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Abstract 

Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease of the synovial joints 

with a global prevalence of 1%, causing pain, work instability and disability. The condition’s 

genetic aetiology is complex, and genome-wide association studies have highlighted over 100 

susceptibility loci. The vast majority of implicated variants are noncoding, posing a major 

challenge in defining genetic mechanisms of cell-mediated immune dysregulation. The precise 

contribution to this process of epigenetic factors at a cellular level, such as the addition of 

methyl groups to DNA, also remains to be deciphered. By conducting comprehensive molecular 

profiling of circulating immune cells from early arthritis patients, my project aimed to elucidate 

mechanisms of genetic risk and prioritise causal disease genes in RA. To address this, genome-

wide DNA methylation, transcriptome and genotype data were available from peripheral blood 

CD4+ T cells and B cells of treatment-naïve early arthritis patients. Firstly, a comparison of 

DNA methylation between patients with early RA and those with other arthropathies was 

undertaken. Subsequently, the capacity of RA-associated variants to influence DNA 

methylation by mapping methylation quantitative trait loci (meQTLs) was confirmed. Here, it 

was observed that disease variants preferentially modified DNA methylation at sites mapping 

to lymphocyte enhancers and regions flanking transcription start sites, as well as positions 

bound by the NFκB transcription factor. By integrating transcriptomic data and employing a 

statistical approach to infer causality, loci were identified at which genetically conferred 

modifications in DNA methylation regulate transcription of genes including FCRL3, 

ANKRD55, IL6ST, and JAZF1 in CD4+ T cells. Finally, in vitro assays were used to validate 

meQTLs at loci of interest, and to confirm regulatory mechanisms. This work highlights genes 

and pathways of potential relevance to lymphocyte-mediated pathology in early RA and, 

potentially, other immune mediated diseases. It has implications for the functional 

interpretation of genome/epigenome-wide association studies. 
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Chapter 1 - Introduction 

1.1 Background 

Rheumatoid arthritis (RA) is a chronic autoimmune condition, during which the loss of immune 

tolerance manifests principally as inflammation at the synovial lining of small joints. It is the 

most common autoimmune arthropathy, with an estimated prevalence of 0.5-1% in the majority 

of studied populations, including in the United Kingdom1-3. The condition also displays a 

notable sex bias, with an increased prevalence in females1, 2.  

If inflammation remains unresolved, symptoms progress to structural damage of the cartilage 

and underlying bone, with accompanying loss of physical function and disability for patients4. 

This can have profound effects at the level of the individual (impaired quality of life, work 

instability), and in society as a whole (economic burden of medical treatment and lost working 

days)5. The United Kingdom National Audit Office estimates that the financial burden on the 

National Health Service for direct healthcare provision for RA patients is around £557 million 

per year (Figure 1.1), with an additional £1.8 billion in economic costs associated with work-

related disability6.   

 

 

 

 

 

 

 

 

 

 

 

A recent emphasis on the importance of early diagnosis in RA and the prompt initiation and 

escalation of treatment according to response, together with the development of biologic drugs 

that target inflammatory pathways, have greatly enhanced outcomes in RA7, 8. Despite this, 

there remains an unmet clinical need, as approximately half of all patients will respond to 

current biologic therapies, with an even lower proportion achieving disease-free remission7, 8. 

Furthermore, biomarkers that predict response to different therapies are lacking, meaning that 

Total= £557 million

GP Visits (prior to referal)
Tests carried out by GPs (prior to referral)
GP visits (diagnoised cases)
Monitoring tests (diagnosed cases)
Drug costs in primary care
NHS rheumatology units (inc. biologics)
Surgery

Figure 1.1: The distribution of costs incurred by the United Kingdom National Health Service in the 

diagnosis and treatment of rheumatoid arthritis. Estimated costs were obtained from the National Audit 

Office6. 
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truly tailored treatment strategies during the critical ‘window of opportunity’ early on in disease 

remain aspirational7. 

Whilst RA is predominantly considered a condition of the synovial joints, systemic 

inflammation can result in extra-articular manifestations including, but not limited to, 

depression, chronic obstructive pulmonary disease, malignancies, and cardiovascular disease9-

11. Indeed, the latter may be responsible in part for the increased rate of mortality that is 

observed in RA patients relative to the wider population12, 13. This appears to be reduced upon 

treatment with biologics such as anti-tumour necrosis factor (TNF), albeit only in women, 

establishing a link between systemic inflammation and RA-associated mortality14. The Global 

Burden of Disease study in 2010 revealed that RA is responsible for 4.8 million disease-

adjusted life years (DALYs – years of healthy life lost to disease) worldwide, with 696,000 in 

Western Europe15. 

1.2 Pathophysiology of RA 

The current paradigm in RA is that the autoimmune response occurs following environmental 

triggers in individuals who are genetically susceptible. In this scenario, preclinical extra-

articular immune induction likely occurs prior to inflammation of the joint and chronic 

synovitis. The most frequently affected sites are the small joints of the hand, such as the 

proximal interphalangeal (PIP) and metacarpophalangeal (MCP), as well as the wrist, knees, 

elbow, and shoulders (Figure 1.2). Swelling and tenderness at 28 joints is included in the disease 

activity score at 28 joints (DAS28), that gives measure of disease activity16. 
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Figure 1.2: Commonly affected rheumatoid arthritis joints. Rheumatoid arthritis typically effects 

joints symmetrically, and calculation of the DAS28 disease activity score incorporates information on 

tenderness and swelling in 28 commonly affected joints. MCP = metacarpophalangeal; PIP = proximal 

interphalangeal. 
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1.2.1 Autoantibodies 

Whilst RA likely encompasses a number of related clinical endotypes, disease is broadly 

divided into two subcategories based on the presence or absence of autoantibodies. 

Autoantibodies against the Fc fragment of immunoglobulin G (IgG), named rheumatoid factor 

(RF), were the first to be associated with RA. These antibodies can be detected in the blood 

many years before the onset of RA symptoms, and individuals with elevated titres of RF in the 

serum (>100 IU/ml) have a 26-fold increased risk of developing RA 17, 18.  

Subsequent to the discovery of RF, autoantibodies were identified that were reactive against 

proteins in which post-translational conversion of arginine to citrulline (citrullination) has 

occurred. This modification is catalysed by a family of enzymes termed peptidylarginine 

deiminases (PADs), and these anti-citrullinated protein antibodies (ACPAs) are present in 

approximately 70-80% of RA patients19, 20. Importantly, ACPAs are much more specific to RA 

than is RF, with the latter occurring in a higher proportion of non-RA conditions, and clinical 

application of a test to detect ACPAs reports a specificity of 96%19. The pathogenesis of ACPA 

seropositive RA is better characterised than that of seronegative disease. ACPA positive 

patients also have a poorer disease prognosis with increased probability of developing erosion 

in the joints and radiographic progression21.  

The precise role of autoantibodies in disease induction remains ambiguous. That most 

autoantibody seropositive RA patients have detectable levels of both of these antibodies, and 

the formation of ACPAs likely precedes that of RF, suggests a role for the latter in potentiating 

arthritogenic humoral responses directed at citrullinated self-peptides17. One pathogenic 

mechanism through which autoantibodies may contribute to the triggering of RA is through the 

formation of immune complexes that promote complement activation and the release of pro-

inflammatory mediators by immune cells22.  

1.2.2 Pre-RA: Breakdown in self-tolerance 

Observations that both RF and ACPAs are present in the circulation many years prior to the 

onset of clinical RA indicates an extra-articular break in self-tolerance that precedes synovitis17, 

23. This stage is often referred to as ‘pre-RA’, and it is during this period that genetic and 

environmental interactions manifest as dysregulation of the immune response. Whilst often 

asymptomatic, patients may also be in the pre-RA phase if they display arthralgia in the absence 

of clinical arthritis, or an unclassified arthritis that does not yet fulfil RA diagnostic criteria24. 

Seroconversion of patients following the onset of RA is very rare, suggesting a causal role for 

autoantibodies in driving disease induction25. Interestingly, antibody titres gradually increase 
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over years, with epitope spreading and increased avidity occurring in conjunction with the 

initiation of clinical disease26-29. As will be discussed in later sections, the mucosal surfaces, in 

particular the lung, are the likely sites at which this immune response to self-antigens is 

initiated. Activation of the immune system, including antigen-presenting cells, at these sites 

potentially leads to the adaptive immune responses directed against citrullinated self-epitopes30. 

Recent data suggests T cells that are specific to post-translationally modified antigens, such as 

those that occur in RA, escape negative selection in the thymus that would normally remove 

autoreactive cells from the circulation31.  

During pre-RA, the cytokine levels in circulation further demonstrate that pre-clinical 

pathological mechanisms are active in at-risk patients, with elevated serum cytokines and 

chemokines detected in the circulation relative to healthy individuals. These include 

interleukin- (IL-)1-α, IL-1β, IL-6, IL-10, TNF-α, and Granulocyte-macrophage colony-

stimulating factor (GM-CSF) amongst others, with detectable levels appearing to increase 

nearer to the time of diagnosis32. Prior to the onset of RA, elevated cytokine levels are 

predominantly characteristic of a CD4+ T cell response33. These increases in levels of 

inflammatory cytokines have also been shown to be more exaggerated in patients with 

autoantibody seropositive relative to seronegative disease34. Nonetheless, cytokines are also 

prominent in seronegative disease and the upregulation of signal transducer and activator of 

transcription 3 (STAT3) target genes in CD4+ T cells as a response to IL-6 stimulation has been 

described in these patients35. 

Consistent with the observation that cytokine levels are elevated in early RA, ACPAs from RA 

patients can form immune complexes with fibrinogen, which stimulate the secretion of TNF-α 

by macrophages upon Fc-receptor binding36, and can also stimulate TNF-α production 

downstream of nuclear factor-κB (NF-κB) activation in monocytes37. Finally, ACPAs are able 

to activate the complement system, again highlighting potential active roles of these 

autoantibodies in pathogenesis38. 

Certain cellular compartments are expanded in patients at risk of developing RA. A study of 

early arthritis patients, healthy controls and autoantibody positive individuals yet to develop 

arthritis found that B cells were expanded in the inguinal (groin) lymph node of arthritis patients 

relative to controls39. The authors also describe a non-significant trend of a similar B cell 

expansion in the cohort with circulating autoantibodies, but absent clinical arthritis39. A separate 

investigation has suggested that a population of CD4+ T cells displaying a pro-inflammatory 

phenotype is more prominent in the lymph nodes of RA patients relative to healthy controls40. 
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The data discussed in this section demonstrate that triggering of autoimmunity and an extra-

articular inflammatory response occur prior to RA diagnosis. Autoantibodies and cytokines 

show a clear association with risk of developing RA, though established, causal pathological 

mechanisms during the early stages of pre-RA remain elusive. As ACPAs are not sufficient to 

trigger synovitis in isolation, it has been hypothesized that a ‘second hit’, perhaps as a result of 

physical trauma or viral infection is necessary in these at-risk patients to develop localized joint 

inflammation30. Although ACPAs are present many years before the onset of clinical RA, recent 

work has shown that IL-23 activation of IL-17 producing T-helper cell 17 (TH17) cells in turn 

results in a shift in the glycosylation profile of IgG antibodies, conferring pro-inflammatory 

properties and leading to the induction of arthritic symptoms41. DNA variants mapping to 

cytokines or their receptors are implicated in RA susceptibility, such as is the case for the IL-6 

receptor (IL6R) gene, illustrating the contribution of cytokine signalling pathways to RA 

susceptibility42. The genetic basis of RA provides further clues to the molecular pathways and 

cell types involved, and the implications for disease mechanisms will be discussed in section 

1.3.  

1.2.3 Common cellular autoimmune pathways? 

RA is one of many common autoimmune conditions, all of which are characterised by an 

aberrant, self-directed immune response. Whilst the term ‘autoimmune disease’ (AID) refers to 

a range of conditions that display markedly distinct clinical manifestations, they are all 

characterised by this shared immunological aetiology. For example, self-reactive B and T cells 

in the periphery that produce autoantibodies and pro-inflammatory cytokines are central in the 

immunopathogenesis of multiple sclerosis (MS) and type 1 diabetes (T1D), conditions for 

which the target tissues are central nervous system and pancreatic β cells respectively43, 44. 

The potential overlap in autoimmune pathways is particular evident at the genetic level, where 

disease-associated single nucleotide polymorphisms (SNPs) appear to be involved in 

modulation of transcriptional activity in immune cells, particularly lymphocytes45. The 

implications of these RA genetic risk factors at the cellular level, and autoimmunity more 

generally, will be discussed in greater detail in later sections.  

It is this autoimmune component that distinguishes RA from the other common form of arthritis 

in the developed world, osteoarthritis (OA). Whilst immune activation and systemic 

inflammation have been described to some degree in OA patients, the principal triggers include 

developmental defects, mechanical stress, and a metabolic shift in chondrocytes as they begin 

to produce collagen- and aggrecan-degrading enzymes46. Because OA presents a somewhat 
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similar phenotype to RA, with the destruction of cartilage and bone, but with distinct 

aetiologies, samples from OA patients are often used as a control condition in clinical studies 

of RA. 

1.2.4 Early & established RA – synovial inflammation and bone erosion 

During the pre-clinical phase of autoantibody-positive RA that precedes the appearance of 

symptoms in the joint, there does not appear to be any synovitis or marked cellular infiltration47. 

However, as disease progresses, profound changes in the structure and cellular composition of 

the synovium and joint space shortly precede the appearance of symptoms within the joint 

(Figure 1.3)48. Hyperplasia of cells at the synovial lining occurs as the disease develops. This 

accompanies extensive angiogenesis and influx of immune cells into the joint, thus creating a 

pro-inflammatory environment which leads to activation of the fibroblast-like synoviocytes 

(FLS) which secrete cartilage-degrading matrix metalloproteinases (MMPs)49. Membrane-type 

I matrix metalloproteinase (MMP-14) appears to be the predominant factor secreted by the RA 

synoviocytes that drives degradation of type I and type II collagen in the cartilage tissue50. 

Cytokines including macrophage colony-stimulating factor (M-CSF) and receptor activator of 

NF-κB ligand (RANKL), produced by inflammatory cells, promote the formation of bone-

degrading osteoclasts49. Together with the hyperplastic synovium, these osteoclasts contribute 

to formation the ‘pannus’ that invades the cartilage and bone tissue (Figure 1.3). Pro-

inflammatory cytokines such as TNF, IL-1 and IL-6 also directly contribute to bone erosion 

through osteoclast activation, and therapeutic intervention targeting these pathways can slow 

down structural damage of the joint, as well as suppressing inflammation51. 

Though systemic hallmarks of autoimmunity occur prior to joint-related symptoms, infiltration 

of T cells into the synovium may represent one of the earliest cell migration events in the 

transition to synovitis47. Recent work has highlighted distinct pathotypes in early RA based on 

the heterogeneous compositions of infiltrating cells52. One such pathotype is characterized by 

a predominance of lymphoid cells (T cells and B cells), whereas other groups identified were 

dominated by either myeloid cells, or expansion of resident stromal cells such as fibroblasts 

(with low levels of immune cells)52. In a subgroup of patients, the formation of ectopic 

lymphoid structures in the joint is accompanied by increased levels of infiltrating T- and B cells, 

and is also associated with increased inflammatory markers, both in the joint and the 

periphery53. As well as increased lymphocyte infiltrates to the joint tissue, cells undergo 

metabolic changes that promote a pro-inflammatory phenotype. CD4+ T cells in RA have been 

shown to display increased levels and activity of the glucose-6-phosphate dehydrogenase54. 

This manifests as hyper proliferation, and skews differentiation of naïve cells towards pro-
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inflammatory TH1 and TH17 phenotypes, characterised by the expression of interferon (IFN)-γ 

and interleukin-17 (IL-17) cytokines respectively54. 

In addition to their critical roles in antigen presentation and autoantibody secretion, B cells are 

a major source of cytokines in the synovium, including RANKL that promotes differentiation 

of bone-eroding osteoclasts from precursor cells55. Early work also showed B cells were 

essential for activation of synovial CD4+ T cells and formation of ectopic synovial germinal 

centers (sites of B cell proliferation and maturation) in RA56. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stromal compartment of the joint is integral in not only establishing synovial inflammation, 

but also initiating the processes that result in cartilage and bone damage. Upon stimulation with 

pro-inflammatory cytokines, the immunosuppressive capacity of synovial fibroblasts from non-
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Figure 1.3: Schematic representation of a synovial joint in (A) health and (B) rheumatoid arthritis. In a 

healthy joint, the bone is covered in a smooth layer of cartilage that acts as a shock absorber and lubricates the 

joint during movement. The lining of the synovium is composed of a thin layer of synoviocytes, usually no more 

then 2-3 cells thick. During disease, extensive angiogenesis accompanies influx of a wide range of inflammatory 

cells into the joint tissue. Hyperplasia occurs at the synovial lining, with fibroblast-like synoviocytes (FLS) 

becoming hyper-proliferative and promoting inflammation and release of cartilage-degrading enzymes. These 

FLS, together with the activated bone-degrading osteoclasts contribute to the formation of the pannus which 

erodes the cartilage and bone. Figure is adapted from Strand, Kimberley & Isaacs (2007)48. 
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inflamed or resolving joints is ablated in patients with RA, the cells losing their ability to 

suppress endothelial lymphocyte recruitment57. It appears that in the early stages of transition 

to clinical RA, changes that occur in the signaling properties of IL-6 and transforming growth 

factor (TGF)-β secreted by synovial fibroblasts promotes their pro-inflammatory function57. 

Using an integrated approach, Zhang and colleagues were able to define cells driving 

inflammation in the synovial tissue at the single cell level, identifying a number of cell states 

that were overabundant in RA relative to OA controls58. These included THY1+ HLA-DRHI 

sublining fibroblasts that were expanded in a subset of RA patients characterized by leukocyte-

rich synovia, relative to leukocyte-poor RA and OA patients58. Subsequent work has identified 

two distinct fibroblast subsets that drive distinct pathological processes in RA59. These include 

the THY1+ cells of the synovial sublining that were shown to drive inflammation, and the 

THY1- cells that populate the synovial lining and mediate bone and cartilage erosion59. 

Autoimmune-associated B cells expressing ITGAX and TBX21, as well as a cluster of CD4+ T 

cells (peripheral helper (TPH) and follicular helper (TFH)) that expressed PDCD1 were also 

amongst the populations highly enriched in the synovium of leukocyte-rich RA patients58. 

Furthermore, a population of CD4+ TPH cells that are expanded in the RA synovium have been 

described, and these cells appear to provide B cell help to promote plasma cell differentiation 

and antibody production60. Taken together, these results indicate a complex cellular milieu 

within the synovium that drives inflammation at the joint tissue during RA.  

The pro-inflammatory environment in the joint causes a functional phenotypic shift in 

chondrocytes and FLS as they begin to secrete cartilage-degrading enzymes such as MMPs and 

aggrecanase61. Hyperplasia of the synovium ultimately leads to the formation of a structure 

known as the pannus, at which activated osteoclasts begin to degrade the subchondral bone61 

(Figure 1.3). Pro-inflammatory cytokines such as TNF and IL-1 are also involved in the 

production of macrophage colony-stimulating factor (M-CSF) and RANKL by FLS and T cells 

within the synovium, both of which are essential for osteoclastogenesis61. There is also evidence 

to suggest that the development of these bone-degrading osteoclasts is stimulated directly by 

ACPAs themselves62.  

Understanding the triggers involved in the initial self-directed immune response, as well as 

transition to the joint and establishment of clinical synovitis, necessitates the dissection of 

cellular phenotypes in the peripheral blood, as well as the synovial tissue itself. The adaptive 

immune response is undoubtedly critical in the early disease stages, though the data discussed 

above also suggest a role, together with the joint resident stromal cells, in mediating 

pathological processes within the synovial micro-environment. Studying circulating 
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lymphocytes such as CD4+ T cells may also give pathogenic insights relating to the synovium, 

as a population of these cells appear to be phenotypically analogous to those infiltrating the 

joint tissue63. 

1.2.5 Clinical presentations and current targets for treatment 

Diagnosis of RA in the clinic presents a significant challenge, given the considerable 

heterogeneity in its clinical presentation, as well as overlap in symptoms with a range of other 

arthropathies. Indeed, typical symptoms with which an RA patient will present are swollen and 

tender joints, together with elevated markers of the acute phase response such as C-reactive 

protein (CRP) and erythrocyte sedimentation rate (ESR), which signify a systemic 

inflammatory response.  Joint involvement, as measured by the number of joints (out of 28 in 

total) showing swelling or tenderness, can be combined with these measures of inflammation 

to give a disease activity score (DAS28-CRP, DAS28-ESR). The American College of 

Rheumatology (ACR) and European League Against Rheumatism (EULAR) diagnostic criteria 

outline joint involvement and acute phase proteins, together with serological tests of 

autoantibodies (RF and ACPA) and symptom duration (<6 weeks / ≥6 weeks) as important RA 

criteria64 

In addition to presenting a challenge diagnostically, the heterogeneity in RA clinical 

presentation also results in highly variable treatment responses. The current aim of treatment 

strategies is to achieve low disease activity (often termed remission) based on the measures 

described above (DAS28, CRP, ESR) as well as patient-reported general health status. 

Nonsteroidal anti-inflammatory drugs and steroids such as glucocorticoids are frequently 

prescribed for short-term suppression of the inflammatory response and amelioration of RA 

symptoms including pain and stiffness. However, these treatments have no effect on the disease 

course as they do not target cells or secreted immune modulators involved in disease activity. 

The development of disease-modifying anti-rheumatic drugs (DMARDs) has enabled clinicians 

to target the immune response and halt disease progression. A first line therapy usually 

prescribed is the conventional synthetic DMARD methotrexate, a folic acid analogue that acts 

through a number of putative mechanisms including promotion of adenosine signaling, 

increased production of reactive oxygen species, and downregulation of adhesion molecules65. 

This drug shows a relatively good efficacy in patients, with around 40% achieving a ³50% 

improvement in disease activity according to the ACR criteria65. 

An increased understanding of the cell types and cytokines involved in RA pathogenesis has 

stimulated the development of biological DMARDs (often termed biologics) that target specific 
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immunogenic pathways. Biologics widely used in the clinic include those targeting the 

cytokines TNF and IL-6. Infliximab, a mouse chimeric monoclonal antibody (mAb) that binds 

TNF-a, reduced clinical symptoms and improved patient quality of life66, 67, and humanised 

analogues and receptor fusion proteins that target the same pathway continue to be used (Figure 

1.4). Similar efficacy has been achieved by blocking the IL-6 receptor using the mAb 

tocilizumab, which can also be effective in patients who fail anti-TNF treatment68, 69. These 

drugs are now routinely used to treat patients in the clinic who show poor response to first line 

therapies such as methotrexate. That these biologics engender changes in a number of outcomes 

including cellular infiltration into the synovium, bone destruction, and systemic inflammation 

confirms the pleiotropic role of key cytokines in pathogenesis. 

The central role of lymphocytes in RA also makes them an enticing therapeutic target. Co-

stimulation of T cells can be blocked with abatacept, a fusion protein consisting of CTLA-4 and 

the Fc region of IgG1, which binds CD80/CD86 thus out-competing the CD28 co-stimulatory 

molecule on T cells. Again, the efficacy of T cell-targeting agents such as abatacept in 

ameliorating the symptoms associated with RA provides further support a role for these cells 

in mediating disease processes70. An interesting observation is that abatacept may show greater 

efficacy in ACPA+ than ACPA- RA, suggesting that that T cells have a more prominent role in 

this particular disease subtype71.  Depletion of B cells, such as occurs through anti-CD20 

targeting by Rituximab, has also proven to be an effective approach72. This particular mAb has 

halted bone erosion and narrowing of the joint space in RA patients and may function in part 

indirectly through depletion of CD4+ T cells73, 74. 

A range of additional biologics and small molecule inhibitors targeting cytokine and cell 

signaling pathways have also been developed and evaluated in clinical trials, with varying 

success in efficacy and translation to clinical application51. Given that there are no current 

biomarkers that predict response to treatment with various available DMARDs, the prescription 

of expensive biologics to patients is essentially trial and error. Future work must therefore focus 

on identifying subgroups of patients who are likely to respond to specific treatments, facilitating 

a stratified therapeutic approach. Moreover, whilst most drugs currently used in the clinic target 

the immune component of RA, concomitant blockade of pathological mechanisms in the joint 

tissue itself may prove an effective strategy. For example, inhibition of osteoclast differentiation 

is possible by targeting RANKL, and hyper proliferative FLS cells can be targeted with small 

molecule janus kinase (JAK) pathway inhibitors such as tofacitinib. In addition, clinical trials 

using cellular therapies such as tolerogenic dendritic cells offer promise that re-establishment 



 

11 
 

of immune tolerance may be possible in RA patients75. The targets of disease-modifying 

therapies currently diagnosed for the treatment are summarized in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

1.3 The genetic basis of RA 

The aetiology of RA is complex, with diverse factors contributing to an individual’s risk of 

developing the condition. Epidemiological studies have established clear links between RA and 

sex (2-3x higher prevalence in females), as well as age (highest prevelance in the fifth decade 

of life)3. Established mechanisms to explain the considerable discrepancy in female and male 

prevalence remain elusive. The disease also displays clear geographical bias, with the highest 

rates in Northern Europe and North America (~0.5-1.1%), and the lowest rates in Asia and 

Africa (~0.1-0.3%)3. Whether these geographical disparities represent contrasting 

environmental exposures or reflect genetic ancestry is unclear. Amongst the environmental risk 

factors identified to date, smoking provides the strongest evidence from both epidemiological 

and mechanistic studies, though other exposures have been suggested which may potentially 

trigger the initial extra-articular immune response (discussed in greater detail throughout 

section 1.4). 

What is clear is that variation in an individual’s genome has a considerable impact on 

susceptibility to RA. A significant heritable component was evident from early observations 

noting the tendency of RA to aggregate in families. Recently, a large study in Swedish patients 

Adalimumab, 
Etanercept, Infliximab 

Sarilumab, 
Tocilizumab 

Barcitinib, Tofacitinib 

Innate Immunity 
(Synovial Inflammation) Adaptive Immunity 

TNF 
Inhibitors 

IL-6/IL-6R 
Inhibitors 

JAK 
Inhibitors 

T-cell 

CD80/CD86 
co-stimulatory 

blockade 

B-cell 

Anti-
CD20 Abatacept 

Barcitinib, 
Tofacitinib 

JAK 
Inhibitors 

Rituximab 

Figure 1.4: Cytokines and cellular targets of disease-modifying drugs currently diagnosed in the 

clinic for treatment of rheumatoid arthritis. Therapies shown here are those that specifically target 

immune pathways. 
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established that the odds of developing RA were approximately 3 times higher in individuals 

who have a first-degree relative with the disease, than in those without such affected relatives76. 

Moreover, the same study found a more pronounced familial aggregation in patients with 

ACPA+ disease than in those with negative autoantibody status76. This is particularly important 

when studying the aetiology of RA, as it suggests that different genetic risk factors play a role 

in the development of these distinct disease serotypes. 

Twin comparisons have also been useful in estimating the overall heritability of RA. A study 

of disease discordant twins found that the proportion of the variability in RA susceptibility that 

is attributable to additive genetic factors was 53% and 65% in United Kingdom and Finnish 

populations respectively77. However, this was a relatively small study and recent estimates 

place the heritability of ACPA+ RA at 39%78. Although a range of figures for RA heritability 

have been reported, it is believed that roughly 50% of an individual’s susceptibility to RA is 

determined by genetic factors, with this figure dropping to 20% in seronegative RA76, 79. 

However, interpretation of disease heritability from such familial studies is confounded to some 

degree by the shared environmental factors within families, and this may perhaps explain some 

of the inflated estimates. Despite the prevalence of RA being higher in females and increasing 

with age, heritability estimates do not appear to be influenced by sex or patient age at disease 

onset76, 77. 

1.3.1 The HLA locus 

By far the strongest genetic contribution to RA is that of alleles within the Human Leukocyte 

Antigen (HLA) region of chromosome 6. As early as 1978, it was recognised that the HLA-

DRw4 (HLA-DRB1*04) alleles were overrepresented in RA patients compared with healthy 

controls80. This then led to the discovery of a conserved amino acid sequence motif at positions 

70-74 of the HLA-DRβ1 chain, termed the ‘shared epitope’ (SE), that was common to all the 

disease-associated haplotypes81. It was later revealed that genetic risk conferred by alleles at 

the shared epitope was specific to patients seropositive for ACPAs82. Interestingly, the influence 

of smoking as a risk factor in seropositive disease appears to be linked to the presence of the 

shared epitope of the HLA-DRB1 molecule, conferring multiplicative disease risk and 

illustrating interplay between genes and environment 83, 84 (see section 1.5.1).  

A more recent study using high-density genotype data attributed the HLA association in RA to 

a total of five amino acid positions; three in the HLA-DRβ1 chain, as well as single positions 

in HLA-DPβ1 and HLA-B85. Moreover, as these variable positions are located within the 



 

13 
 

antigen-binding groove on the major histocompatibility molecule (MHC), this has potential 

implications for the presentation of self-peptide to both CD4+ and CD8+ T cells85. 

The mechanism through which sequence variation at the HLA locus contributes to a break in 

immune tolerance remains unclear. HLA haplotypes also account for considerable genetic risk 

in autoimmunity more generally, with associations in this locus identified in T1D86, MS87, 

ankylosing spondylitis (AS)88, and systemic lupus erythematosus (SLE)89. Interestingly, the 

specific alleles conferring risk are often distinct in each disease. For example, in MS the 

DRB1*15:01 allele displays the strongest association87, whereas in SLE the HLA associations 

have been assigned to the class I alleles B*08:01 and B*18:01, and the class II alleles 

DQB1*02:01, DRB3*02:00 and DQA*01:0289.  

The RA-associated SE alleles at the P4 pocket of MHC class II molecule conferred increased 

binding affinity to citrullinated peptides as opposed the native arginine-containing peptides90, 

91. This preferential binding was corroborated in a recent study that characterized hierarchical 

binding affinities of 34 native/citrullinated self-peptides to HLA-DRB1 molecules92. This 

enhanced binding and subsequent presentation of citrullinated peptides may explain the 

association between the SE and ACPA+ RA.  

Indeed, this is supported by the finding that T cells specific for citrullinated self-peptides, 

including vimentin and aggrecan, display an activated, immunogenic phenotype93, 94. Not only 

can HLA-DRB1*04 allele carriage enhance affinity of citrullinated peptides for the T cell 

receptor (TCR), in RA patients CD4+ T cells appear to be more abundant and are enriched for 

a Th1 memory phenotype relative to healthy individuals with this haplotype95. A recent study 

showed that, in mice carrying a homologous HLA-DRB1*04 allele, immunisation with 

exogenous PADs resulted in the generation of anti-citrullinated fibrinogen antibodies96. 

Notably, a T cell response to PAD enzymes themselves occurred, and the production of anti-

PAD antibodies in the absence of T cell responses to fibrinogen may indicate a mechanism 

whereby the recognition of citrullinated peptides by T cells requires that they are bound to the 

PAD enzyme96. However, the relevance of this mechanism in the context of RA is yet to be 

explored.  

Despite the considerable contribution of polymorphisms in the HLA locus to RA susceptibility 

(Odds Ratio ~2.4)97, and compelling mechanistic links between allelic variants and a break in 

self-tolerance, this locus still only explains approximately 11% of the heritability in RA (18% 

for ACPA+, 2% for ACPA-)98.  
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1.3.2 The GWAS era 

Technological advances in genotyping arrays, together with the inception of genome-wide 

association studies (GWAS), has galvanized research into the genetic architecture of complex 

diseases such as RA. The Wellcome Trust Case-Control Consortium association study in 2007 

recapitulated the strong genetic associations with HLA-DRB1 variants, as well as a variant in 

PTPN22 – a gene encoding the protein tyrosine phosphatase non-receptor type 2299. This study 

also highlighted putative risk variants mapping to genes including CTLA4 and IL2RA/IL2RB
99. 

Successive studies have expanded the list of polymorphisms that confer susceptibility in RA, 

culminating in a recent meta-analysis in European and Asian populations of  29,880 RA cases 

(88.1% ACPA+, 9.3% ACPA-, 2.6% unknown status) and 73,758 non-RA controls, placing the 

number of genome-wide significant risk loci at 10197. This number continues to grow and more 

recently has expanded the total risk loci to 106 100. In isolation, the risk conferred by these 

GWAS SNPs is relatively low (odds ratio ~ 1.1-1.3 for most SNPs), and these non-HLA loci 

identified to date explain ~5% of the RA heritability97, whereas the HLA variants account for 

~13% of the overall RA genetic risk85. 

GWASs to date have predominantly focussed on patients with seropositive disease, and 

therefore the majority of conclusions from these studies can be extrapolated to this group. 

Indeed, consistent with the clinical heterogeneity of RA, the genetic aetiology of ACPA+ and 

ACPA- disease appears to be largely distinct. A comparison of patients categorised into these 

distinct disease subsets suggests that such differences may largely be accounted for by alleles 

at the HLA locus101.  The identification of susceptibility genes outside of the HLA region in 

ACPA- RA has proved less fruitful in comparison to ACPA+ RA102. Whilst the presence of 

autoantibodies greatly facilitates the reliable diagnosis of seropositive RA, no such biomarker 

exists for seronegative disease. As a result, misdiagnosis of these patients due to clinical 

heterogeneity can confound studies of this serotype103. 

Increasing sample sizes and meta-analyses, perhaps with better classification of patients in the 

clinic and recruitment of larger cohorts, will be required to further decipher the genetic 

background in seronegative disease. Nonetheless, there are two loci, mapping to 

ANKRD55/IL6ST and BLK, which have been identified as risk loci in RA independent of 

serological status, highlighting a potentially common pathways in disease104, 105. 

As with the HLA region, risk variants identified in GWAS would suggest that to some degree 

AIDs share a common underlying genetic aetiology. By incorporating GWAS data from 7 AIDs 

(RA, Psoriasis, MS, SLE, Crohn’s disease, Coeliac disease, T1D), Cotsapas and colleagues 



 

15 
 

found 47 loci which showed evidence of association with multiple traits, implicating IL23R, 

PTPN2, CTLA4, ORMDL3, and STAT4 amongst others as genes which may contribute to the 

autoimmune phenotype of cells in AIDs106. There is now also evidence to suggest that many 

autoimmune-associated pathways may be active in allergic disease, with 29 loci associated with 

susceptibility to allergy also found to be enriched amongst autoimmune loci107. This is 

congruent with observations that many AIDs appear to co-segregate in families at higher rates 

than would be expected by chance, as is evident for T1D and primary biliary cirrhosis (pairwise 

odds ratio (i.e. odds of having the disease in individuals with a family history of the other 

disease) = 4.6), amongst other diseases108. 

Identifying risk-associated SNPs can begin to give clues about the specific cell types that are 

involved in triggering the break in self-tolerance, or in driving progression to clinical disease. 

For example, the risk variant mapping to CTLA4 is informative given the role of CTLA-4 in 

suppression of immune responses by regulatory T cells109. In general, genes putatively 

implicated by their proximity to RA risk SNPs suggest the crucial contribution of lymphocyte-

mediated immune responses, as would be expected. Amongst the candidate genes identified to 

date, those with well-established roles in lymphocyte function include IL2RA, STAT4, and 

CCR6 
97, 110-112.  Although over 100 non-HLA genetic risk loci have been identified, little is 

known about the mechanisms through which these contribute to disease. 

1.4 Linking genotype to phenotype – expression Quantitative Trait Loci 

Despite the relative success in employing GWASs to uncover genomic loci at which sequence 

polymorphisms confer increased risk of developing RA, translating this knowledge into an 

understanding of molecular mechanisms through which genetic risk influences cell-mediated 

pathogenesis lags some way behind. Given that risk SNPs overwhelmingly map to non-coding 

regions of the genome, with only 16% being in linkage disequilibrium (r2 >0.8) with a missense 

variant97, assigning which gene within a given locus is responsible for the disease association 

is troublesome. This is common to all GWAS hits across various autoimmune conditions, with 

approximately 90% of trait-associated SNPs falling outside of the protein-coding regions - and 

~60% mapping to enhancers elements that exhibit cis-regulation of gene expression in a 

temporal and cell type specific manner45. In particular, SNPs associated with RA are over-

represented in enhancer elements that are active specifically in T- and B-cells45. Together with 

the observation that 77% of GWAS hits are located within DNase I hypersensitivity sites 

(DHSs)113, this would suggest that these variants have a regulatory function, and influence 

pathogenesis through modulation of transcriptomic profiles in disease-relevant cell types.  
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Whilst the genome is static and - with a small number of notable exceptions – identical in all 

cells of the human body, dynamic transcriptional programs dictate cell fate decisions and 

function. By integrating cell type-specific patterns of transcription factor (TF) binding and 

chromatin modifications with knowledge of disease-associated risk loci, the relative 

contribution of immune compartments to aetiology may be inferred. In RA this approach has 

confirmed the central role of lymphocyte subsets in pathogenesis, with risk-associated SNPs 

enriched in CD4+ T cell and B cell (super-) enhancer elements that can orchestrate the activation 

of cell-specific gene expression profiles45, 114-116. In addition, GWAS SNPs associated with 

traits including RA, MS, T1D, asthma, and inflammatory bowel disease (IBD) are enriched in 

regulatory regions that are active in memory CD4+ T cells shortly following cytokine 

stimulation117. As well as describing a potential function for AID-associated variants early 

following immune activation, these findings, together with observations that RA variants are 

enriched at genes and active regulatory regions specific to CD4+ T cells (particularly naïve and 

regulatory (Treg) subsets), implicate these as critical pathophysiological cells116, 118. Consistent 

with this, a statistical approach to partition disease heritability into regions at which cell-specific 

gene expression occurs has strongly implicated T cells, and to a slightly lesser extent B cells, 

in RA pathogenicity119. 

Enhancer elements often reside many kilobases (Kb) from the transcription start site of the 

genes which they regulate, and can be in intergenic regions or the intron of unrelated genes120. 

For this reason, assigning a given SNP to a candidate gene is not straightforward. The 

development of technologies that enable the 3D chromatin structure to be assessed, such as 

chromosome conformation capture based techniques, have facilitated the association of 

enhancer-related risk variants to gene promoters by assessing physical interactions in 3D 

space121. Mapping long-range enhancer-promoter interactions in T cells has facilitated the 

nomination of RA candidate genes located up to 1 megabase (Mb) from the regulatory SNP122. 

An important approach to circumvent the issues surrounding non-coding variants, and nominate 

candidate genes at a given risk locus, is to assess the influence of SNPs on transcriptional 

activity. Identifying SNPs that regulate gene expression can facilitate the localisation of causal 

SNPs within extended haplotype blocks, as well as highlighting the genes and pathways 

involved in pathogenesis. Genomic loci with such regulatory capacity can be mapped genome-

wide by seeking associations between allele copy number and transcript levels in large 

populations of genotyped individuals.  These associations are termed expression quantitative 

trait loci (eQTLs). Such eQTLs can act via distinct mechanisms; be that in cis, whereby the 
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gene is located proximal to the regulatory SNP, or in trans which occurs over an extended 

distance, often separate chromosomes123.   

These approaches have proved valuable in bridging the gap between the number of variants 

known to confer susceptibility, and candidate disease genes. Notably, the predicted capacity of 

a given non-coding SNP to function as an eQTL is a valuable criterion when selecting variants 

for more extensive functional studies124. Importantly, many eQTL effects can be specific not 

only to tissue and cell type125-129, but also to the stage of cellular development130. The genotype-

tissue expression (GTEX) project has successfully mapped eQTLs in a range of human tissues 

post-mortem, generating a vital resource for studying the tissue-specific impact of genetic 

variation on gene expression131. However, environmental context, such as immune stimulation 

during infection or AID, appears to influence these regulatory effects, and may account for 

inter-individual variability in immune responses132-134. For the reasons outlined here, if insights 

are to be gained into the role of eQTLs in complex disease, such mechanisms should ideally be 

studied in relevant cell types isolated from appropriate patient cohorts. 

1.4.1 eQTL mapping in rheumatoid arthritis 

Identification of eQTL effects in a range of cell types has been employed in complex immune-

mediated conditions such as RA, with the aim of highlighting disease-relevant pathways for 

drug targeting or cellular therapy. By isolating pure populations of primary immune cells from 

healthy individuals, and assessing the capacity of RA risk variants to regulate transcript 

expression in cis, genes can be nominated for which up-/down-regulation impacts cellular 

phenotype and, consequently, immune responses118, 128, 135. Ishigaki and colleagues showed that 

cell-specific up-regulation of cytokine pathways, namely the TNF pathway in CD4+ T cells, 

may be dependent on genotype, illustrating how multiple variants can generate a cell-mediated 

inflammatory response136.  

The first eQTL analysis to be carried out using whole blood transcriptomes from RA patients 

revealed a greater enrichment of RA-associated SNPs functioning as eQTLs in samples from 

RA patients relative to those form healthy controls, again emphasizing the importance of 

disease context137. The same study found that eQTL variants identified in whole blood were 

enriched in enhancer elements that are active in primary blood cells including monocytes, T 

cells, and B cells, demonstrating a degree of cell-type specificity137. One mechanism through 

which RA risk variants may influence gene expression in T cells is by modifying the 

accessibility of chromatin, allowing TFs to at bind regulatory elements138. Our group has 

performed the first eQTL analysis in CD4+ T cells and B cells from untreated early arthritis 
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patients, refining the regulatory landscape and revealing genes that warrant follow-up 

investigation regarding their role in the inception and progression of RA139.  

In conclusion, genetic data in isolation has limited interpretability with regards to identifying 

the mechanisms of cell-mediated pathogenicity. Integration of multiple layers of molecular data 

is now integral for understanding how risk-associated polymorphisms alter cellular function 

during disease, and this will be discussed further in section 1.6. In addition to providing 

mechanistic insights and highlighting disease-relevant molecular pathways, eQTL effects may 

also present a potentially useful biomarker when predicting responses of individual patients to 

biologic drugs140.  

1.5 Environmental risk factors 

Though there is clearly a considerable genetic contribution to RA pathogenesis, the 

concordance rates of ~15% between monozygotic twins indicates that non-genetic exposures 

are integral in triggering disease induction98. There is growing evidence that initial triggering 

of the immune response occurs at mucosal surfaces where leukocytes are exposed to 

environmental stimuli, namely the lungs, the gingiva, or the gastrointestinal tract. Whilst the 

precise factors involved in triggering these responses remain poorly characterised, those for 

which the most substantial insights exist from epidemiological and mechanistic studies are 

discussed below. 

1.5.1 Smoking 

Exposure to cigarette smoke has emerged as a prominent risk factor in RA, with the association 

confirmed in both twin and case-control studies141, 142.  In particular, the role of smoking as a 

determinant of RA susceptibility is confined to seropositive disease, with this effect particularly 

pronounced in individuals with an extended period of exposure, indicative of a dose-dependent 

response142, 143. Expressing the overall smoking exposure as cigarette pack years by normalising 

the number of cigarettes to smoking duration (1 pack year = 20 cigarettes per day for one year), 

revealed a dose-dependent increase in relative risk (relative to those who have never 

smoked)142. Interestingly, the effects resulting from smoking exposure appear to be reversible 

upon cessation, though this may take from 10-19 years for the elevated risk to subside142. 

Smoking as a risk factor presents a clear example of a gene-environment interaction in RA 

susceptibility. The influence of smoking as a risk factor is linked to the presence of the SE of 

HLA-DRB1 molecule83, 84. This interaction is only evident in the case of ACPA+ disease, with 

smokers carrying two copies of the SE alleles having 21-fold higher risk of developing RA 
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relative to non-smokers with no copies of the SE alleles144. This is in contrast to a relative 

increased risk of 5.4 in non-smokers with two SE allele copies, or a 1.5 relative increased risk 

in smokers without SE alleles144. Following on from these discoveries, it has been demonstrated 

that, regardless of the risk alleles present at the SE locus, the observed interaction with smoking 

remains145. 

Whilst mechanisms have been proposed, precisely how smoking contributes to autoreactive 

immune responses remains to be deciphered. There is some evidence to suggest that smoking 

may lead to the upregulation of PAD enzymes that catalyse the post-translational citrullination 

of peptides in cells of the bronchiolar lavage146. This coincided with increased citrullination in 

these cells146. Indeed, the observation that ACPAs are enriched in the bronchiolar lavage fluid 

of early ACPA+ RA patients relative to the serum supports the hypothesis that the early 

dysregulated immune response may occur in the lungs147. This is further supported by the 

observation of immune cell infiltration and local activation of B cell responses in the lung tissue 

of ACPA+ RA patients148. More recently it has been proposed that, whilst environmental 

triggers including smoking are important in the initial production of ACPAs at mucosal surfaces 

such as the lung, genetic risk factors at the HLA locus determine the transition to autoimmune 

disease with associated clinical features30, 78. 

Despite being the most well-established environmental risk factor in RA, further work is 

necessary to decipher precisely how this exposure may trigger an autoimmune response. 

Interestingly, smoking also represents a prominent risk factor in autoimmune conditions such 

as MS43. 

1.5.2 Periodontal disease 

An intriguing link between periodontal inflammation, caused by Porphyromonas gingivalis 

bacterial infection, and RA susceptibility has been described149. These bacteria express a form 

of the PAD enzyme that is responsible for the post-translational citrullination of peptides 

described earlier 150. Indeed, these bacterial PADs exhibit the potential to citrullinate the human 

fibrinogen and α-enolase proteins, suggesting they may contribute to the formation of 

neoantigens that are the target of the autoimmune response during RA151. Immunogenicity 

directed towards P.gingivalis is elevated in RA patients relative to controls, as well as in 

ACPA+ relative to ACPA- patients, and appears to interact with the shared epitope as well as 

smoking status152. More recent work had posited that a distinct pathogen, Aggregatibacter 

actinomycetemcomitans, may trigger citrullination in host neutrophils and thus links 

periodontal disease to autoimmunity153. While perturbations in the species composition of the 
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microbiome have been liked to many AIDs, the mechanistic link between P. gingivalis, protein 

citrullination, and autoimmunity appears to be specific to RA. Nonetheless, periodontal disease 

resulting from P. gingivalis infection can exacerbate insulin resistance in mice fed a high fat 

diet154. This appears to occur via activation of adaptive immune responses, with expanded 

populations of T cells (CD4+ and CD8+) and B cells in the spleen and local lymph node, 

highlighting a potential link with T1D154. The effect of periodontal infection was not observed 

in mice fed normal chow, however, suggesting that diet also plays an integral role in this 

mechanism. 

Despite the possible mechanisms above, the link between the oral mucosa and triggering of RA 

remains tentative, and the association between periodontitis and RA was not replicated in a 

recent analysis of a Swedish cohort155. However, using a metagenomics approach to study the 

microbiomes at multiple mucosal sites of RA patients and controls, Zhang and colleagues were 

able to detect dysbiosis at both the oral and gut sites156. Notably, microbial balance was partially 

restored upon treatment with DMARDs156. In this study P.gingivalis was found to be enriched 

at the oral sites (saliva and dental plaques) in control samples, potentially discrediting the link 

between this species and RA156. 

Though a number of exposures have been highlighted in epidemiological studies, and work has 

now begun to attempt to decipher potential mechanistic links with autoimmunity in RA, the 

environmental contribution to RA susceptibility remains largely unexplained. Going forward, 

we must also consider how genetic and environmental risk factors interact, as has been 

convincingly shown to be the case for smoking and the shared epitope. As will be discussed in 

the subsequent section, the epigenome may represent an important level at which DNA variants 

and environmental exposures converge to cause aberrant immune responses.  

1.6 Epigenetics 

Though risk-associated polymorphisms in RA appear to exert their effect on disease initiation 

and progression through the modulation of cell-specific transcriptional profiles, twin studies in 

RA predict that at least 50% of an individual’s susceptibility is conferred through non-genetic 

risk factors.  

‘Epigenetics’ is often used to describe heritable changes in gene expression and/or phenotype 

that occur in the absence of changes to the primary DNA sequence. Such modifications can 

influence transcriptional programmes, and as such are tightly involved in the determination of 

cell fate and function. Genetic variation and environmental exposure may to some extent 
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converge at the level of the epigenome, and as such these epigenetic changes may be impacted 

by multiple risk factors, in turn regulating gene expression. 

Mechanisms through which this epigenetic regulation may occur are chemical modification of 

either the DNA nucleotides themselves or the histone proteins around which the DNA is 

packaged in the nucleus, as well as non-coding RNAs which can regulate gene expression at 

the transcriptional, translational, and post-translational level. 

1.6.1 DNA methylation 

Perhaps the most frequently studied epigenetic modification with respect to its putative role in 

disease mechanisms, or clinical utility as a biomarker, is the addition of a methyl group (CH3) 

to carbon atom at the 5th position of cytosine nucleotides to create 5-methylcytosine (5mC) 

residues. In humans, his predominantly occurs in the context of cytosine-guanine dinucleotides 

(CpGs). Though rare, non-CpG methylation at CHG or CHH sites (here H represents non-

guanosine nucleotides) has been described in animals including humans157. In human cells, 

DNA methylation (DNAm) is pervasive throughout the genome, with 5mC found at 

approximately 70-80% of these CpG sites158. A family of highly conserved DNA 

methyltransferase enzymes (DNMT1, DNMT3A, DNMT3B) catalyse the conversion of 

cytosine to 5mC in mammalian cells by transfer of the methyl group from a methyl donor – S-

adenosylmethionine (SAM) - to the cytosine residue (Figure 1.5A)159.  

Conversely, whilst DNA de-methylation was initially believed to be a, exclusively passive 

process in humans, the recent discovery of a group of enzymes, termed ten-eleven translocation 

methylcytosine dioxygenases (TET1, TET2, TET3) that catalyse the conversion of 5mC to 5-

hydroxymethylcytosine (5hmC), demonstrates that active de-methylation can occur160. 

Subsequent to their identification, it was revealed that these enzymes are involved in a series of 

iterative oxidization reactions that convert 5mC to 5hmC, then to 5-formylcytosine (5fC), and 

finally 5-carboxycytosine (5caC)161 (Figure 1.5B). As regards active DNA de-methylation, 

following the oxidization of 5mC by the TET enzyme, the oxidized bases are passively diluted 

to cytosine by DNA replication (Figure 1.5C). This therefore signifies a mechanism whereby 

DNA methylation can be reversed in terminally differentiated cells. In certain contexts 

however, such as the global de-methylation that occurs during re-programming of mouse 

embryonic stem cells to a pluripotent state, active de-methylation can occur independent of the 

activity of TET enzymes162. 
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The methyltransferase enzymes have distinct roles in the establishment and maintenance of 

DNAm during the cell cycle. DNMT3a and DNMT3b are responsible for establishing de novo 

patterns of DNAm in human and other mammalian cells during early development (Figure 

1.5C)163. The activity of both these de novo methyltransferases can be regulated by a third 

family member, DNMT3L, which lacks catalytic activity but can stimulate the activity and 

targeting of the other two family members164-166. 

DNMT1, which was the first DNA methyltransferase enzyme to be identified and cloned, 

preferentially acts on hemi-methylated sites and is therefore critical in the maintenance of CpG 

methylation as cells undergo DNA replication and mitosis167, 168 (Figure 1.5C). The ubiquitin 

ligase protein UHRF1 is central to this process due to its role in recruiting DNMT1 to sites of 

hemi-methylated DNA169. Given that DNMT1 is necessary for maintenance of methylation 

across cell division cycles, passive de-methylation can occur in the absence of functional 

DNMT1 or UHRF1 (Figure 1.5C), such as may be the case during resetting of methylation in 

the early embryo through nuclear exclusion of these proteins170.  

A novel role for TET enzymes in regulatory T cell (Treg) function has been described, whereby 

knock out of TET2 and TET3 in mouse Tregs led to the hyper-methylation of the Foxp3 gene 

and ablation of their regulatory capacity, with the cells taking on an effector phenotype171. This 

example demonstrates the role of TET-mediated active de-methylation in controlling the 

differentiation and function of cells, such as those that orchestrate immune responses. 

Figure 1.5 (previous page): Mechanisms of DNA methylation and de-methylation in mammalian cells 

A) Active methylation by the DNA methyltransferase (DNMT) enzymes. These enzymes catalyse the 

conversion of cytosine to 5-methylcytosine. S-adenosylmethionine (SAM) acts as a donor for the methyl 

group, and in the process is converted to S-adenosylhomocysteine (SAH). (B) Molecular mechanism of ten-

eleven translocation (TET) enzyme-mediated active DNA de-methylation by sequential oxidization of 5-

methylcytosine to produce 5-hydroxy-methylcytosine, 5-formyl-cytosine and, ultimately, 5-carboxy-

cytosine. Each stage of this TET-mediated process requires the substrates oxygen and α-ketoglutarate (α-

KG), with the production of carbon dioxide and succinate along with the oxidized nucleotide. (C) 

Establishment of DNA methylation patterns at a cellular level. De novo DNA methylation occurs through the 

actions of DNMT3a and DNMT3b. As cells undergo mitosis, the daughter cells each contain one copy of the 

methylated DNA strand, with the newly synthesized strand lacking this modification. DNMT1 functions to 

maintain patterns of DNA methylation in daughter cells by recognizing hemi-methylated DNA and adding a 

methyl group to the newly synthesized strand. In the absence of DNMT1 activity, passive DNA de-

methylation occurs as successive rounds of mitosis dilute the methylated DNA, such that after 2 rounds of 

mitosis, daughter cells completely lacking methylation are generated. Active DNA de-methylation can also 

occur due to the activity of the TET enzymes. Figure adapted from Wu & Zhang (2014)159. 
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1.6.2 Histone modifications 

The DNA in a cell is organised around a core of histone proteins, composed of two copies each 

of the histones H2A, H2B, H3, and H4, to form a nucleosome. These nucleosomes can then 

condense even further to form the densely packed heterochromatin through the action of the 

linker histone H1. Chemical modifications to the histone tails, including acetylation and 

methylation, can alter the accessibility of TFs to regulatory regions in the DNA, thus dictating 

patterns of gene expression and cellular phenotype172. 

Histone modifications are useful in delineating the transcriptionally active or repressed regions 

of the genome. For example, tri-methylation at lysine 4 of histone H3 (H3K4me3) is enriched 

at active promoters, whereas mono-methylation at this position and acetylation at lysine 27 

(H3K27ac3) are associated with enhancer regions and active promoters173. Conversely, tri-

methylation at lysine 27 of H3 (H3K27me3) is indicative of heterochromatin formation, and 

thus repression of gene expression173. 

To date, studies of chromatin modifications in RA have largely focussed on the FLS cells. Ai 

and colleagues extensively profiled the epigenome of these cells from both RA and OA patients, 

including chromatin immunoprecipitation with sequencing (ChIP-seq) assays to map histone 

modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3, and H3K36me3)174. 

This approach identified genomic regions that share similar epigenetic modifications, and 

regions harbouring active promoter and enhancer histone marks were identified that differed 

between RA and OA patients174. Upregulation of bone and cartilage-degrading MMPs 

(including MMP1, MMP3, MMP9, and MMP13) in RA FLS is also associated with histone 

modifications at their promoters, with increased levels of H3K4me3 (active) and a reduction in 

H3K27me3 (repressive), which facilitates STAT3 binding downstream of IL-6 signalling175. 

This may also represent a promising therapeutic avenue, and inhibition of histone deacetylase 

(HDAC) 3 in RA FLS was able to suppress pro-inflammatory type I IFN signalling176. 

1.6.3 Non-coding RNAs 

Despite only ~2% of the human genome sequence comprising protein-coding exons, non-

coding regions have essential regulatory roles, including non-coding RNAs which are not 

translated but are central in both development and disease177. Micro RNAs (miRNAs) are 

approximately 22 nucleotides long and function to repress transcription of protein-coding genes 

by either targeting messenger RNA (mRNA) for cleavage, or repression of translation by 

ribosomes177. Altered expression of a number of miRNAs has been described in both the 

peripheral blood and synovial tissue of RA patients178. For example, miR-146a is upregulated 
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in CD4+ T cells from the peripheral blood and synovial tissue of patients with RA relative to 

healthy controls179. This particular miRNA may contribute to pathogenesis and chronic 

inflammation in RA by suppressing apoptosis in these cells179. These miRNAs may also 

contribute to the hyper proliferative state that characterises FLSs of the RA joint. A reduction 

in the expression of miR-34a* in FLSs from patients with RA relative to those with OA can 

render these cells more resistant to apoptosis180. 

Long non-coding RNAs (lncRNAs), which are >200 nucleotides in length, are involved in a 

diverse range of regulatory processes, including transcriptional regulation through recruitment 

of TF and complexes that modify chromatin structure177. Through transcriptomic profiling of 

FLSs from 10 RA patients and 10 healthy controls, Zhang et al. found 135 lncRNAs to be 

differentially expressed, with 67 up-regulated in RA FLSs181. Levels of one of these lncRNAs, 

ENST00000483588, showed a positive association with both CRP levels and disease activity 

in these patients, though whether its expression precedes - or is a downstream consequence of 

- inflammation is unclear181. Numerous lncRNAs with potential pathological roles in RA have 

been described in the blood and synovium, though validation studies and further functional 

characterisation is required to gain mechanistic insights182.   

1.6.4 DNA methylation in transcriptional regulation 

DNAm is typically linked to genome silencing and transcriptional repression, including well-

characterised roles in processes such as X chromosome inactivation to ensure transcription from 

one chromosome copy in females183. Whilst the majority of CpG sites in human cells exist in a 

methylated state, clusters of CpGs generally located at gene promoters, termed CpG islands 

(CGIs), predominantly remain unmethylated in a state that is associated with active 

transcription184. In more general terms however, the relationship between DNAm and gene 

expression is complex and relies on intricate spatial and temporal interactions between DNAm, 

other epigenetic modifications such as histone methylation/acetylation, and TFs. This 

relationship also appears to be dependent to some extent on the genomic context of a CpG site. 

Ball et al. (2009) demonstrated that promoter regions of highly expressed genes exhibit low 

levels of methylation, whereas extensive methylation is present at the gene bodies 

themselves185. In contrast, genes with a lower level of expression showed an intermediate level 

of methylation, which was relatively constant across both the promoter region and the gene 

body185. Furthermore, the density of CpG sites at a promoter region appears to be intimately 

related to the methylation levels at those sites. For example, promoter regions with a high CpG 

content exhibit reduced methylation relative to those with a lower CpG density185. The 

observation that genes can still be transcriptionally active in the presence of promoter 
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methylation is further proof that DNAm should not solely be considered as a repressor of 

transcription186. Interestingly, analysis of tissue-specific DNA methylomes and transcriptomes 

has revealed that differentially-methylated regions (DMRs) in intragenic regions display the 

strongest associations with expression, and may therefore be important for instructing tissue-

specific patterns of transcription187.  

Whether DNAm plays an active role in regulating transcriptional programmes in the cell, or 

rather DNA de-methylation actually represents a downstream footprint of TF binding and 

increased chromatin accessibility is still ambiguous. Most studies in vivo report negative 

correlations between DNAm at CpG sites and transcript levels of proximal genes, though in 

many instances no method is employed to infer causality or take into account the order in which 

these events occur. Using infection of dendritic cells as a model system to study the temporal 

dynamics of DNAm and transcription, Pacis and colleagues were able to show that recruitment 

of the transcriptional machinery and gene activation precedes enhancer de-methylation188.  In 

this particular system it may be that modification of the DNAm status at enhancer elements 

allows ‘priming’ of these genes that are upregulated in response to infection, allowing 

subsequent responses to be more rapid. 

However, perhaps the best evidence for an active role of DNAm in coordinating transcriptional 

programmes comes from the observation that the steric interactions between TFs and DNA is 

disrupted by the presence or absence of methylation189. Whilst DNAm has been linked to 

repression of transcription, global analysis of the effects of CpG methylation on TF binding has 

revealed a complex picture whereby methylation at its cognate binding site can either weaken 

or enhance the binding affinity of different families of TFs190-192. Moreover, this modulation of 

TF binding is also sensitive to the position of the methyl modification across the TF binding 

site (TFBS) region192. TFs also have the capacity to shape local DNAm upon site-specific 

binding, illustrating that the relationship is bi-directional193, 194. Given that the DNMTs and 

TETs do not display sequence-specific recognition capabilities, it seems likely that TFs are able 

to bind and recruit the methylation machinery. This would be in agreement with observations 

that 5hmC, which is produced by the oxidisation of 5mC by TET enzymes (see section 1.6.1), 

is significantly enriched at TFBSs in the human genome195. 

The precise mechanisms through which DNAm may control transcriptional activity are yet to 

be comprehensively described. Consistent with the methylation-sensitive binding properties of 

TFs, DNAm may directly influence expression of genes by interfering with binding of these 

factors to regulatory elements, as has been described for the E2F family196. Alternatively, 

inhibition of transcription may occur indirectly through the recruitment of proteins that 
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recognise methylated DNA197. One such family of proteins are those containing a methyl-CpG 

binding domain (MBD). Members of this family include MeCP2 and MBD1-6, although not 

all have been shown to bind methylated DNA in vitro
198-200. In addition to these MBD-

containing proteins, the Kaiso family bind methylated CpGs via a C-terminal zinc finger 

domain201, 202. A third family of proteins are able to recognise methylated DNA through binding 

of a SET and RING finger-associated (SRA) domain203, 204. Many of these proteins have been 

shown to recruit histone remodelling machinery such as HDACs upon binding to methylated 

DNA, forming repressor complexes that establish stable downregulation of gene expression203-

206. The interaction of MeCP2 with HDACs also has an important function in regulating 

alternative splicing of mRNA, with recruitment of MeCP2 to the methylation-enriched 

alternatively spliced exons promoting their inclusion in the mature transcript207. 

Though clear associations between chemical modification of DNA nucleotides and 

transcriptional activity have been described in vivo, and TF-DNAm interactions described in 

vitro, future work that aims to gain mechanistic insights must attempt to more comprehensively 

unravel the precise regulatory function of DNAm. Given the role of DNAm in transcriptional 

regulation, it has emerged as an interesting molecular signature for mechanistic studies into the 

pathogenesis of complex diseases. 

1.6.5 Epigenome-wide association studies 

An experimental approach aimed at capturing disease-associated DNAm signatures is to design 

hypothesis-free studies to compare the methylation levels between patients and controls at 

multiple sites in parallel. These epigenome-wide association studies (EWASs) seek to identify 

differentially methylated positions (DMPs) or regions (DMRs) between cases or controls which 

may highlight disease-relevant molecular pathways or have clinical utility as biomarkers for 

patient diagnosis or stratification. The most common methods of quantifying DNAm at multiple 

CpGs in parallel involve first performing bisulphite conversion of the sample DNA to convert 

unmethylated cytosine (C) residues to uracil (U; Figure 1.6). Following conversion, DNA can 

be amplified whereby DNA replication results in the conversion of uracil to thymidine (T), and 

the relative proportions of C to T residues at a given position giving a proxy readout of the 

methylation levels in the initial pool of sample DNA.  
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Methods differ in how nucleotide quantification is performed in the final step, either by whole-

genome sequencing (WGS) or array-based methods208. Whilst WGS offers the advantage of 

being able to quantify DNAm at every CpG site genome-wide, the Illumina Infinium™ 

methylation arrays have proved a popular tool for EWAS given they offer the capacity to assay 

up to 8 samples in parallel at a relatively low cost. The current platform distributed by Illumina, 

the Infinium™ MethylationEPIC BeadChip, allows for >850,000 methylation sites to be 

assayed per human sample. Importantly, the chip is designed to target regions including CGIs 

(>90% of human CGIs), regions of open chromatin (>66%) and TFBSs (>78%) from the 

Encyclopaedia of DNA Elements (ENCODE) project209, 210, as well as enhancers identified by 

the functional annotation of the mammalian genome 5 (FANTOM5) project211. Probes on the 

MethylationEPIC array predominantly target promoter regions (54%), with the others lying in 

gene bodies (30%) and intergenic regions (16%)212.  

Whilst the study design of EWAS aims to identify disease-associated epigenetic modifications 

that occur independently of the genome sequence, all sources of variability in DNAm between 

individuals diagnosed with a disease and those who are unaffected must be considered. Firstly, 

Next-generation 
Sequencing 

Array 
Hybridization 

50% 
Methylation 

Figure 1.6: Bisulphite conversion of DNA allows for the levels of methylation to be quantified. This 

method involves treatment of DNA with sodium bisulphite which results in the conversion of unmethylated 

cytosine (C) residues to uracil (U), whilst methylated cytosine residues are protected against conversion. 

Following amplification, all unmethylated cytosine residues will be represented by thymidine (T) residues and 

quantifying the ratio of cytosine to thymidine in the converted DNA by either next-generation sequencing or 

array hybridisation gives a read out of methylation levels in the original sample.  
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given that DNAm is highly cell-type specific, when complex tissues are assayed, the relative 

proportions of cell types should be taken into account. Another issue is that of reverse causality, 

as DNAm may be influenced by inflammatory markers such as CRP, which will inevitably be 

elevated in patients with autoimmune responses relative to healthy controls213, 214. Whilst such 

associations may be interesting with regards to biomarker discovery, they can considerably 

limit mechanistic insights into the function of DNAm in pathogenesis. For this reason, studying 

patients in the earliest stages of disease as is possible, as well as those who are yet to receive 

any form of therapy that alters the course of disease, is desirable. Finally, the impact of 

functional DNA polymorphisms that shape methylation changes in cis must be taken into 

account when considering differences in patient and control methylomes, which will be 

discussed in detail in section 1.6.9. Therefore, if DNAm perturbations are to further our 

mechanistic understanding in complex diseases, well-designed studies that go beyond simple 

correlations between methylation levels and phenotypes of interest in heterogeneous tissues 

must be performed. 

1.6.6 Leukocyte DNA methylation and RA 

The potential of modifications to the DNA methylome to shape cellular immunity during RA 

has been appreciated for some time. Perhaps the earliest indication that DNAm changes may 

be linked to RA pathogenesis was the observation that treating CD4+ T cells with 5-azacytidine 

(5-Aza), a cytidine analogue that induces global hypo-methylation, produced self-reactive 

properties, as is characteristic of cells contributing to autoimmune responses in RA215. 

Subsequent to this, it was shown that T cells isolated from RA patients display alterations in 

their DNA methylation profile, with an overall reduction in the levels observed relative to 

healthy individuals216. Targeted approaches to interrogate methylation signatures at candidate 

genes led to the identification of a single CpG at the IL6 gene promoter that was hypo-

methylation in peripheral blood mononuclear cells (PBMCs) from RA patients (58% 

methylation) relative to healthy controls (98% methylation), and linked to increased transcript 

levels of this gene217.  

The development of technologies that allow genome-wide quantification of DNA methylation 

levels has enabled EWAS to uncover correlations between DNAm levels in various tissues/cell 

types and the susceptibility to disease or response to treatment (see section 1.6.5). Liu and 

colleagues applied such an approach to identify DMPs between RA patients and healthy 

controls in peripheral blood, most notably falling within the MHC cluster218. Importantly, this 

was one of the first such studies in RA to account for cell type proportions in the sample tissues, 

estimating cellular compositions using a reference panel and adjusting for these accordingly218, 
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219. Interestingly, these RA-associated changes appeared to in part mediate genetic risk at this 

region, and such genetic-epigenetic associations will be discussed in section 1.6.9.  

Though methods exists that enable the cellular composition of complex tissues such as whole 

blood to be estimated based on DNAm profiles219, distinct DNAm profiles between cell 

subtypes mean that findings should ideally be validated in purified populations of cells. For 

example, a number of the associations identified by Liu et al. were successfully replicated in 

isolated monocytes218. A small study in isolated T cells and B cells from 12 RA patients and 12 

controls reported 32 and 20 DMPs in these disease-relevant cell types, respectively220. A similar 

approach investigating CD4+ T cell DNAm in individuals of Chinese Han ancestry reported RA 

hyper-methylation at 383 CpGs, with 785 sites displaying hypo-methylation in the patient 

cohort221. Using larger sample sizes to power DMP discovery, a B cell EWAS identified, and 

subsequently replicated in a validation cohort, disease-associated DNAm changes at 10 CpG 

sites222. With the exception of one of these sites, they all exhibited increased methylation levels 

in RA patients, and almost all were also associated with SLE, suggesting common pathways 

that may be epigenetically dysregulated in both conditions222. 

As well as potentially providing mechanistic insights into disease pathogenesis, DNA 

methylation may also be useful as a clinical biomarker, particularly of patient response to 

treatment. Differential methylation at five CpG sites in whole blood has been associated with 

clinical response to the TNF inhibitor etanercept223. Identifying such biomarkers in easily 

accessible patient tissue such as peripheral blood will be critical in adopting a stratified 

approach to treatment strategies, particularly in conditions such as RA where predictors of drug 

response are critically lacking. 

1.6.7 Fibroblast DNA methylation and RA 

Given the integral role of the FLS cells in orchestrating inflammatory processes and 

cartilage/bone destruction within the joint tissue itself224, these cells have been extensively 

analysed in RA epigenetic studies. RA synovial fibroblasts have reduced DNAm as measured 

by immunohistochemistry and flow cytometry, in comparison with the same population of cells 

in OA patients, though this study does not report the specific joints from which the samples 

originate225. Inducing de-methylation by 5-Aza treatment in normal FLS led to these cells 

adopting an activated phenotype, characterised by overexpression of genes encoding effector 

proteins such as interleukins and matrix-degrading enzymes225. Targeted approaches have 

suggested that promoter de-methylation drives overexpression of CXCL12 in RA FLS, with 

downstream effects on MMP levels226. 
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A small study assessing patterns of DNAm genome-wide suggested that positions differentially 

methylated in RA FLS relative to those from OA patients were pervasive throughout the 

genome, and were able to successfully discriminate cells isolated from these two groups227. It 

was subsequently discovered that the joint location in which a cell exists can influence its DNA 

methylome and transcriptome, with these differing not only between RA and OA FLS, but also 

between RA FLS isolated from hip and knee joints228. Principal component analysis (PCA) 

revealed FLS from RA and OA patients to cluster separately, as well as those from hip and knee 

sites within each condition, though the number of DMPs between joints in the same condition 

was lower than those between RA and OA228. This site-dependent methylation has been further 

corroborated by findings that DNAm and histone modification patterns regulating the 

expression of HOX genes in FLS are joint-specific, and manifests as distinct cellular 

phenotypes in RA229.  

These studies have culminated in the most extensive epigenomic profiling in RA to date, 

mapping transcription, DNAm, and chromatin modifications/accessibility in FLSs174. This 

analysis identified clusters of genomic regions that displayed similar epigenetic profiles, and a 

number of regions were shown to be differentially modified between RA patients and OA 

controls174. The observation that local microenvironments have the capacity to shape the 

methylome of resident cells further reinforces the importance of studying such effects in the 

relevant disease stage and tissue, facilitating the distinction between changes involved in the 

disease pathogenesis and those that occur as a consequence of the inflammatory processes. 

1.6.8 Twin studies of DNA methylation in autoimmune disease 

One common pitfall of EWAS is a failure to take into account the potential effects of functional 

DNA variants that can influence DNAm (i.e. methylation quantitative trait loci, see section 

1.6.9) - the allelic frequency at such variants may differ between comparator groups, especially 

for studies with small sample sizes. Such issues can be overcome by studying DNAm 

differences between disease-discordant monozygotic twins. A recent study which employed 

such a design, using 79 RA discordant twin pairs, found no CpGs to be differentially-methylated 

between the RA and control groups in whole blood230. There was however a marked increase 

in methylation variability at a number of positions in the RA twins (differentially variable 

positions; DVPs), with pathway analysis implicating disruption of stress response and binding 

of the RUNX3 transcription factor230. These findings may indicate that DNA variants drive 

large site-specific DNAm differences between individuals that are detected in EWAS, whereas 

external stimuli to which a cell is exposed, for example during early disease, may influence 

variability in methylation within this genetically determined range. 
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The hypothesis that disease-associated epigenetic modifications that manifest during complex 

autoimmunity may reflect underlying genetic architecture is corroborated by another study of 

T1D-discordant monozygotic twins. DNAm profiling of CD4+ T cells, B cells, and monocytes, 

identified only a singular DMP in CD4+ T cells and none in the other cell types231. Hierarchical 

clustering revealed that cell type and genetic variation underlie the majority of sample to sample 

variability, and not disease status (i.e. samples primarily cluster by cell type, and within each 

cell type twins cluster together)231. Interestingly, a large number of DVPs (10,548 B cell, 4,314 

CD4+ T cell, 6,508 monocyte) were identified in this study, and the affected twins were strongly 

enriched for hypervariable positions231. A separate study of PBMCs from MS-discordant 

monozygotic twins again showed DNA methylomes to be largely similar, though in this 

instance DVPs were significantly over-represented in the healthy twin 232. These findings, 

however, clearly demonstrate the need to consider both genetic and non-genetic influences on 

the epigenome, and this will be discussed in the subsequent section. 

To conclude, many lines of evidence suggest a central role for DNAm in the pathogenesis of 

RA, although the extent to which this is driven by genetic variation or environmental exposures 

remains ambiguous. Given the advancements in characterizing the genetic architecture of RA, 

the challenge is now to integrate DNAm with additional omics datasets in relevant cohorts to 

understand the precise contribution to disease processes beyond simple associations. For 

example, through combining cell-specific epigenetic and transcriptomic data, and considering 

the findings in the context of genetic risk factors, more comprehensive mechanistic 

understanding of the precise role of molecular traits in mediating pathophysiological processes 

can be achieved. 

1.6.9 Methylation Quantitative Trait Loci 

Given that changes in DNAm can occur upon cells being subject to extrinsic exposures (most 

notably cigarette smoke233-236), it is enticing to consider such modifications as mediators of 

environmental risk in complex disease. Additionally, DNAm is important in conferring 

plasticity of cellular responses. For example, during differentiation of monocytes to dendritic 

cells, STAT6 confers TET2-dependent demethylation and gene expression downstream of IL-

4 signalling237. However, as has been referred to in the previous section, DNAm can also be 

influenced by variants in the DNA sequence, representing an interface between intrinsic genetic 

risk and external stimuli to which cells are exposed. 

Genomic loci that are associated with DNAm levels in cis – termed cis-methylation quantitative 

trait loci (cis-meQTLs) – have been described genome-wide in a range of tissues and cell types 
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including foetal and adult brain238-241, adipose tissue242, 243, pancreatic islets244, whole blood245-

248, fibroblasts126, 249, CD4+ T cells127, 250, monocytes127, neutrophils127, and lymphoblastic cell 

lines (LCLs)126, 251, amongst others. As with eQTLs, these meQTLs can be mapped by 

quantifying DNAm genome-wide and seeking associations between allele copy number, for 

example at disease-associated SNPs, and DNAm levels (Figure 1.7). Early efforts to decipher 

the causal relationship between genetic variation and gene expression indicated that this likely 

occurs in several instances via the effects of the former on DNA methylation252. Indeed, meQTL 

variants are often found to co-localise with eQTLs, suggestive of a common underlying 

mechanism126, 127, 238-247, 249, 251, 253. At a given risk locus, a regulatory SNP may be associated 

with the magnitude of expression at proximal transcripts (cis-eQTL), and of methylation at one 

or more CpG sites (cis-meQTL) (Figure 1.7). 

Seeking associations between DNAm and transcript levels (expression quantitative trait 

methylation (eQTM)) downstream of QTL effects can further implicate DNAm as a potential 

mediator of transcriptional regulation at a given locus (Figure 1.7). In whole blood, expression 

levels at 90% of genes were shown to be associate with an meQTL CpG site in cis, though only 

23% of all identified cis-regulated DNAm sites themselves exhibited such a relationship with 

transcription245. Indeed, though co-localisation of eQTLs with meQTLs is frequently observed, 

the former displays a greater extent of tissue specific activity than the latter, such as has been 

shown across three immune cells (neutrophils, monocytes, and CD4+ T cells)127. Under the 

assumption that DNAm is a mediator of transcriptional regulation, this signifies that 

identification of meQTLs is a more proximal molecular trait to genetic variation than is 

transcript levels, which would be consistent with this greater degree of tissue non-specificity. 

This would indicate that not all meQTL activity has downstream effects on gene expression in 

a given tissue, confirming the need to incorporate transcriptomic data in epigenetic studies. 
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In instances of co-localised meQTL and eQTLs with an observed eQTM effect, a number of 

possible regulatory mechanisms could explain the co-localised signals (Figure 1.8). It may be 

that the SNP influences DNAm at a CpG site in cis, which subsequently modulates 

transcriptional activity (SNP – Methylation – Expression (SME); Figure 1.8A). Alternatively, 

reverse mediation may occur whereby changes in DNAm arise downstream of transcriptional 

regulation (SNP – Expression – Methylation (SEM), Fig. 1.8B). Finally, the regulatory SNP 

may directly influence DNAm and transcription independently, with no effect of DNAm and 

transcript levels (INDEP, Figure 1.8C). 

 

 

 

 

 

 

 

 

 

 

 

 

In human hippocampal tissue, regulatory eQTL SNPs (eSNPs) are 6.7-fold enriched for those 

which function as meQTLs relative those displaying no such regulation of DNAm241. In LCLs, 

Figure 1.7 (previous page): Mapping quantitative traits to infer mechanisms of cell-mediated 

pathogenesis. Following the isolation of cell-type specific DNA and RNA, patients are genotyped, and DNA 

methylation/gene expression data collected, for example using microarray platforms. By seeking linear 

associations between allele copy number and DNA methylation (methylation quantitative trait locus; meQTL) 

or gene expression (expression quantitative trait locus; eQTL), regulatory functions of single nucleotide 

polymorphisms can be unravelled. Following identification of QTL effects, associations between DNA 

methylation and gene expression (expression quantitative trait methylation; eQTM) indicate either co-

regulation of these two molecular signatures, or a causal effect of one on the other downstream of genetic 

modulation. Though in this example we show associations at a single locus, this can be performed in parallel 

throughout the genome. 

 

 

 

 

 

 

 

 

 

 

 

 

genome across all assayed regions. 
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Figure 1.8: Distinct regulatory models that can explain associations between SNP genotype, CpG DNA 

methylation, and gene expression observed in cross-sectional data. (A) Under the SNP → Methylation → 

Expression (SME) model, DNA methylation at the CpG site is directly influence by the allele present at the 

regulatory SNP, which in turn alter expression of the target gene. (B) The SNP → Expression → Methylation 

(SEM) model, also be referred to as reverse causation, occurs when the SNP directly regulates gene 

transcription, which in turn influences CpG methylation. (C) The independent (INDEP) model describes a 

scenario in which DNA methylation has no effect on gene expression, but rather the allelic effect on DNA 

methylation and expression represent independent associations. 
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25% of eQTLs also display association with DNAm, which represented significant enrichment 

for meQTL variants relative to what would be expected by chance251. Analysis of eQTLs and 

meQTLs in whole blood with subsequent testing for co-localization of regulatory variants has 

revealed that of 6526 independent eSNPs, 5192 (~80%) were also associated with methylation 

levels at one or more CpG sites in cis, with 54% of these designated as likely sharing a causal 

regulatory variant247. Importantly, 24% of the co-localised molecular trait loci in this study 

show some evidence of molecular mediation (either SME or SEM), with a Bayesian network 

analysis revealing that in approximately 90% of cases the SME model was most likely247. This 

SME model has also been favoured as the most likely mechanism of regulation in T cells, 

whereas in fibroblasts and LCLs the INDEP model was postulated to be more likely186.  

One frequent observation regarding the genomic mapping of meQTL variants is that they are 

depleted within CGIs (see section 1.6.4) and over represented in intergenic regions 186, 238, 242, 

244, 245. This may indicate that methylation patterns in promoter-associated CGIs are more 

evolutionary conserved, whereas more distant regulatory elements such as enhancers display 

more variable, genetically encoded methylation levels. That binding sites of the transcriptional 

repressor CCCTC-binding factor (CTCF) and other TFs are enriched at meQTLs suggests that 

binding of trans-acting regulatory proteins may drive DNAm modifications in a tissue-specific 

manner254. Indeed, DNA variants that modify TFBS were statistically enriched amongst those 

that modulate DNAm at proximal CpG sites251. The same study showed that meQTL SNPs are 

also frequently associated with additional molecular phenotypes, including histone 

modifications and gene expression, demonstrating that these sequence-dependent regulatory 

events are highly coordinated251. Though many TFs display methylation-sensitive DNA binding 

activity, it may also be the case that TF binding at many loci prevents DNAm from occurring 

at that locus, as has been described for SP1/SP3 binding sites255, indicating that this relationship 

can be bi-directional. 

1.6.10 Methylation quantitative trait locus analysis informs mechanisms of disease risk 

Transferring insight from me-/eQTL mapping into studies of disease genetics may help us to 

delineate the mechanisms through which non-coding variants can contribute to disease 

pathogenesis. As with eQTL variants, mapping SNPs that influence DNAm provides additional 

information for prioritizing GWAS variants for downstream functional analysis. Indeed, 

meQTL SNPs are enriched for GWAS variants conferring susceptibility to common diseases248, 

251, 256. As such, these variants have been shown to explain a proportion of the heritability of 

complex diseases, including autoimmune conditions257. Using relevant cell types and tissues 

for seeking co-localization of meQTL and GWAS variants will facilitate the discovery of 
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disease pathways. For example, both meQTL and eQTL SNPs in hippocampal tissue were 

enriched for schizophrenia-associated GWAS SNPs, providing a mechanistic link with complex 

disease in a relevant tissue type241.  In addition, mapping such regulatory effects in lung tissue 

has revealed putative mechanisms underlying susceptibility to chronic obstructive pulmonary 

disease253. Consistent with these findings, SNPs associated with autoimmune conditions from 

GWAS studies are overrepresented in differentially methylated regions DMRs that are 

specifically hypo-methylated in B and T cells relative to other tissue/cell types258. 

A recent study that integrated skeletal muscle molecular data from biopsies of a large cohort 

found multiple instances of DNAm mediating the genetic risk of traits including height, weight, 

and type II diabetes through its effect on gene expression259. Moreover, early studies of DNA 

methylomes from RA patients and controls identified patterns of differential methylation that 

were in part mediated by genetic variants218. The RA EWAS in B cells described in section 

1.6.5 highlighted that a number of the disease-associated CpG sites may be regulated by SNPs 

acting in cis
222. 

In addition to the tissue- and cell-specific nature of DNAm, the highly dynamic nature of this 

epigenetic modification necessitates the need to consider cellular context, particularly in studies 

of disease. Further to the joint-specific DNAm patterns identified in synovial fibroblasts228, 229, 

there is also some evidence that in autoimmunity, meQTL activity at certain GWAS loci may 

be specific to patients and absent in healthy control subjects248. The appreciation that DNAm 

patterns can be in part dictated by DNA polymorphisms in a cell-specific and context-specific 

manner highlights an interesting link between genetic and epigenetic risk factors in RA. Indeed, 

heritable patterns of methylation in CD4+ T cells, a cell type frequently studied in relation to its 

role in complex immune-mediated diseases, were largely attributable to regulatory variants in 

cis, with ~75% of heritable CpGs in this cell type being associated with cis-meQTLs250. 

Mapping meQTLs will help not only to decipher functional consequence of GWAS SNPs, but 

also to interpret EWAS studies that seek to associate epigenetic profiles with disease 

susceptibility and outcomes. 

As correlation between molecular signatures does not inform conclusions regarding causation, 

numerous statistical approaches can be applied that allow chains of causality to be statistically 

inferred from observational data. One such method, causal inference testing (CIT), relies on a 

series of conditional correlations to test the probability that a molecular mediator (i.e. DNAm)  

influences a phenotype of interest (e.g. gene expression or disease status) downstream of a 

genetic variant260. This test will be discussed in greater detail in Chapter 5 relating to its 

application for inferring chains of mediation in molecular data collected from the same 
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individuals. Another approach used frequently in epidemiological studies is Mendelian 

randomisation (MR), which relies on treating genetic variants that have been robustly 

associated with the trait of interest (i.e. from GWAS) as instrumental variables. This is useful 

because, unlike measuring other highly-confounded environmental exposures, genetic factors 

are (excluding somatic mutations) stable from birth across the life course, and each individual 

is effectively assigned a random genotype at birth (analogous to a randomised control trial)261.  

Trait-associated genetic variants can also be used to anchor the association, given that it is all 

but certain they are causal for the phenotype of interest and not vice versa (i.e. the measured 

exposure is not causing site-specific mutations in patients)261. The instrumental variable 

(genetic variant) should thus not be associated with the phenotype of interest (e.g. disease) 

except through its effect on the measured exposure (e.g. gene expression). Though causality 

cannot be proved from such cross-sectional patient studies, and ultimately needs to be 

demonstrated in vitro, these methods are useful for highlighting interesting loci with a high 

probability of genetic causality through an intermediate. 

1.7 Aims & Objectives 

1.7.1 Aims 

Comprehensively map the lymphocyte DNA methylation landscape in early arthritis, and 

investigate for the first time the role of DNA methylation as a mediator of RA genetic risk in 

CD4+ T cells and B cells from an early arthritis cohort. 

1.7.2 Specific Objectives 

o Assess global differences in CD4+ T cell and B cell DNA methylation between RA 

patients and those who have other arthritis diagnoses (Chapter 3). 

o Integrate paired patient genotype data and perform a methylation quantitative trait locus 

(meQTL) analysis, generating a comprehensive map of genetic-epigenetic interactions 

both in cis and in trans in a highly relevant patient cohort (Chapter 4). 

o Leverage GWAS data to assess the capacity of known RA-associated variants to 

influence lymphocyte DNA methylation. This analysis will also be extended beyond 

RA risk loci to investigate potential shared pathways of genetic risk in immune-

mediated diseases (Chapter 4). 

o Assess potential functional implications of genetically encoded DNA methylation 

variability by integrating publicly available sources of cell-specific chromatin state data 

as well as transcription factor binding sites. (Chapter 4). 
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o Incorporate transcriptomic data and employ statistical approaches for inferring 

molecular causality, identifying loci and genes for which DNA methylation likely 

mediates RA genetic risk at the transcriptomic level, as well as for immune-mediated 

disease more generally (Chapter 5). 

o Apply in vitro techniques to validate associations and regulatory mechanisms at 

interesting RA loci identified in the above analyses (Chapter 5). 
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Chapter 2 – Materials & Methods 

A note on contributors to laboratory work:  

The work described in sections 2.1-2.4 & section 2.8 (excluding 2.8.1) was carried out prior to 

commencement of the project by colleagues at the Newcastle University musculoskeletal 

research group (MRG), rheumatologists and research nurses at the Freeman hospital, and 

collaborators at the University of Manchester Arthritis Research UK Centre for Genetics and 

Genomics. I am grateful to the following for their contributions to laboratory work that has 

generated this molecular dataset and made this project possible: 

• CD4+ T cell isolation: Dr Amy Anderson, Julie Diboll. 

• CD19+ B cell isolation: Julie Diboll, Dr Nishanthi Thalayasingam,  

• DNA/RNA extraction from isolated lymphocytes: Dr Amy Anderson, Dr Phil Brown, 

Dr Arthur Pratt, Dr Nishanthi Thalayasingam.  

• RNA processing and transcriptomic arrays: Dr Nisha Nair, Dr Jonathan Massey. 

• Genotyping arrays and imputation: Dr Nisha Nair, Dr Jonathan Massey. 

• Sample processing and DNAm arrays: Dr Nisha Nair, Dr Jonathan Massey. 

I was responsible for all data analysis and experimental work described from section 2.5-2.7 

and 2.9-2.15. Cell sorting as described in section 2.15.4 was carried out with assistance from 

the Newcastle University Flow Cytometry Core Facility. 

2.1 Patient Recruitment 

Consenting patients were recruited from the Newcastle Early Arthritis Clinic (NEAC) prior to 

the commencement of any immunomodulatory therapy. Patients received a working diagnosis 

by a rheumatologist at inception, with all diagnoses confirmed at follow up > 1 year subsequent 

to the first visit. RA was diagnosed with reference to the 2010 ACR/EULAR criteria64.  For this 

study, samples were collected from a cohort of RA patients (both ACPA+ and ACPA-), together 

with a disease control group comprising patients receiving an alternative diagnosis. This non-

RA group included those with spondyloarthropathies (SpA: psoriatic arthritis, enteropathic 

arthritis, reactive arthritis, and undifferentiated spondyloarthritis), OA and other non-

inflammatory causes of arthralgia. Whilst these are all conditions that manifest as joint 

symptoms, the aetiologies and triggers are distinct from those in RA. For example, psoriatic 

arthritis (PsA) is a condition that affects up to 30% of patients who suffer psoriasis – an 

immune-mediated disease affecting the skin262. This condition is similar to RA in that it is 

characterised by synovial inflammation and immune cells infiltrating the joint, with genetic 
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associations such as those in HLA region indicative of an immune-mediated disease263. 

