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Abstract 

 Rare peripheral blood cells are defined as white blood cells (WBC) at a 

population frequency of less than 1 in 1,000. Because blood is a relatively non-invasive 

and accessible sample, it has the potential to be exploited as a surrogate tissue for 

biomarker development. This PhD project therefore focused on the development and 

validation of pharmacodynamic biomarkers in rare WBCs using flow cytometry 

techniques. These biomarkers were developed and utilised for use in three clinical 

studies, the LY3143921 phase I trial, the SIOP Ependymoma II trial and the 

PROSPECT-NE observational study. 

 An assay focusing on phosphorylated MCM2 (pMCM2) and ki-67 staining of 

peripheral blood cells was developed for an early phase clinical trial of LY3143921, a 

novel CDC7 inhibitor. These proteins were tested in vitro, ex vivo and in vivo. The 

results indicated a significant association between the number of ki-67 positive cells as 

a percentage of pMCM2 positive WBCs and drug exposure. Furthermore, an 

appropriate method was successfully developed to preserve pMCM2 and ki-67 signal 

in samples being transported from national clinical centres, to facilitate its 

incorporation in the clinical trial. 

 An assay for the detection of acetylated histone H4 (acH4) was developed for 

patients receiving valproic acid, a HDAC inhibitor, as a part of the SIOP Ependymoma II 

trial. The applicability of the assay was tested in vitro, ex vivo and in patient samples. 

AcH4 signal was associated with drug exposure in vitro and ex vivo but was not 

associated with dose or concentration of valproic acid WBCs in patient samples. This 

finding was potentially related to the relatively low plasma drug concentrations 

observed at the dose levels studied. Additional patients with higher drug exposures 

need to be recruited to future studies to further investigate this issue. 

 The protein of interest for the PROSPECT-NE observational study was ki-67, 

which was detected using the same assay as developed for the LY3143921 trial. This 

study focussed on the prognostic utility of ki-67, rather than its potential predictive or 

mechanistic properties. The results suggested significant differences in overall survival 
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between patients with high and low ki-67 positive WBCs. There was no association 

observed between ki-67 positive WBCs and plasma ki-67 in this study. 

 In conclusion, pMCM2 positivity in ki-67 positive cells was identified as a 

potentially useful pharmacodynamic biomarker, with applicability to an ongoing 

clinical trial. For acH4 positive cells, their utility as a pharmacodynamic biomarker 

remains questionable and requires further investigation. Lastly, a high proportion of 

ki-67 positive WBCs was found to be associated with decreased overall survival in 

people with cancer recruited to a Phase I clinical trial. These findings highlight the 

potential utility of peripheral rare WBCs as pharmacodynamic and prognostic 

biomarkers for clinical studies in an oncology setting. 
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Chapter 1. Introduction 

1.1 Cancer 

1.1.1 Aetiology of cancer 

 The term ‘cancer’ was derived from a Greek word ‘karkinos’ which was used by 

Hippocrates of Kos around 400 BC (Faguet, 2015). It was used to describe the 

appearance of invasive solid tumours with projections penetrating into adjacent tissue 

macroscopically resembling a crab. It was not until the 19th century, however, that it 

became commonly accepted that tumours were a disease with cellular aetiology, and 

only in the 20th century that cancer was recognised as a disease of dysregulated hyper-

proliferation of cells. More recently scientists have come to consider cancer as a 

disease of genetic abnormalities. For instance, mutations of RAS and the RAS-family 

genes have been found to be associated with lung cancer, colon cancer, pancreatic 

cancer and acute myeloid leukaemia (Feinberg and Vogelstein, 1983; Radich et al., 

1990; Sugio et al., 1994; Nishigaki et al., 2005). Similarly, mutations and deletions of 

BRCA1 and BRCA2 genes are related to breast and ovarian cancers (Narod et al., 1993; 

Schmutzler et al., 1997; Tseng et al., 1997) and amplifications of EGFR (HER1) genes 

can lead to glioblastoma, head and neck cancer, and osteosarcoma (Grandis and 

Tweardy, 1993; Hayashi et al., 1997; Akatsuka et al., 2002). 

 These alterations of genes can be inherited, leading to an increased risk of 

cancer developing in a lifetime, or somatic, appearing due to endogenous or 

environmental triggers. Many studies have demonstrated associations between 

environmental factors and cancers. In 1775, an association between scrotal cancer and 

chimney-sweeping was first observed by Percivall Pott (Brown and Thornton, 1957). 

Later, a meta-analysis of multiple cohort studies showed that exposure to asbestos 

increased the risk of developing lung cancer and that the increased risk was still 

present in non-smokers (Ollier et al., 2014; Paris et al., 2017). Tobacco is another well-

known cause of cancer, especially lung cancer (Doll and Hill, 1950). Similarly, the 

presence of aflatoxins produced by mould in some grains such as corn, peanut and rice 

is associated with liver cancer (Liu et al., 2012). In addition, infections with certain 

types of virus such as HPV 16 and 18 are known to be associated with risk of cervical 

cancer (Cogliano et al., 2005). 
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1.1.2 Cancer treatment and therapeutics 

Since cancer was first identified, numerous treatment strategies, including 

surgery, medication, radiation and more recently stem cell transplantation, have been 

developed (DeVita et al., 2018). Focusing on pharmacologic treatment, there are many 

different types of drugs used to treat cancer patients. These can be divided into two 

major groups which are small drugs and biologics. Small molecule compounds can be 

further categorised into cytotoxic and targeted drugs, while monoclonal antibodies 

(MABs) have until recently resembled small molecule drugs in the pathways they 

target. MABs can now be further categorised into anti-proliferative and immune 

checkpoint inhibitors (Reichert, 2001). 

1.1.2.1 Traditional cytotoxic drugs 

Cytotoxic drugs are drugs that are toxic to cells and mostly this toxicity results 

in cell death. However, as the drugs are toxic to the vast majority of cells, both 

cancerous and normal tissues are affected. This means that cytotoxic drugs have many 

serious side effects related directly to their mechanism of action, such as leukopenia, 

cardiotoxicity, hepatotoxicity and gastrointestinal toxicity. According to Thirumaran R 

et al, there are five major types of traditional cytotoxic drugs divided by mechanism of 

action (Thirumaran et al., 2007). 

 

Alkylating agents 

 The mechanism of alkylating agents is covalent binding to DNA. The alkylating 

agents contain electron-rich atoms, which form covalent bonds with DNA and create 

inter- and intra-strand cross-links. When DNA is bound with the drug, cells will detect 

the damage and start the apoptotic process, consequently causing cell death (Trams et 

al., 1961). 

 The first drug in this group and the first cytotoxic drug developed was nitrogen 

mustard. This was followed ten years later by cyclophosphamide, which is essentially a 

prodrug of nitrogen mustard (Friedman and Seligman, 1954). These early drugs were 

derived from mustard gas, a chemical warfare agent used during World War 1. It was 

observed that in addition to being a strong vesicant, the mustards also had cytotoxic 
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activity that depleted bone marrow and lymph nodes, consequently reducing the 

numbers of WBC (Gilman, 1946). This agent was therefore suggested as a new 

treatment for lymphoma during World War 2 (DeVita and Chu, 2008). Another group 

of drugs with a very similar mechanism of action to these alkylating agents are the 

platinum compounds, including cisplatin, carboplatin and oxaliplatin (Lebwohl and 

Canetta, 1998). 

 

Antimetabolites 

 Most antimetabolites have similar structures to endogenous substances 

required for cell division. Therefore, cells will allow antimetabolite agents to substitute 

these compounds, resulting in DNA synthesis interference (Avendaño and Menéndez, 

2008). Tumour cells with high growth rate such as gastrointestinal tumours or cancer 

in bone marrow are most affected by these drugs (Spooner et al., 1982; Schuetz and 

Diasio, 1985). 

 Antimetabolites can be further divided into 3 subclasses. The first group, the 

folate antagonists, includes methotrexate, a drug first synthesized in 1948 which led to 

successful remissions in the treatment of leukaemia (Farber et al., 1948). The second 

group, the purine antagonists, was first developed in 1951 (Hitchings and Elion, 1954). 

This group includes 6-mercaptopurine and azathioprine. The last group are the 

pyrimidine antagonists, which includes 5-fluorouracil (5-FU), gemcitabine, capecitabine 

and cytarabine (Ara-C). The first drug in this group, 5-FU, was first synthesized in 1957 

and was later found to exhibit cytotoxic activity against solid tumours (Duschinsky et 

al., 1957). 

 

Anti-tumour antibiotics 

 The mechanism of action of most anti-tumour antibiotics is blocking 

topoisomerase II activity and intercalating into the flat space between the bases of 

DNA double helix (Sartiano et al., 1979). Most antibiotics in this class contain an 

anthracycline structure and they were first isolated from the bacteria, Streptomyces. 
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Examples of drugs in this class include doxorubicin, epirubicin, daunorubicin, 

actinomycin-D and mitoxantrone (Thirumaran et al., 2007). The first drug in this group 

is actinomycin-D which was developed during World War 2 period and mostly used in 

paediatric tumours between 1950 and 1960 (Pinkel, 1959). 

 

Topoisomerase inhibitors 

 The topoisomerase inhibitor group of anticancer drugs consists of some anti-

tumour antibiotics such as doxorubicin and mitoxantrone and the plant alkaloids 

(Pommier, 2006). For example, etoposide is an alkaloid drug extracted from the 

Podophyllum plant. The project that led to the discovery of etoposide started in the 

1950s but it wasn’t until 1965 that this drug successfully went into cancer clinical trials 

(Imbert, 1998). Irinotecan and topotecan are isolated from the Camptotheca plant 

species. These two drugs were synthesized based on the discovery of camptothecin in 

1966 and were approved by the US FDA in the mid 1990s (Wall et al., 1966). 

The mechanism of action of the topoisomerase inhibitors is binding to 

topoisomerase I and/or II enzymes, resulting in prevention of DNA ligation after 

cleavage and torsional relief. These irreversible covalent cross-links between the 

topoisomerase and DNA prevent its replication and thereby cause cell death (Binaschi 

et al., 1995). 

 

Mitotic inhibitors 

 Anti-microtubule agents, which were discovered in the 1950s and entered 

clinical use in the 1960s, work by interrupting the organisation and dynamics of the 

mitotic spindle within the cell. Consequently, mitosis is prevented and the cell cycle 

stops (Cheng and Crasta, 2017). Most agents used in this class were originally 

extracted from two major plants: the periwinkle plant (Catharanthus roseus G. Don) 

and the Pacific yew (Taxus brevifolia Nutt) (Eric, 1997). 

 Vinca alkaloids are a group of anti-cancer drug extracted from the periwinkle 

plant (Moudi et al., 2013). Vinblastine, vincristine and vinorelbine are examples of 
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vinca alkaloids. Their mechanism of action is inhibition of tubulin polymerization and 

prevention of mitotic spindle formation. The other group of antimicrotubules is the 

taxane derivatives, which were initially extracted from the bark of the Pacific Yew tree 

(Ojima et al., 2016). In contrast to the vinca alkaloids, the taxanes, including paclitaxel, 

docetaxel and cabazitaxel, shift microtubules dynamics towards stabilisation and the 

formation of aberrant intracellular structures, resulting in cell death (Abal et al., 2003). 

 

1.1.2.2 Targeted therapies 

 With the discovery of multiple oncogenes and proto-oncogenes, the 

development of anti-cancer drugs has more recently focused on the synthesis of drugs 

that directly target the cancer genes and proliferative pathways rather than 

conventional cytotoxic drugs (Sawyers, 2004). Recently there are more than 30 

targeted anti-cancer drugs approved by US FDA and more than 20 targets in 

development processes (National Cancer Institute, 2019). 

 The RAS-RAF-MEK pathway is one of the most important targets for cancer 

treatment because upregulation of MAPK cascades were found to be associated with 

carcinogenesis (McCain, 2013). Examples of drugs approved in this class are dabrafenib 

(target BRAF), vemurafenib (target BRAF) and trametinib (target MEK). Another critical 

pathway in cancer is the PI3K-AKT-mTOR pathway (Porta et al., 2014). Anti-cancer 

drugs targeting this pathway which are approved for clinical use include everolimus 

and temsirolimus (Ciuffreda et al., 2010). 

 Based on the hallmarks of cancer, there are several targets for cancer 

therapeutics being developed and/or FDA approved (Hanahan and Weinberg, 2011). 

For example, PARP inhibitors such as olaparib target genome instability and mutation 

(Tangutoori et al., 2015). VEGF signalling inhibitors such as bevacizumab inhibit 

angiogenesis (Ellis and Hicklin, 2008). EGFR inhibitors such as cetuximab, erlotinib and 

panitumumab target sustaining cell proliferative signalling (Ono and Kuwano, 2006). 

Flavopiridol, a cyclin-dependent kinase inhibitor, works by evading growth suppressors 

of cells (Sedlacek, 2001). The HGF/c-Met pathway is another target to stop cancer 

invasion and metastasis; rilotumumab, onartuzumab and tivantinib are examples of 
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drugs inhibiting HGF and/or c-Met (Smyth et al., 2014). In addition, the development 

of immune checkpoint inhibitors, e.g. CTLA-4 inhibitors, PD-1 inhibitors and PD-L1 

inhibitors, is ongoing (Darvin et al., 2018). 

 

1.2 Cancer biomarkers 

1.2.1 Definition of a biomarker 

 The term ‘biomarker’ or ‘biological marker’ has been defined by several 

organisations since 1988. As defined by the National Institutes of Health Biomarkers 

Definitions Working Group, a biomarker is “a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention” (Biomarkers 

Definitions Working Group, 2001). An alternative definition established by WHO in 

2001 defines a biomarker as “any substance, structure or process that can be 

measured in the body or its products and influence or predict the incidence of 

outcome or disease” (WHO, 2001). 

According to these definitions, biomarkers can be any biological or molecular 

entity including specific cells, proteins, molecules, genes, gene products or hormones, 

which can be used to measure a biological process (Huss, 2015). Furthermore, some 

people may include pulse rate, blood pressure, and routine laboratory tests in their 

definitions of a biomarker if they use these variables to measure biological processes 

(Strimbu and Tavel, 2010). 

1.2.2 Biomarker classification 

 There are several categorisation systems of biomarkers currently in use, with 

biomarkers classified by their intended purposes into six major groups: screening, 

diagnostic, monitoring, prognostic, predictive and mechanistic. 
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Screening biomarkers 

 Several substances have been developed or are being developed as markers for 

the early detection of cancer (Duffy, 2015). For example, vanillymandelic acid (VMA) 

and homovanillic acid (HVA) have been used in screening for neuroblastoma in 

newborn infants (Hanai et al., 1987). Alpha fetoprotein (AFP) is effectively used in 

screening of hepatocellular cancer, especially in patients infected with hepatitis B virus 

(HBV) or hepatitis C virus (HCV) (Tsuchiya et al., 2015). CA125 is currently used for 

screening of ovarian cancer in combination with transvaginal ultrasound (Skates et al., 

2017). 

 

Diagnostic biomarkers 

 Diagnostic biomarkers are used to indicate the existence of pathological 

changes in tissues or organs, or indicate occurrence of abnormal cells or tissue 

function (Davis et al., 2013). For example, using aspartate aminotransferase to platelet 

ratio index (APRI) to indicate liver fibrosis is an example of this type of biomarker (Jin 

et al., 2012). However, although many biomarkers are currently used for helping 

diagnosis and/or sub-classification of tumour stage, none are currently recommended 

in clinical practice guidelines to be used alone for cancer diagnosis. 

 

Monitoring biomarkers 

 Monitoring biomarkers are characteristics that can be serially measured to 

assess the status of a disease (Califf, 2018). This type of biomarker commonly overlaps 

with other categories of biomarkers. Examples include CA15-3, which is used in the 

therapeutic monitoring of breast cancer and PSA, which can be used to monitor 

prostate cancer. Similarly, thyroglobulin can be used in the monitoring of thyroid 

cancer (Nixon et al., 2017). 
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Prognostic biomarkers 

 This biomarker class is able to predict the natural course of the disease/effect 

and inform the long-term outcome. For instance, CA125 half-life has been shown to 

correlate with survival rate in patients with cancer of the ovary; women with ≤20 days 

of CA125 half-life had worse overall survival compared to who had a half-life >20 days 

(Colakovic et al., 2000). Oestrogen receptor (ER) and Progesterone receptor (PR) status 

can be used to predict the prognosis of breast cancer patients (Yip and Rhodes, 2014). 

 

Predictive biomarkers 

 Unlike the prognostic biomarkers that predict the natural outcome of the 

disease, predictive biomarkers predict the outcome of treatment (Mordente et al., 

2015). In other words, predictive biomarkers can indicate the probability of a specific 

response to treatment. KRAS mutation is an example of a predictive biomarker 

because it can distinguish patients with metastatic colorectal cancer who do not 

benefit from EGFR inhibiting therapy (Lièvre et al., 2006). In addition, HER2 receptor in 

patients with breast cancer is used to identify patients likely to respond to treatment 

with HER2 receptor antagonists such as trastuzumab and pertuzumab (Iqbal and Iqbal, 

2014). 

 

Mechanistic biomarker 

 Mechanistic biomarkers link directly to the modulation of a specific target or 

signalling pathway (Davis et al., 2013). For example, adipsin is used as a biomarker for 

disruption of NOTCH-1 signalling and induction of goblet cell proliferation in the small 

intestine (Searfoss et al., 2003). As this type of biomarker can measure mechanism of 

action of the drug, it can also be used as a pharmacodynamic biomarker. 

1.2.3 Importance of biomarkers in cancer research 

 As biomarkers can be used for many purposes, their utilities in cancer are 

numerous, including screening, diagnosis, prognosis, prediction of therapeutic 
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response, tumour staging and monitoring efficacy of cancer therapy (Henry and Hayes, 

2012). Nevertheless, not all biomarkers are currently used clinically as many proposed 

diagnostic biomarkers provide insufficient sensitivity and/or specificity. Additionally, 

apart from HCG and AFP, the accuracy of biomarkers for tumour staging remains poor 

(Kulasingam and Diamandis, 2008). 

 Many biomarkers with high accuracy and precision are approved by the US FDA 

for screening and monitoring of cancer therapy (Sauter, 2017). Examples include digital 

rectal examination (DRE) which is widely used as a screening biomarker for prostate 

cancer and CEA which is a serum protein effectively used to monitor colorectal cancer 

(Torosian and Daly, 1991; Jones et al., 2018). 

 Focusing on the area of cancer drug discovery and development, biomarkers 

can have several essential roles, ranging from confirmation of the pharmacological 

mechanism of a drug to the prediction of clinical outcome (Floyd and McShane, 2004). 

Biomarkers also play important roles in early stage drug development, including 

therapeutic target identification and validation, candidate drug screening and 

optimisation, proof-of-concept, and drug combination mechanistic understanding. 

Furthermore, biomarkers can be used in the prediction of patient response, resistance 

and toxicity of a drug (Kelloff and Sigman, 2012). 

 

1.3 Techniques for biomarker development 

 Various techniques have been used for biomarker discovery and development. 

The development process can be divided into 4 main stages: the discovery of potential 

biomarkers, biomarker assay development, technical qualification of assays and the 

clinical validation of new biomarkers (Cummings et al., 2008). 

 Approaches to biomarker discovery can be considered in terms of the tissue 

being analysed. These can be described in terms of ‘-omics’ (Davis et al., 2013; Kewal, 

2017). Firstly, genomics involve techniques such as DNA sequencing, microarrays, gel 

electrophoresis and PCR to measure nucleic acid sequences. Proteomics on the other 

hand are technologies designed to examine protein expression and characterisation. 
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They have huge potential in biomarker development, especially at the level of 

diagnostic and predictive biomarkers. Well-known proteomic techniques such as ELISA, 

mass spectrometry and Western blot are now widely used. 

 Metabolomics refers to the study of all metabolites found in biological samples. 

For example, techniques such as high-resolution NMR spectroscopy are effective to 

quantify in vivo metabolites and generate metabolic profiles. Other techniques 

including mass spectrometry, vibrational spectroscopy and other imaging techniques 

can also be used (Zhang et al., 2012a). Lastly, analytes in cells and tissues can be 

measured by ‘histocytomic’ approaches (Davis et al., 2013). Analysis of cell structure 

and function can be performed by techniques such as microscopy and flow cytometry. 

In addition, immunohistochemistry can be applied for phenotypic characterisation of 

tissues. 

 Deciding the most suitable approach for assessing any given biomarker 

depends on many parameters. For example, which tissues express the biomarker or 

have an active metabolic pathway to be measured. Once tissues have been identified, 

the most suitable technology for analysis of the marker in that tissue must be decided. 

In addition, the feasibility and safety of sample collection, cost of the approach, 

stability of the samples collected and delivery time to the laboratory are factors that 

need to be concerned in biomarker selection. The projects described in this thesis 

focus on rare cell populations in peripheral blood samples. The investigation of these 

populations was initially developed in parallel with establishing CTC detection assays 

using imaging flow cytometry. 

1.3.1 Principles of flow cytometry 

 Flow cytometry is one of the most commonly used techniques in biomarker 

discovery and development. It was developed and has been used for over 50 years 

(Muirhead et al., 1985). This technique is based on the principles of 

immunofluorescence and cell/particle-analysing technologies. The anatomy of a flow 

cytometer can be described under 3 main headings, namely fluidics, optical and 

electronic systems, as shown in Figure 1.1 (BD Biosciences, 2000). Particles are 

suspended and introduced into the fluidics system focused into single objects. The 

optics system consists of lasers to excite fluorochromes and filters to direct emitted 
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light to the electronics of the system, typically photomultiplier tubes (PMT). The digital 

signals generated by the PMT’s are then processed for computer analysis (BD 

Biosciences, 2000). 

 

Figure 1.1. The anatomy of a conventional flow cytometer. 
Particles are injected into the core where they pass through the path of laser 
beams. Scattered and emitted light are detected by either silicon photodiodes 
or PMTs for analysis. Taken from BD Biosciences. Introduction to Flow 
Cytometry: A Learning Guide Manual. 2000. 

 

Flow cytometry techniques are heavily dependent on immunofluorescence and 

the appropriate selection of fluorochromes is critical. Fluorochromes are selected 

based on excitation potential with the wavelengths of lasers in the machine. Knowing 

the excitation and emission properties of fluorescent compounds is essential for the 

selection of combination of fluorochromes which optimally work together. Table 1.1 

shows examples of fluorochromes that can be used in flow cytometry (Overton, 2006). 
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Fluorochrome Excitation Peak 
(nm) 

Emission Peak 
(nm) 

Laser Wavelengths 
(nm) 

DAPI 350 470 405 

Hoechst 350 461 405 

FITC 490 525 488 

Alexa Fluor 488 490 525 488 

PE 565 578 488, 561 

Cy3 554 568 561 

Alexa Fluor 546 556 573 561 

APC-Cy7 650 785 658 

Alexa Fluor 647 650 665 658 

 
Table 1.1. Examples of fluorochromes for immunophenotyping with excitation and 
emission peaks at different wavelengths. 

Adapted from Overton WR. Guide to Flow Cytometry. Dako; 2006. p. 17-22. 

1.3.2 Imaging flow cytometry and its application in biomarker development 

 Imaging flow cytometry is a technology that combines conventional flow 

cytometry with microscopy. While conventional flow cytometers capture and convert 

emitted photons to electrical signals on a photomultiplier tube, imaging flow 

cytometers are able to capture high resolution magnified images on a charge coupled 

device (CCD) camera. The CCD cameras in the ImageStream can collect emitted 

florescence light that is magnified by a microscopic objective lens and spectrally 

resolve it into six discrete bandwidths by an array of dichroic filters as shown in Figure 

1.2 (Amnis Corporation; Han et al., 2016). 

 Based on these functions of imaging flow cytometry, high content data can be 

provided for biomarker development. The unique information given by imaging flow 

cytometers includes localisation of proteins or particles in cells. For instance, by visual 

inspection of protein localisation researchers can identify nuclear or cytoplasmic 

localisation. 
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Figure 1.2. The anatomy of an imaging flow cytometer (ImageStream). 
Particles injected through the tube, excited fluorochromes and emitted light at 
90° is magnified, spectrally resolved and detected. Taken from Amnis 
Corporation. The ImageStreamX Mark II Imaging Flow Cytometer 

 

 Although imaging flow cytometry provides useful information for research, it 

also has its drawbacks. A major limitation is that as the machine has to capture so 

many cell images, the speed of acquisition decreases significantly. Whereas 

conventional flow cytometers can acquire up to 10,000 events/second, imaging flow 

cytometers can process less than half this number (Barteneva et al., 2012). For 

example the ImageStream system has a maximum acquisition rate of 4,000 

cells/second at 20× magnification and only 1,200 cells/sec at 60× magnification (Amnis 

Corporation). Another challenge is the significant size of the data generated by imaging 

flow cytometers because each collected particle contains an image file. For a file with 

100,000 cells acquired, the size will be approximately 1.5-2.5 GB for example. This may 

slow down the analysis of data and quickly cause shortage of storage space when 

many experiments are performed. 
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1.4 Surrogate tissues used in pharmacodynamic biomarker development 

 In the area of biomarker development, selection of suitable surrogate tissues is 

another critical point to be considered, as different tissues provide the researcher with 

different information. In general an ideal tissue should be non-invasive, relevant to the 

drug and facilitate measurement of the biomarker of interest. Biopsy samples 

comprising the target are widely considered to be an ideal tissue, but they are invasive 

and not always safe to obtain (Floyd and McShane, 2004). Therefore, utilisation of 

blood derivatives such as white blood cells as a surrogate tissue, is another option to 

be considered. 

1.4.1 Peripheral blood components 

 Human blood contains numerous components which can be divided into two 

major groups: a solid part referred to as formed or cellular elements and a liquid part 

called plasma (Silverthorn, 2013). Plasma consists of water (90% of volume) and more 

than 100 different solutes including plasma proteins such as albumin (60% of proteins) 

and globulin (36% of proteins), non-protein nitrogenous substances, organic nutrients, 

electrolytes respiratory gases and hormones (Marieb and Keller, 2017). 

 Formed elements in blood consist of erythrocytes, leukocytes, and platelets. 

Erythrocytes or red blood cells are cells without nuclei or organelles. Their shapes are 

like biconcave or flattened discs with depressed centres. When looking through a 

microscope, they appear lighter in colour at the thin centres than at the edges. Red 

blood cells play an important role in transporting oxygen from the lungs to tissues and 

carrying carbon dioxide from the tissues back to lungs. They can function for 

approximately 100-120 days and then are destroyed in the spleens (Crosby, 1959; 

Jelkmann, 1992). 

Platelets are cell fragments of large cells called megakaryocytes. Platelets are 

instrumental in the coagulation process together with other coagulation factors. 

Moreover, platelets contain some chemical granules which are important in clotting 

process such as serotonin, calcium ion, enzymes and platelet-derived growth factor 

(Marcus, 1969; Harrison, 2005). 
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Leukocytes or white blood cells are the last formed elements with only 4,800-

10,800 cells per microliter of blood (4.8-10.8 × 109/L). However, they can be exploited 

in biomarker development because WBCs contain more particles including a variety of 

proteins, granules and nuclei. Further details of white blood cells are described below 

(Feher, 2012; Ashton, 2013). 

1.4.2 Characteristics of white blood cells 

 White blood cells are the only type of blood cell which can be called complete 

cells as they have nuclei and other organelles. White blood cells can be classified in 

two different ways (Figure 1.3) (Marieb and Keller, 2017): by expression of granules 

and by their original stem cells. For the granule classification, there are two types of 

white blood cells that can be defined as either granulocytes (with granules) or 

agranulocytes (without granules). Neutrophils, eosinophils and basophils are 

granulocytes, while lymphocytes and monocytes are agranulocytes. However, when 

divided by their original stem cell, neutrophils, eosinophils, basophils and monocytes 

are in the myeloid group, since they are all derived from myeloid stem cells. On the 

other hand, lymphocytes are classified as lymphoid because of their lymphoid origin. 

 The functionality of imaging flow cytometry allows granularity to be measured 

and expressed as side scatter. Since granules contain proteins and enzymes, they are 

opaque and can refract laser beams, resulting in side scatter. The granularity of white 

blood cells therefore can be used to differentiate types of white blood cells. Basically 

granulocytes, i.e. neutrophils, basophils and eosinophils, present with a high side 

scatter due to their dense granules. On the contrary, lymphocytes with small 

cytoplasm and no granules exhibit very low side scatter. Monocytes, are typically 

intermediate in size and density between granulocytes and lymphocytes. 

 Without additional phenotyping the ImageStream system allows resolution of 

lymphocytes and granulocytes. Furthermore, eosinophils are able to directly bind to 

fluorochromes such as FITC, resulting in false positives (Floyd et al., 1983). This study 

therefore excluded cells with very high intensity of side scatter which indicate 

eosinophils. 
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Figure 1.3. Formation of white blood cells from hemocytoblasts to mature cells. 
White blood cells can be classified either as myeloid and lymphoid cells or 
granular and agranular leukocytes. Taken from Marieb EN and Keller SM. 
Pearson Education; 2017. p. 363-81. 

 

 In addition to granular expression, myeloid and lymphoid cells exhibit 

additional characteristics including differences in life span and expression of 

genes/proteins. Although myeloid cells are the major population of cells comprising 

>75% of all white blood cells, they generally have a short lifespan, especially in the 

case of neutrophils (Ashton, 2013). A previously published study showed that 
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expression of surface markers such as CD45 increased 1.6 times in granulocytes, as 

compared to 0.9 times in lymphocytes, when left in EDTA tube for 24 hours 

(Immunicon Corporation). Thus, any assays of myeloid cells should have minimal 

complexity and rapid data collection; otherwise it may alter the results due to changes 

inside myeloid cells (Priel and Kuhns, 2019). 

 Myeloid and lymphoid cells also exhibit differences in gene and protein 

expression as shown in several studies (Hashimoto et al., 2003; Palmer et al., 2006), 

with results suggesting that myeloid cells express more genes than lymphoid cells. 

Moreover, the majority of genes expressed in each cell type have different functions, 

resulting in different responses to treatment between the two populations. Therefore, 

WBC type is a key parameter to be considered in pharmacodynamic biomarker 

development. 

 Since many characteristics of myeloid and lymphoid cells are variable between 

cell type, the current studies focused on differences in terms of the expression of 

biomarkers of interest. Protein expression in each WBC population was measured and 

compared to the other WBC types, in order to determine the most appropriate cell 

populations for particular biomarkers of interest. 

 

1.5 Clinical trials related to this study 

1.5.1 CDC7 inhibitor LY3143921 - Phase I clinical trial 

 A Cancer Research UK Phase I Trial of LY3143921 is a first in human trial of a 

new drug, namely LY3143921, in adult patients with advanced solid tumours. The main 

aim of this study is to find out the maximum tolerated dose of LY3143921 that can be 

safely administered to patients. Secondary objectives include assessments of 

pharmacokinetic and pharmacodynamic properties of the drug. 

 The clinical trial eligibility criteria includes patients being 18 years or older. 

Patients must have histological or cytological diagnosis of incurable, 

advanced/metastatic solid cancer, WHO performance status of 0 or 1, life expectancy 

of at least 12 weeks, and haematological and biochemical indices within normal 

ranges. 
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 Patients are excluded from the trial if they received radiotherapy (except for 

control of symptoms where irradiated lesions will not be followed for response), 

endocrine therapy, immunotherapy or chemotherapy during the previous 4 weeks. 

Additionally, if they present grade 2 or greater toxicities due to previous treatments, 

have symptomatic brain metastases, have hypotension or uncontrolled hypertension, 

have co-existing active infection, have known to be serologically positive for hepatitis 

B, hepatitis C or HIV, have a history of allergy or auto-immune disease, or have other 

serious concurrent medical conditions, they are ineligible for the trial. 

 LY3143921 hydrate is administered orally to the recruited patients, either once 

or twice a day depending on the particular patient cohort. Patients have to stay in 

hospital for 1-3 nights to closely monitor any side effects. Blood samples are taken 9 

times over the first 24 hours post-treatment, and once on day 2 for side effect 

monitoring and PK/PD analyses. Blood samples – 7 blood tests over a period of 24 

hours – are collected again 4 weeks later. 

 As LY3143921 is a CDC7 kinase inhibitor, this PhD project aimed to develop an 

assay to measure the consequences of CDC7 inhibition. The appropriate candidates for 

CDC7 inhibitors include phosphorylated MCM2 and ki-67 as downstream proteins in 

the CDC7 pathway. 

1.5.2 SIOP Ependymoma II clinical trial 

 The SIOP Ependymoma trial is a large clinical trial run by the International 

Society of Paediatric Oncology to study the diagnosis and treatment of children, 

adolescents and young adults with ependymoma. This study consists of two main 

parts; the first part is focused on the results of post-operation MRI or CT scan and the 

second part is looking at treatment pathways. Patients recruited in the first-part trial 

would receive MRI or CT scan to observe the existence of tumour and the patients with 

recurrence might be recruited to the second part of the project. The acH4 analysis 

project which is the focus of this thesis, is part of the second part of the trial which is 

divided into 3 strata. Stratum 1 is a phase III randomised study for patients whose age 

≥12 months and <22 years at diagnosis and have had a complete resection with no 

measurable residual disease. The recruited patients will be randomised to receive 

conformal radiotherapy followed by either 16 weeks of chemotherapy or observation. 
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Stratum 2 is a randomised phase II study for patients with the same range of age as 

stratum 1 but have inoperable measurable residual disease. Patients will be 

randomised to receive two different treatment schedules of chemotherapy either with 

vincristine, etoposide and cyclophosphamide (VEC) or VEC plus high dose 

methotrexate. 

 Stratum 3 involves children <12 months of age or those not eligible to receive 

radiotherapy, and this is where the acH4 biomarker work is incorporated. Patients who 

are eligible for this stratum must have newly diagnosed intracranial ependymoma of 

WHO grade II-III confirmed by central pathological review and be ineligible to receive 

radiotherapy due to age at diagnosis. In addition, patients must have adequate bone 

marrow function, liver function and renal function. They must have received no 

previous chemotherapy (except steroids), no previous radiotherapy, no co-existent 

unrelated disease, e.g. renal and haematological diseases that would render the 

patient unable to receive chemotherapy, no medical contraindication to 

chemotherapy and no signs of infection. 

 The recruited patients are randomised to receive dose dense chemotherapy, 

alternating myelosuppressive and relatively non-myelosuppressive drugs at 2 weekly 

intervals, with or without valproic acid. For valproic acid, the initial dose of 30 

mg/kg/day is administered to patients in 2 divided doses (15 mg/kg/dose) for two 

weeks, with the potential for the dose to be increased weekly (up to 60 mg/kg/day in 2 

divided doses), depending on the drug concentrations observed. If therapeutic levels 

of 100-150 µg/mL are not achieved when giving 60 mg/kg/day, valproic acid can be 

administered in three divided doses (20 mg/kg/dose twice daily). If therapeutic levels 

are still not achieved, the dose can be slightly increased up to 70 mg/kg/day in 3 

divided doses (23.3 mg/kg/dose). 

 Blood samples for the pharmacodynamic study are obtained pre-treatment 

(prior to the first dose of valproate) and at 4-hour post valproate administration 

following the initial valproate dose. Once the individualised dose resulting in target 

trough valproate concentrations has been determined, pharmacodynamic samples are 

again taken at the same time points (4 hours post-treatment and prior to the next 
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dose). Additional blood samples can be taken at 6 monthly intervals until the end of 

treatment, whether or not patients achieve the therapeutic target. 

 Since valproic acid acts as an inhibitor of the HDAC enzyme, acetylation of 

histone H4 is a result of valproic acid activity and can be developed as a potential 

marker for measurement of HDAC inhibiting effect. This PhD project therefore aimed 

to develop an assay to detect acH4 as a pharmacodynamic biomarker of valproic acid. 

1.5.3 PROSPECT-NE observational study 

 PROSPECT-NE (Molecular PROfiling in Early Clinical Trials – North East) is an 

observational study that primarily aims to determine the range of molecular 

abnormalities presented in patients with cancer. This trial started in September 2017 

but the ki-67 analysis project was only included as part of the study in February 2018. 

The inclusion criteria are histological or cytological diagnosis of cancer, ECOG 

performance status of 0-2 and age >16 years old. Patients must not have known HIV, 

hepatitis B or hepatitis C positive and must have expected life expectancy >8 weeks. 

 The eligible patients are referred to the Sir Bobby Robson Unit at the Freeman 

Hospital for potential entry onto a Phase I trial. Whilst awaiting a trial, the recruited 

patients can donate blood every 4-6 weeks, up to a maximum of four times. These 

blood samples are then processed in the laboratory for ki-67 analysis. Patients will not 

receive any chemotherapy or cancer-relating treatment but they can receive palliative 

care such as corticosteroids. 

 In addition to blood samples, patients are also subject to other clinical 

assessments. For instance, performance status, RMH score, and health related quality 

of life measured with EQ-5D and EORTC QLQ-C30 questionnaires are documented at 

each visit. Also, patients are asked to perform grip strength test as a biomarker 

associated with frailty and poor prognosis. Additional blood tests such as CBC, 

albumin, LDH and C-reactive protein are performed only when necessary. 

