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Abstract 

 

The corneal epithelial cells are constantly replaced by the stem cells located at the 

limbus, the peripheral edge of the cornea, therefore known as limbal stem cells 

(LSCs). LSCs can be destroyed by numerous factors which results in the condition 

called limbal stem cell deficiency (LSCD). 

Ex vivo expansion of LSCs is a well-established technique used successfully to cure 

patients with LSCD. Therapeutic use of LSCs must be performed in compliance with 

good manufacturing practice (GMP) as a quality assurance system. However, 

traditional culture media for ex vivo expansion of LSCs contains a number of 

ingredients derived from animal sources which may compromise its safety profile for 

human transplantation. The first aim of the study was to define new GMP grade 

medium for cultivation and maintenance of LSCs in vitro. Formulation of new GMP 

compliant media resulted in equal growth to non-GMP grade media.  

Strick regulations for cell therapy promote centralization of culture units, therefore 

definition of reliable and practical transportation strategies is vitally important. The 

second aim of this study was to optimise the transport conditions for limbal biopsies 

(LBs) and cultured limbal epithelial cells (LECs). Transport of LBs at room 

temperature proved to be significantly superior to 4°C transport. We also showed that 

cultured LECs may be stored in serumfree media and transported up to 7 days at 

23°C without any negative effect on cell number, viability, colony forming efficiency or 

gene expression profile. 

Due to the absence of specific LSC markers, identification and isolation of putative 

LSCs is a complicated task. The third and final aim of this study was to identify novel 

cell surface markers for LSCs. We reported herein the identification of a new cell 

surface marker for LSCs (CD200) as well as a cell surface marker for proliferating 

progenitor cells (CD109). 

 

 

 



IV 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 

Acknowledgements 

I would like to firstly thank my supervisors Prof. Majlinda Lako and Prof. Franciscko 

Figueiredo for their support, direction and encouragement.  

I would like to thank all at the Institute of Human Genetics for all their help, advice 

and support, in particular my colleagues in the Stem Cell Laboratory.  

I sincerely thank to all the people who generously donated their tissues for research 

so that future generations can benefit from their benevolence.  

At the end, I would like to thank my family for their unconditional support and faith in 

me.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VI 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII 
 

Declaration 

I confirm that no part of the material offered has previously been submitted by me for 

a degree in this or any other University. Material generated through joint work has 

been acknowledged and appropriate publication cited. In all other cases, material 

from the work of others has been acknowledged, and quotations and paraphrases 

suitably indicated. 

 

Signature: 

 

Sanja Bojic  

 

Date:    19th March 2020 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

Statement of Copyright 

The copyright of this thesis rests with the author. No quotation from it should be 

published without prior written consent, and the information derived from it should be 

acknowledged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XI 
 

Table of Contents 

Chapter 1. Introduction 1 

1.1 Corneal structure and function 1 

1.2 Corneal epithelial stem cells 8 

1.2.1 Stem cells 8 

1.2.2 Limbal stem cells 12 

1.2.3 Location of limbal stem cells 13 

1.3 Limbal stem cell niche 16 

1.4 Corneal epithelial cell turnover 21 

1.5 Characteristics of limbal stem cells 22 

1.6 Molecular markers of limbal stem cells 24 

1.6.1 p63 27 

1.6.2 Cytokeratins 29 

1.6.3 Connexin 43 and Connexin 50 29 

1.6.4 C/EBPδ and Bmi1 30 

1.6.5 ABCG2 and ABCB5 30 

1.6.6 PAX6 and WNT7A 31 

1.6.7 Notch-1 32 

1.6.8 RHAMM/HMMR 32 

1.6.9 Periostin 32 

1.7 Limbal stem cell deficiency 33 

1.7.1 Etiology and classification of LSCD 34 

1.7.2 Presentation of LSCD 37 

1.7.3 Diagnosis of LSCD 39 

1.7.4 Management of LSCD 42 

1.7.5 Surgical treatment of LSCD 44 

1.7.6 LSCD cell-based therapies 46 

Chapter 2. Cultivation of LSCs under good manufacturing practice (GMP) 

conditions 53 

2.1 Introduction 53 



XII 
 

2.1.1 Regenerative medicine and cell therapy 53 

2.1.2 Hurdles to produce ATMPs under GMP conditions 55 

2.1.3 Limbal stem cell therapy 59 

2.1.4 Basic concepts of epithelial cell culture 60 

2.1.5 LSC culture techniques 65 

2.1.6 Scaffolds for LSC transplantation 66 

2.1.7 Cultivation of LSCs under GMP conditions 67 

2.1.8 Aim of the study 68 

2.2 Material and Methods 68 

2.2.1 Human donor tissue 68 

2.2.2 Cell culture 69 

2.2.3 Colony forming efficiency (CFE) assay 73 

2.2.4 Immunofluorescence 74 

2.2.5 Statistical analysis 75 

2.3 Results 75 

2.3.1 Growth rate in limbal explant epithelial cells expanded in traditional and 

GMP grade medium 75 

2.3.2 Cell number and viability in limbal explant epithelial cells expanded in 

traditional and GMP grade medium 76 

2.3.3 Morphology of colonies derived by cells expanded in traditional and GMP 

grade medium 78 

2.3.4 CFE assay in limbal explant epithelial cells expanded in traditional and 

GMP grade medium 79 

2.3.5 Expression of stem cell related and differentiation markers in limbal explant 

epithelial cells expanded in traditional and GMP grade medium 79 

2.3.6 Growth rate, CFE and expression of putative LSC and corneal epithelial 

cell markers in limbal explant epithelial cells expanded in different media 81 

2.4 Discussion 84 

2.5 Conclusion 87 

Chapter 3. Transport 89 

3.1 Introduction 89 

3.1.1 Current preservation strategies in different stages of the production 

process of bio-engineered limbal epithelial sheets 93 



XIII 
 

3.1.2 Aims of the study 97 

3.2 Material and Methods 98 

3.2.1 Human donor tissue 98 

3.2.2 Transport of the starting material: limbal biopsies’ transport simulation 98 

3.2.3 Transport of the final cell product: limbal epithelial sheets’ transport 

simulation 99 

3.2.4 Tissue analysis after transport simulations 99 

3.2.5 Statistical analysis 99 

3.3 Results 100 

3.3.1 Limbal explant growth rate, cell number, viability and CFE after LBs 

transport simulation 100 

3.3.2 Limbal epithelial cell marker expression after LBs transport simulation 105 

3.3.3 Limbal explant growth rate, cell number, viability and colony forming 

efficiency after final product transport simulation 110 

3.3.4 Limbal epithelial cell marker expression after final product transport 

simulation 115 

3.4 Discussion 119 

3.5 Conclusion 124 

Chapter 4. Towards identification of novel limbal epithelial stem cell surface 

markers 125 

4.1 Introduction 125 

4.1.1 Challenges in LSC therapy 125 

4.2 Material and methods 132 

4.2.1 Corneal tissue 132 

4.2.2 Single cell culture of human limbal epithelium on 3T3-J2 feeder layers 133 

4.2.3 Limbal epithelial cell surface marker screening 135 

4.2.4 Calcium induced differentiation 137 

4.2.5 Flow cytometry analysis and FACS 138 

4.2.6 Colony-forming efficiency and clonal assay 139 

4.2.7 Fluorescence Immunohistochemistry and Microscopy 140 

4.2.8 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT- 

PCR) 140 

4.2.9 Cell proliferation assay 142 



XIV 
 

4.2.10 Hoechst 33342 and Pyronin Y Staining for G0/G1 Separation 143 

4.2.11 siRNA Transfection 143 

4.2.12 Statistical Analysis 144 

4.3 Results 145 

4.3.1 Flow cytometric based cell surface screening of limbal epithelial cell 

cultures 145 

4.3.2 The expression of CD109 in human limbal epithelial cell cultures, human 

and murine corneas 146 

4.3.3 Colony forming efficiency and proliferative ability of CD109+ cells 149 

4.3.4 The expression of CD200 in human limbal epithelial cell cultures, human 

and murine corneas 152 

4.3.5 Colony forming efficiency and proliferative ability of CD200+ cells 156 

4.3.6 The expression of LSC markers in the CD109 and CD200 positive and 

negative populations 159 

4.3.7 CD200 siRNA transfection 161 

4.4 Discussion 164 

4.5 Conclusion 168 

 

 

 

 

 

 

 

 

 

 

 



XV 
 

Figures  

Figure 1.1 The location of the limbus on the ocular surface ....................................... 3 

Figure 1.2 Schematic diagram of a sagittal section of the anterior portion of the 
human eye (left) and corneal structure (right).............................................................. 7 

Figure 1.3 Adult stem cells, types and examples ........................................................ 8 

Figure 1.4 Asymmetric cell division .......................................................................... 10 

Figure 1.5 The hierarchy of cells in the adult stem cell system including the corneal 
epithelium .................................................................................................................. 11 

Figure 1.6 The Palisades of Vogt ............................................................................. 18 

Figure 1.7 Simplified model of the LSC niche and niche cells .................................. 20 

Figure 1.8 The X, Y, Z hypothesis of corneal epithelial maintenance ....................... 22 

Figure 1.9 Clinical signs of limbal stem cell deficiency ............................................. 38 

Figure 2.1 Phase contrast micrographs of typical holoclones showing closely 
packed, small cells that pile up around the edge of the colony.................................. 63 

Figure 2.2 Phase contrast micrographs of typical meroclones with small cells around 
the edge of the colony and larger, flatter cells in the centre ...................................... 64 

Figure 2.3 Phase contrast micrographs of typical paraclones, a small terminal-
looking colony with irregular borders ......................................................................... 65 

Figure 2.4 Examples of explant growth rate monitoring ............................................ 72 

Figure 2.5 Schematic representation of an explant outgrowth and its different zones
 .................................................................................................................................. 73 

Figure 2.6 Schematic graph showing the area of explant outgrowth (mm2) on 
different days of culture for the explants cultivated in non GMP and GMP grade 
medium ..................................................................................................................... 76 

Figure 2.7 Cell numbers per zone of outgrowths cultivated in non GMP and GMP 
grade medium. .......................................................................................................... 77 

Figure 2.8 Cell viability per zone of outgrowths cultivated in non GMP and GMP 
grade medium ........................................................................................................... 77 

Figure 2.9 Appearance of colonies per zone of outgrowths cultivated in non GMP 
and GMP grade medium ........................................................................................... 78 

Figure 2.10 The colony forming efficiency of cells from different zones of outgrowths 
cultivated in non GMP or GMP grade medium .......................................................... 79 

Figure 2.11 Expression of putative LSC and epithelial cell markers in non GMP and 
GMP grade media assessed by immunofluorescent microscopy. ............................. 80 



XVI 
 

Figure 2.12 Schematic graph showing the area of explant outgrowth (mm2) on 
different days of culture for the explants cultivated in different media ....................... 82 

Figure 2.13 The colony forming efficiencies and expression of putative LSC and 
corneal epithelial cell markers of outgrowths cultivated in different media ................ 83 

Figure 3.1 Simplified scheme of multi-centre study organisation ............................. 90 

Figure 3.2 Experimental design ............................................................................... 97 

Figure 3.3 Limbal epithelial cell growth across different LBs transport condition 
groups ..................................................................................................................... 101 

Figure 3.4 Number of cells and cell viability per zone of limbal outgrowths after limbal 
biopsies transport simulation .................................................................................. 102 

Figure 3.5 Colony forming efficiencies per zone of limbal outgrowths after limbal 
biopsies transport simulation .................................................................................. 104 

Figure 3.6 Expression of putative limbal stem cell marker ΔNp63 per zone of limbal 
outgrowths after limbal biopsies transport simulation ............................................. 106 

Figure 3.7 Expression of corneal differentiation marker Cytokeratin 3 per zone of 
limbal outgrowths after limbal biopsies transport simulation ................................... 108 

Figure 3.8 Expression of corneal differentiation marker Connexin 43 per zone of 
limbal outgrowths after limbal biopsies transport simulation ................................... 109 

Figure 3.9 Limbal epithelial cell growth across different final product transport 
condition groups ..................................................................................................... 111 

Figure 3.10 Number of cells and cell viability per zone of limbal outgrowths after final 
product transport simulation .................................................................................... 113 

Figure 3.11 Colony forming efficiencies per zone of limbal outgrowths after final 
product transport simulation .................................................................................... 114 

Figure 3.12 Expression of putative limbal stem cell marker ΔNp63 per zone of limbal 
outgrowths after final product transport simulation ................................................. 116 

Figure 3.13 Expression of corneal differentiation marker Cytokeratin 3 per zone of 
limbal outgrowths after final product transport simulation ....................................... 117 

Figure 3.14 Expression of corneal differentiation marker Connexin 43 per zone of 
limbal outgrowths after final product transport simulation ....................................... 118 

Figure 4.1 Schematic representation of LSC isolation process .............................. 134 

Figure 4.2 Microphotograph of human LSC colonies surrounded by 3T3 mouse 
feeder cells ............................................................................................................. 135 

Figure 4.3 LEGEND Screen™ Lyophilized Antibody Panel Human Cell Screening Kit 
and schematic representation of a 96 well plate with different surface antibody in 
each well ................................................................................................................. 136 



XVII 
 

Figure 4.4 Schematic representation of the study research design ........................ 137 

Figure 4.5 Schematic representation of a cell sorting process ............................... 139 

Figure 4.6 CD109 expression during ex vivo differentiation of human limbal epithelial 
cells. ........................................................................................................................ 147 

Figure 4.7 CD109 expression in human cornea in vivo and during ex vivo expansion 
of human limbal epithelial cells ................................................................................ 148 

Figure 4.8 CD109 expression in mouse cornea in vivo .......................................... 149 

Figure 4.9 Proliferative potential of sorted CD200 positive and negative population
 ................................................................................................................................ 150 

Figure 4.10 Colony forming efficiency and clonal potential of sorted CD109 positive 
and negative population .......................................................................................... 151 

Figure 4.11 CD200 expression during ex vivo differentiation of human limbal 
epithelial cells .......................................................................................................... 152 

Figure 4.12 CD200 expression in human cornea in vivo ........................................ 153 

Figure 4.13 CD200 expression in mouse cornea in vivo ........................................ 154 

Figure 4.14 CD200 and ΔNp63 expression during ex vivo expansion of human limbal 
epithelial cells .......................................................................................................... 155 

Figure 4.15 CD200 and Ki67 expression during ex vivo expansion of human limbal 
epithelial cells .......................................................................................................... 156 

Figure 4.16 Colony forming efficiency and clonal potential of sorted CD200 positive 
and negative population .......................................................................................... 157 

Figure 4.17 Proliferative potential of sorted CD200 positive and negative population
 ................................................................................................................................ 158 

Figure 4.18 Side population cells ............................................................................ 159 

Figure 4.19 Expression of putative LSC and corneal epithelial cell markers in the 
sorted CD109 positive and negative cell populations .............................................. 160 

Figure 4.20 Expression of putative LSC and corneal epithelial cell markers in the 
sorted CD200 positive and negative cell populations. ............................................. 161 

Figure 4.21 CD200 knockdown .............................................................................. 162 

Figure 4.22 Effect of CD200 knockdown on clonal ability of limbal epithelial cells. 163 

 

 

 



XVIII 
 

Tables 

Table 1.1 Putative LSC markers (with corresponding references) ........................... 26 

Table 1.2 Causes of limbal stem cell deficiency ....................................................... 36 

Table 2.1 Composition of traditional and GMP grade medium ................................. 70 

Table 4.1 qRT-PCR Primers ................................................................................... 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIX 
 

 

Abbreviations  

LSC - Limbal Stem Cell 

LSCD - Limbal Stem Cell Deficiency  

GMP - Good Manufacturing Practice 

LB - Limbal Biopsy 

LEC - Limbal Epithelial Cell 

TAC - Transient Amplifying Cell 

PMC - Post Mitotic Cell 

TDC - Terminally Differentiated Cell 

EGF - Epidermal Growth Factor 

EGFR - Epidermal Growth Factor 

Receptor 

CK - Cytokeratin 

NGF - Nerve Growth Factor 

HGF - Hepatocyte Growth Factor 

CLAU - Conjunctival Limbal Autograft 

LR-CLAL - Living Related Conjunctival 

Allograft 

KLAL - Cadaveric Keratolimbal 

Allograft 

SLET - Simple Limbal Epithelial 

Transplantation 

MSC - Mesenchymal Stem Cell 

CLET - Cultivated Limbal Epithelial 

Transplantation 

HAM - Human Amniotic Membrane 

COMET - Cultivated Oral Mucosal 

Epithelial Transplantation 

MSCT - Mesenchymal Stem Cell 

Transplantation 

RM - Regenerative Medicine 

ATMP - Advance Therapy Medicinal 

Product 

SOP - Standard Operating Procedures 

IPC - In Process Controls 

HIV - Human Immunodeficiency Virus 

HBV - Hepatitis B Virus 

HCV - Hepatitis C Virus 

HTLV - Human T- Lymphotropic Virus 

NHS - National Health Service  

NHSBT - NHS Blood and Transplant 

DMEM - Dulbecco's Modified Eagle's 

Medium 

FBS - Fetal Bovine Serum  

T3 - Triiodothyronine 



xx 
 

CT - Cholera toxin 

AMP - Adenosine monophosphate 

SEM - Standard Error of the Mean 

PBS - Phosphate-Buffered Saline 

CFE - Colony Forming Efficiency  

CPC - Cell Processing Centre  

MHRA - Medicines and Healthcare 

products Regulatory Agency 

HBSS - Hank's Balanced Salt Solution 

KCM - Keratinocyte Culture Medium 

FACS - Fluorescence-Activated Cell 

Sorting 

ECM - Extracellular matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1. Introduction 

 

1.1 Corneal structure and function 

The cornea is a transparent dome-shaped window at the front of the eye with 

significant refractive and barrier functions (Eghrari et al., 2015). Major function of the 

cornea is enabling the transmission and focussing of light, together with the 

crystalline lens, onto the retina at the back of the eye for visual perception. The 

cornea is also a major protective shield of the interior of the eye functioning as a 

barrier to debris and infection. A damage of the corneal tissue, if not promptly 

treated, could lead to scarring and consequential visual impairment and often 

blindness (Hertsenberg and Funderburgh, 2015). Millions of people worldwide suffer 

from blindness and visual impairment caused by corneal opacities. According to the 

World Health Organization data from 2002 corneal scaring and opacity are listed as 

the fourth most common cause of blindness globally, causing around 5.1% of all 

registered cases of blindness around the world (World Health Organization; Resnikoff 

et al., 2008).  

The anterior surface of the eye is composed of the cornea centrally and the sclera 

and conjunctiva peripherally. The human cornea measures approximately 11.5 mm 

horizontally and 10.5 mm vertically. Its transparency and anterior radius of curvature 

centrally of 7.8 mm makes the cornea responsible for three-fourths of the total 

refractive power of the human eye (Eghrari et al., 2015). Therefore, preservation of 

its transparency is vital for this role. The central corneal thickness is approximately 

520 µm and increases towards the periphery where it can reach up to 650 µm. The 

junction region where the cornea becomes continuous with the sclera, approximately 

1.5–2 mm in width, is known as the limbus (Figure 1.1). The limbus is demarcated on 

the corneal side by the termination of the Bowman’s layer. At the limbus, the corneal 

avascular epithelium continues into the vascular conjunctival epithelium, the corneal 

stroma into the sclera and the corneal endothelium continues into the anterior 

surface of the iris and the suprachoroidal space (Takacs et al., 2009).  
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The presence of an intact limbal epithelium is essential for maintaining corneal 

transparency in two different ways. Firstly, the limbal epithelium acts as a barrier that 

prevents the conjunctival epithelium and its stromal blood vessels from encroaching 

onto the cornea, thereby impairing its clarity (Chen and Tseng, 1991). Secondly, the 

limbal epithelium also harbours the limbal stem cells which proliferate and 

differentiate to provide a lifetime source of corneal epithelial cells (Dua and Azuara-

Blanco, 2000; Daniels et al., 2001; Sangwan et al., 2003).  

Human cornea is composed of three cellular layers: the outer epithelial layer of 

ectodermal origin, the stroma and the endothelium, both of mesenchymal origin 

(Cvekl and Tamm, 2004; Takacs et al., 2009). Although the outermost epithelial layer 

is the most exposed to environmental damage it also has the best mechanism of a 

constant self-renewal assured by corneal epithelial stem cells. On the contrary, cell 

turnover in the corneal stroma is very slow (Doutch et al., 2012) and long believed 

non existing in corneal endothelial layer of the adult organism (Takacs et al., 2009). 

However, some recent findings indicate that progenitor cells may be found in these 

layers as reviewed by Hertsenberg and Funderburgh (Hertsenberg and Funderburgh, 

2015). 

Corneal development begins with primitive formation of epithelium and lens from the 

surface ectoderm, followed by waves of migration of neural crest cells between these 

two structures to create the stroma and endothelium. Descemet membrane is 

secreted by the endothelial layer and gradually thickens (Eghrari et al., 2015). The 

stream of neural crest cells migrates between the lens and presumptive corneal 

epithelium to form the corneal endothelium and stromal keratocytes (Lwigale, 2015). 

The corneal stroma and epithelium are abundantly innervated by the sensory nerves 

that originate from the neural crest- and ectodermal placode-derived trigeminal 

ganglion. Simultaneous with the corneal innervation is the formation of the limbal 

vascular plexus and the establishment of corneal avascularity (Lwigale, 2015). Unlike 

most tissues in the body, the cornea contains no blood vessels. Avascularity, 

together with a highly organized architecture, is essential for corneal transparency 

and normal vision. Instead, it receives all nutrients including glucose and oxygen 

essential for maintenance of normal metabolic functions from the limbal circulation, 

the aqueous humour and the tear film (Utheim, 2013). On the other hand, it is heavily 

innervated, with the density of nerve endings approximately 300-400 times greater 

than in the skin (Rozsa and Beuerman, 1982).  
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Figure 1.1 The location of the limbus on the ocular surface. The limbus represents 
the interface between the peripheral cornea and neighbouring conjunctiva. 

 

In humans, the corneal tissue is arranged in five distinct layers (three cellular layers 

with two thinner layers or membranes between them), each having an important 

function (Figure 1.2): 

1. Corneal epithelium 

 

The epithelium is the most anterior layer that serves as the principal barrier to 

fluid and foreign materials including pathogens and dust, a function performed 

through production of tight junctions and constant turnover of cells. It is 

supported posteriorly by basement membrane and Bowman's layer and 

assists in the maintenance of stromal dehydration. It also provides a smooth 

surface that absorbs oxygen and cell nutrients from tears, and then distributes 

these nutrients to the other layers of the cornea. The epithelium is filled with 

thousands of nerve endings that make the cornea extremely sensitive to pain. 

The corneal epithelium is composed of five to six layers (4-6) of non-

keratinized, stratified squamous epithelial cells, comprising about 10% of the 

corneal thickness. In humans it’s approximately 50 µm thick (Eghrari et al., 

2015). Its transparency is a result of the homogeneity of the refractive index of 

all its constituent cells (Dohlman, 1971). Superficial two to three layers are 

composed of flat and polygonal cells with apical microvilli and microplicae and 

covered by a charged glycolcalyx which maximizes surface area with the 

mucinous layer of the tear film (Eghrari et al., 2015). The most superficial cells 
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of the corneal epithelium are attached by tight junctions that prevent the 

penetration of the tear film and its components and assist in the prevention of 

pathogenic organisms from entering the cornea. Directly posterior, two to three 

layers of cuboid “wing” or suprabasal cells demonstrate tight junction 

complexes while basal, columnar cell layer is anchored to the basal lamina via 

hemidesmosomes (Alison et al., 2002; Eghrari et al., 2015). In humans, the 

density of hemisdesmosomes is higher in the cornea compared to the limbus 

(Gipson, 1989). Similarly, the density of anchoring fibrils and adhesion 

plaques is also higher in the cornea compared to the limbus (Keene et al., 

1987; Gipson, 1989). The lower density of all these structures in the limbus 

may be compensated by the undulating nature of the limbal epithelial-stromal 

interface.  

The outermost layer of the corneal epithelial cells is continuously shed and 

replenished by proliferation of wing and basal cells (Thoft and Friend, 1983). 

The lifespan of epithelial cells is 7-14 days on average (Cenedella and 

Fleschner, 1990; Eghrari et al., 2015; Gonzalez et al., 2018).    

The limbal epithelium, the thickest of the ocular surface, is composed of 7-10 

layers of stratified epithelial cells. Unlike the central corneal epithelium, the 

limbal epithelium contains also other cell types such as melanocytes and 

antigen-presenting Langerhans cells (Dziasko and Daniels, 2016).  

 

 

2. Bowman’s layer 

 

Bowman’s layer is a thin acellular condensation of the outer portion of the 

corneal stroma consisting mainly of collagen type I and type III fibres and 

proteoglycans. It’s approximately 8-12 µm thick and decreases in thickness 

over time. Unlike the epithelial layer, it has no regenerative potential (Eghrari 

et al., 2015). If injured, it can form a scar as it heals. If large and centrally 

located, these scars may cause vision loss. 

 

3. Corneal stroma 

 

The stroma composes the majority of corneal volume, around 90% of the total 

corneal thickness, measuring approximately 500 µm in humans. The corneal 
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stroma plays several pivotal roles within the eye - optically it is the main 

refracting lens and mechanically it has to be extremely tough to protect the 

inner contents of the eye. Both these functions are governed by its structure at 

all hierarchical levels (Meek and Knupp, 2015). Beside it provides support and 

clarity, it also assists in ocular immunity (Eghrari et al., 2015).  

The stroma contains densely packed, tough yet transparent connective tissue. 

The transparency of the stroma originates from its regularly ordered and 

equally spaced collagen bundles that are produced by the corneal fibrocytes 

known as keratocytes (Takacs et al., 2009). 

The stroma consists of an extracellular matrix made up of collagens (type I, V 

and VI) and proteoglycans (decorin associated with dermatan-sulfate and 

lumican associated with keratin-sulfate). The collagen fibrils are regularly 

arranged into bundles or lamellae in order to allow corneal transparency. 

There are about 300 lamellae of parallel collagen fibrils in the centre of the 

cornea reaching to nearly 500 lamellae at the limbus (Radner et al., 1998). 

The orientation of the alternate lamellae differs with each other, but they are 

all parallel with the corneal surface. Keratocytes from which the collagen fibrils 

are produced during development are scattered throughout the stroma 

between the lamellae. Whilst the corneal stroma is avascular tissue, the limbal 

stroma is heavily vascularized (Goldberg and Bron, 1982). 

 

4. Descemet’s membrane 

 

Descemet’s membrane is the thick basement membrane of the corneal 

endothelium and measures approximately 3 µm in thickness in children, 

gradually thickening to 10 µm in adults. Similar to the stroma it contains 

laminin and fibronectin as well as keratin sulfate, heparin sulfate and dermatan 

sulfate. On the other hand, it contains collagen IV and VIII fibrils. In contrast to 

other basal membranes throughout the body in which collagen type IV is 

common, collagen type VIII is relatively specific to the Descemet’s membrane 

(Eghrari et al., 2015). Descemet’s membrane repairs itself easily after injury. 
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5. Endothelium 

 

The endothelium is the most posterior layer and it separates the cornea from 

the aqueous humour of the anterior chamber of the eye. It provides nutrients 

for stromal keratocytes and participates in the maintenance of the stromal 

transparency (Takacs et al., 2009). The posterior cornea, composed of 

Descemet membrane and endothelium, is essential for stromal dehydration, 

maintained through tight junctions and endothelial ionic pumps located in 

basolateral plasma membranes. Beside tight junctions, gap junctions are also 

present in corneal endothelium and contribute to the electrical coupling of 

endothelial cells (Eghrari et al., 2015). Insufficiency of the endothelial pump 

function results in corneal oedema, that leads to loss of corneal clarity and 

vision impairment (Takacs et al., 2009). 

The corneal endothelium is composed of a single layer of closely 

interdigitating, flat, polygonal cells which line the posterior surface of the 

cornea. Unlike corneal epithelial cells, corneal endothelial cells do not 

proliferate in vivo and cell replacement does not occur through mitosis but 

through cell migration. Therefore, central loss of cells results in centripetal 

migration of adjacent endothelial cells with subsequent formation of tight 

junctions and restoration of pump function (Eghrari et al., 2015).   
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Figure 1.2 Schematic diagram of a sagittal section of the anterior portion of the 
human eye (left) and corneal structure (right). The cornea is a transparent dome-
shaped window at the front of the eye that covers the iris, pupil, and anterior chamber. 
It is composed of five distinct layers, three cellular layers with two thinner membranes 
between them. From the outside to inside the layers of the human cornea are the 
corneal epithelium, Bowman’s membrane, corneal stroma, Descemet’s membrane and 
corneal endothelium. 

 

In conclusion, corneal transparency essential for normal vision, is determined by: 

- a smooth epithelium with no invasion of conjunctival cells (Puangsricharern 

and Tseng, 1995); 

- the absence of vasculature (Utheim, 2013); 

- a highly organized stromal architecture (Fini and Stramer, 2005); 

- a functional endothelium that regulates corneal hydration (Meek et al., 2003); 

- a production of crystalline proteins by keratocytes in the stroma (Jester et al., 

1999). 
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1.2 Corneal epithelial stem cells 

1.2.1 Stem cells 

 

Stem cell is an undifferentiated cell, which can self-renew to replicate itself as well as 

give rise to the specialized cells under appropriate conditions (Weissman, 2000). 

Tissue-specific or adult stem cells are found in almost every adult tissue, with 

exception of the heart, and are able to maintain and regenerate the given tissue for a 

lifetime (Alison et al., 2002; Takacs et al., 2009) (Figure 1.3). Adult stem cells are 

either multipotent or unipotent (Wagers and Weissman, 2004). Multipotent stem cells 

can differentiate into many cell types but within a particular lineage while unipotent 

stem cells can differentiate towards only one cell type. 

 

Figure 1.3 Adult stem cells, types and examples. Differentiation capacity of adult 
stem cells is ranging from multipotent to unipotent. Multipotent stem cells are capable 
to develop into multiple specialised cell types present in a specific tissue or organ whilst 
unipotent stem cells are capable to generate only one specialised cell type. 

 

The adult stem cells form a very small percentage of the total cellularity. For 

example, in the mouse small intestine there are 4–5 stem cells found at the bottom of 

the crypt out of a total crypt population of about 250 cells (Bjerknes and Cheng, 

1999). In skeletal muscle, similarly, satellite cells comprise about 5% of all nuclei 

while in the bone marrow the multipotent haematopoietic stem cell is even rarer, with 
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a frequency of only 1 in 10 000 or more amongst all blood cells (Alison et al., 2002). 

Most of the time stem cells remain in growth arrested state but can enter the cell 

cycle on demand (e.g. tissue injury) and give a rise to a differentiating and highly 

proliferating progeny – transient amplifying cells. Transient amplifying cells (TACs) 

have a lower proliferative potential compared to stem cells, but still have some self-

renewal capacity which contributes to cellular turnover and regeneration. These fast 

dividing progenitors represent the vast majority of the proliferative cells in the 

corneal/limbal epithelium (Schlotzer-Schrehardt and Kruse, 2005). 

Stem cells are characterized by the following properties (Alison et al., 2002; Takacs 

et al., 2009): 

1. Unlimited self-renewal and asymmetric cell division. For normal homeostasis 

and functioning of some tissue is vital that a constant pool of stem cells is 

maintained throughout the lifetime (Kolli et al., 2009). That is achieved by so-

called asymmetric cell division, giving rise to one daughter cell that remains 

stem cell and a second daughter cell that will enter differentiation and become 

TAC (Figure 1.4). Thanks to this process, stem cells have a long life and 

possess the ability to proliferate indefinitely during the lifetime of the organism 

in which they reside (Kolli et al., 2009). The main purpose of TACs is to 

increase the number of cells resulting from each stem cell division (Kolli et al., 

2009) and protect stem cells of going through the cell cycle often and 

accumulate DNA damage over time. Both stem cells and TACs belong to the 

proliferative tissue compartment. TACs differentiate into post-mitotic cells 

(PMCs) which fall belong to the non-proliferative (differentiation) tissue 

compartment and are not capable of further divisions (Kolli et al., 2009). PMCs 

are irretrievably committed to cellular differentiation and mature into terminally 

differentiated cells (TDCs) (Kolli et al., 2009) which are carriers of the 

functional aspect of the tissue (Figure 1.5). 
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Figure 1.4 Asymmetric cell division. Through asymmetric cell division stem cell 
produces two daughter cells with different cellular fates, one daughter cell is identical 
to mother cell and will re-enter the niche to maintain the pool of stem cells whilst a 
second daughter is programmed to differentiate into a specific cell type and become 
TAC. 
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Figure 1.5 The hierarchy of cells in the adult stem cell system including the 
corneal epithelium. The corneal epithelium is composed of pyramid structure of cells, 
with only a few stem cells (SCs) at the top of the pyramid, greater but still relatively 
small number of TACs in the middle of the pyramid and the majority of PMCs that give 
rise to TDCs in the base of the pyramid. Therefore there are three different cell 
compartments present: the stem cell compartment (I), the proliferative compartment 
(II) and differentiation compartment (III). 

 

 

2. Relatively undifferentiated state but high differentiation potential, implying that 

despite the stem cells do not have the functional specializations of the 

progeny they give rise to, they have the ability to differentiate into all cell types 

of their home tissue; 

 

3. Slow cell cycle but high clonogenic potential, meaning that stem cells divide 

less frequently than transient-amplifying cells in order to lower accumulation of 

DNA errors because DNA synthesis can be error-prone. For that reason, stem 

cells divide less frequently than TACs. In hair follicles for example, the hair 

haft and its surrounding sheaths are produced by the hair matrix, which is 
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itself replenished by the bulge stem cells. The bulge cells divide less 

frequently, but are more clonogenic than the TACs of the hair matrix (Oshima 

et al., 2001). 

 

 

1.2.2 Limbal stem cells  

 

The corneal epithelium is rapidly regenerating stratified squamous epithelium in a 

state of constant renewal as the superficial terminal cells are naturally continuously 

shed into the tear film. As one of the most rapidly regenerating mammalian tissues, it 

is estimated that the corneal epithelial cell layers turn over every 7-14 days 

(Cenedella and Fleschner, 1990; Eghrari et al., 2015; Gonzalez et al., 2018). In vivo, 

the corneal epithelium is renewed every 9–12 months (Utheim, 2013). The central 

corneal epithelium in humans has no capacity to renew (Ebato et al., 1988). Instead, 

it is widely accepted that, during normal homeostasis, the corneal epithelium is 

maintained by the stem cells located at the peripheral edge of the cornea known as 

limbus that proliferates slowly unless stimulated by injury (Davanger and Evensen, 

1971; Cotsarelis et al., 1989). Due to their anatomical location these corneal 

epithelial stem cells are more commonly known as limbal stem cells (LSCs).  LSCs 

give rise to fast-dividing TACs, which migrate centripetally in the basal layer of the 

corneal epithelium (Kinoshita et al., 1981; Buck, 1985; Nagasaki and Zhao, 2003). 

Here they proliferate for a limited time before undergoing a final division, whereupon 

both daughter cells usually detach from the basement membrane, move vertically 

(apically) through the suprabasal layers, becoming terminally differentiated and are 

eventually shed from the most superficial layer (Beebe and Masters, 1996; Lehrer et 

al., 1998). 
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1.2.3 Location of limbal stem cells 

  

The existence of epithelial stem cells in the limbus has been proposed in 1971 by 

Davanger and Evensen (Davanger and Evensen, 1971). The limbus is a specialized 

region, the narrow band of tissue which encircles the cornea, which is “highly 

vascularized, innervated and protected from potential UV light damage by the 

presence of melanin pigmentation” (Schlotzer-Schrehardt and Kruse, 2005). 

