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Abstract

In monaural source separation (MSS) only one recording is available and the

spatial information, generally, cannot be extracted. It is also an undeter-

mined inverse problem. Rcently, the development of the deep neural network

(DNN) provides the framework to address this problem. How to select the

types of neural network models and training targets is the research question.

Moreover, in real room environments, the reverberations from floor, walls,

ceiling and furnitures in a room are challenging, which distort the received

mixture and degrade the separation performance. In many real-world ap-

plications, due to the size of hardware, the number of microphones cannot

always be multiple. Hence, deep learning based MSS is the focus of this

thesis.

The first contribution is on improving the separation performance by en-

hancing the generalization ability of the deep learning-base MSS methods.

According to no free lunch (NFL) theorem, it is impossible to find the neural

network model which can estimate the training target perfectly in all cases.

From the acquired speech mixture, the information of clean speech signal

could be over- or underestimated. Besides, the discriminative criterion ob-

jective function can be used to address ambiguous information problem in

the training stage of deep learning. Based on this, the adaptive discrimina-

tive criterion is proposed and better separation performance is obtained. In

addition to this, another alternative method is using the sequentially trained

neural network models within different training targets to further estimate
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the clean speech signal. By using different training targets, the generaliza-

tion ability of the neural network models is improved, and thereby better

separation performance.

The second contribution is addressing MSS problem in reverberant room

environments. To achieve this goal, a novel time-frequency (T-F) mask, e.g.

dereverberation mask (DM) is proposed to estimate the relationship between

the reverberant noisy speech mixture and the dereverberated mixture. Then,

a separation mask is exploited to extract the desired clean speech signal from

the noisy speech mixture. The DM can be integrated with ideal ratio mask

(IRM) to generate ideal enhanced mask (IEM) to address both dereverber-

ation and separation problems. Based on the DM and the IEM, a two-stage

approach is proposed with different system structures.

In the final contribution, both phase information of clean speech signal

and long short-term memory (LSTM) recurrent neural network (RNN) are

introduced. A novel complex signal approximation (SA)-based method is

proposed with the complex domain of signals. By utilizing the LSTM RNN

as the neural network model, the temporal information is better used, and

the desired speech signal can be estimated more accurately. Besides, the

phase information of clean speech signal is applied to mitigate the negative

influence from noisy phase information.

The proposed MSS algorithms are evaluated with various challenging

datasets such as the TIMIT, IEEE corpora and NOISEX database. The

algorithms are assessed with state-of-the-art techniques and performance

measures to confirm that the proposed MSS algorithms provide novel solu-

tions.
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Chapter 1

INTRODUCTION

1.1 Monaural Source Separation

“One of our most important faculties is our ability to listen to, and follow,

one speaker in the presence of others. This is such a common experience that

we may take it for granted; we may call it the cocktail party problem. No

machine has been constructed to do just this, to filter out one conversation

from a number jumbled together” - Colin Cherry [1]. The cocktail party

problem (CPP) describes the situation that there are several people talk-

ing simultaneously in a room environment, and only one of them is desired.

During the past decades, a significant research was focused on the CPP and

the target is design a machine which can imitate human auditory ability.

This problem is called source separation and it has attracted a remarkable

amount of attention due to its potential use in many real-world applica-

tions such as automatic speech recognition (ASR), assisted living systems

and hearing aids [2]. Such technology helps machine to imitate the hear-

ing system of human being, which is useful in human-machine interaction

and speech applications. Some application contexts of source separation are

represented in Fig. 1.1.

All these example applications require to separate the desired speech

signals from mixture, which implies correctly denosing, dereverberation and

enhancement [3]. After the desired speech signals are separated from the

acquired speech mixtures, the corresponding speech signals will be easy to

1



Section 1.1. Monaural Source Separation 2

(a) (b) (c)

Figure 1.1. Different source separation application contexts, where
(a) is teleconference system; (b) is the voice assistant by Amazon and
(c) is a hearing aids equipment.

detect, recognize and understand. Hence, source separation is an essen-

tial front-end technique in the most of speech processing applications [4].

According to the number of channels (microphones), the source separation

problems are divided into three categories: multichannel, binaural (two mi-

crophones) and monaural (one microphone) [5].

In multichannel case, when the situation is overdetermined or determined

(number of captured speech mixtures is greater than or equal to the number

of speech signals), the statistical signal processing based methods can be

used to separate the desired speech signals from the acquired noisy speech

mixtures [6]. As the humanity, we can use the high-level knowledge to dis-

tinguish the speakers, count the source number and localize the position of

the speakers from the mixtures. These high-level knowledge, including, but

not limited to, types of languages, the context of sentences and the tones

of speakers. However, it is very difficult for machine to achieve the same

abilities. In statistical signal processing based methods, the most popular

algorithms are independent component analysis (ICA) and independent vec-

tor analysis (IVA) [7, 8], which rely on central limit theorem and frequency

dependency. However, in binaural case, when the situation is undetermined
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(number of captured speech mixtures is less than the number of speech sig-

nals), the statistical based methods cannot provide simple solutions. Hence,

according to the W-disjoint orthogonality (W-DO) [9] and spatial informa-

tion i.e. interaural level difference (ILD), interaural phase difference (IPD),

the time-frequency (T-F) based methods are proposed under the framework

of computational auditory scene analysis (CASA) [10,11].

However, due to the limitation of the hardware size and the minimum

distance between microphones (less than 2 mm), the binary and multichan-

nel cases cannot always be achieved, the solution to address source sepa-

ration in monaural case is essential. For monaural source separation, also

known as single-channel source separation, it is an undetermined case and

because only one speech mixture is captured, the spatial information cannot

be utilized. In [12], some algorithms are proposed to address MSS, but their

performance is limited. Moreover, for statistical signal processing methods,

the increase of the data cannot refine the separation performance signifi-

cantly, which limits the improvement of the algorithms. Recently, the deep

neural network (DNN) is introduced to solve the MSS problem, because the

DNN can be trained to fit the non-linear relationship between the input and

training target. The DNN-based MSS is a supervised problem, therefore,

the training target of the network is very important. According to the train-

ing targets, the methods in DNN-based MSS are categorized as: masking-,

mapping- and signal approximation (SA)-based [13,14]. The T-F mask and

the spectrogram of the clean speech signal are the most commonly-used

training targets. By using the DNN techniques, the undetermined inverse

problem in the MSS is addressed and the corresponding separation perfor-

mance improved. The case of MSS is represented in Fig. 1.2. Besides, as

the development of the deep learning, different neural network models are

employed to address the MSS problem.

Although the DNN has mainly been employed in MSS, there are several
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Figure 1.2. Monaural source separation problem with two speakers in
the reverberant room environment.

weaknesses within the DNN framework expolited which can be improved.

First of all, in the traditional DNN-based method, due to the limitation of

the dataset, e.g. the amount of the training data and the unseen data sam-

ples in the testing stage, some information of the desired speech signal is over-

or underestimated by the trained neural network model and the relationship

between the input and the training target is not fully fitted. Secondly, when

the MSS is required in the real room environment, the traditional methods

can only separate direct path sound of desired speech signal from the mixture

instead of desired speech signal. Thirdly, in conventional DNN-based meth-

ods, the noisy phase information is used to recover the desired speech singal

from the mixture, which impacts the performance negatively [2]. Therefore,

the phase information of clean speech signal and temporal information need

to be better utilized.
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1.2 Aims and Objectives

The overall aims of this thesis are to overcome the aforementioned weak-

nesses of the DNN-based MSS method and improve its separation perfor-

mance. The particular objectives are:

• Objective 1: To improve the separation performance by exploiting the

information of estimations related to the clean speech signal and refine

the generalization ability.

In Chapter 3, in the first solution, the deep recurrent neural network

(DRNN) is utilized as the framework and the adaptive calculated discrimi-

native term is introduced in the cost function to solve the ambiguous infor-

mation problem. Besides, in the second method, the T-F mask and spec-

trogram of the clean speech signal are used as training targets to train the

DNNs sequentially. After the first DNN is trained, the second DNN is used

to correct the over- or underestimated information in the estimation of the

first DNN.

• Objective 2: Separate clean speech signals from the mixtures in differ-

ent real room environments and improve the separation performance.

In Chapter 4, a novel dreverberation mask (DM) is proposed, by using

the DM, the speech mixture in real room environment is dereverberated.

Then, different from the conventional methods, the desired clean speech

signal can be separated.

• Objective 3: Contribute to separation performance by utilizing the

phase information of clean speech signal and temporal information.

In Chapter 5, the long short-term memory (LSTM) recurrent neural net-

work (RNN) is selected as neural network model. And the phase information

of clean speech signal is utilized by the proposed complex signal approxima-

tion (cSA)-based method.
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1.3 Thesis Outline

The outline of this thesis is listed as follows:

Chapter 2 includes a relevant literature review of MSS by using deep

learning, where different methods for source separation are given. Moreover,

different challenges associated with MSS work are described, including rever-

berant environment and noisy phase information. Different MSS algorithms

are discussed to address these challenges. Then, MSS methods are cate-

gorized according to the training targets and neural network model, where

their advantages and disadvantages are given.

Chapter 3 satisfies the first objective of this thesis. In the first method,

the DRNN is used as the framework. And the adaptively calculated dis-

criminative term is introduced in the cost function. Hence, the ambiguous

information is better estimated. In the second method, the sequentially

trained DNNs are firstly employed to replace the single DNN model in the

MSS algorithm. In order to correct the over- or underestimated informa-

tion in estimation of the single DNN model, the second DNN is introduced

and both DNNs have different training targets. The second DNN helps to

further estimate the separated speech signal. Hence, in both methods, the

generalization ability of DNNs is enhanced and the performance is improved.

Chapter 4 proposes a novel dereverberation mask (DM) to achieve the

dereverberation before separating the desired speech signal from the mixture

in real room environments. Then, the ideal enhanced mask (IEM) is inte-

grated from ideal ratio mask (IRM) and DM. Different two-stage methods

are proposed with different system structures (single DNN or two DNNs).

By using DM, the estimation of the clean speech signal is obtained, which

is different from the conventional methods, where the direct sound of clean

speech signal is estimated.

In Chapter 5, the separation performance is improved by utilizing the
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phase information of the clean speech signal. And the LSTM RNN is applied

as framework, the corresponding neural network models can better fit the

non-linear relationship and the estimation from the trained model will be

more accurate. To utilize the phase information, the cSA-based method is

proposed. Evaluation comparisons confirm the improvement of the proposed

MSS method over other state-of-the-art techniques.

Finally, conclusions are drawn, and future work is then discussed in

Chapter 6.



Chapter 2

RELEVANT LITERATURE

REVIEW

2.1 Chapter Introduction

In this chapter, the literature review related to source separations and the

commonly-used methods in MSS are discussed. These methods are based on

statistical signal processing, computational auditory scene analysis (CASA)

and the neural networks. Then, within the monaural case, the limitations of

these methods are given and the corresponsing solutions are discussed. Fi-

nally, some performance mesures are described, which are appiled to evaluate

the performance of the MSS algorithms.

2.2 Statistical Signal Processing

Recently, source separation has become very popular due to the development

of the speech processed-based applications and human computer interaction

[2]. As mentioned in Chapter 1, when the situations are overdetermined

and determined cases, the statistical signal processing based methods such

as independent component analysis (ICA) and independent vector analysis

(IVA) can be used to separate the desired speech signals.

8
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2.2.1 Independent component analysis

ICA is a statistical model where the observed data is expressed as a linear

combination of underlying latent variables [15]. In ICA technique, the time

delay is neglected and the basic model is instantaneous. The independent

components are assumed to be statistically independent of each other. And

two variables are independent, if and only if the joint probability density

function (PDF) is factorizable in the following way:

p(s1, s2, s3 · · · ) = p1(s1)p2(s2)p3(s3) · · · (2.2.1)

Moreover, at least one source must have non Gaussian distribution and

the unknown mixing matrix is assumed to be invertible, which the number

of sources is equal or less than the number of mixtures.

In [7], ICA is used to separate the speech signals from mixtures and the

central limit theorem indicates that any mixture of components will become

more Gaussian than the individual components. Hence, there are several

kinds of methods in ICA and the most popular one is by maximization

of non-Gaussianity. To measure the non-Gaussianity, the kurtosis and the

negentropy are utilized in ICA. Besides, these two measures can be used to

minimize the mutual information with the Kullback-Leibler Divergence [16].

According to [17], the kurtosis (kurt) is defined by the fourth-order cu-

mulants of a random variable:

kurt(y) = E{y4} − 3(E{y2})2 (2.2.2)

where E is the expectation operation. But when there exist outliers, the

value of kurtosis becomes large. Hence, the kurtosis is not a robust measure

of the non-Gaussainity. A measure that is zero for Gaussian variables and

always non-negative can be obtained from differential entropy, and called
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negentropy [7]. The classical method of approximating negentropy is based

on the higher-order cumulants for zero mean random variable y is:

J(y) ≈ 1

12
E{y3}2 +

1

48
kurt(y)2 (2.2.3)

The nonquadratic function G is defined as G(x) = x4. Using nonquadratic

function G, the negentropy can be calculated as:

J(y) ∝ E{G(y)} − E{G(ν)}2 (2.2.4)

where ν is a standard random Gaussian variable [7]. When the nonquadratic

function grows slowly, the obtained estimators are robust [18].

Although the ICA algorithm can be applied to address source separation

problem by transfering the mixture into frequency domain, the permutation

and scaling problem have negative influence on the separation performance

[19]. The permutation ambiguity is caused by different separation order

for each frequency bin, which is the main problem in ICA algorithm. Fig.

2.1 shows the ICA algorithm with scaling and permutation problems [20].

Compared with the clean speech signals and the separated signals, it can

be observed that the amplitude and the order of the separated signals have

changed. In ICA algorithm, the scaling problem can be addressed by using

the rescaling algorithm, but it is difficult to solve the permutation problem

in ICA algorithm.

2.2.2 Independent vector analysis

From Section 2.2.1, it can be known that the limitations of ICA algorithm

will decrease the performance. Hence, the IVA method is introduced to elim-

inate the permutation problem by using a dependency model which captures

inter-frequency dependencies in the desired speech signals. And the multi-

variate score function is applied to describe the source prior [8], which is the
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Figure 2.1. Permutation problem and scaling ambiguity with ICA
algorithm. The blue signals are the original signals, which are used to
generate mixtures, the black signals are mixtures and the red signals
are separated signals.

higher order frequency dependency.

Since the multivariate sources need to be separated from the multivariate

observations, a cost function is defined for the multivariate random variables.

In IVA algorithm, the Kullback-Leibler divergence is defined to measure the

independence [19]. One function is the joint pdf p(ŝ1 . . . ŝL) and another is

the product of approximated pdfs of individual source vectors, defined as∏L
i=1 q(ŝi).

J = KL
(
p(ŝ1 . . . ŝL)‖

L∏
i=1

q(ŝi)

)
=

∫
p(ŝ1 . . . ŝL)

p(ŝ1 . . . ŝL)∏L
i=1 q(ŝi)

dŝ1 . . . dŝL

= const.−
K∑
k=1

log|detG(k)| −
L∑
i=1

∫
E{log(q(ŝi))} (2.2.5)

where the
∫
p(x1 . . .xM)logp(x1 . . .xM)dx1 . . . dxM is the entropy of the ob-

servation signals. The dependency between sources are removed but the

inherent frequency dependency is preserved. Therefore, by using the IVA

algorithm, in the separated speech signal, the permutation problem is elim-
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inated.

Due to the nature of speech signals, the useful samples can be of high

amplitude and the longer tails can model the spectrum of speech signals

better than the Gaussian distribution. In Student’s t-distribution, the tails

of the distribution is controlled by the degree of freedom. If the value of

degree of freedom is small, the distribution will have heavier tails. If the value

of the degree of freedom is increased to infinity, the Student’s t-distribution is

same as the Gaussian distribution. The shape of the Student’s t-distribution

with different value of degree of freedom is shown in Fig. 2.2. Therefore,

in some improved IVA methods, the Student’s t-distribution is exploited to

replace the Gaussian distribution to model the spectrum of speech signals

perfectly [11,21,22].

Generally, both ICA and IVA algorithms are proposed to solve the source

separation with overdetermined and determined cases. Moreover, in the

audio-video (A-V) methods, the ICA and IVA algorithms are applied with

additional video information [23, 24]. After the video information is intro-

duced and combined with the audio information, the ICA and IVA algo-

rithms are applicable to address the underdetermined case. Meanwhile,

rather than collecting the video information, using pre-process algorithm

with the speech mixture is also beneficial. For example, the variational

Bayesian (VB) methods are investigated in source separation problem. In

VB algorithm, the distributions of speech signals are estimated and the

number of sources in the speech mixture is obtained by counting the num-

ber of distributions [25–28]. However, the separation performance of these

methods cannot be improved even the data amount of the speech signals is

increased. Therefore, the machine learning and the deep learning algorithms

are introduced.
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Figure 2.2. Comparison of univariate Gaussian distribution and uni-
variate Student’s t-distribution with different degree of freedom rates.

2.3 Computational Auditory Scene Analysis

According to Section 2.3, the statistical signal processing based methods

are valid only for determined (number of sources is equal to the number

of sensors) and overdetermined (number of sources is less than the number

of sensors) cases. For undetermined case, the time-frequency (T-F) based

methods are proposed under the framework of computational auditory scene

analysis (CASA) e.g. the model-based expectation-maximization source sep-

aration and localization (MESSL) algorithm [29,30].