 Ki-67 protein is a well-known proliferation marker and is recently an interest in 

the field of cancer prognosis (Scholzen and Gerdes, 2000). However, most prognostic 

studies focused on ki-67 expression in tumour tissue although WBC is considered a 

safer surrogate tissue. Therefore, this PhD project aimed to investigate the possibility 
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of utilising ki-67 as a potential prognostic biomarker in patients recruited to the 

PROSPECT-NE clinical trial. 

 

1.6. Aims and objectives 

 The primary objective of the work described in this thesis was to investigate the 

characterization of rare cell phenotypes in peripheral blood, in order to develop them 

as surrogate tissues for pharmacodynamic biomarker assays. The rare cell phenotypes 

utilised in this study were divided into three populations depending on the relevant 

clinical studies. For the LY3143921 clinical trial, CDC7, pMCM2 and ki-67 expression in 

lymphoid cells were studied. For the SIOP Ependymoma II trial, acH4 expression in 

myeloid cells was focused on. Lastly, ki-67 expression in lymphoid cells was 

investigated for the PROSPECT-NE clinical study. The main aims were as follows: 

1. To validate imaging flow cytometry assays for CDC7, pMCM2 and ki-67 

incorporating assay variability, reproducibility, sample collection and storage 

experiments. 

2. To measure pMCM2 and ki-67 positive lymphoid cells as a PD biomarker as part 

of a Phase I clinical trial of LY3143921, a novel CDC7 inhibitor. 

3. To validate imaging flow cytometry assays for acH4 regarding assay variability 

and reproducibility. 

4. To measure acH4 positive myeloid cells as a PD biomarker as part of a clinical 

trial in children with ependymoma receiving valproic acid. 

5. To characterise the phenotype of a ki-67 cell population in an observational 

study using imaging flow cytometry and to investigate the prognostic utility of 

ki-67 in peripheral blood cells. 
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Chapter 2. Materials and Methods 

2.1  Materials and reagents 

 The CDC7 inhibitor LY3143921 was obtained from Eli-Lilly and Company. 

Valproic acid sodium salt and DMSO were from Sigma Life Science. The primary 

antibody, clone EP4120, against pMCM2 Ser53 was from Abcam and secondary goat 

anti-rabbit antibody conjugated to phycoerythrin (PE) was from Life Technologies. 

CDC7 antibody (polyclonal) conjugated to fluorescein isothiocyanate (FITC) was 

obtained from Bioss Antibodies. The acH4 antibody (polyclonal) conjugated to PE was 

from Milli-Mark. The ki-67 antibody clone B56 conjugated to Alexa Fluor 647 and 

Lyse/Fix Buffer were obtained from BD Biosciences. DAPI (4',6-Diamidino-2-

Phenylindole, Dilactate) was from BioLegend. 

 RPMI-1640 medium with L-glutamine and sodium bicarbonate was from Sigma-

Aldrich. Bovine serum antigen (BSA) solution was obtained from Miltenyi Biotec. Foetal 

bovine serum (FBS) and tablets were from Gibco by Life Technologies. The ki-67 ELISA 

kit was from R&D Systems. The ultracentrifugal filters, Centrifree, were from Merck 

Millipore. 

 

2.2 Cell culture 

HL-60 (Human promyelocytic leukaemia) cells were cultured in RPMI-1640 

medium supplemented with 2 mM L-glutamine and 10% FBS. Cells were cultured in 75 

mm3 flasks with 1×106 cells in 20 mL of media. Flasks were incubated at 37°C in a 5% 

CO2 incubator. Sub-culturing was performed every 3-4 days by transferring 1×106 cells 

to a new flask with 20 mL of media. Cells were routinely tested for mycoplasma every 

2 months by the institute and disposed after 7 subcultures. 
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2.3 Whole blood collection and white blood cell extraction 

2.3.1 Blood samples from healthy volunteers 

Whole blood from healthy volunteers was obtained from students and staff 

members at the Northern Institute for Cancer Research, Newcastle University. The 

protocol was approved by the ethics committee of Newcastle University (protocol 

number ET13-002). All blood samples were taken from volunteer donors by registered 

doctors and were transferred directly to specific blood tubes depending on the 

experimental protocol. 

To isolate white blood cells, red blood cells in whole blood samples were lysed 

by BD Lyse/Fix Buffer. This buffer was diluted in distilled water (1:5) and whole blood 

was added in the proportion of 20 mL of diluted buffer per 1 mL of whole blood. The 

solution was well mixed and incubated at 37°C for 10 minutes, followed by 

centrifugation at 500×g for 10 minutes. The supernatant was gently poured off and the 

cell pellet was resuspended in 1 mL of PBS and transferred to an Eppendorf tube. The 

sample tube was centrifuged at 500×g for 5 minutes and the supernatant removed. 

The cell pellet was again washed with 1 mL of PBS, centrifuged (500×g for 5 minutes) 

and the supernatant removed. Lastly, cells were resuspended in ice cold methanol for 

permeabilisation. The white blood cell suspension was stored at -20°C for at least 24 

hours. 

2.3.2 Blood samples from patients in the SIOP Ependymoma trial 

Whole blood samples were collected from children with ependymoma being 

treated with valproic acid as part of the SIOP Ependymoma II clinical trial. The study 

protocol was approved by the UK East Midlands Multicentre Research Ethics 

Committee and written informed consent was obtained from patients or parents as 

appropriate. Participating clinical sites were based in several cities around the UK 

including Nottingham, Leeds, Sheffield, Oxford and Cambridge. Whole blood was 

drawn from participants and added directly to the diluted BD Lyse/Fix Buffer, which 

was prepared using the protocol described above (section 2.3.1), to fix WBCs and lyse 

RBCs. The blood tubes were frozen on dry ice, and then delivered to the laboratory 

within 3 days. 
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When frozen blood samples arrived the laboratory, blood tubes were warmed 

in a water bath at 37°C for 30 minutes or until the whole sample was defrosted. 

Samples were then centrifuged at 500×g for 10 minutes and the supernatant removed, 

washed with 1 mL PBS solution and transferred to Eppendorf tubes. The washing step 

was repeated and cell pellets were resuspended in ice cold methanol. Samples were 

stored at -20°C until used. This process was performed within 24 hours of the samples 

arriving in the laboratory. 

2.3.3 Blood samples from patients in the PROSPECT-NE trial 

Whole blood was taken from cancer patients participating in the PROSPECT-NE 

clinical trial at the Freeman Hospital, Newcastle upon Tyne. Appropriate ethical 

approval and consent was obtained. Whole blood was added directly to CellSave 

tubes and delivered to the laboratory within 5 days of collection. White blood cells 

were isolated from patient samples using the protocol described in section 2.3.1. 

 

2.4 Free valproic acid extraction and valproic acid quantification 

 Plasma samples from patients studied on the SIOP Ependymoma trial were 

frozen and delivered to the laboratory at the same time as whole blood samples. To 

obtain free valproic acid, plasma samples were defrosted in a 37°C water bath for 30 

minutes, and then centrifuged at 2,000×g for 5 minutes. The supernatant was pipetted 

into the reservoir of an ultrafiltration filter. Samples were centrifuged at 1,500×g for 

20 minutes following the manufacturer’s instruction. The clear filtered solutions were 

sent to the Department of Blood Sciences laboratory at the Royal Victoria Infirmary, 

Newcastle upon Tyne, to measure concentrations of valproic acid. These were 

analysed alongside patient plasma samples, in order to measure free and total valproic 

acid levels, respectively. 

 Concentration of valproic acid in plasma, either as free or total drug, was 

quantified using a Roche/Hitachi Cobas C 701 analyser. The assay is based on a 

homogeneous enzyme immunoassay technique, i.e. the competition between drug in 

the sample and drug labelled with the enzyme G6PDH for antibody binding sites. The 
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measuring range of this machine is 2.8-150 µg/mL (19.4-1040 µM) and the 

repeatability (within-run precision) is 4.8%CV (Roche Diagnostics, 2012). 

 

2.5 CDC7, pMCM2 and ki-67 assay validation experiments 

2.5.1 In vitro concentration dependent experiments 

 HL-60 cells (1×106) were seeded in 2 mL RPMI-1640 medium supplemented 

with 10% FBS in 6-well plates. LY3143921 hydrate powder was dissolved in distilled 

water (dH2O) to make up 100 µg/mL of drug solution. The solution was pipetted to the 

prepared wells at final concentrations of 0.001, 0.01, 0.1, 1 and 10 µg/mL, with dH2O 

added to the last well as a negative control. The volume of all wells were adjusted with 

dH2O. The plate was then incubated at 37°C, 5% CO2 for 6 hours. 

Cell suspensions were harvested by transfer to Eppendorf tubes and 

centrifuged at 500×g for 5 minutes. The media was aspirated and cell pellets washed 

twice with 1 mL PBS. Cells were centrifuged at 500×g for 5 minutes and supernatants 

removed. Lastly cells were resuspended in -20°C methanol and stored in a -20°C 

freezer for at least 24 hours before analysis. 

2.5.2 Ex vivo concentration dependent experiments 

Whole blood samples from healthy volunteers were collected into EDTA tubes, 

and then divided into Falcon™ tubes (2 mL of blood/tube). LY3143921 powder was 

dissolved in dH2O to obtain a stock concentration of 10 mg/mL. The drug solution was 

diluted with dH2O to 1 mg/mL and added to each blood tube to obtain final 

concentrations of 0.001, 0.01, 0.1, 1, 10 and 100 µg/mL and the final volume adjusted 

with the solvent. Distilled water was added to the last tube as a negative control. All 

tubes were incubated in a shaking incubator at 200 rpm, 37°C for 6 hours. Blood 

samples were collected using the protocol mentioned in section 2.3.1. The experiment 

was performed three times with three independent blood donors. 
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2.5.3 Ex vivo time dependent experiments 

 Whole blood in EDTA tubes collected from healthy volunteers, was divided into 

two sets of Falcon™ tubes (2 mL of blood/tube). The first set was treated with 

10 µg/mL of LY3143921 in dH2O and the second set was treated with dH2O at the same 

volume. Both sets of blood tube were incubated in a shaking incubator at 200 rpm, 

37°C. One blood tube in each group was collected at time points of 0, 0.5, 1, 3 and 6 

hours. The collected blood samples were immediately processed for RBC lysis and WBC 

fixation using the protocol mentioned in section 2.3.1. The experiment was performed 

three times with blood collected from three independent donors. 

2.5.4 In vivo experiments 

 In vivo experiments were performed in 6-8 weeks old female CD1 mice which 

were between 25-30 g. Eighteen mice were divided into three equal groups of six mice 

per group. LY3143921 was re-suspended in a vehicle of 5% Ethanol and 95% (1%w/v) 

HPMC; the final concentrations of the drug were 1.5 mg/mL for 15 mg/kg group and 5 

mg/mL for 50 mg/kg group. The first and second groups of mice received 15 mg/kg and 

50 mg/kg of LY3143921 suspension by oral gavage, while vehicle was administered to 

the third group. Blood samples were collected from the tail veins of three mice per 

group before treatment as baseline control, and then collected at 6 hours. The other 

three mice in each group were bled at 3 and 24 hours post-treatment and all mice 

were sacrificed after the second blood collection. All blood samples were processed 

using the same protocols for human samples as mentioned in section 2.3.1. 

2.5.5 Whole blood storage stability tests 

2.5.5.1 Whole blood storage in different blood tubes 

 Different commercially available blood collection tubes including EDTA tubes, 

CellSave tubes, TransFix tubes and Streck tubes were tested for their ability to 

preserve CDC7, pMCM2 and ki-67 antigens. Whole blood from one donor was divided 

equally and added to each blood tube following the manufacturer’s instructions. EDTA 

tubes containing whole blood were stored at 2-8°C while the other tubes were stored 

at room temperature as recommended by manufacturers. Aliquots of blood (2mL) 

from each tube were collected to measure CDC7, pMCM2 and ki-67 expression at 0, 6, 
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24, 48 and 72 hours. RBC lysis and WBC fixation were as described in section 2.3.1. 

Experiments were performed three times with three independent blood donors. 

2.5.5.2 Whole blood storage at -80°C 

 One part Lyse/Fix Buffer was diluted in 4 parts distilled water to make up a 

stock solution. Twenty mL of the buffer was added to each of six Falcon tubes. Whole 

blood from a healthy volunteer was added to the prepared buffer in the proportion of 

1 mL of whole blood to 20 mL of buffer. The tubes were gently inverted eight times 

and immediately frozen at -80°C. Samples were further processed at time points of 0, 

1, 2, 3, 4 and 5 days. The collected blood tubes were thawed and WBCs isolated using 

the protocol for frozen blood as described in section 2.3.2. The experiment was 

performed three times with three independent blood donors. 

2.5.6 CDC7, pMCM2 and ki-67 antibody incubation assays 

 Aliquots of cells (1x106) in methanol were pipetted into an Eppendorf tube and 

centrifuged at 500×g for 5 minutes. Methanol was aspirated and the cell pellet was re-

suspended in 1 mL of a solution of 5% BSA in PBS. The cell suspension was centrifuged 

at 500×g for 5 minutes, the supernatant removed and the pellet re-suspended in 1 mL 

of 5% BSA in PBS. The cells were incubated in the solution for 1 hour at room 

temperature for protein blocking. 

 Following blocking the cells were centrifuged at 500×g for 5 minutes, the 

supernatant removed and the pellet re-suspended in 1 mL of 5% BSA in PBS with 1 µL 

of pMCM2 primary antibody. Cells were incubated with the antibody for 1 hour at 

room temperature and then washed with 1 mL of 5% BSA in PBS. The cells were then 

incubated in 1 mL of 5% BSA in PBS with 1 µL of secondary antibody conjugated with 

PE conjugated goat anti-rabbit secondary, 0.5 µL of CDC7 antibody conjugated with 

FITC and 5 µL of DAPI for 1 hour at room temperature. The antibody solution was then 

removed and cells washed with 1 mL of 5% BSA in PBS. 

 Lastly, the cells were centrifuged at 500×g for 5 minutes and 90% of the 

supernatant was aspirated before 1 µL of antibody against ki-67 conjugated with 

AlexaFluor 647 was added to the remaining cell suspension. The cells were incubated 
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with the antibody for 1 hour and washed with 1 mL of 5% BSA in PBS. The supernatant 

was removed and cells were analysed by an imaging flow cytometer. 

 For any samples where a CDC7 signal was not required, CDC7 antibody was not 

added to the sample at the second incubation step. This protocol was applied to all cell 

types including cell lines, mouse WBCs and human WBCs. 

 

2.6 Acetylated histone H4 assay validation 

2.6.1 In vitro concentration dependent experiments 

Aliquots of RPMI-1640 medium supplemented with 10% FBS (2mL) were 

pipetted into each well of a 6-well plate and then one million HL-60 cells were seeded 

in each well. Valproate sodium powder was dissolved in RPMI-1640 medium to make 

up a 50 mM stock solution. The solution was pipetted to the prepared wells to yield 

final concentrations of 0.5, 1, 2, 4 and 8 mM, with medium only added to the last well 

as a negative control. The volume in each well was adjusted with the medium. The 

plate was then incubated at 37°C, 5% CO2 for 6 hours. Cell samples were collected 

using the protocol for cell lines as described in section 2.5.1. The experiments were 

repeated three times. 

2.6.2 In vitro time dependent experiments 

HL-60 cells (1x106) were seeded in 2 mL RPMI-1640 medium supplemented 

with 10% FBS in 6-well plates. Valproate sodium powder was dissolved in RPMI-1640 

medium to make up a 50 mM stock solution. The solution was then pipetted into all 

prepared wells to provide a final concentration of 4 mM sodium valproate in each well. 

The cell suspension in the first well was collected immediately as a baseline control. 

The plate was then incubated at 37°C with 5% CO2 for up to 24 hours. The treated cells 

were harvested at 0.5, 1, 3, 6 and 24 hours post-treatment. Cell samples were 

collected using the protocol for cell lines as described in 2.5.1. The experiment was 

repeated three times. 
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2.6.3 Ex vivo concentration experiments 

Whole blood from a healthy volunteer was collected into EDTA tubes and 

divided into 6 Falcon™ tubes (2 mL of blood per tube). Valproate sodium powder was 

dissolved in RPMI-1640 medium to obtain a concentration of 50 mM. The drug solution 

was added to individual blood tubes to generate final concentrations of 0.5, 1, 2, 4 and 

8 mM and the final volume was adjusted with RPMI-1640 medium. The medium was 

added to the last tube as a negative control. All tubes were incubated in a shaking 

incubator at 200 rpm, 37°C for 6 hours. RBC lysis and WBC fixation were processed 

following the protocol described in section 2.3.1. 

2.6.4 acH4 antibody incubation assay 

Aliquots of cells (1x106) in cold methanol were pipetted into Eppendorf tubes. 

The cell suspensions were centrifuged at 500×g for 5 minutes at room temperature 

and the methanol was aspirated. Cell pellets were then re-suspended in 1 mL of 5% 

BSA in PBS and again centrifuged at 500×g for 5 minutes at room temperature. The 

supernatant was aspirated and cells were incubated with 1 mL of 5%BSA in PBS for 1 

hour at room temperature, centrifuged and the supernatant again removed. The 

antibody against acH4 (1 µL) was added to the cell suspensions and incubated 

overnight at 2-8 °C. 

Cells were washed with 1 mL of 5% BSA in PBS, centrifuged and the 

supernatant removed. DAPI (5 µL) was pipetted into the cell suspensions, which were 

incubated at room temperature for 1 hour. One mL of 5% BSA in PBS was added to 

each tube to wash the cells. The tubes were then centrifuged and the supernatants 

aspirated. Lastly acH4 expression was measured by an imaging flow cytometer as 

described below. 

 

2.7 Assay for ki-67 detection for the PROSPECT-NE trial 

 WBCs (1x106) in methanol, as prepared in section 2.3.3, were pipetted into 

Eppendorf tubes. Samples were centrifuged at 500×g for 5 minutes at room 

temperature and the methanol was aspirated. The cells were re-suspended in 1 mL 5% 
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BSA in PBS, centrifuged at the same speed and the supernatants aspirated. The cells 

were then incubated in 1 mL 5% BSA in PBS at room temperature for 1 hour for protein 

blocking. 

 WBCs were centrifuged again at 500xg for 5 minutes and the supernatants 

removed. Ki-67 antibody (1 µL) and DAPI (5 µL) were added to the samples, which 

were mixed well and incubated at room temperature for 1 hour. The cells were then 

washed with 1 mL of 5% BSA/PBS and centrifuged to remove the supernatants. 

Samples were run on the ImageStream imaging flow cytometer to measure ki-67 

expression. 

 

2.8 Imaging flow cytometer data collection 

Cell suspensions as prepared above were analysed on an ImageStream 

imaging flow cytometer with the parameters listed below as appropriate: 

 To measure CDC7, pMCM2 and ki-67 expression the 405 nm laser was set at 30 

mW, The 488 nm laser at 50 mW, the 642 nm laser at 100 mW and the 785 nm 

laser at 11.83 mW. 

 To measure ki-67 expression, the 405 nm laser was set at 30 mW, the 642 nm 

laser at 100 mW and the 785 nm laser at 11.83 mW. 

 To measure acH4 expression, the 405 nm laser was set at 30 mW, the 488 nm 

laser at 100 mW and the 785 nm laser at 11.83 mW. 

The gating used to collect cells of interest is illustrated in Figure 2.1. First, round 

single cells were gated from area and aspect ratio; particles with 50-200 µm2 in area 

and 0.6-1.0 in aspect ratio were gated as round single cells. This population was then 

screened by raw maximum intensity of DAPI to exclude non-cell particles. Any particles 

showing expression of DAPI were identified as cells and collected. For cell lines, 5,000 

cells were acquired per sample while 100,000 cells were acquired for blood samples. 
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Figure 2.1. Illustration of the imaging flow cytometry gating used to collect the cells 
of interest in this study. 

Round single cells (RSC) were gated from the scatter graph of aspect ratio against 
area, and then nucleated cells in the RSC population were identified by the 
histogram of raw maximum intensity of DAPI (Ch07). 

 

2.9 Data analysis by Ideas software 

2.9.1 Analysis of CDC7, pMCM2 and ki-67  

The data analysis process is illustrated in Figure 2.2. Collected cells from the 

imaging flow cytometer were analysed using Ideas software version 6.2. Cells were 

first gated as round single cells (RSC) by the area and aspect ratio to reduce non-cell 

particles and clusters of cells. Of the RSC population only cells in focus were selected 

for further analysis using a predefined feature in the Ideas software, gradient root 

mean squared, of bright field; cells with a value greater than 60 were included in the 

focused cell group. 

Focused cells were divided into two populations – myeloid and lymphoid cells – 

using intensity of side scatter and area of cells. The expression of CDC7, pMCM2 and 

ki-67 was assessed in each population based on the intensity of staining and similarity 

in localisation between protein and nuclear (DAPI) staining. Cells with high intensity 

and high similarity, with positive signal in the nucleus, were identified as positive. As 

the majority of CDC7 was cytoplasmic expression, the CDC7 expression was assessed 

by gating all CDC7 positive cells (nuclear and cytoplasmic positive cells). For pMCM2 

and ki-67 expression, only nuclear positive cells were counted. 
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The results were reported as percentages of CDC7 positive, nuclear pMCM2 

positive and nuclear ki-67 positive cells in myeloid, lymphoid and total WBC 

populations. The percentage of pMCM2 positive cells was also shown as a proportion 

of ki-67 positive cells. Moreover, the intensity of all three proteins was measured in 

each cell population by histograms (data not shown) and reported as mean and 

median intensity of protein expression. 
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Figure 2.2. The process of data analysis of CDC7, pMCM2 and ki-67. 
Round single cells (RSC) were first gated and the focused cells gated out of the 
RSC population. Cells were then divided into myeloid and lymphoid cells. CDC7, 
pMCM2 and ki-67 expression levels were determined in each cell type by 
looking at the similarity between protein and DAPI expression and intensity of 
protein. 
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2.9.2 Analysis of acH4  

Collected cells from the imaging flow cytometer were analysed using Ideas 

software version 6.2. As shown in Figure 2.3, cells were first gated for round single 

cells, focused cells, and myeloid and lymphoid cells using the same gating as described 

in section 2.9.1. Myeloid and lymphoid cells were then gated for nuclear acH4 positive 

cells using a scatter graph between intensity of acH4 and similarity between acH4 and 

DAPI; cells with high similarity and high intensity of acH4 were identified as nuclear 

acH4 positive cells. 

Results were expressed as percentage of acH4 positive cells in myeloid, 

lymphoid and total WBC populations. Furthermore, mean and median intensities of 

acH4 in each population were also reported. 
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Figure 2.3. Summary of data analysis of acH4. 
Round single cells (RSC) were first gated and the focused cells gated out of the 
RSC population. Cells were then divided into myeloid and lymphoid cells. The 
level of acH4 expression in each cell type was determined by looking at the 
similarity between acH4 and DAPI expression and intensity of protein. 
Additionally a histogram of the acH4 intensity in the three cell populations is 
shown. 
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2.9.3 The analysis of ki-67  

 Cells collected by the imaging flow cytometer were analysed with Ideas 

software version 6.2. Round single cells, focused cells, and myeloid and lymphoid cells 

were gated using the same gating as described in section 2.9.1. In common with the 

pMCM2 analysis, similarity of ki-67 and DAPI expression alongside ki-67 intensity were 

applied to identify nuclear ki-67 positive cells as shown in Figure 2.4. The number of 

ki-67 positive cells was expressed as percentage of positive cells in the myeloid, 

lymphoid and total WBC populations. 
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Figure 2.4. Analysis of ki-67 expression in patient samples from the PROSPECT-NE 
clinical trial. 

Round single cells (RSC) were first gated, and then focused cells were gated from 
the RSC population. Cells were then divided into myeloid and lymphoid cells 
using side scatter intensity. Each cell type was assessed for ki-67 expression by 
looking at the similarity between ki-67 and DAPI expression and intensity of the 
protein. 
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2.10 ELISA assay for detection of circulating ki-67  

 When blood samples in CellSave tubes from patients studied on the 

PROSPECT-NE trial were delivered to the laboratory for ki-67 cell analysis, plasma was 

also collected. To obtain plasma, whole blood was centrifuged at 1000×g for 10 

minutes at 4°C. Plasma was then aliquoted to Eppendorf tubes and immediately frozen 

at -80°C prior to analysis. 

 ELISA plates were prepared following the manufacturer’s instructions. Briefly, 

diluted capture antibody (100 µL) was added to each well in a 96-well plate and 

incubated overnight to coat the wells. The capture antibody was aspirated and each 

well was washed with 400 µL of wash buffer 3 times. The plates were blocked by 

adding 300 µL reagent diluent to each well and incubating for 1 hour at room 

temperature. The plates were then washed 3 times with wash buffer. 

One aliquot of plasma sample was thawed in a 37°C water bath for 30 minutes, 

and then 100 µL of each plasma sample and ki-67 standard solutions, were pipetted to 

the prepared wells and incubated for 2 hours at room temperature. The plates were 

then washed twice. The diluted detection antibody (100 µL) was added to each well, 

incubated for 2 hours and the wells were then again washed twice. The diluted 

streptavidin-HRP solution (100 µL) was added to each well and incubated in the dark 

for 20 minutes and the washing step was repeated twice more. Substrate solution 

(100 µL) was added to each well and incubated in the dark for 20 minutes. The stop 

solution (50 µL of 2 N Sulphuric acid) was then added to each well and gently mixed. 

 Lastly, the absorbance of light at 450 nm (A450) was measured for each well 

using the Omega microplate spectrophotometer. A standard curve between A450 and 

ki-67 concentration was generated using the four parameter logistic curve-fit function 

on MS Excel 2013. 
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2.11 Statistical analysis 

 All statistical analyses in this PhD project were performed using either 

GraphPad Prism 6 or IBM SPSS Statistics 24 programmes, depending on the tests being 

carried out. Comparison tests including one-way and two-way ANOVA and the Mann-

Whitney U-test, and correlation tests including Spearman’s correlation were 

performed using GraphPad Prism 6. Survival analysis and the cox proportional hazard 

model were performed using SPSS Statistics 24. Statistical significance is defined as 

p-value <0.05. 
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Chapter 3. Development of an assay for pMCM2 and ki-67 as 
pharmacodynamic biomarkers for LY3143921, a CDC7 inhibitor 

3.1 Introduction 

 LY3143921 is a novel anti-cancer agent designed to inhibit the cell division cycle 

7 kinase (CDC7), an enzyme involved in the initiation of DNA replication cell cycle 

regulation and found to be over-expressed in cancer cell lines and tumour material. 

The efficacy of the drug has been tested in both cell lines (in vitro) and animals (in 

vivo), and a first-in-human trial to test its safety in man is now ongoing. Development 

and validation of a robust pharmacodynamic biomarker would be advantageous to 

demonstrate the mechanism of action of the drug in a clinical setting. Based on its 

proposed mechanism of action, CDC7, pMCM2 and ki-67 represent potentially useful 

proteins to focus on for the development of an appropriate biomarker assay for 

LY3143921. 

3.1.1 Physiologic roles of CDC7 in mammalian cells 

 CDC7 is a serine/threonine kinase protein which was first discovered in 

Saccharomyces cerevisiae yeast in 1974 (Hartwell et al., 1974). This protein, known as 

hsk1 in yeast, has been shown to have significant importance in yeast budding in many 

studies (Patterson et al., 1986; Bahman et al., 1988; Buck et al., 1991; Sherlock and 

Rosamond, 1993). In mammalian cells, numerous studies have suggested crucial 

functions of CDC7 related to cell division including mitosis, meiotic recombination, 

checkpoint regulation and DNA damage repair (Jiang and Hunter, 1997; Kumagai et al., 

1999). 

 Cells initiate DNA replication at a particular sequence in a genome called the 

replication origin (Bousset and Diffley, 1998). There are 2 main steps in DNA 

replication which are origin licensing and origin activation (Walter, 2000). During the 

origin licensing process, CDC7 phosphorylates subunits of the MCM2-7 complex 

including MCM2, MCM4 and MCM6 (Masai et al., 2000). CDC7 also phosphorylates 

other replication proteins including DNA polymerase alpha p180, CDC45, ORC4 subunit 

of the ORC1-6 complex, SV40 T antigen and CINP which is a CDK2 interacting protein 

(Weinreich and Stillman, 1999; Masai et al., 2000; Nougarede et al., 2000). 
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 The DBF4 subunit is another protein which has been reported to interact with 

CDC7 in S-phase checkpoint activation. These two proteins bind to form a protein 

complex which is called DBF4-dependent kinase (DDK). DDK was found to control 

initiation of DNA replication and shown to be essential for phosphorylation of the 

MCM2-7 complex (Figure 3.1) (Enserink, 2011). This pathway is further explained in 

section 3.1.2 of this thesis. 

 

 

Figure 3.1.  Regulation of DNA replication by the cell cycle. 
Taken from Enserink JM. InTech; 2011. p. 391-408. 
 

 CDC7 was also found to be involved in the meiotic process. Although the roles 

of CDC7 in pre-meiotic DNA replication remain unclear, its roles in meiotic 

recombination are clearer. In the same way that MCM2 phosphorylation plays a role in 

the mitotic pathway, CDC7 acts together with CDK protein to phosphorylate MER2 at 

Ser 29 (Masai et al., 2000). In addition to studies in yeast indicating the importance of 

CDC7 during meiosis, studies in CDC7-/- mice also reported disrupted spermatogenesis 

and infertility (Kim et al., 2003). 
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3.1.2  Regulation of MCM2 by CDC7 

 Phosphorylation of MCM proteins has been studied over a number of years. 

Several in vitro studies suggested that, of all seven MCM proteins, MCM2, MCM3, 

MCM4 and MCM6 subunits are substrates for the CDC7-DBF4 complex (Lei et al., 1997; 

Sheu and Stillman, 2006); the results have also been confirmed in vivo. Among the four 

MCM proteins mentioned, MCM2 was found to be the most essential substrate for 

CDC7 (Tsuji et al., 2006; Bruck and Kaplan, 2009). 

 The pathway of phosphorylation of MCM2 proteins has not yet been fully 

described. As illustrated in Figure 3.1, it is known that CDC7 works together with DBF4 

protein to form a DDK complex. This DDK phosphorylates MCM2 protein which is 

thought to increase its affinity for CDC45 and GINS (Tanaka and Araki, 2010). This 

results in formation of a complex between CDC45, GINS and MCM2-7, followed by 

induction of the unwinding of double-stranded DNA and initiation of DNA replication. 

 More recently published studies have suggested that only distinct residues of 

the MCM2 protein are phosphorylated by the DDK complex and that each 

phosphorylation site of MCM2 has a different affinity to interact with this CDC7 kinase 

complex (Montagnoli et al., 2006). This study found only minimal changes in levels of 

pMCM2 at Ser108 but a strong decrease in levels of Ser40/41 and Ser53 MCM2 

phosphorylation when CDC7 was depleted. 

3.1.3  Association of CDC7, MCM2 and cancer 

 Associations of cell proteins and cancer have been studied for many decades. 

Focusing on CDC7 and pMCM2, several preclinical and clinical studies have suggested 

correlations between these two proteins and several types of cancer. For instance, an 

in vitro study reported overexpression of CDC7 in multiple cancer types including CNS, 

colon, non-small cell lung and leukaemia cell lines as compared to normal tissue cell 

lines (Bonte et al., 2008). 

 These associations have also been shown in clinical studies. For example, a 

study indicated correlations between high CDC7 expression in diffuse large B-cell 

lymphoma (DLBCL) tissues measured by IHC and poor prognosis in DLBCL patients (Hou 

et al., 2012). Similarly in epithelial ovarian carcinoma, patients with higher CDC7 
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expression in tumour specimens determined by IHC had significant lower overall and 

disease-free survivals (Kulkarni et al., 2009). Another study also reported 

overexpression in CDC7 in malignant salivary gland tumours and this was associated 

with tumour grade (Jaafari-Ashkavandi et al., 2017). 

In contrast to the previous findings, a study in colorectal cancer cells found 

33.6% negative, 57.2% weak and 9.2% strong CDC7 expression in patient tumour cells 

measured by immunohistochemistry (Melling et al., 2015). They reported that 

reduction in CDC7 expression was associated with high tumour stage and tumour 

grade. Also, patients with stronger CDC7 expression in cancer cells exhibited longer 

survival times than those with weak or negative CDC7 expression. 

 Expression of MCM2 protein has also been studied in many types of cancer. A 

recent meta-analysis from 9 studies suggested that overexpression of MCM2 was 

associated with poor overall survival (Gou et al., 2018). In patients with lung squamous 

cell carcinoma, MCM2 was found to be correlated with malignant status and overall 

survival (Wu et al., 2018). Furthermore, MCM2 showed higher potential to predict 

recurrence rate in bladder cancer than CK20, ki-67 or histological grade (Burger et al., 

2007). 

 Although there are many publications indicating associations between MCM2 

and various parameters of cancers, none of them have addressed the potential 

application of phosphorylated MCM2 as a predictive or prognostic biomarker for 

cancer. Instead, pMCM2 has been commonly used as a pharmacodynamic biomarker, 

especially since CDC7 inhibiting agents have been developed. For instance, pMCM2 

was used as a pharmacodynamic biomarker in the development of XL-413 (Koltun et 

al., 2012) and TAK-931, another novel CDC7-selective inhibitor (Iwai et al., 2019). 

3.1.4 Function of ki-67 in man 

 The ki-67 protein was originally discovered in Kiel city in Germany in 1983 

(Gerdes et al., 1984). Since its discovery, however, the biological function of the 

protein remains unclear (Scholzen and Gerdes, 2000). Early studies suggested that 

inhibition of ki-67 could inhibit DNA synthesis and result in a decreased rate of cell 

division. These results highlighted the important roles of ki-67 in cell proliferation. 
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 On the other hand, several recent studies have generated different results. For 

example, mouse NIH-3T3 cells lacking ki-67 proliferated normally without apparent cell 

cycle delays. Moreover, it was found that depletion of ki-67 in HeLa and U2OS cell lines 

did not alter cell cycle distribution or ribosomal RNA synthesis (Sobecki et al., 2016). 

These findings are challenging the previous perspective of ki-67 as an important factor 

for cell proliferation. 

 Even though the importance of ki-67 in cell proliferation remains controversial, 

ki-67 has been proven to be a promising marker of cell proliferation. Early studies 

indicated negative expression of ki-67 in peripheral blood leukocytes during G0 phase 

but found ki-67 to be highly expressed in S, G2, and M phase cells (Gerdes et al., 1984). 

With these findings, ki-67 has been used as marker of cell proliferation for decades 

especially in cancer research. 

3.1.5 ki-67 as a biomarker for cancer 

 Based on its promising activity as a marker of cell proliferation, ki-67 has been 

studied in diseases of anomalous proliferation such as cancer for several years. Many 

papers have reported on various possible utilities for the ki-67 protein in the area of 

cancer, including its potential use as a diagnostic tool, a prognostic tool and a 

therapeutic target. Studies in ki-67 as a diagnostic marker, however, remain scarce and 

this area requires further development.  

 Unlike the diagnostic biomarker application, use of ki-67 as a prognostic tool 

has been widely studied in many types of cancer especially breast cancer. A study 

reported that recurrent breast cancer patients with higher ki-67 expression in tumour 

biopsies had significantly shorter disease free intervals and overall survival (Nishimura 

et al., 2014). These results conformed to those obtained in other studies, including 

studies of triple negative breast cancer patients and African breast cancer patients 

(Agboola et al., 2013; Mrklić et al., 2013; Pathmanathan et al., 2014). 

 The utility of ki-67 in other cancers has been much less studied and the results 

obtained have been ambiguous. A study in prostate cancer reported higher mean and 

median ki-67 in patients with recurrent prostate cancer (Wilkins et al., 2018). 

Additionally ki-67 was found to be associated with overall survival in cervical cancer 
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patients (Pan et al., 2015). In contrast, ki-67 did not provide apparent prognostic effect 

in non-small cell lung cancer, bladder cancer or gastric cancer (Yang et al., 2006; 

Czyzewska et al., 2009; Warli et al., 2018). 

 An alternative application of ki-67 in the field of cancer is as a therapeutic 

target for therapy. Examples of drug in this group include antisense 

oligodeoxynucleotides (ASOs), peptide nucleic acids (PNAs) and adenovirus. These 

agents are generated to have a sequence that specifically targets ki-67 nucleotide 

sequence. Several studies have been published involving many anti-cancer agents with 

different mechanisms related to ki-67, with the most promising agents being ASOs. 

ASOs are a class of RNA interference (RNAi) agents which interfere with ki-67 

production and result in specific inhibition of cell proliferation (Yang et al., 2018). 

Phosphorothioate antisense oligodeoxyribonucleotide, an example of an ASO, 

provided efficacy in inhibition of cancer cell proliferation and tumour growth in vitro 

and in vivo (Kausch et al., 2003). Nevertheless, the clinical application of ASOs has 

been limited due to their non-specific binding, low affinity and susceptibility to 

nuclease degradation. PNAs were the second class of RNAi agents synthesized and 

showed stronger effects in terms of inhibition of proliferation and induction of 

apoptosis in renal carcinoma cells in vitro as compared to ASOs (Zheng et al., 2005). In 

addition, there are other mechanisms of cancer therapy such as conditionally 

replicative adenovirus which inhibit ki-67 promoter gene and result in inhibition of 

cancer cell migration and invasion (Yang et al., 2018). 

