/ml or 

200nM, a half-life of around 3 hours and 7l/h/m2 clearance (Jackson, 2017). 

Pharmacokinetic studies show large inter-patient variability in drug exposure.  Co-

administration with asparaginase, which is given alongside dexamethasone in ALL 

therapy, is predicted to reduce clearance of dexamethasone (Yang et al., 2008). 

Dexamethasone is metabolised by cytochrome P450 enzymes in particular CYP3A4 

and CYP17. Single nucleotide polymorphisms in these genes may also explain 
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interpatient variability in pharmacokinetic profiles (Tomlinson et al., 1997, Jackson et 

al., 2016b).  

1.8.3 Asparaginase 

Asparaginase is produced in bacteria, predominantly Escherichia coli (E.coli). 

Previously, asparaginase was used in its native form and needed to be given daily 

due to a short half-life (26 hours). A newer poly-ethylene glycol (PEG) form has since 

been introduced (Avramis et al., 2002).  In the PEGylated form, PEG groups are 

added to the asparaginase, which increases its half-life in the body (5.5 days) and 

the dosing frequency has consequently been reduced. Asparaginase can be given by 

intravenous or intramuscular routes. In the UK protocols it is given intramuscularly. 

The key issue with asparaginase is the trigger of allergic responses leading to 

anything from rashes to anaphylaxis (Woo et al., 1998, Ebeid et al., 2008). Other 

notable side effects are impaired liver function linked to reduced production of 

plasma proteins in the liver due to depleted asparagine and glutamine levels 

(Ollenschlager et al., 1988). Different formulations of asparaginase have different 

pharmacokinetic profiles (Boos et al., 1996, Asselin et al., 1993). For native E.coli 

asparaginase, data suggests maximum activity after a single dose of 2U/ml at around 

4 hours (Avramis et al., 2002). The average peak and trough levels have been 

measured for patients treated with E.coli-derived asparaginase with peaks from 7500 

to 8000 U/l and troughs of 400-700 U/l (Müller et al., 2001). Although the optimal 

length and degree of asparagine depletion is uncertain, generally a trough level of 

0.1U/ml is set as an adequate activity level to ensure asparagine is depleted (Rizzari 

et al., 2000, Angiolillo et al., 2014). Antibodies against asparaginase are associated 

with more rapid clearance of asparaginase (Panosyan et al., 2004).  

1.8.4 Daunorubicin 

Daunorubicin is given as an intravenous infusion at a dose of 25mg/m2 over an hour 

as part of the 4- drug induction used for patients on regimen B. Standard 

daunorubicin kinetics show two phases of decline after infusion, a rapid decline 

followed by a slower elimination. Daunorubicin is metabolised to the less cytotoxic 

daunorubiciol; both daunorubicin and daunorubiciol can then be further metabolised 

to non-active compounds (Thompson et al., 2014). A study into daunorubicin 

pharmacokinetics from the Children’s Oncology Group show volume of distribution of 

68.1 L/m2 ± 24 % and clearance of 116 L/m2/h ± 14 % for daunorubicin and 232 L/m2 
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± 10 %, and  26.8 L/m2/h ± 5.6 %  for daunorubinicol, for unspecified doses and 

varying infusion times (Thompson et al., 2014).  Another study using 50 mg/m2 

infusion over 10 min in adult leukaemia patients showed clearance times of 168L/h. 

In this study, the majority of maximum plasma concentrations recorded varied 

between 80 and 300ng/ml, which had reduced to 10ng/ml within 12 hours (Callies et 

al., 2004). For infants receiving 30mg/m2 over a 6 hour infusion predicted parameters 

were volume of distribution of 16.4 L/m2 ± 46% and clearance of 43.9 L/ h/m2 ± 65% 

for daunorubicin and 228 L /m2 ± 80% and 19.1 L/h/m2  ± 32% for daunorubiciniol 

(Hempel et al., 2010a). The approximate peak plasma concentrations for 

daunorubicin was around 100ng/ml (Hempel et al., 2010a).  

1.8.5 Drug concentrations summary  

These parameters, particularly the peak achievable plasma concentrations, are 

important to consider when designing drug treatments. In vitro drug concentrations 

exceeding Cmax, or at Cmax for a prolonged period, do not accurately reflect a clinical 

setting. For in vivo dosing we can extrapolate from human doses to mice, or ideally 

base it on already available pharmacokinetic studies in mice, like that published by 

Szymanska et al to achieve a pharmacokinetic profile reflecting that found in ALL 

patients (Nair and Jacob, 2016, Szymanska et al., 2012a).  

 Aims and objectives 

A crucial step to improving current T-ALL therapy is to identify a treatment that can 

be used in relapsed and refractory ALL to improve efficacy of induction and outcome 

for these patients.  Since new drugs are normally introduced alongside current 

chemotherapy, ideally the new treatments should be able to either complement 

current chemotherapy or help overcome resistance to current chemotherapy. The 

ultimate goal should therefore be identification of a therapeutically actionable target 

to treat relapsed and refractory T-ALL that could be used in conjunction with 

concurrent chemotherapy. The research undertaken should move forward our 

understanding and bring us closer to this ultimate goal. 

Aim of project  

• Determine which genes or pathways may drive resistance to the 

chemotherapy combination of vincristine, dexamethasone, l-asparaginase and 

daunorubicin in T-ALL. 
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Performing a screen under chemotherapeutic pressure will allow us to identify 

genes important in resistance to current chemotherapy. Induction chemotherapy 

is the first stage of treatment and most predictive of outcome, so we chose to 

focus on the chemotherapeutics used at induction in T-ALL, namely vincristine, 

dexamethasone, l-asparaginase and daunorubicin (VXLD).The main aim will be 

addressed by a number objectives:  

Primary objective: 

• Design and implement a suitable screening strategy to identify genes 

conferring resistance to T-ALL induction therapy  

This primary objective can be broken down into smaller specific objectives which will 

be addressed in different chapters.  

Specific objectives  

• Identify a suitable screening model (Chapters 3 and 4) 

• Establish appropriate dose of each induction drug for use in in vitro screening 

(Chapter 3)  

• Create a VXLD dosing regimen that can be used for screening in vivo (chapter 

4) 

• Ensure a streamlined screening process from introduction of library through to 

obtaining data (chapter 5) 

• Use screening data to identify genes and pathways associated with resistance 

to VXLD chemotherapy (chapter 6)  
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Chapter 2. Materials and methods  

 Equipment and software  

Category Equipment  Manufacturer  Software 

Centrifuges Optima L-100 XP 

ultracentrifuge 

Beckman Coulter, 

UK 

 

 MSE Mistral MSE, UK  

 Multifuge 35R Thermo fisher 

Scientific, UK 

 

 Centrifuge 5418 Eppendorf, UK  

Spectrophotometers FLUOstar Omega  

 

BMG labtech 

 

MARS Data 

Analysis 

Software 

 Nanodrop 1000 

spectrophotometer 

Thermo Fisher 

Scientific, UK 

 

 Qubit 3.0 

Fluorometer 

Thermo Fisher 

Scientific, UK 

 

Flow cytometers  FACSCalibur Beckton Dickinson, 

UK 

FlowJo 

v10.0.8 

 FACSCanto II Beckton Dickinson, 

UK 

FlowJo 

v10.0.8 

 ATTUNE NxT Thermo Fisher 

Scientific 

FlowJo 

v10.0.8 

Thermal cyclers  ViiA™ 7 Real-Time 

PCR System 

Applied 

Biosystems, USA 

ViiA™ 7 
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Electroporators  EPI 2500 

Elektroporations-

impulsgenerator 

EPI, Germany  

 MicroPulser 

Electroporator 

Bio-Rad, UK  

Imaging systems G:BOX Syngene GeneSys 

 GelDoc 

 

Bio-Rad, UK 

 

ImageLab 

 IVIS Caliper Ltd., USA Living 

image® 

Tissue culture Inverted microscope, 

CKX53 

Olympus optical, 

UK 

 

 BioMAT2 class 2 

Microbiological 

Safety Cabinets 

Contained air 

solutions  

 

 MCO-230AICUVL-

PE CO2 Incubator  

Panasonic, Japan  

Table 2.1 Equipment list. The equipment used throughout this work, the 
manufacturer and software used to analyse the data produced (where applicable) 
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2.1.1 Consumables  

Standard lab ware was used except where specified  

Table 2.2 Project specific consumables. Consumables ordered for the purpose of 
the project and the company that supplied them 

  

 Reagents  

Standard chemicals and reagents were purchased from Sigma unless otherwise 

stated. UltraPure™ Agarose was purchased from Invitrogen and GelRed from 

Biotum.  

2.1.2  Buffers and solutions  

PBA 

• 0.5% BSA 

• 100 µl Sodium Azide  

• PBS up to 500ml 

 

Red cell lysis 10x  

• 8.3g NH4Cl2  

• 1.00g KHCO3 

• 0.38g Na2EDTA 

• 100ml H2O 

Consumable Company  

Pollyallomer Konical™ Beckman Coulter, USA 

0.45µm Acrodisc® syringe filters  Sigma Aldrich, UK 

Stericup-HV Sterile Vacuum Filtration 

System 0.45µm pore size 

Merck, UK 

Flowgen electroporation cuvettes 

1mm 

SLS, UK 

BD microfine 29G insulin syringes  Beckton Dickinson, UK 

Spreaders, triangle shaped, 

disposable, sterile 

VWR International, Vienna 

EasyStrip™ Plus Tube Strip  Thermo Fisher Scientific, UK 

DNA Lobind Eppendorf tubes Eppendorf, UK 

Nunc™ Square BioAssay Dishes Thermo Fisher Scientific, UK 
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HeBS, 2x 

• 16.36g NaCl 

• 11.9g HEPES 

• 0.213g Na2HPO4 

pH to 7.00 

make up to 1000ml deionized water  

 

HEPES buffered water  

• 125ul 1M HEPES (pH 7.3)  

• 50ml deionized water  

Sterile filtered 

 

0.5M CaCl2 

• 36.7g CaCl2.2H2O 

• Volume to 500ml with deionized water  

Sterile filtered 

 
Polybrene 

• 80mg Hexadimethrine Bromide 

• 10ml 0.9% NaCl solution 
Sterile filtered 

 

5 x DNA Loading dye 

• 40% (v/v) glycerol 

• 0.01%(w/v) bromophenol blue  

• 10mM EDTA pH 8.0 

 

100ml of 50X TAE buffer 

• 24.2gTris base  

• 5.71ml of glacical acetic acid 

• 10ml 0.5M EDTA(pH 8.0) 

• pH to 8.3 

• Water to 100ml  

 

Luria-Bertani (LB) broth 

• 25g LB broth powder  

Contains: 10g/L Tryptone 

10g/L NaCl 

5g/L yeast extract  

• 1 litre DI H2O 
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Autoclaved  

 

SOC media  

Prepare solution 1: 

• 6g Bacto-tryptone 

• 1.5g yeast Extract  

• 1ml 3M NaCl 

• 0.25ml 3M KCl 

Adjust to 291ml with water and autoclave  

Prepare solution 2 

• 3ml 2M Mg2+ from MgSO4.7H20 sterile filtered 

• 6ml 1M glucose sterile filtered  
Combine solution 1 and 2  
 

LB agar 

• 25g LB broth powder 

• 12.5g Bacto-agar 

• 1L DI H2O 
Autoclaved 

 

10ml Freezing media  
• 9ml FBS 

• 1ml DMSO  
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2.1.3 Antibodies  

Table 2.3 Antibodies used for flow cytometry. Antibody epitope, clone, 
manufacturer and conjugated fluorochrome are given.  

2.1.4 Drugs/Inhibitors  

Table 2.4 Drugs and inhibitors All drugs and inhibitors used in vitro during 

project. 

2.1.5 Brunello library  

Human Brunello CRISPR knockout pooled library was a gift from David Root and 

John Doench (Addgene #73178). The library was provided as a plasmid pool with a 

lentiCRISPRv2 backbone. LentiCRISPRv2 is a 3rd generation lentiviral vector 

containing ampicillin resistance for bacterial selection, puromycin for selection in 

mammalian cells, S. pyogenes Cas9, as well as a guide sequence.  The Brunello 

library targets 19,114 human genes with 76,441 guides (including 1000 controls). 

There is 4 guides per gene, whereas a similar library- GeCKOv2 has 6 per gene, the 

number of guides per gene was deduced by subsampling analysis to reduce total 

library size while maintaining hits. The guides were designed using optimised design 

rules to increase activity and reduce off-target effects (Doench et al., 2016). 

Epitope Fluorochrome Clone Manufacturer 

hCD45 APC H130 BD Biosciences 

muCD45 BV421 30F11 BD Biosciences 

hCD3 PE UCHT1 BD Biosciences 

LIVE/DEAD™ 

fixable aqua 

  Thermo Fischer 

phosphoH2AX PE N1-431 BD Biosciences 

phosphatidylserine PE Annexin V  Biolegend 

Drug/Inhibitor  Solvent Company Stock 

concentrations 

Dexamethasone DMSO Caymen chemicals 30mg/ml 

Daunorubicin 

Hydrochloride 

DMSO Caymen chemicals 10mg/ml 

Vincristine sulphate Methanol Caymen chemicals 20mg/ml 

Asparaginase Water Santa Cruz 

biotechnology 

2000U/ml 
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Dug Product 

Details 

Company Solvents 

(for 

further 

dilution) 

Administration 

route 

Dose Frequency 

Vincristine Vincristine 

Sulfate 1 mg/ml 

solution for 

injection 

Hospira 0.9% 

sodium 

chloride  

Intra-peritoneal 0.15mg/

kg 

Once weekly 

Dexamethasone Dexamethasone 

3.3 mg/ml 

Solution for 

Injection 

3.3 mg 

dexamethasone 

(as sodium 

phosphate) 

Lameln 

Pharmaceuti

cals 

Sterile 

water 

Intra-peritoneal 5mg/kg 

or 

2.5mg/k

g (as 

stated in 

relevant 

method 

section) 

5 times 

weekly , once 

daily 

L-asparaginase Spectrilla 

10000units  

Medac 0.9% 

sodium 

chloride 

Intra-peritoneal 1000U/k

g 

5 times 

weekly , once 

daily 

Daunorubicin 20mg powder for 

IV injection 

21.4 mg 

daunorubicin 

hydrochloride 

(equivalent to 20 

mg as base) 

 

Cenexi 

laboratories 

0.9% 

sodium 

chloride 

Intra-venous 0.45mg/

kg 

Once weekly 

Luciferin VivoGlow™ Promega, 

USA 

Dulbeccos 

phosphate 

buffered 

saline 

Intra-peritoneal   

Table 2.5 Drugs used for in vivo studies. Product details and manufacturing 
company of drugs used for in vivo studies  
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 Commercial kits  

Kit  Manufacturer  

Buffer ATL QIAGEN 

Cell Counting Kit-8 

WST-8 Cell proliferation 

Cytotoxicity assay kit 

Dojindo 

Endofree Plasmid Maxi 

Kit 

QIAGEN 

Phusion® High-Fidelity 

PCR Master Mix 

NEB, USA 

Proteinase K QIAGEN 

Platinum® SYBR® 

Green SuperMix UDG 

Applied Biosystems 

QIAamp DNA Blood 

Midi kit  

QIAGEN 

QIAamp DNA Blood 

Maxi kit 

QIAGEN 

QIAquick Gel Extraction 

Kit 

QIAGEN 

QIAquick PCR 

Purification Kit 

QIAGEN 

RevertAid™ H Minus 

cDNA Synthesis Kit 

Thermo Fisher Scientific  

RNase-free DNase set QIAGEN 

RNeasy®Mini kit QIAGEN 

RNeasy®Micro kit QIAGEN 

TaKaRa Ex Taq™ Clontech 

Table 2.6 Commercial kit and manufacturer list.  
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 Primers 

Primers were either designed with Primer Express v3.0™ Software (ABI), Primer-

BLAST software (NCBI) or were taken from published work (where primers are based 

on published sequences references are given). Primers were ordered from Sigma-

Aldrich as desalted oligonucleotides. 

Table 2.7 Oligonucleotide sequences. Oligonucleotides ordered for amplification of 
cDNA for Sanger sequencing, qRT-PCR and PCR. Where sequences are taken from 
published work references are given.   

 Cloning enzymes and buffers  

All enzymes and buffers used for cloning were ordered from Thermo Fisher Scientific, 

UK unless otherwise stated.  

 Bacteria 

Two bacterial strains were used in this work:  

Gene Forward 5’ to 3’ Reverse 5’ to 3’ Ref 

NR3C1 for 

mutation 

screening 

GCTGGAATGAACCTGGAA TACCTGAAGCCTGTGTAAC  

Glucocortic

oid receptor 

GAACTTCCCTGGTCGAAC

AGTT 

GAGCTGGATGGAGGAGAGCTT  

GILZ CATGGAGGTGGCGGTCTA TTACACCGCAGAACCACCAG  

FKBP5 CATTATCCGGAGAACCAA

AC 

AATTGGAATGTCGTGGTCTT  

Human 

GAPDH 

GAAGGTGAAGGTCGGAGT

C 

GAAGATGGTGATGGGATTTC  

Cas9 AGTGCGCGAGATCAACAA

CT 

TGTAGTCGCCGTACACGAAC  

TLX3 TCTGCGAGCTGGAAAA GATGGAGTCGTTGAGGC  

BCL-X  1A CTGAGCTTCGCAATTCC GGTCTCCATCTCCGATTC (Willimott et 

al., 2011) 

BCL-X  1B AAGTGACTGAGCTTGCAA

GT 

GGTCTCCATCTCCGATTC (Willimott et 

al., 2011) 

BCL-XL/S GGGTCTAGAAGTGGATGG

TCAGTGTCTGGT 

GGGGAATTCTTGGACAAT 

GGACTGGTTGA 

(Willimott et 

al., 2011) 

HECTD2 ATCCGAAATGAAGGCCCC

AG 

TGAGGCAGTGGCATCTTTCT  

PIAS1  GCGGACAGTGCGGAACT

AAA 

ATGCAGGGCTTTTGTAAGAAGT (Liu et al., 

2013) 



45 
 

Stbl3 (Invitrogen) - used for propagation of plasmids. Has recA13 mutation which 

reduces recombination of cloned DNA.  

ElectroMAX™ Stbl4™ (Invitrogen) –electrocompetent cells with high transformation 

efficiency used to amplify Brunello library. 
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 Cell culture consumables and reagents  

Tissue culture consumables were purchased from Corning, UK unless stated 

otherwise. 

Reagent   Company 

RPMI-1640 (R8758) Sigma-Aldrich, UK 

RPMI-1640 (R5886) Sigma-Aldrich, UK 

DMEM (D6171) Sigma-Aldrich, UK 

L-Glutamine Sigma-Aldrich, UK 

Sodium pyruvate Sigma-Aldrich, UK 

Trypsin-EDTA 10X 

solution 

Sigma-Aldrich, UK 

GIBCO™ Foetal bovine 

serum  

Thermo Fisher Scientific, 

UK 

Table 2.8 List of cell culture reagents used and suppliers 
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 Cell line information 

2.8.1 Source and authentication of cell lines  

Cell lines were thawed from Liquid Nitrogen or -150°C freezer stocks held by the van 

Delft and Heidenreich groups. The cell lines were authenticated by short tandem 

repeat profiling by NewGene Ltd (Newcastle University, UK).  

2.8.2 Cell culture conditions  

Suspension cells were cultured in RPMI-1640 media with 10% FBS (20% for MOLT-

16). 293T cells were cultured in DMEM high glucose with 10% FBS. Cell lines were 

not kept in culture for greater than 3 months.  
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Table 2.9 Cell line information. Information on disease and age of patient from which cell lines are derived and the medium used 
in their routine culture 

  

Cell line Origin Link to source and culture information 

HPB-ALL Diagnostic T-ALL  age 14 https://www.dsmz.de/collection/catalogue/details/culture/ACC-483 

HSB-2 T-ALL from lymphosarcoma https://www.dsmz.de/collection/catalogue/details/culture/ACC-435 

LOUCY T-ALL primary resistant age 38 https://www.dsmz.de/collection/catalogue/details/culture/ACC-394 

CUTLL-1 Paediatric Relapsed T-cell lymphoblastic disease  https://www.ncbi.nlm.nih.gov/pubmed/16688224 

DU.528 Diagnostic T-ALL age 16 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187926/ 

MOLT-16 Relapsed T-ALL age 5 https://www.dsmz.de/collection/catalogue/details/culture/ACC-29 

PEER T-ALL at second relapse age 4 https://www.dsmz.de/collection/catalogue/details/culture/ACC-6 

RPMI-8402 T-ALL age 16 https://www.dsmz.de/collection/catalogue/details/culture/ACC-290 

SUP-T1 Relapsed T-LL age 8 https://www.dsmz.de/collection/catalogue/details/culture/ACC-140 

ALL-SIL Relapsed T-ALL age 17 https://www.dsmz.de/collection/catalogue/details/culture/ACC-511 

CCRF-CEM Relapsed T-ALL  age 3 https://www.dsmz.de/collection/catalogue/details/culture/ACC-240 

JURKAT Relapsed T-ALL  age 14 https://www.dsmz.de/collection/catalogue/details/culture/ACC-282 

KARPAS-45 Diagnostic T-ALL  age 2 https://www.sigmaaldrich.com/catalog/product/sigma/cb_06072602?lang=en&region=GB 

MOLT4 Relapsed T-ALL  age 19 https://www.dsmz.de/collection/catalogue/details/culture/ACC-362 

KOPT-K1 Diagnostic T-ALL  https://www.ncbi.nlm.nih.gov/pubmed/7475267 

SUP-T1 Relapsed T-ALL age 8 https://www.dsmz.de/collection/catalogue/details/culture/ACC-140 

DND41 T-ALL age 13 https://www.dsmz.de/collection/catalogue/details/culture/ACC-525 

CTV-1 T-ALL  https://www.dsmz.de/collection/catalogue/details/culture/ACC-40 

PF-382 T-ALL at second relapse age 6 https://www.dsmz.de/collection/catalogue/details/culture/ACC-38 

P12/ICHIKAWA T-ALL age 7 https://www.dsmz.de/collection/catalogue/details/culture/ACC-34 

697 B-ALL https://www.dsmz.de/collection/catalogue/details/culture/ACC-42 

293T human embryonic kidney  https://www.dsmz.de/collection/catalogue/details/culture/ACC-635 

https://www.ncbi.nlm.nih.gov/pubmed/7475267
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2.8.3 Safety  

All cell culture work was performed in a class II microbiological safety cabinet 

(BIOMAT-2, Medical Air technology Ltd., Oldham, UK).   

Lentivirus work was carried out in accordance with ACGM Compendium of Guidance 

2000, Part 2A, Annex VI, and BioCOSHH assessments, all lentivirus work was 

carried out at containment level 2 using microbiological safety cabinets. Only second 

generation lentivirus derived from FIV and HIV were used. They are both replication 

in-competent and self-inactivating.  

 Cell culture methods  

2.9.1 Preservation of cell lines at -150° 

Cells were counted, washed and pelleted and re-suspended in a freezing media 

consisting of FBS with 10% DMSO and aliquoted into cryovials (0.5 million to 10 

million cells per vial). Cells were placed in a CoolCell® container (Biocision) and 

placed at -80°C for 24 hours before transfer to -150°C for long term storage.  

2.9.2 Resurrection of cell lines 

Cryovials containing cells were removed from the freezer and warmed in water bath 

at 37°C. Cells were transferred into a tube containing warm media. Cells were 

pelleted by centrifugation at 350g and DMSO containing media aspirated off. Cells 

were then re-suspended in further warm media and transferred to an appropriate 

sized flask 

2.9.3 Cell counting 

Principle 

The trypan blue exclusion assay (Strober, 2001) is used to assess the number of 

viable cells. Cells with intact cell membranes will exclude the trypan blue dye. Cells 

with compromised membranes cannot exclude the dye and it is visible within the 

cytoplasm. Cells with a blue cytoplasm are excluded during counting, only cells of 

normal shape and size with clear cytoplasm are counted as viable cells. To count 

cells, they are placed onto a haemocytometer which has a grid with known sizes, so 

that the concentration of cells can be determined.  

Reagents and equipment  
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• Improved Neubauer haemocytometer 

• Trypan blue  

Procedure 

Cells were mixed well before taking an aliquot of cells which was mixed in 1:1 ratio 

with trypan blue before applying to an improved Neubauer haemocytometer. Viable 

cell count was determined by counting the cells excluding the blue dye lying in the 4 

larger outer squares and concentration calculated using the following equation.  

Counted cells /2 = cell number x104 per ml  

2.9.4 Maintenance of suspension cells 

Cells were counted and passaged 3-4 times weekly. Cells were kept at a density of 

0.5x106/ml to 2x106/ml.  

2.9.5 Maintenance of adherent cells  

Principle  

Since these cells adhere to the surface of the flask their passage differs to 

suspension cells. Trypsin catalyses the hydrolysis of peptide bonds, it helps remove 

focal adhesions that anchor cells to the culture dish. EDTA chelates calcium, the 

removal of calcium helps break cadherins which hold cells together and separates 

cells from one another.  FBS contains proteins that act as a competitive inhibitor to 

trypsin.   

Reagents and equipment  

• Sterile PBS 

• Cell culture medium  

• Trypsin-EDTA (0.05% Trypsin, 0.02% EDTA) 

Procedure  

Cells were counted and passaged 2-4 times weekly. Spent media is removed from 

the flask, cells are washed with warm PBS. Trypsin-EDTA solution is then added to 

promote detachment of cells from the flask. Once cells had dissociated, the trypsin 

was inactivated by addition of media. Cells were then counted and seeded at a 

density of 1x105/ml to 4x105/ml.  
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 Generation of recombinant lentivirus  

In order to express, knock down or knockout genes of interest, the required 

complementary sequences were cloned into appropriate plasmids, these were then 

amplified, transfected into 293T cells to produce lentivirus. Lentivirus was then used 

to introduce the plasmids into mammalian cells. 

2.10.1 Cloning of shRNA sequences into pLKO5.d vector   

Principle  

In order to knockdown BCL-X and HECT2 shRNA vectors were created that target 

these genes. To create these vectors cloning was performed to introduce the 

required sequences into the pLKO5.d vector. The vector is cut with a restriction 

enzyme to allow insertion of sequences with corresponding overhangs.  

Reagents  

• shRNA oligonucleotides (table 2.10) 

• pLKO5d.SFFV.miR30n  (pLKO5.d)  

• BsmB1 

• T4 DNA ligase 

• T4 PNK  

• T4 DNA ligase buffer 

• Buffer Tango  

shRNA sequences  
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Table 2.10 Sense and antisense sequences for cloning of shRNA into pLKO5.d. 
Sequences include Bsmb1 sites, sense strand, guide strand and hairpin loop. 
Designed using the mirN shRNA online design tool (Adams et al., 2017). 

 

Procedure 

Oligonucleotides were reconstituted to a concentration of 100µM. The sense and 

antisense oligonucleotides were phosphorylated and annealed. The reaction given in 

table 2.11 was heated to 37°C for 30 minutes for phosphorylation. Then denatured at 

95°C for 5 minutes before being gradually cooled to allow annealing.  

Component Volume (µl) 

100µM sense 

oligonucleotide 

1 

100µM antisense 

oligonucleotide 

1 

T4 DNA ligase buffer 1 

Water 6.5 

T4 PNK (10U/µl) 0.5 

 

 Table 2.11 Constituents of reaction for phosphorylation and annealing of 

oligonucleotides for shRNA cloning  

  

Gene Sense Antisense 

NTC1 AGCGATCTCGCTTGGGCGAGAGTA

AGTAGTGAAGCCACAGATGTACTTA

CTCTCGCCCAAGCGAGAG 

GGCACTCTCGCTTGGGCGAGAGTAAGTA

CATCTGTGGCTTCACTACTTACTCTCGCC

CAAGCGAGAT 

NTC2 

(RE) 

AGCGAAACCTCGAAATCGTACTGA

GATAGTGAAGCCACAGATGTATCTC

AGTACGATTTCGAGGTTC 

GGCAGAACCTCGAAATCGTACTGAGATA

CATCTGTGGCTTCACTATCTCAGTACGAT

TTCGAGGTTT 

BCL-X  AGCGCCCTTGTGAAGATGATATACT

ATAGTGAAGCCACAGATGTATAGTA

TATCATCTTCACAAGGA 

 

GGCATCCTTGTGAAGATGATATACTATAC

ATCTGTGGCTTCACTATAGTATATCATCTT

CACAAGGG 

HECTD2  AGCGCGCAGTACATGATTTTTATCT

ATAGTGAAGCCACAGATGTATAGAT

AAAAATCATGTACTGCT 

GGCAAGCAGTACATGATTTTTATCTATAC

ATCTGTGGCTTCACTATAGATAAAAATCA

TGTACTGCG 
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Component Volume (µl) 

Vector volume required for 

40ng  

Oligonucleotide duplex 1 

T4 DNA ligase buffer 1 

T4 ligase (5U/ µl) 0.5 

Water Up to 10 

Table 2.12 Ligation reaction  

The vector was provided with Bsmb1 ligation sites by cutting the vector with BsmB1 

in buffer tango, checking for linearized vector by agarose gel electrophoresis and 

purify the vector with a gel extraction kit. The annealed oligonucleotides were then 

ligated into the prepared vector in reaction indicated in table 2.12 overnight at room 

temperature.  

2.10.2 Amplification and purification of plasmids  

The following plasmid were used:  

• pSLIEW: expression of EGFP and luciferase. (In house (Bomken et al., 2013)) 

• pLKO5d.SFFV.miR30n: miR30 based for shRNA knockdown  (Addgene, cat# 

90333) 

• pCMVdR8.91: lentiviral packaging plasmid (Life science market, 

cat#PVT2323) 

• psPAX2: lentiviral packaging plasmid, alternative to pCMVdR8.91 (Addgene, 

cat#12260) 

• pMD2.G: VSV-G envelope expressing plasmid (Addgene, cat#90333) 

Principle 

In order to have sufficient plasmid for lentiviral generation, plasmids were amplified in 

bacteria and purified using Qiagen Endo-free maxi kit.  

Reagents and equipment  

• LB agar plates  

• LB broth 

• QIAfilter cartridge  

• Qiagen tip 
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• Endo free maxi kit buffers: P1, P2, P3, ER, QBT 

Procedure  

Plasmids were transformed into bacteria and streaked onto LB-agar plates containing 

the appropriate antibiotic for the plasmid.  A colony was selected and grown in LB-

broth containing antibiotic, bacteria were harvested during the logarithmic phase of 

growth. Bacteria were pelleted at 6000g for 15minutes at 4°C. The bacterial pellet 

was re-suspended in buffer P1. P2 was added mixed by inversion and incubated for 

5 minutes in order to lyse the bacteria. The lysis was neutralised by addition of buffer 

P3. The lysate was filtered with a QIAfilter cartridge. The filtered lysate was treated 

with buffer ER on ice for 30minutes to remove endotoxins. The Qiagen tip was 

equilibrated with buffer QBT. The lysate was applied to the column, followed by two 

washes with buffer QC. Plasmid was eluted from the column with buffer QN and 

precipitated with isopropanol. The DNA was pelleted by centrifugation at 15,000g for 

30 minutes at 4°C. The pellet was washed with 70% ethanol and pelleted 15,000g for 

15 minutes at 4°C. The ethanol was removed and the pellet air dried. The pellet was 

re-suspended in endotoxin free buffer TE. Concentration and purity were determined 

by Nanodrop.  

2.10.3 Amplification of Brunello library 

The Brunello library was acquired from Addgene as a plasmid pool. To maintain high 

library complexity, amplification requires high transformation efficiency. A total of 

400ng of plasmid DNA was mixed with 100µl of STLB4 cells (an electrocompetent 

E.coli with high transformation efficiency). This was divided amongst 4 cuvettes (25µl 

per cuvette). Cells were electroporated with a MicroPulser, BioRad 1652100 on Ec1 

setting (1.8kV). SOC media was then added and the cells transferred into tubes and 

placed into a shaking incubator for 1 hour at 30°C. Bacteria were then plated onto 

pre-warmed bioassay plates containing LB-Agar with ampicillin. A 40,000 times 

dilution plate was prepared to check transformation efficiency. Plates were incubated 

for 18 hours at 30°C  

The number of colonies were counted on the dilution plate to approximate the total 

colonies produced. Bacteria were scraped from plates for plasmid purification where 

at least 4x106 colonies were present, to ensure at least roughly 50 colonies per 

construct in the library. 
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2.10.4 Seeding of 293T 

293T cells were thawed and cultured for between 1 and 2 weeks prior to lentiviral 

generation. 293T cells were seeded at 1x105/ml into 100mm Corning tissue-culture 

treated culture dishes, with 10mls per dish, 24 hours prior to transfection.  

2.10.5 Calcium phosphate transfection  

Principle 

A calcium phosphate transfection method was used to introduce plasmids into 293T 

cells. The 293T cell line is a fast growing, highly transfectable derivative of human 

embryonic kidney cell line 293. 293T has constitutive expression of SV40 large T 

antigen that allows for episomal replication of transfected plasmids that have the 

SV40 origin of replication. Transfection was performed with plasmids containing viral 

envelope, e.g. VSV-G containing MD2.G, and those containing packaging elements 

such as Gag, Pol Rev and Tat. The transfected 293T then produced lentivirus that 

was used to transduce cells.  

Reagents and equipment 

• Packaging plasmid (pCMVΔR8.91 or psPAX2) 

• Envelope plasmid (pMD2.G) 

• Transfer plasmid  

• 0.5M CaCl2 

• 2xHeBS pH 7.00 (0.28M NaCl, 0.05M HEPES and 1.5mM Na2HPO4) 

• HEPES buffered water (water with 2.5mM HEPES (pH 7.3)) 

Procedure 

15µg of packing plasmid and 15µg of envelope plasmid were mixed with 20µg of 

transfer plasmid and HEPES buffered water to a total volume of 250µl. 250µl of 0.5M 

CaCl2 was added to the plasmid mix, and these were mixed by vortexing vigorously. 

The plasmid-CaCl2 solution was then added dropwise to 500µl of 2xHeBS with 

continuous mixing throughout. The solution was left at room temperature for 30 

minutes in order for precipitates to form. This solution was then applied dropwise to 

the 100mm plates containing a monolayer of 293T cells. After application of the 

solution 293T cells were returned to the incubator. The morning following 

transduction (12-16 hours post transduction) the precipitate containing media was 

removed from the 293T cells, and was replaced with fresh warmed media.  
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2.10.6 Lentiviral harvest  

72 hours (48 hours for CRISPR virus) post transfection lentiviral containing media 

was harvested from 100mm plates. Lentiviral containing media was centrifuged at 

3000rpm for 15 minutes at 4°C to pellet cells and debris. The supernatant was then 

passed through a low protein binding PVDF 0.45µm filter to remove any remaining 

293T cells. The virus containing media was then either concentrated or stored at -

80°C depending on the future experimental requirements.  

2.10.7 Lentiviral concentration 

When viral titre was insufficient to transduce the required cells, lentivirus was 

concentrated by ultracentrifugation. 

Reagents and Equipment 

• Open-top Konical™tubes (Beckman Coulter)  

• SW32Ti swinging bucket rotor 

• Optima XE 100 ultracentrifuge (Beckman Coulter) 

• 70% ethanol  

• RPMI-1640 with 10% FBS 

Procedure 

KonicalTM tubes, adapters and SW32Ti swinging bucket rotor tubes were sterilised 

with 70% ethanol prior to use.  30mls of filtered lentiviral supernatant was transferred 

to the KonicalTM tubes placed along with an adapter into the swinging bucket rotor 

tube. Tubes were then balanced and placed into the rotor in the Optima XE 100 

ultracentrifuge and centrifuged fat 120,000g for 2 hours at 4°C.  After centrifugation 

the supernatant was removed and viral pellet re-suspended by vigorous pipetting in 

300-1000µl of RPMI-1640 with 10% FBS. Virus was aliquoted and stored at -80°C 

until use.  

2.10.8 Production of Brunello library virus  

Lentivirus was generated by calcium phosphate-based co-transfection of 293T cells 

as discussed 2.10.5. Transfection was scaled up from 100mm3 plates to 150mm3 

plates, an increase in surface area of 2.7 times. All reagents and plasmids were 

increased by a factor of 2.7 per plate. Harvest timing and conditions were also 

adjusted as detailed in chapter 5.  
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 Transduction of mammalian cells with lentivirus 

Principle 

Lentivirus is used to introduce the required sequences for expression of a gene, or 

knock down or even knock out of a gene of interest. This process is known as 

transduction. Polybrene is added to increase efficiency of transduction by neutralising 

the negative charge on the surface of the cells decreasing the repulsion between 

viral particles and the cell surface. Spinfection is known to increase transduction 

efficiency of lymphoid cells, and entails the centrifugation of cells and viral particles 

(O'Doherty et al., 2000).  

Reagents and Equipment  

• Ultra Centrifuge and rotor 

• Polybrene (8mg/ml Hexadimethrine Bromide in water with 0.9%NaCl)  

• Parafilm  

• 12/24 well plate  

Procedure  

Where non-concentrated virus was sufficient for transduction, cells were pelleted and 

re-suspended with viral supernatant. For use of concentrated virus cells were re-

suspended in fresh media, before addition of the virus. Polybrene was added at a 

concentration of 8µg/ml. A small-scale transduction was performed prior to each new 

experiment to check the viral titre. Cells were aliquoted into wells of a 12 or 24 well 

plates at a density of 1x106/ml.  PBS was added to empty wells surrounding the cells 

to prevent drying out, plates were sealed with parafilm and placed in a centrifuge 

spinning at 900g for 50 minutes at 34°C. After centrifugation parafilm was removed 

from the plates before returning them to the incubator. The following morning 

approximately 75% of the media was removed from the cells by gently aspirating 

media from the top of the wells being careful not to dislodge the cells that settled to 

the bottom of the plate. Fresh media was then added.  Cells were then passaged and 

media changed as required.  

2.11.1 Selection of Transduced cells with puromycin 

The lentiCRISPRv2 vector contains a gene encoding resistance to antibiotic 

puromycin, we can therefore use puromycin to select the successfully transduced 
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cells. In order to select the concentration of puromycin to treat cells with, the 

puromycin sensitivity of the cell line was determined by cytotoxicity assay, in 

standard culture condition. The lowest possible concentration leading to death of all 

the cells was then selected.  

 Cytotoxicity assays 

To establish response to drugs, cells were seeded in a plate containing the drug or 

inhibitor at increasing concentrations across the plate of cells. The plate was 

incubated for a set period of time, at the end of the treatment period, cell number was 

determined across the plate either by cell counting or by an assay that gives an 

approximation of cell number such as Resazurin assay or cell counting kit.  

2.12.1 Resazurin  

Principle 

Resazurin is a blue fluorogenic dye that is irreversibly reduced by metabolically 

active cells to Resorufin, a fluorescent red product (excitation 530-545, emission 585-

595) (Prabst et al., 2017). Fluorescence was measured when there was optimal 

difference between background and control well fluorescence, and prior reaching 

saturation.  

Reagents and equipment  

• Resazurin sodium salt (R7017, Sigma) 

• FLUOstar Omega plate reader  

Procedure 

 10µl of 10x Resazurin solution (100ug/ml Resazurin in PBS) was added to each well 

of the plate including a media blank, fluorescence was measured on a plate reader 

between 2-6 hours after addition of Resazurin (dependent upon cell line). 

2.12.2 Cell counting kit  

Principle 

Cell counting kit 8 (Dojindo) is a water-soluble tetrazolium salt based assay. The 

pale-yellow coloured solution is reduced by metabolising cells to form an orange 

coloured formazan dye (Prabst et al., 2017). The production of orange reduced 

formazan is proportional to viable cell number and is detected by absorbance at 

450nm.  
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Reagents and equipment  

• Cell counting kit 8 (Dojindo) 

• FLUOstar Omega plate reader 

Procedure 

10µl of Cell counting kit 8 reagent was added to each well of the plate. Absorbance 

was recorded at 405nm using a plate reader 2-6 hours after addition of the reagent.  

