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Abstract 

Prostate cancer resistance to AR targeted therapies due to the emergence of AR point 

mutations and AR splice variants that cannot be targeted by the currently available agents 

comprise a major clinical challenge. 

There is paucity of models that accurately reflect the mechanisms of AR regulation in 

advanced disease. This highlights the high demand of generating novel disease relevant 

models. A CRISPR pipeline was developed to generate cell line models which harbour specific 

point mutations in the LBD of AR as well as stop codons in AR exon 5 which resulted in AR-FL 

knock-out so that the remaining endogenous AR-Vs could be studied discriminately of 

interfering AR-FL. 

Using a streptavidin-tagged Cas9 in conjugation with a biotinylated donor template resulted 

in high donor template knock-in efficiencies and yielded (i) an ARW741L CWR22Rv1 cell line 

derivative and (ii) an AR-FL knock-out cell line derivative called CWR22Rv1-AR-EK (Exon 

Knock-out). CWR22Rv1-AR-EK cells retained all endogenous AR-Vs following AR gene editing. 

AR-Vs acted unhindered following AR-FL deletion to drive cell growth and expression of 

androgenic genes. Global transcriptomics demonstrated that AR-Vs drive expression of a 

cohort of cell cycle and DNA damage response genes and depletion of AR-Vs sensitised cells 

to ionising radiation. 

To date, elimination of AR-Vs by pharmacological inhibition remains challenging. However, 

disruption of AR pre-mRNA splicing is nowadays a highly attractive option. A CRISPR-based 

approach, called CRIME (Cas9-directed Rapid Immunoprecipitation Mass Spectrometry of 

Endogenous proteins) was developed to isolate and identify the AR-V7-specific spliceosome, 

in association with a nuclease deficient Cas9 at AR cryptic exon 3. Mass spec-derived hits were 

screened for their ability to alter AR-V7 mRNA levels in CWR22Rv1 cells. SRSF3 was identified 

as a potential AR-V7 splicer which promotes cryptic exon 3 skipping in normal prostate. In 

CRPC, SRSF3 is significantly downregulated and hence cryptic exon 3 inclusion in the mature 

AR-V7 mRNA transcript is permitted leading to generation of AR-V7. 
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Chapter 1. Introduction 

1.1. Anatomy and function of the prostate 

The human prostate is a male secondary sex organ which surrounds the urethra, located at 

the back of the bladder in males. The prostate is structurally made up of three distinct zones: 

the peripheral, transition and central (Figure 1A). Epithelial cells in each zone produce a 

glucose rich fluid with alkaline pH which provides an optimal environment for growth of 

spermatozoa. From a cell type stand-point, the prostate consists of two distinct layers (Figure 

1B); the luminal layer which consists of secretory luminal cells, discontinued by 

neuroendocrine cells present in extremely low frequency and a layer of basal cells which is 

encapsulated by smooth muscle cells (Maitland, 2013).  

          

 

 

 

 

 

 

Figure 1. Anatomy of the human prostate. A. Illustration of the human prostate. Taken from 

(McNeal, 1969). B. Cellular organisation within the prostate duct. Taken and adapted from 

(Abate-Shen, 2000). 

1.2. Development of the prostate 

Development of the prostate relies on a stream of sex hormones, such as the gonadotropin-

releasing hormone (GnRH) and leutenising hormone (LH), which are produced by the 

hypothalamus and pituitary gland, respectively to stimulate testosterone production and 

release from the Leydig cells of the testes (Kluth et al., 2014). Upon entering cells of the 

prostate, testosterone is metabolised to its more potent derivative 5α-dihydrotestosterone 

(DHT) and binds to the androgen receptor (AR), a nuclear transcription factor, which drives 

cell growth, differentiation and prostate homeostasis. Both genders express AR. However, 
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different levels of androgens between the two genders are responsible for differential female 

and male sex development. Disruption of this hormone cascade results in failure of prostate 

development and the affected individuals present a female-like urogenital morphology (Hiort, 

2013; Randall, 1994).  

1.3. Prostate carcinogenesis 

1.3.1.  Risk factors 

Prostate cancer emergence is associated with a limited number of risk factors which include 

age, family history and ethnicity. It is well established that PC incidence increases with age 

and older men are more likely to develop PC (Cancer Research UK, last updated 20/06/2019). 

Moreover, the risk of developing PC increases by up to 8 times if a man has a first-degree 

relative with PC. This is in part attributed to germline mutations observed in affected families. 

For instance, men under 65 with inherited BRCA2 mutations demonstrate higher risk of 

developing PC compared to men with wild-type BRCA2 due to DNA repair deficiency and 

increased genomic instability (Kote-Jarai et al., 2011). In addition, low-penetrance 

polymorphisms present in genes involved in androgen biosynthesis have been identified and 

these genetic variants are associated with increased susceptibility to PC. In particular, 

mutations in the SRD5A2 gene lead to 5α-reductase deficiency. One variant, Ala49Thr has 

been reported to enhance the catalytic activity of 5α-reductase and is associated with an 

increased risk of advanced PC. This low-penetrance variant appears to increase the risk of PC 

in African-Americans by 7.2 fold. Finally, epidemiology studies have shown that African-

American men are more likely to develop prostate cancer compared to Caucasian men and 

demonstrate significantly higher mortality rates suggesting differences in the demographic 

and economic backgrounds of these populations could be attributed to modulating PC risk 

(Powell and Bollig-Fischer, 2013). However, such populations (black vs white men) were also 

examined under equal socioeconomic criteria and surprisingly the same trend in PC incidence 

was observed, indicating that underlying genetic factors might be responsible for the 

observed discrepancy between the two groups (Ben-Shlomo et al., 2009).  

1.3.2.  Genomic landscape of PC 

Prostate cancer aetiology is strongly linked to genetic factors such as somatic mutations or 

aberrations which are acquired rather than inherited in a man’s lifetime. Next generation 
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sequencing (NGS) approaches have facilitated the identification of PC specific genomic 

alterations that occur at different stages during PC development and contribute to or drive 

malignant transformation events such as invasion and metastasis (Figure 2) (Baca and 

Garraway, 2012; Shen and Abate-Shen, 2010). Chromosomal translocations occur in the 

prostate which result in gene fusions and aberrant end-products and have been linked to early 

PC development. A typical example is that of the TMPRSS2:ERG gene fusion which is derived 

from the structural fusion of the 5’ untranslated region (UTR) of TMPRSS2 with ERG, a 

member of the ETS family of transcription factors. It is found in >50% of PC patients and 

critically the fusion product is androgen regulated, due to the presence of an androgen 

response element (ARE) in TMPRSS2 which drives ERG overexpression, supporting the notion 

that AR signalling is required during early transformation processes (Cai et al., 2009; Holly et 

al., 2017). However, this structural rearrangement is not sufficient to promote transformation 

itself but needs to be accompanied by other oncogenic events such as PTEN loss followed by 

p53 inactivation which is required to overcome cellular senescence induced by PTEN loss 

(Chen et al., 2005). Inactivating deletions and mutations in the tumour suppressor gene PTEN 

occur frequently in PC and invariably lead to aberrant activation of oncogenic PI3K/Akt 

signalling which potentiate metabolic changes, including increased aerobic glycolysis, a 

common metabolic switch observed in cancer as described by the Warburg effect (Zhou et 

al., 2019). These early molecular changes induce transcriptional programmes which fuel 

malignant cell growth and tumourigenesis. Late events in PC development following these 

precursor lesions include P53 mutations observed in 40% of PC patients as well as RB loss in 

~30% of patients. Critically, aberrations in AR (discussed below) occur later in PC, comprise 

the most frequent molecular abnormalities observed in patients and more importantly they 

result from selection mechanisms activated in response to AR targeted treatments (Beltran 

et al., 2013).  
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Figure 2.  Representative genetic alterations associated with prostate cancer progression. 

Taken and adapted from Shen et al., 2010. 

1.4. Prostate cancer incidence and mortality 

Prostate cancer (PC) is currently the most commonly diagnosed non-cutaneous cancer 

affecting UK men. Across the UK, nearly 50,000 new PC cases are recorded and over 11,500 

men die of PC every year, whilst it is estimated that 1 in 8 UK men will get PC at some point 

in their lifetime (Cancer Research UK, 2016). Prognosis is good for men who present with 

localised disease of low grade. Nevertheless, patients with metastatic tumours show an 

extremely poor prognosis. To date, metastatic disease remains incurable and mortality rates 
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invariably increase each year (Figure 3) despite recent advances in PC therapeutics 

(Denmeade and Isaacs, 2002). 

Figure 3. Prostate cancer mortality rates. Age-specific death rates in the UK between 2014 and 2016 

(blue line). Average number of deaths recorded annually per age group (blue bars). Taken from Cancer 

Research UK, 2014-2016. 

1.5. The androgen receptor 

The prostate is dependent on androgens for growth and survival. Androgens bind to and 

activate the androgen receptor (AR) which in turn plays a vital role in prostate development 

by promoting transcription of essential genes for prostate function and homeostasis (Huggins 

and Hodges, 1941). The androgen receptor gene extends over a 90 kb chromatin region on 

chromosome X at q11-12 and is transcribed into a premature mRNA transcript, which consists 

of eight exons and encodes a 919 amino acid protein (UniProt: P10275). The AR belongs to 

the steroid-hormone nuclear receptor superfamily of transcription factors and consists of four 

functional domains: the N terminal domain (NTD), the DNA binding domain (DBD), a hinge 

region and the ligand binding domain (LBD) (Figure 4)(Tan et al., 2015). 
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Figure 4. Schematic representation of the structure and organization of AR at DNA, mRNA 

and protein level. AR consists of eight exons which give rise to four functionally distinct 

domains. Adapted from Tan et al., 2015. 

1.5.1. The N-terminal domain 

The NTD of the AR is encoded exclusively by exon 1 and comprises the largest domain of the 

receptor, occupying 60% of its total length. Two different transcription activation units (Tau) 

have been mapped within the NTD, Tau1 (aa 101-370) and Tau5 (aa 360-528), which are 

together encompassed in AF-1 (Activation Function-1). Tau1 and Tau5 are responsible for 

mediating intramolecular interactions between the NTD and the LBD through AF-2 (Activation 

Function-2) to form a transcriptionally active receptor (Jenster et al., 1995). 

The NTD is structurally disordered making crystallography or nuclear magnetic resonance 

(NMR) studies extremely difficult; hence our understanding of its structure is extremely 

limited.  This loose three-dimensional conformation allows a multitude of interactions with 

co-regulators. Circular dichroism experiments coupled with fluorescence spectroscopy 

revealed that the general transcription factor TFIIF interacts with the AF-1 of AR and facilitates 

assembly of the transcription initiation complex at target gene promoters while it promotes 

mRNA transcription elongation by RNA polymerase II (Reid et al., 2002b). It has also been 

reported that binding of TFIIF to the NTD induced conformational changes which gave rise to 

an additional surface for further contacts with protein complexes, creating novel interaction 

networks. Importantly, AR NTD acquired a more stable conformation upon binding to TFIIF 

due to the formation of an α-helix. Similarly, partial secondary structure of the NTD has been 

identified upon exposure to trifluoroethanol and trimethylamine N-oxide. The structure-

stabilising properties of these solvents induce conformational changes which are consistent 

with an increase in α-helical structure of the NTD (Reid et al., 2002a) 
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Early studies showed that the AR was able to interact with histone acetyl-transferases (HATs), 

steroid receptor coactivator-1 (SRC1) and transcriptional intermediary factor-2 (TIF2). These HATs 

are able to recruit general co-activators, CREB binding protein (CBP), p300 and p300/CBP-

associating factor (PCAF), which also have HAT activity and together function to enhance AR 

transcriptional activity via direct acetylation of target lysine residues in the N-terminal tails of 

histones H3 and H4. This leads to chromatin relaxation and facilitates the recruitment of basal 

transcriptional machinery and additional chromatin remodelling complexes such as SWI/SNF 

(Oñate et al., 1995, Powell et al., 2004). Furthermore, the AR can be post-translationally 

modified at numerous residues throughout the NTD, with phosphorylation being by far the 

most well studied post-translational modification. For example, phosphorylation of serine-

514 by MAPK has been associated with increased AR activity (Yeh et al., 1999a). The AR NTD 

is also the target of SUMOylation. Lysine-385, within TAU-5, is an acceptor of small ubiquitin-

like modifier (SUMO) peptides from PIAS1/2, the SUMO-1 ligase enzymes which SUMOylates 

the AR and represses its activity (Callewaert et al., 2004) (Poukka et al., 2000).  

 

Specific sequence motifs which are important for structural rearrangements of the receptor 

in space also exist within the NTD. In particular, the FxxLF (23FQNLF27) and WxxLF motifs 

(433WHTLF437) of the AR NTD associate with the LBD of the receptor following androgen 

stimulation permitting interaction between the N- and C-terminal domains to facilitate 

stabilisation of the receptor (Langley et al., 1998). In fact, the FxxLF motif has been shown to 

make interactions with higher affinity to AF-2 of the LBD compared to the WxxLF motif, thus 

driving rather than just contributing to interdomain interactions of the AR (He et al., 2000). 

This direct interaction is unlike other NRs such as the ER, which has an indirect N/C terminal 

interaction, utilising co-activators as bridging intermediates (Kobayashi et al., 2000). 

1.5.2. The DNA binding domain 

The DBD is encoded by exons 2 and 3 and consists of two zinc fingers and three α-helices. The 

first zinc finger is located in exon 2 and contains the P-box 577GSCKV581 motif which forms an 

α-helix and mediates direct contact with the DNA groove of specific AR-targeting sequences. 

This structural organisation is observed in other nuclear receptors (NRs) including the 

glucocorticoid receptor (GR) and progesterone receptor (PR) (Tsai and O’Malley, 1994). The 

second zinc finger is located in exon 3 and contains two α-helices and the D-box 596ASRND600 
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motif which is essential for receptor dimerisation via direct interaction with the D-box motif 

of a second AR monomer in a ''head-to-head'' fashion (Tan et al., 2015) at target binding sites.  

The AR binds to specific DNA sequences termed androgen response elements (AREs). AREs 

consist of two hexameric half sites (5’-AGAACA-3’) which are palindromic and separated by a 

3 bp spacer (Mangelsdorf et al., 1995). Overlap in binding site recognition has been observed 

between NRs. The half site of ARE can also be recognised by GR but different binding affinities 

to AR have been observed. Unlike other NRs, AR can selectively bind to specific, non-

conventional AREs throughout the genome which are generated by direct rather than 

inverted repeats of the consensus ARE and flanking DNA sequences (Haelens et al., 2001). 

This may be in part explained by the fact that in contrast to AR homodimers which acquire a 

''head-to-head'' configuration, other NRs form ''head-to-tail'' dimers. Selectivity can finally be 

attributed to specific and unique residues within the D-box of AR such as a serine residue at 

position 438 which resides at the dimerization interface, stabilises homodimer formation and 

increases the binding affinity of the receptor to DNA by mediating electrostatic interactions 

and additional hydrogen bonds. In all, this allows AR to bind to a broader spectrum of DNA 

sites with higher affinity compared to other NRs (Shaffer et al., 2004).  

1.5.3. The Hinge region 

The hinge region of the AR is encoded by exon 4 and is a short amino acid sequence located 

between the DBD and the LBD. Despite its small size, the hinge region importantly contributes 

to translocation of AR to the nucleus by harbouring a bipartite nuclear localisation signal (NLS) 

(617RKCYEAGMTLGARKLKKL634 – NLS in bold) in its N-terminal end (Clinckemalie et al., 2012). 

The importin-α–importin-β complex recognises and binds to the KLKK motif in the hinge 

region and mediates transportation of AR and release into the nucleus (Cutress et al., 

2008)The hinge region is also a hotspot for posttranslational modifications, including 

acetylation (Gaughan et al., 2002)and methylation (Gaughan et al., 2011), that regulate the 

transcriptional potency of the receptor. 

1.5.4. The Ligand binding domain 

The LBD of AR is encoded by exons 4 to 8. It is structurally conserved between NRs despite 

differences in the primary amino acid sequence. It consists of 11 α-helices and 1 β-sheet, as 

opposed to the LBD of all the other NRs which contain an additional α-helix (helix 2). Helices 
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3, 5, 10 and 11 make up the ligand binding pocket. Remarkable conformational changes are 

induced upon androgen stimulation to facilitate ligand docking. Helix 12 works as a ''lid'' which 

relocates from its inactive to active position and seals the androgen occupied cleft of the 

receptor. This conformation is stabilised by the presence of the β-sheet (Gao et al., 2005). The 

LBD is essential for AR activation upon binding of androgens to a hydrophobic cleft formed by 

the AF-2 and helix 12 which is found at the C-terminal end of the LBD. Importantly, the LBD 

also provides the interface via its AF-2 for AR interaction with co-regulators that contain LxxLL 

motifs (termed NR boxes) which, similarly to the FxxLF motif of the AR NTD, form a helical 

structure to bind AF-2. However, these contacts are much weaker compared to the 

intradomain interactions between the AF-2 of the LBD and the W/FxxLF motifs of the NTD (He 

et al., 2002). 

The AR LBD comprises a hotspot for point mutations (discussed in section 1.9.4) which alter 

the structure of the ligand binding pocket and subsequently broaden the ability of the 

receptor to accommodate novel ligands (Steketee et al., 2002). 

1.6. AR signalling  

In the prostate, testosterone, the predominant androgen, enters the plasma membrane and 

is immediately reduced to its more potent derivative DHT by 5-α-reductase in the 

endoplasmic reticulum. Binding of DHT to AR occurs in the cytoplasm and results in 

dissociation of repressive heat-shock protein complexes and activation of the receptor by 

enabling inter-domain interactions between the N- and C-termini. The activated receptor, in 

turn, translocates into the nucleus, dimerises and binds to androgen response elements 

(AREs) on cis-regulatory sequences of target genes. The receptor then recruits a number of 

transcriptional machinery components to govern gene transcription (Figure 5) (Brinkmann et 

al., 1999). 
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Figure 5.  Schematic illustration of the canonical AR signalling pathway in prostate cells. 

Stimulation with testosterone releases AR from heat-shock proteins in the cytosol and 

promotes translocation of the receptor into the nucleus, where AR regulates transcription of 

growth- and survival-associated genes. Taken from Tan et al., 2015. 

1.7. Clinical management of PC 

PC is classified as low-, intermediate- and high-risk depending on patient's TNM (Tumour, 

Node, Metastasis) stage, Gleason score and concentration of the PC biomarker prostate 

specific antigen (PSA) in the bloodstream.  

Low risk PC is subject to active surveillance (AS) avoiding the need for utilising invasive 

treatment methods. AS showed high efficacy in ~98% of patients who presented a 10-year 

survival (Klotz et al., 2010). Intermediate-risk PC patients undergo surgical prostatectomy 

which has been shown to reduce PC-associated mortality. Combination of external beam 

radiation therapy (EBRT) with short-term androgen deprivation therapy (ADT) is an 

alternative option for these patients who present lower risk of biochemical relapse compared 

to ADT alone (Bill-Axelson et al., 2011). Finally, high-risk PC patients with localised-advanced 

disease also undergo radical prostatectomy coupled with lymph node dissection for 

assessment of prognosis and disease stage (Moris et al., 2016). Radiation therapy (RT) in 
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combination with long-term ADT is strongly recommended for high-risk PC (Bolla et al., 2010) 

despite the observed side effects of the latter (Alibhai et al., 2006). It has been suggested that 

irregularly pausing ADT may relieve patients from ADT-associated side effects without limiting 

treatment efficacy (Klotz et al., 1986). However, more recent evidence indicates that RT 

synergy with short-term ADT does not benefit high-risk PC patients (Lawton et al., 2007). 

1.8. Targeting the AR signalling pathway 

1.8.1. Targeting androgen synthesis via the hypothalamic-pituitary-gonadal axis 

Development of the prostate relies on androgens which regulate cell growth via the AR. 

Circulating androgen levels are reduced by targeting the hypothalamic-pituitary-gonadal axis 

and subsequently disrupting the release of precursor hormone molecules in the bloodstream 

to eventually reduce downstream testosterone production. Historically, LHRH agonists have 

been utilised to stimulate increased LHRH production by the anterior pituitary gland (Figure 

6). Despite initial increase in LH, the levels of the hormone eventually (within two weeks) 

decrease due to a decrease in LHRH receptors and lead to reduced testosterone production. 

LHRH antagonists are also utilised in the clinic to block production of LHRH and disrupt 

testosterone production. For instance, Degarelix has been used in the clinic with no significant 

differences in efficacy compared to LH agonists. However, the compound causes a rapid drop 

in testosterone levels in contrast to LH agonists which stimulate a testosterone burst prior to 

its reduction, and therefore Degarelix and other LH antagonists are preferred oved LH 

agonists. LHRH blockade has shown significant efficacy in the clinic with reduced tumour 

growth in over 70% of patients (Denmeade and Isaacs, 2002; Siddiqui and Krauss, 2018). 

1.8.2. Targeting adrenal androgen synthesis 

Disruption of androgen production via the hypothalamic-pituitary-gonadal axis is not 

sufficient to eliminate androgen release in the circulation as there are other sources of 

androgens such as the adrenal glands. Adrenal androgen production originates from lipid 

biosynthesis. Abiraterone, an active metabolite of abiraterone acetate, prevents androgen 

synthesis by blocking enzymes involved in the de novo androgen biosynthesis cascade by 

adrenal glands (Figure 6). In particular, abiraterone is a specific CYP17A1 (cytochrome P450 

17A1) enzyme inhibitor. In brief, CYP17A1 catalyses production of dehydroepiandrosterone 

(DHEA) and androstenedione, which are weak androgens but can be converted to 
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testosterone and DHT supplying the prostate with potent androgens required for cell growth 

and proliferation. Conceivably, abiraterone administration in patients with redundant adrenal 

androgen production can eliminate circulating androgens and further starve PC cells leading 

to tumour regression (Ferraldeschi et al., 2013). 

Abiraterone has been successfully used in large clinical trials (COU-AA-301 and COU-AA-302). 

In both trials, patients with castration resistant PC (CRPC) previously treated with and without 

taxanes, respectively, received abiraterone and demonstrated significantly prolonged survival 

with median overall survivals of 15.8 and 34.7 months in the abiraterone treated groups 

compared to 11.2 and 30.3 months in the placebo control groups, respectively (Fizazi et al., 

2012; Ryan et al., 2015). Currently, abiraterone is the preferred treatment option for patients 

with CRPC who have progressed on first-generation anti-androgens. 

1.8.3. Anti-androgen therapy 

ADT has traditionally been used as the gold standard treatment for high-risk localized and 

advanced PC. The rationale of ADT relies on the early observation that androgens, such as 

testosterone are essential for prostate growth and survival (Huggins and Hodges, 1941). Thus, 

by eliminating testosterone supply to castration levels (~1.7 nmol/L of serum), apoptosis of 

the AR-positive prostate cancer cells is induced resulting in significant tumour regression 

(Maitland, 2015; Suzman and Antonarakis, 2015) 

Despite the initial response to ADT, patients relapse with more aggressive tumours within 18 

months. These tumours are no longer responsive to ADT resulting in castration-resistant 

prostate cancer (CRPC). In CRPC, AR signalling is inappropriately sustained through a number 

of different mechanisms (discussed in section 1.9) (Claessens et al., 2014). Researchers 

around the globe, have been trying to develop novel agents and strategies to target persistent 

AR in advanced CRPC (Sternberg et al., 2014).   

First-generation anti-androgens, such as bicalutamide, have been used as first-line treatment 

for advanced PC. These agents normally compete with androgens for the ligand-binding site 

of the AR, ultimately resulting in blockade of the receptor (Figure 6). However, due to 

significantly lower affinity for AR and persistent tumour growth despite administration of the 

drugs, their efficacy has been limited, highlighting the need for novel therapies (Clegg et al., 

2012).  
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Next-generation anti-androgens have been developed following the failure of their first-

generation counterparts. Promising antitumor activity of enzalutamide (also known as 

MDV3100) has been reported in clinical trials. Enzalutamide targets AR at multiple levels in 

the signalling pathway. In particular, the agent initially binds to the LBD of AR with higher 

affinity compared to previously used anti-androgens, inhibits its translocation to the nucleus, 

blocks the recruitment of co-activators and the subsequent activation of AR target genes 

(Tran et al., 2009). In fact, men with advanced CRPC who received the drug demonstrated 

improved overall survival up to 4.8 months compared to individuals who received the placebo 

(Scher et al., 2010). At presentation, enzalutamide is the most potent and well-tolerated anti-

androgen that has been approved by the FDA to be used as a first-line therapy for treating 

advanced CRPC (FDA, 2012).   

Nonetheless, tumours develop resistance mechanisms to evade antitumour activity of 

enzalutamide and of other next-generation agents, such as abiraterone, resulting in palliative 

care being the only choice for patients with metastatic CRPC (Figure 7) (Chandrasekar et al., 

2015). 

 

 

 

 

 

 

 

 

 

 

 



23 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Current prostate cancer treatment options. Agents targeting the AR signalling axis 

are shown in red boxes. Taken and adapted from Tan et al., 2015. 

1.9. Mechanisms of PC Resistance to Current AR-targeted Therapies 

AR remains transcriptionally active in CRPC despite the development of potent agents with 

significantly improved pharmacological properties, such as enzalutamide. Increased levels of 

circulating PSA (an AR target gene product) detected in patient’s serum upon castration are 

indicative of the inappropriately active AR in these patients.  

Research has focused on deciphering the molecular mechanisms that sustain AR signalling in 

CRPC and confer resistance to current regimes leading ultimately to patient death (Figure 7B). 

Understanding the underlying mechanisms of resistance will enable precise and more 

efficient targeting of the AR, or of other components in the pathway, to provide men affected 

by PC with hope of more effective treatments.  

There has been a variety of mechanisms identified that describe maintenance of AR activity 

in CRPC (summarized in Figure 7A) (Chandrasekar et al., 2015). 
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Figure 7. AR signalling persists in advanced prostate cancer leading to disease progression and 

death. A. Key mechanisms of resistance that emerge in response to AR-targeted therapy. AR 

mutations are depicted by *. B. Sequence of treatment options for PC patients at different stages 

during PC progression. Taken from Zenith Epigenetics. 

A. 

B. 
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1.9.1. AR Amplification 

AR gene amplification has been observed in more than 50% of CRPC patients (Robinson et al., 

2015). Increased AR gene copy number results in a 6-fold increase in AR protein levels (Linja 

et al., 2001). Amplification was not observed in untreated tumours suggesting that this 

mechanism arose in response to treatment which would hypersensitise cancer cells and 

compensate for the low levels of androgens (Visakorpi et al., 1995) However, the exact 

mechanism underlying this phenomenon hasn’t been described yet. Initial in vitro 

experiments have demonstrated that hormone-naïve LNCaP cells acquire a CRPC-like 

phenotype following AR overexpression and hence become capable of proliferation and 

expansion in castrate conditions (Chen et al., 2004). The clinical relevance of this particular 

AR genetic aberration is also highlighted by the fact that AR amplification has been detected 

in circulating tumour cells (CTCs) and circulating tumour-derived DNA (ctDNA) isolated from 

patients with CRPC and has been associated with treatment resistance to AR targeted therapy 

including enzalutamide and abiraterone (Conteduca et al., 2017). Finally, a recent study has 

shown that when co-expressed with AR-V7 or ARv567es, AR-FL could translocate to the 

nucleus and regulate gene expression in the absence of androgens (Cao et al., 2014), 

suggesting that this mode of AR gene regulation may also be applied in tumours with 

simultaneous AR amplification and AR-V expression.  

1.9.2. Nuclear Receptor Cross-talk 

GR expression was shown to be elevated in CRPC patients who demonstrated resistance to 

next-generation antiandrogens such as enzalutamide. In fact, clinical assessment of bone 

metastases prior to and after treatment indicated that GR was significantly elevated in 

response to enzalutamide treatment, implicating GR function in treatment failure and PC 

progression. As previously mentioned, AR and GR share the same conventional DNA binding 

motifs. AR displacement from chromatin, induced by AR inhibition, leads to GR recruitment 

to AREs and GR driven transcription of AR target genes, thus sustaining an androgenic gene 

signature. Moreover, GR depletion in the enzalutamide-resistant LNCaP-derived xenograft 

model LREX supported this finding by showing that the GR cistrome and transcriptome share 

significant overlaps with those of AR (Arora et al., 2013). Finally, a more recent study has 

demonstrated that GR blockade by shRNA and pharmacological inhibition by mifepristone 
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significantly diminished cell growth and spheroid formation of AR positive prostate cancer cell 

lines including LAPC4 and CWR22Rv1 cells highlighting the dependence of these cells on GR 

(Puhr et al., 2018). It is therefore conceivable that GR inhibitors may provide clinical benefit 

in CRPC patients. Importantly, an early phase clinical trial (NCT02012296) is currently ongoing; 

investigating the treatment of patients with enzalutamide in combination with mifepristone 

or enzalutamide alone to establish the role of the GR in CRPC. Implications in the clinic involve 

the use of glucocorticoids in combination with anti-androgens such as abiraterone. Inhibition 

of CYP17A1 activity by abiraterone leads to an increase in corticosterone production to 

compensate for the drop in glucocorticoid levels. High corticosterone production results in 

elevated adrenocorticotrophic hormone (ACTH) levels and secondary mineralocorticoid 

excess which is associated with severe side effects including high blood pressure (Attard et 

al., 2012). To tackle this, glucocorticoids such as prednisone are co-administered to patients 

receiving abiraterone (Auchus et al., 2014). Given the tumour-promoting role of GR in PC, 

administration of glucocorticoids may facilitate selection of GR positive cell populations to 

allow tumour progression. Finally, glucocorticoids such as cortisol have been shown to act as 

agonists to certain AR mutants to promote androgen-independent cell growth and ultimately 

disease progression (Zhao et al., 2000). 

1.9.3. AR co-regulator dysregulation  

As previously mentioned, AR interacts with a plethora of co-regulators which modulate its 

activity. They display different cellular functions and can be grouped to chromatin 

remodellers, histone modification enzymes, components of the proteasome and spliceosome 

as well as components of the DNA repair machinery. Dysregulation of these co-regulators is 

commonly seen in advanced PC and significantly influences AR activity. Increased expression 

of AR co-regulators has been documented to lead to enhanced activity of AR even in low 

androgen conditions (Heemers and Tindall, 2007).  

Common examples of AR modulators are the pioneer factors forkhead box A1 (FOXA1) and 

GATA2 which have been shown to be essential for AR activity at certain genomic loci 

Expression levels are significantly increased in advanced disease compared to primary PC 

resulting in altered AR occupancy across chromatin (Chaytor et al., 2019; Jones et al., 2015). 

In CRPC, FOXA1 opens up de novo chromatin regions, promotes redistribution of AR across 

the genome and allows it to bind and regulate transcription of a novel set of genes which is 
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consistent with a CRPC-like gene signature (Robinson et al., 2014). Moreover, GATA2 

expression levels are elevated by antiandrogen treatment, which leads to upregulated 

GATA2-mediated transactivation of AR expression via binding to transcriptional regulatory 

sites upstream of the AR gene (Wu et al., 2014).  

p300, a global transcription co-activator facilitates bridging of transcription factors to the 

basal transcriptional machinery. It also functions as a histone acetyl-transferase which 

acetylates AR and enhances its transcriptional activity in an androgen-dependent manner. 

Interestingly, its levels are significantly increased in advanced PC in response to androgen 

starvation. Despite the knowledge gap in the mechanism of dysregulation, elevated 

expression of p300 leads to activation of AR and augments AR signalling in castration 

conditions (Heemers et al., 2007).  

1.9.4. Gain-of-function mutations within the LBD of AR  

The development of AR mutations is a key molecular event commonly identified in the 

transition from treatment-sensitive to castrate-resistant PC. Aberrant AR signalling via 

mutations drives progression of advanced disease that is largely refractory to commonly used 

anti-AR therapies. The acquisition of AR gain-of-function mutations during ADT is a well 

characterised mechanism of hormone escape and treatment failure and has been reported 

to occur in over 60% of castrated patients. Recent advances in next-generation sequencing 

technologies have highlighted the LBD of AR as a hotspot for accumulation of point mutations 

(Brooke and Bevan, 2009).  

▪ The T877A mutation  

 

In 1990, Veldscholte et al. identified a single point mutation within the LBD of AR in LNCaP 

cells, which was also later identified in PC specimens derived from patients with bone 

metastasis (Taplin et al., 1999; Veldscholte et al., 1990). The T877A mutation occurs in exon 

8 and alters AR response to ligands. Structural studies of the AR in complex with compounds, 

such as DHT, highlighted the key events that occur and explained the differential response of 

the receptor. In particular, substitution of the bulkier threonine to alanine results in a more 

flexible and open conformation of the ligand binding pocket of the AR (Figure 8A), allowing 

binding of ligands other than DHT and subsequent activation of the receptor under castrate 

conditions (Tan et al., 2015). Over the past two decades, a novel mechanism of AR adaptation 
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has emerged in response to anti-androgen therapy with different research groups attempting 

to pinpoint the paradoxically enhancing effect of anti-androgens on AR activity. In particular, 

scientists demonstrated that the T877A mutant was not inhibited by the commonly used anti-

androgen flutamide. Conversely, the drug switched to a ligand with an agonistic effect on AR 

activity, which concurrently remained high, leading eventually to tumour cell growth and 

progression in humans and in vitro models of disease (Sun et al., 2006; Taplin et al., 1999). 

 

 

 

 

 

 

Figure 8. AR promiscuity to alternative ligands. The wild-type AR (top) and the T877A AR mutant 

(bottom) in complex with DHT. Substitution of threonine (T) to alanine (A) at position 877 generates 

a receptor with a larger ligand-binding pocket. B. The conformational changes of helix 12 (highlighted 

in magenta) induced upon binding of pharmacological agents, such as Casodex. H12 is displaced and 

blocks the interface of helix 3 (H3) which is essential for coactivator binding. Adapted from Tan et al., 

2015. 

▪ The H874Y mutation 

The H874Y mutation occurs within exon 8 and has been found in clinical samples as well as in 

the castration-resistant CWR22Rv1 cell line. Very similar to T877A, substitution of histidine at 

position 874 results in a receptor which is responsive to alternative bulkier ligands due to the 

formation of a binding cleft with larger volume capacity. Histidine, in fact, seems to face away 

from the LBD and therefore is not involved in direct interaction with ligands. Alongside its 

wider selectivity, the mutant exhibits enhanced activity during flutamide treatment which is 

in line with an agonistic switch of the drug. Together, these mechanisms comprise a selective 

advantage for AR to remain active and sustain tumour growth and ultimately spread in 

castrate conditions (Duff and McEwan, 2005).  

 

A B
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▪ The W741L/C mutation 

Bicalutamide (commercially known as Casodex), a structurally bulky anti-androgen, has been 

shown to switch to a potent agonistic ligand which promotes tumour growth in xenograft and 

cell line models and more importantly in patients with advanced PC, upon long administration 

of the drug (Hara et al., 2003; Yoshida et al., 2005). The unexpected outcome highlighted the 

need of structural-based studies to decipher the interaction between Bicalutamide and AR 

and subsequently revealed the mechanism that causes the observed differential agonistic 

action of the drug. Bicalutamide, a first-generation anti-androgen, normally acts by displacing 

helix 12 of the LBD upon binding to AR. As a result, conformational changes of the receptor 

are induced, which are no longer compatible with an active state of the receptor (Figure 8B) 

(Tan et al., 2015). Although sophisticated, inhibition by bicalutamide can be overcome by the 

acquisition of a gain-of-function mutation in position 741 in the LBD where tryptophan is 

substituted to either leucine or cysteine which increases the volume of the AR cleft. Thus, AR 

can now accommodate bicalutamide with helix 12 remaining intact in its initial active position. 

This subsequently allows activation of the receptor by bicalutamide and finally leads to 

tumour maintenance and progression (Bohl et al., 2005). 

▪ The F876L mutation  

Despite the initial excitement about the pharmacological efficacy of enzalutamide in CRPC 

clinical trials, where remarkable tumour regression and decline in PSA levels initiated a new 

era in PC treatment, tumours eventually developed mechanisms to escape pharmacological 

inhibition of AR and sustain their addiction to AR signalling (Karantanos et al., 2015). The AR 

F876L mutation was identified in vitro and in patients with CRPC who have received and 

become resistant to enzalutamide. Consistent with flutamide and bicalutamide, enzalutamide 

binds to mutated AR, promotes its translocation to the nucleus and the concurrent 

transcription of genes, which are necessary for proliferation and progression to more 

advanced and lethal tumours (Joseph et al., 2013; Korpal et al., 2013). Pharmacological 

inhibition of the wild-type AR by enzalutamide relies on the disorganization of the regular 3D 

structure of the receptor. Direct interaction of enzalutamide with phenylalanine 876 allows 

reposition of helix 11 of the LBD. This reposition of helix 11 hinders its adjacent helix 12 from 

obtaining an active position. It is conceivable that mutation of phenylalanine to leucine 
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abolishes the formation of this inhibitory complex resulting in restored AR activity in CRPC 

(Joseph et al., 2013; Tan et al., 2015).     

Functional characterisation of AR mutants is crucial to elucidate their yet unknown role in vivo 

and to identify downstream effectors which could provide novel biomarkers and avenues for 

inactivation in advanced PC. 

It is noteworthy that loss-of-function mutations also occur in the AR gene. A relatively recent 

study examined the activity of a panel of 45 missense mutations detected in PC with 

metastasis or high Gleason scores. These mutations stretch along the entire length of the AR 

gene and occur with relatively comparable frequencies. Examples include the L57Q and 

D221H mutations in the NTD and the L744F and Q902R mutations in the LBD. Interestingly, 

almost half of the mutations (28 out of 45) led to a loss of function at most or all 

concentrations of DHT used in a luciferase assay (Hay and McEwan, 2012). However, the 

implication of AR loss-of-function mutations in PC progression is unknow to date.   

1.10. AR splice variants 

Alternative splicing, rearrangements of the AR gene and proteolytic cleavage events result in 

the presence of a wide range of truncated AR transcripts in response to ADT (Dehm and 

Tindall, 2011). 

1.10.1. Origin of AR splice variants  

Most commonly, altered splicing events lead to expression of splice variants which are 

constitutively active and act independent of androgens since they lack the LBD.  AR isoforms 

were originally observed in the CWR22Rv1 cell line (Tepper et al., 2002). CWR22Rv1 cells have 

been established from an initially androgen-dependent human tumour engrafted in 

immunodeficient mice (known as CWR22R-2152 xenograft), which nevertheless relapsed 

within a year after ADT (Sramkoski et al., 1999).   

The CWR22Rv1 cell line was established in an attempt to expand the panel of PC cell lines to 

provide more reliable and robust models and therefore a better understanding of the 

underlying mechanisms of PC resistance and progression, which would ultimately lead to 

more efficient PC therapies. The CWR22Rv1 cell line is now indeed the most representative 
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model to study PC progression since it resembles the molecular and clinical background of 

patients with advanced disease (Tepper et al., 2002).   

A novel AR-FL species which exhibits exon 3 duplication and thus migrates slower than the 

canonical AR-FL in an SDS-PAGE gel, as well as a shorter AR isoform of ~75 kDa which lacked 

the AR LBD, were observed in CWR22Rv1 lysates. Expression of that novel truncated AR 

conferred the advantage of consistent growth of CWR22Rv1 cells in androgen-depleted 

conditions. These initial observations led to speculation that the novel AR variant may drive 

PC via promoting tumour androgen independence (Tepper et al., 2002).  

Additionally, Libertini et al. confirmed the presence of a truncated AR isoform in the 

CWR22Rv1 cell line, which was generated by proteolytic cleavage of AR-FL and was 

transcriptionally more potent than AR-FL. Interestingly, expanding these observations to 

patient material, the same group observed high expression of a variant with similar size to 

the CWR22Rv1 AR truncated isoform in cancer specimens compared to specimens with 

benign prostate hyperproliferative disorder (BPH) (Libertini et al., 2007).     

Following these early observations, several more studies have reinforced the concept that AR 

variants are critical drivers of CRPC and have attempted to characterise the molecular and 

functional activities of these AR truncated variants in PC (Cao et al., 2014; Lu et al., 2015; 

Watson et al., 2010). 

1.10.2. Generation of AR splice variants    

Alternative splicing has been the most prevalent mechanism reported in the literature for 

generating truncated AR variants. Inclusion of cryptic exons, which are present in intronic 

regions in the AR locus, result in the generation of mature atypical transcripts which lack the 

LBD and harbour unique sequences at their 3ˈ ends (Figure 9) (Dehm and Tindall, 2011).   

In 2008, Dehm et al. described two novel AR species of ~75 kDa each, in CWR22Rv1 cells. 

These variants arise from the inclusion of the cryptic exon 2b in the mature mRNA transcripts, 

which in turn encode AR isoforms composed of exons 1, 2, 3 and 2b (hereafter called 

V1/2/3/2b) and exons 1, 2 and 2b (hereafter called V1/2/2b) (Figure 9). In fact, differential 

siRNA knockdown targeting one exon at a time in the LBD or the NTD indicated differential 

expression of the AR-FL or the AR-Vs, respectively, meaning that these three AR species arise 
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from at least two distinct transcripts via alternative splicing (Dehm et al., 2008). This 

contradicts previous findings which indicated AR isoform generation via enzymatic cleavage 

of AR-FL (Libertini et al., 2007).   

Interestingly, down-regulating expression of AR-Vs significantly impacted on AR target gene 

transcription in steroid-free conditions, a phenotype which was not observed upon 

knockdown of AR-FL. Furthermore, depletion of the variants significantly retarded cell 

proliferation in the absence of androgens, a phenotype which was reversed upon restoration 

of AR-V expression. Finally, assessment of the expression levels of the variants versus the full-

length receptor indicated a significant difference at mRNA level with V1/2/2b and V1/2/3/2b 

composing the largest portion of the overall AR pool in CWR22Rv1 cells. Taken together, these 

findings suggest a key role of these AR-Vs in promoting androgen independent growth, which 

is attributed to loss of the LBD and concurrent escape of androgen starvation (Dehm et al., 

2008).  

The most extensively studied AR splice variant so far was identified in 2009, when Guo et al. 

focused on the characterisation of novel AR variants in hormone refractory cell lines. The 

truncated isoform, initially called AR3 by Guo et al., but now reclassified as AR-V7, consisted 

of exons 1, 2, 3 and CE3 (cryptic exon 3) and was highly expressed in ADT resistant cell lines, 

such as the CWR22Rv1 cell line and androgen independent LNCaP derivative cell lines, 

compared to ADT responsive cell lines. Like V1/2/3/2b, knockdown of AR-V7 was sufficient to 

induce cell cycle arrest in CWR22Rv1 cells grown in steroid-depleted media, whereas 

overexpression led to an enhanced proliferative phenotype and elevated PSA levels in 

parental LNCaP cells grown in castrate conditions. V1/2/3/2b (called AR5 by Guo et al.) was 

also detected in this study, although AR-V7 was the most abundant and potent AR truncated 

species (Guo et al., 2009).   