3.1.6 CDC7 inhibitors as anticancer drug 

  Inhibition of CDC7 kinase competes for ATP and prevents it from being able to 

phosphorylate substrates such as MCM2, resulting in potent cell death in cancer cells 

but minimal inhibitory effects on cell viability in normal cells (Kim et al., 2008; Sawa 

and Masai, 2009; Montagnoli et al., 2010). Following this pathway, the first ATP-

competitive CDC7 inhibitor, (S)-2-(2-aminopyrimidin-4-yl)-7-(2-fluoro-ethyl)-1,5,6,7-

tetrahydropyrrolo[3,2-c]pyridin-4-one, was developed in 2008, and several classes of 

CDC7 inhibitor have since been developed (Menichincheri et al., 2009). The functional 

structures of CDC7 inhibiting compounds developed include pyrrolopyridinone, 

indazoles, pyrido-thienopyrimidines, 1H-pyrrolo[2,3-b]pyridines, 5-heteroaryl-3-
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carboxamido-2-aryl pyrroles and benzofuropyrimidinone (Montagnoli et al., 2008; 

Shafer et al., 2008; Ermoli et al., 2009; Zhao et al., 2009; Menichincheri et al., 2010). 

 Among them, PHA-767491 was the first agent that showed highly potent 

inhibition of CDC7 activity both in vitro and in vivo (Montagnoli et al., 2008). Further to 

this success, several CDC7 inhibiting agents have been developed and entered clinical 

trials. For example, the orally administered CDC7 inhibitor, NMS-1116354, was studied 

in a phase I clinical trial setting between 2009 and 2012 (U.S. National Library of 

Medicine, 2009c). BMS-863233, also known as XL-413, was studied in two clinical trials 

(phase I/II) in 2009/2010 (U.S. National Library of Medicine, 2009a; U.S. National 

Library of Medicine, 2009b). Since then, many CDC7 inhibitors including TAK-931, 

SRA141 and LY3143921 have also been developed (U.S. National Library of Medicine, 

2017; Hansen et al., 2018; Toshio et al., 2018). 

 LY3143921 is a novel CDC7 inhibitor developed by Eli-Lilly and Company. Figure 

3.2 illustrates the chemical structure of this agent. The efficacy and toxicity of 

LY3143921 have been tested in both cell lines, including SW620, A2780, HL-60 and 

AX521 cells, and animal studies involving mouse, rats, dogs and monkeys. In vivo 

studies demonstrated that administration of 10 mg/kg of the drug to mice resulted in a 

Cmax of 1810±350 ng/mL and a Tmax of 3±1.15 hours. In comparison, beagle dogs 

receiving 6 mg/kg and monkeys receiving 3 mg/kg of the drug showed a higher Cmax 

(4160±1650 and 4450±491 ng/mL, respectively). For pharmacodynamic studies, CDC7 

expression in mouse xenograft tumour tissues was potently inhibited by LY3143921 

and resulted in a huge decrease in pMCM2 (>70% as measured by IHC) for up to 12 

hours after the last dose. Moreover, several studies in xenograft tumour models also 

reported stable disease and tumour regression in many types of cancer including lung, 

blood, colon, ovarian and gastric (data from the company – personal communication). 
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Figure 3.2.  Molecular structure of LY3143921 
 

 The first phase I clinical trial of LY3143921 started in May 2017. The inclusion 

criteria were patients with many types of advanced cancer including bladder, 

colorectal, breast, head and neck and kidney, who had failure from regular treatment 

(refractory cancer). This trial consisted of two parts; the first part was an optimisation 

of dose and frequency of LY3143921 and the latter part involved treatment of patients 

with the drug regimen determined in stage I. Tumour biopsies were taken before 

treatment and again during the first cycle of treatment. Blood samples were taken 

regularly and closely monitored to observe any adverse effects of the drug (Cancer 

Research UK, 2017). 

3.1.7 Pharmacodynamic biomarkers for CDC7 inhibitors 

 Pharmacodynamic biomarkers are increasingly included in clinical trials in 

oncology, especially in terms of proof-of-mechanism. In this respect, they could be 

utilised in patient monitoring if correlations are shown between the biomarkers and 

clinical response. Focusing on CDC7 inhibitors, previously published clinical trials have 

suggested various different pharmacodynamic biomarkers of relevance. Based on the 

pathway of CDC7 mentioned above, several downstream proteins could be used as 

biomarkers including MCM2-7 complex, DBF4 protein or CDC7 itself (Enserink, 2011). 

 Among them, pMCM2 is considered a promising candidate for development as 

a CDC7 inhibitor biomarker. However, different phosphorylation sites of MCM2 were 

found to respond differently to CDC7 inhibitors. Montagnoli et al performed HeLa cell 

transfection with interference RNA targeting CDC7 for up to 72 hours. The 

phosphorylation of MCM2 proteins at different subunits was measured using SDS-
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PAGE Western Blotting. The results suggested that phosphorylation of MCM2 subunits 

at Ser40 and Ser53 were completely dependent on CDC7 activity and had the potential 

to act as pharmacodynamic biomarkers (Montagnoli et al., 2006). 

 Not only direct CDC7 downstream proteins could be used as biomarkers for 

CDC7 inhibitors, other indirectly involved proteins could also be utilised. A study of 

XL413 indicated a decrease in pCHK1 (Ser317) when A431 epidermoid carcinoma cells 

were treated with a combination of XL413 and etoposide as compared to etoposide 

alone. (Robertson, 2008). Another study of PHA-767491 showed decreases in several 

proteins including MCL-1, BCL-A1 and NOXA when CLL cell lines were treated with ≥5 

µM of the drug (Natoni et al., 2011). These findings have suggested some potential 

pharmacodynamic biomarkers for further development of CDC7 inhibitors. 

The association between CDC7 and ki-67 proteins has been sparsely studied and 

there are no publications confirming correlations between CDC7 inhibitors and 

changes in ki-67. As the mechanism of action of CDC7 inhibition involves inhibition of 

cell proliferation, ki-67 should be considered as a potential indirect biomarker for CDC7 

inhibitors. This study therefore included ki-67 as an indirect biomarker of cell inhibition 

induced by LY3143921.  
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3.2 Chapter specific aims 

 The studies outlined in this chapter primarily aimed to develop and validate an 

imaging flow cytometry assay for detection of potential pharmacodynamic biomarkers 

for LY3143921 including CDC7, pMCM2 and ki-67 proteins. The objectives of 

development included the following: 

• Optimisation of antibodies used in the assay including CDC7, pMCM2 and ki-67 

antibodies. 

• Investigation of changes in proteins of interest in HL-60 cell lines with 

increasing LY3143921 concentration and duration of treatment. 

• Investigation of changes in proteins of interest in human WBCs when treated 

with increasing concentrations of LY3143921. 

• Investigation of changes in proteins of interest in mouse WBCs when animals 

treated with different doses of LY3143921. 

• Optimisation of preservation methods for proteins of interest using different 

storage conditions including commercial preservative blood tubes and fixed 

sample freezing at -80°C. 
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3.3 Results 

3.3.1 Antibody validation 

3.3.1.1 CDC7 antibody validation 

 The most suitable volume of antibody against CDC7 protein to be used in the 

assay was first optimised. HL-60 cells were fixed with ice cold methanol and incubated 

with different volumes of CDC7 antibody (0.5, 1, 2 and 4 µL) together with 5 µL of DAPI 

for 1 hour. The cells were analysed for CDC7 expression levels using an imaging flow 

cytometer. Specificity of CDC7 antibody was determined by comparison of CDC7 

expressions in HL-60 cells with/without 1,25-dihydroxyvitamin D3 treatment in pilot 

experiments (data not shown), based upon the study by Brackman et al (Brackman et 

al., 1995). 

  

Figure 3.3 shows the intensity of CDC7 expression in histograms alongside examples of 

cells at the peak of the graph and scatter plots showing the population of cells with 

high CDC7 expression in the nucleus, namely nuclear CDC7 positive cells. As compared 

to incubations with no antibody, cells with 0.5 and 1 µL of antibody provided 

observable signals. The results suggested that the CDC7 antibody had the required 

sensitivity to detect signals of CDC7 protein at all antibody dilutions as compared to 

the control. As shown in Figure 3.4, a background mean intensity of 28,000 was 

observed, while 0.5 µL of antibody exhibited a mean intensity of 76,000 which 

increased to 141,000 with 4 µL of antibody. 

 Although the obtained CDC7 intensity signal was not likely to be saturated at a 

concentration of 4 µL, the percentages of nuclear CDC7 positive cells at all 

concentrations were found to be similar (Figure 3.5). With 0.5 µL of antibody, 97% 

nuclear CDC7 positive cells were detected as compared to 0.72% from the control. 

Higher volumes of antibody did not generate higher number of positive cells; the 

percentages of CDC7 positive cells at 1, 2 and 4 µL of antibody were 98.1%, 99.6% and 

96%, respectively. The results therefore suggested that 0.5 µL was sufficient to be used 

in the assay and that increasing the antibody volume did not show conclusive benefits 

when balanced against increased assay costs.  
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Figure 3.3.  Histograms of the intensity of CDC7, examples of cells at the peaks of 
histograms, and scatter plots between intensity of CDC7 and similarity of CDC7 and 
DAPI. 

Samples were collected from HL-60 cell lines incubated with different volumes 
of CDC7 antibody for 1 hour. 
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Figure 3.4. Mean intensity of CDC7 expression in HL-60 cells incubated with different 
volumes of CDC7 antibody (0-4 µL) for 1 hour. 

The results shown are from a single experiment. Mean intensity refers to 
average expression of protein in all cells collected from one sample. 
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Figure 3.5. Percentage of nuclear CDC7 positive in HL-60 cells incubated with 
different volumes of CDC7 antibody (0-4 µL) for 1 hour. 

The results shown are from a single experiment. 
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3.3.1.2 pMCM2 antibody validation 

 The antibody against MCM2 phosphorylation at serine 53 was tested to find 

the optimal volume for the assay. Different volumes of pMCM2 primary antibody (0, 1, 

2.5, 5 and 10 µL) were incubated with HL-60 cell lines for 1 hour. PE secondary 

antibody (1 µL) and DAPI (5 µL) were then added to all tubes, incubated for 1 hour and 

the PE signal measured by imaging flow cytometry. 

 Figure 3.6 shows histograms of pMCM2 intensity and scatter graphs between 

similarity of pMCM2 and DAPI and intensity of pMCM2 with examples of cells from 

each antibody volume. As compared to the control (no pMCM2 primary antibody), all 

dilutions of pMCM2 primary antibody generated detectable signals. In addition, the 

histograms revealed bimodal curves for antibody volumes of 1, 2.5 and 5 µL but not for 

10 µL. Focusing on the mean intensity of pMCM2 expression (Figure 3.7), the values 

ranged between 23,000 and 27,000 for all concentrations of pMCM2 primary antibody 

with very low pMCM2 signal (1,200 mean intensity) for samples without pMCM2 

antibody. 

 In agreement with the pMCM2 intensity data, the percentages of nuclear 

pMCM2 positive cells for all volumes of pMCM2 antibody were observed to be stable 

(Figure 3.8). The percentages of pMCM2 positive cells were 59.8%, 57.4%, 62.0% and 

64.5% for 1, 2.5, 5 and 10 µL of antibody, respectively. There were no pMCM2 positive 

cells detected in the samples without pMCM2 antibody. These results therefore 

suggested that 1 µL of pMCM2 primary antibody with 1 µL of PE secondary antibody 

was suitable for the assay because it generated as strong a signal and number of 

positive cells as the higher volumes. 
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Figure 3.6. Histograms of the intensity of pMCM2, examples of cells at the peaks of 
histograms, and scatter plots between similarity of pMCM2 and DAPI. 

Samples were collected from HL-60 cell lines which were incubated with 
different volumes of pMCM2 primary antibody for 1 hour. The volume of PE 
secondary antibody was fixed at 1 µL. 
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Figure 3.7. Mean intensity of pMCM2 expression in HL-60 cells with different 
volumes of pMCM2 primary antibody for 1 hour. 

PE secondary antibody was 1 µL for all concentrations of primary antibody. The 
results shown are from a single experiment. Mean intensity refers to average 
expression of protein in all cells collected from one sample. 
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Figure 3.8. Percentage of nuclear pMCM2 positive in HL-60 cells incubated with 
different volumes of pMCM2 antibody for 1 hour. 

PE secondary antibody was 1 µL for all concentrations of primary antibody. The 
results shown are from a single experiment. 
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3.3.1.3 ki-67 antibody validation 

 In order to optimise the volume of FITC-conjugated antibody against ki-67, 

HL-60 cell lines were incubated with ki-67 antibody at volumes of 1, 2, 3 and 4 µL 

together with 5 µL of DAPI for 1 hour. Cells were washed with 1 mL of 5% BSA in PBS 

and ki-67 expression quantified by imaging flow cytometry. 

 The results shown in Figure 3.9 indicate non-normal distribution curves of ki-67 

intensity, so the median was considered instead of mean for ki-67 expression. The 

representative images of cells for each volume of antibody clearly show detectable 

signals of ki-67 when incubated with 1 µL of antibody or higher as compared to control 

cells (no antibody). Figure 3.10 suggests an increase in median intensity of ki-67 

expression with increasing amount of ki-67 antibody. Median ki-67 signals of 170,000, 

230,000, 277,000 and 313,000 were observed with ki-67 antibody volumes of 1, 2, 3 

and 4 µL, respectively; without the antibody added, cells expressed a signal intensity of 

14,500. 

 Figure 3.11 shows high percentages of nuclear ki-67 positive cells with up to 

90% positive cells. The numbers of positive cells were similar for all antibody dilutions; 

there were 85.7%, 88.5%, 87.9% and 90.1% positive cells at volumes of 1, 2, 3 and 4 µL. 

The control without antibody showed no ki-67 positive cells. Based on the obtained 

results, 1 µL of ki-67 antibody was efficient for the developed assay and therefore was 

used for all additional experiments. 
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Figure 3.9. Histograms of the intensity of ki-67, examples of cells at the peaks of 
histograms, and scatter plots between similarity of ki-67 and DAPI. 

Samples were collected from HL-60 cell lines that were incubated with different 
concentrations of ki-67 antibody for 1 hour. 

 

  

Ki-67 Ab 

0 µL 

Ki-67 Ab 

1 µL 

Ki-67 Ab 

2 µL 

Ki-67 Ab 

3 µL 

Ki-67 Ab 

4 µL 

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm

BF SSC DAPI ki-67

10 µm



59 
 

0 1 2 3 4
0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

V o lu m e  o f k i-6 7  a n tib o d y  (µ L )

M
e

d
ia

n
 in

te
n

si
ty

 o
f 

ki
-6

7

 

Figure 3.10. Median intensity of ki-67 expression in HL-60 cell lines with different 
volumes of ki-67 antibody (0-4 µL) for 1 hour. 

The results shown are from a single experiment. Median intensity refers to the 
median expression of protein in all cells collected from one sample. 
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Figure 3.11. Percentage of ki-67 positive cells in HL-60 cell lines incubated with 
different volumes of ki-67 antibody (0-4 µL) for 1 hour. 

The results shown are from a single experiment. 
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3.3.2 Inter- and intra-staining variation of the developed assay 

 The precision of the developed assay was tested before embarking on 

additional experiments with white blood cells. White blood cells obtained from a 

healthy donor were divided into seven tubes and incubated with pMCM2 and ki-67 

antibody at different conditions. Five samples were incubated with the same master 

mix of antibodies and analysed on the same day, with a single sample measured three 

times to investigate the accuracy and precision of the imaging flow cytometer. 

Additional samples were stained 1 week and 2 weeks after the first experiment 

following the same protocol. 

 The number of cells with high expression of pMCM2 and ki-67 (pMCM2 positive 

and ki-67 positive cells) were counted and expressed as a proportion of all white blood 

cells. The first sample which was measured 3 times generated comparable percentages 

of pMCM2 and ki-67 positive cells ( 

Table 3.1) with percentage of coefficient of variation (%CV) less than 10% (8% for 

pMCM2 and 6.9% for ki-67). The %CVs of five samples incubated in parallel with the 

same master mix were 12% for pMCM2 and 5.7% for ki-67 as shown in Table 3.2. The 

%CVs of the sixth and seventh samples which were incubated with different master 

mix of antibodies were higher (14.4% for pMCM2 and 12.3% for ki-67, Table 3.3). All 

variation values, however, were less than 20%, thereby indicating acceptable assay 

precision. 

 

Sample %nuclear 
pMCM2/WBC 

%nuclear ki-
67/WBC 

%nuclear 
pMCM2/ki-67 

1/1 0.25 1.13 21.6 

1/2 0.27 1.28 20.3 

1/3 0.23 1.15 19.8 

Flow cytometer 
precision 

Mean 0.25 1.19 20.57 

%CV 8.00 6.86 4.52 

 
Table 3.1. Precision of the imaging flow cytometer in measurement of pMCM2 and 
ki-67 in the same sample three times. 
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Sample %nuclear 

pMCM2/WBC 
%nuclear ki-

67/WBC 
%nuclear 

pMCM2/ki-67 

Average of sample 1 0.25 1.19 20.57 

2 0.25 1.09 21.4 

3 0.28 1.19 22.6 

4 0.26 1.09 23.5 

5 0.33 1.14 28.1 

Intra-staining variation Mean 0.27 1.14 23.23 

%CV 12.27 4.32 12.66 

Table 3.2. Intra-staining variation in pMCM2 and ki-67 in 5 samples from the same 
donor. 

 All 5 samples were stained in the same experiment using the same master mix 
of antibodies. 
 

Sample %nuclear 
pMCM2/WBC 

%nuclear ki-
67/WBC 

%nuclear 
pMCM2/ki-67 

Average of sample 1-5 0.27 1.14 23.23 

6 0.27 1.05 25.4 

7 0.21 0.89 23.5 

Inter-staining variation Mean 0.24 0.98 24.11 

%CV 15.16 12.40 4.52 

Table 3.3. Inter-staining variation in pMCM2 and ki-67 in 7 samples from the same 
donor. 

 Sample 6 and 7 were stained in experiments performed on different days using 
the same assay as sample 1-5 with different master mixes of antibodies. 
 

3.3.3 LY3143921 concentration dependent in vitro experiments 

 The developed and validated assay was first tested in HL-60 cell lines in an in 

vitro setting. HL-60 cells were treated with LY3143921 at concentrations ranging from 

0.001-10 µg/mL for 6 hours. Cells were incubated with CDC7, pMCM2 and ki-67 

antibodies according to the protocol mentioned in Chapter 2 and the results are shown 

in Figure 3.12 Figure 3.13. Based on the histograms and scatter graphs as compared 

between 0 and 10 µg/mL, LY3143921 was clearly associated with a decrease in the 

expression of pMCM2 but not CDC7 or ki-67. Moreover, this changed the pattern of 
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pMCM2 expression from a single peak to two peaks which distinguish positive and 

negative cell populations. 

 Looking at the number of protein positive cells, the percentage of CDC7 

positive cells was not affected by the drug, with an average of approximately 90% 

CDC7 positive cells obtained at all concentrations of LY3143921 (Figure 3.13A). 

However, significant decreases in nuclear pMCM2 expression were observed following 

treatment with increasing concentrations of LY3143921 (one-way ANOVA, p-value 

<0.0001) (Figure 3.13B). Mean percentages of pMCM2 positive cells were 69.2%, 

64.6%, 61.4%, 48.3%, 36.2% and 18.2% at concentrations of 0, 0.001, 0.01, 0.1, 1 and 

10 µg/mL, respectively. Figure 3.13C shows mean percentages of ki-67 positive cells 

ranging from 21% to 29.1%; the sample treated with 0.01 µg/mL of the drug had the 

lowest number ki-67 positive cells (21%) and the control had the highest number 

(29.1%). These values measured, although were statistically significant different, 

showed no trend with increasing drug concentrations. 
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Figure 3.12. Histograms of mean intensity, scatter plots of mean intensity and similarity between protein and DAPI, and examples of cells with 
protein positivity. 

Samples were from HL-60 cell lines treated with 0 and 10 µg/mL of LY3143921 for 6 hours. The proteins shown include CDC7, pMCM2 and 
ki-67. 
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Figure 3.13. Percentages of CDC7 positive (A), pMCM2 positive (B) and ki-67 positive 
(C) cells in HL-60 cell lines treated with different concentrations of LY3143921 for 6 
hours. 

Mean and SD shown from 3 separate experiments. 
 

A 
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3.3.4 LY3143921 concentration dependent ex vivo experiments 

 Whole blood samples from three healthy donors were collected, incubated 

with a range of concentrations of LY3143921 (0.001-100 µg/mL) for 6 hours and then 

processed and analysed according to the imaging flow cytometry assay procedure 

described in Chapter 2. Representative images of white blood cells with high levels of 

expression of CDC7, pMCM2, ki-67 and all three of these proteins are shown in Figure 

3.14. As DAPI identified the localisation of the nucleus of the cell, localisation of the 

proteins being investigated could be estimated using similarity in shape between DAPI 

and that protein. The CDC7 antibody detected signal outside the nucleus (cytoplasmic 

expression), while pMCM2 and ki-67 were expressed in the nucleus. 

 Protein expression could be investigated using several parameters such as 

mean intensity and number of protein positive (highly expressed) cells. Looking at the 

intensity of proteins,  

Figure 3.15 shows histograms of CDC7, pMCM2 and ki-67 intensity in myeloid and 

lymphoid cells following an increase in LY3143921 concentrations. The expression of 

CDC7 in myeloid cells was clearly higher than lymphoid cells. This difference, however, 

was not found in pMCM2 and ki-67 expression. Moreover, compared to the control 

cells treated with no drug, neither population showed clear changes in protein 

expression even when treated with the highest concentration of drug. 

 



66 
 

A  
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D  

Figure 3.14. Examples of white blood cells with high expression levels of proteins including CDC7 (A), pMCM2 (B), ki-67 (C) and triple 
protein expression (D). 

DAPI locates the nucleus of the cell. 

87444

Bright field CDC7 pMCM2 Side scatter DAPI ki-67

10 µm

87385

Bright field CDC7 pMCM2 Side scatter DAPI ki-67

10 µm

33206

Bright field CDC7 pMCM2 Side scatter DAPI ki-67

10 µm

5176

Bright field CDC7 pMCM2 Side scatter DAPI ki-67

10 µm



67 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.15. Histograms of intensity of CDC7, pMCM2 and ki-67 following different 
concentrations (0-100 µg/mL) of LY3143921 treatment for 6 hours. 

Blue indicates lymphoid population and red indicates myeloid population.  
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 Focusing on numbers of positive cells, the percentages of CDC7 positive 

myeloid cells, lymphoid cells and total WBCs are shown in Figure 3.16A, percentages of 

nuclear pMCM2 positive cells are shown in Figure 3.16B, and percentages of nuclear 

ki-67 positive cells are shown in Figure 3.16C. In agreement with the signal intensity 

results, percentages of CDC7 positive cells were shown to be markedly different 

between myeloid and lymphoid cell populations, with >90% of myeloid cells being 

CDC7 positive, as compared to <5% of lymphoid cells. However, the level of CDC7 

expression in either cell type was not significantly changed when treated with 

LY3143921. 

 In contrast to the results generated in cell lines, the decrease in percentage of 

pMCM2 positive WBCs with increasing concentrations of LY3143921 was not 

significant, although a trend towards a decrease was observed. In the myeloid cell 

population, percentages of pMCM2 positive cells were 0.15% with no drug treatment 

and 0.17% at 100 µg/mL of LY3143921. In contrast, percentages of pMCM2 positive 

lymphoid cells were 0.29% in untreated cells and 0.13% at 100 µg/mL of LY3143921. 

These results suggest that the trend towards a decrease in pMCM2 positivity was more 

visible in lymphoid than myeloid cells. 

 For ki-67 positivity, in agreement with the in vitro cell line results, there was no 

change in either the myeloid or lymphoid populations following incubation of cells 

with LY3143921. Percentages of ki-67 positive cells at 0, 1 and 100 µg/mL LY3143921 

were 0.14%, 0.14% and 0.10% of myeloid and 0.40%, 0.45% and 0.33% of lymphoid 

cells, respectively. 
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Figure 3.16. Percentages of myeloid, lymphoid and white blood cells with positivity 
for CDC7 (A), pMCM2 (B) and ki-67 (C) following incubation with LY3143921. 

WBCs were collected from whole blood samples treated with different 
concentrations of LY3143921 (0-100 µg/mL) for 6 hours. A, B and C indicate 
percentages of CDC7, pMCM2 and ki-67 positivity in myeloid, lymphoid and 
total WBCs, respectively. Mean and SD shown from 3 independent healthy 
donors. 

 

 Although there were no significant changes in percentages of protein positive 

cells in WBCs treated with LY3143921, a drug response was observed in a specific 

population of cells. Focusing on the population of WBCs that were ki-67 positive, a 

trend towards a reduction in pMCM2 positive cells in this population was clearly 

observed (Figure 3.17). Mean percentages of pMCM2 positive cells in myeloid cells 

with ki-67 positivity decreased from 69.1% in untreated cells to 25.5% at a 

concentration of LY3143921 of 100 µg/mL. Similarly, mean percentages of pMCM2 

positive cells in lymphoid cells with ki-67 positivity decreased from 58.5% in untreated 

cells to 21.5% at a LY3143921 concentration of 100 µg/mL. In both cases a trend for a 

concentration-dependent effect was observed although this did not reach statistical 

significance by one-way ANOVA. 

 Based on the results obtained with CDC7 protein in both cell lines and whole 

blood treated with LY3143921, CDC7 would not appear to provide a useful biomarker 

C 
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for this study. Furthermore, the majority of CDC7 positive cells in this study exhibited 

cytoplasmic expression, which is highly controversial because CDC7 expression is 

thought to be mainly found only in the nucleus. Only studies in melanoma cells and 

neuron have reported predominantly cytoplasmic CDC7 expression (Liachko et al., 

2013; Gad et al., 2019). However, it is unclear whether the antibody used for CDC7 

detection also cross-reacted with some other proteins in the cytoplasm. Therefore, 

additional experiments focused only on pMCM2 and ki-67 expression. 
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Figure 3.17. Percentages of pMCM2 positive cells in myeloid, lymphoid and white 
blood cells with ki-67 positivity. 

WBCs were collected from whole blood samples treated with different 
concentrations of LY3143921 (0-100 µg/mL) for 6 hours. Mean and SD shown 
from 3 independent healthy donors. 

 

 The experiments carried out using blood samples collected from healthy 

donors were next performed using whole blood samples obtained from three cancer 

patients. The comparable ex vivo results are shown in Figure 3.18, with no changes 

again observed in pMCM2 and ki-67 in the total WBC population following incubation 

with LY3143921, but a significant decrease in percentage of pMCM2 positive cells in 

the ki-67 positive cell population. Percentages of nuclear pMCM2 positive myeloid cells 
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ranged from 0.12 - 0.32% and percentages of nuclear pMCM2 positive lymphoid cells 

ranged from 0.63 - 0.88% across the range of LY3143921 concentrations investigated 

(Figure 3.18A). Percentages of nuclear ki-67 positive cells ranged from 0.17 - 0.29% of 

myeloid cells and 1.1 - 1.6% of lymphoid cells (Figure 3.18B). Taking the ki-67 positive 

myeloid cell population, percentages of pMCM2 positive cells decreased from 51.8% in 

untreated cells to 19.8% in cells treated with LY3143921 at a concentration of 

100 µg/mL. Similarly, despite non-statistically significant, a reduction in percentage of 

pMCM2 positive cells from 55.7% to 36.9% was observed in ki-67 positive lymphoid 

cells following treatment with 100 µg/mL LY3143921 (Figure 3.18C). Concentration-

dependent effects of LY3143921 were again observed in myeloid, lymphoid and total 

WBCs. 
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Figure 3.18. Percentages of myeloid, lymphoid and white blood cells with positivity 
for pMCM2 (A), ki-67 (B) and pMCM2 in a ki-67 positive cell population (C). 

Whole blood samples obtained from cancer patients were treated with 
different concentrations of LY3143921 (0-100 µg/mL) for 6 hours. Mean and SD 
shown from 3 independent patients. 

 

B 
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3.3.5 LY3143921 time dependent ex vivo experiments 

 To confirm that decreases in pMCM2 in ki-67 positive cells resulted from the 

drug, as opposed to spontaneous degradation of proteins under the experimental 

conditions, time-dependent ex vivo experiments with negative controls were 

performed as described in Chapter 2. For pMCM2 expression, percentages of pMCM2 

positive myeloid cells decreased from 0.15 to 0.06% when treated with LY3143921 for 

6 hours. However, these percentages also decreased in the untreated control group 

from 0.15 to 0.08%. The same trend was observed in the lymphoid cell population, 

with decreases in pMCM2 positivity from 0.47 to 0.12% in the drug treated group and 

0.47 to 0.14% in the control group (Figure 3.19A). 

 A different pattern of results were observed in percentages of nuclear ki-67 

positive cells over time, with less marked reductions over a 6-hour incubation period. 

The percentages of ki-67 positive myeloid cells increased from 0.17% to 0.22% in the 

treated group but decreased from 0.17% to 0.07% in the untreated group. Reduced 

percentages of ki-67 positive cells from 0.60% to 0.46% and from 0.60% to 0.17% were 

observed in treated and untreated lymphoid cells over this time period, respectively 

(Figure 3.19B). 

 Percentages of pMCM2 positive cells in the ki-67 positive population were 

found to significantly decrease with increasing LY3143921 incubation times for up to 6 

hours. Myeloid cells treated with the drug exhibited a decrease in pMCM2 positive 

cells as a proportion of ki-67 positive cells, from 66.7% to 25.4%, while the untreated 

cells showed no change (from 66.7% to 66.9%). Similarly, percentages of pMCM2 

positive lymphoid cells in the ki-67 positive population decreased from 71.2% to 25.7% 

when treated with LY3143921, with a less marked decrease observed in untreated cells 

(Figure 3.19C). 
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Figure 3.19. Percentages of pMCM2 positive myeloid and lymphoid cells (A), ki-67 
positive myeloid and lymphoid cells (B) and pMCM2 positive myeloid and lymphoid 
cells in the ki-67 positive cell population (C). 

Results were obtained from whole blood samples treated with 10 µg/mL 
LY3143921 for up to 6 hours as compared to non-treated whole blood as a 
control. Mean and SD shown from 3 independent healthy donors. 

 

3.3.6 LY3143921 in vivo experiments 

 The application of the developed assay in an in vivo mouse model was next 

investigated. Eighteen mice were divided to 3 groups of six and each group was 

administered a different oral dose of LY3143921 (0, 15 or 50 mg/kg). Blood samples 

were collected from the animals at 0, 3, 6 and 24 hours post-treatment. The same 

protocol as used for the previously described experiments with human blood was 

applied to the mouse blood. 

 As shown in Figure 3.20A, a significant decrease in percentage of pMCM2 

positive WBCs was observed over a period of 24 hours in the 50 mg/kg treatment 

group as compared to the control untreated group (two-way ANOVA, p-value 0.0146). 

The mean percentage of pMCM2 positive cells decreased from 1.80% to 0.58% when 

treated with 50 mg/kg of LY3143921 for 24 hours while there was no observable 

change in the untreated control group. When treated with 15 mg/kg of the drug, the 

percentage of pMCM2 positive cells decreased from 1.47% to 0.76% but this decrease 

was not significant (two-way ANOVA, p-value 0.5513). 

C 
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 In contrast, no significant change in percentage of ki-67 positive cells was 

observed in any of the treatment or control groups (Figure 3.20B). Mean percentages 

of ki-67 positive cells ranged from 0.77 – 0.97%, 0.40 – 0.62% and 0.66 – 0.81% in the 

untreated group, 15 mg/kg and 50 mg/kg treated with the drug for 24 hours, 

respectively. These changes in percentage of ki-67 positive cells were not statistically 

significant (two-way ANOVA, p-value >0.5). 

  Focusing on the ki-67 positive population, significant decreases in percentages 

of pMCM2 positive cells were observed following treatment with LY3143921 (Figure 

3.20C). Mean percentages of pMCM2 positive cells in the ki-67 positive population 

when treated with 15 mg/kg of the drug for 24 hours decreased from 70.0% to 38.6% 

and when treated with 50 mg/kg of the drug for 24 hours decreased from 56.6% to 

13.9%. P-values of both differences determined by two-way ANOVA were <0.0001. 
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Figure 3.20. Percentages of nuclear pMCM2 positive cells in all WBCs (A), nuclear 
ki-67 positive cells in all WBCs (B) and of nuclear pMCM2 positive cells in ki-67 
positive WBCs (C) observed in an in vivo mouse model. 

White blood cells were separated from mice treated with single doses of 
LY3143921 (15 or 50 mg/kg) and whole blood samples were collected at 0, 3, 6 
and 24 hours following administration. Mean and SD shown from 3 sets of 
mice, 6 mice per group. 
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3.3.7  Stability tests of pMCM2 and ki-67 in preserved whole blood 

 In a clinical setting whole blood samples may be taken at different clinical sites 

and would need to be delivered to the laboratory for analysis. As the shipment of 

samples may take several days to arrive in the laboratory, a method to reliably 

preserve pMCM2 and ki-67 protein in clinical samples needed to be developed. 

Proteins can be preserved using various different methods, with many brands of blood 

preservative tubes available with the potential to maintain pMCM2 and ki-67 integrity. 

In addition, freezing fixed WBCs at -80°C may be an effective approach for 

preservation of pMCM2 and ki-67. These methods were therefore tested in the current 

study. 

 

3.3.7.1 Stability of pMCM2 and ki-67 in different commercial blood tubes 

 Four commercial preservative tubes were tested including EDTA tubes, 

CellSave tubes, TransFix tubes and Streck tubes. Whole blood was collected from 

healthy donors, added to each type of tube and stored for up to 3 days. EDTA tubes 

were stored at 2-8°C while other tubes were stored at room temperature according to 

the manufacturer’s instructions. Blood samples were collected from all tube types at 0, 

6, 24, 48 and 72 hours after the addition of blood. Samples were processed following 

the protocol described in Chapter 2. 

 Mean percentages of CDC7 positive WBCs remained stable throughout the 72 

hour incubation period for all tubes except Streck tubes (Figure 3.21A). Average levels 

of CDC7 measured in CellSave, EDTA and TransFix tubes were 67%, 76% and 69%, 

respectively and did not show any change with time. For the Streck tubes, the 

percentage of CDC7 positive cells was observed to decrease from 65% to 43% when 

stored for 72 hours. 

 The characteristics of pMCM2 positive WBCs in the various tube types was 

markedly different from CDC7 (Figure 3.21B). Mean percentages of pMCM2 positive 

cells from 3 independent experiments increased from 0.27% to 0.63% when stored in 

CellSave tube for 24 hours and then decreased to 0.37% at 3 days. Further 

investigation revealed that this increase mainly resulted from an increase in pMCM2 
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positivity in myeloid cells; percentages of pMCM2 positive cells in the myeloid cell 

population increased from 0.09% to 0.61% while in lymphoid cells increased from 

0.55% to 0.73% (data not shown on the graph). This pattern of change was not seen in 

other tubes. Expression of pMCM2 decreased from 0.28% to 0.14% when stored in 

EDTA tubes and from 0.23% to 0.12% when stored in Streck tubes. The expression of 

pMCM2 was undetectable in TransFix tubes at all time points of storage, so this tube 

was not suitable for pMCM2 measurement. 

 The expression of ki-67 is shown in Figure 3.21C. After storage in CellSave tube 

for 24 hours, the percentage of ki-67 positive cells increased from 0.23% to 0.46% and 

then slightly decreased to 0.41% at 3 days. This fluctuation was predominately due to 

variation of ki-67 positivity in myeloid cells which increased from 0.05% to 0.17% at 1 

day and then decreased to 0.09% at day 3 (data not shown on the graph). For EDTA 

and Streck tube, percentages of ki-67 positive WBCs remained stable throughout 72 

hour of storage. No ki-67 expression was detected in WBC stored in TransFix tubes at 

any of the time points investigated. 

 The percentage of pMCM2 positive cells measured in the ki-67 positive 

population was observed to decrease with time in CellSave, EDTA and Streck tubes 

(Figure 3.21D). Although the percentage of pMCM2 positive cells was found to be 

increased at 24-48 hours after storage in CellSave tubes, it still decreased when 

considered as proportion of ki-67 positive cells. Mean percentages of pMCM2 in ki-67 

positive cells decreased from 79.4% to 27.6% in CellSave tubes, from 24.9% to 4.9% in 

EDTA tubes and from 28.4% to 16.9% in Streck tubes. 
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Figure 3.21. Percentages of CDC7 positive cells in all WBCs (A), nuclear pMCM2 
positive cells in all WBCs (B), nuclear ki-67 positive cells in all WBCs (C) and 
percentage of nuclear pMCM2 positive cells in ki-67 positive WBCs (D). 