2.12.3 Single agent drug assays 

Cells were seeded into a 96 well plate with 3x104 cells per well in 80µl. A dilution 

series was constructed in an empty 96 well plate with the highest concentration 5 

times that required in the final assay. 20µl from the dilution series was then added to 

the respective well of cells. At least 9 different concentrations of each drug were used 

in addition to a solvent control and media only control well. Plates were incubated at 

37°C and 5% CO2 for 72 hours. Resazurin or cell counting kit assays were used to 

determine survival of cells compared to solvent control.  

2.12.4  Statistical analysis of drug assays  

All drug assays were performed in triplicate, for each experiment fluorescence was 

normalised to the solvent treated control (100%). GraphPad Prism software 

(GraphPad Software Inc.) was used to plot dose response curves and determine 

GI50. The Concentrations were log transformed and a then the log inhibitor versus 

response from the non-linear regression analysis options was selected.  

For ABT-737 experiments, concentrations were log transformed and nonlinear 

regression used to quantify the fold shift in the curves using inbuilt EC50 shift equation of 

prism. Where EC50 is half the maximal effect. To test if the EC50s were significantly 

different the null hypothesis that the ratio of EC50s would be 1 (no shift) was 

tested.  

GI50 is defined as concentration giving half the maximal effect. In the case of cytotoxic 

drugs where dose response is from 100 to 0 % this is equivalent to the lethal 

concentration 50 (LC50). LC50 is the dose required to kill 50% of the cells.   

2.12.5 Assessment of asparagine dependence in HPB-ALL 

Principle  
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To assess the dependence of HPB-ALL growth and survival on exposure to L-

asparagine, media containing no L-Asparagine –DMEM was used and different 

concentrations of L-asparagine applied to cells in a 96 well plate. Cell numbers were 

determined by Resazurin assay.  

Reagents and Equipment  

• DMEM 

• FBS 

• L-glutamine  

• L-Asparagine 

Procedure  

HPB-ALL cells were counted, washed and re-suspended in a DMEM media with 10% 

FBS and L-glutamine (0.3g/L). Cells were aliquoted into a 96 well plate (3x104 cells 

per well) and L-asparagine was titrated across the plate (0.001g/L to 0.05g/L). After 

incubation for 72 hours Resazurin assay was performed. 
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2.12.6 Rescue from Asparaginase by Asparagine addition in HPB-ALL 

Principle 

Asparginase breaks down Asparagine into Aspartic acid and ammonia. Increasing 

the supply of asparagine should reduce the effect of asparaginase, if the decrease in 

cell number is due to depletion of available asparagine. HPB-ALL was routinely 

cultured in RPMI-1640 media which contained 0.05g/L L-asparagine by adding an 

additional 0.15g/L L-asparagine to the media the total L-asparagine amount was 

quadrupled.   

Reagents and equipment  

• RPMI-1640 media with 10% FBS  

• L-asparagine (Ridges et al.) 

• Asparaginase  

• Resazurin  

• FLUOstar Omega plate reader 

Procedure  

HPB-ALL cells were pelleted and re-suspended in RPMI-1640 media with 10% FBS, 

the cells were then separated into two separate tubes. The first tube of cells was 

aliquoted into the top half of a 96 well plate at 3x104 cells per well. To the second 

tube an additional 0.15g/L L-asparagine was added, before cells were plated at 3x104 

cells per well to the bottom half of the 96 well plate.  Asparaginase was then titrated 

over both halves of the plate. After 72 hours viability was determined by Resazurin 

assay. The viability at each Asparaginase concentration was compared between the 

two conditions.  

2.12.7 Confirming mutation in the glucocorticoid receptor gene in HPB-ALL 

NR3C1 encodes the glucocorticoid receptor to which Dexamethasone binds. Often 

cells that show resistance to Dexamethasone have mutations in NR3C1. RNA 

sequencing data from the cancer cell line encyclopaedia (Workman et al.) was 

examined for mutations in NR3C1 (Barretina et al., 2012a).  The data highlighted a 

heterozygous mutation on chromosome 5 in NR3C1 at position 142675147. This 

mutation from adenosine to guanine results in a methionine being replaced by 

threonine at codon 634 within exon 7 (p.M634T) Primers were designed flanking the 
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region of interest and used to amplify cDNA from HPB-ALL cells (table 2.7), this was 

subsequently sent for Sanger sequencing to confirm CCLE data 

2.12.8 Response of HPB-ALL to dexamethasone  

HPB-ALL cells were treated with 10µM and 100nM Dexamethasone at 0, 1, 2, 4, 6 

and 24 hours. Cells were taken for analysis of mRNA (section 2.15). Cells were 

pelleted, RNA was extracted, cDNA synthesised and transcript levels of the 

glucocorticoid receptor, GILZ and FKBP5 were assessed by real-time quantitative 

PCR. Primer sequences are given in table 2.7. 

2.12.9 Combination treatment at fixed ratios 

Principle 

Once individual GI50 values had been determined it was important to look at how the 

cells responded to the drugs when they were combined. Drugs were combined at 

fixed ratios with each new drug added sequentially to the previous combination.   

Drug GI50 µg/ml (equiv nM) 

dexamethasone 0.0916 (50nM) 

daunorubicin 

(hydrochloride) 

0.07  (124nM) 

vincristine (sulphate) 0.001 (1.1nM) 

asparaginase 0.36mU/ml 

Table 2.13 GI50s for HPB-ALL 

Procedure 

GI50 values for HPB-ALL treated with dexamethasone, daunorubicin, vincristine and 

asparaginase were determined from single agent drug assays. Drugs were then 

combined at fixed ratios of 0.25, 0.5, 1, 2 and 4 times the GI50.  For each drug pair, 

the drugs were run singularly and combined on the same plate (figure 2.1).  
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Figure 2.1 Example of plate layout for drug combination treatment. Drug 1 and 
drug 2 were added at 0.25, 0.5, 1, 2 and 4 times their respective GI50 values 
individually (yellow and green) and then combined (grey). Media was added to wells 
to as a control for background fluorescence (Moore et al.) and the plate was 
surrounded by PBS (light blue).  

 

Assay Drug 1 Drug 2 

1 dexamethasone daunorubicin  

2 dexamethasone + 

daunorubicin 

vincristine 

3 Dexamethasone + 

daunorubicin + vincristine 

asparaginase 

Table 2.14 Combination assays 

The combination of dexamethasone and daunorubicin was assessed first, before 

adding vincristine and then asparaginase consecutively, with multiple drugs being 

treated as a single drug as indicated in table 2.14. Plates were incubated for 72 

hours and cell viability measured by Resazurin assay.  

2.12.10 Analysis of synergy using Calcusyn 

Percentage viability scores (normalised to solvent control wells) were converted to 

effect scores where an effect of 1.0 is where 0% of cells remain and an effect of 0.3 

represents where 70% of cells remain compared to the solvent control. Effects of 

each drug alone or in combination were input into CalcuSyn software to produce 

Combination index (CI) values. CI values were recorded at 3 different dose points 

(IC) 50, 75 and 90. 

2.12.11 4 drug matrix assay  

Principle 
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When performing in vitro screening, it is important to select concentrations of drugs 

that apply enough pressure to reduce cell numbers, whilst leaving enough cells to 

analyse. Ideally all four drugs will contribute towards the chemotherapeutic pressure 

applied. Given dexamethasone, daunorubicin, vincristine and asparaginase were 

selected based on their clinical relevance, it was worth noting any selected 

combination should ideally be in keeping with the ratio of drugs found in patients. A 

matrix-based assay was selected for its ability to illustrate the effect of raising or 

lowering one drug with respect to the other drugs within the combination. 

Dexamethasone, daunorubicin, vincristine and asparaginase were titrated across 

HPB-ALL cells in a matrix assay.  The individual GI50 values for each drug were 

used to guide effective concentration ranges for each drug. The following ranges 

were selected: dexamethasone 0-39.25ng/ml (~100nM), Daunorubicin Hydrochloride 

0-140ng/ml (~248nM), Vincristine Sulphate 0-2ng/ml (~2nM) and Asparaginase 0-

0.72mU/ml. Despite these cells being dexamethasone resistant, a top concentration 

of 100nM was selected to bring the concentration into a more clinically relevant 

range.  

Reagents and equipment  

• Multichannel pipette  

• Drugs: dexamethasone (Caymen chemicals), daunorubicin hydrochloride 

(Caymen chemicals) , vincristine sulphate (Caymen chemicals)  and 

asparaginase (Spectrilla, Medac)  

• 96 well assay plates  

• Resazurin  

• FLUOstar Omega plate reader 

Procedure  

Dexamethasone, daunorubicin, vincristine and asparaginase were all titrated against 

each other in a matrix assay. In total 96 well plates were used to cover all 

possibilities of drug combinations. 3 different concentrations of dexamethasone were 

used and 4 concentrations for Daunorubicin, Vincristine and Asparaginase.  Multiple 

dilutions were prepared for each drug to give 20x the required concentrations.  Cells 

were seeded in 80µl volume, then each drug added in turn in a 5µl volume each, 

giving a total final volume of 100µl. Table 2.15 and figure 2.2 illustrate the way in 

which drugs were applied to the plates.  
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Figure 2.2 Plate layout for drug matrix assay. Shown is 5 stacks of 5 plates. Each plate was divided into quadrants with varying 
dexamethasone concentrations. Across each quadrant were increasing concentrations of daunorubicin in triplicate. Vincristine was 
titrated through each stack of plates (plates 1 through 5 had increasing Vincristine) and different asparaginase concentrations were 
applied to each stack of plates (A through E)  
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Drug Conc (nMl) Location 

Dexamethasone 0 Top left each plate 

Dexamethasone 25 Top right each plate 

Dexamethasone 50 Bottom left each plate 

Dexamethasone 100 Bottom right each plate 

Daunorubicin  0 Rows 2 and 7 every 

plate 

Daunorubicin 36 Rows 3 and 8 every 

plate 

Daunorubicin 72 Rows 4 and 9 every 

plate 

Daunorubicin 124 Rows 5 and 10 every 

plate 

Daunorubicin 248 Rows 6 and 11 every 

plate 

Vincristine  0 Plates labelled 1 (A-E) 

Vincristine 0.3 Plates labelled 2 (A-E) 

Vincristine 0.6 Plates labelled 3 (A-E) 

Vincristine 1.1 Plates labelled 4 (A-E) 

Vincristine 2.2 Plates labelled 5 (A-E) 

Asparaginase 0 Plates labelled A (1-5) 

Asparaginase 0.09 Plates labelled B (1-5) 

Asparaginase 0.18 Plates labelled C (1-5) 

Asparaginase 0.36 Plates labelled D (1-5) 

Asparaginase 0.72 Plates labelled E (1-5) 

Table 2.15 Drug matrix layout and drug concentrations  

After 72 hours of incubation with drugs, Resazurin was applied to each plate in turn. 

Fluorescence was measured with a plate reader 3 hours after addition of Resazurin. 

The data from each plate was compiled in a spreadsheet. The background 

fluorescence was subtracted from each well, any anomalous triplicates were 

removed and then average readings for each condition calculated. Fluorescence 
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intensity for each condition was compared to a solvent control to give a percentage 

survival for that condition.  

2.12.12 Using combenefit to examine synergy in drug matrix assays  

Each position in a drug matrix has a synergy distribution score, calculated by 

effectiveness of the drug combination in terms of the amount of additional that is 

obtained is described by the first equation (figure 2.3). The additional effect is 

calculated by observed effect (E(a,b)) compared to a reference effect for single drugs 

(R(a,b)). The reference effect is dependent upon the model selected in the case of 

my work the Loewe model was used (second equation given in figure 2.3). The 

Reference effect was calculated by the second equation. The data is given by colour 

coded matrix diagrams with maximal possible score is 100 describing strong synergy 

are given in blue and where -100 describes strong antagonism in red. To describe 

the synergy across the whole matrix the sum of synergy and antagonism is used 

(SUM_SYN_ANT) and this is given by the last equation. This is the sum of synergy 

and antagonism observed in concentration logarithmic space. The mathematic and 

models used in combenefit are dare described in more detail in the accompanying 

publication (Di Veroli et al., 2016).  

 

Figure 2.3 Equations used by combenefit software for calculation of synergy. 
Calculation of synergistic effect of two drugs at conentrations a and b, by subtracting 
the reference effect R(a,b) from observed effect E(a,b) (A). Reference effect using 
Loewe model calculations, two doses are found au and bu are identified and for each 
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dose of (given as a and b) the reference effect is calculated (B). Synergy scores are 
given for each combination within the matrix, to assess synergy across the whole of 
the matrix the sum of synergism and antagonism (SUM_SYN_ANT) is used (C). 

 Flow Cytometry  

2.13.1 Assessing transduction efficiency by flow cytometry  

Principle  

The plasmid SLIEW contains enhanced green fluorescent protein (EGFP). To identify 

cells successfully transduced with pSLIEW and expressing EGFP, the presence of 

EGFP was detected by flow cytometer with a blue laser (488nm).   

Reagents and equipment  

• Flow cytometer  

• FlowJo software  

Procedure 

Cells were gated by forward and side scatter, doublet discrimination was performed 

and EGFP detected with the blue laser (488nm). Transduction efficiency was 

determined using FlowJo software and compared to un-transduced cells.  

2.13.2 Detection of human leukaemic cells in murine peripheral blood 

Principle  

One method of assessing engraftment of leukaemic cells in vivo is via peripheral 

blood monitoring. 50µl of peripheral blood was taken from the mouse tail vein by 

venepuncture, stained with an antibody cocktail containing antibodies against human 

CD45 (hCD45) and CD3 (hCD3) and murine CD45 (HPB-ALL is hCD45 and hCD3 

positive). These samples were then run on the flow cytometer to determine the 

percentage (%) of human cells in the peripheral blood. 

Reagents and equipment  

• BD FACSCanto™ II  

• FlowJo software 

• Red cell lysis solution (8.3g of NH4Cl2, 1g KHCO3 and 0.38g Na2EDTA in 

100ml water) 

• PBSA (0.2% bovine serum albumin (BSA) in PBS) 

• Antibodies (table 2.3) 
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Procedure 

50µl of murine peripheral blood was transferred into a microfuge tube. Cell surface 

marker staining was performed by addition of antibodies to murine CD45, human 

CD45 and human CD3 (using manufacturer recommended test volumes). After a 20-

minute incubation red blood cell lysis was performed (section2.13.3). Cells were 

washed twice with PBSA before adding the viability dye LIVE/DEAD™. Following a 

30-minute incubation, cells were washed twice and fixed in 2% Paraformaldehyde 

(PFA) and stored at 4 degrees until run within 1 week. Samples were run on a BD 

FACSCanto™ II and analysed with FlowJo software.  

2.13.3 Red blood cell lysis  

Samples containing large numbers of red blood cells, for instance peripheral blood 

and some bone marrow samples, underwent red cell lysis prior to analysis by flow 

cytometry. Red blood cell lysis stock solution (8.3g of NH4Cl2, 1g KHCO3 and 0.38g 

Na2EDTA in 100ml water) was diluted 1 in 10 in water to prepare the working 

concentration on the day of use. 1.2mls of red cell lysis solution was added to a 50µl 

sample. The sample was incubated with regular agitation for 10 minutes to ensure 

adequate lysis.  

2.13.4 Detection of human leukaemic cells in murine tissues  

Principle  

Leukaemic cells also engraft in tissues in mice, such as bone marrow and spleen. 

Flow cytometry can be used to assess the percentage of human leukaemic cells in 

harvested samples. In a similar way to peripheral blood staining, an antibody cocktail 

containing antibodies against human CD45 and human CD3 and murine CD45 is 

added to a sample, and this can then be analysed by flow cytometry.  

Reagents and equipment  

• BD FACSCanto™ II (BD biosciences) 

• FlowJo software 

• Antibodies (as per table 2.3) 

Procedure 

Cells were washed, counted and 0.5-2x106 cells were re-suspended in 50µl of PBSA. 

Antibodies as per table 2.3  were incubated for 20 minutes at room temperature 

protected from light. If performing on freshly harvested samples containing red blood 
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cells, red blood cell lysis was performed first. The cells were then washed and 

stained with a viability marker for 20 minutes. When using frozen viable cells this step 

was omitted, and viability staining was performed at the same time as surface marker 

staining. Samples were fixed in 2% PFA and stored at 4°C. Samples were run on a 

BD FACSCanto™ II and analysed with FlowJo software.  

2.13.5 Detection of phosphorylated Histone H2A.X in HPB-ALL cells treated 

with Vincristine, Dexamethasone, Asparaginase and Daunorubicin as a 

combination in vivo  

Principle  

PhosphoH2AX is a marker of DNA damage (Kuo and Yang, 2008). PhosphoH2AX 

levels in HPB-ALL cells treated in vivo with chemotherapy were compared to those 

who had received only solvent control. Cells were harvested from murine bone 

marrow and contained a mix of human HPB-ALL cells and murine cells. Human 

CD45 targeting antibody with APC fluorophore was used to identify HPB-ALL cells, 

and an antibody targeting phosphH2AX conjugated with fluorophore PE was used as 

a measure of DNA damage within these cells. .  

Reagents and equipment  

• BD Cytofix™ (BD biosciences) 

• Phosflow™ Perm Buffer II (BD biosciences) 

• BD FACSCanto™ II (BD biosciences)  

• huCD45, muCD45, live/dead and phosphoH2AX antibodies (table 2.3) 
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Procedure  

0.5-1x106 cells were prepared per tube. Cells were stained in 50µl containing 10µl 

human CD45 (to identify HPB-ALL cells) and 0.2µl LIVE/DEAD ™ to identify viable 

cells in PBA. Cells were washed with PBA then fixed for 30 minutes on ice in 250µl of 

BD Cytofix™. Cells were washed twice with PBA. 300µl of cold Phosflow™ Perm 

Buffer II was added dropwise during vortex to permeabilise the cells. After a 30 

minute incubation on ice, cells were washed with PBA, pelleted and antibody cocktail 

staining solution containing 2.5µl phosphoH2AX, 1µl mouse serum and 75µl PBA 

added. Cells were incubated for 45 minutes at room temperature, washed and then 

run on a BD FACSCanto™ II cytometer.  

2.13.6 Competitive assay  

Principle  

To assess the impact of gene knockdown, cells with targeted shRNA are compared 

in a competitive assay with cells treated with a non-targeting control shRNA. The 

targeted shRNA is tagged with a fluorochrome to allow tracking of the knockdown 

cells. The non-targeting control shRNA is tagged with an alternate fluorochrome for 

direct comparison. Flow cytometry can be used to detect the relative proportion of 

fluorochrome conjugated cells over time.   

Reagents and equipment  

• shBCL-X/ shHECTD2/ shNTC2 in pLKO5d.SFFV.miR30n with GFP  

• shNTC  in pLKO5d.SFFV.miR30n with RFP657 

• ATTUNE NxT flow cytometer  

• FlowJo v10.0.8 
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Procedure  

DND41 cells and HPB-ALL cells were re-suspended in lentivirus supernatant 

(generated as described in 2.10) for shBCl-X, shHECTD2, shNTC2 and shNTC1 in 

the presence of 8µg/ml polybrene. Cells were spinfected as previously described. 

Four days post transfection cells were counted and GFP and RFP657 expression 

was assessed by flow cytometry. RNA samples were taken to assess knockdown 

efficiency. Cells were combined so that there were even percentages of GFP and 

RFP657 positive cells. For each cell line the populations listed in table 2.16 were set 

up. Each flask of cells was then split equally, to one half VXLD was added (dex 

50nM, dauno 33nM, vinc 1nM, asp 0.36mU/ml). Figure 2.4 outlines the process. The 

percentage of GFP and RFP657 cell was assessed every 3-4 days.  

Population 1 Population 2 

shBCl-X-GFP shNTC1-RFP657 

shHECTD2-GFP shNTC1-RFP657 

shNTC2-GFP shNTC1-RFP657 

Table 2.16 Competitive assays set up for HPB-ALL and DND41 
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Figure 2.4 Schematic of competitive assay. The T-ALL cell lines were transduced 
with virus containing shRNAs targeting BCL-X or HECTD2 and GFP. The same cell 
line was also transduced with virus with non-targeting control (NTC) shRNA with 
RFP657. Transduction efficiency was assessed by flow cytometry 4 days post 
transduction. Cells were mixed to give equal percentages of GFP and RFP657 cells. 
The pooled cells were then halved and to one half VXLD treatment was added. The 
percentage of GFP and RFP657 was monitored over time by flow cytometry.  

2.13.7 Apoptosis  

Principle  

To assess level of apoptotic cells (for instance with VXLD or ABT-737 treatment) 

cells were stained with a PE-conjugated Annexin V antibody and LIVE/DEAD viability 

dye. Annexin V binds to phosphatidylserine (PS) in presence of calcium.  PS is 

normally found on the intracellular part of plasma membrane of healthy cells. During 

early apoptosis PS translocates to the external leaflet. Combining annexin V with a 

viability dye such as live/dead aqua in the presence of containing calcium (such as 

annexin binding buffer) can identify cells with PS on the outer membrane and cells 

with a permeable membrane.  

Reagents and equipment  

• Annexin V-PE antibody 

• LIVE/DEAD fixable aqua viability dye  

• Annexin V binding buffer (Biolegend, 422201)  

• ATTUNE NxT flow cytometer  

• FlowJo v10.0.8 
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Procedure  

Cells were pelleted and washed twice with PBS. Cells were re-suspended in 1x 

annexin V binding buffer at a concentration of 1x106/ml. To 100µl of cells in 

binding buffer 5µl of AnnexinV-PE and 0.5µl LIVE/DEAD fixable aqua was added, 

before incubation protected from light for 15 minutes at room temperature. 400µl 

of additional binding buffer was then added prior to running samples through a 

ATTUNE NxT flow cytometer. Single colour and unstained samples were 

prepared at the same time to check compensation and gating.  Data was 

analysed with FlowJo.  

 Quantification of plasmids, DNA and RNA by nanodrop 

The buffer in which the DNA/RNA is dissolved is used to blank the Nanodrop 2000 

spectrophotometer. To determine the concentration of DNA/RNA in a sample, 1µl of 

sample is applied to the nanodrop and the concentration is determined according to 

the amount of light passing through at 260nm.  

 

 mRNA expression  

2.15.1 RNA extraction with RNeasy® Mini kit 

Principle 

The RNeasy® kit uses silica columns to purify RNA from cells.  

Reagents and equipment 

• RNeasy® mini column 

• Buffer RLT 

• RNase free DNase and buffer RDD 

• Wash buffers RW1 and RPE 

• RNase free water 

• 70% ethanol 
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Procedure 

Cells were washed with PBS and pelleted. 350µl of buffer RLT (Qiagen) was added 

to the cell pellet. The sample was then either extracted immediately or stored at -

20°C.  The sample was placed into a QIAshredder column and spun at maximum 

speed for 2 minutes to homogenise the cells. 350µl of 70% ethanol was added to the 

homogenised lysate. This was all transferred to the RNeasy column. The column was 

centrifuged at 8000g for 30 seconds and the flow through discarded. The column was 

washed with 350µl of RW1 buffer and centrifuged 8000g for 30seconds. A DNA 

digest was performed by applying RNase free DNase (10µl DNase1 in 70µl buffer 

RDD) to the column and incubated for 15 minutes. The column was washed with 

350µl of RW1 and centrifuged at 8000g for 30 seconds. The supernatant was 

discarded. 500µl of RPE buffer was applied to the column and this was centrifuged at 

8000g for 30 seconds and flow through discarded. The column was placed in a fresh 

tube and spun at full speed for 1 minute to remove residual wash buffer. 30µl of 

RNase free water was added to the column before spinning at 8000g for 1 min to 

elute the DNA. 

2.15.2 RNA extraction with RNeasy® Micro kit 

Principle 

If there were a limited number of cells (<3x105) the RNeasy® Micro kit was used, 

instead of the RNeasy® mini kit, since this kit is optimised for smaller cell numbers. It 

uses a silica membrane column like the RNeasy® mini kit.  

Reagents and equipment  

• RNeasy® mini column 

• Buffer RLT 

• RNase free DNase and buffer RDD 

• Wash buffers RW1 and RPE 

• RNase free water 

• 70% ethanol 

• 80% ethanol prepared with RNase free water 
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Procedure 

Cells were washed with PBS and pelleted. 350µl of buffer RLT (Qiagen) was added 

to the cell pellet. The sample was then either extracted or stored at -20°C and 

extracted later.  The sample was placed into a QIAshredder column and spun at 

maximum speed for 2 minutes to homogenise the cells. 700µl of 70% ethanol was 

added to the homogenised lysate. This was all transferred to the RNeasy column. 

The column was centrifuged at 8000g for 30 seconds and the flow through discarded. 

The column was washed with 350µl of RW1 buffer and centrifuged 8000g for 

30seconds. A DNA digest was performed by applying RNase free DNase (10µl 

DNase1 in 70µl buffer RDD) to the column and incubated for 15 minutes. The column 

was washed with 350µl of RW1 and centrifuged at 8000g for 30 seconds. The 

supernatant was discarded. 500µl of RPE buffer was applied to the column and this 

was centrifuged at 8000g for 30 seconds and flow through discarded. 500µl 80% 

ethanol was applied to the column, which was centrifuged at 8000g for 30seconds. 

The column was placed in a fresh tube and spun at full speed for 5 minutes to 

remove residual ethanol. 9µl of RNase free water was added to the column, this was 

incubated for 5 minutes before spinning at 8000g for 1 min to elute the DNA. 

2.15.3 cDNA synthesis  

Principle 

RevertAid H Minus First Strand cDNA synthesis kit (Thermo Fisher Scientific) was 

used to produce cDNA from mRNA. The kit uses a reverse transcriptase enzyme 

lacking RNase H activity to reduce RNA degradation and RiboLock RNase inhibitors 

which protect the RNA from RNases. 

Reagents and equipment  

Table 2.17  cDNA synthesis step 1 reagents  

  

Reagent Volume (µl) 

RNA (500-1000ng)  

Random hexamer (100µM) 1 

RNase free water 11-RNA volume  
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Table 2.18 master mix components (step 2 cDNA synthesis) 

Procedure  

500 to 1000ng of RNA was added to a PCR tube, with 1µl of Random hexamer 

primers and RNase free water to give a total volume of 12µl. The reaction mix was 

placed into a Thermo cycler PCR machine. Samples are heated to 70°C for 5 

minutes and then cooled to 4°C. Samples were then removed from the PCR 

machine. Master Mix consisting of (reaction buffer, dNTPs, RiboLock inhibitor and 

Reverse Transcriptase) was added to each sample (8µl/sample). The samples were 

put back into the PCR machine for the following settings: 25°C for 10 minutes, 42°C 

for 60 minutes and 70°C for 10 minutes, samples were then kept at 4°C until 

removed from the PCR machine. 100µl of RNase free water was added and the 

cDNA stored at -20°C until use.  

2.1.6 Quantitative Real Time polymerase chain reaction (qRT-PCR) 

Principle 

To determine changes in gene expression in cells after drug treatment, quantitative 

real time PCR was performed. Primers were designed for genes of interest, PCR was 

performed and the levels of PCR product were measured by use of SYBR® Green 

that intercalates with double stranded DNA. The fluorescence from SYBR Green was 

proportional to DNA content, allowing quantitative measurement of PCR products.  

Reagents and Equipment  

• SYBR Green (Platinum® SYBR® Green qPCR SuperMix-UDG with ROX, 2X, 

Invitrogen) 

• RT-PCR primers  

• ViiA Real-Time PCR System (Applied Biosystems) 

Reagent Volume per reaction (µl) 

5x Reaction Buffer (250 mM Tris-HCl 

(pH 8.3), 250 mM KCl, 20 mM MgCl2, 

50 mM DTT) 

4 

dNTP (10mM) 2 

RiboLock inhibitor (20 units/µl) 1 

RevertAid H Minus M-MulV Reverse 

Transcriptase (200 units/µl) 

1 
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• 384 well PCR plates 

• MicroAmp® Optical Adhesive Film (Applied Biosystems) 

Procedure  

For each gene a mix was prepared containing SYBR Green (5µl), 10µM primer mix of 

forward and reverse primers (0.3µl per well) and nuclease free water (2.7µl per well). 

8µl of the mix was pipetted into each of the required wells in a 384 well PCR plate 

before 2µl of cDNA was added. Each sample was run in triplicate. The plate was 

sealed with a MicroAmp® film and centrifuged to ensure all liquid was within the 

wells. The plate was run on the ViiA Real-Time PCR System with the conditions 

shown in figure 2.5. 

 

Figure.2.5 Real-time quantitative PCR conditions.  
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 Statistics for expression changes 

Data from triplicate experiments were input into GraphPad Prism for in vitro 

dexamethasone treated cells, a one way annova with repeated measures and then 

Holm Sidak’s multiple comparisons test was used to assess if changes in expression 

were significant at each time point compared to the starting 0 hour time point.  

For in vivo samples a single time point was used. Data from 3 control mice and data 

from 3 VXLD mice were treated as independent replicates. GraphPad prism was 

used to perform an unpaired t-test.   

 Agarose gel electrophoresis 

The appropriate weight of ultrapure agarose is dissolved in 50ml of 1xTAE buffer, 

and 0.01% GelRed is added and set in gel setting apparatus.  Gels are placed in a 

BioRad tank containing 1xTAE buffer. Samples are mixed with 5xloading buffer 

before being loaded into the gel alongside a molecular weight marker. Gels are run at 

up to 100 Volts until there is sufficient separation. Gels are imaged using either a 

GelDoc (BioRad) or G:BOX (Syngene). 

 Mouse lines 

2.18.1 NSG (NOD.Cg-Prkdcscidilrgtm1Wjl/SzJ) 

Severely immunocompromised these mice have no mature B, T or NK cells, and 

have defective dendritic cells and macrophages. They can successfully engraft a 

wide range of cancers and better engrafts cancer stem cells than NOD scid or nude 

mice (Adams et al., 2017, Shultz et al., 2005, Ishikawa et al., 2005). 

2.18.2 RAG2 (Rag2-/- gamma c-/-) 

Rag 2 and gamma common chain homozygous mutant mice with a BALB/c 

background from in house colony (Traggiai et al., 2004).Mice lack B ,T and NK cells.  

All in vivo work was carried out under the personal licence ICDB9C2D0 with project 

licence PPL60/4222, except for the pharmacokinetic additional time points that were 

carried out under project licence PPL70/8769. Mice were bred in house.  

2.18.3 Animal husbandry  

Mice were housed in a specific pathogen free (SPF) environment in individually 

ventilated cages (IVC). Mice were weighed and checked for signs of ill health weekly 

after injection with leukaemic cells (intra-femoral injection), and daily during drug 
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treatment. In accordance with the home office licence, mice were killed if they lost 

>20% of their heaviest previous weight or lost >15% maintained for 3 days, or had 

tumours exceeding 15mm. Mice were monitored for other signs of ill health, including 

piloerection, hunched position, paleness of ears and tails, porphyrin staining of 

nose/eyes, abdominal breathing, unusual gait and loss of muscle tone. Mice were 

killed by cervical dislocation, a schedule 1 listed method for humane killing of 

laboratory animals. Ear notching was used to distinguish mice within a single cage.  

 Intra-femoral injection  

Principle 

Leukaemia arises within the bone marrow, the bone marrow microenvironment forms 

the niche that contributes to survival and propagation of leukaemia (Duarte et al., 

2018). When introducing leukaemic cells to mice, they are implanted into their natural 

nice in the bone marrow of the femur via intra-femoral injection.  

Reagents/Equipment  

• Category II laminar flow hood  

• Anaesthetic rig with induction box and small animal face mask 

• Isoflurane  

• Carprofen (Rimadyl small animal solution for injection, Zoetis)  

• 29 Gauge needles (BD microfine U-100 insulin needles, BD biosciences)  

• Skin disinfectant (Hydrex Derma Pink spray) 
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Procedure  

The procedure was carried out in a category II laminar flood hood to provide a sterile 

environment. Mice were placed in an induction box with 5% Isoflurane, and then 

moved to a face mask with ~3% Isoflurane to maintain a surgical depth of 

anaesthesia. Analgesic Carprofen was given at 5mg/kg by sub-cutaneous injection at 

the start of the procedure. The injection site was prepared by shaving of the fur and 

application of skin disinfectant. The leg was flexed and held as a 29 Gauge needle 

was used to drill into the femur. The sample was then injected in a 20-30µl volume 

using a fresh needle. Mice were removed from anaesthetic and placed in their home 

cage for monitoring as they recovered.  

 Administration of substances by injection  

Administration of drugs and other substances was performed by 3 routes of injection: 

subcutaneous, intra-peritoneal or intra-venous. Dosing was performed in accordance 

with home office licence requirements and guidelines set out in guidelines for the 

welfare and use of animals in cancer research (Workman et al., 2010).  

2.20.1 Subcutaneous injection 

A subcutaneous injection was used to administer the analgesic Carprofen prior to 

intra-femoral injection. The injection was performed with mice already anesthetised. 

The skin around the scruff was tented and 25 Gauge needle inserted at a parallel 

angel to the mouse, and 5mg/kg Carprofen was injected under the skin.  

2.20.2 Intra-peritoneal injection 

Intra-peritoneal injection was used to give drugs during VXLD dosing and to 

administer luciferin for IVIS procedure. The mouse was restrained by tightly grasping 

the scruff in the hand. The other hand was used to insert a 29-gauge insulin needle 

into the lower left/lower right quadrant of the abdomen at a 45 degree angle to the 

mouse. During dosing alternate side of the peritoneum were injected.  

2.20.3 Intra-venous injection 

Daunorubicin was given by intravenous injection. Daunorubicin was administered by 

injection into a lateral tail vein using a 29-gauge insulin needle by a competent 

member of staff.   
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 In vivo imaging  

Principle 

Cells transduced with a vector containing luciferin, for instance pSLIEW, can be 

visualised using an in vivo imaging system. Mice are injected with the substrate 

luciferin and where the cells containing the luciferase gene are present, a light signal 

is produced which is detected by the camera within the imaging system.  

Reagents and Equipment 

• D-luciferin potassium salt powder (Intrace Medical SA) 

• DPBS 

• IVIS spectrum (Caliper life sciences) 

• Living image ® (Caliper life sciences) 

Procedure 

Anaesthetic equipment and the IVIS machine were cleaned and prepared for 

imaging. Luciferin aliquots (30mg/ml D-luciferin potassium salt in DPBS) were 

removed from the -20°C freezer and allowed to come to room temperature protected 

from light. Mice were injected via intra-peritoneal route with 150mg/kg Luciferin. Mice 

were put in an induction chamber with 5% Isoflurane and then transferred to the 

heated stage of the IVIS spectrum with the face within a nose cone providing 

maintenance of anaesthesia (2.5-3% Isoflurane). Mice were imaged ventrally, and 

sometimes additionally dorsally and on each side. Images were analysed with Living 

Image software.  

 Peripheral blood collection  

Peripheral blood samples can be taken from mice in order to assess drug levels in 

the plasma or to detect human leukaemic cells as a measure of engraftment.  

2.22.1 Blood sampling by venepuncture of tail vein  

Small volumes of blood (less than 10% of the circulating blood volume) can be taken 

from mice for analysis. Mice are placed within a restraining device before making a 

small puncture in one of the lateral tail veins with a scalpel blade. A Microvette® with 

a lithium-heparin coating (Sarstedt) is used to draw up approximately 50µl of blood.  
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2.22.2 Blood collection by terminal cardiac puncture  

When large volumes of blood were required (>10% circulating blood volume), blood 

was taken under terminal anaesthesia by cardiac puncture. Heparin solution 

(Multiparin, CP Pharmaceuticals) was used to coat the syringe and collection tube to 

prevent clotting. Mice were placed into an induction box with 5% isoflurane and then 

transferred to a face mask. After confirming surgical depth of anaesthesia, a needle 

was inserted into the heart and 1ml with blood slowly withdrawn. The blood was 

placed in a tube. Mice were killed whilst still under anaesthetic by cervical dislocation.  

 VXLD toxicity testing 

Principle  

The use of any agent in an in vivo setting requires consideration of tolerability as well 

as efficacy. Giving 4 drugs in combination, it was particularly pertinent that we 

established a tolerable and efficacious dosing regimen before proceeding with a 

large-scale screen.   These 4 drugs have already been used as a combination in 

NOD/SCID mice in a published study, albeit with issues of toxicity associated with 

Daunorubicin (Samuels et al., 2014a). Since the use of these 4 drugs isn’t 

documented in the Rag2-/-ƴc-/- RG mice, or used in our facility in other strains, it was 

important to check the toxicity of the published regimen in our mice and with our 

specific licence constraints. We initiated toxicity testing in 2 male and 2 female mice 

with the same dexamethasone, vincristine and asparaginase doses published and a 

lower daunorubicin (2.5mg/kg reduced to 0.45mg/kg).  
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Reagents/Equipment  

Drugs at concentrations and routes listed in table 2.5. Dexamethasone was used 

initially at 5mg/kg then lowered to 2.5mg/kg.   

Procedure  

Mice were given drugs by the routes, doses and frequencies given in table 2.5. All 4 

drugs were given on Monday and then Dexamethasone and Asparaginase also given 

Tues-Friday.  Mice were dosed with all 4 drugs on the first day of treatment starting 

with an intravenous (IV) dose into the lateral tail vein of Daunorubicin, followed by a 

dose of Vincristine via the intra-peritoneal (IP) route, they were then given 

dexamethasone by IP, and lastly Asparaginase IP.  The following four days mice 

received Dexamethasone by IP and then Asparaginase by IP.Mice were carefully 

monitored and their weights recorded daily. If weight loss reached 10%, dosing was 

suspended and continued once weight was regained. Adjustments to doses and 

frequencies were made as required. In addition to weight monitoring, mice were 

observed for changes in appearance and behaviour. Mice were monitored for 1 hour 

after administration of each drug to check for adverse effects. VXLD dosing efficacy 

studies  

 VXLD efficacy testing  

Principle 

Once a tolerable dosing regimen was established, further dosing was performed to 

test the efficacy of the dosing and further adjustments were made to the starting time 

of dosing and frequency of dosing blocks.  

Reagents and equipment 

Drug formulations, concentration, doses and routes as given in table 2.5. 

Dexamethasone was given at 2.5mg/kg.  

Procedure  

HPB-ALL cells transduced with pSLIEW were injected into mice.  The engraftment 

was confirmed by IVIS procedure. Mice were then each assigned a number and 

using a random number generator, 3 were assigned to receive control injections, the 

remaining 6 received treatment. The first block of treatment was given from days 11 

through to 15, a second block of treatment was then given from day 25 to day 29. 

Drugs were given at doses indicated in table 2..5, that had previous been established 

during toxicity testing. IVIS was performed weekly to monitor changes in leukaemic 
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burden.  Additionally, samples were harvested (section 2.18.9), RNA was extracted 

for analysis of mRNA with primers specific for human genes (table 2.16).  Viable cells 

were frozen to be used for flow cytometry analysis of leukaemic burden and 

phosphoH2AX levels.  

2.24.1  Analysis of bioluminescent imaging data  

Living image software was used to obtain total flux measurements for each mouse 

after imaging. Total flux is a measure of the radiance (photons per second) over a 

region of interest- in this case the whole mouse was used.  

Total flux measurements were calculated for each mouse at every imaging time 

point. GraphPad Prism was used to perform 2-way annova (with repeated measures) 

to assess if there was a significant difference in total flux between control and treated 

mice. 

2.24.2  Analysis of event free survival  

Mice were weighed and monitored for signs of leukaemia. When a mouse reached a 

predefined study endpoint (weight loss >15%, abnormal gait, abdominal breathing or 

reduced body temperature) they were killed, and this was recorded as an event. A 

survival curve was generated with the GraphPad Prism software. Significant 

differences between groups and hazard ratio were reported by Log Rank method.  

