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Abstract 
Hepatocellular carcinoma (HCC) is a major health problem and is the third leading cause of 

cancer-related mortality worldwide. The prevalence of non-alcoholic fatty liver diseases 

(NAFLD) is on the rise, and the possibility for the development of HCC in NAFLD patients is 

increasing in the western countries. HCC driver mutations are not druggable and the median 

improvement of life expectancy in treated HCC patients doesn’t exceed, at best, 2 years. 

Therefore, novel rewarding targets should be identified, from whom the components of the 

liver microenvironment represent a fertile field of research and drug discovery.   

SULFATASE 2 (SULF2), an extracellular sulfatase, was markedly upregulated in the cancer 

associated fibroblasts (CAFs) in more than half of HCC biopsies, and CAF-SULF2 expression was 

associated with poor prognosis and sorafenib tolerance in HCC patients. In vitro, stromal 

SULF2 induced the proliferation, migration, invasion and therapy evasion of HCC cell lines. 

Stromal SULF2 activated JNK/IL6 pathway in the fibroblast cell lines, while SULF2-rich 

secretome activated NF-kB/CD44 stemness pathway in the tumour cells justifying the 

aggressive, SULF2-dependent tumour cell phenotype. 

In a mouse model of NAFLD-induced HCC, Sulf2, as well as other targets, was upregulated in 

the non-tumour liver tissue of the dietary-challenged mice compared to matched controls. 

Pathway analysis and immunohistochemistry (IHC) validation in mouse and human tissue 

supported the profound role of different immune cells in the process of tumour development. 

We have identified a novel Cd44-positive macrophage phenotype that worked in concert with 

certain T cell subsets to develop HCC in mice. The number of CD44 positive macrophages in 

the non-tumour liver biopsies of NAFLD patients who developed HCC was higher than CD44 

positive macrophages in patients who didn’t develop malignancy.  

In conclusion, non-parenchymal cell compartments play an essential role in HCC development 

and progression. Therapeutics targeting the activities of these cells represent a novel strategy 

for disease prevention/management.      
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Chapter 1 - Introduction 

Hepatocellular carcinoma (HCC)  
Primary liver cancer is a major health issue that ranks seventh in world-wide cancer incidence 

and accounts for around 6% of overall cancer cases1, 2. The heterogeneous distribution of liver 

cancer is due to the regional prevalence of its risk factors; and generally speaking, more than 

three quarters of liver cancer cases arise in patients from developing countries compared with 

cases from the developed countries3. Indeed, liver cancer is the third most prevalent cancer 

in developing countries after lung and stomach cancer4. While the incidence of liver cancer 

showed a 30% decline in high risk countries, in other countries Hepatocellular carcinoma (HCC) 

incidence doubled in the period between 1978 and 19924. HCC; that is liver cancer initiated 

by malignant changes in hepatocytes, is the most common type of liver cancer and about 

800,000 cases were reported in 20125. HCC accounts for 75-80% of total primary liver cancer 

cases, whilst the remaining cases develop on the background of carcinoma of the bile ducts or 

cholangiocarcinoma6.  

1.1. Risk factors for the development of HCC 
Major risk factors for the development of HCC include the presence of cirrhosis, viral hepatitis 

B and C, non-alcoholic fatty liver diseases (NAFLD), obesity, presence of type-2 diabetes 

mellitus (T2DM), ingestion of aflatoxin and alcohol (Figure 1.1).  

1.1.1 Cirrhosis  
Cirrhosis is the major risk factor for the development of HCC and it typically develops on the 

background of chronic liver disease. Chronic liver diseases include viral hepatitis, alcohol 

consumption, NAFLD and hemochromatosis7. The incidence of HCC development in cirrhotic 

patients depends on the background liver disease and the severity of this underlying cause 

and approximately 2.5 to 4% of cirrhotic patients develop HCC per year, while 80% of HCC 

cases arise on the background of established cirrhosis8-10. It is, hence, better to describe the 

role of cirrhosis in the development of HCC in the context of other risk factors. 

1.1.2 Hepatitis B virus 
Hepatitis B virus (HBV) infection accounts for 50% of HCC cases worldwide11. HBV infection is 

acquired vertically in the endemic areas where most of patients became chronic carriers for 

the disease. On the other hand, blood transfusion and unsafe sexual habits are the major 

determinants of horizontal HBV infection in the countries with lower viral incidence12. HBV-
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HCC is linked with other factors including gender, age, concurrent ingestion of Aflatoxins as 

well as smoking13. HBV can be considered as an independent risk factor for the development 

of HCC; however, more than 70% of HBV-HCC cases are developed on the background of 

cirrhosis13. In a systematic review in Asia, the odds for the development of HBV-HCC were 

dramatically increased in the presence of cirrhosis14. Two important aspects should be 

highlighted here; the first is that the HBV viral load (estimated by measuring the HBV DNA) 

was proportional to the increased risk of HCC development in patients from Taiwan 

independent of other risk factors15. Secondly, the genotyping of HBV is associated with the 

severity of the disease in a regional pattern; that is, genotype D is associated with the 

development of HCC in western countries and in the USA, whereas, genotype C was associated 

with cirrhosis and HCC development in the Asian population13. 

1.1.3 Hepatitis C virus 
The development of HCC on the background of Hepatitis C virus (HCV) peaked in 

Mediterranean countries, for example, Egypt and Italy, but also in Japan16-18. It is also 

predicted that the incidence of HCV-induced cirrhosis and subsequently HCC will rise within 

the next decade in the USA19. Other case-control studies showed that HCV-positive individuals 

were 17 times more susceptible to develop HCC compared to non-HCV patients20. Unlike HBV 

infection, HCV-HCC is developed in the majority of cases after the establishment of cirrhosis; 

probably because HCV increases the risk of fibrosis and inflammation preceding the cirrhotic 

changes in the liver tissue21, 22. HCV infected patients are more likely to develop HCC in 

presence of other co-factors like age, male gender, genotype 1b, presence of diabetes, 

increased alcohol consumption as well as in presence of HIV or HBV co-infection13. The high 

efficacy of the direct acting antiviral (DAA) therapy managed to abolish viral replication and 

decrease the viral load which should in theory decrease the incidence of cirrhosis and in turn 

the development of HCC23, 24. However, safety studies should be carried on using these drugs 

due to the reported increase in HCC in DAA-treated patients in certain studies25. In addition, 

once the cirrhosis is established the risk of HCC is still independent on efficient viral 

eradication with the DAA23.     
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Figure 1.1 The association of HCC with different risk factors; from Reeves et al26 with 
permission: The development of HCC is associated with co-infection with clinical factors 
(cirrhosis), infection with liver viruses (HBV and HCV), or with environmental factors (obesity, 
excessive alcohol consumption, diet related fatty liver diseases). Preventive strategies for HCC 
may involve adapting better eating habits and healthier life style. Studies performed on 
patients having the antidiabetic metformin or the anti-hyperlipidaemic Statins showed 
delayed or less onset of HCC development27, 28. Abbreviations: HCV; Hepatitis C virus, HBV; 
Hepatitis B virus, NAFLD; non-alcoholic fatty liver disease, ALD; alcoholic liver diseases, IGT; 
impaired glucose tolerance.  

 

1.1.4 Alcohol 
The link between alcohol consumption and HCC development has been extensively studied29-

31. The correlation between alcohol consumption and HCC revealed a dose-dependent 

association, with patients drinking more alcohol or over longer period of time being more 

likely to develop HCC than age matched non-alcoholics31. In the US, individuals with a history 

of alcohol intake were at higher risk to develop HCC relative to those who do not drink. In 

addition, patients who have more than 80 mL/d alcohol had 4.5 higher risk of developing HCC 

compared to other individuals31. Alcohol intake is associated with the development of 

cirrhosis and hence favouring HCC development. In addition, increased alcohol intake induces 

? 
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alcoholic steatohepatitis (ASH) with more fat deposition, more inflammation and accumulated 

free radicals that all lead to hepatocarcinogenesis32. 

1.1.5 Aflatoxin 
 Grains, nuts or fermented soybeans stored in humid conditions are susceptible to the 

development of the liver carcinogen Aflatoxin by the Aspergillus flavus and Aspergillus 

parasiticus species33. This carcinogen, especially Aflatoxin B1 (AFB1), is prevalent in sub-

Saharan Africa and East Asia and resulted in a higher HCC prevalence32. Aflatoxin ingestion 

induces a point mutation in codon 249 of the p53 tumour suppressor gene predisposing to 

HCC34. Studies from Sudan35, Taiwan36 and China37 adopted several ways to detect the 

exposure to AFB1, for example, AFB1-DNA and AFB1-albumin in tissues and body fluids. 

Correlation studies revealed an AFB1-synergistic effect on HBV patients developing HCC 

suggesting that AFB1 might potentiate the carcinogenic effect of HbSAg38. 

1.1.6 Non-alcoholic fatty liver disease (NAFLD)        
The Epidemiology of HCC has been significantly altered during the last few years primarily due 

to major breakthroughs in the treatment of viral hepatitis and the increase in NAFLD 

prevalence, resulting in a shift towards NAFLD-driven HCC as a key contributor to the burden 

of HCC. NAFLD prevalence exceeds 25% of the western population given the increase of the 

onset of other comorbidities including obesity, hyperglycaemia and the metabolic 

syndrome39, and this syndrome can progress to the more severe form, non-alcoholic 

steatohepatitis (NASH), that is strongly associated with the development of HCC40. Risk factors 

for the development of HCC on the background of NASH include male gender, age with criteria 

of the metabolic syndrome. Although the other factors increase the risk of developing HCC, it 

is largely after progression to cirrhosis, which is not always the case in patients with NAFLD, 

where cirrhosis is present in only 70% of those developing HCC. In the other 30% of NAFLD 

cases, HCC develops in the absence of established cirrhosis. These patients often present at a 

more advanced stage, as they are not in cirrhosis HCC surveillance programs41, 42. The 

prevalence of NAFLD-HCC in the western countries ranges between 4-22%43, while one study 

has shown that 59% of the US HCC patients had NAFLD background44. This is not the case in 

the Eastern countries and the Middle East where other etiologies are more prevalent.   

1.1.7 Type-2 Diabetes mellitus (T2DM) and obesity  
HCC is closely associated with the prevalence of T2DM, with probably 8-50 % of HCC cases 

arise in diabetic patients45, 46. Different studies from the US45 and Western Europe47 showed 
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that the odds of developing HCC in presence of T2DM are 1.5-4 times higher than the non-

diabetic patients. Increased insulin resistance and hyperglycaemia may have also promote 

DNA and cellular damage consequent to accumulation of hepatic fat and the subsequent 

escalation to NASH, with associated the oxidative stress and production of free radicals48. In 

addition, T2DM together with obesity can be associated with HCC development independently 

of the presence of NAFLD45, 46. 

Patients with body mass index (BMI) of more than 30 have a four times higher risk of 

developing HCC compared to non-obese patients30. The development of HCC in obese patients 

is also associated with environmental factors like alcohol consumption and tobacco49-51. The 

link between obesity and HCC may be through the establishment of NAFLD and T2DM45, 46.    

1.2. Anatomic and histopathological changes in HCC 
Benign hepatocellular tumours are hepatocellular adenoma (HCA) and focal nodular 

hyperplasia, while benign biliary tumours include biliary adeno-fibroma and bile duct 

adenoma. Liver malignancy, on the other hand, may be of hepatocellular (HCC, 

hepatoblastoma and HCC fibrolameller variant), cholangiocellular (cholangiocarcinoma) or 

mixed (hepatocellular cholangiocarcinoma, mixed epithelial mesenchymal hepatoblastoma) 

cell origin52. Macroscopically, HCC may develop as a single lesion or as multiple foci separated 

by non-tumour liver parenchyma. HCC developed on the background of cirrhosis is often 

encapsulated with fibrous tissue, but this feature is not as frequent in the non-cirrhotic 

patients with HCC52, 53.  

Three histological features are assessed in biopsy tissues when considering the diagnosis of 

HCC, including changes in liver architecture and cytological features, as well as the presence 

of portal stromal invasion54. Loss of the intact portal tract and the presence of unaccompanied 

arteries, together with an increase in liver cell plates from 1-2 cells thick to 3 cell thick or more 

are typical features of HCC. Some HCCs have sheet-like growth patterns, while other types 

form pseudo-like or trabecular structures of the liver cell plates54. Changes to cellular 

morphology are often seen in HCC and can be also be a useful tool for diagnosis. These 

changes include the presence of clear or giant cells, as well as fatty deposition within tumour 

associated with some features also seen in their non-tumour counterparts - like Mallory-Denk 

bodies, intracellular inclusions and hyaline globules. Nuclear polymorphism is also seen in 

HCC, especially in the presence of abnormal mitotic figures and changes in the nuclear-to-

cytoplasmic ratio54. These cytological abnormalities together with the changes in the 
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architecture were the basis for Edmondson and Steiner’s classification of HCC tumour 

grades55. This classification includes 4 grades. Grade 1 or well differentiated HCC typically has 

thin trabecular architecture, with slightly enlarged nuclei and abundant eosinophilic 

cytoplasm. Grade 2 or moderately differentiated HCC frequently has a pseudo-glandular 

pattern with a higher nuclear-to-cytoplasmic ratio. Poorly differentiated HCC includes grades 

3 and 4,  with an exponential increase in nuclear hyperchromatic features55. HCC lacks a typical 

pattern of stromal invasion, although more abundant stroma can be feature in fibrolamellar 

and scirrhous subtypes of HCC54.    

In addition to histological assessment of diagnostic biopsies, based on the haematoxylin and 

Eosin stained sections, the presence of other tissue markers can provide a strong additional 

tool to confirm a diagnosis of HCC and distinguish a primary from a secondary or metastatic 

tumour. Immunohistochemistry can also distinguish mixed origin tumours and non-cancerous 

lesions. The presence of canalicular polyclonal carcino-embryonic antigen (pCEA) or CD10, 

with focal or strong hepatocellular Glypican-3 (GPC3) and Arginase-1 (ARG1) expression are 

strong indicators of a primary rather than metastatic cancer and are at least moderately 

sensitive. In parallel, the loss or disorder of reticulin staining with strong sinusoidal expression 

of CD34, especially if associated with cytoplasmic GPC3 and Glutamine synthase (GS) staining, 

strongly support a diagnosis of HCC rather than a benign lesion54.         

1.3. Molecular classification of non-tumour/HCC and their link with clinical features 
The focus of many liver cancer researchers has been directed towards profiling HCC tumours 

into different molecular categories, with the aim of developing a more “personalised” 

approach for the affected patient, with the ability to predict their prognosis, but also their 

likely outcome to a particular treatment. HCCs typically harbour great inter and intra-tumour 

heterogeneity and it was hoped that the innovation of microarray and high throughput 

“omics” techniques would decipher the more meaningful molecular subtypes within a 

tumour. 

One of the first integrated molecular studies was reported in 2007, on tissues from HBV-driven 

HCC in French patients, and combined gene mutation, DNA methylation and expression 

microarray data56. Mutation in TP53, AXIN1, TCF1, PIK3CA, and KRAS genes was evident in this 

cohort of patients with a unique hyper-methylation in the CDKN2A and CDH1 gene promoters. 

Unsupervised clustering of the microarray data identified two robust clusters; each of which 

was divided further into 3 sub-clusters. This 6-G clustering was defined by clinical features as 
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well as mutational status56. A subsequent larger multi-centre study used formalin-fixed, 

paraffin embedded (FFPE) tumour tissues as well as the adjacent non-tumour tissues from a 

primary cohort of early HCC in Japanese patients undergoing tumour resection57. The derived 

gene signature was subsequently validated in patients from the US and western countries, 

with the goals of correlating gene signature from both tumour and non-tumour tissue with 

patient outcome. Outcomes studied included survival and late recurrence (tumours 

developed two years or more after resecting the primary tumour). Interestingly, the gene 

signature of the tumour tissue didn’t show any association with the patients’ survival or 

tumour recurrence, while the non-tumour gene signature was significantly associated with 

patient survival. Particular genes associated with poorer survival were those involved in 

inflammatory processes, with strong enrichment of genes in both the NF-κB and IL6/STAT3 

pathways57.     

One subsequent multi-centre study from Chiang et al58 focused on exploring copy number 

variation and expression microarray in HCV-driven HCC resection tissues from Spain, US and 

Italian patients58. Most of the characterised tumours harboured 1q gain, 8q gain and 8p loss, 

with hierarchical clustering of the microarray expression profile identifying 5, rather than 6, 

patient subgroups. Interestingly, two clusters (CTNNB1 and the proliferation subclasses) were 

concordat with the French clustering groups, while concordance between pathway analyses 

in the Chiang et al. clustering and the previous 6G study was also demonstrated58. Hoshida et 

al59 followed this study up with a meta-analysis combining the previous gene expression 

studies. All the expression data, from the different aetiologies of HCC, was pooled and 

analysed together, with three suggested human HCC sub-clusters emerging. These were 

termed S1-S3 and again, associations with clinical and histological data defined59. S1 and S2 

subgroups shared some common features and together, S1 and S2 were termed the 

proliferative subtype, as opposed to the non-proliferative subtypes made up of S3 cases 

(Figure 1.2). Tumours in the proliferative phenotype reportedly had a more aggressive 

phenotype, with comparatively poorer outcomes for affected patients. This group was 

characterised by activation of RAS, IGF and mTOR signalling pathways59. Two subclasses were 

defined within this proliferative group, based on activation of either the Wnt/TGFβ pathway 

or the EpCam progenitor cell pathway59. Conversely, the non-proliferative phenotype, in 
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which patients had a relatively better prognosis compared to the proliferative subtype, 

included patients with CTNNB1 mutation60, 61. 

Figure 1.2 Hoshida’s classification of HCC patients, from Hoshida et al59 with modification 
HCC patients were classified according to their gene expression profile and to the 
deregulated pathways into three classes (S1-S3). Concordance with previous gene 
signatures revealed an overlap with particular groups (G3, G5/G6) mentioned previously by 
Boyault et al56. Overlapped gene signatures represent two groups of patients based on the 
proliferation index of the tumours; the proliferative phenotype with poor patient outcome 
and the non-proliferative group with good prognosis. 

 

As a result of these studies, there is the possibility of profiling the gene expression of HCC 

and classifying affected patients into categories, supported by clinical data, which are 

associated with outcome. With a view to indentifying signature(s) that predicted disease 

recurrence, Villanueva et al62 went on to evaluate the gene expression profile of 287 early 

HCC from patients cared for at four different centres, exploring the overlap with the 

previously reported gene expression signatures from tumour tissues as well as from the 

non-tumour regions. The Chiang et al proliferation signature58 was the most prevalent in 

the Villanueva et al cases. Pair-wise comparisons confirmed clustering of the most poor 

survival gene signatures together. In contrast, analysis centred on V coefficients showed 

clustering of most signatures into three broad categories. The first category included the 

proliferation subtype58, G356, cluster A63, late TGFB64, Met signature65 and S159 signatures. 

The second category was defined by the poor survival tumour-adjacent signature57, while 

the third category was associated with progenitor cell activation (hepatoblastoma_C266, 

EpCAM67 and S259 signature). Of all the gene signatures within the broader categories, only 
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the G356 signature, poor survival signature and satellites were independently associated 

with tumour recurrence and overall recurrence.   

While these studies have grouped patients based on their gene expression state into certain 

categories with an ability to predict outcome and tumour recurrence, the role of these 

groupings in prospective management decisions for patients remains uncertain.  A further 

limitation of these data thus far, is the limitation to HCC predominantly arising in HBV and HCV 

aetiologies, with little representation of NAFLD-HCC patients. More work is needed to define 

the gene expression profile of NAFLD-HCC patients and to explore possible overlaps between 

the transcriptome of these patients and the publically available viral aetiology HCC datasets.    

1.4 Pathophysiological changes in HCC 
The development of HCC is mostly accompanied by chronic liver diseases, with cirrhosis as the 

most important known factor predisposing to HCC development. The liver malignant process 

is believed to start with chronic liver disease that leads to disruption of the normal liver 

architecture and generating nodules of hepatocytes.  These nodules can undergo a number of 

pre-malignant steps, involving their transformation into low grade dysplastic nodules (LGDN) 

that progress to high grade dysplastic nodules (HGDN). An accumulation of genetic and 

epigenetic events with time increase the likelihood of these premalignant structures 

transforming into malignant early HCC and subsequently more aggressive HCC68. This multi-

stage process is accompanied by the build-up of different mutational loads, deregulated 

signalling pathways as well as changes in the premalignant microenvironment.   

1.4.1 Genetic Factors predisposing HCC 
Several single nucleotide polymorphisms (SNPs) are associated with the development of HCC 

in combination with one or more from HCC risk factors69. SNPs in the cell cycle genes (TP53 

and MDM270), inflammatory genes (TGFβ71, TNFα72 or IL1β73) and oxidative stress genes 

(SOD274) are of special interest. HCV patients with rs4444903 SNP in EGF75 gene and 

rs2596542 SNP in the MICA76 gene responsible for altering immune response are at higher risk 

for developing HCC. PNPLA377 SNP in NAFLD/NASH patients predispose the development of 

HCC, while SNPs in GTSM1 and GSTT1 genes78 are common in HBV infected patients or AFB1 

positive patients who progress to HCC. In isolation these SNPs are not harmful, but they can 

increase the likelihood of HCC development in the presence of other risk factors. 
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1.4.2 Pre-carcinogenic gene alteration  
As reported below, acquired TERT mutations are common in HCC and recently, rare germ line 

mutations in TERT have also recently been reported to increase the risk of HCC79, 80.  TERT 

encodes telomerase, an enzyme important for maintaining the integrity of telomeres – the 

protected DNA repeated sequences at the ends of chromosomes. Changes in the telomere 

and the tolemerase activities are common in the cirrhotic patients and are associated with 

high risk of HCC development. TERT promoter mutations are present in about 5% of LGDN and 

in 19% of the HGDN with marked increase in early HCC patients81. TERT promoter mutation 

can, thereby, be considered as the “guardian” of the malignant transformation of hepatocytes, 

while other mutations are acquired afterwards. Hepatocellular adenomas, a rare type of 

benign hepatic tumours, have β-catenin exon 3 mutations, HNF1A or IL6ST mutations. The 

presence of β-catenin mutation in hepatocellular adenoma increases the risk of the 

development of malignancy. The chromosomal aberrations, hypomethylation and TERT 

promoter mutation are included in the last step of malignant transformation82. 

In human, the insertion of viral DNA particles in the human genes like TERT and CCNE1 can 

lead to genotoxicity and HCC development83. Similarly, infection with adeno-associated virus 

2 (AAV2) leads to insertional mutations in the aforementioned genes together with CCNA1 

and TNFSF10; being correlated with HCC development84. Frequent C>A point mutation and 

R249S mutation in TP53 as a result of AFB1-DNA adduct is commonly seen in HCC patients33. 

Aristolochic acid exposure leads to T>A transverion and was associated with HCC development 

in Chinese population adding another tier of complexity in the process of cancer initiation85.     

In experimental HCC, the mechanism by which carcinogens induced genotoxicity is extensively 

studied. Discovered in the thirties of the last century, N-nitoso compounds were the most 

commonly used carcinogen in hundreds of HCC studies 86. Administration of 

Diethylnitrosamine (DEN) is responsible for the alkylation of the guanine N7 atom leading to 

HCC development in rats. Further investigation identified cytochrome p450 enzyme (CYP2E1)-

mediated metabolism of DEN to dimethyl nitrosamine (DMN) to be responsible for the 

formation of DNA adduct before the development of HCC in mice86. The development of DEN-

induced HCC was partially mediated through the induction of oxidative stress and 

consequently the production of reactive oxygen species (ROS) that affect DNA integrity and 

induce further chromosomal aberrations and genotoxicity86.   
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1.4.3 Main DNA driver mutations 
Whole genome sequencing studies showed that although the number of somatic mutation in 

HCC patients can be between 35 and 80 mutation per case, the optimal number of driver 

mutations required for the initiation of the tumour is between 5 to 887. The rest of these 

mutations are considered as “passenger” mutations that are not able by themselves to initiate 

HCC. Key driver mutations usually happen in the key genes regulating the process of the 

carcinogenesis including genes regulating cell cycle (TP53, CDKN2A, RB1, CCNE1), genes 

preserving telomere function (TERT), genes responsible for cell proliferation (CTNNB1 and 

AXIN1) and oxidative stress (NRF2 and KEAP1) (Figure 1.3). 

1.4.3.1 Cell cycle gene mutations 
Mutation in the tumour suppressor gene P53 is common, reported in 12% - 48% of HCC 

patients88. P53 is crucial for important biological processes like apoptosis, cell cycle arrest and 

DNA repair, with change in its sequence alters the translation or function of the encoded 

protein, pushing cells towards malignant transformation89-94. HBV, HCV, oxidative stress and 

ingestion of AFB1 are associated with TP53 point mutations, leading to G:C to T:A transversion 
33, 95-100. Moreover, the HBV host–integral gene, HBx, reduces the binding of P53 to important 

transcription factors responsible for apoptosis, resulting in disruption of this physiological 

process101-103. Other genes involved in cell cycle regulation, like p21, CCNE1 and RB1 genes are 

vulnerable to mutational changes in HCC patients. Approximately 12% of HCC have 

homozygous deletion in p21104, and a further 8% of patients harbour RB1 mutations105. HBx is 

found to be integrated in the human genome leading to mutation CCNE1 gene in about 5% of 

HCC83 and amplification of FGF19/CCND1 locus in 14% of HBV-related HCC106.    
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1.4.3.2 Telomerase reactivation mutations 
Early changes in the telomere and telomerase activity are seen in liver tissues of cirrhotic 

patients, and in HCCs - with about 90% of HCC having a  higher level of expression of 

telomerase107. This is attributed to amplification in the TERT locus in about 6% of patients108, 

HBx insertion in the region of TERT in 15% of patients and an activating mutation in the TERT 

promoter in more than 50% of patients83. TERT promoter mutation is associated with CTNNB1 

mutation in a number of HCC patients108.   

Figure 1.3 Mutational status in HCC patients, from Zucman-Rossi et al109 with modification 
Driver mutations in HCC take place in key genes responsible for regulating telomerase 
function, cell cycle, Wnt/β-catenin and oxidative stress. Other less-common mutations include 
mutations in the genes responsible for epigenetic regulation of gene expression or genes 
regulating RTK pathways. 

 

1.4.3.3 CTNNB1 mutation 
Wnt/β-catenin pathway is an essential oncogenic pathway in about 40% of HCC and is 

responsible for cell proliferation and metabolic processes within the tumour. CTNBB1 encodes 

β-catenin and in the absence of constitutive activating CTNNB1 mutations, upstream 

dysregulation is typically present, promoting Wnt ligands binding to the Frizzled receptors 

leading to the aberrant translocation of wild type (WT) β-catenin from its membranous 

complex into the nucleus, to activate its specific gene expression. However, CTNNB1 is 

mutated in exon 3 in more than 30% of HCCs, leading to constitutive nuclear translocation of 

β-catenin and persistent activation of the pathway110. Other genes involved in the Wnt/β-
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catenin pathway, like APC and AXIN1111 are also, but less frequently, mutated. Some studies 

suggested a link between HCV infection and AFB1 exposure to the development of HCC with 

CTNNB1110. 

1.4.3.4 Receptor tyrosine kinase-related mutations 
Receptor tyrosine kinases (RTK) comprise a large group of enzymes that phosphorylate 

important downstream targets regulating many physiological, but also oncogenic pathways. 

An activating mutation in any one of these proteins, or deletion mutation in one of their 

inhibitory regulators, will lead to activation of the whole pathway and increase cellular survival 

and proliferation. Amplification of CCND1/FGF19106, activation mutation in PIK3CA or deletion 

mutation in the pathway inhibitor TSC1 or TSC2 will lead to activation of the PI3K/AKT/mTOR 

pathway108. Although RAS mutation is rare in HCV and HBV-infected HCC patients (2%), 

inactivating mutations in the RAS inhibitor RSK2 occurs in about 9% of HCC patients leading to 

activation of this whole pathway104. Mutations in RAS family members also include activation 

mutation in codon 61 in NRas, in codon 12 in both HRas and KRas112-118. Lack of genome wide 

studies in NAFLD-HCC patients might explain the underestimation and the low number of HCC 

patients harbouring mutations in the RAS family members.  

1.4.4 Oncogenic pathways in HCC development and progression 
HCCs are a very heterogeneous group of tumours and many factors can be involved in the 

process of tumour development and progression. As mentioned before, DNA damage and the 

resulting pattern of mutation is essential to the development of the disease. Unfortunately 

many of these changes in the human genome are deemed un-correctable or ‘undruggable’ 

and the focus of the current research is to understand the consequences of changes in the 

gene at the protein level, with the hope of identifying chemopreventive or therapeutic targets 

for HCC. A number of key pathways promoting tumourigenesis are those maintaining the 

oncogenic conditions within the premalignant liver or in the tumour microenvironment. 

Infiltration of different stromal or immune cells to the tumour niche can directly favour 

oncogenesis or activate key pathways that promote chronic liver disease progression to 

cirrhosis, paving the route to HCC development. The interplay between different cell types 

within the liver tissue and the oncogenic pathways potentially activated by cell-cell cross talk 

are summarised here.     
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1.4.4.1 NF-κB pathway 
Inflammatory cytokines like TNFα, IL6, IL8 and IL1β released from dead or damaged cells or 

the bacterial cell wall component Lipopolysaccharides (LPS) can activate the classical NF-κB 

pathway by phosphorylation and degradation of IκBα. Unphosphorylated IκBα sequesters 

members of the NF-κB family in an inactive form in the cytoplasm. As a result of IκBα 

degradation, released NF-κB dimers, typically RelA and P50 homodimers, enter the nucleus to 

activate NF-κB targets. In the alternative pathway, p100 is degraded resulting in a p52 

molecule and enabling the free p52/RelB to translocate to the nucleus promoting 

transcription of a discrete subset of NF-κB dependant genes. Genes regulated by the NF-κB 

pathway include pro-inflammatory genes (iNOS, IL6, TNFα and IL1β), fibrogenic genes (TGFβ), 

cell survival and apoptosis genes (BCL2, BCL-XL, cIAP, GADD45β) and metabolic genes 

(SOD2)119. 

Activation of NF-κB can be associated with the development and progression of HCC 

regardless of its cellular source. In Mdr2 knockout mice that develop spontaneous HCC on a 

background of cholestasis-induced chronic inflammation, the release of TNFα from the bile 

ducts and different inflammatory cells activates the NF-κB pathway in the adjacent 

hepatocytes by recruiting RelA to the nucleus and leading to HCC. Activation of the NF-κB 

pathway reported in this model was associated with the late phase of tumour initiation120, 

mediated by upregulation of the anti-apoptotic and cell survival genes GADD45β and BCL2120. 

Activation of NF-κB in non-parenchymal cells can also contributes to the initiation of HCC. NF-

κB-mediated iNOS production from macrophages and neutrophils can abrogate P53 

transcription, via an increase in free radicals and an enhanced production of macrophage 

Inhibitory Factor, or MIF 121, 122. This pro-tumorigenic effect of macrophages can also be 

promoted by dead or apoptotic hepatocytes, which release characteristic molecules known as 

Danger Associated Molecular Patterns (DAMPs), which activate NF-κB signalling within 

macrophages. This in turn leads to the production of IL6 and TNFα, which have well 

established mitogenic effects on adjacent hepatocytes123-126.  

After tumour initiation and development, activation of NF-κB can contribute to progression 

and a poorer outcome. Tumour cells or tumour associated macrophages secretes CCL22 and 

CC17 chemokine that attract a specific subset of Tcells (Tregulatory or Treg cells) to the site of the 

tumour. This type of T cell is responsible for induction of an immunosuppressive phenotype 

that supresses anti-tumour immunity127. NF-κB activation induces the expression of different 
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matrix modifying proteins and enzymes that are essential for tumour progression128-130. The 

Cyclooxygenase-2 (COX-2) enzyme, a transcriptional target for NF-κB, is responsible for 

production of hypoxia inducible factor-α (HIF-α) that stimulates production of the angiogenic 

factor VEGF 131.  

1.4.4.2 JNK pathway 
The cJun NH2-terminal kinase (JNK) is included in different physiological and pathological 

pathways in the liver as well as in other organs. The JNK pathway regulates the expression of 

different downstream genes that are implicated in apoptosis and proliferation, including cJun, 

JunD and JunB132. The role of JNK pathway activation and the development and the 

progression of HCC has been extensively studied using human and murine models. Early 

reports showed that livers of JNK1-deficient mice133, or those treated with a specific JNK 

inhibitor134, or those of cJun-deficient mice135 , did not regenerate after partial hepatectomy 

(PHx) and were also protected from the development of carcinogen-induced HCC. Moreover, 

deficiency of JNK activation in mouse embryonic fibroblasts impaired cellular proliferation136. 

To dissect the role of JNK activation in different cell types in liver microenvironment, Das et al 

tested the potential of JNK1/JNK2 global or conditional deletion on the ability of the livers to 

regenerate and to develop HCC137. Global deletion of JNK1/JNK2 did not affect liver 

regeneration after PHx, and JNK1/JNK2 hepatocyte conditional-knockout (KO) promoted the 

initiation of HCC in mice liver implying that activation of JNK1/2 in hepatocytes is one of the 

pro-apoptotic mechanisms. However, specific deletion of JNK1/2 from the hepatocytes and 

the non-parenchymal cells did protect mice from DEN-induced HCC by regulating 

compensatory proliferation and regulation of production of pro-tumourigenic cytokines like 

IL6 and TNFα137. In conclusion, the role of JNK seems to be cell-specific, with JNK activation in 

the non-parenchymal cells favouring the development of carcinogenesis by regulating  the 

inflammatory secretome, which in turn, through paracrine signalling mediates hepatocyte 

trans-differentiation and tumourigenecity.   

1.4.4.3 Wnt/β-catenin pathway 
The Wnt/β-catenin pathway is implicated in several functions within the liver 

microenvironment, with roles in liver regeneration, metabolism and cellular proliferation. 

About 19 Wnt members are involved in the Wnt pathway. Upon synthesis, the Wntless 

receptors transfer the Wnt members to the plasma membrane138-142. In the absence of 

receptor ligand, the intracellular, wild type β-catenin molecule is bound to a membrane-
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anchored complex - a destruction complex that involves Axin, APC, GSK3α/β and CK1α/β 

proteins. The pathway is switched on when Wnt ligands bind to and facilitate the dimerization 

of the Frizzled (Fz) and LRP5/6 extracellular receptor complex. Dimerization of Fz-LPR 

receptors stimulates the binding of Dishevelled (Dsh) protein to the cytoplasmic tail of the Fz 

receptor that facilitates further interaction and phosphorylation of Axin and its bound kinases 

GSK3 and CK1 to LPR cytoplasmic tail. This inhibits β-catenin (CTNNB1) proteasome 

degradation and encourages saturation of the destruction complex 143-145146. Downstream 

targets to the β-catenin pathway involve genes responsible for metabolism (GS, CYP2E1 and 

CYP1A2), cell cycle regulation (CCND1; Cyclin D1 and Myc), cytoskeleton remodelling (CDH1 

and MMP7), some fibroblast growth factors (FGFs), epidermal growth factor receptor (EGFR) 

and chemokines (leukocyte cell-derived chemotaxin 2 (LECT2))147-165. Subcellular localisation 

of β-catenin in the healthy and diseased liver, including its role in liver regeneration and HCC, 

has been comprehensively reviewed 166.  

All the recent molecular characterisations attribute β-catenin mutations or activation in the 

WT Wnt/β-catenin pathway as major contributors to HCC malignancy. In the Hoshida et al 

classification59, the TGFβ-Wnt signalling pathway was enriched in the S1 subgroup of HCC 

patients. This group of patients was characterised by poor outcome and high AFP levels. 

Conversely, patients in the S3 subgroup, who showed good prognosis compared to other 

subgroups, were characterised by the activation mutation in exon 3 of the CTNNB1. Murine 

models of β-catenin activation mutations were not able to initiate HCC in isolation. However, 

in the presence of co-activated pathways like the Ras pathway, β-catenin is potentially 

involved in the development of HCC167-171. Any mutational or transcriptional changes in the 

other members of the β-catenin pathway are also associated with the incidence of human 

HCC. Inactivation of the β-catenin negative regulator GSK3β or upregulation of the Wnt 

receptor Frizzled7 (Fr7) were frequently seen in HCC 57, 172-174. Patients with T2DM have SNPs 

in WNT5b and TCF7L2 genes which might predispose HCC175. NF-κB and PI3K/AKT activation 

was linked to the upregulation of cytoplasmic or membranous β-catenin inducing 

experimental HCC in mice, highlighting the importance of the upregulation of the β-catenin 

irrespective to its subcellular localisation166.  

1.4.4.4 TGFβ pathway 
The TGFβ pathway comprises three ligands; TGFβ1, TGFβ2 and TGFβ3 and three receptors 

TGFβR1, TGFβR2 and TGFβR3. Binding of any TGFβ ligand to TGFβR3 induces its binding to the 
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TGFβR2 which then recruites TGFβR1 and the activation of the downstream pathway. Classical 

activation of the TGFβ pathway induces the phosphorylation of SMAD2 and SMAD3, 

facilitating their nuclear translocation and initiation of TGFβ-related gene expression176-182.    

The role of TGFβ in the process of tumourigenesis was highlighted in the high-throughput 

transcriptomic analysis, in which patients in the S1 group were characterised by activation of 

the TGFβ pathway in association with a poorer overall survival compared to the other 

groups59. In a clear contrast, TGFβ is typically considered as a tumour suppressor gene, with 

its dysfunction linked with the development HCC183. This discrepancy was highlighted further 

by a recent study from Chen et al. that was published in gastroenterology in 2018184. By RNA 

sequencing, TGFβ-related genes were deregulated in more than 25% of HCC patients versus 

controls. TGFβ protein expression was absent in normal hepatocytes, although evident in both 

tumour cells and HCC stroma. Unsupervised clustering of their data showed four distinct 

clusters, with descending activation of the TGFβ pathway from cluster A (highest) towards 

cluster D (lowest). Survival analysis revealed that inactivation of the TGFβ pathway (cluster D) 

was linked with shorter survival emphasising the importance of loss of TGFβ tumour 

suppressor function. The active TGFβ groups were enriched with other oncogenes, like MDM2, 

KRAS, IGF2 and KEAP1 in comparison to the other group. In particular, the active group was 

linked with hepatic fibrotic genes (collagens), cytokines (IL6 and IL6ST) together with growth 

factors like PDGF and EGF confirming the active role of TGFβ in the tumour microenvironment 

and the cross talk between different cell types in the process of carcinogenesis. On the other 

hand, loss of TGFβ activity was associated with the deficiency of other tumour suppressor 

genes like ATM, BRCA1 and FANCF184. This implies that treatment with TGFβ pathway 

inhibitors should be targeted for a certain subclass of HCC rather than being a global therapy.     

1.4.4.5 JAK/STAT pathway 
Activation of the JAK/STAT pathway is cytokine-dependent and is usually, but not always 

secondary to activation of other oncogenic pathways, including NF-κB and JNK pathways. Both 

NF-kB and JNK pathways primarily activate gene expression of different cytokines, including 

those activating the JAK/STAT pathway120, 137. Although activation of the JAK/STAT pathway in 

HCC is evident in the epithelial cells, the role of this pathway is more prominent in the non-

parenchymal cell types that foster an aggressive niche and immune suppressive environment. 

Receptor signalling via the JAK/STAT pathway includes 4 members, namely JAK1, JAK2, JAK3 

and TYK2. Activation of these receptors leads to phosphorylation and subsequent 
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homo/heterodimerisation of different STAT members (STAT1, STAT2, STAT3, STAT4 or STAT5), 

followed by their translocation to the nucleus. In the nucleus they activate a plethora of 

downstream target genes185.     

IL6 is a classical activator of the STAT3 pathway and is one of the well-known protumorigenic 

cytokines in the tumour microenvironment. The major non-parenchymal sources of IL6 are 

tumour associated macrophages (TAMs) and cancer associated fibroblasts (CAFs). Recently, a 

study from Michael Karin’s group186 has shown that the release of IL6 from TAMs induced the 

expression of CD44 in liver parenchymal cells, via the activation of STAT3. CD44 is a cell surface 

glycoprotein and its upregulation in the centrilobular areas lead to its dimerization with EGFR 

and expression of the P53 antagonist MDM2. The consequent loss of P53 function lead to the 

development of tumours in mice challenged with DEN186. In addition, IL6 is known to promote 

inflammation-induced HCC, as well as neo-angiogenesis in established tumours187. Activation 

of STAT3 by IL6 modulates the tumour microenvironment by increasing the infiltration of 

inflammatory cells to the tumour area, while reducing the maturation of dendritic cells and 

inducing the proliferation of the immune suppressive TH17 T-cell subtype188-191. Activation of 

this pathway also increases the expression of cell survival and cell cycle progression genes 

favouring more proliferative niche within the tumour area192-196. 

Other interleukins activating the JAK/STAT pathway can play a role in inflammation-associated 

cancers. The NF-κB related upregulation and secretion of IL23 from myeloid derived 

suppressor cells activates the JAK/STAT pathway together with Wnt pathway, which in turn 

promote an increase in the proliferation index of colorectal cancer cells197. IL10 supresses the 

anti-tumour T-cell activity in premalignant and malignant conditions, via activation of the 

IL10/IL22 receptor family198-203. 

1.4.4.6 mTOR pathway 
The mTOR pathway is activated in a sub-group of HCCs and is usually linked with metabolic 

processes204, 205. This pathway includes two distinct effector complexes, namely mTOR 

complex1 (mTORC1) and mTOR complex2 (mTORC2). mTORC1 includes mTOR, mLST8, 

DEPTOR, RAPTOR and PRAS40, while mTORC2 is composed of mTOR, mLST8, DEPTOR, PROTOR 

and RICTOR. Activation of mTORC1 is mediated via different growth factors, amino acids, 

nutrients and cytokines, which induce activation of the MAPK pathway, leading to 

phosphorylation and inactivation of the mTOR inhibitors TSC1 and TSC2. Although mTORC2 is 

not sensitive to nutrients, it is very sensitive to growth factors that control actin cytoskeleton 
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and cell metabolism206. Activation of mTOR pathway regulates different physiological and 

pathological pathways including ageing, autophagy, metabolism and cell growth207, 208. The 

main determinant of activation of mTORC1 is the over-nutrition that induce metabolism, DE 

NOVO lipogenesis and protein synthesis, while at the same time inhibit autophagy. Activation 

of the mTORC2 pathways is independent on nutrient status but dependent on other growth 

factors like IGF207, 208.  

The mTOR pathway is activated in response to the increased lipogenesis in steatotic liver 

compared to healthy controls, and the pathway is further activated in association with liver 

malignancy. This mechanism is particularily essential for “feeding” the tumour cells as a 

nutrients’ supplier209. It also regulates another process which is key for cancer progression; 

autophagy. In the process of cancer initiation, autophagy plays a protective role by eliminating 

cell debris and damaged cells; however, after the development of tumour, autophagy increase 

tumour cell survival and increase tumour resistance to many anticancer therapies210, 211.  In 

human HCC, more than 50% of patients show upregulation of one or more from the mTOR 

family, and the prognosis of this group of patients is unfavourable and characterised by poor 

survival212, 213. In contrast, the inhibition of the mTOR pathway may be protective.  Metformin 

treatment in diabetic patients reportedly halves the incidence of HCC development compared 

to the diabetic patients receiving non-metformin treatments. The protective effects of 

Metformin therapy is proposed to be via activation of the AMPK pathway, a known inhibitor 

of the mTOR pathway214, 215.  

1.4.5 The role of the liver premalignant/microenvironment in the development of HCC  
The development of HCC is usually preceded by chronic liver diseases which alter the cellular 

landscape in the liver microenvironment and favour certain conditions that permit the 

malignant transformation of hepatocytes or cancer stem cells216. Livers of patients with HCV 

infection are characterised by more hepatocyte damage and infiltration of inflammatory cells 

that contribute to viral clearance, but also to the development of pro-inflammatory, pro-

malignant environment. On the other hand, the double stranded HBV can integrate into the 

human genome and if this occurs in certain areas, the integration can activate oncogenes or 

supress important genes responsible for cellular homeostasis, leading to malignant 

transformation. This is predisposed by infiltration of other stromal cells and cycles of liver 

regeneration that help tumour development. The role of the microenvironment in NASH-

driven HCC is still poorly investigated, but reports link the high oxidative stress status and 
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accumulation of lipids within the hepatocytes as a trigger for their transformation into 

malignant cells26. 

Regardless of the cause of the chronic liver disease, the liver has its own defence mechanism 

against any invading/foreign bodies. In response to chronic liver disease, certain type of cells 

like hepatic stellate cells or fibroblasts, together with inflammatory cells such as macrophages 

and leukocytes, produce or alter the composition of the component proteins in the liver 

microenvironment. The component proteins in the liver microenvironment are termed the 

extracellular matrix (ECM) proteins. This remodelling process of the ECM is associated with 

the development of new blood vessels (neo-angiogenesis) and fibrosis. Although being a 

physiological process for normal wound healing, persistent injury that occurs during chronic 

disease can lead to the establishment of unresolved fibrosis that progresses to cirrhosis. 

Cirrhosis is characterised not just by permanent fibrosis, but also distortion of the architecture 

of the liver by nodules of regenerating hepatocytes, within which malignant transformation 

can occur. Hence, it is important to understand the role of the tumour premalignant niche,  

including the contribution of factors that elicit the growth of a particular clone of cells to form 

the malignant tumour216. 

The tumour premalignant microenvironment is composed of ECM, within which there are 

different types of non-parenchymal cells, each with their own profile of secreted cytokines or 

other factors. This environment can promote the growth of transdifferentiated hepatocytes, 

as well as their invasion and migration through the disrupted basement membrane217, 218.  

1.4.5.1 Cellular components of tumour microenvironment  
The role of the immune cells in the development and progression of HCC is a hot topic, in part 

owing to the breakthrough of immune check-point inhibitors as therapies for other  

 malignancies219. It is now widely accepted that one of the key the cells responsible for anti-

tumour immunity is the CD8 T-cell, which plays a critical role in immune surveillance. Active 

CD8 T-cells recognise damaged or transformed hepatocytes and help eliminate them. Notably, 

exhausted non-proliferating CD8 T-cells are not able to perform this function properly. T-cell 

exhaustion is initiated via binding of inhibitory receptors on the T-cells, such as PD1 and TIM3, 

to ligands on immune suppressor cells – a so called ‘check-point’ to prevent the immune 

system causing tissue damage as a result of continuing T cell activity.  In persistent liver injury, 

the ‘check’ which switches off the T cells in the microenvironment can help transformed 
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Figure 1.4: The role of the the premalignant/tumour microenvironment in the development 
and progression of HCC; from Hernandez-Gea et al216 with permission: The cascade of the 
development of abnormal microenvironment in the liver starts from the activation of 
Quiescent stellate cells to hepatic active stellate cells which secrete ECM proteins. This 
provides a mechanical stiffness which is linked to the development of HCC. After the primary 
tumour is formed, infiltration of different immune components and proliferation of 
endothelial cells help the process of tumour progression and metastasis. 

 

hepatocytes or tumour cells evade host immunity. Tumour cells can also express the ligands 

which bind the inhibitory receptors on T cells, such as PD-L1 , similarly altering the tumour 

microenvironment in a way which leads to tumour progression219. The class of anti-cancer 

drugs called ‘Check-point inhibitors’ disrupt this ‘switch off’ mechanism, potentially 

unleashing an anti-tumour immune response. 
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Other types of T-cells which are frequently found within the tumour microenvironment are 

the CD4 T-cells and Treg cells. While CD8 T cells promote an active immune response, Treg 

cells are immunosuppressive and dampen an immune response. The presence of Treg cells in 

particular is linked with poorer patient prognosis, attributed to roles in immune-evasion of 

the tumour cells220. The number of Treg cells is associated with HCC stage and a ratio of higher 

Treg to CD8 T-cell number can predict a worse patient outcome 221. Treg cells secrete cytokines 

that dampen the host immunity, encouraging an immune-null environment that facilitates 

tumour growth. Activation and infiltration of Treg cells in tumour areas is partly mediated by 

myeloid-derived suppressor cells (MDSC) and macrophages, that secrete chemotactic 

cytokines that specifically attract Treg cells220. 