However, a number of distinct features of clinical presentation and pathogenesis of PsA, such 

as the absence of the specific circulating autoantibodies that characterise a major subgroup of 

RA patients, indicate differing disease processes. Similarly, OA presents as pain and stiffness 

accompanied by loss of function, principally in the joints of the hand, knee, and hip. However, 

to a much greater extent than RA and SpA, the condition is believed to develop as a result of 

factors such as biomechanical stress on the joints and defects in chondrocyte function that lead 

to dysregulated cartilage architecture, and a role for the immune system in mediating 

pathogenesis is considered to be much less pronounced46, 264. Selecting patients diagnosed with 

conditions for which the clinical manifestations broadly reflect those seen in RA patients, but 

are at least to some degree aetiologically distinct, represents a suitable control group for 

studying the pathogenesis of RA. The control population, hereon in referred to as the ‘non-RA’ 

group, thereby included both patients with primarily immune-mediated, and non-immune-

mediated joint pathology. 

Section 3.2 describes the demographic and clinical characteristics of these cohorts in greater 

detail (see Table 3.1). Ethical approval for this study was granted by the North Tyneside 

Regional Ethics Committee, with patients giving written informed consent prior to enrolment 

(REC: 12/NE/0251). 

2.2 Lymphocyte isolation from peripheral blood and DNA/RNA extraction 

Peripheral blood was collected from consenting patients attending the NEAC and stored for up 

to four hours at room temperature prior to processing. CD4+ T cells and CD19+ B cells were 

isolated from peripheral blood by positive selection using a magnetic bead-based approach. 

This involves first labelling specific cell subsets using marker-specific antibodies complexed 

to magnetic beads. Labelled cells are then isolated as they pass through a magnetic column. 

For CD4+ T cell isolation, monocytes were initially depleted using RosetteSep™ Human 

Monocyte Depletion Cocktail (Stemcell Technologies, Cambridge, UK; Cat# 15668), followed 

by the addition of HetaSep™ solution (Stemcell Technologies, Cat# 07906) and density 

centrifugation at 50 x g for 5 minutes. CD4+ T cells were then positively isolated from the 

monocyte-depleted supernatant using the Robosep™ (Stemcell technologies, Cat# 20000) 

together with the EasySep™ Human Whole Blood CD4 Positive Selection Kit (Stemcell 

Technologies, Cat# 18082A).  

B cells were purified by magnetic-activated cell sorting (MACS) positive selection of cells 

expressing CD19 – a transmembrane glycoprotein expressed by B cells at all developmental 
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stages, and follicular dendritic cells. Peripheral blood mononuclear cells (PBMCs) were first 

isolated from patient whole blood by density centrifugation on Lymphoprep medium (Axis-

Shield Diagnostics, Dundee, UK; Cat# 07801). Subsequently, B cells were isolated using 

MACS human CD19 MicroBeads (Miltenyi Biotech, Bergisch Gladbach, Germany; Cat# 130-

050-301). After labelling CD19+ cells, magnetic isolation was performed using a LS positive 

selection column (Miltenyi Biotech; Cat# 130-042-401) with MidiMACS™ separator (Miltenyi 

Biotech; Cat# 130-042-302). The purity of isolated CD4+ T cell and B cell populations was 

confirmed by flow cytometry as has been described139. Exemplar plots showing proportions of 

CD4+ T cells and CD19+ B cells in total PBMCs, purified CD4+ T cells, and purified CD19+ B 

cells from purity checks are shown in Figure 2.1. 
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Following isolation, cells were lysed by the addition of RLT Plus Buffer (Qiagen, Hilden, 

Germany) supplemented with 1% v/v β-mercaptoethanol (Sigma-Aldrich, Dorset, UK; Cat# 

M7154), and passing through the QIAshredder spin column (Qiagen). DNA and RNA were 

extracted from each sample using the AllPrep DNA/RNA Mini Kit according to the 

manufacturer’s instructions (Qiagen; Cat# 80004). 

2.3 Patient genotyping and quality control 

Genotyping of patient DNA was performed using the Human CoreExome-24 BeadChip array 

(Illumina, Cambridge, UK; Cat# 20015246), according to the manufacturer’s instructions. In 

brief, patient genomic DNA was amplified by polymerase chain reaction (PCR), enzymatically 

fragmented to produce fragments of length 300-600 base pairs, isopropanol precipitated 

(followed by re-suspension), and hybridised to the BeadChip array. The following day, washing 

and single-base extension with labelled dideoxynucleotides were performed, with subsequent 

fluorescent staining of labelled probes. The arrays were then imaged using the iScan System - 

a laser-based system for detecting fluorescent signals (Illumina). 

Quality control (QC) procedures were carried out using the GenomeStudio software (Illumina). 

Initially samples or SNPs for which the SNP call rate fell below 98% were removed. 

Subsequently, the cluster separation score was generated to determine how well the three 

genotypes (major allele homozygote, heterozygote, and minor allele homozygote) for a given 

SNP separate on a cluster plot, and SNPs for which this metric was <0.4 were excluded. Finally, 

SNPs with a low minor allele frequency (MAF, < 0.01) in the data were removed. PLINK 

software (version 1.9) was used to determine potential relatedness between individuals, and in 

the case of samples with a proportion identity by descent score > 0.2, the sample with the lowest 

genotype call rate was excluded. This ensures that all individuals included have no greater than 

a third degree of relatedness. All patients self-reported as being of Northern European descent, 

and identity-by-state clustering in PLINK revealed no population stratification. 

Following genotype QC, haplotype phasing was performed using SHAPEIT2 software265, and 

then imputated to the 1000 Genomes reference panel (Phase 3) with IMPUTE2266. IMPUTE2 

generates an INFO score that describes the confidence with which an imputated genotype is 

Figure 2.1 (previous page): Flow cytometry purity checks of isolated cell populations. Total proportions of 

CD4+ T cells (left panels, upper right quadrant; CD3+ CD4+) and B cells (right panels, upper left quadrant; 

CD14- CD19+) in (A) peripheral blood mononuclear cells, (B) positively selected CD4+ T cells, and (C) 

positively selected CD19+ B cells from the same patient. Numbers represent the percentage of all cell events 

falling within a given quadrant. 
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called, and any SNPs with an INFO score less than 0.8 were not included in downstream 

analyses.  

2.4 DNA methylation profiling 

Cell-specific DNA was quantified using the Nanodrop ND-1000 Spectrophotometer 

(ThermoFisher, MA, USA), and 400ng bisulphite-converted using the EZ-96 DNA Methylation 

Kit (Zymo, Orange, CA; Cat# D5004). DNAm quantification of bisulphite-converted DNA was 

carried out on the Infinium MethylationEPIC BeadChip Kit following the manufacturer’s 

instructions (Illumina; Cat# WG-317-1003; see section 1.6.5 for further detail on the array). 

Following hybridisation, washing, and extension steps, the BeadChip arrays were imaged on 

the iScan system (Illumina), and intensity data extracted in the format of IDAT files using the 

GenomeStudio Methylation module v1.8 software (Illumina). 

2.5 DNA methylation data pre-processing and quality control (QC) 

Pre-processing and statistical analysis of DNAm data was performed in the R programming 

language (version 3.5). Data from CD4+ T cells and B cells was processed and analysed 

separately. This section will describe a series of sample-level QC checks that were carried out 

in order that potential mix-ups could be identified, and problematic samples either removed or 

repeated. A systematic analysis of normalisation methods and an algorithm for detecting 

residual batch effects will also be introduced, the results of which are presented in Chapter 3. 

2.5.1 Sample QC 

The minfi package (version 1.28)267 was used to read in IDAT files exported from the iScan 

system (section 2.4), and calculate detection p-values to enable the identification of failed 

probes. Probes with a detection p-value > 0.01 in > 10% of samples were deemed to have failed 

(intensity signals not significantly different from the negative control background level) and 

were therefore removed. Initially, though probes which failed in > 10% of samples had been 

removed, a sample-level probe filter was also applied to remove any samples for which the 

mean detection p-value across all probes remained at > 0.01 following filtering of failed probes. 

Using these criteria, four CD4+ T cell samples were excluded (Figure 2.2A), as was one B cell 

sample (Figure 2.2B). 
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2.5.2 Confirming patient identification using SNP probes 

The IDAT files extracted following scanning of the MethylationEPIC array contain intensity 

values for methylated (M) and unmethylated (U) probes at each CpG. These intensities can be 

converted into a Beta (β)-value that represents the ratio of the methylated signal to the total 

signal on a scale of 0 (unmethylated) to 1 (methylated): 

     ! = !
!"# 

Mean Sample Detection p-values 
(CD4+ T cell) 

A 

Mean Sample Detection p-values 
(B cell) 

B 

p = 0.01 

p = 0.01 

Figure 2.2: Mean DNA methylation probe detection p-values across all samples. Detection p-values based 

on negative control probe intensity background signal were calculated at (A) 115 CD4+ T cell samples and (B) 

136 B cell samples. Following the removal of failed probes, samples for which the mean probe detection p-

value was > 0.01 were removed from the analysis. This resulted in the exclusion of four CD4+ T cell samples, 

and one B cell sample. 
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To confirm the identity of each sample, the presence of 65 SNP probes on the MethylationEPIC 

array was exploited. Rather than interrogating methylation levels at genomic CpGs, the probes 

map to common SNPs and as such β-values at these probes acts as a proxy for the sample 

genotype. By leveraging SNP probes to identify sample genotype at these SNPs, it is possible 

to perform sample tracking where genotype data are also available. β-values for these SNP 

probes were obtained for all samples using the getSnpBeta function in minfi. As genotype data 

were also available for the majority of these patients (95% CD4+ T cell, 92% B cell samples), 

these β-values could then be mapped back to patient genotype data to confirm that genotype 

and DNAm samples originate from the same individual. When plotting these SNP β-values 

against the corresponding SNP genotype, homozygous SNPs should display a bimodal DNAm 

distribution, with heterozygous SNPs having an intermediate value, as was the case for the 

CD4+ T cell sample from patient EA1019 (Figure 2.3; left panel). If a sample swap had 

occurred, the plotted data would deviate from this pattern, as is evident for the B cell data 

annotated to the same patient (Figure 2.3; right panel). 

 

 

 

 

 

 

 

 

2.5.3 Estimation of cell type composition 

Though cell populations had been isolated by positive bead-based selection, and purity checked 

by flow cytometry, such checks had not been performed for all samples due to low cell numbers, 

particularly B cells (no purity check for 11% of CD4+ T cell samples, 36% of B cells samples). 

Figure 2.3: Plotting SNP β-values against patient genotype to identify mismatches.  Early arthritis patient 

EA1019 was confirmed as a correct annotation of the CD4+ T cell sample (left panel), but a sample misannotation 

for the B cell sample (right panel). When plotting SNP β-values against SNP genotypes across all SNPs for a 

given sample, homozygous SNPs (0 or 2) should display a bimodal β-value distribution, whereas heterozygous 

SNPs (1) should have intermediate values, as is seen for the CD4+ T cell sample. Deviations from this indicate 

sample mix-ups during processing or loading the array, as was the case for the B cell sample in this instance. 
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Given that patterns of DNAm are cell-type specific, a complementary approach was therefore 

employed to assess patterns in the DNAm data itself that may indicate whether a sample mix-

up with regards to cell type has occurred or instances of considerable contamination. 

For this purpose, data from CD4+ T cell and B cell samples were initially pre-processed and 

analysed together. In the first instance, PCA was performed for all samples using the prcomp 

function in R (base R version 3.5.3), with the first two principal components visualised using 

ggplot2 (version 3.2.0) and samples coloured according to their annotated cell type (Figure 2.4). 

This revealed that samples exhibited marked clustering according to cell type, with principal 

component 1 (PC1) distinguishing CD4+ T cells and B cells. However, a number of potential 

incorrect annotations were identified, with some samples appearing to cluster falsely according 

to the cell type (Figure 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To interrogate further, the proportion of each blood cell type in the data was estimated using 

the Houseman method219. This is a reference-based method that utilises methylation signatures 

from flow-sorted cells to infer proportions of these cell types in whole blood samples219. This 

method was originally developed to quantify leukocyte proportions in whole blood for 

interpreting EWASs in this complex tissue. 

The estimateCellCounts function in minfi was used to apply this method to CD4+ T cell and B 

cell datasets. This function returns an estimate of the total proportion of CD8+ T cells, CD4+ T 

Figure 2.4: Principal component analysis (PCA) of all DNA methylation samples by cell type. A small 

number of samples appeared to fall within the wrong cluster, indicating either a sample mix-up, or a low purity 

sample. 
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cells, natural killer (NK) cells, B cells, monocytes, and granulocytes in each sample (values for 

CD4+ T cell and B cell estimates are given for each relevant sample in Appendix A). These data 

were plotted, and any samples for which the estimated proportion of the expected cell type fell 

below 0.65, or that of the alternate cell type was above 0.35, were deemed to be either low-

purity or sample mix-ups and as such removed (Figure 2.5; these corresponded to the samples 

clustering incorrectly in Figure 2.4). Using this approach, two potential CD4+ T cell sample 

mix-ups were identified (EA0835 & EA2028) which reported higher proportions of B cells than 

CD4+ T cells (Figure 2.5A). Likewise, in the B cell dataset, five samples (EA1050, EA1067, 

EA2042, EA2067, EA2075) displayed low (<0.65) B cell proportions and/or high estimates 

(>0.35) of CD4+ T cells (Figure 2.5B), and were similarly removed. 
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Figure 2.5: Estimation of cell type proportion. The Houseman method was employed to estimate 

proportions of leukocytes in (A) 111 CD4+ T cell and (B) 135 B cell samples estimated using the reference-

based Houseman method for whole blood216. Each data point represents a single sample. Early arthritis 

sample identifiers are given for those samples for which the estimated proportion of the relevant cell type 

is < 0.65, and where the proportion of the alternate cell type is > 0.35. CD8T = CD8+ T cell; CD4T = CD4+ 

T cell; NK = Natural killer cell; Bcell = B cell; Mono = Monocytes; Gran = Granulocytes.  

CD4+ T cell samples 

B cell samples 
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The median cell purity based on flow cytometry data was >98% for CD4+ T cell samples (range 

79.6 – 99.6%), and >94% for B cell samples (range 60.0 – 98.6%). Though the majority of 

samples had high purity of >90% as determined by flow cytometry, there were a small number 

of samples deemed to have low purity (< 90%; one CD4+ T cell sample, six B cell samples), 

with one particular B cell sample having a purity of 60% (Appendix A). However, given that 

these samples did not appear as outliers following principal component analysis, and were not 

deemed to have low purity values (< 80%) based on the cell type proportion estimates, these 

were not excluded. In addition, the method employed to estimate batch effects in the data 

(section 2.5.7) will also capture any sample to sample variability associated with differences in 

cell purity, and as such these can be accounted for in subsequent analyses. 

2.5.4 Sex prediction 

Signal intensity values from probes mapping to the X and Y chromosome were utilised in order 

to assign sex to each sample, and map these back to the patient sex in the sample annotation 

file, again adding an additional level confidence in sample annotations. The median copy 

numbers (CNs), defined as the median probe intensity (methylated and unmethylated probes) 

for all probes, were calculated separately for the X and Y chromosomes. The median CN for Y 

chromosome probes was subtracted from those for X chromosome probes for all samples, with 

the resulting values plotted for CD4+ T cells (Figure 2.6A) and B cells (Figure 2.6B). For male 

samples, it would be expected that the median CN (Y) - median CN (X) would be approximately 

zero, as signals are present from both chromosomes. Conversely, female samples should return 

a value below zero, given that no Y chromosome intensities are returned for these samples, and 

the median CN is therefore zero (subtracting the X chromosome median CN from zero will 

always yield a negative value). A difference in median copy number of -0.2 was used as a 

threshold for assigning a sample as female (Figure 2.6A-B). 

To further corroborate these results from X and Y chromosome intensities, the X chromosome 

β-values were plotted for CD4+ T cell (Figure 2.6C) and B cell (Figure 2.6D) samples. The 

difference in the number of X chromosomes copies between female and male samples will 

result in distinct density plots, with male samples displaying a bimodal distribution (a position 

can either be methylated (1) or unmethylated (0), whereas the intermediate values from female 

samples represent the average across both chromosome copies. 
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2.5.5 DNA methylation data normalisation 

Normalisation of data generated by the MethylationEPIC array is an important pre-processing 

step prior to performing any analyses. The array incorporates two probe type designs (Figure 

2.7). The type I design comprises paired beads each hybridized to a 50-nucleotide probe, with 

the terminal base complimentary to either a C (bisulphite-converted methylated C) or a T 

(bisulphite-converted unmethylated C). The colour channel is determined by incorporation of 

fluorescently tagged nucleotides at the single base extension site (Cy3 (green) for C/G and Cy5 

(red) for A/T), and both probes therefore fluoresce at the same wavelength. Relative signals 

from methylated/unmethylated probes at a given locus can be used to determine the overall 

methylation level. In contrast, type II Infinium design consists of a single bead to interrogate 

both methylated and unmethylated bisulphite converted DNA, with incorporation of either Cy5-

labelled A (unmethylated) or Cy3-labelled G (methylated) nucleotides at the extension site 

dictating the colour channel. Importantly, the lower dynamic range observed in type II probes 

can lead to probe-type bias which should be accounted for in data normalisation268.  

A B 

C D 

CD4+ T cell samples B cell samples 

Figure 2.6: Sex prediction using X and Y chromosome probes. Difference in median copy number (sum 

of methylated and unmethylated channel) between the Y and X chromosomes in (A) CD4+ T cell and (B) B 

cell samples was used to predict sex. A cut-off of -0.2 was used to assign samples as female. Density plots 

of β-values from X-chromosome probes in (C) CD4+ T cell and (B) B cell samples confirm patient sex. 
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In addition to accounting for this probe type bias inherent in the design of Illumina 

MethylationEPIC arrays, normalisation methods correct for dye bias by using the positive 

control probes to correct for the different average intensities that occur between the red and 

green channels269. Furthermore, an additional source of error is the non-specific background 

fluorescence signals, which can vary from array to array269. Negative control probes on the 

MethylationEPIC array, which do not target CpG sites, allow background fluorescence to be 

captured as opposed to any biological signal. 

Finally, normalisation methods are integral for correcting for effects that can occur when 

processing multiple samples across separate batches that may result from technical variability 

Figure 2.7: Distinct probe chemistry of Infinium type I and type II designs that are present on the 

MethylationEPIC array. The type I design includes two separate beads, one targeting bisulphite-converted 

methylated DNA, and the other targeting unmethylated DNA. Incorporation of a base at the single base 

extension site at either probe causes fluorescence at the same wavelength (green for C/G, red for A/T). 

Methylation levels at these probes represent the relative signal ratio from each probe. Conversely, the type I 

design incorporates a single probe for a given locus. Which base is incorporated depends on the sequence of 

the bisulphite DNA dictates the fluorescence. If bisulphite methylated DNA (C/G) is present, incorporation 

of the complimentary G/C base generates green fluorescence. If bisulphite unmethylated DNA hybridizes to 

the probe, incorporation of an A/T base results in generation of a red signal. In this instance, the ratio of green 

to red fluorescence represents the total methylation. Image taken from the Illumina MethylationEPIC 

BeadChip Data Sheet211. 
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such as can occur in sample processing steps. Though good experimental design is essential to 

reduce the impact of such batch effects (i.e. distributing case and control samples across batches 

equally), these effects are unavoidable and should be accounted for to prevent bias in 

downstream analyses. Numerous methods exist for the normalisation of DNAm data collected 

using the MethylationEPIC array, all of which employ different approaches to adjust for bias 

in the data. 

Three different normalisation methods were applied to the data to test their ability to correct for 

bias that may arise from factors such as probe type differences and sample-to-sample variability 

associated with technical batches. These were: (1) normal-exponential using out-of-band probes 

(noob)269 with functional normalisation (funnorm)270, (2) noob with beta mixture quantile 

dilation (BMIQ)268, and (3) and subset-quantile within array normalization (SWAN)271. The 

normalisation principles that underpin each of these methods will be discussed further in 

Chapter 3.4. Funnorm and SWAN were implemented in minfi267, whilst the wateRmelon 

package (version 1.26) was used to apply the BMIQ method272. The features of each method 

are discussed in greater detail in Chapter 3 along with the results of the systematic assessment 

of each method’s suitability when applied to the CD4+ T cell dataset. 

Funnorm corrects for between-array variability by assessing variation in the negative control 

probes, and utilizing PCA of these probes to adjust for such non-biological variation270.  The 

number of control probe principal components to use as a surrogate for technical covariates in 

funnorm was determined by estimating the dimensionality of the control probe matrix by 

random matrix theory, as performed using the EstDimRMT in the ISVA R package (version 

1.9)273. As a result, the first three principal components were used to estimate technical 

covariance for funnorm in both datasets. For BMIQ normalisation, a subset of 10,000 probes 

of each probe type was used for fitting the 3-state beta mixture model (see Chapter 3.4 for 

further details). 

The suitability of each normalisation method when applied to the DNAm datasets was assessed 

using a number of different performance metrics (see Chapter 3.4 for results in CD4+ T cells). 

β-value density plots were produced for the raw data, as well as following normalisation, to 

evaluate the capacity of each method to remove probe bias inherent in the data, with probe type 

information (type I/type II) extracted from the Illumina annotation file. PCA across all probes, 

with plotting of the first two PCs for each sample, was subsequently used as a tool to visualise 

potential batch effects in the data arising from laboratory processing of samples. An additional 

method used to visualise potential batch effects and their removal following data normalisation 

was to produce Relative Log Expression (or Relative Log Methylation) plots274. Such plots are 
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generated by first obtaining the median logged value for each probe (M-value) across all 

samples, and then for each sample calculating the deviation in this probe from the median. For 

each sample, the median and range (interquartile range (IQR) with minimum/maximum values) 

of these deviations is plotted, and if the probe deviations for a given sample or batch of samples 

differ considerably from the others, this can represent unwanted variability.  

In order to quantify the potential contribution of measured variables to variation in the data 

identified by PCA, a principal variance component analysis (PVCA) was performed using the 

pvca package (version 1.22.0). This method combines PCA with variance component analysis 

(VCA), and first calculates the top PCs, subsequently fitting a mixed linear model to each PC, 

treating variables of interest as random effects to reveal the proportion of total variability 

explained. Measured variables of interest that were assessed using this method were sample 

bisulphite conversion batch, sample position on the BeadChip array, array scanning batch, and 

the disease diagnosis (RA/non-RA). 

To facilitate the identification of technical bias in the data arising from sample processing, 

technical replicates were included on the BeadChip array, whereby a sample from the same 

patient was run twice across processing batches. Pearson’s correlation across all probes between 

technical replicates was calculated pre- and post-normalisation to assess the agreement between 

batches. In addition, sample clustering based on all probes was performed using the flashClust 

package275, with the average method used to define the distance between clusters. A sample 

dendrogram was plotted to identify clustering of technical replicates together. 

2.5.6 Probe-level filtering 

Following data normalisation a series of probe filtering steps were performed to remove any 

probes that (1) failed the detection p-value cut-off, (2) have been described as cross-hybridizing 

or multi-mapping in previous studies212, 276-278, (3) harbour a SNP at a MAF > 0.05 within the 

probe sequence, single base extension (SBE) site, or CpG site, or (4) map to either of the sex 

(X or Y) chromosomes. In addition, data normalisation using funnorm often returns a small 

number of probes with infinite values which cannot be analysed, and as such it was necessary 

to remove these. Following probe filtering, a total of 709,412 and 710,445 probes for CD4+ T 

cell and B cell samples, respectively, were included in subsequent analyses. The total number 

of probes excluded at each stage for both datasets are detailed in Table 2.1. 
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Failed 

(Detection p-
value > 0.01) 

Cross-
reactive 

SNP 
(MAF > 

0.05) 

X and Y 
chromosome 

Infinite 
Values 

Total 
Probes 

Removed 

Total 
Analysis 
Probes 

CD4+ T 
cells 

8,404 51,760 79,388 16,762 133 156,447 709,412 

B cells 7,001 51,512 79,580 16,826 495 155,414 710,445 

 

After probe filtering, β-values were calculated. In addition, M-values were also calculated as 

the log2 of the beta value ratio: 

M-value = log2 (beta-value / 1 – (beta-value)) 

M-values are preferable for statistical analyses given that, unlike β-values, they are 

homoscedastic in nature, such that variability is uniform across the range of values279. 

2.5.7 Batch effect identification in DNA methylation and gene expression data 

Residual batch effects that remain in normalised data must be accounted for to avoid the 

introduction of bias in downstream analyses. Various methods exist that enable potential 

confounding sources of variation in array data to be accounted for. One popular method, termed 

ComBat, uses an empirical Bayes approach to adjust data input batches280. However, recently 

it has been shown that when this method is applied together with the specification of a 

phenotype of interest to be retained, bias can be introduced in downstream differential 

analyses281. An alternative approach is to include known sources of variability (such as the 

sample processing batch, or biological factors such as age) as covariates in downstream linear 

models. One drawback to this approach is that, whilst the major sources of variability may be 

known (for example from PVCA), it is likely that additional technical or biological confounders 

that have not been directly measured will exist in the data. For this reason, it was decided that 

the optimal approach would be to use surrogate variable analysis (SVA) to identify such 

confounders from the data itself, and subsequently include these as covariates in downstream 

models. This particular approach borrows information across all array probes to estimate 

sources of variability, termed surrogate variables (SVs), which can then be treated as covariates 

in subsequent analyses282. As well as detecting potential residual sources of variation due to 

technical batch effects, this approach may also capture biological heterogeneity in the DNAm 

data, such as different proportions of cell subtypes within each lymphocyte population. 

SVA was applied to both normalised DNAm datasets using the sva package (version 3.30.1)282. 

In order to conserve any effects of disease diagnosis (RA/non-RA) for inclusion in downstream 

Table 2.1: Number of MethylationEPIC BeadChip probes removed at each stage of probe filtering in 
CD4+ T cell and B cell datasets. 
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analyses, patient diagnosis was included as a variable of interest in the full model, with the null 

model containing no covariates to allow all variables to be estimated from the data. After 

applying this method to the data, associations between estimated surrogate variables and 

measured variables was tested to identify to what extent the SVA was capturing known sources 

of variability. P-values for associations were generated by linear regression for continuous 

variables (i.e. CRP levels), analysis of variance (ANOVA) for categorical variables with > 2 

categories (i.e. sample processing batch), and Mann-Whitney U test for binary variables (i.e. 

sex).  

When plotting data, the removeBatchEffects function in the limma package (version 3.38)283 

was used to adjust for covariates (diagnosis and surrogate variables), although all statistical 

modelling (differential analyses and quantitative trait locus mapping) was performed using 

normalised data with these variables provided separately as covariates. 

2.6 Differential methylation analysis 

2.6.1 Identification of differentially methylated positions 

Linear modelling was used to identify any positions that were differentially methylated between 

RA patients and disease controls in either CD4+ T cells or B cells. Models were fit using the 

lmFit function in the limma package283, with disease diagnosis (RA/non-RA) treated as the 

variable of interest and SVs included as covariates in the model. An empirical Bayes method 

was employed using the eBayes limma function to moderate the standard errors284, as this 

approach takes into account the probe-wise variability to calculate a moderated t-statistic and 

rank each CpG by likelihood of being differentially methylated. False discovery rate (FDR) 

was controlled for using the Benjamini-Hochberg method285, with an FDR < 0.05 considered 

to be significantly differentially methylated. To limit the analysis to biologically meaningful 

differences in DNAm that could feasibly be validated in vitro, a delta beta (Δβ, absolute 

difference between comparator group mean β-values) threshold of 0.05, representing a 5% 

difference in DNAm, was also applied to filter the results. 

2.6.2 Identification of differentially methylated regions 

Extended regions of CpGs displaying differential patterns of DNA methylation, termed 

differentially methylated regions (DMRs), were identified using the DMRcate package in R 

(version 1.18)286. As well as computing the minimum FDR within a DMR, DMRcate also 

performs a Stouffer transformation which provides a region-specific p-value by taking into 

account regional correlations in DNAm levels286. Initially, an FDR threshold of < 0.05, 
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consistent with the analysis of differentially methylated positions, was used to classify DMPs 

prior to identification of DMRs. A mean difference in β-value (Δβ) of 0.05 between the RA and 

non-RA groups across ≥2 CpGs was used for DMR detection.  

For discovery purposes, the FDR threshold was relaxed for DMP detection, and non-significant 

albeit potentially biologically-meaningful DMRs were sought by identifying extended regions 

of CpGs displaying a consistent Δβ > 0.05 (RA vs. non-RA) across a region of ≥2 CpGs, 

irrespective of the p-value returned for individual CpGs in the differential analysis. 

2.6.3 Identification of differentially variable positions 

To identify CpG sites that show differential patterns of variability in DNAm levels between RA 

patients and disease controls, a test of differential variance, termed the Epigenetic Variable 

Outliers for Risk Prediction Algorithm (iEVORA) was performed287. This algorithm first 

performs a Bartlett’s test to identify instances in which the variance (effectively the spread of 

values about their mean) differs between the two groups, with an FDR < 0.001 used to define 

differential variability. Subsequent to this, and to account for the fact that Bartlett’s test is 

susceptible to outlier values skewing group variances, a t-test is performed to rank variable 

CpGs by the difference between group means, and an unadjusted p-value threshold of < 0.05 

used to signify a differentially variable position (DVP). This test was implemented using the 

row_ievora function in the matrixTests package (version 0.1.4). CpGs with a higher variance 

in RA patients were considered RA hyper-variable, whereas sites for which variance was 

greater in the non-RA patients were termed RA hypo-variable. 

2.6.4 Gene ontology pathway analysis 

Gene ontology pathway analysis was performed to identify biological pathways enriched 

amongst the genes to which either hyper-variable or hypo-variable RA-associated DVPs 

mapped. Previous studies have shown that bias is introduced when performing such tests for 

enrichment with array-based DNA methylation data, resulting from the unequal distribution of 

CpG probes across all genes288. The gometh function in the missMethyl package (version 

1.16.0) was used to apply a modified hypergeometric test that enables the design of the 

MethylationEPIC array, with differing numbers of probes mapping to each gene, to be 

accounted for289, 290. 

2.6.5 Assessing the DNA methylation age of early arthritis lymphocytes 

To test whether lymphocytes from RA patients exhibited an accelerated biological age relative 

to those from non-RA patients, the ‘epigenetic age’ of CD4+ T cell samples and B cell samples 
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was calculated from DNAm data using the agep function in the wateRmelon package272, 

specifying the use of Horvath’s coefficients to calculate the age291.  

To assess whether disease diagnosis had a significant effect on accelerating biological age 

relative to chronological age, a linear model (lm function) was fit to the data to test the effects 

of chronological age (independent variable) on biological (Horvath) age (dependent variable), 

with the inclusion of disease diagnosis (RA/non-RA) as an interaction term. Interaction effects 

(chronological age × disease diagnosis) with a p < 0.05 were considered significant. 

2.7 Methylation Quantitative Trait Locus Analysis  

2.7.1 Mapping of meQTLs in cis and trans 

MeQTLs were identified by fitting additive linear models to identify associations between 

genotype and DNAm levels at CpG sites using the MatrixEQTL package (version 2.2)292. 

MeQTLs were identified in each cell type separately and were mapped both in cis, whereby the 

CpG site is located < 1MB away from the regulatory SNP, and in trans, which occur over larger 

distances (> 1MB or separate chromosomes). To reduce the potential for false positive results 

to arise from outlier samples, the analysis was limited to SNPs for which each genotype was 

represented by ≥3 patients, or in the absence of any minor allele homozygotes, ≥8 patients. 

Following this filtering step, a total of 2,901,876 CD4+ T cell SNPs, and 3,035,821 B cell SNPs 

were included in the meQTL analysis, testing for associations against 709,412 and 710,445 

CpGs in an all-against-all analysis (a reduced number of tests in the cis analysis reflected that 

associations were only mapped for CpGs in a 1Mb window upstream and downstream of each 

SNP). Covariates passed to the MatrixEQTL function were disease diagnosis (RA/non-RA), 

and the SVs identified using SVA (section 2.5.7). 

FDR values were calculated using the Benjamini-Hochberg method285, and were generated 

separately for cis and trans associations. To reduce the computational burden associated with 

calculating FDR values across > 2 x 1012 independent tests, an unadjusted p-value threshold of 

1 x 10-2 and 1 x 10-4 for FDR calculation was selected for cis and trans associations, 

respectively. SNP-CpG associations in cis with an FDR < 0.01 were considered statistically 

significant, with a threshold of 1 x 10-5 selected for those in trans. A lower p-value cut-off was 

selected in the trans analysis to reduce the likelihood of false positive associations by setting a 

higher threshold for evidence of a long-distance association. 
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2.7.2 Mapping disease-specific meQTLs 

An interaction analysis was performed to identify meQTL effects that were either specific to 

the RA or non-RA comparator groups, or for which the effect size differed significantly 

between the two groups. The same analysis was performed as for genome-wide detection of 

meQTLs, albeit with the inclusion of an interaction term (genotype x diagnosis) in the linear 

model. This tests whether or not the effect of the independent variable (SNP genotype) on the 

dependent variable (DNAm levels) is significantly influenced by the value of a third variable 

(in this case either a positive or negative diagnosis of RA). As before, the analysis was limited 

to SNPs for which ≥ 3 patients were represented in both the RA and non-RA groups. Whilst 

FDR values for the initial meQTL analysis were chosen to robustly identify SNP-CpG 

associations, for the purpose of discovering more subtle effects of diagnosis on these effects, 

an FDR cut-off of < 0.05 for disease interaction effects at cis loci, and < 1 x 10-3 for those at 

trans loci, was selected. To mitigate against the potential for false positive effects or those with 

small differences in effect size, CpGs for which the 10th and 90th percentile DNAm values 

differed between by a β-value of < 0.05 were excluded. 

2.7.3 SNP clumping 

Due to patterns of linkage disequilibrium (LD), meQTL analyses often nominate multiple SNPs 

for a given meQTL effect, all of which are associated with DNAm levels at the same CpG, and 

it is necessary to remove SNPs tagging the putative causal variant to infer independent 

associations. To this end, SNP clumping in PLINK was performed to remove tagging SNPs at 

a given locus. For this purpose, an LD threshold of 0.001 (1000 Genomes Project Phase 3, 

European (EUR) populations) was used to remove SNPs in a window of 250Kb, each time 

retaining the SNP displaying the strongest association (lowest p-value) with DNAm levels at 

that locus. Clumping was performed on both cis- and trans-meQTL results. 

2.7.4 Functional annotation of cis-meQTL-associated DNA methylation 

To gain additional functional insight from the genomic context of CpG sites regulated in cis, 

these positions were overlapped with cell specific chromatin state data available from the 

Roadmap Epigenomics Project173. These chromatin states are defined based on patterns of 

histone modifications, specifically mono-methylation and tri-methylation of lysine 4 on histone 

3 (H3K4me1, H3K4me3), as well as tri-methylation of lysine 9 (H3K9me3), lysine 27 

(H3K27me3), and lysine 36 (H3K36me3) assayed by ChIP-seq. A total of 15 chromatin states 

had been defined by relative enrichment of these histone modifications, with chromatin state 

learning performed using a Hidden Markov Model approach173. To aid in the interpretation of 
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CpG overlaps, these states were collapsed into five functional classes: transcription start site 

(TSS) (active TSS, bivalent/poised TSS), flanking transcription start site (flanking active TSS, 

flanking bivalent TSS), enhancers (genic enhancer, enhancer, bivalent enhancer), transcribed 

(transcribed at gene 5’ and 3’, strong transcription, weak transcription), and, finally, repressed 

(ZNF genes + repeats, heterochromatin, repressed polycomb, weak repressed polycomb, 

quiescent/low). CD4+ T cell cis-meQTL-associated CpGs (cis-CpGs) were overlapped with 

chromatin states from peripheral T helper cells (cell type ID = E043) and in some cases primary 

T regulatory cells (Tregs) from peripheral blood (cell type ID = E044), whereas for B cell CpG 

overlap was performed using states from primary B cells in peripheral blood (cell type ID = 

E032).  

Cis-CpGs were also assessed in relation to their mapping to CGI features. CGI annotations were 

obtained from the Illumina MethylationEPIC manifest, which defines feature as mapping to 

either CGIs, CGI shores (north/south, +/- 0-2Kb of CGI), CGI shelves (north/south, +/- 2-4Kb 

of CGI), or Open Sea (all other regions, see Figure 2.8).  

 

 

 

 

 

 

 

 

Enrichment analysis of cis-CpGs at gene features as defined by the University of California 

Santa Cruz (UCSC) RefGene annotations was also assessed.  Cis-CpGs were mapped to either 

5’ untranslated regions (5’UTR), 200 bases from a transcription start site (TSS200), 1500 bases 

from a transcription start site (TSS1500), the first Exon, and Exon boundary, the 3’UTR, the 

gene body, or to an intergenic region (Figure 2.9).  Enrichment of cis-CpGs at all features 

(chromatin states, CGI features, gene features) relative to CpGs not associated with a DNA 

variant in cis was assessed using a two-way Fisher’s exact test in R. 

 

 

 

Figure 2.8: CpG islands and related features. The mapping of CpGs to CpG islands and related flanking 

regions (shores/shelves) is defined in the Illumina Infinium MethylationEPIC annotation file. Open sea 

regions are classified as all those that are not classified as islands, shores, or shelves. 
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2.7.5 Co-localisation analysis at disease-associated loci 

MeQTLs that putatively underlie disease mechanisms were sought by performing co-

localisation analyses of these loci with disease-associated loci from GWASs. GWAS data for 

four diseases; RA, MS, asthma, and OA were downloaded from the GWAS catalogue293. Whilst 

the focus of this project was on deciphering mechanisms underlying lymphocyte-mediated 

genetic risk in RA patients, these effects were compared with genetic mechanisms underlying 

risk to MS and asthma, both of which are considered largely immune-mediated diseases87, 294. 

In addition, the overlap of lymphocyte meQTLs with OA risk loci was assessed; this disease 

affects the same tissues as RA but the disease mechanisms are distinct, with pathways such as 

collagen formation and catabolism of the extracellular matrix (rather than lymphocyte 

dysregulation) believed to be major contributors to pathogenesis264.  The search terms used to 

identify reported traits for these four diseases in the GWAS catalogue are listed in Table 2.2. 

Initially, co-localisation was determined whereby the meQTL variant was in high LD (r2 ≥ 0.8 

in EUR populations) with the lead variant identified by GWAS. 

In instances where the meQTL and RA GWAS signal were found to map to the same locus, 

additional evidence of co-localisation was sought by performing a Bayesian test for co-

localisation in the coloc R package (version 3.2.1)295. This approach calculates Bayes factors, 

which can be thought of as a measure of evidence for a given hypothesis, to compute the 

posterior probability (PP) of five possible hypotheses: 

• H0 – Neither trait (DNAm levels or RA susceptibility) has a genetic association at this 

locus. 

• H1 – Trait 1 (DNAm levels), but not trait 2 (RA susceptibility), has a genetic 

association at this locus. 

5’UTR 3’UTR TSS200 1st Exon 

Exon Bnd 

Gene Body TSS1500 Intergenic Intergenic 

Figure 2.9: UCSC RefGene gene features. TSS1500 = within 1500 base pairs from a transcription start site 

(TSS); TSS200 = within 200 base pairs from a TSS; 5’UTR = 5’ untranslated region, Exon Bnd = Exon 

boundary, 3’UTR = 3’ untranslated region. All regions not mapping to these features in relation to a gene are 

annotated as intergenic. 
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• H2 – Trait 2 (RA susceptibility), but not trait 1 (DNAm levels) has a genetic 

association at this locus. 

• H3 – Both traits have genetic associations at this locus, with independent causal SNPs. 

• H4 – Both traits have genetic associations at this locus, with a shared causal SNP. 

Given that genetic associations with both RA genetic susceptibility and DNA methylation have 

been established prior to applying this test, this approach was used in principle to provide 

evidence of either H3 or H4 regulatory models described above. The test was performed using 

the coloc.abf function, using summary data from MatrixEQTL for the identified meQTL 

variants, and RA GWAS summary statistics obtained from a meta-analysis97. A prior 

probability of H4 (PP4) > 0.75 was used as a threshold for good evidence of a shared variant.   

 

 

2.7.6 Chromatin state and transcription factor binding site enrichment at risk loci 

As was performed for cis-CpGs in section 2.7.4, enrichment of cis-CpGs associated with 

GWAS loci for a given disease at cell-specific chromatin states was assessed. In this instance, 

enrichment of cis-CpGs associated with risk loci was calculated relative to cis-CpGs that were 

associated with non-risk meQTLs for that disease, using a two-way Fisher’s exact test. 

To identify possible enrichment at TFBSs, cis-CpGs were overlapped with ChIP-seq-generated 

binding site data for 161 transcriptional regulators generated from several human cell lines by 

the Encode project 209, 210. TFBS data from all cell types were used to test for enrichment, again 

using a two-way Fisher’s exact test to identify whether the occurrence of any TFBSs at risk-

Disease GWAS Catalogue Search Terms 

Rheumatoid arthritis 
(RA) 

Rheumatoid arthritis, Rheumatoid arthritis (ACPA-positive), Rheumatoid arthritis (ACPA-
negative) Rheumatoid arthritis (rheumatoid factor and/or anti-cyclic citrullinated peptide 

seropositive. 

Multiple Sclerosis (MS) Multiple sclerosis. 

Asthma 
Asthma, Adult asthma, Asthma (childhood onset) Asthma & hay fever, Asthma (adult onset), 

Asthma onset (childhood vs adult), Asthma (age of onset), Asthma (moderate or severe), 
Allergic disease† (asthma, hay fever, or eczema), Asthma or allergic disease (pleiotropy). 

Osteoarthritis (OA) 
Osteoarthritis, Osteoarthritis (hand, severe), Osteoarthritis (hip), Osteoarthritis (knee), 

Osteoarthritis (hip or knee) Osteoarthritis (hospital diagnosed), Osteoarthritis (self-reported), 
Osteoarthritis (with total joint replacement). 

Table 2.2: GWAS Catalogue reported traits. DNA data from GWAS studies of four diseases (rheumatoid 

arthritis, multiple sclerosis, asthma, and osteoarthritis were downloaded from the GWAS catalogue to perform 

co-localisation analyses with meQTLs identified in CD4+ T cells and B cells of early arthritis patients. 
†This particular GWAS found that genetic associations with asthma exhibited a very strong correlation with 

other immune-mediate allergies, and a meta-analysis was performed to increase power to detect associations. 
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associated cis-meQTL CpGs was over-represented relative to non-risk cis-CpG. To overcome 

the multiple testing burden associated with testing binding sites at > 100 TFs, a Bonferroni-

adjusted p-value was used based on the number of TFs tested. 

As with DVPs (see section 2.6.4), CpGs associated with cis-meQTLs were subject to pathway 

analysis using the gometh function in the missMethyl package289. Cis-CpGs associated with 

GWAS risk loci were tested for enrichment of specific biological processes, using as 

background cis-CpGs outside of the risk loci for the disease being tested. 

2.8 Transcriptomic profiling 

Genome-wide transcriptomic profiling was performed using the HumanHT-12 v4 BeadChip 

(Illumina), which includes 47,231 probes, as has been described139. The integrity of cell-specific 

extracted RNA was confirmed using a Bioanalyzer (Agilent, CA, USA), with a median RNA 

integrity number (RIN) of 10 for CD4+ T cell samples (range 8.2 - 10) and 10 (range 7.9 - 10.0) 

for B cell samples. Complementary RNA (cRNA) was synthesized from 250ng total RNA using 

the Illumina® TotalPrep™ RNA Amplification Kit (ThermoFisher; Cat# AMIL1791). cRNA 

was then hybridised to the BeadChip array and washed following the manufacturer’s protocol, 

with imaging of arrays using the iScan system as for the MethylationEPIC arrays (Illumina). 

Intensity values for all samples were obtained in Illumina’s IDAT file format using the 

GenomeStudio Gene Expression Module (version 1.8, Illumina), with all subsequent data 

processing and analysis performed in the R statistical environment. 

2.8.1 Pre-processing of transcriptomic data 

Transcriptomic data described in section 2.8 had been generated prior to the current study, with 

quality control performed and integration/normalisation of data from two separate array 

platforms139. For the purpose of the current study, transcriptomic data only from samples for 

which DNAm and genotype data were available (all of which were profiled using the Illumina 

HumanHT-12 v4 BeadChip) were extracted and normalised separately from this larger dataset. 

As with DNAm data from the MethylationEPIC array, transcriptomic data from CD4+ T cell 

and B cell samples were pre-processed independently. 

Initially, as for DNAm data, detection p-values for each probe were extracted across all 

samples. Unlike for the MethylationEPIC array, where all probes should return a low detection 

p-value unless failed, low values from the HumanHT-12 array may be indicative of genes with 

low expression levels in the cell type being studies. For this reason, a more relaxed threshold 
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of > 0.05 in at least 25% of samples was selected to identify failed probes. Samples were then 

removed for which the mean detection p-value remained > 0.05 after excluding failed probes. 

Background correction using negative control probes and quantile normalisation were 

performed in limma 283 using the neqc function. After data normalisation, probes were remove 

if 1) they returned a failed detection p-value as defined above, 2) the probe quality was deemed 

as ‘Bad’ or ‘No match’ based on probe mappings from the illuminaHumanv4.db package, or 3) 

they mapped to either the X or the Y chromosome.  

As with the DNAm data, SVA was applied to identify residual variability to be accounted for 

in downstream analyses, with any effects due to diagnosis preserved (see section 2.5.7). 

2.9 Expression Quantitative Trait Methylation analysis 

The impact of DNA methylation at disease risk cis-meQTL CpGs on transcriptional regulation 

was assessed through the integration of contemporaneous cell-specific transcriptomic data. 

Transcript mapping information was first extracted from the Ensembl database using the 

biomaRt package (version 2.38)296, and unique Illumina identifiers retrieved for those having a 

transcription start site (hg19 reference genome) mapping to within ±500Kb of a risk-associated 

cis-CpG as determined using the GenomicRanges package (version 1.34)297. 

Associations between DNAm at risk cis-CpGs and transcript levels of genes within ±500Kb 

window, termed cis-eQTMs, were identified by non-parametric Spearman’s rho. To account 

for technical or biological variables, correlations were performed using residuals from linear 

regression. Firstly, linear models were fit to both DNAm M-values and gene expression datasets 

using the lmFit function in limma, with the inclusion of disease diagnosis and SVs as covariates, 

and model residuals subsequently extracted. These residuals were then used to compute 

correlations. Benjamini-Hochberg285 adjusted p-values, calculated across the total number of 

transcripts tested for a given CpG (i.e. the number of genes with a 500Kb window upstream 

and downstream) were calculated, with adjusted p-values < 0.01 considered significant. Though 

residuals were used for performing eQTM analysis, as is consistent with the input for causal 

inference testing (see section 2.10), when plotting associations DNAm and gene expression 

data were adjusted for these covariates using the removeBatchEffects function in limma (see 

section 2.5.4). 

2.10 Causal inference testing 

Though identification of cis-eQTM effects at CpGs subject to cis-meQTL effects is suggestive 

of a mechanism whereby DNAm mediates transcriptional regulation by functional SNPs, as 
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discussed in section 1.6.9, a number of possible regulatory models may explain these 

associations. In order to distinguish instances of methylation-mediated regulation (SNP – 

Methylation – Expression; SME) from reverse mediation (SNP – Expression – Methylation; 

SEM) or independent effects (INDEP; see Figure 1.8), a causal inference test (CIT) was 

implemented260. This particular test aims to infer causality by performing four statistical tests 

based on conditional correlations, all of which must be satisfied to conclude that the mediator 

of interest (in this case DNAm) effects the phenotypic outcome measure (gene expression)260: 

1. The SNP is associated with the phenotype (transcript levels). 

2. The SNP is associated with the mediator (DNAm) conditional on the phenotype. 

3. The mediator is associated with the phenotype conditional on the SNP. 

4. The SNP is independent of the phenotype conditional on the mediator. 

These four tests are combined into an ‘omnibus’ p-value, whereby the probability of a causal 

model is only as strong as the weakest p-value in this chain of four tests. For example, in 

instances whereby the prevailing model is one of reverse mediation (SEM), condition 2 outlined 

above would not be satisfied, whereas independent effects on DNAm and transcript levels 

(INDEP) would not be consistent with condition 3. 

CIT was performed on all triplets at cis-meQTL/cis-eQTMs (risk SNP, cis-CpG, transcript) 

using the cit.cp function for testing a continuous outcome measure in the cit package (version 

2.2)298. As with eQTM analyses, DNAm and gene expression residuals were used as input to 

the model. One thousand permutations of the test were performed, and the fdr.cit function 

applied to calculate FDR values. DNAm was deemed to likely mediate the SNP effect on gene 

expression for triplets at which the CIT FDR was < 0.05. 

2.11 Validation of cis-meQTLs at loci of interest 

Validation of CD4+ T cell cis-meQTL effects was performed at loci of interest using bisulphite 

pyrosequencing as a targeted approach to quantify DNAm in an independent cohort of 39 

patients for whom genotyping had been performed (see section 5.4.2 for further details). 

2.11.1 Isolation of genomic DNA and bisulphite conversion 

To quantify DNAm levels at a given CpG site, genomic DNA must be bisulphite converted - a 

process which results in conversion of unmethylated cytosine residues to uracil, whilst 

methylated residues are protected against this conversion (see section 1.6.5). 
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CD4+ T cell DNA was available from patients who had not been included in the initial discovery 

cohort of samples for which DNAm quantification was performed using the MethylationEPIC 

array. Isolation of these cells and extraction of DNA had been performed exactly as described 

in section 2.2. DNA concentration was quantified using the Nanodrop ND-1000 

Spectrophotometer (ThermoFisher), and 250-300ng of DNA bisulphite-converted and purified 

using the EZ DNA methylation kit (Zymo Research, Irvine, CA, Cat# D5001), following the 

manufacturer’s protocol. Conversion carried out for 16 hours at 50°C on the Alpha Cycler 1 

(PCRmax, Staffordshire, UK), and converted DNA was eluted in 30µl elution buffer.  

2.11.2 Quantification of DNA methylation by pyrosequencing 

Primers for amplification and pyrosequencing of regions harbouring cg17134153 (hg19 

chr1:157,670,328 mapping to FCRL3), cg21124310 (hg19 chr5:55,444,106), and cg07522171 

(hg19 chr7:28,218,686) were designed using the PyroMarkÒ Assay Design SW 2.0 (Qiagen). 

The design criteria for primers are listed in Table 2.3. One of the primers in each pair contained 

a biotin tag to allow for subsequent immobilisation of PCR products on sepharose beads.  

Regions of interest were amplified from bisulphite-converted genomic DNA using the Titanium 

Taq PCR kit (Clontech Laboratories, Mountain View, CA; Cat# 639210). DNA was amplified 

in a 20µl reaction containing 1µl template DNA (~30ng), 2µl Titanium Taq PCR Buffer (10X), 

0.2µM each of forward and reverse primers (listed in Table 2.4; synthesized by Sigma-Aldrich), 

0.4µl dNTP mix (final concentration of 0.2mM each of dATP, dCTP, dGTP & dTTP; 

ThermoFisher; Cat# R0192), 0.4µl Titanium Taq DNA polymerase (50X), made up to the final 

volume with diethyl pyrocarbonate (DEPC)-treated H2O. 

To determine the optimal primer annealing temperature, a temperature gradient PCR reaction 

was run on an Alpha Cycler 1, with initial denaturation at 95°C for one minute, followed by 40 

cycles of 95°C for 15 seconds, 55-70°C for one minute, and 68°C for one minute, with a final 

 Amplification Primers Sequencing Primers 

Minimum Primer Length (nt) 18 15 
Maximum Primer Length (nt) 30 25 

Maximum Amplicon Length (nt) 400 - 
Minimum Melting Temperature (°C) 50 29 
Maximum Melting Temperature (°C) 72 59 

Maximum GC Difference (%) 50 - 
Maximum Distance from Target (nt) - 10 

Table 2.3: Design criteria for bisulphite pyrosequencing primers. A series of parameters were set for 

designing primers to allow targeted quantification of DNA methylation. Primers were designed using 

PyroMarkÒ Assay Design SW 2.0 (Qiagen). nt = nucleotides. 
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extension step at 68°C for 5 minutes. Following amplification, PCR products were run on an 

agarose gel (3% w/v in Tris-acetate-EDTA (TAE; 40mM Trizma® base (Sigma-Aldrich), 

20mM acetic acid (Fisher Scientific, Loughborough, UK), 1mM  ethylenediaminetetraacetic 

acid (EDTA) disodium salt dehydrate; Sigma-Aldrich; Cat# E5134)) buffer with 1% v/v 

ethidium bromide (EtBr; Sigma-Aldrich; Cat# E1510)) at 100 volts for 90 minutes alongside a 

Quick-Load® 100bp DNA ladder (New England Biolabs, Ipswich, MA; Cat# N0467S). Bands 

were visualised using the OdyseyÒ Fc imaging system (LI-COR Biosciences, Lincoln, NE). 

From the optimisation reaction, the optimal annealing temperature was determined to be 63°C 

for cg07522171/cg21124310, and 68°C for cg17134153. All subsequent amplifications for 

bisulphite pyrosequencing were carried out under the above cycling parameters with optimised 

annealing temperatures. Each sample or condition for which DNAm was to be quantified by 

pyrosequencing were amplified in duplicate from the same bisulphite DNA template. 

 

DNAm quantification was performed using the PyroMark Q24 MDx system with PyroMark 

Gold Q96 reagents (Qiagen; Cat# 972804). Following amplification, 10µl PCR product was 

transferred to a 24-well PCR plate (non-skirted, elevated wells, Starlab, Milton Keynes, UK). 

1.5μl Streptavidin-coated Sepharose beads (GE Healthcare, Ursula, Sweden; Cat# 17511301), 

40μl PyroMark Binding Buffer (Qiagen), and 28.5μl DEPC-H2O were added to each well 

containing PCR product and agitated for 10 minutes at room temperature using an Orbis 700-

235 Microplate Shaker (Cole-Parmer Instruments, St. Neots, UK). The beads, complexed to the 

 Primer Sequence (5’ ➞ 3’) 

CpG 

cg17134153 (Forward) [Btn]TAGAGGGTTGGGAAAGTTTGT 

cg17134153 (Reverse) CCACATTCACATTTTCAAAACCCAAAAC 

cg17134153 (Sequencing) CCCTCCTTCTTAAAAATAAAT 

cg21124310 (Forward) TTGGAGTTTTATTGAGGGATAAATTGA 

cg21124310 (Reverse) [Btn]ATATTCCTCCTCACTCTTTAAACC 

cg21124310 (Sequencing) TGAGGGATAAATTGAGTT 

cg07522171 (Forward) [Btn]TAAGTAAAGGAGTATAGGGTTTTGTT 

cg07522171 (Reverse) TACCCCCAAAAAATCCAAATAAATACCATA 

 cg07522171 (Sequencing) CTACAAAATTAAAAAAATAAATCAC 

Allelic 
Expression 

Quantification 

rs7522061 (Forward) TGGGCTAGGGAATGTGATATG 

rs7522061 (Reverse) [Btn]TGGCCCCAAAAGCTGTAC 

rs7522061 (Sequencing) TGGACCATGGAGGAT 

Table 2.4: Amplification and sequencing primers used for pyrosequencing in both CpG DNA 

methylation and allelic quantification assays. [Btn] = Biotin Tag. 
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PCR product, were captured using the PyroMark Q24 Vacuum Workstation (Qiagen), 

following which a series of wash steps were performed with 75% ethanol for 5 seconds, 

PyroMark Denaturing solution for 5 seconds, and 1X PyroMark Wash Buffer for 10 seconds. 

Beads were then released into the wells of a PyroMark Q24 plate containing 25μl sequencing 

primer (Table 2.4; synthesized by Sigma-Aldrich) diluted to 0.3μM in PyroMark Annealing 

buffer, with subsequent incubation at 80°C for 2 minutes. The plate was then loaded into the 

instrument, together with the PyroMark Q24 cartridge containing appropriate volumes of 

nucleotides (dATPαs, dCTP, dGTP, dTTP) and the enzyme/substrate mixes. The run was 

performed using a custom CpG assay created using PyroMark Q24 software (version 2.0.7), 

and the output T/C ratio used to determine the final DNA methylation value. Samples which 

passed the quality check (Figure 2.10) and returned duplicate values within a 5% range were 

included in analyses. 

 

2.11.3 Validation of Pyrosequencing Assays for DNA methylation Quantification 

In order to confirm that pyrosequencing assays designed were able to accurately call allele 

ratios, and thus reliably quantify DNAm, a validation experiment was set up using artificial 

Figure 2.10: Trace plot generated in PyroMark Q24 software. This depicts an exemplar plot from an 

analysis run on the PyroMark Q24 MDx system (Qiagen). This example shows a sample that passed the 

quality check and returned a methylation value of 45%. 
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mixes of allele ratios to generate a standard curve. gBlocks® gene fragments were designed 

(synthesized by Integrated DNA Technologies (IDT), Coralville, IA) representing bisulphite-

converted double-stranded DNA of methylated and unmethylated CpGs of interest, with 5’ and 

3’ adaptors added to reduce sequence complexity and facilitate fragment synthesis (Table 2.5). 

 

Fragments (250ng) were re-suspended at 2.5ng/µl in 100µl DEPC-H2O with incubation at 50°C 

for 20 minutes on a heat block. Solutions were subsequently prepared containing varying 

proportions of methylated and unmethylated DNA fragments to represent methylation values 

across the entire range in 10% increments (0 – 100%, Table 2.6). These solutions were then 

diluted 1:100 in DEPC-H2O to a concentration of 25pg/µl, and methylation quantified by 

pyrosequencing as described above in section 2.11.2. Results of the pyrosequencing assay 

validation are reported together with meQTL validation results in section 5.4. 

Fragment Sequence (5’ ➞ 3’) 

cg17134153 
(Unmethylated) 

TGATGGCTACTGGCTCGGATCCGTTATGGCTAGAGGGTTGGGAAAGTTTGTTTTATTAAA
AGTTTGATTTATTTTTAAGAAGGAGGGTAGGAAGTTGTTATTTAGATGAGATTTGTAAGA
ATTAGAAAAGGGAAGAAGAGTTTAGTGTTATATTTTGTTTTGGGTTTTGAAAATGTGAAT
GTGGTTATGTCTTTAAATGTTGCATGTATCCGTA 

cg17134153 
(Methylated) 

TGATGGCTACTGGCTCGGATCCGTTATGGCTAGAGGGTTGGGAAAGTTTGTTTTATTAAA
AGTTCGATTTATTTTTAAGAAGGAGGGTAGGAAGTTGTTATTTAGATGAGATTTGTAAGA
ATTAGAAAAGGGAAGAAGAGTTTAGTGTTATATTTTGTTTTGGGTTTTGAAAATGTGAAT
GTGGTTATGTCTTTAAATGTTGCATGTATCCGTA 

cg21124310 
(Unmethylated) 

TGATGGCTACTGGCTCGGATCCGTTATGGCTTGGAGTTTTATTGAGGGATAAATTGAGTT
TTTGAAGTATTTAGGAGTTGATAATTTAGTAGTTATTATTAGGTATGTTGTAATAAATAT
TTAGATGGTTTTGGTGATGGGAGAATTTTATTTTTTTGAAAATTAAAAAGTATTGATTGG
TTTAAAGAGTGAGGAGGAATATTTATGTCTTTAAATGTTGCATGTATCCGTA 

cg21124310 
(Methylated) 

TGATGGCTACTGGCTCGGATCCGTTATGGCTTGGAGTTTTATTGAGGGATAAATTGAGTT
TTCGAAGTATTTAGGAGTTGATAATTTAGTAGTTATTATTAGGTATGTTGTAATAAATAT
TTAGATGGTTTTGGTGATGGGAGAATTTTATTTTTTTGAAAATTAAAAAGTATTGATTGG
TTTAAAGAGTGAGGAGGAATATTTATGTCTTTAAATGTTGCATGTATCCGTA 

cg07522171 
(Unmethylated) 

TGATGGCTACTGGCTCGGATCCGTTATGGCTAAGTAAAGGAGTATAGGGTTTTGTTTTAT
TTTATTTTTGTATAAATATATAGTAGTTGTGATTTATTTTTTTAATTTTGTAGAAATGTGA
GTTGTATTTATATGGTTGAATTTATGGTATTTATTTGGATTTTTTGGGGGTATTATGTCTTT
AAATGTTGCATGTATCCGTA 

cg07522171 
(Unmethylated) 

TGATGGCTACTGGCTCGGATCCGTTATGGCTAAGTAAAGGAGTATAGGGTTTTGTTTTAT
TTTATTTTTGTATAAATATATAGTAGTCGTGATTTATTTTTTTAATTTTGTAGAAATGTGA
GTTGTATTTATATGGTTGAATTTATGGTATTTATTTGGATTTTTTGGGGGTATTATGTCTTT
AAATGTTGCATGTATCCGTA 

Table 2.5: Fragment sequences used for the validation of pyrosequencing assays targeting CpGs at regions 

of interest. For each CpG assay, a fragment was designed to represent both the unmethylated (T) and methylated 

(C) cytosine following bisulphite-conversion of DNA. The CpG site targeted by the respective assay is 

highlighted in red, and underlined sequences represent 5’ and 3’ adapters that were added to the ends of probes 

to facilitate synthesis. 
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2.12 Allelic Expression Analysis 

To quantify any allelic effects on FCRL3 gene expression, analysis of allelic expression 

imbalance (AEI) was performed in patients heterozygous at the regulatory SNP. This technique 

requires that the regulatory SNP is in high LD with a proxy transcript SNP. By quantifying the 

levels of the risk allele at this proxy SNP in the mRNA relative to the genomic DNA (gDNA), 

the extent to which the regulatory SNP confers increased mRNA levels can be quantified. In 

the genomic DNA of heterozygous individuals, the proportion of each allele copy is 1:1 (i.e. 

50% risk allele), and significant deviations from this in the mRNA are indicative of the risk 

allele conferring either increased or reduced gene expression levels.  

This technique was possible at the FCRL3 locus, given the presence of a proxy SNP 

(rs7522061) within Exon 4 of the gene that is in high LD (r2 > 0.9 in EUR populations) with 

the regulatory SNP (rs2210913) identified in the meQTL analysis. The process itself involves 

reverse-transcription of CD4+ T cell RNA from patients heterozygous at rs2210913, and 

quantification of allele frequencies in this cDNA and gDNA using pyrosequencing. 

2.12.1 Reverse Transcription 

To enable allelic expression quantification, CD4+ T cell RNA was first reverse transcribed using 

the SuperScript™ II reverse transcriptase kit (Invitrogen, Carlsbad, CA; Cat# 18064014). RNA 

was available from isolated patient CD4+ T cells as described in section 2.2. RNA was 

quantified using the Nanodrop ND-1000 Spectrophotometer and, for allelic expression analysis, 

Methylation (%) 
Methylated (C) 

gBlock (2.5ng/µl) 
Unmethylated (T) 
gBlock (2.5ng/µl) 

100 10 0 
90 9 1 
80 8 2 
70 7 3 
60 6 4 
50 5 5 
40 4 6 
30 3 7 
20 2 8 
10 1 9 
0 0 10 

Table 2.6: Preparation of allele mixes from synthetic bisulphite DNA for the generation of standard 

curves for validation of CpG assays. Varying proportions of the methylated (C) and unmethylated (T) 

sequences were mixed to produce solutions representing a pool of cells with DNA methylation values ranging 

from 0 – 100%. These were sequenced to determine if the CpG assays could correctly call DNA methylation 

levels at the CpGs of interest. 



 

70 
 

400ng transferred to a 200µl PCR tube (Starlab) and made up to 6µl with DEPC-H2O, followed 

by the addition of 1µl random hexamers (1µg/µl; Invitrogen; Cat# N8080127) and 1µl dNTP 

mix (0.5mM each in final 20µl volume; ThermoFisher). Samples were incubated at 65°C for 5 

minutes and quickly chilled on ice, followed by the addition of 4µl First Strand Buffer (5X), 

4µl MgCl2, 2µl dithiothreitol (DTT, 0.1M), and 1µl RNaseOUT™ ribonuclease inhibitor 

(40U/µl, Invitrogen; Cat# 10777019), with further incubation at 25°C for 1 minute. 1µl 

SuperScript™ II reverse transcriptase (200U/µl) was added and samples incubated at 25°C for 

10 minutes, 42°C for 50 minutes, and 70°C for 10 minutes, with cDNA stored at -20°C until 

use. As a negative control for reverse transcription, a reaction was set up with 1µl DEPC-H2O 

replacing reverse transcriptase enzyme. 

2.12.2 PCR amplification and allelic quantification by pyrosequencing 

Primers for PCR amplification and allelic quantification by pyrosequencing were designed 

using the PyroMarkÒ Assay Design SW 2.0 (Qiagen), as for the CpG assays (section 2.11.2). 

Amplification of the region of interest was carried out in a 20µl reaction using the AmpliTaq 

Gold Polymerase kit (Applied Biosystems, Foster City, CA; Cat# N8080241). The reaction was 

set up containing 2µl Buffer II (10X), 1.2mM MgCl2, 0.5µM each of forward and reverse 

primers (see Table 2.4 for primer sequences), 0.5µl dNTP mix (final concentration of 0.25mM 

each of dATP, dCTP, dGTP & dTTP), 50U AmpliTaq Gold DNA polymerase, 1µl sample DNA 

(either gDNA or cDNA), and made up to the final volume with DEPC-treated H2O. As before, 

optimal primer annealing temperatures were determine by running a PCR reaction with a 

temperature gradient (55 - 70°C). Amplification was carried out using the following 

thermocycling parameters on the G-Storm GS4 Thermal Cycler (G-Storm, Somerton, UK): 

initial denaturation at 95°C for 10 minutes, after which template was amplified for 45 cycles at 

95°C for 15 seconds, 57.5°C for 30 seconds, and 72°C for 5 minutes, with final extension at 

72°C for 5 minutes. Amplicons were visualised on the OdyseyÒ Fc imaging system (LI-COR) 

after being run at 80V for 1 hour on a 3% (w/v in TAE buffer) agarose gel supplemented with 

1% (v/v) EtBr. 

The percentage of the risk allele (C) at the transcript SNP was then quantified by 

pyrosequencing exactly as before (see section 2.11.2), with the exception that a custom allelic 

quantification (AQ) assay was used as opposed to CpG assays. The sequence of the primer used 

for AQ pyrosequencing at rs7522061 is given in Table 2.4. For each patient sample, gDNA and 

cDNA were quantified in triplicate and samples for which any one of the triplicates differed 
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from the other two by > 5% were excluded or repeated. In total, allelic quantification at 

rs7522061 was performed in 33 heterozygous patients. 

2.12.3 Validation of pyrosequencing assays for allelic quantification 

As with the CpG assays, the pyrosequencing assay for AQ had to be validated to ensure that 

allelic percentages could be accurately quantified across the entire range (0 – 100%). To 

validate the assay, a similar approach was used whereby allele mixes were generated with a 

range of risk allele proportions from 0 – 100%. These mixes were created by combining varying 

proportions of genomic DNA from patients who were either homozygous at the risk (C) or 

alternate (T) allele. Allelic proportions within these mixes were quantified by pyrosequencing 

as described above, and a standard curve produced by plotting the reported percentages from 

pyrosequencing against the expected percentages based on the prepared mixes to determine the 

accuracy of the assay. The standard curve generated for validation of this pyrosequencing assay 

is reported together with the results from the AEI analysis at FCRL3 in section 5.5. 

2.13 Drug-induced DNA hypo-methylation in lymphocyte cell lines 

2.13.1 Culture of lymphocyte cell lines 

Two lymphocyte cell lines were used to assess the effects of DNAm on gene expression at loci 

of interest. Jurkat cells (Clone E6-1, TIB-125™; American Type Culture Collection® (ATCC), 

Manassas, VA) are an acute T cell leukaemia cell line established from peripheral blood of a 

14-year-old male patient. Conversely, Ramos (CRL-1596™; ATCC®) cells are a B cell line 

established from a 3-year-old male patient with Burkitt’s lymphoma. 

Both cell lines were cultured under identical conditions, maintained in RF10 medium (RPMI-

1640 medium (Sigma-Aldrich; Cat# R0883) supplemented with 2mM glutamine, 100U/ml 

penicillin, 100µg/ml streptomycin, and 10% heat-inactivated foetal calf serum (FCS)) in a 

CELLSTAR® T75 culture flask (Greiner Bio-One, Stonehouse, UK; Cat# 658170) at 37°C 

with 5% CO2. Cells were passaged every 2-3 days by transferring 1ml of the culture into 11ml 

of fresh RF10 medium. All cell culture procedures described in sections 2.13-2.15 were carried 

out in a class 2 microbiological safety cabinet (BioMAT; Contained Air Solutions, Middleton, 

UK). 

To re-culture frozen cells, aliquots were removed from liquid nitrogen storage and placed on 

dry ice for five minutes to allow residual liquid nitrogen to evaporate. Cells were subsequently 

placed in a water bath at 37°C for 5 minutes until just thawed, and then transferred to a sterile 

30ml Polystyrene Universal tube (Starlab; Cat# E1412-3010) containing 20ml of pre-warmed 
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RF10 medium. Cells were washed twice to remove dimethyl sulfoxide (DMSO) present in the 

freezing medium by centrifugation at 400 x g for 8 minutes, aspiration of the supernatant, and 

re-suspension in 20ml of pre-warmed RF10. Following the second wash step, cells were re-

suspended in 5ml of warmed RF10 and counted using a Neubaueur counting chamber. Cells 

were seeded at a density of either 1 x 105 cells/ml (Jurkat cells) or 2 x 105 cells/ml (Ramos 

cells). 

To freeze cells, freezing medium was prepared with RF10 containing 5% DMSO, and passed 

through a 0.2µm sterile syringe filter with a polyethersulfone membrane (VWR, Leicestershire, 

UK; Cat# 514-0073). Cells were centrifuged at 400 x g and 4°C for 5 minutes and re-suspended 

in freezing media at 2 x 106 cells/ml, with 1ml then transferred to a pre-cooled cryogenic vial 

(2.0ml, self-standing; Corning, Corning, NY; Cat# 431386). The vials containing cells were 

transferred to a CoolCell® (Corning), frozen at -80°C, and subsequently transferred to storage 

in liquid nitrogen. 

2.13.2 5-Aza-2’-deoxycitidine treatment of cell lines 

To assess the impact of global DNAm changes on the transcriptional activity at genes of 

interest, drug-induced hypo-methylation was achieved by treating lymphocyte cell lines with 

5-Aza-2’-deoxycitidine (5-aza, Figure 2.11) – a cytidine analogue that inhibits the activity of 

the DNA methyltransferase enzymes (DNMTs). Jurkat cells and Ramos cells (see section 

2.13.1) were selected as representative T- and B- cell lines and were treated with either 0.25µM 

or 0.5µM 5-aza for either 48 or 72 hours (Figure 2.12).  

 

 

 

 

 

 

 

 

 

Figure 2.11: Chemical structure of 5-aza-2’-deoxycitidine (Decitabine). This drug is a chemical 

analogue of cytidine which can induce passive DNA de-methylation through inhibition of DNMT enzyme 

activity. 
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Initially, 5mg 5-aza-2’-deoxycitidine (≥97%, Sigma-Aldrich) was dissolved in 1.10ml of 50% 

DMSO Hybri-Max™ (sterile-filtered, Sigma-Aldrich; Cat# D2650, diluted in DEPC-H2O) with 

vortexing to prepare a stock solution of 20mM, which were stored at -20°C for < 1 week prior 

to use. Working stocks at 200µM and 100µM were prepared immediately prior to treatment of 

cells by diluting either 10µl of the 20mM stock in 990µl RF10 culture medium, or 5µl of stock 

in 995µl media. For use as a vehicle control, 10µl 50% DMSO was diluted in 990µl RF10 

medium (DMSO control). 

Jurkat and Ramos cells cultured in a T75 flask (Greiner Bio-One) with RF10 medium were 

counted and, for each condition, 2.5 x 105 cells in 3ml RF10 plated out in a Falcon® 6-well 

clear, flat-bottom culture plate (Corning; Cat# 353046) under sterile conditions. Each of the six 

treatment conditions (DMSO control, 0.25µM 5-aza, and 0.5µM 5-aza for both 48h and 72h 

treatment) was run in triplicate (Figure 2.12).  

In order that all conditions could be harvested simultaneously, 5-aza was added to 72h time 

point cells immediately after plating on Day 0, with DMSO control added to all 48h cells at this 

point. Treatment of 48h time point cells with 5-aza began at 24h following plating out of cells, 

and cells for all conditions subsequently harvested at the 72h time point (Figure 2.12). For each 

of the treatments (DMSO control, 0.25µM 5-aza, 0.5µM 5-aza), 7.5µl of the prepared working 

reagent (either DMSO control, 100µM 5-aza, 200µM 5-aza) was added to the respective well. 

Treatments in all wells were replenished at each 24h time point. At the end of the treatment 

course, cells were harvested, lysed, and simultaneous extraction of genomic DNA and RNA 

performed exactly as described in section 2.2, with bisulphite-conversion of DNA (section 

2.11.2), and reverse transcription of 600ng RNA (section 2.12.1). 

Quantification of DNAm at the CpGs of interest (cg17134153 (FCRL3), cg21124310 

(ANKRD55/IL6ST), and cg07522171 (JAZF1)) in bisulphite-converted DNA was performed 

exactly as described in section 2.12.2. 
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2.13.3 Quantitative PCR 

Expression levels of gene of interest following 5-aza treatment were measured by quantitative 

PCR (qPCR) with TaqMan Gene Expression Assays (ThermoFisher). This system incorporates 

exon-spanning, sequence specific primers together with a sequence-specific probe that is 5’ 

labelled with a FAM™ fluorescent dye (Applied Biosystems) and a non-fluorescent quencher.  

48 hour time-point cells 72 hour time-point cells 

0 hours 

24 hours 

48 hours 

72 hours 

Jurkat/Ramos cell line 
Treatment with 5-aza 

+ DMSO + DMSO + DMSO + DMSO + 0.25µM 
5-aza 

+ 0.50µM 
5-aza 

+ DMSO + 0.25µM 
5-aza 

+ 0.50µM 
5-aza 

+ DMSO + 0.25µM 
5-aza 

+ 0.50µM 
5-aza 

+ DMSO + 0.25µM 
5-aza 

+ 0.50µM 
5-aza 

+ DMSO + 0.25µM 
5-aza 

+ 0.50µM 
5-aza 

Harvest all cells and isolate DNA/RNA 

Bisulphite conversion of 
DNA and pyrosequencing 

to quantify DNA 
methylation 

Reverse transcription of 
RNA and qPCR to quantify 

gene expression 

J J J 
R R R 

J J J 
R R R 

J J J 
R R R 

J J J 
R R R 

J J J 
R R R 

J J J 
R R R 

Figure 2.12: 5-Aza-2’-deoxycitidine (5-aza) treatment or Jurkat (J) and Ramos (R) cell lines. Cells were 

treated with either DMSO (vehicle control), 0.25µM 5-aza, or 0.50µM 5-aza for either 48 hours or 72 hours. 

All cells were cultured in parallel, with treatment of the 48-hour cells at the 24-hour time point to allow all 

cells to be harvested at the 72-hour time point. Culture plate logos from BioRender (https://biorender.com). 
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For qPCR, all samples were run in triplicate, and those for which the cycle threshold (Ct) values 

of all three technical replicates differed by ≤ 0.5 were included in the analysis. Each 

amplification was set up in a 20µl reaction containing 10µl TaqMan™ Gene Expression Master 

Mix (2X, ThermoFisher; Cat# 4369016), 1µl TaqMan Gene Expression Assay (20X, Table 

2.7), 4µl DEPC-H2O, and 5µl cDNA (diluted 1:20 in H2O). Cycling was performed using the 

AriaMX Real-time PCR system (Agilent), with initial denaturation at 95°C for 10 minutes, 

followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Transcripts of interest 

were all normalised to transcript levels of the HPRT1 and GAPDH housekeeper genes. Initially, 

the mean Ct for both housekeeper genes was calculated. This mean housekeeper Ct for a given 

condition was subsequently subtracted from the Ct value for the gene of interest to give the 

ΔCt, which was then converted to 2-ΔCt. The mean 2-ΔCt across triplicates was then calculated 

for each sample. 

 

2.14 Luciferase reporter assay 

Gene reporter assays were performed with the aim of validating the regulatory potential of SNPs 

and/or CpG sites identified by the meQTL analysis of patient samples. The FCRL3 and JAZF1 

regions were selected for luciferase reporter assays, given that the cis-CpGs found to likely 

mediate transcriptional regulation in these cases map to the gene promoter regions. The pCpGL-

basic CG-free plasmid299 (Figure 2.13) was chosen for this analysis as this plasmid allows for 

the effect of CpG DNA methylation on reporter activity to be measured. In the instance of the 

FCRL3 promoter, the regulatory SNP (rs7528684) and meQTL-associated cis-CpG sites 

(cg17134153 & cg01045636) were in sufficient proximity to allow both to be cloned into the 

vector. However, for the JAZF1 promoter, the CpG was cloned into the vector in isolation, 

given that the regulatory SNP was at too great a distance to allow the two to be cloned in the 

same insert. 

Gene TaqMan Assay ID RefSeq Transcript (Exon Boundary) 

ANKRD55 Hs00902590_m1 NM_024669.2 (11 - 12) 

FCRL3 Hs00364720_m1  NM_001320333.1 (10 – 11) 

GAPDH Hs02758991_g1 NM_001256799.2 (6 – 7) 

HPRT1 Hs02800695_m1 NM_000194.2 (2 – 3) 

IL6ST Hs00174360_m1 NM_001190981.1 (13 – 14) 

JAZF1 Hs00697777_m1 NM_175061.3 (4 – 5) 

Table 2.7: TaqMan Gene Expression Assays used for quantifying transcript levels of genes of interest. 

The TaqMan assay ID represents a unique ID provided for each assay from ThermoFisher. The RefSeq 

transcript refers to the unique RefSeq ID for the transcript targeted by the assay, together with the exons in the 

transcript across which the assay spans. 
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2.14.1 Amplification of regions of interest 

PCR primers spanning the region of interest were designed using Primer3 software300 (version 

4.1.0; http://primer3.ut.ee), with restriction sites for the SpeI and NcoI (FCRL3 promoter) or 

SpeI and HindIII (JAZF1 promoter) enzymes added to the 5’ end of the primers to enable 

cloning into the CpG-free pCpGl-basic vector299 (Figure 2.13) in the correct orientation. 

Primers were optimised as described in section 2.11.2 using patient genomic DNA. In the case 

of the FCRL3 promoter, as the regulatory activity of both alleles of the rs7528684 SNP were to 

be assessed, template DNA from a patient heterozygous at this SNP was used as template for 

amplification, enabling the generation of inserts harbouring both allele copies.  

Regions of interest were amplified using the Phire Hot Start II DNA polymerase 

(ThermoFisher; Cat# F122S) for high-fidelity amplification. A reaction was set up consisting 

of 4µl Phire Reaction Buffer (5X), 0.2µM each of forward and reverse primers (Table 2.8), 

0.4µl dNTP mix (final concentration of 0.2mM of each), 0.5µl template DNA (~50ng), and 

0.4µl Phire Hot Start II DNA Polymerase, and made up to a 20µl volume with DEPC-H2O. 

Amplification was performed using the Alpha Cycler 1 (PCRmax) under the following cycling 

parameters: 98°C for 30 seconds, 35 cycles of 98°C for 5 seconds, 69°C for 5 seconds, and 

72°C for 15 seconds, with a final extension step of 72°C for 1 minute. To increase the possibility 

of obtaining amplicons without de novo mutations introduced during amplification, each PCR 

was performed in duplicate, with the two reactions combined prior to clean up. Clean-up of 

PCR products was performed using a QIAquick Gel Extraction Kit (Qiagen; Cat# 28704), 

Figure 2.13: pCpGl Basic Vector. The CpG-free vector299 used for reporter gene assays harbours a luciferase 

gene to give a readout of transcriptional activity. The multiple cloning site (MCS) upstream of the luciferase 

gene allows for the promoter region of interest to be cloned into the vector. The plasmid also incorporates a 

ZeocinÔ antibiotic resistance gene to allow for selection of transformed cells on selective media. The presence 

of the R6K origin of replication allows for plasmid replication in prokaryotes, and the SV40 poly-A sequence 

signifies the site of transcriptional termination.  
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following the manufacturer’s protocol for clean-up from enzymatic reactions, with elution in 

40µl EB buffer. 

 

2.14.2 Digestion of insert and vector 

Reactions were set up in parallel to digest the PCR amplicon inserts and the vector with the 

appropriate restriction enzymes. To digest inserts, a 40µl reaction was set up with 30µl purified 

PCR product, 4µl CutSmart Buffer® (10X, New England Biolabs; Cat# B7204S), 1.5µl each 

of either SpeI-HF® and NcoI-HF® (FCRL3, New England Biolabs; Cat# R3133S/R3193S) or 

SpeI-HF® and HindIII-HF® (JAZF1, New England Biolabs; Cat# R3133S/R3104S), and 3ul 

DEPC-H2O. The pCpGl-basic vector was also digested in a 40µl reaction with 15µl vector 

(~1µg), again with 4µl CutSmart® Buffer and 1.5µl each of the appropriate restriction enzymes. 

Digestion was performed in an incubator at 37°C for 16 hours. 

Following digestion, the digested inserts and vector were electrophoresed on an agarose gel 

(1.5% w/v in TAE buffer, 1.5% v/v EtBr) at 100V for 90 minutes, after which the DNA bands 

of interest were extracted using a scalpel. The DNA was purified from the gel band using the 

QIAquick Gel Extraction Kit (Qiagen), this time following the instructions for clean-up from 

low-melt agarose gels, and purified products eluted in 50µl Buffer EB. 

2.14.3 Ligation of insert into vector 

Following extraction of digested insert and vector from the agarose gel, DNA quantification 

was performed using the Nanodrop ND-1000 Spectrophotometer to calculate the volume for 

use in the ligation reaction. To ensure that the insert was in excess of the vector, and thus 

minimise the number of instances of vector re-ligation, 100ng of insert (0.97Kb (FCRL3) / 

0.60Kb (JAZF1)) was ligated with 200ng vector (3.87Kb), so that the insert was in ~2-3 fold 

excess. A 20µl reaction was set up with 2µl T4 DNA Ligase Buffer (10X, New England 

Biolabs), 200ng vector DNA, 100ng insert DNA, 1µl T4 Ligase (New England Biolabs; Cat# 

Primer Sequence (5’ ➞ 3’) Amplified Region (hg19) 

FCRL3 (NcoI) GGGGCCATGGCTCACTTCCCATCCCTTGCT 
chr1:157,670,120 – 157,671,093 

FCRL3 (SpeI) GGGGACTAGTAGAACAGTTAGAGGTGCGGG 

JAZF1 (SpeI) GGGGACTAGTACCCCTGGACCTTTCAACAA 
chr7:28,218,982 – 28,218,384 

JAZF1 (HindIII) GGGGAAGCTTCCAAAACTTGCCCAGCTCTT 

Table 2.8: Primers used for amplification of promoter regions of interest prior to cloning into the pCpGl-

Basic vector. Underlined are the restriction enzyme recognition sites to enable digestion and ligation into the 

plasmid. 
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B0202S) and made up to a final volume with DEPC-H2O. A re-ligation reaction was set up in 

parallel, replacing the insert with H2O, in order to assess the efficiency of the ligation of the 

insert into the digested plasmid. Ligation was performed for 2 hours at room temperature, 

following which the ligase enzyme was heat inactivated at 65°C for 10 minutes, and the reaction 

kept on ice until bacterial transformation. 

2.14.4 Preparation of LB agar plates and LB broth with antibiotic 

To prepare LB media for bacterial selection, 10.3g LB Broth (Lennox, Sigma; Cat# L3022) was 

made up to 500ml using distilled H2O (dH2O) and autoclaved at 121°C. The LB broth was 

stored at room temperature until use. Prior to use, Zeocin™ (100mg/ml in solution, Invivogen, 

San Diego, CA; Cat# ant-zn-05) was added to the LB broth at a ratio of 1:3000 v/v, to give a 

final antibiotic concentration of 33µg/ml. 

LB agar antibiotic plates were prepared by mixing 10.3g LB Broth (Lennox, Sigma) and 7.5g 

Bacto™ Agar (BD Biosciences, San Jose, CA; Cat# 90000-760) and made up to 500ml with 

distilled H2O prior to autoclaving at 121°C. The media was allowed to cool to 55°C in a water 

bath, at which point 166µl Zeocin™ antibiotic was added to a final concentration of 33µg/ml 

and poured into culture dishes under sterile conditions. Plates were set at room temperature, 

dried at 37°C in an incubator overnight, and then stored at 4°C until use. 

2.14.5 Bacterial transformation, colony picking, and plasmid preparation 

ChemiComp GT115 E. coli cells (Invivogen; Cat# gt115-11) were removed from storage at -

80°C and thawed on ice. 22µl was added to separate 1.5ml Eppendorf tubes for each ligation 

reaction and placed on ice. 1.5µl of the ligation reaction was added to the appropriate tube 

containing the cells, gently stirred with a pipette tip, and left on ice for 30 minutes. The cells 

were heat shocked for 30 seconds at 42°C on a heat block and immediately placed back on ice 

for 5 minutes, following which 200µl of room temperature S.O.C Medium (ThermoFisher; Cat# 

15544034) was added to each tube. The tubes were then placed in an incubator at 37°C with 

rocking at 225rpm for 1 hour. Two separate LB agar plates supplemented with Zeon™ 

(33µg/ml) per condition (both vector + insert ligations (FCRL3/JAZF1), as well as vector re-

ligations) were pre-warmed. Plates were streaked with either 30µl or 90µl of transformed cells 

using a sterilised glass spreader and incubated at 37°C for 16 hours. 

Following this incubation, eight individual colonies were picked for each insert using a sterile 

pipette tip and inoculated in 3ml LB broth with 33µg/ml Zeocin™ in a sterile 15ml polystyrene 

Falcon tube (ThermoFisher; Cat# 10263041). Each tube inoculated with a single colony was 
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incubated at 37°C for 16 hours with rocking at 225rpm, and 1.5ml transferred to a 1.5ml 

Eppendorf tube. Glycerol stocks from each colony were prepared by combining 300µl of the 

bacterial culture with 300µl glycerol (BioUltra, anhydrous, ≥99.5%; Sigma-Aldrich; Cat# 

49767), and stocks stored at -80°C. 

Bacterial cultures were then miniprepped for plasmid genotyping and sequencing. Bacterial 

cells were first harvested by centrifugation at 8,000 x g for 4 minutes and the supernatant 

carefully aspirated. Each bacterial pellet was re-suspended in 100µl P1 + RNase A solution 

(50mM Tris-HCl, 10mM EDTA, 100µg/ml RNase A) using a vortex. 200µl of P2 solution 

(200mM NaOH, 1% SDS) was added to each tube and mixed by inverting five times, with cell 

lysis allowed to progress for 4 minutes, after which 150µl of P3 solution (3M potassium acetate, 

pH 5.5) was added, and again mixed by inverting the tube. The lysate was centrifuged at 13,000 

rpm for 5 minutes to remove cellular debris, and the clear supernatant transferred to a new 1.5ml 

Eppendorf tube. The centrifugation step was repeated once more, and ~450µl cell lysate added 

to a sterile 1.5µl tube. To precipitate the plasmid DNA, 1ml 100% ethanol was added to each 

tube containing the clear supernatant, incubated at 80°C for 20 minutes, followed by 

centrifugation at 13,000rpm for 10 minutes. The supernatant was carefully aspirated from the 

DNA pellet and residual ethanol was allowed to evaporate by air drying the DNA pellet at room 

temperature for 15 minutes, after which the pellet was re-suspended in 80µl DEPC-H2O and 

stored at -20°C. 

2.14.6 Plasmid genotyping and sequencing 

To identify colonies that had been successfully transformed with pCpGl-basic vector containing 

the correct insert, a genotyping digest reaction was set up with 1µl CutSmart® Buffer, 0.25µl 

of each restriction enzyme (SpeI-HF® & NcoI-HF® for FCRL3, SpeI-HF® & HindIII-HF® for 

JAZF1), 4µl miniprepped plasmid DNA, and 4.5µl DEPC-H2O. The reaction was incubated at 

37°C for 2 hours and run on an agarose gel (2% w/v in TAE Buffer, 1.5% EtBr) at 100V for 90 

minutes, with the gel visualised using the OdyseyÒ Fc imaging system. Clones harbouring 

vector with the ligated insert were identified by the presence of bands at ~3.7Kb (pCpGl-basic) 

and either ~970bp (FCRL3) or ~600bp (JAZF1). To check the size of the inserts, digested 

vectors were run alongside the respective amplicon from PCR. 

To confirm insert orientation, identify potential de novo mutations and, in the case of the 

FCRL3 promoter, perform SNP haplotyping, plasmids from clones which were found to 

harbour the vector and insert were diluted 1:1 in DEPC-H2O and sent for Sanger Sequencing 

(service provided by Source Bioscience, Nottingham, UK). Sequencing results were analysed 
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using ‘A plasmid Editor’ (ApE) software (version 2.0) and multiple sequence alignment 

performed using ClustalX301 (version 2.1) to identify variable positions between clones. 