2.24.3  Analysis of murine bone marrow engraftment   

Flow cytometry was used (as previously described in 2.13.4). Data was analysed 

using the FlowJo software to determine the percentage of human cells within each 

sample. Differences in engraftment between treated and control samples were 

analysed in GraphPad Prism using an unpaired t-test.   
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 Harvesting leukaemic cells from mouse spleen  

Principle 

Splenomegaly is common feature of acute lymphoblastic leukaemia, where 

leukaemic cells collect within the spleen causing increased spleen size and weight. 

Often xenograft models of T-ALL show splenomegaly due to engraftment of 

leukaemic cells. Leukaemic cells can easily be harvested from the spleen for analysis 

or for use as patient derived xenograft cells. 

Reagents and Equipment  

• Skin disinfectant (Hydrex Derma Pink spray) 

• Scissors and forceps 

• Falcon cell strainer 40µm Nylon  

• syringe 

Procedure 

Mice were humanely killed at the end of the study. A skin disinfectant was applied to 

the mouse before cutting the skin and peeling back the fur. The peritoneal wall was 

cut and the spleen extracted from the mouse using scissors and forceps. The spleen 

was weighed and then homogenised with the end of sterile syringe. The cells are 

were then mixed with PBS and passed through a 40µm Nylon cell strainer to give a 

single cell suspension.  

 Harvesting leukaemic cells from bone marrow (flushing method)  

Principle 

Leukaemic cells often reside in the bone marrow. Cells can be extracted from murine 

bone marrow in addition to spleen, or as an alternative to splenic samples when the 

leukaemia does not infiltrate the spleen.  

Reagents and Equipment 

• 29 Gauge needles (BD microfine U-100 insulin needles, BD biosciences)  

• PBS 

• Skin disinfectant (Hydrex Derma Pink spray) 

• Scissors and forceps 
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Procedure 

Mice were humanely killed at the end of the study. A skin disinfectant was applied to 

the mouse before cutting the skin and peeling back the fur. Muscle was trimmed from 

the hind limbs. The hind limbs were then removed by cutting at the hip joint. The 

femurs were separated by breaking the kneecap backwards and then dissecting the 

ligaments. The ends of the femur were removed leaving just the diaphysis (central 

part of the bone). A needle and syringe filled with PBS was then inserted into the 

bone and used to flush out the bone marrow.  

 Harvesting of mouse bone marrow (crushing method) 

Principle 

A flushing technique of bone marrow extraction only uses the centres of the long 

bones, a lot of bone marrow is lost during the flushing procedure from the ends of the 

bones, as well as from flat bones such as the cristae. An alternative is to crush the 

bones to release the bone marrow, which can be performed on any bone. Bone 

marrow was extracted by this method from any of the sites highlighted in figure 2.6. 

Reagents and Equipment  

• Falcon cell strainer 40µm Nylon  

• Pestle and mortar  

• 29 Gauge needles (BD microfine U-100 insulin needles, BD biosciences)  

• PBS 

• Skin disinfectant (Hydrex Derma Pink spray) 

• Scissors and forceps  

• Trypan blue  

• Methylene blue 
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Figure 2.6 Diagram of mouse skeleton. The different bones from which cells were 
harvested are highlighted. 

Procedure 

Mice were killed by cervical dislocation. The body was sprayed with skin disinfectant, 

prior to the removal of skin and fur. Muscle was then dissected away from the limbs, 

and the limbs detached from the body using scissors and forceps. The limbs were 

separated into individual bones which were then cleaned with tissue. To remove the 

sternum, the rib cage was exposed and straight cuts are made through the ribs either 

side of the sternum to release it. To harvest cells from the spine, the spine was cut at 

the base of the tail and at the neck. The muscle was cut away from the vertebrae, 

before passing a needle down the spinal column to remove the spinal cord. The 

vertebrae were then separated and cleaned. Cleaned bones were placed into a 

mortar with a small amount of PBS and were crushed with a pestle to release the 

cells from the bone marrow. The PBS containing the cells released from the bones 

was passed through a 40µm sieve to remove clumps and large bone fragments. If 

separate bone marrow compartments were required bones were crushed and filtered 

separately, otherwise bones were pooled prior to crushing. To harvest cells from the 

calvaria, scissors were inserted into the opening at the base of the skull and then up 

and round the outside of the calvaira so that the calvaria lifted away from the rest of 

the skull. The inside surface of the calvaria containing the leukaemic cells was 

washed in PBS to lift of the cells. The PBS containing cells was then filtered through 

a 40µm sieve.  Cells were washed with PBS and counted with both trypan blue to 

assess viability and methylene blue (to exclude red cells). 

 

A - injected hind limb 

B - contralateral hind limb  

C - forelimbs and sternum 

D - spine 

E- calvaria  
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 Pharmacokinetic study  

2.28.1 Timetable and collection of samples 

Principle  

Once a tolerable and efficacious drug regimen had been established, we wanted to 

determine whether the levels of drug we were using was within a clinically applicable 

range. In keeping with the principle of the 3Rs, we reduced the number of mice in the 

pharmacokinetic study to a minimum (Prescott and Lidster, 2017). We chose to only 

assess the pharmacokinetics of the drugs as used in the combination and chose time 

points based around already published data (Szymanska et al., 2012b).  

Reagents and equipment  

• Drugs as per table 2.5 

• Anaesthetic rig and isoflurane  

• Mouse re-strainer  

• Heparin  

• Microvette® 

• Biofuge 15 Centrifuge (Heraeus ) 

Procedure 

A total of 7 groups of mice (3 mice per group) were used to collect plasma for 

pharmacokinetic analysis (figure 2.7 and table 2.19). Except for group 1, all mice 

contributed 2 time points; one sample was taken by tail venepuncture and the other 

by cardiac puncture (section 2.18.4). The collected blood was centrifuged in a 

Biofuge 15 at 14000rpm, for 5 minutes to separate the cells and plasma. Plasma was 

then transferred to a fresh centrifuge tube and stored at -20°C (or -80 °C for 

asparaginase quantification) until analysis.  
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Figure 2.7 Outline of pharmacokinetic study. The groups of mice, relative dosing time for administration of drugs, and timings 
and method of blood collection.  

Drug  Time point 

1 

Time point 

2 

Time point 

3 

Time point 

4 

Time point 

5 

Time point 

6 

Time 

point 7 
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Daunorubicin 5 20 40 70 100 120 190 

Vincristine  90  110  180 
   

 

Dexamethasone 10 40 60 130 230 400 1390 

Asparaginase 10 100 220 1360 2490 
 

 

Table 2.19 Pharmacokinetic time points. Summary of time points taken for each of the 4 drugs during pharmacokinetic testing
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2.28.2 Asparaginase activity assay  

Principle  

Asparaginase is an enzyme and it is the active enzyme that is effective against 

leukaemia through its depletion of asparagine. Enzyme activity is measured in units 

with 1 milliunit of asparaginase being the amount of enzyme that catalyses the 

formation of 1 mmol of aspartate per minute at 25°C. To determine the levels of 

active asparaginase within the plasma of mice treated with asparaginase, 

asparaginase activity was measured with an asparaginase activity assay kit. The 

active asparaginase in the sample generates aspartate from asparagine. The 

aspartate is converted using a coupled enzymatic reaction to a colourimetric product 

which is proportional to the amount of aspartate generated. The colourimetric product 

is detectable at 570nm using a plate reader. Multiple readings are taken over time, 

the readings from samples are compared to an aspartate standard curve to calculate 

the aspartate generated over time.  

Reagents and equipment  

• Asparaginase activity assay kit (Sigma-aldrich) 

• FLUOstar Omega plate reader  
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Reagent Volume ( µl per 

sample/standard)  

Asparaginase assay 

buffer 

40 

Substrate mix 4 

Aspartate enzyme mix  2 

Conversion mix 2 

Flourescent Peroxidase 

Substrate  

2 

Table 2.20 Asparaginase activity assay reaction mix composition  

Procedure  

Kit components were thawed on ice, reconstituted where needed, aliquoted for use 

and stored at -20°C and only thawed just prior to use. Plasma samples were 

removed from the -80°C freezer and thawed on ice. Dilutions of plasma were made in 

assay buffer. Several dilutions were made for each sample to ensure the result would 

be within the linear range of the assay. 50µl of assay buffer was added to each well.  

Aspartate standards were prepared to give 0, 2, 4, 6, 8 and 10nmol/well. Dilutions of 

samples were then added to the wells. Each sample and standard were performed in 

duplicate.  A reaction mix was prepared for the samples and standards as shown in 

table 2.20. For the sample “blank”, a reaction mix was prepared as in table 2.20 with 

the aspartate enzyme mix omitted. 50µl of reaction mix was added to each well, the 

plate was placed on a rocker for mixing before transferring to the FLUOstar Omega 

plate reader with incubation set at 25°C. The plate was regularly mixed by shaking. 

Readings were taken at 570nm every 3-5 minutes for 1 hour. The penultimate 

reading prior to the sample exceeding the linear range of the standards was taken as 

the final time point. The flowing calculation was used to determine asparaginase 

activity  

Activity (milliunit/ml) = (B*Dilution factor)/ ((Tfinal-Tinitial)*V) 

Where “B” is the amount in nmol of aspartate generated between TInitial and TFinal, 

“TInitial”  is the time of the first reading in minutes, “TFinal” is the time in minutes of the 

final time point and “V” is the sample volume in mL added to the well. 
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2.28.3 Determination of plasma concentration of dexamethasone, daunorubicin 

and vincristine by LC-MS 

Principle  

Drugs are precipitated from plasma, dried out then re-suspended in a mobile phase 

so they can be loaded onto a liquid chromatography machine. In liquid 

chromatography there are two phases the mobile and stationary phase, sample is 

injected into the mobile phase which permeates through the stationary phase packed 

within a column.  Analytes are separated depending on their chemical affinity with the 

mobile and stationary phase.  An interface transfers separated components to the 

mass cytometry ion source. Mass cytometry measures the mass to charge ratio of 

ions.  Each drug has a specific mass cytometry signature. The more of a compound 

that exists the greater the area of peak produced by chromatography. By running 

samples alongside a standard curve, the concentration of compounds can be 

determined.  

Reagents and equipment  

• Shimadzu LC-MS 8060 triple quadrupole mass spectrometer  

• Drying machine with nitrogen gas 

• Borosilicate tubes 

• Acetonitrile 

Procedure 

Prepare serial dilution of drugs in plasma for standard curve of 1000ng/ml, 500ng/ml, 

100ng/ml, 50ng/ml and 10ng/ml. To 20µl of sample (or standard) 380µl of acetonitrile 

was added (for vincristine 200µl plasma and 3800µl acetonitrile). Once precipitated 

samples were centrifuged for 3 minutes at maximum speed in a benchtop centrifuge. 

350µl of supernatant was removed. To remove remaining supernatant samples were 

placed in a drying machine at 40°C for 40-45 minutes. The samples were then re-

suspended in 150µl of a 60:40 water: acetonitrile. Dexamethasone samples were 

diluted 1 in 10. 5µl and 20µl were then loaded onto the LC-MS.   

 Extraction of Genomic DNA from screening samples  

After the bulk of the screening had finished, harvested samples required processing 

in order to prepare for sequencing. The first stage of which requires extraction of 

genomic DNA from the samples. 
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2.29.1 Selection of kit and procedure  

Genomic DNA was extracted from frozen cell pellets using the Qiagen Blood 

Maxi/Qiagen Blood Midi kits. 10ml of PBS was used to re-suspend the thawed cell 

pellet. In vitro samples were clean and were simply re-suspended in PBS and 

processed according to normal processing instructions for blood samples.  All in vitro 

samples and pooled mouse bone marrow samples were extracted with QIAamp maxi 

columns, the in vitro samples via the method below and the mouse samples with the 

amendments stated in the following section. Bone marrow compartments harvested 

individually had lower cell numbers and were extracted with QIAamp midi columns or 

multiple QIAamp midi columns depending on cell number.  

2.29.2 Genomic DNA extraction of in vitro samples  

Frozen cell pellets were thawed and re-suspended in 10mls of PBS. 500ul Qiagen 

protease was added and mixed. 12ml of buffer AL was added and mixed by inversion 

and then vigorous shaking. Samples were then placed in a water bath set to 70°C for 

at least 10 minutes. 10mls of 100% ethanol was then added and mixed by vigorous 

shaking. Half of the solution was then applied to the QIAamp column and centrifuged 

at 1850g for 3 minutes in centrifuge and the filtrate was discarded, this was repeated 

with the remaining solution. The column was washed with 5ml buffer AW1 and 

centrifuged at 4500g for 1minute. 5mls of AW2 was then applied and centrifuged at 

4500g for 15minutes. The QIAamp column was transferred to a clean 50ml tube, 

genomic DNA was eluted by application of 1ml Buffer AE onto the column, 5 minutes 

incubated then centrifuged at 4500g for 2 minutes. A further 1ml of buffer was then 

applied to the column, incubated for 5 minutes and centrifuged to elute at 4500g for 5 

minutes. Approximately 1.8mls of eluted DNA was recovered.  

In vitro screening samples extracted by the above method gave good yields of 

genomic DNA, however some samples taken from mice were giving poor yields 

which seemed to be caused by inefficient lysis. 

2.29.3 Genomic extraction from in vivo samples  

Samples collected from the in vivo arm contained multiple cell types and murine 

blood and these sample did not adequately lyse with the standard reagents and 

protocol. The protocol was therefore amended to include a more thorough lysis, with 

Qiagen tissue lysis buffer ATL. Since buffer ATL is not compatible with Qiagen 

protease, proteinase K was used in its place.  
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2.29.4 Genomic extraction of individual in vivo bone marrow compartments  

The QIAamp blood midi kit was used with individually harvested bone marrow 

compartments using a maximum cell number of 2x107 cells per column. If multiple 

columns were required, reagents were increased accordingly and the sample split 

across the correct number of columns. Samples were re-suspended in a small 

volume of less than 500µl of PBS. 2 ml of buffer ATL was added with 150µl of 

Proteinase K (Qiagen). This was incubated at 56°C for 2-4 hours to ensure adequate 

lysis. Regular vortexing was performed during incubation. 2 ml of buffer AL was then 

added and mixed by inversion. This was followed by addition and mixing of 1mls of 

100% ethanol. The lysate was applied to the columns and centrifuged at 1850g for 3 

minutes. The filtrate was discarded, and this process repeated until all lysate had 

been applied to the column. 2mls of buffer AW1 were applied to the QIAamp midi 

column, it was centrifuged at 4500g for 1 minute. 2mls of AW2 buffer were added to 

the column which was centrifuged at 4500g for 15minutes. The column was moved to 

a clean tube. Buffer AE was applied to the column and incubated for 5 minutes 

before centrifugation at 4500g for 2minutes, this process was repeated with further 

buffer AE (or the same buffer AE). Buffer AE volumes were selected based on cell 

numbers - higher cell numbers were treated with greater buffer AE volumes up to a 

total of 600µl, with a minimum of 150µl (passed through the column twice).  

 Bioinformatics analysis of screening results 

Post sequencing, data was passed to Sirintra Nakjang from the bioinformatics 

support unit in the form of FASTQ files, separated into files according to the unique 

barcodes, for analysis.  The general outline of data analysis is summarised by figure 

2.8. For details relating to choice in analysis pipeline refer to chapter 6.2  
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Figure 2.8 Bioinformatics Pipeline. MAGeCK and MAGeCKFlute were used to 
process data. Input files are shown in green, aqua highlights output files that are fed 
back into the pipeline and final output files are shown in orange. A raw read count 
table for each guide RNA was produced fromFATSQ files using the MAGeCK 
pipeline. The read count table was used for MAGeCK-Maximum likelihood estimation 
(Kosztyu et al.) analysis, raw reads counts are used to compute a single Beta score 
(a measure of change) for each gene between baseline and samples. Beta scores 
were normalised to account for differences in cell cycle between treated and control 
settings as part of MAGeCKFlute. MAGeCKFlute allowed for visualisation of 
differential enriched and depleted beta scores between control and treated settings. 
Normalised beta scores were also used for further analysis   
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FASTQ files from the sequencing run, and Brunello library files were used to 

generate count tables using the count function of MAGeCK. The trimming and 

sgRNA length are automatically determined. No mismatches are allowed during 

aligning.  

MAGeCK-MLE analysis was then performed using read count tables and design 

matrix file which indicates which samples was affected by each condition.  

A cell cycle normalisation method based on essential genes was developed as part 

of the MAGeCKFlute pipeline. Beta scores were normalised according to essential 

genes to generate normalised beta scores. 

Normalised beta scores were used to perform various analyses, including differential 

hit analysis upon treatment and functional pathway analysis within MAGeCKFlute.  

Comparing beta scores allowed identification of guides differentially altered with 

VXLD treatment compared to control conditions. This was visualised in several ways:  

• Rank plots- differences in normalised beta score between control and VXLD 

treated are calculated, ranked and plotted with RankView function 

• Scatterplot- produced using ScatterView function. Control beta scores are 

plotted against treated beta scores. A cut of is made around normal 

distribution of 2 standard deviations  

• Nine square scatterplot- a scatter plot of control normalised beta scores 

against treated beta scores. Cut-offs of 1 and -1 are used for both x and y axis 

to define placement of 9 square grid to divide guides into categories based on 

control and treated beta scores. The SquareView function is used to plot this.   

Lists were generated for in vitro screening where guides differentially enriched under 

drug treatment (greater than 2 standard deviations from mean as identified and 

visualised on scatterplot) and guides differentially depleted under drug treatment. 

This process was repeated for in vivo screening and hits compared and displayed as 

venn diagrams. The differentially enriched and depleted lists were used to look at 

functional interactions with STRING and pathways with WEB-based GEne SeT 

AnaLysis Toolkit (WebGestalt).  
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Chapter 3. Cell line selection for screening and assessment of cell line 

sensitivity to chemotherapeutics 

 Introduction to chapter  

When performing screening one can choose to perform the same screen across a 

panel of different samples or to select a representative sample. Selection of a 

representative sample can reduce time and cost but can increase the validation 

required. For this work a representative sample will be used. Imperative to the 

success of the screen was rumination on the most appropriate choice of the cell line 

to be used. This give us the first aim of this chapter: 

• Identify a cell line suitable for screening 

It was important to select a cell line that best represented a typical T-ALL in terms of 

its genetic profile. Additionally, the practicalities of potential candidate cell lines, such 

as transduction potential, in vivo engraftment, and ploidy required consideration. 

Lastly, but crucially, the responsiveness of potential cell lines to the 

chemotherapeutics to be used during the screening as individual agents and then in 

combination was required, in order to allow the second aim of this chapter.  

• Select an appropriate concentration of vincristine, dexamethasone, 

asparaginase and daunorubicin to use for in vitro screening  

 Genetic profiles of T-ALL cell lines 

CRISPR knockout screens rely upon the cleavage of a gene target site specified by a 

20-nucleotide single guide RNA (sgRNA) sequence (Mali et al., 2013, Jinek et al., 

2012). Double stranded break (DSB) are generated by cutting of target sequence by 

Cas9 , repair of the newly generated double stranded breaks often results in creation 

of insertions or deletions (indels) which can lead to mutations that impact on 

transcription and translation (Mali et al., 2013).  

3.2.1 Ploidy  

Repair of breaks does not necessarily result in mutations that lead to loss of gene 

function. Polyploid cell lines with increased gene copy number would potentially 

suffer from an increased likelihood of incomplete knockout, which could mask 

potential phenotypes of interest. Thus, the preference was for cells to be used with 

diploid karyotype for this type of screening. It was pertinent that any selected cell 

lines re-capitulated the genetics found in patients with T-ALL. 
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3.2.2 Chromosomal rearrangements 

The ectopic expression of transcription factors due to chromosome rearrangements 

are common in T-ALL and each transcription factor lesion defines the molecular 

genetic subgroup of T-ALL.  The most commonly affected transcription factors are 

TAL1, TLX1, TLX3, HOXA, NKX2-1, NKX2-2, MYB and LMO1 genes, with LMO1 

deregulation normally occurring alongside TAL1 or LYL1 overexpression (Figure 3.1). 

The Catalogue of Somatic Mutations in Cancer (COSMIC) hosted by the Wellcome 

Sanger Institute contains a vast array of information relating to somatic mutations in 

cancer, including mutations found in cell lines (Harsha et al., 2018). The Deutsche 

Sammlung von Mikroorganismen und Zelkulturen (DSMZ) biological resource centre 

holds many human cell lines including T-ALLs and provides information regarding 

karyotype, chromosomal translocations and common mutations found within the cell 

lines (Leibniz-Institut). The Broad Institute Cancer Cell Line Encyclopaedia (Workman 

et al.) database holds information on a variety of  somatic mutations found within 

different cancer types and within cancer cell lines (cell lines project) (Barretina et al., 

2012b). The DSMZ Guide to Leukaemia-Lymphoma cell lines contains further 

information on many leukaemic and lymphoblastic cell lines (Drexler et al., 2005).  

Information for T-ALL cell lines was collated from the literature, COSMIC, DSMZ and 

CCLE regarding the karyotype and translocations and is summarised in Table 3.1, 

and the presence of common T-ALL somatic mutations is summarised in Table 3.2.  
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Figure 3.1 Transcription factor aberrations in T-ALL. T-ALL can be grouped 
according to altered expression of transcription factors due to chromosomal 
rearrangements. Shown are the most common translocations and their relative 
percentages in childhood T-ALL (Liu et al., 2017)  
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Table 3.1 Karyotype and translocations in T-ALL cell lines. Information 
regarding karyotype and translocations in common T-ALL cell lines was 
collated from literature searches, DSMZ , Guide to Leukaemia-Lymphoma cell 
lines , CCLE and COSMIC. (Barretina et al., 2012b, Drexler et al., 2005, Harsha et 
al., 2018, Palomero et al., 2006)  

  

cell line karyotype translocations 

HSB2 pseudodiploid (4% ploidy) t(1;7)(p34;q34) LCK-TCRB 

KARPAS-45 hypotetraploid (8% ploidy) t(X;11)(q13;q23) MLL-MLLT7/AFX 

fusion 

RPMI-8402 hypotetraploid t(11;14)(p15;q11) LMO1/TTG1-

TRAD and STIL-TAL1 

CCRF-CEM near-tetraploid t(5;14)(q35.1;q32.2) NKX2-5-

BCL11B and SIL-TAL1 

JURKAT hypotetraploid (7.8% ploidy) 
 

CUTLL1 hyperdiploid t(7;9)(q34;q34) TRB-NOTCH1 

MOLT4 hypertetraploid 
 

CTV-1 near tetraploid (9% 

polyploidy) 

t(1;7)(p34.2;q34) TAL1-TRBx2 , 

t(12;16)(q24.32;q11)x2 

HPB-ALL pseudodiploid (8% ploidy) t(5;14)(q35;q32.2) TLX3-BCL11B 

PEER pseudodiploid (7% ploidy) t(5;14)(q35.1;q32.2) NKX2-5-

BCL11B, and NUP214-ABL1 

KOPT-K1 hypertetraploid t(11;14)(p13;q11) LMO2-TRD 

ALL-SIL hypertetraploid t(10;14)(q24;q11) TLX1/HOX11-

TRAD and NUP214-ABL1 

SUP-T1 hypotetraploid  (1.8% 

polyploidy) 

t(7;9)(q34;q34.3) TRB-

NOTCH1/TAN1 

LOUCY hypodiploid (16% ploidy) t(16;20), SET-NUP214 

DND41 near-tetraploid (12% 

polyploidy) 

t(5;14)(q35;q32.2) TLX3-BCL11B 

MOLT16 near diploid t(8;14)(q24;q11) MYC-TRAD, SIL-

TAL1, t(3;11)(p21;p13) 

P12/ ICHIKAWA hypotetraploid (1.6% ploidy) 
 

PF-382 near-diploid 
 

DU.528 diploid t(1;14)(p33;q11) TAL1/SCL-TRD 
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Upon examination of the karyotypes of 19 T-ALL cell lines, 10 cell lines had a 

proportion of cells with additional ploidy, indicating potential heterogeneity.  11 were 

either hypo or near tetraploid, and 8 were near/hypo/pseudodiploid. Diploidy was 

preferable over tetraploidy in this case due to the additional gene copies in tetraploid 

lines which increases the chance of incomplete knockout. The cell lines showed a 

mix of translocations in which the genes TAL1, TLX1, LMO2, NKX2-5 appear 

commonly rearranged within T-ALL patients. Of the (near) diploid cell lines, HSB2 

had an unusual LCK translocation so was ruled out.  Whilst most T-ALL patients 

have aberrant NOTCH signalling due to mutations, translocations of NOTCH1 –like 

that observed in CUTLL1 are relatively rare.  HPB-ALL, PEER, LOUCY, MOLT16 and 

DU5.28 had close to diploid karyotypes and translocations commonly observed in T-

ALL patients.  

 

3.2.3 Common mutations  

In addition to transcription factor translocations, there are several other common 

abnormalities observed in T-ALL, including inactivation of PTEN, and deletion of 

CDKN2A (Downing et al., 2012, Girardi et al., 2017, Neumann et al., 2015),  

activation of IL7 receptor pathway components (Ribeiro et al., 2013), activating 

mutations of  NRAS and NOTCH1 (or inactivation of NOTCH1 negative regulator 

FBXW7), The most common mutations affecting over 50% of cases are NOTCH1 

and CDKN2A abnormalities (Genescà et al., 2018, Weng et al., 2004b). A table of 

mutations was compiled for each of the T-ALL cell lines in our collection, with 

information collated from COSMIC, CCLE and literature searches (Table 3.2).  
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Cell line NOTCH/ 

FBXW7 

CDKN2A IL7R NRAS PTEN P53 Others of 

note 

HSB2  NOTCH  yes   yes     no CDKN2B, 

RB1 

KARPAS-

45 

both    yes no yes   NF1 

RPMI-8402 FBXW7  yes no no yes   CDKN2B, 

NF1, 

MYBdup 

CCRF-CEM FBXW7  yes no no no yes NF1 

KRAS, MYB 

dup 

JURKAT FBXW7  yes no no yes yes  AKT, LCK, 

TAL1, 

CDKN2B 

CUTLL1 NOTCH 

translocation 

 
      yes   

MOLT4 NOTCH 

(multiple) 

yes no yes yes yes   

CTV-1  both          yes LCK, FLT3, 

NF1  

HPB-ALL NOTCH yes     no yes    

PEER  NOTCH yes       yes   

KOPT-K1 NOTCH yes          CREBP 

ALL-SIL NOTCH   yes no no no   RB1  

SUP-T1 no yes no no no yes CDKN2B 

LOUCY no   no no no yes   

DND41 NOTCH yes yes yes yes yes CDKN2B 

MOLT16 no yes no no yes yes CDKN2B  

P12 

/ICHIKAWA 

FBXW7  yes  no yes no yes CDKN2B, 

MYB dup 

PF-382 no   no yes yes   NF1 

DU.528 FBXW7             

Table 3.2 Status of common T-ALL mutations in a panel of T-ALL cell lines. 
Information regarding mutation status of T-ALL cell lines was collated from a variety 
of sources including the CCLE and COSMIC databases (Barretina et al., 2012b, 
Drexler et al., 2005, Harsha et al., 2018, O'Neil et al., 2007, Zuurbier et al., 2012)  
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Of the diploid cell lines with common translocations, 2 of the 5 cell lines (LOUCY and 

MOLT16) did not possess known activating mutations in NOTCH signalling (through 

NOTCH1 activation or inactivation of the negative regulator FBXW7) representing the 

most commonly mutated pathway in T-ALL.  DU.528, although classified as a T-ALL 

cell line, is derived from a patient who underwent a switch from a T- lymphoblastic to 

a promyelocytic phenotype during treatment: this unique feature may complicate 

findings from screening with chemotherapeutics.  

3.2.4 Summary of cell line selection  

PEER and HPB-ALL are both of pseudodiploid karyotype and harbour common 

translocations; PEER has two translocations namely NKX2-5-BCL11B and NUP214-

ABL1. HPB-ALL has a translocation involving TLX3. Both PEER and HPB-ALL 

possess NOTCH1 mutations and P16INK4A deletions, which are the most prevalent 

mutations in T-ALL. HPB-ALL are simple to culture and will grow in RPMI-10%+FBS 

medium, whist PEER are considerably more difficult, grow in RPMI-20% FBS and in 

our experience transduce poorly. All things considered, based on mutational status, 

translocations and karyotype, HPB-ALL was the best choice for further study.  

 Dose response of T-ALL cell lines to chemotherapeutics as single agents  

Given the desire to conduct screening under a chemotherapeutic pressure 

recapitulating clinical conditions, it was essential to establish the sensitivity of 

potential candidate cell lines to the selected agents. Firstly, the 4 selected drugs 

dexamethasone, daunorubicin, vincristine and asparaginase were applied as single 

agents to assess their effective range in a panel of T-ALL cell lines.  Each cell line 

was plated, and each of the 4 drugs titrated across the cells. After 72 hours of 

incubation, a resazurin assay was used to assess cell viability. At each concentration 

viability was calculated compared to a solvent control and plotted in Prism 

(GraphPad) (Figure 3.2), a non-linear regression curve was fitted, and used to 

determine effective GI50 values and are summarised in table 3.3. The GI50 values 

refer to the concentration at which half of the maximal effect was achieved. 
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Figure 3.2 In vitro single agent drug responses. Drug response of T-ALL cell lines 
CUTLL1, RPMI-8402, MOLT-16 and HPB-ALL to dexamethasone (a), daunorubicin 
hydrochloride (b), vincristine sulphate (c) and asparaginase (d) as single agents. 
Survival was assessed at 72 hours by resazurin assay and calculated relative to an 
untreated control well as shown on the y-axis. The drug concentration range used is 
shown on the x-axis (log concentration). Error bars represent standard error of the 
mean of three independent experiments 

. 

  



107 
 

 

CUTLL1, RPMI-8402, MOLT-16 and HPB-AL all showed little change in viability in 

response to dexamethasone, even at the highest concentration of 10 µM. A range of 

responses were observed for daunorubicin with the most sensitive being MOLT-16 

and the least sensitive being HPB-ALL. All 4 cell lines responded similarly to 

vincristine with a GI50 of around 1nM. HPB-ALL and RPMI-8402 showed a typical 

dose response after exposure to asparaginase, whereas CUTTL-1 and MOLT-16 did 

not show a typical dose response, but appeared biphasic. A biphasic dose response 

was fitted using prism in this case. Calculated GI50 values and effect correspond to 

the first phase. 
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Drug Dexamethasone Daunorubicin Vincristine Asparaginase 

Cell line GI50 µM 95% CI GI50 
effect at 

GI50 
GI50 µM 95% CI GI50 

effect at 

GI50 
GI50 nM 

95% CI 

GI50 

effect at 

GI50 
GI50 U/ml 95% CI GI50 

effect at 

GI50 

CUTLL1 resistant N/A N/A 0.013 0.01 to 0.02 0.46 0.938 0.7 to 1.3 0.48 0.0002 
0.00008 to 

0.0007 
0.17 

RPMI-8402 resistant N/A N/A 0.009 0.007 to 0.01 0.54 1.888 1.3 to 2.8 0.49 0.0001 0.0001 to 0.0002 0.45 

MOLT-16 0.5 0.09 to 2.0 0.20 0.002 
0.001 to 

0.004 
0.43 0.788 0.5 to 1.2 0.53 0.0002 

0.00008 to 

0.0004 
0.18 

HPB-ALL resistant N/A N/A 0.012 0.06 to 0.1 0.35 1.161 0.9 to 1.5 0.43 0.0002 0.0001 to 0.0002 0.43 

DU.528 resistant N/A N/A 0.004 
0.003 to 

0.006 
0.49 0.549 0.3 to 1.0 0.51 N/A N/A N/A 

SUP-T1 0.04 0.01 to 0.2 0.20 0.004 0.02 to 0.05 0.41 N/A N/A N/A N/A N/A N/A 

ALL-SIL 0.05 0.02 to 0.1 0.21 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

KOPT-K1 0.01 0.008 to 0.02 0.23 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Table 3.3 Single agent GI50 values for T-ALL cell lines. T-ALL cell lines were treated with either dexamethasone, daunorubicin, 
vincristine or asparaginase for 72 hours. Survival after drug exposure was determined by resazurin assay compared with solvent 
control. GI50 values and effect sizes were determined from dose response curves using Prism software, where the GI50 was 
greater than 10µM cells were considered to be resistant 
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The candidate cell line HPB-ALL had GI50 values of 124nM, 1nM and 0.00036U/ml for 

daunorubicin, vincristine and asparaginase respectively. HPB-ALL was resistant to 

dexamethasone (GI50 greater than 10µM), as were MOLT-16 and CUTLL-1. Half of 

the tested T-ALL cell lines were resistant to dexamethasone, and those who did 

respond had very small effect size. After looking at response to single agents by 

resazurin assay, I moved on to look further into two of the 4 drugs asparaginase and 

dexamethasone; the former due to issues with its by-product ammonia and the latter 

due to resistance in the candidate cell line HPB-ALL. 

 Investigation of asparagine dependence in HPB-ALL 

Asparaginase breaks down L-asparagine into aspartic acid and ammonia, depriving 

the cells of asparagine, but additionally creating ammonia, which in an in vitro setting 

accumulates within the media. Ammonia can be a source of toxicity to cells. Thus, to 

investigate if the sensitivity of HPB-ALL to asparaginase was due to asparagine 

depletion and not ammonia toxicity, additional experiments were performed.  

HPB-ALL is routinely cultured in RPMI-1640 media containing 0.05g/L asparagine. 

The effect of adding additional asparagine (0.15g/L) to standard media, on the 

sensitivity of HPB-ALL to asparaginase was assessed (figure 3.3). 

  

 



110 
 

 

I observed a shift in the dose response curve to asparaginase in HPB-ALL upon the 

addition of asparagine. A greater enzyme concentration is required to achieve the 

same effect on cell number at higher asparagine levels. To examine the dependence 

of HPB-ALL survival and proliferation on asparagine. HPB-ALL cells were grown in a 

media without asparagine (DMEM), and asparagine was titrated across the cells in a 

3-fold dilution. Cell numbers were assessed after 72 hours by resazurin assay and 

normalised to a standard media asparagine concentration of 0.05 g/L (figure 3.4).  

Figure 3.3 Treatment of HPB-ALL with asparaginase with and without the 
addition of asparagine. Asparaginase was titrated across HPB-ALL cells cultured 
in standard media (blue) and with addition of an extra 0.15g/L l-asparagine (L-Asp) 
in the culture media (red) for 72 hours. Survival was determined by Resazurin 
assay and is normalised to a solvent control. Error bars represent standard error fo 
the mean of 2 independent experiments. 



111 
 

 

A concentration dependent effect of asparagine concentration on cell numbers was 

observed. This suggests a dependence on asparagine for growth and/or survival of 

HPB-ALL. Taken together the dose dependant response of HPB-ALL to asparagine 

and the decreased effect of asparaginase enzyme on HPB-ALL cultured with 

additional asparagine, I conclude that at least in part the reduced viability of HPB-

ALL cells upon asparaginase treatment was due to depletion of asparagine from the 

culture medium. After absolving concerns about asparaginase it was then important 

to assess the use of dexamethasone.  

 Dexamethasone response in HPB-ALL  

HPB-ALL, like many other tested T-ALL cell lines, showed limited change in total 

metabolising cells in response to dexamethasone, as demonstrated by resazurin 

assay results. This poses the question regarding the purpose of including 

dexamethasone as part of the chemotherapy regimen for screening. Dexamethasone 

is taken up by cells via the glucocorticoid receptor (GR). If uptake is impaired by 
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Figure 3.4 Survival of HPB-ALL cells in varying concentrations of asparagine. 
HPB-ALL cells were seeded in a media without asparagine. Asparagine was then 
applied to cells in a concentration ranging from 0 to the concentration found in 
standard conditions- 0.05g/L. Cells were cultured for 72 hours and resazurin assay 
used to determine survival relative to standard asparagine concentration 0.05g/L. 
Error bars represent standard deviation of technical replicates.  
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mutations in GR then this may explain lack of effect on cell viability. It is also 

important to bear in mind a resazurin assay provides no information on any other 

phenotypic changes within HPB-ALL, for instance in cell signalling that can occur in 

response to drug treatment. Dexamethasone could be entering HPB-ALL causing 

changes in cell signalling, which may also affect how the cells respond to other 

chemotherapeutics, in which case its inclusion in the chemotherapeutic pressure 

would be warranted.  

3.5.1 Heterozygous NR3C1 mutation in HPB-ALL  

The nuclear receptor subfamily 3 group C member 1 (NR3C1) gene encodes the 

glucocorticoid receptor protein, which when bound to a glucocorticoid such as 

dexamethasone translocates to the nucleus and conducts a plethora of 

transcriptional activities. (Mutations in NR3C1 are often associated with resistance to 

steroids such as dexamethasone and have been shown to be associated with an 

inferior outcome in ALL. (Bray and Cotton, 2003, Moorman AV, 2015). Mutations in 

NR3C1 should be detectable from publicly available sequencing data The CCLE 

database holds RNA sequencing and whole exome sequencing  data for HPB-ALL 

(Barretina et al., 2012b), and lists mutations reported within the cell line. Within the 

mutation list for HPB-ALL is a heterozygous missense mutation on chromosome 5 in 

NR3C1 at position 142675147 (NCBI build number: 37). This mutation from 

adenosine to guanine results in a methionine being replaced by threonine at codon 

634 within exon 7 (p.M634T). This mutation is predicted to be damaging by the 

programme SIFT (score: 0.02). I designed primers to amplify exon 7 in cDNA from 

HPB-ALL cells. The PCR products were subsequently sent for Sanger sequencing 

which confirmed the CCLE data (figure 3.5).  
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Figure 3.5 Electropherogram of mRNA of the glucocorticoid receptor in HPB-
ALL. RNA was extracted from HPB-ALL cells, cDNA was synthesised. Primers 
flanking the region carrying the mutation reported by CCLE were used to amplify the 
region of interest. The PCR product was purified and sent for Sanger sequencing. 
Highlighted is the base of interest.  

The Sanger sequencing matched the recorded sequences for the wild type 

glucocorticoid receptor transcript apart from the single highlighted base. There is a 

50:50 mix of Thymine and Cytosine at this location, with Thymine representing the 

wild type allele and Cytosine the mutated allele, which is concordant with the CCLE 

data. These findings are concordant with that published by CCLE (Barretina et al., 

2012b). Although the impact of such a mutation is unknown, it is within the ligand 

binding domain and so may explain the lack of sensitivity to dexamethasone. Given 

the mutation is heterozygous, the action of glucocorticoids may not be fully impaired.  

3.5.2 Detection of dexamethasone response genes after dexamethasone 

treatment in HPB-ALL  

Given the apparent resistance of HPB-ALL to dexamethasone at least in terms of 

cytotoxicity, it was important to determine if the application of dexamethasone 

affected HPB-ALL on a molecular level. There are several genes known to be 

upregulated in response to dexamethasone treatment. These include Glucocorticoid 

Induced Leucine Zipper factor (GILZ) and FK506 Binding Protein 5 (FKBP5) 

(Goossens and Van Vlierberghe, 2016, Ayroldi and Riccardi, 2009, Pratt and Toft, 

1997).  The mRNA levels of the GR, GILZ and FKBP5 were assessed by quantitative 

RT-PCR at several time points following treatment with dexamethasone.  