WBCs were separated from whole blood samples stored in different types of 
blood tubes for up to 3 days. Mean and SD shown from 3 independent donors. 
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3.3.7.2 Stability of pMCM2 and ki-67 when fixed with Lyse/Fix buffer and stored 
at -80°C 

 An alternative method to preserve pMCM2 and ki-67 involved freezing the 

fixed samples at -80°C. To investigate this approach, whole blood was collected from 

healthy donors and added to freshly prepared Lyse/Fix buffer solution (6 tubes per 

donor). The first tube was further processed following the protocol immediately, while 

the other tubes were frozen at -80°C. A tube of sample was analysed at time points of 

1, 2, 3, 4 and 5 days after freezing. Blood tubes were thawed in a 37°C water bath for 

30 minutes and then processed using the protocol described in Chapter 2. 

 The results obtained from this set of experiments showed that sample stability 

was maintained for measuring percentages of positive cells for both pMCM2 (Figure 

3.22A) and ki-67 (Figure 3.22B) for up to 5 days. Mean percentages of pMCM2 positive 

myeloid, lymphoid and total white blood cells were 0.26%, 0.95% and 0.46% at time 

zero and 0.26%, 0.61% and 0.36% at the 5-day time point, respectively. 

 Similarly, average percentages of ki-67 positive cells at time zero and when 

frozen for 5 days were 0.46% and 0.45% for myeloid cells, 1.45% and 1.14% for 

lymphoid cells, and 0.74% and 0.63% for total WBCs, respectively. The percentages of 

pMCM2 positive cells in a ki-67 positive WBC population ranged between 45-60% for 

all three types of cell and showed no trend with time of storage (Figure 3.22C). 
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Figure 3.22. Percentages of nuclear pMCM2 positive cells in all WBCs (A), nuclear ki-
67 positive cells in all WBCs (B) and nuclear pMCM2 positive cells in ki-67 positive 
WBCs (C). 

White blood cells were separated from whole blood samples, fixed in Lyse/Fix 
buffer and frozen at -80°C for up to 5 days. Mean and SD shown from 3 
independent experiments. 
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3.4 Discussion 

 An assay for detection of potential pharmacodynamic biomarkers of a CDC7 

inhibitor including CDC7, pMCM2 and ki-67 proteins has been developed and validated 

in cell lines (in vitro), white blood cells (ex vivo) and in a mouse model (in vivo). In 

addition, the most appropriate method of collection and storage of clinical samples 

was investigated to find the optimal method for ensuring the integrity of the data 

following delivery to the laboratory for analysis. 

 LY3143921 is a novel anti-cancer agent developed with the proposed 

mechanism of CDC7 inhibition. However, there is currently no pharmacodynamic 

biomarker for this agent developed for use in clinical trials. As CDC7 phosphorylates 

the MCM2 protein, inhibition of CDC7 by the drug should result in a reduction of 

pMCM2 expression. In addition, as the CDC7 pathway is essential for cell proliferation 

and division, ki-67, a well-known proliferation marker, was also investigated as a 

potential biomarker for LY3143921. 

 The results of antibody optimisation indicated good potency of all antibodies 

used in this study including antibody against CDC7, pMCM2 and ki-67. However when 

HL-60 cell lines were treated with LY3143921, no differences were observed in CDC7 

expression or ki-67 expression at concentrations of LY3143921 up to 10 µg/mL. 

According to pre-clinical data from the company, drug peak concentrations in rats and 

dogs ranged between 0.2-8 µg/mL with the highest tolerated dose up to 20 mg/kg. 

These concentrations were similar to the concentrations used in this study but 

decreases in ki-67 were not observed as expected. 

 These findings are in contrast to previous studies of similar drugs such as 

PHA-767491 and XL413 (Montagnoli et al., 2008; Sasi et al., 2014). Montagnoli, et al. 

reported a decrease in CDC7 expression in HeLa cells treated with 5 µM of PHA-767491 

for 24 hours measured by Western blot (Montagnoli et al., 2008). Sasi, et al. presented 

reductions in CDC7 kinase activity in bacteria cells treated with different 

concentrations of PHA-767491 and XL413 with IC50 values of 18.6 nM and 22.7 nM, 

respectively (Sasi et al., 2014). The difference might result from cytoplasmic CDC7 

expression observed in this chapter which was potentially caused by differences in 

antibodies, methods and different cell lines used. Given our results involved CDC7 
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cytoplasmic staining, more comparable data may have been generated with an assay 

that had improved specificity and quantified nuclear CDC7 expression. 

 In contrast to CDC7 and ki-67, the percentage of pMCM2 positive HL-60 cells 

was significantly decreased over the concentration range of LY3143921 investigated. 

This conformed to the proposed mechanism of action of LY3143921 as a CDC7 kinase 

inhibitor. The drug inhibits functions of CDC7 and therefore affect its downstream 

proteins instead of directly depleting CDC7. 

 Ex vivo experiments with whole blood showed comparable results as generated 

in vitro, with no changes in percentages of CDC7 or ki-67 positive cells but a trend 

towards a decrease in pMCM2 positive cells following treatment with LY3143921. 

Following analysis of these data, there were no further investigations carried out into 

the measurement of CDC7 protein as a potential biomarker for LY3143921 activity. 

Although no changes were observed in the percentage of ki-67 positive cells following 

treatment with LY3143921, a potentially important relationship was observed when 

focusing on the percentage of pMCM2 positive cells measured within the ki-67 positive 

cell population. Indeed, the significant decrease in pMCM2 observed in this cell 

population following treatment with LY3143921 was found to be more robust than the 

decrease in pMCM2 in the whole WBC population. However, according to the results, 

the concentration of LY3143921 in patient samples should be higher than 10 µg/mL in 

order to observe comparable pMCM2 decreases. 

 These findings were confirmed with the results obtained from in vivo mouse 

experiments. According to the LY3143921 pharmacokinetic profile in mouse, the dose 

of 20.8 – 10.4mg/kg was identified as midrange dose, while over 30 mg/kg was high 

dose (data from the company – personal communication). Therefore the doses used in 

this chapter were reasonable to classify mice into high-dose and moderate-dose 

groups. In addition, the pharmacokinetic profile indicated that tmax of the 10 mg/kg 

drug was 3±1.15 hours which was comparable with the percentage of pMCM2 positive 

cells shown in Figure 3.20A. As given the dose of 10 mg/kg resulted in a detectable 

decrease in pMCM2, the doses of 15 mg/kg and 50 mg/kg used in this study were 

expected to generate higher significant decreases. Although using pMCM2 alone 

provided the required level of sensitivity to detect the effect of LY3143921 in mouse 
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WBCs, measuring the percentage of pMCM2 in a ki-67 positive population provided a 

greater power of detection. 

 To the best of our knowledge, studies investigating associations between 

pMCM2 and ki-67 are very limited. There was only one published study which 

previously mentioned a significant correlation between CDC7, pMCM2 and ki-67 

(Krawczyk et al., 2009). This study was investigating the prognostic effects of several 

proliferative markers including CDC7, pMCM2 and ki-67 in invasive breast cancer and 

the results suggested significant correlations among these three proteins. Nonetheless, 

this study did not propose a rationale for the correlations observed, so could not 

provide any insights to explain our findings. A possible explanation is that cells with a 

higher proliferation rate (high ki-67 expression) may respond to the drug better than 

normal cells. Another possible reason is that as LY3143921 causes cell cycle arrest, the 

ki-67 level was stable while pMCM2 levels decreased. These hypotheses, however, 

need to be further investigated. 

 The results generated in the current chapter suggest a potential benefit in using 

two proteins of interest in combination to provide a robust biomarker. While pMCM2 

itself was sensitive enough to detect the effect of LY3143921, its use in combination 

with ki-67 allowed us to focus on a specific population of proliferating cells. Although 

pMCM2 expression decreased with increasing concentrations of LY3143921, the 

overall effects on cancer cells and clinical effects in patients need to be further 

evaluated in the clinic. 

 With regard to storage of clinical samples, our results suggested that none of 

the commercial blood tubes tested including CellSave, TransFix and Streck tubes 

were suitable for preservation of the three proteins of interest (CDC7, pMCM2 and 

ki-67) as well as EDTA tubes stored at 2-8 °C. However, it was found that freezing fixed 

samples in Lyse/Fix buffer at -80°C was able to preserve pMCM2 and ki-67 proteins for 

up to 5 days. This preservation method can therefore be applied to clinical samples in a 

clinical trial setting. 

In conclusion, a promising assay for detection of pMCM2 and ki-67 as a 

combined pharmacodynamic biomarker of LY3143921 has been developed and 

validated. This assay has the potential to be applied to the analysis of patient samples 
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following treatment with LY3143921 in a clinical trial setting. Furthermore, the 

applicability of this assay for use with other CDC7 inhibitors such as PHA-767491 could 

be tested to expand the future utility of the assay. 
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Chapter 4. Development and pre-clinical application of an assay for 
detection of histone H4 acetylation as a pharmacodynamic 

biomarker for valproic acid 

4.1 Introduction 

4.1.1 Histones, histone acetylation and histone acetylation enzymes 

 Histones are a group of proteins isolated through acid-extractions and named 

by Albrecht Kossel in 1884 (Kossel, 1884). Studies of histone structure have revealed 

two parts of chromatin structure: a core histone octamer and a tetramer portion. Each 

octamer consists of two nucleosomal histones which are H3 and H4 while each 

tetramer is composed of H2A and H2B dimers (Kornberg, 1974). 

 The acetylation of histones was discovered nearly a century after their initial 

isolation (Allfrey et al., 1964). The addition of an acetyl moiety to the ε-amino group of 

a lysine residue which was later defined as Nε-acetylation was revealed (Gershey et al., 

1968). This pathway involves two essential groups of enzymes: histone 

acetyltransferases (HATs) and histone deacetylases (HDACs). Discovery of HAT 

enzymes in the mid-1990s led to a surge of interest in histone acetylation. HATs are 

classified into three major groups including the GNAT-family, MYST-family and 

CBP/p300 family. Gu, et al identified their association with tumour suppressor p53, 

identifying histones as proteins of interest in cancer research (Gu and Roeder, 1997). 

 While studies investigating the impact of HATs on cancers are ongoing, HDACs 

are currently considered to represent a more relevant drug target in relation to their 

association with cancers (Cress and Seto, 2000; Mahlknecht and Hoelzer, 2000). This 

contributed to the discovery of the first naturally extracted HDAC inhibitor, 

Trichostatin A (Yoshida et al., 1987). Since then, a number of HDAC inhibitors have 

been discovered and developed which will be discussed later. 

4.1.2 Classification of histone deacetylases 

  Histone deacetylase (HDAC) enzymes have been extensively studied alongside 

the development of HDAC inhibitors. These enzymes are classified into 4 major classes 

as described in Table 4.1 (West and Johnstone, 2014). Class I includes HDAC1, HDAC2, 



92 
 

HDAC3 and HDAC8. Class II includes HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 and 

HDAC10. HDAC4, HDAC5, HDAC7 and HDAC9 are in subclass IIa while HDAC6 and 

HDAC10 are in subclass IIb. Class III is called the SIRTUIN class because these enzymes 

contain a SIRTUIN catalytic domain instead of a HDAC catalytic domain. This class 

consists of SIRT1 to SIRT7, which can be subdivided to 4 minor classes. Lastly, class IV 

includes only HDAC11. 

 Several studies have suggested a correlation between specific HDACs and 

certain cancer types as highlighted in Table 4.1 (West and Johnstone, 2014; Patra et 

al., 2019). For instance, all HDACs in class I have been shown to be deregulated in 

many cancers, with HDAC1 overexpressed in gastric, lung and breast carcinomas (Choi 

et al., 2001; Zhang et al., 2005; Minamiya et al., 2011). Overexpression of HDAC1, 

HDAC2 and HDAC3 has also been found in renal cell, colorectal and gastric cancer as 

well as in classical Hodgkin’s lymphoma (Fritzsche et al., 2008; Weichert et al., 2008; 

Adams et al., 2010). Class IIa HDACs have also been linked to several types of cancer. A 

study reported that HDAC4 expression was upregulated in renal, bladder and 

colorectal cancer (Ozdağ et al., 2006). HDAC5 and HDAC9 were overexpressed and 

have been linked to poor survival in high-risk medulloblastoma patients (Milde et al., 

2010). HDAC6 in class IIb was found to be overexpressed in oral squamous cell 

carcinoma (Sakuma et al., 2006). 
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HDAC HDAC protein 
associations 

Expression in cancer Examples of functional 
involvement 

Class I (homologous to RDP3 yeast protein, nuclear location, ubiquitous tissue 
expression) 
HDAC1 HDAC2 Elevated in gastric, 

breast, colorectal, 
Hodgkin lymphoma, 
lung, liver 

KD induced growth arrest, 
decreased viability, increased 
apoptosis and induced 
genomic instability in colon, 
breast, and osteosarcoma 
cancer cell lines 

HDAC2 HDAC1 Elevated in gastric, 
prostate, colorectal, 
Hodgkin lymphoma, 
cutaneous T-cell 
lymphoma 

KD induced growth arrest, 
decreased viability, and 
increased apoptosis in colon 
and breast cancer cell lines, 
and induced apoptosis and 
decreased lung cancer in vivo 

HDAC3 HDAC4, HDAC5, 
HDAC7 

Elevated in gastric, 
breast, ALL, 
colorectal, Hodgkin 
lymphoma 
Decreased in liver 

KD decreased viability and 
increased apoptosis in colon 
cancer cell lines 

HDAC8  Elevated in 
neuroblastoma 

KD reduced proliferation of 
lung, colon, and cervical 
cancer cells 

Class IIa (homologous to Hda1 yeast protein, shuttle between nucleus and 
cytoplasm, tissue-restricted expression 
HDAC4 HDAC3-NCor  KD increased VEGF 

expression and reduced 
growth in chondrosarcoma 
cell lines 
KD induced apoptosis and 
decreased cell viability of 
colon and glioblastoma 
tumours in vivo 

HDAC5 HDAC3-NCor  Elevated in 
medulloblastoma; 
decreased in lung 

KD decreased cell growth and 
viability in medulloblastoma  

HDAC7 HDAC3-NCor  Elevated in ALL; 
decreased in lung 

KD induced growth arrest in 
colon and breast cancer cells 

HDAC9  Elevated in ALL, 
medullablastoma 

KD inhibited homologous 
recombination, increased 
sensitivity to DNA damage and 
decreased medulloblastoma 
cell growth and viability 
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HDAC HDAC protein 
associations 

Expression in cancer Examples of functional 
involvement 

Class IIb (homologous to yeast protein Hda1, mostly cytoplasmic location, tissue-
restricted expression) 
HDAC6 HDAC11 Elevated in breast, 

cutaneous T-cell 
lymphoma; 
decreased in lung  

KD decreased VEGF expression 
and decreased cell viability 

HDAC10   KD inhibited homologous 
recombination, increased 
sensitivity to DNA damage and 
decreased VEGF expression 

Class IV (unknown yeast protein homology, cytoplasmic location, tissue-restricted 
expression) 
HDAC11 HDAC6 Elevated in breast, 

renal, liver 
KD induced apoptosis in colon, 
prostate, breast and ovarian 
cancer cell lines 

KD = knockdown (gene silencing by siRNA). ALL = acute lymphoblastic leukaemia 
 
Table 4.1. The association of HDAC in cancer. 

Adapted from West AC, et al. J Clin Invest. 2014;124(1):30-39. and Patra S, et al. 
Cell Mol Life Sci. 2019;76(17):3263-3282. 

 

 Although proteins in the SIRTUIN class do not contain HDAC catalytic domains 

and are occasionally not classified as HDACs, these proteins were found to have 

important roles in cancer. For example, upregulation of SIRT1 has been reported in 

AML, prostate cancer and non-melanoma. In contrast, downregulation of SIRT1 has 

been reported in colon cancer (Barneda-Zahonero and Parra, 2012), while levels of 

SIRT3 and SIRT7 expression were increased in breast cancer (Ashraf et al., 2006). Some 

studies have reported downregulation of SIRT2 in gliomas and gastric carcinoma and 

have suggested that this protein might acts as a tumour suppressor (Hiratsuka et al., 

2003; Inoue et al., 2007). Additionally dysregulation of SIRT3 was reported in many 

types of breast cancer (Ashraf et al., 2006). 

 Studies of class IV HDAC and cancer are limited. Overexpression of HDAC11 has 

been found in several carcinoma cell lines including colon, prostate, breast and ovarian 

cells (Deubzer et al., 2013). However, the translation and clinical relevance of these 

findings are currently lacking and the expression of this protein in tumour tissue 

requires further investigation. 
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4.1.3 Histone deacetylase inhibitors as anticancer drugs 

 Since the association between HDAC and cancer was discovered, many 

anticancer drugs based on this mechanism of action have been discovered, developed 

and clinically tested. HDAC inhibitors can be classified based on their chemical 

structures or their targets. In terms of their chemical structures, HDAC inhibitors are 

classified into three major groups: short chain fatty acids, hydroxamic acids and 

miscellaneous agents (Manal et al., 2016). Examples of chemical structure of HDAC 

inhibitors are illustrated in Figure 4.1. 

 

Figure 4.1. Chemical structures of selective HDAC inhibitors. The cap, linker and the 
Zn2+ binding group are represented in blue, green and red, respectively. 

Taken from Manal M, et al. Bioorganic Chemistry. 2016;67:18-42. 
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 The derivatives of short chain fatty acids include valproic acid and butyric acid. 

Valproic acid has been studied in cancer for several decades and been shown to have 

potency against both solid tumours and leukaemia in preclinical studies (Göttlicher et 

al., 2001; Shabbeer et al., 2007). Phenyl butyrate also achieved effective results in 

preclinical trials (Warrell et al., 1998; Iannitti and Palmieri, 2011). These findings 

contributed to the development of several butyrate-based anticancer prodrugs 

including tributyrin, AN-1, AN-7, 3,4,6-OBu3GlcNAc, PMX 550B and PMX 550D (Manal 

et al., 2016). 

 The other backbone structure of HDAC inhibitors is hydroxamic acid, which was 

first reported to exhibit HDAC inhibitory effects in 2001, subsequently a number of 

hydroxamate-based anticancer drugs have been developed (Lavoie et al., 2001). 

Vorinostat or suberoylanilide hydroxamic acid (SAHA) was the first US FDA approved 

hydroxamic acid based HDAC inhibitor for the treatment of cutaneous T-cell lymphoma 

(Mann et al., 2007). Other approved drugs in this class include abexinostat, reminostat, 

panobinostat, mocetinostat, pracinostat and givinostat. 

 Focusing on the target sites of HDAC inhibitors, it is known that different drugs 

target different types of HDAC (Table 4.2) (Eckschlager et al., 2017). Most 

hydroxamate-based agents inhibit almost all HDACs except SIRTUIN (pan HDAC 

inhibitor) while drugs in the short chain fatty acid class target only class I and IIa HDAC. 

Benzamide class drugs bind mainly to class I HDAC while the cyclic tetrapeptide 

romidepsin, inhibits only HDAC1 and HDAC4. Drugs which target class III or SIRTUINs 

include nicotinamide (all SIRTs), sirtinol (SIRT1 and 2) and cambinol (SIRT1 and 2). The 

classification by target sites, however, was varied depending on the definition of 

inhibition and availability of information (Bolden et al., 2006; Thomas et al., 2011; 

West and Johnstone, 2014; Li and Seto, 2016). 
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Class Drug name HDAC target Clinical status 

Hydroxamic acids Trichostatin A Pan Phase I clinical trial 

Vorinostat Pan Approved for cutaneous T-cell 
lymphoma 

Belinostat Pan Approved for peripheral T-cell 
lymphoma 

Panabiostat Pan Approved for multiple 
myeloma 

Givinostat Pan Phase III clinical trial 

Resminostat Pan Phase II clinical trial 

Abexinostat Pan Phase III clinical trial 

Quisinostat Pan Phase II clinical trial 

Rocilinostat Class II Phase II clinical trial 

Practinostat Class I, II and IV Phase III clinical trial 

Short chain fatty 
acids 

Valproic acid Class I and IIa Phase III clinical trial for 
cancer treatment 

Butyric acid Class I and IIa Phase II clinical trial 

Benzamides Entinostat Class I Phase III clinical trial 

Tacedinaline Class I Phase III clinical trial 

Mocetinostat Class I and IV Phase II clinical trial 

Cyclic 
tetrapeptides 

Romidepsin Class I Approved for cutaneous T-cell 
lymphoma 

SIRTUINs 
inhibitors 

Nicotinamide Class III Phase III clinical trial 

Sirtinol SIRT1 and 2 Preclinical 

Cambinol SIRT1 and 2 Preclinical 
 

Table 4.2. Classification of histone deacetylase inhibitors and their clinical status. 
Data from www.ClinicalTrials.gov (Access on 28 October 2019). 
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4.1.4 Pharmacodynamic biomarkers for histone deacetylase inhibitors 

 Recently, a number of HDAC inhibitors have been approved for clinical use and 

many more agents are being developed (Manal et al., 2016). Consequently, a number 

of robust biomarkers have been developed in order to evaluate the effect of these 

developed agents, with pharmacodynamic biomarkers required to prove the 

mechanism of action of the drug during development. Based on the histone 

acetylation pathway being targeted, either HDAC enzyme expression or histone 

acetylation have the potential to provide appropriate surrogate biomarkers. 

 As HDAC inhibitors inhibit the deacetylase activity of these target proteins, 

measurement of enzyme activity is the most direct approach for the assessment of 

HDAC inhibitor efficacy. In order to determine the enzyme activity, measurement of 

histone acetylation as downstream proteins of HDAC activity is selected. Histone 

acetylation of histones H3 and H4 represent the most extensively used biomarkers in 

preclinical and clinical trials involving HDAC inhibitors (Shi and Xu, 2013). These two 

proteins, especially histone H4, have become potential biomarkers since the loss of 

acetylation at Lys16 of histone H4 was found to be a common hallmark of human 

cancer (Fraga et al., 2005). Furthermore, a previously published study indicated that 

HDAC inhibitors globally enhance H3/H4 tail acetylation (Drogaris et al., 2012). 

Measurement of histone acetylation provides two key advantages compared to HDAC 

measurement. Firstly, histone acetylation is a modification catalysed by HDACs and 

HATs, so the level of acetylation reflects the enzyme activity of HDACs and HATs. 

Secondly, histone acetylation can be measured in white blood cells from peripheral 

blood which allows non-invasive procedures to be utilised in cancer patients (Plumb et 

al., 2003). 

 The utility of histone acetylation as a pharmacodynamic biomarker became 

well-known following publication of results from the SAHA study. Histone 

hyperacetylation in peripheral blood mononuclear cells was reported to be rapidly 

induced by 2-3 fold in patients receiving vorinostat, regardless of the drug level or 

tumour response (Garcia-Manero et al., 2008). However, using histone acetylation as a 

predictive or prognostic biomarker has been questioned due to its unpredictable 

response. For example, a study showed that the level of histone H4 acetylation in 

patients receiving belinostat returned to normal within 2 hours following drug 
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administration; this decrease was faster than the elimination rate of the drug (Steele et 

al., 2008). Moreover, an increase in acH4 was only observed within a certain dose 

range in the same study. These issues limit the applicability of histone acetylation as a 

predictive biomarker and need to be resolved in order to utilise these proteins in a 

clinical setting.  
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4.2 Chapter specific aims 

 The main objective of this study was to develop and validate an assay for 

detection of acH4 using an imaging flow cytometer. In particular, this study aimed to: 

• Optimise the concentration of acH4 antibody used in the developed assay by 

evaluation of acH4 expression in cells, and by measurement of mean acH4 

intensity and percentage of acH4 positive white blood cells. 

• Assess the precision of the flow cytometer used and determine inter-assay 

variability of the developed assay. 

• Test the applicability of the developed assay in HL-60 cell lines by 

measurement of mean and median intensity of acH4 expression as well as 

percentage of acH4 positive cells following concentration- and time-

dependent valproic acid treatment. 

• Test the applicability of the developed assay in WBCs treated with valproic acid 

outside the body (ex vivo) by measurement of mean and median intensity of 

acH4 expression as well as percentage of acH4 positive WBCs. 

• Investigate the characteristics of acH4 expression in myeloid and lymphoid cell 

populations following treatment with valproic acid. 
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4.3 Results 

4.3.1 Antibody validation 

 The antibody against histone H4 acetylation was tested to determine the 

optimal conditions for the assay. Whole blood samples from healthy volunteers were 

divided into two tubes; one was treated with 4 mM of valproic acid for 6 hours and the 

other was stored at room temperature for 6 hours. The condition of treatment was 

based on the concentration of valproic acid (>2 mM) that is known to inhibit HDACs 

and increase acH4 expression, and the treatment duration (≤6 hours) that does not 

change the phenotypic proteins in WBC. The processes of red blood cell lysis, antibody 

staining and imaging flow cytometry are described in Chapter 2. 

 Intensity histograms of acH4 expression at different concentrations of acH4 

antibody are illustrated in Figure 4.2, together with representatives of cell at the peaks 

of the histograms. The results suggest an increase in acH4 signal with increasing acH4 

antibody volumes (Figure 4.3); the mean acH4 intensity in untreated cells increased 

from 8,400 to 32,100 and in treated cells increased from 16,300 to 59,500 for 1 µL and 

4 µL of acH4 antibody used, respectively.  

 Focusing on cells with highly expressed acH4 intensity, namely acH4 positive 

cells, the percentage of acH4 positive cells increased with increasing volumes of acH4 

antibody (Figure 4.4). An increase in acH4 antibody volume from 1 µL to 4 µL resulted 

in an increase of acH4 positive cells from 3.75% to 74% for untreated cells and from 

19.7% to 91.6% for valproic treated cells, respectively. 

 Although these results suggest that 4 µL of the antibody did not result in 

saturation of acH4 intensity, nor the percentages of acH4 positive cells, the greatest 

ratio of acH4 signal over background noise was observed in 1 µL of antibody. Looking 

at fold change in acH4 positive cells between treated and untreated cells, an antibody 

volume of 1 µL generated a 5.25-fold increase while 2, 3 and 4 µL antibody volumes 

provided 1.69-, 1.43- and 1.24-fold increases, respectively. Therefore, 1 µL of antibody 

was considered to be suitable to use in the developed assay. 
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Figure 4.2. Histograms of acH4 intensity and examples of cells at the peaks of 
histograms. 

WBCs shown were separated from whole blood either treated with 4 mM 
valproic acid for 6 hours or stored in EDTA tubes for 6 hours at room 
temperature. Cells were incubated with different volumes of acH4 antibody 
(1-4 µL) overnight. 
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Figure 4.3. Mean intensity of acH4 expression in WBCs incubated with different 
volumes of acH4 antibody (1-4 µL) overnight. 

WBCs were separated from whole blood samples treated with 4 mM valproic 
acid for 6 hours and untreated blood at the same condition. The results shown 
are from a single experiment. Mean intensity refers to average expression of 
protein in all cells collected from one sample. 
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Figure 4.4. Percentages of nuclear acH4 positive WBCs following incubation with 
different volumes of acH4 antibody (1-4 µL) overnight. 

WBCs were separated from whole blood samples treated with 4 mM valproic 
acid for 6 hours and untreated blood under the same conditions. The results 
shown are from a single experiment. 
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4.3.2 Intra- and Inter-assay variation 

 The precision of the developed assay was tested prior to the analysis of clinical 

samples. Whole blood from a healthy donor was treated with 4 mM valproic acid for 6 

hours and then processed following the protocol described in chapter 2. White blood 

cells were divided into three tubes and each tube was incubated with 1 µL of acH4 

antibody overnight on three different days. The acH4 intensity was determined three 

times on day 1 to investigate the accuracy and precision of the imaging flow cytometer 

and the other two were measured once each on different days in order to investigate 

inter-assay variability. 

 The precision of imaging flow cytometer and variation of the assay for 

measuring acH4 positive cells are summarised in Table 4.3 and Table 4.4. For the first 

sample which was measured three times, the coefficient of variation (%CV) was 17.1% 

for myeloid cells, 18.2% for lymphoid cells and 17.8% for total WBCs. For inter-staining 

variation, %CVs in myeloid, lymphoid and total white blood cells were 14.2%, 13.3% 

and 12.8%, respectively. These findings suggested high precision (<20 %CV) of the 

imaging flow cytometer used and the developed assay. 

 

Sample %nuclear 
acH4/myeloid 

%nuclear 
acH4/lymphoid 

%nuclear 
acH4/WBC 

1/1 14 21.3 19.4 

1/2 11.8 16.7 15.4 

1/3 9.92 15.1 13.8 

Flow cytometer 
precision 

Mean 11.91 17.70 16.20 

%CV 17.15 18.18 17.81 

 
Table 4.3. Precision of imaging flow cytometer by measurement of acH4 positive cells 
in the same sample three times. 
 The sample was stained in one experiment and acH4 measured three times. 
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Sample %nuclear 
acH4/myeloid 

%nuclear 
acH4/lymphoid 

%nuclear 
acH4/WBC 

Average of sample 1 11.91 17.70 16.20 

2 10.50 17.50 15.60 

3 10.70 19.30 16.70 

Inter-staining variation Mean 11.04 18.17 16.17 

%CV 6.90 5.43 3.41 

Table 4.4. Inter-staining variation in acH4 positive cells in 7 samples from the same 
donor. 

 All three samples were stained using the same assay at three different days. 

4.3.3 Valproic acid concentration dependent in vitro experiments 

 HL-60 cell lines were incubated with different concentrations of valproic acid 

(0.5, 1, 2, 4 and 8 mM) for 6 hours. Culture media without the drug was used as a 

control. Cells were fixed and incubated with acH4 antibody following the protocol 

described previously (section 2.6.1) and the intensity of acH4 expression was 

measured by an imaging flow cytometer. 

 Examples of acH4 intensity histograms, scatter plots between similarity of acH4 

and DAPI and acH4 intensity, and representative cells showing acH4 and DAPI 

expression are illustrated in Figure 4.5. These results indicate a stronger intensity of 

acH4 expression and higher percentage of acH4 positive cells following an increase in 

valproic acid concentration. Average values together with SD of three repeats including 

mean intensity, median intensity and percentages of acH4 positive cells are shown in 

Figure 4.6. 

 Mean and median intensity of acH4 expression in HL-60 cell lines were found to 

be increased with increasing valproic acid concentrations (Figure 4.6A and Figure 4.6B). 

Both parameters provided comparable trends of increase with an average intensity of 

5,000 at control and 13,000 at a valproic acid concentration of 8 mM. Statistical 

analysis (One-way ANOVA) revealed significant increases for both mean and median 

acH4 expression (p-value <0.0001). Also, a multiple comparison approach indicated 

that there was no significant difference between valproic acid concentrations of 4 mM 
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and 8 mM (Mean difference -600, 95%CI -3066 to 1848) which suggested that 4 mM 

could generate a maximum signal for this assay. 

 Focusing on number of highly expressed acH4 cells (acH4 positive cells), the 

average percentage of acH4 positive cells was found to be increased with increasing 

concentrations of valproic acid (Figure 4.6C). The results showed that percentage of 

acH4 positive cells increased from 0.51±0.65% in control cells to 30.6±4.16% at a 

valproic acid concentration of 8 mM (One-way ANOVA, p-value <0.0001). No 

significant difference between 4 mM and 8 mM was observed (mean difference -5%, 

95%CI -16.44% to 6.37%). 

 All in vitro experiments investigating acH4 intensity and percentage of acH4 

positive cell suggested that 4 mM should be the highest concentration used for the 

developed assay, as higher concentrations did not generate higher signals. This 

concentration therefore was used in further experiments throughout this study.  
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Figure 4.5. Intensity histograms of acH4 expression, scatter plots between similarity 
of acH4 and DAPI and intensity of acH4, and examples of HL-60 cell lines showing 
acH4 expression at the peaks of histograms. 

Samples were separated from HL-60 cells treated with valproic acid at 
concentrations of 0.5-8 mM for 6 hours. The control is untreated (0 mM 
valproic acid) HL-60 cells under the same conditions.  
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Figure 4.6. Expression of acH4 in HL-60 cells treated with increasing concentrations of 
valproic acid (0-8 mM) for 6 hours. 

Figure 4.6A and Figure 4.6B indicate mean and median fluorescence intensity of 
acH4, respectively, and Figure 4.6C indicates average percentage of acH4 
positive cells. Mean and SD shown from 3 separate experiments. 
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4.3.4 Valproic acid time dependent in vitro experiments 

 In order to investigate the effect of duration of valproic acid treatment, HL-60 

cell lines were incubated with 4 mM valproic acid for up to 24 hours. The processes of 

cell fixation, antibody incubation and imaging flow cytometry were the same as 

previously described. The histograms of acH4 intensity, scatter plots between similarity 

of acH4 and DAPI and intensity of acH4, and examples of cells at the peaks of 

histogram showing the expression of acH4 are shown in Figure 4.7. 

 Data relating to average mean intensity of acH4, median intensity of acH4 and 

percentage of acH4 positive cells are summarised in Figure 4.8, with all three 

parameters exhibiting the same trend of change. For mean and median intensity 

(Figure 4.8A and Figure 4.8B), the expressions of acH4 were stable at 0.5 and 1 hour of 

drug incubation as compared to baseline; mean intensities of 3,500 at baseline and 

4,600 at 1 hour (one-way ANOVA, 95%CI of difference -3887 to 1565). Significant 

increases in acH4 expression were observed when duration of treatment was longer 

than 1 hour and peaked at 6 hours, with an intensity of 9,800 observed (one-way 

ANOVA, p-value <0.0001). However, the acH4 expression then decreased to 7,500 at 

24 hours of treatment. 

 The mean percentage of acH4 positive cells followed the same trend as 

intensity with no significant changes observed compared to baseline following 

incubation times of <3 hours (Figure 4.8C). Statistical analysis (one-way ANOVA and 

multiple comparison analysis) revealed that the mean difference between 0 hour and 3 

hours was -5% (95%CI -11.82% to 1.743%) and between 0 hour and 6 hours was -9.5% 

(95%CI -16.29% to -2.724%). A reduction in percentage of acH4 positive cells at 24 

hours was also observed but this was not statistically significant (Mean difference 

6.8%, 95%CI -0.75% to 14.41%). However, the overall increase determined by one-way 

ANOVA was significant (p-value 0.0032). 

 These results suggested that a 6-hour duration of treatment was suitable for 

further experiments due to a decrease in acH4 signal observed following an incubation 

period of 24 hours.  
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Figure 4.7. Intensity histograms of acH4 expression, scatter plots between similarity 
of acH4 and DAPI and intensity of acH4, and examples of HL-60 cell lines showing 
acH4 expression at the peaks of histograms. 

Samples were separated from HL-60 cells treated with 4 mM valproic acid for 
up to 24 hours. The control is cells treated with 4 mM valproic acid and 
harvested immediately. 
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Figure 4.8. Expression of acH4 in HL-60 cells treated with 4 mM of valproic acid for up 
to 24 hours. 

Figure 4.8A, B and C indicate mean fluorescence intensity, median fluorescence 
intensity and average percentage of acH4 positive cells, respectively. Mean and 
SD shown from 3 separate experiments. 
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4.3.5 Valproic acid whole blood ex vivo experiments 

 The applicability of the developed assay to ex vivo incubations of human white 

blood cells was investigated by conducting concentration-dependent experiments in 

whole blood from three independent healthy donors. Whole blood samples were 

treated with increasing concentrations of valproic acid (0, 0.5, 1, 2, 4 and 8 mM) for 6 

hours. Protocols for red blood cell lysis, acH4 antibody incubation and imaging flow 

cytometry were described in Chapter 2. 

 Examples of white blood cells with and without acH4 expression are shown in 

Figure 4.9; Figure 4.9A and Figure 4.9B represent myeloid cells while Figure 4.9C and 

Figure 4.9D represent lymphoid cells with nuclear acH4 positivity and negativity, 

respectively. Moreover, Figure 4.9E shows clear cytoplasmic expression of acH4. 

Examples of acH4 intensity histograms and scatter graphs between similarity of acH4 

and DAPI and intensity of acH4 are illustrated in Figure 4.10 and Figure 4.11, 

respectively. 

 Based on the results shown, a difference in pattern of change between acH4 

expression in myeloid and lymphoid cells was observed. At baseline, both cell types 

expressed a single peak of acH4 intensity (Figure 4.10). After treatment with 8 mM 

valproic acid for 6 hours, the acH4 expression curve in myeloid cells became bimodal 

while in lymphoid cells it remained unimodal. These results conformed to the scatter 

graphs showing cells with high and low similarity between acH4 and DAPI which 

indicated nuclear and cytoplasmic expression of the protein. 

 As illustrated in Figure 4.11, the number of myeloid cells with cytoplasmic acH4 

expression increased when treated with 8 mM valproic acid compared to no 

treatment. Further analysis suggested that the second peak in the myeloid histogram 

was the population of cells with cytoplasmic acH4 expression (data not shown on the 

graph). This phenomenon, however, was less obvious in lymphoid cells and did not 

appear when cells were treated with lower concentrations of the drug (<4 mM). 
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Figure 4.9. Representative images of myeloid cells with nuclear acH4 positivity (A) and negativity (B), lymphoid cells with nuclear acH4 
positivity (C) and negativity (D), and myeloid cells with cytoplasmic acH4 positivity (E). 