2.14.7 Plasmid maxiprep and in vitro methylation 

Following confirmation of plasmid sequences, the appropriate clones were streaked on LB agar 

plates from glycerol stocks and cultured for 16 hours at 37°C. Colonies were then inoculated in 

5ml LB broth with Zeocin (33µg/ml) in a sterile 15ml polystyrene Falcon tube (ThermoFisher), 

and incubated at 37°C at 225rpm for 6 hours. This culture was then transferred to a 1L conical 

flask containing 200ml LB broth with Zeocin (33µg/ml) and cultured for a further 16 hours 

(37°C, 225rpm). Following this incubation period, each culture transferred to four sterile 

polypropylene 50ml centrifuge tubes (Cole-Parmer; Cat# WZ-06344-29) and centrifuged at 

3,500 x g for 20 minutes to pellet the cells. The supernatant was aspirated from the cell pellet 

and plasmid DNA extracted using the PureYield™ Plasmid Maxiprep System (Promega, 

Hampshire, UK; Cat# A2939) with the QIAvac 24 Plus vacuum manifold (Qiagen; Cat# 19413) 

following the manufacturer’s protocol. The harvested cells in separate centrifuge tubes from 

the same clone were recombined by resuspension in 12ml Cell Resuspension Solution 

(Promega) prior to plasmid extraction. 

40µg plasmid DNA was either methylated or mock-methylated in vitro in four separate 120ul 

reactions per plasmid (10µg DNA per reaction) using the M.SssI CpG methyltransferase 

enzyme (New England Biolabs; Cat# M0226M). Along with the plasmids containing the inserts 

of interest, the empty pCpGl-basic plasmid was also methylated/mock-methylated to include as 

a negative control for normalising luciferase activity. Plasmid DNA (4 reactions per plasmid 

performed in parallel) was combined with 12µl NEB Buffer 2 (10X, New England Biolabs), 

25µl S-adenosylmethionine (SAM, 1.6mM, New England Biolabs), 2µl of either M.SssI 

enzyme (for methylated plasmids, 20,000U/ml) or DEPC-H2O (mock-methylated), and then 

made up to the final volume with DEPC-H2O. The reactions were incubated for 16 hours at 

37°C in a water bath, following which they were replenished with 2µl NEB Buffer 2, 4µl 

1.6mM SAM, 2µl of either MSss.I (20,000U/ml) or DEPC-H2O, and 12µl DEPC-H2O, with 

incubation at 37°C for a further 4 hours. Enzymes were heat-inactivated at 65°C for 20 minutes 

and the plasmid DNA purified using the Wizard® SV Gel and PCR Clean-Up System 

(Promega; Cat# A9281) following the manufacturer’s instructions, with elution in 40µl 

nuclease-free H2O. The four reactions per plasmid run in parallel for each condition were 

combined following clean-up for downstream transfections. 
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To confirm complete methylation, both methylated and mock-methylated plasmids were 

digested with the methylation-sensitive enzyme HpaII, for which restriction sites were present 

in both the JAZF1 and FCRL3 inserts. Plasmid DNA (4µl) was combined with 1µl CutSmart® 

Buffer, 0.25µl HpaII (New England Biolabs; Cat# R0171S), and 4.75µl DEPC-H2O, with 

incubation at 37°C for 2 hours. Digested products were separated on an agarose gel (2% w/v, 

1.5% EtBr) at 100V for 90 minutes and the banding pattern visualised using the OdyseyÒ Fc 

imaging system. After methylation was confirmed, plasmids were stored at -20C. 

2.14.8 Culture of HEK-293T cell line 

HEK-293T cells are an adherent human cell line derived from an embryonic kidney cell (CRL-

3216™, ATCC), and were selected as a suitable transfection host for reporter gene assays. Cells 

were cultured in a T75 flask with Dulbecco’s modified eagle medium (DMEM, ThermoFisher; 

Cat# 31053028) supplemented with 10% FBS, 2mM L-glutamine, 200IU/ml Penicillin, and 

200µg/ml Streptomycin. Cultured cells were maintained at 37°C with 5% CO2 and passaged 

when ~80-90% confluent (every 2-3 days) by transferring 2ml of cells to 8ml of fresh medium 

in a T75 flask. As these cells are adherent, the cells were treated with trypsin before transferring. 

The medium was removed from the cells and the surface of the flask washed in 10ml 

Dulbecco’s phosphate buffered saline (DPBS, without Mg2+ and Ca2+, Sigma-Aldrich; Cat# 

D8537). Adherent cells were detached from the flask with 1.5ml 0.05% trypsin-EDTA 

(ThermoFisher; Cat# 25300), placed in the incubator at 37°C for 5 minutes, and the flask tapped 

to dislodge cells. The trypsin was deactivated by the addition of 8.5ml supplemented DMEM. 

2.14.9 Transfection of a HEK-293T cell line 

HEK-293T adherent cells were transfected using the nonliposomal transfection reagent 

FuGENE® HD (Promega; Cat# E2311). Following trypsinisation (see section 2.14.8), cells 

were transferred to a sterile 50ml Falcon tube (ThermoFisher). The cells were then centrifuged 

at 15,000 x g for 5 minutes and the medium aspirated, following which they were re-suspended 

in 6ml medium and counted as before (see section 2.13.1). Cell density was adjusted to 2 x 105 

cells/ml, and 100µl added to wells of a Corning™ Costar™ 96-well flat bottom culture plate 

(Fisher Scientific; Cat# 10695951). Prior to transfection, cells were incubated at 37°C for 24 

hours. Each well was transfected with 10ul of transfection mix containing 50ng pCpGL-basic 

plasmid (section 2.14.7), 6ng pRL-TK Renilla Luciferase Control Vector (Promega; Cat# 

E2231) and 0.15µl FuGENE® HD (Promega) diluted in DMEM (without FCS or antibiotic). 

Precisely 15 minutes after the addition of FuGENE® HD to the transfection mix, 10µl was 
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added to each well containing 100µl HEK-283T cells (2 x 104 cells/well). Transfected cells 

were then incubated at 37°C with 5% CO2 for 24 hours before lysing. 

2.14.10 Transfection of a Jurkat cell line 

Plasmid transfection of Jurkat cells was carried out using the Neonä Transfection System 

(ThermoFisher) in conjunction with Neonä Transfection System 10µl kit reagents 

(ThermoFisher; Cat# MPK1025). All plasmids were concentrated to 3µg/µl using a DNA120 

SpeedVac® System (ThermoFisher) and 4µl combined with 4µl pRL-TK Renilla Luciferase 

Control Reporter Vector (60ng/µl) to give a final concentration of 1.5µg/µl and 30ng/µl 

respectively, with 7µl of this plasmid mix then transferred to a 200µl PCR tube (Starlab). 

A 24-well flat-bottom culture plate was prepared by adding 500µl of antibiotic-free RF10 media 

to each well and placed in the incubator to pre-warm for 1 hour. Jurkat cells were cultured in a 

T75 flask (see section 2.13.1), and the media changed 24 hours prior to transfection. Cells were 

counted, with12.1 x 106 transferred to a universal tube and centrifuged at 500 x g for 8 minutes. 

The media was aspirated, cells washed by re-suspending in 10ml DPBS (without Mg2+ and 

Ca2+, Sigma-Aldrich) and again centrifuged as before. The DPBS wash step was repeated once 

more before cells were re-suspended in 550µl Buffer R (ThermoFisher), giving a cell density 

of 22 x 106 cells/ml. 63µl of this prepared cell suspension was transferred to each tube 

containing the 7µl of the prepared plasmid mixes. Electroporation in a 10µl volume (~2 x 105 

cells) was carried out using the Neonä Transfection System according to the manufacturer’s 

protocol, with a program of 1400 voltage pulse, 10ms pulse width, and 3 pulses. Each condition 

was transfected in triplicate and dispensed into separate wells of the 24-well plate containing 

500µl pre-warmed antibiotic-free media.  Transfected cells were incubated at 37°C with 5% 

CO2 for 24 hours before lysing. 

2.14.11 Quantification of reporter gene activity 

Twenty-four hours following transfection, luciferase activity was measured using the Dual-

Luciferase® Reporter Assay System (Promega; Cat# E1910). Cells were harvested by 

centrifugation at 500 x g for 8 minutes and aspiration of the supernatant. The cells were washed 

with PBS and re-suspended in either 100µl (Jurkat) or 30µl (HEK-293T) 1X passive lysis buffer 

(Promega) and agitated at room temperature for 30 minutes. 20µl of the cell lysate was 

transferred to separate wells of a 96-well black polystyrene plate with white wells, and both 

Firefly and Renilla luciferase activity read using the GloMax®-Multi Detection System 

(Promega) with Dual-Luciferase® Reporter Assay reagents, following the manufacturer’s 
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protocol (100µl each of Luciferase Assay Reagent II and Stop & Glo® Reagent, 2 second delay, 

with a 10-second measurement period). For each transfection reaction, the firefly luciferase 

activity, indicative of promoter activity for the region of interest, was normalised to the Renilla 

activity to account for transfection efficacy. Subsequently, the relative luciferase activity for 

each insert was normalised to the intensity value for the respective methylated/unmethylated 

empty vector. 

2.15 Site-specific DNA-demethylation using a CRISPR-dCas9 system  

To assess the potential impact of inducing site-specific de-methylation at FCRL3, ANKRD55 

and JAZF1 CpG sites of interest in a genomic context, a clustered regularly interspaced short 

palindromic repeats (CRISPR) – nuclease-deficient Cas9 (dCas9) system was employed. The 

CRISPR-Cas9 genome-editing system was developed by leveraging a bacterial immune 

mechanism that involves small RNAs (termed CRISPR RNAs (crRNAs)) that recognize DNA 

from foreign organisms and target the Cas9 endonuclease enzyme to these sequences302. This 

system has enabled targeted cellular genome-editing in vitro and in vivo
303. By substituting the 

active Cas9 enzyme for one that has been edited to become catalytically inactive (dCas9), this 

system can be leveraged to target a range of effector proteins, including those that modify 

DNAm, to specific regions in the genome304. 

This system was used here in an attempt to target the catalytic domain of TET1, an enzyme 

involved in active demethylation, to the loci of interest harbouring cis-CpGs associated with 

risk loci. The pPlatTET-gRNA2304 plasmid (Addgene, Watertown, MA, Plasmid #82559) 

encodes multiple copies of the GCN4 peptide, the nuclease-deficient dCas9, an anti-GCN4 

antibody single chain variable fragment (scFv), a copy of the TET1 enzyme which catalyses 

DNA de-methylation, as well as the green fluorescence protein (Figure 2.14A). Rather than 

inserting the coding sequence of the guide RNA (gRNA) of choice into the vector itself, a 

transient transfection approach was adopted with the use of synthetic gRNAs. This involved 

duplexing a sequence-specific crRNA with a trans-activating crRNA (tracrRNA) to form a 

guide RNA (gRNA) that can deliver the dCas9 to the intended site (Figure 2.14B). When the 

gRNA and pPlatTET-gRNA2 plasmid are co-transfected into the host cell, association of the 

dCas9 with the gRNA localises this fusion protein to the target region of the genome (Figure 

2.14C). Subsequent binding of the svFC fragment to the GCN4 peptides delivers the TET1 

catalytic domain to the targeted loci, thus inducing de-methylation at proximal CpG sites 

(Figure 2.14C). The presence of the GFP tag allows transfected cells to be identified by 

fluorescence.  
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2.15.1 Plasmid isolation 

LB agar plates with antibiotic were prepared as before (section 2.14.4) with the addition of 

50µg/ml kanamycin in place of Zeocin™. The agar stab containing cells transformed with 

pPlatTET-gRNA2 was streaked onto pre-warmed plates using a P20 pipette tip and incubated 

at 37°C for 16 hours. Colonies were picked and cultured as described before (section 2.14.5), 

with plasmids again extracted with the PureYield™ Plasmid Maxiprep System (section 2.14.7). 

2.15.2 Design of crRNAs and gRNA duplexing 

Synthetic gRNAs were designed in a 500bp region encompassing either the FCRL3, ANKRD55, 

or JAZF1 CpG sites of interest using the IDT gRNA design tool (Integrated DNA Technologies 

(IDT)). gRNAs were selected based on their on-target and off-target scores, as well as the 
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Figure 2.14: mechanism of targeted DNA de-methylation using the pPlatTET-gRNA2 plasmid. A) The 

pPlatTET-gRNA2 plasmid encodes a copy of the nuclease-deficient Cas9 (dCas9) enzyme, which lacks 

endonuclease activity, fused to multiple copies of the GCN4 peptide, with a 22 amino acid linker (2A). Also 

encoded is the catalytic domain (CD) of the TET1 enzyme which induces active de-methylation, fused to the 

single-chain variable fragment (scFv) of the anti-GCN4 antibody. The presence of a GFP tag allows transfected 

cells to be identified and sorted. B) Complexing a site-specific CRISPR RNA (crRNA) with a fluorescently 

labelled trans-activating crRNA (tracrRNA) forms a gRNA duplex which can target the dCas9 to the target 

sequence. C) Following co-transfection of cells with gRNA targeting the region of interest and the pPlatTET-

gRNA2 plasmid, the dCas9 and gRNA form a complex which is targeted to the target site. As the scFv anti-

GCN4 regions bind the multi-GCN4 peptide, multiple copies of TET1 are recruited to the region, inducing site-

specific DNA de-methylation at neighbouring CpG sites. Figure adapted from Morita et al. (2016)304. 
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Table 2.9: CRISPR RNAs (crRNA) designed to target regions of interest. crRNAs were designed for site-

specific DNA de-methylation with the pPlatTET-gRNA2 plasmid. Highlighted in bold are the target 

sequences that map adjacent to the CpGs of interest, and underlined is the sequence complimentary to the 

tracrRNA, which allows formation of the gRNA complex (crRNA + tracrRNA). The 5’ (AltR1) and 3’ 

(AltR2) chemical modifications protect the RNA from RNases present in the cell (Integrated DNA 

Technologies) 

proximity of the annealing site to the CpG. Alt-R® CRISPR-Cas9 crRNAs targeting the 

sequence of interest were synthesized (Integrated DNA Technologies) with a 3’ sequence of 16 

nucleotides that is complimentary to the tracrRNA molecule, allowing the crRNA and 

tracrRNA to be hybridized to produce a gRNA duplex prior to transfection (Table 2.9). Two 

separate gRNAs were designed to target each region and compare efficacy (gRNA sequences 

are listed in Table 2.9). Each of the crRNAs (10nmol) was suspended in 100µl Nuclease-Free 

Duplex Buffer (Integrated DNA Technologies; Cat# 11-01-03-01) to a concentration of 100µM. 

Alt-R® CRISPR-Cas9 Negative Control crRNA #1 (Integrated DNA Technologies, 2nmol; 

Cat# 1072544) was suspended in 20µl Duplex Buffer. The fluorescently labelled Alt-R® 

CRISPR-Cas9 tracrRNA, ATTO™ 550 (Integrated DNA Technologies, 20nmol; Cat# 

1072533) was suspended at 100µM in 200µl Duplex Buffer. 20µl of each crRNA (100µM) was 

combined with 20µl tracrRNA (100µM) in a 200µl PCR tube, heated at 95°C for 5 minutes, 

and allowed to cool at room temperature for 30 minutes to allow the gRNA duplex to form. The 

gRNAs were then stored on ice until transfection of cells. Alt-R® CRISPR-Cas9 

Electroporation Enhancer (Integrated DNA Technologies, 10nmol; Cat# 1075916) was 

suspended at 100µM in 100µl Duplex Buffer to produce a stock solution, which was 

subsequently diluted to a working solution at 10.8µM with Duplex Buffer. 15µl of each 

duplexed gRNA was combined with 15µl of the pPlatTET-gRNA2 plasmid (3µg/ml) and stored 

on ice. 15µl of the pPlatTET-gRNA2 plasmid (3µg/ml) was also combined with 15µl Duplex 

Buffer for single transfection to allow the GFP gate to be set for cell sorting, and similarly 15µl 

of the negative control gRNA combined with15µl Duplex Buffer to set the ATTO™ 550 gate. 

 

 

 

 

 

 

 

 gRNA Sequence 

FCRL3 
cg17134153 [1] /AltR1/GUGAGUAGAUGGGCUAUAAUGUUUUAGAGCUAUGCU/AltR2/ 
cg17134153 [2] /AltR1/CGACUUAUCUCCAAGAAGGAGUUUUAGAGCUAUGCU/AltR2/ 

ANKRD55 
cg21124310 [1] /AltR1/AGUAGAAUUCUCCCGUCACCGUUUUAGAGCUAUGCU/AltR2/ 
cg21124310 [2] /AltR1/CUCCAUAACUUGGACACAGAGUUUUAGAGCUAUGCU/AltR2/ 

JAZF1 
cg07522171 [1] /AltR1/UGAUUAUCUCCUAUUCCGGAGUUUUAGAGCUAUGCU/AltR2/ 
cg07522171 [2] /AltR1/UCUGGAUUAGACAGCCCCAUGUUUUAGAGCUAUGCU/AltR2/ 
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2.15.3 Transfection of a Jurkat cell line for targeted DNA de-methylation 

Co-transfection of Jurkat cells with the pPlatTET-gRNA2 plasmid and gRNA duplexes was 

performed using the Neonä Transfection System (ThermoFisher) in conjunction with Neonä 

Transfection System 100µl kit reagents. Jurkat cells (clone E6.1) were grown in RF10 media 

in a T175 culture flask (Cat# 660160) and the media changed 24 hours prior to electroporation. 

The cells were centrifuged at 500 x g for 8 minutes, the supernatant aspirated, and cells re-

suspended in 20ml RF10. A total of 50 x 106 cells were transferred to a 30ml universal tube and 

centrifuged at 500 x g for 8 minutes. The supernatant was aspirated, and the cells washed once 

with sterile PBS (without Mg2+ and Ca2+, Sigma-Aldrich). Cells were then re-suspended at a 

density of 30 x 106 cells/ml in 1667µl Buffer R (ThermoFisher). 20µl of each the gRNA-

plasmid mix or gating control prepared in section 2.15.2 was transferred to a 600µl Eppendorf 

tube and combined with 40µl of the Alt-R® CRISPR-Cas9 Electroporation Enhancer 

(10.8µM), and 180µl of the Jurkat suspension in Buffer R. Each 100µl electroporation reaction 

therefore consisted of ~2.25 x 106 Jurkat cells, 12.5µg pPlatTET-gRNA2, 2µM gRNA duplex, 

and 1.8µM Alt-R® CRISPR-Cas9 Electroporation Enhancer. Cells were transfected using the 

Neonä Transfection System following the manufacturer’s protocol, with a program of 1400V 

pulse voltage, 10ms pulse width, and 3 pulses. For each condition, two 100µl transfections were 

performed and transferred to a T25 culture flask containing 5ml pre-warmed antibiotic-free 

RF10 media. Transfected cells were cultured at 37°C with 5% CO2 for 24 hours before cell 

sorting (section 2.15.4).  

2.15.4 Cell sorting by flow cytometry and re-culture 

Twenty-four hours following transfection, cells were transferred to a universal tube, centrifuged 

at 500 x g for 8 minutes, and the supernatant aspirated. The cells were then washed once in 

sterile DPBS (without Mg2+ and Ca2+) and suspended in 500µl sterile DPBS with 2% FCS. 

Prior to sorting, the cells were passed through a 30µM CellTrics® filter (Sysmex, Milton 

Keynes, UK; Cat# 25004-0042-2316) to remove cell clumps and obtain a suspension of single 

cells. Cells were sorted using the BD FACSAria™ Fusion Cell Sorter (BD Biosciences) with 

the assistance of the Newcastle Flow Cytometry Core Facility. Cells transfected with either 

pPlatTET-gRNA2 plasmid or negative control gRNA alone were used to set the GFP (emission 

509nm) and ATTO™ 550 (emission 575nm) gates respectively. Double-positive cells were 

then sorted into a 12-well plate containing 1ml RF10 without antibiotic. Immediately after 

sorting, 10,000 cells per condition were split into separate wells of a 48-well plate and the 

volume in each well made up to 500µl with antibiotic-free RF10. Cells were then incubated at 
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37°C with 5% CO2 for 48 hours, after which cells were harvested by centrifugation at 500 x g 

for 8 minutes. 

2.15.5 Nucleic acid extraction and DNAm quantification 

Cells were lysed by adding 75µl Buffer RLT Plus (Qiagen, supplemented with 1% v/v β-

mercaptoethanol) and vortexing, followed by passing the lysate through a QIAshredder spin 

column (Qiagen). DNA and RNA were then extracted using the AllPrep® DNA/RNA Micro 

Kit (Qiagen; Cat# 80284) following the manufacturer’s instructions. DNA was eluted in 30µl 

Buffer EB, with the eluate passed through the column a second time to increase DNA yield. 

DNA was bisulphite converted as in section 2.11.1, albeit with elution in 23µl of elution buffer 

given the lower amount of input DNA (100ng). Pyrosequencing was performed as previously 

described in section 2.11.2, albeit the amount of template DNA was 15ng. 
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Chapter 3. Systematic Analysis of Lymphocyte DNA  

Methylation in Early Arthritis 

3.1 Introduction 

To date, a number of studies have compared the PBMC lymphocyte DNA methylomes of 

patients with RA to those of healthy individuals in an attempt to describe disease-associated 

changes218, 221, 222, 305, 306. One particular limitation of this approach is that distinguishing 

disease-specific changes from those that result from systemic inflammation can be a challenge. 

This chapter will therefore describe a comprehensive genome-wide analysis of DNAm 

signatures in CD4+ T cells and B cells in the context of early arthritis, with the aim of 

deciphering whether epigenetic modifications occur specifically in RA. In particular, a control 

group comprising patients with non-RA arthropathies was selected in an attempt decipher 

signatures associated with the RA aetiological process, as opposed to those that reflect more 

general autoimmune responses or tissue damage of the joint. In particular, this study focusses 

on early arthritis patients who were yet to receive treatment with DMARDS, which target 

immune cells and secreted cytokines. Ordinarily, such treatments may modify patterns of 

DNAm, as has been described following treatment with methotrexate307. 

Cell-specific DNAm data at ~850,000 CpGs were quantified in lymphocytes from early RA 

patients, as well as disease controls, using the Illumina® MethylationEPIC BeadChip 

microarray. In the first instance, quality control procedures were performed to identify 

problematic samples or potential mix-ups, and to remove specific probes. A systematic 

evaluation of the performance of various normalisation methods when applied to the dataset 

was then carried out. Following this, an EWAS study design was employed to identify any CpG 

sites that were differentially methylated between early RA patients and the cohort of disease 

controls. As well as analysing potentially differentially methylated positions (DMPs), extended 

regions displaying differential patterns of methylation between the RA and control groups were 

sought (differentially methylated regions, DMRs). The analysis was then extended to assess 

differential variability in DNAm between comparator groups (differentially variable positions; 

DVPs). Any CpGs found to exhibit differential methylation between RA cases and non-RA 

controls were then subject to a pathway analysis with the aim of revealing biological pathways 

that may be perturbed by disease-associated methylation changes. Finally, potential 

relationships between disease diagnosis and biological age were investigated by assessing the 

DNA methylation clock. 
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3.2 Patient recruitment and cohort characteristics 

Patients with suspected inflammatory arthritis were recruited from the NEAC at baseline visits 

following clinical assessment308. As described in Chapter 2.1, a cohort of early RA patients, 

diagnosed according to the ACR/EULAR 2010 classification criteria64, were recruited 

alongside a heterogeneous disease control comparator group, comprising patients with non-RA 

inflammatory and non-inflammatory arthropathies. This group of patients diagnosed with non-

RA conditions affecting the joints was selected to give more disease-specific insights relating 

to the role of DNAm in RA aetiology than would be possible when comparing patients with 

healthy controls. 

Indeed, the disease control (non-RA) comparator group were selected where possible to be 

matched with the RA group with respect to demographic and clinical characteristics, including 

age, sex, and markers of acute phase response including CRP and ESR. The characteristics of 

all recruited patients for whom CD4+ T cell and B cell DNAm data were collected are outlined 

in Table 3.1. 

3.3 Sample quality control 

A series of sample-level QC checks were performed to identify problematic samples to be 

excluded from the analysis, as described in detail in Chapter 2.5. This QC of samples resulted 

in the removal of four CD4+ T cell samples and one B cell sample based on high mean detection 

p-value (≥ 0.01), indicating that the intensity values for a high proportion (10%) of probes in 

the sample were not significantly different from background signal levels. Detection p-values 

across all probes following removal of these failed samples are shown for CD4+ T cell (Figure 

3.1A) and B cell (Figure 3.1B) samples. 

Samples were also removed if they displayed aberrant clustering in PCA based on the cell type 

annotation, and if the cell type proportion estimated using the Houseman method219 was found 

to be <65% of the expected cell type . This resulted in a further two CD4+ T cell samples and 

five B cell samples being removed. A plot of the first and second principal components 

calculated across samples shows all samples now cluster correctly according to the cell type 

annotation (Figure 3.2). 
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B cells:    
     Number of patients 52 84  
Age 59 (51 - 68) 54 (45 - 63) NS 
Sex (% Female) 71 71 NS 
CRP (mg/L) 10 (5 - 14) 7 (5 – 15) NS 
ESR (mm/hr) 21 (7 - 34) 16 (9 - 30) NS 
CCP Positive (%) 54 6 p < 0.0001 
RF positive (%) 60 10 p < 0.0001 
Tender 28 3 (1 - 9) 3 (1 – 6) NS 
Swollen 28 1 (0 - 3) 0 (0 - 3) NS 
DAS28  4.3 (3.3 – 5.4) - - 
Diagnosis in disease controls:   
                    Osteoarthritis 6  
     Other Non-Inflammatory Arthritis 8  
 Spondyloarthropathy (PsA, ReA, EA) 42  
               Crystal Arthropathy 9  
              Lupus/CTD-associated 2  
          Other Inflammatory Arthritis 6  
              Other/Undifferentiated 11  
   

 

 

 

 

 

 

 

 

 

 

 

 

 Rheumatoid Arthritis  Disease Controls  P-value† 
CD4+ T cells:    
     Number of patients 48 67  
Age 58 (51 - 69) 54 (46 - 63) NS 
Sex (% Female) 67 70 NS 
CRP (mg/L) 10 (5 - 13) 8 (5 – 14) NS 
ESR (mm/hr) 21 (10 – 32) 15 (9 - 29) NS 
CCP Positive (%) 52 5 p < 0.0001 
RF positive (%) 60 13 p < 0.0001 
Tender 28 3 (1 - 11) 2 (0 – 6) NS 
Swollen 28 1 (0 - 3) 0 (0 - 2) NS 
DAS28  4.6 (3.6 – 5.4) - - 
Diagnosis in disease controls:   

Osteoarthritis                                                5 
                                               6 
                                               31                       
                                               9 
                                               8                       
                                               8                       

 
Other Non-Inflammatory Arthritis  

Spondyloarthropathy (PsA, ReA, EA)  
Crystal Arthropathy  

Other Inflammatory Arthritis  
Other/Undifferentiated  

Table 3.1 Clinical and phenotypic characteristics of all patients recruited into the study. Values refer to 

the median (inter-quartile range) for continuous variables. CRP – C-reactive protein; ESR – erythrocyte 

sedimentation rate; CCP – cyclic citrullinated peptide (clinical test to detect anti-cyclic citrullinated peptide 

antibodies); RF – rheumatoid factor; DAS28 – disease activity score (28 joints); PsA – psoriatic arthritis; ReA 

– reactive arthritis; EA – enteropathic arthritis. †P-values were calculated using the student’s t-test for continuous 

data or a Fisher’s exact test for categorical data. NS – not significant at p < 0.05. 
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Following the removal of the samples that failed these QC checks (six CD4+ T cell samples, 

five B cells samples), a total of 109 and 130 samples were available for downstream analyses 

from CD4+ T cells and B cells respectively. The sample information for this cohort post-

filtering is provided in Table 3.2. For all subsequent analyses, the CD4+ T cell and B cell 

datasets were pre-processed separately.  

CD4+ T cell Sample Detection p-values 
(Post-QC) 

 

B cell Sample Detection p-values 
(Post-QC) 

 

p = 0.01 
 

p = 0.01 
 

A B 

Figure 3.1: Mean sample detection p-values after removing failed samples. Detection p-values across 

all probes for (A) 109 CD4+ T cell and (B) 130 B cell DNA methylation samples from the MethylationEPIC 

array. Detection p-values represent the probability that a probe intensity is not significantly higher than 

background levels detected by the negative control probes on the MethylationEPIC array. Low p-values 

therefore signify good quality probes, and samples for which the mean detection p-value was < 0.01 passed 

quality control. 

Figure 3.2: Principal component analysis of CD4+ T cells and B cells following quality control. The plot 

depicts all samples included in the analyses following removal of those that failed quality control. Each point 

represents a single sample, which are coloured according to their cell type annotation, with the shape of each 

point depicting either a female (circle) or male (triangle) sample. 
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B cells:    
     Number of patients 49 81  
Age 57 (50 - 68) 54 (45 - 63) NS 
Sex (% Female) 76 73 NS 
CRP (mg/L) 10 (5 - 13) 7 (5 – 15) NS 
ESR (mm/hr) 21 (6 - 35) 16 (9 - 30) NS 
CCP Positive (%) 58 4 <0.0001 
RF positive (%) 61 7 <0.0001 
Tender 28 3 (1 - 10) 3 (1 – 6) NS 
Swollen 28 1 (0 - 3) 0 (0 - 2) NS 
DAS28  4.3 (3.2 – 5.4) - - 
Diagnosis in disease controls:   
                    Osteoarthritis 6  
     Other Non-Inflammatory Arthritis 6  
 Spondyloarthropathy (PsA, ReA, EA) 41  
               Crystal Arthropathy 8  
              Lupus/CTD-associated 2  
          Other Inflammatory Arthritis 6  
              Other/Undifferentiated 11  

3.4 DNA methylation data normalisation 

3.4.1 Normalisation methods for MethylationEPIC array data 

Numerous methods exist for the normalisation of DNAm data collected using the 

MethylationEPIC array, all of which employ different approaches to adjust for probe type bias, 

background fluorescence, and other batch effects associated with processing of multiple 

samples (see Chapter 2.5.5). 

 Rheumatoid Arthritis  Disease Controls  P-value† 
CD4+ T cells:    
     Number of patients 45 64  
Age 59 (50 - 69) 54 (46 - 62) NS 
Sex (% Female) 69 70 NS 
CRP (mg/L) 10 (5 - 13) 8 (5 – 14) NS 
ESR (mm/hr) 21 (10 - 32) 15 (9 - 29) NS 
CCP Positive (%) 51 5 <0.0001 
RF positive (%) 58 13 <0.0001 
Tender 28 3 (0 - 11) 2 (0 – 6) NS 
Swollen 28 1 (0 - 3) 0 (0 - 2) NS 
DAS28  4.6 (3.6 – 5.4) - - 
Diagnosis in disease controls:   

Osteoarthritis                                                5 
                                               5 
                                               30                       
                                               9 
                                               8                       
                                               7                       

 
Other Non-Inflammatory Arthritis  

Spondyloarthropathy (PsA, ReA, EA)  
Crystal Arthropathy  

Other Inflammatory Arthritis  
Other/Undifferentiated  

Table 3.2 Clinical and phenotypic characteristics of all patient samples passing quality control. DNA 

methylation from 109 CD4+ T cell samples and 130 B cell samples were included in the analysis described in 

this chapter. No significant differences were observed between the rheumatoid arthritis and non-rheumatoid 

arthritis groups for any of the parameters, with the exclusion of autoantibody status. Values refer to the median 

(inter-quartile range) for continuous variables. CRP – C-reactive protein; ESR – erythrocyte sedimentation rate; 

CCP – cyclic citrullinated peptide (clinical test to detect anti-cyclic citrullinated peptide antibodies); RF – 

rheumatoid factor; DAS28 – disease activity score (28 joints); PsA – psoriatic arthritis; ReA – reactive arthritis; 

EA – enteropathic arthritis. †P-values were calculated using the student’s t-test for continuous data or a Fisher’s 

exact test for categorical data. NS – not significant at p < 0.05. 
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Normal-exponential using out-of-band probes (noob) normalisation uses type I probes to 

measure non-specific fluorescence269. As both beads (methylated/unmethylated) in the type I 

design fluoresce at the same wavelength (Cy3 for C/G and Cy5 for A/T), signal from the 

opposite colour channel can be used to determine background fluorescence. After background 

correction, noob performs dye bias equalisation using positive control probes to account for 

different signal intensities from the red and green channels269.  

Beta mixture quantile dilation (BMIQ) applies a three-state (unmethylated, hemi-methylated, 

fully methylated) mixture model separately to the type I and type II probes, with subsequent 

adjustment of type II probe β-values to the distribution present in the type I probes268. A 

combination of noob with BMIQ has been shown to perform well in a systematic analysis of 

normalisation methods across four datasets309. 

Subset-quantile within array normalization (SWAN) assumes that probes with similar CpG 

content (as a surrogate for regional CpG density) will be biologically similar271. Quantiles are 

calculated for a subset of probes deemed to be biologically similar according to the CpG 

content, after which the remaining probes are adjusted for each probe type individually using 

the distribution from the subset271. 

Functional normalization (Funnorm), unlike noob, BMIQ, and SWAN, is a between-array 

normalisation method. Funnorm capitalises on the presence of control probes on the array that 

capture technical variability independent of any biological effects270. Specifically, this method 

uses principal components from the control probe intensities to remove variability associated 

with non-biological effects, and is as such an extension to the quantile normalisation methods 

which force all values from each sample to the same distribution270. As with BMIQ, the 

application of funnorm to data which has been background-corrected using noob performs 

favourably to the use of this method in isolation270. 

3.4.2 Assessment of methods for data normalisation 

Whilst other normalisation methods exist, the three described above (Noob + BMIQ, SWAN, 

Noob + Funnorm) have proved popular in studies of DNAm and all employ distinct approaches 

to tackle the issue of non-biological variability in array data. For this reason, the above methods 

were applied to both DNAm datasets  (results for the CD4+ T cell data are shown here), with a 

range of outcome measures used to assess the suitability of each approach. 

For DNAm analysis, intensity values can be converted to beta (β)-values, which represent the 

ratio (from 0 – 1) of the methylation probe intensity at a particular position relative to the total 
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intensity (methylated and unmethylated; see Chapter 2). However, β-values display 

heteroscedascity with respect to the more extreme values, with much lower variability at values 

close to 0 and 1 279. For this reason, when performing statistical tests such as differential analysis 

on DNAm array data, it is recommended to use the log2 ratio of the β-value, referred to as the 

M-value279. SWAN and Funnorm were applied to intensity values, after which β- and M-values 

were generated, whereas BMIQ requires that normalisation be performed on β-values directly. 

Though β-values are useful for visualisation purposes and assessing total methylation levels 

(from methylated (1) to unmethylated (0)), statistical modelling is performed using M-values. 

In the first instance, the ability of each method to correct probe type bias was assessed. To 

visualise the range in methylation values pre- and post-normalisation using the different 

methods, β-value density plots were produced to visualise the distribution at each probe type 

(Figure 3.3). In the raw dataset, a reduced dynamic range was observed in type II probes (Figure 

3.3A), consistent with previous observations268. Though differences in distributions of each 

probe type are not unexpected, given that they interrogate CpGs in distinct genomic contexts, 

Noob + BMIQ (Figure 3.3B), SWAN (Figure 3.3C) and Noob + Funnorm (Figure 3.3D) all 

clearly increase the dynamic range in type II probes relative to raw values. Unsurprisingly, 

given that BMIQ is a quantile normalisation method applied directly to β-values, this method 

transforms both probe types to a uniform distribution (Figure 3.3B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: β-value density plots for type I and type II probes. DNA methylation (M-value) density plots 

for CD4+ T cell samples (A) pre-normalisation (raw data), as well as following normalisation of data using 

(B) Normal-exponential using out-of-band probes (noob) with Beta mixture quantile dilation (BMIQ), (C) 

Subset-quantile within array normalization (SWAN), and (D) noob with functional normalisation (Funnorm). 

A B 

C D 

Raw Noob + BMIQ 

Noob + Funnorm SWAN 
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Subsequently, PCA of M-values was performed to assess global differences between samples 

that may be driven by technical artefacts such as processing batches. Given that samples were 

bisulphite converted in separate processing batches, this is likely to represent a major source of 

sample to sample variation. A degree of separation between bisulphite-conversion batches is 

observed in the raw data, such as conversion batches 4 and 5 which are largely segregated by 

the first principal component (PC1; Figure 3.4A). Noob + BMIQ appears to increase the 

variability associated with bisulphite conversion batch, with the variation in the data associated 

with PC1 increasing from 24.24% in raw data to 36.84% following application of this 

normalisation method (Figure 3.4B). Likewise, SWAN offers little improvement in this metric 

relative to the raw data, with batches exhibiting a degree of segregation, and variance associated 

with PC1 increase marginally to 25.71% (Figure 3.4C). Conversely, Noob + Funnorm 

considerably reduces the variability associated with the first PC (18.18%), with a reduction in 

the separation between conversion batches as observed on the PCA plot (Figure 3.4D). This 

would indicate that Noob + Funnorm performs favourably to the other methods tested in 

reducing this source of technical variation.  

To further assess unwanted sample to sample variability arising from sample processing, 

relative log methylation (RLM) plots were generated. Such plots illustrate, for each sample, the 

deviation of probe values from their median values across all samples. This is effective for 

visualisation of variability between batches. In the absence of significant sources of non-

biological variability, the median value (black line in the centre of each plot; Figure 5.3) for 

each sample would be centred on zero, whilst variability (height of box and whiskers) would 

be low. In the raw CD4+ T cell data, divergent samples are detected, particularly in conversion 

batch 5 (Figure 3.5A). Noob + BMIQ resulted in an increase in the range of probe-wise 

deviations from the median for all samples (Figure 3.5B). The RLM plot for SWAN-normalised 

data (Figure 3.5C) appears similar to that for the raw data, whereas Noob + Funnorm 

considerably reduces the variability observed in relative log methylation across samples, most 

notably at conversion batch 5 (Figure 3.5D). These findings confirm those from the PCA above 

that Noob + Funnorm outperforms the other two methods in reducing unwanted variability 

associated with technical covariates. 
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SWAN 

A B Raw 

C D 

Noob + BMIQ 

Noob + Funnorm 

Figure 3.4: Principal component analysis of sample processing batch. CD4+ T cell samples were subject to 

principal component analysis (A) pre-normalisation (raw data), as well as following normalisation of data using 

(B) Normal-exponential using out-of-band probes (noob) with Beta mixture quantile dilation (BMIQ), (C) 

Subset-quantile within array normalization (SWAN), and (D) noob with functional normalisation 

(Funnorm).Samples are coloured according to the bisulphite conversion batch in which they were processed, 

likely to represent a major source of non-biological variability, with circle points representing female samples 

and triangles males. 
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In order to quantify the relative sources of variability in the data that were revealed in PCA and 

RLM plots, a principal variance component analysis (PVCA) was applied to the data. This 

method first computes principal components in the dataset, and then fits linear models to 

identify associations between these PCs and measured covariates. Bisulphite conversion batch, 

sample positions on the array, Illumina scanning batch, and disease diagnosis (RA/non-RA) 

were selected as covariates of interest for which associations would be tested. 

In the raw data, of the factors of interest, bisulphite conversion batch accounts for the highest 

proportion of the variability (28.0%), with position on the array (Position ID; 3.5%), Illumina 

scanning batch (Scanning Batch; 4.0%) and disease diagnosis (Diagnosis (RA/non-RA); 0.1%) 

each explaining a minor proportion of the variance (Figure 3.6A). Residual variance (i.e. that 

which is not associated with any of the supplied covariates) was 57.0%. Applying Noob + 

A Raw B Noob + BMIQ 

Noob + Funnorm D 

Conversion Batch 1 Conversion Batch 3 Conversion Batch 4 Conversion Batch 5 Conversion Batch 6 

SWAN C 

Figure 3.5: Relative log methylation (RLM) plots. CD4+ T cell samples (A) pre-normalisation (raw data), as 

well as following normalisation of data using (B) Normal-exponential using out-of-band probes (noob) with Beta 

mixture quantile dilation (BMIQ), (C) Subset-quantile within array normalization (SWAN), and (D) noob with 

functional normalisation (Funnorm) were visualised as RLM plots. These plots represent, for each sample, the 

deviation in all probes from that probe’s median across all samples. Boxes depict the median probe deviation for 

a given samples, as well as the lower and upper quartiles. The whiskers extend to the value of probes with the 

highest deviation (upper whisker for the probe with highest deviation above the sample-wise probe median, and 

the lower whisker for the probe with the highest deviation below the sample-wise probe median. 
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BMIQ increased the variance that could be attributed to the conversion batch (34.4% vs. 28.0% 

in raw data; Figure 3.6B), consistent with the PCA results. SWAN was found to result in a 

reduction in batch-associated variance from 28.0% to 23.7% (Figure 3.6C), though resulted in 

a marginal increase in scanning batch variance relative to the raw data (4.2% vs 4.0%; Figure 

3.6C). Again, Noob + Funnorm performed favourably to the other two methods in this regard, 

leading to a considerable reduction in variance attributed to both bisulphite conversion batch 

(18.8% vs. 28.0% in the raw data), as well as a small reduction in the scanning batch variance 

(2.3% vs. 4.0% in raw data; Figure 3.6D). This method also increased the residual variance 

from 57.0% (Figure 3.6A) to 62.1% (Figure 3.6D). Consistent across all PVCAs was that the 

proportion of variance associated with disease diagnosis was negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C D 

Raw Noob + BMIQ 

SWAN Noob + Funnorm 

Figure 3.6: Principal variance component analysis (PVCA). PVCA was performed to quantify the relative 

contribution of factors of interest to data variance in (A) raw data, as well as following normalisation of data 

using (B) Normal-exponential using out-of-band probes (noob) with Beta mixture quantile dilation (BMIQ), (C) 

Subset-quantile within array normalization (SWAN), and (D) noob with functional normalisation (Funnorm). The 

covariates of interest were (bisulphite) conversion batch, the position of a sample of the MethylationEPIC array 

(Position ID), the scanning batch a sample was run in, and the sample diagnosis (RA/non-RA). 
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To facilitate the identification of batch to batch variability, a technical replicate was performed, 

with the same sample processed in separate batches and run on separate arrays. The Pearson’s 

correlation between M-values at all probes in these technical replicates was calculates in the 

raw data, as well as data which had been normalised using each method. As expected, the 

correlation between replicates was high in the raw data (r = 0.987855; Figure 3.7A). Both Noob 

+ BMIQ and SWAN had little effect on the correlation between replicates, with the former 

resulting in a marginal increase (r = 0.987924; Figure 3.7B), and the latter a small decrease (r 

= 0.987083; Figure 3.7C). Noob + Funnorm increased the correlation between technical 

replicates (r = 0.989121 vs. 0.987855 in raw data; Figure 3.7D). Following the completion of 

all quality control checks, and prior to analyses being performed, the sample included as a 

technical replicate was excluded, retaining the replicate exhibiting the lowest detection p-value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Raw B 

Noob + Funnorm 

Noob + BMIQ 

C D SWAN 

Figure 3.7: Pearson correlation at CD4+ T cell technical replicates. To investigate batch effects, the same 

sample was run twice on different arrays across sample processing batches. The correlation (Pearson’s r) 

between sample M-values (A) pre-normalisation (raw data), as well as following normalisation of data using 

(B) Normal-exponential using out-of-band probes (noob) with Beta mixture quantile dilation (BMIQ), (C) 

Subset-quantile within array normalization (SWAN), and (D) noob with functional normalisation (Funnorm). 
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Based on these quantitative and qualitative assessments of the normalisation methods described 

above, it was determined the Noob + Funnorm was the most appropriate procedure for this 

particular dataset (equivalent plots for the B cell dataset pre- and post-normalisation are 

presented in Appendix B). As such both CD4+ T cell and B cell datasets were pre-processed 

accordingly using this method. 

Following data normalisation, filtering of probes on the MethylationEPIC array was performed 

to remove those that failed (low signal; detection p-value), had previously been defined as 

cross-reactive, harboured a SNP with a minor allele frequency (MAF) > 0.05, or that mapped 

to the X and Y chromosomes (see section 2.5.6 for a summary of all probes removed). This 

resulted in a total of 709,412 CD4+ T cell probes and 710,445 B cell probes that passed this 

filtering step and were included in all subsequent analyses. 

3.4.3 Estimating biological and technical confounders 

Despite demonstrating that functional normalisation considerably reduces batch-to-batch 

variability, such effects still persist in normalised data, as is evident from the PVCA plot in 

which bisulphite conversion batch explains 18.8% of the variability in DNAm data in CD4+ T 

cells (Figure 3.6D). In addition, hierarchical clustering of samples revealed a degree of 

clustering by this batch processing variable (Figure 3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Hierarchical clustering of all CD4+ T cell samples. The average distance between cluster elements 

was used to perform clustering. Purple circles on the dendrogram branches represent the clustering of the two 

technical replicates run across batches (note: one of the replicates shown here was removed before all subsequent 

analyses). The cluster dendrogram is plotted adjacent to a heat map of sample demographic, clinical, and 

processing information. The heat map represents low values as white and high values as red, with intermediate 

colour gradient indicating increasing values. Diagnosis: red = RA, white = non-RA; Sex: red = female, white = 

male; RF/CCP status: red = positive, white = negative. Grey tiles on the heat map represent missing data. 
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To account for remaining technical and biological covariates including batch effects, and the 

residual 62.1% variance (Figure 3.6D) that may capture unmeasured technical and biological 

variability, surrogate variable analysis (SVA) was performed. This approach detected 11 

surrogate variables (SVs) in the CD4+ T cell DNAm data, and 13 in the B cell data. To check 

whether SVA was capturing known sources of variability, SVs were tested for associations with 

measured technical and biological covariates. As expected, the strongest associations were with 

bisulphite conversion batch in both CD4+ T cells (Figure 3.9A) and B cells (Figure 3.9B). 

Additionally, the final SV identified for each cell type (SV11 for CD4+ T cells, SV13 for B 

cells), is associated with patient age. Although this method appears to detect variability in the 

data that arises from measured covariates, such associations were not evident for all SVs, 

justifying this approach for the identification of hidden confounders. The surrogate variables 

identified here were included as covariates in downstream analyses. 

 

 

 

 

 

 

 

 

3.5 DNA methylome comparison of RA and disease control patients 

Following the pre-processing and quality control steps as outlined above, a total of 109 CD4+ 

T cell samples and 130 B cell samples were available for downstream analyses, including 85 

patient samples for which paired data were available for both cell types. The demographic and 

clinical parameters for RA patients and disease controls included in all analyses described in 

this chapter are reported in Table 3.2. Importantly, the RA patients and non-RA disease control 

comparator groups were matched for age, sex, and markers of acute phase response (C-reactive 

A B B cell 
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Figure 3.9: Heat map of associations between surrogate variables and measured covariates. Surrogate 

variables were identified by surrogate variable analysis (SVA) and the association between each surrogate 

variable and potential sources of variability in the data was calculated using linear regression for continuous 

variables (Age, CRP), analysis of variance (ANOVA) for categorical variables with > 2 groups (conversion 

batch, array position), and a Mann-Whitney U test binary variables (smoking, sex). Associations are plotted as 

the –log10 p-value, with white indicating no association and dark blue indicating a strong association. 
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protein; CRP, erythrocyte sedimentation rate; ESR; see section 1.2.5). Principal component 

analysis revealed no clustering of samples based on comparator group (RA or disease controls), 

suggesting that no global differences exist between either the CD4+ T cell (Figure 3.10A) or B 

cell (Figure 3.10B) DNA methylomes of these patient groups. 

 

 

 

 

 

 

  

 

3.5.1 RA epigenome-wide association study in CD4+ T cells and B cells 

To quantify differential methylation, linear models were fit to M- and β-values in limma283 for 

each CpG with an RA vs. non-RA contrast. β-values were used for calculating DNAm 

differences and data visualisation (converted to % for the latter), whilst statistical modelling 

was performed using M-values due to their homoscedastic nature279. An empirical Bayes 

method was employed in order to moderate the standard errors284 as this approach takes into 

account the probe-wise variability to calculate moderated t-statistic, and rank each CpG by 

likelihood of being differentially methylated. Surrogate variables, as identified in section 3.4.3 

for each cell type, were included as covariates in the design matrix. 

The p-value distribution across all differential tests performed (709,412 for CD4+ T cells, 

Figure 3.11A; 710,445 for B cells, Figure 3.11B) exhibited a uniform distribution across the 

entire range (0 – 1), as would be expected under the null hypothesis that no differences in 

DNAm exist between the RA and non-RA groups. Consistent with the lack of enrichment at 

lower p-values, after controlling for false discovery rate experiment-wide, no CpGs were 

differentially methylated between RA patients and controls at FDR < 0.05 and Δβ ≥0.05 

A CD4+ T cell B cell 

Figure 3.10: Principal component analysis of disease diagnosis. (A) CD4+ T cell samples and (B) B cells 

samples included in the differential analyses described in this chapter were first assessed by principal component 

analysis. Each sample is coloured according to the patient diagnosis (red = rheumatoid arthritis, purple = non-

rheumatoid arthritis disease control), with the shape depicting female (circle) and male (triangle) patients. Note 

– the slight differences between panel (A) here and Figure 3.4D reflects the removal of the technical replicate 

prior to PCA calculation. 
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(equivalent to 5% difference in DNAm group means) in CD4+ T cells (Figure 3.11C). Similarly, 

the analysis in B cells failed to identify any differentially methylated CpG sites (Figure 3.11D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Though no results were significant after controlling false discovery rate, of all CpGs tested in 

CD4+ T cells, the CpG with the lowest nominal p-value (p = 5.02 x 10-6) in the RA vs. non-RA 

contrast was cg21289466 (hg19 genome build, chr20: 5,577,716; Figure 3.12A). Furthermore, 

though no differences were significant to FDR correction, a number of CpGs exhibited a 

relatively large degree of difference in Δβ values between the comparator groups. Examples 

included cg11424828 (chr8:2,075,469) which displayed the largest degree of hypo-methylation 

in RA patients relative to disease controls (Δβ = -0.13, Figure 3.12 B), and cg24245216 

(chr19:7,004,657), at which the extent of RA hyper-methylation was greatest (Δβ = 0.18, Figure 

3.12C).  The 10 CpGs with the lowest nominal p-value (Δβ ≥ 0.05) are reported in Table 3.3. 

A B 

C D 

CD4+ T cell B cell 

CD4+ T cell B cell 

Figure 3.11: Epigenome-wide p-values of associations between lymphocyte DNA methylation and 

diagnosis in rheumatoid arthritis cases and disease controls. P-value histograms depict the frequency of 

associations (CpGs) returning a given p-value range for all tests in (A) CD4+ T cell and (B) B cell samples. Each 

bin on the histogram represents a range of 0.01, with 100 bins across the whole range of p-values (0 – 1). 

Volcano plots of all tests performed in (C) CD4+ T cell and (D) B cell samples are shown. The delta beta (Δβ; 

mean difference in DNA methylation between cases and controls at a given position) is plotted against the –

log10 p-value (un-adjusted). Vertical lines at delta beta -0.05 and 0.05 demarcate the threshold for differential 

methylation. Data points in black represent those that were not significant at the experiment-wide FDR (< 0.05) 
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In the B cell comparison, cg00595050 (chr19:10,398,582) returned the lowest non-significant 

p-value (3.12D), with cg08736526 (chr4:88,656,433, Δβ = -0.17; Figure 3.12E) and 

cg20673407 (chr10: 31,040,939, Δβ = 0.20; Figure 3.12F) displaying the greatest degree of RA 

hypo- and hyper-methylation respectively. The top 10 CpGs with the lowest nominal p-value 

(Δβ ≥ 0.05) are reported for the CD4+ T cell and B cell analyses in Table 3.3 (the top 100 CpGs 

ranked by nominal p-value with Δβ ≥ 0.05 are given in Appendix C). Interestingly, a number 

of these positions (cg24245216 in CD4+ T cells, cg08736526 & cg20673407 in B cells) were 

associated with proximal genetic variants (see Chapter 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

CD4+ T cell 
A B C 

p = 5.02 x 10-6; FDR = 0.99; Δβ = -0.06  p = 1.70 x 10-4; FDR = 0.99; Δβ = 0.18 p = 1.78 x 10-3; FDR = 0.99; Δβ = -0.13 

B cell 
D E F 

p = 6.24 x 10-6; FDR = 0.89; Δβ = 0.06 p = 4.37 x 10-3; FDR = 0.89; Δβ = -0.17 p = 6.20 x 10-4; FDR = 0.89; Δβ = 0.20,  

Figure 3.12: Exemplar plots of the top non-significant CpGs in a differential analysis of early rheumatoid 

arthritis patients and non-rheumatoid arthritis controls. CD4+ T cell plots are shown for CpGs with the (A) 

lowest un-adjusted p-value, as well as the greatest magnitude of (B) rheumatoid arthritis (RA) hypo-methylation, 

and (C) RA hyper-methylation (hypo-/hyper-methylation is determined by Δβ). The equivalent plots for the B cell 

dataset, displaying top (albeit non-significant) hits as determined by (D) un-adjusted p-value, (E) RA hypo-

methylation and (F) RA hyper-methylation. Boxplots represent the median value of each group, with the upper 

and lower box limits extending to the 75th and 25th percentile respectively. Whiskers extend to the maximum and 

minimum data points that are no greater than 1.5 × the inter-quartile range.  
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3.5.2 RA differentially methylated regions 

Extended regions of CpG sites that display patterns of differential methylation across distinct 

disease states can be more informative than considering single CpG sites in isolation. These can 

have important roles in regulating patterns of differential expression that dictate cellular 

phenotype, as with the Treg-specific de-methylated region (TSDR) that modulates expression 

of Foxp3 during development of the Treg lineage 310.  

The DMRcate package286 was used for the identification of DMRs. The first stage in this 

process involves a differential analysis analogous to that which was described in section 3.5.1, 

with the aim of identifying DMPs to pass to the dmrcate function for DMR identification. 

However, consistent with the above analysis, this revealed no positions to be differentially 

methylated between RA cases and non-RA controls.  

For discovery purposes, to enable the identification of extended regions that may exhibit a 

consistent pattern of hyper- or hypo-methylation in RA lymphocytes, this initial stage was 

CpG Coordinates P-value FDR RA vs. non-
RA Δβ 

UCSC 
RefGene 

Relation to 
CpG Island 

CD4+ T cell      
cg21289466 chr20:5577716 5.02 x 10-6 0.99 -0.06 GPCPD1 Open Sea 
cg24245216 chr19:7004657 1.70 x 10-4 0.99 0.18 - Open Sea 
cg11945167 chr8:4644739 3.50 x 10-4 0.99 -0.06 CSMD1 Open Sea 
cg15563420 chr12:86026194 3.70 x 10-4 0.99 -0.05 - Open Sea 
cg00080972 chr5:178986291 4.67 x 10-4 0.99 0.09 RUFY1 N Shore 
cg07612827 chr19:7005180 5.12 x 10-4 0.99 0.07 FLJ25758 Open Sea 
cg11787167 chr14:33407370 6.62 x 10-4 0.99 -0.11 NPAS3 S Shelf 
cg18471635 chr11:104769411 7.53 x 10-4 0.99 0.06 CASP12 Open Sea 
cg03161803 chr6:27649120 7.59 x 10-4 0.99 -0.06 - S Shore 
cg05287483 chr20:5551376 8.12 x 10-4 0.99 -0.07 GPCPD1 Open Sea 

B cell      
cg00595030 chr19:10398582 6.24 x 10-6 0.89 0.06 ICAM4 Island 
cg10800620 chr2:196398826 6.26 x 10-5 0.89 -0.06 - Open Sea 
cg06323052 chr4:56720686 7.94 x 10-5 0.89 -0.05 EXOC1 S Shore 
cg25152193 chr1:197874469 2.80 x 10-4 0.89 0.06 C1orf53 S Shelf 
cg22901297 chr6:32522795 2.95 x 10-4 0.89 -0.09 HLA-DRB6 Open Sea 
cg00538212 chr7:158751591 3.22 x 10-4 0.89 -0.06 - N Shore 
cg21419137 chr8:87905504 3.95 x 10-4 0.89 0.06 CNDB1 Open Sea 
cg16055526 chr6:33083287 4.37 x 10-4 0.89 0.09 HLA-DPB2 N Shore 
cg22404498 chr22:32600722 4.94 x 10-4 0.89 0.06 RFPL2 Open Sea 
cg08666831 chr19:47507691 5.46 x 10-4 0.89 0.06 GRLF1 Island 

Table 3.3: CpGs with the lowest nominal p-values in a rheumatoid arthritis epigenome-wide association 

study of CD4+ T cells and B cells. The 10 CpGs with the lowest p-values in a differential analysis of early 

rheumatoid arthritis patients and non-rheumatoid arthritis disease controls. FDR = false discovery rate calculated 

using the Benjamini-Hochberg method; UCSC RefGene = gene to which the CpG maps based on the Illumina 

Infinium MethylationEPIC manifest; Relation to CpG Island = CpG island feature (see Chapter 2.7.4) to which 

the CpG maps based on the MethylationEPIC manifest. 
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forgone. Though such an approach will bias results with respect to generated DMRcate p-

values, it allows consistent patterns of Δβ across multiple CpGs to be identified. This function 

also generates a region-specific p-value, taking into account local correlations between probes, 

using Stouffer’s method286. In CD4+ T cells, twelve regions (≥ 2 CpGs) were identified across 

which multiple CpGs consistently display a non-significant trend of differential methylation 

(mean Δβ ≥0.05 across the region; Table 3.4). Most notably, a region was identified 

encompassing 10 CpGs mapping to the promoter of the RUFY1 gene (chr5:178986131-

178987429) that displayed consistently increased levels of hypo-methylation in CD4+ T cells 

from RA patients relative to controls (Figure 3.13A & Table 3.4). Interestingly, nine of the 

CpGs in this region displayed nominal significance (unadjusted p-value < 0.01) in the CD4+ T 

cell EWAS in section 3.5.1 (Appendix C). 

In B cells, eleven such non-significant regions were highlighted with consistent trends of either 

increased or decreased DNAm levels in RA patients compared with controls (Table 3.4). 

Prominent amongst these was a region spanning an intronic region upstream of the PIGZ gene 

(chr3:196705629-196706839; Table 3.4 & Figure 3.13B). Seven CpGs in this region displayed 

a trend of RA-hypo-methylation. Interestingly, this was also observed at the same region in 

CD4+ T cells with a comparable magnitude of RA hypomethylation (regional mean Δβ of -

0.063 in CD4+ T cells and -0.059 in B cells; Table 3.4). 

 

 

 

 

 

 

 

A B CD4+ T cells B cells 

Figure 3.13: Exemplar plots of regions displaying hypo-methylation in rheumatoid arthritis. Extended 

regions at which ≥ 2 CpGs exhibit a non-significant difference in methylation values in the same direction 

between cells from rheumatoid arthritis cases and non-rheumatoid arthritis controls. (A) A region on 

chromosome 5 encompassing 10 CpGs at the promoter of RUFY1 was found to show a trend of hypo-

methylation in CD4+ T cells from rheumatoid arthritis patients. (B) An intronic region harbouring 7 rheumatoid 

arthritis hypo-methylated CpGs in B cells, as well as CD4+ T cells (DNAm data shown here is from the B cell 

comparison. The two lines represent the mean DNAm in rheumatoid arthritis patients (red) and non-rheumatoid 

arthritis controls (purple) at each CpG within the region. 
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3.5.3 RA differentially variable positions 

The analyses described in sections 3.5.1 & 3.5.2 have revealed that no significant differences 

exist between RA and non-RA group means at any assayed CpG sites. Subsequently, the 

possibility that variance in DNAm levels within one particular comparator group may differ 

significantly from the other, as was highlighted in a recent twin study230, were considered. This 

DMR Coordinates No. of CpGs 
in DMR Stouffer p-value* Max Δβ Mean Δβ 

CD4+ T cell:    
chr5:178986131-178987429 10 1.000 -0.090 -0.060 

chr3:196705629-196706839 7 1.000 -0.092 -0.063 

chr19:7004657-7005379 4 1.000 -0.180 -0.076 

chr8:2074935-2075777 4 1.000 0.132 0.069 

chr6:32632643-32633102 3 1.000 -0.146 -0.056 
chr19:12876846-12877188 2 1.000 -0.093 -0.082 
chr19:35861258-35861642 2 1.000 0.084 0.073 

chr4:69435473-69435601 2 1.000 0.069 0.059 

chr5:1594715-1594733 2 1.000 -0.069 -0.055 

chr6:32552042-32552095 2 1.000 -0.120 -0.100 

chr7:24917499-24917750 2 1.000 -0.080 -0.052 

chr5:71683884-71683955 2 1.000 0.127 0.064 

B cell    

chr3:196705629-196706839 7 1.000 -0.092 -0.059 

chr4:25090198-25090665 6 0.999 0.086 0.066 

chr12:131519883-131520382 5 0.998 -0.103 -0.077 

chr17:5673550-5674234 3 0.984 0.105 0.067 

chr13:50194322-50194643 3 0.987 -0.083 -0.073 

chr15:81411055-81411066 2 0.959 -0.077 -0.056 

chr7:7860864-7861342 2 0.959 0.076 0.050 

chr14:106539756-106539897 2 0.961 0.086 0.065 

chr5:180402690-180402906 2 0.961 0.071 0.059 

chr6:32449961-32450452 2 0.981 0.098 0.059 

chr19:15649345-15649508 2 0.993 -0.104 -0.053 

Table 3.4: Results from an analysis to detect differentially methylated regions between rheumatoid 

arthritis cases and non-rheumatoid arthritis disease controls. Results are reported for all regions with ≥ 2 

CpGs in CD4+ T cells or B cells that display a non-significant, albeit consistent, trend of either hyper- or hypo-

methylation in rheumatoid arthritis cases relative to controls. No. of CpGs in region = the total number of CpGs 

at which the methylation differences (Db ³ 0.05) are observed; Stouffer p-value = a regional p-value reported by 

DMRcate that accounts for underlying correlated patterns of DNA methylation across CpGs; Max Δβ = the 

difference in β-value between cases and controls at the CpG exhibiting the greatest magnitude of hyper-/hypo-

methylation; Mean Δβ = the mean difference in β-value between cases and controls across all CpGs within the 

region. 
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twin study employed a statistical approach that was initially developed to identify 

heterogeneous patterns of DNAm that may predict risk of cancer progression287. This method 

first applies Bartlett’s test to assess whether one group displayed a significantly higher variance 

in DNAm relative to the other (FDR < 0.001). The variance in data for a given group represents 

the mean of the squared deviations of each value from a group mean, and as such, higher values 

indicate a greater degree of variability in the data. Given that Bartlett’s test is liable to generate 

low p-values for variances driven by outlier samples, a second step is performed to rank 

positions based on the mean group differences between case and control samples. As such, any 

CpGs passing the initial differential variance threshold were subsequently tested for differences 

in group means (t-test, p < 0.05)287 to define differentially variable positions (DVPs).  

Using these criteria, 291 DVPs were identified between RA and non-RA patients in CD4+ T 

cells, including both CpG and CpH sites, with 41% (120) displaying patterns of hyper-

variability in RA. Exemplar plots of DVPs that were found to be hypo-variable (cg15174564, 

chr11:120856801; Figure 3.14A) or hyper-variable (cg00647389, chr7:127234990; Figure 

3.14B) in CD4+ T cells of RA patients are depicted. 

In B cells, 601 such DVPs were highlighted, with 53% (320) showing RA hyper-variability. 

DNAm values at sites displaying both hypo-variability (Figure 3.14C) and hyper-variability 

(Figure 3.14D) in B cells from RA patients are shown. The top 10 DVPs ranked by the 

significant difference between group means are reported for both hyper- and hypo-variable 

CpGs in each cell type (Table 3.5; top 100 DVPs for each cell type ranked by t-test p-value 

given in Appendix D).  

Of further interest, 15 CpG sites were found to be differentially variable in both CD4+ T cells 

and B cells, with all but one of these displaying the same pattern of either hyper-/hypo- 

variability in RA patients relative to controls (Figure 3.15).This suggests that the factors driving 

variability at some loci may be common to both cell types. 
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CD4+ T cell 

A B BTq = 2.61 x 10-9; TTp = 8.60 x 10-5 BTq = 4.00 x 10-13; TTp = 2.66 x 10-3 

B cell 

C D BTq = 3.11 x 10-5; TTp = 2.08 x 10-4 BTq = 4.89 x 10-5; TTp = 3.90 x 10-4 

Figure 3.14: Exemplar plots of differentially variable positions between rheumatoid arthritis patients and 

non-rheumatoid arthritis controls. Plots are shown for CpGs in CD4+ T cells that were found to be either (A) 

hypo-variable or (B) hyper-variable in rheumatoid arthritis patients, with equivalent B cell plots again depicting 

(C) rheumatoid arthritis hypo-variable and (D) hyper-variable positions. BTq = Bartlett’s q-value, a false 

discovery rate adjusted measure of group differences in DNA methylation variance; TTp = T-test p-value, applied 

to test for differences between the group means of any positions found to exhibit differential variance between 

cases and controls in the Bartlett’s test (q < 0.001). 
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CpG CpG 
Coordinates 

Variance 
non-RA 

Variance 
RA 

p-value (t-
test) 

q-value 
(Bartlett’s) UCSC RefGene 

Relation 
to CpG 
Island 

CD4+ T cell – rheumatoid arthritis hyper-variable     
cg15174564 chr11:120856801 1.938 0.214 8.60 x 10-5 2.61 x 10-9 GRIK4 Island 
cg27284424 chr7:130598669 1.846 0.270 2.45 x 10-4 2.55 x 10-7 LOC100-506860 Open Sea 
cg04797575 chr4:176709392 0.803 0.160 1.30 x 10-3 2.49 x 10-5 GPM6A Open Sea 

ch.8.1995451R chr8:98920744 1.291 0.233 1.33 x 10-3 5.80 x 10-6 MATN2 Open Sea 
cg04641168 chr4:57333196 2.376 0.476 1.87 x 10-3 2.61 x 10-5 SRP72 N_Shore 
cg13396858 chr9:134249466 0.757 0.151 2.24 x 10-3 2.44 x 10-5 - S_Shore 

ch.4.1647744F chr4:85766242 2.312 0.587 2.47 x 10-3 6.23 x 10-4 WDYF3 Open Sea 
cg21421501 chr11:61734205 0.620 0.146 2.78 x 10-3 2.46 x 10-4 FTH1 N_Shore 
cg13565723 chr2:61245319 1.054 0.158 2.85 x 10-3 3.60 x 10-7 PEX13 Open Sea 
cg07871034 chr19:48103301 0.758 0.092 3.62 x 10-3 1.17 x 10-8 - N_Shore 

CD4+ T cell – rheumatoid arthritis hypo-variable     
cg00647389 chr7:127234990 0.058 0.623 2.66 x 10-3 4.00 x 10-13 FSCN3 Open Sea 
cg07891761 chr19:35861642 0.165 1.785 3.93 x 10-3 3.12 x 10-13 - Open Sea 
cg18423635 chr6:29869936 0.184 1.062 4.82 x 10-3 1.78 x 10-7 HCG2P7 Open Sea 
cg13990487 chr1:19420096 0.092 0.344 5.05 x 10-3 2.88 x 10-4 UBR4 Open Sea 
cg14451627 chr9:115987035 0.299 1.952 5.67 x 10-3 1.63 x 10-8 SLC31A1 S_Shelf 
cg11460110 chr6:30530458 0.056 0.203 6.71 x 10-3 4.44 x 10-4 PRR3 Open Sea 
cg20426698 chr3:65960357 0.183 2.000 7.35 x 10-3 2.57 x 10-13 MAGI1 Open Sea 
cg26312542 chr11:112038104 0.060 0.222 7.40 x 10-3 3.98 x 10-4 TEX12 Open Sea 
cg02978220 chr1:108337960 0.388 2.513 8.72 x 10-3 1.88 x 10-8 VAV3 Open Sea 
cg13230994 chr11:66979798 0.039 0.148 8.92 x 10-3 2.61 x 10-4 KDM2A Open Sea 

B cell – rheumatoid arthritis hyper-variable     

ch.2.1159565R chr2:48430755 1.781 0.241 1.39 x 10-4 6.17 x 10-9 - Open Sea 
cg01018002 chr1:28844479 0.825 0.188 2.08 x 10-4 3.11 x 10-5 SNHG3-RCC1 N_Shore 
cg22797164 chr10:72200612 0.551 0.153 5.12 x 10-4 5.36 x 10-4 NODAL Island 
cg15256944 chr17:79651359 0.113 0.028 6.16 x 10-4 8.52 x 10-5 ARL16 Island 
cg08638512 chr10:120514811 1.207 0.343 8.20 x 10-4 7.22 x 10-4 C10orf46 Island 

ch.2.1701371R chr2:75108364 2.069 0.488 1.32 x 10-3 5.36 x 10-5 HK2 Open Sea 
cg19658926 chr7:26240443 0.323 0.058 2.55 x 10-3 8.79 x 10-7 CBX3 Island 
cg10570405 chr7:108210304 0.450 0.116 2.76 x 10-3 2.03 x 10-4 THAP5 Island 
cg06113708 chr10:76996280 0.790 0.045 2.94 x 10-3 3.04 x 10-16 COMTD1 S_Shore 
cg01915196 chr12:57916109 0.912 0.045 2.95 x 10-3 1.68 x 10-17 MBD6 N_Shore 

B cell – rheumatoid arthritis hypo-variable     
cg03940643 chr16:11343701 0.168 0.617 3.90 x 10-4 4.89 x 10-5 - Island 
cg10720997 chr1:997858 0.191 1.019 3.93 x 10-4 2.03 x 10-8 - N_Shore 
cg19819559 chr8:107282279 0.293 1.002 8.05 x 10-4 1.65 x 10-4 OXR1 Island 
cg14268695 chr20:23137044 0.180 0.602 9.92 x 10-4 2.38 x 10-4 - Open Sea 
cg14897833 chr14:52535178 0.106 0.331 9.95 x 10-4 7.04 x 10-4 NID2 Island 
cg02231880 chr15:33011300 0.127 0.423 1.08 x 10-3 2.74 x 10-4 LOC100-131315 Island 
cg25308427 chr11:10324739 0.188 0.608 1.12 x 10-3 4.32 x 10-4 - Island 
cg15154191 chr1:3527782 0.071 0.220 1.53 x 10-3 7.96 x 10-4 MEGF6 Island 
cg02623991 chr19:54926431 0.172 0.623 1.65 x 10-3 6.10 x 10-5 TTYH1 N_Shore 
cg20803547 chr1:67773440 0.233 0.828 1.71 x 10-3 8.54 x 10-5 IL12RB2 Island         

Table 3.5: The top 10 differentially variable positions in rheumatoid arthritis lymphocytes. Positions 

identified as being either hyper- or hypo-variable (Bartlett’s test) in CD4+ T cells from rheumatoid arthritis 

patients, as well as those identified as such in B cells, were ranked by t-test p-value. Variance non-RA = the 

variance (the average of the squared differences of all samples from the group mean) in DNA methylation M-

values in non-rheumatoid arthritis controls; Variance RA = the variance in DNA methylation M-values in 

rheumatoid arthritis cases; p-value (t-test) = p-value from the t-test of differences in group means between cases 

and controls; q-value (Bartlett’s) = the false discovery rate adjusted p-value from the Bartlett’s test of variance; 

UCSC RefGene = Gene to which the differentially variable position maps based on the Infinium MethylationEPIC 

manifest; Relation to CpG Island = mapping of differentially variable position to a CpG island or related structure. 
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3.5.4 Biological pathway analysis at variable positions 

To gain additional functional insight, a pathway enrichment analysis was performed using the 

gometh function in the missMethyl package289. This method assigns CpGs to a target gene and 

performs a hypergeometric test of enrichment for Gene Ontology biological processes (BP), 

accounting for the number of probes per gene assayed on the MethylationEPIC array (see 

Chapter 2.6.4 for Methods). DVPs were tested for BP enrichment, with all probes included in 

the analysis used as background.  

In CD4+ T cells, BP pathways that were enriched amongst DVPs found to be hypo-methylated 

in the RA cohort included those relating to development of the hematopoietic or lymphoid 

organs, nucleosome assembly, and immune system development (Figure 3.16A). Conversely, 

RA hyper-methylated DVPs most strongly implicate pathways the cellular response to 

prostaglandins (Figure 3.16B). In B cells, RA hypo-variable DVPs disproportionately mapped 

to genes with functions in cellular metabolism and regulation of G0 to G1 transition during the 

cell cycle (Figure 3.16C), with hyper-variable positions highlighting processes including 

organisation of the cytoskeleton and cell-cell adhesion, amongst others (Figure 3.16D). 
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Figure 3.15: Overlapping differentially variable positions in CD4+ T cells and B cells. The variance in 

DNAm levels is shown for data from rheumatoid arthritis patients and disease controls at CpG sites that were 

found to be differentially variable in both CD4+ T cells and B cells. 
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B cell – rheumatoid arthritis hypo-variable 

CD4+ T cell – rheumatoid arthritis hypo-variable 

B cell – rheumatoid arthritis hyper-variable 

CD4+ T cell – rheumatoid arthritis hyper-variable 
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Figure 3.16: Top 10 Gene Ontology biological processes enriched at differentially variable positions. Positions exhibiting differentially variable DNA methylation were mapped 

to genes and a modified hypergeometric test performed to identify enriched Gene Ontology pathways. Separate analyses were performed for positions that were (A) hypo-methylated 

and (B) hyper-methylated in rheumatoid arthritis CD4+ T cells, as well as those that were (C) hypo-methylated and (D) hyper-methylated in rheumatoid arthritis B cells. Enrichment 

analyses were performed using the missMethyl package, using non-variable CpGs included in the analysis as background. 



  

113 
 

3.6 Associations between RA and epigenetic ageing 

‘Horvath’s clock’ or the ‘epigenetic clock’ refers to a DNAm signature at 353 CpG sites shared 

across tissues that correlates strongly with chronological age of the individual291. This has been 

of interest clinically given that certain age-related diseases may be associated with an increased 

‘biological age’.  If biological age is reflected in the epigenetic clock then DNAm may represent 

a better biomarker or predictor of disease risk than chronological age311. 

The epigenetic age of all samples was calculated using the Horvath method291, and correlated 

with the chronological age of the patient at the time of samples collection. As expected, the 

Horvath age of cells correlates strongly with chronological age in both CD4+ T cells (Pearson’s 

r = 0.90; 3.17A) and B cells (Pearson’s r = 0.90; 3.17B). In both cell types, a general trend of 

Horvath age being higher than chronological age at the lower end of the age scale was observed, 

with the opposite being true at the upper range, as has been described312. 

To assess the extent to which chronological age and disease diagnosis explain variation in 

epigenetic ageing seen in patient samples, linear regression was performed with the inclusion 

of these variables as covariates, and Horvath age as the dependent variable. Associations 

between chronological age and Horvath age in this model were highly significant in both CD4+ 

T cells (p = 1.64 x 10-30) and B cells (3.65 x 10-40). An interaction term (chronological age × 

diagnosis (RA/non-RA)) was included to assess whether or not RA patients exhibited 

accelerated or decelerated epigenetic ageing. However, no significant interaction effect 

between these two covariates on the epigenetic age was identified in either CD4+ T cells (p = 

0.94; Figure 3.17A) or B cells (p = 0.59; Figure 3.17B). 
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3.7 Discussion 

In this chapter, an extensive characterisation of the CD4+ T cell and B cell DNA methylation 

landscape in early arthritis has been described. Lymphocyte DNAm in RA patients was 

compared with a control group diagnosed with diverse rheumatic diseases. This was in contrast 

to most preceding EWASs which sought epigenetic changes distinguishing RA patients from 

those with non-inflammatory osteoarthritis, or healthy controls with no clinical symptoms. 

The inclusion of this symptomatic comparator group was motivated by a need to distinguish 

DNAm signatures that predispose to RA or reflect functional disease-specific regulatory 

modifications, from those that occur more generally under inflammatory conditions. Indeed, by 

selecting cases and controls who were equivalent with respect to demographic characteristics 

and markers of active inflammation, as well as being naïve to any disease-modifying therapy, 

the potential impact of confounding sources of variability was minimised.  

CD4+ T cells and B cells represented an appealing candidate cell population for this study given 

their integral role in the immunopathogenesis of RA, as highlighted in numerous cellular and 

genetic studies, as well as by the efficacy of biologic therapies targeting these cells (see Chapter 

1 for further details). 

A B CD4+ T cell B cell 
Diagnosis × Age (Chronological) 

interaction p-value = 0.59 
Diagnosis × Age (Chronological) 

interaction p-value = 0.94 

Figure 3.17: Epigenetic ageing in lymphocytes from rheumatoid arthritis and non-rheumatoid arthritis 

patients. Horvath’s method was used to calculate the epigenetic age (Horvath age) of (A) CD4+ T cell and (B) B 

cell samples, which is plotted against the chronological age of the patient at the time the blood samples were 

collected. Linear regression (red/purple lines) was performed with an interaction term to identify instances in 

which disease diagnosis (rheumatoid arthritis or non-rheumatoid arthritis) significantly impacted the association 

between Horvath age and chronological age. The grey dotted x = y line depicts the point at which the Horvath 

age is equal to the chronological age. 



  

115 
 

3.7.1 Epigenome-wide association study of RA fails to replicate findings from previous 

studies 

The first analysis performed in both datasets (CD4+ T-/B-cell) was to employ a typical EWAS 

design to highlight individual CpG (or CpH) sites at which DNAm levels were associated with 

RA. However, no such associations were found to be statistically significant after controlling 

for multiple testing. This finding is at odds with published data from the same or related cell 

types. In a small study of 23 RA patients and 11 healthy controls, Glossop et al. highlighted 

differential methylation at 1951 positions in T cells and 2238 in B cells (FDR < 0.05, Δβ ≥ 0.1), 

with considerable differences in DNAm (Δβ ≥ 0.2) at 150 and 113 of these positions, 

respectively306. Furthermore, an additional > 100 CpGs in each cell type were identified as 

being differentially methylated in a separate comparison of patients with established RA 

specifically, as opposed the early RA, highlighting the important of disease stage in study 

design306. Using a comparable sample size to Glossop et al., an EWAS in CD4+ T cells from 

individuals of Han Chinese ethnicity described differential methylation at 1168 CpGs, the 

majority of which (67%) were hypo-methylated in RA patients relative to age- and sex-matched 

healthy controls221. Despite this, a carefully designed study found no differential methylation 

in isolated CD4+ T cells from patients with oligoarticular juvenile idiopathic arthritis, a 

condition pathologically similar to RA that occurs in infants313. 

Focussing on B cells, Julia et al. described 64 DMPs in RA patients (many of whom were 

receiving DMARD treatment) relative to healthy controls and, crucially, were able to replicate 

these findings at 10 of these positions in an independent cohort222. This study also reported that 

of these 10 validated RA DMPs, nine of these were also found to display the same association 

in patients with SLE, a B cell-mediated autoimmunity having overlapping genetic aetiology 

with RA222. Nonetheless, this may highlight similar epigenetic risk mechanisms in two 

immune-mediated inflammatory disease or reflect similar cellular exposures in the 

inflammatory milieu. Consistent with this, an EWAS in B cells from multiple sclerosis patients 

highlighted 5/10 of the CpGs identified by Julia et al. to be differentially methylated in this 

autoimmune disease affecting the central nervous system314. 

Discrepancies between these preceding studies and the findings described in this chapter may 

be attributed to a number of factors. Perhaps most likely is the selection of a disease control 

comparator group that reflects the RA cases with regards to important clinical parameters, as 

opposed to healthy or non-inflammatory patients. It is possible that DNAm modifications that 

occur during early RA are in fact shared across autoimmune diseases, as was described for the 

B cell associations in RA and SLE222. In addition, it should also be noted that a small proportion 
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of patients in the disease control group were positive for ACPA antibodies (5% of CD4+ T cell 

samples, 4% of B cell samples) or RF (13% of CD4+ T cell samples, 7% of B cell samples). 

Whether these samples represent patients who were misdiagnosed, those in pre-RA and as such 

are yet to fulfil RA diagnostic criteria, or simply reflect rare cases of these antibodies occurring 

in individuals without RA is unclear. Nonetheless, if these do reflect true RA cases, then the 

power to detect RA-associated DNAm differences is reduced by this misclassification.  

Though no systematic meta-analysis of shared DMPs across autoimmune traits has been 

performed, collating findings from various studies has revealed overlap in disease-associated 

DNAm changes in RA, SLE, and Sjögren syndrome (SS), all of which involve joint-related 

synptoms315. In this scenario, peripheral immune cell methylomes between patients with RA 

and other inflammatory diseases may be more comparable than those between RA and healthy 

controls. Consistent with this, epigenetic signatures that are associated with a chronic 

inflammatory response have been reported, with associations between DNAm at 58 CpGs and 

CRP levels validated in two separate populations213. A study which explored effects beyond 

CRP to look at other protein markers of inflammation identified associations between leukocyte 

DNAm and pro-inflammatory cytokines/chemokines, in addition to validating previous CpG 

associations  with CRP316. Whether such associations reflect exposure of cells to pro-

inflammatory mediators, or the DNAm changes themselves confer such properties on cells is 

difficult to deduce. Recently it was discovered that 52% of associations between DNAm and 

protein biomarkers of disease were likely the result of genetic polymorphisms. Using 

Mendelian randomization (see Chapter 1.6.10) to infer causality, the authors concluded that 

protein biomarkers influencing DNAm was the most likely scenario, whilst the reverse did not 

show any associations. Such findings would suggest that the pro-inflammatory environment to 

which cells are exposed in diseases such as RA can shape the DNA methylome, and as such 

may influence gene expression and cellular phenotypes. 

Nonetheless, DMPs and DMRs have been identified in asymptomatic ACPA+ individuals 

relative to those without these circulating antibodies, and a small number were similarly found 

in RA versus healthy controls, suggests that epigenetic modifications that precede clinical 

symptoms may potentially contribute directly to disease induction317. Many of these 

methylation changes were attributed to genetic variants, emphasising the contribution of both 

genetic and non-genetic factors in conferring disease associated DNAm (this is discussed 

further in Chapter 4). 

Most EWASs in cells from peripheral blood described previously have been performed using 

the earlier Illumina platform that quantifies methylation at ~450,000 sites, whereas the current 
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study utilizes the MethylationEPIC platform (~7% of 450K probes are not present on the EPIC 

array). Whilst this offers the capacity to assess DNAm at much more positions genome-wide 

(~850,000), the increased multiple testing burden presents additional statistical challenges. 

Indeed, whilst probe filtering to remove non-variable CpGs has been applied in some studies220, 

317, this approach was not applied here to avoid biasing results. 

In conclusion, due to large discrepancies in study designs, including different tissues or cell 

types being assessed, different technologies or platforms for quantification of DNAm, and 

distinct statistical approaches to define differential methylation, direct comparison of results 

across studies is complicated. The majority of findings from RA and other autoimmune EWASs 

described to date require independent validation, and large-scale meta-analyses will facilitate 

the identification of small effects that current studies may be under-powered to detect. Further 

recognition of cell type specificity will also be necessary going forward. In this regard, while 

the isolation of lymphocyte subsets in this study represents and improvement on the use of 

whole blood, one limitation is that differences in cellular subtypes was not assessed (i.e. naïve 

and memory cells, regulatory T cells).  

3.7.2 Analysis of differentially methylated regions highlights potential RA-associated 

perturbations 

Though no DMPs were identified, an analysis of putative DMRs was performed by relaxing the 

FDR threshold for input DMPs. Such observations, even in the absence of statistically 

significant differential effects, are likely to provide more compelling disease insights than 

isolated positions showing nominal significance. The identification of such regions harbouring 

multiple CpGs (ranging from 2-10 CpGs in CD4+ T cells and 2-7 CpGs in B cells) that 

uniformly displayed a trend of hypo-/hyper-methylation in RA patients relative to controls may 

highlight relevant pathogenic perturbations. 

Interestingly, a DMR encompassing five CpGs that map to this same region of the RUFY1 

promoter shows a similar degree of hypo-methylation (Δβ = 0.076) in CD4+ T cells from 

patients with primary SS, illustrating a potential disease-spanning epigenetic risk mechanism 

in these rheumatic conditions318. RUFY1 encodes an endosomal protein which may regulate 

endocytosis following interaction with the tyrosine-protein kinase enzyme Etk319, though a 

well-defined role in cellular immunity has not been described. 

Also, of note was the observation that a putative intergenic DMR was found to be hypo-

methylated to a similar degree in both CD4+ T cells and B cells from RA patients, indicating 

that DMRs can occur across cell types. Given that datasets for each cell type were derived from 
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the same patient in most cases, genetic influences on DNAm could account for these 

observations – for example where one allele is over-represented in either comparator cohort by 

chance. As with DMPs, the extent to which genetic and environmental factors drive disease-

associated DMRs is often not considered in EWAS, though identification of such regions that 

differ in methylation status between RA-discordant monozygotic twins suggests there is a role 

for the latter320. 

3.7.3 DNA methylation variability as an important epigenetic risk mechanism in RA 

Though no DMPs or DMRs were statistically significant at the genome-wide level, a number 

of loci were identified at which variance in DNAm differed between RA patients and controls. 

These findings are in agreement with a twin study prioritizing differential variability as an 

important component of pathological autoimmune responses in RA230. A unique feature in twin 

studies such as this is that the effects of underlying regulatory genetic variants is negated, as 

genetic variation is matched between the comparator groups. Despite numerous caveats 

associated with this study, such as analysing whole blood as opposed to individual cell types, 

this suggests that many DMPs identified in EWAS may be conferred by sequence variation. 

This is also supported by results from similar studies of twins discordant for other autoimmune 

traits. Paul et al. investigated DNAm in three key immune effector cells: CD4+ T cells, B cells, 

and monocytes, in 52 pairs of monozygotic twins discordant for T1D231. Such effects were 

prevalent in all cell types and were predominantly hyper-variable in the affected twin. 

Interestingly DVPs were independent of cis-regulatory genetic variants, as would be expected 

in monozygotic twins, and were found to be depleted in enhancer elements but enriched at 

active transcription start sites231.In MS-discordant monozygotic twins, only six DMPs were 

identified in PBMCs at genome-wide significance, though these were no longer significant after 

correcting for differing cell type proportions between the cases and controls232. Unlike the 

studies of RA and T1D, however, only 25 DVPs were identified, and the majority of these were 

hyper-variable in the unaffected twin.  

By mapping such variable CpGs to genes and performing pathway analyses, intriguing 

pathways relating to development of lymphoid organs and the immune system were implicated 

at RA hypo-variable CpGs. The top pathway associated with CD4+ T cell hyper-variable CpGs 

in RA were responses to prostaglandin (Figure 3.16B). Indeed, a role for prostaglandins in the 

differentiation of the TH1 subtype as well as expansion of TH17 cells, both of which contribute 

to inflammation during autoimmunity, has been described321. Amongst the pathways enriched 

at RA hyper-variable CpGs in B cells were those involved in cytoskeletal organisation and cell-
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cell adhesion, suggesting that distinct pathway from CD4+ T cells are perturbed in this cell type, 

potentially impacting cell migration. The relevance of these DVPs and associated pathways in 

the pathogenesis of RA warrants further investigation but, if such variability is independent of 

genetic effects, identifying risk factors that confer such epigenetic variation will be a challenge. 

The results in this chapter begin to illustrate the DNA methylation landscape in the context of 

early arthritis patients. Distinguishing DNA methylation profiles between the two disease-

relevant cell types under investigation strongly justifies the approach of isolating individual 

populations of cells as opposed to considering such modifications solely in the context of whole 

blood. 

An inability to recapitulate previous findings from EWASs of RA lymphocytes when 

comparing patients to carefully matched controls suggests many changes may not be specific 

to RA. Despite a considerably larger sample size than some of the early studies that reported 

DMPs in these cell types, the number of samples here nonetheless limits power to detect subtle 

disease-specific modifications. Despite this, findings relating to potential DMR and DVP 

effects may highlight novel genes and pathways in the pathogenesis of RA and generate 

hypotheses for future work. 

As has been alluded to, there is now an appreciation that the widespread association of DMPs 

and DMRs with DNA sequence variants means that results from EWASs in isolation may be 

insufficient to gain mechanistic insight into molecular pathogenesis. The following chapter will 

integrate genetic data from the patients described here to establish the interaction between 

genetic and epigenetic variation. 
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Chapter 4 – Methylation Quantitative Trait Locus Analysis 

4.1 Introduction 

As described in Chapter 1.6.9, modifications in DNAm can be associated with variants in the 

genome sequence, such as single nucleotide polymorphism (SNPs), with loci exhibiting such 

effects termed methylation quantitative trait loci (meQTLs). Given that an individual’s 

genotype is established at fertilisation and remains essentially constant throughout life, 

identifying molecular traits that are associated with disease-associated SNPs is useful for 

studying aetiological mechanisms.  

In addition, DNAm can be affected by the environment to which cells are exposed, acting at 

the interface of genetic and environmental risk in complex diseases like RA. Indeed, whilst the 

genome sequence is static, epigenetic modifications such as DNA methylation are dynamic and 

differ between cell types. Hence, identifying disease-associated meQTLs may reveal cell-

specific mechanisms of molecular pathogenesis.  