In the MESSL with binaural cases, which is similar to human auditory

system, two speech mixtures are captured by two microphones with different

locations. Therefore, the binaural cues i.e. interaural level difference (ILD)

and interaural phase difference (IPD) are modelled as the mixture of Gaus-

sians, which can be utilized to infer the T-F mask [10]. The main assumption

for the applicability of this method is that only one source is active at each

T-F point [9]. In details, the MESSL algorithm exploits the IPD and ILD as

clues to build the probabilistic model of sources to evaluate the hidden vari-

able at every spectrogram point. Then, the masks are generated to separate
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the sources from the mixture according to the probability of activate points.

The expectation maximization (EM) algorithm computes the expectation of

hidden variable in E step, which is 1 for the active point in the spectrogram.

In the M step, the value of E step is exploited to calculate the maximum-

likelihood parameters. After several iterations, the EM algorithm arrives

the convergence point and the the T-F mask will be applied to separate the

original sources from the mixture.

In the MESSL algorithm, the parameters are assumed as the mixture of

Gaussian distributions [31]. However, in reverberant room environments, the

observed data may have heavy tails and therefore assumption of Gaussian

mixture model is limited. The Student’s t-distribution has been exploited

to replace the Gaussian distribution to model the mixture and obtain more

information from outliers to solve this limitation in MESSL [32]. Moreover,

since the shape of the distribution of the mixture is not fixed, a combined

probabilistic model is proposed with Student’s t-distribution and Gaussian

distribution. A weighting parameter is utilized to modify the contribution

of each distribution in the combined model to ensure most of the informa-

tion in the mixture is captured. In order to enhance the robustness in the

separation performance, an adaptive process is introduced to determine the

value of the weight according to the mixture energy and the mixture distri-

bution is jointly modelled with the Gaussian distribution mixture model and

Student’s t-distribution model [11]. The tails of the distribution are better

modelled by the Student’s t-distribution model whereas the lower ampli-

tude information by the Gaussian distribution mixture model. Meanwhile,

in [10, 11, 32], the EM algorithm is applied to solve the clustering problem

of the interaural cues. In addition, the variational inference is introduced

to replace the EM algorithm to overcome the difficulties associated with

the likelihood optimization in [33]. In binaural and multi-channel cases,

all of these unsupervised learning methods achieve promising performance
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in source separation problem. However, in monaural case, the above men-

tioned methods cannot be used to separate the desired speech signal, due to

the lacking of spatial information [34].

Figure 2.3. The distribution of the Gaussian mixture model (GMM),
the red distribution is the estimated distribution of GMM, and the
blue distribution is the true GMM and the greens are the idependent
components of the GMM.

2.4 Monaural Source Separation

In monaural source separation (MSS), only one speech mixture is avail-

able, it leads the spatial information cannot be utilized in this case, and

the desired speech signal needs to be separated from it. Many approaches

have been developed to address the MSS problem. For example, in sig-

nal processing-based methods, in [35], an ideal Wiener filter is estimated

and the target signal is reconstructed in the minimum mean squared error

(MMSE) sense. While in model-based methods, the non-negative matrix fac-

torization (NMF) [36] is exploited to separate signals from a single channel

mixture [37], where non-negative matrix of magnitude or power spectrogram

is decomposed. Then, in [12], the noisy observations is modelled based on

weighted sums of non-negative sources to separate the desired speech signal

from the noisy mixture. In [38], a variational Bayesian inference procedure is
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developed to learn variational parameters and model parameters with NMF,

which is called Bayesian NMF algorithm. All the above mentioned methods

are unsupervised learning algorithms, no labelled dataset is needed when

drawing interferences from the input data [39,40].

Recently, the developments of deep neural network (DNN) techniques

attract the attention from the researcher in MSS. In DNN-based MSS algo-

rithms, the desired speech signal is obtained from the trained neural network

model [41], which is a supervised learning algorithm. In Section 2.6, the chal-

lenges of DNN-based MSS algorithm are discussed firstly, then the different

relevant solutions for each of them are reviewed.

2.5 Deep Neural Network

Recently, the deep neural network (DNN) has been applied to address many

practical speech signal processing problems, e.g. speech recognition, speech

enhancement and source separation. A DNN model is constructed by three

different types of layers: input layer, hidden layer and output layer, and

these layers contain numerous neurons.

The DNN model uses weights and bias to fit the relationship between

the training target and the output. By minimizing the loss function with

the training target and the output, the DNN model is trained. Generally.

the gradient decent algorithm is applied to change the weights and bias of

the model to find the best fitted model.

Meanwhile, according to the structure of the DNN model, different from

the vanilla DNN model, the recurrent neural network (RNN), convolutional

neural network (CNN) et. al are proposed in order to achieve the best

performance for specific tasks.
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2.6 Challenges Associated with Monaural Source Separation

Although introducing deep learning techniques into MSS leads to the im-

provement in separation performance, it still has some limitations due to

the various situations of environments and the high randomness of speech

signals. For example, the energy distribution cannot be totally same even

the speech signal is obtained from the same person with same length and

context, which means there is no same speech signals exist. The separation

performance in DNN-based MSS algorithm depends on many factors, and

all these factors will have influence on the separation performance. There-

fore, in Section 2.6, the challenges of the DNN-based MSS algorithms are

described as follow:

• Training target: Choosing a proper training target of the neural net-

work is very important, it helps the neural network model to be trained

accurately and the estimation from the trained model is better used

to reconstruct the desired speech signal.

• Neural network architecture: There are many different types of neural

network models, each of them has its own advantages and disadvan-

tages in solving MSS problem. Using the appropriate architecture and

configurations of the model can lead to performance improvement.

• Generalization ability: Because the speech signal is highly random,

it is impossible to find two speech signals which are totally same. In

addition, the types of noise interferences in the real world are countless.

Therefore, the trained neural network model needs to have a strong

generalization ability to retain the performance with unseen speaker

and noise interference cases [42].

• Room environment: In real room environment, due to the reflections

from floor, walls, ceiling and furnitures, the acquired speech mixture is
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difficult to separate, the dereverberation is essential before separation,

otherwise, the separation performance will be impacted [43].

2.7 Relevant Solutions

As mentioned in Section 2.6, the challenges exist in the MSS algorithm

limit the separation performance. In the following subsections, the main

challenges for DNN-based MSS work related to this thesis are studied, and

their different relevant solutions are discussed.

2.7.1 Training target

Compared with the traditional methods, the DNN-based MSS algorithm

is a supervised learning problem, it contains training and testing stages.

Therefore, the target in the training stage is crucial.

Many developments have been proposed recently to address the chal-

lenges of training targets. The straightforward idea is using the neural net-

work model to find the relationship between noisy speech mixture and clean

speech signal [44]. For instance, the mapping-based method is firstly pro-

posed, where the spectrogram of the clean speech signal is used as training

target. In [45], the spectrogram of the desired speech signal is estimated

directly from the noisy mixture. Then, some pre-and post-processing oper-

ations are added into mapping-based method to further improve the perfor-

mance, e.g. noise estimation and global variance equalization [46].

Then, the T-F mask is given as the training target and the estimated

desired speech signal is obtained by using the predicted T-F mask. In [47],

the DNN is exploited to generate an ideal binary mask (IBM) to separate

the speech mixture as described in (2.7.1).

IBM(t, f) =

 1, if SNR(t, f) > LC

0, otherwise
(2.7.1)
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where local criteria (LC) is used to determine the value of the T-F unit in

IBM. But the IBM is a binary mask, and the associated hard decision causes

loss in the separation performance [47]. Then, the soft mask is proposed, also

known as the ideal ratio mask (IRM), for which the T-F unit is assigned as

the ratio of desired source energy to mixture energy [14] and the IRM-based

method outperforms the IBM-based method. However, the above mentioned

methods do not utilize the phase information of the desired signal when syn-

thesizing the clean signal. In [48], the phase information is considered to

be unimportant, but further research has shown that the phase informa-

tion is beneficial to predict an accurate mask and the estimated source [49].

Consequently, in [50, 51], complex IRM (cIRM) is employed and both the

magnitude and phase spectra are used to estimate the desired speech signal.

An IRM plot is shown in Fig. 2.4, the spectrogram is obtained with a 1024-

point short time Fourier transform (STFT) with 50 % overlap, zero padding

and Hamming window is explored.

Figure 2.4. The plot of the ideal ratio mask.

Different from mapping- and masking-based methods, the signal approx-
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imation (SA)-based method using the spectrogram of the clean signal as

training target but the estimation of the trained neural network model is a

T-F mask [13], which becomes a popular method in recent research.

2.7.2 Architecture

Besides the challenge of training targets in neural network model, the archi-

tecture of neural network model is also a potential problem for MSS. Many

researchers have explored various architectures in MSS-based methods to

address this challenge.

Since DNN is used to solve the undetermined inverse problem in MSS,

the vanilla DNN (DNN model without temporal connection ) is firstly ap-

plied. The IBM is used as training target with vanilla DNN in [52], then the

IRM is utilized with same neural network model. Moreover, dual outputs

DNN is used in [53] to further improve the separation performance with

vanilla DNN. However, in training stage, the temporal information is very

important, which cannot be fully used in traditional vanilla DNN. The con-

text window is proposed in order to utilize the temporal information, which

combines number of frames as the input to estimate the single frame in the

training target. Although the vanilla DNN has some limitations, it is still

the most popular neural network structure due to its low computational cost

and good performance [54].

Compared with vanilla DNN, recurrent neural network (RNN) has better

ability to utilize the temporal information. In RNN each hidden state is

determined by the current state and the previous state. For example, in [55],

the RNN is introduced as the trained model to separate speech mixture

with SA-based method. Then, the deep recurrent neural network (DRNN)

is proposed, for which only the selected layers in the networks have the

temporal connection [56]. The MSS method with DRNN is used in [13],

which is trained with discriminative training criterion. Based on method
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in [13], the parameter in the discriminative term is calculated adaptively to

penalize the objective function, which is proposed in [41]. Fig. 2.5 shows

the basic structure of a recurrent unit, where xt, st and ot are the input, the

hidden state and the output at time step t, respectively. U , W and V are

the weights.

Figure 2.5. A recurrent neural network and the unfolding in time of
the computation involved in its forward computation.

By using the long short-term memory (LSTM) block instead of the regu-

lar network units, the LSTM RNN is utilized in the monaural source separa-

tion in [57], and the evaluations confirmed the improvement of the separation

performance. Then, the mapping- and masking-based LSTM RNN methods

are compared with different SNR levels and background noise in [58]. More

details about the LSTM RNN-base MSS methods are given in Chapter 5.

Moreover, some other deep learning techniques have been explored and

attempted to solve the MSS problem. For example, generative adversarial

network (GAN) is used to generate the T-F mask to separate desire speech

signal in [59]. And the reinforcement learning is applied to address MSS

by self-optimized [60, 61]. However, in these novel techniques, separation

performance is not consistent, and the further research is needed.
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2.7.3 Generalization ability

The speech signal is highly random, therefore, the MSS algorithm needs to

have a robust performance when facing different speech mixtures. In term of

the DNN-based MSS algorithm, the trained neural network model is required

to have the ability to performance well on the unseen speech mixtures rather

than the data that it has been trained with, it is called generalization ability.

Moreover, the generalization ability is strongly related to the overfitting

problem, if the trained model is overfitting, the generalization ability will be

not good enough [62].

In [57], the LSTM RNN is selected as the neural network model and its

generalization ability is improved by the unique property of the LSTM RNN.

Then, some two-stage methods are proposed, which introduce a separation

system. In the system, the ensemble learning is employed, some neural

network models are trained, which give better generalization ability. For

example, in [63], two vanilla DNNs are trained and the training data is

divided into two parts in the training stage.

2.7.4 Performance measures

To evaluate the performance of the separated speech signal, some measures

are proposed. In [64], the perceptual evaluation of speech quality (PESQ) is

introduced to evaluate the quality of the speech signal. By comparing the

clean speech signal with the separated speech signal from the noisy speech

mixture, the PSEQ is measured. The value range of the PESQ score is given

ranging from -0.5 to 4.5, the higher value of the score means better quality

of the separated speech signal.

Then, the short-time objective intelligibility (STOI) is proposed in [65],

which is a function of a T-F dependent intermediate intelligibility measure.

The STOI compares the temporal envelopes of the clean speech signal and

the separated speech in short-time regions by means of a correlation coeffi-
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cient. The value range of the STOI is between 0 and 1, similar to PESQ,

the higher value of STOI indicates better speech quality. The STOI can be

calculated as:

STOI =
1

JM

∑
dj,m (2.7.2)

where dj,m is the sample correlation coefficient between estimated speech

signal and desired speech signal, j is the jth frequency band, m is the time

frame, J is the total number of frequency bands and M is the total number

of time frames.

Based on signal to noise ratio, the frequency-weighted segmental SNR

(SNRfw) is proposed in [66], the averaging frame level SNR is estimated and

a lower threshold is often set to provide a bound on frame based SNR. The

SNRfw can be calculated as:

SNRfw =
10

M

M−1∑
m=0

∑J−1
j=0 W (j,m)log10

X(j,m)2

X(j,m)−X̂(j,m)∑J−1
j=0 W (j,m)

(2.7.3)

where W (j,m) is the weight assigned to the jth frequency band and mth

time frame, K is the number of bands, X(j,m) is the critical band magnitude

of the clean speech signal and the X̂(j,m) is the corresponding spectral

magnitude of the processed signal [66].

Another measure is source to distortion ratio (SDR), which is proposed

according to the SNR. In SDR, firstly, the separated speech signal is decom-

posed into four parts, the noise, interference, the artifacts error terms and

the target speech signal. By comparing the target speech signal and these

error terms, the SDR is calculated which is described as:

SDR = 10log10
desired speech signal + noise interference+ artifacts

noise interference+ artifacts

(2.7.4)

All these metrics are the most common-used performance measures in

source separation.
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2.8 Chapter Summary

In this chapter, a literature review of source separation algorithms was pre-

sented and discussed. Firstly, the main algorithms of source separation with

over- and determined cases were described. Then, the unsupervised learning

solutions in MSS were discussed. Secondly, the main challenges of the DNN-

based MSS algorithms were given. In the third part of this chapter, the main

existing solutions related to those challenges were viewed. From the different

algorithms in the literature reviewed in this chapter, the requirements of the

source separation algorithms can be summarised as to

• strong generalization ability to the unseen speech mixture and retain

good separation performance;

• cope with the reverberant speech mixture, which is recoded in the real

room environment;

• give solutions to use the phase information of clean speech signal in

separating desired speech signal from the mixture.

Therefore, the focus of this thesis is to achieve these abilities and the above

requirements.

In the next chapter, the DRNN with adaptively calculated discriminative

term method and the sequentially trained DNN system will be proposed to

improve the generalization ability and separation performance.



Chapter 3

SINGLE-CHANNEL SPEECH

ENHANCEMENT AND

SEPARATION

3.1 Chapter Introduction

Single-channel speech enhancement and separation have been studied for

many years due to its importance in a number of real-world applications

such as automatic speech recognition (ASR), assisted living systems and

hearing aids [2,67–71]. The aim of enhancement and separation is increasing

the intelligibility and the quality of the desired speech signal from a noisy

speech mixture [46].

Masking and mapping are two commonly-used methods in speech en-

hancement and separation. In masking-based deep neural network (DNN)

methods, the time-frequency (T-F) masks are used to enhance the quality

of the desired speech signal from the noisy speech mixture [72]. By cal-

culating the ratio of energy between clean speech signal and noisy speech

mixture, the T-F mask is generated and utilized to obtain the desired speech

signal [47, 50]. In masking-based method, there are two main categories ac-

cording to the decision strategy, e.g. ideal binary mask (IBM) and ideal

ratio mask (IRM) [73]. The IBM is a binary mask, and the associated hard

25
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decision introduces spectral artefacts [41]. On the contrary, the soft decision

is applied in the IRM, the T-F unit is assigned as the ratio of desired source

energy to the energy of noisy speech mixture [14]. In general, because the

hard decision is employed, some noisy information is added, therefore, the

IRM-based method is shown to outperform the IBM-based method. The

mapping-based DNN is another promising method to address speech en-

hancement and separation problem, where the DNN is trained to generate

the clean spectrum of the desired speech signal by using the spectrum of

the noisy speech mixture [74]. Compared with the masking-based method,

the mapping-based method offers competitive performance and does not

need further operation to recover the spectrum of the desired speech signal.

These two methods will be described in details in Section 3.2.

However, there are two limitations associated with the existing meth-

ods: (1) The DNN-based methods need better generalization ability when

facing unseen interferences. (2) It is well known that the trained DNN may

not perfectly reflect the relationship between input and training target, and

some information of the clean speech signal may be underestimated or over-

estimated when it is recovered from the noisy speech mixture [75].

In this chapter, two different methods are proposed to solve the above

mentioned limitations. In the first method, the discriminative term is added

in the cost function to address ambigous information problem. Besides, the

parameter in the discriminative term is calculated adaptively to penalize the

cost function and the deep recurrent neural network (DRNN) is used as the

framework. Hence, the influence from the ambiguous information will be

eliminated and the temporal information is better used. The second method

is adding another DNN to build a system, these two DNNs are trained

with different training targets sequentially. Therefore, the overestimated and

underestimated information in the estimation is corrected from the second

DNN, which helps improve the generalization ability and performance.
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The performance of the proposed adaptive penalty term cost function

with DRNN and sequentially trained DNN system are evaluated with TIMIT

and NOISEX datasets. These proposed methods are compared with the

traditional masking- and mapping-based methods. The performance and

comparison results are shown at the end of this chapter, which confirm the

improved performance from both proposed methods.