Over the years numerous experimental and clinical observations supported 

hypothesis that the basal layer of the limbal epithelium harbour the stem cells for the 

corneal epithelium: 

1. Pigment migration studies – Davanger and Evensen were the first to 

propose the basal layer of limbal epithelium as a “generative organ for corneal 

epithelial cells”. Their study with guinea pigs, which naturally have pigmented 

basal layer of the limbal epithelium, showed that the cornea was healed by the 

pigmented epithelium when the normally non-pigmented central corneal 

epithelium was removed (Davanger and Evensen, 1971). 

 

2. Cell culture studies – Many studies suggested the presence of cells with high 

proliferative potential in the limbal basal epithelium. Ebato and co-workers 

showed that in vitro cultured human limbal epithelium has a higher proliferative 

potential compared to the corneal and conjunctival epithelium. Having in mind 

that proliferative potential is a vital property of stem cells, this finding provided 

further evidence of the limbal location of the corneal epithelial stem cells 

(Ebato et al., 1988). Other studies showed that cells from the central cornea 

generated mostly paraclones (terminally differentiated epithelial colonies) that 

could not be passaged more than twice while cells from the limbal region 

could proliferate for many generations (between 80-100 doublings) and form 

holoclones (large colonies with regular borders) (Lavker et al., 1991; Pellegrini 

et al., 1999a).  

 

3. Radio labelled thymidine studies – Stem cells have a slower cell cycle and 

can be detected experimentally as label retaining cells (Bickenbach, 1981) 

using pulse/chase experiments with a DNA precursor such as tritiated 
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thymidine (3HT) or 5-bromo-2′-deoxyuridine (BrdU) (Rodriguez and Nguyen, 

2018). Following a chase period of 4-8 weeks, rapidly dividing cells lose the 

label but slow dividing cells will remain labelled. Lavker and Cotsarelis were 

the first to show that label retaining cells were found exclusively in the basal 

layer of the limbal epithelium but were completely absent in the central cornea. 

They also showed using tritiated thymidine to label cells in S phase of the cell 

cycle in mouse cornea that the basal cells of the limbal epithelium are normally 

slow cycling cells but upon wounding of the central corneal epithelium can be 

stimulate to proliferate more rapidly (Cotsarelis et al., 1989). Label retaining 

studies further showed that the percentage of stem cells represents less than 

10% of the total limbal population (Lavker et al., 1991). Recently, Sartaj and 

colleagues localized, purified, and characterized slow cycling cells in the 

cornea in an inducible transgenic “pulse-chase” murine model (Sartaj et al., 

2017).  

 

4. Animal studies – Corneal wound healing studies in rabbits showed that 

surgical removal of the limbus resulted in insufficient re-epithelization and 

conjunctival invasion of the corneal surface (Kruse et al., 1990; Huang and 

Tseng, 1991).  

 

5. Clinical studies – There are several pieces of clinical evidence that confirm 

limbal location of corneal epithelial stem cells. Firstly, it was observed that 

larger peripheral corneal epithelial wounds heal significantly faster than 

smaller central wounds (Matsuda et al., 1985). Secondly, clinical studies 

showed that limbal transplantation leads to long term restoration of the corneal 

surface in patient with limbal damage (Kenyon and Tseng, 1989; Holland and 

Schwartz, 1996). Finally, corneal tumours almost exclusively arise from the 

limbus (Waring et al., 1984) that further corroborate the limbal location of 

corneal epithelial stem cells (Reya et al., 2001).  

 

6. Lineage tracing experiments – In 2015, Amitai-Lange et al. provided a direct 

evidence of limbal cell migration under both homeostasis or injury using a 

mouse model, R26R-Confetti mouse, that allows multicolour lineage tracing of 

limbal and corneal cytokeratin 14 positive cells (Amitai-Lange et al., 2015). 

They reported that in homeostasis limbal epithelial cells undergo slow 
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centripetal migration of 4–5 months until reaching the corneal centre, while 

upon wounding, they observed significant corneal contribution to the healing 

process and rapid appearance of limbal stripes (Amitai-Lange et al., 2015). 

The same year, another two research groups reported very similar findings 

using lineage tracing mouse models, confirming that labelled clones appeared 

at the periphery of the cornea and extended centripetally as radial stripes (Di 

Girolamo et al., 2015; Dora et al., 2015).  

 

Over the years lots of other evidences further supported the limbal location of the 

corneal epithelial cells such as a lack of the corneal epithelial differentiation 

associated cytokeratin pair CK3/12 in the limbal basal cells (Schermer et al., 1986; 

Rodrigues et al., 1987; Kasper et al., 1988; Kurpakus et al., 1994). Also, most 

epithelial tumours of the ocular surface originate from the limbal area. Likewise, the 

limbus is a common region for certain congenital abnormalities to occur, such as 

limbal dermoids with ectopic brain or bone tissue, which suggest the presence of 

undifferentiated cells (Emamy and Ahmadian, 1977; Weinstein et al., 1979). 

This widely accepted LSC dogma is, however, challenged by several studies which 

reported that the murine cornea remained healthy following deletion of the entire 

limbal epithelium (Vauclair et al., 2007; Majo et al., 2008). Moreover, the central 

cornea of patients with a destroyed limbus remained transparent for over 60 months 

(Dua et al., 2009). These contradictions were recently addressed by Nasser and 

colleagues who reported that “committed corneal cells possess plasticity to 

dedifferentiate, repopulate the stem cell pool, and correctly re-form the tissue 

boundary in the presence of intact stroma” (Nasser et al., 2018). Furthermore, the 

lineage‐tracing experiments clearly demonstrate that during normal homeostasis, 

cells labelled in adult mice generate clones of cells that emerge from the limbus and 

extend across the corneal radius toward the centre. The distributions of labelled 

clones are inconsistent with the “corneal epithelial stem cell hypothesis” and strongly 

support the conventional “limbal epithelial stem cell hypothesis” (Amitai-Lange et al., 

2015; Di Girolamo et al., 2015; Dora et al., 2015). 
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1.3 Limbal stem cell niche 

Stem cells are dispersed and kept in a unique anatomic location of each self-

renewing tissue called niche, where they maintain quiescence while performing self-

renewal to replenish the stem cell population lost to progeny production. The concept 

that a stem cell niche provides a unique microenvironment to support self-renewal 

and multipotent activity was first proposed in the late 1970s by Scofield (Schofield, 

1978). According to the stem cell niche hypothesis stemness is maintained by certain 

extrinsic factors in the niche microenvironment which regulate stem cell fate 

decisions and prevent differentiation (Watt and Hogan, 2000). Removal of stem cells 

from the niche leads to loss of their stem cell identity, self-renewal capacity, and 

consequential onset of differentiation (Voog and Jones, 2010).  

Variety of the limbal niche components ensure preservation of LSC activity including 

the limbal extracellular matrix (ECM), vasculature and surrounding cells (Nowell and 

Radtke, 2017). The limbal stroma is heavily vascularised and contains different ECM 

components compared to the corneal stroma, in particular α1 and α2 collagen IV, β2 

laminin and fibronectin (Dziasko and Daniels, 2016). The limbal niche is populated by 

various cell types which are in close contact with the corneal epithelial layer such as 

melanocytes, vascular cells, nerve cells, immune cells and mesenchymal stromal 

cells (Yazdanpanah et al., 2019). The expression of specific biochemical factors by 

limbal stromal cells including Wnt ligands (Nakatsu et al., 2011; Han et al., 2014), 

various cytokines and chemokines has proven to be important for LSC preservation.  

There are three different groups of cytokines in the limbus initially described by Li 

and Tseng (Li and Tseng, 1995), according to their interaction with surrounding cells:  

1. type I cytokines released by the epithelium with their receptors found mainly 

in stromal cells: TGFβ, IL-1β, PDGFβ, NGF, GDNF (Li and Tseng, 1995; Qi et 

al., 2007), 

2. type II cytokines with receptors found both in stromal and epithelial cells: 

IGF1, TGFβ1, TGFβ2, βFGF, NT-3, NT-4 (Li and Tseng, 1995; Qi et al., 2007) 

and  

3. type III cytokines released by the stroma whereas their receptors are found in 

the epithelium: KGF, HGF, BDNF (Li and Tseng, 1995; Qi et al., 2007).  
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Importantly, many of these cytokines, including KGF, HGF, NGF, TGFβ1, TGFβ2, 

βFGF, have been identified in human amniotic membrane (HAM), which can support 

in vitro growth and undifferentiated phenotype of limbal epithelial cells in the absence 

of feeder cells and therefore can serve as surrogate LSC niche (Grueterich et al., 

2003a). 

Touhami and co-workers examined the expression of different members of the 

neurotrophin family of growth factors and their receptors in the human limbal 

epithelium and found the high expression of the TrkA receptor in limbal basal 

epithelial cells, suggesting that nerve growth factor (NGF) signalling is involved in the 

control of the LSC behaviour (Touhami et al., 2002). Recently, Kolli et al. reported 

that NGF signalling is indeed a key promoter of LSC proliferation, colony-forming 

efficiency, and a maintainer of the LSC phenotype (Kolli et al., 2019). 

Another feature of the stem cell niche that has been shown to be important in 

preserving stem cell function is the mechanical properties of the surrounding tissue. 

Every stem cell niche is composed of different ECM components which results in 

different mechanical properties of the tissue. Factors, such as elasticity and 

topography, have been shown to influence how a cell responds to other 

microenvironmental cues. For example, the specific ECM composition of the limbal 

stroma may confer distinct mechanical properties compared to the central conea and 

favour stem cell maintenance at that specific location. Engler et al. were the first to 

demonstrate the influence of substrate stiffness on stem cell differentiation. They 

reported that mesenchymal stem cells show sensitivity to tissue-level elasticity and 

capability to “respond” by either muscle, bone, or neural cell differentiation depending 

on substrate elasticity (Engler et al., 2006). Related to the corneal tissue in particular, 

Moers et al. reported that corneal epithelial cells grown on substrates of physiological 

stiffness maintained an early differentiation state while on the contrary growth on 

unphysiologically stiff substrates induced their differentiation (Moers et al., 2013). 

Another study, using very soft uncompressed and compressed collagen gels, 

showed not only that corneal epithelial cells exhibited differentiation on the stiffer gels 

but also that the cellular layer exhibited better stratification on the stiffer gel (Jones et 

al., 2012).  

Apart from the functional aspects, the LSC niche has also anatomic dimensions. 

Anatomically, the LSC niche is located at the Palisades of Vogt, a series of radially 
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orientated fibro-vascular ridges at the limbus, proposed for the first time in 1971 as a 

location of the cells responsible for renewal of the corneal epithelium (Figure 1.6) 

(Davanger and Evensen, 1971). These papillae-like structures are located in the sub-

epithelial connective tissue at the limbus and more prominent along the superior and 

inferior limbus, where the upper and lower eyelids provide protection to the LSCs 

(Davanger and Evensen, 1971). The region in between the palisades, interpalisade 

ridges, are occupied by the epithelial rete pegs which consist of 10 to 15 layers of 

limbal epithelial cells (Townsend, 1991). The Palisades of Vogt can be seen and 

observed clinically, using a slitlamp microscope on the surface of the limbus, giving it 

a corrugated appearance (Goldberg and Bron, 1982; Townsend, 1991). These 

structures are easily identified in darkly pigmented individuals due to a concentration 

of melanin- containing cells and limbal melanocytes lining the interpalisade ridges 

(Zheng and Xu, 2008; Lagali et al., 2013). 

 

 

 

 

Figure 1.6 The Palisades of Vogt. Magnified view of the limbal area demonstrating 
visible corrugations, projections of limbal stroma into the epithelium, the palisades of 
Vogt (PV), and the rich blood supply (blood vessels, BV). 

 

In corneal tissue sections, putative stem cells have been detected at the bottom of 

the epithelial papillae between the palisades, which provide a protective environment 

for LSCs (Schlotzer-Schrehardt and Kruse, 2005). Not only this junction between the 

limbal epithelial and stroma shelters LSCs from stress but also the neighbouring 

blood vessels supply them with nutrients and growth factors (Boulton and Albon, 

2004). 

In addition to these visible undulations of the limbal basement membrane, some later 
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studies reported existence of deeper epithelial outgrowths into the limbal stroma. In 

2005, Dua et al. described structures named “limbal epithelial crypts” as 

invaginations that were perpendicular to the surface epithelium and then extended 

parallel to the surface (Dua et al., 2005). These invaginations provide even closer 

proximity and increased contact with the limbal microenvironment. Limbal epithelial 

crypts are therefore putatively similar to intestinal crypts where stem cells reside in 

the base of the crypts. In 2007 Shortt et al. revealed further ultrastructural details of 

the LSC niche using in vivo confocal microscopy and three-dimensional 

reconstruction. They identified two novel candidate niche structures, the first named 

as “limbal crypts” located between the palisades of Vogt, and the second named as 

“focal stromal projections” which project upwards at the open end (facing the cornea) 

of the crypts (Shortt et al., 2007a). Limbal crypts are downward projections of the 

limbal epithelium that are open to the corneal surface and are in close association 

with the limbal vasculature. Focal stromal projections are, on the other side, finger-

like projections of stroma containing a central blood vessel surrounded by small, 

tightly packed epithelial cells. The highest number of putative stem cells, p63α and 

ABCG2 positive cells, were observed in the basal epithelial layers of these two 

described structures (Shortt et al., 2007a). 

Dziasko et al. identified cells with the stem cell like morphology exclusively within the 

basal layer of the limbal crypts using high-resolution imaging and showed these cells 

are capable of holoclone formation in vitro. They also confirmed that these cells are 

in direct contact with cells in the underlying stroma and that the contact is facilitated 

by focal basement membrane interruptions (Dziasko et al., 2014) (Figure 1.7).  
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Figure 1.7 Simplified model of the LSC niche and niche cells. The LSCs that reside 
in the basal layer of the limbal epithelium are uniquely positioned to receive cellular 
signals from a variety of sources both by direct cell contact and diffusible cytokines. 
Daughter TACs divide and migrate centripetally towards central cornea where they 
terminally differentiate and eventually shed from the ocular surface. According to the 
recent findings, LSC are closely associated with limbal mesenchymal cells and limbal 
melanocytes. Besides these two cell types, limbal and corneal fibroblasts and 
Langerhans cells are also important components of the limbal stem cell niche.  

 

The limbal stem cell niche is highly pigmented due to the presence of melanocytes 

(Davanger and Evensen, 1971; Higa et al., 2005; Dziasko et al., 2015) and is 

infiltrated with antigen-presenting Langerhans’s cells (Baum, 1970; Vantrappen et al., 

1985) and suppressor T lymphocytes (Vantrappen et al., 1985). The niche cells 

provide sheltering environment that protects stem cells from stimuli that may promote 
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differentiation or apoptosis, threatening stem cell reserves (Moore and Lemischka, 

2006). For example, melanocytes, distributed in the limbal basal layer with their 

cellular projections extending to surrounding basal epithelial cells, produce and 

transport melanin pigments into epithelial cells. Melanin minimizes damage caused 

by ultraviolet irradiation together by the upper and lower eyelids that covers the 

superior and inferior limbus, where Palisades of Vogt are primarily located 

(Hertsenberg and Funderburgh, 2015). A three dimensional reconstruction of the 

LSC niche was proposed by Dziasco et al. in which the stem cell is closely 

associated and maintained by both dendritic pigmented limbal melanocytes and 

elongated limbal stromal cells (Dziasko et al., 2014). Limbal epithelial cells co-

cultured in vitro with mitotically active human limbal melanocytes were able to 

generate large epithelial colonies of small and compact cells with morphological stem 

cell characteristics, positive for the expression of the putative stem cell markers 

CK15, Bmi-1 and p63α and negative for the marker of terminal cell differentiation 

CK3 (Dziasko et al., 2015). It is also generally accepted that mesenchymal cells from 

the limbal stroma play a role in the maintenance and support of LSCs and are 

considered as an important element of the stem cell niche (Chen et al., 2011; Li et 

al., 2014b; Nakatsu et al., 2014). 

 

1.4 Corneal epithelial cell turnover 

The “X, Y, Z hypothesis of corneal epithelial maintenance” proposed by Thoft and 

Friend in 1983, prior to our knowledge of the existence of stem cells in the cornea, 

summarize the movement of cells in a healthy corneal epithelium (Thoft and Friend, 

1983). Since there is a continual loss of the superficial epithelial cells through 

desquamation while the epithelial mass remains relatively constant, they 

hypothesized that the corneal epithelium required continual replacement of naturally 

lost epithelial cells. According to their hypothesis corneal epithelial maintenance can 

be defined by the equation: X + Y = Z, where X is the proliferation of the basal 

epithelial cells and their movement towards the corneal epithelial surface, Y is the 

movement of the peripheral cells to the central corneal epithelium and Z is the loss of 

cells from the corneal epithelial surface due to constant desquamation (Figure 1.8). 

This equation states that cell loss (Z) must be balanced by cell replacement (X+Y) to 

enable the normal maintenance of corneal epithelium. 
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Figure 1.8 The X, Y, Z hypothesis of corneal epithelial maintenance. X represents 

the migration of epithelial cells from the basal layer of the corneal epithelium to the 

epithelial surface. Y represents the migration of epithelial cells from periphery to the 

centre of the cornea. Z represents the loss of epithelial from the corneal surface from 

which terminally differentiated cells continuously slough off. For maintaining the 

corneal homeostasis it’s important that the sum of X and Y is equal to Z. 

 

Although it was questioned, there is a plenty of evidence that supported the original 

observations of the hypothesis. Different radio-labelling studies have been proved the 

movement of epithelial cells from the basal layer of the corneal epithelium towards 

the epithelial surface (Hanna and O'Brien, 1960; Lavker et al., 1991). The movement 

of epithelial cells from the periphery of the cornea is also confirmed by numerous 

studies (Buck, 1979; Kaye, 1980; Kinoshita et al., 1981; Dua and Forrester, 1990). 

Clinical observations confirmed that the cell movement from the peripheral corneal 

epithelium ends in eventual loss of cells from the central corneal surface (Lemp and 

Mathers, 1989). 

 

1.5 Characteristics of limbal stem cells 

LSCs fulfil all the criteria which apply to other types of stem cells such as low level of 

differentiation with a primitive phenotype, slow cell cycle, high proliferative potential 

after activation by wounding or in vitro culture conditions and capacity for unlimited 

self-renewal (Schlotzer-Schrehardt and Kruse, 2005). 

The capability to generate new cells is important characteristic of both stem cells and 

TACs. To be able to fulfil this function, they first need to replicate their 

deoxyribonucleic acid (DNA), through a process known as DNA replication which 
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occurs in the S phase of the cell cycle. Both tritiated thymidine and 5-bromo-2’-

deoxyuridine (BrdU) have been used to label cells in the S phase (Bickenbach, 1981; 

deFazio et al., 1987; Ahmad et al., 2006). Whilst stem cells go through the cell cycle 

slowly and retain these S phase markers for longer periods of time (Morris et al., 

1985; Kruse and Tseng, 1992; Ahmad et al., 2006), TACs continuously generate new 

cells and therefore cycle more rapidly. Consequently they retain S phase markers for 

shorter periods of time. The “label retaining property” has traditionally been used to 

distinguish stem cells from TACs. Using the proportion of label retaining cells present 

in the limbal region of the human cornea reported by Lavker and colleagues, it has 

been estimated that the percentage of stem cells may represent less than 10% of the 

total basal cell population (Lavker et al., 1991). 

Further characteristics that distinguish LSCs from TACs are morphological criteria 

and difference in cell size (Schlotzer-Schrehardt and Kruse, 2005). The smallest cells 

are located in the basal layer of the limbal epithelium as compared to the basal 

corneal epithelium (10.1±0.8 vs. 17.1±0.8 µm) (Romano et al., 2003). Another 

striking characteristic of limbal basal cells is their pigmentation that is result of 

intrinsic melanogenesis and play role in the protection of these cells from solar 

damage (Davanger and Evensen, 1971; Wolosin et al., 2000). Recently, Liu et al. 

showed association between pigmentation and differentiation, using a comparative 

transcriptomic analysis, with the p63+ population being the most pigmented and 

immature of the progenitors compared to ABCB5+, p63+ABCB5+ and 

p63+ABCB5+CK3+ populations (Liu et al., 2018). The limbal epithelial cells in the 

basal layer of the limbal epithelium show characteristics of immature cells including 

small cell size, high nuclear-cytoplasmic ratio, euhromatin-rich nuclei, hardly 

detectable nucleoli and cytoplasm rich in tonofilaments (Chen et al., 2004). 

Schlotzer-Schrehardt and Kruse reported that the adult LSCs exist in close spatial 

relationship with their early progenitor cells (Schlotzer-Schrehardt and Kruse, 2005). 

Using transmission electron microscopy, they observed “groups of small, roundish, 

densely packed cells at the bottom of the epithelial papillae forming the palisades of 

Vogt”, putative stem cell niche. Two different cell types could be observed within 

these clusters: one or few small, primitive appearing putative stem cells surrounded 

by larger melanin-containing early progenitor cells – putative TACs. The putative 

stem cells lay on a delicate basement membrane without forming cytoplasmic 

processes. Moreover, hemi-desmosomes and intercellular junctions are absent in this 
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region. On the other hand, the putative TACs possess cell processes which  

interdigitate with the matrix underneath and also have numerous hemi-desmosomes 

(Schlotzer-Schrehardt and Kruse, 2005). Additionally, the putative stem cells showed 

a high nuclear-cytoplasmic ratio, heterochromatin-rich nuclei without visible nucleoli, 

sparse cytoplasm with small melanin granules, few intermediate filaments, few 

mitochondria and ribosomes (Schlotzer-Schrehardt and Kruse, 2005). In contrast, the 

putative TACs have nuclei with increased euchromatin and distinct nucleoli, 

prominent melanin granules and tonofilament bundles (Schlotzer-Schrehardt and 

Kruse, 2005). 

 

1.6 Molecular markers of limbal stem cells 

Although a variety of putative LSC markers have been proposed up to date, 

identification of specific markers that would precisely identify LSC remains elusive 

and their role in identification of LSCs is still controversial. One of the possible 

reasons may be a very low number of LSCs present, probably as few as 100 in the 

mouse limbus (Collinson et al., 2002). The major markers proposed for epithelial 

stem cells in ocular or non-ocular tissues can be categorized into at least three 

groups: A) nuclear proteins such as the transcription factors p63 and PAX6, and 

signalling protein WNT7A B) cell membrane or transmembrane proteins including 

integrins (integrin β1, α6, α9), receptors (epidermal growth factor receptor - EGFR, 

transferrin receptor CD71, nerve growth factor receptor TrKA etc.), and drug 

resistance transporters (ABCG-2, ABCB5), and C) cytoplasmic proteins such as 

cytokeratin 19 (CK19), nestin, and α-enolase (Chen et al., 2004). In addition, a 

variety of differentiation markers have also been proposed to distinguish stem cells 

from differentiated cells. These include cytokeratin 3 and 12 (CK3 and CK12), 

involucrin, intercellular adhesive molecule E-cadherin, and gap junction protein 

Connexin 43, etc. (Chen et al., 2004). Notable markers are summarized in Table 1.1. 

Prominent candidate markers of LSC include transcription factor p63, C/EBPδ, Bmi1, 

ABCG2, and Notch-1 and recently proposed ABCB5 whilst most studied negative 

markers are cytokeratin dimer 3/12 and Connexin 43 (Pellegrini et al., 2001; Chen et 

al., 2004; Schlotzer-Schrehardt and Kruse, 2005; Barbaro et al., 2007; Notara et al., 

2010; Joe and Yeung, 2014; Ksander et al., 2014). Many of the markers associated 
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with limbal basal cells in the past, such as α9 and β1 integrins, α-enolase, and 

Connexin 43, are widely believed to be associated with increased mitotic activity 

related to TACs, but not with true quiescent stem cells (Schlotzer-Schrehardt and 

Kruse, 2005; Notara et al., 2010; Pellegrini et al., 2011). For many years, this area 

remains a highly controversial with numerous conflicting reports.  
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Table 1.1 Putative LSC markers (with corresponding references).  

 

Putative Markers 

Presence (+) or 
absence (-) in 
basal limbal 
epithelium 

Reference 

I NUCLEAR PROTEINS 

Transcription factors 
and signalling 
proteins 

p63 + 
(Pellegrini et al., 

2001) 

C/EBPδ + (Barbaro et al., 2007) 

Bmi1  (Barbaro et al., 2007) 

PAX6  (Ouyang et al., 2014) 

WNT7A  (Ouyang et al., 2014) 

II CELL MEMBRANE OR TRANSMEMBRANE PROTEINS 

Receptors 

EGFR 
+ 

(Zieske and Wasson, 
1993) 

TrKA + (Touhami et al., 2002) 

CD71 + (Hayashi et al., 2008) 

RHAMM/HMMR - (Ahmad et al., 2008) 

Notch-1 + (Thomas et al., 2007) 

Transporters 
ABCG2 + (de Paiva et al., 2005) 

ABCB5 + (Ksander et al., 2014) 

Adhesion proteins 
Integrin β1 & α9 + 

(Chen et al., 2004) 
E-cadherin - 

Gap junction 
proteins 

Connexin 43 - 
(Matic et al., 1997) 

Connexin 50 - 

III CYTOSOLIC AND CYTOSKELETON PROTEINS 

Cytokeratins 

CK3 - (Rodrigues et al., 
1987; Kasper et al., 

1988) 
CK12 

- 

CK13 - (Merjava et al., 2011) 

CK14 + (Bickenbach, 2005) 

CK15 + (Ohyama et al., 2006) 

CK19 + (Michel et al., 1996) 

Intermediate 
filament proteins 

Vimentin + (Kasper et al., 1988) 

Structural proteins  Involucrin - (Chen et al., 2004) 

Metabolic enzymes 

Cytochrome 
oxidase 

+ 
(Hayashi and Kenyon, 

1988) 

Nestin 
- 

(Schlotzer-Schrehardt 
and Kruse, 2005) 

α-enolase + (Zieske et al., 1992) 

Na/K-ATPase + (Zieske, 1994) 

Carbonic 
anhydrase  

+ 
(Steuhl and Thiel, 

1987) 

Protein kinase C-γ + (Tseng and Li, 1996) 

Cell-cycle proteins Cyclin A, D & E + (Joyce et al., 1996) 
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1.6.1 p63 

 

p63 is a transcription factor which belongs to a family of tumour suppressor proteins 

including also p53 and p73 (Benard et al., 2003) and is involved in morphogenesis 

(Mills et al., 1999). 

TP63, the gene encoding p63, produces six isoforms by the use of two promoters, 

TA and ΔN, and alternative splicing at the 3’-terminus (Aberdam and Mantovani, 

2009). All isoforms consist of a DNA-binding domain and a carboxyl-terminal 

oligomerization domain. Isoforms with an added amino-terminal transactivation 

domain are named - TAp63 and those without - ΔNp63 (also known as p40) (Ahmad 

et al., 2006). In addition, three forms of the carboxyl-terminal oligomerization domain 

exist – α, β and γ (Ahmad et al., 2006). This results in a total of six p63 isoforms, 

three with an added transactivation domain (TAp63 α, β and γ) and three without 

(ΔNp63 α, β and γ) (Ahmad et al., 2006), of which ΔNp63α is most highly associated 

with LSCs (Di Iorio et al., 2005). ΔNp63α is shown to be more specific to LSCs 

compared to the other isoforms (Di Iorio et al., 2005), and its expression increases in 

limbal basal cells during wound healing (Barbaro et al., 2007). Moreover, ΔNp63α is 

thought to be a marker of both resting (quiescent) and activated LSCs (Barbaro et al., 

2007). While some studies showed that ΔNp63α is expressed in holoclones (formed 

by stem cells) but not paraclones (formed by TACs) in quiescent cornea (Barbaro et 

al., 2007), numerous studies, on the other hand, showed that ΔNp63α is also 

expressed by early TACs (Du et al., 2003; Espana et al., 2004; Harkin et al., 2004; 

Joseph et al., 2004). 

However, it is important that higher ΔNp63α expression in limbal epithelial grafts is 

associated with greater success in clinical LSC transplantation, whereas grafts 

containing less than 3% of ΔNp63α - bright cells are at an increased risk for failure 

(Rama et al., 2010). 

Beta and gamma isoforms of ΔNp63 are expressed in the suprabasal layers of the 

limbal and corneal epithelia in response to wounding and are expressed in more 

differentiated cells (Daniels et al., 2006a). 

Biological processes known to require p63 include epidermal lineage commitment, 

epidermal differentiation, cell adhesion, and basement membrane formation (Koster, 
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2010). Aberdam and colleagues suggested a key role of p63 in BMP-4 induced 

epidermal commitment of embryonic stem cells. They showed that although ΔNp63 is 

not required for ectodermal fate it enhances embryonic stem cell-derived ectodermal 

cell proliferation and epidermal commitment (Aberdam et al., 2007). ΔNp63 may be 

dispensable for some epithelial differentiation, but is necessary for the commitment of 

embryonic stem cells into CK5/CK14 positive squamous stratified epithelial cells 

(Medawar et al., 2008). 

In vivo studies, transgenic and knock-out mice have demonstrated that p63 plays an 

essential role in squamous epithelial development and regeneration (Mills et al., 

1999; Yang et al., 1999; Rinne et al., 2006; Aberdam et al., 2007; Rinne et al., 2007). 

The generation of mouse models lacking p63 led to severe changes in their 

phenotype: the mice die soon after birth with severe defects in limbs, craniofacial 

development, and absence of skin (Mills et al., 1999; Yang et al., 1999) . The fact 

that p63 knockout mice suffer from severe abnormalities in their epithelial 

development and lack of stratified epithelium suggests that p63 might be involved in 

maintaining the stem cell population (Celli et al., 1999). It is thought to regulate the 

stem cell population by promoting cell senescence and genomic stability, thereby 

sustaining their proliferative potential (Su et al., 2009). 

p63 is consistently expressed in the basal cells of stratified epithelia  and was 

previously identified as a stem cell marker for keratinocytes (Pellegrini et al., 2001). 

Later studies showed that p63 was not an exclusive LSC marker and it’s expressed 

not only in LSC, but also in some TACs, especially proliferative epithelial cells (Kim et 

al., 2009). It is highly expressed in both epidermal and limbal holoclones (Mills et al., 

1999; Yang et al., 1999; Pellegrini et al., 2001). Studies on human corneas partially 

supported these findings, demonstrating predominant immuno-localization of p63 in 

the nuclei of the limbal epithelial basal layer scattered in between the patches of p63 

negative cells (Chen et al., 2004; Schlotzer-Schrehardt and Kruse, 2005). Another 

study, on the other hand, reported positive p63 staining not only in the limbal region 

but also among most of the basal cells of the peripheral and central corneal 

epithelium (Dua et al., 2003). Opposite to the observations in human corneas, 

studies on murine corneas showed p63 expression not only in the limbal region but 

throughout whole corneal epithelium (Moore et al., 2002).  
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1.6.2 Cytokeratins  

 

Cytokeratins or keratins are a group of cytoskeletal proteins that form intermediate 

filaments in epithelial cells and are expressed in distinct patterns during epithelial 

development and differentiation. They are expressed in different combinations 

according to the type of epithelium and its state of differentiation (Sun et al., 1983; 

Schlotzer-Schrehardt and Kruse, 2005).  

Cytokeratins have been intensively studied and represent either markers of 

differentiation (CK3, CK12) (Rodrigues et al., 1987; Kasper et al., 1988; Liu et al., 

1993), or unspecific markers of limbal basal cells (CK5, CK14, CK15, CK19). Some 

of these cytokeratins were also found in conjunctival epithelium (CK5, CK14, CK19) 

(Merjava et al., 2011). CK14 has been proposed as a marker of proliferating 

keratinocytes in the skin (Bickenbach, 2005) as well as CK19  that was used to 

localize epidermal stem cells in hair follicles (Michel et al., 1996). CK19 together with 

another structural protein, vimentin, have also been foundin the basal cells of both 

humane and murine limbal epithelium (Kasper et al., 1988; Kasper, 1992; Lauweryns 

et al., 1993; Schlotzer-Schrehardt and Kruse, 2005). Cells which co-express both of 

these proteins were found to be equivalent to label retaining cells (Kasper, 1992). 

CK15 is the one that deserves a particular attention as reported to be a marker of 

hair follicular bulge stem cells (putative epidermal stem cells) and also considered as 

a marker of LSC (Ohyama et al., 2006; Yoshida et al., 2006). However, CK15 is also 

widely expressed in limbal basal cells and has not been directly linked to LSC 

functions such as clonogenicity or self-renewal (Joe and Yeung, 2014). On the other 

hand, dimer CK3/12 identifies more differentiated cells in corneal epithelium 

(Schermer et al., 1986; Kurpakus et al., 1990). This dimer is absent in LSCs and 

early TACs and therefore represents an important negative marker for LSCs.  

1.6.3 Connexin 43 and Connexin 50 

 

Connexin 43 and connexion 50, the gap junction proteins, are other important 

negative markers of LSC. They are abundantly expressed in the corneal epithelium, 

Connexin 50 throughout all layers whilst Connexin 43 is mainly confined to the basal 

cell layer (Dong et al., 1994; Matic et al., 1997; Wolosin et al., 2002). In contrast, they 
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are both absent from the basal layer of human, mouse, chicken and neonatal rabbit 

limbal epithelium where both LSCs and early TACs reside. It has been suggested 

that the absence of gap junction communication and consequential metabolic 

isolation from differentiating signals is an important characteristic of stem cells (Matic 

et al., 1997). 

1.6.4 C/EBPδ and Bmi1 

 

Transcription factor CCAAT enhancer binding protein δ (C/EBPδ) is expressed in 

many epithelial cell types and is involved in cell cycle arrest (Barbaro et al., 2007). 

Bmi1, a polycomb ringfinger protein, has also been detected in human limbus 

(Barbaro et al., 2007) but was also reported in stem cells in a number of other organs 

(Molofsky et al., 2003; Park et al., 2003; Iwama et al., 2004). Similarly to ΔNp63α, 

C/EBPδ and Bmi1 are expressed in holoclones but not paraclones (Pellegrini et al., 

2011). Coexpression of C/EBPδ, Bmi1 and ΔNp63α is thought to identify mitotically 

quiescent limbal cells. Both C/EBPδ and Bmi1 are involved in regulation of LSC 

quiescence, and the expression of both factors becomes downregulated upon 

corneal injury. LSC continue to express ΔNp63α during the initial proliferative phase, 

but lose this expression on terminal differentiation (Barbaro et al., 2007). However, 

more recent findings demonstrated that despite the fact that Bmi1 positive cells did 

participate in tissue replenishment within the central cornea, they were unable to 

maintain homeostasis of the cornea for more than 3 months, suggesting their status 

as progenitor rather than stem cells (Kalha et al., 2018).  

1.6.5 ABCG2 and ABCB5 

 

ABCG2, an ATP-binding cassette transporter protein, is expressed in stem cells in 

various tissues (Zhou et al., 2001). In these cells ABCG2 is responsible for the efflux 

of different anticancer drugs but also for their capability to exclude Hoechst 33342 

dye that can be detected by flow cytometry (Zhou et al., 2001). The exclusion of 

Hoechst 33342 dye is a unique property of the so called side-population (SP) cells. 

This characteristic has been associated with stem and progenitor cells in many 

tissues (including blood and skeletal muscle) and potentially can be used for cell 
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purification (Goodell et al., 1996; Chang et al., 2011; Ergen et al., 2013). However, 

this isolation strategy is not entirely specific on its own, and should be used only in 

combination with other positive or negative stem cell markers. ABCG2 is expressed 

by only a small subset of limbal basal cells (less than 1%) but interestingly its 

expression was not associated with extensive colony forming capacity (Umemoto et 

al., 2006). 