In this chapter, an meQTL analysis in both CD4+ T cells and B cells from early arthritis patients 

will be described. The results were integrated with known risk loci from genome-wide 

association studies (GWAS) of RA, in an attempt to establish loci at which altered DNAm 

might mediate dysregulated cell function, thus contributing to pathogenesis. Beyond RA risk 

loci, the contribution of DNAm to genetically conferred disease risk is considered more 

generally by investigating such effects at loci for two immune-mediated diseases, MS and 

asthma, as well as OA. Findings were considered in the context of other cell-specific regulatory 

features from publicly available consortia data, such as chromatin states and transcription factor 

binding. Finally, interaction analyses were performed to explore the possibility that genotype 

and disease phenotype might interact to shape the DNA methylome in patients with early 

disease. 

4.2 Cis-meQTL mapping in CD4+ T cells and B cells  

To quantify the effects of genetic variation on DNAm levels genome-wide in both CD4+ T cells 

and B cells, an meQTL analysis was performed in each cell type across all patients. DNAm at 

CpG sites as defined in the previous chapter (709,412 in CD4+ T cells, 710,445 in B cells) was 

included in the analysis. Genotype data were available for 103 of the CD4+ T cell samples 

outlined in the previous chapter (94.4%), whereas for B cell data, genotyping had been 
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performed in 119 patients (91.5%). The demographic data for patients included in the meQTL 

analyses are described in Table 4.1. 

MeQTL analyses were limited to SNPs for which the minor allele homozygous genotype was 

represented by three or more patients or, in the absence of any minor allele homozygotes, at 

least eight heterozygous patients. Following the removal of those which did not satisfy these 

criteria, genotypes at 2,901,876 SNPs in CD4+ T cells and 3,035,821 SNPs in B cells were 

included. Associations between SNP genotype and CpG methylation levels occurring either in 

cis (SNP-CpG distance < 1Mb) or in trans (SNP-CpG distance ≥ 1Mb or mapping to separate 

 Rheumatoid Arthritis  Disease Controls  P-value† 
CD4+ T cells:    
     Number of patients 43 60  
Age 58 (50 - 69) 54 (46 - 63) 0.13 
Sex (% Female) 67% 70% 0.78 
CRP (mg/L) 9 (5 - 13) 7.5 (5 – 13.5) 0.24 
ESR (mm/hr) 19 (7 - 32) 15 (9 - 29) 0.74 
CCP Positive (%) 47% -  
RF positive (%) 58% -  
Tender 28 3 (0 - 11) 2 (0 – 5.5) 0.39 
Swollen 28 1 (0 - 3) 0 (0 - 2) 0.51 
Diagnosis in disease controls:   

Osteoarthritis                                                8% 
                                               7% 
                                             45% 
                                             15% 
                                             13% 
                                             12% 

 
Other Non-Inflammatory Arthritis  

Spondyloarthropathy (PsA, ReA, EA)  
Crystal Arthropathy  

Other Inflammatory Arthritis  
Other/Undifferentiated  

B cells:    
Number of patients: 46 73  
Age 57 (50 - 68) 55 (46 – 64.5) 0.34 
Sex (% Female) 74% 71% 0.75 
CRP (mg/L) 9 (5 - 13) 7 (5 – 14.5) 0.14 
ESR (mm/hr) 19.5 (5.75 – 34.5) 16 (9 – 30.75) 0.99 
CCP Positive (%) 54% -  
RF positive (%) 61% -  
Tender 28 3 (1 - 9) 3 (1 – 6) 0.50 
Swollen 28 1 (0 - 3) 0 (0 - 3) 0.52 
Diagnosis in disease controls:   

Osteoarthritis                                        8% 
                                       7% 
                                     48% 
                                     11% 
                                       8% 
                                     18% 

 
Other Non-Inflammatory Arthritis  

Spondyloarthropathy (PsA, ReA, EA)  
Crystal Arthropathy  

Other Inflammatory Arthritis  
Other/Undifferentiated  

   

Table 4.1: Demographic and clinical characteristics of all patients included in the meQTL analysis of CD4+ 

T cells and B cells. Values are presented as either percentages of median (inter-quartile range). P-values to 

identify potential differences between rheumatoid arthritis and control comparator groups were generated using 

a Mann-Whitney U Test for continuous data, and a Chi-squared test for categorical variables. CRP = C-reactive 

protein; ESR = erythrocyte sedimentation rate; CCP = cyclic citrullinated peptide; RF = rheumatoid factor; PsA 

= psoriatic arthritis; ReA = reactive arthritis; EA = enteropathic arthritis. 
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chromosomes) were identified by fitting additive linear models in MatrixEQTL292. Quantile-

quantile (QQ) plots displaying the expected p-values plotted against the observed p-values for 

all cis (local p-values) and trans (distant p-values) associations are shown for CD4+ T cells 

(Figure 4.1 A) and B cells (Figure 4.1B). In total, cis p-values were returned for ~1.357 x 109 

and 1.421 x 109 tests in CD4+ T cells and B cells respectively, whereas the number of trans tests 

performed was 2.057 x 10-12 and 2.155 x 10-12. 

 

 

 

 

 

 

 

 

 

 

 

For each type of association (cis and trans), FDR values were calculated separately to adjust for 

the number of tests, and a threshold of 0.01 selected for cis associations and 1 x 10-4 for trans 

associations. After applying this FDR cut-off, a total of 2,501,652 cis SNP-CpG associations 

(FDR < 0.01) were identified in CD4+ T cells, with 2,687,897 in B cells. The number of trans 

associations identified in each cell type were 13,908 and 17,697 in CD4+ cells and B cells 

respectively (see Figure 4.2 for an overview of the analysis and results described in this 

chapter).  
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Figure 4.1: QQplots displaying the observed –log10 p-values for all SNP-CpG association tests.  Linear 

modelling in MatrixEQTL to test for associations between SNPs and CpGs were performed in cis (local p-

values, shown in red) and in trans (distant p-values shown in blue) in A) CD4+ T cells and B) B cells. The grey 

x = y line represents that distribution of p-values that would be observed under the null hypothesis that genotype 

is not associated with DNA methylation levels. 
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Given that genotypes at SNPs within a LD block are co-inherited, this analysis returns multiple 

SNPs with FDR < 0.01 for a given CpG, implicating multiple tagging SNPs that are in LD with 

the causal variant. To collapse these associations into independent signals, SNP clumping was 

performed – a method which removes all SNPs in LD (r2 ≥ 0.001) within a window of 250Kb, 

retaining the SNP displaying the strongest association (i.e. lowest p-value). SNP clumping 

reduced the number of independent cis-associations to 58,625 in CD4+ T cells (Figure 4.3 A) 

and 60,315 in B cells (Figure 4.3 B), which are herein referred to as cis-meQTLs. Conversely, 

the trans associations were collapsed into 294 (CD4+ T cells; Figure 4.3A) and 479 (B cells; 

Figure 4.3B) trans-meQTLs.  

CD19+ B cell 
119 Samples 

(46 RA, 73 non-RA) 

Genotyping & Imputation 
5,503,347 SNPs 

DNAm 
866,238 

Genotyping & Imputation 
3,035,821 SNPs 

DNAm 
(710,445) 

Illumina Human CoreExome-24 
Illumina MethylationEPIC 

SNP & CpG probe filtering 

meQTL mapping 

Cis SNP-CpG 
Associations 

2,687,897 

Trans SNP-CpG 
Associations 

17,697 

CD4
+
 T cell 

103 Samples 
(43 RA, 60 non-RA) 

Genotyping & Imputation 
5,503,347 SNPs 

DNAm 
866,238 

Genotyping & Imputation 
2,901,876 SNPs 

DNAm 
(709,412) 

Trans SNP-CpG 
Associations 

13,908 

Cis SNP-CpG 
Associations 

2,501,653 

Cis-meQTLs 
60,315 

SNP clumping 

Trans-meQTLs 
479 

Trans-meQTLs 
294 

Cis-meQTLs 
58,625 

Risk Loci cis-meQTLs 
Rheumatoid arthritis: 99 
Multiple sclerosis: 133 

Asthma: 148 
Osteoarthritis: 121 

GWAS Catalogue 
Risk Loci 

Risk Loci cis-meQTLs 
Rheumatoid arthritis: 98  
Multiple sclerosis: 110 

Asthma: 116 
Osteoarthritis: 112 

Figure 4.2: Analysis overview and summary of key findings from the meQTL analysis carried out in 

peripheral CD4+ T cells and B cells from early arthritis patients. 
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A CD4+ T cell 

B B cell 

Figure 4.3 Genomic coordinates of meQTLs mapped genome-wide. MeQTLs were mapped in cis and trans 

in A) CD4+ T cells and B) B cells. Each point represents a significant cis- (shown as circles in the diagonal) or 

trans- (shown as squares) meQTL association at the selected FDR threshold.  The chromosomal coordinates of 

the regulatory SNP (x axis) are plotted against those for the CpG site (y axis). The colour of each point 

represents the –log10 p-value of the test, with higher values representing more significant associations. 
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At CpG sites that were not found to be regulated by SNPs in cis, the β-values (range 0 – 1) 

displayed a bimodal density distribution, indicating that these sites tend to be fully-methylated 

(~1) across all samples, or fully de-methylated (~0; Figure 4.4). Contrastingly, CpGs that were 

associated with cis-meQTLs (cis-CpGs) exhibited more intermediate β-value distributions 

across probes (Figure 4.4).  

 

 

 

 

 

 

 

A preponderance for cis-meQTLs to act over shorter SNP-CpG distances was evident. Indeed, 

78% of independent cis associations in CD4+ T cells occurred at a distance of ≤ 100Kb (Figure 

4.5A), with 76% of those in B cells mapping to within this distance (Figure 4.5B). Indeed, cis-

meQTLs over distances greater than 500Kb were rare, accounting for only ~6% of associations 

in each cell type (Figure 4.5).  Moreover, a general trend whereby the effect size of a cis-meQTL 

(measured by the absolute regression (β) coefficient) diminished at greater SNP-CpG distances 

was apparent, again with this observation being consistent across CD4+ T cells (Figure 4.6A) 

and B cells (Figure 4.6B). These results are consistent with findings from previous studies in a 

range of tissues238, 241, 242, 245. 

 

 

 

 

 

 

 

 

A B CD4+ T cell B cell 

Figure 4.4: Beta value density plots across probes by the presence of absence of cis-regulatory genetic 

effects. The methylation β-value (range 0 – 1) for probes subject to cis-meQTL effects (cis-CpGs, shown in red), 

and those that exhibited no such cis-regulation (shown in black). 
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Cis-meQTLs mapped to 53,131 and 53,925 unique CpGs in CD4+ T cells and B cells 

respectively. Previous studies have indicated a considerable degree of cross-tissue effects as 

regards cis-meQTL activity126, 127. Indeed 29,970 CpGs (38.5% of all cis-CpGs) were associated 

with meQTLs in both cell types (Figure 4.7A). In CD4+ T cells, these cis-CpGs were associated 

with 44,381 SNPs, with 5,495 CpGs associated with > 1 SNP, and 14,244 SNPs associated with 

> 1 CpG. In B cells, 46,695 cis-regulatory SNPs were identified at these loci, implicating 6,390 

45,532 

3,967 2,811 1,788 1,136 829 726 607 549 680 

45,828 

3,961 3,129 1,999 1,310 1,028 849 756 667 725 

Figure 4.5: Frequency of cis-meQTL effects by SNP-CpG distance. The total number of cis-meQTLs 

separated into the distance in kilobases (Kb) between the regulatory SNP and CpG site for A) CD4+ T cells 

and B) B cells. Each bin represents the number of cis-meQTLs identified with cis SNP-CpG distance above 

the previous bin, and up to a distance of the value for that particular bin. For example, the 200Kb bin 

includes all meQTLs for which the SNP-CpG distances was > 100Kb and ≤ 200Kb. 

A B CD4+ T cells B cells 

A B CD4+ T cells B cells 

Figure 4.6: cis-meQTL effect size relative to the SNP-CpG distance. The meQTL effects sizes (absolute β) 

for all cis SNP-CpG associations in A) CD4+ T cells and B) B cells are plotted relative to the distance between 

the lead regulatory SNP and associated CpG site in kilobases (Kb). Effect size is plotted as the absolute regression 

coefficient (β), indicating the slope of the line from linear models. MeQTLs are plotted in bins, with 100 bins 

across the length of each axis (i.e. each bin across the x-axis represents a 20Kb SNP-CpG distance). Each point 

is coloured according to the number of cis-meQTLs falling within that particular bin. 
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CpGs with multiple SNP association and 13,620 SNPs with multiple CpG associations. The 

number of overlapping cis-CpGs may in fact represent an underestimate of true shared effects 

between the two cell types, given that two separate analyses were performed with different 

input data and covariates. Nonetheless, when a cis-meQTL was identified in both cell types, the 

direction and effect size (regression coefficient (β)) was consistent between cells in a majority 

of cases (Figure 4.7B). Exemplar plots are shown of cis-meQTLs that were identified uniquely 

in CD4+ T cells (Figure 4.7C), uniquely in B cells (Figure 4.7D), or were found to be active in 

both cell types (Figure 4.7E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 
CD4+ T cell B cell 

C 

n=60 n=35 n=8 n=68 n=42 n=9 

D 

B 

n=49 n=44 n=10 n=56 n=51 n=12 

E 

n=30 n=42 n=30 n=30 n=59 n=29 

Figure 4.7: Overlapping and unique cis-CpG associations in lymphocyte subtypes. A) The total number 

of CpGs subject to cis-regulatory effects in CD4+ T cells, B cells or both cell types. B) Comparison of effect 

sizes (regression (β) coefficient) in overlapping cis-meQTL associations between the two cell types. 

Associations highlighted in red were those whereby the allelic direction of effect differed between the two cell 

types – i.e. the minor allele conferred increased DNA methylation levels in one cell type, but decreased levels 

in the other. Exemplar plots are also shown displaying DNA methylation (%) against genotype at cis-meQTLs 

that were identified uniquely in either (C) CD4+ T cells, (D) B cells, or (E) both cell types. NS = not significant 

(FDR ≥ 0.01). 

FDR = 2.77 x 10-50 NS 

FDR = 3.09 x 10-75 FDR = 1.90 x 10-80 

NS FDR = 1.09 x 10-61 
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There were notable exceptions at 47 CpGs whereby the effect of a specific allele on DNAm 

levels (either conferring increased or decreased levels) appeared to differ between cell types 

(Figure 4.7B; shown in red). Amongst those exhibiting differential allelic effects were four cis-

CpGs (cg04611726, cg03111156, cg14442312, cg21616755) mapping to intron 2 of CRACR2A 

gene on chromosome 12 (Figure 4.8A). The regulatory SNP at this locus (rs241970) exhibited 

differential allelic effects on DNAm levels at these CpGs between CD4+ T cells and B cells 

(Figure 4.8B). 

Interestingly, the regulatory SNP mapped to a putative CD4+ T cell (Cell ID E043) genic 

enhancer based on chromatin state information from the Roadmap Epigenomics Consortium173, 

whereas the region harbouring rs241970, cg04611726, and cg03111156 is described as 

‘transcribed’ in B cells (Cell ID E032; Figure 4.8A). The cis-CpGs at this locus appear to 

overlap binding sites of a number of transcription factors, including IKZF1, N2RF1, RUNX3, 

and TBX21. The minor allele (C) at the regulatory SNP reduced DNAm levels at these cis-CpGs 

in CD4+ T cells, whereas in B cells this allele was associated with an increase in DNAm (Figure 

4.8B). Therefore, whilst in general a large overlap was observed in the cis-regulatory landscape 

of these two lymphocyte subsets, a proportion of cell type-specific effects, including allelic 

effects that differ between cell types, reinforces the need to study meQTLs in purified 

populations of cells. 
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E043 – Peripheral 
T helper cell 

Cis-CpGs 
rs241970 

IKZF1 
N2RF1 

RUNX3 
TBX21 

E032 – Peripheral 
B cell 

A 

cg04611726 cg03111156 B 

cg14442312 cg21616755 

Figure 4.8: Distinct allelic effects on DNA methylation at cis-CpGs mapping to the CRACR2A gene in 

CD4+ T cells and B cells. A) Genomic region plot displaying the CRACR2A promoter region and location of 

the cis-meQTLs on chromosome 12 (region is shown as a red line on the top ideogram plot). The regulatory 

SNP (rs241970) is shown as a red line with all cis-CpGs (cg04611726, cg03111156, cg14442312, 

cg21616755) from left to right shown as blue lines. Chromatin state tracks from the Roadmap173 15-state 

learning model are shown for primary T helper cells from peripheral blood (E043) and primary B cells from 

peripheral blood (E032). Transcription factor binding sites (TFBSs) from the ENCODE ChIP-seq209,210 

experiments in the GM12878 Epstein-bar virus-transformed B cell line (TFBS are shown only for those TFs 

overlapping the cis-meQTL region with a score > 800*). The orange box on the CRACR2A gene track plot 

represents Exon 2 of this gene. B) Cis-meQTL associations at these cis-CpGs in both cell types. ZNF/Rpts = 

ZNF genes + repeats; Tx = strong transcription; TxWk = weak transcription; EnhG = genic enhancer. 

*Scores designated by the UCSC Browser (range 0-1000) and represent a measure of signal intensity from the 

analysis pipeline of ENCODE ChIP-seq experiments. 

FDR = 1.22 x 10-21 

β = -0.55 
FDR = 4.82 x 10-15 

β = 0.54 
FDR = 3.48 x 10-19 

β = -0.47 
FDR = 2.13 x 10-12 

β = 0.49 

FDR = 4.17 x 10-4 

β = -0.21 
FDR = 3.14 x 10-9 

β = 0.41 
FDR = 4.91 x 10-6 
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FDR = 2.88 x 10-7 

β = 0.35 
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4.3 Disease-specific meQTLs 

Numerous studies have described a family of eQTLs that appear to become active upon cell 

stimulation, such as may occur when a cell is exposed elevated cytokines and extracellular 

stimuli during an inflammatory response. 

To test the hypothesis that certain meQTLs may be impacted by RA-specific factors that 

lymphocytes are exposed to, an interaction analysis was performed to assess the influence of 

disease diagnosis (RA or non-RA) on the effect size of cis- and trans-meQTLs. This approach 

has greater power to detect disease-specific effects than simply running an meQTL analysis in 

each cohort separately, and detects instances whereby: 

• The meQTL is active in on comparator group (RA or non-RA) but not the other (Figure 

4.9A). 

• The meQTL is active in both groups with an opposing allelic effect on DNAm levels 

in each (Figure 4.9B).  

• The meQTL is active in both groups with a consistent allelic effect, but a significant 

difference in the magnitude of the allelic effect (Figure 4.10C). 

 

 

 

 

 

 

 

Only one such interaction effect was identified in cis, which occurred between rs13145446 

(chr4:152,729,035) and cg23683081 (chr4:152,682,891) in B cells (Figure 4.10; Table 4.2; 

genotype × diagnosis interaction FDR = 0.0155). This cis-meQTL displayed opposing allelic 

effects in each patient cohort, with the minor allele (G) conferring a small increase in DNAm 

in non-RA patients (p-value = 0.0034), whilst in RA patients this allele was associated with a 

reduction in DNAm levels (p-value = 2.69 x 10-5; Figure 4.10). This particular CpG maps to 
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Figure 4.9: Potential disease-specific meQTLs that could be detected by an interaction analysis. A) 

An meQTL is active in the patient cohort but absent in the controls, B) An meQTL is active in both the 

patient and control cohorts, though opposing allelic effects on DNAm are present, C) An meQTL is active 

in both the patient and control cohort, though the magnitude of effect differs (i.e. the minor allele confers 

a greater reduction in DNAm in one cohort relative to the other). 
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region upstream of the GATB gene (also names PET112), which encodes Glutamyl-TRNA 

Amidotransferase Subunit B.  

 

 

 

 

 

 

 

 

 

A number of meQTL interaction effects acting in trans were identified, with three in CD4+ T 

cells and 21 identified in B cells (Table 4.2). All of the CD4+ T cell interaction trans-meQTLs 

were inter-chromosomal (Figure 4.11A), as were 20/21 of the B cell trans interactions (Figure 

4.11B).  

 

meQTL p-value = 
0.0034 

meQTL p-value = 
2.69 x 10-5 

n=28 n=33 n=12 n=18 n=23 n=5 

Figure 4.10: Genotype × Diagnosis cis-meQTL interaction in B cells. A cis meQTL was identified at 

rs13145446 (chr4:152,729,035) at which the minor allele (G) conferred reduced methylation at cg23683081 

(chr4:152,682,891). 

A B CD4+ T cell B cell 

Figure 4.11: Genotype × diagnosis interaction effects occurring in trans. Circos plots displaying the 

genomic locations of inter-chromosomal trans-meQTLs exhibiting significant interactions in A) CD4+ T 

cells and B) B cells (See Table 4.2 for details of all interaction effects). The colour of each link depicts the 

chromosome to which the meQTL variant maps. 
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SNP SNP Coord Minor 

allele Major 
allele CpG CpG 

Coord P-val 
Interaction FDR 

Interaction Beta 
Interaction P-val RA Beta 

RA P-val nRA Beta 
nRA UCSC 

Gene 
CD4+ T cells             

rs7495444 chr15:34897222 T A cg20399213 chr1:27020750 1.43 x 10-12 8.20 x 10-5 0.332 8.91 x 10-5 0.175 1.79 x 10-5 -0.122 - 
rs2254156 chr9:113189533 A G cg26097711 chr15:64749577 2.63 x 10-12 0.0001 -1.051 2.23 x 10-8 -1.029 0.8621 0.013 - 
rs969916 chr7:114727332 A C cg05886966 chr20:34194255 2.42 x 10-12 0.0001 -0.423 5.38 x 10-5 -0.214 2.20 x 10-7 0.218 FER1L4 

B cells             
rs13145446 chr4:152729035 G A cg23683081 chr4:152682891 3.01 x 10-9 0.0155 -0.456 2.69 x 10-5 -0.338 0.0034 0.114 GATB 
rs10172895 chr2:34553877 C T cg00710196 chr17:36870572 2.96 x 10-12 5.59 x 10-5 -0.543 3.02 x 10-7 -0.395 0.0044 0.121 MLLT6 
rs1864180 chr5:88421363 A G cg23449856 chr12:92474554 9.87 x 10-12 0.0001 0.574 3.40 x 10-6 0.337 8.35 x 10-6 -0.219 C12orf79 
rs7164870 chr15:86252755 G A cg12117684 chr4:96077623 9.07 x 10-11 0.0002 2.315 0.1429 0.262 3.63 x 10-11 -2.024 BMPR1B 
rs11693561 chr2:56282762 G A cg00456774 chr19:40857787 3.19 x 10-11 0.0006 -0.330 1.64 x 10-6 -0.242 7.48 x 10-5 0.106 PLD3 
rs4843534 chr16:87172625 A G cg27626037 chr1:68096297 7.89 x 10-11 0.0008 -0.460 2.22 x 10-5 -0.290 0.0004 0.142 - 
rs7802290 chr7:78116293 C T cg01625242 chr18:56886915 3.88 x 10-11 0.0005 1.556 6.40 x 10-5 1.236 0.5471 -0.042 GRP 
rs157624 chr4:16704510 C T cg12351039 chr2:38229188 4.89 x 10-13 1.27 x 10-5 -0.334 1.53 x 10-7 -0.220 0.0001 0.105 RMDN2 

rs11144219 chr9:77698483 A G cg23252815 chr20:44420276 3.93 x 10-11 0.0005 -1.770 0.0014 -0.639 1.38 x 10-8 1.138 WFDC3 
rs1476772 chr7:13152162 T G cg15834993 chr8:49826049 6.36 x 10-11 0.0007 0.432 0.0019 0.246 5.23 x 10-8 -0.186 - 
rs1286733 chr3:25613372 C T cg25371991 chr2:65062088 1.96 x 10-11 0.0002 -0.539 2.71 x 10-5 -0.309 1.72 x 10-6 0.238 - 
rs2029543 chr5:125044634 G A cg04933361 chr16:83991376 4.76 x 10-11 0.0005 0.400 3.54 x 10-5 0.238 4.01 x 10-5 -0.165 OSGIN1 
rs7802290 chr7:78116293 C T cg11284281 chr13:20967659 5.91 x 10-12 9.80 x 10-5 -1.736 4.58 x 10-5 -1.338 0.3072 0.046 - 
rs4798720 chr18:8936107 G A cg09382492 chr17:74463681 9.10 x 10-11 0.0009 -0.367 5.46 x 10-5 -0.206 6.51 x 10-6 0.178 AANAT 
rs8176635 chr9:136152009 A G cg27244120 chr16:70610434 7.70 x 10-11 0.0008 0.436 0.0001 0.262 4.21 x 10-6 -0.193 SF3B3 
rs12283663 chr11:89410440 A C cg21464983 chr1:156919932 9.70 x 10-11 0.0010 -0.357 3.21 x 10-7 -0.223 0.0014 0.111 ARHGEF11 
rs10874175 chr1:81282234 C T cg11832601 chr11:8012913 1.60 x 10-11 0.0002 -1.266 6.39 x 10-7 -1.218 0.1016 0.110 EIF3F 
rs7342215 chr11:129139026 A G cg11381655 chr19:51818377 9.55 x 10-12 0.0001 -0.944 2.37 x 10-5 -0.888 0.1496 0.053 IGLON5 
rs658286 chr11:100942792 G T cg16519321 chr11:17741243 2.17 x 10-11 0.0003 -0.340 3.62 x 10-7 -0.271 0.0015 0.092 MYOD1 

rs12054998 chr5:35839347 C T cg02197923 chr4:138622842 2.12 x 10-13 6.42 x 10-6 -0.665 1.76 x 10-7 -0.715 0.6907 0.010 - 
rs11775667 chr8:128253752 A G cg11832601 chr11:8012913 3.99 x 10-11 0.0005 -1.269 1.52 x 10-7 -1.319 0.6835 0.028 EIF3F 
rs12487048 chr3:16741847 G C cg27391564 chr2:240530497 1.34 x 10-15 8.77 x 10-8 -1.052 9.64 x 10-10 -0.979 0.2509 0.054 - 
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4.4 Trans-meQTL mapping CD4+ T cells and B cells  

As mentioned in section 4.2, a relatively small number of trans-meQTLs were identified, 

mapping to 239 trans-CpGs in CD4+ T cells and 387 in B cells (Figure 4.12A). Of the trans-

meQTLs, the majority of these were inter-chromosomal (81.2% in CD4+ T cells, 83.5% in B 

cells). Regarding trans-CpGs, 139 were subject to trans-meQTL effects in both cell types 

(Figure 4.12A). An exemplar of one such a shared inter-chromosomal trans-meQTL is shown 

between rs1655530 (chr1:55,074,463) and cg19586483 (chr6:110,512,070; Figure 4.12B). It 

should be noted that the possibility cannot be ruled out that trans effects involving SNPs and 

CpGs mapping to the same chromosome represent long-distance cis effects, beyond the 1Mb 

pre-defined window for cis associations. Indeed, of such long-distance meQTLs identified in 

the trans analysis, 53.3% of the regulatory variants in CD4+ T cells were also identified in the 

cis-meQTL analysis, whilst the proportion in B cells was 65.6%, indicating that in many 

instances this is likely the case. 

 

  

 

 

 

 

 

 

Table 4.2 (previous page): Me-QTLs (Cis and Trans) exhibiting significant genotype × diagnosis 

interaction effects in CD4+ T cells and B cells. SNP Coord = Chromosomal co-ordinates of the regulatory 

SNP; CpG Coord = Chromosomal co-ordinates of the cis-CpG; P-val Interaction = P-value for the interaction 

effect from the linear model; FDR Interaction = Interaction p-value adjusted for false discovery rate 

(Benjamini-Hochberg); Beta Interaction = Regression Coefficient (β) of the interaction effect (i.e. impact of 

disease diagnosis on effect size); P-val RA = P-value of the meQTL association in rheumatoid arthritis 

patients; Beta RA = Regression Coefficient (β) of the meQTL association in rheumatoid arthritis patients;  P-

val NRA = P-value of the meQTL association in non-rheumatoid arthritis patients (disease controls); Beta 

NRA = Regression Coefficient (β) of the meQTL association in non-rheumatoid arthritis patients;  UCSC 

Gene = Gene to which the cis-CpG maps based on the Illumina MethylationEPIC manifest file. 

A B 

Figure 4.12: Trans-meQTL analysis in CD4+ T cells and B cells. A) Overlap of trans-CpGs identified in 

either cell type. B) Exemplar plot of inter-chromosomal trans-meQTL identified in both cell types. 

FDR = 3.05 x 10-64 FDR = 5.01 x 10-67 
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Given that the multiple-testing burden associated with identifying associations in trans is 

considerably greater than for those in cis, the current analysis was mainly powered to map the 

latter. As such, the remainder of this chapter will largely focus on these associations. 

4.5 Functional annotation of cis-meQTLs 

The genomic mapping of cis-meQTLs can potentially give insight into their functional 

consequences at the level of transcriptional regulation. Cis-CpGs that were found to be 

associated with meQTLs in each lymphocyte cell types, as well as those that were not associated 

with a genetic variant in cis (non-cis-CpGs) were therefore overlapped with additional marks 

indicative of regulatory activity from previously annotated large consortia datasets. CpGs were 

mapped to chromatin states from the Roadmap Epigenomics Project173 15-state model, as 

defined by ChromHMM learning on five histone modifications (see Chapter 2.7.4; Figure 

4.13A). Cell-specific chromatin state data from ‘primary T helper cells from peripheral blood’ 

(E043) and ‘primary B cells from peripheral blood’ (E032) were selected for intersecting CD4+ 

T cell and B cell CpGs, respectively. The 15 chromatin states were aggregated into five states 

broadly reflecting genomic regions with unique functionality (transcription start sites (Tss); 

flanking transcription start sites (TssFlnk); transcribed (Tx); enhancer (Enh); and repressed 

(Rep)). The enrichment of cis-CpGs was compared with all other CpGs which were included 

in the analysis but found not to be subject to cis-regulatory activity (656,281 in CD4+ T cells, 

656,520 in B cells). CpGs were also overlapped with information on CGI features (Figure 

4.13B) and UCSC RefGene Genic features (Figure 4.13C) obtained from the Illumina 

MethylationEPIC manifest. 

As regards chromatin states, in both CD4+ T cells and B cells, cis-CpGs were found to be 

significantly enriched in both repressed chromatin and enhancer regions in CD4+ T cells and B 

cells alike (Figure 4.13A & D-E). Conversely, significant depletion at transcription start sites 

and transcribed regions was observed, again with this effect being consistent across both cell 

types (Figure 4.13A & D-E). Though the relative proportions of cis-CpGs were significantly 

reduced at TSSs, increased levels were found at the regions flanking the TSS, again with this 

trend observed in CD4+ T cells and B cells (Figure 4.13A & D-E). 

CGIs extracted from UCSC annotations322, as defined in the MethylationEPIC manifest file, 

are regions with a high density of CpGs found at the promoter of ~60% of human genes184. 

CpGs in the dataset were mapped to CGIs, as well as ‘shores’ (0-2Kb from a CGI), ‘shelves’ 

(2-4Kb from a CGI), and ‘open sea’ regions (all other mappings; see Chapter 2.7.4). Most 

strikingly, cis-CpGs were strongly depleted at CGIs in both CD4+ T cells and B cells (Figure 
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4.13B & D-E). Conversely, significant enrichment of cis-CpGs was evident at the CGI shore 

regions both 5’ (north shore) and 3’ (south shore) of CGIs, again with this trend clear in both 

CD4+ T cells and B cells (Figure 4.13B & D-E). A smaller magnitude of enrichment, albeit still 

highly significant, was found at ‘open sea’ regions in both cell types, whereas a small reduction 

in the proportion of cis-CpGs mapping to shelves was evident (excluding north shelves in B 

cells; Figure 4.13B & D-E). 

Finally, CpG locations relative to specific RefGene sequence features were identified and a test 

of relative cis-CpG enrichment at each feature performed as before. As would perhaps be 

expected given the depletion seen at TSS (Figure 4.13A) and CpG islands (Figure 4.13B), CD4+ 

T cell cis-CpGs were under-represented at regions such as the 5’UTR, the 1st Exon, and the 

200bp region immediately upstream of the TSS (Figure 4.13C & D-E). This was also reflected 

in the B cell data with comparable depletions of cis-CpGs at these regions. Significant depletion 

was also evident at the 3’UTR genes, as well as the Exon boundaries and gene bodies (Figure 

4.13C & D-E). With regards to cis-CpG enrichment, significantly increased mapping to 

intergenic sites and the regions 200-1500bp upstream of TSSs occurred in both cell types 

(Figure 4.13C & D-E).  

Taken together, these findings illustrate that CpGs subject to cis-regulatory activity by local 

sequence variation are not randomly distributed throughout the genome, but rather are generally 

depleted at features associated with gene promoters and enriched at regions adjacent to these 

promoters, or at greater distances such as enhancers. 
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  Roadmap Chromatin State Relation to CpG Island UCSC RefGene Group 

  Rep Enh Tx Tss 
Flnk Tss Open 

Sea 
S 

Shore 
S 

Shelf 
N 

Shelf 
N 

Shore Island Inter-
genic 

Gene 
Body 

3’ 
UTR 

Exon 
Bnd 

1st 
Exon 

Tss 
1500 

Tss 
200 

5’ 
UTR 

CD4+ 
T cell 

Cis-CpG 
(%) 52.5 16.7 11.4 16.0 3.4 58.7 10.8 3.1 3.2 12.2 12.0 32.6 33.0 2.0 0.5 0.9 13.6 5.9 11.4 

Non cis-
CpG (%) 49.0 10.8 17.6 12.3 10.3 55.9 8.2 3.4 3.6 9.6 19.4 27.0 35.0 2.5 0.8 1.3 11.6 8.3 13.4 

B cell 

Cis-CpG 
(%) 49.3 24.3 12.8 10.6 3.0 60.0 10.2 3.1 3.5 11.5 11.7 32.3 34.2 2.1 0.5 0.9 13.6 5.9 11.4 

Non cis-
CpG (%) 47.5 14.5 18.3 8.7 11.0 55.8 8.2 3.4 3.6 9.7 19.4 27.1 34.9 2.5 0.8 1.3 11.6 8.3 13.4 
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*** ***** ***** *** ***** **** **** ** ns *** ***** ***** *** ** *** *** *** ***** *** 
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enrichment 

Figure 4.13: Cis-CpG feature enrichment. CpGs at which DNAm levels were associated with cis-meQTLs 

(cis-CpGs) and those which were not subject to such associations (non cis-CpG) in CD4+ T cells and B cells were 

mapped to (A) Roadmap Epigenomics Project Consortium172 chromatin states in primary T helper cells from the 

peripheral blood (cell ID E043; CD4+ T cell CpGs) and primary B cells from the peripheral blood (cell ID E032; 

B cell CpGs). The 15-state model defined by Roadmap was collapsed into 5 distinct functional states: 

Transcription start site (TSS), Flanking a TSS (Tss Flnk), Enhancer, Transcribed, and Repressed (see section 

2.7.4 for further details on definition of chromatin states). Cis-CpGs and non-cis-CpGs were also mapped to (B) 

CpG island features (Shore regions are defined as those 0-2Kb from CGI boundaries, with shelves within 2-4Kb., 

All other regions are defined as open sea.) and (C) UCSC RefGene Gene Features (Exon Bnd = Exon Boundary, 

3’UTR/5’UTR = 3’/5’ untranslated region, TSS1500 = 200-1500 bases upstream the gene transcription start site; 

TSS200 = 0-200 bases upstream of the gene transcription start site). CpG island/RefGene features were obtained 

from the Illumina Infinium MethylationEPIC manifest. (D) The percentage of cis-CpGs and non-cis-CpGs 

mapping to each feature in panels A-C for both cell types. (E) Heat map of relative log2-fold enrichment of cis-

CpGs at each feature in both cell types, with red depicting enrichment of cis-CpGs at a feature and blue depicting 

depletion. ***** p < 1 x 10-100; **** p < 1 x 10-50; *** p < 1 x 10-10; ** p < 0.01; * p < 0.05. 
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4.6 Co-localisation of cis-meQTLs with RA loci 

Whilst GWASs have revealed over 100 genomic loci that appear to confer disease susceptibility 

in RA97, linking such genetic modification to molecular pathways that confer dysregulated 

cellular immunity still remains a difficult challenge. It was therefore hypothesized that many 

such non-coding variants may in fact modulate DNAm levels at proximal or distal CpG sites, 

with potential implications for transcriptional regulation. To test this hypothesis, RA GWAS 

data were downloaded from the GWAS catalogue293 (see section 2.7.5 for inclusion criteria). 

In the first instance, co-localisation was defined whereby the meQTL variant mapped to the LD 

block harbouring the GWAS variant (all SNPs with r2 ≥ 0.8 with the lead RA GWAS SNP). 

After defining RA risk loci using this approach, a total of 104 and 107 such loci were 

represented in the patient genotype input data for CD4+ T and B cells respectively. In total, 32 

risk loci displayed cis-regulatory activity on DNAm levels in CD4+ T cells and 33 in B cells, 

with 24 of these identified in both cell types (Table 4.3 & Figure 4.14). These effects 

encompassed a total of 99 CpGs subject to cis-regulation at RA risk loci in CD4+ T cells, and 

98 in B cells (Table 4.3) 

The cis-CpGs associated with RA risk loci mapped to a number of genes with putative roles in 

lymphocyte-mediated RA pathogenesis in CD4+ T cells (Figure 4.14A) and B cells (Figure 

4.14B; Table 4.3). A number of cis-meQTLs were active in both cell types and were associated 

with cis-CpGs that mapped to genes including MMEL1 (cg21621858) and JAZF1 

(cg11187739). In many cases, the cis-CpG exhibiting the strongest association with the cis-

meQTL differed between the two cell types. Such examples of this include cis-CpGs mapping 

to FCRL3 (cg17134153/cg21721331), EOMES (cg21473142/cg20235057), and SYNGR 

(cg24268161/cg15105517) (Figure 4.14). Particularly strong allelic effects on DNAm were 

observed at the locus on chromosome 11q12.2 harbouring the RA risk variant (rs968567; 

chr11:61,828,092). Associations with methylation at 25 CpGs in CD4+ T cells and 23 CpGs in 

B cells were identified at this locus, most of which map to the FADS2 gene (Table 4.3). 

Exemplar plots are shown for the SNP-CpG associations for the top three meQTL cis-CpGs in 

CD4+ T cells; cg21029357 (chr11:61,601,062; Figure 4.15A), cg13299762 (chr11:61,594,708; 

Figure 4.15B), and cg27386326 (chr11:61,587,980; Figure 4.15C), as well as the top three cis-

CpGs in B cells; cg19481605 (chr11:61,596,812; Figure 4.15D), cg13299762 

(chr11:61,594,708; Figure 4.15E), and cg01400685 (chr11:61,598,025; Figure 4.15F). 

Interestingly, the risk allele at this locus conferred both increased DNAm and decreased DNAm 

levels at different CpGs across this region, such as is seen for cg21029357 (Figure 4.15A) and 

cg27386326 (Figure 4.15C). 
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Lead RA SNP Locus 
CpGs 

associated w/ 
LD block 

CD4+ T cell FDR CD4+ T cell 
SNP 

r
2
 with 

lead RA 
SNP 

Bayes 
Coloc. 
(PP3) 

Bayes 
Coloc. 
(PP4) 

B cell FDR B cell SNP 
r
2
 with 

lead RA 
SNP 

Bayes 
Coloc. 
(PP3) 

Bayes 
Coloc. 
(PP4) 

UCSC Gene 
Symbol† 

chr1:2523811 1p36.32 

cg21621858 6.99 x 10-28 rs2260976 0.98 0.99 0.01 1.02 x 10-24 rs10752747 0.99 0.99 0.01 MMEL1 
cg11382394 3.34  x 10-15 rs2260976 0.98 0.83 0.17 2.61 x 10-18 rs4648657 0.97 0.33 0.67 MMEL1 
cg00205605 4.51 x 10-7 rs10797431 0.86 0.70 0.30 2.54 x 10-12 rs10797431 0.86 0.94 0.06 - 
cg18932078 2.21  x 10-11 rs2843404 0.99 0.44 0.56 4.49 x 10-4 rs3828154 0.91 0.20 0.79 MMEL1 
cg15574442 - - - - - 1.09 x 10-5 rs10797431 0.86 0.74 0.26 - 
cg17429686 2.93 x 10-5 rs60389769 0.96 0.60 0.40 2.18 x 10-5 rs6667564 0.90 0.04 0.96 - 
cg00070241 8.95 x 10-5 rs2843404 0.99 0.33 0.66 - - - - - TTC34 
cg25372239 - - - - - 4.70  x 10-4 rs2764845 0.90 0.24 0.76 PRDM16 
cg08030037 - - - - - 0.004 rs10797431 0.90 0.13 0.87 MMEL1 
cg05392440 - - - - - 0.010 rs10797431 0.90 0.15 0.70 - 

rs12140275 1p34.3 
cg12871964 - - - - - 9.15 x 10-13 rs7553012 0.93 0.12 0.88 - 
cg06891056 - - - - - 1.70 x 10-4 rs7553012 0.93 0.06 0.94 - 

rs624988 1p13.1 cg21456300 0.010 rs771587 0.99 0.01 0.89 - - - - - IGSF3 

rs2317230 1q23.1 

cg21721331 6.68 x 10-15 rs2210913 0.88 0.00 0.99 2.12 x 10-25 rs2210913 0.88 0.00 0.99 FCRL3 
cg19602479 2.53 x 10-12 rs2210913 0.88 0.01 0.99 5.28 x 10-25 rs2210913 0.88 0.00 0.99 FCRL3 
cg17134153 5.90 x 10-18 rs2210913 0.88 0.00 0.99 8.42 x 10-5 rs7522061 0.80 0.05 0.94 FCRL3 
cg01045635 1.28 x 10-14 rs2210913 0.88 0.00 0.99 1.09 x 10-14 rs7522061 0.80 0.03 0.97 FCRL3 
cg08786003 1.71 x 10-10 rs2210913 0.88 0.00 0.99 - - - - - FCRL3 
cg15602298 - - - - - 6.05 x 10-8 rs7522061 0.80 0.07 0.92 FCRL3 
cg25259754 2.79 x 10-7 rs7522061 0.80 0.02 0.98 1.26 x 10-6 rs7522061 0.80 0.02 0.98 FCRL3 
cg18707136 0.002 rs7522061 0.80 0.04 0.94 - - - - - FCRL1 
cg04429688 - - - - - 0.004 rs7522061 0.80 0.01 0.99 FCRL3 

rs10175798 2p23.1 cg27371770 1.14 x 10-13 rs10173253 0.94 0.00 0.99 9.75 x 10-4 rs10173253 0.94 0.00 1.00 - 
rs934734 2p14 cg11674355 - - - - - 8.28 x 10-5 rs4494728 0.90 0.21 0.79 SPRED2 

rs3806624 3p24.1 
cg20235075 - - - - - 1.51 x 10-9 rs9866625 0.96 0.00 1.00 EOMES 
cg21473142 3.64 x 10-9 rs3806624 1.00 0.01 0.99 2.57 x 10-8 rs3806624 1.00 0.01 0.99 EOMES 

rs11933540 4p15.2 cg06535121 0.003 rs6448432 0.88 0.01 0.99 - - - - - - 

rs6859219 5q11.2 
cg21124310 9.15 x 10-8 rs6859219 1.00 0.00 0.99 - - - - - ANKRD55 
cg10404427 3.16 x 10-5 rs6859219 1.00 0.00 0.99 - - - - - ANKRD55 
cg23343972 3.71  x 10-4 rs6859219 1.00 0.00 0.99 - - - - - - 



 

 
 

139  

Lead RA SNP Locus 
CpGs 

associated w/ 
LD block 

CD4+ T cell FDR CD4+ T cell 
SNP 

r
2
 with 

lead RA 
SNP 

Bayes 
Coloc. 
(PP3) 

Bayes 
Coloc. 
(PP4) 

B cell 
FDR B cell SNP 

r
2
 with 

lead RA 
SNP 

Bayes 
Coloc. 
(PP3) 

Bayes 
Coloc. 
(PP4) 

UCSC Gene 
Symbol† 

rs6859219 
(continued) 5q11.2 

cg15667493 0.009 rs6859219 1.00 0.00 0.99 - - - - - ANKRD55 
cg00391767 - - - - - 0.001 rs6859219 1.00 0.00 0.99 ANKRD55 
cg15431103 0.0037151 rs6859219 1.00 0.01 0.95 - - - - - ANKRD55 

rs2278600 5q13.2 cg20794793 - - - - - 0.007 rs10515148 0.80 0.02 0.01 - 

rs2561477 5q21.1 cg05225461 7.95 x 10-15 rs28158 0.97 0.03 0.97 2.64 x 10-8 rs2288789 0.95 0.03 0.97 C5orf30 
cg02855360 0.003 rs28157 0.95 0.04 0.95 - - - - - C5orf30 

rs2233424 6p21.1 cg05865665 0.003 rs190669824 0.90 0.10 0.29 9.71 x 10-4 rs74950428 0.94 0.18 0.40 TCTE1 
cg16224301 - - - - - 0.009 rs190669824 0.90 0.07 0.42 DLK2 

rs10499194 6q23.3 cg10612251 0.003 rs617328 0.89 0.05 0.91 - - - - - - 
rs2451258 6q25.3 cg16640008 0.002 rs2451278 0.98 0.00 0.99 - - - - - - 

rs1571878 6q27 

cg01554751 4.23 x 10-8 rs6907666 0.82 0.13 0.87 - - - - - - 
cg19954286 - - - - - 1.10 x 10-4 rs3093025 0.98 0.02 0.98 CCR6 
cg15222091 - - - - - 2.20 x 10-4 rs3093025 0.98 0.02 0.98 CCR6 
cg21794222 - - - - - 5.35 x 10-4 rs3093025 0.98 0.02 0.98 CCR6 
cg16523158 - - - - - 0.007 rs3093025 0.98 0.05 0.94 CCR6 
cg05094429 - - - - - 0.008 rs3093025 0.98 0.03 0.96 CCR6 

rs67250450 7p15.1 

cg11187739 6.08 x 10-19 rs4722758 0.93 0.01 0.99 3.03 x 10-10 rs4722758 0.93 0.01 0.99 JAZF1 

cg07522171 1.89 x 10-10 rs2189966 0.95 0.03 0.97 - - - - - JAZF1-AS1; 
JAZF1 

cg16130019 3.07 x 10-8 rs917117 0.93 0.01 0.99 - - - - - JAZF1 
cg00184826 5.99 x 10-8 rs2893312 1.00 0.02 0.98 - - - - - - 
cg26744081 5.35 x 10-4 rs4722758 0.93 0.01 0.97 - - - - - JAZF1 
cg11724147 7.89  x 10-4 rs4722758 0.93 0.02 0.96 - - - - - HIBADH 
cg11562379 0.001 rs2893312 1.00 0.02 0.98 - - - - - JAZF1 
cg08519799 0.003 rs2189966 0.95 0.02 0.97 - - - - - JAZF1-AS1 

chr7:128580042 7q32.1 

cg06630958 1.11 x 10-8 rs3807307 1.00 0.99 0.01 -   - - IRF5 
cg12816198 - - - - - 3.56 x 10-7 rs4728142 0.83 0.01 0.99 IRF5 
cg14349538 2.58 x 10-5 rs3757387 0.92 0.98 0.02 - - - - - IRF5 
cg24126180 4.01  x 10-4 rs3807306 0.85 0.87 0.05 - - - - - IRF5 
cg26616347 6.22  x 10-4 rs3807306 0.85 0.92 0.02 - - - - - IRF5 
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rs2736337 8p23.1 

cg16429190 - - - - - 3.20 x 10-18 rs2061831 0.99 0.01 0.99 - 
cg21497594 - - - - - 1.86 x 10-9 rs2061831 0.99 0.01 0.99 BLK 
cg01383082 - - - - - 4.08 x 10-9 rs2618476 0.95 0.02 0.98 FAM167A 
cg09528494 5.44 x 10-6 rs922483 0.80 0.01 0.99 1.16 x 10-8 rs2061831 0.99 0.01 0.99 - 
cg11944933 - - - - - 2.36 x 10-6 rs2618476 0.95 0.02 0.98 FAM167A 
cg07959027 4.97 x 10-6 rs2061831 0.99 0.01 0.99 - - - - - BLK 
cg04986849 - - - - - 2.77 x 10-5 rs2618476 0.95 0.13 0.86 BLK 
cg01527115 - - - - - 1.60 x 10-4 rs2618476 0.95 0.02 0.98 FAM167A-AS1 
cg23507676 - - - - - 5.92  x 10-4 rs2061831 0.99 0.01 0.99 BLK 
cg03002059 - - - - - 0.003 rs2618473 0.90 0.05 0.93 BLK 
cg18591982 0.003 rs2061831 0.99 0.02 0.98 - - - - - BLK 

rs1516971 8q24.21 cg21864152 - - - - - 0.002 rs28455755 0.97 0.00 0.97 LINC00824 

rs10985070 9q33.2 
cg10737611 1.42 x 10-29 rs2269060 0.97 0.05 0.95 1.55 x 10-17 rs11794516 0.95 0.10 0.89 - 
cg07863409 7.99 x 10-8 rs1930785 0.94 0.06 0.94 - - - - - - 

rs881375 9q33.2 

cg04665046 - - - - - 2.11 x 10-8 rs7037140 0.99 0.10 0.90 - 
cg21161526 - - - - - 6.17 x 10-8 rs10760118 0.99 0.10 0.90 - 
cg14580859 1.27  x 10-4 rs2159778 0.96 0.10 0.90 1.92 x 10-4 rs1930778 1.00 0.15 0.84 - 
cg05834805 0.007 rs2241003 0.94 0.10 0.86 - - - - - PHF19 

rs3824660 10p14 cg00296182 - - - - - 0.003 rs3824660 1.00 0.01 0.98 - 
cg14416352 0.009 rs3802604 0.92 0.03 0.92 - - - - - - 

rs4918037 10q24.33 

cg18735015 9.19 x 10-7 rs7096731 0.96 0.09 0.05 3.04 x 10-5 rs902995 0.92 0.09 0.03 SH3PXD2A 
cg00492979 4.74 x 10-6 rs902995 0.92 0.09 0.05 6.77 x 10-5 rs902995 0.92 0.08 0.04 SH3PXD2A 
cg20669641 3.10 x 10-5 rs902995 0.92 0.08 0.04 - - - - - SH3PXD2A 
cg19726408 4.58 x 10-5 rs7096731 0.96 0.09 0.05 1.16 x 10-4 rs902995 0.92 0.08 0.04 SH3PXD2A 
cg16669339 2.19 x 10-4 rs902995 0.92 0.08 0.04 - - - - - SH3PXD2A 

rs508970 11q12.2 cg23043946 - - - - - 3.34 x 10-5 rs508970 1.00 0.05 0.95 VPS37C 

rs968567 11q12.2 

cg21029357 3.31 x 10-44 rs968567 1.00 0.00 1.00 1.51 x 10-14 rs968567 1.00 0.00 1.00 FADS2 
cg13299762 5.02 x 10-40 rs968567 1.00 0.00 1.00 3.76 x 10-26 rs968567 1.00 0.00 1.00 FADS2 
cg27386326 6.29 x 10-32 rs968567 1.00 0.00 1.00 7.64 x 10-16 rs7943728 0.96 0.02 0.98 - 
cg19481605 2.91 x 10-31 rs968567 1.00 0.00 1.00 1.49 x 10-27 rs968567 1.00 0.00 1.00 FADS2 



 

 
 

141  

Lead RA SNP Locus 
CpGs 

associated w/ 
LD block 

CD4+ T cell FDR CD4+ T cell 
SNP 

r
2
 with 

lead RA 
SNP 

Bayes 
Coloc. 
(PP3) 

Bayes 
Coloc. 
(PP4) 

B cell FDR B cell SNP 
r
2
 with 

lead RA 
SNP 

Bayes 
Coloc. 
(PP3) 

Bayes 
Coloc. 
(PP4) 

UCSC Gene 
Symbol† 

rs968567 
(continued) 11q12.2 

cg06781209 2.20 x 10-28 rs61897793 0.95 0.00 1.00 2.90 x 10-15 rs968567 1.00 0.00 1.00 FADS2 
cg21409469 4.04 x 10-26 rs968567 1.00 0.00 1.00 3.22 x 10-10 rs7943728 0.96 0.01 0.99 FADS2 
cg21709803 1.09 x 10-25 rs968567 1.00 0.00 1.00 2.93 x 10-10 rs7943728 0.96 0.01 0.99 FADS2 
cg00603274 1.41 x 10-25 rs968567 1.00 0.00 1.00 1.04 x 10-15 rs7943728 0.96 0.01 0.99 FADS2 
cg07392590 1.20 x 10-24 rs968567 1.00 0.00 1.00 3.35 x 10-14 rs968567 1.00 0.00 1.00 - 
cg25324164 2.46 x 10-24 rs968567 1.00 0.00 1.00 9.51 x 10-9 rs968567 1.00 0.00 1.00 FADS2 
cg23017530 8.59 x 10-23 rs61897793 0.95 0.00 1.00 5.98 x 10-11 rs968567 1.00 0.00 1.00 FADS2 
cg01400685 1.74 x 10-14 rs61897793 0.95 0.00 1.00 1.05 x 10-21 rs968567 1.00 0.00 1.00 FADS2 
cg20896974 1.91 x 10-17 rs968567 1.00 0.00 1.00 1.95 x 10-21 rs968567 1.00 0.00 1.00 FADS2 
cg14562930 3.89 x 10-17 rs61897793 0.95 0.00 1.00 1.04 x 10-7 rs968567 1.00 0.00 1.00 FADS2 
cg08093537 3.94 x 10-17 rs61897793 0.95 0.00 1.00 3.58 x 10-16 rs968567 1.00 0.00 1.00 FADS2 
cg16213375 2.22 x 10-16 rs61897793 0.95 0.00 1.00 - - - - - FADS1 
cg20250926 1.02 x 10-12 rs968567 1.00 0.00 1.00 1.97 x 10-5 rs968567 1.00 0.00 1.00 FADS2 
cg07005513 - - - - - 1.09 x 10-12 rs968567 1.00 0.00 1.00 FADS2 
cg01556593 1.01 x 10-11 rs61897793 0.95 0.00 1.00 - - - - - FADS2 
cg22295169 7.15 x 10-11 rs968567 1.00 0.00 1.00 2.67 x 10-4 rs7943728 0.96 0.01 0.98 FADS2 
cg02213369 - - - - - 2.13 x 10-10 rs7943728 0.96 0.01 0.99 FADS2 
cg08281583 6.72 x 10-7 rs968567 1.00 0.00 1.00 1.55 x 10-9 rs7943728 0.96 0.01 0.99 FADS2 
cg14911132 3.64 x 10-9 rs968567 1.00 0.00 1.00 1.50 x 10-6 rs968567 1.00 0.00 1.00 FADS2 
cg15454066 - - - - - 2.49 x 10-6 rs968567 1.00 0.00 1.00 FADS2 
cg19852225 2.98  x 10-6 rs61896141 0.98 0.01 0.99 - - - - - FADS2 
cg10069985 1.26 x 10-5 rs968567 1.00 0.00 1.00 - - - - - FADS2 
cg19610905 - - - - - 2.93 x 10-4 rs968567 1.00 0.01 0.99 FADS2 
cg10515671 0.0007603 rs61896141 0.98 0.02 0.98 - - - - - FADS1 
cg04010666 0.0098423 rs968567 1.00 0.02 0.92 - - - - - TMEM216 

rs3781913 11q13.4 cg18574813 8.04 x 10-8 rs12802369 0.90 0.03 0.01 - - - - - PDE2A 
cg22635155 - - - - - 0.002 rs342322 1.00 0.02 0.01 PDE2A 

rs4409785 11q21 
cg24692812 2.08 x 10-8 rs4409785 1.00 0.00 0.99 - - - - - - 
cg00617061 0.002 rs4409785 1.00 0.01 0.70 - - - - - - 
cg10402062 - - - - - 0.006 rs4409785 1.00 0.01 0.77 - 
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rs10790268 11q23.3 
cg19308663 4.34 x 10-35 rs4938573 0.92 0.99 0.01 2.05 x 10-10 rs4938573 0.92 0.06 0.94 - 
cg00804785 6.78 x 10-12 rs7951740 0.95 0.06 0.94 - - - - - - 
cg01440696 0.004 rs73005423 0.79 0.11 0.87 - - - - - - 

rs773125 12q13.2 
cg15120283 2.87 x 10-12 rs11171739 0.81 0.00 1.00 2.30 x 10-4 rs11171739 0.81 0.00 1.00 RPS26 
cg18911129 1.69 x 10-8 rs11171739 0.81 0.00 1.00 2.01 x 10-4 rs11171739 0.81 0.00 1.00 - 

rs9603616 13q14.11 cg01699148 0.009 rs9532433 0.93 0.04 0.94 - - - - - COG6 
rs1950897 14q24.1 cg04384914 8.94  x 10-4 rs8015139 0.91 0.12 0.87 - - - - - RAD51L1 
rs2841277 14q32.33 cg06920962 - - - - - 0.001 rs2582531  0.86 0.02 0.01 PLD4 

rs8032939 15q14 
cg17164630 2.18 x 10-12 rs36027443 0.88 0.01 0.99 - - - - - RASGRP1 
cg22603971 - - - - - 8.67 x 10-7 rs28536554 0.89 0.01 0.99 RASGRP1 
cg25864633 - - - - - 0.003 rs6495979 0.93 0.01 0.99 RASGRP1 

rs8026898 15q23 cg04787775 - - - - - 0.002 rs7170107 0.96 - - - 
rs4780401 16p13.13 cg00288844 - - - - - 3.86 x 10-4 rs1579258 0.89 0.03 0.97 TXNDC11 
rs13330176 16q24.1 cg04454285 1.15  x 10-4 rs12232384 0.86 0.01 0.99 5.24 x 10-6 rs12232384 0.86 0.00 1.00 - 
rs1877030 17q12 cg02780210 8.04 x 10-6 rs8073511 0.87 0.91 0.01 - - - - - - 

chr17:38031857 17q12 

cg12749226 - - - - - 2.88 x 10-17 rs11557466 0.99 0.03 0.97 ORMDL3 
cg14348996 1.43 x 10-9 rs11655198 0.86 0.52 0.48 1.04 x 10-10 rs1008723 0.82 0.70 0.30 GSDMB 
cg18711369 1.36 x 10-7 rs12946510 0.85 0.14 0.86 8.23 x 10-8 rs9916765 0.81 0.41 0.59 ORMDL3 
cg02551532 7.92 x 10-7 rs2952144 0.80 0.62 0.38 - - - - - - 
cg13200575 - - - - - 2.71 x 10-6 rs9903250 0.86 0.53 0.47 - 
cg10909506 4.12 x 10-6 rs12946510 0.85 0.07 0.93 - - - - - ORMDL3 
cg18691862 - - - - - 5.03 x 10-6 rs9903250 0.86 0.56 0.44 LRRC3C 
cg12655416 - - - - - 7.20 x 10-5 rs11557466 0.99 0.03 0.97 ORMDL3 
cg10057218 1.28  x 10-4 rs11655198 0.86 0.35 0.64 - - - - - GSDMB 

rs11089637 22q11.21 cg19710672 0.001 rs5754387 0.81 0.08 0.91 - - - - - YDJC 
rs1043099 22q12.2 cg04852230 - - - - - 0.007 rs1043099 1.00 0.22 0.04 - 

rs909685 22q13.1 

cg15105517 - - - - - 6.91 x 10-43 rs909685 1.00 0.00 1.00 SYNGR1 
cg24268161 1.62 x 10-29 rs909685 1.00 0.00 1.00 1.89 x 10-14 rs909685 1.00 0.00 1.00 SYNGR1 
cg22628235 - - - - - 1.59 x 10-6 rs909685 1.00 0.00 1.00 SYNGR1 
cg07919145 - - - - - 0.004 rs909685 1.00 0.01 0.99 SYNGR1 
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Table 4.3:  All rheumatoid arthritis (RA) risk loci harbouring meQTL variants within the linkage 

disequilibrium block (r2 > 0.8 in1000 Genomes Project Phase 3 European Populations). The lead RA SNP 

is that which is reported by the genome-wide association study (GWAS). Linkage disequilibrium r2 values (based 

on European populations) between the lead RA risk variant and the lead regulatory meQTL SNP identified in 

each cell type are reported. Bayes Coloc. PP3 = Bayesian co-localisation posterior probability of the H3 hypothesis 

that each association (RA GWAS signal and meQTL) has an independent causal variant mapping to the region; 

Bayes Coloc. PP4 = Bayesian co-localisation posterior probability of the H4 hypothesis that each association (RA 

GWAS signal and meQTL) has a single shared causal variant mapping to the region; UCSC Gene Symbol = 

UCSC Gene to which the cis-CpG maps as described in the Illumina MethylationEPIC manifest file. 
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Figure 4.14: Manhattan plot of cis-meQTLs at rheumatoid arthritis risk loci. Associations between 

regulatory DNA variants at risk loci and CpGs in A) CD4+ T cells and B) B cells. Each point represents an 

association between a variant (chromosomal coordinates on the x-axis) and a cis-CpG probe, with the value 

on the y axes representing the –log10 nominal association p-value. Points highlighted in colour are those 

whereby the lead meQTL variant (i.e. that remaining following SNP clumping) mapped to an RA risk locus 

linkage disequilibrium (LD) block (r2 ≥ 0.8 with lead risk variant). Grey points represent those where the SNP 

association pre-clumping mapped to an RA LD block, but the lead SNP following clumping did not. In 

instances whereby the CpG is annotated to a UCSC RefGene gene (within 20kb), then the gene name is given 

next to the CpG.   
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To provide further confidence that a single causal variant is responsible for both the meQTL 

and RA GWAS signals at a given locus, a Bayesian test for co-localization was performed295. 

This test provides the posterior probability of five individual hypotheses (see section 2.7.5), 

with H4 being that of a single causal variant underlying both trait associations. All GWAS 

summary statistics used for Bayesian co-localisation were obtained from a comprehensive 

trans-ethnic RA meta-analysis97. It should be noted, however, that whilst the majority of RA 

risk loci intersected with the cis-meQTL results were defined based on this large study, a 

number were obtained from separate GWASs. Nonetheless, of the 99 independent CD4+ T cell 

SNP-CpG associations identified in cis for which the regulatory SNP mapped to an RA LD 

block, 75 (75.8%) exhibited strong evidence (posterior probability of H4 (PP4) > 0.75) of a 

shared causal variant (Table 4.3). Of the 32 RA risk loci exhibiting cis-meQTL activity in these 

cells, 26 (81.3%) harboured at least one association with good evidence of co-localisation with 

the causal RA SNP. Similarly, in B cells 79/98 (80.6%) showed significant evidence of co-

localisation, corresponding to 26/33 (78.8%) loci with at least one such association (Table 4.3). 
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Figure 4.15: Exemplar cis-meQTLs at the rheumatoid arthritis risk locus on chromosome 11q12.2. 
Associations are shown between the risk allele at rs968567 and the top three cis-CpGs identified in CD4+ T 
cells: (A) cg21029357, (B) cg13299762, and (C) cg27386326, and in B cells: (D) cg19481605, (E) 
cg13299762, and (F) cg01400685. 
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The posterior probabilities (PP) for the hypotheses that the two traits (DNAm and RA 

susceptibility) have independent causal variants (H3; PP3) or a single causal variant (H4; PP4) 

based on this Bayesian co-localisation analysis are given in Table 4.3. 

4.7 Cis-meQTLs associated with additional immune-mediated and joint-related disease 

The primary focus of this project was to assess the DNAm landscape in the aetiopathogenesis 

of RA, having access to biological material from the clinical context of early, untreated arthritis 

that is most relevant to the understanding of this condition. However, to explore the extent to 

which putative genetic risk in other immune- or non-immune-mediated diseases functions to 

modulate DNAm in CD4+ T cells and B cells, the analysis was extended beyond RA. Additional 

insight was therefore sought by mapping lymphocyte cis-meQTLs to risk loci for other complex 

genetic diseases. To this end, data for three additional diseases were obtained from the GWAS 

catalogue. These included multiple sclerosis (MS) – an autoimmune condition of the central 

nervous system in which CD4+ T cells are believed to function as a pathogenic cell type87. 

Another inflammatory condition included was asthma, which affects the airways and results 

from a hyper-responsive immune response orchestrated by Type 2 T-helper (TH2) cells – a 

CD4+ T cell subset that are important in humoral immunity294. Finally, in addition to these two 

immune-mediated diseases, osteoarthritis (OA) was considered as a condition whereby 

symptoms manifest at the same tissue as in RA, albeit the aetiology is considered largely 

distinct, with a lesser or absent role for immune dysregulation. 

Of the OA GWAS risk loci represented in the meQTL input data (82 for CD4+ T cells, 83 for 

B cells), 26 (31.7%) in CD4+ T cells and 28 (33.7%) in B cells were identified as cis-meQTLs, 

roughly mirroring the proportions seen in RA (Figure 4.16). Interestingly, the proportion of MS 

and Asthma GWAS loci found to exhibit cis-meQTL activity in CD4+ T cells (MS = 44.7%; 

Asthma = 41.7%; Figure 4.16A) and B cells (MS = 45.4%; Asthma = 40.7%) was increased 

relative to RA and OA (Figure 4.16; Figure 4.16B).  
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4.8 Functional annotation of disease-associated cis-meQTLs 

Identifying instances of GWAS loci functioning as cis-meQTLs can provide clues as to the 

potential mechanisms through which genetic risk modifies cell function. Beyond these 

associations, mapping disease associated DNAm modifications to specific chromatin states or 

functional elements such as TFBS can highlight pathways through which these variants impact 

transcriptional regulation.  

4.8.1 Chromatin state enrichment 

As was done for cis-meQTLs mapped genome-wide, cis-CpGs associated with the GWAS loci 

(described in sections 4.6-4.7) were mapped to cell type-specific chromatin state data from the 

Roadmap Epigenomics Project173, 293. Given that the previous analyses demonstrated cis-CpGs 

to map preferentially to regions such as enhancers, the enrichment of risk-associated cis-CpGs 

was compared with those regulated by non-risk loci for a given disease (Figure 4.17 & 4.18). 

For the data discussed in this section, a visual summary displaying the relative enrichments of 

risk-associated cis-CpGs at chromatin states in both cell types and across all diseases is shown 

in Figure 4.18.  
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Figure 4.16:  Cis-meQTLs at additional immune-mediated and joint-related genome-wide association 

loci. Proportion of GWAS loci in meQTL input data exhibiting cis-meQTL activity in A) CD4+ T cells and 

B) B cells. 



 

147 
 

Across all cell types and all diseases, risk-associated cis-CpGs were significantly depleted in 

repressed chromatin regions (Figure 4.17A-D). In CD4+ T cells, cis-CpGs were significantly 

enriched in enhancer elements across all diseases, with this most pronounced at RA loci (2.18-

fold enriched, p = 2.34 x 10-6; Figure 4.17A & E), followed by MS (1.98-fold enriched, p = 

3.77 x 10-6; Figure 4.17B) and asthma (1.98-fold enriched, p = 1.23 x 10-6; Figure 4.17C & E); 

although also present, OA cis-CpGs displayed a less marked enhancer enrichment (1.58-fold 

enriched, p = 0.0069; Figure 4.17D & E). Whilst no differences in the proportions of risk and 

non-risk cis-CpGs mapping to TSSs was seen for any diseases, an increased proportion of risk 

cis-CpGs mapping to the TSS flanking regions was observed, and this was particularly notable 

in B cells at RA (3.18-fold enriched, p = 7.45 x 10-10; Figure 4.17 A & E) and MS (2.14-fold 

enriched, p = 2.40 x 10-4; Figure 4.17B & E) loci. In both cell types, OA cis-CpGs displayed 

enrichment at transcribed regions (1.58-fold in CD4+ T cells, p = 0.0069; 2.02-fold in B cells, 

p = 1.75 x 10-4; Figure 4.17D & E), with the only other instance of this trend being observed at 

asthma loci in B cells (1.69-fold; p = 7.70 x 10-3; Figure 4.17C & E).  

These data collectively suggest that CpG sites at which DNAm levels are regulated in cis by 

GWAS risk loci are functionally enriched, with consistent depletion of risk-associated cis-CpGs 

at repressed chromatin across cell types and disease. Enrichment was particularly marked at 

CD4+ T cell enhancer regions for immune-mediated disease (RA, MS, and asthma) risk loci, 

consistent with recent chromatin state data highlighting that genetic risk in these diseases 

highlight a strong T cell component 117. 

 

 

 

 

 

 

 

 

 

 

  

 

  



 

148 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Rheumatoid arthritis Multiple sclerosis Asthma Osteoarthritis 

  Rep Enh Tx 
Tss 
Flnk 

Tss Rep Enh Tx 
Tss 
Flnk 

Tss Rep Enh Tx 
Tss 
Flnk 

Tss Rep Enh Tx 
Tss 
Flnk 

Tss 

CD4+ T 
cell 

Risk Cis-
CpG (%) 

34.3 36.4 4.0 21.2 4.0 23.3 33.1 15.0 22.6 6.0 31.8 33.1 14.2 17.6 3.4 27.3 26.4 20.1 24.0 1.7 

Non-risk 
cis-CpG 

(%) 
52.5 16.7 11.4 16.0 3.4 52.6 16.7 11.4 16.0 3.4 52.5 16.7 11.4 16.0 3.4 52.5 16.7 11.4 16.0 3.4 

B cell 

Risk Cis-
CpG (%) 24.5 28.6 9.2 33.7 4.1 23.6 32.7 18.2 22.7 2.7 27.6 36.2 21.6 10.6 5.2 32.1 34.8 25.9 4.5 2.7 

Non-risk 
cis-CpG 

(%) 
49.4 24.3 12.8 10.6 3.0 49.4 24.3 12.8 10.6 3.0 49.4 24.3 12.8 10.6 3.0 49.3 24.3 12.8 10.6 3.0 

RA 

*** 

***** 

***** 

* 
***** 

MS 

***** 

***** 

***** 

* 

* *** 

Asthma 

***** ***** 

** ***** 

* 

OA 

***** 

** 

** 

*** 

* 

*** 
* 

* 

n=53,032 
n=99 

n=53,827 
n=98 

n=52,909 
n=133 

n=53,815 
n=110 

n=52,983 
n=148 

n=53,809 
n=116 

n=53,010 
n=121 

n=53,813 

A B 

C D 

n=112 

E 



 

149 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 (previous page): Proportions of risk-associated and non-risk associated cis-CpGs at cell-

specific chromatin states. All cis-CpGs associated with risk loci for (A) rheumatoid arthritis (RA) (B) multiple 

sclerosis (MS) C) asthma, and D) osteoarthritis (OA), as well as those associated with non-risk loci, were mapped 

to cell-specific chromatin state data from the Roadmap Epigenomics project173. Cis-CpGs identified in CD4+ T 

cells were mapped to chromatin states of primary T helper cells in peripheral blood (E043) whereas those 

identified in B cells were mapped to states from primary B cells from peripheral blood (E032). Chromatin states 

were classified as three separate groups: repressed (grey), enhancer (yellow), transcribed (green), flanking a 

transcription start site (Tss Flank; pink), and transcription start site (Tss; red). (E) Percentages of risk-associated 

cis-CpGs and non-risk-associated cis-CpGs mapping to each of the five chromatin states in each cell type. 

Enrichment of risk-associated cis-CpGs relative to those associated with non-risk loci was performed using a 

Fisher’s exact test. *****p < 0.00001; ****p<0.0001; ***p<0.001; **p<0.01; *p<0.05. 

p-value < 
0.05 

-log10 p-value 

Figure 4.18:  Enrichment of risk-associated cis-CpGs at cell specific chromatin states from the 

Roadmap Epigenomics Consortium173. CpGs associated with rheumatoid arthritis (RA), multiple sclerosis 

(MS), asthma, and osteoarthritis (OA) risk loci were overlapped with chromatin state data from primary T 

helper cells from peripheral blood (E043) and primary B cells from peripheral blood (E032). Cell states were 

collapsed into 5 functional groups (see section 2.7.5): Repressed (Rep), Enhancer (Enh), Transcribed (Tx), 

Flanking a transcription start site (Tss_Flnk), and transcription start site (Tss). Enrichment analysis (Fisher’s 

exact test) was performed using non-risk cis-CpGs for each condition as background. Black boxes indicate 

enrichments that were significant at p < 0.05. 
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4.8.2 Transcription factor binding site enrichment 

One mechanism through which DNAm is thought to exert effects on gene expression is through 

altering the binding of transcription factors and chromatin remodelling proteins to their cognate 

motifs (see Chapter 1.6.4). Therefore, following chromatin state mapping, cis-CpGs were 

overlapped with experimentally-determined transcription factor binding sites (TFBSs) from the 

Encyclopedia of DNA Elements (ENCODE) Project Consortium209, 210. Binding site data had 

been generated from ChIP-seq experiments and includes binding data for 161 transcriptional 

regulators. In this analysis, TFBS data across all cell types were used to define binding sites. It 

is possible that by modifying DNAm at CpG sites falling within TFBSs, risk variants may as 

such promote or inhibit transcription of proximal genes. Given that TFs often have well-defined 

roles in cellular responses or functions, identifying enrichments in this way may highlight 

disease-relevant pathways. 

RA risk variants were found to confer altered DNAm at CpGs that were over-represented at 

RELA (p65 subunit of NFκB) binding sites in CD4+ T cells (p = 2.15 x 10-4) and B cells (p = 

1.22 x 10-4) (Figure 4.19 & 4.20). In both cell types, instances of this TFBS occurred ~2.7-fold 

more frequently at risk-associated cis-CpGs relative to those at non-risk loci (16% of RA risk 

cis-CpGs vs. 6% of non-risk cis-CpGs Figure 4.19). Indeed, binding sites of this TF were also 

enriched at cis-CpGs associated with MS loci in CD4+ T cells (2.83-fold enriched, p = 2.05 x 

10-8; Figure 4.19), as was also the case for RUNX3 (2.83-fold enriched, p = 4.10 x 10-5; Figure 

4.19) and BATF (3.5-fold enriched, p = 9.86 x 10-5; Figure 4.19). The functions of nuclear 

factor-κB (NF-κB) in regulating immune responses are manifold, and amongst the well-

characterised pathways in which this this transcription factor orchestrates transcriptional 

programs is downstream of T cell receptor stimulation323. Similarly, RUNX3 has diverse roles 

in coordinating immune responses, including the promoting expression of the type 1 CD4+ T 

helper cell (TH1) cytokine IFN-γ and repression of the type 2 cytokine IL-4324. This TF is an 

important factor in chromatin modelling that occurs as naïve CD8+ T cells develop into 

cytotoxic T lymphocytes following stimulation of the T cell receptor325. Interestingly, 

variability in DNAm at RUNX3 binding sites has been associated with susceptibility to RA in 

a twin study230. 

At MS loci in B cells, cis-CpGs implicated binding sites of TBL1XR1 (p = 5.84 x 10-5), which 

is required for NF-κB activation (also referred to as TBLR1)326, and CCNT2 (p = 1.12 x 10-4), 

encoding the cyclin T2 protein.  
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p-value < 

0.05 

Figure 4.19: Enrichment of risk-associated cis-CpGs at transcription factor binding sites. Cis-meQTL 

associated CpGs (cis-CpGs) in CD4+ T cells and B cells were overlapped with TFBS data based on data from the 

ENCODE project209,210. Enrichment analyses (Fisher’s exact test) were performed to determine whether cis-CpGs 

associated with risk loci for rheumatoid arthritis (RA), multiple sclerosis (MS), asthma, and osteoarthritis (OA) 

were over-represented at binding sites for particular transcription factors. Enrichments are shown for all 

transcription factors for which nominally significant enrichment (p < 0.05) was observed in at least one cell 

type/disease locus. Square boxes surrounding a point indicate that the enrichment was significant following 

Bonferroni correction (adjusted p-value < 0.05).  
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No TFBS enrichments were robust to stringent Bonferroni correction at Asthma loci in either 

cell type. Profiles of TFBSs at OA cis-CpGs were largely distinct from those at RA and MS 

loci, with an over-representation of WRNIP1 in CD4+ T cells (p = 1.47 x 10-4), as well as TCF12 

(1.21 x 10-6) and REST (2.62 x 10-5) in B cells (Figure 4.20). WRNIP1 is the Werner helicase 

interacting protein 1, so named given its interaction with the helicase enzyme which is mutated 

in Werner syndrome – a rare disease characterised by an accelerated ageing process327. This 

factor is integral in processes such as maintaining stable replication forks during DNA synthesis 

and cell cycle checkpoint activation in the presence of DNA damage327. Conversely, a role for 

TCF12 has been described in mediating the development of bone-synthesizing osteoblasts from 

bone marrow-derived stem cells328. The only significant depletion of TFBS amongst cis-CpGs 

was observed for JUND at OA risk loci (9-fold depletion at risk-associated cis-CpGs, p = 1.51 

x 10-4) in CD4+ T cells. The proportion of all risk-associated and non-risk-associated cis-CpGs 

mapping to binding sites of each transcriptional regulator with nominal enrichment/depletion 

(p < 0.05) are given across the four sets of disease loci in Appendix E. 

4.8.3 Gene Ontology Pathway Analysis 

To define pathways that were putatively dysregulated downstream of disease-associated 

DNAm changes, a Gene Ontology (GO) pathway analysis was performed with the gometh 

function in the missMethyl package289, again using non-risk cis-CpGs as the background to test 

for enrichments. This method involves mapping CpGs to genes and then applying a modified 

hypergeometric test, taking into account the number of probes on the MethylationEPIC array 

mapping to each gene (see Chapter 2.6.4 for details). 

Amongst the most significantly enriched processes at RA cis-CpGs in CD4+ T cells were those 

relating to ‘α-linoleic acid metabolic process’ (p = 1.23 x 10-4), ‘regulation of B cell receptor 

RA
non-Risk

RA
Risk

RA
non-Risk

RA
Risk

0.00

0.05

0.10

0.15

0.20

RELA
(NFkB p65)

Pr
op

or
tio

n 
of

 c
is

-C
pG

s
at

 T
FB

S

*** *** CD4+ T cell non-risk cis-CpG (n=53,032)  
CD4+ T cell risk cis-CpG (n=99)  
B cell non-risk cis-CpG (n=53,827)  
B cell risk cis-CpG (n=98)  

Figure 4.20: Relative proportions of RELA binding sites at rheumatoid arthritis cis-CpGs. The 

proportions of cis-CpGs overlapping binding sites of RELA – the p65 subunit of NFκB - at sites associated 

with RA risk loci and non-risk loci in CD4+ T cells and B cells. ***p < 0.001 
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signalling pathway (p = 4.29 x 10-4), and ‘positive regulation of protein serine/threonine 

phosphatase activity’ (p = 0.0014; Figure 4.21A). As regards MS loci, ‘negative regulation of 

calcidiol 1-monooxygenase activity’ (p = 2.34 x 10-5), ‘positive regulation of T cell activation’ 

(5.59 x 10-5), and ‘positive regulation of leukocyte cell-cell adhesion’ (6.62 x 10-5) were 

highlighted as relevant pathways (Figure 4.21B). Cellular metabolic processes were implicated 

at Asthma loci, with ‘negative regulation of nitrogen compound metabolic process’ (p = 6.33 x 

10-7), along with processes relating to T cell development/activation including ‘negative 

regulation of CD4+ αβ T cell differentiation’ (3.63 x 10-6) and ‘negative regulation of CD4+ αβ 

T cell activation’ (p = 1.07 x 10-5; Figure 4.21C). As would be expected, DNAm changes 

associated with genetic risk in OA impact distinct molecular pathways to the immune-mediated 

diseases, with ‘regulation of endopeptidase activity’ (p = 2.61 x 10-6) and ‘activation of 

cysteine-type endopeptidase activity involved in apoptotic process’ (p = 2.91 x 10-6) prominent 

amongst enriched processes (Figure 4.21D). 

 These observations were largely re-capitulated in B cells. For example, analysis of RA-

associated cis-CpGs strongly implicates a range of processes related to lymphocyte-mediated 

immunity, including ‘regulation of B cell receptor signalling pathway’ (p = 4.61 x 10-4), 

‘immune effector process’ (p = 6.73 x 10-4), and ‘double-negative stage 3 (DN3) thymocyte 

differentiation’ (p = 0.0013; Figure 4.22 A). As was the case for CD4+ T cells, MS-associated 

cis-CpGs in B cells suggest a role for metabolic processes, with ‘cellular response to organic 

substance’ (p = 2.58 x 10-5) and ‘regulation of macromolecule metabolic process’ (p = 2.98 x 

10-5) featuring as the most enriched pathways (Figure 4.22B). Findings at asthma loci again 

highlight the pathogenic contribution of adaptive immunity, with enhanced mapping of cis-

CpGs to genes involved in ‘cytokine production’ (p = 6.34 x 10-7) and ‘regulation of type 2 

immune response’ (p = 1.63 x 10-5; Figure 4.22C). Additionally, analysis of OA loci highlights 

distinct aetiological processes, with an absence of immune-related pathways, instead 

implicating ‘positive regulation of apoptotic process’ (p = 1.19 x 10-5), ‘positive regulation of 

programmed cell death’ (p = 1.21 x 10-5), and ‘negative regulation of TGF-β receptor signalling 

pathway’ (p = 1.55 x 10-4; Figure 4.22D). 

These ontology analyses of DNAm modifications associated with GWAS loci illustrate that for 

all IMDs, genetic risk variants are associated with DNAm levels at CpGs which could 

putatively regulate the expression of genes having key roles in immune effector processes. 

Contrastingly, DNAm modifications associated with OA risk loci map to genes that function in 

distinct pathways. The top 50 biological processes found to be enriched (p < 0.01) at GWAS 

risk cis-CpGs in each cell type is presented in the Appendix F. 
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Figure 4.21: Top 10 Enriched ‘Biological Process’ pathways at risk-associated cis-CpGs in CD4+ T cells. Gene ontology biological process pathway analysis was performed 

at cis-CpGs associated with A) Rheumatoid arthritis, B) Multiple sclerosis, C) Asthma, and D) Osteoarthritis risk loci using non-risk cis-CpGs as background. 
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Figure 4.22: Top 10 Enriched ‘Biological Process’ pathways at risk-associated cis-CpGs in B cells. Gene ontology biological process pathway analysis was performed at cis-

CpGs associated with A) Rheumatoid arthritis, B) Multiple sclerosis, C) Asthma, and D) Osteoarthritis risk loci, using non-risk cis-CpGs as background. 
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4.9 Discussion 

This chapter presents a genome-wide meQTL analysis in CD4+ T cells and B cells, the results 

of which are considered in the context of genetic architecture in complex diseases. The results 

described here both highlight genetic risk loci across IMDs at which DNAm is likely to have a 

functional role in conferring pathogenic cellular immune responses, as well as going some way 

to explaining how sequence polymorphisms may underlie disease-associated epigenetic 

signatures.  As such, the data will provide an important resource for the functional interpretation 

of not only genome-wide association studies, but also epigenome-wide association studies. 

4.9.1 Genetic polymorphisms are a source of variation in lymphocyte DNA methylation 

Initial observations were that ~7.5% of CpGs analysed in each cell type were associated with a 

regulatory variant acting in cis. Even accounting for the relatively small sample size used to 

map meQTLs in this analysis, these results reveal that variants in the DNA sequence are a major 

determinant of inter-individual variability in lymphocyte DNAm. Recent studies in whole 

blood, using larger sample sizes, revealed the proportion of CpGs subject to cis-regulation to 

be ~12-18%245, 247. Estimates of DNAm heritability (H2) in CD4+ T cells are approximately 0.13 

(i.e. 13% of the phenotypic variability in DNAm levels is inherited), with 74% of highly 

heritable (H2 > 0.4) CpGs being associated with a SNP in cis250. Collectively, that a considerable 

proportion of CpGs present on the Illumina Methylation BeadChip arrays (both 450K and 

EPIC) are associated with DNA variants in tissues such as whole blood and immune cells 

reinforces the need to consider such effects when assigning mechanisms to disease associated 

DNAm changes (see Chapter 3). 

It was also discovered that 38.5% of all CpGs associated with a cis-meQTL across this analysis, 

and over half of those identified in each separate cell type, were common to both lymphocyte 

subsets. Given the differing number of CD4+ T- and B cell samples available, as well as using 

differing lists of input SNPs for QTL mapping, this number likely represents an underestimate. 

Cross-tissue quantification of meQTL effects in three cell types (primary T cells, primary 

fibroblasts, and lymphoblastoid cell lines (LCLs)) from the same individuals has revealed that 

46-80% were shared between at least two of these cell types126. The extent of shared effects 

between any two cells seems to reflect their developmental proximity, with highest degree of 

sharing (80%) found between T cells and LCLs, both of which develop through a lymphocyte 

lineage126. In agreement with this, the BLUEPRINT epigenome project assessed cell-type 

specificity of meQTLs in CD4+ T cells, monocytes, and neutrophils, and found sharing between 

the latter two cells (both myeloid lineage) was greater than of either with T cells (lymphocyte 
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lineage)127. Whilst paired (same patient) cell type-specific data were available for the majority 

of samples in the present analysis (78.6 % of CD4+ T cell samples, 68.1% for B cells), no direct 

comparison is made between cells of the same individuals, meaning that accurate estimates of 

cross-tissue effects were not established. Nonetheless, the data reveal that a considerable degree 

of shared genetic effects on CpG methylation exist between CD4+ T cells and B cells.  Despite 

the extent of shared effects, these results also confirm the critical need for any meQTLs 

identified in complex tissues to be validated in more uniform populations of cells. It is likely 

that in studies of whole blood, as has been common for EWASs and meQTL mapping, some 

cell type-specific effects are obscured by the cell type heterogeneity of this tissue.  

As well as QTLs that function in one cell type but not the other, there are those that function in 

both but exhibit opposing allelic effects. Amongst the small number identified in the current 

study were those mapping to the CRACR2A promoter. CRACR2A encodes Calcium Release 

Activated Channel Regulator 2A, a Rab guanosine triphosphatase (Rab GTPase) expressed in 

lymphocytes, predominantly CD4+ T cells of the Th1 and Th17 subtypes329. The CRACR2A 

protein is important in intracellular signaling downstream of the T cell receptor, including 

calcium signaling and activation of the Mitogen-Activated Protein Kinase (MAP kinase) 

pathway during T cell-mediated immune responses329. Whether or not these differing allelic 

effects between CD4+ T cells and B cells represent functional regulatory differences at this 

locus will be an interesting question. Such opposing allelic effects have been described at the 

level of gene expression, with indications that epigenetic mechanisms could be responsible for 

differing directionality seen between tissues136, 330.  

The finding that cis-CpGs in both cell types were enriched in intergenic regions and depleted 

in CGIs replicates observations in whole blood245. CGIs that occur at many mammalian gene 

promoters are most often de-methylated in a state associated with active transcription331. That 

promoter-associated CGIs occur at housekeeping genes, and those with important functions in 

development, likely explains why DNAm patterns are more conserved at these features331. As 

such, cis-meQTL effects on CpGs outside of CGIs, many of which occur in enhancer elements 

and have a more intermediate level of DNAm across cells, could indicate a role in fine-tuning 

transcriptional regulation, as opposed to more binary on/off patterns. 

4.9.2 Integration of cell-specific meQTL profiles with data from genome-wide association 
studies can help assign function to non-coding risk variants 

The rationale behind assessing co-localisation of cis-meQTL variants with RA GWAS risk loci 

is that robust disease-associated DNAm changes downstream of known genetic susceptibility 

can facilitate the identification of regulatory mechanisms at these non-coding variants. Here, 
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intersecting the cis-regulatory landscape in early arthritis lymphocytes with known genetic risk 

variants from published GWASs revealed the capacity of many such loci to modulate DNAm 

at neighbouring cis-CpGs. Such an approach has also proved effective in similar studies of 

relevant tissues for diseases with complex genetic aetiologies. For example, analysis of cartilage 

samples has revealed cis-meQTLs at 4/16 OA risk loci332.  

An alternative, albeit related approach, is to first identify DMPs/DMRs, and subsequently map 

these to genetic effects. Though this was not applicable in the case of this project, given the 

lack of significant differential methylation, it has proved successful in previous studies to define 

loci at which epigenetic mechanisms interact with genetic risk factors. The first study to directly 

investigate the potential role of DNAm as a mediator of genetic risk in RA initially performed 

an EWAS in whole blood to identify DMPs218. Subsequently, incorporating case/control 

genotypes revealed a number of positions, predominantly at the MHC locus, for which DNAm 

represented a regulatory intermediate of genetic risk in RA218. Likewise, of the 10 validated RA 

B cell differentially-methylated CpGs identified by Julia et al., three were associated with cis-

meQTLs at RA risk loci222. In a similar study of lymphocytes in primary SS, differentially 

methylated positions between patients and controls overlapped five GWAS risk loci (though no 

formal association was tested)333. These findings, together with those reported in this chapter, 

clearly illustrate that identification of meQTLs at a cellular level is necessary for disentangling 

genetic and epigenetic risk factors, as well as for the functional annotation of non-coding 

GWAS variants. 