Macrophages, or ‘big eaters’ in the Greek language from which the term comes, are large cells 

recruited to sites of injury. They detect and phagocytose pathogens or debris, for purposes of 

elimination, but also presentation of antigens from the source of potential harm to T cells. 

They can also release cytokines that activate other immune cells. Macrophages can be 

phenotypically diverse, with different lineage or polarisation – most commonly termed 

macrophage 1 (M1) or macrophage 2 (M2) - according to the disease state. M1 macrophages 

are an inflammatory subset of macrophages that secrete a wide spectrum of cytokines and 

growth factors with pro-inflammatory functions within the diseased liver. M2 macrophages, 

on the other hand, adopt a restorative phenotype, with anti-inflammatory and tissue 

regenerative functions222. In malignant conditions, the interaction between the tumour cells 

and the macrophages favours the development of M2-polarised macrophage subset that is 

known as tumour activated macrophage (TAM)223. TAMs have immune supressing roles in the 

tumour microenvironment by cross-talking with other immune cells and increasing the 

infiltration of immune suppressive cells224. TAMs also release other angiogenic and tumour 

cell proliferating factors increasing the proliferation but also the migration and invasion of the 

tumour cells. In human HCC, the number of TAM has been reported an unfavourable 

prognostic marker associated with disease progression225.  

Although the role of immune system is pivotal in the development and the progression of HCC, 

other non-parenchymal cells are still fundamentally important for supporting the tumour 

microenvironment. As mentioned the TGFβ pathway plays a role in tumour development. The 

cellular sources of TGFβ in the tumour niche are the tumour cells, but also activated stromal 

cells known as cancer associated fibroblasts (CAF) and macrophages which have tumour 
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promoting functions within the tumour microenvironment 226. CAFs are the major source of 

collagen that is responsible for increasing tissue stiffness, which is also associated with a more 

aggressive tumour microenvironment. Compared to normal fibroblasts, CAFs secrete a 

different repertoire of chemokines, like CXCL12 and SDF-1 that promote tumour metastasis 

and chemoresistance227. CAFs can also secrete VEGF and HGF, respectively inducing neo-

angiogenesis within the tumour microenvironment and supporting growth and proliferation 

of the tumour cells228. 

By interrogating changes in the immune profile in HCC patients at the transcriptomics level, 

the Llovet group has identified a group of HCC patients characterised by the enrichment of 

immune genes, immune signatures for T-cells, macrophages, tertiary lymphoid structure (TLS), 

PD-1 and immune metagene-related pathways229. This “immune subclass” was defined by the 

upregulation of 108 immune-related genes, with strong enrichment of the TGFβ, JAK/STAT 

signalling pathways. Integration of this subclass with the previously published HCC 

transcriptomic data showed a strong enrichment with the previously described S1 subclass 

(Wnt/TGFβ activation pathway), while immunohistochemistry (IHC) staining confirmed 

significant associations with PD-1 and PD-L1 protein expression. Notably, within the immune 

subclass two distinct groups were further defined. The first group, comprising 33% of cases 

and termed the “exhausted immune group”, was characterised by active stroma, T-cell 

exhaustion, TGFβ expression and an M2 macrophage signature. The other group was termed 

the ‘active immune group’ as it was associated with an “active immune response” 

characterised by T-cell activation and IFN expression. These latter features have previously 

been reported in other cancer types as predictive of a response to treatment with a checkpoint 

inhibitor called pembrolizumab. Patients in the HCC ‘active immune response group’ had a 

lower tumour recurrence after resection and a trend towards better survival. This subclass 

was an independently associated with better overall survival (OR=0.58, p=0.04), reflecting the 

importance of the activation of T-cells in anti-tumour control229.    
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Figure 1.5: The integration of different component/pathways of the microenvironment to 
construct immune response in HCC patients; from Sia et al229 with permission: less than 
quarter of HCCs were characterised by activation of certain immune-related genes. This 
Immune class was characterised by activation of the stroma as well as activation of TGFβ 
pathway. Within this immune class, one third of HCCs had exhausted T cell gene signature in 
association with poor patient prognosis. The rest of tumours showed active CD8 cytotoxic T 
cell and favourable outcome after resection confirming the active anti-tumour immunity.   

 

1.4.5.2 Extracellular matrix proteins and their regulators  
1.4.5.2.1 Heparan sulfate proteoglycans (HSPGs)  
The ECM is a complex network of secreted and post-transcriptionally modified proteins that 

act as a storage platform for growth factors and cytokines. ECM proteins also act as co-

receptors facilitating the ligation of bound growth factors to their receptors on the cell 

surface. Modifiers to the structure and/or function of ECM proteins play an important role in 

changing the structure of these proteins, but also in the liberation and availability of growth 

factors to their binding sites. One important category of the ECM proteins are the heparan 

sulfate proteoglycans (HSPGs), which are composed of heparan sulfate (HS) chains covalently 

bound to a core protein230. The importance of HSPGs derives from their versatile functions 

within the tissue microenvironment. With more than a million HSPG available binding sites, 

groups of proteins can bind, forming the so called ‘Heparan sulfate interactome’231, 232. 
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Heparan sulfate binding proteins (HSBP) include enothelial growth factors (VEGFs), Wnt 

ligands, sonic hedgehog signalling and ligands activating the TGFβ pathway233-236. FGF, HGF, 

RAGE and APP family of protein undergo HS-induced oligomerisation facilitating binding to 

their ligands/receptors237-245. HSPGs may also act as scaffold proteins that block or favour – 

dependent on their post translational modifications - the most suitable configuration for 

associated HSBPs to bind their receptors246.  

Members of the HSPGs family include Syndicans (SDC1-SDC4), Glypicans (GPC1-GPC6), 

perlecan, agrin and collagen XVIII, ECM proteins 247-252. The HS component is a hetero-

polysaccharide chain comprised of heparin, hyaluronic acid, chondroitin sulfate, keratan 

sulfate and dermatan sulfate253-255. Generally, HS chains include repeated di-saccharide units 

of glucuronic acid or its epimer L-iduronic acid, linked in the 1-4 position with unsubstituted, 

N-sulfated or N-acetylated glucosamine. Synthesis of the HS chain is a multi-step process and 

starts with chain initiation where a linker arm is introduced between the core protein and the 

glucose amino glycans (GAGs). Subsequently, glucosamine-transfer and exostosin 

glycosyltransferases enzymes start the second step; chain elongation or polymerisation. 

Further enzyme-directed post transcriptional modifications on the HS chains include 2O-

sulfation on uronic acid moieties or 3O and 6O-sulfation on the glucosamine255. This process 

is not random, but rather specific to the type of cell, the physiological function of the parent 

HSPG and can be influenced by pathological processes within the host organ256-259. Three 

groups of post translational modifying enzymes are involved in the post-polymerisation step 

in the HS synthesis, including (1) N-deacetylase/N-sulfotransferases (NDST1-4) which replace 

the acetyl groups with sulfate groups; (2) epimerases which convert D-glucuronic acid into its 

epimer L-iduronic acid, which has a more flexible ring confirmation; and (3) sulfotransferases, 

which direct O-sulfation of the substituted sulfate groups at the 2,3 and 6-O positions260-266.  

The functional importance of the HSPGs extends beyond the physiological status to exert a 

pivotal role in liver pathology. At first glance, the pattern of HSPGs within the liver 

microenvironment is significantly different between the physiological and pathological state. 

This difference implicates a role of HSPGs in many liver diseases. In viral hepatitis, the viral 

particles invade the host hepatocytes for replication, with entry of both HBV and HCV 

mediated by different kinds of HSPG. In human fibrotic and cirrhotic conditions, the quantity 

and distribution of different HSPGs change in association with the severity and the stage of 

the disease, particularly on the liver non-parenchymal cells. In the physiological state, SDC2, 
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SDC3 and perlican are expressed in the resting myofibroblasts, smooth muscle cells, 

endothelial cells in the portal blood vessels, with SCD1 and perlican expressed in the 

endothelial cells of the sinusoidal wall. In chronic liver diseases, the expression of these HSPGs 

is upregulated and their level of sulfation is altered. In viral hepatitis, SDC1 is unusually 

expressed in the non-sinusoidal hepatocyte interface267, in line with its mechanistic role 

promoting viral invasion of hepatocytes268, 269. As such, SDC-1 has been proposed as a 

candidate therapeutic target for viral hepatitis. 

The role of HSPGs in the tumour microenvironment has also been described in relation to 

disease staging and prognosis267. GPC3 , for example, is absent or scanty in normal or diseased 

liver, but markedly upregulation in a subset of HCCs  and has been adopted as a tissue 

diagnostic marker in HCC270. GPC3 level is upregulated in HCC diagnostic biopsies and 

resections, but not in control nor in chronically diseased livers. GPC3 protein is only detected 

in HCC, while it was absent in the adjacent non-tumour counterparts. GPC3 is usually present 

in the tumour cell membrane, and it can be occasionally detected in the tumour cell 

cytoplasm271 Due to tumour heterogeneity, GPC3 is included in an HCC diagnostic panel 

including GS, Heat shock protein 70 and CD34272. In vitro studies have shown that upregulation 

of GPC3 in HCC cell lines enables Wnt ligands such as Wnt3a to bind to the frizzled receptor, 

activating the Wnt3a/β-catenin pathway. This oncogenic GPC3-mediated activation of the β-

catenin pathway was notably regulated by an important post translational modifier of HSPG 

structure, namely Sulfatase-2 (SULF2)273. 

1.4.5.2.2 Sulfatase 2(SULF2) physiological and pathological roles   
SULF2 belongs to a larger group of 17 sulfatase enzymes274, 275. SULF2, rather than the other 

sulfatases, is an extracellular post-translational modifiers of HSPGs. SULF2 transcript was 

identified as sonic hedgehog response genes involved in the activation of Wnt signalling276, 
277. Subsequent functional analyses at the protein level revealed a role in the selective 

modification (desulfation) at the 6O position of HSPGs – a position known to be associated 

with regulation of ECM  binding of  multiple cytokines and growth factors, including FGFs 278-

281, HGF 282, fibronectin 283, PDGF 284 and VEGF 285. Subsequent to SULF2-mediated removal of 

the 6O sulfate, bound factors can be liberated from their storage sites to bind and activate 

their target pathways, regulating cell survival, differentiation, ECM remodelling and 

angiogenesis. Hence any upregulation or change in SULF2 function or expression level can, in 
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theory, significantly alter the function and composition of the tissue microenvironment - 

making it an interesting protein to study.  

1.4.5.2.2.1. Structure of SULF2 
The structure and maturation of SULF2 is illustrated in (Figure 1.6). Immature SULF2 is 

composed of 870 amino acids comprising 4 unique domains, namely the signal peptide, 

enzymatic, hydrophilic and sulfatase domains286. The similarity of amino acid sequences 

between mouse and human SULF2 exceeds 90%, highlighting a high conservation amongst 

different species286. Much of the protein structure is also common to both SULF1 and SULF2 

proteins, with the most notable differences being in the heparin binding motifs in the 

hydrophilic domain287, 288, perhaps suggesting different target specificity.  

Figure 1.6 SULF2 structure and activation, from Rosen and Lemjabbar 289 with modification 
Immature SULF2 undergoes a two-step activation; loss of signal peptide and cleavage of the 
SULF2 pro-protein into two peptides linked via a di-sulphide bond. Abbreviations: C; C-
terminal, N; N-terminal, S-S; disulphide bond, kDa; Kilo Dalton 

The hydrophilic domain is responsible for the membrane anchorage process as well as the 

interaction of the enzyme with its substrate HSPGs288, 290, 291.  The sulfatase cleavage in the 

target HSPG is mediated by the oxidation of a cysteine residue into a Cα-formylglycine276, 286.  

The SULF2 pre-proprotein has its signal peptide removed within the endoplasmic reticulum 

(ER) (Figure 1.6). A Furin-type proteinase then acts on the hypdrophilic domain of the 

proprotein, cleaving it into two 75 KD and 50 KD288, 292 isoforms. The mature SULF2 is created 

by the binding of these two fragments with a disulphide bond. The resulting active protein has 

membrane-anchored and secreted forms286, 288, 291. Although SULF2 is responsible for the post 

transcriptional modification of the HSPGs, this enzyme is also vulnerable to post-translational 
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modification. The N-terminal region of SULF2 contains more than 10 glycosylation sites, 

although the exact role of glycosylation and whether this affects the enzyme activity or 

membrane binding is unclear. Glycosylation of SULF1 is known to affects its biological 

functions in terms of secretion, activity and membrane binding286, 293.  

1.4.5.2.2.2. The function of SULF2 
Early evidence of the role of SULFs in normal physiological processes came from knock-out 

(KO) mice. SULF2-/- mice had poorer survival, decreased weight gain and developed lung 

abnormailites compared to their wild type littermates294. The mortality of SULF1-/- SULF2-/- 

double mutant mice was nearly 50%, although the mice were able to give birth to normal 

embryos with smaller adult organs295. The double mutant mice had swallowing difficulties 

attributed to weak oesophageal muscles, implicating the importance of both the enzymes in 

muscle cell homeostasis296. The phenotype was similar to that seen in Hs2st, EphrinB1 and 

BMP deficient mice 295. 

The process of desulfation, in which SULF2 eliminates the sulfate group specifically from the 

6O position of the wide range of HSPGs291, is summarised in (Figure 1.7). Briefly, the 

hydrophilic domain of SULF2 binds to its target HS chain, while the sulfatase catalytic domain 

binds to the last 6O-sulfate group in the chain. The process desulfates the entire chain at the 

6O position, before the enzyme dissociates from the desulfated chain, in order to target other 

HSPG members 297.  

 

Figure 1.7 SULFs-
mediated 

desulfation of 
different members 
of HSPGs; from 297 
with modification 
Abbreviations: CAT; 
catalytic domain, 
HD; hydrophilic 
domain, NRE; Non-
reducing end, RE; 
reducing end. 
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A tool to assess the sulfatase activity of the SULFs was developed by Morimoto-Tomita et al286. 

In brief, 4-methylumbelliferyl sulfate (4-MUS) is used as a sulfatase substrate, with 

quantification of intensity of a released fluorescent moiety being proportional to sulfatase 

activity286. The SULF2-mediated desulfation of HSPGs chains in the liver reportedly increases 

the release of endotheial (VEGF, EGF, PDGF), fibrotic (FGF1, FGF2, CXCL12, FN1, SOD), 

hepatocellular (HGF) and inflammatory (IL8, CCL21, TNFα, CSF1, IL7, IFNγ) factors from their 

binding sites within the microenvironment to activate their downstream targets296, 298-300.   

1.4.5.2.2.3. The tumour promoting role of SULF2 
Alongside the important physiological role of SULF2, it is also implicated in pathological 

processes, including malignancy. A malignant proangiogenic role for SULF2 was reported in 

SULF2-/- mice that developed less HCC than their wild type littermates after exposure to the 

carcinogen DEN. Further investigation revealed that SULF2 induced neo-angiogenesis via a 

TGFβ/Periostin (POSTN) dependant mechanism, increasing liver tumour size, number and 

distant metastasis into the lungs301. SULF2 – active at physiologically neutral pH only - initiated 

angiogenesis, with heparinise taking over cleavage of HS chains in more hypoxic and acidic 

conditions in the tumour microenvironment 302, 303. 

Microarray data exploring gene expression in HCC resections previously reported that SULF2 

was upregulated in about 57% of HCC patients304. An elevated level of SULF2 was associated 

with early disease recurrence in these patients. The researchers also reported that SULF2 

stimulated FGF2/GPC3 upregulation and activation in HCC cell lines, as well as in a mouse 

xenograft model. Additionally, SULF2 induced Akt/ERK oncogenic pathways that promoted 

cell growth and migration via phosphorylation of the Akt substrate GSK3β, an established anti-

apoptotic factor 273, 304. Further support for a role regulating apoptosis comes from knockdown 

of SULF2 in HCC cells showing upregulated BAD, a pro-apoptotic molecule that forms 

heterodimer with BCL-2 and BCL-xL survival factors, and hence induces apoptosis 305.  Finally, 

SULF2 has also been found to be a transcriptional target of P53 in different types of cancer, as 

well as in HCC cell lines 306, 307.  

1.5 Experimental mouse models for HCC- a focus on diet-induced HCC 
The use of an experimental mouse model provides a powerful tool for the study of tumour 

biology and for testing new therapeutic targets in preclinical studies in an in vivo context. The 

use of mouse models in cancer research, and particularly in HCC, is context dependent and 

needs careful study design before running any model. HCC usually arises in the background of 
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chronic liver disease, and consequently, inducing these tumour-inducing conditions in mice 

will better reflect the human disease. However, testing new therapeutic treatments doesn’t 

require these conditions especially if the duration of the study is relatively short. Mouse 

models used in HCC can be categorised in four different categories; genetically engineered 

mice (GEM), mice with HCC induced with genotoxic drugs, mice with HCC induced by 

implementation methods and Diet induced HCC.       

1.5.1. Genetically engineered mice (GEM) 
As mutations in certain oncogenes and tumour suppressor genes are actively responsible for 

the development of human HCC, mice with CRISPR/CAS9-induced mutations are commonly 

used in cancer research. This approach is applied if the research group is interested in the 

effect of a certain mutation(s) rather than looking at other aspects like tumour stroma 

interaction or the role of the tumour microenvironment. Mice with activation mutations in 

the oncogene cmyc alone are commonly used in HCC studies308, as are mice with cmyc 

mutations in combination with β-catenin309 or E2F1 overexpression mutations310. 

Combination of more than one mutation decreases the latency period for tumour 

development311. Specific deletion of p53 was sufficient to induce experimental HCC after 56 

weeks312, while deletion of both p53 and pten from mice hepatocytes successfully developed 

visible HCC after 4 month from this manipulation313. Other techniques to induce targeted 

mutations in hepatocytes include the hydrodynamic injection of plasmids in mouse tail vein, 

which induces the permeability of the hepatocytes to the plasmids with high transgene 

expression311. One emerging technique used to produce GEM is the Cre-Lox recombination 

system. Originally developed to manipulate mammalian cell lines genes314, the Cre-Lox system 

is now widely used to target certain genes in cell-specific manner315. This is of particular 

importance if targeting a specific gene globally is lethal. The Cre-recombinase enzyme targets  

LoxP flanked specific chromosomal DNA sequences to control gene expression316. Cre 

recombinase binds 13bp from the beginning and the end of the LoxP site forming a dimer that 

binds to another LoxP site forming a tetramer. The Cre-recombinase enzyme cuts at the LoxP 

sites, which are then joined together with a DNA ligase, leading to either gene inversion (in 

case of two LoxP-flanked sequences in the same chromosomal arm) or gene deletion (in case 

of repeat LoxP-flanked sequences). Gene knock-in (KI) can be achieved by adding floxed 

cassette sequences that compete with the LoxP floxed-cut sequences316.     
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1.5.2 HCC-inducing genotoxic chemicals 
This is probably the most common way of inducing HCC in genetically wild-type mice, thus 

avoiding the use of GEM that have higher costs. The idea behind using the genotoxic chemicals 

is to induce changes in the DNA that eventually lead to more damage, chromosomal 

aberrations and HCC317. Factors affecting the development of HCC using this approach are the 

age and sex of the animal as well as the type of carcinogen used. Diethyl nitrosamine (DEN) is 

a DNA alkylating agent that increases the level of free radicals and oxidative stress in the liver 

microenvironment leading to HCC318. In younger mice (less than 2 weeks old), DEN IP injection 

can alone induce liver carcinogenesis, while in older mice, a second hit of either liver enzyme 

accelerators like phenobarbital or a HCC-inducing diet for tumours to form319. Other less 

commonly used liver carcinogens include the RAS mutation inducer 9,10-dimethyl-1,2-

benzanthracene (DMBA)320. 

1.5.3 HCC-inducing implanted pro-malignant or malignant hepatocytes or progenitor cells 
The idea behind this technique is to implant tumour cell lines from human or mouse origin 

into immunocompromised mice to study the impact of new therapeutic targets on the growth 

or the metastasis of the implanted tumour321. In orthotopic models, tumour cells are 

implanted directly into the liver of the mice to see the interaction of liver stroma to the newly 

existing tumour, while heterotopic models inject tumour cells subcutaneously in mice and 

monitor the development of the tumour216. The mice used have a compromised innate 

immune system to eliminate the possibility of tumour rejection by the immune system, and 

NOD-SCID mice322 and CD1 deficient nude mice are more likely to be used due to lack of T and 

B cells. To knock out the effect of natural killer cells (NK) cells together with other immune cell 

subsets, the NOD/SCID-IL2g-/- is now frequently used in cancer research323.  

1.5.4 Diet-induced NAFLD/NASH and NASH/HCC 
Many attempts have been made to develop a murine model that recapitulates the human 

NAFLD and NASH-driven HCC. As the human disease includes symptoms of the metabolic 

syndrome - including hyperglycaemia, hyperlipidaemia, obesity, insulin resistance - together 

with liver inflammation, a physiologically relevant model should also ideally have these 

deregulated features. Models of liver inflammation includes the major urinary protein (MUP)-

urokinase-type plasminogen activator (uPA) transgenic mice, that develop severe 

inflammation, ballooned hepatocytes and HCC with age324. Upregulation of uPA induces the 

production of ROS as a result of the elevation of oxidative stress; a mechanism driven mainly 

by the activation of the NF-κB pathway. The mdr-/- model is also a classical model of 
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inflammation-induced HCC where phospholipids are trapped in the hepatocytes leading to 

cholastatic inflammation, portal hypertension and bile duct dysplasia with subsequent 

malignancy325. Upregulation of tnfα in the ductular epithelia and in some inflammatory cells 

associate with translocation of the RelA (p65) subunit of the NF-κB from the hepatocytes 

cytoplasm into the nucleus, leading to activation of the whole survival and oncogenic 

pathway120. 

Diet-induced NAFLD and NASH models typically use diets with high levels of fats and trans-fats 

with/without sugar intake in drinking water, or diets deficient in one or more important amino 

acids. Animal model studies generally use the C57BL6 wild type mouse strain. In the 

methionine-deficient and choline-deficient (MCD) diet, mice liver develops severe hepatic 

inflammation with infiltration of different subset of immune cells into the liver leading to 

severe fibrosis and steatohepatitis at 8 weeks from diet intake326. The MCD diet-challenged 

mice, however, don’t develop any signs of insulin resistance or obesity within the time course 

of the study. In fact they have signficant weight loss (>40%)326. The other frequently used 

dietary model is the high fat diet (HFD) that succeeds in producing features of metabolic 

syndrome - like obesity, severe steatosis, impaired glucose tolerance and insulin resistance327. 

Of note, the degree of liver injury is less than observed in the MCD diet model and the 

development of HCC using the high fat diet alone or with sugar water in C57BL/6 mice is 

questioned328. On the other hand, in the HFD-fed B6/129 isogenic mouse model (by crossing 

the C57BL/6 with the 129S1/SvImJ mice), mice do develop insulin resistance with some 

histological features of steatohepatitis, including hepatocellular ballooning and Mallory-Denk 

bodies. These features can be accompanied by the development of predysplastic regenerative 

nodules which progress to HCC after a year from the diet-intake329.  

In 2008, Tetri et al.330 fed C57BL/6 mice with a diet that resembles the fat composition in the 

fast food market. They called this diet the American life style (ALIOS) diet and it included 

partially saturated vegetable oil (this fat is composed of a mixture of saturated, mono and 

polyunsaturated fats) with corn syrup in the drinking water. In their experimental settings, the 

mice developed weight gain, higher plasma triglycerides, higher serum liver enzymes, and 

steatosis. On the other hand, mice failed to show any fibrotic changes, portal inflammation or 

any hepatocyte ballooning in the course of the study (16 weeks)330. In order to see whether 

or not the ALIOS diet can induce liver tumourigenesis with time, Dowman et al331 fed C57BL6 

x 129 mice with the ALIOS diet and monitored the development of tumours with other 
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histopatholigical features of NASH at two time points; 6 month and 12 month. ALIOS-fed mice 

became obese and developed glucose intolerance at 6 month but not at 12 month compared 

to age-matched controls. ALIOS fed mice had higher triglycerides levels and higher liver 

enzyme levels at 12 months compared to their controls. Histologically, ALIOS fed mice had 

more steatosis, fibrosis and higher NAS score compared to the mice on normal chow. These 

mice did not develop hepatocellular ballooning at any time point. They did, however, develop 

small tumours (9 lesions in 6 mice out of 10), while in the control mice, no detectable 

malignant nodules were captured331.  

In summary, the use of a particular type of murine models is subjected to the purpose of the 

study, with no model being able to reflect all the features of the human disease. Manipulating 

the existing diets/mice strains to reach a more universal mouse model that recapitulate all the 

human disease histological, biochemical and transcriptomic spectra may help to understand 

the biology of this disease and evaluate new therapies. 

1.6 Project objectives 
1.6.1 Hypothesis: 
The overarching hypotheses being explored: Host and local factors influence the liver 

microenvironment, promoting the development and progression of NAFLD-HCC. Non-

parenchymal cells in the liver premalignant conditions are “gatekeepers” for expansion of 

abnormal parenchymal clones preceding the development of HCC. Capture of novel 

therapeutic targets for HCC management is achieved using unsupervised clustering of murine 

and human RNA-sequencing transcriptome data. After the establishment of the HCC, the 

tumour cells establish bidirectional relation with tumour infiltrating stromal cells to maintain 

their proliferation and therapy resistance.  

SULF2 is a key modifier of the tumour microenvironment and candidate therapeutic target. 

Initial immunohistochemistry studies exploring SULF2 at the protein rather than mRNA level 

in HCC in the Reeves lab suggested expression in tumour cells, but also non-parenchymal cells. 

Focused on this critical modifier of hepatic HSPGs, the primary goal of this project was to 

further characterise SULF2, including its cellular origin in non-tumour and tumour liver tissues 

and its functional impact on the tumour microenvironment.  

NAFLD-HCC is an emerging global threat and has been the primary HCC aetiology studied in 

this thesis. In addition to studies in formalin fixed human tissues, high through-put RNA 
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sequencing data from tissues generated from an in vivo mouse model of a well characterised 

dietary induced chronic liver disease of NAFLD progressing to HCC (Reeves, Oakley) was 

analysed with bioinformatics tools, alongside publically available HCC transcriptomic data.  In-

vitro work included models to explore cross-talk between hepatic cells. In combination, these 

studies facilitated the characterisation of the contributions of SULF2 in HCC, but also provided 

the resource to explore other key elements of the tumour microenvironment in NAFLD-HCC. 

1.6.2 Specific Aims 
1.6.2.1. To characterise SULF2 within the in vivo tumour microenvironment and explore 

associations with disease stage and patient outcome. 

1.6.2.2 To define the functional impact of SULF2 in vitro, by developing models to assess the 

contribution of different cell types expression or secreted isoforms on the phenotypic 

behavior of HCC cells.  

1.6.2.3 To explore the impact of SULF different oncogenic, cell survival and chemoresistance 

signaling pathways in HCC. 

1.6.2.4 To explore the role of SULF2 in the progression of non-alcoholic fatty liver disease 

(NAFLD) and NAFLD-HCC in a relevant animal model. 

1.6.2.5 To explore additional features promoting the development and progression of diet-

induced HCC in a biologically relevant model recapitulating human disease. 

1.6.2.6 Combine histological data with transcriptomic data to identify SULF2 or novel 

mechanistic pathways relevant to the development and the progression of NAFLD-HCC.   
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Chapter 2: Materials and methods 
2.1 General Laboratory Practice  
Established experiments in the Institute of Cellular Medicine (ICM) and in the Northern 

Institute for Cancer Research (NICR) followed Newcastle Universities set standards which act 

in accordance with the Control of Substances hazardous to Health Regulations 2002 (COSHH) 

and Biological COSHH (BioCOSHH). 

2.2 Patients 
Human HCC biopsies: This study was classified as retrospective case series involving those with 

sufficient residual tissue for research purposes. The initial pilot study and subsequent larger 

series of cases were approved by and the Newcastle upon Tyne NHS Foundation Trust 

Research and Development department and the Newcastle and North Tyneside Local 

Research Ethics Committee (REC)(Reference 2004/012) and (Reference 04/Q0905/168 and 

10/H0906/41) respectively. Anonymised code-linked datasets were adopted to maintain 

patients’ confidentiality and proper data protection. Preliminary investigation of SULF2 tissue 

protein expression was performed in formalin fixed paraffin embedded tissues (FFPE) from 

HCC diagnostic biopsies collected in the period between 2000 and 2002 of 6 patients. The 

study was then expanded to include 54 more biopsies in the period between 2003 and 2010 

from patients who consented to the availability of their tissues for research use. Exclusion 

criteria included patients with histologically-proven benign tissue or patients with other types 

of liver cancer i.e. cholangiocarcinoma. Patient information was collected from the 

histopathology reports together with patient’s records and radiology data. This data included 

etiology of the underlying liver disease, age, gender, BMI, presence of T2DM, presence of 

cirrhosis, tumour size (in cm), tumour number, tumour grade, presence of portal vein 

thrombosis (PVT), Edmondson-Steiner tumour grade55, tumour node metastasis (TNM) stage, 

Albumin level (g/l), Bilirubin level (µmol/l), AFP, presence of Ascites, Child-pugh score, 

combined Barcelona Clinic for Liver Cancer (BCLC) stages332, patients survival from the time of 

biopsy and the administered treatments (orthotopic liver transplantation (OLTx), resection, 

ablation, trans-arterial chemoembolization (TACE), medication and best supportive care 

(PSC))  

Human HCC biopsies from sorafenib treated patients: Biopsies from small cohort of HCC patients 

who received sorafenib treatment were also stained for SULF2. Biopsies were collected from 

patients at the time of diagnosis before the start of the treatment. In this cohort, patients 
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were classified as sorafenib responders, who had a stable disease on imaging for at least 6 

months, or sorafenib non-responders where treatment was discontinued due to poor 

tolerance or if the disease progressed within three months. 

2.3 Immunohistochemistry 
2.3.1 For the SULF2 study:  
In order to investigate the SULF2 and SULF2-regulated proteins in FFPE diagnostic biopsy 

tissue sections containing both HCC and non-neoplastic liver parenchyma, IHC was performed 

for SULF2, α-smooth muscle actin (αSMA), GPC3, β-Catenin, RelA-P-ser536 and CD44. Slides 

were scanned and assessed digitally with Aperio Imagescope Software. All cases were stained 

for SULF2 and GPC3, while representative cases were stained for αSMA and β-Catenin. 21 

cases previously stained and scored for SULF2 were then stained for RelA-P-ser536 and CD44. 

Details of the antibodies are listed in Table 2.1 

Staining Catalogue 

number 

Producer Clonality/ 

host species 

Antigen retrieval 

(IHC) 

Experiment 

SULF2 MCA5692GA AbD Serotec Mouse mAb Triology system Cell 

Marque,UK 

1:200 

αSMA ab7817 Abcam Mouse mAb The pressure cooker 

‘decloaking’ 

1:200 

GPC3 sc-65443 Santa Cruz Mouse mAb The pressure cooker 

‘decloaking’ 

1:200 

β-catenin 610514 BD Transduction 

Labs 

Mouse mAb The pressure cooker 

‘decloaking’ 

1:400 

RelA-P-

Ser536 

ab86299 Abcam Rabbit pAb Tris buffer (pH 9) 1:200 

Pan CD44 ab157107 Abcam Rabbit pAb Citrate buffer (pH6) 1:1000 

CD68 OABB00472 Aviva systems 

biology 

Rabbit pAb Citrate buffer (pH6) 1:200 

F4/80 Ab6640 Abcam Rat mAb 20ug/ml Proteinase-K 1:100 

Table 2.1 list of antibodies used in IHC 

2.3.1.1 Human SULF2 staining 
SULF2 IHC staining was performed using an automated Ventana processor (Roche). Slides 

were deparaffinised using series of Xylene (Fisher Chemicals Code: X/0200/17 Lot: 1556167) 

and then rehydrated through descending concentrations of alcohol (Alcohol (C2H6O): Ethanol 

Absolute from Fisher Chemicals Code: E/0650DF/17). Slides were exposed to cell conditioning 

and antigen retrieval (programme 245) followed by 1:50 SULF2 1ry antibody treatment. Tissues 
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were then incubated with Multimer (AKA Secondary) 2nd antibody (discovery OmniMap anti-

Ms HRP cat 4310) for 16 minutes and SULF2 positive brown colour was developed by treating 

slides with DAB (cat 4304). Slides were counterstained with standard Heamatoxylin II (cat 790-

2208) for 8 minutes followed by Blueing reagent (cat 760-2037) for 4 minutes. Slides were 

then removed, washed with Tris-buffered saline- tween 20 (TBS-T) for 5 minutes and then 

dehydrated in ascending concentrations of alcohol for 30 seconds each and 2X 4 minutes in 

Xylene. Finally, slides were mounted using DPX mounting media (Sigma-Aldrich Code: 06522-

500mL Lot: BCBH4393V). 

2.3.1.2 Human RelA-P-ser536 staining 
RelA-p-Ser536 staining was manually performed using an overnight protocol. On the first day, 

slides were deparaffinised and rehydrated by passing them through Xylene and descending 

serial concentrations of ethanol (100, 70 and 50 %) for 5 minutes each. Tissue endogenous 

peroxidase was blocked by incubating slides with 3% H2O2 in methanol for 15 minutes. Slides 

were then rinsed in phosphate-buffered saline (PBS) before proceeding into the antigen 

retrieval protocol.  

High pH antigen retrieval protocol (Tris-EDTA antigen unmasking solution, pH9, vectors lab, 

catalogue H-3301) was applied in the RelA-P-Ser536 IHC. Slides were microwaved in the 

retrieval buffer at power 80 for 20 minutes. After cooling down with water, slides were 

permealised with 0.25% triton-x100/PBS for 10 minutes and then mounted into a sequenza 

for further processing. Slides were then blocked with an avidin/biotin blocking kit (catalogue 

SP-2001, Vector laboratories) for 15 minutes each separated by three washes with PBS for 5 

minutes. Slides were blocked with 20% goat serum (45 minutes) prior to incubation with the 

primary antibody diluted in 5% of goat serum at 4°C. On the next day, slides were warmed up 

and then incubated with 2 drops of anti-rabbit Envasion+ system HRP labelled polymer (DAKO, 

catalogue K4003) for 30 minutes. Slides were washed 3 times with PBS before incubating with 

100 µl DAB mix (reference number SK 4100, Vector labs) for a maximum of 12 minutes. Slides 

were counterstained with Haematoxylin for 2.5 minutes followed by Scotts water for 1 minute 

before dehydrating, clearing and mounting with DPX mounting media.  

2.3.1.3 Human CD44 staining 
CD44 staining was manually performed in a one-day protocol. Slides were deparaffinised and 

rehydrated by passing them through Xylene and descending serial concentrations of ethanol 

(100, 70 and 50 %) for 5 minutes each. Tissue endogenous peroxidase was blocked by 
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incubating slides with 3% H2O2 in methanol for 15 minutes. Slides were then rinsed in 

phosphate-buffered saline (PBS) before proceeding into the antigen retrieval protocol; low pH 

antigen retrieval protocol (Citrate antigen unmasking solution, pH6, vectors lab, catalogue H-

3300). Slides were microwaved in the retrieval buffer at power 80 for 20 minutes. After cooling 

down with water, slides were mounted in sequenza vertical slides racks for further processing. 

Tissues were then blocked with avidin/biotin blocking kit (catalogue SP-2001, Vector 

laboratories) for 15 minutes each separated by three washes with PBS for 5 minutes. Slides 

were blocked with 20% goat serum prior to incubation with the primary antibody diluted in 

10% goat serum for 2 hours. Slides were washed with 5X PBS and then incubated with 2 drops 

of anti-rabbit Envasion+ system HRP labelled polymer (DAKO, catalogue K4003) for 30 

minutes. Slides were then washed 3 times with PBS before incubating with 100 µl DAB mix 

(reference number SK 4100, Vector labs) for a maximum of 12 minutes. Slides were 

counterstained with Haematoxylin for 2.30 minutes followed by Scotts water for 1 minute 

before dehydrating, clearing and mounting with DPX mounting media.  

2.3.1.4 Scoring system for the applied stains 
For SULF2: Two pathologists blinded to patient outcome assessed SULF2 and GPC3 

immunostained slides. SULF2 in tumour cells was graded as absent or present, where present 

included 5% or more of tumour cells with positive cytoplasmic immunostaining. SULF2 in CAFs 

was graded as absent or present, where ‘absent’ included cases with either no or scant SULF2 

and ‘present’ included cases with intense focally positive or diffusely positive SULF2.  

For GPC3: GPC3 expression in tumour cells was scored from (0-3), corresponding to negative, 

focal or dot like cytoplasmic positivity, more diffuse cytoplasmic positivity, and intense 

cytoplasmic or membranous positivity. 

For RelA-P-ser536: RelA-P-ser536 expression in the tumour cell nuclei was scored as 0 

(negative), 1 (scattered positive nuclei), 2 (more than 50% positive nuclei) or 3 (more than 

90% positive nuclei). 

For CD44: CD44 expression in the tumour cells was scored from (0-3), corresponding to 

negative, scant cytoplasmic or membranous tumour cell positivity, moderate cytoplasmic or 

membranous positivity and strong membranous positivity.  
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2.3.2 For the C3H/He mouse model study: 
As a validation to the RNA-sequencing data, a group of markers was chosen for IHC, which 

included CD44, CD68 and F4/80. The details of the antibodies are listed in Table 2.1 

2.3.2.1 Mouse CD44 staining 
The same human staining protocol was applied to the mouse CD44 staining. 

2.3.2.2 Mouse CD68 staining 
The one-day CD68 staining was manually performed as previously described for CD44 until the 

blocking step. Slides were blocked with 20% pig serum for 45 minutes prior to incubation with 

the primary antibody diluted in the blocking solution for 1.5 hours. Slides were washed with 

5X PBS and then incubated for 60 minutes with 1:200 of biotinylated swine anti-rabbit 

antibody (Dako, catalogue E0353) diluted in PBS. After washing with PBS, the vector avidin 

biotin complex (ABC) was added to each slide (Vector labs, catalogue PK 7100), and incubated 

for 30 minutes. DAB and further processing was performed as previously described in the 

human and mouse CD44 staining. 

2.3.2.3 Mouse F4/80 staining 
F4/80 staining was performed using a one-day protocol, and after deparaffinisation and 

blocking of endogenous peroxidases, slides were then rinsed in phosphate-buffered saline 

(PBS). Antigen retrieval was performed using 20 µg/ml proteinase K in pre-warmed PBS for 20 

minutes at 37°C.  Slides were mounted into sequenza vertical slides racks for further 

processing. Tissues were then blocked with avidin/biotin blocking kit (catalogue SP-2001, 

Vector laboratories) for 15 minutes each separated by three washes with PBS for 5 minutes. 

Slides were blocked with 20% goat serum for 45 minutes prior to incubation with the primary 

antibody diluted in the blocking solution for 1.5 hours. Slides were washed with 5X PBS and 

then incubated for 60 minutes with 1:200 of biotinylated goat anti-rat antibody (star 131B, 

Biorad) diluted in PBS. After washing with PBS, the vector avidin biotin complex (ABC) was 

added to each slide (Vector labs, catalogue PK 7100), and incubated for 30 minutes. DAB and 

further processing was like what was described in the human and mouse CD68 staining. 

2.3.2.4 Scoring procedure for the applied stains 
As the three stains applied to the mouse tissue exclusively stained macrophages, the scoring 

system for these markers depended on counting the number of positive macrophages in 

matched 10 high-power fields (HPF) and the mean number of positive macrophages/10 HPFs 

was representative to number of positive macrophages in each case.   



40 
 

2.4 Cell culture 
A combination of different cell lines was used to assess SULF2 function in vitro. Two HCC cell 

lines with different SULF2 expression levels were used including SULF2-null HCC cell line; 

Hep3B cells and the SULF2-expressing Huh7 cells. Both cell lines were from the NICR cell line 

bank and were exported originally from the American Tissue Culture Collection (ATCC).Huh7 

is an adherent, malignant epithelial cell line previously isolated from 57-year old Japanese 

patient in the eighties of the last century, while Hep3B is another malignant hepatocyte cell 

line that was isolated from HCC male patient. Both cell lines are widely used to study different 

HCC oncogenic pathways alongside with testing the effect of new therapeutic targets against 

liver malignancy. LX-2 myofibroblast cell line333 was a kind gift from Professor Scott Friedman, 

Mount Sinai University. LX2 cells represent a model of hepatic activated myofibroblasts and 

are accepted as a tool in preclinical studies for new therapeutic targets. LX2 cells provide a 

valuable source of information in cell-cell cross talk with other cell types in the diseased liver 

environment.   

2.4.1 Culture conditions 
Cells were incubated in Panasonic incubator in 5% CO2 at 37°C degrees in 95% humidified 

conditions. All cell-based experiments were performed under sterile conditions in a class II 

laminar flow BioMAT2 hood (Medair Technologies, USA). Cell lines were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) media with high glucose concentration (Biosera, UK). Other 

supplements to the media included 10% heat deactivated foetal bovine serum (FBS) (Sigma), 

1% penicillin/streptomycin (100 unit/ml penicillin and 100 μg/ml streptomycin; sigma) and 2 

mM L-glutamine (Sigma). 

2.4.2 Cell line sub-culturing  
When cells reached 60-70% confluency, the media was aspirated and cells were washed with 

5 ml of sterile PBS. 2 ml of ready-to-use trypsin (sigma) was then incubated with cells at 37°C 

for 5 minutes for the purpose of cell detachment. 4 ml of complete media was added to 

deactivate trypsin and cell pellet was collected by centrifugation at 1000 r.p.m for 4 minutes 

at room temperature (RT). Cells were cultured in T75 flasks in fresh media for future use, or 

they were counted for further experiments. 

2.4.3. Mouse hepatocyte isolation 
Hepatocytes were isolated from C57BL/6 mice livers using a two-step perfusion method. Mice 

were culled by an overdose of Ketamine and Xylazine anaesthesia. After opening the 

abdomen, the inferior vena cava was cannulated and the superior vena cava was clamped. 
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Liver retro-perfusion was performed using 50ml of Krebs-ringer bicarbonate buffer (Sigma) 

with EDTA followed by 50ml of Krebs-ringer bicarbonate buffer with calcium chloride and 

1mg/ml Collagenase, and the portal vein was the outlet for the perfusing solutions. 

Hepatocytes from the perfused liver were isolated in Krebs-Ringer buffer and were filtered 

through 70μm cell strainers. Hepatocytes were then centrifuged (50xg for 3minutes) and 

washed with Krebs-Ringer buffer. At the end of the procedure, the pellet was resuspended in 

10% Williams medium E (Gibco) containing 10%FBS, 2mM L-glutamine, 100 u/ml penicillin and 

100 μg/ml streptomycin and plated in rat tail collagen-coated plates. 4 hours later, dead 

floating cells with the old media were replaced by fresh complete Williams E medium. 

2.4.4 Isolation of mouse bone marrow-derived macrophages   
After sacrificing the mice, the femur and tibia are excised and kept in HBSS-. Bone marrow was 

then flushed out using 5ml HBSS- and a 23 gauge needle under laminar flow hood. Cell 

suspension was then disaggregated using 18 gauge needle, and cells were transferred into 50 

ml falcon tube where they were centrifuged at 400xg for 5 minutes. Pellet was resuspended 

in Ammonium Chloride-Potassium (ACK) lysis buffer for 1 minute, and then 1x PBS was added 

to restore osmolarity. Cell suspension was layered onto a 62.5% percoll density gradient, and 

the mixture was centrifuged at 1000 xg for 30 minutes. Cells in the gradient interface; the 

immature mono-nuclear cells, were collected and washed twice with 1X PBS before 

resuspension in RPMI media containing 10% FCS, 1 mM pyruvate-glutamine, penicillin-

steptomycin and 10ng/ml M-CSF. Immature monocytes were kept for 7 days at 37°C with 

5%CO2 to mature into macrophages. 

2.4.5 Macrophage polarisation    
Polarisation of BMDM into M1 and M2 macrophage phenotypes was achieved by treating 

seeded macrophages with either 100ng/ml LPS and 50ng/ml Ifnɣ (for M1 macrophages) or 10 

ng/ml of Il4 and Il13 in the media for 24 hours. 

To collect M0, M1 and M2 CM, media was aspirated after polarisation and cells were washed 

with PBS before adding fresh media for 24 hours. The collected media was 10 x concentrated 

and stored for the desired experiments.   

2.4.6 Cell counting  
Cell counting was performed automatically by using EVE™ Automatic Cell Counter (Germany). 

10 µl of homogenous cell suspension was mixed with 10 µl of trypan blue dye. 10 µl from this 

mix was pipetted into the Eve counting slide to be inserted in the automatic cell counter. 
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2.4.7 Freezing cells 
Cells to be frozen were cultured in T75 flask to reach 60-70% confluency. After trypsinisation 

and cell centrifugation, the resulting pellet was re-suspended in 1 ml of cell freezing media 

(0.8 ml of culture media+0.1 ml FBS+0.1 ml DMSO (Sigma)). Cells were then transferred to 

cryo-vials and loaded into cryo-chamber filled with isopropyl alcohol (Nalgene) to achieve -

1°C/min rate of cooling for overnight. Cryo-vials were then transferred into liquid nitrogen for 

long-term storage. 

2.4.8 Collection and concentration of cell conditioned media   
1 x 106 of LX-2 cells were cultured in 10 mls of media in a 10 cm dishes for 48 hours. Cell-

conditioned media (CM) were then collected and centrifuge at 1600 r.p.m for 5 minutes to 

pellet any cell debris. CM was enriched by 10-fold by using the Amicon Ultra 15 (3000 NMWL) 

centrifugal filters (Merk Millipore, UK, catalogue UFC900324). Media was centrifuged in these 

concentration tubes at 2600 g for 45 minutes at 4°C, and the concentrated CM was sterile 

filtered before storage at -80°C for further experiments. 

2.4.9 Sorafenib, inhibitors and other reagents   
Sorafenib was purchased from Cell signalling technologies (catalogue number 8705). 

SP600125 (JUN N-Terminal Kinase (JNK) inhibitor, catalogue number 1496), (5Z)-7-Oxozeaenol 

(transforming growth factor-β-activated kinase 1 (TAK1) inhibitor, catalogue number 3604) 

and FR 180204 (Selective Extracellular Signal-Regulated Kinase1/2 (ERK1/2) inhibitor, 

catalogue number 3706) pathway inhibitors were purchased from Tocris. IKK-2 Inhibitor IV 

(Inhibitor Of Nuclear Factor Kappa B Kinase Subunit Beta, catalogue number 401483) was 

purchased from Calbiochem. Wnt-3a was purchased from R&D systems. 

2.4.10 Stable SULF2 Knockdown 
LX-2 cells were transduced with mission TRC2 shRNA lentiviral particles targeting SULF2 

(TRCN0000364518, Sigma-Aldrich, USA) or TRC2-pLKO-puro non-targeting (NT) with 

hexadimethrine bromide (shRNA sequences in Table 2.2). Cells were selected using 

puromycin. Successful SULF2 knockdown was confirmed by both real-time PCR and western 

blotting. 

Target Sequence 

SULF2 shRNA CCGGGGGCGAAAGTCATTGGAATTTCTCGAGAAATTCCAATGACTTTCGCCCTTTTTG 

NT shRNA CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTT 
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Table 2.2 shRNA sequences of mission TRC2 SULF2 and non-targeting shRNA lentiviral 
particles. 
 
 
2.4.11 2D Trans-well assay 
Cancer cells were co-cultured with stromal cells with different SULF2 expression levels in order 

to see the impact of stromal SULF2 on the behaviour of the tumour cells as previously 

described in similar conditions334-336. Huh7 and Hep3B cells were incubated in 12- and 24-well 

plates in different cell densities i.e. 10000, 20000 and 50000 cells/well, while control or SULF2 

KD LX-2 cells were cultured in ThinCerts™-TC inserts, pore size 3.0 µm (Greiner bio-one, 

Switzerland, catalogue 662631) in 1:1 ratio on top of the tumour cells. 24, 48 and 72 hours 

later, the impact of the stromal SULF2 on the growth and viability of the tumour cells –after 

removal of the trans-wells with the cultured stromal cells- was assessed with MTT viability 

assay and BrdU cell proliferation ELISA assay as mentioned below. 