ABCB5, ATP-binding cassette, sub-family B, member 5, is firstly identified as a 

marker of skin progenitor cells (Frank et al., 2003) and melanoma stem cells 

(Schatton et al., 2008). It functions as a regulator of cellular differentiation (Frank et 

al., 2003) and is required for LSCs maintenance, corneal development and repair 

(Ksander et al., 2014). ABCB5 expression on label-retaining LSCs in mice and p63α 

positive LSCs in humans, along with reduced ABCB5 positive limbal cell frequency in 

LSC-deficient patients, suggest that ABCB5 preferentially marks LSCs (Ksander et 

al., 2014). Ksander at al. also showed that isolated humane or murine ABCB5 

positive cells possess the exclusive capacity to fully restore the cornea upon grafting 

to LSC-deficient mice (Ksander et al., 2014). Moreover, they showed that depletion of 

quiescent LSCs due to enhanced proliferation and apoptosis in Abcb5 knockout mice 

results in defective corneal differentiation and wound healing (Ksander et al., 2014). 

Recently however, another research group reported that p63 is superior to ABCB5 as 

a marker for stemness, whilst ABCB5, either alone or in co‐expression patterns with 

p63 and CK3, identifies more committed progenitor cells (Liu et al., 2018).  

1.6.6 PAX6 and WNT7A 

 

In 2014, Quyang and colleagues reported that “the transcription factors p63 and 

PAX6 (paired box protein PAX6) act together to specify LSCs and WNT7A controls 

corneal epithelium differentiation through PAX6” (Ouyang et al., 2014). Additionally, 

they showed that loss of either WNT7A or PAX6 induces change of LSCs into skin-

like epithelium and furthermore that transduction of PAX6 in skin epithelial stem cells 

is sufficient to convert them to LSC-like cells. Importantly, these reprogrammed skin 

epithelial stem cells were able to repair damaged corneal surface and regenerate 

corneal epithelium upon transplantation in a rabbit corneal injury model (Ouyang et 
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al., 2014). Taken together, their findings suggested a central role of the WNT7A-

PAX6 axis in corneal epithelial cell fate determination. 

1.6.7 Notch-1 

 

Notch-1 is a transmembrane receptor involved in maintaining cells in an 

undifferentiated state and has been proposed as a potential LSC marker by Tomas 

and co-workers. It has been found that Notch-1 expression was localised to a small 

number of cells in the limbal epithelial basal layer expressing also ABCG2. While all 

Notch-1 positive cells were ABCG2 positive, not all ABCG2 positive cells expressed 

Notch-1. It seems to be highly expressed in quiescent cells, supporting the notion 

that it could be an LSC marker (Thomas et al., 2007). 

1.6.8 RHAMM/HMMR  

 

RHAMM/HMMR, the hyaluronan receptor, is located in all layers of corneal 

epithelium and in the suprabasal layers of the limbal epithelium but is completely 

absent from the basal layer of the limbus. Moreover, the absence of RHAMM/HMMR 

expression is correlated with properties associated with LSC. Namely, 

RHAAM/HMMR negative limbal epithelial cells are smaller in size, express negligible 

CK3 but higher levels of ΔNp63α and have higher colony forming efficiency 

compared to RHAAM/HMMR positive limbal epithelial cells. For all this reason, 

RHAMM/HMMR represents a putative negative marker of LSC (Ahmad et al., 2008). 

1.6.9 Periostin 

 

Periostin is a non-structural matricellular protein originally found in murine 

osteoblasts (Takeshita et al., 1993). Later studies have shown that periostin is 

produced not only by stromal tissues, but also by epithelial tissues including epithelial 

cells in prostatic, ovarian and oral tumours (Gillan et al., 2002; Siriwardena et al., 

2006; Tsunoda et al., 2009). Recently, periostin was found to be exclusively localized 

in the basal layer of human limbal epithelium and co-localized with p63 but not with 
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corneal differentiation marker CK3. In primary human limbal epithelial cells, periostin 

expression at both mRNA and protein levels was significantly higher in sub-confluent 

cultures at exponential growth stage than in confluent cultures at slow growth 

condition. Moreover, periostin expression increased significantly during epithelial 

regeneration in wound healing process, especially 16-24h at the wound edge, similar 

to activation and upregulation of p63 and integrin β1 (Qu et al., 2015). 

 

1.7 Limbal stem cell deficiency 

According to the World Health Organization, as the 4th cause of blindness globally 

(5.1%), corneal blindness is one of the major causes of visual deficiency after 

cataract, glaucoma and age-related macular degeneration (World Health 

Organization). It has been estimated that corneal vascularisation and opacity cause 

blindness in 8 million people worldwide each year. 

Corneal integrity and function depend on self-renewing properties of the corneal 

epithelium. The corneal surface is constantly renewed by the stem cells located at 

the peripheral edge of the cornea, in a region known as limbus. These cells can be 

destroyed by numerous factors, including chemical and thermal burns, infections or 

autoimmune diseases, which result in the condition called limbal stem cell deficiency 

(LSCD), very painful and debilitating eye disease (O'Callaghan and Daniels, 2011; 

Ahmad, 2012).  

The cornea is surrounded by the conjunctiva which lays on fibrovascular connective 

tissue containing blood vessels and lymphatics (Utheim, 2013). Numerous cell types 

are interspersed within the conjunctival epithelium including lymphocytes, 

melanocytes, Langerhans cells and goblet cells. Goblet cells produce mucin, 

essential for maintenance of the tear film and ocular surface integrity, and are 

present exclusively in conjunctival but not in healthy corneal epithelium (Utheim, 

2013). The limbus acts as a barrier separating the clear avascular corneal epithelium 

from the surrounding vascular conjunctival tissue.  

LSCD is characterized by either a loss or dysfunction of the stem cells in the limbus 

(Ahmad, 2012). In LSCD both the stem cell function and the barrier function of the 

limbus fail (Ahmad et al., 2010).  Either loss or dysfunction of LSCs lead to failure of 
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corneal epithelial healing, therefore persistent corneal epithelial defects appear. 

These epithelial defects cause chronic ocular surface discomfort and pain. The 

failure of the barrier function, on the other side, will allow conjunctival epithelium 

along with its blood vessels to invade the corneal surface. This phenomenon is 

known as conjunctivalization of the cornea that leads to loss of corneal clarity with 

consequent visual impairment or blindness (Ahmad, 2012).  

 

1.7.1 Etiology and classification of LSCD 

 

The two pathologic mechanisms of LSCD are the direct destructive loss of LSCs and 

the loss of the limbal microenvironment/niche needed for LSC survival (Le et al., 

2018). Many acquired and congenital diseases may cause LSCD either by the direct 

loss of LSC pool, by the destruction of their niche or both (Li et al., 2007; Le et al., 

2018).  

There are many known causes of LSCD, if the cause is unknown these cases are 

classified as idiopathic (Espana et al., 2002) (Table 1.2). Primary LSCD is a direct 

result of genetic mutations that lead to LSC dysfunction or destruction. Some 

hereditary diseases including the limbus such as aniridia, a developmental 

dysgenesis of the anterior segment of the eye (Nishida et al., 1995; Ramaesh et al., 

2005; Skeens et al., 2011), keratitis associated with multiple endocrine deficiencies 

(Puangsricharern and Tseng, 1995; Mohammadpour and Javadi, 2006), dyskeratosis 

congenita (Aslan and Akata, 2010; Aslan et al., 2012), ectodermal dysplasia (Di Iorio 

et al., 2005; Felipe et al., 2012), Turner syndrome (Strungaru et al., 2014), lacrimo-

auriculo-dento-digital (LADD) syndrome (Cortes et al., 2005), and xeroderma 

pigmentosum (Fernandes et al., 2004) are connected with LSCD.  

Secondary LSCD results from external factors that directly destroy LSCs, damage 

the stem cell niche or both. The most common acquired LSCD is caused by chemical 

or thermal injuries (Sangwan, 2001; Le et al., 2010; Ahmad, 2012; Sejpal et al., 

2013), while other possible acquired causes are contact lens wear and ocular surface 

inflammatory diseases such as Stevens-Johnson syndrome, ocular cicatricial 

pemphigoid, and chronic limbitis (Puangsricharern and Tseng, 1995; Dua and 
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Azuara-Blanco, 2000; Sridhar et al., 2001; Bhatia et al., 2009).  Other inflammatory 

conditions including severe chronic vernal keratoconjunctivitis and microbial infection 

involving the limbus can directly destroy the stem cells too (Sangwan et al., 2011). In 

contact lens wear, LSCD may be caused by either toxicity of the contact lens solution 

or chronic mechanical micro trauma, hypoxia and inflammation of the limbus as a 

result of contact lens friction (Utheim, 2013). Iatrogenic causes are also present: 

extensive cryotherapy, radiation, multiple ocular surgeries involving the limbal region, 

toxicity from topical medications such as mitomycin C and 5-FU can also directly 

destroy LSC and their niche (Pires et al., 2000; Dudney and Malecha, 2004; Utheim, 

2013). LSCD secondary to other ocular surface disorders has also been reported; 

these disorders include neurotrophic (neural and ischemic) keratopathy (Bonini et al., 

2003), bullous keratopathy (Paris Fdos et al., 2010), and extensive ocular surface 

tumours (Gupta et al., 2011). In most of the acquired cases of LSCD, probably both 

LSCs and their niche are affected (Secker and Daniels, 2008; Utheim, 2013). 
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Table 1.2 Causes of limbal stem cell deficiency.  

I PRIMARY / HEREDITARY 

 Aniridia 

 Multiple endocrine deficiency 

 Ectodermal dysplasia 

 Ectrodactyly–ectodermal dysplasia–cleft (EEC) syndrome 

 Keratitis-ichthyosis-deafness (KID) syndrome 

 Dyskeratosis congenital 

 Turner syndrome  

 Xeroderma pigmentosum 

 Lacrimo-auriculo-dento-digital (LADD) syndrome 

 

II SECONDARY / AQUIRED 

 Chemical or thermal injury 

 Contact lens wear  

 Ocular surface inflammatory diseases 

 Stevens-Johnson syndrome / toxic epidermal necrolysis 

 ocular cicatricial pemphigoid 

 chronic limbitis (vernal / atopic conjunctivitis) 

 Iatrogenic causes 

 extensive cryotherapy 

 radiotherapy 

 multiple ocular surgeries involving the limbal region 

 cytotoxic agents (mitomycin C and 5-fluorouracil) 

 Severe microbial infections involving limbus 

 Mechanical trauma 

 Pterygium 

 Limbal tumours and extensive ocular surface tumours 

 Neurotrophic keratopathy  

 Bullous keratopathy 

 

III IDIOPATHIC (unknown cause) 
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1.7.2 Presentation of LSCD 

 

LSCD can affect both eyes (bilateral) and just one eye (unilateral). Depending on the 

extent of the disorder LSCD is classified as either partial or total (Kolli et al., 2010). 

Depending on the severity of the disease, LSCD can present with various symptoms 

and signs. Characteristic symptoms and signs can be easily understood by 

considering the main functions of limbus, the stem cell function and barrier function.  

As a result of either loss or dysfunction of LSCs corneal epithelial defects start to 

appear and fail to heal normally (Utheim, 2013). Recurrent corneal erosion or 

persistent epithelial defects together with inflammation cause severe pain, irritation, 

redness, tearing, photophobia, epiphora, blepharospasm and reduced vision and 

may lead to scarring, corneal thinning and even perforation (Espana et al., 2002). As 

the barrier function of limbus also fail conjunctival epithelium along with blood vessels 

encroach and invade the corneal surface. This process known as conjunctivalization 

of the cornea and represents the hallmark of LSCD. The conjunctivalization causes 

loss of corneal clarity and consequential visual impairment. 

The direct loss of LSCs and the conjunctivalization of the corneal surface lead to a 

number of clinical signs (Dua et al., 2000; Kolli et al., 2009; Sejpal et al., 2013): 

Corneal epithelial haze. As a direct consequence of scarring and the 

conjunctivalization the corneal epithelium loses its transparency and becomes hazy 

(Figure 1.9). Normal corneal epithelial cells are attached by tight junctions but the 

cellular connections between conjunctival epithelial cells are much looser making the 

conjunctival epithelium more permeable for hydrophilic molecules such as fluorescein 

compared to corneal epithelium (Kolli et al., 2009). This fact results in the late 

staining of conjunctivalized corneal epithelium with fluorescein usually seen in LSCD 

(Kolli et al., 2009). Moreover, these loose connections between the conjunctival 

epithelial cells permit entry of leucocytes from the tear film which then contribute to 

the redness and the chronic inflammation seen in LSCD (Kolli et al., 2009). 
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Figure 1.9 Clinical signs of limbal stem cell deficiency showing corneal haziness, 
conjunctivalization and neovascularisation of the corneal surface. The photo is taken 
from the paper “Successful clinical implementation of corneal epithelial stem cell 
therapy for treatment of unilateral limbal stem cell deficiency” (Kolli et al., 2010). 

 

Persistent epithelial defects. Failure of corneal epithelial healing due to loss or 

dysfunction of LSCs lead to formation of persistent corneal epithelial defects. These 

persistent epithelial defects may lead to scarring, ulceration, stromal 

neovascularisation, corneal thinning, secondary stromal infiltration and melting or 

even perforation of the cornea (Kolli et al., 2009). 

Loss of limbal architecture. In LSCD, there is loss of the palisades of Vogt and 

characteristic late irregular and radial staining of the limbal epithelium with 

fluorescein due to conjunctival invasion (Kolli et al., 2009). The absence of Palisades 

of Vogt alone, however, does not indicate LSCD (Zheng and Xu, 2008). 

Corneal neovascularisation. Conjunctival cells unlike corneal cells are not capable 

of secretion of anti-angiogenic factors that leads to the development of both 

superficial in milder and deep corneal vascularization in more severe cases of LSCD 

(Kolli et al., 2009). Neovascularisation is often seen but may not be present in some 

cases (Figure 1.9). 

Corneal scarring. In case the epithelial defects do not progress to thinning and 

perforation, remodelling of the affected epithelial tissue occurs and forms a scar 

tissue resulting in further loss of vision (Kolli et al., 2009).  
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Keratinization. If there is also a presence of tear deficiency, keratinisation may 

occur. 

 

Clinical manifestation of LSCD varies depending on severity and extent of 

involvement (Dua et al., 2000). In partial LSCD only one segment of the limbus is 

involved and clinical presentation is milder compared to total LSCD characterised by 

a complete absence of LSC population accompanied by conjunctivalization of the 

entire corneal surface (Sejpal et al., 2013). Recurrent epithelial defects cause severe 

pain, photophobia and together with conjunctivalization, vascularisation and scarring 

will result in functional blindness. 

 

1.7.3 Diagnosis of LSCD 

 

Accurate diagnosis of LSCD is crucially important because appropriate treatment can 

prevent progression of the condition and further damage to the ocular surface. 

Although the diagnosis of LSCD is mainly made on clinical grounds (Ahmad et al., 

2010), laboratory tests are necessary to confirm the diagnosis and monitor the 

disease progression. Inherent limitations are associated with the interpretation of 

clinical signs (Dua et al., 2009). For example, the presence of a fibrovascular pannus 

may be caused by previous infectious keratitis rather than by LSCD (Le et al., 2018). 

Beside patient’s medical history and slit-lamp examination, laboratory tests, such as 

corneal impression cytology and in vivo confocal microscopy, are useful diagnostic 

methods used to confirm the diagnosis of LSCD and monitor success of surgical 

interventions. Sophisticated testing is not required for the patients with condition 

known to cause LSDC, such as chemical injuries and Stevens-Johnson syndrome, 

with typical clinical signs (loss of the Palisades of Vogt, conjunctivalization and 

persistent epithelial defects) (Utheim, 2013). In patients with the less clear symptoms 

and signs, however, additional diagnostic tools including corneal impression cytology 

and in vivo confocal microscopy are of a great importance, especially if LSC 

transplantation is being considered as a therapy.   
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1.7.3.1 Clinical examination  

The slit-lamp examination have been the main basis for the diagnosis and 

classification of LSCD (Le et al., 2018). The slit-lamp examination reveals a dull and 

irregular reflex from the conjunctivalized corneal surface (Dua et al., 2000). So-called 

“waterfall” or “whorled” epithelium is often present along with the loss of the 

Palisades of Vogt (Liang et al., 2009). Corneal haze, recurrent erosions or persistent 

epithelial defects and neovascularisation are also seen during the examination 

together with abnormal fluorescein staining. In advanced cases of LSCD, 

fibrovascular pannus and corneal scaring predominate (Dua et al., 2000). 

Clinical findings under slit-lamp biomicroscopy were summarized by Le and 

colleagues (Le et al., 2018): 

 Mild stage LSCD 

- Dull/irregular corneal surface with loss of light reflex  

- Corneal epithelial opacity  

- Fluorescein epithelial staining  

- Loss of palisades of Vogt 

 Moderate stage LSCD 

- Vortex keratopathy 

- Superficial vascularisation and peripheral pannus 

 Severe stage LSCD 

- Recurrent/persistent epithelial defects  

- Stromal neovascularisation 

- Stromal scarring and opacity.  

 

 

1.7.3.2 Corneal impression cytology  

 

Impression cytology is the gold standard diagnostic test for LSCD (Puangsricharern 

and Tseng, 1995). A nitrocellulose acetate filter paper (Egbert et al., 1977; Singh et 

al., 2005) or a polytetrafluoroethylene membrane (Thiel et al., 1997) may be pressed 

onto the corneal surface under the topical anesthesia to remove superficial cells 
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which can be then subjected to histological, immunohistological or molecular 

analysis. Thereafter the epithelial morphology and the presence of markers of 

conjunctivalization are evaluated. The presence of goblet cells on the cornea proves 

conjunctival epithelial invasion, since these cells are not normally present within the 

corneal epithelium. Besides the goblet cells other commonly used markers specific to 

conjunctival cells are CK7, CK13, mucin-1 and less specific CK19 (Barbaro et al., 

2010; Jirsova et al., 2011; Ramirez-Miranda et al., 2011). However, in some cases, 

such as those arising from severe chemical injury or Stevens-Johnson syndrome, 

goblet cells are often absent leading to false negative results (Liang et al., 2009). 

Sangwan et al. showed that even one third of patients with clinical diagnosis of LSCD 

demonstrated the absence of goblet cells (Sangwan et al., 2005). These patients 

received transplantation of ex vivo cultured LSCs which resulted in restoration of the 

ocular surface (Utheim, 2013). 

1.7.3.3 In vivo confocal microscopy  

Using in vivo confocal microscopy for examination in patients with LSCD the loss of 

normal limbal architecture, cystic changes in the epithelium and sub-epithelial fibrosis 

can be seen (Nubile et al., 2013). The main advantages of in vivo confocal 

microscopy compared to impression cytology are the possibility of non-invasive 

examination that does not require removal of corneal epithelial cells and obtaining 

information about both the superficial and deeper zones of the limbal area (Deng et 

al., 2012; Nubile et al., 2013). Using this technique normal corneal epithelial cells 

with bright well-defined membranes can be observed in contrast to hyper-reflective 

conjunctival epithelial cells with ill-defined membranes (Dua et al., 2009). Although 

the quality of images generated is outstanding, there are some disadvantages of 

using in vivo confocal microscopy such as a need of direct physical contact between 

the imaging probe and the epithelium examined and a small field of view (Utheim, 

2013). Spectral domain optical coherence tomography represents an alternative 

technique allowing larger field of view in non-invasive manner but with significantly 

lower resolution (Bizheva et al., 2011).   
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1.7.4 Management of LSCD 

 

Successful reconstruction of the ocular surface in LSCD requires not only restoration 

of LSC number (by LSCs transplantation) but also restoration of the normal LSC 

niche environment (normal lid function and tear function, possible use of amniotic 

membrane and autologous serum etc.) (Kolli et al., 2009). Optimization of the ocular 

surface health is the very first step in the management of both partial and total LSCD. 

In partial LSCD improvement of the ocular surface health provides a better 

environment for the remaining LSCs to survive whilst in total deficiency cases these 

measures provide the best chance for the transplanted tissue to survive. 

LSCD treatment is usually complex and varies a lot among patients. The choice of 

treatment depends on severity (mild, moderate, severe LSCD) and extent of the 

disease (partial or total LSCD). For milder and moderate cases, treatment involve the 

control of the symptoms and causes. For patients with severe LSCD, the ocular 

surface reconstruction is required. Moreover, although for milder cases conservative 

management can be sufficient, if the pupillary area of the eye is covered by 

encroaching conjunctival tissue, surgical intervention is also required (Utheim, 2013). 

Various surgical procedures have been developed over the past 30 years to treat and 

reconstruct severely damaged or diseased ocular surface epithelia including amniotic 

membrane transplantation, conjunctival limbal grafting, simple limbal epithelial 

transplantation and cultivated limbal and oral mucosal epithelial transplantation (Yin 

and Jurkunas, 2018). 

There are at least five main principles in the management of LSCD, as summarized 

by Fernandez-Buenaga and colleagues (Fernandez-Buenaga et al., 2018): 

1. Understanding and control of inflammation; 

2. Correcting lid malposition and fornix adhesions;  

3. Managing dry eye disease; 

4. Partial versus total LSCD – since one of the main goals of ocular surface 

reconstruction is vision improvement, involvement of the central cornea is an 

important indication for surgical reconstruction; 
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5. Unilateral versus bilateral LSCD – knowing of LSCD aetiology is important in 

determining the surgical options, mainly in terms whether autograft or allograft 

procedures should be employed. 

 

1.7.4.1 Partial LSCD treatment  

 

Partial LSCD involves only a few sectors of the cornea and can be treated 

conservatively with frequent ocular lubrication and topical steroid therapy. Repeated 

mechanical scraping of the conjuntivalized epithelium, known as the sequential 

sector conjunctival epitheliectomy, may be performed to allow regrowth of normal 

corneal epithelium in its place providing there is some remaining healthy corneal 

tissue with functional stem cells left (Dua, 1998). Amniotic membrane transplantation 

and ipsilateral limbal translocation are also suggested as an early therapeutic option 

(Anderson et al., 2001; Nishiwaki-Dantas et al., 2001). Amniotic membrane 

transplantation helps to recreate the integrity of the ocular surface by promoting 

epithelialization, reducing angiogenesis and inflammation (Koizumi et al., 2001) and 

could be used with a high success instead of limbal transplantation in the 

management of partial LSCD.  

 

1.7.4.2 Complete LSCD treatment 

 

In case of total LSCD, whether unilateral or bilateral, the treatment of choice is 

surgical. Conventional corneal transplantation replaces only the central cornea and 

cannot successfully treat the ocular surface with extensive and complete LSCD. 

Therefore, therapeutic strategies evolved to replace limbal epithelium with or without 

corneal transplantation surgery.  

Jose Barraquer was the first to report managing “superficial burns” of one eye using 

“epithelial conjunctivocorneal limbus taken from the other eye” in 1964 (Holland, 
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2015). Thoft later reported “initial transplantation of conjunctiva, then lenticules of 

peripheral cornea, from cadaveric eyes” (Thoft, 1977). 

In unilateral cases of LSCD, donor tissue is obtained from the healthy fellow eye, 

called limbal autograft; in bilateral cases of LSCD, donor tissue is obtained from an 

allogeneic source (cadaveric, living related and unrelated donors), called limbal 

allograft. Both procedures have the same purpose - a transplantation of a new 

source of epithelium after the removal of the patient’s scarred and diseased 

epithelium (Thoft, 1977; Thoft, 1984). Allogeneic transplantation requires prolonged 

systemic immunosupression since the procedure carries the risk of rejection. It was 

also reported that long time survival of allografts is worse than autologous grafts (Miri 

et al., 2010). 

The corneal transplantation (penetrating keratoplasty) cannot restore sight to an eye 

blinded by LSCD before functional LSCs are restored (Dua et al., 2000). Corneal 

transplantation can be performed either simultaneously with limbal grafting or after 

the limbal grafting procedure has proven to be successful, which is more common. 

Restoration of the tear film may be achieved with frequent lubrication and use of 

autologous serum drops (Liang et al., 2009). In case the tear film is not efficiently 

restored, the resulting dryness contributes to the failure of traditional corneal 

transplantation. In that case keratoprosthesis is the only available terapeutic option 

available (Cauchi et al., 2008). Keratoprosthesis can be used as an alternative to 

allogeneic transplantation to avoid immunosupression. Athough patient with 

keratoprosthesis show improved vision postoperatively they may develop glaucoma 

and retroprosthetic membranes (Kamyar et al., 2012).  

1.7.5 Surgical treatment of LSCD  

1.7.5.1 Conjuntival limbal autograft (CLAU) 

The pioneer work by Kenyon and Tseng in 1989 identified that the transplanted 

limbal tissue can rehabilitate the corneal surface. They showed that in cases of 

unilateral total LSCD a contralateral conjunctival limbal autograft harvested from the 

healthy fellow eye may be used to help recover dieased eye’s corneal surface 

(Kenyon and Tseng, 1989), but the procedure is linked with the risk of iatrogenic 
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LSCD development in the donor eye as this technique requires the removal of 

relatively large free conjuntival lenticule (Kenyon, 1989; Kenyon and Tseng, 1989).  

Iatrogenic LSCD in the healthy donor eye has been reported clinically (Jenkins et al., 

1993) and validated in experimental animal studies (Chen and Tseng, 1990; Chen 

and Tseng, 1991). The risk of iatrogenic LSCD is lower when fewer than four to six 

clock-hours of limbal tissue is transplanted (Dua et al., 2000), but the success rate 

decreased in these smaller grafts and complications were seen (Liang et al., 2009; 

Baradaran-Rafii et al., 2012). 

1.7.5.2 Allograft limbal transplant 

In total bilateral LSCD, allograft limbal transplantation is one of the approaches to 

reconstruct the ocular surface (Tsai and Tseng, 1994). Allogeneic limbal 

transplantation can be carried out as as living-related conjunctival allograft (LR-

CLAL), cadaveric keratolimbal allograft (KLAL), or the combination of LR-CLAL and 

KLAL (also referred to as the “Cincinnati Procedure”) (Holland, 2015; Haagdorens et 

al., 2016). Allograft limbal stem cell transplant can provide immediate postoperative 

epithelialization and rapid reconstruction of the ocular surface (Dong et al., 2018). 

However, in order to avoid rejection of the allograft, systemic immunosuppression is 

necessary. Adverse effects related to long-term immunosuppression including 

anemia, hyperglycemia, elevated creatinine, and elevated levels of liver function 

markers are commonly seen (Holland et al., 2012; Krakauer et al., 2012). 

Interestingly, a long-term study showed that eventually, only recipient DNAs were 

detectable in the regenerated epithelium of the majority of the successful cases. This 

finding suggests that the allografted limbal epithelium promotes regeneration of the 

corneal epithelium in patients with LSCD, at least in part, by activating residual stem 

cells and enhancing their self-renewal (Daya et al., 2005). One of the possible 

explanations is that allografted LSCs secrete factors necessary for maintaining stem 

cell homeostasis. It is important to further elucidate what exactly these factors are 

and whether their direct application onto the ocular surface could possibly restore the 

corneal epithelium (Dong et al., 2018). 
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1.7.5.3 Simple limbal epithelial transplantation (SLET) 

In 2012, Sangwan and colleagues introduced a novel technique called "simple limbal 

epithelial transplantation", that incudes direct transplantation of the 2 x 2 mm piece of 

healthy limbal tissue cut into pieces and secured on amniotic membrane using fibrin 

glue without ex vivo cultivation (Sangwan et al., 2012).  Promising results are 

reported after a multicenter study on 68 eyes from patients who underwent SLET for 

unilateral LSCD (Basu et al., 2012). Basu et al. reported that clinical success was 

achieved in 57 (84%) cases and the survival probability exceeded 80%, with a 

median follow-up of 12 months (Basu et al., 2012). In 2016, the same autors reported 

long-term clinical outcomes of a large cohort of patients (125 cases) with unilateral 

LSCD occurring after ocular burns with median postoperative follow-up of 1.5 years. 

They showed that 76% patients maintained a successful outcome and in addition to 

the ocular surface restoration, most patients showed a significant improvement in 

visual acuity (Basu et al., 2016).  

Gupta and coworkers reported that SLET showed a similar success rate to the 

traditional autologous limbal transplantation with an important advantage - 

autologous SLET requires only a tiny amount of limbal tissue from the unaffected eye 

therefore carrying a minimal risk to the donor eye (Gupta et al., 2018). 

 

1.7.6 LSCD cell-based therapies  

 

Cell therapy of LSCD involves tissue engineering techniques focused primarily on ex 

vivo expansion of the least amount of limbal tissue on different carrier scaffolds 

(substrates) and production of limbal epithelial sheets which will further be used to 

reconstruct severely damaged ocular surfaces by transplantation. Beside limbal 

epithelial cells, several studies focused on use of oral mucosal epithelial cells and 

mesenchymal stem cells (MSCs) in LSCD treatment.  

1.7.6.1 Cultivated limbal epithelial transplantation (CLET) 

A new chapter in the treatment of LSCD started with the laboratory expansion of 

limbal epithelial cells (LECs) when Pellegrini et al. first reported cultivating a small 
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limbal biopsy of the healthy eye of patients with severe alkali burn and successful 

restauration of the ocular surface by transplantation of the cultured cell sheet on the 

other eye (Pellegrini et al., 1997). Many studies published later confirmed that a small 

piece of limbal tissue, usually 2 x 2 mm, may be taken from the healty eye and 

transplanted following ex vivo cultivation of LECs, achieving excellent long term 

clinical outcome (Pellegrini et al., 1997; Kolli et al., 2010; Rama et al., 2010; Baylis et 

al., 2011). The limbal tissue can be harvested from the healthy fellow eye in unilateral 

LSCD, or living related donors or cadaveric eyes in bilateral cases. Cells can be 

cultured in either an explant or cell suspension system using various culture media 

and substrates (Shortt et al., 2007b; Ahmad et al., 2010; Shortt et al., 2010; Baylis et 

al., 2011). In the suspension technique, cells are separated by enzyme digestion 

from the limbal niche for culture while in the explant culture LSCs along with the 

entire limbal niche are placed in a culture (Ramachandran et al., 2014). In 

suspension culture, because cells are removed from their natural niche, additional 

support in the form of feeder cells is required to maintain stemness of LSC population 

(Ramachandran et al., 2014). 

The possibility to get enough cells for transplantation from a very small amount of 

starting material has made LSCD treatment simpler and safer. Also, it became 

possible to repeat CLET in cases in which the first CLET failed, without adversely 

affecting the health of the donor eye (Basu et al., 2012). It has been reported that by 

repeating CLET 3-12 months after the first CLET, a stable ocular surface could be 

generated in more than 66% of the failed cases (Basu et al., 2012).  

Rama et al. reported “permanent restoration of a transparent, renewing corneal 

epithelium” in 76.6% of eyes after CLET using autologous LSCs cultivated on fibrin to 

treat 112 patients with corneal damage, most with burn-dependent LSCD (Rama et 

al., 2010). Restored eyes remained stable over time, with up to 10 years of follow-up. 

Importantly, they also showed that successful outcome was associated with the 

percentage of p63-bright, holoclone-forming stem cells in culture. Namely, cultures 

with more than 3% of p63-bright cells were associated with successful 

transplantation in 78% of patients while, in contrast, cultures in which such cells 

made up 3% or less of the total number of cells were associated with successful 

transplantation in only 11% of patients (Rama et al., 2010). Moreover, they showed 

that graft failure was also associated with the type of initial ocular damage and 

postoperative complications (Rama et al., 2010). The next long-term multicentre 
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prospective study on 152 patients treated with autologous LSCs cultured on fibrin 

from the same research group, scored outcomes as full success, partial success and 

failure in 66.05%, 19.14% and 14.81% of eyes, respectively (Pellegrini et al., 2013). 

Although Pellegrini et al. initially recommended use of clinical-grade 3T3-J2 feeder 

cells as a substrate for LSCs cultivation, many research groups later tended to avoid 

the use of animal feeder cells in the process of cell product preparation for human 

administration. Kolli et al. for example, recommended use of HAM as a more suitable 

substrate for ex vivo LSCs expansion for clinical application (Kolli et al., 2010). 

Having in mind that HAM mimics the natural stem cell niche and has the potential to 

enhance the self-renewal of LSCs (Nakamura et al., 2006), it represents an ideal 

substrate for various transplantation procedures on the ocular surface (Sangwan et 

al., 2006). In their study, Kolli et al. reported treating of eight eyes of eight 

consecutive patients with unilateral total LSCD with ex vivo expanded autologous 

LSC transplant on HAM. After transplantation, successful ocular surface 

reconstruction with a stable corneal epithelium was obtained in all eyes (100%) with 

a mean follow-up of 19 months (Kolli et al., 2010). 

Over the past 22 years since the first CLET was performed, various modifications of 

the culture and transplantation techniques emerged. Consequently, due to variation 

within the studies and between the studies, it is often difficult to make an objective 

assessment. Outcomes of limbal epithelial therapy were reviewed by different 

research groups (Shortt et al., 2007b; Baylis et al., 2011; Holland, 2015; Fernandez-

Buenaga et al., 2018). Pooling the data of 13 studies with long-term outcomes, 

Holland analysed the long-term overall success rate (Holland, 2015). Overall, 720 

eyes were treated with either autologous (89%) or allogenic CLET (11%) and the 

single most common indication for the surgery was chemical/thermal injury (89%) 

(Holland, 2015). Using ocular surface reconstruction success and improvement in 

visual acuity as the main outcome measures, he reported the overall success rate of 

these 13 studies of 72% (Holland, 2015). 

 

1.7.6.2 Cultivated oral mucosal epithelial transplantation (COMET)  

As severe LSCD is mostly bilateral and allogeneic limbal transplant or CLET require 

intesive and prolonged postoperative immunosupressive therapy, scientists 
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worldwide become interested in an extraocular source of stem cells to avoid 

dependence on allogeneic LSCs. So far, oral mucosal epithelium and MSCs were 

used in regeneration of the corneal surface. It has been shown that COMET is a 

feasible substitute for allogenic CLET without the need for long-term systemic 

immunosuppression (Nakamura et al., 2004; Nakamura and Kinoshita, 2011; 

Nakamura et al., 2011; Eslani et al., 2012; Sotozono et al., 2013; Kolli et al., 2014; 

Sotozono et al., 2014; Prabhasawat et al., 2016).  

Gaddipati et al. reported that cultivated oral epithelial cells formed a stratified tissue 

and expressed proliferation and progenitor markers Ki67 and p63 in the basal layer 

of the cell sheets, suggesting that the epithelium had regenerative capacity 

(Gaddipati et al., 2014). Furthermore, the transplanted epithelium also expressed 

CK3, CK19, p75, and the cornea-specific PAX6 and CK12 (Gaddipati et al., 2014). 

This study confirms that the oral cells acquire some of the corneal epithelial-like 

characters at the ectopic site. However, although transplantation of ex vivo cultivated 

autologous oral mucosal epithelial cells in patients with bilateral total LSCD achieved 

success in stabilization of the ocular surface, the visual improvement was not as 

optimal (Nakamura and Kinoshita, 2003; Nakamura et al., 2004; Kolli et al., 2014). 

Moreover, compared with cultured LECs, oral epithelial cells have significantly higher 

angiogenic potential (Dong et al., 2018; Duan et al., 2019). Recently, Duan and 

colleagues suggested that this issue may be solved by using allogenic limbal niche 

cells instead of mouse-derived 3T3 cells as a feeder layer, as they reported that the 

cultivated oral mucosal epithelial cells obtained in this system are less likely to induce 

postsurgical neovascularization (Duan et al., 2019). 