3.2 Adaptive Discriminative Criterion with DRNN

In the MSS problem, which is solved via neural networks, the separation

performance can be improved by utilizing the temporal information of the

speech signals in the training stage of networks. Commonly, the temporal

information is exploited in two ways: concatenating neighbouring features

and using recurrent neural unit [76]. In the concatenating features method,

a larger window size can utilize more temporal information with the trade

off being computational and memory resources. Therefore, an appropriate

window size is required. The RNNs have a recurrent architecture, which is a

powerful model for temporal information. The deep recurrent neural network

(DRNN) combines the multiple levels of representation that have proved so

effective in DNNs with the flexible use of long range context that empowers

RNNs [56]. Besides, in the training stage, when the features are similar,

the neural network will be conservative. Because of the similarity, a feature

can be attributed to more than one target in some cases. To maintain the

efficiency of the training stage, the neural network will attribute the feature

to both targets, it is called the conservative strategy [77]. However, if the

ambiguous features are attributed repeatedly, the separation performance is

decreased. In this section, the DRNN and adaptive discriminative criterion

are proposed to solve temporal and ambiguous information problem.
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3.2.1 Mapping-based DNN

In mapping-based DNN approach, the training target is the spectrum of the

clean speech signal and the neural network model is trained to estimate the

clean spectrum of desired speech signal.

The cost function of mapping-based DNN approach is expressed as:

Lossmapping =
∑
t

∑
f

(|Ŝ(t, f)| − |S(t, f)|)2 (3.2.1)

where |Ŝ(t, f)| is the estimated spectrogram of the desired speech signal and

|S(t, f)| is the training target, which is the spectrogram of the clean speech

signal.

In [45], the DNN model is trained to learn the relationship between the

spectrum of the noisy mixture and the clean spectrum of the target signal

to address the enhancement and separation problems. Different from the

masking-based method, the prediction of the trained neural network model

is the clean speech signal. While in masking-based method, the prediction

is the T-F mask, it needs to be operated with the mixture to obtain the

estimation of the clean speech signal. But the large value range of T-F points

in the spectrum of the desired speech signal leads to a training problem,

where the neural network model is difficult to be trained properly [78].

3.2.2 Masking-based DNN

In masking-based DNN approach, the ideal T-F mask is applied as the train-

ing target of the neural network models, which happens in training stage.

Then, in the testing stage, the T-F mask is predicted from the trained model.

The predicted T-F mask is applied to the mixture to reconstruct the desired

speech signal and the predicted T-F mask can be categorized as a binary or

soft mask.

In the binary mask, each T-F unit of the mask was assigned as 1 or 0
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according to the criterion for the active source [52,79]. However, due to the

hard decisions from the IBM, the separated speech signal of the IBM-based

method is distorted. In the soft mask, also known as ideal ratio mask (IRM),

the T-F unit was assigned as the ratio of target source energy to mixture

energy [74]. Compared with the IBM, the desired speech signal separated

by IRM often has better quality, e.g. with less musical noise artefacts.

The cost function of masking-based DNN approach is expressed as:

Lossmasking =
∑
t

∑
f

(|M̂(t, f)| − |M(t, f)|)2 (3.2.2)

where |M̂(t, f)| is the estimated T-F mask and |M(t, f)| is the training tar-

get, which is the ideal T-F mask. Because the T-F mask is a ratio mask,

compared with the mapping-based, it can better extract the sparse informa-

tion from the speech mixture.

3.2.3 Deep recurrent neural network

In order to better utilized the temporal information and save computational

cost, the DRNN is introduced as the framework. According to [80], two

DRNN architectures are defined: 1) an L hidden layer DRNN with temporal

connection only at the l-th layer (DRNN-l) and 2) a full RNN. Assume hlt

is the hidden activation at layer l and time t :

hlt = fh(xt,h
l
t−1)

= gl(R
lhlt−1 + Wlgl−1(W

l−1(· · ·g1(W1xt)))) (3.2.3)

The output yt is expressed as:

yt = fo(h
l
t)
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= WLgL−1(W
L−1(· · ·gl(Wlhlt))) (3.2.4)

where fh and fo are the state transition and output function, respectively.

The input at time t is xt, g(·)l represents the activation function at the l-th

layer, Rl is the recurrent weight matrix and Wl is the current connection

at the l-th layer. In the layers without temporal connection, the previous

weight matrices are the zero matrices.

The full connection DRNN has the same architecture as the vanilla RNN

[81], the hidden state of the l-th layer at time t is:

hlt = fh(hl−1
t ,hlt−1) = gl(R

lhlt−1 + Wlhl−1
t ) (3.2.5)

In the first layer, where l = 1, the activation h1
t is calculated by h0

t = xt.

In the DRNN, the activation function is selected as a rectified linear unit

(ReLU) to avoid gradient vanishing and reduce the computational cost. The

ReLU function is expressed as:

g(x) = max(0,x) (3.2.6)

After the DRNN is selected as the framework, the adaptive discriminative

term is added into the cost function to address ambiguous information issue,

which is introduced in the next subsection.

3.2.4 Adaptive discriminative term

Assume two sources are used to generate speech mixture, which is repre-

sented by s1 and s2. By optimizing the parameters of the neural network,

the mapping relationship between the input, xt, and the estimations, ŝ1t

and 2̂2t, can be obtained. The sum of the squared errors is selected as the
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objective function as:

J =
1

2

T∑
t=1

(‖ŝ1t − s1t‖22 + ‖ŝ2t − s2t‖22) (3.2.7)

where ŝ1t and ŝ2t are the predictions of the spectra and s1t and s2t represent

the target spectra, ‖ · ‖22 is the l2 norm operation, and (3.2.7) needs to be

minimized to optimize the parameters in the neural network.

In the DRNN, the input is a concatenation of features; when the features

are similar, the neural network will be conservative in the training stage.

Because of the similarity, a feature can be attributed to source 1 or source

2 in some cases. To maintain the efficiency of the training stage, the neural

network will attribute the feature to both source 1 and source 2, which is

called the conservative strategy. However, if the ambiguous features are

attributed repeatedly, the separation performance is decreased due to this

strategy.

In [13], a discriminative network training criterion was proposed. The

new discriminative objective function is defined as:

JDIS =
1

2

T∑
t=1

(‖s1t − ŝ1t‖2 + ‖s2t − ŝ2t‖2−

γ‖s1t − ŝ2t‖2 − γ‖s2t − ŝ1t‖2) (3.2.8)

where γ can be treated as the penalty parameter. In the ideal case, ŝ1t

and ŝ2t are only estimated by the corresponding target features. However,

because of the indeterminacy and conservative strategy, this case cannot

happen. Therefore, how to minimize the negative influence from these am-

biguous features is important. The ‖s1t − ŝ2t‖2 and ‖s2t − ŝ1t‖2 terms are

used to represent the squared errors, which are caused by attributing the

estimated features, ŝ1t and ŝ2t, incorrectly. To be noted, in the training

stage of the proposed method, the levels of amplitude of the speech signals
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and interferences are same.

According to work in [13], γ is selected in the range of 0.01∼0.1, empir-

ically. Whereas the speech signals are random with high indeterminacy. If

the value of γ is irrelevant to inputs, when the inputs for training stage are

changed, the performance and the trained network may not be amenable.

Therefore, the penalty parameter is calculated adaptively, which is applied

to penalize the cost function to train the neural networks.

Figure 3.1. The training stage of the proposed DRNN-based MSS
system with adaptive discriminative term.

Fig. 3.1 is the flow diagram of the proposed DRNN-based adaptive

penalty method in training stage. Before training the neural network, a

penalty factor calculation module is added to compute the parameter in the

discriminative term to penalize the objective function. Then, in the training

stage, the parameters of the DRNN are optimized with the penalty factor

and discriminative criterion.

In this proposed method, the value of γ in (3.2.8) is changed with the

input features. To be specific, if the input features are almost the same,

it indicates that features are more likely to be attributed to both source 1

and source 2. Therefore, the penalty term needs to be significant and the γ
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requires a greater value. In contrast, when the targets have huge differences,

the conservative strategy and penalty factor are trivial in this situation and

γ should be close to zero. According to the analysis above, the value of the

penalty factor is inversely proportional to the discrepancy between target

features.

Generally, norms of matrix are used to measure the discrepancy and

three types of norms are explored.

Assume the spectra of source 1 and source 2 are, respectively, A ∈ RF×T

and B ∈ RF×T . The discrepancy between the features is defined as:

D = A−B (3.2.9)

The penalty factor is calculated as:

γ =
1

‖D‖norm
(3.2.10)

Because the discrepancy between two features needs to be measured,

firstly, the max norm is utilized, which is defined as:

‖D‖max = max|dt,f | ∀ t, f (3.2.11)

where dt,f is the element in the matrix D, t and f represent the frame and

frequency index: t = 1, . . ., T and f = 1, . . ., F .

However, the max norm only finds the maximum value of the matrix,

it cannot fully measure the total discrepancy. Hence, the P -norm will be

discussed below [82].

The P -norm of matrix D is defined as:

‖D‖P = (
T∑
t=1

F∑
f=1

|dt,f |P )
1
P (3.2.12)
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where P is the positive integer.

Two cases in the P -norm are discussed, where the value of P is selected

as 1 or 2.

For P = 1:

‖D‖1 =

T∑
t=1

F∑
f=1

|dt,f | (3.2.13)

For P = 2:

‖D‖2 = (

T∑
t=1

F∑
f=1

|dt,f |2)
1
2 =

√
trace(D·D∗) (3.2.14)

where D∗ denotes the conjugate transpose of D and trace is the trace oper-

ation of the matrix. It is well known as the Frobenius norm.

Theoretically, from the definition of the 2-norm, it can be known that

it shrinks the difference between inputs. Therefore, the algorithm based on

the 1-norm should have a better separation performance.

Moreover, for any two matrix norms ‖·‖α and ‖·‖β, they have the rela-

tionship for some positive constants δ and θ and all matrices D in RF×T . It

is defined as:

δ‖D‖α6‖D‖β6θ‖D‖α (3.2.15)

The above equation indicates that all norms on RF×T are equivalent [83].

However, in a specific algorithm, the 1-norm and the 2-norm will show dif-

ferent performance.

Finally, the type of norm in (3.2.10) is selected as the 1-norm and the

penalty factor is calculated as:

γ =
1

‖D‖1
=

1

‖A−B‖1
(3.2.16)

Therefore, the γ can be calculated adaptively with the changes of target

features.

The evaluations with the propose DRNN will be shown in Section 3.4

and in the next section, the sequentially trained DNN system is described,
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which is another promising method to address speech enhancement problem.

3.3 Sequentially Trained DNN System for Speech Enhancement

In this section, two DNNs are employed to build a enhancement system.

In the system, different from the single DNN method, one more DNN is

trained to further eliminate the overestimate or underestimate problems in

the enhanced speech signal.

Based on the mapping- and masking-based methods, a DNN-based sys-

tem with two sequentially trained DNNs is proposed to further improve the

enhancement performance. According to no free lunch theorems (NFL) [84],

it is impossible to find the neural network model which can estimate the

training target perfectly in all cases. Hence, the desired speech signal is

divided into two components, the estimated component and the enhanced

component, |Ŝ1(t, f)| is used to represent the estimated component which

can be obtained from the trained mapping-based DNN and |S2(t, f)| is used

to represent the enhanced component of the magnitude information.

Hence, the desired speech signal can be rewritten as:

|S(t, f)| = |Ŝ1(t, f)|+ |S2(t, f)| (3.3.1)

In the proposed system, a T-F mask is generated from the second trained

DNN to obtain the magnitude information to enhance the estimated speech

signal. Different from the first DNN (i.e. the mapping-based DNN), the

training target of the second DNN is a T-F mask. According to (3.3.1), the

training target of the second DNN is expressed as:

M(t, f) =

(
|S(t, f)| − |Ŝ1(t, f)|

)
|Y (t, f)|

(3.3.2)

The value of M(t, f) can be negative and according to [50], the value
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range of mask is not limited within [0,1]. Since |Ŝ1(t, f)| is not very far from

|S(t, f)|, the value range of M(t, f) is not very large and the compression

module is not required in our proposed method. If the value in the mask is

positive, it shows that |Ŝ1(t, f)| is underestimated. If the value in the mask

is negative, it indicates that |Ŝ1(t, f)| is overestimated. The cost function of

this DNN is expressed as:

Lossproposed =
∑
t

∑
f

(M̂(t, f)−M(t, f))2 (3.3.3)

where M̂(t, f) is the estimation of the proposed T-F mask.

Therefore, after both DNNs are trained in the proposed system, the

enhanced target speech signal is the combination of the directly estimated

spectrogram and the speech information obtained from the noisy speech

mixture with the proposed T-F mask.

|Ŝ(t, f)|final = |Ŝ1(t, f)|+ M̂(t, f)× |Y (t, f)| (3.3.4)

where |Ŝ(t, f)|final is the feature of the enhanced speech signal, which can

be used to recover the desired speech signal and |Ŝ(t, f)|final ≥0.

Fig. 3.2 shows the block diagram of the training and testing stages of

the proposed system with two DNNs. The feature we used in the proposed

system is the log spectrogram, and the two DNNs in the proposed method

are trained sequentially. In the training stage, firstly, the log spectrogram

of noisy speech mixture is used as input of the mapping-based DNN (DNN

1). The corresponding training target is the log spectrogram of clean speech

signal. After the mapping-based DNN is trained, the feature of noisy speech

mixture is given as input to DNN 1 to obtain the estimated log spectrogram

of the desired speech signal. It is used to calculate the ideal T-F mask

with features of noisy speech mixture and clean speech signal using (3.3.2).
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Figure 3.2. The block diagram of the training and testing stages
in the proposed two-DNN system. In the training stage, the DNN 1
is mapping-based and DNN 2 is masking-based, and both DNNs are
trained with the same input. In the testing stage, both trained DNNs
have same input and the final estimated speech signal is obtained from
speech enhancement module.

Finally, the ideal T-F mask is applied as the training target of the masking-

based DNN (DNN 2) with feature of noisy speech mixture as input. In the

training stage, DNNs 1 & 2 are trained sequentially, but in the testing stage,

both trained DNNs output estimation in parallel.

In the testing stage, the feature of the noisy speech mixture is given as

input to the proposed system, the main part of the desired speech signal

is obtained by the trained DNN 1 e.g. |Ŝ1(t, f)|, and the information that

cannot be estimated in DNN 1 is obtained from the trained DNN 2 by using

the estimated T-F mask. The speech enhancement module is used to output

the enhanced speech signal from the noisy speech mixture by (3.3.4), which

yields the enhanced desired speech signal.

Fig. 3.3 is an example of the process and it can be observed that by

using the proposed method, the spectrogram of the estimated speech signal
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Figure 3.3. (a) The mixture; (b) Clean speech signal; (c) The esti-
mated speech signal with DNN 1; (d) The estimated speech signal with
DNN 2; (e) The estimated speech signal of the proposed method and
(f) The estimated T-F mask from DNN 2.

with the proposed method is more similar to that of the clean speech signal

(comparing (c) and (e) with (b)). Because the DNN 2 is introduced, the

information of clean speech signal can be accurately obtained in the desired

speech signal. In the unseen noise interferences case, the proposed system

can utilize DNN 2 to further improve the quality of the estimated speech

signal from noisy speech mixture. In Fig. 3.3 (d), the estimated speech

signal with DNN 2 is shown, it represents the enhanced speech information

which is used to improve the quality of the estimated speech signal. The

values in some estimated T-F masks from DNN2 are checked, the negative

values in the T-F mask are very sparse and the ratio of number of negative

values to the number of values in T-F mask is 1.07%. Hence, it is difficult

to observe these negative values in Fig. 3.3 (f).

When the noise interferences are unseen, it means that the noise inter-

ferences in the testing data are totally different from those in the training
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data. The trained DNN model in the mapping-based method cannot fit the

relationship between the noisy speech mixture and clean speech signal accu-

rately. Hence, some information of the clean speech signal may be lost. By

using the proposed method, this problem is mitigated, leading to a better

generalization ability for unseen mixtures as confirmed by evaluations with

different performance measures in Section 3.4.

3.4 Simulations

In this section, the configurations and evaluations with DRNN-based method

are shown in subsections 3.4.1 and 3.4.2, respectively. The configurations and

the evaluations with sequentially trained DNN system are given in subsec-

tions 3.4.3 and 3.4.4, respectively.

3.4.1 Configurations with DRNN-based method

The separation performance is evaluated based on the famous TIMIT database,

which contains broadband recordings of 630 speakers [85]. In these exper-

iments, speech signals are selected from the TIMIT corpus randomly to

constitute the training, validation and testing sets. The number of mixtures

in training, validation and testing set is 972, 216 and 108, respectively. The

mixtures in these experiments are generated with different speech sources

having different genders. To extract the proper spectral representation to

train the networks, a 1024-point short time Fourier transform (STFT) with

50 % overlap, zero padding and Hamming window is explored. The initial-

ization method in [86] is utilized to reduce the training difficulty of deep

networks.