2.4.11.1 MTT viability/metabolic activity assay 
The principle of the MTT colorimetric assay is the mitochondrial reduction of the 3-(4,5-

dimethythiazol2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the mitochondrial enzyme 

succinate dehydrogenase. Such reaction only takes place in viable and metabolically active 

cells where the MTT dye penetrates the cell membrane until reaching the mitochondria where 

it is reduced by succinate dehydrogenase to give a purple insoluble formazan product. The 

resulting product is solubilised with 1-propanol and the intensity of the purple colour (which 

reflects the metabolic activity of the parent cells) is measured using a spectrophotometer.    

At the desired time point, trans-wells including the incubated stromal cells were discarded, 

and the media was replaced by 500µl of 5mg thiazoyl blue tetrazolium bromide (Sigma-

Aldrich, USA, catalogue M2128) /ml complete media. The dye was then incubated with cells 

for 3 hours at 37°C, and then media was aspirated and the plate was allowed to dry at RT for 

5 minutes. The insoluble formazan crystals were dissolved using 1-propanol with shaking for 

5 minutes on an orbital shaker. The resulting solution was then transferred into 96-well plate 

and colour intensity was analysed using plate reader at 570 and 620 nm. 

2.4.11.2 Cell proliferation ELISA, BrdU assay 
The assay principle for this assay relies on the use of 5-bromo-2'-deoxyuridine or 

Bromodeoxyuridine, a synthetic thymidine analogue which replaces thymidine during the 

DNA synthesis of the replicating cells and hence can be used as a marker for cell 



44 
 

proliferation337. The ELISA kit (Roche, Germany, catalouge 11647229001) involves BrdU 

labelling agent together with anti-BrdU antibody that recognises the BrdU-labelled DNA. 

Tumour cells were treated with 10µM BrdU labelling agent 20 hours before the desired end 

point to allow the incorporation of BrdU into the newly synthesised DNA of dividing cells. 

Labelling media was removed and cells were fixed for 30 minutes at RT. Anti-BrdU antibodies 

were then incubated with the cells for 90 minutes with subsequent washing with PBS for 5 

minutes at the end of the incubation period. The intensity of the green colour developed after 

adding the substrate solution to the plate was stopped by using H2SO4 stop solution and was 

measured at 450 nm.    

2.4.12 Tumour cell migration assay 
The ability of the stromal SULF2 to regulate the migration of the tumour cells was tested using 

the cell migration inserts (Ibidi, Germany, catalogue 80209). 30000 tumour cells/70 µl media 

were cultured overnight on both sides of the migration inserts to allow for cell attachment. 

The migration insert was removed and media was replaced with CM from control LX-2 or 

SULF2 KD LX-2 cells in 1:1 ratio with complete media. Pictures of the migration front were 

taken 24 hours after incubation with the stromal CM using a Zeiss inverted microscope. 

Pictures were captured at 50x magnification and gap closure was assessed by measuring the 

gap distance at each time point using ImageJ software.  

2.4.13 Tumour cell invasion assay 
Tumour cell invasion assay depends on the ability of the tumour cells to invade through the 

ECM proteins from the Engelbreth Holm-Swarm (EHS) mouse tumour338 forming an artificial 

basement membrane that is dried over the wall of 8 µM pore size polycarbonate inserts. 

After rehydrating the interior of the Boyden chambers with serum-free (SF) media at RT for 2 

hours, tumour cells (300,000 cells per chamber) were suspended in 300µl SF media and were 

pipetted inside the invasion chamber. The chamber was then inserted in 24-well plate 

including different densities from overnight-attached control or SULF2-KD LX-2 cells as a living 

source of SULF2. 72 hours later, inserts were carefully removed using sterilised forceps and 

the un-invading cells together with the ECM matrix gel were carefully, but thoroughly, 

removed from the interior of the chamber inserts using a cotton swab to reduce the 

background. Inserts were then transferred to new 24-well plate containing 500 µl of the 

staining solution to stain for the invading cells on the outer surface of the polycarbonate 
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membrane for 20 minutes. Chambers were then washed with water and the dye was dissolved 

using 10% aceitic acid and the developed colour was measured at 560 nm on a plate reader.   

2.4.14 3D spheroid hanging droplets 
3D spheroid models provide more in vivo-like conditions, which reflect the complexity of the 

tumour microenvironment in terms of drug penetration and absorption as well as the growth 

of cells in a multi-layer, rather than a monolayer339, 340. The rationale of doing this experiment 

in the SULF2 context was to investigate the effect of stromal SULF2 on tumour cell 

proliferation shown by the degree of spheroids growth, and for this reason two procedures 

were adopted; mixed fibroblast-tumour cell spheroids and single tumour spheroids.  

The optimum number of cells forming a single, rounded sphere was investigated by culturing 

different cell densities (12000, 6000, 3000, 1500, 1000, 750, 500, 250, 125 and 62 cells) in 20µl 

of media on the interior surface of a 10 cm3 lid that was then inverted to allow the media 

including the cell suspension to hang over humid environment by adding 10 ml of sterile PBS 

to the bottom of the dish. Droplets were left for 3 or 4 days to reach the best time upon which 

spheroids were formed.  

Mixed cell-type spheroids; Huh7 or Hep3B cells combined in a 1:1 ratio with control or SULF2 

KD LX-2 cells in 20µl media per sphere on a 10cm3 dish lid (n=10 per group). The total number 

of cells mixed to form a single sphere was 3000 cells. Pictures were taken at 50X magnification 

using a Zeiss inverted microscope from day 3 after mixing single cells until day 8 of culture. 

Tumour cells’ spheroids; Huh7 or Hep3B cells were suspended in hanging droplets to form 

spheres. The total number of cells mixed to form a single sphere was 3000 cells. Spheroids 

were transferred into the stromal CM at either 3 days (Hep3B spheroids) or 4 days (Huh7 

spheroids) after the date of hanging the droplets. Pictures were taken at 50X magnification 

using Zeiss fluorescent microscope from day 3 or 4 after mixing single cells until the seventh 

day. 

Calculation of the spheroids volume: the spheroids’ growth was calculated as follows: 

• Spheroids were numbered from 1-10 so that images from matched spheroids could be 

captured daily. 

• Pictures of the growing spheroids were analysed using the imageJ image analysis 

software. 
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• Software sittings were changed to allow using the freehand selection to the analysed 

object; spheroid. 

• The analysis option in the software toolbar was chosen to set the analysis 

measurement for the “area” option. This gave the area of the selected object on pixel 

count. 

• The volume of each sphere was calculated using the invented formula: 

Vmm3 = 0.09403 x ((Apixelx0.28)/1000)1.5 

• The output from this experiment was the change of the matched-spheroid volume 

from the first day of image capture. This was to allow for exclusion of any variability 

due to the difference of the initial volume of the spheroids. 

2.5 RNA Extraction, Reverse Transcription and Polymerase Chain Reaction 
2.5.1 RNA extraction  
Total Ribonucleic acids (RNA) was extracted from cell lines seeded in 300,000 cell/well in 6-

well plate at the desired time point and after specific treatment. Media was aspirated, and 

cells were washed with ice –cooled PBS. Isolation of RNA was performed using the Qiagen 

RNeasy Mini kit according to the manufacturer’s protocol. The concentration of the isolated 

RNA was detected using Nanodrop 2000 machine and software (thermos-scientific) and the 

samples were kept undiluted at -80°C for further experiments.  

2.5.2 Reverse transcription 
1µg RNA was used to make complementary DNA (cDNA) using the Promega reverse 

transcription (RT) protocol. The required RNA concentration was added to a total volume of 

8µl using RNase-free water (Qiagen) and the mixture was treated with 1µl RNase-free DNase 

enzyme with 1µl of 10x RQ1 DNase reaction buffer to eliminate any contamination from 

genomic DNA (gDNA). The reaction was kept at 37°C for 30 minutes in GeneAmp PCR system 

2700 thermal cycler (Applied Biosystems). 1 µl of RQ1 DNase stop solution was then added for 

5 minutes to stop the action of the DNase enzyme. Next, 0.5µl random hexamers were 

annealed to the RNA at 70°C for 5 minutes before proceeding into the RT step. To reach a RT 

reaction volume of 20µl, 8.5 µl of RT working solution was added to every sample. The RT 

working solution contained (per sample): 1µl M-MLV RT enzyme, 4µl of 5x M-MLV RT buffer, 

1 µl 10 mM dNTP, 0.5µl of RNasin ribonuclease inhibitor and 2µl of RNase free water. Mixture 

was pipetted and incubated on the thermocycler for 1 hour at 42°C to allow the RT reaction 

to take place. Samples were kept at -80°C for future experiment. 
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2.5.3 Quantitative polymerase chain reaction (qPCR) 
The resulting cDNA (50ng/µl) was diluted 1:5 to 10ng/µl with Nuclease-free water and then 

2µl of the diluted cDNA (20ng/µl) was used for the gene expression protocols. 6.5µl of 2x 

SYBR® Green JumpStart™ Taq ReadyMix (Sigma, catalogue S4438) was mixed with 3.5µl of 

nuclease-free water and with 1µl of both forward and reverse primers (at 10 μM 

concentration) designed for genes of interest. A total reaction volume of 13µl was loaded onto 

96-well plate (MicroAmp optical plate, Applied Biosystems) and the qPCR reaction was 

performed using the 7900HT Fast Real-Time PCR System (Applied Biosystems) equipped with 

the SDS 2.3 software. The standard program was used (50°C for 2 min, 95°C for 10 min 

followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min).  

2.5.4 Primer design 
List of all the designed primers is in Table 2.3 All primers used for this study were self-designed 

using three online bioinformatics software: primer 3 version 1.4 software, PubMed nucleotide 

blast tool software and Primer bank website. Nucleotide sequence of the target genes was 

obtained from PubMed website using Nucleotide search engine. The sequence of the designed 

primers was checked against whole genome using the BLAST option on the PubMed website 

to ensure good alignment and high specificity towards the target gene. Primers were ordered 

from sigma website in dry format, reconstituted in DEPC water to 10µM. Both the  
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Table 2.3: list of primers used in the current study 

forward and reverse primers were diluted 1:10 in DEPC water for semi-quantitative PCR and 

qPCR. 1:10 serial dilution from control cDNA (20ng/µl) was prepared to test the efficiency of 

the designed primers using the standard curve drawn by 7900HT Fast Real-Time PCR System 

(Applied Biosystems) equipped with the SDS 2.3 software. The slope of the standard curve was 

used to calculate primer efficiency using the qPCR Efficiency Calculator online software 

(Thermo-scientific). Primers with a % of efficiency ranging from 90-110% were considered for 

gene expression analysis. Data analysis of the gene expression experiments adopted the 

Comparative quantification algorithms-ΔΔCt methods in which the expression of the target 

gene in an experimental context is compared to the expression results of both a calibrator 

Gene Forward primer 5’-3’ Reverse primer 5’-3’ 

SULF2 ATGAGTTTGACATCAGGGTCCCGT ATGGATTTCCCGTCCATATCCGCA 

PDGFRβ AGACACGGGAGAATACTTTTGC AGTTCCTCGGCATCATTAGGG 

αSMA GAAGATCAAGATCATCGCCC CTCGTCGTACTCCTGCT 

Col1a1 GTGCGATGACGTGATCTGTGA CGGTGGTTTCTTGGTCGGT 

VIM TGCAGGAGGCAGAAGAATGG AAGGGCATCCACTTCACAGG 

TIMP1 CCTTCTGCAATTCCGACCTC GTATCCGCAGACACTCTCCA 

TNFα GAGGGCTGATTAGAGAGGTC ATGAGCACTGAAAGCATGATCC 

IL6 CCTGAACCTTCCAAAGATGGC TTCACCAGGCAAGTCTCCTCA 

CD44 TCCAACACCTCCCAGTATGACA GGCAGGTCTGTGACTGATGTACA 

CDH1 AAAGGCCCATTTCCTAAAAACCT TGCGTTCTCTATCCAGAGGCT 

EpCAM GAACACTGCTGGGGTCAGAA CTGAAGTGCAGTCCGCAAAC 

KRT7 CAGGATGTGGTGGAGGACTT AGCTCTGTCAACTCCGTCTC 

KRT19 TGAGTGACATGCGAAGCCAAT CTCCCGGTTCAATTCTTCAGTC 

AXIN2 TACACTCCTTATTGGGCGATCA TTGGCTACTCGTAAAGTTTTGGT 

LGR5 AGCAAACCTACGTCTGGACA ACAGAGGAAAGATGGCAGCT 

CDH2 AGCAGTGAGCCTGCAGATTT CTGCCACTTGCCACTTTTCC 

PDGFRα TTTTTGTGACGGTCTTGGAAGT TGTCTGAGTGTGGTTGTAATAGC 

TCF4 ACTGTAGCCTGCATCCACAT TTTCCCCAGAGCATCTCCAG 

CXCR4 CTGGCCTTCATCAGTCTGGA TCATCTGCCTCACTGACGTT 

FZD7 GTGCCAACGGCCTGATGTA AGGTGAGAACGGTAAAGAGCG 

FGFR1 CGCCCCTGTACCTGGAGATCATCA TTGGTACCACTCTTCATCTT 

GADD45β TACGAGTCGGCCAAGTTGATG GGATGAGCGTGAAGTGGATTT 

MDR1 CACGTGGTTGGAAGCTAACC GAAGGCCAGAGCATAAGATGC 

HPRT TTGCTTTCCTTGGTCAGGCA ATCCAACACTTCGTGGGGTC 
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(control or untreated sample) and a normaliser (house-keeping gene, HPRT in our case). The 

resulting ΔΔCt value was used to calculate the fold difference in gene expression. 

2.6 Western blotting 
2.6.1 Total protein extraction 
Protein was extracted from cell lines seeded in 300,000 cell/well in 6-well plate at the desired 

time point and after specific treatment. Media was aspirated, and cells were washed with ice 

–cooled PBS prior to adding the Mammalian Protein Extraction Reagent (M-PER) (thermo-

scientific, catalogue 78503). 10µl of protease inhibitor cocktail (Roche) and 20µl of 

Phosphatase Inhibitor Cocktail 2 (sigma, catalogue p5726) were added per 1ml of the protein 

extraction buffer, and around 70-90µl from this mixture was incubated with cells in 6-well 

plate for 2 minutes on ice to allow detergents and buffer component to lyse the cells. Cells 

were then scrapped from the surface of the plate and the whole lysate was transferred into 

1.5 ml Eppendorf tubes to be centrifuged at 13,000 r.p.m for 20 minutes at 4°C. the 

supernatant including all the soluble proteins was collected in new Eppendorf tube for protein 

quantification. 

2.6.2 Protein quantification and preparation 
The bicinchoninic acid (BCA) assay procedure was performed to measure the total protein 

concentration (Pierce BCA Protein Assay Kit, Thermo Scientific). The intensity of the purple 

colour produced by the reduction of CU+2 into CU+1, by the amino acids present in the total 

proteins, and subsequent detection of the CU+1 ion by the BCA, was proportional to the 

quantity of the total protein present in every tested sample. A serial dilution from the standard 

bovine serum albumin (BSA) was used to create a standard curve from which the 

concentration of the sample protein was interpolated. 10µl of sample was mixed with 80µl of 

the working reagent (50:1 ratio of reagent A and reagent B) and the reaction mix was left for 

30 minutes at 37°C. The absorbance was read by the spectrophotometer at 562 nm. The 

desired concentration of protein (10-20µg) was mixed in a 1:4 ratio with 4x protein loading 

dye and the mixture was heated up at 95°C in the heat-block for 5 minutes for protein 

denaturing purposes.       
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2.6.3 SDS-PAGE electrophoresis 
According to the size of the tested protein, the resolving gel was made in 7.5, 10 or 12%, while 

the stacking gel was always made in 4% using the formula listed in Table 2.4 

 

 

 

 

 

 

 

Table 2.4 composition of the SDS-PAGE gels 

Samples were loaded on the custom made SDS-PAGE gel and the PageRuler Prestained Protein 

Ladder (thermos-scientific, catalogue 26616) was used as a protein size marker. Samples were 

run at 90 volts for 2 hours and at the end of the electrophoresis, the gel was prepared for 

blotting. 

2.6.4 Protein transfer 
Proteins separated on the SDS-PAGE gel were transferred to Nitrocellulose membrane 

(HyBond-C Extra, Amersham Biosciences, UK) using the wet-transfer method in tris-glycine 

buffer (pH 8.3). The gel, the nitrocellulose membrane, two filter pads and two blotting pads 

were pre-immersed in the transfer gel and the transfer sandwich was set that the negatively 

charged proteins were transferred from the gel (nearest to the cathode probe) to the 

membrane (nearest to the anode probe). Protein transfer was run on 100 volts for 1.30 hours. 

Ponceau s solution (Sigma, catalogue 7170) was used to confirm the correct transfer of the 

proteins to the blotting membrane.   

2.6.5 Membrane blocking and immunoblotting 
Membrane was blocked with either 5% skimmed milk or 5% BSA in 1x TBS-T solution (60 g of 

Tris, 90 g of NaCl and 5 ml of Tween 20 in 1 L of H2O; pH 7.5) to eliminate any unspecific 

binding. All the primary antibodies were incubated with the membrane overnight with gentle 

shaking over orbital centrifuge at 4°C. The following day, the primary antibodies were 

aspirated and the membrane was washed thoroughly with TBS-T 3x 5 minutes while shacked 

 Resolving gel (ml) Stacking gel (ml) 

7.5% 10% 12% 4% 

MilliQ water 5.5 4.85 4.35 6.4 

1.5 M Tris pH 8.8 2.5 2.5 2.5  

0.5 M Tris Ph 6.8    2.5 

40%Acrylamide/bis 

(Biorad, 1610148) 

1.9 2.5 3 1 

10% SDS 0.1 0.1 0.1 0.1 

10% APS 0.05 0.05 0.05 0.05 

TEMED 

(Sigma, T9281) 

0.01 0.01 0.01 0.01 
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to ensure precise removal of the unbound antibody remnants. 1:2000 of the HRP conjugated 

secondary antibodies were then incubated with the membrane for 1 hours RT on the orbital 

shaker. List of the antibodies used in WB is in Table 2.5 

Staining Catalogue 

number 

Producer Clonality/ 

host species 

Dilution 

SULF2 MCA5692GA AbD Serotec Mouse mAb 1:1000  

Phosphor-SAPK/JNK 

(Thr183/Tyr185) 

9251 Cell signalling Rabbit pAb 1:1000 

SAPK/JNK (Thr183/Tyr185) 9252 Cell signalling Rabbit pAb 1:1000 

Phospho- NF-Kb p65 

(Ser536)(93H1) 

3033 Cell signalling Rabbit mAb 1:1000 

NF-Kb p65 (C-20) sc-372 Santa cruz 

biotechnology 

Rabbit pAb 1:1000 

Phospho-stat3 (Tyr705)(D3A7) 9145 Cell signalling Rabbit pAb 1:1000 

Stat3 9132 Cell signalling Rabbit pAb 1:1000 

Phospho-p44/42 MAPK 

(ERK1/2)(Thr202/Tyr204) 

9101 Cell signalling Rabbit pAb 1:1000 

p44/42 MAPK (ERK1/2) 0102 Cell signalling Rabbit pAb 1:1000 

phospho-ERK 4370 Cell signalling Rabbit mAb 1:2000 

ERK1/2 9107 Cell signalling Mouse mAb 1:2000 

phospho-AKT 4060 Cell signalling Rabbit mAb 1:2000 

AKT 4691 Cell signalling Rabbit mAb 1:2000 

GAPDH ab37168 Abcam Rabbit pAb 1:2000 

β-actin A-5441 Sigma-Aldrich Mouse mAb 1:2000 

Anti-rabbit IgG, HRP-linked 7074 Cell signalling Goat 1:2000 

Anti-Mouse IgG, HRP-linked A4416 Sigma-Aldrich Goat 1:2000 

Table 2.5 List of antibodies used in Western blotting 

2.6.6 Immunodetection 
The membrane was washed 3x 5 minutes after the removal of the 2nd antibodies, and was 

then incubated with the chemiluminescence substrate Pierce ECL Western Blotting Substrate 

(Thermo Scientific, catalogue 23106) for 1 minute before developing the bands using x-ray 

films in the dark room. The film was developed using developing solution (RG X-ray developer, 

Champion) and fixative (RG X-ray fixer, Champion) in the Mediphot 937 developing system. 

2.6.7 Membrane stripping 
For the detection of the phosphorylated and total proteins, the phospho-antibodies were 

applied first to the membrane and after developing the protein bands, the membrane was 
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stripped for the purpose of re-blotting with the total protein primary antibody. The membrane 

was washed with TBS-T for 15 minutes at RT and was then incubated with Restore™ Western 

Blot Stripping Buffer (Thermo-scientific, catalogue 21059) for 20 minutes at RT on orbital 

shaker. The membrane was then re-washed with TBS-T buffer for another 10 minutes before 

blocking with the specific blocking agent prior to retreating with total protein primary 

antibody. 

2.7 Immunofluorescence (IF) 
Cells stained for GP3 and β-Catenin were seeded in 8-chamber slides at 40,000 – 80,000 cells/ 

chamber. At the end of the treatment, the media was aspirated and the cells were washed 

with PBS before fixing them with 6% formalin for 30 minutes at RT. Formalin was removed 

and cells were further fixed and permablised with acetone for 10 minutes prior to wash with 

0.25% PBS-Triton for another 10 minutes. 20% goat serum was used for blocking purposes at 

RT for 45 minutes and the primary antibody was diluted in PBS (1:75 for GPC3 and 1:100 for 

β-Catenin) and incubated with cells in the chambers for 45-60 minutes at RT. The primary 

antibody was then aspirated and cells were washed before incubating them with the 

fluorescent-labelled secondary antibody for 45-60 minutes in the dark. The secondary 

antibody was removed and cells were treated after washing with DAPI (4',6-Diamidino-2-

Phenylindole, Dihydrochloride)(Thermo scientific, catalogue d1306) in 1:5000 dilution. Cells 

were finally washed with distilled water and mounted with the glycerol mounting media. 

2.8 Animal procedures  
6-8 week old male C3H/he mice (Harlan Laboratories, UK) were used in this study and were 

housed 4 per cage to reduce fighting injuries. A simple procedure to remove preputial glands 

was routinely performed at 28 weeks, without complications. Mice were fed an American 

lifestyle diet (ALIOS: 45 % calories from fat, high trans-fat with high sucrose/fructose drinking 

water, TD.110201, Harlan Laboratories, Wisconsin, USA) or a control diet (15% calories from 

fat, low trans-fat without sugar, TD.110196, Harlan Laboratories, Wisconsin, USA) ad libitum. 

Culling was at 4 time-points, namely 12 weeks (1 month on diet; n=8 per group), 24 weeks (4 

months on diet; n=8 per group); 36 weeks (7 month on diet; n=8 per group) and 48 weeks (10 

month on diet; n=24 per group). Additional groups of 12 mice on control diet and 12 on the 

ALIOS diet received a single intraperitoneal injection of DEN (Sigma, N0258-1G) at 16 weeks. 

Upon humane killing, body/liver weight and the macroscopic number and size (using callipers) 

of tumours were recorded. Liver tissues were dissected to fit in to three groups depending on 
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further tissue processing: the first set of liver tissues was treated with RNA later solution for 

RNA long preservation and RNA-sequencing process. Samples were kept in the 4°C overnight 

to ensure adequate tissue penetration, and for long-term storage samples were stored at -

80°C. The second set of tissues was immersed in 10% formalin for fixation and tissue staining 

purposes. Samples were kept in 10% formaldehyde solution overnight and tissues were 

exposed to further procedures to keep them in paraffin-embedded blocks. The last part of 

samples was fresh-frozen in OCT media using liquid nitrogen and was then kept in -80°C for 

further applications.  The in vivo experiments were performed according to ethical guidelines 

under a UK home office licence. 

2.9 Tissue studies  
Formalin fixed paraffin embedded (FFPE) tissue from tumour and non-tumour liver was 

sectioned 5 microns thick for histological assessments. An expert liver pathologist, who was 

blinded to the experimental dietary group assessed the histological features of non-tumour 

and tumour liver using   Haematoxylin and eosin (H&E) and Sirius Red stained slides. The 

degree of steatosis (0-3) according to the percentage of fat deposition in the liver tissue with 

zero is <5%, 1= 5-33%, 2= 33-66% and 3 >66%, hepatocellular ballooning (0-2) with zero means 

no ballooning, 1 is few ballooned hepatocytes and 2 is moderate or marked ballooning, and 

lobular inflammation (0-2) counting the inflammatory foci/HPF with 0=no foci, 1=1-2 foci, 2=2-

4 foci and 3= >4 foci was quantified and the NAFLD activity score calculated341. Other features 

of liver injury and inflammation, including, Mallory-Denk bodies, lipogranulomas, 

microvesicular steatosis was also documented and the degree of fibrosis (pericellular, 

portal/periportal, bridging) was assessed using a four-grade scoring system341.  Histological 

assessment of the tumours was performed using H&E and reticulin staining342 and defined as 

adenomas or HCC grade 1 or 2.  Parameters considered included the presence and degree of 

nuclear atypia, the presence of cytoplasmic hyaline globules and mitotic figures, and the 

thickness of liver cell plates. Additionally, the presence and extent (percentage of the tumour 

area) of steatosis, features of degeneration (Mallory-like bodies, ballooning) and inflammation 

inside the tumours were also assessed.  

2.10 RNA sequencing, statistics and data analysis 
10-20 mg of non-tumour and tumour tissues were shipped in RNAlater on dry ice to AROS 

Applied Technology (Denmark), where RNA was extracted and the quality of each sample 

checked using a Bioanalyser (Agilent). Only samples with at least 400ng of total RNA and a 
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RNA Integrity Number (RIN) greater than 8.0 were included. RNA sequencing was performed 

using Illumina’s Stranded mRNA kit for library preparation, with 100 bp Paired End Reads, five 

samples to be sequenced across one lane. RNA expression and sequence analyses were 

performed with the Newcastle Bioinformatics Support Unit. The mouse genome sequence was 

obtained from “Ensemble” to construct a reference genome index and reads were mapped to 

this using Bowtie tool within the R package. Differentially expressed genes were calculated 

using “DESeq2” tool and data were filtered by adjusted p-value of 0.05 and |Log2FC|in 

different tissues groups. Data visualisation was performed using Heatmapper software343. 

2.10.1 Unsupervised Hierarchical clustering of the mouse model data 
Hierarchical clustering of the mouse non-tumour and tumour RNAseq data was performed to 

visualise the grouping of individual mice and to see whether this grouping reflects the actual 

histopathological criteria and the dietary/carcinogen intervention. Because this grouping was 

not pre-defined with a response variable, this method is considered as un-supervised 

clustering way of gathering the data. The output of this hierarchical cluster is a tree-like graph 

showing the observations; called dendrogram. Unsupervised clustering was performed on the 

R package using the “hclust” function. 

In this function, the hierarchical clustering was performed on the transcriptome of 49 mice 

with every mouse assigned to individual cluster with the algorithm gathering every two most 

similar mice into an individual cluster until there is only one cluster exists. The distance 

“dissimilarity” between the individual mice is every time recalculated by the Lance-Williams 

dissimilarity update formula according to the wards minimum variance method using the 

“Ward.D2” option344. The Euclidean distance is the method that R script uses by default to 

calculate the distance between the two objectives (mice) based on the formula: 

    

 

 

In the non-tumour tissue, a DE gene list was created from the two non-tumour clusters 

identified by the cluster dendrogram. 
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2.10.2 Unsupervised k-means clustering of the human TCGA data 
In order to correlate the human data with the mouse transcriptomics data, clustering of the 

human TCGA publically available transcriptomics data without guide from a response variable 

“unsupervised”. Human data was partitioned using K-means clustering that classifies the data 

into group of k clusters with k representing the number of pre-selected groups. Group of 

observations “patients” with the lowest dissimilarity (high intra-class similarity) were classified 

within the same group, and patients with different transcription profiles were separated in 

different subclasses. This is to determine the major determinants responsible for this 

grouping. 

Unsupervised class discovery by NMF-metagene and K-means clustering was performed on 

the TCGA LIHC project (374 liver cancer samples + 50 normal tissue samples) testing all 

combination of 3-12 metagenes and clusters with a bootstrapped resampling method to test 

for reproducibility. A metagene is a single score that reflects the expression level of several 

genes. This was followed by projecting the mouse transcriptomics onto the identified clusters 

to see the overlapping signatures. This was performed by Sirintra Nakjang from Newcastle 

bioinformatics support unit.   

2.10.3 cBioPortal software analysis 
cBioPortal is an online available software which includes wide amount of information about 

genomic data of different types of cancer based on the TCGA database. This can be a useful in 

silico tool to study the prevalence of a certain gene mutation and copy number variant within 

the TCGA dataset. It also provides a wide group of data concerning the association between 

genes concerning co-expression versus mutual exclusivity, correlation of genes with survival, 

networks in which a particular gene is involved and the clinical data of the group of patients 

expressing this particular gene. The cBioPortal website uses the Spearman and Pearson 

correlation methods to predict the association between the enquired genes.  

In order to confirm the association between SULF2 and other downstream gene, the 

cBioPortal tool was used by searching for SULF2 with correlated genes using the mRNA 

expression z-score in the TCGA dataset. The correlation between SULF2 and other candidate 

genes with spearman’s and Pearson’s correlation coefficients and p-value were retrieved with 

the correlation plot from the website.  
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2.10.4 Ingenuity Pathway Analysis (IPA) software 
The IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-

analysis) is a powerful tool for mapping and networking of the DE gene list calculated 

elsewhere to explain the effect of gene expression on different pathways and downstream 

diseases and functions. The IPA database is constructed from findings manually or 

automatically curated from top journals forming the ingenuity findings, while the ingenuity-

modelled knowledge is an aggregation of the ingenuity expert knowledge and ingenuity 

supported third party information. 

Data uploaded to the IPA software should include gene ID (Observation) with the Log2FC and 

the adjusted p-value for every gene. Data were uploaded on the IPA on an Excel file format 

and data was analysed based on pre-selected cut off values. The ideal number of analysed 

gene in every data set ranges between 200 and 3000. The IPA output shows the pathways 

involved in this particular analysis, the downstream functions of the changed DE genes, the 

upstream genes that regulate the change in the gene list and networks enriched from the 

current analysis. 

IPA uses two statistical tools to explain the analysis; the p-value of overlap between the IPA 

curated list and the current analysis dataset and the activation z-score. P-value is calculated 

using Right-Tailed Fisher’s Exact Test with Benjamin correction for multiple testing in 

predicting the p-value of the canonical pathways and diseases and biofunction. Activation z-

score is used to give a prediction for the direction of change in the particular pathway(s) 

influenced by the analysed gene set. 

Canonical pathways: the first provided piece of information provided by the software gives an 

idea about the IPA pathways directed by the analysed gene list. The bar chart provides the 

significance of the gene enrichment in pathways deregulated from this gene list. The colour 

of the bar chart detects the direction of change in these pathways predicted from the change 

in individual genes’ direction. An absolute z-score of 2 is considered significant in the IPA 

context. 

Upstream regulators: this tool is helpful to identify the transcription factors “or any molecule 

that affects the expression of another molecule” that regulate the changed gene in the 

analysed dataset. The upstream analysis is calculated by defining the direction of change in 

DE genes and mapping them to the already present transcription factors on the IPA dataset. 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis)
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis)
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Generally, if the direction of change of certain gene is consistent with a certain activation state 

of the transcription factor either activated or inhibited, a prediction of activation is made by 

the software. Activation z-score in the IPA is calculated from the formula: 

𝑧𝑧 = 𝑥𝑥
𝜎𝜎𝑥𝑥

=
∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

�∑ 𝑤𝑤𝑖𝑖2𝑖𝑖
 

Where 

𝑥𝑥𝑖𝑖 ∈ (−1,1) 

When +1 is activation sate and -1 is deactivation state of the gene in response to the 

transcription factor 

𝑤𝑤𝑖𝑖 =  �𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�
𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+1

 

With 𝑤𝑤𝑖𝑖 is the weight of an edge “relationship between the gene and the relevant 

transcription factor” and 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 is the number of activation finding between the gene and 

the transcription factor and 𝑀𝑀𝑖𝑖𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 is the number of inhibiting finding (this data is from 

what was published before concerning these two genes). 

Diseases and functions: the output from this analysis specifies the cellular processes that are 

changed due to the change in the examined gene list. This analysis also predicts the activation 

or inhibition of the top diseases and functions enriched from the previous analysis. All the 

genes related to every changed function can be retrieved and visually presented for 

subsequent validation. The colours of the heat map produced from this analysis detects the 

direction of change in the function as detected by the activation z-score, and the size of each 

square in the heat map represents the p-value of overlap between the mapping genes and the 

IPA enriched diseases and function. 

Networks: this option in the IPA software allows for concentrating on more “focused 

molecules” or molecules that have high connectivity with other molecules in the dataset. 

These important molecules are the seed to which other important genes are connected and 

the gaps are then filled from the IPA dataset and networks are finally annotated with high-

level functional categories. The networks are ranked according to the number of focused 

molecules in every network. 
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2.10.5 Gene Set Enrichment Analysis (GSEA) 
Gene set enrichment analysis (GSEA) software includes around 18,000 gene lists uploaded in 

the Molecular Signatures Database (MSigDB)345, 346. This large number of gene lists is arranged 

in 8 main categories with smaller sub-categories. Main categories of the GSEA software 

include: 

• Hallmark gene sets (H): the most popular well-defined biological processes and 

functions. 

• Positional gene sets (C1): include gene lists for every human chromosome. 

• Curated gene sets (C2): include gene from publically available databases. 

• Motif gene sets (C3): include lists of genes regulated by the most common 

transcription factors and miRNAs. 

• Computational gene sets (C4): gene listed by reconstructing the large cancer 

microarray data. 

• Gene Ontology (GO) gene sets (C5): include three categories; genes annotated with 

the GO biological processes, CO cellular processes and CO molecular functions. 

• Oncogenic signatures (C6) 

• Immunologic signature (C7) 

The output of the GSEA analysis is the GSEA enrichment score that includes the enrichment 

score (the degree of which DE genes are overrepresented by the GSEA gene list), normalised 

enrichment score (NES) that corrects for the number of gene sets and false discovery rate 

(FDR) that estimate the probability of false positivity of the enrichment score. The larger the 

NES, the smallest the FDR value for a given analysis.    

2.11 Statistical analysis  
Statistical analyses were performed using SPSS version 23 or GraphPad Prism version 7.00. 

The principal documented endpoint in the clinical cases studied was overall survival, recorded 

as months from diagnosis until 01/01/2019. Differences in cumulative survival were 

determined using the Kaplan-Meier method and a Log-Rank test. The Cox proportional 

hazards-regression model was used to identify parameters associated with survival. Data are 

show as a mean ± the standard error of the mean (SEM). Associations were explored by linear 

regression, with differences between groups of continuous variables assessed by t-test 

(parametric data) or Kruskal Wallis (non-parametric data) tests.  Differences between 
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categorical variables were assessed by Pearson Chi Square. A p-value of <0.05 was considered 

significant.  
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Chapter 3: Characterisation of SULF2 protein expression and 
Function in human HCC 

 
3.1 Background 
HCC represents the majority of Liver cancer cases and is ranked the third cause of cancer 

related mortality worldwide6. Hepatocarcinogenesis is a multi-step process that arises on the 

background of chronic liver diseases, most commonly liver cirrhosis26. Despite the advances 

in diagnostic and predictive tools including high through-put sequencing and novel immune-

therapies that limit the development and the progression of other types of cancers, HCC 

remains a global problem that affects about 850,000 people all over the world6. Molecular 

profiling studies of tumours resected from HCC patients revealed distinct molecular 

subgroups, generating hopes for personalised therapy approaches57, 59, as yet with limited 

success87, 347. DNA changes in HCC patients have also been thoroughly investigated hoping to 

find targetable candidates109, but the trunk “driver” mutations identified have proven to be 

difficult therapeutic targets88. Recent studies have also focused on the role of the tumour 

microenvironment as a potential driver for the development and the progression of HCC57, 229. 

Anti-PD-1 antibodies (eg. Nivolumab) appear to improve the outcome of patients348 beyond 

sorafenib, the standard of care 1st line therapy for HCC349, and have gained approval from the 

FDA for use as 2nd line therapies. 

SULF2 is an endosulfatase enzyme that selectively removes sulfate group from the 6-O 

position in the HSPGs286. In a previous study, elevated SULF2 mRNA levels in resection samples 

from HCC patients was associated with worse outcome and a link with the HCC tissue marker 

GPC3 was suggested304. In vitro studies showed that SULF2 upregulated GPC3 expression and 

facilitated the binding of Wnt-3a ligand to its receptor, leading to activation of the non-

mutated β-catenin pathway273. A further link between SULF2 and HCC was reported in a study 

where SULF2 knock-out mice were shown to develop fewer tumours compared to their 

matched WT controls. In this study, SULF2 reportedly induced neo-angiogenesis via activation 

of the POSTN/TGF-β pathway301. However, the protein expression and cellular distribution of 

SULF2 in HCC tissues, together with the impact this may have on its clinical significance or 

mechanistic roles in HCC have been poorly investigated so far.   
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3.2 Chapter 3 aims  
3.2.1 To characterise SULF2 within the in vivo tumour microenvironment and explore 

associations with disease stage and patient outcome. 

3.2.1 To define the functional impact of SULF2 in vitro, by developing models to assess the 

contribution of different cell types expression or secreted isoforms on the phenotypic 

behaviour of HCC cells.  

 

3.3 SULF2 expression in liver tissues from patients with HCC 
SULF2 protein level was determined by IHC in diagnostic biopsies from 60 HCC patients. The 

IHC was performed by technical staff in the Reeves lab, with details of patients’ selection and 

IHC protocols described in the materials and methods. The demographic and clinico-

pathological features are presented in Table 3.1. and summarised here.  The median age of 

the studied cohort was 69 years. Although at least 80% of HCC arise in cirrhotic livers, liver 

cirrhosis was absent in 29/60 (49%) of the cases studied. This reflects the majority of HCC 

being diagnosed radiologically in patients with cirrhosis, with biopsy – which carries the risks 

of haemorrhage and tumour seeding - advocated either when there is doubt radiologically, or 

in patients without established cirrhosis332. Patients were those with BCLC A-C stage disease, 

rather than those with end stage BCLC-D, as biopsy diagnosis is generally reserved for those 

patients fit enough for therapy. The overall median survival was 20.3 months in this selected 

group. While many did not have cirrhosis or established chronic liver disease (CLD), etiological 

associations included T2DM in 29 patients out of 60 (49%), with NAFLD or ALD being common 

in those that did have CLD.  

3.3.1 SULF2 expression was scant in the non-tumour tissue 
Generally, SULF2 expression in non-tumour liver was low, with scant SULF2 expression 

occasionally detected on the canalicular surface of hepatocytes (Figure 3.1). Notably, SULF2 

expression was detected in smooth muscle cells of the portal tract arteries as well as in the 

non-parenchymal sinusoidal cells and in the endothelial cells. Low background, with 

expression of SULF2 in either smooth muscle or the endothelial cells, were used as an internal 

controls in all cases, to ensure reproducible quality of the IHC.  

 



62 
 

Figure 3.1: Expression of SULF2 in HCC tissue compared to the adjacent non-tumour tissue. 
Representative images 
from patient 49 showed 
H&E staining of the non-
tumour (A) and the 
tumour (B) tissues. In the 
non-tumour tissue, 
normal hepatocytes were 
arranged in chords with an 
intact portal tract and 
inflammatory cells 
starting to infiltrate into 
the tissue, while 
cytological atypia, dense 
chromatin together with 
loss of liver architecture 
were the criteria of the 
tumour tissue. 
Representative images 
showed SULF2 immuno-
positivity in the non-
tumour (C) versus the 
tumour tissue (D). SULF2 
was scantly expressed in 

the membrane of normal hepatocytes (black arrow) as well as different non-parenchymal cells 
including smooth muscle cells of the arteries (a), the endothelial cells (e) and the sinusoidal 
cells (white arrow). Images were captured at x20 magnification and scale bars represent 50 
microns, n=60 patients. 

3.3.2 SULF2 was upregulated in the tumour cells in biopsies from a subset of patients with HCC 
In contrast to the SULF2 levels in the non-tumour cases, SULF2 was upregulated in 35/60 (58%) 

of HCC biopsies. This finding supports the previous study that reported upregulation of the 

SULF2 mRNA level in about 57% of HCC resection specimens304. Of the cases characterised 

here, SULF2 upregulation relative to non-tumour tissues was common, but more commonly 

in tumour associated stromal cells rather than tumour cells themselves.  SULF2 positivity in 

the membrane/cytoplasm of the tumour cells was present in only 9/60 (15%) of cases (Figure 

3.1). Tumour cell SULF2 positivity was significantly associated with larger tumours (9.6±1.6 

versus 6.2±0.8 cm, p=0.026) and higher median AFP serum level (1400 ng/ml versus 5ng/ml, 

p=0.03), when compared to the negative cases. Notably, most of the tumour-cell positive 

SULF2 patients (7/9) had T2DM compared to 41% (21/51) where SULF2 was absent (p=0.042). 

SULF2 tumour-cell positivity was also associated with extrahepatic diseases (p=0.003) as well 

as advanced TNM stage (p=0.034). Patients were more likely to receive supportive care only. 
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Median survival was reduced compared to the whole cohort, although not significantly so in 

the small numbers considered (Table 3.1). 

 
Table 3.1: Demographic and clinico-pathological features of patients Continuous data are 
presented as mean ± standard error unless otherwise stated, with statistical comparisons 
using a Mann Whitney test. Categorical data were compared using a Chi Square test. Survival 
was assessed by the Kaplan Meier method. ‘Other’ included small numbers with Hepatitis C 
(n=4); haemochromatosis (n=4), cryptogenic cirrhosis (n=4); Hepatitis B (n=1); autoimmune 
hepatitis (n=2); and α-1-antitrypsin deficiency (n=1). Abbreviations: T2DM, Type 2 diabetes 
mellitus; AFP, alphafetoprotein; BMI, body mass index; ALD, alcoholic liver disease; NAFLD, 
non-alcoholic fatty liver disease; HCV, Hepatitis C; HBV, Hepatitis B;AIH, autoimmune 
hepatitis; A1AT, α-1-antitrypsin deficiency; PVT, portal vein thrombosis; EHD, extra-hepatic 
disease; INR, international normalised ratio; BCLC, Barcelona Clinic for Liver Cancer. 
 
3.3.3 SULF2 upregulation in the Cancer-Associated Fibroblasts (CAFs) identified HCC patients with 
poorest outcomes 
Further characterisation of the HCC biopsies revealed intense positive SULF2 expression in the 

non-parenchymal cancer associated fibroblasts (CAFs) invading the tumour area in 52% of 

tumour cases (31/60) (Figure 3.2). To confirm SULF2 positivity in this particular cell type  

 

 All patients SULF2 in HCC cells 

 
 

60 
Absent 

51 
Present 

9 
p value 

Age (median) 69 69 65 ns 
Gender (male/female) 49/11 42/9 7/2 ns 
BMI  (median) 27 27 27 ns 
T2DM no/yes 32/28 30/21 2/7 0.042* 
Cirrhosis no/yes 31/29 25/26 6/3 ns 
CLD none/ALD/NAFLD/other 19/10/15/16 16/9/13/13 3/1/2/3 ns 
Grade 1/2/3 18/27/15 17/23/11 1/4/4 ns 
Size (cm) 6.7±0.7 6.2±0.8 9.6±1.6 0.026* 
Tumour number 2.2±0.4 2.0±0.4 3.3±1.1 0.11 
PVT no/yes 52/8 46/6 6/3 0.056 
EHD no/yes 52/8 47/4 5/4 0.003** 
TNM stage 1/2/3/4 29/12/11/8 26/11/10/4 3/1/1/4 0.034* 
INR 1.0±0.02 1.0±0.02 1.0±0.03 ns 
Albumin (g/l) 38.8 ± 0.67  39.2±0.7 36.8±1.9 ns 
Bilirubin (μmol/l)  21.4±7.9  14.1±1.1 63.1±52 ns 
AFP (median) 6 5 1400 0.03* 
Ascites no/yes 55/5 47/4 8/1 ns 
Childs-Pugh A/B/C 53/6/1 46/5/0 7/1/1 ns 
BCLC stage A/B/C/D 17/13/28/2 15/12/22/2 2/1/6/0 ns 
ECOG PST 0/1/2 32/22/6 28/19/4 4/3/2 ns 
Therapy OLTx/Res/Ablation 
TACE/Med/ BSC 

3/7/12 
28/1/9 

3/5/12 
25/0/6 

0/2/0 
3/1/3 

0.037* 

Median survival (months) 20.3 28.7 11.6 ns 
No Surgical treatment  n=50 n=43 n=7  
Median survival (months) 16.2 19.7 9.9 0.054 
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Figure 3.2: Expression of 
SULF2 in HCC-CAFs 
compared to the 
adjacent non-tumour 
tissue. Representative 
images from patient 59 
show H&E staining of the 
cirrhotic non-tumour (A) 
and the tumour (B) 
tissues. Cirrhotic changes 
in the non-tumour area 
were evident with micro-
nodules and 
inflammatory infiltrate. 
The tumour tissue was 
characterised with 
stromal invasion and a 
solid pattern. 
Representative images 
showed SULF2 immuno-
positivity in the non-
tumour (C) versus the 

tumour tissue (D). SULF2 positivity was stronger and more evident in the CAFs in the tumour 
tissue compared to the non-tumour. Images were captured at x20 magnification and scale 
bars represent 50 microns. 
 

rather than other infiltrating cells such as elongated TAMs, serial section for selected cases 

were stained with αSMA; the classical marker for activated CAFs. Indeed, SULF2 positive cells 

were also positive for αSMA (Figure 3.3). SULF2 expression was not as positive in the αSMA 

positive activated hepatic stellate cells in the portal tract or bridging fibrous septa of the non-

tumour liver (Figure3.3). 

Compared to SULF2 expression in the tumour cells, CAF-SULF2 positivity was more frequent. 

CAF-SULF2 expression was not associated with specific tumour criteria, however, overall 

survival was reduced in CAF-positive SULF2 HCC cases (12.2 months versus 35 months) (Table 

3.2).  In subsequent survival analyses, the small numbers of patients undergoing potentially 

curative treatments (7 that underwent resection and 3 that had a liver transplantation), were 

excluded.  CAF-SULF2 positivity in the remaining 50 patients was significantly associated with 

poorer survival (7.2 months versus 29.2, p=0.005 Kaplan Meier) (Figure 3.4). Moreover, SULF2  
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Figure 3.3: Expression of 
SULF2 in αSMA positive CAFs 
but not αSMA positive 
fibroblasts. Representative 
images from patient 27 show 
H&E staining of the non-
tumour (A) and the tumour 
(B) tissues. This case was 
characterised by fatty 
deposition and immune 
filtration of the non-tumour 
tissue. The tumour tissue 
resembled the pseudo-
glandular pattern. 
Representative images 
showed αSMA and SULF2 IHC 
in the non-tumour (C,E) 
versus the tumour tissue 
(D,F). αSMA stained 
activated fibroblasts in the 
portal tract in the non-
tumour tissue and the CAFs in 
the tumour tissue. SULF2 
positivity was restricted to 
the CAFs but not fibroblasts 
of the normal non-tumour 
liver. Images were captured 
at x20 magnification and 
scale bars represent 50 
microns. 

 
upregulation in either HCC cells or HCC and CAFs was also strongly associated with poorer 

survival (9.9 versus 29.2 months, p=0.005, Kaplan Meier). 