The contribution of AR-V7 to tumour progression can be further highlighted by the elevated 

levels of mesenchymal associated markers observed upon overexpression of the variant in 

epithelial PC cell lines, such as in LNCaP, suggesting that the variant drives tumour progression 

to a metastatic state by promoting EMT (epithelial-to-mesenchymal transition) (Cottard et al., 

2013).  
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Important insights were reported by Hu et al. who extensively interrogated the AR intronic 

regions in silico for the presence of cryptic exons and identified seven AR splice variants, some 

of which were completely novel. All variants were truncated and lacked the LBD (Figure 9). 

AR-V7 was identified as the predominant AR-V species and a specific antibody was developed 

against it to map its subcellular localisation in CRPC cell lines and examine its expression 

profile in a wide collection of clinical specimens. Resulting data indicated that AR-V7 

constitutively resided in the nucleus of CWR22Rv1 and VCaP cells in the absence of androgen, 

thus remaining constitutively active and sustaining a castration-refractory phenotype. More 

importantly, using immunohistochemistry, the variant demonstrated a significantly higher 

expression (20-fold) in malignant specimens derived from CRPC patients compared to normal 

tissue, which was associated with poor clinical outcome indicated by PSA recurrence (Hu et 

al., 2009). 

In summary, AR-Vs play a pivotal role in tumour survival and progression. Agents such as 

enzalutamide and abiraterone, which target full-length AR, show poor efficacy in vitro and in 

patients due to expression of AR splice variants which are not responsive to these agents; 

supporting persistent AR transcriptional activity and as a result confer resistance to these 

agents (Antonarakis et al., 2014; Li et al., 2013).  

Conceivably, there is an urgent need to elucidate the molecular mechanisms that regulate 

these AR isoforms to improve our understanding of how these proteins function in vivo and 

potentially identify regulators and effectors that could become rationale drug targets for new 

PC therapeutic interventions.  
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Figure 9. Spectrum of AR splice variants (AR-Vs) emerging in response to ADT. A. Illustration of the 

AR gene structure indicating canonical and cryptic exons (CE). B and C. The molecular mechanisms 

responsible for the generation of each AR-V mRNA transcript are indicated on the left-hand side. The 

novel/unique protein sequences incorporated at the C-terminus of each AR-V are highlighted in red. 

Arrowheads indicate translation termination. AR-Vs with intact exons 3 and 4 encompass a canonical 

nuclear localisation signal. Taken from Cao et al., 2016. 

1.11. CRISPR genome editing 

1.11.1. Origin of CRISPR and its application in biomedicine 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a technology which 

originates from bacteria. Surprisingly, short DNA repeats, called spacers which were found in 

sequenced prokaryotic genomes showed high homology to viral sequences. It was initially 
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hypothesised and later confirmed that these sequences were indeed derived from viruses 

that infected bacteria; the latter developing a defence mechanism to destroy foreign DNA 

and hence prevent recurrent infections. More precisely, bacteria exploited these sequences 

to target the same or similar DNA fragments of viral origin at subsequent infections and 

degrade them which resembles an immune response (Sontheimer and Barrangou, 2015). This 

sophisticated defence mechanism of bacteria against viruses became highly attractive to 

scientists who attempted to transfer and adopt the novel findings to mammalian cells and 

animals, such as mice, in order to engineer their genome (Doudna and Charpentier, 2014).  

Nowadays, many labs around the world use CRISPR to generate physiologically relevant cell 

line and mouse models in order to better understand human disease (Inui et al., 2014). In 

fact, CRISPR has been applied to mammalian cells and more importantly to human primary 

and stem cells to conduct knock-in experiments in order to edit sequences via introducing 

precise alterations, such as nucleotide substitutions and tagging endogenous genes in a more 

clinically-relevant scenario to correct mutations which are responsible for genetic syndromes 

(Kiskinis et al., 2014; Schwank et al., 2013; Xiang et al., 2019). Additionally, CRISPR has been 

applied to induce gene knock-outs to study physiological gene function in a preclinical context 

(Everman et al., 2018).  

1.11.2. Mechanism of CRISPR editing  

CRISPR relies on the activity of a DNA nuclease, called CRISPR-associated protein 9 (Cas9) 

which is recruited to the target DNA sequence by a short RNA fragment known as guide RNA 

(gRNA). The latter consists of two separate RNA fragments which hybridise to one another to 

form a single functional gRNA. The first fragment consists of a seed sequence of 20 

nucleotides, called CRISPR RNA (crRNA) which is complementary to the target site and 

associates with Cas9 to form interference complexes, and a scaffold RNA sequence of 89 

nucleotides which comprises the trans-activating gRNA (tracrRNA), which resembles a handle 

necessary for complex stabilisation with Cas9 via intermolecular interactions (Figure 10) (Jinek 

et al., 2012). 

The target DNA sequence must be located adjacent to a PAM (Protospacer Adjacent Motif) 

sequence which is essential for recognition of the target site by Cas9. Cas9 optimally 

recognises NGG PAMs which are found quite frequently across the human genome permitting 
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editing of nearly any sequence of interest (Figure 10). Full complementarity between the seed 

region of the gRNA and the target region is required for Cas9 to tightly dock and acquire a 3D 

conformation consistent with an active state. Cas9 will then cleave both strands of DNA 3 

base pairs upstream of the PAM leaving blunt DNA ends (Ran et al., 2013). 

 

  

 

 

 

 

Figure 10. CRISPR complex formation at target locus. Arrowheads depict DNA cleavage site 3 bp 

upstream of the PAM sequence. 

Subsequent repair mechanisms are rapidly triggered to fix the double strand break (DSB) 

induced by Cas9. The most prevalent signalling cascade activated is the error prone NHEJ 

(Non-Homologous End Joining) which accounts for frame shifts, missense mutations and 

incorporation of premature stop codons which invariably result in gene disruption and knock-

out. On the contrary, HDR (Homology Directed Repair) mediates precise modifications when 

a donor DNA template, which shares high degree of homology with the target sequence, is 

provided (Figure 11). Importantly, HDR events are extremely rare (frequency of <0.1%) and 

very often outnumbered by NHEJ making knock-in experiments and precise gene editing 

remarkably challenging (Sander and Joung, 2014).  
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Figure 11. Repair signalling pathways activated upon DSB induction by Cas9. 

 
CRISPR is a highly delicate and universal technology which can nowadays be applied with ease 

to everyday-life sectors such as biomedicine to tackle life-threatening disorder and 

agriculture to improve crops, for example (Arora and Narula, 2017; Smits, 2019). Its potential 

remains extremely high and promising with improved versions of the system constantly being 

developed to enhance features such as the editing efficiency of the CRISPR complex, including 

chemically modified gRNAs to increase their stability and more accurate cleavage by different 

species of Cas nucleases with better proof-reading activity to eliminate potential off-target 

editing (Basila et al., 2017; Hu et al., 2018). Application of CRISPR in human embryos has also 

been reported and despite the fact that it may comprise a real breakthrough in medicine, it 

has raised a lot of concerns and ethical issues (Schenkwein and Ylä-Herttuala, 2018). Clinical 

trials using CRISPR as a tool for gene therapy are also underway or due to commence to treat 

various types of cancer after considerable controversy associated with its safety (Ghosh et al., 

2019). Nevertheless, the technology is far from perfect and more scientific efforts are 

currently made to improve it for the benefit of patients with severe diseases. 

1.12. Expansion of the CRISPR toolbox 

CRISPR is not limited to gene editing. It has been repurposed to transiently alter mRNA 

transcription and gene expression programmes as well. More precisely, a catalytically inactive 

version of Cas9, named dead Cas9 (dCas9) can bind to DNA just like its wild-type counterpart 
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but it is not capable of mediating cleavage. It harbours two silencing mutations, D10A and 

H841A which reside in the RuvC1 and HNH nuclease domains, respectively, and are 

responsible for its enzymatic incompetence. Consistent with its wild-type counterpart, dCas9 

is targeted to selective target loci by gRNAs. Traditionally, dCas9 has been exploited when in 

conjugation with transcriptional activators (i.e. VP64) or repressors (i.e KRAB) to activate 

(CRISPRa) or block (CRISPRi) gene expression, respectively (Kampmann, 2018). More recent 

approaches implicate RNA-guided dCas9 targeting to specific chromatin regions in order to 

isolate and identify chromatin associated protein complexes which also associate with dCas9 

at these loci and may play regulatory roles in gene expression or chromatin remodelling 

(Figure 12) (Fujita et al., 2016; Liu et al., 2017). A detailed description of this latter deviation 

of CRISPR is outlined in Chapter 6. 

                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Expansion of the CRISPR toolbox. A nuclease deficient Cas9 (dCas9) can be fused to 

transcriptional activators (i.e. VP64) or repressors (i.e. KRAB) to potentiate transcription activation 

(CRISPRa, top panel) or inhibition (CRISPRi, middle panel) at target promoters, respectively. 

Alternatively, dCas9 can act as a docking platform for recruitment of chromatin regulators at target 

loci (bottom panel) which can then be isolated and identified by proteomic approaches.   
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1.13. Mechanism of splicing 

Splicing was first observed in 1977 (Berget et al., 1977). It refers to mRNA processing whereby 

introns are removed from precursor mRNA (pre-mRNA) whilst the remaining exons are ligated 

to form mature mRNA transcripts which are finally translated to proteins (Clancy, 2008).  

Splicing is catalysed cooperatively by a group of proteins called splicing factors (SFs) which 

form a macromolecular protein complex known as the spliceosome. The most studied and 

best characterised SFs belong to the small nuclear ribonucleoprotein (snRNP) and Serine/ 

Arginine (SR)-rich protein families. They bind to intron-exon boundaries by recognising 

specific sequences on each side of an intron termed 3' and 5' splice sites (SSs) and recruit 

more SFs to form an active spliceosome (Shen and Green, 2004).  

The 5' SS is a GU at the start of an intron while the 3' SS is an AG at the end of an intron. A 

branch point sequence (BPS) is located between the two SSs, 15-50 nucleotides upstream of 

the 3' SS. The aforementioned pre-mRNA features comprise essential regulatory sequences 

for spliceosome assembly. Mutations in SS disrupt splicing (Clancy, 2008). Additional cis-

regulatory sequences have been identified across a pre-mRNA substrate which function as 

docks for recruitment of trans-acting factors which can either enhance (enhancers) or repress 

(silencers) intron release (Wang and Burge, 2008).  

Spliceosome assembly requires a series of RNA-protein interactions. Components of the 

spliceosome in direct contact with their mRNA substrate have been identified as well as 

intermediate components of the spliceosome required for scaffolding. 

Splicing is an extremely dynamic process characterised by assembly of concurrent enzymatic 

complexes (Figure 13). The sequence of recruitment of SFs to their substrates is not 

stochastic. Five different snRNPs play key roles in the formation of the different RNA-protein 

complexes during splicing. Initially, the early splicing complex (complex E) is formed when the 

U1 snRNP binds to the 5' SS of the target intron. Binding of U1 snRNP is followed by 

recruitment of an SRSF to stabilise the interaction. Part of complex E is the BPS-binding 

protein SF1 as well as the U2 auxiliary factor (U2AF). The latter consists of the U2AF35 and 

U2AF65 subunits which bind to the 3' SS of the target intron. Complex A is then formed, 

whereby SF1 is released from the BPS and replaced by U2 snRNP. Following complex A 

assembly, complex B is then formed by recruitment of the U4, U6 and U5 snRNPs. Complexes 
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E, A and B constitute the core spliceosome which is not active at this stage and cannot mediate 

splicing as internal rearrangements of the snRNPs are required for activation. In particular, 

disruption of the interaction between the U4 and U6 snRNPs by helicases leads to release of 

U1 and U4 allowing interaction between U2 and U6 to form an active spliceosome. 

Recruitment of U5 to the spliceosome brings U2 and U6 in direct contact and all together 

form complex C which finally catalyses intron removal as a lariat. The spliceosome 

components can then be dissociated, recycled and used at different sites (Will and Lührmann, 

2011). 

 

Figure 13. Schematic of spliceosome assembly. Sequential recruitment of the 5 snRNPs to their pre-

mRNA target during spliceosome assembly. The key spliceosome complexes E, A , B and C are shown. 

1.14. Alternative splicing 

Early observations in the 1980s indicated that more than one immunoglobulin µ mRNA 

transcripts can be produced from a single gene suggesting that alternative mRNA splicing 

occurs (Early et al., 1980). On average, each human gene can undergo 4 splicing events, 

remarkably diversifying the human transcriptome (Su et al., 2006). Alternative mRNA 

isoforms derived from the same gene might show tissue-specificity or might be produced at 
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certain developmental or differentiation stage or finally might be associated with a certain 

disease status.   

There are different splicing events that occur to produce alternative transcripts. Intron 

retention, exon skipping/inclusion, alternative 3' and 5' splice site selection are only a few 

examples of alternative splicing events that are more frequently observed in the human 

genome (Figure 14) (Black, 2003). 

 

Figure 14. Modes of alternative splicing. The most frequent splicing events and their mRNA products 

are presented. 

Competition is observed between different components of the splicing machinery. 

Essentially, two different classes of splicing mediators exist and compete with each other to 

dictate the fate of an intron. In fact, SR proteins contain serine (S) and arginine (R) rich 

domains which mediate binding to RNA and promote splicing. 

On the contrary, heterogeneous nuclear ribonucleoproteins (hnRNPs) which also bind RNA 

are negative regulators of splicing. They actively repress splicing via poorly understood 

mechanisms. Competing roles of these two classes of SFs indicate the presence of a more 

delicate regulatory network which dictates splicing decisions. More precisely, SRs bind to 

specific motifs in the pre-mRNA substrate called intronic and exonic splicing enhancers (ISEs 

and ESE respectively), In a similar manner, hnRNPs bind to intronic and exonic splicing 

silencers (ISSs and ESSs respectively) (Kornblihtt et al., 2013). 

1.15. Co-transcriptional splicing 

It was initially believed that splicing occurs right after transcription and upon completion of 

pre-mRNA synthesis by RNA polymerase II (RNA Pol II). Since 1980, a growing body of studies 
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have indicated that transcription and splicing synchronise and share regulators in space and 

time, a phenomenon known as spatiotemporal regulation of splicing or alternatively co-

transcriptional splicing. Coupling in space refers to co-localization of transcription and splicing 

factors at the pre-mRNA template while coupling in time refers to coordination of mRNA 

elongation and maturation within the same time window (Baurén and Wieslander, 1994; 

Johnson et al., 2011; Tilgner et al., 2012). More specifically, the rate of transcription and 

mRNA emergence determines the rate of mRNA processing by providing a time window for 

interactions and complex formation. Finally, co-transcriptional splicing highlights that 

interactions are not only limited between RNA and protein molecules to form the 

spliceosome, but chromatin also comprises part of it and may create potential for additional 

intermolecular contacts and formation of novel complexes (Bentley, 2014).   

Coupling of splicing with transcription was first observed in Drosophila melanogaster, 

whereby lariat introns appeared as bubbles showing up from the DNA template while RNA 

Pol lI molecules actively transcribed it (Figure 15) (Beyer and Osheim, 1988).   

 

Figure 15. ‘Miller spread’ electron micrograph of a D. melanogaster gene and its graphical 

representation (shown on left and right, respectively). The DNA template is shown as a strand which 

is transcribed by RNA Pol II molecules. Several nascent mRNA transcripts emerge and are associated 

with spliceosome complexes indicated by black dots. White and gray arrows depict intronic lariats. 

Taken from Beyer and Osheim, 1988.  

The carboxy-terminal domain (CTD) of the large subunit of RNA Pol II plays an essential role 

in SF recruitment to the pre-mRNA substrate. Mechanistic studies showed that 

phosphorylation of Serine 2 of the CTD, which is indicative of the elongating form of RNA Pol 

II stimulates mRNA processing by SFs and subsequent maturation, which is not only restricted 
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to splicing but also involves mRNA stabilisation processes such as mRNA capping and 

polyadenylation (McCracken et al., 1997).  

The phosphorylated tail of RNA Pol II allows trafficking of SFs. It essentially provides a surface 

which serves as a dock for SFs to land and interact with the nascent pre-mRNA as soon as it 

exits the RNA Pol II channel (Figure 16) (Hsin and Manley, 2012). In addition, the CTD allows 

allosteric contacts of SFs which activate the latter so they can catalyse splicing (Ho and 

Shuman, 1999). Finally, the essential role of CTD to mRNA maturation is evident by the fact 

that mutations in the CTD or entire deletion of it abolishes spliceosome formation (McCracken 

et al., 1997).  

 

Figure 16. Schematic of co-transcriptional splicing. Docking of SFs and splicing regulators to 

the CTD of RNA Pol II is necessary for pre-mRNA (shown in red) maturation. CTD, C-terminal 

domain; CstF, cleavage stimulation factor; snRNP, small nuclear ribonucleoparticle; U2AF, U2 

auxiliary factor; CPSF, cleavage and polyadenylation specificity factor; CF, cleavage factor;  

SETD2, SET domain-containing 2. Adapted and modified from Bentley, 2014. 

1.16. Alternative splicing in cancer 

Reprogramming of alternative splicing occurs in cancer. Novel mRNA transcripts are produced 

aberrantly to re-shape the transcriptome of several types of cancer (Dvinge and Bradley, 

2015). High throughput screening technologies such as RNA-seq have highlighted differential 

splicing signatures between cancer tissues and their normal counterparts. Splicing events in 

cancer either enhance tumour-promoting phenotypes or eliminate tumour-suppression 

processes.  

Examples of genes which undergo aberrant mRNA splicing and result in oncogenic end-

products include BCL2L1. Anti-apoptotic mRNA isoforms of this gene, such as BCLXL, confer 
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resistance of cancer cells to apoptosis and hence promote tumour progression. Another 

example is that of RAC1B, an alternatively spliced isoform of RAC1, which promotes 

proliferation and invasion of cancer cells (Sveen et al., 2016).  

Pan-cancer sequencing studies of cancer patient material have identified critical somatic 

mutations in genes encoding SFs. SF3B1, in particular, is a cancer-critical SF which is frequently 

mutated in cancers such as leukaemia and breast. The mutations broaden its target sequence 

specificity in the pre-mRNA substrate and as a result the mutated SF can recognise novel 3' 

SS in the genome and potentiate novel splicing events which are associated with tumour 

progression and poor patient survival (Sveen et al., 2016).  

Expression levels of mutation-free SFs alter in cancer. Alterations in SF expression levels are 

accompanied by a switch in the splicing pattern of target genes with oncogenic or tumour 

suppressive roles. For instance, SRSF1 has been shown to be upregulated in several cancers 

and its overexpression in mice caused malignant transformation and tumourigenesis, 

indicating that SRSF1 is a proto-oncogene in these cancer types and elevated expression of it 

drives splicing of genes with tumour promoting properties (Anczuków et al., 2012).   

Upstream regulators of SFs are sometimes dysregulated in cancer and this leads to alterations 

in the stability and/or activity of their target SFs. It is well documented that SFs of the SR 

protein family are frequently phosphorylated by upstream kinases involved in signalling 

cascades such as AKT. The latter is constitutively active in cancer cells, resulting in continuous 

activation of its target SFs including SRSF1 via constitutive phosphorylation. This has marked 

consequences on the target pre-mRNAs and the decisions as to which splice variant will be 

preferred. For example, caspase 9 pre-mRNA is alternatively spliced by SRSF1. Constitutively 

active SRSF1 dysregulates caspase 9 mRNA isoform ratio and hence remarkably influences the 

apoptosis potential of cancer cells (El Marabti and Younis, 2018).   

1.17. Splicing in PC  

Aberrant splicing events have been observed in genes which are involved in prostate cancer 

development. Pro-angiogenic and anti-angiogenic VEGF mRNA variants are produced using 

alternative 3' SS influencing sufficient or insufficient blood supply to tumours and subsequent 

tumour recession or growth, respectively (Munkley et al., 2017). In addition, CD44 pre-mRNA 
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isoform switch has been observed. This is in part regulated by the transcriptional co-regulator 

SND1 which is heavily involved in prostate cancer splicing events, as indicated by a recent 

CRISPR screen study (Cappellari et al., 2014). Finally, TSC2 is a tumour suppressor gene 

expressed in the prostate. The full-length protein reduces cell proliferation. However, an 

alternative promoter is chosen in response to androgens and results in the production of a 

short mRNA isoform which lacks the N-terminal domain and in contrast to its full-length 

counterpart, promotes cell growth and prostate cancer expansion (Munckley et al., 2017).  

AR splicing is the area of focus of this study. A plethora of alternatively spliced AR mRNA 

variants emerges in response to anti-androgen therapy. Alternative splicing in this case is 

exploited by cancer cells to sustain AR signalling despite androgen ablation (Liu et al., 2014).  

Over 20 different splice variants have been detected in prostate cancer cell lines and more 

importantly in prostate cancer clinical specimens including solid and liquid biopsies. However, 

our understanding of how these truncated receptors are generated remains poor.  

Splicing of AR pre-mRNA seems to be more complicated than a single splicing event and this 

stems from the different splicing modes that take place to produce structurally different 

variants. Inclusion of different cryptic exons across the AR mRNA is responsible for the 

emergence of most variants. Selection of alternative polyadenylation sites downstream of 

these cryptic exons results in their inclusion in the mature AR mRNA transcript. Moreover, 

skipping of more than one exons has been observed and gives rise to shorter AR mRNA species 

with clinical relevance (Cao et al., 2016). However, little is known about the splicing 

mechanisms and components that mediate these processes.   

The presence of multiple AR mRNA isoforms raises the question as to whether there is a 

constitutive spliceosome with certain components that regulate AR mRNA splice variant 

generation or whether it is more likely and conceivable that distinct spliceosomes specific to 

individual splice variants are assembled or finally there is possibly some kind of grouping. This 

is only a hypothesis though which remains elusive. 

The number of high-throughput approaches to investigate AR splicing events and identify 

specific AR-V splicers are limited. HSP90 was identified as a candidate AR-V splicing factor 

from an siRNA screen in prostate cancer cells and HSP90 inhibitors such as onalespib were 
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proposed as a therapeutic approach to prevent AR-V7 production in patients (Ferraldeschi et 

al., 2016).  

Candidate-based approaches have been pursued over the past 10 years or so and individual 

candidates have been identified and investigated for their contribution to AR-V mRNA 

generation. The majority of research efforts focus on identifying AR-V7 splicers as this 

particular variant is more prevalent in clinical samples and has been associated with poor 

patient survival and resistance to certain treatments. Nevertheless, there is now growing 

interest in other AR splice variants which are also clinically relevant and they have been 

detected in AR-V7 negative patients.  

Sam68 plays a key role in mediating splicing events in prostate cancer. Recent work by 

Stockley et al. indicated that Sam68 is significantly upregulated in aggressive disease and its 

expression is associated with elevated AR-V7 mRNA expression (Stockley et al., 2015).  

An important insight into AR-V7 splicing was provided by Liu et al. and his colleagues who 

demonstrated that ADT enhances AR transcription rates which in turn provides an optimal 

time window for interactions between the AR pre-mRNA transcript and certain splicing 

factors. The same study identified ASF/SF2 and U2AF65 as direct AR-V7 splicers recruited at 

enhancer sequences at the 3' SS and within CE3 (Liu et al., 2014). 

Finally, SF3B2 and SF3B3 have also been shown by our lab and others to mediate AR splicing, 

not limited to AR-V7, in CRPC relevant cell lines (Chaytor et al., 2019; Kawamura et al., 2019).  

1.18. Therapeutic targeting of splicing  

Targeting core spliceosome components has been the gold standard approach to disrupt early 

spliceosome formation. Several compounds with bacterial origin (i.e. FR901464) were 

developed and used in vivo and in vitro with decent cytotoxicity. However, their poor stability 

has limited their performance and use in larger therapeutic schemes. More robust drug 

design studies were then performed and generated novel compounds with improved 

pharmacokinetic properties, namely Spliceostatin A (SSA), a more effective compound 

derivative of FR901464 (Lee and Abdel-Wahab, 2016).  

SSA is a small molecule inhibitor developed against SF3B, a key multi-subunit component of 

the U2 snRNP. It has demonstrated high potency in cancer cells including the HeLa cell line 
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with remarkable anti-proliferative properties. In fact, SSA treatment of cancer cells in vitro 

caused cell cycle arrest at G2/M at low nM doses by modulating splicing of key cell cycle 

regulators such as Cyclin A2 and Aurora Kinase A. The exact mechanism of action of SSA 

involves blockade of spliceosome assembly by retarding complex B formation. In brief, SSA 

prevents binding of U2 to pre-mRNA and destabilises its interaction with the BPS, resulting in 

failure in complex A to B transition, complex A accumulation and nuclear retention of semi-

processed pre-mRNAs. Importantly, some of these pre-mRNAs can exit the nucleus, be 

translated to aberrant proteins with anti-tumour activity or high cytotoxicity leading 

eventually to cell death (Corrionero et al., 2011; Martinez-Montiel et al., 2018). Interestingly, 

SSA significantly reduced AR-V7 expression in CWR22Rv1 cells highlighting its potential clinical 

relevance in PC (Kawamura et al., 2019).  

Use of antisense short RNA oligonucleotides (ASOs) has comprised an additional approach to 

target splicing and prevent specific splicing events. Mimicking siRNAs, ASOs are designed 

against specific regions in the target pre-mRNA. They act by masking pre-mRNA regions in 

close proximity to splice sites of interest and hence dictate exon inclusion or exclusion into 

mature mRNA transcripts. Likewise, splice switching oligonucleotides (SSOs) directed to cis-

regulatory elements of the target pre-mRNA compete with SFs for binding to these sites 

ultimately abolishing interaction of the latter with their pre-mRNA targets. They promote 

splicing pattern shifts to favour production of splice variants which drive cellular processes 

such as apoptosis. 

FDA approved antisense oligonucleotides have been used with remarkable success for 

treatment of muscular dystrophy disease (Martinez-Montiel et al., 2018). Despite application 

in other disease settings, ASOs/SSOS have not been exploited in cancer therapy yet (Lee and 

Abdel-Wahab, 2016). Nevertheless, the potential of their use to treat cancer is promising and 

of keen interest to oncologists. With regards to application of antisense RNA oligonucleotides 

as an alternative therapeutic strategy to antiandrogens in PC, a recent study of AR splicing in 

CRPC has suggested the use of a morpholino of 20 nucleotides which binds to a 

polyadenylation site at the 3'UTR downstream of AR CE3 and prevents recognition of the site 

by the polyadenylation factor CPSF1, leading to production of the full-length receptor by 

recognition of the consensus polyA signal at the 3' UTR downstream of terminal exon 8 (Van 

Etten et al., 2017). Importantly, targeting of ASOs against regulatory regions proximal to and 
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within CE3 of AR-V7 mRNA significantly supressed AR-V7 mRNA synthesis and led to cell death 

in vitro (Luna Velez et al., 2019).  Finally, SSOs have been used against the prostate-specific 

membrane antigen (PSMA) pre-mRNA to regulate the formation of specific mRNA isoforms in 

LNCaP cells (Williams, 2005).  

ASO/SSO-pre-mRNA hybrids are prone to degradation by endogenous RNases, limiting their 

clinical potential. Efforts have focused on improving the stability of ASOs/SSOs to increase 

resistance to degradation by chemically modifying the oligonucleotides alongside developing 

methods and appropriate carrier molecules for efficient and safe in vivo delivery of ASOs/SSOs 

to target cells (Martinez-Montiel et al., 2018).  

Further insight is required to fully elucidate the mechanisms that regulate splicing in order to 

develop efficient ways to target them for therapeutic purposes. The field is extremely 

promising and a vast amount of information is emerging every day to improve our 

understanding and fill knowledge gaps around pre-mRNA splicing. 
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Chapter 2. Aims and Objectives 

 

Resistance to AR-targeted therapies in PC is a major clinical problem and highlights that AR 

remains a valuable druggable target. Two key mechanisms of treatment resistance include 

the generation of AR mutants and AR splice variants (AR-Vs) that are refractory to anti-

androgens and drive tumour progression, leading invariably to patient death. Our 

understanding of how AR mutants and AR-Vs function is limited due to difficulties in 

distinguishing their discriminate activities from full-length AR. This is in part due to the paucity 

of appropriate preclinical models which would allow us to study each aberrant receptor 

individually. Therefore, this study aimed to: 

▪ Develop a CRISPR pipeline to engineer prostate cancer cell lines which harbour specific 

point mutations in the LBD of the AR gene. 

▪ Generate AR-FL knock-out prostate cancer cell lines to study AR-V function in an AR-

FL-free cellular background. 

▪ Expand the application of CRISPR in the lab in order to study and elucidate AR-V7 

splicing mechanisms, rather than just editing genomic sequences.  

 More specifically, this study focused on: 

▪ Optimising CRISPR donor template knock-in efficiencies to achieve incorporation of 

AR point mutations in the genome of CWR22Rv1 cells. 

▪ Generating an AR-FL knock-out CWR22Rv1 cell line by incorporating a STOP codon in 

AR exon 5 to abolish AR-FL expression and hence distinguish the activity of AR-Vs from 

AR-FL in an unbiased manner to ultimately identify bona fide AR-V regulated 

pathways.  

▪ Pioneering CRISPR by coupling the use of a nuclease deficient Cas9 to downstream 

proteomic approaches such as mass spectrometry in order to identify splicing factors 

that mediate inclusion of CE3 in the mature AR mRNA transcript resulting in AR-V7 

mRNA production. 
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Chapter 3. Materials and Methods 

3.1. Mammalian cell culture - Cell maintenance and passaging  

HEK293T (ATCC® CRL-3216™), PC-3 (ATCC® CRL-1435™) and CWR22Rv1 (ATCC® CRL-2505™) 

cells were obtained from ATCC. The CWR22Rv1-AR-EK cell line is a CRISPR-engineered cell line 

derivative of the parental CWR22Rv1 cell line generated in-house. R1-D567 cells were a kind 

gift from Scott Dehm. Cells were routinely cultured in RPMI 1640 medium (Sigma) 

supplemented with 10% (v/v) foetal bovine serum (FBS) and 2 mM L-glutamine (Sigma) 

(hereafter called full media) and were kept in a humidified incubator (Sanyo) at 37oC and 5% 

CO2 routinely. 

Cell handling was carried out in a class II biosafety cabinet (BioMAT). Cells were passaged 

every 72 hours. Culture media were removed from the culture flask and cells were trypsinised 

in 10% (v/v) trypsin in PBS at 37oC for 3 min following a PBS wash. Cell suspension containing 

trypsin was neutralised with 3 volumes of full media and was spun at 250 x g for 5 min at 

room temperature using a Heraeus Multifuge X1 centrifuge (Thermo Fischer). Resultant 

supernatant was aspirated off and the remaining cell pellet was re-suspended in full media. 

Finally, ~1x106 cells were seeded in 175 cm2 culture flasks (Corning).   

All cell lines were tested routinely (every two months) for mycoplasma contamination using 

the MycoAlert™ Mycoplasma detection kit (Lonza). CWR22Rv1 and CWR22Rv1-AR-EK cells 

were STR profiled/authenticated prior to use using the GenePrint® 10 System (Promega) 

following manufacturer’s instructions. 

3.2. Cell lines 

The R1-D567 cell line is a TALEN-engineered cell line derivative of the R1-AD1 monoclonal 

subline isolated from the CWR-R1 cell line. Genome editing resulted in deletion of AR exons 

5, 6 and 7 to express the clinically-relevant ARv567es (exon skipping) splice variant. 

The CWR22Rv1 cell line harbours a 35 kb tandem duplication of AR exon 3 which results in 

the generation of truncated AR isoforms due to the incorporation of cryptic exons 

downstream of exon 3. Cells also express AR-FL alongside a repertoire of AR-Vs which are 

more abundant than AR-FL at protein level. 
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The CWR22Rv1-AR-EK cell line is a CRISPR-edited cell line derivative of CWR22Rv1 cells 

generated in our lab. Knock-in of a TAA stop codon in AR exon 5 resulted in AR-FL knock-out. 

All nascent AR-Vs are still expressed in this new cell line derivative at comparable levels to the 

parental cell line. 

The PC-3 cell line was established from a bone metastasis Caucasian prostate cancer patient. 

It is an easy-to-transfect, AR negative cell line.  

The HEK293T cell line is a highly transfectable human embryonic kidney cell line derivative of 

HEK293 cells, stably transduced to express the SV40 T-antigen. 

3.3. Compounds 

Enzalutamide is a second-generation anti-androgen currently used as standard therapy in the 

clinic. Enzalutamide was purchased from Selleckchem and was dissolved in neat dimethyl 

sulfoxide (DMSO, Sigma) to make a 30 mM stock solution, which was then aliquoted and 

stored at -80oC for up to six months. Cells were treated with 10 μM for at least 24 hours to 

block AR-FL activity.  

5a-dihydrotestosterone (DHT) is a potent agonistic ligand of AR-FL. DHT was purchased from 

Sigma and was re-suspended in 20% ethanol to make a 10 mM stock solution. It was then 

aliquoted and stored at -80oC. Cells were treated with 10 nM DHT for 24 hours to stimulate 

AR-FL activity. 

Scr7 is a potent inhibitor of ligase IV, a downstream component of the Non-Homologous End-

Joining repair pathway. Scr7 was purchased from Selleckchem and was re-suspended in 

DMSO to make a 30 mM stock solution, which was then aliquoted and stored at -80oC for up 

to six months. Cells were treated with 30 μM for 24 hour or as appropriate to block NHEJ. 

Puromycin is a protein synthesis inhibitor used as an antibiotic in mammalian cell culture. 

Puromycin dihydrochloride was purchased from Sigma and was re-suspended in dH2O to 

make a 10 mg/ml stock solution. Aliquots were stored at -80oC. Puromycin selection was 

performed using a final concentration of 2 μg/ml for at least 3 days. 
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3.4. Western Blotting (WB) 

Cell lysates were derived from direct lysis of cells seeded in a well of a 6-well plate using 120 

μl SDS sample buffer (125 mM Tris-HCl pH 6.8, 5% SDS, 10% glycerol, 10% β-mercaptoethanol 

and 0.01% bromophenol blue), following a wash with pre-warmed PBS. Cell lysates were 

transferred to 1.5 ml Eppendorf tubes and were boiled for 5 min at 100oC prior to loading on 

a 10% polyacrylamide gel casted in-house (Table 1). 5 μl of Spectra Multicolor Broad Range 

Protein Ladder (Thermo Fischer Scientific) were loaded per gel for band size estimation. 

Electrophoresis was carried out in a Mini-PROTEAN® Tetra Cell device/tank (BioRad) filled 

with sufficient volume of 10% resolving buffer (25 mM Tris, 190 mM glycine, 0.1% SDS). Cell 

lysates were resolved at 100 Volts using a BioRad power pack until sufficient band separation 

was achieved. 15% resolving gels were prepared for analysis of low molecular weight proteins 

such as histones (10 – 15 kDa).  

Table 1. Ingredients of a 10% polyacrylamide gel. 

Ingredient Resolving gel (10%) Stacking gel (5%) 

Bis-acrylamide (37%) - Sigma 3.33 ml 1.67 ml 

Buffer A (750 mM Tris-HCl, pH 8.8, 0.2% SDS) 5 ml - 

Buffer B (250 mM Tris-HCl, pH 6.8, 0.2% SDS)  -  5 ml 

Ammonium persulfate (10%) - Sigma 100 µl 100 µl 

TEMED - Sigma 18 µl 12 µl 

dH2O 1.67 ml 3.33 ml 

Total volume 10 ml 10 ml 

 

Following electrophoresis, resolved proteins were transferred onto Hybond ECL nitrocellulose 

membrane (GE Healthcare) using a Mini Trans-Blot Transfer tank (BioRad). Overnight transfer 

at 30 Volts or 1 hour transfer at 100 Volts was carried out in 10% transfer buffer (25 mM Tris, 

pH 8.3, 150 mM glycine, 10% methanol). The membrane was then removed from the transfer 

apparatus and was blocked in 5% non-fat skimmed milk (Marvel)/TBS solution for 1 hour at 

room temperature with agitation. Immunoblotting was carried out/the membrane was 
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probed using the appropriate primary antibody diluted in 5% milk/TBS solution either 

overnight at 4oC on a roller or for 1 hour at RT. Upon incubation the membrane was washed 

(3x) with TBS Tween 20 (TBST) to remove excess of primary antibody and was incubated with 

the appropriate HRP-conjugated secondary antibody (Dako) for 1 hour at room temperature 

on a roller. Finally, the membrane was washed 3 times with TBST and was incubated in ECL 

reagent (GE Healthcare) for ~2 min in the dark. Immunoblots were developed using Fuji 

medical X-ray film (FUJIFILM) and an automated MediPhot 937 developer. Blocking solutions, 

antibody dilutions, incubation conditions and exposure times were optimised for each 

antibody used in this study. Antibody information is outlined in Table 2. 

Table 2. Incubation conditions, working dilutions, exposure times and supplier information 

of antibodies used in WB. 

Antibody Clone Supplier Dilution/ 
Application 

Incubation 
time 

Species 
raised 

in 

AR (N-terminal) 
N-20 

polyclonal 

Santa Cruz 
Biotechnology 
(discontinued) 

1:1000/WB 
Overnight or 

1h @ RT 
Rabbit 

AR (N-terminal) 
441 

monoclonal 
Santa Cruz 

Biotechnology 
1:1000/WB Overnight Mouse 

AR (C-terminal) 
C-19 

polyclonal 

Santa Cruz 
Biotechnology 
(discontinued) 

1:1000/WB Overnight Rabbit 

AR (N-terminal) 
D6F12 

monoclonal Cell Signaling 2 µg/ChIP Overnight Rabbit 

AR (N-terminal) 
G122-434 

monoclonal BD Biosciences 1:1000/WB Overnight Mouse 

AR (N-terminal) 
Proprietary 
polyclonal 

Abcam 1:1000/WB Overnight Rabbit 

AR-V7 
EPR15656 

monoclonal Abcam 1:1000/WB Overnight Rabbit 

Histone H2B 
ab1790 

polyclonal 
Abcam 1:5000/WB 1h @ RT Rabbit 

Cas9 7A9-3A3 
monoclonal 

Abcam 1:1000/WB 1h @ RT Mouse 

RNA pol II (pSer-2) NA Abcam 2 µg/ChIP Overnight Rabbit 

FLAG 
M2 

monoclonal 
Sigma 1:1000/WB Overnight Mouse 
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3.5. Agarose gel DNA electrophoresis 

1-2% agarose gels were prepared in 0.5x TBE buffer (45 mM Tris-borate, 1 mM EDTA pH 8.0) 

to separate DNA fragments resulting from PCR amplification, restriction enzyme digestion and 

chromatin sonication. 2 µl of a 100 bp and/or a 10 kb Hyperladder (Bioline) were loaded per 

gel for band size estimation. Tested DNA samples were diluted in 5x loading buffer (Bioline) 

prior to loading and were finally allowed to run at 70 Volts for ~1 hour or until sufficient 

separation was observed. Visualisation of bands was carried out using Gel Red nucleic acid 

stain (Biotium) at 1:10,000 dilution and a G:Box Chemi Gel Doc system (Syngene).     

3.6. Immunofluorescence  

4x103 cells were seeded in each chamber of a chamber slide (Thermo Fischer Scientific). Cells 

were allowed to settle/adhere for 24 hours before being forward transfected with plasmid 

vectors (100-200 ng) or AR targeting siRNAs (25 nM). 48 hours post-transfection, media were 

removed from each chamber, cells were washed with PBS and fixed with 4% (v/v) 

paraformaldehyde (Alfa Aesar) for 30 min in the dark. Cells were then washed twice with PBS 

and were permeabilised in 0.1% Triton X-100/PBS for 15 min. Fresh 4% (w/v) BSA (Sigma) 

solution in PBS was used to block potential non-specific interactions. Following an 1 hour 

incubation in BSA solution at RT, cells were incubated with primary antibody at 1:1000 

dilution in 4% BSA solution at 4oC overnight. The following day, cells were washed with PBS 

(3 washes in total) and were incubated with the appropriate AlexaFluor® secondary antibody 

(Life Technologies) at 1:1000 dilution for 1 hour at RT in the dark. Finally, secondary antibody 

solution was removed, cells were washed 3 times with PBS and stained with Vectrashield 

ATM 
D2E2 

monoclonal 
Cell Signaling 1:1000/WB Overnight Rabbit 

pATM (S1981) EP1890 
monoclonal 

Abcam 1:2000/WB Overnight Rabbit 

β-actin AC-15 
monoclonal 

Abcam 1:10000/WB 30 min @ 
RT 

Mouse 

α-tubulin B-5-1-2 
monoclonal 

Sigma 1:4000/WB 1h @ RT Mouse 
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mounting medium with DAPI (Vector Laboratories) prior to imaging using a Nikon TE2000 

fluorescent microscope. 

3.7. Gene expression analysis 

3.7.1. RNA extraction  

RNA extraction was carried out using Trizol reagent (Invitrogen). In brief, cells were washed 

with PBS and directly lysed in 500 μl Trizol/well of a 6-well plate. Cell lysates were transferred 

to 1.5 ml Eppendorf tubes and were vigorously mixed with 100 μl chloroform (Sigma). 

Samples were then allowed to separate for 3 min at RT and were subsequently spun at 12,000 

x g at 4oC for 15 min using a standard benchtop centrifuge. Upon centrifugation, the aqueous 

phase/layer was transferred to a new Eppendorf tube and was mixed with one volume of 

isopropanol. Samples were then stored at -20oC overnight to allow for efficient RNA 

precipitation to occur. The following day, samples were spun at 12,000 x g for 10 minutes at 

4oC. Resultant RNA pellets were washed twice with 70% ethanol before being air-dried for 15 

min and finally re-suspended in 30 μl UltraPureTM RNase free dH2O (Life Technologies). RNA 

purity and concentration were measured using NanoDrop 2000 (Thermo Fischer) before RNA 

samples were stored at -80oC. 

3.7.2. Reverse transcription (RT) 

cDNA synthesis was performed using the M-MLV Reverse Transcription kit (Promega) 

according to manufacturer’s instructions. Briefly, 1 µg of RNA was subject to cDNA 

conversion. The appropriate volume of RNA was diluted in RNase free dH2O to a final volume 

of 12.7 µl. RNA samples were incubated at 65oC for 5 min to eliminate potential secondary 

structures and were immediately placed on ice upon incubation. In a separate tube, an RT mix 

was prepared as shown in Table 3. 7.3 µl of RT mix were added to each RNA sample (final 

reaction volume of 20 µl). cDNA synthesis was carried out at 37oC for 1 hour and was followed 

by an RTase inactivation step at 100oC for 5 min. Resultant cDNA was diluted 1:20 in RNase 

free dH2O prior to use in qPCR. cDNA samples were stored at -20oC. 