A number of the cis-CpGs identified at RA risk loci mapped to genes that we had previously 

identified as cis-eQTLs in a cohort comprising many of the same patients139. These genes 

included, amongst others, FCRL3, JAZF1, FADS2, and ORMDL3, BLK, and SYNGR1. This 

highlights a potentially common underlying regulatory mechanism for both molecular traits at 

these loci. The cis-meQTL mapping to the FADS2 locus was notable for the large number of 

associated cis-CpGs, the majority of which exhibit strong allelic effects. MeQTLs at this locus 

have been reported previously, with DNAm at five CpG sites in the FADS2 promoter 

downstream of the risk variant (rs968567) influencing co-expression of both FADS1 and 

FADS2334. The authors propose that altered DNAm at these CpG sites disrupts binding of the 

SREBF2 transcription factor and inhibits expression of the two genes334. MeQTL and eQTL 

mapping thus represent complementary approaches, and highlighting loci that function to 

modulate both DNAm and gene expression enables regulatory mechanisms to be inferred, as 

will be discussed in Chapter 5. 



 

159 
 

4.9.3 Functional enrichment of disease-associated cis-meQTLs suggests a role in 
transcriptional regulation 

The disproportionate occurrence, particularly in CD4+ T cells, of disease associated DNAm 

modifications at enhancer elements suggests that they may impact gene expression. Indeed, 

CpGs that influence expression of genes in cis have previously been shown to be enriched 

within enhancers, as well as CGI shores and gene bodies126. Consistent with this, cis-CpGs that 

are associated with GWAS loci for all diseases (RA, MS, Asthma, OA) were reduced in regions 

of the genome representing repressed chromatin. CD4+ T cell enhancer enrichment of cis-CpGs 

was particularly marked at the three IMD loci as compared with OA loci, potentially reflecting 

the greater contribution of this cell type to pathogenesis of these conditions. 

Further evidence for these risk meQTLs disrupting functional DNA elements was the 

observation that many of the cis-CpGs map to the binding sites of transcriptional regulators. 

Most notably, at RA loci in both cell types and MS loci in B cells, cis-CpGs were strongly 

enriched at binding sites of the NFκB p65 subunit (RELA). NFκB activation can be triggered 

downstream of cytokine signalling, with this transcription factor having key functions in the 

development and function of immune cells, and is a mediator of multiple RA processes from 

osteoclast development to autoantibody production335.  

In addition, pathway analyses highlighted genes functioning in intuitive biological processes to 

be overrepresented amongst those mapping to risk-associated cis-CpGs for each disease. For 

example, CpGs associated with risk loci for RA, MS, and Asthma were notable in that they 

were enriched amongst immune-related pathways. These findings are perhaps not surprising, 

given that GWAS loci for IMDs such as RA themselves map to many genes with crucial roles 

in T cell and immune function (CD28, CTLA4, IL2RA)97, and are enriched in T cell specific 

active regulatory regions45. 

In contrast, those at OA loci instead implicated pathways relating to programmed cell death and 

TGF-β signalling. This would further suggest that DNAm modifications downstream of risk 

variants perturb pathways that directly contribute to cell-mediated pathogenesis. In IMDs this 

involves dysregulation of immune responses, such as the activation of lymphocytes and 

cytokine production. That lymphocyte cis-meQTLs were, however, prominent at OA risk loci 

despite these cells having a less pronounced pathophysiological function may reflect that 

genetic effects on DNAm exhibit less cell type specificity than do effects on transcription127. 

The enrichment of RA- and other IMD-associated cis-CpGs at functional regulatory elements 

suggests that modified DNAm at these positions may confer upregulation or downregulation of 
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genes responsible for the genetic disease association. Given that additional regulatory 

mechanisms exist to control cell-specific transcriptional programs, DNAm alterations should 

be considered in the context of gene expression changes (see Chapter 5). 

 4.9.4 Scarcity of disease-specific meQTLs 

Though meQTL mapping was performed across all patients to increase the power to detect 

associations, an interaction analysis was also performed to identify putative RA-specific 

meQTL effects. The rationale behind this study design was to identify context-specific 

meQTLs, the activity of which is potentially responsive to RA-specific factors during early 

disease. DNAm can be altered in response to external cellular stimuli as has been shown in a 

range of experimental models. For example, in vitro monocyte stimulation with cytokines that 

are typically elevated in the circulation of individuals with RA (TNF-α, IFN-α, IFN-γ) can 

induce TF-dependent hyper- and hypo-methylation at hundreds of CpGs, partially 

recapitulating patterns seen in patient cells336. It is therefore possible that environmentally 

responsive TFs, displaying preferential binding to specific alleles, may mediate context-

dependent meQTLs. 

As was suggested for the lack of differential methylation in Chapter 3, it is possible the small 

number of disease-specific meQTLs revealed in the interaction analysis result from the 

comparison of RA patients to a disease cohort matched for systemic inflammatory markers. In 

this scenario it is conceivable that circulating factors such as cytokines, to which the cell may 

be exposed, are elevated in the control group, such as would be the case in patients diagnosed 

with psoriatic arthritis for example263. Additionally, meQTL associations may be modified by 

factors that are elevated during systemic inflammatory responses213. Though differences in CRP 

levels between comparator groups had been controlled for in this study, a previous EWAS in 

IBD found the top differentially methylated position, mapping to the RPS6KA2 gene, exhibited 

a strong association with CRP levels214 

At the level of gene expression, context-dependent eQTLs have been described that are active 

following stimulation of cells, either by direct stimulation in vitro or using proxy measures133, 

337. For example, for the FADS2 locus described earlier (rs968567), levels of the SREBF2 

transcription factor that promotes expression of this gene exhibit negative associations with 

high density lipoprotein cholesterol133. This represents an example of an eQTL effect at a RA 

risk locus that could be modified by an environmental factor. In addition, QTLs may be 

uniquely active in patients with active disease. One such example is the CD4+ T cell cis-eQTL 

regulating expression of CD5 and CD6 that is specific to patients with inflammatory bowel 
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disease, with the association absent in healthy controls132. Cis-eQTLs that respond to CD4+ T 

cell receptor activation in vitro have been suggested to drive inter-individual variability in 

immune responses338. It appears that many eQTLs that become active upon immune stimulation 

occur at enhancers that are ‘primed’, whereby the regulatory variant modifies chromatin 

accessibility and as such facilitates binding of transcription factors upon stimulation339. 

Chromatin accessibility in immune cells is drastically modified upon stimulation, with this 

effect most marked in T cells and B cells340. Interestingly, SNPs conferring RA heritability were 

most strongly enriched at chromatin regions that were only accessible upon stimulation of T 

cells with less pronounced, albeit significant, enrichment at accessible regions specific to 

stimulated B cells340. 

Despite these limited observations in patients, context-specific QTLs described to date have 

largely been identified in isolated cells using controlled in vitro immune stimulation337. 

Identifying disease-specific effects in human cohorts will represent much more of a challenge. 

A recent study identified cis-meQTLs specific to patients with SLE but not healthy controls, 

albeit using a less robust approach to the interaction analysis described in this chapter248. An 

analysis of regions of the genome displaying variable DNAm in cord blood from new-borns 

found those exhibiting genetic (cis) × environmental factor interactions to be enriched at GWAS 

loci for complex traits (though immune-mediated diseases were not the focus of this 

analysis)341.Ultimately, the relative contributions of genetic variation and environmental 

exposures to DNAm levels in pathogenic cell types will require careful study designs and a 

combination of in vitro and in vivo studies (see Chapter 6).  

4.9.5 Limitations 

One major consideration when interpreting the results presented in this chapter is the size of 

sample cohorts used for mapping meQTLs, which limits the power to detect such associations. 

This may in part account for the difference in observed numbers of cis-CpGs and those reported 

in previous studies of whole blood245, 247, despite the present study having the advantage of 

analysing isolated cell types as opposed to homogenous tissues. One other analysis parameter 

that frequently differs between analyses is the cis-distance defined for mapping cis-meQTLs. 

In the analysis described in this chapter, a window size of 1Mb either side of a SNP was used 

to test for associations. However, given that 78% and 76% of cis-associations occurred over a 

SNP-CpG distance of ≤ 100Kb in CD4+ T cells and B cells respectively, decreasing this window 

size may increase power to detect associations with smaller effect sizes, at the expense of 

missing long-distance effects. 
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As meQTL mapping nominates a number of candidate causal SNPs for a given association, the 

SNP clumping method was used here to remove tagging SNPs and select the top hit to take 

forward for downstream analyses. However, this approach selects the top SNP based solely on 

the p-value association, which may not necessarily represent the causal variant. If the true causal 

SNP is removed at this stage, this could potentially reduce the number of disease co-localised 

effects. On the other hand, because GWAS risk loci were taken from multiple studies for each 

trait, the method of using LD blocks to define risk loci does have scope to introduce false 

positive risk meQTLs. This is because, if the two studies report distinct lead SNPs for the same 

locus, defining LD blocks (r2 ≥ 0.8) based on these variants will return different regions for 

each locus, with a small chance that the same meQTL co-localisation may be reported twice. 

Despite the interesting findings at a number of risk loci, cis-meQTL effects were only identified 

at ~30% of RA risk loci, with strong statistical evidence of shared effects at ~25%. These 

findings would, however, be fairly consistent with a study in CD4+ T cells, monocytes, and 

LCLs, which found that evidence for shared effects between GWAS variants and cis-eQTLs 

was somewhat limited342. It may be that such effects are not picked up because of the limited 

sample size mentioned above, or because of low minor allele frequencies (the SNP inclusion 

criteria required ≥ 3 samples per genotype). Indeed, with regard to the latter, regions at which 

multiple low frequency variants potentially function to modify DNAm levels in cis have been 

described343. As a result, whilst robust associations at a number of loci have been illustrated in 

this chapter, it cannot be claimed that these results represent a complete map of cis-regulatory 

DNAm landscape in these cells given the limitations. 

Another potential reason for missed effects could be the drawback arising from the 

MethylationEPIC BeadChip to interrogate DNAm, with identification of meQTL effects 

limited to ~850,000 pre-defined CpGs. To detect additional regulatory effects would require 

whole-genome bisulphite sequencing to be performed on samples. Whilst the associated 

expenses render this method prohibitive for isolated studies across large sample cohorts, 

coordinated multi-centre efforts will facilitate such approaches moving forward. Ultimately, 

analyses need to be extended to many cell types, as variants may function as QTLs in cells 

which are not considered here (e.g. fibroblasts), and may contribute to the pathogenic phenotype 

of these cells in RA. More comprehensive databases of molecular QTLs from diverse tissues 

and cell types will assist in unravelling the regulatory potential of GWAS hits. The Genotype-

Tissue Expression (GTEX) project is one such example that provides an accessible resource for 

eQTL data, reporting associations across 42 tissues344. 
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Due to the size of each cohort, the experimental design was largely powered to detect 

associations in cis, given the reduced burden of multiple testing correction involved in these 

analyses. However, a number of trans-meQTL effects were identified, some with relatively 

large effect sizes that occurred in both cell types. The necessity for large sample sizes to 

extensively map trans-meQTLs has hindered these analyses in most studies to date. However, 

a mechanism has been described whereby disease-associated variants influence DNAm in trans 

by altering the expression of transcription factors in cis194. These transcription factors then act 

in trans and, upon binding to their cognate sites throughout the genome, putatively modify local 

patterns of DNAm at these sites194. This hypothesis is supported by more recent findings that 

28% of trans-meQTL ‘hotspots’ (i.e. those that are associated with many CpGs in trans) in 

whole blood are also cis-eQTLs, a large proportion of which regulate the expression of 

transcription factors345. That such trans-meQTLs are enriched at GWAS loci makes the 

identification of these effects an enticing approach for deciphering additional mechanisms and 

pathways downstream of genetic risk factors194. Nonetheless, the trans-meQTLs described in 

this chapter likely only represent a fraction of the total effects in these lymphocyte subsets, and 

moving forward greater sample sizes will be required to comprehensively map these 

associations. 

Despite the limitations described in this section, the DNAm cis-regulatory landscape of two cell 

types that are central in the development of RA, as well as other autoimmune diseases, is 

described here for the first time in the context of early arthritis. Though a number of studies 

have identified disease-associated DNAm changes, some of these can be attributed in part to 

cis-meQTL regulatory variants. However, whilst DNAm is an important regulatory feature that 

has emerging roles in complex disease, impacts on cellular phenotype ultimately occur at the 

level of the transcriptome. For this reason, it is most useful to consider disease-associated 

DNAm changes in the context of transcriptional regulation, and this will be the focus of the 

following chapter. 
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Chapter 5: DNA methylation as a mediator of transcriptional regulation 

5.1 Introduction 

In the previous chapter, an extensive analysis of genetic effects on DNA methylation (DNAm), 

termed methylation quantitative trait loci (meQTLs), was described. Inferences regarding the 

regulatory potential of meQTLs at risk loci were made based on the mapping of such DNA 

methylation sites to regions harbouring active chromatin marks and transcription factor binding 

sites. In addition, given that associations had previously been identified between many of these 

loci and expression levels of candidate genes, a role for DNAm in mediating genetic effects on 

transcription was postulated. In the current chapter, matched cell-specific transcriptomic data 

from the same patients was integrated to examine how DNAm impacts the transcription of 

genes that might contribute to lymphocyte-mediated pathology. In the first instance, 

associations between cis-CpGs at risk loci and transcript levels of proximal genes, or cis-

expression quantitative trait methylations (cis-eQTMs), were sought. Subsequently, a statistical 

approach was applied to infer mediation between these molecular traits, with the aim of 

revealing loci at which transcriptomic regulation occurs via a methylation intermediary. After 

identifying such DNAm-mediated effects at RA risk loci, as well as those of complex disease 

loci more generally, in vitro assays were leveraged to confirm observations at loci of interest in 

cross-sectional human data, and to attempt validation of regulatory mechanisms. 

5.2 Expression Quantitative Trait Methylation Mapping 

To identify genes for which transcription is potentially regulated downstream of risk-associated 

cis-meQTLs, associations between DNAm levels at cis-CpGs and transcripts within a 500Kb 

window up-/down-stream were identified. Expression data were available for 97.1% (100/103) 

of CD4+ T cell samples and 91.6% (109/119) of B cell samples. Such associations, referred to 

as cis-eQTMs, were mapped in both cell types at all CpGs associated with risk loci (RA, MS, 

Asthma, and OA). 

5.2.1 Expression Quantitative Trait Methylations at RA risk loci 

In CD4+ T cells, 29 CpG-Gene cis-eQTMs were identified (FDR < 0.01; Benjamini-Hochberg 

method) at RA risk loci, encompassing 20 CpGs and eight unique genes (Table 5.1). Amongst 

the genes implicated in this analysis were ANKRD55/IL6ST at chromosome 5q11.2, JAZF1 at 

7p15.1, and FCRL3 at 1q23.1. Associations between cis-CpGs (cg10909506 & cg11187739) 

and ORMDL3/GSDMB occurred at the risk locus mapping to 17q12 (Figure 5.1). In 79.3% of 

cases (23/29) a negative association was observed between DNAm levels at the RA cis-CpG 

and transcript levels of the gene, indicative of a repressive function of DNAm. 
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CpG CpG Coord. Illumina ID Gene Symbol P-value Adjusted p-
value Rho 

cg21124310 chr5:55,444,106 ILMN_1798947 ANKRD55 4.26 x 10-12 2.13 x 10-11 -0.623 
cg23343972 chr5:55,391,305 ILMN_1798947 ANKRD55 7.54 x 10-11 1.88 x 10-10 -0.594 
cg10404427 chr5:55,443,844 ILMN_1798947 ANKRD55 1.16 x 10-10 5.81 x 10-10 -0.589 
cg15667493 chr5:55,404,179 ILMN_1798947 ANKRD55 5.90 x 10-10 1.47 x 10-9 -0.570 
cg15431103 chr5:55,457,410 ILMN_1798947 ANKRD55 6.23 x 10-8 3.12 x 10-7 -0.509 
cg07522171 chr7:28,218,686 ILMN_1682727 JAZF1 4.47 x 10-9 1.79 x 10-8 -0.545 
cg11187739 chr7:28,159,128 ILMN_1682727 JAZF1 4.96 x 10-8 2.48 x 10-7 -0.513 
cg00184826 chr7:28,312,246 ILMN_1682727 JAZF1 5.82 x 10-5 1.16 x 10-4 0.391 
cg16130019 chr7:28,060,181 ILMN_1682727 JAZF1 1.48 x 10-4 7.39 x 10-4 0.371 
cg08519779 chr7:28,279,693 ILMN_1682727 JAZF1 9.94 x 10-4 0.0040 0.324 
cg01045635 chr1:157,670,481 ILMN_1691693 FCRL3 1.91 x 10-8 3.82 x 10-8 -0.526 
cg17134153 chr1:157,670,328 ILMN_1691693 FCRL3 1.98 x 10-8 3.95 x 10-8 -0.526 
cg21721331 chr1:157,670,877 ILMN_1691693 FCRL3 5.60 x 10-7 1.12 x 10-6 -0.476 
cg19602479 chr1:157,670,869 ILMN_1691693 FCRL3 4.95 x 10-6 9.89 x 10-6 -0.439 
cg08786003 chr1:157,670,710 ILMN_1691693 FCRL3 8.88 x 10-6 1.78 x 10-5 -0.428 
cg25259754 chr1:157,670,220 ILMN_1691693 FCRL3 3.53 x 10-4 7.06 x 10-4 -0.350 
cg18707136 chr1:157,790,767 ILMN_1797428 FCRL3 7.57 x 10-4 0.0015 0.331 
cg10909506 chr17:38,081,995 ILMN_1662174 ORMDL3 6.69 x 10-7 1.07 x 10-5 -0.473 
cg18711369 chr17:38,081,186 ILMN_1662174 ORMDL3 3.16 x 10-6 5.06 x 10-5 -0.447 
cg23343972 chr5:55,391,305 ILMN_1849013 IL6ST 3.48 x 10-5 5.80 x 10-5 -0.401 
cg21124310 chr5:55,444,106 ILMN_1849013 IL6ST 3.60 x 10-5 6.01 x 10-5 -0.401 
cg10404427 chr5:55,443,844 ILMN_1849013 IL6ST 6.25 x 10-5 1.04 x 10-4 -0.389 
cg15667493 chr5:55,404,179 ILMN_1849013 IL6ST 3.39 x 10-4 5.64 x 10-4 -0.351 
cg15431103 chr5:55,457,410 ILMN_1849013 IL6ST 3.53 x 10-4 5.88 x 10-4 -0.350 
cg18711369 chr17:38,081,186 ILMN_1666206 GSDMB 2.94 x 10-5 2.35 x 10-4 -0.405 
cg10909506 chr17:38,081,995 ILMN_1666206 GSDMB 1.02 x 10-4 8.16 x 10-4 -0.379 
cg16213375 chr11:61,584,727 ILMN_1786759 C11orf10 1.39 x 10-4 1.39 x 10-4 -0.372 
cg11187739 chr7:28,159,128 ILMN_2374770 TAX1BP1 6.14 x 10-4 0.0015 0.337 
cg07522171 chr7:28,218,686 ILMN_2374770 TAX1BP1 0.0044 0.0087 0.283 

Table 5.1: CD4+ T cell cis-eQTM associations between CpGs associated with RA risk loci and genes ±500Kb. 

CpG-transcript association p-values were generated by Spearman’s rank correlation, with adjustment for the total 

number of transcripts tested (i.e. number of probes within ±500Kb) for each CpG, using the Benjamini Hochberg 

method. Associations with an adjusted p-value < 0.01 were considered significant. ‘Rho’ depicts the Spearman’s 

rho strength of association between DNAm and transcript levels, with negative values (< 0) representing a decrease 

in transcript levels associated with increased DNAm. Where cis-eQTMs were identified multiple probes mapping 

to the same gene, the probe exhibiting the strongest association with DNAm levels is reported here. CpG Coord = 

Genomic coordinated of CpG sites identified as cis-eQTMs; IlluminaID = unique Illumina identified for the 

transcript probe on the Illumina HumanHT-12 v4 array. 
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FDR = 4.12 x 10-6 

β = 0.632 FDR = 1.07 x 10-5 

Rho = -0.473 

FDR = 8.16 x 10-4 

Rho = -0.379 
FDR = 5.06 x 10-5 

Rho = -0.447 

FDR = 1.36 x 10-7 

β = 0.539 

FDR = 2.35 x 10-4 

Rho = -0.405 

Figure 5.1: Associations between genotype, DNA methylation, and gene expression in CD4+ T cells at the 

chromosome 17q12 locus.  (A) This locus represents a risk factor in rheumatoid arthritis, multiple sclerosis, and 

asthma. A cis-meQTL was identified with the lead variant, rs12946510, associated with DNA methylation at two 

CpGs mapping to the ORMDL3 gene. The risk allele conferred increased methylation at both B) cg10909506 and 

C) cg18711369. Accordingly, DNAm levels at these CpGs were negatively associated with transcript levels of 

ORMDL3 (D-E) and GSDMB (F-G). Cis-meQTL p-values were generated by fitting additive linear models in the 

MatrixEQTL R package with false discovery rate (FDR) controlled using the Benjamini-Hochberg (BH) method. 

Cis-eQTM p-values were calculated by Spearman’s rho correlation, again using the BH method to control FDR. 

Cis-meQTL boxplots in panels B-C display the median values with the inter-quartile range (IQR). The whiskers 

extent to maximum and minimum values no greater than 1.5x the upper and lower quantile respectively. Lines in 

D-G display the linear regression line with confidence intervals for each genotype subset, with the black dotted 

line representing the linear regression across all samples. Chromatin state data were obtained from the Roadmap 

Epigenomics Consortium173. TssA = active transcription start site (TSS), TssAFlnk = flanking active TSS, Enh = 

enhancer, EnhG = genic enhancer, TxFlnk = flanking transcription (5’/3’). Tx = strong transcription, TxWk = 

weak transcription, ZNF/Rpts = ZNF genes and repeats, Quies = quiescent/low. 
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In B cells, cis-eQTM analysis at RA cis-CpGs revealed 44 such associations mapping to 28 

CpGs and eight unique genes (Table 5.2). Amongst these were cis-eQTMs at FCRL3, 

ORMDL3, and GSDMB that were also identified in CD4+ T cells. Often, the CpG exhibiting 

the strongest association with transcript levels differed between the two cell types. One such 

example was the FCRL3 locus at chromosome 1q23.1, at which the cg01045635 and 

cg17134153 exhibited the strongest correlation with FCRL3 transcript levels in CD4+ T cells, 

whereas in B cells this was most pronounced at cg21721331 and cg19602479 (Figure 5.2). This 

highlights a potential role for the RA risk variant in mediating expression of FCRL3 in both cell 

types through its effects on DNAm at the gene promoter. These cis-CpGs (7 in CD4+ T cells, 6 

in B cells) mapped to a transcription start site (TSS) flanking region in B cells based on 

chromatin state information from the Roadmap Epigenomics Consortium (Primary B cells from 

peripheral blood, cell ID E032; Figure 5.2 A)173.  

Conversely, the entire FCRL3-spanning region was annotated as quiescent in primary T helper 

cells (Primary T helper cells from peripheral blood, cell ID E043; chromatin state data not 

shown). However, the same region overlaps a TSS and enhancer in primary regulatory T cells 

from peripheral blood (Treg, cell ID E044; Figure 5.2A), indicating that the observed effect 

may be restricted to this subset of CD4+ T cells. Though meQTLs and eQTMs at the FCRL3 

promoter were active in both CD4+ T cells and B cells at cg01045635 (Figure 5.2 B-C), 

cg17134153 (Figure 5.2 D-E), cg19602479 (Figure 5.2 F-G), and cg21721331 (Figure 5.2 H-

I), DNAm levels at all CpGs were higher in the former cell type (Figure 5.2 B, D, F, H), which 

coincided with lower overall expression of FCRL3 in this population relative to B cells (Figure 

5.2 C, E, G, I). 

Genes subject to cis-eQTM regulation exclusively in B cells in this analysis included BLK, 

CCR6, FAM167A, IKZF3 and IRF5 (Table 5.2). At RA-associated cis-eQTMs in B cells, 65.9% 

represented negative associations between DNAm and transcript levels, largely reflecting what 

was observed in CD4+ T cells. At some genes, there were instances of both positive and negative 

putative regulatory effects conferred by cis-CpGs. One such example was at FAM167A on 

chromosome 8 in B cells. At this locus, DNAm at nine cis-CpGs was associated with expression 

of this gene, six of these displaying a positive correlation with transcript levels and three a 

negative correlation (Table 5.2). 
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CpG CpG Coord. Illumina ID Gene Symbol P-value Adjusted p-
value Rho 

cg16429190 chr8:11,340,719 ILMN_1687213 FAM167A 2.92 x 10-14 2.92 x 10-13 0.647 
cg09528494 chr8:11,338,675 ILMN_3248511 FAM167A 3.93 x 10-10 2.46 x 10-9 0.555 
cg01383082 chr8:11,323,474 ILMN_3248511 FAM167A 2.61 x 10-10 2.61 x 10-9 -0.559 
cg21497594 chr8:11,366,745 ILMN_1687213 FAM167A 5.57 x 10-10 4.27 x 10-9 0.551 
cg04986849 chr8:11,350,092 ILMN_3248511 FAM167A 7.81 x 10-8 7.81 x 10-7 0.487 
cg11944933 chr8:11,320,112 ILMN_1687213 FAM167A 1.59 x 10-6 1.01 x 10-5 -0.441 
cg23507676 chr8:11,395,642 ILMN_3248511 FAM167A 9.65 x 10-6 4.40 x 10-5 0.410 
cg01527115 chr8:11,272,374 ILMN_1687213 FAM167A 5.45 x 10-6 5.21 x 10-5 -0.420 
cg03002059 chr8:11,402,647 ILMN_1687213 FAM167A 1.01 x 10-4 6.97 x 10-4 0.364 
cg12749226 chr17:38,077,703 ILMN_1662174 ORMDL3 8.88 x 10-12 1.60 x 10-10 -0.595 
cg13200575 chr17:38,096,571 ILMN_1662174 ORMDL3 6.22 x 10-6 1.12 x 10-4 -0.418 
cg18691862 chr17:38,096,648 ILMN_1662174 ORMDL3 8.07 x 10-6 1.45 x 10-4 -0.413 
cg14348996 chr17:38,070,021 ILMN_1662174 ORMDL3 9.07 x 10-6 1.54 x 10-4 0.411 
cg18711369 chr17:38,081,186 ILMN_1662174 ORMDL3 2.33 x 10-4 0.0035 -0.346 
cg21721331 chr1:157,670,877 ILMN_1691693 FCRL3 2.91 x 10-11 1.75 x 10-10 -0.583 
cg19602479 chr1:157,670,869 ILMN_1691693 FCRL3 3.89 x 10-11 2.33 x 10-10 -0.580 
cg01045635 chr1:157,670,481 ILMN_1699599 FCRL3 1.73 x 10-10 1.04 x 10-9 -0.564 
cg15602298 chr1:157,670,825 ILMN_1797428 FCRL3 1.70 x 108 1.02 x 10-7 -0.508 
cg25259754 chr1:157,670,220 ILMN_1691693 FCRL3 2.00 x 10-5 1.20 x 10-4 -0.396 
cg17134153 chr1:157,670,328 ILMN_1797428 FCRL3 4.32 x 10-5 2.59 x 10-4 -0.381 
cg16429190 chr8:11,340,719 ILMN_1668277 BLK 4.44 x 10-8 1.48 x 10-7 -0.495 
cg01383082 chr8:11,323,474 ILMN_1668277 BLK 5.37 x 10-6 1.79 x 10-5 0.420 
cg21497594 chr8:11,366,745 ILMN_1668277 BLK 8.38 x 10-5 2.51 x 10-4 -0.368 
cg09528494 chr8:11,338,675 ILMN_1668277 BLK 1.49 x 10-4 4.97 x 10-4 -0.355 
cg23507676 chr8:11,395,642 ILMN_1668277 BLK 1.71 x 10-4 5.14 x 10-4 -0.352 
cg04986849 chr8:11,350,092 ILMN_1668277 BLK 2.14 x 10-4 7.14 x 10-4 -0.347 
cg01527115 chr8:11,272,374 ILMN_1668277 BLK 6.27 x 10-4 0.0021 0.322 
cg15222091 chr6:167,536,069 ILMN_1690907 CCR6 8.58 x 10-6 2.57 x 10-5 -0.412 
cg16523158 chr6:167,535,171 ILMN_1690907 CCR6 1.04 x 10-5 3.13 x 10-5 -0.408 
cg19954286 chr6:167,536,056 ILMN_1690907 CCR6 4.42 x 10-5 1.33 x 10-4 -0.381 
cg05094429 chr6:167,536,184 ILMN_1690907 CCR6 9.52 x 10-5 2.86 x 10-4 -0.365 
cg21794222 chr6:167,536,063 ILMN_1690907 CCR6 4.67 x 10-4 0.0014 -0.330 
cg14348996 chr17:38,070,021 ILMN_1666206 GSDMB 6.67 x 10-5 5.67 x 10-4 0.372 
cg12655416 chr17:38,077,870 ILMN_1666206 GSDMB 1.82 x 10-4 0.0033 -0.351 
cg18711369 chr17:38,081,186 ILMN_1666206 GSDMB 3.88 x 10-4 0.0035 -0.334 
cg00288844 chr16:11,835,360 ILMN_1771862 TXNDC11 6.84 x 10-5 8.20 x 10-4 -0.372 
cg12816198 chr7:128,577,593 ILMN_1670576 IRF5 1.81 x 10-4 0.0016 -0.351 
cg21497594 chr8:11,366,745 ILMN_1715680 NEIL2 8.75 x 10-4 0.0020 0.314 
cg09528494 chr8:11,338,675 ILMN_1724762 XKR6 0.0014 0.0035 -0.302 
cg21473142 chr3:27,762,095 ILMN_2200917 SLC4A7 0.0020 0.0039 0.293 
cg14348996 chr17:38,070,021 ILMN_3245973 MSL1 7.83 x 10-4 0.0044 0.317 
cg18691862 chr17:38,096,648 ILMN_2300695 IKZF3 9.64 x 10-4 0.0087 0.312 
cg18691862 chr17:38,096,648 ILMN_1707448 CDK12 0.0015 0.0090 0.301 

       

Table 5.2: B cell cis-eQTM associations between CpGs associated with RA risk loci and genes ±500Kb. 

CpG-transcript association p-values were generated by Spearman’s rank correlation, with adjustment for the 

total number of transcripts tested (i.e. number of probes within ±500Kb) for each CpG, using the Benjamini 

Hochberg method. Associations with an adjusted p-value < 0.01 were considered significant. ‘Rho’ depicts 

the Spearman’s rho strength of association between DNAm and transcript levels, with negative values (< 0) 

representing a decrease in transcript levels associated with increased DNAm. Where cis-eQTMs were 

identified multiple probes mapping to the same gene, the probe exhibiting the strongest association with 

DNAm levels is reported here. CpG Coord = Genomic coordinated of CpG sites identified as cis-eQTMs; 

IlluminaID = unique Illumina identified for the transcript probe on the Illumina HumanHT-12 v4 array. 
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5.2.2 Expression quantitative trait methylations at additional complex disease risk loci. 

To extend the meQTL analysis, associations were also mapped at cis-CpGs associated with 

multiple sclerosis (MS), asthma, and osteoarthritis (OA) risk loci in CD4+ T cells. At MS loci, 

39 unique CpG-Gene eQTMs were identified (29 CpGs, 16 genes), whilst at asthma loci 27 

such associations were discovered (23 CpGs, 11 genes). Of note, a number of eQTMs were 

implicated in all three immune-mediated diseases, including those acting on ORMDL3/GSDMB 

(cg10909506, cg18711369; Figure 5.1) and JAZF1 (cg07522171, cg11187739, cg00184826, 

cg16130019, cg08519779). Additional genes highlighted in these analyses were 

ANKRD55/IL6ST (also implicated in RA), CDK2AP1, FAM164A, and RSG14 at MS loci, as 

well as CD247, IL18R1, and RERE at asthma loci. At OA-associated cis-CpGs, 57 cis-eQTMs 

were associated with 36 CpGs and 7 genes including LRRC37A4, GRINA, and PLEC. Overlap 

with genes implicated in the immune-mediated diseases (IMDs) was limited, with the only 

instance being CDK2AP1 (cg01030110) which was also identified as an MS candidate gene. 

The full list of cis-eQTMs at all risk loci in CD4+ T cells is given in Appendix G. 

As regards cis-eQTMs at risk loci for other IMDs in B cells, 28 MS-associated cis-eQTMs (20 

CpGs, 10 genes) and 30 asthma-associated cis-eQTMs (18 CpGs, 10 genes) were identified. As 

was also seen in CD4+ T cells, transcript levels of ORMDL3 and GSDMB were associated with 

cis-CpGs at RA, MS, and asthma risk loci. In addition, FAM164A, EAF2, RGS1 and SHMT1 at 

MS loci, as well as PGAP3, TNFSF4, RERE, and MRPL45P2 at asthma loci were highlighted 

as candidate genes in B cells with as potentially being subject to DNAm-mediated regulation 

Figure 5.2 (Previous page): cis-meQTL and cis-eQTM associations at the FCRL3 promoter in CD4+ T 

cells and B cells. A) A cis-meQTL (lead SNP rs2210913) was identified for which the RA risk allele (T) in 

CD4+ T cells was associated with reduced methylation at seven cis-CpGs mapping to the FCRL3 promoter. The 

same associations were also identified at six out of these seven CpGs in B cells. Based on chromatin state data 

from the Roadmap Epigenomics Project173, these cis-CpGs were found to map to active chromatin regions 

(active transcription start site, TssA; flanking active transcription start site, TssAFlnk; enhancer, Enh) in 

regulatory T cells (Tregs, E044) and B cells (E032) from peripheral blood. B-I) Plots of cis-meQTL and cis-

eQTM associations are shown for each cell type at (B-C) cg01045636 and (D-E) cg17134153 that displayed 

the strongest DNA methylation-transcript associations in CD4+ T cells, as well as (F-G) cg19602479 and (H-I) 

cg21721331 for which the associations were strongest in B cells. Left panels in figures B-I represent cis-meQTL 

associations between the risk SNP and DNAm levels, whereas the right panels are cis-eQTM associations 

between the risk cis-CpGs and FCRL3 transcript levels. Cis-meQTL and cis-eQTM p-values, as well as 

summary statistics for boxplots and lines of best fit are derived as described in Figure 5.1. TssA = active 

transcription start site (TSS), TssAFlnk = flanking active TSS, Enh = enhancer, EnhG = genic enhancer, TxFlnk 

= flanking transcription (5’/3’), TxWk = weak transcription, Quies = quiescent/low. 
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in cis (Appendix G). OA-associated cis-CpGs in B cells were associated with 64 eQTMs (46 

unique CpGs, 11 unique genes), with only HIP1R overlapping with any of the IMDs (MS). All 

B cell risk cis-eQTMs are reported in Appendix G. 

5.3 Causal inference testing 

The coincidence of cis-meQTLs at a risk locus with a cis-eQTM association may be indicative 

of an underlying mechanism whereby DNAm mediates transcriptional regulation by the risk 

variant, referred to as the SNP → Methylation → Expression (SME) model (see Chapter 1.6.9). 

However, identification of correlations between molecular traits alone is insufficient to 

distinguish the SME model from one of reverse causation, whereby modulation of DNAm 

occurs downstream of direct SNP effects on transcript levels (SNP → Expression → 

Methylation; SEM), or independent regulation of DNAm and gene expression (INDEP). To 

reveal associations fitting the SME regulatory model, a causal inference test (CIT)260 was 

applied to all triplets (SNP, CpG, transcript) at risk loci (RA, MS, asthma, and OA) for which 

a cis-meQTL and cis-eQTM effect had been observed.  CIT was performed treating the CpG 

site as a potential mediator and the transcript as the phenotype of interest, with a permutation-

based approach to calculate FDR values. 

In CD4+ T cells, CIT implicated DNAm as a mediator of genetic risk at five RA risk loci, 

nominating eight candidate genes (ANKRD55, JAZF1, ORMDL3, FCRL3, IL6ST, C11orf10, 

TAX1BP1, and GSDMB) as being subject to DNAm-mediated transcriptional regulation (Table 

5.3A; Appendix H for full results). Contrastingly, in B cells CIT only implicated one locus, 

FCRL3 at chromosome 1q23.1, as showing strong evidence according to the SME model at 

FDR < 0.05 (Table 5.3B & Appendix H for full results). Nonetheless, CCR6, IKZF3, and 

ORMDL3 were potentially implicated under this model at nominal significance (CIT p-value < 

0.05, FDR < 0.15). These results would therefore suggest that DNAm functions to regulate 

expression of the FCRL3 gene in both CD4+ T cells and B cells, and that genetic risk at this 

particular locus may influence the phenotype of multiple cell types in RA pathogenesis. 
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Of note, all of the loci at which CIT highlighted a SME model of genetic regulation also 

exhibited a strong probability (PP4 > 0.85) of co-localisation between the meQTL variant and 

RA-associated variant. This provided further confidence in concluding that DNAm is an 

important mediator of genetic risk at these particular loci. An additional analysis was performed 

to treat transcript levels as mediators with CpG methylation as the outcome measure (i.e. SEM 

model), though no such instances were identified at FDR < 0.05., suggesting that the remaining 

associations are likely explained by the INDEP model. 

Gene  CpG 
Lead 

meQTL 
SNP 

Bayes 
Coloc. PP4† Locus CIT 

P-Value 

CIT 
Permutation 

FDR 
CD4+ T cells:   

ANKRD55 

 cg21124310 rs6859219 1.00 

5q11.2 

1.11 x 10-4 7.06 x 10-4 

 cg10404427 rs6859219 1.00 0.0057 0.0044 

 cg23343972 rs6859219 1.00 0.0062 0.0069 
 cg15431103 rs6859219 0.95 0.0496 0.0319 

JAZF1 
 cg07522171 rs2189966 0.97 

7p15.1 
3.97 x 10-4 0.0035 

 cg11187739 rs4722758 0.99 0.0035 0.0044 

 cg16130019 rs917117 0.99 0.0529 0.0319 

ORMDL3  cg18711369 rs12946510 0.86 17q12 4.46 x 10-4 0.0035 

cg10909506 rs12946510 0.93 0.0016 0.0044 

FCRL3  cg17134153 rs2210913 0.99 1q23.1 0.0027 0.0044 

 cg01045635 rs2210913 0.99 0.0120 0.0296 

IL6ST 

 cg15431103 rs6859219 0.95 

5q11.2 

0.0100 0.0296 
 cg15667493 rs6859219 0.99 0.0139 0.0296 

 
cg10404427 rs6859219 1.00 0.0216 0.0305 
cg21124310 rs6859219 1.00 0.0349 0.0305 
cg23343972 rs6859219 1.00 0.0352 0.0305 

C11orf10  cg16213375 rs61897793 1.00 11q12.2 0.0163 0.0296 
TAX1BP1  cg11187739 rs4722758 0.99 7p15.1 0.0470 0.0305 

GSDMB  cg18711369 rs12946510 0.86 17q12 0.0277 0.0305 
cg10909506 rs12946510 0.93 0.0448 0.0305 

   

B cells:   

FCRL3  cg19602479 rs2210913 0.99 1q23.1 4.69 x 10-4 0.0420 
 cg01045635 rs7522061 0.97 5.49 x 10-4 0.0420 

CCR6 
 cg15222091 rs3093025 0.98 

6q27 
0.0101 0.0966 

 cg19954286 rs3093025 0.98 0.0258 0.1330 
 cg05094429 rs3093025 0.96 0.0347 0.1330 

IKZF3  cg18691862 rs9903250 0.44 17q12 0.0249 0.1330 
ORMDL3  cg12749226 rs11557466 0.97 17q12 0.0249 0.1330 

Table 5.3: Causal inference testing (CIT) results for CD4+ T cells and B cells. CIT was performed on all 

triplets (SNP, CpG, and transcript) at RA risk loci exhibiting significant cis-meQTL and cis-eQTM 

associations. P-values for the CIT were generate using the cit R package298, and FDR values calculated by 

performing 1000 permutations of the data. For genes where more than one CpG-Probe association was 

observed, CIT was performed using both, and the triplet returning the lowest CIT FDR reported in this table. 
†The prior probability of the meQTL effect and disease association sharing a single causal SNP at a given locus 

as determined by Bayesian co-localisation analysis (see section 4.6). 
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5.3.1 Pleiotropy and the 5q11.2 risk locus 

One interesting observation was that DNAm at RA loci exhibited pleiotropic regulation of gene 

expression at a number of loci in CD4+ T cells. One prominent example was the RA risk locus 

on chromosome 5q11.2 at which the risk variant (rs6859219) is associated with DNAm at five 

cis-CpGs (Figure 5.3A), four of which map to the gene body of ANKRD55 (cg21124310, 

cg10404427, cg15431103, and cg15667493) and the remaining one being intergenic 

(cg23343972). CIT inferred that methylation at four of these CpG sites (cg21124310, 

cg10404427, cg23343972, and cg15431103) likely mediates expression of not only the 

ANKRD55 gene, but also IL6ST for which the TSS is 238Kb downstream of the ANKRD55 TSS 

on the reverse strand (Table 5.3A). In both instances, the risk allele (C) at rs6859219 conferred 

reduced DNAm at these sites, which was associated with increased expression of the two genes. 

The two cis-CpGs with the strongest genetic association, as well as the strongest eQTM effect 

and highest probability of a SME regulatory model for ANKRD55 (cg21124310, cg10404427; 

Figure 5.3 A-C) mapped to a CD4+ T cell enhancer in the Intron 5 of ANKRD55. The CpG 

exhibiting the next strongest association with ANKRD55, cg23343972 (Figure 5.3D), maps to 

an intronic enhancer downstream of ANKRD55 (Figure 5.3A). 

Using chromosome conformation data from capture Hi-C experiments in CD4+ T cells121, it 

was identified that the intronic enhancer region harbouring cg21124310 and cg10404427, as 

well as the rs6859219 SNP, interacts with the promoter of IL6ST (Figure 5.4). This may 

therefore explain the co-regulation of both ANKRD55 and IL6ST by these CpGs. Indeed, the 

cis-CpG for which the SME model was most likely at IL6ST based on CIT (cg15431103; Table 

5.3 A) was also found to interact with the IL6ST promoter (Figure 5.4). 

These data indicate that a one-to-one association between genetic risk and transcriptional 

regulation, whereby genetic risk at a given locus manifests as modified expression of a single 

gene, may be overly simplistic. Confirming whether or not this regulatory SNP at chromosome 

5q11.2 confers RA risk through DNAm-dependent altered expression of both ANKRD55 and 

IL6ST will require further functional studies in T cells, though both of these genes warrant 

follow-up. An additional example of a pleiotropic effect was observed for associations at the 

chromosome 17q12 risk locus illustrated in Figure 5.1. Here, methylation at the cis-CpGs 

cg18711369 and cg10909506 mediated expression of both ORMDL3 and GSDMB in CD4+ T 

cells, further highlighting how DNAm can function in gene co-expression. 
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Figure 5.3 (Previous page): cis-meQTL effects mediate the co-expression of ANKRD55 and IL6ST in CD4+ 

T cells. A) At the RA risk locus on chromosome 5q11.2, the regulatory SNP (rs6859219) is associated with 

DNAm levels at four intronic cis-CpGs and on intergenic cis-CpG. All of these CpGs map to CD4+ T cell 

(E044) enhancer elements defined by the Roadmap Epigenomics Project173. Interestingly, DNA methylation of 

four of these cis-CpGs was associated with expression of both ANKRD55 and IL6ST in this cell type as 

determined by causal inference testing (CIT). Cis-meQTL associations, as well as cis-eQTMs at ANKRD55 and 

IL6ST are shown for three of the cis-CpGs most strongly implicated in mediating transcript levels by CIT: B) 

cg21124310, C) cg10404427, and D) cg23343972. Panels in figures B-D represent from left to right: cis-

meQTL associations, cis-eQTM associations between the cis-CpG and ANKRD55, and cis-eQTM associations 

between the cis-CpG and IL6ST. Cis-meQTL and cis-eQTM p-values, as well as summary statistics for boxplots 

and lines of best fit are derived as described in Figure 5.1. TssA = Active transcription start site, TssA Flnk = 

flanking active transcription start site, Enh = enhancer, EnhG = genic enhancer, Tx Flnk = flanking (5’/3’) 

transcribed, Tx = strong transcription, TxWk = weak transcription, Het = Heterochromatin, ReprPC = repressed 

polycomb, ReprPCWk = weak repressed polycomb, Quies = quiescent/low.  

Figure 5.4: Circos plot showing chromosome interactions between intronic cis-CpGs at the ANKRD55 

gene on chromosome 5q11.2 and the IL6ST promoter region. Capture HiC interaction data for total CD4+ 

T cells were obtained from a published study of multiple cell types121. The interaction scores had been 

generated using the CHiCAGO system, and represent the confidence of an interaction being present, with 

greater confidence placed in higher values121. Chromatin state data from the Roadmap Epigenomics project 

are shown for primary T helper cells from peripheral blood (E043). Black boxes indicate the locations of the 

two regions harbouring risk-associated cis-CpGs in CD4+ T cells. 
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5.3.2 DNA methylation-mediated transcriptional regulation explains shared genetic risk of 

immune-mediated diseases 

Given that in chapter 4 it was identified that a significant proportion of risk loci for other IMDs, 

namely MS and asthma, also function as lymphocyte cis-meQTLs, putative DNAm-mediated 

transcriptional regulation was also sought at these loci using CIT. At MS loci, DNAm was 

found to potentially mediate the expression of 11 genes in CD4+ T cells (ANKRD55, JAZF1, 

ORMDL3, FAM164A, TAX1BP1, IL6ST, RAB24, MRPL45P2, SHMT1, GSDMB, and ZNF688; 

Appendix H). No such associations were robust to FDR correction in B cells, although a number 

of candidate genes were identified at nominal significance (CIT p-value < 0.05), including 

SHMT1, FAM164A, HIP1R, and RGS1 (Appendix H). A number of genes were also implicated 

by the SME model at asthma loci in CD4+ T cells, with JAZF1, ORMDL3, CD247, and GSDMB 

highlighted at these loci. As was the case for MS, no asthma loci were robustly linked to the 

regulation of B cell gene expression via DNAm, though GSDMB, ORMDL3, PGAP3, and 

IKZF3 were amongst those displaying some evidence (p < 0.05) of an SME mechanism. CIT 

was also applied to triplets at OA loci, though no instances of SME regulation of candidate 

genes were found in either CD4+ T cells or B cells at FDR < 0.05 (Appendices I & J). 

The degree of overlap that occurred across IMDs in respect of genes highlighted by CIT in 

CD4+ T cells was striking. For example, expression of the JAZF1 gene was linked to DNAm at 

two CpGs, cg07522121 and cg11187739, both of which were associated with risk loci for RA, 

MS, and asthma. Though the regulatory SNP associated with each of these cis-CpGs was 

distinct (rs2189966 for cg07522171, rs4722758 for cg11187739), these are in high linkage 

disequilibrium (r2 = 0.88 in EUR populations), and as such likely tag the same causal SNP. The 

risk allele at the regulatory SNPs (C at rs2189966, G at rs4722758) was consistent across all 

three conditions and was associated with increased DNAm at cg07522171 (Figure 5.5A) and 

cg11187739 (Figure 5.5 B), respectively. This risk-associated increase in DNAm at both cis-

CpGs in turn correlated with reduced transcript levels of the JAZF1 gene in CD4+ T cells 

(Figure 5.5C-D).  

Additional instances of overlap occurred at ORMDL3 and GSDMB, which were shared across 

all three IMDs examined, as well as at ANKRD55/IL6ST, which was common to both RA and 

MS (Figure 5.6 A; see also section 5.3.1). No overlap was apparent in DNAm-mediated 

regulatory mechanisms between IMD risk loci and OA (Figure 5.6A). 
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Unsurprisingly given that only FCRL3 was identified as a DNAm-mediated candidate gene in 

B cells, overlap in between IMDs in this cell type was less marked (Figure 5.6B). The SME 

model at ORMDL3 which was involved in CD4+ T cell-mediated genetic risk for RA, MS, and 

asthma was potentially implicated in B cells (CIT p-value < 0.05), though was not robust to 

permutation-based FDR calculation (Figure 5.6B). HIP1R was implicated at nominal 

significance in OA and MS in B cells, potentially highlighting a mechanistic overlap in genetic 

risk between these aetiologically distinct conditions (Figure 5.6B) 

These results indicate that CD4+ T cell DNAm may have a critical role in mediating the 

expression of genes that are involved in IMDs generally. This could signify that genetic risk at 

specific loci acts to perturb pathways that contribute to T cell responses, with additional factors, 

be they genetic or environmental, determining the clinical manifestations in susceptible 

individuals. 

Figure 5.5: Molecular associations between genotype, DNA methylation, and gene expression at 

chromosome 7p15.1. Cis-meQTLs at (A) cg07522171 and (B) cg11187739 in CD4+ T cells maps to a locus on 

chromosome 7p15.1 that confers genetic risk in rheumatoid arthritis, multiple sclerosis, and asthma. Cis-eQTM 

associations between DNA methylation at (C) cg07522171 and (D) cg11187739 highlight an association with 

JAZF1 transcript levels, with causal inference testing confirming that methylation at these CpGs regulated 

expression of this gene in cis. Cis-meQTL and cis-eQTM p-values, as well as summary statistics for boxplots and 

lines of best fit are derived as described in Figure 5.1. 
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5.4 Validation of RA-associated cis-meQTL Effects 

Several meQTLs at RA-associated loci that were identified in the discovery cohort using the 

MethylationEPIC BeadChip array were subject to validation using an independent patient 

cohort, as well as an independent technique for quantifying DNA methylation (DNAm). For 

the purpose of validation, cg17134153 (FCRL3), cg21124310 (ANKRD55), and cg07522171 

(JAZF1) were selected as causally implicated CpGs at which DNAm appears to mediate genetic 

effects on gene expression. Bisulphite pyrosequencing was employed as a method for accurate, 

targeted DNAm quantification at these CpGs of interest. 

5.4.1 Validation of pyrosequencing assays for DNA methylation quantification 

In order to determine whether pyrosequencing assays accurately quantified DNAm at these 

CpG sites, a standard curve was generated for each assay. This involved generating mixes of 

synthetic bisulphite DNA fragments harbouring either a C or T allele at the CpG site of interest, 

representing the methylated and unmethylated cytosine residues, respectively. These allele 

A B 

Figure 5.6: Causal inference testing highlights genes for which DNA methylation is a mediator of 

genetic risk across immune-mediated diseases (IMDs). Genes for which the SNP → Methylation → 

Expression regulatory model was implicated by causal inference testing at FDR < 0.05 are highlighted in red, 

whereas those showing suggestive evidence at p < 0.05 are shown in grey. The overlap in methylation-

mediated genes between three immune-mediated diseases – rheumatoid arthritis, multiple sclerosis, and 

asthma is shown, as well as those in osteoarthritis, a condition in which adaptive immunity has a less 

prominent pathophysiological function. 
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mixes were generated to mimic a pool of cells with varying DNAm levels from 0 – 100%, at 

increments of 10%.These were amplified and sequenced in order to assess whether or not the 

percentage of C allele called by the respective assays reflected that which was expected from 

the probe mix. Using this approach, it was confirmed that all assays were able to accurately 

determine the allele proportions across the range of values tested at cg17134153 (Figure 5.7A), 

cg21124310 (Figure 5.7B), and cg07522171 (Figure 5.7C), thus confirming their suitability for  

DNAm analysis at the selected cis-CpGs. 

 

 

 

 

 

 

 

 

 

5.4.2 Independent Validation of cis-meQTL effects 

For each CpG site outlined in section 5.4.1, validation cohorts of 39 patients were selected that 

had not been included in the initial array discovery cohort, but for whom genotype data and 

CD4+ T cell DNA were available (Table 5.4). Individuals were selected so that each genotype 

(risk allele homozygote, heterozygote, alternative allele homozygote) at the regulatory SNP 

(rs2210913, rs6859219, rs2189966) was represented by at least 3 individuals. 

 

 

 

 
Patient 
Number RA (%) Age Sex (%F) CRP 

cg17134153 
meQTL 39 15 50 (41 – 60) 69 5 (5 – 11) 

cg21124310 
meQTL 39 15 49 (40 – 65) 74 5 (5 – 9) 

cg07522171 
meQTL 39 15 48 (37 – 58) 69 5 (5 – 11) 
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Figure 5.7: Standard curves generated for CpG pyrosequencing assays. Allele mixes were prepared by 

combining varying proportions of DNA fragments harbouring either a C or T allele at the position of interest. 

Pyrosequencing was performed on mixes with each custom assay to validate the accuracy of readings. The 

crosses each represent the mean methylation percentage from two PCR replicated per template, with readings 

having high accuracy falling on the x=y dotted line. 

Table 5.4: Demographic and clinical characteristics of independent cohorts for validation of methylation 

quantitative trait locus (meQTL) effects. Age and CRP levels are presented as group median (inter-quartile 

range) 
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DNAm was subsequently quantified in the validation cohort at the three selected CpGs; 

cg17134153 (FCRL3), cg21124310 (ANKRD55/IL6ST), and cg07522171 (JAZF1). This 

confirmed the association (p < 0.05) between genotype at the respective regulatory SNP, and 

DNAm at cg17134153 (p < 1 x 10-4; Figure 5.8A), cg21124310 (p = 4 x 10-4; Figure 5.8B), and 

cg07522171 (p = 5 x 10-4; Figure 5.8C). Importantly, the allelic effect was consistent with that 

observed in the discovery cohort, with the risk allele conferring either increased DNAm levels 

(rs2189966/cg07522171) or decreased levels (rs2210913/cg17134153, 

rs6859219/cg21124310). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

5.5 Allelic Expression Analysis 

The presence of a transcript SNP, rs7522061, in the FCRL3 coding region in high linkage 

disequilibrium with the regulatory SNP, rs2210913 (r2 = 0.90), allowed for allelic expression 

analysis to be performed to confirm eQTL associations at this locus. Thirty-three patients who 

were heterozygous at the regulatory SNP of interest were selected for allelic expression analysis 

(Table 5.5). For the other two loci (rs6859219 (ANKRD55/IL6ST) and rs2189966 (JAZF1)), the 

absence of an appropriate proxy transcript SNP precludes the above allelic expression analysis. 

However, expression data from the Illumina HumanHT-12 array was available for independent 

cohorts of patients to confirm SNP-gene associations (Table 5.5). 

A B C 
p < 1 x 10-4 p = 4 x 10-4 p = 5 x 10-4 

Figure 5.8: Validation of CD4+ T cell cis-meQTL effects at RA risk loci using bisulphite pyrosequencing in 

an independent cohort of patients. MeQTLs mapping to (A) rs2210913/cg17134153, (B) 

rs6859219/cg21124310, and (C) rs2189966/cg07522171 were validated in patient isolated CD4+ T cells. P-values 

were generated using a one-way ANOVA. The box plots indicate the group medians with the 1st and 3rd quantiles, 

and whiskers extend to the largest and smallest values to a limit of 1.5 times the 25th of 75th quartile respectively.  
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5.5.1 Validation of a pyrosequencing assay for allelic quantification 

Prior to quantifying allelic proportions in the patient genomic DNA (gDNA) and 

complimentary DNA (cDNA), the pyrosequencing assay was validated to confirm the ability 

to accurately quantify allelic proportions across the range of values (0 – 100%). Similar to the 

method used for CpG assay validation, a standard curve was generated by preparing mixes 

containing allele proportions ranging from 0 to 100%. Sequencing these mixtures confirmed 

the ability of this assay to accurately call allele ratios at the FCRL3 transcript SNP (rs7522061), 

with a linear relationship between expected and observed allele ratios (Figure 5.9A). 

5.5.2 Allelic expression analysis at FCRL3 

Proportions of the risk allele (C) at rs7522061 were quantified in patient gDNA and cDNA by 

pyrosequencing in the 33 heterozygous patients. In gDNA, the allele proportions were found to 

be 52% (range = 50 – 53%), consistent with all patients being heterozygous at this SNP (Figure 

5.9B). That the allele ratio was in fact slightly above 50% for these patients suggests a tendency 

for the assay to over-call the risk allele at intermediate values, as is consistent with the results 

from the validation (Figure 5.9B). Nonetheless, the risk allele was found to be significantly 

enriched in the mRNA (p < 1 x 10-4; Figure 5.9B). The proportion of risk allele present in the 

mRNA ranged from 53% to 76% (median = 64%), indicating that in some cases the 

transcription of FCRL3 from the risk-associated allele was over three times that of the non-risk 

allele (76% vs. 24%). These results confirm that the regulatory SNP highlighted in the meQTL 

and CIT analyses has the capacity to promote increased transcript levels of the FCRL3 gene in 

CD4+ T cells.  

 

 

 
Patient 
Number RA (%) Age Sex (%F) CRP 

FCRL3 allelic 
expression 33 52 54 (51 – 69) 85 5 (5 – 10) 

ANKRD55/ 
IL6ST eQTL 39 18 49 (40 – 65) 77 5 (5 -10) 

JAZF1 eQTL 41 17 49 (37 – 59) 78 5 (5 – 12) 

Table 5.5: Demographic and clinical characteristics of independent cohorts for allelic expression 

analysis and validation of expression quantitative trait locus (meQTL) effects. Age and CRP levels are 

presented as group median (inter-quartile range) 
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5.5.3 Validation of allelic effects on transcription at additional loci 

In the absence of transcript SNPs at the ANKRD55/IL6ST and JAZF1 loci, associations between 

genotype and transcription could be studied. Plotting microarray gene expression values against 

genotype at the regulatory SNPs for ANKRD55 (p = 0.0112; Figure 5.10A), IL6ST (p = 0.0096; 

Figure 5.10B), and JAZF1 (p = 0.0319; Figure 5.10C) across all patients in this validation cohort 

confirmed such effects at these loci. The association between genotype and expression was 

inverse to that which occurred between genotype and DNAm, which was consistent with 

observations from the eQTM analysis that DNAm exhibits an inverse relationship with 

transcript levels. 

 

 

 

 

 

Figure 5.9: Allelic expression analysis at FCRL3. A) Standard curve generated by a pyrosequencing assay 

for allelic expression quantification at rs7522961 (FCRL3). Allele mixes were generated by combining various 

proportions of genomic DNA homozygous for either the C or T allele at rs7522961. Crosses represent the mean 

value from three PCR repeats, with the x=y dotted line indicating where pyrosequencing values exactly match 

values in the prepared mix. B) Allelic expression analysis of risk allele proportions at rs7522061 (FCRL3) in 

either the genomic DNA or mRNA (cDNA) in CD4+ T cells isolated from early arthritis patients. 
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5.6 5-Aza-2’-deoxycitidine treatment of lymphocyte cell lines  

Given that the in silico analyses described a number of genes at which transcription appeared 

to be regulated downstream of cis-meQTL effects, the transcriptional activity of these genes 

was assessed following global perturbations in DNAm. To experimentally corroborate that 

these candidate genes are sensitive to changes in DNAm, two lymphocyte cell lines were treated 

with 5-Aza-2’-deoxycitidine (5-aza; Decatibine), a cytidine analogue that inhibits activity of 

DNA methyltransferases (DNMTs), resulting in genome-wide passive CpG hypo-methylation. 

Jurkat cells (clone E6-1) - a T cell line from an acute leukaemia patient, and Ramos cells, which 

are a B cell line from a patient with Burkett’s lymphoma, were both treated with 5-aza. In order 

to assess the efficacy of varying concentrations of 5-aza, as well as treatment duration, to induce 

hypo-methylation, the cell lines were treated with either 0.25µM or 0.50µM 5-aza for 48 hours 

or 72 hours. 

5.6.1 Assessment of DNA methylation and gene expression following treatment with 5-Aza-

2’-deoxycitidine 

Treatment of both Jurkat cells with each concentration of 5-aza (0.25µM, 0.50 µM) for 48 hours 

resulted in a marked reduction in DNAm at cg17134153 relative to the DMSO control (Figure 

5.11A). The DNAm levels at this CpG roughly halved following treatment for 48 hours with 

Figure 5.10: Validation of associations between risk genotype and gene expression levels at loci for which 

allelic expression analyses were not possible. Illumina human HT-12 CD4+ T cell gene expression data for 

an independent cohort of samples that were not included in the initial analysis of DNA methylation and gene 

expression associations. These associations were validated at (A) rs6859219-ANKRD55, (B) rs6859219-IL6ST, 

and (C) rs2189966-FCRL3. P-values were generated using a one-way ANOVA. The box plots indicate the 

group medians with the 1st and 3rd quantiles, and whiskers extend to the largest and smallest values to a limit 

of 1.5 times the 25th of 75th quartile respectively. P-values were generated using a one-way ANOVA. 

A B C 
p = 0.0112 p = 0.0096 p = 0319 
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0.25µM 5-aza (43% to 25%), consistent with one round of cellular division (the population 

doubling time of Jurkat cell clone E6-1 is ~48 hours). Treatment of these cells for 72 hours had 

little additional effect on DNA de-methylation at cg17134153 beyond what was observed at the 

48-hour time point (Figure 5.11A).  

In contrast, the levels of DNAm at cg17134153 pre-treatment with 5-aza were considerably 

lower in Ramos cells (10% DNAm at cg17134153 in Ramos cells; Figure 5.11B). This largely 

reflected what was observed in primary cells, whereby DNAm levels in primary CD4+ T cells 

ranged from 29-55%, whereas in B cells values were between 2-17% (Figure 5.2D). A smaller 

magnitude of de-methylation was observed in these cells, with 0.25µM 5-aza treatment for 48 

hours reducing methylation levels by 3% at cg17134153 (10% to 7%; Figure 5.11B). Consistent 

with observations in Jurkat cells, treatment for 72 hours yielded no greater reduction in DNAm 

levels at this CpG (Figure 5.11B). 
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Figure 5.11 DNA methylation at cg17134153 and expression of FCRL3 in Jurkat and Ramos cells 

following treatment with 5-Aza-2’-deoxycitidine. After treatment with DMSO (vehicle control) or 5-aza at 

0.25µM and 0.50µM for either 48 hours or 72 hours, DNAm was quantified by bisulphite pyrosequencing at 

cg17134153 in (A) Jurkat cells and (B) Ramos cells. Subsequently, expression of FCRL3 in (C) Jurkat cells 

and (D) Ramos cells, treated for 48 hours was measured by qPCR. Bars represent the mean of three biological 

replicates in each condition, with error bars showing the standard error of the mean. P-values report the 

difference between each 5-aza treatment condition and the DMSO control using an unpaired t-test. 
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In Jurkat cells, DNA de-methylation observed at cg17134153 coincided with up-regulation of 

the FCRL3 gene in both cell lines. In Jurkat cells, expression of FCRL3 was not detected in 

DMSO control cells, with transcripts detected following treatment with both 0.25µM and 

0.50µM 5-aza for 48 hours (Figure 5.11C). FCRL3 expression was detected in untreated Ramos 

cells, and treatment with 5-aza (0.25µM and 0.50µM) resulted in a 21-fold induction of 

expression (Figure 5.11D, indicating that FCRL3 transcription is highly responsive to DNAm 

in this cell line. 

A similar magnitude of de-methylation was observed at cg21124310 in Jurkat cells treated for 

48 hours with 0.25µM 5-aza for 48 hours (47% vs. 29% in DMSO controls; Figure 5.12A). 

Again, treatment for 72 hours resulted in little additional de-methylation upon that which was 

observed at 48 hours (Figure 5.12A). As was the case for cg17134153, DNAm levels at 

cg21124310 were considerably lower in untreated Ramos cells (47% in Jurkat vs. 21.5% in 

Ramos cells; Figure 5.12B). It should be noted that, whilst DNAm at cg21124310 in Jurkat 

cells (47%) was within the range observed in primary CD4+ T cells (12%-63%), DNAm levels 

of 21.5% in Ramos cells was considerably lower than was present in primary B cells (81 – 

89%). Nonetheless, treatment with 5-aza (0.25µM) for 48 hours did result in a small reduction 

of 7.5% (21.5% to 14%) at cg21124310 in Ramos cells. 

In primary CD4+ T cells, in silico analyses suggested that cg21124310 regulated the expression 

of both ANKRD55 and IL6ST. Here, 5-aza-induced DNA de-methylation coincided with a 12-

fold up-regulation of ANKRD55 expression in Jurkat cells at the 48 hour time point (Figure 

5.12C). In contrast, ANKRD55 expression was absent in Ramos cells, and treatment with 5-aza 

was unable to induce expression of this gene (Figure 5.12D). As expected, de-methylation at 

cg21124310 occurred in conjunction with increased levels of the IL6ST transcript in Jurkat cells 

(Figure 5.12E). For this particular gene, treatment with the higher concentration of 5-aza 

(0.50µM) actually yielded a slightly higher fold induction than the lower concentration (3.5-

fold vs. 2.8-fold; Figure 5.12E). Somewhat unexpectedly, treatment with 5-aza inhibited 

expression of IL6ST in Ramos cells (Figure 5.12F), despite DNAm levels being lower in the 

treated cells.  
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Figure 5.12 DNA methylation at cg21124310 and expression of ANKRD55 and IL6ST in Jurkat and 

Ramos cells treated with 5-Aza-2’-deoxycitidine. After treatment with DMSO (vehicle control) or 5-aza at 

0.25µM and 0.50µM for either 48 hours or 72 hours, DNAm at cg21124310 was quantified by bisulphite 

pyrosequencing in (A) Jurkat cells and (B) Ramos cells. Subsequently, expression of ANKRD55 in (C) Jurkat 

cells and (D) Ramos cells, treated for 48 hours was measured by qPCR. Expression of IL6ST was similarly 

quantified in (E) Jurkat cells and (F) Ramos cells. Bars represent the mean of three biological replicates in 

each condition, with error bars showing the standard error of the mean. P-values report the difference between 

each 5-aza treatment condition and the DMSO control using an unpaired t-test. 
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Finally, 5-aza treatment caused de-methylation at cg07522171 in Jurkat (Figure 5.13A) and 

Ramos (Figure 5.13B) cells. Contrary to the observations at other CpGs assessed, treatment for 

72 hours yielded greater reduction in DNAm than was seen at 48 hours (though this was limited 

to Jurkat cells). DNAm at cg07522171 in Jurkat cells was highest of the three cis-CpGs, with 

methylation levels of 81% in untreated cells being considerably higher than those which were 

seen in primary cells (20%-44%; Figure 5.5A). Patterns of gene expression at this locus largely 

reflected those which were observed for IL6ST, with induction in Jurkats following 5-aza 

treatment, and a more marked increase at higher 5-aza concentrations (Figure 5.13C). In Ramos 

cells, JAZF1 expression followed a pattern analogous to IL6ST, with DNA de-methylation 

unexpectedly resulting in reduced transcript levels (Figure 5.13D). 
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Figure 5.13 DNA methylation at cg07522171 and expression of JAZF1 in Jurkat and Ramos cells 

following treatment with 5-Aza-2’-deoxycitidine. After treatment with DMSO (vehicle control) or 5-aza at 

0.25µM and 0.50µM for either 48 hours or 72 hours, DNAm was quantified by bisulphite pyrosequencing at 

cg07522171 in (A) Jurkat cells and (B) Ramos cells. Subsequently, expression of JAZF1 in (C) Jurkat cells 

and (D) Ramos cells, treated for 48 hours was measured by qPCR. Bars represent the mean of three biological 

replicates in each condition, with error bars showing the standard error of the mean. P-values report the 

difference between each 5-aza treatment condition and the DMSO control using an unpaired t-test. 
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Indeed, of the CpG-transcript associations investigated following 5-aza treatment, only 

cg17134153-FCRL3 exhibited significant associations in primary B cells. To this end, 

observations in these cell lines reflect that which was observed in silico, with FCRL3 levels up-

regulated following DNA de-methylation in T cells and B cells, while associations between 

DNAm and ANKRD55/IL6ST/JAZF1 were limited to T cells. 

5.7 Validation of DNA methylation-mediated transcriptional regulation by reporter gene 

assays 

The results from the 5-Aza-2’-deoxycitidine treatment of lymphocyte cell lines confirmed that 

the transcript levels of genes identified at RA risk loci are responsive to changes in DNAm 

levels. However, given that this treatment induces hypo-methylation genome-wide, these 

experiments are unable to confirm the region-specific cis-eQTM observations from the patient 

cohort. In order to validate the influence of such region-specific DNAm on transcription at loci 

of interest, reporter gene assays were designed. The CpG sites implicated in regulating the 

expression of FCRL3 and JAZF1 in CD4+ T cells map to the promoter regions of these genes, 

and so luciferase reporter assays were designed to assess the downstream impact of CpG 

methylation at these sites on transcriptional activity. The lead meQTL SNP (rs2210913) at the 

FCRL3 locus is in perfect LD (r2 = 1.00; 1000 Genomes Project Phase 3, European Populations) 

with a SNP (rs7528684) that has been functionally validated as an regulatory variant regulating 

transcription of the gene346. The risk allele at rs2210913 (T) correlates with the C allele at 

rs7528684. Importantly, this variant is 488 bases upstream of cg17134153, enabling both the 

SNP and CpG site to be cloned into a vector, and as such the combinatorial effects of genotype 

and DNAm can be assessed in conjunction. In the case of the JAZF1 promoter, the SNP 

(rs2189966) highlighted in the meQTL analysis is 46,870 bases from the CpG site 

(cg07522171), and as such the effects of DNAm could only be assessed in isolation. 

5.7.1 Amplification of promoter regions 

Primers were designed to clone both the promoter region of FCRL3 (chr1:157,670,120 – 

157,671,093) harbouring rs7528684 together with two CpG sites implicated in transcriptional 

regulation (cg17134153, cg01045635), as well as that of the JAZF1 promoter (chr7:28,218,982 

– 28,218,384) with cg07522171 and no polymorphic positions.  The cloned FCRL3 promoter 

region also encompassed eight additional CpGs (Figure 5.14A), whereas the JAZF1 cloned 

promoter included 14 additional CpGs (Figure 5.14B). These regions were amplified from 

patient genomic DNA. Given that the allelic effect of rs7528684 was to be quantified, template 

DNA from individuals who were heterozygous at this SNP (as well as rs945635 which is in 
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high LD (r2 > 0.9) with rs7528684) was selected based on data from genotyping arrays, enabling 

inserts harbouring each allele to be amplified. 

 

 

 

 

 

 

5.7.2 Genotyping and sequencing of clones 

Amplicons were digested using the appropriate restriction enzymes (NocI/SpeI for FCRL3, 

HindIII/SpeI for JAZF1) and cloned into the pCpGL-basic vector – a CpG-free vector 

containing a luciferase reporter gene. After transformation of bacterial cells and selection on 

antibiotic-supplemented agar plates, colonies were picked and plasmids miniprepped for 

genotyping. To identify clones transfected with constructs consisting of the insert ligated into 

the plasmid, miniprepped plasmids were restriction enzyme-digested and electrophoresed 

through an agarose gel. For the FCRL3 clones, F9, F10, F11, F12, F13, and F14 were selected 

for sequencing based on the presence of a band representing the promoter region (Figure 

5.15A), whereas for the JAZF1 insert, clones J1, J2, J3, and J4 were selected on the same basis 

(Figure 5.15B). 

 

 

Figure 5.14: pCpGL-basic plasmids harbouring constructs for reporter gene assays. The (A) FCRL3 and 

(B) JAZF1 promoter regions encompassing CpGs implicated in causal inference testing were cloned into the 

reporter gene vector. Positions of CpGs in the insert relative to one another are accurate, though distances 

between CpGs are not to scale. Luciferase = luciferase reporter gene giving read-out of transcriptional activity; 

SV40 pA = Simian virus 40 poly-A transcriptional terminator; Zeocin = Zeocin antibiotic resistance gene; R6K 

ori = E. coli R6K origin of replication.  
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To confirm the correct orientation and sequence of the cloned insert, samples were sent for 

Sanger sequencing (Source Bioscience). This method is the gold standard for accurate DNA 

sequencing of short regions (typically up to ~800 bases) and is based on the incorporation of 

labelled dideoxynucleotides into the DNA chain being synthesized by DNA polymerase. The 

incorporation of fluorescently-labelled dideoxynucleotides into the DNA strand causes chain 

termination. As such, performing four reactions in parallel, each with a different labelled 

dideoxynucleotide (A, C, G, T) enables the nucleotide at each position to be determined. These 

reactions can generate trace plots as in the example shown in Figure 5.16 for rs7528684 in the 

FCRL3 promoter (T allele present in clone F10, C allele in F12), together with the nucleotide 

sequence. Sequences from each set of clones (FCRL3 or JAZF1) were aligned to identify 

polymorphic sites, either representing SNPs in the template DNA or mutations arising during 

amplification or cloning. The JAZF1 promoter insert contained no SNPs in the template, and 

all inserts were confirmed to be of the correct orientation and identical to the reference genome 

sequence. Of the FCRL3 inserts, the F12 clone had C alleles present at both rs7528684 and 

rs945635, and all other clones harboured a T and G allele at these positions respectively (Table 

5.6). The remaining insert sequence was identical across all clones, including at another SNP 

(rs11264799) present in this region, as expected based given homozygous template DNA at this 

position. Clone J1 was therefore selected to be taken forward for reporter gene assays, as were 

clones F10 and F12 representing both allele copies at the regulatory SNP. 

 

Figure 5.15: Genotype digest of plasmids containing (A) FCRL3 or (B) JAZF1 constructs. To identify clones 

successfully transfected with constructs of interest, isolated plasmids were restriction enzyme-digested and run 

on an agarose gel. Digested plasmids were run alongside the PCR amplicon for the respective promoter region 

to confirm the insert size. Plasmids for which inserts were present were selected and sent for Sanger sequencing. 

Red arrows on each plot indicate the expected size of the digested insert for each construct. 
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Clone rs7528684 rs11264799 rs945635 

F10 T G G 

F11 T G G 

F12 C G C 

F13 T G G 

F14 T G G 

F17 T G G 

C G G G A A A A G G C C C C T T T T T T G 

C G G G A A A A G G C C C C T C T T T T G 

rs7528684 

Figure 5.16: Trace plots from Sanger sequencing of constructs harbouring the FCRL3 promoter insert. 

The position of rs7528684 (regulatory SNP) is highlighted indicating the presence of differing allele copies at 

this position in the F10 and F12 clones. 

Table 5.6: Haplotypes present at variable positions identified in all FCRL3 clones that were Sanger 

Sequenced. The promoter region harbours three SNPs (rs7528684, rs11264799, and rs945635), which 

displayed the same haplotype across all clones with the exception of clone F12, for which the risk allele (C) 

was present at the regulatory SNP (rs7528684), with a C allele also present at rs945635 which is in perfect 

linkage disequilibrium with rs7528684. The risk allele (C) at rs7528684 is underlined. 

F10 
Clone 

F12 
Clone 
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5.7.3 In vitro DNA methylation 

The desired clones, together with the empty pCpGL vector, were either methylated in vitro 

using the M.SssI CpG DNA methyltransferase enzyme or mock-methylated (H20), so that the 

effect of CpG methylation on transcriptional activity could be assessed. To check whether the 

plasmids were efficiently methylated, they were digested post-methylation using the HpaII 

restriction enzyme. This enzyme recognises the sequence CCGG but is methylation sensitive 

and as such will not digest sequences where a methyl group is present on the cytosine. The 

empty pCpGL vector has no HpaII recognition sites, and so this plasmid presents in its circular 

and supercoiled form when run on an agarose gel, regardless of whether methylation or mock-

methylation treatment has occurred (Figure 5.17; first pair of lanes).  

The introduction of HpaII recognition sites from the insert results in distinct banding patterns 

for each plasmid treatment. Introduction of HpaII sites in the insert enables digestion of the 

unmethylated plasmids (Figure 5.17; Cntl lanes). In the case of JAZF1, the insert harbours two 

HpaII sites 345bp apart, resulting in a small band observed in addition to the remainder of the 

digested plasmid and insert (Figure 5.17, JAZF1 control lane). For the FCRL3 inserts, two HpaII 

sites are also introduced, though they are < 100bp apart and as such the digested plasmids 

present as the single digested plasmid (Figure 5.17; FCRL3 (CGC) and FCRL3 (TGG) control 

lanes). Conversely, the addition of a methyl group at the HpaII restriction site by M.SssI enzyme 

Figure 5.17: Methylation-sensitive restriction enzyme digest with HpaII of in vitro methylated (M) and 

mock-methylated control (Ctl) constructs to confirm DNA methylation. This was done for the empty pCpGL 

vector, the construct containing the JAZF1 promoter insert, and the FCRL3 construct representing both 

haplotypes (risk – CGC; non-risk - TGG). Red arrows in the lane containing the empty vector (M) represent (1) 

nicked, (2) linear, (3) supercoiled, and (4) circular single-stranded plasmid DNA. Additional red arrows indicate 

digested plasmid from JAZF1 (5) and FCRL3 (6) clones, as well as the smaller JAZF1 fragment at 345bp (7). 
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inhibits the endonuclease activity of this enzyme, preventing plasmid digestion and resulting in 

the same banding pattern as is seen for the empty plasmid (Figure 5.17; right lane (M) in each 

pair). This analysis confirmed that M.SssI-treated plasmids containing insert were successfully 

methylated in vitro. 

5.7.4 Luciferase reporter assay in HEK-293T cells 

Following the promoter regions being cloned into the CpG-free vector and in vitro DNA 

methylation being performed, cell lines were transfected to allow luciferase readings to be 

taken. Initially, constructs were co-transfected with the control pRL-TK renilla control plasmids 

into HEK-293T cells, an embryonic kidney cell line, given their relative ease of transfection. 

Twenty-four hours following transfection, cells were lysed and luciferase activity 

(Firefly/Renilla) measured.  

For the FCRL3 promoter, luciferase reporter activity was not significantly influenced by 

either genotype nor DNA methylation status (Figure 5.18A). Similarly, DNA methylation had 

no effect on JAZF1 promoter activity within this cell type (Figure 5.18B). Indeed, the 

normalised luciferase activity for both FCRL3 and JAZF1 plasmids was comparable to that 

for the empty vector (RLA normalised to 1), suggesting that these promoters may not be 

active in this cell type. 
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Figure 5.18: Luciferase reporter assay of (A) FCRL3 and (B) JAZF1 promoter constructs in HEK-293T 

cells. Relative luciferase values were normalised to those generated by the respective empty vector (either 

unmethylated or methylated), which was given a value of 1. Reported p-values were generated by one-way 

ANOVA with Tukey’s multiple comparisons test (A) and a two-tailed t-test (B). Four experiments were 

performed in total, with a total of 6 wells per condition run in each experiment. Bars represent the mean of the 

four experiments, and error bars denote the standard error of the mean. 
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5.7.5 Luciferase reporter assay in Jurkat cells 

Following the observations in HEK-293T cells, it was decided to transfect Jurkat cells with 

plasmids, given that this lymphocyte cell line more closely resembles the CD4+ T cells in which 

the initial regulatory mechanisms were identified. Jurkat cells were transfected by 

electroporation using the Neon™ system (ThermoFisher) and, as with HEK-293T cells, lysed 

24 hours following transfection with luciferase readings quantified as before. 

In this cell line, the relative luciferase activity (RLA) of the plasmid containing the risk allele 

(C) at rs7528684 was 28.2-fold higher than the empty vector (p < 0.0001, one-way with Tukey’s 

multiple comparisons test), confirming that the promoter was active in this cell type (Figure 

5.19A). Interestingly, this activity was ~2.3-fold higher the non-risk allele plasmid (Figure 

5.19A; RLA 28.2 vs. 12.9; p < 0.0001). This is consistent with the observations from allelic 

analysis of heterozygous patients (Figure 5.9B), whereby risk allele mRNA was on average 

~1.8-fold higher than the non-risk allele (64% risk allele at transcript SNP in mRNA), and up 

to 3.2-fold increased (76% risk allele) in some individuals. Importantly, when plasmids were 

methylated prior to transfection, the luciferase was only marginally increased relative to the 

empty vector (RLA ~2.9 for both alleles), confirming that methylation of the FCRL3 promoter 

region ablates transcription (Figure 5.19A). Indeed, this ablation was consistent regardless of 

the allele copy present in the plasmid, validating the mechanism identified in silico whereby 

transcriptional regulation by DNAm modification occurs downstream of the genetic variant. 

In contrast to the results observed for FCRL3 constructs, the luciferase activity in Jurkat cells 

transfected with the JAZF1 constructs was comparable to the empty vector (Figure 5.19B; RLA 

~0.9 (Unmethylated) vs. 1.2 (Methylated)). This may indicate that the minimal promoter region 

required for transcription to occur at this locus was not sufficiently captured in the amplified 

region. 
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5.8 Targeted DNA de-methylation using a CRISPR – nuclease-deficient Cas9 system 

Targeted epigenetic modification with a CRISPR – nuclease deficient Cas9 (dCas9) system was 

employed in attempt to induce site-specific DNA de-methylation, which would give insights 

into the regulatory function of CpG methylation in a genomic context. This particular system 

consists of dCas9 fused to the catalytic domain of the TET1 demethylating enzyme. This is 

achieved by the recognition of multiple GCN4 peptide copies on the dCas9 by anti-GCN4 (the 

pPlatTET-gRNA2 plasmid, see section 2.16)304. By targeting this complex to regions 

harbouring cis-CpG sites using sequence-specific guide RNAs (gRNAs), site-specific DNA de-

methylation can potentially be achieved. 

5.8.1 Flow cytometry sorting of co-transfected cells 

The use of a fluorescently-labelled (ATT0550) gRNAs, together with the presence of a GFP 

tag expressed by the pPlatTET-gRNA2 plasmid, allowed for co-transfected cells to be sorted 

by flow cytometry. To set gates for sorting based on ATT0550 and GFP, a fluorescence minus 

one (FMO) approach was employed; single transfections were set up whereby Jurkat cells were 

electroporated either with gRNA (ATTO550; Figure 5.20A) alone, or pPlatTET-gRNA2 

plasmid (GFP) alone (Figure 5.20B). Twenty-four hours following the transfection of Jurkat 

cells with pPlatTET-gRNA2 and gRNAs targeting either the cg17134153 (FCRL3; Figure 

Figure 5.19: Luciferase reporter assay of (A) FCRL3 and (B) JAZF1 promoter constructs in Jurkat cells. 

Relative luciferase values were normalised to those generated by the respective empty vector (either 

unmethylated or methylated), which was given a value of 1. Reported p-values were generated by one-way 

ANOVA with Tukey’s multiple comparisons (A) and a two-tailed t-test (B). Three separate transfections were 

run for each condition, and bar represent the mean of these three transfections, with error bars denoting the 

standard error of the mean.  
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5.20C), cg21124310 (ANKRD55/IL6ST; Figure 5.20D), cg07522171 (JAZF1; Figure 5.20E) 

regions, or the non-targeting negative control (Figure 5.20F), double-positive cells were sorted 

based on the gates set from the single transfections. The recovery of double-positive cell was 

low (< 4%), largely owing to the fact that the vast majority of cells were negative for GFP. 

Double-positive cell were sorted, then split into three separate cultures and incubated for a 

further 48 hours. Following this incubation, and prior to harvesting and lysis of cells for 

DNAm analysis, cells were visualised using a fluorescent microscope (Olympus CKX53) to 

qualitatively assess the expression of GFP by transfected cells. GFP fluorescence of 

transfected cells was found to be highly variable 48 hours following transfection, as is shown 

for the cg17134153 gRNA1 (Figure 5.21A) and negative control gRNA (Figure 5.21B) 

conditions.  
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Figure 5.20: Flow sorting of cells co-transfected with the pPlatTET-gRNA2 plasmid and gRNAs. Cells 

transfected with pPlatTET-gRNA2 plasmid were sorted based on fluorescence of the GFP tag, and those 

transfected with gRNAs targeting regions harbouring CpGs of interest were sorted based on ATTO550. Gates 

for sorting GFP and ATTO550 positive cells were determined using a fluorescence minus one (FMO) 

approach, by performing single transfections with either (A) ATTO550 alone or (B) GFP alone. These gates 

were then used to sort double-positive cells transfected with plasmid and gRNA targeting either (C) 

cg17134153, (D) cg21124310, (E) cg07522171, or (F) a non-targeting negative control gRNA. 
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5.8.2 DNA methylation quantification of co-transfected cells 

DNAm was quantified by pyrosequencing 48 hours following sorting of double positive cells. 

However, methylation at the CpGs of interest was not significantly reduced in the cells 

transfected with the respective gRNA (Figure 5.22). There was in fact a marginal increase 

relative to the negative control observed in cells transfected with the gRNA targeting 

cg17134153 (Figure 5.22A; gRNA_1). At cg21124310, no significant difference was observed 

between targeting gRNAs and the negative control (Figure 5.22B), as was also the case for 

cg07522171 (Figure 5.22C). These data would suggest that either the gRNAs are not able to 

target the regions of interest, or that the system requires further optimisation. 

 

 

 

100µm 100µm 

cg17134153 (gRNA_1) 

Negative Control gRNA 

Figure 5.21: Representative microscopy images of co-transfected cells. Bright-field (left panels) 

and green fluorescence protein (GFP; right panels) images at 48 hours following co-transfection with 

pPlatTET-gRNA2 and targeting gRNA for (A) cg17134153 (gRNA_1) and (B) negative control. 
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5.9 Discussion 

The results described in this Chapter build on the observations in Chapter 4 by demonstrating 

that DNAm at CpG sites associated with RA risk variants in cis has the capacity to influence 

transcriptional regulation. In doing so, a number of candidate genes are revealed to be mediated 

by local CpG methylation at these loci, primarily in CD4+ T cells. This represents the first 

integrated analysis of genetic risk, DNAm, and gene expression in isolated lymphocytes from 

a relevant cohort of patients, and as such furthers our understanding of how non-coding risk 

polymorphisms manifest at the level of cellular phenotype. As well as characterising epigenetic 

regulatory mechanisms through which RA genetic susceptibility influences pathogenic CD4+ T 

cell phenotypes, these findings highlight potentially targetable pathways that are relevant to 

immune dysregulation more generally.  

5.9.1 DNA methylation provides mechanistic insight into complex genetic disease 

mechanisms 

The analysis pipeline employed in Chapters 4 & 5 primarily evaluated the role of DNAm in RA 

pathogenesis, and complex disease more generally, in the context of previously-reported 

genetic risk loci.  Alternative approaches have also been described in which disease-associated 

methylation changes are first defined based on differential DNAm between patients and 

controls, irrespective of genetic background. Applying this approach in peripheral blood 

mononuclear cells, with subsequent eQTM mapping at disease-associated CpGs and causal 

inference testing (CIT; treating RA diagnosis (case/control) as the outcome phenotype), has led 

to the discovery of putative novel candidate genes such as PARP9305. Nonetheless, the 

advantage of defining disease-associated DNAm modifications based on their association with 
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Figure 5.22: DNA methylation quantification in Jurkat cells co-transfected with the pPlatTET-

gRNA2 plasmid and synthetic guide RNAs. DNA methylation was quantified by pyrosequencing 

following transfection with guide RNAs targeting either (A) cg17134153 (FCRL3), (B) cg21124310 

(ANKRD55/IL6ST), or (C) cg07522171 (JAZF1).  
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DNA variants is a reduction in the levels at which reverse causation can occur. Using patient 

genotype to infer mediation as opposed to DNAm, which is dynamic with regards to 

development and tissue context, allows for the associations to be ‘anchored’ (i.e. all 

modifications are known to occur downstream of genotypic variation). 

Here, CIT was employed to determine the probability of a model under which DNAm acts as a 

mediator of genetic effects on gene expression. This method requires that all measured variables 

(genotype, DNAm, gene expression) are collected from the same individual, with a series of 

conditional correlation tests used to infer causality between molecular measures260. One 

drawback of using the CIT approach to infer causality is that the method is susceptible to 

measurement error, which could potentially lead to the incorrect model being derived347. For 

this reason, the results described here may represent an underestimate of the true extent of SME 

regulatory models at RA risk loci. This method is also susceptible to pleitropic effects, whereby 

genetic variation influences multiple traits which are highly correlated, such as DNAm and 

chromatin accessibility. 

Mendelian randomisation (MR) is an approach that further capitalizes on the static nature of 

the genome by leveraging genetic variants as instrumental variables to infer causality between 

a modifiable exposure (i.e. DNAm) and an outcome measure (gene expression or disease)348. 

One advantage of MR is that, unlike CIT, it does not require that all traits are measured in the 

same individual, and as such can combine large datasets across multiple studies. Indeed, a 

recent study integrating genotypic variation, DNAm, and gene expression to infer causality in 

molecular traits associated with skeletal muscle demonstrated that MR and CIT represent 

complimentary approaches259. 