Kolli et al. reported transplantation of autologous ex vivo expanded oral mucosa 

epithelium in two patients with bilateral total LSCD that resulted in successful 

reversal of LSCD in the treated eye up to 24 months (Kolli et al., 2014). In another 

study with mean follow up of 25.5 months in 40 eyes, corneal surface stability 

underwent an early decline in transplanted COMET over the first 6 months, 

remaining stable thereafter (1 year: 64.8%, 2 years: 59%, 3 years: 53.1%) (Satake et 

al., 2011). Fernandez-Buenaga et al. recently reported that COMET success rate 

vary between 50 and 70% at 3-4 years follow up (Fernandez-Buenaga et al., 2018). 
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1.7.6.3 Mesenchymal stem cell transplantation (MSCT) in LSCD treatment  

MSCs are relatively easy to obtain from a variety of tissues, including bone marrow, 

adipose tissue, umbilical cord, etc. Importantly, MSCs possess immunomodulatory 

and non‐immunogenic properties (Aggarwal and Pittenger, 2005), thereby removing 

the need for immunosuppression. There is plenty of evidence from both in vitro and 

in vivo studies regarding the potential use of bone marrow derived MSCs for ocular 

surface regeneration. All studies reported promising results in animal models and 

demonstrated significant corneal regeneration, improved corneal transparency, and 

rapid healing associated with the restoration of vision (Holan and Javorkova, 2013; 

Yao and Bai, 2013; Harkin et al., 2015). Another promising, easily accessible and 

abundant source of MSCs is adipose tissue (Strioga et al., 2012). Adipose tissue 

derived MSCs also show the beneficial role in corneal epithelial regeneration. Under 

basic culture conditions they express corneal epithelial markers, suggesting that 

these cells may have some inherent properties to regenerate the corneal epithelium 

(Nieto-Miguel et al., 2013). Moreover, several studies reported that in experimental 

models of LSCD, administration of adipose tissue derived MSCs either 

subconjunctivally (Lin et al., 2013a), topically (Lin et al., 2013b; Zeppieri et al., 2013; 

Almaliotis et al., 2015), or overlaid on scleral contact lenses or nanofiber 

scaffolds (Espandar et al., 2014; Holan et al., 2015) promoted regeneration of the 

corneal epithelium. A case report in which adipose tissue derived MSCs were applied 

topically to a patient with persistent sterile epithelial defects further supports the 

potential benefit of MSCs from this source (Agorogiannis et al., 2012). Furthermore, 

Galindo et al. showed that adipose tissue derived MSCs improved corneal and limbal 

epithelial phenotypes in animal LSCD models (Galindo et al., 2017). These cells 

transplanted in total LSCD models developed in rabbits were well tolerated, reduced 

inflammation, and restrained the evolution of corneal neovascularization and corneal 

opacity. The expression profile of the corneal epithelial cell markers CK3 and E‐

cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD 

models, but was partially recovered after human adipose tissue derived MSCT 

(Galindo et al., 2017).  

On the contrary, a study published by Holan and colleagues suggests superiority of 

bone marrow derived MSCs in comparison with adipose tissue derived MSCs (Holan 

et al., 2015). Clinical characterization of the healing process, evaluation of corneal 

thickness, re-epithelialization, neovascularization, and the suppression of a local 
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inflammatory reaction, were comparable in the bone marrow derived MSC and LSC-

treated eyes, but results were significantly better than in injured, untreated eyes or in 

eyes treated with adipose tissue derived MSCs (Holan et al., 2015). Due to these 

contradictory results it is still not clear whether or not one of these two MSC sources 

represent superior option for LSCD treatment. 

MSCs could also be used as a support to LSC transplantation. It’s been shown that 

co-transfer of murine LSCs with MSCs, which have immunosuppressive properties, 

significantly inhibited local inflammatory reactions and supported the healing process 

(Zajicova et al., 2010).  

Mittal et al. showed, using an in vivo mouse model of ocular injury, that MSCs 

possess the capacity to restore corneal transparency by secreting high levels of 

hepatocyte growth factor (HGF) and moreover that HGF alone can restore corneal 

transparency (Mittal et al., 2016). 

Recently, the first reported proof-of-concept clinical trial provided an evidence that 

allogeneic bone marrow-derived MSCT to the ocular surface is as safe and as 

effective as allogeneic CLET at facilitating recovery of LSCD (Calonge et al., 2019). 

They conducted a 6-12 month randomized, double-masked pilot trial to test whether 

allogeneic bone marrow-derived MSCT (performed in 17 patients with LSCD) was as 

safe and as equally efficient as allogeneic CLET (performed in 11 patients with 

LSCD), to improve corneal epithelial damage due to LSCD. Global success after 6-

12 months was 72.7% - 77.8% for CLET cases and 76.5% - 85.7% for MSCT cases, 

without any significant differences found. Since there were no adverse events related 

to cell products reported, their study showed that MSCs used in MSCT can safely 

and effectively help treating corneal pathology due to LSCD (Calonge et al., 2019). 
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Chapter 2. Cultivation of LSCs under good manufacturing practice 

(GMP) conditions  

 

2.1 Introduction 

2.1.1 Regenerative medicine and cell therapy 

 

Regenerative medicine (RM) is an innovative, fast-moving field with the ultimate aim 

to return patient to full health. RM has been defined as the “process of replacing, 

engineering or regenerating human cells, tissue and organs to restore or establish 

normal function” (Mason and Dunnill, 2008). Stem cell research plays a central role in 

RM through translational research as stem cells can be used to repair or replace 

damaged or ageing cells in the human body by either promoting endogenous 

regenerative processes or directly replacing damaged tissues after cellular 

transplantation (Eming et al., 2014). 

There are a number of major medical conditions, such as heart failure, insulin-

dependent diabetes, spinal cord injury, Parkinson’s disease etc. which could be 

addressed via cell-based therapies. Stem cell derived β islet cells, for example, could 

potentially replace a patient’s requirement for insulin injections (Phillips et al., 2007).  

Cell manufacturing for clinical applications is a unique form of biological 

manufacturing that depends on maintenance of strict work practices invented to 

ensure product consistency and prevent contamination by either microorganisms or 

by another patient’s cells. For considerable period of time hematopoietic stem cell 

transplantation has been the principal cell therapy but since the adult stem cells were 

discovered cellular therapies evolved beyond. Limbal epithelial transplantation is a 

prime example of the cell-based therapy that has been used successfully in patients 

suffering from LSCD.  

The cell therapy market is one of the most emerging sectors of the global 

biopharmaceutical market with approximately $100 billion in revenues and very 
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promising compound annual growth rate predicted to reach at least 20% in the near 

future (Abbasalizadeh and Baharvand, 2013).  

In 2004, medicinal products for human use which are either based on gene therapy, 

somatic cell therapy (including stem cell therapy), tissue engineering or a 

combination of those are classified as “Advance Therapy Medicinal Products” 

(ATMPs) by European Commission (EC) (Hartmann-Fritsch et al., 2016). Recently, 

ATMPs have been regulated by pharmaceutical rules applying to this new area of 

medicine. Regarding their manufacturing and testing, the ATMP regulation EC 

1394/2007 defines the standard in Europe (Off J Eur Union, 2007). The regulation 

sets out tailor-made technical requirements and establishes new standards for 

clinical trials in the development of ATMPs. In enforcement of the European 

regulation 1394/2007, all ATMPs must be produced under conditions following the 

guidelines of Good Manufacturing Practice (GMP). The principles of GMP are 

described in the Commission Directive 2003/94/EC (Off J Eur Union, 2003). This 

directive is concerned with medicinal products of human use only.  

GMP is a quality assurance system which ensures the highest quality and safety of 

medicinal product. It ensures that products are manufactured consistently and to 

defined standards as well as that the end product meets preset specifications. It 

requires traceability of raw materials and production that follows validated standard 

operating procedures (SOPs) (Arjmand et al., 2012). The GMP regulations address 

also record keeping, personnel qualification, sanitation, cleanliness, equipment 

verification, the validation of the process and complaint handling (Skottman et al., 

2006). 

The translation of a successful research process into a process following GMP 

guidelines is a challenging procedure. The common misconception is that clinical-

grade cell lines may be produced only by transfer of current methodology into clean 

room facilities. These GMP facilities are indeed important in avoiding contamination 

of the product but equally important in implementing GMP standards is the 

development of validated SOPs for the entire process, from cell isolation to freezing 

and cell storage. Another important aspect is transfer of cell production to GMP 

grade standards is establishment of quality control methodology and release criteria 

of the final product (Unger et al., 2008).  
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2.1.2 Hurdles to produce ATMPs under GMP conditions 

 

The translation of a research process into a GMP process is a long and challenging 

procedure that requires many adaptations to be made at different levels (Hartmann-

Fritsch et al., 2016): 

1. Risk management   

A complex process such as ATMPs production should be divided into small 

achievable production steps, for example: starting materials, consumables, 

handling techniques, equipment used etc. Careful risk management ensures 

quality of the manufacturing process and ultimately safety of the patient 

(European Medicines Agency, 2015). General risk assessment includes 

assessment, control, communication and review of risks. Risk can affect any area 

of the process from: 

 materials - not all material required is available in GMP grade; 

 involved personnel - working with living tissues includes risk of transmitting 

pathogens to staff or cross-contamination with other batches/products; 

 patient – if the batch manufacturing has to be stopped due to 

contamination etc.  

 

2. Documentation 

 

Documentation is of crucial importance to GMP (EudraLex, 2010). It ensures 

the traceability in case of batch-specific problems, reduces the risk of mistakes 

by defining the complete process, assures reproducibility, and confirms 

responsibilities by signatures. A precise documentation system has to be 

established, describing the whole manufacturing process in details (EudraLex, 

2012). Besides manufacturing steps of the ATMP itself, this includes also 

preparation protocols for culture media, solutions and matrixes. In addition to 

these, all used materials including starting materials and consumables need to 

be described in details.  
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3. Starting materials 

 

Although over the past years GMP grade materials become more and more 

available or may be produced by some companies on customer request, 

majority of starting material is made for “research use only”. The use of these 

materials under GMP conditions may only be approved by authorities under 

special circumstances if no other option is available and on a risk-based 

assessment.  

Human tissue sample is a starting material of special interest. Before tissue 

removal minimally required laboratory analyses have to be performed (HIV1, 

HIV2, HBV, HCV and syphilis) together with additional tests depending on the 

type of tissue or donor. 

  

4. Consumables  

 

Single-use single-pack consumables are the first choice for manufacturing 

according to the GMP guidelines. For reusable materials efficient cleaning has 

to be performed and validated. 

 

5. In process controls (IPCs) 

 

IPCs have to be established for the complete manufacturing process. These 

controls are necessary in order to ensure the safety of the product and the 

quality of the product (EudraLex, 2014).  

IPCs of the first category ensure safety of the product, verifying for instance 

that a certain cell population used for the production of a tissue engineered 

product is free of endotoxins and mycoplasma. Sterility is of vital importance 

for the safety of the product and is broadly and carefully checked. Cell 

populations need to be tested on their identity and purity to assure that the 

appropriate cells are present in the final product in the defined number. 

Whenever possible objective controls with measurable outcome should be 

chosen, for example cell morphology identification using only microscopic 

assessment should be replaced by immunofluorescence analysis, using 

specific markers for the cell type under investigation. 
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6. Release controls 

The use of reference standards and potency assays in the manufacture of ATMPs 

is recommended to ensure product safety and potency prior to transplantation. It’s 

crucial to ensure that final products are consistently manufactured and meet all 

necessary criteria in terms of viability, function, purity and sterility (Neofytou et al., 

2015). 

At the end of the process, the end product needs to be analyzed for safety and 

quality by a qualified person. The strategy regarding sterility of the final product 

requires particular attention. Widely used sterilization methods such as 

autoclaving, gamma ray and ethylene oxide sterilization are not applicable for 

living tissues. Since no final sterilization can be performed sterility of the product 

has to be ensured during manufacturing itself, all the way from starting materials 

to packing materials (EudraLex, 2008). Living ATMPs has relatively short shelf life 

and often clinical application of the batch takes place before final sterility results 

are available (sterility results available after approximately 14 days), which leads 

to so called conditional release of ATMP for transplantation. Other mandatory 

release controls regarding product safety involve analysis for mycoplasma and 

endotoxins. As a part of quality control, analysis regarding functionality and 

performance of the final product should also be included (the amount of living 

cells, the concentration of secreted factors etc.).  

For example, control measures and well defined release criteria should be 

employed for LSC cultures before they are used for human transplantation as for 

other stem cell products, to determine the quality of the final cell product (Daniels 

et al., 2006b). To release the epithelial cell graft for ocular surface reconstruction, 

critical quality parameters such as adherent and healthy epithelial cells with 

cobblestone morphology, integrity of the fibrin gel and no contamination must be 

met (Sheth-Shah et al., 2016). Pellegrini et al. proposed stringent quality criteria 

that should be adopted for LSC cultures in order to ensure that they contain a 

sufficient number of stem cells essential for long term epithelial survival (Pellegrini 

et al., 2011). According to the same research group, quality control should also 

include rigorous clonal analysis or the evaluation of cell doublings generated 

during serial cultivation of LSCs (Pellegrini et al., 2011). Another important 

analysis that has to be done before the LSC product is released for human 
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transplantation is evaluation of levels of contaminating murine fibroblasts in LSC 

cultures. It was previously estimated that more than 5% contamination was 

unsuitable for clinical use (Di Iorio et al., 2010). Ideally, the use of murine 3T3 

fibroblasts should be eliminated in the future and substrates more appropriate for 

clinical use such as HAM should be employed. Furthermore, mandatory microbial 

analyses of LSC cultures have to be conducted before these cells are applied to 

treat patients with LSDC proving that cultures are sterile and safe for human 

administration.  

Once all the required specifications are confirmed, certificates of analysis could 

be generated for all product lots to certify them for clinical use (Neofytou et al., 

2015). 

7. Training of staff 

The vital point for implementing a successful GMP practice and process is the 

staff (EudraLex, 2013). The level and quality of implementation of all 

documentation, protocols and controls by qualified staff define the quality of the 

end product.  

8. Approval by the Regulatory Authority 

The final step after successful establishment and validation of the entire GMP 

process is approval of the manufacturing process by the regulatory authority. The 

basis for approval is the investigational medicinal product dossier which structure 

is set out in “Guideline on the Requirements to the Chemical and Pharmaceutical 

Quality Documentation Concerning Investigational Medicinal Products in Clinical 

Trials” (European Medicines Agency, 2016). 

The use of defined cultured systems should be implemented with manufacturing 

clinical grade cell products. Using chemically undefined media or material of animal 

origin, such as fetal bovine serum and mouse embryonic fibroblasts, should be 

avoided if possible. The cultures should be animal substance free in order to exclude 

the risk of infections and immunogenity (Skottman et al., 2006; de Lazaro et al., 

2014). The use of xeno-free media for cell generation, maintenance and 

differentiation in culture is for these reasons one of the clinical grade requirements. 

The safety of the exposure to variety of growth factors and culture conditions also 
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has to be thoroughly investigated prior to any clinical application (de Lazaro et al., 

2014).  

 

2.1.3 Limbal stem cell therapy 

 

Therapeutic use of LSCs must be performed in compliance with GMP as a quality 

assurance system to ensure highest quality and safety of cell product for 

transplantation in accordance with the European Union, Regulation (EC) No 

1394/2007 of the European Parliament and of the Council, on ATMPs (Off J Eur 

Union, 2007). 

Replacement of a pathologically altered cornea with healthy corneal tissue from a 

suitable donor is among the most common and successful transplantation 

procedures in medicine. With a success rate of 90%, the outcome of cornea 

transplantation is very favorable. However, one global survey from 2016, that 

included 95% of the world’s population, quantified the considerable shortage of 

corneal graft tissue, with only 1 cornea available for 70 needed (Gain et al., 2016). In 

2017, NHS Blood and Transplant reveals that its eye banks are 21% below the level 

needed to supply hospitals (NHS Blood and Transplant, 2017). Having in mind the 

shortage of corneal tissue worldwide, innovative, cell-therapeutic approaches may 

open new, promising treatment perspectives. 

The patients with severe total LSCD have been successfully treated with autologous 

limbal tissue transplants taken from the healthy contralateral eye (unilateral cases) or 

allogeneic transplants obtained from living related or cadaveric donors (unilateral and 

bilateral cases) (Kenyon and Tseng, 1989), but this technique is connected with the 

risk of iatrogenic LSCD development in the living donor eye. Importantly, 

improvements in the ex vivo expansion of LSCs obtained from the culture of small 

limbal biopsies and the successful reversal of LSCD upon their transplantation has 

revolutionized the field and has reduced the risk to the donor eye, making this a 

widely used technique for treatment of LSCD in humans (Pellegrini et al., 1997). In 

2015, the European Commission granted marketing authorization to the first stem 

cell-based treatment in the European Union. The product named Holoclar® is an 
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ATMP for the treatment of moderate to severe LSCD due to physical and chemical 

burns in adults (Pellegrini et al., 2018). 

2.1.3.1 Sources of the LSCs for transplantation 

In clinical trials both autologous and allogeneic sources have been used. Autologous 

cells are however preferred, as their transplantation does not cause any 

immunoreactivity and therefore does not require systemic immunosuppression. 

However, this option is not possible in cases of bilateral disease when tissue 

donation from deceased person or living related or unrelated donor is the only option 

available (Behaegel et al., 2017).   

 

2.1.4 Basic concepts of epithelial cell culture 

 

Rheinwald and Green pioneering work made possible the cultivation of human 

keratinocytes using a feeder layer of lethally irradiated 3T3-J2 mouse embryonic 

fibroblasts (Rheinwald and Green, 1975). The same principle has been used to 

cultivate human limbal and epidermal keratinocytes for more than 3 decades (Gallico 

et al., 1984; Pellegrini et al., 1997; Pellegrini et al., 1999b; Ronfard et al., 2000; 

Pellegrini et al., 2013). Ex vivo expansion of limbal biopsies on HAM as a substrate is 

also a well-established technique which has been used successfully to cure patients 

with total LSCD (Kolli et al., 2010; Yu et al., 2016).  

Epithelial cells on a substrate grow optimally at 37C° in a humidified atmosphere with 

95% air and 5% carbon dioxide (Rheinwald, 1980; Kolli et al., 2010; Yu et al., 2016).  

Additionally, there are a certain number of nutritional requirements for successful 

epithelial cell culture: 

1. Dulbecco’s modification of Eagle’s medium (DMEM) – The basic nutritional 

requirements of epithelial cells in culture are fulfilled by DMEM (Rheinwald, 

1980; Yu et al., 2016). 
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2. HAM’s nutrient mixture F12 – Addition of HAM’s nutrient mixture F12 to DMEM 

at the ratio of 3:1 has been shown to improve epithelial cell culture (Allen-

Hoffmann and Rheinwald, 1984).  

 

3. Fetal bovine serum (FBS) – Addition of FBS is an essential requirement for 

successful epithelial cell culture (Maciag et al., 1981). It contains a mixture of 

growth factors, hormones and cytokines (some of them unknown) important 

for successful cell culture. All the attempts to eliminate it from epithelial cell 

culture, particularly limbal epithelial cultures, led to poor maintenance of stem 

cells in cultures (Kruse and Tseng, 1991).  

 

4. Hydrocortisone – Besides the presence of hydrocortisone in culture medium 

improves the growth and morphology of epithelial cells in culture (Rheinwald 

and Green, 1975), it also prevents deterioration of the 3T3 fibroblast feeder 

layer (Pera and Gorman, 1984). 

 

5. Insulin – Insulin stimulates glucose transport into cultured cells and it has an 

important role in glycogen synthesis within the cells (Hayashi et al., 1978). As 

it’s one of the most important hormonal constituents of FBS, its addition to the 

culture media has shown to reduce the FBS requirements (Hayashi et al., 

1978; Maciag et al., 1981). 

 

6. Triiodothyronine (T3) – Similarly to insulin, T3 is a hormone involved in cellular 

metabolic processes, and its addition to the culture medium also lowers the 

requirement for FBS (Hayashi et al., 1978). The addition of both insulin and T3 

together lowers the requirement of FBS in epithelial culture medium from 20% 

to 10%. 

 

7. Adenine – It was shown that addition of adenine to the culture medium 

improves the ability of epithelial cells to form colonies (Allen-Hoffmann and 

Rheinwald, 1984). 

 

8. Cholera toxin – The addition of cholera toxin to the culture medium stimulates 

DNA synthesis in cells by increasing levels of cyclic AMP (adenosine 

monophosphate) therefore promoting epithelial cell proliferation (Green, 
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1978). Importantly, its addition also opposes terminal differentiation of the 

epithelial cells (Sun and Green, 1976). 

 

9. Epidermal growth factor (EGF) – The addition of EGF has been shown to 

antagonize the differentiation of epithelial cells in culture, promoting 

undifferentiated state. It also promotes migration of growing epithelial cells 

therefore preventing crowding at the center of the colonies (Rheinwald and 

Green, 1977). 

 

2.1.4.1 Types of epithelial clones 

 

The proliferative compartment of human squamous epithelia contains three different 

types of clonogenic keratinocytes with different capacities for multiplication, named 

holoclones, meroclones and paraclones (Barrandon and Green, 1985; Barrandon 

and Green, 1987; Rochat et al., 1994; Pellegrini et al., 1999a; Pellegrini et al., 2014). 

The stem cell of all squamous epithelia is the holoclone forming cell (De Luca et al., 

2006). Meroclone and paraclone forming cells, on the other hand, have properties of 

progenitor cells also known as transient amplifying cells (Pellegrini et al., 2014). 

Holoclone forming cells have the greatest growth potential giving rise to meroclones, 

a clones of mixed composition, which further give rise to paraclones (Barrandon and 

Green, 1987). These transitions from holoclone to meroclone to paraclone are 

unidirectional and result in progressively restricted growth potential. 

In vitro holoclones give rise to large colonies with smooth circular perimeter (Figure 

2.1). Due to their greatest growth potential they can be sub-cultured for the longest 

time compared to meroclones and paraclones. When sub-cultured, holoclones give 

rise to only 0-5% of terminal looking colonies, described below as paraclones.  
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Figure 2.1 Phase contrast micrographs of typical holoclones showing closely 
packed, small cells that pile up around the edge of the colony. 

 

Meroclones in culture give rise to intermediate sized colonies with slightly irregular or 

wrinkled perimeter (Figure 2.2). When sub-cultured, meroclones give rise to 5-95% 

of terminal differentiated colonies. 
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Figure 2.2 Phase contrast micrographs of typical meroclones with small cells 
around the edge of the colony and larger, flatter cells in the centre. 

 

Paraclones give rise to small colonies with highly irregular perimeter referred as 

terminal colonies due to their terminal looking appearance (Figure 2.3). Terminal 

colonies generated by paraclones cannot be effectively sub-cultured since they form 

over 95% of terminal differentiated colonies. 

The typical clonal hierarchy has also reported in limbal epithelium. Dziasko and co-

workers showed that limbal epithelial cells isolated from the limbal crypts were able to 

generate the highest proportion of holoclones while this ability was dramatically 

decreased when cells were isolated from the non-crypt-rich limbus, confirming the 

limbal crypts as a stem cell reservoir (Dziasko et al., 2014). 
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Figure 2.3 Phase contrast micrographs of typical paraclones, a small terminal-
looking colony with irregular borders.  

 

2.1.5 LSC culture techniques 

 

LSCs culture can follow either the explant or cell suspension method (Utheim et al., 

2018c). In the explant method, cells grow out from a small biopsy attached to the 

base of a culture dish or a substrate (Tsai et al., 2000; Kolli et al., 2008; Kolli et al., 

2010). In the cell suspension method cells are first enzymatically released from the 

tissue and seeded as single cells (Ahmad et al., 2007; Shortt et al., 2008). Once 

attached to the bottom of a culture dish or substrate the single cells divide, grow and 

form colonies until they merge and form a confluent layer. Some culture methods 

include so called “air-lifting” to promote differentiation of the superficial layer (Schwab 

et al., 2000; Nakamura et al., 2006).  

The use of irradiated or Mytomicin C growth arrested mouse embryonic fibroblasts 

was originally developed to enable culture of skin epidermal cells in vivo, now these 
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feeder cells are widely used for culture of all types of epithelial cells to supply 

cytokines and growth factors that promote their proliferation (Llames et al., 2015). 

Puck and Marcus reported for the first time in 1955 the use of feeder cells in cell 

culture (Puck and Marcus, 1955). Feeder layer cells usually consist of adherent 

growth-arrested, but viable and bioactive, cells. Beside feeder cells, LSC growth can 

be supported by different native and synthetic scaffolds. 

2.1.6 Scaffolds for LSC transplantation 

 

In vitro, cells are maintained in culture much more readily if they are supported by 

substrate components most closely resembling the extracellular matrix (ECM) in 

which they occurred in vivo (Kruk and Auersperg, 1994; Baharvand et al., 2005). The 

choice of culture substrate as the substitute for the in vivo niche is known to affect 

the phenotype of the cultured cells (Utheim et al., 2018c). A wide range of biological 

and synthetic materials have been identified as substrates for cultivation of limbal 

epithelial cells so far, each of them with own advantages and limitations (Nguyen et 

al., 2018). Among native scaffolds HAM is by far the best characterized. Seventy 

years after its first use in ophthalmology the HAM represents one of the major 

developments in ocular surface reconstruction (Eidet et al., 2012). Tsai et al. were 

the first to introduce the use of HAM to culture limbal epithelial cells (Tsai et al., 

2000). HAM is especially suited for clinical use thank to its effects on promoting 

epithelialization, reducing pain and decreasing inflammation (Tseng, 2001). HAM 

harbors a variety of endogenous signaling molecules (growth factors and 

cytokines)(Hao et al., 2000; Gicquel et al., 2009), most of which are associated with 

various stem cell activities, rendering HAM an excellent surface for maintaining 

stemness before, during and after grafting (Riau et al., 2010). Various culture 

techniques are used to culture LSCs on HAM which differ regarding the composition 

of HAM (with or without epithelium), air-lifting prior to transplantation and the use of 

an additional 3T3 feeder layer (Utheim et al., 2018c). Many studies have shown that 

limbal epithelial cells cultured on an intact HAM maintain a more stem cell-like 

phenotype compared to limbal epithelial cells cultivated on denuded HAM (Grueterich 

et al., 2002; Grueterich et al., 2003b; Sudha et al., 2008). The precise role of 

devitalized amniotic epithelium is not fully understood, however studies have shown 

that intact amniotic membrane (with the amniotic epithelium) exhibits higher levels of 
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growth factors compared with epithelially denuded HAM (Koizumi et al., 2000). 

Previously it was shown that self-renewal of LSCs, their migration and differentiation 

can be mimicked by ex vivo culture system on HAM where the outgrowth zone nearer 

to explant contains the highest proportion of stem/progenitor cells and as they move 

away from the explant they differentiate to acquire features typical of corneal 

epithelial cells (Kolli et al., 2008). 

2.1.7 Cultivation of LSCs under GMP conditions 

 

The therapeutic use of limbal epithelial cultures for the permanent regeneration of 

corneal epithelium in patients with LSCD has been reported in many studies. In 

accordance with GMP guidelines, strictly regulated procedures and stringent quality 

control tests are required to manipulate stem cells as "medicinal products" and make 

engraftment safer and eventually more successful. Accordingly, in order to be used 

for human transplantation, human limbal epithelial cells need to be propagated under 

GMP quality requirements in a validated GMP facility. However, the traditional culture 

media for ex vivo expansion of LSCs contains a number of ingredients derived from 

animal sources which may compromise its safety profile for human transplantation 

that ideally should be replaced with more safe alternatives (Yu et al., 2016).  

The ex vivo expansion of limbal epithelium prior to clinical transplantation is still a 

relatively new technique, and as such, optimization and constant evaluation of the 

culture medium components are required for minimizing any risk to patients (Yu et 

al., 2016). The traditional culture media for the ex vivo expansion of limbal biopsies 

on HAM used by our and other groups includes hydrocortisone, triiodothyronine, 

adenine and cholera toxin (Pellegrini et al., 1997; Tsai et al., 2000; Meller et al., 

2002; Kolli et al., 2008; Yu et al., 2016). Hydrocortisone is shown to be important for 

the maintenance of distinct epithelial colonies as well as keratinocyte proliferation 

(Rheinwald and Green, 1975). Triiodothyronine is a thyroid hormone which was 

reported to reduce the requirement for fetal calf serum in epithelial cultures to 

minimal levels (Hayashi et al., 1978). Cholera toxin (CT), a protein complex secreted 

by the bacterium Vibrio cholera, is responsible for the profuse, watery diarrhea 

characteristic of cholera infection. It has been reported that CT strongly stimulates 

colony growth from a small number of cultured human epidermal keratinocytes. The 



68 
 

effect of CT on proliferation of keratinocytes has been associated with increased 

intracellular cyclic AMP level (Okada et al., 1982), whilst the addition of adenine to 

the culture media improves the colony forming of epithelial cells (Flaxman and 

Harper, 1975; Allen-Hoffmann and Rheinwald, 1984). Their individual contribution for 

the expansion and differentiation of LSCs in this culture system was examined in 

detail by Yu, Bojic and co-workers (Yu et al., 2016).  

2.1.8 Aim of the study  

 

The aim of the study was a replacement of all research grade ingredients of 

traditional, research grade medium with GMP grade reagents wherever possible and 

consequent formulation of new GMP grade medium for cultivation and maintenance 

high percentages of LSCs in vitro. With this in mind Solu-Cortef® (hydrocortisone 

sodium succinate) was used as hydrocortisone replacement, Actrapid® (human 

insulin produced in Saccharomyces cerevisiae) as insulin replacement, Liothyronine 

(liothyronine sodium) as triiodothyronine replacement, Isoprenaline (L-isoproterenol) 

as cholera toxin replacement together with GMP grade EGF. 

 

 

2.2 Material and Methods  

2.2.1 Human donor tissue 

 

Cadaveric adult human limbal tissue was obtained from the corneo-scleral rings 

remaining (3 males and 1 female, average age 62, SEM 2.72, range from 55 - 68 

years), after removal of the central cornea for transplantation supplied by the NHS 

Blood and Transplant (NHSBT) Cornea Transplantation Service eye banks based in 

Manchester and Bristol, UK. Human amniotic membranes were provided as 

individual units of 3 x 3 cm2 mounted on nitrocellulose paper by NHSBT, Tissue 

Services. Human tissue was handled according to the tenets of the Declaration of 

Helsinki and informed consent was obtained for research use of all human tissue 
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from the next of kin of all deceased donors. The study was approved by the NRES 

Committee North East ‐ Newcastle & North Tyneside 1 (REC number: 11/NE/0236, 

protocol number 5466) on the 29th October 2013. 

2.2.2 Cell culture  

2.2.2.1 Traditional culture media and GMP grade media 

“Traditional” complete epithelial medium was prepared according to a previously 

validated composition (Kolli et al., 2010), containing low-glucose Dulbecco’s modified 

Eagle’s medium and HAM’s nutrient F12 mixture in 3:1 ratio (both Gibco, UK). This 

composition was further supplemented with FBS, penicillin/streptomycin (both Gibco, 

UK), hydrocortisone, insulin, triiodothyronine, adenine, cholera toxin and EGF (all 

Sigma-Aldrich, UK) (Table 2.1).  

Newly formulised, “GMP grade” complete medium contained DMEM and HAM's F12 

medium in the same 3:1 ratio, supplemented with human serum instead of FBS 

(SigmaAldrich, UK), penicillin/streptomycin (Gibco, UK), Solu-Cortef® as 

hydrocortisone replacement (Pharmacia Limited, UK), Actrapid® as insulin 

replacement (Novo Nordisk, Denmark), Liothyronine as triiodothyronine replacement 

(Mercury Pharmaceuticals Ltd., UK), Isoprenaline (South Devon Healthcare, UK) as 

cholera toxin replacement, adenine (Sigma-Aldrich, UK) and GMP-grade EGF 10 ng/ 

ml (Miltenyi Biotec, UK) (Table 2.1). Penicillin/streptomycin was removed from 

culture medium after the first 3 days of culture, as per our GMP protocol, in 

accordance with the Medicines and Healthcare products Regulatory Agency (MHRA). 

In addition to complete GMP grade media, four different complete media were 

prepared with replacement of just one ingredient in isolation (either Solu-Cortef®, 

Actrapid®, Liothyronine or Isoprenaline) to assess the impacts of individual 

replacements of GMP grade ingredients.  

The medium was changed on the third day and then every other day thereafter. All 

cultures were placed in a tissue culture incubator at 37°C with a humidified 

atmosphere containing 5% CO2. 
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Table 2.1 Composition of traditional and GMP grade medium. 

Traditional medium GMP grade medium 

REAGENT COMPOSITION REAGENT COMPOSITION 

DMEM : F12 3:1 DMEM : F12 3:1 

FBS 10% Human serum 10% 

Pen/Strep 1% Pen/Strep* 1% 

Hydrocortisone 0.4 µg/ml Solu-Cortef® 0.4 µg/ml 

Insulin 5 µg/ml Actrapid® 5 µg/ml 

Triiodothyronine 1.4 ng/ml Liothyronine 1.4 ng/ml 

Cholera toxin 8.4 ng/ml Isoprenaline 2 mg/ml 

Adenine 24 mg/ml Adenine 24 mg/ml 

EGF 10 ng/ml GMP-grade EGF 10 ng/ ml 

 *removed from culture medium after the first three days of culture 

 

2.2.2.2 LSCs culture under GMP conditions 

 

Limbal explant culture was performed as previously described (Kolli et al., 2010). 

Briefly, the HAM was defrosted at room temperature in a class II laminar flow hood 

and washed twice with phosphate-buffered saline (PBS) (Gibco, UK) containing 1% 

penicillin/streptomycin, and once more with culture medium. After washing, HAM was 

trimmed and wrapped around a sterile 24 x 24 mm2 glass coverslip with the epithelial 

side facing up and the overhanging part being folded over the edges of the coverslip. 

The HAM and its associated coverslip were placed on the top of a second sterile 
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glass coverslip to lock the HAM in place. Finally the whole construction was placed in 

a 9.6 cm2 tissue culture well (well of a six well plate).  

Two limbal explants were prepared from each of four corneo-scleral rings, which had 

been stored in organ culture (supplied for corneal transplantation). The limbal 

explants were expanded in the GMP facility either in previously described traditional, 

non GMP grade complete medium described above (n=4) or newly formulised GMP 

grade complete medium (n=4) using HAM as a substrate. The stromal tissue and 

deeper layers of the corneo-scleral rings were dissected away together with excess 

sclera leaving a ring containing approximately 2 mm of peripheral cornea and 2 mm 

of adjacent sclera, thereby including all the corneo-scleral limbus. Each ring was then 

divided into separate 4 mm2 segments and one of each such segment was carefully 

placed at the centre of the prepared HAM with a slight pressure for a few second to 

facilitate adhesion. Complete epithelial medium were slowly added to ensure the 

explants were covered in medium without causing them to detach from the HAM 

(1.5ml of medium).  

The medium was changed on the third day and then every other day thereafter. All 

cultures were placed in a tissue culture incubator at 37°C with a humidified 

atmosphere containing 5% CO2.  

 

2.2.2.3 Measuring of explant outgrowth 

 

The expansion of each epithelial outgrowth was marked at every medium change for 

the full length of the culture to allow comparison of growth rates (Figure 2.4). 
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Figure 2.4 Examples of explant growth rate monitoring. (A) Macroscopic picture of 
limbal biopsy explant culture on HAM showing present outgrowth as the white ring 
pointed with red arrows (B) Every single line represents external border of a tissue 
outgrowth at the corresponding day of medium change.  

 

2.2.2.4 Division of outgrowths into three zones  

 

The cultures were terminated prior to the growth reaching the edge of the slides (at 

∼14 days), upon reaching 90% confluence. The epithelial outgrowth was divided into 

three equal zones depending on proximity to the explant (4.0 mm from the edge of 

the biopsy or the adjacent zone) as described by Kolli and co-workers (Kolli et al., 

2008): zone A indicating growth adjacent to the explant, zone B indicating 

intermediate outgrowth and zone C indicating the growth furthest away from the 

explant (Figure 2.5). At the end of the culture period, the epithelial cells from these 

zones were released and detached from the underlying HAM by 0.05% trypsin 

treatment for 10 min at 37°C. The cells from these three samples were further 

analysed for any differences in stem cell properties including colony-forming 

efficiencies and immunocytochemistry. 

A B 
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Figure 2.5 Schematic representation of an explant outgrowth and its different 
zones. The outgrowth zone nearest to explant contains the highest proportion of 
stem/progenitor cells (zone A) and the lowest proportion in the zone furthest from the 
explant (zone C). As cells grow and move further away from the explant they 
differentiate to acquire features typical of corneal epithelial cells (Kolli et al., 2008). 