 

Table 3. Reverse transcription cocktail ingredients and volumes used per reaction. 
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Reagent Volume/reaction (µl) 

M-MLV Reaction buffer (5x) 4 

M-MLV Reverse Transcriptase (RTase) 0.3 

dNTPs (4 mM each) 2 

oligodT (100 μg/ml) 1 

Total volume 20 

 

3.7.3. Quantitative real-time PCR (qPCR) 

Gene expression analysis was performed by qPCR using the Platinum SYBR Green qPCR 

SuperMix (Invitrogen) following manufacturer’s instructions. A qPCR mastermix was prepared 

for each target/gene of interest as shown in Table 4. Each reaction was performed in triplicate 

and was loaded onto a 384-well plate (Thermo Fischer). Plates were then sealed with a 

MicroAmp optical adhesive film (Thermo Fisher) and were briefly spun using a mini plate 

spinner (MPS 1000, Labnet) prior to qPCR analysis. The following thermal profile was 

performed on a QuantStudio 7 Flex Real-Time PCR platform (Applied Biosystems): 50oC for 2 

min (UNG activation), 95oC for 10 min (initial denaturation), 95oC for 15 sec and 60oC for 1 

min (40 cycles) followed by melt curve analysis to assess non-specific amplification. Raw data 

was analysed using the QuantStudio Real-Time PCR software (Applied Biosystems). The 

standard curve quantification method was performed. Standard curve samples were 

prepared by serial dilutions of the siSCR or DMSO treated cDNA sample depending on the 

experimental conditions. All quantities were hence calculated relative to the quantity 

assigned to the standard curve and were normalised to HPRT1. Primer sequences are shown 

in Table 5.  

Table 4. qPCR mastermix ingredients and volumes used per well/reaction. 

Ingredient Volume/well (µl) 

SYBR Green qPCR SuperMix (5x) 5 

Primer mix (F/R: 25 ng/µl each) 0.8 
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dH2O 1.2 

cDNA sample (1:20) 3 

Total volume 10 

 

Table 5. Sequences of primers used in qPCR. 

Oligo Name Forward Sequence (5’→3’) Reverse Sequence (5’→3’) 

HPRT1 mRNA  TTGCTTTCCTTGGTCAGGCA AGCTTGCGACCTTGACCATCT 

UBE2C mRNA  TGCCCTGTATGATGTCAGGA GGGACTATCAATGTTGGGTTCT 

PSA mRNA  GCAGCATTGAACCAGAGGAG AGAACTGGGGAGGCTTGAG 

CCNA2 mRNA  GAAGACGAGACGGGTTGCA   AGGAGGAACGGTGACATGCT 

KLK2 F mRNA  AGCATCGAACCAGAGGAGTTCT TGGAGGCTCACACACCTGAAGA 

ATAD2 mRNA  TGGCACCAGCTGTCATTCAT AGCTTCACGAATCACCTGGG 

FKBP5 mRNA  CCCCCTATTTTAATCGGAGTAC  TTTTGAAGAGCACAGAACACCCT   

TMPRSS2 mRNA  CTGCTGGATTTCCGGGTG TTCTGAGGTCTTCCCTTTCTCCT 

FL-AR mRNA  AACAGAAGTACCTGTGCGCC TTCAGATTACCAAGTTTCTTCAG 

AR exon 3 mRNA  AACAGAAGTACCTGTGCGCC - 

AR-V1 mRNA  - TGAGACTCCAAACACCCTCA 

AR-V3 mRNA  AGACGAAGCTTCTGGGTGT CATGCAGTATGGCTTGGG 

AR-V5 mRNA  - CAAAGAATTGTGGGTAGGAAGC 

AR-V7 mRNA  - TCAGGGTCTGGTCATTTTGA 

AR-V9 mRNA  - GCAAATGTCTCCAAAAAGCAGC 

DMC1 mRNA  AGGTGCCAATGGTTATACCG TTGAAGACACCTGGCTCCTC 

XRCC2 mRNA  TCACCTGTGCATGGTGATATT TTCCAGGCCACCTTCTGATT 
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RMI2 mRNA  GGCAGGGTAGTGATGGCGGAC  CCTGAACCACTCCCATCACCAT 

BRCA1 mRNA  CTGAAGACTGCTCAGGGCTATC AGGGTAGCTGTTAGAAGGCTGG 

RAD51AP1 mRNA  CTTCTGGAAGGCAGTGATGGTG AGAGAAGTCTTCGTCATTATCCTC 

RAD54L mRNA  CCCTTTCTTCCATCACCTCGCT GCCTTAGAGCTGTAACCAGGAG 

CHEK1 mRNA  GTGTCAGAGTCTCCCAGTGGAT GTTCTGGCTGAGAACTGGAGTAC 

EXO1 mRNA  TCGGATCTCCTAGCTTTTGGCTG AGCTGTCTGCACATTCCTAGCC 

NBN1 mRNA  TCTGTCAGGACGGCAGGAAAGA CACCTCCAAAGACAACTGCGGA 

RAD54B mRNA  GGTGTTGTCCAAGCTCTTAGCG AGCATATCCATGACGCTTACATAC 

RAD51C mRNA  GTGAAACCCTCCGAGCTTAGCA CCTGCTCAAGAAGTTCCAGTGC 

ABCF2 mRNA  GAGGTTTCACTGGGAGCAAGATC CTGTAGCGTCTTCTCCTTGCTC 

CLSPN mRNA  AAGGAGCGAATTGAACGAG TCTGCAGTGCTTTGGCTG 

PCNA mRNA  GCCATATTGGAGATGCTGT TGAGTGTCACCGTTGAAGA 

BRCA2 mRNA  GGCTTCAAAAAGCACTCCAGATG GGATTCTGTATCTCTTGACGTTCC 

RAD21 mRNA  TCCCCCAGAGGAGCCTCCAA AGCAAGAGCTCGCTGGAGACCA 

Ku70 mRNA TGGCTGTGGTGTTCTATGGT TGAGTAGTCAGATCCGTGGC 

Ku80 mRNA ATCAGAACATCACAGTGCACAG AATCACATCCATGCTCACGA 

DNA-PKcs mRNA TGTCCGGAAGTCACTCAACA ACTTAATAAGAAGGTCCAGGGCT 

 

3.8. Plasmids 

The Cas9-encoding plasmid vectors px459 V2.0 (plasmid #62988), lentiCRISPR V2.0 (plasmid 

#52961), 3xFLAG-dCas9/pCMV-7.1 (plasmid #47048) and pCS2+Cas9-mSA (plasmid #103882) 

were purchased from Addgene. The pLV-U6g-EPCG vector was purchased from Sigma. The 

lentiCRISPR-iCer vector for gRNA expression was a kind gift from Prof. Olaf Heidenreich. The 
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px459/Cas9-mSA fusion vector was generated in-house (cloning strategy outlined in section 

4.3.9).  

3.9. Bacterial transformation 

Competent 5-alpha E. coli cells (NEB) were thawed on ice. 25 μl of cell suspension were gently 

mixed with 10-100 ng of plasmid and cells were placed on ice for 30 min prior to a heat-shock 

step at 42oC for 30 sec on a heat block. Cells were then returned on ice for 2 min before adding 

500 μl of pre-warmed SOC outgrowth medium (NEB). Transformed cells were incubated for 1 

hour at 37oC at 220 rpm, were then spread onto LB agar plates which contained the 

appropriate antibiotic (either 100 μg/ml ampicillin or 50 μg/ml kanamycin depending on the 

vector backbone) and were finally allowed to grow at 37oC overnight (~16h). The following 

day, single clones were transferred to 5 ml antibiotic-containing LB (starter culture) and were 

cultured at 37oC at 220 rpm for ~ 5 hours before being transferred to conical flasks containing 

200 ml LB supplemented with the appropriate antibiotic. Bacteria were cultured for an extra 

16 hours at 37oC at 220 rpm and were finally pelleted by centrifugation at 2000 x g for 5 min 

prior to plasmid extraction. Lentiviral vectors were introduced into One Shot® Stbl3™ 

Chemically Competent E. coli cells (Invitrogen) as described above. When bacterial stubs were 

purchased, individual clones were isolated by streaking bacteria from stubs onto LB agar 

plates. Overnight incubation (up to 16 hours) at 37oC was performed followed by cultivation 

in LB as described above.  

3.10. Plasmid extraction 

Highly concentrated plasmids were extracted/prepped/purified from bacterial pellets using 

the PureLink HiPure Plasmid Maxiprep Kit (Thermo Fischer) according to manufacturer’s 

instructions. In brief, cell pellets were re-suspended in 10 ml R3 buffer with RNase A and 

subsequently lysed in 10 ml L7 buffer for 5 min at RT. Following lysis, chromosomal DNA and 

cell debris were precipitated using 10 ml N3 buffer. The cell lysate was then loaded onto a 

HiPure spin column and was allowed to flow through the column by gravity. Column-captured 

plasmid DNA was then washed twice with W8 wash buffer and was eluted in 5 ml E4 buffer. 

Plasmid DNA was then precipitated by adding 3.5 ml isopropanol and subsequently spun at 

12,000 x g for 30 min at 4oC. The resulting pellet was washed with 70% ethanol, air-dried for 
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~10 min and re-suspended in 500 µl DNase free dH2O. Plasmid concentration and purity was 

measured using Nanodrop 2000. Plasmid miniprep was performed using the PureLink™ 

HiPure Plasmid Miniprep Kit (Thermo Fischer) in a similar manner to the counterpart 

maxiprep kit. Volumes were adjusted to fit the HiPure miniprep spin column. 

3.11. Plasmid transfections 

Plasmid vectors were transfected into 2.5x105 cells seeded into a well of a 6-well plate 24 

hours before transfection. Transfections were performed using 1-6 µg of plasmid vector and 

TransIT®-LT1 transfection reagent (Mirus) at a 1:3 ratio. Transfection mixes were prepared in 

100 µl pre-warmed basal RMPI 1640 medium and were incubated for 30 min at RT before 

being added drop-by-drop to pre-plated cells (forward transfection) in the appropriate well.   

3.12. siRNA transfections 

All siRNA oligos were ordered from Sigma in lyophilised form and were re-suspended in sterile 

RNase/DNase free dH2O to a final concentration of 50 µM before being aliquoted and stored 

at -80oC. 2.5x105 cells grown in phenol red free steroid depleted RPMI 1640 medium were 

either reverse or forward transfected with 25 nM siRNA using Lipofectamine® RNAiMax 

transfection reagent (Thermo Fischer) at a 1:2 ratio. Transfection mixes were prepared in 100 

µl pre-warmed basal RPMI 1640 medium and were incubated at RT for 30 min before being 

added drop-by-drop to the appropriate well. See siRNA sequences in Table 6. 

Table 6. Control and AR-targeting siRNA sequences. 

Oligo  Sequence (5'→3') 

siScr UUCUCCGAACGUGUCACGU 

siAR-V GUAGUUGUGAGUAUCAUGA 

siARexon1 CAAGGGAGGUUACACCAAA 

siARexon4 CCAUCUUUCUGAAUGUCCU 

siARexon7 GGAACUCGAUCGUAUCAUU 
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3.13. Immunoprecipitation (IP) 

2x106 cells were plated in 90 mm dishes. Cells were harvested/lysed in 1 ml IP lysis buffer (50 

mM Tris, pH 7.5, 150 mM NaCl, 0.2 mM Na3VO4, 0.5% NP-40, 1 mM phenylmethylsulfonyl 

fluoride, 1 mM dithiothreitol, 1 cOmplete™ Mini EDTA-free Protease Inhibitor Cocktail tablet 

(Roche) and samples were incubated for 30 min on ice with brief vortexing every 10 min. 

Lysates were spun at 12,000 x g for 5 min at 4oC to remove cell debris and supernatants were 

pre-cleared with 20 µl Protein G-Sepharose (PGS) beads (GE Healthcare) for 2 hours at 4oC 

with rotation to prevent non-specific interactions. PGS beads were pre-washed 3 times in IP 

lysis buffer prior to use. Following pre-clearing, PGS beads were removed by centrifugation at 

12,000 x g for 5 min at 4oC. Resulting supernatants were equally split in two; for antibody and 

control IgG IPs. 1-2 µg of the appropriate antibody were added to each sample and binding 

was allowed to occur at 4oC overnight with rotation. The following day, resulting bead 

conjugates were spun at 12,000 x g for 5 min at 4oC and were washed twice with Wash buffer 

A (PBS, 0.2% Triton X-100, 350 mM NaCl) and once with Wash buffer B (PBS, 0.2% Triton X-

100) before being re-suspended in SDS sample buffer and finally boiled at 100oC for 5 min 

prior to gel loading for WB analysis as described in section 1.4.  

3.14. Chromatin Immunoprecipitation (ChIP) 

5x106 cells were plated in 150 mm dishes (Corning) in phenol-red free steroid-depleted RPMI 

1640 medium and were allowed to grow for 24 hours prior to siRNA or plasmid transfections. 

The Schmidt et al. protocol was followed with the following adjustments/amendments: 

3.14.1. Fixation 

48 hours post-transfection cells were fixed with 1% formaldehyde (Sigma) for 7 min at RT with 

occasional shaking. Formaldehyde was then quenched with 125 mM Glycine (Fischer) and 

subsequent incubation for 5 min at RT with occasional shaking. Media were aspirated off, cells 

were washed twice with 10 ml ice cold PBS, scrapped off the dish and finally transferred to 

pre-chilled 15 ml falcon tubes. Cells were then spun at 2000 x g for 5 min at 4oC. Supernatants 

were removed, resulting cell pellets were snap frozen in liquid nitrogen and stored at -80oC 

until being used in downstream steps. 
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3.14.2. Cell lysis and chromatin fractionation 

Cell fractionation was carried out by re-suspending the cell pellets in 10 ml LB1 (50 mM HEPES-

KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP40, 0.25% Triton X-100) and 

subsequent incubation on ice for 10 min with shaking. Resulting lysates were spun at 2000 x 

g for 5 min at 4oC. Supernatant was removed, pellets were re-suspended in 10 ml LB2 (10 mM 

Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA) and resulting lysates were 

incubated on ice for 5 min with shaking. Upon centrifugation at 2000 x g for 5 min at 4oC, 

resulting nuclei were re-suspended in 500 µl LB3 (100 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 0.5% N-lauroylsarcosine) to extract 

chromatin. Chromatin was sheered down to ~100-200 bp fragments using a Bioruptor® 

sonication device (Diagenode) and performing 2 x 15 min cycles (30 sec on/off intervals) on 

High setting. Samples were spun at 12,000 x g for 5 min at 4oC to remove cell debris. 

Supernatants (chromatin fraction) were transferred to 1.5 ml Eppendorf tubes and chromatin 

concentration was measured using NanoDrop 2000. 

3.14.3. Chromatin Immunoprecipitation 

40 µl of Dynabeads Protein A (Invitrogen) per IP were aliquoted into a 1.5 ml Eppendorf tube. 

Dynabeads were washed twice with syringe filtered ice cold 0.5% (w/v) BSA/PBS solution. 2 

µg of the appropriate antibody were then added to Dynabeads previously re-suspended in 

700 µl 0.5% BSA/PBS solution and antibody-Dynabeads conjugation was allowed to occur for 

at least 6 hours at 4oC with rotation. Conjugates were then separated from the solution using 

a magnetic rack (Life Technologies). 70 µg of sonicated chromatin were diluted in 700 µl LB3 

containing 1% Triton X-100. 70 µl of each chromatin sample were aliquoted and stored at -

80oC to be used as input samples. Beads were finally re-suspended in 630 µl of the remaining 

chromatin solution and IP was carried out overnight at 4oC with rotation. 

3.14.4. Elution and reverse cross-linking 

Following overnight incubation, resulting complexes were thoroughly washed with RIPA 

buffer (50 mM HEPES-KOH pH 7.5, 500 mM LiCl, 1 mM EDTA, 1% NP40, 0.7% Na-deoxycholate) 

at 4oC, re-suspended in ice cold TBS and spun at 3000 x g for 5 min at 4oC. TBS was removed 

using a magnetic rack to capture the beads and the latter were re-suspended in 200 µl ChIP 

elution buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS). Input samples, prepared in the 
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previous step were thawed and also diluted to 200 µl in ChIP elution buffer. All samples were 

incubated at 65oC overnight with mixing by pipetting every 5 min for the first 15 min. 

Following incubation, beads were removed using a magnetic rack and samples were diluted 

in 200 μl TE buffer (10 mM Tris, pH 8.0, 0.1 mM EDTA). RNase A (Thermo Fischer) treatment 

for 30 min at 37oC was followed by Proteinase K (Qiagen) treatment at 65oC for 2 hours. 

3.14.5. Chromatin extraction 

Eluted chromatin was extracted using the GenElute™ Mammalian Genomic DNA Miniprep Kit 

(Sigma) following manufacturer’s instructions. Briefly, samples were diluted in one volume of 

Lysis Solution C followed by 200 µl absolute ethanol, vortexed to homogenize, loaded on a 

GenElute spin column, which was previously equilibrated with 500 µl Column preparation 

Solution and spun at 8,000 x g for 1 min. Column-captured/bound chromatin was then 

washed twice with 500 µl Wash Solution and centrifuged at full speed for 5 min to remove 

remaining ethanol. Chromatin was finally eluted in 130 µl RNase/DNase free dH2O and was 

used in qPCR to assess recruitment of immunoprecipitated proteins to specific chromatin 

regions. ChIP primer sequences are outlined in Table 7. 

Table 7. Primers used in qPCR to amplify chromatin regions of interest following ChIP. 

 

Oligo Name Forward Sequence (5’→3’) Reverse Sequence (5’→3’) 

PSA Enh (ChIP) TGGGACAACTTGCAAACCTG CCAGAGTAGGTCTGTTTTCAATCCA 

PSA Prom (ChIP) CCTAGATGAAGTCTCCATTGAGCTACA GGGAGGGAGAGCTAGCACTTG 

CCNA2 (ChIP) TTAGTGAGCTGTCCAGTGACTCAAT CCCATGTATTAAAGTAGCTTCTGTAAACA 

KLK2 Prom (ChIP) ACCCCTGTTGCTGTTCATCCTG CCGCCCTTGCCCTGTTGG 

TMPRSS2 Enh 

(ChIP) 

TGGTCCTGGATGATAAAAAAAGTT GACATACGCCCCACAACAGA 

UBE2C Enh (ChIP) TGCCTCTGAGTAGGAACAGGTAAGT TGCTTTTTCCATCATGGCAG 
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3.15. Cell proliferation assays 

3.15.1. Sulforhodamine B (SRB) assay 

4x103 cells per well were seeded into 96-well plates (Corning). Cells were allowed to 

settle/adhere for 24 hours before being transfected with 25 nM of the appropriate siRNA. 

Two rounds of siRNA transfection were carried out post-seeding; first round at t=24 hours - 

second round at t=72 hours. At end-point, cells were fixed with ice cold trichloroacetic acid 

(TCA) to a final concentration of 10% (v/v) for 1 hour at 4oC. Upon fixation, medium was 

aspirated off and cells were washed with tap H2O and left to air-dry. Cells were then stained 

with 0.4% (v/v) SRB solution made up in 1% (v/v) glacial acetic acid for 30 min. Once stained, 

excess SRB was washed off by submerging the plates 5-6 times in 1% glacial acetic acid and 

were left to air-dry. Finally, bound SRB was dissolved in 100 µl of 10 mM Tris pH 10.8 for 15 

min with shaking. Absorbance was measured at 570 nm using a plate reader (BioRad).  

3.15.2. Colony formation assay 

Cells were transiently transfected with either control or AR-targeting siRNAs for 48 hour (as 

described in section X) prior to re-seeding at densities of 500 and 1000 cells/well in 6-well 

plates (Corning) for two weeks. At end-point, media were aspirated off, colonies were washed 

with PBS, fixed with 10% neutral buffered formalin solution (Sigma) for 30 min at RT, washed 

again with PBS and finally stained using 0.01% (w/v) crystal violet for 30 min before being 

counted manually. 
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Chapter 4. CRISPR knock-in pipeline for novel PC cell line development 

4.1. Introduction 

CRISPR is a rapidly evolving technology which is currently being utilised by a significantly 

increasing number of research groups around the globe to generate appropriate models to 

study inherited human diseases. The generation of preclinical mouse or cell line models which 

harbour disease-specific CRISPR-induced genomic alterations is currently of high interest and 

public demand. It offers researchers the opportunity to study the background of a certain 

human disease in more biologically relevant models to eventually improve understanding of 

human disease and allow the development of more efficient gene therapy strategies (Rossidis 

et al., 2018; Villiger et al., 2018). In addition, the technology is easy to design and apply 

compared to previous editing techniques, such as TALEN and zinc-finger approaches; shows 

high accuracy and is extremely cost-effective, making it accessible to many research groups 

(Sander and Joung, 2014).   

Gene knock-out studies allow us to interrogate the function of the impacted genes and 

subsequently explore interaction networks and signalling pathways which were previously 

unknown or we had limited knowledge about (Ihry et al., 2019). In particular, CRISPR genome-

wide screens are currently extremely popular across a host of different disease settings which 

primarily aim to identify and characterise disease drivers and aetiology (Fei et al., 2017). 

A number of different genetic disorders are caused by a single base substitution in the DNA 

sequence of an individual. Correction of these aberrant nucleotide switches using CRISPR 

editing could result in the reversal of the pathologic phenotype back to wild-type, restore 

gene function and potentially allow cure of the genetic disease leading to a real breakthrough 

in the field of biomedicine. Gene therapy is hence much more appealing now and 

accumulating efforts are being made to correct genes responsible for life-threatening 

disorders (Reinhardt et al., 2013). For instance, sickle cell anaemia is a typical example of a 

disorder caused by a point mutation (A to T) in the gene which encodes β-globin in adults. 

Correction of the point mutation back to the wild-type counterpart in the stem cells of the 

patient could permanently ''fix'' the mutated gene and effect a long-term cure of such a 

common haematological disorder (Liuhong Cai et al., 2018).  
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Duchenne muscular dystrophy is one more example of a life-threatening genetic disease 

which could be tackled by CRISPR editing. A deletion caused by aberrant exon skipping leads 

to loss of dystrophin, the protein responsible for muscle integrity and function in vertebrates. 

Scientists have attempted to correct the structural aberration of the gene, which encodes 

dystrophin, by introducing the exons which have been skipped and restore expression of 

dystrophin in mouse models, stem cells and cell line models. Preclinical models show 

promising results so far and potentiate the clinical use of CRISPR in humans (Long et al., 2018).  

Such examples highlight the massive potential of CRISPR engineering in life sciences while 

paving the way for more pioneer applications to treat human disease. 

CRISPR knock-in strategies have been performed in the above examples. CRISPR knock-in 

relies on the supply of an exogenous DNA sequence, known as donor template which 

encompasses the desired wild-type nucleotide for correcting point mutations or DNA 

fragment for correcting larger DNA lesions. Upon DNA cleavage by Cas9, repair mechanisms 

are triggered to fix the Cas9 induced DSB. In the presence of a donor template which shares 

homology with the targeted gene sequence, HDR mediates incorporation of the homologous 

DNA fragment in the host genome, allowing permanent and inherited genetic changes. This 

process is technically challenging as it occurs infrequently depending on factors such as cell 

type, prevalence of the alternative DNA repair mechanism NHEJ and transfection efficiency 

of the host cell line (Paquet et al., 2016). 

The technology has evolved rapidly since its emergence and first application. Multiple 

different approaches have been developed to improve CRISPR knock-in efficiencies to 

ultimately introduce and aid study or permanently correct pathogenic mutations. In 

particular, efforts to increase the rate of HDR to enable insertion of the desired DNA template 

is of major importance as this remains a major limitation to the editing process; with steady-

state HDR efficiencies ranging from 1-4% (Liu et al., 2019). Normally a couple of thousand 

clones (!) would be screened manually in order to find a few which will contain the desired 

modification (Merkle et al., 2015). NHEJ is the most prominent repair mechanism which is 

activated upon DSB. It is error-prone and generates imprecise edits. It finally competes and 

normally occurs a lot more frequently than HDR as it requires less energy, hence limiting 

knock-in rates. NHEJ often occurs simultaneously with HDR and generates gene knock-outs 

by introducing indels, frame shifts, premature stop codons to disrupt gene function which is 
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the basis of CRISPR knockout screening. (Merkle et al., 2015; Paquet et al., 2016). Various 

approaches have been suggested to prevent NHEJ mediated DNA repair. Pharmacological 

inhibition of NHEJ has been attempted by targeting different components of the pathway, 

such as DNA-PK and ligase IV, and an overall increase in HDR rate is claimed by the groups 

which conducted the studies (Maruyama et al., 2015; Robert et al., 2015). On the contrary, 

overexpression of key components of the HDR machinery, such as BRCA1, may shift the 

equilibrium of DNA repair towards the precise repair pathway of homologous recombination 

at the expense of NHEJ (Pinder et al., 2015). Furthermore, the rate of HDR varies significantly 

depending on the phase of the cell cycle; it is more prominent in S and G2 phases. This 

observation was exploited by Lin et al. who utilised a cocktail of cell cycle modulators to 

synchronise the cells at G2 phase and seemed to dramatically increase the HDR efficiency by 

almost 50% (Lin et al., 2014).  

A plethora of different designs have been attempted to date and have focused on improving 

donor template properties. Essentially, symmetry and polarity of the template seem to affect 

knock-in rate (Paix et al., 2017). More specifically, it has been shown that sense ssODNs 

burying the desired mutation in the centre of the sequence (symmetric ssODN) are 

incorporated more efficiently in the host genome than their antisense, assymetric 

counterparts. Additionally, it was believed that integration rates of the repair template are 

very much dependent on size. Studies have shown that shorter donor templates are 

integrated easier than longer ones (Paix et al., 2017). In contrast to this notion, knock-in 

experiments have been performed with success when either longer (up to kb) or shorter DNA 

fragments were used as donor templates (Ruan et al., 2015). However, most groups now 

utilise single stranded oligos (ssODNs) of around 150 bp with homology arms of up to 60 bp, 

since use of ssODNs with longer homology arms (80-90 bp) was associated with a drop in 

knock-in rates (Okamoto et al., 2019). 

It has also been suggested that the editing complex, consisting of Cas9 and gRNA, improves 

overall editing efficiencies when it is provided to the cells as a purified ribonucleoprotein 

(RNP) complex (Kim et al., 2014; Liang et al., 2015). Importantly, direct comparison between 

Cas9 plasmid-derived expression and Cas9 RNP indicated superiority of the latter in knock-in 

rates for precise gene editing (Okamoto et al., 2019). However, this approach does not allow 

researchers to select the potentially edited cells since it does not encompass any antibiotic or 
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fluorescent selection marker which are frequently contained in Cas9-expressing mammalian 

plasmid vectors, limiting their use in cases that cell transfection efficiency is low.  

One of the limiting factors when one performs knock-in experiments is the availability of the 

ssODN at the site of the Cas9 induced DSB. A recent approach relies on the high affinity 

between streptavidin and biotin. More specifically, covalent tagging of Cas9 with monomeric 

Streptavidin (mSA) and biotinylation of the ssODN enables strong coupling of Streptavidin 

with biotin bringing the ssODN in close proximity to the DSB to increase the concentration of 

the ssODN at the site of the DSB (Ma et al., 2017). This mechanism enhances the rate of ssODN 

knock-in to the target region by up to 90% and is gaining more attention by the scientific 

community as notably high knock-in efficiencies have been reported when the approach was 

applied in mice and mammalian cancer cells (Roche et al., 2018)  

Despite its overwhelming use and numerous advantages it may show, CRISPR editing has its 

drawbacks too. Off-target effects are one of the major issues to consider when a CRISPR 

project is designed (Zhang et al., 2015). Rational design of the gRNA sequences is required to 

minimise and/or eliminate potential Cas9/gRNA off-targeting to partially homologous 

genomic regions (Doench et al., 2016). Numerous bioinformatics tools have been developed 

to in silico predict off-target sites and facilitate on-target gRNA design. However, not all off-

target sites are predicted. There is a significant number of experimental studies which focus 

on interrogating the specificity of Cas9 and the spectrum of its off-target activity in different 

experimental set-ups, and highlight the factors that dictate specificity (outlined below).  

Imperfect base complementarity can be tolerated by Cas9. The number of mismatches and 

the position of them across the 20mer gRNA sequence are critical factors which determine 

specificity. Genome-wide studies have consistently shown that single base mismatches are 

being bypassed by Cas9 leading to off-targeting. Two mismatches are still well-tolerated but 

reduce cleavage efficiency as opposed to three mismatches (and beyond) which eliminate off-

target cleavage in most cases. (Multiple) mismatches - either dispersed or attached to one 

another - have a more dramatic impact on complementarity when they are located in the 

PAM proximal region (12 nucleotide region upstream of the PAM) (Anderson et al., 2015; Hsu 

et al., 2013). Cas9 still binds to off-target sites, however it does not exert its function since 

extensive pairing is required for Cas9 to acquire the appropriate 3D conformation to dock 

onto target DNA and cleave it (Sternberg et al., 2015). 
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As mentioned above, CRISPR technology has been used for the generation of cell line models 

which carry disease-associated mutations, not just CRISPR corrected genes for gene therapy 

studies. In CRPC, AR remains active as a result of the acquired mutations in its LBD following 

ADT. AR mutants are not responsive to next-generation anti-androgens and therefore 

contribute to tumour progression to more advanced and ultimately lethal forms (Brooke and 

Bevan, 2009, Lu et al., 2015). In particular, AR inhibition by bicalutamide can be overcome by 

the acquisition of a gain-of-function mutation in position 741 in the LBD of AR where 

tryptophan is substituted to either leucine or cysteine. 

To date, analysis of CRPC-relevant AR mutants has been largely restricted to overexpression 

studies in AR null cell lines (Brooke and Bevan, 2009) and thus our knowledge of the 

physiological function of these proteins is limited. Previously, the host lab have developed a 

replacement strategy that enables stable, ectopic expression of specific AR mutants in the 

background of LNCaP cells depleted of endogenous ART877A to examine the activity of AR 

mutants in a more physiologically-relevant model, as LNCaP cells are dependent upon the AR 

signalling cascade for growth (O’Neill et al., 2015). Although this approach has been useful in 

demonstrating distinct functionality of the studied AR mutants, such as the W741L mutant, it 

presented two major drawbacks: (i) efficiency of endogenous ART877A depletion by siRNA 

knockdown was variable between experiments; and (ii) reduction of cellular ART877A was not 

100% efficient and hence interference by endogenous receptor was likely to impact on the 

overarching findings of the system. Therefore, a CRISPR-based genome editing approach was 

seen as the most appropriate strategy to revert the T877A mutation to wild-type and generate 

the clinically relevant ARW741L mutant in LNCaP cells. This genome editing approach will enable 

unbiased means for assessing global AR mutant regulation in order to identify genes that 

show discriminate upregulation in response to anti-androgens, such as bicalutamide and 

abiraterone, respectively.  

The CWR22Rv1 cell line will also be engineered to generate and study the AR W741L mutant. 

Of note, CWR22Rv1 cells have a single copy of the AR gene which harbours a duplication of 

exon 3 whilst the H874Y mutant is expressed endogenously. The contribution of these 

mutations to CRPC will be independently studied, upon reversal of the endogenous H874Y to 

wild-type, and in concert with the AR splice variants that are endogenously expressed in the 

CWR22Rv1 cells. Interestingly, the AR-V7 splice variant, alongside the H874Y mutation, have 
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already been isolated from a patient’s circulating PC cells (Steinestel et al., 2015) suggesting 

that AR splice variants and mutants may synergistically regulate transforming mechanisms of 

AR activity in CRPC. Identification of shared effectors may provide the opportunity for 

designing pharmacological agents against them to potentially benefit patients who harbour 

both AR splice variants and AR mutations. 

4.2. Specific Materials & Methods 

4.2.1. CRISPR complex components: CRISPR vectors – synthetic gRNAs  

The all-in-one pLenti CRISPR Cas9/gRNA vectors (pLV-U6g-EPCG) were custom-designed by 

Sigma-Aldrich. Two distinct single-guide RNAs (sgRNAs) were designed against AR exon 5 

(Table 8). One shot Stbl3 chemically competent E.coli cells (Invitrogen) were transformed with 

the two CRISPR vectors, and constructs were maxiprepped using the PureLink HiPure Plasmid 

Maxiprep Kit (Invitrogen) as described in Chapter X. An additional gRNA/crRNA targeting AR 

exon 5 was synthesised (Sigma) and cloned into the pSpCas9(BB)-2A-Puro (px459) vector 

(Addgene) following the ''LentiCRISPRv2 and lentiGuide-Puro: lentiviral CRISPR/Cas9 and 

single guide RNA'' protocol as described by Ran et al. (Ran et al., 2013). 

Table 8. Sequences of gRNAs used to target AR exon 5. 

gRNA Sequence (5'→3') Cloned in PAM 

AR_049/gRNA_1 GGCTTCCGCAACTTACACG pLV-U6g-EPCG TGG 

AR_061/gRNA_2 TTACACGTGGACGACCAGA pLV-U6g-EPCG TGG 

crRNA_1/gRNA_3 TGGCTGTCATTCAGTACTCC 
pSpCas9(BB)-2A-Puro 

& 

pSpCas9-mSA-2A-Puro 

TGG 

 

4.2.2. Construction of pSpCas9-mSA-2A-Puro 

The monomeric Streptavidin (mSA) fragment was PCR amplified from the pCS2+Cas9-mSA 

vector (Addgene) using the Platinum SuperFi PCR MasterMix (Invitrogen) according to 

manufacturer’s instructions. The following thermal profile was performed on a GeneAMP 

2700 thermal cycler (ABI): 98oC for 1 min (initial denaturation), 98oC for 20 sec, 65/70oC for 
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30 sec, 72oC for 15 sec (x30 cycles), 72oC for 5 min (final extension). BamHI restriction sites, 

as well as random nucleotide overhangs to assist with restriction enzyme digestion, flanked 

the mSA PCR fragment alongside a 48-nt linker at the 5' end (Table 9). Following gel 

purification using the QIAquick PCR Purification Kit (Qiagen), the mSA fragment was cloned 

into the intermediate lentiCRISPRv2 vector (Addgene) which was subject to restriction digest 

with Anza™ 5 BamHI (Invitrogen). Double digest of lentiCRISPRv2-mSA and px459 was 

performed with EcoRV and StuI (Invitrogen) followed by ligation of the mSA fragment into 

px459 using the Anza T4 DNA Ligase Master Mix. Recombinant px459 constructs were 

screened for the presence of mSA by BstEII digestion (unique restriction site within the mSA 

insert). Presence of mSA resulted in a 473 bp long DNA fragment (Appendix B). All digestion 

reactions were performed according to manufacturer’s instructions. Synthetic gRNA_3 was 

synthesised by Sigma. A BbsI cleavage site was introduced at the 5’ end of the gRNA sequence 

which was also phosphorylated to facilitate cloning into the recombinant px459 vector 

following BbsI digestion. 

Table 9. Primer sequences used for mSA PCR amplification. 

Primer Sequence (5'→3') 

Overhang-BamHI-

linker-mSA-F 

TAAGCAGGATCCAGCGGTTCAGAGACCCCAGGAACTAGC

GAGAGCGCTACACCGGAATCGGCGGAAGCGGGTATCACC 

mSA-BamHI-

overhang-R 
TGCTTAGGATCCAGACGCCGCAGACGGTTTAA 

 

4.2.3. Cell transfection/nucleofection 

HEK293 cells were transfected with each CRISPR vector using the TransIT-LT1 transfection 

reagent (Mirus) whilst CWR22Rv1 were nucleofected with the same amount of each CRISPR 

vector using the Amaxa® Cell Line Nucleofector kit R (Lonza) using programme T-009 

according to manufacturer’s protocol. 6 μg of each CRISPR-Cas9 vector and 1 μg of ssODN 

were transfected individually or co-transfected into 2x106 cells seeded in 6-well plates 

(Corning). 48h post-transfection/nucleofection, puromycin selection (2μg/ml) was performed 

for 5 days and then CRISPR-modified cells were harvested and DNA extraction was performed 
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using the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma) as described in Chapter 

3.14.5. Selection and expansion of individual cell clones was performed in parallel. Puromycin-

resistant clones were seeded into 96-well plates for continuous culture and downstream 

screening. CWR22Rv1 cells were treated with 30 µM Scr7, where appropriate. 

4.2.4. Mutation detection assay (TIDE and SURVEYOR assay) 

AR exon 5 was amplified by PCR using the Platinum Taq DNA polymerase kit (Invitrogen). The 

primer sequences and PCR amplification protocol are provided in Tables 11 and 12 

respectively. PCR products were cleaned-up using the QIAquick PCR Purification Kit (Qiagen). 

Purified PCR products were then outsourced and sequenced by Eurofins Genomics. Sequence 

chromatograms were analysed by TIDE (Tracking of Indels by DEcomposition) (Brinkman et 

al., 2014) to accurately determine the editing efficiency of each Cas9/gRNA complex. The 

SURVEYOR nuclease assay (IDT) was performed in parallel according to manufacturer's 

instructions. In brief, wild-type and CRISPR-edited PCR amplicons were mixed at 1:1 ratio, 

incubated at 95oC for 5 min and re-annealed by gradient cool down to RT. Resulting homo- or 

hetero- duplexes were then digested by the SURVEYOR nuclease as shown in Table 10.  

Table 10. Reagents used for mutation detection analysis using the SURVEYOR assay. 

Component  Amount 

DNA duplexes ~400 ng 

MgCl2 (150 mM) 1/10th volume 

SURVEYOR Nuclease S 1 μl 

SURVEYOR Enhancer S 1 μl 

 

The SURVEYOR digestion products were analysed on a 2% agarose gel. The Cas9 cleavage 

efficiency was estimated based on the relative intensity of the PCR fragments using ImageJ as 

described by Ran et al.. 

fcut = (b+c)/(a+b+c) 

 or  
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𝑖𝑛𝑑𝑒𝑙(%) = 100 × (1 − √
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
) 

where a = intensity of the undigested PCR amplicon/fragment 

            b and c = intensities of each digested fragment 

Table 11. Primer sequences used for AR exon 5 amplification. 

Primer Sequence (5'→3') 

AR exon 5-F CCGAATACCAGAGCATCTCTG 

AR exon 5-R TGAGCTAAGCTTCACTGTCACC 

 

Table 12. Reagents used per PCR reaction. 

Reagent Volume (μl) 

Buffer (10x) 5 

dNTPs (4 mM each) 1.25 

MgCl2 (50 mM) 1.5 

Primer mix (10 μM each) 1.25 

Taq polymerase (100 U/μl) 0.2 

Template DNA (50 ng/μl) 1 

dH2O Up to 50 

 

4.2.5. ssODN design 

Three different W741L mutation-containing ssODNs (custom-designed and synthesised by 

Sigma) were used for the CRISPR knock-in optimisation experiments. All ssODNs were PAGE-

purified to ensure length integrity. The desired W741L mutation was generated by the 

conversion of TGG to TTA (highlighted in red). The conversion created an MseI restriction site 

in the sequence of all ssODNs (highlighted in red) for downstream restriction fragment length 
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polymorphism (RFLP) screening. The ssODN sequences contained CRISPR shield 

mutations/silent mutations (highlighted in magenta) to prevent binding of the gRNA upon 

ssODN incorporation and reversal of the knock-in. Homology arms ranging from 60-80 

nucleotides upstream and downstream of the point mutation are highlighted in yellow and 

grey respectively.  The ssODN sequences are given below: 

 

▪ ssODN_1: 180 bp, linear, symmetric, sense, no modification 

GCTCAACCCGTCAGTACCCAGACTGACCACTGCCTCTGCCTCTTCTTCTCCAGG

CTTCCGCAACTTACACGTGGATGATCAAATGGCTGTCATTCAGTACTCCTTAAT

GGGGCTCATGGTGTTTGCCATGGGCTGGCGATCCTTCACCAATGTCAACTCCA

GGATGCTCTACTTCGCCCC 

▪ ssODN_2: 151 bp, linear, assymetric, sense, no modification 

ACCCAGACTGACCACTGCCTCTGCCTCTTCTTCTCCAGGCTTCCGCAACTTACA

CGTGGATGATCAAATGGCTGTCATTCAATATTCGTTAATGGGGCTCATGGTGTT

TGCCATGGGCTGGCGATCCTTCACCAATGTCAACTCCAGGATG 

▪ ssODN_3-F: 151 bp, linear, assymetric, sense, 5'-biotinylated 

ACCCAGACTGACCACTGCCTCTGCCTCTTCTTCTCCAGGCTTCCGCAACTTACA

CGTGGATGATCAAATGGCTGTCATTCAATATTCGTTAATGGGGCTCATGGTGTT

TGCCATGGGCTGGCGATCCTTCACCAATGTCAACTCCAGGATG 

▪ ssODN_3-R: 151 bp, linear, assymetric, antisense, no modification 

CATCCTGGAGTTGACATTGGTGAAGGATCGCCAGCCCATGGCAAACACCATGA

GCCCCATTAACGAATATTGAATGACAGCCATTTGATCATCCACGTGTAAGTTGC

GGAAGCCTGGAGAAGAAGAGGCAGAGGCAGTGGTCAGTCTGGGT 

4.2.6. Flow cytometry and cell sorting 

Cells were harvested in 500 µl pre-warmed PBS, transferred into sterile FACS tubes (STEMCELL 

Technologies) and stained with 0.5 µg/ml sterile DAPI (BD Biosciences) for viability analysis. A 

sterile FACS Aria II sorter (BD Biosciences) was used to sort single, live (DAPI negative), GFP 
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positive cells which were ultimatelly ejected into 100 µl of full medium per well of a 96-well 

plate. FlowJo was used for gating and data analysis. 

4.2.7. HDR detection 

Detection of potential CRISPR induced HDR events in the mixed cell population was carried 

out upon PCR amplification of AR exon 5 using a donor template specific primer (Table 13). 

The PCR reaction was performed under stringent annealing conditions (Tm=60oC) to 

guarantee specific binding of the primer exclusively to the template-containing sequence and 

not to the wild-type counterpart. 

Table 13.  Primer sequences used for PCR amplification of the knocked-in donor template in 
AR locus. 

Primer Sequence (5'→3') Detected ssODN 

Internal_1-F ACACGTGGATGATCAAATGG ssODN_1 

Internal_2-F ATGGCTGTCATTCAATATTCGTTAA ssODN_2 & ssODN3-F 

 

4.2.8. Colony screening – RFLP/Sanger sequencing 

Screening of potential CRISPR-edited clones was performed upon amplification of AR exon 5 

as described in section X. PCR amplicons were purified using the QIAquick PCR purification kit 

(Qiagen) and were incubated with 1U MseI (10 U/μl) (Invitrogen) at 37oC overnight in a 

GeneAMP PCR System 2700 (Applied Biosystems). Digested products were analysed on a 2% 

agarose gel. A batch of AR exon 5 PCR products was outsourced for Sanger sequencing 

(Eurofins Genomics) and sequence chromatograms were analysed using FinchTV.  

4.2.9. CRISPR off-target analysis 

Prediction of off-target effects was performed using the CRISPR design tool developed by MIT 

as well as the CCTop online tool developed by the University of Heidelberg.  