Samples were separated following incubation of WBCs with 8 mM sodium valproate for 6 hours. 
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Figure 4.10. Examples of acH4 intensity histograms of myeloid and lymphoid cells 
either untreated or treated with 8 mM valproic acid for 6 hours. 

Red colour indicates myeloid and blue colour indicates lymphoid populations. 
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Figure 4.11. Examples of scatter plots of myeloid and lymphoid cells showing nuclear 
and cytoplasmic acH4 positive cells. 

WBCs were separated from whole blood either untreated or treated with 8 mM 
valproic acid for 6 hours.  
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 A summary of data showing average mean intensity and median intensity of 

acH4 expression and average percentage of acH4 positive cells together with SD from 3 

independent healthy donors are presented in Figure 4.12. These three parameters 

showed significant increases following incubation with increasing concentrations of 

valproic acid. However, the difference between myeloid and lymphoid cells was not 

significant when looking at mean or median intensity. 

 When the concentration of valproic acid increased from 0 to 8 mM, the mean 

intensity of acH4 increased from 1,500 to 6,700 (4.5-fold) for myeloid cells and from 

1,600 to 6,100 (3.8-fold) for lymphoid cells, and median intensity of acH4 increased 

from 1,500 to 5,500 (3.7-fold) and from 1,600 to 5,600 (3.5-fold) for myeloid and 

lymphoid cells, respectively. A one-way ANOVA indicated significant increases for both 

mean and median intensity in both myeloid and lymphoid cells with p-values <0.01 

(Figure 4.12A and Figure 4.12B). However, when the increases observed in myeloid 

cells were compared with the increases in lymphoid cells, a two-way ANOVA analysis 

revealed that there was no significant difference between cell types for either mean or 

median intensity (p-values of 0.62 and 0.34). 

 In contrast, comparison of the change in percentage of acH4 positive cells 

showed significant differences between myeloid and lymphoid cells with a greater 

fold-increase than observed with intensity. An increase in valproic acid concentration 

from 0 to 8 mM resulted in increases in percentage of acH4 positive cells from 0.6% to 

55% (92-fold) for myeloid cells and from 2.1% to 70% (33-fold) for lymphoid cells; both 

increases were statistically significant with one-way ANOVA p-values <0.0001 (Figure 

4.12C). Moreover, two-way ANOVA indicated a significant difference between the two 

type of cells in terms of increases in myeloid and lymphoid cells (p-value <0.0001). 

 These ex vivo findings highlighted two important issues. Firstly, fold-increases 

observed in percentage of acH4 positive cells were higher than mean and median 

intensity of acH4 expression, so the percentage of acH4 positive cells is a better 

representative of the magnitude of change than acH4 intensity. Secondly, considering 

the increases in acH4 positive cells, the myeloid population provided a 3 times greater 

fold-change than lymphoid cells (92-fold vs. 33-fold). Together these results suggest 
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that the myeloid population may be more suitable than lymphoid cells for the 

detection of acH4 changes in clinical samples. 
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Figure 4.12. Expression of acH4 in myeloid, lymphoid and total white blood cells from 
whole blood samples treated with increasing concentrations of valproic acid 
(0-8 mM) for 6 hours. 

Expression is shown as mean intensity (A), median intensity (B) and percentage 
of acH4 positive cells (C); mean and SD shown from 3 independent donors. 
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4.4 Discussion 

 An assay for detection of acH4 expression as a pharmacodynamic biomarker for 

valproic acid was developed and validated in cell lines (in vitro) and white blood cells 

(ex vivo). The assay was developed using an imaging flow cytometry based technique 

and the assessment of drug efficacy using percentage of acH4 overexpressed myeloid 

white blood cells. Results obtained in both cell lines and white blood cells showed 

similar responses of acH4 to the drug. The results generated have been published in 

the European Journal of Clinical Investigation (Uitrakul et al., 2019). 

 Since an interest in using acetylation of histone H3 and H4 as a potential 

biomarker has increased over recent years, various assays have been developed to 

measure these proteins including Western blot, immunohistochemistry, 

immunofluorescence and conventional flow cytometry (Chung et al., 2005; Ronzoni et 

al., 2005; Rigby et al., 2012). Although the current study was based on the principles of 

flow cytometry, it was imaging flow cytometry which provided additional information 

and facilitated a more detailed analysis. For instance, localisation of nucleus and acH4 

identification using the imaging flow cytometry software (Ideas 6.2) indicated which 

cells had nuclear or cytoplasmic acH4 expression without the need for additional 

antibodies. 

 It should be noted that the assays mentioned above only measured histone 

acetylation in PBMCs based on the results of a pioneering study which showed an 

increase in acH4 protein in mouse PBMCs treated with the HDAC inhibitor PXD101, 

measured by Western blot analysis (Plumb et al., 2003). PBMCs therefore have 

become the primary type of WBCs for measurement of histone acetylation. However 

the findings of this chapter indicate that myeloid cells, i.e. granulocytes and 

monocytes, provided a higher dynamic range than lymphocytes. This was related to 

the fact that myeloid cells had lower acH4 expression at baseline than lymphocytes, so 

any changes in myeloid cells could be more clearly observed than in lymphoid cells. 

Therefore these findings suggest a potential new surrogate cell type for the 

measurement of histone acetylation. 

 Another novel parameter which has not previously been investigated was the 

percentage of acH4 positive cells. All recent assays have measured the overall 
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expression of acetylated histones but none has focused on the overexpressed cells. 

Qualitative techniques such as Western blot are unable to quantify these cells, but 

with flow cytometry this is feasible. A study by Ronzoni, et al quantified mean 

fluorescence intensity of histone acetylation using conventional flow cytometry and 

reported the results as fold changes compared to control (Ronzoni et al., 2005). In 

addition, Rigby et al also reported mean and median fluorescence intensity of acH3 

and acH4 measured by conventional flow cytometry (Rigby et al., 2012). However, the 

findings of the current chapter suggest that counting the number of overexpressed 

cells provides a greater dynamic magnitude of change than fluorescence intensity 

approaches. This finding is supported by the fact that histone H4 and acH4 are proteins 

found in normal cells, so histone H4 acetylation can be observed even in untreated 

normal cells (Allfrey et al., 1964). Consequently, increases in acH4 levels were less 

pronounced when treated with HDAC inhibitors. Similarly, the concept of rare cells 

states that not every cell has the same response to a particular drug, so specifically 

considering the responsive cells might be more appropriate than considering the 

whole cell population (De Biasi et al., 2017). This conformed to the results in this 

chapter, which showed some cells with overexpression and some cells with normal 

expression of acH4, despite treatment with the same drug under the same conditions. 

Hyperacetylated cells, namely acH4 positive cells, were therefore measured in the 

developed assay instead of average fluorescence intensity. 

 A number of in vitro experiments included in published studies have 

investigated the hyperacetylation of histone H4 by valproic acid treatment measured 

by Western blot analysis. Results by Gottlicher et al showed a clear expression of acH4 

when cells were treated with ≥0.5 mM concentrations of valproic acid for a minimum 

of 4 hours (Gottlicher et al., 2001). Eyal et al showed acH4 accumulation at 0.5 and 

1 mM of valproic acid following a 1 hour incubation (Eyal et al., 2004) and Pheil et al 

reported a significant increase in acH4 expression when cells were treated with 2 and 

5 mM of valproic acid for 24 hours (Phiel et al., 2001). Also, Gurvich et al indicated 

increases in acH4 expression when cells were treated with 2 mM of valproic acid for 24 

hours (Gurvich et al., 2004). These previous findings are in agreement with results 

generated in HL-60 cell lines in the current study, which showed an increase in acH4 

expression at 0.5 mM of valproic acid and a more marked increase at 1 mM. Also, the 
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results in this chapter suggest that mean and median intensity of acH4 were increased 

over the concentration of valproic acid until 4 mM and become stable at higher 

concentrations.  

 Furthermore, a significant increase in percentage of acH4 positive cells was 

observed in this study when valproic acid incubation time was ≥3 hours. This increase 

was most marked at 6 hours, and then declined although cells were still incubated with 

the drug. This trend was also noticed in a study by Eyal et al, who noted a decline in 

accumulated acH4 in HeLa cell lines after 16 hours of valproic acid incubation (Eyal et 

al., 2004). This study also reported the same trend towards a decrease in signal when 

cells were treated with topiramate and 2-pyrrolidinone-n-butyric acid. There were 2 

possible suggestions to explain this phenomenon. 

 Firstly, this was possibly caused by an apoptotic effect of valproic acid when 

cells were treated for a long enough duration. Cells with overexpression of acH4 are 

more affected by the drug, resulting in greater instances of cell death than non-

responsive cells. As mentioned previously, however, almost all studies focused on 

overall expression, so apoptotic response of H4 hyperacetylated cells needs to be 

investigated further. For instance, apoptotic markers such as BID, BAX and cleaved 

Caspase-3 could be measured in acH4 positive cells as well as culture media. Another 

explanation relates to the potential for intracellular compensation to decrease the 

levels of acH4 in drug stimulating conditions; longer incubation times may trigger the 

reverse reaction, such as histone acetylation by HAT enzymes to maintain a normal 

acH4 level. However, this hypothesis also needs to be further studied. 

 The ex vivo results generated in the current chapter were comparable with cell 

line results. Increases in mean and median intensity of acH4 as well as percentage of 

acH4 positive cells were observed following an increase in valproic acid concentration. 

The magnitude of change was also in parallel with the in vitro results, with greater 

increases in percentage of acH4 positive cells from baseline than the increase in 

fluorescence intensity of acH4. Moreover, not only a change in the magnitude of acH4 

was observed, but a different pattern of increase in acH4 was also noted in this study, 

with greater cytoplasmic acH4 expression observed in myeloid than in lymphoid cells. 
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This phenomenon was detected only when cells were treated with high concentrations 

of valproic acid of 4-8 mM. 

  Histones are known to be present in both the nucleus and cytoplasm of cells 

but have to be transported into the nucleus to be acetylated (Apta-Smith et al., 2018). 

Therefore acH4 theoretically should not be detected in the cytoplasm. Results from 

Uchida et al, however, reported cytoplasmic acH4 expression when NIH3T3 cell lines 

were treated with 50 ng/mL trichostatin A for 12 hours (Uchida et al., 2007). This study 

suggested that cytoplasmic acH4 expression could be observed although, unlike 

nuclear expression, cytoplasmic acH4 did not respond to drug treatment. In the work 

presented in this chapter, only nuclear acH4 was measured as the importance of 

cytoplasmic acH4 has not been well characterised and its relevance as a biomarker for 

HDAC inhibitors is unclear. Additionally, cytoplasmic expression was only detected at 

high concentrations of valproic acid (>4 mM, Figure 4.11), which is unlikely to have 

clinical relevance.  

 In conclusion, the in vitro and ex vivo results summarised in this chapter show 

that the novel assay developed can be used to detect histone H4 acetylation in human 

white blood cells. These results suggested a novel parameter for acH4 assessment, i.e. 

percentage of acH4 positive cells, rather than acH4 fluorescence intensity. In addition, 

myeloid cells were shown to express a greater magnitude of change in acH4 than 

lymphoid cells. This assay has been applied to clinical blood samples from patients 

with ependymoma being treated with valproic acid, with the results presented in the 

next chapter. 
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Chapter 5. Clinical application of a developed assay for detection of 
histone H4 acetylation as a pharmacodynamic biomarker for valproic 

acid 

5.1 Introduction 

 Since the HDAC inhibitory effects of valproic acid were first discovered, use of 

the drug has been investigated in many areas including cancer. Successful preclinical 

studies showing the potential efficacy of valproic acid in various cancer cell lines have 

been conducted, as previously described (Göttlicher et al., 2001; Phiel et al., 2001; 

Gurvich et al., 2004; Eyal et al., 2005). These studies contributed to a growing in clinical 

trials of valproic acid as a repositioned drug. Although a number of studies have shown 

clinical efficacy of valproic acid either alone, or in combination with other drugs in 

various types of cancer, relatively few studies have monitored the mechanistic effects 

of the drug on changing histone acetylation (Iwahashi et al., 2014; Issa et al., 2015; 

Krauze et al., 2015; Fushida et al., 2016; Nilubol et al., 2017). This was partly related to 

the publication of data from a clinical study that suggested no association between 

histone hyperacetylation and dose or concentration of belinostat as well as clinical 

response (Steele et al., 2008). 

 Furthermore, only a small number of studies have investigated the use of 

valproic acid in CNS tumours (Wolff et al., 2008; Su et al., 2011; Weller et al., 2011; 

Krauze et al., 2015). Most clinical studies of valproic acid have been carried out in solid 

tumours or leukaemia (Iwahashi et al., 2014; Issa et al., 2015; Fushida et al., 2016). 

Since this study focused on acH4 expression as a pharmacodynamic biomarker rather 

than predictive or prognostic biomarker, we are interested in published clinical studies 

of valproic acid involving the expression of histone acetylation regardless of disease 

type. 

 



124 
 

5.1.1 Clinical studies of valproic acid as an HDAC inhibitor. 

5.1.1.1 Clinical cancer studies 

 Although associations between acetylated histone levels and dose and 

concentration of valproic acid have to date been somewhat unclear, approaches to 

measure histone acetylation have been incorporated into several clinical trials. 

Arguably the most relevant study was conducted by the Children's Oncology Group in 

the USA (Su et al., 2011). Childhood cancer patients with refractory solid or central 

nervous system tumours were treated with oral valproic acid twice daily, with a view 

to maintaining trough concentrations of 100 to 150 µg/mL (0.7-1 mM). Acetylation of 

histones H3 and H4 in PBMCs was measured pre- and post-treatment using 

commercial ELISA kits. The expressions of acH3 and acH4 were assessed and matched 

with total and free drug concentrations (Figure 5.1). The results indicated that 4 out of 

7 patients had lower acH3 and acH4 as compared to pre-treatment levels, despite the 

fact that only 2 of the 4 had achieved the target trough drug levels. Moreover, patients 

who had post/pre acH4 ratios higher than 1 still had progressive disease. Only one 

patient, who had an extremely high post/pre acH4 ratio (14.7-fold), exhibited a partial 

response. 

 Another phase I clinical trial in patients with refractory advanced cancers 

revealed similar results (Atmaca et al., 2007). Each patient received intravenous 

valproic acid starting at a dose level of 30 mg/kg, with a standard dose-escalating 

three-patient cohort design. Blood samples were taken at baseline, 6-hr, 24-hr and 

48-hr following administration of doses from 30-120 mg/kg. The results showed no 

relationship between acetylated histone levels measured in peripheral blood 

lymphocyte cell lysates and valproic acid dose, although an increase in histone 

hyperacetylation was observed in 12/16 (75%) patients. Four patients reported 

undetectable acH3 and acH4 by Western blot throughout the study, despite receiving a 

valproic acid dose of 120 mg/kg. Moreover, a patient who received 30 mg/kg exhibited 

a more marked acH4 expression than a second patient who received 60 mg/kg. 

Although the study mentioned an increase of the acetylation status of peripheral blood 

lymphocytes measured by flow cytometry, no results were presented. 
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Figure 5.1. Association between fold-change in acH3/acH4 expression and 
concentration of total valproic acid (A) and free valproic acid (B). 

Fold change was determined by dividing the histone expression observed at 
steady state by the expression determined pre-treatment. No target 
concentration for free valproic acid was set. Adapted from Su JM, et al. Clin 
Cancer Res. 2011;17(3):589-97. 

 

 These results conformed to the findings of three other clinical trials in prostate 

cancer, advanced solid tumours and leukaemia (Garcia-Manero et al., 2006; Sharma et 

al., 2008; Wheler et al., 2014), suggesting that valproic acid is unable to consistently 

cause histone acetylation in lymphocytes. In the same way, no association between 

histone acetylation and response was consistently observed across these studies. 

However, several clinical studies have provided conflicting observations (Munster et 

al., 2007; Daud et al., 2009; Munster et al., 2009; Rocca et al., 2009). A phase I clinical 
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study in patients with advanced solid tumours who received valproic acid and 

epirubicin reported a significant correlation between histone H4 acetylation and 

valproic acid dose as well as valproic acid concentration (Munster et al., 2007). Unlike 

the studies mentioned above, this study indicated increases in acH4 expression in 

patients who received a valproic acid dose of 30 mg/kg/day and had plasma 

concentrations of >50 µg/mL (0.35 mM). These increases were observed between 

baseline and 3 days after treatment. Also, patients with acH4 increases achieved 

partial responses at the end of study. Similar results from the same cohort were 

presented by the same authors a year later (Munster et al., 2009). Additionally, this 

study indicated that there was a correlation between acH4 levels in PBMCs and 

valproic concentration, but not acH4 levels in tumour tissues. 

 A phase I-II clinical study of valproic acid plus chemo-immunotherapy in 

patients with advanced melanoma also showed positive results (Rocca et al., 2009). 

Patients were treated with 10 mg/kg/day valproic acid in three divided doses and the 

dose was increased weekly by 10 mg/kg/day, until 90 mg/kg/day or maximum 

tolerated dose for 6 weeks. Dacarbazine and interferon-α were then administered at 

week 7 in combination with valproic acid. Histone H4 acetylation in PBMCs was 

measured at the end of the second week of treatment, at the beginning of the 

combination phase and weekly thereafter using cytofluorimetric techniques developed 

by Ronzoni, et al (Ronzoni et al., 2005). The results showed that only 5 of 27 patients 

did not achieve acH4 increases (>1 Post/Pre ratio). Some patients with increases in 

acH4 had plasma valproic acid concentrations <100 µg/mL. The authors, however, 

highlighted that these values referred to the maximum values of plasma valproic acid 

concentrations and the maximum fold increase in histone acetylation reached during 

treatment at the maximal dose of valproic acid. They reported that patients who had 

more than a 4-fold acH4 increase did not maintain this increase at repeated 

measurements, notwithstanding maintenance of the valproic acid dose. 

 Another phase I/II clinical trial suggested similar results (Daud et al., 2009) 

following treatment of patients with valproic acid and karenitecin, a novel 

topoisomerase I inhibitor. Valproic acid dose was escalated until the occurrence of 

dose-limiting toxicities and acetylation of histone H3 and H4 in PBMCs was 

investigated by Western blot analysis. The fold changes between 3-day post-treatment 
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and baseline at doses of 60, 75 and 90 mg/kg/day were higher than 45 mg/kg/day. This 

increase, however, was not statistically significant and there was no difference 

between the three dose levels. 

 Western blot results from a phase I study in patients with cervical cancer also 

questioned the utility of acH4 expression in tumour cells as a biomarker (Chavez-

Blanco et al., 2005). Among tumour samples from 10 patients, 7 had clear hyper-

acetylation of histone H4 on day six after the five days of magnesium valproate 

treatment; the effects of the remaining patients were minor or non-existent. The 

magnitude of change, however, did not follow serum drug concentrations. The authors 

also mentioned heterogeneity in degree of baseline acH4, i.e. some patients had very 

strong pre-treatment acH4 while others had minimal levels.  

5.1.1.2 Clinical studies of non-cancer diseases 

 Discovery of the HDAC inhibitory effects of valproic acid is not only relevant to 

cancer research, but also other areas including epilepsy, migraine and bipolar mania, 

where valproic acid has been used for decades. Historically valproic acid has been used 

to treat these diseases without a full understanding of the potential role of histone 

acetylation, but recent discoveries suggest that histone acetylation may be relevant to 

many disease types. 

 A clinical study in patients with spinal muscular atrophy recently reported a 

significant increase in histone H4 acetylation with valproic acid treatment (Renusch et 

al., 2015). This study measured the expression of acH4 in patient PBMCs using a liquid 

chromatography/mass spectrometry technique. The AUC showed a significant increase 

in acH4 expression when treated with valproic acid for 6 months (from 0.599 to 0.683) 

and decrease when valproic acid treatment was stopped for 6 months (from 0.695 to 

0.616). Also, the authors indicated that approximately 71% of their subjects were 

‘responders’ to valproic acid, defined as those patients whose AUC increased by at 

least 15% after 6 months of treatment. However, this study did not conclude an 

association between acH4 and clinical outcome because of insufficient evidence to 

suggest a treatment effect. 
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 Another study reported measurement of acH3 and acH4 expression in 

lymphocytes from schizophrenic and bipolar patients using Western Blot analysis 

(Sharma et al., 2006). The results showed that acH3, but not acH4, significantly 

increased from baseline (p-value <0.03) when treated with valproic acid for 4 weeks. 

Moreover, acH4 expression was not found to be correlated with valproic acid levels or 

behavioural rating scores, while acH3 correlated with both valproic acid levels and the 

symptom severity of patients with schizophrenia. This contributed to a surge in using 

acH3 as a biomarker of HDAC inhibiting activity in the area of neurology, as opposed to 

acH4 (Gavin et al., 2009; Tremolizzo et al., 2012). 

 In addition, there were significant numbers of pre-clinical trials that 

investigated various effects of valproic acid as a HDAC inhibiting agent, in disease areas 

including autism, retinal ischemia injury, acute lung ischemia injury and acute central 

nervous system injury (Zhang et al., 2012b; Kataoka et al., 2013; Chen et al., 2014; Wu 

et al., 2015). Although the relationship between histone acetylation and clinical 

response is not clear, this emphasises the important role for robust biomarker 

development to allow the detection of histone acetylation as surrogate biomarkers for 

forthcoming clinical trials. 
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5.2 Chapter specific aims 

 This project primarily aimed to investigate the expression of histone H4 

acetylation (acH4) in patients receiving valproic acid as part of the SIOP Ependymoma 

clinical trial. The level of acH4 expression was measured using the assay developed and 

validated in the previous chapter. Specifically the objectives of this chapter were: 

• To measure mean acH4 intensity, median acH4 intensity and percentage of 

acH4 positive WBCs in patients receiving valproic acid in the SIOP Ependymoma 

trial. 

• To evaluate differences in acH4 expression between myeloid and lymphoid cell 

populations following administration of valproic acid. 

• To compare changes in percentage of acH4 positive myeloid cells between 

patients treated with valproic acid over several courses of treatment. 

• To investigate an association between changes in percentage of acH4 positive 

cells and valproic acid dose. 

• To investigate relationships between total and free valproic acid plasma 

concentrations and valproic acid dose. 

• To investigate associations between percentage of acH4 positive cells and both 

total and free valproic acid plasma concentrations. 
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5.3 Results 

5.3.1 Patient characteristics 

 From October 2016 to December 2018, there were seven patients recruited 

onto the study. One patient had started valproic acid treatment before the first 

samples were collected for analysis of histone acetylation, therefore no pre-treatment 

sample was available for this patient. Table 5.1 describes the valproic acid dose that 

patient received at each visit. Doses were calculated by dividing the actual 

administered dose by the patient’s weight. One patient provided blood samples for 

analysis from one visit only (pre-treatment and 4-hour post-first dose). Baseline 

characteristics of all patients at the start of their treatment are described in Table 5.2. 

For the patient who started treatment before the first sample was collected for 

analysis, the data shown are from the first time that samples were sent to the 

laboratory. 

 The median age of the seven patients recruited was 11 years old. Numbers of 

male and female patients were similar (4:3). The highest creatinine value was 

25 µmol/L at the start of the clinical trial. Patient 5 presented the highest ALT enzyme 

(35 IU/L) and patient 6 presented the highest WBC count (17.62 ×109/L). Due to 

limitations in data availability, numbers of neutrophil shown were from only four 

patients. 

Patient Valproic acid dose (mg/kg/dose twice daily) 

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7 

1 23* 28.9 35 40.5 42 45 29+ 

2 15 15 20 25 30 33 35 

3 15 15 19.5 20    

4 15 35.5 29.2     

5 15       

6 15 20      

7 15 19 28.5     
* Visit 1 of this patient was not the first dose of treatment 
+ Patient received this dose three times a day 
 

Table 5.1. Summary of valproic acid dosage at patient sample collection date 
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Patient Age 
(month) 

Gender Weight 
(kg) 

WBC 
(×109/L) 

Neutrophil 
(×109/L) 

ALT 
(IU/L) 

Creatinine 
(µmol/L) 

1 11 Male 9.1 2.33 N/A 22 22 

2 36 Male 13.8 2.20 N/A 13 25 

3 7 Female 6.9 12.1 N/A 10 11 

4 5 Male 6.8 7.18 1.08 13 17 

5 11 Female 8.7 15.7 11.2 35 19 

6 19 Male 12.5 17.6 11.6 9 16 

7 19 Female 11.9 4.10 1.75 18 <18 

 
Table 5.2. Baseline characteristics of patients at the start of SIOP Ependymoma II trial 
until December 2018. 
 

 Figure 5.2 represents the WBC count of all patients at each visit. Most patients 

had values of WBC count within the normal range, except patient 1 who reached 

leukopaenic levels several times, including visits 2, 4 and 6. Also, clinical data indicated 

that patient 1 had neutropenia at visits 4 and 6. Figure 5.3 shows different patterns of 

results analysed in neutropaenic samples and non-neutropenic samples obtained from 

patient 1. The percentage of myeloid cell in neutropenic samples decreased to 22.5% 

as compared to 62.3% in non-neutropaenic samples. Since the developed assay mainly 

measures acH4 expression in myeloid cells, the proportion of neutrophils markedly 

affects interpretation of the results which will be discussed later. 
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Figure 5.2. WBC counts measured at all visits of seven patients studied on the 
Ependymoma trial. 

WBC counts were determined in hospital before patients received valproic acid. 
Note that the interval between consecutive visits were not the same and could 
be several weeks or months. 

 

  

Figure 5.3. Representative samples from patient 1 with (A) and without (B) 
neutropaenia detected by imaging flow cytometry with gating between side scatter 
(SSC) and area of cell. 

The neutropaenic sample shown is from visit 4 and the normal sample shown is 
from visit 1. Red colour indicates myeloid and blue indicates lymphoid 
populations. 
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 All patients had received not only valproic acid, but also a number of 

concomitant medicines as listed in Table 5.3. The drugs patients received included 

antibiotics, analgesics, antihistamines and antiemetics as well as chemotherapeutic 

drugs. The chemotherapy most frequently administered to patients were platinum-

based (four patients) and vincristine-based regimens (three patients). Several classes 

of antibiotic were used in multiple patients including cephalosporins, 

fluoroquinolones, sulfonimides, aminoglycosides and carbapenems. Other drugs 

commonly used in these patients were metoclopramide and ondansetron which are 

antiemetic drugs.
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 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5* Patient 6 Patient 7 

Chemotherapy Cisplatin Vincristine Carboplatin Vincristine  Vincristine Cisplatin 

 Methotrexate Cisplatin Cyclophosphamide  Cyclophosphamide  

 Cisplatin      

 Carboplatin      

Anti-infective 
agents 

Piperacillin / 
Tazobactam 

Co-trimoxazole Meropenem   Flucloxacillin Co-trimoxazole 

Co-amoxiclav Tazocin Ceftriaxone   Ciprofloxacin Piperacillin / 
Tazobactam 

Meropenem Gentamicin Gentamicin   Co-amoxiclav  

Tobramycin  Teicoplanin     

Aciclovir  Co-trimoxazole     

  Anidulafungin     

Analgesics Oxycodone Morphine      

Antihistamines  Cetirizine      

Others Ranitidine Loperamide Domperidone Metoclopramide  Metoclopramide Ondansetron 

Metoclopramide Metoclopramide Ondansetron Ondansetron  Ondansetron  

Ondansetron Ondansetron    Glycopyrronium  

 Folic acid      
* Patient 5 received unknown chemotherapeutic drugs following the protocol. 

Table 5.3. List of medications that patients received alongside valproic acid not including topical medicines. 
Not all medicines were administered at the same visit and some medicines were administered at more than one visit.
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5.3.2 Phenotyping of WBCs and changes in acH4 expression 

 The developed assay was applied to measured acH4 positive cells in patients 

with ependymoma. In order to investigate the potential significance of the myeloid 

population observed in ex vivo results, WBCs from patient samples pre- and post-

treatment were incubated with acH4 antibodies and analysed using imaging flow 

cytometry. The intensity of acH4 expression and percentage of acH4 positive cells were 

then assessed for each type of WBC. 

 Figure 5.4 illustrates changes in mean and median intensity of acH4 expression, 

and percentage of acH4 positive WBCs between pre- and post-dose of valproic acid. 

Focusing on fluorescence intensity (Figure 5.4A and Figure 5.4B), average values for 

the mean intensity were higher than the median for all three populations (myeloid, 

lymphoid and total WBCs). Averages values for pre-treatment mean intensity of 

myeloid, lymphoid and total WBCs were 7600, 8600 and 7800 while median intensity 

values were 6100, 6400 and 6200, respectively. Similarly, averages in post-treatment 

mean intensity were 9400 for all three populations while median intensity values were 

7600, 7000 and 7400 in myeloid, lymphoid and total WBCs, respectively. The Wilcoxon 

matched-pairs signed rank test revealed significant differences between pre- and post-

treatment in myeloid cells for both mean and median acH4 expression, with p-values 

of 0.0059 and 0.0069, respectively. In lymphoid cells, however, neither parameter 

showed statistical significance between pre- and post-treatment samples (p-values of 

0.1482 for mean and 0.1111 for median intensity). 

 Mean percentages of nuclear acH4 positive cells post-treatment showed 

increases in myeloid, lymphoid and total WBCs as compared to pre-treatment: 0.70% 

to 1.44% in myeloid, 1.39% to 1.88% in lymphoid and 0.85% to 1.63% in total WBCs 

(Figure 5.4C). These increases were not significant in either myeloid or lymphoid cells 

with p-values of 0.0721 and 0.2660, respectively, measured by Wilcoxon matched-

pairs signed rank test. 

 Considering fold-changes in all parameters, mean intensity of acH4 provided 

lower average fold-changes with 1.2, 1.1 and 1.2-fold changes for myeloid, lymphoid 

and total WBCs, respectively. Similarly, average fold-changes in median intensity of 
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acH4 were 1.2, 1.1 and 1.2-fold for myeloid, lymphoid and total WBCs, respectively. 

The greatest average fold-increases were percentages of acH4 positive cells, with 2.7, 

2.5 and 2.3-fold increases observed in myeloid, lymphoid and total WBCs, respectively. 

 The results of fold-changes alongside significant values conformed to the 

previous ex vivo results in Chapter 4 and provide two conclusions. Firstly, percentage 

of acH4 positive cells was a more sensitive method for detection of acH4 changes than 

fluorescence intensity. Secondly, a higher dynamic change was observed in myeloid as 

compared to lymphoid cell populations. The percentage of acH4 positive myeloid cells 

was therefore used in further analyses. 
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Figure 5.4. Mean (A) and median (B) fluorescence intensity of acH4, and percentage 
of acH4 positive cells (C) in myeloid, lymphoid and total WBCs from patients pre- and 
post-administration of valproic acid. 

The marked lines indicate mean values. 
 

5.3.3 Individual percentages of acH4 positive myeloid cells pre- and post-valproic 
acid treatment in patients with ependymoma 

 For each study visit, blood samples were generally taken from the patient 

before and 4-hour after receiving valproic acid treatment. For patient 1 samples were 

taken before and 2-hour after receiving the drug. Processed blood plasma samples 

were delivered to the laboratory on dry ice to measure acH4 expression using the 

developed assay. Percentages of acH4 positive myeloid cells determined for each 

patient at each visit are shown in Figure 5.5A-G. 

 According to the figures shown, there was marked heterogeneity in degree of 

baseline acH4 as well as magnitude of change in acH4 expression following treatment 

with valproic acid. Most patients presented with less than 1% of acH4 positive myeloid 

cells at baseline (pre-treatment of the first visit) whilst patient 7 expressed 2.5% of 

acH4 positive cells. Changes in acH4 positive cells at 4-hr post-treatment were 

inconsistent but the majority showed relatively modest increases. The highest increase 

was from the third visit of patient 3, with a 7-fold increase from pre-treatment 

observed. Furthermore, decreases in acH4 post-treatment were observed in several 

samples such as the second visit of patient 7 (3.6-fold decrease) and the first visit of 

C 
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patient 5 (2.3-fold decrease). The actual values of decrease, however, were less than 

1%. 
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Figure 5.5. Percentages of acH4 positive myeloid cells collected from patients 1-7 
(A-G) with concentrations of valproic acid at each visit. 

Blood samples were taken pre- and 4-hr post valproic acid treatment, except 
patient 1 where a 2-hr post treatment was collected, at different dose levels. 
Visit 1 indicates the first time that each patient received valproic acid, except 
patient 1 who began treatment before samples were collected for acH4 
analysis. The concentrations of valproic acid shown on top of the bars are in 
mM. N/A indicates no data available. Note that the intervals between 
consecutive visits were not consistent between patients. 

 

 Focusing on each patient, most of the samples from patient 1 showed slight 

decreases following treatment with valproic acid (Figure 5.5A). There were two 

samples with extremely high increases in acH4 positivity. This patient, however, had a 

history of leukopenia and neutropenia (Figure 5.2) which could affect the 

measurement of acH4 positive myeloid cells. These increases were therefore 

questioned and will be discussed in the discussion part of this chapter. Patients 2, 3 

and 4 had similar profiles with increased acH4 positive myeloid cells observed post-

treatment on almost all study days, although the degree of increase was variable 

(Figure 5.5B-Figure 5.5D). Patients 5 and 6 had too few samples to draw any real 

conclusions from the results obtained, but there were no observed increases in acH4 

positivity in post-treatment samples (Figure 5.5E-Figure 5.5F). The response observed 

in patient 7 was variable, with a marked increase in acH4 following the first 

administration of drug but small changes observed at the second and third visits 

(Figure 5.5G). 

 

G 
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5.3.4 Associations between percentage acH4 positive myeloid cells and valproic acid 
dose 

 Patients recruited to the SIOP Ependymoma II trial were given oral valproic acid 

at a starting dose of 15 mg/kg/dose twice daily. Blood samples were taken to measure 

acH4 expression and valproic acid concentrations in plasma. The valproic acid dose was 

then adjusted based on the trough drug concentrations observed. Since there is no 

standard to measure change in acH4 positive cells, Figure 5.6 and Figure 5.7 

summarise the association between dose of valproic acid and change in acH4 positive 

myeloid cells calculated by two methods: absolute change (Difference) and fold 

change, respectively. 
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Figure 5.6. Association between valproic acid dose and difference in percentage of 
acH4 positive myeloid cells between post- and pre-valproate dose. 

Difference was determined by post-treatment value minus pre-treatment 
value. 
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Figure 5.7. Association between valproic acid dose and fold change in percentage of 
acH4 positive myeloid cells as compared to pre-valproate dose. 

Fold change was determined by dividing post-treatment value by pre-
treatment value. 

 

 Analysis of the results by Spearman correlation analysis showed no significant 

correlation between valproic acid dose and fold change (p-value 0.1538), or difference 

(p-value 0.3012) in acH4 positive myeloid cells. However, the different patterns of 

change between the two graphs were highlighted. The fold change observed at the 

highest dose of valproic acid for patient 7 was exceptionally high, whilst the actual 

change of acH4 at the same dose was close to zero. In contrast, the fold change at the 

highest dose of patient 1 was much lower than the difference at the same dose. As 

there are clear differences in the interpretation of the data depending on the method 

of analysis used, both approaches were used for further analyses. 

5.3.5 Associations between percentage acH4 positive myeloid cells and total valproic 
acid concentrations 

 Total valproic acid concentrations were measured using the homogeneous 

enzyme immunoassay technique performed by the Royal Victoria Infirmary. Details of 

the machine and protocol used for drug measurement are described in section 2.4. 

The results were reported to the lab and used to investigate potential relationships 

between drug concentration and percentage of acH4 positive myeloid cells. 

 There are several ways to investigate potential associations between valproic 

acid concentration and acH4 expression; the most commonly used method is an 
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assessment of fold change in acH4 expression and trough valproic acid concentration 

at steady-state as compared to pre-treatment. In the current study samples from each 

patient were not taken at the same time points, e.g. every 2 weeks or every month, so 

the comparison between samples at particular time point of all patients was not 

possible. Instead, the drug concentrations and acH4 positive cell results at all valproate 

administrations were used to investigate associations between these variables. 

 Figure 5.8 shows the relationship between total valproic acid concentration and 

percentage of acH4 positive myeloid cells in all patients regardless of pre- and post-

treatment. The overall results suggested no significant correlation between these two 

parameters (Spearman, p-value 0.171). Although subgroup analysis for each patient 

revealed a significant correlation for patient 4 with a p-value 0.033, this correlation 

was heavily biased by two data points and might not be of biological significance. 

 

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
0

1

2

3

4

5

6

7

8

9

1 0

           

v a lp ro ic  a c id  c o n c e n tra tio n  (m M )

%
n

u
cl

e
a

r 
a

cH
4

 p
o

si
tiv

e

P a tie n t 3

P a tie n t 4

P a tie n t 5

P a tie n t 6

P a tie n t 2

P a tie n t 1

P a tie n t 7

 

Figure 5.8. Relationship between total valproic acid concentration and percentage of 
acH4 positive myeloid cells for all patients. 

Note that these values represent both pre- and post-treatment values. 
 