Ultimately, however, causality in molecular traits that are determined based on cross-sectional 

patient data will require validation in vitro. One such limitation of quantitative trait locus 

mapping is that this approach is unable to localise the precise causal variant reponsible for the 

observed effects, and instead nominates risk haplotypes across LD blocks. Following the 

mapping of cis-meQTLs, the approach taken here was to select the variant exhibiting the 

strongest association with DNAm levels for subsequent analyses. However, this is unable to 

conclude causality, particularly in highly polymporphic regions with extensive LD between 

variants. In addition to this, it has been suggested that susceptibility loci for complex 

autoimmune trait such as RA may not be attrituable to single variants, but rather multiple 

variants in LD that map to distinct enhancers and influence gene expression in relevant 

pathophysiological cell types349. The use of statistical approaches to fine-map disease 

associations, with follow-up functional studies of differential protein binding to risk alleles and 
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enhancer activity in Jurkat cells, has been performed in an attempt to pintpoint causal variants 

at RA risk loci350. This approach was able to provide experimental evidence for functional RA-

associated variants at CD28-CTLA4 and TNFAIP3350. Further work to map credible causal 

variants will be necessary to prioritise SNPs for validation studies. 

In addition to informing mechanistic understanding of disease genetics, idenfitication of 

meQTLs provides a complimentary approach to mapping disease heritability beyond 

considering eQTLs in isolation. As with eQTLs, meQTLs are enriched at disease-associated 

loci, and mapping molecular QTLs associated with traits such as DNAm and histone 

modifications provides unique information regarding the disease heritability attributed to 

particular SNPs351.  

5.9.2 FCRL3 – a shared mechanism of lymphocyte-mediated genetic risk 

Only one instance of DNAm mediation at RA risk loci was highlighted in B cells, with this 

effect mapping to chromosome 1q23.1 associated with the expression of FCRL3. This particular 

observation was compelling given that this locus was also identified as putatively regulating 

expression of this candidate gene in CD4+ T cells by the same mechanism, with one CpG site 

(cg01045636) identified as a potential mediator in both cell types. 

The mechanism explaining observed associations at the FCRL3 promoter was also confirmed 

here experimentally. This was informed by prior work which had localised a functional variant 

(rs7528684; -169 C → T)346, which was likely tagging the cis-meQTL regulatory SNP 

identified  in this analysis. As well as confirming associations between this variant and RA 

susceptibility, this same study also revealed this variant to be a risk factor in autoimmune 

thyroid disease (Grave’s disease & Hashimoto’s thyroiditis) as well as systemic lupus 

erythematosus346. 

Reporter gene assays were able to confirm the allelic effect on transcription, as well as the 

downstream function of DNAm at cg17134153 and cg01045635 in mediating this effect in 

CD4+ T cells. It should be noted, however, that given the presence of additional CpGs in the 

cloned promoter, the regulatory effect cannot be attributed exclusively to these two CpGs. 

Nonetheless, the functional SNP at this locus maps to a binding site of the NFκB binding site 

(Figure 5.23; highlighted in the purple box) that has been experimentally determined by ChIP-

seq209, 210. The first study to describe the rs7528684 functional variant in the FCRL3 promoter 

also demonstrated that the risk allele (C) confers increased binding of the NFκB transcription 

factor346. The two CpG sites (cg17134153 & cg01045635) causally implicated in CD4+ T cells 

at this locus, and confirmed by reporter assays, map to a binding site of RNA polymerase II 
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(Figure 5.23; highlighted in green boxes). A mechanism may thereby be proposed in which 

increased NFκB binding at the risk allele inhibts methylation of CpGs at the RNA polymerase 

II binding site, resulting in the promotion of FCRL3 transcription. The data presented in this 

chapter therefore builds on findings from previous work to provide additional mechanistic 

insight at this autoimmune locus. 

 

FCRL3 itself encodes a transmembrane glycoprotein that is the third member of the Fc receptor-

like (or Fc receptor homologue) family of proteins, each of which are structurally related to the 

antibody-recognising Fc receptors352. To date, eight members of this family have been 

described (FCRL1-6, FCRLA, FCRLB) and whilst the ligand recognised by the FcRL3 protein 

remains unknown, the highest levels of expression are seen on B cells353. FCRL3 (as well as 

FCRL2 & FCRL5) harbours both immunoreceptor tyrosine-based activation motifs (ITAMs) 

and immunoreceptor tyrosine-based activation motifs (ITIMs) in the intracellular domain, 

which signal to activate and inhibit immune signaling cascades respectively353. This suggests 

that these receptors may play a role in fine-tuning of adaptive immune signaling.  

In the peripheral blood, FcRL3 is expressed by B cells, natural killer (NK) cells, and a 

population of naturally occurring regulatory T cells (nTregs)354. This is in agreement with 
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Figure 5.23: DNA methylation and transcription factor binding at the FCRL3 promoter in CD4+ T 

cells and B cells. Expression of FCRL3 in both cell types is regulated by an RA risk variant (rs7528684, 

purple box) at which the risk allele (C) promotes transcription through increased binding affinity of the NFκB 

transcription factor. Consistent with this, rs7528684 maps to a binding site of RELA (NFκB p65 subunit). 

This variant appears to influence expression of FCRL3 in part through modified DNA methylation at CpGs 

in the promoter region. In CD4+ T cells, this occurs via methylation at cg17134153 and cg01045636 (both 

highlighted in the green boxes), that map to the RNA polymerase II binding site. In B cells, cg01045635 and 

cg19602479 were implicated as potential regulatory cis-CpGs. Interestingly, the functional variant maps to 

a regulatory T cell (Treg) enhancer and a B cell active transcription start site flanking (TssAFlnk) region 

based on chromatin state data, whilst the cis-CpGs map to an active transcription start site (TssA) and 

TssAFlnk in these cell types respectively. In primary T helper (CD4+) cells, this entire region is quiescent, 

suggesting that the observed regulatory effects in CD4+ T cells may be restricted to the Treg subpopulation. 

. 



 

202 
 

observations that the regulatory region to which rs7528684 and the cis-CpGs are located is 

within active chromatin (TSS, flanking TSS, and enhancer) in B cells and Tregs, whereas this 

region is quiescent in total CD4+ T cells (Figure 5.23). Therefore, whilst our analysis has been 

performed on total CD4+ T cells, the results at this particular locus actually reflect a mechanism 

that applies to a subset of these cells. That FcRL3 is not expressed by any other CD4+ T cell 

subsets likely explains why the observed associations have not been diluted in the larger 

population of cells. Interestingly, nTregs expressing FcRL3 do not proliferate in response to the 

T cell mitogen IL-2, suggesting a potential functional defect354. Subsequent work has illustrated 

that this subset of regulatory T cells are reduced in their capacity to attenuate effector T cell 

responses354. In a disease context, increased expression of FcRL3 on Tregs (as well as CD8+ 

and gd T cells) in patients harbouring the risk allele at rs7528684 not only correlated positively 

with DAS28 disease activity, with levels also slightly increased in patients with erosive RA 

compared with non-erosive disease355. 

In B cells, FcRL3 functions to inhibit signalling at the B cell receptor (BCR), as such preventing 

activation-induced cell death that would ordinarily occur as a result of BCR stimulation356. The 

authors of this study hypothesised that by increasing the threshold for B cell activation at the 

BCR, FcRL3 contributes to autoimmunity through a reduction in tolerogenic anergy and 

deletion of autoreactive B cells. Alternatively, a role for FcRL3 in B cell activation and 

proliferation in the presence of toll-like receptor 9 (TLR9) co-stimulus has been described357. 

Genetic effects on cell-mediated pathogenesis in RA at this locus may therefore extend beyond 

a single cell type. The precise function of this gene in lymphocyte biology awaits further 

clarification, though limited studies to date highlight possible roles in dysregulated B cell and 

regulatory T cell responses.  

5.9.3 Genetic pleitropy highlights additional complexity in disease associations  

At the RA risk locus mapping to chromosome 5q11.2, potential pleiotropic regulation of 

ANKRD55 and IL6ST occurred downstream of cis-meQTLs at four CpG sites. As well as 

highlighting a long range CpG-promoter interaction in transcriptional regulation, this 

demonstrates the limitations in attributing genetic risk at GWAS variants to the nearest gene. 

In addition, the finding at this locus indicates that disease-associated variants may confer risk 

by altering expression of multiple genes. The pleiotropic effect at chromosome 5q11.2 has been 

described previously, with the RA risk association and CD4+ T cell eQTL for ANKRD55 and 

IL6ST determined to have high likelihood of a shared causal variant342. 
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This particular locus is notable for its association with both autoantibody-seronegative and 

autoantibody-seropositive disease104. Furthermore, the lead regulatory SNP identified here in 

the meQTL analysis (rs6859219) has also been associated with MS susceptibility358. Fine-

mapping studies have narrowed down the list to four credible variants that are likely causal in 

RA350. None of these variants were present in the input genotype dataset used to map meQTLs 

in this project, however, and so the relative associations with DNAm could not be assessed. 

Nonetheless, Bayesian co-localisation confirmed that the meQTL signal and disease association 

likely share a causal variant at this locus, and as such the regulatory SNP identified here 

(rs6859219) likely tags one of these SNPs. Amongst these credible SNPs defined by Westra et 

al.350, two are in high LD (r2 = 0.85) with rs6859219 (rs10213692 & rs71624119), whilst the 

other two are in relatively low LD (rs7731626, r2 = 0.45 & rs11377254, r2 = 0.30). 

IL6ST represents an enticing candidate gene given that it encodes the interleukin 6 signal 

transducer (gp130). Gp130 is a co-receptor expressed on all cells and binds to IL-6 complexed 

to either the membrane-bound IL-6 receptor (IL6R, CD126; cis signalling) or the soluble IL-6 

receptor (sIL6R; trans signalling)359. This transmembrane receptor is therefore essential for the 

transduction of IL-6 signalling at the cell surface to activate transcriptional programs. The 

cytokine IL-6 has diverse roles in the pathogenesis of RA, including promotion of chronic 

inflammation, humoral immunity, and activation of bone-resorbing osteoclasts360. 

The risk variant at this locus was found to regulate expression of IL6ST as well as ANKRD55, 

doing so through altered methylation at four CpG sites. Unlike IL6ST, the function of ANKRD55 

is unknown, though the gene codes for the Ankyrin Repeat Domain 55. Ankyrin repeats are 

common protein motifs that function to mediate interactions between proteins361. A cis-eQTL 

at rs6859219 regulating expression of ANKRD55 has been characterised previously, with this 

effect limited to CD4+ T cells and absent in CD8+ T cells, CD14+ monocytes, CD19+ B cells, 

and CD56+ NK cells362. This is also congruent with our findings that ANKRD55 was not 

expressed in B cells. Deciphering whether or not up-regulation of both genes at this locus 

increases susceptibility in RA will be an interesting future research question. 

5.9.4 DNA methylation implicates common pathways in immune-mediated disease 

Extending the analysis beyond RA loci highlighted similar putative mechanisms of DNAm-

mediated gene expression at regions conferring susceptibility to MS and asthma, two clinically 

distinct IMDs. This was particularly pronounced in CD4+ T cells, with CpGs at chromsome 

17q12 likely modulating expression levels of ORMDL3 and GSDMB, exemplifying a 

mechanism of genetic risk that was common to RA, MS, and asthma. Indeed, the findings here 
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confirm the mechanism previously described in whole blood and isolated CD4+ T cells, with 

these two CpGs found to regulate expression of ORMDL3 and GSDMB in the context of asthma 

genetic risk363. The study by Kothari and colleagues reported an additional three CpGs 

associated with ORMDL3 transcript levels, and four for GSDMB, likely reflecting the larger 

sample sizes and use of a targeted, as opposed to genome-wide, approach to identifying 

molecular associations363. 

The protein product of ORMDL3, orosomucoid like 3, is a member of the ORMDL family of 

transmembrane proteins that are localised to the endoplasmic reticulum364. ORMDL3 has been 

shown to regulate the import of calcium ions into the ER and, in doing so, promoting the 

unfolded protein response365. In CD4+ T cells, ORMDL3 appears to negatively regulate 

production of IL-2, a cytokine which has diverse roles in the immune system366. This therefore 

highlights a plausible pathway through which decreased ORMDL3 expression associated with 

the risk allele may confer immune dysregulation in conditions such as RA, asthma, and MS, as 

well as a number of additional IMDs such as inflammatory bowel disease367. 

The other gene affected by genetically-conferred DNAm at this locus, GSDMB, encodes 

gasdermin B (GSDMB). The gasdermin proteins, of which GSDMB represents one of five 

encoded in the human genome (GSDMA, GSDMB, GSDMC, GSDMD, and GSDME/DFNA5), 

are critical in pyroptosis – a mechanism of programmed cell death that occurs typically upon 

microbial infection, and drives tissue inflammation368. Well-characterised functions of GSDMB 

in lymphocytes have yet to be defined, though recent work in monocyte cell lines suggests that 

this protein may contribute to inflammatory disease by promoting non-canonical pyroptosis369. 

In this pathway, following infection GSDMB binds to caspase 4 and increases its enzymatic 

activity, which subsequently cleaves gasdermin D to induce pyroptosis and the release of pro-

inflammatory factors369. 

Another interesting locus that spans all three IMDs included in our analysis was at chromosome 

7p15.1, where increased DNAm at three CpG sites (cg07522171, cg11187739, cg16130019) 

was associated with the risk variant appears to reduce expression of the JAZF1 gene. This gene 

was first described upon the discovery that it forms a recurring fusion with another zinc finger 

gene (JJAZ1) during chromosomal translocations in endometrial cancer370. Juxtaposed With 

Another Zinc Finger Protein 1 (JAZF1) has been shown to interact with TAK1, a member of 

the orphan nuclear receptor family of transcription factors, and as such is also referred to as 

TAK1-Interacting Protein 27 (TIP27)371. The interaction of JAZF1 with TAK1 in the nucleus 

inhibits the activation of transcription by the latter371.  
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Whilst variants mapping to JAZF1 have been associated with a range of inflammatory 

conditions, including RA, MS, and asthma as described in this study, little research has 

examined possible roles in adaptive immunity. In hepatocytes, both in vitro and in vivo mouse 

data suggest that JAZF1 may play a role in suppressing the production of pro-inflammatory 

cytokines372. This was accompanied by reduced activation of the p38 MAP kinase, JNK, and 

NFkB signalling proteins372. This mechanism was described in the context of systemic 

inflammation in models of non-alcoholic fatty liver disease, induced in vitro by the treatment 

of cell lines with palmitic acid, or in vivo by feeding mice a high fat diet. Whether or not these 

findings would translate to lymphocytes in the context of autoimmune disease remains to be 

seen. 

These results suggest that DNAm may be crucial in mediating genetic risk spanning multiple 

immune-mediated diseases. Analysis of shared genetic susceptibility in asthma and 

autoimmune conditions revealed extensive overlap, with such loci enriched in regulatory 

regions active in lymphocytes, and pathway analysis implicating T cell function107. An analysis 

of 107 risk SNPs across seven autoimmune diseases found 47 of these (44%) to be associated 

with more than one condition, likely explaining observations that autoimmunity segregates in 

families more often than would be expected by chance106  

5.9.5 Limitations 

One limitation of meQTL analyses, and QTL mapping more generally, is the inability of this 

method to localise the variant responsible for observed associations with molecular traits. 

Therefore, whilst this approach is useful in elucidating the CpGs and genes involved in disease 

aetiology, the nomination of multiple putative regulatory variants presents a major obstacle for 

follow-up functional studies. As a result, a more concerted effort to validate functional variants 

will be required to confirm these molecular associations. Methods that allow functional activity 

of thousands of candidate variants to be assessed in parallel have proved successful in 

unravelling transcriptional regulation at OA loci373. 

 In vitro reporter assays can assist in validating allelic effects on transcriptional regulation, as 

well as indicating whether or not DNAm actively represses this process or simply represents a 

footprint of active transcription (i.e. allele-specific transcription factor binding). Whilst 

experimental validation of the regulatory function of a SNP and cis-CpGs on gene expression 

at the FCRL3 promoter were successful, effects at other loci were not validated. In the case of 

JAZF1, lack of luciferase activity in Jurkat cells may indicate that the amplified region 

harbouring the cis-CpGs did not sufficiently capture the gene promoter, or alternatively that 
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this regulatory element is not active in this particular cell line. Therefore, DNAm-mediated 

regulation of an eQTL effect has been experimentally validated at one RA risk locus, 

mechanisms at additional loci described here are based exclusively on in vivo molecular 

associations. 

Notwithstanding the utility of reporter assays in validating associations, comprehensive 

evidence of DNAm in a genomic context mediating expression levels of candidate genes would 

require direct alterations to site-specific methylation in the genome. Attempts to induce DNA 

de-methylation at CpGs of interest in a Jurkat cell line using a CRISPR-dCas9 system were 

unsuccessful, precluding the evaluation of such effects. The reasons for the failure of this 

approach are not clear, but high cell death following plasmid transfection yielded low number 

of viable co-transfected cells and presented a challenge. Whether the observed lack of de-

methylation reflects a problem with the experimental procedure generally, such as the use of 

co-transfection as opposed to inserting the gRNA sequence into the plasmid, or simply an 

inability of the gRNAs to target regions of interest, is uncertain at this time. Use of an 

appropriate positive control that has previously been shown to induce targeted de-methylation 

would resolve this. Nonetheless, subject to further optimisation (discussed in Chapter 6), this 

approach has the potential to unequivocally establish the impact of specific cis-CpGs in altering 

expression levels of genes that are of interest pathophysiologically. 

All molecular data integrated in this analysis were generated using array-based technologies. 

Whilst these technologies allow for affordable quantification of DNAm/transcript levels in 

many samples, findings are limited to those features included on the array. Particularly in the 

case of the MethylationEPIC array, whilst this platform offers a considerable increase in 

coverage relative to the HumanMethylation450 BeadChip that it has superseded, the ~850,000 

sites interrogated by this array only represent around 3% of the 28 million CpGs present in the 

human genome. Whole-genome bisulphite sequencing, as well as methylation-dependent 

sequencing, a method similar to ChIP-seq that involves isolation and sequencing of methylated 

DNA, are approaches that can be applied to circumvent this issue. These techniques would also  

allow the impact on DNAm of disease haplotypes beyond individual SNPs to be extensively 

assessed. The importance of considering haplotype effects has been demonstrated in a recent 

study, whereby >36% of methylated regions influenced by trait-associated haplotypes were 

attributed to non-SNP variation such as insertions/deletions and copy number variants374.   

Finally, the findings described here relate to molecular characterisation of peripheral 

lymphocytes in RA patients. Whether such conclusions can be extrapolated to cells that migrate 

into the joint site and exert effector functions within this microenvironment cannot be 
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concluded. Indeed, fibroblasts that exert joint-specific functions have been shown to exhibit 

distinct epigenetic profiles in relation to DNAm and histone marks229. The extent to which the 

DNA methylome, as well as other epigenetic modifications, confer different cellular properties 

across distinct tissue sites will be an important consideration for future studies. 
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Chapter 6 – Conclusions and Future Directions 

6.1 Summary and significance of key findings 

The aims of this project were to comprehensively map disease-specific lymphocyte DNAm 

changes in early RA, and to examine the role of DNAm in these cells in mediating previously 

defined genetic risk in this immune-mediated disease. As such, this represents the first analysis 

of paired genotype, DNAm, and gene expression data in CD4+ T cells and B cells in a relevant 

disease context. 

The first observation, that no differentially methylated positions were identified in either cell 

type, was contrary to findings described in a number of previous studies in cells of both the 

peripheral blood and stromal tissues. The lack of significant differences in DNAm levels 

between patients and controls at any CpG sites likely reflects to some degree the use of a 

matched disease control group of non-RA arthritis patients in place of healthy controls. 

Matching for acute phase response (as well as age and sex) and the use of robust statistical 

approaches were features of the work presented here, and it is conceivable that confounding 

sources of differential methylation between patients and controls have been under-reported in 

this field to date. The presence of differential variability in DNAm in RA patients does however 

suggest a disease-specific deviation from the stable patterns of DNAm in health (or in the case 

of the present study, non-RA arthropathies). However, whilst the identification of differentially 

variable positions has emerged as an important tool in the selection of disease-specific DNAm 

features, most large differences in methylation observed between patients and controls are 

believed to be driven by genetic variants (meQTLs) and cell type heterogeneity375. 

Genetically conferred patterns of DNAm were approximated by mapping meQTLs in cis and 

trans across all patients in both cell types. Such effects in cis were present at ~7.5% of all CpGs 

tested, indicating that genetic variants are a prominent source of variability in DNAm levels 

genome-wide in CD4+ T cells and B cells, even in the relatively small sample cohort included 

here. Importantly, genetic variants that had previously been identified at susceptibility loci for 

RA, as well as other immune-mediated (MS, asthma) and non-immune-mediated 

(osteoarthritis) diseases were found to function as meQTLs in these cell types. Many of the 

highlighted RA loci were previously revealed to exhibit cis-regulatory activity on expression 

of candidate genes in these cells139, and DNAm sites regulated in cis are enriched at active 

chromatin regions and binding sites of transcription factors, suggesting DNAm modifications 

impact downstream gene transcription. These findings confirmed the utility of cell-specific 

DNAm profiling and meQTL mapping in assigning regulatory function to non-coding risk 
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variants. Having performed the analysis in cell types known to mediate RA pathogenesis, and 

focussed on relevant patient cohorts, cis genetic-epigenetic interactions in the context of early 

RA have been described here for the first time. 

Finally, given the findings described above, integration of matched transcriptomic data allowed 

for DNAm changes associated with risk loci to be related to transcript levels of proximal 

candidate genes at these loci. By identifying such associations, and using a causal inference test 

to infer molecular mediation by DNAm, a number of candidate genes (most prominently in 

CD4+ T cells) were implicated downstream of risk-associated cis-meQTL effects. This analysis 

also highlighted overlap in methylation-mediated genes between RA and other immune-

mediated diseases, suggesting common regulatory effects that perturb lymphocyte function 

across multiple conditions. 

Collectively, the results presented here add to our understanding of mechanisms through which 

non-coding genetic risk in RA engenders pathological adaptive immune responses in 

individuals harbouring risk alleles. Given lymphocytes are a popular cell substrate for EWASs 

in RA and other lymphocyte-mediated autoimmune diseases, the cis-genetic effects described 

here represent an important reference point when assigning differential patterns of methylation 

to sequence variants. The presence of DNAm modifications that influence transcription at RA 

risk loci adds credence to the candidacy of putatively causal genes for functional validation. 

6.2 Outstanding questions for future study 

In addition to answering some important mechanistic questions regarding genetic risk in 

complex immune mediated diseases, the work presented here leaves some questions 

unanswered, and generates potentially interesting hypotheses for future study. 

6.2.1 What are the relative genetic and non-genetic influences on DNA methylation in early 

arthritis? 

This study is unique in that lymphocyte DNAm changes associated with RA have been assessed 

in an EWAS, with genetic effects on DNAm in the same cohort quantified by mapping meQTLs 

genome-wide, as well as at established risk loci. Whilst meQTL mapping revealed that risk 

alleles at RA-associated loci can influence DNAm in cis, with strong allelic effects at some 

loci, such effects were identified across patients with varying arthropathies, and as such were 

not RA-specific. Whether differential DNAm in RA patients is conferred by genetic or 

environmental risk factors, and to what extent these two interact, remains largely unknown, and 

is usually not addressed in typical EWASs. 
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Studies comparing whole blood of monozygotic twins with dizygotic twins showed that the 

overall contribution of genetics to inter-individual variability in DNAm was low compared with 

non-shared environmental effects376. However, at positions with variable, intermediate (mean 

DNAm 20%-80%) DNAm levels, the contribution of genetic factors to variation in methylation 

was considerably higher376. This is consistent with the findings from the meQTL analysis in 

CD4+ T cells and B cells described here, with meQTL-associated CpGs having more 

intermediate levels of DNAm than those not associated with genetic variation. 

Previous observations that CpG sites at which DNAm is highly heritable were enriched at CpG 

island (CGI) shores, intergenic regions, and distal promoter regions, with a depletion in CGIs 

and shelves was consistent with the mapping of meQTLs described in Chapter 5377. These 

findings demonstrate that the contribution of genetic factors to DNAm differs depending on the 

genomic context. Interactions between environmental RA risk factors and genetic variants that 

influence DNAm may represent a mechanism through which dynamic epigenetic changes act 

to integrate genetic and non-genetic sources of risk in complex autoimmune disease.  

There is now good evidence that age, sex, and smoking – all of which represent risk factors in 

RA – can interact with genetic effects to shape the DNA methylome376, 377. Isolated instances 

of such effects in RA have now been described, with DNA methylation at a CpG in the MHC 

region potentially mediating a gene-smoking interaction that confers risk of developing ACPA+ 

RA378. Interaction effects between disease diagnosis and genetic variation on DNAm were not 

prevalent in the analysis described in the present study, and this may reflect the fact that 

diagnosis (RA or non-RA) represents a confluence of many such risk factors. Collecting large 

cohorts of comprehensively phenotyped patients with detailed data for non-genetic risk factors 

such as smoking may allow for gene-environment effects on DNAm to be better characterized. 

This will help to reveal the extent to which DNAm modifications associated with RA are 

mediated solely by genetics, as opposed to a combination of genetic and environmental 

exposures. For example, the CD4+ T cell meQTL described in chapter 5 at which cis-CpG 

DNAm regulates transcription of ANKRD55 and IL6ST maps to a chromatin region that 

becomes accessible upon stimulation of CD4+ T cell subsets340. 

Allele-specific methylation/expression (ASM/ASE) may also facilitate the identification of 

such interactions between genetics and environment. This involves comparing relative 

methylation/expression associated with each allele copy in individuals who are heterozygous at 

the regulatory SNP, and as such controls for inter-individual confounding variability (relative 

effects are measured within the same individual). This approach has been applied to human 

gene expression data, and offered increased sensitivity upon eQTL interaction analyses, 
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identifying 35 genetic × environment effects379. Employing studies of ASM in conjunction with 

meQTL analysis can yield greater discovery power than using either in isolation, and tissue-

specific ASM has been used to facilitate the identification of causal variants in complex 

neurological disease254. Systematic identification of meQTLs/ASM that are impacted by 

environmental factors would provide further clues as to the extent to which the DNA 

methylome functions at the interface of genetic and environmental risk during complex diseases 

such as RA.  

6.2.2 Are DNA methylation patterns in peripheral lymphocytes reflective of joint-homing 

cells? 

In RA, though the initial break in immune tolerance occurs in the primary and secondary 

lymphoid organs, and immune activation with autoantibody production is initiated in the 

periphery, adaptive immune cells exert important effector functions in the joint tissue380. 

Though studies of epigenetic signatures in FLS have given insights into DNAm changes that 

occur in cells resident within the synovial tissue174, 229, no such analysis has been performed of 

migratory lymphocytes in the joint tissue itself.  

Nonetheless, pro-inflammatory immune cells within the RA joint have been described at the 

single cell level58, and epigenetic characterisation of these cells would undoubtedly aid in 

understanding whether DNAm changes precede this transition to a pro-inflammatory 

phenotype. Indeed, the single-cell analysis of joint cells has described three distinct CD4+ T 

cell subsets, with expression profiles distinguishing these as cells with different effector 

functions58. A population of CD4+ T cells that are expanded in RA synovium express markers 

consistent with an increased capacity to migrate to inflamed tissue sites, and promote local B 

cell autoantibody production60. It may therefore be the case that cell subtype-specific changes 

that occur in the synovium are missed by profiling bulk lymphocyte populations in the blood. 

A study aimed at comprehensive epigenetic profiling of peripheral and joint-resident 

lymphocytes in RA patients, perhaps at the single cell level, would be an interesting approach 

to answer such questions. Indeed, extending analyses to whole-genome quantification of 

DNAm using WGBS will be a worthwhile endeavour to extend analyses beyond pre-

determined probes on an array, and capture changes at regions that are not targeted by such 

technologies as the MethylationEPIC array. 

In the current study, patients with early RA were specifically recruited to facilitate the 

identification of DNAm changes that precede long-term chronic inflammation. However, given 

that DNAm modifications in a given cell are temporally dynamic (i.e. may differ throughout 
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stages of disease), a longitudinal assessment of patients from pre-RA to established RA would 

allow for the distinction of alterations that precede RA from those that are a consequence of 

disease. As such, moving forwards more comprehensive insights into epigenetic mechanisms 

of disease will require that such changes are considered not only in space (tissue), but also in 

time (disease stage). 

6.2.3 How do changes in DNA methylation coordinate with other epigenetic mechanisms of 

transcriptional regulation? 

Regulation of gene expression is a complex process that involves coordinated changes in 

biochemical processes that can be directly or indirectly influenced by variants in the genome 

sequence. DNAm therefore likely represents a proxy read out of multiple molecular processes 

that occur during transcriptional regulation, including chemical modification of histone 

proteins, accessibility of chromatin, and binding of transcription factors. This is consistent with 

the results described in Chapter 4 indicating that CpGs associated with RA genetic risk loci are 

over-represented in enhancer regions and at the binding sites of some transcription factors, 

including NFkB. Such enrichments were, however, assigned based on data from publicly 

available consortia datasets. To gain a more comprehensive picture of the regulatory 

mechanisms that control the levels of gene expression at risk loci in immune-mediated diseases 

such as RA, multiple sources of evidence would ideally be profiled in patient cohorts.  

Indeed, RA-associated variants identified in GWASs are particularly enriched in regions of 

chromatin that become active upon stimulation via the T cell co-receptors (CD3/CD28) as well 

as with polarizing cytokines117, 340. This would suggest that certain regulatory variants may exert 

their effects only after the cell has encountered a stimulus, meaning that meQTLs conditional 

on cellular activation state may well exist and contribute to expression levels of candidate 

genes. Given that most large-scale consortia efforts to map chromatin modifications or binding 

events of transcriptional regulators are performed in unstimulated cell lines or healthy human 

subjects, localisation of cis-regulatory effects to such regions may be overlooked. 

Advancements in technology now allow for multiple markers of transcriptional regulation to be 

concurrently profiled in cell types of interest. Methods have been developed that enable not 

only profiling of DNA methylation and transcription from an individual cell, but also assays to 

define areas of accessible chromatin, providing a powerful approach for integrating multiple 

layers of regulatory information381. Whether DNAm modifications at risk loci occur at an earlier 

time point to the increase in chromatin accessibility and transcription factor binding, or 



 

213 
 

represent a secondary event that has subsequent effects on transcription, remains to be 

determined. 

6.2.4 How do risk-associated modifications to DNA methylation impact cellular phenotype 

in immune-mediated diseases? 

The focus of the work described in this project was to define the mechanisms through which 

DNAm can contribute to transcriptional regulation of candidate genes at known genetic risk 

loci. Ultimately, however, genetic risk in complex disease mediates pathogenesis when such 

regulatory effects manifest at the level of cellular function. As was discussed in Chapter 5, 

many of the candidate genes highlighted as being subjected to DNAm-mediated regulation in 

this analysis have poorly defined immunobiological functions. Functional cellular studies must 

now follow to investigate precisely how the up-/down-regulation of these genes leads to 

dysregulated adaptive immunity. 

The final section of Chapter 5 discussed an attempt to induce site-specific DNA de-methylation 

using a CRISPR-dCas9 delivery system to deliver the TET1 catalytic domain to regions 

harbouring CpGs of interest. Whilst unsuccessful, further optimisation of this method in 

lymphocyte cell lines will be valuable in not only validating the regulatory capacity of DNAm 

at these sites, but also in defining the impact of such modifications on cellular function. To this 

end, cell lysates from cells subject to this treatment have been stored, which will allow secreted 

proteins such as pro-inflammatory cytokines to be measured.  

Using the same CRISPR-dCas9 system to induce de-methylation at the FOXP3 promoter and 

Treg-specific de-methylated region (TSDR) in Jurkat cells was found to upregulate expression 

of FOXP3 and confer regulatory T cell properties in this cell line382. The gRNA sequences used 

in this study have now been obtained for use as a positive control in future optimisations. These 

findings also raise the prospect that targeted DNAm modification may be an effective 

therapeutic strategy. Unlike techniques such as RNA interference which target transcript levels 

directly, DNAm is maintained in daughter cells following mitosis, and as a result represents a 

more stable method of controlling gene expression. In addition, as DNAm is dynamic and can 

be reversed, targeting such modifications at loci associated with risk variants should represent 

a safer approach than direct genome editing. Novel systems that allow co-delivery of the TET1 

catalytic domain together with proteins that promote activity of this de-methylating enzyme 

will increase efficacy of these targeted approaches383. As well as the delivery of TET1 catalytic 

domains, the use of DNMT methyltransferase domains will enable targeted methylation.  
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Following validation of such effects in vitro, trials in animal models will be necessary to 

confirm the feasibility and efficacy of this approach for translation to human studies. Currently, 

conclusive evidence that the presence or absence of DNAm at specific locus can confer 

autoimmune properties on a cell are still lacking, though regions highlighted in this study 

warrant further characterisation. Whether or not such an approach proves attainable in a clinical 

setting remains to be seen. Nonetheless, combining DNAm with other sources of molecular 

data clearly represents a valuable means of discovering aetiological genes and pathways in RA 

and related immune-mediated disease. 

The analyses presented in this thesis represent one step in an ongoing effort to link complex 

genetic risk in RA to cellular pathways that may serve as targets for therapeutic intervention, 

or be useful biomarkers of disease prognosis or treatment response. Such efforts are now an 

important focus of functional genomics in the post-GWAS era, where assigning cellular 

phenotype to static genotypes remains a considerable challenge in translating GWAS 

discoveries into patient benefit. 
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Appendices 
Appendix A – Patient Phenotype Data and Sample processing Information 

All patient phenotype data 

 

 

 

 

 

 

 

 

 

EA ID Age Sex Diagnosis RA/ 
nRA Smoking CRP ESR CCP RF  Tender 

28 
Swollen 

28 DAS28 Symptom 
weeks 

809 51 F OIA nRA No 12 29 - - 0 0 3.11 12 
810 56 M RA RA No 7 13 + + 13 3 5.03 52 
813 50 F UIA nRA No 11 10 - + 2 0 3.64 28 
814 31 F CA nRA No 7 9 - - 1 0 2.53 NA 
815 70 F OIA nRA Yes 18 33 - - 7 0 4.84 24 
826 52 F OA nRA No 5 7 - NA 15 0 4.74 NA 
827 50 F RA RA Yes 5 7 - - 13 3 4.51 12 
829 80 F OIA nRA No 52 94 - - 4 2 6.05 16 
834 59 F RA RA No 22 67 + + 18 0 6.05 24 
835 82 M UIA nRA No 43 37 - - 0 0 2.86 16 
837 33 F UIA nRA No 14 13 - - 0 0 2.69 24 
838 27 F RA RA Yes 6 34 + + 3 1 4.63 52 
839 33 M ReA nRA No 20 28 - - 8 3 5.14 20 
840 68 M RA RA No 10 23 - - 6 3 5.16 52 
841 22 M ReA nRA No 11 8 - - 2 0 2.99 8 
842 52 F EA nRA No 0 7 - - 3 0 3.05 52 
844 58 F RA RA No 6 18 + + 0 0 2.30 52 
845 67 F OIA nRA No 8 18 - - 2 1 3.22 52 
854 49 M RA RA Yes 5 10 + - 1 0 2.45 28 
867 63 F ReA nRA No 64 28 - - 2 0 3.80 9 
868 56 M OA nRA No 0 1 - - 0 1 1.15 52 
874 25 F UIA nRA No 10 6 - - 0 0 2.29 1 
878 74 F PsA nRA No 9 16 - - 3 1 3.95 36 
879 79 M ReA nRA No 0 1 - - 0 3 1.46 12 
882 27 F RA RA No 9 63 + + 10 0 5.71 4 

Clinical characteristics of each patient included in the study. EA ID = Unique anonymised identifier given to 

all patients attending the early arthritis clinic; Sex (F = Female, M = Male); Diagnosis = Most recent patient 

diagnosis (CA = Crystal arthritis, EA = Enteropathic arthritis, L/CTD = Lupus/other connective tissue disease-

associated, NIA = Non-inflammatory arthritis, OA = Osteoarthritis, OIA = Other inflammatory arthritis, PsA 

= Psoriatic arthritis, RA = Rheumatoid arthritis, ReA = Reactive arthritis, UIA = Undifferentiated 

inflammatory arthritis, USpA = Undifferentiated spondyloarthropathy); CRP = C-reactive protein (mg/L of 

blood); ESR = erythrocyte sedimentation rate (mm/hour); CCP = cyclic citrullinated peptide test (clinical test 

for anti-cyclic citrullinated protein antibodies, positive (+) or negative (-)); RF = Rheumatoid factor (positive 

(+) or negative (-)); Tender 28 = Tender joint count (0 – 28), Swollen 28 = Swollen joint count (0-28; see 

Chapter 1.2); DAS28 = Disease activity score at 28 joints; Symptom duration weeks = patient-reported 

symptom duration in number of weeks. 
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884 41 F ReA nRA No 9 30 - - 6 0 3.98 8 
891 26 F OIA nRA No 30 78 - - 0 0 4.03 4 
892 71 M RA RA Yes 6 6 + + 1 1 2.47 10 
893 43 F PsA nRA No 10 35 - - 4 3 5.19 12 
896 30 F RA RA No 7 18 - - 11 6 5.17 12 
898 54 F ReA nRA No 5 23 - - 3 0 3.86 12 
905 56 F USpA nRA Yes 5 8 - - 4 0 3.68 32 
912 50 F OIA nRA Yes 5 13 - - 4 2 3.59 12 
915 39 F RA RA Yes 11 33 - - 11 7 5.49 8 
923 79 F ReA nRA No 6 30 - - 6 3 5.05 24 
926 61 M RA RA No 12 12 - - 7 1 4.73 52 
929 48 F RA RA No 11 12 - + 0 0 NA 12 
930 69 F RA RA Yes 19 29 - + 20 0 6.15 12 
932 73 F RA RA Yes 10 86 + + 13 0 6.34 36 
934 79 M RA RA No 5 24 - - 0 0 NA 7 
935 63 F PsA nRA No 5 4 - - 0 0 NA 10 
937 77 F CA nRA No 20 49 - - 0 2 4.27 28 
938 74 M RA RA No 20 65 - + 5 3 5.65 4 
944 51 F RA RA No 11 45 - + 1 2 4.32 6 
945 61 M UIA nRA Yes 5 1 - + 0 0 0.70 4 
946 43 M RA RA No 7 12 + + 0 0 NA NA 
948 53 F RA RA No 53 59 + + 0 0 NA 3 
954 45 F PsA nRA No 5 7 - - 3 1 2.77 52 
957 57 M RA RA No 10 23 + + 17 2 5.66 24 
962 65 M PsA nRA No 8 14 - - 2 2 3.74 4 
965 57 M OA nRA No 8 4 - - 0 0 0.97 NA 
967 62 F PsA nRA Yes 171 111 - - 1 5 5.49 7 
969 38 F ReA nRA No 14 38 - - 0 0 3.55 NA 
973 50 F UIA nRA No 9 24 - - 0 0 NA 4 
974 69 F RA RA No 24 59 - - 0 0 NA 6 
975 54 F RA RA No 9 11 + + 0 0 NA 24 
978 62 F RA RA No 5 5 - - 17 6 5.19 18 
980 20 F ReA nRA No 8 15 - - 4 1 3.65 8 
992 60 F RA RA No 45 10 + + 0 0 NA 16 
995 73 F RA RA No 9 6 - - 18 8 5.44 14 
996 53 F RA RA No 5 4 - - 3 3 2.54 24 
1000 74 F RA RA No 26 7 - - 0 0 NA 3 
1003 51 M RA RA Yes 13 21 + + 8 5 5.36 52 
1005 69 F RA RA Yes 5 32 - + 7 1 5.11 NA 
1008 70 M PsA nRA No 5 1 - - 18 4 4.08 NA 
1010 50 F RA RA Yes 9 21 - - 4 3 4.37 12 
1019 38 F OA nRA Yes 8 23 + - 7 4 5.05 12 
1020 45 M UIA nRA No 5 10 - - 0 0 2.40 24 
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1022 53 F USpA nRA No 21 22 - - 8 0 4.66 3 
1032 68 F RA RA No 13 26 + + 2 0 3.87 NA 
1037 65 M CA nRA No 7 48 - - 4 4 5.10 16 
1042 50 F RA RA No 10 5 + + 0 0 NA 52 
1050 58 M CA nRA No 8 NA + + 2 3 NA 2 
1051 69 F RA RA Yes 29 54 - + 16 12 7.15 12 
1054 57 F OA nRA No 7 22 - - 13 2 5.49 8 
1058 44 F NIA nRA No 5 14 - - 22 2 5.64 4 
1067 79 M RA RA No 17 22 - - 2 1 4.05 8 
1070 46 F PsA nRA No 5 8 - - 1 1 3.35 52 
1072 50 F RA RA Yes 5 1 - + 11 0 2.31 12 
1076 66 F ReA nRA Yes 6 19 - - 1 9 4.19 12 
1080 52 F PsA nRA No 45 33 - - 2 4 5.09 9 
1083 63 F RA RA No 11 50 + - 1 1 3.91 8 
1085 43 F PsA nRA No 15 12 - - 0 0 2.68 16 
1087 55 M CA nRA No 24 15 - - 0 0 2.32 24 
1088 54 F ReA nRA No 76 15 - + 1 0 3.48 4 
1094 61 M RA RA Yes 7 4 + + 0 0 1.26 6 
2010 46 F RA RA Yes 5 4 + + 1 1 2.24 52 
2012 63 F ReA nRA No 5 10 - - 3 0 2.96 6 
2013 73 F RA RA No 10 31 + - 3 1 4.40 12 
2028 37 F NIA nRA No 5 2 - - 0 0 1.24 32 
2029 59 M RA RA Yes 10 32 + - 2 0 4.60 12 
2030 57 M RA RA Yes 5 2 - - 3 0 2.63 52 
2034 56 F UIA nRA No 5 10 - - 1 1 3.36 24 
2036 61 M PsA nRA No 5 19 - - 4 0 3.37 20 
2040 53 F OA nRA No 9 10 - - 21 1 4.99 52 
2042 61 M RA RA No 5 15 - + 2 0 3.28 4 
2044 56 F PsA nRA Yes 23 29 - - 6 0 4.97 2 
2045 55 M RA RA No 5 20 + + 3 0 3.40 26 
2047 51 M PsA nRA No 5 1 - - 8 3 2.50 12 
2052 50 F NIA nRA No 5 14 - - 15 0 5.08 12 
2054 66 M CA nRA No 6 20 - + 1 2 3.23 3 
2062 60 M CA nRA No 7 35 - - 1 4 3.85 4 
2067 27 F NIA nRA No 5 6 - + 0 0 1.37 2 
2072 58 F RA RA No 5 19 + + 1 1 3.74 52 
2075 81 M ReA nRA No 20 26 - - 6 6 4.95 9 
2078 92 M CA nRA No 11 34 - + 1 6 4.16 7 
2086 45 F NIA nRA Yes 6 20 + + 0 0 2.60 6 
2087 47 F PsA nRA No 5 12 - - 1 0 2.75 5 
2090 57 F RA RA No 5 5 + + 0 0 1.55 52 
2133 70 F RA RA Yes 48 37 + + 6 6 5.64 52 
2140 74 M RA RA No 12 21 - - 3 7 4.04 24 
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2144 51 M OIA nRA No 10 4 - - 0 0 1.08 34 
2145 49 F EA nRA No 5 1 - - 19 2 3.82 52 
2146 56 F NIA nRA Yes 5 12 - - 19 0 5.58 52 
2148 60 M ReA nRA No 189 113 - - 0 0 3.60 3 
2166 57 F RA RA Yes 62 91 - - 1 0 4.17 12 
2197 57 F NIA nRA No 9 27 - - 0 0 3.01 32 
2200 46 M PsA nRA No 15 20 - - 7 6 4.66 2 
2203 50 F RA RA No 8 4 + - 1 1 2.82 52 
2222 46 F ReA nRA No 33 21 - - 2 0 3.62 2 
2231 56 F RA RA No 16 27 + + 12 6 5.35 8 
2233 58 F OIA nRA Yes 4 30 - - 7 1 5.26 52 
2257 35 F ReA nRA No 4 9 - - 20 12 5.91 5 
2261 69 M CA nRA No 4 47 - - 0 0 2.98 7 
2264 70 F EA nRA No 8 67 - - 1 2 4.21 5 
2265 51 F PsA nRA No 4 9 - - 3 3 3.55 6 
2281 56 F OIA nRA Yes 93 40 - + 0 1 3.30 16 
2305 59 F L/CTD nRA No 10 27 - - 5 4 5.30 52 
2311 40 F RA RA Yes 4 23 + + 0 0 2.61 24 
2322 68 F CA nRA No 7 5 - + 4 3 3.99 12 
2330 32 F NIA nRA Yes 4 9 - - 7 0 3.20 8 
2345 82 F RA RA No 56 16 - - 18 15 6.54 3 
2348 62 M RA RA No 13 5 - - 7 7 4.19 8 
2367 82 M USpA nRA No 75 99 - - 0 0 3.50 26 
2368 61 F RA RA No 12 35 + + 2 1 4.26 8 
2369 59 F RA RA No 16 43 + + 0 0 3.40 14 
2378 75 F ReA nRA No 23 39 - - 5 8 5.03 4 
2379 72 M ReA nRA No 4 38 - - 1 4 3.67 4 
2390 29 M OIA nRA No 5 9 - - 0 0 2.38 3 
2416 37 F L/CTD nRA No 23 41 - - 1 0 4.14 8 
2437 56 M ReA nRA No 54 16 - - 2 0 3.26 8 
2439 55 F ReA nRA No 4 12 + - 20 4 5.41 10 
2476 81 F UIA nRA No 15 38 - - 3 0 4.31 12 
2493 54 F ReA nRA No 4 7 - - 3 0 3.09 6 
2506 61 M UIA nRA No 15 31 - - 3 0 3.91 8 
2507 22 F ReA nRA No 4 8 - - 1 0 2.34 5 
2510 51 F RA RA No 4 2 + + 17 0 3.47 24 
2511 53 F UIA nRA No 16 40 - - 14 0 5.57 12 
2519 32 F UIA nRA No 4 2 - - 3 0 2.58 20 
2520 45 F UIA nRA No 4 16 - - 17 0 5.13 52 
2548 34 F PsA nRA No 9 2 - - 2 2 2.07 24 
2549 52 F UIA nRA No 5 2 + - 6 0 2.84 52 
2759 68 F RA RA Yes 7 75 - + 2 10 4.84 8 
2767 43 F RA RA Yes 4 2 - - 5 2 3.11 52 
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CD4+ T cell sample processing and quality control information 

EA ID QC CD4T Purity 
Meth (%) 

CD4T Purity 
Flow (%) 

Conv. 
Batch 

iScan 
Batch 

Array 
ID 

Array 
Position 

Diff. 
Analysis meQTL eQTM 

809 Pass 0.99 98.9 1 1 1 1 ✓ ✓ ✓ 
810 Pass 1 99.2 1 1 1 3 ✓ ✓ ✓ 
813 Pass 0.87 99.3 1 1 1 5 ✓ ✓ ✓ 
814 Pass 0.99 98.8 1 1 2 4 ✓ ✓ ✓ 
815 Pass 1 99.4 1 1 1 7 ✓ ✓ ✓ 
826 Pass 0.97 98.5 1 1 2 6 ✓ ✓ ✓ 
827 Pass 0.93 97.9 1 1 3 3 ✓ ✓ ✓ 
829 Pass 0.99 96.7 1 1 2 2 ✓ ✓ ✓ 
834 Pass 0.94 97.4 1 1 3 7 ✓ ✕ ✕ 
835 Fail 0.42 97.4 1 1 4 6 ✕ ✕ ✕ 
837 Pass 0.92 98 1 1 3 1 ✓ ✕ ✕ 
838 Pass 0.97 97 1 1 4 2 ✓ ✓ ✓ 
839 Pass 0.98 98.1 1 1 4 4 ✓ ✕ ✕ 
840 Pass 0.99 98.5 1 1 4 8 ✓ ✓ ✓ 
841 Pass 0.99 98.8 1 1 5 1 ✓ ✓ ✓ 
842 Pass 0.9 98 1 1 3 5 ✓ ✓ ✓ 
844 Pass 0.84 97.3 1 1 5 7 ✓ ✓ ✓ 
845 Pass 0.93 98.6 1 1 5 5 ✓ ✓ ✓ 
854 Pass 0.93 98.6 1 1 6 2 ✓ ✓ ✓ 
874 Pass 0.98 96.8 1 1 6 4 ✓ ✕ ✕ 
878 Pass 0.93 96.8 1 1 6 8 ✓ ✓ ✓ 
882 Pass 0.98 98.6 1 1 6 6 ✓ ✓ ✓ 
891 Pass 0.96 98.3 6 4 7 2 ✓ ✓ ✓ 
896 Pass 0.97 NA 6 4 7 4 ✓ ✓ ✓ 
898 Pass 0.93 NA 6 4 7 6 ✓ ✓ ✓ 
905 Pass 0.76 95.5 6 4 7 8 ✓ ✓ ✓ 
912 Pass 0.99 97.7 5 3 8 4 ✓ ✓ ✓ 
915 Pass 0.85 99 1 1 2 8 ✓ ✓ ✓ 

Sample processing and quality control data for CD4+ T cell and B cell samples. EA ID = Unique anonymised 

identifier given to all patients attending the early arthritis clinic. QC = Quality control indicating whether a 

sample passed all quality control checks or failed at any check; Purity Meth % = The purity of target cells in 

each sample preparation as determined from the DNA methylation data using the Houseman reference-based 

method219; Purity Flow % = The purity of target cells in each sample preparation as determined by flow 

cytometry(see Chapter 2.2); Conv. Batch = Bisulphite conversion batch for each sample; iScan Batch = Batch 

in which each sample was read on the iScan system; Array ID = unique identifier given the each 

MethylationEPIC array; Array Position = Physical position of each sample on the respective array (from row 

1 to row 8); Diff. Analysis/meQTL/eQTM = inclusion of a given sample in differential analyses (Chapter 

3)/meQTL mapping (Chapter 4)/eQTM mapping (Chapter 5) (✓ = included, ✕ = not included). 
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923 Pass 0.73 79.6 6 4 9 1 ✓ ✕ ✕ 
926 Pass 0.8 86.6 6 4 10 3 ✓ ✓ ✓ 
929 Pass 0.85 97.5 6 4 9 3 ✓ ✓ ✓ 
930 Pass 0.73 91.9 6 4 11 8 ✓ ✓ ✓ 
932 Pass 0.66 94.3 6 4 12 6 ✓ ✓ ✓ 
934 Pass 0.99 98.9 1 1 5 3 ✓ ✓ ✓ 
935 Pass 0.96 97.9 6 4 9 5 ✓ ✓ ✓ 
937 Pass 0.96 98.3 6 4 11 2 ✓ ✓ ✓ 
938 Pass 0.95 97.9 6 4 11 4 ✓ ✓ ✓ 
944 Pass 0.68 96.1 6 4 10 1 ✓ ✕ ✕ 
945 Pass 0.93 98.2 6 4 9 7 ✓ ✓ ✓ 
946 Pass 0.99 97.5 3 2 13 5 ✓ ✓ ✓ 
948 Pass 0.98 NA 3 2 14 7 ✓ ✓ ✕ 
954 Pass 0.96 99.5 6 4 11 6 ✓ ✓ ✓ 
957 Pass 0.78 98.4 3 2 14 1 ✓ ✕ ✕ 
962 Pass 0.98 99.3 6 4 10 5 ✓ ✓ ✓ 
965 Pass 0.91 96.4 6 4 10 7 ✓ ✓ ✓ 
967 Pass 0.92 99 6 4 12 4 ✓ ✓ ✓ 
969 Pass 0.91 96.4 3 2 14 3 ✓ ✓ ✓ 
973 Pass 0.84 98.4 6 4 12 2 ✓ ✓ ✓ 
974 Pass 0.97 99.1 3 2 15 8 ✓ ✓ ✓ 
975 Pass 0.98 99.1 3 2 13 3 ✓ ✓ ✓ 
978 Pass 0.89 99.2 3 2 16 4 ✓ ✓ ✓ 
980 Pass 0.87 NA 6 4 12 8 ✓ ✓ ✓ 
992 Pass 0.94 98 3 2 15 2 ✓ ✓ ✓ 
995 Pass 0.97 97.4 3 2 17 5 ✓ ✓ ✓ 
996 Pass 0.92 98.1 4 2 18 5 ✓ ✓ ✓ 
1000 Pass 1 98.7 4 2 19 3 ✓ ✓ ✓ 
1003 Pass 0.98 98.1 3 2 17 3 ✓ ✓ ✓ 
1005 Pass 0.98 96 3 2 20 2 ✓ ✓ ✓ 
1008 Pass 0.98 98.3 3 2 15 4 ✓ ✓ ✓ 
1010 Pass 0.99 98.1 4 2 18 1 ✓ ✓ ✓ 
1019 Pass 0.95 NA 3 2 15 6 ✓ ✓ ✓ 
1020 Pass 0.96 NA 3 2 13 1 ✓ ✓ ✓ 
1022 Pass 0.97 NA 3 2 13 7 ✓ ✓ ✓ 
1032 Pass 0.96 NA 4 2 21 2 ✓ ✓ ✓ 
1037 Pass 1 99.2 3 2 16 2 ✓ ✓ ✓ 
1042 Pass 0.95 99.3 4 2 21 6 ✓ ✓ ✓ 
1050 Pass 0.92 97.9 3 2 17 1 ✓ ✓ ✓ 
1051 Pass 0.83 99.5 4 2 19 5 ✓ ✓ ✓ 
1054 Pass 0.99 98.8 3 2 16 6 ✓ ✓ ✓ 
1058 Pass 0.97 99.1 3 2 16 8 ✓ ✓ ✓ 
1067 Pass 1 99.6 4 2 22 2 ✓ ✓ ✓ 
1070 Pass 1 99.1 3 2 20 4 ✓ ✓ ✓ 
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1072 Pass 0.89 97 4 2 22 8 ✓ ✓ ✓ 
1076 Pass 0.98 98.3 3 2 20 8 ✓ ✓ ✓ 
1080 Pass 0.98 97.7 4 2 18 3 ✓ ✓ ✓ 
1083 Pass 0.99 98.6 4 2 23 1 ✓ ✓ ✓ 
1085 Pass 0.96 98.3 5 3 24 8 ✓ ✓ ✓ 
1087 Pass 0.99 98.6 4 2 21 4 ✓ ✓ ✓ 
1088 Pass 0.94 97.6 3 2 17 7 ✓ ✓ ✓ 
1094 Pass 0.81 94.8 4 2 23 7 ✓ ✓ ✓ 
2010 Pass 0.76 98.2 4 2 25 2 ✓ ✓ ✓ 
2012 Pass 0.93 97.4 4 2 21 8 ✓ ✓ ✓ 
2013 Pass 0.98 96.1 4 2 25 8 ✓ ✕ ✕ 
2028 Fail 0.1 95.8 3 2 20 6 ✕ ✕ ✕ 
2029 Pass 0.79 93.4 5 3 26 1 ✓ ✓ ✓ 
2030 Pass 1 97.2 5 3 26 5 ✓ ✓ ✓ 
2034 Pass 0.83 97.6 4 2 18 7 ✓ ✓ ✓ 
2036 Pass 1 NA 4 2 19 1 ✓ ✓ ✕ 
2040 Pass 0.95 97.6 4 2 22 4 ✓ ✓ ✓ 
2042 Pass 0.87 93.4 5 3 27 2 ✓ ✓ ✓ 
2044 Pass 0.87 99.1 4 2 19 7 ✓ ✓ ✓ 
2045 Fail 0.52 91.7 5 3 28 1 ✕ ✕ ✕ 
2047 Pass 0.98 98.5 4 2 22 6 ✓ ✓ ✓ 
2052 Pass 0.73 96 4 2 23 5 ✓ ✓ ✓ 
2054 Pass 0.93 97.1 4 2 23 3 ✓ ✓ ✓ 
2062 Pass 0.95 96.8 4 2 25 4 ✓ ✓ ✓ 
2067 Pass 0.98 96 4 2 25 6 ✓ ✓ ✓ 
2072 Pass 0.88 95.2 5 3 28 5 ✓ ✓ ✓ 
2075 Pass 0.99 97.4 5 3 26 3 ✓ ✓ ✓ 
2078 Pass 1 96.7 5 3 27 4 ✓ ✓ ✓ 
2086 Pass 0.99 98.5 5 3 27 6 ✓ ✓ ✓ 
2087 Pass 0.97 98.7 5 3 27 8 ✓ ✓ ✓ 
2090 Pass 0.95 96.5 5 3 24 2 ✓ ✓ ✓ 
2133 Pass 1 97.8 5 3 29 3 ✓ ✓ ✕ 
2140 Pass 0.78 95 5 3 28 7 ✓ ✓ ✓ 
2144 Pass 0.91 91.2 5 3 28 3 ✓ ✓ ✓ 
2145 Pass 0.75 98.6 5 3 24 4 ✓ ✓ ✓ 
2146 Pass 0.95 98.1 5 3 26 7 ✓ ✕ ✕ 
2148 Pass 0.99 98.5 5 3 29 5 ✓ ✓ ✓ 
2222 Pass 0.97 NA 3 2 14 5 ✓ ✓ ✓ 
2231 Pass 1 NA 5 3 24 6 ✓ ✓ ✓ 
2233 Pass 0.98 NA 5 3 29 1 ✓ ✓ ✓ 
2257 Pass 0.96 98.8 5 3 30 2 ✓ ✓ ✓ 
2261 Pass 0.98 97.8 5 3 29 7 ✓ ✓ ✓ 
2264 Pass 0.92 97.9 5 3 8 2 ✓ ✓ ✓ 
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B cell sample processing and quality control information 

EA ID QC B Purity 
Meth (%) 

B Purity  
Flow (%) 

Conv. 
Batch 

iScan 
Batch 

Array 
ID 

Array 
Position 

Diff. 
Analysis meQTL eQTM 

826 Pass 0.97 84.5 1 1 1 2 ✓ ✓ ✕ 
827 Pass 0.94 NA 1 1 1 6 ✓ ✓ ✓ 
834 Pass 0.98 NA 5 3 31 8 ✓ ✓ ✕ 
835 Pass 0.88 92.1 1 1 1 4 ✓ ✓ ✕ 
838 Pass 0.92 90.5 1 1 2 1 ✓ ✓ ✕ 
841 Pass 0.82 NA 1 1 1 8 ✓ ✕ ✕ 
842 Pass 0.88 71.5 1 1 2 3 ✓ ✓ ✓ 
845 Pass 0.84 NA 1 1 2 7 ✓ ✓ ✓ 
854 Pass 0.7 NA 1 1 2 5 ✓ ✓ ✓ 
867 Pass 1 91.7 1 1 3 8 ✓ ✓ ✓ 
868 Pass 0.98 93 1 1 3 2 ✓ ✓ ✓ 
874 Pass 0.98 96.7 1 1 4 3 ✓ ✓ ✓ 
878 Pass 0.84 92.7 1 1 3 4 ✓ ✓ ✓ 
879 Pass 0.88 NA 1 1 4 1 ✓ ✓ ✓ 
882 Pass 0.98 95.3 1 1 4 5 ✓ ✓ ✓ 
884 Pass 0.96 NA 1 1 4 7 ✓ ✓ ✓ 
891 Pass 0.98 95 1 1 5 6 ✓ ✓ ✓ 
892 Pass 0.95 93.2 1 1 5 4 ✓ ✓ ✓ 
893 Pass 0.97 95.1 1 1 5 2 ✓ ✓ ✓ 
898 Pass 0.96 91.4 1 1 5 8 ✓ ✓ ✕ 
905 Pass 0.99 91.8 1 1 6 3 ✓ ✓ ✓ 
912 Pass 0.97 92.8 1 1 6 5 ✓ ✓ ✓ 
915 Pass 0.95 96 1 1 3 6 ✓ ✓ ✓ 
923 Pass 0.86 NA 1 1 6 7 ✓ ✓ ✓ 
926 Pass 0.78 NA 6 4 7 1 ✓ ✓ ✓ 
929 Pass 0.92 88.2 6 4 7 7 ✓ ✓ ✓ 
930 Pass 0.92 94.8 6 4 9 6 ✓ ✓ ✓ 
932 Pass 0.9 92.8 6 4 11 1 ✓ ✓ ✓ 
937 Pass 0.96 98.6 6 4 7 5 ✓ ✓ ✓ 
938 Pass 0.8 NA 1 1 6 1 ✓ ✓ ✓ 
944 Pass 0.79 NA 6 4 9 2 ✓ ✓ ✓ 
946 Pass 0.96 91.4 6 4 7 3 ✓ ✓ ✓ 
948 Pass 0.92 94.1 3 2 15 1 ✓ ✓ ✓ 
954 Pass 0.89 91.6 6 4 9 4 ✓ ✓ ✓ 
957 Pass 0.98 95.6 6 4 10 6 ✓ ✓ ✓ 
962 Pass 0.67 93.2 6 4 9 8 ✓ ✓ ✓ 
965 Pass 0.85 NA 6 4 11 3 ✓ ✓ ✓ 
967 Pass 0.71 87.5 6 4 11 7 ✓ ✓ ✓ 
969 Pass 0.92 93.2 6 4 11 5 ✓ ✓ ✓ 
973 Pass 0.93 95.3 6 4 10 4 ✓ ✓ ✓ 
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974 Pass 0.65 94.8 6 4 10 8 ✓ ✓ ✓ 
975 Pass 0.97 96.3 6 4 12 3 ✓ ✓ ✓ 
978 Pass 0.96 94 3 2 14 8 ✓ ✓ ✓ 
980 Pass 0.96 97 6 4 12 1 ✓ ✓ ✓ 
992 Pass 0.95 96.5 3 2 14 4 ✓ ✓ ✓ 
995 Pass 0.9 NA 3 2 16 1 ✓ ✓ ✓ 
996 Pass 1 97.7 4 2 21 1 ✓ ✓ ✓ 
1000 Pass 0.8 94 4 2 25 3 ✓ ✓ ✓ 
1003 Pass 0.97 96.7 3 2 13 6 ✓ ✓ ✓ 
1005 Pass 0.94 93.2 5 3 32 7 ✓ ✓ ✓ 
1008 Pass 0.9 NA 6 4 12 5 ✓ ✓ ✓ 
1010 Pass 0.84 91.4 3 2 16 7 ✓ ✕ ✕ 
1019 Pass 0.84 NA 6 4 12 7 ✓ ✓ ✓ 
1020 Pass 0.75 NA 3 2 14 6 ✓ ✓ ✓ 
1022 Pass 0.83 NA 3 2 14 2 ✓ ✕ ✕ 
1032 Pass 0.92 NA 4 2 22 5 ✓ ✓ ✓ 
1037 Pass 0.86 NA 6 4 10 2 ✓ ✓ ✓ 
1050 Fail 0.46 95.7 3 2 15 3 ✕ ✓ ✓ 
1054 Pass 0.99 NA 3 2 15 5 ✓ ✓ ✓ 
1058 Pass 0.98 NA 3 2 15 7 ✓ ✓ ✓ 
1067 Fail 0.52 NA 3 2 20 7 ✕ ✓ ✓ 
1070 Pass 0.92 92.2 3 2 13 2 ✓ ✓ ✓ 
1072 Pass 0.92 96.7 3 2 17 8 ✓ ✓ ✓ 
1076 Pass 0.83 NA 3 2 16 3 ✓ ✓ ✓ 
1080 Pass 1 97.8 3 2 16 5 ✓ ✓ ✓ 
1083 Pass 0.97 94.6 3 2 20 5 ✓ ✓ ✓ 
1085 Pass 0.99 NA 3 2 13 4 ✓ ✓ ✓ 
1087 Pass 1 98 3 2 17 6 ✓ ✓ ✓ 
1088 Pass 0.93 90.6 4 2 21 5 ✓ ✕ ✕ 
1094 Pass 0.93 91.7 4 2 18 8 ✓ ✕ ✕ 
2010 Pass 0.92 NA 4 2 19 6 ✓ ✓ ✓ 
2012 Pass 0.91 92.9 3 2 17 4 ✓ ✓ ✓ 
2013 Pass 0.94 NA 4 2 23 4 ✓ ✓ ✓ 

EA2028 Pass 0.99 94.6 3 2 13 8 ✓ ✓ ✓ 
2029 Pass 0.93 91.1 4 2 18 4 ✓ ✓ ✓ 
2030 Pass 0.98 93.4 4 2 21 7 ✓ ✕ ✕ 
2034 Pass 0.97 95.3 3 2 20 1 ✓ ✓ ✕ 
2036 Pass 0.96 NA 5 3 30 3 ✓ ✓ ✓ 
2040 Pass 0.96 95.6 3 2 17 2 ✓ ✓ ✓ 
2042 Fail 0.64 NA 4 2 25 5 ✕ ✕ ✕ 
2044 Pass 0.79 NA 4 2 22 3 ✓ ✓ ✓ 
2045 Pass 0.88 95 5 3 26 8 ✓ ✓ ✓ 
2047 Pass 1 97.9 3 2 20 3 ✓ ✓ ✓ 
2052 Pass 0.94 93.3 4 2 18 6 ✓ ✕ ✕ 
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2054 Pass 0.92 94.9 4 2 19 4 ✓ ✓ ✓ 
2062 Pass 0.93 93.6 4 2 22 7 ✓ ✕ ✕ 
2067 Fail 0.38 95.5 4 2 21 3 ✕ ✓ ✓ 
2072 Pass 0.96 93 5 3 32 3 ✓ ✓ ✓ 
2075 Fail 0.29 NA 4 2 23 6 ✕ ✓ ✕ 
2078 Pass 0.9 94.5 4 2 25 7 ✓ ✓ ✓ 
2086 Pass 0.97 95.6 5 3 26 4 ✓ ✓ ✓ 
2087 Pass 0.91 93.9 5 3 26 6 ✓ ✓ ✓ 
2090 Pass 0.69 NA 5 3 8 6 ✓ ✓ ✓ 
2133 Pass 0.99 94.9 5 3 31 4 ✓ ✕ ✕ 
2140 Fail 0.74 NA 5 3 28 2 ✕ ✓ ✓ 
2145 Pass 0.98 95.7 5 3 27 7 ✓ ✓ ✓ 
2146 Pass 0.97 93.4 4 2 18 2 ✓ ✕ ✕ 
2166 Pass 0.94 94.1 5 3 27 5 ✓ ✓ ✕ 
2197 Pass 0.88 97 4 2 19 2 ✓ ✓ ✓ 
2200 Pass 1 96.9 5 3 28 6 ✓ ✕ ✕ 
2203 Pass 0.93 97.5 5 3 28 8 ✓ ✓ ✓ 
2222 Pass 0.93 NA 5 3 24 5 ✓ ✓ ✓ 
2231 Pass 0.95 NA 5 3 24 7 ✓ ✓ ✓ 
2233 Pass 0.99 96 5 3 32 5 ✓ ✓ ✓ 
2257 Pass 0.97 95.1 4 2 22 1 ✓ ✓ ✓ 
2261 Pass 0.99 95.9 5 3 29 4 ✓ ✓ ✓ 
2264 Pass 0.98 94.4 5 3 8 7 ✓ ✓ ✓ 
2265 Pass 0.81 60 5 3 32 1 ✓ ✓ ✕ 
2281 Pass 0.85 87.8 5 3 31 2 ✓ ✓ ✓ 
2305 Pass 0.93 92.6 4 2 19 8 ✓ ✓ ✓ 
2311 Pass 1 98.1 5 3 29 6 ✓ ✓ ✓ 
2322 Pass 0.94 90.9 5 3 31 6 ✓ ✓ ✓ 
2330 Pass 0.98 97.3 4 2 23 2 ✓ ✓ ✓ 
2345 Pass 0.87 91.3 4 2 23 8 ✓ ✓ ✓ 
2348 Pass 0.94 94.7 4 2 25 1 ✓ ✓ ✓ 
2367 Pass 0.96 95.5 5 3 27 1 ✓ ✓ ✓ 
2368 Pass 0.89 91.5 5 3 26 2 ✓ ✓ ✓ 
2369 Pass 0.99 93.9 5 3 8 3 ✓ ✕ ✕ 
2378 Pass 0.97 94.4 5 3 27 3 ✓ ✕ ✕ 
2379 Pass 0.97 NA 5 3 28 4 ✓ ✓ ✓ 
2390 Pass 0.99 NA 5 3 24 3 ✓ ✓ ✓ 
2416 Pass 0.98 NA 5 3 29 2 ✓ ✕ ✕ 
2437 Pass 0.92 NA 5 3 29 8 ✓ ✓ ✓ 
2439 Pass 0.97 NA 5 3 8 1 ✓ ✓ ✓ 
2476 Pass 0.97 NA 5 3 32 4 ✓ ✓ ✓ 
2493 Pass 0.99 NA 5 3 32 6 ✓ ✓ ✓ 
2506 Pass 0.99 NA 5 3 31 7 ✓ ✓ ✓ 
2507 Pass 0.99 NA 5 3 8 5 ✓ ✓ ✓ 
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2510 Pass 0.99 NA 5 3 8 8 ✓ ✓ ✓ 
2511 Pass 0.98 NA 5 3 32 2 ✓ ✓ ✓ 
2519 Pass 0.93 NA 5 3 32 8 ✓ ✓ ✓ 
2520 Pass 0.98 NA 5 3 31 1 ✓ ✕ ✕ 
2548 Pass 1 NA 5 3 31 3 ✓ ✕ ✕ 
2549 Pass 0.95 NA 5 3 31 5 ✓ ✓ ✓ 
2759 Pass 1 NA 5 3 30 1 ✓ ✓ ✓ 
2767 Pass 0.97 NA 5 3 30 4 ✓ ✓ ✕ 
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Appendix B – Comparison of Normalisation Methods for B cell samples 

 

Plots displayed here are analogous to those presented for the CD4+ T cell samples in Chapter 3.4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Raw Noob + BMIQ 

SWAN Noob + Funnorm 

DNA methylation (β-value) for each Illumina probe type (Type I & II) in raw B cell data (pre-normalisation), 

as well as following normalisation of data using Normal-exponential using out-of-band probes (noob) with 

Beta mixture quantile dilation (BMIQ), Subset-quantile within array normalization (SWAN), and noob with 

functional normalisation (Funnorm). 
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Raw Noob + BMIQ 

SWAN Noob + Funnorm 

Principal component analysis of sample processing batch in raw B cell data (pre-normalisation), as well as 

following normalisation of data using Normal-exponential using out-of-band probes (noob) with Beta mixture 

quantile dilation (BMIQ), Subset-quantile within array normalization (SWAN), and noob with functional 

normalisation (Funnorm). 
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Raw Noob + BMIQ 

SWAN Noob + Funnorm 

Conversion Batch 1 Conversion Batch 3 Conversion Batch 4 Conversion Batch 5 Conversion Batch 6 

Relative log methylation (RLM; see Chapter 3.4.2 for further details) of sample processing batch in raw B 

cell data (pre-normalisation), as well as following normalisation of data using Normal-exponential using out-

of-band probes (noob) with Beta mixture quantile dilation (BMIQ), Subset-quantile within array 

normalization (SWAN), and noob with functional normalisation (Funnorm). 
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Raw Noob + BMIQ 

SWAN Noob + Funnorm 

Principal variance component analysis (PVCA) of raw B cell data (pre-normalisation), as well as following 

normalisation of data using Normal-exponential using out-of-band probes (noob) with Beta mixture quantile 

dilation (BMIQ), Subset-quantile within array normalization (SWAN), and noob with functional 

normalisation (Funnorm). 
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Raw Noob + BMIQ 

SWAN Noob + Funnorm 

Pearson’s correlation of B cell technical replicates in raw B cell data (pre-normalisation), as well as following 

normalisation of data using Normal-exponential using out-of-band probes (noob) with Beta mixture quantile 

dilation (BMIQ), Subset-quantile within array normalization (SWAN), and noob with functional 

normalisation (Funnorm). 
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Appendix C – Differentially-methylated position analysis 

 

 

 

 

 

 

Top 100 CpGs ranked by nominal p-value from the CD4+ T cell RA vs. non-RA differential analysis 
(Δβ ≥ 0.05)  

 

CpG Chrom Pos P-value Adjusted 
p-value 

Δβ (RA 
vs. non-

RA 
UCSC RefGene 

Relation 
to CpG 
Island 

RefGene 
Feature 

cg21289466 20 5,577,716 5.02E-06 0.993 0.062 GPCPD1 OpenSea Body 
cg24245216 19 7,004,657 1.70E-04 0.993 -0.180 - OpenSea Intergenic 
cg11945167 8 4,644,739 3.50E-04 0.993 0.060 CSMD1 OpenSea Body 
cg15563420 12 86,026,194 3.70E-04 0.993 0.052 - OpenSea Intergenic 
cg00080972 5 178,986,291 4.67E-04 0.993 -0.086 RUFY1 N_Shore TSS1500 
cg07612827 19 7,005,180 5.12E-04 0.993 -0.070 FLJ25758 OpenSea Body 
cg11787167 14 33,407,370 6.62E-04 0.993 0.105 NPAS3 S_Shelf TSS1500 
cg18471635 11 104,769,411 7.53E-04 0.993 -0.062 CASP12 OpenSea TSS200 
cg03161803 6 27,649,120 7.59E-04 0.993 0.056 - S_Shore Intergenic 
cg05287483 20 5,551,376 8.12E-04 0.993 0.070 GPCPD1 OpenSea Body 
cg26516362 5 178,986,906 8.55E-04 0.993 -0.069 RUFY1 Island 5'UTR 
cg07891761 19 35,861,642 8.60E-04 0.993 0.084 - OpenSea Intergenic 
cg05457628 5 178,986,728 9.52E-04 0.993 -0.067 RUFY1 Island TSS200 
cg17285144 22 22,532,640 9.85E-04 0.993 0.112 - OpenSea Intergenic 
cg02671281 9 95,783,395 1.18E-03 0.993 0.054 FGD3 OpenSea Body 
cg16766914 17 55,962,703 1.25E-03 0.993 -0.053 CUEDC1 Island Body 
cg14451627 9 115,987,035 1.39E-03 0.993 0.071 SLC31A1 S_Shelf 5'UTR 
cg22764044 5 178,986,830 1.47E-03 0.993 -0.057 RUFY1 Island 1stExon 
cg25658438 5 178,986,372 1.56E-03 0.993 -0.090 RUFY1 N_Shore TSS1500 
cg06118287 5 178,986,559 1.58E-03 0.993 -0.059 RUFY1 Island TSS200 
cg11424828 8 2,075,469 1.78E-03 0.993 0.132 MYOM2 Island Body 
cg08366828 5 71,683,884 2.07E-03 0.993 0.127 - OpenSea Intergenic 
cg05624577 15 81,411,055 2.21E-03 0.993 -0.066 - Island Intergenic 
cg15975806 13 110,319,607 2.23E-03 0.993 0.065 - OpenSea Intergenic 
cg05056638 8 24,800,824 2.26E-03 0.993 -0.054 - S_Shore Intergenic 
cg17951445 4 30,842,020 2.45E-03 0.993 0.055 PCDH7 OpenSea Body 
cg25456477 12 86,230,367 2.52E-03 0.993 -0.056 RASSF9 OpenSea TSS200 
cg09060608 5 178,986,726 2.62E-03 0.993 -0.057 RUFY1 Island TSS200 
cg16060867 19 31,576,236 2.64E-03 0.993 0.058 - OpenSea Intergenic 

Top 100 CpGs by nominal p-value from the RA vs. non-RA differential analysis in CD4+ T cell and B cell 

samples. Chrom = CpG chromosome; Pos = CpG base pair position on chromosome; Δβ = Difference in mean 

methylation (β-value, 0-1) in RA patients relative to the non-RA controls; UCSC RefGene Name = RefGene 

to which the CpG maps; Relation to CpG Island = mapping of CpG to CpG island feature (N_Shore = North 

shore, N_Shelf = North shelf, S_Shelf = South shelf, S_Shore = South shore, see Chapter 2.7.4); RefGene 

feature = mapping of CpG genic feature (TSS200 – 0-200 base pairs from transcription start site, TSS1500 = 

200-1500 base pairs from transcription start site, UTR = untranslated region, see Chapter 2.7.4). 
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cg07053672 17 32,957,113 2.78E-03 0.993 -0.050 TMEM132E S_Shelf Body 
cg10653456 12 57,561,993 3.09E-03 0.993 0.071 LRP1 OpenSea Body 
cg19827854 7 17,868,819 3.29E-03 0.993 -0.054 SNX13 OpenSea Body 
cg11399539 18 19,882,372 3.41E-03 0.993 -0.066 - OpenSea Intergenic 
cg08058472 5 178,986,638 3.53E-03 0.993 -0.061 RUFY1 Island TSS200 
cg16896868 13 110,319,562 3.80E-03 0.993 0.068 - OpenSea Intergenic 
cg26203582 7 38,236,541 3.88E-03 0.993 0.062 STARD3NL OpenSea 5'UTR 
cg13423887 6 32,632,694 3.94E-03 0.993 -0.146 HLA-DQB1 Island Body 
cg02978220 1 108,337,960 4.50E-03 0.993 0.078 VAV3 OpenSea Body 
cg19626725 5 178,986,131 4.56E-03 0.993 -0.060 RUFY1 N_Shore TSS1500 
cg14762436 7 24,917,750 4.65E-03 0.993 -0.080 OSBPL3 OpenSea Body 
cg15037581 13 94,535,214 4.79E-03 0.993 -0.051 GPC6 OpenSea Body 
cg12448452 10 59,715,224 5.08E-03 0.993 0.075 - OpenSea Intergenic 
cg24087438 17 3,704,482 5.29E-03 0.993 0.091 ITGAE OpenSea 1stExon 
cg09139047 6 32,552,042 5.32E-03 0.993 -0.120 HLA-DRB1 Island Body 
cg25817165 18 72,167,213 5.59E-03 0.993 0.060 CNDP2 S_Shelf 1stExon 
cg20426698 3 65,960,357 5.61E-03 0.993 0.057 MAGI1 OpenSea Body 
cg19683494 5 74,908,142 5.80E-03 0.993 -0.077 - S_Shore Intergenic 
cg02839725 17 30,823,006 5.84E-03 0.993 -0.133 MYO1D Island Body 
cg03458265 14 81,408,650 6.11E-03 0.993 0.051 - S_Shore Intergenic 
cg19205037 2 8,736,346 6.20E-03 0.993 0.051 - OpenSea Intergenic 
cg23043514 5 179,870,089 6.26E-03 0.993 0.054 - OpenSea Intergenic 
cg24413597 1 162,155,427 7.16E-03 0.993 -0.061 NOS1AP OpenSea Body 
cg08214808 11 45,922,166 7.58E-03 0.993 -0.050 MAPK8IP1 Island Body 
cg13422161 12 52,773,842 7.83E-03 0.993 0.056 KRT84 OpenSea Body 
cg05387464 2 9,956,256 8.29E-03 0.993 -0.053 - OpenSea Intergenic 
cg08221350 10 134,983,838 8.32E-03 0.993 -0.079 KNDC1 S_Shelf Body 
cg08358620 12 86,230,403 8.45E-03 0.993 -0.057 RASSF9 OpenSea TSS200 
cg10120522 3 69,891,885 8.54E-03 0.993 0.076 MITF OpenSea Body 
cg03607220 6 32,526,263 8.71E-03 0.993 0.072 HLA-DRB6 OpenSea Body 
cg08627981 20 1,757,237 9.04E-03 0.993 0.072 LOC100289473 N_Shore Body 
cg15134106 1 95,974,671 9.56E-03 0.993 0.057 LOC100996635 OpenSea TSS1500 
cg18304483 19 35,853,396 9.85E-03 0.993 0.071 - OpenSea Intergenic 
cg17212350 7 87,075,377 1.02E-02 0.993 -0.085 ABCB4 OpenSea Body 
cg16677969 10 85,677,559 1.12E-02 0.993 0.067 - OpenSea Intergenic 
cg16820615 13 114,884,918 1.14E-02 0.993 0.056 RASA3 OpenSea Body 
cg12100178 1 14,437,715 1.14E-02 0.993 -0.084 - OpenSea Intergenic 
cg03299990 20 1,757,570 1.20E-02 0.993 0.120 - N_Shore Intergenic 
cg27467591 5 7,046,940 1.21E-02 0.993 -0.056 - OpenSea Intergenic 
cg24915592 13 110,319,578 1.24E-02 0.993 0.052 - OpenSea Intergenic 
cg21434132 3 196,705,742 1.29E-02 0.993 -0.092 - OpenSea Intergenic 
cg16762802 19 15,649,508 1.31E-02 0.993 -0.083 CYP4F22 OpenSea Body 
cg19105674 13 114,305,226 1.33E-02 0.993 0.058 ATP4B S_Shelf Body 
cg16425314 4 97,273,416 1.34E-02 0.993 0.051 - OpenSea Intergenic 
cg12162424 21 15,646,312 1.39E-02 0.993 -0.052 ABCC13 OpenSea Body 
cg03351301 17 46,969,163 1.43E-02 0.993 -0.064 ATP5G1 N_Shore TSS1500 
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cg21144063 7 64,035,529 1.52E-02 0.993 -0.054 - OpenSea Intergenic 
cg16399632 4 1,244,006 1.58E-02 0.993 -0.052 CTBP1 Island TSS1500 
cg19922198 6 51,963,711 1.61E-02 0.993 -0.052 - OpenSea Intergenic 
cg22334681 3 14,257,893 1.68E-02 0.993 -0.079 - OpenSea Intergenic 
cg05740244 11 18,434,015 1.71E-02 0.993 -0.067 LDHC OpenSea 5'UTR 
cg12584458 6 28,447,107 1.72E-02 0.993 0.050 - OpenSea Intergenic 
cg11488033 3 196,705,898 1.80E-02 0.993 -0.056 - OpenSea Intergenic 
cg07870920 4 121,569,769 1.81E-02 0.993 -0.087 - OpenSea Intergenic 
cg16345520 14 60,432,168 1.81E-02 0.993 0.056 LRRC9 OpenSea Body 
cg16792464 1 22,250,284 1.84E-02 0.993 0.056 HSPG2 OpenSea Body 
cg03570708 5 133,135,701 1.86E-02 0.993 0.069 - OpenSea Intergenic 
cg05107650 3 141,160,397 1.88E-02 0.993 0.066 ZBTB38 OpenSea 5'UTR 
cg16597280 14 60,432,675 1.90E-02 0.993 0.054 LRRC9 OpenSea Body 
cg03483727 15 33,487,681 1.92E-02 0.993 0.071 FMN1 S_Shore TSS1500 
cg21847720 8 2,075,777 1.96E-02 0.993 0.097 MYOM2 Island Body 
cg13892472 8 139,847,905 2.04E-02 0.993 0.071 COL22A1 OpenSea Body 
cg00169354 20 54,922,827 2.06E-02 0.993 -0.051 - S_Shelf Intergenic 
cg24445388 1 2,084,391 2.12E-02 0.993 -0.063 PRKCZ S_Shore Body 
cg16814680 8 91,681,699 2.15E-02 0.993 -0.117 - OpenSea Intergenic 
cg25051134 2 181,938,260 2.16E-02 0.993 -0.051 - OpenSea Intergenic 
cg26197874 9 137,003,621 2.17E-02 0.993 0.054 WDR5 S_Shore TSS1500 
cg22444562 2 207,090,465 2.19E-02 0.993 0.084 GPR1-AS OpenSea Body 
cg04278296 7 36,696,838 2.20E-02 0.993 0.057 AOAH OpenSea Body 
cg07721756 7 48,019,419 2.21E-02 0.993 -0.063 HUS1 S_Shore TSS200 
cg06339162 4 37,938,710 2.22E-02 0.993 0.066 TBC1D1 OpenSea Body 

 

Top 100 CpGs ranked by nominal p-value from the B cell RA vs. non-RA differential analysis (Δβ ≥ 
0.05)  

 

CpG Chrom Pos P-value Adjusted 
p-value 

Δβ (RA 
vs. non-

RA 
UCSC RefGene 

Relation 
to CpG 
Island 

RefGene 
Feature 

cg00595030 19 10,398,582 6.24E-06 0.890 -0.061 ICAM4 Island 3'UTR 
cg10800620 2 196,398,826 6.26E-05 0.890 0.058 - OpenSea Intergenic 
cg06323052 4 56,720,686 7.94E-05 0.890 0.052 EXOC1 S_Shore 5'UTR 
cg25152193 1 197,874,469 2.80E-04 0.890 -0.060 C1orf53 S_Shelf Body 
cg22901297 6 32,522,795 2.95E-04 0.890 0.085 HLA-DRB6 OpenSea Body 
cg00538212 7 158,751,591 3.22E-04 0.890 0.056 - N_Shore Intergenic 
cg21419137 8 87,905,504 3.95E-04 0.890 -0.062 CNBD1 OpenSea Body 
cg16055526 6 33,083,287 4.37E-04 0.890 -0.091 HLA-DPB2 N_Shore Body 
cg22404498 22 32,600,722 4.94E-04 0.890 -0.056 RFPL2 OpenSea TSS1500 
cg08666831 19 47,507,691 5.46E-04 0.890 -0.058 GRLF1 Island 3'UTR 
cg17688837 4 25,090,665 5.74E-04 0.890 0.051 - S_Shore Intergenic 
cg20673407 10 31,040,939 6.20E-04 0.890 -0.205 - OpenSea Intergenic 
cg11655243 5 140,778,396 6.73E-04 0.890 -0.065 PCDHGA4 N_Shore Body 
cg17633222 10 63,808,249 8.11E-04 0.890 0.060 ARID5B OpenSea TSS1500 
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cg27619385 1 32,729,615 8.66E-04 0.890 0.051 LCK OpenSea 5'UTR 
cg16263980 12 114,079,546 8.98E-04 0.890 -0.061 - OpenSea Intergenic 
cg25299227 14 76,940,165 8.98E-04 0.890 0.095 ESRRB OpenSea Body 
cg18848287 7 5,111,641 1.08E-03 0.890 -0.058 LOC389458 Island TSS200 
cg03055671 3 172,231,528 1.09E-03 0.890 0.054 TNFSF10 OpenSea Body 
cg26262055 4 25,090,618 1.14E-03 0.890 0.059 - S_Shore Intergenic 
cg19312667 4 25,090,491 1.33E-03 0.890 0.076 - Island Intergenic 
cg03935359 1 68,363,156 1.42E-03 0.890 0.079 - OpenSea Intergenic 
cg03803940 7 158,532,542 1.44E-03 0.890 0.060 ESYT2 OpenSea Body 
cg20988098 6 157,931,791 1.65E-03 0.890 0.051 ZDHHC14 OpenSea Body 
cg26660177 18 24,791,755 1.78E-03 0.890 -0.063 - OpenSea Intergenic 
cg17686260 10 131,412,764 1.93E-03 0.890 0.102 MGMT OpenSea Body 
cg19336497 11 14,380,999 1.96E-03 0.890 0.051 RRAS2 S_Shore TSS1500 
cg24118521 13 47,472,330 2.00E-03 0.890 0.068 HTR2A OpenSea TSS1500 
cg05056638 8 24,800,824 2.09E-03 0.890 -0.059 - S_Shore Intergenic 
cg09083742 8 59,043,488 2.32E-03 0.890 0.065 FAM110B OpenSea 5'UTR 
cg00415333 6 137,493,017 2.36E-03 0.890 0.052 IL22RA2 OpenSea 5'UTR 
cg08247564 12 51,835,517 2.70E-03 0.890 -0.059 SLC4A8 OpenSea 5'UTR 
cg20690458 13 111,174,402 3.03E-03 0.890 0.100 - OpenSea Intergenic 
cg10315076 4 56,251,808 3.09E-03 0.890 0.053 SRD5A3-AS1 OpenSea TSS200 
cg11195926 4 145,621,327 3.10E-03 0.890 -0.060 HHIP OpenSea Body 
cg08249075 1 58,824,309 3.25E-03 0.890 -0.053 - OpenSea Intergenic 
cg02573091 5 74,908,125 3.72E-03 0.890 -0.095 - S_Shore Intergenic 
cg24635402 19 44,352,649 3.75E-03 0.890 -0.085 ZNF283 OpenSea Body 
cg10644073 15 86,018,136 3.92E-03 0.890 0.068 AKAP13 OpenSea 5'UTR 
cg19325793 6 33,082,165 4.03E-03 0.890 -0.090 HLA-DPB2 N_Shelf Body 
cg25371762 21 47,674,425 4.05E-03 0.890 0.055 MCM3AP OpenSea ExonBnd 
cg12681972 6 26,225,299 4.05E-03 0.890 -0.056 HIST1H3E N_Shore TSS200 
cg09219839 7 158,574,563 4.14E-03 0.890 0.052 ESYT2 OpenSea Body 
cg21169940 1 202,251,908 4.22E-03 0.890 0.071 LGR6 OpenSea Body 
cg02079122 1 240,262,933 4.24E-03 0.890 0.055 FMN2 OpenSea Body 
cg08736526 4 88,656,433 4.37E-03 0.890 0.172 - OpenSea Intergenic 
cg02428792 4 25,090,597 4.43E-03 0.890 0.069 - S_Shore Intergenic 
cg17758363 20 13,199,787 4.48E-03 0.890 -0.052 - N_Shore Intergenic 
cg16131272 8 58,201,111 4.54E-03 0.890 -0.050 - OpenSea Intergenic 
cg21104965 6 117,869,453 4.93E-03 0.890 -0.060 DCBLD1 Island Body 
cg06759629 4 25,090,198 4.99E-03 0.890 0.053 - Island Intergenic 
cg07891761 19 35,861,642 5.03E-03 0.890 0.098 - OpenSea Intergenic 
cg05624577 15 81,411,055 5.16E-03 0.890 -0.077 - Island Intergenic 
cg15365744 12 106,849,290 5.28E-03 0.890 -0.069 POLR3B OpenSea Body 
cg24587835 17 5,674,234 5.30E-03 0.890 0.105 LOC339166 OpenSea TSS1500 
cg11969609 10 118,047,768 5.35E-03 0.890 -0.051 - OpenSea Intergenic 
cg27401488 5 133,899,839 5.47E-03 0.890 0.062 JADE2 OpenSea Body 
cg23881368 13 47,472,343 5.54E-03 0.890 0.059 HTR2A OpenSea TSS1500 
cg13219362 7 7,860,864 5.59E-03 0.890 0.076 UMAD1 OpenSea Body 
cg12242038 5 135,418,206 5.88E-03 0.890 -0.086 - S_Shore Intergenic 
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cg16896868 13 110,319,562 6.17E-03 0.890 0.068 - OpenSea Intergenic 
cg11198398 10 31,054,241 6.20E-03 0.890 -0.080 - OpenSea Intergenic 
cg12624096 1 211,780,386 6.50E-03 0.890 0.053 - OpenSea Intergenic 
cg14771766 9 82,345,430 6.70E-03 0.890 0.086 - OpenSea Intergenic 
cg00901687 17 48,585,270 7.00E-03 0.890 0.086 MYCBPAP N_Shore TSS1500 
cg19626725 5 178,986,131 7.24E-03 0.890 -0.058 RUFY1 N_Shore TSS1500 
cg11724562 11 71,196,642 7.28E-03 0.890 -0.076 NADSYN1 OpenSea Body 
cg26893861 17 41,843,967 7.39E-03 0.890 -0.114 DUSP3 OpenSea 3'UTR 
cg10142271 7 44,766,894 8.05E-03 0.890 0.052 - OpenSea Intergenic 
cg08366828 5 71,683,884 8.15E-03 0.890 0.084 - OpenSea Intergenic 
cg11440486 17 48,585,216 8.25E-03 0.890 0.075 MYCBPAP N_Shore TSS1500 
cg17133734 15 86,042,851 8.52E-03 0.890 0.053 AKAP13 OpenSea Body 
cg06485460 18 2,084,004 8.53E-03 0.890 -0.059 - OpenSea Intergenic 
cg01218619 4 25,090,298 8.64E-03 0.890 0.086 - Island Intergenic 
cg21598751 1 159,791,473 8.88E-03 0.890 -0.112 - OpenSea Intergenic 
cg18297445 15 81,578,048 8.95E-03 0.890 0.062 IL16 OpenSea ExonBnd 
cg06339162 4 37,938,710 9.00E-03 0.890 0.067 TBC1D1 OpenSea Body 
cg15322070 8 96,814,318 9.01E-03 0.890 0.053 C8orf37-AS1 OpenSea Body 
cg03489016 2 230,124,603 9.03E-03 0.890 -0.068 PID1 OpenSea Body 
cg06771126 4 57,547,699 9.09E-03 0.890 -0.053 HOPX OpenSea 5'UTR 
cg16591159 16 31,487,813 9.20E-03 0.890 -0.052 TGFB1I1 Island Body 
cg18200810 13 47,472,200 9.27E-03 0.890 0.076 HTR2A OpenSea TSS1500 
cg02839725 17 30,823,006 9.28E-03 0.890 -0.134 MYO1D Island Body 
cg21004358 4 187,422,119 9.77E-03 0.890 -0.075 - Island Intergenic 
cg13081526 6 32,449,961 1.02E-02 0.890 0.098 - OpenSea Intergenic 
cg26911830 1 157,219,222 1.06E-02 0.890 -0.067 - OpenSea Intergenic 
cg09589057 14 106,351,578 1.07E-02 0.890 0.056 - OpenSea Intergenic 
cg20111217 17 48,585,264 1.08E-02 0.890 0.069 MYCBPAP N_Shore TSS1500 
cg03834793 4 25,310,627 1.10E-02 0.890 -0.056 - N_Shelf Intergenic 
cg16762802 19 15,649,508 1.11E-02 0.890 -0.104 CYP4F22 OpenSea Body 
cg14481689 19 42,873,953 1.12E-02 0.890 -0.070 MEGF8 Island Body 
cg21964148 12 92,735,364 1.15E-02 0.890 0.055 - OpenSea Intergenic 
cg17403731 19 613,505 1.23E-02 0.890 -0.055 HCN2 Island Body 
cg06683719 17 5,673,550 1.23E-02 0.890 0.051 - OpenSea Intergenic 
cg14659662 1 54,151,053 1.27E-02 0.890 0.061 GLIS1 OpenSea 5'UTR 
cg19683494 5 74,908,142 1.32E-02 0.890 -0.066 - S_Shore Intergenic 
cg03545643 8 43,554,101 1.33E-02 0.890 -0.055 - OpenSea Intergenic 
cg00101154 16 420,108 1.35E-02 0.890 -0.071 MRPL28 Island Body 
cg10596483 8 143,751,796 1.38E-02 0.890 -0.118 JRK S_Shore TSS1500 
cg25813936 9 36,276,879 1.38E-02 0.890 0.056 GNE OpenSea Body 
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Appendix D – Differentially-variable position analysis 