4.2.10. Subcellular Fractionation and WB 

HEK293 cells were transfected as in X. 48h post-transfection, cells were harvested and lysates 

were subject to subcellular fractionation using the Subcellular Protein Fractionation Kit 
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(Thermo Fischer Scientific). Briefly, 2x106 cells were harvested, re-suspended in 200 μl ice-

cold CEB with protease inhibitors and placed on ice for 30 min with brief vortexing every 10 

min. Lysates were spun at 500 x g for 5 min at 4oC and supernatants (cytoplasmic fraction) 

were transferred to new 1.5 ml Eppendorf tubes and stored at -20oC. Remaining cell pellets 

were re-suspended in 200 μl ice-cold MEB with protease inhibitors, incubated on ice for 15 

min and finally spun at 3000 x g for 5 min at 4oC. Following centrifugation, supernatants 

(membrane fraction) were removed and remaining cell pellets were re-suspended in 100 μl 

ice-cold NEB with protease inhibitors and incubated on ice for 30 min with brief vortexing 

every 10 min. Following incubation, lysates were spun at 5000 x g for 5 min at 4oC and 

supernatants (soluble nuclear fraction) were transferred to new 1.5 ml Eppendorf tubes and 

stored at -20oC. Cell pellets were finally re-suspended in 100 μl NEB supplemented with 5 mM 

CaCl2 and 300 units of micrococcal nuclease and samples were incubated at 37oC for 10 min 

before being spun at 16,000 x g for 5 min at 4oC. Supernatants (chromatin fraction) were 

transferred to new 1.5 ml Eppendorf tubes and stored at -20oC. The different cell fractions 

were analysed on a 10% SDS-PAGE gel and immunoblotting was performed using an anti-Cas9 

antibody (ab191468) (Abcam). 

4.2.11. siRNA knockdown 

CWR22Rv1 cells (2x106 cells per well of a 6-well plate) were reverse transfected with 25 nM 

of each siRNA (Table 14), either individually or as a pool for 24 hours prior to trypsinisation 

and subsequent nucleofection with the gRNA_2/Cas9 pLV vector. 

Table 14. siRNA sequences used to deplete components of the NHEJ pathway for precise 
genome editing. 

Oligo  Sequence (5'→3') 

siScr UUCUCCGAACGUGUCACGU 

siKu70 GAUGAGUCAUAAGAGGAUCAU 

siKu80 CCUCAUAUCAAGCAUAACUAU 

siDNA-PKcs CCGGUAAAGAUCCUAAUUCUA 
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4.3. Results 

The ultimate goal of this arm of the project was to generate, establish and validate an ARW741L 

mutant cell line, which would allow us to study the function of this particular mutant in a 

more physiological cellular background to ultimately identify and characterise its interacting 

partners and highlight potential therapeutic targets to benefit patient clinical outcome. 

The recently developed CRISPR/Cas9 technology was exploited in an attempt to establish a 

PC cell line which would permanently harbour the desired mutation in its genome. Numerous 

optimisation steps were carried out and different approaches were applied (presented in this 

section) since the technology is fast-developing with novel findings emerging in quick 

succession to impact knock-in efficiencies. The main goal was to optimise the conditions 

which would increase the chances of getting the W741L mutation incorporated into the 

genome of the host PC cell line. 

Firstly, two gRNAs were used to identify one which would demonstrate the highest editing 

efficiency. The all-in-one CRISPR/Cas9 vectors contained all the necessary CRISPR 

components: Cas9 cDNA under the control of  the CMV promoter; a gRNA for RNA-guided 

recruitment of Cas9 to the target region for cleavage (under the control of a U6 promoter); 

and two selection markers, GFP and puromycin, to allow selection of the transfected and 

potentially edited cell population (Figure 17). The vectors were transfected and nucleofected 

in HEK293 and CWR22Rv1 cells, respectively, for 48h and upon selection with GFP and 

puromycin, the Cas9 editing efficiency was estimated by performing the mutation detection 

SURVEYOR assay and TIDE analysis.    
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Figure 17. Map of the all-in-one pLV-U6g-EPCG CRISPR vector used to ectopically express the gRNA 

and Cas9 nuclease in the host cell lines. The gRNA (highlighted in blue) consists of a 19-nucleotide 

sequence and its expression is controlled by a U6 promoter (highlighted in white). The S. pyogenes 

Cas9 (highlighted in magenta) is fused to GFP for verification of Cas9-GFP expression in the host cell 

lines. 

4.3.1. The sgRNA_2/Cas9 complex demonstrated high editing efficiency in HEK293 and 

CWR22Rv1 cells  

Two different gRNAs were in silico designed and synthesized to target AR exon 5 in order to 

generate the clinically relevant ARW741L mutant in PC cells. They demonstrated similar quality 

score and their off-target sites across the human genome were also predicted (Figure 18).  

 

 

 

 

 

 

 

 

 

 

Figure 18. In silico analysis of AR exon 5 and surrounding sequences using the CCTop CRISPR/Cas9 

target online predictor. The two gRNAs with the highest quality score (%), as calculated by the CRISPR 

design tool (http://crispr.mit.edu), were synthesised and used to target AR exon 5. Scores higher that 

75% indicated gRNAs with good on-target cleavage efficiency and low off-targeting based on DNA 

complementarity between the target sites and the gRNA sequence. The top 20 predicted off-target 

sites of each gRNA are listed and nucleotides highlighted in red depict mismatches between the gRNA 

sequences and their potential off-target sites. 

 

To measure the editing efficiency of Cas9, HEK293 and CWR22Rv1 cells were transfected with 

6 μg of each CRISPR vector. The editing efficiency of each gRNA/Cas9 complex was roughly 

estimated using the SURVEYOR assay, a mutation detection assay outlined in Figure 19A. 

Relative band intensity analysis indicated that gRNA_2 outperformed gRNA_1 in both cell 

gRNA_1 

% 

gRNA_2 

% 



79 
 

lines, despite the slightly lower quality score calculated by the CRISPR design tool (93 versus 

95 respectively)(Figure 18). In particular, gRNA_2 demonstrated cleavage efficiency of 12% 

versus 3.6% and 13% versus 10.3% in HEK293 and CWR22Rv1 cells, respectively (Figure 19C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Outline of the SURVEYOR assay used for the mutational analysis of the CRISPR engineered 

cell lines. The wild-type and CRISPR-edited PCR amplicons were hybridised at 1:1 ratio to form 

heteroduplexes following denaturation and re-annealing. The SURVEYOR nuclease recognises and 

cleaves the NHEJ-mediated nucleotide mismatches (red loop) within the heteroduplexes, whilst 

homoduplexes remain intact. Successful cleavage generates two additional fragments which 

correspond to the CRISPR-edited allele. B. HEK293 (upper left) and CWR22Rv1 (bottom left) cells 

transfected and nucleofected, respectively, with the all-in-one pLV-U6g-EPCG CRISPR vectors. GFP 

fused to Cas9 was exploited for rapid verification of expression 8 h post-transfection/nucleofection. 

Representative 10x magnification images are shown. C. SURVEYOR nuclease assay for NHEJ-mediated 

indels within AR exon 5. Cleaved amplicons were analysed on a 2% agarose gel. Asterisks indicate the 

expected fragments upon cleavage by the SURVEYOR nuclease. NHEJ, Non-Homologous End Joining. 

However, the SURVEYOR assay is not accurate enough as it only estimates the editing 

efficiency of each Cas9/gRNA complex. The latter was therefore precisely measured by 

performing Sanger sequencing of the AR exon 5 amplicons and downstream analysis of the 

A. B. C. 

Denaturation 

& 

re-annealing 



80 
 

sequencing chromatograms using the TIDE online tool (Figure 20). Specific binding of the 

gRNA and cleavage 3bp upstream of the PAM site was confirmed. The gRNA_2/Cas9 complex 

demonstrated significantly higher editing efficiency than the gRNA_1 complex, ~30% over 

20% respectively in the CWR22Rv1 cell line (Figure 20A-B). Lower editing efficiencies were 

observed in HEK293 cells despite the higher transfection efficiency (Figure 20C-D), potentially 

due to the tight conformation of chromatin around the AR locus and hence the limited access 

of Cas9 to exon 5 since the AR is not expressed in this cell line.  
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Figure 20. Chromatograms of sequenced AR exon 5 upon editing by Cas9 in the CWR22Rv1 and 

HEK293 cell lines. A and C. Noisy sequence regions with multiple underlying peaks indicate CRISPR-

mediated indels (highlighted in blue). Cas9 binds to the expected PAM sites (magenta bars) and 

induces double strand breaks 3 bp upstream (indicated by red arrowheads and red dashed lines). B 

and D. The TIDE algorithm was used to calculate the percentage of NHEJ-mediated indels (total 

efficiency) (left panel) by aligning and decomposing the sequences of the edited versus the wild-type 

AR exon 5 (right panel). The intact sequence is represented by the middle coral bar whilst indels 

(insertions on the right, deletions on the left) are indicated by the red and black bars. The p-value 

associated with the estimated abundance of each indel is depicted by red or black for p<0.05 and 

p>0.05, respectively. 

C. HEK293 

editing events 
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Given that gRNA_2 worked best in both cell lines, gRNA_1 was dropped from downstream 

experiments. CWR22Rv1 cells were then subject to another round of nucleofection with the 

gRNA_2/Cas9 vector, this time with puromycin selection for 5 days, to potentially enhance 

detection of genomic editing, prior to TIDE analysis. As expected, the editing efficiency of 

gRNA_2/Cas9 markedly increased to 66.8% (2-fold) upon puromycin selection (Figure 21). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. CRISPR editing efficiency before and after puromycin selection in CWR22Rv1 cells. 

Enrichment of the CRISPR engineered cell population via puromycin selection results in higher editing 

efficiency as assessed by TIDE.  

t=2 days 

post-transfection 

t=7 days 

post-transfection 
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Figure 22. Bar charts of the editing efficiencies of gRNA_1/Cas9 and gRNA_2/Cas9 in CWR22Rv1 

cells. gRNA_2 demonstrated significantly higher editing efficiency than sgRNA_1 (left panel). Editing 

efficiency of gRNA_2 is significantly elevated upon puromycin selection (right panel). 6 μg of each 

gRNA/Cas9 vector were transiently transfected in CWR22Rv1 cells by nucleofection. Cells were 

cultured for 48h in full media following nucleofection. DNA extraction, PCR amplification of AR exon 

5, Sanger sequencing and finally TIDE analysis of the chromatograms were performed to assess the 

editing efficiency of each gRNA. Values represent means ± SEM from two technical replicates. 

4.3.2. gRNA_2 efficiently guides Cas9 to target chromatin sites  

Although high editing efficiency of gRNA_2/Cas9 was observed at the DNA level, indicative of 

Cas9 presence in the nucleus, it was important to establish that Cas9 was present in the 

nucleus of target cells. To this end, gRNA_2/Cas9-expressing CWR22Rv1 cells were 

immunostained with an anti-Cas9 antibody to examine the level of Cas9 translocation to the 

cell nucleus as well as binding events of the nuclease to DNA. Confocal fluorescence 

microscopy confirmed that Cas9 successfully enters the cell nucleus and binds to chromatin, 

where it is observed in foci (Figure 23A), to exert its editing function. Subcellular fractionation 

of HEK293 cells transfected with the same Cas9 vector was carried out, in parallel, to examine 

the cellular localisation of Cas9 by WB. Pancellular distribution of the nuclease was observed, 

but more importantly when one performs genome editing experiments, Cas9 was also 

present in the chromatin fraction indicating efficient RNA-guided recruitment of Cas9 to DNA 

(Figure 23B). A nuclear marker (PARP) was included in the immunofluorescence analysis to 

ensure that the observed nuclear speckles corresponded to genuine chromatin-bound Cas9 

and the fixation/permeabilisation protocol that was used allowed access of the Cas9 antibody 

to the nucleus and hence the observed foci are not due to fixation artifacts. 
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Figure 23. Cas9-NLS successfully translocates to the cell nucleus, where it is observed in foci. A. 

Representative confocal microscopy images of CWR22v1 cells expressing sgRNA_2/Cas9. Arrows 

depict chromatin-bound Cas9. Whole lysate derived from non-transfected cells was used as a negative 

control (right panel) to ensure specific binding of the Cas9 antibody. Cells were immunostained with 

a PARP1 antibody, in parallel to assess antibody access to the nucleus (bottom panel). B. Subcellular 

fractionation of HEK293 cells transfected with the all-in-one gRNA_2/Cas9 expressing vector and 

assessment of Cas9 cellular distribution by WB to confirm RNA-guided recruitment of Cas9 to target 

chromatin sites.  

4.3.3. sgRNA_2/Cas9 and ssODN delivery in CWR22Rv1 cells to generate the clinically 

relevant ARW741L mutation via HDR 

In order to introduce the W741L mutation in the AR locus, a single-stranded donor template 

(ssODN) was introduced into CWR22Rv1 cells alongside the gRNA_2/Cas9 encoding vector. 

Cells were treated with the Scr7 NHEJ inhibitor to enhance the frequency of HDR by 

transiently blocking the more prominent NHEJ DNA repair mechanism. A second round of 

transfection with extra ssODN was carried out to guarantee its presence and increase its 

availability while gene editing was still occurring (Figure 24A). The ssODN was synthesised to 
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be 180-bp long with flanking regions (75-bp long) of 100% homology to AR exon 5 on each 

side of the W741L mutation. The GG to TA substitution (W741L) creates a cut site for MseI, 

which was exploited for RFLP screening and identification of clones with the W741L knock-in 

mutation. Finally, single base substitutions were intentionally introduced upstream of the 

PAM site (positions: -2, -5 and -8) to generate silent mutations (CRISPR-blocking mutations) 

which would prevent binding of Cas9 and reversal of the W741L knock-in mutation back to 

wild-type upon editing (Figure 24B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Schematic outline of the strategy designed to CRISPR engineer and generate the 

CWR22Rv1 ARW741L cell line. A. The indicated amounts of sequence-verified gRNA_2/Cas9 vector 

and HDR donor template/ssODN were nucleofected into CWR22Rv1 cells, which were cultured in Scr7-

containing media for 48h prior to puromycin selection. Cells were supplied with extra ssODN 24 hours 

post-nucleofection by conventional transfection. CRISPR edited cells were then clonally expanded to 

derive isogenic cell lines harbouring the ARW741L mutation. Finally, DNA extraction and PCR 
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amplification of AR exon 5 were carried out and amplicons were sequenced to identify ARW741L positive 

clones. B. Representation of part of the donor template sequence used to introduce the ARW741L
 

mutation via Homologous DNA Repair (HDR) in the CWR22Rv1 cell line. The template is 180 bp long 

and contains homologous arms of 75bp on each side of the cut site. Three silent mutations were 

introduced upstream of the PAM site (highlighted in magenta) to prevent reversal of the sequence to 

wild-type caused by the gRNA/Cas9 binding to the target site upon CRISPR knock-in. The GG to TA 

substitution (W741L), highlighted in red, creates an MseI restriction cut site which was exploited for 

identifying ARW741L positive clones by RFLP screening. An example of the expected DNA fragments 

upon Cas9 cleavage is illustrated (right panel).  

4.3.4. Successful HDR events following CRISPR induced DSBs were observed in CWR22Rv1 

cells  

A PCR primer specific to the donor template was designed to examine the presence of the 

knock-in ARW741L allele in the puromycin-enriched CRISPR engineered cell population. The 

three silent mutations upstream of the PAM site were exploited so the primer was designed 

to bind to that mutation ''hot spot'' allowing amplification (Figure 25A). On the contrary, 

mismatches between the ssODN specific primer and the wild-type sequence would prevent 

binding under stringent annealing conditions and this would indicate the presence of 

unedited sequences and finally provide a measure for HDR efficiency. Therefore, genomic 

DNA from CRISPR engineered and wild-type mixed cell populations was extracted two weeks 

post-transfection and conventional as well as real-time PCR amplification of AR exon 5 was 

performed using the specific primer for the knock-in allele as well as a primer pair which binds 

to the genomic region which surrounds the ssODN (Figure 25A). Amplification was observed 

exclusively in the CRISPR edited sample using the ssODN specific primer, suggesting that 

efficient HDR and successful knock-in of the donor template had occurred in CWR22Rv1 cells 

(Figure 25B). Two different quantities of the donor template were introduced into the cells to 

test whether increased intracellular concentration of the ssODN correlates with higher knock-

in rates. Of note, the supply of extra ssODN did not seem to have significant effect on the HDR 

events that occurred in CWR22Rv1 cells (Figure 25C). The PCR amplicon was also subject to 

Sanger sequencing and RFLP analysis to verify the incorporation of the ARW741L allele. 

Surprisingly, only the CRISPR-blocking mutations were efficiently incorporated as indicated by 

the strong corresponding peaks in the sequencing chromatogram. Low underlying peaks 

which correspond to the desired mutation may exist at the W741 site (Figure 25B), however 

they are unlikely to be detected by Sanger sequencing or RFLP due to the low abundance of 

the mutation in the mixed population in addition to the low sensitivity of the detection 
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methods. Finally, expression of Cas9 was assessed one and two weeks post-transfection. Cas9 

was still detected in the mixed cell population two weeks post-transfection (Figure 25D), 

although at negligible levels indicating that (minimal) editing was still occurring. Whether and 

how this impacts HDR remains elusive. 
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Figure 25. Detection of HDR events induced in CWR22Rv1 cells upon Cas9-mediated DSB. A. Primer 

design to detect knock-in of the donor template (ssODN) by exploiting the mutation hot-spot (depicted 

by *) right upstream of the PAM. The presence of the ARW741L knock-in mutation was interrogated 

using an internal forward primer specific for the donor template and an external reverse primer 

specific to a sequence outside of the homology arm (primer set #1). The genomic region is targeted 

by external primers surrounding the ssODN as an internal control (primer set #2; reverse primer is the 

same as that in set #1). B. Genomic DNA was analysed by end-point and real-time PCR using primer 

sets #1 and #2 to assess the ssODN knock-in efficiency. A 229 bp band (depicted by an asterisk) is 

present in the Cas9+ssODN sample, indicating the successful knock-in of ssODN in the AR locus (left 

panel). Real-time PCR was used as a more sensitive detection method and the fold change in HDR 

efficiency between the wild-type and Cas9+ssODN samples was calculated using the ΔΔCt method 

(right panel). DNA extraction from the CRISPR engineered cell population was carried out and AR exon 

5 was sequenced. Partial knock-in of the ssODN was detected in the mixed population with only the 

CRISPR-blocking mutations (indicated by asterisks) being incorporated. The W741 site (highlighted in 

red) remained intact as assessed by RFLP analysis of the AR exon 5 amplicon (obtained using primer 

set #2). No additional bands, indicative of ssODN knock-in and subsequent MseI cleavage, were 

observed in the Cas9+ssODN sample (bottom right panel). The px330 vector was used as a positive 

control for successful cleavage by MseI. C. CWR22Rv1 cells were transfected with 3 µg and 5 µg of 

ssODN and cell lysates derived from wild-type (wt) and CRISPR edited (Cas9+t) cell populations were 

analysed by end-point PCR using primer set #1 at two different annealing temperatures (60oC and 

62oC). D. Expression of Cas9 in the mixed cell population was assessed one and two weeks post-

transfection by Western blotting using the anti-Cas9 (7A9-3A3) antibody, 45 min exposure. DSB, 

Double Strand Break; t, template.  

4.3.5. Optimisation steps to enhance genome editing via HDR-mediated ssODN knock-in  

ssODN knock-in is not an easy task to achieve hence three different strategies (hereafter 

referred as S1, S2 and S3) were followed to help generate the ARW741L mutation in the 

CWR22Rv1 cell line (Figures 24A and 26A). The major aim in all cases was to enhance HDR in 

C. Primer set: #1 D. 
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order to achieve precise knock-in of the ARW741L mutation in the host genome. The total 

amount of DNA introduced into the cells was kept constant. The mixed cell populations were 

treated with Scr7 either at transfection (S1 and S2) or 6h prior to transfection (S3) to 

potentially block NHEJ to a much higher extent. Additionally, cells were treated with 5 μM 

bicalutamide (S2 and S3), as ARW741L positive cells would in theory have a growth advantage 

in bicalutamide conditions and they would ideally out-grow non-edited cells potentiating 

identification of ARW741L positive clones in the downstream steps. Finally, single cell cloning 

was carried out upon puromycin selection (S1 and S3) or by FACS sorting of Cas9-GFP positive 

cells (S2) in order to rule out the clonal expansion of cells which did not express the CRISPR 

complex but acquired resistance and survived in puromycin conditions. 
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Figure 26. Schematic of the alternative strategies applied for the CRISPR-mediated generation of the 

CWR22Rv1 ARW741L cell line. A. Cells were nucleofected with the indicated amounts of gRNA_2/Cas9 

vector and ssODN. The mixed cell population was treated with 5 μM Bicalutamide 24 h post-

nucleofection to favour  growth of the ARW741L positive cells. Cas9-GFP positive cells were then FACS 

sorted and cloned out for subsequent screening by PCR and Sanger sequencing (S2). Cells were pre-

treated with 30 μM Scr7 NHEJ inhibitor for 6h prior to nucleofection as an attempt to enhance HDR 

and cloned out following conventional puromycin selection (S3). Cell transfections and treatments 

were performed as described in S1. B. FACS sorting of Cas9-GFP positive cells for single cell cloning 

and clonal expansion. CWR22Rv1 cells nucleofected with empty vector (mock) were used for setting 

the parameters for precise gating. 

All mixed populations were comparatively interrogated for the presence of the ARW741L allele 

by conventional PCR using the ssODN specific primer. Successful HDR events with similar 

efficiencies (band intensities) occurred in the S1 and S2 cell populations as opposed to the S3 

cell population which was treated with Scr7 prior to nucleofection with the CRISPR editing 

complex (Figure 27). This suggests that treatment with the inhibitor may have blocked ligase 

IV (member of the NHEJ complex), but cells may have upregulated other ligases to mediate 

NHEJ in response to longer exposure to Scr7. 
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Figure 27. Assessment of the HDR events and ssODN knock-in efficiencies in the mixed cell 

populations obtained from all three experimental strategies outlined in Figures 24A and 26A. The 

AR exon 5 genomic region was amplified using an ssODN specific primer (primer set #1) as well as an 

external primer set (primer set #2). Densitometry analysis of the gel bands was performed to estimate 

the knock-in efficiency in each cell population (S1-S3). AR exon 5 band intensities were normalised to 

HPRT1. 

4.3.6. Mutation-to-cut-site distance dictates ssODN knock-in fate 

Single cell cloning was performed to isolate and screen clonal cell populations which 

encompass the ARW741L mutation. A large number of clones was expanded and screened using 

PCR coupled with RFLP or Sanger sequencing (Figure 28A). CWR22Rv1 clones harbouring only 

the CRISPR-blocking mutations (c4, c6 and c34) with one of them also harbouring the W741L 

mutation (c34) were obtained. Partial incorporation of the ssODN evident of the presence of 

the CRISPR-blocking mutations and absence of the W741L mutation was observed (Figure 

28B), indicating that incomplete HDR may have occurred. In particular, the CRISPR-blocking 

mutations which reside upstream of the cut site were predominantly observed in the mixed 

cell population as evident by the high chromatogram peaks (Figure 28B) as well as in 4.9% of 

the screened clones whereas the W741L mutation was observed in 1.2% of the screened 

clones (Figure 28C), suggesting that mutations closer to the cut site are highly likely to be 

incorporated into the genome as opposed to distal mutations which lie further upstream or 

downstream of the cut site. Notably, NHEJ was predominantly observed in most cell clones, 
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accounting for 65.7% of total editing events (Figure 28C). Screening indicated that most of the 

NHEJ mediated edits were short nucleotide deletions or insertions whilst very few clones 

contained larger DNA fragment alterations (Figure 28D). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Spectrum of CRISPR editing events in CWR22Rv1 clonal cell populations. A. Genomic DNA 

was extracted from the CWR22Rv1 clonal populations (n=130) obtained from all three experimental 

strategies outlined in Figures 24A and 26A and AR exon 5 was amplified by PCR. B. PCR amplicons were 

subject to Sanger sequencing for detection of ARW741L positive cell clones. Sequencing chromatograms 
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of representative HDR clones are shown and the AR exon 5 wild-type sequence at the top is used as 

reference. Clones 4 and 6 contained the CRISPR-blocking mutations (depicted by asterisks) but not the 

W741L mutation (red box) (incomplete HDR). Clone 34 contained the desired W741L mutation (green 

box) in addition to the CRISPR-blocking mutations (depicted by asterisks). C. The pie chart summarises 

the mutation patterns (NHEJ, HDR, HDR+NHEJ or no editing) of 130 single-cell clones as determined 

by Sanger sequencing. D. Spectrum of genomic alterations caused by Cas9 in edited clonal cell 

populations. Alignment to the wild-type sequence of AR exon 5 was carried out using CLC sequence 

viewer (Qiagen). 

The ARW741L positive clone (c34) was further examined for its mutation status. The presence 

of NHEJ-mediated indels upstream and/or downstream of the knock-in mutation was 

suspected by an apparent upshift of the c34 AR exon 5 PCR band when the latter was 

compared to the wild-type counterpart (unedited clone c27) (Figure 28A). However, further 

investigation was required to identify the precise genomic alterations caused in clone c34. 

Essentially, amplification of AR exon 5 with a high-fidelity polymerase, Sanger sequencing and 

subsequent alignment to the wild-type sequence were performed and revealed the extent of 

the scar left in the genome as a result of Cas9 editing. Surprisingly, co-existing NHEJ-mediated 

insertions upstream of the cut site were observed (Figure 29) suggesting that repair 

mechanisms can be coupled or act simultaneously to fix the Cas9-induced break. 

 

Figure 29. Sequence alignment of the wild-type and C34 AR exon 5 using ClustalW shows a NHEJ-

mediated insertion of 75 bases upstream of the cut site (depicted by red arrowhead). 

4.3.7. Depletion of key components of the NHEJ pathway does not enhance HDR 

To tackle the apparent prevalence of NHEJ, cells were treated with the ligase IV inhibitor Scr7 

in an attempt to limit the activity of the pathway and allow HDR to occur more prevalently. 

However, inhibition of the NHEJ pathway by Scr7 has been controversial. In fact, it has been 

reported that ligase IV is not a genuine target of Scr7 (Greco et al., 2016). Therefore, other 

key members of the pathway which are rapidly triggered upon DSB and function upstream in 

the pathway, such as Ku70, Ku80 and DNA-PKcs (Figure 30A), were depleted by siRNA-

mediated knockdown. Each NHEJ component was knocked-down 24h prior to nucleofection, 

either individually or as a pool to prevent functional compensation events. Knockdown of the 

NHEJ components was confirmed by qPCR (Figure 30B). Following puromycin selection, 

individual CWR22Rv1 cell clones were screened for the presence of the W741L mutation by 

conventional PCR coupled with Sanger sequencing or RFLP (Figure 30 C). More precisely, 36 
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out 60 clones were screened by Sanger sequencing whereas the remaining 24 clones were 

RFLP analysed by MseI digestion. Depletion of endogenous Ku70, Ku80 and DNA-PKcs did not 

seem to improve HDR rates over NHEJ rates. In fact, no knock-in positive clones were 

observed in this round whilst NHEJ events were still quite prevalent, despite the apparent 

compromise in pathway activity. Clones with wild-type AR sequence were finally observed 

indicating that a number of cells in the mixed population managed to bypass puromycin 

treatment and survive in such conditions without being edited (Figure 30C). 
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Figure 30. Inhibition of NHEJ does not enhance HDR. A. Schematic of the NHEJ signalling cascade with 

its different components acting at different levels across the cascade to repair the DSB upon Cas9-

induced cleavage. B. CWR22Rv1 cells were reverse transfected with KU-70, KU-80 and DNA-PKcs-

targeting siRNAs as indicated 24h prior to nucleofection with the CRISPR editing complex. The level of 

knockdown was evaluated by qPCR 72h post-transfection. C. Representative agarose gel images of AR 

exon 5 PCR-amplified clones analysed by Sanger sequencing and MseI digestion (left panel). The pie 

chart summarises the mutation patterns (NHEJ or no editing/wild-type) observed in 60 single-cell 

clones as determined by Sanger sequencing and MseI digestion (right panel). 

4.3.8. Reducing the mutation-to-cut-site distance in concert with biotinylation of the 

donor template and covalent tagging of Cas9 with mSA facilitate HDR 

The importance of the distance between the cut site and the desired mutation has been 

highlighted as a major contributing factor in HDR frequency and proficiency, with distal edits 

being less frequently knocked-in to the desired loci due to various reasons discussed in the 

next section of this chapter. Equally important, the presence of ssODN in close proximity to 

the cut site seems to be a crucial determinant of the repair process to be chosen by the 

insulted cells upon DSB. More precisely, a novel approach which exploits the link between 

streptavidin-Cas9 and biotin-ssODN conjugates has been successfully applied in mice and 

markedly improved HDR rates. In line with these recent findings, a new gRNA and ssODN were 

designed as shown in Figure 31A. The new gRNA, hereafter named gRNA_3, binds adjacent to 

the PAM site (TGG) which comprised the target codon to be mutated to TAA to ultimately 

generate the W741L mutation within AR exon 5. Hence, the distance between the desired 

C. 
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mutation and the cut site was restricted to 4 nucleotides. The gRNA oligo was cloned into the 

px459 vector following the strategy shown in Appendix A. The performance of gRNA_3 was 

assessed using TIDE and the editing efficiency of the gRNA_3/Cas9 complex was 22.4% in 

CWR22Rv1 cells prior to puromycin selection (Figure 31C). Off-target sites were predicted 

using CCTop and mismatches between the off-target sites and the gRNA sequence were 

permissive to continue (Figure 31B). Moreover, the new ssODN was 151 bp long, assymetric 

and harboured three CRISPR shield mutations right upstream of the W741L mutation (Figure 

31A) to prevent reversal of knock-in to wild-type. In addition, the ssODN was biotinylated at 

5' end to form a complex with streptavidin-tagged Cas9 at the cut site. Finally, two alternative 

strep-Cas9/biotin-ssODN complexes were formed whereby a sense 5'-biotinylated ssODN was 

either utilised alone or as a double stranded template with its complementary (antisense) 

unmodified strand following recent trends in CRISPR knock-in experiments (Renaud et al., 

2016). 
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Figure 31. Partial sequence of the ssODN_3 designed to improve ARW741L knock-in rates. A. The 

CRISPR-blocking mutations are highlighted in magenta whilst the desired GG>TA (W741L) mutation is 

highlighted in red. gRNA_3 binds to the target DNA sequence (indicated by the turquoise bar) and 

recruits Cas9 to cleave DNA  3 bp upstream of the PAM site (red arrow head), which comprises the 

CRISPR target codon. The GG>TA substitutions create a unique MseI restriction site which is exploited 

for RFLP screening of clonal cell populations for detection of the W741L mutation. B. The top 20 off-

target sites of gRNA_3 were predicted using CCTop. Nucleotides highlighted in red indicate 

mismatches between the gRNA_3 sequence and the potential off-target genomic sites. C. Sequencing 

chromatograms of AR exon 5 in CWR22Rv1 cells nucleofected with the gRNA_3/Cas9 (px459) vector. 

CRISPR-induced indels (highlighted in blue) are shown as background peaks upstream of the cut site 

which is depicted by the red arrowhead and the dashed line (top panel). The chromatograms were 

analysed using TIDE to calculate the editing efficiency of the CRISPR complex by aligning and 

decomposing the sequences of the edited (green) versus the wild-type (black) AR exon 5 (middle 

panel). The intact (unedited) sequence is represented by the middle coral bar whilst ±10 indels are 

indicated by the red and black bars (bottom panel).  

gRNA_3 

Total eff.=22.4% 
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4.3.9. Generation of an in-house mSA-tagged Cas9 expressing vector 

A streptavidin-tagged Cas9-encoding vector was not available at the time and so was 

constructed in-house (as described in Figure 32) using the commercially available px459 as 

the recipient vector. Previous work in our lab highlighted a number of pitfalls to be avoided 

when generating Cas9 fusions. More specifically, the construction of an RFP-fused Cas9 

expressing plasmid was attempted with the RFP insert cloned either upstream or downstream 

of the Cas9 ORF. Despite its in-frame insertion and detection of Cas9 by WB, no RFP was 

observed by fluorescence microscopy, suggesting that the presence of such a bulky moiety 

may hinder appropriate folding of the fused proteins. To tackle this, a linker sequence 

between Cas9 and RFP was added and only in the case of C terminal RFP insertion, red 

fluorescence was detected, suggesting blocking of the NLS signal of Cas9 (located at the N 

terminus) by RFP when the latter was inserted at the N terminus. These observations were 

taken into account to design the Cas9-mSA fusion. Hence, the mSA coding sequence was 

cloned at the C-terminus of the Cas9 ORF and a 48-nt linker was included between the two 

proteins to provide enough 3D space for them to fold appropriately preventing potential 

allosteric hindrance and ultimately preserving their function. Finally, gRNA_3 was cloned into 

px459 (pSpCas9-mSA-2A-Puro) following BbsI digestion.  
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Figure 32. Summary of the cloning strategy applied to generate the in-house px459 Cas9-mSA 

expressing construct. The mSA fragment was amplified by end-point PCR using the pCS2+Cas9-mSA 

vector as template. A 48-nt linker was added to the 5' end of the forward PCR primer while BamHI 

restriction sites were flanking the linker-mSA amplicon. Two different melting temperatures (Tm) were 

applied to achieve high target specificity (step 1). The amplified linker-mSA insert as well as the 

lentiCRISPR V2.0 vector were subject to BamHI digestion and were subsequently ligated to generate 

the recombinant lentiCRISPR V2.0/mSA construct (step 2). Intact expression of Cas9 from the new 

recombinant vectors was examined by WB upon overexpression in HEK293 cells (step 3). The 

intermediate lentiCRISPR V2.0/mSA and px459 vectors were incubated with EcoRV and StuI (steps 4 

and 5) and the Cas9-linker-mSA fragment derived from the digestion reactions of lentiCRISPR 

V2.0/mSA was ligated into the px459 backbone to generate the final px459 Cas9-mSA construct (step 

6). 
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pSpCas9-mSA-2A-Puro 

px459 

6. Generation of recombinant px459 

Cas9/mSA (pSpCas9-mSA-2A-Puro) & 

validation of intact Cas9-mSA 

 



103 
 

4.3.10. Validation of successful Cas9-mSA expression  

After all cloning steps were complete, expression of Cas9-mSA was assessed by transfecting 

the resultant gRNA_3/Cas9-mSA (px459) constructs in HEK293 cells. Three recombinant 

constructs were tested (Cas9-mS-1, Cas9-mSA-5 and Cas9-mSA-12). Sequencing of the 

constructs was performed to verify whether the linker-mSA fusion was in-frame with Cas9 

(Appendix B). The coding frame of Cas9-mSA-1 was severely impacted as evidenced by the 

short Cas9-like isoform detected by WB analysis (depicted by *) using a 15% acrylamide gel. 

On the contrary, Cas9-mSA-5 and Cas9-mSA-12 remained intact and a slight band upshift, 

which corresponded to the additional coding sequence of the linker-mSA (~15-20 kDa) was 

observed (Figure 33A).  

The editing efficiency of each gRNA_3/Cas9-mSA complex was compared to that of the 

original gRNA_3 /Cas9 complex to examine whether the mSA fusion impaired the ability of 

Cas9 to cleave target DNA. The constructs were therefore transfected into HEK293 cells and 

upon DNA extraction, AR exon 5 was amplified and sequenced and the editing efficiency of 

each gRNA_3/Cas9-mSA complex was assessed using TIDE (Figure 33B). As expected, Cas9-

mSA-1 was incompetent and no editing events were observed. Surprisingly, Cas9-mSA-5 

demonstrated reduced editing efficiency of about 50% despite its intact coding sequence and 

finally Cas9-mSA-12 retained full activity (13%) which was comparable to that of the original, 

unmodified Cas9 (13.4%) and therefore was picked for the downstream knock-in 

experiments. 
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Figure 33. Impact of the mSA fusion on Cas9 expression and function in HEK293 cells. A. Expression 

of recombinant Cas9-mSA derived from the px459 vector was assessed by WB using an anti-Cas9 

antibody. HEK293 cells were transfected with three different recombinant px459 Cas9-mSA (1, 5 and 

12) and the original px459 Cas9 expressing constructs. Cells were harvested 48h post-transfection and 

resulting lysates were analysed on a 15% SDS-PAGE gel to observe mSA-fused Cas9 species. B. 

Retention of activity of the mSA-fused Cas9 was assessed by comparing the editing efficiency of the 

recombinant nuclease to the activity of the non-recombinant Cas9 expressed by the original px459 

vector. HEK293 cells were transfected as in A. DNA extracted from CRISPR-edited cells was used as 

template to amplify and then sequence AR exon 5. Sequence chromatograms were analysed using 

TIDE. Underlying peaks indicate indels.    

4.3.11. Conjugation of mSA-tagged Cas9 with a biotinylated donor template yielded 

elevated template knock-in rates 

HEK293 and CWR22Rv1 cells were transfected and nucleofected respectively with the 

gRNA_3/Cas9-mSA-12 vector alongside the two different versions of the donor template, 

single stranded (ssODN) or double stranded (dsODN) (Figure 34A). Upon puromycin selection, 

the mixed populations of CRISPR-edited cells were subject to DNA extraction followed by AR 

exon 5 amplification by PCR. A donor specific PCR primer was designed as shown in Figure 

A. B. 
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34B. Amplification using the donor specific primer under stringent PCR conditions (i.e. high 

primer annealing temperature) would indicate successful HDR events in the interrogated 

mixed cell population. Satisfying levels and more importantly, specific amplification, was 

observed in both cell lines. Extremely encouraging was the fact that the observed 

amplification was restricted to those DNA samples which were derived from the CRISPR 

edited cell populations and not the wild-type or the Cas9 only transfected cell populations () 

indicating that genuine knock-in events occurred in those cell populations. Remarkably, more 

efficient HDR was mediated by the dsODN rather than the ssODN as evidenced by the 

increased intensity of the gel band as well as the increased fluorescent signal in qPCR (Figure 

34C). Interestingly, a quite intense smear was observed in the case of dsODN which could be 

explained by potential multiple insertions of the template in the target locus.  
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Figure 34. Detection of HDR events in CWR22Rv1 cells using a biotinylated donor template and mSA-

tagged Cas9. A. Graphical representation of the streptavidin (mSA)-tagged Cas9 in conjunction with 

the single and double stranded donor templates. B. A donor specific primer was designed for screening 

and detection of knock-in positive CWR22Rv1 cell clones. Mismatches (depicted by loops/hairpins) 

between the primer and the wild type AR exon 5 sequence would prevent amplification from unedited 

cell clones. In contrast, perfect annealing of the primer and amplification would only occur in the 

presence of the knock-in mutations in the PCR template sequence. C. HEK293 and CWR22Rv1 cells 

were transfected with Cas9-mSA + SSODN_3, Cas9-mSA + dsODN_3 or Cas9-mSA ONLY for 48h prior 

to DNA analysis by end-point (left panel) and quantitative real-time PCR (right panel) using the donor 

template specific primer. Resultant PCR products from wild-type and CRISPR edited cells were 

analysed on a 2% agarose gel alongside a 100 bp DNA marker for size reference.  

The precise edits introduced by Cas9 were assessed by Sanger sequencing, whereby AR exon 

5 amplicons derived from the HDR positive cell populations demonstrated a spectrum of 

mutations. However, it was the first time that apparent knock-in events were observed in the 

mixed CRISPR-edited cell populations. Despite the background noise, distinct, sharp peaks 

were present in the sequence chromatograms and corresponded precisely to the desired 

W741L base substitutions (TGG>TTA) as well as the CRISPR blocking mutations in both cell 

lines (Figure 35). HDR efficiency was ~100% in HEK293 cells as opposed to CWR22Rv1 cells 

which demonstrated less pronounced knock-in mutations as evidenced by weaker W741L and 

CRISPR shield mutation peaks, but still sufficient to carry out downstream single cell cloning 

experiments and screening. 

 

M
ea

n
 C

t 
(n

o
rm

al
is

ed
 t

o
 H

P
R

T1
) 

C. 

CWR22Rv1 HEK293 



107 
 

 

 

 

 

 

 

 

 

 

 

Figure 35. HEK293 and CWR22Rv1 mixed cell populations were screened to identify HDR mediated 

donor template knock-in events. Cells transfected or nucleofected with gRNA_3/Cas9-mSA and 

ssODN or dsODN were subject to DNA extraction, AR exon 5 PCR amplification and Sanger sequencing. 

The CRISPR shield mutations are highlighted in red whilst the W741L mutation is highlighted in green 

in the HEK293 derived sequence (middle panel). Similarly, the GG to TA tandem substitution is 

highlighted in green, the more downstream CRISPR shield mutation in the donor template sequence 

is highlighted in black and all point mutations are depicted by arrows in the CWR22Rv1 derived 

sequence (right panel). 

This observation significantly enhanced our confidence in finding a high number of ARW741L 

positive cells in the mixed cell population. Hence, CWR22Rv1 cells nucleofected with 

gRNA_3/Cas9-mSA-12 and dsODN were cloned-out and expanded for 4 weeks in culture prior 

to screening by PCR amplification of AR exon 5 and subsequent Sanger sequencing. 54 clones 

were screened in total. CRISPR editing events and more precisely large insertions and single 

nucleotide indels were observed in the screened clones. Importantly, three W741L positive 

clones (clones 11, 14 and 83) were identified raising the incidence of knock-in from 1.2% in 

S1 to 5.5% using this latter approach. Two of the ARW741L positive clones contained additional 

indels whereas clone 11 harboured the desired W741L mutation in AR exon 5 alongside the 

CRISPR shield mutations without any additional CRISPR-induced mutations upstream or 

downstream of the target codons (Figure 36). 
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Figure 36. Identification of ARW741L positive CWR22Rv1 single cell clones. DNA was extracted from 

CWR22Rv1 single cell clones and PCR amplified AR exon 5 sequences were analysed on a 2% agarose 

gel (representative clones are shown). Amplicons were gel-purified and screened for detection of the 

W741L mutation. Sequence chromatogram of the ARW741L positive clone 11. Knocked-in CRISPR shield 

mutations are highlighted in red. The intended tandem W741L mutation is highlighted in green.  

After multiple rounds of optimisation experiments an ARW741L knock-in CWR22Rv1 derivative 

cell line was finally generated (clone 11). However, further validation experiments are 

required to establish whether it will comprise a reliable cell line model for studying the role 

of the ARW741L
 mutation in CRPC. CWR22Rv1 cells express multiple truncated isoforms of AR 

alongside AR-FL. Hence, in order to attribute the observed phenotypes specifically to mutant 

activity, AR variants will need to be transiently depleted by siRNA knockdown. This approach 

may not provide the best strategy to study AR-FL mutations, however it is a proof-of-principle 

study and highlights the potential and background knowledge to more efficiently generate 

knock-in mutations in genes of interest, i.e. regulators of AR which play a key role in CRPC. 
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4.4. Discussion 

Incurable PC as well as poor understanding of the molecular mechanisms that drive PC 

progression highlight the yet unmet need for improved and physiologically relevant models 

to study AR signalling in PC. So far, research around AR mutations which confer resistance to 

pharmacological agents has been limited to overexpression of the mutant of interest upon 

lentiviral transduction of LNCaP cells (O’Neill et al., 2015; Sun et al., 2006). This approach is 

very often associated with high levels of cytotoxicity, mislocalisation of the protein of interest 

due to overexpression and biased read-outs due to random genomic integration of the 

transgene (Thomas et al., 2003). CRISPR has overcome these challenges and has offered 

scientists the opportunity to generate theoretically more efficiently the desired preclinical cell 

line and mouse models in order to better understand the molecular background of the 

studied disease.  