 A comparison of difference in valproic acid concentration and percentage of 

acH4 positive cells was analysed by two aspects; the fold change in acH4 positive cells 

is shown in Figure 5.9 and the actual difference in acH4 positive cells is shown in Figure 

5.10. Unlike the dose results, the patterns of fold change and difference in acH4 

positivity were similar. For instance, patient 3 showed the highest values for both 
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difference and fold change in acH4 positive cells when the concentration increased by 

0.235 mM. Patient 1 had the highest acH4 change at the valproic acid concentration of 

0.52 mM. Interestingly, for patient 4 who presented a correlation between acH4 

positive cells and valproic acid concentration, neither fold change nor difference in 

acH4 positive cells significantly correlated with increase in valproic acid concentration 

(Spearman, p-value 0.999 and 0.667, respectively). The results of all patients also 

indicated no statistical significance in either fold change or difference (Spearman, 

p-value 0.594 and 0.935, respectively). 
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Figure 5.9. Association between difference in total valproic acid concentration and 
fold change in percentage of acH4 positive myeloid cells. 

Difference was determined by post-treatment values minus pre-treatment 
values and fold change was determined by dividing post-treatment values by 
pre-treatment values. 
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Figure 5.10. Association between difference in total valproic acid concentration and 
difference in percentage of acH4 positive myeloid cells. 

Difference was determined by post-treatment values minus pre-treatment 
values. 

5.3.6 Association between increase in acH4 positive myeloid cells and free valproic 
acid concentrations 

 Patient plasma samples were filtered through Centrifree ultrafiltration devices 

to obtain the ultrafiltrate with free valproic acid. The samples were then sent to the 

Royal Victoria Infirmary to measure the concentration of free valproic acid using the 

homogeneous enzyme immunoassay technique as described in Chapter 2. The results 

were compared with percentages of acH4 positive myeloid cells to investigate 

potential relationships. 

 Figure 5.11A shows a significant correlation between total and free valproic 

acid concentrations in clinical samples analysed (Spearman, p-value <0.0001). 

Regression analysis indicated a y-intercept of 0.144 mM, thus the concentration of 

total valproic acid needs to be higher than 0.144 mM to be able to detect free valproic 

acid. However, this number increased to 0.251 mM when analysed without the four 

free concentration values of 0 mM (data not shown). The slope of the graph was 0.299 

and the r2 value was 0.7923. 

 For the fraction of free valproic acid, Figure 5.11B illustrates the relationship 

between this parameter and total valproic acid, with a significant correlation between 

the two variables (Spearman, p-value <0.0001). The linear regression analysis indicated 
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a y-intercept of 0.062 mM, slope of 0.267 and r2 value of 0.712. Based on the graph 

shown, the free valproic acid fraction was found to be greater at higher concentrations 

of total valproic acid. For example, a sample with 0.257 mM of total valproic acid had 

8.1% free valproic acid detected, while another sample with 0.811 mM of total valproic 

acid had 39.3% free valproic acid detected. 
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Figure 5.11. Correlation between total valproic acid and free valproic acid 
concentrations (A) and fraction of free valproic acid (B) in patients received different 
doses of valproic acid. 

Free valproic acid was analysed from the ultrafiltrates of patient 1, 2, 4 and 6. 
The line represents linear regression analysis with 95% confidence interval. 

 

A 

B 



147 
 

 The relationship between percentage acH4 positive myeloid cells and free 

valproic acid concentration was determined in the same way as total valproic acid, and 

the results were comparable to total valproic acid results in all dimensions (Figure 

5.12-Figure 5.14). Only patient 4 showed a significant correlation between free 

valproic acid concentration and percentage of acH4 positive cells (Spearman, p-value 

0.0056, Figure 5.12). This significance, however, disappeared when absolute change 

and fold change were determined instead of actual acH4 values. Patient 2 presented a 

trend towards an increase in fold change in acH4 positive cells with increasing free 

drug concentrations, although this increase was not significant (Spearman, p-value 

0.0773, Figure 5.13). 
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Figure 5.12. Association between free valproic acid concentration and percentage of 
acH4 positive myeloid cells in all samples of patient 1, 2, 4 and 6 regardless of pre- or 
post-treatment. 
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Figure 5.13. Association between difference in free valproic acid concentration and 
fold change in percentage of acH4 positive myeloid cells. 

Free valproic acid was analysed from the ultrafiltrates of patient 1, 2, 4 and 6. 
Difference was determined by post-treatment values minus pre-treatment 
values and fold change was determined by dividing post-treatment values by 
pre-treatment values. 
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Figure 5.14. Association between difference in total valproic acid concentration and 
difference in percentage of acH4 positive myeloid cells. 

Free valproic acid was analysed from the ultrafiltrates of patient 1, 2, 4 and 6. 
Difference was determined by post-treatment values minus pre-treatment 
values. 
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5.4 Discussion 

 The developed imaging flow cytometry assay for detection of acH4 expression 

in myeloid cells was used to analyse clinical samples collected from patients studied on 

the SIOP Ependymoma II trial. Seven patients were recruited onto the trial and blood 

samples were collected pre- and 4-hour post-administration of valproic acid on 

multiple visits to measure acH4 expression. Plasma concentrations of the drug were 

also measured and used to adjust subsequent doses. Expression levels of acH4 

analysed by this assay were compared to dose and concentration of drug in order to 

investigate potential relationships between these parameters. In addition, the 

association between total and free valproic acid concentrations was investigated as 

well as associations between free valproic acid concentrations, dose and acH4 cell 

positivity. Preliminary results from this study were published in the European Journal 

of Clinical Investigation in 2019 (Uitrakul et al., 2019). 

5.4.1 Histone H4 acetylation in human white blood cells 

 The acH4 analysis results showed modest differences in acH4 expression, i.e. 

mean intensity, median intensity and percentage acH4 positive cells, between pre- and 

post-treatment as shown in Figure 5.4. In particular, as compared to pre-treatment, 

the average percentage of acH4 positive cells increased more than mean and median 

fluorescence intensity of acH4. Regarding cell type, increases observed in all values 

were greater in myeloid as opposed to lymphoid cells. These findings therefore 

supported the use of percentage of acH4 positive myeloid cell as a surrogate tissue for 

acH4 measurement. 

 According to patient data obtained from the SIOP Ependymoma trial, some 

patients had very low WBC counts to the point of leukopenia and some also had 

neutropenia, which theoretically could result in changes in the number of acH4 

positive myeloid cells. Basically, identification of myeloid and lymphoid cells in the 

developed assay is based on gating by size of cell and intensity of side scatter which 

reflects cell granularity. This method sometimes provides overlap between the two 

populations. If there are fewer myeloid cells, it is possible to have more lymphocytes in 

the myeloid population, resulting in a higher number of acH4 positive cells because 

acH4 expression is stronger in lymphocytes. 
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 The results shown in this chapter, however, suggested that not all samples with 

neutropenia presented high numbers of acH4 positive myeloid cells. In fact, only the 

sixth visit of patient 1 provided extremely high acH4 positive myeloid cells (>10%) 

together with neutropenia. Other samples with neutropenia, such as the fourth visit of 

patient 1 and the second visit of patient 6, did not show such high acH4 positive 

myeloid cells. The overall results therefore were not changed, although the 

neutropenic samples were removed from the analysis. Since neutrophils or myeloid 

cells are rarely cells of specific interest in this type of clinical trial, the correlation 

between acH4 positive myeloid cell and neutropenia condition has not previously been 

shown and needs more investigation. 

 The heterogeneity of acH4 expression in human cells was observed in the 

current study. Differences in baseline acH4 expression were found in recruited 

patients; patient 7 presented higher than 2% of acH4 positive myeloid cells while 

others had lower numbers at the beginning of the study. This variation was mentioned 

in two phase I clinical trials which showed obvious differences in baseline acH4 

expression between their cohorts measured by Western blot (Chavez-Blanco et al., 

2005; Atmaca et al., 2007). These findings caused difficulty for interpersonal 

comparison of acH4 since the same magnitude of change in one patient could not be 

compared with others. 

 A possible covariate which might cause these markedly different acH4 baselines 

in patients was co-medication. The inclusion criteria of the trial mention that patients 

must have no previous chemotherapy and no co-existent unrelated disease. It does not 

state that patients must not have received any other medication prior to the trial. Thus 

it is likely that patients received drugs before and during the valproic acid treatment 

which may influence baseline acH4 levels. While it is impractical to investigate all 

medication that patients received before valproate treatment, this possibility should 

be taken into account. 

 Percentages of acH4 positive myeloid cells suggested a large variation – both 

intra-patient and inter-patient variation – in histone acetylation when treated with 

valproic acid. Marked increases in numbers of acH4 positive cells were found in small 

numbers of samples, while the majority of samples exhibited more moderate changes. 
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Focusing on intra-patient variation, the results suggested that an increase in 

percentage of acH4 positive myeloid cells did not correlate with duration of valproic 

acid treatment; the percentages of acH4 positive cells of a patient measured at later 

visits could be fewer than the first visit, regardless of the drug exposure in the 

individual patient. To the best of our knowledge, this is the first study reporting acH4 

expression in patients at multiple time points. Other studies have presented results at 

baseline and steady state, so the intra-patient variation during chronic treatment could 

not be assessed. 

 Inter-patient variation in acH4 positive cells following treatment with valproic 

acid was also observed in this study. Intuitively patients who continuously received 

valproic acid for longer durations would have higher acH4 expression than those 

treated with the drug for shorter periods. However, it was found that patients who had 

received valproic acid for longer time periods and at higher doses could have fewer 

acH4 positive cells than those who had received the drug for first time. This 

demonstrated differences in drug response between patients which could reflect the 

utility of histone acetylation as a predictive biomarker. On the other hand, it could be 

argued that these results may limit the applicability of acH4 as a pharmacodynamic 

biomarker, due to high variation of acH4 changes between patients. 

5.4.2 Associations between acH4 expression and valproic acid dose 

 Associations between dose of valproic acid and increases in acH4 expression 

have been widely studied and the results remain controversial, as previously 

mentioned (Chavez-Blanco et al., 2005; Atmaca et al., 2007; Munster et al., 2007). 

However, correlations between increases in acH4 positive myeloid cells, analysed as 

actual change and fold change, and administered dose of valproic acid were not 

observed in this study. Two possible explanations should be discussed. 

 First, the pharmacodynamic behaviour in children may be different from adults. 

Although several studies have suggested correlations between acH4 expression and 

valproic acid dose, all of them have studied adult patients. The published valproate 

study in children did not mention associations between dose and acH4 expression but 

reported no correlation between valproic acid dose and concentration (Su et al., 2011). 

Based on no correlation between fold-change in acH4 and drug concentration shown 
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in Figure 5.1, it could be assumed that valproic acid dose did not relate to acH4 

change. This finding suggested that changes in acH4 in children might not be 

comparable to the results in adults. 

 Secondly, patients studied in the SIOP Ependymoma study might have received 

too low doses of valproic acid, which insufficiently impacted on histone acetylation 

levels in the blood. According to the study in adults that found a correlation, patients 

were given valproic acid up to a dose of 80 mg/kg, while patients in the SIOP 

Ependymoma trial mostly received doses of 15-30 mg/kg and a maximum of 45 mg/kg 

(Munster et al., 2007). On the other hand, another phase I study administered doses 

up to 120 mg/kg of valproic acid to adult patients, but found no dose-dependent acH4 

expression (Atmaca et al., 2007). According to the US FDA recommendation, valproic 

acid at doses above 60 mg/kg/day is not recommended in children due to safety 

concerns (US FDA, 2011). It is known that the pharmacokinetics of children are 

different from adults and pharmacokinetic studies of valproic acid in paediatrics are 

limited as well as pharmacodynamic studies. A pharmacokinetic study, for example, 

indicated a lower volume of distribution and lower clearance of valproic acid in 

children as compared to adults (Cook et al., 2016). This therefore makes the estimation 

of effective valproic acid dose in children more difficult than adults. 

5.4.3 Associations between acH4 expression and valproic acid concentration 

 Associations between valproic acid concentration (both total and free 

concentrations) and acH4 expression were not found in this study, despite being 

reported previously (Munster et al., 2007; Munster et al., 2009; Rocca et al., 2009). 

Concentration of valproic acid was investigated in different aspects including original 

values, fold changes and absolute changes between post- and pre-treatment, but none 

of them showed significant correlations with percentage of acH4 positive myeloid cells. 

These results were comparable with a previous clinical trial in children which reported 

that only half of the patients had increased acH4 at the steady-state valproic acid 

concentrations (Su et al., 2011). Furthermore, a phase I study in adults indicated no 

correlation between acH4 expression and serum concentrations of valproic acid 

(Chavez-Blanco et al., 2005). This highlights current controversies in potential 

associations between histone acetylation and concentration of valproic acid, although 
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this association was noted in the previous ex vivo results. Focusing on this difference, 

there are some factors to be discussed. 

 First, the concentration of valproic acid which significantly increased acH4 

positive cells in ex vivo studies was 1 mM or higher. This effective concentration was 

similar to most pre-clinical and clinical studies mentioned above. The lowest 

concentration associated with significant acH4 increases in vitro was 0.5 mM, similar to 

a study in children with solid tumours that suggested at least 70 µg/mL (∼0.5 mM) was 

required to inhibit HDAC activity in PBMCs (Göttlicher et al., 2001; Eyal et al., 2004; 

Coulter et al., 2013). As this level was higher than the differences in concentration 

observed in SIOP Ependymoma patients (Figure 5.9 and Figure 5.10), increases in acH4 

level should not necessarily be expected in this study. 

 Secondly, the concentrations measured in published clinical studies were 

concentrations at baseline and trough steady-state, not a 4-hour post-treatment as in 

the SIOP Ependymoma study (Munster et al., 2009; Su et al., 2011). The effective 

concentrations of valproic acid reported (∼0.5 mM) therefore were the trough levels. 

However, the levels of acH4 expression in the Ependymoma samples at 4-hour post-

treatment were expected to be peak concentrations. If peak concentrations in 

Ependymoma samples were similar to trough concentrations in the above-mentioned 

studies, it could be assumed that their peak concentrations in published studies were 

much higher than in the Ependymoma patients. This therefore could be one of the 

reasons for differences in the results in this chapter and previously published results. 

 Thirdly, focusing on the ex vivo experiments, WBCs have been continuously 

treated with the same concentrations of valproic acid for 6 hours. This condition is 

totally different from the real pharmacokinetics in the human body, where drug 

concentrations are always changing. The time-dependent in vitro results in Chapter 4 

suggested that acH4 levels significantly changed when treated with 4 mM valproic acid 

for longer than 1 hours, in agreement with other pre-clinical studies (Eyal et al., 2004). 

However, there is no clinical pharmacodynamic publication stating an effective time of 

valproic acid treatment in humans, especially at low concentrations (<1 mM), so 

comparison between pre- and 4-hour post-treatment possibly was not enough to 

observe changes in acH4 expression. 
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 Fourthly, as explained earlier, almost all patients in this clinical trial had 

received co-medication such as antibiotics, chemotherapeutics and opioids. Although 

there is no strong information available for histone-relating effect of these drugs, drug 

repositioning studies hypothesise this possibility. For instance, sodium phenylbutyrate 

was registered for treatment of urea cycle disorders before the discovery of its class I 

and class IIa HDAC inhibiting effects. Nicotinamide was first used to treat acne vulgaris 

or other inflammatory skin disorders, but was recently found to exhibit a class III HDAC 

inhibitory effect (Elvir et al., 2017). Moreover, associations between morphine and 

histone acetylation have been studied for over a decade and results have shown 

morphine-induced histone acetylation in murine models (Koo et al., 2015). These 

studies suggest that there might be many available drugs with unknown histone-

related mechanisms of action. Furthermore, drug interactions with valproic acid may 

impact on acH4 expression. For example, a clinical study reported significant increases 

in histone acetylation after treatment with both valproic acid and temsirolimus, but 

not valproic acid alone (Coulter et al., 2013). In case that some patients received 

valproic-interacting drugs, the levels of acH4 would change regardless of valproic acid 

concentration. This could then result in a lack of a correlation between acH4 

expression and valproic acid concentrations whether or not it exists. 

 With respect to free valproic acid levels, a significant correlation between free 

and total valproic acid concentrations was observed in this study. The linear regression 

analysis revealed that no free valproic acid was detected if the concentration of total 

valproic acid was less than 30 µg/mL (Figure 5.11). Moreover, the results suggested an 

increase in fraction of free valproic acid following an increase in total valproic acid 

concentration. This trend was similar to a study in children with cancer which reported 

a positive relationship between free valproic acid fraction and total valproic acid 

concentration (Su et al., 2011). With total valproic acid concentrations less than 

50 µg/mL, the fraction of free valproic acid was 12.9%. When the concentration of 

total valproic acid was 50-100 µg/mL, free valproic acid fraction increased to 16.8% 

and when total drug concentrations were 100-125 µg/mL, the free drug fraction 

increased to 21.3%. These findings are similar to other published valproic acid studies 

(Otten et al., 1984; Herngren et al., 1991). The results of free valproic acid analysis 

suggest that samples need to have high enough concentrations of total valproic acid to 
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be able to detect free drug content. Moreover, similar to total valproic acid 

concentrations, no correlations between free drug concentrations, dose and 

percentage of acH4 positive cells were observed. 

 Regarding the use of valproic acid in epileptic patients in clinical settings, US 

FDA recommends the therapeutic range of valproic acid for adults and children >10 

years old of 50-100 µg/mL (0.35-0.69 mM) (US FDA, 2011). However, there is no 

information of valproic acid therapeutic range in neonate patients published. Focusing 

on the target concentrations in adults, valproic acid concentrations recommended for 

seizures are lower than the concentrations used in cancer studies and are too low to 

detect acH4 changes using the developed assay (Atmaca et al., 2007; Munster et al., 

2007; Su et al., 2011). Therefore use of the developed assay in patients receiving 

valproic acid for non-cancer treatments may not be appropriate until the sensitivity of 

the assay is improved. 

 In summary, the developed assay was applied to measure histone H4 

acetylation in patients in the SIOP Ependymoma II clinical trial and the results showed 

both high intra-patient and inter-patient variability in acH4 expression. There were 

also inconsistent changes in percentages of acH4 positive myeloid cells when treated 

with valproic acid as compared to before treatment. These changes did not correlate 

with dose, total concentration or free concentration of the drug, nor the duration of 

treatment. However, there were only seven patients recruited and none of them had 

achieved target trough concentrations, which is seen as the minimum effective 

concentration for histone acetylation. More patients with higher drug concentrations 

therefore may be expected to experience greater changes in acH4 and to confirm the 

applicability of the developed pharmacodynamic biomarker. 
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Chapter 6. Clinical application of an assay for detection of ki-67 
expression in lymphoid cells as a potential prognostic biomarker 

6.1 Introduction 

6.1.1 Characteristics of ki-67 

 Ki-67 function in human cells and its potential use as a biomarker for cancer 

have been described in Chapter 3, section 3.1.5. High expression of ki-67 protein has 

been found in S, G2 and M phase cells, but not G0 (Gerdes et al., 1984). In G1 stage, ki-

67 concentrations are controlled by two mechanisms and its protein levels can vary 

(Sun and Kaufman, 2018). Although its function in human cells has not been fully 

elucidated, ki-67 is widely used as a marker of cell proliferation (Scholzen and Gerdes, 

2000). In cancer research, ki-67 has been studied both as a potential 

prognostic/predictive biomarker and as a therapeutic target. 

 Focusing on the prognostic utility of ki-67, associations between high levels of 

ki-67 positive cancer cells and poor prognosis have been reported in various types of 

cancer such as breast cancer (Agboola et al., 2013; Inwald et al., 2013; Mrklić et al., 

2013; Nishimura et al., 2014), nasopharyngeal carcinoma (Zhao et al., 2018), gastric 

cancer (Ko et al., 2017) and prostate cancer (Wilkins et al., 2018). The level of ki-67 

expression reported in these papers has been measured using IHC, which is a 

qualitative technique, and the assessment of percentage of ki-67 positive cells can be 

subjective. High variability of ki-67 expression measured by IHC techniques in different 

laboratories has been shown in several studies, resulting in no consensus being 

reached in terms of a cut-off value for ki-67 positivity (Mengel et al., 2002; Focke et al., 

2017). 

6.1.2 Cancer immune response 

 Associations between cancer and the immune system were first studied in 1863 

by Rudolf Virchow (Balkwill and Mantovani, 2001). He reported the prevalence of 

WBCs in tumour tissues and suggested linkage between cancer and chronic 

inflammation. Later, this association became one of the hallmark concepts for cancer 

prevention and treatment. 
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 The pathology of host immune response involves the presence of inflammatory 

cells and proinflammatory cytokines. When there are cancer cells in the body, 

macrophages are the major cell type that initiate response to the tumour cells in the 

form of tumour-associated macrophages (TAMs) (Mantovani et al., 1992a). These 

TAMs are led to cancer cells and activated by chemokines. The activated TAMs play a 

crucial role in killing cancer cells; however, they can also produce growth factors, 

angiogenic factors and protease enzymes which may help stimulate tumour cell 

proliferation (Mantovani et al., 1992b). Dendritic cells, also called tumour-associated 

dendritic cells (TADCs), have important roles in the activation of antigen-specific 

immunity and the maintenance of adaptive immunity. It was found that TADCs could 

stimulate T-cell activation in breast cancer (Allavena et al., 2000). When lymphocytes 

such as T-cells and B-cells are activated by inflammatory cytokines, they secrete 

additional cytokines that further support the activation of immunity (Finn, 2012). 

 The other major immune response to the presence of cancer cells is the release 

of proinflammatory cytokines such as tumour necrosis factor (TNF), interleukins (IL) 1 

and 6, and chemokines by both activated leukocytes and tumour cells (Hendry et al., 

2017). For instance, CD8+ cytotoxic T-cells and T-helper 1 (Th1) cells can produce 

interferon-γ. Similarly, Th2 cells, myeloid derived suppressor cells and FOXP3+ 

regulatory T-cells (Treg) can produce IL-10 and TGFβ. 

6.1.3 Prognostic utility of white blood cells in cancer 

 The prognostic impacts of WBCs in a cancer setting have been widely studied, 

mainly focusing on the total number of WBCs and the presence of tumour-relating 

WBCs. For WBC count, it was found to be associated with patient prognosis in several 

cancer studies. Hao et al reported poor prognosis in patients with non-small cell lung 

cancer who had WBC counts >7,000 cell/mL (Hao et al., 2018). This was in agreement 

with the results of Tibaldi et al who suggested an association between elevated WBC 

and poor prognosis (Tibaldi et al., 2008). Feng et al also reported that in patients with 

advanced pancreatic cancer, WBC counts >5,800 cell/mL were associated with a 

poorer overall survival (Feng et al., 2018). Moreover, in cases where patients 

presented with tumour-related leucocytosis, they had poorer prognosis than ones who 

showed leucocytosis by a known cause (Kasuga et al., 2001). 
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 Regarding tumour-infiltrating lymphocytes, these WBCs detected in tumour 

tissues were not only a focus for the development of cancer therapeutics, but were 

also found to be associated with prognosis in many cancer types (Gooden et al., 2011). 

A meta-analysis study in colorectal cancer reported that CD8+ and FOXP3+ infiltrating 

cells, but not CD3+ T-cells, were prognostic markers for overall survival (Zhao et al., 

2019). A meta-analysis in hepatocellular carcinoma showed significant associations of 

overall survival and lymphocytes with CD8+, FOXP3+, CD3+ and Granzyme B+ (Ding et 

al., 2018). In patients with oesophageal cancer, T-cells with CD8+, FOXP3+ and CD57+ 

were associated with overall survival while CD3+, CD4+ and CD45RO+ T-cells were not 

(Zheng et al., 2018). 

 These findings highlighted the potential for using protein expression in WBCs as 

a prognostic biomarker. The prognostic efficacy was observed when looking at the 

WBC count and the expression of some specific proteins in WBCs. This project 

therefore focused on the assessment of ki-67 expression in peripheral WBCs in order 

to investigate its potential to act as a prognostic biomarker in cancer patients. The 

project focused on patients in PROSPECT-NE study because these patients had end-

stage cancer diseases and received no anti-cancer therapy. Therefore the possibility of 

medication affecting ki-67 measurement was minimized. 
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6.2 Chapter specific aims 

 This study aimed to investigate ki-67 expression in peripheral WBCs in cancer 

patients recruited to the PROSPECT-NE clinical study. The primary objective was to 

investigate the potential for using ki-67 expression in WBCs as a prognostic biomarker. 

Secondary objectives included the following: 

• To determine potential associations between ki-67 expression and patient 

clinical data and markers of frailty (including grip strength, gender, BMI and 

routine blood test). 

• To observe changes in ki-67 expression in patients with time (between hospital 

visits).  

• To compare ki-67 expression in WBCs measured by imaging flow cytometry and 

ki-67 expression in plasma measured by ELISA. Associations between ki-67 

expression in plasma and patient data were also investigated alongside ki-67 

expression in WBCs. 
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6.3 Results 

6.3.1 Patient characteristics 

 The PROSPECT-NE clinical trial is an observational study in patients with end 

stage cancer diseases. Patients recruited in the trial will be collected blood samples 

and other clinical data for further molecular analysis without receiving any anti-cancer 

therapy. This trial started in September 2017, with the ki-67 analysis project beginning 

in February 2018. From February to December 2018, a total of 43 patients were 

recruited onto the ki-67 analysis project and were studied until the project finished. 

Among them, 15 patients entered the PROSPECT-NE trial before the ki-67 analysis 

project started, leaving 28 patients whose blood samples were collected at the first 

visit. At the end of the ki-67 project, 22 out of 43 patients had died, with 14 of these 22 

deceased patients having had blood samples collected at the first visit. 

 Baseline characteristics of patients at recruitment are shown in Table 6.1. Of 43 

patients recruited, 25 patients were male (58%). The median age and SD of all patients 

was 61 ± 11.4 years. The average BMI of all patients was 27 kg/m2 and all patients had 

performance status of 0-1 at the first visit. No patients with leukopenia or neutropenia 

were observed in this study. The mean right hand and left hand grip strengths at the 

first visit were 29.5 and 27.2 kg, respectively. A Z-score assessment of grip strength 

was calculated via the online calculator 

(https://stuartbman.github.io/grip_strength/index.html), which was developed within 

Newcastle University. This online tool adjusts the Z-score of a patient using age and 

gender as compared to the normative values from a meta-analysis of 12 British grip 

strength studies (Dodds et al., 2014). The mean ± SD of patients’ grip strength 

was -0.83±1.01 for right hand and -1.15±0.80 for left hand. The majority of cancer type 

in this study was colorectal (27.9%) and breast (16.3%) cancer. Examples of other 

cancer types in this study included mesothelioma, prostate cancer, lung cancer, gastric 

cancer and sarcomas. 
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Parameter Value 

Age (year) (Median±SD) 61±11.4 

Male (n) (%) 25 (58%) 

Weight (kg) (Mean±SD) 77.5±14.9 

BMI (kg/m2) (Mean±SD) 27.2±4.4 

Performance status 1 (%) 24 (56%) 

LDH (U/L) (Mean±SD) 295±157 

Albumin (g/L) (Mean±SD) 42.3±4.3 

WBC count (×109/L) (Mean±SD) 6.8±3.0 

Neutrophil count (×109/L) (Mean±SD) 4.6±2.7 

Grip strength right hand (kg) (Mean±SD) 29.5±9.5 

Grip strength right hand (Z-score,  Mean±SD) -0.83±1.01 

Grip strength left hand (kg) (Mean±SD) 27.2±8.3 

Grip strength left hand (Z-score,  Mean±SD) -1.15±0.80 

* Z-score is calculated using the online system via 

https://stuartbman.github.io/grip_strength/index.html 

Table 6.1. Baseline characteristics of patients recruited in PROSPECT-NE trial (n=43). 
 

6.3.2 ki-67 expression in patient WBCs 

 Percentages of ki-67 positive white blood cells were measured in all patient 

samples sent to the lab using the developed assay as described in Chapter 2. The 

gating and analysis used in this project were the same as used to measure ki-67 

expression in Chapter 3. Representative images of myeloid and lymphoid cells with and 

without ki-67 positivity are illustrated in Figure 6.1. The percentages of ki-67 positive 

cells in myeloid, lymphoid and total WBCs from all patient samples are shown in Figure 

6.2. The median percentage of ki-67 positive myeloid cells was 0.45% while lymphoid 

cells was 1.93% (Mann-Whitney U-test, p-value <0.0001). Lymphoid cells were selected 

for further analysis of ki-67.  
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Figure 6.1. Examples of myeloid cells with ki-67 positivity (A) and ki-67 negativity (B), 
and lymphoid cells with ki-67 positivity (C) and ki-67 negativity (D). 

Samples were obtained from patients studied on the PROSPECT-NE clinical trial. 
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Figure 6.2. Percentages of ki-67 positive myeloid, lymphoid and total white blood 
cells in all cancer patients in PROSPECT-NE clinical trial. 

Y-axis data shown on a logarithmic scale; red lines indicate median values. 
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 In order to confirm that the gating used in this study designated a lymphoid cell 

population without monocyte contamination, 9 patient samples were incubated with 

antibodies against ki-67 and CD14. WBCs were first gated to myeloid and lymphoid 

populations using side scatter and area, and then CD14 positive cells (which indicate 

monocytes) were removed from the lymphoid population. The percentages of 

lymphoid cells gated by only side scatter and by side scatter plus removing CD14 

positive cells were seen to be comparable (Figure 6.3A). The percentages of ki-67 

positive cells measured in these two populations were also comparable (Figure 6.3B). 

Additionally, the percentage of ki-67 and CD14 positive cells ranged between 0.1% to 

14.3%. Therefore, lymphoid gating by side scatter was suitable and could be used for 

this ki-67 analysis.  
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Figure 6.3. Percentages of lymphoid cells gated by only side scatter and by side 
scatter plus removal of CD14 positive cells (A), and percentages of ki-67 positive cells 
in lymphoid cell population gated by both methods (B). 
 

 The comparison of ki-67 positivity between cancer patients recruited to the 

PROSPECT-NE trial and healthy donors was investigated. Figure 6.4 shows the 

difference in ki-67 positive lymphoid cells between people with cancer and people not 

known to have cancer (Mann-Whitney U-test, p-value <0.0001). The median 

percentage of ki-67 positive lymphoid cells was 1.16% for healthy volunteers, with a 

maximum of 3%, and 1.93% for cancer patients, with the maximum of 32%. These data 

indicate that cancer patients have higher percentages of ki-67 positive lymphoid cells 

compared to a control population not known to have cancer. It should be noted that 

this comparison was not adjusted by patient age and gender due to no strong evidence 

A B 
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of association between ki-67, age and gender. Moreover, further results in this study 

showed no correlation between these three parameters. 
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Figure 6.4. Comparison of percentages of ki-67 positive lymphoid cells in healthy 
donors and cancer patients recruited to the PROSPECT-NE trial. 

Healthy samples were collected from 8 independent donors and PROSPECT 
samples were from all study patients. Y-axis data shown on a logarithmic scale; 
red lines indicate median values. 

 

 Regarding subgroup analysis of cancer type, there was no significant difference 

in percentages of first-visit ki-67 positive lymphoid cells between cancer types (Figure 

6.5). The median percentage of ki-67 positive cells in all cancer types ranged between 

0.54 – 5.7%. The two samples with the highest proportion of ki-67 positive cells (8.5% 

and 6.1% positive cells) were from breast cancer and colorectal cancer patients. The 

median percentage of ki-67 positive cells in breast cancer was 1.79%, comparable to 

other cancer types. Patients with sarcoma had the highest percentages of ki-67 

positive lymphoid cells, with 5.7% positive cells. The number of patients in this 

subgroup, however, was too low to determine statistical significance. 
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Figure 6.5. Percentages of ki-67 positive lymphoid cells in PROSPECT-NE patients 
according to cancer type. 

Ki-67 values were from the first visit of the patients. Red lines indicate median 
values. 

6.3.3 Variation of ki-67 levels in patients throughout the study 

 Variations in percentages of ki-67 positive lymphoid cells were observed 

throughout the trial. Figure 6.6A suggests fluctuation in ki-67 expression in all patients 

and Figure 6.6B shows the same data in deceased patients only. Four patients had %CV 

over 100%, with the highest value of 150%. The greatest absolute change was 18.5%, 

observed in the patient with highest percentage of ki-67 positive cells.  
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Figure 6.6. Changes in percentage of ki-67 positive lymphoid cells in all patients 
studied (A) and in deceased patients (B) throughout the study. 

Only patients who had more than 1 visit were included in the graphs. 
 

 Focusing on the deceased patients, there was also a marked fluctuation in ki-67 

positive lymphoid cells observed throughout the study (Figure 6.6B). Two patients 

expressed clear decreases in ki-67 at their last visits whilst four patients had marked 

increases. The other patients showed minimal changes in ki-67 positive cells until their 

last visits. These results suggest no association between ki-67 expression and terminal 

stage of cancer patients. 

6.3.4 Association between ki-67 positive lymphoid cells and patient data 

 The association between percentages of ki-67 positive lymphoid cells and 

patient data at the first patient visit was investigated. There were two analyses used in 

A 

B 
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this study depending on variable type. A Spearman correlation analysis was used for 

continuous variables including percentage of ki-67 positive lymphoid cells, age, weight, 

BMI, LDH, albumin, WBC count, and Z-score of grip strength (right hand and left hand). 

The Mann-Whitney U-test was used for non-parametric categorical variables including 

gender and performance status. 

 The correlation analysis graphs showing percentage of ki-67 positive cells and 

each parameter alongside p-values, linear regression and 95% confidence intervals 

(95%CI) are illustrated in Figure 6.7. The correlation coefficients (r) of other continuous 

variables analysed by Spearman test are presented in Table 6.2 and p-values of other 

categorical variables analysed by Mann-Whitney U-test are presented in Table 6.3. 
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Figure 6.7. Association between percentage of ki-67 positive lymphoid cells and 
patient data including age (A), gender (B), weight (C), BMI (D), performance status 
(E), LDH (F), albumin (G), WBC count (H), Z-scores of grip strength right hand (I) and 
left hand (J). 

Data shown were collected at the first visit after patients were recruited to the 
clinical trial. Continuous parameters were analysed using the Spearman 
correlation test with linear regression and 95%CI shown; categorical 
parameters were analysed using the Mann-Whitney U-test with black lines 
indicating the median values. 
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Age Weight BMI LDH Albumin WBC Z-score of 
grip strength 

right hand 

Z-score of 
grip strength 

left hand 
Age 

1.000 
0.045 

(0.834) 
-0.015 
(0.945) 

0.088 
(0.728) 

-0.409 
(0.047) 

0.509 
(0.031) 

0.025 
(0.905) 

-0.103 
(0.632) 

Weight 
 1.000 

0.866 
(<0.001) 

0.235 
(0.362) 

-0.273 
(0.207) 

-0.110 
(0.671) 

0.356 
(0.088) 

0.447 
(0.032) 

BMI 
  1.000 

0.262 
(0.308) 

-0.254 
(0.242) 

-0.211 
(0.414) 

0.360 
(0.084) 

0.392 
(0.064) 

LDH 
   1.000 

-0.148 
(0.557) 

0.456 
(0.120) 

-0.146 
(0.565) 

-0.047 
(0.861) 

Albumin 
    1.000 

-0.341 
(0.166) 

-0.262 
(0.216) 

-0.130 
(0.556) 

WBC 
     1.000 

0.104 
(0.680) 

-0.038 
(0.884) 

Z-score of grip strength 
right hand       1.000 

0.764 
(<0.001) 

Z-score of grip strength 
left hand        1.000 

 
Table 6.2. Correlation matrix of patient continuous data including age, weight, BMI, LDH, albumin, WBC count, and grip strength (of 
right and left hand) at the first patient visit. 

Correlation coefficients (r) are presented with p-values shown underneath. Data were analysed using the Spearman correlation 
test and significance (p-value <0.05) is shown in bold. 
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Gender Performance status 

Age 0.001 0.291 

Weight 0.361 0.192 

BMI 0.733 0.472 

LDH 0.778 0.101 

Albumin 0.467 0.082 

WBC 0.388 0.019 

Z-score of grip strength right hand 0.320 0.216 

Z-score of grip strength left hand 0.325 0.575 

 
Table 6.3. P-values of difference in patient continuous data parameters including 
age, weight, BMI, LDH, albumin, WBC, grip strength (of right and left hand) at the 
first patient visit separated by patient gender and performance status. 

Data were analysed using the Mann-Whitney U-test and significance 
(p-value <0.05) is shown in bold. 

 

 For percentage of ki-67 positive cells (Figure 6.7), the results indicated no 

correlation with any variables. However, the analysis of covariates revealed some 

significance (Table 6.2 and Table 6.3). As expected, weight correlated with BMI and 

grip strength of right hand correlated with left hand. Patients with lower body weight 

had lower grip strength (left hand). This study found that older patients had lower 

albumin and higher WBCs. In addition, male patients in the study population were 

significantly older than the female patients and patients with higher performance 

status at recruitment had significantly higher WBC counts. 