 

2.2.2.5 Cell counting and viability 

 

20 µL of cells were transferred to a 1.5-mL clear Eppendorf tube and incubated for 3 

minutes at room temperature with an equal volume of 0.4% (w/v) trypan blue solution 

prepared in 0.81 % NaCl and 0.06 % (w/v) dibasic potassium phosphate. Cells were 

counted using a dual-chamber haemocytometer and a light microscope. Viable and 

nonviable cells were recorded and used for viability measurement. 

2.2.3 Colony forming efficiency (CFE) assay 

 

Colony-forming efficiency assay (CFE) assay is a method for determining the ability 

of the limbal epithelial progenitor cells to form colonies and assess their frequency. 

Mitotically inactivated 3T3-J2 mouse embryonic fibroblasts (Kerafast, USA) were 

suspended in complete medium containing: high-glucose DMEM (89%), FBS (10%) 

and penicillin/streptomycin (1%) and plated in a 9.6 cm2 tissue culture well at a final 
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density of 2.4×104 cells per cm2 and placed in a tissue culture incubator overnight to 

allow the establishment of a 3T3 feeder layer. The following day, 500 viable limbal 

cells from the limbal epithelial culture of interest were plated onto the prepared 3T3 

feeder cells together with 2 ml of epithelial medium. The CFE culture was then 

placed in the tissue culture incubator and the epithelial medium was changed on the 

third day and then every second day thereafter with regular microscopic examination 

(Eclipse TS100, Nikon, Japan) for the presence of LSC colonies. The CFE was 

measured on the 12th day of the culture. This was performed by removal of the 

epithelial medium followed by two brief washes with PBS. The culture was then fixed 

with 3.7% formaldehyde (VWR International, UK) in PBS for 10 minutes at room 

temperature. Next, the formaldehyde solution was removed and the culture was 

irrigated with PBS. The colonies were then stained by incubation with 1% Rhodamine 

B (Sigma-Aldrich) in methanol for 10 minutes at room temperature. Following 

staining, the colonies were counted under dissecting microscope (SMZ645, Nikon, 

Japan). The CFE was calculated using the formula: number of colonies 

formed/number of cells plated ×100. 

 

2.2.4 Immunofluorescence 

2.2.4.1 Cytospin 

Cells were prepared by cytospin using a cytocentrifuge obtained from Shandon 

Southern Instruments, Sewickley, USA, with centrifugation speed of 1000×g in order 

to provide a better cell distribution over the slides.  

2.2.4.2 Immunofluorescent staining and microscopy 

Immunocytochemistry was performed as previously described (Polak et al., 1975). In 

brief, cells were fixed with 4% paraformaldehyde, permeabilized with 0.25% Triton X-

100 (Sigma-Aldrich, UK), blocked with 5% BSA for 1 h, and incubated with primary 

antibodies including anti- ΔNp63 antibody, also known as p40 (NBP2-29467, Novus, 

USA), CK3 (08691431, MP Biomedicals, USA) and Connexin 43 (C6219, Sigma-

Aldrich, UK) in recommended dilutions overnight at 4 °C. Next day, the slides were 

washed three times with PBS for 5 min and then incubated with secondary antibody 
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conjugated with FITC for 30 min in the dark at room temperature. An isotype control 

was used as a negative control where the primary antibody was omitted. Following 

this, cells were washed and then mounted in Vectashield anti-fading media 

containing Hoechst (Vector Laboratories, UK). Images were obtained with Zeiss Axio 

Imager (Carl Zeiss Microscopy, Germany). The images were analyzed with ImageJ 

by marking and counting the immunostained cells as well as total cells separately. A 

minimum of 300 cells per treatment were counted and the percentages of 

immunostained cells was calculated. 

2.2.5 Statistical analysis  

 

For comparison of two groups Student T-test analysis was used whilst the growth 

rates were compared using one-way ANOVA analysis. Results were considered 

significant if p value was less than 0.05. 

 

2.3 Results 

Growth rate, cell number and viability, colony-forming efficiency together with 

expression of putative stem cell marker ΔNp63 and markers of corneal differentiation 

(cytokeratin 3 and Connexin 43) at the transcriptional and protein level were used to 

fully analyze the potential impacts of the newly formulized GMP media. 

2.3.1 Growth rate in limbal explant epithelial cells expanded in traditional and 

GMP grade medium 

 

Successful cultures for explant outgrowths and CFE assay were obtained using both 

non GMP and GMP grade media. 90% confluence was reached at day 13 in both 

groups. Growth rates, however, differed significantly between the groups at day 6 

(***p < 0.001) and day 13 (*p < 0.05) with limbal epithelial cultures showing earlier 

onset of cell growth and greater growth area at the end of culture for explants 

cultivated in GMP grade medium (Figure 2.6) (Yu et al., 2016). 
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Figure 2.6 Schematic graph showing the area of explant outgrowth (mm2) on 
different days of culture for the explants cultivated in non GMP and GMP grade medium 
(n=4).  

 

2.3.2 Cell number and viability in limbal explant epithelial cells expanded in 

traditional and GMP grade medium 

 

Cell number in zone A was not significantly different whilst cell numbers in zones B 

and in zone C were significantly higher in the explants cultivated in non GMP grade 

medium (Figure 2.7) (Yu et al., 2016). 
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Figure 2.7 Cell numbers per zone of outgrowths cultivated in non GMP and GMP 
grade medium. Data are presented as mean ± SEM, * p < 0.05, ** p < 0.01. 

 

 

Figure 2.8 Cell viability per zone of outgrowths cultivated in non GMP and GMP 
grade medium. Data are presented as mean ± SEM. 
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Cell viability did not differ over different zones between traditional and newly formulized 

GMP grade medium (Figure 2.8). 

2.3.3 Morphology of colonies derived by cells expanded in traditional and GMP 

grade medium 

 

Cells cultivated in the GMP grade medium formed colonies with more differentiated 

appearance compared with cells cultivated in the non GMP grade medium (Figure 

2.9A-B) (Yu et al., 2016). 

 

 

 

 

 

 

 

 

 

Figure 2.9 Appearance of colonies per zone of outgrowths cultivated in different 
media: (A) non GMP grade medium; (B) GMP grade medium.  
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2.3.4 CFE assay in limbal explant epithelial cells expanded in traditional and 

GMP grade medium 

 

Analysis of CFE didn't reveal any significant difference between the zones of 

outgrowths cultivated in non GMP and GMP grade medium (Figure 2.10) (Yu et al., 

2016). 

 

Figure 2.10 The colony forming efficiency of cells from different zones of 
outgrowths cultivated in non GMP or GMP grade medium. Data are presented as 
mean ± SEM. 

 

2.3.5 Expression of stem cell related and differentiation markers in limbal 

explant epithelial cells expanded in traditional and GMP grade medium 

 

The percentage of ΔNp63 positive cells (Figure 2.11A) didn't reveal any significant 

difference between the zones of outgrowths cultivated in non GMP and GMP grade 

medium (Yu et al., 2016). 

The percentage of cytokeratin 3 (Figure 2.11B) and Connexin 43 positive cells 

(Figure 2.11C) was significantly higher in zone A suggesting the presence of more 
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differentiated cells in zone A of outgrowths cultivated in GMP grade medium (Yu et 

al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Expression of putative LSC and epithelial cell markers in non GMP 
and GMP grade media assessed by immunofluorescent microscopy. (A) 
Expression of ΔNp63 using the ΔNp63 antibody; (B) Expression of CK3; (C) 
Expression of Connexin 43. Data presented as mean ± SEM, * p < 0.05, *** p < 
0.001. 
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2.3.6 Growth rate, CFE and expression of putative LSC and corneal epithelial 

cell markers in limbal explant epithelial cells expanded in different media 

 

In order to assess the impacts of individual replacements of GMP grade ingredients, 

four additional complete media were prepared with replacement of just one ingredient 

in isolation (either Solu-Cortef®, Actrapid®, Liothyronine or Isoprenaline). Successful 

cultures for explant outgrowths and CFE assay were obtained in all different media 

formulations (Figure 2.12) (Yu et al., 2016). Distribution of LSCs in non GMP 

medium followed a characteristic pattern, previously demonstrated by our group, with 

the highest percentage of progenitors in zone nearest to the explant (zone A) with 

successive decline in zones B and C which are situated further away from the 

explant, whilst distribution of progenitors in GMP grade medium did not follow this 

pattern (Figure 2.13A) (Yu et al., 2016). Unusually, the percentage of progenitor 

cells in different zones of explants cultured in GMP grade media was the highest in 

zone C. Analysis of every substituted component in isolation (Figure 2.13A-D) 

showed that Liothyronine may be responsible for the altered distribution of progenitor 

cells in zones A to C as the similar “inverted” pattern with the highest percentages of 

progenitor cells in the zone C furthest from the explant was only seen in explant 

cultures with addition of Liothyronine in isolation (Figure 2.13B) (Yu et al., 2016). 

Cultivation of explants in the presence of Liothyronine also led to different CFE per 

zone, where cells from zone C showed the highest CFE (Figure 2.13A) which is 

concordant with finding of the highest number of ΔNp63 positive cells in zone C using 

the same medium. Moreover, cells in zone A of the explants cultivated in 

Liothyronine medium showed higher expression of CK3 but not Connexin 43 

compared to zones B and C (Figure 2.13C-D) (Yu et al., 2016). Due to lack of HAM 

we were unable to repeat experiments with four additional media with replacement of 

only one ingredient in isolation (n=1) and no statistics has been done to further 

investigate effects of every single GMP ingredient in isolation.  
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Figure 2.12 Schematic graph showing the area of explant outgrowth (mm2) on 
different days of culture for the explants cultivated in non GMP grade medium, GMP 
grade medium, medium with replacement of Liothyronine in isolation, medium with 
replacement of Solu-Cortef® in isolation, medium with replacement of Isoprenaline in 
isolation and medium with replacement of Actrapid® in isolation (n=1). 
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Figure 2.13 The colony forming efficiencies and expression of putative LSC and 
corneal epithelial cell markers of outgrowths cultivated in non GMP grade 
medium, GMP grade medium, medium with replacement of Liothyronine in 
isolation, medium with replacement of Solu-Cortef® in isolation, medium with 
replacement of Isoprenaline in isolation and medium with replacement of 
Actrapid® in isolation. (A) The colony forming efficiencies per zone of outgrowths 
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cultivated in different media; (B) Expression of ΔNp63 per zone of outgrowths 
cultivated in different media; (C) Expression of CK3 per zone of outgrowths cultivated 
in different media and (D) Expression of Connexin 43 per zone of outgrowths cultivated 
in different media (n=1). 

 

2.4 Discussion  

Limbal epithelial transplantation is a cell-based therapy with the goal to restore the 

limbal microenvironment enabling the cornea to regain a corneal epithelial 

phenotype. Since its introduction in 1997 by Pellegrini and coworkers the ex vivo 

expanded LSC transplantation has been successfully used to treat patients with 

LSCD. While it has numerous advantages, the ex vivo LSC culture protocol does 

introduce some risks related to the culture processing methods. This includes 

potential contamination with known and unknown infectious agents introduced by the 

use of human or animal tissue as well as the risk of immunogenic reactions. 

Moreover, GMP compliant cell production, careful and strict operative techniques and 

product traceability are further key elements that need to be considered when 

determining the safety of a stem cell and any other cell therapy. 

Although many of the published cell culture protocols depend on the support of a 3T3 

mouse cell feeder layer to nurture the graft there is still a risk of exposure to animal 

material during the culture period despite their inactivation. Therefore the use of 3T3 

cells carries a risk in terms of microchimerism, graft rejection or infection with viral or 

prion agents (Schwab et al., 2006; Lei et al., 2007; Llames et al., 2015). However, up 

to date such events have not been reported. Cells cultured under xeno-contaminated 

conditions can present a nonhuman sialic acid which has been reported as 

immunogenic to humans (Martin et al., 2005; Heiskanen et al., 2007). For all these 

reasons in our study we used HAM as a substrate for LSC cultivation, which acts as 

a surrogate environmental stem cell niche (Grueterich et al., 2003a). HAM is the 

innermost layer of the placenta that has been extensively used in a treatment of 

ocular surface pathologies (Rahman et al., 2009). The HAM exhibits several 

properties that make it suitable for use in tissue engineering (Niknejad et al., 2008). 

The membrane has an immunomodulatory effect which explains why tissue rejection 

is not observed after its clinical use (Ueta et al., 2002). Furthermore, cells in the 

epithelial layer of HAM have significant similarities to stem cells: expression of 
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pluripotent markers, ability to differentiate into all three germ layers and no need for 

feeder layer throughout their cultivation (Niknejad et al., 2008). Its low 

immunogenicity together with anti-tumorigenic, anti-fibrotic, anti-inflammatory, anti-

microbial, anti-scaring and useful mechanical properties make HAM suitable for use 

in tissue engineering (Niknejad et al., 2008). Despite many advantages, its clinical 

use also carries theoretical risk of disease transmission therefore in Western 

countries strict legislation stipulates HIV, hepatitis B and C and HTLV tests on donor 

serum at the time of procuring the HAM (Rahman et al., 2009). 

Adenine, hydrocortisone, triiodothyronine and cholera toxin have been traditionally 

used in the skin and limbal epithelial explant cultures and shown to promote the 

growth and morphology of keratinocytes (Rheinwald and Green, 1975), the colony-

forming ability of epithelial cells (Allen-Hoffmann and Rheinwald, 1984), proliferation 

of epithelial cells and the requirement for large amounts of fetal calf serum in the 

media (Allen-Hoffmann and Rheinwald, 1984) (Kolli et al., 2010). Limbal epithelial 

explants could grow in media lacking any of these four components; however 

triiodothyronine stood out for its impacts on cell survival and adenine for increased 

explant surface area (Yu et al., 2016). Our previous work has shown that self-

renewal of LSCs, their migration and differentiation can be mimicked by our ex vivo 

culture system where the outgrowth zone nearer to explant contains the highest 

proportion of progenitor cells and as they move away from the explant they 

differentiate to acquire features typical of corneal epithelial cells (Kolli et al., 2008). In 

accordance with this, removal of each of the four components reduced the self-

renewal of LSCs in the outgrowth nearest to the explant (Yu et al., 2016). 

Furthermore, the removal of adenine also led to increased percentage of 

differentiated cells in the zone closest to the explant as well as increased cell size 

showing that all four components are currently indispensable for the successful ex 

vivo expansion of limbal epithelial explants on HAM and for maintaining the highest 

number of proliferating LSCs. The balance between self-renewal and differentiation 

of LSCs is tightly regulated in vivo with LSCs moving centripetally towards the center 

of the cornea and differentiating to give rise to the corneal epithelial cells which are 

replaced approximately every 14 days (Thoft and Friend, 1983). At the same time, 

the limbal stem cell niche maintains the self-renewal of LSCs through uneven 

distribution of cell fate determinants across the corneal epithelium. ΔNp63a and 

C/EBPδ have been shown in asymmetric cell division and early cell fate decision of 
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human limbal stem cells (Mort et al., 2012). Increasing evidence supports the theory 

that p63 promotes the maintenance of LSCs and also is a determinant of their 

proliferative potential. Pellegrini et al. has reported that the number of p63 bright cells 

is an important prospective measure of determining the clinical success of LSC 

transplantation (Pellegrini et al., 2011). LSC culture system on HAM results in 

generation of a high percentage of p63 positive cells, namely: 78.1% in zone A, 

67.8% in zone B and 49.4% in zone C; however the number of p63 positive cells 

significantly decreased to nearly half of that from standard medium when treated with 

media lacking any one of the four components tested in this study, thus suggesting 

that removal of each of these four components may pose a risk for clinical 

translations (Yu et al., 2016). 

Therapeutic use of LSCs must be performed in compliance with Good Manufacturing 

Practice as a quality assurance system to ensure highest quality and safety of cell 

product for transplantation in accordance with the European Union, Regulation (EC) 

No 1394/ 2007 of the European Parliament and of the Council, on Advanced Therapy 

Medicinal Products. As part of our study, we aimed at replacing all ingredients that 

were not produced according to GMP guidelines with GMP grade products. This is a 

rather important safety aspect as it has been shown that animal-derived components 

can cause severe immunologic reactions and potential transmission of 

microorganisms (Erickson et al., 1991; Selvaggi et al., 1997; Chachques et al., 2004; 

Schwab et al., 2006). We chose widely used clinical grade products Solu-Cortef®, 

Actrapid®, Liothyronine or Isoprenaline to replace non GMP grade ingredients. 

Isoprenaline, β-adrenergic agonist, is commonly used for the treatment of 

bradycardia and is known to increase intracellular calcium concentration of bovine 

corneal epithelial cells by inducing stimulation of cyclic AMP and thus it represents a 

safe alternative to cholera toxin for LSC cultivation (Reinach et al., 1992; Akhtar and 

Choi, 1994). CT and L-isoproterenol are largely used to enhance cell proliferation 

(Ghoubay-Benallaoua et al., 2012). It was particularly important to replace cholera 

toxin since this is obtained from bacteria cultured on bovine brain broth and fetal calf 

serum. While no data have been published for Solu-Cortef® and Liothyronine, 

Actrapid® and Isoprenaline were previously used for LSC cultivation with success 

(Ghoubay-Benallaoua et al., 2012). These previous data indicated that isoprenaline-

supplemented medium (2 mg/ml) is more efficient than cholera toxin for enhancing 

cell growth and decreasing cell size in two-week cultures (Ghoubay-Benallaoua et 
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al., 2012). In accordance with this, we observed a slightly faster growth rate of 

explants in the GMP culture media and a larger growth area at the end of culture 

period. Although CFE per zone did not differ significantly between the groups, the 

morphology of colonies was different. Cells cultivated in the GMP grade medium 

formed colonies with more differentiated appearance compared with cells cultivated 

in the non GMP grade medium. While the percentage of progenitor cells per zone did 

not differ between groups, distribution of progenitor cells per zone compared with 

explants cultivated in non GMP grade medium was unexpectedly altered. 

Furthermore, it seems that cultivation in GMP grade medium promoted differentiation 

of cells in the zone nearest to the explant. Analysis of every substituted component in 

isolation showed that Liothyronine may be responsible for the altered distribution of 

progenitor cells in zones A to C and for promoting the differentiation of progenitor 

cells in zone A. Notwithstanding these differences, LSCs expanded in LSC media 

with GMP grade reagents have not been tested in vivo. With this in mind, it would be 

useful to test their potential to engraft and reverse LSCD in animal model settings (for 

example rabbit) to investigate whether the molecular differences we have observed 

in vitro hold true in vivo. 

 

 

2.5 Conclusion 

Replacement of each of the research grade LSC media components with GMP grade 

reagents resulted in equal growth to non-GMP grade media; however an enhanced 

differentiation of progenitor cells in the outgrowth situated closest to the explant was 

observed, suggesting that additional combinations of GMP grade reagents need to 

be tested to achieve similar or better level of LSC maintenance in the same manner 

as the traditional LSC media. The research strategy of better refining the current 

stocks of materials and their possible replacement with GMP grade components 

provides a pathway that may be beneficial to other medicinal advanced cell therapy 

products currently being used in clinical trials.         
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Chapter 3. Transport  

 

3.1 Introduction 

Since 1997, when Pellegrini and colleagues first demonstrated transplantation of in 

vitro expanded limbal epithelium for treatment of LSCD from a small biopsy taken 

from the patient’s contralateral healthy eye (Pellegrini et al., 1997), transplantation of 

cultured limbal epithelial sheets has become the most successful alternative to 

corneal surface reconstruction in patients with unilateral LSCD (Burman and 

Sangwan, 2008). So far, more than 1000 transplantations have been performed 

worldwide (Utheim et al., 2018a) with approximately 75% overall success rate 

(Utheim, 2013). In patients with LSCD, stem cell graft is required to replenish LSC 

reservoir, which is ultimately responsible for regeneration of the corneal epithelium. 

Current treatment options utilize limbal tissue biopsies that harbour LSCs as well as 

tissue culture expanded cells. The tissue is usually placed on a scaffold that supports 

the formation of so called “limbal epithelial cell sheets” which are then transferred 

and transplanted to diseased eye. A numerous biological and synthetic materials 

have been reported as carrier substrates for LSCs, some of which have been used in 

the clinic, including HAM, fibrin and silicone hydrogel contact lenses (Nguyen et al., 

2018). 

Although a variety of expansion protocols for LSC culture showed good clinical 

outcomes, LSC-based therapy still faces challenges regarding tissue safety and 

sterility, tissue transportation, surgery logistics and availability of cultured tissue 

(Raeder et al., 2007). As the European Union classified stem cell-based therapies as 

“medicinal products”, their manipulation is strictly regulated and has to follow defined 

conditions of good manufacturing practice. The production of stem cell therapeutics 

is therefore limited exclusively to accredited production sites authorized by the 

national regulatory agencies (Di Iorio et al., 2010; Massie et al., 2014). The strict 

production requirements represent a barrier to a widespread use of stem cell-based 

therapies, despite the fact that demand is anticipated to increase due to successful 

clinical outcomes. For this reason, the need for safe, validated and reproducible 

techniques for ex vivo cultured tissue distribution and preservation are coming to the 
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forefront of research. Numerous new challenges for bio-banking industry such as 

retention of viability, sterility issues and good functionality of stem cells in the end 

product are still waiting to be fully scientifically addressed.  

The cell-processing centre (CPC) is a clean room that serves as an essential area for 

aseptic culturing or processing of human cells for regenerative medicine (Oie et al., 

2014). Although many hospitals require tissue-engineered epithelial cell sheets for 

treatment, due to the high expense of a CPC, many hospitals need to share one CPC 

to standardize and spread regenerative therapy. Development of an efficient cell 

transportation technique is therefore vital for bridging many hospitals and CPCs 

(Figure 3.1).  

 

 

Figure 3.1 Simplified scheme of multi-centre study organisation. Limbal tissue 
biopsy and transplantation of cultured LECs on HAM are performed in a hospital, 
explant culture of limbal biopsies and preparation of limbal epithelial cell sheets in a 
CPC.  

 

Connecting cell laboratories and eye banks is likely to increase the availability of 

regenerative medicine (Utheim, 2013). Growing interest in cultured limbal epithelial 

cells (LECs) is evident from the literature (Schwab et al., 2000; Rama et al., 2001; 

Kito et al., 2005; Oh et al., 2007; Raeder et al., 2007; Utheim et al., 2007; Yeh et al., 
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2008; Utheim et al., 2009; Raeder et al., 2010; Rama et al., 2010; Utheim et al., 

2015; Jackson et al., 2016; Utheim et al., 2018a). In a review on LSC therapy, 

Ahmad et al. suggested that the production of cultured limbal epithelial sheets for 

transplantation should be centralized for the following reasons: (a) strict regulatory 

demands make this kind of laboratories extremely costly and (b) requirement of 

expertise in culturing limbal tissue is of vital importance (Ahmad et al., 2010). Due to 

the strict regulations of cell therapy, the number of small units producing tissue for 

clinical use will decrease (Daniels et al., 2006b), therefore forcing centralization and 

forming of larger centres, which necessitate effective transportation strategies 

(Ahmad et al., 2010).  

Due to the limited insights into the LSC-based product’s safety and stability after 

preservation, most of the clinical studies on LSC transplantation reported so far used 

non-preserved terminal products (fresh cultured LSC epithelial grafts on a carrier 

scaffold) applied directly to LSCD patients (Grueterich et al., 2003a; Ti et al., 2004). 

Without a reliable method of limbal epithelial sheets storage challenges regarding 

sterility, transportation, surgery logistic and availability of tissue cannot be overcome.  

It is mandatory that the final products recovered from storage are physiologically and 

biochemically identical to its pre-preservation state, retaining high viability, good 

functionality and tissue morphology (Massie et al., 2014). For example, retention of 

undifferentiated cell phenotype in cultured and stored cultured epidermal cell sheets 

is important for the treatment of patients with burns (De Luca et al., 2006). Moreover, 

retention of a high percentage of progenitor cells within transplanted cultured limbal 

epithelial sheets in the treatment of LSCD results in a higher rate of clinical success 

(Rama et al., 2010).  

However, the current preservation methods still leave open fundamental questions 

regarding the optimal storage temperature and storage media formulations (short or 

long term) not only for single LSC suspensions but also for the final products 

(cultured epithelial sheets on different scaffolds). Thus, storage methods and 

preservation techniques for LSC delivery have recently been under investigation at 

an accelerated rate (Luznik et al., 2016a). 

To address these problems, Utheim et al. developed a method for short-term storage 

of cultured LSCs improving surgery logistics and enabling transportation and 

microbiological assessment using a closed container (Raeder et al., 2007) whilst Oie 
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et al. designed a transport container for cell sheets with three basic functions: 

maintaining a constant interior temperature, air pressure and sterility (Oie et al., 

2014). Raeder et al. reported that organ culture storage of cultured human LECs in a 

closed container for 1 week at ambient temperature is superior to both organ culture 

storage at 31°C and Optisol-GS storage at 5°C (Raeder et al., 2007). Oie et al. 

suggested that during 24 hour long transportation via an airplane, the temperature 

inside the container should be maintained above 32°C. They tested four kinds of 

transportation liquids (keratinocyte culture medium - KCM, KCM minus FBS and 

EGF, DMEM/F12 in 3:1 ration and HBSS) and concluded that HBSS was the best 

choice of transportation media (Oie et al., 2014). 

Appropriate tissue storage methods (both short and long term) would allow cultured 

tissue transportation from centralized laboratories to the operating theatre as well as 

between eye banks, offering the logistic flexibility in scheduling transplantation 

surgery (Raeder et al., 2007). As cell cultures may fail at any time during cultivation, 

the planning of surgery becomes cumbersome without efficient storage technology 

(Utheim, 2013). 

Importantly, tissue storage would increase the time for quality control of LEC cultures 

(microbiological testing, stem cell identification etc.) (Jackson et al., 2014). Daniels 

and colleagues proposed that control measures should be employed, whenever 

possible, to determine the quality of the final cell product (Daniels et al., 2006b). 

Microbial analyses of LECs cultures are mandatory part of the quality control 

measures conducted before these cells are applied to treat patients with LSDC. 

Bacterial infection of LEC cultures may be avoided by using a hermetically sealed 

container for storage prior to clinical use (Utheim et al., 2009). Long term corneal 

epithelium renewal after ex vivo cultured limbal epithelial transplantation depends 

mainly on the sufficient number of LSCs transferred in the cultured epithelial sheets 

(Rama et al., 2001). To date, transcriptional factor ΔNp63α is the commonly used 

putative marker for determination of percentage of stem cells in limbal epithelial 

cultures, as a positive clinical correlation was already reported between ΔNp63α 

expression and clinical success rate (Pellegrini et al., 1999a; Di Iorio et al., 2010). 

Pellegrini et al. suggested that stringent quality criteria should be adopted for LEC 

cultures to ensure that they contain a sufficient number of stem cells vital for long 

term epithelial survival (Pellegrini et al., 2011). Quality control should include rigorous 

clonal analysis or the evaluation of cell doublings generated during serial cultivation 
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of LECs (Pellegrini et al., 2011). Another important measure for ensuring quality of 

cultivated cells is regulating levels of contaminating fibroblasts in LEC cultures. Di Iori 

and colleagues evaluated the percentage of contamination of murine fibroblasts in 

cultured LECs and estimated that >5% contamination was unsuitable for clinical use 

(Di Iorio et al., 2010). Proulx et al. emphasized the importance of viability assessment 

of LECs prior to clinical use (Di Iorio et al., 2010) while other authors highlighted the 

need for standardization and validation of LEC cultures for clinical use (Higa and 

Shimazaki, 2008; Hayashi et al., 2010).  

Additionally to short-term preservation, efficient long-term cryopreservation of surplus 

cultured tissue could enable consecutive surgeries in case of unsuccessful primary 

treatment (Mohamed-Noriega et al., 2011).  

For all these reasons accredited centres for LSC culture are challenged to further 

develop efficient, standardized and validated transport and preservation methods. 

 

3.1.1 Current preservation strategies in different stages of the production 

process of bio-engineered limbal epithelial sheets  

 

Current preservation methods fall into two main categories: preservation of LSCs 

before in vitro limbal tissue generation (e.g. preservation of donor corneas, 

cryopreservation of suspended amplified LSCs after several passages) or 

preservation of limbal bio-engineered sheets on different scaffolds.  

3.1.1.1 Preservation of donor corneas and single LSCs 

Most of the tissue used for penetrating keratoplasty is issued through eye banks that 

store the corneo-scleral button either in organ culture at 31-37ºC introduced in 1976 

or in hypothermic storage at 2-6ºC introduced in 1974 (Pels et al., 2008).  

The two preservation techniques differ in technical aspects, tissue evaluation 

methods, storage time and microbial safety. Hypothermic storage is a simple 

technique that allow storage for up to 7-10 days whilst organ culture is a relatively 

complicated technique but allow storage for longer period of time, up to 4 weeks. 
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Both preservation techniques seem to result in similar graft survival. Organ culture, 

although it originates from United States (Doughman et al., 1976; Doughman, 1980), 

is now widely applied only in Western Europe but not commonly used elsewhere 

(Pels et al., 2008).  

A longer storage time permits a greater flexibility in the use of donor tissue and 

prevents wastage. Currently, only cryopreservation methods offer truly long-term 

storage of living cells and tissues (Woods et al., 2004; Armitage, 2009). Long-term 

preservation is especially important for preventing the loss of outdated material 

(Corydon et al., 2009), particularly in countries where shortage of donor corneas 

exists. However, bio-banking of donor corneas by cryopreservation is technically 

challenging and still in experimental phase. It’s been shown that only corneas 

obtained immediately after death from young donors were suitable for 

cryopreservation (Corydon et al., 2009) as freezing led to damage of the corneal 

endothelial cells (Armitage, 2009). On the other hand, cryopreserved whole donor 

corneas could be potential source of LSCs (Mohamed-Noriega et al., 2011). 

Bratanov and colleagues successfully cultured limbal explants from cryopreserved 

corneas (Bratanov et al., 2009). Albeit the limbal tissue was subjected to long lasting 

storage in liquid nitrogen, it enabled proliferation of epithelial cells with phenotypically 

identified LSCs (p63 positive cells) present in culture. However, no further functional 

test for LSCs identification was performed and a different growing pattern of 

expanded cells from the cryopreserved limbal explants was reported, most likely due 

to destabilization of the extracellular matrix during freezing-thawing procedures 

(Bratanov et al., 2009). 

Another possible strategy of long-term LSCs preservation is cryopreservation after in 

vitro expansion. Several studies reported cryopreservation of the suspension LSC 

culture (Corradini et al., 2012; Pellegrini et al., 2014). Schrader and colleagues 

reported that conjunctival epithelial cells could be efficiently cryopreserved with 

successful maintenance of progenitor cell-like characteristics and function in vitro 

over several culture passages (Schrader et al., 2009). Importantly, cryopreservation 

of suspended LSCs after in vitro expansion showed a non-immunogenic nature of 

defrosted limbal cells (Vasania et al., 2011). After thawing, human LSC cultures 

retained the expression of LSC markers but no HLA-DR gene expression was 

observed (Vasania et al., 2011). Moreover, cultured LSCs were also unable to 

stimulate allogenic T cell proliferation in vitro, even in the presence of pro-
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inflammatory cytokines (Vasania et al., 2011). Thus, cryopreserved LSC cultures 

could express negative immunoregulatory molecules, which may be critical for their 

survival in an allogenic environment and would enable better allograft survival 

(Vasania et al., 2011). 

However, the exact cryopreservation details are often not explicitly reported in clinical 

case publications and further evaluation of the impact of freezing/thawing procedures 

is often missing (Luznik et al., 2016a). Therefore, further experimental studies are 

needed to elucidate this important issue.  

So far, only one experimental study reported successful reconstruction of corneal 

epithelium using cultured epithelial grafts generated from long-term cryopreserved 

LSCs in a goat model of LSCD (Mi et al., 2008). However, it is yet not proven how 

stable these limbal epithelial sheets will be over time.  

 

 

3.1.1.2 Preservation of bio-engineered limbal epithelial sheets on different 

scaffolds 

 

Optimal physiological approach to preserve cultured limbal epithelial sheets at the 

genomic, proteomic, structural and functional levels is still under active investigation. 

Before widespread clinical use there are several issues to be solved regarding the 

optimal preservation temperature and storage media composition.  

Recent studies were focusing on the optimal temperature for efficient preservation of 

limbal epithelial cell sheets (Jackson et al., 2014; Eidet et al., 2015; Jackson et al., 

2016; Jackson et al., 2017). 

Utheim and colleagues first reported a method for short-term storage of cultured 

corneal sheets (Raeder et al., 2007; Utheim et al., 2007). They showed successful 

maintenance of the original multi-layered structure and undifferentiated phenotype 

after 1 week in organ culture at 23ºC of limbal epithelial sheets obtained from explant 

culture on intact HAM (Raeder et al., 2007; Utheim et al., 2007). Raeder et al. 

showed morphological corneal epithelial changes such as epithelial detaching and 



96 
 

intracellular vacuoles after 1 week of organ culture preservation of cultured corneal 

epithelium at 31ºC. On the other side, hypothermic storage of corneas at 5ºC in 

Optisol-GS also showed separation of cells below the superficial epithelial layer and 

pronounced intracellular oedema (Raeder et al., 2007). Taken together, their data 

indicated that storage of cultured limbal epithelial cells on HAM at ambient 

temperature is superior to organ culture storage at 31ºC and Optisol-GS storage at 

5ºC, with minimal apoptosis after storage (Raeder et al., 2007; Utheim et al., 2007). 

Later studies from the same research group showed successful storage of cultured 

human conjunctival epithelial sheets on HAM for at least 4 days under serum free 

conditions (Eidet et al., 2012).  

For long-term preservation of the end cell product, as previously mentioned, the only 

effective method is cryopreservation. However, cryopreservation of adherent fully 

stratified ocular epithelium has been shown more challenging compared to 

cryopreservation of suspended cells. Up to date, there is no consensus regarding the 

functional and morphological outcomes after cryopreservation of cultured limbal 

epithelial sheets based on previous in vitro studies (Luznik et al., 2016a).  

Kito et al. reported that rabbit limbal epithelial cells stored at a lower storage 

temperature (-196ºC) showed an improved survival compared with samples stored at 

a higher temperature (-80ºC) (Kito et al., 2005). Although the structural integrity of the 

cultured limbal epithelial sheets was destroyed in all tested cryopreservation 

protocols, cell viability was reported to be up to 70% and the remained cells were 

able to regenerate a new cell sheet (Kito et al., 2005). Yeh and colleagues reported 

successful 8 weeks long cryopreservation of limbal explant cultures expanded on 

HAM (Yeh et al., 2008). Using their method, cell viability was reported to be around 

50% and good growth ability of remained cells was proven (Yeh et al., 2008). Oh and 

colleagues cryopreserved human limbal and rabbit conjunctival cultured epithelial 

sheets for 1 week at -196ºC (Oh et al., 2007).  
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3.1.2 Aims of the study 

 

As strict regulations for cell therapy promote centralization of culture units (Daniels et 

al., 2006b), the treatment remains limited to a few centres of expertise (Utheim et al., 

2015). For this reason, definition of reliable and practical transportation strategies is 

vitally important. This study aims to optimize a transport conditions of the starting 

material (limbal biopsies - LBs) as well as the conditions of transport and storage of 

the final cell product (cultured LECs on HAM - limbal epithelial sheets), which have 

not been precisely define yet, for their widespread distribution and use in 

regenerative medicine. 

To access the best transport conditions for the starting material, short (30 minutes) and 

prolonged (24 hours) transport at both room temperature (RT) and 4°C will be 

compared, whilst the best transport and storage conditions of the final cell product will 

be accessed by comparison of 24h transport in culture media and prolonged 4 days 

and 7 days transport in serum-free storage media. The best transport conditions will 

be defined by comparison of explants growth rates, morphology, phenotype, and 

viability of cultured human LECs (Figure 3.2). 