We aimed to use the technology to generate a CRISPR engineered PC cell line which would 

permanently express the ARW741L
 mutant following knock-in of a donor template, which 

encompassed the point mutation, in the genome of CWR22Rv1 cells via homologous 

recombination. This way endogenous levels of the mutant would be produced avoiding all the 

risks associated with protein overexpression. Ideally an LNCaP ARW741L derivative cell line 

would have been generated alongside the CWR22Rv1 counterpart. LNCaP cells rely 

exclusively on AR-FL for growth and they would comprise a more suitable model to study AR-

FL mutations. However, various limitations such as poor transfection efficiency and delivery 

of Cas9 in combination with limited clonogenicity of LNCaP cells did not allow the generation 

of an ARW741L mutant LNCaP cell line and hence our study was limited to CWR22Rv1 

engineered cells.  

The technology was relatively novel at the start of this project and is still fast-developing. A 

plethora of strategies can be attempted in order to achieve the ultimate goal. Each strategy, 

however, requires often long and multiple optimisation steps and each of them may comprise 

a significant challenge. 

Major determinant of success in carrying out CRISPR knock-in projects is the careful design of 

the chosen strategy starting with gRNA and donor template design, the method of Cas9 

delivery as well as the stability of the different CRISPR machinery components.  
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In our experiments, plasmid-derived Cas9 and transcribed gRNA from an all-in-one plasmid 

vector were used to edit the target AR exon 5 sequence. This kind of approach is linked with 

an increased risk of off-target mutations introduced by promiscuous activity of Cas9 due to 

high expression levels and prolonged presence of Cas9 (Liang et al., 2015). The nuclease was 

indeed present in our mixed cell population even 2 weeks post-transfection, albeit at trace 

levels. Although CRISPR/Cas orthologs, such as Cpf1 nickases are proposed to reduce off-

target effects due to their compromised nuclease activity, they are associated with poorer 

editing outcomes and so were not preferred in our experimental set-up whereby high editing 

efficiency was desired (Bin Moon et al., 2018).   

It is of note that the majority of the predicted off-target sites were located within intronic 

regions of the genome and mutations in these genomic sequences would not, at least in 

theory, cause any deleterious implications in protein function. In addition, intronic regions 

and subsequently off-target sites are associated with heterochromatin and it has been 

suggested that Cas9 has limited, if not eliminated accessibility to these tightly structured 

chromatin regions due to high abundance of nucleosomes (Horlbeck et al., 2016). For those 

off-target sites identified within gene bodies, caution is required. Several studies have 

highlighted the importance of specific targeting by Cas9 and have examined its promiscuity 

by interrogating whole genome sequences performing unbiased deep sequencing. It has been 

consistently demonstrated that a single mismatch between the guide RNA and the off-target 

sequence can be tolerated by Cas9. However, Cas9 activity significantly drops when two 

mismatches are present and finally is completely eliminated when more than two mismatches 

occur, irrespective of their position within the otherwise complementary sequences 

(Anderson et al., 2015; Hsu et al., 2013). In keeping with the latter finding, structural studies 

of the entire CRISPR complex in mammalian cells have indicated that perfect matching 

between the qRNA and the target sequence is required in order for Cas9 to transiently switch 

from its loose inactive conformation to its DNA-docked active one, which is compatible with 

its editing inducing conformation (Sternberg et al., 2015). Given these criteria, the gRNAs used 

in this study should not raise any concerns regarding Cas9 specificity as the number of 

mismatches between the gRNAs and the potential off-target sites was either three or more 

than three, which is not permissive for CRISPR editing.  
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There is always a balance between low off-target risk and high editing efficiency. Since gRNA 

off-target effects were not a major concern given the number of mismatches within their 

sequence, editing efficiency was the most relevant variable to look at. According to a recent 

study gRNA activity is dictated by TT- and GCC-rich motifs located at certain positions within 

its sequence. More specifically, presence of such motifs at positions 17-20 of the gRNA 

sequence blocks editing (Graf et al., 2019). The gRNAs used in this study were analysed for 

their sequence content to confirm that they did not harbour any of these two inhibitory 

motifs and hence were sufficiently potent to induce Cas9 recruitment and subsequent gene 

alterations. 

There were definitely alternative, more promising approaches which could have been used 

and could have potentially resulted in higher editing and HDR efficiencies. More specifically, 

a direct comparison between plasmid derived Cas9 and purified Cas9 protein in complex with 

a chemically modified and hence more stable gRNA (ribonucleoprotein complex, RNP) was 

carried out. In keeping with a previous report (Okamoto et al., 2019), the RNP complex 

demonstrated remarkable editing efficiency over the plasmid derived Cas9 and the HDR rates 

were also significantly elevated when RNP was used (Appendix I). However the main 

limitation in this kind of approach is the lack of a fluorescent or antibiotic marker to allow 

selection of the transfected and potentially CRISPR edited cells, which is critical when the 

transfection efficiency of the host cell line is low and only a limited number of cells in the 

mixed population will eventually contain the desired edit.  

It is now well established that the cut-to-mutation distance must be minimised to achieve 

high HDR rates. Proximal to the cut site edits are more likely to be incorporated compared to 

distal edits as shown previously (Paquet et al., 2016; Wang et al., 2016). That was also evident 

in our initial set-up (gRNA_2 and ssODN_1), whereby the CRISPR-blocking mutations located 

right upstream of the cut site (proximal edits) were incorporated in 3/35 single cell clones as 

opposed to the desired mutation which was located 24 bp downstream of the cut site (distal 

edit) and was only found in 1/35 cell clones. The observed partial incorporation of the ssODN 

could be explained by multiple rounds of annealing between the homologous regions of the 

ssODN and the target sequence as suggested by other groups and highlights the complexity 

of the repair mechanisms that can take place upon DSB (Boel et al., 2018; Wang et al., 2016). 

To avoid incomplete HDR (knock-in of exclusively proximal edits) and enhance insertion 
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frequencies of both proximal and distal edits, silent mutations between the distal edits and 

the cut site should be introduced to potentially reduce homology with the target locus and 

prevent re-annealing and exclusion of the distal edit (Paix et al., 2017). Despite the apparent 

benefits of this approach the incorporation efficiency of distal edits remained higher than that 

of proximal edits. Therefore design of a new gRNA and ssODN was preferred (gRNA_3 and 

ssODN_3), whereby the gRNA directed Cas9 to cut 3 bp upstream of the TGG target codon 

and hence the cut-to-mutation distance was then limited to 4 bases, making the desired 

mutation a proximal edit. In this case, the target codon was also the PAM site which would 

be mutated to TTA upon knock-in of the ssODN and would prevent alongside the other 

proximal CRISPR- blocking mutations re-binding of Cas9 and reversal of knock-in.  

This approach was combined with the realisation that high concentrations of the ssODN are 

desired around the cut site to favour knock-in to the target locus (Carlson-Stevermer et al., 

2017) and therefore a Cas9-mSA expressing plasmid was constructed in the lab.  

Monomeric streptavidin (mSA) was fused through a linker sequence of 48 bases to the C 

terminal end of Cas9. The C terminus was preferred over the N terminus since the latter 

encompasses the NLS sequence required for Cas9 import to the nucleus and hence potential 

risk of NLS masking by the inserted mSA peptide was prevented. A combination of short cut-

to-mutation distance and increasing the availability of the ssODN around the DSB by 

exploiting the high affinity between biotin-streptavidin finally led us to the desired outcome 

and a CWR22Rv1 ARW741L mutant cell line derivate was generated. This approach is gaining 

much more popularity now with different combinations of covalent modifications of Cas9, 

gRNA and donor template (Aird et al., 2018; Gutierrez-Triana et al., 2018; Liu et al., 2017; 

Roche et al., 2018) 

The most common limiting factor when one performs CRISPR knock-in experiments is the 

occurrence of error-prone NHEJ mediated repair. NHEJ is the most prominent DNA repair 

mechanism and the most rapid cellular response triggered upon DSB. It occurs in a frequency 

of almost 99% and therefore outnumbers precise HDR events which are limited to <1%. HDR 

only occurs during a short period of the cell cycle, in the G2 and S phases of the cell cycle and 

that further limits its prevalence. HDR efficiencies have been improved but are still far from 

optimal to enable easy knock-ins.  
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Even with improved HDR rates though, NHEJ events were still persistent, occurring in more 

than 50% of interrogated cell clones. Most clones appeared to have short insertions or 

deletions of 1-5 nucleotides around the cut site which is consistent with published data (Allen 

et al., 2018). Surprisingly, NHEJ events were observed even upon depletion of major 

components of the pathway highlighting the functional redundancy of NHEJ mediators in the 

insulted cells, an observation which contradicts previous reports which claim remarkable 

improvement of precision editing by blocking the NHEJ pathway (Li et al., 2018). 

Finally, even when HDR occurs and the precise knock-in template gets successfully 

incorporated to the host genome, it is accompanied by imprecise monoallelic and/or biallelic 

NHEJ induced edits either upstream or downstream of the precise mutation. In our 

experimental strategy, it was quite apparent that clones positive for the ARW741L mutation also 

harboured indels, suggesting coupling of repair mechanisms, a quite common observation 

from different groups (Paix et al., 2017; Paquet et al., 2016). 

It is apparent that multiple adjustments were required to determine the optimal conditions 

to favour HDR. Time-consuming and labour-intense experiments were performed as they 

required manual handling of hundreds of clones and the identification of a knock-in positive 

clone was very much dependent on chance. Despite its challenges the project was 

accomplished with success and paved the way for more efficient CRISPR editing work in the 

lab. 
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Chapter 5. Generation of an AR-FL knock out CWR22Rv1 cell line derivative using 

CRISPR 

5.1. Introduction 

The emergence of truncated AR proteins called AR splice variants (AR-Vs) is a common 

mechanism of acquired resistance in patients treated with second line antiandrogens, such 

as enzalutamide and abiraterone (Antonarakis et al., 2014). The most commonly identified 

AR-V with clinical relevance is AR-V7 which remains the best characterised due to frequent 

detection in clinical specimens and availability of antibodies for laboratory research. 

However, a plethora of different AR-Vs have been identified in cell lines, xenograft models of 

CRPC and PC biopsies (Cao et al., 2016). They drive PC growth in the presence of anti-

androgens and their expression is associated with shorter patient survival. There are two 

proposed mechanisms which result in the generation of these shorter versions of the full-

length receptor: i) intragenic rearrangements, such as deletions and tandem duplications of 

exonic regions in the AR locus (Li et al., 2011) and ii) alternative splicing of cryptic exons which 

was shown to be induced by ADT (Dehm et al., 2008).  

Co-expression of AR-Vs with AR-FL is a common phenomenon observed in CRPC cell lines and 

clinical specimens. The major question which inevitably arises by the presence of both 

truncated and full-length forms is whether AR-Vs and AR-FL engage with one another to exert 

their function or whether they act independently to promote androgenic signals and 

ultimately disease progression in the absence of androgens. There is currently an ongoing 

scientific debate on whether AR-FL and AR-Vs associate and co-operate; with controversial 

findings from in vitro studies across different laboratories (Luo et al., 2018). 

It has been shown that AR-Vs have diverged from AR-FL and are capable to regulate their own 

distinct transcriptome to drive CRPC. More specifically, AR-V7 drives a cell-cycle associated 

gene signature without requiring AR-FL activity (Hu et al., 2012). Additionally, the CRPC 

relevant LuCaP 86.2 bladder metastasis derived xenograft, which lacks AR exons 5-7 due to 

an intragenic deletion which in turn abrogates AR-FL synthesis but favours expression of a 

truncated AR-V isoform, highlights that AR-FL activity may not be required in CRPC and AR-V 

activity is sufficient to sustain and drive tumour growth (Li et al., 2012). This is in contrast with 
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an interdependent relationship between AR-Vs and AR-FL proposed by Cato et al. and Watson 

et al. (Cato et al., 2019; Watson et al., 2010). 

Physical association between the AR-FL and different variants such as the AR-V7 and 

ARv567es has been reported previously on and off chromatin, suggesting an interdependent 

relationship (Cao et al., 2014; Cato et al., 2019; Sun et al., 2010).  However, there is no clear 

picture that interaction between the truncated and full-length receptors occurs as there is 

much contradictory data to suggest no heterodimerisation events. More precisely, AR-V7 and 

AR-FL co-occupancy of the PSA promoter has been shown in ChIP experiments in CWR22Rv1 

cells grown in castrate conditions (Cao et al., 2014). However, the Dehm group, as well as our 

in-house findings, suggest that such an interaction is not occurring as no heterodimers could 

be detected by immunoprecipitation experiments in the same cell line. In addition, the 

identification of unique AR-V7 binding sites and the distinct transcriptomes support the 

notion that AR-FL is not essential for AR-V function. On the contrary, prostate cancer cells can 

survive and proliferate even when a single AR-V is expressed (Nyquist et al., 2013).        

The majority of groups are focusing on AR-V7 simply because it is frequently detected in the 

clinic and specific antibodies have been developed against it. Despite our limited knowledge 

about its precise role in CRPC, AR-V7 is now a potential clinical biomarker exploited for guiding 

treatment options. The Dehm group have recently developed a CWR-AD1 derivative cell line, 

named R1-D567, which only expresses the clinically-relevant AR-v567es receptor variant and 

have provided significant insight to our understanding of AR-V-driven transcriptomics and 

drug sensitivities in an in vitro setting (Nyquist et al., 2013).  

However, the repertoire of AR-Vs is extremely broad. The plethora of AR-Vs may imply 

different functions and hence contribution of each variant to disease progression. Different 

variants demonstrate different cellular localisation patterns depending on the presence or 

absence of a canonical NLS. This diversity is also associated with different responses to 

pharmacological agents such as taxanes. Taxanes inhibit cell mitosis by altering the dynamics 

of microtubules that make up the mitotic spindle. In PC, taxanes such as doxetaxel and 

cabazitaxel have been used to block AR-FL translocation to the nucleus by impairing trafficking 

of the receptor on the microtubules. AR-FL binds to microtubules via its hinge region and LBD. 

It was therefore expected that AR isoforms that lack these domains will not be impacted by 

taxane treatment. In reality, treatment of LuCaP xenografts with docetaxel  caused 
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sequestration of inactive AR-FL monomers in the cytoplasm, compromised ARv567es nuclear 

translocation as this splice variant retains the hinge region which is the minimum feature for 

binding to microtubules and finally left AR-V7 nuclear localisation unaffected due to the 

absence of both the hinge region and LBD (Bai et al., n.d.; Tagawa et al., 2019) 

Despite the apparent diversity, a recent study has demonstrated that the AR-V7 and AR-V9 

splice variants are co-expressed at comparable levels in patient-derived xenograft (PDX) 

tissues, clinical CRPC biopsies and circulating tumour cells (CTCs) (Kallio et al., 2018; Kohli et 

al., 2017). The same study highlighted that AR-V9 could sustain tumour growth and conferred 

resistance to abiraterone treatment, indicating the importance of this other AR-V variant in 

disease progression which remains understudied compared to AR-V7 (Kohli et al., 2017). In 

addition, analysis of CTCs from mCRPC patients has shown that different combinations of AR 

splice variants are expressed in CTCs (De Laere et al., 2017), further supporting the notion 

that AR-Vs may need to work cooperatively in order to function and orchestrate AR signalling. 

Hence, studying each variant individually might not be the most appropriate approach to 

understand their biology. 

This heterogeneity and plethora of different receptor species present in pre-clinical models 

and clinical specimens indicates that there might be a more complex network that 

necessitates research into understanding AR-V combined activity, rather than focusing on a 

single variant at a time.  

A major limitation in the study of AR-V biology, however, is the paucity of models that allow 

discriminate AR-V-specific functional and phenotypic read-outs that are not influenced by AR-

FL. Performing either AR-FL siRNA-mediated depletion or enzalutamide treatment in AR-FL- 

and AR-V- expressing CWR22Rv1 and VCaP cell lines, several groups including ours have 

attempted to establish models for interrogating AR-V transcriptomics and co-regulator 

requirements (Chaytor et al., 2019; Dehm et al., 2008; He et al., 2018). Although useful, 

incomplete AR-FL depletion or anti-androgen-mediated inactivation in these systems is likely 

to compromise read-outs believed to be AR-V specific and may be a contributing factor to the 

controversy regarding whether AR-FL and AR-Vs have distinct transcriptional programmes. 

However, given that multiple AR-Vs have been detected in individual circulating CRPC tumour 

cells consistent with the CWR22Rv1 and VCaP cell lines, there remains a requirement to 
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develop additional clinically-relevant models that express multiple AR-Vs in the absence of 

AR-FL to enable more robust studies of AR-V biology in advanced disease.  

To this end, we have developed the first of its kind CRISPR-derived AR-FL knockout CWR22Rv1 

cell line that retains expression of all endogenous AR-Vs making it a valuable model for the 

study of receptor splice variants. This new derivative called CWR22Rv1-AR-EK (Exon 

Knockout) is dependent upon AR-Vs for growth, is refractory to all AR-FL-targeting agents and 

displays a gene expression programme similar to parental CWR22Rv1 cells consistent with 

AR-FL and AR-V transcriptional mimicry. 
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5.2. Specific Materials & Methods 

5.2.1. Generation of the CWR22Rv1-AR-EK cell line using CRISPR  

The Cas9/gRNA_2 pLV-U6g-EPCG vector alongside a 180 bp long single stranded donor 

template (ssODN_1) (Sigma) were utilised to engineer the 5' end of AR exon 5 in CWR22Rv1 

cells (Figure 37). Nucleofection, single cell cloning and downstream colony screening were 

carried out as described in 4.2.3. PCR amplification of AR exon 5 was performed using 50 ng 

of gDNA template and the high-fidelity Platinum SuperFi DNA polymerase (Invitrogen) 

according to manufacturer’s instructions. CRISPR editing efficiency was assessed by TIDE 

analysis. 

      

          

Figure 37. CRISPR knock-in strategy to introduce a translational stop codon in AR exon 5 to abrogate 

AR-FL expression. 

5.2.2. CRISPR off-target analysis 

Prediction of off-target effects was performed using the CRISPR design tool developed by the 

MIT as well as the CCTop online tool developed by the University of Heidelberg. The top 20 

off-target sites were predicted based on nucleotide complementarity. The DNA sequences of 

potentially Cas9-insulted genes were downloaded from NCBI. The binding sites of gRNA_2 

were identified within the DNA sequences of these genes. PCR primers spanning those sites 
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were designed (Table 15) and the off-target sites were then amplified using the high-fidelity 

Platinum SuperFi DNA polymerase (Thermo Fischer Scientific) according to manufacturer’s 

instructions. 50 ng of gDNA were used as template input and resultant amplicons were 

sequenced to rule out any unintended CRISPR induced mutations. 

Table 15. Primers used in end-point PCR for CRISPR off-target analysis. 

 

The genomic regions surrounding AR exon 5 were also PCR amplified (see primer sequences 

in Table 16) and interrogated by Sanger sequencing. 

 

Table 16. Primer sequences used to amplify (AR_1) and sequence (AR_2) the genomic region 
of AR intron 4 to intron 5. 

Oligo Name Forward sequence (5’→3’) Reverse sequence (5’→3’) 

AR_1 TCAAACCAGATCGTAGCTGGAA AGAGAGCGGTAGAGGTACTCC 

AR_2 GTGAAAACTGCTGTTTATGTGG TGACGCAGAAGAGCTGAGA 

 

1.5. RNA sequencing and transcriptomic analysis 

2x105 CWR22Rv1 C34 cells were transiently transfected in triplicate for 48 hours with control 

or AR-targeting siRNAs in steroid depleted RPMI media (Gibco) prior to RNA extraction using 

the RNeasy Mini Kit (Qiagen) according to manufacturer’s instructions. 500 ng RNA of each 

triplicate sample was subject to QC (Bioanalyzer, Agilent) and subsequent library preparation 

using the TruSeq Standed mRNA library prep kit (Illumina) (performed by Otogenetics, 

Atlanta, USA). Resultant libraries were subject to paired-end sequencing (100-125) on an 

Oligo Name  Forward sequence (5’→3’) Reverse sequence (5’→3’) 

OFF1 (COL1A2) TGTCTATATGCAATGGGCTTG CGAGCTGGGTTCTTTCTAGAG 

OFF2 (KMT2B) GAAGTTCTACGATGGGAAGGTG GCAGCTTGTTGCTGGCAT 

OFF3 (SLC7A8) TTGAGGTTGCAATCCTACTGAG AGCTCAGGTGACTGACAATCC 
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Illumina HiSeq 2500 sequencer, generating an average of 30 million reads per sample. Each 

data-set was mapped against the reference human genome (GRCh37/Hg19 genome 

assembly) utilising Star and then analysed with HTSeq to extract counts and DESeq2 (R 

package) to perform differential gene expression analysis between pooled control and AR-

depleted samples. Differentially-expressed genes were annotated using a fold change 

threshold of 1.5 between control and AR-V knockdown arms. False discovery rate (FDR) 

threshold was set at 0.01; hence up- and down-regulated genes were identified as those with 

FDR ≤ 0.01 and respective FC of ≥ 1.5 and ≤-1.5. 

5.2.3. Data Availability 

RNA-seq data has been deposited into NCBI Gene Expression Omnibus (GEO) (accession 

number: GSE126306). 

5.2.4. Cell proliferation and Colony Formation assays 

4x106 CWR22Rv1 and CWR22Rv1 C34 cells were seeded in 96-well plates on day 1 and were 

transfected with 25 nM of control or AR-V targeting siRNAs for 72h. A second round of siRNA 

transfection was performed at t=72h and cells were allowed to grow for an additional 48h. At 

end-point, proliferation was assessed using Sulforhodamine B (SRB) assays (as described in 

Chapter 3.15.1). For colony formation assays, CWR22Rv1 C34 cells were transiently 

transfected with either control or AR-targeting siRNAs for 48 hour prior to being subject to 2 

Gy of ionizing radiation and re-seeded at densities of 500 and 1000 cells/well in 6-well plates 

(Corning) for two weeks. Colonies were fixed with 10% neutral buffered formalin solution 

(Sigma) for 30 min and were subsequently stained with 0.01% (w/v) crystal violet before 

counting using an automated colony counter.  

5.2.5. Statistics 

Unless stated otherwise, graphical data shown in each figure represents the mean of three 

independent experiments and error bars indicate +/- standard error of the mean (SEM). For 

analysing the effect of siRNA-mediated knockdown or PARP inhibitor treatment on AR-

mediated gene expression, chromatin enrichment and cell viability by qRT-PCR, ChIP and 

clonogenics experiments, respectively, one-way ANOVA and two-tailed student T-tests were 

conducted depending on the number of variables and * p <0.05, **p<0.01, ***p<0.001 and 

****p<0.0001 were classified as statistically significant.] 
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5.3. Results 

5.3.1. CWR22Rv1 cells were genetically modified to knock-out AR-FL 

A CRISPR/Cas9 knock-in strategy was developed in order to introduce a translational stop 

codon in exon 5 of the AR gene in CWR22Rv1 cells to ablate native AR-FL levels while 

maintaining expression of all AR-Vs endogenous to the parental cell line. The all-in-one 

plasmid vector expressing the Cas9/gRNA_2 CRISPR complex as well as the ssODN_1 donor 

template were used to transiently nucleofect parental CWR22Rv1 cells. Individual clones 

were screened and AR exon 5 was sequenced to identify the genomic alterations introduced 

by Cas9. As expected, there was a large number of clones bearing indels which could 

potentially result in open reading frame shifts and AR-FL gene knock-out. Two cell clones, C34 

and C36 demonstrated an interesting sequence pattern with a premature TAA STOP codon 

resting in the 5' end of AR exon 5 (Figure 38A). The observed sequence variation to the wild-

type sequence was followed-up by WB analysis to confirm absence of AR-FL at protein level 

and ruled out the generation of spurious truncated AR species. Given that the stop codon was 

introduced in exon 5, there was potential to generate an additional AR isoform consisting of 

exons 1-4. To test whether that was the case, cell lysates derived from CWR22Rv1 parental 

cells as well as the C34 and C36 clonal populations were analysed on a 15% SDS-PAGE which 

would allow separation and detection of close in size protein species. An N-terminal AR 

antibody was used to detect all AR species. As expected, no AR-FL was detected in C34 and 

C36, however a band of a suspected AR species consisting of exons 1-4 appeared between 

the AR-Vs and AR-FL corresponding bands in C36 (Figure 38B). The band was diminished by 

siARex1 and siARex4 knockdown confirming that it genuinely comprised a de novo 

synthesised AR species. The size of this non-canonical AR isoform correlated with the size of 

the aberrant sequence (32 DNA bases or 11 aa up to the stop codon) introduced by NHEJ upon 

Cas9-induced DNA DSB (Figure 38A). Importantly, no non-canonical AR species were detected 

in C34 despite the fact that there was an additional sequence of 26 DNA bases (or 8 amino 

acids) upstream of the STOP codon which could have given rise to a truncated AR species 

similar to the one detected in C36. QPCR analysis using an AR exon 3 – exon 4 amplifying 

primer set matched the WB findings by showing severely compromised AR-FL mRNA levels in 

C34 cells, while elevated AR mRNA expression derived from the de novo AR exon1 – exon 4 

species was observed in C36 (Figure 38B). Hence, the C34 AR-FL knock-out cell clone was 
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expanded and utilised in further validation experiments as opposed to clone C36 which was 

dropped from subsequent studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Loss of full-length AR expression in C34 and C36 clonal populations. A. Sequence alignment 

of AR exon 5 from wild-type (WT) CWR22Rv1 cells and CRISPR engineered C34 and C36 CWR22Rv1 

clones. A premature translational stop codon (TAA, highlighted in red) was introduced in AR exon 5 

resulting in AR-FL gene knock-out. B. Loss of AR-FL in C34 and C36 was validated by qPCR using an AR 

exon 3 – exon 4 amplifying primer set (left panel). Parental CWR22Rv1, C34 and C36 cells were subject 

to control (siScr), AR exon 1 (siARex1) and AR exon 4 (siARex4) siRNA knockdown for 48 hours. 

Resulting whole cell lysates were analysed by WB using an N-terminal AR antibody to verify the 

presence of de novo AR species (depicted by asterisk) emerging from the incorporation of the TAA 

stop codon in AR exon 5. a-tubulin was used as a loading control.  
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5.3.2. Identification of the genomic alterations caused in the AR gene upon editing by 

Cas9 

Clone C34 was examined in depth for the genomic alterations introduced by the repair 

mechanisms triggered upon DSB by Cas9. Sanger sequencing revealed that a DNA fragment 

of 75 bases was introduced in AR exon 5 and disrupted its wild-type sequence. As mentioned 

above, this DNA fragment contained a TAA stop codon and led to AR-FL gene knock-out. It 

was initially believed that the insertion was mediated by the NHEJ repair mechanism due to 

the random bases found in its sequence. Surprisingly, closer interrogation of the inserted 

sequence showed that it was part of the complementary strand of ssODN_1. This observation 

led to the hypothesis that the ssODN_1 may had been used as a template for de novo DNA 

synthesis and the newly synthesised DNA fragment which was still homologous to the target 

exon 5 sequence was partially incorporated in the sense strand of the AR gene via incomplete 

HDR (Figure 39A). The presence of the stop codon was confirmed by RFLP, since its 

incorporation created an MseI TTAA restriction cut site. Digestion products of expected sizes 

were observed when clone 34-derived DNA was analysed on an agarose gel which was in 

contrast to parental DNA which was not digested by the restriction enzyme (Figure 39B). 
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Figure 39. Diagrammatic representation of the DNA repair events in clone C34 upon Cas9-induced 

DNA DSB. A. In theory (left panel), the entire ssODN (red bar) was expected to be integrated into the 

host locus via HDR. In reality (right panel), the ssODN was exploited as a template for DNA replication 

and the newly synthesised DNA fragment (yellow bar) was partially flipped/inserted into the AR 

sequence via incomplete HDR. B. The incorporation of the stop codon (highlighted in red) created an 

MseI cut site (depicted by the red arrowhead) in AR exon 5, which was exploited for RFLP analysis 

following PCR amplification of AR exon 5. Digestion products derived from parental and AR-EK 

CWR22Rv1 DNA were analysed on a 2% agarose gel. A 100 bp DNA marker was used for size reference.  

The next step was to determine the size of the Cas9 footprint left in the AR locus upon editing. 

PCR primers were designed to amplify the flanking regions of up to 750 bp upstream and 

downstream of AR exon 5 (Table 16). Subsequent Sanger sequencing analysis using 

AR_2Forward and AR_2Reverse primers (Table 16) indicated no stochastic sequence insults 

(CRISPR-induced indels) on either side of AR exon 5 (example shown in Appendix C). Hence, 

intact and wild-type sequences around AR exon 5 were confirmed. The identity of the AR-FL 

knock-out clone was finally assessed by STR profiling. Ten core STR loci (Figure 40) were 

analysed (analysis was performed by Dr Liloglou’s lab, University of Liverpool, UK) and showed 

100% parity to the parental CWR22Rv1 cells, confirming that this new cell line derivate 

demonstrates a genetic background equivalent to parental cells. Finally, the morphology of 

clone 34 cells was not impacted by CRISPR editing. In fact, they looked similar to parental 

CWR22Rv1 cells when observed under the microscope (Figure 40), suggesting that no 

adhesion associated proteins were off-targeted by the CRISPR complex.  
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Figure 40. C34 demonstrates similar phenotype to parental CWR22Rv1 cells. Cell line authentication 

by STR loci profiling of CWR22Rv1 parental and clone 34 cells (left panel). Bright field images of 

parental CWR22Rv1 and clone 34 cells at 10x magnification taken using Incucyte live cell analysis 

system (right panel). 

5.3.3. CRISPR off-target analysis shows no promiscuous activity of Cas9 

Despite the high number of nucleotide mismatches (beyond 3) between the gRNA sequence 

and the target genomic sequence (Figure 41A), the predicted promiscuous activity of Cas9 

was assessed by experimentally interrogating the top exonic off-target sites individually. 

More specifically, the COL1A2, KMT2B and SLC7A8 loci were PCR amplified and the resulting 

amplicons were subject to conventional sequencing. Importantly, Sanger sequencing and 

subsequent TIDE analysis of the sequence chromatograms showed no alterations in the 

tested sequences when the latter were directly compared and aligned to the counterpart 

wild-type sequences (Figure 41B), highlighting the on-target activity of Cas9. Potential off-

target genes expressed in tissues other than the prostate, as indicated by expression analysis 

using the Human Protein Atlas database were excluded from the analysis. Finally, intronic off-

target sites were not pursued as they are predicted to have minimal if no impact on gene 

expression. The list of intronic Cas9 off-target regions, as predicted using the CRISPR design 

tool is provided in Appendix D. 
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Figure 41. Sequence analysis of the top 5 predicted CRISPR off-target genes demonstrate no off-

target CRISPR activity. A. The nucleotide mismatches between the gRNA sequence and each off-target 

site sequence are highlighted in red. Red asterisks depict genes expressed in tissues other than the 

prostate. B. PCR amplicons of the predicted exonic off-target sites (OFF1, OFF2 and OFF3) were 

analysed on a 2% agarose gel. Gel bands were excised, purified and sequenced. TIDE analysis was 

performed to assess the potential genomic alterations introduced upon genome editing. Blue and red 

bars depict the gRNA_2 binding sites. WBC, White Blood Cells; E, exonic. 

5.3.4. AR-FL is no longer expressed in CWR22Rv1-AR-EK cells upon CRISPR editing 

The CWR22Rv1 derivative C34 was subsequently named CWR22Rv1-AR-EK (AR Exon Knock-

out) as a result of our initial studies showing loss of AR-FL at mRNA and protein level. AR-FL 

mRNA levels were assessed in CWR22Rv1-AR-EK cells and CWR22Rv1 parental cells by qPCR 

using primers to exons 7 (forward primer) and 8 (reverse primer). AR-FL mRNA levels dropped 

significantly in AR-EK cells (Figure 42A) suggesting activation of a surveillance mechanism, 

such as the non-sense mediated mRNA decay, which drives elimination of spurious, non-

physiological mRNA transcripts (Perrin-Vidoz, 2002) and hence may be responsible for 

diminished AR-FL mRNA as a consequence of incorporation of a premature stop codon within 

B. 
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AR exon 5. Interestingly, other truncated AR mRNA transcripts such as ARv5es with a 

premature stop codon in AR exon 6 which resulted upon exon 5 skipping have been shown to 

be subject to nonsense-mediated decay (Uo et al., 2017). 

In addition, multiple AR antibodies recognising different epitopes within the N-terminal 

domain of the AR protein were utilised to detect the AR species expressed in CWR22Rv1-AR-

EK cells by western blotting (Figure 42B). As predicted, no AR-FL was detected, but AR-V levels 

were maintained. To rule out the existence of trace levels of AR-FL protein potentially missed 

by WB (even after 15 min of exposure), we demonstrated that in contrast to CWR22Rv1 

parental cells, no AR-FL was immunoprecipitated using a C-terminal epitope-targeting AR 

antibody in the CWR22Rv1-AR-EK cell line; and only AR-Vs, but not AR-FL, were 

immunoprecipitated using an anti-N-terminal AR antibody (Figure 42C). Importantly, ChIP 

experiments demonstrated that successful dihydrotestosterone (DHT)-induced enrichment of 

AR-FL to the PSA enhancer in CWR22Rv1 cells, using a C-terminal AR-binding antibody, was 

attenuated by an AR exon 7-targeting siRNA, but could not be replicated in the CWR22Rv1-

AR-EK derivative (Figure 42D) confirming loss of AR-FL in this cell line.   
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Figure 42. Validation of AR-FL gene knock-out in CWR22Rv1-AR-EK cells. A. Assessment of AR-FL 

mRNA levels in parental CWR22Rv1 and CWR22Rv1-AR-EK cells by qPCR using primers against exons 

7 and 8. B. CWR22Rv1- and CWR22Rv1-AR-EK-derived whole lysates were subject to immunoblotting 

using four different AR N-terminal-targeting antibodies: AR N20 (Santa Cruz Biotechnology - 

discontinued), AR-BD (BD Pharmingen), AR ab74272 (Abcam) and AR-441 (Santa Cruz Biotechnology). 

Short and long exposures were performed to enable detection of AR-FL in CWR22Rv1 parental cells. 

Dashed line indicates cropped immunoblot. C. CWR22Rv1 and CWR22Rv1-AR-EK cells were subject to 

immunoprecipitation (IP) using either N- or C-terminal-binding AR antibodies and resultant 

immunoprecipitates were probed with an N-terminal-binding AR antibody. Input samples (10%) were 

ran alongside IP samples and were probed with α-tubulin to demonstrate parity in protein quantities 

between the IP experimental arms. D. CWR22Rv1 (left panel) and CWR22Rv1-AR-EK (right panel) cells 

grown in steroid-depleted media supplemented with and without 10 nM dihydrotestosterone (DHT) 

were subject to either siScr or siARex7 knockdown for 48 hours prior to chromatin 

immunoprecipitation (ChIP) using C-terminal-binding AR or control (IgG) antibodies. Quantitative PCR 

was then performed to assess enrichment of AR-FL to the PSA enhancer chromatin region. VCaP cells 

treated with 10 nM DHT for 4 hours were used as a positive control for enrichment of AR-FL. Data 

represents the mean of three independent experiments +/- SEM. Validation of siRNA-mediated AR-FL 

knockdown was demonstrated by immunoblotting of CWR22Rv1 chromatin fractions using anti-AR 

and -histone H2B antibodies. 

5.3.5. AR-V expression remains intact in AR-EK cells  

Given the objective of this work was to generate a new model to enable study of AR-Vs 

without AR-FL, it was extremely important to assess if we had maintained robust expression 

of all native AR-Vs in the CRISPR edited CWR22Rv1-AR-EK cell line. Therefore, expression of 

each AR splice variant was assessed individually by designing reverse qPCR primers which 

discriminately bind to the unique C-terminal cryptic exon of each AR-V. Importantly, the 

clinically relevant AR splice variants AR-V1, AR-V3, AR-V5/AR-V6, AR-V7 and AR-V9 were all 

expressed in the CWR22Rv1-AR-EK derivative and could be depleted by siRNA mediated 

D. 
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knockdown targeting a 3' UTR polyadenylation signal sequence found in all AR-Vs (Figure 43). 

Moreover, the mRNA levels of each AR-V was compared to that of the parental cell line and, 

importantly they remained unchanged upon CRISPR editing, showing comparable levels of 

expression to parental cells (Figure 43). 

 

 

 

 

 

 

 

Figure 43. AR-V levels were maintained in CRISPR edited AR-EK cells. CWR22Rv1 parental and 

CWR22Rv1-AR-EK cells were reverse transfected with non-silencing (scrambled) and AR-V-targeting 

siRNAs for 48h prior to cell harvest and expression analysis of AR-Vs by qPCR (top panel) using specific 

reverse primers (depicted by arrows) to the unique cryptic exons present in the 3’-end of each AR-V 

(bottom left panel). CWR22Rv1 parental and CWR22Rv1-AR-EK cells were cultured in full media 

(containing 10% FBS)/serum-containing media for 72h prior to cell harvest, RNA isolation, reverse 

transcription and mRNA expression analysis of AR-Vs. Data represent the mean of three independent 

experiments -/+ SEM. Expression levels of AR-Vs at protein level were compared between parental 

and AR-EK cells by WB using an N-terminal-binding AR antibody and α-tubulin as loading control.  

5.3.6. AR-Vs maintain expression of AR target genes in the absence of AR-FL 

The capacity of AR-Vs to function as transcriptional regulators independently of AR-FL is 

currently debated with evidence suggesting that AR-Vs remain sensitive to next-generation 

anti-androgens while other studies, particularly that of the R1-D567 cell line, indicates that 

AR-Vs autonomously mediate androgenic signalling without the need of the full-length 

receptor. To investigate this further, CWR22Rv1-AR-EK cells grown in the presence and 
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absence of the synthetic androgen R1881, and enzalutamide were transiently transfected 

with either scrambled or AR-V-targeting (siAR-V) siRNAs and AR-target gene expression was 

assessed. Quantitative PCR analysis demonstrated that PSA, TMPRSS2, UBE2C and ATAD2 

remained unaltered in the presence of R1881 and enzalutamide, which is consistent with loss 

of AR-FL and activity of AR-Vs, but were all diminished upon depletion of AR-Vs, indicating 

that AR-Vs maintain transactivation of canonical AR target genes in this cell line ().  

 

Figure 44. AR-Vs maintain transactivation of canonical AR target genes in CWR22Rv1-AR-EK cells. 

CWR22Rv1-AR-EK cells grown in steroid-depleted media were reverse transfected with scrambled and 

AR-V (siAR-V)-targeting siRNAs for 72h. Cells were treated with either vehicle, 1 nM R1881 or 10 µM 

enzalutamide for the final 24h. PSA, TMPRSS2, ATAD2 and UBE2C mRNA expression levels were 

assessed by qPCR. Data represents the mean of three independent experiments -/+ SEM. Whole cell 

lysates from a parallel experiment were analysed by SDS-PAGE to confirm AR-V knockdown at protein 

level using an N-terminal binding AR antibody. 

 

Moreover, AR target gene expression in CWR22Rv1-AR-EK cells was not impacted by siRNAs 

targeting the C-terminus of the receptor (exon 4: siARex4 and exon7: siARex7) (Figure 45) 

PSA 
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which is again in line with loss of AR-FL and further supports the concept that androgenic gene 

expression is driven by AR-Vs in this cell line derivative. 

 

 

Figure 45. Androgenic gene expression was maintained by AR-Vs in CWR22Rv1-AR-EK cells. 

CWR22Rv1-AR-EK cells grown in steroid-depleted media were subject to scrambled, exon 4 (siexon4) 

or exon 7 (siexon7) siRNA knockdown for 48h. Cells were treated with either vehicle or 10 nM DHT for 

the final 24h. UBE2C, KLK2 and PSA mRNA expression levels were assessed by qPCR. Data represents 

the mean of three independent experiments -/+ SEM. Accompanying immunoblots (bottom panel) 

were incorporated to verify efficient siRNA-mediated AR depletion (siARex1 in AR-EK cells) and specific 

targeting of AR-FL (siARex4 and siARex7 in parental cells). 

 

Finally, expression of AR target genes in the CWR22Rv1-AR-EK derivative was largely 

consistent with parental CWR22Rv1 cells grown in both the presence and absence of DHT, 

and for UBE2C and FKBP5, was also comparable to the R1-D567 TALEN-engineered cell line 

(Figure 46A) confirming the ability of AR-Vs to function as transcriptional regulators without 

requiring AR-FL. This also suggests the occupancy of previously AR-FL associated genes by AR-

Vs, a finding which was backed up by ChIP data which indicated that AR-Vs are recruited to 

the cis-regulatory elements of classical AR genes such as PSA, KLK2 and TMPRSS2 when AR-FL 
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is absent, while they retain their original chromatin sites on the CCNA and UBE2C cis-

regulatory regions (Figure 46B). Finally, expected localisation of AR-Vs in the nucleus was 

confirmed by immunofluorescence (Figure 46C). 
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Figure 46. Occupancy of cis-regalatory elements of canonical AR target genes by AR-Vs. A. 

Comparison of PSA, TMPRSS2, UBE2C and FKBP5 mRNA levels between CWR22Rv1, CWR22Rv1-AR-EK 

and R1-D567 cells grown in steroid-depleted media supplemented with or without 10 nM DHT, as 

indicated. Data represents the mean of three independent experiments -/+ SEM. AR protein levels 

were assessed by immunoblotting using N-terminal binding AR, AR-V7 and β-actin antibodies. B. 

CWR22Rv1-AR-EK cells were subject to control (scrambled) or AR (siARexon1) knockdown for 48 hours 

prior to ChIP incorporating either N-terminal AR-binding or control (IgG) antibodies. Data represents 

the mean of three independent experiments -/+ SEM (*, **, ***, **** represent p< 0.05, 0.01, 0.001 

and 0.0001, respectively as determined using one-way ANOVA). Accompanying immunoblot of 

CWR22Rv1-AR-EK whole cell lysates (WCL) and chromatin fractions, incorporating AR and histone H2B 

antibodies, demonstrates successful depletion of AR-Vs in siARex1-transfected cells. C. Representative 

bright field (BF) and immunofluorescence images of CWR22Rv1-AR-EK cells at 40x magnification. Scale 

bars are 25 μm. 

5.3.7. Transcriptomic analysis of CWR22Rv1-AR-EK cells 

This is the first study to provide unbiased global AR-V transcriptomic read-outs in a cellular 

background free of AR-FL upon CRISPR-mediated gene knock-out, not relying on just 

compromised expression of AR-FL upon partial siRNA-mediated depletion. Hence, the 

possibility of AR-FL protein traces interfering with the read-outs has been ruled out. 

Transcriptomic analysis in this unique background was performed in an attempt to highlight 

networks that AR-Vs regulate autonomously either directly or indirectly. More precisely, RNA 

sequencing of CWR22Rv1-AR-EK cells was carried out to elucidate the molecular pathways 

controlled exclusively by AR-Vs to ultimately indicate potential AR-V specific targets which 

would be validated in in vitro and in vivo models, revealing yet unknown vulnerabilities of 

prostate cancer potentially exploited in the clinic. 