Figure 3.4 Stromal SULF2 was associated with poorer 
survival. Kaplan Meier survival curve for patients 
scored as having absent or scanty SULF2 in tumour 
stromal cells, versus those with either widespread or 
focally intense expression is shown. The median 
survival was 7.2 months versus 29.2 months, p=0.005, 
n= 50 patients 
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Univariate analyses to identify factors associated with survival are shown in Table 3.3. Those 

with a p value <0.01 were entered into a multivariate cox regression analysis and included  

 
Table 3.2: Demographic and clinico-pathological features of patients 

Continuous data are presented as mean ± standard error unless otherwise stated, with 
statistical comparisons using a Mann Whitney test. Categorical data were compared using a 
Chi Square test. Survival was assessed by the Kaplan Meier method. ‘Other’ included small 
numbers with Hepatitis C (n=4); haemochromatosis (n=4), cryptogenic cirrhosis (n=4); 
Hepatitis B (n=1); autoimmune hepatitis (n=2); and α-1-antitrypsin deficiency (n=1). 
Abbreviations: T2DM, Type 2 diabetes mellitus; AFP, alpha fetoprotein; BMI, body mass index; 
ALD, alcoholic liver disease; NAFLD, non-alcoholic fatty liver disease; HCV, Hepatitis C; HBV, 
Hepatitis B;AIH, autoimmune hepatitis; A1AT, α-1-antitrypsin deficiency; PVT, portal vein 
thrombosis; EHD, extra-hepatic disease; INR, international normalised ratio; BCLC, Barcelona 
Clinic for Liver Cancer. 

 

tumour grade, presence of extrahepatic disease, portal vein thrombosis, or ascites, serum 

albumin, performance status (PST), treatment received and SULF2 status. Tumour grade, 

serum albumin and PST were strongly and highly significantly associated with survival. 

 All patients SULF2 in cancer associated fibroblasts (CAFs) 

 
 

60 
Absent 

29 
Present 

31 
p value 

Age (median) 69 69 69 ns 
Gender (male/female) 49/11 23/6 26/5 ns 
BMI  (median) 27 25 28 ns 
T2DM no/yes 32/28 14/15 18/13 ns 
Cirrhosis no/yes 31/29 14/15 17/14 ns 
CLD none/ALD/NAFLD/other 19/10/15/16 9/4/7/9 10/6/8/7 ns 
Grade 1/2/3 18/27/15 12/10/7 6/17/8 ns 
Size (cm) 6.7±0.7 6.2±1.1 7.2±1.0 ns 
Tumour number 2.2±0.4 1.6±0.2 2.7±0.7 ns 
PVT no/yes 52/8 27/2 25/6 ns 
EHD no/yes 52/8 27/2 25/6 ns 
TNM stage 1/2/3/4 29/12/11/8 12/7/3/2 15/2/8/6 ns 
INR 1.0±0.02 1.0±0.02 1.03±0.04 ns 
Albumin (g/l) 38.8 ± 0.67  39.4±0.9 38.3±1.0 ns 
Bilirubin (μmol/l)  21.4±7.9  12±.9 30.3±15.2 ns 
AFP (median) 6 6 6 ns 
Ascites no/yes 55/5 28/1 27/4 ns 
Childs-Pugh A/B/C 53/6/1 28/1/0 25/5/1 ns 
BCLC stage A/B/C/D 17/13/28/2 10/7/12/0 7/6/16/2 ns 
ECOG PST 0/1/2 32/22/6 17/10/2 15/12/4 ns 
Therapy OLTx/Res/Ablation 
TACE/Med/ BSC 

3/7/12 
28/1/9 

2/2/8/ 
14/1/2 

1/5/4 
14/1/7 

ns 

Median survival (months) 20.3 35.0 12.2 ns 
No Surgical treatment  n=50 n=25 n=25  
Median survival (months) 16.2 29.2 7.2 0.005** 
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However, SULF2 presence contributed independently of these factors, whether considered 

only in CAFs, or combined in either tumour cells or CAFs (Table 3.3). 

Variable UVA MVA entering elevated stromal  
SULF2  

MVA entering elevated tumour or 
stromal SULF2 

 p value p value HR (CI) p value HR (CI) 
Age 0.195     
Gender 0.197     
AFP 0.014     
Tumour Number 0.046     
Tumour size 0.015     
EHD 0.006 0.057  0.048 0.31 (0.10-0.99) 
PVT <0.001 0.116  0.130  
Edmondson-Steiner 
Grade 
Grade 1 (n=17) 
Grade 2 (n=22) 
Grade 3 (n=11) 

0.006 
0.001 
0.014 

0.003 
0.001 
0.283 

 

 
0.18 (0.06-0.51) 
0.56 (0.19-1.62) 

0.002 
0.001 
0.196 

 
0.16 (0.06-0.47) 
0.49 (0.17-1.44) 

Cirrhosis 0.795     
Ascites <0.001 0.714  0.668  
Albumin <0.001 0.002 0.88 (0.81-0.96) 0.002 0.88 (0.81-0.95) 
Bilirubin 0.036     
INR 0.433     
ECOG PST 
PST 0 (n=23) 
PST 1 (n=21) 
PST 2 (n=6) 

<0.001 
<0.001 

0.01 

0.001 
0.021 
0.592 

 

 
0.11 (0.02-0.72) 
0.62 (0.10-3.64) 

0.001 
0.002 
0.630 

 
0.10 (0.02-0.73) 
0.64 (0.10-3.94) 

Treatment 
Ablation (n=12) 
TACE (n=28) 
Medical (n=1) 
Supportive (n=9) 

<0.001 
<0.001 
<0.001 
0.595 

0.066  0.013 
0.304 
0.221 
0.001 

 
0.50 (.13-1.87) 

0.48 (0.15-1.55) 
0.01 (0.00-0.15) 

Tumour SULF2 
Absent (n=43) 
Present (n=7) 

0.061     

Stromal SULF2 
Absent (n=25) 
Present (n-25) 

0.006 0.045 0.46 (0.22-0.98)   

Tumour or Stromal 
(CAFs) SULF2 
Absent (n=22) 
Present (n=28) 

    0.005   0.016 0.38 (0.18-0.73) 

Table 3.3: Multivariate analysis of factors associated with survival in non-surgically treated 
patients Factors associated with survival in 50 patients for whom surgical treatment was not 
an option were assessed by univariate analysis (UVA). Factors with a p-value less than 0.01 
were entered into a multivariate Cox Regression analysis. Two distinct multivariate analyses 
(MVA) are shown, the first considering stromal SULF2 and the second (shaded in grey) showing 
a similar analysis, but in which SULF2 overexpression in either HCC cells or stromal cells was 
classed as ‘present’. Significance and Hazards Ratio (HR) with upper and lower 95% confidence 
intervals are shown. 
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3.4 Investigation of the impact of CAF-SULF2 on the behaviour of the tumour cells 
As SULF2 was predominantly expressed in the αSMA positive CAFs in half of the patients, 

rather than the tumour cells, subsequent studies were directed towards understanding the 

role of stromal SULF2 and/or SULF2 regulated factors. The accumulation of activated hepatic 

stellate cells in patients with chronic liver disease contributes to the tissue mechanical 

stiffness and reportedly enhances tumorigenicity350.  Studies by other groups have also 

previously shown the presence of CAFs to be linked with poorer response to treatment in 

patients with HCC patients334, 351. CAFs reportedly also promote cancer stem cell (CSC) 

properties in the neighbouring tumour cells, as well as regulate the secretion of a wide range 

of inflammatory and pro-oncogenic cytokines that regulate intercellular crosstalk within the 

tumour microenvironment (TME)352, 353. The contribution of CAF-derived SULF2 had not been 

previously explored. 

3.4.1 The expression level of SULF2 varied between different HCC and myofibroblast cell lines.  

The protein and mRNA level of SULF2 was investigated in three different HCC cell lines, 

including Huh7, Hep3B and HepG2 cells, in addition to the αSMA positive myofibroblast LX-2 

cell line. SULF2 was expressed in both Huh7 and HepG2 cell lines, while it is expression in 

Hep3B cell line was minimal, as confirmed by WB and q-PCR (Figure 3.5).   

Figure 3.5: Characterisation of SULF2 expression in different HCC cell lines Western blot 
shows the protein expression of SULF2 in Huh7, HepG2 and Hep3B (A). Huh7 and HepG2 
showed a SULF2 band at 110 kiloDalton (kDa) with a non-specific band at 150 kDa, while 
Hep3B protein extract showed no SULF2 expression. Graph shows mRNA expression of SULF2 
in Huh7 and Hep3B cell lines (B). The level of SULF2 in both cell lines was calculated using the 
relative level of transcriptional difference (RLTD) using HPRT as a control. List of antibodies 
and primers is provided in the materials and methods. Experiments were repeated three times 
(n=3) and data are expressed as mean ± s.e.m; ****p<0.0001 
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SULF2 was expressed by the LX-2 myofibroblasts, which we planned to use to model the 

interactions between HCC cells and stromal cells. To create a further in vitro modelling tool, 

SULF2 was knocked-down by shRNA, as described in the materials and methods section. LX2 

SULF2 expression and SULF2 KD were confirmed by WB (Figure 3.6). Conditioned media (CM) 

was collected from LX-2 cells and SULF2 KD LX-2 cells and the level of SULF2 in the CM from 

both cell lines was measured by ELISA (Figure 3.6), as described in the materials and methods 

section.  

Figure 3.6: Confirmation of SULF2 KD from the LX-2 myofibroblast cell line Western blot 
shows SULF2 levels in control and SULF2 KD LX-2 protein extracts (A). SULF2 (110 kDa) was 
successfully knocked down (KD) from the LX-2 cell line. β-actin (42 kDa) was used as a loading 
control. The experiment was repeated three times (n=3). Graph shows the level of secreted 
SULF2 in CM from control and SULF2 KD LX-2 cells (B). SULF2 level in the SULF2 KD LX-2 CM 
was below the SULF2 ELISA kit’s detection limit (313 pg/ml). Details of ELISA are in the 
materials and methods. 
3.4.2 Optimisation of conditions for the 2D co-culture between myofibroblasts and HCC cell lines 
Based on the aforementioned characterisation, Hep3B cells (with no endogenous SULF2 

expression) and Huh7 cells that expressed SULF2 were chosen for further experiments. 

Previous studies showed induction of tumour cell proliferation stimulated by co-culture with 

CAFs and LX-2 fibroblasts cells or cell CM350, 352. In order to optimise the conditions for co-

culturing HCC cell lines with SULF2 manipulated LX-2 cells in the 2D trans-well system, the 

parent LX-2 cell line was cultured in the trans-well in a 1:1 ratio with 10000, 20000 and 50000 

Hep3B and Huh7 cells for different time points.  

Co-culture with LX-2 induced the viability of Hep3B cells after 24 hours at 10000 cell densities 

(p=0.002), after 48 hours at 10000 (p=0.027) and 20000 (p=0.005) cell densities and after 72 
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hours at 50000 cell density (p=0.001), as compared to matched Hep3B controls, measured by 

an MTT viability/metabolic activity test (Figure 3.7).  

Figure 3.7: Effect of LX-2/Hep3B co-culture on the viability of the tumour cells Graphs show 
viability of Hep3B cells cultured alone or in co-culture with parent LX-2 cells at 1:1 ratio of 
10000 (A), 20000 (B) and 50000 (C) cells at three different time points (24, 48 and 72 hours). 
The experiment was repeated 3 times and data are presented as mean ± s.e.m, * p<0.05; ** 
p<0.01; *** p<0.001; ****p<0.0001, n=3 replicates. 
 

MTT viability of Huh7 co-cultured with LX-2 showed trend towards increase at the 10000 cell 

density at 72 hours (p=0.078) and the 20000 cell density after 24 hours (p= 0.077). This 

increase was significant after 24 (p= 0.04) and 72 hours at the 50000 cell density co-culture 

(p=0.011) (Figure 3.8). Other changes towards increase or decrease in viability upon 

fibroblast-tumour cells co-culture failed to reach significance. 
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To avoid cells becoming over-confluent and to standardise the protocol for the two different 

HCC cell lines, 1:1 co-culture at the 20000 cells per well density for 48 hours was adopted for 

further co-culture protocols.   

 

Figure 3.8: Effect of LX-2/Huh7 co-culture on the viability of the tumour cells Graphs show 
viability of Huh7 cells cultured alone or in co-culture with parent LX-2 cells at 1:1 ratio of 10000 
(A), 20000 (B) and 50000 (C) cells at three different time points (24, 48 and 72 hours). The 
experiment was repeated 3 times (n=3) and data are presented as mean ± s.e.m, * p<0.05. 

 

3.4.3 Stromal SULF2 induced the viability/metabolic activity of the HCC tumour cell lines 
Hep3B and Huh7 HCC cell lines were co-cultured with media, control LX-2 cells or with SULF2 

KD LX-2 cells (Figure 3.9) to assess the impact of stromal SULF2 on the viability of the tumour 

cells as measured by MTT assay. Secreted SULF2 from control LX-2 cells induced the 

viability/metabolic activity of Hep3B and Huh7 cells compared to cells co-cultured with SULF2 

KD LX-2 (p=0.0067 and 0.0013 respectively). Co-culture with control LX-2 cells also significantly 
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increased the MTT activity of the Hep3B and Huh7 cells compared to HCC cells grown in media 

only (p=0.002 and <0.0001 respectively)(Figure 3.10).  

 

Figure 3.9 Schematic diagram for the fibroblast-tumour cells co-culture experiment. Hep3B 
cells (black cells) or Huh7 cells (grey cells) were co-cultured with Control LX-2 cells (blue) or 
with SULF2 KD LX-2 cells (red) on the 2D trans-well inserts. At the due time point, inserts were 
removed and an MTT assay was performed on the tumour cells.  

 

 

 

 

 

 

 

 

 

Figure 3.10 Stromal SULF2 induced the viability of the tumour cells Graphs show the impact 
of stromal SULF2 on the viability of HCC Hep3B (A) and Huh7 (B) cell lines. The experiment 
was repeated 3 times (n=3) and data are presented as mean ± s.e.m, ** p<0.01; ****p<0.0001. 
 

3.4.4 Stromal SULF2 promoted the proliferation of the HCC tumour cell lines 
A BrdU proliferation assay was performed to confirm the stromal SULF2-induced proliferation 

of tumour cells within the TME niche. Consistent with the MTT results, stromal SULF2 induced 

the proliferation of both Hep3B and Huh7 cells compared to co-culture with SULF2 KD LX-2 
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cells (p=0.0008 and 0.0094 respectively), an effect that was also significantly higher than cells 

without co-culture (p=0.0033 for both cell lines) (Figure 3.11).     

 

 

 

 

 

 

Figure 3.11. The proliferation of the tumour cells was accelerated in the presence of stromal 
SULF2. Graphs show the impact of stromal SULF2 on the proliferation of the HCC Hep3B (A) 
and Huh7 (B) cell lines. The experiment was repeated 3 times (n=3) and data are presented in 
mean ± s.e.m, * p<0.05; ** p<0.01; *** p<0.001; ****p<0.0001. 
 

3.4.5 Stromal SULF2 potentiated the migration of SULF2-null Hep3B cells, but not the Huh7 cells 
In addition to the in vitro impact of stromal SULF2 on the proliferation of the tumour cells, we 

explored the possible impact of stromal SULF2 on the migration of the tumour cells. Hep3B 

cells (with no SULF2 expression) were able to migrate faster into the ‘scratch assay gap’ when 

co-cultured with control LX-2 cell CM compared to CM concentrated from the SULF2 KD LX-2 

cell,  or Hep3B cells grown without fibroblast CM (p<0.0001 for both conditions) (Figure 3.12). 

Figure 3.12 Migration of Hep3B cells under the influence of stromal SULF2 Representative 
images show migration of Hep3B cells at 0 hours (upper row) versus a 24 hour time point (A). 
Stromal SULF2 in CM potentiated the migration of Hep3B cells (middle column) compared to 
Hep3B cell migration without co-culture with CM (left column) or Hep3B cells grown in CM 
from SULF2 LX-2 CM (right column). Graph shows the migration of Hep3B as a percentage of 
Gap closure and the effect of SULF2 on tumour cell migration (B). The experiment was 
repeated 3 times (n=3) and data are presented in mean ± s.e.m, ****p<0.0001. 
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Notably, stromal SULF2 did not significantly impact the migration of the Huh7 cells grown 

without CM (p=0.714), possibly because Huh7 cells express their own SULF2. Migration of 

Huh7 cells in the presence of stromal SULF2 in the CM, however, was higher than Huh7 cells 

co-cultured with SULF2 KD LX-2 CM, although not statistically significantly so (p=0.0614) 

(Figure 3.13).  

 

Figure 3.13 Migration of Huh7 cell line under the influence of stromal SULF2 Representative 
images show migration of Huh7 cells at 0 hours (upper row) versus a 24 hour time point (A). 
Stromal SULF2 in CM slightly increased the migration of Huh7 cells (middle column) compared 
to Huh7 cell migrated without co-culture with CM (left column) or Huh7 grown In CM from 
SULF2 LX-2 CM (right column). Graph shows the migration of Huh7 as a percentage of Gap 
closure and the effect of SULF2 on tumour cell migration (B). The experiment was repeated 3 
times (n=3) and data are presented as mean ± s.e.m, *p<0.05. 
 
3.4.6 Fibroblast-derived SULF2 increased the invasion of the tumour cells. 
Characterising the ability of the stromal cells to promote tumour cells invasion of the 

basement membrane using a Boyden-invasion chamber was the next goal. As a pilot study, 

SULF2-manipulated LX-2 cells were seeded at the bottom of the 24-well plate to act as a 

source of SULF2 that might induce the invasion of Hep3B cell from inner surface of the Boyden 

chamber out to the outer surface (Figure 3.14).  

Figure 3.14 
Schematic 

diagram for the 
chemotaxis of 
the tumour cells 
influenced by 
stromal SULF2. 

Control and SULF2 KD LX-2 cells (red) were cultured in the bottom of 24-well plate at different 
concentration overnight. 300000 Hep3B cells (blue cells) were then incubated in the Boyden-
invasion chambers and co-cultured with the fibroblasts for 72 hours. The invasion of the 
tumour cells to the outer surface of the chamber was investigated.  
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Stromal SULF2 from 5000 cell/well control LX-2 cells significantly increased Hep3B cell invasion 

compared to Hep3B cultured without fibroblast cell lines at 5000 cell/well (p=0.0013) (Figure 

3.15). However, this effect was not significant when compared to Hep3B/SULF2 KD  

Figure 3.15 Optimisation for the tumour invasion assay Graphs show the invasion of the 
Hep3B cells (300000 cells/chamber) influenced by media only, SULF2-producing control LX-2 
and SULF2 KD LX-2 cells at 5000 fibroblast cell/well (A), 10000 fibroblast cell/well (B) and 
50000 fibroblast cell/well (C). Experiments were repeated twice (n=2) and data are presented 
as mean ± s.e.m, * p<0.05; ** p<0.01; *** p<0.001; ****p<0.0001. 
 

LX-2 co-culture at this cell number. At 10000 fibroblast cell/well, secreted SULF2 significantly 

induced tumour cell invasion compared to tumour cells alone or tumour cells co-cultured with 

SULF2 KD LX-2 cells (p<0.0001) (Figure 3.15). This effect was reversed when 50000 fibroblast 

cell/well were co-cultured with the tumour cells (p<0.0001 and 0.005 respectively) (Figure 

3.15). Taken together, co-culture of tumour cells with SULF2 +/- fibroblasts at 10000 fibroblast 

cell/well revealed the impact of SULF2 on Hep3B cell invasion. 



76 
 

The experiment was then repeated at 10000 fibroblasts cells/ well to confirm our finding and 

again control LX-2 induced the invasion of Hep3B cells compared either to tumour cells 

growing alone (p<0.0001) or compared to tumour cells co-cultured with SULF2 KD LX-2 

(P=0.0011) (Figure 3.16). 

Figure 3.16 Impact of Stromal SULF2 on the invasion of the tumour cells Representative 
images show invasion of Hep3B cells (stained purple with crystal violet) into the outer surface 
of the Boyden chambers co-cultured with SULF2 KD LX-2 cells (A) and control LX-2 cells (B) at 
10000 cells/well. Graph shows the impact of stromal SULF2 on the invasion of Hep3B tumour 
cells (C). The experiment was repeated three times (n=3) and the data are presented as mean 
± s.e.m, **p<0.01; ****p<0.0001. 

 

3.4.7 The impact of stromal SULF2 on the proliferation of 3D tumour spheroids 
3D tumour spheroids (organoids) are emerging models for improved assessment of drug 

effectiveness for number of reasons, as recently reviewed by Drost J and Clevers H354. 

Essentially, 3D models are considered more physiological models of human cancer, 

representing an advance in the preclinical models necessary for more effective translation of 

basic research into clinical practice. As stromal SULF2 modulated the viability/metabolic 

activity, proliferation, migration and invasion of the tumour cells on various 2D systems, we 

went on to investigate the interaction between SULF2 and tumour 3D spheroids in the TME 

niche in vitro.  

Huh7 cells in hanging droplets failed to form spheres at 62, 125 and 250 cells/droplet after 4 

days (Figure 3.17). At 500, 750 and 1500 cells/droplet, cells started to form a partial sphere 

like structure that improved at 3000 cells/droplet. Conversely, increasing the number of cells 

to 6000 and 12000 generated irregular cell aggregates rather than rounded spheres 

(Figure3.17).  
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Figure 3.17 Characterisation of Huh7 3D spheroids Representative images show the 
formation of Huh7 spheroids in hanging droplets after 4 days at 62 (A), 125 (B), 250 (C), 500 
(D), 750 (E), 1500 (F), 3000 (G), 6000 (H) and 12000 (I) cells/droplet. Separate multi-spheres 
were formed at lower cell concentrations (A, B, C and D), while at slightly higher cell numbers, 
single spheres began to exist, yet with a less spherical configuration (E and F). Perfect rounded 
spheroids were formed at 3000 cells/droplets (G) and, hence, adapted for further Huh7 
spheroids experiments. Less ideal cell aggregates were formed at higher cell concentrations 
(H and I). Experiment was repeated 10 times/condition (n=10).  
 

Consistent with Huh7 cells, Hep3B cells also formed single nicely spherical spheroids with all 

cells attached to the main spheroid at 3000 cells/droplet after 3 days (Figure 3.18). Hence, 

3000 cells/hanging droplet was our standard number of cells for the 3D spheroid experiments. 
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Figure 3.18 Characterisation of Hep3B 3D spheroids Representative images show the 
formation of Hep3B spheroids in hanging droplets after 3 days at 62 (A), 125 (B), 250 (C), 500 
(D), 1500 (E) and 3000 (F) cells/droplet. Separate multi-spheres were formed at lower cell 
concentrations (A-B and C). Nicely rounded spheroids were formed at 500 and 3000 
cells/droplets (D and F). Spheroids formed from 1500 cells/droplet were quite fragile (E). 3000 
cell/droplet was the cell concentration that was taken further. The experiment was repeated 
10 times/condition (n=10).  
 
3.4.7.1 The impact of stromal SULF2 on the proliferation of the 3D mixed spheroids 
Huh7 and Hep3B HCC cells were mixed in 1:1 ratio with either control or SULF2 KD LX2, and 

cell suspension was left 3 days in hanging droplets to form spheres (Figure 3.19).  

 

 

 

 

Figure 3.19 Schematic diagram for the mixed spheroid experiment 1500 cells from Hep3B 
(black cells) or Huh7 (grey cells) were mixed in 1:1 with either control LX-2 cells (blue) or SULF2 
KD LX-2 cells (red). Cell slurry was suspended in hanging droplets with complete media for 3 
days to form spheres. The impact of stromal SULF2 on mixed spheroids growth was measured 
via assessing the change of spheroids volume at days 4, 5, 7 and 8 compared to the initial 
volume at day3.  
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Huh7 cells directly mixed with control LX-2 cells in 1:1 ratio showed significant increase in the 

spheroid volume compared to Huh7 cell mixed with SULF2 KD LX-2 cells. This SULF2-derived 

proliferative effect was significant starting from 5 days after mixing both cell types together 

for the duration of the experiment (p=0.0089 at 5 days, p<0.0001 at 6 and 8 days) (Figures 

20,21). Notably, the change in the volume of the Huh7/control LX-2 mixed spheroids was  

Figure 3.20 Growth rate of Huh7/LX-2 3D mixed spheroids was affected by stromal SULF2 
Representative images show the growth of an Huh7/control LX-2 mixed spheroid (A) versus 
the growth of an Huh7/SULF2 KD LX-2 spheroid (B) starting from day 4 through to day 8. The 
experiment was repeated 10 times (n=10). Scale bars represent 200 microns.  
  

Figure 3.21 stromal SULF2 induced the proliferation of Huh7/LX-2 mixed 3D spheroids Graph 
shows the change of the volume of Huh7/control LX-2 3D spheroids (blue line) compared to 
Huh7/SULF2 KD LX-2 spheres (red line) from day 3 to day 8. Graph shows the change in the 
volume of Huh7/control LX-2 mixed spheroids (solid blue line) versus the sum change in the 
volume of Huh7 and control LX-2 single cell type spheroids (dashed blue line) (B). Graph shows 
the change in the volume of Huh7/SULF2 KD LX-2 mixed spheroids (solid red line) versus the 
sum change in the volume of Huh7 and SULF2 KD LX-2 single cell type spheroids (dashed red 
line)(C). The experiment was repeated 10 times/condition (n=10). Data are presented as mean 
± s.e.m, **p<0.01; ****p<0.0001. 
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significantly higher than the volume of both Huh7 and control LX-2 matched single cell type 

spheroids (p=0.0059 at 4 days and p<0.0001 at 5, 7 and 8 days), while the growth rate of 

Huh7/SULF2 KD LX-2 was more or less the same (except at day 5) to the growth rate of the 

volume of both Huh7 and SULF2 KD LX-2 matched single cell types (Figure 21).  

Co-culturing Hep3B cells with either control LX-2 or SULF2 KD LX-2 in tumour/fibroblast mixed 

spheroids also showed the same SULF2-dependent growth (p=0.0052 at 5 days, p<0.0001 at 

7 and 8 days) (Figures 22-23). Again, this increase of spheroid volume was SULF2 dependent 

rather than being a result of the difference in the volume of spheroids formed from each 

individual cell type (Figure 23). 

Figure 3.22 Growth rate 
of Hep3B/LX-2 3D mixed 
spheroids was affected 
by stromal SULF2 
Representative images 
show the growth of a 
Hep3B/control LX-2 
mixed spheroid (A) versus 
the growth of a 
Hep3B/SULF2 KD LX-2 

spheroid (B) starting from day 4 to day 8. The experiment was repeated 10 times (n=10). Scale 
bars represent 200 microns.   

Figure 3.23 stromal SULF2 induced the proliferation of Hep3B/LX-2 mixed 3D spheroids 
Graph shows the change of the volume of Hep3B/control LX-2 3D spheroids (blue line) 
compared to Hep3B/SULF2 KD LX-2 spheres (red line) from day 3 to day 8 (A). Graph shows 
the change in the volume of Hep3B/control LX-2 mixed spheroids (solid blue line) versus the 
sum change in the volume of Hep3B and control LX-2 single cell type spheroids (dashed blue 
line) (B). Graph shows the change in the volume of Hep3B/SULF2 KD LX-2 mixed spheroids 
(solid red line) versus the sum change in the volume of Hep3B and SULF2 KD LX-2 single cell 
type spheroids (dashed red line)(C). The experiment was repeated 10 times/condition (n=10). 
Data are presented as mean ± s.e.m, **p<0.01; ****p<0.0001. 
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3.4.7.2 The impact of stromal SULF2 in CM on the proliferation of the 3D tumour spheroids 
Hep3B single type 3D spheroids were bigger when grown in CM from control LX-2 cells or 

SULF2 KD LX-2 CM compared to Hep3B cells in non-fibroblast CM at day 5 (p<0.0001 and 

p=0.0009 respectively) (Figure 3.24). Although Hep3B spheroids grew larger in control LX-2 

CM than in SULF2 KD LX-2 CM, from day 4 until the end of the experiment, it was significant 

only at day 6 (p<0.0001). At this time point, the difference in spheroids grown in SULF2 KD LX-

2 was not statistically significant compared to Hep3B in non-fibroblast CM (P=0.078). On the 

other hand, the difference between tumour spheroids in SULF2-containing CM was 

significantly different from tumour spheroids in non-fibroblasts CM (P<0.0001) (Figure 3.25).    

Figure 3.24 Growth rate of Hep3B 
3D spheroids was affected by 
stromal SULF2.  
Representative images show the 
growth of matched Hep3B 3D 
spheroids in complete, non-
fibroblast (left column), SULF2 KD 
LX-2 (middle column) and control 
LX-2 (right column) CM at 3 days 
(upper row) and 6 days (lower 
row) from pipetting individual 
cells in hanging droplets to form 
the 3D spheroids. Scale bars 

represent 200 microns. The experiment was repeated 10 times/time point/condition (n=10).   
 

 
Figure 3.25 stromal SULF2 induced the proliferation 
of Hep3B 3D spheroids Graph shows the change in 
volume of Hep3B tumour spheroids when grown in 
non-fibroblast media (black line), CM from control LX-
2 cells (blue line) or in CM from SULF2 KD LX-2 cells 
(red line). The experiment was repeated 10 times, per 
time point, per condition (n=10). Data are presented 
as mean ± s.e.m, ****p<0.0001 using two way anova. 
 

 

 

3.4.8 The effect of SULF2 blockade on the behaviour of the tumour cells 
A SULF2 monoclonal antibody (Ab) was used to test whether targeting SULF2 in vitro in the 3D 

spheroid system would limit their SULF2-dependent proliferation. The SULF2-dependent 

proliferation of Hep3B spheroids in control LX-2 CM was significantly diminished at 10, 20 and 
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50 ng/ml of SULF2 Ab at days 4 (p=0.0034, p=0.0054 and p<0.0001), 5 (p<0.0001 for all) and 6 

(p<0.0001 for all) (Figure 3.26). The isotype control IgG Ab did not affect the growth of Hep3B 

spheroids at 10 ng/ml (p=0.9967 at day 4, p=0.91 at day 5 and p=0.08 at day 6), but at higher 

concentrations (20 and 50 ng/ml) there was a significant, dose dependent, non-SULF2 related 

growth inhibitory effect on the Hep3B spheroids, attributed to toxicity (Figure 3.26). As a 

result, 10ng/ml for both antibodies was chosen as the optimal concentration in further 

experiments on Hep3B spheroids. 

Figure 3.26 Optimisation of SULF2 Ab concentration Graph shows the growth of Hep3B 
spheroids in control LX-2 CM (blue line), in control LX-2 plus SULF2 Ab at 10 ng/ml (solid red 
line), 20 ng/ml (dashed red line) or 50 ng/ml (dotted red line) concentration, or in control LX-
2 cells plus isotype control IgG at 10 ng/ml (solid green line), 20 ng/ml (dashed green colour) 
or 50 ng/ml (dotted green line). The experiment was repeated 10 times/condition (n=10). Data 
are presented as mean ± s.e.m, ****p<0.0001. 

 

Hep3B spheroids grown in CM from either control or SULF2 KD LX-2 cells were subsequently 

treated with either the SULF2 or IgG control antibody at 10ng/ml. Confirming the previous 

result, the SULF2 Ab significantly diminished the SULF2-dependent growth of Hep3B spheroids 

(p<0.0001), with no effect on the growth of spheroids in SULF2 KD CM (P<0.99) (Figure 3.27). 

The growth of the tumour spheroids in both CMs was not affected by adding the IgG control 

Ab (p<0.99) (Figure 3.27). 
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Figure 3.27 Blockade of stromal SULF2 diminished the growth of Hep3B tumour spheroids 
Representative images show the growth of matched Hep3B spheroids in the SULF2 containing 
stromal CM in presence of either control isotype IgG (upper row) or SULF2 Ab (lower row) at 
day 3 (left column) and day 6 (right column) after hanging individual Hep3B cells to form 3D 
spheroids (A). Graph shows the effect of treating Hep3B spheroids grown CM from control or 
SULF2 KD with either SULF2 or isotype control IgGs at day 6 (B). The experiment was repeated 
10 times/condition (n=10). Data are presented as mean ± s.e.m, ***p<0.001;****p<0.0001. 

The growth of the Huh7 spheroids (with a continuous production and secretion of tumour 

SULF2 in their media) was blocked by adding the SULF2 Ab (p=0.0074 at day 6 and p<0.0001 

at day7), but not by adding the isotype control IgG Ab (p=0.37 at day6 and p=0.08 at day7) 

(Figure 3.28).  

Figure 3.28 Blockade of tumour SULF2 diminished the growth of Huh7 spheroids 
Representative images show the growth of matched Huh7 spheroids in the presence of either 
control isotype IgG (upper row) or SULF2 Ab (lower row) at day 4 (left column) and day 7 (right 
column) after hanging individual Huh7 cells to form 3D spheroids (A). Graph shows the effect 
of treating Huh7 spheroids with either the SULF2 or isotype control IgG at days 6 and 7 (B). 
The experiment was repeated 10 times/condition (n=10). Data are presented as mean ± s.e.m, 
****p<0.0001. 
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Moreover, the growth promoting effect of Huh7 CM (SULF2 positive) on the Hep3B spheroids 

(p<0.0001) was significantly diminished by addition of the SULF2 Ab (p<0.0001) (Figure 3.29). 

 

 

 

 

 

 

 

 
Figure 3.29 Blockade of tumour SULF2 diminished the growth of Hep3B spheroids Graph 
shows the effect of treating Hep3B spheroids in Huh7 CM with either SULF2 or isotype control 
IgG at day 6. Experiment was repeated 10 times/condition (n=10). Data are presented as mean 
± s.e.m, ****p<0.0001. 
 

3.4.9 Stromal SULF2 reduced the sensitivity of tumour cells to sorafenib therapy 
Sorafenib is the standard of care, 1st line therapy for patients with advanced HCC, although 

the benefit afford to most patients is modest349.  There are no clinically useful biomarkers to 

predict response and novel approaches to select monotherapies or combination therapies are 

needed for this group of patients.  Elevated SULF2 expression in tumour cells was associated 

with advanced stage disease, while elevated in either tumour cells or CAFs it was associated 

with poorer patient outcome. Hence we investigated whether SULF2 had a modulatory effect 

on the response of tumour cells to sorafenib therapy. 

To test the cytostatic/cytotoxic effect of sorafenib on both Hep3B and Huh7, the cells were 

treated with different concentrations of sorafenib and a viability assay was performed (Figure 

3.30). Viability of both cell lines was reduced by sorafenib in a dose dependent manner as 

measured by an MTT viability assay.  Huh7 cells were less sensitive to sorafenib treatment 

than the Hep3B cells, demonstrated by more viable residual Huh7 cells than Hep3B cells at 5 

µM sorafenib at both 48 (55.2% versus 42.2%) and 72 hours (46.2% versus 20.9%). Huh7 have 

more endogenous expression of SULF2 than Hep3B cells, potentially rendering them more 

resistant to sorafenib, was one potential explanation (Figure 3.30).     



85 
 

Figure 3.30 viability of Hep3B and Huh7 in response to sorafenib treatment Graphs show 
viability of Hep3B (A) and Huh7 (B) treated with 0.62, 1.25, 2.5, 5, 10, 16 and 20 µM sorafenib 
for 24 hours (black line), 48 hours (blue line) and 72 hours (red line) calculated as percentage 
viability compared to control cells treated with DMSO. Read-out was MTT cell viability assay. 
The experiment was repeated 3 times (n=3). Data are presented as mean ± s.e.m.  

 

In BrdU proliferation assay of the tumour cells co-cultured with fibroblast in the 2D co-culture 

system, sorafenib failed to significantly reduce the proliferation of Hep3B cells co-cultured 

with control LX-2 cells compared to the co-cultured cells treated with DMSO only (p=0.23). 

However, Hep3B cells co-cultured with SULF2 KD LX-2 cells were sensitive to sorafenib 

treatment compared to cells in DMSO (P=0.0085). In addition, the proliferation of the 

sorafenib-treated control non-co-cultured Hep3B cells was also significantly reduced 

compared to DMSO-treated cells (p=0.02) (Figure 3.31). 

Figure 3.31. The impact of stromal SULF2 on 
Hep3B cells response to sorafenib Graph 
shows the proliferation of Hep3B cells co-
cultured with either control LX-2 or SULF2 KD 
LX-2 cells in the presence of sorafenib 
treatment, expressed as % BrdU proliferation 
compared to Hep3B treated with DMSO only. 
The experiment was repeated 3 times (n=3). 
Data are presented as mean ± s.e.m, 
*p<0.05;**p<0.01. 
 

 

Interestingly, Huh7 cells co-cultured with control LX-2 cells with or without sorafenib 

proliferated at the same rate (p<0.99). Tumour cells responded to sorafenib treatment when 
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co-cultured with SULF2 KD LX-2 compared to cells treated with the vehicle, yet this did not 

reach statistical significance (p=0.6). Sorafenib had the same trend with no statistical 

significance in the non-co-cultured Huh7 cells (p=0.6), supporting a role for SULF2, either from 

tumour cells or LX-2 cells, in sorafenib resistance in vitro (Figure 3.32).    

Figure 3.32. The impact of stromal SULF2 on 
Huh7 cells response to sorafenib Graph shows 
the proliferation of Huh7 cells co-cultured with 
either control LX-2 or SULF2 KD LX-2 cells in the 
presence of sorafenib treatment, expressed as 
% BrdU proliferation compared to Huh7 
treated with DMSO only. The experiment was 
repeated 3 times (n=3). Data are presented as 
mean ± s.e.m, *p<0.05. 
 

 

Sorafenib exerted its cytostatic/cytotoxic effect on the 3D Hep3B spheroids at 4 different 

concentrations ranging from 1.25 to 10 µM (Figure 3.33). However, Hep3B spheroids in CM  

 

 

 

 

 

Figure 3.33. Sorafenib diminished the proliferation of Hep3B tumour spheroids Graph shows 
the proliferation of Hep3B spheroids, as a change in spheroid volume, treated with DMSO, 
1.25, 2.5, 5 and 10 µM sorafenib from day 3 to day 6 after hanging individual cells to form 
spheres. Experiment was repeated 10 times/condition (n=10). 
 

from control LX-2 cells proliferated in the same rate with/without adding sorafenib to the CM 

at 1.25, 2.5 and 5 µM. In the absence of SULF2 from the stromal CM, the anti-tumour effect 

of sorafenib on the spheroids was restored, compared to spheroids grown in SULF2 KD CM 

with DMSO (p=0.0029)(Figures 3.34 and 3.35). 
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Figure 3.34 Stromal SULF2 
decreased the sensitivity of Hep3B 
tumour spheroids to sorafenib 
treatment at 5 and 2.5 µM 
concentrations. Representative 
images show the growth of matched 
Hep3B spheroids in CM from control 
LX-2 (upper rows) or SULF2 KD LX-2 
cells (lower rows) at day 3 (left rows) 
and 6 days (right rows) after adding 5 
µM (A) or 2.5 µM sorafenib (B). 
Experiment was repeated 10 

times/condition (n=10). 
 

Figure 3.35 Stromal SULF2 
decreased the sensitivity of Hep3B 
tumour spheroids to sorafenib 
treatment at 1.25 µM 
concentration Representative 
images show the growth of 
matched Hep3B spheroids in CM 
from control or SULF2 KD LX-2 cells 
in the presence of 1.25 µM 
sorafenib (A). Spheroid 
proliferation was comparable in 
presence or absence of sorafenib in 
control LX-2 CM. The cytostatic 
effect of sorafenib was restored 
when spheroids were cultured in 
SULF2 KD LX-2 CM. Graph shows 
the proliferative rate of Hep3B 
spheroids, as a change in spheroid 
volume, treated with 1.25 µM 
sorafenib from day 3 to day 7 after 
hanging individual cells to form 
spheres (B). The experiment was 
repeated 10 times/condition 

(n=10). Data are presented as mean ± s.e.m, **p<0.01. 
 

Blockade of stromal SULF2 in the control LX-2 CM using SULF2 Ab retrieved the sorafenib 

impact on the growth of the Hep3B spheroids (p<0.001) (Figure 3.36). 
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Figure 3.36 stromal SULF2 induced resistance to sorafenib was inversed by blocking SULF2  
Representative images show the growth of matched Hep3B spheroids in CM from control LX-
2 cells in the presence of 1.25 µM sorafenib and SULF2/isotype control IgG (A). Spheroids 
proliferated with the same rate in presence or absence of sorafenib in control LX-2 CM with 
the Isotype control IgG. The cytostatic effect of sorafenib was restored when spheroids were 
cultured in control LX-2 CM plus SULF2 Ab. Graph shows the proliferation of Hep3B spheroids, 
as a change in spheroid volume, treated with 1.25 µM sorafenib ± SULF2/isotype control IgG 
at day 6 after hanging individual cells to form spheres (B). The experiment was repeated 10 
times/ condition (n=10). Data are presented as mean ± s.e.m, ***p<0.001; ****p<0.0001. 
 
 

The potential translational impact of these findings was investigated in vivo by performing 

SULF2 IHC staining in biopsies from nine patients with HCC who received sorafenib treatment. 

Biopsies were at the time of diagnosis and the patients were classified as responders if they 

had a partial response or stable disease for at least 3 months. Those patients who showed 

progression of their disease on imaging at 3 month or who did not tolerate the treatment, 

were classified as non-responders. In one patient sorafenib was stopped because of toxicity. 

In six patients there was evidence of progression on their scan at 3 months. These patients 

were classed as non-responders and all of them had SULF2 positive CAFs present on their 

tumour biopsy (Figure 3.37). In one of these patients, CAF SULF2 positivity was scant, but the 

HCC cells were SULF2 positive. By contrast, two patients who maintained stable disease on 

imaging at 6 months, classed as responders, had no evidence of SULF2 positive CAFs (Figure 

3.37). The observed difference in SULF2 expression in non-responders versus responders in 

this pilot study (non-responders 7/7; responders 0/2; p=0.028, Pearson Chi-Square), in 

combination with the in vitro experiments, these data, support a role for presence of stromal 

SULF2 in the mediation of sorafenib resistance. 
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Figure 3.37 Expression of SULF2 in biopsies from sorafenib treated HCC patients 
Representative images show SULF2 IHC staining in biopsies from a sorafenib-responder (A) 
versus a sorafenib non-responder (B). The presence of endothelial cell SULF2 is marked with 
black arrows and served as an internal positive IHC control. Scale bars are equivalent to 200 
microns (n=9). 
 

3.5 Discussion 
The realisation and understanding of the importance of the tumour microenvironment in the 

development, behaviour and progression of HCC has steadily increased in the last decade. This 

has followed the application of sophisticated and high-throughput multi-Omics technologies 

– focused initially on characterising the molecular aberrations in the tumours - opening the 

door to a new era of research, but largely failing to deliver significant improvements in 

prognosis for patients with liver cancer.  It is recognised that the treatment paradigm of 

targeting the highly proliferative tumour cells may be insufficient and that strategies aimed at 

targeting components of the TME, either alone or in combination, may be more beneficial. 

While the immune TME has received a lot of attention, CAFs are at the heart of the TME and 

help to nourish the tumour cells and stimulate their growth. CAFs are the predominant non-

parenchymal cells in the TME and can modulate the behaviour of the neighbouring tumour 

cells355. They are believed to be derived from the hepatic stellate cells (HSC)356. The overall 

predictive value of both HSC and CAFs in patients with HCC was described previously in an 

elegant study that identified an activated hepatic stellate cell (A-HSC) gene signature in the 
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non-tumour tissues, but not the matched tumour pairs, that could predict the prognosis of 

well-defined HCC patients with metastasis promoting microenvironment. The gene signature 

was associated with the presence of cirrhosis, the size of the tumour and with vascular 

invasion in a univariate analysis and was independently associated with poorer survival in a 

multivariate analysis357.  Similarly, another research group defined a 122-HSC gene signature 

that included many ECM proteins related to fibrosis358. Combining the 122-HSC gene signature 

with bilirubin and platelet count created a prognostic index that was associated with HCC, 

Child-Pugh class and overall survival358. Notably, presence of αSMA in the peritumoural area 

as a predictor of poorer prognosis in HCC patients after curative resection has been recognised 

for over a decade351. 

Here, we have introduced SULF2 as a key regulator of TME associated HCC progression. SULF2 

was upregulated in 58% of diagnostic biopsies from HCC patients. Of these cases, SULF2 

expression was elevated in the tumour cells in 15% of patients. Albeit small numbers, tumour 

SULF2 was associated with T2DM, tumour size, AFP level and TNM stage. Notably, SULF2 was 

upregulated in 52% of cases in the αSMA positive CAFs and this unique pattern was 

independently associated with poorer patient survival as shown by multivariate analysis. The 

pattern of SULF2 expression in the adjacent non-tumour tissues was different from the 

tumour tissue. In the non-tumour tissue, SULF2 was expressed in the smooth muscle cells 

lining the portal tract arteries, in the endothelial cells, in the sinusoidal cells and in the 

immature bile ductules, raising a potential role of SULF2 in both the premalignant as well as 

in the tumour microenvironments. The expression of SULF2 in more than half of the biopsies 

together with its predictive significance in the CAFs was the justification for the subsequent 

thorough investigation of the role of CAF-derived SULF2 and its impact on the behaviour of 

the tumour cells. 

To discern the role of SULF2 from stromal cells on the behaviour of the tumour cells, two 

different HCC cell lines with different levels of SULF2 were co-cultured with SULF2 

producing/SULF2 deficient LX-2 cells or CM. In our 2D trans-well co-culture system, secreted 

stromal SULF2 induced the viability and the proliferation of the HCC cells regardless of their 

SULF2 status. An advantage of using the 2D trans-well system was that the two different cell 

types were kept physically separate, although cultured as a monolayer, enabling us to 

ascertain that the changes observed in cell phenotype were mediated by soluble 
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communication, rather than direct cell-cell contacts. Stromal SULF2 also increased the 

migration of the SULF2 null Hep3B cell line, supporting a role promoting invasive capacity. 

Advantages of the 2D systems used include them being less expensive and convenient, as they 

are relatively easily handled. On the other hand, 2D systems have significant limitations, the 

major one being that cells grown in 2D systems, as monolayers on polystyrene surfaces, do 

not recapitulate the in vivo conditions359.  Monolayer cultures cannot mimic the actual 3D cell 

aggregates that impact penetration and response of solid tumours to anti-cancer therapies. 

The rounded 3D structured spheroids are an excellent alternative to the conventional 2D 

cultures, especially in the field of cancer research, due to their ability to recreate the structural 

features of human tumour in vitro. 3D spheroids reportedly recapitulate essential features of 

human malignancies, including tumour 3D multi-layered composition, physical cell-cell 

interaction in the tumour context, deposition of ECM protein as well as response to anti-

cancer drugs340, 359, 360.  

Stromal SULF2 induced the growth of the tumour 3D spheroids, either when directly mixing 

tumour/fibroblasts cells together, or by growing tumour 3D spheroids in stromal CM with 

different levels of SULF2. These 3D data complimented our 2D results. Moreover, blockade of 

SULF2 from the SULF2-rich stromal or tumour CM successfully limited SULF2-dependent 

growth on the tumour 3D spheroids. Tumour 3D spheroids responded to sorafenib treatment 

in a dose dependent fashion, but interestingly, the presence of stromal SULF2 in the CM 

converted this drug-responsive phenotype into a drug-resistant one. Finally, in a small cohort 

of patients, we could identified fewer SULF2 positive CAFS in sorafenib responders. 

In conclusion, SULF2 mainly upregulated in the CAFs in HCC, was associated with poor 

outcome in HCC patients. In vitro studies showed that stromal SULF2 could induce a more 

aggressive tumour cell phenotype by increasing tumour cell viability, proliferation, migration, 

invasion and resistance to therapy. 