 

 

Figure 3.2 Experimental design. 
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3.2 Material and Methods 

3.2.1 Human donor tissue 

 

Cadaveric adult human limbal tissue was obtained from the corneo-scleral rings 

remaining (2 males and 1 female, average age 62, SEM 3.84, range from 55 - 68 

years), after removal of the central cornea for transplantation supplied by the NHS 

Blood and Transplant (NHSBT) Cornea Transplantation Service eye banks based in 

Manchester and Bristol, UK. Human amniotic membranes were provided as 

individual units of 3 x 3 cm2 mounted on nitrocellulose paper by NHSBT, Tissue 

Services. Human tissue was handled according to the tenets of the Declaration of 

Helsinki and informed consent was obtained for research use of all human tissue 

from the next of kin of all deceased donors, with approval from the local Research 

Ethics Committee. The study was approved by the NRES Committee North East ‐ 

Newcastle & North Tyneside 1 (REC number: 11/NE/0236, protocol number 5466) on 

the 29th October 2013. 

3.2.2 Transport of the starting material: limbal biopsies’ transport simulation 

 

Having in mind that actual LBs represent a very precious tissue taken only in very 

special cases (such as a need for limbal epithelial cell transplantation) we used 4 

mm2 segments of cadaveric corneo-scleral tissue as their alternative (tissue from 

three different donors, n=3). Segments of cadaveric corneo-scleral tissue were 

prepared as previously described in Chapter 2. Four different transport conditions 

were compared: the first segment of each corneo-scleral ring was kept in a traditional 

LSC culture medium filled tube for 30 minutes at RT, the second segment of each 

ring for 30 minutes at 4ºC, third segment for 24 hours at RT and finally fourth 

segment of each ring for 24 hours at 4ºC. After transport simulation all the segments 

were cultivated on HAMs as described in Chapter 2 (using “LSC explant culture”) 

until they’ve reached 90% confluence. The epithelial outgrowths were then divided 

into three equal zones depending on proximity to the explant (A, B and C zone) as 

previously described and used for further analyses. 
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3.2.3 Transport of the final cell product: limbal epithelial sheets’ transport 

simulation 

 

Following LSC explant culture four different dishes containing a cultured limbal 

epithelial cell sheet at 90% confluence from each of three donors were randomly 

selected for transport and storage simulation (three LSC explant cultures from each 

donor) or used as a non-stored control (one LSC explant culture from each donor). 

All experimental groups contained identically cultivated cell sheets at the start of 

storage. Control cultured limbal epithelial sheets from each of three donors were 

processed immediately after reaching 90% confluence while the rest of cultured 

limbal epithelial sheets were stored in dishes sealed by parafilm for 24 hours, 4 days 

and 7 days at 23ºC. 

Cultured LECs on HAM were shaken at 200 orbital rotations per minute (rpm) on 

Titramax 100 (Heidolph Instruments, Germany), multi-purpose mixer shaker, for 2 

hours before they were stored for 24 hours, 4 and 7 days in order to expose the 

tissue to transport simulation.  

Limbal epithelial sheets were stored in either traditional LSC culture medium (for the 

simulation of short 24 hour transport) or in serum-free storage medium (for long term 

4 and 7 days transport simulation).  

3.2.4 Tissue analysis after transport simulations  

 

All other techniques including monitoring of explant outgrowth, cell counting and 

viability, CFE and immunofluorescent staining of putative stem cell marker ΔNp63 

and markers of corneal differentiation CK3 and Connexin 43 are described in details 

in Chapter 2. 

3.2.5 Statistical analysis 

 

Data are presented as mean ± SEM. All experiments were performed in biological 

replicates of three or more. To access the difference between the groups, one-way 
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analysis of variance (ANOVA) were performed. A significance level of p < 0.05 was 

used throughout the study. GraphPadPrism 7.0 (San Diego, CA, 

https://www.graphpad.com/scien-tific-software/prism/) was used to perform all 

statistical analyses. 

 

 

3.3 Results 

3.3.1 Limbal explant growth rate, cell number, viability and CFE after LBs 

transport simulation  

 

Successful explant cultures were obtained after all four LBs transport condition 

simulations (Figure 3.3). A trend of earlier onset of cell growth, faster growth 

throughout the culture and earlier confluence reach were observed in RT groups 

compared to 4ºC groups in all three donors. No difference in growth rates between 

short 30 min and prolonged 24h transport was present at RT. On the other hand, 

there was a visible difference in growth rates between short and prolonged LBs 

transport at 4ºC across all three donors, with 24h transport at 4ºC showing the latest 

onset of growth and the slowest growth throughout the culture (Figure 3.3).  
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Figure 3.3 Limbal epithelial cell growth across different LBs transport condition 
groups. Schematic graphs are showing the area of explant outgrowth (mm2) on 
different days of culture; (n=3). 
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Figure 3.4 Number of cells and cell viability per zone of limbal outgrowths after 
limbal biopsies transport simulation. Data are presented as mean ± SEM, ** p < 
0.01, *** p < 0.001 (n=3).  

 

In terms of cell number per zone, no significant differences were found with the 

exception of zone C which contained higher number of cells in RT groups compared 

to 4°C groups (Figure 3.4). This difference was significant between 30min RT and 

both 30min 4°C and 24h 4°C groups (p<0.01 and p<0.001 respectively). A similar 

trend was observed in 24h RT compared to both 4°C transport groups but without 

any significance found (p>0.05).  

Cell viability was well preserved and there were no significant differences between 

the groups in any of the zones (Figure 3.4).  
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CFE was significantly higher in zone B and zone C of limbal outgrowths grown from 

LBs transported over 30min at RT compared to LBs transported over 24h at 4°C 

(p<0.05). An overall trend of higher CFEs in RT compared to 4°C groups was 

present. No differences were found between short and prolonged transport between 

either RT or 4°C groups (Figure 3.5). 
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Figure 3.5 Colony forming efficiencies per zone of limbal outgrowths after limbal 
biopsies transport simulation. Data are presented as mean ± SEM, * p < 0.05 (n=3).  
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3.3.2 Limbal epithelial cell marker expression after LBs transport simulation  

 

Expression of putative limbal stem cell marker ΔNp63 in zone A of explant 

outgrowths is significantly higher in both 30min and 24h RT groups compared to 24h 

4°C group (p<0.01 and p<0.05 respectively). 24h RT group show also significantly 

higher expression of ΔNp63 in zone A compared to 24h 4°C transport group (Figure 

3.6).  

In terms of ΔNp63 expression in zones C and B, similar pattern of differences 

between the groups was observed. Prolonged 24h transport on 4°C showed 

significantly lower expression of ΔNp63 compared to 30min RT, 24h RT and 30 min 

4°C groups (p<0.05 in all three cases in zone B; p<0.001; p<0.001 and p<0.05 in 

zone C respectively) (Figure 3.6).  
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Figure 3.6 Expression of putative limbal stem cell marker ΔNp63 per zone of 
limbal outgrowths after limbal biopsies transport simulation. Data are presented 
as mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001 (n=3). 
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Differentiation marker CK3 differs significantly between the groups across all the 

zones (Figure 3.7), while there were no significant differences or trends observed in 

expression of the other corneal differentiation marker, Connexin 43 (Figure 3.8). 

In zone A, CK3 expression was the lowest in 30min RT group. 24h RT, 30min 4°C 

and 24h 4°C group all showed higher CK3 expression compared to 30min RT 

(p<0.05; p<0.05 and p<0.01 respectively). Moreover, both 30 min and 24h 4°C 

groups also showed higher expression of CK3 in zone A from 24h RT transport group 

(Figure 3.7). Similarly, in zone B and zone C, 4°C transport led to higher CK3 

expression in comparison with RT conditions. In zone B, 30min 4°C transport showed 

higher expression of CK3 than 30min and 24h RT group (p<0.001) and the difference 

between 24h 4°C and both RT groups was even more significant (p<0.0001). Finally 

in zone C, CK3 expression was significantly higher in 30min 4°C and 24h 4°C 

compared with 30min RT (p<0.0001 and p<0.05 respectively) (Figure 3.7). 
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Figure 3.7 Expression of corneal differentiation marker Cytokeratin 3 per zone 
of limbal outgrowths after limbal biopsies transport simulation. Data are 
presented as mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (n=3). 
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Figure 3.8 Expression of corneal differentiation marker Connexin 43 per zone of 
limbal outgrowths after limbal biopsies transport simulation. Data are presented 
as mean ± SEM (n=3). 
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3.3.3 Limbal explant growth rate, cell number, viability and colony forming 

efficiency after final product transport simulation  

 

After successful explant cultures were obtained from all limbal biopsies (Figure 3.9), 

expanded limbal epithelial cells on HAM were used for final product transport 

simulation. All visible differences in growth rate were non-significant, most likely 

depending on the number of stem cells in the particular piece of cadaveric limbal 

tissue used for the respective explant culture.  
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Figure 3.9 Limbal epithelial cell growth across different final product transport 
condition groups. Schematic graphs are showing the area of explant outgrowth 
(mm2) on different days of culture; (n=3). 
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With regard of number of cells per zone, control had significantly higher number cells 

in zone A and zone C compared to 4 days transport group (p<0.05 and p<0.001 

respectively) and in zone B and zone C compared to 7 days transport group (p<0.05 

and p<0.0001 respectively). There was no significant difference between cell 

numbers between control and 24h transport group in any of the zones. 4 days 

compared to 7 days transport group showed higher number of cells in zone B 

(p<0.01) (Figure 3.10). 

Cell viability was significantly lower in 4 and 7 days transport groups compared to 

control across all the zones (p<0.05) whilst viability in 24h transport group was 

affected only in zone A compared to control (p<0.05). However, viability in zone A of 

24h transport group was significantly lower than in 7 days transport group (p<0.05 ) 

(Figure 3.10). 
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Figure 3.10 Number of cells and cell viability per zone of limbal outgrowths after 
final product transport simulation. Data are presented as mean ± SEM, * p < 0.05, 
** p < 0.01, *** p < 0.001, **** p < 0.0001 (n=3).  

 

Interestingly, CFE was higher in 4 and 7 days transport groups in all the zones 

compared to control and 24h transport, with the highest CFE showed after 7 days of 

transport simulation. The difference was significant between 7 days and 24h 

transport in all three zones (p<0.05) and 4 days and 24h transport in zones A and B 

(p<0.05). 24h transport group had the lowest CFE, significantly lower not only from 4 

and 7 days transport groups but also lower than control especially in zone B where 

the difference is significant (p<0.05) (Figure 3.11). 
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Figure 3.11 Colony forming efficiencies per zone of limbal outgrowths after final 
product transport simulation. Data are presented as mean ± SEM, * p < 0.05 (n=3). 
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3.3.4 Limbal epithelial cell marker expression after final product transport 

simulation  

 

Several significant differences were found between the groups related to marker 

expression but scattered throughout zones and not logically correlated. For example 

significantly higher expression of limbal stem cell marker ΔNp63 was found in control 

compared to 24h transport group (p<0.05) but on the same time expression of 

Connexin 43 which is a marker of corneal differentiation was also significantly higher 

in control compared to 24h transport group (p<0.01) (Figure 3.12 and 3.13). Other 

differences found for the expression of putative stem cell marker ΔNp63 (Figure 

3.12) and corneal differentiation markers CK3 (Figure 3.13) and Connexin 43 

(Figure 3.14) were also inconsistent and for that reason they will not be commented 

in details.  
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Figure 3.12 Expression of putative limbal stem cell marker ΔNp63 per zone of 
limbal outgrowths after final product transport simulation. Data are presented as 
mean ± SEM, * p < 0.05 (n=3). 

 



117 
 

 

Figure 3.13 Expression of corneal differentiation marker Cytokeratin 3 per zone 
of limbal outgrowths after final product transport simulation. Data are presented 
as mean ± SEM, * p < 0.05 (n=3). 
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Figure 3.14 Expression of corneal differentiation marker Connexin 43 per zone 
of limbal outgrowths after final product transport simulation. Data are presented 
as mean ± SEM, * p < 0.05, ** p < 0.01 (n=3). 
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3.4 Discussion  

LSC transplantation has been shown to reverse the signs of deficiency of these cells 

by restoring a corneal epithelial phenotype. Unilateral LSCD can be treated with 

autologous LSC transplantation, but in case of bilateral LSCD, only allogeneic 

transplantation is possible and the donor limbal tissue must be taken from a living 

relative or a cadaver (Tan et al., 1996; Djalilian et al., 2005; Fernandez-Buenaga et 

al., 2018). In our study we used human cadaveric limbal tissue as an alternative to 

real LBs obtained from living donors, which are taken only in strictly indicated 

occasions.  

The two basic approaches to store whole corneas for grafting are hypothermia and 

organ culture. Procedural simplicity and the immediate availability of tissue for 

transplantation make hypothermia the most widely used method (Pels et al., 2008). 

The recommended maximum storage time under hypothermic conditions (2–6°C) is 

up to 14 days. Organ culture storage is used in about 65% of European eye banks 

because of the possibility of performing a detailed assessment of the corneal 

endothelium and extending storage time up to 4–5 weeks (Pels et al., 2008).  

The effect of different storage temperatures on the maintenance of LEC phenotype 

and function was studied by Raeder et al. The research group evaluated effects of 1 

week storage of human limbal epithelial cultures in conventional organ culture (at 

31°C or 23°C) and hypothermic storage (at 5°C) in Optisol-GS (Raeder et al., 2007). 

They reported that although cultured human LECs remained undifferentiated in all 

storage conditions, the ultrastructure was better preserved at 23°C, while storage at 

31°C and 5°C was associated with enlarged intercellular spaces, separation of 

desmosomes, and detachment of epithelial cells (Raeder et al., 2007). After they 

identified the temperature of 23ºC as an optimal for LECs storage they evaluated 

viability, morphology and phenotype of cultured human LECs on HAM following 2 

and 3 weeks of organ culture storage (Utheim et al., 2009). Although a less 

differentiated phenotype was maintained, the multi-layered structure was lost after 3 

weeks whilst preserved in around 70% of cultures following 3 week storage along 

(Utheim et al., 2009). They concluded that even with a slight decrease in viability the 

human LEC sheets remain acceptable, which was not the case with 3 week storage 

which results was unsatisfactory (Utheim et al., 2009). Furthermore, they reported 

that the storage conditions with 23ºC temperature in either serum-free medium 
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(Quantum 286) or xenobiotic-free medium (Minimal Essential Medium-MEM) 

protected against cell death, loss of ultrastructure and differentiation of cells for 4-7 

days period (Utheim et al., 2015).  

The same group also studied effect of different storage temperatures on cultured 

human conjunctival (Eidet et al., 2012; Eidet et al., 2015) and epidermal cell sheets 

(Jackson et al., 2014; Jackson et al., 2016; Jackson et al., 2017). They reported that 

human conjunctival epithelial cells may be stored for at least 4 days in serum free 

conditions at 23ºC while maintaining the cell phenotype and viability (Eidet et al., 

2012). Furthermore, they later evaluated effect of nine different storage temperatures 

between 4ºC and 37ºC for 4 days and 7 days storage of cultured human conjunctival 

epithelium (Eidet et al., 2015) and cultured epidermal cell sheets (Jackson et al., 

2014). Storage at 12ºC appeared to be optimal for preserving the morphology, 

viability and total cell number of cultured human conjunctival epithelium. These 

superior cell preservation on 12ºC may be related to temperature associated effects 

on cell metabolism (Eidet et al., 2015). In terms of preservation of cultured epidermal 

cell sheets their initial results indicated that 12ºC and 24ºC storage temperature 

represent the prospective optimum temperature for short term storage of these cell 

sheets (Jackson et al., 2014). 24ºC temperature showed the clear advantage on cell 

viability whilst 12ºC were particularly favourable in terms of maintenance of 

proliferative capacity and morphology of cultured cells after storage (Jackson et al., 

2014). In their next study, they further reported that lower storage temperatures, in 

particular 12ºC, showed to be superior in terms the maintenance of the original 

phenotype of cultured epidermal cells (Jackson et al., 2014). Their third study of 

different storage temperatures from 2017 reported retention of undifferentiated cell 

phenotype on 12ºC, transition to differentiation at 16ºC and increased differentiation 

at 24ºC and confirmed that 12ºC temperature may be ideal for storage of cultivated 

epidermal cell sheets (Jackson et al., 2017). 

These studies clearly show that the choice of storage temperature has an important 

role in preservation of epithelial morphology on cultivated epithelial cells. In our 

study, we were interested in effect of the choice of different temperatures even 

before LEC cultivation, during transportation of LBs. As most eye banks in the world 

use either hypothermic storage (2-6ºC) or organ culture storage (31-37ºC) we 

decided to compare two different temperatures for LBs transportation, 4ºC and room 

temperature, similarly to storage temperatures in the two main approaches of the 
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corneal storage. The reason behind choosing RT instead of 31ºC was the fact that in 

2007 two studies reported that organ culture storage of cultured LECs on HAM at 

ambient temperature is superior to organ culture storage at 31ºC with minimal 

apoptosis after storage (Raeder et al., 2007; Utheim et al., 2007). We compared 

effects of these temperatures during short (30 minutes) transport and prolonged (24 

hours) transport of LBs.  

We demonstrated that cultivation of LBs transported at either RT or 4ºC will results in 

their successful growth on HAM after both short and long term transportation with no 

difference in regard of cell viability of the outgrowths. However, RT transport proved 

to be superior compared to 4ºC transport in terms of growth rate and preservation of 

undifferentiated cell phenotype. Besides better CFEs, LBs transported at RT showed 

presence of higher percentage of putative stem cells (higher expression of ΔNp63) 

and lower percentage of differentiated cells (lower CK3 expression) in comparison 

with LBs transported at 4ºC. Short and long transportation at RT proved to be equally 

efficient, whilst between short and long transportation at 4ºC there was a significant 

difference in expression of ΔNp63 suggesting that long 4ºC transportation is the least 

convenient option for preservation of LSCs within LBs.  

Our results are in accordance with a study that showed retention of proliferative 

function at 4ºC but also showed low cell viability, as well as cell-cell contact 

disruption and cell shrinkage, indicative to apoptosis (Jackson et al., 2014). Thus, 

possible explanation for slower growth in 4ºC transport groups, especially in 24 hours 

transportation group, may be the lower number of LSCs in LBs transported at low 

temperature due to increased apoptosis. We could further hypothesize that increased 

differentiation also may be the result of lower number of LSC in LBs after 

transportation but this needs to be further investigated.  

Further study from the same research group investigated the molecular mechanisms 

underlying activation of cell death pathways using genome-wide transcriptional 

analysis in human LECs following 2, 4 and 7 days storage at 4ºC (Utheim et al., 

2016). The most upregulated genes after 4 and 7 days hypothermic storage were the 

histone coding genes HIST1H3A and HIST4H4, involved in a functional network 

highly associated with cell death, necrosis, and transcription of RNA. The most down 

regulated gene, HDAC1, encoding histone deacetylase 1, is involved in a regulating 
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network associated with cellular function and maintenance, differentiation of cells and 

DNA repair (Utheim et al., 2016). 

Additionally, together with the choice of storage temperature, the choice of storage 

media also plays a role in the preservation of epithelia. For example, Utheim at al. 

showed that storage in MEM, simple storage medium preserve immature phenotype 

better than more complex Quantum 286. The possible reason might be the fact that 

simple media reduces metabolism and therefore potentially decreases differentiation 

during storage to a higher extent than media with added growth factors, such as 

Quantum 286 (Utheim et al., 2015). Their findings are in accordance with the other 

study demonstrating stimulated differentiation of cultured human LECs over time 

using a complex culture medium (Ghoubay-Benallaoua et al., 2013). Similarly, Oie et 

al. used Hanks' Balanced Salt Solutions (HBSS) as the transportation liquid for 

human and rabbit cell epithelial sheets air transportation using their special 

transportation container (Oie et al., 2014). HBSS is a relatively simple buffered 

solution that does not contain any growth factors but provides cells with water and 

certain bulk inorganic ions as well as the carbohydrates and glucose essential for cell 

metabolism. 

Development of efficient short-term storage can expand the utility of cultured limbal 

epithelial sheets by providing an extended window for quality control and sterility 

testing in centralized culture facilities, wider distribution, flexibility in timing of 

transplantation surgeries and back-up sheets for repeated operations. 

In our study we compared short one day (24 hours) storage in traditional LSC culture 

medium, with FBS and growth factors added, with prolonged 4 and 7 days storage in 

simple MEM medium without serum and growth factors.   

Cell number and viability of LECs in our study did not differ significantly between 24 

hours and 4 and 7 days storage, but the trend of increased cell death with longer 

storage was observed. Previously it has been shown that both apoptosis and 

necrosis occur in cells during corneal storage, with apoptosis appearing to 

predominate (Komuro et al., 1999). The viability of LECs stored for 4 and 7 days was 

significantly lower in comparison with non-stored controls in all the zones, but still 

around 80%. Similarly to our findings, Utheim and al. reported that viability of cells 

after 4 days serum free storage was 97% (Utheim et al., 2015).  
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Beside the maintenance of cell viability as the first general priority in storage of cells, 

maintenance of stemness is equally important during cultivated limbal epithelium 

storage and transportation.  

Highly proliferative cycling epidermal progenitor cells are the first to contribute to 

regeneration following transplantation, while quiescent stem cells provide long-term 

renewal (Schluter et al., 2011). As the same principle applies to the limbal epithelium, 

our objective was to maintain an undifferentiated cell phenotype and proliferative 

capacity within limbal epithelial cell sheets during storage. 

In terms of expression of putative stem cell markers and markers of corneal 

differentiation we didn’t find any consistent difference between three different storage 

groups and control. It seems that all storage conditions preserved stemness in a 

similar manner.  

In terms of colony forming ability, another important aspect of LSCs present in limbal 

epithelial sheets, the trend of lower CFE was obvious in cells stored for 24 hours in 

culture media compared to non-stored control cells, with significant difference in zone 

B. Surprisingly both 4 days and 7 days storage groups showed significantly higher 

CFE than 24 hours storage group in all three outgrowth zones. These phenomenon 

may be explained by serum starvation of stored LECs on HAM in serum free media 

for 4 and 7 days and their consequential arrest in the G1 phase of the cell cycle 

which was reversed upon returning into FBS supplemented culture media. Currently, 

this is hypothesis that needs to be verified experimentally.  

Multiple studies have been published on the various aspects of storage of cultured 

LECs (Kito et al., 2005; Oh et al., 2007; Raeder et al., 2007; Utheim et al., 2007; Yeh 

et al., 2008; Utheim et al., 2009; Wright et al., 2012; Utheim et al., 2015) while 

transportation of epithelial sheets for ocular surface reconstruction has been studies 

to a limited extent. Transport is different from storage in the sense that the tissue is 

exposed to movement that unlike other environmental factors cannot be eliminated 

by a sealed transport container (Utheim et al., 2018b). Vasania et al. tested in-house 

designed transportation container for cultured conjunctival epithelial cell sheets on 

HAM (Vasania et al., 2014). They reported presence of viable, intact epithelial sheets 

upon arrival and good post-operative outcome for pterygium surgery (Vasania et al., 

2014). Oie et al. developed a transportation container with three basic functions: the 

maintenance of interior temperature, air pressure and sterility (Oie et al., 2014). 
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Cultured human oral mucosa and rabbit LECs were successfully transported in the 

container for 5 hours in the airplane. After the transport, lower expression of zonula 

occludens-1 (ZO-1) was observed, suggesting that transportation may cause a 

reduction in intercellular adherence and barrier function (Oie et al., 2014). Utheim et 

al. simulated extreme transport conditions followed by a storage period and found 

that transport simulation of up to 36 hours appeared not to be critical to the viability, 

ultrastructure and phenotype of human LECs with a completely filled transportation 

container (Utheim et al., 2018b).  

 

3.5 Conclusion 

The choice of transportation temperature has an important role in preservation of 

LECs proliferation and phenotype. Here we demonstrated that LBs, as a starting 

material for limbal epithelial sheets production, may be efficiently transported within 

24 hours at room temperature from hospital where the biopsy was taken to CPC 

facility for further cultivation.  

Additionally, we showed that the final product, limbal epithelial sheets, may be stored 

up to 7 days in simple serum free medium without significant decrease in cell viability 

and proliferative capacity and without any negative effect on their undifferentiated 

phenotype.  
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Chapter 4. Towards identification of novel limbal epithelial stem cell 

surface markers 

 

4.1 Introduction  

4.1.1 Challenges in LSC therapy 

 

As discussed in previous chapters, transplantation of autologous ex vivo expanded 

LSCs is an established and European Medicines Agency authorised treatment for 

patients with total/severe unilateral LSCD due to ocular surface burns. Currently 

however, ex vivo expansion strategies of limbal and other autologous epithelial stem 

cell are labour intensive and often lack standardization, largely because it is currently 

impossible to prospectively isolate pure populations of these cells for research or 

clinical use. Until this occurs, different centres will likely use specific techniques for 

isolation and ex vivo culture of LSCs in their respective institutions that have been 

developed and investigated in their individual basic laboratories, rendering it 

impossible to compare clinical success rates between clinical trials performed in 

different centres around the world. 

 

4.1.1.1 Identification of LSCs  

A major challenge in corneal stem cell biology is the ability to identify stem cells in 

vitro and in situ and one of the main controversies in the field relates to the issue of 

reliable stem cell markers. The ideal LSC marker should not only be able to pinpoint 

the location of LSC within the epithelium but should also allow isolation, enrichment 

and molecular characterisation of viable LSC.  

LSCs play the vital role in the regeneration of damaged corneal tissue, as discussed 

in details in Chapter 1. Due to the limited options available to treat corneal scars, 
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their isolation and identification received much attention as they have potential for 

autologous, cell-based approaches for treatment of damaged cornea. In the last 

decade LSCs transplantation has been successfully applied in the clinic. The LSC 

frequency significantly influences the outcome of corneal transplantation (Rama et 

al., 2010). The study by Rama et al. showed that more than 3% of p63 positive cells 

out of the total number of transplanted cells led to a successful rate of 78%. Less 

than 3% of p63 positive cells, on the other hand, led to a much lower successful rate 

of only 11% (Rama et al., 2010). The accuracy of LSC identification is therefore 

urgent for successful corneal transplantation. Up to date many putative LSC markers 

have been reported in the literature (page 33, Table 1.1), including cytoskeletal 

proteins, cell adhesion molecules, cell cycle regulators, enzymes, growth factors and 

their receptors, ATP-binding cassette transporters and differentiation associated 

markers (Chen et al., 2004; Schlotzer-Schrehardt and Kruse, 2005). However, there 

are still no LSC reliable specific biomarkers reported for accurate identification yet.  

LSC identification is usually based on the following methods: 

 Co-expression of putative positive LSC markers (such as p63, ABCG2, 

ABCB5, integrin α9, vimentin etc.) and negative LSC markers (Connexin 43, 

CK3, CK12, involucrin etc.); 

 Morphologic criteria (cell size and nucleocytoplasmic ratio (N/C) ≥ 0.7): As 

shown by flow cytometry and confocal microscopy, the smallest cells are 

located in the limbal basal epithelium compared to the basal corneal 

epithelium (10.1±0.8 vs. 17.1±0.8 µm) (Romano et al., 2003). Similarly, it has 

been shown that N/C ratio of LSCs lying on the basal membrane was higher 

than N/C ratio of TACs and corneal epithelial cells (Schlotzer-Schrehardt and 

Kruse, 2005). Moreover, LSCs were successfully identified and quantified 

based on ABCG2 expression and N/C ≥ 0.7 (Priya et al., 2013). Additionally 

using the same principle, Kasinathan et al. established a two-step protocol for 

LSC enrichment by combining basal cell isolation and laser capture 

microdissection of small cells with N/C ≥ 0.7. Using the protocol they achieved 

76-78% enrichment of LSCs from 2% LSCs in total limbal epithelial cells 

(Kasinathan et al., 2016); 

 Label retaining property: The BrdU-based “pulse-chase” experiment has been 

widely used for stem cell identification. Using the fact that BrdU can be 

incorporated into newly synthetized DNA molecule instead of thymidine, after 
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a period of BrdU pulse all cells with different degree of differentiation can be 

labelled by BrdU. As a result of slow cell cycling of stem cells, fewer divisions 

of labelled LSCs compared to differentiated cells will happen in the same time. 

Hence, after a period of BrdU chase, the BrdU retaining cells can be 

considered as LSCs (Arpitha et al., 2008). From the percentage of 

radiolabelled thymidine retaining cells present in the limbal zone, it has been 

concluded that stem cells may represent less than 10% of the total limbal 

basal cell population (Lavker et al., 1991). In 1998 Lehrer et al. showed that 

the limbal basal epithelium contains both slow-cycling stem cells and early 

TACs; 

 Side population (SP) phenotype: Most cells accumulate fluorescent dyes such 

as Hoechst 33342, but a subset of “dull cells” is often found and termed the 

“side population”. The SP cells are identified according to their ability to efflux 

the Hoechst dye at a higher pace than the remaining cells termed the main 

population (non-SP). The Hoechst 33342 efflux activity results from the 

specific stem cell protein expression, such as ATP binding cassette 

transporters expression (Goodell, 2005). The SP assay has emerged as a 

promising method for identifying stem cell and progenitor populations in 

different tissues, particularly in the absence of specific cell-surface markers 

(Golebiewska et al., 2011). Goodell et al. successfully isolated mice bone 

marrow stem cells using FACS based on Hoechst-SP method (Goodell, 2005) 

while Shaharuddin et al. successfully isolated LSCs (Shaharuddin et al., 

2014).  

 

4.1.1.2 Difficulties in the discovery of specific LSC biomarkers 

 

4.1.1.2.1 Particularity of limbal structure and phenotype 

 

Limbus represents the narrow band of tissue with unclear boundaries with to cornea 

and conjunctiva. Although there are some histological differences between the 

cornea and limbus, such as the presence of palisades of Vogt in limbal epithelium 

and more layers of epithelial cells compared to cornea (Mariappan et al., 2010),  it is 
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still difficult to distinguish corneal epithelium from limbal epithelium. Moreover, limbal 

epithelial cells share some molecular markers with both corneal and conjunctival 

epithelial cells that together with many controversial reports in the literature make 

their identification a very difficult task. For example, as reported by different authors 

CK19 and CK13 can serve as markers of conjunctival epithelial cells (Donisi et al., 

2003; Poli et al., 2015), but other author showed that CK19 expression was also 

detected both in limbal and corneal epithelial cells (Chen et al., 2004). Similarly, 

although Ramirez-Miranda et al. showed that CK13 was more specific than CK19 in 

terms of identification of conjunctival epithelial cells (Ramirez-Miranda et al., 2011), 

Poli et al. showed that CK13 was expressed in both the conjunctival epithelium and 

the suprabasal and superficial layers of the limbal epithelium (Poli et al., 2015). 

Although limbus could be distinguished from conjunctiva based on the presence of 

goblet cells, which are used to diagnose LSCD (Puangsricharern and Tseng, 1995), 

some conditions such as Stevens-Johnsons syndrome and long-term administration 

of glaucoma drugs could lead to LSCD with no goblet cell invasion (Poli et al., 2015). 

While CK12 is expressed in corneal but not in conjunctival epithelium (Chen et al., 

1994) and may be used to distinguish them, it is not clear if its expression is limited to 

central corneal epithelium or presents also in the limbal epithelium. Namely, Latta et 

al. showed that CK12 was specifically expressed in corneal epithelial cells but not in 

limbal epithelial cells (Latta et al., 2018) but, on the other hand, Ramirez-Miranda et 

al. reported that CK12 was not only expressed in corneal epithelial cells but also in 

limbal epithelial cells except in the basal layer (Ramirez-Miranda et al., 2011).  

 

4.1.1.2.2 Enzyme digestion impact 

 

The limbal epithelial suspension used for the isolation of LSCs is usually prepared 

from whole mass limbal tissue by enzymatic digestion using either dispase II, 

collagenase A or trypsin (Espana et al., 2003; Chen et al., 2011; Tovell et al., 2015; 

Shirzadeh and Heidari Keshel, 2018). Dispase II separates the limbal epithelium from 

the stroma by destruction of the BM, collagenase A disrupts the cellular connection in 

a limbal niche by digestion of extracellular matrix while trypsin separates a cells mass 

into a single cell suspension. Enzyme treatment may significantly influences gene 

and protein expression profile of LSC. Optimization of digest conditions including 
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digestion time and concentration of enzymes to avoid enzyme-induced destruction of 

the LSC integrity has been reported in many studies (Stasi et al., 2014; Lopez-

Paniagua et al., 2016).  

 

4.1.1.2.3 Stem cell heterogeneity  

 

Heterogeneity has been reported in different type of stem cells, such as embryonic 

stem cells (Luo et al., 2018), mesenchymal stem cells (Du et al., 2016) but also LSCs 

(Hayashida et al., 2010). An obvious problem with current LSC clinical treatments is 

that transplanted cells are a heterogeneous cell population containing many cell 

types in addition to LSCs (ranging from epithelial, stromal stem and progenitor cells, 

conjunctival and corneal epithelial cells and blood or vascular cells) that significantly 

affect safety and efficiency of treatment. This was best highlighted by a landmark 

study published by Rama et al. who showed that successful corneal regeneration 

was strongly correlated with the presence of more than 3% holoclone-forming 

(ΔNp63α-bright) cells in ex vivo expanded cultures used for grafting of patients with 

LSCD (Rama et al., 2010). Various studies have described morphological 

characteristics of LSCs (i.e. small cell size, pigmentation and high nuclear to 

cytoplasmic ratio) (Chen et al., 2004), their slow cycling nature and location within 

clusters at palisades of Vogt (Dua et al., 2005); however these factors have not been 

linked with LSC function and outcome of transplantation; hence harvesting a specific 

and purified sub-population of these cells remains a major challenge. Several key 

putative markers have already been identified including ΔNp63α, ABCG2, ABCB5, 

C/EBPδ, Bmi1 and Notch-1 among others (Pellegrini et al., 2001; Schlotzer-

Schrehardt and Kruse, 2005; Joe and Yeung, 2014; Ksander et al., 2014); however it 

is unclear whether these proteins are expressed by different LSC sub-populations or 

different LSC subsets within each population marked by a single putative marker. 

Stem cell heterogeneity has been well described in various stem cell compartments 

including blood, skin and intestinal epithelium pointing to the concomitant existence 

of multiple types of stem cells with distinct everyday roles (Goodell et al., 2015). From 

these studies it has also emerged that these different stem cell types are more 

adaptable than previously thought, in that they have a 'default' role under normal 

conditions, however following perturbation, such as stimulation by injury, they can 



130 
 

fulfil distinct functions when required (Goodell et al., 2015). Some tissues may 

contain rapidly-cycling, committed progenitors which are responsible for the majority 

of tissue maintenance, as well as a population of slow-cycling stem cells which 

maintain a higher degree of stemness and can act as alternative source of stem cells 

in response to injury and stress (Li and Clevers, 2010). To date, it is not yet known 

whether corneal epithelium is also maintained by a combination of such quiescent 

and cycling progenitors, however it is interesting to note that in the human cornea 

two different sub-populations have been identified: (1) Bmi1+, C/EBPδ+ and ΔNp63α+ 

mitotically quiescent LSCs which generate holoclones in culture and (2) Bmi1-, 

C/EBPδ- and ΔNp63α+ population which respond to injury (Barbaro et al., 2007). It is 

not known whether LSC heterogeneity extends beyond the presence of these two 

LSC sub-populations and whether cell surface markers to distinguish between these 

two subpopulations can be identified.   

 

 

4.1.1.2.4 Lack of robust LSC isolation technology  

 

Among the total number of limbal epithelial cells there is a small amount of LSCs 

present, accounting only 0.5 to 10% of cells according to Latta et al. (Latta et al., 

2018). Existence of such a complex limbal epithelial suspension makes isolation of 

LSCs in low frequency very complicated task. Some traditional methods of LSCs 

isolation were previously published, such as FACS (Shaharuddin et al., 2017), 

magnetic-activated cell sorting (Polisetti et al., 2016) and gradient centrifugation 

(Krulova et al., 2008). However, all of these methods include enzyme digestion which 

may influence changes in gene expression patterns and protein profile of LSCs and 

increase the risk of suspension contamination due to complicated process involved 

(Emmert-Buck et al., 1996; Espina et al., 2006; Espina et al., 2007). 