Therefore CWR22Rv1-AR-EK cells were grown in steroid-depleted conditions and were 

transfected with either an AR exon 1-targeting or scrambled control siRNAs to define the AR-

V transcriptome. Extracted RNA from the siARexon1 and non-silencing arms of the 

C. 
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experiment underwent QC evaluation. Knockdown efficiency of AR-Vs was evaluated by qPCR 

and WB (Figure 47). A number of known AR-target genes were interrogated for the expected 

drop in mRNA levels using the same RNA samples outsourced to Otogenetics (NGS service 

provider) for library preparation and RNA sequencing. Sufficient mRNA knockdown of over 

50% was achieved and AR-Vs were successfully depleted at protein level in all biological 

replicates allowing downstream high-throughput analysis.  

 

Figure 47. Preparation of RNA sequencing samples to define the AR-V transcriptome. Validation of 

AR-V knockdown efficiency in CWR22Rv1-AR-EK cells seeded in steroid depleted media and reverse 

transfected with control (scrambled) and AR-targeting (siARexon1) siRNAs for 48h. Canonical AR-

target gene and AR-V7 expression levels were assessed by qPCR (left panel). Data represents the mean 

of three independent experiments -/+ SEM. AR knockdown efficiency was determined in triplicate 

(n=1, n=2 and n=3) by immunoblotting using an N-terminal targeting AR antibody. Dashed line 

indicates cropped immunoblot (right panel).  
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Bioinformatics analysis of the CWR22Rv1-AR-EK RNA-seq data was performed by Otogenetics, 

Atlanta, USA. AR-V knockdown was confirmed by Integrative Genomics analysis of the 

alignment data for each sample analysed by RNA-seq. In line with the pre-RNA-seq siRNA 

efficiency validation (Figure 47), resultant Sashimi plots indicated substantially reduced levels 

of AR-Vs in all triplicate siAR-V samples (Figure 48).   

Figure 48. Confirming AR-V depletion in siARex1 transfected CWR22Rv1-AR-EK cells. Sashimi plots 

of AR gene exon2-3 reads in siARex1 (red) and siScr (green) conditions. Vertical lines indicate read 

coverage and curved lines indicate splice junctions. Numbers on curve lines denote the number of 

spliced reads spanning the junctions. The hg19 panel shows the positions of the exons (blue boxes) 

and introns (blue line) as annotated in the hg19 UCSC human genome. Evidence of reads spanning 

exon 3 and the downstream cryptic exons located in intron 3 (potentially indicate the presence of AR-

V1, V5, V7 and V9 splice variants) were found in siScr but dramatically reduced in siARex1 samples. 

Similarly, reads spanning exon 2 and the downstream cryptic exons located in intron 2 (potentially 

indicate the presence of AR-V3) were found in siScr, but reduced in siARex1 samples. 

Stringent criteria were applied to determine the number of genes which were significantly 

altered upon AR-V depletion. More precisely, false discovery rate (FDR) threshold was set at 

0.01; hence significantly altered genes were identified as those with FDR ≤ 0.01. Applying this 

criterion to the CWR22Rv1-AR-EK gene list, 3095 genes were identified as significantly altered 

upon AR-V depletion (MA plot) and were further sorted to up- and down-regulated genes 

using a fold change cut-off of 1.5 (Figure 49A). Hence, we identified 607 and 744 genes 

showing increased and decreased expression, respectively (Appendix E). Altered genes 

clustered closely across the three biological replicates (Figure 49B) demonstrating opposite 
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trends between the two experimental arms (scrambled vs siARexon1) (Figure 49C). In order 

to validate these findings, our data set was compared to two previously published data sets; 

one from our lab and one from Huang’s lab. Both previous studies revealed the transcriptomic 

spectrum of AR-Vs in CWR22Rv1 cells depleted of AR-FL either by siRNA-mediated knockdown 

or enzalutamide treatment, respectively.  Of note, overlaps of 32% and 48% were observed 

between our study and the previous in-house and He et al. studies respectively (Figure 49D), 

validating the robustness of our findings and indicating substantial retention of AR-V activity 

in the newly developed cell line whilst highlighting its importance as a valuable model for AR-

V studies. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 49. Deletion of AR-Vs in CWR22Rv1-AR-EK cells impacts global gene expression. A. MA plot of 

RNA sequencing data demonstrating statistically significant gene expression changes (p<0.01) above 
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and below the 0 y-intercept representing up- and down-regulated genes, respectively, highlighted in 

red. B. Principal component analysis (PCA) plot of RNA sequencing data from three biological 

replicates for each individual sample showing separation of the tested experimental conditions 

(scrambled vs siARexon1, X axis) and minimal experimental variance across biological replicates (Y 

axis). C. Heatmap of log transformed normalised expression of up- and down-regulated genes in 

triplicate CWR22Rv1-AR-EK cells subject to either control (scrambled) or AR-V (siARexon1) siRNA 

depletion. The data is row-scaled with red and blue representing relative higher and lower expression, 

respectively. D. Comparison of the CWR22Rv1-AR-EK RNA-seq dataset to two previously published 

datasets derived from RNA-seq (top) and microarray (bottom) analysis of CWR22Rv1 parental cells 

depleted of AR-Vs. Venn diagrams show AR-V regulated gene overlaps of 48% and 32%, respectively.  

5.3.8. AR-Vs are cell cycle and DNA damage response (DDR) regulators  

Functional analysis of the significantly altered genes revealed two signalling 

pathways/biological processes which were significantly impacted upon AR-V loss in 

CWR22Rv1-AR-EK cells and are hence activated by the truncated receptors in CRPC: 1) the cell 

cycle and mitosis pathway; 2) the DNA damage response pathway (Figure 50).  

 

 

 

 

 

 

 

 

 

 

Figure 50. Bar chart of the most significantly altered signalling pathways upon AR-V depletion in 

CWR22Rv1-AR-EK cells. Gene ontology analysis was performed using FunRich. Down-regulated 

pathways are shown in purple, up-regulated pathways are shown in turquoise. The % of genes 

identified in each pathway are shown alongside absolute gene numbers and statistical significance of 

the enriched genes featuring in each pathway (Appendices G & H). 
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5.3.9. AR-Vs regulate cell cycle, cell proliferation and cell fat 

The role of AR-Vs in regulating cell cycle and mitosis has been highlighted in previous prostate 

cancer studies with He et al. being the most recent one. Our findings are consistent with the 

current literature and strongly support a pro-proliferative role of AR-Vs. More specifically, 

functional analysis of the significantly altered genes derived from RNA-seq analysis indicated 

gene clusters significantly associated with namely DNA replication, cell division and cell cycle 

phase transition (Figure 51 and Appendix G).   

 

 

 

 

 

 

 

 

 

 

Figure 51. Bar chart of the most significantly downregulated cell cycle related processes upon AR-V 

knockdown in CWR22Rv1 AR-EK cells. Gene ontology analysis was performed using FunRich. The % 

of genes identified in each pathway are shown alongside statistical significance of the enriched genes 

featuring in each pathway. 

In turn, cell proliferation assays were performed not only to validate the RNA-seq data, but 

also to evaluate whether CWR22Rv1-AR-EK cells still rely on AR-V activity for growth and 

expansion upon permanent loss of AR-FL. Therefore, CWR22Rv1 and CWR22Rv1-AR-EK cells 

were transiently transfected with two siRNA oligos; an ARexon1-targeting siRNA to deplete 

AR-FL and all AR-Vs and a 3’UTR-targeting siRNA to deplete all variants which share a common 

polyadenylation signal within the 3’UTR, downstream of cryptic exons. Cell proliferation 

capacity was assessed by SRB assays whereby cells were allowed to grow for 5 days (which is 

equivalent to 2 passages) and were siRNA transfected twice during that time-course. 
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Conventional microscopic image analysis indicated that growth was significantly impacted 

with cell shrinkage and death being apparent in the AR knockdown arms (Figure 52A). 

Quantitative analysis using SRB measurement as the end-point read-out demonstrated a 

significant drop of approximately 50% in CWR22Rv1-AR-EK cell proliferation when cells were 

depleted of AR-Vs with each siRNA (Figure 52B) indicating that AR-FL knock-out CWR22RV1-

AR-EK cells are still highly dependent upon AR-Vs for their survival and proliferation, a finding 

which was backed up by colony formation assays. In line with proliferation stall, cell 

propagation was severely impacted by loss of AR-Vs to the extent that cell colony formation 

was reduced by 50% (Figure 52C), highlighting a critical role of AR-Vs in cell fate. 
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Figure 52. AR-Vs dictate the proliferation potential of CWR22Rv1 parental and AR-EK cells. A. Bright 

field images of CWR22Rv1 parental and AR-EK cells transfected with control (siScr), AR exon1- and AR-

V-targeting siRNAs for 72h. B. Proliferation of CWR22Rv1 parental and AR-EK cells transfected with 

control (siScr), AR exon1- and AR-V-targeting siRNAs measured using SRB assays at t=120h post-

transfection. Accompanying AR immunoblots are shown to indicate successful AR depletion in both 

cell lines. C. CWR22Rv1 AR-EK cells assayed for their colony forming capacity following transfection 

with control (siScr) and AR exon1 (siARex1)-targeting siRNAs for 48h. Two different cell densities were 

examined and colonies arising two weeks post-transfection were fixed, stained (left panel) and 

quantified (right panel). Accompanying AR immunoblot is shown to indicate successful AR-V depletion. 

5.3.10. AR-Vs are master regulators of DDR 

An extremely interesting observation from CWR22Rv1-AR-EK transcriptomic profiling, and 

subsequent functional analysis of the most down-regulated genes following AR-V depletion, 

was the apparent enrichment of DNA repair pathways suggesting involvement of the 

truncated AR receptors in controlling DDR and DNA repair processes (Figure 53 and Appendix 

H).  
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Figure 53. Bar chart of the most significantly downregulated DDR related processes upon AR-V 

depletion in CWR22Rv1 AR-EK cells. The % of genes identified in each pathway are shown alongside 

statistical significance of the enriched genes featuring in each pathway. 

Specifically, a cohort of 41 DDR-associated genes were significantly down-regulated when AR-

V levels were compromised indicating that the latter are directly or indirectly involved in DDR 

(Figure 54A). Our findings were validated by comparing our DDR gene set to an independent 

and in-house CWR22Rv1-derived AR-V transcriptome (He et al., 2018 GEO:201826 and Jones 

et al., 2015 GEO:201522) demonstrating respective 95% and 59% overlaps of AR-V-regulated 

DNA repair genes (Figure 54B).  

 

 

 

 

 

 

 

DNA damage checkpoint 

HR-mediated DSB repair 

DNA repair 

DNA synthesis involved in repair 

Percentage of genes 

-log10 (p-value) 

p=0.05 - reference 
p<0.05 

% genes 



142 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54. AR-Vs drive expression of a DNA damage response gene signature. Heatmap showing log 

transformed normalised expression of the 41 DDR associated genes identified in triplicate CWR22Rv1-

AR-EK cells transfected with either control (siScr) or AR (siARex1) siRNAs. The data is row-scaled with 

red and blue representing relative higher and lower expression, respectively. Venn diagram 

demonstrating overlap of the 41 DDR-associated genes identified in CWR22Rv1-AR-EK cells and those 

identified in CWR22Rv1 cells depleted of AR-Vs (He et al., 2018 and Jones et al., 2015). 
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A more detailed analysis of the impacted DDR genes showed the broad range of DDR 

pathways (detailed in Figure 55) regulated by AR-Vs. There were remarkable gene overlaps 

across different pathways with a few genes, namely EXO1 and BRCA1, involved in more than 

one pathways. 

Figure 55. Spectrum of DDR signalling pathways activated by AR-Vs in CWR22Rv1 AR-EK cells. Genes 

featuring in each pathway are shown. 

Further in silico analysis using the Grasso mRNA data set (GSE35988) indicated a gene set 

which is significantly upregulated in metastatic CRPC biopsies compared to localised PC and 

BPH biopsies (Figure 56A). Additional analysis using the TCGA-PRAD data set indicated that all 

41 DDR-associated genes identified in our study are upregulated in PC patients and more 

importantly in a cohort of 84 AR-V7 positive patients (Figure 56B), strengthening the 

proposed association between AR-V7 status and DDR regulation initially observed in our in 

vitro model. More importantly, a positive correlation between AR-V7 expression and DDR 

gene regulation was observed for a subset of genes, with significantly elevated mRNA levels 

in AR-V7 positive vs negative patients (Figure 56C). All the above findings strongly support AR-

Vs contribution to elevated DNA repair proficiency in CRPC by essentially acting as potent 

activators of DDR genes. 
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Figure 56. Expression of AR-V regulated DDR genes is elevated in mCRPC and positively correlates 

with AR-V7 mRNA expression. A. Expression of the 41 AR-V activated DDR genes identified in this 

study was in silico assessed in BPH (n=12), localised PC (n=49) and metastatic CRPC (n=27) biopsies 

using the Grasso data set. Box plots of the significantly upregulated genes in mCRPC are shown. B. The 

same gene signature was assessed using the TCGA-PRAD data set. AR-V7 status (absence/presence) 

was applied as an additional clinical parameter/variable. Deep deletion refers to homologous deletion. 

C. Of the 41 DDR-associated genes, 9 demonstrated significantly elevated expression in AR-V7 positive 

biopsies (n=84) (bottom panel).  

5.3.11. AR-Vs attenuate sensitisation to ionising radiation 

The latter observations suggest that AR-V expression may confer resistance to IR in CRPC via 

overexpression of multiple DDR associated genes which promote efficient DNA repair to fix 

the IR-induced damage. To examine this latter hypothesis, CWR22Rv1-AR-EK cells were 

subject to AR-V depletion followed by exposure to IR and were allowed to expand and form 

colonies for two weeks. Importantly, AR-V depleted cells treated with 2Gy IR had significantly 

C. 



147 
 

reduced survival and colony forming capacity than either depleting AR-Vs or irradiating cells 

independently (Figure 57). 

 

 

Figure 57. AR-V depletion sensitises CWR22Rv1-AR-EK cells to IR. CWR22Rv1-AR-EK cells transfected 

with either control (siScr) or AR exon1 (siAR-exon1)-targeting siRNAs were subject to 2Gy IR treatment 

(+IR) and were allowed to grow for two weeks alongside untreated cells (-IR). Individual colonies were 

fixed, stained with crystal violet (top panel) and quantified (bottom left panel). Cell lysates from a 

parallel experiment were immunoblotted using an N-terminal-targeting AR antibody to confirm AR-V 

depletion (bottom right panel). 

To measure the extent of DNA damage upon IR in CWR22Rv1-AR-EK cells depleted of AR-Vs, 

γH2Ax foci formation at DSB was visualised 24 hours post-IR by immunofluorescence and 

quantified. Successful recruitment of phosphorylated γH2Ax was induced in IR treated cells 

as opposed to untreated cells in which no γH2Ax foci were observed. Resolution of DSB after 
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24 hours was severely impacted in AR-V depleted cells as evident by the significantly elevated 

number of γH2Ax foci indicative of increased DNA damage or decreased repair capability of 

these cells compared to those transfected with scrambled siRNA oligo (Figure 58A). 

Nevertheless, the exact signalling cascade triggered by IR in AR-V depleted cells is unknown. 

Loss of AR-Vs seems to lead to an increase in ATM protein levels, followed by an increase in 

phospho-ATM protein levels, stabilisation and phosphorylation of γH2Ax and recruitment of 

the latter to DSBs on insulted DNA (Figure 58B). However, further investigation is required to 

establish the kind of interaction and mediating signals between AR and ATM. Finally, cleaved 

PARP, a marker of cell death, was increased in AR-V-depleted IR-treated cells compared to 

scrambled control (Figure 58B), further supporting the notion that loss of AR-Vs coupled with 

IR might provide a new avenue for managing AR-V positive CRPC patients in the clinic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58.  Loss of AR-V expression associates with DNA repair deficiency in CWR22Rv1-AR-EK cells. 

A. CWR22Rv1-AR-EK cells subject to either siScr or siARex1 knockdown were treated with and without 

A. 

B. 
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2Gy IR and then incubated for 24h before quantifying γH2Ax foci (red speckles). Representative 

immunofluorescence images at 20x magnification are shown. Scale bars are 50 µm. Box plot in the 

right panel represents the average number of foci per cell as calculated from two independent 

experiments ± SEM. B. Schematic of the signalling cascade triggered by ionising radiation treatment 

in AR-V depleted CWR22Rv1-AR-EK cells. ATM is rapidly phosphorylated and activated, it then 

phosphorylates γH2Ax which is recruited to DSBs alongside other DNA repair mediators to fix the 

damage. Cell lysates derived from a parallel experiment to (A) were immunoblotted with AR (N), ATM, 

phospho-ATM (pATM), PARP1/2 and β-actin antibodies. 

Taken together, AR-Vs mediate DNA repair and loss of AR-V expression leads to cell 

sensitisation to IR. 

5.3.12. AR-Vs may act as transcriptional repressors of tumour suppressor genes 

DAVID functional analysis indicated that genes which are upregulated upon AR-V knockdown 

and hence normally repressed by AR-Vs in advanced disease clustered in a wide range of 

functional groups associated with transcription repressor activity, negative regulation of cell 

cycle and gene expression, induction/positive regulation of apoptosis and response to 

UV/radiation (Figure 59). It is apparent that all mentioned pathways are linked with a tumour 

limiting/suppressive phenotype and when they are repressed by AR-Vs tumour progression 

becomes feasible, indicating that AR-Vs might be involved in repressing tumour suppressor 

genes. Although it comprises a novel and exciting finding, this avenue has not been deeply 

explored yet and hence requires more research to understand the contribution of AR-Vs in 

tumour progression via tumour suppressor gene silencing. Similar findings, supported by 

cistromic analysis of AR-Vs were recently published and are in line with a tumour limiting role 

of AR-Vs, particularly AR-V7 in CRPC (Cato et al., 2019). 
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Figure 59. Functional analysis of the most up-regulated pathways upon AR-V depletion in CWR22Rv1 

cells. 

5.4. Discussion 

The major aims of the study were to: (i) investigate whether AR-Vs are able to exert their 

oncogenic functions independent of AR-FL, (ii) identify the exact pathways AR-Vs control in 

an AR-FL free cellular background and (iii) highlight novel therapeutic avenues to eventually 

potentiate drug discovery and future clinical trials. Therefore, we generated a novel cell line, 

derivative of the CWR22Rv1 line, CWR22Rv1-AR-EK, which was genetically modified to knock-

out AR-FL and study the functional role of the remaining AR-Vs endogenously expressed. This 

novel cell line model mimics/recapitulates what is seen in the clinic whereby AR-FL is 

pharmacologically blocked while AR-Vs emerge, enable retention of androgenic signalling and 

ultimately drive tumour progression.  

Firstly, in preparation and subsequent validation of the newly synthesised CWR22Rv1 cell 

derivative, Cas9 did not affect any predicted off-target loci as no DSBs and subsequent indel 

formation were observed in those sites, which is consistent with previous reports detailing 

limited Cas9 target promiscuity (Anderson et al., 2015). However, deep sequencing is 

recommended and needs to be performed to further support the robustness of our findings. 

The CRISPR knock-in strategy presented in this study ended up being more complicated than 

the initial conception, which relied on a straight-forward integration event of the donor 

template, containing the desired stop codon, into exon 5 of the AR gene via homologous 

recombination. Our observations, however, indicated that the single-stranded donor 

template was utilised as a template for de novo DNA synthesis with the newly synthesised 

DNA fragment being knocked-in via HDR. This phenomenon was not limited to our cell line 

model as it was also observed in C. elegans (Paix et al., 2016) and zebrafish (Boel et al., 2018) 

and more recently in other human cell lines (Paix et al., 2017).  

Characterisation of CWR22Rv1-AR-EK cells indicated that AR-V expression remains intact 

post-CRISPR engineering of the AR gene. They are potent activators of classical AR target 

genes such as PSA, KLK2 and TMPRSS2. Conventional ChIP experiments demonstrated that 

AR-Vs occupy loci otherwise occupied by AR-FL. They hence maintain an AR-FL-like 

transcriptome, a finding also supported by Chen et al. (Chen et al., 2018). This is not a surprise 
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if one considers that transcriptomic/cistromic profile overlaps between AR-FL and AR-V7 have 

been shown previously (He et al., 2018). Nevertheless, a more global analysis of the AR-V-

specific cistrome in that specific cellular background is required as a considerable degree of 

cell line specific variation has been observed (Chen et al., 2018).   

Importantly, AR-Vs act unhindered by loss of AR-FL to sustain cell proliferation, confirming 

previous studies which identified AR-Vs as master regulators of cell cycle progression and cell 

fate (Dehm et al., 2008; Jones et al., 2015). Their pro-proliferative role was in fact strongly 

supported by the significant drop in cell proliferation and survival rates and the observed 

inability of cells to recover when all endogenous variants were depleted, indicating that AR-

Vs are the main drivers of tumour growth and progression.  

Another equally important outcome of our analysis is that AR-Vs comprise potent activators 

of DDR associated genes. As a rule of thumb, BRCA-deficient cancers cannot mediate HR and 

are therefore vulnerable to IR. Eventually they develop resistance by upregulating and 

utilising PARP1 as a back-up DNA repair mechanism to fix IR-induced DNA damage. PARP 

inhibition has now become the gold standard approach to treat these cancers (Ganesan, 

2018). In PC, transcriptomic profiling of LNCaP xenografts and prostate cancer cell lines has 

consistently shown that AR-FL is associated with DDR regulation (Spratt et al., 2015). In fact, 

AR-FL inhibition reduces DDR gene expression, conferring a BRCAness-like phenotype which 

eventually leads to apoptosis and tumour recession due to unresolved DNA damage induced 

by radiation (Asim et al., 2017). Similar to the BRCA deficiency scenario, AR-FL-depleted 

prostate tumours eventually acquire properties which allow them to overcome this obstacle. 

In particular, they upregulate PARP1 which can mediate repair and rescue IR insulted cells. In 

this context, ADT combined with PARP inhibition, an approach known as synthetic lethality 

has demonstrated efficacy in the clinic (Lord and Ashworth, 2017). From our findings, we 

hypothesised that tumours with AR-V expression will sustain DDR, abrogating response of AR-

V positive CRPC patients to IR. This latter assumption was confirmed by our observation that 

AR-Vs regulate expression of DNA repair genes in an AR-FL-deprived cellular background, such 

as the CWR22Rv1-AR-EK cell line. In all, AR-Vs define a gene signature which is consistent with 

a BRCAness-like gene signature identified by previous studies (Li et al., 2017), strongly 

suggesting that AR-V positive tumours display enhanced DNA repair proficiency which is, in 
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turn linked to the non-responsiveness to IR observed following AR-FL inhibition by 

enzalutamide. 

However, it remains unknown as to whether AR-Vs regulate this gene cohort directly. 

Polkinghom et al. (Polkinghorn et al., 2013) performed RNA-seq analysis and identified a DNA 

repair gene signature (n=74) which is activated by androgens in LNCaP derived xenografts. 

Further analysis by ChIP-seq revealed the presence of canonical AR-FL binding sites at cis-

regulatory regions (enhancers) of almost half of the androgen regulated DNA repair genes, 

defining a subset of DNA repair genes (n=32) which comprise bona fide AR targets. Based on 

previous observations that AR-Vs can occupy classical AR-FL binding sites (including PSA, 

TMPRSS2 etc.) in the absence of AR-FL (Chen et al., 2018), it is conceivable that AR-Vs can 

similarly bind to enhancers of DNA repair genes and promote transcription ruling out an 

indirect mechanism of regulation. However, global cistromic analysis in CWR22Rv1 AR-EK cells 

is required to confirm this hypothesis.   

We have shown that tumour promoting processes such as cell proliferation and DDR are 

indeed downregulated upon AR-V knockdown and hence normally activated by AR-Vs in CaP. 

Interestingly we have concluded that AR-Vs may act as suppressors of genes which are linked 

with tumour suppression and recession. In fact, our analysis indicated that genes which are 

upregulated upon AR-V knockdown and hence normally repressed by AR-Vs clustered in a 

wide range of functional groups associated with a tumour limiting/suppressive phenotype 

and when they are repressed by AR-Vs tumour progression becomes feasible, indicating that 

AR-Vs might be involved in repressing tumour suppressor genes. Critically, this data fits with 

a very recent report that AR-Vs, particularly AR-V7 mediates trans-repressive activities in 

CRPC (Cato et al., 2019)and are capable of down-regulating a distinct tumour suppressor 

gene-set. 

Our results rely on a cell line model derived from a single cell. It would be great to be able to 

test our hypotheses using more than one AR-FL knock-out (KO) clones in parallel. The study 

would be remarkably strengthened if our findings from CWR22Rv1 AR-EK cells (clone c34) 

could be replicated in a different CWR22Rv1 clonal cell population with the same CRISPR 

induced genetic modifications (AR-FL KO). 
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To sum up, we have shown that AR-Vs can retain their full functional capacity when AR-FL is 

lost, and act as dual regulators of gene expression by enforcing tumour promoting 

mechanisms while suppressing tumour elimination processes, indicating that AR-Vs remain 

the most clinically relevant disease drivers  to be targeted.   
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Chapter 6. Repurposing CRISPR to identify AR-V7 specific splicing factors 

6.1. Introduction  

Targeted agents to inactivate AR-Vs is a current clinical unmet need. Lack of the druggable 

LBD in concert with the disordered N-terminal structure of AR-Vs makes drug design against 

these receptors extremely challenging. Considerable efforts to develop alternative 

therapeutic opportunities to tackle persistent AR-V signalling is currently underway. One 

attractive option involves disruption of spliceosome assembly to prevent formation of AR-V 

mRNA and subsequent protein expression (Paschalis et al., 2018). 

Aberrant alternative splicing has been reported in prostate cancer (Munkley et al., 2017). 

Despite its contribution to disease progression it simultaneously offers the opportunity of 

novel therapeutic avenues to be explored and targeting the spliceosome might reveal new 

vulnerabilities in prostate cancer. A genome wide CRISPR knock-out screen in prostate cancer 

cell lines revealed a number of splicing factors responsible for the production of alternatively 

spliced mRNA transcripts which demonstrate tumour-promoting properties (Fei et al., 2017). 

Over the past few years, more refined and target-specific studies claimed to have identified 

splicing factors responsible for the generation of AR-V7 namely ASF/SF2 (Liu et al., 2014), 

Hsp90 (Ferraldeschi et al., 2016) and Sam68 (Stockley et al., 2015).  

Despite the efforts to develop specific inhibitors against components of the spliceosome, no 

promising clinical trials have been reported yet and although early stage clinical trials are 

currently ongoing, all existing evidence to date is derived exclusively from preclinical models 

(reviewed by Paschalis et al, 2018). Nevertheless, the field remains elusive, a fact that 

necessitates more robust research strategies. 

Splicing is highly complex and is characterised by precise and tightly regulated processes 

principally controlled by cis-regulatory sequences present in the intron-exon junctions of pre-

mRNA substrates. Canonical sequences have been described and are frequently found in 

splice sites surrounding introns. They comprise strong splice sites which compete against 

weak splice sites for selection by the spliceosome (Paschalis et al., 2018). Importantly, the 

splice sites that surround AR cryptic exon 3 show high resemblance to the consensus 5’ 

GAG/GUAAGA and 3’ NYAG/A splice sites, suggesting they may be selected over weaker splice 



155 
 

sites to drive AR-V synthesis; and certain mechanisms or treatments may favour this selection 

in CRPC. 

Identification of the AR-V7 spliceosome will fill a critical knowledge gap in our understanding 

of how AR-Vs are generated and provide key targets for future therapeutic intervention in 

advanced PC patients. A high precision antibody affinity-based approach to identify AR-V7 

specific splicers was developed: what causes the inclusion of CE3? What are the factors which 

assemble the splicing machinery and carry out mRNA processing? Although a genome-wide 

CRISPR screen would possibly provide similar insight, it would additionally highlight factors 

which contribute to AR-V7 mRNA processing via secondary events and this would limit our 

ability to identify AR-V7 splicers in direct association with the AR pre-mRNA.   

A recently developed method by Carroll’s group, named rapid immunoprecipitation mass 

spectrometry of endogenous proteins (RIME) utilises antibody-based affinity purification of 

endogenous protein complexes cross-linked with chromatin to establish the transient 

interactome of the protein of interest by mass spectrometry (MS) (Mohammed et al., 2016). 

RIME has been previously used to identify interacting partners of estrogen receptor in breast 

cancer cell lines and xenografts (Mohammed et al., 2013). My host lab have previously applied 

the method to interrogate the interactome of AR-FL and AR-V7 in the CWR22Rv1 prostate 

cancer cell line (unpublished data).  

A deviation of the conventional RIME approach called Cas9-directed Rapid 

Immunoprecipitation Mass spectrometry of Endogenous proteins (CRIME) was developed in 

our lab (described in this chapter) to study loci-specific assembly of the AR-V7 specific 

spliceosome. This CRISPR-based approach allows selective targeting of a catalytically inactive 

form of Cas9 (dead Cas9, dCas9) (Figure 61) to native chromatin regions and subsequent 

isolation of protein/RNA complexes associated with these sites.  
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Figure 60. Schematic of the nuclease deficient Cas9 (dead Cas9, dCas9). The point mutations D10A 

and H840A causing DNA cleavage deficiency are located in the RuvC (E. coli protein involved in DNA 

repair) and HNH (Histidine & Asparagine) domains respectively. 

Two gRNAs were designed against the AR cryptic exon 3 genomic region. Targeting of FLAG-

tagged dCas9 to that site was exploited for in situ capture, isolation and characterization of 

splicing factors specific to AR-V7 (Figure 61). dCas9 pull-down coupled with mass 

spectrometry to identify the components of the protein complexes associated with dCas9 at 

AR-V7-encoding CE3 of the AR gene; specifically AR-V7 candidate splicing factors. The 

advantage of this approach is that low-abundant proteins can be picked-up relatively easy.  

 

 

 

 

 

 

 

 

 

 

 

Figure 61. CRIME outline. CWR22Rv1 cells were transfected with the appropriate amount of dCas9- 

and gRNA-expressing vectors [step 1]. RNA-guided binding of dCas9 to the target locus and 

recruitment of SFs to that site [step 2] was followed by formaldehyde-induced cross-linking of the 

dCas9 associated SFs and splicing regulators to chromatin. Immunoprecipitation of FLAG-dCas9 was 

then performed and a snapshot of the AR-V7 specific spliceosome was captured [step 3]. 

Immunoprecipitated dCas9 associated protein complexes were finally analysed by mass spectrometry 

[step 4]. 

The DNA-binding dCas9 nuclease was preferred over the RNA-binding dCas13 nuclease given 

the spatiotemporal regulation of splicing. Remarkably, >80% of spliceosomes were associated 

Step 3 Step 1 

SPLICEOSOME  

CAPTURE 

Step 4 

Step 2 

d 

d 



157 
 

with chromatin in HeLa cells (Bentley, 2014). Hence, mRNA processing and maturation of 

nascent mRNA transcripts occur co-transcriptionally, as the newly synthesised pre-mRNA 

emerges from the RNA Pol II exit channel rather than just following transcription. This 

prevents potential degradation of the pre-mRNA by endogenous nucleases. More 

importantly, coupling of transcription and splicing in space and time allows the creation of 

novel protein-protein interaction networks; making spliceosome assembly a much more 

sophisticated system to study. Trafficking of splicing factors on and off their target pre-mRNA 

substrate is regulated by RNA Pol II which is also associated with and elongates that same 

mRNA transcript. More specifically, its carboxy-terminal domain, when phosphorylated, 

serves as a dock for splicing factors to land and exert their function on the 5’ and 3’ splice 

sites of the target mRNA. Cycling of different splicing factors and formation of transient 

protein-RNA complexes subsequently occurs (Pandya-Jones, 2011). A snapshot of this process 

can be captured using CRIME. 
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6.2. Specific Materials and Methods 

6.2.1. Construction of gRNA expressing plentiCRISPR-iCer vectors 

Cryptic exon 3 targeting gRNA sequences containing 5’ BsmBI sites, for directional cloning, 

were purchased from Sigma (Table 17). BsmBI digestion (Invitrogen) of 2 µg plentiCRISPR-iCer 

vector was performed overnight according to manufacturer’s instructions. The digested 

vector was gel purified and ligated with the different gRNA inserts at a 1:3 ratio using the Anza 

T4 DNA Ligase Master Mix (Thermo Fischer Scientific). Successfully recombinant vectors were 

defined by conventional Sanger sequencing. 

Table 17. Sequences of gRNAs used for CRIME. Part of the BsmBI recognition site is 

highlighted in red. 

Oligo Name Sequence (5’→3’) 5’ modification 

gRNA_D forward CACCGATACTAGAAAAATTCCGGGT phosphorylated 

gRNA_E forward CACCGGATGCTTGCAATTGCCAACC phosphorylated 

 

6.2.2. CRIME, Silver staining and LC-MS 

4x106 CWR22Rv1 cells were seeded in 150 mm dishes in steroid-depleted media for 24 h. Cells 

were then transfected with 10 µg pCMV7.1-3xFLAG-dCas9 and plentiCRISPR-iCer vectors and 

were allowed to grow for an additional 48 h. At 72 h, cells were fixed and harvested as 

described in Chapter x (ChIP protocol). Pull-down of the dCas9-spliceosome complexes was 

performed using 10 µg of FLAG M2 and control IgG antibodies (Sigma and Diagenode, 

respectively). DNase I (Invitrogen) treatment was performed at 37oC for 1 h to remove non-

specific proteins bound to the immunoprecipitated chromatin fragments.  

Cell lysates were analysed on a pre-cast 4-12% SDS-PAGE gel (BioRad) as described in Chapter 

3. The gel was then stained using the ProteoSilver Plus Silver Stain kit (Sigma) as per 

manufacturer’s protocol and was finally stored in 5% acetic acid solution at 4oC until LC-MS 

analysis. LC-MS and data analysis were performed by members of the Newcastle University 

Protein and Proteome Analysis (NUPPA) facility. In brief, the gel was cut into thin slices and 

in-gel digestion was performed. The gel slices were air dried and then incubated in 50 mM 
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ammonium bicarbonate/trypsin solution at 37oC overnight. Peptides were extracted from the 

slices upon incubation with increasing concentrations of acetonitrile. They were then 

concentrated using a vacuum evaporator and finally injected into and analysed using the LTC 

OrbiTrap XL mass spectrometer (Thermo Fischer Scientific). 

6.2.3. Flow Cytometry 

4x106 CWR22Rv1 cells transfected with 10 µg pCMV7.1-3xFLAG-dCas9 and either 10 µg of 

lentiCRISPR-iCer (gRNA_D) or empty vector were cultured for 72h in DCC media. Cells were 

trypsinised and sorted for Cerulean expression (fluorescent marker expressed by the gRNA 

expressing lentiCRISPR-iCer vector). Cells transfected with a GFP expressing vector of similar 

size to the lentiCRISPR-iCer vector were also analysed.   

6.2.4. siRNA design 

Broad Institute’s GPP web portal was utilised to choose the siRNA sequences which were 

specific to the desired mRNA targets. Alternatively, the Sigma website was exploited and 

validated siRNA sequences with limited off-target sites and high knockdown scores (>85%) 

were purchased (Table 18). Cells were transfected as described in Chapter 3.12 and grown in 

DCC media to enforce AR-V specific splicing events. 48h post-transfection knockdown 

validation was performed by qPCR using the primers outlined in Table 19. 

Table 18. Sequences of siRNAs targeting splicing factor hits identified using CRIME. 

Name Sequence (5’→3’) 

siSRSF3_sense UGGAACUGUCGAAUGGUGAAA 

siSRSF9_sense GAUGACACCAAAUUCCGCUCU 

siSam68_sense ACGAAGGCUACGAAGGCUAUU 

siRBM42_sense CGUGAGAUGAAUGGGAAGUAU 

siKIAA0368_sense UGCAAUUUGUGCAUCAUAUUU 

siZDHHC6_sense GGUUUACGAUACUGGUUAUAU 
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siLUC72L_sense GCAGAGGAAGUUUAUCGGAAU 

 

Table 19. Sequences of primers used for siRNA knockdown validation. 

Name Forward sequence (5’→3’) Reverse sequence (5’→3’) 

SRSF3 CTATGTGGCTGCCGTGTAAG TTGGAGATCTGCGACGAG 

SRSF9 ATGGTTATGATTATGGCCAGT
G 

TGACGGAGGAAGTCCTGA 

Sam68 TGCTGACGGCAGAAATTGAG TTGGCTTTGTCTCTCATTGAGC 

RBM42 GAATCCCAACTGCTGTGC CTCCAGAGTCTGCTGGAC 

KIAA0368 GACAGATCAGCTTGAACGG GGACCAGCAGTTCCATTAC 

ZDHHC6 ACTTCAATGCCATGTTTGTCG ATGGTCCATCTTCATCACACA 

LUC72L ATTCGCCAAGCCGAGATAC TGGATGCAATTTCATAATCCG
C 
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6.3. Results 

6.3.1. CWR22Rv1 cell line suitability to apply CRIME 

The CWR22Rv1 cell line was deemed the most relevant CRPC model to apply CRIME for 

interrogation the AR-V7 specific spliceosome: (1) high levels of AR-Vs are expressed in 

CWR22Rv1 cells and drive proliferation and survival pathways; (2) AR-V7 comprises the most 

prominent AR-V isoform in this cell line (Figure 62), making it the most suitable in vitro model 

to study AR-V7 specific splicing events.  

 

 

Figure 62. AR-Vs constitute the most prevalent form of AR in CWR22Rv1 cells. A. AR protein 

expression was profiled in PNT2C2, PC3, LNCaP, CWR22Rv1 and VCaP cells cultured in full (FM) or 

steroid-depleted (DCC) media as indicated. An N-terminal AR targeting antibody was used for 

immunoblotting. B. AR-V mRNA expression levels were profiled in CWR22Rv1 cells grown in full media 

for 48 h prior to qPCR analysis using primers specific to each AR isoform.  

6.3.2. Successful RNA-guided recruitment of dCas9 to the AR cryptic exon 3 chromatin 

region in CWR22Rv1 cells. 

Localisation of dCas9 in the nucleus was critical for chromatin binding and subsequent 

application of the CRIME procedure. Despite the presence of 3 consecutive NLS signals at the 

N-terminal of dCas9 in the pCMV7.1 vector sequence, its localisation in the nucleus was 

assessed by immunofluorescence, incorporating a FLAG antibody, to detect ectopically-

expressed FLAG-tagged dCas9 in CWR22Rv1 cells. (Figure 63A). In addition to IF, CWR22Rv1 

cellular fractionation also indicated probably more robustly the presence of dCas9 in the 

CWR22Rv1 

A. B. 
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chromatin fraction (Figure 63B). Different Cas9-expressing vectors, such as the px330 and 

pLV-EPCG, were transfected into CWR22Rv1 cells in parallel experiments and were utilised as 

negative and positive controls (Figure 63B), expecting no or successful import of Cas9 in the 

nucleus, respectively.  

 

 

 

 

 

 

 

                                   

Figure 63. dCas9 successfully migrates to the nucleus and is present in the chromatin fraction of 

CWR22Rv1 cells. A. Representative immunofluorescence images of CWR22Rv1 cells transfected with 

3 µg of pCMV7.1-3XFLAG-dCas9. A FLAG specific antibody was used for FLAG-dCas9 detection (top 

panel). B. Subcellular fractions of CWR22Rv1 cells transfected with 3 µg of different Cas9/dCas9 

expressing vectors were immunoblotted using a Cas9 specific antibody and α-tubulin and H2B 

antibodies as nuclear and chromatin loading controls, respectively (bottom panel). 

PC3 cells were first used to examine whether dCas9 can be successfully recruited to the AR 

gene CE3 chromatin region by two individual gRNAs. PC3 cells were chosen as they show high 

transfection efficiency and comprise a semi-relevant cell line model as they express 

detectable levels of AR pre-mRNA, meaning that the AR gene may conceivably reside in a 

loose chromatin region and access of dCas9 to the target site would not be blocked by tight 

DAPI FLAG-dCas9 Merged 

A. 

B. 
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nucleosome complexes. A FLAG specific antibody was used for pulling down FLAG-tagged 

dCas9. This particular FLAG antibody has been used in similar experiments in the lab and has 

shown high specificity to FLAG-tagged proteins extracted from formaldehyde fixed cells. FLAG 

ChIP indicated that both gRNAs were capable of positioning dCas9 specifically to CE3 with 

high and selective efficiency as evidenced by negligible Flag immunoprecipitation in the IgG 

and dCas9 minus gRNA controls. Non-specific recruitment of dCas9 to an independent intron 

2 region of the AR gene was also examined and as expected, no dCas9 was detected at that 

site (Figure 64). 

  

Figure 64.  dCas9 is successfully RNA-guided to the chromatin region of CE3 in PC3 cells. PC3 cells 

transfected with 10 µg of pCMV7.1-3xFlag-dCas9 and lentiCRISPR-iCer vectors were subject to FLAG 

ChIP analysis to assess FLAG-dCas9 recruitment to AR CE3 by two individual CE3-targeting gRNAs 

(gRNA_D and gRNA_E). Non-specific recruitment of the deficient nuclease was examined at intron 2 

of the AR gene. dCas9 protein expression levels were assessed across the different experimental arms 

(mock, dCas9, dCas9+gRNA_D, dCas9+gRNA_E) using a FLAG specific antibody.  

Having seen successful gRNA-driven recruitment of dCas9 to CE3 in PC3 cells, our efforts 

focused on getting similar read-outs using CWR22Rv1 cells which would be more challenging 

based on their low transfection efficiency. In a previous chapter (Chapter 4.3.5), nucleofection 

was applied to a small population of CWR22Rv1 cells (~2x106) to perform genome editing and 

reasonable transfection efficiency was observed, but was accompanied by high rates of cell 



164 
 

death (20-30%). For CRIME, however, a higher number of cells was required to obtain 

adequate material for downstream analysis by MS. Hence, 15x106 cells were nucleofected 

with the dCas9 and gRNA_D expressing vectors to assess recruitment of dCas9 to CE3. To our 

surprise, cell viability following nucleofection was low with 64% of the starting population 

dying which prevented further analysis (data not shown). Therefore, transfection using 

lipophilic reagents (lipofection) remained the only other available option within the 

timeframe. 

To measure the transfection efficiency using this lipofection approach, 4x106 cells were 

transfected with 10 µg of dCas9 expressing vector and 10 µg of gRNA_D expressing vector. 

Transfection efficiency was measured at 48h by flow cytometry based on cerulean expression 

(blue fluorescence) derived from the gRNA expressing lenti-iCer vector, on the assumption 

that transfected cells will take up both the dCas9 and gRNA expressing vectors. An 

independent GFP expressing vector of similar size to lentiCRISPR-iCer was also transfected in 

CWR22Rv1 cells alongside the dCas9 expressing vector in a parallel experiment to serve as an 

extra control in which a strong fluorophore such as GFP was used. Despite the similar vector 

size, transfection efficiency varied between the GFP and cerulean positive cell populations, 

with respective positivity of 32.8% and 9.04% (Figure 65). This discrepancy may be explained 

by the fact that cerulean is known to be a weak fluorophore and low expressors may not have 

been detected, dropping significantly the observed transfection efficiency when in reality a 

larger cell population was transfected with exogenous DNA. 
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Figure 65. CWR22Rv1 cells demonstrate relatively low transfection rates using conventional 

lipofection for dCas9/gRNA vector delivery. CWR22Rv1 cells transfected with 10 µg of pCMV7.1-

3xFlag-dCas9 and lentiCRISPR-iCer gRNA vectors, or GFP-expressing vector were subject to flow 

cytometry analysis to sort for blue (cerulean) and green (GFP) positive cells respectively. 10,000 events 

were analysed. 