114 
 

 

Figure 3.6 Relative expression of Glucocorticoid receptor (GR) and 
dexamethasone response genes GILZ and FKBP5 in HPB-ALL treated with 
10µM and 100nM dexamethasone over time. HPB-ALL were treated with either 
10µM (A-C) or 100nM (D-F) dexamethasone and samples of cells were taken at 0, 1, 
2, 4, 6 and 24 hours. RNA was extracted from cells and cDNA synthesised. Fold 
change was calculated using delta delta Ct method using GAPDH as the 
housekeeping control. Error bars represent standard error of the mean of 3 
independent experiments. Astericks indicate significant difference from 0 hours with * 
p < 0.05, ** p < 0.01 and *** p <0.001, **** p<0.0001. (One way annova, repeated 
measures, Holm Sidak’s multiple comparisons test) 



115 
 

The expression of the glucocorticoid receptor decreases with increasing time post 

dexamethasone exposure, with the reduction being significant under both tested 

dexamethasone concentrations at 4, 6 and 24 hours (figure3.6). This decrease in GR 

expression could represent the autoregulation of receptor expression. GILZ 

expression is increased after dexamethasone addition, peaking at 2-4 hours post 

dexamethasone exposure. The greatest increase is observed at 4 hours after 

addition of 10µM dexamethasone where GILZ is increased by nearly 15 fold. FKBP5 

is also increased with treatment of both 10µM and 100nM dexamethasone, although 

the increase is less marked than for GILZ, and peaks later between 4-6 hours post 

dexamethasone treatment.   

The significant upregulation of dexamethasone response genes subsequent to 

dexamethasone treatment indicates dexamethasone does indeed enter the cells and 

impacts transcriptional activity in HPB-ALL, which may also impact upon the action of 

other drugs when used in combination.  

3.5.3 Synergism of dexamethasone and daunorubicin in HPB-ALL  

To look at the impact of dexamethasone in combination with other 

chemotherapeutics, dexamethasone was combined with daunorubicin in HPB-ALL. 

Dexamethasone and daunorubicin were combined at fixed ratios (see section 3.6) 

and effect determined by relative fluorescence compared to a solvent control with 

resazurin at 72 hours. CalcuSyn was used to assess the effect of the combination 

relative to single agents.  CalcuSyn uses the Chou-Talalay’s Combination Index 

Theorem, additivity between two drug has a combination index of 1(Chou and 

Talalay, 1983). Combination indices exceeding 1 suggest an antagonistic effect, and 

values less than one synergism between 2 drugs (Chou and Talalay, 1983). Table 

3.4 shows the combination index (CI) 3 different dose points for HPB-ALL. 

 

Table 3.4 Combination index (CI) values for dexamethasone and daunorubicin 

At the LC50 (Dose where 50% of cells effected) the combination index value for 

dexamethasone and daunorubicin was 0.5 indicating synergism. A value of 0.8 at 

LC75 also indicated weak synergism. At LC90 the CI values was 1.1, here the effect of 

Dose LC50 LC75 LC90 

Reported CI 

value 

0.5 0.8 1.1 
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daunorubcin alone was so great that we did not observe much additional effect by 

addition of another drug. Overall, this suggests dexamethasone and daunorubicin at 

lower concentrations are weakly synergistic in HPB-ALL. 

Despite the resistance of HPB-ALL to dexamethasone as a single agent, it was still 

incorporated into the drug regimen on the basis of its important role in T-ALL therapy, 

the synergistic effect  when used with in combination with daunorubicin, and the 

increase in expression of dexamethasone response genes indicating an effect at a 

molecular level. Since in the final combination there will be a total of 4 drugs it was 

next important to consider how all the drugs act when combined.  

  Combination treatment of HPB-ALL at fixed ratios 

After assessment of dexamethasone, daunorubicin, vincristine and asparginase as 

single agents, the effect of the drugs as combinations was determined in HPB-ALL. 

Drugs were assessed at fractions of their GI50 values (for dexamethasone 10µM was 

used as a surrogate GI50 value since HPB-ALL is dexamethasone resistant). 

Dexamethasone was combined with daunorubicin. Subsequently dexamethasone 

and daunorubicin were treated as a single drug and were combined with vincristine. 

The three drugs were then combined with asparaginase. Dose response curves are 

shown in figure 3.7.  
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Figure 3.7 Percentage of HPB-ALL cells after 72 hours of treatment with 
combinations of dexamethasone, daunorubicin, vincristine and asparaginase 
at fixed ratios. Concentrations are given on a logarithmic scale relative to calculated 
GI50 values, where O is 124nM, 1nM, 0.00036U/ml and 10µM for daunorubicin, 
vincristine, asparaginase and dexamethasone respectively (note a surrogate GI50 
value of 10µM was used for dexamethasone since GI50 exceeded 10 µM). The 
following combinations were assessed:  dexamethasone and daunorubicin (a), 
dexamethasone and daunorubicin combined as one drug with the addition of 
vincristine (b) and dexamethasone, daunorubicin and vincristine combined as one 
drug and the addition of asparaginase (c). All 4 drugs as single agents and all 4 
drugs combined is also shown (d).   
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In 3.7D it is evident the effect of all 4 drugs combined is greater than any single drug 

used alone. In 7A there is limited effect of dexamethasone, whereas daunorubicin 

decreases survival of HPB-ALL as its concentration is increased and combining the 

two drugs seems to further decrease cell viability (synergy).  In 7B vincristine has 

less effect than dexamethasone and daunorubicin combination at ratios less than the 

GI50, but has a bigger impact on survival at ratios greater than the GI50. In 7B the 

combination curve lies between the two single drug curves indicating there may be 

some antagonism occurring. 7C shows the inclusion of asparaginase increases the 

effect again. To assess if any synergism or antagonism was present, CalcuSyn 

software was used to calculate the combination index (CI) values, the results of 

which can be seen in table 3.5.  CI values close to 1 indicate an additive effect, as 

values increase antagonism is indicated and as values decrease it is indicative of 

synergistic effects.  

 

Table 3.5 Combination indices for drug combinations in HPB-ALL. Drugs were 
applied at fixed ratios to each other for 72 hours. Resazurin assays were used to 
measure effect on cell viability compared to a solvent control. Effects of each drug 
alone or in combination were input into CalcuSyn software to produce CI values. 
Where greater than 2 drugs were used, multiple drugs were combined and applied as 
a single drug. CI values were recorded at 3 different effective dose points (ED) 50, 75 
and 90, where the effect of the drugs is 50%, 75% and 90% of the maximum effect 
respectively. 

  

 The combination of dexamethasone and daunorubicin was discussed in the previous 

section. The addition of vincristine to the dexamethasone daunorubicin double 

combination was antagonistic at all calculated dose points. Adding asparaginase to 

the triple drug (dexamethasone + daunorubicin + vincristine) gave CI values just 

below 1 (0.8, 0.7 and 0.8) indicating an additive or weakly synergistic effect.  

Drug 1 Drug 2 CI at LC 

50 

CI at LC 

75 

CI at LC90 

dexamethasone daunorubicin 0.5 0.8 1.1 

dexamethasone + 

daunorubicin 

vincristine 1.9 3.0 7.3 

dexamethasone + 

daunorubicin + 

vincristine 

asparaginase 0.8 0.7 0.8 
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Combining drugs at fixed ratios allowed the assessment of synergism and gave us 

insight into the effect on overall survival when they were combined. The fixed ratio 

approach did not however, consider the ratios at which these drugs are found 

clinically, nor did it allow for assessment of the impact on changing the concentration 

of a single drug within the combination. Therefore, I assessed the effect of combining 

these 4 drugs in a 4D style drug matrix assay, where all drugs were titrated against 

each other.  

 Drug Matrix assay in HPB-ALL  

Dexamethasone, daunorubicin, vincristine and asparaginase were titrated across 

HPB-ALL cells in a matrix assay.  A matrix-based assay was selected for its ability to 

illustrate the effect of raising or lowering one drug with respect to the other drugs 

within the combination. We aimed to select concentrations of drugs that gave the 

required effect on cell numbers, and that were most in keeping with the ratio of drugs 

found in patient protocols. The individual GI50 values for each drug were used to 

guide effective concentration ranges for each drug, the maximum concentration used 

was twice the GI50. One exception was dexamethasone. As HPB-ALL cells were 

resistant, a maximum value of 100nM was selected to keep the concentration within 

a clinically relevant range. The concentrations used are listed in table 3.6.  

Table 3.6 Drug concentrations used in matrix assay 

  

Drug Concentration 

1 

Concentration 

2 

Concentration 

3 

Concentration 

4 

Concentration 

5 

Dexamethason

e 

0nM 25nM 50nM 100nM N/A 

Daunorubicin  0nM 36nM 72nM 124nM 248nM 

Vincristine  0nM 0.3nM 0.6nM 1.1nM 2.2nM 

Asparaginase 0mU/ml 0.09mU/ml 0.18mU/ml 0.36mU/ml 0.72mU/ml 
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3.7.1 Drug matrix full results 

Cells were plated and drugs applied and incubated for 3 days. Resazurin was used 

to determine cell viability compared to a solvent treated control. The matrix was 

performed 3 times and then averages calculated (after removal of any outliers). The 

results from the matrix assays are shown in figure 3.8. 
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Figure 3.8 Results of Drug matrix for HPB-ALL. Dexamethasone, daunorubicin, 
vincristine and asparaginase were titrated in matrix base system over HPB-ALL cells. 
Effect was determined by resazurin assay after 3 days. Each point represents the 
average of 3 independent experiments. The following facetted plot was created with 
R studio. Each individual graph shows vincristine concentration on the x axis and 
daunorubicin on the y axis. The colour bar indicates the relative survival, such that 
each point is coloured according to the relative survival at that drug concentration 
compared to a solvent control. As you move from left to right through the plots 
asparaginase concentration is increased, also represented by increasing point size. 
Moving top to bottom through the plots is increasing dexamethasone concentration, 
which is also reflected in the change of the shape of the point.Assessment of 

synergy and antagonism in HPB-ALL 

Within the drug matrix a zero concentration for each drug was present, this meant 

that the effect of each drug could be observed individually and in combination with 

just 1 other drug at a time.  This process was performed for all possible combinations 

of the 4 drugs (a total of 6 times). This data was tabulated before using a platform for 

investigating drug combinations called Combenefit to assess synergy using the 

Loewe model (Di Veroli et al., 2016). Loewe was selected over Bliss independence, 

since Bliss independence assumes independent action and since dexamethasone is 

known to have pleiotropic effects and daunorubicin having many debated 

mechanisms of action an assumption of independence was not appropriate. A 
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synergy score is given for each point in the drug matrix combination (figure 3.9). The 

synergy score is a measure of the additional effect given by the two drugs compared 

to a reference effect, where positive scores indicate synergy and negative scores 

antagonism.  An overall measure of the synergy across the matrix is described by the 

sum of synergy and antagonism (detailed explanation in methods section). This is the 

sum of synergy and antagonism observed in concentration logarithmic space and is 

described by the equation given in figure 3.9G 
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Figure 3.9 Synergy in drug matrix data. Drug matrix data was used to determine effect of each possible pair of drugs within the 
matrix.Combenefit was used to assess synergy for each pair with the Loewe model. A- asparaginase and daunorubicin, B-
vincristine and daunorubicin, C- asparaginase and vincristine, D-dexamethasone and daunorubicin, E- dexamethasone and 
asparaginase and F- dexamethasone and vincristine. The sum of synergy and antagonism (SUM_SYN_ANT) across each matrix is 
given underneath.
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For Figure 3.9A most values lie close to zero suggesting no additional effect of the 

drugs – or additive only effect of asparaginase and daunorubicin, this is confirmed by 

the calculation of sum of synergy and antagonism score of -0.8, a score so close to 

zero indicates no additional effect of the combination. In figure 3.9B there are areas 

of strong antagonism illustrated by the strong red colouring and highly negative 

synergy effect scores (approaching -50) between vincristine and daunorubicin. Figure 

3.9C shows mild antagonism at lower concentrations moving through additivity at 

higher concentrations of vincristine and asparaginase. Figure 3.9D dexamethasone 

and daunorubicin, in line with previous data, are synergistic. Figure 3.9E shows 

predominantly synergy between dexamethasone and asparaginase. In 3.9F 

dexamethasone and vincristine show predominantly additivity but with synergy at the 

lowest concentrations of vincristine and highest concentrations of dexamethasone.  

This data highlights the complexity of combining multiple drugs, with each drug pair 

acting differently from another. Predicting the effect of altering a single drug in the 

combination on the overall effect is not easy, reinforcing the requirement to perform 

the matrix assay to achieve the desired combined effect. 

3.7.3 Selection of in vitro screening concentrations 

The matrix data was then used to identify combinations of the drugs that give an 

overall survival of around 50% which was my ideal effect for screening, since this will 

be a substantial enough effect to observe changes in enrichment and depletion of 

sgRNAs but without too harsh a selection that only a minority of sgRNAs survive. A 

subset of the matrix data was selected to include only data where the final survival 

was between 45 and 55% and combinations where any of the 4 drugs had a 

concentration of 0 were removed. The subset data was then plotted in a 3D scatter 

diagram (figure 3.10) using R studio plot3D. This gave a substantial number of 

potential drug combinations; to narrow this down and select the most appropriate 

combination, I looked for a ratio of the drugs that would most reflect the clinical 

setting.   

I compared the drug assay concentrations with plasma serum maximum 

concentration (Cmax) levels of each drug achieved in patients. Asparaginase levels 

seen in patients were far higher than those required in vitro. Due to differences with 

in asparaginase concentrations clinically and in vitro, I considered only the ratio of 

dexamethasone, daunorubicin and vincristine to each other to select a combination 

for screening, recapitulating clinically achieved concentrations of 254nM for 
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dexamethasone , 190nM for daunorubicin and 4nM vincristine as sumamrised in 

table 3.7 (Moore et al., 2011b, Hempel et al., 2010b, Liston and Davis, 2017, 

Jackson et al., 2016a).  The black line through figure 3.10 from a concentration of 

zero of each of the drugs through to their clincal Cmax, any where along this line 

through 3D space represents constant ratios of these drugs to one another.  

 

Drug Clinical 

Cmax 

In vitro 

concentrations 

Dexamethasone 254nM 50nM 

Daunorubicin 190nM 33nM 

Vincristine 4nM 1nM 

Asparaginase 3U/ml 0.00036U/ml 

Table 3.7 Plasma Cmax values for drugs clinically and concentrations selected 
for in vitro use 

The orange square with a black outline on figure 3.10 indicates my selected 

combination of 50nM dexamethasone , 31nM daunorubicin , 1.1nM vincristine and 

0.18mU/ml asparaginase, which gave a survival of 52% of HPB-ALL.  
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Figure 3.10 3D scatter plot of a subset of HPB-ALL drug matrix data that gave a 
survival between 45 and 55%. The x- axis shows daunorubicin concentration, the y 
-axis dexamethasone and the z-axis vincristine. The different colours show the 
differing asparaginase concentrations. A line is plotted from 0,0,0 through to the 
plasma Cmax concentrations of dexamethasone, daunorubicin and vincristine. A 
concentration lying on the line was selected and is indicated by a black square.  
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 Chapter discussion  

The chapter specific aims outlined in the introduction of the chapter were to: 

• Identify a cell line suitable for screening 

• Select a appropriate concentrations of vincristine, dexamethasone, 

asaparaginase and daunorubicin to use for in vitro screening  

These aims were achieved by assessing factors such as genetic background and ploidy to select 

a cell line that best represented a typical T-ALL in terms of its genetic profile. To select doses 

of chemotherapeutics, the dose response was first assessed as single agents and then in 

combination.  

3.8.1 Cell line selection 

A panel of T-ALL cell lines were assessed for their suitability for CRSIPR screening 

based on karyotype and mutational status. HPB-ALL was highlighted to be the 

preferential candidate for screening.  It has pseudodiploid karyotype, which was 

preferable over the tetraploid cell lines which have double the copies of most genes. 

HPB-ALL has a TLX3 translocation which is found within 19% of T-ALL patients and 

a mutational profile similar to a typical T-ALL patient with mutations in NOTCH 

pathway and CDKN2A deletion, and TP53 mutation.   

3.8.2 Response of T-ALL cell lines to the 4 induction chemotherapeutics 

A number of T-ALL cell lines were assessed for sensitivity to the 4-key 

chemotherapeutics in T-ALL induction therapy, namely dexamethasone, 

daunorubicin, vincristine and asparaginase. Most tested cell lines were resistant to 

dexamethasone, which is perhaps not surprising as most cell lines are derived from 

refractory or relapsed T-ALL patients.  In patients with primary ALL, median in vitro 

GI50 for dexamethasone was 0.67µg/ml compared to in relapsed ALL which had a 

median GI50 of greater than 6µg/ml (Styczynski et al., 2007b). Despite HPB-ALL 

being dexamethasone resistant, dexamethasone does display synergism with 

daunorubicin in HPB-ALL, and additionally induction of dexamethasone response 

genes after dexamethasone treatment was observed. All tested T-ALL were sensitive 

to vincristine in a nano-molar range. The sensitivity to vincristine was high compared 

to primary ALL as a whole according to data from Styczynski et al where primary 

ALLs had a median lethal dose 50 (LD50)-concentration required to  kill 50% of the 

cells of 1.24µg/ml (1.3µM),  but the low nM sensitivity I observed is in keeping with 

GI50s obtained for other T-ALL cell lines (Anderson et al., 2014). Daunorubicin GI50s 
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were in keeping with the literature for both T-ALL cell lines and primary ALL cells, 

(Styczynski et al., 2007b, Silveira et al., 2015). In vitro GI50s for asparaginase were 

in the milliunit range, which is far lower than a clinically relevant level and highlighted 

a potential discrepancy between in vitro screening conditions. Some of the disparity 

can be explained by the differences in asparagine availability, in an in vitro setting 

there is a finite amount of asparagine, that is removed by the action of asparaginase, 

in vivo asparagine can be provided from other cells within the niche and this has 

been reported to be the case in AML (Kaspers, 2019) .  HPB-ALL and RPMI-8402 

were particularly sensitive to asparaginase treatment which is consistent with the 

literature (Silveira et al., 2015, Serravalle et al., 2016). This sensitivity can be 

explained by its low expression of asparagine synthetase compared to other T-ALL 

cell lines such as CCRF-CEM (Serravalle et al., 2016).  

3.8.3 Selection of in vitro drug combinations  

After assessing dexamethasone, daunorubicin, vincristine and asparaginase as 

single agents, I examined the effect of combining these drugs. Despite all 4 drugs 

being used for many years, there is very little literature on how these drugs interact 

together in terms of synergy or antagonism. I observed synergism between 

dexamethasone and daunorubicin, and an antagonism between vincristine and 

daunorubicin. Vincristine and daunorubicin cross resistance has been reported in 

many cell lines and appears to result from commonalities in method of uptake into 

the cells, and in the exclusion of the drugs via the multidrug resistance protein 

(Skovsgaard, 1978, Rappa et al., 1997) perhaps shared uptake routes contribute to 

the less than additive effect I observed between daunorubicin and vincristine. This is 

an area warranting further investigation, it would be important to establish if this 

antagonism is present in other cell lines and patient samples, as this could have 

implications for dose scheduling clinically. I used a matrix-based assay which allowed 

for the selection of combinations resulting in an overall desired effect, instead of 

having to consider all the drug interactions in turn. 

Given the desire to perform negative screening and identify sgRNAs that become 

depleted under drug treatment, a less harsh drug treatment was required. Published 

screens that investigate synthetic lethality with drug treatment use sub-lethal doses 

of drugs for instance IC20 or IC25 as opposed to screens purely focusing on 

enrichment where a much harsher treatment can be used (Wang et al., 2019, 

Whitehurst et al., 2007). Since I wished to identify an effect of the 4 drugs combined, 
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I allowed for a higher level of overall effect of 50%. An effect of 50% should provide 

enough pressure to observe enrichment of guides whilst preserving the majority of 

sgRNA constructs to analyse depletion. 

Multiple drug combinations resulted in the desired effect on HPB-ALL cells. I selected 

the combination of drugs for the screen based on patient plasma Cmax 

concentrations. There were several limitations to selecting the final combination in 

this manner. Firstly, as previously noted, asparaginase clinical Cmax concentrations 

were far higher than the GI50 for HPB-ALL in vitro so asparaginase was not 

considered when selecting drug ratios. Secondly, plasma Cmax alone is a poor 

measure of the amount of drug reaching the cancer cells or how long the drug lasts 

(Meibohm and Derendorf, 1997). Total drug exposure is more relevant than plasma 

Cmax in end response (Paci et al., 2014).    When performing such screening in future 

one might want to consider using a measure of total drug exposure in patients to 

select in vitro concentrations to better reflect the clinical setting.   

3.8.4 Chapter summary  

Through considering genetics, ploidy, transduction potential an appropriate cell line 

was selected for screening. By assess single agent dose responses of T-ALL cells 

lines, calculation of GI50s then performing combination studies suitable drug 

concentrations were selected for screening. The chapter aims were met as described 

by the following: 

• HPB-ALL was identified as the cell line that best fit my requirements for 

screening with a pseudodiploid karyotype, patient relevant genetics (TLX3 

translocation, NOTCH pathway mutation and CDKN2A/B deletion). 

•  A matrix assay identified the following drug concentration for in vitro 

screening with HPB-ALL: 50nM dexamethasone , 31nM daunorubicin , 1.1nM 

vincristine and 0.18mU/ml asparaginase.  
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Chapter 4. Establishment of in vivo VXLD treatment protocol  

 Introduction to chapter  

Patients with T-cell acute lymphoblastic leukaemia receive a 4 drug induction 

regimen encompassing vincristine, dexamethasone, asparaginase and daunorubicin 

referred to here as VXLD. As described earlier response to induction treatment is 

predictive of outcome and therefore resistance to this 4 drug combination is of 

significant interest. One of the objectives of the project, and the focus of this chapter, 

was to: 

• Develop an in vivo combination drug regimen akin to that received by T-ALL 

patients 

Ultimately this in vivo combination regimen could be used with a CRISPR screen to 

identify candidate genes for resistance alongside an in vitro screen with a drug 

regimen outlined in the preceding chapter. To obtain the most comparable results of 

in vitro and in vivo screening, screening should be performed in parallel within the 

same T-ALL cell line. For in vivo studies, it was essential that the selected cell line 

engrafts in immunocompromised mice, and that engraftment could be monitored to 

observe effects of drug treatment. It was imperative that any drug treatment regimen 

would be well tolerated to prevent any unnecessary loss of mice due to adverse 

effects. Additionally, it was important that enough cells survive treatment, to be 

analysed upon culmination of screening. Lastly, it was important to determine the 

levels of each drug achieved in the mice to ensure they were typical of levels found 

in patients undergoing therapy.  In order to successfully achieve the primary 

objective, a number of other objectives needed to be met: 

• Engraft mice with T-ALL cell line and successfully monitor disease  

• Create dosing regimen that is tolerated in mice  

• Check regimen is effectively reducing leukaemia  

• Assess plasma levels of drug received by mice  

 Selection of immunocompromised mouse strain  

The T-ALL cell line for in vivo screening needed to xenograft in immunocompromised 

mice (since the cells will be cleared by the immune system in immune competent 

mice). There are many different immunocompromised mouse strains. The NOD/Scid 
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IL2Rγ null (NSG) mice are the most immunocompromised and are used for 

haematopoietic stem cell engraftment. Routinely, NSG mice are used to engraft T-

ALL samples, however NSG mice have a SCID mutation. The SCID mutation leads 

to deficient DNA repair, and therefore damage caused by DNA damaging agents 

cannot be repaired leading to increased toxicity (Fulop and Phillips, 1990). Since the 

drug regimen would include DNA damaging anthracycline daunorubicin, the NSG 

mice were not ideal.  A less immunocompromised strain Rag2-/-γc-/- can also be used 

to engraft haematopoietic cells, and unlike NSG these do not possess a SCID 

mutation. The Rag2-/-γc-/- mice were therefore selected over the NSG mice due to the 

inclusion of daunorubicin in the drug regimen.   

 Introduction of T-ALL cells into Rag2-/-γc-/- 

T-ALL cells were introduced into mice via intra-femoral injection, this placed the cells 

directly into the bone marrow microenvironment. A limited number of cells could be 

injected into a single mouse, due to the limited space at site of injection. Previous 

experiments have shown 1-2 million cells can be injected per mouse. The Brunello 

library was used for CRISPR screening and is comprised of 76,441 unique guides. 

To ensure we maintained good library representation a coverage of 400 times was 

used, equating to 30,576,400 or approximately 31x106 cells. As it was not possible to 

inject this number of cells into a single mouse.  2x106 cells was used per mouse and 

during screening multiple mice were injected to cover the complete sgRNA library.  

 Measurement of engraftment  

The route of injection used produced systemic disease; whilst this better models 

disease in patients, it cannot be measured reliably by external observations (unlike 

for subcutaneous tumour models where tumour size is measurable with callipers). An 

alternative method for tracking disease progression was required. In this study, two 

different methods of measuring leukaemic burden were used; firstly in vivo 

bioluminescent imaging and secondly flow cytometry detection of blasts in the 

peripheral blood.  

4.4.1 Measuring engraftment of HPB-ALL by IVIS  

An in vivo imaging system can be used to reveal the localisation of leukaemic cells 

within a mouse by the capture of bioluminescence (BLI) or fluorescence signals (Sato 

et al., 2004).  Cells can be engineered to express luciferase via introduction of a 

plasmid containing the firefly luciferase gene such as the SLIEW plasmid (pSLIEW), 
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which also contains a green fluorescent protein (GFP) (Bomken et al., 2013). 

Luciferase produces a bioluminescent signal in the presence of the substrate 

luciferin, and the emitted light signal can be captured using a sensitive camera.  

HPB-ALL cells were transduced with pSLIEW. Successful transduction was 

confirmed by positive GFP expression by flow cytometry. HPB-ALLLuc+ was injected 

into 3 Rag2-/-γc-/-. Mice were injected with D-luciferin, anesthetised and imaged using 

an IVIS (Xenogen , Caliper) at weekly intervals.  The acquired images provided 

information on both localisation and intensity of the bioluminescent signal, and that 

correlates to the location and number of cells respectively. Images acquired at week 

4 are shown in figures 4.1A and 4.1B.   

 

Figure 4.1 Bioluminescent IVIS imaging (BLI) of mice injected with HPB-ALLLuc+ 

Scale bars represent the light intensity. A) Dorsal view of mice. Red arrows indicate 
cells in the injected femur. Yellow arrows indicate areas to which cells have spread. 
B) Ventral view of mice. On this scale it is possible to see that signal present through-
out the mice.  

The total flux (total light emitted throughout the whole of the mouse) from BLI 

increased each week. The signal localisation also changed, initially detectable only in 

the injected femur, signal appeared in the contralateral femur and then throughout 

the mouse (figure 4.1A). Imaging of the ventral side of the mice (figure 4.1B) showed 

presence of leukaemic cells in the spine and head of the mice as indicated by the 

yellow arrows. Drawbacks of using BLI were administration of general anaesthesia, 

and the use of specialist equipment, therefore alternative methods of monitoring 

leukemic burden were considered.   
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4.4.2 Detection of HPB-ALL in peripheral blood by flow cytometry  

An alternate method of assessing engraftment is the detection of leukaemic cells in 

the peripheral blood referred to as peripheral blood monitoring. This technique, unlike 

BLI , does not require a general anaesthetic and does not require luciferase to be 

expressed by T-ALL cells. This technique is described in 2.13.4. Peripheral blood 

samples were taken weekly from mice engrafted with HPB-ALL for a total of 4 weeks. 

The resulting data is summarised in figure 4.2.  
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Figure 4.2 Flow cytometry analysis of peripheral blood samples taken from 3 
mice (LN, RN and NN) injected with HPB-ALL cells over time.  Peripheral blood 
monitoring at days 6, 13, 20 and 27 post intra-femoral injection of HPB-ALL cells. 
Human CD45 staining is shown against murine CD45 on viable gated single cells, Q3 
represents the human cell population.   
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Peripheral blood staining showed an increase in the percentage of circulating human 

cells (Q3) from 0 through to 1% over the 4-week period. When populations of cells 

are small, it can be hard to distinguish a true positive result from any background and 

requires collection and analysis of a larger total number of events. For a population 

appearing as 1% of total events, 106 events are required, for accurate detection. For 

a population around 0.1% of the total population, 107 events are required (at a 

coefficient of variation (CV) of 1%) (Allan and Keeney, 2010) . Since only small 

volumes of blood can be taken weekly it is challenging to acquire 10 7 events. HPB-

ALL engrafted mice did not consistently show greater than 1% human cells in the 

peripheral blood until 4 weeks post intrafemoral injection. By this time mice already 

have some signs of ill health due to leukaemia and had to be killed going into week 5 

in accordance with humane endpoints for the study (inactive, piloerection of coat, 

pale).  

To allow for direct comparison the two techniques for which data was given were 

performed in parallel. The matched timepoints are shown for the two techniques in 

figure 4.3.  
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Figure 4.3 BLI and peripheral blood monitoring. BLI (top panel) with colour scale 
by photons/second/square centimetres/ steradian (p/sec/cm2/sr). Representative 
peripheral blood monitoring (PB) from one of the three mice (bottom panel) at weekly 
intervals. For peripheral blood monitoring, mouse CD45 is shown in the vertical 
direction and human CD45 in the horizontal.
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Both IVIS and human CD45 signals (from peripheral blood) increased over time, 

however signal from the IVIS was visible at a much earlier stage. The percentage of 

human cells in peripheral blood was very low reaching less than 2% at the last time 

point of 4 weeks - which was only days prior to the onset of ill-health.  

Given the low frequency of leukaemic cells detected by peripheral blood monitoring 

from 1 to 3 weeks post implantation, peripheral blood monitoring was not considered 

an optimal method of tracking engraftment in this case. Similar low peripheral blood 

blast levels have been observed in the ALL cell line preB-697 and some fast growing 

ALL PDX samples (Dormon, 2017).   BLI was selected to monitor leukaemic burden 

under drug treatment as it allows earlier detection of leukaemic cells and provides 

additional information regarding the distribution pattern of cells.   

4.4.3 Confirmation of the presence of HPB-ALL cells in murine bone marrow 

by flow cytometry  

At the end of the screening process, leukaemic cells need to be harvested from all of 

the mice for analysis of guide representation. In order to confirm and determine 

which compartment these cells should be extracted from, the percentage of human 

cells present in different murine tissues was analysed by flow cytometry 4 weeks post 

injection.  BLI indicated predominantly bone marrow engraftment of the HPB-ALL 

cells, therefore bone marrow was harvested from the hind limbs of the mice. 

Although the spleens of HPB-ALL engrafted mice were not significantly increased in 

weight (average 0.1g compared to average normal weight 0.04g), leukaemic cells are 

commonly found in spleens of T-ALL patients, therefore samples were taken to 

assess the presence of human CD45 positive cells by flow cytometry.  
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Figure 4.4 Flow cytometry analysis of spleen and bone marrow cells harvested 
from mice injected with HPB-ALL. Approximately 1 million cells from bone marrow 
and spleen of 3 different mice (LN, RN and NN) were stained with an antibody 
cocktail containing fluorophore conjugated antibodies to human CD45, Mouse CD45 
and human CD3, along with a viability dye. Human CD45 staining is shown against 
murine CD45 on viable gated single cells on the plots above.    



140 
 

Flow cytometry analysis shown in figure 4.4  identified a clear population of human 

CD45 positive cells in the bone marrow of all 3 mice, and in the spleens of 2 . The 

percentage of human CD45 cells in the bone marrow was around 50% whereas in 

the spleen engraftment varied between 0 – 6%. This finding was consistent with BLI 

and peripheral blood monitoring, with lower levels of leukaemic cells in the blood 

stream that are taken up by the spleen, and high levels residing within the bone 

marrow. 

Once it was confirmed that HPB-ALL engraft in the Rag2-/-ƴc-/- mice, there was a 

method to monitor the disease burden during treatment via BLI, and tissue 

engraftment, design of a drug treatment regimen commenced.  

 VXLD toxicity testing 

The use of any agents in an in vivo setting requires considerations of tolerability to 

prevent unnecessary loss of study numbers, to ensure adherence to limits set within 

the Home Office Project licence, and to maintain the principle of the 3Rs (Reduction, 

replacement, refinement)(Burden et al., 2015). Given our aim to use 4 drugs in 

combination, it was particularly pertinent to determine a tolerable and efficacious 

dosing regimen before proceeding with a large-scale screen. 

A dosing regimen encompassing all the drugs in the VXLD combination had 

previously been published using NOD/SCID mice albeit with some toxicity issues 

(Samuels et al., 2014b). In the published study 4 drugs were used in one single 

treatment block, and then daunorubicin was omitted from later blocks due to poor 

tolerability. The combination of these 4 drugs had not previously been used within 

our facility or on Rag2-/-ƴc-/- RG mice.   The published VXLD regimen provided a 

starting point for the selection of doses. We initiated toxicity testing in a pilot study at 

the doses given summarised in table 4.1 (and explained in detail in the methods 

section) in two female and two male Rag2-/-γc-/- mice.  

  



141 
 

Drugs given  Dose and route  Number of times 

given per treatment 

block 

Daunorubicin 0.45mg/kg IV 1 

Vincristine  0.15mg/kg IP 1 

Dexamethasone 5mg/kg IP 5 

Asparaginase  1000U/kg IP 5 

 Table 4.1 Initial in vivo VXLD doses.  Doses, routes and frequency of each of the 4 
drugs used in the first block of VXLD treatment during toxicity testing. Daunorubicin 
was given by intravenous injection (IV) the remaining drugs were given by intra-
peritoneal injection (IP). Doses were given relative to body weight.  
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Figure 4.5 Weight monitoring of 4 Rag2-/-ƴc-/- mice during toxicity testing of 4 
drug induction regimen. Upper schematic- representation of the pilot VXLD dosing 
schedule. Lower schematic- weight change of the mice within the pilot study. Each 
coloured line represents the weight change as a % of the start weight. The dashed 
lines indicate key weight changes for the project licence with the brown dashed line 
indicating a 15% weight loss ( where dosing should be suspended) and the red 
dashed line indicating a loss of 20% of original start weight (where the animal must 
be killed). Drugs were initially given at doses, routes and frequencies shown in table 
4.1, with all 4 drugs being given on Monday (as indicated by both blue and orange 
arrows) and then dexamethasone and asparaginase also being given Tues-Fri (as 
indicated by the blue arrows). Mice were dosed Monday through Friday as indicated 
by arrows. Doses for the first block are given in table 4.1. The dose of 
dexamethasone was halved after the first dosing block due to excessive weight loss 
as indicated. The subsequent doses are summarised in table 4.2.  
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Mice were weighed daily during dosing and otherwise every 2-3 days. Dosing was 

initiated with the schedule summarised in table 4.1 on a Monday and ending the 

following Friday. It was anticipated that 2 days free of dosing would allow for 

regaining of weight in the mice in preparation for a second week of dosing, however 

both females exhibited further weight loss after 2 days (figure 4.5). Neither male had 

returned to their original pre-dosing weight. Dosing plans were suspended for the 

following week to allow mice to regain weight. During this time one of the female 

mice had to be culled due to excessive weight loss. The remaining toxicity testing 

was performed in the remaining 3 mice.  Given the weight loss seen in all mice the 

dosing required amendment to improve tolerability.  

From previous experience in the research group similar weight loss and failure to 

regain weight was observed with dexamethasone treatment. Additionally, 

pharmacokinetic studies showed that doses lower than the 5mg/kg still achieved 

plasma concentrations comparable to those found in patients (Matheson et al., 2019) 

Drugs given  Dose and route  Number of times 

given per treatment 

block 

Daunorubicin 0.45mg/kg IV 1 

Vincristine  0.15mg/kg IP 1 

Dexamethasone 2.5mg/kg IP 5 

Asparaginase  1000U/kg IP 5 

Table 4.2 In vivo VXLD doses. Doses, routes and frequency of the 4 drugs used in 
second and third blocks of VXLD treatment in toxicity testing and subsequent VXLD 
dosing  

Therefore, the dexamethasone concentration was reduced by half to 2.5mg/kg (table 

4.2), whilst doses of other drugs remained the same. After lowering the 

dexamethasone dose to 2.5mg/kg, all mice tolerated 5 days of treatment and had 

regained enough weight with 2 days free of dosing to tolerate a second week of 

treatment. Monitoring the weights and mouse wellbeing continued after dosing was 

complete to determine any latent effects. These were not observed. The toxicity 

testing was initially performed in healthy mice. Next, toxicity and efficacy of VXLD 

was assessed in leukaemic mice.  
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 Measuring leukaemic burden by IVIS signal over time  

Upon establishment of an adapted dosing protocol that was tolerated, leukaemic 

mice were treated to assess efficacy of treatment. To assess the ability of the VXLD 

combination to reduce HPB-ALL proliferation and/or survival in vivo, 9 Rag2-/-γc-/- 

mice were injected with HPB-ALLLuc+ cells. One -week post cell injection, BLI was 

performed to determine engraftment. 9 mice were assigned to treatment n=6 (to 

account for individual variation to treatment) or vehicle n=3. Mice were given two 

blocks of VXLD chemotherapy each lasting 5 days each, separated by a week (from 

day 11 through 15 and day 25 through 29).  Mice were imaged weekly by IVIS. 

Figure 4.6 displays the weekly bioluminescent (BL) images of VXLD treated and 

control mice. In general BL signal increased over time (moving from blue through to 

red) and signal area also increased.  In the first BL image at week 1 (day 7), the 

signal is low and restricted to the injected femur; there is a similar pattern between 

treated and control arms prior to commencement of treatment. At week 2 (day 14 and 

day 4 of 5 of the first block of VXLD treatment), differences were observed in 

localisation of signal between the treated and control groups. In control mice signal 

was present in both the injected hind leg and contralateral leg, whereas in the 

controls the signal was limited to the injected femur. During week 3 (when the treated 

mice were not receiving VXLD therapy), the signal spread to the contralateral femurs. 

During week 4 a second block of VXLD therapy was applied. During this week signal 

continued to increase in the treated mice but to a lesser extent than in the controls. 

At week 4 the control mice displayed signal throughout the whole body. The 

difference in total flux between treated and control mice at week is apparent in figure 

4.7 which displays total flux over time. The non-linear fit demonstrated the overall 

trend in increasing total flux for control and VXLD treated groups however the 

difference between the two groups was not significant (2-way anova repeated 

measures).   
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Figure 4.6 Bioluminescent images of each mouse each week. Treated mice are 
shown on the left (n=6) and control mice are shown on the left (n=3). BLI was 
performed on days 7, 14, 21, 28 and 35 corresponding to weeks 1,2,3,4 and 5 
respectively. Dosing was performed from days 11-16 and 25-29. Weeks 2 and weeks 
54 images were taken whilst mice on treatment. Only 3 mice are shown for week 5 
treatment arm as 3 mice were culled at week 4 for pharmacodynamics studies. All 
images are shown on the same scale for comparison. Signal intensity is shown on a 
scale from blue through to red with increasing intensity 
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Figure 4.7 Total flux of treated and control mice over time. HPB-ALL cells were 
injected on day 0. Time in days is given on the x-axis and total flux (photons per 
second) is given on the y axis.  Orange boxes represent treatment blocks. Each point 
represents a single mouse at the imaging time points; VXLD treated mice (n=3) are 
shown in red and control mice (n=3) in blue. Red and blue lines indicate trend of the 
group. There is an additional set of points for the treated group since they survived 
longer. There is no significant difference between the two groups (two-way anova, 
repeated measures)  

In addition to BLI, event free survival was recorded for treated (n=3) and non-treated 

(n=3) mice. Mice were monitored until they reached predefined clinical endpoints 

(weight loss ≤15% from highest previous weight, abnormal gait, abdominal 

breathing). They were humanely killed by a schedule 1 method and the date of death 

recorded, the injection date was subtracted from this date to give time until event 

(figure 4.8).  

Despite the lack of significant difference in total flux measured by IVIS between 

control and treated mice, there was a significant difference in survival with a p value 

of 0.02 (Log-Rank test). Two control mice were killed on the same day (day 31) and 

the remaining mouse the following day. All treated mice reached endpoint at the 

same time as one another on day 39, an average of 7.7 days longer than the 
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controls. The non-treated mice survived for a median of 32 days whereas the treated 

mice survived a median of 39 days, an increase in survival of 7 days. To ensure 

enough pressure was applied to HPB-ALL cells during screening, it was important to 

establish a significant reduction in BLI which corresponds to cell number. To improve 

on the increased survival time and achieve a significant difference by BLI with VXLD 

treatment, the experiment was repeated with intensified dosing.  