Isolation of target cells from complex and heterogeneous tissues became possible 

with a discovery of the laser capture microdissection (LCM) technique by Emmert-

Buck et al. (Emmert-Buck et al., 1996). Furthermore, a combination of LCM with next 

generation sequencing (NGS) has become a hot topic of heterogeneity and specific 

biomarker research (Guo and Zhang, 2018). Bath et al. collected cells for NGS from 
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four different human limbal compartments using LCM providing plentiful information 

for the study of LSC markers (Bath et al., 2013). Using the same technique Polisetti 

et al. proved the connection between LSC niche cells and cell adhesion molecules 

(Polisetti et al., 2016). However, LCM poses also some limitations. As thin sections 

(5-15 µm) cut the cell into several parts resulting in incomplete RNA information that 

cannot represent a full cell, large number of sections is needed to obtain enough 

RNA for future studies (Fend et al., 1999; Datta et al., 2015). Moreover, pre-

treatment of sections including fixation, dehydration and staining can significantly 

influence the quality of RNA (Fend et al., 1999) reducing efficiency for subsequent 

experiments such as NGS or microarray analysis (Gautam et al., 2016). 

 

4.1.1.3 Prospective in LSC biomarker identification 

 

Recently, many reports have demonstrated new biomarkers at the RNA level. 

Techniques such as NGS opened possibility to obtain mRNA and microRNA 

information enabling development of mRNA or micro RNA based biomarkers (Guo 

and Zhang, 2018), providing a new direction for LSC specific biomarkers study.  

Previously, the in situ hybridization has been used to localize LSCs (Chen et al., 

2004). In 2013 Ke et al. developed a new technique for RNA analysis known as in 

situ sequencing (Ke et al., 2013) which enables gaining of target RNA sequence with 

the information of original morphology and location of its hosting cells. Therefore this 

technology may be used to solve the LSC location and heterogeneity issues. 

Process of LSC isolation may destroy LSC niche that plays the vital role in 

maintaining LSC stemness. Study of LSCs in the transgenic animal system 

represents the excellent method to avoid LSC niche and specific microenvironment 

destruction. For example, Sartaj et al. developed a tetracycline-inducible (tet-off) 

double transgenic “pulse-chase” mouse system that accurately identified LSCs, and 

then used isolated LSCs in combination with NGS technology to analyse the 

expression profile of candidate LSC biomarkers (Sartaj et al., 2017). Similar 

transgenic mouse system has also been reported to demonstrate the mechanism of 
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LSC-promoted wound healing (Kasetti et al., 2016) (Nasser et al., 2018) and the 

homeostasis of corneal epithelium (Richardson et al., 2017). 

Combination of traditional biotechnologies with the virtual simulation technology 

represents also an useful tool for the study of LSCs. Molvaer et al. simulated the 3D 

computer model of the human corneo-limbal region by 3D visualization software 

based on series hematoxylin and eosin (HE) stained paraffin sections (Molvaer et al., 

2013). Using the technique, they successfully identified three niche types of LSCs 

(limbal epithelial crypts, limbal crypts and focal stromal projections), and their 

distribution in superior, inferior, nasal, and temporal regions. Furthermore, Lobo et al. 

successfully demonstrated the mechanism of self-organization centripetal migration 

of LSCs to repair the wounded corneal epithelium without external cues by using the 

virtual digital model (Lobo et al., 2016). 

Importantly, virtual simulation technology may lead to reduction of the amount of 

animals used in experiments. Moreover, the computer systems provide advantages 

to execute multiple complex bio-hypotheses at the same time (Guo and Zhang, 

2018). 

 

 

4.2 Material and methods 

4.2.1 Corneal tissue  

 

Cadaveric adult human limbal tissue was obtained from the corneo-scleral rings 

remaining (9 females, 15 males, average age 69.42 years, SEM 2.99, range 28 - 83 

years) after removal of the central cornea for transplantation supplied by the NHS 

Blood and Transplant (NHSBT) Cornea Transplantation Service eye bank in 

Manchester and Bristol, UK. Average time from death to retrieval of corneo-scleral 

tissue was 16.1 ± 1.99 hours (mean±SEM). Average time tissue spent in organ 

culture was 36.55 ± 7.8 days (mean±SEM).  Human tissue was handled according to 

the tenets of the Declaration of Helsinki and informed consent was obtained for 

research use of all human tissue from the next of kin of all deceased donors. The 
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study was approved by the NRES Committee North East - Newcastle & North 

Tyneside 1 (REC number: 11/NE/0236, protocol number 5466) on the 29th October 

2013.  

Animal care and use conformed to the ARVO Statement for the Use of Animals in 

Ophthalmic and Vision Research.  

 

4.2.2 Single cell culture of human limbal epithelium on 3T3-J2 feeder layers 

 

Twenty four hours before limbal epithelial cell isolation from corneo-scleral tissue, 

mitotically inactivated J2–3T3 mouse fibroblasts were suspended in high-glucose 

DMEM supplemented with bovine calf serum (10%) (Hyclone, USA) and 

penicillin/streptomycin (1%) (Thermo Fisher Scientific, USA) and plated in a 9.6 cm2 

tissue culture well at the final density of 2.4×104 cells per cm2 as previously described 

(Yu et al., 2016). The use of bovine calf serum instead of fetal calf serum was 

recommended by the manufacturer of the 3T3-J2 cell line (Karafast, USA). The 3T3 

cell suspension was placed in a tissue culture incubator at 37°C overnight to allow 

the establishment of a 3T3 feeder layer. On the following day, limbal stem cells were 

harvested from cadaveric corneo-scleral rims as previously described (Ahmad et al., 

2007) (Figure 4.1). The deeper layers of the corneo-scleral rings were dissected 

away together with excess sclera leaving a ring containing approximately 2 mm of 

peripheral cornea and 2 mm of adjacent sclera. The remaining tissue containing 

limbal epithelium was then cut into smaller 1 mm2 pieces. The limbal epithelial cells 

were isolated from these pieces using serial trypsinization with 0.05% trypsin-EDTA 

solution (Thermo Fisher Scientific, USA). After 20 minutes incubation in a tissue 

culture incubator, the resulting cell suspension was removed from the limbal pieces 

and epithelial medium was added to this suspension. After the cell suspension was 

centrifuged for 3 minutes at 1000 rpm in Heraeus Megafuge 16R Centrifuge (Thermo 

Fisher Scientific, USA), the supernatant was removed and the remaining cell pellet 

was re-suspended in epithelial medium containing 3:1 mixture of low-glucose 

DMEM:F12 supplemented with fetal calf serum 10%, penicillin/streptomycin 1% (all 

Thermo Fisher Scientific, USA), hydrocortisone 0.4 µg/ml, insulin 5µg/ml, 

triiodothyronine 1.4 ng/ml, adenine 24 µg/ml, cholera toxin 8.4 ng/ml and EGF 10 
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ng/ml (all Sigma-Aldrich, UK). The trypsinization and centrifugation process was 

repeated a further three times using the same limbal tissue and the same centrifuge 

and settings. The resulting cell suspensions were pooled together. After counting, 

30,000 of viable limbal epithelial cells (trypan blue exclusion test) in epithelial 

medium were added to one 9.6 cm2 tissue culture well containing the growth arrested 

3T3 fibroblast and placed in a tissue culture incubator at 37°C with a humidified 

atmosphere containing 5% CO2. The medium was exchanged on the third culture day 

and every other day thereafter. Several days after, LSC colonies with typical 

morphology started to appear (Figure 4.2) and were cultured until became sub-

confluent. After 3T3 feeder cells were detached and removed using 0.02% EDTA 

(Lonza, Switzerland), sub-confluent primary cultures were dissociated with 0.5% 

trypsin-EDTA (Santa Cruz, USA) to single cell suspension and passaged at a density 

of 6 × 103 cells/cm2. For serial propagation, cells were passaged and cultured as 

above, always at the stage of sub-confluence, until they reached passage 3. 

 

 

 

 

Figure 4.1 Schematic representation of LSC isolation process. The corneo-scleral 
rings were cut into 1 mm2 pieces, trypsinized, centrifuged and obtained cells seeded 
onto mouse 3T3 feeder cells. Several days later LSC formed colonies with 
characteristic morphology. 
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Figure 4.2 Microphotograph of human LSC colonies surrounded by 3T3 mouse 
feeder cells. Characteristic appearance of LSC colonies with well-defined edges and 
cobblestone-like epithelium. 

 

4.2.3 Limbal epithelial cell surface marker screening  

 

Limbal epithelial cell cultures (passage 1) were dissociated as described above to a 

single cell suspension. Limbal epithelial cells were stained with 361 different 

phycoerythrin (PE) labelled antibodies and 10 immunoglobulin (Ig) isotype controls 

using the LEGEND Screen™ Lyophilized Antibody Panel Human Cell Screening (PE) 

Kit (700007, BioLegend, USA) (Figure 4.3). After the staining, cells were washed 

and analysed by LSR Fortessa (BD, USA) flow cytometer. Data were analysed with 

FCS Express 6 Flow Cytometry Software (De Novo Software, USA). The screening 

was repeated three times, for each experiment corneo-scleral rings from seven 

donors were pooled (21 donors in total; 8 females, 13 males, average age 70.50 

years, SEM 2.06, range 55 - 83 years). 
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Figure 4.3 LEGEND Screen™ Lyophilized Antibody Panel Human Cell Screening 
Kit and schematic representation of a 96 well plate with different surface 
antibody in each well. 

 

After we identified candidate markers using LEGEND Screen™ Lyophilized Antibody 

Panel Human Cell Screening Kit we further investigated these markers by flow 

cytometry (after passage induced and calcium induced differentiation) and 

immunohistochemistry in order to perform further selection. Only the final two 

candidate markers were sorted using fluorescence-activated cell sorting (FACS) and 

positive and negative populations were investigated by qRT-PCR, clonal assay, 

proliferation and CFE assay (Figure 4.4).   
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Figure 4.4 Schematic representation of the study research design. The aim of the 
study was to discover the best candidate marker through multi-step examination. 
Firstly, potential candidate’s expression should decrease through differentiation 
process, secondly it should be expressed exclusively by epithelial cells in the basal 
layer of the limbus and thirdly sorted positive cell population for the given marker 
should be able to form holoclones. If all the conditions were fulfilled further analysis 
such as qRT-PCR and proliferation assay were performed. Abbreviations: H-
holoclones, M-meroclones, P-paraclones. 

 

4.2.4 Calcium induced differentiation 

 

Limbal epithelial cells from three different donors (n=3, passage 1) were plated at a 

density of 200,000 cells per well in a 6 well plate and cultured in EpiGRO™ Human 

Ocular Epithelia Complete Media Kit (SCMC001, Merck Millipore, USA) without 3T3-

J2 feeders or any plate coating. The medium contained basal medium, supplements 

mix (L-Glutamine 6 mM, Epinephrine 1.0 μM, Insulin 5 μg/mL, Apo-Transferrin 5 

μg/mL, Hydrocortisone 100 ng/mL, EpiFactor O proprietary and EpiFactor P 0.4%), 

150µM calcium and 1% penicillin/streptomycin. When the cells reached 80% 

confluence, calcium was added to a final concentration of 1.2mM, for the induction of 
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differentiation. Cells were differentiated for up to 1 week and collected for flow 

cytometry analysis.  

 

4.2.5 Flow cytometry analysis and FACS 

 

The expression of selected markers in limbal epithelial cell cultures was monitored 

through subsequent passages, from passage one to passage four, and during 

calcium induced differentiation using cells from three different donors (n=3) to provide 

biological triplicates. After trypsin dissociation, limbal epithelial cells re-suspended in 

flow buffer (1% Bovine Serum Albumin in PBS) were stained for 20 minutes with 

different selected antibodies on ice and analysed by flow cytometry (FACSCanto II, 

BD, USA). A minimum of 10,000 events were recorded for each sample. Antibodies 

used for FACS were PE-conjugated anti-human CD200 (329205, BioLegend, USA, 

dilution factor 1:100), PE-conjugated anti-human CD109 (323305, BioLegend, USA, 

1:100) and APC-conjugated anti-human p63 delta (NBP2-33090, Novus Biologicals, 

USA, 1:100).  

FACS was carried out using a FACSAria II sorter (BD, USA) (Figure 4.5). Limbal 

epithelial cells used for the cell sorting experiments were passage 1. The limbal 

epithelial cell staining was performed as above using FACS buffer (1% FBS in PBS) 

under aseptic conditions for both final candidate markers, CD200 and CD109. The 

stained cell suspension was then filtered through a 40 µm nylon filter to remove any 

cell clumps. 10% DAPI stain was added to a final cell suspension to eliminate dead 

cells. Side scatter and forward scatter profiles were used to eliminate cell doublets. 

Positive and negative sorted cells were used for CFE, clonal assay, and qRT-PCR. 
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Figure 4.5 Schematic representation of a cell sorting process. Firstly, sub-
confluent LSC colonies were enzymatically digested to single cell suspension by 
trypsin. The cell suspension obtained was then labelled by fluorescent antibody of 
interest and used for cell sorting. 

 

4.2.6 Colony-forming efficiency and clonal assay 

 

Colony-forming efficiency assay (CFE) was performed as previously described by Yu 

et al., 2016 (Yu et al., 2016).  Following staining with 1% Rhodamine B, colonies 

were counted under dissecting microscope (SMZ645, Nikon, Japan). The CFE was 

calculated as number of colonies formed/number of cells plated×100 for both positive 

and negative cell populations for three different donors (n=3). Each donor served as 

a biological replicate. Sorted limbal epithelial cells from three different donors were 

also plated for clonal assay (n=3) performed as described by Dziasko et al., 2014 

(Dziasko et al., 2014). Limbal epithelial cells used for the cell sorting experiments 

were passage 1. The sorted populations were re-plated for CFE and clonal assay. 

The clonal type was determined by  (1) the morphology of colonies and (2) the 

percentage of aborted colonies as follows: when <5% of the total colonies were 

terminally differentiated, the clone was scored as a holoclone; when more than 95% 

of colonies were terminally differentiated, the clone was scored as a paraclone and 

finally, when >5% but <95% of colonies were terminally differentiated, the clone was 

classified as a meroclone (Barrandon et al., 1989; Pellegrini et al., 1999a). 
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4.2.7 Fluorescence Immunohistochemistry and Microscopy 

 

Cultured limbal epithelial cells, human frozen corneal sections and paraffin sections 

of mouse and human cornea were fixed for 15 minutes either in 4% 

paraformaldehyde (CD200 staining) or in ice-cold methanol (CD109 staining). For 

human sections blocking step was performed by incubation in antibody diluent 

containing 1% bovine serum albumin (Sigma-Aldrich, UK) with 5% normal goat 

serum (Thermo Fisher Scientific, USA) for 30 minutes prior to staining. 

Permeabilization with 0.2% Triton X-100 in PBS was performed prior to staining with 

antibodies for internal cell markers. Cells were incubated with primary antibodies at 

4°C overnight and further incubated with secondary antibodies for 1 hour. The 

following primary antibodies were used at the indicated dilutions: anti CD109 (sc-

271085, Santa Cruz, USA, 1:200), anti-human CD200 (329201, BioLegend, USA, 

1:200), anti-mouse CD200 (AF3355, Novus Biologicals, USA, 1:100), anti p63 delta 

(NBP2-29467, Novus Biologicals, USA, 1:200), anti-cytokeratin 15 (ab52816, Abcam, 

UK, 1:100)and anti Ki67 antibody (ab15580, Abcam, UK, 1:100). Sections were 

mounted in Vecta shield (Vector Labs, USA) with Hoechst 33342 (1:1000, Thermo 

Fisher Scientific, USA). Images were obtained using Axio Imager microscope with 

ApoTome accessory equipment and AxioVision software (Zeiss, Germany). 

Immunostaining of mouse sections was performed on paraffin sections (5-7µm) of 

C57BL/6 mouse tissues, as described previously (Nasser et al., 2018) by our 

collaborators from Department of Genetics and Developmental Biology, The Ruth 

and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, 

Haifa, Israel (Prof. Ruby Shalom-Feuerstein and Dr. Aya Amitai-Lange). 

 

4.2.8 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT- 

PCR)  

 

As in previous experiments, passage one of cultured limbal epithelial cells obtained 

from three different donors were used for the cell sorting (n=3). The sorted cell 

populations were then subjected to qPCR analysis. cDNA was synthesised using the 
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Cells-to-cDNA™ II kit (AM1723, Ambion, Thermo Fisher Scientific, USA) directly from 

cell lysates as per the manufacturer’s protocol. Each reaction was set up using Go-

Taq® qPCR Master Mix (Promega, USA) and was composed of 5 µl 2X Master Mix 

buffer, 0.4 µl forward primer, 0.4 µl reverse primer, 0.8 µl template cDNA, 3.7 µl 

RNAse-free water and 0.1 µl COX. All reactions were analysed on a QuantStudio™ 7 

Flex Real Time PCR System (Thermo Fisher Scientific, USA) according to the 

manufacturer’s instructions using SYBR® Green as the detection dye, and ROX™ 

channel to detect COX as the reference dye. A standard, 40-cycle qPCR was 

performed for each sample.  The primer sequences used for qRT-PCR are listed in 

Table 4.1. The data was analysed using the 2-ΔΔCt calculation method. 
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Table 4.1 qRT-PCR Primers. 

 

4.2.9 Cell proliferation assay  

 

Passage one of limbal epithelial cells from three different donors (n=3) at 60-70% 

confluence were exposed to BrdU at a final concentration of 10 µM in cell culture 

medium and incubated for one, four and eight hours. Control cells were cultured 

without BrdU. After incubation, cells were stained with PE conjugated anti-CD200 

antibody (329205, BioLegend, USA) for 20 minutes on ice, then were washed, fixed 

Gene Direction Primer Sequence 
GAPDH Forward GTCAGTGGTGGACCTGACCT 

Reverse CACCACCCTGTTGCTGTAGC 

CD109 Forward GCCCGGAGGAAATGTGACTA 

Reverse TTGGGGTCTGATGGAAGAGTA 

CD200 Forward TGGGGACTGTGACCGACTTT 

Reverse TATTTAGGGCTCTCGGTCCTGA 

ΔNp63 Forward CTGGAAAACAATGCCCAGAC 

Reverse GGGTGATGGAGAGAGAGCAT 

ABCB5 Forward TACTCTTCCCACTGCCATTG 

Reverse CAATTATCCATCAAGACCATCTATCA
AG 

C/EBPδ 
 

Forward GGACATAGGAGCGCAAAGA 

Reverse GCTTCTCTCGCAGTTTAGT 

BMI1 Forward CTGGTTGCCCATTGACAGCG 

Reverse AAATCCCGGAAAGAGCAGCC 

AXIN2 Forward AGCCAAAGCGATCTACAAAAGG 

Reverse GGTAGGCATTTTCCTCCATCAC 

FZD7 Forward GCCGCTTCTACCACAGACT  

Reverse TTCATACCGCAGTCTCCCC 

CDH3 Forward GGCGCTGGGGAAAGTATTCA 

Reverse GGAGCAACCACCCAATCTCT 

PAX6 Forward TCTTTGCTTGGGAAATCCG 

Reverse CTGCCCGTTCAACATCCTTA 

WNT7A Forward TGCCCGGACTCTCATGAAC 

Reverse GTGTGGTCCAGCACGTCTTG 

Ki67 Forward CGTCCCAGTGGAAGAGTTGT 

Reverse CGACCCCGCTCCTTTTGATA 

CK3 Forward CGTACAGCTGCTGAGAATGA 

Reverse CTGAGCGATATCCTCATACT 

CK14 Forward TTCTGAACGAGATGCGTGAC 

Reverse GCAGCTCAATCTCCAGGTTC 

CK15 Forward ACCACCACATTTCTGCAAACT 

Reverse AGCTGAGATACTTCGGCTTCC 
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and permeabilized before DNAse treatment. Following BrdU epitope exposure cells 

were stained with PerCP-CyTM5.5 conjugated anti-BrdU antibody (560809, BD, USA, 

5 µl per test) and DAPI stain for cell cycle analysis and analysed by LSR Fortessa 

(BD, USA) cell analyser. 

 

4.2.10 Hoechst 33342 and Pyronin Y Staining for G0/G1 Separation  

 

Quiescent cells, which are arrested in G0 phase, have lower level of RNA compared 

to active cells (G1 phase). Hoechst is an exclusive DNA dye while Pyronin Y reacts 

with both DNA and RNA. However, in the presence of Hoechst, Pyronin Y reaction 

with DNA is blocked, and Pyronin Y stains RNA only. When cells are stained first with 

Hoechst 33342 and then with Pyronin Y it is possible to distinguish DNA from RNA. 

Limbal epithelial cells from three different donors (n=3) were stained with APC 

conjugated anti-CD200 antibody for 20 minutes (329207, BioLegend, USA). For the 

separation of G0 and G1 cell cycle phases, limbal epithelial cells were stained with 

Hoechst 33342 (Sigma-Aldrich, UK) in a final concentration 10μg/ml and incubated at 

37oC for 45 minutes. After 45 minutes, 5μl of 100μg/ml Pyronin Y (Sigma-Aldrich, 

UK) was added directly to the cells and incubated at 37oC for a further 15 minutes. 

Single colour controls and negative control were also prepared.  LSR Fortessa (BD, 

USA) flow cytometer was used to analyse cells.  

4.2.11 siRNA Transfection 

 

To investigate the impact of CD200 downregulation on the clonal ability of limbal 

epithelial cells, RNA interference (RNAi) was performed using small interfering RNA 

(siRNA). Passage one human limbal epithelial cells from 3 different donors were 

grown on 3T3 feeder layer in complete epithelial medium supplemented with EGF, 

adenine, cholera toxin, hydrocortisone, insulin and triiodothyronine. A day before 

transfection, limbal epithelial cells (150x103) were re-seeded in 12-well plate without 

feeders in order to increase transfection efficiency. The day after re-seeding cells 

were transfected with CD200 Human Stealth siRNAs (set of 3: HSS106678, 
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HSS106679, HSS181160; 1299003, Thermo Fisher) and Stealth RNAi™ siRNA 

Negative Control Lo GC (12935200, Thermo Fisher) using Lipofectamine™ 

RNAiMAX Transfection Reagent (13778030, Thermo Fisher) according to the 

manufacturer’s protocol. The transfected cells were incubated for 48 hours for CFE 

and clonal assay. 

After 48h incubation with CD200 siRNA and control siRNA, cells we re-seeded back 

to 6 well plates in different densities (500 and 1000 cells/well) and cultured on 3T3 

feeders for next 14 days. The rest of the cells were used for RNA extraction and qRT-

PCR to confirm CD200 downregulation. 

4.2.12 Statistical Analysis  

 

GraphPadPrism 7.0 (San Diego, CA, https://www.graphpad.com/scien-tific-

software/prism/) was used to perform all statistical analyses. The data showed 

normal distribution therefore Student’s t-test was used to analyse differences 

between groups and p ≤ .05 was considered statistically significant. All experiments 

were performed in biological replicates of three or more, and data are presented as 

mean ± SEM.  
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4.3 Results 

4.3.1 Flow cytometric based cell surface screening of limbal epithelial cell 

cultures 

 

After removing 3T3 feeder cells with EDTA, passage one sub-confluent limbal 

epithelial cells were lifted from the tissue culture plates using Trypsin-EDTA and 

stained with 361 human surface proteins and analysed by flow cytometry. The cell 

surface marker screening was performed three times and in each case, limbal 

epithelial cells from seven different donors were pooled to obtain sufficient cell 

number for this type of analysis. A summary of these results is shown in Appendix 1. 

LEGEND Screen™ analysis confirmed high expression of the commonly cited limbal 

epithelial cell markers: EGFR (88.81±6.02) (Zieske and Wasson, 1993; Chen et al., 

2004; Kim et al., 2004), SSEA-4 (54.02±5.93%) (Truong et al., 2011), CD71 

(88.76±5.92) (Chen et al., 2004; Hayashi et al., 2008), integrin β5 (91.45±1.24) 

(Stepp et al., 1993), integrin α6 (92.54±6.41) (Hayashi et al., 2008), E-cadherin 

(88.48±6.06) (Schlotzer-Schrehardt and Kruse, 2005) as well as many other general 

markers of corneal epithelium. The presence of other markers previously related to 

limbal epithelial cells was also confirmed: CD40 (26.00±6.94) (Iwata et al., 2002), 

CD117 (c-kit) (8.22±2.56) (Albert et al., 2012; Luznik et al., 2016b), CD146 

(67.04±2.87) and CD166 (95.08±0.97) (Albert et al., 2012) as well as the presence of 

putative LSC marker integrin α9/β1 (4.85±1.98) (Jones and Watt, 1993; Chen et al., 

2004; Kim et al., 2004; Schlotzer-Schrehardt and Kruse, 2005; Albert et al., 2012). 

The expression of the autophagy marker LAMP1 (84.82±11.89) was also high, 

corroborating with previously reported data on limbal epithelial cultures (Dhamodaran 

et al., 2015).  

Marker selection for further investigation was based on three criteria: (1) presence in 

a small subpopulation of cells (up to 10%) in accordance with label retaining cells in 

the limbal zone making up less than 10% of the total population (assessed on the 

basis of the percentage of radiolabelled thymidine retaining cells present in the limbal 

zone (Cotsarelis et al., 1989) and the studies of Umemoto and co-workers showing 

that approximately 10% of total limbal epithelial cells expressed the putative LSC 

marker ABCG2 (Umemoto et al., 2005); (2) passage or calcium differentiation 



146 
 

induced reduction in expression frequency in limbal epithelial cells and (3) presence 

in other epithelial stem or progenitor cells. CD200 (2.25±0.69%, n=3) was one of the 

few markers that fulfilled all these three criteria (Rosenblum et al., 2004; Ohyama et 

al., 2006; Ohyama, 2007; Gerhards et al., 2016) and was selected for further 

characterisation. In addition to LSC markers, we also selected putative transient 

amplifying cell surface markers based on similar expression to ΔNp63 (assessed by 

our group to be expressed in 45-60% of ex vivo expanded limbal epithelial cells (Yu 

et al., 2016) as well as passage and differentiation induced reduction in expression 

frequency in limbal epithelial cells. CD109 (56.29±13.96%, n=3) was amongst the cell 

surface marker that fulfilled these criteria and was selected for further 

characterisation (Bojic et al., 2018). 

 

4.3.2 The expression of CD109 in human limbal epithelial cell cultures, human 

and murine corneas   

 

The LEGEND Screen™ results were confirmed by flow cytometric analysis which 

showed CD109 to be expressed in a relatively high percentage of limbal epithelial 

cultures in p1 (47.51±9.35%, n=5) (Figure 4.6A) (Bojic et al., 2018). The expression 

of CD109 did not vary significantly through the first four passages (p>0.05) (Figure 

4.6A) (Bojic et al., 2018). Nonetheless, the expression of CD109 decreased 

significantly (p<0.05) after 5 days of calcium-induced differentiation under feeder-free 

conditions similarly to ΔNp63 expression (p<0.05) (Figure 4.6B) (Bojic et al., 2018).  
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Figure 4.6 CD109 expression during ex vivo differentiation of human limbal 
epithelial cells. (A) Quantification of CD109 expression through different passages of 
limbal epithelial cells by flow cytometry. Values represent mean ± SEM, n=3-5. (B) 
Quantification of ΔNp63 and CD109 expression during calcium induced differentiation 
of limbal epithelial cells by flow cytometry. Values represent mean ± SEM, n=3, 
*p<0.05.   

 

 

Using immunostaining, we determined the localisation of CD109+ cells in human 

ocular surface epithelial tissues (Figure 4.7A) (Bojic et al., 2018). CD109+ cells were 

exclusively located at the limbus and co-localised with ΔNp63 (Figure 4.7A), whilst 

undetectable in the suprabasal and superficial layers of limbal epithelium as well as 

in the all layers of central corneal epithelium (Figure 4.7A) (Bojic et al., 2018). In 

vitro, CD109+cells were present predominantly on the outer border of colonies 

(Figure 4.7B) (Bojic et al., 2018).  

B  

A  
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Figure 4.7 CD109 expression in human cornea in vivo and during ex vivo 
expansion of human limbal epithelial cells. (A) Immunohistochemical staining of 
human corneal tissue cryosections for ΔNp63 and CD109 within the central cornea 
and limbus. Nuclei are shown by Hoechst counter staining. Scale bars 50 μm with 
exception of additional inset with higher magnification with scale bar of 20 μm. (B) 
CD109 immunohistochemical staining of human limbal epithelial colony in vitro. Nuclei 
are shown by Hoechst counter staining. Scale bar 50 μm. 

 

In murine corneal tissue, CD109 (Figure 4.8) was also exclusively located at the 

limbus and co-localised with ΔNp63 and CK15 while absent in central corneal 

epithelium (Bojic et al., 2018). 

 

B  

A  
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Figure 4.8 CD109 expression in mouse cornea in vivo. Immunohistochemical 
staining of murine corneal tissue cryosections for CK15, ΔNp63 and CD109 within the 
central cornea and limbus. Nuclei are shown by DAPI counter staining. The dashed 
line indicates the stromal-epithelial junction. Red arrows point at the limbal region. 
Scale bars 20 μm. Abbreviations: st – stroma, ep – epithelium. 

 

4.3.3 Colony forming efficiency and proliferative ability of CD109+ cells 

 

To identify actively replicating cells, and thereby assess cellular proliferation, BrdU 

was applied to cells in culture and the number of cells in the S phase was monitored 

after 1 hour, 4 hours and 8 hours incubation with BrdU by flow cytometry. No 

statistically significant differences were found in the percentage of cells in the S 

phase of the cell cycle for CD109+ or CD109- population after incubation with BrdU 

for 1 hour and 4 hours. However, after 8 hours incubation with BrdU, there was a 
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significantly higher number of CD109+ cells in the S phase compared do CD109- cells 

(Figure 4.9A-B) (Bojic et al., 2018). 

 

 

 

 

Figure 4.9 Proliferative potential of sorted CD200 positive and negative 
population. (A) BrdU cell proliferation assay of CD109 negative and positive limbal 
epithelial cell population after 1-hour and 8-hours incubation with BrdU. Values 
represent mean ± SEM, n=3. (B) Quantification of cells in the S phase of the cell cycle 
in CD109+ and CD109- population after 1-hour, 4-hours and 8-hours incubation with 
BrdU. Values represent mean ± SEM, n=3, **p<0.001. 
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Sorted positive and negative cells for both markers were tested for their colony 

forming efficiency and clonal potency (n=3). There were no significant differences 

between the positive and negative cells in colony forming efficiency (CFE) (Figure 

4.10C); however the relative colony-covered-area size was significantly greater in 

CD109+cells (p<0.01), meaning they formed larger colonies (Figure 4.10D and E) 

when compared to CD109- cells. Despite the fact that both CD109+ and CD109- cells 

formed colonies classified as meroclones, number of aborted colonies was 

significantly higher (p<0.01) in CD109- population (Figure 4.10A and B) (Bojic et al., 

2018). 

 

 

Figure 4.10 Colony forming efficiency and clonal potential of sorted CD109 
positive and negative population. (A) Pie chart showing the distribution of formed 
and aborted colonies in CD109+ population. (B) Pie chart showing the distribution of 
formed and aborted colonies in CD109- population. (C) Comparison of colony forming 
efficiency between CD109+ and CD109- cell populations. (D) Colonies of CD109+ 
limbal epithelial cells stained with 2% rhodamine. (E) Colonies of CD109- limbal 
epithelial cells stained with 2% rhodamine. Values represent mean ± SEM, n=3-5. 

 

A  B  
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4.3.4 The expression of CD200 in human limbal epithelial cell cultures, human 

and murine corneas   

 

CD200 was expressed in a small percentage of limbal epithelial cultures in p1 

(4.13±1.10%, n=10) (Figure 4.11A). Furthermore, the expression of CD200 

decreased significantly (p<0.05) and rapidly through subsequent passages (Figure 

4.11A). During calcium induced differentiation, the expression of CD200 disappeared 

from the culture after 5 days (p<0.05) (Figure 4.11B). For all the markers, including 

CD109, CD200 and ΔNp63, a lower expression was observed under feeder-free 

culture conditions used for the calcium-induced differentiation assays, which may 

suggest that the feeder-free culture is less conducive to LSC maintenance (Bojic et 

al., 2018). 

 

Figure 4.11 CD200 expression during ex vivo differentiation of human limbal 
epithelial cells. (A) Quantification of CD200 expression through different passages of 
limbal epithelial cells by flow cytometry. Values represent mean ± SEM, n=3-10, 
*p<0.05. (B) Quantification of CD200 expression during calcium induced differentiation 
of limbal epithelial cells by flow cytometry. Values represent mean ± SEM, n=3, 
*p<0.05.   

The presence of CD200+ cells was confirmed in the basal layer of the limbal 

epithelium, whilst its expression was absent in all the other layers of limbal and 

corneal epithelium (Figure 4.12). In murine corneal tissue, CD200 (Figure 4.13) was 

B  
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exclusively located at the limbus and co-localised with ΔNp63 and CK15 while absent 

in other parts of corneal epithelium (Bojic et al., 2018). 

 

Figure 4.12 CD200 expression in human cornea in vivo. Immunohistochemical 
staining of human corneal tissue paraffin sections for ΔNp63 and CD200 within the 
central cornea and limbus. Nuclei are shown by Hoechst counter staining. Scale bars 
20 μm. 
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Figure 4.13 CD200 expression in mouse cornea in vivo. Immunohistochemical 
staining of murine corneal tissue cryosections for CK15, ΔNp63 and CD200 within the 
central cornea and limbus. Nuclei are shown by DAPI counter staining. The dashed 
line indicates the stromal-epithelial junction. Red arrows point at limbal region. Scale 
bars 20 μm.  Abbreviations: st – stroma, ep – epithelium. 

 

CD200+ cells were also present in ex vivo expanded limbal epithelial cell cultures, but 

in lower number compared to CD109+ cells and moreover were found scattered 

throughout the colonies (Figure 4.14A). CD200+ cells (3.66±0.25%) were much less 

abundant than ΔNp63+ cells (47.65±3.01%) (Figure 4.14A and B). All CD200+ cells 

were also ΔNp63+; however ΔNp63+ CD200+ cells represented only 6.23±0.97% of all 

ΔNp63+ cells (Figure 4.14C) (Bojic et al., 2018). 
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Figure 4.14 CD200 and ΔNp63 expression during ex vivo expansion of human 
limbal epithelial cells. (A) Immunohistochemical staining of limbal epithelial cell 
colonies in vitro for CD200 and ΔNp63. Blue arrow points CD200+ cells. Nuclei are 
shown by Hoechst counter staining. Scale bar 50 μm. (B) Quantification of ΔNp63+ and 
CD200+ cells in limbal epithelial cell culture by immunohistochemistry. Values 
represent mean ± SEM, n=3. (C) Pie chart showing the distribution of CD200+ and 
CD200- cells within ΔNp63+ cells.   
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4.3.5 Colony forming efficiency and proliferative ability of CD200+ cells 

 

The proliferative potential of CD200+ cells was examined by Ki67 immunofluorescent 

staining of limbal epithelial cells cultured in vitro (Figure 4.15A). Interestingly, while 

some CD200+cells were Ki67+ (41.67±0.22%), there were more Ki67- cells in the 

CD200+ population (58.33±0.22%) (Figure 4.15B) (Bojic et al., 2018). 

 

 

 

 

 

 

 

Figure 4.15 CD200 and Ki67 expression during ex vivo expansion of human 
limbal epithelial cells. (A) Immunohistochemical staining of limbal epithelial cell 
colonies in vitro for CD200 and Ki67. Red arrows point to CD200+ Ki67+ cells; orange 
arrows point to CD200+Ki67- cells. Nuclei are shown by Hoechst counter staining. 
Scale bar 50 μm. (B) Pie chart showing the distribution of Ki67+ and Ki67- cells in 
CD200+ cell population. 