 

 

 

 

 

Top 100 significant differentially variable positions in CD4+ T cells between RA patients and non-
RA controls ranked by t-test p-value 

 

CpG Var 
RA 

Var 
nRA P-value TT P-Value Bt Adiusted P-

value Bt UCSC RefGene 

cg15174564 1.94 0.21 8.60E-05 4.64E-12 2.61E-09 GRIK4 
cg27284424 1.85 0.27 2.45E-04 7.37E-10 2.55E-07 LOC100506860 
cg04797575 0.80 0.16 1.30E-03 1.27E-07 2.49E-05 GPM6A 

ch.8.1995451R 1.29 0.23 1.33E-03 2.45E-08 5.80E-06 MATN2 
cg04641168 2.38 0.48 1.87E-03 1.34E-07 2.61E-05 SRP72 
cg13396858 0.76 0.15 2.24E-03 1.24E-07 2.44E-05 - 

ch.4.1647744F 2.31 0.59 2.47E-03 4.80E-06 6.23E-04 WDFY3 
cg00647389 0.06 0.62 2.66E-03 2.67E-16 4.00E-13 FSCN3 
cg21421501 0.62 0.15 2.78E-03 1.67E-06 2.46E-04 FTH1 
cg13565723 1.05 0.16 2.85E-03 1.08E-09 3.60E-07 PEX13 
cg07871034 0.76 0.09 3.62E-03 2.48E-11 1.17E-08 - 
cg26679958 1.96 0.19 3.74E-03 5.19E-13 3.70E-10 LEF1 
cg13213009 0.89 0.20 3.92E-03 7.04E-07 1.15E-04 LY96 
cg07891761 0.16 1.79 3.93E-03 2.00E-16 3.11E-13 - 
cg21391815 0.69 0.13 4.22E-03 4.13E-08 9.22E-06 CGGBP1 
cg07870920 3.91 0.79 4.45E-03 1.60E-07 3.06E-05 - 
cg23032110 0.07 0.02 4.78E-03 7.91E-06 9.69E-04 LOC643339 
cg18423635 0.18 1.06 4.82E-03 4.96E-10 1.78E-07 HCG2P7 
cg07911953 1.15 0.24 4.83E-03 3.35E-07 5.92E-05 ADK 
cg13990487 0.09 0.34 5.05E-03 1.99E-06 2.88E-04 UBR4 
cg22052758 0.79 0.19 5.16E-03 2.08E-06 2.99E-04 ACCN2 
cg04752352 0.29 0.07 5.25E-03 7.59E-07 1.22E-04 SERGEF 
cg14451627 0.30 1.95 5.67E-03 3.56E-11 1.63E-08 SLC31A1 
cg13956671 0.76 0.09 6.03E-03 6.64E-12 3.59E-09 CUL2 
cg19537820 0.97 0.24 6.07E-03 3.53E-06 4.76E-04 REG4 
cg13887021 1.06 0.21 6.44E-03 1.41E-07 2.74E-05 - 
cg26994227 0.14 0.04 6.54E-03 6.85E-06 8.56E-04 RAPGEF6 
cg02632185 0.34 0.04 6.55E-03 5.72E-12 3.14E-09 MAST4 
cg11460110 0.06 0.20 6.71E-03 3.26E-06 4.44E-04 PRR3 
cg09437423 1.04 0.26 6.73E-03 4.30E-06 5.65E-04 TRAT1 
cg20426698 0.18 2.00 7.35E-03 1.64E-16 2.57E-13 MAGI1 

Top 100 CpGs by t-test p-value found to be differentially-variable (either RA hyper-variable or RA hypo-

variable) in CD4+ T cells and B cells as identified by iEVORA (see Chapter 2.6.3). Var RA = DNA 

methylation variance in RA patients; Var nRA = DNA methylation variance in non-RA controls; P-value TT 

= T-test p-value; P-value Bt = Bartlett’s test p-value; Adjusted p-value Bt = Adjusted Bartlett’s test p-value; 

UCSC RefGene = gene to which the variable CpG maps. 
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cg26312542 0.06 0.22 7.40E-03 2.87E-06 3.98E-04 TEX12 
cg16401214 0.31 0.07 7.76E-03 5.17E-07 8.73E-05 C16orf63 
cg22875643 0.40 0.07 7.82E-03 1.28E-08 3.27E-06 MIER1 

ch.4.255198F 1.48 0.18 7.85E-03 2.80E-11 1.30E-08 TBC1D14 
ch.2.237314361R 0.49 0.08 8.27E-03 4.94E-09 1.39E-06 - 

cg02978220 0.39 2.51 8.72E-03 4.17E-11 1.88E-08 VAV3 
cg13230994 0.04 0.15 8.92E-03 1.79E-06 2.61E-04 KDM2A 
cg10653456 0.34 1.97 9.39E-03 4.17E-10 1.52E-07 LRP1 
cg18316974 0.96 0.13 1.01E-02 2.42E-10 9.28E-08 GFI1 
cg14568768 0.93 0.14 1.04E-02 2.02E-09 6.23E-07 LCORL 
cg17364114 0.10 0.39 1.05E-02 7.22E-07 1.17E-04 SLC22A3 
cg23269169 1.03 0.10 1.07E-02 3.08E-13 2.33E-10 C1orf144 
cg00591556 0.09 0.31 1.07E-02 7.20E-06 8.94E-04 HS6ST3 
cg20096979 1.32 0.27 1.09E-02 2.08E-07 3.87E-05 HNRNPH3 
cg16842060 0.43 0.10 1.09E-02 2.22E-06 3.17E-04 NFE2L2 
cg11759930 0.03 0.13 1.11E-02 7.73E-07 1.24E-04 - 
cg05770946 0.78 0.11 1.12E-02 3.80E-10 1.40E-07 SIM1 
cg02221805 1.20 0.22 1.17E-02 2.87E-08 6.68E-06 TRIM59 

ch.9.103369821R 0.60 0.13 1.18E-02 3.74E-07 6.53E-05 - 
cg04951677 0.09 0.37 1.19E-02 6.09E-07 1.01E-04 - 

ch.9.25704165R 2.00 0.38 1.22E-02 5.18E-08 1.13E-05 - 
cg14360268 1.44 0.30 1.25E-02 2.02E-07 3.78E-05 C17orf62 
cg13714403 1.49 0.16 1.27E-02 5.05E-12 2.82E-09 SIK3 
cg22435810 0.39 0.09 1.28E-02 2.09E-06 3.01E-04 SMCR7 
cg13483603 1.32 0.19 1.32E-02 9.12E-10 3.09E-07 OAS1 
cg14365785 0.04 0.26 1.37E-02 1.27E-10 5.13E-08 MTUS2 
cg14986104 0.93 0.16 1.38E-02 8.08E-09 2.17E-06 LINC01229 
cg09817993 0.77 0.14 1.44E-02 1.91E-08 4.65E-06 GNL3 
cg24079043 0.14 0.76 1.46E-02 1.68E-09 5.27E-07 MYO1E 
cg04963948 0.86 0.22 1.49E-02 4.87E-06 6.32E-04 TPD52 
cg04674291 0.08 1.20 1.49E-02 6.31E-20 2.01E-16 KSR2 
cg21848624 1.88 0.46 1.51E-02 2.67E-06 3.72E-04 NFATC1 
cg07872987 1.99 0.52 1.52E-02 8.03E-06 9.82E-04 CD96 
cg24087438 0.68 4.93 1.52E-02 3.53E-12 2.05E-09 ITGAE 
cg23460084 0.64 0.11 1.52E-02 1.28E-08 3.27E-06 CLPTM1 
cg00686761 0.46 0.12 1.52E-02 6.74E-06 8.43E-04 CEP192 
cg01273790 1.20 0.07 1.53E-02 3.56E-17 6.31E-14 PCBP2 
cg02081454 0.80 0.18 1.53E-02 1.15E-06 1.77E-04 POLR2M 

ch.3.3584022R 1.24 0.15 1.53E-02 2.11E-11 1.01E-08 ABCC5 
cg13729466 1.73 0.43 1.54E-02 3.28E-06 4.47E-04 SDCCAG8 
cg19239506 0.07 0.41 1.54E-02 9.85E-11 4.11E-08 SIK2 
cg06462481 0.08 1.12 1.54E-02 7.93E-19 2.00E-15 TNC 

ch.10.91757602F 1.28 0.33 1.56E-02 5.78E-06 7.35E-04 - 
cg22336141 0.19 0.65 1.56E-02 6.72E-06 8.40E-04 - 
cg19205037 0.11 1.25 1.57E-02 1.30E-16 2.11E-13 - 
cg12815829 0.89 0.17 1.57E-02 6.13E-08 1.31E-05 FAM107B 
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cg22577685 0.93 0.17 1.58E-02 2.66E-08 6.24E-06 - 
cg11779273 0.11 1.05 1.60E-02 1.77E-15 2.28E-12 INTU 
cg17582160 0.06 0.39 1.60E-02 1.55E-11 7.69E-09 - 
cg02648471 1.19 0.16 1.61E-02 1.94E-10 7.61E-08 - 
cg08215379 0.35 1.37 1.61E-02 7.79E-07 1.25E-04 KLHDC4 
cg00817232 0.20 0.84 1.62E-02 4.12E-07 7.13E-05 - 
cg10515751 0.11 0.59 1.65E-02 1.63E-09 5.16E-07 EPB41L3 
cg24021101 0.96 0.18 1.66E-02 4.99E-08 1.09E-05 SLC12A6 
cg18342183 0.08 0.93 1.69E-02 2.19E-17 4.12E-14 - 
cg08870433 0.05 0.41 1.76E-02 4.05E-13 2.97E-10 ZNF57 
cg00799171 0.42 0.07 1.80E-02 3.05E-09 9.02E-07 ZNF608 

ch.7.135065R 0.12 0.69 1.83E-02 2.48E-10 9.50E-08 TTYH3 
cg22324028 0.27 0.96 1.86E-02 6.28E-06 7.91E-04 NBAS 
cg16520768 0.70 0.14 1.87E-02 1.18E-07 2.33E-05 LIG1 
cg03941040 0.19 1.31 1.88E-02 1.48E-11 7.43E-09 TFAM 
cg10184159 1.25 0.10 1.88E-02 5.86E-15 6.62E-12 NBEAL1 
cg16177573 0.68 0.12 1.89E-02 2.71E-08 6.35E-06 I-DL 
cg13318572 0.62 0.10 1.92E-02 2.20E-09 6.73E-07 MYOM2 
cg13113115 0.05 0.18 1.92E-02 1.56E-06 2.31E-04 TFCP2 
cg22047295 0.72 0.19 1.94E-02 7.63E-06 9.41E-04 WIPF1 
cg25766763 0.04 0.13 1.99E-02 3.66E-06 4.91E-04 DCK 
cg09006572 0.14 0.55 1.99E-02 1.07E-06 1.67E-04 - 
cg10659652 0.29 1.06 1.99E-02 2.86E-06 3.96E-04 LOC286016 

 

 

Top 100 significant differentially variable positions in B cells between RA patients and non-RA 
controls ranked by t-test p-value 

 

CpG Var 
RA 

Var 
nRA P-value TT P-Value Bt Adiusted P-

value Bt UCSC RefGene 

ch.2.1159565R 1.78 0.24 1.39E-04 1.53E-11 6.17E-09 - 
cg01018002 0.82 0.19 2.08E-04 1.96E-07 3.11E-05 SNHG3-RCC1 
cg03940643 0.17 0.62 3.90E-04 3.25E-07 4.89E-05 - 
cg10720997 0.19 1.02 3.93E-04 5.62E-11 2.03E-08 - 
cg22797164 0.55 0.15 5.12E-04 4.95E-06 5.36E-04 NODAL 
cg15256944 0.11 0.03 6.16E-04 6.08E-07 8.52E-05 ARL16 
cg19819559 0.29 1.00 8.05E-04 1.29E-06 1.65E-04 OXR1 
cg08638512 1.21 0.34 8.20E-04 6.98E-06 7.22E-04 C10orf46 
cg14268695 0.18 0.60 9.92E-04 1.95E-06 2.38E-04 - 
cg14897833 0.11 0.33 9.95E-04 6.77E-06 7.04E-04 NID2 
cg02231880 0.13 0.42 1.08E-03 2.29E-06 2.74E-04 LOC100131315 
cg25308427 0.19 0.61 1.12E-03 3.86E-06 4.32E-04 - 

ch.2.1701371R 2.07 0.49 1.32E-03 3.60E-07 5.36E-05 HK2 
cg15154191 0.07 0.22 1.53E-03 7.81E-06 7.96E-04 MEGF6 
cg02623991 0.17 0.62 1.65E-03 4.18E-07 6.10E-05 TTYH1 
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cg20803547 0.23 0.83 1.71E-03 6.10E-07 8.54E-05 IL12RB2 
cg02033258 0.23 0.71 1.82E-03 5.83E-06 6.18E-04 PDLIM4 
cg04970117 0.08 0.36 1.99E-03 1.45E-08 3.05E-06 SLC6A20 
cg19658926 0.32 0.06 2.55E-03 3.62E-09 8.79E-07 CBX3 
cg10570405 0.45 0.12 2.76E-03 1.63E-06 2.03E-04 THAP5 
cg01579289 0.13 0.45 2.87E-03 1.15E-06 1.50E-04 - 
cg06113708 0.79 0.04 2.94E-03 1.87E-19 3.04E-16 COMTD1 
cg01915196 0.91 0.04 2.95E-03 8.39E-21 1.68E-17 MBD6 
cg14838086 0.61 0.15 3.10E-03 8.79E-07 1.18E-04 BAT5 
cg10919329 0.27 0.07 3.18E-03 1.60E-06 2.00E-04 SLC35A1 
cg08053598 0.19 0.03 3.35E-03 5.98E-10 1.74E-07 L3MBTL2 
cg27369452 0.25 0.81 3.38E-03 2.92E-06 3.38E-04 DNMT3A 
cg12518834 1.04 0.05 3.48E-03 2.54E-21 5.31E-18 RALGPS2 
cg02664993 0.14 0.44 3.68E-03 8.58E-06 8.62E-04 CTSA 
cg11039604 0.96 0.19 3.70E-03 1.15E-08 2.48E-06 - 
cg03246739 0.12 0.38 3.84E-03 4.27E-06 4.72E-04 LOC100131315 
cg22021178 0.30 0.07 3.87E-03 5.08E-07 7.25E-05 TGFB2 
cg15769279 0.26 0.05 3.91E-03 1.16E-08 2.49E-06 RNF214 
cg27471464 0.30 0.07 3.91E-03 3.65E-07 5.43E-05 CCDC137 
cg22264275 0.12 0.38 3.93E-03 2.65E-06 3.11E-04 MYO7A 
cg23170029 0.13 0.51 4.08E-03 7.49E-08 1.33E-05 JPH1 
cg12267948 0.15 0.69 4.26E-03 2.86E-09 7.12E-07 PRDM16 
cg22413388 0.13 0.44 4.28E-03 1.50E-06 1.89E-04 WNT7B 
cg27041026 0.09 0.93 4.28E-03 1.15E-18 1.68E-15 - 
cg07157430 0.20 0.87 4.29E-03 5.07E-09 1.19E-06 - 
cg01796104 0.42 1.53 4.38E-03 3.83E-07 5.65E-05 CNKSR3 
cg19489797 0.39 1.32 4.45E-03 1.45E-06 1.83E-04 DNMT3A 
cg16300637 0.15 0.51 4.47E-03 2.84E-06 3.30E-04 - 
cg03328984 0.20 0.75 4.52E-03 1.89E-07 3.03E-05 VIPR2 
cg06244627 0.72 0.14 4.78E-03 2.18E-08 4.37E-06 MMP2 
cg03149173 0.10 0.31 4.94E-03 4.99E-06 5.40E-04 LINC00899 
cg20021244 0.25 0.07 5.07E-03 5.74E-06 6.10E-04 APBB3 
cg11342941 3.35 0.88 5.19E-03 2.02E-06 2.46E-04 AGPAT4 
cg23945725 0.27 0.05 5.27E-03 1.47E-09 3.91E-07 AHI1 
cg10323257 0.16 0.67 5.28E-03 1.31E-08 2.79E-06 - 
cg18135502 0.54 0.06 5.36E-03 1.02E-13 6.30E-11 LHPP 
cg20308895 0.14 0.50 5.39E-03 8.54E-07 1.15E-04 IRX6 
cg10667205 0.11 0.34 5.48E-03 4.21E-06 4.67E-04 - 
cg08115387 0.21 0.83 5.49E-03 3.89E-08 7.40E-06 - 
cg14486812 0.85 0.19 5.54E-03 1.67E-07 2.71E-05 H3F3A 
cg01414845 1.14 0.23 5.54E-03 2.51E-08 4.96E-06 NFYC 
cg08686311 0.10 0.32 5.60E-03 2.75E-06 3.21E-04 FAM110A 
cg07987842 0.89 0.24 5.62E-03 2.31E-06 2.77E-04 ZNF687 
cg08593712 0.48 0.10 5.64E-03 2.26E-08 4.53E-06 ZNF839 
cg07923233 0.15 0.51 5.76E-03 1.21E-06 1.56E-04 - 
cg27086028 0.05 0.17 5.89E-03 8.03E-06 8.15E-04 SHANK1 
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cg13355248 0.17 0.85 5.93E-03 5.21E-10 1.54E-07 NPTX1 
cg20401551 0.21 0.74 5.94E-03 5.31E-07 7.54E-05 SCARF2 
cg10711035 0.95 0.27 5.95E-03 6.28E-06 6.60E-04 TAPBP 
cg15261499 0.46 0.06 6.04E-03 7.21E-12 3.08E-09 - 
cg01391506 0.90 0.20 6.13E-03 1.60E-07 2.62E-05 - 
cg03707742 1.13 0.23 6.16E-03 2.31E-08 4.62E-06 TM2D3 
cg01567084 1.21 0.21 6.22E-03 1.47E-09 3.93E-07 DYNC2H1 
cg25340966 0.17 0.73 6.24E-03 6.87E-09 1.56E-06 TBX15 
cg24000099 0.68 0.03 6.33E-03 4.46E-22 1.06E-18 DAGLB 
cg19537820 0.95 0.22 6.35E-03 2.30E-07 3.59E-05 REG4 
cg14270124 0.36 0.04 6.36E-03 7.93E-13 4.08E-10 PRDX5 
cg13686615 0.25 0.90 6.47E-03 3.15E-07 4.77E-05 - 
cg09550697 0.05 0.18 6.56E-03 4.50E-07 6.52E-05 PLEC1 
cg25082959 0.11 0.37 6.62E-03 9.43E-07 1.26E-04 FGF14 
cg19651132 0.14 0.52 6.74E-03 1.76E-07 2.84E-05 KC-1 
cg07413609 0.57 0.09 6.77E-03 1.88E-10 6.08E-08 GLI3 
cg27391564 0.19 0.63 6.78E-03 1.86E-06 2.29E-04 - 
cg16797003 0.18 0.69 7.00E-03 8.71E-08 1.52E-05 - 
cg10315076 0.23 1.36 7.01E-03 3.15E-12 1.44E-09 SRD5A3-AS1 
cg14500336 0.09 0.59 7.03E-03 1.60E-13 9.50E-11 - 
cg03861428 0.35 0.06 7.04E-03 3.83E-09 9.25E-07 SDHB 
cg03489016 1.55 0.37 7.16E-03 4.29E-07 6.24E-05 PID1 
cg11640253 0.14 0.71 7.32E-03 3.28E-10 1.02E-07 UPF1 
cg09567642 0.48 0.07 7.33E-03 7.56E-11 2.66E-08 BDP1 
cg07833382 1.44 0.22 7.35E-03 1.73E-10 5.67E-08 SCPEP1 
cg04399418 0.39 0.05 7.37E-03 9.83E-13 4.94E-10 - 
cg26783464 0.28 0.08 7.37E-03 5.29E-06 5.68E-04 ANKRD35 
cg02047489 0.17 0.64 7.63E-03 1.45E-07 2.40E-05 F2R 
cg22387890 0.25 1.08 7.63E-03 1.14E-08 2.46E-06 USP42 
cg23356977 0.65 0.15 7.65E-03 3.15E-07 4.76E-05 BRD7 
cg06427816 0.21 0.97 7.77E-03 3.36E-09 8.24E-07 ABR 
cg08826127 0.08 0.37 7.91E-03 1.46E-09 3.89E-07 SLC6A20 
cg06652112 0.80 0.14 7.94E-03 2.83E-09 7.05E-07 HES1 
cg10489986 0.08 0.37 7.99E-03 1.82E-09 4.76E-07 TRNP1 
cg13696940 0.09 0.38 8.05E-03 6.75E-09 1.53E-06 RASL10A 
cg10384554 0.21 0.83 8.16E-03 6.36E-08 1.15E-05 IRAK3 

ch.6.156307177R 1.41 0.33 8.45E-03 2.83E-07 4.34E-05 - 
cg10500173 1.30 0.13 8.47E-03 5.87E-14 3.79E-11 TACC1 
cg14085523 0.89 0.17 8.53E-03 9.04E-09 2.00E-06 - 
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Appendix E – Transcriptional regulator binding site enrichment 

 

 

 

 

 

All transcriptional regulators exhibiting nominally significant (p < 0.05) enrichment or depletion at 
risk-associated cis-CpGs in CD4+ T cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rheumatoid arthritis 
TR Prop RA 

cis-CpG 
Prop nRA 
cis-CpG 

P-value 

RELA 0.16 0.06 2.15E-04 
RUNX3 0.14 0.07 7.12E-03 

NFIC 0.12 0.05 1.21E-02 
CHD1 0.09 0.04 1.50E-02 

WRNIP1 0.06 0.02 2.40E-02 
TEAD4 0.01 0.06 3.12E-02 
RBBP5 0.02 0.07 3.40E-02 
MEF2C 0.03 0.01 3.66E-02 
POU2F2 0.07 0.03 3.74E-02 

TBL1XR1 0.07 0.03 4.06E-02 
FOS 0.03 0.09 4.70E-02 

STAT3 0.01 0.06 4.74E-02 
POLR2A 0.39 0.3 4.76E-02 

Asthma 
TR Prop RA 

cis-CpG 
Prop nRA 
cis-CpG 

P-value 

NFIC 0.12 0.05 2.02E-03 
FOXA1 0.11 0.05 2.10E-03 

E2F1 0.01 0.06 3.70E-03 
IKZF1 0.04 0.01 1.75E-02 
E2F6 0.01 0.05 1.84E-02 
FOS 0.14 0.08 2.83E-02 

HDAC2 0.01 0.04 4.78E-02 

Osteoarthritis 
TR Prop RA 

cis-CpG 
Prop nRA 
cis-CpG 

P-value 

WRNIP1 0.08 0.02 1.47E-04 
JUND 0.01 0.09 1.51E-04 
JUN 0.01 0.05 1.10E-02 
TBP 0.03 0.09 1.34E-02 
E2F6 0.1 0.05 1.63E-02 

SIN3AK20 0.03 0.08 1.89E-02 
MEF2C 0.03 0.01 2.26E-02 

FOS 0.03 0.09 2.46E-02 
GATA2 0.02 0.06 2.65E-02 
SIN3A 0.02 0.07 2.70E-02 

TBL1XR1 0.07 0.03 2.92E-02 
EP300 0.06 0.12 2.95E-02 
CHD1 0.01 0.04 4.76E-02 
PAX5 0.01 0.04 4.81E-02 

Multiple sclerosis 
TR Prop RA 

cis-CpG 
Prop nRA 
cis-CpG 

P-value 

RUNX3 0.17 0.07 4.10E-05 
BATF 0.08 0.02 9.86E-05 
RELA 0.14 0.06 3.91E-04 

NFATC1 0.06 0.01 1.03E-03 
IKZF1 0.05 0.01 2.56E-03 

BCL11A 0.06 0.02 2.73E-03 
BCL3 0.07 0.03 3.21E-03 

MEF2A 0.05 0.02 1.01E-02 
SPI1 0.09 0.05 1.14E-02 

WRNIP1 0.06 0.02 1.15E-02 
TBL1XR1 0.07 0.03 1.24E-02 

IRF4 0.05 0.02 1.51E-02 
NFYB 0.06 0.02 1.57E-02 

MEF2C 0.03 0.01 1.80E-02 
POLR2A 0.39 0.30 1.97E-02 

ATF2 0.09 0.04 2.03E-02 
NFIC 0.10 0.05 2.22E-02 
CTCF 0.10 0.17 2.39E-02 
ELK1 0.04 0.02 2.45E-02 
SMC3 0.11 0.06 2.77E-02 

POU2F2 0.07 0.03 4.13E-02 
TCF3 0.04 0.02 4.77E-02 
MAZ 0.14 0.09 4.96E-02 

Binding sites of transcriptional regulators displaying nominally significant (p < 0.05) at cis-CpGs associated 

with rheumatoid arthritis, multiple sclerosis, asthma, and osteoarthritis risk loci. TR = Transcriptional regulator 

name; Prop RA cis-CpG = proportion of all risk-associated cis-CpGs mapping to the binding site; Prop nRA 

cis-CpG = proportion of all non risk-associated cis-CpGs mapping to the binding site; P-value = p-value for 

the two-way Fisher’s exact test of enrichment. Regulators that exhibited significant enrichment/depletion 

following Bonferroni correction for the number of proteins tested are highlighted in bold. 
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All transcriptional regulators exhibiting nominally significant (p < 0.05) enrichment or depletion at 
risk-association cis-CpGs in B cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple sclerosis 

TR Prop RA 
cis-CpG 

Prop nRA 
cis-CpG P-value 

TBL1XR1 0.12 0.03 5.84E-05 
CCNT2 0.12 0.03 1.12E-04 
ATF2 0.12 0.04 1.10E-03 
MAZ 0.17 0.09 3.91E-03 

RAD21 0.03 0.10 4.50E-03 
BHLHE40 0.13 0.06 5.25E-03 
BCL11A 0.05 0.02 7.30E-03 

SP4 0.06 0.02 7.86E-03 
CTCF 0.08 0.17 8.08E-03 

WRNIP1 0.06 0.02 1.04E-02 
ELK1 0.05 0.02 1.21E-02 
IRF4 0.05 0.02 1.28E-02 
E2F4 0.07 0.03 2.32E-02 

RCOR1 0.12 0.06 3.06E-02 
RUNX3 0.12 0.06 3.36E-02 
IKZF1 0.04 0.01 4.40E-02 
MXI1 0.13 0.07 4.66E-02 

FOXA1 0.01 0.05 4.76E-02 
NFE2 0.02 0.00 4.79E-02 

Rheumatoid arthritis 

TR Prop RA 
cis-CpG 

Prop nRA 
cis-CpG P-value 

RELA 0.16 0.06 1.22E-04 
CHD1 0.1 0.04 2.66E-03 

WRNIP1 0.07 0.02 5.48E-03 
RAD21 0.03 0.1 1.22E-02 

SPI1 0.1 0.05 1.46E-02 
REST 0.02 0.07 3.39E-02 

BACH1 0.05 0.02 3.60E-02 

Asthma 

TR Prop RA 
cis-CpG 

Prop nRA 
cis-CpG P-value 

NFIC 0.12 0.05 4.48E-03 
USF2 0.08 0.03 4.52E-03 
EBF1 0.1 0.05 8.77E-03 
ESR1 0.06 0.02 1.39E-02 
E2F1 0.01 0.05 1.61E-02 
PHF8 0.01 0.05 3.28E-02 

NFATC1 0.04 0.01 3.42E-02 
FOS 0.14 0.09 3.55E-02 

PAX5 0.08 0.04 3.57E-02 
BCL11A 0.04 0.02 4.35E-02 
RUNX3 0.11 0.06 4.36E-02 

Osteoarthritis 

TR Prop RA 
cis-CpG 

Prop nRA 
cis-CpG P-value 

TCF12 0.17 0.06 1.21E-06 
REST 0.18 0.07 2.62E-05 

MEF2A 0.06 0.02 2.94E-03 
MEF2C 0.03 0.01 3.52E-03 
WRNIP1 0.06 0.02 3.97E-03 

TBL1XR1 0.07 0.03 1.55E-02 
NFIC 0.1 0.05 1.56E-02 
BATF 0.05 0.02 1.69E-02 
NR2F2 0.05 0.02 1.93E-02 
PML 0.09 0.05 2.78E-02 

FOXM1 0.07 0.03 2.85E-02 
FOS 0.04 0.09 3.28E-02 

ELK1 0.04 0.02 3.31E-02 
BRCA1 0.03 0.01 3.52E-02 

ZBTB7A 0.07 0.04 3.69E-02 
TCF3 0.04 0.02 4.37E-02 

TFAP2A 0.06 0.03 4.40E-02 
MTA3 0.05 0.02 4.65E-02 



 

277 
 

Appendix F – Gene Ontology Biological Process pathway analysis 

 

 

 

 

 

The top 50 Gene Ontology Biological Processes enriched at risk-associated cis-CpGs in CD4+ T 
cells relative to non-risk-associated cis-CpGs 

 

Rheumatoid arthritis (CD4+ T cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

alpha-linolenic acid metabolic process 9 2 1.23E-04 
linoleic acid metabolic process 11 2 2.25E-04 

regulation of B cell receptor signaling pathway 14 2 4.29E-04 
unsaturated fatty acid biosynthetic process 28 2 1.10E-03 

positive regulation of protein serine/threonine phosphatase 
activity 1 1 1.41E-03 

CD8-positive, alpha-beta T cell differentiation involved in 
immune response 1 1 1.48E-03 

negative regulation of protein import into nucleus, translocation 1 1 1.61E-03 
B cell receptor signaling pathway 33 2 1.93E-03 

regulation of antigen receptor-mediated signaling pathway 35 2 2.00E-03 
negative regulation of sphingolipid biosynthetic process 1 1 2.40E-03 

cellular sphingolipid homeostasis 1 1 2.40E-03 
negative regulation of ceramide biosynthetic process 1 1 2.40E-03 

cellular response to 2,3,7,8-tetrachlorodibenzodioxine 2 1 2.83E-03 
synaptic vesicle membrane organization 2 1 3.30E-03 

valine catabolic process 2 1 3.33E-03 
mesodermal to mesenchymal transition involved in gastrulation 2 1 3.56E-03 

immune system process 1589 8 3.70E-03 
regulation of toll-like receptor 9 signaling pathway 2 1 3.95E-03 

unsaturated fatty acid metabolic process 58 2 4.38E-03 
negative regulation of immunoglobulin production 3 1 4.39E-03 

immune effector process 652 5 4.40E-03 
positive regulation of histone H3-K27 methylation 3 1 4.50E-03 

cerebral cortex regionalization 3 1 4.56E-03 
endodermal cell fate specification 3 1 5.01E-03 

leukocyte activation 689 5 5.50E-03 
negative regulation of B cell receptor signaling pathway 3 1 5.54E-03 

long-chain fatty acid metabolic process 64 2 5.57E-03 
response to cGMP 4 1 5.82E-03 

cellular response to cGMP 4 1 5.82E-03 
regulation of histone H3-K27 methylation 4 1 6.07E-03 

response to 2,3,7,8-tetrachlorodibenzodioxine 4 1 6.89E-03 
negative regulation of cGMP-mediated signaling 4 1 7.39E-03 

response to peptidoglycan 5 1 7.89E-03 
immune response 1077 6 8.24E-03 

valine metabolic process 5 1 8.69E-03 
osteoclast fusion 4 1 9.21E-03 

Gene Ontology (GO) Biological Pathway enrichment at risk-associated cis-CpGs in CD4+ T cells and B cells. 

Number of Genes in process = The number of genes annotated to a particular biological pathway in GO; 

Number of genes at cis-CpG = number of genes mapping to the risk-associated cis-CpG; P-value = Enrichment 

p-value calculated using a modified hypergeometric test to account for bias in the number of CpG probes 

mapping to each gene (see Chapter 2.6.4). 
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fatty acid biosynthetic process 87 2 9.44E-03 
positive regulation of vascular permeability 6 1 9.72E-03 

 

Multiple Sclerosis (CD4+ T cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

negative regulation of calcidiol 1-monooxygenase activity 2 2 2.34E-05 
negative regulation of lipid metabolic process 49 4 3.58E-05 

positive regulation of T cell activation 105 5 5.59E-05 
positive regulation of leukocyte cell-cell adhesion 108 5 6.62E-05 
regulation of calcidiol 1-monooxygenase activity 4 2 9.90E-05 

negative regulation of vitamin D biosynthetic process 4 2 1.31E-04 
negative regulation of lipid biosynthetic process 30 3 1.66E-04 

positive regulation of cell-cell adhesion 135 5 1.91E-04 
regulation of lymphocyte activation 221 6 1.99E-04 

positive regulation of lymphocyte activation 140 5 2.10E-04 
negative regulation of vitamin metabolic process 5 2 2.24E-04 

negative regulation of hormone biosynthetic process 6 2 2.27E-04 
positive regulation of immune system process 538 9 2.55E-04 
positive regulation of leukocyte differentiation 78 4 2.55E-04 
regulation of vitamin D biosynthetic process 6 2 2.65E-04 

innate immune response-activating signal transduction 142 5 2.90E-04 
leukocyte activation 684 10 2.91E-04 

negative regulation of cellular process 2712 22 2.95E-04 
fat-soluble vitamin biosynthetic process 7 2 3.08E-04 

vitamin D biosynthetic process 7 2 3.08E-04 
regulation of leukocyte cell-cell adhesion 152 5 3.27E-04 

regulation of DNA-binding transcription factor activity 243 6 3.29E-04 
activation of innate immune response 148 5 3.42E-04 

negative regulation of hormone metabolic process 7 2 3.44E-04 
negative regulation of alcohol biosynthetic process 8 2 3.47E-04 

positive regulation of cell adhesion 240 6 4.13E-04 
positive regulation of leukocyte activation 162 5 4.15E-04 

regulation of T cell activation 166 5 4.77E-04 
positive regulation of cell activation 171 5 5.22E-04 
positive regulation of hemopoiesis 96 4 5.28E-04 

regulation of multicellular organismal process 1857 17 5.56E-04 
regulation of vitamin metabolic process 8 2 5.57E-04 

negative regulation of monooxygenase activity 9 2 5.91E-04 
regulation of leukocyte activation 269 6 5.91E-04 

stimulatory C-type lectin receptor signaling pathway 42 3 6.08E-04 
regulation of cytokine production 375 7 6.34E-04 

negative regulation of biological process 3077 23 6.57E-04 
leukocyte cell-cell adhesion 176 5 6.64E-04 

positive regulation of innate immune response 176 5 6.91E-04 
Fc-epsilon receptor signaling pathway 42 3 6.96E-04 

innate immune response activating cell surface receptor 
signaling pathway 45 3 7.34E-04 

positive regulation of T cell differentiation 45 3 7.61E-04 
platelet-derived growth factor receptor signaling pathway 42 3 7.82E-04 

transcription, DNA-templated 1942 17 8.15E-04 
immune system process 1584 15 8.43E-04 

regulation of cell differentiation 1074 12 8.44E-04 
cell surface receptor signaling pathway 1736 16 8.52E-04 

cell activation 783 10 8.77E-04 
regulation of immune system process 783 10 8.85E-04 

regulation of macromolecule biosynthetic process 2153 18 8.86E-04 
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Asthma (CD4+ T cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

negative regulation of nitrogen compound metabolic process 1307 17 6.33E-07 
negative regulation of nucleobase-containing compound 

metabolic process 769 13 1.11E-06 

negative regulation of cellular metabolic process 1410 17 1.93E-06 
negative regulation of metabolic process 1670 18 3.24E-06 

negative regulation of CD4-positive, alpha-beta T cell 
differentiation 10 3 3.63E-06 

CD4-positive, alpha-beta T cell differentiation 40 4 8.26E-06 
negative regulation of alpha-beta T cell differentiation 13 3 9.86E-06 

negative regulation of CD4-positive, alpha-beta T cell activation 14 3 1.07E-05 
negative regulation of RNA biosynthetic process 670 11 1.22E-05 

negative regulation of nucleic acid-templated transcription 670 11 1.22E-05 
CD4-positive, alpha-beta T cell activation 47 4 1.40E-05 

negative regulation of cellular biosynthetic process 841 12 1.60E-05 
negative regulation of biosynthetic process 856 12 1.89E-05 

negative regulation of macromolecule metabolic process 1521 16 1.92E-05 
negative regulation of RNA metabolic process 706 11 1.95E-05 

positive regulation of CD8-positive, alpha-beta T cell 
differentiation 2 2 3.07E-05 

negative regulation of T cell differentiation 19 3 3.17E-05 
alpha-beta T cell differentiation 57 4 3.19E-05 

negative regulation of alpha-beta T cell activation 21 3 4.44E-05 
positive regulation of CD8-positive, alpha-beta T cell activation 3 2 5.55E-05 

negative regulation of transcription, DNA-templated 648 10 5.57E-05 
regulation of CD8-positive, alpha-beta T cell differentiation 3 2 5.79E-05 

negative regulation of biological process 3077 23 5.90E-05 
negative regulation of macromolecule biosynthetic process 808 11 6.00E-05 

T cell differentiation 132 5 6.56E-05 
regulation of CD4-positive, alpha-beta T cell differentiation 25 3 6.57E-05 

negative regulation of lymphocyte differentiation 26 3 6.64E-05 
positive regulation of alpha-beta T cell differentiation 25 3 7.44E-05 

alpha-beta T cell activation 76 4 1.04E-04 
T-helper 1 cell differentiation 8 2 1.16E-04 

regulation of CD4-positive, alpha-beta T cell activation 32 3 1.24E-04 
positive regulation of alpha-beta T cell activation 32 3 1.46E-04 

regulation of alpha-beta T cell differentiation 33 3 1.49E-04 
regulation of macromolecule metabolic process 3401 23 1.54E-04 

T cell activation 251 6 1.65E-04 
T cell differentiation involved in immune response 37 3 1.84E-04 

negative regulation of cellular macromolecule biosynthetic 
process 770 10 2.03E-04 

peripheral nervous system neuron differentiation 6 2 2.09E-04 
peripheral nervous system neuron development 6 2 2.09E-04 

regulation of metabolic process 3705 24 2.13E-04 
regulation of nitrogen compound metabolic process 3209 22 2.27E-04 

interleukin-2 production 39 3 2.61E-04 
regulation of macromolecule biosynthetic process 2152 17 2.87E-04 

regulation of immune response 500 8 2.91E-04 
transcription, DNA-templated 1943 16 3.06E-04 

positive regulation of protein localization to cell surface 8 2 3.13E-04 
regulation of nucleobase-containing compound metabolic 

process 2160 17 3.27E-04 

nucleic acid-templated transcription 1966 16 3.59E-04 
lymphocyte differentiation 189 5 3.64E-04 

CD8-positive, alpha-beta T cell differentiation 8 2 3.67E-04 
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Osteoarthritis (CD4+ T cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

regulation of endopeptidase activity 247 6 2.61E-06 
activation of cysteine-type endopeptidase activity involved in 

apoptotic process 64 4 2.91E-06 
regulation of peptidase activity 260 6 3.60E-06 

positive regulation of cysteine-type endopeptidase activity 
involved in apoptotic process 88 4 1.08E-05 

positive regulation of cysteine-type endopeptidase activity 100 4 2.06E-05 
positive regulation of endopeptidase activity 115 4 3.57E-05 

positive regulation of peptidase activity 126 4 5.28E-05 
regulation of proteolysis 437 6 6.09E-05 

regulation of cysteine-type endopeptidase activity involved in 
apoptotic process 131 4 6.15E-05 

regulation of cysteine-type endopeptidase activity 146 4 1.01E-04 
regulation of hydrolase activity 784 7 2.55E-04 

positive regulation of apoptotic process 390 5 3.83E-04 
positive regulation of programmed cell death 393 5 3.94E-04 

positive regulation of proteolysis 224 4 4.56E-04 
negative regulation of protein metabolic process 646 6 5.18E-04 

positive regulation of cell death 422 5 5.48E-04 
digestive system development 93 3 6.94E-04 

positive regulation of apoptotic signaling pathway 104 3 7.47E-04 
hyaluronan metabolic process 23 2 7.95E-04 

positive regulation of hydrolase activity 478 5 1.21E-03 
regulation of catalytic activity 1371 8 1.41E-03 

positive regulation of supramolecular fiber organization 140 3 1.50E-03 
regulation of clathrin coat assembly 1 1 1.61E-03 

positive regulation of clathrin coat assembly 1 1 1.61E-03 
establishment of protein localization to plasma membrane 33 2 1.62E-03 

positive regulation of cytoskeleton organization 150 3 1.77E-03 
negative regulation of lung blood pressure 1 1 2.00E-03 

negative regulation of Arp2/3 complex-mediated actin 
nucleation 2 1 2.15E-03 

regulation of cellular protein metabolic process 1509 8 2.19E-03 
regulation of molecular function 1868 9 2.30E-03 

regulation of diacylglycerol kinase activity 1 1 2.31E-03 
positive regulation of diacylglycerol kinase activity 1 1 2.31E-03 

transforming growth factor beta3 production 2 1 2.40E-03 
regulation of transforming growth factor beta3 production 2 1 2.40E-03 

positive regulation of transforming growth factor beta3 
production 2 1 2.40E-03 

retinoic acid receptor signaling pathway involved in 
somitogenesis 1 1 2.51E-03 
somitogenesis 42 2 2.54E-03 

positive regulation of catalytic activity 856 6 2.67E-03 
negative regulation of cellular protein metabolic process 609 5 2.88E-03 

protein transport from ciliary membrane to plasma membrane 2 1 2.92E-03 
somite development 49 2 3.30E-03 

regulation of protein metabolic process 1614 8 3.40E-03 
positive regulation of platelet-derived growth factor receptor-

beta signaling pathway 2 1 3.41E-03 
regulation of chromatin assembly 2 1 3.47E-03 
regulation of lung blood pressure 3 1 3.81E-03 

activation of cysteine-type endopeptidase activity involved in 
apoptotic signaling pathway 3 1 4.21E-03 

positive regulation of reactive oxygen species metabolic process 58 2 4.22E-03 
negative regulation of molecular function 653 5 4.42E-03 
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ureter maturation 2 1 4.53E-03 
negative regulation of actin nucleation 4 1 4.55E-03 

 

The top 50 Gene Ontology Biological Processes enriched at risk-associated cis-CpGs in B cells 
relative to non-risk-associated cis-CpGs 

Rheumatoid arthritis (B cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

regulation of B cell receptor signaling pathway 18 2 4.61E-04 
immune effector process 676 6 6.73E-04 

DN3 thymocyte differentiation 1 1 1.27E-03 
positive regulation of protein serine/threonine phosphatase 

activity 1 1 1.27E-03 
leukocyte differentiation 297 4 1.50E-03 

immune response 1120 7 1.67E-03 
cellular sphingolipid homeostasis 1 1 1.91E-03 

regulation of antigen receptor-mediated signaling pathway 39 2 1.95E-03 
T cell differentiation in thymus 39 2 2.06E-03 

B cell receptor signaling pathway 37 2 2.19E-03 
negative regulation of protein import into nucleus, translocation 1 1 2.45E-03 

cellular response to 2,3,7,8-tetrachlorodibenzodioxine 1 1 2.45E-03 
regulation of dendritic cell chemotaxis 2 1 2.47E-03 

positive regulation of dendritic cell chemotaxis 2 1 2.47E-03 
positive regulation of flagellated sperm motility involved in 

capacitation 2 1 2.57E-03 
DN2 thymocyte differentiation 2 1 2.68E-03 

immunoglobulin production 54 2 2.80E-03 
negative regulation of sphingolipid biosynthetic process 2 1 3.25E-03 

negative regulation of ceramide biosynthetic process 2 1 3.25E-03 
synaptic vesicle membrane organization 2 1 3.82E-03 

thymocyte migration 3 1 4.06E-03 
lymphocyte differentiation 194 3 4.07E-03 

immune system process 1677 8 4.35E-03 
leukocyte activation involved in immune response 410 4 4.74E-03 

cell activation involved in immune response 413 4 4.86E-03 
leukocyte activation 708 5 5.82E-03 

isotype switching to IgA isotypes 5 1 6.06E-03 
leukocyte mediated immunity 444 4 6.09E-03 

positive regulation of interferon-gamma secretion 4 1 6.30E-03 
response to 2,3,7,8-tetrachlorodibenzodioxine 3 1 6.52E-03 

negative regulation of B cell receptor signaling pathway 4 1 6.62E-03 
response to cGMP 4 1 6.95E-03 

cellular response to cGMP 4 1 6.95E-03 
negative regulation of immunoglobulin production 5 1 7.19E-03 

regulation of interferon-gamma secretion 5 1 7.34E-03 
regulation of toll-like receptor 9 signaling pathway 5 1 7.55E-03 

positive regulation of defense response 253 3 7.71E-03 
regulation of fat cell differentiation 78 2 8.45E-03 

positive regulation of brown fat cell differentiation 5 1 9.08E-03 
positive regulation of flagellated sperm motility 6 1 9.36E-03 

hemopoiesis 496 4 9.47E-03 
negative regulation of signal transduction 773 5 9.69E-03 

response to peptidoglycan 7 1 9.76E-03 
negative regulation of cGMP-mediated signaling 5 1 9.84E-03 

osteoclast fusion 4 1 9.91E-03 
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Multiple Sclerosis (B cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

cellular response to organic substance 1533 15 2.58E-05 
regulation of macromolecule metabolic process 3501 23 2.98E-05 

regulation of nitrogen compound metabolic process 3289 22 4.21E-05 
regulation of primary metabolic process 3395 22 7.12E-05 
regulation of cellular metabolic process 3465 22 1.02E-04 

regulation of metabolic process 3804 23 1.28E-04 
nephric duct morphogenesis 6 2 1.43E-04 

enzyme linked receptor protein signaling pathway 648 9 1.50E-04 
cell surface receptor signaling pathway 1766 15 1.63E-04 
negative regulation of cellular process 2801 19 2.30E-04 

response to organic substance 1864 15 2.34E-04 
response to stimulus 5114 27 2.36E-04 

cellular response to chemical stimulus 1856 15 2.40E-04 
nephric duct development 8 2 2.80E-04 

cellular response to stimulus 4226 24 2.86E-04 
regulation of mitochondrion organization 106 4 3.17E-04 

regulation of sphingolipid biosynthetic process 9 2 3.24E-04 
regulation of membrane lipid metabolic process 9 2 3.24E-04 

regulation of ceramide biosynthetic process 9 2 3.24E-04 
platelet-derived growth factor receptor signaling pathway 44 3 3.77E-04 

negative regulation of biological process 3177 20 3.84E-04 
signal transduction 3436 21 3.98E-04 

regulation of cell differentiation 1106 11 4.15E-04 
regulation of signal transduction 1934 15 4.22E-04 

mitophagy 10 2 4.24E-04 
regulation of mitophagy 10 2 4.24E-04 

signaling 3724 22 4.27E-04 
asymmetric cell division 10 2 4.49E-04 

macromolecule metabolic process 5378 27 4.61E-04 
cell communication 3755 22 4.80E-04 

regulation of gene expression 2543 17 5.73E-04 
positive regulation of metabolic process 2083 15 8.20E-04 

positive regulation of developmental process 851 9 1.03E-03 
negative regulation of cellular metabolic process 1467 12 1.03E-03 

positive regulation of cellular process 3133 19 1.06E-03 
negative regulation of lymphocyte mediated immunity 17 2 1.14E-03 

positive regulation of mitochondrion organization 67 3 1.16E-03 
cell death 1270 11 1.20E-03 

response to retinoic acid 68 3 1.21E-03 
regulation of multicellular organismal process 1905 14 1.23E-03 

STAT cascade 77 3 1.48E-03 
negative regulation of adaptive immune response based on 

somatic recombination of immune receptors built from 
immunoglobulin superfamily domains 

20 2 1.49E-03 

nephron epithelium development 71 3 1.49E-03 
regulation of cell communication 2177 15 1.51E-03 

positive regulation of biological process 3517 20 1.65E-03 
regulation of signaling 2198 15 1.69E-03 

positive regulation of cell communication 1109 10 1.73E-03 
regulation of response to stimulus 2461 16 1.75E-03 

negative regulation of adaptive immune response 22 2 1.75E-03 
gene expression 3077 18 1.76E-03 
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Asthma (B cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

cytokine production 430 10 6.34E-07 
regulation of cytokine production 388 9 2.37E-06 

negative regulation of nucleobase-containing compound 
metabolic process 816 12 4.44E-06 

regulation of response to stress 820 12 5.11E-06 
negative regulation of nitrogen compound metabolic process 1364 15 7.60E-06 

regulation of type 2 immune response 17 3 1.63E-05 
type 2 immune response 18 3 1.86E-05 

negative regulation of cellular metabolic process 1466 15 1.91E-05 
regulation of defense response 412 8 2.82E-05 

regulation of inflammatory response 210 6 3.50E-05 
response to stress 2173 18 3.66E-05 

regulation of CD4-positive, alpha-beta T cell differentiation 23 3 3.76E-05 
regulation of immune system process 849 11 4.22E-05 

negative regulation of RNA biosynthetic process 705 10 4.81E-05 
negative regulation of nucleic acid-templated transcription 705 10 4.81E-05 

negative regulation of type 2 immune response 4 2 5.23E-05 
negative regulation of cellular biosynthetic process 879 11 5.28E-05 

positive regulation of response to stimulus 1359 14 5.45E-05 
negative regulation of biological process 3180 22 6.05E-05 

negative regulation of biosynthetic process 894 11 6.08E-05 
interleukin-5 secretion 4 2 6.66E-05 

regulation of interleukin-5 secretion 4 2 6.66E-05 
positive regulation of interleukin-5 secretion 4 2 6.66E-05 

positive regulation of immune system process 587 9 6.84E-05 
negative regulation of RNA metabolic process 746 10 7.44E-05 

isotype switching to IgG isotypes 6 2 7.60E-05 
regulation of isotype switching to IgG isotypes 6 2 7.60E-05 

regulation of response to stimulus 2462 19 8.65E-05 
regulation of CD4-positive, alpha-beta T cell activation 30 3 8.83E-05 

T-helper 2 cell cytokine production 6 2 9.79E-05 
regulation of T-helper 2 cell cytokine production 6 2 9.79E-05 

regulation of response to external stimulus 480 8 1.18E-04 
negative regulation of cellular process 2804 20 1.26E-04 

negative regulation of metabolic process 1741 15 1.26E-04 
multi-organism process 1340 13 1.40E-04 

T cell activation 264 6 1.68E-04 
CD4-positive, alpha-beta T cell differentiation 37 3 1.72E-04 

interleukin-2 production 35 3 1.75E-04 
regulation of alpha-beta T cell differentiation 34 3 1.79E-04 

negative regulation of macromolecule metabolic process 1598 14 1.85E-04 
regulation of leukocyte cell-cell adhesion 174 5 1.89E-04 

regulation of macromolecule metabolic process 3502 22 1.90E-04 
negative regulation of macromolecule biosynthetic process 842 10 1.94E-04 

regulation of immune response 544 8 2.13E-04 
negative regulation of transcription, DNA-templated 684 9 2.20E-04 

regulation of lymphocyte differentiation 95 4 2.46E-04 
regulation of T cell activation 184 5 2.58E-04 

regulation of DNA recombination 45 3 2.64E-04 
regulation of leukocyte activation 289 6 2.66E-04 

regulation of nitrogen compound metabolic process 3290 21 2.68E-04 
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Osteoarthritis (B cell) 

Biological Process Term 
Number of 
Genes in 
Process 

Number of 
Genes at cis-

CpG 
P-value 

positive regulation of apoptotic process 390 7 1.19E-05 
positive regulation of programmed cell death 392 7 1.21E-05 

positive regulation of cell death 424 7 1.86E-05 
regulation of Rac protein signal transduction 7 2 1.44E-04 

negative regulation of transforming growth factor beta receptor 
signaling pathway 46 3 1.55E-04 

negative regulation of cellular response to transforming growth 
factor beta stimulus 47 3 1.60E-04 

activation of cysteine-type endopeptidase activity involved in 
apoptotic process 62 3 2.61E-04 

positive regulation of reactive oxygen species metabolic process 58 3 2.71E-04 
regulation of apoptotic process 889 8 2.75E-04 

artery development 65 3 2.87E-04 
regulation of programmed cell death 899 8 2.99E-04 

regulation of clathrin-dependent endocytosis 14 2 3.69E-04 
regulation of transforming growth factor beta receptor signaling 

pathway 68 3 4.31E-04 

regulation of cellular response to transforming growth factor 
beta stimulus 69 3 4.41E-04 

positive regulation of hydrolase activity 482 6 4.67E-04 
negative regulation of cellular protein localization 73 3 5.06E-04 

regulation of cell death 973 8 5.15E-04 
negative regulation of transmembrane receptor protein 

serine/threonine kinase signaling pathway 73 3 5.55E-04 

liver development 81 3 5.69E-04 
receptor-mediated endocytosis 179 4 5.74E-04 

hepaticobiliary system development 82 3 5.80E-04 
astrocyte development 19 2 5.95E-04 

endocrine system development 83 3 6.72E-04 
positive regulation of cysteine-type endopeptidase activity 

involved in apoptotic process 91 3 7.73E-04 

heart development 363 5 8.50E-04 
adrenal gland development 19 2 9.36E-04 

regulation of transforming growth factor beta production 24 2 9.48E-04 
regulation of hydrolase activity 794 7 1.06E-03 

negative regulation of cellular response to growth factor 
stimulus 92 3 1.11E-03 

positive regulation of cysteine-type endopeptidase activity 103 3 1.15E-03 
forebrain astrocyte differentiation 1 1 1.16E-03 
forebrain astrocyte development 1 1 1.16E-03 

gamma-aminobutyric acid secretion, neurotransmission 1 1 1.16E-03 
negative regulation of establishment of protein localization 105 3 1.18E-03 

transforming growth factor beta production 26 2 1.23E-03 
apoptotic process 1116 8 1.26E-03 

digestive system development 98 3 1.26E-03 
anatomical structure maturation 105 3 1.29E-03 

positive regulation of nitric oxide biosynthetic process 25 2 1.41E-03 
positive regulation of nitric oxide metabolic process 25 2 1.41E-03 

negative regulation of protein metabolic process 658 6 1.41E-03 
regulation of endopeptidase activity 254 4 1.42E-03 

Rac protein signal transduction 22 2 1.44E-03 
positive regulation of apoptotic signaling pathway 109 3 1.48E-03 

regulation of reactive oxygen species metabolic process 111 3 1.52E-03 
positive regulation of endopeptidase activity 118 3 1.64E-03 

clathrin-dependent endocytosis 30 2 1.75E-03 
regulation of peptidase activity 270 4 1.81E-03 
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positive regulation of catalytic activity 885 7 1.82E-03 
programmed cell death 1193 8 1.82E-03 

 

 

Appendix G – Expression Quantitative Trait Methylations as Risk cis-CpGs 

 

 

 

 

 

Cis-expression quantitative trait methylation (eQTM) at genes within ±500kb of risk-associated cis-
meQTL CpGs in CD4+ T cells 

Rheumatoid arthritis (CD4+ T cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg21124310 ILMN_1798947 ANKRD55 4.26E-12 2.13E-11 -0.623 
cg21124310 ILMN_2341724 ANKRD55 1.49E-11 3.73E-11 -0.611 
cg23343972 ILMN_1798947 ANKRD55 7.54E-11 1.88E-10 -0.594 
cg23343972 ILMN_2341724 ANKRD55 4.41E-11 1.88E-10 -0.599 
cg10404427 ILMN_1798947 ANKRD55 1.16E-10 5.81E-10 -0.589 
cg15667493 ILMN_1798947 ANKRD55 5.90E-10 1.47E-09 -0.570 
cg15667493 ILMN_2341724 ANKRD55 3.01E-10 1.47E-09 -0.578 
cg10404427 ILMN_2341724 ANKRD55 6.90E-09 1.73E-08 -0.540 
cg07522171 ILMN_1682727 JAZF1 4.47E-09 1.79E-08 -0.545 
cg01045635 ILMN_1691693 FCRL3 1.91E-08 3.82E-08 -0.526 
cg17134153 ILMN_1691693 FCRL3 1.98E-08 3.95E-08 -0.526 
cg11187739 ILMN_1682727 JAZF1 4.96E-08 2.48E-07 -0.513 
cg15431103 ILMN_1798947 ANKRD55 6.23E-08 3.12E-07 -0.509 
cg15431103 ILMN_2341724 ANKRD55 1.83E-07 4.58E-07 -0.493 
cg21721331 ILMN_1691693 FCRL3 5.60E-07 1.12E-06 -0.476 
cg01045635 ILMN_1797428 FCRL3 2.54E-06 2.54E-06 -0.451 
cg17134153 ILMN_1797428 FCRL3 4.22E-06 4.22E-06 -0.442 
cg19602479 ILMN_1691693 FCRL3 4.95E-06 9.89E-06 -0.439 
cg10909506 ILMN_1662174 ORMDL3 6.69E-07 1.07E-05 -0.473 
cg08786003 ILMN_1691693 FCRL3 8.88E-06 1.78E-05 -0.428 
cg19602479 ILMN_1797428 FCRL3 1.85E-05 1.85E-05 -0.414 
cg21721331 ILMN_1797428 FCRL3 2.05E-05 2.05E-05 -0.412 
cg18711369 ILMN_1662174 ORMDL3 3.16E-06 5.06E-05 -0.447 
cg23343972 ILMN_1849013 IL6ST 3.48E-05 5.80E-05 -0.401 
cg21124310 ILMN_1849013 IL6ST 3.60E-05 6.01E-05 -0.401 
cg10404427 ILMN_1849013 IL6ST 6.25E-05 1.04E-04 -0.389 
cg00184826 ILMN_1682727 JAZF1 5.82E-05 1.16E-04 0.391 
cg08786003 ILMN_1797428 FCRL3 1.97E-04 1.97E-04 -0.364 
cg18711369 ILMN_1666206 GSDMB 2.94E-05 2.35E-04 -0.405 
cg15667493 ILMN_1849013 IL6ST 3.39E-04 5.64E-04 -0.351 
cg15431103 ILMN_1849013 IL6ST 3.53E-04 5.88E-04 -0.350 
cg25259754 ILMN_1691693 FCRL3 3.53E-04 7.06E-04 -0.350 
cg16130019 ILMN_1682727 JAZF1 1.48E-04 7.39E-04 0.371 
cg10909506 ILMN_1666206 GSDMB 1.02E-04 8.16E-04 -0.379 
cg25259754 ILMN_1797428 FCRL3 1.33E-03 1.33E-03 -0.317 
cg16213375 ILMN_1786759 C11orf10 1.39E-04 1.39E-03 -0.372 
cg18707136 ILMN_1797428 FCRL3 7.57E-04 1.51E-03 0.331 

Expression Quantitative Methylations at cis-CpGs associated with risk loci (rheumatoid arthritis, multiple 

sclerosis, asthma, and osteoarthritis.) were identified in CD4+ T cells and B cells by Spearman’s rho 

correlation. P-value = Spearman’s rho p-value; Adj. Pval = Benjamini-Hochberg adjusted p-value across the 

number of transcripts tested at each cis-CpG. These tables report associations for all CpG and Transcript 

probes whereas numbers presented in the text (Chapter 5) refer only to unique CpG-Gene associations. 
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cg11187739 ILMN_2374770 TAX1BP1 6.14E-04 1.53E-03 0.337 
cg15431103 ILMN_1797861 IL6ST 1.57E-03 1.96E-03 -0.312 
cg08519799 ILMN_1682727 JAZF1 9.94E-04 3.98E-03 0.324 
cg18707136 ILMN_1691693 FCRL3 5.43E-03 5.43E-03 0.276 
cg07522171 ILMN_2374770 TAX1BP1 4.36E-03 8.72E-03 0.283 

 

Multiple sclerosis (CD4+ T cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg21124310 ILMN_1798947 ANKRD55 4.26E-12 2.13E-11 -0.623 
cg21124310 ILMN_2341724 ANKRD55 1.49E-11 3.73E-11 -0.611 
cg23343972 ILMN_1798947 ANKRD55 7.54E-11 1.88E-10 -0.594 
cg23343972 ILMN_2341724 ANKRD55 4.41E-11 1.88E-10 -0.599 
cg10404427 ILMN_1798947 ANKRD55 1.16E-10 5.81E-10 -0.589 
cg15667493 ILMN_1798947 ANKRD55 5.90E-10 1.47E-09 -0.570 
cg15667493 ILMN_2341724 ANKRD55 3.01E-10 1.47E-09 -0.578 
cg10404427 ILMN_2341724 ANKRD55 6.90E-09 1.73E-08 -0.540 
cg07522171 ILMN_1682727 JAZF1 4.47E-09 1.79E-08 -0.545 
cg05575058 ILMN_1789558 FAM164A 1.53E-08 7.67E-08 -0.529 
cg03983883 ILMN_1789558 FAM164A 1.80E-08 9.02E-08 -0.527 
cg11187739 ILMN_1682727 JAZF1 4.96E-08 2.48E-07 -0.513 
cg15431103 ILMN_1798947 ANKRD55 6.23E-08 3.12E-07 -0.509 
cg15431103 ILMN_2341724 ANKRD55 1.83E-07 4.58E-07 -0.493 
cg21140145 ILMN_1789558 FAM164A 2.54E-07 1.27E-06 -0.488 
cg02511570 ILMN_1703301 MRPL45P2 5.13E-07 3.08E-06 -0.477 
cg10909506 ILMN_1662174 ORMDL3 6.69E-07 1.07E-05 -0.473 
cg25492364 ILMN_1811933 SHMT1 1.19E-06 1.66E-05 -0.464 
cg16006841 ILMN_1696828 RGS14 1.12E-06 1.79E-05 -0.465 
cg07654569 ILMN_1789558 FAM164A 7.61E-06 3.80E-05 -0.431 
cg20676602 ILMN_1703301 MRPL45P2 7.10E-06 4.26E-05 -0.432 
cg25875191 ILMN_1696828 RGS14 2.72E-06 4.35E-05 -0.449 
cg18711369 ILMN_1662174 ORMDL3 3.16E-06 5.06E-05 -0.447 
cg23343972 ILMN_1849013 IL6ST 3.48E-05 5.80E-05 -0.401 
cg21124310 ILMN_1849013 IL6ST 3.60E-05 6.01E-05 -0.401 
cg03983883 ILMN_2057981 FAM164A 2.68E-05 6.71E-05 -0.407 
cg10404427 ILMN_1849013 IL6ST 6.25E-05 1.04E-04 -0.389 
cg00184826 ILMN_1682727 JAZF1 5.82E-05 1.16E-04 0.391 
cg18711369 ILMN_1666206 GSDMB 2.94E-05 2.35E-04 -0.405 
cg05575058 ILMN_2057981 FAM164A 1.61E-04 4.02E-04 -0.369 
cg15667493 ILMN_1849013 IL6ST 3.39E-04 5.64E-04 -0.351 
cg02116225 ILMN_1811933 SHMT1 4.16E-05 5.82E-04 -0.398 
cg15431103 ILMN_1849013 IL6ST 3.53E-04 5.88E-04 -0.350 
cg09689469 ILMN_1714393 RAB24 4.46E-05 7.14E-04 0.396 
cg16130019 ILMN_1682727 JAZF1 1.48E-04 7.39E-04 0.371 
cg10909506 ILMN_1666206 GSDMB 1.02E-04 8.16E-04 -0.379 
cg11598255 ILMN_1696828 RGS14 7.14E-05 1.14E-03 -0.386 
cg23071186 ILMN_1761764 ALKBH7 8.90E-05 1.16E-03 0.382 
cg11187739 ILMN_2374770 TAX1BP1 6.14E-04 1.53E-03 0.337 
cg06060754 ILMN_1696828 RGS14 1.05E-04 1.68E-03 -0.378 
cg21140145 ILMN_2057981 FAM164A 7.59E-04 1.90E-03 -0.331 
cg15431103 ILMN_1797861 IL6ST 1.57E-03 1.96E-03 -0.312 
cg08519799 ILMN_1682727 JAZF1 9.94E-04 3.98E-03 0.324 
cg01030110 ILMN_3245559 CDK2AP1 3.67E-04 5.88E-03 -0.349 
cg07654569 ILMN_2057981 FAM164A 2.81E-03 7.01E-03 -0.296 
cg12550541 ILMN_1723846 METTL21B 3.87E-04 7.73E-03 -0.348 
cg07654569 ILMN_1762262 PKIA 6.22E-03 7.84E-03 -0.272 
cg07654569 ILMN_2337974 PKIA 6.27E-03 7.84E-03 -0.272 
cg24044988 ILMN_1812877 ZNF688 2.26E-04 7.92E-03 0.361 
cg07522171 ILMN_2374770 TAX1BP1 4.36E-03 8.72E-03 0.283 
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Asthma (CD4+ T cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg13899648 ILMN_1676924 CD247 4.37E-06 5.24E-05 -0.441 
cg13924073 ILMN_1676924 CD247 6.99E-06 5.59E-05 -0.433 
cg10375409 ILMN_1676924 CD247 9.05E-06 1.09E-04 -0.428 
cg00080417 ILMN_1676924 CD247 2.27E-05 2.72E-04 -0.410 
cg20970810 ILMN_1676924 CD247 3.60E-05 4.32E-04 -0.401 
cg26880239 ILMN_1676924 CD247 4.69E-05 5.63E-04 -0.395 
cg06674732 ILMN_1676924 CD247 7.63E-04 9.16E-03 -0.331 
cg01097872 ILMN_2112301 DRAP1 3.16E-04 8.84E-03 0.353 
cg18711369 ILMN_1666206 GSDMB 2.94E-05 2.35E-04 -0.405 
cg10909506 ILMN_1666206 GSDMB 1.02E-04 8.16E-04 -0.379 
cg00272070 ILMN_1781700 IL18R1 2.44E-06 7.31E-06 -0.451 
cg07522171 ILMN_1682727 JAZF1 4.47E-09 1.79E-08 -0.545 
cg11187739 ILMN_1682727 JAZF1 4.96E-08 2.48E-07 -0.513 
cg00184826 ILMN_1682727 JAZF1 5.82E-05 1.16E-04 0.391 
cg16130019 ILMN_1682727 JAZF1 1.48E-04 7.39E-04 0.371 
cg08519799 ILMN_1682727 JAZF1 9.94E-04 3.98E-03 0.324 
cg24839871 ILMN_1718129 MAP2K5 1.21E-03 6.04E-03 -0.319 
cg10909506 ILMN_1662174 ORMDL3 6.69E-07 1.07E-05 -0.473 
cg18711369 ILMN_1662174 ORMDL3 3.16E-06 5.06E-05 -0.447 
cg00112517 ILMN_1662174 ORMDL3 1.21E-04 1.81E-03 -0.375 
cg16484858 ILMN_1802380 RERE 6.32E-05 3.16E-04 -0.389 
cg14004768 ILMN_1802380 RERE 1.64E-04 8.22E-04 -0.368 
cg15732724 ILMN_1802380 RERE 1.14E-03 3.42E-03 -0.321 
cg19712600 ILMN_1747857 SMARCE1 3.47E-04 2.43E-03 0.351 
cg11187739 ILMN_2374770 TAX1BP1 6.14E-04 1.53E-03 0.337 
cg07522171 ILMN_2374770 TAX1BP1 4.36E-03 8.72E-03 0.283 
cg13109634 ILMN_1777487 ZNF839 1.56E-03 7.80E-03 -0.312 

 

Osteoarthritis (CD4+ T cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg04226788 ILMN_2393693 LRRC37A4 2.03E-14 1.22E-13 0.672 
cg17117718 ILMN_2393693 LRRC37A4 5.70E-14 6.27E-13 -0.663 
cg18815117 ILMN_2393693 LRRC37A4 6.08E-13 6.69E-12 0.642 
cg18228076 ILMN_2393693 LRRC37A4 2.35E-12 1.65E-11 0.629 
cg07368061 ILMN_2393693 LRRC37A4 2.27E-11 1.13E-10 0.607 
cg20059597 ILMN_2393693 LRRC37A4 1.32E-10 1.45E-09 -0.587 
cg06537391 ILMN_2393693 LRRC37A4 3.31E-10 2.98E-09 -0.577 
cg01882395 ILMN_2393693 LRRC37A4 4.13E-10 4.54E-09 -0.574 
cg03238273 ILMN_2393693 LRRC37A4 2.78E-09 2.51E-08 -0.551 
cg04226788 ILMN_1784428 MGC57346 1.29E-08 3.87E-08 -0.531 
cg17117718 ILMN_1784428 MGC57346 8.51E-09 4.68E-08 0.537 
cg18815117 ILMN_1784428 MGC57346 2.24E-08 1.23E-07 -0.524 
cg18228076 ILMN_1784428 MGC57346 9.62E-08 3.37E-07 -0.503 
cg09793084 ILMN_2393693 LRRC37A4 6.87E-08 6.18E-07 0.508 
cg18753072 ILMN_2393693 LRRC37A4 9.97E-08 1.10E-06 -0.503 
cg16520312 ILMN_2393693 LRRC37A4 1.87E-07 1.31E-06 0.493 
cg07817266 ILMN_2393693 LRRC37A4 2.66E-07 2.93E-06 -0.488 
cg07368061 ILMN_1784428 MGC57346 1.42E-06 3.54E-06 -0.461 
cg14598846 ILMN_2370872 GRINA 1.91E-07 5.53E-06 0.493 
cg04892187 ILMN_2370872 GRINA 2.54E-07 7.38E-06 -0.488 
cg22822867 ILMN_2370872 GRINA 4.15E-07 1.20E-05 -0.481 
cg11117266 ILMN_2393693 LRRC37A4 1.96E-06 1.37E-05 0.455 
cg24891660 ILMN_2370872 GRINA 5.03E-07 1.46E-05 -0.478 
cg15295732 ILMN_2393693 LRRC37A4 2.98E-06 2.09E-05 0.448 
cg03238273 ILMN_1784428 MGC57346 4.86E-06 2.19E-05 0.439 
cg21900799 ILMN_2370872 GRINA 1.03E-06 2.99E-05 -0.466 
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cg07531549 ILMN_2370872 GRINA 1.17E-06 3.39E-05 -0.464 
cg18878992 ILMN_2393693 LRRC37A4 7.80E-06 5.46E-05 -0.430 
cg01882395 ILMN_1784428 MGC57346 1.16E-05 6.39E-05 0.423 
cg16520312 ILMN_1784428 MGC57346 2.38E-05 8.33E-05 -0.409 
cg09793084 ILMN_1784428 MGC57346 2.21E-05 9.93E-05 -0.411 
cg06537391 ILMN_1784428 MGC57346 2.32E-05 1.05E-04 0.410 
cg15295732 ILMN_1784428 MGC57346 3.09E-05 1.08E-04 -0.404 
cg20784950 ILMN_2370872 GRINA 5.10E-06 1.48E-04 -0.438 
cg24044478 ILMN_2370872 GRINA 5.16E-06 1.50E-04 -0.438 
cg04757492 ILMN_2370872 GRINA 5.39E-06 1.56E-04 -0.437 
cg07817266 ILMN_1784428 MGC57346 3.76E-05 2.07E-04 0.400 
cg25475366 ILMN_2370872 GRINA 7.22E-06 2.09E-04 -0.432 
cg20059597 ILMN_1784428 MGC57346 9.16E-05 5.04E-04 0.381 
cg18753072 ILMN_2200636 KIAA1267 1.14E-04 6.28E-04 0.376 
cg07531549 ILMN_1744268 PLEC 7.64E-05 1.11E-03 -0.385 
cg14913216 ILMN_2370872 GRINA 4.11E-05 1.19E-03 -0.398 
cg08116092 ILMN_1668743 RILPL2 7.89E-05 1.34E-03 -0.384 
cg08090367 ILMN_2370872 GRINA 4.73E-05 1.37E-03 -0.395 
cg15847845 ILMN_2370872 GRINA 5.28E-05 1.53E-03 0.393 
cg02623114 ILMN_1744268 PLEC 5.53E-05 1.60E-03 -0.392 
cg08116092 ILMN_1678490 RILPL2 2.25E-04 1.92E-03 -0.361 
cg01934064 ILMN_1784428 MGC57346 3.71E-04 2.23E-03 0.349 
cg11117266 ILMN_1784428 MGC57346 1.32E-03 4.60E-03 -0.317 
cg15633388 ILMN_1680353 NSF 1.26E-03 4.62E-03 -0.318 
cg15633388 ILMN_2330845 NSF 1.85E-03 4.62E-03 -0.308 
cg11117266 ILMN_1709549 PLEKHM1 1.98E-03 4.62E-03 -0.306 
cg08161931 ILMN_2370872 GRINA 1.78E-04 5.17E-03 -0.366 
cg00891649 ILMN_2393693 LRRC37A4 7.80E-04 5.46E-03 0.331 
cg14913216 ILMN_1744268 PLEC 3.80E-04 5.51E-03 -0.349 
cg04892187 ILMN_1744268 PLEC 3.92E-04 5.68E-03 -0.348 
cg01030110 ILMN_3245559 CDK2AP1 3.67E-04 5.88E-03 -0.349 
cg01934064 ILMN_2393693 LRRC37A4 2.34E-03 7.03E-03 -0.301 
cg13389508 ILMN_1744268 PLEC 3.16E-04 9.15E-03 -0.353 

 

Cis-expression quantitative trait methylation (eQTM) at genes within ±500kb of risk-associated cis-
meQTL CpGs in B cells 

 

Rheumatoid arthritis (B cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg16429190 ILMN_1687213 FAM167A 2.92E-14 2.92E-13 0.647 
cg16429190 ILMN_3248511 FAM167A 1.93E-13 9.67E-13 0.631 
cg12749226 ILMN_1662174 ORMDL3 8.88E-12 1.60E-10 -0.595 
cg21721331 ILMN_1691693 FCRL3 2.91E-11 1.75E-10 -0.583 
cg19602479 ILMN_1691693 FCRL3 3.89E-11 2.33E-10 -0.580 
cg01045635 ILMN_1699599 FCRL3 1.73E-10 1.04E-09 -0.564 
cg09528494 ILMN_1687213 FAM167A 4.91E-10 2.46E-09 0.552 
cg09528494 ILMN_3248511 FAM167A 3.93E-10 2.46E-09 0.555 
cg01045635 ILMN_1691693 FCRL3 1.30E-09 2.60E-09 -0.541 
cg01045635 ILMN_1797428 FCRL3 1.30E-09 2.60E-09 -0.541 
cg01383082 ILMN_3248511 FAM167A 2.61E-10 2.61E-09 -0.559 
cg21497594 ILMN_1687213 FAM167A 5.57E-10 4.27E-09 0.551 
cg21497594 ILMN_3248511 FAM167A 9.50E-10 4.27E-09 0.544 
cg01383082 ILMN_1687213 FAM167A 1.42E-09 7.12E-09 -0.539 
cg19602479 ILMN_1699599 FCRL3 3.46E-09 9.43E-09 -0.529 
cg19602479 ILMN_1797428 FCRL3 4.72E-09 9.43E-09 -0.525 
cg21721331 ILMN_1699599 FCRL3 3.58E-09 1.07E-08 -0.528 
cg21721331 ILMN_1797428 FCRL3 1.50E-08 3.00E-08 -0.510 
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cg15602298 ILMN_1797428 FCRL3 1.70E-08 1.02E-07 -0.508 
cg16429190 ILMN_1668277 BLK 4.44E-08 1.48E-07 -0.495 
cg12749226 ILMN_1666206 GSDMB 3.48E-08 3.14E-07 -0.498 
cg04986849 ILMN_3248511 FAM167A 7.81E-08 7.81E-07 0.487 
cg15602298 ILMN_1691693 FCRL3 2.85E-07 8.56E-07 -0.468 
cg04986849 ILMN_1687213 FAM167A 2.82E-07 1.41E-06 0.468 
cg15602298 ILMN_1699599 FCRL3 3.58E-06 7.16E-06 -0.427 
cg11944933 ILMN_1687213 FAM167A 1.59E-06 1.01E-05 -0.441 
cg11944933 ILMN_3248511 FAM167A 2.01E-06 1.01E-05 -0.437 
cg01383082 ILMN_1668277 BLK 5.37E-06 1.79E-05 0.420 
cg15222091 ILMN_1690907 CCR6 8.58E-06 2.57E-05 -0.412 
cg16523158 ILMN_1690907 CCR6 1.04E-05 3.13E-05 -0.408 
cg23507676 ILMN_1687213 FAM167A 9.79E-06 4.40E-05 0.410 
cg23507676 ILMN_3248511 FAM167A 9.65E-06 4.40E-05 0.410 
cg01527115 ILMN_1687213 FAM167A 5.45E-06 5.21E-05 -0.420 
cg01527115 ILMN_3248511 FAM167A 1.04E-05 5.21E-05 -0.408 
cg13200575 ILMN_1662174 ORMDL3 6.22E-06 1.12E-04 -0.418 
cg25259754 ILMN_1691693 FCRL3 2.00E-05 1.20E-04 -0.396 
cg19954286 ILMN_1690907 CCR6 4.42E-05 1.33E-04 -0.381 
cg18691862 ILMN_1662174 ORMDL3 8.07E-06 1.45E-04 -0.413 
cg14348996 ILMN_1662174 ORMDL3 9.07E-06 1.54E-04 0.411 
cg25259754 ILMN_1797428 FCRL3 7.24E-05 2.17E-04 -0.371 
cg21497594 ILMN_1668277 BLK 8.38E-05 2.51E-04 -0.368 
cg17134153 ILMN_1797428 FCRL3 4.32E-05 2.59E-04 -0.381 
cg25259754 ILMN_1699599 FCRL3 1.32E-04 2.65E-04 -0.358 
cg05094429 ILMN_1690907 CCR6 9.52E-05 2.86E-04 -0.365 
cg17134153 ILMN_1691693 FCRL3 1.06E-04 2.96E-04 -0.363 
cg17134153 ILMN_1699599 FCRL3 1.48E-04 2.96E-04 -0.356 
cg09528494 ILMN_1668277 BLK 1.49E-04 4.97E-04 -0.355 
cg23507676 ILMN_1668277 BLK 1.71E-04 5.14E-04 -0.352 
cg14348996 ILMN_1666206 GSDMB 6.67E-05 5.67E-04 0.372 
cg03002059 ILMN_1687213 FAM167A 1.01E-04 6.97E-04 0.364 
cg03002059 ILMN_3248511 FAM167A 1.55E-04 6.97E-04 0.355 
cg04986849 ILMN_1668277 BLK 2.14E-04 7.14E-04 -0.347 
cg00288844 ILMN_1771862 TXNDC11 6.84E-05 8.20E-04 -0.372 
cg21794222 ILMN_1690907 CCR6 4.67E-04 1.40E-03 -0.330 
cg12816198 ILMN_1670576 IRF5 1.81E-04 1.63E-03 -0.351 
cg21497594 ILMN_1715680 NEIL2 8.75E-04 1.97E-03 0.314 
cg01527115 ILMN_1668277 BLK 6.27E-04 2.09E-03 0.322 
cg12655416 ILMN_1666206 GSDMB 1.82E-04 3.28E-03 -0.351 
cg09528494 ILMN_1724762 XKR6 1.39E-03 3.49E-03 -0.302 
cg18711369 ILMN_1662174 ORMDL3 2.33E-04 3.50E-03 -0.346 
cg18711369 ILMN_1666206 GSDMB 3.88E-04 3.50E-03 -0.334 
cg21473142 ILMN_2200917 SLC4A7 1.96E-03 3.92E-03 0.293 
cg14348996 ILMN_3245973 MSL1 7.83E-04 4.44E-03 0.317 
cg18691862 ILMN_2300695 IKZF3 9.64E-04 8.68E-03 0.312 
cg18691862 ILMN_1707448 CDK12 1.49E-03 8.95E-03 0.301 

 

 

Multiple sclerosis (B cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg03983883 ILMN_2057981 FAM164A 4.25E-21 2.55E-20 -0.752 
cg21140145 ILMN_2057981 FAM164A 7.83E-21 4.70E-20 -0.749 
cg03983883 ILMN_1789558 FAM164A 2.45E-19 7.34E-19 -0.729 
cg21140145 ILMN_1789558 FAM164A 2.47E-18 7.41E-18 -0.715 
cg01951420 ILMN_1708798 EAF2 1.75E-18 1.23E-17 -0.717 
cg12032497 ILMN_1708798 EAF2 4.96E-14 3.47E-13 -0.643 
cg24574508 ILMN_1708798 EAF2 7.82E-14 5.47E-13 -0.639 
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cg07654569 ILMN_2057981 FAM164A 1.53E-11 9.15E-11 -0.590 
cg12749226 ILMN_1662174 ORMDL3 8.88E-12 1.60E-10 -0.595 
cg07654569 ILMN_1789558 FAM164A 1.48E-10 4.43E-10 -0.566 
cg12749226 ILMN_1666206 GSDMB 3.48E-08 3.14E-07 -0.498 
cg05575058 ILMN_1789558 FAM164A 2.30E-07 1.38E-06 -0.471 
cg02586212 ILMN_1656011 RGS1 4.00E-07 4.00E-06 -0.463 
cg09871101 ILMN_2057981 FAM164A 1.03E-06 6.20E-06 0.448 
cg05575058 ILMN_2057981 FAM164A 4.12E-06 1.23E-05 -0.425 
cg25492364 ILMN_1811933 SHMT1 9.09E-07 1.36E-05 -0.450 
cg01030110 ILMN_1812721 HIP1R 9.27E-07 1.67E-05 0.450 
cg09871101 ILMN_1789558 FAM164A 1.07E-05 3.22E-05 0.408 
cg10605766 ILMN_1708798 EAF2 1.25E-05 8.77E-05 -0.405 
cg12032497 ILMN_1747935 GOLGB1 1.41E-04 4.94E-04 0.357 
cg01007589 ILMN_1682781 TEAD2 2.05E-05 7.16E-04 -0.396 
cg00599273 ILMN_1767481 XRCC6BP1 5.00E-05 1.00E-03 -0.378 
cg12032497 ILMN_2316104 IQCB1 7.29E-04 1.70E-03 -0.319 
cg21140145 ILMN_1762262 PKIA 1.28E-03 2.56E-03 -0.305 
cg01951420 ILMN_2316104 IQCB1 8.16E-04 2.86E-03 -0.316 
cg03983883 ILMN_1762262 PKIA 1.60E-03 3.19E-03 -0.299 
cg12655416 ILMN_1666206 GSDMB 1.82E-04 3.28E-03 -0.351 
cg00599273 ILMN_1723846 METTL21B 4.28E-04 4.28E-03 0.332 
cg10024583 ILMN_1703301 MRPL45P2 3.52E-04 4.57E-03 0.336 
cg02189760 ILMN_1682781 TEAD2 1.70E-04 5.60E-03 -0.353 
cg07418126 ILMN_1682781 TEAD2 1.97E-04 6.49E-03 -0.349 
cg11428475 ILMN_1662174 ORMDL3 4.22E-04 8.02E-03 -0.332 
cg01007589 ILMN_2375825 CD37 4.59E-04 8.04E-03 -0.330 

 