 

 

Figure 4.8 Event free survival of HPB-ALL engrafted mice treated with 2 blocks 
of VXLD chemotherapy. Mice injected with HPB-ALL were randomised to receive 
VXLD treatment n=3 or vehicle control n=3. VXLD treated mice began treatment 8 
days after injection and received a total of 2 blocks of treatment. Mice were weighed 
and monitored for signs of leukaemia in addition to weekly IVIS imaging. Once mice 
reached pre-defined end points, they were killed and their date of death recorded. 
This was used to calculate the number of days since injections and the number of 
days recorded as event free survival. (* indicates significant difference between 
groups by Log Rank test with p<0.05 and HR indicates the hazard ratio of 
vehicle:treated by the log rank method).  
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 Increasing the effect of VXLD chemotherapy on HPB-ALL engrafted mice  

To achieve a significant effect in reduction of HPB-ALL in vivo, the dosing schedule 

was intensified. Six mice were injected with HPB-ALLLuc+ and randomised to receive 

treatment or vehicle control (3+3). In the previous study, dosing started at day 11 

after cell injection to allows cells to become established prior to onset of treatment, in 

attempt to increase the amount of treatment given, in the following study the first 

block of VXLD dosing was initiated 4 days after injection of the cells, the second 

block was then given from day 11 through 15 and lastly a block was included from 

24-29 days post injection, giving a total of 3 blocks of VXLD therapy. BLI was 

performed 1-2 times a week to monitor the progression of leukaemia in the mice. For 

each imaging day, the total flux for each mouse was measured and plotted against 

time (figure 4.9). 

 

 

Figure 4.9 Total flux as calculated by BLI over time from intra-femoral injection 
of cells, for control and VXLD treated mice.  Time in days is given on the x-axis 
and total flux (photons per second) is given on the y axis. Orange boxes indicate 
where treatment was applied. Lines indicate the trend of the control (blue line) and 
VXLD (red line) over time. A significant difference in IVIS signal between treated and 
untreated was observed (p <0.05; 2-way anova, repeated measures) 
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The total flux signal increased more rapidly in the control mice compared to the 

VXLD treated mice (p<0.05, 2 way anova repeated measures). Event free survival 

was also recorded for the treated and non-treated mice. Once mice reached 

predefined clinical endpoints, they were humanely killed by a schedule 1 method and 

their date of death recorded, the injection date was subtracted from this date to give 

time until event (figure 4.10).  

 

 

The treatment significantly prolonged event free survival (p=0.03, Log Rank test). 

Median event free survival was increased from 32 days to 48 days. Disease 

progression was successfully monitored over time using BLI in HPB-ALL injected 

mice.   A VXLD treatment was established that was tolerable and significantly 

reduced total flux and increased event free survival.  To further validate the effect of 

VXLD on HPB-ALL, in vivo samples harvested from treated and non-treated mice 

were analysed.  

Figure 4.10 Event free survival of HPB-ALL engrafted mice treated with 3 blocks 
of VXLD chemotherapy. Mice injected with HPB-ALL were randomised to receive 
VXLD treatment n=3 or vehicle control n=3. Mice were weighed and monitored for 
signs of leukaemia. Once mice reached pre-defined end points (weight loss <15%, 
abnormal gait, reduced body temperature, abdominal breathing), they were killed and 
their date of death recorded as an event, this was used to calculate the number of 
days since injections and the number of days recorded as event free survival.(* 
indicates significant difference between groups by  Log Rank test with p<0.05 and HR 
indicates the hazard ratio of vehicle/treated by the log rank method).  
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 Response of HPB-ALL cells to in vivo treatment with VXLD  

Mice were treated with 2 blocks of VXLD chemotherapy or vehicle control injections 

and were killed on the last day of the second block of therapy. Bone marrow samples 

were harvested from both treated and control mice and were analysed as previously 

by flow cytometry. Additionally, RNA was also extracted from the cells to assess 

mRNA expression of the glucocorticoid receptor and FKBP5, markers which are 

commonly altered by treatment with dexamethasone. The amount of DNA damage 

within the leukaemic cells harvested from treated mice was assessed by flow 

cytometry using phosphorylated histone 2 as a marker of DNA damage.  

 Flow cytometry analysis of percentage blasts in murine bone marrow with and 

without VXLD treatment  

1 million harvested cells from each mouse were stained for viability, murine CD45, 

human CD45 and human CD3. Flow cytometry was used to detect the presence of 

human leukaemic cells within harvested bone marrow samples in mice that had 

undergone VXLD chemotherapy and in controls. For method details refer to 2.13.3.  

A significant reduction was observed in the percentage of human CD45 positively 

stained cells from total bone marrow samples from VXLD treated mice (p=0.0046, 

unpaired t-test), reducing from an average of 63.8% to 24.8% (figure 4.11). This was 

in line with the reduction in bioluminescent signal and confirmed that the VXLD 

dosing was indeed reducing leukaemic burden in the bone marrow. The reduction in 

percentage of human cells may even underestimate the effectiveness of the drugs, 

since VXLD treatment is likely to have also impacted the murine cells within the bone 

marrow. 

The reduction in leukaemic infiltration in the bone marrow could be attributed to any 

of the drugs used within the VXLD regimen. Given the effect of dexamethasone was 

detectable by measuring dexamethasone response gene upregulation in vitro, the 

impact of dexamethasone treatment on cells in vivo was analysed. 
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Figure 4.11 Analysis of percentage human leukaemic cells within murine 
bone marrow of 6 mice. 3 mice had previously received 2 blocks of VXLD 
treatment (right) and 3 received only vehicle injections (left). Mice were killed 4 
weeks post intra-femoral injection of HPB-ALL cells.  Human CD45 is shown on 
the horizontal axis and murine CD45 is shown on the y-axis.  
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4.9.1 Expression of glucocorticoid response genes in HPB-ALL treated in vivo 

with VXLD  

In vitro treatment of HPB-ALL with dexamethasone had limited effect on cell survival 

or proliferation but caused upregulation of dexamethasone response genes. To 

determine if HPB-ALL cells treated in vivo displayed changes in dexamethasone 

response gene expression, RNA was extracted from bone marrow harvested from 6 

HPB-ALL engrafted mice; 3 that had received VXLD treatment and 3 controls.  The 

extracted RNA was used to synthesise cDNA and quantitative PCR used to assess 

expression of glucocorticoid receptor mRNA and dexamethasone response gene 

FKBP5 (figure 4.12). Primers were designed to amplify only human sequences to 

ensure the measured expression was from the HPB-ALL and not murine cells.  

 

HPB-ALL cells harvested from the bone marrow of mice treated with vehicle or with 

VXLD chemotherapy showed a difference in mRNA expression of the glucocorticoid 

receptor. In vivo VXLD treatment caused a significant increase in mRNA expression 

of the receptor, this could be attributed to the positive regulation of the glucocorticoid 

receptor pathway by dexamethasone described previously in leukaemic T-cells 

Figure 4.12 mRNA expression of glucorticoid receptor and response gene 
FKBP5.  Glucocorticoid receptor mRNA expression (A) and FKBP5 expression (B) 
in HPB-ALL cells harvested from the bone marrow of mice treated with VXLD 
chemotherapy. Expression was normalised to housekeeping gene GAPDH and 
shown relative to expression in HPB-ALL cells from mice receiving only vehicle 
control. * indicates p value <0.05 ** indicates p value < 0.01 (unpaired t-test) 
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(Ramdas et al., 1999). FK506 binding protein 51 (FKPB5) is a co-chaperone found in 

complex with heat shock protein 90 (HSP90) and steroid receptors (Scharf et al., 

2011). The mRNA expression of FKPB5 was assessed in HPB-ALL extracted from 

VXLD treated and vehicle control mice. There was a significant increase in FKBP5 

expression in the VXLD treated cells when expression is normalised to housekeeper 

GAPDH. There were variations in GAPDH levels between control and treated mice, 

which may reflect the differences in purity of samples as they were derived from 

mixed human and mouse populations but may also be due to a change in GAPDH 

expression under treatment. This may have resulted in an overestimation of the 

increase in FKBP5 and GR expression, additional analysis with alternate 

housekeeping genes could help clarify this. The apparent increase in glucocorticoid 

receptor and FKBP5 expression indicates dexamethasone is reaching the HPB-ALL 

cells in vivo and is able to influence steroid receptor signalling pathways.  

4.9.2 Changes in DNA damage marker phosphoH2AX in HPB-ALL treated in 

vivo with VXLD chemotherapy 

Treatment with daunorubicin causes DNA damage which results in the 

phosphorylation at Serine 139 (Ser139) on histone H2AX (Sharma et al., 2012). In 

vitro treatment of HPB-ALL cells with daunorubicin leads to an increase in the levels 

of phosphorylated H2AX (figure 4.13). If daunorubicin reaches HPB-ALL cells in vivo, 

an increase in levels of phosphorylation of Ser139 on H2AX is expected.  

Bone marrow from HPB-ALL engrafted mice that received either vehicle or VXLD 

chemotherapy was examined. The level of phosphoH2AX in HPB-ALL were 

assessed by flow cytometry by first gating human CD45 positive cells and secondly 

evaluating the intensity of fluorophore conjugated antibody staining related to 

phosphH2AX expression. 
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Figure 4.13 Phosphorylated histone H2AX expression on HPB-ALL cells  . Bone 
marrow from mice receiving vehicle n=3 or VXLD chemotherapy n=3 was stained for 
human CD45 and phosphorylated histone 2. The expression of phosphorylated 
H2AX is shown for the single gated CD45 positive HPB-ALL cells. HPB-ALL cells 
treated with high dose daunorubicin in vitro and HPB-ALL cells receiving vehicle in 
vitro are shown as controls. HPB-ALL cells treated in vitro with daunorubicin show 
high levels of phosphoH2AX, whereas cells treated with vehicle alone show only 
moderate levels of phosphoH2AX. The in vitro Daunorubicin treated cells were used 
to set the gating for high phosphoH2AX levels. The table on the right summarises 
each sample and the percentage of cells with high levels of phosphorylated H2AX. 
There was no significant difference in phosphoH2AX levels in VXLD treated and 
control mice (unpaired t-test).  
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Figure 4.13 shows in vitro treatment of HPB-ALL cells with daunorubicin lead to an 

increase in the levels of phosphorylated H2AX, compared to cells treated with vehicle 

only. There were still cells stained positively for phophoH2AX in the untreated cell 

samples, but the staining was less intense. The positivity in untreated cells could be 

due to the involvement of phosphH2AX in DNA replication, or genomic instability 

(MacPhail et al., 2003). In HPB-ALL cells harvested from mice, neither treated nor 

untreated cells should high levels of staining for phosphorylated H2AX but the 

percentage of cells was marginally higher in mice receiving VXLD treatment at an 

average 12% of cells staining positive for phophoH2AX compared to 3% in control 

mice, which was a non-significant change by t-test (p=0.07). The lack of cells in vivo 

achieving the same high levels of phosphoH2AX as seen in vitro could be due to the 

time point at which the samples were analysed. The last dose of Daunorubicin was 

received 5 days prior to taking in vivo samples, whereas in vitro samples were 

analysed after 24 hours. Given the presence of phosphoH2AX in control samples 

and without cell cycle information, it is not possible to draw definitive conclusions.  

No further pharmacodynamics in vivo were pursued. However, pharmacokinetic 

profiles of the four drugs in the in vivo model were considered.  

 Pharmacokinetic study  

In order to determine pharmacokinetic profiles of each of the drugs in the in vivo 

model peripheral blood samples were obtained after treatment of non-leukemic 

(naïve) mice at varying time points with all 4 drugs in combination (figure 4.14 A-D). 

Plasma was used to assess asparaginase activity (via a colorimetric assay) and the 

concentration of dexamethasone, daunorubicin and vincristine was assessed by 

liquid chromatography-mass cytometry (LC-MS). The extraction, processing and 

analysis of plasma samples for dexamethasone, daunorubicin and vincristine were 

kindly performed by Mankaran Singh and Philip Berry (NICR clinical pharmacology 

group).   
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Figure 4.14 Plasma levels of drugs. Concentration of chemotherapeutics 
daunorubicin (a), vincristine (b), and dexamethasone(c) and activity level of 
asparaginase (d) in the plasma of mice treated with VXLD chemotherapy. Each time 
point is derived from 3-6 mice, error bars represent standard deviation.   
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There were 7 evaluable time points for daunorubicin. The maximum recorded 

concentration was at the first 5 minute time point and was a mean of 281ng/ml. 

Vincristine had only 4 evaluable time points, with the first at 90 minutes after intra-

peritoneal injection, the mean recorded at 90 minutes was 7.4ng/ml and the average 

concentration declined over time to 3.8ng/ml at 310 minutes (5.2 hours). 

Dexamethasone concentrations were measured at 6 different time points. The 

highest median dexamethasone concentration was 25933ng/ml, 10 minutes post 

dosing (IP). Dexamethasone levels reduced rapidly but were still detectable after 6.7 

hours with a mean concentration of 155ng/ml. Asparaginase activity was highest at 

100 minutes with a median activity of 3.4U/ml. Asparaginase activity levels had 

reduced below 0.1U/ml by 23 hours (mean 0.06U/ml).  

 Chapter discussion  

4.11.1 Effectiveness of VXLD treatment regimen in vivo   

Intra-femoral injection of HPB-ALL leads to very rapid leukaemia engraftment in 

Rag2-/-γc-/- mice with predominant bone marrow engraftment and survival of 32 days. 

Optimised VXLD treatment was able to significantly increase survival to 48 days. 

Weight-loss was seen in mice undergoing treatment but was within the limits 

stipulated by the home office project licence.   

Enough HPB-ALL cells could be extracted from murine bone marrow for analysis of 

sgRNA representation at the end of screening. In vitro multiple screening time points 

could be taken whereas in vivo cells could be harvested at a single point in time. The 

maximum screening length is largely determined by the time from injection to 

development of leukaemia. Since mice succumb to disease in less than 5 weeks and 

the number of cell doublings occurring in vivo is unknown, screening will be 

terminated just prior to mice becoming unwell to ensure the maximum possible 

number of cell doublings has occurred. Mice were harvested at day 27/28 for control 

and at day 37/38 for treated mice, or earlier if mice became unwell.  We estimate that 

this will provide adequate cell doublings to show changes in sgRNA abundance, but 

there is a possibility that too many doublings have occurred and highly proliferative 

sgRNAs might predominate and obscure other hits.  

 



158 
 

4.11.2 Representation and library coverage for in vivo screening  

In addition to lack of control of cell doublings, we have limited control over the 

number of cells that can be input into the screen. Injection of the T-ALL cells into the 

femur of the Rag2-/-γc-/- mice, whilst putting them directly in the bone marrow niche 

it restricts the number of cells that can be injected. Only 2 million cells were injected 

per mouse, with 76,441 unique guides at recommended 400 times coverage, means 

30,576,400 cells were required in total (Doench et al., 2016). It is not possible to 

inject such a high number into a single mouse. The 2 million cells only allow for a 26 

times coverage per mouse. Injecting multiple mice per screening arm allows us an 

increase in cells injected and increases the likelihood of full library coverage when 

mouse samples are combined.  

The low complexity in each mouse may be further confounded by the number of 

leukemic cells that can engraft from the total number injected, and this information is 

an unknown factor (Patel et al., 2014). Clonality within samples can lead to variations 

in engraftment ability, although this is reduced by using a cell line compared to 

clonality in patient derived xenografts (Clappier et al., 2011, Poglio et al., 2016).  

In addition to the uncertainty in the number of cells able to engraft, it is unknown if all 

cells that engraft demonstrate the same engraftment pattern. We have shown HPB-

ALL engrafts within murine bone marrow compartments, however we do not know if 

all cells can equally engraft in all compartments.  Two separate groups have 

published work on the clonality of ALL cells within the murine bone marrow 

(Belderbos et al., 2017, Elder et al., 2017). Individual barcoding of ALL cells revealed 

that different bones within a single mouse housed differently barcoded cells.  We 

harvested total murine bone marrow from all limbs, sternum, calvaria and spine in 

order to have the best representation. For the majority of the mice, cells were pooled 

from different bones but for a small number of mice (5 treated and 5 not treated) 

individual bone marrow compartments were harvested and kept separate for DNA 

extraction and PCR, and barcoded individually, to allow for compartmental based 

analysis. 

4.11.3 The benefits and limitations of the choice of in vivo model  

Despite the unknowns and added complexity of performing in vivo screening, there 

are potential benefit of this approach. Performing the screen in vivo allows for 

exploration of niche specific targets, and it is possible that some drugs act specifically 
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upon the niche-leukaemia interaction. Culturing cells independent of a niche in 

standard in vitro screening closes doors on a whole manner of therapeutic options 

(Tasian et al., 2018). The bone marrow microenvironment is complex and 

constructed of many cell types and is not easily replicated outside of an in vivo model 

(Asada et al., 2017). The benefit of a xenograft model means the leukaemia itself has 

relevant human genetics in a niche environment.   Although one must bear in mind a 

human niche and a mouse niche are not synonymous.  

There are many critical differences between mice and humans, several of which 

relate to haematopoiesis and bone marrow microenvironment (Mestas and Hughes, 

2004). Firstly, there are differences in how blood cells are being produced with blood 

cell production in the spleens of mice continuing into adulthood whereas this only 

occurs in utero in humans. Secondly, chemokines differ between mice and humans, 

many of which may be relevant to how the leukemic cells interact with other cells 

(Zlotnik and Yoshie, 2000, Olson and Ley, 2002). In future, use of humanised mouse 

models may further improve this model.  

In addition to the cells being within a murine environment, it is also an 

immunocompromised environment, to allow the leukaemia to engraft. The immune 

system is very important in the development of cancer – in fact it is a hallmark of 

cancer (Hanahan and Weinberg, 2011). An immunocompromised model restricts our 

ability to assess the impact of immune system on the leukaemia. Use of a cell line 

that grows independently of a niche is also a consideration: we many not achieve the 

same niche interactions in this model as when using niche dependant cells such as 

PDX. Despite this, whilst cell lines can survive independent of niche, it does not 

mean that the niche will not offer additional growth or proliferative advantage 

particularly under a treatment setting.  

T-ALL cells were injected into mice via an intra-femoral route. This was to put the all 

the cells into direct contact with bone marrow stromal cells. The role of the stroma for 

the support of T-ALL is well established. Stromal derived cells are regularly used for 

the ex vivo culture of patient and patient derived xenograft T-ALL cells  (Hawkins et 

al., 2016, Holmes and Zuniga-Pflucker, 2009). The introduction of T-ALL cells via an 

intravenous route is also common practice for T-ALL engraftment. Whilst intra-

femoral injections places all the cells within proximity to one another, less control is 

achieved with intravenous injection, there is a chance of losing more cells (and 

therefore library representation) if the cells do not end up in a supportive niche. An 
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intravenous injection however is far less invasive than intra-femoral injection and can 

accommodate a larger number of cells. Examining latency, spread of disease and the 

number of leukemic initiating cells could help determine the most optimum route of 

introducing T-ALL cells for screening.  

4.11.4 Relationship between in vivo drug concentrations and clinical levels  

Despite a low dose of daunorubicin being administered to the mice (0.45mg/kg) the 

resultant peak plasma concentration of 281ng/ml is within a clinically applicable 

range if anything at the higher end with a typical patient Cmax of 100ng/ml (Hempel et 

al., 2010a). Table 4.3 summarises the relationship between in vitro doses, in vivo 

Cmax and clinical Cmax. Pharmacokinetic of daunorubicin usually show a rapid 

decrease in plasma concentration followed by a slower elimination phase, which we 

also observe in our data.  

Drug In vitro  In vivo  

Cmax 

Clinical Cmax 

Dexamethasone 50nM 6600nM 254nM 

Daunorubicin 33nM 500nM 190nM 

Vincristine 1nM 10nM 4nM 

Asparaginase 0.00036U/ml 3.4U/ml 3U/ml 

Table 4.3 Comparison of in vitro drug doses, Cmax levels reached in vivo and 
clinical C  concentrations for dexamethasone, daunorubicin, vincristine and 
asparaginase.  

Vincristine plasma levels are in agreement with the plasma levels published in PLoS 

One in 2012 by Szymanska et al. reported Cmax for vincristine in combination was 

8.7ng/ml at 30 minutes, our first time point was later than this at 90 minutes with a 

concentration of 7.4ng/ml this appears to be in agreement with their data at similar 

time points (Szymanska et al., 2012a). They record an area under the curve of 

1.75mg/L*min which falls lower than the median reported in humans but still lies 
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within a range recorded in ALL patients (Szymanska et al., 2012a, Moore et al., 

2011a, Lonnerholm et al., 2008).  

For asparaginase Szymanska et al. reported a maximum activity of 8.9U/ml at 1.9 

hours, here a maximum mean activity of 3.4U/ml at the closest time point of 1.7 hours 

was determined. The asparaginase was depleted to 0.06U/ml within less than 24 

hours, this falls just below the minimum desired trough level of 0.1U/ml (Rizzari et al., 

2000).  Asparaginase concentrations were slightly lower than anticipated at each 

time point when comparing to previous publications, however given that the  

pharmacokinetics of different asparaginase preparations have been shown to be 

greatly variable: this is perhaps not so surprising (Asselin et al., 1993, Boos et al., 

1996).  

Dexamethasone dosing was lowered from the 5mg/kg used by Szymanska et al and 

Samuels et al to 2.5mg/kg. Dexamethasone was detected at very high concentration 

in mouse plasma at 25933ng/ml at peak. This is far higher than a clinical Cmax of 

standard arm patients in UKALL2011 (average 78.6ng/ml) and higher than that seen 

in Szymanska et al (Jackson, 2017)). 

The dexamethasone concentration however was in line with data obtained in our 

facility at comparable time points (Matheson et al., 2019, Dormon, 2017). 

Comparable studies using dexamethasone in mice (including Szymanska et al) did 

not include use of daunorubicin in their pharmacokinetic study, with both drugs being 

metabolised by cytochrome P450 enzymes in the liver, their co-administration could 

result in different dexamethasone kinetics. Dexamethasone can activate pregnane X 

Receptor which can induce CYP3A family expression (which are important for its 

metabolism), the ability of dexamethasone to activate the receptor is different 

between mice and humans and this may relate to differing pharmacokinetics (Scheer 

et al., 2010). 

The plasma levels analysed in this study just touch the surface in terms of 

pharmacokinetics and allow us a snapshot at exposure of drug we achieve. A greater 

number of time points per drug would allow us to better analyse the kinetics of each 

drug, their total exposure and clearance.  It would be beneficial to look further into the 

dexamethasone kinetics in the VXLD regimen and to see how this compares to the 

clinical dose and if conditions can be altered to better reflect a clinical setting.  Many 

factors can impact drug kinetics including order of drug administration, the 
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formulation and the mouse genetic background and the gender of the mice. This is 

something that should be carefully considered when repeating drug studies 

particularly in multidrug combinations.   

In its current form the dosing regimen leads to weight loss in the realm of 10 to 15%, 

and a 15% weight-loss calls for the suspension of dosing. The dexamethasone 

concentration was initially used at a very high dose compared to that found in 

patients. There may be scope to further reduce the dexamethasone dose. Ideally, we 

would like to have the possibility for adding additional drugs to the VXLD block, but 

additional drugs may bring additional toxicity and make the regimen intolerable.   

4.11.5 Chapter summary  

In this chapter the preparations made for the in vivo screen, are optimised and 

discussed. 

• HPB-ALL cells injected intra-femorally produced a systemic disease which can 

be monitored by in vivo imaging 

• A tolerated VXLD dosing regimen was established ( 5 day treatment blocks of  

dexamethasone IP 2.5mg/kg daily, asparaginase IP 1000U/kg  daily, 

daunorubicin IV 0.45mg/kg once per block, vincristine IP 0.15mg/kg once per 

block) 

• Dosing was optimised to reduce leukaemic burden which will ensure a 

selective pressure is applied to cells during screening. 3 blocks of treatment 

starting on days 4,11 and 25 post injection of cells significantly decreased 

bioluminescence and increased event free survival  

Combined with the in vitro data from the previous chapter, including cell line 

selection and in vitro drug dosing, the CRISPR screen could be planned. 
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Chapter 5. CRISPR screen method optimisation  

 Introduction to chapter  

The intended genome wide CRISPR screen required many different processes, 

many of which necessitated adaptations and creations of protocols. The Brunello 

library (a genome wide CRISPR library (selected due to its optimised guide design)) 

was purchased from Addgene. This pooled plasmid library required amplification 

before being used to generate lentivirus. The generation of lentivirus and the 

transduction of T-ALL cells with the as aforementioned lentivirus required 

optimisation. Once introduced to T-ALL cells, the screening could then take place 

using conditions outlined in chapters 3 and 4. Ultimately the number of each guide 

present within each sample was to be determined by next generation sequencing. 

Prior to sequencing extraction of genomic DNA from the harvested cells was 

required. A PCR step could then be used to amplify the guide containing region (an 

ultimately tiny quantity of the total DNA of each cell), from pooled cells in a 

representative way. After cleaning and quantification of PCR products, samples could 

be pooled and sequenced.  The aim of this chapter was:  

• Create a streamlined screening process from introduction of library into cells to 

sending material for next generation sequencing 

This can be broken into smaller specific requirements: 

• Optimise lentivirus introduction of library into T-ALL cells  

• Check method of amplification of guide containing region  

• Optimise clean-up of PCR products  

 Transduction of T-ALL cell lines with CRISPR lentivirus 

The screen required many transduced cells, to ensure high coverage of the 76,441 

sgRNA containing library. Ideally, coverage should be in the region of 400 times per 

guide meaning a requirement of a minimum number of 31 million library containing 

cells (assuming one guide per cell). This is to ensure each sgRNA is well 

represented. A transduction efficiency of around 30% would be ideal to obtain 

approximately 1 integration per cell. Higher transduction efficiencies may lead to 

multiple integrations, whereas lower transduction efficiencies mean a far greater 

number of cells would need to be prepared to obtain enough transduced cells for the 

screening.  Standard transduction procedures were designed for production of virus 

from different vectors some with much higher titres and where only a small total 
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amount of lentivirus was required. Protocols required optimisation for the larger scale 

of the genome wide CRISPR screen. 

5.2.1 Optimisation of transduction process with GFP containing vector 

Initially the in-house protocol was used for transduction of T-ALL cell lines, as this 

had worked successfully for transduction with other vectors. To summarise the 

protocol, it required counting cells, pelleting and re-suspending them in fresh RPMI-

8402 10% FBS media at a density of 2x106/ml. A stock of 8mg/ml polybrene was 

then added to re-suspended cells in a 1 to 1000 dilution to give a final concentration 

of 8µg/ml polybrene. Cells were aliquoted into 48 well plates with 500µl added to 

each well. Lentivirus was thawed and added to the wells. The plate was then sealed 

with parafilm and spinfection performed. Spinfection involved centrifugation at 900g 

for 50minutes at 34°C. Parafilm seals were then removed from the plates and placed 

in standard incubation overnight. The following morning as much media as possible 

was removed from the plate whilst being careful not to disturb the cells, fresh media 

was then added and cells transferred to a 24 well plate, and culture continued as per 

standard cell culture.  

To determine if transduction efficacies could be increased by adjusting the conditions 

above. The cell seeding density, use of polybrene and seeding medium were 

considered. A lentiviral expression vector that contained the green fluorescent protein 

GFP, was used so that the transduction efficiency was easily quantifiable using flow 

cytometry. 

5.2.1.1 Seeding density 

Alternative protocols for transduction of lymphocytes included seeding cells at lower 

densities ranging from 0.5x106/ml to 1.0x106/ml. Transduction efficiency was 

compared at the following densities: 2x106/ml, 1x106/ml and 0.5x106/ml. Transduction 

efficiencies were comparable between 0.5x106/ml to 1.0x106/ml. A seeding density of 

1.0x106/ml would allow a greater number of cells to be transduced per well and 

reduce the total virus volumes needed compared to 0.5 x106/ml. 2x106/ml gave 

consistently less transduction than 1.0x106/ml, an example of which is shown in 

figure 5.2 .Moving forward a seeding density of 1.0x106/ml was selected.  

5.2.1.2 Polybrene  

Polybrene is a cationic polymer added to cells to help aid transduction efficiency by 

neutralising the repulsion of negatively charged virus particles and cell surface. 
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However, polybrene can be toxic to some cells, and may not aid the transduction 

efficiency. Omitting polybrene from transduction of HPB-ALL cells lowered the 

transduction efficiency (figure 5.1), so use of polybrene was retained in future 

transduction protocols.  

5.2.1.3 Media  

The initial transduction protocol requires re-suspension of cells in fresh media. This 

removes cells from media containing cytokines they have produced and can stress 

some cells. The media removed from cells may be depleted in nutrients but contains 

many cytokines. When pelleting cells, this media was removed from cells but then 

retained. Fresh media was then mixed in ratio of 1 to 1 with previous conditioned 

media before re-suspending cells in an appropriate volume prior to transduction. 

Some cell lines seemed to benefit from the use of conditioned medium, whereas the 

transduction efficiencies of HPB-ALL remained mostly unaffected by the change in 

media (figure 5.1).  

5.2.1.4 Summary of optimisation of transduction of HPB-ALL using GFP vector  

The biggest improvement in transduction efficiency of HPB-ALL came from reducing 

the seeding density from 2x106/ml to 1x106/ml. The transduction protocol was 

amended to reduce cell density to 1x106/ml. Polybrene addition improved HPB-ALL 

transduction efficiency so its inclusion in transduction would be useful to helping 

achieve optimum transduction levels.  

  



166 
 

 

 

Figure 5.1 Transduction efficiency of HPB-ALL with SLIEW plasmid. Cells were 
transduced by spinfection with SLIEW virus (HPB-ALL 5ul/well, with 8ug/ml 
polybrene (except where indicated). Cells were counted and re-suspended at either 1 
million per ml or 2 million per ml in media. For the conditioned media, cells were re-
suspended in a mixture of fresh and current media at a 1 to 1 ratio, prior to addition 
to virus and spinfection. Mock transduced cells were re-suspended in fresh media at 
1 million per ml with 8ug/ml polybrene and were also subject to spinfection but 
without virus addition.  Graphs show GFP signal (x axis) versus cell count (y axis).  
GFP positivity was gated on mock transduced cells.  

5.2.2 Optimisation of transduction with lentiv2 CRISPR vector  

Previous optimisations were performed with fluorophore containing vectors due to the 

ease of measuring transduction efficiency via flow cytometry, however the backbone 

of the vector could affect viral titre and transduction of cells. To optimise the 

transduction efficiency in this context without depleting the stock of the library, a 

plasmid was selected with the same backbone as the Brunello library (lentiv2), with a 

non-targeting control sgRNA, which I will refer to as lentiv2-NTC.  Since the lentiv2 

vector does not contain a fluorophore, transduction could not be assessed simply 

through flow cytometry. The puromycin resistance gene contained within the vector 

for positive selection of transduced cells was used instead to assess transduction by 

selection of cells and cell counting described in detail in section 5.5. 
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5.2.2.1 Transduction efficiency with lentiv2-NTC 

Virus was prepared from lentiv2-NTC, concentrated and stored at -80°C until use. 

HPB-ALL cells were counted, re-suspended at 1x106/ml, polybrene was added to a 

final concentration of 8µg/ml and plated into 24 or 48 well plates for transduction. 

Lentiv2-NTC virus was titrated across HPB-ALL cells and then spinfection was 

performed.  3-4 days after transduction, cells were placed under puromycin selection, 

including mock transduced cells. Transduction efficiency was determined by cell 

counts under puromycin selection as described in 5.3. Table 5.1 shows a summary of 

some of the results.  
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Virus 

volume  

(µl) 

Final 

concentration  

(relative to viral 

supernatant) 

Percentage transduction  

Replicate 1 Replicate 2 Average 

1 0.6 15 4 9.5 

5 3 8 12 10 

10 6 30 25 27.5 

25 15 22 8 15 

50 30 20 36 28 

Supernatant 1 3 1 2 

Table 5.1. Percentage transduction of HPB-ALL cells with lentiv2-NTC virus. 
Virus volume refers to the volume of virus added to each 500ul of plated cell 
suspension. Final concentration is the final concentration of virus in the well 
compared to re-suspended cells in virus supernatant with 1 being the same 
concentration as viral supernatant.  

Transduction efficiencies varied between batches of virus. Up to 10µl of virus in a 

500µl well increased transduction efficiency to an average of 27.5%, higher virus 

volumes did not improve transduction efficacy further. A transduction efficiency of 

around 30% would be ideal for genome wide screening as it would reduce the 

starting number of cells to transduce, make puromycin selection easier and avoid 

such high transduction that cells would risk multiple integrations. The only drawback 

of this method was the requirement of large amounts of concentrated lentivirus. 

Lentivirus is concentrated by ultracentrifugation in a process taking in excess of 

2hours with only 120mls of virus being able to fit in the ultracentrifuge at any one 

time. Additionally, ultracentrifugation can damage virons reducing the overall active 

viral titre.  

5.2.2.2 Concentration of lentivirus and lentiviral viral supernatant 

Whilst cells could be transduced with concentrated Brunello virus, the screen itself 

would require vast amounts of virus, which whilst feasible was not particularly 

practical. An alternative to using concentrated lentivirus is to use lentiviral 

supernatant. Whilst transduction efficiencies with non-concentrated virus may be 

substantially lower than that achieved with concentrated virus, if enough transduction 
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could be achieved so that cells can be positively selected it could help save both time 

and money, by removing the additional concentration step. Initially transduction 

efficiency with non-concentrated virus was low at only 2% on average. Steps were 

taken to improve viral titre to increase transduction with lentiviral supernatant.  

5.2.3 Optimisations of lentiviral production  

The morning following transfection, 293T cells were placed in DMEM media with 10% 

FBS. The media supernatant was then harvested between 72 and 96 hours post 

transfection to allow sufficient generation of lentivirus (which is released into the 

media). Although this can mean a higher concentration of lentivirus is achieved 

compared to multiple harvests , there is a smaller total volume of lentiviral 

supernatant and virons produced within the first 24-48 hours are at 37°C for an 

extended period of time. Lentivirus is not stable at 37°C and loss of activity can be 

seen by prolonged incubation at 37°C. The transfected 293T cells also require 

adequate nutrients to produce lentivirus which is provided by the addition of fresh 

media. Without media change 293T face the risk of nutrient deprivation.  

Several amendments were made with the view to improve overall viral titre. The FBS 

content in the harvest media was increased to 30%, as extra protein helps stabilise 

viral particles. To prevent loss of virus activity due to prolonged incubation at 37°C, 

lentivirus was harvested at 48 hours post transfection.  To increase total viral yield 

from a single transfection, a double harvest was introduced. After the 48-hour 

harvest, fresh media was added to the 293T and an additional harvest performed at 

72 hours post transfection. The two harvests were then checked for ability to 

transduce cells. When both harvests produced significant transduction, they were 

pooled to increase the total amount of virus available.  

5.2.4 Summary of transduction with lentiv2-NTC virus  

Using the optimised transduction conditions and the amendments made to the 

lentiviral harvesting transduction efficiencies in HPB-ALL varied from 10 to 40% with 

non-concentrated lentiv2-NTC virus. We proceeded to use the optimised protocol to 

generate Brunello viral supernatant without concentration and checked transduction 

efficiencies achieved with aliquots of each harvest and batch.  
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 Assessment of Transduction efficiency with a lentiv2 vector  

5.3.1 Methods of assessing transduction efficiency with lentiv2  

5.3.1.1 Cell counting  

Since the plasmid contains the gene for resistance to antibiotic puromycin, 

transduced cells can be selected for by exposing cells to puromycin, such that only 

cells that have been successfully transduced will survive.  By performing cell counts 

by trypan blue exclusion assay, it is possible to determine the percentage of surviving 

cells which is relational to the percentage transduction using the equation in figure 

5.2 

5.3.1.2 Cas9 expression with RT-PCR  

In addition to the cell counting method to estimate transduction efficiency, expression 

levels of a vector component can be measured. Since expression of Cas9 is 

essential for gene knockout with CRISPR, expression of Cas9 would help give 

confidence that cells have been transduced effectively. Positively transduced cells 

should express Cas9 whereas non transduced cells will not, we can therefore gauge 

the success of transduction by Cas9 expression relative to a housekeeping control 

such as GAPDH using quantitative PCR.  

Prior to the large-scale transduction of HPB-ALL with Brunello virus for screening, a 

small quantity of the Brunello virus was applied to HPB-ALL and these cells were 

examined for successful transduction by selection with puromycin, cell counting and 

by examining Cas9 expression by PCR. Cells exposed to Brunello virus and wild type 

cells were counted and pelleted. RNA was extracted, cDNA synthesised, and qRT-

 

Figure 5.2 Equation for calculation of transduction efficiency.Transduced and 
mock transduced cells were counted and placed under puromycin selection. Once 
there were no viable cells in the mock transduced well remaining, the transduced 
cells were counted using trypan blue exclusion assay. The equation was then 
used to calculate the percentage of cells that had survived puromycin selection, 
which acts as a surrogate measure of transduction efficiency.  
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PCR used to measure Cas9 expression relative to GAPDH by delta delta Ct method 

(as in 2.15.4). 

 

Figure 5.3.Cas9 expression in Brunello transduced HPB-ALLVirus harvested at 
48 hours (Harvest 1) and 72 hours (Harvest 2) post 293T transfection, was used to 
transduce HPB-ALL cells. Cas9 mRNA expression was determined by qRT-PCR. 
Cas9 expression was determined both pre puromycin selection and during puromycin 
selection of cells. GAPDH was used as a housekeeping gene and Cas9 expression 
was normalised toCas9 expression achieved with virus pooled from harvest 1 and 2.    

 

HPB-ALL cells showed increased expression of Cas9 compared to wild type cells 3 

days after transduction with Brunello virus (figure 5.3). HPB-ALL transduced with 

either harvests caused expression of Cas9 within the cell pool. Once cells were 

placed under puromycin selection, there was an increase in expression of Cas9 

which could be due to the loss of non-transduced cells from the cell pool. The Cas9 

expression results were concordant with cell counts showing transduction with both 

virus harvests and a greater transduction with the earlier harvest. Despite higher 

transduction efficiencies with earlier harvest of lentivirus, pooling both harvests still 

gave adequate transduction levels (cells still survive puromycin selection and 

express Cas9). Real-time PCR can be used as alternative or in addition to cell 

counting to estimate transduction efficiency with lentiv2 vectors such as Brunello 

library. For the screen itself a combination of the two methods was used to have 

greater assurance of successful transduction. Two lentivirus harvests were 

[performed and then pooled for screening.  
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5.3.1.3 Detection of Cas9 expression by flow cytometry  

An attempt was made to establish a flow cytometry-based assay to detect the 

expression of Cas9 in Brunello transduced cells. An antibody against Cas9 with 

Alexa Fluor 488 conjugate (Cell signalling technologies, 34963) was used at a range 

of dilutions from 1:50-1:200 , and although it was possible to see a shift increase in 

median fluorescence intensity between wild type and positively transduced cells, 

there was insufficient resolution of the populations to determine percentage 

transduction. This technique was not pursued further as it was outside the remit of 

the project, but there is potential to optimise a flow cytometry-based assay to 

measure transduction with this library. 

5.3.2 Assessment of DNA concentration, quality and integrity 

DNA was extracted as described in section 2.29. A Nanodrop 1000 

spectrophotometer (Thermo) was used to measure the quantity of DNA in each 

sample. 1µl of buffer AE was used to blank the nanodrop, 1µl of the sample was 

applied to the pedestal, DNA concentration was measured using the DNA-50 setting 

for dsDNA and recorded. 260/280 and 260/230 values were also recorded. 