 

There were no statistically significant differences in CFE between CD200+ and 

CD200-  groups (Figure 4.16B), however CD200+ cells were exclusively able to form 

holoclones - large colonies with smooth, thick borders (Figure 4.16D), while CD200- 

cells formed meroclones which were characterised by irregular borders (Figure 

4.16E). The number of aborted colonies was significantly higher in CD200- population 

(p<0.01). Using the percentage of terminal colonies described in the methods, 

CD200+ colonies were scored as holoclones (Figure 4.16A) while CD200- colonies 

were scored as meroclones (Figure 4.16C) (Bojic et al., 2018). 

A  B  
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Figure 4.16 Colony forming efficiency and clonal potential of sorted CD200 
positive and negative population. (A) Pie chart showing the distribution of formed 
and aborted colonies in CD200+ population. (B)  Comparison of colony forming 
efficiencies of CD200+ and CD200- cells. Values represent mean ± SEM, n=3. (C) Pie 
chart showing the distribution of formed and aborted colonies in CD200- population. 
Values represent mean ± SEM, n=3. (D) Microscopic and macroscopic appearances 
of colonies formed by CD200+ cells. Scale bars 100 μm. (E) Microscopic and 
macroscopic appearances of colonies formed by CD200- cells. Scale bars 100 μm. 

 

CD200+ cells were slow to enter S phase: at 1 and 4 hours there were significantly 

less CD200+ in S phase when compared to CD200-; these differences became non-

significant at 8 hours (Figure 4.17 A and B). For that reason we used Hoechst 33342 

and Pyronin Y staining for G0/G1 separation. A larger part of G0 subpopulation was 

made up by CD200+ cells (59.30±3.12%) than CD200- cells (40.70±2.11%) (Figure 

4.17C). Interestingly, we also found that majority (78.66±3.20%) of side population 

(SP) cells were in the CD200+ population (Figure 4.18) whilst the CD200- population 

contained less SP cells (21.34±3.20%) (Figure 4.17D) (Bojic et al., 2018).  

A  B  C  
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Figure 4.17 Proliferative potential of sorted CD200 positive and negative 
population. (A) BrdU cell proliferation assay of CD200 negative and positive limbal 
epithelial cell population after 1-hour and 8-hours incubation with BrdU. Values 
represent mean ± SEM, n=3. (B) Quantification of cells in the S phase of the cell cycle 
in CD200+ and CD200- population after 1-hour, 4-hours and 8-hours incubation with 
BrdU. Values represent mean ± SEM, n=3, *p<0.05. (C) The contribution of CD200+ 
and CD200- cell population to the total number of cells in the G0 phase of the cell cycle. 
Values represent mean ± SEM, n=3. (D) The contribution of CD200+ and CD200- cell 
population to the total number of SP cells. Values represent mean ± SEM, n=3. 
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Figure 4.18 Side population cells. Representative dot plot showing gated SP cells 
and cells in the G0 phase of the cell cycle in whole population and CD200 positive 
population of cells. 

 

4.3.6 The expression of LSC markers in the CD109 and CD200 positive and 

negative populations  

 

To investigate the transcriptional profile of CD109+ and CD200+ cells, expression of 

putative LSC markers ΔNp63, ABCB5, C/EBPδ, BMI1, AXIN2, FZD7, CHD3, 

WNT7A, CK14, and CK15(Yoshida et al., 2006; Barbaro et al., 2007; Figueira et al., 

2007; Ksander et al., 2014; Mei et al., 2014; Sartaj et al., 2017; Kalha et al., 2018), 

corneal epithelial differentiation marker CK3 (Merjava et al., 2011) and marker of 

proliferative cells Ki67 (Sun et al., 2015) was assessed by qRT-PCR.  

The expression of CD109, was significantly higher (p<0.01) in CD109+ group 

compared to CD109- group, thus validating the flow activated cell sorting strategy. In 

addition, the expression of LSC markers PAX6 (p<0.05) and CK14 (p<0.01) and 

proliferative marker Ki67 (p<0.001) was also higher in the CD109+ group when 

compared to the CD109- (Figure 4.19). No statistically significant differences were 

found in the expression of other LSC markers ΔNp63, ABCB5, C/EBPδ, BMI1, 

AXIN2, FZD7, CHD3, WNT7A, and CK15 and corneal differentiation marker CK3 

between the CD109+ and CD109- group (Figure 4.19) (Bojic et al., 2018).  
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Figure 4.19 Expression of putative LSC and corneal epithelial cell markers in the 
sorted CD109 positive and negative cell populations. Quantitative reverse 
transcriptase polymerase chain reaction expression data for CD109+ limbal epithelial 
cell population versus CD109- limbal epithelial cell population represented by the red 
line (value 1). Values represent mean ± SEM, n=3, *p<0.05, **p<0.01, ***p<0.001. 

 

 

CD200 was significantly upregulated in CD200+ cell population (p<0.001) along with 

the putative LSC markers ABCB5 (p<0.001), CDH3 (p<0.001), PAX6 (p<0.01), 

WNT7A (p<0.01), CK14 (p<0.01), and CK15 (p<0.001). On the other hand, ΔNp63 

and Ki67 (p<0.05) were significantly downregulated in CD200+ cell population 

compared to the CD200- cell population. There were no significant differences in the 

expressions of C/EBPδ, BMI1, AXIN2, FZD7 and CK3 between the CD200+ and 

CD200- groups (Figure 4.20) (Bojic et al., 2018). 
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Figure 4.20 Expression of putative LSC and corneal epithelial cell markers in the 
sorted CD200 positive and negative cell populations. Quantitative reverse 
transcriptase polymerase chain reaction expression data for CD200+ limbal epithelial 
cell population versus CD200- limbal epithelial cell population represented by the red 
line (value 1). Values represent mean ± SEM, n=3, *p<0.05, **p<0.01, ***p<0.001. 

 

4.3.7 CD200 siRNA transfection 

 

To investigate the impacts of CD200 downregulation on limbal epithelial cell cultures, 

RNAi was carried out using a pool of three different siRNAs as detailed in the 

materials and methods section. Quantitative RT-PCR analysis confirmed 

downregulation of CD200 in the group treated with CD200 siRNA compared to 

control group (p<0.05) (Figure 4.21) (Bojic et al., 2018).  
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Figure 4.21 CD200 knockdown. Quantitative reverse transcriptase polymerase chain 
reaction expression data for control siRNA versus CD200 siRNA treated limbal 
epithelial cells. Values represent mean ± SEM, n=3, *p<0.05. 

 

 

Interestingly, the colony forming efficiency assay showed no significant difference in 

the percentage of formed paraclones or meroclones between the two groups (Figure 

4.22A and B), but holoclones completely disappeared from the  siRNA transfected 

group (Figure 4.22B and C), leading to a significant difference of the percentage of 

holoclones formed between the groups (p<0.05) (Bojic et al., 2018).  
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Figure 4.22 Effect of CD200 knockdown on clonal ability of limbal epithelial cells. 
(A) Pie chart showing distribution of paraclones, meroclones and holoclones formed 
by control siRNA treated cells and (B) CD200 siRNA treated cells. (C) Representative 
images of colonies formed in control and CD200 siRNA group, with 500 or 1000 cells 
seeded per well.  
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4.4 Discussion 

 

To date, a few putative LSC markers (e.g. ΔNp63, ABCG2, C/EBPδ, BMI1, PAX6, 

WNT7A, ABCB5) have been associated with LSCs, however, amongst these, only 

ABCB5 represents a cell surface marker that enables enrichment of viable LSCs. 

Commonly used putative LSC marker, ΔNp63α is shown to be expressed not only in 

LSCs but also in early TACs. Moreover, as an internal marker it doesn’t allow 

isolation of viable LSCs. ABCB5, on the other hand, as a cell surface marker, 

appeared to be more promising in terms of LSC isolation and purification but recent 

study by Liu et al. showed that p63 is superior to ABCB5 as a marker for stemness, 

while ABCB5, either alone or in co‐expression patterns with p63 and CK3, identifies 

more committed progenitor cells (Liu et al., 2018). Moreover, ABCB5 marks around 

25% of limbal epithelial cells, which is much more than LSC compartment hence we 

tried to find a new marker specific to LSCs. Having in mind that viable LSCs could be 

isolated only using a cell surface marker we focused on LEC surface marker 

screening in the process of identification of potential candidate markers. In this study 

we used the LEGEND Screen™ Lyophilized Antibody Panel to assess the 

expression of 361 cell surface markers in ex vivo expanded limbal epithelial stem 

cells and selected CD200 and CD109 as cell surface markers of interest for further 

investigation.   

Up to date, there are no reports of either CD109 or CD200 expression or functional 

significance in the corneal epithelium. CD109 is a glycosylphosphatidylinositol (GPI)–

anchored glycoprotein whose expression is upregulated in several types of human 

cancers, particularly squamous cell carcinomas, whilst in normal human tissues 

CD109 expression is limited to certain cell types including myoepithelial cells of 

mammary, lacrimal, salivary, and bronchial glands, basal cells of the prostate and 

bronchial epithelium (Mii et al., 2012), human hepatic progenitor cells (Li et al., 

2014a), endothelial cells and a subpopulation of bone marrow CD34+ cells enriched 

in hematopoietic stem and progenitor cells (Murray et al., 1999). CD109 has been 

shown to enhance EGF-signalling in the SK-MG-1 glioblastoma cell line through the 

interaction of membrane anchored N-terminal CD109 fragment with EGFR (Zhang et 

al., 2015), and to negatively regulate TGF-β1 signalling in keratinocytes by either 

directly modulating receptor activity or by binding of soluble CD109 to type I TGF-β 
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receptor (Finnson et al., 2006; Hagiwara et al., 2010). TGF-β is an important cytokine 

that negatively regulates proliferation of different cell types including primary cultured 

human limbal epithelial cells (Chen et al., 2006). Mii et al. reported that CD109-

deficient mice exhibit epidermal hyperplasia and chronic skin inflammation, and 

CD109 regulates differentiation of keratinocytes in vivo (Mii et al., 2012). Taken 

together these data show that the CD109 molecule plays an important role in 

epithelial cell proliferation through the positive regulation of EGF and negative 

regulation of TGF-β signalling as well as being involved in epithelial cell 

differentiation. 

Our results showed that CD109 is expressed in both human and mouse corneal 

epithelium and is co-localised with ΔNp63 in the basal layer of the limbal epithelium 

whilst is absent in the other layers of the limbal epithelium and all layers of the central 

corneal epithelium. In vitro, CD109+ cells were located at the edge of growing 

colonies, similar to ΔNp63 expression in proliferating cells at the periphery of 

holoclones as previously reported (Meyer-Blazejewska et al., 2010).  Moreover, 

CD109 expression decreased during calcium-induced differentiation in a similar 

manner to ΔNp63 expression. There were more CD109+ cells in S phase of the cells 

cycle after 8 hours incubation with BrdU. This observation together with the higher 

Ki67 expression and larger colony area formed by the CD109+ cells suggest that 

CD109 represents a cell surface marker for proliferating corneal epithelial progenitor 

cells. 

CD200 (also known as OX-2) is a 45 kDa transmembrane immune-regulatory protein 

that belongs to the immunoglobulin superfamily (Barclay et al., 2002; Gorczynski, 

2005). The human CD200 cDNA encodes a 278 amino acid (aa) precursor that 

includes a 30 aa signal sequence, a 202 aa extracellular domain (ECD), a 27 aa 

transmembrane segment, and a 19 aa cytoplasmic domain. The ECD is composed of 

one Ig-like V-type domain and one Ig-like C2-type domain (McCaughan et al., 1987a; 

McCaughan et al., 1987b). A splice variant of CD200 has been described and has a 

truncated cytoplasmic tail. Within the ECD, human CD200 shares 76% amino acid 

sequence identity with mouse and rat CD200.  

CD200 is widely distributed across tissues, including lymphocytes, endothelial and 

neuronal cells but not ubiquitously expressed (Wright et al., 2001). Its cognate 

receptor (CD200R) is also an immunoglobulin transmembrane glycoprotein restricted 
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primarily to mast cells, basophils, macrophages, and dendritic cells, which suggests 

myeloid cell regulation as the major function of CD200 (Fallarino et al., 2004; 

Cherwinski et al., 2005; Shiratori et al., 2005).  CD200 transmits an immuno-

regulatory signal through its receptor (CD200R) to attenuate inflammatory reactions 

and promote immune tolerance (Rosenblum et al., 2004). CD200/CD200R mediated 

intracellular communication among different epidermal cell sub-populations may have 

an important role in preventing undesired immune responses in the skin (Matsue, 

2005). 

Previous studies have suggested the presence of a stem cell niche at the bulge 

region of the hair follicle, which contains CD200+ cells (Rosenblum et al., 2004; 

Rosenblum et al., 2005; Ohyama et al., 2006; Kloepper et al., 2008; Gerhards et al., 

2016) and have shown enrichment of human bulge stem cells by positive selection 

using CD200 as a cell surface marker (Ohyama and Kobayashi, 2012). Hair follicles 

represent one of the few sites of “immune privilege” (Meyer et al., 2008), possibly 

with the aim of preserving keratinocyte stem cells (Paus et al., 2003). The CD200 

molecule therefore may play a vital role in this “protection” since CD200/CD200R 

interaction attenuates perifollicular inflammation and prevents hair follicle specific 

autoimmunity, thereby protecting the epidermal stem cell reservoir from autoimmune 

destruction (Rosenblum et al., 2006). Additionally, CD200 has a clinical importance in 

allo- and xenotransplantation (Gorczynski et al., 1999). CD200 overexpression in 

transgenic mice increases skin, cardiac and renal allograft survival (Gorczynski et al., 

2013) by suppression of inflammation and acquired immunity. Apart from normal 

tissues, high CD200 expression was found in colon cancer, myeloma, breast and 

brain cancer, melanoma and normal mesenchymal stem cells (Zhang et al., 2016). It 

is closely related to tumour immunosuppression and has been proposed as a cancer 

stem cell marker in colon cancer (Zhang et al., 2016). CD200 has also been 

proposed as a putative marker of corneal endothelial cells that enables their 

differentiation from stromal keratocytes and corneal stromal fibroblasts (Cheong et 

al., 2013). We also observed CD200+ corneal endothelial cells in human corneal 

sections corroborating data published by Cheong et al. (Cheong et al., 2013) (data 

not shown). Recently Rauner et al. showed that expression of CD200 and its 

receptor CD200R1 marks distinct mammary repopulating units subpopulation with 

stem and progenitor characteristics (Rauner et al., 2018). 
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Taking into consideration this published literature and the low frequency of CD200+ in 

our limbal epithelial cultures (< 5%), we hypothesised that CD200 may represent a 

potential cell surface marker of LSCs. Using immunostaining in human and mouse 

corneal tissue we showed that CD200 is exclusively located at the base of the limbal 

epithelium. In addition, its expression is significantly and rapidly decreased upon 

subsequent passaging and calcium induced differentiation of limbal epithelial cells in 

keeping with a stem/transient amplifying cell phenotype. CD200+ cells obtained from 

hair follicle have been shown to possess a high CFE potential (Ohyama et al., 2006); 

however our findings do not support these results. We found no significant difference 

between the CFE of CD200 positive and negative populations. However, we showed 

that only CD200+ cells were able to form holoclones which are derived from LSCs, 

whilst CD200- cells produced meroclones which are known to descend from transient 

amplifying cells. Moreover, we showed that CD200+ cells are slow cycling and only 

start to enter the S phase of the cells cycle after eight hours long incubation with 

BrdU, whereas CD200- cells enter the S phase one hour after incubation with BrdU. 

Importantly, downregulation of CD200 by RNAi led to complete loss of holoclones, 

thus indicating an important role for CD200 in the maintenance and /or self-renewal 

of LSCs from which the holoclones are derived. 

Both quiescent and active stem cell subpopulations coexist in several tissues, in 

separate yet adjoining locations (Li and Clevers, 2010). Moreover, mammalian adult 

stem cells are predominantly detected in quiescent state (Cotsarelis et al., 1990; 

Potten et al., 1997; Arai et al., 2004). We observed a higher number of Ki67- cells 

and lower expression of Ki67 within the CD200+ population when compared to 

CD200- cells, suggesting that CD200+ may represent the quiescent LSCs. Indeed, a 

larger part of cells in G0 phase was made up with CD200+ cell population which in 

itself contained 79% of the side population cells, corroborating previously published 

findings by Umemoto et al. that limbal epithelial side population are quiescent and do 

not demonstrate proliferative capabilities in ex vivo culture conditions (Umemoto et 

al., 2006). Several studies showed that only 0.3-0.5% of cells in the limbal epithelium 

exhibit the SP phenotype (Watanabe et al., 2004; Budak et al., 2005; Umemoto et al., 

2006). However, as with cell surface markers, possession of an SP phenotype is not 

a universal property of stem cells, in some tissues the SP fraction may not contain 

the stem cells. Combining SP determination with cell-surface marker phenotyping 
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has led to efficient and reliable characterization of one of the most pure and potent 

adult stem cell populations, the HSC subset (Shaharuddin et al., 2014).  

We also observed a consistently higher expression of putative LSC markers including 

WNT7A, PAX6, ABCB5, CDH3, CK14 and CK15 (Yoshida et al., 2006; Chen et al., 

2010; Meyer-Blazejewska et al., 2010; Ksander et al., 2014; Eghtedari et al., 2016; 

Lopez-Paniagua et al., 2016; Richardson et al., 2017; Sartaj et al., 2017) in the 

CD200+ subpopulation. 

 

4.5 Conclusion 

 

In summary, we report herein the identification of a new cell surface marker for LSCs 

(CD200) as well as a cell surface marker for proliferating progenitor cells (CD109). 

We believe that the identification of these two new cell surface markers will 

significantly aid live enrichment of these two cell types and their biological and clinical 

applications with potential benefits for patients suffering with limbal stem cell 

deficiency. 
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Apendix 1 

The expression of various surface markers on limbal epithelial cells. 

 
Average 

(%) 

SD SEM 

CCR10 9.88 6.08 3.51 

CD278 (ICOS) 0.54 0.44 0.25 

IFN-γRβ chain 4.09 0.71 0.41 

CD46 89.41 10.00 5.77 

CD70 75.17 6.31 4.46 

CD1a 2.55 0.68 0.39 

CD2 0.52 0.31 0.18 

β2- microglobulin 96.39 6.21 3.58 

B7-H4 1.61 0.57 0.40 

Cadherin 11 9.52 5.56 3.94 

CD10 4.75 2.27 1.31 

CD100 15.67 4.35 2.51 

CD103 0.40 0.05 0.04 

CD105 25.92 2.58 1.83 

CD106 8.33 11.19 7.92 

CD107a (LAMP-1) 84.82 16.81 11.89 

CD107b (LAMP-2) 52.27 20.80 14.71 

CD109 56.29 24.19 13.96 

CD111 (Nectin 1) 89.02 9.24 5.33 

CD112 (Nectin-2) 94.99 1.55 1.10 

CD114 2.96 0.60 0.35 

CD116 5.45 5.12 2.96 

CD117 (c-kit) 8.22 3.61 2.56 

CD119 (IFN-γR α chain) 82.47 3.18 2.25 

CD11a 1.07 0.18 0.10 

CD11b 2.11 0.48 0.28 

CD122 1.03 0.58 0.33 

CD123 4.88 5.78 4.09 

CD126 (IL-6Rα) 3.83 2.03 1.17 

CD127 (IL-7Rα) 4.21 2.52 1.45 

CD13 8.40 4.42 2.55 

CD131 1.95 1.04 0.60 

CD134 2.27 0.32 0.18 

CD135 3.98 2.40 1.38 

CD137 (4-1BB) 4.66 4.81 2.78 

CD137L (4-1BB Ligand) 45.49 3.09 2.19 

CD138 40.68 0.81 0.57 

CD14 5.91 4.27 3.02 

CD140a 3.97 1.74 1.00 
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Average 

(%) 

SD SEM 

CD140b 16.94 4.62 3.27 

CD141 91.27 4.61 3.26 

FCD142 93.07 1.10 0.78 

CD143 5.26 2.77 1.60 

CD146 67.04 4.05 2.87 

CD148 87.18 7.33 5.18 

CD15 1.82 0.19 0.14 

CD150 (SLAM) 4.43 5.70 3.29 

CD151 34.92 26.45 18.71 

CD154 2.28 0.18 0.13 

CD156c (ADAM10) 95.26 1.20 0.84 

CD158e1 (KIR3DL1, NKB1) 3.50 0.57 0.40 

CD16 1.09 0.20 0.12 

CD161 1.44 0.57 0.33 

CD162 1.90 0.62 0.36 

CD163 4.45 3.64 2.58 

CD164 82.83 20.96 12.10 

CD165 86.01 8.51 4.91 

CD166 95.08 1.37 0.97 

CD169 0.46 0.65 0.46 

CD170 (Siglec-5) 86.58 2.69 1.90 

CD172a/b 77.01 19.31 13.66 

CD172g 7.25 4.35 2.51 

CD178 (Fas-L) 2.49 0.90 0.52 

CD179a 33.90 20.41 14.43 

CD179b 7.81 9.28 5.36 

CD18 2.68 1.36 0.79 

CD180 (RP105) 2.70 3.14 1.81 

CD182 (CXCR2) 9.52 9.80 5.66 

CD183 10.44 12.99 7.50 

CD185 1.67 0.33 0.23 

CD19 3.53 4.02 2.32 

CD191 1.47 0.68 0.48 

CD194 1.56 0.78 0.55 

CD1b 9.76 9.52 5.50 

CD1c 5.92 8.43 4.86 

CD200 2.25 0.97 0.69 

CD200 R 3.66 1.77 1.26 

CD202b (Tie2/Tek) 3.22 1.18 0.68 

CD203c (E-NPP3) 1.36 0.49 0.35 

CD205 5.17 3.68 2.13 

CD206 (MMR) 1.34 0.52 0.30 

CD207 (Langerin) 1.14 0.52 0.30 

CD21 0.78 0.25 0.14 

CD213α1 3.54 0.80 0.57 
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Average 

(%) 

SD SEM 

CD213α2 17.22 18.25 10.53 

CD218a (IL-18Rα) 7.87 8.92 5.15 

CD221 (IGF-1R) 84.03 18.08 10.44 

CD223 2.53 0.65 0.46 

CD226 (DNAM-1) 9.08 5.90 3.41 

CD227 85.43 13.71 9.69 

CD229 (Ly-9) 1.11 0.30 0.17 

CD23 2.61 3.49 2.01 

CD231 (TALLA) 15.77 12.52 7.23 

CD244 (2B4) 1.21 0.45 0.26 

CD245 (p220/240) 14.58 5.04 2.91 

CD25 1.64 0.69 0.40 

CD252 (OX40L) 80.15 4.98 2.88 

CD261 (DR4,TRAIL-R1) 36.67 12.04 8.51 

CD262 (DR5,TRAIL-R2) 88.98 9.99 5.77 

CD263 (DcR1,TRAIL-R3) 10.23 14.34 8.28 

CD266 (Fn14,TWEAK Receptor) 82.43 21.74 12.55 

CD268 (BAFF-R, BAFFR) 1.24 0.56 0.32 

CD27 1.58 0.81 0.47 

CD271 78.24 8.38 4.84 

CD275 (B7-H2, B7-RP1,ICOSL) 12.99 14.29 8.25 

CD276 90.00 8.92 5.15 

CD277 15.60 3.07 1.77 

CD279 (PD-1) 1.06 0.53 0.31 

CD28 66.33 6.73 4.76 

CD29 89.56 9.18 5.30 

CD290 3.21 1.55 1.10 

CD298 89.72 9.47 5.47 

CD3 1.79 0.97 0.56 

CD30 2.38 0.76 0.44 

CD300c 3.04 1.98 1.40 

CD309/VEGFR2 2.16 1.04 0.74 

CD31 1.44 0.51 0.29 

CD314 (NKG2D) 2.36 0.83 0.48 

CD317 3.16 0.56 0.32 

CD324 (E-Cadherin) 88.48 10.49 6.06 

CD325 6.64 5.85 3.38 

CD328 (Siglec-7) 1.37 0.61 0.43 

CD33 3.33 1.37 0.79 

CD334 (FGFR4) 1.09 0.57 0.33 

CD335 (NKp46) 0.77 0.57 0.33 

CD336 (NKp44) 1.42 0.88 0.51 

CD337 (NKp30) 1.03 0.49 0.28 

CD34 2.25 1.64 0.95 

CD340 (erbB2/HER-2) 82.58 20.37 11.76 
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Average 

(%) 

SD SEM 

CD344 (Frizzled-4) 8.77 3.50 2.02 

CD35 1.30 0.55 0.32 

CD354 (TREM-1) 1.97 0.97 0.56 

CD360 4.36 1.92 1.11 

CD365 (Tim-1) 5.05 1.20 0.69 

CD366 (Tim-3) 1.61 0.64 0.37 

CD367 (CLEC4A) 2.22 0.16 0.12 

CD36L1 92.76 1.87 1.33 

CD38 1.76 1.11 0.79 

CD39 0.72 0.23 0.16 

CD4 1.12 0.68 0.39 

CD40 26.00 12.02 6.94 

CD41 0.50 0.33 0.19 

CD42b 1.35 0.28 0.20 

CD43 21.87 1.41 0.99 

CD44 87.57 11.29 6.52 

CD45 0.48 0.20 0.11 

CD47 88.18 11.48 6.63 

CD48 2.86 1.32 0.76 

CD49a 45.98 34.13 19.70 

CD49b 94.98 1.20 0.84 

CD49c 84.20 14.17 8.18 

CD49d 19.80 20.60 11.90 

CD5 1.41 0.66 0.38 

CD50 (ICAM-3) 1.44 1.44 1.02 

CD54 37.33 14.57 8.41 

CD55 84.41 15.51 8.95 

CD56 4.83 2.49 1.44 

CD58 90.10 10.03 5.79 

CD6 1.04 0.82 0.47 

CD61 2.84 2.97 1.71 

CD62E 1.59 0.99 0.57 

CD62L 2.39 2.86 1.65 

CD62P (P-Selectin) 3.47 3.67 2.12 

CD63 88.99 9.01 5.20 

CD64 2.97 1.48 0.85 

CD69 1.44 1.34 0.77 

CD73 90.19 10.44 6.03 

CD74 11.49 4.81 2.78 

CD79b 3.83 3.05 1.76 

CD8 24.09 33.55 23.72 

CD80 1.84 0.03 0.02 

CD81 87.97 9.49 5.48 

CD82 90.20 9.23 5.33 

CD83 9.20 7.52 4.34 
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Average 

(%) 

SD SEM 

CD85g (ILT7) 1.24 0.86 0.50 

CD85k (ILT3) 1.27 0.32 0.18 

CD87 39.07 10.93 7.73 

CD89 9.21 11.53 6.66 

CD8a 1.47 0.99 0.57 

CD9 89.54 8.93 5.16 

CD90 (Thy1) 23.76 3.16 1.82 

CD93 5.50 6.77 3.91 

CD94 1.45 0.47 0.27 

CD95 88.73 10.10 5.83 

CD96 7.16 5.82 3.36 

CD97 42.88 1.67 1.18 

CD99 72.68 24.04 13.88 

CXCL16 1.36 0.54 0.39 

DLL1 0.56 0.38 0.22 

DLL4 0.55 0.31 0.18 

DR3 (TRAMP) 2.61 1.63 0.94 

EGFR 88.81 10.42 6.02 

GITR 1.29 0.78 0.55 

GPR19 2.59 1.25 0.89 

GPR56 6.31 0.79 0.56 

HLA-E 22.87 3.11 2.20 

HVEM (TR2) 6.89 4.22 2.99 

Ig light chain k 0.34 0.36 0.21 

IgM 0.43 0.23 0.13 

IL-21R 1.87 1.17 0.83 

Integrin α9β1 4.85 3.43 1.98 

Jagged 2 9.83 7.29 4.21 

Ksp37 0.91 0.43 0.31 

LAP 0.90 0.16 0.12 

LY6G6D 1.52 0.71 0.50 

MERTK 7.20 0.76 0.54 

MSC (W7C6) 61.89 11.78 8.33 

MSC and NPC (W4A5) 7.67 7.78 4.49 

MSCA-1 (MSC, W8B2) 1.11 0.30 0.17 

MUC-13 1.63 0.57 0.41 

NKp80 3.06 3.03 1.75 

Notch 1 34.03 16.13 9.31 

Notch 3 4.74 2.25 1.30 

Notch 4 44.84 16.48 9.52 

NPC (57D2) 11.47 5.49 3.17 

NTB-A (NTBA) 1.48 0.83 0.59 

PSMA 0.75 0.83 0.48 

ROR1 30.05 12.17 8.61 

Siglec-10 2.95 1.95 1.13 
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Average 

(%) 

SD SEM 

Siglec-7 2.03 1.64 1.16 

Siglec-8 3.13 2.66 1.53 

Siglec-9 1.28 0.51 0.29 

SSEA-5 14.48 4.35 2.51 

SUSD2 20.11 8.42 5.95 

TCR a/ß 4.49 5.01 2.89 

TCR g/d 10.80 12.05 8.52 

Tim-4 3.21 2.67 1.54 

TLT-2 1.79 0.80 0.46 

TM4SF20 0.75 0.25 0.18 

TRA-2-49 2.65 1.60 1.13 

TRA-2-54 1.42 0.29 0.21 

TSLPR (TSLP-R) 1.20 0.56 0.32 

VEGFR3 2.51 2.19 1.55 

APCDD1 1.43 0.92 0.65 

BTLA 6.33 7.47 4.31 

CCR8 12.04 12.49 8.83 

CCRL2 5.84 6.02 4.26 

CD102 1.82 1.26 0.73 

CD104 94.75 0.04 0.03 

CD124 3.19 2.18 1.26 

CD130 1.05 0.18 0.13 

CD144 3.12 2.61 1.85 

CD152 (CTLA-4) 2.85 2.75 1.59 

CD155 (PVR) 88.77 10.78 6.22 

CD158b (KIR2DL2/L3,NKAT2) 4.70 4.34 2.51 

CD184 (CXCR4) 2.65 1.59 0.92 

CD186 2.01 2.05 1.45 

CD192 1.75 1.36 0.97 

CD197 (CCR7) 3.53 3.30 1.90 

CD199 7.59 7.81 5.52 

CD209 (DC-SIGN) 4.38 3.84 2.72 

CD217 11.89 4.31 3.05 

CD230 (Prion) 94.36 1.41 1.00 

CD24 86.76 10.67 6.16 

CD243 3.11 2.09 1.20 

CD26 1.67 0.37 0.21 

CD269 2.52 1.90 1.34 

CD282 (TLR2) 2.91 2.39 1.38 

CD284 (TLR4) 9.84 9.13 6.46 

CD301 18.78 17.88 10.32 

CD303 1.12 0.48 0.28 

CD304 4.29 0.15 0.11 

CD307 1.70 1.48 0.86 

CD323 85.30 2.31 1.63 
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Average 

(%) 

SD SEM 

CD357 (GITR) 3.10 3.23 1.86 

CD36 1.16 0.84 0.49 

CD369 (Dectin-1/CLEC7A) 3.06 2.31 1.64 

CD370 (CLEC9A/DNGR1) 1.42 0.63 0.36 

CD371 (CLEC12A) 0.76 0.44 0.25 

CD45RO 1.26 0.54 0.31 

CD51 88.38 10.66 6.16 

CD59 92.05 10.32 5.96 

CD7 1.97 0.63 0.36 

CD71 88.76 10.26 5.92 

CD84 6.99 5.93 3.42 

CD88 2.78 1.76 1.01 

CRTAM 3.78 3.24 1.87 

erbB3/HER-3 7.62 2.22 1.28 

FPR3 10.45 12.25 8.67 

Ganglioside GD2 1.72 0.96 0.68 

GPR83 9.98 8.37 5.92 

HLA-A,B,C 89.33 9.33 5.39 

HLA-DR 0.71 0.20 0.12 

Ig light chain λ 0.52 0.08 0.05 

IgD 1.66 0.28 0.20 

IL-28RA 1.25 1.12 0.79 

integrin b5 91.45 1.75 1.24 

KLRG1 3.86 1.98 1.40 

LOX-1 3.25 1.68 1.19 

MICA/MICB 33.12 7.48 4.32 

MSC (W3D5) 18.53 8.58 4.95 

Notch 2 3.02 1.32 0.76 

TACSTD2 94.24 0.71 0.50 

TIGIT 0.82 0.66 0.47 

C3AR 2.70 1.62 1.15 

CCX-CKR 2.56 0.62 0.44 

CD11c 2.30 0.91 0.53 

CD129 (IL-9 R) 6.29 4.82 2.78 

CD158 2.34 0.38 0.27 

CD181 (CXCR1) 17.50 2.16 1.53 

CD193 (CCR3) 3.64 1.04 0.60 

CD196 13.70 4.70 3.32 

CD1d 7.54 6.44 3.72 

CD20 0.71 0.51 0.30 

CD22 1.42 0.22 0.13 

CD220 5.23 1.50 1.06 

CD235ab 0.52 0.51 0.30 

CD258 (LIGHT) 12.51 12.37 8.75 

CD274 (B7-H1, PD-L1) 89.02 10.52 6.07 
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Average 

(%) 

SD SEM 

CD319 (CRACC) 9.52 4.58 2.64 

CD32 1.85 1.25 0.72 

CD326 (Ep-CAM) 89.35 8.23 4.75 

CD338 (ABCG2) 23.13 17.96 10.37 

CD368 (CLEC4D) 4.83 2.45 1.74 

CD45RA 0.73 0.10 0.06 

CD45RB 0.45 0.23 0.13 

CD49e 91.04 12.99 7.50 

CD52 4.31 2.13 1.23 

CD66a/c/e 34.26 10.27 5.93 

CD85h (ILT1) 4.29 2.04 1.18 

CD85j (ILT2) 4.30 0.27 0.15 

CD86 5.00 5.55 3.21 

CD92 93.29 2.72 1.93 

CXCR7 35.08 8.00 5.66 

Delta Opioid Receptor 3.32 0.67 0.39 

Dopamine Receptor D1 (DRD1) 1.74 0.49 0.35 

EphA2 95.24 1.53 1.08 

FceRIa 0.49 0.43 0.25 

GARP (LRRC32) 1.29 0.54 0.31 

IL-15Rα 1.84 0.68 0.48 

Lymphotoxin β Receptor (LT-βR) 85.41 15.89 9.17 

MRGX2 2.74 0.24 0.17 

TMEM8A 14.46 14.29 10.11 

CD254 5.06 1.75 1.01 

CD318 93.86 0.77 0.55 

CD255 (TWEAK) 8.21 7.64 5.40 

SSEA-4 54.02 10.27 5.93 

Sialyl Lewis X 81.43 13.63 9.64 

TRA-1-81 2.14 1.12 0.65 

CD160 0.77 0.22 0.16 

CD57 5.94 7.94 4.59 

CD66b 1.50 1.07 0.62 

TRA-1-60-R 0.74 0.27 0.16 

CD115 14.67 16.34 9.44 

CD201 (EPCR) 88.53 1.36 0.96 

CD120b 3.02 0.33 0.23 

CD210 (IL-10 R) 13.15 13.81 9.77 

CD267 (TACI) 4.04 2.58 1.49 

CD294 25.34 11.99 8.48 

CD49f 92.54 11.10 6.41 

CD85a (ILT5) 1.55 1.02 0.72 

CD85d (ILT4) 5.78 1.79 1.03 

integrin b7 1.06 0.22 0.13 

XCR1 1.95 0.57 0.41 
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Average 

(%) 

SD SEM 

Podoplanin 85.82 9.68 5.59 

CD132 4.05 1.71 1.21 

CD195 (CCR5) 2.57 0.72 0.41 

CX3CR1 3.24 1.11 0.64 

SSEA-3 0.96 0.25 0.18 
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