Keeping the relatively low transfection rate in mind, dCas9 recruitment to CE3 was assessed 

by FLAG ChIP. Similar to PC3 cells, both gRNAs performed as expected and selectively guided 

dCas9 to CE3 (Figure 66). However, dCas9 enrichment was profoundly poorer in CWR22Rv1 

cells compared to PC3 cells when the same conditions were applied across the entire 

experimental workflow. The observed difference however can be attributed to the lower 

transfection rates of CWR22Rv1 cells as discussed above.  

Cas9-GFP e.v. 

dCas9 + gRNA dCas9 + e.v. dCas9 + e.v. 
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Figure 66. dCas9 is successfully RNA-guided to the chromatin region of ce3 in CWR22Rv1 cells. 

CWR22Rv1 cells transfected with 10 µg of pCMV7.1 and lentiCRISPR-iCer vectors were subject to FLAG 

ChIP analysis to assess FLAG-dCas9 recruitment to AR CE3 by two individual CE3-targeting gRNAs 

(gRNA_D and gRNA_E). Non-specific recruitment of dCas9 was also examined at AR gene intron 2 (AR 

intron 2). dCas9 protein expression levels were assessed across the different experimental arms 

(mock, dCas9, dCas9+gRNA_D, dCas9+gRNA_E) by immunoblotting using a FLAG specific antibody.  

6.3.3. The nuclease-deficient Cas9 blocks transcription in a strand-specific manner 

Cas9 is a large protein of ~160 kDa. It is conceivable to consider that its presence on chromatin 

may cause a roadblock for RNA Pol II elongation and compromise subsequent spliceosome 

formation. In this context, RNA Pol II would pause upstream of dCas9, unable to continue 

along the DNA template, and subsequently dissociate from chromatin due to physical collision 

with dCas9 (Figure 67A). That would therefore compromise massively the CRIME protocol. To 

test whether this is the case in our system, ChIP using an antibody to the actively elongating 

form of RNA Pol II (phospho-serine 2 (pSer2) RNA Pol II) was performed and the regions 

surrounding CE3 were qPCR amplified in order to assess potential RNA Pol lI elongation 

blocking by dCas9. Surprisingly, one of the two gRNAs (gRNA_D & gRNA_E) used for 

recruitment of dCas9 to CE3, gRNA_E, had a profound impact on the levels of RNA Pol II at 

the specific CE3 locus; diminishing enrichment by almost 50% compared to the dCas9-only 

control arm of the experiment. In contrast, RNA Pol II was not dissociated from chromatin 
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when gRNA_D was used, as no drop in RNA Pol II levels at CE3 was observed (Figure 67B), 

indicating that different gRNAs may variably affect the transcription fate of a gene. To also 

rule out that RNA Pol II might be simply paused on chromatin but not dissociated, its presence 

was checked at sites downstream of the dCas9 binding site within exon 4 which would 

indicate maintained processitivity of the enzyme (Figure 67B). No or minimal impact was 

observed at recruitment of RNA Pol II at the AR exon 4 region using gRNA_D and gRNA_E, 

respectively. This confirms that RNA Poll II is paused upstream of CE3 rather than dissociated 

from chromatin. Regardless, since RNA Pol II elongation was impacted by the gRNA_E-

containing dCas9 complex, gRNA_E was dropped from the analysis and only gRNA_D was used 

for downstream experimentation.  

 

 

 

Figure 67. RNA polymerase II dissociates from chromatin or engages with dCas9 to mediate 

transcription in a gRNA dependent fashion. A. Graphic outline of the RNA Pol II-dCas9 physical 

collision model. The paused RNA Pol II occassionally aborts transcription elongation upon 

encountering the dCas9-gRNA roadblock. B. Actively elongating RNA Pol II recruitment to AR CE3 and 
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RNA Pol II pSer2 ChIP 

AR CE3 

RNA Pol II pSer2 ChIP 
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exon 4 chromatin regions was assessed by ChIP using a phospho-Ser2 RNA Pol II-specific antibody 

(RNA Pol II pSer2) and CE3- or exon 4-specific primer sets for post-ChIP qPCR analysis.   

6.3.4. Immunoprecipitation of FLAG-dCas9 yielded sufficient material for CRIME analysis 

In light of our findings above, we subsequently performed CRIME using ectopically-expressed 

dCas9-gRNA_D complexes in 5x106 CWR22Rv1 cells to facilitate detection of bound proteins 

in downstream MS analysis. Cells were cultured in DCC media for 24h prior to transfection in 

an attempt to enforce AR-V splicing events and so enhanced recruitment of splicing factors a 

hypothesis based on the observation that enzalutamide induces recruitment of ASF/SF2 to 

AR-V7 splice sites (Liu et al., 2014). Chromatin was then extracted and sonicated, FLAG-dCas9 

was immunoprecipitated and resulting IP samples from the dCas9+EV. and dCas9+gRNA arms 

were analysed on SDS-PAGE and assessed for dCas9 presence by Coomassie and silver 

staining. 

Coomassie staining of the gel was attempted but no bands were observed at the end of 

incubation (~3h) (data not shown). Due to its limited sensitivity, Coomassie staining was 

replaced by silver staining. As a rule of thumb, band detection by silver staining indicates 

sufficient amount of the pulled-down protein of interest which in turn permits downstream 

handling. Part of the lysate was immunoblotted in parallel to silver staining (Figure 68) to 

examine whether there is a match between the suspected dCas9 band detected by silver 

staining and the dCas9 band detected more reliably by a Cas9-specific antibody. Three dishes 

with 5x106 cells per dish were set up for each condition (dCas9+EV, dCas9+gRNA_D). In 

addition, chromatin input was 450 µg per condition to ensure sufficient amount of 

immunoprecipitated dCas9.  
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Figure 68. Immunoprecipitation of dCas9 from formaldehyde fixed cells. CWR22Rv1 cells transfected 

with pCMV7.1-3xFLAG-dCas9 and gRNA_D expressing vectors (dCas9+gRNA) or empty vector 

(dCas9+EV) were formaldehyde fixed, lysed, sonicated and subjected to IP using an anti-FLAG 

antibody. Resultant immunoprecipitates were subjected to SDS-PAGE followed by silver staining of 

the gel to confirm presence of dCas9 (left panel). Part of the dCas9+gRNA derived lysate was WB 

analysed alongside a control lysate (mock) derived from non-transfected cells to assess Cas9 antibody 

specificity (right panel).  

Successful detection of dCas9 by silver staining was achieved (Figure 68). Following this, all 

the appropriate checks were performed prior to MS using the same cell population used for 

extracting the material for MS. More precisely, part of the cell lysate was used to confirm 

detection of dCas9 in the chromatin fraction by WB (Figure 69A) as well as sufficient dCas9 

recruitment to CE3 by FLAG ChIP (Figure 69B). Finally, a small cell population was seeded on 

chamber slides to confirm gRNA expression by IF (Figure 69C). Having seen a 15-fold increase 

in dCas9 recruitment at CE3 in presence of gRNA_D (Figure 69B), samples were approved for 

downstream MS analysis. 
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Figure 69. Validation of dCas9 and gRNA expression and recruitment to AR CE3 prior to MS. A. Whole 

cell lysates (WCL) and chromatin fractions derived from CWR22Rv1 cells transfected with the dCas9-

expressing vector and either the gRNA_D-expressing vector or an empty vector were immunoblotted 

with a FLAG antibody for FLAG-dCas9 protein detection and H2B was used as a loading control (top 

left). B. FLAG ChIP analysis was performed using the same chromatin fractions to assess RNA-guided 

dCas9 recruitment to AR CE3 over a dCas9 only (dCas9+e.v.) control and an independent IgG control 

(top right). C. A Fraction of transfected CWR22Rv1 cells seeded in chamber slides were subject to 

fluorescence imaging for cerulean detection (blue) and gRNA expression verification. Representative 

images at 10x magnification are shown (bottom). 

6.3.5.  dCas9 was successfully detected by LC-MS/MS 

Prior to slicing the gel and moving on to LC-MS/MS analysis of all the individual gel slices (n=9 

per sample), the dCas9 band was excised from the gel and analysed by MS. Peptides 

corresponding to dCas9 were identified with high confidence (low log(e) value) in the 

dCas9+gRNA_D and dCas9+e.v. arms (Table 20), confirming successful and specific pull-down 

of dCas9. The rest of the gel was then sliced and each slice was analysed by MS. The protein 

species identified in both experimental arms (dCas9+gRNA_D and dCas9+e.v.) were excluded 

as they may have been artefacts of non-specific binding of dCas9 to chromatin, possibly due 

to its high expression levels which may have led to excessive stickiness even in the absence 
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of gRNA. Additionally, a cut-off of -2 was set to omit any peptides detected by chance. The 

detailed protein list can be found in Appendix F. To our surprise, a very limited number of 

proteins met the selection criteria in the dCas9+gRNA_D arm and this could be attributed to 

a number of factors discussed in section 6.4. 

Table 20. Identification of dCas9 peptides by LC-MS. (I) – sum of raw spectrum intensities, rl 

– number of peptides detected, log(e) – expectation of detecting the protein stochastically, 

pI – isoelectric point of the intact gene product, Mr – mass of intact gene product. 

Sample log(I) rI log(e) Mr 

dCas9 + gRNA_D 3.84 9 -57.5 158 

dCas9 + e.v. 3.76 9 -61.1 158 

 

6.3.6.  RNA-associated proteins were enriched using CRIME 

The protein list derived from the dCas9+gRNA_D arm, after applying the exclusion criteria 

mentioned above, was subject to gene ontology analysis to identify the pathways and 

subsequently the processes that the enriched proteins mediate. Distinct RNA associated 

processes were highlighted in the analysis such as alternative splicing, RNA surveillance via 

non-sense mediated decay and poly-A mRNA binding (Figure 70), confirming the validity of 

the model and its capacity to be used as an RNA splicing interrogation tool.   

 

 

 

 

 

 

 

 

 

Figure 70. Pathway enrichment analysis of CRIME derived proteins. 
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6.3.7.  Splicing factor hit validation 

Several CRIME-derived candidates were chosen to be further examined for their potential role 

in modulating AR-V7 mRNA splicing as they indicated apparent links to RNA processing and 

pre-mRNA splicing events. More precisely: 

▪ Sam68 (UniProt: Q07666) is an RNA-binding protein which contains a KH domain and 

is implicated in alternative splicing of numerous pre-mRNA substrates (Bielli et al., 

2011). Stockley et al. have demonstrated that Sam68 mediates AR splicing and 

potentiates AR-V7 mRNA generation (Stockley et al., 2015). Hence, isolation of Sam68 

using CRIME provided great confidence that our proposed experimental approach to 

study AR splicing is valid.   

▪ SRSF9 (UniProt: Q13242) is a member of the Serine/Arginine (SR)-rich protein family 

of splicing factors. It’s an important component of the constitutive splicing machinery 

and can modulate the selection of alternative splice sites. Similarly to SRSF3, SRSF9 

regulates GR splicing in response to cortisol and DHEA (Buoso et al., 2017). 

▪ RBM42 (UniProt: Q9BTD8) is an RNA-binding protein which may be required for 

assembly of an active spliceosome alongside U4/U6 & U5 snRNPs (Suvorova et al., 

2013).  

▪ LUC7L2 (putative RNA-binding protein Luc7-like 2) (UniProt: Q9Y383, GeneCards ID: 

GC07P139344), similarly to SRSFs, can bind RNA via its SR-rich motifs, contains C2H2 

zinc-finger motifs which are required for DNA binding and is associated with the 

generation of multiple alternatively spliced isoforms of mRNA transcripts. It may be 

implicated in the recognition of non-consensus splice sites in association with the U1 

snRNP spliceosomal subunit. 

▪ ZDHHC6 (zinc finger DHHC-type containing 6) (UniProt: Q9H6R6) is not strongly linked 

to splicing. However, it is a CCCH-type zinc-finger protein and such proteins such as 

U2AF have been involved in regulating pre-mRNA splicing (Lai et al., 2000). 

To address the contribution of each of the aforementioned splicing mediators to AR-V7 mRNA 

production, siRNA mediated knockdown experiments were performed in CWR22Rv1 cells 

https://www.uniprot.org/uniprot/Q9Y383
https://www.uniprot.org/uniprot/Q9H6R6
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grown in DCC media. DHT stimulation for 24h was also performed to examine whether SRSF3 

regulates AR-FL mRNA levels. Each candidate was depleted by a specific siRNA for 48h and 

levels of AR-V7 and AR-FL mRNA were measured by qPCR. Out of 6 candidates interrogated, 

only one, SRSF3 (UniProt: P84103) appeared to significantly alter AR-V7 mRNA levels as 

almost double the amount of AR-V7 mRNA was detected when SRSF3 was depleted. 

Interestingly, SRSF3 knockdown resulted in a remarkable increase in AR-FL mRNA levels 

(Figure 71). 

 

 

 

 

 

 

 

 

Figure 71. CRIME hit validation. CWR22Rv1 cells grown in DCC media were transfected for 48h with 

individual siRNAs against each CRIME-derived hit. AR-V7 and AR-FL mRNA levels were measured by 

qPCR. 

6.3.8.  SRSF3 modulates AR-V7 mRNA levels 

As discussed in the previous section, SRSF3 depletion led to a significant increase in AR-V7 

mRNA levels in CWR22Rv1 cells (Figure 72A), suggesting that SRSF3 and AR-V7 are mutually 

exclusive in a way that when SRSF3 is expressed, it prevents incorporation of CE3. Irrespective 

of their relationship, SRSF3 seems to be a novel AR-V7 splicing factor with no evidence of 

direct or indirect implication in AR biology reported before. To further investigate this novel 

avenue of AR-V7 modulation, the AR genomic sequence was interrogated for the presence of 

SRSF3 binding sites. The canonical SRSF3 binding motif CCAGCC was found several times at 

positions -628, +527 and +614 in the intronic regions downstream and upstream of CE3 

respectively, an observation which further validates our findings and supports our assumption 

that SRSF3 is a genuine splicer of CE3.  
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SRSF3 is also implicated in regulating splicing of other hormone receptors. GR pre-mRNA is a 

known substrate of SRSF3. In particular, SRSF3 levels increase in response to cortisol and this 

leads to selection of isoform alpha over beta (Buoso et al., 2017). Therefore, GRalpha mRNA 

levels were also profiled following depletion of SRSF3 in CWR22Rv1 cells, which express 

endogenous levels of GR. Consistent with reports, SRSF3 depletion resulted in a significant 

increase in GRalpha mRNA levels (Figure 72A). Moreover, SRSF3 seemed to also modulate AR-

FL levels in a similar fashion to AR-V7 indicating that SRSF3 is not exclusive to AR-V7 splicing. 

As expected, AR-V7 and AR-FL protein levels were also increased in response to SRSF3 

knockdown, irrespective of androgen stimulation (Figure 72B).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72. SRSF3 modulates AR-V7 mRNA levels. CWR22Rv1 cells grown in DCC media were 

transfected for 48h with control (Scr) or SRSF3-targeting siRNAs (siSRSF3). Cells were then lysed and 

AR-V7, AR-FL and GRa mRNA levels were measured by qPCR. Knockdown efficiency of SRSF3 was 

assessed at protein level using a SRSF3-specific antibody. AR-FL and AR-V protein levels were assessed 

by immunoblotting using an N-terminal targeting AR antibody.  

6.3.9. SRSF3 expression is downregulated in mCRPC and negatively correlates with AR 

expression 

To better understand how SRSF3 controls AR pre-mRNA fate, in silico analysis was performed 

using the PRAD-TCGA dataset, as well as two well-accepted transcriptomic datasets described 

A. 

B. 
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by Grasso et al. and Tomlins et al. to assess expression of SRSF3 and AR. Opposing trends were 

observed between the mRNA levels of total AR and SRSF3 in 333 prostate cancer biopsies 

(Figure 73A) confirming our in vitro observations that when SRSF3 levels are depleted, total 

AR levels elevate. Finally, SRSF3 levels are significantly downregulated in mCRPC compared to 

localised prostate cancer and BPH in two independent datasets (Figure 73B). However, no 

information involving patient survival rates were found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73. SRSF3 expression is downregulated in CRPC and negatively correlates with AR expression. 

A. Regression analysis of AR and SRSF3 mRNA levels was extracted from RNA seq analysis of 333 

prostate cancer biopsies within the PRAD-TCGA dataset. B. Box plots of SRSF3 mRNA expression levels 

in BPH, localised PC and mCRPC biopsies. Data was derived from two publicly available datasets 

GSE35988 (Grasso et al., 2012) and GSE6099 (Tomlins et al., 2007).  
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6.3.10. SRSF3 is a potential tumour suppressor in CRPC 

Having seen that SRSF3 loss resulted in higher levels of AR-V7 mRNA, we can assume that 

SRSF3 would normally act as a suppressor of AR CE3 inclusion in the mature AR-V7 mRNA 

transcript. Given that AR-V7 is driving tumour progression, factors that disrupt its production 

could be considered potential tumour suppressors. This assumption is in line with the SRSF3 

expression pattern in prostate cancer, as SRSF3 mRNA levels are significantly compromised in 

patients with mCRPC like many other tumour suppressor genes. 

We hence propose that in normal prostate, SRSF3 regulates AR splicing and mediates CE3 

skipping upon binding to specific sites in the intronic regions surrounding CE3; hence blocking 

AR variant synthesis. In mCRPC, SRSF3 levels drop, hence cryptic exon 3 inclusion is permitted 

and gives rise to AR-V7 (Figure 74). Despite our focus on AR-V7 mRNA, the effect of SRSF3 

depletion on AR-FL mRNA levels was equally remarkable, suggesting that SRSF3 may exert 

multiple functions on the AR pre-mRNA by also regulating AR pre-mRNA stability.  
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Figure 74. Schematic of the proposed model of SRSF3´s role in AR-V7 pre-mRNA processing. SRSF3 

binds to the CCAGCC sequences upstream and downstream of ce3 (highlighted in red) and promotes 

skipping in normal prostate. Expression of SRSF3 is downregulated in mCRPC and hence ce3 inclusion 

can occur, potentially promoted by other SFs, and gives rise to AR-V7. ss: splice site, SF: splicing factor 
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6.4. Discussion  

The mechanism by which AR-V7 mRNA is generated might be a novel avenue to eliminate 

such a challenging target. However, very little is known about the precise processes that 

regulate the emergence of this particular transcript. There has been a number of splicing 

factors associated with generation of AR-V7 mRNA in CRPC. ASF/SF2 seemed to be a 

promising candidate for drug targeting. ASF/SF2 was found to lie in cis-regulatory regions 

around AR CE3 and its abundance at this locus was elevated upon treatment with anti-

androgens (Liu et al., 2014). Additionally, transient knockdown of ASF/SF2 in VCaP cells 

remarkably reduced AR-V7 mRNA copies, albeit suggesting that ASF/SF2 binds to and 

regulates AR CE3 inclusion. However, the findings of this particular study were disputed by 

Dehm’s group who demonstrated that ASF/SF2 has no impact on AR-V7 mRNA levels in 

CWR22Rv1 cells (Van Etten et al., 2017) which comprise a more physiological model to study 

AR-V7 compared to VCaP cells. On the other hand, cell line as well as locus specificity should 

certainly be taken into account, as VCaP cells display a 20-fold amplification of the AR gene 

which may impact on the AR pre-mRNA splicing requirements and contribute to the observed 

discrepancy between VCaP and CWR22Rv1 cells. Despite the controversy, ASF/SF2 remains 

an attracive target for therapeutic intervention. According to a recent study (Denichenko et 

al., 2019), sense RNA oligonucleotides known as decoy oligonucleotides were developed to 

target directly ASF/SF2 and exclusively block its splicing activity without interfering with other 

functions of the SF, nor with its RNA binding site. 

It was acknowledged that identifying splicing mediators of AR-V7 pre-mRNA using an 

unbiased and more high-throughput approach to individual siRNA knockdowns would fill a 

huge knowledge gap in the AR-V7 field. Therefore, we developed a workflow which exploited 

a more delicate version of the conventional CRISPR technology for genome editing. This kind 

of approach has been applied before (Fujita and Fujii, 2016) to identify proteins which interact 

with specific loci on chromatin. However, it is the first time that this concept was applied to 

identify splicing regulators. It relies on the fundamental concept of coupled transcription and 

pre-mRNA splicing which enables SFs to be in the vicinity of genomic intronic/exonic 

boundaries and hence would be detected by CRIME.  
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Its development required several optimisation steps and raised precautions with regards to 

physical contact between dCas9 and RNA Pol II, an essential component of the coupled 

process of transcription and splicing. A striking observation led us to the conclusion that it’s 

the gRNA that dictates the fate of this interaction. In particular, the position of the gRNA on 

DNA determines whether the RNA Pol II will elongate through and transcribe the gene of 

interest or whether it will be blocked by the CRISPR complex. We observed that the gRNA that 

targeted the template stand of DNA, which is copied during transcription, forced RNA Pol II 

to abort transcription elongation, whereas the gRNA that targeted the non-template strand 

did not impact on transcriptional elongation by the polymerase. This finding contrasts with a 

previous study which showed that it is the gRNA on the non-template strand that blocks 

transcription elongation by RNA Poll II (Qi et al., 2013). This study, however, was conducted 

in Escherichia coli cells using an RFP reporter assay to measure transcriptional activity in the 

presence of dCas9. The discrepancy therefore might be caused by the different transcription 

mechanisms between prokaryotes and eukaryotes.  

AR gene transcription is enhanced upon ADT and this offers the opportunity for robust 

contacts between the AR pre-mRNA and splicing factors (Liu et al., 2014). We applied this 

logic to the CRIME technique by growing CWR22Rv1 cells in DCC media prior to transfection 

with the catalytically-deficient CRISPR complex and for 48h after to allow for that time and 

interaction window to occur. 

The CRIME-derived candidates were subject to a mini knockdown screen to validate whether 

they comprise genuine AR-V7 splicers. Despite the apparent enrichment of splicing proteins 

in the isolated complexes, only one candidate had a robust effect on AR-V7 pre-mRNA levels 

and that was SRSF3. However, the unaltered AR-V7 mRNA levels observed following individual 

depletion of the other CRIME-identified candidates does not rule out that these proteins are 

genuine components of the AR-V7 spliceosome. The observed failure to modulate AR-V7 

mRNA production in response to their knockdown could be attributed to the fact that these 

proteins may be less crucial in mediating AR splicing and their loss can be replenished by 

functional compensation and adaptation events such as upregulation of other factors with 

similar function.  

SRSF3 or SRp20 is a member of the SR-rich protein family. It comprises an essential splicing 

factor which mediates alternative splicing events by promoting exon inclusion/exclusion or 
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selection of alternative splice sites. Depending on the mRNA isoform being produced, SRSF3 

can exert oncogenic or tumour suppressive functions. For example, generation of ILF-3 

isoforms 5 and 7 leads to tumour cell apoptosis and is suppressed by SRSF3 in cancer cells. On 

the contrary, generation of ILF-3 isoforms 1 and 2 is associated with elevated tumour cell 

proliferation and is mediated by SRSF3 (Jia et al., 2019).  

SRSF3 is overexpressed in cancers including breast, lung and colon. SRSF3 acts as a proto-

oncogene in these tumours by promoting the production of mRNA isoforms with oncogenic 

properties including CD44 and ASF/SF2 (Anczukow and Krainer, 2016). For instance, SRSF3 is 

responsible for alternative splicing of PKM (pyruvate kinase muscle). PKM isoform 2 (PK-M2) 

is generated upon exon 10 inclusion in colon cancer cells maintaining a metabolic 

environment which favours cancer cell growth (Kuranaga et al., 2018). However, this is not 

the case in CRPC. Our observations indicate that SRSF3 may act as a silencer of AR CE3 by 

promoting skipping from the mature mRNA transcript and hence functions as a tumour 

suppressor. No further characterisation of SRSF3 in PC has been attempted before though.  

SRSF3 has been reported to exert multiple functions, other than mediating alternative 

splicing. Early observations have indicated that SRSF3 is responsible for mRNA 3’ end 

formation. According to these reports SRSF3 binds to its pre-mRNA substrate, recruits 

polyadenylation factors to alternative polyA sequences proximal to 3’ terminal exons to 

promote production of truncated transcripts (Shen et al., 2019). This resembles the CPSF1 

scenario in CRPC. CPSF1 is a polyadenylation factor which binds to the alternative 

polyadenylation signal present in AR intron 3 and causes early transcription termination 

resulting in production of AR-Vs including AR-V7. It is conceivable to speculate that SRSF3 

which also binds to AR intron 3 may prevent interaction of CPSF1 with the polyA signal in 

intron 3 when it is expressed in non-malignant prostate. However, loss of SRSF3 in CRPC may 

allow free access of such factors to this alternative polyA leading ultimately to higher AR-V7 

transcript production (Van Etten et al., 2017). Interestingly, PTEN mRNA polyadenylation 

demonstrates the proposed polyadenylation pattern. In fact, it has been shown that SRSF3 

represses proximal polyA sites of PTEN mRNA in murine and human cells, whilst its loss 

potentiates selection of polyA sites that give rise to shorter mRNA transcripts (Shen et al., 

2019). 
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Further validation experiments are required to understand the exact role of SRSF3 in 

regulating AR-V7 mRNA processing. The potential binding sites identified in AR introns 2 and 

3 could be mutated in order to establish whether they comprise genuine SRSF3 specific motifs 

or whether SRSF3 is part of a broader protein complex not necessarily making direct contact 

with the mRNA substrate. An AR-V7 minigene experiment in response to SRSF3 knockdown 

would also indicate whether the latter promotes CE3 skipping and would hence validate our 

previous observations of elevated AR-V7 mRNA copies in CWR22Rv1 cells depleted of SRSF3. 

This would allow interrogation of AR-V7 splicing in other cellular backgrounds as well.  

From a translational stand-point, if SRSF3 activity could be restored, AR CE3 inclusion would 

be blocked and subsequently AR-V7 generation would be prevented. Unfortunately, there are 

no known SRSF3 activators which could be used to treat cells in culture and see whether this 

hypothesis can be applied in vitro and in vivo. The only known activator so far is cortisol which 

triggers SRSF3 expression in MDA-MB-231 breast cancer cells (Buoso et al., 2019). However 

cortisol also activates GR which has been shown to have at least some degree of overlap with 

AR in relation to gene targets (Arora et al., 2013).  

A higher number of MS-derived hits would be ideal so more candidates could be explored and 

validated for their potential role in mediating AR CE3 splicing. Despite the fact that CRIME 

provided proof-of-principle observations and turned out to be a valid method to study 

spliceosome assembly, it was only performed once limiting the listing of candidates alongside 

the tight MS stringency scores and cut-offs that were applied. Low confidence in the MS run 

could be attributed in part to the low transfection efficiency of CWR22Rv1 cells, as well as to 

the low abundance of the AR CE3 site per cell. Less dCas9 molecules per µg of chromatin were 

expected compared to a nuclear receptor such as AR which is normally distributed at different 

sites across the genome. dCas9 is only recruited to its single target site guided by the 

corresponding gRNA. Hence theoretically, the higher the chromatin input the more dCas9 will 

be pulled-down. Therefore, the amount of chromatin input per IP was maximised, but it was 

also limited by the amount of starting material (i.e. cell number), antibody affinity and 

immunoprecipitation efficiency.  

A promising approach which could be applied in order to overcome such weaknesses and 

improve IP yield is the positioning of more than one gRNAs in and around AR CE3 to create 

overlapping gRNA tiles so more than one dCas9 molecules can simultaneously be recruited to 
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the same CE3 site. A similar approach exploiting paired gRNAs has been applied previously 

(Ahmed and He, 2017).  

In addition, splicing is a very dynamic process with constant assembly of complexes around 

the splice site of interest and only a snapshot of this is captured by CRIME. Sequential IPs 

should be performed in order to timely monitor the assembly of the various protein 

complexes which regulate the splicing events that take place in and around AR CE3. 

Altogether, this piece of work comprises a proof-of-concept approach to study spliceosome 

formation at AR CE3 and subsequent AR-V7 mRNA formation. It was an initial attempt to find 

out whether this kind of approach could be applied to our cell line model, to also highlight 

the appropriate experimental conditions to maximise efficiency and output and to finally 

generate preliminary read-outs which could be followed up with more biological repeats and 

robust validation of identified targets. 

It is therefore apparent that this is an ongoing piece of work with great potential to identify 

robust preclinical targets to be pursued. 
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Chapter 7. Key conclusions and future work 

Restored AR activity is a hallmark of CRPC. To date, AR-Vs remain refractory to ADT and next-

generation antiandrogens and drive androgen-independent tumour progression.  

Lack of disease-relevant preclinical models which reflect AR-V specific co-regulator 

dependencies as well as the AR-V specific transcriptome and cistrome has made it challenging 

to define the precise role of AR-Vs in CRPC. This is, in part, a consequence of not being able 

to fully distinguish between the activities of AR-Vs and AR-FL which are co-expressed in cell 

lines such as CWR22Rv1 and VCaP (Liu et al., 2014). The development of the TALEN-

engineered R1-D567 cell line which expresses the single receptor splice variant ARv567es has 

been a valuable addition to the PC model toolbox (Nyquist et al., 2013); providing an 

important insight into co-regulator requirements of AR-Vs, such as dependency on the BET 

family of bromodomain-containing proteins (Chan et al., 2015). There remains, however, a 

need to have additional cell lines that recapitulate the clinical scenario. Given that CWR22Rv1 

cells express multiple AR-Vs, a phenomenon observed in CTCs (De Laere et al., 2017), it is 

important that new models express several clinically-relevant AR-Vs to mimic CRPC.  

To address this, a CRISPR-engineered CRPC cell line derivative, modelled in CWR22Rv1 cells, 

that has lost AR-FL expression, but retains expression of all endogenous AR-Vs was generated. 

This new cell line, termed CWR22Rv1-AR-EK (AR-exon knockout) has an edited AR gene 

containing a knock-in stop codon to prevent synthesis of AR-FL protein, and wild-type exons 

encoding the N-terminal transactivation and DNA-binding domains, to enable expression of 

all AR-Vs nascent to the parental cell line. 

There has been much controversy regarding the importance of AR-FL for AR-V activity. The 

work presented here indicates that AR-Vs do not require AR-FL for transcriptional activity, a 

finding which is consistent with Hu et al. (Hu et al, 2012). AR-Vs are sufficient to drive gene 

transcription in the absence of AR-FL. Importantly, functional annotation of the CWR22Rv1-

AR-EK AR-V-driven gene signature provided evidence for a role of AR-Vs in cell cycle regulation 

and mitotic pathways which is consistent with both Jones et al. (Jones et al., 2015) and He et 

al. (He et al., 2018) suggesting that the core overlapping genes from the distinct AR-V 

transcriptomes play key roles in regulating cell fate. However, the different experimental 

approaches utilised to assess AR-V activity between the studies, particularly with respect to 
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how AR-FL was inactivated, the degree of AR-V knockdown and RNA sequencing versus micro-

array platforms, is likely to contribute to a considerable degree of variation in the overall 

numbers of differentially expressed genes reported. Nevertheless, it is apparent that a well-

conserved core of AR-V-regulated genes exists and both cell proliferation and clonogenics 

assays validated AR-Vs as key regulators of cell growth and viability in CWR22Rv1-AR-EK cells. 

Outside of cell cycle regulation, one of the other highly ranked AR-V-regulated pathways 

identified by functional annotation was DNA repair. This was an exciting observation given 

the number of recent reports describing a role for AR-FL as a regulator of the DDR. Namely, 

Polkinghorn et al. and Asim et al. have both highlighted DDR associated gene signatures 

defined by AR in LNCaP cells (Asim et al., 2017; Polkinghorn et al., 2013). AR-Vs mediate DNA 

repair upon IR and hence confer resistance to radiation therapy, highlighting that AR-Vs drive 

tumour progression. Interestingly, no DDR associated genes were regulated by AR-V binding 

in two recent studies (Ling Cai et al., 2018; Chen et al., 2018). Both studies focused on solely 

investigating AR-V7 transcriptomes and cistromes using an AR-V7 specific antibody and siRNA 

oligos. However, it is now well-established that multiple AR-Vs are co-expressed in cell lines, 

tissue specimens and CTCs (De Laere et al., 2017). Co-expression of AR-Vs in the same patient 

may indicate that AR splice variants form a more complex interaction network (with one 

another) to what was initially thought and mediate signalling in certain combinations. In other 

words, more than one AR splice variants may be required for the same function to be 

executed.  

Taking this into account, our study did not solely focus on AR-V7, but instead aimed to look 

at all AR-Vs expressed in CWR22Rv1 AR-EK cells and how they function in concert (we siRNA 

depleted all AR-Vs exploiting the common poly-A sequence they share). The transcriptomic 

profile presented in this study reflects the activity of all variants (either functioning 

individually or in combination) whereas the two aforementioned studies look specifically at 

AR-V7 which may not regulate DDR genes itself or it may require other AR-V partners to do 

so. Development of antibodies which would discriminate the different AR-Vs by binding to 

their distinct cryptic exons would ultimately answer this question.  

The CWR22Rv1-AR-EK cell line is the first CRISPR edited PC cell line that has been developed 

to date. More CRISPR edited cell line models are now emerging. Namely, parental CWR22Rv1 
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cells have been engineered to express an AR-V7-GFP fusion to precisely assess how AR-V7 

expression levels alter in response to SF3B2 depletion (Kawamura et al., 2019).  

Expansion of the AR-FL knock-out pipeline presented in this study to other PC cell lines such 

as the androgen-independent LNCaP95 cell line, which expresses endogenous AR-Vs will be 

useful in order to assess whether AR-Vs behave differently or similarly in different PC cell lines 

to ultimately establish their precise role in CRPC relevant backgrounds. This is currently an 

ongoing project in the lab.  

Development of PC cell lines which harbour certain point mutations in the LBD of AR using 

CRISPR was of keen interest. Previously, lentiviral or adenoviral delivery of the gene of interest 

was the gold standard approach for generating cell lines that express the desired protein 

(O’Neill et al., 2015; Sun et al., 2006). However, lentiviral delivery is associated with constant 

overexpression of the gene of interest which can sometimes be toxic to the host cell line. 

Random integration of the lentiviral expression cassette is also possible to disrupt other genes 

and their function, interfering with phenotypic read-outs. CRISPR allows researchers to apply 

more physiological approaches to overcome such weaknesses by permanently engineering 

the locus of interest while maintaining expression of the gene of interest at physiological 

endogenous levels.  

A CRISPR knock-in pipeline was developed in order to introduce the W741L point mutation in 

AR exon 5. In silico analysis revealed that this is a recurrent mutation observed in PC patients 

and position 741 comprises a mini hotspot within the AR genomic sequence (COSMIC, 2019).  

CRISPR knock-in experiments comprise a challenging task which requires extensive 

optimisation of more than one steps throughout the process including cell transfection, 

rationale gRNA and donor template design as well as enforcing high endogenous HDR rates 

in the host cell line. The latter is the most unpredictable variable when one performs knock-

in experiments. Incorporation of the desired point mutation, in our case this was the W741L 

mutation relies on the exchange of an exogenous DNA donor template which encompasses 

the W741L mutation with the homologous fragment of endogenous DNA, a phenomenon 

called homologous recombination or HDR (Ran et al., 2013). However, HDR does not occur 

frequently making this exchange extremely challenging. 
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This study focused on optimising the steps to maximise HDR in order to generate a CWR22Rv1 

cell line derivative which would express the ARW741L mutant and ultimately understand its 

function and contribution to PC progression.  

Previously low HDR rates were ultimately enhanced using a streptavidin-tagged Cas9 

approach in conjugation with biotinylated donor templates (Ma et al., 2017). Applying this 

approach in parental CWR22Rv1 cells resulted in the generation of an ARW741L mutant cell line 

derivative. The engineered CWR22Rv1 cells (clone 11) harbour the H874Y mutation in 

addition to the knock-in W741L mutation in the AR locus. In order to discriminate the function 

of the two mutant receptors an additional round of CRISPR knock-in should be performed to 

correct the endogenous H874Y mutation to wild type. 

More recent advances in the CRISPR field to improve knock-in rates include the fusion of Cas9 

to certain HDR mediators such as Rad51 in order to guarantee their constant presence in close 

proximity to the cut site and immediate activation of HDR at the expense of the error-prone 

NHEJ which would lead to imprecise editing and most likely knock-out of the gRNA targeted 

gene (Rees et al., 2019). Finally, the emergence of base editors has revolutionalised the 

application of CRISPR to achieve precise genome editing. Base editors offer the advantage of 

donor template free, seamless editing which relies on spontaneous deamination of adenine 

to inosine which is recognised as guanine by DNA polymerase. A catalytically impaired Cas9 is 

fused to an adenine deaminase which operates on one strand of target DNA to convert A 

residues to G residues. Repair mechanisms are then triggered to fix the mismatch in the next 

round of DNA replication. This is important as most mutations associated with human genetic 

diseases result from C·G to T·A transitions and hence adenosine base editors could be 

exploited to correct pathogenic mutations in the clinic (Gaudelli et al., 2017).   

Divergent application of CRISPR to study the AR-V7 specific spliceosome was also in the scope 

of this study. Development of a novel strategy to identify the SFs recruited at a certain 

genomic locus was attempted using a catalytically impaired Cas9 against CE3. A series of 

proof-of-principle experiments were conducted to assess whether the strategy was worth to 

be applied, further optimised and expanded. The CWR22Rv1 cell line was used to investigate 

spliceosome assembly around CE3. Targeting of dCas9 at CE3 and subsequent MS analysis of 

the isolated protein complexes yielded a number of candidate SFs and splicing regulators 

which were enriched around CE3 for further investigation and validation. Importantly, SFs 
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previously shown to regulate AR-V7 mRNA levels such as Sam68 were identified, confirming 

that CRIME is a valid method for assessing spliceosome assembly. 

Preliminary experiments were performed to validate each CRIME-MS protein hit. SRSF3 was 

identified as a genuine modulator of AR pre-mRNA splicing. Despite the observation that 

SRSF3 might be responsible for CE3 skipping from the mature AR mRNA transcript, additional 

experiments are required to establish its precise function in CRPC. RNA IP should be 

performed using an SRSF3 specific antibody followed by PCR amplification of AR-V7 mRNA 

using the immunoprecipitated RNA as template. Although this was attempted, there was no 

robust evidence of AR-V7 mRNA presence in association with SRSF3. Failure to detect AR-V7 

mRNA could be attributed to the fact that formaldehyde fixation limited antibody 

performance in IP experiments. Additionally, spliceosome assembly involves the formation of 

various protein complexes associated with the AR-V7 mRNA. Hence, it is a matter of finding 

the right timing to capture the desired SF.  

A CRISPR screen is currently underway. A custom gRNA library against all known SFs has been 

designed and synthesised in collaboration with Astra Zeneca. This will provide a broader 

insight into AR pre-mRNA maturation processes and could provide extra validation if read-

outs overlap with CRIME hits. However, CRISPR induced knock-out of SFs may not necessarily 

indicate AR-V7 specific SFs. It is known that SFs can exert other functions associated with 

posttranslational processing of their interacting partners (Ratnadiwakara et al., 2018). This 

fits with the observation that a significant number of proteins involved in splicing are 

associated with AR-V7 protein (unpublished data). 

The application of CRIME to clinical specimens is certainly a promising provision to expand 

CRIME to more translationally relevant models. Difficulties such as maintaining ex vivo 

cultures must be overcome prior to its application to such models of disease. However, 

various strategies to establish viable ex vivo CRPC cultures are currently optimised in the lab.  

In summary, this study generated novel CRISPR-engineered CWR22Rv1-derived cell line 

models to facilitate improved modelling of CRPC. CWR22Rv1-ARW741L cells permanently 

express the CRPC relevant ARW741L mutant were established and now require further 

validation so they can be used to elucidate the mechanisms of regulation of this particular 

mutant receptor. Generation of AR-FL knock-out CWR22Rv1 cells (CWR22Rv1-AR-EK) 
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provided unequivocal insight in AR-V function in a CRPC relevant cellular background devoid 

of interfering AR-FL activity. AR-Vs regulate DDR and can confer resistance to radiation 

therapy, contributing to PC progression. This observation highlighted new modes of AR-V 

regulation that suggest novel pharmacological sensitivities in AR-V positive CRPC patients. 

Outside of CRISPR editing, the technology was repurposed to study the AR-V7 spliceosome. A 

pioneering method called CRIME which couples a catalytically inactive Cas9 targeting at CE3 

with MS was developed to identify the RNA-protein complexes assembled at CE3 during AR 

pre-mRNA splicing. Proof-of concept experiments were conducted to assess the validity of 

the method and highlighted SRSF3 as a potential AR-V7 splicer in CRPC models. These 

preliminary read-outs are currently validated and backed up in the lab using other genome-

wide approaches, namely CRISPR knock-out screens.   
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Appendices 

Appendix A. Cloning of gRNA into the px459 vector. 
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Appendix B. In-frame cloning of linker-mSA insert into lentiCRISPR V2.0 (intermediate vector). 

In-frame cloning of partial Cas9-linker-mSA into px459 (recipient vector) (top and middle 

panel). Validation of mSA cassette insertion into px459 by BstEII digestion (bottom panel). 
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B. 
Recombinant px459 

C. 