Deviations from optimal ratios (~1.8 for 260/280 and 1.8-2.2 for 260/230) indicated an 

impure sample.  

Assessment of integrity of extracted DNA was made using agarose gel 

electrophoresis as described in section 2.16. An example of which is given in figure 

5.4. In figure 5.4 most of the extracted DNA was retained at the top of the gel with 

minimal smearing indicating the extracted DNA remained in high molecular weight 

fragments with limited degradation.  
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Figure 5.4 Image of genomic DNA samples run on a 2% Agarose gel. Lane 1 
contains a marker indicating 1KB and the following 4 lanes contain in vitro samples 
from the CRISPR screen extracted with a DNA Blood Maxi kit. 
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 Optimisation of PCR amplification of guide containing region  

Once genomic DNA has been extracted, a PCR step can be used in order to amplify 

the guide containing region, since this is a relatively small amount of DNA within the 

total cell genomic content. In order to ensure the sgRNAs from each harvested cell 

are amplified, all the harvested DNA had to be input into a PCR. This meant a large 

number of PCR reactions must be performed per sample in order to maintain library 

coverage The Broad Institute provide protocols for PCR amplification of sgRNAs, 

shRNAs and ORFs for Illumina sequencing. The protocol for sgRNA amplification 

from lentiv2 is shown in figure 5.5.   

The protocol allows for high input of genomic DNA which will decrease the overall 

number of PCR reactions that need to be performed. The primer sequences provided 

with the protocol also allow for the simultaneous addition of adaptor and barcoding in 

the single PCR step. To ensure the protocol works well for my samples, the 

suggested primer sequences were ordered, and several tests performed prior to 

amplification of screen samples.  

5.4.1 Method and Primer design  

For each sample a primer pair is used, a p5 forward primer contains a flow cell 

attachment for Illumina sequencing, Illumina sequencing primer region, stagger – this 

is random nucleotides added to create diversity during sequencing and lastly the 

vector binding site. The p7 reverse primer also contains a flow cell attachment. Each 

P7 primer contains a unique 8 nucleotide barcode sequences used to distinguish 

each sample when they are pooled, Illumina sequencing primer and vector binding 

region. This is summarised in figure 5.6.  

Figure 5.5 Broad insitute protcol for amplifcation of sgRNAs for Illumina 
sequencing  
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Figure 5.6 Primer design for amplification of guides. Both forward and reverse primers contain Illumina sequencing primer 
regions, flow cell attachments and regions complementary to the vector, the forward binding just upstream of the 20 nucleotide 
sgRNA and reverse binding on the complimentary side flanking the sgRNA region. 8 forward primers with varying amounts of 
stagger ([s]) were ordered and pooled together to add diversity to sequencing. The reverse primer has an 8-nucleotide barcode 
region, each sample was assigned its own barcoded reverse primer. Sequencing can be performed by a single ended 50 base pair 
long read as indicated above, an indexing read will allow correct assignment of the read to each sample.  
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This primer design was favourable as it allowed single step PCR, a short-read length 

and allowed for a vast number of unique barcodes to label all the samples uniquely 

so that they can be pooled for sequencing.  

5.4.2 Detection of amplicons by agarose gel electrophoresis  

To check for primer specificity, PCR products were run on an agarose gel, and any 

bands compared to a DNA ladder to determine if the size corresponded to that of the 

expected amplicon. DNA from HPB-ALL containing a lentiv2 vector was used as the 

genomic input to test PCR reactions.  One reaction was performed according to the 

Broad protocol and a further 2 were performed using an alternative taq polymerase 

and associated buffers - KOD. For the KOD enzyme, the PCR was performed at two 

different annealing temperatures; the recommended based on primers and a lower 

one, closer to the Broad protocol. Afterwards PCR samples were taken and 

equivalent volumes loaded onto an agarose gel (figure 5.7). The expected amplicon 

size was approximately 290 base pairs.   
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Figure 5.7 Amplification of guide containing regions. Genomic DNA containing 
the Brunello library was amplified by PCR using Ex Taq® polymerase or KOD 
enzyme (for two different annealing temperatures Ta), PCR products were run out on 
a 1% Agarose gel along with a 100bp Sigma ladder. There was a band present at 
around 375bp in the Ex Taq polymerase, a very faint band in the KOD enzyme 
reaction with 55°C Ta and no bands present in the final KOD sample.   
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Given the presence of an amplicon of the correct size using the Broad protocol and 

Ex taq® polymerase, and lack of clear amplicon in alternatives when used as per 

manufacturers’ protocol, the decision was made to continue with the Broad protocol 

and Ex taq polymerase. Since it seemed there was a potential non-specific 

secondary band appearing, several controls were tested to rule out non-specific 

amplification from genomic DNA. 

  

Figure 5.8 PCR controls. From left to right: genomic DNA input, DNA ladder, non 
template control (NTC), HPB-ALL transdcued with a lentiv2 vector, wild type HPB-
ALL, human genomic DNA, mouse genomic DNA and Brunello plasmid DNA.  
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To check for non-specific amplification, PCR reactions were performed using wild 

type HPB-ALL genomic DNA and mouse genomic DNA; since neither contain the 

lentiv2 vector any amplicons present could be attributed to non-specific amplification. 

HPB-ALL cells transduced with lentiv2 vector and Brunello plasmid DNA were 

amplified using the same PCVR mix and act as positive controls for the PCR. 700ng 

were used in each reaction except for plasmid DNA where 5ng was used (figure 5.8).  

There was clear amplification in both positive controls, and no amplification in any of 

the negative controls, ruling out non-specific amplification from genomic DNA.  

5.4.3 Selection of PCR conditions  

Once confirmed that PCR was generating amplicons of the predicted size in samples 

and the absence of any amplification in controls, the PCR conditions were adjusted 

to investigate whether PCR efficiency or specificity could be improved. Increasing 

annealing temperatures could help increase primer specificity, and it was considered 

that this adjustment might reduce the formation of the secondary band. Several 

different cycles of the same PCR reactions were also performed to ensure the PCR 

had not become saturated. Lastly, each of the barcoded reverse primers were 

checked individually to ensure each primers was giving the same level of 

amplification and not producing any unspecific bands.  

5.4.3.1 Annealing temperature  

Increasing annealing temperatures can increase the specificity of the primer binding. 

Three equal PCR reactions were prepared and run on the same protocol as before 

altering only the annealing temperature. After the PCR had finished, 4µl of PCR 

product was mixed with 1µl of loading dye and loaded onto a 1% agarose gel. The 

gel was run until the 100bp ladder was well separated and the gel was imaged, 

shown in figure 5.9.  Increasing the annealing temperature decreased the amount of 

PCR product, whilst the ratio of amplicon to additional 400bp product was relatively 

unchanged. Moving forward the original annealing temperature of 53°C was 

maintained.  
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Figure 5.9 PCR reactions with increasing annealing temperatures.  Identical 
PCR mixes were made and ran on the same protocol for PCR with the exception of 
the annealing temperature. In the far left was the PCR product from using the initial 
annealing temperature of 53°C. In the second lane the annealing temperature was 
increased by 2°C to 55° and lastly a further 2°C increase to 57°C. Marked in blue are 
the size of the 100bp ladder markers in the last lane.  The expected amplicon size 
was 285 base pairs. There was also an additional band present at ~400 bp.  

5.4.3.2 Cycles  

A PCR master mix was prepared, and genomic DNA added (either 5µg or 10µg), the 

PCR was then run for differing cycle numbers 20, 23, 25 or 28 (figure 5.10). The least 

amount of amplicon was produced using 5µg DNA and 20 cycles of PCR, the highest 

was with 10µg DNA and 28 cycles. There was amplification with both 5µg and 10µg 

genomic input. There were more intense bands observed with higher genomic input 

which is most easily seen with the lower cycles. With increasing cycles there was 

increasing amount of amplicon, which was expected as long as the PCR was not 

saturated. To ensure high concentrations of amplicon the higher cycle number of 28 

was selected.  
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5.4.3.3 Barcode testing  

Each barcoded PCR primer was tested individually in a PCR using conditions 

specified in 5.8. P7 primers were tested in batches of 8 to 12. A master mix was 

prepared of PCR components excluding p7, this was distributed into PCR tubes. 

Genomic DNA was added, and all PCR tubes placed in the thermocycler. PCR 

products were then run side by side on an agarose gel (figure 5.12). The gel was 

checked for relative amplicon generation and for presence of additional bands.  

Figure 5.10 PCR products with increasing cycles of PCR. A PCR master mix 
was prepared from either 5 or 10µg genomic DNA. Reactions were placed in a 
thermocycler for 20, 23, 25 or 28 cycles of PCR. Products are visualised on a 1% 
agarose gel.  
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Figure 5.11 Examples of issues with specific P7 barcoded primers. PCR was 
performed with the same PCR mix except for the P7 primer which was unique to 
each PCR reaction. The agarose gel image shows amplicons from 5 different p7 
primers next to a 100bp ladder (far left).  

Examples of issues with specific P7 barcoded primers include presence of additional 

bands as seen in figure 5.11. Whilst 3 primers produced very similar amplicons, 2 did 

not. The middle PCR appears to have extra smearing underneath the amplicon and 

potentially a small additional band. The reaction on the right shows an example of a 

poor barcode primer; here there were two bands of equal size - one the size of the 

amplicon and one below. This could be due to unspecific amplification or primer 

degradation. Were poor amplification occurred or additional bands were present the 

p7 primers were omitted from use on screening samples. This process was carried 

out on all 96 primers, the results of p7 primers G1 through G12 are shown in figure 

5.12.   

Figure 5.12 PCR amplifcation using P7 primer set G. The same PCR reaction 
was performed for each of the 12 P7 primers of set G . PCR prodcuts from each 
indivdual P7 primer are visualised ona 1% agarose gel.  
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 Final PCR conditions for amplification of guide containing region  

Reconstitution of primers and preparation of PCR reaction mixes was performed 

inside a PCR hood. Ultraviolet light was used to prepare the hood and equipment. 

Surfaces and tubes were wiped down with DNase Away prior to use. A reaction mix 

was prepared according to table 5.2 using Ex taq® polymerase, dNTPs and buffer 

from Takara.  

Reagent  Volume per reaction 

10X reaction buffer  10µl 

dNTP 2.5mM 8µl 

P5 primer mix 100µM  0.5µl 

P7 primer 5µM 10µl 

Ex Taq 5U/µl 1.5µl 

Table 5.2.PCR reaction mix components  

Enough reactions were prepared to allow amplification of 400µg of genomic DNA (or 

the total available genomic DNA if less than 400µg). Reaction mixes were aliquoted 

into PCR tube strips EasyStrip™ (Thermofischer) in a cool block. Up to 10µg (in up to 

a 50µl volume) of genomic DNA was added to each PCR tube. PCR grade water was 

then added to a total volume of 100µl. PCR tubes were placed in a thermocycler set 

with conditions as in figure 5.13. 

 

 

 

PCR products were removed from the PCR machine. To check amplification 

efficiency, 3-4 randomly selected samples were taken and mixed with loading dye 

before running on an agarose gel, to check for presence of an amplicon (figure 5.14).    

Figure 5.13 Thermocycler settings for PCR amplification of guides 
for Brunello library screen 
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Figure 5.14 Amplification of library samples prior to sequencing. Genomic DNA 
was distributed over multiple PCR tubes so that in total 400ug of genomic DNA or all 
the total genomic DNA available whichever was smaller. Prior to pooling PCR 
products, PCR products for several tubes were checked on an agarose gel for 
presence of amplicon. (A)An example of the amplification from an in vitro sample. (B) 
Amplification of two different in vivo samples. A 100 bp ladder (Sigma, P1473) is 
shown in the first lane of each gel. No template controls (NTC) and a genomic DNA 
control (gDNA) were also run alongside samples  
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Once successful amplification was confirmed, PCR products from each sample were 

pooled and stored at -20°C until PCR clean-up. If there were any issues with the 

PCR, amplification was repeated where material was available, or in the case of 4 

samples 3 from pooled mice and 1 from a single compartment (22T , 29T, 26T and 

15D)  genomic DNA was removed from failed PCR reactions by use of QIAquick 

PCR Purification kit, before being diluted and the PCR repeated.  

 Optimisation of PCR clean up  

5.6.1 Purification method introduction 

Bead-based purification was selected, since this is much more efficient with large 

sample numbers and far less susceptible to contamination during the clean-up 

process compared to gel extraction. Agencourt AMPure XP beads (Beckman coulter) 

utilise a solid phase reversible immobilisation technology to purify amplicons. The 

beads bind fragments greater than 100bp and above and remove the majority of 

primer dimers.  

5.6.2 Size selection using AMPure beads 

AMPure beads contain PEG and NaCl; by adjusting the ratio of beads to PCR 

product, the concentration of PEG and NaCl can be altered. With lower 

concentrations of PEG and NaCl, the larger fragments will bind, whereas smaller 

fragments bind with increased bead to PCR product ratios. By adjusting the ratio of 

beads to PCR product, different sized products can be selected. Initially a 1 to 1 ratio 

of beads to PCR product was tested.  
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Figure 5.15 PCR clean up with AMPure beads. A   1:1 PCR product to bead ratio 
was used. The cleaned and non cleaned PCR products visualised on a 1% gel  

A 1 to 1 ratio did not give 100% recovery but did successfully remove most adapter 

dimers (figure 5.15). In order to increase the recovery of amplicon, the bead to PCR 

product ratio was increased. A PCR reaction was divided into 3 tubes; one was 

cleaned with AMPure beads at a 1 to 1 ratio of PCR product to beads, another at a 1 

to 1.6 and the last a 1 to 1.8 (figure 5.16). 
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Figure 5.16 PCR products after clean up with differing ratios of AMPure beads.  
Single step PCR clean up with increasing bead to PCR product ratios from a 1:1 then 
a 1:1.6 and lastly a 1:1.8.  Post clean-up products were run on a 1% agarose gel for 
visualisation.    
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As anticipated, the highest ratio of beads provided the largest recovery but 

inefficiently removed primer dimers. Recovery of amplicon was not greatly improved 

by increasing the bead ratio from 1 to 1.6. Genomic DNA was still readily detectable 

in cleaned PCR samples by the smeared pattern in the region of high molecular 

weight DNA.  

Multiple step clean-ups could also be used to remove excess high molecular weight 

DNA. A 2 step clean up can be used to first reduce the presence of genomic DNA, 

prior to binding an elution of amplicon. PCR product is mixed with a lower ratio of 

beads first to remove larger fragments and then the supernatant is removed and 

mixed with further beads to purify the amplicons. This process is described in figure 

5.17. Since some samples contained high amounts of genomic DNA, this process 

should help produce more pure amplicons. The same PCR product was subjected to 

a single step clean at a 1:1 ratio, a single step PCR clean up at a 1:1.6 ratio, or a 2 

step PCR of 1:0.65 followed by 1:1 and a 2 step PCR of ratio 1:0.5 followed by 1:1 

(figure 5.18). 
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Figure 5.17 Dual step PCR clean up with AMPure beads. A lower ratio of AMPure 
beads were mixed with PCR product. The beads bind the high molecular weight 
DNA. A magnet is used to draw the beads (and bound DNA) to the side. The 
supernatant contusing PCR amplicons is transferred to a new tube. A greater ratio of 
AMPure beads are then mixed with the PCR products. The amplicons bind to the 
beads. A magnet is used to draw beads (and amplicons) to one side. The 
supernatant containing primers is removed. The beads are washed with 70% 
ethanol. The tube is removed from the magnet and amplicons eluted into water. A 
magnet is again used to draw beads to the side. The supernatant containing eluted 
amplicons is moved to a clean tube for storage.  
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Figure 5.18 PCR products after different methods of AMPure bead based clean 
up. Single step PCR clean with a 1:1 and 1:1.6 ratio of PCR product to beads, and a 
2-step clean up at ratios of 1:0.6 and 1:1 and discarded first step from 2-step clean 
up (a), compared to original PCR product, a 2 step clean up at 1:0.5 and then 1:1 
and the first discarded step from this (b)  

The single step PCRs were consistent with that seen in figure 5. 16.The 2-step clean 

up reduced the amount of high molecular weight genomic DNA. The 2-step clean up 

with a first ratio of 0.65:1 drastically reduced the yield as shown by a smaller amount 

amplicon and is confirmed by the presence of amplicon in the fraction to be 

discarded. Conversely the 2-step PCR starting with a 0.5:1 ratio reduced the yield of 

amplicon minimally and still removed genomic DNA. A 2 step PCR clean up using a 

0.5:1 ratio followed by a 1:1 ratio was selected.  
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5.6.3 Post clean-up assessment of purity and concertation of samples 

After PCR product had been purified, it was important to check primer dimer had 

been successfully removed and there were not large amounts of HMW DNA present, 

as these could adversely affect the sequencing process. In the first instance agarose 

gel electrophoresis was used, once confident with the results on the gel a 

bioanalyzer machine was used.   

5.6.3.1 Agarose gel electrophoresis  

As a first port of call, each sample was checked using agarose gel electrophoresis, 

as previously described. In figure 5.19 cleaned PCR products of 10 different samples 

are run on a 1% agarose gel. Amplicons are present in all samples, although the 

quantity of amplicon does vary per sample. There are some additional bands present 

above the amplicon for some samples and some high molecular weight DNA. These 

samples were further analysed by a more sensitive method using a Bioanalyzer.   
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Figure 5.19 Example of 10 samples post clean up. PCR products from every 
sample underwent a 2-step PCR clean up. 4ul of the clean PCR product was 
mixed with 1µl of 5x loading buffer and run on a 1% Agarose gel with a 100bp 
Sigma ladder. Images of gels were checked for presence of amplicon, absence 
of primer dimer and low amounts of HMW products.  
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5.6.3.2 Bioanalyzer method  

A DNA 1000 kit and Bioanalyzer (Aiglent) were used to assess the purity of PCR 

samples. A gel-dye mix is prepared by adding 25µl of dye concentrate to gel matrix, 

vortexing and filtering using a spin filter step (2240g for 15minutes). A chip is placed 

on a chip priming station. 9.0µl of gel-dye matrix is added to the marked well 

(indicated in figure 5.19). The gel-matrix is then put under pressure using the priming 

station. Further gel-dye matrix is added to other marked wells. 5µl of DNA marker is 

added to each sample well and the ladder well. 1µl of ladder is added to the ladder 

well. 1µl of sample is added to each sample well, with up to 12 samples being run on 

a single chip. The chip is placed in a vortex for 60seconds at 2400rpm. After cleaning 

the electrodes of the Bioanalyzer, the chip is inserted into the Bioanalyzer, the 

correct assay selected, and the run initiated. For each sample run a trace is 

produced, an example of which is given in figure 5.20.  

 

 

Figure 5.20 Bioanalyzer chip layout. Marked are the wells where gel matrix and DNA 
ladder are added. The remaining wells contain sample and DNA marker.  
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Figure 5.21 Bioanazlyer trace of pooled samples. Marked are where the upper 
and lower bioanalyzer marker peaks are located, along with the amplicon peak and 
additional peak which is believed to be PCR bubble 

There is a clear peak at the predicted amplicon size, however the secondary band 

that is sometimes visible in some samples by agarose gel electrophoresis was far 

more prominent when viewed by Bioanalyzer trace (figure 5.21). Since this peak is 

not observed in any control run on agarose gel or Bioanalyzer, I suspect this to be 

associated with amplification of the correct region. Given the slower movement 

through the gel giving a predicted size much larger than the amplicon, is consistent 

with this fragment being PCR bubble. A PCR bubble is generated when two non-

complementary fragments anneal at the ends where there are complementary 

adapters. Due to differences in the sequences in the middle, these do not anneal and 

sections bugle out, creating a bubble effect of partly single stranded and partly 

double stranded DNA. Since the Illumina sequencing process separates annealed 

fragments into single strands, this should not adversely affect the sequencing 

process.  
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1.1.1.1 Sanger sequencing of amplicons  

To confirm the amplicon produced at ~290 base pairs indeed contained guide 

containing region from lentiv2 vector amplification, Sanger sequencing of the 

amplicon was performed. Additionally, sequencing was performed on the additional 

band ~400bp that is sometimes visible to ascertain if this is lentiv2 amplicon retarded 

by being part of a PCR bubble or some form of unspecific amplification. A PCR 

reaction to amplify the guide containing region was performed as previously 

described. The PCR products were run on a 2% gel. The amplicon containing band 

was cut from the gel and the region of around 400 base pairs where a faint additional 

band was present was also excised. DNA was extracted from both using the 

Monarch gel purification kit. Both samples were sent for Sanger sequencing using a 

primer targeting the same sequence as the P7 primer. 
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Figure 5.22 Sanger sequencing of PCR generated amplicons Amplicons were extracted from a gel at approximately 290 base 
pairs and 400base pairs. Electropherogram of two PCR products excised at 190bp and 400bp from an agarose gel, after PCR 
amplification of Brunello library containing HPB-ALL cells. Sanger sequencing was performed using a primer against the reverse 
priming site. The schematic above indicates the regions expected in an amplicon with the segment in green representing what is 
visible in the elctropherogram.  
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Sanger sequencing (figure 5.22) confirms both bands to contain sequences 

consistent with amplification of lentiv2 vector and suggest that the additional 400bp 

peak is indeed PCR bubble not unspecific amplification.  

 Final PCR clean up method 

PCR reactions were pooled and mixed. 300µl of PCR product was taken for each 

sample (note for individually barcoded bone marrow compartments this was reduced 

but the ratios were maintained). The 300µl of PCR product was mixed with 150µl of 

AMPure beads. After a 5-minute incubation the tube was transferred to a magnet. 

After 5 minutes the solution was transferred to a fresh tube leaving behind the beads 

with HMW DNA attached. 300µl of beads were then added to the transferred PCR 

product. After 5 minutes incubation, the tube was placed in a magnet for 5 minutes. 

The solution containing primer dimers was discarded, the beads were then washed 

twice with 70% ethanol. The tube was removed from the magnet. 100µl of water was 

added to the beads to elute the amplicons. The tube was then placed back on the 

magnet to bind the beads. The eluted amplicons were then transferred to a fresh 

tube leaving the beads behind. For samples with low amounts of PCR product, 

volumes were lowered accordingly. Where amplicon yield was low, elution volume 

was reduced.  

5.7.1.1 Assessment of concentration using Qubit® 3.0 fluorometer  

A Qubit® dsDNA high sensitivity kit was used with a Qubit® 3.0 fluorometer. The 

assay is highly selective for double stranded DNA. Assay reagent is prepared by 

diluting Qubit® HS reagent 1 in 200 in Qubit® working solution. 199µl of assay 

reagent is mixed with 1µl of cleaned PCR product in a thin walled clear 0.5ml PCR 

tube. After brief vortex, samples were incubated for 2minutes. The fluorometer was 

calibrated using standards prepared at the same time as samples (10µl of each 

standard in 190µl of assay reagent) and then each sample is measured in turn. I 

recorded the original concentrations of each PCR product. If samples were outside 

the linear range, they were diluted, and the assay repeated.  

 Performing the screen with optimised methods  

The screen itself can be broadly broken into two categories, the running of the screen 

including everything from introduction of the library through to harvest of cells, and 

then the processing of samples. The later stage representing DNA extraction, PCR 

amplification, PCR clean-up and sequencing.  



198 
 

5.8.1 Transduction, selection, culture and harvest of cells 

This section focuses on the stages between transduction up until harvest of samples. 

Figure 5.23 summarises from transduction of HPB-ALL cells through to separation of 

cells into screening arms. It describes the steps until the setup of 4 arms of screening 

at Day 0 from transduction of HPB-ALL with the Brunello library 16 days prior.  
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 Figure 5.23 Timeline overview from transduction of cells up until separation into 4 different arms.   At day 0. 16 days prior 
to the setup of screening arms, HPB-ALL cells were transduced with Brunello virus, cells were left to recover from transduction 
before being placed under puromycin selection for 7 days. Cells were then given a period of recovery and expansion to get 
adequate numbers of healthy cells to commence screening. 
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5.8.1.1 Transduction 

Brunello virus containing tubes from both harvests (48h and 72h) were removed from 

-80°C storage, thawed and mixed so that the virus would be the same in each tube. 

Flasks of HPB-ALL cells were pooled and counted, 8 tubes each containing 24 

million cells were centrifuged at 350g for 5 minutes to pellet the cells. Media was 

removed from the cells and each cell pellet was re-suspended in 24 ml of Brunello 

virus, so that the cells were at a density of 1x106/ml. 24µl of 8mg/ml polybrene was 

added to each tube to a final concentration of 8µg/ml. Cells suspended in lentivirus 

were then distributed into 24 well plates (1ml per well). Plates were sealed with 

parafilm before placing them in a centrifuge for spinfection. The spinfection 

conditions were 900g for 50minutes at 34°C. After spinfection, parafilm was removed 

from the plates before placing them into the incubator overnight. The following 

morning 700µl of virus and polybrene containing media was removed from each well 

being careful not to disturb the cells. Cells were transferred to a 12 well plate and 

1.5ml of fresh RPMI-10%FBS was added. 

5.8.1.2 Puromycin selection 

HPB-ALL cells transduced with Brunello library were selected with 1ug/ml of 

puromycin. During puromycin selection transduction efficiency was confirmed by cell 

counting and visual inspection under the microscope (figure 5.6) and further qualified 

by mRNA expression of Cas9.  
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Figure 5.24 Image of puromycin treated HPB-ALL cells.HPB-ALL transduced 
Brunello library (right) and mock transduced (left) treated with puromycin for 6 days. 
Imaged with a 10x objective lens. 

The transduced HPB-ALL possess resistance to puromycin. Examining the cells in 

the puromycin containing media under the microscope, it was possible to see a 

difference in cell viability and number between HPB-ALL cells with Brunello virus 

compared to mock transduced cells (figure 5.24). There were far more clumps of 

evenly shaped rounded cells in the right-hand side picture showing Brunello 

transduced, compared to a few cells of varying shapes and sizes in the left-hand side 

mock transduced cells. This difference was consistent with trypan blue counting, 

which gave a transduction efficiency of 53 %.  

5.8.1.3 Harvest of baseline samples  

Two baseline samples were harvested; the first during puromycin selection on day -7, 

so that the representation of the library going into the screen was known and a 

second prior to the separation of transduced cells into the arms for screening on day 

0, so that we could account for any in vitro changes occurring prior to in vivo 

screening taking place. Cells were mixed and counted. 35 million cells were washed 

twice with PBS and frozen as a cell pellet until genomic DNA extraction.  

5.8.1.4 In vitro screening  

Cell counts were performed every 2-3 days, cells were maintained at a density of 

0.5x106cells/ml to 1.5 x106/ml, with media replenished as necessary.  Drug treated 

cells were counted and seeded at a density of 1x106/ml. A combination of 

dexamethasone, vincristine, daunorubicin and asparaginase was applied to drug 

treated arm for 72 hours at a time in the concentrations as follows: dex 50nM, dauno 
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33nM, vinc 1nM , asp 0.36mU/ml (as determined by work outlined in Chapter 3). After 

72 hours cells were pelleted, washed with PBS and re-suspended in fresh media to 

remove the drugs. Cells were grown without drugs for 7-9 days to allow recovery 

before addition of the drug combination at the same concentrations as listed 

previously. This drug pulsing was performed throughout. Proliferation of the cells 

during in vitro screening is shown against time in figure 5.25  
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Figure 5.25 Proliferation of HPB-ALL during screening. Proliferation curves for in 
vitro screening control conditions (a) and VXLD treated conditions (b) Orange bars 
indicate when cells were exposed to VXLD. Blue arrows indicate sampling points for 
baseline samples (baseline 1 -during selection of transduced cells and 2 at the start 
of screening) and the two points at which in vitro samples were harvested (early and 
late) 
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Two time points were taken for each in vitro arm; an early time point at day 28 and a 

later time point at day 52 equivalent to 9 and 18 cell doublings in the control arm 

respectively. At each time point cells were pooled and counted. 35 million viable cells 

were washed twice in PBS and pelleted. Cell pellets were stored at -20°C until 

genomic DNA extraction.  

5.8.1.5 In vivo screening  

HPB-ALL-Brunello cells were counted, washed and re-suspended in media prior to 

injection into mice. 2 million cells were injected in a 30µl volume per mouse via intra-

femoral route (refer to 2.19 for detailed method). In total 30 mice were injected. Mice 

ears were notched to identify each mouse.  

Mice were examined and weighed at least 5 times weekly, to ensure weight loss did 

not exceed 15% of initial starting weight for more than 3 days or reach 20%, which 

would require humane killing. Mice were monitored for signs of leukaemic 

engraftment previously observed with this cell line including paleness of ears, hind 

limb weakness, change in gait, piloerection and growth of leg tumours.  Mice 

displaying clinical endpoints as defined by the project licence protocol were 

humanely killed by schedule 1 methods.  

Cages of mice were randomised to receive either VXLD treatment or vehicle control 

injections. Cages were not mixed for VXLD and control since drugs can be present 

within excrement that may be consumed by other mice. Mice received a total of 3 

blocks of 5 days treatment. The first block was initiated 3 days post injection. The 

second block followed 2 days after the first, and the final block was given 9 days after 

the second. This treatment regimen was established previously in chapter 4. 

As established in chapter 4, HPB-ALL cells predominantly engraft within the bone 

marrow of mice. It has previously been reported that ALL cells can engraft clonally 

within different bone marrow compartments (Belderbos et al.., 2017) .Therefore in 10 

mice (5 treated , 5 non treated) individual bone marrow compartments (shown in 

figure 5.26) were harvested and stored separately so they could be barcoded 

differently during PCR and analysed separately to see if any differences in target 

enrichment between compartments could be identified. Table 5.3 shows the 

summary of the in vivo harvested samples. 
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Cage mouse Vxld y/n Injected 

leg 

Days from IF 

injection 

ID Sample 

185 LN N R 28 1 T 

185 RN N R 28 2 T 

185 BN N R 27 3 A-E, spleen 

185 NN N R 28 4 T 

2606 LN N L 27 5 A-E 

2606 RN N R 27 6 T 

2606 BN N R 27 7 A-E 

2606 NN N R 27 8 T, tumour 

4486 LN N R 28 9 T 

4486 RN N R 27 10 A-E, tumour 

4486 NN N L 28 11 T 

1469 LN N L 28 12 T 

1469 RN N L 28 13 T 

1469 NN N L 28 14 T 

13396 LN N L 27 15 A-E 

13478 LN Y R 42 16 T 

13478 RN Y R 39 17 A-E, spleen 

13478 NN y R 45 18 A-E 

3033 LN Y R 45 19 A-E, spleen 

3033 RN Y R 42 20 T 

3033 BN Y R 43 21 A-E, spleen 

3033 NN Y R 45 22 T 

3269 LN Y R 41 23 T 

3269 RN Y L 39 24 T 

3269 BN Y R 41 25 A-E, spleen 

3269 NN Y R 45 26 T 

3269 2LN Y R 39 27 T 

2250 LN Y L 45 28 T  

2250 RN Y L 45 29 T  

2250 NN Y R 45 30 T  

Table 5.3. Mouse harvest details. Harvest details from all mice used for in vivo 
screening, indicating the cage code and mouse ear notches (left notch LN, right 
notch RN, both notch-BN and no notches NN)) which leg was injected left(l) or right 
(r) the number of days between injection of cells and harvest, and what samples 
were collected (T – total bone marrow , A-E individual compartments, spleen and 
tumours where present)  .  
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Figure 5.26 Bone marrow harvest locations for mice from Brunello screening. 
Bone marrow was harvested from 5 different locations, the injected hind limb (A), the 
contralateral hind limb (B) , the forelimbs and sternum (C), the spine (D) and the 
calvaria (E). Bone marrow samples from each of these 5 compartments were pooled 
for 20 mice and stored separately for the remaining 10.  

5.8.2 Genomic DNA extraction, PCR amplification, PCR-clean up and 

sequencing of screen samples 

After the bulk of the screening had finished, harvested samples required processing 

in order to prepare for sequencing. The first stage of which requires extraction of 

genomic DNA from the samples. The in vitro samples provided an average of 

approximately 450ng of DNA. The in vivo samples were far more variable (table 5.3), 

this could be attributed to differences in engraftment in the mice and also the differing 

quality and purity of harvested samples. DNA extraction provide adequate clean DNA 

in all except 5 mouse samples 15D, 4T, 26T and 27T. Some samples had lower than 

expected DNA quantity (based on harvested cell numbers) and these are highlighted 

in yellow in the table 5.4.  

 

A injected hind limb 

B contralateral hind limb  

C forelimbs and sternum 

D spine 

E calvaria 
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ID elute 
volume 

concentration 
(ng/ul) 

total  DNA 
(ug) 

1.7 < 
260/280 < 
2.0 

1T 1800 573.9 1033.02 y 

2T 1800 529.3 952.74 y 

3A 350 276.4 96.74 y 

3B 350 404.5 141.575 y 

3C 260 138.9 36.114 y 

3D 180 74.4 13.392 y 

3E 700 368.8 258.16 y 

4T 2200 69.8 153.56 n 

5A 350 328.2 114.87 y 

5B 300 189.2 56.76 y 

5C 250 184.8 46.2 y 

5D 190 178.2 33.858 y 

5E 750 348.5 261.375 y 

6T 1800 155.3 279.54 y 

7A 350 192.8 67.48 y 

7B 350 264.3 92.505 y 

7C 260 57.3 14.898 y 

7D 180 841.1 151.398 y 

7E 700 177 123.9 y 

8T 1800 544.1 979.38 y 

9T 1800 108.3 194.94 y 

10A 350 123.5 43.225 y 

10B 300 251.4 75.42 y 

10C 270 163.7 44.199 y 

10D 190 159.7 30.343 y 

10E 700 393.5 275.45 y 

11T 1800 167.5 301.5 Y 

12T 1800 337.3 607.14 Y 

13T 2200 98.5 216.7 y 

14T 1800 92.9 167.22 y 

15A 700 351.9 246.33 y 

15B 700 239 167.3 y 

15C 700 216 151.2 y 

15D 350 17.9 6.265 y 

15E 700 187.8 131.46 y 

16T 2400 295.8 709.92 y 

17A 350 336.1 117.635 y 
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17B 350 332.5 116.375 y 

17C 270 410.6 110.862 y 

17D 180 109.7 19.746 y 

17E 700 737.1 515.97 y 

18A 700 295.9 207.13 y 

18B 350 331.1 115.885 y 

18C 270 216.7 58.509 y 

18D 190 56.7 10.773 n 

18E 1400 455.2 637.28 y 

19A 750 86.7 65.025 y 

19B 750 253.8 190.35 y 

19C 270 205.9 55.593 y 

19D 270 101.2 27.324 y 

19E 350 321.7 112.595 y 

20T 1800 289.8 521.64 y 

21A 190 333.1 63.289 y 

21B 190 271.5 51.585 y 

21C 190 104.5 19.855 y 

21D 190 114.9 21.831 y 

21E 190 238.2 45.258 y 

22T 1800 168.2 302.76 y 

23T 2200 60.1 132.22 y 

24T 1800 152.7 274.86 y 

25A 350 220 77 y 

25B 370 171.2 63.344 y 

25C 370 79.3 29.341 y 

25D 190 51.2 9.728 y 

25E 700 318 222.6 y 

26T 2200 81.4 179.08 n 

27T 800 17.6 14.08 n 

28T 1800 282.1 507.78 y 

29T 1800 213.2 383.76 y 

30T 1800 315.9 568.62 y  

Table 5.4. Summary of mouse samples extracted from in vivo CRISPR 
screening mice. Mice are labelled 1 through 30 with 1 through 15 receiving no 
chemotherapy and 16-30 received VXLD. T= total pooled bone marrow was 
collected. A-E indicate specific bone marrow compartments. Elute volume, 
concentration (as determined by nanodrop) and total DNA quantity is indicated. IF 
260/280 values did not lie between 1.7 and 2.0 this is also indicated y=yes lies within 
range n= not within range. Very low concentrations and poor DNA quality are 
indicated by red shading, lower than expected DNA quantities are indicated by 
yellow.  
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Samples were amplified by single step PCR using the protocol described earlier. For 

total pooled bone marrow, a total of 400µg of genomic DNA or all available DNA 

(whichever higher) were input into PCR reactions, with a maximum of 10µg per 

reaction. For compartments A, B, C, D and E: 70, 70, 60, 30 and 170µg were used 

respectively (giving a total of 400µg), different quantities per compartment reflect 

relative compartment size and cell numbers obtained (Shaposhnikov, 1979).  

5.8.2.1 Mixing of samples  

Individually barcoded samples were diluted to a concentration of 50nM based on 

concentration obtained from Qubit® data. In the first instance, amplicons from tissue 

culture samples and mice where all bone marrow was pooled were sequenced as 

listed in table 5.5 below. Two mouse samples failed to amplify, and these were 

omitted. In total 2 baseline samples, 4 in vitro samples (2 treated, 2 untreated), 9 

untreated mouse samples and 9 treated mouse samples were sent for sequencing 

alongside two additional samples for another project. All samples were combined in 

even ratios. Samples were sent to the Genomics core facility at Newcastle University. 

Note that individual bone marrow compartment samples were sent in a separate 

batch and are not discussed in the results chapters for this thesis. 
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Table 5.5 Sequencing pool summary. Each sample was added to the pool in even 
quantities. Each sample had genomic DNA extracted, PCR was used to amplify 
guide containing regions for sequencing, and each sample was given a unique 
barcode sequence by use of barcoded primers. PCR products were then cleaned, 
and the DNA concentration measured. Even quantities of each sample were then 
mixed prior to sending for sequencing. 

  

Sample Details Barcoded 

primer 

code 

barcode 

associated with 

primer  

Baseline 1 first baseline A1 TTGAACCG 

Baseline 2 second baseline A2 AATCCAGC 

control1  untreated timepoint 1 A3 CCGAGTTA 

vxld1 VXLD timepoint 1 A4 AACTGTTA 

control2  untreated timepoint 2 A6 TTCTCAGC 

vxld2 VXLD timepoint 2 A7 CCTCCAAT 

1T Mouse sample A9 GGTCACCG 

2T Mouse sample B1 AATCCAAT 

6T Mouse sample B2 CCGAGTAT 

8T Mouse sample B3 TTCTCATA 

11T Mouse sample B4 AACTGTGC 

12T Mouse sample B5 AATCCACG 

9T Mouse sample A10 CCTCTGTA 

13T Mouse sample F7 GGCTTGGC 

14T Mouse sample F8 GGAGGTGC 

16T VXLD mouse sample B6 TTCTACTA 

20T VXLD mouse sample B7 AATCGTGC 

22T VXLD mouse sample B8 GGCTACCG 

24T VXLD mouse sample B9 AAGAACTA 

28T VXLD mouse sample A11 TTGACAAT 

30T VXLD mouse sample A12 AAGACATA 

29T VXLD mouse sample B10 AACTTGTA 

23T VXLD mouse sample F9 CCAGGTGC 

26T VXLD mouse sample F10 GGTCTGGC 
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5.8.2.2 Sequencing details  

Sequencing was performed by Jonathon Coxhead and colleagues at the Genomics 

Core Facility (Centre for Life, Newcastle upon Tyne).  The sequencing quality and 

barcode distribution was checked by running a single MiSeq lane; this confirmed 

sequencing quality and barcode distribution to be good. Higher depth sequencing 

was then performed. Pooled samples were loaded onto 2 NextSeq flow cells each 

with 400 million 50 base pair single ended reads.  

 Bioinformatics pipeline for results analysis  

The Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) tool 

and the newly published (March 2019) MAGeCKFlute - an additional tool in CRISPR 

analysis – were applied.  MAGeCK has an algorithm designed to identify positively 

and negatively selected sgRNAs. The process is described in materials and methods 

section 2.30.   
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 Chapter discussion  

This chapter has summarised the CRISPR screening specific methods, their 

development and how they were employed in the final screen.  