 

 

 



92 
 

Chapter 4: The mechanistic role of SULF2 in HCC progression and 
therapy resistance 
 

4.1 Background 
The potential importance of SULF2 in HCC had been previously reported by the Roberts’s 

group, in two successive publications in 2008 and 2010, implicating it in the regulation of 

FGF/AKT and β-catenin signalling pathways273, 304. They showed that overexpression of SULF2 

in cell lines facilitated the binding of FGF2 to its receptor on the tumour cells. This binding 

then induced the phosphorylation and activation of the AKT oncogenic pathway. In the same 

context, they demonstrated the SULF2-dependent upregulation of GPC3 using knock-down 

and overexpression experiments in cell lines with different levels of SULF2. They linked the 

two arms of their study by showing that upregulation of GPC3 mediated by tumour SULF2 

increased the autocrine binding of FGF2 to FGF receptors on the tumour cell surface304. In the 

follow up paper in 2010, they focused on the role of SULF2 in activating the β-catenin pathway, 

known to be deregulated in more than 30% of HCC273. Activation mutation in β-catenin, 

restricting it to the nucleus of the tumour cells, can be detected in about 25% of HCC and 

promotes cell survival and proliferation361. Alternatively, binding of different Wnt ligands to 

the Frizzled receptor on the tumour cell surface can liberate wild-type β-catenin from the 

receptor complex enabling translocation to the nucleus and activation of the Wnt/β-catenin 

pathway362. Using a cell line system together with in vivo studies in nude mice, Roberts et al 

showed that SULF2 induced endogenous levels of Wnt3a, one of the Wnt ligands that activates 

Wnt/β-catenin signalling, and that this effect was boosted by adding exogenous Wnt3a 

recombinant protein. SULF2-induced upregulation of GPC3 further facilitated the binding of 

Wnt3a to the Frizzled receptor, activating the downstream pathway273. The group went on to 

report that overexpression of SULF2 protected tumour cell lines from cell death and apoptosis 

induced by inhibitors to PI3K, JNK and ERK pathways. SULF2 knock-down abolished the 

expression of cyclin-D1 and BCL-2 and induced the expression of the pro-apoptotic protein 

BAD. This was driven via P13K/AKT pathway activation in vitro305. 

Earlier studies predating any focus on HCC had revealed a role for SULF2 in the liberation of 

important angiogenic and chemotactic factors from cell surfaces298. SULF2 removal of sulfate 

groups from the 6-O-positions of HSPGs immobilized heparin, releasing VEGF, CXCL12 and 

FGF1 from their heparin binding site to activate their downstream targets298. Studies reporting 
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factors released or secreted into the microenvironment, such as SULF2, which itself promotes 

the release of other factors from the ECM, are of particular relevance to the search for serum 

level biomarkers363. Serum levels of these factors offer less invasive tools, potentially for 

predicting patient prognosis, but also for enrichment, by predicting patients that may respond 

to a therapeutic strategy targeting SULF2.  

Another SULF2 regulated signalling pathway to highlight is that of TGF-β.  As previously 

described in chapter 3, SULF2 KO mice were protected from DEN-induced liver tumorigenesis 

compared to their WT control mice. In vitro and in vivo studies showed that SULF2 regulates 

the expression and secretion of certain angiogenic factors involving POSTN301. This effect was 

initiated via SULF2-dependent desulfation of TGFBR3 receptor releasing the bound TGFB1 

that, in turn, induced the expression of POSTN activating ERK and Focal adhesion kinase (FAK) 

pathways in the endothelial cells301. 

All the cited studies relied on transcriptomic data to quantify SULF2, with limited focus on its 

cellular origin.  Therefore the role of CAF-derived SULF2, CAFs being the predominant source 

of SULF2 in the HCC TME, as described in Chapter 3, has not been previously studied. 

Characterising the cellular source may inform best way of targeting the protein in the clinical 

context. Importantly, mechanistic pathways often have cell-type specific, even contradictory, 

roles137. In Chapter 3 we showed that stromal SULF2 induced tumour cell proliferation, 

migration, invasion and resistance to sorafenib treatment. The focus here was to explore the 

mechanisms involved – using in vitro models, but also publically available transcriptome data.  

4.2 Chapter 4 aim 
 

4.2.1 To explore the impact of SULF2 on different oncogenic, cell survival and chemoresistance 

signalling pathways in HCC. 
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4.3 Investigation of the impact of SULF2 KD from LX-2 fibroblasts  
4.3.1 The effect of SULF2 levels on the expression of different mesenchymal markers and 
inflammatory cytokines 
In human HCC, the CAFs were the predominant cellular source of SULF2 within the TME. We 

initially set out to understand the role of autocrine stromal SULF2 signalling on CAFs. 

Successful KD of SULF2 was confirmed by q-PCR (Figure 4.1A) as well as by WB and ELISA as 

shown in Chapter3 in Figure3.6. SULF2 KD from LX-2 fibroblasts led to the down-regulation of 

PDGFRβ (Figure 4.1B) and COL1a1 (Figure 4.1C) expression, with no impact on the expression 

of the mesenchymal markers αSMA (Figure 4.1D), VIM (Figure 4.1E) and TIMP1 (Figure 4.1F). 

This implied that SULF2 regulated a specific phenotype within the stromal cells, potentially 

mediated by PDGFRβ signalling. An increase in collagen deposition and tissue stiffness has 

been previously reported to be strongly associated with poor disease outcome226. Notably, 

αSMA, TIMP1 and VIM levels in LX-2 cells were not SULF2 dependent, indicating that SULF2 

KD did not affect the activation status of the fibroblasts. 

Figure 4.1 SULF2 KD 
suppressed the 
expression of certain 
markers in LX-2 myo-
fibroblasts. Graphs 
show suppression of 
SULF2 (A), PDGFRβ 
(B), and COL1a1 (C) in 
association with SULF2 
KD in LX-2 cells, while 
αSMA (D), VIM (E) and 
TIMP1 (F) were 

unaffected. 
Expression is shown as 
the relative level of 

transcriptional 
difference (RLTD) 
using HPRT as a 
control. Experiments 
were repeated three 
times (n=3) and data 
are expressed as mean 
± s.e.m; ** p<0.01; 
****p<0.0001.  
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Given that CAFs are an abundant source of pro-inflammatory cytokines and growth factors in 

the malignant niche226, gene expression of key inflammatory cytokines IL-1β, TNF-α, IL-6 and 

IL-8 was compared between control and SULF2 KD LX-2 fibroblasts. SULF2 KD from LX-2 cells 

significantly decreased the expression of IL-6 (Figure 4.2A), IL-8 (Figure 4.2B) and TNF-α 

(Figure 4.2C) compared to the control fibroblasts, while IL-1β levels were expressed at 

comparable levels regardless of SULF2 status (Figure 4.2D). 

Figure 4.2 SULF2 KD decreased the expression of protumourigenic cytokines in LX-2 myo-
fibroblasts. Graphs show decreased of IL-6 (A), IL-8 (B), TNFα (C) and IL-1β (D) expression in 
association with SULF2 KD in LX-2 cells. The expression level is shown as relative level of 
transcriptional difference (RLTD) using HPRT as a control. Experiments were repeated three 
times (n=3) and data are expressed as mean ± s.e.m; * P<0.05; ** p<0.01. 
 
 

As a confirmation to the mRNA expression data, ELISA was performed to measure the protein 

level of COL1a1, IL-6, IL-8, TNFα and MCP1 in concentrated CM from control and SULF2 KD LX-

2 cells. IL-6 (Figure 4.3A), IL-8 (Figure 4.3B) and COL1a1 (Figure 4.3C) protein levels were 

significantly higher in CM from control LX-2 cells than in SULF2 KD LX-2 CM. On the other hand, 
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there was no change in TNF-α (Figure 4.3D) and MCP1 (Figure 4.3E) protein levels in CM from 

both cell lines. 

Figure 4.3 SULF2 KD supressed the secretion of key cytokines in LX-2 myo-fibroblasts. Graphs 
show decreased protein levels of IL-6 (A), IL-8 (B), COL1a1 (C) in association with SULF2 KD 
from LX-2 cells, while the protein levels of TNFα (D) and MCP1 (E) remained unchanged. Data 
are presented in mean ± s.e.m; * p<0.05; ** p<0.01; ****p<0.0001, n=3 repeats 

 

4.3.2 The impact of SULF2 on the activation of different pathways in LX-2 fibroblasts 
Expression data of control and SULF2 KD LX-2 cells confirmed the deregulation of PDGFRβ, 

together with key inflammatory markers. To understand the underlying mechanism 
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responsible for this change in the fibroblast secretome, WB of protein lysate from control and 

SULF2 KD LX-2 cells grown in SF conditions first confirmed the stable KD of SULF2 at 24 and 48 

hours from cell seeding (Figure 3.6). Control LX-2 cells showed higher levels of p-PDGFRβ 

compared to SULF2 KD LX-2 cell at 24 hours with modest levels between cell lines at 48 hours. 

The upregulation of total PDGFRβ in the control LX-2 cells compared to SULF2 KD LX-2 

fibroblasts was evident at 24 hours but similar at 48 hours (Figure 4.4). In summary, mRNA 

and WB confirmed the SULF2-dependent activation and upregulation of PDGFRβ in the LX-2 

fibroblasts.  

Looking downstream of PDGFRβ signalling, p-JNK1/2 and p-STAT3 levels were strongly 

downregulated upon SULF2 KD from LX-2 fibroblasts compared to control cells, with no 

change in the total JNK1/2 and STAT3 levels between the two cell lines (Figure 4.4). While the 

increase in phosphorylation of the RelA subunit of NF-κB at serine 536 (pP65) was more 

obvious in control LX-2 compared to SULF2 KD LX-2 cells at 48 hours, there was no change in 

p-AKT and p-ERK1/2 levels between both fibroblasts cell lines at either time point. In 

conclusion, stromal SULF2 might activate PDGFRβ/JNK/STAT3, but not ERK and AKT pathways 

in the LX-2 fibroblasts (Figure 4.4). 

Previous reports confirmed the link between JNK and STAT3 pathways with the production of 

different inflammatory cytokines137. The development of HCC depended on the activation of 

JNK pathway in liver fibroblasts via an increase in cytokines levels and especially IL-6137. This 

was consistent with our hypothesis that SULF2-mediated activation of the PDGFRβ/JNK 

pathway contributed to the production of IL-6 and IL-8 pro-inflammatory and tumour 

promoting cytokines. Indeed, addition of recombinant IL-6 protein to the CM from SULF2 KD 

LX-2 cells partially rescued the proliferative phenotype of Hep3B spheroids compared to 

SULF2 KD LX-2 CM (Figure 4.5).  Thus, in addition to the direct mitogenic effect of stromal 

SULF2 on tumour cells (demonstrated previously by adding SULF2 antibody to tumour cells – 

Chapter 3), SULF2 may indirectly increase tumour cell proliferation via activation of the 

PDGFRβ/JNK/IL-6 pathway in the activated stromal cells within the tumour niche.   
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Figure 4.4 SULF2 KD deactivated PDGFRβ, JNK and STAT3 pathways in LX-2 myo-fibroblasts. 
Western blots show reduced phosphorylation of pPDGFRβ, pJNK1/2 and pSTAT3 in response 
to SULF2 KD from LX-2 cells. Phosphorylation levels of AKT and ERK1/2 were unaffected with 
SULF2 KD. The experiment was repeated three times (n=3).  

 

 

 

 

 

 

 

Figure 4.5 Addition of recombinant IL-6 to SULF2 KD CM rescued the proliferative phenotype 
on Hep3B spheroids. Graph Shows increase in the growth of Hep3B spheroids when IL-6 was 
added to SULF2-deficient LX-2 CM (A). Representative images show the partial rescue of 
Hep3B spheroids growth phenotype after adding IL-6 recombinant protein to the SULF2 KD 
LX-2 CM. Data are presented as mean ± s.e.m of 10 spheroids per condition (n=10); ** p<0.01. 
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4.4 Validation of the association between SULF2, PDGFRβ and IL-6 
Interrogation of the publically available (TCGA) human liver cancer dataset on the cBioPortal 

website (http://www.cbioportal.org/) revealed that SULF2 expression positively associated 

with the expression of both PDGFRβ (Spearman’s Rho 0.58, q-value=2.53e-32) and IL-6 

(Spearman’s Rho 0.38, q-value=2.42e-13) (Figure 4.6). In combination, these data support a 

key role for SULF2 in modulating autocrine secretion of pro-tumourigenic IL-6 from fibroblasts, 

via activation of the PDGFRβ/JNK pathway.   

Figure 4.6 Significant associations between SULF2 and PDGFRβ and IL-6 expression in human 
TCGA gene expression data.  Graphs show the correlation between log2 SULF2 expression 
and log2 PDGFRβ (A) or log2 IL-6 expression (B) expression. Data are presented as mRNA 
expression (RNA seq V2 RSEM) for 373 samples. 
 
 
4.5 Investigation of the paracrine role of stromal SULF2 on the tumour cells 
The paracrine role of stromal SULF2 on activation of different oncogenic pathways within the 

tumour cells was then investigated by culturing Hep3B spheroids in CM from control or SULF2 

KD LX-2 cells in the presence of inhibitors to various oncogenic pathways. Inhibitors to JNK 

pathway (SP600125), TAK-MAPK pathway ((5Z)-7-Oxozeaenol), IKKβ-NF-κB pathway (CAS 

507475-17-4), ERK1/2 pathway (FR 180204) and TGFβ pathway (SB525334) were applied to 

the tumour spheroids to test whether or not they would limit stromal-SULF2 mediated HCC 

proliferation. Before treating tumour spheroids with inhibitors, the optimal, non-toxic dose 

from each inhibitor was assessed first in 2D HCC cultures. Hep3B cells seeded in 96-well plate 

were treated with different concentrations from each inhibitor and the dose that inhibited the 

growth of cells (measured by MTT viability assay) without being toxic over 24, 48 and 72 hour 

time points was considered for the 3D spheroids experiment. 

http://www.cbioportal.org/
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As Hep3B spheroids grown in SULF2-rich CM were protected from the sorafenib-induced 

cytostatic/cytotoxic effect compared to spheroids in SULF2-deficient CM, we wanted to know 

whether or not the pathways activated by stromal SULF2 would also be responsible for the 

SULF2-induced sorafenib resistance. So in parallel to the spheroid experiment, Hep3B cells in 

6-well plate were treated with SF media, SF-CM from control or SULF2 KD LX-2 cells in absence 

and presence of sorafenib. Protein lysates of the treated cells were then immuno-blotted for 

possible SULF2-dependant phosphorylated and total forms of downstream targets of the 

deregulated pathways. 

The JNK inhibitor SP600125 was able to limit both SULF2-dependent and independent growth 

of Hep3B spheroids (Figure 4.7).  

 

 

 

 

 

 

 

 

 
 
 
Figure 4.7 The JNK1/2 inhibitor had no stromal SULF2-dependent impact on tumour growth. 
Graph shows MTT viability data for Hep3B cells treated with different concentrations of a JNK 
inhibitor for a number of time points (A), presented as mean ± s.e.m of three experiments. 
Representative images (B) and graph (C) show changes in the growth of Hep3B tumour 
spheroid treated with CM from both control and SULF2 KD LX-2 cells in presence or absence 
of 5µM of JNK1/2 inhibitor. Data are presented are expressed as mean ± s.e.m of 10 
spheroids/condition (n=10); * p<0.05; ****p<0.0001. 
 

WB for phospho- and total JNK1/2 showed that addition of CM promoted an increase in p-

JNK1/2 phosphorylation and activation of the pathway in the tumour cells independent of 
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SULF2 (Figure 4.8). Moreover, sorafenib inhibited p-JNK1/2 activation in a SULF2-independent 

manner (Figure 4.8). The same pattern was shown in p-STAT3 and STAT3 proteins (Figure 4.8) 

implying that stromal SULF2-induced oncogenic and sorafenib-evading mechanisms were 

driven via activation of neither JNK nor STAT3 pathways. 

Figure 4.8 Stromal SULF2 had no independent impact on JNK or STAT3 signalling in tumour 
cells. Western blots show that stromal 
CM induced the phosphorylation of 
pJNK1/2 and pSTAT3 in Hep3B cells in a 
SULF2-independent fashion. Sorafenib 
blocked the phosphorylation of pJNK1/2 
and pSTAT3 in the Hep3B cells regardless 
to the SULF2 level in the stromal CM. The 
experiment was repeated two times 
(n=2).  

 

Consistent with this, inhibitors to ERK1/2 and TGFβ-1 pathways blocked the growth of Hep3B 

spheroids grown in SULF2 positive and negative CM (Figure 4. 9).     

Figure 4.9 The ERK1/2 and TGFβ inhibitors had no stromal SULF2-dependent impact on 
tumour growth. Graphs show MTT viability data for Hep3B cells treated with different 

concentrations of either 
ERK1/2 (A) or TGFβ (C) 
inhibitors for a number 
of time points is shown, 
and data are presented 
as mean ± s.e.m of three 
experiments. Graphs 
show changes in the 
growth of Hep3B 
tumour spheroid 
treated with CM from 
both control and SULF2 
KD LX-2 cells in 
presence or absence of 
ERK1/2 (B) or TGFβ (D) 
inhibitors. Data are 
presented are 
expressed as mean ± 

s.e.m of 10 spheroids/condition (n=10); * p<0.05; ****p<0.0001. 
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On the other hand, inhibitors to the MAPKKK (TAK1) (Figure 4.10) and its downstream target 

IKK-β (Figure 4.11) blocked only the SULF2-dependent spheroids growth.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10. TAK1 inhibitor blocked SULF2-dependent growth of Hep3B spheroids. Graph 
shows MTT viability of Hep3B cells treated with different concentrations of TAK1 inhibitor (A). 
Data are presented as mean ± s.e.m of three experimental repeats. Representative images (B) 
and graph (C) show changes in the growth of Hep3B tumour spheroid treated with CM from 
both control and SULF2 KD LX-2 cells in presence or absence of TAK1 inhibitor. Data are 
presented as mean ± s.e.m of 10 spheroids/condition (n=10); * p<0.05; ** P<0.01; *** 
P<0.001; ****p<0.0001. 
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Figure 4.11 IKKβ inhibitor blocked SULF2-dependent growth of Hep3B spheroids. Graph 
shows MTT viability of Hep3B cells treated with different concentrations of IKKβ inhibitor (A). 
Data are presented as mean ± s.e.m of three experimental repeats. Representative images (B) 
and graph (C) show changes in the growth of Hep3B tumour spheroid treated with CM from 
both control and SULF2 KD LX-2 cells in presence or absence of IKKβ inhibitor. Data are 
presented as mean ± s.e.m of 10 spheroids/condition (n=10); P<0.01; *** P<0.001; 
****p<0.0001. 

 

WB for the phospho- and total RelA ser(536) subunit of NF-κB pathway, a classical target of 

TAK1/IKKβ pathway, showed upregulation of p-RelA ser(536) in Hep3B cells treated with 

SULF2-containing CM compared to both SF CM or SF CM from SULF2 KD LX-2 (Figure 4.12). 

Total RelA ser(536) remained unchanged, confirming the SULF2-dependent activation of this 

particular pathway. Furthermore, this SULF2-induced RelA ser(536) phosphorylation persisted 
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even in presence of sorafenib, suggesting a link between NF-κB activation and sorafenib 

resistance in a SULF2-dependent manner. Consistent with the inhibitor data, neither the 

activation of AKT nor ERK1/2 pathways were SULF2 dependent (Figure 4.12).  

 

 

 

 

 

 

 

Figure 4.12 Stromal SULF2 activation of NF-κB, not AKT and ERK, persisted in the presence 
of sorafenib in tumour cells. Western blots show that stromal SULF2 induced the 
phosphorylation of RelA-P-ser356 (pP65), but not pAKT or pERK1/2 in Hep3B cells. This SULF2-
dependent phosphorylation of P65 remained even in the presence of sorafenib, n=4 repeats.  
 
 

These data confirm that stromal-SULF2 and its related secretome induced the activation of 

the TAK1/IKKβ/NF-κB pathway in the tumour cells in a paracrine manner. The impact was 

associated with an increase in the tumour cell proliferative capacity, but also an increase in 

their ability to resist chemotherapy.   

4.6 The role of SULF2 in promoting a cancer stem cell (CSC) phenotype in tumour cells 
The stromal SULF2-driven aggressive tumour behaviour was in keeping with a CSC 

phenotype364, 365, known to be regulated by NF-κB pathways in different human cancers 

including HCC366. Sorafenib resistance was also reminiscent of this phenotype367. The mRNA 

expression level of different CSC markers was investigated in Hep3B cells challenged with 

DMSO, control LX-2 CM and SULF2 KD LX-2 CM, with or without sorafenib (Figures 4.13 - 4.19). 

The presence of SULF2 in the fibroblast CM dramatically induced CD44 compared to either 

untreated cells or cells treated with SULF2 KD CM at 12 and 24 hours. This SULF2-dependent 

upregulation of CD44 persisted with concurrent sorafenib treatment. Thus, stromal SULF2 

induced CSC features and sorafenib resistance in association with the upregulation of CD44 in 
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the tumour cells (Figure 4.13 A,B). Sorafenib-only treatment also upregulated VIM and CDH1, 

but in a SULF2-independent manner (Figure 4.13 C-F). Neither sorafenib nor SULF2 

significantly changed the expression profile of EpCAM, KRT7, KRT19, AXIN2, LGR5, CDH2, 

PDGFRα, PDGFRβ, TCF4, COL1a1 and FZD7 (Figures 4.14 – 4.17). 

Figure 4.13 Stromal SULF2 induced the expression of CD44, but not VIM or CDH1 in Hep3B 
cells. Graphs show elevated CD44 (A,B), but not VIM (C,D) and CDH1 (E,F) in Hep3B cells 
treated with control or SULF2 KD LX-2 CM, which persists in the presence of sorafenib at 12 
and 24 hours. The expression level is presented as relative level of transcriptional difference 
(RLTD) using HPRT as a control. Experiments were repeated three times (n=3) and data are 
expressed as mean ± s.e.m; * p<0.05; ** p<0.01. 
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Figure 4.14 Stromal SULF2 didn’t affect the expression of EpCAM, KRT7 or KRT19 in Hep3B 
cells. Graphs show comparable levels of EpCAM (A,B), KRT7 (C,D) and KRT19 (E,F) in Hep3B 
cells treated with control or SULF2 KD LX-2 CM in presence or absence of sorafenib. The 
expression level is presented as relative level of transcriptional difference (RLTD) using HPRT 
as a control. Experiments were repeated three times (n=3) and data are expressed as mean ± 
s.e.m. 
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Figure 4.15 Stromal SULF2 didn’t affect the expression of AXIN2, LGR5 or CDH2 in Hep3B 
cells. Graphs show comparable levels of AXIN2 (A,B), LGR5 (C,D) and CDH2 (E,F) in Hep3B cells 
treated with control or SULF2 KD LX-2 CM in presence or absence of sorafenib. The expression 
level is presented as relative level of transcriptional difference (RLTD) using HPRT as a control. 
Experiments were repeated three times (n=3) and data are expressed as mean ± s.e.m.; * 
p<0.05. 
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Figure 4.16 Stromal SULF2 didn’t affect the expression of PDGFRα, PDGFRβ or TCF4 in Hep3B 
cells. Graphs show comparable levels of PDGFRα (A,B), PDGFRβ (C,D) and TCF4 (E,F) in Hep3B 
cells treated with control or SULF2 KD LX-2 CM in presence or absence of sorafenib. The 
expression level is presented as relative level of transcriptional difference (RLTD) using HPRT 
as a control. Experiments were repeated three times (n=3) and data are expressed as mean ± 
s.e.m. 
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Figure 4.17 Stromal SULF2 didn’t affect the expression of COL1A1, CXCR4 or FZD7 in Hep3B 
cells. Graphs show comparable levels of COL1A1 (A,B), CXCR4 (C,D) and FZD7 (E,F) in Hep3B 
cells treated with control or SULF2 KD LX-2 CM in presence or absence of sorafenib. The 
expression level is presented as relative level of transcriptional difference (RLTD) using HPRT 
as a control. Experiments were repeated three times (n=3) and data are expressed as mean ± 
s.e.m; * p<0.05; ** p<0.01. 
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Of note, IL-6 expression in the tumour cells was induced by stromal SULF2 and also persisted 

in SULF2/sorafenib treated tumour cells at 12 hours, but this failed to reach statistical 

significance (Figure 4.18 A). The expression levels of FGFR1, GADD45β, MDR1 and TNF-α was 

not altered by stromal SULF2. 

Figure 4.18 Stromal SULF2 didn’t affect the expression profile of the inflammatory cytokines 
IL6, FGFR1 or GADD45β in Hep3B cells. Graphs show comparable levels of IL6 (A,B), FGFR1 
(C,D) and GADD45β (E,F) in Hep3B cells treated with control or SULF2 KD LX-2 CM in presence 
or absence of sorafenib. The expression level is presented as relative level of transcriptional 
difference (RLTD) using HPRT as a control. Experiments were repeated three times (n=3) and 
data are expressed as mean ± s.e.m; * p<0.05; ** p<0.01.; * P<0.05; ** p<0.01; ***p<0.001; 
****p<0.0001. 
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Figure 4.19 Stromal SULF2 didn’t affect the expression of TNFα and MDR1 in Hep3B cells. 
Graphs show comparable levels of TNFα (A,B) and MDR1 (C,D) in Hep3B cells treated with 
control or SULF2 KD LX-2 CM in presence or absence of sorafenib. The expression level is 
presented as relative level of transcriptional difference (RLTD) using HPRT as a control. 
Experiments were repeated three times (n=3) and data are expressed as mean ± s.e.m. 
 

In summary, in association with enhanced prolferation, invasivion and therapy resistance, 

stromal SULF2 activated NF- κB and preferentially induced the expression of CD44 in HCC cells. 

CD44 is an established direct target of the NF-κB pathway366, 368. In Hep3B cells treated with 

SULF2-rich stromal CM in presence of an IKKβ inhibitor, the inhibitor abrogated SULF2-induced 

upregulation of CD44, confirming stromal SULF2 as a regular of the tumour IKKβ/NF-κB/CD44 

axis (Figure 4.20).   
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Figure 4.20 IKKβ inhibitors abrogated the stromal SULF2-dependent upregulation of CD44 in 
Hep3B cells. Graph shows comparable levels of CD44 in Hep3B cells treated with SULF2 KD LX-
2 CM or with IKKβ inhibitor added to the SULF2-rich CM, while CD44 level was significantly 
higher in tumour cells treated with control LX-2 CM. The expression level is presented as 
relative level of transcriptional difference (RLTD) using HPRT as a control. Experiments were 
repeated three times (n=3) and data are expressed as mean ± s.e.m.; *p<0.05, ** p<0.01. 
 

4.7 Validation of the CAF-SULF2 driven activation of tumour NF-κB/CD44 axis in vivo 
IHC staining in human biopsies further supported the CAF-tumour cross-talk driven by SULF2. 

In 20 of the HCC cases previously assessed for SULF2, the presence of CAF-SULF2 (Figure 4.21 

A,D) was strongly associated with nuclear localisation of p-RelA ser(536) in the adjacent 

tumour cells (Spearman’s Rho 0.776 p<0.001, Pearson Chi-squared test p=0.005) (Figure 4.21 

B,E). Membranous CD44 expression in the tumour cells correlated with SULF2 positivity in the 

contacting CAF (Spearman’s Rho correlation 0.744 p<0.001, Pearson Chi-squared test 

p=0.001) (Figure 4.21 C,F). In addition, CD44 protein expression was associated with the p-

RelA ser(536) nuclear positivity (Spearman’s rho 0.741 p<0.001, Pearson Chi-squared test 

0.047). In CAF-SULF2 null tumours, nuclear p-RelA ser(536) and membranous CD44 protein 

expression was not evident in the tumour cells (Figure 4.21 G-I). 
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Figure 4.21 Co-expression of SULF2, CD44 and pRelA ser536 in human HCC biopsies 
Representative images show IHC staining SULF2 (A,D), pRelA ser536 (B,E) and CD44 (C,F) in 
two different HCC patients. CAF-SULF2 positivity was evident with nuclear positivity of pRelA 
ser536 and membranous CD44 positivity in the adjacent tumour cells. Representative images 
show IHC staining SULF2 (G), pRelA ser536 (H) and CD44 (I) in HCC patient biopsy. The three 
markers were negative in this particular case. Images were captured using Aperio Imagescope 
software at x20, x10 and x5 magnifications, n=20 biopsies. 
 
4.8 SULF2 co-expression with Glypican-3 promotes Wnt signalling and a poor prognosis   
GPC3 is a HSPG morphogen often upregulated in HCC tissues and its immunohistochemical 

detection has been proposed as an HCC histopathology diagnostic biomarker369. GPC3 

overexpression stabilises cytoplasmic β-catenin in HCC cells and stimulates canonical Wnt 
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signalling in vitro370, while SULF2 reportedly regulates both expression and 6-O sulfation of 

GPC3304. Our own studies in patient tissues and cell lines indicate that SULF2 co-expression 

with GPC3 is associated with cytoplasmic accumulation of β-catenin and promotes its nuclear 

localisation (Figures 4.22 – 4.23). GPC3 expression was absent in non-tumour tissues (Figure 

4.22) and 16/60 tumours, but present in tumour cells in 44/60 (73%) cases, graded as 1 

(cytoplasmic dot like or focal positivity, n=17), 2 (diffuse weak positivity in cytoplasm or 

membrane, n=9) or 3 (intensely positive membranous or cytoplasmic staining, n=18). Strong 

membranous or cytoplasmic GPC3 expression (Grade 3) was more common in cases with 

SULF2 expression in either tumour or stromal tissues (14/35 SULF2 present versus 4/25 SULF2 

absent, p=0.046, Pearson Chi-Square). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Tumour GPC3 
and CAF SULF2, in 
association with nuclear 
β-catenin in HCC 
Representative images 
show H&E staining, GPC3, 
SULF2 and β- catenin IHC 
in both HCC (T) and 
adjacent non-tumour liver 
(NT). (A) GPC3, SULF2 and 
β- catenin was 
upregulated in T 
compared to NT. Nuclear 
β- catenin was evident in 
the T cells compared to 
NT, where its localisation 
was mainly membranous. 
(B) GPC3+ cells were 
present in T, with SULF2+ 
CAFs and nuclear β-
catenin. (C) Shows NT, 
with no GPC3or SULF2 
and membranous β- 
catenin. Images were 
captured using Aperio 
Imagescope software at 
x5 and x20 magnification. 
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Figure 4.23 tumour cell β-catenin localisation is membranous in the absence of tumour GPC3 
even in the presence of tumour stromal cells expressing SULF2. Representative images show 
a grade 2 HCC stained with GPC3 (left), SULF2 (middle), and β-catenin (right). SULF2 positive 
CAFs, GPC3 negative tumour cells and membranous β-catenin are shown. Images were 
captured using Aperio Imagescope software at x20 magnifications. 
 

In our non-surgically treated patients (n=50), GPC3 expression (absent n=13 or present n=37) 

was not significantly associated with survival, although Grade 3 GPC3 identified a small group 

with a particularly poor prognosis (n=14, median survival 6.7 months). In contrast, 

stratification of all GPC3 positive cases based on SULF2 co-expression discriminated 

significantly between those with a good or poor prognosis. GPC3 and SULF2 co-expression 

remained significantly associated with poorer survival in a multivariate Cox Regression 

analysis (HR 3.63 (1.4-9.2), p=0.007) (Figure 4.24).  

 

Figure 4.24 SULF2 co-
expression discriminates 
prognosis in the presence 
of Glypican-3 Kaplan Meier 
curves show GPC3 only (A) 
or GPC3 and SULF2 co-
expression (B) correlating 
with patient survival.  
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The relationship between SULF2, GPC3 and β-catenin was explored in-vitro in Huh7 cells, 

which express SULF2 in the presence of wild type (WT) Wnt/β-catenin signalling60. In WT Huh7 

cells, stromal SULF2 induced GPC3 expression (Figure 4.25A) as well as membranous and 

cytoplasmic accumulation of β-catenin (Figure 4.25B). Addition of Wnt3a promoted further 

cytoplasmic accumulation of β-catenin, with evidence of nuclear localisation (Figure 4.25C). 

Taken together our in vitro data support the upregulation and activation of the GPC3 Wnt/β-

catenin pathway as one mechanism by which stromal SULF2 induces HCC growth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.25 Stromal SULF2 upregulated membranous GPC3 and β-catenin in Huh7 cells 
Confocal images from the immuno-fluorescence staining of Glypican-3 expression in Huh7 
cells treated with control LX-2 (SULF2 producing) or SULF2 KD LX-2 (no SULF2) cell CM (A). 
Confocal imaging from the immuno-fluorescence staining shows β-catenin expression and 
localisation in Huh7 cells treated with control LX-2 or SULF2 KD LX-2 cell CM ± frizzled receptor 
ligand Wnt-3a (100ng/ml), white arrows denote β-catenin nuclear positivity (B&C), n=3 
repeats. 
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Activation of Wnt signalling is one of the main regulators CSC phenotype in different 

cancers366, 371, and given the fact that SULF2 activated Wnt signalling in our patient series, the 

association between Wnt signalling and NF-κB signalling was investigated. Notably, there was 

no correlation between nuclear β-catenin and RelA-P-ser536 (Pearson Chi-squared test 

p=0.331) or between β-catenin and CD44 (Pearson Chi-squared test p=0.336) in our cases, 

consistent with a SULF2 dependent phenotype. 

4.9 Discussion 
CAFs affect both the composition of the TME and the behaviour of the other cells in this niche. 

CAFs regulate many growth factors that bind different receptors, including integrins and 

laminins372, as well as secreting ECM factors such as collagens, fibronectin and 

glycoseaminoglycans335, 373, 374.  Deposition of these factors in the TME renders the tissue more 

rigid, a mechanical property that influences the phenotype of CAFs and tumour cells335, 375, 376. 

CAFs can also inhibit the infiltration of the lymphocytes to the tumours, decrease the survival 

of the mononuclear cells and increase the number of Treg cells that favour a more immuno-

suppressive TME377, 378. Many angiogenic factors like VEGF353, 379 or angiopoietins380 are 

produced and secreted by the CAFs, initiating neo-angiogenesis by activating the relevant 

receptors in the endothelial cells. Finally, CAFs also regulate a plethora of cytokines and 

growth factors that can either directly or indirectly impact on the malignant cells, for example 

PDGF, IL-6, HGF and TGF-β 350, 381, 382.  

Our mechanistic work aimed to characterise the role of stromal-SULF2 on the behaviour of 

the fibroblasts, but also to investigate the paracrine role of this novel SULF2 positive CAF 

phenotype, on activation of signalling pathways in the tumour cells. We used in vitro, in silico 

and human tissues to test and validate our hypotheses. Our results showed distinct SULF2-

dependent pathways in both the fibroblasts and tumour cells. Some of these observations 

confirmed previously reported SULF2 dependant activities.  The identification of SULF2 as a 

mediator of fibroblast cytokine production associated with a CD44 stemness phenotype in 

tumour cells was particularly novel. 

In an autocrine fashion, SULF2 induced PDGFRβ expression, leading to activation of the JNK 

pathway in fibroblasts. This SULF2-mediated activation of PDGFRβ/JNK pathway increased the 

production of the inflammatory cytokines IL-6 and IL-8 by fibroblasts, compatible with their 

known tumour-promoting role. The JNK pathway in fibroblasts has a key pro-tumorigenic role 

in HCC, with a previous study having shown that global KO of JNK1/2 in mice was protective 
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against HCC development137. Notably, the conditional KO of JNK1/2 from mice fibroblasts, but 

not from hepatocytes, rendered the mice protected against carcinogenic induction of HCC137. 

This cell-type dependent role of JNK pathway was attributed to an increase in IL-6 cytokine 

expression and production. Activation of the JNK pathway also has clinical relevance as the 

deregulation of JNK-associated genes in human HCC is reportedly associated with 

upregulation of CSC markers, early disease recurrence and a poorer prognosis383. Although 

not previously shown in HCC, the link between tumour SULF2 and IL-6 was previously reported 

in lung cancers384. Ionizing radiation induced IL-6 expression in lung cancer cell lines in a SULF-

2 dependent manner leading to induction of metastasis and poorer outcome 384.  CAFs385-387 

and tumour associated macrophages186 are major sources of IL-6 in the TME, with a paracrine 

impact on proliferation of adjacent tumour cells previously reported186. 

Figure 4.26 Schematic of a model depicting the key mechanistic findings from this study: 
SULF2-dependent pathways activated in the CAFs (with red arrows) and in the adjacent 
tumour cells (black arrows). 
 

The cross-talk between tumour cells and CAFs within the TME is believed to be essential in 

maintaining tumour cell proliferation and give them resistance against environmental 

challenges. Here we have further characterised a novel paracrine pathway through which CAFs 

promote a more aggressive tumour phenotype. CAF-SULF2 and its regulated secretome 

activated IKKβ/NF-κB pathway in the tumour cells and was associated with a proliferative, 

invasive, CD44 expressing sorafenib resistant phenotype. These finding supported and bring 

together a previous in silico study linking SULF2 with the progenitor cell, hepatoblast subclass 

in human HCC patients388, and a study describing CAFs as regulators of stemness352. While the 

role of IKKβ cascade in the expansion of stem cell features in lung, breast389 and intestinal 

cancer390 was described, similar data in HCC was previously lacking. The role of RelA in the 
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development of inflammation-associated liver cancer has been previously reported120, with 

the paracrine release of TNFα from the adjacent portal and inflammatory cells established.  

The Human biopsies data presented further validated a proposed paracrine role for SULF2, 

showing a strong association between CAF-SULF2 and the nuclear translocation of the RelA 

NF-κB subunit and CD44 membranous expression in neighbouring tumour cells.  IL-6 

production and therapy resistance associated with CSC features has been previously 

documented186, 391, with IL-6 regulating both the transcription and the alternative splicing of 

CD44 in multiple myeloma cell lines392.  

 

SULF2 has been previously implicated in the regulation of a number of signalling pathways in 

HCC, including activation of the Wnt pathway and upregulation of the well-known oncogene, 

GPC3273, 304,393. GPC3 is frequently expressed in HCC and often used as a diagnostic tissue 

biomarker. However, the pattern of GPC3 expression varies in HCC and prognostic 

associations with grade or outcome are not consistent as reviewed previously270, 369. Our data 

suggests that GPC3 co-expression with SULF2 offers a novel stratification for GPC3 positive 

cases, identifying those in whom GPC3 had poor prognostic relevance. In vitro, we also showed 

that stromal SULF2 upregulated GPC3 expression in the tumour cells. The role of SULF2 in the 

upregulation of GPC3 was previously reported273, although our data cast a novel focus on the 

role of stromal SULF2 on upregulating GPC3 in the tumour cells. Targeting the component 

proteins or regulators of Wnt pathway has the potential to benefit many HCC patients394. Our 

clinical data suggests that the cross-talk between GPC3 in the tumour cells and SULF2 in the 

CAFs is important for the upregulation and nuclear translocation of β-catenin, thereby 

activating the Wnt/β-catenin signalling. In vitro, we showed that stromal SULF2 upregulated 

β-catenin, in the membrane of the tumour cells which was translocated to the cytoplasm and 

nucleus by adding Wnt3a to the SULF2 positive CM. Although the upregulation of 

membranous β-catenin in the SULF2 positive CM-treated Huh7 cells was evident, the nuclear 

translocation of β-catenin was not very convincing. Therefore, investigating the nuclear 

translocation of β-catenin using TopFlash/FopFlash reporter assay was used to confirm a 

potential role for stromal SULF2 in Wnt/β-catenin pathway activation.    

 

Both Wnt/β-catenin and NF-κB signalling pathways are implicated in the regulation of liver 

cancer stemness395-397. CSCs are plastic cells and are able to self-renew, proliferate, migrate 

and resist chemotherapy367, 398, 399. Although a direct RelA-P-ser536/β-catenin/CD44 pathway 
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driving the expansion of CSCs in intestinal tumorigenesis366 has recently been described, with 

RelA-P-ser536 promoting β-catenin translocation, we did not demonstrate a direct 

relationship between RelA-P-ser536 and nuclear β-catenin in our HCC cases. We do, however, 

highlight a novel mechanism whereby CAFs releasing SULF2 activates both NF-κB and β-

catenin in association with the upregulation of CD44. 

 

Our data derived from a combination of in vitro and in vivo studies are compelling and may 

have clinical relevance in a number of contexts. We corroborate that CAF-driven SULF2 

expression has prognostic relevance in HCC. As an active protein released into the TME and 

associated with tumour progression, targeting SULF2 represents a novel therapeutic 

candidate. While there are currently no therapies directly targeting SULF2, its role potentially 

regulating stemness and therapy resistance make it noteworthy, as does the potential to use 

SULF2 expression in a predictive fashion.  HCC SULF2 has been implicated in the regulation of 

the established morphogen, GPC3273, 304. Stromal SULF2 in part exerts its pro-tumorigenic 

actions through up-regulation and activation of the GPC3, Wnt/β-catenin signalling pathway 

in tumour cells and may similarly have biomarker potential in this context. Stratification of 

patients according to SULF2 and GPC3 tissue positivity provided a better prognostic tool, 

identifying those with poorest outcomes. These candidate biomarkers might also be useful for 

identifying patients less likely to respond to sorafenib, or perhaps more likely to respond to 

an inhibitor of GPC3 or SULF2 activity.  In conclusion, SULF2 in the TME, derived from either 

tumour or stromal cells, has exciting therapeutic potential and is a candidate worthy of further 

study. 
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Chapter 5: Characterisation of SULF2 in Non-alcoholic fatty liver 
disease (NAFLD) and non-alcoholic steatohepatitis (NASH) in vivo. 
 

5.1 Background. 
NAFLD, or fat deposition in the liver in the absence of excessive alcohol consumption, 

describes a wide spectrum that ranges from mild simple steatosis to higher levels of fat with 

necro-inflammatory changes known as NASH400. The prevalence of NAFLD exceeds 25% of the 

population globally39 and is typically associated with obesity, insulin resistance as well as other 

features of the metabolic syndrome like hypertension and hyperlipidaemia401. As a 

consequence of the breakthrough of direct acting antiviral agents (DAAs) in the treatment of 

HCV, in combination with the dramatically rising prevalence of global obesity, NAFLD is 

becoming one of the commonest causes of advanced liver diseases and HCC41. NAFLD-HCC 

arises in patients who are typically older, of male gender, with features of metabolic 

diseases402, 403. Approximately one third of NAFLD-HCC develops in the absence of cirrhosis, 

with NAFLD-HCC patients more likely to be non-cirrhotic compared to those with HCV-HCC42. 

Why people with non-cirrhotic NAFLD develop HCC is not well understood, but it is 

increasingly appreciated that people with the metabolic syndrome have a higher risk of 

developing cancers, with both obesity and T2DM independently associated with HCC risk, 

even in the absence of NAFLD26. Understanding the mechanisms involved will be key to the 

development of preventive strategies. 

Previous studies have reported a link between SULF2 and obesity, with SULF2 having a role 

clearing remnant triglycerides and influencing blood triglyceride levels404-406. Glycomic 

focused microarray analyses in livers from obese mice, exploring various HSPG assembly-

related genes, T2DM-related HSPG genes and genes involved in the posttranslational 

modification of HSPG structures, revealed a dramatic upregulation of Sulf2404. Mechanistic 

studies suggested that Sulf2 mediated the degradation of syndican-1 - a HSPG receptor on the 

surface of responsible for the uptake of apo-lipoprotein B (apoB) remnants. The upregulation 

of hepatic Sulf2 was associated with decreased clearance of these atherogenic lipoproteins, 

which, in theory, could contribute an increased risk of developing atherosclerosis as a part of 

the metabolic syndrome in mice404.  Notably, a single nucleotide polymorphism (SNP) 

rs2281279 in SULF2 has been previously reported to be associated with lower SULF2 levels 

and also with removal of postprandial triglyceride rich remnants in healthy donors405.   
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Hepatic SULF2 expression in patients with NAFLD 
In Prof Reeves lab, as part of an FP7 European Commission funded award entitled Fatty Liver 

Inhibition of Progression (FLIP), a role for SULF2 in NAFLD was explored in human tissues.  

SULF2 IHC was performed in 36 diagnostic biopsies from patients with NAFLD (by MRes 

student, Rebecca Harrison).  Details of the pilot cohort are shown in Table 5.1. The histological 

severity of NAFLD was scored by liver pathology staff at the Newcastle upon Tyne Hospitals 

NHS Foundation Trust. SULF2 immunostained slides were assessed by two observers (Prof 

Reeves and liver pathologist, Dr Dina Tiniakos), blinded to clinical details at 100x 

magnification, as detailed in Table 5.1.  

Table 5.1: Demographic and clinico-pathological features of NAFLD/NASH patients 
Abbreviations: T2DM; Type-2 Diabetes mellitus, BMI; body-mass index, NAS score; NAFLD 
activity score, ALT; Alanine aminotransferase, AST; Aspartate aminotransferase, ALP; Alkaline 
phosphatase, LDL; Low density lipoprotein and HDL; High density lipoprotein. *NAS – NAFLD 
activity score derived from adding scores for steatosis, ballooning and lobular inflammation. 

Table 5.1 patients (36)  Patients (36) 

Age (median) 55 Sex (male/female) 26/13 

BMI (median) 35.8   

T2DM no/yes 17/19   

Steatosis (0/1/2/3) 0/12/20/4 ALT 69.3 ± 5.8 

Ballooning (0/1/2) 8/22/6 AST 47.2 ± 2.8 

Lobular inflammation (0/1/2) 9/17/9 ALP 95.5 ± 6.7 

Portal inflammation (0/1/2) 17/14/4 Bilirubin 9.5 ± 0.8 

Mallory-Denk bodies (0/1/2) 14/18/2 Albumin 46.1 ± 0.5 

Acid bodies (0/1/2) 21/5/1 Prothrombin time (PT) 10.6 ± 0.13 

Megamitochondria (0/1) 28/2 HBA1c 8.2 ± 1.2 

Lipogranuloma (0/1) 15/21 Triglycerides 2.1 ± 0.18 

Fibrosis (0/1/2/3/4) 6/12/5/10/3 LDL 3.2 ± 0.22 

NAS score* (1/2/3/4/5/6) 2/7/6/10/7/4 HDL 1.1 ± 0.04 

SULF2 Immunohistochemistry - The percentage of SULF2-positive hepatocytes (cytoplasm, cell membrane, 
canalicular) was semi-quantitatively assessed with a score from 0-4 (0 = no hepatocytes positive, 1 = 1-25% 
positive, 2 = 26-50% positive, 3 = 51-75% positive, 4 = 76-100% positive). The SULF2-specific staining intensity 
(SI) was assessed with a score from 0-3 (0 = no staining, 1 = weak, 2 = moderate, 3 = strong). If a range of 
staining intensity was noted the predominant score was used. Presence and intensity of endothelial staining 
was recorded on all cases as an internal positive control. 

% Hepatocyte cytoplasmic score (0/1/2/3) 0/12/14/10 

Hepatocyte cytoplasm intensity score (0/1/2/3) 12/22/2/0 

Hepatocyte canalicular surface score (0/1/2/3) 1/28/3/4 

Hepatocyte cell membrane score (0/1/2/3/) 4/16/12/5 
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The median age of patients was 55 years, with a median BMI of 35.8.  26 were male (66%) and 

19 patients (55.9%) had type 2 Diabetes mellitus (T2DM).  Only 3 of 36 (8%) were graded 

histologically as having cirrhosis, but 10 had grade 3 fibrosis and 21 patients had a NAS score 

greater than 3 – indicating at least an element of NASH being present in over half of the cases. 

SULF2 expression was elevated in patients with NAFLD 
As previously described in Chapter 3, SULF2 was detected by IHC in bile ducts and in 

endothelial cells, serving as an internal positive control. In patients with simple steatosis, 

SULF2 expression was scant and detected on the canalicular surface of the hepatocytes, also 

as previously described in normal liver. In general, however, it was noted that while 

cytoplasmic hepatocyte expression of SULF2 is uncommon in normal liver, SULF2 was present 

at some level in the cytoplasm of every case with NAFLD.  In 24/36, it was present in over 25% 

of hepatocytes.  In fact, the % of hepatocytes with SULF2 cytoplasmic expression did not 

correlate with any markers of histological severity, and in a number of cases the intensity score 

overall was regarded as zero, as the majority of hepatocytes had no cytoplasmic SULF2.  On 

the other hand, the intensity of SULF2 expression did have some notable associations, 

correlating with the steatosis score and the severity of portal inflammation (Spearman 

Correlation steatosis 0.357, p=0.033; portal inflammation 0.392, p=0.020).   