The circular shift in the time domain is explored to increase the variety

of training set [72]. The spectra and log power spectra are utilized as the

types of input features, which are calculated by using the HTK toolkit [87].
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The basic DNN, the DRNN with first layer connection, the DRNN with

second layer connection and full connected DRNN are the four different

architectures of neural networks. All of experiments are based on these

architectures to identify generalization ability of the proposed method.

In these networks, the number of hidden layers is two and the number

of hidden units on each layer is 1000. The SDR is utilized to measure the

separation performance of the proposed method [88]. The limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is an optimization al-

gorithm in the family of quasi-Newton methods, which is used to train the

models [89]. In the experiments, the values of γ are selected as 0, 1 and 0.05

(in the range of 0.01 and 0.1) for comparison. The size of context window

in these networks is 1, the concatenation contains three frames, one central

frame and two window frames. According to the analysis in subsection 3.2.4,

the 1-norm is applied to calculate the discrepancy in the target features.

3.4.2 Results with DRNN-based method

By using the configurations mentioned in subsection 3.4.1, the corresponding

neural network models are trained. After these different neural networks are

trained, the mixture is separated by using different mask functions and values

of γ.

Table 3.1. Separation performance comparison in terms of SDR (dB)
with different values of γ and neural network architectures via binary
mask and the input features are spectra.

Penalty factor γ DNN DRNN-1 DRNN-2 RNN
γ = 1 5.49 5.61 6.60 6.56
γ = 0 5.25 5.38 6.57 5.91
γ = 0.05 5.50 5.58 6.52 6.72

Adaptive γ 5.81 5.96 6.66 6.84

The experimental results are compared in terms of different aspects.

Firstly, it can be seen from Tables 3.1 & 3.2 and Tables 3.3 & 3.4 that
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Table 3.2. Separation performance comparison in terms of SDR (dB)
with different values of γ and neural network architectures via binary
mask and the input features are log power spectra.

Penalty factor γ DNN DRNN-1 DRNN-2 RNN
γ = 1 5.56 5.89 6.12 6.62
γ = 0 5.13 6.16 5.88 7.01
γ = 0.05 6.28 6.56 6.27 6.94

Adaptive γ 6.79 6.89 6.87 7.11

Table 3.3. Separation performance comparison in terms of SDR (dB)
with different values of γ and neural network architectures via soft mask
and the input features are spectra.

Penalty factor γ DNN DRNN-1 DRNN-2 RNN
γ = 1 6.08 6.17 7.00 7.07
γ = 0 5.72 6.20 7.12 6.60
γ = 0.05 6.14 6.25 7.24 7.52

Adaptive γ 6.30 6.70 7.48 7.56

the separation performance is impacted by the types of features in different

architectures of networks. Generally, in DNN and DRNN-1, using the log

power spectra as the input features has better performance. In contrast, the

spectra can yield a higher SDR in DRNN-2 and full RNN. Then, according

to the Tables 3.1 & 3.3 and Tables 3.2 & 3.4, the soft mask based models

outperform binary mask based models greatly. It is evident that the soft

mask can have around 10% more improvements in SDR.

Finally, the performance between different architectures is compared.

The results in all Tables confirm the separation performance and robustness

of the proposed method are improved in all architectures of DRNNs. Besides,

comparing the separation performance of DNN and DRNNs, introducing the

connected layer in networks can provide improvement. In DRNNs, almost

all of the full RNN maintains the highest SDR, but demands high computa-

tional power and larger memory. In these architectures with connection in

hidden layers, DRNN-1, DRNN-2 and full RNN, increasing the complexities

of DRNNs gains the SDR. Although the performance is affected differently
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Table 3.4. Separation performance comparison in terms of SDR (dB)
with different values of γ and neural network architectures via soft mask
and the input features are log power spectra.

Penalty factor γ DNN DRNN-1 DRNN-2 RNN
γ = 1 6.01 6.13 6.75 7.21
γ = 0 6.13 6.51 6.31 6.77
γ = 0.05 6.82 7.23 7.26 7.40

Adaptive γ 7.07 7.52 7.33 7.74

for DNN and DRNNs, the proposed approach outperforms the DRNN-based

method in [13].

In these experiments, the proposed method is compared with different

architectures and values of penalty factors. According to Tables 3.1-3.4, the

results of the proposed method surpass the experimental results, which are

produced by the irrelevant parameter method. The soft masking function

can assist to achieve a better separation performance. Generally, the full

RNN is the better choice than DNN, DRNN-1 and DRNN-2, but the re-

quirement of computational resource will be higher, when the complexity of

the network is increased.

3.4.3 Configurations with sequentially trained DNN system

In this subsection, the evaluations with sequentially trained DNN system

are given. For experiments, the clean speech signals are randomly selected

from the TIMIT corpus [85], which has 6,300 utterances, 10 utterances spo-

ken by each of 630 speakers. The noise interferences are selected from the

non-speech noise database [90] and the NOISEX database [91]. In the exper-

iments, we select 4,680 utterances from the TIMIT corpus to generate the

training dataset. 200 utterances are used to generate the testing dataset.

These clean speech utterances are mixed with noise at the different signal-

to-noise ratio (SNR) levels. In the training dataset, 100 different types of

non-speech noise interferences are used to mix with clean utterances to gen-
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erate the noisy speech mixtures. In the testing data, 10 different unseen noise

interferences are used to generate the noisy speech mixtures of the testing

data. In our evaluations, we generate testing data at three different SNR

levels (-5, 0 and 5 dB) using different types of unseen noise interferences.

In the experiments, both DNN 1 and DNN 2 have three hidden layers

and each hidden layer has 2048 units. The activation function for each hid-

den unit is selected as the rectified linear unit (ReLU) to avoid the gradient

vanishing problem and the output layer has linear units. Both DNNs are

trained with 10,000 epochs and the learning rate is 0.0001. The performance

metrics used are the perceptual evaluation of speech quality (PESQ) [64], the

short-time objective intelligibility (STOI) [65] and the signal to distortion

ratio (SDR) [88]. The values of PESQ and STOI are in the range of [-0.5,

4.5] and [0, 1], respectively. These values indicate the human speech intel-

ligibility scores. The SDR is exploited to evaluate the overall enhancement

performance. The higher values of these metrics means that the desired

speech signal is better reconstructed.
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3.4.4 Results with sequentially trained DNN system

According to the configurations and performance measures in subsection

3.4.4, the simulation results of these methods are shown.

Firstly, three different types of unseen noise interferences are used to

generate the testing data, then the type of unseen noise interferences is

increased to 5 and 10, respectively. Tables 3.5 - 3.7 show the enhancement

performance of the proposed system and the comparison group with different

number of types in noise interferences and SNR levels in terms of the PESQ

and STOI. From these tables, it is clear that the proposed method achieves

the best performance in all scenarios and SNR levels. For example, in Tables

3.5, when the number of types in noise interferences is 3 with 0 SNR levels,

the proposed system achieves 2.13 in PESQ while the mapping-based method

achieves 1.74 and the PESQ value of masking-based method is 2.01.

It can be seen that when more types of unseen noise interferences exist

in the testing data, the enhancement performance of both methods is de-

creased. For instance, comparing the STOI performance in Table 3.5 with

Table 3.7. When the 3 unseen noise interferences are used to generate the

speech mixture with 5 dB SNR level, the value of STOI by using the pro-

posed system is 81.65 %. If 10 unseen noise interferences are used to generate

the speech mixture with same SNR level, the performance of the STOI of

the proposed system is 77.51 %, which has 4.14 % decrease. Moreover, when

the SNR level is increased, the enhancement performance is improved. It

can be observed from Table 3.5, when the value of the SNR level becomes

larger, better performance in terms of the PESQ and STOI can be obtained.

To further confirm that the proposed method outperforms the mapping- and

masking-based methods, the SDR improvements are evaluated.

The improvements of SDR (4SDR) with different SNR level and noise

cases are shown in Fig. 3.4. It is clear to observe that when the value of

SNR level is increased, the 4SDR becomes less. If more types of unseen
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Figure 3.4. The SDR improvement (dB) in terms of different methods
with various SNR levels and noise scenarios. Each result is the average
value of 200 experiments. The number before each method shows the
number of types for unseen noise interferences.

noise interferences are added, the value of related 4SDR is decreased. From

Tables 3.5 - 3.7 and Fig. 3.4, it can be seen that when the SNR level is

increased, although the values of SDR for both methods are increased, the

4SDR become less. When more unseen noise interferences are mixed in the

testing dataset, the enhancement performance of both methods is decreased.

However, comparing the results in Tables 3.5 - 3.7 and Fig. 3.4, when more

types of unseen noise interferences are used in the testing dataset, e.g. 3,

5 and 10 different unseen noise interferences, the enhancement performance

of the proposed method is better than the mapping- and masking-based

methods. This shows that the proposed method has better generalization

ability.
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3.5 Chapter Summary

In summary, for the DRNN-based method with an adaptive penalty fac-

tor. From subsection 3.4.2, it can be confirmed that the adaptive cri-

terion method outperformed the approach with irrelevant penalty factor

method [13]. By introducing the penalty factor, the ambigous information

problem is solved, and the separation performance is further improved. Be-

cause of the indeterminacy of speech signals in the real-world scenarios, this

method can be more applicable.

In the sequentially trained DNNs system, when these two DNNs are

trained sequentially, the desired speech signal is enhanced with the esti-

mated T-F mask and the underestimated or overestimated information in

the estimated speech signal can be further mitigated. The enhancement per-

formance is influenced by the mixing SNR level and types of unseen noise

interferences. Besides, more different types of unseen interferences lead to

degradation in the enhancement performance. The speech enhancement sys-

tem with sequentially trained DNNs is proposed to improve the performance.

One DNN was mapping-based and the other masking-based. By using the

proposed system, the information of a clean speech signal can be extracted

accurately from the noisy speech mixture.

The evaluations with unseen noise interferences confirmed that both

proposed methods outperformed the existing state-of-the-art methods at

enhancement and separation performance and had a better generalization

ability.

However, the separation performance of the proposed methods in this

chapter is limited when the mixture is captures within real room environ-

ments. In the next chapter, a two-stage MSS method is proposed to solve

the problem with reverberant environments.



Chapter 4

TWO-STAGE MONAURAL

SOURCE SEPARATION WITH

MAGNITUDE DOMAIN IN

REVERBERANT ROOM

ENVIRONMENTS USING

DEEP NEURAL NETWORK

4.1 Chapter Introduction

In the previous chapters, the IRM has been introduced to address the monau-

ral source enhancement and separation problem. Chapter 2 provided the

fundamental preliminary knowledge about the masking-based method in re-

verberant environment. In Chapter 3, the deep recurrent neural network

(DRNN) with adaptive discriminative cost function and sequentially trained

DNNs were employed to obtain a more accurate prediction. However, the

above mention methods have limited performance when they are used to

address the monaural source separation (MSS) problem in reverberant room

48
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environments. In order to improve the separation performance in real room

environments, the dereverberation mask (DM) is proposed with a two-stage

algorithm. This chapter focuses on the third objective of this thesis, which is

the novel masking-based method with MSS accepted by ACM/IEEE Trans-

actions on Audio, Speech, and Language Processing.

When addressing the MSS problem in reverberant environment, the ac-

quired speech mixture contains reflections, which will lead decrease in the

separation performance [68]. The DNN-base algorithm has been employed

in many scenarios, such as the speech enhancement [46] and source sep-

aration [50]. However, when they are applied in reverberant environment,

in [46], because the complexity of the speech mixture is increased, the proper

trained neural network model is difficult to obtain. While in [51], because

the clean speech signal cannot be used to calculate the T-F mask, the direct

sound is used to calculate the ideal T-F mask. Therefore, the final estimation

in [51] is the direct sound, which is different from the clean speech signal.

In this chapter, the DM is firstly introduced in Section 4.2.1; based upon

the DM, the IEM is proposed in Section 4.2.2. By applying DM or IEM,

two different two-stage algorithms are proposed, which will be described in

Section 4.3. Evaluation and comparisons will be shown at the end of this

chapter in Section 4.4, which show the improvement from the proposed two-

stage algorithms.

4.2 Time-Frequency Mask

In the real room environment, the sound or signal will be reflected from the

the ceiling, walls and floors. Hence, in the captured speech mixture, it will

contain a large number of reflections of speech signals and interferences [92].

To measure the reverberant time, RT60 is proposed and it is the time that

signal takes for the pressure level to reduce by 60 dB [93]. The room impulse
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response is the impulse signal used to generate the reverberations in the room

environment, it contains three different types signal, the direct-path, the

early- and late-reflections. In recent studies, masking-based DNN methods

have been introduced to solve the monaural source separation problem in

reverberant environments and the corresponding performance is promising.

Assume that s(m), i(m) and y(m) are the desired speech signal, the in-

terference and the acquired mixture at discrete time m, respectively. The

terms hs(m) and hi(m) are the room impulse responses (RIRs) for rever-

berant speech and interference, respectively. The convolutive mixture is

expressed as:

y(m) = s(m) ∗ hs(m) + i(m) ∗ hi(m) (4.2.1)

where ‘∗’ indicates the convolution operator. By using the short time Fourier

transform (STFT), the mixture is written as:

Y (t, f) = S(t, f)Hs(t, f) + I(t, f)Hi(t, f) (4.2.2)

where S(t, f), I(t, f) and Y (t, f) are the spectra of speech, interference and

mixture, respectively. The qualities Hs(t, f) and Hi(t, f) are the RIRs for

speech and interference at time frame t and frequency f , respectively.

By employing the ideal T-F mask M(t, f), the spectrum of the clean

speech can be reconstructed as:

S(t, f) = Y (t, f)M(t, f) (4.2.3)

The IRM and the cIRM are the two targets often chosen in state-of-the-

art masking-based DNN methods, which can be used to dereverberate and

separate the speech mixture.

If there is no RIR, the IRM for time frame t and frequency f can be
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expressed as [14]:

IRM(t, f) =

(
|S(t, f)|2

|S(t, f)|2 + |I(t, f)|2

)β
(4.2.4)

where β is a tunable parameter to scale the mask, |S(t, f)| and |I(t, f)|

denote the target speech signal and the noise interference magnitude spectra,

respectively. Typically, the tunable parameter is selected as 0.5.

When the environment is reverberant, the direct sound at discrete time

m is expressed as [51]:

d(m) = hd(m) ∗ s(m) (4.2.5)

where hd(m) is the impulse response for the direct sound. Hence, the IRM

for a reverberant environment in the time-frequency domain is expressed

as [51]:

IRM rev(t, f) =

(
|D(t, f)|2

|Y (t, f)|2

)β
(4.2.6)

where |D(t, f)| and |Y (t, f)| denote the direct sound and noisy reverberant

mixture magnitude spectra, respectively.

The cIRM is a complex T-F mask which is obtained by using the real

and imaginary components of the STFTs of the desired speech signal and

mixture [50].

To calculate the cIRM, the STFTs of the reverberant mixture, direct

sound and cIRM are written as:

Y (t, f) = Yr(t, f) + jYc(t, f) (4.2.7)

D(t, f) = Dr(t, f) + jDc(t, f) (4.2.8)

cIRM(t, f) = cIRMr(t, f) + jcIRMc(t, f) (4.2.9)

where j ,
√
−1 and the subscripts ‘r’ and ‘c’ indicate the real and the

imaginary components in the STFTs, respectively.
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By using the ideal cIRM, the desired speech signal can be separated from

the mixture. The T-F unit of the cIRM is defined as:

cIRM(t, f) =
Yr(t, f)Dr(t, f) + Yc(t, f)Dc(t, f)

Y 2
r (t, f) + Y 2

c (t, f)

+j
Yr(t, f)Dc(t, f)− Yc(t, f)Dr(t, f)

Y 2
r (t, f) + Y 2

c (t, f)
(4.2.10)

The above IRM and cIRM have the same limitation in solving derever-

beration and separation problems, the final estimation is the direct sound

instead of clean speech signal. To address this problem, the DM is proposed,

which is described in Section 4.2.1.

4.2.1 Dereverberation mask

Because the neural network model can be used to find the relationship be-

tween the input and the training target [81]. However, estimating the sep-

aration mask directly from the reverberant mixture is challenging and the

mask obtained is often noisy due to the presence of acoustic reflections. To

address this issue, a DM is used to eliminate reverberation, and then the

IRM is applied to separate the desired speech signal. According to (4.2.2),

the reverberant mixture can be written as:

Y (t, f) = [S(t, f) + I(t, f)]

 Hs(t, f)

1 + I(t,f)
S(t,f)

+
Hn(t, f)

1 + S(t,f)
I(t,f)

 (4.2.11)

Therefore, by using Y (t, f) and [S(t, f) + I(t, f)], the relationship be-

tween the reverberant and dereverberated mixtures is obtained. The DM is

defined as:

DM(t, f) =

 Hs(t, f)

1 + I(t,f)
S(t,f)

+
Hn(t, f)

1 + S(t,f)
I(t,f)

−1

(4.2.12)

In the training stage, the spectra of speech, noise and mixture with
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reverberations are available, therefore, the DM can be learned as:

DM(t, f) =
[
S(t, f)+I(t, f)

]
Y (t, f)−1 (4.2.13)

From (4.2.13), it is clear that in the training stage, the training target

DM(t, f) can be calculated by using S(t, f), I(t, f) and Y (t, f). Therefore,

before the target signal is separated from the mixture, the DM is applied to

the reverberant mixture to eliminate most of the reflections. In the training

stage, the DM is compressed, and its value range is limited to be consistent

with that of IRM, and thereby facilitate the fusion with IRM. According to

(4.2.13), when there are no RIRs, the elements of the DM will all be ones

and the proposed two-stage approach will be reduced to one-stage using only

the estimated IRM.