5.10.1 Introduction of library to cells via lentivirus  

The Brunello library was successful introduced into the T-ALL cell line HPB-ALL, this 

was confirmed by survival of cells with puromycin selection and by real time PCR 

quantification of Cas9 expression. Transduction efficiency was 53% which was 

higher than anticipated by prior optimisation work.  Although the transduction 

efficiency exceeded the 30% to ensure single guide integration per cell, it was 

decided this was unlikely to adversely affect the screen, given the large number of 

cells transduced, high coverage and multiple guides per gene a small number of 

multiple integrations should not adversely affect the screen.  

5.10.2 Preparation of material for sequencing  

An extraction processes using the Qiagen blood maxi columns was adapted for 

extraction of DNA from large quantities of cells harvested from murine bone marrow. 

This process was employed to successfully harvest material from 28 mice and 6 in 

vitro samples. A PCR protocol available through the GPP web portal maintained by 

the Broad Institute was validated for use in amplification of my samples. Alterations 

to the PCR conditions did not improve the amplicon production, and the protocol was 

followed, which allowed for amplification of 10µg of DNA in a single reaction and 

addition of required adapters for Illumina sequencing all in a single step PCR. 

Amplification was successful in 70 out of 74 samples, with 4 samples requiring 

repetition of the PCR.  
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 Chapter summary  

This chapter describes the final stages but critical parts of the CRISPR screen.  

All the specific requirements outlined in the introduction were met: 

• Lentivirus generation and introduction into T-ALL cells was optimised  

• A Broad Institute protocol was tested and adapted for the amplification of the 

guide containing region and barcode samples 

• A 2-step bead-based strategy was devised to clean-up of PCR products  

These steps ensured a successfully process from introduction of library into HPB-ALL 

through to the final sequencing samples.  
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Chapter 6. Screen results 

 Introduction  

The aim of this chapter was: 

• Identify genes that confer sensitivity or resistance to VXLD chemotherapy.  

Prior to using the generated screening data to identify genes associated with 

treatment it was important to check that the data generated from screening was of 

good quality with good library coverage.  

After checking the coverage and distribution of guides present in screening samples 

data was processed using a bioinformatics pipeline- MAGeCKFlute. MAGeCKFlute 

was designed to identify differential effect of two screening conditions, in the case of 

this project it was used to identify guides which were differentially enriched or 

differentially depleted in VXLD treated arms compared to the control arms. First a 

single score (beta score) was generated using a maximum likelihood estimate (MLE) 

analysis of the score from the count of each individual guide compared to the 

baseline (figure 6.1). Then beta scores between treatment conditions were compared 

to identify genes with guides that were enriched preferentially by VXLD treatment, 

and genes with guides that are differentially depleted (figure 6.2). Note the Beta 

score gives a gene level score based on how the 4 guides change, where negative 

beta scores reflects where guides are lost (depleted) compared to the baseline, and 

positive scores where guides are increased (enriched) compared to baseline. For 

simplicity I will use enrichment and depletion of guides -this refers to the gene level 

beta score. Genes with differentially enriched and differentially depleted guides were 

identified from both in vitro and in vivo screens. Overlap between guides identified 

through in vitro screening and in vivo screening was then analysed. Figure 6.3 

Summarises the different data obtained and presented along with the relevant 

chapter section.  



216 
 

 

 

Figure 6.1 Relationship between guides, beta scores and the effect on cells.  
MAGEcK-MLE can be used to generate a single beta score from the different guides 
targeting a gene. The beta score is a measure of change from the baseline, where 
positive beta scores represent overall increase in guides during treatment. Positive 
beta scores indicate the number of cells with the guides are increased compared to 
the baseline, this means that knockout of this gene is providing a benefit to the cells. 
Genes with a tumour suppressive effect will fall into this category. Negative beta 
scores indicate the number of cells with these guides are reduced compared to the 
baseline, this means that knockout of this gene has a negative impact on the cells- 
including genes that function as leukaemic drivers. 

 

 

 

Figure 6.2 Explanation of differential enrichment/depletion After obtaining beta 
scores for each screening arm, these can be compared to see how guide 
presentation changes with VXLD treatment. Where beta scores are higher under 
VXLD treatment it indicates that loss of the gene is beneficial to cells surviving drug 
treatment. Where treated and control arm beta scores are similar there is no change 
to the cell’s dependency on that gene when under treatment, benefit or detrimental 
effects of gene loss in this case are not related to treatment. Where the beta score is 
lower with VXLD treatment compared to control it is indicative of the gene being 
required for resistance to therapy, and therefore when this gene is knocked out cells 
do not survive, leading to less guides present after screening.   
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Figure 6.3 Screen results chapter summary. After read counts are generated the 
data is checked for guide distribution and coverage (presented in chapter 6.2) prior to 
downstream analysis. Results from differential enrichment and depletion analysis for 
in vitro screening are given in chapter 6.3 and for in vivo screening in chapter 6.4. 
These lists were then compared for overlap between in vitro and in vivo with results 
shown in 6.5. Further analysis was then performed hits identified both in vitro and in 
vivo (chapter 6.6) and lastly two targets found depleted in both in vitro and in vivo 
screening are taken for validation in chapters 6.7 and 6.8.  
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 Quality control and processing of screening data  

6.2.1 Guide coverage  

Read count tables were interrogated to establish the total number of guides present 

in each sample and the average read count per guide to gauge library coverage 

(figure 6.4 and 6.6).  

 

Figure 6.4 Quality control for in vitro samples. Number of guides with at least 5 
reads mapped for each in vitro sample (a) and boxplot of read counts for each in vitro 
sample (b). Baseline samples (B1 and B2), control screening samples for both first 
time point (C1) and second later time point (C2) are shown alongside VXLD treated 
samples (V1 and V2) 

The first baseline had the highest number of guides (read count >= 5) at 77,237 

representing 99.7% of the total library. The lowest number of guides was seen in the 

latest VXLD treated time point at 73,191 which still represent 94.5% of the total 

library. The median read count per guide was around 200 for all in vitro samples 

except for the later VXLD treated cells which was slightly lower.  
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Figure 6.5 Principal component analysis of in vitro screening samples.  
Baseline samples are indicated in orange, control samples in green and VXLD 
treated in blue, where VXLD1 refers to earlier VXLD treated time point and VXLD2 
the later   

Principal component analysis (figure 6.5) shows the baselines group closely together 

and they were therefore combined for enrichment and depletion analysis in 

MAGEcKFlute. The 2 VXLD treated time points were combined, as were the 2 control 

time points. MLE analysis was also performed on samples without combination of 

VXLD treated and control time points in order to visualise the change in abundance 

of genes over time.  
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Figure 6.6 Quality control for each individual mouse from in vivo screen. The 
number of guides with greater than or equal to 5 reads are shown for each individual 
mouse for both VXLD treated mice n=9 and control mice n=9 (a). Boxplots are also 
given showing the distribution of reads per guide for each mouse (b).   
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The total guide number and read count distributions were vary variable between 

different mice (figure 6.6). The total guides within each mouse were far lower than 

found in vitro samples. The smallest number of guides identified in a single mouse 

was 1201 and the maximum was 37595. The distribution of these guides was uneven 

with many reads taken up by a relatively small number of guides, lead to low median 

reads per guide. To increase the coverage of guides the 9 treated mice were pooled 

as were the 9 non-treated control mice. Guides with greater than 5 reads were then 

determined again and read count distribution checked.  

 

 

Figure 6.7 Quality control for pooled in vivo samples. The number of guides with 
greater than or equal to 5 reads are shown for the pooled 9 VXLD treated mice and 
pooled 9 control mice n=9 (a). Boxplots are also given showing the distribution of 
reads per guide for each group (b).  
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Pooling the mouse samples gave much greater library coverage with over 60,000 

guides (63,985) present in the non-treated mice and just under 60,000 guides 

(57,286) for the VXLD treated (figure 6.7). The total guides in the library was 77,441 

so at 60,000, 77% of the library was present in the pooled in vivo samples. Read 

count distributions were more variable in vivo compared to in vivo with more guides 

with extremely high read counts. Despite this median guide read counts was 32.4 for 

VXLD treated mice and 148.3 for control mice.  

6.2.2 Bioinformatics analysis  

This section describes the reasoning and background behind the bioinformatics tools 

used for data analysis -for overview of the general pipeline refer to method section 

2.30.  

The MAGeCK toolkit has been specifically designed for the analysis of CRISPR 

screening data. It has been shown to outperform over computational models for 

analysis of this type of data and is commonly used for CRISPR screen analysis (Li et 

al., 2014). The maximum likelihood estimation (MLE) function of MAGeCK uses a 

maximum likelihood estimation (statistical method of estimating probability 

distribution parameters) for identification of hits and uses raw counts of sgRNAs to 

produce a single beta score and p value for each gene. Due to low sgRNA 

representation per mouse, calculation of beta scores on a mouse level was not 

reliable. Counts from the 9 treated mice were pooled and counts the 9 control mice 

were pooled, prior to MLE analysis. Two samples were sequenced for each condition 

(baseline, control and treatment) since these were sufficiently similar to each other 

they were used in the place of true replicates for MLE analysis.  

Beta scores are a measure of change (like fold change expression in RNAseq 

analysis), where change in relative abundance of sgRNAs is determined in each 

sample relative to a baseline. A positive beta score means guides targeting the gene 

are positively selected, implying loss of the gene under screening conditions. 

Negative beta score means guides targeting the gene are negatively selected or lost, 

implying the gene is required under screening conditions.  

After generation of beta scores, normalisation was performed to correct for the 

different doubling times found between control and treated conditions which can lead 

to bias in hit identification (selection will appear stronger in more rapidly proliferating 
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cell). The MAGeCKFlute pipeline has a normalisation step based on a list of 350 

highly essential genes, which are assumed to be equally negatively selected 

between the two conditions despite differences in proliferation rate. 

Normalised beta scores from VXLD treated and control arms can then be compared 

to identify differentially enriched and differentially depleted guides, these are 

displayed as rank plots, scatterplots and nine-square scatterplots. Lists were formed 

of guides identified as differentially enriched and guides differentially depleted for 

both in vitro and in vivo screening. These lists were analysed further by looking at 

common hits, common pathways and interactions.  

 Differentially enriched and depleted guides with VXLD chemotherapy in vitro 

FluteMLE was used to identify guides with significantly different beta score between 

treated and control conditions. Firstly, this analysis was performed on in vitro data. In 

figure 6.8 each gene is plotted based on its beta score for the control arm (x-axis) 

and the beta score from the treated arm (y axis). Rank plots were also generated and 

offered an alternative way to visualise the data (figure 6.9).  
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Figure 6.8 Scatter plot of in vitro differentially ernciched and depleted guides 
(at gene level).  Scatter plot of Control beta score (x-axis) against treated beta score 
(y-axis) for each gene. Red points indicate genes where the beta score is higher 
under VXLD treatment. Blue points indicate genes where the beta score is decreased 
with VXLD treatment.  
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Figure 6.9 Rank plot of in vitro differentially enriched and depleted guides (at gene level). Rank plot of 20 most differentially 
enriched (red) and 20 most differentially depleted (blue) guides under VXLD treatment in vitro.  
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Among the top 20 differentially enriched guides are members of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) signalling: TNF receptor-

associated factor 2 (TRAF2), TNF receptor-associated factor 3 (TRAF3) and NFKB 

Inhibitor Alpha (NFKBIA). The most differentially in vitro depleted guides were for 

ATP binding cassette subfamily C member 1 (ABCC1) also known as Multidrug 

Resistance-Associated Protein 1. A ubiquitously expressed transporter of organic 

anions it is associated with resistance to various chemotherapeutic including 

anthracyclines, and vincristine (Munoz et al., 2007). 

Genes were also grouped according to how the guide beta scores differ between the 

control and under VXLD treatment. Beta scores are plotted in a scatter graphs and 4 

groups were identified (figure 6.10). The first group (orange) guides were unchanged 

under control conditions and are enriched in VXLD treatment. The second group 

(purple) comprised genes with unchanged guides under control conditions and 

depleted guides in treatment. The genes depleted in control but unchanged in 

treatment form a third group (coloured green). 
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Figure 6.10 Scatter plot of Control and Treated arm beta scores. Scatter plot of in 
vitro control (x-axis) versus treated beta score (y-axis).  Genes are grouped 
according to treated and control beta scores in quadrants dictated by beta scores 
between -1 and 1, greater than 1 or less than -1. Green group1: negative beta score 
in control arm, but neutral score under treatment this group contains 105. Orange 
group 2, neutral beta score in control arm but positive beta score under VXLD, here 
there are 108. Blue group 3: 0 in this group where enriched under control conditions 
and unchanged under treatment. Purple group 4: Unchanged beta scores in control 
conditions but negative beta score under treatment. Guides not part of these 4 
groups are shown in grey. The top 5 genes in each group are labelled.  

Guides enriched only 
under treatment 

Guides depleted only 
under treatment 

Guides depleted without 
treatment but not depleted with 

treatment 
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The first group of guides (coloured orange) represent genes that when lost conferred 

resistance to VXLD treatment (they are required for response to VXLD). One 

hundred and eight genes from in vitro screening fell within this group one of these is 

the Cylindromatosis genes (CYLD). CYLD removes ubiquitin chains from lysine 63. 

CYLD is repressed by the NOTCH1 target gene HES1 which is responsible for 

sustaining IKK activation in T-ALL (D'Altri et al., 2011, Espinosa et al., 2010). The 

NOTCH1-HES1-CYLD-NF-κB pathway is important for leukemic survival and it has 

been suggested as a targetable pathway (D'Altri et al., 2011, Espinosa et al., 2010). 

CYLD is discussed further in 6.12.1. 

Purple indicates genes that were required for resistance to VXLD treatment (guides 

depleted under treatment). ABCC1 described earlier is known to provide resistance 

to chemotherapy. Also included in this group was X-ray repair cross-complementing 

protein 5 (XRCC5) required for DNA double strand break repair. After analysing the 

in vitro data, the same analysis was used to identify differential changed genes under 

VXLD treatment in vivo. 

 VXLD treatment in vivo identifies guides that are more positively and more 

negatively selected than without treatment 

The genes associated with drug sensitivity and resistance in vivo were determined in 

a similar manner to in vitro. Beta scores (measure of change of guides from baseline) 

was plotted on a scatter diagram (figure 6.11) according to control beta score (x-axis) 

and treated beta score (y-axis). There were 736 positively selected genes and 358 

negatively selected genes. The top 20 differentially enriched and depleted guides (at 

level of the gene) are given in table 6.1. Data is also shown on a 9 square scatter 

graph (6.12). 

  



229 
 

 

  

Figure 6.11 Scatter plot of in vivo differentially enriched and depleted 
guides (at gene level) Scatter plot of gene control beta score on x-axis against 
treated beta score on y-axis. Genes which were negatively selected under VXLD 
treatment compared to control conditions are shown by blue points. Guides with a 
higher beta score with VXLD treatment compared to control are shown by red 
points.  
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 Guides 

Enriched 

Guides 

depleted 

HACD1 TRAPPC8 

DUSP4 PKD1L2 

ARF3 PPIL1 

BTRC TEX29 

MTERF2 SYNGR3 

HMGCLL1 BCAS1 

SERPINB5 CDCA5 

LMOD2 SAP30 

ADGRF4 NPIPB5 

RS1 SUMF2 

NPIPA7 CBLN4 

PDF SLC25A25 

USP17L17 OR8D1 

DDX25 GABBR2 

HSD17B12 PUS10 

PRRC1 BABAM1 

TESK1 NKX6.1 

IDH2 MAGEL2 

ATP13A3 IGFBP4 

KCNT1 ENG 

Table 6.1 Most differential enriched and differential depleted guides from in 
vivo screening. . Top 20 most differentially enriched guides (gene level beta score) 
under VXLD treatment in vivo and the top 20 most differentially depleted guides 
(gene level beta score) under VXLD treatment in vivo. 
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The most differentially enriched was 3-Hydroxyacyl-CoA Dehydratase 1 (HADC1) 

which is involved in very long chain fatty acid (VLCFA) production (Ikeda et al., 

2008). On figure 6.12 HADC1 is 1 of 426 genes with beta score in group 2 with a 

control beta score around 0, whereas the treated beta score is greater than 30. Other 

components in VLCFA production such as ELOVL Fatty Acid Elongase 1 (ELOVL1) 

or Ceramide synthase 2 (CERS2) have been implicated in sensitivity to 

chemotherapeutics (Sassa et al., 2012).  

Dual specificity protein phosphatase 4 (DUSP4) was the second most enriched 

differentially enriched gene, and similar appears in group 2 with a beta score in the 

control arm close to 0 but high beta score under treatment. DUSP4 negatively 

regulates the mitogen activated protein kinases (MAPK) pathway.  DUSP4 appears 

to have contrasting roles in different cancers, with reduced DUSP4 helping drive 

basal-like breast cancer, lung cancer, colorectal cancer and diffuse large B-cell 

lymphoma, and increased DUSP4 being associated with chemo-resistance and 

poorer prognosis in gastric cancer and invasive ductal carcinoma (Balko et al., 2013, 

Chitale et al., 2009, Saigusa et al., 2013, Schmid et al., 2015, Kang et al., 2017, Kim 

et al., 2015).  

Trafficking protein particle complex subunit 8 (TRAPPC8) was the most significantly 

differential depleted with VXLD treatment. Knockdown of TRAPPC8 was shown to 

lead to defects in autophagy by other authors (Imai et al., 2016).  

The 9 square grouped scatter graph (figure 6.12) highlights different genes to the 

most enriched list. One gene with a negative beta score with VXLD treatment but not 

a negative beta sore in the control arm was RNA binding protein 14 (RBM14), which 

has been shown to have a role in repair of double stranded breaks (Jang et al., 

2020). Deficient double strand break repair can make cells more susceptible to 

anthracyclines like daunorubicin (Saffi et al., 2010). 

After identifying differentially enriched and depleted genes under VXLD treatment in 

vivo, the identified genes were compared to genes identified through in vitro 

screening to be differential enriched or depleted with VXLD.
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Figure 6.12 Scatter plot of Control and Treated arm beta scores. Scatter plot of in vitro control (x-axis) versus treated beta 
score (y-axis).  Guides are grouped according to treated and control beta scores in quadrants dictated by beta scores between -5 
and 5, greater than 5 or less than -5. Green group 1: negative beta score in control arm, but neutral score under treatment this 
group contains 105. Orange group 2, neutral beta score in control arm but positive beta score under VXLD, here there are 108. Blue 
group 3: 0 in this group where enriched under control conditions and unchanged under treatment. Purple group 4: Unchanged beta 
scores in control conditions but negative beta score under treatment. The top 5 in each group are labelled. Guides not falling in any 
group are coloured grey. 
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 Differential enriched and depleted genes with VXLD chemotherapy both in vitro 

and in vivo  

R studio was used to compare lists differentially enriched and depleted guides from 

in vitro screening and differential enriched and depleted in in vitro screening (figures 

6.13 and 6.14). Six guides (gene level beta score-) were found to be differentially 

depleted with VXLD treatment both in vitro and in vivo, these are listed in appendix A. 

Forty-seven genes were found to be commonly enriched in VXLD treatment (listed in 

appendix A).  

  

 

Figure 6.13 Differentially depleted guides under VXLD treatment compared to 
control. Guides depleted (gene level beta score) in vitro screening are in the blue 
circle, and the guides depleted (gene level beta score) in vivo the red circle, 
intersection of the two circles represent those in common.   
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Figure 6.14 differentially enriched guides under VXLD treatment compared to 
control. Guides enriched (gene level beta score) in vitro screening are in the blue 
circle, and the guides enriched (gene level beta score) in vivo the red circle, 
intersection of the two circles represent those in common.  .   
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There were several hundred guides (gene level beta scores) identified as depleted 

with VXLD treatment in both in vitro and in vivo screening but only 6 were shared 

(listed in appendix A). Loss of different genes within the same pathway could have 

led to the same phenotypic effect. Gene lists comprised of the depleted guides from 

the in vitro and in vivo screen was used in pathway analysis using WebGestalt (figure 

6.15). 



236 
 

 

Figure 6.15 Pathway analysis of genes where guides are differential depleted under VXLD treatment in vitro or in vivo. 
Genes that were identified as differential depleted in vitro or in vivo were input as a gene list into WebGestalt. An over 
representation analysis was performed using the Kegg database. The Log2 of the enrichment score is plotted against the negative 
log ten of the false discovery rate (FDR). The colour scale indicates the number of genes mapped to the pathway. The top ten 
pathways are labelled. Since the gene list comprised guides that were differentially depleted under VXLD treatment, the most 
enriched pathways indicate where there is increased dependence on these pathways under VXLD treatmen

Increased dependence under VXLD treatment  
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Cell cycle had the lowest false discovery rate in pathway analysis at 0.1. Twelve 

genes were associated with cell cycle (enrichment ratio 3.2). Another pathway 

enriched in the data was the proteasome (FDR 0.4, Enrichment ratio 3.7). The 

proteasome was of interest since this pathway was targetable with proteasome 

inhibitors and these have been under investigation in combination with VXLD 

chemotherapy (Messinger et al., 2012).  One of the 6 overlapping depleted genes 

HECT Domain E3 Ubiquitin Protein Ligase 2 (HECTD2) is an E3 ubiquitin ligase, 

ubiquitination targets proteins for proteasome mediated degradation (Yamaguchi et 

al., 2012).   

 Guides differentially enriched/depleted both in vitro and in vivo  

The genes where guides were differentially changed under VXLD treatment both in 

vitro and in vivo (enriched- 47 and depleted- 6) were analysed for interaction using 

STRING (figure 6.16).   
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Figure 6.16 String interaction of genes with differentially enriched and depleted 
guides under VXLD treatment. Genes that were common between in vitro and in 
vivo differentially enriched/depleted guides under VXLD treatment where input as a 
gene list into STRING. For clarity only interacting genes are shown. Line colour 
indicates the type of interaction blue –binding, black-reaction, purple-catalysis.   
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The STRING interaction network showed 21 interacting genes. Highlighted are 2 of 

the 6 genes that had depleted guides (gene level) under treatment that were shared 

between in vitro and in vivo conditions. Bcl-2-like 1 (BCL2L1) had many predicted 

interactions within the differential genes. BCL2L1 encodes BCL-X which is a key 

player in regulation of apoptosis. Bcl-2-like 1 (BCL2L1) was selected for further 

validation for 3 main reasons: 

• Identified in both in vitro and in vivo screening  

• Known role in apoptosis (see 6.7.2) 

• Can be inhibited pharmacologically  

 The importance of BCL-X in resistance to VXLD chemotherapy in TLX3 T-ALL 

6.7.1 Introduction 

BCL2L1 was selected for further validation after screening. In the interest of time 

validation was performed using HPB-ALL (in which the screen was performed) and 

another T-ALL cell line- DND41. HPB-ALL has a TLX3 background, as does DND41. 

The dependence of TLX3 cells lines on BCL-XL was assessed prior to considering 

validation in a wider genetic background, in ex vivo xenograft cells or in mouse 

models. The first step in validation was to assess the change in expression of 

BCL2L1 at the mRNA level with VXLD drug treatment (6.7.2), this was followed by 

pharmacological inhibition (6.7.3) and finally knockdown experiments with shRNA 

(6.7.4).  

6.7.2 BCL2L1 background information 

Bcl-2-like 1 (BCL2L1) encodes apoptotic regulator BCL-X. BCL-X is a BCL2 family 

member. BCL2 family members are regulators of apoptosis via regulation of 

mitochondrial membrane permeability and activation of caspases (Chao and 

Korsmeyer, 1998). BCL2 family members are recognised by their shared alpha 

helical domains known as Bcl2 homology domains (BH) domains, and family 

members have differing numbers up to 4 BH domains labelled 1 through 4 from C to 

N terminus (Chao and Korsmeyer, 1998). BH4 is important to ant-apoptotic functions 

and is less conserved in pro-apoptotic family members. Conversely BH3 is important 

to pro apoptotic functions.  
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BCL-X is alternatively spliced to a shorter pro-apoptotic isoform BCL-XS or a longer 

anti-apoptotic form BCL-XL. Exons 2 and 3 are coding exons. There are two known 

isoforms of the noncoding exon 1 found in the BCL-X gene; the proximal- 1A was 

identified first and is associated with CD40 ligand and NF-κB signalling, whilst the 

distal-1B is associated with E26 transformation-specific family (Ets) binding (figure 

6.17) (Ban et al., 1998, Habens et al., 2007).  

 

Figure 6.17 BC2L1 gene and BCL-X transcript.  BCL-X has two versions of the first 
non-coding exons with separate promoters linked to Ets and NF-κB signalling. BCL-X 
pre-mRNA is alternatively spliced to form two different length sequences-known as 
BCL-XL and BCL-XS. Exons are numbered. Black boxes indicate transcription factor 
binding sites for E26 transformation-specific (Ets) and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) families. The translation start site (ATG) 
and stop site (STOP) are indicated, as are the 5’ and 3’ splice site (5’ss and 3’ss).  
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Alterations in the balance between anti and pro apoptotic factors towards the former 

could provide a mechanism of cell death avoidance in cancer cells. The use of drugs 

targeting apoptotic proteins has increased over the last few years with Venetoclax, a 

BCL2 inhibitor, approved for the treatment of 17p deleted CLL in 2016 and then for 

use in previously treated CLL in combination with Rituxan in 2018 and in newly 

diagnosed AML where standard induction therapy not appropriate in November 

2018((FDA), 2018a, (FDA), 2018b).There are also ongoing trials in ALL. Whereas B-

ALL showed high reliance on BCL2, only early T-cell precursor (ETP) showed this 

same pattern. More mature T-ALLs showed more BCL-X dependency (Chonghaile et 

al., 2014).  Furthermore, knockdown of BCL-XL in the T-ALL cell line CEM was 

synergistic with dexamethasone treatment (Broome et al., 2002). 

6.7.3 mRNA expression with VXLD treatment 

The mRNA expression of BCL-X (both the exon 1A and 1B form) was assessed in 

HPB-ALL and DND41 cells after 72 hours of treatment with a VXLD combination 

(figure 6.18). Expression was compared to cells treated with a solvent control. RNAs 

for BCL-X with exon 1A and RNAs with exon 1B were determined using separate 

primer sets.  

 

Figure 6.18 BCL-X 1A and 1B expression in HPB-All (A) and DND41 (B) with 
VXLD treatment at 72 hours. Significant increases in expression were detected by t-
test (**p<0.01). Error bars represent standard error of the mean of 3 independent 
experiments. 

Both HPB-ALL and DND41 showed significantly increased BCL-X expression after 

VXLD treatment, however the isoform that was increased varied with HPB-ALL 
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showing significant increase in RNA containing exon 1A and DND41 only showing 

significant increase of the alternate first exon 1B.  

6.7.4 Treatment of HPB-ALL and DND41 with ABT-737 

ABT-737 is a pan BCL2 family inhibitor that binds BCL2, BCL-W and BCL-X. ABT-

737 was applied to HPB-ALL and DND41 cells in a dose dependant manner with and 

without a fixed VXLD dose. After 72 hours, the effect on cell numbers was measured 

as reduction in fluorescence in a resazurin assay compared to solvent treated control 

cells (figure 6.19).  

 

Figure 6.19 Dose response curves of HPB-ALL and DND41 to ABT-737 alone or 
with a fixed dose of VXLD treatment . For the control cells response is shown as 
percentage fluorescence of a solvent control well. For VXLD treated cells, results 
were normalised to fluorescence of cells treated with the fixed dose of VXLD alone 
(dex 50nM, dauno 33nM, vinc 1nM, asp 0.36mU/ml). EC50 shift analysis (performed 
in prism) shows curve shift ratio for HPB-ALL of 10.81 and for DND41 1.463.  

The GI50 for ABT-737 as a single agent in DND41 cells was 0.7µM, with a fixed dose 

of VXLD it was lowered to 0.3µM (log inhibitor versus response). The curve shifts by 

a ratio of 1.46 is significant (EC50 curve shift ratio significantly different to 1 (no shift), 

p = 0.0001). HPB-ALL did not achieve greater than 20% reduction in fluorescence 

compared to a solvent control in a dose range up to 10 µM. However the addition of a 

fixed dose of VXLD to HPB-ALL did generate a curve shift (EC50 shift ratio of 10.81) 
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that was significantly different (EC50 curve shift ratio significantly different to 1 (no 

shift), p < 0.0001). 

To identify if there was increased apoptosis upon treatment of HPB-ALL or DND41 

with ABT-737 and annexin V assay was performed 24 hours of addition of drugs 

(figure 6.20).  

 

Figure 6.20 Annexin V assay for HPB-ALL and DND 41 treated with ABT-737 or 
VXLD or both ABT-737 and VXLD for 24 hours. The quadrants Q1, Q2, and Q4 
represent live cells, early apoptotic cells, and dead cells respectively. N=1   
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The annexin V assay showed less than 10% of cells were apoptotic in HPB-ALL 

treated with ABT-737 (2µM) for 24 hours and there was no significant increase by 

combining ABT-737 with VXLD.  DND41 showed 37% of cells were apoptotic with 

ABT-737 (0.4µM) and there was a non-significant increase in apoptosis by combining 

ABT-737 with VXLD in the DND41 cells.  

6.7.5 Competitive assay  

To establish if reduction in BCL-X led to decreased survival of HPB-ALL or DND41 

cells, BCL-X was knocked down using a shRNA vector with a GFP tag. The shBCL-X 

reduced BCL-X expression in both HPB-ALL and DND41 at RNA level (figure 6.21).  

To directly compare the fitness of cells with BCL-X knockdown to cells without 

knockdown of BCXL-X, shBCL-X containing cells were mixed in a 1:1 ratio with cells 

transduced with a non-targeting control shRNA (shNTC) tagged with RFP657. The 

shBCL-X cell population was detected by GFP expression using flow cytometry and 

was compared to the RFP657 positive cells containing shNTC over time.  The mixed 

cells were kept under standard culture conditions or were supplemented with VXLD. 

The percentage of cells is shown at the baseline (day of mixing) and after 1 week of 

culture (figure 6.22). To ensure the observed effect was not due to differential toxicity 

of 1 fluorochrome over another, a control assay was set up with two mixed non-

targeting control constructs, one tagged with GFP (shNTC1) and another with 

RFP657 (shNTC2).   
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Figure 6.21 BCL-X expression after shRNA knockdown. RNA expression of BCL-
X in HPB-ALL (A) and DND41 (B) is given as fold change compared cell transduced 
with a non-targeting control. N=1  

 

Figure 6.22 BCL-X knockdown competitive assay results.  Relative proportions 
(percentage)of cells containing shBCLX-GFP or shNTC-RFP657 in HPB-ALL (A) and 
DND41 (B) cell lines at baseline and after 7 days in standard culture and after 7 days 
with VXLD treatment. N=1  
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BCL-X knockdown cells were competitively lost in HPB-ALL under standard culture 

conditions, with a further reduction in BCL-X knockdown cells after addition of VXLD 

chemotherapy. In DND41 cells BCL-X knockdown cells were not noticeably reduced 

in standard culture conditions compared to the NTC cells. However, upon VXLD 

treatment there was a dramatic reduction in BCL-X knockdown cells, with 95% of 

transduced cells now being shNTC. There was no change in the proportion of 

shNTC1-GFP cells and shNTC2-RFP657 cells in either condition.  

6.7.6 BCL2L1 validation Summary  

BCL2L1 was selected for validation, guides targeting BCL2L1 were differentially 

depleted under VXLD treatment both in vitro and in vivo. BCL2L1 encodes apoptotic 

regulators BCL-XL (anti-apoptotic) and BCL-XS (pro-apoptotic).  The change in mRNA 

levels of BCL-XL/S were assessed in two cell lines HPB-ALL and DND41 after 72 hour 

VXLD treatment. A BCL2 family member inhibitor ABT-737 inhibits BCL-XL. Dose 

response to ABT-737 was established in HPB-ALL and DND41. The amount of 

apoptosis with VXLD and ABT-737 treatment was measured by annexin V assay. 

Lastly shRNA was used to knockdown BCL-X in HPB-ALL and DND41. The fitness of 

BCL-XL knockdown cells was compared to cells containing only a non-targeting 

shRNA in a competitive setting, including under the influence of VXLD treatment 

pressure.  

Treatment with VXLD increased BCL-X mRNA level after 72 hours with a 

combination of vincristine, dexamethasone, asparaginase and daunorubicin. Different 

isoforms were significantly increased in the two tested cell lines, with 1A being 

significantly increased in HPB-ALL and 1B in DND41.  

ABT-737 inhibits BCL2, BCL-XL and BCL-W.  HPB-ALL and DND41 cells were 

treated with ABT=737 with and without the presence of VXLD. ABT737 only reduced 

HPB-ALL cells by 20% at a 10µM concentration, the effect on HPB-ALL was not 

increased beyond 20% by addition of VXLD although a lower dose of ABT737 was 

required to produce the same 20% reduction. DND41 cells were more responsive to 

ABT-737 treatment with a GI50 of 0.7µM. Consistent with what was observed with 

HPB-ALL addition of VXLD generated a curve shift-with less ABT-737 required to 

generate the same effect. There was no greater annexin V positivity for HPB-ALL 

cells treated with 2µM of ABT-737 compared to a solvent control at 24 hours.  The 
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treatment of DND41 cells with ABT-737 induced apoptosis as indicated by positive 

annexin V staining, but there was no increase in apoptosis with addition of VXLD 

chemotherapy at 24 hours, despite the significant curve shift by addition of VXLD at 

72 hours.  

Knockdown of BCL-XL/S with shRNA in HPB-ALL showed that these cells have 

reduced fitness compared to cells without BCL-X L/S knockdown. This effect was 

amplified by the addition of VXLD chemotherapy. In DND41 cells knockdown of BCL-

X had only minimal effect on the fitness of the cells, until VXLD treatment was 

applied and, these knockdown cells were rapidly lost in a competitive assay. 

 The role of HECTD2 in TLX3 T-ALL cell lines  

6.8.1 Introduction  

Guides targeting HECTD2 were differentially depleted under VXLD treatment during 

both in vitro and in vivo screening. HECTD2 is involved in ubiquitination (chapter 

6.8.2). Ubiquitination is of interest since proteasome inhibitors are being trialled in the 

treatment of ALL (Horton et al., 2019). 

6.8.2 Background to HECTD2 

HECTD2 is an E3 ubiquitin ligase, which ubiquitinates proteins and targets them for 

proteasome mediated degradation. HECTD2 has been shown to ubiquitinate the 

protein inhibitor of activated stat1 (PIAS1)(Coon et al., 2015). PIAS1 inhibits the 

ability of STAT1 to bind DNA and has also been shown to regulate NFkB signalling 

(Tahk et al., 2007, Liu et al., 2007, Vilimas et al., 2007). The interaction of PIAS1, 

HECTD2 and STAT1 is summarised in figure 6.23. 
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Figure 6.23 The interaction between HECTD2 and PIAS1 in JAK-STAT 
signalling and NF-κB signalling. PIAS1 binds to STAT1 in the nucleus and 
preventing binding to genes and activation of transcription. Similarly, PIAS1 binds 
NF-κB subunits preventing transcription of NF-κB target genes. HECTD2 acts to 
ubiquitinate PIAS1, this required phosphorylation of PIAS1, the ubiquitination of 
PIAS1 targets it for 26S proteasome mediated degradation.  
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6.8.3 mRNA expression of HECTD2 and PIAS1  

The mRNA expression of HECTD2 and the HECTD2 downstream target PIAS1 was 

assessed in HPB-ALL and DND41 cells after 72 hours of treatment with a VXLD 

combination (figure 6.24). Expression was compared to cells treated with a solvent 

control.  

 

 

Figure 6.24 HECTD2 and PIAS1 gene expression in HPB-ALL and DND41 cells 
after 72 hours VXLD treatment. Significant differences in expression were detected 
by t-test (***p<0.001). Error bars represent standard error of the mean of 3 
independent experiments.  

There was no significant increase in HECTD2 or PIAS1 expression in HPB-ALL cells 

treated for 72 hours with VXLD. DND41 cells showed significant increase in both 

HECTD2 and PIAS1 expression after VXLD treatment.  

6.8.4 Competitive assay  

To establish if a reduction of HECTD2 gene expression led to decreased survival of 

HPB-ALL or DND41 cells, HECTD2 was knocked down using a shRNA vector with a 

GFP tag. Successful knockdown was confirmed at mRNA level with qRT-PCR, and 

the expression of PIAS1 was also measured upon HECTD2 knockdown (figure 6.25).  

To directly compare the fitness cells with BCL-X knockdown to cells without 

knockdown of HECTD2, shHECTD2 cells were mixed 1:1 with cells transduced with a 

non-targeting control shRNA (shNTC) tagged with RFP657. The shHECTD2 cell 

population was detected by GFP expression using flow cytometry and was compared 

to the RFP657 positive cells containing shNTC over time.  The mixed cells were kept 

under standard culture conditions or were given VXLD. The percentage of cells is 

shown at the baseline (day of mixing) and after 1 week’s culture (figure 6.26) 
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Figure 6.25 HECTD2 expression after knockdown with shRNA HECTD2 
knockdown was confirmed by qRT-PCR in the HPB-ALL and DND41 cell lines. 
PIAS1 expression was measured in shHECTD2 transduced and shNTC cells. 
Results of a single experiment. N=1 

HECTD2 expression was reduced in both DND41 and HPB-ALL but less than 2 fold. 

There was no change to PIAS1 expression in HPB-ALL after HECTD2 knockdown, 

but in DND41 an increase in PIAS1 expression was observed compared to shNTC1 

cells. However, increased expression of PIAS1 was seen in shNTC2 cells.  

 

 

Figure 6.26 HECTD2 knockdown competitive assay results.  Results of a 
competitive assay of HPB-ALL (A) and DND41 (B) cells with shHECTD2-GFP and 
shNTC-RFP657 at day of mixing and after 7 days standard culture (control) or with 
VXLD treatment (VXLD). N=1 

There was no change in the relative abundance of shHECTD2 cells compared to 

shNTC cells in HPB-ALL in standard conditions or under VXLD chemotherapy. In 

DND41 shHECTD2 cells were competitively lost in both conditions, and to a greater 

extent under control conditions compared to VXLD treatment.  
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6.8.5 HECTD2 validation summary 

HECTD2 was selected for further investigation based on screening data which 

demonstrated guides targeting HECTD2 to be differentially depleted under VXLD 

treatment both in vitro and in vivo. HECTD2 is a ubiquitin ligase, and ubquitinates 

PIAS1.  The change in mRNA levels of HECTD2 and PIAS1 were assessed in two 

cell lines HPB-ALL and DND41 after 72 hours VXLD treatment. To check for a role 

for HECTD2 in T-ALL growth or survival under VXLD treatment and shRNA 

knockdown was performed.  HECTD2 knockdown cells were compared directly with 

cells containing a non-targeting control shRNA both with the addition of VXLD 

chemotherapy and for comparison in standard culture conditions. 

HPB-ALL did not show significant increase in HECTD2 expression after 72 hours of 

treatment with VXLD. In DND41 cells I did observe a significant increase in HECTD2 

expression, which was accompanied by an increase in PIAS1 expression. 

DND41 and HPB-ALL also responded differently to HECTD2 knockdown despite a 

similar relative reduction in mRNA expression. No effect was seen in the fitness of 

HPB-ALL targeted with shHECTD2 compared to shNTC targeted cells, whereas 

there was a pronounced effect in shHECTD2 transduced DND41 cells which were 

competitively lost both with and without VXLD chemotherapy 

 Chapter discussion 

This chapter has shown data derived from screen itself. To reflect the different 

sections of this chapter, the discussion has also been split into the following 

themes:  

• the library coverage and read counts,  

• how different genes identified fit into the context of important pathways,  

• how genes were selected for preliminary validation,  

• the conclusions from validation work for  

i. BCL2L1 

ii. HECTD2 

6.9.1 Library coverage, read counts and data analysis  

In vitro samples showed total library coverage ranging from 94.5 to 99.7% of the total 

library, demonstrating most of the library was retained from amplification of plasmid 

pool through various stages of screening including lentiviral, transduction and 
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puromycin selection. The screen was calculated to have 400 times coverage, a total 

of 31 million cells were taken for each time point-and ultimately around 31 million 

reads were required per sample. The two NextSeq runs were performed for the 

pooled samples giving a total of 800 million reads, split across the 26 samples this 

equates to nearly 31 million reads per sample. This did not account for any 

unmapped reads. Reads were only taken if they were an exact match, for each 

sample approximately 20% of reads were unmapped. Changing the stringency may 

increase total mapped reads, but since most of the library was covered this was 

unnecessary and the most stringent cut-off of exact sequences was used. The 

resulting data showed a guide distribution with a median read per guide of 200. 