Membranous SULF2 expression was increased in more advanced NAFLD 
Prominent in some cases with NAFLD, was an increase in the % of hepatocytes with 

membranous expression of SULF2. Rather than expression on the canalicular surface, as is 

frequently observed at low levels in normal liver, this increase was most evident on the 

hepatocyte surface membrane.  The data are summarised in Table 5.1, with examples shown 

in Figure 5.1. Notably, membranous expression of SULF2 was significantly associated with 

more severe NAFLD. It correlated weakly with the presence of ballooning (Spearman Rho 

0.344, p=0.04), more so with portal inflammation (Spearman Rho 0.434, p=0.009), the 

presence of acidophil bodies (Spearman Rho 0.519, p=0.006) and megamitochondria 

(Spearman Rho 0.434, p=0.016), as well as with the severity of fibrosis (Spearman Rho 0.466, 

p=0.004).  

SULF2 expression in non-parenchymal cells 
In addition to expression of SULF2 in healthy bile ducts, positive cytoplasmic immunostaining 

of variable intensity was often noted in areas of ductular reaction, or proliferating immature 

bile ducts. Cytoplasmic expression was also noted in some portal lymphocytes and 
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macrophages, although not in every case.  Similarly, positive Kupffer cells and lymphocytes 

were noted within sinusoids, but not in all cases.  

Figure 5.1 SULF2 expression patterns in NAFLD.  Representative images show IHC staining of 
SULF2 in human biopsies from five patients with graded NAFLD (A-F). In (A), with steatosis 
grade 1, no fibrosis and a NAS score of 1, SULF2 was scant, detected in the canalicular and 
sinusoidal areas (black arrows). In (B), with grade 2 steatosis, stage 2 fibrosis and a NAS score 
of 5, SULF2 was present in the hepatocytes, inflammatory cells in the sinusoids, portal areas 
(white arrows) and immature bile ducts (black arrows). In (C), with grade 1 steatosis, stage 2 
fibrosis and a NAS score of 3, SULF2 was expressed in the membrane of ballooned hepatocytes 
(black arrow) and hepatocytes. In (D), with grade 2 steatosis, stage 2 fibrosis and a NAS score 
of 4, membranous hepatocyte SULF2 was notable. In (E and F), with grade 2 steatosis, stage 3 
fibrosis and a NAS score of 6, SULF2 was present in inflammatory cells in areas of lobular 
inflammation (green arrow), in some sinusoidal cells (E), and in inflammatory cells adjacent to 
portal tracts, (black arrows) (F). Images were captured using Aperio Imagescope software at 
x20 magnification.   

In summary, SULF2 was upregulated in liver biopsies from patients with NAFLD, with a distinct 

membranous pattern in those with more advanced disease. Expression in immunoregulatory 

cells was also noted.  To explore further the expression of SULF2, in a longitudinal fashion in 

the development and progression of NAFLD, with an opportunity to characterise the 
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expression further in inflammatory cells as well as hepatocytes, we planned to characterise 

expression in a relevant in an animal model of disease.   

5.2 Chapter 5 aims  

5.2.1 To define the histological changes accompanying disease development in a diet-induced 

murine model of NAFLD-HCC. 

5.2.2 To perform SULF2 focused pathway analyses of RNA-sequencing data from the murine 

NAFLD-HCC model. 

5.3 A relevant murine model for NAFLD/NASH and NASH/HCC 
As part of the FP7 funded FLIP study referred to above, the Reeves/Oakley lab explored a 

number of different experimental mouse models, aiming to identify one that recapitulated 

the features of human NAFLD and NAFLD-HCC. Research Associate Dr Gillian Patman and 

research technician Anna Whitehead were responsible for delivering the model, including the 

handling of the blood and liver tissues. As it is aged patients with the metabolic syndrome and 

NAFLD that are more susceptible to developing HCC402, the selected model centred on 

studying the impact of a fat-rich diet on ageing mice.  For the purpose of studying the impact 

of the metabolic syndrome and HCC, C3H/He mice were chosen as they are known to develop 

impaired glucose tolerance and spontaneous HCC with age. C3H/He mice are less susceptible 

to HCC than B6C3F1 (a hybrid of C57BL/6 ♀ and C3H/He ♂) mice, but more susceptible to HCC 

than the relatively resistant strain C57BL/6. The mice were fed an American life style diet 

(ALIOS), with high fat and sugar water330.  A pilot study in 2012 confirmed the development of 

steatosis and HCC at 1 year of age. Sulf2 expression was assessed in mRNA extracted from 

whole liver by real time PCR.  In the livers of mice fed the ALIOS diet, Sulf2 was significantly 

elevated (p=0.003) and correlated with body weight (Spearman Rho 0.542, p=0.011), liver 

weight (Spearman Rho 0.599, p=0.004) as well as tumour number (Spearman Rho 0.752, 

p<0.0001) and size (Spearman Rho 0.447, p=0.042).  

 



126 
 

 

Figure 5.2 Hepatic Sulf2 is upregulated in ALIOS-fed mice compared 
to matched controls. Graph shows the expression of Sulf2 in the 
liver of 10 control and 11 ALIOS-fed mice. Data are presented as 
mean± S.E.M, ** p<0.01.  

 

 

 

 

Encouraged by these findings, a larger study including animals culled at different time points, 

with formal histopathology grading of NAFLD, was performed thereafter, as summarised 

below and described in more detail in Methods Chapter 2. 

5.3.1 Gross features and Histological characterisation of the ALIOS-fed C3H/He model 
Two groups of C3H/He mice were on control or ALIOS diet for 12, 24, 36 and 48 weeks, and 

two more groups were introduced where the Dietary intervention was co-administered with 

the carcinogen DEN (Figure 5.3).  

Figure 5.3: Work flow of the murine mouse 
model of diet-induced NASH/HCC. Mice on 
dietary intervention alone or with DEN liver 
carcinogen were culled 12, 24, 36 and 48 weeks 
after the intervention. Abbreviation: w; week, 
DEN; Diethyl nitrosamine, n; number of mice. 

 

 

 

ALIOS-fed C3H/He mice exhibited obesity, represented by the increase in their body weight 

compared to the control group. This increase in body weight was significant throughout the 

whole study except for the 12 week time point (Figure 5.4A). Similarly, the livers of ALIOS mice 

were bigger compared to the control group in all study time points (Figure 5.4B). 
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Figure 5.4: ALIOS diet induced obesity and higher liver weight in C3H/He mice. Graphs show 
the change of both body weight (A), liver weight (B) and liver/body weight ratio (C) between 
control (C) and ALIOS (A) fed mice at 12 (n=8 per group), 24 (n=8 per group), 36 (n=8 per group) 
and 48 weeks (n=24 per group). Data are presented as mean ± S.E.M, * p<0.05; ** p<0.01, *** 
p=0.001, **** p<0.001. 

 

The strongest Histological criteria associated the development of human NAFLD and NASH 

includes the grade of steatosis (scored 0-3), the severity of fibrosis (scored as 0-4 stages), the 

presence of lobular inflammation, the presence of hepatocyte ballooning and 

lipogranuloma341. Ancillary diagnostic features include microvesicular steatosis, pigmented 

kupffer cells, the presence of Mallory denk bodies and presence of megamitochodria. These 

histological features were comprehensively assessed in the livers of both the control- and 

ALIOS-fed mice and scores are listed in (Table 5.2A and 5.2B).  

At the 12 week time point, all ALIOS-fed mice developed steatosis scored as grade of 1 or 2 

(Figure 5.5A), while the control-fed mice were graded as 0 and 1 steatosis (Figure 5.5C). 

Inflammatory changes, represented by portal inflammation and lobular inflammation, and 

architectural change (hepatocyte ballooning) were comparable between control and ALIOS 

fed mice at this time point, as was the NAS score (Table 5.2A). No fibrotic changes were 

observed (Figure 5.5B&D).  The ancillary features commonly seen in patients with NASH were 

not observed.  These features are summarised in Table 5.2B 
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Table 5.2 Histological characterisation of the C3H/He mice fed with control or ALIOS diet 

5.2A Classical features for diagnosis and severity assessment in NAFLD and NASH  
 Control Diet ALIOS diet p value 
Steatosis grade (0/1/2/3) 
12 weeks  4/4/0/0 0/5/3/0 0.0196 
24 weeks 0/1/7/0 0/2/5/1 >0.9999 
36 weeks 2/2/4/0 0/0/6/2 0.0326 
48 weeks 4/10/9/0 0/1/19/4 <0.0001 
Hepatocellular ballooning (0/1/2) 
12 weeks 6/2/0 6/2/0 >0.9999 
24 weeks 2/6/0 2/3/3 0.4671 
36 weeks 3/4/1 5/3/0 0.4365 
48 weeks 8/11/4 1/21/2 0.1213 
Lobular Inflammation score (0/1/2) 
12 weeks 4/3/1 5/3/0 0.7063 
24 weeks 7/1/0 5/3/0 0.5692 
36 weeks 6/1/1 2/3/3 0.1058 
48 weeks 12/11/0 1/17/6 <0.0001 
NAFLD activity (NAS) score  
12 weeks 1.375 ± 0.3750 2.125 ± 0.3981 0.2752 
24 weeks 2.750 ± 0.2500 3.500 ± 0.4226 0.2340 
36 weeks 2.375 ± 0.3750 3.625 ± 0.4199 0.0665 
48 weeks 2.522 ± 0.2802 4.417 ± 0.1989 <0.0001 
Portal Inflammation score (0/1/2) 
12 weeks 1/6/1 2/2/4 0.3629 
24 weeks 3/5/0 2/4/2 0.4499 
36 weeks 0/6/2 0/1/7 0.0406 
48 weeks 21/2/0 18/4/2 0.1914 
Peri-sinusoidal fibrosis score (0/1) 
24 weeks 0/8 0/8 >0.9999 
48 weeks 7/16 0/24 0.0039 
Peri-portal fibrosis score (0/1/2) 
24 weeks 3/5 0/8 0.2000 
48 weeks 17/6/0 12/11/1 0.1152 
Fibrosis stage (0/1/2/3) 
24 weeks 0/6/2/0 0/1/7/0 0.0406 
48 weeks 7/10/6/0 0/12/11/1 0.0097 

 

At 24 weeks of age, steatosis in the livers of both ALIOS- and control-fed mice was scored as 

grade 1 and 2 with no statistical difference between the two groups (Figure 5.6). Most of the 

ALIOS fed mice had a score 2 fibrosis, however, 75% of the aged matched mice had a fibrosis 

score of 1, and this higher fibrosis stage in the ALIOS group was statistically significant 

(p=0.0406) from that in the control diet (Table 5.2A). Importantly, hepatocyte ballooning 

(Figure 5.6A&C) was similarly present in both groups. Portal and lobular inflammation 

appeared more common in the ALIOS mice compared to the matched control, but without 

statistical significance (Figure 5.6C). Ancillary features of NASH features were absent in both 

groups at this time point (Table 5.2B). 
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Table 5.2B Ancillary Features of NASH 
 Control Diet ALIOS diet p.value 
Lipogranuloma (0/1) 
12 weeks 8/0 8/0 >0.9999 
24 weeks 8/0 8/0 >0.9999 
36 weeks 8/0 8/0 >0.9999 
48 weeks 22/1 3/21 <0.0001 
Microvesicular steatosis (0/1) 
12 weeks 8/0 8/0 >0.9999 
24 weeks 8/0 7/1 >0.9999 
36 weeks 8/0 8/0 >0.9999 
48 weeks 23/0 16/8 0.0039 
Pigmented Kupffer cells (0/present) 
12 weeks 8/0 8/0 >0.9999 
24 weeks 8/0 8/0 >0.9999 
36 weeks 8/0 7/1 >0.9999 
48 weeks 16/7 9/15 0.0454 
Mallory Denk bodies (0/present) 
12 weeks 8/0 8/0 >0.9999 
24 weeks 8/0 8/0 >0.9999 
36 weeks 8/0 7/1 0.4286 
48 weeks 18/5 10/14 0.0188 
Megamitochondria (0/present) 
12 weeks 8/0 8/0 >0.9999 
24 weeks 8/0 8/0 >0.9999 
36 weeks 8/0 8/0 >0.9999 
48 weeks 20/3 14/10 0.0509 

 

Control mice had grades 0, 1 and 2 steatosis (Figure 5.7A) at the 36-week time point, whereas 

the ALIOS diet increased the steatosis grade in C3H/He mice towards grades 2 and 3 (p=0.03) 

(Figure 5.7B). Consistent with the previous time point hepatocyte ballooning was evident in 

both groups (Figure 5.7A&C), but the development of portal inflammation was statistically 

significant in the ALIOS-fed mice compared to the control group (P=0.04) (Figure 5.7D). Other 

features of NAFLD/NASH remained unchanged (Table 5.2B).  
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Figure 5.5 No major steatotic or fibrotic changes were observed in liver tissue from C3H/He 
mice fed on control or ALIOS diet at the 12-week time point. Representative images show 
H&E and Sirius red stained liver tissue from C3H/He mice fed with control (A,B) and ALIOS 
(C,D) diet. (A) Liver tissue from control-fed mouse, scored as 0 grade steatosis and 0 fibrosis 
(B). (C) Liver tissue from ALIOS-fed mouse, scored as 1 grade steatosis and stage 0 fibrosis (D). 
CV; central vein, PV; portal vein. 
 
 
 

 

 

 

 

Figure 5.6 Both ALIOS and control-fed mice developed ballooning at 24 week time point. 
Representative images show H&E stained liver tissues from C3H/He mice fed with control (A) 
and ALIOS (B&C) diets. (A) Liver tissue from control-fed; this tissue showed few ballooned 
hepatocytes (grade1) (black arrows). (B) Liver tissue from ALIOS-fed mouse, scored as 2 grade 
steatosis, stage 2 fibrosis, hepatocellular ballooning (grade 2) (black arrow) and lobular 
inflammation (black arrow) (C). CV; central vein, PV; portal vein. 

A B C 
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Figure 5.7 Increased steatosis with features of NASH in ALIOS-fed mice, but not the matched 
controls, at 36 weeks Representative images show H&E stain of liver tissues from C3H/He 
mice fed with control (A) and ALIOS (B-D) diet. (A) Liver tissue from control-fed mouse, scored 
as 1 grade steatosis with few ballooned hepatocytes (grade1) (black arrows). (B) Liver tissue 
from ALIOS-fed mouse, scored as 3 grade steatosis and stage 2 fibrosis. (C) Hepatocellular 
ballooning was present (black arrow). (D) Portal inflammation was also evident in this ALIOS-
fed mouse. CV; central vein, PV; portal vein. 

 

At the 48-week time point, all ALIOS-fed mice developed (S2-S3) grade compared to age 

matched chow fed mice (p<0.0001) (Figure 5.8A&B). The presence of lipogranuloma was also 

evident in the ALIOS fed mice but not the control mice (p<0.0001) (Figure 5.8B). In addition, 

livers of the ALIOS-fed mice, but not control mice livers, showed strong fibrotic changes 

(p=0.0097) (Figure 5.8C&D). All of the ALIOS-fed mice (100%, 24/24) developed peri-

sinusoidal fibrosis at compared to 69.5% (16/23) from the controls. Similarly, 74% (17/23) of 

the control mice did not develop peri-portal fibrosis and this percentage decreased to 50% 

when mice were fed on the ALIOS diet (Table 5.2A). Only one mouse in the ALIOS-fed group 

didn’t develop hepatocyte ballooning compared to 12 mice that lacked this feature in the 
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control group (Figure 5.8E). Considering ballooning scored as (0/1/2), no significant 

differences were observed at any time point between the two groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 C3H/He mice fed the ALIOS diet developed characteristic features of human 
NAFLD/NASH at 48 weeks of age. Representative images show H&E and Sirius red staining of 
liver tissues from control (A,C) or ALIOS-fed mice (B,D-F). ALIOS diet induced more steatosis 
(grey arrow), lipogranulomas (black arrows) (B) and fibrosis (D). (E) Hepatocellular ballooning 
(black arrow) was evident in both groups, but this phenotype was more pronounced in ALIOS 
fed mice. (F) Portal inflammation was present in the ALIOS fed mice. 
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Although some control mice did develop quite marked ballooning, overall the presence of 

ballooning was more common in ALIOS fed mice. When ballooning was scored as present or 

absent, this was significantly different (95% of ALIOS diet fed mice versus 65% of control diet 

developed ballooning; p=0.0102). Lobular inflammation was also evident at 48 weeks in ALIOS 

mice, and as a consequence of these mentioned histological changes, the NAS score was 

higher in the ALIOS fed mice compared to the age matched control diet fed mice (p<0.0001) 

(Figure 5.9).  

Figure 5.9 Histopathological differences in the livers of C3H/He mice at 48 weeks, fed either 
control or ALIOS diets. Graphs summarise the changes in steatosis, fibrosis, lobular 
inflammation (Lob. Inflamm) and hepatocyte ballooning (A), lipogranuloma, portal 
inflammation (portal inflamm) and microvesicular steatosis (Microves. steatosis) (B), or the 
NAS score (C) in mice fed with control (C) (n=23) or ALIOS (A) (n=24) diets. Data are presented 
as mean ± S.E.M, ** p<0.01, **** p<0.001. 

 

Other features of NASH including microvesicular steatosis (p=0.0039), pigmented kupffer cells 

(p=0.045) and presence of Mallory denk bodies (p=0.018) were also evident in the ALIOS-fed 

mice rather than in the control group at the 48 week time point (Table 5.2B). A trend towards 

increased in portal inflammation (Figure 5.8F) in ALIOS fed mice was not significantly different 

to control and neither was the presence of megamitochodria. It is important to note that none 

of the mice in either group or any of the study time points was scored as having stage 4 

fibrosis, or cirrhosis (Table 5.2A).  

Taken together, ALIOS feeding of C3H/He mice exacerbated the severity of fatty liver disease, 

more so as the mice aged. The phenotypic changes observed in the livers of the mice were 

similar to those observed in human NAFLD and NASH. A summary of all histological changes 

at the 48 week time point between the study groups is shown in Figure 5.9. 
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5.3.2 Development of HCC in ALIOS-fed C3H/He mice 
As expected in this mouse strain, 5/23 of the control C3H/He mice developed small tumours 

at 48 weeks (21.7%). However, 23/24 (96%) of ALIOS-fed mice developed HCC in the same 

time frame (Figure 5.10). Furthermore, the number of tumours developed in the ALIOS fed 

mice was significantly higher than in control diet mice (2.04±0.4 versus 0.3±0.1, p<0.0001), 

and were typically larger in size in ALIOS fed mice compared to the control group (7.6±1.1 

versus 0.9±0.4, p=0.0003). Concurrent administration of the carcinogen DEN with the diet 

exacerbated the tumour development phenotype, with tumour number (7.9±2.1 versus 

0.7±0.2, p=0.0025) and tumour size (6.3±1.7 versus 2.6±1.1, p=0.08) compared to mice that 

administered DEN and fed a control diet. 

 

Figure 5.10 Aged C3H/He mice developed more HCC when challenged with ALIOS diet 
Representative images show a macroscopic tumour in a fatty liver from ALIOS-fed mice 
compared to a control liver (A), and an H&E stained section of non-tumour (NT) fatty liver 
tissue from ALIOS-fed mouse with a tumour (T) (B).  The graph (C) shows the number of 
tumours in livers of C3H/He mice fed with control (C) and ALIOS (A) alone (grey columns) or in 
combination with DEN (black columns) after 24, 36 and 48 weeks. 

  

5.3.3 The gene expression profile in C3H/He mice 
We wanted to explore changes in Sulf2 in association with histopathological features of NAFLD 

and NASH in a temporal fashion. Also, with greater numbers, we hoped to establish if 

associations with HCC were independent of other contributory factors, such as diet, liver 

weight and histopathological features.  Disappointingly, an exhaustive exploration failed to 

identify a sensitive and specific anti-mouse Sulf2 antibody for the immunohistochemical 

characterisation of Sulf2 expression and cellular localisation in the mouse tissues.  

Consequently our assessments were limited to whole tissue studies at the RNA level.  In the 

hope of characterising these in a more comprehensive fashion, RNA sequencing (RNAseq) was 

performed in tissues from 48 weeks old mice, including 23 non-tumour and 27 tumour liver 
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tissues from the control and ALIOS-fed C3H/He mice. The heat map in Figure 5.11 was 

generated using R package software. The non-tumour and tumour transcriptomic data 

clustered into two distinct groups.  A list of the top 100 differentially expressed genes based 

on the adjusted p value is included in the Appendix 1. 

Figure 5.11 The landscape of C3H/He mice tumour 
and non-tumour transcriptomic data. The heat map 
shows the top 50 differentially expressed genes 
between the non-tumour tissue (green) and the 
tumour tissue (purple) transcriptomic data. Red 
colour indicates gene upregulation, while blue colour 
indicates gene downregulation.  

 

 

 

 

 

 

 

Sulf2 was not markedly changed, but – as expected from the pilot study - it was upregulated 

in the ALIOS group compared to diet matched controls (p=0.0005), albeit with a small fold 

difference (Figure 5.12A). The Sulf2 level was comparable between the tumour and the non-

tumour groups (Figure 5.12B). 

Figure 5.12 The mRNA 
expression levels of 
Sulf2 in non-tumour and 
tumour tissues Graphs 
show the difference in 
sulf2 mRNA expression 
in the non-tumour liver 
tissue from control diet 
and ALIOS-fed mice 
(n=11 per group) is 

shown in (A). Sulf2 expression in the non-tumour versus tumour liver tissues of the C3H/He 
mice (n=23 and 27 respectively) is shown in (B). Data are presented as mean± S.E.M, *** 
p<0.001. 
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5.4 Sulf2 associations with HCC in C3H/He mice 
In keeping with the pilot study, Sulf2 in the whole liver tissues – this time quantified by RNAseq 

– correlated significantly with the development of tumours (Spearman Rho 0.476, p=0.022), 

but more so with the number of tumours (Spearman Rho 0.551, p=0.006) and size of tumours 

(Spearman Rho 0.509, p=0.013) as well as with the tumour burden (Spearman Rho 0.576, 

p=0.004) as estimated using the sum of the diameter of all tumours in an individual mouse. 

The numbers studied were still relatively small and while interesting, by binary logistic 

regression of categorical variables (presence or absence of a tumour; tumours less than or 

greater than 5mm), the associations were not independent of other factors associated with 

tumour development, namely the diet, body weight and liver weight.   

5.5 Sulf2 and histological features of NAFLD in the livers of C3H/He mice 
Bivariate associations between Sulf2 and the graded histological features of NAFLD are 

summarised in Table 5.3, with notable highly significant associations with steatosis, 

inflammation and fibrosis, as well as with some of the other ancillary features of NASH.  

  

 

 

 

 

 

 

 

 

Table 5.3 Association between sulf2 and the histopathological features of the C3H/He mice 

 

 

 Sulf2 (continuous variable) 
 Spearman’s 

Rho p value 

Diet (control vs ALIOS) 0.827 <0.0001 
Body weight 0.582 0.004 
Liver Weight 0.717 <0.0001 
Steatosis (0/1/2/3)  0.772 <0.0001 

Microvesicular steatosis (0/1) 0.582 0.004 

Ballooning (0/1/2) 0.465 0.026 

Lobular inflammation (0/1/2) 0.639 0.001 

Portal inflammation (0/1/2) 0.599 0.002 

Mallory-Denk bodies (0/1/2) 0.669 <0.0001 

Megamitochondria 0.253 0.244 

Apoptotic cells 0.373 0.079 

Lipogranuloma (0/1) 0.840 <0.0001 

Fibrosis (0/1/2/3/4) 0.827 <0.0001 

NAS score (1/2/3/4/5/6) 0.639 0.001 
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5.6 Sulf2 pathways analysis in NAFLD development and progression in the C3H/He mice 
The complete list of differentially expressed genes created by comparing transcriptomic data 

of the ALIOS fed mice versus control-fed mice is in Appendix 2.  In this list, Sulf2 was elevated 

in the ALIOS fed mice, although in a non-significant fashion after correction for multiple testing 

(adjusted p.value=0.06).  Hampered by the lack of a suitable antibody to define more subtle 

changes in cellular source and location, but hypothesising an important biological role in 

NAFLD progression, this trend to Sulf2 elevation was explored using a bioinformatics approach 

in groupings of mice based on grading of steatosis and fibrosis, as hallmarks of disease severity 

and progression. The first focus presented here was on fibrosis.  

5.,6.1 Fibrosis directed bioinformatics analyses with a focus on Sulf2 
Accordingly, mice were grouped into two groups; the first group included mice scored with 

high fibrotic changes (F(2-3); N3, N13, N14, N15, N16, N17, N18, N19, N20, N22, N23 ), while 

the second group involved mice with no or few fibrotic changes (F(0-1); N1, N2, N4, N5, N6, 

N7, N8, N9, N10, N11, N12, N21) (Appendix3).  

Running DE gene analysis between the above groups identified 2746 genes differentially 

expressed, with Sulf2 upregulated (as expected) in the more advanced fibrosis group (Log2FC 

0.56, q.value=0.002).  Subsequent pathway analysis was performed using Ingenuity pathway 

analysis (IPA) software, after applying a cut off value of absolute Log2FC of 0.5 and an adjusted 

p value of 0.05. Activation of different inflammation-related canonical pathways, including 

activation of T-cell, natural killer T cells and phagosomes is shown in (Figure 5.13).  

 

Figure 5.13 Activation of inflammatory pathways in association with more advanced fibrotic 
stages in C3H/He transcriptomic datasets. The bar chart (A) shows canonical pathways 
identified by IPA, ranked according to –log (q.value) of overlap. Orange represents activation, 
blue inhibition, and grey a z-score not calculated in the dataset. The intensity of colour is 
proportional to the increase in absolute activity z-score. The table (B) shows the –log (q.value) 
and z.score of the top 10 activated (orange) canonical pathways from the bar chart. 

A B 
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Notably, cell survival and cell viability were the top activated diseases and bio-functions in this 

high fibrosis associated list, together with activation of different inflammatory responses. 

Signalling pathways associated with different types of neoplasms were among the top 

inhibited diseases and functions (Figure 5.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Viability, homeostasis and inflammation pathways were activated in the C3H/He 
mice liver transcriptome in association with fibrotic stages  The Heat map (A) shows the IPA 
defined deregulation of different diseases and bio-functions, ranked according to –log 
(q.value) of overlap. Orange represents activation, blue inhibition, grey an uncalculated z-
score and white an activity score of zero. The intensity of colour is proportional to the increase 
in absolute activity z-score. The bidirectional bar chart (B) shows the top 10 activated (red 
bars) and inhibited (blue bars) diseases and bio-functions defined, ranked according to the 
activation z.score. 
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As expected in this fibrotic directed list, IPA network analysis also identified pathways 

activated in connective tissue disorders, tissue development and cell-to-cell communications 

(Figure 5.15A). Of note, fibrosis and activation hepatic stellate cells pathways were not among 

the top enriched ones in the dataset. 

Sulf2 didn’t appear in any of the top deregulated canonical pathways in this dataset, although 

diseases and bio-function analysis suggests the involvement of Sulf2 in cytoskeleton 

organisation. This was supported by network analysis (Figure 5.15B) reporting Sulf2 in 

“network 2”. These were genes reportedly involved in directing cell morphology, but also 

associated with a cell-mediated immune response – introducing a previously unsuspected 

candidate role for Sulf2. Also interestingly, upstream analysis identified two novel candidates 

as potential regulators of Sulf2 expression in liver, namely IL2 Inducible T Cell Kinase (Itk) and 

the Transferrin Receptor (Tfrc) (Figure 5.16).  
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Figure 5.15 A sulf2-related network identified in association with advanced fibrosis in 
C3H/He liver tissues The Table (A) shows the top 10 IPA enriched networks, scored according 
to the number of genes in the mouse DE gene list overlapping the network. The image (B) 
shows the 2nd activated network in Table A, “cell morphology, cell-mediated immune response 
and cellular movement“, in which Sulf2 (circle) is involved. Red indicates gene upregulation, 
blue downregulation.  

 

 

 

 

 

 

 

 

 

 

Figure 5.16 itk and tfrc identified as candidate regulators of liver fibrosis related Sulf2 
expression The IPA generated Wheel charts suggest upstream regulators and their candidate 
downstream targets, based on relationships between gene expression in the tissues.  Sulf2 
was identified in both Inducible T cell Kinase (itk) (A) and transferrin receptor (tfrc) (B) wheel 
charts, suggesting their involvement in the upstream regulation of Sulf2 expression in 
association with more advanced fibrosis. Red indicates upregulation of the gene in the fibrotic 
tissues, orange indicates activation of the regulator, while blue indicates inhibition of the 
regulator. An orange line represents upregulation of the downstream gene consequent to 
activation (A) or inhibition (B) of the regulator. A yellow line indicates an inconsistent direction 
of change between downstream gene and the corresponding regulator.  

 

5.6.2 The role of sulf2 in steatosis related pathways in the C3H/He mice 
The second DE gene list created (using R package software) by grouping mice into two groups 

based on the histological scoring of fat deposition in liver tissue. The first group included mice 

with severe steatosis graded as 2-3 (N1, N2, N4, N11, N13, N14, N15, N16, N17, N18, N19, 

N20, N21, N22, N23), while the second group comprised mice that didn’t develop steatosis or 

mice that had steatosis graded as 1 (N3, N5, N6, N7, N8, N9, N10, N12). In this DE gene list, 

Sulf2 was among 1253 DE genes that were significantly upregulated (Log2FC 0.68, q.value=4.6 

x10-5) in the high steatosis group (Appendix 4).  

A B 
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The subsequent IPA canonical pathway analysis of this DE gene list is summarised in (Figure 

5.17). Inhibition of the LXR/RXR pathway and an increase in the degradation of Melatonin, 

Nicotine and Bupropion pathways were the most striking steatosis reported changes. Sulf2 

was not identified as a component gene in any of the IPA defined top canonical pathways. 

 

 

 

 

 

 

 

Figure 5.17 Changes in metabolic pathways in association with advanced steatosis The bar 
chart (A) shows the IPA top 10 changed canonical pathways, ranked according to the –log 
(q.value) of overlap. Orange represents activation, blue inhibition, and grey an uncalculated 
z-score, with intensity proportional to the increase in absolute activity. The table (B) shows 
the –log (q.value) and z.score of top 10 changed canonical pathways.  

 

Pathways activated in diseases and associated with biofunctions were explored next and it 

wasn’t surprising – given the DE gene list was created based of the degree of steatosis - to see 

“fatty acid metabolism” in the top ten list (Figure 5.18), alongside two related to 

gluconeogenesis (synthesis of monosaccarhide and synthesis of D-glucose). Of note, a number 

of pathways related to immune cell infiltration and movement were inhibited in the presence 

of more advanced steatosis. Again, Sulf2 was not involved in any of the aforementioned bio-

functions. 

B A 
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Figure 5.18 Diseases and bio-functions analysis of steatosis related hepatic gene expression 
in C3H/He liver tissues. The IPA heat map (A) shows the deregulation of different diseases 
and bio-functions in the mouse liver tissues, ranked according to –log (q.value) of overlap. 
Orange represents activation, blue inhibition, grey an uncalculated z-score and white 
represents a zero activity score. The intensity of colour is proportional to the increase in 
absolute activity z-score. The bidirectional bar chart (B) shows the top 10 activated (red) and 
inhibited (blue) pathways in steatotic livers, ranked according to the activation z.score. 
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Figure 5.19 A metabolic role for Sulf2 in suggested by Ingenuity Pathway Analysis (IPA) The 
table (A) shows the steatosis associated top 10 enriched networks in the mouse fatty liver, 
scored according to the number of steatosis DE gene overlapping the network. The image (B) 
shows the network ‘4’, entitled “Carbohydrate metabolism, lipid metabolism, small molecule 
biochemistry“, in which upregulated Sulf2 (circle) may play a part. Red indicates gene 
upregulation, blue indicates gene downregulation, while grey indicates non DE genes. 
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IPA was also used to explore lipid metabolism, molecular transport and small molecule 

biochemistry-related networks (Figure 5.19). Sulf2 was identified as controlling carbohydrate 

metabolism, lipid metabolism and small molecule biochemistry, shown as network 4 in the 

table in Figure 5.19A and graphically in Figure 5.19B. 

In summary, Sulf2 was upregulated in the whole liver tissues of 48 week C3H/He mice with 

dietary induced fatty liver, by Sulf2 real time PCR in a pilot study of 21 mice and by exploration 

of its transcript in RNAseq analyses in an independent experiment including 23 mice. However, 

Sulf2 was not identified as a significant dietary intervention induced DE genes by 

bioinformatics analyses of the RNAseq cohort.  When the mice were grouped according to the 

histological scoring, Sulf2 was differentially expressed in some of the lists created, but was not 

one of the top changing genes. Fold differences in Sulf2 were not as striking as other genes, 

perhaps because changes were present in a minority of cells or a particular cellular 

compartment not so well captured in ‘whole tissues analyses’.  Despite this limitation, the 

bioinformatics analyses have raised some interesting associations.  

5.8 Discussion 
Over the last decade a number of approaches have been adopted to find clinically relevant 

biomarkers and novel therapeutic targets for NAFLD/NASH.  The wide spectrum of the disease 

and the lack of experimental models that accurately reflect the whole range of the human 

disease have proved challenging. The increasing burden of NAFLD-HCC, even in the absence 

of cirrhosis, further emphasizes the need for research in this area, including the development 

of experimental models that recapitulate the features of human disease407. 

In the introduction to this chapter, I have put together and presented IHC data generated 

previously by our group, exploring SULF2 expression in biopsies from human NAFLD/NASH 

patients. SULF2 was expressed in a number of different cell types in normal liver, including in 

endothelial cells and bile ducts, as well as at low levels on the canalicular surface of 

hepatocytes, in keeping with essential roles in the liver microenvironment. Notably, 

cytoplasmic expression of SULF2 was present to come degree in every patient with NAFLD. 

Within patients with NAFLD, the more pathological association was with an increase in surface 

membrane expression of SULF2, often associated with a reduction of expression at the 

canalicular surface.  This increase was significant associated with both the presence of 

ballooning and portal inflammation, but most notably with the presence of fibrosis.  Also 

observed was SULF2 expression in immune cells such as lymphocytes and macrophages, more 
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noticeable in those cases with histologically more advanced disease. These data complement 

the pivotal role we believe stromal SULF2 plays in the progression of HCC and the aim of our 

group was to develop an animal model which would enable the further exploration of Sulf2. 

Moving forward, I have described here the tissue characterisation of Sulf2 in a pilot study of 

dietary induced fatty liver disease and HCC, confirming it to be increased and associated with 

tumour stage.   

Subsequently I have analysed phenotypic data in a larger follow up study in C3H/He mice, fed 

with control or ALIOS diet, in which the histopathology of NAFLD and the cancers was 

comprehensively scored by liver pathologist, Dr Dina Tiniakos.  While the ALIOS diet in murine 

models of NAFLD was reported previously330, 331, the use of the C3H/He adipogenic mouse 

strain in the diet-induced NASH was a novel aspect.  In similar studies focused on C57BL/6 

mice challenged with ALIOS diet, ballooned hepatocytes, Mallory-Denk bodies and liver 

fibrosis have not been reported330. Although C57BL/6 mice develop liver tumours, these are 

just a few mm in diameter and too small to characterise330. In our C3H/He mice, in addition to 

the obesity, hyperlipidaemia and impaired glucose tolerance (data not shown), mice also 

developed steatosis, fibrosis, lobular inflammation, Mallory-denk bodies and lipogranuloma – 

regarded as key features of human NASH. In addition, the presence of ballooned hepatocytes 

– an essential diagnostic feature of human NASH - was a common feature in control diet aged 

(48 weeks) C3H/He mice liver (12/23, 52%), exacerbated by ALIOS feeding (23/24, 96%).  

We had aimed to characterise Sulf2 by IHC, exploring temporal relationships in different 

cellular compartments as NAFLD develops and progresses to fibrosis and/or HCC.  However, 

the lack of a suitable sensitive and specific antibody has been a major limitation.  The only 

useful human antibody is a mouse monoclonal and despite significant investment – both in 

technician time and alternative antibody generation – it has not yet been possible to 

characterise murine Sulf2 in the way we had hoped.  

My subsequent focus in this chapter, was on whole liver RNA-seq data from the C3H/He mice. 

Cluster analysis defined two groups which reassuringly reproduced the non-tumour and the 

tumour tissues. As described previously, the Sulf2 increase in liver tissue of ALIOS-fed mice 

compared to control mice was modest and did not reach statistical significance after adjusting 

for multiple comparisons in the whole RNAseq dataset.  We have proposed that this reflects 

the use of whole tissues, lacking the sensitivity to capture increases in a small subset of cells. 
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Regarding the parenchymal cells or hepatocytes, which make up 90% of all liver cells, our 

human data suggest that modest heterogeneous increases in the cytoplasm in the presence 

of even minor degrees of NAFLD – present actually in the majority of our mice.  In Human 

disease, even striking membranous increases were heterogeneous in character, localised in 

steatotic regions.  Furthermore, the human data suggested expression in non-parenchymal 

cells, most consistently bile ducts and endothelial cells present in all tissues regardless of 

NAFLD stage (hence contributing to background), but also present in a variable fashion in 

inflammatory cells which contribute a relatively small proportion of whole liver RNA.  These 

patterns of expression may be biologically important, but challenging to capture by whole liver 

transcriptomic analysis. The generation suitable tool antibodies to characterise mouse sulf2 

will be important for future work and their generation is being pursued with collaborators. In 

the absence of an antibody, an alternative may be to use another techniques like RNA-scope, 

for detecting sulf2 in the mouse tissue.  

Despite the limitations of whole tissues analysis, Sulf2 was differentially regulated in the 

presence of steatosis or fibrosis, corroborating the Human IHC data showing its cytoplasmic 

and membranous elevation in the presence of steatosis, correlating with fibrosis.  

Furthermore, IPA analysis of disease stage specific gene lists has suggested Sulf2 involvement 

in cytoskeleton organisation- and small molecule biochemistry-related networks. Of particular 

note was the suggested relationship between Sulf2 and Itk in the liver tissue. ITK is a non-

tyrosine receptor kinase present in the plasma membrane of T cells, NKT cells and mast cells, 

and it is involved in T cell activation408-410.  ITK regulates the Th2 response in different organs 

and initiates the production of different cytokines and growth factors411-413. Further 

exploration of the interaction between Sulf2 and Itk would be worth pursuing in the future, 

potentially identifying a novel role for Sulf2 in T cell function.   

In conclusion, SULF2 is an exciting candidate contributing to the pathogenesis of NAFLD/NASH.  

For future work, Golbal sulf2 -/- knock-out (KO) mice are available and challenging these mice 

with different diets may be worthwhile, to explore if they are protected from NAFLD or its 

progression to fibrosis and/or HCC. Studies of this nature, in combination with antibody 

generation or tools such as RNAscope, may help to define the roles on mechanisms of this 

extracellular sulfatase in fatty liver disease.  If confirmed as a key driver or master regulator 

of progression, the development of inhibitory molecules or antibodies would be worthy of 

pursuit.  
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Chapter 6: Non hypothesis-driven investigation of regulators of 
NAFLD progression to NASH and HCC 
 
6.1 Background  
Tumourigenesis is a complicated and multistep process involving tumour initiation, 

development and progression414. Tumours usually arise on a background of inherited or 

acquired genetic alterations that divert the affected cells from regulatory mechanisms and 

encourage clonal expansion and invasion415, 416. Genetic alterations can destabilise an organs 

gene expression leading to phenotypic changes that promote cancer- liver tumours arising in 

diseased liver being the focus here. Characterising the transcriptomic changes and genetic 

aberrations associated with premalignant disease and analysing network deregulation 

involved in the development and progression of HCC may identify pathways worthy of pursuit 

as predictive biomarkers or therapeutic targets. Highly heterogeneous in nature, the common 

changes in HCC gene expression have been extensively studied in the hope of understanding 

the tumours biology and generating tumour subclasses useful for guiding therapy57-59, 87, 229, 

417.  As yet these efforts have not impacted clinical practice, but transcriptomic analyses 

combined with ‘immunophenotyping’ of the tumour and its microenvironment may change 

that.  The Llovet group229 has recently used this kind of approach to show that HCC can be 

categorized into an “immune active” and “immune inactive” subclasses, with the ‘immune 

active class’ potentially including the patients most likely to benefit from treatment with 

checkpoint inhibitors.  Thus, these types of study may have particular importance for the 

translation of immunotherapies, helping to identify the patients most likely to benefit, as well 

as those best treated with combination approaches or entry into ongoing clinical trials.  

In the previous chapters, we demonstrated that the presence of SULF2 in the TME was a poor 

prognostic marker in HCC patients. Moreover, SULF2 had a unique expression pattern in 

human NAFLD, associated with the presence of NASH and fibrosis. We then explored of Sulf2 

in the livers of C3H/He mice, demonstrating its upregulation in association with steatosis and 

fibrosis in a targeted or ‘hypothesis’ driven fashion, while identifying some interesting 

candidate upstream regulators and mechanisms that may be relevant to NAFLD progression.  

Although this directional-driven transcriptomic analysis was biologically relevant and 

underpinned by a human NAFLD scoring system341 adapted for ALIOS mice, recent studies 

suggest that this supervised grouping approach has limited value as it does not necessarily 

reflect ‘real changes’ in the tissues and changes in mice often poorly mirror the most 
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important changes in the human context418.  Notably, there were DE genes identified in both 

supervised and unsupervised clustering that had far greater magnitude change and 

significance than Sulf2.  Thus, non-directional analysis of the transcriptomic data may, in 

theory, help to identify novel pathways and candidate therapeutic targets involved in disease 

progression418. 

6.2 Chapter 6 aims 
6.2.1 To perform an un-supervised clustering of the transcriptomic landscape of the non-

tumour liver tissues of the C3H/He mice to identify candidate drivers of tumour development. 

6.2.2 To explore identified candidates in biopsies from patients with NAFLD. 

6.2.3 To assess the overlap between the human HCC transcriptome and C3H/He tumour 

transcriptome. 

6.3 Non-hypothesis driven exploration of the C3H/He NAFLD transcriptome  
6.3.1 Unsupervised clustering of the transcriptomic data of C3H/He mice non-tumour liver tissue 
Unsupervised clustering of the mouse non-tumour transcriptomic data identified two sub-

clusters (Figure 6.1). The first group was defined as group 1 (G1) and included all the control-

fed mice plus two ALIOS-fed mice. The second group was defined as group 2 (G2) and included 

all the ALIOS-fed mice plus one control-fed mice (Figure 6.2A).  

Assessment of the correlation between the transcriptomic clustering and different gross and 

histopathological criteria of the C3H/He mice revealed that mice in G2 cluster were obese with 

bigger livers and higher VAT weight than G1 mice (Figure 6.2). Non-tumour liver tissue of the 

G2 mice had higher steatosis grade, more fibrotic changes, a higher NAS score and more 

lipogranulomas compared to tissues of G1 mice (Figure 6.2). Notably, tumours in G2 mice 

were larger than tumours in G1 mice (Figure 6.2). Professor Reeves previously analysed the 

predictors of tumour development in the C3H/He mice (Appendix-5) showing that the liver 

weight, body weight, presence of lipogranuloma and steatosis grade were strongly associated 

with HCC development. This implies that unsupervised clustering of the C3H/He mice 

transcriptome was associated with the key predictors of the tumour development. Of note, 
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most of the mice in G2 cluster developed tumours compared to mice in G1; however, with no 

statistical significance (Figure 6.2P). 

Figure 6.1 Identification of two 
distinct hepatic non-tumour 
sub-clusters in the C3H/He 
mouse transcriptomic data The 
heat map shows the top 50 DE 
genes in the G1 and G2 mice. G1 
group is colour coded yellow, 
while G2 group is colour-coded 
green. Upregulated genes are 
denoted in red and 
downregulated genes are 
denoted in blue. 
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Figure 6.2 Unsupervised hepatic clustering of C3H/He mice transcriptome was associated 
with features of the metabolic syndrome, more advanced NAFLD and HCC. Graphs show the 
grouping of mice in G1 and G2 clusters based on diet (A), liver weight (B), Lipogranuloma (C), 
Tumour size (D), tumour burden (E), Body weight (F), steatosis (G), fibrosis (H), NAS score (I), 
VAT weight (J), pigmented Kuppfer cells (K), Mallory-Denk body (L), tumour number (M), 
microvesicular steatosis (N), lobular inflammation (O), presence of tumour (P), portal 
inflammation (Q), megamitochondria (R) and hepatocellular ballooning (S). Data is presented 
as mean±s.e.m, *p<0.05, **p<0.01 and ***p<0.001. 



151 
 

6.3.2 Pathway analysis of the G2 versus G1 DE gene list using IPA 
A list of DE gene between G2 group (more diseased) and G1 group (less diseased) was created 

and included 3900 DE genes between the two groups (Appendix-6), exceeding the number 

identified in supervised clustering studies based on histological characterisations of mice liver 

tissue in (chapter 5) – supporting a role for un-supervised analysis when looking at gene 

expression data. The Top 10 enriched canonical pathways in the IPA analysis were exclusively 

T cell-related (Figure 6.3), strongly supporting the association between lobular inflammation 

and tumour development in the C3H/He mice (Appendix-5).  

Figure 6.3 Activation of T cell canonical pathways was evident in the C3H/He non-tumour 
subclass G2 versus G1 comparison The IPA bar chart shows the top 10 activated canonical 
pathways in the mouse non-tumour tissue, ranked according to –log (q.value) of overlap. 
Orange represents pathway activation, blue represents pathway inhibition, grey represents 
an uncalculated z-score and white represents zero activity score. The intensity of colour is 
proportional to the increase in absolute activity z-score.  

 

Cell survival and cell viability were the top ‘disease and bio-function pathways’ activated in 

the G2 group transcriptomic data compared to G1, while ‘organismal death and apoptosis bio-

function’ pathways were inhibited (Figure 6.4). This supported data previously generated by 

PhD student, Ahmed Mahdi. He showed that the number of Ki67 positive hepatocyte nuclei, 

where Ki67 is a marker of cell proliferation, was elevated in the non-tumour tissue of the 
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C3H/He mice fed the ALIOS diet and correlated with the development of HCC in our murine 

model (Data not shown). 

Figure 6.4 Cell survival was the top IPA identified bio-function activated in C3H/He non-
tumour tissue subclass G2 versus G1 The heat map (A) shows the deregulation of different 
diseases and bio-function pathways in the mouse non-tumour tissues, ranked according to –
log (q.value) of overlap. Colour orange represents bio-function activation, blue represents bio-
function inhibition, grey represents an uncalculated z-score and white represents an activity 
score of zero. The intensity of colour is proportional to the increase in absolute activity z-score. 
The bidirectional bar chart (B) shows the top 10 activated (red bars) and inhibited (blue bars) 
diseases and bio-functions in the mouse non-tumour tissue, ranked according to the activation 
z.score. 

 

The IPA upstream analysis tool was used to identify candidate regulatory molecules that 

potentially control the transcription of genes in the analysed list. Csf2, Ifnɣ, Cd44, Mitf and 
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Ptger2 were the top regulators identified in the non-tumour gene list.  Cd44 was the regulator 

with the greatest level of expression in G2 versus G1 (Figure 6.5). 

 

 

 

 

 

Figure 6.5 IPA upstream analysis identifies the top upstream regulators in the hepatic non-
tumour G2-G1 comparison in C3H/He mice. The bar graph shows the top 5 regulators of the 
expression of DE genes in the G2-G1 list. Red bars represent the activation z-score of the 
upstream regulators, and the blue bars represent the log2FC of their expression.  

 

Regulator-effect analysis, using an IPA tool that links the top upstream regulators with top 

changing diseases and bio-function, ranked Cd44 first amid other regulators (Table 6.1), 

followed by Il27. Bioinformatics suggested a role for Cd44 in the recruitment of T lymphocytes 

to the diseased liver via regulating the expression of key chemokines and T cell attractors 

(Figure 6.6).   