According to (4.2.11) and (4.2.13), it can be known that the DM is a

dereverberation operation. Thus, the dereverberated mixture is described

as:

S(t, f) + I(t, f) = Y (t, f)DM(t, f) (4.2.14)

Because the DM can only dereverberate the speech mixture, further pro-

cessing is required for separating the mixture. Compared with the cIRM,

the IRM requires less computational cost and both the DM and the IRM are

soft masks which are applied in the T-F domain, while the cIRM is applied

in the complex domain. Hence, the IRM is applied to separate the desired

signal from the mixture. The desired speech signal is extracted from the

dereverberant mixture by using the IRM:

S(t, f) =

(
S(t, f) + I(t, f)

)
IRM(t, f) (4.2.15)
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4.2.2 Ideal enhanced mask

From (4.2.14), it can be observed that the DM only achieves the derever-

beration, a separation operation is essential to separate the desired speech

signal from the dereverberated mixture and the IRM has been selected to

undertake the separation operation.

As mentioned in Section 4.1, the DM and IRM are integrated together to

generate the IEM. When IEM is used as the training target, only one DNN

is trained. The IEM is defined as:

IEM(t, f) = DM(t, f)IRM(t, f) (4.2.16)

Comparing the proposed IEM with the IRMrev, the proposed single

DNN method is essentially different from the one in [51]: the IRMrev is

calculated based on the direct sound, which is a delayed and attenuated ver-

sion of the clean speech signal. Hence, after using the T-F mask, the STFT

of the direct sound is obtained [94]. However, in real scenarios, hd(m) in

(4.2.1) is not equal to 1 and as a result, IRMrev is not always effective in

mitigating the reverberation effect. While in our proposed IEM, the IRM

is calculated by using the clean speech signal and the dereverberant mix-

ture, after using the T-F mask, the STFT of the clean speech signal can be

obtained. Therefore, compared with the IRMrev, the IEM achieves bet-

ter separation performance. In addition, the compression module is added

to restrict the range of the values within the IEM, which is conducive for

training the DNN.

According to (4.2.14) and (4.2.15), it can be seen that the DM is a

dereverberation operator and the IRM is the separation operator. Thus, the

separated speech signal is obtained as:

S(t, f) = Y (t, f)IEM(t, f) (4.2.17)
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The value range of the proposed DM is (0, +∞), when the DM is inte-

grated with the IRM as the training target, the value range of the DM is not

consistent with IRM, and hence the mapping relationship is difficult to find.

To address this issue, (4.2.18) is used to compress the DM to restrict its

value range in order to make it consistent with the IRM and convert it back

to the original value range in the testing stage by using (4.2.19). Empirically,

in the training stage, the compressed IEM is written as:

IEMc(t, f) = V
1− e−C·IEM(t,f)

1 + e−C·IEM(t,f)
(4.2.18)

where C is the steepness constraint and the value of IEMc(t, f) is limited in

the range [−V, V ]. Because the magnitude information is used to calculate

the IEM, the value of IEMc(t, f) is restricted in the range (0, V ]. After

the validation tests in the experiments, the values of C and V are chosen

as 1 and 10, respectively. These values were found based on the datasets

described in Section 4.4.

Figure 4.1. Value range of compressed IEM with different value of
IEM.

For other datasets, C and V could be choosen in a similar way.

In the testing stage, the estimation of the compressed IEM is recovered
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and the final predicted IEM is expressed as:

ˆIEM(t, f) = − 1

C
log
(V −O(t, f)

V +O(t, f)

)
(4.2.19)

where O(t, f) is the estimation of the compressed IEM.

Clean Speech

Time (s)

0.5 1 1.5 2 2.5

F
re

q
u

e
n

c
y
 (

k
H

z
)

0

1000

2000

3000

4000

5000

6000

7000

8000
Separation without Compression

Time (s)

0.5 1 1.5 2 2.5

F
re

q
u

e
n

c
y
 (

k
H

z
)

0

1000

2000

3000

4000

5000

6000

7000

8000
Separation with Compression

Time (s)

0.5 1 1.5 2 2.5

F
re

q
u

e
n

c
y
 (

k
H

z
)

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 4.2. Spectrogram plots of the clean speech signal (left), sep-
arated speech signal without compression module (middle) and sepa-
rated speech signal with compression module (right). The reverberant
mixture is generated with factory noise and 0dB SNR level in the
unseen RIR case for RT60 = 470ms. The hyperparameters C = 1 and
V = 10.

As an example, the spectrograms of the clean speech signal, the separated

speech signal without compression module and the separated speech signal

with compression module are shown in Fig. 4.2. It can be seen that the

compression module is important for the DM, which can eliminate noise in

the high frequency component of the separated speech signal.

4.3 Two-Stage Algorithm

Based on the DM and the IEM in Section 4.2, two different two-stage algo-

rithms are proposed. The differences between these two algorithms are the

training targets and the number of neural network models.
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4.3.1 Integrated Training Target

In the proposed two-stage approach with integrated training target, inspired

by [51, 95], the feature combination is given to train the DNNs to refine

the performance. The amplitude modulation spectrogram (AMS) [96], rela-

tive spectral transform and perceptual linear prediction (RASTA-PLP) [97],

Mel-frequency cepstral coefficients (MFCC), cochleagram response and their

deltas are extracted by a 64-channel gammatone filterbank to obtain the

compound feature [98]. MFCC are coefficients that collectively build an

MFC, which are derived from a type of cepstral representation of the audio

clip. In the MFC, the frequency bands are equally spaced on the mel scale,

which imitate the human auditory system’s response. The MFCC is an im-

portant to represent the feature of speech signal. The feature combination

is extracted in the feature extraction module. To update the DNN weights,

the backward propagation algorithm is exploited and the mean-square error

(MSE) function is used in the cost function.

The cost function of the proposed single DNN-based method is expressed

as:

J1 =
1

2N

∑
t

∑
f

[O(t, f)− IEM c(t, f)]2 (4.3.1)

where N represents the number of time frames for the inputs, O(t, f) is the

estimation of the compressed IEM and IEM c(t, f) is the compressed IEM

at a T-F unit.

Fig. 4.3 is the flow diagram of the proposed single DNN-based method

with integrated training target, where (4.2.18) and (4.2.19) are achieved in

the compression module and the recovery module, respectively. In the train-

ing stage, the DM and the corresponding IRM are calculated by using the

target calculation module and integrated as the IEM. The IEM is compressed

in the compression module to generate the training target of the single DNN.

In the training stage, (4.3.1) is used to update the weights of the DNN. In
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Figure 4.3. The block diagram of the proposed single-DNN based
method. One DNN is trained with the integrated training target i.e.
IEM. The trained DNN is given by the training stage and in the testing
stage, the output of the separation module is the desired speech signal.

the testing stage, once the trained DNN is obtained, the feature combination

of the mixture is extracted and input to the trained DNN. The output of the

DNN is obtained in the recovery module and used to separate the desired

signal. Finally, the desired speech signal is separated from the convolutive

mixture with the predicted IEM in the separation module.

It is clear to see the advantages of the proposed single DNN-based

method with integrated training target:

(1) Only one DNN is trained, the computational cost and the storage

space requirement will be lower than the method based on two training

targets with two DNNs.

(2) The dereverberation and separation are achieved by the IEM, in

the training stage, the estimation error will be decreased by generating the

integrated training target. Compared with the traditional IRM, the IEM can
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achieve better separation performance because the DM is used to eliminate

the reflection and the IRM is exploited to estimate the source from the

dereverberated mixture.

4.3.2 Separate Training Targets

In the proposed second method, two DNNs are trained to model the rela-

tionships from the inputs to the DM and the IRM, respectively. In this

method, the two T-F masks are predicted, the DM is applied for derever-

beration, then the dereverberated mixture is separated by using the IRM.

The compression and recovery processes are only applied to the DM, which

is similar to the first method.

Assume the predicted dereverberation mask is ˆDM(t, f) and the pre-

dicted ideal ratio mask is ˆIRM(t, f), the separated speech signal is expressed

as:

Ŝ(t, f) = Y (t, f) ˆDM(t, f) ˆIRM(t, f) (4.3.2)

Fig. 4.4 is the flow diagram of the proposed two DNN-based method

with separate training targets. Because the DM is predicted by the trained

DNN, the compression module and the recovery module are essential. In

the training stage, the compound features extracted from the reverberant

mixture are used as input to DNN2, where IRM is used as the the training

target. The same compound features are used as input to DNN1, where DM

(modified by the compression module) is used as the training target. In the

testing stage, the reverberant mixture is used as input to estimate the DM

and IRM, respectively. Since the reverberant mixture is used in the training

stage for both DNN1 and DNN2, the trained network is able to generalise

to reverberant mixtures in the testing stage.

J2 =
1

2N

∑
t

∑
f

[O1(t, f)−DM c(t, f)]2 (4.3.3)
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Figure 4.4. The block diagram of the proposed two-DNN based
method. Two DNNs are trained with the separate training targets.
Two trained DNNs are found by the training stage. In the testing
stage, the dereverberated speech mixture is obtained by using the pre-
dicted DM in the dereverberation module and the desired speech signal
is obtained by using the predicted IRM in the separation module, re-
spectively.

where O1(t, f) is the output of the DNN1 at a T-F unit and DM c(t, f) is

the compressed DM at a T-F unit by using (4.2.18). Similarly, for DNN2,

its cost function is expressed as:

J3 =
1

2N

∑
t

∑
f

[O2(t, f)− IRM(t, f)]2 (4.3.4)

where O2(t, f) is the output of the DNN2 at a T-F unit and IRM(t, f) is

the ideal ratio mask at a T-F unit.

In the testing stage, after the trained DNNs are obtained, the feature
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combination of the mixture is extracted and input to the trained DNNs. The

output of the trained DNN1 is the predicted compressed DM and the output

of the trained DNN2 is the predicted IRM. Then, the output of the DNN1 is

obtained in the recovery module and used to eliminate the reflections. The

mixture without reverberation is given by using the dereverberation mod-

ule and the desired speech source is obtained from the separation module.

Finally, the desired speech signal is separated from the convolutive mixture

with the predicted DM and the predicted IRM.

As an example, some spectrogram plots are shown in Fig. 4.5 for the

outputs from the different stages of the proposed method. It can be observed

that by using the proposed DM, the reflections in the speech mixture can be

eliminated. When the compression module is added (comparing (e) and (f)

with (b)), the spectrogram of the separated signal with compression module

is more similar to that of the clean speech signal. By adding the compression

module, the noise in the high frequency component can be better removed.

In the proposed two-stage approach, before speech separation, the room

reflections are better eliminated, therefore, the separation performance is im-

proved. Therefore, in both single DNN and two DNNs methods, all factors

including the training and testing datasets, the network architectures, hy-

perparameters and the input feature combination to train the DNNs are the

same. It appears that only the training targets and the number of trained

DNNs are different between these two proposed methods. Besides, because

both the DM and the IRM are estimated, these two masks are more accurate,

the performance is further improved with the trade-off of the computational

cost.
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Figure 4.5. Spectrograms of different signals: (a) reverberant mix-
ture; (b) clean speech signal; (c) dereverberated mixture without com-
pression; (d) dereverberated mixture with compression; (e) separated
speech signal without compression and (f) separated speech signal with
compression. The reverberant mixture is generated with factory noise
and 0dB SNR level in the unseen RIR case for RT60 = 470ms. The
hyperparameters C = 1 and V = 10.

4.4 Simulations

The simulations with the proposed two-stage algorithms are shown in this

section, the proposed method is evaluated with the seen RIRs and the unseen

RIRs under these two different interferences. Because in the first DNN-based

method with integrated training target, only one DNN is trained, we use

single DNN to represent this method. Similarly, two DNNs represents the
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second DNN-based method with separate training targets.

4.4.1 Dataset selection and configurations

The speech sources are selected randomly from the IEEE [99] and the TIMIT

corpora [85]. The IEEE corpus has 720 clean utterances spoken by a single

male speaker and the TIMIT database has 6300 utterances, 10 utterances

spoken by each of 630 speakers. Therefore, using both the IEEE and the

TIMIT corpora can demonstrate that the proposed method is not speaker-

dependent. The interferences are categorized into two aspects, the noise

interference and the speech interference.

In the experiments, 1000, 100 and 120 utterances are randomly selected

from the IEEE and the TIMIT corpora to generate the training, development

and testing datasets. These clean utterances are used to mix with interfer-

ence at three different signal-to-noise ratio (SNR) levels (-3 dB, 0 dB and 3

dB). In the evaluations with seen RIRs, the numbers of mixtures in training,

development and testing data are 72,000, 7,200 and 8,640, respectively. In

the evaluation with the unseen RIRs, the numbers of mixtures in training,

development and testing data are 192,000, 19,200 and 9,600, respectively.

For noise interference, the noise signals are selected from the NOISEX

database [91], in these noise signals, a speech-shaped noise (SSN) is gen-

erated as the stationary noise [100] and all others are the non-stationary

noise, namely factory, babble and cafe. The factory noise is a recording of

industrial activities and the babble noise is generated by different number

of the unseen speakers in an acoustic environment. The cafe noise is more

like a combination of babble and factory noise, it contains the speakers and

background noise. The SSN is generated based on the clean speech corpus.

In the evaluation studies, in both training and testing stages, the target

speech signals are randomly selected from the TIMIT dataset. Then, inter-

fering speech signals are randomly selected from the remaining signals in the
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dataset to ensure the speakers of the target speech and the interfering speech

signals are different. At the testing stage, the desired speech signals are un-

seen in the training stage, but the interfering speech signals are seen in the

training stage. Therefore, the trained neural network is able to differentiate

the target and undesirable speech signals.

To generate the speech mixture, the speech utterances and interferences

are convolved with the real RIRs [92] which are recorded in four types of

room environments i.e. different RT60s. The position of the desired speech

signal is fixed and the azimuth of the interfering source is selected from 0 ◦

to 75 ◦ with 15 ◦ increment. Hence, each room has six different RIRs. In

the evaluation with the seen RIRs, we use the RIRs from the same room

to generate the training and testing datasets. In the evaluation with the

unseen RIRs, for each room, four RIRs are randomly selected and used to

generate the training data. The testing data are obtained by using the

remaining two RIRs. Therefore, in the testing data, the RIRs are unseen

and from different room environments. However, direct signals need to be

generated for the baseline systems to enable comparisons with our proposed

system. Firstly, the impulse response of the direct path is cropped from the

whole impulse response. Then, the direct sounds are generated by using

the impulse response of the direct path and clean speech signals in order to

train the DNN models in [51]. Table 4.1 illustrates the parameters in the

real RIRs: [92].

Table 4.1. The parameters for real RIRs in different rooms
Room Size Dimension (m3) RT60 (s)

A Medium 5.7× 6.6× 2.3 0.32
B Small 4.7× 4.7× 2.7 0.47
C Large 23.5× 18.8× 4.6 0.68
D Medium 8.0× 8.7× 4.3 0.89

The proposed method is compared with two state-of-the-art T-F masks:

the IRM [14] and the cIRM [51]. Using different types of interferences, SNR
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levels and the RIRs in simulations show the performance of the proposed

method is consistent. Moreover, when the training target is applied in the

complex domain (cIRM), the corresponding DNN outputs the estimates of

real and imaginary components of the predicted cIRM. The DNN needs to

be Y-shaped, which has dual outputs with one input. The performance eval-

uation measures are the frequency-weighted segmental SNR (SNRfw) [64],

the source to distortion ratio (SDR) [88] and the short-time objective intel-

ligibility (STOI) [65]. The SNRfw computes a weighted signal-to-noise ratio

aggregated across each time frame and critical band, it is highly correlated

to human speech intelligibility scores [51]. The SDR is exploited to evalu-

ate the overall separation performance. The values of the STOI are in the

range of [0, 1], which indicate the human speech intelligibility scores. The

higher values of these metrics means that the desired speech signal is better

reconstructed. In terms of the STOI, the t-test is also provided to show

the significant difference. T-test is the most commonly used when the test

statistic would follow a normal distribution if the value of a scaling term in

the test statistic were known. The score of the t-test shows the difference

between two groups and the difference within the groups. Therefore, the t-

test is always used to confirm the significant discrepancy between two sets of

results. If the value of the t-test is smaller than 0.05, it indicates significant

difference exists between two result sets. Besides, the IRMrev and cIRM

in [51] are trained with direct sound, however, in real applications, the direct

sound is difficult to obtain and the clean speech signal is used as reference

in all performance measures.

In the proposed two-stage approach, the DNNs in the integrated training

target and the separate training targets methods have the same architecture.

All of the DNNs have three hidden layers and each hidden layer has 1024

units. The activation function for each hidden unit is selected as the rectified

linear unit (ReLU) to avoid the gradient vanishing problem and the output
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layer has linear units [51]. The DNNs are trained by using the AdaGrad

algorithm [101] with a momentum term for 100 epochs. The learning rate

is linearly decreased from 1 to 0.01, while the momentum is fixed as 0.9 in

the first ten epochs and changed to 0.5 till the end. Auto-regressive moving

average (ARMA) filtering is a combination of auto-regressive and moving

average filters. The output of ARMA filter is a linear combination of both

the weighted input and weighted output samples. Besides, the processes of

ARMA filter can be considered as a digital IIR filter, with both poles and

zeros, which is applied to reduce the interference from the background noise,

as in [102].