 As presented above (section 6.3.3), variability in percentages of ki-67 positive 

lymphoid cells measured in multiple visits to the clinic was observed and associations 

between changes in ki-67 level and some parameters were investigated. A Spearman 

correlation analysis was performed to investigate associations between percentage of 

ki-67 positive cells and high-variability parameters including, LDH, albumin and WBC 

count from all patient visits. The results indicated no correlation between ki-67 

expression and the levels of the variables analysed (Figure 6.8). 
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Figure 6.8. Associations between percentage of ki-67 positive lymphoid cells and LDH 
level (A), albumin level (B), and WBC count (C). 

Data shown were collected from all patient visits and analysed using the 
Spearman correlation test with linear regression and 95%CI shown. 
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6.3.5 Prognostic impact of ki-67 positive lymphoid cells on patient survival 

 Correlations between percentage of ki-67 positive lymphoid cells and patient 

survival status were determined using two analyses in this study: log rank test and 

Cox’s proportional hazards model (Cox regression). The first approach tests the 

difference between survival times of different groups of a variable while the second 

test is able to test the correlation of more than two variables (Bewick et al., 2004). 

Moreover, the Cox regression analysis allows testing of continuous variables whereas 

the log rank test uses only categorical variables. 

 Since the log rank test allows only categorical variables, the percentage of ki-67 

positive cells had to be categorised. Thus, the threshold of ki-67 level was developed to 

classify patients into high and low ki-67 expression groups. Figure 6.9 shows two 

receiver operating characteristic (ROC) curves analysed using percentage of ki-67 

positive cells from the first visit of each patient (A) and by the median percentage of all 

visits of each patient (B). The median value of all visits from one patient was also used 

as the representative of all ki-67 values for that patient in the ROC analysis because of 

no standard guideline suggesting which value of ki-67 should be used. Furthermore, 

using median values was expected to increase the sample size of the analysis because 

patients who were recruited into the study before the ki-67 project started could 

provide median ki-67 values but no first-visit ki-67 positive cells was collected from this 

population. 
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Figure 6.9. The ROC performed to calculate the optimal cut-off values of (A) 
percentage of ki-67 positive cells at the first visit and (B) the median percentage of 
ki-67 positive cells of all visits for overall survival. 
 

 Both ROC curves suggested neither significant difference between survival 

status and percentage of ki-67 positive cells at the first visit (AUC 0.658, p-value 0.165) 

nor median percentage of ki-67 of all visits (AUC 0.636, p-value 0.126). Using the 

Youden index method, a cut-off value for first-visit ki-67 positivity of 1.82%, with 

sensitivity of 0.818 and specificity of 0.647, was determined (Figure 6.9A). The cut-off 

value for the median of all visits was 1.61% with sensitivity of 0.727 and specificity of 

0.524 (Figure 6.9B). Based on the threshold of 1.82%, there were 13 patients classified 

as low ki-67 including 2 deceased patients and 15 patients classified as high ki-67 with 

9 deceased patients (Figure 6.10A). With the threshold of 1.61%, there were 17 

patients and 26 patients in low and high ki-67 groups, respectively. Only 6 patients in 

the low ki-67 group died while 16 patients died in the high ki-67 group (Figure 6.10B). 

The full details of patient categorisation are described in Appendix A. 
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Figure 6.10. The numbers of alive and deceased patients at the end of study 
categorised into four groups. 

Figure 6.10A categorised using the percentage of ki-67 positive cells at first visit 
and Figure 6.10B using the median percentage of ki-67 positive cells of all visits. 

 

 Survival analysis was performed using the percentage of ki-67 positive cells at 

the first visit for two reasons. Firstly, ROC analysis suggested that the first-visit values 

provided higher sensitivity and specificity than the median values to predict mortality 

of patients. Secondly, using the first-visit values strengthened the predictive impact of 

ki-67 since there was no effect of intra-personal variability observed in other visits. 

This study therefore analysed the association between overall survival and percentage 

of ki-67 positive cells at the first visit. 

 The log rank test was first performed to determine differences in mortality 

between patients with high and low ki-67 positivity. A Kaplan-Meier curve of overall 

survival and percentage of ki-67 positive cells at first visit is shown in Figure 6.11. 

Patients who presented high ki-67 positivity at the first visit had mean survival time of 
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186 days (95%CI 121-250 days) while mean survival time of patients with low ki-67 

positivity was 271 days (95%CI 233-308 days); the p-value for the difference between 

the two groups was 0.011. Median survival time for the high ki-67 population was 136 

days (95%CI 99-174 days). However, there were too few deceased patients in the low 

ki-67 group to determine a meaningful median survival time. The longest survival time 

in this study was 151 days and the shortest survival time observed was 45 days after 

recruitment. Patients who were alive at the end of the project had a duration of 

observation ranging from 126 to 344 days. 

 

 
Figure 6.11. Kaplan-Meier curve of overall survival according to the percentage of 
ki-67 positive lymphoid cells at first visit. 
 

 Cox’s proportional hazard model was next performed to test for correlations of 

overall survival and other variables, as well as percentage of ki-67 positive lymphoid 

cells. All continuous variables were analysed as continuous parameters except for the 

percentage of ki-67 positive cells, which was analysed as both continuous and 

categorical variables using the cut-off value from the ROC analysis (1.82%). The 

categorical variables included gender and performance status. 

P-value = 0.011 
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 The Cox regression analysis results are shown in Table 6.4. Univariate analysis 

revealed significant correlations between overall survival and LDH level, Z-score of grip 

strength right hand and left hand with the hazard ratios of 1.006, 0.341 and 0.258, 

respectively. These variables were considered as covariates in the multivariate analysis 

of ki-67. Other variables, i.e. age, gender, weight, BMI, performance status, albumin 

level and WBC count, did not show correlations with overall survival and were not 

analysed further. 

 For ki-67 analysis, the results indicated a significant correlation between 

survival status and categorical ki-67 (p-value 0.025) but not continuous ki-67 values 

(p-value 0.363). The hazard ratio observed for categorical ki-67 was 5.86. However, 

when the three additional covariates were added to the multivariate equation, the 

association between categorical ki-67 and overall survival became non-significant, 

whilst LDH level remained as a significant variable. 

 

Variable Exp(B) SE Sig. 95.0% CI for Exp(B) 

Lower Upper 

Univariate analysis 

Continuous ki-67 alone 

Continuous ki-67 1.120 0.125 0.363 0.877 1.432 

Categorical ki-67 alone 

Categorical ki-67 5.860 0.786 0.025 1.255 27.357 

Age alone 

Age 1.012 0.027 0.660 0.960 1.066 

Gender alone 

Gender 1.190 0.607 0.774 0.362 3.913 

Weight alone 

Weight 0.991 0.018 0.592 0.957 1.026 

BMI alone 

BMI 1.000 0.058 0.995 0.893 1.121 

Performance status alone 

Performance status 0.222 0.786 0.056 0.048 1.037 
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Variable Exp(B) SE Sig. 95.0% CI for Exp(B) 

Lower Upper 

LDH alone 

LDH 1.006 0.002 0.007 1.002 1.010 

Albumin alone 

Albumin 0.918 0.073 0.243 0.796 1.060 

WBC count alone 

WBC count 1.028 0.101 0.786 0.843 1.253 

Grip strength right hand alone 

Grip strength right hand 0.341 0.427 0.012 0.147 0.787 

Grip strength left hand alone 

Grip strength left hand 0.258 0.476 0.004 0.101 0.656 

Multivariate analysis 

Ki-67, LDH and grip strength right hand 

Ki-67 4.931 0.905 0.078 0.836 29.08 

LDH 1.005 0.003 0.039 1.000 1.011 

Grip strength right hand 0.453 0.587 0.176 0.143 1.429 

Ki-67, LDH and grip strength left hand 

Ki-67 24.53 1.669 0.055 0.931 646.2 

LDH 1.009 0.004 0.042 1.000 1.018 

Grip strength left hand 0.155 1.201 0.121 0.015 1.634 

Note: categorical ki-67, gender and performance status were analysed as categorical variables; ki-67 was 
categorised by 1.82% cut-off value. Grip strength indicates Z-score of raw grip strength value which was 
calculated online via https://stuartbman.github.io/grip_strength/index.html 

Table 6.4. Regression analysis of ki-67 expression in lymphocytes 
The table shows coefficient value (Exp(B)), standard error (SE), p value (Sig) and 
95%CI of all variables. The univariate analysis was performed to find significant 
variables and then multivariate analysis of those variables was performed. 
Significant value (p-value <0.05) is shown in bold. 

6.3.6 Associations between ki-67 expression in patient’s lymphocytes and plasma 

 Associations between percentages of ki-67 positive lymphoid cells and 

circulating ki-67 plasma concentrations were investigated. Whole blood samples from 

patients in the PROSPECT-NE trial were centrifuged to obtain plasma using the 

protocol mentioned in Chapter 2. Ki-67 concentrations in plasma were measured by a 
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commercial ELISA kit. An example standard curve generated with the ELISA kit is 

shown in Appendix A. The results obtained were compared to percentages of ki-67 

positive lymphoid cells measured previously as well as overall patient survival data. 

Since the plasma ki-67 analysis project started after the ki-67 positive cells analysis, 

circulating ki-67 in plasma concentrations were only obtained for 26 out of 43 patients. 

In addition, of these 26 patients, only 16 provided samples at the first visit. The median 

circulating ki-67 concentration at the first visit determined from these 16 patients was 

82.2 ng/mL (range: 19 – 346 ng/mL), while the median of all visits was 57.5 ng/mL 

(range: 9 – 346 ng/mL). 

 Concentrations of circulating ki-67 values measured in samples collected from 

the 26 patients were compared with the percentage of ki-67 positive lymphoid cells. 

The correlation analysis results suggested a significant correlation between the 

percentage of ki-67 positive cells and mean circulating ki-67 in plasma (Spearman, 

p-value 0.0141, Figure 6.12). As was observed with the percentage of ki-67 positive 

cells, high intra-assay variability with CV values up to 104% were observed in plasma 

ki-67 concentrations. High variability in the plasma ki-67 of each patient was also 

observed throughout the study with no clear trend of increase or decrease over time 

(Figure 6.13). The largest absolute increase was 52.9 ng/mL and largest decrease was 

44.3 ng/mL. This very high intra-assay variability observed requires a better assay to be 

developed for future clinical use.  
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Figure 6.12. Association between percentage of ki-67 positive lymphoid cells and 
circulating ki-67 expression in plasma. 

For samples where plasma ki-67 expression was measured three times, the 
mean of three values were used to correlate with ki-67 positive cells from the 
same blood sample. 
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Figure 6.13. Changes in mean circulating ki-67 expression in plasma for all patients 
measured throughout the study. 

Only patients who had more than one visit were included in the graphs. 
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 Survival analyses were also performed to determine potential correlations 

between circulating ki-67 in plasma and overall survival. To investigate prognostic 

effect, circulating ki-67 values at the first visit of each patient were used. A histogram 

showing data for all 16 patient is shown in Figure 6.14, and the cut-point of 250 ng/mL 

was selected to categorise patient samples into low and high ki-67 groups based on 

this graph. 

 After categorisation, 58% of patients who were alive had low circulating ki-67 

plasma concentrations as compared with 86% of deceased patients. The Kaplan-Meier 

curve indicated no significant difference between patients with high and low first-visit 

circulating ki-67 expression (log rank, p-value 0.229; Figure 6.15). The mean survival 

time for patients with high plasma ki-67 was 373 days (95%CI 314-434 days) while the 

comparable value for patients with low plasma ki-67 was 286 days (95%CI 211-361 

days). Median survival times could not be estimated in either group due to the limited 

numbers of deceased patients at the end of the study. 
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Figure 6.14. Histogram showing two distinct populations of circulating ki-67 in 
plasma from all patients. 

The value shown for each patient was plasma ki-67 from the first visits of the 
particular patient. 
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Figure 6.15. Kaplan-Meier curve of overall survival according to the circulating ki-67 
plasma concentrations measured on the first patient visits. 
 

 Cox’s proportional hazard model was also performed to confirm the log rank 

results. In contrast to the percentage of ki-67 positive cells, neither continuous nor 

categorical ki-67 expression in plasma correlated with overall survival (Table 6.5). 

Furthermore, univariate analysis revealed no significance between overall survival and 

variables including LDH and Z-score of grip strength. Therefore, multivariate analysis 

was not performed for circulating ki-67 in plasma. 
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Variable Exp(B) SE Sig. 95.0% CI for Exp(B) 

Lower Upper 

Continuous ki-67 alone 

Continuous ki-67 0.999 0.002 0.408 0.995 1.002 

Categorical ki-67 alone 

Categorical ki-67 2.930 1.119 0.337 0.327 26.286 

Age alone 

Age 1.056 0.046 0.231 0.966 1.156 

Gender alone 

Gender 1.502 0.916 0.657 0.249 9.051 

Weight alone 

Weight 0.965 0.039 0.355 0.895 1.041 

BMI alone 

BMI 1.003 0.114 0.981 0.803 1.253 

Performance status alone 

Performance status 0.302 1.121 0.285 0.034 2.714 

LDH alone 

LDH 1.019 0.010 0.067 0.999 1.040 

Albumin alone 

Albumin 0.986 0.106 0.898 0.801 1.215 

WBC count alone 

WBC count 1.035 0.104 0.737 0.845 1.269 

Grip strength right hand alone 

Grip strength right hand 0.348 0.558 0.058 0.117 1.038 

Grip strength left hand alone 

Grip strength left hand 0.106 1.152 0.051 0.011 1.014 

 
Table 6.5. Univariate analysis of circulating ki-67 in plasma. 

The table shows coefficient value (Exp(B)), standard error (SE), p-value (Sig) and 95%CI of 
all variables. The variables included the first-visit circulating ki-67 expression in plasma 
(continuous and categorical variables), age, gender, weight, BMI, performance status, LDH, 
albumin, WBC count, and Z-score of grip strength right and left hand. ki-67 was analysed as 
both continuous and categorical variables; ki-67 was categorised by 250 ng/mL cut-off 
value. Grip strength indicates Z-score of raw grip strength value, which was calculated 
online via https://stuartbman.github.io/grip_strength/index.html. Significant value 
(p-value <0.05) is shown in bold   
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6.4 Discussion 

 The developed assay for the detection of ki-67 expression in lymphoid cells was 

applied to patient samples from the PROSPECT-NE clinical trial. The analysis of 

percentage of ki-67 positive WBCs, variability of ki-67 expression throughout the study, 

associations between ki-67 expression in lymphoid cells and patient clinical data 

including overall survival, and associations between circulating ki-67 in plasma and 

overall survival were investigated. 

6.4.1 Percentage of ki-67 positive WBCs and its variability  

 The first observation in this study was the difference in ki-67 positivity between 

myeloid and lymphoid WBCs. The results indicated significantly higher numbers of 

ki-67 positive lymphoid cells than myeloid cells. The appropriate gating of lymphoid 

cells was confirmed using an antibody against CD14 to ensure monocytes were not 

being captured in the lymphoid gate on a FSC/SSC plot. As higher ki-67 expression was 

observed in lymphoid WBCs, the lymphoid population was selected for further study. 

The percentages of ki-67 positive lymphoid cells in blood collected from cancer 

patients were significantly higher than observed in blood from healthy volunteers. 

Ki-67 expression in tumour tissues has been widely studied by IHC; in contrast, not 

many studies have assessed this parameter in WBCs (Todorov et al., 1998; Uchikawa et 

al., 2003; Bai et al., 2016; Sobecki et al., 2017; Ragab et al., 2018). A study in patients 

with multiple myeloma reported higher percentages of ki-67 positive cells in T and B 

lymphocytes than in healthy adult volunteers (Miguel-Garcia et al., 1995). A positive 

correlation between percentage of ki-67 positive cells and stage of multiple myeloma 

was also observed. Moreover, a pilot study revealed that the mean frequency of ki-67 

positive WBCs in patients with hepatocellular carcinoma was significantly higher than 

in healthy volunteers (Hutton et al., 2016). These differences therefore support the 

potential utility of ki-67 in peripheral white blood cells as a biomarker in cancer 

patients. 

Although differences in ki-67 expression between different types of WBC have 

been observed in some studies as noted above, no single study has compared 

differences between cancer types. Comparison of ki-67 expression across cancer types 
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may suggest the application of this protein in some specific cancers. However, the 

results of this study were not able to identify differences in percentages of ki-67 

positive lymphoid cells between cancer types, arguably due to the limited sample size 

for each cancer type. More patients in each cancer type should be recruited to future 

studies in order to further investigate the application of ki-67 positive cells as a 

prognostic biomarker more widely. 

 A challenging limitation of ki-67 as a prognostic/predictive biomarker may 

result from the high variability of ki-67 observed throughout the study. These results 

suggested marked differences in ki-67 expression between each visit for one particular 

patient, with up to a 15-fold change in ki-67 positive cells observed. These results 

demonstrate the highly dynamic modulation of ki-67 in peripheral WBCs, potentially 

relating to parameters which have not yet been elucidated. A plausible cause of ki-67 

change is the medication that patients receive during visits to an oncology clinic, such 

as corticosteroids, hormonal steroids and steroid-like drugs. The efficacy of steroid 

receptor agonists including sex steroids in terms of inhibition of ki-67 expression has 

been widely studied (Wagner et al., 2013; Urata et al., 2014; Zhao et al., 2017). For 

example, a study reported a significant decrease in ki-67 positive nasal epithelial cells 

when treated with oral methylprednisolone and nasal fluticasone for 3 weeks (Zhao et 

al., 2017). The negative correlation between ki-67 in cancer specimens and vitamin D3 

or calcitriol levels in cancer patients has been demonstrated in two studies (Wagner et 

al., 2013; Urata et al., 2014). Administration of the aromatase inhibitor exemestane, 

has been found to be associated with a significant reduction in ki-67 index in breast 

cancer patients, whereas tamoxifen treatment resulted in the opposite effect 

(Hachisuga et al., 1999; Toi et al., 2011). Moreover, ki-67 expression has been shown 

to be affected by menstrual cycle phase; the same patients could have different ki-67 

levels if the protein was measured at different phases of menstruation (Horimoto et 

al., 2015). 

 This information highlights a limitation of the current study as there were no 

patient medication profiles available and the above-mentioned drugs, especially 

corticosteroids, could conceivably have been given to these patients. High intra-

personal variation found in this study might result from a change in 
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medication/hormonal status at each visit. If patient medication profiles were available, 

this hypothesis could be investigated. 

6.4.2 Associations between percentage of ki-67 positive lymphoid cell and clinical 
data 

 The level of inter-patient variation in percentage of ki-67 positivity observed in 

these studies led to an interest in utilising this parameter as a prognostic biomarker. In 

order to investigate the prognostic impact, correlations between ki-67 expression and 

other variables including key clinical parameters should be tested. Associations 

between ki-67 positive lymphoid cells at first patient visit, overall survival and other 

variables including patient age, weight, BMI, performance status, LDH, albumin, WBC 

count, Z-score of grip strength (of right hand and left hand) were analysed using 

different tests depending on the variable type. 

 Firstly, correlations between ki-67 expression and the above-mentioned 

parameters were analysed by Spearman correlation analysis for continuous variables 

and the Mann-Whitney U-test for categorical variables (gender and performance 

status). No correlations between ki-67 positive cells and any variables studied were 

observed (Figure 6.7). This contrasted with results obtained from a previous 

preliminary study performed locally, which observed significant negative correlations 

between ki-67 positive lymphoid cells and grip strength and between ki-67 positive 

lymphoid cells and age (Talks et al., 2017). 

 Further analyses of all variables revealed a negative correlation between age 

and albumin level, and a positive correlation between age and WBC count. Based on 

previous studies, older patients were found to have lower albumin levels (Gom et al., 

2007; Weaving et al., 2016) and WBC counts (Kubota et al., 1991). An increase in WBC 

counts in older patients found in this study might suggest infectious conditions due to 

the frailty of old cancer patients. Similarly, the significant association between 

performance status and WBC count indicated that patients with higher performance 

status had higher WBC count and therefore higher chance to be infected patients. In 

addition, the analysis revealed that recruited male patients were significantly older 

than female, which conformed to studies showing a generally higher incidence of 

cancer in males across the older age ranges (White et al., 2010; Torre et al., 2016). 
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 Cox regression analysis was performed to investigate associations between 

overall survival and other variables. Two variables that showed significant correlations 

with overall survival were LDH level and Z-score of grip strength. The hazard ratio 

indicated that higher level of serum LDH significantly correlated with patient survival 

status. This conformed to previously published studies which suggested positive 

correlations between LDH level and mortality rate in cancer patients (Zhang et al., 

2016a; Zhang et al., 2016b; Deng et al., 2018). For example, Liu et al reported very 

short overall survival time (1.7 months) in patients who had non-specific cancer with 

LDH >1,000 U/L and a significant increase in overall survival when serum LDH was 

decreased (Liu et al., 2016). Moreover, several studies have reported a predictive 

effect of grip strength to all-cause mortality in old people; poorer grip strength being 

associated with a significantly increased risk of mortality including from cancer (Gale et 

al., 2007; Chaturvedi, 2015; Oksuzyan et al., 2017; Wu et al., 2017). Therefore, LDH 

level and grip strength should be considered as covariates for survival analysis of ki-67.  

 Regarding the percentage of ki-67 positive cells, an association between the 

percentage of ki-67 positive cells and overall survival was investigated using the log 

rank test and Cox regression analysis. To perform the log rank test, percentages of 

ki-67 positive lymphoid cells were categorised into high and low populations based on 

the ROC curve. It was found that percentage of ki-67 positive cells at the first visit for 

each patient provided higher sensitivity and specificity to overall survival, as compared 

to the median number of ki-67 positive cells across all visits, so only the first-visit 

values were used in survival analysis. 

 Significant differences in survival rates between high and low ki-67 groups were 

observed following the log rank test analysis. However, Cox regression analysis 

revealed a significant correlation of overall survival with only categorical ki-67 

(categorised into high and low levels) but not with continuous ki-67. Furthermore, 

categorical ki-67 became a non-significant parameter when adjusted for the two 

covariates above. These findings suggested that categorical ki-67 cell positivity might 

not be a strong prognostic indicator, especially when other variables are taken into 

account. Moreover, an optimal cut-off value is necessary to categorise ki-67 into 

positive and negative groups. Since there is no such gold standard cut-off value to 
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categorise ki-67, the utilisation of categorical ki-67 in clinical settings may be limited. 

This issue will be discussed later. 

With regards to the fluctuation of percentages of ki-67 positive cells 

throughout the study, a feasible hypothesis was that changes in ki-67 positive cells 

were related to some unknown parameters in the blood. Due to the limited availability 

of blood tests in the PROSPECT-NE trial, only WBC count, albumin levels and LDH levels 

obtained on each visit were tested for their associations with ki-67 expression. The 

results suggested no correlation between ki-67 expression and these three variables. 

Consequently, causes of the high variability in ki-67 positive cells needed further 

investigation. Potentially levels of ki-67 protein were variable as a result of 

spontaneous physiologic changes or a response to medication that patients received. 

The most pragmatic experiment is testing the association between ki-67 expression in 

WBC and commonly administered drugs such as corticosteroids. 

 Several flow cytometry assays for measurement of ki-67 in white blood cells 

have been developed over many years, but rarely have they been used in clinical 

practice (Vukmanovic-Stejic et al., 2008; Sanvito et al., 2011; Marcondes et al., 2018), 

thus the availability of data on prognostic impact of ki-67 expression in WBCs is very 

limited. All published studies have shown correlations between patient survival and 

ki-67 expression measured in tumour tissues by IHC. However, several studies have 

also shown the prognostic impacts of protein expression such as CTLA-4 and FOXP3 in 

WBCs, although their prognostic effects were first observed in tumour tissues (Shang 

et al., 2015; Hu et al., 2017). Furthermore, a study reported correlations between 

PD-L1 in tumour tissues and circulating WBCs which could be used to predict survival in 

patients with advanced-stage NSCLC (Ilié et al., 2017). These studies suggested a 

possibility of associations between protein expression in tumour tissues and WBCs, 

including ki-67 expression. 

 Focusing on ki-67 expression in tissues, its prognostic impact has been well 

documented as previously described. According to two large meta-analysis studies, 

ki-67 expression in breast tumour tissues appeared to be a promising marker for 

overall survival and disease free survival; high expression of ki-67 was found to be 

correlated with shorter overall survival and disease free survival (de Azambuja et al., 
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2007; Stuart-Harris et al., 2008). Prognostic values of ki-67 were also shown in gastric, 

bladder and prostate cancer (Tian et al., 2016; Berlin et al., 2017; Luo et al., 2017). 

There were two issues, however, that needed to be addressed before clinical 

application of these data. 

 Firstly, the thresholds of ki-67 positivity used in previous studies were variable. 

This reflected inconsistency of ki-67 expression between assays, and resulted in 

difficulty in compilation of all study data as well as difficulty in application of the 

results obtained from individual studies. The 2011 St.Gallen’s International Expert 

Consensus firstly recommended a ki-67 cut-off point of 14% measured by IHC, but this 

value has not been widely used (Goldhirsch et al., 2013). Another study, however, 

suggested that a cut-off value of 20% was the most effective prognostic factor 

(Tashima et al., 2015). While unresolved, the American Society of Clinical Oncology 

(ASCO) guidelines do not include ki-67 expression as a biomarker for cancers (Harris et 

al., 2007; Van Poznak et al., 2015).  Standardization of the most appropriate ki-67 

positive threshold is needed to support the routine clinical application of ki-67 as a 

prognostic biomarker. In order to standardise a positive threshold for ki-67, a larger 

sample size of well-controlled patients is required, as well as a more reproducible 

method for ki-67 measurement. 

 Secondly, the compiled studies in those meta-analyses contained high 

heterogeneity in the assays used. Although all of them have involved 

immunohistochemistry, there were dissimilarities in clones of antibody, patient 

treatments and types of result presented between the compiled studies. It was found 

that clones of antibody used in the assays affected the signal of ki-67 expression 

(Lindboe and Torp, 2002; Sun et al., 2016). The compiled studies in the above-

mentioned meta-analysis included anti-ki-67, anti-MIB-1, anti-ki-s5 and anti-ki-s11 

antibody clones which expectedly provided different values. Those values were then 

reported in diverse types such as mean, median, proportion, tertile distribution and 

arbitrary units. Furthermore, patients in some studies had been treated with hormonal 

therapy, some had been treated with only chemotherapy and some were untreated. 

As previously mentioned, some drugs could result in changes in ki-67 and the ki-67 

levels measured might not reflect the actual prognosis of patients. This inconsistency 

means the optimal cut-off value for ki-67 still remains controversial. 
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Although there is no published study showing a correlation between ki-67 

expression in WBC and cancer prognosis, the results of this study might suggest a 

feasibility of using ki-67 expression in WBC as a prognostic biomarker in solid cancers. 

More information between ki-67 expression and immune contexture in WBCs needs to 

be investigated. Moreover, higher number of patient samples in PROSPECT-NE trial as 

well as longer observational times should be considered for future work. Full patient 

profiles including all medication patients received should be collected to reduce any 

confounding factors to ki-67 expression. 

6.4.3 Association between percentage of ki-67 positive lymphoid cells and circulating 
ki-67 in plasma 

 The hypothesised association between percentage ki-67 positive WBCs and 

circulating ki-67 expression in plasma was based on the results of two studies by Bruey 

et al, which reported an association between elevated plasma ki-67 and shorter 

survival time in both ALL and CLL patients (Bruey et al., 2010a; Bruey et al., 2010b). 

This chapter therefore investigated concentrations of ki-67 in plasma using ELISA 

techniques, as compared to percentages of ki-67 positivity in lymphoid cells measured 

by imaging flow cytometry. 

 The results indicated a significant positive correlation between ki-67 expression 

in plasma and percentage of ki-67 positive lymphoid cells. However, high intra-assay 

variability in plasma ki-67 was observed. Moreover, high intra-patient variability in 

plasma ki-67 levels at different visits were observed throughout the study, although it 

was less marked than the variability in percentages of ki-67 positive lymphoid cells. In 

contrast to percentage of ki-67 positive cells, a log rank test analysis indicated that 

plasma ki-67 did not correlate with overall survival. Also, cox-regression analysis 

suggested that neither categorical nor continuous circulating ki-67 expression in 

plasma was significantly correlated with overall survival. Nonetheless, it was 

noticeable that patients with high ki-67 expression in plasma tended to have higher 

survival rates (Figure 6.15). 

 These findings contrast to the previously mentioned studies (Bruey et al., 

2010a; Bruey et al., 2010b). The difference observed in this study might result from 

two factors. Firstly, there were no patients with haematologic malignancies in the 
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PROSPECT-NE trial, so different types of cancer were studied between Bruey’s work 

and this study. As Bruey’s studies were performed in patients with leukaemia, with 

WBCs highly proliferated, they tended to have higher ki-67 expression levels in plasma 

than patients with solid tumours. The only study of serum ki-67 in solid tumour was 

from Ragab et al, but this study did not investigate the association between circulating 

ki-67 in serum and survival rate (Ragab et al., 2018). It was a study in breast cancer 

patients and reported significant differences in plasma ki-67 expression between 

patients with breast tumours and healthy people, but no difference between benign 

and malignant tumours. Another possible explanation was that too few patients were 

studied and the observational time was too short in this survival analysis of circulating 

ki-67.  

 As a result of the limited number of studies conducted and the inconsistent 

data generated, the potential relevance of circulating ki-67 expression in cancer 

patient plasma or serum needs further investigation. Similar to ki-67 expression in 

tumour tissues and WBCs, a precise assay, an optimal cut-off value and drug-

interaction data are necessary for further investigation of correlations of ki-67 

expression in plasma. Furthermore, larger sample size and controlled patients such as 

comparable medication received are needed for future studies. 

 In conclusion, the developed imaging flow cytometry assay was applied to 

measure ki-67 positive white blood cells in cancer patients in the PROSPECT-NE clinical 

trial. The percentage of ki-67 positive lymphoid cells was found to be higher than the 

percentage of ki-67 myeloid cells and was higher in cancer patients than in people not 

known to have cancer. A correlation between overall survival and percentage of ki-67 

positive lymphoid cells at first patient visit was observed when patients were 

categorised into high and low ki-67 groups. Furthermore, correlations between overall 

survival, LDH level and grip strength were observed in this study. However, only LDH 

level showed significance by multivariate analysis of three variables, so the prognostic 

effect of LDH should be studied in future works. Moreover, no significant correlations 

between ki-67 expression in plasma and overall survival were observed in this study. 

Larger sample sizes, longer observation times and more thorough patient profiles are 

recommended to confirm these findings in future studies. 
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Chapter 7. General discussion 

 The main objective of this PhD project was to investigate characteristics of 

protein expression in peripheral blood cells for the development of potential 

pharmacodynamic biomarkers for use in clinical trials in a cancer setting. The proteins 

of interest included CDC7, pMCM2, ki-67 and acH4. CDC7, pMCM2 and ki-67 were 

investigated as potential pharmacodynamic biomarkers for a phase I clinical trial 

(LY3143921), while acH4 was studied as a pharmacodynamic biomarker being utilised 

for a childhood cancer trial (SIOP Ependymoma II). An additional objective of the 

studies carried out was an investigation into the potential prognostic significance of 

the ki-67 protein within an early phase patient population as part of the PROSPECT-NE 

clinical study. 

 In order to investigate the pharmacodynamic properties of the proteins of 

interest, suitable assays were developed. The assay development processes for the 

clinical trials of interest included antibody optimisation, precision testing, and protein 

detection in cell lines and human WBCs. Lastly the applicability of the developed 

assays were assessed in patient samples participating in clinical trials. In the case of the 

LY3143921 trial, blood samples from mice treated in vivo were analysed ahead of 

future clinical sample analysis on an expansion phase of the trial which is yet to begin. 

 Patient samples from the PROSPECT-NE observational study were analysed for 

expression of the ki-67 protein using the previously developed assay. Correlations 

between protein expression and patient clinical data, including survival status, were 

investigated. Suitable statistical analyses, i.e. the Mann-Whitney U-test, Spearman 

correlation test and survival analysis, were performed as determined by the type of 

parameter being measured, the setting and the objectives of study. 

 

7.1 Development of an assay for detection of CDC7, pMCM2 and ki-67 

  An imaging flow cytometry assay for detection of CDC7, pMCM2 and ki-67 has 

been developed for use in an early phase clinical trial of LY3143921, a novel CDC7 

inhibitor. In addition to CDC7, pMCM2 was also chosen to be studied as it is a known 
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downstream protein of CDC7. Ki-67 protein, which is a well-known marker of cell 

proliferation, was included in this project since preliminary results showed cell 

proliferation inhibitory effects of the CDC7 inhibitor. 

 In order to develop an imaging flow cytometry assay, the volumes of antibody 

against CDC7, pMCM2 and ki-67 were first optimised. Precision of the assay including 

intra-assay and inter-assay precision, as well as precision of the imaging flow 

cytometry machine was tested. The results suggested less than 15% CV for all 

parameters investigated. This assay therefore offered the appropriate level of 

precision to measure protein expression in further samples. 

Expression of the three proteins was first investigated in HL-60 cell lines, using 

an imaging flow cytometry technique. When cells were treated with different 

concentrations of LY3143921, only pMCM2 expression decreased in parallel with 

increasing concentrations of the drug. Neither CDC7 nor ki-67 showed any change 

following treatment. Similar to the cell line results, only pMCM2 expression decreased 

when healthy whole blood was treated ex vivo with different concentrations of the 

drug. 

Although the CDC7 protein did not show any significant response to LY3143921 

and was excluded from the assay, the unique characteristics of this protein were of 

interest. While pMCM2 and ki-67 proteins showed slightly higher expressions in 

lymphoid as opposed to myeloid cell populations, CDC7 proteins showed very low 

expression in lymphoid cells as compared to very high expression in myeloid cells. 

Moreover, it was found that the majority of CDC7 expression observed in this study 

was cytoplasmic expression, which was in contrast to pMCM2 and ki-67. As the 

developed assay may not be effective for detecting nuclear CDC7, this protein was not 

further investigated using this assay. 

Another critical finding in this study was a new parameter for protein 

monitoring, i.e. percentage of protein positive cells based on the principal of rare cell 

populations. This study suggested that counting percentages of overexpressed cell 

showed greater dynamic changes than measuring intensity across all cells. As CDC7, 

pMCM2 and ki-67 are common proteins in normal cells, there will be basal expression 

levels of these proteins in all cells. These baseline expression levels could blind or 
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diminish a change in protein expression by drug treatment. Therefore, specifically 

looking at cells with overexpressed protein may provide better results, especially in 

comparison of changes. 

Focusing on the percentage of protein positive cells, both in vitro and ex vivo 

results in this study suggested a decrease in percentage of pMCM2 positive cells in 

WBCs following an increase in drug concentration. Although the decrease in 

percentage of pMCM2 positive cells was not significant in all WBCs, a significant 

decrease was observed when assessed as a proportion of ki-67 positive cells. In the 

same way, in vivo results showed a significant decrease in pMCM2 positive cells at a 

lower dose of LY3143921 (15 mg/kg) when specifically considering the ki-67 positive 

population. These findings highlight the importance of utilising ki-67 and pMCM2 as a 

dual pharmacodynamic biomarker for CDC7 inhibition. Moreover, the results suggest a 

potential mechanism of the drug involving cell cycle arrest, which resulted in steady 

levels of ki-67 in ex vivo experiments. 

With regard to the storage of samples, clinical blood samples need to be 

processed and transported from clinical sites to the laboratory, which can take up to 3 

days. Although four commercial preservative-containing tubes including EDTA, 

CellSave, TransFix and Streck tubes were examined, none of them were shown to 

be suitable, in terms of maintaining the percentage of pMCM2 positive in ki-67 positive 

cells for 3 days. However, it was found in this study that freezing WBCs in diluted 

Lyse/Fix buffer at -80°C was effective in terms of preserving the cell population for up 

to 5 days. This approach will therefore be adopted at allow delivery of clinical samples 

to the analysing laboratory, without impacting on the validity of the data generated 

following analysis. 

In conclusion, this PhD project has developed and validated an assay for 

detection of pharmacodynamic biomarkers for a new CDC7 inhibitor, LY3143921, by 

measuring the number of cells with overexpression of pMCM2 in the population of 

ki-67 positive cells. Furthermore, the freezing method for preservation of proteins 

during delivery has been validated. The assay is therefore ready to be applied to 

clinical sample analysis when the expanded phase of the clinical trial starts. Also, the 

applicability of this assay to other CDC7 inhibitors should be assessed in future work. 
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7.2 Development of an assay for detection of acH4 

 An imaging flow cytometry assay for detection of acetylated histone H4 has 

been developed and validated for the analysis of clinical samples collected from 

patients on the SIOP Ependymoma II clinical trial. Patients in this clinical trial receive 

valproic acid which acts as an HDAC inhibitor. Since acH4 was considered as a potential 

pharmacodynamic biomarker for HDAC inhibitors, it was selected as a protein of 

interest in this study. The acH4 assay validation included antibody volume 

optimisation, intra- and inter-assay precision, and application in cell lines (in vitro) and 

human WBCs (ex vivo) before applying the assay to actual clinical samples. 