Rank Symbol Disease and functions Consistency score 

1 Cd44 Homing of T lymphocytes 3.479 

2 Il27 Differentiation of mononuclear leukocytes 3.357 

3 Il27 Hematopoiesis of mononuclear leukocytes 3.357 

4 Il17 Lymphopoiesis  3.357 

5 Tcr Cytotoxicity 3.207 

Table 6.1 The top 5 molecules in the IPA regulator-effect analysis of G2-G1 DE gene list. Cd44 
was ranked first molecule regulating T cell recruitment in diseased mice liver 
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Figure 6.6 Cd44 regulates the expression of key chemokines responsible for T cell 
recruitment Network analysis identified the elevated expression of genes regulated by Cd44, 
including those involved in recruitment of T cells to the site of injury in diseased non-tumour 
liver tissues of C3H/He mice. The colour orange of Cd44 indicates positive regulation of the 
process. Red colour indicates upregulation of genes downstream to Cd44. The orange colour 
of the “homing of T lymphocytes” function indicates activation of the process as a results of 
upregulation of upstream genes.   

 

In conclusion, IPA suggested an important role for T cells in the pathogenesis of NAFLD and 

NAFLD-HCC in the C3H/He mice. Upregulation of T cells chemokines, influenced by Cd44, 

potentially drives the infiltration of T cells to the liver in response to fat associated damage. 

6.3.3 Pathway analysis of the G2 versus G1 DE gene list using GSEA 
Gene set enrichment analysis (GSEA) is another powerful platform for analysing gene lists and 

is commonly cited in peer reviewed publications. The G2-G1 gene list was analysed against 

the GSEA molecular signatures database (MSigDB) that is composed of hallmark, positional, 

curated, motif, computational, gene ontology (GO), oncogenic and immunological gene lists. 

GSEA identified Macrophage-Enriched Metabolic Network (MEMN) as the top enriched 

network amongst all pathways in the MSigDB (Figure 6.7A) suggesting a role for macrophages 

in disease progression. Complementing the IPA analysis, the top 10 GSEA immune panel-

enriched pathways showed activation of CD4 and Treg cells, together with activation of other 

immune cell-related pathways like B cells and myeloid cells (Figure 6.7B). 
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Figure 6.7 GSEA analysis confirms the activation of immune cell-related pathways in the G2-
G1 comparison Panel (A) shows the gene set enrichment of the ‘macrophage enriched 
metabolic network’. Key: NES; normalised enrichment score, FDR; false discover rate, FWER; 
family wise error rate. The graph in (B) shows the top 10 enriched pathways in GSEA immune 
signatures. Data are ranked according to the normalised enrichment score (NES). 

 

The GSEA Hallmark signature analysis revealed activation of a number of different mechanistic 

pathways, including activation of NF-kB and IL6/STAT3 pathways (Figure 6.8). This finding was 

of particular note due to the reported link between their activation in the non-tumour tissue 

of patients and the recurrence of HCC57. In other words, activation of these pathways in the 

C3H/He non-tumour mouse liver tissues supports the validity of the preclinical model as one 

relevant to the study of the development of HCC in human disease.     

 

 

 

 

Figure 6.8 GSEA hallmark analysis showed activation of NF-kB and STAT3 pathways in livers 
of G2 versus G1 mice Gene set enrichment of NF-kB and STAT3 pathways G2-G1 comparison. 
Key: NES; normalised enrichment score, FDR; false discover rate, FWER; family wise error rate. 

 

In summary, GSEA analysis supported IPA findings, highlighting the importance of T cell 

pathways in the disease progression in C3H/He mice. In addition, GSEA identified 

macrophages as potential contributors to this tumour-favouring environment. Activation of 

A B 
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key inflammatory molecular pathways might explain the progression of simple steatosis to 

advanced stages including HCC.  

6.4 Investigating the role of macrophages and T cells in livers of C3H/He mice 
6.4.1 Expression of Cd44 in mouse liver tissue  
Pathway analysis of the non-tumour tissue proposed a role of macrophages and T cells in liver 

disease progression in C3H/He mice, with a suggested link between Cd44 and the process of 

T cell infiltration. Cd44 IHC was performed to explore the protein levels and cellular source of 

Cd44 in liver tissue of C3H/He mice, together with IHC staining for Cd68 and F4/80 

macrophage markers. Notably, Cd44 was expressed exclusively in macrophages in both 

control and ALIOS groups (Figure 6.9). The number of Cd44 positive macrophages in control-

fed mice was 5 fold less than Cd44 positive macrophages in ALIOS fed mice (14.32±2.39 in 

control mice versus 88.79±9.099 in ALIOS-fed mice). There was a modest increase in Cd68 

(66.67±4.066 versus 93.46±4.4 positive cells/HPF) and F4/80 (49.91±6.44 versus 118±22.34 

positive cells/HPF) (Figure 6.9) positive macrophages. In combination, given the higher fold 

diet induced change in Cd44 macrophage count relative to total macrophage count, the data 

support increased infiltration but also the acquisition of Cd44 positive macrophage 

phenotype.  

 

 

 

 

 

 

 

Figure 6.9 A preferential increase in Cd44 positive macrophages in lipogranuloma rich areas 
of steatosis in ALIOS-fed C3H/He mice Representative images show IHC stain for Cd68 (A) and 
Cd44 (B) in liver tissues of ALIOS-fed mouse. Lipogranulomas were Cd68 and Cd44 positive. 
Images were captured using Aperio Imagescope software at x20 magnification. Graphs show 
the number of Cd44 (C), Cd68 (D) and F4/80 (E) positive macrophages in control and ALIOS-
fed mice (n=12 per group). Data are presented as mean ± s.e.m; ** p<0.01, *** p=0.001, **** 
p<0.001. 
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Histological assessment also revealed that lipogranulomas, congregations of macrophages 

around cell-free lipid droplets, were the strongest predictor of HCC development in the 

C3H/He mice, and were rich in Cd44 and Cd68 positive cells. When mice were grouped into 

Cd44 high (above median number of Cd44 positive macrophages) and Cd44 low (below 

median), a significant association between Cd44 and the presence of lipogranuloma was 

confirmed (lipogranuloma was absent in 10/11 of Cd44 low mice, while all Cd44 high mice had 

lipogranuloma, chi square p<0.0001). On applying similar groupings to Cd68 and f4/80 

macrophages, there were no significant associations with the presence of lipogranulomas 

(Cd68 p=0.084; f4/80 p=0.198). The development of tumours in C3H/He mice correlated with 

the number of Cd44 (Spearman rho 0.561, p=0.007) and Cd68 (Spearman rho 0.509, p=0.019), 

but not f4/80 (Spearman rho 0.401, p=0.065) positive macrophages.  

In summary, macrophages surrounding the lipogranulomas in the C3H/He mice acquired a 

Cd44 positive macrophage phenotype that was associated with the development of HCC. 

6.4.2 CD44 positive macrophages and HCC development in patients with NAFLD  
The translational impact of the association between Cd44 and the development of HCC in the 

C3H/He mice was assessed in human disease by counting the number of CD44 and CD68 

positive macrophages in non-tumour liver biopsies from patients with NAFLD, with and 

without HCC. This cohort included 42 patients with a median age of 67 years, 64.3% of whom 

(27/42) had developed HCC.  In keeping with the animal model (NAFLD-HCC in the absence of 

cirrhosis), cirrhosis was absent in 31/42 (75.6%) of patients. The median BMI of the patients 

was 31.35 and 23/42 (57.5%) had T2DM.  

The number of CD44 and CD68 positive macrophages in livers of patients with NAFLD-HCC was 

significantly higher than that in NAFLD patients who didn’t have HCC (Figure 6.10).  
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Figure 6.10 CD44 and CD68 positive macrophages were elevated in non-tumour tissues of 
NAFLD-HCC Graphs show numbers of CD44 positive (A &B) and CD68 positive (C & D) 
macrophages per at least 5 HPF, in the non-tumour liver biopsies from NAFLD patients with 
and without HCC, in all cases (n=42) (A,C) or excluding cirrhotic cases (n=31) (B,D) excluded 
the cirrhotic cases. Data are presented in mean±s.e.m, ****p<0.0001.      

 

The number of CD44 positive macrophages was also strongly associated with age (Spearman 

rho 0.660, p<0.0001), and tumour number (Spearman rho 0.758, p<0.0001) with a weaker 

association with T2DM (Spearman rho 0.344, p=0.04). When considering only the macrophage 

counts in the non-cirrhotic cases, the number of CD44 positive macrophages remained 

significantly higher in patients who developed HCC (Figure 6.10). The association between the 

number of CD44 and CD68 positive macrophages was very strong regardless of presence or 

absence of cirrhosis (Spearman rho 0.736, p<0.0001 for all patients and Spearman rho 0.744, 

p<0.0001 for the non-cirrhotic cases) (Figure 6.11).  
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Figure 6.11 The number of CD44 positive macrophages in NAFLD correlated with the number 
of CD68 positive macrophages. Graphs show the association between the number of CD44 
and CD68 positive macrophages in all patients (A) and in non-cirrhotic cases (B).  

 

In conclusion, macrophage counts in the non-tumour tissues of patients with NAFLD was 

higher in those with HCC compared to those without, supporting a role for CD44 in tumour 

development. The association between CD44 and CD68 cell counts supports the observation 

that macrophages were the primary cell source of CD44 in diseased human liver. The number 

of CD44 positive macrophages remained higher in liver biopsies of NAFLD patients who 

developed HCC independently of the presence of cirrhosis.     

6.4.3 Exploring the role of different chemokines in macrophage recruitment in mice 
Increased infiltration of steatotic livers with macrophages raised questions about the 

processes underlying their accumulation, with suspected roles for increased expression and 

production of certain monocyte/macrophage chemokines. These include CCL5, CCL4 and 

SPP1, released in response to damage, that attract macrophages to sites of injury419, 420. 

Investigation of the expression level of these macrophage-attracting chemokines in the non-

tumour DE gene list confirmed upregulation of Ccl5 (p<0.0001), but not Ccl2 (p=0.25) in the 

liver of ALIOS mice compared to the control mice. Spp1 or osteopontin, a known ligand of 

CD44421, was also upregulated in ALIOS mice (p=0.001). mRNA validation of this by RT-PCR 

confirmed the upregulation of Ccl5 and Spp1 in ALIOS versus control mice, but the 

upregulation of Spp1 didn’t reach the statistical significance (Figure 6.12). Looking for the 

cellular source of chemokines, recent reports suggested hepatocytes as one possible source 

of the expression of Ccl5422 and Spp1423, so the expression of both genes was investigated in 

vitro in lipid loaded mouse hepatocytes.  
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Figure 6.12 Hepatic expressions of Ccl5 and Spp1 
were upregulated in ALIOS versus control 
C3H/He mice. Graph shows the upregulation of 
Ccl5 (light grey) and Spp1 (dark grey) in ALIOS 
versus control-fed mice (n=12 per group). 
Expression is shown as the relative level of 
transcriptional difference (RLTD) using gapdh as a 
control. Data are expressed as mean ± s.e.m; 
*P<0.05. 

 

 

 

Hepatocytes isolated from C57BL/6 mice were treated with either bovine serum albumin 

(BSA) or Oleate/palmitate for 24 hours to see the effect of lipid on the expression profile of 

Ccl5 and Spp1. The levels of Ccl5 and Spp1 in lipid loaded hepatocytes; however, didn’t change 

(Figure 6.13) compared to their level in hepatocytes treated with BSA control.  

Figure 6.13 ccl5 and spp1 levels were comparable 
between control and lipid loaded mouse 
hepatocytes in vitro. Graph shows non-significant 
upregulation of Ccl5 (light grey) and Spp1 (dark grey) 
in hepatocytes treated with control or with 
oleate/palmitate for 24 hours. Expression is shown as 
the relative level of transcriptional difference (RLTD) 
using gapdh as a control. Data are presented as 
mean±s.e.m of 3 biological replicates (n=3). 

 

 

 

In summary, liver expression of Ccl5 and Spp1 was upregulated in response to the ALIOS diet 

in vivo, and this might contribute to higher macrophage counts in the ALIOS mouse tissue. 

Lipid loading of hepatocytes in vitro was not associated with increases in these chemokines. If 

damaged hepatocytes are the source, this might be in association with other DAMPs and/or 

TGFβ with lipids, rather than lipid loading alone. Alternatively, these chemokines may be 

secreted from other cell types in response to injury.  
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6.4.4 Investigating the link between macrophages and T cells recruitment 
6.4.4.1 The association between the macrophages and T cell counts in C3H/He mice 
The link between the macrophages and HCC was supported by the bioinformatics analyses 

and IHC studies in murine and human tissues. IPA and GSEA analyses also implicated another 

type of immune filtrate, suggesting a role for T cells in disease pathogenesis. Given that 

monocytes and macrophages may favour T cell tolerance within the diseased liver 

environment424, we next investigated the interplay between T cells and macrophages. Joao 

Mauricio, a PhD student in our group, did IHC staining and scoring for Cd4, Cd8 and Foxp3 T 

cell subtypes (Appendix-7). Although the counts of the three T cell types were significantly 

higher in the ALIOS mice compared to control mice, the number of Cd4 T cells (Spearman Rho 

0.701, p<0.0001) rather than Cd8 T cell counts (Spearman Rho 0.410, P=0.058) was associated 

with tumour development. In addition, the number of Foxp3 positive Cd4 T cells was higher in 

mice who developed HCC compared to those who didn’t (16.33±3.20 versus 8.35±2.68; 

p=0.041). This supported the GSEA immune-signature analysis (Figure 6.7) that revealed an 

enrichment of Cd4 and Foxp3-related pathways. We created categorical datasets by dividing 

C3H/He mice into two groups, based on the median number of counts, for each immune cell 

subtype in order to study associations between different macrophage phenotypes and the T 

cell subsets. Table 6.2 shows a strong association between macrophages of Cd44 phenotype 

and the infiltration of different T cell subtypes into the liver of C3H/he mice. There was no 

association between Cd68 or F4/80 with T cell counts. 

 Cd4 Foxp3 Cd8 

Fisher 

t.test 

Spearman 

Rho 

Spearman 

p.value 

Fisher 

t.test 

Spearman 

Rho 

Spearman 

p.value 

Fisher 

t.test 

Spearman 

Rho 

Spearman 

p.value 

cd44 0.009 0.636 0.001 0.03 0.548 0.008 0.009 0.636 0.001 

cd68 0.198 0.365 0.095 1 0.083 0.712 0.67 0.183 0.416 

f4/80 0.086 0.455 0.035 0.198 0.365 0.095 0.395 0.273 0.219 
Table 6.2 Hepatic Cd44 positive macrophages were positively associated with different T cell 
subsets. Fisher exact t.test and Spearman correlation were used to explore associations 
between categorical data. Significant associations are shown in bold. 
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The strong association between Cd44 counts and Foxp3 and Cd4 positive cells was notable 

given that the three cell counts were also associated with the development of HCC in C3H/He 

mice (Figure 6.14). Interestingly, Foxp3 positive T cells were detected in the periportal 

steatotic areas in mice liver tissues where lipogranuloma were common (Figure 6.15) and the 

number of Foxp3 positive T cells was significantly associated with the presence of 

lipogranuloma (Spearman Rho 0.533, p=0.009). The presence of lipogranulomas was also 

associated with Cd4 and Cd8 T cell count (Cd4 Spearman Rho 0.525, p=0.01; Cd8 Spearman 

Rho 0.502, p=0.019). 

 

 

Figure 6.14 Cd44 macrophages correlated with Foxp3 and Cd4 T cell counts. Graphs show the 
associations between the numbers of Cd44 positive macrophages and the number of Foxp3 
(A) and Cd4 (B) positive T cells in C3H/He mice (n=12 per group).   

 

 

 

 

 

 

 

 

Figure 6.15 Accumulation of T-reg cells in areas rich with Cd44 positive macrophages. 
Representative images show IHC stain for Cd44 (A) and Foxp3 (B) in liver of ALIOS-fed mouse. 
Cd44 positive macrophages accumulated in the portal areas around lipogranuloma (A; black 
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arrows); an area enriched with Foxp3 positive Cd4 T-reg cells (B; black arrows). Images were 
captured using Aperio Imagescope software at x20 magnification. 

6.4.4.2 Exploring the T cell chemokines responsible for T cell recruitment in C3H/He mice 
Mining the list of DE genes to identify candidate T cell chemokines revealed an elevated 

expression of classical T cell attractants Cxcl9 (p=7.85E-08) and Cxcl10 (p=2.53E-07) in livers of 

ALIOS-fed mice compared to age matched controls. In addition, the level of the specific Treg 

attractant Ccl22 (p=0.013), but not Ccl17, was also upregulated in the steatotic livers. This was 

confirmed at the mRNA level (Figure 6.16) in both control and ALIOS-fed mice and the results 

were reproducible. 

 

 

 

 

 

 

 

Figure 6.16 Upregulation of different T cell chemoattractants in vivo in livers of ALIOS fed 
C3H/He mice. Graph shows the increased expression of Cxcl9, Cxcl10 and Ccl22, but not Ccl17 
in control- (light grey) and ALIOS- (dark grey) fed mice. Expression is shown as the relative 
level of transcriptional difference (RLTD) using Gapdh as a control. Data are expressed as mean 
± s.e.m; *P<0.05; ** p<0.01, n=12 mice per group. 

 

The association between hepatic Cxcl9, Cxcl10 and Ccl22 and the count of different T cell 

subsets is listed in table 6.3. In summary, Cxcl9 was the only chemokine that was associated 

with the T cell counts in the C3H/He mice, while Cxcl10 showed no significant associations 

with different T cell infiltrates. Interestingly, Ccl22 was strongly associated with the infiltration 

of foxp3 T cells and cd4 cells, but not the Cd8 T cells, confirming the specificity of this 

chemokine in attracting T cells of Foxp3 regulatory phenotype. 
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Table 6.3 Cxcl9 and Ccl22 levels were associated with Cd4 and Foxp3 T cell counts. Spearman 
correlations between categorical datasets are shown. Significant associations are in bold. 

 

6.4.4.3 Investigation of the link between macrophages and T cell chemokines 
We have shown the Cd44 macrophage count to be associated with the infiltration of different 

T cell subsets, and we have also suggested an association between Cd44 positive 

macrophages, Cd4 and Foxp3 positive T cells and the development of HCC. This association 

between macrophages and T cells might be a result of macrophage-induced expression of T 

cell chemoattractants, as suggested from the IPA regulator analysis (Figure 6.6). In fact, the 

number of Cd44 positive macrophages was strongly associated with Cxcl9 (Spearman Rho 

0.603, p=0.004) and Ccl22 (Spearman Rho 0.597, p=0.003) (Figure 6.17); both of which were 

strongly associated with recruitment of Cd4 and Foxp3 positive T cells to the injured liver.  

 

 

 

 

 

 

 

Figure 6.17 Cd44 positive macrophages correlated with key T cell recruiting chemokines in 
C3H/He mice Graphs show the association between the numbers of Cd44 positive 
macrophages and Cxcl9 (A) and Ccl22 (B) levels in the non-tumour livers of C3H/He mice, n=21. 
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Notably, none of the other macrophage phenotypes (Cd68 or F4/80 positive macrophages) 

were associated with the expression of the above cytokines, adding another tier of support a 

role for Cd44 in recruitment of T cells to the fat-loaded livers of C3H/He mice (Table 6.4). 

Table 6.4 cd44 positive macrophages were associated with T cell chemokine expression in 
C3H/He mice. Spearman correlation was used. Significant associations are in bold. 

 

The above association might imply that macrophages (of Cd44 phenotype) can modify the 

liver microenvironment, increasing the recruitment of T cells and consequently the 

development of HCC in C3H/He mice. Depending on the cellular source of each T cell 

chemokine, this macrophage-regulated cross-talk could be directly via macrophage-secreted 

chemotactic factors or indirectly via interaction with other cell types within the diseased liver 

niche. 

6.4.4.4 Investigation of the effect of macrophage polarisation on the autocrine secretion 
of T cell chemokines 
Bone marrow-derived monocytes (BMDMs) were isolated from C57BL/6 mice as described in 

the materials and methods. Polarisation of BMDMs from M0 (unpolarised macrophages) into 

M1 classical inflammatory macrophage phenotype or M2 restorative macrophage phenotype 

was confirmed morphologically (Figure 6.18) and at the mRNA levels (Figure 6.19).  

 

 

 

 

Figure 6.18 Treatment of mouse BMDMs with LPS/Ifnƴ or Il4/Il13 changed their polarisation 
into M1 and M2 macrophages respectively. Images show the morphological changes 
accompanying the change from (M0) into the inflammatory macrophage (M1) or restorative 
macrophages (M2) phenotypes. M1 macrophages acquired a rounded, fried-egg like 
morphology, while M2 macrophages were more elongated and spindle in shaped. Images 
were taken at 50x magnification using Zeiss software, n=3 biological replicates. 

 Cxcl9 Ccl22 

Spearman Rho Spearman p.value Spearman Rho Spearman p.value 

Cd44 0.603 0.004 0.597 0.003 

Cd68 0.362 0.116 0.343 0.128 

F4/80 0.399 0.073 0.075 0.740 

M0 M1 M2 
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Upon stimulation with lipopolysaccharides (LPS) and interferon-ƴ (Ifnƴ), the unpolarised M0 

macrophages acquired an M1 fried-egg like shape, while M0 macrophages treated with both 

Il4 and Il13 adopted a spindle like shape typical of the M2 phenotype (Figure 6.18). Gene 

expression profiles for markers of different macrophage phenotypes was explored, and M1 

macrophages showed upregulation of Il6, Tnfα and Nos2 markers compared to M0 and M2 

macrophages (Figure 6.19A). On the other hand, M2 macrophages showed the upregulation 

of the M2 classical markers Arg1 and Ch3i3, compared to M1 and M0 macrophages (Figure 

6.19B) further supporting the success in the induction of macrophage polarisation. Other 

markers of M2 macrophages were, on the other hand, comparable between the three 

phenotypes (Figure 6.19B). 

 

 

 

 

 

 

Figure 6.19 Upregulation of classical M1 and M2 markers in BMDMs polarised with either 
LPS/Ifnƴ or Il4/Il13. Graphs show the gene expression of the classical M1 markers tnfa, Il6 and 
Nos2 (A) and M2 markers Arg1, Ch3i3, Bank1, Tg2 and Itgm1 (B) in M0 (black bars), M1 (light 
grey) and M2 (dark grey) macrophages. Expression is shown as the relative level of 
transcriptional difference (RLTD) using Gapdh as a control. Data are presented as mean ± s.e.m 
of 2 biological replicates (n=2), * p<0.05, ***p<0.001. 

 

The Cd44 level was comparable between M0 and M1, while slightly decreased in M2 

macrophages, albeit with no statistical significance (Figure 6.20A). Notably, Cd44 was highly 

expressed in all the three macrophage phenotypes (average cycle number of 22), suggesting 

a poor correlation with hepatic macrophages (low in resident macrophages by IHC) and those 

derived from Bone Marrow, with limited relevance for further parallels in the Cd44 context.   

On the other hand, M1 polarised macrophages showed strong upregulation of Ccl22 and Ccl17 

compared to M0 and M2 macrophages (Figure 6.20B). This upregulation was significant in 

Ccl22 rather than Ccl17. 
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Figure 6.20 Polarisation of mouse BMDMs show difference in the level of ccl22, but not cd44 
and ccl17. Graphs show the levels of Cd44 (A), Ccl22 and Ccl17 (B) in M0 (black bars), M1 (light 
grey) and M2 (dark grey) macrophages. Expression is shown as the relative level of 
transcriptional difference (RLTD) using Gapdh as a control. Data are presented as mean ± s.e.m 
of 2 biological replicates (n=2), * p<0.05. 

 

In summary, polarisation of DMDMs into M1 and M2 macrophage phenotypes was 

successfully achieved. M1 macrophages showed higher levels of the Treg chemokine Ccl22 

(formerly called macrophage derived chemokines (MDC)) compared to other macrophage 

phenotypes, while Ccl17 and Cd44 levels were comparable among different phenotypes. A 

better way to study the phenotype of the Cd44 positive macrophage would ideally be 

comparing the polarisation status of macrophages isolated from diet- challenged C3H/He mice 

based on their cd44 expression pattern (Cd44high versus Cd44low).      

6.4.4.5 Investigation of the effect of macrophage polarisation on the paracrine secretion 
of T cell chemokines from hepatocytes 
CXCL9 and CXCL10 were reported to be expressed by diseased hepatocytes in patients with 

chronic HCV infection425, so we hypothesised that macrophages might stimulate hepatocytes 

to produce chemokines that, in turn, induce the recruitment of T cells. Isolated mouse 

hepatocytes were treated in vitro with CM from M0, M1 and M2 macrophages for 24 hours, 

and the expression of Cxcl9 and Cxcl10 was measured. Hepatocytes treated with M1 

macrophages showed dramatic upregulation of cxcl9 and cxl10 compared to hepatocytes 

treated with M0 and M2 CM (Figure 6.21).  
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Figure 6.21 The upregulation of Cxcl9 and Cxcl10 in mouse hepatocytes is induced by M1 
macrophage secretome. Graphs show the levels of Cxcl9 and Cxcl10 in mouse primary 
hepatocytes treated with complete media or CM from in M0, M1 and M2 macrophages. 
Expression is shown as the relative level of transcriptional difference (RLTD) using Gapdh as a 
control. Data are presented as mean ± s.e.m of 3 biological replicates (n=3), ** p<0.001, 
****P<0.0001. 

 

In summary, in vitro studies showed that M1 macrophages contributed to the recruitment of 

T cells in an autocrine fashion (production of Ccl22 from macrophages) or in a paracrine 

fashion via cross-talk with parenchymal cells to produce Cxcl9 and Cxcl10. Further validation 

for the role of Cd44 in the production of T cell chemokines is still outstanding. 

6.5 The association between human and mouse tumour transcriptomic data 
6.5.1 Exploring the overlap between the mouse tumour RNA-seq data and the human TCGA gene 
expression profile  
The reason for analysing the C3H/He mice non-tumour transcriptomic data was to detect 

factors which might contribute to the development of NAFLD-HCC in the absence of cirrhosis. 

In order to investigate whether the HCC developed in the C3H/He mice would mirror human 

HCC, we compared C3H/He tumour RNA-seq data with publically available Tumour Cancer 

Genome Atlas (TCGA) transcriptomic database. Sirintra Nakjang from the Newcastle 

bioinformatics unit has analysed the human TCGA of 374 patients and 50 normal tissue 

samples. Unsupervised class discovery of the human data identified 6 robust HCC metagene 

signatures (defined as V1-V6, blue colour) and one non-tumour tissue signature (defined as 

V7, light green colour) shown in the heat map (Figure 6.22).  

NAFLD-HCC transcriptome data (denoted in dark blue) in this cohort distributed between 

different metagenes and failed to form coherent signature, implying that the presence of 

other stronger factors driving this metagene signature.  

Cxcl9 in hepatocytes Cxcl10 in hepatocytes 
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Figure 6.22 Overlapping signatures between Human TCGA and C3H/He mice transcriptome. 
The heat map shows the TGCA gene expression derived metgene level (V1-V7), which defined 
subgroup membership (red indicates high metagene levels, blue indicates low levels). Each 
row represents a metagene and columns are different samples. These 7 metagenes split 
normal tissue (NT) from tumour tissues (NAFLD and non-NAFLD) as well as splitting tumours 
samples into several subgroups. Overlapped metagenes are defined by black boxes, mouse 
non-tumour and tumour transcriptome are highlighted by green box and orange boxes. 

 

The mouse non-tumour transcriptome overlapped with the human non-tumour tissue 

metagene (V7 signature; denoted in green Figure 6.22). Of note, mouse tumour transcriptome 

also overlapped with the human non-tumour signature, but to lesser extent compared to the 

non-tumour tissue. The reason for this might be due to the contamination of the sequenced 

mice tumours from the adjacent non-tumour liver tissue. In contrast, the mouse tumour 

transcriptome profile, but not the non-tumour profile, showed a signature in the human HCC 

V2 metagene (denoted in red; Figure 6.22) reflecting a resemblance between C3H/He mice 

tumour transcriptome and a certain subclass of human HCC. 

6.5.2 Investigating the gene signature shared between C3H/He and human TCGA tumour data  
The DE gene list was created comparing gene transcription profile of V2 human metagene 

with other human metagenes (Appendix-8). GSEA analysis of this list showed strong 

enrichment of a particular human HCC subclass with DE genes in this metagene (Figure 6.23).  
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Figure 6.23 Mouse tumour gene expression profile represents a specific subclass of HCC 
patients. The table (A) shows the top 5 overlapping human HCC subgroups with the human 
V2 metagene signature using GSEA. Gene set enrichment scores of the top enriched human 
HCC subclass that is characterised by high proliferation and high AFP levels (B-C).   

 

This human HCC subclass was characterised by high proliferation, chromosomal aberration 

and high AFP levels. The above data was complimented from the fact that afp was the top DE 

gene when comparing mouse tumour versus mouse non-tumour expression profile 

(Appendix-1). Thus, tumours in C3H/He mice might provide a good preclinical model, relevant 

particularly to the human HCC subclass characterised by high proliferation index. 

6.5.3 Exploring common causative oncogenic pathways in C3H/He tumours and V2 human metagene   
Analysing the DE lists of the human V2 metagene and the mouse tumour versus non-tumour 

against the GSEA oncogenic signatures revealed common pathways responsible for tumour 

progression, as shown in Figure 6.24  
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Figure 6.24 Top oncogenic pathways shared between the human V2 signature and mouse 
tumour transcriptomics The heat map (A) shows the top 10 activated oncogenic pathways in 
the human metagene V2 and mouse tumour transcriptomics using GSEA software, 
represented by –log (qvalue of overlap). Gene set enrichment score of the NRF2 pathway in 
the human V2 signature is shown in (B) . Western blotting of NRF2, pERK1/2, total ERK1/2 and 
GAPDH house keeping gene in tissue lysates from tumour and matched non-tumour of 4 
different ALIOS-fed mice (C). 

 

The NRF2 oncogenic pathway was the top activated pathway in the human V2 metagene and 

was also activated in the mouse tumour tissue (Figure 6.24). On the other hand, activation of 

KRAS pathway was the top enriched pathway in the mouse tumour versus normal data with 

similar activation in the human signature. In fact, this data confirmed what Gillian Patman, 

from our group, showed by WB years ago. She noticed an upregulation of both NRF2 and 
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pERK1/2 proteins in mouse tumour tissue compared to matched non-tumour controls (Figure 

6.24). In conclusion, the tumour developed on the background of ALIOS diet resembled a 

group of HCC patients with unique phenotypic features. This subclass was characterised by 

the activation of NRF2 and ERK oncogenic pathways. 

6.7 Discussion 
Early molecular programming studies used microarray analysis to link the change in 

organism’s gene expression profile with different physiological and pathological features426, 

427. This research area was significantly improved after the introduction of the whole genome 

high throughput next generation sequencing (NGS) that provided a faster and more cost-

effective way to study molecular datasets428, 429. The combination of RNAseq, with advanced 

data analysis pipelines has aided comprehensive characterisation of the molecular landscape 

and gene expression of different pathological conditions,  especially in the cancer field430. Early 

microarray studies in paraffin embedded formalin fixed resections from HCC in patients 

undergoing resection failed to characterise a tumour gene signature predicting patients’ 

prognosis57. Instead, this study identified a liver non-tumour gene signature that predicted 

HCC patients’ outcome. Authors also found an enrichment of different inflammatory 

pathways in the non-tumour tissue of patients, like IL6/STAT3 and NF-kB pathways57. Other 

studies centred on HCC molecular classifications were discussed in the introduction chapter. 

In this chapter, unsupervised clustering of the non-tumour C3H/He mice transcriptomic data 

identified an important role of inflammation in HCC development. Interrogation of IPA and 

GSEA analyses of this DE list revealed an enrichment of macrophages, CD4 and FOXP3-related 

pathways. Analysis also showed an enrichment of cell proliferation and survival pathway in 

line with activation of STAT3 and NF-kB pathways in the diseased non-tumour tissue.  The 

RNAseq pathway analysis corroborated the previous histopathology characterisation showing 

that during accumulation of lipids in ALIOS-mice tissue, Lipogranulomas - cell free fat droplets 

surrounded by macrophages - were the strongest predictor of HCC development in the mice. 

This macrophage phenotype was particularly characterised by Cd44 and Cd68, rather than 

F4/80 positive. A previous study has suggested a cancer associated role for CD44, showing 

CD44 expression in the non-tumour liver tissue to predict poorer HCC patients’ outcome431. 

Another study showed that the presence of CD68 positive monocytes in the peri-tumoral 

regions was also associated with poorer outcome in HCC patients432.  
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As shown by the bioinformatic analysis, the number of different T cell subsets was higher in 

livers of ALIOS fed mice. The number of Cd4 positive and Foxp3 positive, rather than Cd8 

positive, T cells were associated with the tumour development. Cd44 positive macrophages 

were the only macrophage phenotype associated with the number of infiltrating T cell subsets. 

Histological assessment of ALIOS-liver tissue showed an enrichment of Treg cells in the areas 

with Cd44 positive lipogranuloma. Moreover, Cd44 positive macrophages were associated 

with chemokines responsible for the recruitment of Treg cells. In combination, these data 

support a key role for Cd44 in the induction of immune suppressive premalignant 

microenvironment characterised by increase the infiltration of Treg cells424.  

Rather than analysing the DE gene list produced by comparing the ALIOS tumour and the non-

tumour transcriptomic data, we projected these data against the tumour and non-tumour 

metagene signatures provided by our non-hypothesis clustering of the human TCGA data. This 

human HCC 6 signature classification was previously created by another group433. The normal 

human liver metagene was enriched from the mouse non-tumour transcriptomic data, while 

a certain human tumour metagene was exclusively enriched from our mouse tumour data. 

Further analysis of the human subclass represented by this metagene identified a unique 

group of patients with high proliferation and activation of ERK/NRF2 pathways. This patient 

subclass was originally described by Chiang58 among 5 different HCC subclasses and it was 

characterised also by higher frequencies of 4q loss and 13q loss and lower frequencies of 6q 

loss. 

In conclusion, the ALIOS fed C3H/He mice recapitulated the features of human NASH and 

NASH/HCC. This model represents a valuable tool to study the mechanisms related to the 

development of and progression of HCC in the patients with the metabolic syndrome, 

particularly in the absence of cirrhosis. 
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Chapter 7: Discussion, conclusion and future directions 

The current staging systems and treatment options of human HCC 
The global incidence of HCC is 1/10000 person per year ranking the sixth most common cancer 

and the third cause of cancer related mortality5. HCC is the predominant form of primary liver 

cancer and is mostly preceded by chronic liver diseases434. The development of HCC in Asia 

and sub-Saharan Africa is attributed to the prevalence of HBV infection and ingestion of 

Aflatoxin-B435, while HCV, alcohol consumption, and metabolic syndrome are among the 

common causes of HCC in USA and Europe41, 436. Prevalence of HCC reached a plateau in 

certain areas in Europe and Japan; however, HCC is on the rise in the USA and developing 

countries437. The advant of DAAs in the eradication of viral hepatitis reduced the number of 

chronically-infected patients who are more likely to develop HCC with age24, 438. Safety profile 

and the non-inferior risk for HCC development once the cirrhosis is established are the major 

limitations of treatment with the DDAs25. A large body of evidence supports the increased risk 

of HCC development on the background of metabolic syndrome and its other co-morbidities. 

In NAFLD patients, retrospective studies made an association between obesity, T2DM and 

metabolic syndrome with the development of HCC439. Male, aged NAFLD patients with high 

BMI are more likely to develop HCC compared to non-obese controls440, and T2DM is reported 

to be an independent risk factor for the development of HCC441. To this end, the active role of 

NAFLD and metabolic syndrome in setting the stage for the development of HCC primes the 

need for more in depth studies to characterise and validate novel therapeutic targets to HCC. 

Median life expectancy of HCC patients is stage-dependent, but at best, it doesn’t exceed 2 

years in the advanced stage HCC349, 442, so novel therapeutic targets might be efficient alone 

or in concert with the existing treatment protocols to improve the outcome of HCC patients.  

The Barcelona Clinic Liver Cancer (BCLC) prognostic assessment system is paired with 

treatment protocols to manage patients with HCC taking into account the stage of the tumour, 

other related symptoms and the degree of liver function preservation443. Patients who had 

solitary tumour of less than 5cm, or up to three nodules of less than 3 cm with preserved liver 

functions and no extrahepatic diseases are staged as BCLC-0 and BCLC-A, and they benefit 

from tumour resection, ablation or transplantation444. Absence of cirrhosis is the benchmark 

for tumour resection in early stage patients with HCC. Tumour recurrence and absence of 

approved adjuvant or neo-adjuvant therapies for patients undergoing resection are the main 

limitation of the procedure444. Despite the high survival rate in patients undergoing liver 
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transplantation as a better alternative to resection in early stage HCC, the availability of donor 

remains the main obstacle445. No adjuvant therapy is given to those who are in the waiting list 

for liver transplantation, thereby increasing the risk of disease progression446. Necrosis-

inducing ablation is the third option for early stage HCC patients, and is highly recommended 

for patients with single malignant focus447. Ablation is considered curative in single nodules 

less than 2cm in size, and the survival of Child-pugh stage-A patients undergoing ablation is 

similar to those having resection448. If histological examination is not necessary for the 

treatment strategy and the liver transplantation is not possible, resection should be a second 

line therapy after ablation in very early stage HCC patients444. Patients with larger multifocal 

tumours, preserved liver functions and no distant metastasis are staged as BCLC stage-B and 

would benefit from transarterial chemoembolization449. Repeating the chemoembolization 

should be considered if the necrosis is established after two rounds, or if the second 

chemoembolization induces substantial necrosis after initial progression following the first 

treatment444. If tumour progresses upon transarterial chemoembolization, treatment with 

sorafenib should be considered. The only available treatment for patients with advanced HCC 

(BCLC-C stage) is the tyrosine kinase inhibitors sorafenib349 as a first line therapy, and 

regorafenib442 and cabozantinib450 as second line treatment. Patients with end-stage HCC 

(BCLC-D) are not amenable for transplantation as they have the poorest survival and the best 

supportive care seems to be the only treatment for this category444. Despite the efforts 

exerted in the management of HCC, the 5-year survival of patients with HCC doesn’t exceed 

at best 12%434 priming the need for more effective therapy. 

The role of immune editing in the development of HCC 
The development of HCC is mostly preceded by chronic liver diseases, and the inflammatory 

response is an integral part of the liver damaged state. The activation of the non-parenchymal 

cells within liver microarchitecture and the infiltration of inflammatory cells help the 

resolution of acute liver damage caused by drugs, viral infection or fat deposition. However, 

repeated cycles of damage, hepatocyte regeneration, release of reactive oxygen species (ROS) 

and DNA damage together with the presence of different immune cell subtypes provide a 

fertile environment for the development of HCC216, 451. An elegant study by Llovet et al, 

published in Gastroenterology in July 2019452, supports the substantial role of the immune 

infiltrate in the non-tumour chronically-diseased livers in patient progression into HCC in 

cirrhotic patients. Authors of this study identified an immune cancer field (ICF) in the 
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surrounding non-tumour liver tissue in more than half of patients who developed early stage 

HCC. Activation of classical inflammatory pathways (NF-kB, IL6/STAT3 and IL2/STAT5) as well 

as different T cells and macrophage pathways was the hallmark in the analysed non-neoplastic 

tissues. Interestingly, this non-tumour ICF signature was associated with poor prognosis in the 

analysed cohort, in line with other studies about the role of the non-tumour signatures in 

predicting the prognosis of HCC patients57. Three distinct molecular subtypes were further 

identified within the ICF group, and were defined as high infiltrate ICF (characterised by more 

T, B cell and macrophage infiltration pathways), immunosuppressive ICF (characterised by T 

cell exhaustion and M2 macrophages pathways) and pro-inflammatory ICF (IFNɣ activation 

and M1 macrophage pathways). Validation of the ICF signature in another cohort of cirrhotic 

patients within the HCC surveillance programs confirmed its existence in nearly 51% of 

patients. Among the three ICF subgroups, the presence of the immunosuppressive ICF was the 

strongest predictor for the development of HCC. Finally, there was no correlation with this ICF 

signature and the peri- or intra-tumoral immune infiltration reflecting that once the tumour 

is established, the stromal infiltration is regulated by the tumour cells themselves rather than 

by the surrounding tissue452.  

We focused on combining the RNA-sequencing, unsupervised clustering, and pathway analysis 

to leverage the impact of the murine model of NAFLD-HCC established in our group. In 

particular, we aimed for unleashing the contributing factors and the features responsible for 

the development of dietary induced-HCC in C3H/He mice in the absence of established 

cirrhosis. C3H/He mice challenged with the ALIOS diet faithfully recapitulated the histological 

features of the human NAFLD and NASH. In addition, C3H/He mice developed HCC with age, 

and this phenotype was exacerbated in mice on the ALIOS diet. The liver weight, the presence 

of lipogranuloma, steatosis grade, lobular inflammation and stage of fibrosis strongly 

predicted the development of HCC regardless to the diet.  

The gene expression data of the C3H/He non-tumour liver tissue split into two groups, and 

most of the ALIOS-fed mice were clustered in the G2 group that represented more chronically 

injured liver. Mice in G2 group showed all features associated with the development of HCC; 

namely, larger liver weight, lipogranuloma and higher tumour burden and tumour size 

compared to mice in G1 cluster. Analysing the DE gene list resulting from comparing the above 

non-tumour clusters showed the activation of macrophage and T cell pathways consistent 

with what was shown in Llovet’s study in human non-tumour liver tissues452. Histological 



177 
 

characterisation to the different immune infiltrates in the non-tumour tissue revealed a 

significant increase in the number of macrophages and the T cell infiltrates in the diseased 

livers. Of these, the number of cd4 positive T cells and foxp3 positive cells and the number of 

cd68 positive macrophages were associated with tumour development. Bioinformatics 

suggested cd44 as one of the main drivers in the G2 vs G1 comparison, and IHC stain for cd44 

in mice showed a predominant expression in the macrophages. The number of cd44 positive 

macrophages was strongly associated with the presence of lipogranuloma; the strongest 

predictor of HCC. The cd44 macrophage count was also strongly associated with the 

development of HCC in C3H/He; a finding that was validated in human NAFLD/NASH non-

tumour tissues. The number of CD44 positive macrophages was higher in the non-tumour 

tissue of NAFLD/NASH patients who developed HCC compared to those who didn’t develop 

HCC regardless to the presence of cirrhosis. This is clinically relevant in many aspects; first, 

CD44 macrophage count can be considered as predictive marker for tumour development in 

non-cirrhotic NAFLD patients by setting up a certain threshold for CD44 positive macrophage 

above which NAFLD patient could develop HCC. This subclass of patients is not subjected to 

the surveillance programs453, and lack of predictive markers increases patients’ risk of 

developing HCC with age. Preventive strategies against HCC development could also consider 

targeting CD44 in macrophage as a prophylactic therapy against HCC in the high risk patients. 

Virtually all reports about CD44 in non-malignant conditions link its expression with different 

immune cell activation, trafficking and homing processes454-458. Wang J and Kubes P458 showed 

that sterile liver injury stimulates the infiltration of peritoneal cavity macrophages in a cd44 

dependent manner. Once recruited to the liver, these macrophages acquire the restorative 

M2 macrophage phenotype contributing to the process of injury repair and healing458. It is 

noteworthy saying that authors didn’t measure cd44 level in the liver-recruited macrophages 

once acquired the M2 phenotype to see whether or not this phenotype switch changes cd44 

expression. cd44-/- KO mice challenged with Methionine-choline deficient (MCDD) diet 

showed macrophages skewed to M2 polarisation compared to control mice. In the same 

context, macrophages isolated from cd44-/- KO mice were less responsive to LPS activation456. 

Expression of cd44 in different macrophage phenotypes showed counterintuitive results. 

Stimulation of human THP1 monocyte cell line with M1 and M2 stimuli showed increased 

CD44 expression in M1 macrophage phenotype compared to M0 and M2 macrophages. M2-

polarised THP1 cells; however, expressed CD44 isoform v6 that was associated with better 
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uptake of hyaluronic acid-based material compared to M1-polarised macrophages that had 

the strongest CD44 expression459. Another study by a different group showed upregulation of 

cd44 in bone marrow-derived monocytes stimulated with either LPS/IFNɣ (M1 stimuli) or with 

IL4 (M2 stimuli) adding more complexity to identify the association between cd44 expression 

and different macrophage polarisation460. Further studies are needed to confirm the 

phenotype associated with CD44 expression. 

Regardless to the phenotype of the cd44 positive macrophages, IPA analysis and the 

association between cd44 macrophage counts with cell count of T cell subsets suggested a 

role of cd44 in regulating the homing of different T cell subsets in the lipid-loaded livers. The 

infiltration of T cells to the injured livers was influenced by the upregulation of cxcl9 in mice 

tissue, and cxcl9 expression in the C3H/He mice was strongly associated with the number of 

cd44 positive macrophages.  In vitro, cxcl9 level was strongly upregulated in isolated mouse 

hepatocytes incubated with CM from M1 classical macrophages compared to hepatocytes 

stimulated with CM from other macrophage polarization. In line with this, the level of ccl22, 

another T cell chemoattractant whose mRNA levels were associated with cd44 positive 

macrophages, was upregulated in the in vitro experiments in M1 macrophages compared to 

other macrophage phenotypes. Of note, CCL22 was reported to be associated with the TAM 

phenotype461, 462. This might be explained by the difference between the tumour infiltrating 

macrophages and macrophages that exist in the precancerous-lesion. The paradigm of M1-

M2-TAM is grossly challenged with recent findings of macrophages that carry shared M1/M2 

features463-465. Further work is needed to characterise the macrophage phenotype in the 

C3H/He mice that is linked with infiltration of immune suppressive T cells and with the 

development of HCC. 

CAFs are important modulators of human HCC progression     
The HCC milieu includes the transformed hepatocytes as well as other non-parenchymal cells 

including CAFs, TMAs, infiltrating T cells and angiogenic factors466. The role of the stromal 

components within the tumour microenvironment is to induce the proliferation and 

metastasis of the tumour cells, to favour immunosuppressive environment and to increase 

the tumour vasculature466. In line with this, the infiltration of αSMA-positive CAFs is associated 

with tumour recurrence after resection in HCC patients351. The accumulation of TAMs in HCC 

is also associated with the larger tumour size and poor patients’ outcome225. Elevation of 
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serum VEGF is associated with tumour stage and size and worse prognosis467. Hence, tumour 

stroma is rewarding target to downstage tumour and improve patient outcome.    

The elevation of SULF2 in HCC resections was associated with post-resection tumour 

recurrence304; however, the cellular source of SULF2 and its prognostic role in diagnostic HCC 

biopsies was yet to be determined. Our studies showed that CAFs were the predominant 

source of SULF2 in the HCC biopsies, and patients whose HCC biopsies were CAF-SULF2 

positive showed the poorest survival. In vitro studies using fibroblast cell line with 

manipulated SULF2 level supported the profound role of stromal SULF2 in inducing aggressive 

tumour microenvironment. HCC cells cultured in SULF2-rich CM or co-cultured with SULF2 

expressing fibroblasts were more proliferative, migratory and invasive compared with cells 

grown in the absence of SULF2. Moreover, tumour spheroids grown in stromal SULF2 positive 

media were less amenable to the cytostatic effect exerted by sorafenib in comparison with 

spheroids grown in SULF2 deficient conditions. This finding was further supported by IHC stain 

for SULF2 in biopsies from sorafenib-treated HCC patients where the CAF-SULF2 positivity was 

associated with sorafenib tolerability and poor survival. SULF2 works in different, but yet 

complimentary, mechanisms depending on its cellular source. SULF2 KD from the fibroblasts 

reduced the activation of PDGFRβ/JNK/STAT3 pathway leading to deficient secretion of the 

pro-tumourigenic cytokines IL6 and IL8. Previous studies showed that in vivo activation of JNK 

pathway in mice liver stromal cells was responsible for regulating the fibroblast secretome 

preceding the development of experimental HCC137. Consistently, the role of SULF2 in the 

expression and production of IL6 in lung cancer cell lines was previously proved384. Yet, this is 

the first study to link SULF2 with the production of IL6 and IL8 cytokines in the context of HCC. 