Asthma (B cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg12749226 ILMN_1662174 ORMDL3 8.88E-12 1.60E-10 -0.595 
cg12749226 ILMN_1666206 GSDMB 3.48E-08 3.14E-07 -0.498 
cg24910161 ILMN_1662174 ORMDL3 1.40E-07 2.25E-06 -0.479 
cg26162295 ILMN_1662174 ORMDL3 2.25E-07 3.59E-06 -0.472 
cg23202472 ILMN_1666206 GSDMB 3.05E-06 5.49E-05 -0.430 
cg11817230 ILMN_1662174 ORMDL3 5.39E-06 9.70E-05 -0.420 
cg13200575 ILMN_1662174 ORMDL3 6.22E-06 1.12E-04 -0.418 
cg19758448 ILMN_1662174 ORMDL3 1.48E-05 1.33E-04 -0.402 
cg19758448 ILMN_1805636 PGAP3 1.21E-05 1.33E-04 -0.406 
cg18691862 ILMN_1662174 ORMDL3 8.07E-06 1.45E-04 -0.413 
cg14348996 ILMN_1662174 ORMDL3 9.07E-06 1.54E-04 0.411 
cg11817230 ILMN_1805636 PGAP3 3.83E-05 3.44E-04 -0.384 
cg11817230 ILMN_1666206 GSDMB 6.65E-05 3.99E-04 -0.372 
cg23202472 ILMN_1662174 ORMDL3 5.79E-05 5.21E-04 -0.375 
cg14348996 ILMN_1666206 GSDMB 6.67E-05 5.67E-04 0.372 
cg24910161 ILMN_1666206 GSDMB 1.11E-04 8.90E-04 -0.362 
cg26162295 ILMN_1666206 GSDMB 1.41E-04 1.13E-03 -0.357 
cg16600909 ILMN_2089875 TNFSF4 7.05E-04 1.41E-03 -0.320 
cg04317648 ILMN_1802380 RERE 6.65E-04 2.66E-03 -0.321 
cg12655416 ILMN_1666206 GSDMB 1.82E-04 3.28E-03 -0.351 
cg18711369 ILMN_1662174 ORMDL3 2.33E-04 3.50E-03 -0.346 
cg18711369 ILMN_1666206 GSDMB 3.88E-04 3.50E-03 -0.334 
cg12183861 ILMN_1703301 MRPL45P2 2.79E-04 3.63E-03 -0.341 
cg14348996 ILMN_3245973 MSL1 7.83E-04 4.44E-03 0.317 
cg24211550 ILMN_1747857 SMARCE1 5.88E-04 5.29E-03 0.324 
cg11428475 ILMN_1662174 ORMDL3 4.22E-04 8.02E-03 -0.332 
cg14004768 ILMN_1802380 RERE 2.11E-03 8.45E-03 -0.291 
cg18691862 ILMN_2300695 IKZF3 9.64E-04 8.68E-03 0.312 
cg18691862 ILMN_1707448 CDK12 1.49E-03 8.95E-03 0.301 
cg02551532 ILMN_1666206 GSDMB 5.26E-04 9.47E-03 0.327 
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Osteoarthritis (B cells) 
CpG IlluminaID Gene P-value Adj. Pval Rho 

cg17117718 ILMN_2393693 LRRC37A4 3.41E-16 4.10E-15 -0.682 
cg18228076 ILMN_2393693 LRRC37A4 1.95E-15 1.36E-14 0.669 
cg18815117 ILMN_2393693 LRRC37A4 5.73E-15 6.88E-14 0.660 
cg09793084 ILMN_2393693 LRRC37A4 2.07E-14 1.86E-13 0.650 
cg04226788 ILMN_2393693 LRRC37A4 1.34E-13 8.04E-13 0.634 
cg07368061 ILMN_2393693 LRRC37A4 6.47E-12 3.24E-11 0.598 
cg20059597 ILMN_2393693 LRRC37A4 5.69E-11 6.82E-10 -0.576 
cg04757492 ILMN_2370872 GRINA 9.33E-11 2.80E-09 -0.571 
cg24891660 ILMN_2370872 GRINA 1.51E-10 4.52E-09 -0.565 
cg06537391 ILMN_2393693 LRRC37A4 1.41E-08 1.27E-07 -0.511 
cg18878992 ILMN_2393693 LRRC37A4 3.29E-08 2.30E-07 -0.499 
cg04226788 ILMN_1784428 MGC57346 1.01E-07 3.02E-07 -0.484 
cg00916973 ILMN_2393693 LRRC37A4 4.76E-08 5.71E-07 0.494 
cg01882395 ILMN_2393693 LRRC37A4 6.32E-08 7.58E-07 -0.490 
cg03238273 ILMN_2393693 LRRC37A4 1.11E-07 1.00E-06 -0.482 
cg07817266 ILMN_2393693 LRRC37A4 1.15E-07 1.26E-06 -0.482 
cg16520312 ILMN_2393693 LRRC37A4 2.27E-07 1.59E-06 0.472 
cg25999728 ILMN_1754121 CSK 1.71E-07 2.39E-06 -0.476 
cg15411667 ILMN_2393693 LRRC37A4 4.24E-07 2.54E-06 -0.462 
cg14598846 ILMN_2370872 GRINA 1.20E-07 3.59E-06 0.481 
cg00916973 ILMN_1784428 MGC57346 8.53E-07 5.12E-06 -0.451 
cg07368061 ILMN_1784428 MGC57346 3.24E-06 8.10E-06 -0.429 
cg17117718 ILMN_1784428 MGC57346 1.67E-06 1.00E-05 0.440 
cg18815117 ILMN_1784428 MGC57346 2.54E-06 1.52E-05 -0.433 
cg01030110 ILMN_1812721 HIP1R 9.27E-07 1.67E-05 0.450 
cg20059597 ILMN_1784428 MGC57346 4.38E-06 2.63E-05 0.424 
cg20784950 ILMN_2370872 GRINA 9.73E-07 2.92E-05 -0.449 
cg23659289 ILMN_2393693 LRRC37A4 3.26E-06 3.92E-05 -0.429 
cg14772590 ILMN_1754121 CSK 3.34E-06 4.67E-05 -0.429 
cg03238273 ILMN_1784428 MGC57346 1.10E-05 4.93E-05 0.407 
cg15847845 ILMN_2370872 GRINA 1.74E-06 5.21E-05 0.440 
cg14838715 ILMN_1754121 CSK 4.02E-06 5.63E-05 -0.425 
cg06537391 ILMN_1784428 MGC57346 1.81E-05 8.13E-05 0.398 
cg18228076 ILMN_1784428 MGC57346 2.38E-05 8.32E-05 -0.393 
cg05301556 ILMN_2393693 LRRC37A4 2.55E-05 1.79E-04 -0.392 
cg02331830 ILMN_2370872 GRINA 7.10E-06 2.13E-04 0.415 
cg09214591 ILMN_1738239 RBM6 1.04E-05 2.19E-04 0.408 
cg25475366 ILMN_2370872 GRINA 8.73E-06 2.62E-04 -0.412 
cg19124816 ILMN_1815205 LYZ 4.55E-05 2.73E-04 -0.380 
cg15633388 ILMN_1680353 NSF 6.00E-05 3.60E-04 -0.375 
cg12396344 ILMN_1815205 LYZ 8.01E-05 4.81E-04 0.369 
cg09860564 ILMN_1680353 NSF 8.09E-05 4.86E-04 -0.368 
cg21900799 ILMN_2370872 GRINA 2.12E-05 6.37E-04 -0.395 
cg01640727 ILMN_1784428 MGC57346 2.13E-04 6.38E-04 -0.348 
cg01640727 ILMN_2393693 LRRC37A4 1.43E-04 6.38E-04 0.356 
cg09793084 ILMN_1784428 MGC57346 1.44E-04 6.47E-04 -0.356 
cg16131304 ILMN_1745152 UQCC 3.70E-05 8.15E-04 -0.384 
cg15633388 ILMN_2330845 NSF 4.16E-04 1.25E-03 -0.332 
cg07817266 ILMN_1784428 MGC57346 2.38E-04 1.31E-03 0.345 
cg01527957 ILMN_2393693 LRRC37A4 1.47E-04 1.76E-03 0.356 
cg22375663 ILMN_1815205 LYZ 3.45E-04 2.07E-03 0.337 
cg03954353 ILMN_2393693 LRRC37A4 1.73E-04 2.08E-03 -0.352 
cg05301556 ILMN_1784428 MGC57346 6.56E-04 2.29E-03 0.321 
cg19124816 ILMN_1801387 YEATS4 7.77E-04 2.33E-03 -0.317 
cg04892187 ILMN_2370872 GRINA 9.63E-05 2.89E-03 -0.365 
cg02331830 ILMN_1721411 PARP10 2.12E-04 3.18E-03 0.348 
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cg09764761 ILMN_1784428 MGC57346 9.66E-04 3.86E-03 -0.312 
cg11117266 ILMN_2393693 LRRC37A4 5.75E-04 4.03E-03 0.325 
cg23659289 ILMN_1784428 MGC57346 7.85E-04 4.71E-03 0.317 
cg12520615 ILMN_2370872 GRINA 1.75E-04 4.89E-03 0.352 
cg07298766 ILMN_1784428 MGC57346 1.58E-03 6.30E-03 -0.299 
cg18878992 ILMN_1784428 MGC57346 2.05E-03 7.18E-03 0.292 
cg16520312 ILMN_1784428 MGC57346 2.12E-03 7.43E-03 -0.291 
cg02322039 ILMN_2330845 NSF 1.32E-03 7.94E-03 -0.304 
cg09860564 ILMN_2330845 NSF 2.79E-03 8.37E-03 -0.284 
cg04255391 ILMN_2370872 GRINA 3.15E-04 9.44E-03 0.339 
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Appendix H – Causal Inference Testing 

 

 

 

 

 

 

 

Results from Causal Inference Testing at all Risk cis-meQTL/eQTM sites in CD4+ T cells 

Rheumatoid arthritis (CD4+ T cells) 
SNP CpG IlluminaID Gene Pval 

CIT 
FDR 
CIT 

FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs6859219 cg21124310 ILMN_1798947 ANKRD55 1.45E-04 7.06E-04 1.32E-05 8.73E-05 1.30E-04 4.76E-04 
rs6859219 cg21124310 ILMN_2341724 ANKRD55 1.11E-04 7.06E-04 1.32E-05 8.73E-05 1.30E-04 4.76E-04 
rs2189966 cg07522171 ILMN_1682727 JAZF1 3.97E-04 3.45E-03 1.32E-05 7.44E-04 2.27E-05 3.16E-03 
rs12946510 cg18711369 ILMN_1662174 ORMDL3 4.46E-04 3.45E-03 1.32E-05 1.79E-04 1.00E-04 3.16E-03 
rs12946510 cg10909506 ILMN_1662174 ORMDL3 1.64E-03 4.39E-03 1.32E-05 8.73E-05 1.14E-03 3.16E-03 
rs2210913 cg17134153 ILMN_1691693 FCRL3 2.66E-03 4.40E-03 1.32E-05 5.59E-03 2.27E-05 7.60E-03 
rs4722758 cg11187739 ILMN_1682727 JAZF1 3.49E-03 4.40E-03 1.32E-05 6.67E-03 2.27E-05 1.01E-02 
rs6859219 cg10404427 ILMN_1798947 ANKRD55 5.67E-03 4.40E-03 1.32E-05 8.73E-05 3.38E-03 9.29E-04 
rs6859219 cg10404427 ILMN_2341724 ANKRD55 3.11E-03 4.40E-03 1.32E-05 1.79E-04 2.06E-03 3.16E-03 
rs6859219 cg23343972 ILMN_1798947 ANKRD55 6.24E-03 6.93E-03 1.32E-05 1.79E-04 3.59E-03 3.16E-03 
rs6859219 cg23343972 ILMN_2341724 ANKRD55 7.23E-03 7.22E-03 1.32E-05 8.73E-05 3.97E-03 3.16E-03 
rs2210913 cg01045635 ILMN_1691693 FCRL3 1.20E-02 2.96E-02 1.32E-05 1.50E-02 2.27E-05 1.88E-02 
rs61897793 cg16213375 ILMN_1786759 C11orf10 1.63E-02 2.96E-02 7.56E-04 1.62E-02 2.27E-05 1.29E-02 
rs6859219 cg15431103 ILMN_1849013 IL6ST 1.16E-02 2.96E-02 1.32E-05 1.43E-02 7.83E-04 1.88E-02 
rs6859219 cg15431103 ILMN_1797861 IL6ST 9.95E-03 2.96E-02 1.03E-03 1.45E-02 3.04E-04 1.88E-02 
rs6859219 cg15667493 ILMN_1849013 IL6ST 1.39E-02 2.96E-02 1.32E-05 1.50E-02 1.91E-03 1.98E-02 
rs2210913 cg17134153 ILMN_1797428 FCRL3 2.62E-02 3.05E-02 1.32E-05 2.28E-02 2.27E-05 2.03E-02 
rs4722758 cg11187739 ILMN_2374770 TAX1BP1 4.70E-02 3.05E-02 1.04E-03 3.48E-02 2.27E-05 2.42E-02 
rs6859219 cg10404427 ILMN_1849013 IL6ST 2.16E-02 3.05E-02 1.32E-05 2.00E-02 2.27E-05 2.08E-02 
rs6859219 cg21124310 ILMN_1849013 IL6ST 3.49E-02 3.05E-02 1.32E-05 2.70E-02 2.27E-05 2.15E-02 
rs6859219 cg15431103 ILMN_2341724 ANKRD55 4.96E-02 3.05E-02 1.32E-05 8.73E-05 2.69E-02 3.56E-03 
rs6859219 cg23343972 ILMN_1849013 IL6ST 3.52E-02 3.05E-02 1.32E-05 2.70E-02 4.35E-05 2.39E-02 
rs12946510 cg18711369 ILMN_1666206 GSDMB 2.77E-02 3.05E-02 1.32E-05 1.50E-02 2.27E-05 2.53E-02 
rs12946510 cg10909506 ILMN_1666206 GSDMB 4.48E-02 3.05E-02 1.32E-05 2.48E-02 6.25E-05 3.65E-02 
rs6859219 cg15431103 ILMN_1798947 ANKRD55 5.36E-02 3.19E-02 1.32E-05 8.73E-05 2.83E-02 3.56E-03 
rs917117 cg16130019 ILMN_1682727 JAZF1 5.29E-02 3.19E-02 1.32E-05 3.83E-02 2.27E-05 3.67E-02 
rs2210913 cg01045635 ILMN_1797428 FCRL3 6.93E-02 8.22E-02 1.32E-05 4.74E-02 2.27E-05 3.65E-02 
rs7522061 cg18707136 ILMN_1797428 FCRL3 6.80E-02 8.22E-02 1.32E-05 4.22E-02 9.35E-04 4.60E-02 
rs2189966 cg08519799 ILMN_1682727 JAZF1 9.37E-02 1.08E-01 1.32E-05 6.20E-02 1.91E-03 4.75E-02 
rs2210913 cg21721331 ILMN_1691693 FCRL3 1.09E-01 1.11E-01 1.32E-05 6.77E-02 2.27E-05 4.60E-02 
rs2893312 cg00184826 ILMN_1682727 JAZF1 1.09E-01 1.12E-01 1.32E-05 6.77E-02 2.27E-05 4.75E-02 
rs2210913 cg08786003 ILMN_1691693 FCRL3 2.07E-01 1.21E-01 1.32E-05 1.24E-01 2.27E-05 7.21E-02 
rs6859219 cg15667493 ILMN_1798947 ANKRD55 2.33E-01 1.21E-01 1.32E-05 8.73E-05 1.18E-01 3.16E-03 
rs2189966 cg07522171 ILMN_2374770 TAX1BP1 1.28E-01 1.21E-01 4.35E-03 7.78E-02 2.27E-05 4.44E-02 
rs6859219 cg15667493 ILMN_2341724 ANKRD55 2.59E-01 1.30E-01 1.32E-05 8.73E-05 1.28E-01 3.16E-03 
rs2210913 cg21721331 ILMN_1797428 FCRL3 2.61E-01 2.25E-01 1.32E-05 1.53E-01 2.27E-05 8.45E-02 
rs7522061 cg18707136 ILMN_1691693 FCRL3 2.84E-01 2.46E-01 1.32E-05 1.62E-01 6.72E-04 9.98E-02 
rs2210913 cg19602479 ILMN_1691693 FCRL3 3.09E-01 2.47E-01 1.32E-05 1.71E-01 2.27E-05 9.16E-02 
rs2210913 cg19602479 ILMN_1797428 FCRL3 3.31E-01 2.57E-01 1.32E-05 1.78E-01 2.27E-05 9.57E-02 
rs7522061 cg25259754 ILMN_1691693 FCRL3 4.19E-01 3.12E-01 1.32E-05 2.19E-01 2.27E-05 1.19E-01 
rs2210913 cg08786003 ILMN_1797428 FCRL3 4.59E-01 3.26E-01 1.32E-05 2.35E-01 2.27E-05 1.19E-01 
rs7522061 cg25259754 ILMN_1797428 FCRL3 4.73E-01 3.32E-01 1.32E-05 2.36E-01 2.27E-05 1.26E-01 

Causal Inference Test (CIT) results for all triplets (SNP, CpG probe, Transcript probe) at cis-meQTLs/cis-

eQTMs associated with risk loci (rheumatoid arthritis, multiple sclerosis, asthma, and osteoarthritis) in CD4+ 

T cells and B cells (previous page). Pval CIT = CIT ‘omnibus’ p-value to test DNA methylation as a mediator 

of gene expression levels at risk loci (see Chapter 2.); FDR CIT = False discovery rate (FDR)-corrected CIT 

p-value generated using 1000 permutations of the data. FDR values are also given for the four component 

tests: EaL - Expression (Transcript Levels) is associated with Locus (Risk SNP); EaMgvL - Expression (E) 

is associated with Methylation (M) given the Locus (L); MaLgvE - Methylation is associated with the Locus 

given Expression; LiEgvM - The Locus is independent of Expression given Methylation. 
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Asthma (CD4+ T cells) 
SNP CpG IlluminaID Gene Pval 

CIT FDR CIT FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs2189966 cg07522171 ILMN_1682727 JAZF1 3.97E-04 4.77E-03 3.57E-05 3.89E-04 2.78E-05 4.35E-03 
rs12946510 cg18711369 ILMN_1662174 ORMDL3 4.46E-04 4.77E-03 3.57E-05 2.96E-04 9.52E-05 4.35E-03 
rs12946510 cg10909506 ILMN_1662174 ORMDL3 1.64E-03 5.55E-03 3.57E-05 2.96E-04 8.80E-04 4.35E-03 
rs4722758 cg11187739 ILMN_1682727 JAZF1 3.49E-03 1.09E-02 3.57E-05 4.11E-03 2.78E-05 1.00E-02 
rs1773542 cg00080417 ILMN_1676924 CD247 8.61E-03 1.09E-02 6.20E-03 3.89E-04 2.78E-05 4.35E-03 

Multiple sclerosis (CD4+ T cells) 
SNP CpG IlluminaID Gene Pval 

CIT 
FDR 
CIT 

FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs6859219 cg21124310 ILMN_1798947 ANKRD55 1.45E-04 6.53E-04 1.32E-05 9.19E-05 6.76E-05 4.81E-04 
rs6859219 cg21124310 ILMN_2341724 ANKRD55 1.11E-04 6.53E-04 1.32E-05 9.19E-05 6.76E-05 4.81E-04 
rs2189966 cg07522171 ILMN_1682727 JAZF1 3.97E-04 4.93E-03 1.32E-05 1.15E-03 1.56E-05 4.61E-03 
rs12946510 cg18711369 ILMN_1662174 ORMDL3 4.46E-04 4.93E-03 1.32E-05 1.92E-04 5.71E-05 4.66E-03 
rs4722758 cg11187739 ILMN_1682727 JAZF1 3.49E-03 5.27E-03 1.32E-05 8.95E-03 1.56E-05 1.35E-02 
rs6859219 cg10404427 ILMN_1798947 ANKRD55 5.67E-03 5.27E-03 1.32E-05 9.19E-05 3.28E-03 1.88E-03 
rs6859219 cg10404427 ILMN_2341724 ANKRD55 3.11E-03 5.27E-03 1.32E-05 1.92E-04 1.84E-03 4.61E-03 
rs12946510 cg10909506 ILMN_1662174 ORMDL3 1.64E-03 5.27E-03 1.32E-05 9.19E-05 1.02E-03 4.61E-03 
rs6859219 cg23343972 ILMN_1798947 ANKRD55 6.24E-03 8.23E-03 1.32E-05 1.92E-04 3.44E-03 4.61E-03 
rs6859219 cg23343972 ILMN_2341724 ANKRD55 7.23E-03 8.64E-03 1.32E-05 9.19E-05 3.95E-03 4.61E-03 
rs1021156 cg03983883 ILMN_2057981 FAM164A 1.75E-02 3.16E-02 8.54E-05 2.24E-02 1.56E-05 1.97E-02 
rs4722758 cg11187739 ILMN_2374770 TAX1BP1 4.70E-02 3.16E-02 1.39E-03 4.05E-02 1.56E-05 2.71E-02 
rs6859219 cg10404427 ILMN_1849013 IL6ST 2.16E-02 3.16E-02 9.78E-05 2.46E-02 1.56E-05 2.64E-02 
rs6859219 cg21124310 ILMN_1849013 IL6ST 3.49E-02 3.16E-02 9.78E-05 3.11E-02 1.56E-05 2.69E-02 
rs6556313 cg09689469 ILMN_1714393 RAB24 2.00E-02 3.16E-02 1.06E-02 1.14E-02 1.56E-05 1.81E-02 
rs6859219 cg15431103 ILMN_2341724 ANKRD55 4.96E-02 3.16E-02 1.32E-05 9.19E-05 2.67E-02 4.91E-03 
rs6859219 cg15431103 ILMN_1849013 IL6ST 1.16E-02 3.16E-02 9.78E-05 1.81E-02 6.10E-04 2.50E-02 
rs6859219 cg15431103 ILMN_1797861 IL6ST 9.95E-03 3.16E-02 1.29E-03 1.81E-02 1.25E-04 2.38E-02 
rs7206971 cg02511570 ILMN_1703301 MRPL45P2 2.95E-02 3.16E-02 1.32E-05 2.87E-02 1.56E-05 2.71E-02 
rs6859219 cg15667493 ILMN_1849013 IL6ST 1.39E-02 3.16E-02 9.78E-05 1.93E-02 1.74E-03 2.64E-02 
rs6859219 cg23343972 ILMN_1849013 IL6ST 3.52E-02 3.16E-02 9.78E-05 3.11E-02 2.94E-05 2.71E-02 
rs2605141 cg25492364 ILMN_1811933 SHMT1 1.53E-02 3.16E-02 1.32E-05 2.11E-02 1.56E-05 2.64E-02 
rs12946510 cg18711369 ILMN_1666206 GSDMB 2.77E-02 3.16E-02 1.32E-05 2.10E-02 1.56E-05 2.83E-02 
rs12946510 cg10909506 ILMN_1666206 GSDMB 4.48E-02 3.16E-02 1.32E-05 2.87E-02 2.94E-05 3.80E-02 
rs7220935 cg02511570 ILMN_1703301 MRPL45P2 1.82E-02 3.16E-02 1.32E-05 2.24E-02 1.56E-05 2.64E-02 
rs7220935 cg20676602 ILMN_1703301 MRPL45P2 4.86E-02 3.16E-02 1.32E-05 4.06E-02 1.56E-05 3.65E-02 
rs1132812 cg24044988 ILMN_1812877 ZNF688 5.22E-02 3.34E-02 2.65E-02 1.81E-02 7.89E-05 1.81E-02 
rs6859219 cg15431103 ILMN_1798947 ANKRD55 5.36E-02 3.34E-02 1.32E-05 9.19E-05 2.85E-02 4.91E-03 
rs917117 cg16130019 ILMN_1682727 JAZF1 5.29E-02 3.34E-02 1.32E-05 4.29E-02 1.56E-05 3.83E-02 

rs12654812 cg25875191 ILMN_1696828 RGS14 5.93E-02 7.52E-02 1.32E-05 4.67E-02 1.56E-05 3.80E-02 
rs12654812 cg16006841 ILMN_1696828 RGS14 6.13E-02 7.52E-02 1.32E-05 4.68E-02 1.56E-05 2.97E-02 
rs2605141 cg02116225 ILMN_1811933 SHMT1 6.67E-02 9.06E-02 1.32E-05 4.94E-02 1.56E-05 4.33E-02 
rs7206971 cg20676602 ILMN_1703301 MRPL45P2 8.03E-02 9.81E-02 1.32E-05 5.79E-02 1.56E-05 4.27E-02 
rs1021156 cg05575058 ILMN_2057981 FAM164A 9.91E-02 1.08E-01 8.54E-05 6.79E-02 1.56E-05 4.33E-02 
rs2189966 cg08519799 ILMN_1682727 JAZF1 9.37E-02 1.08E-01 1.32E-05 6.59E-02 1.74E-03 4.87E-02 
rs1021156 cg03983883 ILMN_1789558 FAM164A 1.09E-01 1.13E-01 1.32E-05 7.12E-02 1.56E-05 4.51E-02 
rs2893312 cg00184826 ILMN_1682727 JAZF1 1.09E-01 1.17E-01 1.32E-05 7.12E-02 1.56E-05 4.92E-02 
rs1021156 cg05575058 ILMN_1789558 FAM164A 2.27E-01 1.22E-01 1.32E-05 1.42E-01 1.56E-05 7.83E-02 
rs6859219 cg15667493 ILMN_1798947 ANKRD55 2.33E-01 1.22E-01 1.32E-05 9.19E-05 1.18E-01 4.61E-03 
rs2189966 cg07522171 ILMN_2374770 TAX1BP1 1.28E-01 1.22E-01 4.49E-03 8.20E-02 1.56E-05 4.36E-02 
rs6859219 cg15667493 ILMN_2341724 ANKRD55 2.59E-01 1.32E-01 1.32E-05 9.19E-05 1.28E-01 4.61E-03 
rs12654812 cg06060754 ILMN_1696828 RGS14 2.76E-01 2.41E-01 1.32E-05 1.69E-01 1.56E-05 8.70E-02 
rs1021156 cg21140145 ILMN_2057981 FAM164A 3.19E-01 2.62E-01 8.54E-05 1.86E-01 1.56E-05 9.40E-02 
rs1021156 cg21140145 ILMN_1789558 FAM164A 4.69E-01 3.72E-01 1.32E-05 2.67E-01 1.56E-05 1.43E-01 
rs3899796 cg07654569 ILMN_1762262 PKIA 5.10E-01 3.86E-01 1.32E-05 2.83E-01 1.56E-05 1.43E-01 
rs703842 cg12550541 ILMN_1723846 METTL21B 6.24E-01 4.61E-01 1.32E-05 3.39E-01 1.25E-04 1.84E-01 
rs641760 cg01030110 ILMN_3245559 CDK2AP1 6.85E-01 4.90E-01 1.32E-05 3.65E-01 1.56E-05 1.96E-01 

rs12654812 cg11598255 ILMN_1696828 RGS14 8.00E-01 5.28E-01 1.32E-05 4.07E-01 1.56E-05 2.03E-01 
rs3899796 cg07654569 ILMN_2057981 FAM164A 7.15E-01 5.28E-01 1.32E-05 3.73E-01 1.56E-05 3.25E-01 
rs3899796 cg07654569 ILMN_1789558 FAM164A 8.47E-01 5.31E-01 1.32E-05 1.73E-01 1.56E-05 4.34E-01 
rs3899796 cg07654569 ILMN_2337974 PKIA 9.25E-01 5.93E-01 1.32E-05 4.62E-01 1.56E-05 2.44E-01 
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rs1617333 cg10375409 ILMN_1676924 CD247 8.10E-03 1.09E-02 6.20E-03 3.89E-04 2.78E-05 4.35E-03 
rs1617333 cg13899648 ILMN_1676924 CD247 8.10E-03 1.09E-02 6.20E-03 1.48E-03 2.78E-05 5.27E-03 
rs1617333 cg26880239 ILMN_1676924 CD247 8.10E-03 1.09E-02 6.20E-03 4.23E-04 2.78E-05 4.35E-03 
rs1617333 cg20970810 ILMN_1676924 CD247 8.10E-03 1.09E-02 6.20E-03 8.80E-04 2.78E-05 5.27E-03 
rs2988279 cg13924073 ILMN_1676924 CD247 3.47E-02 2.45E-02 1.99E-02 2.96E-04 2.78E-05 4.35E-03 
rs1773542 cg06674732 ILMN_1676924 CD247 8.61E-03 2.45E-02 6.20E-03 4.45E-03 5.00E-05 1.42E-02 
rs2517953 cg00112517 ILMN_1662174 ORMDL3 2.33E-02 2.45E-02 1.03E-03 1.76E-02 3.86E-04 3.09E-02 
rs12946510 cg18711369 ILMN_1666206 GSDMB 2.77E-02 2.45E-02 3.57E-05 1.15E-02 2.78E-05 3.09E-02 
rs12946510 cg10909506 ILMN_1666206 GSDMB 4.48E-02 6.28E-02 3.57E-05 2.37E-02 5.00E-05 4.00E-02 
rs4722758 cg11187739 ILMN_2374770 TAX1BP1 4.70E-02 6.81E-02 3.28E-03 3.52E-02 2.78E-05 3.09E-02 
rs1420101 cg00272070 ILMN_1781700 IL18R1 4.92E-02 7.42E-02 3.57E-05 3.52E-02 3.91E-04 4.00E-02 
rs917117 cg16130019 ILMN_1682727 JAZF1 5.29E-02 7.58E-02 3.57E-05 3.72E-02 2.78E-05 4.00E-02 

rs71421262 cg13109634 ILMN_1777487 ZNF839 5.78E-02 8.37E-02 6.98E-03 3.88E-02 2.78E-05 4.00E-02 
rs2189966 cg08519799 ILMN_1682727 JAZF1 9.37E-02 1.09E-01 3.57E-05 6.17E-02 1.52E-03 4.85E-02 
rs2893312 cg00184826 ILMN_1682727 JAZF1 1.09E-01 1.13E-01 3.57E-05 6.77E-02 2.78E-05 4.85E-02 
rs2189966 cg07522171 ILMN_2374770 TAX1BP1 1.28E-01 1.23E-01 6.20E-03 7.62E-02 2.78E-05 4.43E-02 
rs72743461 cg24839871 ILMN_1718129 MAP2K5 1.88E-01 1.48E-01 4.18E-02 4.45E-03 2.78E-05 1.07E-01 
rs479844 cg01097872 ILMN_2112301 DRAP1 1.96E-01 1.84E-01 8.53E-02 1.76E-03 2.78E-05 1.07E-01 
rs7223136 cg19712600 ILMN_1747857 SMARCE1 2.12E-01 2.09E-01 3.57E-05 1.20E-01 1.52E-03 9.95E-02 
rs3795310 cg15732724 ILMN_1802380 RERE 3.38E-01 2.87E-01 3.57E-05 1.84E-01 6.67E-04 1.26E-01 
rs301806 cg16484858 ILMN_1802380 RERE 5.90E-01 4.11E-01 3.57E-05 3.05E-01 2.78E-05 1.52E-01 

 

 

Osteoarthritis (CD4+ T cells) 
SNP CpG IlluminaID Gene Pval 

CIT 
FDR 
CIT 

FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs28466887 cg08116092 ILMN_1678490 RILPL2 5.46E-03 2.88E-01 4.50E-06 1.23E-01 2.69E-04 1.87E-01 
rs28466887 cg08116092 ILMN_1668743 RILPL2 5.80E-03 2.90E-01 9.51E-04 1.33E-01 5.83E-05 1.87E-01 
rs56328224 cg18753072 ILMN_2200636 KIAA1267 6.65E-03 2.90E-01 2.97E-03 1.23E-01 8.10E-05 1.87E-01 
rs35524223 cg18753072 ILMN_2200636 KIAA1267 1.06E-02 2.91E-01 4.77E-03 1.23E-01 5.39E-05 1.87E-01 
rs62061818 cg20059597 ILMN_2393693 LRRC37A4 3.03E-02 4.02E-01 4.50E-06 1.23E-01 1.63E-03 3.17E-01 
rs1724409 cg16520312 ILMN_1784428 MGC57346 3.07E-02 4.07E-01 4.50E-06 2.39E-01 5.32E-06 3.17E-01 
rs1724390 cg15633388 ILMN_1680353 NSF 3.35E-02 4.07E-01 1.60E-02 2.39E-01 5.32E-06 2.08E-01 
rs62522556 cg02623114 ILMN_1744268 PLEC 3.50E-02 4.43E-01 4.50E-06 2.50E-01 1.02E-05 3.17E-01 
rs62057151 cg18753072 ILMN_2200636 KIAA1267 3.38E-02 4.43E-01 1.13E-03 2.39E-01 5.32E-06 3.17E-01 
rs2668668 cg04226788 ILMN_2393693 LRRC37A4 5.27E-02 4.43E-01 4.50E-06 2.39E-01 5.32E-06 3.17E-01 

rs113093579 cg15633388 ILMN_1680353 NSF 5.48E-02 4.43E-01 1.33E-02 3.06E-01 5.32E-06 1.87E-01 
rs62073157 cg16520312 ILMN_1784428 MGC57346 5.47E-02 4.43E-01 4.50E-06 3.06E-01 1.52E-05 3.17E-01 
rs58579887 cg13389508 ILMN_1744268 PLEC 1.26E-01 4.93E-01 4.50E-06 4.43E-01 5.32E-06 3.17E-01 
rs56406407 cg20059597 ILMN_2393693 LRRC37A4 8.58E-02 4.93E-01 4.50E-06 2.70E-01 6.12E-04 3.17E-01 
rs56026524 cg04226788 ILMN_2393693 LRRC37A4 1.11E-01 4.93E-01 4.50E-06 4.29E-01 5.32E-06 3.17E-01 
rs112836774 cg16520312 ILMN_1784428 MGC57346 7.32E-02 4.93E-01 4.50E-06 3.41E-01 5.32E-06 3.17E-01 
rs62057151 cg18753072 ILMN_2393693 LRRC37A4 1.26E-01 4.93E-01 4.50E-06 2.39E-01 2.39E-02 3.17E-01 
rs62073157 cg16520312 ILMN_2393693 LRRC37A4 9.84E-02 4.93E-01 4.50E-06 3.82E-01 5.72E-04 3.17E-01 
rs2696559 cg11117266 ILMN_2393693 LRRC37A4 9.26E-02 4.93E-01 4.50E-06 2.39E-01 2.65E-02 3.17E-01 
rs1724390 cg15633388 ILMN_2330845 NSF 1.11E-01 4.93E-01 3.30E-02 4.29E-01 5.32E-06 3.06E-01 

rs113093579 cg15633388 ILMN_2330845 NSF 1.47E-01 5.80E-01 3.30E-02 4.81E-01 5.32E-06 3.17E-01 
rs2668665 cg07817266 ILMN_2393693 LRRC37A4 1.58E-01 5.80E-01 4.50E-06 3.82E-01 4.62E-03 3.17E-01 
rs56328224 cg18753072 ILMN_2393693 LRRC37A4 1.63E-01 5.82E-01 4.50E-06 3.41E-01 7.14E-02 3.17E-01 
rs6992333 cg07531549 ILMN_1744268 PLEC 1.88E-01 6.23E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2668668 cg15633388 ILMN_1680353 NSF 1.69E-01 6.23E-01 4.73E-03 4.85E-01 5.32E-06 3.17E-01 
rs1724409 cg16520312 ILMN_2393693 LRRC37A4 2.01E-01 6.23E-01 4.50E-06 4.85E-01 2.52E-04 3.17E-01 
rs62062803 cg07817266 ILMN_2393693 LRRC37A4 1.66E-01 6.23E-01 4.50E-06 4.81E-01 7.92E-04 3.17E-01 
rs2696559 cg11117266 ILMN_1784428 MGC57346 2.01E-01 6.23E-01 4.50E-06 4.85E-01 4.73E-04 3.17E-01 
rs35524223 cg18753072 ILMN_2393693 LRRC37A4 2.05E-01 6.23E-01 4.50E-06 4.29E-01 3.37E-02 3.17E-01 
rs12543539 cg15847845 ILMN_2370872 GRINA 2.37E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs77807457 cg03238273 ILMN_1784428 MGC57346 4.91E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2668668 cg15633388 ILMN_2330845 NSF 2.67E-01 6.24E-01 1.93E-02 4.85E-01 5.32E-06 3.17E-01 
rs17688249 cg06537391 ILMN_2393693 LRRC37A4 5.59E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs6992333 cg14913216 ILMN_1744268 PLEC 2.11E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56026524 cg04226788 ILMN_1784428 MGC57346 2.82E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs112836774 cg16520312 ILMN_2393693 LRRC37A4 4.06E-01 6.24E-01 4.50E-06 4.85E-01 2.84E-04 3.17E-01 
rs112836774 cg11117266 ILMN_2393693 LRRC37A4 2.37E-01 6.24E-01 4.50E-06 4.43E-01 2.22E-02 3.17E-01 
rs112836774 cg11117266 ILMN_1784428 MGC57346 2.60E-01 6.24E-01 4.50E-06 4.85E-01 2.03E-04 3.17E-01 
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rs112836774 cg11117266 ILMN_1709549 PLEKHM1 5.95E-01 6.24E-01 2.73E-01 2.12E-01 5.32E-06 3.43E-01 
rs75743061 cg15295732 ILMN_1784428 MGC57346 4.09E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56328224 cg18815117 ILMN_2393693 LRRC37A4 5.57E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56328224 cg18815117 ILMN_1784428 MGC57346 2.12E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56146262 cg01934064 ILMN_1784428 MGC57346 3.67E-01 6.24E-01 4.50E-06 4.85E-01 8.10E-05 3.17E-01 
rs62056877 cg11117266 ILMN_2393693 LRRC37A4 2.26E-01 6.24E-01 4.50E-06 4.85E-01 6.31E-03 3.17E-01 
rs62056877 cg11117266 ILMN_1784428 MGC57346 4.59E-01 6.24E-01 4.50E-06 4.85E-01 5.39E-05 3.17E-01 
rs17760733 cg15295732 ILMN_1784428 MGC57346 5.09E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs17660865 cg18228076 ILMN_2393693 LRRC37A4 3.03E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56026524 cg18815117 ILMN_2393693 LRRC37A4 3.59E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56026524 cg18815117 ILMN_1784428 MGC57346 2.30E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs150592114 cg07368061 ILMN_2393693 LRRC37A4 5.00E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs62062803 cg07817266 ILMN_1784428 MGC57346 5.26E-01 6.24E-01 4.50E-06 4.85E-01 1.02E-05 3.17E-01 
rs9891103 cg03238273 ILMN_2393693 LRRC37A4 5.27E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs9891103 cg03238273 ILMN_1784428 MGC57346 3.08E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2668668 cg04226788 ILMN_1784428 MGC57346 4.85E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56026524 cg17117718 ILMN_2393693 LRRC37A4 3.99E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs77804065 cg07368061 ILMN_2393693 LRRC37A4 5.29E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs1724390 cg00891649 ILMN_2393693 LRRC37A4 5.14E-01 6.24E-01 4.50E-06 4.85E-01 6.96E-03 3.17E-01 
rs451737 cg04226788 ILMN_2393693 LRRC37A4 2.44E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs451737 cg04226788 ILMN_1784428 MGC57346 2.88E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2950015 cg00891649 ILMN_2393693 LRRC37A4 3.95E-01 6.24E-01 4.50E-06 4.85E-01 2.84E-03 3.17E-01 
rs3110331 cg15295732 ILMN_1784428 MGC57346 3.11E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs35524223 cg06537391 ILMN_2393693 LRRC37A4 5.87E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2668665 cg07817266 ILMN_1784428 MGC57346 3.44E-01 6.24E-01 4.50E-06 4.85E-01 4.00E-05 3.17E-01 
rs1819040 cg17117718 ILMN_2393693 LRRC37A4 3.36E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs1819040 cg17117718 ILMN_1784428 MGC57346 4.79E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2532239 cg18815117 ILMN_2393693 LRRC37A4 2.48E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2532239 cg18815117 ILMN_1784428 MGC57346 2.58E-01 6.24E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs62522556 cg14598846 ILMN_2370872 GRINA 7.08E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs11136342 cg04892187 ILMN_2370872 GRINA 9.13E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs6992333 cg20784950 ILMN_2370872 GRINA 7.01E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.82E-01 
rs11136342 cg24044478 ILMN_2370872 GRINA 8.09E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs641760 cg01030110 ILMN_3245559 CDK2AP1 6.85E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs6992333 cg24891660 ILMN_2370872 GRINA 6.00E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs6992333 cg04757492 ILMN_2370872 GRINA 8.59E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs6992333 cg25475366 ILMN_2370872 GRINA 7.79E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.60E-01 
rs7819099 cg22822867 ILMN_2370872 GRINA 7.71E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs17573447 cg07368061 ILMN_1784428 MGC57346 7.15E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.83E-01 
rs7819099 cg21900799 ILMN_2370872 GRINA 7.04E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs6992333 cg08090367 ILMN_2370872 GRINA 8.35E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 4.29E-01 
rs56356641 cg00891649 ILMN_2393693 LRRC37A4 6.17E-01 6.38E-01 4.50E-06 4.85E-01 1.26E-03 3.17E-01 
rs77807457 cg03238273 ILMN_2393693 LRRC37A4 9.55E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs6992333 cg07531549 ILMN_2370872 GRINA 9.38E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs7003580 cg08161931 ILMN_2370872 GRINA 8.84E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs1724409 cg07817266 ILMN_2393693 LRRC37A4 9.56E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs1724409 cg07817266 ILMN_1784428 MGC57346 6.05E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs17688249 cg06537391 ILMN_1784428 MGC57346 7.69E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 4.05E-01 
rs6992333 cg14913216 ILMN_2370872 GRINA 6.70E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs4627402 cg18878992 ILMN_2393693 LRRC37A4 7.48E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.97E-01 
rs56026524 cg18228076 ILMN_2393693 LRRC37A4 6.16E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56026524 cg18228076 ILMN_1784428 MGC57346 8.53E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs56406407 cg20059597 ILMN_1784428 MGC57346 8.12E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 4.24E-01 
rs62056931 cg01882395 ILMN_2393693 LRRC37A4 9.29E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs62056931 cg01882395 ILMN_1784428 MGC57346 9.34E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56328224 cg17117718 ILMN_2393693 LRRC37A4 8.19E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56328224 cg17117718 ILMN_1784428 MGC57346 6.07E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs62054760 cg09793084 ILMN_2393693 LRRC37A4 9.34E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs62054760 cg09793084 ILMN_1784428 MGC57346 9.18E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs17576954 cg01934064 ILMN_1784428 MGC57346 7.18E-01 6.38E-01 4.50E-06 4.85E-01 1.02E-05 3.17E-01 
rs17576954 cg01934064 ILMN_2393693 LRRC37A4 9.42E-01 6.38E-01 4.50E-06 3.57E-01 5.32E-06 4.76E-01 
rs75743061 cg15295732 ILMN_2393693 LRRC37A4 8.30E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 4.29E-01 
rs56146262 cg01934064 ILMN_2393693 LRRC37A4 9.56E-01 6.38E-01 4.50E-06 3.06E-01 1.02E-05 4.79E-01 
rs62056877 cg11117266 ILMN_1709549 PLEKHM1 6.85E-01 6.38E-01 2.73E-01 2.12E-01 5.32E-06 3.82E-01 
rs17760733 cg15295732 ILMN_2393693 LRRC37A4 8.99E-01 6.38E-01 4.50E-06 4.43E-01 5.32E-06 4.59E-01 
rs17660865 cg18228076 ILMN_1784428 MGC57346 6.40E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
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rs62061820 cg18878992 ILMN_2393693 LRRC37A4 7.19E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs56328224 cg09793084 ILMN_2393693 LRRC37A4 8.89E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs56328224 cg09793084 ILMN_1784428 MGC57346 8.20E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs150592114 cg07368061 ILMN_1784428 MGC57346 6.97E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.82E-01 
rs56026524 cg17117718 ILMN_1784428 MGC57346 6.27E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs1060105 cg01030110 ILMN_3245559 CDK2AP1 6.71E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs77804065 cg07368061 ILMN_1784428 MGC57346 9.34E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs9891103 cg01882395 ILMN_2393693 LRRC37A4 7.03E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs9891103 cg01882395 ILMN_1784428 MGC57346 6.48E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs2696559 cg11117266 ILMN_1709549 PLEKHM1 6.35E-01 6.38E-01 2.91E-01 2.12E-01 5.32E-06 3.60E-01 
rs3110331 cg15295732 ILMN_2393693 LRRC37A4 6.40E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.60E-01 
rs35524223 cg09793084 ILMN_2393693 LRRC37A4 9.13E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.19E-01 
rs35524223 cg09793084 ILMN_1784428 MGC57346 8.63E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.17E-01 
rs35524223 cg06537391 ILMN_1784428 MGC57346 8.72E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs56328224 cg18878992 ILMN_2393693 LRRC37A4 7.10E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.83E-01 
rs56328224 cg18228076 ILMN_2393693 LRRC37A4 8.71E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs56328224 cg18228076 ILMN_1784428 MGC57346 8.50E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.43E-01 
rs62061818 cg20059597 ILMN_1784428 MGC57346 6.90E-01 6.38E-01 4.50E-06 4.85E-01 5.32E-06 3.82E-01 
rs11136342 cg04892187 ILMN_1744268 PLEC 9.67E-01 6.51E-01 4.50E-06 4.87E-01 5.32E-06 3.19E-01 

 

 

Results from Causal Inference Testing at all Risk cis-meQTL/eQTM sites in B cells 

Rheumatoid arthritis (B cells) 
SNP CpG IlluminaID Gene Pval 

CIT 
FDR 
CIT 

FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs2210913 cg19602479 ILMN_1691693 FCRL3 4.69E-04 4.20E-02 8.33E-06 1.43E-05 3.44E-02 1.01E-02 
rs2210913 cg19602479 ILMN_1699599 FCRL3 4.62E-04 4.20E-02 8.33E-06 1.43E-05 3.44E-02 1.01E-02 
rs7522061 cg01045635 ILMN_1699599 FCRL3 5.49E-04 4.20E-02 8.33E-06 1.43E-05 3.44E-02 7.88E-03 
rs2210913 cg19602479 ILMN_1797428 FCRL3 1.37E-03 4.82E-02 8.33E-06 1.43E-05 3.44E-02 1.80E-02 
rs7522061 cg01045635 ILMN_1797428 FCRL3 2.11E-03 4.82E-02 8.33E-06 1.43E-05 3.84E-02 1.01E-02 
rs7522061 cg01045635 ILMN_1691693 FCRL3 4.69E-03 6.64E-02 8.33E-06 1.43E-05 4.92E-02 1.80E-02 
rs2210913 cg21721331 ILMN_1691693 FCRL3 5.34E-03 8.05E-02 8.33E-06 1.43E-05 4.92E-02 3.29E-02 
rs2210913 cg21721331 ILMN_1699599 FCRL3 6.43E-03 8.21E-02 8.33E-06 1.43E-05 4.92E-02 3.45E-02 
rs3093025 cg15222091 ILMN_1690907 CCR6 1.01E-02 9.66E-02 8.33E-06 1.42E-03 7.62E-02 2.07E-02 
rs2061831 cg16429190 ILMN_1668277 BLK 5.20E-02 1.33E-01 8.33E-06 1.43E-05 1.21E-01 1.16E-01 
rs2210913 cg21721331 ILMN_1797428 FCRL3 2.23E-02 1.33E-01 8.33E-06 1.43E-05 9.61E-02 6.90E-02 
rs7522061 cg15602298 ILMN_1797428 FCRL3 3.14E-02 1.33E-01 8.33E-06 1.43E-05 1.12E-01 6.90E-02 
rs3093025 cg16523158 ILMN_1690907 CCR6 6.63E-02 1.33E-01 8.33E-06 1.01E-03 1.31E-01 1.32E-01 
rs3093025 cg19954286 ILMN_1690907 CCR6 2.58E-02 1.33E-01 8.33E-06 5.34E-04 1.01E-01 6.64E-02 
rs3093025 cg21794222 ILMN_1690907 CCR6 5.14E-02 1.33E-01 8.33E-06 9.69E-04 1.31E-01 1.04E-01 
rs3093025 cg05094429 ILMN_1690907 CCR6 3.47E-02 1.33E-01 8.33E-06 4.43E-03 1.13E-01 6.90E-02 
rs1008723 cg14348996 ILMN_3245973 MSL1 6.92E-02 1.33E-01 3.55E-02 1.43E-05 3.44E-02 6.90E-02 
rs11557466 cg12749226 ILMN_1662174 ORMDL3 2.49E-02 1.33E-01 8.33E-06 1.43E-05 1.01E-01 6.90E-02 
rs9903250 cg18691862 ILMN_2300695 IKZF3 2.49E-02 1.33E-01 8.33E-06 1.43E-05 1.01E-01 7.01E-02 
rs2061831 cg09528494 ILMN_1724762 XKR6 1.27E-01 1.75E-01 1.97E-04 1.43E-05 1.31E-01 1.32E-01 
rs7522061 cg25259754 ILMN_1691693 FCRL3 1.41E-01 1.75E-01 8.33E-06 1.43E-05 1.46E-01 1.32E-01 
rs7522061 cg25259754 ILMN_1797428 FCRL3 1.36E-01 1.75E-01 8.33E-06 1.43E-05 1.46E-01 1.32E-01 
rs7522061 cg17134153 ILMN_1797428 FCRL3 8.18E-02 1.75E-01 8.33E-06 8.51E-04 1.37E-01 1.32E-01 
rs2618476 cg04986849 ILMN_1668277 BLK 7.43E-02 1.75E-01 8.33E-06 1.05E-04 1.31E-01 1.32E-01 
rs2061831 cg21497594 ILMN_1715680 NEIL2 9.87E-02 1.75E-01 2.58E-04 1.43E-05 1.31E-01 1.32E-01 
rs2618476 cg01383082 ILMN_3248511 FAM167A 9.22E-02 1.75E-01 8.33E-06 4.60E-03 1.44E-01 1.16E-01 
rs2618476 cg01383082 ILMN_1687213 FAM167A 1.34E-01 1.75E-01 8.33E-06 1.39E-03 1.46E-01 1.32E-01 
rs2618476 cg01383082 ILMN_1668277 BLK 1.08E-01 1.75E-01 8.33E-06 1.43E-05 1.31E-01 1.32E-01 
rs11557466 cg12749226 ILMN_1666206 GSDMB 1.11E-01 1.75E-01 8.33E-06 1.43E-05 1.31E-01 1.32E-01 
rs9903250 cg13200575 ILMN_1662174 ORMDL3 1.48E-01 1.75E-01 8.33E-06 3.08E-03 1.46E-01 1.32E-01 
rs9903250 cg18691862 ILMN_1707448 CDK12 1.55E-01 1.75E-01 7.99E-02 1.43E-05 8.11E-02 2.44E-02 
rs9903250 cg18691862 ILMN_1662174 ORMDL3 1.76E-01 2.64E-01 8.33E-06 2.46E-03 1.49E-01 1.32E-01 
rs7522061 cg25259754 ILMN_1699599 FCRL3 1.80E-01 2.83E-01 8.33E-06 1.43E-05 1.46E-01 1.60E-01 
rs2618476 cg04986849 ILMN_3248511 FAM167A 1.80E-01 2.83E-01 8.33E-06 3.22E-02 1.49E-01 1.32E-01 
rs1579258 cg00288844 ILMN_1771862 TXNDC11 1.85E-01 2.83E-01 8.33E-06 1.43E-05 1.46E-01 1.60E-01 
rs2618476 cg01527115 ILMN_1687213 FAM167A 2.03E-01 3.04E-01 8.33E-06 5.23E-02 1.54E-01 1.32E-01 
rs7522061 cg17134153 ILMN_1699599 FCRL3 2.31E-01 3.04E-01 8.33E-06 3.17E-04 1.46E-01 1.86E-01 
rs7522061 cg15602298 ILMN_1691693 FCRL3 2.36E-01 3.04E-01 8.33E-06 1.43E-05 1.46E-01 1.86E-01 
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rs2618476 cg04986849 ILMN_1687213 FAM167A 2.20E-01 3.04E-01 8.33E-06 1.23E-02 1.59E-01 1.65E-01 
rs2618476 cg01527115 ILMN_3248511 FAM167A 2.22E-01 3.04E-01 8.33E-06 5.54E-02 1.59E-01 1.32E-01 
rs2061831 cg21497594 ILMN_1668277 BLK 2.50E-01 3.11E-01 8.33E-06 1.43E-05 1.46E-01 1.93E-01 
rs2061831 cg21497594 ILMN_1687213 FAM167A 2.87E-01 3.25E-01 8.33E-06 7.17E-04 1.59E-01 2.01E-01 
rs2618476 cg11944933 ILMN_1687213 FAM167A 2.76E-01 3.25E-01 8.33E-06 3.62E-03 1.59E-01 2.01E-01 
rs2618476 cg11944933 ILMN_3248511 FAM167A 2.69E-01 3.25E-01 8.33E-06 4.80E-03 1.60E-01 2.01E-01 
rs2061831 cg23507676 ILMN_1687213 FAM167A 2.91E-01 3.25E-01 8.33E-06 3.30E-02 1.73E-01 2.01E-01 
rs2618476 cg01527115 ILMN_1668277 BLK 3.00E-01 3.25E-01 8.33E-06 3.45E-04 1.49E-01 2.06E-01 
rs7522061 cg15602298 ILMN_1699599 FCRL3 3.24E-01 3.34E-01 8.33E-06 1.43E-05 1.53E-01 2.13E-01 
rs1008723 cg14348996 ILMN_1666206 GSDMB 3.18E-01 3.34E-01 8.33E-06 1.43E-05 1.54E-01 2.13E-01 
rs4728142 cg12816198 ILMN_1670576 IRF5 4.12E-01 3.75E-01 8.33E-06 1.43E-05 1.59E-01 2.57E-01 
rs2061831 cg23507676 ILMN_3248511 FAM167A 3.34E-01 3.75E-01 8.33E-06 3.58E-02 1.83E-01 2.15E-01 
rs2061831 cg16429190 ILMN_1687213 FAM167A 4.14E-01 3.81E-01 8.33E-06 1.43E-05 1.70E-01 2.57E-01 
rs2061831 cg09528494 ILMN_1668277 BLK 4.70E-01 3.81E-01 8.33E-06 1.43E-05 1.60E-01 2.63E-01 
rs2061831 cg21497594 ILMN_3248511 FAM167A 4.65E-01 3.81E-01 8.33E-06 5.78E-04 1.77E-01 2.63E-01 
rs11557466 cg12655416 ILMN_1666206 GSDMB 4.64E-01 3.81E-01 8.33E-06 3.95E-04 1.73E-01 2.63E-01 
rs2618473 cg03002059 ILMN_1687213 FAM167A 4.48E-01 3.81E-01 8.33E-06 2.03E-02 2.02E-01 2.63E-01 
rs7522061 cg17134153 ILMN_1691693 FCRL3 4.73E-01 3.85E-01 8.33E-06 1.50E-04 1.65E-01 2.63E-01 
rs3806624 cg21473142 ILMN_2200917 SLC4A7 6.18E-01 4.21E-01 1.45E-01 1.43E-05 3.10E-01 1.80E-02 
rs1008723 cg14348996 ILMN_1662174 ORMDL3 6.06E-01 4.21E-01 8.33E-06 1.43E-05 1.96E-01 3.22E-01 
rs2061831 cg23507676 ILMN_1668277 BLK 5.86E-01 4.21E-01 8.33E-06 1.28E-04 1.84E-01 3.17E-01 
rs9916765 cg18711369 ILMN_1666206 GSDMB 5.82E-01 4.21E-01 8.33E-06 1.43E-05 1.83E-01 3.17E-01 
rs2061831 cg09528494 ILMN_1687213 FAM167A 6.36E-01 4.64E-01 8.33E-06 8.11E-05 1.97E-01 3.33E-01 
rs9916765 cg18711369 ILMN_1662174 ORMDL3 7.37E-01 5.34E-01 8.33E-06 1.43E-05 3.67E-01 2.63E-01 
rs2061831 cg16429190 ILMN_3248511 FAM167A 8.01E-01 5.44E-01 8.33E-06 1.43E-05 2.23E-01 4.13E-01 
rs2618473 cg03002059 ILMN_3248511 FAM167A 8.49E-01 5.80E-01 8.33E-06 1.03E-02 2.54E-01 4.31E-01 
rs2061831 cg09528494 ILMN_3248511 FAM167A 9.01E-01 5.80E-01 8.33E-06 2.78E-05 2.36E-01 4.51E-01 
rs2210913 cg19602479 ILMN_1691693 FCRL3 4.69E-04 4.20E-02 8.33E-06 1.43E-05 3.44E-02 1.01E-02 

 

 

Multiple sclerosis (B cells) 
SNP CpG IlluminaID Gene Pval 

CIT 
FDR 
CIT 

FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs2015125 cg03983883 ILMN_2057981 FAM164A 2.57E-02 1.64E-01 1.79E-05 9.44E-02 2.63E-05 7.68E-02 
rs2015125 cg03983883 ILMN_1789558 FAM164A 1.96E-02 1.64E-01 1.79E-05 9.44E-02 2.63E-05 7.68E-02 
rs9804163 cg02586212 ILMN_1656011 RGS1 1.91E-02 1.64E-01 1.79E-05 9.44E-02 2.63E-05 7.68E-02 
rs921985 cg25492364 ILMN_1811933 SHMT1 1.55E-02 1.64E-01 1.79E-05 9.44E-02 3.27E-03 7.68E-02 

rs11557466 cg12749226 ILMN_1662174 ORMDL3 2.49E-02 1.64E-01 1.79E-05 9.44E-02 4.00E-05 7.77E-02 
rs1441850 cg21140145 ILMN_2057981 FAM164A 1.56E-02 1.64E-01 1.79E-05 9.44E-02 2.63E-05 7.68E-02 
rs1790123 cg01030110 ILMN_1812721 HIP1R 1.84E-02 1.64E-01 1.79E-05 9.44E-02 2.63E-05 7.68E-02 
rs1441850 cg21140145 ILMN_1789558 FAM164A 3.65E-02 1.65E-01 1.79E-05 9.44E-02 2.63E-05 7.77E-02 
rs7642303 cg12032497 ILMN_1747935 GOLGB1 4.00E-02 1.65E-01 2.26E-04 9.44E-02 2.63E-05 7.77E-02 
rs7642303 cg12032497 ILMN_1708798 EAF2 5.79E-02 2.14E-01 1.79E-05 9.44E-02 4.00E-05 1.32E-01 
rs1809476 cg07654569 ILMN_1789558 FAM164A 9.71E-02 2.53E-01 1.79E-05 1.39E-01 2.63E-05 1.32E-01 
rs11557466 cg12749226 ILMN_1666206 GSDMB 1.11E-01 2.53E-01 1.79E-05 1.39E-01 2.63E-05 1.32E-01 
rs1465697 cg07418126 ILMN_1682781 TEAD2 1.13E-01 2.61E-01 1.79E-05 1.39E-01 3.60E-03 1.42E-01 
rs703842 cg00599273 ILMN_1767481 XRCC6BP1 1.30E-01 2.61E-01 1.79E-05 1.39E-01 4.00E-05 1.42E-01 
rs1809476 cg07654569 ILMN_2057981 FAM164A 1.50E-01 2.61E-01 1.79E-05 1.39E-01 2.63E-05 1.42E-01 
rs7642303 cg01951420 ILMN_1708798 EAF2 1.58E-01 2.61E-01 1.79E-05 1.39E-01 2.63E-05 1.42E-01 
rs1441850 cg21140145 ILMN_1762262 PKIA 1.42E-01 2.61E-01 3.15E-03 1.39E-01 2.63E-05 1.42E-01 
rs2015125 cg03983883 ILMN_1762262 PKIA 1.67E-01 2.67E-01 3.02E-03 1.39E-01 2.63E-05 1.46E-01 
rs4676756 cg10605766 ILMN_1708798 EAF2 1.86E-01 2.78E-01 1.79E-05 1.39E-01 1.12E-02 1.52E-01 
rs12983800 cg01007589 ILMN_1682781 TEAD2 2.97E-01 3.55E-01 1.79E-05 2.47E-01 2.63E-05 1.42E-01 
rs2941522 cg11428475 ILMN_1662174 ORMDL3 3.06E-01 4.02E-01 1.79E-05 2.47E-01 9.53E-03 1.98E-01 
rs1809476 cg05575058 ILMN_1789558 FAM164A 3.55E-01 4.15E-01 1.79E-05 2.75E-01 6.38E-04 1.93E-01 
rs1465697 cg02189760 ILMN_1682781 TEAD2 4.36E-01 4.39E-01 1.79E-05 3.05E-01 4.00E-05 1.93E-01 
rs1466526 cg09871101 ILMN_2057981 FAM164A 4.58E-01 4.39E-01 1.79E-05 3.05E-01 1.15E-04 1.93E-01 
rs11557466 cg12655416 ILMN_1666206 GSDMB 4.64E-01 4.39E-01 1.79E-05 3.05E-01 2.22E-04 1.93E-01 
rs1809476 cg05575058 ILMN_2057981 FAM164A 5.07E-01 4.56E-01 1.79E-05 3.22E-01 6.38E-04 1.98E-01 
rs6438652 cg24574508 ILMN_1708798 EAF2 6.10E-01 4.87E-01 1.79E-05 3.59E-01 2.63E-05 1.99E-01 
rs1466526 cg09871101 ILMN_1789558 FAM164A 6.79E-01 5.12E-01 1.79E-05 3.85E-01 4.00E-05 2.06E-01 
rs4793836 cg10024583 ILMN_1703301 MRPL45P2 6.87E-01 5.76E-01 1.79E-05 3.54E-01 2.63E-05 3.43E-01 
rs7642303 cg12032497 ILMN_2316104 IQCB1 8.23E-01 5.82E-01 8.33E-05 4.58E-01 2.63E-05 2.28E-01 
rs703842 cg00599273 ILMN_1723846 METTL21B 9.76E-01 6.17E-01 1.79E-05 4.88E-01 4.00E-05 2.52E-01 
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rs12983800 cg01007589 ILMN_2375825 CD37 9.13E-01 6.17E-01 1.79E-05 4.88E-01 2.63E-05 2.73E-01 
rs7642303 cg01951420 ILMN_2316104 IQCB1 9.48E-01 6.17E-01 8.33E-05 4.88E-01 2.63E-05 2.55E-01 

 

Asthma (B cells) 
SNP CpG IlluminaID Gene Pval 

CIT FDR CIT FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs903504 cg24910161 ILMN_1662174 ORMDL3 1.15E-02 7.06E-02 2.17E-05 5.18E-03 5.68E-03 6.04E-02 
rs903504 cg24910161 ILMN_1666206 GSDMB 9.99E-03 7.06E-02 9.62E-05 3.61E-02 9.44E-04 6.04E-02 
rs1495100 cg11817230 ILMN_1662174 ORMDL3 9.86E-02 7.64E-02 2.17E-05 9.02E-02 2.38E-05 6.48E-02 
rs9893132 cg24211550 ILMN_1747857 SMARCE1 3.19E-02 7.64E-02 2.50E-04 4.85E-02 1.74E-04 6.04E-02 
rs1008723 cg14348996 ILMN_3245973 MSL1 6.92E-02 7.64E-02 4.29E-02 4.85E-02 2.38E-05 5.05E-02 
rs301805 cg04317648 ILMN_1802380 RERE 5.51E-02 7.64E-02 1.66E-03 6.83E-02 2.38E-05 6.04E-02 
rs2517952 cg19758448 ILMN_1662174 ORMDL3 4.35E-02 7.64E-02 2.17E-05 6.83E-02 2.38E-05 6.04E-02 
rs2517952 cg19758448 ILMN_1805636 PGAP3 1.57E-02 7.64E-02 2.17E-05 4.85E-02 2.38E-05 6.04E-02 
rs35123741 cg26162295 ILMN_1662174 ORMDL3 5.38E-02 7.64E-02 2.17E-05 6.83E-02 2.38E-05 6.48E-02 
rs35123741 cg26162295 ILMN_1666206 GSDMB 5.34E-02 7.64E-02 2.17E-05 6.83E-02 2.38E-05 6.37E-02 
rs11557466 cg12749226 ILMN_1662174 ORMDL3 2.49E-02 7.64E-02 2.17E-05 4.85E-02 2.38E-05 6.04E-02 
rs11557466 cg12749226 ILMN_1666206 GSDMB 1.11E-01 7.64E-02 2.17E-05 9.52E-02 2.38E-05 6.78E-02 
rs12944882 cg02551532 ILMN_1666206 GSDMB 1.10E-01 7.64E-02 2.17E-05 8.90E-02 5.08E-03 8.84E-02 
rs9903250 cg18691862 ILMN_2300695 IKZF3 2.49E-02 7.64E-02 4.17E-05 4.85E-02 2.38E-05 6.04E-02 
rs4141183 cg12183861 ILMN_1703301 MRPL45P2 1.71E-02 7.64E-02 1.11E-04 4.81E-02 2.29E-04 6.04E-02 
rs12944882 cg23202472 ILMN_1666206 GSDMB 2.95E-02 7.64E-02 2.17E-05 4.81E-02 2.16E-03 6.04E-02 
rs35123741 cg19758448 ILMN_1662174 ORMDL3 5.52E-02 7.64E-02 2.17E-05 4.85E-02 5.68E-03 6.48E-02 
rs35123741 cg19758448 ILMN_1805636 PGAP3 1.11E-01 7.64E-02 6.37E-02 2.91E-03 4.55E-05 1.07E-02 
rs1495100 cg11817230 ILMN_1666206 GSDMB 1.54E-01 1.68E-01 8.00E-05 1.15E-01 2.38E-05 7.12E-02 
rs6503526 cg24910161 ILMN_1666206 GSDMB 1.44E-01 1.68E-01 2.17E-05 1.13E-01 2.38E-05 7.74E-02 
rs9903250 cg13200575 ILMN_1662174 ORMDL3 1.48E-01 1.68E-01 2.17E-05 9.02E-02 2.83E-03 1.13E-01 
rs9903250 cg18691862 ILMN_1707448 CDK12 1.55E-01 1.68E-01 8.38E-02 3.38E-02 2.38E-05 6.04E-02 
rs9903250 cg18691862 ILMN_1662174 ORMDL3 1.76E-01 2.19E-01 2.17E-05 1.13E-01 2.34E-03 1.18E-01 
rs6503526 cg24910161 ILMN_1662174 ORMDL3 2.51E-01 2.76E-01 2.17E-05 1.79E-01 2.38E-05 1.18E-01 
rs1495100 cg11817230 ILMN_1805636 PGAP3 2.86E-01 2.91E-01 2.17E-05 1.96E-01 2.38E-05 1.18E-01 
rs1008723 cg14348996 ILMN_1666206 GSDMB 3.18E-01 3.02E-01 2.17E-05 2.01E-01 2.38E-05 1.26E-01 
rs2941522 cg11428475 ILMN_1662174 ORMDL3 3.06E-01 3.02E-01 2.17E-05 1.98E-01 9.09E-03 1.72E-01 
rs10158467 cg16600909 ILMN_2089875 TNFSF4 3.93E-01 3.35E-01 5.00E-04 2.39E-01 2.38E-05 1.26E-01 
rs11557466 cg12655416 ILMN_1666206 GSDMB 4.64E-01 3.85E-01 2.17E-05 2.63E-01 3.60E-04 1.66E-01 
rs9916765 cg18711369 ILMN_1666206 GSDMB 5.82E-01 4.31E-01 2.17E-05 3.13E-01 2.38E-05 1.72E-01 
rs301805 cg14004768 ILMN_1802380 RERE 5.96E-01 4.32E-01 1.66E-03 3.13E-01 2.38E-05 1.72E-01 
rs1008723 cg14348996 ILMN_1662174 ORMDL3 6.06E-01 4.40E-01 2.17E-05 3.13E-01 2.38E-05 1.85E-01 
rs12944882 cg23202472 ILMN_1662174 ORMDL3 7.05E-01 4.78E-01 2.17E-05 3.52E-01 7.12E-04 1.94E-01 
rs9916765 cg18711369 ILMN_1662174 ORMDL3 7.37E-01 5.35E-01 2.17E-05 2.63E-01 2.38E-05 3.70E-01 

 

 

Osteoarthritis (B cells) 
SNP CpG IlluminaID Gene Pval 

CIT 
FDR 
CIT 

FDR 
EaL 

FDR 
EaMgvL 

FDR 
MaLgvE 

FDR 
LiEgvM 

rs62056835 cg18228076 ILMN_2393693 LRRC37A4 5.99E-03 2.58E-01 4.03E-06 8.45E-02 5.62E-06 2.37E-01 
rs2668668 cg18228076 ILMN_2393693 LRRC37A4 3.34E-03 2.58E-01 4.03E-06 4.48E-02 5.62E-06 2.37E-01 
rs35524223 cg09793084 ILMN_2393693 LRRC37A4 8.31E-03 2.58E-01 4.03E-06 2.68E-02 8.64E-04 2.37E-01 
rs1406947 cg16131304 ILMN_1745152 UQCC 9.17E-03 2.70E-01 1.20E-05 7.93E-02 5.97E-04 2.37E-01 
rs4627402 cg09793084 ILMN_2393693 LRRC37A4 2.72E-02 2.70E-01 4.03E-06 4.34E-02 2.34E-04 2.37E-01 
rs1790123 cg01030110 ILMN_1812721 HIP1R 1.84E-02 2.70E-01 4.03E-06 1.26E-01 5.62E-06 2.37E-01 
rs1724390 cg09793084 ILMN_2393693 LRRC37A4 1.18E-02 2.70E-01 4.03E-06 4.34E-02 2.55E-04 2.37E-01 
rs2316771 cg15633388 ILMN_2330845 NSF 2.02E-02 2.70E-01 1.19E-03 1.26E-01 5.62E-06 2.37E-01 
rs2668668 cg18878992 ILMN_2393693 LRRC37A4 2.93E-02 2.78E-01 4.03E-06 5.36E-02 7.46E-04 2.37E-01 
rs79730878 cg02322039 ILMN_2330845 NSF 2.76E-02 2.78E-01 1.24E-03 1.53E-01 4.51E-04 2.37E-01 
rs1724390 cg15633388 ILMN_2330845 NSF 2.84E-02 2.78E-01 1.69E-03 9.03E-02 5.62E-06 2.37E-01 
rs11136336 cg02331830 ILMN_1721411 PARP10 3.16E-02 3.47E-01 2.39E-03 1.53E-01 5.62E-06 2.37E-01 
rs451737 cg18228076 ILMN_2393693 LRRC37A4 3.32E-02 3.47E-01 4.03E-06 1.53E-01 5.62E-06 2.37E-01 

rs56328224 cg18878992 ILMN_2393693 LRRC37A4 4.06E-02 3.47E-01 4.03E-06 8.86E-02 1.21E-03 2.82E-01 
rs62071573 cg03238273 ILMN_1784428 MGC57346 3.82E-02 3.47E-01 4.03E-06 1.53E-01 1.08E-05 2.82E-01 
rs317685 cg12396344 ILMN_1815205 LYZ 6.24E-02 3.55E-01 4.03E-06 2.22E-01 5.62E-06 2.82E-01 
rs2668668 cg15633388 ILMN_2330845 NSF 6.05E-02 3.55E-01 8.72E-04 2.22E-01 5.62E-06 2.37E-01 
rs4627402 cg18878992 ILMN_2393693 LRRC37A4 8.09E-02 3.55E-01 4.03E-06 8.86E-02 1.43E-03 2.91E-01 
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rs62062786 cg09860564 ILMN_2330845 NSF 6.14E-02 3.55E-01 1.98E-03 2.22E-01 5.62E-06 2.37E-01 
rs9891103 cg03238273 ILMN_1784428 MGC57346 6.92E-02 3.55E-01 4.03E-06 2.22E-01 1.08E-05 2.82E-01 
rs2316771 cg15633388 ILMN_1680353 NSF 6.57E-02 3.55E-01 1.18E-03 2.22E-01 5.62E-06 2.37E-01 
rs1724390 cg15633388 ILMN_1680353 NSF 5.06E-02 3.55E-01 1.24E-03 2.08E-01 5.62E-06 2.37E-01 
rs12898997 cg14838715 ILMN_1754121 CSK 9.78E-02 3.60E-01 4.03E-06 2.41E-01 5.62E-06 2.82E-01 
rs56328224 cg00916973 ILMN_2393693 LRRC37A4 9.42E-02 3.60E-01 4.03E-06 2.41E-01 1.08E-05 2.97E-01 
rs77804065 cg03238273 ILMN_1784428 MGC57346 8.22E-02 3.60E-01 4.03E-06 2.41E-01 5.62E-06 2.82E-01 
rs2668668 cg09860564 ILMN_1680353 NSF 1.07E-01 3.60E-01 4.25E-04 2.41E-01 5.62E-06 2.82E-01 
rs62062786 cg09860564 ILMN_1680353 NSF 1.09E-01 3.60E-01 1.18E-03 8.86E-02 5.62E-06 2.97E-01 
rs79730878 cg00916973 ILMN_2393693 LRRC37A4 1.08E-01 3.60E-01 4.03E-06 2.41E-01 5.62E-06 2.97E-01 
rs62061820 cg06537391 ILMN_2393693 LRRC37A4 1.02E-01 3.60E-01 4.03E-06 2.37E-01 1.03E-03 2.97E-01 
rs35524223 cg00916973 ILMN_2393693 LRRC37A4 8.46E-02 3.60E-01 4.03E-06 2.08E-01 7.73E-05 2.92E-01 
rs56328224 cg00916973 ILMN_1784428 MGC57346 1.29E-01 3.61E-01 4.03E-06 2.58E-01 5.62E-06 2.82E-01 
rs317685 cg19124816 ILMN_1815205 LYZ 1.13E-01 3.61E-01 4.03E-06 2.43E-01 5.62E-06 2.82E-01 
rs317685 cg19124816 ILMN_1801387 YEATS4 1.18E-01 3.61E-01 2.80E-03 2.46E-01 5.62E-06 2.82E-01 

rs17576954 cg01640727 ILMN_1784428 MGC57346 1.10E-01 3.61E-01 4.03E-06 2.41E-01 7.00E-04 2.97E-01 
rs9891103 cg03238273 ILMN_2393693 LRRC37A4 1.13E-01 3.61E-01 4.03E-06 8.86E-02 4.97E-02 2.97E-01 
rs79730878 cg00916973 ILMN_1784428 MGC57346 1.09E-01 3.61E-01 4.03E-06 2.41E-01 5.62E-06 2.82E-01 
rs62061820 cg06537391 ILMN_1784428 MGC57346 1.24E-01 3.61E-01 4.03E-06 2.53E-01 5.62E-06 2.82E-01 
rs62071573 cg03238273 ILMN_2393693 LRRC37A4 1.33E-01 3.61E-01 4.03E-06 4.48E-02 6.79E-02 2.82E-01 
rs35524223 cg00916973 ILMN_1784428 MGC57346 1.10E-01 3.61E-01 4.03E-06 2.41E-01 5.62E-06 2.82E-01 
rs77804065 cg03238273 ILMN_2393693 LRRC37A4 1.39E-01 3.86E-01 4.03E-06 1.53E-01 1.34E-02 3.19E-01 
rs62055717 cg06537391 ILMN_1784428 MGC57346 1.93E-01 3.86E-01 4.03E-06 3.20E-01 5.62E-06 2.97E-01 
rs138397226 cg09214591 ILMN_1738239 RBM6 1.82E-01 3.86E-01 4.03E-06 3.10E-01 5.62E-06 2.97E-01 

rs451737 cg01527957 ILMN_2393693 LRRC37A4 1.88E-01 3.86E-01 4.03E-06 2.41E-01 1.59E-02 3.29E-01 
rs111905143 cg04226788 ILMN_1784428 MGC57346 2.05E-01 3.86E-01 4.03E-06 3.20E-01 5.62E-06 3.00E-01 
rs111541901 cg07817266 ILMN_2393693 LRRC37A4 1.37E-01 3.86E-01 4.03E-06 1.62E-01 5.72E-02 3.19E-01 
rs56356641 cg20059597 ILMN_2393693 LRRC37A4 1.55E-01 3.86E-01 4.03E-06 2.90E-01 5.62E-06 3.19E-01 
rs56356641 cg20059597 ILMN_1784428 MGC57346 2.24E-01 3.86E-01 4.03E-06 3.21E-01 5.62E-06 3.09E-01 
rs113093579 cg01527957 ILMN_2393693 LRRC37A4 2.02E-01 3.86E-01 4.03E-06 2.41E-01 8.99E-03 3.29E-01 
rs192252295 cg09860564 ILMN_1680353 NSF 2.37E-01 3.86E-01 1.62E-03 8.43E-02 5.62E-06 3.29E-01 
rs192252295 cg09860564 ILMN_2330845 NSF 1.60E-01 3.86E-01 1.20E-03 2.90E-01 5.62E-06 2.82E-01 
rs2532417 cg20059597 ILMN_2393693 LRRC37A4 2.25E-01 3.86E-01 4.03E-06 2.90E-01 7.73E-05 3.29E-01 
rs2532417 cg20059597 ILMN_1784428 MGC57346 2.09E-01 3.86E-01 4.03E-06 3.20E-01 5.62E-06 3.22E-01 
rs12898997 cg25999728 ILMN_1754121 CSK 2.82E-01 4.70E-01 4.03E-06 3.21E-01 5.62E-06 3.23E-01 
rs317685 cg22375663 ILMN_1815205 LYZ 2.50E-01 4.70E-01 4.03E-06 3.21E-01 5.62E-06 3.22E-01 

rs150592114 cg05301556 ILMN_2393693 LRRC37A4 2.60E-01 4.70E-01 4.03E-06 3.20E-01 5.39E-02 3.32E-01 
rs150592114 cg05301556 ILMN_1784428 MGC57346 2.71E-01 4.70E-01 4.03E-06 3.21E-01 1.13E-03 3.29E-01 
rs56328224 cg05301556 ILMN_1784428 MGC57346 2.81E-01 4.70E-01 4.03E-06 3.21E-01 1.54E-03 3.29E-01 
rs2668665 cg07817266 ILMN_2393693 LRRC37A4 2.82E-01 4.70E-01 4.03E-06 8.86E-02 1.41E-01 3.23E-01 
rs2668668 cg15633388 ILMN_1680353 NSF 2.84E-01 5.15E-01 4.25E-04 3.21E-01 5.62E-06 3.23E-01 
rs62055717 cg06537391 ILMN_2393693 LRRC37A4 3.00E-01 5.15E-01 4.03E-06 3.21E-01 3.02E-04 3.29E-01 
rs1724390 cg20059597 ILMN_1784428 MGC57346 3.23E-01 5.15E-01 4.03E-06 3.36E-01 5.62E-06 3.29E-01 
rs2668668 cg09860564 ILMN_2330845 NSF 3.03E-01 5.15E-01 8.72E-04 3.21E-01 5.62E-06 3.22E-01 
rs17573447 cg05301556 ILMN_2393693 LRRC37A4 3.12E-01 5.15E-01 4.03E-06 3.21E-01 2.79E-02 3.59E-01 
rs12150048 cg05301556 ILMN_2393693 LRRC37A4 3.25E-01 5.15E-01 4.03E-06 3.21E-01 4.05E-02 3.59E-01 
rs2696559 cg07298766 ILMN_1784428 MGC57346 3.06E-01 5.15E-01 4.03E-06 3.21E-01 1.25E-04 3.29E-01 
rs439945 cg15411667 ILMN_2393693 LRRC37A4 3.49E-01 5.15E-01 4.03E-06 1.26E-01 1.73E-01 3.29E-01 

rs17760733 cg09764761 ILMN_1784428 MGC57346 3.07E-01 5.15E-01 4.03E-06 3.21E-01 1.49E-04 3.29E-01 
rs56328224 cg05301556 ILMN_2393693 LRRC37A4 2.96E-01 5.15E-01 4.03E-06 3.21E-01 8.90E-02 3.59E-01 
rs56328224 cg04226788 ILMN_1784428 MGC57346 2.97E-01 5.15E-01 4.03E-06 3.21E-01 5.62E-06 3.22E-01 
rs11136336 cg02331830 ILMN_2370872 GRINA 7.59E-01 5.42E-01 4.03E-06 3.84E-01 5.62E-06 4.79E-01 
rs11136336 cg04255391 ILMN_2370872 GRINA 7.72E-01 5.42E-01 4.03E-06 3.45E-01 5.62E-06 4.79E-01 
rs7003580 cg14598846 ILMN_2370872 GRINA 9.58E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs7003580 cg21900799 ILMN_2370872 GRINA 7.99E-01 5.42E-01 4.03E-06 3.43E-01 5.62E-06 4.79E-01 
rs62056835 cg18228076 ILMN_1784428 MGC57346 9.09E-01 5.42E-01 4.03E-06 3.20E-01 5.62E-06 4.90E-01 
rs11780978 cg15847845 ILMN_2370872 GRINA 9.28E-01 5.42E-01 4.03E-06 2.82E-01 5.62E-06 4.90E-01 
rs1378942 cg14772590 ILMN_1754121 CSK 6.06E-01 5.42E-01 4.03E-06 4.78E-01 5.62E-06 3.59E-01 
rs7819099 cg20784950 ILMN_2370872 GRINA 9.62E-01 5.42E-01 4.03E-06 2.41E-01 5.62E-06 4.90E-01 
rs6992333 cg04757492 ILMN_2370872 GRINA 6.93E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs6992333 cg25475366 ILMN_2370872 GRINA 7.96E-01 5.42E-01 4.03E-06 3.45E-01 5.62E-06 4.79E-01 
rs7819099 cg24891660 ILMN_2370872 GRINA 9.51E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs6992333 cg12520615 ILMN_2370872 GRINA 8.22E-01 5.42E-01 4.03E-06 3.21E-01 5.62E-06 4.80E-01 
rs58879558 cg07298766 ILMN_1784428 MGC57346 4.00E-01 5.42E-01 4.03E-06 3.45E-01 1.49E-04 3.29E-01 
rs1635298 cg07817266 ILMN_2393693 LRRC37A4 6.48E-01 5.42E-01 4.03E-06 4.91E-01 1.49E-04 3.72E-01 
rs1635298 cg07817266 ILMN_1784428 MGC57346 9.48E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 



 

301 
 

rs4627402 cg18878992 ILMN_1784428 MGC57346 7.97E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs7819099 cg04892187 ILMN_2370872 GRINA 7.78E-01 5.42E-01 4.03E-06 3.84E-01 5.62E-06 4.79E-01 
rs1724390 cg20059597 ILMN_2393693 LRRC37A4 3.59E-01 5.42E-01 4.03E-06 3.40E-01 5.85E-05 3.43E-01 
rs80209523 cg04226788 ILMN_2393693 LRRC37A4 9.84E-01 5.42E-01 4.03E-06 1.53E-01 5.62E-06 4.96E-01 
rs80209523 cg04226788 ILMN_1784428 MGC57346 4.56E-01 5.42E-01 4.03E-06 3.84E-01 5.62E-06 3.29E-01 
rs56328224 cg17117718 ILMN_2393693 LRRC37A4 9.61E-01 5.42E-01 4.03E-06 2.22E-01 5.62E-06 4.90E-01 
rs56328224 cg17117718 ILMN_1784428 MGC57346 8.11E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs17661141 cg07368061 ILMN_2393693 LRRC37A4 9.17E-01 5.42E-01 4.03E-06 2.90E-01 5.62E-06 4.90E-01 
rs17661141 cg07368061 ILMN_1784428 MGC57346 8.72E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs17573447 cg05301556 ILMN_1784428 MGC57346 3.60E-01 5.42E-01 4.03E-06 3.40E-01 7.69E-04 3.29E-01 
rs62055936 cg16520312 ILMN_2393693 LRRC37A4 9.47E-01 5.42E-01 4.03E-06 4.91E-01 7.73E-05 4.55E-01 
rs62055936 cg16520312 ILMN_1784428 MGC57346 8.23E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs56328224 cg18815117 ILMN_2393693 LRRC37A4 7.24E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs56328224 cg18815117 ILMN_1784428 MGC57346 7.63E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs62062294 cg16520312 ILMN_2393693 LRRC37A4 5.18E-01 5.42E-01 4.03E-06 4.33E-01 1.49E-04 3.59E-01 
rs62062294 cg16520312 ILMN_1784428 MGC57346 9.74E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs4627402 cg09793084 ILMN_1784428 MGC57346 7.12E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs1724390 cg09793084 ILMN_1784428 MGC57346 7.30E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs2532276 cg09764761 ILMN_1784428 MGC57346 3.83E-01 5.42E-01 4.03E-06 3.45E-01 1.08E-05 3.29E-01 
rs56328224 cg03954353 ILMN_2393693 LRRC37A4 6.75E-01 5.42E-01 4.03E-06 4.00E-01 1.56E-03 4.55E-01 
rs12150048 cg05301556 ILMN_1784428 MGC57346 5.37E-01 5.42E-01 4.03E-06 4.33E-01 1.73E-04 3.59E-01 
rs56328224 cg01882395 ILMN_2393693 LRRC37A4 6.45E-01 5.42E-01 4.03E-06 4.33E-01 5.62E-06 4.55E-01 
rs56026524 cg07368061 ILMN_2393693 LRRC37A4 7.17E-01 5.42E-01 4.03E-06 4.33E-01 5.62E-06 4.55E-01 
rs56026524 cg07368061 ILMN_1784428 MGC57346 7.19E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 3.83E-01 
rs17576954 cg01640727 ILMN_2393693 LRRC37A4 6.80E-01 5.42E-01 4.03E-06 4.33E-01 6.27E-04 4.55E-01 
rs111905143 cg04226788 ILMN_2393693 LRRC37A4 9.43E-01 5.42E-01 4.03E-06 2.41E-01 5.62E-06 4.90E-01 
rs62057151 cg03954353 ILMN_2393693 LRRC37A4 8.49E-01 5.42E-01 4.03E-06 3.20E-01 1.16E-04 4.90E-01 
rs62055717 cg11117266 ILMN_2393693 LRRC37A4 9.68E-01 5.42E-01 4.03E-06 4.91E-01 7.52E-03 4.55E-01 
rs451737 cg23659289 ILMN_2393693 LRRC37A4 9.54E-01 5.42E-01 4.03E-06 4.91E-01 1.47E-03 4.55E-01 
rs451737 cg23659289 ILMN_1784428 MGC57346 7.73E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 

rs80209523 cg01882395 ILMN_2393693 LRRC37A4 7.45E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs111541901 cg07817266 ILMN_1784428 MGC57346 5.67E-01 5.42E-01 4.03E-06 4.33E-01 5.62E-06 3.59E-01 
rs113093579 cg18815117 ILMN_2393693 LRRC37A4 8.17E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs113093579 cg18815117 ILMN_1784428 MGC57346 7.78E-01 5.42E-01 4.03E-06 3.85E-01 5.62E-06 4.79E-01 
rs2532276 cg11117266 ILMN_2393693 LRRC37A4 8.86E-01 5.42E-01 4.03E-06 4.91E-01 3.86E-03 4.55E-01 
rs56026524 cg17117718 ILMN_2393693 LRRC37A4 8.71E-01 5.42E-01 4.03E-06 3.21E-01 5.62E-06 4.90E-01 
rs56026524 cg17117718 ILMN_1784428 MGC57346 7.19E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs451737 cg18228076 ILMN_1784428 MGC57346 8.93E-01 5.42E-01 4.03E-06 3.21E-01 5.62E-06 4.90E-01 
rs2668668 cg18228076 ILMN_1784428 MGC57346 8.47E-01 5.42E-01 4.03E-06 3.40E-01 5.62E-06 4.90E-01 
rs2668668 cg18878992 ILMN_1784428 MGC57346 9.66E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs35524223 cg09793084 ILMN_1784428 MGC57346 8.49E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs56328224 cg16520312 ILMN_2393693 LRRC37A4 9.53E-01 5.42E-01 4.03E-06 4.91E-01 1.65E-04 4.55E-01 
rs56328224 cg16520312 ILMN_1784428 MGC57346 8.46E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs56328224 cg18878992 ILMN_1784428 MGC57346 9.13E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs1724390 cg07368061 ILMN_2393693 LRRC37A4 8.15E-01 5.42E-01 4.03E-06 3.40E-01 5.62E-06 4.80E-01 
rs1724390 cg07368061 ILMN_1784428 MGC57346 6.47E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 3.72E-01 
rs56328224 cg04226788 ILMN_2393693 LRRC37A4 9.95E-01 5.42E-01 4.03E-06 8.86E-02 5.62E-06 4.98E-01 
rs112480703 cg01882395 ILMN_2393693 LRRC37A4 5.49E-01 5.42E-01 4.03E-06 4.33E-01 1.85E-04 3.72E-01 
rs35524223 cg03954353 ILMN_2393693 LRRC37A4 7.21E-01 5.42E-01 4.03E-06 3.84E-01 1.35E-03 4.55E-01 
rs2668665 cg07817266 ILMN_1784428 MGC57346 3.57E-01 5.42E-01 4.03E-06 3.40E-01 9.69E-05 3.29E-01 
rs62059008 cg23659289 ILMN_1784428 MGC57346 8.01E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs1819040 cg17117718 ILMN_2393693 LRRC37A4 9.14E-01 5.42E-01 4.03E-06 2.90E-01 5.62E-06 4.90E-01 
rs1819040 cg17117718 ILMN_1784428 MGC57346 6.79E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 
rs2668668 cg18815117 ILMN_2393693 LRRC37A4 6.10E-01 5.42E-01 4.03E-06 4.78E-01 5.62E-06 3.72E-01 
rs2668668 cg18815117 ILMN_1784428 MGC57346 8.61E-01 5.42E-01 4.03E-06 4.91E-01 5.62E-06 4.55E-01 

 

 