191 
 

Appendix C. Representative examples of CWR22Rv1-AR-EK AR intron 4 and 5 sequencing 

chromatograms showing no off-target CRISPR induced mutations.  
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Appendix D. List of the top 45 predicted gRNA_2 off-target sites. Genes highlighted in red are 

not expressed in the prostate. #MM, number of mismatches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

location  sequence  # MM  gene  gene name

 chrX  CTTACACGTGGACGACCAGATGG 0  NM_001011645 AR

 chr1  TATTCACGTGGATGACCAGATAG 4  None

 chr21  TTTTCACATGGATGACCAGATGG 4  None

 chr15  ATTTCATGTGCACGACCAGACAG 4  None

 chr1  CTTGCTCTTGGAGGACCAGACAG 4  None

 chr10  CTTAATCATGGAAGACCAGACAG 4  None

 chr5  ATTGCACGTGGGGGACCAGAGAG 4  None

 chr10  CCTACACGTGGGCGATCAGATGG 3  None

 chr5  CTGACAAGAGGACGACAAGAAGG 4  None

 chr9  CATACACTTGGAAGACTAGATGG 4  None

 chr7  TTTAGACTTGGACAACCAGAAAG 4  None

 chr3  CTCACACTTGGATGACCACACAG 4  None

 chr14  CCTACATGTGGGAGACCAGAGGG 4  NM_004131 granzyme B (GZMB)

 chr11  CCTCCACGTGGACGCCCAGCTGG 4  None

 chr4  CATACAAGTGGATGACTAGAAAG 4  None

 chr15  ATAACATGTGGACCACCAGAAAG 4  None

 chrY  CTTCCACTTGGAGGCCCAGAAAG 4  None

 chr20  CTTCCACGAGGAAGACGAGAAAG 4  None

 chr5  CTTGCAAGTGGAGGACCAAAAAG 4  None

 chr17  CTTACACTGGGAAGACAAGACAG 4  None

 chr19  CCTCCACGTGGATGACCCGAGAG 4  NM_014727

lysine 

methyltransferase 2B 

(KMT2B)

 chr2  CTTACCCTTGGAGGACCAAATAG 4  None

 chr8  ATTACACTTGGAAGAACAGAAAG 4  None

 chr17  CTTACACCTGGACACCCAGAAGG 3  None

 chr14  CTAACACCTGGACAACCAGGTGG 4  None

 chr2  CTCACACGTGTACGTCCAGCTGG 4  None

 chr14  CTCACAGGAGGACCACCAGAGGG 4  NM_012244
solute carrier family 7 

member 8 (SLC7A8)

 chr7  CTTACACCTGGAGGTCCAGGAGG 4  NM_000089
collagen type I alpha 2 

chain (COL1A2)

 chrX  CTAACTCGTGGAGGAGCAGAAGG 4  None

 chr1  CTACCACGTGGACCTCCAGAGAG 4  None

 chr2  CTTACACCTGGAAGGCAAGAAGG 4  None

 chr8  CTTCCACGTGCAGGAACAGAAGG 4  None

 chr12  CTTACACTTGGGCCACCAGGAAG 4  None

 chr11  CTTCCACGTGGAGGATCAGTCAG 4  None

 chrX  CTTCCACGTGGAAGAGCAGCAAG 4  None

 chr21  CTTACACGTTGACGGCTACACAG 4  None

 chr5  CTTACAAGGGGAAGAGCAGATGG 4  None

 chr13  CTTAAACTTGGACAATCAGATAG 4  None

 chr2  CTTACAAGTGAAAGAACAGAAAG 4  None

 chr16  CTTACATGTGGATGAGCAGGCAG 4  None

 chr13  CTTACACGAGGAGGATGAGAAGG 4  None

 chr19  GTTACACGTGGAGGAGCTGAGGG 4  None

 chr13  CTTACACGTGGTTGAACAGGCAG 4  None

 chr13  CTTACACGTGGTTGAACAGGCAG 4  None

 chr5  CTTACAGGTGGAATACCTGAGAG 4  NR_046680

ARHGAP26 antisense 

RNA 1 (ARHGAP26-AS1), 

long non-coding RNA
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Appendix E. Up-regulated (green table) and down-regulated (red table) genes in response to 

AR-V depletion. 

 

AATK AKR1A1 ABCD1 ACE ACTL10 ABHD14B ACBD4 ABCA1 APCDD1 AHR 

ADAT3 ATP7A AMOTL1 ANKRD16 ALX4 ABTB1 ACPP ADM ATP1B1 ARHGAP32 

ATG2A BDH2 AMPD2 ASTN2 ANKRD52 ADCK5 ADAM15 ALOX15 BAMBI BASP1 

BAHD1 C4orf48 ARAP2 BAIAP2L2 ANXA9 AMIGO2 ADAMTS1 AMER3 BCRP2 C11orf95 

BID CA11 ARNTL2 BPNT1 APPL2 ANG AES ANXA1 C19orf21 C8orf4 

C17orf103 CALCOCO1 BICD2 C1orf115 ARSJ ASS1 ARHGEF3 AQP3 C2orf15 C9orf152 

C19orf24 CAMK2N1 BTBD9 CDH7 ATXN7L1 BOK ATP2B1 B3GNT3 CCDC159 CACNA1D 

C6orf132 CBX6 C20orf118 CFD BSPRY CACFD1 ATP8A1 CDC42EP3 CDH18 CCDC64B 

C7orf43 CLN8 C4orf32 CYP1A1 CASP7 CDKN1A C15orf57 CNTN3 CLDN11 CCDC80 

CARD14 CLTB CAMK1 DBN1 CDIPT CHRM3 CCDC120 CREB3L1 CLDN4 CDH12 

CARNS1 CRB3 CAMLG DDN CDK8 CLSTN3 CPEB3 DSCAM-AS1 CYP4F35P CHST2 

CBLC CREBL2 CTC1 DNAJC18 CHFR CYB561D1 CYSTM1 ELF3 DCUN1D3 COL14A1 

CHRNE DNALI1 CTXN1 DSC2 COL5A2 DDHD1 DUSP1 ENPP4 DUSP4 CTTNBP2 

COBL DUSP2 CUEDC1 EFNA1 DNASE1 DUSP16 DYRK1B FBLIM1 FAM110C CYP1A2 

DBC1 EEF1A2 DACH1 EML6 DOPEY2 EFNB2 EFNA3 FLJ38109 FLJ22184 DDIT4L 

DCAF12L2 EID1 DEGS2 ERBB3 ELMO3 FAM102A EGR1 GAB2 FLJ23867 DGKA 

DEAF1 EPAS1 DHRS3 ERGIC1 EPHB3 GLYCTK FAM195B GATA2 FOXO4 ELF5 

DENND5A EPN3 DOCK4 ERO1L FAM109A GMIP FAM214B GPR3 FOXP4 ENPP5 

DLG5 FGFR3 ENTPD6 FAM63A FAM111A HIST3H2A FLJ20021 HABP4 GDPD1 EVX1 

ETV4 FKRP ERBB4 FAM86HP FGD3 HOXC10 GABARAPL1 HGD GPR35 FOS 

EVPL FOSL2 FAM173A FNIP2 FXYD3 HSPG2 HIST1H3H HID1 GUSBP1 GALNT3 

FAM162A G3BP2 FERMT3 GADD45G GRAMD1A IKZF2 HOXA13 HIST1H2AG HGF GSN 

FAM84A HEXIM1 GPR160 GSTT1 HIST1H2AC IL17RE IL17RC HIST1H2BK HIST1H1C HMGCS2 

FKBP8 IFI35 GYS1 HES7 HOXC13 ITGA3 IMMP2L KCND2 HIST1H3E HOXC12 

FZD4 IFT27 KLC3 ICA1 IRAK2 IZUMO4 IRF7 KIAA1467 HS6ST2 IER2 

GGT1 KDM6B LOC646862 ID1 ITGA5 JOSD2 LAD1 KIAA1522 IL36RN KIAA1199 

GREB1L KIAA0513 MIR600HG JMJD7 KHNYN JUN LOC113230 KRT8 INPP5A KIAA1324 

HIST2H2BE KLF4 MTHFR JUP LOC284578 KDM2A LOC338758 LANCL3 JUNB LCOR 

IGFBP3 KLHL28 MVP KIF9 LXN KIAA0922 MAFK LOC100862671 KCNJ11 LNX1 

LAMB2 LDHD MYOF LATS2 MAPK15 LLGL2 MAP1S LOC388692 KCNJ3 LOC286367 

LITAF LRFN4 NCOA3 LOC283335 MEX3D LOC729737 MAPRE2 LRP10 KIF13B MAFF 

LPPR2 LYPLA2 NGEF LRSAM1 MICAL1 MAP1LC3A MNT MAPK13 KLHL1 MAPK4 

MROH6 LZTR1 NRP1 MAN2A2 MXRA8 MMP24 MTSS1L MST4 LHX9 MFSD4 

MXD4 MANSC1 OSGIN1 MAN2B1 MYH14 NACC2 MYRIP MUC1 LIMA1 NCMAP 

MZF1 MAPKAPK3 PAN3 MFSD6 NKAIN1 NFKBIZ NCAM2 MYO7A LIPH NOTCH3 

NADK MARK1 PANX2 NCK2 NOXA1 PLEKHA2 NR1H2 PCED1B LOC100128770 NOV 

NUDT22 MC1R PCDHA10 PCBP4 NPDC1 POMGNT1 PCDHA4 PEG10 LRRC56 OGFR 

PLCD3 MFSD10 PERP PSMB10 NUDT14 PRRG2 PEX11A PELI1 MAL2 OSBPL5 

PLXNA1 MPZL3 PKP2 PTPRK PCDH19 RAB30 PLEKHA7 PHLDB3 MESDC2 PAN3-AS1 
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PODXL2 NAP1L3 PLEKHA6 RBPMS PCDH9 RUNDC3B PLEKHB1 PIK3AP1 MESP1 PART1 

POLD4 NAPRT1 PNPLA6 REEP2 PCNXL3 SDC4 PLXNA2 PLXNB3 NKPD1 PLA2G4A 

PRAC NDUFB4 PPP2R2A RHOC PDE4B SDA3C PTGS2 PRPH PBXIP1 PLA2G4F 

PRRT3 PDF PRMT6 S100P PDLIM2 SGSM3 RAB17 PTPRCAP PLA2G16 PPFIA2 

PVT1 PHF12 PROM2 SERTAD1 PSD3 SH3GLB2 RENBP PTRH1 PNCK RALGAPA2 

QDPR PITPNM1 RAB24 SGSM1 PTGFR SIX2 RHPN1 RALYL PNPLA7 REG4 

RAB11FIP4 PPP2R5A RNF11 SH2B1 PVRL4 SLC26A11 SATB1 RDH5 PPP1R3B SCUBE2 

RASEF PTPN21 SAMD10 SH3BGRL2 RAB3B SLC7A8 SH3RF1 RELB PTHLH SLC5A8 

RFX3 RILP SAT1 SIDT2 RBMS2 SLIT1 SLC30A10 RNF208 QSOX1 SPEF1 

ROBO1 SLC29A4 SDA3F SLC12A6 RIT1 SOX9 SLC40A1 SGK2 RAB25 STAP2 

RSPH1 SLC41A2 SIGIRR SLC25A29 RNPEPL1 SPHK2 SPRYD3 SI RBM11 SULT2B1 

S100A11 SLC6A6 SLC52A3 SLC39A13 RWDD2A STK40 SSH3 SLC17A5 RNF223 SYT4 

SCAND1 SOWAHB SLC5A6 SP110 SELM STX12 SYT7 SLC43A2 SLCO5A1 SYTL2 

SHC4 SYTL1 STARD10 STOM SNX32 SYNGR2 TLL1 SLITRK5 SMPDL3B TLE1 

SLC48A1 TEP1 STBD1 STXBP5 SPRY1 TBX2 TM7SF2 SSTR1 TMEM2 TMEM45B 

TMEM135 TET3 SYNJ2BP TJP2 THBS1 TJP3 TNFRSF12A STON1 TNFRSF11B TNFRSF19 

TNFRSF21 TINAGL1 TMEM184B TMC6 TMEM79 TPM4 TNFSF9 TMC4 TP53INP1 TSPAN1 

TRPV3 TMEM8A TPD52L1 TMEM238 TNK2 TSTD1 TRPM4 TMEM125 TSPAN12 ZDHHC16 

TYRO3 WWP2 UNC13B TRADD TP53INP2 VASN TRPS1 TNFSF15 TSPAN15 ZNF385A 

WNT9A XKR8 WDR45 TTBK2 TULP4 ZNF385B TTC39A TRIB1 TUFT1   

ZBTB7A ZDHHC18 ZG16B UNC45A ZFP36 ZNF524 ULK1 ZCCHC3 ULK3   

ZFP36L2 ZNF341 ZSCAN16 VGLL4 ZFYVE21 ZNF827 ZFP36L1 ZSWIM4 ZCCHC24   
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AAED1 ACADL ACBD7 ADORA1 AAK1 AADAT AFAP1L1 ABHD15 ALDH1L2 ARL1 

ACOT7 AP1AR ADSSL1 AGFG2 AKAP5 ACSF2 ANKIB1 ALDH6A1 ALG12 BMP8B 

ACTR3 APOD ALCAM AMBRA1 ARHGAP11B ADAMTS3 BLZF1 ALG10 ALKBH8 C5orf22 

ALDH3A2 ARHGEF10 AP1S3 ANKRD32 ATP12A AKAP12 C10orf118 ARHGEF19 BOD1 C9orf37 

ANGPTL4 ARHGEF37 APLN APOLD1 BMP6 AP3M2 C14orf101 ARSB BRIX1 CBLL1 

AR ARHGEF6 ATCAY ATOH8 BRCA2 ARHGAP11A CCDC71L B3GALTL C2CD5 CCDC66 

ARMCX4 ARL4C ATP6V0E1 BCL2L11 C4orf21 ARHGAP19 CCNB2 BDP1 CAMK2D CCDC90B 

AUNIP ATAD5 BARX1 BLM CDC6 ARPC5 CENPH BUB1B CBWD1 CCNE1 

BRMS1L BARD1 BRIP1 BRCA1 CDH23 ATAD2 CENPK C7orf60 CCSER2 CDKN1C 

C11orf92 C11orf93 C16orf55 C17orf104 CECR6 ATG14 CENPN CCNA2 CDC20 CDKN3 

CAST C1orf112 C9orf40 C19orf57 CEP152 AVPR1A CENPQ CCNB1 CDK17 CENPE 

CDC25C CCNE2 CCDC177 C1QL4 COPS7B BORA CEP120 CCNJ DSEL CENPF 

CHRNA2 CCSAP CEP63 C5 CTSO C11orf82 CNN3 CDC40 E2F1 CLIC4 

CNOT6 CDC42 CLGN CASC5 CUL4B C14orf37 COTL1 CDK19 E2F7 COPS6 

CSDA CENPI CLOCK CDC7 DGCR5 C18orf54 CTR9 CEP78 EDN2 COX15 

CSDAP1 CIT CORO1A CDCA8 DHRS2 C1orf21 DCTN5 CKAP2 FADS2 CPS1 

DLX1 CLDND1 CTSL2 CENPJ EPB41 C7orf63 DONSON CKAP2L FAM101B CSRNP2 

DMD CLSPN DAPL1 CETN3 EPHB2 CASP8AP2 DPYSL5 CLIP1 FBLN1 DHFR 

DOCK8 CNKSR2 DNA2 CNTFR ERCC6L CCDC18 FLVCR1-AS1 DEK FBXO5 DIAPH3 

EFEMP1 CROT DNMT3A DMC1 EXO1 CDCA7 FOXN2 DMXL2 FEN1 DNAJC27 

EFHD1 CRYM ELL2 DTD1 FAM120C CDK1 FZD2 EIF5A2 FUT10 DTX4 

FKBP5 DCAF12 ESR1 EBAG9 FAM72B CLIP2 GEN1 ESCO2 GABPB2 DUS4L 

FOXD2-AS1 DEPDC1 EXOSC1 EME1 G2E3 CMC2 GINS4 EVA1C GINS3 DYM 

FSTL1 DUSP3 FAM57B ERI2 GADD45B CRYBG3 GM2A FAM136A GOT1 EIF2AK3 

GHRHR FAM104B FAM72D FANCI GNA13 DGUOK GNG4 GFPT2 GSTM3 EIF4EBP1 

GMPR FAM72A FMO4 FKBP9 GNAI2 DYNLT1 HIPK1 HAUS3 HAUS6 FANCD2 

GNPDA1 FBXW11 GIPC3 FMNL3 GPLD1 E2F2 HK2 KATNBL1 HJURP HECTD1 

GRIN3A GABARAP GLT25D2 GPR137C GPM6A EGFR HSPB11 KCTD9 HLTF HIVEP2 

HPGD GHR HOOK1 H19 GSG2 ETNK2 ITPRIP KIAA0232 HMGB2 HNRNPH3 

HSPB6 GPC4 HOPX HAPLN3 HAS3 FADS1 KDM4A KIAA1731 HOMER2 IER5L 

IL1R1 HOXA4 KIF15 ICAM3 HELLS FAM120AOS LOC100144603 KIF18B IDH1 KIF18A 

INMT IGF1 KNSTRN ISCA1 HMMR FAM213B LOC148709 KIF5C LIG1 KIF23 

KCNC4 KCNMB4 KNTC1 ITGB3BP KIF14 FAM222B LRCH1 LDLRAD3 LMNB1 KIF5A 

KDELC2 KIF11 KRT19 KCTD12 KIF20B FANCM LRP11 LOC284889 LPAR3 LMAN1 

KLHL42 KLK3 LRRC40 KIAA1524 KIF24 FAS MKI67 MAP4K2 MAFB LOC730101 

LAMA3 LINC00467 MCAM KIF21B KLF11 FGFR1 MPHOSPH6 MCFD2 MAGOHB MANF 

LIN9 LOC100499405 MCM8 KIF26A KLF9 FOXD4 MPHOSPH9 MCM6 MBOAT2 MCM4 

LPGAT1 MAP2K6 METTL7A LCLAT1 KLK2 GINS1 MT1E MELK METTL4 MDM1 

MAOA MGME1 MMS22L LPCAT4 LIN52 GPAM NDRG4 NAE1 MMD MIPOL1 

MAP1B MIS18A MTBP LPL LOC389831 HSPA5 NEIL3 NDC80 MOB1A MKL2 

MRPL11 MT1X NEDD4L LRRCC1 LOC645249 INPP5B NUP35 NIF3L1 MSH2 MT2A 

MYO1D MYBL1 NUP54 MAD2L1 LOC81691 IRS2 OSBPL3 NUCKS1 MTFR2 NEDD1 

NCAPG2 NAMPT NXPE3 MARCKS MLF1IP LMNB2 PKIB PBRM1 MTHFD2 NES 
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NEMF NFATC3 PBK MASTL MT1G LOC100288637 POLA1 PGBD5 NUP155 NUP107 

NKX3-1 NID1 PDCD4 MCM10 MYLK LRR1 POLA2 PIGK ORC1 OAS3 

NME4 OTOP3 PFKFB3 MCM3 NEURL LRRC3 PREP PNPLA4 ORC3 OPA1 

NPTX1 PALLD PHF16 MFAP3L NR2C1 MAML1 PTPLB PPP6R3 PARP2 PAN2 

NPTX2 PREX2 PMP22 MIS18BP1 NUF2 NCAPG RHNO1 PRR14 PCTP PDS5B 

NSA2 PRIMA1 PNMA2 MND1 ONECUT2 NUP43 RTTN PTENP1 PDP1 PLK4 

NTAN1 PSMG2 PNRC2 MTFR1L OSGEPL1 OGDHL SENP1 RWDD2B PI4K2A PPP1R3E 

PCNA PTMA POLE2 PDK4 PABPC4 OIP5-AS1 SFSWAP SDA4A POGK PRIM2 

PCNP PTPRB PPWD1 PIM1 PARPBP OSTC SH3PXD2B SFN PPIP5K2 PRPS2 

PIGP RAD54B PSIMCT-1 PLA2G7 PCDHA11 PLEKHG2 SLC25A24 SLC22A31 PSMD5 RNASE4 

PLXND1 RB1 PTCH1 PLEKHF1 PLOD2 RAD51 SMC1A SLC25A40 PTK2B SLC10A3 

PMEPA1 RIMS3 PTPDC1 POLQ PSIP1 RFC4 SMC2 SLC35A3 RHOBTB2 SMCHD1 

PPAP2A RRM2 PTPRA PPDPF PTDSS1 RFC5 SMNDC1 SMCR7 RMI2 SNHG1 

PRICKLE2 SGOL1 RAD54L PRIM1 RAB11B-AS1 RHOQ SRD5A3 SNRK RPP30 SPC25 

RGS2 SLC47A1 RNF10 PSTPIP2 RAD1 RIBC2 STK39 SPAG5 RTN4RL1 STAM 

RRM1 SMC1B RTKN2 REEP3 RAD51AP1 RMI1 SUZ12 SPDL1 SASS6 STT3B 

SCYL2 SMPDL3A SBF2-AS1 REEP4 RAD51B SGOL2 TAPT1 ST7L SCN8A TAF5 

SGMS2 SRRM4 SEC24A REEP6 RFC3 SKA3 TEAD1 TCF7 SDC2 THSD4 

SLC17A7 SS18 SFXN1 SCG3 RPP14 SLC31A2 TMEM116 TFAP4 SLC38A3 TUBE1 

SLC38A4 STEAP2 SLC2A12 SEC61B RPRD1B SMIM13 TNFAIP8L1 TMEM209 SMC6 UBTD2 

SLC47A2 STRIP2 SRPK1 SIGMAR1 RPS6KB1 SPSB1 TRIM35 TMEM47 STYK1 YBX2 

SLCO2A1 SUDS3 STIL SLC25A33 SIMC1 SYNGR3 TSKU TP53TG1 TMEM48 ZDHHC8P1 

SNAI2 TARP TBC1D1 SSR1 SMC4 TOP2A TUSC2 TRANK1 TTC28 ZNF185 

ST8SIA6 TEX15 TDH TBPL1 SYT12 UCHL3 TYMS TRIP13 UBE2C ZNF215 

STEAP1 TMCC3 TICRR TMEM14B THAP6 USP31 WDR17 UBE2T USO1 ZNF778 

STEAP1B TMED7 TRMT112 TMEM194A TMEM14C WDR67 ZBTB1 UHRF1 USP28 ZWILCH 

TMPRSS2 TMEM123 TTK TMEM64 TMPO WDR76 ZBTB10 USP7 WWTR1 

TMX4 TMEM143 TXNDC16 TMOD2 UBE2E3 ZAK ZMYM1 XPOT ZNF273 

TNC TMEM60 VASH2 TMTC1 WDHD1 ZMIZ1 ZNF114 XRCC2 ZNF326 

UNC5B TSC22D3 WDR92 TP73 YTHDF3 ZNF217 ZNF318 ZDHHC5 ZNF473 

ZBTB16 ZIC5 ZBTB41 TTL ZBTB8OS ZNF704 ZNF519 ZNF280C ZNF829 

ZNF789 ZNF718 ZNF492 ZNF271 ZNF480 ZRANB3 ZNF596 ZNF530 ZWINT 
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Appendix F. List of CRIME derived proteins in complex with dCas9 at AR CE3. Ensembl identifiers are 

provided. 

 

Identifier Protein name/Description 

ENSP00000009041 STARD3 N-terminal like 

ENSP00000215754 macrophage migration inhibitory factor 

ENSP00000222482 carboxypeptidase A4 (CPA4) 

ENSP00000222482 carboxypeptidase A4 

ENSP00000229390 serine and arginine rich splicing factor 9 (SRSF9) 

ENSP00000231512 chromosome 5 open reading frame 15 

ENSP00000233813 insulin like growth factor binding protein 5 

ENSP00000235347 PRAME family member 10 

ENSP00000241891 opsin 4 

ENSP00000243077 LDL receptor related protein 1 (LRP1) 

ENSP00000246151 PITH domain containing 1 

ENSP00000253332 A-kinase anchoring protein 12 

ENSP00000254942 telomeric repeat binding factor 2 

ENSP00000258829 NK2 homeobox 8 

ENSP00000261247 JNK1/MAPK8 associated membrane protein 

ENSP00000261917 hyperpolarization activated cyclic nucleotide gated potassium channel 4 

ENSP00000262633 RNA binding motif protein 42 (RBM42) 

ENSP00000262982 chromosome segregation 1 like 

ENSP00000264233 DNA polymerase theta 

ENSP00000264434 chromosome 2 open reading frame 42 

ENSP00000270233 basal cell adhesion molecule (Lutheran blood group) 

ENSP00000272102 ADP ribosylation factor 1 

ENSP00000276204 dedicator of cytokinesis 11 

ENSP00000283006 centromere protein H 

ENSP00000284110 heparan sulfate-glucosamine 3-sulfotransferase 3A1 

ENSP00000285393 ATPase H+ transporting V0 subunit d2 

ENSP00000288774 peroxisomal biogenesis factor 10 

ENSP00000298283 ribosomal protein L10 like 

ENSP00000302222 zinc finger protein 25 

ENSP00000302896 ribosomal protein S9 

ENSP00000313050 nipsnap homolog 2 

ENSP00000313420 protein kinase, DNA-activated, catalytic polypeptide (DNA-PKcs) 

ENSP00000313829 KH RNA binding domain containing, signal transduction associated 1 (KHDRBS1) 

ENSP00000318115 translocase of inner mitochondrial membrane 50 

ENSP00000318136 intraflagellar transport protein 20 homolog  

ENSP00000321997 La ribonucleoprotein domain family member 1B 

ENSP00000322250 interleukin 17 receptor D 

ENSP00000323508 adhesion G protein-coupled receptor A2 

ENSP00000324287 ArfGAP with coiled-coil, ankyrin repeat and PH domains 2 

ENSP00000325421 presenilin associated rhomboid like 

ENSP00000334319 piccolo presynaptic cytomatrix protein 

ENSP00000335158 G protein-coupled receptor 142 

http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=35560&homolog=35560&label=ENSP00000009041&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=86691&homolog=86691&label=ENSP00000215754&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=34792&homolog=34792&label=ENSP00000222482&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=34792&homolog=34792&label=ENSP00000222482&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=55659&homolog=55659&label=ENSP00000229390&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=27393&homolog=27393&label=ENSP00000231512&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=8526&homolog=8526&label=ENSP00000233813&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=4542&homolog=4542&label=ENSP00000235347&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=45452&homolog=45452&label=ENSP00000241891&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=57487&homolog=57487&label=ENSP00000243077&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=83&homolog=83&label=ENSP00000246151&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=30662&homolog=30662&label=ENSP00000253332&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=70470&homolog=70470&label=ENSP00000254942&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=63536&homolog=63536&label=ENSP00000258829&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=66085&homolog=66085&label=ENSP00000261247&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=67541&homolog=67541&label=ENSP00000261917&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=82192&homolog=82192&label=ENSP00000262633&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=84869&homolog=84869&label=ENSP00000262982&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=18690&homolog=18690&label=ENSP00000264233&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=10061&homolog=10061&label=ENSP00000264434&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001810.xml&uid=82633&homolog=82633&label=ENSP00000270233&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=3280&homolog=3280&label=ENSP00000272102&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=94345&homolog=94345&label=ENSP00000276204&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=26908&homolog=26908&label=ENSP00000283006&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=77048&homolog=77048&label=ENSP00000284110&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=41696&homolog=41696&label=ENSP00000285393&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=5563&homolog=5563&label=ENSP00000288774&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=62752&homolog=62752&label=ENSP00000298283&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=47951&homolog=47951&label=ENSP00000302222&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=82017&homolog=82017&label=ENSP00000302896&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=35444&homolog=35444&label=ENSP00000313050&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=38650&homolog=38650&label=ENSP00000313420&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=4397&homolog=4397&label=ENSP00000313829&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=80975&homolog=80975&label=ENSP00000318115&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=76790&homolog=76790&label=ENSP00000318136&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=23881&homolog=23881&label=ENSP00000321997&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=19978&homolog=19978&label=ENSP00000322250&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=40280&homolog=40280&label=ENSP00000323508&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=16652&homolog=16652&label=ENSP00000324287&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=16305&homolog=16305&label=ENSP00000325421&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=38082&homolog=38082&label=ENSP00000334319&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=74814&homolog=74814&label=ENSP00000335158&proex=-1
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ENSP00000336799 tubulin alpha 1b 

ENSP00000339889 KIAA0368 

ENSP00000342216 ATP binding cassette subfamily A member 9 

ENSP00000344668 KRIT1, ankyrin repeat containing 

ENSP00000345060 GPR158-like 

ENSP00000346015 ribosomal protein L27a 

ENSP00000348536 ectonucleoside triphosphate diphosphohydrolase 4 

ENSP00000349960 actin beta 

ENSP00000350583 dipeptidyl peptidase 9 

ENSP00000351937 chromosome 17 open reading frame 80 

ENSP00000352085 WD repeat and HMG-box DNA-binding protein 1  

ENSP00000353770 ribonucleotide reductase regulatory subunit M2 

ENSP00000354483 dual specificity phosphatase 27, atypical 

ENSP00000354739 ribosomal protein L12 

ENSP00000355180 collagen type VI alpha 1 chain 

ENSP00000355886 mitogen-activated protein kinase 4 

ENSP00000356475 SNF2 histone linker PHD RING helicase 

ENSP00000358158 Histone H2A  

ENSP00000358413 zinc finger DHHC-type containing 6 (ZDHHC6) 

ENSP00000360907 spermatogenesis associated 6 

ENSP00000362298 sphingosine-1-phosphate lyase 1 

ENSP00000362330 chromodomain helicase DNA binding protein 6 

ENSP00000362820 serine and arginine rich splicing factor 3 

ENSP00000363489 growth differentiation factor 5 

ENSP00000363676 ribosomal protein L11 

ENSP00000363714 transmembrane protein 245 

ENSP00000363826 frizzled class receptor 8 

ENSP00000363926 par-3 family cell polarity regulator 

ENSP00000364184 kinesin family member 17 

ENSP00000365757 phosphatidylinositol-5-phosphate 4-kinase type 2 alpha 

ENSP00000365908 prune homolog 2 

ENSP00000367265 cytoskeleton associated protein 4 

ENSP00000367744 phospholipase C, eta 2 

ENSP00000370912 tec protein tyrosine kinase 

ENSP00000371729 sacsin molecular chaperone 

ENSP00000372320 neuroligin 4, Y-linked 

ENSP00000373191 leukemia NUP98 fusion partner 1 

ENSP00000373370 filaggrin family member 2 

ENSP00000373964 smoothelin like 2 

ENSP00000375899 SP140 nuclear body protein 

ENSP00000376669 Histone H4  

ENSP00000377640 ribosomal protein L24 

ENSP00000377795 mediator complex subunit 20 

ENSP00000380415 interleukin-2 receptor subunit alpha isoform 3 precursor 

ENSP00000381698 SHANK associated RH domain interactor 

ENSP00000382239 RNA binding motif protein 12B 

http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=55872&homolog=55872&label=ENSP00000336799&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=42635&homolog=42635&label=ENSP00000339889&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=75422&homolog=75422&label=ENSP00000342216&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=37275&homolog=37275&label=ENSP00000344668&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=75870&homolog=75870&label=ENSP00000345060&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=51655&homolog=51655&label=ENSP00000346015&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=38557&homolog=38557&label=ENSP00000348536&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=35971&homolog=35971&label=ENSP00000349960&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=81622&homolog=81622&label=ENSP00000350583&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=74729&homolog=74729&label=ENSP00000351937&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=63972&homolog=63972&label=ENSP00000352085&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=14373&homolog=14373&label=ENSP00000353770&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=3243&homolog=3243&label=ENSP00000354483&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=43116&homolog=43116&label=ENSP00000354739&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=85350&homolog=85350&label=ENSP00000355180&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=33402&homolog=33402&label=ENSP00000355886&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=30222&homolog=30222&label=ENSP00000356475&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=619&homolog=619&label=ENSP00000358158&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=48246&homolog=48246&label=ENSP00000358413&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=6963&homolog=6963&label=ENSP00000360907&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=47990&homolog=47990&label=ENSP00000362298&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=83789&homolog=83789&label=ENSP00000362330&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=32885&homolog=32885&label=ENSP00000362820&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=83305&homolog=83305&label=ENSP00000363489&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=67&homolog=67&label=ENSP00000363676&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=42123&homolog=42123&label=ENSP00000363714&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=47916&homolog=47916&label=ENSP00000363826&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=47734&homolog=47734&label=ENSP00000363926&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=4962&homolog=4962&label=ENSP00000364184&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=47193&homolog=47193&label=ENSP00000365757&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=44315&homolog=44315&label=ENSP00000365908&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=56639&homolog=56639&label=ENSP00000367265&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=5579&homolog=5579&label=ENSP00000367744&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=21380&homolog=21380&label=ENSP00000370912&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=61660&homolog=61660&label=ENSP00000371729&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=96942&homolog=96942&label=ENSP00000372320&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=19951&homolog=19951&label=ENSP00000373191&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=1985&homolog=1985&label=ENSP00000373370&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=77279&homolog=77279&label=ENSP00000373964&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=13849&homolog=13849&label=ENSP00000375899&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=613&homolog=613&label=ENSP00000376669&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=19199&homolog=19199&label=ENSP00000377640&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=30328&homolog=30328&label=ENSP00000377795&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=47382&homolog=47382&label=ENSP00000380415&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=39959&homolog=39959&label=ENSP00000381698&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=39365&homolog=39365&label=ENSP00000382239&proex=-1
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ENSP00000382957 zinc finger protein 705D 

ENSP00000385319 HIC ZBTB transcriptional repressor 2 

ENSP00000385332 BSCL2, seipin lipid droplet biogenesis associated 

ENSP00000386336 spermatogenesis associated serine rich 2 like 

ENSP00000387244 FAM183A  

ENSP00000391800 apelin 

ENSP00000392128 maestro heat like repeat family member 2A 

ENSP00000392541 albumin 

ENSP00000393173 putative RNA-binding protein Luc7-like 2 isoform 3 

ENSP00000395004 leukocyte immunoglobulin like receptor B1 

ENSP00000397552 actin like 6A 

ENSP00000401246 SNF related kinase 

ENSP00000402140 nitric oxide synthase trafficking 

ENSP00000403067 FERM domain containing 5 

ENSP00000405975 peptidylprolyl isomerase A 

ENSP00000406229 FAT atypical cadherin 1 

ENSP00000406293 transcription elongation factor A3 

ENSP00000415464 La ribonucleoprotein domain family member 4 

ENSP00000415901 acetylcholinesterase (Cartwright blood group) 

ENSP00000416786 growth factor receptor bound protein 14 

ENSP00000417764 ALG2, alpha-1,3/1,6-mannosyltransferase 

ENSP00000419389 tRNA methyltransferase 10C, mitochondrial RNase P subunit 

ENSP00000420817 structural maintenance of chromosomes 4 

ENSP00000424067 unc-5 netrin receptor A 

ENSP00000427224 GTF2H2 family member C 

ENSP00000427700 DnaJ heat shock protein family (Hsp40) member C18 

ENSP00000428417 regulating synaptic membrane exocytosis 1 

ENSP00000430329 minichromosome maintenance complex component 4 

ENSP00000434643 ribosomal protein S3 

ENSP00000435169 uncharacterized protein NKAPD1 isoform a 

ENSP00000435389 pleckstrin homology domain containing A7 

ENSP00000435797 anoctamin 1 

ENSP00000436849 outer dense fiber protein 2-like isoform d 

ENSP00000445641 caldesmon, CALD1 

ENSP00000450318 CCR4-NOT transcription complex subunit 2 

ENSP00000450697 HECT domain E3 ubiquitin protein ligase 1 

ENSP00000450806 gamma-aminobutyric acid type A receptor alpha5 subunit 

ENSP00000452798 importin 4 

ENSP00000453321 Sperm equatorial segment protein 1 

ENSP00000453357 regulator of microtubule dynamics 3 

ENSP00000455823 microtubule-actin crosslinking factor 1 

ENSP00000457552 solute carrier family 12 member 3 

ENSP00000457924 ribosomal protein S15a 

 

 

http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=40673&homolog=40673&label=ENSP00000382957&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=86323&homolog=86323&label=ENSP00000385319&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=54222&homolog=54222&label=ENSP00000385332&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=9487&homolog=9487&label=ENSP00000386336&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=1191&homolog=1191&label=ENSP00000387244&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=95849&homolog=95849&label=ENSP00000391800&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=14388&homolog=14388&label=ENSP00000392128&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=21012&homolog=21012&label=ENSP00000392541&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=36091&homolog=36091&label=ENSP00000393173&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=82167&homolog=82167&label=ENSP00000395004&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=15243&homolog=15243&label=ENSP00000397552&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=20087&homolog=20087&label=ENSP00000401246&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=11263&homolog=11263&label=ENSP00000402140&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=67108&homolog=67108&label=ENSP00000403067&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=34031&homolog=34031&label=ENSP00000405975&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=22759&homolog=22759&label=ENSP00000406229&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=12&homolog=12&label=ENSP00000406293&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=58270&homolog=58270&label=ENSP00000415464&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=35942&homolog=35942&label=ENSP00000415901&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=11130&homolog=11130&label=ENSP00000416786&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=44535&homolog=44535&label=ENSP00000417764&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=19176&homolog=19176&label=ENSP00000419389&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=16748&homolog=16748&label=ENSP00000420817&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=27452&homolog=27452&label=ENSP00000424067&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=25940&homolog=25940&label=ENSP00000427224&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=24796&homolog=24796&label=ENSP00000427700&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=33355&homolog=33355&label=ENSP00000428417&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=38780&homolog=38780&label=ENSP00000430329&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=48854&homolog=48854&label=ENSP00000434643&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=48732&homolog=48732&label=ENSP00000435169&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=53381&homolog=53381&label=ENSP00000435389&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001811.xml&uid=52520&homolog=52520&label=ENSP00000435797&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=6057&homolog=6057&label=ENSP00000436849&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=35154&homolog=35154&label=ENSP00000445641&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=57363&homolog=57363&label=ENSP00000450318&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=64941&homolog=64941&label=ENSP00000450697&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001808.xml&uid=69747&homolog=69747&label=ENSP00000450806&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001812.xml&uid=62561&homolog=62561&label=ENSP00000452798&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001807.xml&uid=69330&homolog=69330&label=ENSP00000453321&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001809.xml&uid=68987&homolog=68987&label=ENSP00000453357&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001806.xml&uid=496&homolog=496&label=ENSP00000455823&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001805.xml&uid=72819&homolog=72819&label=ENSP00000457552&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400001813.xml&uid=71227&homolog=71227&label=ENSP00000457924&proex=-1
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Appendix G. Pathways involved in cell cycle regulation are controlled by AR-Vs in CWR22Rv1-AR-EK 

cells. 

 

Biological process No. of 
genes 

% of 
genes 

Fold 
enrichment 

P-value 
(Hypergeometric 

test) 

Bonferroni 
method 

(corrected 
p-value) 

cell division 63 9.81 4.96 1.77393E-26 2.10849E-22 

DNA-dependent DNA 
replication 

7 1.09 8.46 1.12367E-05 0.133559243 

DNA-dependent DNA 
replication initiation 

17 2.65 13.12 1.05751E-15 1.25696E-11 

DNA replication 34 5.30 6.95 1.43037E-19 1.70013E-15 

mitotic cell cycle 20 3.12 4.56 1.35163E-08 0.000160655 

G1/S transition of 
mitotic cell cycle 

21 3.27 5.61 1.0804E-10 1.28416E-06 

regulation of 
transcription involved 
in G1/S phase of 
mitotic cell cycle 

11 1.71 13.29 1.10301E-10 1.31104E-06 

G2/M transition of 
mitotic cell cycle 

19 2.96 4.06 2.05028E-07 0.002436959 

 

Cell Division 

 

DNA-dependent DNA replication 

POLE2; POLQ; RFC3; WDHD1; RFC5; RFC4; POLA1;  

 

DNA-dependent DNA replication initiation 

CCNE2; POLE2; MCM8; MCM10; CDC7; PRIM1; MCM3; CDC6; POLA2; GINS4; POLA1; MCM6; 
ORC3; ORC1; MCM4; PRIM2; CCNE1;  

 

 

KLHL42; NCAPG2; CDC25C; KIF11; RB1; CCNE2; MIS18A; CCSAP; CEP63; KNSTRN; KNTC1; MAD2L1; 
CETN3; ITGB3BP; CDCA8; REEP4; CDC7; MASTL; LRRCC1; MIS18BP1; REEP3; CENPJ; ERCC6L; NUF2; 
CDC6; KIF20B; HELLS; GNAI2; SMC4; KIF14; EPB41; DYNLT1; CDK1; NCAPG; BORA; SKA3; NUP43; 
CCNB2; SMC2; SMC1A; CCNA2; NDC80; HAUS3; SPAG5; KIF18B; BUB1B; CCNB1; SPDL1; UBE2C; 
FBXO5; HAUS6; TTC28; CDC20; LIG1; ZWINT; BOD1; SPC25; CENPE; ZWILCH; NEDD1; CCNE1; 
PDS5B; CENPF;  
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DNA replication 

RRM1; CDC25C; CLSPN; BARD1; RRM2; POLE2; MCM8; TICRR; DNA2; BRIP1; MCM10; BRCA1; 
CDC7; DTD1; MCM3; BLM; EXO1; RAD1; CDC6; RFC3; RFC5; RMI1; CDK1; RFC4; RHNO1; 
DONSON; POLA2; POLA1; MCM6; ORC3; FEN1; RMI2; ORC1; MCM4;  

 

Mitotic cell cycle 

RRM1; KIF11; CIT; MYBL1; PBK; DNMT3A; KIF15; MASTL; CDC6; WDHD1; SKA3; NDC80; XRCC2; 
CLIP1; KIF18B; BUB1B; PBRM1; CENPE; TUBE1; CENPF;  

 

G1/S transition of mitotic cell cycle 

RB1; CCNE2; POLE2; MCM8; MCM10; CDC7; PRIM1; MCM3; CDC6; RPS6KB1; CUL4B; POLA2; 
POLA1; MCM6; ORC3; ORC1; MCM4; EIF4EBP1; PRIM2; CCNE1; CDKN3;  

 

Regulation of transcription involved in G1/S phase of mitotic cell cycle 

PCNA; RRM2; CDC6; KLF11; TYMS; POLA1; FBXO5; ORC1; E2F1; DHFR; CCNE1;  

 

G2/M transition of mitotic cell cycle 

CDC25C; CIT; FBXW11; CEP63; MASTL; CENPJ; CEP152; CDK1; BORA; CCNB2; CCNA2; HAUS3; 
MELK; CEP78; CCNB1; HAUS6; NES; NEDD1; PLK4;  
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Appendix H. Pathways involved in DDR are controlled by AR-Vs in CWR22Rv1-AR-EK cells. 

 

Biological process No. of 
genes 

% of 
genes 

Fold 
enrichment 

P-value 
(Hypergeometric 

test) 

Bonferroni 
method 

(corrected 
p-value) 

DNA synthesis involved in 
DNA repair 

15 2.34 11.91 3.13E-13 3.73E-09 

DNA repair 32 4.98 4.23 4.63E-12 5.5E-08 

DNA ligation involved in 
DNA repair 

3 0.47 8.35 0.004611 1 

DNA damage checkpoint 9 1.40 8.34 6.97E-07 0.008287 

DNA damage response, 
signal transduction by p53 
class mediator resulting in 
cell cycle arrest 

9 1.40 4.04 0.000354 1 

double-strand break repair 
via homologous 
recombination 

17 2.65 5.91 2.85E-09 3.38E-05 

 

DNA synthesis involved in DNA repair 

BARD1; DNA2; BRIP1; BRCA1; BLM; EXO1; BRCA2; RFC3; RAD51B; RAD51AP1; RMI1; RAD51; POLA1; 
XRCC2; RMI2;  

 

DNA repair 

CLSPN; TEX15; POLE2; RAD54L; TICRR; POLQ; BLM; EXO1; RAD1; PARPBP; RFC3; RAD51B; RAD51AP1; 
WDHD1; RFC5; CDK1; RFC4; ZRANB3; RAD51; ZBTB1; SMC1A; POLA1; XRCC2; UBE2T; UHRF1; FEN1; 
PARP2; USP28; MSH2; LIG1; FANCD2; PDS5B;  

 

DNA ligation involved in DNA repair 

HMGB2; PARP2; LIG1;  

 

DNA damage checkpoint 

CLSPN; CEP63; CLOCK; BRIP1; RAD1; RHNO1; DONSON; USP28; E2F1;  

 

DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest 

PCNA; CNOT6; CDC25C; CENPJ; CDK1; SFN; CCNB1; E2F7; E2F1;  
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Double-strand break repair via homologous recombination 
 

AUNIP; RAD54B; MCM8; RAD54L; MMS22L; POLQ; BRCA1; BLM; BRCA2; RAD51B; RAD51AP1; 
RAD51; GEN1; NUCKS1; XRCC2; FEN1; SMC6;  
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Appendix I. Performance of Cas9 RNP versus plasmid-derived Cas9 in CWR22Rv1 cells. 
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