4.4.2 Evaluations with the noise interferences

In this subsection, the noise is selected as the interference, and both seen

RIRs and unseen RIRs are used to generate the testing mixtures to further

evaluate the generalization ability of the proposed methods.

In these experiments, the proposed methods are evaluated with the seen

RIRs in four rooms. The SNRfw and the SDR performance of the proposed

methods and the comparison groups are given in Figs. 4.6 & 4.7, respectively.

The STOI performance is shown in Tables 4.2 - 4.5, .

From Figs. 4.6 & 4.7, it is clear that when the type of noise interfer-

ence varies, the performance of the IRM and the cIRM-based methods is

not consistent and robust. In the noise interference case, compared with

the proposed two-stage approach with single DNN, the proposed two-stage

approach with two DNNs produces better results for source separation from

the convolutive mixture. In the high SNR level and low RT60, the proposed

two-stage approach achieves high separation performance. Compared with

the IRM- and the cIRM-based DNN methods, both our proposed methods

provide improved performance in terms of the SNRfw and SDR consistently.

To further analyze the proposed two-stage approach, the STOI perfor-
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[14] [51]

Figure 4.6. The SNRfw (dB) in terms of different methods with vari-
ous rooms. The X-axis is the SNR level, the Y-axis is the SNRfw (dB),
each result is the average value of 120 experiments. The noise types in
the subfigures (a), (b), (c) and (d) are factory, babble, cafe and SSN,
respectively.

mance is evaluated. The STOI performance of different methods using the

IEEE and the TIMIT corpora with different noise and room environments

are shown in Tables 4.2 - 4.5. It can be further confirmed that the proposed

two-stage approach outperforms the state-of-the-art masking-based methods

in different noise interference and reverberant environments from Tables 4.2

- 4.5. With the increase of the RT60, the proposed methods give more STOI

improvements. In some cases, the cIRM-based method gives the same STOI
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[14] [51]

Figure 4.7. The SDR improvement (dB) in terms of different methods
with various rooms. The X-axis is the SNR level, the Y-axis is the
∆SDR (dB), the improvements of the SDR. Each result is the average
value of 120 experiments. The noise types in the subfigures (a), (b),
(c) and (d) are factory, babble, cafe and SSN, respectively.

performance as or does slightly better than the proposed methods, e.g. SSN

is used as interference with 0 SNR level in Room C. In terms of the average

result, however, the proposed two-stage approach achieves the highest value.

The trend of the STOI is the same as that of the SNRfw and the SDR.
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To show the difference of the STOI performance between the cIRM-based

method and the proposed method with two DNNs, the t-test is used. For

example, in Room D, the value of the t-test with cafe noise and SSN noise

is 0.01 and 0.02, respectively. It means in Room D, when the noise type

is cafe and SSN, the STOI performance of the proposed method with two

DNNs and the cIRM-based are significantly different from each other.

From Figs. 4.6 & 4.7 and Tables 4.2 - 4.5, it is clear that with the

same amount of training data and DNN configurations, the separation per-

formance of the current state-of-the-art is not consistent and robust when

the SNR levels and noise types are varied. The two-stage approach, we

proposed, can yield effective performance. Thanks to the DM applied to

the mixture, when the RT60 is increased, the relative STOI improvements

becomes more prominant at higher RT60s. Compared the masking-based

techniques with the proposed two-stage approach, the experimental results

demonstrate that using two DNNs in the proposed two-stage approach can

further improve the separation performance.

Then, the proposed two-stage approach is evaluated with unseen RIRs.

The SNRfw and the SDR performance of the proposed methods and the

compared methods are given in Figs. 4.8 & 4.9, respectively. The STOI

performance of different methods using the IEEE and the TIMIT corpora

with different noise and the unseen RIRs are shown in Table 4.6. In the

experiments with the unseen RIRs, the RIRs used in the testing stage are

different from those in the training stage.

Fig. 4.8 shows the SNRfw performance in terms of different methods

with the unseen RIRs. It can be observed that compared with the IRM

and the cIRM, the proposed methods, both single DNN and two DNNs,

yield better performance. When the value of SNR level is increased, the

performance of SNRfw is refined. Besides, it is observed from the figure

that when two DNNs are trained, the values of the SNRfw become higher.
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[14] [51]

Figure 4.8. The SNRfw (dB) in terms of different methods with the
unseen RIRs. The X-axis is the SNR level, the Y-axis is the SNRfw

(dB), each result is the average value of 120 experiments. The experi-
mental results with four different types of noise are shown.

For example, according to Fig. 4.8, when the noise type is SSN and the SNR

level is 3 dB, the SNRfw value of the IRM-based method is 2.99 dB and the

cIRM-based method is 3.32 dB, but the proposed approach with single DNN

and two DNNs achieve 3.66 dB and 4.78 dB, respectively.

Fig. 4.9 shows the SDR improvements over all types of noise with the

unseen RIRs. It is observed that the proposed two-stage approach further re-

fines the SDR performance (∆SDR) when compared with the current state-

of-the-art methods. In the situation where the RIRs are unseen, with in-

creasing the SNR level, the improvement of the SDR becomes larger and the

proposed two-stage approach provides the best performance. It is clear that

by training two DNNs in the proposed two-stage approach, the value of the

SDR improvement is increased significantly.

The experimental results in terms of the STOI are shown in three dif-
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[14] [51]

Figure 4.9. The SDR improvement (dB) in terms of different methods
with the unseen RIRs. The X-axis is the SNR level, the Y-axis is
the SDR improvement (dB), each result is the average value of 120
experiments. The experimental results with four different types of noise
are shown.

ferent SNR levels in Table 4.6. As the value of SNR level is increased, the

performance of the STOI is improved. From Table 4.6, it is clear that with

the same amount of training data and DNN configurations, when the RIRs

are unseen, in terms of the STOI, the separation performance of the cur-

rent state-of-the-art is not consistent and robust when the SNR levels and

noise types are varied. For all types of the noise, the value of the t-test in

the STOI results with the unseen RIRs between the cIRM-based method and

the proposed method with single DNN and two DNNs is 0.02 and 0.0004,

respectively. It confirms that the proposed two-stage approach outperforms

the current state-of-the-art methods in terms of the STOI.
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From Figs. 4.8 & 4.9 and Table 4.6, it can be observed that the proposed

two-stage approach can yield effective performance and using two DNNs in

the proposed two-stage approach provides the best separation results. Using

the noise and unseen RIRs, the proposed methods show better generalization

ability. In the testing stage, since the RIR is unseen, compared with the

seen RIRs case, the values of the corresponding SNRfw, SDR and STOI are

smaller.

4.4.3 Evaluations with the speech interferences

After the evaluations of the proposed two-stage approach with noise interfer-

ence, the undesired speech signal is exploited as the interference to generate

the convolutive mixture. The interfering speech signal is chosen from the

above mentioned corpora and both male and female speakers are used. The

SNRfw and the SDR performance of the proposed methods and the com-

parison groups are given in Figs. 4.10 & 4.11, respectively. The STOI

performance of different methods are shown in Table 4.7.

For the SNRfw, shown in Fig. 4.10, the proposed two DNN-based

method further improves the performance relative to the separated desired

speech signal. The largest SNRfw gains in all room environments are achieved

by the proposed two DNN-based method. For example, at 3 dB SNR level,

from Rooms A to D, the proposed method with two DNNs gives 16.1%,

21.8%, 22.3% and 13.7% more gain, respectively.

Besides, according to Fig. 4.10, it confirms that the higher SNR level

helps the two-stage approach to better separate the desired speech signal

from the mixture with speech interference. Compared the performance with

different SNR levels in terms of the SNRfw, when the SNR levels increases

(from -3 dB to 3 dB), the separation performance is improved, which is the

same as the situations with noise interferences. For different RT60s, when

the RT60 increases, e.g. Room A and Room D, the value of the SNRfw is
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decreased.

[14] [51]

Figure 4.10. The SNRfw (dB) in terms of different methods with var-
ious rooms i.e. different RT60s. The X-axis is the SNR level, the Y-axis
is the SNRfw (dB), each result is the average value of 120 experiments.
The interference is the undesired speech signal, respectively.

Fig. 4.11 displays the SDR improvements over all room environments.

It is observed that the proposed two-stage approach significantly improves

the SDR performance (∆SDR), especially in the highly reverberant room

environments such as Room C and Room D. With increasing the SNR level,

the improvement of the SDR becomes smaller, but the proposed two DNN-

based method still provides better results. In Room C, with 0.68 s RT60,

compared with the cIRM, the proposed method with single DNN has 1.01

dB, 1.71 dB and 0.49 dB more improvements and the proposed method with

two DNNs has 1.81 dB, 3.27 dB and 3.67 dB from -3 dB to 3 dB SNR levels,

respectively.

From Table 4.7, it is clear that the two DNN-based method always gives

the best performance in the case where the interference is a speech signal.
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[14] [51]

Figure 4.11. The SDR improvement (dB) in terms of different meth-
ods with various rooms i.e. different RT60s. The X-axis is the SNR
level, the Y-axis is the ∆SDR (dB), the improvements of the SDR.
Each result is the average value of 120 experiments. The interference
is the undesired speech signal, respectively.

For example, in Room D, the proposed method with two DNNs achieves

13.1%, 8.7% and 12.5% STOI improvements over the proposed method with

single DNN (integrated training objective) at -3, 0 and 3 dB SNR levels, re-

spectively. The two DNN-based method provides around 13.9% more STOI

improvement in all scenarios. When the undesired speech signal is the inter-

ference, the value of the t-test in the STOI results with the seen RIRs between

the cIRM-based method and the proposed method with two DNNs is 0.008.

It proves that the proposed method with two DNNs yields better separation

performance in terms of the STOI than the current state-of-the-art methods,

e.g. cIRM-based method.

The interfering speech signal is chosen from the IEEE and the TIMIT

corpora and both male and female speakers are used. The SNRfw and the

SDR performance of the proposed methods and the comparison groups are
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given in Figs. 4.12 & 4.13, respectively. The STOI performance of different

methods using the above mentioned corpora with different undesired speech

signal and the unseen RIRs are shown in Table 4.8.
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[14] [51]

Figure 4.12. The SNRfw (dB) in terms of different methods with the
unseen RIRs. The X-axis is the SNR level, the Y-axis is the SNRfw

(dB), each result is the average value of 120 experiments. The interfer-
ence is the undesired speech signal, respectively.

For the SNRfw, shown in Fig. 4.12, the proposed two-stage approach

provides the largest performance improvements with the unseen RIRs sce-

narios. The largest SNRfw gains in all SNR levels are achieved by the

proposed two-stage approach with separate training targets. According to

Figure 11, the proposed two-stage approach with integrate training target

can achieve higher value of the SNRfw and by training two DNNs in the

proposed method, the separation performance is further improved.

Fig. 4.13 shows the SDR improvements (∆SDR) over all SNR levels

with the unseen RIRs. It is observed that the proposed two-stage approach

significantly improves the SDR performance, especially with higher SNR

levels. With increasing the SNR level, the improvement of the SDR becomes

larger and the proposed two DNN-based method achieves better separation

results. For instance, when the SNR level is 3 dB, the value of ∆SDR of

the proposed method with separate training objectives is 5.05 dB, while the

value of the cIRM-based and the IRM-based method is 3.06 dB and 2.41 dB,
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[14] [51]

Figure 4.13. The SDR improvement (dB) in terms of different meth-
ods with the unseen RIRs. The X-axis is the SNR level, the Y-axis is
the ∆SDR (dB), the improvements of the SDR. Each result is the aver-
age value of 120 experiments. The interference is the undesired speech
signal, respectively.

respectively. It is clear that by training two DNNs in the proposed two-stage

approach, the separation performance is increased significantly. In contrast

to the evaluations with the seen RIRs, when the RIRs are unseen and the

RT60 increases, the value of the SDR improvement increases, which are the

same as the situations with noise interferences.

When the interference is the undesired speech signal, Table 4.8, it is clear

to observe that in terms of the STOI, the proposed two-stage approach out-

performs current state-of-the-art. For example, compared with the cIRM,

the proposed method with single DNN has 0.06, 0.08 and 0.07 improvements

and the proposed method with two DNNs has 0.11, 0.11 and 0.1 improve-

ments from -3 dB to 3 dB SNR levels, respectively. When the undesired

speech signal is the interference, the value of the t-test in the STOI results

between the cIRM-based method and the proposed method with two DNNs is

0.01. Hence, by using two DNNs in the proposed method, the value of STOI
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is the highest over all of the SNR levels.

Table 4.8. Separation performance comparison in terms of STOI with
different training targets, SNR levels and the unseen RIRs. The inter-
ference in the experiments is the undesired speech signal . Each
result is the average value of 120 experiments. BOLD indicates the
best result.

Speech STOI
Interference -3 dB 0 dB 3 dB

Mixture 0.52 0.57 0.59
IRM [14] 0.56 0.59 0.64
cIRM [51] 0.59 0.61 0.66
Single DNN 0.65 0.69 0.73
Two DNNs 0.70 0.72 0.76

Since two system structures of the proposed two-stage approach are ex-

ploited in this work, their processing time is different. In order to evaluate

their processing time, all of the DNN-based methods are executed ten times

and their processing time is averaged. The evaluation results are shown in

Table 4.9.

Table 4.9. Averaged processing time of the DNN-based methods with
different training targets. The time of training stage and testing stage
are shown in seconds.

Training Target Processing Time (s)
in DNN-based Method Training Stage Testing Stage

IRM [14] 8,398.8 37.4
cIRM [51] 8,655.4 43.1

IEM 8,443.4 39.8
DM & IRM 16,651.9 48.5

The codes of the IRM, cIRM and the proposed methods were written

in MATLAB (R2015a version) without any optimization. The experiments

were implemented on a desktop with an Intel i5 CPU with 3.5 GHz and

16 GB of memory without parallel processing. In the training and testing

stages, no GPU was used.

It is observed from Table 4.9 that in the training stage, the processing

time of the proposed method with single training target (integrated ob-
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jective) is half of the one with two training targets (separate objectives).

Because in the second method, two DNNs are trained and these DNNs have

the same architectures as the DNN in the first proposed method. While

compared with the training stage, in the testing stage, the difference of the

processing time with these methods can be ignored. The IRM-based method

and the proposed IEM almost have the same processing time. Moreover, be-

cause the Y-shaped DNN was used in the cIRM-based method, its processing

time is slightly higher than the IRM- and the IEM-based approaches. In the

testing stage, all of these methods have a relative lower processing time.

Hence, the proposed two DNN-based method needs longer processing

time and the computational cost is almost double than the single training

target based method.

4.5 Chapter Summary

In summary, the proposed two-stage approach outperforms state-of-the-art

IRM- and the cIRM-based methods, particularly in reverberant room envi-

ronments. When the RIRs are seen, the noise and undesired speech signal are

used as the interferences in the mixture, all the experimental results further

confirm that our proposed two-stage approach is effective in separating mix-

tures at various SNR levels and with different room environments. When the

RIRs are unseen, the generalization ability of the proposed method is evalu-

ated, the results confirm that the proposed method can better separate the

desired speech signal from mixture than the IRM- and cIRM-based methods.

There are two possible reasons that the proposed method has better gener-

alization ability: (1) The compression and recovery modules are conducive

for training the DNNs and thus leading to better prediction of the DM from

the mixtures. (2) The use of DM can mitigate the adverse effect of acoustic

reflections on the estimation of the IRMrev and cIRM for separating tar-
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get speech from the mixture. As a result, the proposed method has better

ability in adapting to unseen RIRs and leading to improved performance in

such scenarios.

In addition, using the proposed two DNN-based method, the mixture

can be better separated than just utilizing the IEM as integrated training

target in the single DNN. From the results, it can be seen that the cIRM

had worse performance than IRM in some cases. To estimate the real and

imaginary part of the cIRM jointly, the Y-shaped DNN was used. In this

architecture, the weights of the hidden layers are shared by the real and

imaginary parts of the cIRM and only two sub-output layers are used to

distinguish the estimations of real and imaginary components of the cIRM.

Hence, compared with the IRM, the cIRM-based DNN is more difficult to

train, in order to provide balance for both the real and imaginary part. This

can lead to degradation in separation performance.

It is worth noting that although the RT60 of Room C (RT60 = 680 ms)

is higher than Room B (RT60 = 470 ms), the separation performance for

Room C is better than that for Room B. This is mainly due to the difference

in the Direct to Reverberant Ratio (DRR) where the DRR from Room C is

higher than that for Room B. And in the proposed method with different

training targets, when the DM and the IRM are trained individually, the

computational cost is increased almost two times. Therefore, there is a

trade-off between the computational cost and the separation performance.

If two-DNNs are trained in the proposed two-stage approach, the separation

performance is further refined, but more computational cost and storage

space are required.

But in the proposed method of this chapter, the noisy phase information

is utilized to generate desired speech signal from the mixture. In the next

chapter, the phase information of the clean speech is utilized by operating in

the complex domain. Moveover, the LSTM RNN is introduced to better use
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the temporal information and obtain the accurate trained neural network

model.