SULF2 and SULF2-regulated secretome activated NF-kB pathway in the tumour cells in a 

paracrine fashion. This SULF2-dependent activation of NF-kB pathway upregulated the 

stemness marker CD44 in the tumour cells and this was associated with the proliferation and 

invasion seen in the HCC cell lines. Activation of NF-kB pathway and upregulation of CD44 was 

evident even if the cells were treated with sorafenib, thereby suggesting this pathway as the 

driver of sorafeib resistance being a feature of CAF-SULF2. This finding was further supported 

from HCC biopsies where SULF2 positive CAFS existed in the vicinity of tumour cells with 

positive membranous CD44 and nuclear Pp65 (RelA) positivity. Recently, Michael Karin’s 

group has published an elegant study that support the role of CD44 in the process of HCC 

development and progression186. In this study, IL6 secreted from activated macrophages was 
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associated with CD44 expression in hepatocytes and progenitor cells, treatment of primary 

hepatocytes with recombinant IL6 induced CD44 expression. CD44 was then responsible for 

switching of P53 surveillance program leading to the development and progression of HCC186. 

As a regulator of IL6 production and secretion, we provide a novel evidence about the role of 

SULF2/IL6/CD44 axis in the transformed/malignant hepatocytes.   

In 2017, Llovet and his group identified a novel immune profile of HCC229 by integration of 

transcriptome analysis, IHC stain and patients data. HCCs in this immune class showed more 

T cell infiltration and more PD1 and PDL1 positivity compared to the immune-null group. 

Further dissection of the immune profile within the immune class showed two distinct groups; 

namely referred as “immune active” and “immune exhausted” groups. The immune active 

class was characterised by less active stroma, better patient outcomes and activation of 

different effector cell pathways like IFNɣ reflecting the activation of the anti-tumour 

immunity. In clear contrast to the immune active class, the immune exhausted class was 

characterised by the enrichment of T cell exhaustion, M2 macrophages and worse patient 

prognosis. Notably, this class was associated with active stroma and activation of TGFβ as a 

driver pathway to this immune class229. Accumulating data from our group has suggested a 

role of SULF2 to this immune exhausted class. We show that SULF2 level was significantly 

higher in the “immune exhausted” subclass compared to the “immune active2 and “immune-

null” classes. IHC stain to CD45, CD4, CD8, CD68 and CD66b in HCC biopsies previously stained 

with SULF2 showed an association between CAF-SULF2 and the CD45 and CD68 positive 

counts (data not shown). Given the strong upregulation of SULF2 in the LX2 cells upon 

treatment with rhTGFβ, we propose another inevitable role of SULF2, as an integral part of 

the active tumour stroma, in the infiltration of macrophages and leukocytes to the tumour; 

and this role is mediated by TGFβ. These data were collected in the time course after 

completion of this thesis and are considered as supporting material for the CAF-SULF2 

manuscript.   

Conclusion 
In summary, the focus of the current study was to explore the active role of different non-

parenchymal cells present in the proximity of the tumour niche on the development and 

progression of HCC. This study used both hypothesis driven and non-hypothesis driven 

approach to reveal the irrefutable role of SULF2 within the tumour microenvironment side by 



181 
 

side with characterization of cd44, cxcl9 and ccl22 as possible novel therapeutic targets that 

predispose malignancy in the chronically injured livers.  

Future directions 
• As a part of the Epos grant, RNAseq was performed on NAFLD/NASH patients with 

different disease stage in a multi-centre study in Europe. Among different DE genes, 

SULF2 was upregulated in the advanced disease stage compared to simple steatosis. 

In addition, SULF2 was differentially hypo-methylated in patients with more advanced 

disease explaining the SULF2 upregulation in the RNAseq. These data corroborated our 

preliminary SULF2 IHC in NAFLD/NASH patients, thereby encouraging further 

characterisation of SULF2 as a rewarding therapeutic target in NAFLD/NASH. 

• Sulf2 expression in the murine mouse model of NAFLD-HCC was associated with 

certain histopathological criteria of mice, most importantly with the development and 

the size of the developed tumours. Sulf2-/- mice are available, and challenging Sulf2-/- 

mice with ALIOS diet might give an insight about the role of Sulf2 in tumour 

development and progression. 

• Bioinformatics suggested a novel association between Sulf2 and Itk in the fibrosis-

related DE gene list linking Sulf2 with inflammatory changes accompanying fibrosis. 

Exploring this association between SULF2 and inflammation could provide a novel 

therapeutic angle in fibrotic patients, but could also indirectly reduce the number of 

patients developing HCC after deposition of the fibrotic scars. Isolation and FACS 

sorting of peripheral and liver resident T cells can identify the SULF2-specific T cell 

subtype and its clinical and translational relevance.    

•  Unsupervised clustering of the non-tumour tissue provided a significant role of the 

inflammatory changes in setting the scene for the development of HCC reassuringly 

reproducing what was very recently published. CD44 positive macrophages 

orchestrate the microenvironment favouring an immune suppressive and anti-tumour 

evasion mechanisms. The phenotype of CD44 positive macrophages should be 

carefully characterised with the hope to produce tool therapy that could, in theory, 

reduce CD44 levels and confer the reduction of the tumour development of the 

preclinical NAFLD-HCC models before testing in diseased NAFLD/NASH patients. 

Rerunning the ALIOS model with isolation and characterisation of the CD44 positive 

macrophages is one of the important future directions for our group. 
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• The interplay between different cell compartments in the liver microarchitecture could 

influence the infiltration of immune subsets preceding the development of 

malignancy. On the other hand, certain immune cells are responsible for the anti-

tumour activity and removal of senescent liver parenchymal cells. Careful investigation 

should dissect the pathways responsible for the tumour development from these 

responsible for tumour eradication before adopting immune-related therapeutic 

strategies in the diseased patients.      

 

Erratum 
Myofibroblast cells used in these studies were subsequently confirmed to be of primate 

COS cell origin, rather than being human hepatic stellate ‘LX-2’ cells. 
After submission of this thesis to the post graduate office for examination, Professor Oakley 

was informed by a collaborator performing routine checks on shared ‘LX-2 cells’, that they 

were likely of primate rather than human origin. Our group have subsequently confirmed that 

the cells called ‘LX-2’ cells used in this thesis are in fact derived from COS monkey embryonic 

fibroblasts.  While the SULF2 mechanistic in-vitro experiments presented remain valid, as COS 

cells are frequently used as a tool cell line producing SULF2, submission of my first author 

SULF2 manuscript for publication has been delayed pending confirmatory mechanistic studies 

in additional validated human cells.  The thesis examiners were subsequently informed and it 

was agreed that an addendum be added, to highlight this issue, in the final copy of the thesis, 

post examiners corrections, submitted to Newcastle University.   
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Appendix 

 

Appendix-1 List of top 100 DE genes in tumour versus non-tumour comparison  
symbol log2FoldChange pvalue padj 
Afp 8.44263783 1.87E-179 4.14E-175 
Akr1c18 8.840960881 1.97E-163 2.18E-159 
Igdcc4 8.615427477 2.77E-125 2.05E-121 
Gpc3 8.170529223 3.29E-119 1.83E-115 
Alox5 8.730666917 8.86E-105 3.93E-101 
Kif5c 8.030015624 4.74E-102 1.75E-98 
Msantd3 5.605312611 3.11E-95 9.86E-92 
Ipcef1 6.562819115 7.56E-93 2.10E-89 
Galnt6 5.825448131 2.00E-92 4.94E-89 
Prom2 10.04177835 4.95E-92 1.10E-88 
Rasgrp2 3.57811106 1.49E-91 3.01E-88 
Col4a3 6.950164867 1.68E-89 3.10E-86 
Lama5 4.910575041 4.21E-87 7.18E-84 
Dusp5 5.335998931 3.20E-86 5.07E-83 
Tnfrsf12a 3.748370371 7.15E-86 1.06E-82 
B4galt6 4.589440132 4.47E-83 6.20E-80 
Cdkn2b 6.001067766 3.08E-82 4.02E-79 
Erich4 9.386133729 1.32E-81 1.63E-78 
Rhbdf1 2.643264609 9.39E-80 1.10E-76 
Nid1 4.402575535 1.50E-79 1.66E-76 
Psrc1 8.877126359 7.11E-79 7.51E-76 
Fhl3 4.328825075 2.24E-78 2.26E-75 
Scn8a 4.845982965 2.68E-78 2.59E-75 
Smox 4.043392409 6.38E-78 5.90E-75 
Mtcl1 6.387750686 2.97E-77 2.64E-74 
Golm1 4.528479505 2.24E-76 1.92E-73 
Rasal1 5.675415429 1.33E-75 1.10E-72 
Cacna1c 6.309070622 2.36E-75 1.87E-72 
Dlx4 4.517503056 1.95E-74 1.50E-71 
Ccdc120 4.039612377 1.51E-73 1.11E-70 
Casc4 4.651520753 1.61E-73 1.15E-70 
Nxn 3.921810917 2.87E-73 1.99E-70 
Psat1 5.071135972 1.59E-72 1.07E-69 
Col6a6 4.914607104 3.84E-71 2.51E-68 
Pdlim7 1.953325248 1.08E-70 6.84E-68 
Miox 8.891304282 1.45E-70 8.95E-68 
Hdac7 1.612690754 3.01E-69 1.76E-66 
Calml4 4.400926207 3.01E-69 1.76E-66 
Ankrd13b 2.63750931 6.24E-69 3.56E-66 
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Tlr1 6.141791134 1.42E-68 7.90E-66 
Cd63 4.486462294 1.57E-68 8.48E-66 
Trpm4 3.958149081 1.78E-67 9.42E-65 
Prom1 5.290290336 3.39E-67 1.75E-64 
Mthfd1 -0.951720594 7.48E-67 3.78E-64 
F2rl1 7.800368191 1.02E-66 5.06E-64 
Tnfsf13 4.224962755 1.10E-66 5.31E-64 
Osbpl10 4.958871016 1.14E-66 5.37E-64 
Arhgap22 6.206632025 1.85E-66 8.55E-64 
Lepr 4.649332481 2.10E-66 9.53E-64 
Atg3 -0.787483744 1.02E-65 4.52E-63 
NA 3.890633773 2.29E-65 9.98E-63 
Airn 3.383042887 4.53E-65 1.93E-62 
Panx1 3.479654956 7.04E-65 2.95E-62 
Glp2r 7.589349413 1.08E-64 4.45E-62 
Fst 4.086710818 3.68E-64 1.48E-61 
Gria3 3.472563135 3.86E-64 1.53E-61 
Adamtsl5 4.802755354 1.38E-63 5.39E-61 
Card10 1.961035451 2.53E-63 9.69E-61 
Ajuba 3.278486537 2.79E-63 1.05E-60 
Abcc5 2.815835715 2.87E-63 1.06E-60 
Adamts14 3.90103299 3.25E-62 1.18E-59 
Rhoc 2.792729513 9.60E-62 3.39E-59 
Lysmd2 4.777428706 9.62E-62 3.39E-59 
Nrg1 4.017130998 1.11E-61 3.86E-59 
Fblim1 5.293882663 1.28E-61 4.37E-59 
5330417C22Rik 4.873890377 2.63E-61 8.85E-59 
Cd40 4.371609382 2.71E-61 8.97E-59 
Hid1 3.845462044 3.73E-61 1.22E-58 
Phgdh 6.774008614 4.06E-61 1.31E-58 
Tspan8 7.1040849 4.21E-61 1.34E-58 
Zfp57 3.709452738 7.17E-61 2.24E-58 
Plxna3 3.411804361 8.38E-61 2.58E-58 
Clip2 2.494554733 8.63E-60 2.63E-57 
Ica1 3.047246986 1.02E-59 3.07E-57 
NA 4.220050901 1.13E-59 3.35E-57 
Dlx4os 7.997350123 1.44E-59 4.19E-57 
Mtmr11 3.016697042 1.71E-59 4.92E-57 
Clcf1 3.534213256 3.43E-59 9.75E-57 
Kcp 3.879972734 1.02E-58 2.87E-56 
Tnfrsf10b 4.348620754 1.18E-58 3.27E-56 
Bmp8b 6.360670146 1.67E-58 4.59E-56 
Fhdc1 4.855459185 2.06E-58 5.58E-56 
Tmem54 7.453598065 2.59E-58 6.93E-56 
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Itih5 4.096294696 2.82E-58 7.45E-56 
Ndfip1 -0.967808705 7.39E-58 1.93E-55 
Pde6c 4.964818634 4.46E-57 1.15E-54 
Zfp641 4.525732005 1.42E-56 3.61E-54 
Hes1 1.971872516 4.28E-56 1.08E-53 
Cth -1.76997674 5.95E-56 1.48E-53 
Gch1 -0.968384519 1.60E-55 3.95E-53 
Ifnlr1 4.042596974 1.75E-55 4.26E-53 
Scn1b 3.205679602 4.24E-55 1.02E-52 
Ugt2a3 -1.601522954 5.36E-55 1.28E-52 
Itpr3 2.758916634 8.99E-55 2.12E-52 
Aldh7a1 -1.067539235 1.79E-54 4.18E-52 
Myo7b 5.700391531 2.39E-54 5.54E-52 
Pck2 3.128338573 4.53E-54 1.04E-51 
Drc1 3.576981609 1.11E-53 2.52E-51 
Scd2 4.736960337 1.43E-53 3.22E-51 
Golga7b 8.768351906 1.86E-53 4.13E-51 
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Appendix-2 List of top 100 DE genes in the non-tumour tissue of ALIOS versus control-
fed mice comparison  

symbol log2FoldChange pvalue padj 
NA 1.203581 9.80E-12 4.49E-07 
B430212C06Rik 2.174045 2.20E-09 5.05E-05 
Spink1 2.206168 4.48E-09 6.84E-05 
Tmem86a 1.241054 3.22E-08 0.00036848 
Arhgap10 1.064582 6.38E-08 0.00058431 
Limch1 1.351157 9.84E-08 0.00075132 
Fam46a -0.89141 1.26E-07 0.0008231 
Apoa4 1.226494 2.09E-07 0.00106526 
S100g 1.930044 1.96E-07 0.00106526 
Syt14 1.380868 3.44E-07 0.00152379 
Cyp2b10 2.280894 3.66E-07 0.00152379 
Setbp1 1.030734 4.26E-07 0.0016275 
NA 1.956681 5.27E-07 0.00185646 
Rbm24 2.96117 8.40E-07 0.00256543 
Fam83a 2.478311 8.16E-07 0.00256543 
Nuggc -1.99918 1.25E-06 0.00358803 
Ucp2 1.30328 1.48E-06 0.00398737 
Spink5 -1.14312 1.64E-06 0.00411803 
Gstp1 -1.03052 1.71E-06 0.00411803 
Slc22a26 3.098045 2.68E-06 0.00613869 
Atp9a 0.323367 3.50E-06 0.00728592 
Slc22a29 2.001839 3.47E-06 0.00728592 
Tiam2 -2.18443 4.10E-06 0.00749819 
Kdm2b -0.272 3.89E-06 0.00749819 
Obp2a -2.50107 4.26E-06 0.00749819 
Slc22a27 3.005928 4.13E-06 0.00749819 
Smpd3 1.815372 4.43E-06 0.00751388 
Tnfrsf22 0.764335 4.71E-06 0.00760088 
Csf2rb 0.886089 4.81E-06 0.00760088 
Bend7 -0.44156 5.25E-06 0.00800963 
Slc35f2 2.010912 6.38E-06 0.0088517 
Fez2 0.63717 6.32E-06 0.0088517 
Slc47a2 0.616851 6.22E-06 0.0088517 
Defb1 1.379134 6.89E-06 0.00928424 
Stambpl1 0.898633 9.93E-06 0.0103455 
Acot9 0.813928 9.55E-06 0.0103455 
Man2b2 0.379897 7.97E-06 0.0103455 
Cgref1 1.143292 9.82E-06 0.0103455 
Cspg5 -1.79421 9.71E-06 0.0103455 
Pygo1 1.378602 9.79E-06 0.0103455 
Cyp2b13 3.503563 8.71E-06 0.0103455 
Serpina1e -4.11431 9.94E-06 0.0103455 
Cyp2a4 4.698236 8.80E-06 0.0103455 
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Gcnt4 -1.65543 9.70E-06 0.0103455 
Ly6d 2.794496 1.03E-05 0.01051052 
Ctsb 0.380842 1.30E-05 0.0125216 
Ctnna1 0.23484 1.27E-05 0.0125216 
Tox 1.533001 1.31E-05 0.0125216 
Stk10 0.74585 1.48E-05 0.0132576 
Vldlr 1.71538 1.42E-05 0.0132576 
Mlph 0.743616 1.45E-05 0.0132576 
Dlgap1 -0.94123 1.52E-05 0.01338657 
Plscr2 0.540279 1.58E-05 0.01361593 
Folh1 1.242719 1.76E-05 0.01417218 
Myl12b 0.453084 1.72E-05 0.01417218 
Dcaf12l1 0.744704 1.76E-05 0.01417218 
Sort1 -0.76496 1.69E-05 0.01417218 
Adap1 1.044579 1.82E-05 0.01438838 
Smarca4 0.296511 1.88E-05 0.0145966 
Mogat1 2.747028 1.94E-05 0.01474762 
Eps8 0.944197 1.96E-05 0.01474762 
Cntnap1 1.554633 2.09E-05 0.01484594 
Ptgfr 1.357083 2.05E-05 0.01484594 
Sepw1 0.363593 2.06E-05 0.01484594 
Sod3 0.663615 2.11E-05 0.01484594 
Angpt1 1.14017 2.20E-05 0.01504337 
Ttc39a 2.069874 2.19E-05 0.01504337 
Gnai1 1.071366 2.33E-05 0.01544841 
NA 1.242254 2.30E-05 0.01544841 
Vav1 0.903681 2.65E-05 0.01660274 
Olfr701 -1.35204 2.61E-05 0.01660274 
NA -0.56911 2.58E-05 0.01660274 
NA -0.79381 2.62E-05 0.01660274 
Ranbp3l -0.82942 2.69E-05 0.0166614 
Hexb 0.811295 2.75E-05 0.0167877 
Tinag 2.21548 2.88E-05 0.01726866 
Tmem98 0.6856 2.90E-05 0.01726866 
Klhl13 0.64054 3.07E-05 0.01803087 
Paip1 0.279145 3.12E-05 0.01808459 
Tnfrsf21 0.600979 3.49E-05 0.01965515 
Chchd6 0.754959 3.51E-05 0.01965515 
NA 0.92577 3.52E-05 0.01965515 
Krt23 2.005001 3.90E-05 0.02008102 
Crebbp -0.25335 4.02E-05 0.02008102 
Grm8 -1.6227 4.01E-05 0.02008102 
Zfp639 -0.28836 4.12E-05 0.02008102 
Cabp1 -0.70562 3.86E-05 0.02008102 
Gdf3 0.992756 4.07E-05 0.02008102 
Myh14 0.407161 3.73E-05 0.02008102 
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Car14 -0.93733 3.91E-05 0.02008102 
Ccdc68 0.612122 3.77E-05 0.02008102 
Mmd2 -1.30357 4.10E-05 0.02008102 
Snord104 -0.5595 4.05E-05 0.02008102 
NA 1.574364 3.74E-05 0.02008102 
NA 0.539028 4.21E-05 0.02028305 
Slc45a4 0.285824 4.25E-05 0.02028305 
Isoc2b 0.477184 4.40E-05 0.02079475 
Cd300lb 0.81459 4.52E-05 0.02110037 
Rai2 0.467298 4.70E-05 0.02174073 
Klc1 -0.41189 4.87E-05 0.02231879 
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Appendix-3 List of top 100 DE genes in the non-tumour tissue of high fibrosis versus low 
fibrosis comparison  
 

symbol log2FoldChange pvalue padj 
Nuggc -1.694798196 8.15E-19 1.45E-14 
Ucp2 1.106164153 2.85E-15 2.54E-11 
Sort1 -0.81540868 1.05E-14 5.10E-11 
Slc22a29 1.673442977 1.15E-14 5.10E-11 
Inpp4a -0.510388481 1.88E-14 5.58E-11 
NA 1.694951006 1.62E-14 5.58E-11 
Pparg 1.777016638 3.93E-14 9.99E-11 
Tox 1.530517023 8.77E-14 1.73E-10 
Fam83a 1.660347528 8.15E-14 1.73E-10 
Cgref1 1.128553642 2.58E-13 4.59E-10 
Slc22a26 1.693763312 4.98E-13 8.06E-10 
Vldlr 1.557519943 6.72E-13 9.96E-10 
Sh3bgrl3 0.712243064 1.71E-12 2.33E-09 
S100a11 1.244066063 1.96E-12 2.49E-09 
Acot9 0.737037245 3.57E-12 4.23E-09 
Spsb4 -0.672310537 3.87E-12 4.30E-09 
Apoa4 0.999837597 4.97E-12 5.20E-09 
Limch1 1.400578989 6.33E-12 6.26E-09 
Ctsb 0.339310065 1.10E-11 1.03E-08 
NA 1.036288427 1.24E-11 1.10E-08 
Cidec 1.581462773 1.55E-11 1.31E-08 
S100g 1.567274145 1.64E-11 1.32E-08 
Tgfbr2 0.950053027 2.05E-11 1.59E-08 
Ephb2 1.533610905 3.98E-11 2.95E-08 
Cspg5 -1.512323669 5.63E-11 4.01E-08 
Anxa2 0.992554304 6.79E-11 4.64E-08 
Aqp7 1.498185994 7.05E-11 4.64E-08 
Itgax 1.446424971 1.01E-10 6.44E-08 
S100pbp -0.355281846 1.36E-10 8.36E-08 
Angpt1 1.250545996 1.95E-10 1.16E-07 
Capns1 0.251083573 3.11E-10 1.79E-07 
Fignl1 1.428863659 3.57E-10 1.98E-07 
Obp2a -1.464956678 4.50E-10 2.29E-07 
Tmem86a 0.932759144 4.26E-10 2.29E-07 
Lgals1 1.05237804 4.51E-10 2.29E-07 
Mmp12 1.452292066 6.11E-10 3.02E-07 
Clec7a 1.254561251 6.71E-10 3.22E-07 
Cyp2u1 -0.78799999 8.93E-10 4.13E-07 
Ccnd1 1.132089917 9.16E-10 4.13E-07 
Setbp1 1.197797937 9.28E-10 4.13E-07 
Ccbl1 -0.522586273 1.01E-09 4.38E-07 
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Eps8 0.962550481 1.12E-09 4.75E-07 
Cntnap1 1.219619995 1.41E-09 5.77E-07 
Rcan2 1.371658326 1.43E-09 5.77E-07 
Psmd8 0.223676429 1.48E-09 5.86E-07 
Cars -0.413808172 1.69E-09 6.52E-07 
NA -1.380935393 1.92E-09 7.25E-07 
Kcp -0.895890518 2.14E-09 7.95E-07 
Myl12b 0.365309009 2.46E-09 8.79E-07 
H2-M2 1.401146428 2.47E-09 8.79E-07 
Ehbp1 -0.43784295 2.58E-09 9.00E-07 
Pea15a 0.353897514 2.94E-09 1.00E-06 
Zmym5 -0.249198041 3.22E-09 1.07E-06 
Fez2 0.537128198 3.25E-09 1.07E-06 
Znf512b -0.467199981 3.34E-09 1.08E-06 
Fras1 -0.855714398 3.41E-09 1.08E-06 
NA -0.707802036 3.48E-09 1.09E-06 
Plekha2 0.561161188 3.70E-09 1.13E-06 
Dcbld1 0.674542949 4.17E-09 1.26E-06 
B4galt6 0.825236448 4.74E-09 1.40E-06 
Mmp13 1.361988 5.42E-09 1.58E-06 
Fam46a -0.749469887 6.00E-09 1.72E-06 
Rims4 1.280515152 6.09E-09 1.72E-06 
Tm4sf4 0.337542188 6.39E-09 1.78E-06 
Arhgap10 0.944014344 7.12E-09 1.95E-06 
Msmp 1.355861973 7.58E-09 2.04E-06 
Krt23 1.343020312 8.14E-09 2.16E-06 
NA -0.69478318 8.89E-09 2.32E-06 
NA -0.447989931 8.98E-09 2.32E-06 
Anxa5 0.426144753 9.41E-09 2.39E-06 
Bend7 -0.440216791 1.09E-08 2.74E-06 
Defb1 1.244117371 1.18E-08 2.91E-06 
Stambpl1 0.989316789 1.21E-08 2.95E-06 
Gstp1 -0.860320047 1.23E-08 2.96E-06 
Simc1 -0.420084415 1.32E-08 3.13E-06 
Ccdc80 0.73684706 1.57E-08 3.66E-06 
Capg 0.857028219 1.74E-08 3.98E-06 
Hao2 1.321117656 1.72E-08 3.98E-06 
Ly6d 1.321679487 1.80E-08 4.06E-06 
Mcm5 1.145466109 1.84E-08 4.09E-06 
Cotl1 0.534441909 2.00E-08 4.34E-06 
Tnfsf15 1.279424754 2.00E-08 4.34E-06 
Mbp 1.116772136 2.17E-08 4.64E-06 
Fbxo22 -0.286223861 2.23E-08 4.67E-06 
Ywhah 0.359249748 2.21E-08 4.67E-06 
Stk10 0.653813006 2.36E-08 4.89E-06 
Ptgfr 1.26782392 2.55E-08 5.21E-06 
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Iqgap1 0.616734606 2.64E-08 5.30E-06 
Snhg18 0.860271327 2.65E-08 5.30E-06 
Slc16a5 1.073261323 2.69E-08 5.32E-06 
Gal3st1 1.162094172 2.93E-08 5.72E-06 
Mogat1 1.280469532 3.35E-08 6.47E-06 
Marcks 0.502725439 3.43E-08 6.56E-06 
Slc22a27 1.289934666 3.50E-08 6.63E-06 
Scai -0.784151879 4.00E-08 7.50E-06 
NA -0.798988768 4.14E-08 7.68E-06 
Myof 0.819387187 4.49E-08 8.24E-06 
Wisp3 -1.246717446 4.59E-08 8.33E-06 
Fgd3 0.858406947 4.66E-08 8.37E-06 
Hexb 0.643159219 5.50E-08 9.78E-06 
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Appendix-4 List of top 100 DE genes in the non-tumour tissue of high fibrosis versus low 
steatosis comparison  
 

symbol log2FoldChange pvalue padj 
Fam83a 1.464684233 5.02E-14 8.69E-10 
Csf2rb 0.841191668 7.73E-13 6.68E-09 
Tff3 -1.325676425 7.98E-12 4.60E-08 
Dnaic1 -1.270247442 2.77E-11 1.20E-07 
Itpr2 -0.462814735 1.01E-10 3.51E-07 
Dntt 1.036542481 2.10E-10 5.40E-07 
Tusc3 0.552252214 2.19E-10 5.40E-07 
Atp9a 0.274288437 2.62E-10 5.67E-07 
Slc22a29 1.25819665 5.53E-10 1.06E-06 
Aph1b -0.914399935 6.49E-10 1.12E-06 
Myl12b 0.310224903 1.06E-09 1.68E-06 
Apoa4 0.886582781 1.29E-09 1.72E-06 
Saa3 -1.087077598 1.22E-09 1.72E-06 
Serpina9 -1.238211362 1.76E-09 2.18E-06 
Def8 0.32456576 1.89E-09 2.18E-06 
NA -1.208283027 2.04E-09 2.20E-06 
Inpp4a -0.366722298 3.09E-09 3.14E-06 
H2-Q1 1.064788455 3.26E-09 3.14E-06 
Ucp2 0.806640382 6.60E-09 6.01E-06 
Msmp 1.177557703 1.22E-08 1.05E-05 
Fitm1 1.042384176 1.35E-08 1.12E-05 
Ly6d 1.167650391 1.52E-08 1.20E-05 
NA -1.104865173 1.68E-08 1.26E-05 
Enho -1.160114012 1.99E-08 1.44E-05 
Isoc2b 0.464017062 2.32E-08 1.58E-05 
Gm19619 0.876048553 2.38E-08 1.58E-05 
Fads1 0.712966091 2.64E-08 1.69E-05 
Ccbl1 -0.433225214 3.27E-08 2.02E-05 
Capns1 0.195122229 4.38E-08 2.61E-05 
Gcnt4 -1.054276755 4.62E-08 2.66E-05 
Cntnap1 1.033838061 6.01E-08 3.25E-05 
Ccnd1 0.907973169 5.84E-08 3.25E-05 
Lpar6 -0.270146494 6.74E-08 3.54E-05 
Sulf2 0.684330083 9.16E-08 4.66E-05 
Vat1 0.381589361 1.18E-07 5.75E-05 
Spink5 -1.033271422 1.20E-07 5.75E-05 
NA -1.015343286 1.77E-07 8.26E-05 
Tead3 -0.366988793 2.17E-07 9.38E-05 
Gngt1 0.784452313 2.16E-07 9.38E-05 
Dcaf12l1 0.666412274 2.17E-07 9.38E-05 
Cdkl2 0.41264676 2.28E-07 9.51E-05 
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Slc35f2 1.069397697 2.31E-07 9.51E-05 
S100g 1.059979629 2.47E-07 9.95E-05 
Znrf1 -0.404760579 2.64E-07 0.000104 
Acmsd -0.754450922 2.76E-07 0.000106 
Apoc2 0.577477286 3.23E-07 0.000122 
Ip6k1 -0.209673909 3.31E-07 0.000122 
Tpst1 -0.552946968 3.81E-07 0.000137 
NA -0.976173487 4.03E-07 0.000142 
Mcm4 0.75597425 4.54E-07 0.000156 
Cotl1 0.421261455 4.60E-07 0.000156 
Tmem86a 0.757317985 4.92E-07 0.000162 
Ern1 -0.441395258 4.96E-07 0.000162 
B430212C06Rik 0.98045074 5.27E-07 0.000169 
Sall4 1.022186981 5.94E-07 0.000187 
M6pr 0.176396552 6.35E-07 0.000193 
Mogat1 0.999937948 6.29E-07 0.000193 
NA 1.008817016 6.90E-07 0.000206 
Cops7b -0.341836561 7.09E-07 0.000206 
Rarres1 0.670831504 7.14E-07 0.000206 
Scd2 1.010883222 7.78E-07 0.000221 
Tbc1d31 0.709228526 8.19E-07 0.000228 
Acot9 0.524055917 9.44E-07 0.000259 
Fads2 0.750787347 1.08E-06 0.000292 
Anxa5 0.329673711 1.10E-06 0.000292 
Tspan33 -0.722069367 1.14E-06 0.000298 
Dynll1 -0.7392959 1.24E-06 0.000305 
Abcd1 0.553755222 1.22E-06 0.000305 
Pnpla3 1.002720547 1.21E-06 0.000305 
5830473C10Rik -0.428465402 1.25E-06 0.000305 
Klhl33 -0.840886577 1.25E-06 0.000305 
Adgrf1 -0.991756836 1.30E-06 0.000313 
Mllt10 -0.252573512 1.43E-06 0.000339 
Gpc1 0.667060399 1.47E-06 0.000343 
NA -0.389839517 1.49E-06 0.000345 
Acad9 0.294541598 1.55E-06 0.000353 
Srxn1 0.373457503 1.63E-06 0.000362 
Bmp6 -0.446832862 1.63E-06 0.000362 
BC026585 0.407562337 1.65E-06 0.000362 
Dlgap1 -0.953628566 1.77E-06 0.00037 
Sh3bgrl3 0.4661017 1.73E-06 0.00037 
Arhgap10 0.790588897 1.73E-06 0.00037 
Maml3 -0.528651182 1.77E-06 0.00037 
Taok2 -0.369297046 1.81E-06 0.000373 
Gm17296 -0.495441871 1.83E-06 0.000373 
NA -0.411192336 1.91E-06 0.000385 
Ctsb 0.246168451 2.03E-06 0.000403 
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Lama3 -0.926681279 2.10E-06 0.000414 
Cyp2c39 0.831997064 2.16E-06 0.000415 
Polr2c -0.245169655 2.15E-06 0.000415 
NA -0.848701492 2.18E-06 0.000415 
C1ql4 -0.958805894 2.27E-06 0.000422 
Ctnna1 0.171837308 2.25E-06 0.000422 
Cidec 0.964732798 2.34E-06 0.000426 
NA -0.793084899 2.33E-06 0.000426 
Nqo1 0.653664599 2.80E-06 0.000484 
Brd4 -0.171298807 2.72E-06 0.000484 
Smpd3 0.914781269 2.83E-06 0.000484 
Smarca4 0.262645781 2.81E-06 0.000484 
Fam46a -0.620283507 2.72E-06 0.000484 
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Appendix-5 the histological predictors of HCC development in the C3H/He mice 
Chi2 test was performed between categorical variables, while Spearman correlation was 
performed between different variables. 

 

 

 

 

 

 

 

 

 

 

 

 Tumour development 
 Chi2 Spearman correlation 
 NO Yes p value Correlation p value 

Gross phenotype features 
Liver weight 1.93 ± 0.11 2.67 ± 0.13  0.686 <0.001 
Liver/body weight ratio 0.05 ± 

0.002 
0.058 ± 
0.002 

 0.66 <0.001 

Body weight 42.18 ± 
1.12 

45.95 ± 0.92  0.381 0.008 

Histological parameters 
Steatosis grade (0/1/2/3) 4/7/8/1 0/4/20/3 0.01 0.429 0.003 
Microvesicular steatosis 19/1 20/7 0.059 0.382 0.008 
Hepatocellular ballooning (0/1/2) 5/12/3 4/20/3 0.579 0.058 0.699 
Mallory Denk bodies (0/present) 14/6 13/13 0.172 0.305 0.1039 
Lipogranuloma (0/present) 15/5 9/17 0.007 0.481 0.001 
Lobular Inflammation score (0/1/2) 9/10/1 4/18/5 0.06 0.421 0.003 
Portal Inflammation score (0/1/2) 18/1/1 21/5/1 0.507 0.276 0.060 
Megamitochondria (0/present) 16/4 17/9 0.275 0.031 0.839 
Apoptotic cells (0/present) 15/5 22/4 0.145 -0.114 0.452 
Pigmented Kupffer cells (0/present) 13/7 11/15 0.127 0.280 0.060 
Perisinusoidal fibrosis score(0/1) 6/14 1/26 0.012 0.361 0.013 
Fibrosis stage (0/1/2/3) 6/8/6 1/14/11/1 0.064 0.355 0.014 
NAS score (sum)    0.465 0.001 
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Appendix-6 List of top 100 DE genes in the non-tumour tissue G2-G1 comparison 
 

symbol log2FoldChange pvalue padj 
Rab7b 1.359134316 8.56E-18 1.56E-13 
Rgs2 1.326200401 1.17E-16 1.07E-12 
Itgax 3.070569217 5.29E-16 3.22E-12 
Ephb2 5.037418963 2.23E-15 1.02E-11 
Fam83a 2.959473584 3.55E-15 1.30E-11 
Ccl5 2.810290262 6.37E-15 1.94E-11 
Rgs10 1.259532556 1.08E-14 2.46E-11 
Esm1 2.871008568 1.04E-14 2.46E-11 
Pparg 4.08289923 1.41E-14 2.86E-11 
Arl4c 1.210437925 1.74E-14 3.18E-11 
Clec12a 1.382969639 3.41E-14 5.37E-11 
Marcks 0.808501292 3.53E-14 5.37E-11 
Clec7a 2.06592789 7.76E-14 1.09E-10 
Iqgap1 0.95801272 1.06E-13 1.25E-10 
Rac2 1.456875313 1.09E-13 1.25E-10 
Fabp4 1.014439538 1.03E-13 1.25E-10 
Anxa2 1.50396261 1.35E-13 1.45E-10 
Epsti1 1.247936037 1.77E-13 1.80E-10 
Ncf2 1.091980182 2.08E-13 2.00E-10 
Cd300lb 1.141537474 2.32E-13 2.12E-10 
Tyrobp 1.152122859 3.40E-13 2.96E-10 
Slpi 2.829778489 3.83E-13 3.18E-10 
Laptm5 1.241558944 4.21E-13 3.25E-10 
Ctss 1.313986275 4.28E-13 3.25E-10 
Lgals1 1.750814714 4.44E-13 3.25E-10 
S100a11 1.946599023 4.69E-13 3.30E-10 
Card11 2.36672697 4.96E-13 3.35E-10 
Gltp 0.928456203 9.90E-13 6.46E-10 
Timp1 3.260114433 1.19E-12 7.45E-10 
Wdfy4 1.155041207 1.22E-12 7.45E-10 
Fam105a 1.435609461 1.43E-12 8.42E-10 
Rftn1 0.988664999 1.87E-12 1.07E-09 
Cd68 0.989247112 2.02E-12 1.09E-09 
Vav1 1.133073448 2.03E-12 1.09E-09 
Ckb 1.099940398 2.23E-12 1.17E-09 
Endod1 0.969749043 2.68E-12 1.36E-09 
Thbs1 1.940743741 2.76E-12 1.36E-09 
Kbtbd11 1.635367339 3.11E-12 1.49E-09 
Nckap1l 1.187748515 3.21E-12 1.51E-09 
Arhgap25 1.304362396 4.79E-12 2.19E-09 
Cidec 3.185851928 7.45E-12 3.32E-09 
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Ucp2 1.373021954 7.76E-12 3.36E-09 
Msmp 3.396284509 7.90E-12 3.36E-09 
Pld4 1.117857684 9.70E-12 4.03E-09 
Cotl1 0.814243272 1.06E-11 4.29E-09 
NA -4.079536802 1.65E-11 6.54E-09 
Clec4a2 1.672108973 1.72E-11 6.55E-09 
5830473C10Rik -0.688594907 1.72E-11 6.55E-09 
Gpr65 1.390705015 1.80E-11 6.70E-09 
Pak1 1.338584911 2.24E-11 8.20E-09 
Trem2 2.447214461 3.58E-11 1.19E-08 
Sash3 1.509624283 3.44E-11 1.19E-08 
Rap2b 0.900109359 3.54E-11 1.19E-08 
B4galt6 1.151351281 3.45E-11 1.19E-08 
Ms4a4b 1.87320898 3.52E-11 1.19E-08 
Uhrf1 2.780330841 3.68E-11 1.20E-08 
Tnfrsf23 1.382085065 3.86E-11 1.24E-08 
Capg 1.36288818 3.98E-11 1.25E-08 
Ly6d 3.248552011 4.06E-11 1.26E-08 
Gnai1 1.527483917 4.32E-11 1.32E-08 
Hr 2.234750158 4.40E-11 1.32E-08 
Myl12b 0.495840381 4.56E-11 1.34E-08 
Lpxn 1.126618128 5.08E-11 1.47E-08 
Dock2 1.317705168 6.39E-11 1.82E-08 
Amz1 1.831023718 7.30E-11 2.05E-08 
Ly86 1.140937813 9.25E-11 2.52E-08 
Hip1 0.687771282 9.17E-11 2.52E-08 
Mbp 1.894942589 1.04E-10 2.78E-08 
Csf1r 0.974790629 1.18E-10 3.11E-08 
Was 1.190245519 1.19E-10 3.11E-08 
Cybb 1.316363724 1.36E-10 3.50E-08 
Sh3pxd2b 1.216376464 1.43E-10 3.63E-08 
Fcer1g 1.039992004 1.70E-10 4.25E-08 
Ppm1h 0.98991467 1.81E-10 4.47E-08 
Myo1f 1.313352426 2.38E-10 5.79E-08 
Ms4a7 2.301540961 2.47E-10 5.85E-08 
Acot9 0.928396503 2.46E-10 5.85E-08 
Tnfaip8l2 1.176264257 2.67E-10 6.10E-08 
Gpsm3 0.784568538 2.66E-10 6.10E-08 
Dna2 -0.623830814 2.64E-10 6.10E-08 
Cyba 1.06235638 3.02E-10 6.81E-08 
H2-M2 3.752112724 3.10E-10 6.92E-08 
Cd52 1.801688923 3.19E-10 7.02E-08 
Cxcl9 1.874650962 3.61E-10 7.85E-08 
Fam129a 1.035352159 3.74E-10 8.03E-08 
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NA 1.21220214 3.88E-10 8.23E-08 
Wisp2 3.191471438 3.98E-10 8.35E-08 
Arhgap22 2.827918458 4.11E-10 8.54E-08 
Cyth4 1.108570951 4.43E-10 9.10E-08 
Ppp4r3a -0.432994015 4.80E-10 9.74E-08 
Myof 1.198870527 4.98E-10 1.00E-07 
Trim30d 0.999994332 5.16E-10 1.03E-07 
Pdcd1 5.134805636 5.41E-10 1.06E-07 
Ccnd1 1.695752427 5.47E-10 1.06E-07 
Sh3bgrl3 0.952296721 5.55E-10 1.07E-07 
Cd48 1.291535518 6.20E-10 1.18E-07 
Slc7a8 0.86707134 6.39E-10 1.20E-07 
Rinl 1.15276684 6.55E-10 1.22E-07 
Scube1 2.236732896 6.70E-10 1.24E-07 
Ifit3b 1.183226877 7.13E-10 1.30E-07 
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Appendix-7 Different subsets of T cells were increased in the non-tumour livers of ALIOS 
mice compared to control mice 
 

 

 

 

 

 

 

 

 

 

 

 

Graphs show the number of CD4 (A), FOXP3 (B) and CD8 (C) positive T cells in control and 
ALIOS-fed mice. Data are presented as mean ± s.e.m of positive T cells in 10 high power fields 
(HPF); * p<0.05; ** p<0.01 
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Appendix-8 List of top 100 DE genes in the V2 human signature 
 

symbol log2FoldChange pvalue padj 
AHSG -6.058814897 2.18E-145 7.98E-141 
SERPINC1 -5.864260687 1.22E-142 2.23E-138 
SLC38A3 -4.32787323 3.41E-115 4.17E-111 
NR1I3 -5.077516278 9.36E-114 8.59E-110 
CYP27A1 -3.761003529 3.47E-111 2.55E-107 
DAO -5.30121174 2.27E-105 1.39E-101 
AQP9 -5.827279902 1.52E-104 7.98E-101 
ITGA3 4.093904398 2.37E-102 1.09E-98 
PKLR -5.024888729 3.07E-102 1.25E-98 
ASPDH -5.651603803 1.42E-101 5.22E-98 
PLCD3 3.178424327 2.25E-100 7.50E-97 
PCK2 -3.849325744 1.77E-97 5.41E-94 
SPEG 5.026713439 1.71E-96 4.83E-93 
XYLB -2.787220725 8.60E-96 2.14E-92 
UPB1 -4.895203928 8.76E-96 2.14E-92 
CCL16 -5.622741858 2.29E-95 5.24E-92 
PIPOX -3.786150019 9.99E-92 2.16E-88 
CYB5A -2.833150413 2.04E-91 4.15E-88 
PFKFB1 -4.750818837 7.94E-91 1.53E-87 
ACOX2 -3.649710094 4.20E-90 7.69E-87 
HNF4A-AS1 -5.163825422 2.20E-88 3.85E-85 
APOH -4.200464675 7.10E-88 1.18E-84 
TTR -5.406958674 3.29E-87 5.24E-84 
APOM -4.265832381 3.82E-85 5.83E-82 
SARDH -3.673712608 6.37E-85 9.34E-82 
PROC -3.273232451 7.37E-84 1.04E-80 
ECI2 -2.150274885 3.33E-83 4.53E-80 
KHK -3.40762185 1.75E-82 2.29E-79 
PEBP1 -2.25206221 1.77E-81 2.24E-78 
SORD -3.502276203 2.03E-81 2.49E-78 
F7 -3.432238683 2.64E-81 3.13E-78 
PKM 3.596431766 1.25E-80 1.43E-77 
SPDYC -4.28566513 1.19E-79 1.32E-76 
EPHX1 -3.439875415 2.37E-79 2.56E-76 
KNG1 -3.954819654 4.51E-79 4.73E-76 
AC022816.1 -5.839594708 4.74E-79 4.83E-76 
GLYCTK -2.90651005 5.35E-79 5.30E-76 
AQP11 -2.683675169 2.16E-78 2.09E-75 
F12 -4.107137695 4.00E-78 3.76E-75 
SLC27A5 -4.772009392 4.30E-78 3.95E-75 
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SERPIND1 -3.746392669 1.11E-77 9.94E-75 
AC021074.3 -5.831658028 9.45E-77 8.25E-74 
SULT2A1 -4.93932307 2.46E-76 2.10E-73 
ADORA2A-
AS1 -3.551117611 6.17E-75 5.14E-72 
TWIST1 5.432555672 3.93E-74 3.20E-71 
AC008549.1 -6.04860657 4.72E-74 3.76E-71 
METTL7A -2.473909794 5.38E-74 4.20E-71 
APOA2 -4.46842969 9.28E-74 7.09E-71 
SLC9A1 2.131903526 1.55E-73 1.16E-70 
CYP2J2 -3.346562801 4.33E-73 3.18E-70 
CDR2L 2.941236853 2.17E-72 1.55E-69 
MMP14 2.904909685 2.20E-72 1.55E-69 
A1BG -4.397457218 4.17E-72 2.89E-69 
CYP7A1 -6.926743868 7.67E-72 5.21E-69 
KIF3C 3.124123625 2.21E-71 1.47E-68 
ETNK2 -3.887780034 2.49E-70 1.63E-67 
LRP8 3.465482861 2.59E-70 1.67E-67 
TF -3.853450718 4.18E-70 2.64E-67 
ACSM2A -4.532556786 5.26E-70 3.27E-67 
PECR -2.422936635 5.76E-70 3.52E-67 
FUOM -2.832956547 6.66E-70 4.00E-67 
EHHADH -3.489821075 7.18E-70 4.25E-67 
HJV -4.430666485 1.07E-69 6.24E-67 
ALDH5A1 -2.532000497 1.51E-69 8.54E-67 
ITGB4 3.432284927 1.76E-69 9.77E-67 
GPX8 2.866805273 3.18E-69 1.74E-66 
CRYL1 -2.550857174 8.95E-69 4.83E-66 
BDH1 -3.211456961 9.33E-69 4.96E-66 
DMGDH -3.838883465 3.42E-68 1.79E-65 
DCXR -3.937391633 3.75E-67 1.94E-64 
F2 -3.543676345 2.51E-66 1.28E-63 
SLC10A1 -5.785933174 7.88E-66 3.96E-63 
HCN3 -3.069305026 1.10E-65 5.40E-63 
IL27 -3.935477941 1.10E-65 5.40E-63 
ITPR2 -2.49202564 1.21E-65 5.85E-63 
ITIH5 5.453709016 4.69E-65 2.23E-62 
FETUB -5.503162238 6.01E-65 2.83E-62 
BHMT -5.333131215 7.34E-65 3.41E-62 
APOC3 -4.444012796 1.05E-64 4.80E-62 
ATP8A2 5.293811671 1.69E-64 7.66E-62 
MLXIPL -2.717543987 3.92E-64 1.75E-61 
ITIH1 -3.582177583 5.41E-64 2.39E-61 
ACSM2B -4.074571727 2.39E-63 1.02E-60 
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UGT2B10 -4.914562509 3.52E-63 1.49E-60 
HSD17B4 -2.189682806 1.60E-62 6.68E-60 
RGN -3.167765448 1.76E-62 7.26E-60 
AP003716.1 -5.300365241 1.93E-62 7.86E-60 
NMNAT2 4.80080227 2.46E-62 9.93E-60 
NADK2 -2.466323193 2.56E-62 1.02E-59 
NUGGC -4.365618537 1.22E-61 4.82E-59 
ARID3C -4.163819483 1.67E-61 6.51E-59 
ADH6 -3.778221661 2.29E-61 8.85E-59 
GIPR 4.380258306 2.56E-61 9.79E-59 
CES2 -3.221900834 4.26E-61 1.61E-58 
CAT -2.615856239 1.84E-60 6.90E-58 
DHTKD1 -2.45025276 1.91E-60 7.07E-58 
AMT -2.184604271 2.14E-60 7.83E-58 
SCTR 5.415163599 4.22E-60 1.53E-57 
MITF 2.755409371 6.89E-60 2.45E-57 
RTP3 -4.903151221 9.49E-60 3.35E-57 
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