Although below the recommended 400, this is still within what other similar screens 

report (Hart et al, 2017). 

Each mouse received 2 million cells. When mice were harvested each mouse was 

treated as an individual sample, with enough PCR reactions to cover 31 million cells, 

equally nearly 31 million reads were performed for each barcoded mouse sample. 

There was substantial variation in the number of guides recovered from each mouse, 

some samples covered half the guides form the library where others had less than 

5,000 guides. For this analysis all reads were summed across the same sample set, 

for future analysis it may be worth to cap some of the highest read counts for guides 

prior to pooling. Pooling the samples from treated mice and from control mice 

allowed the recovery of most of the guides from the library. It would be beneficial to 

do a subsampling analysis to see the optimum number of reads for the mouse 

samples when they are pooled, as with this strategy there is potential to drastically 

reduce PCR and sequencing costs. 
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6.9.2 Key genes/pathways implicated in VXLD chemo-resistance  

Analysis of screening data highlighted roles for several different pathways including 

those depicted in figure 6.27- the proteasome, NFkB signalling, and the cell cycle. In 

addition to those depicted in figure 6.27:  Ras signalling, the spliceosome and 

multidrug transporters were also identified.   
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Figure 6.27 Summary of key targets differentially enriched and depleted under 
VXLD treatment  The NF-κB (both canonical and non-canonical) and JAK signalling 
pathways and the genes that were found to be enriched or depleted with VXLD 
treatment. Genes with enriched guides are shown in green and genes with depleted 
guides in red. Downstream transcriptional targets are also indicated and coloured to 
indicate depletion. Potential drugs to inhibit these pathways are indicated in the orange 
boxes.  
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6.9.2.1 Multidrug transporter ABCC1   

Guides targeting ATP Binding Cassette Subfamily C member 1 (ABCC1) were 

identified as differentially depleted during in vitro screening under VXLD treatment. 

Also known as multi-drug resistance protein 1, ABCC1 is known to confer resistance 

to many chemotherapeutics including daunorubicin and vincristine, and to contribute 

to progression of disease in T-ALL (Munoz et al., 2007, Winter et al., 2013). The 

identification of ABCC1 provides support to the effectiveness of the screening 

approach taken to identify resistance mechanisms.  

6.9.2.2 Cell cycle genes  

Cell cycle pathways are mutated in 84% of T-ALL, mainly because of recurrent 

deletion of CDKN2A/B (Liu et al., 2017). P16 encoded by CDKN2A inhibits CDK4 

and CDK6 , activating Rb proteins and block G1/S transition (Topacio et al., 2019).  

Several genes with known roles in cell cycle control were associated with resistance 

to VXLD therapy. The effectiveness of many drugs is cell cycle stage dependant. A 

simplified diagram indicating some of the key cyclins and kinase involved in the cell 

cycle is given in figure 6.27. Cell cycle arrest due to aberrant cell cycle control factors 

can generate resistance.  

Cell cycle inhibitors such as Palbociclib (CDK4/6 inhibitor) are being used to treat a 

range of malignancies (Dickinson and Schwartz., 2009). Within my data, although 

CDK4 (cyclin dependent kinase 4) and 6 were depleted during screening they were 

not differentially depleted under VXLD therapy. On the contrary, a component of the 

anaphase promoting complex –Cell Division Cycle 26 (CDC26) and CCNA2 (cyclin 

A2, which binds CDK1 and CDK7)were differentially depleted , whereas in vivo as 

members of the mini chromosome maintenance complex (Marks et al.). MCM5, 

MCM6, MCM7 (which are involved in G1 to S progression) were differentially 

depleted. The different cell cycle phases these are found in may reflect differing drug 

pressures in vitro and in vivo. Work to clarify which phase of the cell cycle is most 

required for each of the chemotherapeutics used would be of benefit here.   
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Figure 6.28 Simplified diagram of the cell cycle. The diagram highlights where the 
mini chromosome maintenance complex (MCM complex), cyclin A2 and cyclin 
dependant kinases (CDK) and cyclins appear in the cell cycle. During G1 the MCM 
complex acts as a scaffold for pre-replication complex. During the S phase the MCM 
complex forms part of a helicase responsible for unwinding DNA.  
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6.9.2.3 Ras signalling  

DUSP4 scored as second highest differentially enriched guides in the in vivo screen 

(table 6.1). DUSP4 is a regulator of Ras signalling (Farooq and Zhou, 2004). As 

highlighted in the introduction-Ras signalling has already been implicated in chemo-

resistance in T-ALL. Exome sequencing identified correlations between patients 

harbouring KRAS mutations and poor response to steroids (Li et al., 2016). In the 

same publication the authors show introduction of mutant NRAS into T-ALL cell lines 

alters steroid responsiveness. KRAS was also identified in this screen with KRAS 

targeting guides being differentially depleted with VXLD in vivo. The loss of guides 

targeting KRAS and enrichment of guides targeting negative regulator of Ras 

signalling DUSP4 indicate the importance of active Ras-signalling in driving 

resistance to VXLD therapy.  

6.9.2.4 U2AF1 and splicing  

U2AF1 was differential enriched in both in vitro and in vivo VXLD screening. U2AF1 

encodes a component of the spliceosome. U2AF1 mutations are associated with 

alternative splicing of inflammatory and immune related genes and ultimately are 

associated with a poor outcome in AML (Saygin et al., 2018) (Smith et al., 2019). 

Although U2AF1 mutations are uncommon in ALL thousands of aberrant splicing 

events (compared to those in normal B-cells) have been detected in B-ALL, with 

many of the alternatively spliced genes being known cancer drivers (Smith et al., 

2019). In T-ALL upregulation of H/ACA ribonucleoprotein assembly factor (SHQ1) 

which modifies spliceosomal small nuclear RNAs is important for cell survival (Su et 

al., 2016). T-ALLs express high levels of SHQ1 which is important in maintaining 

splicing of oncogenic driver MYC. Depletion of SHQ1 impaired widespread RNA 

splicing (including MYC) and induced T-ALL cell death (Su et al., 2016, Su et al., 

2018).  

Alternative splicing is also known to contribute to chemo resistance. For instance, 

alternate splicing of tumour protein p53 related proteins- tumour protein p63 and 

tumour protein p73 produces dominant negative forms that contribute to chemo 

resistance (Müller et al., 2006). Furthermore, alternative splicing of BCL-2 family 

member BCL-X produces long and short isoforms with opposing functions in 

apoptotic regulation (Chao and Korsmeyer, 1998). BCL-XL is explored further in 
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section 6.7. The identification of U2AF1 prompts further investigation into the role of 

alternative splicing in resistance to VXLD therapy. 

6.9.2.5 CYLD, HECTD2, the proteasome and ubiquitination  

Many genes involved in the process of ubiquitination (and proteasomal degradation) 

have a role in carcinogenesis (Mansour, 2018). FBXW7 (the negative regulator of 

NOTCH1) for instance, is frequently mutated in T-ALL and is a ubiquitin ligase (O'Neil 

et al., 2007). Since the advent of proteasome inhibitors and their journey to the clinic 

there has been further interest into ubiquitination and the proteasome (Horton et al., 

2006). 

Guides targeting HECT Domain E3 Ubiquitin Protein Ligase 2 (HECTD2) were found 

to be only 1 of 6 differentially depleted both in vitro and in vivo and was of particular 

interest due to its ubiquitination function (Rotin and Kumar, 2009). HECTD2 was one 

of two genes selected for further validation (see section 6.8). 

Guides targeting deubiquitinating enzyme CYLD were differentially enriched in vitro. 

CYLD originally identified in familial cylindromatosis is a known tumour suppressor 

(Bignell et al., 2000, Massoumi, 2010). CYLD regulates several signalling pathways 

by deubiquitinating Lysine 63 residues including TCR component leukocyte C-

Terminal Src kinase and cell cycle regulator polo-like kinase 1 (PLK1) (Massoumi, 

2010).  Both of which that are implicated in leukaemia-genesis (Shi et al., 2020, 

Wang et al., 2015). CYLD is also a negative regulator of NF-κB signalling through 

deubiquitination of TNF receptor-associated factor 2 (TRAF2), TNF receptor-

associated factor 6 (TRAF6) and NF-kappa-B essential modulator (NEMO) (Sun, 

2010). 

CYLD has been previously associated with sensitivity to various anti-cancer agents 

including histone deacetylate inhibitors and gemcitabine (Yin et al., 2016, Kotantaki 

and Mosialos, 2016). Of particular relevance it has been associated with 2 of the 4 

induction regimen drugs: Daunorubcin (indirectly through its role in nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFkB) regulation) and 

dexamethasone (Wang et al., 1996, Urbanik et al., 2011, Bonapace et al., 2010). 

Dexamethasone treatment of ALL cells triggered autophagy-dependent cell death, 

involving necroptosis, and this required CYLD and Receptor-interacting protein (RIP-

1) kinase (Bonapace et al., 2010). My data suggests this may also be the case when 

dexamethasone is given as part of a 4-drug induction.   
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6.9.2.6 Nuclear factor kappa-light-chain-enhancer of activated B cells signalling components  

CYLD was not the only NF-κB associated gene to be enriched under VXLD 

treatment. TNF receptor-associated factor 2 (TRAF2), TNF receptor-associated 

factor 3 (TRAF3) and NFKB Inhibitor Alpha (NFKBIA) also appear in the top 20 most 

differentially enriched with VXLD treatment in vitro. Elements of the NF-κB pathway 

are required for response to chemotherapeutics. NFKBIA an inhibitor of NF-κB 

mediated inflammation is induced by dexamethasone (Reddy et al., 2009). Altered 

regulation in NF-κB signalling could be responsible for resistance to the VXLD 

combination.  

6.9.3 Selection of genes for validation  

The relevance of in vitro only genes may not hold true in an in vivo setting and 

conversely in vivo only targets could make validation a lengthier process as it 

requires co-cultures or in vivo modelling. Therefore, the first targets taken forward for 

validation were identified both in vitro and in vivo. The key aim of the screen was to 

identify genes conferring resistance to chemotherapy, for this reason initially focus 

was on where guides were depleted with VXLD treatment. From the 6 genes that 

were depleted both in vitro and in vivo, the first gene selected was BCL2L1. BCL2L1 

represented a prime candidate for T-ALL therapy since it was a known apoptotic 

regulator and had many interactions with other differentially changed genes in 

STRING interaction analysis. The second gene selected was HECTD2. As a ubiquitin 

ligase it is likely to have connections with the proteasome pathways, which were 

enriched among depleted genes in VXLD screening.  

6.9.4 Validation of BCL2L1 

6.9.4.1 BCL-X mRNA expression after VXLD treatment  

A single 72-hour treatment with VXLD treatment significantly increased mRNA levels 

of BCL-X in both HPB-ALL and DND41, this could indicate that in response to VXLD 

treatment cells are upregulating BCL-XL expression in order to protect against drug 

induced cell death. It remains to be seen how mRNA levels change over the course 

of drug treatment. Since the primers used for qRT-PCR did not distinguish between 

long and short isoforms, it remains unproven whether the increase in transcript is due 

to increased BCL-XL as opposed to the shorter pro-apoptotic form BCL-XS. 

Specifically measuring levels of the short and long forms would help address this and 

give an idea of the balance of the two, and if this differs with drug treatment. 
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Transcript levels are not always reflective of protein levels, so moving forward protein 

levels should be analysed, potentially over a time course. Examining levels of BCL-

XL/S in isolation may not be enough to fully understand the situation, a greater 

understanding of BCL-X and the interaction of BCL2 family members via BH3 

profiling may give provide additional crucial information. 

6.9.4.2 Treatment of HPB-ALL and DND41 with pan BCL2 inhibitor ABT-737 

The maximum reduction in fluorescence by resazurin assay was less than 20% in 

HPB-ALL, although like in DND41 addition of VXLD shifted the dose response curve 

to the left. The shift in response in DND41 was small, based on screening data we 

may have anticipated a greater effect of combining BCL-XL inhibition with VXLD 

treatment. Extending the concentration range of VXLD in relation to ABT-737 might 

highlight a range with a larger increase in effect. Both DND41 an HPB-ALL were less 

sensitive to ABT-737 than murine Tel-Jak2 driven T-ALL (90% reduction cell viability 

at 0.5µM) (Waibel et al., 2013). ABT-737 treatment alone is not effective in sub 

micromolar range but VXLD treatment increases response to ABT-737. 

The treatment of DND41 cells with ABT-737 induced apoptosis but there was no 

increase in apoptosis with addition of VXLD chemotherapy at 24 hours, despite the 

significant effect of VXLD addition indicated in resazurin assays. No apoptosis 

(above that seen in control) was observed in ABT-737 treated HPB-ALL. The lack of 

increase apoptosis when combining VXLD and ABT-737, despite dose response shift 

with VXLD could be due to: 

• alternative methods of cell death are involved 

• increased effect of VXLD is due to proliferative/cell cycle changes  

• drugs act sequentially instead of concurrently 

• we are not looking in the correct time window 

It is possible that BCL-XL is not being adequately inhibited by ABT-737. ABT-737 

binds to BCL2, BCL-XL and BCL-W, but displacement of BH3 only proteins by ABT-

737 is lower in BCL-W and BCL-X compared to BCL2 (Rooswinkel et al., 2012). ABT-

737 appears far more effective against BCL2, and it is suggested that BCL-XL may 

even contribute to ABT-737 resistance (Rooswinkel et al., 2012). A BCL-XL specific 

inhibitor such as A-1331852 should be assessed in combination with VXLD 

chemotherapy in T-ALL (Leverson et al., 2015). 
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Secondly, since it has been published in T-ALL that inhibition of mTORC1 lowered 

MCL-1 levels and sensitised cells to orally bioavailable form of ABT-737- ABT-263 

(known as Navitoclax) (Dastur et al., 2019. Analysing the expression of MCL-1 and 

mTORC1 activity in HPB-ALL and DND41 may explain their response to ABT-737. 

6.9.4.3 BCL-X knockdown impairs leukaemic cell fitness especially under VXLD treatment 

Knockdown of BCL-X (both long and short isoforms) with shRNA in HPB-ALL showed 

that these cells have reduced fitness compared to cells without BCL-X knockdown. 

This effect was amplified by the addition of VXLD chemotherapy. In DND41 cells 

knockdown of BCL-X had only minimal effect on the fitness of the cells, until VXLD 

treatment was applied. Knockdown cells were rapidly lost in a competitive assay with 

VXLD treatment.  

Since the ultimate goal would be to inhibit targets that drive chemo-resistance, a 

knockdown experiment was performed. As proof of principle induced overexpression 

of BCL-XL and determining increasing resistance to VXLD (as a combination or 

individual agents) would help solidify the role of BCL-XL in resistance to induction 

therapy  

6.9.4.4 BCL2L1 validation summary  

BCL-X knockdown impairs leukaemic cell fitness especially under VXLD treatment 

should biological replicates confirm this trend this would provide evidence for the role 

of BCL-XL in cells surviving VXLD chemotherapy in HPB-ALL and in doing so confirm 

the validity as a true target identified through this work. Future work will see if 

inhibiting BCL-XL across other T-ALL samples including patient and patient derived 

xenograft samples.  

6.9.5 HECTD2 validation  

6.9.5.1 HECTD2 transcript levels after VXLD treatment  

HPB-ALL did not show significant increase in HECTD2 expression after 72 hours of 

treatment with VXLD. In DND41 cells I did observe a significant increase in HECTD2 

expression, which was accompanied by an increase in PIAS1 expression. It is still 

untested (due to time constraints) what occurs on a protein level. Protein levels of 

HECTD2 could be elevated through alternative means than mRNA upregulation for 

instance via increased protein stabilisation.  
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6.9.5.2 HECTD2 knockdown and competitive assay  

DND41 and HPB-ALL responded differently to HECTD2 knockdown despite a similar 

relative reduction in mRNA expression. Confirmation of protein level knockdown may 

shed light on this. If insufficient knockdown of HECTD2 remains a cause for concern 

an alternate method to reducing HECTD2 protein could be considered such as a 

CRISPR based approach. Generation of HECTD2 CRISPR knockout in HPB-ALL 

and subsequent investigation into cell survival, proliferation and response to VXLD 

may be required to validate this target.  

6.9.5.3 HECTD2 summary  

At this point HECTD2 cannot be confirmed or ruled out as important in proliferation or 

maintenance of HPB-ALL cells, nor in the resistance of HPB-ALL to chemotherapy. If 

repetition of HECTD2 knockdown in DND41 confirmed the results achieved so far, 

we could infer a role of HECTD2 in DND41. Cell cycle and cell death should be 

assessed to identify why HECTD2 knockout cells were competitively lost.  

HECTD2 is part of wider area of interest in ubiquitination and proteasome mediated 

degradation that was highlighted during screening as important in resistance to 

therapy.   

 Chapter summary  

The aim was to identify genes that confer sensitivity or resistance to VXLD 

chemotherapy. 

• Several genes were identified as having potential roles in resistance to 

chemotherapy 

•  BCL2L1 and HECTD2 were further investigated for their roles. 

•  BCL2L1 validation work helped give further evidence towards its role in 

chemo resistance 

• Pathways were identified as having potential roles to induction resistance  

This screen has highlighted key genes in interconnecting signalling pathways that are 

of importance in response to chemotherapeutics. Some pathways were already 

implicated in resistance in T-ALL(such as Ras signalling and multidrug transporters) 

and the screen provides further support for their role, and some of which have not 

necessarily been studied in the context of T-ALL previously (like NFkB). By better 
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understanding these genes and pathways, we can learn more about how resistance 

develops, and therefore how to overcome it.  
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Chapter 7. Discussion  

This final chapter takes an overview of the whole project. Several factors are 

addressed: 

• how the work relates to similar studies and the unique parts afforded by the 

approach taken  

• the importance and wider impacts of this work from both data that was 

generated, and the methodology used 

• limitations to the approach and potential amendments 

• how this work can be continued 

Lastly the chapter and this thesis concludes by addressing the following question: 

• have the project aims been met?  

 Comparison of this work to similar studies  

There are different approaches used to identify drug resistance mechanism from 

screening-based approaches using RNAi or more recently with CRISPR 

technologies, to comparing RNA, protein or even chromatin in treated and non-

treated settings. Identification of resistance mechanisms is often performed in the 

context of a single drug, and there are limited publications on such works in T-ALL. 

Three studies in T-ALL which focus on identification of drug resistance in T-ALL are 

discussed and how the approaches differ from the work presented in this thesis.  

7.1.1 Exome and whole genome sequencing of patients and correlation with 

clinical steroid response 

Exome and whole genome sequencing of T-ALL patients was performed in order to 

identify mutations. Mutation data was then put in context of clinical data and steroid 

responsiveness. This approach can identify pathways where mutations play a key 

role in resistance but may miss genes and pathways where resistance stems from 

transcriptional changes, splicing, methylation or protein stabilisation. They show 

JAK1 and KRAS mutations to be associated with steroid resistance and poor 

outcome (Li et al., 2016).Interestingly they also show steroid resistance to be 

associated with MEK-ERK activation , and upregulation of MCL1 and BCL-XL(Li et 

al., 2016).These findings are in keeping with what I observe with both Ras signalling 
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and BCL-XL being identified (see 6.7 and 6.9.2) taking what initially noted in the 

context of steroid response, and indicating a wider role in resistance to induction 

therapy.  

7.1.2 Differential expression analysis from in vivo treated samples 

A study published by Samuels et al describes the use of induction regimen drugs in 

vivo to produce resistance in patient derived xenograft material, and the subsequent 

identification of changes in gene expression compared to xenografts from non-

treated animals (Samuels et al., 2014b). Gene expression profiling identified 

differences in lipid biosynthesis (particularly sterols) and carbohydrate metabolism. 

They then use simvastatin an inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A 

reductase (HMGCR -a rate-limiting enzyme in cholesterol synthesis) and a drug used 

in the treatment of high cholesterol to treat xenografts (Pietro et al., 1989). Although 

they study concluded simvastatin did not ultimately sensitise cells to VXLD treatment, 

lipid signalling may still play a role in resistance to VXLD therapy, and my data 

similarly showed sphingolipid signalling among pathways depleted with VXLD 

treatment.  

Whilst I took inspiration from this work in the development of the in vivo induction 

regimen treatment, this approach to screening has many drawbacks.  Generation of 

resistant cells was required for analysis and this was not achieved for all samples. 

Patient derived samples are potentially highly clonal, and you only determine 

average gene expression.  Different clones can possess different mutational 

backgrounds with varying gene expression signatures, which can make establishing 

if changes in bulk RNA expression is due to different clonal representation or due to 

compensatory signalling in cells due to drug exposure. Gene expression was 

measured at a single timepoint, the levels of expression may however change during 

drug treatment, leading to issue about selecting an appropriate time window. This 

approach focuses on expressed genes, there are however many mechanisms of 

altering gene function. A CRISPR based approach has a much wider scope.   

7.1.3 Genome wide CRISPR screen with asparaginase treatment  

Perhaps the most similar screen to my work is the screen performed by Hinze et al, 

2019. They aimed to identify pathways involved in resistance to one of the induction 

regimen agents, namely asparaginase. They performed a genome wide CRISPR 

screen on the asparaginase resistant T-ALL cell line CCRF-CEM with asparaginase 
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treatment to identify synthetically lethal targets. They identified depletion of negative 

regulators of Wnt signalling Naked cuticle 2 (NKD2) and Leucine Rich Repeat 

Containing G Protein-Coupled Receptor 6 (LGR6) under asparaginase treatment and 

concluded that Wnt pathway activation is required for sensitisation to asparaginase 

(Hinze et al., 2019).  

Since my drug treatment also includes asparaginase, I checked to representation of 

Wnt pathway components to verify if any of the mentioned depleted genes in their 

study were similarly depleted with VXLD treatment. My findings were not consistent 

and neither Wnt pathway components nor Asparagine synthetase (ASNS) (used as a 

positive control in their study) appeared in my data. HPB-ALL is however sensitive to 

asparaginase. Hypermethylation of ASNS leads to decreased ASNS expression and 

greater asparaginase sensitivity (Touzart et al., 2019). HPB-ALL has been shown to 

have a highly methylated ASNS promoter and low ASNS levels (Serravalle et al., 

2016). With an already highly methylated ASNS gene- no functional impact of 

knocking out ASNS is to be expected in this setting. They also present a role for the 

inhibition of proteasomal degradation in resistance to asparaginase, similarly in my 

work I observe a differential depletion under VXLD of guides targeting the 

proteasomal pathway.  

The work presented within this thesis is differentiated from the work published by 

Hinze et al by one crucial factor- they present data from a single agent screen. This 

work is unique in that it uses multi-agent chemotherapy.  

7.1.4 Unique points of this work  

There are only a handful of screens published in the field of T-cell acute 

lymphoblastic leukaemia, and even fewer where the focus is on identification of 

mechanism of drug resistance. Using CRISPR technology over older technologies 

such as RNAi, allows for consideration of a much wider range of targets, not just 

those controlled by regulation of gene expression. The most crucial difference is the 

use of multi-agent chemotherapy which better reflects the clinical scenario for 

childhood ALL treatment as opposed to a single agent.  

 Contributions to our current understanding of T-ALL 

The ultimate goal for treatment of relapse and refractory T-ALL is to identify an 

actionable target that can be used with concurrent chemotherapy. Although this is 

still a work in progress, through this project we have progressed our understanding of 
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resistance to induction therapy and identified potential targets of interest. The 

creation of a treatment regimen reflecting induction therapy combined with CRISPR 

screening has set a new standard for investigating resistant disease. Many essential 

steps have been accomplished towards a better understanding and hopefully 

ultimately a better treatment of T-ALL.  

7.2.1 Pathways identified 

Genes with a role in resistance to VXLD chemotherapy have been identified from the 

differential enrichment and depletions of sgRNAs under drug treatment. Lists of 

genes identified were also analysed to highlight pathways of interest. The wider 

impact of some of the pathways mentioned in the preceding chapter is given below.  

7.2.1.1 Multi-drug transporters 

Winter et al previously demonstrated that vincristine resistance was mediated by 

ABCC1, the upregulation of ABCC1 also resulted in resistance to daunorubicin and 

prednisolone but not asparaginase (Winter et al., 2013). In cases of ABCC1 

mediated resistance to chemotherapy- asparaginase could still be used in any new 

combinations and plays an ever more important role in conventional ALL regimens. 

7.2.1.2 Cell cycle 

Inhibitors of cell cycle control genes have entered the clinical arena. With the ongoing 

trial of a CDK4/6 inhibitor Palbociclib in KMT2A (MLL) re-arranged leukaemias, cell 

cycle inhibition has generated therapeutic interest (NIH, 2019). Palbociclib treatment 

of T-ALL cell lines dramatically reduced proliferation in vitro and delayed disease 

progression in vivo (Sawai et al., 2012). Another CDK4/6 inhibitor Ribociclib was 

investigated alongside chemotherapeutics in T-ALL samples. Ribociclib was an 

antagonist when given alongside asparaginase and doxorubicin, but synergistic with 

dexamethasone-highlighting the need to understand the role of the cell cycle under 

combination chemotherapy (Pikman et al., 2017).  

The screen identified CCNA2 cyclin A2 (which binds CDK1 and CDK7). In this case- 

an inhibitor such as Dinaciclib (CDK1, CDK2, CDK5 and CDK9 inhibitor), may be 

more beneficial than CDK4/6 inhibitor Palbociclib.  

7.2.1.3 Ras signalling  

The identification of Ras signalling has direct relevance to the current treatment of 

relapsed and refractory T-ALL- due to the ongoing SeluDex trial. The SeluDex trial is 
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testing the safety and then the efficacy of selumetinib (a MEK inhibitor) with 

dexamethasone in relapsed and refractory ALL patients (children and adults) with 

Ras pathway mutations (NIH, 2019). This trials has stemmed from work showing in 

vitro and in vivo  ALL samples with Ras pathway mutations are sensitive to MEK 

inhibition, and that a synergism if observed between selumetinib and dexamethasone 

(Matheson et al., 2019, Irving et al., 2014). 

7.2.1.4 Proteasome and ubquitination 

The reversible 26S proteasome inhibitor Bortezomib was first approved for treatment 

of multiple myeloma in 2003 (Field-Smith et al., 2006). Bortezomib has displayed 

synergism with dexamethasone and additivity with other chemotherapeutics in ALL in 

vitro and was recently trialled with re-induction therapy in high risk ALL patients at 

relapse (Horton et al., 2006) (Horton et al., 2019). The trial had encouraging 

response rates for T-ALL at 68% (Horton et al., 2019). The role of the proteasome in 

resistance therefore has direct relevance to the current clinical advances. The 

screening data would suggest that proteasome inhibition may overcome resistance to 

induction in T-ALL-which may explain the favourable response rates seen clinically. 

An ongoing trial will assess the benefit of adding Bortezomib to combination 

chemotherapy in newly diagnosed childhood T-ALL patients, it will be interesting to 

see if this will reduce the percentage of patients with high MRD at end of induction 

(NIH, 2019). 

Unfortunately, promising results clinically has not been without toxicity. Substantial 

toxicity has been noticed with Bortezomib use with greater than 55% of patients 

having Grade 3 or 4 neutropaenia or thrombocytopaenia, non-haematological 

toxicities included gastrointestinal symptoms, metabolic abnormalities and infections 

(Horton et al., 2019). Development of inhibitors against specific ubiquitin ligases, 

could provide an alternative to proteasome inhibition and could help reduce toxicity. 

Using the generated screening data to devise a proteomic based approach to 

characterise ubiquitination in response to induction treatment could identify more 

specific targets, and provide alternatives to proteasome inhibition.  

7.2.1.5 BCL-XL 

The apoptotic regulator BCL-X was identified through screening and has 

subsequently been shown to be important in helping cells survive VXLD treatment in 

two T-All cell lines. BCL-XL is readily targetable with drugs, some of which have 
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already undergone clinical testing. Further investigations will test the hypothesis that 

concurrent treatment with BCL-X inhibitors can be used to treat induction regimen 

resistant T-ALL.  

7.2.2 Methodology  

This work has provided more than just the data output, it has set out a framework for 

similar studies.  

We have seen how combinations of drugs can be selected in vitro via individual 

agent cytotoxicity assays and combination drug matrices. This work has 

demonstrated the complexity of selecting appropriate doses of chemotherapeutics 

when using them in combination therapies, and it shows the potential of being guided 

by clinical pharmacokinetics to select the optimum drug ratios. 

We have established a VXLD treatment regimen in Rag2-/- gamma c-/- mice that 

reduces leukaemic burden and extends the lifespan of engrafted mice. The in vivo 

induction regimen model can be of great use in a range of different contexts from 

comparing VXLD backbone to new therapies, to generation of VXLD resistant 

samples. 

We show an established screening protocol from introduction of library right through 

to next generation sequencing results. The screening stages and planning involved is 

of use to other future screens be they CRISPR or RNAi, genome wide or targeted. 

 Study limitations and suggested modifications  

Despite the success of this work, one must remain mindful of the limitations to the 

work and of the changes that could improve the work further. 

7.3.1 Replicates  

One of the limitations of my study is the lack of replicates, since this limits the 

meaningful statistical analyses that can be performed and increases the risk of false 

positive results. Whilst this is rectifiable given additional time and funding in vitro, in 

vivo this requires the use of many additional animals- which is of concern from an 

ethical standpoint.  

As our ability to model the complex interactions occurring between leukaemia and 

the niche, moving out of mice and into ex vivo models will allow a more ethical way of 

conducting large screens with replicates. An alternative strategy is to firstly perform 
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genome wide screening in vitro and follow this with a smaller targeted in vivo screen. 

Smaller libraries allow for easier library coverage and more replicates whilst keeping 

the number of animals required low. Individual animals can then be used as 

replicates and do not require combined analysis for coverage. The drawback of 

preforming in vitro screening initially is you risk missing out on niche specific targets. 

To mitigate this effect potential niche related targets should be derived from other 

sources (such as analysis of compartmental specific expression). 

7.3.2 Interpretation of patient drug exposure 

The second key consideration is the doses of each drug in VXLD used. Incorrect 

scaling of the drugs can lead to identification of resistance genes associated with a 

single predominating drug. Whilst we took time to try an appropriately select drug 

concentrations comparable to patient plasma Cmax we did not consider total drug 

exposure (area under the curve). Adjusting dosing to better reflect the total drug 

exposure levels found clinically, could further improve our model of induction therapy.  

7.3.3 Considering toxicity  

We have yet to establish how the addition of drugs to a VXLD backbone may 

increase toxicity, both in our in vivo model and clinically. Drugs that have been 

trialled in a clinical setting will have known toxicity profiles and may have been used 

alongside chemotherapy, for these we can form predictions. For newer agents 

predicting toxicity (especially in combination therapy) may prove difficult. Integrating 

screening information on a range of non-malignant cells, could help us avoid targets 

with potential for high toxicity. Toxicity of new compounds could also be measured in 

combination with VXLD in our in vivo VXLD model.  

 Future work  

The screen has generated vast amounts of data. Moving forward there are many 

alternate routes you could follow; I therefore present two key areas moving forward. 

Firstly, to conclude the validation work on BCL-XL to finalise had have a proven 

successful target. The second is to integrate the screen results with other data, which 

will help strengthen the current work and help focus future experiments.  

7.4.1 Finalise validation of BCL-XL  

To date, BCL-X knockdown and competitive assays have been performed in two T-

ALL cell lines HPB-ALL and DND41, with expression measured at RNA level for 
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both. In addition, BCL-X expression should be assessed at a protein level. The effect 

of BCL-X specific inhibitor A-1331852 in HPB-ALL and DND41 will be assessed by 

resazurin assay and annexin v staining with and without VXLD.  Thus far the effect of 

BCL-XL knockdown has been assessed, to help solidify the hypothesis that BCL-XL 

drives chemo-resistance the opposite should be performed. Overexpression and 

subsequent assessment of chemo-resistance should be performed.  

After completion of validation in these two cell lines, the validation will be expanded 

with a panel of T-ALL cell lines of differing genetic backgrounds. Lastly, the role of 

BCL-X should be assessed in patient derived material. PDX material transduced with 

shRNA vectors against BCL-X and NTCs could be injected into mice and then in vivo 

VXLD treatment applied to determine if BCL-X deficient cells are outcompeted. 

Response to BCL-X inhibitors should also be assessed in an in vivo setting in 

combination with VXLD treatment. 

BCL-XL is part of a family of apoptotic regulators, although BCL2L1 targeting guides 

were the most differentially depleted in HPB-ALL cells this does not discount a role 

for of BCL2 family members. Expanding the research into other BCL2 family 

members would be of benefit, since not all T-ALLs may respond to BCL-XL inhibition 

and this could also be of benefit when considering mechanism of resistance to 

pharmacological inhibition of BCL-XL.        

7.4.2 Integrate screen with other data  

Many other successful screening strategies have benefitted from multiple data types 

feeding into the analysis and interpretation of results. The screen has generated vast 

amounts of data. To help filter and select potential drug targets, RNA sequencing of 

T-ALL patients will be used to identify changes in gene expression found in patients 

with relapsed and refractory ALL compared to those that respond well to induction 

therapy.  

Many other successful screening strategies have benefitted from multiple data types 

feeding into the analysis and interpretation of results. The screen has generated vast 

amounts of data. To help filter and select potential drug targets, RNA sequencing of 

T-ALL patients will be used to identify changes in gene expression found in patients 

with relapsed and refractory ALL compared to those that respond well to induction 

therapy.  
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 Conclusions  

The key aims of all this work have been met and this work has made significant 

progress towards the goal to identify a therapeutically actionable target to treat 

relapsed and refractory T-ALL that can be implemented with concurrent 

chemotherapy. The aims were met as follows: 

• HPB-ALL was identified as a suitable cell line for screening, it fits desired 

characteristics for a diploid cell line, with patient relevant genetic aberrations 

and engrafts in mice to produce a systemic disease (chapters 3 and 4) 

• A matrix assay combined with clinical information regarding plasma Cmax of 

drugs helped select appropriate doses of each induction drug in vitro (chapter 

3)  

• An in vivo VXLD dosing regimen that is tolerable and efficacious at reducing 

leukaemic burden was established (chapter 4) 

• Each process in performing the screen from lentivirus generation through to 

cleaned pooled PCR product was checked and optimised (chapter 5) 

• MAGEcKFlute was used to identify differential enrichment and depletion of 

guides under VXLD treatment, from which genes and pathways associated 

with resistance to VXLD chemotherapy were identified (chapter 6)  

Overall, this CRISPR screen has provided much needed insight into resistance to 

induction therapy in T-ALL and is unique in its incorporation of all 4 induction regimen 

drugs.  
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Appendix A Intersected gene lists 

Differentially enriched genes (intersection of in vitro and in vivo screening)  

ACADSB ACOX1   ATXN7   BRD8    CAPN9   CHST13  COX17   CPD     CXCR4   

DLGAP2  EFCAB6  EIF4E  FAM104A GPHB5   GRID1   GTPBP2  HEATR3  HIC2    

IPO8    KCNC1   KLRG1   MARCH5  MIS18A  NDUFS8  OR1L8   PAEP    PDE6A   

POLE    PPP1R1C PSMA6   RNF145  RPL38   RPS10   RYR3    SEC23IP SFMBT1  

SLCO1B7 SNRPD3  SSR1    TAF5L   TIRAP   TRAP1   TXN     U2AF1   UBA6    

VAT1L   VRK3  

Differentially depleted genes (intersection of in vitro and in vivo screening)  

BABAM1 BCL2L1 CTU1 GABBR2 HECTD2 ZFP69 
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Appendix B Published abstract 

POSTER SESSION II: ACUTE LYMPHOBLASTIC LEUKEMIA – BIOLOGY & TRANSLATIONAL 
RESEARCH 

PS933 DISCOVERING PATHWAYS INVOLVED IN RESISTANCE TO INDUCTION 

THERAPY IN T-ALL TO TREAT REFRACTORY AND RELAPSED DISEASE 

Beckett, M.1; Shi, Y.1; Blair, H.1; Nakjang, S.1; Tirtakusuma, R.1; Szoltysek, K.1; Krippner-
Heidenreich, A.2; Heidenreich, O.2; van Delft, F.W.1 

1Northern Institute for cancer research, Newcastle University, Newcastle upon Tyne, United Kingdom 

2Haemato-oncology, Prinses Máxima Centrum voor kinderoncologie, Utrecht, Netherlands 

HemaSphere: June 2019 volume 3 Issue S1 p420  

Background:  

Survival for acute lymphoblastic leukaemia has increased over the last 50 years giving us around 80% survival in 
paediatric patients. These good results can be attributed to the refinement and response driven administration of 
intensive chemotherapy regimens. Despite the overall good survival, for patients with relapsed or refractory disease 
the outcome remains poor. Vincristine, Dexamethasone, Asparaginase and Daunorubicin (VXLD) form the 
cornerstones of T-ALL induction therapy. Response to induction therapy is predictive for outcome. Identifying 
pathways that contribute to resistance to induction chemotherapy will help identify novel drug targets that could 
improve the efficacy of treatment for patients with poor response to current therapy.  

Aims:  

We aim to identify new drug targets in pathways involved in resistance to improve remission rates and outcomes for 
patients with refractory and relapsed T-ALL.  

Methods:  

We use an orthotopic xenograft model of T-ALL and a four-drug treatment regimen based upon current T-ALL therapy 
to mimic the clinical setting. T-ALL cells were transduced with a genome wide knock out library prior to long term in 
vitro culture or intra-femoral injection into immunocompromised mice. T-ALL cells were harvested from cultured 
cells and from murine bone marrow to extract DNA for PCR amplification of guide containing regions. Next generation 
sequencing was used to determine representation of guides after VXLD treatment. The population of guides of cells 
retrieved from drug treated cells was compared to baseline samples and vehicle control treated mice in order to 
ascertain which guides are enriched or depleted by chemotherapeutic pressure.  

Results:  

We demonstrated the potential of identifying resistance mechanisms through combining the use of a clinically 
relevant multi agent chemotherapy regimen and concurrent CRISPR screening. Our pilot studies showed T-ALL 
induction therapy increases the survival of T-ALL engrafted mice and reduces leukemic burden. Relevant to the aim of 
this project, the administration of VXLD treatment resulted in differential sgRNA representation compared with 
control treatment, allowing us to explore mechanisms of drug resistance to conventional induction chemotherapy. We 
have already analysed the initial sequencing results which showed good quality reads as well as guide and library 
coverage. We observed enrichment of sgRNAs targeting the tumour suppressor PTEN in a cell line with wild type 
PTEN function suggesting that activation of PI3K/AKT/mTOR signalling provides proliferative advantage in this 
experimental setting. We also identify pathways associated with differentially expressed sgRNAs, including those 
linked to checkpoints in T-cell development. Their functional role and suitability as additional drug targets will be 
explored further.  

Summary/Conclusion:  

We used a genome wide knock out CRISPR library whilst applying chemotherapeutic pressure in vitro and in vivo 
conditions to identify pathways which may contribute to drug resistance to T-ALL induction therapy. Future work will 
focus on validation of differential sgRNA expression underlying these drug resistance mechanisms and ultimately 
improve efficacy and reduce toxicity of induction treatment. 
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