Chapter 5

MONAURAL SOURCE

SEPARATION IN COMPLEX

DOMAIN WITH LONG

SHORT-TERM MEMORY

NEURAL NETWORK

5.1 Chapter Introduction

In this chapter, improvements to the monaural source separation are made

both in terms of the LSTM RNN and phase information. In the LSTM

RNN, because the LSTM unit is introduced in the RNN, which aids the

utilizing of the temporal information [103]. Moreover, to further improve

the separation performance, the phase information of clean speech signal is

estimated via neural network model. In terms of the phase information, the

complex IRM (cIRM) is firstly used; however, the cIRM needs further oper-

ation to recover clean speech signal which may cause incorrect estimation.

To address this issue, the cSA is proposed to directly estimate the real and

imaginary components.

This chapter focuses on the third objective of this thesis, which relate to

86
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the phase information and LSTM RNN-based method for monaural source

separation published in IEEE Journal of Selected Topics in Signal Processing

[104].

5.2 Complex Signal Approximation

In order to achieve more robust prediction of clean speech signal, the complex

signal approximation is employed to utilize the phase information of the

clean speech signal, and the outputs are the real and imaginary components

to recovery the desired speech signal.

5.2.1 Signal approximation

In masking-based DNN approach, the ideal time-frequency (T-F) mask is

applied as the training target of the neural network models. The T-F mask

predicted by the trained model is applied to the mixture to reconstruct the

desired speech signal. The cost function of masking-based DNN approach is

expressed as:

Lossmasking =
∑
t

∑
f

(|M̂(t, f)| − |M(t, f)|)2 (5.2.1)

where |M̂(t, f)| is the estimated T-F mask and |M(t, f)| is the training

target, which is the ideal T-F mask.

In the mapping-based approach, the training target is the spectrum of

the clean speech signal. The cost function of mapping-based DNN approach

is expressed as:

Lossmapping =
∑
t

∑
f

(|Ŝ1(t, f)| − |S(t, f)|)2 (5.2.2)

where |Ŝ1(t, f)| is the estimated spectrogram of the desired speech signal

and |S(t, f)| is the training target, which is the spectrogram of the clean
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speech signal.

The SA-based approach combines the mapping- and masking-based ap-

proaches. The training target in the oSA-based method is the spectral mag-

nitude of clean speech, which is equivalent to the mapping-based approach.

The cost function in the oSA-based method can be written as:

JoSA =
∑
t

∑
f

(|Y (t, f)M̂oSA(t, f)| − |S(t, f)|)2 (5.2.3)

where the predicted T-F mask in the oSA-based method is M̂oSA(t, f), which

is used to obtain the estimated spectrum Ŝ(t, f). The T-F mask is predicted

in the oSA-based neural network to minimize the discrepancy between the

magnitude spectrum of mixture and that of the clean speech signal, which is

similar to masking-based approaches. Hence, using the magnitude spectrum

of the clean signal as the training target can increase the accuracy of the

estimated T-F mask and improve separation performance.

However, the oSA-based method has the same problem as the IRM-based

method where the phase information of the target signal is not used when

reconstructing the desired signal.

5.2.2 Complex signal approximation

Inspired by the cIRM, the cSA-based method is proposed, which replaces the

IRM by cIRM in the training process to estimate both real and imaginary

components of the clean speech signal. One could use the magnitude and

phase information, instead of the real and imaginary components, as train-

ing targets, are exploited. However, our empirical tests show that using the

real and imaginary components as training targets offers better separation

performance. Hence, in the cSA-based method, the real and imaginary com-

ponents of the desired clean speech signal are used as training targets. In the

cSA-based method, the estimated spectrum of the clean signal is obtained
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by applying the predicted complex T-F mask, defined as M̂cSA. Using the

complex mask, the estimated spectrum can be obtained:

Ŝr(t, f) + jŜc(t, f) = (M̂cSAr(t, f) + jM̂cSAc(t, f))× (Yr(t, f) + jYc(t, f))

(5.2.4)

Then, the estimated spectrum is expressed as:

Ŝr(t, f) + jŜc(t, f) = M̂cSAr(t, f)Yr(t, f) + jM̂cSAr(t, f)Yc(t, f)

+jM̂cSAc(t, f)Yr(t, f)− M̂cSAc(t, f)Yc(t, f) (5.2.5)

The real component of the estimated clean spectrum in the cSA is expressed

as:

Ŝr(t, f) = M̂cSAr(t, f)Yr(t, f)− M̂cSAc(t, f)Yc(t, f) (5.2.6)

The imaginary component of the estimated clean spectrum is calculated as:

Ŝc(t, f) = M̂cSAr(t, f)Yc(t, f) + M̂cSAc(t, f)Yr(t, f) (5.2.7)

In the proposed cSA-based LSTM RNN method, when the Y-shaped

neural network model is used, the shared weights in the hidden layers cannot

be fully used for both components, and this may have negative impacts on the

estimations, and thus the separation performance. Our empirical tests show

that using two networks performs better than stacking the two components in

one network. In the cSA-based method, the real and imaginary components

are estimated separately and two neural network models are trained with real

and imaginary components of the cIRM. The cost functions can be expressed

in the complex domain with the real and imaginary components. According

to (5.2.6) and (5.2.7), the expanded cost functions of the cSA-based method

are:

J1 =
∑
t

∑
f

[(
M̂cSAr(t, f)Yr(t, f)
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−M̂cSAc(t, f)Yc(t, f)
)
− Sr(t, f)

]2
(5.2.8)

J2 =
∑
t

∑
f

[(
M̂cSAr(t, f)Yc(t, f)+

M̂cSAc(t, f)Yr(t, f)
)
− Sc(t, f)

]2
(5.2.9)

Hence, by using cSA-based method, the phase information of clean speech

signal can be utilized by estimating the imaginary component of the speech

signal in complex domain. In DNN, the temporal information can be uti-

lized via context window, however, the ability of using temporal information

depends on the length of context window. In practical, the length of con-

text window is difficult to select [105]. The recurrent units is introduced to

employ the temporal information.

5.3 Complex Signal Approximation with LSTM RNN

To utilize the temporal information, the recurrent unit is introduced. And

there are to common-used architectures: 1). RNN and 2). LSTM RNN,

they are described in the following subsections.

5.3.1 Recurrent neural network

In the monaural source separation problem, which is solved via neural net-

works, the separation performance can be improved by utilizing the temporal

information of the speech signals in the training stage of networks. Com-

monly, the temporal information is exploited in two ways: concatenating

neighbouring features and using RNNs [76]. In the concatenating features

method, a larger window size can utilize more temporal information with

the trade off being computational and memory resources. Therefore, an ap-

propriate window size is required. The RNNs have a recurrent architecture,

which is a powerful model for temporal information.
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In the vanilla RNN [81], the hidden state of the l-th layer at time t is:

hlt = fh(hl−1
t ,hlt−1) = gl(R

lhlt−1 + Wlhl−1
t ) (5.3.1)

In the first layer, where l = 1, the activation h1
t is calculated by h0

t = xt. In

the RNN, the activation function is selected as a rectified linear unit (ReLU)

to avoid gradient vanishing and reduce the computational cost. The ReLU

function is expressed as:

g(x) = max(0,x) (5.3.2)

In (5.3.1), each hidden state is computed with current state and the

previous state, it can be observed that the temporal information is better

utilized. However, in RNN, there existing exploding gradients and vanishing

gradient problems. To address there issues, the LSTM RNN is proposed

[106].

5.3.2 Long short-term memory recurrent neural network

Different from the vanilla DNN, which can only use context window to cap-

ture temporal dependencies, the LSTM RNN stores the temporal informa-

tion in the cell, therefore, the long temporal dependencies can be utilized.

In the DNN-based method, the neural network model is trained with back-

ward propagation algorithm [50] but in the LSTM RNN-based method, the

backward propagation through time algorithm is exploited [107].

The structure of the LSTM block is shown in Figure 3. Assume the cur-

rent time is m, σ(·) represents the sigmoid function, and tanh(·) represents

the hyperbolic tangent function. The xm, hm and cm are defined as the

input, hidden state and cell memory at time m, respectively. The weights

in the input gate, forget gate, output gate and cell are defined as Wi, Wf ,

Wo and Wc, the corresponding bias are bi, bf , bo and bc, respectively. Each

gate is constructed by the weights, bias and activation function.
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For the input gate, the output im is:

im = σ(Wi[xm, hm−1] + bi) (5.3.3)

For the forget gate, the output fm is:

fm = σ(Wf [xm, hm−1] + bf ) (5.3.4)

For the output gate, the output om is:

om = σ(Wo[xm, hm−1] + bo) (5.3.5)

For the memory cell, the current input’s cell state is:

c̃m = tanh(Wc[xm, hm−1] + bc) (5.3.6)

and the current cell state cm is:

cm = fm×cm−1 + im×c̃m (5.3.7)

The final hidden state of the LSTM block is expressed as:

hm = om×tanh(cm) (5.3.8)

In the LSTM RNN block, from (5.3.3) to (5.3.8), it can be known that

the state is determined by those cells and gates. Hence, by storing the state

in the cell, the gradient vanishing problem is solved.

5.3.3 Complex signal approximation with LSTM RNN

After the hidden states are obtained from the LSTM blocks, the output layer

is added to generate the output of the LSTM RNN. The activation function
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Figure 5.1. Diagram of only one LSTM block, which contains three
gates and one memory cell. The block is exploited in the proposed
LSTM RNN-based methods.

of the output layer is selected as a linear function. For complex domain

monaural source separation, the estimated phase information of clean speech

signal is used to recover the desired speech signal. Then, by introducing the

LSTM RNN, the temporal information is utilized. Besides, if the training

target of the LSTM RNN is the cIRM, the neural network is Y-shape and

two sub-output layers are added as shown in Fig. 5.2. In the cSA-based

LSTM RNN method, two LSTM RNNs are exploited to predict the real

and imaginary components in parallel and both LSTM RNNs have the same

configuration.

In the proposed cSA-based LSTM RNN method, inspired by [50, 95]

and vanilla DNN methods, the feature combination is given to the input

layer to increase the efficiency of the networks and system. The ampli-

tude modulation spectrogram (AMS) [96], relative spectral transform and



Section 5.3. Complex Signal Approximation with LSTM RNN 94

Input Layer

Hidden Layers

Sub-output 

Layer1

Sub-output 

Layer2

Output 

Layer

Figure 5.2. The Y-shaped neural network architecture, which has two
sub-output layers. The sub-output layer 1 and the sub-output layer 2
yield the real and imaginary components of the estimation, respectively.

perceptual linear prediction (RASTA-PLP) [97], mel-frequency cepstral co-

efficients (MFCC), cochleagram response and their deltas are extracted by

a 64-channel gammatone filterbank to obtain the compound feature [98].

Furthermore, in the oSA- and the cSA-based methods, the spectra of the

mixture and the clean signal are given to calculate the spectrograms of the

predicted clean signal and the training objective, respectively. The flow

diagram of the proposed cSA-based LSTM RNN method is shown in Fig.

5.3.



Section 5.3. Complex Signal Approximation with LSTM RNN 95

Figure 5.3. The block diagram of the proposed complex signal ap-
proximation (cSA)-based LSTM RNN method. Two LSTM RNNs are
trained with the separate training targets, e.g. the real and the imagi-
nary components of the STFT of clean speech signal.

In the training stage, by using the targets calculation module, the STFTs

of speech source and mixture are obtained. Then, the real and imaginary

components of STFT of the speech source are used as the training targets

for LSTM RNN 1 and LSTM RNN 2, respectively. The outputs of the

LSTM RNN models are obtained by multiplying the estimated T-F mask

with the STFT of the mixture. After each iteration, the estimated T-F mask

is trained to minimize the discrepancy between the spectrum of the clean

speech signal and that of the estimated source signal.

In the testing stage, the trained LSTM RNNs can output the real and

imaginary components of the estimated speech signal when the feature com-
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bination of the mixture is used as input. Then, the STFT of the separated

speech is obtained in the compound module and the separated speech signal

is reconstructed in the reconstruction module.

Compared with the oSA-based DNN method, the proposed cSA-based

LSTM RNN method has two advantages:

(1) In traditional oSA-based DNN method, the noisy phase information is

used to synthesise the desired speech signal. However, in the proposed cSA-

based LSTM RNN method, both clean magnitude and phase information

are estimated.

(2) The LSTM blocks are introduced with the RNN, the temporal in-

formation can be better utilized and the trained LSTM RNN models have

better generalization ability.

5.4 Simulations

In this section, the cIRM- and oSA-based method are evaluated with the

vanilla DNN and the LSTM RNN to show the advantage of LSTM RNN

over the vanilla DNN. Then, the results of the proposed cSA-based LSTM

RNN method are shown. Firstly, the interference is selected as the noise,

in both seen and unseen scenarios. The unseen interferences mean that the

interferences in the training data are not used to generate testing data. Then,

the interference is chosen as the undesired speech signal which is unseen in

the training stage. Therefore, the generalization ability of these methods

can be evaluated.

5.4.1 Dataset selection and configurations

The speech sources are selected randomly from the IEEE and the TIMIT

corpora [85, 99]. The IEEE corpus has 720 clean utterances spoken by a

single male speaker and the TIMIT database has 6300 utterances, 10 utter-



Section 5.4. Simulations 97

ances spoken by each of 630 speakers. Therefore, using both the IEEE and

the TIMIT corpora can demonstrate that the proposed method is speaker-

independent. We randomly select 1000, 100 and 200 clean utterances from

the IEEE and the TIMIT corpora to generate the training, development and

testing datasets.

The interferences are categorized into two aspects, the noise interference

and the undesired speech interference. In the seen noise interference cases,

these clean speech utterances are mixed with five different noise types at

three different SNR levels (-3 dB, 0 dB and 3 dB). These five noise scenes

are named as factory, babble, cafe, f16 and tank. The names of these noise

signals indicate their recording situations. The above mentioned noise signals

are selected from the NOISEX database [91]. Each noise sequence is four

minutes long, which is truncated randomly from the first two minutes to

match the lengths of the speech signals to generate the training mixtures.

The last two minutes are used to generate the development and testing

mixtures. In this case, although the noise interference in the testing dataset

is unseen, the noise type is known.

In the unseen noise interference cases, 50 different noise signals are used

to generate the training, development and testing datasets and 50 noise

signals are only used to generate the testing data. These non speech sounds

contain many different types of noise, e.g. animal sounds, tooth brushing

sounds and machine noise [90]. Finally, the number of mixtures in training,

development and testing data is 12,000, 1200 and 2400, respectively. The

training speech duration is around 10 hours and 100 types of different noise

signals are used in the unseen cases.

In the evaluation studies where the interference is undesired speech sig-

nal, in both training and testing stages, the target speech signals are ran-

domly selected from the TIMIT dataset. Then, interfering speech signals

are randomly selected from the remaining signals in the dataset to ensure
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the speakers of the target speech and the interfering speech signals are dif-

ferent. At the testing stage, the desired speech signals are unseen in the

training stage, but the interfering speech signals are seen in the training

stage. Therefore, the trained neural network is able to differentiate the tar-

get and undesirable speech signals. Similarly, the SNR levels are -3 dB, 0 dB

and 3 dB and the number of mixtures in training, development and testing

data is 12,000, 1200 and 2400, respectively.

Both the DNNs of the comparison group and the LSTM RNN have three

hidden layers and each hidden layer has 512 units. The dimension for the

input layer is 1722 (246×(3×2+1)), the number of neighbouring for each

side of central frame is 3 and the input size is 246. In terms of the DNN,

according to [50], the activation function for each hidden unit is selected as

the rectified linear unit (ReLU) to avoid the gradient vanishing problem and

the output layer has linear units [51]. In the LSTM RNN, the activation

function for each hidden unit is selected as the sigmoid and the output layer

has linear units. When the training target is the cIRM, the corresponding

neural network outputs the estimates of real and imaginary components of

the predicted cIRM. When the training target is the clean spectrum of the

desired speech signal, two LSTM RNNs are trained separately. The DNN

and the LSTM RNN are trained by using the RMSprop algorithm [108] with

a learning rate of 0.001. The number of epochs is 100 and the batch size is

1024. Auto-regressive moving average (ARMA) filtering is applied to reduce

the interference from the background noise, as in [102].

In the experiments, the proposed cIRM- and cSA-based LSTM RNN

methods are compared with DNN-based approaches: the cIRM [50] and the

oSA estimation [55]. In the oSA-based method, the T-F mask is an IRM,

which is estimated by minimizing the discrepancy between the estimated

spectrum and the spectrum of the target speech signal. In oSA-based DNN

and LSTM RNN methods, the target signal is reconstructed without using



Section 5.4. Simulations 99

the phase information of the clean speech signal, meanwhile, the cIRM- and

the cSA-based methods utilize both the amplitude and phase information

from the clean signal. The proposed methods are shown in italics. The

separation performance is evaluated with three measurements. The short-

time objective intelligibility (STOI) [65], the perceptual evaluation of speech

quality (PESQ) [64] and the SDR [88]. The values of the STOI are in the

range of [0, 1] and the PESQ are in the range of [-0.5, 4.5]. The STOI and

the PESQ indicate the intelligibility scores and human speech quality scores,

respectively. The SDR is exploited to evaluate the overall separation perfor-

mance. The SDR value of the separated speech signal and the SDR value

of the unprocessed speech mixture are used to calculate the improvement of

the SDR.