 The acH4 assay was developed appropriately and exhibited intra- and inter-

assay precision of <20% CV for both parameters. The in vitro results revealed increases 

in acH4 expression following increases in both valproic acid concentration and 

duration of treatment. Based on the results obtained, the minimum effective valproic 

acid concentration in these studies was 1 mM and the maximum effective 

concentration was 4 mM. Moreover, the peak expression of acH4 was observed at 6 

hours of drug treatment (4mM) with longer durations of treatment than 6 hours 

reduced the expression of acH4 in cell lines. The reason for this decrease has not been 

investigated in this project but should be further studied in order to more clearly 

understand the PK/PD of the drug. 

 Focusing on the expression of acH4 protein, this study compared changes in 

acH4 by monitoring two different parameters, i.e. mean/median intensity of acH4 

expression and percentage of acH4 positive cells. A greater dynamic change (higher 

fold-increase) was noted in percentage of acH4 positive cells compared to mean 

intensity. In agreement with the CDC7, pMCM2 and ki-67 assays, percentage of cells 

with protein overexpression was considered to be a more informative parameter than 

overall protein intensity, especially when used for comparison of change. Moreover, 

higher expression of acH4 was observed in lymphoid than in myeloid WBCs. This 

supported the use of PBMCs as a surrogate cell for measurement of acH4 in previous 

studies. However, the results in chapter 4 revealed higher fold-increases in the myeloid 

population following an increase in valproic acid concentration, as compared to 
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lymphoid cells. Based on these findings, this study focused on changes of acH4 in 

myeloid cells rather than lymphoid cells. 

 Another characteristic of acH4 expression in myeloid cells noted in this study 

was an increase in cytoplasmic acH4 expression. Based on the similarity between acH4 

and DAPI (nuclear) expression, more cytoplasmic acH4 positive cells were observed in 

myeloid WBCs treated with 8 mM of valproic acid as compared to lymphoid population 

with the same condition. Furthermore, the majority of cytoplasmic acH4 positive 

myeloid cells showed higher acH4 expression than nuclear acH4 positive cells. To date, 

there is only limited information relating to expression of cytoplasmic acH4 protein, 

although it has been reported in a previous study (Uchida et al., 2007). The 

characteristics and importance of this cytoplasmic acH4 should be investigated in 

future studies. 

 To conclude, an imaging flow cytometry assay for detection of acH4 expression 

in WBCs was validated in both cell lines and WBCs. The results obtained resulted in the 

proposal of myeloid WBCs as a novel cell population for acH4 monitoring. Also, the 

results suggested that percentage of acH4 positive cells, rather than overall acH4 

intensity, should be utilised to measure acH4 changes induced by valproic acid. 

Altogether this assay was suitable to be applied to patient samples from the 

Ependymoma trial. 

 

7.3 Measurement of acH4 positivity in Ependymoma patients and its 
pharmacodynamic significance 

 Whole blood samples from seven patients recruited to the SIOP Ependymoma 

clinical trial were analysed in terms of measurement of acH4 expression using the 

developed assay described in 7.2. Patient samples were collected pre- and 4-hour post-

valproic acid treatment at different dose levels. The percentage of acH4 positive 

myeloid cells was analysed and compared both between and within patients. 

Moreover, associations between the percentage of acH4 positive cells and dose and 

concentration of valproic acid were examined. Lastly, the association between free and 

total valproic acid concentrations in patient samples was also studied. 
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 Both intra- and inter-patient results revealed high heterogeneity in terms of 

percentage of acH4 positive cells. Within a patient, not all post-treatment samples 

showed increases in percentages of acH4 positive cells compared to pre-treatment. 

Also, the increase in acH4 positive cells did not follow the duration of treatment; 

patients who had been treated for longer periods of time possibly had lower acH4 

positive cells than those who received valproic acid for the first time. However, when 

comparing the results of the seven patients, no clear trends were observed. When 

comparable doses of valproic acid, e.g. 15 mg/kg were administered to patients, the 

post-treatment acH4 responses were different between each patient. Furthermore, 

patients who had been treated with the same dose for the same duration showed 

different levels of change in acH4 positive cells. These findings conformed to the 

results from several published clinical studies as discussed in Chapter 5. 

 With regards to observed trends in acH4 positive cells, the results showed no 

associations between percentage of acH4 positive cells and valproic acid dose, nor 

total drug concentration. No associations were observed in terms of actual values, 

absolute change (difference) and fold change. These findings were supported by other 

clinical studies showing no correlation of acH4 protein with valproic acid dose, 

concentration or clinical outcome (Garcia-Manero et al., 2006; Atmaca et al., 2007; 

Sharma et al., 2008; Su et al., 2011; Wheler et al., 2014). However, it should be noted 

that the concentrations of valproic acid in all patients in this study were much lower 

than the effective concentrations found in the pre-clinical results as discussed in 

chapter 4. These low concentrations may be associated with only modest changes in 

acH4 positivity and result in no correlations being observed with any of the parameters 

investigated. 

 Correlations between total and free valproic acid concentrations were 

observed in this study as shown in previously published studies (Otten et al., 1984; 

Herngren et al., 1991; Su et al., 2011). Furthermore, the free valproic acid fraction was 

found to be increased following an increase in total valproic acid concentration and no 

associations were observed between free valproic acid concentrations and parameters 

including percentage of acH4 positive cells. 
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 Overall, the developed assay was applied to clinical samples from the SIOP 

Ependymoma II trial and percentages of acH4 positive myeloid cells in all 7 patients 

were presented and discussed. No trends or changes in acH4 positivity between pre- 

and post-treatment were observed, or between the first dose and later doses in each 

patient. Also, there were no associations between the percentage of acH4 positive 

cells and parameters including dose, total concentration or free concentration of 

valproic acid. The limitations of this study included too few patient samples and low 

drug concentrations in plasma samples obtained from patients on the study. 

 

7.4 Measurement of ki-67 positivity in PROSPECT-NE patients and its prognostic 
impact 

 The assay for detection of ki-67 expression in WBCs was adapted from the 

combined assay developed for CDC7, pMCM2 and ki-67. This assay was applied to 

measure ki-67 positive cells in patient samples from the PROSPECT-NE observational 

study. The ki-67 results were studied in association with patient data and survival 

status to investigate its potential prognostic significance. Moreover, the potential 

prognostic impact of circulating ki-67 in plasma was also investigated in this study. 

 The patient results obtained indicated higher percentages of ki-67 positive cells 

in lymphoid as compared to myeloid WBCs. Unlike the SIOP Ependymoma clinical trial, 

PROSPECT-NE is an observational study with no defined treatment protocol. Lymphoid 

cells were considered to be a suitable surrogate population due to their relatively high 

level of ki-67 expression. Focusing on ki-67 positive lymphoid cells, the results in 

cancer patients from the PROSPECT trial showed higher ki-67 positivity than in healthy 

volunteers. However, no significantly high ki-67 expression was observed in any 

specific type of cancer. 

 Marked variation in ki-67 expression levels in some patients was highlighted, 

and this contributed to limitations in terms of interpretation of the results. Some 

patients had fluctuations of ki-67 throughout the study without any treatment, so the 

cause of change was unclear. Regarding the deceased patients in this study, no clear 

trend in ki-67 levels was observed, thus ki-67 was unlikely to change following patient 



202 
 

illness such as performance status and tumour stage. Correlation analysis performed in 

this study also showed no correlation of ki-67 with patient data including age, weight, 

BMI, LDH, albumin, WBC count or Z-score of grip strength (right hand and left hand). 

Based on these results, it is currently unclear what caused the high variability of ki-67 

levels observed in this study. 

 Although fluctuations in percentage of ki-67 positive cells were observed 

throughout the study, the percentage of ki-67 positive cells at the first visit of each 

patient appeared to be correlated with patient survival status. The survival analysis 

suggested that patients with a high percentage of ki-67 positive cells had significantly 

lower mean survival times as compared to those with low percentages of ki-67 positive 

cells. However, there was no association with overall survival when actual numbers of 

ki-67 positive cells, not categorised into high and low groups, were analysed. 

Furthermore, when ki-67 positive cell numbers were adjusted based on LDH and 

Z-score of grip strength, it lost the significance in survival analysis. The actual 

relationship between percentage of ki-67 positive cells and prediction of patient 

prognosis therefore needs further investigation. 

 Moreover, based on the published results by Bruey et al (Bruey et al., 2010a; 

Bruey et al., 2010b), this study investigated associations between circulating ki-67 in 

patient plasma and overall survival. In contrast with the mentioned studies, no 

correlation between the two parameters was observed. Also, no association between 

plasma circulating ki-67 expression and percentage of ki-67 positive cell was observed 

in the PROSPECT-NE study. However, it was found that patients with high circulating 

ki-67 expression generally had longer mean survival times than patients with low ki-67 

expression. The prognostic impact of circulating ki-67 expression in plasma needs to be 

further studied. 

 The results obtained in this study suggest a potential prognostic impact of ki-67 

positive cells. However, due to the unavailability of complete patient datasets and low 

sample size, this effect should be analysed with more detailed patient information and 

a larger number of patients in the future. Also, a longer observation time is needed in 

order to fully investigate the relationship between ki-67 and patient survival. 
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7.5 Conclusion 

 This PhD project mainly aimed to develop imaging flow cytometry assays for 

detection of proteins as potential pharmacodynamic biomarkers for three particular 

studies, i.e. the LY3143921 phase I clinical trial, the SIOP Ependymoma II clinical trial 

and the PROSPECT-NE observational study. The protein characteristics and associations 

of protein expression with relevant clinical parameters were studied. 

 The assay for LY3143921 clinical study has been developed and validated to 

measure the expressions of CDC7, pMCM2 and ki-67 in WBCs. The results showed high 

precision of the assay and capability to detect changes in pMCM2 with LY3143921 drug 

treatment, most noticeably within a ki-67 positive cell population. Moreover, a 

clinically relevant freezing method for storage of proteins during delivery was 

validated. The clinical trial is currently recruiting patients to the dose escalation phase 

of the study, with the developed pharmacodynamic assay proposed to be used for the 

analysis of samples in the planned expanded phase of the study. 

 A pharmacodynamic assay for the SIOP Ependymoma trial has been developed 

and validated to measure acH4 expression in myeloid WBCs. In vitro and ex vivo results 

indicated high precision of the assay as well as a potential to detect protein changes 

following drug treatment. However, clinical results from seven patients studied to date 

have shown marked intra- and inter-patient variability and no associations have been 

observed between percentage of acH4 positive cells and either dose or concentration 

of valproic acid. Low concentrations of valproic acid in patient plasma alongside small 

numbers of patient samples represent clear limitations to this study and future work 

should take these issues into account. 

 For the PROSPECT-NE study, an assay was applied to measure ki-67 expression 

in lymphoid WBCs. The results showed no correlations with the available patient data, 

nor the patient overall survival. Although when ki-67 positivity was categorised into 

high and low groups, it showed a potential prognostic impact, multivariate analysis 

revealed no significance for ki-67 expression when adjusted with LDH and Z-score of 

grip strength. The prognostic effect of percentage of ki-67 positive cells should be 

further investigated, with larger numbers of patient samples studied and more 

detailed patient information made available. 
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 In summary, three assays for detection of proteins of interest including CDC7, 

pMCM2, ki-67 and acH4 were developed and validated and their clinical utility shown. 

A number of important lessons have been learnt which have applicability to the 

development of similar assays in the future, and the practical aspects of developing 

assays for use in clinical trials involving the analysis of clinical samples in real-time. 

Future studies should include more patient samples, longer observational times and 

more complete patient datasets. 
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Appendix A. Association between percentage of ki-67 positive 
lymphoid cells and patient data 

Since this study analysed both percentage of ki-67 positive lymphoid cells at the 

first visit and the median value of all visits, the difference in ki-67 categorisation by 

different values is promising. The table A1 compares classification of each patient 

using percentage of ki-67 positive cells at the first visit, the median percentage of ki-67 

positive cells of all visits. Difference in ki-67 values determined by different parameters 

is also presented. 

 

%ki-67 at 1st visit Median ki-67 of all visits 

Value Classification 
(Cut-off 1.82%) 

Value %difference 
from 1st visit 

Classification 
(Cut-off 1.61%) 

0.48 Low 0.48 0.00 Low 

1.07 Low 1.07 0.00 Low 

1.21 Low 1.21 0.00 Low 

1.77 Low 1.24 -30.23 Low 

1.41 Low 1.41 0.00 Low 

0.56 Low 1.46 159.82 Low 

0.71 Low 1.46 105.63 Low 

2.16 High 1.62 -25.00 High 

1.92 High 1.52 -21.09 Low 

2.57 High 1.54 -40.08 Low 

1.16 Low 1.60 37.93 Low 

1.85 High 1.85 0.00 High 

5.68 High 0.88 -84.51 Low 

1.79 Low 2.11 17.88 High 

2.21 High 2.21 0.00 High 

0.60 Low 2.75 357.50 High 

2.71 High 2.71 0.00 High 

2.82 High 2.82 0.00 High 

2.97 High 2.97 0.00 High 

1.17 Low 1.81 54.70 High 
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%ki-67 at 1st visit Median ki-67 of all visits 

Value Classification 
(Cut-off 1.82%) 

Value %difference 
from 1st visit 

Classification 
(Cut-off 1.61%) 

1.75 Low 1.26 -28.00 Low 

3.81 High 3.30 -13.52 High 

6.10 High 3.30 -45.90 High 

2.05 High 3.17 54.63 High 

1.01 Low 2.01 98.51 High 

6.95 High 4.48 -35.61 High 

4.49 High 4.49 0.00 High 

8.54 High 16.20 89.70 High 
 

Table A1. Difference in classification of patients using different values and different 
cut-points 

The table shows difference between percentage of ki-67 positive lymphoid cells 
at the first visit with cut-off value 1.82% and median percentage of ki-67 
positive lymphoid cells of all visits of a patient with cut-off value 1.61%. 

 

The standard curves used for the analysis of absorbance by ELISA tests are 

showed in figure A1 together with three equations from three repeats. Four parameter 

logistic regression was used as recommended by the manufacturer. The standard 

curves ranged from 6.25 – 400 ng/mL. The concentration of sample which was lower 

than 6.25 ng/mL was identified as less than the lower limit of quantification (<LLOQ) 

and the value was set to 0 ng/mL. The concentration of sample which was higher than 

400 ng/mL was identified as greater than the upper limit of quantification (>ULOQ) and 

the value was set to 400 ng/mL. Both <LLOQ and >ULOQ values were not compared 

with percentages of ki-67 positive cells but were still used in the survival analysis. 
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Equation 1st repeat: y = -1E-10x4 + 9E-08x3 - 3E-05x2 + 0.0115x  R² = 1 
Equation 2nd repeat: y = -1E-10x4 + 9E-08x3 - 4E-05x2 + 0.0125x  R² = 1 
Equation 3rd repeat: y = -1E-10x4 + 1E-07x3 - 5E-05x2 + 0.0148x  R² = 1 
 

Figure A1. Standard curves of the absorbance and concentration of ki-67 measured 
by a commercial ELISA kit along with the curve-fit equations calculated using the MS 
Excel software. 

Samples were analyzed three times, so three different equations were used. 
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Appendix B. Conference abstracts 

Postgraduate Cancer Conference 2017, Newcastle University, Newcastle upon Tyne, 
UK – Oral presentation 

Characterisation of rare cell phenotypes in peripheral blood and utilisation as a 
surrogate tissue in pharmacodynamic biomarker assays 

Suriyon Uitrakul 

Introduction: LY3143921 is novel small molecule CDC7 inhibitor being investigated in 
early phase trials. To demonstrate mechanism of action pharmacodynamic biomarker 
assays are required. MCM2 is phosphorylated by CDC7 to yield pMCM2 which is 
detectable by a phosphospecific antibody. Ki-67 is a marker of proliferation.  

Objective: To develop and validate an imaging flow cytometry assay to detect pMCM2 
and ki-67 in circulating haematopoietic cells as a surrogate tissue to demonstrate 
LY3143921 mechanism of action. 

Method: Eighteen mice were divided into 3 equal groups and received 15 or 50 mg/kg 
LY3143921 p.o. or vehicle. Blood was taken from 3 mice per group pre-administration 
and at 3, 6, and 24h post-administration. Red blood cells were lysed and white blood 
cells (WBCs) fixed in formaldehyde before storage in methanol at -20°C. WBCs were 
incubated with antibodies to pMCM2, ki-67 and DAPI for 1h. Expression was measured 
by imaging flow cytometry. 

Result: The percentage of pMCM2 positive cells in the ki-67 positive WBC population 
at 0, 3, 6 and 24 hours post-LY3143921 treatment were 70.0%, 57.5%, 41.6% and 
38.6% (15 mg/kg group); 56.6%, 50.8%, 42.6% and 13.9% (50 mg/kg group) and 62.0%, 
67.5%, 70.0% and 71.3% for control animals. Two-way ANOVA showed significance in 
both duration of treatment and dose (p-values 0.035 and 0.024, respectively). The 
frequency of ki-67 positive cells was not affected by LY3143921 treatment.  

Conclusion: The assay is appropriate for analysis of changes in frequency of pMCM2 
positivity as a percentage of ki-67 positive cells over time, following administration of 
LY3143921.
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American Association for Cancer Research (AACR) Annual Conference 2018, Chicago, 
Illinois, USA – Poster presentation 

Imaging flow cytometry assay development and validation for the detection of 
histone H4 acetylation in white blood cells 

Suriyon Uitrakul, Gareth James Veal, Claire Hutton, David Jamieson 

Introduction:  Histone deacetylases have been identified as oncogenes in several 
cancer types, providing an attractive target for anticancer treatment. In this respect, 
the histone deacetylase inhibitor valproic acid has been shown to inhibit the growth of 
multiple paediatric tumour types and is well tolerated in children with refractory solid 
or CNS tumours. 

Objective: The aim of the current study was to develop and validate a novel imaging 
flow cytometry method for the detection of histone H4 acetylation in lymphoid and 
myeloid cell populations, and to assess the applicability of the method to a clinical trial 
setting. 

Method: HL-60 cells and whole blood samples from healthy volunteers were incubated 
with valproic acid (0.5-8 mM) for 0.5-24 hours, followed by RBC lysis for the whole 
blood samples and fixed with cold methanol. Additional blood samples were collected 
from patients with ependymoma who were receiving valproic acid as part of the SIOP 
Ependymoma II clinical trial. An imaging flow cytometry method was developed using 
an ImageStreamχ flow cytometer, collecting WBCs with excitation of PE conjugated 
acH4 antibody and DAPI. Data were collected using Inspire™ software and further 
analysed by Ideas™ software 6.2. Both in vitro and ex vivo experiments were repeated 
on at least 3 occasions. 

Result: In the HL-60 cell line the mean percentage of acH4 positive cells was 1.98% in 
the vehicle control sample, increasing to 10.9-77.9% when treated with 0.5-8 mM 
valproic acid for 6 hours, with percentages of 8.7-49.0% observed following incubation 
with 4 mM valproic acid for 0.5-24 hours. Comparable data were generated in 
lymphoid and myeloid WBC populations following ex vivo incubation of whole blood 
samples with valproic acid. Increases in the percentage of acH4 positive cells were 
observed in samples collected at 4 hours post-administration in patients receiving 
valproic acid as compared to pre-treatment samples. Myeloid cells appeared to have a 
smaller proportion of acH4 positive cells than observed in the lymphoid population but 
a greater fold increase above basal levels. 

Conclusion: A new assay for detection of histone H4 acetylation in WBCs by imaging 
flow cytometry has been developed and optimised. The assay showed increases in 
acH4 positivity in both in vitro and ex vivo experiments following exposure to valproic 
acid. The method can be used for the measurement of acH4 as a pharmacodynamic 
biomarker for histone deacetylase inhibitors in drug development and monitoring of 
drug efficacy in clinical trials. 
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1 |  INTRODUCTION

Histone deacetylase inhibitors (HDACIs) represent a novel 
type of anticancer drug which have been studied over a num-
ber of years since the association between HDAC expression 
and cancer was first observed.1,2 This class of drugs includes 
valproic acid, a well‐known anticonvulsant, which has been 
shown to exhibit HDAC inhibitory activity in a cancer set-
ting.4 In the modern era of cancer therapy, pharmacodynamic 

biomarkers play increasingly important roles in furthering 
our understanding of drug efficacy, with the development of 
novel and informative biomarker assays representing a key 
area of research.

Many proteins can be used as biomarkers of drug activ-
ity and histone H4 acetylation (acH4) has become a com-
monly used biomarker for measurement of HDACI activity 
in preclinical and clinical studies.5,6 Modulation of acH4 
has been measured by many techniques including Western 
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Abstract
Background: The histone deacetylase inhibitor (HDACI) valproic acid has been 
shown to inhibit the growth of multiple paediatric tumour types and is well tolerated 
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Blot, ELISA, immunofluorescence and flow cytometry, but 
no imaging flow cytometry methods have been published to 
date.7,8 Furthermore, published assays have focused on the 
populations of peripheral blood mononuclear cells (PBMCs) 
and polymorphonuclear leucocytes (PMNLs), but none have 
investigated differences in acH4 expression between these 
populations.

The current study therefore aimed to develop and validate 
a novel imaging flow cytometry protocol for the detection of 
histone H4 acetylation by quantitative image analysis of nu-
clear acH4 signal, including studies to investigate differences 
in acH4 expression between myeloid and lymphoid WBC 
populations.

2 |  MATERIALS AND METHODS

2.1 | Reagents
Valproic acid sodium salt and RPMI‐1640 medium were 
from Sigma® Life Science. The acH4 antibody conjugated 
to PE was from Merck Millipore. DAPI (4',6‐Diamidino‐2‐
Phenylindole, Dilactate) was from BioLegend® (California, 
United States). BD Phosflow™ Lysis/Fix Buffer was ob-
tained from BD Biosciences. Bovine serum antigen (BSA) 
MACS® buffer was provided by Miltenyi Biotec Ltd. PBS 
was supplied by Thermo Fisher Scientific.

2.2 | Cell lines
Authenticated HL‐60 (Human promyelocytic leukaemia) 
cells were cultured routinely in RPMI‐1640 medium sup-
plemented with 2 mM L‐glutamine and 10% foetal bovine 
serum (FBS). Cells were grown in 75 mm2 flasks, incubated 
at 37°C in a 5% CO2 incubator.

2.3 | Blood samples
Whole blood from healthy volunteers was obtained 
from staff members in the Northern Institute for Cancer 
Research (Newcastle University) following standard op-
erating procedures. All blood samples were drawn from 
volunteer donors by registered doctors and were trans-
ferred directly to blood tubes. Additional blood samples 
were collected from patients with ependymoma who were 
recruited as part of the SIOP Ependymoma II clinical 
trial (ClinicalTrials.gov identifier: NCT02265770). This 
trial is designed to investigate the efficacy of combined 
chemotherapy including valproic acid, for children and 
young adults with ependymoma. Valproic acid (15 mg/
kg) was administered orally to randomised patients two 
or three times daily, with doses adjusted in individual 
patients to achieve target trough plasma concentrations 
of 100‐150 µg/mL (690‐1040 µM). Appropriate ethical 

approval and written informed consent for study patients 
were obtained. Samples for analysis of acH4 were col-
lected immediately before the initiation of valproic acid 
treatment (pretreatment baseline), at 4 hours post‐admin-
istration and at trough levels during continuous therapy 
across a range of valproic acid dose levels. Whole blood 
samples were taken from patients and directly added to 
prepared Lyse/Fix Buffer. Samples were then frozen and 
transported on dry ice to the Northern Institute for Cancer 
Research, Newcastle University, within 2 days.

2.4 | In vitro valproic acid treatment
HL‐60 cells (1 × 106) were seeded in 2 mL RPMI‐1640 me-
dium supplemented with 10% FBS in 6‐well plates. Valproic 
acid was dissolved in RPMI medium to make a stock solution 
of 100 mM. The stock solution was diluted with RPMI me-
dium by serial dilution to obtain final valproic acid concen-
trations of 0.5, 1, 2, 4 and 8 mM, with RPMI alone included 
as a negative control, and the plate was incubated at 37°C, 
5% CO2 for 6 hours. Additional experiments investigated the 
effect of a fixed concentration of valproic acid (4 mM) at 0.5, 
1, 3, 6 and 24 hours. Collected samples were washed with 
PBS and fixed in −20°C methanol overnight. Experiments 
were repeated three times.

2.5 | Ex vivo valproic acid treatment
Whole blood samples from healthy volunteers were col-
lected in EDTA tubes, then divided into Falcon™ tubes 
(2 mL blood/tube). Valproic acid sodium salt was dissolved 
in RPMI‐1640 medium to obtain a final concentration of 
100 mM. The drug solution was added to each blood tube to 
generate final concentrations of 0.5, 1, 2, 4 and 8 mM with 
RPMI included as negative control. Tubes were incubated in 
a shaking incubator at 200 rpm, 37°C for 6 hours. All blood 
samples were lysed and fixed using the protocol described 
below. This experiment was repeated three times with three 
independent donors.

2.6 | Red blood cell lysis
Red cells in whole blood samples were lysed with Lyse/Fix 
Buffer, diluted in distilled water (1:5) and added directly to 
the whole blood tube (20 mL of diluted lysis buffer per 1 mL 
of blood). The solution was mixed by inversion, incubated 
at 37°C for 10 minutes and centrifuged at 500 g for 10 min-
utes. The supernatant was gently poured off and the cell pel-
let re‐suspended in 5% BSA in PBS for 30 minutes. The tube 
was centrifuged again at 500 g for 5 minutes and the cell 
pellet re‐suspended in methanol for permeabilisation. The 
white blood cell suspension was stored at −20°C for at least 
24 hours.
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2.7 | Flow cytometry
Cell pellets were re‐suspended in PBS at a density of 
1 × 106 cells and incubated in 1 mL of 5% BSA in PBS 
for 1 hour. Cells were then centrifuged at 500 g for 5 min-
utes and 90% of the supernatant aspirated. Approximately 
100 μL of each cell suspension was incubated with 1 μL of 
acH4 antibody at 2‐8°C overnight. Samples were washed 
with 1 mL of 5% BSA in PBS, re‐suspended in 100 μL of 
5% BSA in PBS with 5 μL of DAPI and incubated at room 
temperature for 1 hour. Cells were washed with 1 mL of 
5% BSA in PBS and the acH4 signal measured by imaging 
flow cytometry.

2.8 | Imaging flow cytometry analysis
Imaging flow cytometry was performed using an 
ImageStream®χ flow cytometer (Amnis), collecting 
100 000 images per sample. The instrument was set to 
excite the PE tagged acH4 antibody and DAPI by 488 nm 
(100 mW) and 405 nm (30 mW) lasers, respectively. Data 
were collected using Inspire software and further ana-
lysed by Ideas software 6.2. The process of data collec-
tion and gating used in this study is illustrated in Figure 
S1 (supplementary data).

2.9 | Statistical analysis
Mean and standard deviation (SD) values were calculated for 
all experiments. One‐way ANOVA was performed to com-
pare results obtained from in vitro and ex vivo experiments. 
A paired t test was used for the comparison of myeloid and 
lymphoid acH4 positivity. All statistical data were generated 
using Prism 6.0 software.

3 |  RESULTS

3.1 | Assay validation in cell lines
In order to investigate acH4 expression using the proposed 
method, HL‐60 cells were treated with valproic acid across a 
range of concentrations and time points and the percentage of 
acH4‐positive cells was determined. Figure 1 provides exam-
ples of acH4‐positive (1A) and acH4‐negative (1B) cells as vis-
ualised on the imaging flow cytometer. The expression of acH4 
was quantified using three parameters as shown in Figure 2.

The first and second parameters, mean and median in-
tensity of fluorescence, have previously been used to mea-
sure changes in acH4. An average mean intensity of acH4 
in control cells of 5051 increased to 13 044 when treated 
with 8 mM of valproic acid (Figure 2A). Increase in median 

F I G U R E  1  Representative images of 
HL‐60 cells with nuclear acH4 positivity 
(A) and negativity (B), myeloid cells with 
acH4 positivity (C) and negativity (D), and 
lymphoid cells with acH4 positivity (E) 
and negativity (F). Samples were separated 
following incubation of cells with 4 mM 
sodium valproate at 37°C for 6 h
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intensity of acH4 was similar to the increase in mean inten-
sity (4730 and 12 311, respectively; Figure 2B). The third pa-
rameter reported was the percentage of nuclear acH4‐positive 
cells, developed based on the functionality of the imaging 

flow cytometer. Cells with ≥2 in similarity between DAPI 
and PE and ≥45 000 in intensity of PE were identified as 
nuclear acH4‐positive cells and expressed as a percentage of 
the total number of cells present. The average percentage of 

F I G U R E  2  Expression of acH4 in HL‐60 cells treated with valproic acid (0‐8mM) for up to 24 hours. Figure 2A and 2B indicate mean and 
median fluorescence intensity of acH4, respectively, and Figure 2C indicates average percentage of acH4‐positive cells following treatment for 
6 hours. Figure 2D, 2E and 2F indicate mean fluorescence intensity, median fluorescence intensity and average percentage of acH4‐positive cells, 
respectively, when treated with 4 mM valproic acid for up to 24 hours. Mean and SD shown from three separate experiments. Level of significance 
from one‐way ANOVA statistical analysis is shown
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acH4‐positive cells was 0.51% in the vehicle control sample 
and increased to 30.6% when treated with 8 mM valproic acid 
for 6 hours (Figure 2C).

Figure 2D‐F show the expression of acH4 following dif-
ferent incubation times with valproic acid at a concentra-
tion of 4 mM. The average mean and median fluorescence 
increased approximately twofold (Figure 2D‐E), while the 
percentage of acH4‐positive cells increased from 0.22% to 
9.7% (>10‐fold) following incubation of HL‐60 cells with 
4 mM valproic acid for 6 hours, respectively (Figure 2F). 
All increases shown in Figure 2 were statistically significant 
(P < 0.001).

3.2 | Assay validation in white blood cells
The method developed in HL‐60 cells was applied to the 
measurement of acH4 expression in WBCs following incuba-
tion of whole blood from healthy volunteers ex vivo with val-
proic acid. The process of red blood cell lysis and cell staining 
was the same as HL‐60 cells. Example images of four types of 
white blood cell are shown in Figure 1, namely acH4‐positive 
myeloid (1C), acH4‐negative myeloid (1D), acH4‐positive 
lymphoid (1E) and acH4‐negative lymphoid (1F).

Levels of acH4 detected in WBCs were increased fol-
lowing exposure to valproic acid, with the proportion of 
acH4‐positive cells in the untreated WBC population mark-
edly lower than in cells treated with valproic acid and a 
clear concentration‐dependent effect observed in all three 
parameters measured (Figure 3 and supplementary Figure 
S2). Fold changes in mean fluorescence, median fluores-
cence and nuclear acH4‐positive WBCs over a concen-
tration range of 0‐8 mM valproic acid were 3.9‐, 3.5‐ and 
57‐fold, respectively. Measurement of the percentage of 
acH4‐positive cells was therefore selected to measure dy-
namic change in acH4 in clinical samples.

Looking at the data generated in different types of WBC 
in Figure 3C, percentages of acH4‐positive myeloid cells in-
creased from 0.60% to 54.9% (92‐fold) with a valproic acid 
concentration of 8 mM, as compared to untreated cells. In 
comparison, percentages of acH4‐positive lymphoid cells 
increased from 2.2% to 70.5% (33‐fold) under the same 
conditions. Fold changes in mean and median acH4 signal 
exhibited the same trend. These increases between myeloid 
and lymphoid cells were significantly different (P = 0.03). 
Lymphoid cells therefore exhibited a higher percentage of 
acH4‐positive cells than myeloid cells but a lower magnitude 
of increase when treated with drug.

3.3 | Clinical sample analysis
Blood samples from four patients receiving valproic acid 
treatment on the SIOP Ependymoma II trial were analysed 
to examine applicability of the assay to a clinical setting. 

Whole blood samples collected pre‐administration and 
at 4 hours post‐administration of valproic acid were pro-
cessed as described.

F I G U R E  3  Expression of acH4 in myeloid, lymphoid and total 
white blood cells from whole blood samples treated with different 
concentrations of valproic acid (0‐8 mM) for 6 hours. Expression 
is shown as mean fluorescence (A), median fluorescence (B) and 
percentage of acH4‐positive cells (C); mean data shown from three 
independent donors. Significant differences between acH4 changes 
in myeloid and lymphoid cells were observed in Figure 3C (ANOVA, 
P = 0.0313). Significant changes in acH4 with increasing valproic acid 
concentrations were observed in all cell populations (ANOVA, P < 0.01)
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Figure 4 indicates the percentage of acH4‐positive cells 
in 38 samples collected from four ependymoma patients 
receiving valproic acid, suggesting a trend towards an in-
crease in acH4‐positivity post‐treatment. In agreement with 
the ex vivo results, myeloid cells appeared to have lower 
acH4 expression but a greater increase in percentage of 
acH4‐positive cells after valproic acid treatment than lym-
phoid cells. These data confirm that myeloid cells represent 
the preferred population of interest for the developed assay.

The association between percentage acH4‐positive myeloid 
cells and valproic acid concentrations measured in plasma from 
two patients where sequential blood samples were collected is 
shown in Figure 5. For each patient, samples were collected be-
fore the initiation of valproic acid (treatment naïve), at 4 hours 
following drug administration and at 12 hours following drug ad-
ministration (trough level before next dose) over a treatment pe-
riod of up to 3 months and across a range of doses of valproic acid 
(from 15‐35 mg/kg). Increases in valproic acid concentrations be-
tween pre‐ and post‐treatment ranging from 0.17‐0.35 mM and 
a maximum post‐treatment concentration of 0.81 mM observed.

4 |  DISCUSSION

A novel method for the detection of histone H4 acetyla-
tion by imaging flow cytometry has been developed and 
its applicability in cell lines (in vitro), white blood cells 
(ex vivo) and clinical samples obtained from patients 

receiving treatment with valproic acid investigated. The 
assay showed increases in acH4 positivity in both in vitro 
and ex vivo concentration‐dependent experiments follow-
ing exposure to valproic acid.

This is the first assay which describes the quantification 
of acH4‐positive cells using an imaging flow cytometry ap-
proach, although previous studies have described methods to 
detect histone acetylation levels by conventional flow cytom-
etry.11-13 Unlike these previous approaches, imaging flow cy-
tometry as utilised in our study can also provide valuable 
information on localisation of the antibody:antigen inter-
action in WBCs, allowing identification of nuclear expres-
sion of acH4. This function allows us to measure histone H4 
acetylation by quantifying the number of nuclear acH4‐pos-
itive cells, as compared to previously published techniques 
used to measure acH4, based on observing the expression 
of acH4 intensity.11-13 Our results suggest that nuclear acH4 
positivity is a markedly more sensitive approach to measur-
ing relative changes in acH4 expression as compared to mean 
and median intensity, although absolute numbers were lower.

In our assay, acH4 expression in lymphoid cells was sig-
nificantly higher than expression observed in myeloid cells, a 
finding that may support the use of PBMCs to measure acH4 
expression in previously published clinical trials.7,8 However, 
our results suggest that a larger dynamic range in response to 
valproic acid treatment, in terms of the magnitude of increase 
from baseline, was observed in myeloid as compared to lym-
phoid cells. To compare the expression of acH4 in WBC, 
therefore, the percentage of myeloid cells in whole blood 
should ideally be considered.

The clinical application of the current assay was tested 
using blood samples obtained pre‐ and post‐treatment from 

F I G U R E  4  Percentage of acH4‐positive cells in cell populations 
isolated from patient samples collected pretreatment and 4‐h post‐
treatment with valproic acid. The bars indicate mean values
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children being treated on the SIOP Ependymoma II clinical 
trial. In contrast to in vitro and ex vivo experiments, changes in 
acH4 positivity observed were modest. In this respect, it should 
be noted that plasma drug concentrations achieved in the study 
patients were markedly lower than concentrations used in ex 
vivo experiments (Figure 5), thus resulting in smaller increases 
in percentages of acH4‐positive cells. In a previously pub-
lished clinical trial, an approximate threefold increase in H4 
acetylation was observed at a valproic acid plasma concentra-
tion of ≥1 mM,8 markedly in excess of plasma concentrations 
observed in the patients in the current study. Another clinical 
trial reported no clear changes in acH4 expression ratios be-
tween post‐ and pre‐valproic acid treatment at a mean valproic 
acid concentration of 0.65 mM.9 Similarly, results from a third 
study suggested that patients with significant increases in his-
tone acetylation (>4‐fold) had valproic acid plasma levels in 
excess of 0.8 mM.10 It is highly likely that the small increases 
in acH4 positivity observed in our limited number of patient 
samples analysed to date, reflect the low plasma concentra-
tions of valproic acid observed in these patients at the doses 
administered at early time points in the current study. Further 
clinical samples collected from patients receiving increased 
valproic acid doses will be analysed as the trial progresses.

In conclusion, a novel assay for the detection of histone 
H4 acetylation in myeloid white blood cells by imaging flow 
cytometry has been developed and optimised. The method 
can be used for the measurement of acH4 as a pharmacody-
namic biomarker for HDACIs in drug development and mon-
itoring of drug activity in a clinical setting.
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