5.4.2 Evaluation with noise interference

In this section, the proposed cSA LSTM RNN-based method is compared

with the traditional cIRM DNN-based method in [50] and the oSA DNN-

based method in [13]. Then, the cIRM LSTM RNN- and the oSA LSTM

RNN-based methods are used as comparion groups.

Seen noise interferences

The separation results based on the STOI are shown in Tables 5.1, 5.2 and

5.3. The results based on PESQ are shown in Tables 5.4, 5.5 and 5.6. Each

experimental result in Tables 5.1 - 5.6 is the average value over 200 testing

mixtures. In total, 43,200 tests are performed. The baseline is calculated by

using the unprocessed mixture and the clean speech signal.

It can be observed in Tables 5.1 - 5.6 that the performance of LSTM

RNN-based methods is better than the DNN-based methods. For example,

according to Table 5.1, when the noise type is factory and the SNR level

is -3 dB, the STOI value of the cIRM DNN-based method is 68.31 % and
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the value of cIRM LSTM RNN-based method is 70.59 %. This is because

the memory component in the LSTM RNN can better exploit the temporal

information. In addition, the phase information is also beneficial and cSA

LSTM RNN-based method outperforms all other methods. For instance,

according to Table 5.5, when the noise type is cafe and the SNR level is 0

dB, the PESQ value of the oSA LSTM RNN-based method is 2.32 and the

value of cSA LSTM RNN-based method is 2.49. Besides, both values of the

STOI and PESQ are increased when the SNR level changes from -3 dB to 3

dB.
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[50]

[13]

Figure 5.4. Average SDR improvement (dB) for different training
targets and neural network models with five types of seen noise. Each
result is the average value of 200 experiments.

The experiments with SDR aim to evaluate how the variations of the

training targets, types of neural network models and SNR levels affect the

SDR. It is shown in Fig. 5.4 that the proposed cSA-based LSTM RNN

method achieves the largest SDR improvement in all scenarios. When the

vanilla DNN is trained, the cIRM- and oSA-based methods offer almost

the same SDR improvement. While comparing the cIRM- and oSA-based

methods with DNN and LSTM RNN, the performance of the LSTM RNN is

again better than the DNN. By using the proposed LSTM RNN, the oSA-

based method can gain 3.08, 3.11 and 2.58 dB more SDR improvements at -3,

0, and 3 dB SNR levels, respectively. In addition, the phase information of

clean speech signal in complex domain provides further SDR improvement,

e.g. by comparing with the oSA- and the cSA-based LSTM RNN methods.

Unseen noise interferences

In the real-world environments where the situations varies, it is important

to provide the generalization ability of the proposed methods. Therefore,
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the evaluation results based on the STOI and PESQ are shown in Table 5.7

for unseen noise cases. Each result in Table 5.7 is the average value of 200

testing mixtures, the baseline is calculated by using the unprocessed mixture

and the clean speech signal.

Table 5.7. Separation performance comparison in terms of STOI and
PESQ with different methods and the unseen noises, the SNR levels of
these mixtures are -3, 0, and 3 dB. Each result is the average value of
200 experiments. Italic shows the proposed methods. BOLD indicates
the best result.

STOI PESQ
SNR level -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Unprocessed 59.50% 66.16% 73.00% 1.61 1.80 2.01
cIRM-DNN [50] 64.33% 70.68% 76.92% 2.07 2.22 2.37
cIRM-LSTM 65.56% 72.78% 79.43% 2.17 2.34 2.53
oSA-DNN [13] 63.17% 69.06% 75.81% 2.09 2.25 2.36
oSA-LSTM 66.30% 75.99% 81.02% 2.24 2.35 2.47
cSA-LSTM 75.14% 78.87% 83.52% 2.29 2.47 2.60

It can be known from Table 5.7 that when the noise interference is un-

seen, the separation performance is decreased, compared with the seen noise

interference case. It is difficult to obtain the accurate estimate in the testing

stage with unseen noise interference. For example, when the noise inter-

ference is seen, in 0 dB SNR level, the cIRM-based DNN method can gain

7.64% improvement in terms of the STOI. However, if the noise interference

is unseen, the improvement decreases to 4.83%.

Besides, in the unseen noise interference case, when the SNR level is in-

creased, the separation performance is improved and the best separation per-

formance is given by the proposed cSA-based LSTM RNN method. For in-

stance, in -3 dB SNR level case, the cSA-based LSTM RNN method achieves

75.14% and 2.29 in STOI and PESQ, respectively. While the oSA-based

DNN method only achieves 63.17% and 2.09, respectively.

Hence, if LSTM RNN is selected as the neural network model, the gen-

eralization of the related methods is enhanced, which has been confirmed by
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the experimental results similar to [57].

Then, some experiments are evaluated to show how the variations of the

SNR levels affect the SDR performance in terms of the proposed methods

with unseen noise interference. Besides, the generalization ability is further

evaluated. Fig. 5.5 gives the SDR improvement with different training

targets and neural network models.

[50]

[13]

Figure 5.5. Average SDR improvement (dB) for different training
targets and neural network models with 100 types of unseen noise.
Each result is the average value of 200 experiments.

It can be seen from Fig. 5.5 that in the unseen noise case, compared

with the cIRM-based DNN method, the cIRM-based LSTM RNN method

gives more SDR improvement from -3 dB to 3 dB SNR levels. Similarly,

the oSA-based LSTM RNN method achieves a higher SDR improvement

than the oSA-based method by using the vanilla DNN. It is clear to observe

that when the SA approach is operated in the complex domain and the

LSTM RNNs are trained to predict the corresponding training targets, the

separation performance outperforms others. For example, in the scenario,

when the SNR level is -3 dB, the separation performance of oSA-based DNN

method is 6.68 dB and the cSA-based LSTM RNN method gives 7.77 dB
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SDR improvement.

From Tables 5.1 - 5.7 and Figs. 5.4 & 5.5, the best separation perfor-

mance in noise interference case is given by the proposed cSA-based LSTM

RNN method. There are two main reasons: (1) The phase information of

clean speech signal is used to recover the desired speech signal; (2) the LSTM

RNN exploits the temporal information and the generalization ability is en-

hanced. Besides, it can be seen from Table 5.7 that by using the proposed

cSA-based LSTM method, the best performance in terms of the STOI and

PESQ is obtained in all SNR levels, although there are some discrepancies

in the level of improvements across these performance metrics. One possible

reason is that when the SNR level is low, by using the proposed cSA-based

LSTM method, the intelligibility of the separated speech, as assessed by the

STOI, is better improved, due to the time-frequency weighting of the speech

spectrum. In a high SNR level, less processing is enforced on the separated

speech signal. As a result, the level of artefacts introduced by the proposed

cSA-based LSTM method is lower, as shown by the PESQ measure.

In summary, in the seen noise interference case, the separation perfor-

mance is better than the unseen case. When the SNR level is changed from

-3 dB to 3 dB, all of the methods achieve better separation performance.

Moreover, compared with the vanilla DNN, using the LSTM RNN as the

neural network model, the proposed method provides improvement in all

performance measures.

5.4.3 Evaluation with speech interference

When the interference is the undesired speech signal, the task is more difficult

to address because the speech signals are highly non-stationary. In this

subsection, the evaluations with undesired speech interferences are shown in

Table 5.6 and Fig. 5.6.

From Table 5.6, it can be observed that when the interference is the
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undesired speech signal, compared with the noise interference cases, the sep-

aration performance decreases in all cases. The proposed cSA-based LSTM

RNN method provides the highest values of both STOI and PESQ. Com-

pared with the noise interference, when the interference is speech signal,

because the indeterminacy of the speech interference, the related neural net-

work model is more difficult to train, which effects on the overall separation

performance.

After introducing the LSTM RNN, the separation performance is im-

proved. For example, when the speech interference is used, in 0 dB SNR

level, the oSA-based DNN method can gain 5.34% improvement in terms of

the STOI, the oSA-based LSTM RNN method gives 7.51% improvement. In

general, the phase information is beneficial and it can be observed that in

-3 dB SNR level, the PSEQ value of oSA-based LSTM RNN method is 2.14

and cSA-based LSTM RNN method achieves 2.32.

Table 5.8. Separation performance comparison in terms of STOI and
PESQ with different methods and the speech interference, the SNR
levels of these mixtures are -3, 0, and 3 dB. Each result is the average
value of 200 experiments. Italic shows the proposed methods. BOLD
indicates the best result.

STOI PESQ
SNR level -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Unprocessed 64.84% 69.03% 76.62% 1.63 1.92 2.01
cIRM-DNN [50] 69.27% 73.82% 80.16% 2.02 2.23 2.37
cIRM-LSTM 69.13% 73.11% 80.33% 2.05 2.19 2.39
oSA-DNN [13] 70.84% 74.37% 81.79% 2.02 2.30 2.38
oSA-LSTM 72.84% 76.54% 82.25% 2.14 2.36 2.48
cSA-LSTM 75.80% 79.26% 82.59% 2.32 2.54 2.57

The variations of the SNR levels affect the SDR performance in terms

of the proposed methods with speech interference is shown in Figure 6. It

can be seen from Fig. 5.6 that in the speech interference case, the cSA-

based LSTM RNN method gives the largest SDR improvement over the

other methods and SNR levels. It is shown that because the strong ability
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of using temporal information, the SDR improvement of the LSTM RNN-

based method is always larger than the DNN-based methods. For instance,

when the SNR level is -3 dB, the SDR improvement of the oSA-based DNN

method is 4.11 dB and the improvement of the oSA-based LSTM RNN

method is 6.24 dB.

[50]

[13]

Figure 5.6. Average SDR improvement (dB) for different training
targets and neural network models with speech interferences. Each
result is the average value of 200 experiments.

However, in cIRM-based methods, due to the indeterminacy of the un-

desired speech signal, and the corresponding neural network is Y-shape, the

T-F mask in the complex domain cannot be accurately estimated sometimes.

For example, in Fig. 5.6, when the SNR level is -3 dB, the cIRM-based

DNN achieves higher SDR improvement than the cIRM-based LSTM RNN

method. To address this issue, in the proposed cSA-based LSTM RNN

method, two individual LSTM RNNs are used to estimate the eal and imag-

inary components separately. It can be observed from Fig. 5.6, when the

SNR level is -3 dB, the performance of the proposed cSA-based LSTM RNN

method is 8.91 dB, which confirms the efficacy of the proposed method.

In summary, in the speech interference case, the separation performance
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is less than the noise interference case. When the SNR level varies from -3

dB to 3 dB, all of these methods achieve better separation performance in

both noise interference and speech interference cases. From Tables 5.1 - 5.6

and Figs. 5.4 - 5.6, it is confirmed that the LSTM RNN is a better neural

network model to utilize the long-term temporal information, which helps

the trained model to obtain better separation performance.

5.5 Chapter Summary

In this chapter, contributions for improving separation performance were

proposed by using both the phase information of clean speech signal and

LSTM RNN. In terms of the phase information used, the complex signal

approximation-based method was proposed and the imaginary component

of the clean speech signal was estimated. To better utilize the temporal

information, the LSTM RNN was used as the neural network model in the

proposed cSA-based method. By introducing cIRM, both real and imaginary

components can be calculated and estimated in the cSA-based LSTM RNN

method. Compared with oSA-based method, if the complex domain training

targets were exploited, the phase information can be used in the SA-based

approach. Hence, in the cSA-based method, both clean magnitude and

phase information were utilized and the separation performance was further

improved. In Section 5.4, comparisons were made between the proposed

novel cSA LSTM RNN-based method and traditional ones. Moreover, the

evaluation confirms the improvement from the proposed method.

However, it should be noted that although the phase information is help-

ful to improve the separation performance, which can be observed by com-

paring the results of the oSA-based method with those of the cSA-based

method, the major improvement actually comes from the use of the SA-

base method, which can be observed by comparing the performance of the
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oSA-based method with that of the cIRM-based method. The proposed

cIRM-based LSTM RNN method not only has the benefits from the SA

formulation but also the clean phase information.



Chapter 6

CONCLUSIONS AND

FUTURE WORK

In this chapter, the contributions of this thesis are summarized in Section

6.1, and the suggestions for future work are given in Section 6.2.

6.1 Conclusions

This thesis contributed deep neural network (DNN)-based solutions to monau-

ral source separation (MSS) problem, in particular to handle the challenges

of generalization ability, mixture in real room environment and phase infor-

mation.

In order to achieve these targets, different algorithms were proposed with

different training targets, system structure and neural network model archi-

tectures. The contributions to improve the separation performance satisfy

the three objectives mentioned in the introduction chapter. The first con-

tribution was to use two sequentially trained DNNs with different training

targets to build a system to achieve speech separation and the cost func-

tion with discriminative term; the second contribution was to provide a

two-stage algorithm with dereverberation and separation stages, then two

new time-frequency (T-F) masks were proposed as the training targets; and

the last contribution was to improve the separation performance by utiliz-

ing the phase information of clean speech signal with the proposed complex

112
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signal approximation (cSA)-based method and the long short-term memory

(LSTM) recurrent neural network (RNN) as the framework. The details of

the contributions can be concluded as follows:

In Chapter 3, in the first proposed method, the discriminative term was

added in the cost function with deep recurrent neural network (DRNN) to

eliminate the influence of ambiguous information and utilize the temporal

information. And the discriminative term was calculated adaptively via

discrepancy to better model the ambiguous information. Besides, since the

DRNN was introduced, it was easier to find the trade-off between separation

performance and computational cost. In the second method, the sequentially

trained DNNs were used to improve the tracking performance. Firstly, one

DNN was trained with the spectrogram of clean speech signal, then based

on the estimation from the first trained DNN, a T-F mask was calculated as

used as the training targets of the second DNN. Both DNNs were employed

to build a separation system, which can correct the over- or underestimated

information of clean speech signal. The simulation results confirmed the

outcome from the proposed method, for example, with TIMIT dataset and

100 noise interferences in the testing data, when the number of types in

noise interferences was 3 with 0 SNR levels, the proposed system achieved

2.13 in PESQ while the mapping-based method achieves 1.74 and the PESQ

value of masking-based method was 2.01. In terms of the STOI, when the

number of types in noise interferences was 5 with 5 SNR levels, the proposed

system gave 80.81% while the mapping-based method achieved 76.11% and

the value of masking-based method was 78.06%.

In Chapter 4, following the concept of two-stage algorithm, the derever-

beration stage was employed in order to obtain the dereverberated speech

mixture before the separation stage; firstly, the dereverberation mask (DM)

was proposed, so the ideal enhanced mask (IEM) was obtained by integrating

the DM with ideal ratio mask (IRM), which employed the dereverberation
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and separation together. Then, two different system structures were used,

one was single DNN trained with IEM, another was using two DNNs to train

the DM and IRM separately. The separation performance of the mixture

in real room environment was improved because the clean speech signal was

estimated from the system instead of the direct sound of the clean speech

signal. By evaluating with the IEEE, TIMIT and NOISEX datasets, the per-

formances of the separation results were improved. For instance, in Room

D, the proposed method with two DNNs achieves 13.1%, 8.7% and 12.5%

STOI improvements over the proposed method with single DNN (integrated

training objective) at -3, 0 and 3 dB SNR levels, respectively. The two

DNN-based method provides around 13.9% more STOI improvement in all

scenarios.

In Chapter 5, the cSA LSTM RNN-based method was proposed, which

can be separated into two main contributions to improve the separation

performance. Firstly, a novel cSA-based method was employed to estimate

the phase information of the clean speech signal in order to avoid using

noisy phase information in synthesis stage; secondly, LSTM RNN was used

as the framework of the proposed cSA method. For example, when the

speech interference was used, in 0 dB SNR level, the oSA-based DNN method

can gain 5.34% improvement in terms of the STOI, the oSA-based LSTM

RNN method gave 7.51% improvement. For instance, in -3 dB SNR level

case, the cSA-based LSTM RNN method achieved 75.14% and 2.29 in STOI

and PESQ, respectively. While the oSA-based DNN method only achieved

63.17% and 2.09, respectively.

6.2 Suggestions for Future Work

In order to further improve this study, there are some potential contribution

points which could be further researched.
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Firstly, in order to obtain further improvement in separation perfor-

mance, the reinforcement learning method can be considered, which can

help to solve the MSS problem by using unsupervised learning. Although

such approaches have been proposed such as [61], this technique can be com-

bined with some existing traditional supervised learning methods to obtain

accurate estimation.

Secondly, apart from the whole frequency band estimation, according

to the frequency range of the speech signal, the whole frequency range can

be divide into two components [109]. One component contains most of the

information from speech signal and another only have few of them. There-

fore, different neural network architectures and training targets can be used

depend on the different frequency sub-bands. According to this, more com-

putational cost is allocated to the frequency sub-bands contains most of

useful information.

Thirdly, video information can be considered to be exploited in the sep-

aration framework and several such approaches have been proposed such

as [67, 110]. The video information gives the spatial information of the

speech mixture, therefore, the position of speaker can be localized, which

is beneficial for separation performance.

Finally, it is a very popular research topic, the source separation with

time-domain. Different from the conventional DNN-based methods, by sep-

arating the desired speech signal in the time domain, the frequency decom-

position step is removed and reduces the separation problem to estimation

of source masks [111]. Meanwhile, the complex-value DNN can be applied to

combine the magnitude and phase information of the desired speech signal.
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